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Chapter 1

Fundamentals of Vibration
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%’ : . kz*;#Z’ki*,-)- *1*2
4 _ 2 + L

g et K

Koy = s (Kq+ k)

kzkitqk5+ 2 k, ka ’k"ks -+ k1k2k4 'Rs‘ + 2 ki_kl-k] ‘kl,'
g+ ky+ Keg

k’.*.‘ k" + Ky K3Kg 4 2 K, iy k" +2 K"kfks +k‘k1k" + ik, ke, ksz‘k‘kzk"

Epuivalence of potential energies gives

2 . 2
-ZL kfi 62‘-]- i ktz 92*“‘2" "‘4_(9 11)2-}— -2':1‘(2(3 I;) +‘£ kg(efz) = 'i‘ * 2

8
Ky, = L 17 z K
‘e = Keg+ Keg+ Kb+ X 7+ K5 0,

*23= for series springs 5 kyand k3

I - Ly L = o Kz ks
1e X - %k, 1 Y ky K23
SRAIF] : A

K ky + Ky fe3+ Kak

Using €nergy egu_ivmlehée,k o
» 2 2 2 2 2
4 ke ot = k04§ K38 4 4 ks @R) + £ kg (o)

'kez= Ky + Kz + S Rl 1.3

ok k, R '
= +/ |2 ™3 ) 1,(
& \H\ <, + 2 K3 + %3 %, + R ( s+ kG)

6

_ For S\'mp!v supported beam, J 12m 1

. Jor Load ot middle, 4
e 4 prd Y /2T
o = 48 EI 43<2-06 x1o )(io ) e : Cedm
R F I — Gmmee— 2~ |

= 12:36 x10' Nfm where I=-L (12) () = 7% 4,

8 = original deflection = ™3 - 500 x9-82 ~7

7 L3 12:36 x 107 = 396-8447 xto ™

when spring ¢ 5 odded,

‘ke& = K+ "Ki
New deflection = T2 = & . ko = 2TF _ 3 %
ktg 3 ez §¢ 1
K =

2K4 = 24.72 x 10’ N/ Tk
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: deflection
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Using the relation (i+e) ~ 1+ 2, we obtain

2.\Y2 %
x=z(a— ) [1 ) "‘1]:2;_%)1/1

kep = 'k.(’;é‘zz 4% (03:"1;) = 1‘(4&::.}’2)

(b)  Here X = Xy (ASpring Je;lec'h‘ou)

‘ke_ﬁ= *

@ Let x= vertieal
Ja‘spla—cemem‘:
of Tass M ;
Xy = 'resu!_h'nj |
deformation of

ea,ck inclined

sp h'n} .




From eab“va’tey,c_e cf }OO&QY\'E\G'!- enefg'j)

gZQCZ?(‘?':kXJ> 5 eZ—3‘k(7u>

From 9eome.{'rj , (1_ ,4) /E w20 % cos &
x2 9% f cos of + 20 Xg — 7-}' =0 (Ei)

. - (zf‘z — x 1/2
Solvmg (EJ.), Cx = leosof [1 + {i - ;‘c - j( } ] (Ez)

Using the relation J1-@ = 41- -9- :(Ez) can be rewritten os

= L [itfi“(”x"z )}] G

z}Z cos? o

Assuming x to be small, we wuse minus sign  and ncalect x;-'
compored to 2L x, in (E;). This gives

xs

Cos of

A=

‘f('CZ = 3 % (osz.o(

In ‘a; ,s.'mifa.r ma.nnér, c% = 3C r.as?'o(
- Lk, K I"————— 4, —
*2 = __..3-_._.3_. ' r‘lz
ke, K Fma |
=773 LM \u.y 172
4= AL = FF %, < - rigid
From kinetic energy » K23 ba.r/ :
Lo (1 '>Z il N6V |(massiesy
M58 ) + 2('”2*'_“)([39) = L ,};Zéz
2
From Fofemﬂ'al energy s m
T 2 2 2 2
2 L3} (11 G) + é 1(23 (12 9) -+ é f(i_ e + -ZL ‘k4(f3 6) = ‘iL'keZe
]
\ 4
2 2 F4
'Teg‘"‘ gt*‘(""*"‘)f *%2*;5 +kzs-72+"t"”"4£'

3 -
; : 1
--------- =% 10
A SO 3 S D-O o 30’

: : 4
> — £, 5 1 ——— £, = g— 5] T
'kzzf,_n_:,TI‘Et(cl-;-t) ' &, = TED 4
L2 L 42
t(d+t ‘
k,= k, gives ’(2 - 4 (d+5




@ (@) F = F/xo + ;‘!f-(xo (X~2%p) = (soo x + 2%32‘%)01‘- (‘5°°+sx1)¥-__t:-f°)

= 1100 x — 4000
(b) ot X= 9 mm
3
Exact F, = 500X+ 2 (9)" = 5958 N
Approximate Fy= (100 x9 —~ 4000 = 5900 N
Error =-0-9?35Z

(C) ok x = [{ mm: 3
Exact F, = sooxit+ 2(1) = gle2 N

Approximate F, = (100 1 -~ 4000 = 8l00 N
Evror =+ 0.7596

f'ur= Cconstant --- (E1) ; ij'fercnf;afe'on of (Ei> gives
r‘

J]" v +}"J’L'V -1 dv = o
Jf’:_ —t—‘l;r- AV --—(Ez)

C.]'\a.nje m voiume Wl"Cn mass MOVveEes bj O J A& (E)
> v= —~A.dx ---(E3
Ezs-(Ez) and (E;) 3ive J?= ?)‘A d
- Force due {'ovyressure Cl-»a.nje: vJF = J?.A = er_ﬂf.J,; |
spring constant of air spring = 4 _ dF =( ’ 1; _
"y _t__é. .
1

Eguivalent spring constants in diffent directions are
_‘ k5 kg K kg & |
ke, = __.M.z.._) Koy = ( _f kg

- If the force P wmoves bj %, spring Located ok 8; undergoes o

'l"SPla"‘e‘.me"t Of X, = X Cos B (Jeriv::.h‘on s n pqu'em 1.6)

. . . “
Ezu.lv:z)[ence of Poi‘gnﬂa.l energy 3;\/33 -% ‘kez xlz .é 2 ‘kgi xii

4 -
_ 2 4=1
ka - L‘_-Zi (‘kei ol ei)
- s —
From Problem 1.y¢, k= PTA with V'= -4 for air
Let p = 200 psi v o
2 2 S
= 75 -u,/in = (200)5'.4) A = —3——- = p.2679
‘ 2 '
Let diameter of Pfsfon =d =2 inch ; = ""'.Z"‘ (2) =3-141¢ ,fnz




V= AZ/O-ZG’?S = 36'840¢% in3
Let h= 2 inch ; _-";32‘(2): 9 => D= 4:8428 nch
, 4+

@ F=ax+bx?=2(10%x+4(10")x*

Around x: F(x) ~F(x') + %— | & —-x*)

When x* = 1072 m, F(x') = 2 (10%) (10%) + 4 (107) (107%) = 240 N
dF 2 _ o 1ok ™ (104

E{;"' =a +3bx* =2(10%) 4+ 3 (4) (10") (107*) = 32000

Hence F(x) = 240 + 32000 (x - 0.01) = (32000 x - 80 ) N

Since the linearized spring constant is given by F(x) = k., x, we have k,, = 32,000
N/m. '

@ Fiza, x; + b; %3 ; i=1,2

- Springs‘ n series:

W= o,5 + L.S‘a (1)
W= a,8+b8 ()
W= #e&,ssé (3
Si= 8+ 8 4)

solve Epgs- (1) and (2) for & and §,,
respectively . Substitute the result
in E%-(4) and then in Ep- (3D to
$ind keg - |

Srrings n Pa-rmlL:[:

3 3
= a8 + by 85t +00285'4:+ Lz S5
= ‘keg 55-(: —
2 ‘ 2
‘keﬁ-‘- 0';+l’t85b + °‘z+1’z 8t




= N s B :
@ soin -0 /.;" @ Eé s Nz
%
W= DN F (I".ﬂ'-) ~where p= weight per unit volume

Z - _
’ 1.3 / G d
Z ,)-——— = > O-4 H
2N 2 r? .D"N F - ¥ 1
US‘_"? G= 73.1x10° N/m? , f= 76000 N/m? , 2= 931 m/sec®,

4= 6, 8,10 ; N= 10,15, 20 o‘ =0:4,0-6,.--, va,f.ue:s‘af

* and £ a.rel cemputed.

Cambination of .d‘P- =

6,
'ta = 9. | & 4 " ' E .
= 4¢06 x16 N/m an 5= o.4801 Hz, can be
"ﬁ:u‘—eh al an a,ccer':‘:wue Je,Sugn. | '

N=jo u-no' d=2-0 m, Corresf:oncfl'nj

@ Total elongation (strain) is same in each material:

x
€g = £, = "E' (1)
where x is the total elongation. Equation (1) can be expressed as
Ty Oa b'd
o 2 X 2
b (2)
x
or g, = — (3)
E, x
n=—7 (4)
Total axial force is: , , _
F=F, +F, =0, A, +0, A, (5)

where F, and F denote the axial forces acting on steel and aluminum, respectively, and
A, and A, represent the cross-sectional areas of the two materials. Equating F fo ke x
where k., denotes the equivalent spring constant of the bimetallic bar, we obtain from

Egs. (3) to (5): |
F =k x = [E;x] A+ {E}x] A,

or keq =—7 + 7 (8)




= (0.1-0.05x)m

A

im >

J= —g— ¥ = area polar moment of inertia at section x = 1.5708 (0.1 — 0.05 x)* m*

- Knowing that the angle of twist, 6, between the ends of a uniform shaft of length £

under a torque T is given by 8 = —éji the angle of twist for an element of length dx can

be expressed as

Tdx T dx ' (1)
GI (80 (10°)) 1.5708 (0.1 — 0.05 x)*

The total angle of twist can be determined by integrating Eq. (1) from x=0 to 1 as:

= L =[ -2 ]} dx (@)

o (12.5664 (10'%)) (0.1 — 0.05 x)* 12.5684 (10'%) | 3 (0.1 — 0.05 x)*

df =

4

1

~0.05
But f —0.05 dx)

1
dy
0050 1——005x) o (01+y)

dx
(0.1 — 0.05 x)*
= 4.6667 (10*) wherey =—0.05x
T (4.6667) (10%)
12.5664 (10'°)

Hence f = =T (0.3714 (107%)) rad

This gives ki = —'g- = 2.6925 (10%) N-m/rad

The steel and aluminum hollow shafts can be treated as two torsional springs in parallel.
For a hollow shaft,

For the steel shaft, G = 80 (10°) Pa, # = 5 m, D = 0.25 m, d = 0.15 m, and hence

10
ky = f—(g—z(-(%—)l (0.25* — 0.15%) = 5.34072 (10*) N—m /rad
For the aluminum shaft, G = 26 (10°) Pa, £ = 5 m, D = 015m, d = 0.1 m, and

hence

——

ky = ___(_ﬁ_______

9 | |
2 20 (1()) D (0.15% — 0.10%) = 0.207395 (10%) N—m /rad

keq = ke, + ki, = 5.34072 (10°) + 0.20739 (10°) = 5.54811 (10%) N—m /rad




G 4*
For helical spring: k = ————x-
@ or helical spring YL

12 x 10%)(2Y)
Spring 1: ky = & ' = 1,388.89 b
PHIRE = ™ = s (10)(6%) fin

(4x 10%)(1*)

51 (10)) = 50.00 1b /in

Spring 2: ky =

(2) Spring 2 inside spring 1 (parallel): keq =Xk; +kp = 1,438.89 Ib/in
(b) Spring 2 on top of spring 1 (series):

ke ki k, k; ko
which gives keq‘ = 48.2825 lbi/in. | ”

Assume small angles 6, and g, ; o, =( £\ o
25,

x,= ho_v_‘_l'gon{'ai alfsf'a_cemenf of C.G. of :

mass My = 6; Iy
x, = vertical d,‘gFla,cemenf of ¢-G- of mass m, = 8,% = e, rl/f‘z
g = £°r4\3°"td’l da‘spfa.ce.me.n‘b of Springs &, amdd ko= 6, (r+1,)

= e (n+k

9= vertical displacement of springe gy and 4,2 6 t,= 44 ./t
Egua'va.lehce of #imetic energies gives “ 2727 nN7r7/

N\E . \Z v A
z e (91) =39 (9|> +3% 92(62)2+ 4 m, (:E,Y} Lm, (:22)2'
_ / 2 ' ~ .
Je.s = g + Jy (?‘/}’2_> + m, r.'l. + m, Y‘: ( ?;/sz[
EELU‘VOJ{CHC.C oF Po‘(:en'{:o'al energies 34‘\/&5‘

L

% z_ 2 2 |
z Teg 6 = ‘,% k. 7, +‘§‘kaqy,_ + % LFW 6.2'1——; kéza"'

2
with &, = .+ &, , kg, = ks kq/(*a'i- ke

;;-'. el(r!"'l')’ ;1= ?'116|/f2 a.ha'l B, = hel/fz'

Sk, = (Rt K2 (B ) ky % E 2, ' X
9= (k) (oo B e (ZEEY RIS e B
i 2.

8 = “E’ R xi - n Ov
: b .
~ From ezutVaaknce of kimetic energies,
_L -2 — 4 * L 1 . 2 i 2
7 m¢8 x = —i— my xi + 7 m, X <+ 1— J; 8

me = (£)' ¢ mar G ()




Lef: ‘é‘: = a..ngu.'a.r ve‘ocfﬁ'_\y oflf}qe motor (anLLt)
Angula.r ve’Oc(che.S‘ of J-‘ffcrenf’ gear sets are -

"""""""" I i oo

I
J) ; TZ;'T.? : 4, J5 : e ‘TJ,NJ 'Tloa—t‘
————————— Jmee et e mm e s qem e m fmm mmmmme - — = — = - m—m -

» s P ny } . n 1 1 e hal] n n N-1
8; e () (2L 23Ny | ( N3 ... Czwof
4 ) L\ny : 0. N2 n ; ' 6, Nz ng _ _Pan /g

o o w wre s mm aw m) e w ww m wen dem e — - e e - - - m 2 - - - -

Egurv@!ence of kinetic energjes gives

..L -Z « 2 2N . .2

2 J;g 8; :"zl Imator 9 + 7 2 T 91‘ + % Jz(ca.c! ©fpad
. _ ‘ [ ny N3

' ‘Te\& = a'.rm:rn‘:m' l)+ ('73.’-*' J’)(h2> + (92‘ + J—S)(—ﬁz Ty

Nan -1\2

4+ 4 (J;N"" ;ff-auJ)(% %?—f‘” NanN

v Ezu.waal.ence .of Kinetic c.ne_rgles 9sves ~
1 -2 1 t 5 6 where 6, = 91_(1‘_.1.)

—ia'eaei=ia',_6 +—i

2
= 7 J‘(‘.‘C‘_}.
'Teg Jdip + 42 “z>

When point A moves by distance x -xh, the walking beam rotates by the angle

X
by, = _l‘-.
. . . xp €2
This corresponds to a linear motion of point B: xg = &, {3 = 7
3

and the angular rotation of crank can be found from the relation:

, r
Xg =r, sin 8, + &€, cos ¢ =r, sin b, + &4 Vl ———tf’%—sinz 8.
1

For large values of ¢, compared to r, and for small values

of x and 0., we have
X xy ¢
Xg =1, 8in b, =1, 0, or@——?—-—- h "2
Te €31, .
The kinetic energy of the system ca.n be expressed as
1 :
T~—~-§-mhxh+—-1b0b+—-.]9

1 .2 .2
Equating this to T = — my,q x = —;— Mg Xy, we obtain

FARE
2
h fz farc

@ When mass m is displaced by x, the bell crank lever rotates by the angle 6, = —;—. This
1

m.a.ktfs the center of the sphere displace by x, = 6, £,. Since the sphere rotates with out
slip, it rotates by an angle



The kinetic energy of the system can be expressed as

2 2
1 .2 1 .2 1 .2 1 .2 1 x 1 o 2| €2
= —Jg 8 + =36, =— = Jg {— — 1=
: | 2 2 s 1 .2 .
since for a sphere, J, = Wy Equating this to T = —2-meqx , we obtain
R U T
P o T
) LR . '
@ (@) EEEAC‘ [ Fo = damping force of c¢ = ¢; (%2~ %) ; i=h3a3
-- . Fs : ¢3 [ Fe&:_ da_mping force of'
vxi —_ —_— Xy

C’ea - ng (;(.2"’:‘I>
_(b)u <) o ot Cegm CircatCs
o2 2 '

Fi+ Fat F3
) __' . Il Fl:: Cl(x.z‘f' ;C')
F;, f"}z‘ x e

! 3 <4 Fa= €z (%5 - x2)
L . . .
L™ ¢ F3= <3 (%q—%3)
» - e&
) rxif —X) = X,_,-—-is- + %3 -~ 7"-2 + iz.—- ;C,
Fez F3 Fa F
ey = o v <
Ceﬁ C3 T2 ¢
. [ i L L A
Since Fca = F' = Fz = F3 » cea = ?‘ + <2 + C; .
(C) Epuating the energies dissipated in o cycle,

2 2 : 2
T Cop X, =Te, W X, + T3 x4 ooy @ X3
where

X, =

- of,, X,= ol and Xz= 64
Ceg = ¢, + <3 _Lz_z_—'_'-ca(l;)z |
d gl T
( )Ezucd:u‘nj the energies d.‘s'rn'P@tec‘ in a cycle,
T Ciep @ ol

I3 . Py : i
=T Cp @ & 4 T ) &3 8, + T G398

wkere 92:.9,(%12) and 83 = 6, %)

o Cy = C ¢ (_71: Z e\
teg t1 7t Te2 ) + Cyg (-—— .
; Damping constant desired

e =
W=4 preyn =4 (107°) Ib—sec/in®.

1 lb-sec/in, viscosity of the fuid



T -

c=U
4 d®
N N—
; ; 4 Assuming x = D/d as the unknown with € = 2 in,
'f kel Eq. (1) can be written as
3Texd 2 ew  3T(2 2
c#u[———;—-’-‘— t+2d) o 1=y A2y a+dy @

This gives x° + 2 x> — 53,051.52 =0
Using a trial and error procedure, the solution of this cubic equation can be found as
x &~ 36.92. Using D = 3 in, we get d = 3/38.92 = 0.081286 in. ‘

. 3 ’ _
4 d £ = axial fEnj'H' of Pu's“ton
d

radial clearance

u

/u:: 45 M rejno{a'.s‘
(fram 5}3:3‘CJ’f Mecha.m‘ca.(
Engineering Dcn‘gn)
,Le"(: ' 4-‘-0-001” s D= 2-4”_an¢‘ a;bave egumfﬁan alves

0 = <4§x,o‘4>{37f(2‘4)3f (1+ 2 xo0-00l )}

4'(0.06!)3 ‘ 2:4

. L= a0.6917"

Ta_ngen'&fazl vg(oc_.’fy of inner cg‘«‘nc’e‘r = %C&

For smeall d, rate of clm.h_c}e of vefoch of

ffu-‘d s dv D ¢ ’//)
FE "—“3 ' /

7

shear stress between Cj‘t‘na'eir: is ﬁ
- . 4Y pw 4
T=pr Ir =M =T g
and shear force is 7
Ty Do (1-4) /

F= T Area — 7 WD(I-%): 2 d ‘

Torgue Jevelopeq’ = My=F.2

. For small 4, rate of change of
velocity of phid in vertical direction is

dv _ rw
dvy h
4 rew
Shear stress s T=pM a(—; = /4#

Force on areaw JA = dF = T dA




Torgue between bottom surfaces of cylinders is

Mg, = ffofmtz.JA where dm_ - dF. r = /;‘_!';__C‘Z dr 46

area | /uw TrD‘,
o man B2 [ Facae o BT
i ) 3 _ TTH WD
Total fOrgue = Mf = mh + My, = WI“D @(1 L) + /* T
4 4 €4

Expressing My a8 GV = ¢ WD/, , we get damping constant:

C{::‘- 7\.'}* :Dz (2—‘A> + 7‘——|: :D?
24 32 h

At Xy =5 m/s, F(:kg) =5(5) +0.2(25) =30N,

F=ai+bi’=§1§5z+o.2i’
F(x) = F(xo) + —?&—-lio (x —xo)
E—Iio‘———(s-}-ﬂ.‘ifc)ls = 7 and hence

F(x)=30+7(x—8)=7x—5.
Thus the linearized damping constant is given by F(X) = 7 X = Ceq X OF Coq =7 N—s /m.

Damping constant due to skin friction drag is: L
c=100 £ d | (1)
Damping constant of 2 plate-type damper is:
A
o =£2 (2)
where A = area of plates and h = distance between the plates. If the area of plates (A)

in Fig. 1.35 is taken to be same as the area of the plate shown in Fig. 1.82, we have A=
£ d. Equating (1) and (2) gives

100p£2d=—————“§d | o (3)
from which the clearance between the plates can be determined as h = -171")-7

' 2 2
_bruf h 27 _h
=3 {(a-——) —~r2} ._ b

2
When ¢ = 0.3445 Pa-s, € = 0.1 m, h = 0.001 m, a = 0..02 m, and r == 0.005 m:

_ 6.7 (0.3445) (0.1)
(1073

2 2
{(0.02 - 0.0005)% — 0.005”} [0'02 0.905" _ 4.001

0.02 — 0.0005
= 4,205.6394 N—s/m




ces 8 =5 > ] 7 _ T7 - 5.3852
$in @ = 2 A= (AC°39)+(AAA9) = /5% 2

. =] . .
;:5-#24- :AeL = A cosé+ 4+ A An8
A .
A

tcmT' ‘”"‘°> M'(} 21:8014°

A cos é

- . . = - 4—'—L+‘°4-
1:1—11—24- :Oai‘f'a-‘zk s 2 = 3-K%L:L = i 2 ‘

xX = Xy 4+ X, = (QL+L1)+L(O‘Z+L2): 4 -2z

=pAe? = Acose+ &L Asng

A= J4r+ (-2)% = 4.4721

6= tar'(7E) = -26:5651

3 = (3 41), Zy = (1 + 2 l)
2=13, — Iy = (3-4i)-(1+2i)=2-6i= A’

where A ="V 2% + (—§)* = 6.3246 and 6 = tan™! [—";l] = tan™! (—3) = — 1.2490 rad
21=1+2l, 2223“41
. =12 2, = (1 +2i)(3- 41)"' 11+21-—Ae”
- where A = V112 4 2% =11.1803 and 6 = tan™! {2/11) = 0.1798 rad

o m_ 1420 (1420B+48)  S5+10F o0 0i A ll
2; 3—41 (3 -4i)3+41) 25 » |

where A = \/(--0.2)2 + (0.4)* = 0.4472

and 8 = tan™? [:—0—‘-‘—] = tan~! (—2) = - 1.1071 rad

0.2

x(t) =X cos wt, y(t) =Y cos (Wt + ¢
1(2 2 ‘

(a) b = cos® wt, % = cos® (Wt + @),

2 XY cos ¢ =2 cos wt cos (Wt + ¢) cos ¢

XY
x? ¥ Xy
: -2
X Ty T ixy eed .
= cos® wt + cos® (wt+¢)-—2coswtcos¢cos(wt+qb) (1)

Noting that cos? o = -%— (1 + cos 2 ), Eq. (1) can be rewritten as .

. ‘
e +$2 —2 ;Z{ cos ¢

=.;_+.%_cogzwt+-;——}——;—cos(2wt+2¢)—2coswtcos¢cos(wt'+¢)



2wt+2wt+24¢ cos 2wt —2wt—229¢
2 ' 2

— 2 cos wtcos ¢ cos (Wt + @) '

=1-+cos(2wt+ ¢)cosd—2coswtcoscos(wt+ ¢)

1
=1+ — {2 cos
+2

=1 + cos (2wt+¢)cos¢—2cos¢{—;— [cosi (wt+¢—-wt)+cos(wt+¢+wt)]]

=1+ cos $cos (2wt + @) —cos gz‘){cos d+cos (2wt +¢)}
=1 —cos® ¢ = sin® ¢ (2
(b) When ¢ = 0, Eq. (2) reduces to ’

2
2 2
X Y g X¥ _[5__2’_] —0

Xz Y? XY |X Y

- which gives X = :k% y. This indicates that the locus of the resultant.moﬁon is &

.. straight line. When ¢ = -;-r—, Eq. (2) reduces to

2
LS S,
XY | |
which denotes an ellipse with its major and minor axes along x and y directions,
respectively. When ¢ = 7, Eq. (2) reduces to that of a straight line a3 in the case
of ¢ =0. :

Equation for resultant motion:

1
%+%~2%m’¢-um=¢ .

2
‘When y = 0, Eq. (1) reduces to EI—C’— = sin® ¢ and hence:

x=+Xsin ¢ = + 8.2'= 08 in figure | (2)

When x = 0, Eq. (1) reduces to -Q;;—- = sin* ¢ and hence:

y = + Y sin ¢ = + 8.0 = OT In figure (3)
It can be seen that

- OR = X cos ¢ = 7.8 in figure (4)
0S Xsin ¢ 8.2 ‘
.——=...._-——-—=t R el ) R 5 — . o
OR = oo d an ¢ 58 0.8158 or ¢ = 39,2072 (5)

From Egs. (2) and (4), we find
X ="V (X sin $)* + (X cos ¢)* ="V (8.2)* + (1.6)* = 9.8082 mm




Equations (3) and (5) give
6.0 = 9.4918 mm

6.0
Y =— = —
sin ¢ sin 39.2072°
. (O.:) = 1200 cos (5ot+o() m  where A s in mm ---- (E4)
— A |
x(’o -— Té—o—-o‘ cOS O( - 0'003 ’ A oS q = 3 - (E2.>
x (o = - 50 A ) - i =
x (@) o Sine = 4 , A Sin ¢ = -20 —-——(Ea)
2 ‘ '
A={ coSc()"+ (A s{nd)z}/ = 20-2237 mm
= - 81-4692"=-1-4219 rad

« = tont ':i‘:s: = 'L’a.n-’i(-G'GCG'I)
x(t) = 20-2237 cos (5ot —1.4213) wmm
_ (b) cos (A+B) CoOS A cos B — sin A sin B |
Eg-(E1) can be "‘F"e”ed a3 x2(t)= A cos 5ot-cos x—ASin Sot.sin
s Ay cos wt 4+ Ay sin wt
where w=50, Aj=Acosa, A ,=—Asin

Sox(t) = (3 cos So*f: + 20 Sin Sot) mm
Aq cos ot + A, sinwt
2 4 .
dx :-—AiCGJ_-COS(J‘éf-Az‘l_’z sin Wt

e
—r—

%(t) = AW sin @t + Ay w ca; wt, T
2 s a constant

dfx 0 x(t) where ©

dt*
Hence x() is a S:mPle har monic wnotion

(cu) Using f:ngonometrcc relations
x,(t) = 5 (Cos 3t cos 1 - sin3t sin 1)
%,(t) =10 (cos 3t cos 2 - sin3t sin 2)

x(£)= x4 (£) + x,(£) = cos 3t (5 cos1 + 10 cos 2) - sin 3t (s sin1 + 10 5in 2)

If x(t)= A cos(ot+ )
5§ o5 1+ 10 cos 2 = -~ 1-4599,
13. 3003

Acos 8t cos of —= ASin ot 3in o

W=32, A cosS o« =
ASng = 5 4n 1 +10 Sin 2 =
A= J(A cos c()z + (A sin o()z":: 13-3802
o = tan~t (ASPAN _ tant(-9.1104) = 96-2640 = 1.68 rad
\ A co¥ o
Angle between x,(t) and =(t) is 96.2640 ~57:3° = 38.964°
Im‘ x(‘t)

b) Using vector addition :

For an arbitrary value of
(w2t +1), harmonic motions
%21 (t) and %,(t) can be shown
as in the f-‘gure. From
vector addition, we find

~ 13:38 cos(wt + 1.68)




(C) Using compiex numbers :
i(wt +L)
x, ()= Re {Ai } = Re {5 e
x,(£) = Re {A, et(whz)} = Re {10 e
If x(t) = Re{A et(@tr 0},
A cos(3t+a) = Ag cos (3t+1) 4+ A; cos (3t+2)

e A (cos 3t cos o = sin.3t sin ez) = 5(cos 3t- cos 1 — sin 3t- $in 1)
-~ +10 (cos 3t. cos2 —sin3t. sin2)

,4'_(0.9{'-1- i)}
(ot +z)}

e A cos o : 5%Cos1+10 cos2 , Asined = 5 sinil+ 10Sin2
A= 13-3802 , = 1-68 rad
3 1-468
x(t) = Re {13.3802 et 3t + )}

x(t)= 10 sin (wt+60°) = =, (£) + X, (t)
where X3(t) = 5 sin(wt+30°) and %,(t) = A sin (wt+ )
:o (Sm Wt ¢os 60" + cos st sin Go ) = 5 ();m ot -cos 30 + cos cot-sin 30)
+ A (sin Ot. cos «°+ cos wt.sin «°)

Q &
10 Co5 0 = § CoS 30 + A coS n(° i A cos x° = 0-6699
10 sin go® = 5 sin 30 + A sn o’ 5 A Sin «° = €-16032
A= Jo ¢695% + 6-1603* g 196 ¢

4
X = ( €1603/,. 6639) = 83.7938°

"z(t)- 6-1966 sin (wt + 83-7938°)

x(t) = 5 cos -;It + sinTt _
] r . x{€)
cas.-é_t(i+4-5m -g-t)

= = 'S

2

From the nature of the

9‘r¢‘>l~ ef x(t), it ‘ 1 ,
can be Aeen that 2 () : . : /

iS Peﬁocl:‘c with a 0 " L Jg "
‘f‘.—mg rer;‘gd of r= 4_ ; \/\/\/

(7 5]
@ If X(f) is harmonic , x(t) = — 2 x(t)
Here x(t) = 2 cos2t + cos 1t
52({:) = 8 ¢cos 2t -9 cos 3t #+ - constant 'f:c'mevs 2(t)

() is net harmenic




x(t) = 4 cos Tt - cos Tt
Tr?-

x({'>= i cos Tt 4 7 cos Tt # ~ constant times ‘Zr(‘f:)

x{(t) s not harmonic

@ x () = %4 (t) + x,(t) = 3sn30t + 35in 29t

" Since _an A+ sin B= 2 3in _‘6—!{! cos ___.A;B a
l £
x(t) = (6 cos l%)sin 2t *z(t) sin 2t Gcos 3
T his egua:kabn shows 6 M. RN - Z
that the ampl.i{'ude /‘\ P \\\ R h )
- : AN . \

(¢ coslz.) varies with N EE {I\:Uﬂ ,-\d\ k‘&g‘t
time between a, maximum , \\ } N v \
value of 6 and , P \ LN

- ~ ”
minimum value of 0. -G} - S Moo
, . _ miriimuwm
The freguency of this k amplitudes

oscillation (beat
;Fregu.enc:j) s Wp= 1.
Note : Beat freguency is tuuce the freguency of the term
] 6 cos_g. since two peaxs pass in each Cjcte of (6 coSt)

The resultant motion of two harmonic motions having identical amplitudes (X) but
' slightly different frequencies {w and w + &w) is given by Eq. (1.67):

2
Thus the maximum amplitude of the resultant motion is equal to 2X and the beat
frequency is equal to dw. From Fig. 1.868, we find that 2X = 5 mm or X = 2.5 mm

x(t) = 2 X sin

and
S 2 27 27
—_— = = = (0.374 rad /sec
2 Theat Tlarger 2(12.6 — 4.2) ‘ /
or dw == 0.748 rad/sec and w + bw_ _2m _ 27 = 6.2832 rad/sec
2 Tsmaller

Hence w = 6.2832 - 0.3740 = 5.9092 rad/sec. Thus the amplitudes of the two
motions = X == 2.5 mm and their frequencies are w = 5.9092 rad/sec and w + ow
= 5.9092 + 0.7480 = 8.8572 rad/sec.

@'A: 005 m , W = 10 Hz = ¢2-832 rma'/sec

eriod =7 = 2T _ 27 . - 6.4 sec
P @ 62-832 _
ma-ximum ve[oc{{‘j = AW = 005 x £2:832 = 3-|4|¢ m/s

maximum acceleration = A w? = c.05 (62~832)" = {97393 m/s?




W= 15 Cps = 94:248 vad/sec '
X max = 053 = 0-5(9-31) = 4:905 m/sl = AW

A= a.mpl{{:ude = 4'905/(94.243)2 = 0.0005522 m

Xomax = MAx. ve[ocifj = AW = 005204 'm/s
@ x = A cos Q?t > xma..x - A = 0'2% mm , fl. = - sz coS wf
Kmax= AW = 0.4 3 = 3924 mm/s* 5% = 2924/, = 15696 (rad/s)?

Operating speed of pump= (3= 125:2837 rad/s = i9-9395 rpm

: 1
@ 2Tt BE y 27t o |?
. x(t) = X sin — 5 Xems = —;{ X2 sun? Z—2 dt
4t
27t 1= cos T
Using sin® = 2 , we obtain
| 1 1
X2 T{1 1 47t 2 X2t 1 7 ., 4mt],|?
Xims = —-7:—{ {—2— —2—COS e ]dt = “7—{'2— _2_ 47 sin T }ID
. | N
X2 {r ‘ }2 X
=|l—{————sind4dnr—0+0 =
T |2 T ; 72 .
xt) =2 s o<t<r
1 1 1 1
1’A”zd2 1Az [e]7|* a2 Alr_[at]T_ A
era=?£_;2—'t t _?? ?0 T'a 3 3 ;3
For_even functions, x(-t) = = (£, | 7
From Eg(i 73), an = -%—,— j"(“-’) sin nwt .d¢ g__‘rz(t) sinnot dt
| | . e
_ 2
"?[fzx(f) sin neot . dt "'J‘x(f) sin nat. dt

| - (E
Sinte sin(-nwt) = - Sm(nwt)~ odd  function of t, the 0

product of x(#) and sin nest is an odd Ffunction.
Further, for an odd function f4), F(E€)= - £(4), and



aiam

1

[FEE) dF + [t 4t
o o
(%)

j‘}(t) dt + f?(é) dt

- s

- [TRw) a4 [Tpie) a
o o

Egua-{:.-ons (Ei> and (Ez> fead ta !’n = 0O,

Also, since cos nwt s an even function, we get

Q
[ #) at
-

o

Q

—

T 7
o, = ..}a_.. f x(t) cos nwt dt = .‘%- f"‘(ﬂ cos nest dt
—7'/2 0

For odd functions, = (-t)=— x(t).

——t e e e e R e e —

%
[4
From Eg. (1-72), én = _%_,_ LI({_) cos neot dt = %

2 A
x(t) cos nwt dt
, - |

Since cos nwt s an even function, cos (-nwt) = cos (not),
the product of x(t) and cos net is an odd function.

Hence @, =z0. o ‘

Further, since sinn@dt is an odd function, x(t) sin nwt is
an even function and hence

T/ .
b = % f/x({:) sin net dt
o ) ) .
% (£)
A z —_
,) { , o:sfsz A _
x(t)= A T (@) ~t
| ‘»,.2..:5{'5?.' —: % |
A, 05'&5% Jx(é)
y —
x®)={ -A, T<tg3T (b) £ A
< 4 _J o ‘ T
v ‘ ~At
A, It <t =T Ax(E)
4 —
- Z/ 2A
x(‘b):{a’ et 7 () 0 -t
. ZA, —225:51‘:5 T : % ¢
' Ax(f)
2A, os t £ A
x (€)= ()
3T ¢t
o . -’%St.ﬁ 5 0 _'E_ T
ZA, 31T <t T



(a’) 'l("‘t>-"9‘({') - odd Function , hencc @ = @p=0C

Q

T (4
2
!’n;"? jx(‘b) sin net . Jt”—"[ _YSIH I’\Utdt+f\5‘ n"wt J‘{)
) t‘/z
- 2A /7 _ M W 2A 72 ws nwt e
= —?— n o 0 .+ '}_ N3 TTA?
= ;‘: '('Z €S NTT — cosO — cos 'ZnTi">
4A sin (2n-N wt
"‘ﬁ) E (zn-i)

(L) '7(.(—1‘;) = x(t) , even Ffunction » f\gnce Ln:o

2 v z Y4 3% v
% = L [ x(t) df = z,[,\.(t)o __A({;>% + A (*),% ]=

o
2 ¢ |
=T fx(t) cos mcot.
£
% 3z >
= A 5in ncai‘} - Sin nt + §in nwt ]
. T ndd o T—'A 3%
= A T2 s &8 25t 207 4 sin zvrnJ={ 4B e For n=LE -
o et ~4Afr For n=3TMsee
. 4A =) 2T (n-1Dt ‘
sxey= Aoz D, 20t
n=1 (Zn-i) T

T » ‘
© o= 2 [Ty ar - 2o+ 24 (f)!% ]=z24

T
2 T - .
Fn = ?f x(t) cos nwt M = % Sin "“’t>r = o
n
o

=2 [ shnot de o = AR (s nirt)”
2

Tz
0 ns

- 4A (cos 2T n. —. ¢os th')
, A n - th W= :
e 'x(t) = = 4A = (Zn—l) 5y (zn l)w't w

m mn=1

(J) 2 (-t) =x(+), even function , hence b= ©
2 T k -
.chz Erfo‘x({-)&b:—;7-[1}\(1—0)4—2,4(’8—-%):’: 2A
- . T
=% [ 2() s mot o = mr[@m r.m)/‘? m>n J
o -




_ 4A PR R . . m
= ST (:n 2 + Sin 2N _ g/n th )
Nn+1
) 4_ b —} 2m({2n~ t‘
S oxE)= TR o= LS LD L VN 23
—_—1 (2n«-!> T
() ¥ fRmm 2 ose <k
© L st <
(7
_ T ¥,
%= % [xt&) 4t = 24 fé'sm 3.2 SN AR I
o o ¢ ¢ e ¥ Jo
= 2zZA
Tr
\ -l z
a:.%.fxe bt - 2A [

n z A ( ) Cos nCJA -E" : S‘lnz-‘%i:-Cas‘ hwt.dt --“"(Ei)
Using the velation Sin mwt. cos noot = Snfmenjut + sin(m-nyot
Eg- (E1) can be rewritten qs '

A T/es
Ay = < j [Sin (1+n) st + sin (L-n) c&t‘] dt
‘o
'“-/6.9 ’
- - A ‘
w}‘ef' n= 4, oy = ‘f‘f sin 2t . dF = o

(o}

A [__ COS(i-l»h)ﬁJt _ cos (1_n)wt]-’%’

when n=2,3,4,... = L
: boeeesr am T (41+n) S (1-mw

- __247?[1- Cos (44n) T 4 1 cos (1-n)rr]

i+n i-n
::{_ 2‘/’\ ' on s ol
Similar -Dlme 7 f 0 s even
|'m|a.rj v
. _L,, =% f’x(f) sin not df = 2A j%g,n 2t s not dE
~ 2'/ T 5 (=
2
= _%j— [ws(i—n)aﬂ:— cﬁ(i-&-n)@tjdk
Whea n= 1i,
f(it-—cdzca{-)cﬁ: = 4
when n= 2,3, 4,..., b, = A sin!i—-n)wt _ s (1+n)6.9‘t s
T ‘(i—h)@ ‘ @+n) s ]a =9
— cos neat

x(t)= A + A sin w0t . 2A
™ z B

gy

14,6,

N



2 ¢ % T oAt
° %

, > 4
- .
‘—‘%[IT Z_étCanwf-df+ng$t+2A)Cosnwf dt]
o 2 | :
2 | 2A [i sio nut + cos noot %2
=TT . nw T{—M—}
o

wt )@ ' t
"5" {t Sin hwf Ctsz.zgz " ZA S‘m noy )A ]
74

21t
As = 5
A AW
@n=-‘i’i-—————-——cosmr--————--_..i_02._ Aca
- 2A ( : 4 A
AT smr_-i) = - — =1,3, 5, ...
w9 = B ’
o o ’ n=2,4, 6, ...
T

b.‘.‘:—z—. ; - 2’ 1730 '
n T J:X({') sin neat dt _‘?[f; %fs:hnwfdf
<
+f(‘g$-£+ 2A>S&'n not d’c]

=3_[_2_A{ {:cmnwt mngt}t/
= .

v n(,_g ntw?
- 2A J_ + cos nwt + Sin net )% + 2A [~ o nwt\ T
v no n? w2 nes
. T, T,
R 72 e A
Ral 2A
- %_9‘;_[.. o oS T+ o O 2nT - ;‘% cos nT\'---z——A— cos 2nm 4 2ZA 2A cos nTr] =0



n=14,3,5,..
164 | $AL » ot <« X
= %
x(t) = -4—;‘,-§+2A,%gf_<_§_£
~ P
4 At
T~ T XA, %51’: < 7
z 3T
@y = L[ x@)ydt - 2[2a % A £ N\
o T T T, t(-=F -,_—+2A{:r/
z | *

, - ,
+ [4A ¢ _ ‘
(t' 2 +At>n‘/¢] = °

T

- 2 ’
n = = f x(t) cos nwt dt - Z._[i__
31; ‘ TL T f t cos m.st dt -
4A s T e
- N t+ cos nwit dt ; 3
v % T + 2A o * cos nost dt
4A fz‘ t T
t = cosmot dt - 44 f cos v
, o
T 3?"/4 32‘/4‘ n t d‘é]
= 2 i_’_\_ Sin nwt oS m.st T '
t.[ = 1* ne T TRITgT } /4 i‘i{t Sin_neot + 95 nut T
o T nis niaa2 }’t’/
. 3% 4
+ 2A (m + 4 A {f fin not 4+ €08 newt n ’
N Jos B sin not\ -
| A oTELLome T e }n;/ ‘“‘( z )"/J
= 2| sin nm f_.._‘_ﬁ_ _2A N T A
WL 2 \ne The T nm )+ ces 22 )
) 'H‘hz'w 7"“‘{‘3

oAnTT /. 3A : :
4 $in —E—(—--——+Z-_A__1_A_. 3InT 2A

. 4A
nae + "‘-‘) oS
nw ne o /T T Tt Tniw

+ cos 2mn (“‘ )...cos 0 _i_'ﬁ__)]

™t Tt = 0
. T :
b, = 2 x(t) si t 2 A % A
n = ‘fo (£) sin nwot dt - —t_"[i? £ sin not. 4t — 4’; t sin nott Jt
A ° %
+ 2A j $in noot . cH: + L t sin ndt . AF _ 4A T sin nwt -cH.‘]
4 !% . 3%

n*ee?

= e L= 5 ot - t_ 4 = 26
e C Ty L S TR
A

- s nwtl¥F T 20 3T _ 3

v no " + 2A |- w3 nwt T = 55 4 1 .
v I e + 2 sin not
£ 1w ‘ . T {niwa?



] ‘ 5 T 1es
4 A S nT . anT 0 f m ‘Vis‘ eren
- in =— — in —
= "zhl( 2 z ) - { n-1
FA Fl
g -1) if nois edd
oo
A n-= ‘
x(t) = — _ 2 sin not
( ) 2 Z ( i) nl
n=4,3,5%,
. £
I(f):r A(L-F) . o< ¢t <« =
T (4 2 \¥%
Qo = 2 +) 4t = g_.é 1";&"‘ dF ZA -—lt.__ —
° v Dz() < ( "7> T 27 = A

(4 . . 2T
- 2 t
Gy = k3 f x(t) cos newot df - 2A [/ 50 nast -t sin neot - :“’z
‘ (+] [ n3 ST nwd T ntw

Q

= 0 A ‘
' 2 T . L 2A Cosncat+_1;_ cos nwt _ sin nwat 2T/is
Ln = -f'—f 'x(-b) sin ntot dF = &8 (- o 7 T o ;

o
A

= ﬁ "
- A sin nwt
S O R

n=4

The truncated series of k terms can be denoted as

x - |
+ Y a,cosnwt+ 3 by sinnwt I ¢

n=1 n=1

with X(t) denoting an approximation to the exact x(t) given by Eq. (1.70). The
error to be minimized is given by

nfuw :
E= [ é€(t)dt (2
—xfu _
where e(t) = x(t) — x(t) ' (3)

and x(t) is the exact value (with infinite series on the right hand side of Eq. (1)).
Treating E as a function of the unknowns a, and by, it can be minimized by
setting: ' ' '

mfw ‘
%=2_xf/w{x(t)—§(t)} [—cosncut] dt =0 | (4)
SE 7 jw B 5 i
. =2_;Lw {x(t) ~—x(t)} [—— smnwt) dt =0 (5)



Rearranging Eq. (4) gives

xfw mjw

[ x(t)cosnwidi= [ X{t)cosnwtdt

~afw —nfw

(8)

Using orthogonalty property, the right hand side of Eq. (6) can be expressed as

o 0 for
[ X(t)cosnwtdt=13, 7
—njw
w
This leads to
xfw
f x(t) cosn wt dt =
—7 fw
xfw
or B, =— [ x(t)cosnwtdt ;
n - fw
‘In a similar manner, we can derive:
_ xfw
b, = = [ x(t)sinnwtdt ;
—mwjw

It can be observed that Egs. (9) and (10) are

m¥n
(7)
form =n
a T '
— (8)
W
n=0,1,2 ..k (9)
n=1,32 .., k (10)

simlar to those of Eqs. (E.3) and

(E.4).
A DR P SRS LT VA L
e :xtcas*“'t*' ; sin Tzt | x; cos WXL 2 sin L= ;nmfl%ﬁ‘ x $in =t
: 5 :L 0-32 : 212 4.12 ; 0-32 |
' ] ' . 1
1 jooz ) 9 | #3149  7.4442 ! 63639 6.3640 | F-akiul( 83149
2 1004 113 ) 94924 91924 1 o0.0000 (3-0000 1-9-1924 9-(723
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@ The main program and the output are shown below.
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MAIN PROGRAM FOR CALLING THE SUBROUTINE FORIER

R N R e N e R N S N N N N I S N T T T s T T 3 P e 3 o]
FOLLOWING & LINES NEED TO BE CHANGED FOR A DIFFERENT PROBLEM
DIMENSION X{24),T(24), XSIN(24}, XCOS(24}, A(5), B(5)
DATA N, M, TIME /24,5,0. 012/
DATA X/770. axo,aso.exo,1010.1170,1370,1610,1890,1750,1630,1510,
2 1390, 1290, 1190, 1110, 1050, 990, 930, 890, 850, 810, 770, 750/
DATA T-/. 0005, .001,. 00185, . 002, . 0025, . 003, . 0035. . 004, . D045, . 005,
2 . 0085,. 006, . 0065, . 007, . 0075, . 008, . 0085, . COF, . 0095, . 01, . 0105,
3 .011,.0115,. 012/ | o
C END OF PROBLEM-DEPENDENT DATA -
CALL FORIER (N, M, TIME, X, T, AZERQ, A, B, XSIN. XCOS)
 PRINT 100
100 FORMAT (//, 446H FOURIER SERIES EXPANSION OF THE FUNCTION X(T3,//}
PRINT 200, N, M. TIME

200 FORMAT (&6H DATA:, //,37H NUMBER OF DATA POINTS IN ONE CYCLE =,15,
2 /,42H NUMBER OF FOURIER COEFFICIENTS REQUIRED =, IS5, /,
3 14H TIME PERIOD =,E15. 8}
PRINT 300, (T{(I), I=1,N)}
300 FORMAT (/,33H TIME AT VARIOQUS STATIONS, T(I) =, /, (4E15.8, 1X))
400 FORMAT (/,31H KNOWN VALUES OF X(I) AT T(I} =,/,(4F15.8, 1X})
PRINT 500
500 FORMAT (//,29H RESULTS OF FOURIER ANALYSIS:, /)
‘ PRINT 400, AIERO : :
600 FORMAT (8H AZERO =, 2X,€15.8, /7, 31H VALUES OF I, ACI) AND B(I) ARF
2.,/7)
DO 700, I =1.M
700 PRINT BOO, I, A{(I), B(I)
800 FORMAT (IS;QX.EIS g, 2X. E15.8)
STOP
END

FOURIER SERIES EXPANSION OF THE FUNCTION X{(T)

s NN NeNoN !

DATA:

NUMBER OF DATA POINTS IN ONE CYCLE = 24
MUMBER OF FOURIER COEFFICIENTS REQUIRED = 35
TIME PERIOD = Q. 11999998E-01



TIME AT VARIOUS STATIONS, T(I) = :
. 200000Q01E-02

0. 50000C08E~-03 0. 99999993E-03 0. 15000000E-C2 Q

0. 24999999E~02 0. 30000000E-02 0. 35000001E~02 0. 40000007E-Q2
0. 45000017E—-02 0. 49999990E~02 0. 55000000€~-02 0. 40000010E~-C2
0. 64999983E~-02 0. 69999993E~02 0. 75000003E-02 Q. BOOOCO13E-02
0. BAF9998LE~02 0. BFFFFFFLE-02 0. 95000006E-02 0. 10000002E~01
0. 10499999E~01 0. 11000000E—Q1 0. 11500001E-01 0. 11999998E-01
KNOWN VALUES OF X(I) AT T(I) = :

0. 77000000E+03 0. 81000000E+03 0. 85000000E+03 0. 1000000E+03
0. 10100000E+04 0. 11700000E+04 0. 13700000E+04 0. 16100000E+04
0. 18900000E+04 0. 17500000E+04 0. 16300000E+04 0. 15100000E+04
0. 139000C0E+04 0. 12900000E+04 0. 11900000E+04 0. 11100000E+04
0. 1050Q0000E+04 0. 99000000E+03 0. 93000000E+03 0. 890000C0E+03
0. BS00000CE+03 0. B1000C00E+03 0. 77000000E+0Q3 0. 75000000E+03 -

RESULTS OF FOURIER ANALYSIS:
AZERQO = 0. 22750000E+04
VALUES DF I, A(I) AND B(I) ARE

1 -0, 414943&60E+03 0. 15031 395E+03
2 0. 28405833E+02 —0. 144617058E+03
3 0. 35727844E+02 0. B5154402E+02
4 —0. 40830078E+02 0. 14330117E+01
5] 0. 11577332E+02 —0. 16639973E+02

-t

C FOLLOWING & LINES MEED TC BE CHANGED FOR A DIFFERENT PROBLEM
DIMENSION X{1&), T(1&), XSIN{1&), XCDS~16).A\5) B(5)
DATA N.M, TIME /14,5, 0. 32/
DATA X /9..13.,17.,29.,43..59.,63.,57. ,4%. ,35.,35. 41,
2 13.,7.7 30 4L 47,041,
DATA T /.02,.04, .04,.08:.1,.12,.14,. 16, .18, .2, .22, . 24, . 2&, . 21,
2 .3,.32/ G T 2R 28
C END OF PROBLEM-DEPENDENT DATA . '
CALL FORIER (N.M, TIME, X, T, AZERG, A, B, XSIN, XCOS)
~ PRINT 100
100 FORMAT (//.44H FOURIER SERIES EXPANSION OF THE FUNCTION X(T), 77)
PRINT 200, N, M, TIME
200 FORMAT (&H DATA:, //, 37H NUMBER OF DATA POINTS IN ONE CYCLE =, )5,
2 /.42H NUMBER OF FOURIER COEFFICIENTS REGUIRED =, 15, /.
3 14H TIME PERIOQD =, E15.8)
PRINT 300, (T(I),I=1,N)
300 FORMAT (/,33H TIME AT VARIOUS STATIONS, T(I) = /. (4E15. 8.
PRINT 400, (X(I), I=1,N) | 78107

400 FORMAT (/,31H KNOWN VALUES OF X(I) AT T(I} =, /. (4E15.8, 1X))
PRINT 500



500 FORMAT (//,29H RESULTS OF FOURIER ANALYSIS:, /)

PRINT 600, AZERO

600 FORMAT (8H AZERO =,2%.E15.8,//,31H VALUES OF I, A(I) AND B(I} ARF
2 :/7) . )
DO 700, I =1, M

700 PRINT 800, I. A(I), B(I)

B0OO FORMAT (15,2X,E15.8,2X,E15.

STOP
END

FOURIER SERIES ExXPANSION OF THE FUNCTION X(T)

DATA:

ar

NUMBER OF DATA POINTS IN ONE CYCLE = 146

NUMBER OF FOURIER COEFFICIENTS REQUIRED = 5
TIME PERIOD = 0. 3199999FE+00
TIME AT VARIOUS STATIONS, T(I) =
0. 20000000E-01 0. 39999999E-01 0. 59999999E-01 0. 79999983E—-01
0. 10000C02E+00 0. 12G00000E+00 Q. 13999999E+0C O. 16000003E+00
0. 18000001E+00 0. 1999999PE+0G Q. 22000003E+00C 0. 24000001E+00
0. 25999999E+00 0. 27999997E+0Q Q. 30000001E+0C 0. 3199999FE+00
KNOWN VALUES OF X(I) AT T(I) =

0. 90000000E+01 O. 1300000CE+02 O. 17000000E+02 0. 29000000E+02
0. 4300000CE+02 0. 59C00000E+G2 0. 63000C00E+02 0. S7000000E+02
0. 49G00000E+02 0. 35C0CG00E+02 0. 35000000E+02 0. 41000000E+02
0. 47GO0Q00E+02 0. 41000000E+02 0. 13000000E+02 O

. 70000000E+01

RESULTS DF FOURIER ANALYSIS:

AZERO = 0. 49750000E+02

VALUES OF I, A(I) AND B(I) ARE
1 -0.20848709E+02 ~0. 39159737E+01
2 -0. 14568994E+01 —-0. 11349797E+02
3 ' —0. 54029312E+G1 0. 333351758+01
4 -0.17500381E+C1 0. 24999523E+01
5 -0.24129243E~-01 0. 10&807424E+01

The main program and the output are shown below.

C =====_—_=====_—_—=-—_—================—--—-—-.,——-:;;-——-_-:—-—-—-::::::============—_===—.: ]2
N
C MAIN PREOGRAM FOR CALLING THE SUBRCUTINE FORIER

C
. C :..‘::::z:::.::===================z===========.===========================: &8
C FOLLOWING & LINES NEED TO BE CHANGED FOR A DIFFERENT PROBLEM
DIMENSION X{(24},T{(24}, XSIN(24), XCOS{24), A{&), B(a)

DATA N, M, TIME /24,6,0. 467

DATA X/9.17.232, 25, 2&. 28, 33, 35, 34, 29, 24, 26, 32, 40, 18, 8, ~5, -14,
< —-28, -37, =33, -29. -22, 0/ : ' ‘



DATA T
£ .35

/. 025, .
. 375,
C END OF PRUBLEM-DEPENDENT DATA

CalLlL FORIER

4, .

Q5,.079,.
423,. 43,

1..12%9..
. 478,

15,.178,.&

2. 923, . 83, .

=

. 225,
375,

.25, .
&7

(N, M, TIME, X, T, AZERO: A, B, XS1IN, XCOS)

279, .

3.

FYY T
m‘f‘x’!

=, /, (4E1%5. 8, 1%

=, /, (4E15. 8, 1X) ) -

ACI) AND BCI) Al

PRINT 100
100 FORMAT (//,46H FOURIER SERIES EXPANSION OF THE FUNCTION X(T) /7))
PRINT 200, N, M, TIME
200 FORMAT (&H DATA:, //,37H NUMBER OF DATA POINTS IN ONE CYCLE =, 1%,
2 7/, 42H NUMBER OF FOURIER COEFFICIENTS REQUIRED =, I5. /. :
3 144 TIME PERIQD =, E15.8)
PRINT 300, (T(I), I=1,N)
300 FORMAT (/,33H TIME AT VARIOUS STATIONS, T(I)
PRINT 400, (X{(I),I=1,N)
400  FORMAT (/,31H KNOWN VALUES OF X{I) AT T«(I}
PRINT 500 .
500 FORMAT (//, 294 RESULTS OF FOURIER ANALYSIS:, /)
PRINT $00, AZEROD
600 FORMAT (8H AZERO =, 2X,E15.8, /7, 31H VALUES OF I,
2,7}
700 PRINT 800G, I, A(I), B(I)
800 FORMAT (15, 2X:.E15.8,2X, EL15. 8)
STGP
END

FOURIER SERIES EXPANSION OF THE FUNCTION X(T)

DATA:

NUMBER OF DATA POINTS IN ONE CYCLE

24

NUMBER OF FOURIER COEFFICIENTS REQUIRED = &

TIME PERICD = 0. 40000002E+00

TIME AT VARIOUS STATIONS, T(I) = :

0. 24999999E-01 0. SO000001E-01 0. 74999988E-01 0. 100000Q002E+00
0. 12500000E+00 Q. 14999998E+Q0 0. 17500001E+00 0. 19999999E+00
0. 22500002E+00 0. 25000000E+00 Q. 27499998BE+00 0. 30000001E+0Q
0. 32499997E+00 0. 33000C02E+QQ0 0. 37500000E+00 0. 39999998E+00
0. 42300001E+00 0. 44999999E+0Q 0. 47500002E+00 0. SO0QQ0000E+Q0
0. 52499998E+00 0. 55000001E+0Q Q. 57499999E+00 0. &40000002E+00
KNOWN VALUES OF X(I) AT T(I) =

0. 90000000E+01 0. 17000000E+02 0. 23000000E+02 O. 25000000E+02
0. 26000000E+02 0. 28000000E+02 0. 33000000E+02 0. 35000Q00E+02
0. 34C00000E+Q2 (. 29000000E+02 0. 24G00000E+Q2 Q. 26000000E+02
0. 32000000E+02 0. 4Q0000Q00E+02 0. 1B8Q00C00E+Q2 O. BOOOCQO0OE+01
-0. 30000000E+01-0. 14Q00000E+02-0. 28000000E+02-0. 37000000E+02
-Q. 33000000E+02~0. 29000000CE+02-0. 22000000E+02 0. 00000C00E+Q0

RESULTS OF FOURIER ANALYSIS:
0.19916672E+02

AZERD



VALUES OF 1, A(I) AND B(I) ARE

1 -0.201586756E+02 0. 23525284E+02
< 0. 33099222E+01 Q. 12264638E+02
3 Q. 3771927BE+01 -0. 406404R26E+00
4 -Q.95843577E+00 Q. 324746425E+01
S 0. 113774630E+01 -0, 18716123E+01
b6 =0, 11647604E+01 0. 12500324E+01

The main program and the output axe given below.

{ sz oo T R S T I S R S N R R S RS S S R S S N SRS R RSN T s
c ‘ A

C MAIN PROGRAM FOR CALLING THE SUBRCUTINE FORIER

c

( s ssnoss N s T R E TN  R N I ER E E TS N T S e E EES S RS SRS AT RIS s
C FOLLOWING & LINES NEED TO BE CHANGED FOR A DIFFERENT PROBLEM

DIMENSION X(14;,7T¢(14), XSIN{14), XCOS{14),A{(10Q},B{102
DATA N, M, TIME /14, 10,0.35/ -
DATA X /.49, —. g,=. P~ b~ 73, —. 7. 55: 1. 75, 1. &3, . 251 —1. i
2 —-1.4,-1.05,0.0/
DATA T /.025,.03,.075,.1,.125,.15,.173,.2,.225,.25,.275,.3,. 3,
2 .35/ _ . ‘
¢ END OF PROBLEM-DEPENDENT DATA
CALL FORIER (N, M, TIME. X, 7, AZERO, A, B, XSIN, XC05)
PRINT tQ0O
100 FORMAT (//, 46H FOURIER SERIES EXPANSION OF THE FUNCTION X(T),//)
PRINT 200, N, M, TIME '

200 FORMAT (&H DATA:. //,37H NUMBER OF DATA POINTS IN ONE CYCLE =,10u,
2 /.42H NUMBER OF FOQURIER COEFFICIENTS REQUIRED =, 15, /,
3 144 TIME PERIOD =.E13 &)
PRINT 300, (T(I},I=1,N} v
300 FORMAT (/,33H TIME AT VARIQUS STATIONS, T(I) =,/, (4E15.8,1X1)
_ PRINT 400, (X(I), I=1,N)
400 FORMAT (/,31H KNOWN VALUES OF X(I) AT T(I} =,/,{4E15.8,1%))
PRINT 500
500 FORMAT (//,29H RESULTS OF FOURIER AMNALYSIS:, /)
’ PRINT 4600, AZERO :
600 FORMAT (8H AZERO =, 2X.E15.8,//,31H VALUES OF I, A(I) AND B{I) AR
2.7 :
DO 700, I =1.M
700 PRINT 800, I, A{(I), B(I}
800 FORMAT (I5,2X,E15. 8, 2%, E15.8)
STOP
END

FOURIER SERIES EXPANSION OF THE FUNCTION X{(T)

DATA:

NUMBER OF DATA POINTS IN ONE CYCLE =" 14
NUMBER OF FDURIER COEFFICIENTS REQUIRED = i0
TIME PERIOD = O. 35000002E+00



TIME AT VAR1OUS STATIONS,

0. 24999999E-01 0. S0000001E-01 0. 74999988E—-01 0.
0. 1250Q000E+00 0. 14999998E+00 0. 17500Q01E+00 0.
Q. 22500002E+00 0. 25000Q00E+0C 0. 2749999BE+00 C.

T(1) =

0, 32499999E+00 0. 353000002E+0Q
T(I) =

KNOWN VALUES OF X(I) AT
0. 44999999E+00-G. 8000QQO1E+CQ0~0. BFFIFFIBE+Q0-0Q.
-0. 75C000000E+QQ—-0. 49F799F999E+00 Q. 353000001E+00 0.
0. 14499996E+0Q1 0. 25000000E+QQ0~Q. 110000Q04E+Q1i-0.

-0, 10500002E+01 Q. CO0QQAQOQE+QQ

RESULTS OF FOURIER ANALYSIG:

AZERO =

-0, 37857169E+00

VALUES OF I, A(I} AMD B(I} ARE

QUOUBNOCURLWMN -
|
Q

Jache

. 6195L119E+0Q0
. 44242946E+00
. 414984 36E+00
. 22273250E-01
. 45435190E~01
. 20434089E-01
. 4999980301
. 204346404E-C1
. 45427930E-01
. BZ274703E-Q1

-Q.
- 0.
-0.
. 24691588E+00
. 10430527E+QQ
. 9&4009147E-G1
. 33824433E-05
. 35996872E-01
.10429442E+00
. 24&90333E+00

35046142E+00
7240821 9E+0Q
17127156E+00

10000002E+0Q0
19999299E+00
30000001 E+0QQ

60Q00002E+Q0
17500GO0E+Q1
13999994E+01

@ xﬁ: r+1-—rcor'9-fcas¢'=r+l-rCo: wt —1»1!-:?&3‘;( (E,)
But 15(}1 g = r sin 8, cos #: 6._ _}'_:: g.‘nz wt)é ‘ (Ez)
] o L

Using (82) m (E1)> *y = r+fd —r oswt . f (1-— .-;-; sfnla:f)l Es)

Let T = small (< ,‘lf_ ) . Ufl'rlj Vi-e = "‘"i €, <53) Lecomes
7‘1,% Y‘(H‘ }f{)...r(aswtf— 21 <o zc.st) (E‘l)

(0‘9 Ey (E4) gives 3,’ = x4 T (l+ ﬁ >-_v. -r ((_os wt +% —E—coszwt‘:)

| e

If —E— is very small, Fp = -1 cos 9t D fharmanic motion.

(b>TB have amp’i{‘uate ‘o_-‘F Aecond La,fmonu'c smaller than that
First harmenic in Ez- (Es), Wwe need to have ’

of

[ Y

-

7T =

25 >

™

/4

Y S

< 4 . !

—

&'e‘) < 6‘25

25

Once the omplitude of .fct_.on‘d harmonic s smaller by o

Sfa.ctor

to

of 25,

be still

the a:m]u/l'{-u.ales of +higher harmonics arising
from the expansion of sgua_re-roof:— term
smaller.

in (€3) are expected




Unbalanced force developed = P = 2 m «? r cos w t, range of force = 0 - 100 N,
rahge of frequency = 25 - 50 Hz = 157.08 - 314.186 rad/sec.
Parameters to be determined: m, r, w. .
Let r = 0.1 m. To generate 100 N force at 25 Hz, set:

Prax = 100 = 2 m (157.08) (0.1)
which gives - ‘
100
m =
2 (157.08)% (0.1)
To generate 100 N force at 50 Hz, set:
Prmax =100 =2 m (314.16) (0.1)

= 0.0202841 kg = 20.2641 ¢

which yields

m = 1002 = 0.0050860 kg = 5.0860 g
2 (314.16)? (0.1)

@ Goal: Weight to be maintained at 10 + 0.1 Ib/min ‘
Parameters to be determined: Angular velocity of crank {w), lengths of crank and
connecting rod, dimensions of the wedge, dimensions of the orifice in the hopper,
dimensions of the actuating rod, and dimensions of the lever arrangement.
. Given: Density of the materizal in the hopper.
Procedure: S , »
Select w based on available motor. Determine the dimensions of the orifice in the
hopper which delivers approximately 10 Ib/min (assuming continuous flow of
material ). For trial dimensions of the wedge, determine the increase/decrease in
the size (diameter) of the orifice. Choose the final dimensions of the wedge such
that the material flow rate delivered by the orifice lies within the specified range.

Force to be applied = 200 1b, frequency == 50 Hz = 314.16 rad/sec.

Procedure:

1. Select a motor that provides, either directly or through a gear system, the
desired frequency. Assume that it i3 connected to the cam. :

2. Setermine the sizes and dimensions of the plate cam and the roller.
3. Choose the dimensions of the follower.

4. Select the weight as 200 lb. From the geometry, determine the range of
displacement (vertical motion) of the weight.

5. Determine the force exerted due to the falling weight.




Considerations to be taken in the design of vibratory bowl feerders:
1. Suitable design of the electromagnet and its coil.
2. Radius of the bowl and the pitch of the spiral (helical) delivery track.

3. Tooling to be fixed along the spiral track to reject the defective or out-of-
tolerance or incorrectly oriented parts.

4. Design of elastic supports.

5. Size and location of the outlet.

1.80!

- This gives

Axial spring constant of each tube = k = %PE-

Let diameter of each tube be 0.01 m (1 cm) w1th thickness 0.001 m (1 mm) Then

A= —4— (D? — d?) = '4_ (0.01% — 0.008%) = 28.27 (107%) m®

= (2827 (10“’); (2.07 (10M)) _ 29.26 (10°) N/m

Since 76 tubes are in parallel, we have the total axial stiffness as:
Keq = 76 k = (76) (20.26 (10°)) = 222.38 {10°) N/m

The polar area moment of inertia of each tube is

I= 5 (D' —d*) = = (0.01* - 0.008*) = 580 (107*) m?*

Torsional stiffness of each tube is given by

GJ _ (79.6154 (10°)) (580 (107%))
¢ 9 )

= 231 (10%) N—m [rad

‘For 76 tubes in parallel, equivalent torsional stiffness will be:

ke =(76) (231 (10*)) = 17.56 (10°) N—m /rad




Chapter 2

Free Vibration of Single Degree
of Freedom Systems

-3
@ xs* = 5x1©0 ™m
W 3 : 981

1/2 1/p .
n = ~5§> = (_s_x—:;‘—’> = 44:2945 racf/sec =="7-o4.97_H}

Th = 021 sec = 271'/-::"—- » Jm' = 021 vk /27T

(i) (’C‘,‘,)ne,\; = 200Jm _ owym 2T (° 2! f" ’
Foew ~ Timr —ZT 7o 01715 sec,
(;;) (Tn) = EI__J_TZ‘_ - ZTFJ_F; - (o 21J_' = 9+297p sec.
e Jknew Vo5& \FJ 5%
@ @, = ¢2.-%32 radfsec = I o = J;‘—/GZ- 932
W;\en Spn'nj COthG_n'E iy reduced N c"n chreageg_

(can) = 055 W, = 34.5576 rad/sec = [Krew _ k- §00
new mnw ™
k-800 4 42.936 = 34-5576 , [«-800

| \/. = /-—————-— = 0-55
% 4
- ¢ 2
4‘——1—(—?—9' = (0'55> = 03025

= 1146>9534 N/m S
| 2 H46-9534
Jr_n— = Jk G2- 832 ; m= *k 62:832 = = _
/ g / 39475602

ﬁ" = ©0-2905 kg,

Kk = :oo/ = 10000 N/
lOOO k
: 2
[ ‘ 4 \12
W, = f ( 4 x {0 ) _ %

| 10 kg
' 2
= 63-245¢6 ra.dl/scc k

‘
T = 21 _ 6-2932 100N
" T @. T e3ause - 90373 see




@ 2000
m = .
386.4

Let w, = 7.5 rad/sec.

=‘\/ ke
m .
keq = 6 = [ 2000 ] (7.5)2 = 201.1491 Ib/in = 4 k

386.4

where k is the stiffness of the air spring.
Thus k = 2221980 _ 75 7873 11 /in.

xX = A cos ((,_3"{: __g) R x = -, A sin (wnt*—ﬁ{’) ,

x = — WA <os (w,t - %)

A

2

|

(a) w‘nA = o1 ""'/3ec N Ta =

$

= 2se, W, = 5-;4.(5 rad/sec
A= o01/ts, = 0-03183 m |

@) =, = x({-=ov) = A cos(~¢,) = 002 m
cos(-g) = 9—‘,\0—'2 = 0.-6283

5’5 = 54-0724°

() %, = x(t=0) = —w, A Sin(~%) = —o0-1 sin(-51 o724 D
= 0-07779 TH/SEC | '
©) X|pau = 0} A = G416 (0:03193) = 0-314151 w/sed

For small angular votation of bar P@ about P,
Lk, @6 = 3 K62+ £ w, (4D
e (4(,2)&6 = (kA4 ok 8 )/ff

Let *"& = overall Spring constant at Q .

! l }

T e e——— i

Hey K., *3 ‘
( d>€5“ | {‘kl > + *z fz }*3
(*42)55 k3

' 2
(ku)e,z'*‘ k3 K %) + %, —%) + k3




- .
/1‘65 / ke k2 A+ Ky k3 £g
2 Y

m (g 224 kg 1)

. m= 2000 %9 , b4 = 0.02 m. .
(9/Sst> (2:3L\72 = 22- 1472 rad/sec

002

. Let % be measured from
the Pas‘v&;on of mast al which

‘tf,‘g S’brtnjs are unStr:fClﬁeJ Wisne

Ezua,{‘u'or\ of motion is

ma = kg (zt Gop) -ty (2t §y) v WcoSe e
+ Wsneg -——— (E,) ‘ '
where S (k,+ #) = W sin - | Nreres
Tfm: Eg- (Ey) becomes mx+ (k;j+Kz) x=0 = o = m )
B 7"1-(0.05)2 (30 (10))
1 2 30 (12)

LY}

163.6250 1b/in

A E
oy = 222 _ 163625 (25) _ 136 3549 Ibin

&y 30
ke =k; + kp = 163.6250 + 136.3542 = 299.9792 1b/in MW -8~
" Let x be measured from the unstretched length of the springs. The equation of motion is:
mx =—{k; +k,) (x+5,t)+Wsm 8
where (k; + kz) 04 = W sin 4 |
ie, mx+(k; +ky)x=0

Thus the natural frequency of vibration of the cart is given by

k; +k
o, = '\/x 2 »\/2999792 (386.4) _ 4.8148 rad sec

_ Weight of electronic chassis = 500 N. To be able to use the unit in a vibratory

environment with a frequency range of 0 - 5 Hz, its natural frequency must be away
from the frequency of the environment. Let the natural frequency be w, = 10 Hz ==
62.832 rad/sec. Since :

we have



s = |32 (o = zoaser 0 = 1

so that k = spring constant of each spring = 50,464.25 N/m. For a helical spring,

4
k = Gd
8nD?
Assuming the material of springs as steel with G = 80 (10°) P2, n = 5 and d = 0.005
m, we find ‘ '
9 4
Ik = 50,464.25 = S0(10°) (0.005)
: 8 (5) D3
This gives
~3
D? = 1250007) _ 24,770.0 (107°) or D = 0.0291492 m = 2.91492 cm
50464.25 ,
4 : .
T
Let 7, 35 ; yl be deflections ‘ o =! T
OJC beam ot distances a, b, 8 '———‘——'—“‘b ————'l

From Fixed end.

2
‘i‘ Ck'l)c& 3’1 = ﬁ k, 7,:+ '5_‘ ' .’7:

: 3 \2 |
s (g = & (2V 4 (2 | F
: eg I + 2
| | /i # ,> e l
= Fx* 30— === :
/ 6ET ( o “‘*i?\‘
@ x=a, %= CEI (gﬂ w) : -
- _  Fb* )
@ x= '9:- yb = €EL (3!— .&-)
@ x = 1, }l= F[g
3EI |
W, = ( ) where *bewf%-

S TES SN
[«, (B3E1) ot Bh- )2+ &, (361) b* (340"
o YT PRCP T

(ii') Wif;mut Springs &, q.na’ *, :

69, = kbea.m _ 3EL
R no ™ - \,—nlz




@ Let x=,, x dcsf)a,cém:nfs of

LCJY {, 2
= 2% + 2 xy - (Ey>

Let P = tension in rope. '- P
For egui Lbrium of Pul(cj 1,

2P =4, x, ---- (&)
For egu{lifarium of Pu!le:y 2,

2P kyxy  —me- (E5)
where ‘:,‘:"—';‘_'I’Z“‘*';;'::f; 3 kT 2k

and K,z K+ K= 2%k

COmL\'m'ng Ezs-(El)"to (Eg).‘

‘ 4P
x= 2%, + 2%, = 2(%)1-2 (%>~—4P('—+T = Tk
Le't ‘kea - cau.;valenf SP-\’iﬂj COng{:a_n-e o_; {hg Sg_sfem,'
' Ko, = ..f— = X
Y x %
Egua;l:'ion of motion of wmars wn: mx o+ Keg * =0

For a displacement of x of mass m, pulleys B panie B S A

and 8x, respectively. The equation of motion
of mass m can be written as

m¥+8F; =8(8k)=0 (2)

1, 2 and 3 undergo displacements of 2x, 4x

where Fy =2F; =4 F; =8 F; as shown in figure.
Since F3 = (8x) k, Eq. (1) can be rewritten as

from which we can find




(@) W, =" \/4"/191

(by ¢, = J4‘</(M+r:)

Initial _conditions: A®
Velaclé_y o;_};ZLI;*g mass m =v=V2g/t ( vio 1}.1 2},@)
x=0 ok Atatic ch.uilbrLu.m Poraf:on

ight m
o= m{t=2) = wekeg = - %
Conservation of momentum: (/"‘+—m) ;Co =mV = m V23 [
x,= ®(t=0) = Lm ,ij .
complete solution : ()= Ao sin(wnt + ,d)
wh’erc Ao = Jx + (?Co >z _ m? 9 . ‘m"}l
: 16 2 24(M+™)

and
= tan x"“’") tan ( )
| Fuc(mm)

(a) Velocity of anvil = v = 50 ft/sec = 600 in/sec. x = 0 at static equilibrium
position.
‘ weight  mg

Xo =Xx(t=0) , "
Conservation of momentum: '
. . . my
M = == =
M+m)xg=mv or X : x(t=0) Mim
Natural frequency:
' . 4k
_ B M+ m
Complete solution:
x(t) = Ag sin (wy t + dy)
where
2 % 1
' X m? g* m? v? z
: wy || 186 k M+m)4k
and

¢ = tan™! |




Since v = 600, m = 12/386.4, M = 100/386.4, k = 100, we find
1

2 2 2
A = 12 (386.4) 12 (600) 386.4 17308 in
4 (100} (386.4) 386.4 112 (400)

6. .
$o = tan~! (_. e 38 4( ;1\/ ] — tan~! (= 0.01734) = — 0.9934 deg
386.4 (600) V400

(b) x = 0 at static equilibrium position: %3 = x(t=0)
momentum gives:

= 0. Conservation of

MX=mv or X, =%(t=0) z,%"-

Complete solution:

x(t) = A{, sin (w, t + ¢p)

‘where ~
2 ~;— 1 '
Ay = bz 4 | %o ={m2v2 (M)}z __mv 12800 Vases _
. 2 - = i
@ M4k VikMm  388.4V34 (100) (100) i
Xo Wy
$o = tan - =tan™' (0) =0
X

- 3E L, . 5 2
Ky | 13' (ai‘ f—'(}:) : *, = i_%?.;_i_ (at m:‘d;{l.e)

! .
2

@, = Keg . 3-51314 + 4351
™ £, W

} K= T {?.(ooi) }{207“0 } - 0.8.129.“06 N/m

m= {000 kg

: .8129 xof c4
©, = ® (o X 1o ) = 29.5114 ro.&_/xec

™ 1000
'l.’.o = 2 Tn/,s 5 Xo = O (Suclc'e’nij’ Sfbppec' while & has Velocffy)
Peviod of ensuing vibration = Tha = %—;{— - ﬁ%ﬁ = 0.2204 Aec

Amrl:%udez A= 5‘.,/(.5,, = 2/29-5!:4 = 0-07015 m

. Wa= 2 Hz = 12-5¢¢64 ra,d/xec = /E
™

Jk = 12 5554 Vo

/ ’ -3 6-2832 raJ/,sec




VE = 62832 fmet )
= 12.5664 Jm
m+ri = 2 im , wm= __ié__ k?

_ 2
4= (‘2.5554> m= 52:6381 N/m

2.20) Cable stiffness = k = —A(i = i— [g- (0.01)%| 2.07 (10') = 4.0644 (103) N/m

2
wn

wn='-2—?-r—=207r= L
1 m

k _ 4,0844 (10°%)
m = 3 = 3
Wy (20 7)

1
Ty =01= — =
» A

Hence

= 1029.53 kg

b=2f sine
Neglect masses of Links.

(w> ,kez - (412‘__};2) C’,«! - ‘i—i £i'n 9)
4! Si'n o
= % ("" 4 ) L b“’l
sinT g
(‘_9” = ’keg \/'kg cosec? 9 From Sofuffon :
( o; Probfcm 108)

(b) L, = 3z since kezz *.

W

G@ y=\/(2—(€sin9~x)2 —t’cosa =Ve cos? § —x? +2¢xsinf — £ cos b

| Xt 2¢xsin b )
=fc039V1~ﬂcm26+ 7 — € cog 0

1 1 1
2=k ¥+ = ky ¥

— Keg X
2 M 2 2
where
1 x> 1 2¢xsin 8
= ¢ 8 l— = b = ] — ¢ 9
7 €08 2 £% cos? 8 2 t’zcoszﬂ] cos
__xsin @ .
= =x tan

cos 8



Thus k,, can be expressed as
keq = (kl + kz) ta.nz é

Equation of motion:

m§'+keqx=0

' k k k :
Wy = 2 =v——-—————( OL tan ¢
m W _L
. /l‘(l s'-n a - x)

T

Natural frequency:

5

(a) Neglect masses of rigid links. Let x = displacement of W. Springs are in series.

<k
ky = —
9

Equation of motion:

mxX +‘k°qx=0

8 m 2m

(b) Under a displacement of x of mass, each spring will be compressed by an an
amount: : ‘

Natual frequency:

o 2 |
or keq=2k[3‘i’_} =2k[—52—] [z’

Equation of motion:

Natural frequency:




Fi= F= %, x cwor45° F Fi
F2= Fa= K, x cos 135° 4o * 45°

F= force .aiong n = F‘ @44504- F2 5 135 ° 4 &, x
tF wof45°+ B wri3s® Fs A

F #
= 2(58 4+ %2

Ezua:i'fon of wmotion:

"kez':‘.

—— —
—

2
= 2% (%, cos®45° 4 k, os?(35°)

*, + K,

Let 0(‘: c(enofe the o:ngle
mode fn (7 apring with
vespect 6 Y axis.

Let x= dl'.i‘f{a.c.zmerd: of
mass alomg  tre diwefim
Jl—ﬁ—-lru.d "'} e .

¢ ‘kez= cgu;m.b,..i: d}m'n"
constant, the epuivalince

.i,k‘ xZ LZG k- {x c:.rs(e...(.) 2
T g R ‘}

*ey, = . cos® (e- =)

4

M ¥ M

*
1
[vs

<=1

6 . 2
> ki(cose e + 4in © 45“0(0

«; (Cpsld‘-. cArO +  aind 4»-3'9)

+ 2 26 (Cﬁ‘-“(;&ino(; UJKG&L.BD

CL=4

Natural fregueney = @, =

Keg

———

™m

. For 6, to be Irwkfenolenf of &,

ard

(1) ond (E;) can be rewritten as

é 'k,i(li"'Ji o8 z-(;) =

Li=4
: .6
and LSk Sin 2 = O
=y
6
ve: Z k. S 24; = O --- (Ei}
PR
=2
and ﬁ k; Sin 2&; =0 ~-- Y]
=4

6

1 L
= *L('z“ )
“=1

2 ¢ 2 .
k; TN = Z Ky Adn di"'(si)
=1
<

o -y

Mo LMo

* o A =

1l
[

i

cos 2‘1’.:)



In the preSenf eXQ,mple, (53) and (64) become
' *; tos 60" + K, cos zqo°+ 4y ot 200, 4 K, Cof 420°+ Ky Cof oo’
+ K3 f (360 + 243) =0
%, sin 60" + %, Sinm 240" + *3 Sin 2 of3 + K, Sin 420° + *k, sin Goo” .

+ k3 sin (360 + 24%) o

!

(e ‘ky - Ky 4+ 2 ‘kg 0¥ 2«3 = O

2%z cor 2a3 = kz- ... (Es)
NF k) — T Ky + 2 k3 sin 23 ‘

=0 } T 2%z sin 2wy = 47 (k2 ~ *)-(E)
Sguaring (55) and (Eg) and a,dda‘nj,

4 1y = (k- %)% (1+3) .,
o ‘kg = =+ (*2._ k,) = 'kg‘—‘ “k?_—- 'kl‘

Dl\/mhng (E‘-) bj (Eg)
fd_h 2-0(3 = v3

ooag= 4 tan TV =

b
_ I, T
(‘) wh - a. + i p—
h 2]
160 lb—sec2 ~
= k= 101b/i
™= 3864 inch finch.

Velocity of j Jumper as he falls through 200 ft:

mgh= % mv: or v= '_\/2 gh =V2 (386 4) (200 (12)) =1,361.8811 in/sec

About static equilibrium position:

Xo = x(t=0) =0, Xy =x(t=0) = 1,361.8811 in/sec
Response of jumper:

x(t) = Ap sin (w, t + @)

where
1
. 2 . . V-—_
Xp X9 Xo m 1361 8811 130
Ay =12 + | 22 =20 = » Sseq| = 2771281 i
Wy Wa '\/-1:
and $o = tan™1 X0 “a -0




The natural frequency of a vibrating rope is given by (see Problem 2.26):

w ="\ / T (a+b)
. mab

where T = tension in rope, m == mass, and a and b are lengths of the rope on both
sides of the mass. For the given data:

T (80 +160) |7

10 = 120
[386.4] (50) 150)

="V'T (0.060375)

which yields

100

=——— __ =1,656.3147 Ib
0.0680375 1,856.3147 |

@ when W=o, total .

vertical keig‘wt: 2L+ h

AW"it.h W¥F o, total R - .’Fc
Verf(cai f\e\'stwt::(zf w;6+‘~> l

spring  force = k2 L+ £ - (20 cos 0+ RY)]

= 24l (1- w8 0) « k
For vertical egu.c'tilan‘u.m of mwmass m,

mg + T, e = Ty efte --- (1) x= { sine

For ;\on ontal eauibumn . = (ﬂ*T?-) -Sc'n 8
‘ 5= (Fe = Ty sin 6>/.'.‘me . ‘(Ez)

From (Ez) » (E') can ke exlpresrco‘ as

mg + (Fr.‘—Ti_ Smeo cse = T cos e
‘ ) sin & }
. z
{-e. T = ]+ ot o - my 4+ wod Xcose
T Cos 8 2 o O
I 2 m wnts*'l .
= fe-Tte _ mxe_ TFlee - T5= sine
sin ® S g
- mlw®  mg
2 2 o8 &
Spring fOTCE = Zkl (i- Cof 9)‘:: 275. cos ©

- 'mfasl oS & —~mg

(Zkl.-i- m3 1) -~ {&3)

2cf + mico

3
g4
il




This‘ egua,tian defines the ezu«‘l'l»n‘um Pos;’h‘on of wmass .

For small oscillations about #, eppilihriim M"ZZ'"
2 %

Newton’s second flaw gives
2my + kY=o .= =

(a) Let P = total spring force, F = centrifugal force acting on each ball. Equilibrium
of moments about the pivot of bell crank lever (O) gives: ,

20 P | 12
F[mo]'"_z_{mo (1)
1
4
When P = 10 100] = 100 N, and
orN]® 25 [18)[2aN) |
F=mr mr 80 981 | 100 50 0.004471 N

where N = speed of the governor in rpm. Equa.tion (1) gives:

0.004471 N? (0.2) = lg—(l (0.12) or N =81.9140 rpm

(b) Consider a small displacement of the baIl arm about the vertical position.
Equilibrium about point O givea:

(mbz)9+(kasin6')aco39=0 ‘ - (2)
For small vallues of 8, sin § = § and cos § = 1, and hence Eq. (2) gives
mb?f+kaf=0

from which the natural frequency can be determined as
1

1
—— 2
v 2
{k a } (10)* [0 12] 281l _ 37.5851 rad /sec

m b? 020 25




2 z
when each wire stretches by x,, let tke
resuLfmj vertical A.s‘pfa,c_emen{: of Mhe

P{a,f:form be x -

11
05 + X4 = ﬁf—x)—r =
1‘

FR(ERE ]
[Pl -]

CFor small x, x* is negltgible compared £ 2fx  and Vite ~ 1+ "zq'
G—Y\-d ‘\tncz {‘ _
} » hox ’ -
% £ [+ G —t ] Yoo
Potential energy ezu.,valence 9aves :
%«% <= 4 (45-1‘ x;.) ..{‘z
_ 2 4 «
‘kcﬁ - .4.‘< (.";‘_) = -__—-—‘-_<1‘7.+ £)
EZ}"OE- n 01- T"Lﬁrm O'E M: *

1

Xy

: 2T 2T _ M ('21'-.24- &\
’Kn = s, = (kcﬁ/m)?:/z - —{_— 2k

@ Equation of motion:
mX =% F,

iie, LApXx=—2(Axpg)

ie., ii+£L-g—x‘=0

where A == cross-sectional area of the tube and

p = density of mercury. Thus the

natural frequency is given by:

2g
“= V1




Assume same area of cross section for all segments of the cable. Speed of blades = 300

rpm =5 Hz = 31.416 rad/sec.

wl = -kr% = (2 (31.416))% = (62.832)*

keq = m wj = 250 (62.832)° = 98.6965 (10*) N/m (1)

AD = Vo052 4052 =07071m , OD ="V2? 4070712 =2.1213 m

Stiffness of cable segments:
AE _ A(207) (10°)

kpo = = 207 (109) A N/m
. fpo 1 .
AE _ A(207) (10%) 9 ;
_ - = 97. N
Xop Zon S To13 97.5817 (10°) A N/m

o5 m
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The total sttiffness of the four inclined cables (k;) is given by:

kjc =4 kOD (:032 8
- =4 (97.5817) (10°) A cos® 19.4710° = 346.9581 (10%) A N/m

Equivalent stiffness of vertical and inclined cables is given by:

1 1 1
-
keq kPO kic )
e L. o _fpo ki
7T kpo +ke

(207 (10°) A) (346.9581 (10°) A)

= = 129.8494 (10°) A N
(207 (10%) A) + (346.9581 (10°) A) (10°) A N/m

07071 m

! o»7o‘H)
p=tan >

= 19.4710°

(2)

Equating k;q given by Egs. (1) and (2), we obtain the area of cross section of cables as:

4
A — _98.8965 (10%)

= 7.6126 (10~8) m?
129.6494 (10°%) (1075)




AN

1
ky |2 k ‘
L {_L}z =5 ; — =4 (n)? (25) = 986.9651
27 m

lm
k 2 k
1 L =4.0825 ; — — =4 (m)? (16.6668) = 657.9822
2 7 | m + 5000 m + 5000
Using k; = we obtain
4 | .
k 9
1 _ AE _ A(207)(10°) — 086.9651
m ¢, m 2m :
' ie, A=9.5359(10"%)m 6
Also |
k
L= AE = 857.9822
m + 5000 ¢, (m + 5000)
ie, A _6.3573 (107%) (@
m -+ 5000

Using Eqs. (1) and (2), we obtain

A =9.5359 (107") m = 6.3573 (10™%) m + 31.7865 (107%)
ie., 3.1788 (10‘9) m = 31.7865 (107%)
ie., = 10000.1573 kg (3

Equations (1) and (3) yield
A = 9.5359 (107°%) m = 9.5359 (107%) (10000.1573) = 0.9536 (10™*) m?

)

L onyftudfna'l. V|b ration .

Let W, = Fmr!: of weight w carried by length o of S'}m,ff
W W—wy = welj’wt CO—Yr‘lc.cQ Lj lengfﬁ b :

x= E(cngai‘(on of 'lenyH\ @ = ——-——REEQ‘ : E= Young: modulus
Y= Shor{:em‘ng of ienj% b= (W-w) (f..a,) ,' A= o.reo; of cross- section
o AE Po= wdi
Since x= Y, W = W(l-a) '
! Wa (- a:) :

x = eloraga,’c.‘on or static Je{!ccb‘ow of Ignj{;l—. a = i
.. AE

Cons:dermj the sho.{‘l' of fengﬂq a with end mass Wi } as a
spring - mass system, ‘

F ( 31Ae i/'2

ECIC



Transverse vibration:

spring censtant of a grch-—f.‘x.&J beam w;*t‘:.l\ off—Ceﬁfer faa.o!

- 4 = 3EI 2;:: ser |’
_ a’ b’ o} (l--cta)3
e . JE serflg 42 " *
o= JE = {2 o with 1= (T4 /44)

= moment of nertia
Torsional vibration:

17 flywheel is swén an cmjula,r alej-’(ec.{‘«on 9, resfsb‘nj'

torgues offered by fengths o and b are _G_EQ and .CI‘-%?-.

Total resisting torgue= M{;— G;(i_ + _..) o
4
Ky = L = G7 (-— + -4'——) Traf

Fo‘a.r

where 7=
moment of inertic

e b

/ v !
wn: 1(.?- = {GJ _d___+:{___)}/2
% J \a b

w‘here Jg = mMo.ss Pola.r moment of nertio aj: the fl.jwl\ec{,.

Myq_, = equivalent mass of 2 uniform beam at the free end (see Problem 2.38) =

283
33 m = 33'{ (1) (150 x 12) 0.28 }:0_3107

140 140 86.4
Stiffness of tower (beam) at free end:

3(30% 10°) (= (1) (1%)

3EI = 0.001286 b /in

ke — =
bLd (150 x 12)°

Length of each cable:

OA=V2 =141421t , OB =2 15 =21.2132ft . AB — OB — OA — 19, 7990 ft
TB = V/TAZ + AB? =V 100? + 19.7990% = 101.8412 ft

AT _ 100
tan 6 = 21 _ =5.0508 , 6 =78.8008°
ETAB T 1emee0 T 8.8008

Axial stiffness of each cable:

AE _ (0.5) (30 x 10°)
¢~ (1019412 x 12)

Axial extension of each cable (y.) due to a horizontal displacement of x of tower:

k=

= 12261.971 b /in



€§=3’2+x2—2€xcos(180°——9)==6’2 +x2—11—2(x9059

2 P
X X
or £, =¢ 1+-2; +2?c039
Yy, =6 — €~ £1+-1—E—2— —-1—(2)}-c039—
€ 2{2 2 ¢
—-f+xc039 =X cos f

Equivalent stiffness of each cable in horizontal direction:

2
1 1 y
Ekyg=§‘keqcx2 or ket;::k[-f-] =k cos? §

This gives

kg, = (12261.971) cos® 78.8008° = 462.5419 Ib /in

In order to use the relation

v ' 2
Keqs -?-kb + 4 keg, [il-‘-l—]

1YL
we find -
yu  [FLI@BL-L) spi1|_ Li(BL—L)
L 6EI  FL? 2L
_ 100? (3 (150) —100) _ o oo
2 (150)
Thus

Keq_, = kp + 4 kyq_ (0.5185)® =0.001286 + 4 {462.5419) (0.5185)% -

= 497.4045 1b fin
i .

Natural frequency:

SNBSS

Y
h
r—
_

Kequ | {497.4045 7
wy = =

1
= 40.0114 rad fsec
e, 0.3107




@ Sides of the sign:

AB ="V882 +882 =1244in ; BC =30 —8.8 —8.8 =124 1in
Area =30 (30) — 4 (—;- (8.8) (8.8)) = 745.12 in?

Thickness = % in ; Weight densitylof stee]l = 0.283 b fm3 l“ g 8'5-’{

Weight of sign = (0.283)(-;—)(745.12)=26.64 Ib '
Weight of sign post = (72) (2) (;-) (0.283) = 10.19 Ib
Stiffness of sign post {cantilever beam):

| 3EI

k=2"_

33

Area moments of inertia of the cross section of the sign post:
1 1 1.4

Bending stiffnesses of the sign post:

3 (30 (10°))()

gy = B — = 40.1877 !b/in
£ 72} |
sEL, 30000 (5
YL = (3 = 723 - ‘= 0‘6279 }b/in

20,

| s2? f
Torsional stiffness of the sign post: \l/




b3 b bt
k, =533 22 G{1-083 = |1 —
¢ £ a [ 1234]

(See Ref: N. H, Cook, Mechanics of Materials for Design, McGraw-Hill, New York, 1984,
p. 342).
Thus

1.2 S

(1) ('g‘) (11.5 (10%)) 11 — (0.83) ( ) 1 — ( i

g 12 (1)
= 1531.7938 1b—in /rad

ki = 5.33

Natural frequency for bending in xz plane:

« 1 40.1877 |3
2
. _-={ i } =411 26.64 = 24.1434 rad fsec
1 386.4

Natural frequency for bending in yz plane:

) 0.6278 |3
Wyg = { e } =1 | 26.64 = 3.0178 rad /sec
386.4

By approximating the shape of the sign as a square of side 30 in (mstead of an octagon),
we can find its mass moment of inertia as:

= 2 s = (922 (20 far 1 4 L )] - nr

386.4 3

Natural torsional frequency:
' : 1 1

k |2 [1531.7938)7
=2t 290l 838 % 5 0290 rad
“ {I(',o} { 24.7189 | rad fsec

Thus the mode of vibration (close to resonance) is torsion in xy plane.

(a_,) Puvof:ed . . Let L= 4.
_ 4'(3EI>“ le‘I

= 4' a3 clurnn - ‘
@8 c
Let mq}'fi q«ﬁuﬁu madd agu.ﬂ. + AO%- Wj/b‘-' O‘E‘ c_afu-mnf

EMGT‘ -ma*bon- <3 -+ e!f-l) ’)C -+ ’keg = QO
Natural fre,&ucmcj of f'lar(gan'ta.i vibration = &, =

12 ET
(o)




(b) FfKEc) : ___..,.Fr
since The jaint between column and f[oor
ci'aes not Permh‘: rO‘l‘ai:‘on, each cclumn

will bend with "nflection point af middle.
When force F is a,wa(:‘col at ends,

- - e -

3 3 '

<=2 (%Y _ L kiisical
3EI I2EL 47 F

‘ EI

kcolumn = I?.IEI > ke_a = 4“ kc,o‘unn = 13

Let My, = effective mass of each column at top end

48EI

Egua—faan of motion: (} -+ mef,cg) x + ‘k x = O /
1

Natural freguency of Aortso::f:ai thfa«flaﬂ = (W+ ""ej.y:z

Effective mass (due to sely weight)): Eg,,8,m

ot t - i - e e e A e G MO e w mam A ) e wm e e - e S o s

4 / pl l
(“‘) Let meﬁ“: Cff&Cflvc Pa-rf." of _a'-""-‘—___‘i} F

mass of beam (m) at end . | \%’
Thus VtLra.‘hnj ‘nertia force at gncﬂ
'8 due to (M+ 'mcﬂ”)
Assume o(t’_f/ec{‘:.on S‘La,fe Junnj vibration S‘a..mev as +the
static cfef/ec.f'aon Sl-ta_):e with a 'E.d; foad :

‘ x t— where - X sz (3["")
w(x,t) = Y¢ ) cos (w9, t—4) ere  Y(x)= —

Y(’x)'—' _\.r_o__. 2 (31-X> where Yo_- F.f - max- tr.[e,ffecf-cn
‘ 243 . 3Eer
¥ (,t) = Y;g (3*L - x° ) cos (Wnt—g) (&)
- 2
Max. strain energy of beam= Max. work Lj Force F .
— ..L E 2 «
= FY = _z.. 713—:— Yo | (Ez)

Max - kinetic enerjj Jue to das{‘n}.,t.d:ec' mass of Le,n_m
= f 3 (x,f)) dx + —g(ym M
max

,_‘1_ i e) vt 0l Y M (&3)




(b) Let Y(z) = o+ @, X+ ay x2'+ ary x>
Y(o) =0, (") =0, Y(f) Yo, J;’(f):()
This leads t¢ Y(x)= 3Yo 2 2Y 3

1% 22
Y(x,t) = Yo( ':E—z-_ -2 %—2—-) c.os(c.sn-l:-—;ﬁ)
£ ity |
Max stral =L EXI (
axi{mum ram enerj_tj ?_ f 87&"
_ GEI Yoz
L7 2,2 4 [m 2 2 Eé;‘ 2
Max. kinetic energy = L M @, Y, + Z (T T @n f('{‘z""}?) d=
= el (e ) (€
— 13

Stiffnesses of segments:

A1=

D} -4} = — (2% — 1.75%) = 0.7363 in?

m]:}‘
|3

A By (0.7363) (107) )

Xy = - = A = 61.3583 (10%) 1b

1 L SR (10*) Ib/in
Ay = -f-;- (D} —a}) = -4"- (157 — 1.25%) = 0.5400 in*
Az By (0.5400) (107)
| L, 10
Ay = {- (D3 —d2) = f- (1* — 0.75%) = 0.3436 in®

_AsE3  (0.3436) (10’)
3 Ls 8

Equivalent stiffness (springs in series): .
1
11,11
keq k; | kg ks
= 0.0162977 (107*) + 0.0185185 (10~*) + 0.0232820 (10~ = 0.0580982 (107*)
’ or ke =17.2122 (10*) Ibfin

ky = = 54.0 (10%) Ib /in

= 42.9516 (10%) 1b/in

Natural frequency:

Keg k 4
Wy = o T T f v 17.2122 (107) (386.4) = 2578.9157 rad fsec

10




i
i
—2— ' ke,
*, ‘kl 72——-‘—- = _L _'_.. :
J'4 —-{—l totak k) 1] : LN
£ —+ ,
Bk Kegtad = Bz ks iz 2k L
| ! < 27T
" AAAAT T AANAAANAA— = 4 { ! ! !
- g Kiotal *2 R S R TR T %
s % — ° = ko kg K
A ‘k3:_g_k
'm .
T = 270 ” where k‘i?/: bty * 4o = 16 &
e, 3 ?
, = 2m [3m 2TVT [ _ 2T ﬁ(ﬁ) = 0-4330 sec
16 & 4 K 4

Let M= coeffrcrent of Friction . I lW
| | /““'7 ‘ 'G '+, ME

” = A;gF!a.cemenf of €G. of

block ’
' Ff?l:z= net reactions bei‘ween

roller and block on
ltf‘t' and ‘N'gkt- sides .
Reactions at leff and n'ghi‘ due fa'sfa..il'c LU.D-J W are
wW(c-x)/2¢ and W (c+x*)/2¢, }rerlbecf:fvefj.
M= moment about G due f motion of block = (m Fz.—/‘FDaa
Reactions akt lzﬁ{' omd right to balonce m=_M - /gﬁ(Fz-F:)

ic 2c
Fl= W(;‘.;-Z)_. %(5‘”5) ; Fé_____ W(C+?C)+ ,‘*a" (FZ_F'>
ﬁ . . 2c zC
SubTraction 9ives
< qn Jive Fz_" F, = wx + /Aa’ (Fz"‘Fa)
e F— F = W’c
e (2o) - 2z
Regtorznj Force = (Fz_“ F.) — < /uu/x 3
E + J4 t A
pua on o motCion : . e '
W x + /MW > =0

i

' 7 — Jras
W, = w= [ IrYEF o /u(; £
W (c—pa)y J‘C_/Ma,

SoLv.‘nj this, we get 08 = [CC‘SV(} + a,ca"):l



@ From problem 2. 41, ” W x

A) e

Restormj gf'orce Wiff-aoq.{' Sprmjs’.. /M (FZ_ 1) = c—/ua-
Spring Ye S‘formj force = 2 k x

Total restoring force = /‘L_/;’ + 2k x

Eg,qa,i:l'on Of_ motion: %—- % + (/u—/ka
o 0o = {E:‘*W'* eyl
. (cf}Aa—) w
Solution of this egaa.{'(on 9Qives
| ( W We - 243c¢
an W}—f—W&Bzo.» .—Zk}w

+z1<>?¢'—'-'°

(a) Natural frequency of vibration of electromagnet (without the automobile):

V:-_. v 10000.0 (386.4) _ 5 gqgr rad /sec
3000 0

(b) When the automobile is dropped, the electromagnet moves up by a distance (xq)
from its static equilibrium position.
Xo = static deflection (elongation of cable) under the wexght of automobile

Wi
- to 2000 —02in
k 10000

xpg =0
Resultant motion of electromagnet ( +x upwards):

X(t) = Ag sin (wy ¢+ bo)

where
V1
. )PE
AO == X% + __x_?__ =Xy = 0.2
cun,
A
Xp Wy
and ¢g =tan™t = tan™! (co) = 90°
Xp .

Hence x(t) = 0.2 sin (35.8887 t + 90%) = 0.2 cos 35.8887 t
(¢) Maximum x{t):
x(t) | max = Ap = 0.2 in

Maximum tension in cable during motion = k x(t) | nax + Weigh of electromagnet

= 10000 (0.2) + 3000 = 5,000 lb.
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(a) Newton’s second law of motion:
F(t) ='—k1 x——kz_x——-mii or mxX +(k1 +k2)x =0
(b) D’Alembert’s principle:

F)—mX=0o0or -k x—kyx—mxX=0
Thus mx +(k; +ky)x=0

(c) Principle of virtual work:

When mass m is given a virtual displacement Jx,

Virtual work done by the spring forces = - (k; + kp) x &x

Virtual work done by the inertia force = - (m X) &

According to the principle of virtual work the total virtual work done by all forces
must be equal to zero: .

—mX &x — (k; +k2)x5x—~0 or mX + (ky +k2)x-—-0

(d) Principle of conservation of energy:

_ 2
T = kinetic energy = —;:—- m X

U = strain energy = potential energy = —é— k, x + -}2- ky x*

.2
T+U==—:12—mx -I-—;—(kl + kg) x* = ¢ = constant
it(T+U)=O or mX+ (k; +ko)x=0

245

% (%)

i



Equation of motion:

Massm: mg—T=mX
Pulley Jo: Jg 8 =Tr—kd4r(6+6)4r

where 8, = angular deflection of the pulley under the weight, mg, given by:

m g
1l6rk

mgr=k(4-1-00)4r or By =
Substituting Eqs. (1) and (3) into (2), we obtain

G (m e —m ¥ e — 2 mg
Jo (mg~mX)r klﬁr(ﬁ-l-lﬁrk)

Using x = r 6 and X = §, Eq. (4) becomes

(Jo +mr2).9‘+‘(16 r’k)f=0

to be in series. Then

Consider the springs connected to the pulleys (by rope)

Let the displacement of mass m be x.

Then the extension of the rope (springs
connected to the pulleys) = 2 x. From

the free body diagram, the equation of

motion of mass m:

mx+2kx+ky (2x)=0

1

2 4

= (t)

T = kinetic energy = T, + Toulley

1 .2 1 »2 1 -2
-"—‘E-IIIX +—2—309 —“‘-"-—Z*(ml‘z"}'.]o)a

U = potential energy = é— kxl = % k(4r6)} = %: k(18 rz).B'?_

- Using :%— (T + U) = 0 gives

(mr? +J5) 8+ (16r2 k)6 =0

21 -2
T = kinetic energy = % mx + Y Jo 6

U = potential energy = —;—- k XE



x . .
where ¢ = —a %= extension of spring = 4 r § = 4 x. Hence

_ 1 Jo. .2 1
T—-——2-(m+-r—i—)x ; U=E(18k)x2

. . d
Using tthe relation T (T +U) = 0, we obtain the equation of motion of the
systern as: ’ |

Jo .. '
(m+ )X +18kx=0
T2 _

: ’ l cross-section: Sem x5 em lF

A B l 7ZZ
[ T
%‘—’f f=z0.8m :‘ra.:o-z'“.l

Due to a load P at C, deflection at point C is given by (from Appendix B):

oy =2EZD [a(3x—-€)—(x-—f)2];€§x§t’+a
P a2 '
yo=y(x=¢+a)= TR (€ + a)

Moment of inertia of cross section of beam:
1= -135 (0.05) {0.05)% = 52.0833 (1078) m*

Equivalent stiffness:

« - P __3El¢ _ 3(207 (10%)) (‘52.0833 (107®)) (0.8)
% ye  a'(f+a) (0.2)? (0.8 + 0.2)

= 8.4687 (10°) N/m

Natural frequency:

. 8
N VAN, VA TRy
m - 50 _

‘ K
|L< f=0.4m ———+w=o-zm.->{

From Appendix B, the deflection of fixed-pinned beam with an dverhaﬁg, due to
load P at the free end, is given by: ’ 7




2 ¢
3—;4'1

Pa

¥ = 15717 x—&; e<x<fl+a

x* —¢éx? —

‘Using a=0.2¢=08 x=a2a+¢=1.0, and

1= -1-15 (0.05) (0.05)° = 52.0833 (107%) m*
we obtain '
- P (0.2) - . L8 3
Yo7y (207 (10°)) (52.0833 (107%)) (0.8) [1 08 (1) (0'6 +1) (0.2)

=P (9.895652 (107%))

keq = £ 10105448 (10*) N/m

Jc

1 1
z 8y 12
- {k;.q} _ { 10.1054 (10 )} = 449.5642 rad fsec

m .50
The 3ystem of F,'g,(A) | Driver | Driven
can be drawn in
eBu.;vaJent form as .
shown im Fig-(B) where 5
both Pu!fcjl' have the some :
radius ry- We rmotice 'n 250 wem ¢ | 1000 wm &
Ft'g-(B) that vibration tan Kke J) ‘ Fig. A . 7,

place in only one way with one
)ml/e,j moving clockwse and

the other moving ¢counter c!ocwaS’eT
wWhen Pu“eyr rotate n -

opposite directions, & _ & |

- L. "91 DT 3; FI‘S - B J-Z
Ti‘e JP""_? force » Which ha-s tf’e : %, = AMg fD\'C! in JPn’nj.?) r
Same VG—LLLE on ether Pullej A8 - k‘b (9! +eg_> ' t+ Y- = ( due & A9 'Elé

Wheve &g = torsional spring constant of ! | gx rae >£"5= 240>

the )535‘}::\7\- Ev..alrah d" motion iy .; = 2% ﬁ—)" = */;2 N-m/ro.J

il i Qoo
er. -+ kt (e.‘f‘ez) =0 & J-zez + kt(6‘+92>=o:.: Ez- (E,) sfves > for W= lz,'ﬂ'ra.c’,

e J;e,+1<t(v+.;ll)e,=° S Jlé;+‘kt(%+l)ez=oi' * = 454-7935 N/,._

e v et e e e m . ——w - - — -



Either of these eaua,t.ans gives 1T The other possible motion (s

' Heyr ax o
- & i+ Iz - (e ' rotation of the two palley
@= { ¢ ( D) )} ¢ D ' Whole (as rigid body) in Same
Here 7,z o- 2/?- =0-05 #3~ ™, ' direction. This will have o no—tt&ml‘

5= 7 7, (Apeed ra.{':a) = 0- z(J-) = o-0125 49.-," | freguency of Zevo. See tection 5.7,

@ ™ { é'+m;4ir}9=0
For small o, mle + mgo =

I, = __g_'—-

pd
z 2 _ AT - 4.4185 e
n ©,, 9-814

@,(0‘) W, = ‘/‘? N

: ' 2
(k) -mlzg + xalsn e 4 'mjg e =0 ; ml e + (4(@ +'m3[).6=0

| " ,
. = j«a+mzl

ml

e .z.. . . ‘
@) ml g 4 xd sine -rngf sino=0; wl e +(*ka:-w;£) =0

\/*kaf‘— 'mzf'
m £

configuration (4) has the highest watural Freguency.

| k . Pt‘lhm'r\ftm (‘OJ A |
’ 10: &‘_‘” : \

S .
S W\

%f . S' >} t}ncknes‘: = 1

m = mass of a panel = (5 x 12) (3 x 12} (1) (0'283) = 1.5820
, 386.4
Jo = mass moment of inertia of panel about x—axis = ETY (32 + b%)

_ 1.5820

5 (17 +36%) = 170.9878

Ip = polar moment of inertia of rod = —31;- at = -g— (D)* = 0.098175 in?



Gl _ (3.8(10%) (0.098175)

= 3.1089 (10*) Ib—in/rad

k=7 12
1 ' 1
- 4 ,
. = E. P 5_19_8._9...(_1..[_)._)_ : = 13.4841 rad fsec
n Jo 170.9878

@ Iy = polar moment of mertla of cross section of shaft AB
— (1)“ = 0.098175 in*

Gl
kt = torsional stiffness of shaft AB = ——

7
2]
— (2 (107) (O-098178) _ 14,635 (10%) Ib—in/rad

Jo = mass moment of inertia of the three blades about y—axis

_ =3 | = = = (0.7453
3Jo|pq 3{3 m £ m 2 336.4 (12)
Torsional natural frequency:
: 1 1 '
L o)
o — X l? _110.835 (107) {2 _ o5 0747 rad feec
S 0.7453 |

Jo = mass moment of inertia of the ring = 1.0 kg—m?.
I, = polar moment of inertia of the cross section of steel shaft

=35 L (ds, —dt) =~ (0 05% — 0.04%) = 36 2266 (107%) m*

I,, = polar moment of mertla. of cross section of brass shaft
i - _ .
=35 (d3, —di) = 5 (0.04* —0.03*) = 17.1806 (107%) m*

ki; = torsional stiffness of steel shaft .
_ GsLs _ (80 (10%)) (35.2266 (10°%))
Y4 2
kip, = torsional stiffness of brass shaft
_ GoLp (40 (107)) (17.1808 (1078%))
¢ 2
ki, =kiy +kyp = 17,926.76 N—m/rad

= 14490.64 N—m /rad

= 3436.12 N—m /rad

Taorsional natural frequency:

" \/ S A /TOTE_ 5 008 rmd o
0 .

.27r__._ 29

S - = 0.04893
2 = T 133.8908 see




@ Kinetic energy of system s
T= Todt Tiob = 22 mf) 3% L ma* 6"
yod bob 7 (3 ™ ) 8 4+ ) mil é

_ quehb'al energy of sgs%erh is
’(Sf"“ mats cfs the rod acli through s Cen‘l:cr) :

= Ured + Yiob = Lmpl (1-cot )+ £ Myl (1- cos 9)
Eaua,{-.’on of wmotion :
._‘_L (T + U) =0

e, w M+""),€ 6+<M+"§_‘>3,Q S ® =D

For small angles, (M+ D) I
AN
(M +-*£—)}
(m+5)1 | |
: " " , - .
For the shadt, 7= T;: = ‘rr____)_g:-os = 61-3594 x5 0w
; g .
k{;: ET‘T = Co-733 J(|o“>(i‘1-3534- x {0 ) = 24329-002 N'"‘/\"a-d
For the disc.

| 2 2 2 4
MD (p T2 : T A

32
3 " 14’ R \ - | '
(7 83 x10 ) ( (o i) =76+ 8710 ky—m

,*t (24329 002\ /2 _ ‘ ’
e 3910 ) = 477902 ra /sec,

Eguation of motion

o =,waa..z«(.g;9)-§
S ke
wher L
Ja = JE;+*“O’ ";;2‘_‘7“1*"'3!2'

:.;‘mﬁ

mA*

? —
7 t i
wh=\/ﬁ"30’+3§«11+-§-*1+k09 :\/ﬁmgcj+lo4<!1+.9‘k{;



For 9iven data.

9(10) (#:21)(54) +10 (2000) (5)* + 9 (1000)
Wy = / 2(%) (z009) ( = 451547 2
o to (5)*
: |
J;:—sz R2 , JE.’—‘-Zlm R2+mR2 7 % (R+a) & \‘\\ A 4, (R+a)e

Let a,n_c}u.la,r ol(‘spl‘g_ccmcnf = O

E&ua.fc'ori of motion:

NN NN NN

o z
T e+ k(Rta)e + k, (R+aj e =0

N e e o e e

//////////////// A A PP,

C‘k,-&--kz) (R#w)z‘ . N2 ,
\/ - J‘C = (kl kz)(R-i— ) .(E;)

[-5 m R?
Ezua.bb‘n (E1) shows that w9, in c}ea.ses with the value
of @. o ‘

W, will be maximum when a = R.

Net 2 a.c,bnj on the fen&u(um = 9-84—-5= 4-81 ’"/8«1 = 2
W= f J2- 2L = 3.,016 rad[sec o
‘ Tp= 25 = 2:0259 dec
Ezua-flb_ﬂ of motion:
T 6 =-+,0~(k a6)a - (K 16) L

' i z 22 2
Where %= wli e m (EYaLng

— & *,le
Fmf 6 4 (xy+ k1a¥+ 2l Yoo 2 R P9
9 o {3(*{_1"*210}-}-“‘7_11) }1/2 )

n - _

mi?*

Eguai‘:‘on o_f’ motion:

% +m359-o

o [BE . 2T

a.+:w.b2

. ( g b ) (+2b7)(23) ~29b(4b))
o>+ 2 b? (a-+2.l:1>

2 Wy
ob T 2




‘(’-eu vL'—‘- T %2‘7

Y 1
wn’b— a/f" - 77 = ?
= + 2 ?‘z+ 2(03/2_> VZ2'

b= — QJ/\JE Qives (maginary value for 9,.
Since W,=0 w,wen b:‘-O > we fave C‘Sn/m ot b= "J_;_\-

a.x

S ' wed) 6

"774
‘._1 KD 7 34
F +

Let 0 be measured from static equilibrium position so that gravity force need not
be considered. :

(a) Newtén’s second law of motion:
Jo?é=—3k(9{.)_§.-k(9 %ﬁ_) (-3‘_45) or J01§+—Z—icfz f=0
(b) D’Alembert’s principle:
M) —Jo 6=0 or —3%k(8 {i) ({L) —-k(ﬁi—() (EZ{)-—JO F=0
| or JOI9'+—:°;—1<{=9=0
{c¢)} Principle of virtual work:

Virtual work done by spring force: }
€, , € 3¢,,3¢
Wy, =—3k (6 —) (= 80) —k (f§ —) (—

Virtual work done by inertia moment = - (Jo 0) o8
Setting total virtual work done by all forces/moments equal to zero, we
obtain |

@ Let mr = effective part of ~mass of beam (m) at middle. Thus vibratory inertia
force "at middle is due to (M -+ me). Assume a deflection shape:

¥(x,t) = Y(x) cos (wy t — ¢) where Y(x) = static deflection shape due to load at
middle given by: ‘



-
—
g -

Fﬁmésrfm
™

Sk P00 s T

Y(X) == YQ

X X f
3=~ —4 — 0<x< —
¢ 6’3] Sx=g

3
where Y, = maximum deflection of the beam at middle = 4}; g i

Maximum strain energy of beam = maximum work done by force F = 5 ¥ Y-

Maximum kinetic energy due to distributed mass of beam:

¢
2 1 2
=1 .2 : v
LI G dxf 7 [fman) M
2 ¢ 4 ,
£
m w? 2
-— sz(x)dx+—wnY§mM
2
2 2
mw, °. 9 x° %8 x* '
- Y3 +18 X —4 X_ L vyimur
7 _!; °[£2 p o dx+2Yonn
2 2 : 14
mw, Y5 f9 x* | 18 x 24 x*|., % 1
= —_ = 2 |} 2 4+ =
7 [523 & T A g (ld Ty YiMu
) - 17 |
=5 Yoo [35m+M

This shows that m.y = —;% m = 0.4857 m

For small angular rvotation of bar P& about P,

' 2
T ('kr?)ef, (9 93) t(ef) + + ‘kz. (e f-z)
G‘tz) = % 2' t o 12
Smce (k'z)eﬁ a-nﬂ( k3 axre in ser{eS :
,.kea - (klZ)ev 1‘3 =‘ "‘-| 'kg /f‘z -+ *g_ 'k3 1:.‘
(*lz)es + %3 L3F TRESE Y S *3 15

T = kme{:.c enef‘jj =4wm=x 5 U= potential energy=+ kef x?
If x= X cos GW,t, |

Tmaxz—z""mwnx 3 Uma_x:'zi'ke%x



2 ra
Tmax = Umax Jives (o = K, %3 {7+ kg K3 £,
n =

""'(k, 25+ #a L5+ % 1:)

' s
When mass m moves by x,
SPrl\nj k, dcflec‘fs ‘:J x‘/q, | k= 2%
T = Kinetic €nergy =<im (;:)2

v = Po{-enfmi energy = 2{.L(u<)( ) } TY"
= k x .

Foyr Aa_r moniec vnotion,

2 2 2
Tmcux=-é‘m(49hx >

U'ma.x: —é‘ t< X

Tma.x = Uma-k SV‘.Veg GS,,.: \’ ..
4w
Refer to the figure of solution of problem 2.24
B 2

T= zm=x ; U=-[21<,(xus45)+11<z(xcn:135)J

= 4 (k+ %3) x=
fharmonic motion,

3 . 2
2 z I | ,
Tma.x = '7!:'!’1! s, X . Uma.:: = T (kl‘f' *z) X

Tma.x = Umq_x Q;VES' (9 = kl"’" t?.
, n N m
- - -2
kinetic energy (K.E) = £+ m=

Potential e-nerjj'(P E. >~ !

-iTlx+,_T;_ = Work

done in

displacing mass wm by distance x against The total Force
(tension) of T4 T;.

_ﬁ: -5: T, T';: %——T :me So'uf.ou oj'- P’roéf'em 2 '9
Max. K- E- = ém_w:‘ x© s MO.x. FPE: = Z T(;j ‘ )X
Max. K-E. = Max. P-E. g;ve.? ‘/T w b /
ma b m(!-—w)
T=kE2%3;‘5.2:%(9&*'"&)9“"(01 +m"“)9

_L( wm f? 42

2 9 2
:P-E=~m3,l(1-Cose)+2(1<9<|+J£1<9<,_>+ ky B

with cose = 1-4 ¢° £

» % =4 0 and ocz—i‘le



- {
A S E} +
| L (Y g 3 . . S
Tmasz?_ 3 )@ 5 Umz._%:mgz @4_%60: )@-f—‘z"k*@
qu_x = Uma.x ives
£ 1o 4« [ ' |
W, = m3 o+ 5~ + Kt 45. 1547 rad  cor aiver
2 - sec |
271) Refer to the figure in the solution of prdblem 2.62.
- 1 -2
= 7 95 6 . ,
U= £ &, ot + & %4 (82) + i, (91)
For e(t) = ® cos W,t,
2 2
Tma,‘:—;_-gf;c.s:@l, Unax = iz‘(kt"‘ ®, & + gz,Q)@
Tma.x = bUm gives
!
W = fkt+kia+ kziﬂ B(Rt-}-‘kiﬂ—'f""zll)
n 7 - 11
$ince J; = m,[l/a' | |
when prism is ofx‘sf»laced Ly x L fe— @ —q
2.72 _ | .
from eaw'l-'brium Posif.‘cm, the ' : / T
et 0_}’ il displaced ‘ Eouilibrium : | h
= ‘f: Fabx = restoring force ?’posiﬂan —-x]-—-—_.___l
Meass of prism= = Ja abh’ s sl -~ -
w’ .

Ezua_b‘an of wmotion: ——————J/

mx + rest‘:or@‘ng ;Force =0
JZI'GJBA ';-'f' JZ}Q‘X - O

 [Fgzeb _ [7F | .
wn". fwa‘;"’ B fwk . - (E').

Since (3, is inofefencgcnf of Cross—section of the prism, (S,

D

Yemains Same even ;For a c.‘rc,ulq,r 'woac‘fen prES'm.

.2

.2 2
mx. -+

T = Jo 6 =%[mR2+—;-mRz]9‘

B |
MIH

sincex=R6’andJ0=—;—mR2.

: 1 1
U=-§k1X%+'§-k2X§=%(kl+k2)(R+a)262



where x; = (R + a) ¢. Using -éi-t- (T + U) = 0, we obtain

(-g-mRZ)'éHkl' i) R +2)2 0=0

Let x(t) be measured from static equilibrium position of mass. T = kinetic energy
of the system:

T=-1—m1':2
2 .

1 y 1
~ 1.8 =21
+2Jo 2111

since § = 3:- = angular velocity of pulley. U = potential energy of the system:

! k y? =-;—k(16x2)

since y = 6 (4 r) = 4 x = deflection of spring. é—i— (T +U) =0 leads to:
-, Jo . |
mx+—-—2—x+16kx=0
r

This gives the natural frequency:

w = 16 k r®
* ml’2+Jo

@ For pendu(um, W, = 3/1 (n vaccum = 0.5 Hz = TT ra.J/sec

‘ = $m> = 990/ 12 = 5.9940 m
CdJ = wh ’1——\5’1 n - vViscous med{um = 0,45‘ Hz = o0-9 7 Y&J/&

TZ - w:';zwdl - 'Tl"z( e ’o-ﬂ> .
*= 13694 | | o

Eaua:(n"on of motion: m}ﬂl o + Cy 6 + myf 6 =0
e = 2(mID w0, = 2 (1) (@174 (™) = ¢ 2080 |

Since ¥ =. ‘;f = 1-3¢94, c, = 8-5013 N-m-tec/ rad.

ot _ .
From £p. (2.85), |
Zm (%| = L.(18) » ‘%Ir“f; = 2.2%04

¥ _{(2-8304.) } = 0.k 179
G- 8904 + 4 T2



(w) If Ja,mvpfnj is o‘OuL‘&J, an = ©-9358

. %N 27 Y, . _ 21 (0:8358) o
| Ay 1- T, \/ T e
- T.. i~ (0-835%)
x -
. N S 14265‘362
x‘}'f-!
(b) Lf da_m)b-‘nj is ﬁa.[ve_a', )‘:—.o-zoso‘
/ e s 27
Nneiw .
|~ Thew \/1_. (0-1090)2
x, .
2 = 3.929¢
X}-n—-t ‘

_‘rcﬁ“t . . . .
@ x(t)y = X e sin th where W = Ji—T* W,
For maximum OF minimum of 2(t), '

—-J3 t ‘
— .t '
As g Tn #+ o for finite t,

- T, sin wa -+ Cdd cos &34‘& = O

{.e. ‘t‘an wJ‘E = 'i"'T’/T

WUeing the relation

tan Wt + (W/‘S‘)

Sin (.Lsa‘t‘ = + = = + J1 z
o 1 -~ - -T
_ fi+ tan wyt Ji + ( Ji-72 >21 ,
we obtain ‘ T
Sn Wyt = Ji-x* , cos Wyt = ¥
q,no' ‘
sin Wyt = - Ji-1* , cos (494{’- = -7
dEx - -TW 1 z : '
dt* = X e [T (3: sin th - ITC@“ CJJ CeoS wAt - 6.3:. sin 63"9
when sin w&t = 1 - T" and  cos C«SJ‘E =7,
42 ~Tw,t N :
e _x e wr T < o

.‘s(n o.:dt = \11-—‘5‘L ccrresPoan to maximam of -x(t),
Wh&h Sin C,\SJ‘E = - ,/1_. Tl and ces C,OJ{-:_- -,



4% —-yw,t —
TR W, J1-7 > 0
s Sin w‘;‘t = - f1- ]"1 (orresfanafs to minimum of x(t).
Envclopinj curves: x(t)‘F*-\ _ xi(t)
" Let the curve | h
posSSing fhrou_’lw the o 1 w /\ S
maximum {or mfnimuirn) ! ft,:wv_"—‘ ¢t
oints  pe S
f -7t T N )
x(t)= C e 2
For maximum }poinfs, t max = 5".“_1 (\“—“T")
e
and
"‘jwn%ma.x -Twntma.x
ve C = X \”—"Tl
: —_Yw,t
x(t) = X Ji-T1* e :
) ’ ‘ - -1 i___\r'l-
. l ( s ‘nts s ("\J )
Similarly for minfmum points. t'min = : o
and | 4
=T W 'tm, - W, tmc'n
C e 3 ©n Fein = X e sin w‘;tmm
e = =X 1Tt
-7, t
Vo) = - X Vi-3? e,T b
’ Ax‘(t)‘

O x{t) = [‘x +(x+o.9 x,){—]ewt

For X, >0, 9grakh of

we assume x,

E.(E1) 0
is shown for different x, .
>0 as it is the

%

—--- (E1)

_onlj case that 9[ves' a wmoXximum .

For maximum of =x(t),
dx — Wt . . ‘
= € (R t®a)ent & Fof =0
. 2,
to = ---- B

Wy (7.‘0 + W, xo)



J"x _ _-(49,.,{' ” 1 z v |
I;;— - g {thxo—}-wﬂ 7(0-(13“ (‘xo—f_wnxo)t}—---(E?)

(E,_) and ; (Eg) give

t - tm . . '
d x - {zw,x,+w:xo_wf(x°+w,,xo)i~,,,}
dt* (t=1,, A ' ,

Xq
-5 0 " . 2 4
= —g _"( Un(x.-l-tﬁf.lo))_ { O, %X, + &, ‘xo} _———— (54)
For %g>0 and x, >0, I <o
dt‘ 2
Hence t,, given Lj Eg. (Ep) corresponds fo a maximum of =x(t) -
» . - t—
z’t_f_ - {X°+ ('xo‘!‘wnxa)_ xXo } e L
=t 03, (-xa—f- (3 %s)

- (x + __.._._) ‘X. + L, X, o — (55)

Epuation (2.92) can be exprcsseJ as. o L

For ‘fwl.b.c?z.& - ?.n& hence 8=2L"(x°
. x

= ll"(ow>i‘

NCCQSS'CL’I"J Aa.mpnzg fa_,{'(o Ta N = 3'7342
T, = 8 - 3.7942% -
o - T 7 = :
. i (ZAW) 4+ 8™ ﬁ“—l + 3-734’21

( ) = 05169
=7
f 1= 3 =T = 03877, thc overshoot can be determined by

:Fnd-r\j 8 From Eg. (2 85') |
- 2T 2T (03877) = 2.6427 = zfm(x" )

8 - - — _—
Ni-7? Ji-o0.3877%
xXo

ﬁn(x%) = 132135

Xy = 'x/el'32‘35 = 0.26C775 xo
E3

Overshovot is 26-.67752

(b)
g 1f T = ‘—T = o-64Gl1, § is 9?ven b"j

270 X A LAL | e
5= . 2T (0.64 )2: = 5.3189 = 2 Zv\(x_._>
-3 /f_. (0-646i) ‘




Xo = 14.2888 x
xJz_ -z

* overShoot = 7/,‘

= @g+0700 Xp

(i) (a) Visecous damping, {b) Coulomb damping.
(iii) 0.2 see, g = 5 Hz, wy = 31.416 rad/sec.

(3.) Tq = = =
(b) Ty = 0.2 sec, fy = 5 Hz, w, = 31.418 rad/sec.
X r
(i) (a) —— ="
Xi+1

m || —m2—o6e31 =275 o
Xi+1 » \/1'_.5-2

or 39.9590 ¢ =0.4804 or ¢ =0.1006

Since wy =w, V1 —¢, we find

. Wi
wy =i = LB 51 6065 rad fsec
\Vi— "V 0.98798 |
500
k=muwl= [g 81} (31.8085)% = 5.0916 (10%) N/m

C c

C. 2mwy -

5 o
Hence ¢ =2 m wy ¢ =2 ( ‘;‘; ) (31.6065) (0.1096) = 353.1164 N—s/m

(b) From Eq. (2.118):

500
k=muw? = Il (31.418)% = 5.0304 (10*) N/m

Using N = W = 500 N,

_ 0.002k _ (0.002) (5.0304 (10%))
4W 4 (500)

= 0.0503

@) c.= 2 Nkm =2 JSoooxso_ = 1000 N-A/m

(b)) c= &/2= 500 N =5/ m
. W= w,Vi-v*" = J—‘ ’1- (C Jrooo f (7.)
| €)  From Ea-(z.SS), 8; 21\' (2111) . 2w ( 500 )

= 8.6603 ra.ol/sec
#.6603 2x 50

i

= 3. 6276

2000 kﬁ > A = xo = {0 Yh/sec N ’k — 4_0’00_0 N/m
20,000 N-seg/m

®
o 3
i



_ 4% ' - 4000
e VE = [ZE = k72 radie
Cce= 2vVkm = 25,298.221 N-sSec/m

T= .= 0:790¢
‘v;'; = @, Vi- 7% = 44721 Vie (0-7906)% = 2.7294 rad [sec

= 27"/094 = 2-2945 sec

(@) For %, =0 and x,= 10 mfec, €. (2.72) gives
—jwht - ' T
*®)= e xe sin W Jt—T7 ¢t
wh [._.Tl . »
A‘t ’xm.m‘ » w,,t -~ —l; a,npk S|'n (“-'9n t ~ 1
— 0. 7%06 (77/2) |
x o~ ( o
max = € | 257 ) () = ros4sm

(&) t= Ty = 22945/4 = 0.5736 sec.

Ct’,,= 200 nges'/mm = 20. 94-4 raJ/sec 3 C‘SJ" 180 c.gdes/m.n = }8 34-36 ""-4

&= o2 kg-
‘ Yt N2 18-8416 2
= Ji-v? = J1r-( = = - (—=\ =,.
Since = Vi-7v% Wn, T w (wn) 1 2054 4 04359
Ceder: = 2 J, W,

Ce= 29, W, T =2(02)(20-944)f- 4959)

= 3-65!9 N-m-4/rad
Eg-(2-72) can be used to obtain 6(t) for 6, =0, g,= 2°= 0.03494

rad and t= Ty = % = 0.333) sec,
. —- ‘ TS
o(t) = ¢ M o, fuA aut + 5 sin oyt ]

é.@'4359)(20'944)@'"”) ’(0-034—51) {cos 188496 x 0-3333

0 4359 x 20-944 . 1
+ $ . +3333
At in 18.§49¢ x 0-33 }

~ ©0:001665 rad = 0.09541°

——

Assume that the bicycle and the boy fall as a rigid body by 5 cm at point A. Thus
the mass (m,,) will be subjected to an initial downward displacement of 5 cm (t=

0 assumed at point A):
=0.05m, xo =0

(50000) (8:81) _ 94,7614 rad /sec
meq 800




800 -
=2 |——| (24.7814) = 4038.5568 N—s/m

cc =2m U 9.81
= _S_ o 10000 ;0478 (underdamping)
4038 5568

Wy =w, V1—¢ =247614 V1 —0.2476* = 23.9905 rad /sec

Response of the system:
x(¥) =X e $“** sin (wy t + ¢)
2|y
)’.(0 + f Wy Xg

where X ={x% +
Wa

1

212 '
(0.2476) (24.7614) (o'OS)] — 0.051607 m

. 2
=1(0.05) 23.9905

0.05 (23.9905) = 75.8645°

Xp @y _ tan—l |
,  |0.2478 (24.7614) (0.05)

and qﬁ: tan”! | ————
i Xo + ¢ W Xo

Thus the d1splacement of the boy (positive downward) in vertlcal direction is given

by
x(t) = 0.051607 e~ 1399 ¥ 5in (23.9905 ¢ + 75.6645°) m

Reduction in ai:nplitude‘ of viscously damped free vi})ration in one cycle = 0.5 in.
| ' 2w¢

*1 _ 890 _ 0008 In 2t —008701 =
X 5.5 X2 :; ;1 __5.2

ie., 0.007571 (1 —¢*) =39.478602 ¢ or ¢ = 0.013847

“C“r_- 0.2 sec.—.% , ‘ Wy = 3. 416 ra-J/s'gc

o B 0y e L T v n

om Eg. (2 ZZ) 8 % 10 0.04605
— ) 5
T= JarI+ 8 T ‘0104“ - = 0-007329
wWhen Ja_mp.‘nj is neglected,
T

2 = 06.19999 sec

W, = CJJ/,/’{__ I"" = 3t 417 rad/sec ;"?-'n= W,

Proportiov\a-{ decrease /»n period = (2 2‘“00.219939): 000005

) For critically damped system, £ (2:80) sives
%) = fxov (3o +@nno)t et - (D

'J'((f): e—wnt { ’;KO — ').':o wnt - 1_33; xo\‘: } (Ez)



Let t time at whieh x= Kopax and X = O occur,

Here x,=0 and %, = initial recoil velocity. By setting

')‘C ({7) =Q, EZ. (Ez) 31‘\/65

m":—

- .ofc, R | (g3)
G, ("(o + @9, %o) W, % “n
with Es. (E3) For tm and €, =0 » '(E‘> gives
X max = 7’(0 {_m’é—ﬁntﬁ, = 7“0 é—i
o |
e Xo = By Kmaxe = Oy (0.5)(2:7193) (B

| USing  x, = (o m/sec, e, = Ir/(o,g * 2.5,3;) = 7.3575 ;:'j
- When mass of 9«-&1 is 500 kg,
the st{Hness of the Spring IS
* = (_0:' m = (7.35‘75')2 (so0) = 27,066.403 N/m

.‘k:: SOOO‘N/m ’ Cc= o2 N—S'/Qsm = 200 N-—J/m
2.88 :
= 2 \[km = 2 V5000 m
™m = 2 k?

W= \fk/m = \{5000/2_ .= 50O ra;a,/fec

Loga.rifi\m:'c‘ ‘decrement = § = _2T 5 z.0
< . 3 s - |
L &> = .C‘. = o- 303 a_ar\.d c = vo‘ 3033 (Ovz> = GO’GG N——s/m
AS‘Su.mfnJ XK, = O and ‘;Co = 4 m/g, |
—TuwRt %
x(t) = @ o ;,-,_,Jl.. y* oot
| t, J1—T*
" For M ax , U’nf a 7'('/2 and Sin Jl- r* W, t =~ 1
. 3033 (T |
- O e_... ) 3'035( /'2-) : i = (1) = ¢r0l303 m
v ' 50 J1-o0.3033 '
For an overdamped system, E5.(2.81) gives
I A ) w, -yt
x(t)= e " (C" e + €, € < ) (E1)
Using the relations eT™ - cosh x X sinh x | (€2)

Eg-(E) can be rewritten as
7 ywat _ -
x(t)= ¢ (C; cosh ayt + C, sinh ayt) (55)



wWhere C3= ¢+ ¢, ond C,=C, ~ C;y-
Differentiating (£,),
—;( (-f:’) - e-Tw“t [C_; (;_9‘1 sinh 094'1' + CAAC‘}.; COSA ﬁ‘l‘t ]

— 745, érwn"t [C, cosh &96{'6 -+ Cq sinh w‘;_t ] ‘ (E‘f)

Initial conditions x(F=0)=ny and =% (2=0) = x, with (53)
and (Eq) give

Cym 2o 5 Co= (Kot TWn%a) /g, (e5)
Thus (E3) becomes |
-yw,t ‘ ) .
x(t)= =, e I (COSA Wyt 4 Tw; sinh, c.sdt>
x Tent , (Eo)
+ C;J e ?‘“L, e, t
(f) When =, =0, g, - (E¢) gives
' - Cl9 .t Twh . / v E
x(t?.—_ x, € ¥ On (usk wt + @ sinh &-’Jf) ( 7)
Since e— T&S"‘t ) co.rla CJ"t 5 ch::h a_nq‘ S‘n'n'\ Q"Jt do na{‘
.3
ckamje sign (a_lwa,js Ppsc'h‘ve> and g T, t aaprraa-dwcs

3ero  with (ncreasing f, x(‘b’) will ot Cha.nae sign .
(i) when =x2,=0 Er . (E¢) gives

-TWw,t :
x(t) = % e'T sinh @3t (Es)

Here cJJ«’,‘ wol’ e— Yw"t ard. g(nh (;%-{; dg nof C.}m.nge S‘?g'n
(always positive) and & T%rt

€ approaches zero with
increasing €t , x(t) will not change sign.

Newton’s second law of motion: ‘ o o, Mm%

YSF=mi¥=—kx—cx+F (1) o*
EM=_J0.=—FfR‘ (2) 4 2 < v '} “—C %
, ; e
‘where Fy = friction force. F >
2 ¥ f
Using Jg = m2R and 6 = -E—, Eq. (2) gives |
r=——2-]5§-[mRz]%=—--;—mi . (3)

Substitution of Eq. (3) into (1) yields:



-%mi+ci+kx=0 (4)

‘ . : 2k
The undamped natural frequency is: w, = 5o (5)

Newton's second law of motion: (measuring x from static equilibrium position of
cylinder) ‘

WFP=mx=—kx—cx—kx+Fy (1)
YM=J, §=—-FR | )

where F; = friction force. Using Jg = —3— mR? and § = %—, Eq. (2) gives
2
Substitution of Eq. (3) into (1) gives
| -g-mii+cic+2kx='o | (4)

Undamped natural frequency of the system:

e x k Wy = e (4)

Cx \

Consider a small angular displacement of- the bar § about its statie ethbnum
position. Newton s second law gives:

o [Bg] [TJ;C e 5—] g

. e .
e, Jpb+E b1 xete=
le o U+ T 9+4kf 6=0



where Jg = {—8—- m ¢*. The undamped natural frequency of torsional vibration is

given by:
" = 3k 36 k
z 4 JQ 7m
Let é&x = virtual displacement given to cylinder. Virtual work done by various
forces:

' Inertia forces: 6 W;.= — (Jo 8) (8) — (m ¥) 6x = — (Jo B) (%’.‘.) — (m%) &

Spring force: 6W, = — (k x) & ' ,
Damping force: W3 = — (c x) &
By setting the sum of virtual works equal to zero, we obtain:

-——{2- x —mX—kx—cx=0 or —3—m5£+c:'c+kx—0
‘R IR 2
Let & = virtual displlacement given to cyllinder from its static equillibrium

position. Virtualll works done by various forces:
Inertia forces: &W; = — (Jg 6) 86 — (m X) 8 = — (Jo —)-c—) (é) — (m X) éx
Spring force: W, = —(kx) & —(kx) &x = —2kx &

Damping force: W4 = — (¢ x) &
By setting the sum of virtual works equal to zero, we ﬁnd

-~ Jo X
__ﬁ_.ﬁ—-mx-—zkx—cx—-o ‘ . (1)

Using Jg == % m R?, Eq. (1) can be rewritten as

g—mi+c~i+2kx=0 (2)

See figure given in the solution of Problem 2.92. Let 8 be virtuall angular
displacement given to the bar about its static equilibrium position. Virtual works
done by various forces: .

Inertia force: W; = — (Jg 6). 60

Spring forces:

aws=_(k9§_‘i)(ﬁ59) (31:9.—.)(§ 5) = ;[%kf’é]ae

-Damping force: sWyq = — (c 6 ——) ( 66)

By setting the sum of virtual works equal to zero, we get the equation of motion

as: . _
hitel b1 drro—o



See solution of Problem 2.72. When wooden prism is given a displacement x,
equation of motion becomes: m X + restoring force = 0
where m = mass of prism = 40 kg and restoring force = weight of fluid displaced
= pggabx=pp (9.81) (0.4) (0.6) x = 2.3544 p; x where py is the density of the
fluid. Thus the equation of motion becomes: ‘
40 X + 2.3544 py x =0
2.3544 pg
T

Natural frequency = w, =

Since 7, = 2n_ 0.5, we find

2 : 2.3544 py
“a=o5 TATE o

Hence pg = 2682.8816 kg/m3.

Let x = displacement of mass and P = tension in rope on the left of mass.
Equations of motion: -
| SF=mx=—kx—P or P=—mx—kx (1)
ZM=J09=PI'2—C(91‘1) : . (2)
Using Eq. (1) in (2), we obtain t
~(mX+kx)ry—chry =1J, 8 ‘ (3)
With x = 0 ry, Eq. (3) can be written as:
(J9+mr§);9'+cr1'b+kr§9=0 . _ (4)

For given data, Eq. (4) becomes
[5 4+ 10 (0.25)%] § 4 ¢ (0.1) & + k (0.25)2 6 =0

or 5.6256+0.1c8+0.0625k =0 | (5)
Since amplitude is reduced by 80% in 10 cycles, A
| X _ 10 o oswar
X11 0.2 )
< |
In —— =1In5=1.6094"= 10 ¢ w, 74 | ()
X13 .

Since the patural frequency (assumed to be undamped torsional vibration

frequency) is 5 Hz, wy, =2 7 (5) = 31.416 rad/sec. Also
Ty =_1_ — 2 - 0.2
I

2
“ o, Vi-g __—\/1—;2

(7)

Egq. (8) gives



—*
82.832 ¢

: \—P‘ [ Fe—wwne—F 16094—-10;31416)[‘\F s""'}z\/p-f
ze ' ' ie., ‘\/1-;-2—62832g=39.0406g

1.6004
: - i.e, = 0.02581
. 1<(ne) Thus we obtain: - ! 5‘ :
_g | |
= - 0.0625 k | 4
Wy = "‘5”353"_31416 or k = 8.8827 ( O)N/m
¥ o . ¢ =0.02561 = 5 = c _ 0.10 ¢

Cc  2me Wy 2 (5.825) (31.416)

or ¢-= 90.5‘134 N-—s/m

m=20 kg, x= 4000 N/m
Cdnz ’% = ’i.%-%g— = 14.1-42[ ra,a’/s‘ec

Amplitudes of successive cycles : So, 45, 40, 35 mm .,
ﬂmr,h—{;udeg of successive cycles diminsh by Smm=5xw0 " m

System has Coulomb c]aﬁﬂpmg.

m;_ 5*‘0.3 = /MN*-'-‘{(S)“O )(4000>} 5 N
* : : = afa.mP ing force ‘
Freguency of Ja.mpec[ vibration = 4 .442) ra.ol/sec

m=20 k9, &= (000C N/m R .4_'_’;:.3'_-_— '—;34.1_199 mwm = iz-5x|53m

~3 v
p= (12.5 x40~ 7 ) (t0-000) 0-1593

4 (20 x 9-81) ,
A ™
G, = 8T % = 1.124 sec

Tn‘me‘ e‘apscd = .‘47 = 4 x

m=10 k3 , A= 3000 N/m , Pp=012, X =400 wmm
+/*N= 4 (0-42) (10 x 9-81) _ |

0-0157 m = (5.7 mm
3000

As 6(_ﬁ‘__) = 94 :2 mm, ™mMass comes to resi' at (lOO -94. 2) 5.8 mm

m3 =25 N, = tooo N/m \ .da.mrn‘nj force = constant
Mass released with Xy = {0 om a,nc, 920 = Q0.
25
Sfa.fvc Jej'lect:on of annj due to sels we.ykt of mass = Todo
= 0:02% m :
ek t =p: xX=g.im , 97: =0

x°=Ocl




. N 4 MM
x, ;oca__z/i; y Xz Xg— L
,t_fN 8 AN
Ay = Fpo-~— § = /u__..
3 o x > '14_ Zo ™ = 0
foe. ’xo= w _ |
4

y ‘ "
Magnitude of damping force = pn= %ok BODICLD!
| = 12-5 N -

m= 20 kg, % = 0,000 N/rn R /4N= SION, K, = 0-05 m
(&) Number of ‘Ir.a.[f cycles e’a,Pge,d before mass comes to
rest (r) is given by. | '
. N, — MN 50 '
ro> { o = } 0-05 — (maoD _ 4.5

2 /‘_;_ _ 2 >

——n
T\ 1Q 000

r=5 ,
(b)) Time 'ela..}aseal before mass comes to rest -

ty = 270 |7 Z2
p= 2 = =T\ o0 = 0-2810 sec

Time taken = (z's C#clb!) tl" = 0-7025 Ssec

(¢) Final extension of spring after 5 half—cycles :
e ,
X o= 0'05_'5('2"{‘—‘>=0-O‘3-—5(2*"§'0——“>=O

{0 o020
(displacement from static eguilibrium position ='o0)

< . lo 0oo
Fraal extension o_-F Spring =, 9620 em.

(0:) Egua,tfcm d& malion :f'a-r Ofr\a,ulo-”- asdﬂaﬂm 0'8 Fendu(.u.m:
. Z6+ mglaine t mygudte =0 |
Fer T 5+Tﬂ%g(et f*"'):o- |
2f
This shows that the am . - ,.&c‘ in
ows c;fe, 2'& o wirg decreases 5} (—E— z )

cach . |
(b) For wotion from right 45 left : ,
B(E) = Ay wh ot + A, #in Wnt + A5

where 5 _ gl
% ] pd
Let o+ =0) = G, amd 8(t=0)=0. Then A= 6, - 57 A= 0



d
e(t) = (o cos G, t+ 12
t€) ( ) EY3
For wnotion from Igf{: to right:

6(’&): A3 CoSCB't +A+ Sl'nwt‘ —_ Iuj
2
At = .
CJ,,{‘ LE . 9'—& - G + —L > 6 =0 :From prev{ous solution .

° 22 A4'° 1
t) = -
6 (t) (e, ,—t——) cos 3, t — ..’L_‘_f
) The wotion ceases ithen

(6,- n 444 4rdy < pd
where n denotes the number 21 21
of cyeles.

x(t)= X smewt (under sinusoidal force F, sinwt)

Da.rnftmj farce:/AN

Total digplocoment per cycle = 4 X
Energy dissipated per cycle

v-AW— /*N‘K . (EI)

If Ccﬂ = ezu:va.ien‘t viscous da.,rnP;nJ constant,

energy
dissipated per cycle is given by E. (2. .98). |

AW = TT €g, 08 X2

| 1 (EZ)
Ezu.a:f:fnj (E,) and (Eg) gives o
e, = ApNX__ _FRT (&)
“? T3 X ™ 6 X
Due to viscous da-mping :
| &= fm( mH)-—“- 2T Y

\l

%

periem‘: decrease in amplitude per cycle at X,

Xm = X me Xoon a1 27T
= {00 (._._‘3‘__;(_;_.1.') = 400 (1 - ""ﬁ'}): oo (“" e )
Due to Coulomb damping: ’

3 = Percen'\‘: decrease in amplitude per cycle at X
2

X -— Xm,,.. 4' Z N
W’\Eh Lo'{?‘: fjre: o‘F c‘amlninj are Prcsent 2
+ 3" , = - =
}‘ ‘ Xm= 20 mm 2 3”"3’2\)(.”_ fo mmn °



B

2

-z7r‘_r 400 7 AN

100 (1~ + T ( k)
..2.7“)" .

100 (1 )

The solution of these

= 3
ool

EZua-ha-n: gives

-6
5o (f‘—C’ZTrT)-_-_-o.S a_,-y-u;' /u-—g=o-5x:a m

Coulomb damping.
' 2w

(3) Natural frequency = 2

Wy = — = = = 6.2832 rad/sec. Reduction in
n

amplitude in each cycle:

4N m 4ug 9.81
= =4pg—= =4p|—
HE 6.28322

Kinetic coefficient of friction = p = 0.00503
(b) Number of half-cycles executed (r) is:

(xp — L2 (%*Zg)

(28 (255

8.28322

[2 (0.00503) (9.81)]

[0.1 __ 0.00503 (9.81) ]

>

5.28322
> 39.5032

> 40 .
Thus the block stops oscillating after 20 cycles.

Friction force = uN= 0.2 (5) = 1 N. k = 02150 250 N/m Reduction in
. 4 uN

amplitude in each cycle = P zg)) = 0.016 m. Number of half-cycles
executed before the motion ceases (r):
_uN ,
o2 Tk _e1-o004 .
=17 2aN |~ " 0008 12

k



Thus after 6 cycles, the mass stops at a distance of 0.1 - 8 (0.018) = 0.004 m from
the unstressed position of the spring.

o, = 250 (9 250 (9.81) _

Elhﬁ

= 22,1472 rad/sec

Thus total time of vibration = 8 7, = 1.7022 sec.

Energy dissipated in each full load cycle is given by the areo
Enc‘OSeA by the 'ﬁy:fe.rer:'s !aop-

The area can be ;Fou.no? b_y cou.nf:n‘ng the syuares enclosed bj
the hysteresis Ioop- In Fig. 2.99, the number of Spuares is

% 33. Since each sguare = Qrg._ol‘c-,—‘ = 0.4 N-m_ the
energy dissipated in a c#dc i
2
AW = 33 x o¢f{ = 33 N-m ;.,:'ﬂ'k,BX

Since the maximum deflection = X = 4-3 mm, oand the

slope of the Fforce—deflection curve

Is
. 18oco0 N _ 5 :
& = ——— = 1r63¢e4 x o0 N/rn »
the ﬁjs‘tereﬁs da_mpn'nj constont P 1S, 3J've.n Lj
ﬁ AW 3.3
= = = « 34772
Tk X k1D ((»636’4 JHos)(c.oo;,g)Z 0-347

§= TP = legarithmic decrement = 7 (0-3%472) = 10908

Ezu-’\/db(:m‘: viscous o‘a.,m]ofng ratio = Yeﬁ = /% = o-1736.

@ 3 ﬂ s p = o.03032
x;%-i 2- TTP

CGZ.': p Jfﬂ‘k = ©-03032 i1x2 = 0-04232 N“s/m
Aw = T tﬁ X? = 7 (2) (o- 03032.) (looo‘ = 19-05%x16 ¢ N-m

Losa.rﬁ':hmic decrement = 8= fn (X} ),_,_ xp
_ Xj+i ‘
For n cycles.

8=%£n\3;—(°:> > Ta

F = 0-001291




Torpue = 2« 0 > Nom
o.nsle = 50" = g0 divisions

For a. torsional system, Eg - (2-84-) gives

91 - TC‘-’n?Q : ‘
92 - e (El)
(b) For one 'cycle) 2; = 2 sec and (E,) gives
do 27w, ' |
T = e | or T, = 4 Ln (16) = 13963 (E2)
S'mc.e ,Z_ 277 » ,
d fwn — lehl
2 , Y . o
Wy = Q_lr._zl_ + 3F = A + (3967 = (-7915
() 4
L €., wn = 3- 4359 ra‘C‘/seC (Eg)

@) Stnce angular displacement of rotor under applied torgue

©
.= 50 = 0-8_'72.'7 rad,

‘kﬁ = tor&“‘/ahyu'éx du'SPlaczmenf = 2’“"_;/.0'3727

= 2,297 x5 7 N-m/rad | (€4)
(o) Mass moment of inertia. of rotor is |
| I, = :’E = 2:2907 % !6-3/;1-7‘??5' = 14943¢ x5t Nom- st (E,)
) o= 2 3 7w, | (g¢)
Egs- (E2) amd (E3) give  T= 7(:"" - 13363 _ oo
: n 34339

Ep. (E ) S
g- (E¢) gives Cg= 5.3887 x16 % N-m-8/rad.




The in‘bu‘f data for Program 2 and results are given below.

r\

C THE FOLLOWING 3 LINES CONTALIN PROBLEM=DEPENDENT DATA
DIMENSION X(50),XD(50),XDD({50),T(50)
DATA M,K,C,%x0,XD0,N,DELT/
2 4.0,2500,0,0,0,0.1,~10,0,50,0,01/
c END OF PROBLEM=DEPENDENT DATA

M | e e - e D NS e w G M M Am N MR GE W e e e R o am e ne A A

VIBRATION ANALYSIS

OF A SINGLE DEGREE OF FREEDDM SYSTEM
DATA
M = 0.40000000E+01
K = 0.25000000E+04
c = 0,00000000k+00
X0 = 0.10000000£+00
D0 =~0,10000000E+02
N = 50
DELT = 0.99999998E=02
SYSTEM IS UNDAMPED
RESULTS:
1 TIMECL) X(1) X0C1) XDD (1)
1 0,100000E=~01 =0,207036E=02 =0,103076E+02  0.129397L+01
2 0.200000E=01 =0.104012E+400 =0.997438L+401 0.650075E+02
3 0,300000£=-01 =0,199487E+00 =0.902097E+01  0,124679E403
4  0.400V00E=01 +0.282558E+00' =0.750b67E+0i 0.176599E+03
5  0.500000E=01 =0.34B062E+00: =0.552565E+01 - 0.217539E403
6  0.600000L=01 =0,391924E+00 =0,320107E+01  0.244953£+03
7 0.700000E=01 =0.411419E+00 =0.677464E+00 0.257137E+u3
8  0.800000E=0L <=0.405334E+00 0.1B88826E+01  0.253334E+0)
9 0.900000E-01 =0.374047E+00  0.43305%9£E+01  0,233779E+03
16 0.100000E+00 <=0,319503E+00  0,65152HL401  0,199690E+03
46  0.4b0000E400  0,398512E+00 =0.264442E+01 =-0.249070E+03
47 0.47000VE+00  0,359954E+00 <~0.502704E+01 =0.224971E+03
48  0.480000£400 0,299016E+00 =-0,709711E+01 =0,196885E+03
49  0.430000E400 U 2194B6E+00 =0.872591E+01 =G.137179E+03
50 0.500000E+00  0,120310E+00 =0,981%218E401 ~0.789439£+02

The problem- clepem:'ent dota and results aye giveh( given by Fogram 2),

THE FHOLLOWING 3 LINES CONTAIN PROBLEM-DEPENDENT DATA
DIMENSLION X(50),XD(50),XDD(50),T(50)

DATA M,X,C,X0,XDO,N,DELT/

2 4,0,2500,0,100,0,0.1,~10.0,50,0.01/

< END JF PROBLEM=-DEPENDENT DATA

rREEL VYIBRATION ANALYS1S

UF A SINGLE DEGREE OF FREEDUM SYSTEM

(@]



DATA

O x x

X0
ADV
N
DRLT

LU L | S T S O TR |

50

0.40000000E+01
0.25000000E+04
0.10000000£+03
0.10000000E+00
“0,10000000E+02

0.99999998E~02

SYSTEM 1S UNDER DAMPED

RESULTS:

1 TIMEC(I) X(I) XDeIy XDD (1)
1. 0,100000E=01 =0.957279E=02  0.807168E+01 =0.,195809E+0)
2 0,200000E=01 0,613786E=01 0,.012586E+01 =0.191508E+03
3 0.3000Q0E~-01 0.,113259£400 0.427345E+01 =90,177623E+0)
_ 4 _0,400000E-01 0.147433E+00 0,259570E+01 =0.157038E+03
S 0.,500000E-01 0.165937E+00 0.114627E+01 =0,132367E+03
b V.,600000E=01 0.,171219€£400 =0,456091E-01 =0,105872E+03
7 0,700000E~01  0.165914E+00 =0.971334E+00 =0.794127E+02
B 0,800000E-01 0.152654E+00 «0,1638B5E+01 +=0,544377E+02
9 0.500000E~O1L 0.133930E400 =0,206856E+01 <«0.319924E+02
10 0,100000E+00 0.111980E+00 =0,228942E+01} =0,127520E+02
45 0,450000E+00 =-0,113169E=03 =0,310021E=01  0,845783E+00
___. 46 0.460000E+00 =-0.381386E=-03 =0.227080E-01 0.806065E+00
47 0,.470000E+00 =0, 569294L*03 =0.149992E~01 0.730789E+0Q0
48 0,480000E+00 =~0.684317E=03 =0,817052E-02 0.631961E+00
.39 0,490000E+00 =0,736251E=03 +0.240284E=02  0,520228E+00
50 0.500000£+00 ~0,736195E-03 0.,222121E-02  0.404592E+00

- The problem - clependen{: data (fa be (_LSeJ " f’mgrm 2) and output
are given.
- ‘ THE EDLLOKLuG—l—LlNLS«GQNIAIN—PRQBLLM‘DEPEND&NT QAJA

DIMENSION X(50),XxD(50),4D0(50),T150)

DATA

M,k,C,X0,XD0,N,DELT/

_w———~——L—4furZsﬂngTlaaTOTaT*T‘¥ﬂTOTSQTQTO4¢—

C END OF PROBLEM~DEPENDENT DATA

Mmoo an e e v e e M e A e e e N R e e e s e e A e i e

FREE VIBRATION ANALYSIS

OF A

SINGLE DEGREE OF FREEDUM SYSTEM

DATIA

M

\

0,40000000E+01

K
C
1o .
XDo
N =

DELT = 0,959993934E=02. ..

La oo p

50

0.25000000E+04
0.20000000E+03
L, 10000000E+00

==-0,10000000E+02




SYSTEM 1S CRITLICALLY - DAMRED — —— - —

RESULTS T o o ._____,V___-.._

I TIMEC(L) X(1) KD(1) x0D(I)

1 0.,100000E-01 0,194700E-01 «0,632776E+01 0,304219E+03

2 0.200000E=-Q0L =0,.303265E-01 =~0,.379082E+01 0.208495E+03
30300000 E=0 L =0, 590458 EmOt——m O 206K 0EAOL—— 01 402345403 —

4 0.400000E=01 =0,735759E=01 =0.919699E+00 0.919699E+02

5 0.500000E=01 <«0.,787888E~01 =0,179066E+00 0,581963E+02
B 0 6 I0000E=Q Lm0, 780956 E~01 0, 27891 3E 400§ 348641402 —

1 0.700000E=0t =0,738539E=01 0.543044E+00 0.190065E+02

8 0,800000£=01 =0.676676E=01 0. 676076E+00 0. 845846h+01

10 0.100000E400 =0.533553E~01  0.71B244E+00 =0 .256515e4+0]
A6 0, 450000E+00 =0y 33535004 0772422503~ 174112504~
47  0.47000VUE+00 =0.270210E=04 0.616356E=03 =0.139296E=01
48  0.480000E+00 =0.215048E=04 0.491539E=03 =0.111364E=01

A% 0 430000E+00—m0 111069 E—04— 0 3017 8IE~03 —=0-BEITIEE~GR—
50 0,500000£+0v =0.136023E=04 0,312109E=03 =-0,710396E=02

The problem dependent data (to be used in Program 2) and results are

9IV€h-

A-—v——~——£ﬁﬂ—E0LLQﬂLNG~4~LLNES—GQM¥#LN~PRQB&EM*DEPENQEWP%HHHrﬂ——
DIMENSION X(30),XD(50},X0D(50), I(SO)

DATA M,K,C,X0,XD0,N,DELT/

______e;~4rar25aurar4oararar;r‘;afarsaToT044____«~m
c END OF PROBLEM-DEPENDENT DATA

FREE VIBRATION ANALYSIS v
OF A SINGLE DEGREE OF FREEDOM SYSTEM

DATA

]

M = 0 _40000000E+01 : e e e e e
K «25000000E+04 ,
< »300000Q00E+03

(=N =]

‘H H

\e
X0 .
%DO
N

%

=0. 10000000L+02
50

o

%

-}l . O et e+ o =

~SYSTEM IS JVER- DANPED—- — U

—RESULTSS— —— — e
1 TIME(L) X(1) XD(I) XDD(1)
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46
47
48
49
50

0.100000E=01
0.200000E~01
0.300000L=0%
0.400000E=01
0.500000E=01
0.600000E~01
0.700000E-01
0.800000E=01

0.,900000E~01
0.100000E+0Q

0.460000E+400
U.470000&+00
0,480000E+00
0.49000UK+00
0.500000E+00

0.351455E-01
0.990550E~02
0.230870E~03
=0,333730E-02
=-0.451879E=02
=0.477582E=02
=0.468266£=-02
=0,446433E£-02

=0.420854E=02

=0.394902K=-02

=0,.354993E=03
~0.331992E=013
~0.310481E-03
«0.290364E~03
-0,271551E~03

-0.390559k+01
-U0.151007£+01
~0,569458L+00
-0,201042E+00
~0,576071E~01
-0.257606E-02

0.177700E~01

0.245504E-03

U.260878E-01
0.256257E=01

0.237800E=-02
0.222393E-02
0,207983E~02
0,194507E-02
0.181905E-02

0,368593E+03
0.144816E+03
0.568015E£+402
0.221900E4+02
U.858495E401
0.324249E+01
0.114906E+01
0.334569E+00

U.215607L=01
“0.,944359L-01

-0,159296E=01
-0.148975£-01
-0.139322E~01
~0,130295E-01
-0.121853E-01

T!'\t‘. e&ua.‘t ions j:or

1err'veal in

'f:i-\e natural j-’re_guencfcs 55_' v[l;rn.fc‘an were

Problem z.35.

Operating s'oeaJ of turkine is:

- 2T
I, = (2400) =

—
S—

Thus we need to sa.{:n'sfy:

LAe 4%
o, R ?
| "’f"""t w a (1~m)}
| sex g

W, |
Pltransverse

¢, - Gd
civeumfere ntral Jdo
here -
WwWhe A= 1‘:4_-4_ 3 W =
A#
T = LA -
cq J
ond. E =207 :M’c:;7 N/mz >

i

The unknowns

{

W o’ (f— 0«)3

-9

251-328 rod/sec

3

©

}/2.
P e

z

wd?*

32“'95

G =

=l

{ooo x 7-81 = 9810 N,

(&)

(Ez)

z w, (&9

2

793 xto] N/m" (;For .ﬂfeel)'

d, 1 MJ.; oo Can be determined to
S’a“l:‘fS‘fy the .'r.gzu.a.,ltfn‘es’ (EI)J(EEJ ord (Ez) using o
trial curu:l evror

l: rocedure.




From solution of F‘ro“em 2.38, the t
reguirements can be stated as:

N - = [ 12 ET B
r'vo ends 13(%+ m%’) Z C"90 (EI)

wh = € psi = IT 4 4
ere g 2o %X 10° pSi  amd I‘64- [J —(J-—zt) ]

can‘ ‘\/ 4%ET Y

frxed ends 3, W .

edends T FELLON 2 e @)
with

Megry :(o-2357 m)) Messz -_—(5-37l4 rn),
m = mais dg ea—d- c.o{un.-m = 271[0!1'~ (A'Zf)zj‘iiz- 5

> 3
£ = 0-2¥¢3 u/,w. , 2= 3%c.4 jn/secz,

ﬁ—;_ W cg, column = 96 in.,

W = Lue.'ght of f/‘oor =~ 4000 b,

4{_4"2[4‘— (d-267JLp}  (E)
Freguency Qn‘m;f = O, = Gox2M = 2416 Y‘d-—‘!/sec- |

Proucm; FI'HJ 6‘ .O—hd t S”MCI‘; 'ft"a..‘l’: w e,‘vgn by

~

%:-‘ wet‘gl\*‘ o:F calqmnf

i

———————— Eg- (E;) s 'mu'm”ms‘je.J while satisfying the
inegualities (£) and (E2).

This problem can be S‘a?vco{ either Lj g’ra—f:h{'c,a,l_, °P+"'"f3°“£‘-°”,
or Ly u.s.'nj a trial and error Pravcealure.

2 2 o '
. DB = h‘;i - m + Mfzzg-mjzwl-m,ez ™ ! M
! - (=) ——/
i >

X
° ) '3Lm12+ MIL - (Ez)
(c{_)C{; = 29,06, = 2 m --- (E;)
For critical damping , Ey. (2-80) gives

s, t

o (t) = {60+ (8o + 0 eyt b e -—'.(54)




For 8, = 75° = 1,309 rod arnd éo = 0,

e(t)= <1-30‘7 + 1-309 ca,ﬁ:) e-w"t (e5)

For © = 5°= 0.08727 rvad, . (Es) tbecomes

L 0:08727 = t.309 (1.,\.@ t)gwt --~- (&)

Let 'btfme te return = 2 4gec. Then .EZ. (Eg) gives
0-08§727 = 307 (14 2wy o290 L (E7)

~S‘o|ve (E-;) Ly trial and error ‘lli'o gcfncf o, - Then

choose the values of wm, M ad ke to get the

desired value of o . Ernd  the Jc\.hpfn._g constant

(C‘t‘>Cr( us‘:‘nj EZ (5‘3)_

(@) Fo”ow the P'roce.o'u.re of Pa.r{'( ) to find the value
of &,

(b) Derive expr:sr:‘on_ for the ezufva,!e,n{‘ torsional viscous
o{a.w-'ofn3 c_onS“fa-Ylf. (C-ﬁ>€z fer Coulem b a!a«m)na'ng. Thes

EXPY‘ES'SH‘O.H s for Sh_‘\a._“ o..,moun'&.s' OJC da.m):fn_g, is
(e = {470 /7 0. 6 } G
whevre T, = :Fl"t‘ctforv (da-rhkx'v'\?} 't'OT‘g‘-‘-e-a a..*n;cp‘
e = o_mpll'\':uo,e of’ amjula.r osci llatrions.

(C) I_F (C{;\,ie‘z is to be eZué_f to ,(Cf)crf = 2./J5 k¢ >

-!;::

we :‘}l‘ﬂJ
2 (x o =) - (e



Let x = vertical displacement of the mass (lunar excursion module), x; =
resulting deflection of each inclined Ieg (spring). From equivalence of potential

energy, we find:
koq, = stiffness of each leg in vertical direction = k cos? «

Hence for the four legs, the equivalent stiffness in vertical direction is:

keq=4kcosza

- Similarly, the equivalent damping coefficient of the four legs in vertical direction is:

o 2
ceq—4ccos (04

where ¢ = damping constant of each leg (in axial motion). Modeling the system as
a single degree of freedom system, the equation of motion is:

meqx+ceqx+k x=0

and the damped penod of vibration is:
2T

Y vx-{4%J

2

Td=—-_‘

Using meq == 2000 kg, keq-4kcos &, Coq =4 c cos” o, and o = 20°, the values
of k and ¢ can be determined (by trial a.nd error) so as to achieve a value of 74
between 1 s and 2 s. Once k and ¢ are known, the spring (helical) and damper
(viscous) can be designed suitably.

Assume no damping. Neglect masses of telescoping boom and strut. Find stiffness
of telescoping boom in vertical direction (see Example 2.2). Find the equivalent
stiffness of telescoping boom together with the strut in vertical direction. Model
the system as a single degree of freedom system with natural time period: :

Meg .
= 27 —9 eq
S Wy ke,q
" TW, + W »
Using 7, = 1 s and MmMeq = c . fl= 3:;(;04 , determine the axial stiffness of

the strut (k,). Once k, is known, the cross section of the strut (As).can be found
from: o

A, B,
s

with E, = 30 (10%) psi and ¢, = length of strut (known).

k, =




Chapter 3

Harmonically Excited Vibration

@(Cb) &= —E‘:‘ = Z%COTE = 0.-0425 m
(L) 85t = —%— = 4_——-530 = 0-015m
\ .
(€) v, = JE = (400;)'”.31)/2 = 28-0143 rad/sec
o .

W= ¢ HZz = 37-6992 ra.al/scc

1 1 ' ‘
X =& l ‘—”__E/ = 0-0151 _ (376992 2.[ = 0:0185 m
¢ i"(wn) t ‘(28-014—3
_ _ 270
@ = - - 27 (40.0—39-8) > sec
25 . , |
@ % o = 002% v S @Out
sfeo.Jy state solution ot resonance = x(t) = —f—-z—-—:-' sin 5, t

=0-00625 9.t smwt " m

(cu)At end of i cycle, ot =L qnd «x(&)-oooszs(zr)sm-zg 1009817 ™ ’

(E)A{' end of 2% cycles, Wot= 5T and x(£)=0.00625(5™) sinsT =

(C) At end of 5‘;— cycles, s t= HImT™ and
W)Sm B = 0.2258 m

o

x(t)= 0-00625

8 :_.'-_fg__ _ (Yo o) o S
1 ) 0-025
X - 8 - 2 [ ( l :é _..._______._.O - {a
st ' (_@“),_ W, . (-25
- (& '
o ,
“C‘Tn = ’].25—4-} =l'5
s G5 = 5(271—)/‘5 = 20:.94¢4 ra-J/sec
™= */49:’400‘/(20'944)2 = 9-1139 &g
@ o= | % = 5000/, = 22.3607 rad/sec
dst

= Fp/k = 259/5000 = 0.5 m




= *{1—< %

L L
("5-) W = (f"“ EEL - 22 3607 [“" ‘%’:‘%’5 *
= 15. 8114 ra.d/xec
T *,= % 5 » A - .-L = ..‘_t.
% %\ =4 4* * LY x 1<¢ s %
T -—1 Force transmitted to the mass th r'ou.jl-. f‘z
F(t -k
34 2 EG:)"-———&-—- F(t) = KiRz ((Fo Yips oot
% : ., + Kk
4, 2 - 2 K+ kg k, ; .
l_ = & &, cos ot where 8:¢ = -f’l
S-f:ea_olj state response of m: |
E,
x () = ad cos ot

» o
@)}
{ il }cas wt  with Fozx-8
(&Y -

@ Equivalent stiffness of wing (beam) at location of engine:

| 3E (— b a3
force _ 3EI _ E(zP2) ppal

k= deflection & P | 44
| 2ﬂN]’=mrﬂﬂmﬂ

It

itude of unb d force: = WP = :
Magnitude of un alanced force mr mr{ 80 900

» 33
Equivalent f wi t location of engine: M = ——— bf
quivalent mass of wing at location of engine VR 140 (a p)

Equation of motion: MX +kx=mr w? sin wt

Maximum steady state displacement of wing at location of engine:

60

mr 7w N
| ~ 900
| mee ‘
k=M 3 ’ ?
Eba® 33 abep[_“N]

46 140

I m r £ N?
22.7973 E b a® —0.2357 p2 b &4 N2




Rotating unbalanced force, m r u?, can be resolved into two components as:

Fy =mr «” sin wt (parallel y—axis)
F,=mr «* cos wt (parallel z—axis)

Ma.xlmum bending stress at A:

d
d mr VR 2 . ,
g el oo
¥ _6_4_ ( df — d4) l _ /G_,{-_
l S
(0.1) (0.1) (31.416%) (0.5) ( 21, _._76 —
B = 8.5124 (10*) N /m? /
Yy T (0.1* — 0.08%) | s
Maximum torsional stress at A: - ok ""‘"'R ,
| shaft
d mrw R {%‘L] » ot
L1l - L L a
’ | 55 (@8 —a)

= 4.2562 (10*) N/m?

Total stiffness with steel speclmen
keq = k; + kp = 10,217.0296 + 750,000.0 = 760,217.0298 lb/in

Force in specimen due to magnets (statlc) due to elongation X = k; X.
Force in specimen due to a.c. current in magnets (dynamic) due to elongation X =

ke X —mo? X

Ratio of st ko X LI e L
= == — .e, -] = —.8
0O eSS = X —mer X | 2 7 |kq—mot| 2P
750,000.0
1
i.e., 40 == —
60,217.0296 — WP
7 ,217.0 [3‘86.4] 2

Squaring both sides of this equation and rearranging gives:

107.1225 ! — 15.7365 (10%) u? — 167.207 (10'*) =0
or o =0.218378 (10%) (positive value)
& = 4673.0935 rad /sec = 743.7442 Hz

Equation of motion: mg, X + keq x = F(t)

where me; = mass of valve and valve rod plus mass of spring at end =
(20 + (15/3))/386.4 = 0.0647 lb—sec? fin.

keq = 400 Ib/in, F(t) = A p(t) = A pp sin wt = 100 (10) sin w t = 1000 sin 8t lb.
Response of valve (steady state) = xp(t) = X sin 8t in where

X = 1000 = 9 859241 in




@

@

Equation of motion:

meX+k(x+x)+myg=F; X>0 ' (1)

where F. = force exerted on the follower by the cam, my = mass of follower plus
one third the mass of the spring, and x, = initial displacement of the spring.

(b) Force exérted on the follower by the cam: : _ k (et ® o) :
| Fc=mo‘ii+k(x+xo)+m0g' (2) m;,:f N
with x = e cos w t. ’ : .: T
: J' “'
gl
Fe
{(¢) Condition under which follower loses contact with the cam is when F, is zero and
X is negative. Equation (1) can be used to state this condition as:
| k (x + %) +mo g > |mo X| (3)
@ Sﬁ: = Sf’a—ft'c rau:(ia.«{ J:‘SF lacement HT”“"E'

§ = radial deflection of shast

0f shast under weight of

turbine

O('-trl‘ng rotation

48 EX

K= —-———i'g‘"‘ = S'l‘:i_f—'fnes'r of c:n'!:}al!.] :
loaded simply supported mg
beam ‘
m See” = 4.:(8——8“) or »mCS?-:-_ 1@—4«%‘3
or e . S (&)
Sst 4 —m 9"
Critical spee.c!_ is W, ... = Jj-;— | (E’-)

If critical S'Fee.d = -é:-u-. of opera.:?:n'nj s'b‘ee.c,,

\F‘——": Lo (&)
™ 5 , »

Here m = 500/35’6-4 = \.2940'&‘-‘32/&;
and W= 3000 x2T/%o = 314-16 ra,cf/sec

For solid  shagt (steel) of diameter d and length £,
Ep- (E3) 9iver



4

48 ET _ w” woth E-—-B‘ 6 st = d
E = 5= O xto ps a,na{ I-= 74_-_
3
(-8 X — . E
L = 1ss3es | (E4)
Let f=30d in E(€y):
. 27000 " o : »
| T 3g7c.g = 1'9513 inch  and  hence L= 58:-5395 inch.
TR
- 483 EL _ 49(30x 10° 5.2002 .
* rE ( Qoo)3>( D 7495 287 AIb/in
m = 500/335.4_ = 1-2940 -5

= \Ik/m = \[74-8’&285’/!-2.‘740‘ = 76-0719 ra.cf/rec

’ 0-5 th-s'
, 3864 r
?a_c:!t'a.,( forc_eb due to eccentric mass ot resonance

= -~ . S 2
Fo» = myrw = G%.q)(z)(%,o—”q) = 149-7654 Lb
Let ,x('t‘:) = radral J'S‘Pfa-c,en}enf o}' {‘ur bine . ’
At resonance, EZ (3 l’S) 31\/85‘, for Ko = 'x., = 0,

Eccentricity = r=2 in , eccentric mass= me=

X (B) = L S Wt sin ot

S = o= 477654
* 74 98298

To activate the Umit switch, 2 (t) = 0.5 in. and hence

where = 0.02 in

0-5 = L (0:02) (76.0719)+t sin 760717 t

e t sin 76.0719%t = 0.4573 (&)

‘EZ'(EJ) s solved by trial and error (a.S‘S'umn'nj valies

af t= 1o, 0:9, 0%, o7,ei'¢)a3
tz o0-6760 sec.

. Tip load = 7 tip mass= m,= 2! - 2588 x 10

‘ 35¢-4 b - s3/n
(o 2> (o oS) = 22,0833 xfo—g in4



3 - € . :
_ ET 32{30X .
4= 3 _ (30%t0°) (2.0833 x10 %) = 01875 M/

3
A BE
| ' -5
m= mass oJC bea.mz 0-283 (IOX O+2 X o-oS>= 7324 xi0
386:4 -3/,
1 . L
Wy = * T 01875 z vad
(o) = =5 | = 5enet
; (z-588+ 0-7324) 10

Ez- (3-68) gives

_>_<__:{ 1+ @)’ }i
v (-v)+ @yv)"

e. F3 it
2., [+ (zx o-ol Y") 2
2-5 o =
0-05 - 2\ 2 2
v Q—Y' > + (Q.x 0-01*)
le- |
| r‘* —~ 19996 r* +0.9996 = o
o - W
e T = %o = 0:99599

W = 0:9999 W, = 5-6463 ra‘d/?ec.

e

1 mls

%, o0 0

Equation of motion for rotational motion about the hinge O: F (f)
(Jo +M &) 6 +(ky a® +k, b?) O =F(t) £ =Fp fsinwt (1)
Steady state response (using Egs. (3.3) and (3.8)): |
| 6,(t) = O sin w t (2)
where © = : Fo € (3)
(k; a® + Xk, b?) — (Jp + M €2)
b and J; = n;ﬁ +m (‘—:-)2 = %— m &% ' (4)

1000 (2 =

For given data, J, = —;— (10) (1?) = 3.3333 kg—m?, w= = 104.72 rad/sec,

and



— %0 (1) : 5o = — 8.5718 (107*) rad
5000 (0.25% + 0.5%) — (3.3333 + 50 (1%)) (104.72%)

Equation of motion for rotation about O:

geé ¢ 3¢ 3¢
=k — — -k — w
Jog k 1 k 2 +M0cos

ie, Jp O+ |~ kt’2 § =M, cos wt

where J0=—1}§—m£2+m(_)?=_~

and w = 1000 rpm = 104.72 rad/ sec. Steady state solution is:
6,(t) =B coswt .

m et — .l’_ (10) (1?) = 1.4583 kg—m?

where ‘
o Mo — 100 = — 0.007772 rad

—g- k& —J, 5000 (%) (1%) — 1.4583 (104.727%)

o=

o)

= 358(;04 Ib—sec? fin, F(t) = 200 sin 100 74 Ib. Let Xmex =0.05 in < 0.1 in
(maximum permissible value). From Eq. (3.33),
, 1 |
Xmu = Uyt : “--‘50.05
| 2 %\/1 —
Let ¢ = 0.01. Then §, = —0 _ 200 and Eq. (1) gives
Keq  keg
Keq = 200 = 20.0020 (10*) Ib/in
2 (0.01) V1 — 0.0001 (0.05)
Since shock mounts are in parallel, stiffness of each mount = k
-E;i = 6.6673 (10%) Ib /in.
g ceq Ceq
| Ce ’\/2 kg m

of o =¢ V2 ke m = 0.01 ’\/ 2 (20.0020 (10*)) (520% 5°° ~) = 7.1948 Ib—sec/in

c
and hence ¢ = ——;—q~ = 2.3983 lb-sec/in

Equation of motion for torsional gystem:

Tob+e(d—&)+k(@—-a)=0

)

where § = angular displacement of shaft and o = angular displacement of base of shaft ,

= 0 sin w t. Steady state response of propeller (Eq. (3.67)):



¢ — 20m —pfe— 30m 3

. TN DAY S

-] oegw] o m

[T s
Shmffl ozm 0-4m Sha{-{:f
bp(t) = O sin (wt — ¢) 1 2)

k% + (Ct 0])2
(ky — Jo o#)? — (o4 w)?

where O = o

' Joctws

and ¢ = tan™! : '
$ ky (ke — Jo o) + (e w)?

(4)
Here J, = 10* kg—mg, ¢; = 0.1, and w = 314.186 rad/sec. Torsional stiffnesses of shafts:

(80 (10%) [3”-2— (0.8* — 0.4‘)]

S Gy J ﬁ
(k) = ;, ~ = % = 27.2272 (10% N—m/rad
1 ‘ .
o 5 (80(10%) {-37—;- (0.4% — 0.2‘)]
(ke)y = ;z = 20 = 9.4248 (10%) N—m /rad

Series springs give:

(ke (ke (27.2272 (10%) (94248 (10%) ~
e = (ke + (ke)s  27.2272 (10°) + 9.4248 (10%) = 7.0013 (10%) N—m/rad

et = ¢ (2V 7o k) = 0.1 (2) V(10%) (7.0013 (10%)) = 52,919.8624 Nem—s/rad

From Egq. (3),
11

2

[

o 2
(7.0013 (10%))% + {5.2920 (10*) (314.162)}

6 =0.05 | ~ -
{7.0013 (10%) — (10%) (314.162)} + {5.29_20 (10 (314.16)}
) - =10.2028 (107*) rad )
(10*) (5.2020 (10%)) (314.16%)
¢ = tan™!

7.0013 (10°) [7.0013 (10%) — (10%) (314.162)J + (5.2920 (10*) (314.16))*

=tan™! (59.3664) = 89.0350° = 1.5540 rad




* {(i“’z‘;,;+ (2yry? }*2

For wmaximum X 4xX _ 4 - 42(-r B 27) - 2(277)(27)
: dr B ogsé 7 {(5"\"1)-1"' (ZTT)Z }3/2_ { ( ) }

€. "4"(1—1'2)1“ gr 7% = o

the., T'"—"Ji"ZTZ

X' SS'E _ gst

ok ro VT [fi- G 4 Gy iey? )Y % BV

X 1
(sst)mu T 27 1o 12

Under a d.c. current (I) through the coil, core rotates by angle 6. Torque developed due
to I balances the restoring torque of spring: a I =k; § where a is a constant and k, is
the torsional spring constant. Under an 8.c. current I(t), torque developed is T(t) = a
I(t) and the equation of motion is:

Jo9+ct9+kt9=T(t)=aI(t)=alocdswt : (1)
Steady state angular displacement of core:
Op(t) = © cos (wt — P).sp (2)
a .
where O = i = — — : (3)

1 . g .1
{(kt——Jo W) + (e w‘)z}2 | {1—(—5:—)’} -‘F““‘f;‘] !

When w = 0 (d.c. current) and Iy = 1 ampere, Eq. (1) gives

= f—} =1 (reading corresponding ©y,)
t

and hence 2 = k; = 62.5.

8<:ic

When w = 50 Hz = 314.18 rad/sec and Iy = 5 amperes, Eq. (3) gives:
a ()
ky

2
2
. 314.18
_[31416 4 2(1)[ ]

= 1.9386 amperes

0, = T

3

250 250




where Jo =0.001 N-m?, k; = 62.5 N-m/rad, ¢ = 0.5 N-m-s/rad, and

ki 62.5 ‘
Wy = I, == = 250 rad/s. The steady state value of current

0.001
indicated by ammeter = 1.9386 amperes (this shows that the ammeter is not accurate).

G Gony Xm o X

{

Ssi @ = *J
V€. é\s-t - z T '20%0> - 0’04 3_ : (E’)
i )
Ez-(3-30): X ; r= o0 75=4
_ Ssp \[(-— )+ (2‘;1‘) "
e ., 0-o! = : . CE'L)
Sgt \/Q—- 0-75> )z -+ (2 3,0‘75)2‘ | '
Eps- (E) and (Ez> give
0r0l _ i
0:04 % Joi9y+ 2.25 75
e 01904 + 225 T3 = 1¢ ¥°
e T = o0.{180 _
f— z(t
@ (OJ) Egua,ttoh o:F motion of mass: €z % e “
ma = ¢\ (f-%) ;% ~ #,% ETa Ci(y-x)
Cre. ™% + Ce,+€2) x + K, X = ¢, };t =-c,a9Y Sin et

® x, () = /)
G- (2
. ‘ : 27Tr
where r= (A’/&Sn y ¥ = (C.,-r C;)Cd(zrk) and # ta—" ( _ r:l.)‘
(C) Sfea.oej-sta,f:e. force transmitted &, Pofnf: P :

7 sin (Wt— @)

= ‘kz 'x—r~+ C1 i?
= —(C CSY) '
J(l—-f7') -f-(z]—r)

{Sm(ust g+ 222 Ca:(ust—-;d)}

2




Ep-(3-34) gives (_}5_) = 1
St /o= w, 2%

¥ X = 3’_2— Xmaw = L Xlw:ca,, , Eg-(3.30) gives
i 1 _ 1
ey T VA-71% + (270 Y
Spuaring a:\zl’rea.rra.—njing -
8T = (A= + 47 r* = 4-2r2 * 42yt
™t (a1%-2) + (1-872) =0

rP= 4-23% + 27 Ji—f—"ri

Neglecfmg terms lﬂVOl\l(na <t

)
zZ . (s
T & = = 1+ 27
Wy :
Let w=0w, when r*= t-27 and = 3, when rt*= 1+ 2%
; 2
Ly — 6y (W2 + 1) (02— 91)
= 47
CB,:L (wzf (‘,1)2
-—_—-__ -
031'—' &91

]

’ .
kf KA c"f = I (77‘3 X |0 ) _‘_f__>4- = [9 930‘3" N—m/ra_d
32 £ 32 (1) too .

"k ’ f Y | :
,—5_:‘- = 133?00 31 = 44.06434 ra.J/sgc

By = Mio P = 100%3930._:” = 00502 vad
Ty = St = 100 = 0-33¢
2 J, w, 2(10) (44-6434)
(o) Eg - (3- 30), whcn written for a torsional sgséem, gives
®

J( ‘)14- (zsry
e, | (2/5‘7 ~23§g> 3 1
0-0502 B /(t-—r‘)"+ (2x0-336 r)°

i.e., }"4 — 15484 Y _ 1-0€79 = o

‘e, Y‘z-=72-0655> — 0,517

W= Y ,= (2.0655 (44'5434> = G4.~!6'ra,o!/$ec



(b) Ma,x{mum torgue transhmitted to the support:

M (1) = %, 8(t) + ¢, 6(t)
= %, 0 M(@t——;ﬂ) — ¢, ® W sin (ot~ B)

(M~£:>mx _ \/(k{ 6>2- + (cba Cd)z.\
= [{i9930-31 o f*+ {200 (572-:..9se:>(64'!6)}2.

= 967-2 N-m

Comrle{'c solution is x(b) = X°~ é_‘]’w..tcos (63‘,\‘?+¢°)+ X cot (ot - $)

@= 2T (3:5) = 209912 vad/sec, (5 - [E . JT_%__?é 153114 yad [ sec

- Fa 50
854: = 5= 3500 = 2:072 m
c. 43 L3 219912
T —— = - = - 1423 = m— = = {"390%
T zwmea,  2(10) (I15-8114) o-1¢ » TEG, 15.8114
TWOn= 225, W=J1-T W,= 15-6¢505
X = st 0.072
- T = » 2
Jia-r2)* 4 @vr) [(t- 13908*)* + (2 x0-1427 % :.3909)2]’7/
= 0:-07095 m : :
- -1 zrr -1 0:3958% N _ .
$= tan ) L (et ) = - 22.9591

. 5t '
z(t) = X e 2t s (15-6505t + 2) + 0:07095 ot (21-9912 F + z2. ?-;w")

“2 25t s (ts.5505t+ ¢6) ~15.6505 X, 52'2“@.@5-6505_{3%)

S = 29902 (o.ovo%') Ain (20-9912 £ +22-959(°)
%(0) = 0.0l5 = X (S + 00705 wf 22.9591°

X S @, = ~0-05033 —--- (E4)
, | - )
(@)= § = 225 X, AP —15.6505 X, Ain B, — 15603 Him 22 9591
' —0- -2:25 X, &5 -5
% Atn #a. - 6086 2 P #0. = — 0-3511 —--_'-—(Ez>

I15-6505
Ebs.(e,) and (E,) give |
{(.o.osoaa)"+ (-0-351)? }1/2 = 03547

~ 351 .
’ ( oasoss) o' ( 6:9760) = gi. 9423




¢ P X

5
R +25
(b)ezs-(a.z;z) yield ’

K] rA
(g;:‘ 2 1-2%

= 0+5 ) 69y = 3pn Vo-5 =<5>‘7-7T)\JO-5
= 222145 ra.cl/sec
(=Y T 75
W, ) B 2T =15, 3, = WaJ1-5 :(s,(zvr) 1-5
= 38-47¢6 r‘a.J/sec
Amplitude of vibration under base excitation:
. ' ( \
V k% + (c w)z
X=Y1 2 5
: [k—mwz) + (e w)?|
(0.2) \/1,:2 + ¢? (157.08)*

=0.1m - (1) |

. 2 .
2
{k — 2000 (157.08)2} + ¢? (157.08)?

Let k = 5 (10®) N/m. Then Eq. (1) gives:

V25 (10'%) + 2.4874 (10%) 2 0.5
V1866.7717 (10'2) + 2.4674 (104) c?

ie., 1.85055 (10*) ¢ =466.6929 (10'?) ie, c=158805.0 N—s/m
1 _
X X k? + ¢ Wf 2
— Z .3
Y h_mw]+&ﬁ P
[ 8 3 2 1L
(10%) + (10® (200 7)) 7
2
107°

or

2
Y " {10 — [‘j%] (200 72t + {(103) (200 w)}
" or Y =160.5204 (107%) m

Equation of motion: ’ _
s £ £ & ol € .} 3¢ 36
109’}-{1{1—9]?4'[02-9] -Z-I—[kTG} T—.MOCO?Wt

. 2,
or IQG-{—c%H.-}—%k(z@:MO cos wt




mfz fz 7 2
p TR =gme =

c £2 _ (1000) (1%)

7
48
= 62.5 N—m—s/rad

where Iy = (10) (1%) = 1.4583 kg—m?

;18 . 18
3k o =  (5000) (1%) = 3125.0 N—m /rad
W= @Egﬁ—)— = 104,72 rad/sec

Equation of motion becomes:

1.4583 0 + 62.5 8 + 3125.0 & = 100 cos 104.72 t
Steady state response is given by Eq. (3.28):
8,{t) = O cos (w ——{b&)r- O cos (104.72 t — ¢).sp
where ©O = — = 0.006927 rad
. 2 2l
{3125.0 — 1.4583 (104.722)} + {62.5 (104.72)}

62.5 (104.72)
3125.0 — 1.4583 (104.72%) |

‘and ¢ = tan~t ~ — 0.4705 rad = — 26.9606°

m = 100 kg, Fo =100 N, Xy, = 0.005 m at w = 300 rpm = 31.416 rad/sec.
Equations {3.33) and (3.34) yield:

w=w, V1—2¢ ='\/r 1 —2¢% =31.416

— N
or k(1-—2¢)=(100) (31.%‘162) = 98,696.5058 - (1)
1 0 1 ;
and Xp.y = &t = _ = 0.005
2¢Vi1—¢ Fk 2¢Vi—¢g
: : 0 . L
— e = . 2
or k¢V1-¢ 3 [0.005) 10,000.0 (2)
Divide Eq. {1) by (2): | ‘ ,
1—2
3 ©

’ = §.8698
Vi-g

Squaring Eq. (3) and rearranging leads to:.
101.4090 ¢* —101.4090 ¢ +1=0 or ¢ = 0.0998, 0.9950
Using ¢ = 0.0998 in Eq. (1), we obtain ‘

_ 98696.5056
1 —2(0.0998%)

= 100,702.4994 N/m

Since ¢ = —(—:—-—, we find
2m wy

c=2m wy ¢ =2 (100) '\/%ﬁ (0.0998) = 633.4038 N—s/m




Eo sin oot

Fx; FJ:

reacf;‘onf T
at O ™ x +
’ x C x

- ——

Equation of motion for rotation of pulley about O:

—k (fr)r—Tp 80—k, x(2r)—cx(21) +F, smwt(2 r)—mx(2r)=0 (1)
where § = x/(2r). Equation (1) can be rearranged as:
Jo

— 2 mr
2r+

X+2crx+ 2k1r+-—-kzr]x=2rFosmwt (2)

For given data, Eq. (2) becomes |
11§+50i+112.5x;5sm20t (3)
Steady state response is given by Eq. (3 25): '
xp(t) =X cos (wt — 4;6)

where X = 5 = 0.001136 m

1
2 215
{112.5 —11 (202)} + {50 (20)}

50 (20)
112.5 — 11 (20%)

and ¢ =tan™! [ ] = — 0.2291 rad = — 13.1287°

" .
' 3 My =0 (about hinge):

- 3¢ 3 -
Fy €
or 109+c€"6+ kc’za.. S sinwt

Magnitude of steady state response:
' 1

2 T
eﬁ[F“]/{%“"-mﬁ} +(c € W] (1)

2



(b) |
SMy=0 (about hinge):
L d+&€6) ¢+ |c ——4—-9 %ﬁ—gFosmwt
Fy €
r,109+76—cf29+k529= 2

gin wt

Magnitude of steady state response:

Gb;[Ft;fJ/{k(z—Iowz} +{%cﬂw} 2 (2)

Usually, ¢ is small compared to k. If the term containing c is negligible, ©, will be
smaller than 6. Hence arrangement (a) is desirable. -

| @ y(t) = ;}(t).: A s ot y(f)= -% sin a2t + B,

, A = x(t)
= - 2 Wt + B, t+ B
=Y(€) oz o8 : z WAAAAATAAT TS,
-~ ASSUWMing Yy (o) = 3’,(4) =0, we get m
#*<
FE) = — a’;z cos wt % 72
Eg,ua-f:‘on‘ of motion. | A RN L N SR AN
mx + k (2-%) =0 R o R,
i.e. m3 ¢ KF=-MmPF-_m ;Cﬁ(f>=_.mﬁc.o$a9f
where = x-% ' :
Solution s : _wmA ¢os ot
t) =
3 (%) o
FHE)= 3O 3 = (TP ) ot
. From Solu:f:non_ of problem 3.33,
-mA ) A .
X(t') = pp—, sin ot — PrY: sin. ot
1o
—2009 (325) Stn 25t

it

]sfn 2st — loa)
2 looo (25)

- *106 —. 2000 (25)
For moximum ax(t),

x(t): — 200 _ { . -4 :
- 1.45 ch 6250) Sin 25¢ = — 3339/ x1e sin 25t m

MNaximum Bon‘jonfa,l J.’srlwmenf of floor = ©-3339 mm




3 ()

@ wE-F) + H(x-3) = -m§ = om _
y(t) = z}(t) = Xy cos ot . and Ep. () becomes

Here
m§/+ k3 = *“C-SLX} cof et with 3,: x-X
Solution is: 2
m W Xga cos ot 2 wt
3(t) = 3 - )(‘2 Y cos
w~£"' - 'k —_ ] 05 € .
: a \j“;‘,.,“ = E'Zbi‘b%_ = 15. 8114 rad/sec

and  r= W, = 200/i5.8114 = 12- 649
: 2
e = /15 12:649] )
F(®) (looo) { 2} cos 200t = _05.0i509 cos 200t m
1= 1246481
x(t) = »(t) &+ }(f) = {0‘0!5 s 200t — rO-Ol’So‘?l cof z_oaf:} m

- Amph‘tudé of vibration of floor = 0.03009 m = 30.09 mm.

Time faken bj car to travel one ‘c.jde
(35 m) is- , : —_

T - 35 X 3600
= 1" = 2.1 sec
60 X w000 ‘ _
‘ 27T v
Excitation freguency = @ = % = 2.992 ra.J/cec,
L _ 5.2381, T= 045

IT(2) = (25664 vodfrec , v = &

W, =
Amplitude of vibration of car is given by Ep.(3-68):
X :[ 1+ (237v)? ]‘/2 v (e,)
Y L -r2)? + (27r)? -
1+ (2%015% 0.2381)" }1/2

X = o1 {
(4- 0-2381*)* + (2% 015 % 0:2381)?

= o |0%97T7 m
The most unfavorable speed corresponds to the maximum of

in EZ-(Ef). For maximum of —;—;— with respect G r,

X
Y
_J__[ 1+ 4%5%r®
, = 0
dr 1+r‘*—zr7'+4-*5‘zr1]

O+r4—2r®c 45?5 r) = (1+4 ?zrz)("’r?“*r*arzr) =0

1€,
' (14 r4—2r24 4 72r2)?®
i-e., "4r‘(2‘5'2r" +r1__.> -0
le., F=a or ypi= —1% Vit 850
+3*



Feasible value of

-
pz_ =1+ 148 (015

= 0-9586
4-(0-15)2 ‘ |
= o = 0979l
W= 09791 (12.5664) = 12-3035 rad/sec = —7-’%‘-— |
where 7 = 32: ?osoooo and A= speed of car in e/
o 4= 124 30351:;‘:35 x 3:6 _ 246-7279 km/,l..., :

Eouations (3.73) and (3-68) give
@ 3":' 'in (c.szx) = mwo Y L+ (237) &
T = m = ((1_,Yz)z + (2.3_’_32

Fr mow? 14 (2xe) ]’/2
kY * @-r*)?* + (2110)?

i

2 1+ (1‘3’*)2 ]1/2
r

t-r3* + (2y7r)?

EZ.(3-75).' 'm'g:'-i‘ C%, + ké.: .-*m:’;',-_-__mcﬂzY cos wt
S‘f:ea,Jj —state solution is:
Y cos@t—g))
3= 7% = Z ot — o
G- mae)* 4+ e w)? cos ( A'>
where &, = -ta_n_1(*f(‘i@.
Damping force = ¢ % = —cw Z sin (wt—._ #)
Eher?j Q—LSO_"LEC). per éycle b‘y the damper (E):
E = IZTVG’A 2“/“3
o ¢ ;,2;-""3( = f{;”cw z :.',,(L.si'u-;d,)}{-wzs‘:‘n(a)t'—ﬁ,)}c'i'
o
25
. ctzZ fs.'u‘(wt—g!;) M = Tew Z-

[+
Since Z = m(BzY/\/@—-mw")z + (€)*

E*{ FA A (.rn"c&*‘f)
(k- *mco")z-c— creo®
For maximum power , de




f.e., {(,’t_mwl)z_‘_cq-wz} (-’r@s MLY).—. TrC wstY (ZC CL91> .

{('k,— ™ ca")z-i- c"caz}z

2
€ - k- m&
¢ - ( E=mely
Linear displacement of poinj: Q due to 8 = —3?{ @ and nét compression of spring PQ =
3 : .
Y € 0 — x(t). Equation of motion:
- keg ¢ 3¢6 3¢
= —k | — - x(t)] — 1
lo 0 1 4-k[4 X()} 4 v ()
where Iy = — m & +m (f)2 LAy S (10) (12) = 1.4583 kg—m?
‘ 12 47 48 48
Hence Eq. (1) can be rewritten as '
- *. 5 3 ‘ . v i
I 0+ gkﬂ]ﬁ:[z—kt’x{)]smwt ' (2) -

Steady state angular displacement of the bar is given by Eq. (3.6):
%k(xo]/[—:-kﬁ—lo w"] | 3)

- [-z- (1000) (1) (0.01)]- /[—g- {1000) (1%) — 1.4583 (1()2)] = 0.01565 rad

6 =

and hence 6(t) = O sin w t = 0.01585 sin 10 t rad

Equation of motion:

- I 4 & 5, ¢ 3¢ 3¢
=—-k —(=-)—c =8 (=)—k |— 8 —x(t)] —
Li=-x &L G- Lacd k[4 x()] :
: 5.1 2 5. 2 _ 3 (4) = 3. ; 1
ie., I°0+,16 ct 9+8kt’ 4k£’x(.t) 4k¢’xosmwt (1)
2
1

7 = Lomer= -4% (10) (1?) = 1.4583 kg—m?  (2)

where 'I0=~Emf2 +m 18




Using given data, Eq (1) can be expressed as

1.4583 § + — (500) (1) 6+ (1000)( Y6 = -3— (1000) (1) {0.01) sin 10 ¢
1e, 145839+31259+62509—75sm10t (3)

Steady state angular displacement of the bar is given by Eq. (3.28) with:

7.
0= : 5 — = 0.01311 ;ad

{[szs.o — 1.4583 (102)]2 + 31.25° (102)}2
[ 31.25 (10) ]

625.0 — 1.4583 (10%)

$= tan™ = 0.5779 rad

", 6(t) = O sin (wt — ¢) =0.01311 sin (10 t — 0.5779) rad
1

Displacement transmissibility (T):
14 (2¢r) ]—2-

_X _
=3 [(1‘--r=)2 Fer)

For maximum of T,

aT 1-1-4& 2 '%
dr A+t —2r)+4¢ 12
[o-rrrecfeen-araemfie —arssed]

] =0
(1= + (202
This equation can be simpliﬁéd to obtain:
@2dHrt+rr—1=0

Solution: r? = — 1+ V1+8 gz

=1
2




' Equation of motion: MX +cx+kx=me « sin wt
where w = —:;-90—%52—#)- = 314.18 rad/sec, M = 100 kg, ¢ = 2000 N-s/m, k = 10° N/m,
m = 0.1 kg and e = r = 0.1 m. Steady state response is:

x(t) =Xsn{wt —¢
m e

.spwhere X =

L
l[{k —M W) + (e w)z] 2

= _0:1(04) (314.167) = 110.996b (107 m

’ 2
{105 — 100 (314.162)} + (2000 (314.16))%|

cw 2000 (314.18)
and =tan™! |————5] = tan™!
d ¢=tan™ 1 TN E | T | T0F Z 100 (314.162)]

= — 0.07072 rad = — 4.0520°

¢ 'f:i ™= 20 Kj
4 = spring constant of o — .
CP _e‘?( be ‘ : Ta.l.l. section ‘,‘ ‘.:"‘ =05 Ky
} antilevey arm p (S&QF ma.ss = 240 1(3) |\ ?— s
3ET _ 3(2:5x10") 4 EI=z 2.5 MN/m , T=o0-15 | ~. 270007
= ,.._..r? - 43 7
6 ,lj “J
= 0 172 xi0° N/ m p— 4 m >

o

. = - z
wn,\[ — o« 1172 x |0 = 3g. 295 4
‘ ‘m,+o-25 Tﬁb ZO‘f‘O‘?-s(z‘fo) - . 2 3 ra /S‘ec

w = ZTT(ISOO)/GO = 15708 rad/sec
r= 6/,= 157.08/38.2753 = 4-1040 r*= 16.5428

Forced response s 9given ‘:J 53. (3-7.9) 2
xf(t) = X sin (Ut - £

where me . g
X = Tm Ja-r)? 4+ @y
_ (o5 (a:15) (6-8428 |
20 : \/(f— (c.s4zg)2+ (2 x a-15 x 4-1040)2' -

i

3.9747 x 16> m = 3.9747 mm




Sop = A2 - :ﬂ}_ - 380 x 9-8I
st oo T 4< ”

(€. % = 92‘,940 N/'”‘Y

‘ T (1750)
@, = }f_=/92,840 - : _ 2TV red)
n ol _-—3-§-b——" ‘4 » 7648 TQ"!/Sec > QI o

_ 133-26 "Hfrec

9 .
v _5—5; = % =(2-412 3 ré= {54 .0566
(1') Amplitude -o;F vibration
x = me r* , . _ o5 154.-056¢
m .G__r:.>2.+<2,rr>2 330 \/?15'105‘65)1-}-01

— 3.9732 x16 T m
(if) Force transmitted to ground

= %X = (§2840) (2-9732 x16 ) = 32-9140 N

I= L(0-5)(0-1)> = 0-4167 cict omt
- ] ‘
‘ = .92 Er _ 1z (2 o7xm“)(o-4l6’7 x 16 ") = |-324¢8 10" N/m
s)

“ 1
(o) o, / Jla ?.49’x!o = 420.2356 redfsec

r= %n = l25-654—/4_2°_235.€ = 0299 , r*= o0.0894 |
Ampl.’\‘:ude of S'f‘cn.clj- state vibration if given by Eg. (3-30)
with T =0 ‘ ‘
x = Set _ R 5000
N jr*—- ( ‘k‘(r 1)\ ¢ 3247xw Y(o- ?roc)

o 4145 x 16 m

!

(b) Using the ej»’j-'ec-tnve mass due to self weght of Lea.m
(fOT @ ca.nhlcvcr) to be V‘I-J ‘ﬁere a,l,&'o,

I
n—/
M+ 02357 m

wWhere M = wmass of motor =75 #3 > and

™= mass of beam = (5 x0.5 xo- \)( 76:5 %107 ) = 1949- 5313 =g
‘ .
e, = / 13.248 x 108 . >
E——— 6947'53‘3)("’2357) = 5 7.4339 ra.af/fec

v= (*Vca,., = 125 “4/]57-4333 = 07932 , r2= 06371



Sst Fo 5000

X = [re=1] ~ x frerqf - (3245 x007) (0 ‘3‘25)

-3
= |«0400 x IC m

ch widit = o0-5m and thickness = ¢t wm.
3
I=L (as)t’ = £ m4

4
3
= —3-2%:5 - 3(2'07" ‘0“)( t/zq) = 2:07 xlog t3 N/m
)

"}

\/.(”1+ 0:2357Tm : 3
: : 76-5 Xto - 95, 4l t
Where m= mass of beam= (Sx 05 x t)( ~5r )_194_9 &

t kg
2:07 xw0® 3
W, =
75 + 0:2357 (19495-4t L)

re o 125 J?s T 4575.0655 t
' 207 x10% 3

X = zSSt - Fo
1 5oo0
(2 2% o- |
(z a7 xie® ¢ ){ G25-6¢4)* [ 25+ 4595 o“‘:t _.1}
2,07 x10f
\ ) "
en 13108 x 0" tT - 4595069 _74. 3,9 - o

BJ trial ond error, the va.lice of ¢ is found oz

t=z 0:-éwm ‘
Since this s too la.rge, we can Shart with o new wid i such an
1:0 m.

'm=(‘ocy9.gf) N , CJ‘—‘ 21T(’°°°)/60 = {04.72 rad/sec

k= ¢ (6000) = 36,000 N/m
= % m " _ L4.2611 rad/sec
/rn \/36 ooa (9 - | 4 |

, 2 _ .63
r= WL, = 10472/ 242611 = 4-3164 rf= 18-631

Fo m, e o’

X = = where M, = u.nLa.’a-'nc_e.J mafss

- (<4
LS {r"-—i[ % {r’-—ll and € = Cccen{:x‘vfcify



1By

- m, € 04.72 z
2.5 x {0 ? = ° ( 4:7%)
, 3Gacoo ’t7'63”’
V€ m,e = 0-lu47 Kg-m .
Unbalance = W, e = mae = o-i4x7 (9:81) = 1-4195 N-m
000 - o b - s* _am(1500) . rad
m= 229 = 2.588 2= , ZE 12992 = 15709 122
Fossible isolators ane (i) %= 45 ooo U/m , T=o
(') .= 90000 Lb/m , S =0
(i) k=

45000 U/tn

3‘:0'[5
(iv) *=90000 tb/in , T=o0i5
We will comPa.re the force transmisscbilities of these isolators.

1

Force transmissibility = T = / H‘ @xr)”

(-r%) -+—-(2_Tr)2
() w = {_ﬁ_' _  [435000 . .
) n \-n. - 2,598 73!-5’634 ra--“!/S'ec. |
r= W, = 1570813, 3634 = - 1712, r*= 1 4i%0
§ .
)
= = = -38¢6
A Py 0419 z-38¢6
(‘T>w = [7o0000
T, 6 482 /sec
r= w/wh = ‘57‘0'?/196-482_9’: 0-8423 , r¢= o0.70395%
I
Tez —— = ' Lsa
{1-r#%) 0+2905 3-4423
(iii) WOy = /_‘!_5_933 = 13(-5634 rad fsec
2:58%
= 1+ 1912 , r*= t-4190 , S =o0-I5
/ b+ (2 x 11902 x 0.15)% :
— = |.9282
2 2
(- 1-4190)" + (2 x 1.i912 x 0-15)
(i¥) e, = 186 - 4829 rodfsec > Y= 0.8423, r*=0.7095, Y=ol5

_ 1+ (2x 08423 x 0415 A

Tr = > : ) = 2:6789
(- 0-70958)" + (2x 0.8423 x o.15)?

.. TIsolation (Iii) a'sl best.




. 2
E, .(3182>: Mmx  _ L
(-

r*)" + (z‘;‘r)zv

r=1, |
mx _ Mmoo 1 = 1
me 2%y o - me 2T X 2% (e-55)  qax (&)
When r= ia,rge,
MX o 4 m oo
me T e X T oE €)
Comb«'n:‘nj (E|> and (Ez), we obtain
m ¥ )
me T o.45 T . kg
S T = 0-1364 , ;
@ For ea.ch spring ,
— c!4 ‘ (H‘ 5285 x los. 0+25 4
‘ ¢4n R €4 (a)(1-5) :

'T'oi'ai = 4(26.03‘3): [04-332 l.b/«'n

- 1T (1800)
W= 2M (180 = 183-49¢ rcu?/s\-zc

60 _
) 2
m= 100/396,4 lb‘-sz n o, = 750/396 4 ‘,‘6~S%n s =0

[+ 7 _ 04.332 '
74"' - 4 ‘ = 7.33t6 Ya.J/S‘ec

(75¢/3%6-4)

P= 188-4?6/7‘33,6 = 25-7l02 , r¢2= 66l-oi44
‘- r* _ M_)_ f.ﬁ.’.‘..‘.’ﬁi’.)
N f 1) + (zrr) 750 6600144
= 1.3354 x5° in.
w= 2T(500) 2  _ 155.08 rad /sec 0 To2" don 7 f&
(a,) Force due to eccenfnafj of votor '530 rpm
=me s = 3‘%4)(0 o) (157 08) = (3-1569 Lb.

(b) H-P- = (Fo‘rc_g>(9_cceni:'rfci?:j>(a.ngu(cur vefocz'é_y)

i

(1o '563>(o'01>( 155'75_003 — 0.004559 hp-



' .
@ CJ"'.}a‘n B ‘m}a.n ) @
- [zo0 ‘*%R
5-9/386-4 4@ : s

» - : Q
=39.3(4( rad/sec P <G e
/ c
6= ?-""'sfzs_)." =78.54 m-"/stzc {-4———— 5 ,—’-+_’5”_+——— 20"
rrr
J, _ 100 50 2 e 2
(P)rlufe+§é-n = ’%'<'§?5_4 (40) + (35’6 J;)(g) = 141-2612 lb-in-sec
= 5 =
= me = () (0 (e 50t = 77 n0s
Point R (s suﬁuecfed to tke ;Force) F(t)=F, cos Wt =79:§205 cos 78541
Assume that S is not wmoving . ' .
Then Ris dls‘}a‘a-c.«ed blj «
x(py - _Fo_cos wt  _ Fo coscot | 79.8205 cos ot
T - mLy = (W \* _ (7854
’ 'k ™ ( 1‘(' (G’n) ’ 2?0 }i '?3!'-”) ,

= 0:1334 CoS 78:54 t inch
[et o= angular d-’spla.cemenf of pla_te PQ."
Displacement of § = 5@ inch
Extension of spring RS = (56 — 0:1334 coS 78-54t) nch
Restoring moment of spring force about P
= 200[50 =~ 01334 cos 7§:54 t |5 lb-in
Vefocd:_y of ®= 40 8 mcln/sea '
Damping force af & = 406 (1) = 40 6 b o
Moment of damping force about P = 40 6 (40) = = 1600 © L""in
) Ezua:ho\q of motion of Pia.fc PaQ -
Ip & + (600 6 + {000 (56 — 0-1334 cos 78:54t) =0
he., 1412612 B + (600 6 4 5000 @ = i33+4 cos 78:54 t » A(E,)
Comparing (El) with %'(3'24), the solution of (E)) can be
expressed as Op(t) = @ cos (@Wt—¢)
where , from Egs. (3:30) and (3-31). we get
0 =_ (33 4/5000)
\/(1 174 . 219:) + (2x0-9519 x 13. zo:a)
Cand o = tav (- 25- 1326 /173 275f> —8-2529°

4
= 1-5239xlo"‘rac'

S’fea..aj state motion of Q= BP (4_0)
= 0.006095 A (78541 + 2.2529°) inch



Dl'SpJa.cemen{‘ of S o= @(5) ‘nch
= (152338 x5 ?)(5) inch o 1334
= 0.00076|9 nch . : g2

/"

5 X

D, D3 = maximum defarmation of %

Spring = o0-1(334"” | .
Ma.x. j—oy-cer transmitted -to Fo“nt S = 'k(D,, D3>
= 200(0-1334) = 26-68 Lb

D
K]
00007613

' b,

<

2.'!/&9
I = f sin Wt . ws(w‘t—gﬁ) dt
[+4 ‘ .
=151Wé‘:w{:[cos wt. wSg + sinot.sing 7 dL
o

=So {casys(s""’zwt)-pﬁncﬁ(i‘w: 2(,31:)}&_
- Cosz«,{ (__ cpsz;ut>L”/a9 N s.‘n?—gi (t—- ‘Sl'n :wt)-):"/w |
= :g;f Sin ¢

AW/ = W XTI = CSFQX 5"",9‘

Let =(t) = displacement of mass m

New 1eh3fﬁ of each Spring K, = (1»2'+ tl)yz

New tension i each Spring K, = T = (W ,_,E)'k‘ + T

Hcr‘l'3ontal Co-mpongn{: of new Tnsion in each spring *, ’
= T/ |

Vertical component of new tension in each spring k, =

Total friction force\: g+ Tt . A

+ X

when mass moves 1o right:
Ezua—ft“on of motion of mass m: ,
s T x 2T l v
mx+kzx+—z———————-—_ m +"‘"“""'—'—]:: A s.‘nwl‘-‘
' N i f[ ? Vit+ = ﬁ-

where A= areon of P.‘s"f:on .

e e T .
i€, mx-;-x(«z-t—z_f_) =pmE +2u T, + b A st

S.‘m“(axla, when the mass moves 4o ,&fﬁ':

.o : e '
™m % -+ X-(’k2_+2. —-—f—):—._/um?_2/_4‘ro+ f‘oAsa'nwt




e =

/ /ZIOO 32403703 rad/sec

N= vertical force = mg = 2(2-32) = 19:62N

L 25173268 x2T _ o 48391
Wn 32.403703
1 —
X = —E-[ » WFo ]
A
(1'
. 4 (19 62)}
e 0.075 = J2° T (120)
2100 -
(1—0-48801U%")
e | 1 - 0-04334 p* \Y2
1-3125 =
0-5802473
e, 0.9995666 = 1— 0.04334 ,Az
\.*Cb-) » ’*‘:- O-i

\"4 5000 5
(0")4::- 5.e = 5.8 =1 N/m
s

when w= w,,, Eg- (3-102) 9gives

.("”) AW = T c,,&ca x2% = TE K x? where

Fo _ looo

“F T T T e

—

%‘ 116'.—.0-1

Ceg =

px

ettt

(A

AW = r (ov1) (10*) (0-1.)z = 314-i¢ Joules /cycle
(€) Steady state amplitude at one-guarter of resonant

freguency :
L
@ = 0«25
Fo
X= g ' =

—
—

1000

i;f_rom Eg.(B-l’oo)

b [{1— (&)} + F’z]yz | 'os[{i—a-zsz}2+ (o-i)z,—,‘/é

00106t m

(‘A) Sfea,dy state o..rnp itude ot 'me:e the resonant fre,auencj

X =

J

= = 3
k2l
i0oo

los [ (1‘32 )z. +<O~|>2]_‘I/Z' = 0:00125 ™




@ AW = T3 % Xr , Y |
3.8 = A (60000) (0.04.)f f (o04) = o-oooo‘zoz
9:5 = mg3 (¢0000) (o,oe)f } /3 (a'os)’} = 00000504
Tarking bao.riflwms, -
I p + Ve (0004) = I (o:oow 202)
Lip + 7 ko~ (0-06) = £n (0-0000 S04)

1l

e ‘L,s’ ~ 3.24987¢ VY = —t0-%309828 ~---- (EQ
, fmp — 2.8134 1) y = — 9. 8955 ¢t ____(EQ'
subtracting (e) #from (E.), 0.4054¢5 1= 0-914309
o Y= 2.2549¢4
From (E,_) » 'fmp = = {0-809%28 + 3-218%7¢ (2.254954) = -3.55137%

A= 0028685

Work donc = W = fF dx = IF x  dE
7/ If F()= F, cos @t ard x(t)= X cos(wt—g), work done in one

=w= -  Fo cos wt. WX gn (Wt-g) Jdt
1% , , X
= _ FRwXx s d ___2.-.‘2_3 cos 2wt o+ F;wxs‘"/d(;t.f._l_g;" uo-t“’
2 ° 2 269 o
= Fo 7T X sin &
5 , ) | J .
Given data.:  E - 5 gh, = 37 % > 2’:%’: sec, ¢=%—~r, X=o0.5"

W= Fo T X'»S;‘n ¢ = KTr (015) S;h ‘I'_;: —_—_- G-8018 W =in

(i) In one second, i+ will complete 13 eycles.

w/i second f¢5 W = 0-2027 d-in.
(I.“) Ih _—Foul" SCCOY\AS) I:‘b W;t[ C_OmPlete\ C CJCLCS-

= 6 W = 40-8/08 lb-in.

=

/ 4 seconds

@ Damping force = F= € (%) )

’ Energy J,Is's'fpaied Pér guarter Lﬂcfn. during harmonic motion ?c(-t);XsfnwE
%‘i = _E, e GY' 4x = 50 ¢ (WX cos w‘:)h dx

'Bu.t' dx= % dt = WX Aot . dt



r1 o vn+d T/1c9
AW = 4c @™t ™ [T ot

[+]
W/an’
-
= 4c "t xn {(.“1’1)0 Cﬁ‘“ ot . sin wt 1 + ;h:_i ftﬂf“ ’-wt.clt}
P
o

4 " T‘-/z(‘B
= 4c ™ X () [Tat ot
[s}

Ezuai‘fns this expression o T cezwle we obtain

4c @" x"t /on ) S”f/zw -
Cez - - n+1 A (-3 C.Sfdt = C (‘9“ x"_" q“
where - 4 (nm The
: Xn ’f(mi) j cos” iw{:-aUs - (Ei)
o]
For 'exa.m’bfe , for m=1z, (E,) becomes
n /2o A ™
G 2B | wsota - 3 (SM)/“" - _8
. A 3 N W Jo 377 e
and hence ch = 3cwX

: aTr ‘ .
which can be seen to be same ax the exprestion found in Example 3.4.

For few other volues of n, «, can be . found az Follows:

— o ————— . A — —— o e s a  — e M e e v e e e e et st

M &2 3 __c 4
. ; _Z_.; g 3 72
RSN o MY _ s _sTme
The amplitude can be found as
X = i ‘ e
- 1 = 1
J(k-mw*)‘ + sz (.3‘?L Jﬁl (1‘ *:.)1_*_ C:z (.5*"_
F i

-

¥
, \/‘kl( i_r:.)z + CL w'z(n+1) Xz(n..,{) o2

n

Energy M@faﬁd por cycle for viscous da.mp:ng = Te wx? ;

Energy Ju‘s's‘{;:ad:ed per c.gp&, fmr Coulomb c!a.mringz 4/*NX

Eguivalent viscous damping constant (Ceg))is  given by
T oco Xt = Tewx? + 44NX

Cq = N
N/ (C+ T X




Amplitude X is given by F
F 2

* :"f(k—m @) + g e R

e !

substituting for Ceg, » sguo.rmj and rearvanging
N 16 p*N" 2
N N

@ (‘0»") Eguation of motion mx +/-aN+C(i)3+ k% = F cos cat

Thus the system has r_omb.ned Coulomb and velocity— cubed

cfa.mrmg 4- N
For Coulomb damping, gy = Lo CD)
For velocity - cubed o(a_rnpm , ke eﬁ,u.va_!.ent viscous damping
Coe_)cf‘uc.ent can be obt‘a.meal from éhg Solution of Prob!em 3-59;
Cegr = < w? x? o - (&w)
WFere ' (
3 . £z
(% >I cost it At = )
e ‘Ceﬁz = % b 5.52)(2 : (E4>

N 7Sl R
and Cep = Copy * g2 = % +-4-_—cwx (&5)

(b) S‘fea.g!y state O.Jmls“fucte under Ao.rmont'c force :
Fo Fo

X = :
. \/1(2.(1__7.1>2+ Cclaw / (1_r2.> {
(C) Amgh'{:ude ratio :

_'

+__,cc8 x}co

(&)

(F/«) \/o 1)2 x4

(£,) |

z 3 cw3 x?1?
/&)-’*ﬂ,xkfﬁc‘k }»

At resonance , r=1 and €. (E7) reduces ¢o

;o
X - (Es)
—_— = 4 AN 3 3 2 |

85t | resonance *x% T oir @ X

= ”i?()' m (m = mass of pipe; see Problem 2.38) and keq i{%——I— Slope of pipe af

end:

. Model the plpe as a single degree of freedom system with Mg, == equivalent mass at end



v
™ _l_.
F X’

Q:Ffz =Ft’3‘ 3 | 3x
2EI 3EI |2¢] 2¢
where x = end deflection of the cantilever pipe under a transverse load F. Force induced -

due to fluid velocity v is p A v*. Force acting on the single degree of freedom system (in
vertical direction):

F=pAvisinfd=pAvif=pAv? —g—;
Equation of motion: meg X + keqx =F

33 . |3EI 3pA+

or —12—6'm1+ {3 2( »v = ()
- 2 '
Instability occurs when SEI _3pAv <0 or v> 2E1
£ 2¢ p Al

@ Assume Reynolds number (1}2 greater than 1000. Strouhal number (St) for vortex
shedding is taken as: St = v = 0.21 where f = f;equency of vortex shedding, d =
diameter of cylinder and V = velocity of fluid (air). At 50 mph speed,

_ 50 (1760) (36) | 021V _ 1848

v 3600 = 880 in/seg and f = T =3 Hz (d in inches) |
. For the three sections of the antenna, the vortex frequencies are:
‘ 184.8 ,
fj = ——— =6186.
1 1848 oo
Iy = ——— =9240 H
2= 702 4.0 Ha
_ 1848

£, = 2028 _ 18480 H
3= o1 g

At 75 mph speed,

75 (1760) (36) 021V _ 277.2

v = 1320 infsee and f= = Hz (d in inches
3800 4 ‘ d d ( )
For the three sections of the antenna, the frequencies are:
| = 2772 _ 924.0 Hz
0.3 '

£, = 2772 _ 1386.0 Hz
0.2




277.2
f T cm—— =
3 01 2772.0 Hz

Since the natural frequencies are much smaller, no instability occurs.

(a) Equivalent mass of single d.o.f. system = m,q, = M + T:?O_ m where m = mass of

¢ylindrical part of the sign post:

78500 ) _ 1378.0527 kg
9.81

", Mlgq = 200 + —1314% (1378.0527) = 524.8267 kg

m= 2 (D ~d*) hp = (025" —0.2%) (10) (

— (D — ) = T (0.25* — 0.2) = 115.208 (107%) m?

- Equivalent stiffness of the system: |
_ 3ET _ 3(207 (10°)) (113.208 (107%))
“h | 10°
Natural frequency of transverse vibration of sign post:
) ‘

1
kg |2 302. 2 -
wy = | |? o | T0202188 12 ) g7ag rad /sec = 1.8420 Hz

m,, | 524.8267 ,

k = 70,302.168 N/m

(b) Wind velocity corresponding to maximum vibration of sign post (V) is given by:

_5hLD (1.8420) (0.25)
0.21 0.21

(¢) Maximum force acting on the system due to wind velocity:

. ;D .
St =0.21 = v =2.1920 m/s

F(t)=Fgsin wt = -2@- cpVPAsinwt= -;— (1) (1.2215) (2.19299%) (8.0) sin wt N
= 23.4958 sin wt N
where ¢ = 1 for a cylinder, p = density of air = 1.2215 kg/m3, A = projected

area of cylindrical part = (0.8)(10) = 8.0 m?, and w = frequency of wind force.
Equation of motion: '

Mg X + Coq X + kog x =F(t)
and the maximum steady state displacement of the sign post occurs when w =
and is given by Eq. (3.34):

b Fo 23.4958

X == = =
2¢ kg (2)¢  2(0.1) (70302.168)

= 0.001671 m




(@) Epuation of motion mx+cx +Kkx
or

‘m;-'i- X +<¢<..F,):r.=o <E1)

Eg. (E)) gives the auxiliary epuation
e+ (EzF) =0 )
Roots of (E3) are :

(Ev)
First consider the case of positive stiffness (& »Fo ), For this
case, following Fossis.‘!.th‘es exist.

< \? 4— Fo\ .
- If . (;r; > ( £ a> >
Both 4, ond £, will be real and negative and hence
‘ t : ‘ .
x@t)= ¢ ™+ ¢, e | D)
will be stable, ,

25 (5= (555):

=F;'?C

Assuming the solution

where C is a constant,

fa s o R - (5R)

™

™

Both & and % will be identical, real and negative.
Solu.*:n'on

st

x(#)= (¢, + g t) e (Ee)
will Be_' stable since et _» 0 as t— oo

- c 2 _
3. J"f (Zm) < (’f_.;;f‘.’> : ‘

Heve S, and s, will be C-°""‘l”‘»" (‘_onjujwl:e.s' and solution

will be R

2()= ¢ @Y

—(e\? k- Fo\ ) '
[+ (=5} +£) @
This vepresents a converging oscillatory motion and hence '
the system will Le stable.

Next censider the case of ‘neja.-i:n‘ve stiffness ('k< F°>, Here,

T 1 (T o N

™

Thus 5, will be positive and £, will be negative, and
the solution becomesr |

+ 4 t o~ !‘2’ t
*#)= C; e

+ C, e

This solutian can Lc seen to dl'vergc as t —>oc.

(4) |

(b)hEas;a.:h‘on of motion m 3

;&+(C—-Fo>;(+
™

*

R

+~ Cc ® 4+ 4
or

3|*

2 = O



Asxuming x(t) = ¢ c‘t the auxilia.ry eau&i‘ubh becomes

st (C____.‘ma>s + —:— =0 (&)

and hence

I RN 2

First consider the case of positive dé.mpfnj (c > Fa> in (Ew)-
For this case, it can be seen that the system will be stable for

all possible values of { ¢ - F,) -

"

Next , consider The case of nega.i:.’vc damping (¢ < Fs ) .
De.fe.ndmg on the: s(9n of the 8u.a_’n£: ty under ‘the radical n
Eg (Eu) we w.l{ {xa.Ve f'!nrce ‘fykgs- O:F S‘olub-on

1. <_:5___f3) - X . Here both s and $; are 1"264( and
bl t s, t
positive and hence wx(t) = C, e+ C, e QD)

This denstes o JA‘vcral'nj nonoscilla.'é‘drj motion ; So
the system is unstalble.

2. (C— Fo )1 = X jere s a_“J S2 are identical and are

Zm ™
real and Positc'vc Hence x(t) = (C‘ -+ C' '\‘.')e (E“D
This "?—PTESCH'&S -2 leﬂ’fglnj honoscuua.forj SOLu.fton,
- so the SSS’*—'EM will be unstable.

> (C;:°> < i(y;; - Here 5, and 5; are comﬂcx conjugates
and hence F—c | ,

= - . — FoN2
/81.2. = ozm ) T <« \[”:.5“_ — (szo> (EIS')

The solution becomes
o D (T )
Stnce the exponent is positive , Ep.(Ey) denotes ‘o
ohvergmg oSCt(.La.{‘arj motion ond hence the system is
Unstable.

Thus the condition Ffor Ayna.mlc stabili &j of the systgm

can be sta;}:e_d as

Fo = ¢ ‘ (EIT)

-



9 9.1501378uL~01 <=0,29585633E+400 =0.13013779E+01
10 0,51364703E~02 =0,32777125E+00 ~0,51364702E+400
11 =0,52436423E<-02 =0.32760152E400 0.52436423£+00
12 =0,15110461E=01 <«0,29536372E+00 U.15110462K+01
13 =0,23498155E=01 =0,23421355E+00 0.23498156E+01
14 =0,29585691E-01 =0,15013062E+90 0.,29585693K+01
15 =~0.327771436E=-01 =0,.51363401E=01 0,32777145E+01
16 =0,32760132E~01 U.52437652E~01 0.32760131E+01
17 =u,29536312E=-01 0,15110572E+00 0,29536314E+01
18 =0.23421254E=01 0.23498255E+60 0.23421254+401
19 =0,15013553k=01 0.29585743E+v0 0.15013559E+01
20 =0,51362254E=42 0,32777163E+90 0,51362258E+00

Eg.(3-3‘5) gives the COmP'le‘Ee solution

x{t)= X Tw" co¥ (‘*94*34’ f‘o) + X cos(t—-g) (e-1)
Daffereni:.ahon gives _
nt —TW,t
E(E) = - T X, €77 cos (gt +8) = Wy Xo € sin (Wt £5)
- @ X sin (ot —-¢) | | (e-2)
x(t)= x, € TOont (35on - w}) cos @t + £o)
+ 256, X, e 7¢ ¥ sin (yt+4,) - @ X cos(est -#) (&-3)
Let  x(o)= amd % (0) = io be known. Then
Xo= X, S fo + X SF (€:4)
Xy = - YUy Xo B # = Wy X, Sin fy + (O X Sin B E-5)
Egs-(E-af-) and (€:5) give
o= [(Ko o8 £)2 + (%, sin g)? 17 p
S
= [(x, ~XApY + {‘ Xo = T %, +2’9ng X w‘¢+ X sin 4 ]
—1 f-%, - T Ay + T, X S P 4 WOX A F " (e6)
%= tan (e
Wy (%= X o5 &) ,
Now the computer program TOTALR can be written: In addition

to the arguwments used in " section 3.1z, the following axauments'
are also used:

xO = value of x{t) at t=o. InPU.t
xpo = value of dx (¢) ot t=o.

The

Inpuf .

program and the output ave given below .



=0.15013779E+Ul

9 9.15013780E~01 ~0,29585b633E+00

10 0,51364703E~02 =0.32777125E+00 ~=0.51364702E+00
11 =0,52436423E=02 =0,32760152E+00 0.52436423£+00
12 =0,15110461E=-01 =0,29536372E+00 0.15110462E401
13 =0.23498155E=01 =0,23421355E£+00 0.23498156E+01
14 =0.29585691k-01 ~=0,15013062E+00 0.29585693E+01
15 =u,32777146E=-01 =0,51363401E-01 0,32777145E+01
16 =0.32780132€=-01 V,.52437652E-01 0.32760131E+01
17 =u,293536312E=-01 0.15110572E+00 0.29536314E+01

0.23498255E+00
0.29585743E+vul
0,32777163E+90

U,.23421254+01
0.15013559E+01
0.51362258E+00

18 =0.23421254E-01
13 =0,15013553k~01
20 =0,51362254E=y2

Ep- (3-35) gives the complete solution
x()= X, € nF cos(w,t+¢a) + X cos(t =g

(&-1)
Dif-'fererwf.a_hon 9¢ves | vo.t |
x(t)= - Y, X, € cos‘(wdt _'__’ga) — W, X, s " sin (Wt + #o)
- w X sin (ot —g) | (€-2)
x(t) = Ont (¥* cs,.-w‘,) cos @t + £)
+23W,0 X, e—ycs,,t sin (Wt+ 4,) - o X cos(w{ -#) (e-3)
Let x(0)= x4 amd % (0)= io be known. Then
Xo= X, BBy + X o5F (€.4)
g = - YWy Ko B = WYX, Sinfhy £ OX Sing E-5)

58’ (54') and (E 5‘) give
[(X s ) + (% s'"ﬂ,) ]yz ,
[(r -XAgY + f—- X = J 0 %o +Z’9:9 X w$¢+cax sm,;} :l
{..‘;c T (E-[)

—-{(eD
Now the com Pufcr program TOTALR can be written . In addition
used i section 3. 12, the :fouowma a..raumenfr

-:'os,,‘x,.rj-c.s,,xmp'.,.w'x A &b
Wy (x,— X et @)

-1

g = tax

to the axgumcn'!:s
also used:

are
Xo0 = value of x{) at t=o. Input
xpo= value of %!E(t) at t=zo. Input.

The program and the output are given below .



EX1=EXP(~XAI*UMN*LIME)

EZ1=COS(OMD*TIAE+PZ)

EC2=COS(OMFTIME-XPIL)

ES1=SIN(OMD*TIME+PL)

ES2=SIN(UM*TIME=-XPHL)

X(L)SXZAEXT1*ECI+XAMPHEC2

KO{I)=~XALFOMNSXZFEX1XECI ~DNDRXZXEXLXES1 ~OM* XAMPFES2

10 XDD(I)=XZeEXTIRECI*((XALSOMN) $%2~0MD*32)+2 0¥ XA FOMN*OMD* {2 *

2 EXL¥ESI=-(OM*¥2)¥XANPAECY

RETURN C

END

TUTAL RESPONSE DF AN UNDERUAMPED
SINGLE DEGREE OF FREE?UM SYSTEM UNDER HARMONIC ¥FORCE

G1VEN DAlA:

M = 0,.10000000E+02
XC = 0.45G00000E+02
XK = 0,25000000E¢04
FO = 0.18000000E+03
OM = 0.21991199k+02
N =20

INITIAL CUNDITIUNSS

X0 0.15000000E=01
XDo 0.50000000E+0Y
RESPONSE s
1 (1) ADC1) Xpp(1)
1 =0,10720424E=01 ~0,62618327E+01 0.14583885E+02
2 =0,131264b1E+400 ~0.56405468E4+01 0.46769913E+02
3 =u,23313771E£+00 =0,44189043E+01 . 0,73777733E+02
4 «0,30557248BE4+00 =-0,27362981LE+401 0.92193657E+02
5 =(3,3312313BE+00 -0,79179698£4+400 0.99568497€+02
6 =0,33717862E+00 0.11797444E+01 0.94842743E+02
7T =0.29529962E+00  0,293B2858E4+01 0,749578743E+02
8 =0,22207454E£+0Q0 0.42714534E+01 0.52945923E+02
9 «0,12771350E+00 0.,50244703E+01 0.21447788E+02
10 =0,24761723E=01 0.51222720E+01 «0,11575108E£+02
11 0.73627755E=01 0.45800018BE+01) -0,41590317E+02
12 0.15549700E+00 0.34999285E+401 ~0.64561966E+02
13 0,21168864E+00 U0.20550721iE+01 =0,.77567314E+402
14 0.,23700854E+00. 0,46208B435E+400 ~0.79236084E+02
15 0.23077171E400  ~0,10522565E+01 =-0.69936806E+02
16 0,19665717E100 =0,22854314E£+01 =~0,51678036E+02
17 0.14191106E400 =0,30888264E+01 =0.27741650E+02
18 0.76043457E~01 =0.33878446E+01 =-0,21128597E+0%
19 0.92454441E-02 =0.31893401k+01- 0.21192802E+02
20 ~0.4920bH19E=-01 =-0,25754893E401 0,38788284E+02




10

EX1=2EXP(~XAI*UMN*IIME)
EC1=COS(OMU*T1INE+PZ)
EC2=COS(OMFTIME-XPHI)
ES1=531N(0OMO*TIME+PZ)
ES2=SIN(UM¥TIME=XPHL)
ACL)SXZHEXT*ECI+XAMPHEC2

KD(I)--XAI*UMN*XZ*EKI*ELI-UMD*XZ*EXl*hbl-DM*XAMP*LSZ
XOD(I)=XZ4EX1*ECI*¥ ((XAL*UMN) $%¥2~0MD*¥22)+2, 0%XX AL ¥OMN¥IMD* X2 %

2 EXI%ES1=- (DM#*Z)*XAMP*ECZ

RETURN
END

TUTAL RESPONSE DF AN UNDERUAMPED
SINGLE DEGHREER OFf FREEDOM SYSTEM uUNDER HAHMONIC FORCE

GIYEN DAlA:

M
XC
XK
Fo
oM
N

Hyynnul

0.10000000E4+02

0.45000000£+02
0.25000000E 04
0.18000000E+03
U.21991199E+02
20

INITIAL CUNDITIUNS:?
= 0.,15000000E=-01
XD0 = ¢,50000000E+08

X0

RESPUNSE:
1 X{1) XD(1) . XDD(I)
1 =0,10720424E-01 =0,62618327E+01 0,.14583885E+02
2 =-0,131264b1E+00 =0,.5640546BE401 0.46769913E+02
3 =0,23313771E+00 =-0,441890413E401 0.,73777733E+02
4 =0,3055724BE+00 =0,27362981£401 0.92193657E+02
5 =0,3312313BE+00 =~0,79179698E+400 ~ 0,99568497E+02
6 =0.33717862E+00 0.11797444E+01 0.94842743E+02
7 =0.29529962E+00 0,29382858E+01 0.78578743E+02
8 =0,22207454E+00 0.42714534E+01 0.52945923E+02
8 =0,12771350E+00 0,50244703E+U1 .~ 0.21447788E+02
10 =0,247617238=01 0.51222720E+01 =0,11575108E+02
11 0.73627755E=01 0.,45800018E401 =0,41590317E402
12 0.15549700E+00 0,34999285E+01 ~0,645b61966E+02
13 0,21168864E+00 0.20550721E+401 =~0,.77567314E+402
14 0,23700854K+00 0,46208435E+400 ~0.79236084E+02
15 0.2307717)E400 =0,105225%65E+01  =0,69936806E+02
16 0.19b665717E400 =~-0,22854314L+01 ~0,51678036E+02
17 0.14191106E400 =0.,30888264E+401 =0.27741650E+02
18 0,76043457E-01  =0,33878446E+01 =-0,21128597EL+01
19 0.92454441E-02 =0.31893401k+01 0.21192B02E+02
20 =-0.49206H19E=-01 -0,.25754893E401 0,38788284E+02




10
11

12

13
14
15
16
17
18
19
20

~0,10027631E+00 0.46169037E+400 0.40110523E+02
~0.88234901£~01 0.10588365E+01 0.,35293961E+02
-0,67556349E=01 0.15523360E+01 0.27022554E+02
~0,40264975E~01 0,18938812E+01 0,16105991E+02
~0.90321312E-02 0.20500395E+01 0,36128526E+01
0.,23084890E~01 0.20055246E+01 =0,92339563L+01
0,52942146E~01 0.17646941E+01 «0,21176857E+02
0.,77617034£~01 0,13511224E401 =0,31046814k+02
0,94654205E~01 0.80529290E+400 =0.37877682k+02
0.10250200£+00 0.18063448£+400 ~0,41000801E+0%
0.,100278613E+00 . =-0.,46170485E+00 =U,.40110458E+02
0,88234514=-01 =0,.,10588492£+401 =0.35293804E+02

NN n

-

MX4+Cx4 KX =

Ezu.a_'hbh of motion is C y.— + kY
when y({:): Y sio wt, x,(t) = X ¢os (Qt~¢,—¢z)
Complete solution can be expressed as

- TW,t
z(t)= X, e cos (6t + #,) + X ot (ot g, $2)
with  x=y [ A CRAN z]’/i |

G- r2) + @7r)
-1 -1 4 =
et (B20) L pam et () T

If the mitial conditions are known x(¥=0)= X5 amd x(t=o0)=

(1)

L.
Wy,

Xo s X = xoc"’fo‘-*'XCa‘Cﬁ'-}#z)
and  x = TV, X, A B - X, singd - OX sin (-9 = #2)
Hence ‘

: . . 2 %
Xp= [{x,— X s+ $2)} + {“ Xo =¥ Wa ot "; X “f‘(”'*’ﬁ*“”‘v""(‘.*ﬁ)}]
g = tor? [-5‘4 — T X, 4 YU, X o8 (B + $) + OX Kim (Br5)

WOy %~ X &t (B+ 92D}
I§ necessary, the velocity %(t) and acceleration X(t) can be
found from E.(E-1)- The computer program ard output ore
given below. :

M A v W T WS MR VM T W R G G Sm L San e W W TS R W W M An M e N W e A W A EN M M Ve W e e A W Wi LS W R M MR M G S A T G W W e e d = W

SOLUTION UOF PHOBLEM 3.69 .

MAIN PROGRAM wHICH CALLS BASEX

RESPONSE JF A SINGLE D.0,F, SYSTEM SUBJECTED TO BASE EXTITATIUN,
Y(T)=Y¥SIN{OH*T) : : :

M mp ot e S ek i A o oA SV P - e W W W WS MR AN A W e i TR R GvE k0 b G b ey At e e W WA U W WS WA din = A W W W e e e e WM AT



C FULLOWING 3 LINES CONPAIN PRUBLEM=DEPENDENT DATA
DIMENSION X(20),XD(20),XDD(20)
DATA AM,XC,XK,¥,UM,N/2.0,10.0,100.0,0,1,25.0,20/
DATA X0,XD0/0.01,5,0/
C END OF PRUBLEM=-REPENOENT DATA
CALL BASEX (XM, XC,XK,Y,0M,N,X,X0,XDD,X0,XD0)
PRINT 100
100 FORMAI (//,33H TOTAL RESPONSE OF AN UNDERDAMPED,/,
2 52H SINGLE D,U.F, SYSTEM UNDER HARMON1C BASE EXCITATION)
PRINT 200, XM,XC,XK,Y,UM,N
200 FURMAT (//,12H GIVEN DATA:,/,5H XM =,E15.8,/,5H XC =,E15.8,/,
2 5H XK =,E15.8,/,50 ¥ =,E15,8,/,5H OM =,E15.8,/,5H N =,12)
PRINT 300, X0,XDO :
300 FURMAT (/,20H INITIAL CONDITIONS:,/,6H X0 =,E15.8,/,6H XDO =,
2 £15.8) ,

PRINT 400
400 FURMAL (//,10H RLSPUNSE.,// SH 1 ,3X,5H X{(1),12X,6H XD(LI),
2 11X,7H Xpv(IL}),/)
DO 500 1=1,N
500  PRINT 600, I,X{(1),XD(I),XDOC(I)
600 FOURMAT (14, 2X ELl5,.8, 2XpElS 8,2X,E15,.8)
STOP

W e G S i W e Gt e AR e A A SR T T i T e o e W Ge A S L i s T A mt mar T S T M A e e e S e el e e MY iy m W M e ML W M Ge A M m R WD A AL W A

P P P - Tt e e - T - O e T T I T T

SUBROUTINE BASEX (XM,XC,XK,Y,O0M,N,X,XD,XDD,X0,XD0)
DINENSION X(N),XD(N),XDD(N)
: onu:sonrtxxxxu)
AAI=XC/ (2. 0% XMBUMN)
OMD=UMN$SQRT(1,0-XAL%%2)
R=0OM/0MN
PELT=2,0%3,1416/(OMD*REAL(N))
KAMP=Y*SQRT(L.04 (2., 0%XALRI**2/((1,0-R*€*$2)%*24 (2, 0%XAI¥R)*%2))
PHI1=ATAN(2.0%XAI®*R/(1,0-R¥R)}
PHEZSATAN(1.0/(2.0%XAL¥R)) -
Xec=xe '
TIME=0,0
DO 10 I=1,N
TIME=TIME+DELT
XC=X0=XAMP#CDS{PH11+PHIZ2)
X85 (=XDO0- XAI*OMN*XC+DM¥XAMP*SIN(PH11+PH12))/DMD
XZ=SQRT(XC*¥*24X5%%2)
PLZ=ATAN(XS/XC)
EXSEXP(~XALYOMN*TIME)
CS=COS(OMD*TIME+PZ)
SI=SIN(QMD+TIME+PZ) :
2S512=CUOS{OM¥*TIME=-PH11=PHL2) o
SI§2=SIN(OM*TIME=PHI1=PHI2) :
A(L)SXZIEXFCSHXAMPFCSI2
XD(L)==XAL¥OMN*XZ*EXACS-OMD¥XZFEX*SI-OM XAMP*5112
10 XUDCI)SXZ*EXXCS¥((XAISOMN) ¥ 4#2-0D*%*2) +2, DX XALSOMNSOMD¥XZIEX*S]
2 ~(UM*¥2)¥XAMP*CS12 '



xC
. §

XC=XCC
RETURN
END

TOTAL RESPUNSE OF AN UNDERDAMPED
SINGLE D.0O.F. SISTEM UNDER HARMUNIC BASE EXCITATION

GIVEN DAIA:

i

XK

o uihu

OM
N

;]

0,20000000E401

0.10000000L+02

0.10000000E403

0.,10000000E4U0

0,25000000E402
20

INITIAL CONDITIONS:

©

X0 = 0,99999998E~02

XD0 = 0,50000000E+01

RESPONSE:
1 X(1) XD(I) XDD(L)
1 =0,50330855E~01 =0,57580S528E+01 =0,10305269E+02
2 ~0,30772516E+00 <=0.44899216E401 0,62558521E+02

3 =U0.43412885£+400 ~0.65008521E400 0.65064461E+02
4 =0,38465756E+00 0.22720275E+01 0,28117B21E402
5 =0,27407S24E+00  0.18295681E401 =~0.40405914E+02
6 <~0.24066399E400 =0.41657627E+00 =0.39765869E+02
7 =~0.28432682E400 =-0,90879965E+00 0.23411983E+02
8 =0,27970907E+00 0.14345939E+0) . 0.64174423E402
9 <0.14b24044E+00 0.38781688E+01} 0.261B3165E+02
10 0.39102390E~01 0.33305802E+01 =0,47345394E+02
11 0.12840362E+00  0,26650119E+00 ~0.67513680E+02.
12 0.B0OBH3I794E=~01l =0.18088942E+01 <0,10970811E+02
13 0,96553117E=02 =~0,68976790E+00 0,50778744E+02
14 0.38462169E-01 0.18209940E+01 0.40712753E+02
15 0.14735566E+00 0,22107751E+401 =0,27525837E+02
16 0.19996722E400 =0,31552225E+00 =0.66972618E+02
17 0.117646U07E400 <«0,28227291E+01 =0,26468327E+02
18 =0,18114097E=01 =0,23140993E+401 . 0.45068512E+02
19 =0,.63696094E~01 0.,51316518E+00 ' 0,59701672E+02
20 0.10478826E~01 0.21295214E+01 0.43720150E+00

. . . . 2 oon ot (
Uan[anced force in vertical direction = mew sinw E;)

Unbalanced force in horigontal direction = o0

Let

Ezua.fn'or\ O_-F motion 1s

M = {:ofa—‘.

mass of the

Si‘e::.,alj state solution of (Ez),is
x(t)= X sin (Cdt-,d)

wh

ere

skc_bkef

B : - )
M % 4 cx + kx= mew sin 0t (&)

(e 3)



x = ML G-t +(2‘s'r) ]/2 =0

a.no‘ _ 2%r ' l
A= tan"?t (—'—_——r?-> ‘ (Es)
where o : M
r= o, = “ V(/*> <EG> |
Frezuencj ro.hse: | 20 Hj_ {—o 30 H} . .
ign 125. 664 rad/sec to 138- 496 rad/sec
{25664 ra_cl/se.c = < 188- 496 ra.d/sec (E7>

7

O-i” < X < o-2. where X s given 1:_7 ('E‘(_)-

Mean power ouJ:Put over o time period T is given by

- P= ._1— IF(?) (?.') dt' | (Eg>
where ’é’: 270 -
Lo
F(Z’): me &92 sin G-’f s ‘and
.:i&‘- = X cos @t -g)
1 ﬁp ‘ . o ' | (Efo}

‘P
4. . R .
Procedure ; it

Fnd ¢, €, M, m , k and ¢ :
So as to satisfy the reguirements stated n

<E7) (Eg), (E1) end (E,):
v .6 -
@ m= = 258.7992 b-s2in , A= 600” ., E=30x10 pst

386-4

*= ‘QE;I = 3 (3oxw l W (D ~ 4 ) = o-oZO#SB(Dq—J") i
£ @00)3
W= 27(15) = 94-248 vedfsec 3 T = 0015

Ground acceleration L () = 193.2 sin 94-248 ¢ in/st
| | | E&D



Egu.a-f\‘cn of motion:

‘mgr-i—c:}-'r X3 = _mé: = —50000 sin 94-248t (Ezj
Where 3 = x-Y

= relan‘:fvc dp‘s‘P(a.cemen{:.

Let 3(8)= Z sin(wt —4) = Z sin (14-245 t -4 (&3
with '

- — 50 ovoo _ (E)
\/@(_m 052.>2. N C"c&f 4
and - - e | Es
: p= tan (k-'mw"> y Ll(: -
_ FL 3 Fax '
3""“"‘ T 3ETL > IE = FE:,.?(: ZL' ““““ £eeeon ‘4

Max . Lendfng moment = m = F{

Max. Aendfns Stress = M ( % 2 = "FE:I'!; ' -ZP" = 3P ﬂma_x
I
EI K

If maximum relative _o(q'spla.c,ementJ

yma.xz Z, s knoWwn,
ma k- bena[fns stress (a‘;) 'S 3fye~n LJ'

3 D
g

N

Direct compressive stress (o;> due to weight of water

Za

tank s

: 5
™m : X 10
o = F 4

I T S R
Total stress = o7

= , + %2 < 30 000 st

e x10°
3D + 2 ! < 30000 (e¢)
2 { T(p*—-d*)

Natural freguency of water tank is

I«k‘ _ /0-020453 (,D"—JH) ' rod
C‘Bﬂ: -;_—n—- =

25§8. 7972 z 30T “see
e p¥—d4 = 11240 x¢° | . (€7,
Weight of steel column s
Wy =

Tv z 2 T 2 _1* ,
= (0 =dD L fope =7 @ "“)@‘00)(" 233)

= {33.3¢6059 (Dz.—‘c‘z> . (EB



-

Find {5} t rm'rn‘mBe VJA— Iubje,cf to restr-‘ci:a'ons
of (Eg) and (E7). Alse use the conditions :
D> d, D20 and d = o.

Procedure: D

- - -

Plot +he {negudlt'tn‘ex (a€>

arnd (£;) in the D-d 4pace and

AY'G-W

contours of Wy and (dentify ‘ -d

‘H\E minimum wen‘g}d: o‘esia-n,




Chapter 4

Vibration Under General
Forcing Conditions

277

_F R oS _2h | e o
F({')‘“—_’%-i'-—zg- S.'m wt ™ Eg4g ‘—(-Y—‘z——:—"'i)(_os -nwt W")CFE CB'-—%—-

F F. 1 )
x(t) = 22 4 9 - Sin wt -
T 2% VO~ 2y + (27 ) ( %)

2L : — i cos (nwt - &
™ Kk nz.—.z,xt-,s),__(n?—-j_)- ‘/'I_ nzrz)?+.(2an)z . ( n)

here 1e S s et (55 ond = o7 ()
. From the Soluhon of problem 1.63. |
{ (2 F"t/’?—") os t = T/
(2':07)4-2!:0 5 4 = t <7

Fourier serces representatton of F(E) i

F(t) =

Fa -
F(t) = —éi - .4__'__.};_._‘.’ g .Y-';i- os neot
w n:i,“s,E,.-» :
x(t)= X2 - 4% o= L cos (st = Pr)

- = -
2K Trz‘k “::1)33‘1“ 'Jz—f‘hz)zﬁ- (ZO’THY)I
where oW

Y= and ¢n= ‘t'a.n_—i (____—___'Zrnr )

— nzrz
8 F n-1 neot -
Fey= 8B = (1) T osn here 0= 2K
) r n=1,3,5,..€ ) n* ere ¥

() = ES Y‘L‘z;i 1 : in (nwt-
x(t) = .——-»- =, = (-1 \/—(I‘“l’fz)z-i-(zrnr)z‘ sin (nwt-4,)

-Tr k “ 1 3,5,.-.

dere 1= o, and = e ()

1— n2r?

F(e)= o4+ o = L g E 2T
' : 2 T - nw where W= 7
n=1,2,.--




_ F =y ’ 1 sm(nwt—,é)
x(t o L fo 2t \
St W 2, T e aGenty “

where r= w/w,,, cmd ;Kn = tan 1 (_El':'_f_.)

1-n?yp?

FO[%._ = —j-'--Sm nw’c] where W= —;L

n=1,2,3,.
> - Sin (ﬂ(ﬁf— ¢">

i
\/(1 nir? )2+ (2ynr)
where r= ('9/(‘5" a.nd #n = ta.n—i (ﬁ_‘f_:_i—)

1 - n?y

' ;T'mé, t
o B2 7T yEe 27
i6 {6

Torque transmitted to driven gear'is shown in the figure. It can be expressed as:

(t)—‘fﬂ“}' N (B-ncosnwt+b smnwt]

2 D]

1000

where w=27x [—6—6—-] = 104.72 rad /sec

2T _ 15

7T=——=006sec ; — 7 =0.05625 sec
w o, 18

My =1000 N-m ; 0 <t < 23 7
- =*>7

Mt(t)z—_" 15

0 ; -—-T<t<‘r
18

0.05825 2000 ) )
Mi(t) dt = — [ (1000) dt = YT (0.05625) = 1875.0 N—m_

0 0.05625
9 .

t(t)cosnwtdt-~Mt0 [ cosnwtdt

0.05625 N
2My |sinnwt _ 318.3091
T n w n

&
f
N s 9w

O% N0y N

a4
!

sin 5.89005 n N—m
0



0.05825

‘7'4 2 Mw .

by = 2 [My(t)sinnwtdt= f sinnwtdt
v T o 0.05825 0

2 Mw \_ 22?_3_‘1’_&} _ 318.3001 [1 — cos 5.8005 n} N—m

n
GJ oy | 005 | 1 _ 349 700 N—mm/rad

k=7 =6 ”'80(10))“"2“*?" :
w —15- - 392700 _ 1981.6680 rad /sec

2 J 0.1 |

Equation of motion:

(am cosn wt+ by S'mnWt]

8

Joé+kt9=Mt(t)= +

wlé’

]
P

n

aycosnwt+b, sinnwt

9(t)=2kt+2{ | ki — Jo (o w)? }
= 0.0023873 ' .
} rad

e {'318.3091 sin 5.8905 n cos w t + 318.3091 {1 — cos 5.8905 n) sin n wt
n (392700.0 — 1096.6278 n?)

2 (%)
—
SR VWV e

— 7 ™
.t g
<

Base motion is given by:

'y(t)--=r+€—-rcoawt—fcos¢=r+t’——rcoswt—-f 1""$i1129f5 (1)
Using ¢ sin ¢ = r sin wt, Eq. (1) becomes

y(t)==r+t’——rcoswt-{’v1-———l:-—-'2wt. 2
7 s | (2)

Using the approximation:

1 rz 2 ‘ 1'2 2 N
| -7 sin wt~1—-2(2 sin® w t | (3)

Eq. (2) can be expressed as

2
y(t):r—}—é’—-rcoswt——t’[I—i—r——sinzwt]

’ 2
_ 4 £ |r
=r—rcoswt —_— ] .
3 +4(] 4({ cos 2wt | (4)



Equation of motion:

mX+cx+kx=ky+cy

2 2
kf |r k€ |r
—»-kr——krcoswt+T 7} - 7] cos2u)t‘+
2
+crwsinwt+fz{[%] (2w sin2wt+ - (5)

Solution of Eq. (5) can be found by adding the solutions due to each term on the right
hand side of Eq. (5). - -

Solution due to constant term, Fy (terms 1 and 3 on the r.h.s. of Eq. (5)):

1

x(t) = EP_ 1= ——
k Vi-¢
where - ¢ =tan™! [—I\/—E_—?“J

Solution due to sinusoidal term, Fg sin ()t (terms 5 and 8 on the r.h.s. of Eq.

(8)):

e 5t cos {wq t — gb)] ~(8)

x(t) =X sin (1t — ) | S
where X = To T and ¢y = tan™ [i‘:?‘é‘}ﬁf‘] (8)
[(k —m B3)? +¢* ‘ﬂ2] 2

Solution due to cosine term, Fy cos {1t (terms 2 and 4 in Eq. (8)):

x(t) =X cos (1t — ¢y) | O
. Fq 1 el
where X = T and ¢y = tan [m] }}(10)
[(k —m nz)z + c? 02]2
10 .
For given data, ¢ = > = = 0.5, —= 0.1, w = 100, 2 w = 200,
2Vmk 2V1(100) ¢ -

ete. and the solution of Eq. (5) can be obtained by using Egs. (6) to (8) suitably.

@ Base motion can be represented by Fourier series as (fromn Example 1.12):

y(t):%{. g_._{inwt+%sinzwt.+_;_sin’3wt+...} (1)



Equation of motion of mass:
m¥+c{x—y)+k{x—y)=0 ()

Since y(t) is composed of several terms, the solution of Eq. (2) can be found by
superposingg the solutions corresponding to each of the terms appearing in Eq. (1).
‘When y(t) = Y/2, constant, equation of motion becomes:

mii+c§c+kx=-l-(—-2l=constant (3)

The steady state solution of Eq. (3) is given by (see Example 4.3):
Y 1

x(t) = - [1 - -71—=§2- e " coss (wy t — d))} (4)
where ¢ =tan™! [”—i’,\/—gi—-?] | , (5)

 When y(t) = A sin {2 t, the steady state solution of Eq. (2) is given by Eq. (3.87):

x(t) = A sin (2t — @) (6)
1 -
wiere =S 1+(2§r)2 ? :
here A [(1 TP 2 cr)2] (7
. _ 2§r3 ‘ |
P=tan” 1o (4;2—-1)] @
and r‘——-—(}‘ |

From solution of 'Ph:l:fem 4.7, we can express the base motion as:

e ] ¢(:)
) =1 — A L B
y(t) =1 —rcoswt + f] y [f] cos 2wt + e

4

Equation of motion:

mXx+k{(x—y)tuN=0
or ‘ .

mX+kx+puN=ky

k€
= kr+T

2 2
';T] _krﬁmw_t*l(—e-[-r*] cos 2wt+ e (2)

4 |£

For given numerical data, Eq. (2) becomes:



X + 100 x + 0.881 =100 y

2 2 .
— {100 (0.1) + 10‘1(1) [Oil] — (100) (0.1) cos 100 & — 10‘;(1) ["il] cos 200 b — - -

—10.25 = 10 cos 100 t — 0.25 cos 200 t — - (3)
Using the definition of equivalent damping constant, c,q, the solutmn of Eq (3) can be
found by superposition.
4 u N 4 pmeg
= = 4
Fea T{1X 7w (1X (4)

where {1 is the frequency of the harmonic force and X is the amplitude of the mass.

y
!

Steady state solution due to constant term, Fy, on the r.h.s. of Eq. (3) (from
Example 4.3): .

£
4

2
x(t) = ——9— kr+£€[f—] =r +

e KE |2 o) g

Steady state solution due to harmonic term, F; cos ﬂ t, on the r.h.s. of Eq. (3)
(from Eq. (3.93)):

x(t) =X cos ({2t — ¢) , (6)
{ \ .

4uN) |7 | - g AN
1— ) WFO

X Fo WFO -1 — 1 ’ .

where =X PRt and ¢ =tan™ 1 4“N2-; (7)
wg ,WFO

/
k 100

N=ormg=1(9.81) = 9.81 Newtons, w, =

m
+ sign is to be used in Eq. (7) for {2 < w, and - sign for {1 > w,. Equations (5) and (6)
can be superposed suitably to find the complete steady state solution of Eq. (3).

= - = 10 rad/sec, and

'  Base motion can be represented by Fourier series as (see solution of P ro]:'em 4.8 or
Example 1.12}:

Y | n . 1 ., |
y(t)=_7F{-i-—(sxnwt+?sm2wt—f—%sin3wt+"')} (1)

Equation of motion of mass:

mX+k{(x—y)+ugN=0



or
mii&-kxi,uNr—ky

k T . 1, 1
=——|— —4{sin wt + — 2wt + —si
T 2 { + 2 s + 3 ’n
Using the definition of equivalent viscous damping constant:
. _4p N _4umg
Mo X X

3wt+'~}

(2)

(3)

where {1 is the frequency of the harmonic force and X is the amplitude of the mass, the
solution of Eq. (2) can be determined using the superposition principle.

Steady state solution due to constant term, Fy, on the r.h.s. of Eq. {(2) (from

Example 4.83):

(4)

Steady atate solution due to harmonic term, Fj sin {1t, on the r.h.s. of Eq. (2)

(from Eq. (3.93)):

x(t) =X sin ({2t — ¢)

2 |L
4uN 2
1~ _
Fo WFO ,
where X = = | e ) and ¢ =tan™!
| [—wi] |

’_4uN
+ 'JTFQ

4 uN
'ﬂ'Fu

11—

_-l-h
i3

/

and + sign is to be used in Eq. (6) for {) < w, and - sign for {1 > w,. ‘Equa.tions (4) and

{5) can be superposed suitably to find the complete steady state solution of Eq. (2).

From Solution of preblem 1.70,

F(t) = 2.9584 _ z0- (537 ¢os lo-472t + 23.52573 sin to-¢72¢
-+ 3-30??‘ oS s0. 9441t + (2-2646 Sin 20.944 t

+ 3.771% Cos 31- 416t _ o.4064 Sin 31416t

4
w,= ’_;”— = ’}_5_9{9_2_ = 122-4745 vad/fsec ;

The S{ea,ol-j state solution s given Ly =

)y

T = o-l; r=0:0855

. (4- I?)



- 9-95% 20 ‘
xf(f) = — 4 _ 20-i527 i - Cos<,0.47zt—-¢'>
e e

23.5253
+ sin (o472t — 8
K \/(’ ‘) +(zrv ( O
+ 3.'_3_0_12 Co$(20.7qqf-—¢z>
* \/C 47 )+ (4 3’*)
{2.2646 1 .
+ — " - St 20 t— -
* ./Q-':+r")”-f—(+§‘r')rr " (20944t A2)
3. (7 f ‘ .
+ 17 = cos (31 416t — #3)
\/(1-— TN+ (e rr)?
—_ w ! = Sin (3{ 4—‘6'&"‘ ﬂ]) (EZ>

Y@=2r) (x0T
where 52{ ! 2% T ) R t“.-l (o 7226 _ : d
[ \ 7,2 = n o] ) = o©s0) 7L T&

_ -V, 47T - : :
752- tan ) = an »t(o-03521?> = 0-0352 ra...‘(

l—4r?

i

- — ;
P3= tan ..__-—";3"' 1) =~ tan ' (0:054913) = o.0549 vad
Y '

Noting that 2Tr=2 (¢-1)(0-0855) = 0.0171

and  (1-v*) = 0.5927, Ez. (Ez) can be rewritien as

x?(t) = [6-6339 — 13- 7821 caf_(,o.z,-,-z + _o.o{7z>
+ I5-7965 sim (m.tf’nt - oaol.72-> 4+ 252715 cdls(zo._t;#»qt‘— 0oo352>
+ 8- 4168 sin (20-944t - 0.0352) 4 2.687¢ cos((21- 416 ¢ —o-aS#?)
—0:289¢ sin (3416t~ ,,05431‘ 1 .

From problem .69,

F()= 1137-5 - 414-9436 cos 523-6¢ + (50- 3)39 S'n 523-¢t
+ 28 6058 cos caq7~zf: ~ 146.1706 sin t047-2 t
_ + 35.7278 cos IS70-8+ + 55-1546 sin (570.8 ¢ (Et>
W, ,/82": 126-4711 radfiec i ¥ = o.0p
r=__c_._s___.§zzc: _ 2 _ L
©Gn = ac.qen - 41334 5 xT= T3 48 5 p-r =—(6:1348
2TY = Z(o'oé>(4.1394)= O- 4967



cos (523-6t = £1)

H37:5  g4i4.943¢

x_ (t) = l
’ b * Jerdre ey
+ i50. 3139 sin (523-6t — g/ 28 605 cos (to47: 2 t -—;dz>
-+ : r
o J(I-Y")z-t— (277)* R Jg_q,.z)2+ (457)
1461706 sin (104721 -}1’22 35.7278 CoS (ls7o-5't - %3
- +
* /Q—4r‘>z+ Ca4vsv)* 1‘ /(I—.9Yz)z+ (évr)?
4 55-1546 sim (I570. 5t = #3)
k \[ i\ 2z NE (E2)
(I-SY ) -+ (G‘g' r)
Since #,: fa.n—' ( 2\5-:;_\)-__ f‘a.,.—' (—0.0208) = —~0+030§

#, = 'l'a.n-'( 43 Y
—4r?

?53-— {-an“(CTT ) tan (—-o 00‘77?') .——o oo0¥%73

) = &u-.“'(... cf.al47) = ~0.0147

the sfea,clj ~ state solution , E.(Ey), can be G—&PY‘ES’J‘C&{ as

x?(t): O+l4422 - 0003211 cos (523:¢ £ +0.030%8)

A ‘ .
+0:001163 sin (523-6¢ +0-0308) + §.2921 x 1o ¢oS (:ow-zt+o-om‘l)

-4 . | | B
=2 7042510 " sin (104728 +.0.01 7Y + 29145 x5 cos(1570.8 t +0:00973)

+ 4. 47‘?2 x;oSS‘m(IS"?o st +o.oo?73> ™
F(t A
Wn= [5x%x10° rad e o
—3 = 22 3607._._ 400 T »
10 x 40 ec D
Cor b
-15  sec v b
. N
Q= 2T _ . : P .
z = G41. 888 raot/sec LE : o ot
‘ ' o 0:0¢ . g.15
- W _ 2 _ L.z
r= o, = t-8733 , r = 3.5093
T=o ] . |
Following data s used in Program # 1 t fnd Fourcer
coeffictents in the expansion of F(t):
t: 33C —i: o0l 0:02 003 o-04 0:085 0:06 0-07 - 0.15

F(t), N u: 400 400. 400 400 400 400 o e o




Result is:

F(t)= (60:0 4+ 25-5002 r:os‘zu-aaat + 242+¢627¢ sim 4).888t
—75.3884 coes 83*776‘t{+ {6. 0237 Sin 83-77‘ t
+106:4806 Cos 125. 6644 4+ 50.7237 sin (25-664 t

~ 6203538 cos (£7.-552% + 27.7¢04 S'm (67.552 ¢

A o N '
Since y*=0 amd M &5 = o, ;::,Z’JM , the
Sfea_e(j-sta_te response of the water tank, Eg. (4-13),
bccomeg '
Xp(t) = o:032 + 2-0315"“53 cos 41-888 ¢

+ (9:3393 xi5 > Sin 41888t — (.1566 x 16> cos BI.776E

+0,24y5% xzo-a sin 83.776t 4+ 0.-1078 x 153 cos 125.6¢4 t
+0:3317 xn;'? sin 125664t — 0.233y4 x,o°3 cos l¢7.552¢

-3
+0.1007 x40 sin (67.552t 4 ... ™

LS p e

m

il

t

Ao
o

Forcing function can be considered as the sum of fwo ramp

functions, F() = Fu;’ and ,:l(é_) = Fo(t+#o) .

a -3

Resporse of the Ca-sf{‘ny (‘undam}neo{ Spring — mass sasbem)t-, F,
is gt'veh LJ .

— Fo _t_ - Sin <.’3)'1{:'
x'(f)f T( €, e, t, ) for £ z0 | (E‘)

ResponSe due to F, can be obtatned from EZ.(E,) bj
‘I‘QP'ac.:nj + b,‘j ',t""to o’hA £, L:j "'~Fo .

_— — 5 't-“"t‘o N n —_ o'
xn® = - B - Gt ) sy (2

* ' to U to



Total response of the casting is given by |
x(t)= () +x,#) = gi+ Sin G (E=t0) — Sin whf},
| k @, t,
for t = t, (E3)

| (Fet/t)) ; o<tet,
F(t) = £

Fo » t,sts 5t | £t
o 5 +>5t, ---(Et) to ¢
. 0 5t,
Response of the anvil is given ° °
by [E. (4-33) for an anc{a.m,aéa[ 53stem]:
+
| .
x(t) = ;'—Z;; j;f:('g) sin S, (t-7) 4T (£2)
For o=t < #,:
“"’*‘f“,; .
xX{(+)Y = ot . -
#)= 2 L'L" Sin @, (-TY AT
- Fo o =g : ‘ E
T Tk, (t- @, “nt) B (&)

s . . o g A A n e = -

| . t
x = o fo F(T) sin 0, (t-7) dz

-~ F t ¢
© o Fq
monty, | T smon (-t av fts.-., w, (t- 2 47

n
: o

Fo
m t,

-
o

Sin @Ot {-"—.. Cos. Qﬁht;, +£3._ sin w_t, - :
[ CB:' | w“ n © w"z.

C— tOS w,,t{ Z';—"z Sin cs,;ta - _t_s_- Cos (.S,,fo}]
) n

n
+ F {—‘-— cos (W, t - 6, %) t
XA s, +
=}

Fo
k 03y, to

[S‘,t'n a_sh(i'— to) — sin .t + @ntoj (E4>



For t>5ty:
: | t'cJ E 7 st, ,
x(t) = rnw,,‘[.[ -2— $in w,(t-7) dz + F, f;m W, (t-7) dr]_
a
tO
= Login 8 (E=To) + £, cos &I, (t- ¢ ._st‘naa,,t:)
m 3, 'f [ " ) ¢ ( o) o7,
cos &9, (t- ‘“C)]
‘-—-—F——-—*[s‘ @, (£ -£) —s¢ ++ t, s, (t-5t (e5)
= P in o) n W, t + L3, Co o)] 5
. t . ~-TW (-7
From Eg.(/,.a?.), x(4) = ;iz; jf; e X o ( )sin @, (£-7) de
4 o
t_(«-yu)T
= Fo g7t f g {7 sin 5 (¢-7) 4T
™ &9 °
F, & Tont (o(d‘yw)"c '
)= 2= & L e " .{Sin Wt. o5 @, T - cof Wyt sin T § AT
! t
5 TOnt ~et-Y,)T :
™ G (o~ TWn) + 63 o
: ~y©,t ~(a-TW, )2‘
_ Fo € cos wgt[e {(« ]'wn)SmCJ?f Cosw’c‘}]
o, t
F, e -7

muy [(@- 7@ + o) ]

~«t
ke

U

{Q’ e— (d-— T@n)t + (o(__ Twn) $in Gssft - hsd cos U‘!‘t}

—~T,t
.Fpe n

m[ (- Twh)z-q— 'wd" 1

where @ = tq'_n"i( “d

- sin (Wt — ¢)
mw" [(‘R’—-T‘ﬁn)z+ wf.] ( d

-, XA

Equation of motion:

mXx + k x = A p(t)

or 10 ¥ + 1000 x = %r- (0.1)% (50) (1 — e~ 3%) = 0.3927 — 0.3927 ™ 3¢

Solution:

x{t) = C; cos wy t + C, sin w, t +

0.3927
k

0.3827

- -3t
k +m (3%)




where w, = V;i——= \ / 1_(13%2_ = 10 rad/sec. Thus x(t) becomes

x(t) = C; cos 10 t + C, sin 10 t + 39.27 (1073) — 36.0275 (107 %) e~ 3t m

-3t _, g

where C, and C, can be determined from the initial conditions. As t — ¢o, e
and the steady state response becomes

x(t) = C; cos 10 t + C, sin 10 t + 38.27 (10~5) m

. 51_ N .
For 0=t ) EM"‘O‘!{‘“&“ mx+kx=_::°l__fiaosc.sf

x ()= A f W t+ B sin .t & ﬁ_2:°(i.—g_*)¢osmt

. Fo Fo 2
X(O)"Jo o A + Tk - 1“((1— wz > " A - (CJ.-.)
: ' L 2 §1- (2 RS }
x(O):O S B=0 Wn
x{t)= Fo [1—- wswf ( )(1— Cosut)]

24 §1- (W N\
gy [T
= 5 1(6)221(@__@: [2_‘5?(1—(05 5 )]
n

Fort>-g—~: Ep,. ( )
g-(433) gives  x(t)=

W/a,

x(t) = vy j F(T). sin 63, (£-7) AT + r:iw_' S F(z) sin w9, (t-T) 4T
0 "o
&

t

[t m o ie

TR g S s
(K]

= 7769

-.: fz-—_—-—o-w SO TR

2% (4 %
(+-57)
For an unda.mpeaf system Ep- (4-33) gives
X)) = = - 5' F(T) sin w9, (£-7) 4T

™
F(r):{ for 027 < 4
For ’t‘>£‘°




‘ . |
For o< t < % - Yy = Fo in t-z) 4z = fo - t
o x(t) To j.ﬂ 09"( ) ;_&_;}(; cos @9, )

mu, Yo
= _E"_.(j_.- coswn‘t)

t
ar >ty gy t ’
For > x(t.).. Fs OSm @, t ‘TI) JT_ o Fo [:;—;, &F] 03,‘({ "T)J

T=o

N

i’ [CDSC& (t-to) — Loswt_]

@ F(T)¥ {%(%) - for o= T < ¢,
0 CFor T >t

For o< ¢t < ¢, x(6y= _Fo ft't"s;'nw (-2 gz
. —y
.c x(t) = — [f (t-7) sin (f z) (—-J’C’) t fs'm w, (t- ‘2:‘) (-Jz*{)
= F‘; o ) (t-7) |
- m “9 t [Z;;_ 3 wn (t —t) - wh Cos (5" (f 7:)] i}

ws&.?(f T)
+’mwt [ ]t’o

: :z(t—a:—swnt)

T

For t > t,
S x(t) = — ) -7 4T
( ) »m(,g t L T Sin (.3,,( ) |
Fo _L sin O, (t-T) —~ g’:i_). cos 3 (4:—-2’)] t
- &92 f.’n n
m W, t,

rnt.s-t [Uﬁw ({:-T)]-c o

to) + cos w, (t- t)-._slnw{:]

i

‘kt

h

Tt . |
. F(t)—' { Fo (i"‘ Cos¥ Zt° ) s o< t = to . ' (E )
1

5t > &,
For an u.nda.mped s:;rtem, E?/ (4 33) 3ives

X(‘t’) =

wmwn j F(Z) sinco (t-7) do
) :

A e a e e - -



x(t) =

Foo(t ey
e j; (1_ Cos 72:_‘; ) sin wn(tfz) dz (Ez)
Nofc'ng i‘ha.t | |

ft ' (9t Y d» = | t+t - ’C') ¢

) Jin (C..9n -" &, ) Z’ = [wn cos ((Jn — %n Ja :E:;-h (1-— to$ (4.9”1‘.’)
and ’ - -

f s _T_El $in ﬁoht Cos W, T — cos@t s;'nosn?> 4T

i s..,wf[""(u )T (e ]t

;\;o w")‘ | 2 %E-;-{-"sh e
is
—cos W, t [_ (fog (w"'zf—:;)t_ . cos(wnt zto)
' Z@an_ lr-——) 2(wh+ zto) —lo
2 [ Cos —— =— COS (9 -L-]+ u,glt- tos td,,t:'
—__ 7 2/ T+ 2%
(z.,. ) g

Ez. (Ez) tan be SamP'»i—.‘eol of

x(t) = ___l:_:_ ("\Cofénf) + (E’/"b [cw: Tt -f-c°s w,,t] (;_:3)-

‘ 2 2t
{Tr _ whz} o
2ty

fe‘:--ﬁ.?-{fe
x('{:)’ —0 — (0% -—-——' ) Sin (9, (‘t‘ 'Z') iz (Eq)
. . ' .
= ,.,,F; [_CS; co2 @3, (f ‘t‘o)-— —: cos S, t | _ h‘:‘, {S:‘n QB"]':. *

[Sm(zt —w)to L Sin (‘Z—E;-t'wn) £,
(Zt - ) Z(Ito h)
[CoS(«———-c.S)td N cas(lr—+a.9.; t, i : 1 ]}

J -+ Cos Q’nt »*

?-(,,-_- z(w +-27£;> B a’-——-—) z(u-t»

e x(t)= _...[c_os e, (¢ - t)_c,,swfj



Fo e
sin 03, (- t,) — -
—— _2__7%_ o n n( 0) van(%_’.qy“)sm Uy.(t 0)
- £
Fo . 1 :
+ cos Wt {_ 4+ —t }
W i R £
em (25, =) (T + @) €
o

B_a...ce dn‘spfa.c:ment = }(4): Y sinm 1:-;{ (E )
Le, H(t) = ¥ sin l:-:ﬁ (82)
S‘%ea.dj-—:fa,te rela.{'we displacement can be found from . -Eg. (4- 36)04
-—3‘69 (- 'r)

F(t) = - f }(’r) $in a&(t—’r) Az (1)
Where )‘ (2 = — ¥ (_E)" sim 71;2' ‘ / (E"_)

(-]

Y w2 pi_co.t vw.T o
3’("‘;)“ "Z;; (-_z_:) f e e . Sin JE_—E sin G-ZI(‘&—Z‘) 4T (Er)
ut N L S Tz z
B £'n <. sin {J (t- ‘r.') —L cos fo %t-{-hﬂf),—éto#(%-&%t—%’&}

="£Eﬁ$ (—E+G.9J>"c‘;cosa&t + S:‘n(—’é-{-“{()’f- 3in %tj
_%[cos(}f_-w‘,)'t; s ﬁ-&f - an(.%_wd)t'- Sin thJ (E‘)
Eps. (Es) a.n.of (Eg) Give » +
v _sw,.t T W, T
F(*>= £ N ) e - [C"""t f Co.r( +U>’Z' 4z
o

. Y T '
+ sin ‘flf‘fe " .:;%(—%54-&{, T.dr
0 -4

- o5 Wt ft ¥ W Z' o5 (1{.; ...c.,u)z-,cli‘

. :
+ sin Wt - TG T w I .dt’] A E
n W, '{; e . §m % Q-’J)Z‘ (7>
Ez.(E7> ¢can be Sa'mPlff:'eJ
2 4 :
FE)= _Y (l) e
2.6-9& t, E}_wn)z_'-(l +"—9,f)1 {YU... cos to
- -y, t
f('jt‘;‘*wd> Smli[_i—yw" e tos o 1
(]
_;-c.s t
=+ wg) sin Wyt }

T4, Cos wi

25’4 (%) (‘ra},,)"+('2’ "'md) {_ to




+(__%r.—__ d>ej’wn cin &%t} (EB)

Base displacement:

y(t) = | | )

Equation of motion of vehicle: _ |
mx+k(x—y)=0 , - (2)
Using Eq. (1), Eq. (2) can be expressed as
; EYYE 0<t<t
mxX+kx=ky= é (3)
0; t>1
Steady state solution of Eq. (3) from Example 4.8:

vY ‘ .
Wy t — tr ;s 0<t <
X(t)= 5(-Unk{n 5111%} St

(4)

Note that the homogeneous solution, :
X(t) = C]_ cos Wy t + Cz sin Wy t ; - (5)

is to be added to Eq. (4) to obtain the complete solution. The constants C; and C, are
to be evaluated from the initial conditions (at t = 0). In fact, tthe resulting complete

golution is valid for all values of t, including values of t > t,.

- Natural freguency = £,

SPaed of automabt’le = 50 km/f\r

Excitation ;Freguenc - (SOxlooo N -
4 3¢00 ‘6-5 = 27-7778 Hé‘

= .0 H} => C&"= 2°T7 ‘rau:'/sec

+ = 0S5 x 3600
° 50 x 000 0°036 Sec
0.2 t
)= | T s ost< by
_O-Z'L‘

222 yoz; Lot g
%, =+ =1t

o 5



Epuation of motion (for undamped case) :
mx + kx = xy =AF(G:) (Ez)

mxX ¢ % (x-¥)= o or
. Where FOEY = % %(4) (&3)

Solution of g (£,) is: t
& 2 |

For o<+ < e,
e o 2 _-
X({; - t )
) ts,, (Es)

Since t ‘ \
T Sin W (t-7T =t _ ¢
£ i n ) 6 Wn w2z ’ ,h th) ?
EZ-(E;) Buom:f k
x(t) = 5-555¢ (1-_ 0-t592 Sin g.zéaz-&)

FOT '_t—o"( £ < tc:

.....-—.--__..-_..——..__—..--—

az
02T
T Sinw, (t-T) dv + f(—-*""’l smc.:(t r)Az}

0

m ; o<t <og-0if sec

(&)

But

0 L% f 7 §in w (t 'C') dT = ...S.:f_j_(__. Sin w"t [ < casw"?-'-f-

lﬂwn e g mw ‘t } w"

- to/Z : i‘o/z
——-'—Sl'nfdnl'J _Co,gt[—ﬂsmc&t‘—-—-uswt] }

0 Wy

n

= §5.555¢ [o 21592 'sin g.2932 (¥~ O'ol<?>
+ o0-0l80 cos 6-2932 (t- ooou) —~ 01592 :S$in 5.293_2%] m (57)

Since foz o-03¢ .

0:2 kK ' P
—_— {St‘n Wt [(‘,1 Cos &3, T
n

- 02 %k
- f T Sin @, (f_t‘),[t = —
mid, Ty

m o, t,
T Y
T g d Lo z t
$in W, T — s .t — shw T - — s, T v
n wz n A ‘tb/
n n
2

i Z;’—‘ ’ to/z

Joe-r 5'0 5556 [t - 0‘1592. Sin 6‘2332— (t"‘ O-OIJD

— 0:0j80 oFf 6.2832 (- o-ow)] m

(Eg)



t
0:2 Kk
m 48, f‘g“n.‘c’n(t"t> dv o.z'k

= [——- cos a9, (f*-’C‘)J
t% t‘i/z
92" _ 21‘ [l Cof Q9h )]

= o.2 [(—' Cos 612932 (t—o-0l3>_] o | (&)

Hence the Solution can be expressed as
x(t) = [;.7537 sin 62832 (t - 0:0i8) — 0- 8945 Sin 62832 t

—~5.555¢ +t +0:2] wm oold < t < o036 Sez (€

it

B S . to >

to
X(‘f:) = ot R I T sin W, ('i:- ‘t’) dr — 02k J"Z‘.' Sin 63, (t-—?.‘) 47T
mc"nto “o ' mwh to
. . t/, |
o2 Kk ° ' )
+ T f $in (3, ('t-—’t’) 4T (E“)

fo/z
The frrst term on the right side of (Eu> is given by (E7>.

Second tferm on {-Ae right side of (E),) is

0:2 k 2 K ——
T maat, f‘t‘s‘nw(f (Y dv = ~ = {.ﬁnCJf[: cos GnT
: . Q

mw,t,
to/,

wh
to/2

t 23
T ° i Yol

+ —— Sin C-S,,TJ — cos W, t. — Sin W3, T — —— CeS W, t] :

. Bn : s, to/

. 2

~ 55556 [0'1592 sin .2832 (t - o- 036>+o.ozsoco3€ 12832 (t-0-036)

-0 t592 sin 62932 (¢t - a. ozs>...o 0180 coS Gzraz(t-" °"')J ”
The third 'L‘Erm on the right side of (E,,)

| (€i2)
0+2 'k to ‘ . 0s2 +.
™ f Sin WL(t-7) dT = L cos W, (t-7)
n m e, | 9, +
to/s - 7>
. o024 [cos @, (k=) — cos 0, (t- t2)7]
mw,,""

042 [c_os 6:2932 (£ -0.036) — cos ¢.2931 (- o-018) | m (Ei5)



Lo () s 3Cven by the sum of Eg:- (E7>,(E‘Z)GM4 <543),
Which can be Sfrn)b“f:'ec' ad

x(t) = 1.7689 sin 62832 (t— 0-0({8) —o0: 8745 sin 6.2932 + |

—0.3945 sin 62832 (t-oc.036) m t >o0:036 sec (E_I‘D

When the container strikes the f$loor, the Ve.(oc.i{-j of the

s 0 ) b J '
‘I'"a" 1§ given by ‘my’*‘—"{m v* or v= V294 (&)

- The displacement " 0f the camcorder subjected to an
initial veléc;!:j %, =V s given by g5 (2:72), with
9(0 =0 QJ“-A ~S- < 1 3
— + x '
5 k. ¥ {— Yz o3, t _ : (E2>

")t.(f): e . - 5in
W, Ji—* -

System can be modeled as w'SPrt‘ng—mavS'F system
Su.bjec{:e,cf to base motion: ‘ * JJ({:)

t) = CYtz/toz) 5 0=t to
s P

IA

Relative d«‘_s'p|a.c.emcnf: of mass , 3 = Xx—Y_  is given by Eg.(4.;6>‘:

t .
3(t) = - ‘4_15; £ }(r) e_ T, (t-T) Sin 03 (£-T) AT (€2)
where 3 () = (\( rytoz.).. . (&
J()= @YV} } o SR 3
. T > ts

and ‘#('r) = O :

Since the system is undamped, 3, = @, and T = o, amd (E2)

reduces to

t
F(t) = - ZYZ J Sin wﬂ(t-—t‘) dr _ &4

wﬂ lto
Here ' )
f sin W, (t-7) dr = f(ﬁn Lyt cos 9, T — cos Wt sin c.shr)d'z
0 [ ‘ .

o

t t
= Sin &S, t f(.of 3, rT dr — cof AR 2 f sin 5, T 4T
0

e



]

. t
sin w,,t- (Zf; Sin @3, 2'>t — cos C.S,..'t (_ _c:%_ cos ﬁ’,.r>
» n , . o

Q

= (=g =0y | (e

&

Thus Eg- (E4) gives ‘
X ,
x(k)= Y t _ _2Y (1- Co:wnt) s ox t=t, (&)

t2 12 o,
For t > t,:
Eg (Eg_) gives
s ‘
+y - _ 14 ° 2Y . :
¥ == [T 2L i (40 22 )
. o P
But

t, : .
L[\S‘I'n e, (t-2) dr = -6—'3— {co: o3, (t—te) — cos a9, t }

N

{Co:w (t-t0) - cos @, {:} t>t,

FE) = x®)-2® = lf,_ -~
' (8g)

Ii = f (t 'C') 7 T -7 $in CZ,(‘E-—?".)(—JC’)

~ TS, (w‘: )
—‘-[ t 'C.) {-— YTy sin ©, (t-7) — 43, cos &9‘;({"?)}'

rca (t- r) ( )
{‘g‘ wh - wd Sin 6.9 (t- ‘L‘)+ 2Y W) cos cJJ(f Z’)}
C Gents
D AN T=0
= ——4".;—(2']'69"(\94)_*_ _f__%,z_____(T*QH Tin (‘s‘;t + (JJ.C:!‘ th)
“_."SC.S t |
+ £ {ca (z‘r —-1) Sin c.sdt +zr¢.9 @, cos c.sdt}

1‘!

t _ + - '
f e T (£-7) Sin wd(t-—?.’)(—-n!?.‘)

-y, (-7 .
[ e Y &, ( ) {__ YCS,, sin “94(*"")“’ “94 coS wd (t-»?:)}jt
% 2
71619,., + wcl
9 -3, t
i + € (yw sin cddt + 3 cos (49“{: )
W
n U,‘

—
—




x(t) = _SF §F-t 1,

e ——————— $ -—

i
m {9 m GY

8F [ 27T ~ywat {gr ("’a”‘*’") Y t}]
= == - cos Wyt — $in Ly
* [ O t e Wy, G w:w; 4 .

(1) mx +ck+ kx = F(t) | |
‘ where m(t)= M - m,t = (2000 ~ 0 %) *g

and F(£) = m, ¥ = 10 (2000) = 20000 N

(1) with wm= M- % moto = 2000~ % (10)(100) = 1500 *g ,
eguotion of motion becomes
1500 'x + 0-1 xfoG x + 7-9 me x = 20000 = constant
Maximum S{:ea.clj state A(s,o(a.cemen!: is

x?(t) = i = __?_9__032_ = 0002667 m

From Ep.(4-312), the response to unit step function car be obtained by
@ setting NTY=1 as '

! ,
h(E) = ("g(t-7) dz ----(&y)
By differentiating this czlua—l;-'on with respect fo t, we obtain

b )= g0

‘Epuation (4.32) Jives x(t)= (*F(e)-g9(t-7).d7
But 3(t-T) = ‘%(f""‘—') from proobizm 4-29,
x(%) = J': F(z) %(t-‘-r) d¢
Integration by jorts gives .

) =~k A=) S+ [ L k) ke

= - Ft) h(o) 4+ Fl@) h(%) + j;t j‘{; h(¢-7) dT
But L (o)=0 from Ep.- (E4) of r'rofs(em 4.29,
x(£) = F@) h(t) + j’*%(‘z-).g;(f_r).ar

-4

Equation of motion for rotation about O: '
Jo0+ME(€)+k a2 0+k, b2 0=Fglet (1)

where ¥ = ¢ § and

1 £ 1
Tn = —o 2 ) VR 2
0 1 mE +m(k ) m{



Eg. (1) can be rewritten as:

{—;—-mfz-f-Mt’z B+ (k;a? +ky b2)O=Fg e * (2)

For given data, Eq. (2) takes the form:
53.3333 § + 1562.5 6 =500 & * | (3)

Noting that the system is undamped with w, = \ / -5%‘2-2% = 5.4127 rad/sec and

*q-—-—o-
=
R

-t
F e

the forcing term as 500 e ! the convolution integral, Eq. {4.33), can be used to find the

steady state response as:

1 t

53.3333) (5.4127) 1
]

500 e~ " gin 5.4127 (t — 7) dr

o) = 7

=1.7320 [ et el " sin 5.4127 (t —7) d7
0

| £ ,
=—17320e" " [ et~ 7 gin 5.4127 (t — 1) (— d7) (4)
0
Using the formula:
fe“xsinbxdx%;?—-_—i-—gz—e“’ [a.s'mbx—-—bcosbi] (5)

Eq. (4) can be expressed as

r=1%

{t—1) : .
° {sin 5.4127 (t — 7) — 5.4127 cos 5.4127 {t — T)}

8(t) = — 1.7320 e~ ¢

1?2 +5.4127°
: r-=0
= 0.3094 e * + 0.05717 sin 5.4127 t — 0.3094 cos 5.4127 § radian




12 4 48

Equation of motion for rotation about O:

2
Ja———l——mt’z +m[£] —lone --—-(10) (1%) = 1.4583 kg—m®

%6+k——9+k——ﬂ€—hhe 2t
or J09+£k529—M0e

or 145839—{—312508—100 e~ 2t (1)

Noting that the system is undamped with w, = i142558.g = 46.2915 rad/sec, the

convolution integral, Eq. {4.33), can be used to find the steady state response as:
' t

' 1
t (100 e~ %7 6.2015 (t —7) d
(V) = Tia589) (3. 2015) J (100 €7 %7) sin 4 (t=m)dr
= — 14813 e~ 2t [ et~ ") gin 46.2915 (t — 1) (— dr) (@)
Using Eq. (5) in the solution of Problem 4.31, Eq. (2) can be expressed as:
. =t
e? (t—1 ' , '
f(t) =—1.4813 e 2% | - 12 sin 48.2915 (t — 7) — 46.2915 cos 46.2915 (t — 7)
22 + 46.2015
' : r=0
=0.03194 e~ % * 4 13.7094 (107*) sin 46.2915 t — 0.03194 cos 46.2015 t radian (4)

o)

339

- x(t). Equation of motion for rotation about O: -

Net compression of spring PQ =

e 2] []” .

‘4 ,
m ¢ = -4? (10) (1%) = 1.4583 kg—m?,

or J09+—u29—

. 1
For given data, J3 = — m &2 m.——z—.:_._..
-8 A Ye T T + (4) 48

5 ' -
y k £ = —Z— (5000) (1?) = 3125 N/m, and Eq. (1) becomes:

1.4583 § 4 3125.0 = 37.5 e~ ¢ (2)



Noting that the system is undamped with

3125.0
1.4583
the convolution integral, Eq. (4.33), can be used to find the steady state response as:

ferd 1 ) — .
= 7.5 e~ ") sin 46,2915 (t —7) d7 3
o(t) (1.4583) (46.2915) £(3 e” ") sin (t—1) (3)

Using Eq. (5) in the solution of Problem 4.31, Eq. (3) can be expressed as

= 46.2915 rad /sec

Wy =

3
e(t - r]

12 + 46.2915%

—0.01199 e~ * + 2.591 (107*) sin 46.2915 t — 0.01199 cos 46.2915 t radian  (4)

6(t) = — 0.5555 ™ * {sin 46.2915 (t — 7) — 46.2915 cos (t — 7')}

'kﬁer -
-t
F, e
F,‘ , F} = reactions : : J’ !
at O m :
T },m'{n
Equation of motion for rotation of pulley about O: _ : LTk _
Jo§+mi(2r)+k1x(2r)+k2(9r)r—,—=2rFoe_t (D)

where 8 = -g—r-. Eq. (1) can be rewritten in terms of x only as:

[-2'-]91_—+2mr X + 2k1r+—;-k2r]x=2rFoe't {2)

For given data, Eq. (2) becomes
110X +1125x =5e" ¢ (3)
Noting that the system is undamped with Wy = '1111265' = 3.1980 rad/sec, the

convolution integral, Eq. (4.33), can be used to find the steady state response as:

.
) =—o01a2 e [ Dansam0 i) (-ar) (1)
a



Using Eq. (5) in the solution of Problem 4.31, Eq. (4) can be expressed as
. t

-t
x(t) = — 2‘1421 °_— [el*= ") {sin 3.1980 (t — 7) — 3.1980 cos 3.1980 (t — 7)
| 12 +3.1980
T=0
= 0.04048 e~ * + 0.01266 sin 3.1980 t — 0.04048 cos 3.1980 t m (5)

F-Q 3 Q sé 'i fo : .
F(t) = , E
(£ { o] 5 t > t, , (I>

>

EZ‘(4'§3) gives , for an undamped system ,

t :
4 .

x(t) = ——ry j; F(z) sinw,(t-2) 47 (e2)
For o< t < +,:

Fo t Fo
%(f) = T J‘; sin O, (f_7_-> dT = - (i— Cos G}“{‘) . (E;)

Uusing Eg'( Eg) in the solution of Probfcm 4.26.
For ¢ > to ! t ‘
1(f) =

£ ts

o .

m o, J: sin 0, (2-T) de

Using the relation
,to | . | .
£ S‘l‘n‘;wh (t’—'t’)-d't’ = E{cos W, (t-—'ta) - cos W,t }

,'Hi,e. So(uf(on can be ex};resseaf as

X (t) = i [ cos . (t-—t@ — cos @, ¢ ]| Ee)
Response specf_rcfn':- v
For o< ¢ s'to,‘ q[(‘4:) = Eé (1 — cos 63,,{':) | (&s)
Zd,tl = E,«:Sh 'ﬁn “nt =0 > G tmax = T .
A Q(mu = X (f'—'- thX) = %‘ (1- Cos w’n- t”“*x = Zf (EG>
FOY' t > to ,bl - F ' ' .
A (t)= -1—:- { cos @, (t-t,) — cos c..s,,,t} E7)

?jf = - Fo:?n { sin oon (4= o) —sin @t ) =0



= 3in 63 (fma.x - f,) = sin Wy tma.x

Sin Wyt
l-"e) blﬂ 63" fm“_x = ( o n - > (E8>
| Cos W to —1
e , ‘ _ Sin W, t, ' (-Es>
Sin Wptmax = =
| \/z (1- cos wots) :
' cos C&nfo -1
and cos @, €, ,, =

_ - €)
J.’Z (1-. Cos CJhta)
Xmax = x (t = fma.x) = % cos G, {:ma..x - cos o, t,

Ef Gty LT
= = ‘ ~— + -t
* V2 (1= cos @, 4,) J2 (1= cor w, %)

- 2 Fo sin Iy &, (E.u)
- % 2 . ‘
ng 2 2T
.}?{9?.{5?32_ 69“ =
n
) fn\ﬂ.! - _L
For o5 ¢ < t, Wptmax =T or z. 7
, . .
When t= fo > ‘brna.i = Z = o
L e _t.'.'i. > L
T — 2 ( )
: E
x : +to 2 2
N MAX =2 . ;For 2.." 2 3
St
For € > ¢, , to < L
. = 2
x : +, 271 to
mex = 2 s 03y, — 2 Sin z T,
£,
K Xomax = 2 Sin mte o

5 A &)
st



- “m
Eza- (E ) omd (Ej3) are  # (85:‘>
P‘o‘(ﬁ‘:ea n the f.'jure. 2b-m- -

)
1
]
i
[}
1
i
'
]
]
i
1

x(t)= 2 (l— cos Wt ) + Fo 2t,
‘ ‘ ) 2m£9 {('ﬂ' ) _ }.

i b
(i.o_
Th
° £ 1 15
Response sPec.{:ru.m for o
rec{:a,n'su(a_r Pufre —fypg ,loa.c!
' The response is fou.nd in Problem 421,
' For _9.-‘:__“{_‘_‘_ to :
2% {cgsz—t —Corof

(&)

e. v .t | '
1- €., F-O wn Sm w t + o _2_; Sinm t ‘+wn S'l’n L’nf>
0

* Ty

which Coan Be T‘EO(u..Ce.ol to the form

™ , o A
7 OnEmax = [ T 2 | gipy T Emax E2)
| zmnto{m(a) —mw:}fk 2%, :
Once 4tpay is known from (E2), €. (E)) can be used
to find X at :

™ma.x )
Lnax = x(é: fma.x> = —-F;- (1,— Cos CS..*ma.x)
. ,
- ( b f:a.x — cos G, {‘ma_,> (Ea)
{( Z‘fo - &9 } 2 °



For t > %5

——— -

‘x_({:): -—E—- Cos 03, (t“ o)

~ sin @, (t- fO){ (______.w,,) .«.mw( *w>}

+ COIS w,,t {-f‘._
*

o o
+
men(:’—r— —-—&9,; am 08, [T + G }
zta p zto

For {‘mm > i“.:— =0 ‘ | (E")
ve Fo Wn . (t t ) Fs ™ &, cos G"(tm"x— to)
- Sin (9 - re) —
X “n mf-x 2m oS, ta{(% >2'- o, }
Fo ( :_L )2' O j
-+ sin C&n tm&x = Q0 (Es> )

m ra 1
() - o}
Once fmo.x s ;Found b’ So'w'v\g EZ (Eg)) X ax
from Eg. (E4) as

can be found

Xmax = x(t= tma.x) = .-Zg cos LJ‘,,({:ma.x - to)
_ TR « sin @Op( tomax — to)
anmfo{;;)z_ an"}
-4
B )2 | |
— ’ (2*°) cos &, trmax (o)

* I/ TN 2
‘ {(zto> - Wn } |
Egs: (E;) amd (Eg) can be wused o Plo\‘: X ax VYersus &9y

to get the displacement response Speci:rurﬁ,

Base acceleration = X 3(t) = a, (1 $in zt, ) (ey)

For an undamped system, the relative dpsP}a,c_eme.nf is given by
& (436):

}(t)-_ f 2}(’8) gsin W(t-7) A*

[f @, Sin W, ('l: ‘Z) dr — fcu Sin ——o ;fn asn(i;—?:') albtJ

.\



Here

t
1~ cosw,t
' -T) 47 = ( n . :
[fl 3 (t ) o, ) (E;)
from Eg.(E,) in the solution of Problem 4.26.
and
£ T /. '
f Stn (Sl'n Uht cos 3, T — cof Cdnf sin 3 ’Z’) Jf
y) 2¢,
T
cas - oS,
= sin W,t {-— ° (Z'bo ﬁ&,)’t‘ _ cos ’I-to+ )T}
s
. Z(T.E-o — a9, Z(_%_;+ agn> - Jo
. ™ :
- (oS Q}nt { Sim 2, T ) T Sin (—Er‘;: + 6_9,1) (= t (E )
: - 4
2 _ Ve
' (ch Q"> Z (_ﬂ:_a * w") °

T"‘F‘s the solution, Eb, (E2)J can be _-F-‘na.uj e,y;rrc:recf ok

ty= . Po st a, { I ces E-w)t
3/ 9 i T — o Sin wn‘t
’ n
" " z(‘{e‘; “n)

Ly
ces (—?-_-g; + w,,)t _Z]}‘*_ cos @, - ‘f" (;;.IE," w?’)t _ Sin (%:—o* “‘”‘) {]

S - wn) 2(5; +@n)
| | (&)

——— .- - - - g ot

x(t)= Fo (1 t _ s o, t + Sin ‘*’nf) _ (_Ei)
- ' ‘
x{(£) =0 gives Wat, SOt = 1= s, ,
(e Whtm = 2 tan ,(“’ ts) . , (Ez)
g) b es ,
( ') ecom Xon 4 - _t"‘_ - h w"fm+ 1 Sin w“-t-h (53)
(F/«) ta . @4, | |

where t_ ¢ 3wen by (E,_)
During ¢+ > t,

————— -_._—

)= [(1—casw.,fo)4hwf (9nts- M..c.sto)usas{__l (
€ M = x(#)= A s Ok + B oot
'FO
where A= 1-ofw,.t, ; 3= - (Wt —A'.mcs-t)
Since x| .. = JaZy 8% .
A ’ ! i/z .
Xom ___1__ _ 2 _ . ‘b 2 £
oy T mu L et (Gatem s wnt) 3T )



20
B (E3)}
16
2T
0-3
o b :
\ [ L ] i (S L1 1l 1 !
0 2 4 6 8 10 12 4 K 0O z 4 ¢ & ko 12 44 16
wn*o w,f,

From Example 4.7, the response of the building frame is given by
x(t) = Fo [1.. a—f——- — cos ot +

k o W, to
and | |
x(t) = %&T [(t— cos ca,,t.,) sinw, t — (can t,—~ sin wnt;) Cos wnt] , t>t,
" (£2)

£n 9, t] » 0% t< ta (E1)

o o s A s - U - -~

?For x(t) to be maximum, the &ua.nh’tj inside spuare
brackets in (Ev) wmust be maximum. This implies that
d ¢ |

o [ - erant 4 et ]

e, (.Bntg simwo,t = 1- Vc.os w,t

e | W,to cos "_9%"3 = Sm_‘:’_z_i-' '

te. fan %’ff = W, to , (E‘;)

Thus , 4 x(t) ottains & maximum value at t= tmax> Eg.(E3)
gives P . |

fma_,‘ = Z;; tan (09,, to) ’ (E(r)
Once T,a, is known _-Prom (54) (E \) gives

qux:: x ({:: tmd.K) = { ”‘“" — cos w. t

n max

CJ 1‘:0 sln W, 'tma.xj' ‘ (Es)

n

+

(i) For t > t,

B Ll T _-.._--.—

For X(f) to be maximum, the 3u.ant f:‘y inside spuare bra.crets
in Bp. (Ey) must be maximum. This implies that

d—';-:—’_— [(!-— s Wato) sin w,t — (@nfo — Sin w,,to) cos wﬂ-{_—] —_ o



;-e')
(1- cos wpts) W, cos 9, t + (wn'}:‘, —sin 9, t;) w9, sin Wt = o

"€ = cos wpto
tan Cﬁnt = — (E€>

G%1ta-— Sthdnfb

It ‘x(f) ottains its maximum ot t= t..,. > EZ-(Eg> gives

) -1 —1+ cos Wnte » o
trax = . ter ()
n o sin W to ‘

Once tmax IS computed ;F}om (1), (Eo) gives
Xax= *(t= tmax}a‘k@t ({—(_oShB‘t)—}-(a}f—SmLﬁt)]

leen data : | ' : (ES>

B

m= 5000 g, F,,=4~x|o€N, to=o0-4 Sec, x ., = 0.0lm-.

Wo= k/m = c.oigts V&

- e

1. Assume « series oj: values of & .

2. Find  tmax USing Eps- (E4) and (E7).

3. Find 2. using Egs- (E5) and (Eg).

4- Select 4  such that Xoax $ 00l m in E.(Es) or (es).

&Y’nPle comrufcr Progra.m nn& resu [_ts are s}‘owﬂ below

XM=5000. 0

FO=4. QE+4

70=0. 4

XK=0. 0

bag 10 I-1. 100

XH=XK+1l. OE+7

CMN=C. Q1414%5GRT(XK)
THAX1=(2. O/OMN)#ATAN(GHN=TO)
EMAXI=(FO K% (1. O—-(THAXL/ TU'—CSSFHHNfTFHXL'+SIN(“MNvTﬂﬁXIA/
(OMN%TQ))

XMR=—(1. O-COS{OMN+TO))

AOR={OMN#TC-SIN{CHMN*TO))

THAX2=ATAN{XHR/XDR;/OMN

X1={(1. O-COS{(OMM#TQ) yuu2

X2=(OMN#TO~SIN(OMN*TG) s *#432

X3=(X1+X2)%%Q. 5

AMALZ=XI#FO/ ( XK+OMN#TQ}

PRINT 3, I. XK., TMAXI, XMAXI TMAX2, XMAX2

By

5 FORMAT (IS, 2X. EL15. 4, 2%, 2E12. 4, 2X, 2E12. 4}
10 CONTINUE
sSTOP

END



U R

0. L0OCE+08 0.4776E-01 (. 7322E+00  —0. 5134E-03 0. 4114-+00
0. Z00CE+C8 0. 4843E-01 G. 3758E+0C  -Q. B204E-05 0. 190/1- +0Q
0. 2000E+08 C.3973E-01° G.2534E+0C  —0Q. 3B59E-04 0. L34k +00
0. 4000E+08 G. 345CE-01 G. 1914E+0C  —0. 41GBE-03 0. 10:*/E F0Q
0. SO00E+C8 G.3G92E-01 ©.153SE+00 -0, 4234E-03 0. 78U7L 01-

These results indicate that the re?/ul'reo‘ S{:iffneu' ig
= § x 108 N/m.

Let d = thickness of bracket. Then, from Example 4.12, self weight of beam = w = 0.5
d 1b, total weight at free end of beam = W = 0.5 d + 0.4 |b, moment of inertia of
beam cross section = I = 0.04187 d° in*, static deflection of beam under W:

Wé¢  (0.5d 4 04)
3E1 43

We need to use a trial and error procedure to find the correct value of d.

by = 7.9994 (107*) in

Letd = 1 in:

w = 0.5 Ib, W = 0.9 Ib, [ = 0.04187 in*, &, = 0.9 (7.9994) (107*) = 7.19946 (107*) in,
| Ost 7.19946 (107 |

AT & \/ | 386.(4 L~ 0.008577 sec

t .
o0 1501
7. 0.008577

From Fig. 4.49, shock a.mpliﬁcation factor (A,) corresponding to tg /Tn = 11.6591 is
A, = 2.0 '
Dynamic load at end of cantilever = P34 = A, M a, = (2.0) (0.9 /g) (100g) = 180.0 Ib.
o My ¢ (180 (10)) (1.0/2)
e I 0.04167

Since this is smaller than the permissible value of 26000 psi, we choose a sma.ller value of
d next.

= 21598.2721 1b /in?

Let d = 0.9 in:

-4 )
w = 0.45 Ib, W = 0.85 Ib, I = 0.03038 in?, &, = 2:85(7.9994 (10 )~ 93271 (1079 i

0.9°
—4
VT 9:3271 (1077) _ 4.000762 sec
386.4

_.ti’_ =081 _ 10.2438
7. 0.000762

A, =2.0,P3 =A, Ma, =(2.0) (0.85/g) (100g) = 170.0 Ib

- = My ¢ (170 (10)) (0.9/2)
mex T 0.03038

Since this stress is close to the maximum permissible value, we take d = 0.9 in.

= 25181.0402 Ib /in?




Let d == thickness of bracket. Then from Example 4.12, self weight of beam = w = 0.5
d 1b, total weight at free end of beam = W = 0.5 d + 0.4 |b, moment of inertia of
beam cross section = I = 0.04167 d* in?, static deflection of beam under W:

0.56d 4+ 0.4
53t = d3 .
We need to use a trial and error procedure to find the correct value of d. However, since

the shoek amplification factor, for large values of tq /7, for the triangular pulse of Fig.
4.50 is similar to that of the pulse shown in Fig. 4.11, we start with d = 0.6 in. This

7.9994 (107%) in

gives:
w = 03 b, W = 0.7 Ib, 1T = (0.04167) (0.218) =__0.009001 _in*,
-4
5“-50—67—(7 9994 (107%)) = 25,9240 (107*) in, 7, =27 25'923:%-(:0 )
0.01627 sec, ty/r, = (0.1/0.01627) = 6.1445. From Fig. 4.50, we find shock
amplification factor as A, = 1.1, dynamic load at end of beam = P4 = A, M a, = (1.1)
(0.7/g) (100g) = 77.0 Ib, maximum bending stress at root of beam =

M, ¢ , .
=2 — (77(10)) (0.8/2) / (0.009001) = 25863.8151 psi. Since this stress is very

o-ma.x - I
close to the maximum permissible value, we select d = 0.6 in as the design.

Let d = thickness of bracket (beam). Self weight of beam = w = d (1/2) (16)> (0.1) =
0.8 d Ib, total load at middle of beam = W = (1 + 0.8 d) b, area moment of inertia of

beam cross section = I == -1—1-2— (2 ) d* in*. Static deflection of beam at middle due to
w: '
' 0. 63 |
b= € (O HO8AUE) _hs 4y (511859 (10-°)) in

192E1 192 (107) (0.04167 d3)

We need to use a trial and error procedure to determine the correct value of d.

Let d = 0.4 in:

w = 0.32 Ib, W = 1.32 Ib, I = 0.002667 in*, 6, = 67.5786 (10~ in,

67.5786 {107°)
T, =27 = 0.002
n v 2864 828 sec

to 0.1

—_— == == 38.0569

Ta  0.002628

From Fig. 4.11(b), A, = 1.1, and the dynamic load on beam is given by Py =A, Ma,
where M = total mass of beam and a, = acceleration due to shock = 100 g. Thus

Py = (1.1) (1.32/g) (100 g) = 145.2 [b. Maximum bending moment in a fixed-fixed beam
due to load (F) at the middle is given by M, = ES—{— so that

145.2 (18) (94,
Mb c 8 2 2
., = —] " _—
max 1 0005867 21777.2778 1b /in




Since this stress is smaller than the maximum permissible value of 28000 psi, we next -
gelect a smaller value of d.

Let d = 0.35 in:

w = 0.28 1b, W = 1.28 1b, I = 0.001787 in*, &, = 85.5307 (107®) in,

| —— |
ra=2 V 85.5307 (1077) _ 002587 sec
386.4 ,

t i
o __ 01l 356489
7. 0.002587 |

From Fig. 4.11(b), A, =~ 1.1, P4 = (1.1) (1.28 /¢) (100g) = 140.8 Ib.

1408 (1) | 035
My e ° 2 27576.9446 1b /in®
Tmax = Ty < 0.001787 - : fin

Since_this stress exceeds the permissible value, we increase the value of d.
Let d== 0.37 in:

w = 0.298 Ib, W = 1.296 Ib, [ = 0.002111 in*, §,, = 66.3499 (107°%) in

—8
Ty=2m7 v 88.3499 (1077) _ 1 002804 sec
386.4 |

Yo _ 28.4024

Tn

From Fig. 4.11(b), A, =~ 1.1, Pq = (1.1) (1.296/g) (100 g) = 142.56 Ib, and

| 142.56 (18) | | 0.37
Mb c _ 8 2

Imax = 7 0.002111

Since this stress is close to the maximum permissible value, we select the desngn as d =
0.37 in.

] = 24986.8309 1b /in’

W = m g = 100000 1Ib, ¢ = 005 o = 30000 psi

.
Omax = maximum permissible stress = ——y- = M = 15000 psi,

»\/_ A / 10000 101 0793
— 2T sec
386.4 k

Ty =

We need to use a trial and error procedure to find k.

Let k = 10000 1b/in:



k=10 =

3EI _ 3(30(10%)1
£ 600° s
I=24000 in* = -2 d} (0.5904) with — = 0.8
; 64 d,

d} =82.8121 (10*) in*
d, = 30.1664 in ; d; = 24.1331 in

101.0793 __
Tp = ——m==— = 1 sec

V10t | |
From Fig. 4.14, for 7, = 1 sec and ¢ = 0.05, we find S, = 25 in/sec, S4 = 4.2 in and
S, = 042 g.
Maximum shear force in column:
W 100000

Fma.x“_‘—sa:

(0.42g) = 42000 Ib

Ma.ximum bending moment:
My = Frae h = (42000) (50 (12)) = 25.2 (10%) Ib—in
Maximum bending stress: ‘
_ My e (25.2(10%) (30.1684 /2)
I | 24 (10%)

Since this stress is slightly smaller than the maximum permissible value, we choose a
larger value of k.

= 15837.36 Ib /in®

Jp

Let k = 20000 1b/in:

8 ’ »
k=2 (104 = 230 A0)I © dj =165.6243 (10*) in* o
6003 d, = 35.8741 in ; d; = 28.6993 in
. ™ .
I = 48000 in* = Yy d; (0.5904) . Ty = 101.0783 _ 0.7147 sec
- 20000 '

From Fig. 4.14, we ﬁnd
S, =26 in/sec, §4 =3 in, S, =0.6 g

Maximum shear force in column:
. 5
Foux = W, =10 (0.8g) = 60000 1b
| g g
Maximum bending moment: |
M, = Fo.e h = (60000) (600) = 36 (10°) Ib—in

Maximum bending stress:
s ;
Mo e _ (36 (20%) (35.8741/2) _ 15,00 7875 Ib fin?
I 48 (10*)
Since this stress is less than the maximum permissible value, we choose the inner and
outer diameters of the column as d; = 28.6993 in and d, = 35.8741 in.

0y =




m g = 5000 lb, ¢ = 0.02. From Fig. 4.15, in order to have S, =~ 1 g, we need to have 7,
@ = 0.2 sec. Thus ,

27 : k
H = . 6 == —_—
s rad /sec =

n
k = (31.418)* m = (31.416%) (5000/386.4) = 12771.2870 lb /in

Eguation of motion s X4 Wy % = —,.f;:o' C‘:wt

For zereo initial conditions _
2 2 — - FO i — F A “"“:6-’
, ) x(8) = =2.— =t - .-
e an) ™ e 1RO ST )
Inverse Lq:la.:.e l:ra.nsforma.h‘on aiver
+) = _5_ S ;wt__ 20 HAon t
"0 = (Wr-o*) Le (ot nt + 5, A ont) ) |
Tl’\ﬂ {:erms M Cos (‘3“{: amd 4&.\ Q’“‘E dc:-»o“:e the 'trn._ns:'e'nt"

Pa.rt of f‘;e response and hence can be ma}ecfz‘.}, Thus the S{can_

state response can be exPrcsse,c! as

x(t)= {9_ ___i__> it

1-v?
_ F. A+ 270,

From Ep- (4-57), x(A) = - 0 - + /2 " ;+wz)x

me (Ryay,ar@F)  FHITOA O

T, =0.2 =

where v = &9/&9,,-

(-3

2
| \/52+ 27,4 + 9,
Inverse transformation gives

Ny )%

' ~Tw,t ' ’
x(t) = fs.{i_ € 7 s ((‘SJ'JC""‘D}-;- x, (AR

E Sin (wt-‘_#ﬁ.
m r_ﬂi—‘r" s o >
. -y, t
'+ X2 e Tn sin @yt
v Wy
where £= s (Y.

The forcing function can be expressed as

F(t)= Fo §fu®) —ult-to)} |
where  u(t-7) is the unit sEeP function afﬂz‘cd ot t=T. The
L.a.Plcu:e transform of F(t) is

F(3) = F, (£ =1 e-/s’co)
The eguai'n'_on of motion wmx + kx = F(t) 9ives



%(4) = .’fe(¢~g**--) s At i
mat 4+ & .J(',; + W, ) J(Az+ﬁ~3n1)}

&f A8 +o,)} = _(i“c’osa’t)

x(’c)-—__._.(i—c.au.st) u(e) - -t} w(t- ’Co)
™ 0 m el
Hence ,
- 5 09, t <
x (£)= *mc.s’ (* ) for ost= 4,

Fo {ca!co(t t)-caawf} for t =z €
Y. _

' ¥ '
x(t) = L _‘Z-' F{ (-7 € ;w niE i), cos W (£- £;)

L:

-T - W, (-t
+e w (t )CJJ Sin Cg‘l(t t) ( TCOB) T ( ) TU" Sin CJJ ({'—fiv
T,
— TGS, (-t , d
- e ) T 'Q9J -1 (49" (f-— tl>}
y-1 : “4 1 2 ‘
=1 = AF. TG, \ . 0. (t- ¢,
k (=t 4 {e Q’J Sin J( &)
: N2 4 CTrery ~TWN (-t |
% = x(¢s ”?:AF (w0 + o, —=)e 7 sin @) (4= %)
ﬁ. 4:-.6_3.}-- lefcrentaa.f:rng EZ (4- 65) Yoo (bt >
Fi -7, (t-t;_ 7o - R
x(f):-f. ( Ji)w(u, )s.nw‘{(f )+ w0 € T
{-— X Sin Wy (f—t,‘_,) + 1&;"_ Cos OSJH: J-—n)
o
j—wn - . . . N - .
- __(:’;i 1}_'+TQ9,, x;_,) Sin wd(f ‘f~,)}
For = & ‘a5, AL, ool ;)-w,,A,JCj{“x_I,:nuJAti.
’:‘j=~?§’_ wy (1+ )s.;,c.g,Af}--y 994 ?
-
+ -1 s, at, o Iy oy FTW, X)) sin 9, at
“d CRE w" ( =) ) }
Ep- (4-71) :
N - T, (-t T (-1,
z(Jc)-— iﬁt_[i_:rcs e ¥ ')%’lws @d(f é_i)._e ( '2‘
k o) n
sy Cem b)) v EXREO (AT s ey

(JUJ



-

(_.....--.Sm ’*’A ({' t. _,) —TU (t t—l)(‘y

- T, e
. ~T, (t-t. x .
sm 0 (t-%) - TU e “( "")(“3"

+C

TS, (t-t; 1) (w

i)+ e

~-TW, (Jc 3

),
3 zj—-!

& w,,(t-t;-a - e

% .
+ T, 5~
Wy

)w Cos 034({7" ;-—t)_] +

-‘“9 (f t5-0)

Qg Sin (4.94 (é“"

wy

‘-\ T3, (t
2 [rene

n

YW, (t-t

y-1) + JWn e

wn (34 ' wd(t"

- Tw“ (t - t}'- ') x

@y

‘)634 wf @y (t- t )

Simplification of this eguation gives ot t= t:,

f.»‘-')]

-t

-,)

9 sin W) (t- t‘;.'—l).

),

»

. ' . ~Tw, at;
» aFy 1-6 :{mw‘, at; 4 T %Q‘Até}]
& Atj 634
F.—l -)‘wn At} ‘A" sin [&:) A-é
+ 4 e — d
. * ©,
-y, at; §- T (. Wy - . At
FEEEY %, . (4-¢8) %;. Ep-(471)
i o [ [} .
2 0.4 0.276010E+00 0.275640E+00
3 oaT 0.462605E400 0,4616587E100
4+ o3 D.549249E400 0.547683E+00
5 O 0.536630L+0G0 0,%3440SE+00
L o5 0.435845E+¢00 0.433036E+400
7 0€T 0.,266613E4+00 U,263378E+00
F ] o7 0.547668E=01 0,513272E=01
9 oan =0,170711E+00 =0,171093E 400
) o9 =0,38NTB4E+00 -0,383830E+00
n T -0, 549239&00 -0,551730E400

. Method 1: . _ 1
(53 s

i

Method z

K=

/

[1—(::563 A‘E].’.

_Z___Lm(-s A‘t +C-3,.,{— é-,&w\w A{: + ;—! ot O, At}
W,

A=d
;—1
= AF,

4
i=1

= 4
%

S
- @, s.‘n(d,,sf: }

-1 o .
== Sin Sy, A‘EJ

a9,

}_:‘AF {1- o5 @ n(tj-t:) }

s @, (85— £5)

X,
g @30, At' + _?__L S 03, At;

n

22 (14— et a5, At ) + Ty s @n



2. = A'::?-' (1.. s CﬂhA{“)q- f{:} 3, sin LS,,A‘E:‘ + X._; denAt)'
F 4 L X 7
% A#} -
-, * sin L%,Aié
VALUE HETHOD 1 METHOE @1 METHUD #2 METHDD 8
OF (FIG.4.,18) (FLGaA LI (FIG,.3.200 (FLE.4.Z}1
I X(1) x(1) XC1) x(L)
2 0,489 135FE=01 00,4120 70F=01 0,451034E=01 0,463829E«01
3 0,183327E+00 0,15363I9F+00 0.1668413E+00 0.170863E+00
4 0.373371E+00 0.,311494E+00 0,342969E+00 0.346380E+00
S U.590262E4+00 0,485757F+00 0.537537E+00 0,541621E£+00
6 U,7947174E+00 0.,646981E+0D 0.,720014E400 0.724433€+00
7 0,95599HE+D0 0,760558BE+¢00 0,860896E+00 0,B65287E+00
8 U.1N4732E+01 N,B8295B2E4+00 0.936446FE+00 0.940461E4+00
-9 0,105081E+01 0.B17133k400 0,931268E+00 0.934605L+00
10 0,959172E+00 0.727695E+00 0.840009E+00 0.842438E+400
11 0,776638E+00 0.566137L+00 0,668027E400 0,669410E4+00
I XD(T) XD(1) XD(I) xDCI)
2 0,309017K+00 0,260676E+00 0.284772F+00 0.284646F400
3 0,539444E+00 (0,448685E+00 0.493775E+0:0 0,A493286E+400
4 0.669917E+00 0,547974E+00 0.608327E+00 0.607283E+400
5 V.690013E+00 G.552279E+400 0,620126E+00 0,618406E+00
6 G.601222E+Q00 0.4656%90E+00 0,531993F+00 0.529561E+00
7 01,416706F 00 0,30194RE+0N 0.357498E+00 0,354412E400
8 0,15290%E+00 0.R833536F =01 0.119506E+00 0,115921E+¢00
9 =0,1378JRF +00 ~0.1619%7E+00 ~0,152198F400 ~0,156045E400
10 N 440725E+0D -0.,402734L400 ~0,423989E+00 “0,427T99F+00
11 =0,711753E+00 =~0D,615408E+00 -0.,661802E+00 -0.,665302E+00

G%ﬁ‘JE;ﬂ ::Jﬂya = 5§ rﬂdy‘; 3‘: < =;_E____ =
2mBn 26)(S)
The probfem—c'ependcn* data, to be used in Program 5

output are given.

O~

=2

C FOLLOWING 11 ULINES COUNTALN PROALEM~DEPENDENT DATA
- DIMENSION Fr13),FF(L1) ,DELFE13) ,TC11 ), X (31),X0(113,x1¢11),
2 XDIC11),Xx2€11),XD2¢11),X3(11),XD3(11),44(13),XD4(11)
DATA F/—G..-lZ;.‘JS.,-13.,‘11.,-7.,‘4.;3.,10.,150119./
DO_5 I=1,11
5 FF(1)=F(1)
XAI=0,.1
OMN=S 0
DELT=0,.1
XK=50.0
C END OF PRODLEM=-DEPENDENT DATA

and the

_YALUL METHODR V1 METHOD #1 METHQD #2 METHOD 13
QF (FIG.4%.18) (FIG,4.19) tFIG.4.20) (F1G5.,4.21)
RN S X€1) X(I) x(1) X{1)




~D43553h1E-0}

~0,308375E-01

]
i
!

0.182155KE=01
N, 14511E4+0D0

0. 10D267E-01
0,191935E410)

-N,2R9472F+00
NDa4H2520F400

=0, 1N69T1E+00
N.T46090E+00

2 =0,9471628E=02 =0.284289E=0]
3 -0.415895E=01 =0,1245708£300 =-0,110554E400 =~0,117557£+00
1 ~0,888374E~01 ~0,231948E+00 () 224265E400 «0,229133E400
5 =0.129452E+00 -0,316847TE+00 =0,330743E+00 -0,326273E+00
-] =-0,140543E400 =0,34535uE400 =-N,391810E+400 -0,371424E400
7 -0,1N636TE+0D ~0.292742F+00 ~0,3812RBE+OD =0,341045E+00
8 =-0,149353E-01 ~0,146366E400 =0,2R4987E+00 «~0,213841E400
_—9 0.138RB45E+00 0.7862067E=01 =0,100887F+N0 =0,136816E~01
10 0,341364E+00 0,340894E+00 0.,147643E+00 0,2445358400
11 0.559359E100 0.5897u2E+00 D.415128E400 0,488339E400
1 xXD(1) XD(1) Xb(I) XD(1)
2 -0,363160E=01 «0.136185E+00 -“0,547484E400 «0,618556E+400
3 -0.879517E=01 -0 ,209522E+00 =N.10521RE+01 ~0.105547E401
A =0.960236K-01 =0,208906E+010 =0.,117245E401 =0.111170E+01
5 =0.627967F=01 -0,123358E+00 -, 916858E+00 =0,762976E400
€
7

-
.Q\OQ

0,238516E+00N
D.358701E400
_0.429269E+00

0.375367TE+00
0.,499280E4+00
N0.522310E+00

N0.,138R00E+01
0.,220328%+91
N,265575E+401

0.167033E+01)
0,239024E+401
D,268039E+0}

0,.420343F 400

0,448691F900

0.25R8326E+01

0.195527£401

The pTOHenv dependcnt data to be used in Program 5 and resuLts are

ngen
C FNLLUWING 1t

LLIMES CUHNTALN PROBLEM=DEPEWDENT DATA

NIMERSION F(51),FH(51),DRELF(51),T(51),%(51),%XD(51),X1(51),

2 XD1(S1),X2(51),%N2(%1),X3(51),XD2(K1),X4(51),X04(51) .
DAFA F/0, ,2.,4.,6..8.,10.,1).,14.,16.,18.,20.,20.,20.,20.,
2 20.,20;,90,,gn_,go.,?o.,zn.,zn,,zo.,zo.,20.,20..0.,0.,0..0..
3 u,'(),'U.,G,,i),,s).,().,U.,D.,0.,0.,{).,0.,0.,0.,0.'0-ook-pocro-a‘
4 0./
np 5 1=1,51
FF(TY=F(L)
LaT=0,0
NHUN=27,3861
NELT=0,01
1K=t5n0 U
hp=yui
C END 0OF PRUMLEM=DEPENDENT DATA
VALUE NETROD §1 METHOD #1° HEIHAD A2 METIHDD #3
__~Pf-_ (FIG.4.18) (FIG.4.19) (FIG.4.20) (F1G,4,21)
1 x{1) X(1) X(1) X(I)
2 DI6802E-043 0,49931764E-04 V,496882k~04 0.662924E=04
3 00,2497 3RE=03 0.439787FE =03 0,244 738BE=~03 0,326397E~03
4 0.66998TE=(03 3. 109524F = 0? 0,6699RTE=013 0.R60303E=«013
5 0,132312E=-072 B,211625E=0 0,139312E=02 0.172759F=02
6 U,245201E-02 0.352610E~02 0,245961E=02 0.296301E=02
7 0.380935k =072 0.5319210FE=-02 0,31HRIISE=-Y2 0.457384E=02
R D.0607516E=02 C,736U97E=02 0,567516E=02 0.653940E=02
9 0.71T1331E=02 0.989115F =02 0,778330E-07 0,H81258E-02
1o 0., 101560E=-0] (Yo 129288BE=01 0.1015%560E=01 0.113233E=01



45
46
47
48
49
50

L
DOLC AP W

(SRS I =,
- DOV ~NTW;

0.798192K~02
0.831680K=02
0.,A03221E=02
O0,714B9T7E=D2
0,573290K=02
0,38RI54F=02
},175:293E-02

b(1)

0L, J6U6NLE-D3
0, 10549 3k=02
N 203123E=02
0,3216731.-02
U.452309F =02
0.5B5294E~02

o TINTISE=N?
0,819225E-02
0.902736k=-02

0,233952E~02
QL M3IT3N2E=-N4
~0,215904E=12
-0, 325090E-02
«0,602593E~02
-0,735183£=-02
-0,812978kL=02

N.8451067E-02
N.807N62E~02
0. 7018834E=02
0.557710E-02
0.3650L4E~02
D.145202FE«02
=~ .854H40L=-03

X))

0L.T2120)F=03
0,174925E=02
0.,300753E~02
0.440224E-02
N.582915kK=-02
0.,718278K=02
0,A306136E~-02
V.,927735E~02
0,986248E =02

-0,2443374E~-03

=0,252103E=02

~0,460977F=02
=0.6315495E-02

" =0,76264BE=02

~0,R32959E=02
-0,8411A8FE~02

0,798155E=-02
0,831682E-072
U,803222E-02
0.7148Y6E=-02
0.,5732838E=072
0.348951E=-02
0.175624E~-92

XD (T)

0.987545E-02
D,288903K-01
0.556274E=01
0.880938E=01
0.123R70F400
0.160269F +00
0,194637E400

0,224354E+00.

0.247224L 400

0.,640694K-01
0,256574E=02

o =0,591291E~01
“0.116417E+400
=0,165028E+00
~0,2013319E+00
~0.222644F400

0.H27565E-02
0.825346E-02
0.761612€~02
0.641114E~02
0.472931E~02
0,26930HE~02
0.457121E~03

)

0,148443E=-01
0.385198E=~01
0.h92620£~01
0.,104780K400
0,142425E+00
0.179333E+400
0.212929E+00
0.240531E40Q0
0.260144E£400

0.289420E-01
=0,333924E=01
-0,932780E-01
=0.146211E400
~0.188247E100
~0.216253K400
-0.228140F400

C FOLLOWING

The problem - clependent data to be used in Program 5 and output are
given below.

2

ki

11 LINES CONTALWM

PRUALEM=DEPENDEN1T DATA ‘
DIMENSLINN F(51),FF{51),DELF(51),T(51),X(51),XD(51), x1(51).

ADV(51),X2(51), XD2(S\) X3(51),XD3(51), X4(51) XD4(51}

NATA F/Q..2¢o’;v

'6.'80310}"12-

'14¢'16';18

-pzo-'20-:20-;2“-'

2“.“?0.’200'?0"?00'20"20"20"20.,2().'20.'20.'().'0.'0.'0.,

-:0..0.;0..0..“.;

0 /
D s 1=1,51
FF{L)=¥F (1)

XAl=0,07120872

NIAN=27,.3861
DELT=0,01
Xk=1500,0
WpPs=ssi

-;0-'

€ END OF PROBLEM=DEPENDFAT DATA

N,,0.,0,,0

< 0.,0

00010110'000101 'Ool
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HETHOD %1
(F16,4.18)

METHOD #1
(FI1G.4.19)

METHUD #2

(F1G.4.20)

METHOD 83
(FI1G.4.20)

. A WP G AP MM S @ e e o A M e MR N A Ve m W M A N M AR MY e o M e M R R M Am s Em e N R YR A6 e g e ENS A A e W e e S e o e o e o ey

pu
s D O DWW WN

0.3887713E-D4
0,237610E=-03
0.642607E=03
0.132NR1F=02
0.230651E-02
D,360999E=02
0.521792E-02
0,709550E=012

0.9190005 =07

0,877 126E-04
0.426350E-03
0,304760E-02
0,1999N0E~Q2
0,329221F~N2
0.491347E~02
ND.uHB25R6E-02
0.897307E~02
N0,112845E-01

0.488713E-04
0.237610E-03
0.642607E-03
0,132080E=02
0,230651K~02
0.,360999E~02
0.521792F-02
0,709550E-02
0.919000E=02

0,652702E=~04
0.316883E=01
0.824391E-03
0,163535E=02
0.277294E-02
0.423546E-02
0.599767E~02
0.R01378F=02
0.102218L~01



45
46
47
48
49
50
51

LYTR -V B U N0 JR ¥ I VL I NN

0.440657k =02
0.529242=02
0,5715D315=02
0.576/43E=02
Ge53651TE=02
045921 0E~072
0.352290E=02

XD(1)
0.35026HL=03
VW 100R2SE=02
O, 191111 E=02
D.298L27F=02
0.413276F~02
0,527791F=u?
D,h3337TE=N2
0.,722794FE=02
0 T9U330E=072

0.79537 2=y
)a246078F=N2
Q.dbl1 7348 =03
~0.721996F =01
N 2171591k =07
=0, 34007 =12
~0.4316H3E=02

V,.534203F =02
0.5T6RIIk=07
0,5754745F N7
NoN3I23M0E«02
9.452545k =02
J.343772E=072
D.215312F=02

XD(1)

D,100531F-03
DelbhH23km0y
D,2R131975=079
N,405142F=102
N,3728125¢F-02
O,042306F~02
O, T3R90 k=02
0.812211F=-02
DB TREGF-0]

Na231794L=02 -

D.T715291F=-013
=J.B33375E~-03
«0,2273347F =02
=1, 147942L=02

=0,137300L=-02 -

=0, ¥IN573E-02

1.440600r =072
U,529244F =02
N1,5750328=-N2
V570718 3R=072
0.531651AF=N?
0,459200L =07
0,3522k6E=02

XBil)

D.BAR3VHAE=UY
N,2772THE=011
N.9250573F=C1
0.81987nk =01
0,113655K400
V14514 7F 400
D,17TA138E 100
V.198715E400
0,217348F yu)

U, 10NTIVEH00
O,bToT26F =01
N _236877FE =01
«0,104553FK =01
=0, 590303k =01
=0,93h257E-0)
~J,118769F+00

0,3191147 =072
0.5%H99KF«07
N,579144K~i2
O.58HI0TF=N2

497821 F=02
103720 E=02
D.2851 k=02

1)

0.195198E =11
0.3h9691k=0)
0.h93292E-01
(1,9725U1F«0]
0.13023/k400
0.1611341k400
0,199831K400

Q,212348k40y

0.228023t40u0

UL HTINST2E-01
N 341850E=01
D,197140E=03
~0,41h597F=01
«0, 7P 34A5k=01
“0,107736E400
0127 765E100

== [ S ) i

sin th (DSQS‘T - Cof Uﬁtt fin Q%?

But

Sin (BJ (t —t’) =

-yt

x('&).. [A®). sin )t — BlE). o1 Wyt ] e "

m.au

where |
T W,T

NOEN O
B(t)= .{fF('C') O sin v 4T

ot ©,T -d

Let F(r) be fa.n:n as o Pl'eccwisc "a‘nedr func'f:;'on
olu.rmy (f‘ ot ) as

T
F('t')_ ‘. |+ :—f; )(F

,,
* N




we can er:e t

§ Yz ar eru"tmswt-df
A(t:) = A (b)) + v \aE b
4=}
t; AF: YW T Az
+ j (F.'—» -4 2t € wr T 4
L N |
£
: -t 2y P
= A(tiny) + 22 B+ (Fy = B A’e) :
Ai‘:; )
where t: W, 7
f; = ‘f t‘.ej' o§ “Ut"at'
: ti

Bt 7("1\? ' a7
P, = JE:‘ e cos W7 4
=1

Ny To,. .
AN AY: sin (T 4T
B(t)= B(ti)* {._'(At;

t; AF; YOt | ‘
+.£~‘ (Feurm Bimi 35 ) € S 0T AT
A~ *

. AF;
= B(t,_‘-g)‘*‘ "'""“AF‘ ‘&, +(F4'-i-{ )P;
At

-t 2t
where +. -'t’ :
p.=J ‘ e‘rw,, sin @, T-dv
i3
ti-
+; TWNT .
P, = j'{—‘ T e sin 6 T 47
4 t.
4=l
Assuming A(t=0) = B(t,=90) =0,
-y, ts , .
x(t) = TN ) s ate - Bt e ayts]
™ 65y - - :
The ir\{egmls in P, P2, Py and Ty can be evaluated in C."”e‘"
Form . '
The computer program and output are given.
C ::::::::::::::::::::::::::::::::::::::::::========='==================
C

C PRURLEW 4,55

C NUMERICAL INTEGEATIUN OF DUHAMEL 1NTEGRAL
C .

( S==2====SZ=5=SSSSSS2SSS3SSSSSSCoSESSSSSSoSSSISSSINSSSSCSSRSSESISSZSSSSS
C PROBLEM-DEPENDENT DATA

DIMENSION F(21), X(21),DELT(21), T{21).A(21},B(21)
NP=21

XAI=Q, 1

OMN=1. O



XM=1.0 : »
DATA F/71.0,. 8434, . 6910, . 5440, . 4122, . 2929, . 1910, . 1070,
2 . Q4B%4,.01231,.0,.0,.0,.0,.0..0,.0,.0:.0,.0,.07

Do 10 I=1,21

10 DELT(I)=0. 31415
C END OF FPROBLEM-DEPENDENT DATA

A(1)=0.0

B(1)=0.0

OMD=0MN#SART (1. O-XAI#%2)

T(1)=0.0 ,

DO 20 I=2, NP

TC(I)=T(I-1)+DELT(I)

TIME=T(I)

CALL PI1<(TIME, XAI, OMN,OMD.PP1}

CALL PIZ2(TIME, XAI,OMN, OMD, FP2)}

CALL PIZ(TIME, XAI, OMN, OMD, PP3}

CALL PI&(TIME. XAL., OMN, OMD, PP4)}

TIME=T(I-1)

CALL PIL(TIME, XAI, OMN, OMD, PM1 3

CALL PIZ2{TIME, XAI, DMMN, OMD, FM2} -

CALL PISZ{TIME, XAI., OMN, OMD, FM3)

CALL PI4(TIME, XAl, OMN. OMD, PM4}

P1=PP1-PM1

2=PPI-PM2

P3=PP3~PM3

P4=PP4-PM4 ,

DELF=F(I}~F(I-1)
ACI)=A(I—-1)+(DELF/DELT(I) ) #P1+(F(I-1)-T(I—1)#DELF/DELT(1})#Po
B(I)=B(I—-1)+(DELF/DELT(I))#P4+(F(I—-1)-T(I-1}#DELF/DELT(I))*P3
X(I)=(EXP (=XAT#OMN®T 1)}/ (XM#OMD) ) # (ACI)#SIN(OMD*T(I) }—
2 B(I)*COS(OMD*T(I)}) '

20 CONTINUE
PRINT 30
30  FORMAT ¢(//.2X,41H NUMERICAL EVALUATION OF DUHAMEL INTEGRAL.,

2 //7,8%, 2H I,6X, 5H T(I), 10X, 5H F(I), 10X, SH X(I), /)

DO 40 I=2, NP

40  PRINT 50, I, T(I),F(I),X(I)
50 FORMAT (2X,15,3E15.8)

STOP
END
(o T e e Y P e e e e e O T r-Tesee — T =
C
C SUBROUTINE PI1
Cc
C ================================================================ ==z

SUBROUTINE PI1 (T, XAI, OMN, OMD, P9
DEN=({ XAI#*0OMN ) ##+2+0MD##2 ’
P*(T*EXP(XAI*OHN*T)/EEN)*(XAI*ONN*CGS(0HD*T)+0”D*SIN(GHD*T))
—(EXP(XAI*DMN*T)X(DEN**E))*(((XAI*OMN)**”~DMD**2)*COS(DMD*T)
3 +2. O*XAI*DHN*OHD*SIN(UHD*T))
RETURN
END



OO0

QOO0 n

SUBROUTIME PI2 (T.XAI,OMN, OMD, P)

DEM={ XAI#0MN) ##2+OMD##Z

P={EXP (XAI#0OMN#T} /DENI#{XA

RETURN
END

B e T - e e e e e e e e T R

SUBROUTINE PI3

I#OMNACOS{ OMD#T : +OHD*G IH {OMB#T 1)

T ot oy e ST ey o S T Y Mt A MY i et S e S D iy A 08w S N mg S B ey ey T S dmimy oy S e 4ot Sl oot o) T Sy A T Ay o e At it i Sy S T gt e ey e ¢ N 0 T
P e A e B e b e e e et R R e bR b e b dra R e B - o e e e ) -2 A

SUBROUTINE PI3 (T, XAL. OMN: OMD; P)

DEN= ( XAT #0MN) ##2+0MD+#4#2

={ELP (XAI#OMN*T) /DEM) # ( XAT=#OMN#SIN{OMD® T} ~OMD#COS{OMD#T ) )
RETURN
END

BUBROUTIMNE PI4 (T, XAI.OMN.CMD, P)

DEN=(XAT#0OMN) #:2+0OMD##2
P={T#EXP { XAI#UOMN#T) /GEMNI # ( XAT2OMN#SIN(GMD=T) —~OMD*COAS(UMD%T) )
& ~{EXP(XAI#OMN*T) /(DEN#¥2) i # ({ (XAI#OMN ] #32-0MD##2) #*SIM(OMD#T)
2 ~2. O#XATI#0OMN#CMD#COS (OMD*T ) )

RETURN
END

NUMERICAL EVALUATION OF DUHAMEL INTEGRAL

1 T(I) F(I) X1
2 0. 31415999E+00 0. 84359992E+Q0 0. 45415%38E-01
3 0. 6283199BE+G0 G. 6F09999SE+60 G, 15377741 E+00
4 0. 94247997E+00 C. 544GO00CE+Q0 C. 32499743E+C0
5 Q. 1256&404E+01 C. 4121%997E+C50 0. 49747467 LE+Q0
6 0. 1570B008E+01 0. 29290003E+00 0. 6515273BE+00
7 0. 18849611E+01 C. 17099998E+00 ©. 7&235210E+00
8 0.219912153E+01 . 10900003E+00 Q. 81256395E+00
9 0.2513281EE+01 G. 4893999FE-01 O. 79324198E+00
10 0. 28274422E+01 ©. 12309998E~01 G. 704E82814E+00
11 0. 3141&025E+01 0. O000D00QE+Q0 0. 55645867E+00
12 0. 3455742FE+01 0. 0000CO0CE+CQO 0. 35454141E+00
13 0.374699232E+01 O. Q000COOCE+Q0 C. 14971565E+00
14 Q. 408408B346E+G1 . OCOGOO0CE+GO~C. 65231847E~01
15 0. 43982439E+01 0. 0000GOCQE+Q0—-Q. 2627444 1E+00
16 0. 47124043E+01 0. 00000000E+00~0. 42235131E+00
17 0. 50265645E+Q1 Q. Q000GOODE+Q0-0. S3218421E+00
18 0. 33407249E+01 C. OQ000C000E+Q0~C. SR483123E+00
19 0. 56548853E+01 0. COO0000GE+C0-0. 57878375E+00
20 0. 57690454E+01 C. 0COOCOQOE+00-0, S1B1S199E+00
21 Q. 628320&0E+01 €. 0CO0CO00E+QO-C. 4121 2624E+00




The computer program of problem 4.55 can be used to find the
requive d«’sf:lax.gmeh{ 3.(t) of +the water tank provided -—-m }(t‘)
s use_cl in Fla.(_e O_F F(T-')'

Here "";'.:-.-.o y W= 22.3607 ra_a'/sec a.ncf
F(z) = - 10000 X 9-8) x }('C') i # is in }as’

The Problem— dcpehdenf data :For ‘L",c Prajra,rn of ,‘.‘:ro blem
4.55 and the ouf‘but' are 9Weh below.
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PROBLEM 4, 56

-3 -+ 3 % T TP T

PROBLEM-DEPENDENT DATA
DIMENSION F(18)., X(15), DELT{15), T(15),A{15),B(15)
NP=15
XAI=0, O
OMN=22. 34607
XM=10000. 0 o
DATA F!‘. O, .45, ~. 8, -. 9) -, b - 75, -.7,.95,1. 75, 1. &5, . 25,
2 —-1.1,-%.4,-1.085,.,0/ '
DO 10 I=1,13
10 DELT(1)=0. 029
PO 11 I=},1D
11 FLI)m—-XM¥%9. BI#F(]I)
C END OF PROBLEM-DEPENDENT DATA

R T TY SN i SRS M SR TU IR TRIT TN N0 S5 THE SN R TH S A ey S e

C
C
c
C
Cc
C

NUMERICAL EVALUATION OF DUHAMEL INTEGRAL
L \

I TCI) ‘ F(1) : X(x)
2 0. 24999999E~01-0. 44144995E+05-0. 45271123E-03
3 0. 49999997E-01 0. 78480000E+05-0. 17433337E-02
4 0. 7499998BE-01 0. 88290000E+05 0. 1115077&6E-02
5 0, 99999944E-01 0. 38840004E+0Q35 0. BA0O9I147E-0O2
& 0. 12499994E+00 0. 73575000E+Q5 0. 179519452E~01
7 0. 14999992E+00 0, &4B&70000E+05 0. 2537434BE-Q1L
8 0. 1749998FE+00—0. 933935000E+03 Q. 28479131E-01
9 0. 19999997E+00-0. 17167500E+046 0. 19474924E-01
10 0. 22499983E+00-0. 16186494E+046—0. 42401228E-02
11 0. 24999982E+00-0. 24525000E+05-0. 38448214E-01
12 0. 274999B0E+00 0. 10791004E+046~0, 573877436-01
13 Q. 29999977E+00 Q. 13734000E+04~0. 36341448E~01
14 0. 32499973E+00 0. 103003Q06E+046—0. 30433871E-01
15 0. 34999973£+00 0. 00000000E+Q0 ¢, 10307007E~01




The

C PHODILEM=-D

ERPEHDENT DATA

problem- dependent data (to be used in the program of Problem
4.55) and output are given.

DIMENSTOR FEI0),X0¥0),DELT(30),T(30),A(30),B(30)

NP=30
XAl=0
UMH=8
i1=2,

DATA F /Z60,0,60,0,60,U0,6Uu,.0,60,0,100,0,100,0,100,0,100,0,100,0,
2 10,40,30,0,30,0,30,0,10,4,30,.0,0,0,0.0,0,0,0.0,0,0,0,0,0,0,0,0,

'l)
660254
0

3 0L0,0,0,9,0,0,0,9,0,0,0/

ny 10

10 DELT(

1=1,30
1) =0,01 .

¢ LND UF PROBLEA-DEPENDANT DATA
NUMERICAL EVALUATLIUN NF DUHAMEL IN1EGRAL

16

20
21
22
23
24
25
26
27
28
29
30

),99999993F~02
0.20000000E=01
0.,29999999F. =01
0.3999999YkK~01
0,50000001E~D1]
0.60000002E~01
0.70000000E=01
0,.79999998E=01
0., RI999996L~01
0,9999949943E-~01
N, 10999999F 01}
0.11999999E+at)
0.,1300000QE+U0
0.140000N0E+UO
G.15000001E+00
0,16000301F+00
0,17000002E+00
0,1A000002E+000
0.190000083E+00
0,20000003E+00
0.21000004E+0N
0,220UN004E+10
0.23000005E+00

0.,24000005E+00

0,25000006E+00
0,26000005E+00
0,27000004E+00
0,2R009003E+80
0,29000002E+00

0,A0000000E+02
N, 6000N0NNE+02
0,60000000E402
V.000000D0E4+02
0.10000000F.¢+013
Y, 10000000E403
N,10000000E£403
1, 10000000F+03
0.1000000U0&£4073
D.30000000K 4072
0.IN0BDADOE+02
0,30000000L+02
0.30000000E+02
0.,3J0DURUUOESD?
0,30000000F +02
0L,Q0000000F+00
0, 00000000E+00
0.00000000E4+00
0.00000000E+00
0,00000000E+00
G.00DD00NQEFOO
0.00000000E400
0,00000Q00F*00
U, 00000000E+00
0,00000000E4+00
0,00000000E+00
1.,00000000E+00
N 0000000KE400
0,.00000000K+00

0,149907968E-02
0.59849964FH~=02
1,13424230E~01
0.23760952E~01
U.3725073%E=01
3.55125091FE=01
0.77583194F~01
0.10445669E400
fi.13554408F+400
0.170029603E400
0.,20532255E+00
0,24057558E+400
0.2755%2453E+00
V. 30990744E+400
0.34346649K+00)
0.3757T0029E+Q0
0.10536803E+00
0. 13199742E400 -
0.45538884E+00
0.47536695E+00
0,391 78207E+00
0.50451112E+00
0.51345861E4+00
0.,51855767L+00
N,51976%985E+00
0.5170R633IE+00
0.51052707E+00
0,5014120E+00
0,4860067T1E+00




(1) Find Yla.,fura_._mf-r_e’&u-&‘r:%“
v Jt; = '"’L’z = Bmafz

z
b 4 :
SEE E et
(i) Find_eguation of motion : - )
when the base and i,
hence the pivot O is oyt %
displaced by 3(t), NG
»‘H'le c:ln's‘Pla.LEme.n'b of
mass m , x(t), is ‘ ,
9:'Ven Bj » -
GY)

e (t)= % (E) + £ o(b)
Relatiyve d(slalo.cemenf: of mass is '
}(f) = x(f) —_ y-(t) = b 6({:) (EB) »
A : R | | ‘
P
F——— @ ——b-] Ix('t)
| N g n
Epuation of motion: O}“ g ‘ - b ——'){
Z Forces almy y (vertical) direction =o 3 F}fkw 8 =mx (E,‘.) |
2 m::men{:s ) a..Lou.f F Ele) » = @B—-‘kw 9(6‘ a,);g (Es.)
Solve (E.:,) for Fj and substitute the resutt in (Eg):

(kma + mx)b— kake(b-—a;) =0

e, mb x + © «af =0 Ee)
But x = ¥%+3% and e(¥)= "{; 3.(¥)
Hence ( Ey) becomes '
mby o+ EE 3o b
3+ I = —mb ¥
or '“}+15§;=-m5 | (E7>A

E&-(E7) can be compared with o standard Forced wvibration
C@uo,h‘on for an unJa,mFeJ system: ‘



m x4+ K x = F() (Eg)

ComFa.rison of (E7) and (Eg) Shows that v
2 ' s

x.—_g,, m=m, * = Ka a.ml.ﬁ=—m<'f (63)

~ Lg_

- - . - — s o - —

in ProHem 4-19. Hence the solution of problem 419 can
be used +o _«Fc‘na! the reletive displacement.

(i) pesign:
EZ'(E‘> gives VK = 60T Vm or &= 3600 m. ‘_(E,,)
Fo”owl'nj Prccedure can be used to solve the 'broblemi'

@ Assume @ value of @

b. Assume o small velue of m-

c. Fmd %  from Es- (Ep)-

d. Evaluate the solution numerically qs outlined in Pax\‘:(fio.

e. If the maximum relative: dl'srla,cemc_nf‘ is /(a.rje,r than or
Egua—[ G o.02 m, the des\‘gn s complete.

f. Otterwise , increase the value of m and go fto step c.

d If necessary change the value of ain skep a.

Lef 4 and m c‘enote +he eaufvwlenf Sffffnesr a(nd vrna.«..SS of
the cutting head.. _
Ezuat-‘on of motion is: ' R + &k = = F(E) (E,)
, - where F(£) is given by
. Figs. 4 .34 (a) and (b).
Solution of £5. (E,) under the force given by Fig. 4.56 («)
can be obtained as in ;zr-oblem 4.15. Solution of (E)) under.
the force of F9. 4.56 (b) can be determined uwusing «
ProCedure similar to that of Prablem 4.24. .

The values of & and m can be determined as follows:

. Assume a small value Ffor m-
b . Assume a small value for «. 7 |
c. Evaluate the response under F(+) given by Fig. 4.56(a),

-



d. Evaluate the response under F(t) 9iven £y F@, 4,5¢ (L)
€. If the responses in  steps ¢ and ol ore a,,b)oroxn'ma,i-cg
egua,l to 0.4 mm and o005 mm , the current

values of m and & are the desired wvalues.

+. Otherwise, increment +the value of m oand/or «
and geo to step c.

@ Model the system as a single d.o.f. torsional system with:

Jo = 0.1 N——m2 ; ¢t =0 (no damping assumed) ;

ki = —— = —— (80 (10%)) [ (dd — d‘*)]

where d, = outer diameter of shaft, and d; == inner diameter. ;
k, = 62.832 (10°) (d2 — d{) . (1)

Torque acting on the arbor due to breakage of one tooth can be modeled as shown in
figure.

Ca{:fer ) "“Mt.(t)
m, 4 Arbor
Z > ¢ oM
e S O SIS S A YN
? : C
A Z ' L
e— 025 m——»] ° By 2 12 27
~ 05 M———
My = 500 N-m, 7= 27 _ 2T = 80/N = 60/1000 = 0.08 sec where N =
w N (2 m) /60 ‘
speed of cutter = 1000 rpm. Express M,(t) in Fourier series:
Mt(t)=_§_+2[a.ncosnwt+b smnwt] ‘ l (2)
n==1
(see solution of Problem 4.6 for procedure). where w = ZN = 104.72 rad/sec.
Equation of motion:

where M;(t) is given by Eq. (2). Find solution of Eq. (3) and determine the maximum
value of 6, fp,y. This value must be less than 1°.

Note:

The solution requlres an iterative procedure Assume values for d; and d,. Compute ki,
find solution of #(t), and the value of 8,,. If 8., exceeds 1°, choose a different set of
values for d; and d, and continue the process until 8,,, comes out to be less than 1°.




Chapter 5

Two Degree of Freedom Systems

@ Ezuaﬂons of motion m, X, + (’k,+ k)% = K%, = o
. - : (Ei)

with x;(t) = X; cos(wt + 2); <= 1,2 Egs- (E1) give the
freguency ezu.a_t.‘on '

——u97‘m1+4<.+4<2 - kg S
- k?_ v ' ’ *Cﬁzmzﬂ— ‘kz\
4 _ (Kt Rz | K\ g2 *, Ky (e
(sl g wo ( 1 -+ —7;2) 9 + — . 0 ( 2)
Roots of Ez . (Ez) are ;
o 2 K+ k2 K2 \/_1___ %, + %o ky\2 B e, *3 E
Yis @G = 2my Tt 4'( ™y ¥ “"2) Ty ™2 ( 3)
' 1
¥ oW Xy —(2) x®
X = ) (1) amcl X = '(2) .
2 2) .
X(z = ‘ri xi x; = rz Xi
2 | |
Xm —wmy Wy + 4+ K2 Ky .
n= 2 = = n (E4>
Xgi) ke —myW3y + ¥z .
X“z) ‘ m wzl + K + K ®2
n= 2. = — * ' 2 = - (s)
x¢ e ~ Mg @} + k2
Geneval solution of (Ey) is :
i , ) :
%, (£) = X(i) cos (wi{: + ¢i) + ')((i cos((ﬁzt + ‘¢2) (E )
. | B
€Y

1 L.
')Cz(t) =Y X,_ Cos(wi‘t-+ ¢j_\) -+ \"2_ X(i?—) cos (Uzt + ¢23

where x(‘t) ) ,sz)> 9{1 and 9&2 can be ;Found using Ezg.(s,j_S).

For wy=wm, ™,z22m, k3= K and k= 2k, {E3) gives

wi = (z—ﬁ),f? , = (24 3 )X

(&y)



when = 1000 N/m and m= 20 *g

Wy = 3.6603 faA/S&c and Wy = 13.6603 ra.J/sec |
Yy = /kz ‘ = 1+36604, B = k2 =-0 36&02
- + %, S | Commpey kg
With x)(0) =1, %) =0, %,(0)= -1 and %,(8) = o, G5 (s 1)
£ = -0-36602, X’ =-136603, g, =0, = 0

Response of the system is
*y (£) = - 036602 os 3:-6603t — [.36¢03 cos l3vvv6603 t
% (t) = - 05 cos 3-6603t + 6:5 cos t3-cgo3 t

Ta.xinj moments about 0 and mass my o,

o

™y ﬂf 5,_ = — wy (£ s 8;) +Q sn 8, (4, Cos 61 )
- R cos 6, ({4 sin &) I
= - Wy 11.91 + Wz Zi (92__91> . (Ei) l

assuming

2 ’ . i
™2 2 ®: + myf, (4, 6) = — Wy (L2 sina,) [=] ™2
: l . = -W 12 =2 (EZ> [ Wy
Using the re ations g, - *X1 d - Xpe My I I
1 —_ an e, = R ‘
Egs- (E1) and (g2) become 23 2 ¥4} Xz
L e
s ﬂz ;2. - WZ x3 + Wz X, =0 ) (E4> .

when my = *mzvzm, 11—12 £ a,‘nJ Wy= wz—mj, Ezs (53) O»hc‘

(E4) give oo
m2x1+3mg X3 —mg Xy =0

. : (e5)
mex, - M3 X 4 mg X, = o

For harmonic wmotion 2, (t) = X cos wt ; i=1,2, Eps.(Es)
become

—wtmf Xy +3mg Xi—-'mg X,_ = a

_(Bmlxz-mjxi+m3x - o (E‘);
from w!nck H-,e §re3ucncy epuation can be oH:o.meJ s

w*m (4m113-)w + 2 wmg? =o
e o c.92 (2;; J"') }

i 2
W= 07654 J: m,_: 1-9478 J;}:



.  Ratio of amplitudes is given by E,z.(Eg) as

Xo o __ ™3 | 1
X2 -@*ml +3mg T C_@z_l_ +3)

In mode 1, W = 0.-7654 [+ r + X4
Ne node X2

In mode 2, (, = r-8478\E,
£

x4 \(2)
L= (3&) = =2-4133

one wode located at 3 :

- N
:5_’ = 1___,_3‘ or 3= 0-2930 ¥ l o
i 24437 ¥ L
. made 2

Let Ry, R, and R; be the restoring forces
in Springs. Esuations of motion of mass m
in x and Y directions are

; ;

TT\; = E R, cos o ' '
PR (1)
" 3 L
™m y = z‘ RL- sin d‘_- (EZ)
=1 .
where R.= = k; ( x cos X, + ¥ sin °(i) (53)

Egs. (E4) 4o (E3) 9ive
3

mx + ®; 2o Sin 6y = :
(et e g s Bed) = o G

. 3 ’
mYy o ~'Z:1 k; (x sineX; ws ; + Y% ,xrnzae;) = o | (e5)

For o = 45°, ofy = 135° > &Ky = 270° and Ky =k, = k3 = Kk, Ear.‘(E#')

and (Es) rveduce to "
‘ mx 4 kx =o . (EQ)

1n9-+2'k'y._ = o | (E7)
These eguo.h‘ons‘ ‘are u.ncou.lo'-ed- For harmeonic wotion,

x(E) = X cos (Wt +8), Y= Y cos (ot + ¢), and l\enée
(L,i:: J—i't(n_:‘ ;01‘ ma{‘n'On w x Ciffﬁl:él‘t)ﬂ
W, = \[E for motion in Y direction
™ .
Natural rrfocles are 3iven }:3 'I‘(t‘) _ X mS(\Em‘ t + 961)
Y(#)= Y ¢os (‘l}n_‘i t+4,)

where X, $4, Y and #, can be determined From initial conditions.




. L
@ Egua:bzons of wotion in terms > f':
: m
of % and ©: L e L
=

wmx+k(x=L) + Ky (x+£,8) =5 (g,) \—1{:9
G o-1,4 (x=£,8)+ 1,8, (x+ 1,6) %, %,
For Free vibration, = (Ez)
x(£) = X cos (&3t +5) ) e —pe— £, —]
8(¢) = @ cos(wt+p) (&)

and Eps. (Er) ard (£,) become

—m st 4+ K+ K, RN R TR 7Y X o
. . = (&5
— (%4~ k2 42) —T W+ kAT L, [ (@ °

Fregue ncy egua,{::on is

- _
- L9 ~+- ‘k{’f’ kz_ — (k‘/gf -—';szez_) (
=0 E
- - 2 . €
(";’ll 1(,_11) -, c.91+ %, £+ LY !;‘ )
€.,
z ' -
-3 + Sooo 100
. = [o]
loo — 0.3 wz+ 2030
."e’) ‘
o'3c34—353o c.92'+lo-l4 )cco6 = o
;'E‘) X |
W = 7853373 , 49813293
= 70.5785 vadfsec , €9, = 82-3732 radfe.
Mode shapes: |
é
\(—-!000 c.9,2+ SXIO)X+ o-ix:os @ = o
or X } _ — o0l x10° )
—_ = — 5. <7
and ¢
X —0-1 X g
—— - — O
@ -~ _ oS¢0i

—tooe 87 4 5 x (0°

. ) 48E 1 48 (B (10'?%))
k, = stiffness of girder = - (30 (12))3

. _AE _ A(30(10%) _ .
ky = stiffness of rope = —— = ey () 12.5 (10*) A 1b/in

— 6.1728 (10% 1b/in




mass of trolley = 8000/386.4 = 20.7039 Ib—sec? /in

m; =
m; = mass of load = 2000/386.4 = 5.1760 |b—sec? /in
Desired frequency valie: w; > 20Hsz. Let wy = 25 ‘Hz = 157.08 rad/sec or

Wi = 24674.1264 (rad /sec)?.

~ Fundamental natural frequency is given by (see Eq. (E3) in solution of Problem 5.1):

Vi)

Using the known values of k;, my, and my, a series of trial values of A are given and Eq.
(1) is evaluated to find the corresponding values of w?. The results are given in the table
below. It can be seen that A = 1.1 in? yields a frequency that satisfies the specification.

k,
2 14

k,

Iy

k; ks,

my ms

itk
N 2m1

ky +k
1 ? .

m,

wi

(1)

A (in?) ko (lb/in) w? (rad/fsec)® | wy (rad/sec)
0.6 0.7500 (10°) | 0.1434 (10°) | 119.7 |
0.7 0.8750 (10°) | 0.1715 (10%) | 131.0
0.8 0.1000 (10%) | 0.1046 (10%) | 139.5 ™
0.9 0.1125 (10%) | 0.2176 (10°) | 147.5 ~ T
1.0 0.1250 (10%) | 0.2406 (10%) | 155.1 & x,
1.1 0.1375 (10%) | 0.2662 (10%) | 163.2 2
1.2 0.1500 (10°) | 0.2918 (10°) | 170.8
1.3 0.1625 (10%) | 0.3123 (10%) | 176.7 ™2 ‘I'
1.4 0.1750 (10%) | 0.3379 (10°) | 183.8
1.5 0.1875 (10%) | 0.3610 (10%) | 180.0 *2
r 1] ’
%, = 48EL 48 (206 xw0' ) (0-02) _ 3-09x:o‘ ya ok
L @#o)? QM

%y = 0-3)“!36 N/m N my = 10Q0 '1:3 > m, = 5004 kg ™y
Eg.(E3) in the solution of problem 5.1 gives ékz
wl (.91 = 3-33 KIOS o-3 moG 5 4 {3:39x |06+o-3x1o‘)1 3-o9xo-3xk;z ™,

te e 2000 tooco 4 1000 5000/ T ¢, 0

= (1725 7 1-6704)10°
‘u'i: 7-39952 vad/1, 9, = 58.2701 m.al/,a
From Egs- (E4) and (€5) of solbion of problem 51,
6
o2 °-3 Xt = w-itt7?
t ~m, ] + &, —5000 (54.6003) + 03 % 10® :
3
= k2 = 03 %10 . % = — 0:01799
—m, 3f + %2 ~5000(3395. 4046) + o-3 xv0
Mode shapes are o } _ —t
™ :{ -7 b, X )=- —oro1799 [ 11




@ Frequency equation;
[ -

or

(ku -t my) ko _
k2 (kgs — o my)

Expansion of the determinantal equation (1) gives:
(my me) W* — (my kgg +my kyp) o + (kyy kpy — kxz) =0
Roots of Eq. (2):

‘ (my kg +my kyq) £ V{(ml kyz —mjy ky3)?* +4 my my k%z}
Wi, Wi = ‘ ‘
2

‘ 2 ml Mo
Subsmtutlon of known expressions for ky;, k;3, and kyy into Eq. (3) ylelds
- 48 E1

wa =

[(1’111 + 8 mz) + '\/(ml —8 III:;)2 + 25 my mg]

(1)

(2)

e

(4)

. Eguai‘aons of motion : ) )
m‘:)z|+‘k|xl-—k12_=
} (El) |

‘m25(7_+(4< +'k2_)x,_.. ‘k'qc'__o sz
Let  x ()= X, cos(wt+d); »

= 300 kg

Eg, - (Ec> becomes
2 O'im -
—m, 03 + k, 3

1 | _5m_,[
- 2 =
ki —m, W4 G+ K, | xz

F"ezuencj egu.a:‘:fon is

- T, w4 < — K,
: . - o
— Ky —my Bkt ey
e

2.
™y - (7"4*;+m,1<z)c49 —-1¢,m2_a92'+ Kk = ©

= 1000 ks

my
< :
" =1,2 ‘ (E,_} . ikz_ 5xio N/m

5
;= 4 xt0 N/m



LE.,

- 2 mm,; K, ‘kz_ + 2mimgy k’l)z ]/Z My ‘ (Ej)

5
anC.E ml= lOOO Kﬁ) m2_= aoo kﬂl lklz 4XDOSN/1" M\A 'kzz 5 xiy0 N/m’

E;. (Ea) 9ives

W, = 14-4539 ra.al/sac » W, = 56-4897 mﬁ/sec
§= L“_‘__::_‘Ti_.i?. Hy = &y (1000) (__.)
’ 3600 216
where = ¢m and £ is in km/hr.
4= critical veloeity w4 = #1232 "539(2H 6) = 4-6887 #om/hr
531:: 56-4337 H} - A2 (looo >( _ 2
2T " \3¢00 /\ L 206

S 8,z critical velocity # 2= 56 4937 (206) = 194-1963 kmﬁr,

Egua,tions of motion for rotation a,bout 0 and A

3ive '

my l:: 5, = - w,SZ‘ $in 8 + & $in 8, (1, &= 9')—'610.59,_(1, ,tin'e,)
= -wiie+qf (o2~ )
= -—wlﬂtef o+ wz 2‘(61—- 9‘) _——— - (Ei)
since @ ~ w,. ,

2 e Ve R
mziz 62. +m,_lz (i‘ 9,): —_ wzﬂz‘ﬂnez
= -—-Wz 21 92 - (Ez)
For wm=wm; =m and 1,=02, =1, €gs. (§,) ond (B4 become

m i é' + 2mq €, ~ mg 8, =0

mlé;-f- md o, + mg 8 =0
ASSum;nj 9£(t—) o 9‘- cos (c.st+¢) ; {=L2 , we get

_ S ml +2m3 —~mg 9, © (e |
[_(Blmﬂ —wl‘mﬁ-k“"j] {92} —{o} ) : ( 3>
pefining ) = @wml 9,9_1_!: , frepuemcy Wlfm« com be oblained a3

™
} 3 I—-A+2 ~4 l_ J\z ‘A "2‘__
| B N R EIP R YR R



A= 2+ V2 = 3.4142

W, = 1-8478 (2_
1

For @y, Frrst e@.xaz,-mn on (E;) gives  for @ = 4, |
@ = —M+2=42 = 14142 4142
First mode
For w,, first eguation in (E3) gives for ®, =1, '
@y= Mg +2 = —J2 = 14142
Location of node :
¥ _ o1-3 :
Ipig - "I 3 & = o-4i42 = lgiya!

 Second mode

Ey. (&) in the solution of problem 5.1 gives

of ey = K ke / k+f<z “&)v_. ki ke
2my 2mg mag ™ My
For wm, 2=m and % = &, = k, we get
2 1 ® . & 1 2! :
ohul= i 3 ()& - 25 s
3, = 0-332 X, Wy = 2.619 *
9y = 0-6181 J—“ 8, = - e;so\/'——'l

Mo de S’[‘la,res’ oxe giVEH ba (se_c Ezs' (E4) a_né (E;) of Pro“em5'1>

*2

4

' )
Y. = — N . --»(') { x
i —mzwf+kz = | 6'8‘ 3 x = "G,S’} ¢
1 (2
-m, (.3:‘ + k3 - 0.6l%0O

For the system of Fag 5.3(a), -
2.

(‘) (}) } m' X.
m';_ xil)

P XE (e myn 1)
k2

-»IT -
5 ] X }:

—
—

)
, X,
But

(\J (z-)
i

e i)

m,-f-mz\", \fz = m,; + mz(

where

™y w, + ko &3

>( MZO +*‘1’f‘ k3> D

N=wm(-m, W+ Ky t+ %3)(=m, ©

D= (mmy OF + Fat K1) (e OF 4 kg 4+ ;)

z 2
: + K, + 'k3>+ w, k; , and



Wk Wy = (kw*a)’“ﬁ'(*l**’)'"iq:i
2 ™™g i

1m|m1
(Ki+ ®2) (%p+ 1) — g }1/?—

™ ¥y

85 substituts ng 2
{Ek,+ ) m, + (kz+ #3) "'q

we get

’

—

1

N - . z z z 2 2
=mm & &, - mm, Kk, Ug_ ~mm; ¥, W, —mm, K, (S

2 z 2
4+ my Ky + mKg K3 - mumy 3 03 fomy ky kg 4 om, Ky 4 omy ¥

2 [<k+kg_)m,_+(kz+ k;)rn,_ 2 g [+ k2)ymy+ (kp+ R3) my 2
= vl - o

=

; 2"". my
g (i Caerd 2 YT L g {27
m omz "y
\ ®2) Mg + (Kt K ~ 2
. {(ku— z)m tn ( Ky 4 %3) m, } b oA o mg b am, kg Ky K
) r 3
= 0
Eg. (5- IO) gives 2 Y
(800) 1 +(7o°)2 - i (300)1 + (700) 2 }2 (800)(700) — (506D 2
149: 3 "‘92 = 2{ 4{
2 7
= ss‘o F 3840573 = (¢5-9427, 934-0573
y= 12-8819 vadf1, I,= 30.5624 rad/s
@ Eg‘(Eg) in the solution of problem 5.1 gives -

2 (43 _ 8000 Gooo T 2000 €' _
G, = = \/4 (= + 6000) - ’-—1-1’5-'-"— = 917-2, 13082- 8
Wy = 30-2353 ra.cl//lec » Wy = H4‘ 3801 ra.d/,s
Egs- (Eg) and (Es) of solution of problem 5.1 give

¥, 6ooo s 1 ()
Ti: — = = 1-1805 ; ‘)-(P()z I'IQOF} X,
—my Wy 4 %3 -917-2 + 6000 ’ .
n = — = A =— 034715 R o 5,’4_”} x(z)
—m, 3, + Ky —13082.8 + €000

Same as example 5.4 with wm=m; =25 %9 and K= Kk, = ka_soooo N/,

) = \/——‘ {50‘;°° - 44-7214 ra.a!//s

2

3
/ ,cs ‘_
2:00 = 77-4597 rcwl//s

Gereral motion is given by Bp-(E,) of Example 5.4 -




x;_(t) = X(;) Cofs(4-4~'72t4t' +¢,) + x(lz) Cos(?'?-4-597t + ¢z)
x,(t) = x(l) cos (44.72!4.-(: +¢i) - XE1) cos (7._’.4_537_&1‘_ ¢2)

Eg - (5‘ 10) gives i
w2 o =4 §3000(2)+ 4—000(1) 3000(1) + 4000(1)} ‘ {300"("00") - lo0o ﬂz
e 4 _ S
= 1633-9746, 3366. 0254
Wy = 40-4225 rad/s, ;= 58.0175 vad /i
s

lcoO
= P = : = 1-3660
=LYy + R+ Ky —2(i633-2746) + 4000 '
rz_' k2 1000 3¢
= - = -~ 0O 60
~my 6921 + a4+ K3 -2 (335‘ _0154_) + 4000 .
When )= x (o) = x ,(0) = o and ';‘t (O) = 20 ?"'/X ’
x" = 1 E—o 366 (20)
(2)
X = | ’“(""") — 0-2719
-l 732 55’ ol15

¢ ¢z—t9m Coo)--"—

o c—

Motion of the two masses s given by Eg.(s5.15) :
X, () = o0-1046 sin 40.4225t +0.27(9 sin57.0175t
%y (£) = +(1-3660) (0.104€) Sin 40-4225t — (—o0-3660)(-0-271%) Sin sg.-0175%

=  0-1429 Sin 40.4225t — 0:09952 sin 58-0175%

@) w§= 9M7-2, f=13082:% , Ty= (-1805, Ty= -o0-§47I
xl(0)= 0‘2, X X ‘

*2(0) = %, (e)= x,(e) = ©

Eg- (5-18) gives

0 _ 2 2 0-8470)(0-2)] = o-08356
ol (- 0- 8471 — 1-{305) [( 470(-2) ]

@ __ 1 “
X (-1505)(0:2) | = o-il64

' C—-o 9471 — |- I?OS)[(‘ : ,

# = = ta' (o) = O

x,(t) = 0-08356 £30.2853t + 0.11644 cos u4--;90ut |

x,(£) = (11805)(0:08356) % 30:2353t 4 (-0-84T1) (0. 16 44) o5 V43901 %
= 0.-09964 1 30-2953t - 009864 of 114-3301 ¢

(b) ’Z,(O) = 02, Kz(o)z ;(.(0) = 0, ').(z(o) -_-.- 5.0

Eﬁ (5 19) gives 2 v,
4 F4
X"’=:f:‘55;z[{‘““’(”)} t AT 1 = - oner



3

—5)* 2
[ frmes e £ 3 S

—~2. 0276 13032:8

# = t—a.,.-;’{ >°

} = tow (- 0:9745) ="35.7399°
30-2553 (-0.8471) (0.2) _
‘¢z=‘+a‘m_i{ - 5.0

-1 o
I{4—-38@I(—I-|5’05)(a.1)} = tam (Q‘Igs') = l0:4¥35

() = - 0167 of (30.2853 ¢ 4 135.7399°)
~o0: 184 <t (147801 t + (p-43§95")

x,(8) = (1-1805) (~0-1167) A (30-2853% 4+ 135-73997)

— 08411 (—O'llg4) <of (1143801 t + |O-4—8’95?>

= _ 037 b (30-2853t + 135-7399°)
+ 01003 of (14,3801 t 4 10 4895°%)

Eguivalent system is shown in figure: o *y
@ 24 €T\ [rafaaire
'k.a'. - 2 % .ooLa= L, 2 ‘
) Lo x, ) Lo xd
g EL ' < !: l >
K, = *y = & = 4 1‘3 }omy=2m, m,=m ‘_‘-

K (zi" a)
EY).\_::.L_O‘IU o‘L, molion; X .

m x4+ (K K ) X - k%, =0
1'12.;'22 —

kexy 4+ K, %,
For fiarmonic motion x; (£)

= 0O

= X; c.as(tat-f- ?S) ; 4=1.2, we 34:&
(-uB?mM- W+ &2) ' .

- *y X, . P o
— Ky | (0" my + k) (X, B {o } ---- (&)
Fre?juenc‘j Bzucd;;m is | . o ‘ -

L ‘
G m + K+ k2) -,
: o
-k, (—& my+ k)
or 1 .
W mm, - ("“z.k|+ "?z"‘z*"“o*z) + k,k, =0
G91= (mz”ka+m:,kz+m.kz)j‘_ \[@zk,+mzk1+m,kl)2_4m'mlk kz:
2wy ' R )
For given data,

st (Tnk+m4<+2.mk)+\/6nk+m«+2mk) — 8w -kz___t(i_,____)
4m*
Jm

5 - 1-3066 JX _ 9.0524 ’EI‘
| ik A J: 2.0524 =5
From Eg- (E,), we get A ‘

3




~t

( 2
. X, — G my K+ K, —2m )y 2k —2(0-2929 k) 4 2 %
1 — — — = -
x(.')_ LY} % ;3
= 14142
(2) :
= X3 - 9y ™M, + )+ kg _ —2m ) + 2k _ =2(170TH k) 4 2K
x‘iz) Ky < *
= |42
. - 414 14142 — 4142
Mode SLaFes ore:  [te---= <—'—-"’11’ v
) . = 0-5833
1-0 () F=05
;(')_ { } Xy nade
= L4142 .
-)-('(1)_ { o }XCI)
-l 4142 f First mode Second mode
Tocation of node: (rno node) (one node)
r . 1-% .
TAl4z 1 3 3= o.583%

a3

x, P

i—

~——

et HP be the tention in fhe'sf:ring. Hort'son’fa.l,
components of tension (along xy direction) in the
St'ﬁtjlj ijina aJ:oVE and below m, are

(x,— 11!

Newton's second Lcu-) 3wes
..-x:_) P

L2

.(_mca’“+ -2-—;—

et

, respecti vely.

-1 m,‘l,-i-_).(.'.P_,_ ll—"xl)P=°
1 ) &
v, X, 4+ Xz p_(%-%
272 —=P P =o0O
3 "lz

XL('(';)';_-_ Xi CoSs Cf-?f'f-#) 5 Ai=6L2 , and ,le 113:,:,-_;,2) mEm,=m,

X\ o

= } _———— (El)
Xy .

This gives the -_Freguencb«. esuation

- (

»

P

e

1
(492_':-

-

midim - P
S'imn'la.rlj
Wwith
2 2P
Cme+ )
_ |
1
Cme+ Y
wy= [P
: w1
From {first Os: Egg (E ).-
)
= r =
x(')

)

T

°9+““(*“‘3+1>=°

{3°P
mi
r  ap
_ X(zﬂ """wz*'TA
=1 3 L P 1): -
xS ( )



mode shapes P by W ! >
ode Shapes are _;0): {’}x, i —i(z)z{ }x('z

- |
one node at middle of
t+he two masgses

For m=z3m, my=m, K =3k and Ky= 4, Eg - (Ea) in solution of

Froble_m 5.17 gives ‘ ' ‘
2! : ‘
CBrnk +rn{-<+3vnk)+ J(Bmk+m4<+3mk) - 3G1< m _ % (Vi\ﬁ?)

No node

2

u =
¢m?
W= 05657 X, 17676 X
m—— . k ro— » k
@, = 07521 [E |, = (3295 [E
) 2
Xy — WY M+ B+ K —. .
"= —5 = LT YT o moeWesT@ 43 L | ) g459
XY _tm, + kit ke _ -l7676(3)+—3+i — _1.3028

r’. - —_
x(z) - ‘kl N l ol
! tL ~1-302%
) e (2) 4

1-0 ) =@
-;(1):: { }xn o X0= {;1-3023} X

2:3029
No mode one node
| EA L ST
30218 L L
4 - 3EI _ 3E ( a.\’:3 Eat3
s Y = Koo,
| . = 'kcn.néu'lever
k,= AE _ ra’e ' .
Y, o : ~ | Wp=pm 3
From }vaEm 5.1, $k1= ‘k\'ope
: ‘
D2 = kit kg ‘/ (k'+k1— ‘kz. k,k,_ Waz| My 3
2_m, zmz m,mz

"

Eat dz 2
(a_ TdeVs | mitep
£

4 b sl w,

2 ~ ‘
[ ECL: 7 d E) 2 + 'ﬂdzE} 2— Elaafa'ﬂ_dl }2

+

@ From solution of Problem 5.1, we find that for m; = m,my = 2m, k; = k and ky =
2k, - . :
~2-Va £ ;w§=(2+\/§)3‘_
m
X kz
r]. = = b=
X —m, Wtk —1+V3




X?) _ ko _ 1
X&z) —m, Wi +k, —1 — ‘\/—3-

Ty =

First mode shape:
X cos (v t + )
= x{1) o
[V;&‘—l‘] cos {wy t + &)

For the motion to be identical with the first normal mode, we need to have Xﬂ)
This requires that (from Eq. (5.18)):

x{H X{V cos (wy t + ¢y)
I e X cos (wy t + ¢y)

2 : 2|5
1 {" r; x1(0) +xp (0)} + _(;_,1_2- {rl % (0) — 5‘2(0)} =0

Ly — Iy >

- x1(0)

X3(0) =1, % (0) = V;i—f
x,(0)

gm=hh@=KEtT

Letmy =mymy =2m,k; =k ky, =2k
Initial conditions: x;(0) = 0, x,(0) = 0.1 m, %;(0) = 0, x2(0) =0
Eqs. (5.18) yield:

1

xit) = 1 [(0_0_1)2}2 __01r 0.1 -0
Ty — 7Ty s —n —1 _ 1 : ‘ ; 3
. ’ V3 +1 3 -1
Sz) [0.1 2]-5— - 0.1 - 0.1
7 — I ( ) g —1Iy :§;3

¢y =tan™! (0) =0
$2 =tan™ (0) =0

where wy and wy are given by Eq, (E3) of solution of Problem 5.1.
Resulting motion: |
x1(t) =X{V cos (wy t + ¢y) +XI? cos (wp t + By) = — 0.1 {cos w t + cos wy t}
Xy(t) =1y Xgl) cos {wy t + ¢y) +ry X(® cos (wg t + @)

0.1

NS

ﬁ(v___] (_V.}M—v——]



1 1
Jcosw1t~{

53 —1

V3 +1

} cos Wy t

&)

expressed as -

> (zm o) =

From solution of Prouem 5.20, this fneaua,“fj can be

t3
wz—(ECb +

3947- 8602 (rad/sec)’

= 2
rwd®E ) 3 . U Eg
2 W 8l w,
Eat’ 7ra(2‘E 2 md*eg)* glht’nd” ;z]
[ {(453 44 Wy 44w, 6l b? wiw,

= 3947-8602

Dato :

=30 in, £=60in.
Unknowns : @, t, d.
Let g =0t and d=t.

For this date, t is incremented - from o 1 in mc_remenﬁs of

0:01 in and the leff hand side of +the IY\G@HQ-L ﬁj CEi) 'S

evaluated. This gives o value of = 1-54 in  For
Sa.-‘hsfjlnj (E )
v Design is  t=1.54", d=t= 54", a=tot=15.4"

(&)

E=30x10% psi, w,= 1000 db, w,= 500 £b, 3= 3864 "

Eps- (5.20) give

For harmonic solution,

b+ 3K¢)

I:(—ca 7,
“Zk{:

Y= %,

7,8, + 3k 0, — 244 6,
2 91—2*t9,+2.1<t e,
8;(t) = ®; wS(wt+¢) ; i=
o,

-lkt
( 209* +Z'kt)] {

~2 W7, + 2k

G91= o-5176 _1(.1., CJ:,_: i-9319 ka
% va

= 2 J

—
—

2.

(5

3-2:23; "k{; =0 a.nc' mt‘=

-

o

.

L2,
O}

ra 2

Mtg =0,

=}



r=

- _ =% 05+ 3 ke
: @,U) 2K
(2)
= @ T Hwl+ 3kt
s =
®$z ?-kt
"36CH
. o'
First mode Second mode
@ Ezuai’ion of motion of mass m: mx = - K, (x-re) , ---(E,)
. Ezuam:n 0‘6— motion o’& cy‘fnaler of
mass my, and wmafs moment of I é“z -—-k.’f‘ze - %, (YQ—X)Y -—-(E;)
Cinertia g = £+ mor?
For x(t)= X cos(9t+8) and 6(£)=® cos(wt+¢), ggs-(E1)
and (Ez) give the gcm@uencj egu.a.tfon
2
—m@ 4+ ¥z ‘ -% = o
2 2 2 z
. 27 Ky )+ & ®, %
-e. 634-—&9 = 4 23 z}) 2 k¥, o
3 2 K3 ‘
w,,wlz__+(k;+“z> \/___(k1+24<, +z‘k1)2_ 2 K, Ky
2m ey pu—
@ Fof J} Jo, 2_23, 'ké: k{z_ k-&;“ 'kt)o.hd m*|_Mtz:O, E&f
8. 20 ive
( )3 J;e+ 1“;;9,-1%92 = o

For farmonic wmotion, these egualtions give

[-wza';+2kt - %y _ ®, 0
L= % , —zw":+zkt— @2‘ - 'o}

from which the —fre?/uenc‘j ezuq, on (.a.n be obtained a3




@ Egs. (5.20) give T, 6 + 6Ky 8 — 541 8, =0

5% é‘Z. ——S‘k.t-e, +5kf 8; = O
These ezuaf{’t’Ons can be ex)m*eﬁccl at, for haremenic ma'&::m:

R
[—}w T, +6 kg -5 %, o, °o )
- ke ~56H T + 5 k¢ @, - o}

Ttttk T+ Kl =o0
2 2 7 1 Jais L3 %4
&, 8, = ( V35 ) = 0.1459 =t , 6.2541 —%
P 2
@, = 0:38197 L, W= 2.61803 ke
e’ &
- — 3
%= %,) t © *t = 1708
®'
B@-)
= —2= = + 6k~ _ 5708
o®
«
Second mode
Fiest mode > . =%
. : node ¢-1708 1
L N\ = 0:1459
11708

. (i) Using %(t) amd olt):

For tran sla.,forj motion:

mx =~ k,(x~2,8)-¢c,(x-£,6)
— o (x+5,0) - (% +£,6) - )

For rotational wotion

about Cc.G

I o=%(x-£4,6){ +¢ (x-1,6)L,

4: \L U :l‘
. i i e i >
— %y (xr£y0)ly — o x +0,6)4z - (€y) e addadds

Eps- (E)) and (Eg) can  be

rewritten as

L] ’ o
m . g X C;+Cy :—c,9,+c112 x %+ kg :—k,f,i—kzlz vy o
Rl Ly o i G e [
o %](e -c,!,+cz£,; o ve,? o ! z z o

W I S PRI A



(i) Using %(¢) amd o(¥):
For t’r‘a/rd'(aif’j malion :
mh =k (-2 0) - i (F-A8)~ta(Irgl) - (34 e)-mee

For yvotational wotion: - (&)
L6 = 1,(4-0/0) 4 +¢,(3-86) & -+ (y+ 178) Xy — o3+ 916 ) ] -me
Egs- (£3) amd (84) com le nedtidli. as == (54)
| e I 7/ YA o )
m (me ||y €tc2 ; -+ 8, { ':i}
-"‘l"—--' - + ————————— ' —————— _——— - - —-—:-
me | Jp ) —le T c‘g"z.,.c,_f',_: e
K+ %2 ok, 0+ ey )]
LA R P R S PEN I e
1Y MRS PO i

m| i“ e‘ = - W, Q‘ Sin 9] + k‘(gzez"g'sl> 'I. M &

q e
M dy 8, = Wy, kino, - k(1,0;,- 1,8 £; 8 O,
or 2 - 2
m 2 8, + 8, (wlzl+*gl )—" *{,2,8, =0

2. R
mt !’_ 62 + QI(W,_!:-}-#.IIZ)_@!'QZ Gl-:o

For hanmonie wmolion, o 1y @ o oteg); otz we gt

[-éﬂzm,glz-f- w i o+ kz,z _ -—kx, £y . ®, ’{O }

- LA, _ -wzmz)l:+w,_lz+«1f]{®2} “lo

Freguency evmﬁ:m B

s (mym, 0 2:) - o ["’2--1: (W + k2 )+ m, g (wp st e ds )]
+[“12'W121 + wz"l"‘xrzf W,!,_k,(:] =0 *--’(Eo)'

Roots of this epualion give the natinad frspuincies ©3) and 0,

Ampl tude mlias anz %‘me LB

O '
o & x,zt

) 2
1 "'(JS;._ m' 2'2-+ W,X,‘f’ k/q'

n= D = where w,f—'"'vﬂ; Wﬁ"‘z_ﬁ'




Eaua,f:(ons of wmetion: {6 6 | @
4ml 8 = - k162~ & (Lo+x) 1 () '

‘ - e ;%(’191«-1)

mx = —kx — « (Lo + x) . :

e. 4,7,,[154-21([26 + kdx = o {—
m;.-a-zkx-q-kfe = 0 x % x

For fhavrmonic wotion, these e_gua.t-’ons 9‘{ve

_4-m,22w2+24<22 "(2
*2 . ) _.m&92+21<
=0

Freguenc'j e,zua,{:foﬂ s sz &94 {O 4¢m L.9 + 3*

2 _ 5 \
W= m(+$ = o-34861f; , 21514 -;n‘-‘-—

Uiz 059304 " 6, = 1-46G8 ’_E‘_

Amph{:u de ratios are

(I) z a 2
_ 4w+ 240
= @(.) = -—kR' = —0-6056 4
&9 | S A %
X —4m €% 9 2+
= @ 2 = 6'60562
@ -4

Mode shapes ore — (D ®C') _ i 9(l)
| X = 1x9f 7 |-o-6056L

=(2) @’ 4 @
X c-6056 £

» tions tion : ' —_ | e
@ Ezua:c on 034 meH .kx L- ‘1 -~
m (z -8 6) — — A2 -

dg © =~k 0 - kxe
i-e. mx+kx—me§ :O

(7,-me’)e + kpa+rex =0
For harmonic motuon, we get the :Freguency e&uafton a.s

k€ —'(c—mez)@z-l“k.t -
or (,To...me")m (434—-(');1“*7"“{)031‘{" * ¥ = O

Roots of this epuation give the ratural freguencies of the system.




S

Spee_d becomes unfavorable when AT
it is related to f as | DA S —

SR | R
Le., U= 1 =I§ - 16.9“ ‘ lf—-—f-wm
Th " 2T
Ex:z_m,ole 5.6 9t'vc3
W = 5.8593 rad/sec ( bouncing)
Wy = 94341 rad/sec  (pitching))

&

.= 8§59 : X |
. -U, = 12;':’ = L5 (25;‘—- 3) = {13.-9880 'm/s (Aou_n(;‘ng)
v, = Li_zi-_‘r,;_-?'- - IS (é‘.z;4-34'> = 22.5222 Tn/s (Pffd’)fng)

A
kg 9t ky(x\— #)

g T !
— ] T im%,

x (&
* (B g )
b
™2 my |t
. . ] 2 imy %,
Equations of motion: ¥
o (&)
m; X, + (ks + k) x; —k Xz' = kg ¥y Free Loij c!e'a.,gra.m.f
Iy 5&2——kx1 ‘{"‘ng =0 O‘F ma sses
Since velocity of crane in z-direction = 30 ft/min = 0.5 ft/sec, 7 = time to complete
27 27

one cycle = 10/0.5 = 20 sec, and w = = 0.31416 rad/sec.
Base motion for m; (girder motion due to unevenness of rails):

| y(t) =Y sin wt
where Y = 2 in and w = 0.31416 rad/sec.

Road surface varies sinusoidally with amplitude, Y = 0.05 m and wavelength, d = 10

m. If v = velocity of automobile (m/sec), time to travel one wave length = 7 = d/v
2T 27y

sec. 7= 10/v sec, w= — = rad/sec. ,

v = 50 km/hr = (50(10%))/(60 (60)) =  13.8880  m/sec,

Jp =mr} = 1000 (0.9)? = 810 kg—m?.

Equations of motion:



“;f, (Fe) = ground or base displacement
of Front (’rea.r> w‘a;e{s, downwa.rds

For motion along x:

_ m§+x(kf+kr)+9(krfz-kf£1)=kfyf+kr}'r (1)
For motion along : |
Jo O +x(Lak, —&, k) +0(k €% +ke €3) =k, &5y, — k¢ €1 1 (2)
where the ground (base) motions can be expressed as
y¢(t) =Y sin w t = 0.05 sin 217;" t m {3
276 +6) 4
¥:(t) =Y sin (w t — ¢) = 0.05 sin [217:)"’ y 27 ii+ z)} m (4)

For given data, Egs. (1) and (2) take the form:
1000 ¥ + 40 (10%) x + 15000 6 = 900 sin 8.7267 t + 1100 sin (8.7267 t — 1.5708) (5)
810 § + 15000 x + 67500 & = 1650 sin (8.7267 t — 1.5708) — 900 sin 8.7267 t  (6)

@ Natural frequencies are given by:

my ¢ ‘ kll k12 Xl‘ 0
—u? [0 mz] + [km kzz] {X2} ={0} | (1)

500
386.4

where m, = mass of pulley = Ib—sec’ in ; m, = mass of motor = Ib—sec? /in

386.4
Xy, = amplitude of pulley, X, = amplitude of motor,

pr (5000 (2 ()
£ (80%)

Frequency equation becomes:

= 32.3210 lb/in



(—« my +ky) kg

k12 (~ o my + kyy)

or ! S

(myg mg) o — (ki) my +kap my) W + (kyy koe —kip) =0 (2)
From known data, Eq. (2) can be expressed as:
0.6698 w* — 11563.2894 o + 7.3108 (10%) = 0 | (3)
Roots of Eq. (3): _
o = 657.26642, 16606.5300 | (4)
or

wy = 25.8372 rad fsec, wy = 128.8683 rad /sec

rea .

masg (M), mass
6 mement of inertia (J)
/
G -
“ < L_] ki
T
¥, 7))

1. Model the bicycle and the rider as a two d.o.f system as shown in figure.

2. Find the equivalent stiffness (k;) and damping coefficient (‘31) of the front wheel in
the vertical direction.

3. Find the equivalent stiffness (k) and damping coefficient (c,), if applicable, of the
rear wheel in the vertical direction.

4. Describe the road roughness under the wheels as y, (t) and ya(t).

5, Derive the equations of motion of the system subjected to base excitation.

8. Solve the resulting system of equations to find the steady state response.

(2)
Choose‘unknown coordinates as x(t) and 6(t). Equations of motion:
mx=—k({(x—¢0/2) -2k (x+¢6/3) + F(t)
Jo O =X (x —€6/2) (£/2) — 2k (x + £ 6/3) (£/3) + F(t) (¢/3)



m 0][¢| |[3k k¢&/6 xz{p(t) }
,[0 Jo E9f+kf/6 17 k £2 /36| |9 fF(t)/s

2
and F(t) = Fp sin w 1.

where J; =

(b)

Elastic or static coupling.

% % <—

1
»(M-&-m)} '

2

| Free LOA,'U

diagro-m

Equations of motion with coordinates x(t) and 4(t):

For motion along x:

ME=—kx—cx—(m&/2)fcos§ —m¥ + (m £/2) & sin 6 +F(t) (1)
For rotation about O: ’ ‘
J 6+ (mef2) 8 (6/2) + m (€ cos 0/2) = —m g (¢£/2) sin 6 +My(t) )

. 1 .
Using J. = 17 m €%, cos ¢~ 1 and sin 6 = ¢ and neglecting the nonlinear term

. Y L . . . R
involving 6 in Eq. (1), Egs. (1) and (2) can be rewritten in matrix form as:

(M +m) m¢/2 £ [e o Jx| . [x o W [F®
m £/2 (Jo +m /4] |5 N o | +_0 mg /2] 6] M(t)




K, %, ~——t— —

‘TR‘ Rz]

Free Locl(‘] | &-‘cuj ram

N = normal reaction between cylinder and trailer, F = friction force, R;, R, =
reactions between trailer and ground.

Equation of motion for linear motion of cylinder:

YF=mX;, or m¥X =—F —ky (x — %) ' (1)
Equation of motion for rotational motion of cylinder:
| SMo=Js6 or Jp6=Fr (2)
where Jo = —é— mr? and 6= x? :xl
Equation of motion for linear motion of trailer: | ,
LF=Mx, or MX; =—k; x; +k; (xp —%;)+F (3)
- Eq. (2) gives
F?"I—:_ﬁ‘-‘-%(-;—mr”) [XZ :m.];-izn—i(iég —X) (4)
Substitution of Eq. (4) into Eqs. (1) and (3) yields the equations of motion as:
| %ig——é—miﬁl-kle +kyx, =0 | : (5)
M+ T — 5 +3 (k +lg) — Ky xp =0 | (8)

: : 4
('f-b) Natural freguencies of the system: 2 4 m, | w, =100 coo (b

- - e - -
- -~ ——

From Prab!em 5.1, ‘ %«f 6)(!06 th/in
z ‘k + k& k ;

@, , = = . *1 ‘
t,2 ' -+ T2 .t / my W,=H—0°o° 178

2m _
, 1 :
;/.L (1‘\‘* k7-+ Eﬁ)z__ kK2 :
4 my My ™y Mg ) A . = 3)¢m6 ﬂ:/in



z

l;Q. KIO

p

]

Sxm 2o xto

6 2
?x:a leo 2 18 X lo
Wx;o fax(oq _ g

i40 x10

w = ce- 3403 rad frec

W, = 208, 8557 Ya—c‘/sec

- _—.....-__-___.--_—_-—-.—-.-_—
B L g . n———

Lﬁ_t v, =

2 initial velocﬂ:j a_)C a.nwL and frame just af ter
the impo..cf of i‘uP : ‘
From conservation of momentum f’rfncfp'e,

momentum of tup ples momentum of anvil jusk Lefove impact

—

= mofnen*‘um of tU.P Pfu.S’ momenf‘um O; a..nvi’ ju.St‘ a,:ff“er (‘mPG.'Ct

N
1-€.)

mtu.]b t“}’ + mo..nvfl (0) = m{:u.r "\30 .k ma.nvif- ’\)2 ‘ (E‘)
Where V, Velocrl'y OJC r‘ebour\o' of bF an-i‘er |mPa.cf
A’SO)

r t
Coeffc'cf&nt of restitution (e) :(rcw"’e Ve“’“{'j a,;ﬁ“e impo-c )

relative veiocn‘:f before fmpac{'
NE-RT e = ’\5._,_- /)

(E
U{ or ’\fo:: '\)z_ e vt':u.F (2)
From Egs (E,) and (E2).

’Vz = Tn'tur ’Vtu.f (i+ e)

(E3)

mfur + M el
For 3“\/5" da.,faa,

5000 (196) (14 0:5) |
fe5 ooo

= 12:8571 4n [sec

- Initial conditions are:

X ()= o, x()=o0

'xz(o)_-__ 0, ‘312_(‘0) = 12:857 '."/.Sfec



(AC) Ds'Spfacemenfs ‘of- a,hvif and {r’oun&a;}:a‘on, Hock:

. A s v mwm e M An e e e e P o e e e -
- e e W M R e e e e W R o TR e e R e

We can use results of section 5.3 with 3= 0.

(1) 4 z
X - M LGS 4 4 * 40900
= 2 - . T Ra - %?Z'_g @401‘096) + 9xfo6
x B SS -
! 6 X!oe
= 1-2342
B (2) S 140 ooo 4 |
rz_— 2(. S — —my C"92 “+ k,+ ky - ' L;gé'"t (1(3 §20- 675) + 92X (og
x % : *« - ,
! 2 v ¢ x (0®
= = {1341
Response of the system can be c‘_ompu.teof bLS'(nj Egs- (s5- Ib’)
(" x
x= 'T (3_2__)___ 1 (12-8571 - P
220 L, ~2.3083 \ 66,3409 ) - oroB B
x® o A 7—2) _ 1 (2-857)
-7 \ Wy —2.3683 (208‘- 9557) = —0:02333 in

¢| ‘.‘ {__“_ié(o)“ } "‘-',—
‘¢2= tan {— iz_%f)} = -

Response is given by Ezg.(s.fs):

x,(t) - Xf) cos (Lo, t+ $)) + X( ) cqs‘(wzf“f'.ﬂ!z)
= —0:08[83 cos (66-3408 t +J—rf)—o.oé577 cos (208:8557 ¢ -—’{—) in.

9(2(":)2 Y X?) o8 (w,t+¢,) + X‘(z‘) cos (w9, t +}32>

= —o0-1010 cos (66.34039¢ + %3_,_0.02?:;3 cos (z02.-g557 t =T ) in.

- -_.—.--_~_-..._._.....___..._..--—_.__.

Epuations of motion: mox, + K, X -k, % = F(t) (&)
™y ,'(-z_f(k,-r ky) 2, — %, % = O ' (5,)
Freguencj ezqcu‘:t'on:

I
-0

— K, A 0t e+ Ry



or 4 (kl <+ %q ®, o
- (= ML YA ! = ©
@ ST ™y ) + ™, ™My
2 —
6«9‘ 2 = -—;k—— + f_!_-f_-__‘k_z — [ 7k + *,+ ‘kz)z Kk *2
2 21y 2my oy 4 ™y - ™y Wlml

- 5 : 5
Here m = 2xo kg, my= 2-5xi0 kg, %= 150 mos'N/rn
QYIA - '{(2_2 75 1’106 N/mv

2 : (3 6 ‘ =
&9,,1 = .LM + EE_.X_.LO_ —_ i IS'Oxp06 225 x:o‘ z !SOx'IS'xmL
5 5 + J5 = + T ) - —
b xe 5 xle 4\ 2x0 - 2:5 x )0 Sxlo
= {50, 500 (ra.d/sec>2
Gow = 122474 radfsec 5 W,= 35.7298 rad fsec

(b) ResEOnse

——— ——— - n . - -~

Assuming 3eno indial condilions, the Eaf]a,u. Wc} (El)wr\."
‘ (Ez) Camn U’U—ttan- (=}

m A% R (A) + K KA = Ry B (5) = F(#)

ma Ai ;‘.2_('5) -+ (*1‘?‘ kz) ;1("') - ;, (3) = 0 '
i-e. (m A% 4+ %) X, (£) — %, x,(5) = Fc(")

- K, ;l(") + szﬁz—f i, + kz) iz(ﬂ) =0
A% 4 4+ % _

7,0a) = T . R )

Wimy gt AT (mk b kg M R KR

x|

) = { 4 2
mmy 8% 4 3 (m,k,+ m Ry oM k) kg _
For the forcing J}uncil"cn given, F(t)‘

A= Fm= Rig-e™ (T LY %

'For the given data, EZS (Eg) to (E5) become
4 0

_ 2.5 >uo /S + 225 % to —
(5) = - F;(,g) .
_ (5-,”0 ,8 A 2 1z »

+ 825 xt0" A% 4+ 11250 xio

,5 + BDoo

B 5 | ‘ 1 [H&) ---- (&)

2%xi0° A% + 330 x10* A% + 45 xi0°

} Fey - E)



L3

—_ 150 x j© —
=, (8 = F ()
5x10° A% 1+ 825 x 10" 4% 4+ 11250 x0'2
30 ' - | :
_ | By ee- (&)

wt 4% & 65 %10 A% + 225 xio|

-0 5.3 :
‘w{u.J‘LL FC/S).. 2% 10 [/gl— e . (—‘————-)J - (Eg)
The inverse transforms of (€)) amd (g7) yedd = () amd %, (E).

Ezucw‘:fons of motion for free vibration are (';From Egs.(sng)mai(s.z)>;
m: 'x.|+ (Cr“'cl) D.l.‘ ‘f"(k"{- kZ_)"i»"cziz‘ kZ 9(2 - O } (E‘)

Tﬂi;z + (Cz."' c;)x.z_+ (‘k,_—i— k;)xz- oy~ Ky, = O
ASSumu‘Lj ‘H‘le So‘u‘ftan ab
<h

At
w(t)= T e >
@.(E,) cam be rewritten as

[}

= 1,2

wm, A+ 61+ €)Y A+ (R, + %) — (24 + 1) {rf {o}

~ (24 + %) S (v ) A+ (Rar Y
For @ non-trivial solution of Eps- (e2), | | (Et)
™, ;"2'-0- (cir )8+ #+%s - = (cs+ kD) I
= (a3 + &) m, 54 (Cg_-rlca)/!-f kot H3 -

re.,
"3#(7‘";"’2.) + 43[",‘!(‘2* C§)+ my (v} + /31[\'". (k2+ %3)
e (ot ) g (e ) = ek T s [t ) (kas %5)

+ (c,_+ 1) (k+ k,_) ~2¢,% ] + [@ + kg)(‘k,_-f k3) — ‘kz ]._ (E3)

@ B+ o A +aazle+'a.-3/x+'a,4_:o . ()

where Qo s Qo) 51 Bogy Coum &LMM by  comgoaning
Egs. (EL) amd (E3).



B e e T T Sy ——— - . o o ———

If 4, A2, 83 a~d /5’4 ane tz voots of Eg-(fq.), The
58"5"‘1” solution of The system can be upresxeol as

) At A2t ) Azt () st
x,(t‘:)___t o 1_-\6,(2)82_{___:‘(3 2 + T e } (E)
t 5
xzﬁ:)_ rn) edf + r(z) + r,(?) _eéBt + ?:’f*) 84“\; |
wheve the W \61( ) | ‘Lz |6 &, can be :Fuumf-? A

from 'Hﬂe. four 'fni'h‘a_‘ con‘cfcfrons of e S_‘j sf:em, ha,mely,,
xl<°)’ 7(2-(0)’ ":'ﬂ(") and 7-(2("’)- The vatios of a,m}olifuc(es
5 e can be diffimined from Ega. (£5) as

< 2
. = ' = >
(¢ 2 : .
[2F3 ) ™) AL+ (QHCD) AL+ K+ Ky C28i+ ki
£=1, 2-)3111 (E6>

1f any root A has o positive _rea,l part , 2 (t) amd =, (t)

will increase with time. 1f old A: have negative real parts
WS

,5‘::._.- > .
p! Tyt oy

then the SOPWf:non > %, (t), can be CxcbeSSeO‘ ag » .
¥ -Y t LU t 4 -y ‘ -
(t)' 2 C'( g e Z: (7) éos «.5-'&4—,: Zin o-_f}f)
=1 =1 .
¥ fwo roots 4, amd 4, are complex conjugates as
A,:-(r‘l'-f—iw,) ornd A== (v, - iw)),

% (£) cam be expressed as

—-nt )
9(.(‘1‘:) = e ‘ {Cf\) cof Wt — o T:‘(') sin W &}—

-t 2
+e | {C,(z) cos wjt + & L‘.(_)srn w;?‘:}

(3) %5t OREN

+C’|_€ +T:| <

Sfmfla.r expresfions can be derh/ec, JCOT X, ('6)




™= m,= 10 kg, K= k= 2000 Nfm > k3= 2 N/mo
=100 N-$/m, C=C3=1 N-8/m. .
Egua.,hons (E_-,-) a,,m;l (54) in the solution of ProHem 5. 42 give

a,= to(2) + 10 (101) = (030

@, = o (2002)+ to1 {2) + to (.4oao>'..| = 60221 |
@y = 101(2002) + 2(4000) —2(1)(2000) = 206202
Ly = 4000 (zaoz) -4 ><¢o6 = 4 008 00O

E D

100 £+ 1030 /‘a-f— 60221 A+ 206202 £ + h00f0o00 =0
Uanﬁ PRoGRAm 10 , the roots of Eg,(ED can be found ar

Bi,= —1 4714 + i 8.8272 . (Ezj.
B34 = —3.6786 *+ i 22-066% | (Ez)
Thus the scolution is ‘given Lj
A Gy st 5k
x(t) = Z? T et . )= 2 z:(’) e
- ‘ , | i= 4 5‘

where ¥, 5 21,2,3,4, can be found from the initial
Co‘ncf{-{:n‘o‘ns', and the rostiss o}’ a_migif{udeg Zf(i)} com be
Ob‘t’at‘n&p‘ fr—om %,(Eg) n problem 5.42: )

fl(?) ¢y ‘ggj + kg2 £; + 2000
@ " 3 = ;
G2 MRS () L+ kv kg 1o £ +101 B4 + 4aoo
| F =023 4 o (ec)
For 9.:1’ /8;:: -1 4714 + 4 8-8272 and (55) 3u'vesf
(1) : .
) /fé'). = 0.6207 — 4 @-1239 (E7)
For j=2, fgz= ~ 14Ty < 39272 and (Eg) gives
= € 2. 0.6207 + < 00239 (€2
For J=3. 33 :-_‘_ 3.67586 + 4 Z?. 9668 anrd (Ee) vields

- r®
X3 = G, (3) = ~1.3908 —{ 0.775& \ (€5)



For g =4, By= —3 €756 —~; 22.0668 ard (E€> 3.&!43
Ay = 5(4/‘6’(") — 13808 + ({0, 775¢8 (Eca)
Thus the Soluhon of Ey (EZQ amd (Es) can be rewritten g

_ () fS 4 /K}‘t .
x,(t) = }%: £ T, , %, (F) :#éa 0(9- e | (Eu,Ecz)
Smce the poirs (cty, ®2), (23, oy ), (£, 52) axd (3;, A4) one

WWMM%W%%M

AL B2E w i £, 8= Ut IV

Ei)

amd (En) amd (En) CO’“,BE SI‘mef)'e:f. Eur{:)—zer. However,

We PrOquJ clfrec{"'j with '(E,,) cunal (E,,_) amrd st
initial conditions to evaluate the con:t'adr‘yi's f(}) J =1,2,34:

() (2) (3>
X(0)= o T, + o Ty 443 T, + Ay Cg_ =T o2 A

9(2(0)____ fz(')'-\— Tf2(-7.) + ?:1(3) + U(zf)

= o-1

N ) _ , A
xXi(0) = A, Gy + £, % ?.'é )+ £3 oy ‘(;2( )+ 2,44 Cz("‘): o r’(,l‘i)

~F

Gnce (”) , 3= 2,3, 4 ave J::ﬁ?h:ru.md from Egzs. (Eig),
the d-s[ofa«cemenfr of masses x,(t) amd %x,(t) can be
obtained using Egz- (E;) amd (Ei)- :

. (2)
xz(o)__ A \c,sz)_’_/gz G, +,g? 73( )+ Ay C(‘f) =0

- Gn B s M A e e VER M e o W e M e e D b e e W e e e M Ee A e e e e W e e M e e o e e e MM M b e e -

Ty s=avib, s = (@-1) +i(zab)
L x= a_+3nl-

» it can be rewriiten ax

c+d<.
x = (a+b)(c-di) a,c+ba’ Lc..a.a‘>
(c*+d*) ct + 47 C cFrat




Q3 = Ez.(.&%fﬁ =125- 664 rad/sec m, —T
F(t) = me o cos oot : %, é F(E)
3;:)(6)(125-“«)2 Cos 125664t mi,

= (226044 Cos‘lzs-éétft Lb - F2(£)
m= 200/386-4 = 2.0704 b~ s, *, €2
my = 2000/3%6.4 = 51760 B-5Yn | e

%= 2000 u’/t‘n > TKap= (000 u/.‘n > Ca= 200 a‘"-"ﬁn ) 't-lc: 122- 6044,

FQ.OZ‘-O-

W c‘g_ walion ane [SU.LS":L'&U.{E *, = Ky, c'-ci, my = “”'z:

): ]xu} [0 :]{:}“{%:.k‘ —::]{M} F(Jc)}'(ﬁ)
[ 2oL 200 el o e

Cdm,ra.ﬂn_j (Ez) with E? (5- 27) we jclnd that
=g, Tgy=0, My =y, 20, &y =0, €37 C25 *""k*’ k,z—o amd

Ky, = Kyt Koo

Aprln'caukn‘on of Ep. (5-31) lta,als‘ to

\ 2 *
Z“(:.Cv.?); - My, + L0 ¢+ k= -, & + Kk,
. 2 - .
Z'Q_ (4(45): —I m ., 4 16y Cia+ k;z :" - ¥
. 2 .
Zzz(4w)=—-&9 m7_2+4.c.9c“_+kz'?_ =-_m1¢,31+;w»cz+4<,+ *,

Response of the system con be expressed as

EHOE X; et - X; cos @t (real P¢rt)

with XJ- given by Eg. (5-35): |
X, (lCo“) = Z22 ($c9) - Flo — Zip({w) Ko
Zp(iw). Z,, (<9) — Z,i_(iw)




p 3 .
(-ma @ LWy + K+ 4 F

C-m'w1+ k‘) (-m, 031+ CW Cp + K+ Kkg) — K
{—— 5:176 (i25- 664)2 +i(:zs.654)(2oc) + 3000 } 122- 6044

- {[- 20704 (125664 + 2000][-5.176 (125.664) + ;(ns-scte)(zc;o)
| +3000] = 4xw0 }

= (— 400042 — 0:0(719 4‘) x1c? in

X(iw) = ~Zn(@) Fo+ 2,(0) Ry« Fy
} 2 0N
| Zn (i) 2y, ($68) — Z,t('dw) Z, (@) zlz(cca)_.z”_(u:d)
: -4
_ 2000 (122-6044) _ @-922_1 +O,Z?1*“>“o .

| (zq. 1272 - 7.71 43 £>1a8

() = s (Rt ead] ,
' - eam 3 = _
, L 23 ‘k,.-'kbe

Eeucu!:a'ohs aof motion : - : o .
R
%* X (8) F(t)

4y

ml"-l*‘*l"t*‘*z("—l"‘z)‘—'ﬁ(t):Fo(_oswm‘:}( } ; )
: , _ (e,

m2 |
AS‘Sum«‘ng 4armonic response : x, (t)

'Xj(f): x;: cos CBt s J'_—_;)g_

My, + e (xp= ) =0

Egs-(E yield
("‘z— my wz) (S

X, = :
: (‘k|‘f" ‘kz— m,c&l)(ki-— I’lez) — k:
*, Fo
X, = . : .
Z (ki+ #p—m 0*) (k- m,_w‘)—‘kf
F;r o S\’:ea,ofj state vi}:ra.‘f:a’on o‘-F‘ -f:he beam > X.-‘-O
and hence the condition to be sat's fred s
k2 o *
. m‘l
zpo,tbrv! tion : v v
5.46 E v Of meron Ly F‘ sim 5t ———— (En>
Yn‘x'-{-(k'-f-kz)'xi" Ky Xy = Fl(t): CERA
. o (8



we use F, e PF (with t=V=T) for F(t) and consider only
the imaginary part at the end.

Le't ’X- (t')* X~ tort 3 9'.:-.-1,1
Egs. (E,) o.m:\ (Ez_) become

taot Wt Jwt
- X¢€Lwt+(‘k:+‘kz)x e -k, X, € =F e
cwt .
.--Yl'l2 wz Xz_ e + ’kz xl el Q}t - kz x! etwt - O
'|Ea _'“’ ) R Eg
tv [Z(Lf-\g)j X = O : ( )

where .,._{70} T:" '{F'O};. iFﬂ.},
X = X ? A 'F’za - o
[ : ] = Z”(“‘w) Z“_(,;@)
ZEDIT A z,G0 oz, |
Z“(i(ﬁ) = - wl + K+ Kz, ‘Z‘az(*-(‘"?) = Zza(“‘s) = - kg,
Zzz (‘:(‘9) = (-—Ynzlﬂz + Kz - |
Eas.(s-as) give

- 1
- - +
X,(iw) = Cmew +*) F

(m, BF 4 # k) (- mp O 4 kg) - Ky

Ky K

X, (109) = ,
‘ ‘ (-vn.w + &+ k) (- m, (9t + 1) — %}

since B sin 0t = Im (Fe'@f ), x(t) = Im(X, &%) X; sinot

xy (£) = (=M @'+ k)R cin ot
it kg k) (- 0F g k2) — k3
X, (t) = — % = sin ot
Cmi O it *) Cmts &5) — kF S
Eguations of wmotion: ~ Lyt =
m X, = - 40X - ) — Ky (%, %2) : X, Yo ws ot
My Xy = - kg (X2= XD ™
or m, x, + (%, + k) % = K, %y = K Yy oS wt - (E,) #y x((6)
Mm%, + Ky Xg— kp% =0 ---(€2) my
As there is no Acuhpmg the mastes whnale ertfoon % (£

or aeo aufog,wha.u with negpect



xj(t): X} B Gt }= 1,2 e (E3>
Egs- (E) and (Ey) neduce G
(-—- (.Szmt+1<|+ k).) X, - %k, X, = 4, Yo
- K3 Xy + (*—' (\91' ™ma + ‘kz) Xz = 0O
- _— — | X1 = Fto - *’r’}.
ve [ZC‘:C@)] X = F where X = {XL}," F= FofJ (0)°
7, (i) =~ i+ kK2, 7, (i) = 2y (R9)= — Kz,
Z?_?.(;'G> = (‘lem! + kl .
Eps- (5-35) ond (E3) 3give

2
ity = B K 0, ot
, =wm, o+ 4,+ k1) G— _mzt.s"+ Ke) - .k;'
K, %
'xz(‘t) = Ve Yo : <S5 ot
C_ml(ﬁ"+ <, + f‘z)(—-\ma.(-91+ k1) — ki
¥
E&ua.h'tms of motion: k, =k, =500 N/m .
' ' - ™, =m, =- 1 4< *.l L’—{
. my %) 4 (¢t €2) Xy (k4 k) X, ! 2 3 '

C

» 'lat Cz:C‘—’ 200
—Caxy ~kyxy= F(B)=F e

)

E o L JResF eset
‘=1 vad/s 'x'(t_) « % _l.
1 2
|

i

t

My %2 +C3 % + kX2 — C2 %y

-kyx% =0

it
Let % (t) = x}. e y 3 =h2 %, (8
Epuations of motion become ‘
[Fw” m, + i (e, + ) + kot ka] X, = (i69Cpt k1) X, = R = (&)
- ({we+ *2) X, +‘[._¢a"ml+zw C24 ¥, X, = © --- (&)
FOT gfveh JQI‘G‘) (E() OJ'n.Cg (Ez) LCCOme, \ )
- . g :
[Z(LG)J x = fo o ——— (E,)~

where 7 (i) = 400 i + 999
| Z,(i8) = Zg,(L®) = -2004 — 500
Z,, (iw) = 200 1 +493
. {x, ;-*3{50 _{Fo}
X = X2 } ? ° Fra ©

Solution of (E3) is , using Eps-(5.35),



X, = (200:1 + 4£99) Fo

-

_ (2004 +439) Fo
(4001 +999)(200 i + 499) — (-200i ~500)
(200 < +471) Gl?? 400 i + 20850() Fo

(1994004 + 208501) (- {99400 { +208501)

= (172915 x5t - 69444 x* LVF,
(200 i + 500) B

(199 400 i + 10850!)

e @)
Xy =

(‘ZOO Lt500)Fs
- , ) z ~ )
(400 i +999) (200 i +49%) ~ (-2004-500)" (199400 i+ 208501)
_ (2004 +500)(- 199400 +208500) Fo

(99400L +208501) (- 119400 ¢ + 209501)
= (17-365 x5t - 6694 x13% L) R
Final solution

- (€5
is given by the real ports o
‘Jt;(’%:):Re.(x,e“‘9t ) = Re(x, ot 0t + X, # ot)
= Re[(17- 2115 x15™ = 9444 xis 1 i) B Aot

+(17 205 0164 L+ 6444 xioh ) Fo Sin wt ]
| = 1725 x0T K o ot + 6-9444 xio! B &in ot --- (&)
x,(€) = Re (xze‘wt) = Re ( Xq St +1 X g Aim wt)
| = Re [(17-3165 x5 — 69694 x0 * L) Fo et Ot
+ (17-3165 xt6 i 4+ 69684 xig 1) o #m et ]

‘

17.3165 x16 4 Fo et WOt + 6-9684 St E, Aon OT -——(57)

EW o“’"‘&“ Cmy ;,+(k,+kz)x‘_kix2=ﬁocﬁwt: Rt(ﬁo e‘wt)

. . ot
. mzx1+(kz+k;)x1_klx‘= F'lo(pgwt‘:RC(F;oeu)
ASsuming 'xj(f) = X. ‘eiwt. i =1,2 o.longwitﬂa f; ({.)= ’;‘o e:c&t;}.ﬂ)z!
the ‘egua_hbns of wmotion can be exFTESS‘ed as

C—&?‘m;# f‘rf’kz) Xy — ka2 Xy = Fio

=KX+ (- Wmt e k) X, =
ie.

Feo
Ez.(tw)]‘; - F; ._--_(E,)
where Z, (i) = - @ m, + )+ Ky, Z,(k@) = 'Z'g.(‘:w) = —%;,
Zya (£09) = = my + o h <3,
—

ixy, B SR
% Xz} © {on}



Solution of (€,) can be expressed, using E&s-(s-BSJ, as

‘= (~u92-m1+1<1+ %3) Fp + k2 Fpo | “”(El)
(O Mt K+ k) (- e+ ket K3) — KD

X,= <2 Fo + (- @ mi+ f“““) F20 (e

' (—w"m(-r- kq+ *<e) (- c@"m1+ o+ K3 )~ kzz T 3)

Since X, and X, are veal (Smr_e_ there /s no o!a..mp\'n9>, the

ZF“"“—" solution is given ‘Jg‘ .

x(t) = X, et Ot
x,(8) = X, b wt
whene X, and X, ane 34.\‘(,“,(7 (E2) annd (E,)

From the solution of problem 5.46, we have
: (.m,_LSL-f kz2) Fo \

x,(t) = sin Wt

, ) |
m Oyt k2) (- mat+ k) — k2

x, (€) = *p o : sin w3t
(*m,(ﬂ ‘f"k -+ k;_) (—m)_(as ~+ kz_)—— 'kg_

For the data F(t) =50 &naTt , Fo= 50 N, 3= 47T vad /1,

m =10 1('?’ my;= 5 -ks, ‘—kl_.; o000 N/m M.\J Ky = 2000 N/Tna

_ :
x, (t) = <—-5 xjg 5 4 2000) 50

Sin 41r‘t
(—1o x 16 w* + 8000 + 1000)(-5~,< 16T 4 zoco) —(zoo0a)?
= D 009773 Ktn 4Trt meters
2000(50) ‘ ; ,
x,(t) = < Ain 4T0E

(—tox16 T* + 8000 + 20¢9) (-5 %16 T2 4 2000) — (z‘o‘oq)z

0- 016148 Ain 4t  meters

%) = £ota,£ stiffness = 300 NS
@ *g= total stigfness = éoo N

m = 50 kg, ™= 50 kg :

Y=o02m, w= T rad/s

Ef).a.a.'t:md ‘of mclion :

"X, = - K, (’Cl—'y)"*z(x:r""l) ;"“”}(({'):Y/&C\awt
‘f"z;z = — %y (xz- %) ‘
f.e' m( :;(“f' (kg'f" kz)xl‘" klx1 - *.“} = ‘k'Y &!:n(-at

X, + KpXz — kX, =0



Assuming  x (t) = X; 4 ot 3 (=1,1, W€ 3‘*
(—wm, O &+ K2) X, — Kk X, = #,7
—ky Xy + (-mawi4k) X, = O
For 9given date, these W tare the o
(- SoTE 4+ 1400) X, — éco X, = (800)(e-2)
~600 X) + (-50T? +¢o0) x, = ©
Solution of these egpaliont gives  X,=-0-06469m, X, =-0-36439 m
X,(£) =-0-06463 &im Tt m 5 x,(t)=~0.36439 Sn Tt ™.

G2

Eppations of molion:
™, ':E, +‘(1<.+4<z) %, - k. Xz = F(§) ~-- (€))
*“z;z"‘(*ﬁ'"‘?) Xz~ Ky X = O --- (€2)
Laploce Bamsgdime of. (8 amd (E,) are R(®) x, ()
my D87 5, 08) =8 x,() = %, () T+ () %) X, (8) = %, %, () = F,(5)
m, (£ %, ()-8 x,00) - %, J+ (x4 k) E (4 -k, T (£) =0
Reanromging these egpations, we gek 3
(0 A% #0 3 k2) %, (A) - k3 o) = Fi(D) 4am, 10+, () ____ (g;)
—ky X, (B) + (w2 AT+ At Kk3) T, (8)= A wy %,0) 4 my %, () --- (EL)
When & = k;= %3 = k amd m=wm; =m, (E3) and (E;) give
(ma* 424) X,(8) =% (£) = F(£)+ 2mx,c) + m X, () --- (E5)
-k %(8) + (mati2x) X,(8) = Am x,00) 4 m *,(2) --- (&)
Sllion of € (E5) amd (E¢) gives

(ma*+24) {R(5) +w x,(0)- S+ %,(0) }+ & §m x,(0)- S+ m x,(0) }

;c_l(A): -
MmA L2 &) (m A 4 2k) — k2

k{?,(f‘)+m x,(0) . B 4 %) m }+('m/!1+u<){‘m x,(2) .3 4+ m %, (0) }
(fm)sz+ “‘)(m,.s‘ +2%) — %2

Theze ef}*"'tc""" X’FW, for x,(e)= ®;(0) = X, (o) = %,(°) =0,

Ft)= 5 w®), F(&) =3 ,m=1 omd «=100., :

x,(4) =

2 .
%A = 5 (8% + 200) - 5 (4% + 200) ‘ _--(E—,)
A [(A"+ 200)* - 10000 ] A(f*+ 3007) (£% +100)

- t 1 “
= 00(3) _ oo ()

[(8*+200)" ~ 10000 ] i (5*+ 300) (£ +100)



By expressing

2 (4) = 5 (4°+ 200) o AL A+ Ay L A Bt As
B0 s (8% 300) (A% +100) A A% 100 A+ 300
- Soo B B, 3 +B
3 (8) = : - - ‘;‘gl' + B2 + B3 + -‘pz 5
A(5%+300) (5" +100) A%+ {00 A%+ 300
we can find A,, A;,... , B, By,. .. (P@ﬂz} }ﬂa&t:rdm&ﬂﬁrd)
That ,ﬁe.a.alx t % (4) 1 2 £ .—-‘(Es)
x(*) = 304 40 (A +100) i20 (£%*+ 300)
' A A
X,(8) = —— - 2 + 2 -~ G
z 605 40 (£+100) 120 (4% +300)

Inverse La,pfa-ce trans forms of (€5) amd (E,)) 3Zv¢

x,(t) = (36 -7 @ ot -5 ot wFE) w(t)

o 2

€0 4
uathm&wx(t)_ mdn amd Xy(8)= g5 mn
wmmwmmmwmsum;aa
applied & mags my- W= 10 vad /s amd ;= 1077 nad /x

E?/uumltmf mass of %mﬁu:. MW-{; x, = 6712)&3,,,,1_,_ _:'g:
Ef);arfbrvtds—m.dt:?n m, X,......k (%= %2)

(M2)e, *2 = ‘_‘“("z— )
ie. m,§,+ kX, — % %, =0 —_———— (EO
(m2_+ ;‘:%.) Xy 4+ k Xy — k X, = O -—-- (EQ)
Assuming  x ()= X; of (Ot+ $) ; i=t2, Egs (E1) amd (Ez) cam
be fllon as (_m,c.92+k> X, — kX, = o

~% X, 4 (—@L‘{mz-{-%}-#k) Xp =0

Frev*%cg. e@m;t:cm

me+«)(—wmz—wzi+*)_« =0
or 684’("*« m;f;’ - o (mx+m, k{-*f;):o
. i
W, =0, 9, = {(mnk+mzk+ )/(m,\'nz-f-m'zo }/2




E&uvnlzmi mass : ‘xl(t)' <~ A 2 (t) ——

frov M * (x,=%2) '
L o T

hy k.
W, = A my +'mr1 A A

3 .
v r 2 ) = ;_n = ‘(m’)ez= (""1)%

Evmifanl c'(— rliom : (m")ea .x', + & ()—x) =0

‘(m,')‘,_?l iz R (x,.— Xz} =0

—
—

Frzzp.am_c# czual&'\'\' : !_ <m|)e& 631-}— ‘f< _x
= ©Q
| -k - (‘“1)8@ + %
o (Mg, (Ma)gy 0F — (0" [ (m)ey k+ (Ma)gy +]=0
' C\’l =0, (,91‘:: /(m’)gﬁ K+ (T“L)Cb < _ g
: (m|)¢ﬁ Qm,_),:& - 3w

For hanwmonic wmdion x:(¥) = Xi‘cﬂ(wtq—#) ;A= 1,2
Jiven ea,«_a,t‘._onl fead G (- Gzﬂ-*.-#-ﬁ) X, 4+, Xp =0

bz X’| -+ ('-CBJ'O.,2+C2)XZ::O

Freﬁuencj Evn-a.tm 44 l—' S+ b, @ =0

bz ' at&zcu,_-l- Cz
ar K (O‘Ia’z)"ﬁ? ('-7' Cz+‘=|a’2)+(b Cz“cbi>—°
Ccnd:hcn for Jegenermcy if b, ¢, — ¢, b, =o

vaZmudL.ma&n. 5,0, + %L 61— Ky 0 =0

g, 91.;. kL 83 - k. 8 =0
For 6;_({‘:)::. ®.€ CoS(C-St—f- $); L{=1n2,

- ky —QSJ'J}_ + k¢ @2 o o

Freguemey egualion i w* (i n) - (7, ket 7, *g) =0

=0, W, = \/*t(rr,wz)
litude rat N
Amplitude ratios: 16D}
F = @z‘ = -—C.S,Z'J',«b— *t = 1
o %y
(2)
@, _ - T+ ke T

Tzz

@) K 73



General solution is given by eppalions simifar 1o Egs. (5-15). With
6',(0):: éz(d):o, we obtain fram W /‘v:rnb!-&?lb Ey-(S’-iS):

) 1 T
® = 2 8(0) — e,(0) ¢ —~ _ 2 _ _
" T {2 60~ 2, (3.7—51)[ 5 9 0y ]
{ g () + 7, 61(0)}
T+ %
@) | 7 6,
® -1 {—T' 00) + €x() } = (J’—i—J'z)[ + 62() ]
= - Z‘ 56/ + 3 e;(a)}
, J+ Jy
¢l = ¢7_ = 0

( (D Q>
g,(t)= @,I) 3 oty EE") &t Gt - @  + @ ot W,t

i
6,(t)= 9‘(') ..g-__' 9(‘1) wf W,t
2

When kg = 0, the system becomes identical to the syl o}
Eoblm 556 wilk kg = ko Nomal modes one given £y

) 8 11 g0 L W ey ¢ w
® = () = ] 3 = ® = 3 @'
6, 1 ¢ _};)

Ev‘aﬁzudytnoﬁoncw&mmu

8, + E(e-e) =0 BTN b
éz" *t (9"-91) = O _— (E.z)

SU.L'ET¢C-‘E‘I‘\3 (E,J from (E) 9ives
(el"" 92>+ (91—82) (kf ..g_—) =0 =a--- (53)
Defnind = 6,~ 01, (E3) cam fe WM as

& + (kt + kt) Q< N .;-'_- (54) |
Thvsum/n"?&c.@,unﬁ}n bor Mfiﬁ_Ma‘Wh‘#u
% (T, + 5, ,
J(‘a_'.‘*‘ ‘Ft = J é(a_: ;1 ") = (5, of problem 5.45.
-
{
\v N ,
N e
—_J
\W




Since the length of shaft 1 is small and its diameter large, it will be very rigid and hence

the turbine and gear 1 are assumed to be rigidly connected. This helps in modeling the
system as a two d.o.f. system.

Jgea.r2

Jo1 = Jiurbine + Jgear1 + —— = 3000 + 500 + (1000/2.25) = 3944.4444 kg—m?®
1.5
) it B
(80 (10)) | = (0.1%)
GJ 32 5 |
kt2 = | — = 1 = 7.854 (10 ) N/m
¢ shalt2

Joz = Jgenerator = 2000 kg—m®

System is a semi-definite systemn. Its natural frequencies are given by (see Eq. (5.40)):
w =0 ‘

kig (Jo1 + Joz) _ ‘\/ (78.54 (10%)) (5944.4444) _ 24.3273 rad fsec
Wy = Tor Joz (3944.4444) (2000)

Natural frequencies are given by Eq. (5.40): , m
. 0 - _ k (m; + ms) _—\/ﬁk(m+M) 4
W = j Wp = m,; m, mM e,

Assumption: Balloon is a point mass. "

‘k%: 12 & c0524-50
= 6k

. Egua.bbns of motion :

T+ Cpd— <, (6,-6)+ Key 80— %y, (0, ) = o
28+ €4y (6 -8) + kyy (64— &) = o
“'eq
3 o hiy .
[ol IJ{?A}_*_[Cﬂ*-C-{:z_ —Ctl]{& N kh"'kfz -y 9' B 0
t 2 91 "'Cél c{:z 91 _ktz *tl ez ] o
I R (2 - (€)

ED"(EJ) yield :

2 a* o (ca+<)d - e 5 [(kh“* kea) ko Xl st
+ + €
o J;Az‘ — e A St 4 - Ky kig X2

: - {0} —---(Ea)
The characteristic e?/ua.‘ffon Ee“’"‘es‘; o .



—(Cegr £ 1 ktz) v
. =6

PR
i 87 (Cy, + C{:z>"g+ ki +kee
<z
*(c{-z’g + Kip) J A+ C A+ Ry,
l"E‘J '
£ 2
ma/gLf+ o, A7 4+ a, 3 + ey £ + e,

e (E‘O

= 0

w‘\ere
Qg = 'T?_
T €2 + & (Cop+ Cia)
kea + Cf‘zh(cfl‘ﬁ c_"f/i) + a-?.(k-h -+ ktz) — Cez

P

{ -

= J,

- !

Kig (Cfl"‘(’-bz) + Cgq (Key+ Kez) — 2 Cta “‘fl:z

R

O = Ky, (kfl‘(’ ktz) - ki,_’

For the stability of the system, the conditions derived in section

5.8 are cz,ppltca,b[r.:
- >0 H L=

G A, Az — a;qu,. - o, 0.23 > 0
2% % _ F 5m
- f—
v '
T Smg T
3‘“3_ am}
Free body diagram of 'ﬁran[cr
Free body diagram of bar
Equations of motion of bar:
m(i—g'é)ﬁk{66’+F (1)
hi-mE-$9 L =xoe(@)+meLomo )
Equation of motion of trailer:
| (3)

5mXx=—F—-2kx or F=—2kx—5mX



Equations (1) and (2) can be rewritten as:

£
m[x—‘—2—9]——kt9£’+2kx+5m5i=0 (5)
. € .. £ meé 8
0 5 (X3 )+k0( > 0 (8)
1
where J0=§-mt’2 . - | (7)

Equations (5) and (8) can be expressed in matrix form as:

6 m __m(’

=0 ek —xe

2 b'¢ X 0

¢ 7 It xe-Lmge {e}={o}
_me T all > mE

2 12

Assuming a solation of the form: |
x(t) =X e’ and 4(t) =6 et (9
Eq. {8) can be expressed as:

lém _,mzf 2k —k¢ |
x| .. [o
S me me |t —-(nge—kt’z] {e}etz{o} (10)

— am—
.

2 3
b :

By setting the determinant of the coeflicient matrix in Eq. (10) equal to zero, we obtain:

m £ s?

+k&f

(6ms® +2K) —{

m ¢ §° més® mgé 2
| [ 2 ] [ 3 g tk¢

=0 (11)

which, upon expansion, gives:

[l m? ¢£2

" s“—}- Eg-mkt’z—Bngf s2+[—mkgf+2szz]=0 (12)

A comparison of Eq. (12) with Eq. (5.43) gives:

a, =2k2 € —mkgt



Conditions for the stability of the system:
1. All coefficients a; must be positive:

18 mg

>0 k> - —=
3.2__ or _317 (
a, >0 or k>——-1—1£-§
‘ =3 ¢

ay ag a3 > a9 a§ + a4 af

This is not applicable since both sides of the inequality are zero.

Thus the condition for stability is: k > -;_ meg

£ :
Eguations of motion are (gé,.(s.‘) and (5.2))  F2(8)
2m "c 3Kk Xy — 24 %, = F (t) ‘ 5?40
T\'\;Z—Z*X'-{-ak xz - O ‘ .

0 05 %

Hence Em]:» [7‘:“ :]: [7‘; ?o] , [g:{:[:‘:k ";'* ]::- 6000 ..4.500]’

~4000 6000
-——>= F'(t)
= {07}

2
Freau.ehr.j ezucd'nbn 5 {—'&91'["’] +[1c] l = &34— S00 W + 100 POO = ©
Hence 3, = 113949 vad/2, 3, = 27-7517 rad /2
‘and T, = 05514 & » Tp= o.2264 5.

Wwe S.e.’eg,t. At = 002 2 and use central . A.‘ffercncc method for
numerico.[ solution _(see ChC«LPfer ¥ :fOY‘ dcta;i(.s). : .

The main program which calls CDIFF, the subroutine EXTFUN
and the output are given pelow.

C
C
€ PRIGRAM

C MAIs PROGRAM WHICH CALLS CDIFF
C.

C

C

- -t - - — e St mt ey W G U W i i kS S M S e b W A S A et TR e A W W G e Y S e e Y s T S G S8 e A
g e i E o e B - o o i i i R o o e e - P PR

FOLLOWING 10 LINES CONTAIN PROUBLEM=-DEPENDENT DATA
PEAL M(2,2),K(2,2),%C(2,2),MK(2,2),MCI(2,2),MMC(2,2)
DIMENSION C(2,2),X1(2),XD1(2),XDD1(2),XM1(2),F(2),R(2),RR(2),
2 XMK(2),XMI(2),XM2(2),XP1(2),ZA(2),2B(2),2C(2),LA(2),LB(2,2),
3 5(2),X(50,2),XD(50,2),XDD(50,2) '
DATA H,NSIEP,NSTEP{,DELT/2,49,50,0.02/

DATA X1/0,0,0.0/
DATA X01I/0.0,0.0/ :
DATA M/20,0,0,0,0,0,10,0/
DATA €/0.0,0.0,0.0,0.0/
~ DATA K/6000.0,-4000,0,-4000.0,6000.0/
C END OF PRORLEM=DEPENDENT DATA

, CALL CDIFF (M,C,K,XI,XDL,XDDX¥,N,NSTEP,DELT,F,R,RR,XM1,XN2,XP1,
2 AC MK, MCT, XMK, MMC,XVI,ZA,ZR,2C,LA,LB,S,X,XD,XDD,NSTEPL)



STEP

OWHRNO NS W~

N

47
48
49
50

10
2N

2
30

2

3
49

2
50

NONONND

#RITE (13,10}
FORMAT (//,38H SOLUTICGN BY CENTRAL DIFFERENCE METHOD,/)
ARITE (13,20} N,NSTEP,DELT
FORMAT (12H GIVEM DATA:,/,3H N=,15,4X,7H NSTEP=,I15,4X,6H DELT=,

E15.8,/)

WRITE (13,30) |
FORMAT (10H SOLUTION:,//,5H STEP,3X,S5H TIMF,3X,7H X(I,1),3X,
84 XD(I,1),2X,9' XDB(L,1),4X,7h X(1,2),3X,8H XD(I,2),2X,

9H XPDC(I,
I=

na 49,

2),7)
1 ,NSTEP

I[ME=KREAL(LI~1)¥DELT

WRITE (13,50) I,TIME,X(1,1},XD(I,1),XDD(

[, 2]

FORMAT (1X,14,F8.4,6(1X,E10,4))

STOP
END

SUBROUT INE EXTFUN
THIS SUBROUTINE IS PRORBLEM=DEPENDENT

SUBRUUTINE EXTFUN (F,TIME,H)
DIMENSION F(N)

F(1)=0.0
F(2)=0,0
IF (TIME
RETURN
END

«Lbk. 0.5) F(1)=500,0

SOLUTION BY CENTRAL OIFFERENCE METHOD

GIVEN DATA:

N= 2

NSTEP=

SOLUTION:

TIME

0.c000
0.0200
0.,0400
0.0600
0.0800
6.1000
0.1200
0.,1400
0.1600
G.1800

»
-

0.9000
0,9200
U,9400
0.9600
0.9800

X{l,1)

0.0000E+00
G.5000E=02
0.1940E=01
0.4154E=01
0.6905E~01
0.9938E-01
0.1302E400
0.1600E+00
0.1877E+00
0.2129E+00

49

ADCI,1)

0,0000E+00
0.0000E+00
0,4850E+00
0.9134E400
0.,1211E+01¢
N.1446E+01
0,1539E+01
0,151SE+n1
U,.11436E+01
V.1323E+01

AN(r,1) -

0,250Q0E+02
0,2500E+402
0.23%0E+02
0,1934E+02
9,13344E+02
0.7043£+01
0.1347E+0%
-.281Q0E+01
-05l64E+01
~.B6059E+01

0.2315E400 «_,1023E+01 =,87378+01
0.2101E400 =.1163E+01
0.1842E+00 ~-,1258E+401
0,1571E+00 ~_1325E+49}
0,1290E+00 =,1379E+01

-.,5533£+01
=.3717E+01
~+2966E+01
-, 2515E+01

DELT= 0,20000000E=-0}

X{I,2)

0,0000F+00
0,0000F+00
0,8000E~Q3
0,4512F=02
0.1379E~01
0,30B0E=-0Q1
0.5632E-01
V.8917E-01
0.1262£+400
0.1630E400

0.1991F4+n0
Q.171SE+00
0.1365E+00
0 .9HUBE-O]
V.6131F=01

XD(1,2)

0,.0000E+00
0.0000E+0D
0,2000E=01
0,1128E+00
0,3247€£+400
0.6572E+00
0.,1063E+01
0.1459F+01
0.1747E+01
0.1846KE401

~.5925€+00
-.1120F+01
= 1566E+01
~.1837E+0}
-, 1879E+01

I,1),X(1,2),XDCI,2),%CD¢

o i oy it A At e T S L e i Sy A A T ND AT T h ke v i e et S S O M T D e e e e Y S T A v ey M e Y T > O A o o o oy v it
E T i R e P e R D Prcpndem g P g PR =T S

xX006(71,2)

0,0000E+00
0.0000E400
0,2000E+01
0,7280E+401
- 0,1391K402
0,1535¥F+02
0.2127v202
0.1831E+02
0.1050Fr+02
-, 657TE+0GU

- 27148402
-.2565F+02
~.1889E+02
-,RA195F+01
0.3993F+01




(ﬂ') Freguency epuation is

ot paera] = e[ L)L TR | oot e

c
C
C PROGRAM B

C MAIN PRUGRAM FOR CALLING THE SUBRUOUTIME QUART
C

C

C

I e I It L -t - L R E L T S S P LSS R
bRl e i el i e Sk = oo e G e e hereirent e i ot e e e G s e e v ot e e e

SOLUTION OF 3 ACLIS(X*¥¥4)+A(2)¥(X*e¥3)+A(II*(XF*¥2)+A(4)*X+A(5)=0
DIMENSIUN A(S),RR(4),RI(4) .

C FULLOWIHG LIME CONTAINS PROVLEN=DEPENDENT OATA
DATA A/1.0,0.0,-270,0,0,0,8100,0/

C END OF PROBLEM=DEPENDENT DATA
WRITE (26,10) (A(ID,T=1,5)

10 FORMAT (//,31H SOLUTION OF A QUARTIC EQUATION /7,60 DATA:,/,
74 A(1) =,E15.6,/,7H A{(2) =,E15,.,6,/,7H A(3) =,E15.6,/, )
TH A(D) 3,515.6,/,7H ACS) =.515;6,/)

CALL QUART (A,RR,F])
WRITE (26,20)
20 FORMAT (/,7H ROQTS:,//,9H ROQT N{O.,3X,10H REAL: PART,.SX,
2 15H IMAGINARY PART,/)
po 30 I1=1,4

wd N

30 HRITE (20,40) 1,PP(I1),K1(I)
49 FORAAT (I5,3X,E15,.6,3X,E15.6)
STQP
EHD

SOLUTION OF A QUARTIC EQUATIUM

DATA:
AC1) = 0,100000E+01
A(2) = 0,000000E+00
A(3) = =0,270000E+93
A4) = 0.000V00E+00
A(S) = 0.,810000E+n4
RUOTS:
ROOT NO. REAL PART IMAGINARY BART
1 -0,153500E+02 1.0000Q0E+00
2 -0.566319R4+91 0.000000E+00
3 0.586319E+01 0.000000E+00
4 0.1535N0E+02 0.000009E +00
() (o2 w} +36) x -18 x;"’ =0 ; i=h
writing (Y (—ozw +u) :”,
. *
v, = {02 (5-3¢319) +;‘}/(8 = |-6i130334
f = {-o-z(:s-as‘)‘+ss}/:g = —-0-6130278

Egs (5-18) give  xV = 144722, x® = o55279, £= £ =0
DlSPla.cemenfS of ma.sScS my and ™y are given Ly Eps- (5 i5)
x,(£) = 1-44722 <05 (5-84UTE) 4 0.55279 <3 (15:35 &)

x2(t) = 2:34165 cos (596319) — 0-34164 cos (15-35¢)
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DLAENSTON €C(2,2),F2(2)
REAL K(2,2),8M(2,2)
CUMPLFY 72(2,2),X%X(2),AA,PH,0FN
INPUT DATA :
DATA 4/70.,1,0,0,9.0,0.1/
DATA C/1,0,0.0,0,2,0,06/
DATA K/Z30.0,=20.0,=20,0,20.0/
DATA F2/1.0,2,0/
UHF=5.0
C END OF [8PUT DATAR
o 10 1=1,2
[ 10 J=1,2
As=(i3 s )e (T ,JI+8(T1,0)
h=MF*C(I1,J)

10 4LU1,J)=CmeLX(4,8) ‘
NENSZ(1,1)1%¥2(2,2)=-2(1,2)%2(1,2)
AA=Z(2,2)*CHPLX(FZ(1),9.v)
BRZZ(1,2)+CHPLX(FZ(2),0.0)
AC1)={AA=NR) /DEH
AAZZ(1,1)#CMPLX(FZ(2),0.0)
BH2Z2(1,2)¥CHPLX(FZ(1),0,0)
X(2)=(AA=BB)Y/DEN
PRINT 20, X(1},%X(2)

20 FOPYAT (//7,2%X,254 SOLUTLION OF PRUBLE- 5,.49,//7,2X, -

2 7TH £(1) =,2E19.8,/,2%,7h X{2) =,2E15%.48,/)
PRINT 30, OMF

30 FORMAT (2X,6H OMF =,E15,.8)
sToP
END

SULUTION OF PROBLEM 5, 64

)

) = 0,20095894E4+00=0,686201385-01
X(2) = 0.3439531NE+00=0.78423016E~01

OMF = 0.50000000F+01

can be o'tra.wn n e&u.‘ valent
form as thown in Fig. B ‘

wWhere both Inullcjs hove the

sSaome. s Driven , 3,
Ta..o(l > ri . _Drl.VerJ J" R

»TI}e ev.u‘vaJen{' ma.sy F.‘g. A
moment of inertia of
pulley 2 can be computed e g

in different speed ratios
Qs




2
2 o= (S,becd Y'G—ffo)
150 (zso
350 350/ 4
4507y . 750
350) P % (aso
or 7 i :
J; = 0-i837 J, ; o-5102 7, 5 653 7, ; 4.5918 J;
Stiffness of the belt (on ecach side) is given by
AE
*= 7

where A= cross—se;-,tn‘ana,l area of belt, €= Young's modulus
and £ = length of the belt. Length of fhe belt (distonce

P Pa in Fig.A) isgiven by
2 2 Ji
3[4 - (-]

In this e,x.a_m':\e, = 5m, fD.-iin d= .25 m ard hence

L [4(53 ~(1=-0-25) ] = 4.9859 m
= AL '

= 20057 IO N,

4.9859 <10 A Nm

Eaua,f‘(oh of motion :

3]9,-;—‘1%(6.—1»92)_:0 = Jié"_'.. kf: 9|(i+ J")—o
2

T8, + ki (01 +9) =0 =

'Tzé‘z"f- *592'(:’3—_@_/4—:) =. o
; ,

.

. ) /

SoWw, = \/1:{ (J’,+¢rz )
T, T .

where

k.= 2k r®  (see solution of problem 2.51).
He/re T = o kg-*ml and = 0.2 kg-m". In order Jc"".'ﬂ‘c
no.f:urai freguency 3, to be é.Waﬁ From the speeds

50, 250,350, 450 and 750 rpm {or, I5. 708,

36.652, 47.i124 and 78.540 rad /sec} ,

2

26"80)

wn ?— 7?:5-40 T‘a.«d/Sec

Since W, involves A (through ‘k,é>, it can be determined
From the above J‘n’g&uall"fn'es.




Velocity of tup before impact is given by:

—;— My, v = Myp Eh or v= Ve gh = Ve (9.81) (2) = 8.2642 m/fsec

(a) Impact is inelastic:

Conservation of momentim leads to:

Myyp Viwp T Magyil (0) = (mtup + ma.nvil) Yo
- (1000) (6.2542)
(1000 + 5000)

or Vo = 1.0440 m [sec

(b) Natural frequencies:

k, +k -k : ki +k k, | ki k
w% = 1 2 + 2 + 7 _1_ 1 2 + 2 Kk
! 2 my 2 e 4 my mgqy m; Ins

Thus the natural frequency requirement can be stated as:

wi

2 A
@y

2 ‘
]

=____l_? ki +ke + ko _ 1 ki + ks " k, ‘__&_ > (5%)
{2 m)* | 50000 10000 4 | 25000 5000 125 (10%)

(1)
(¢) Free vibration response:
Initial conditions:
x1(0) = %2(0) = x;(0) =0, %(0) = vy = 1.0440 m//sec
Maximum forces in the springs: |
Fi=kx lmax (2)
, Fy =k, (Xz "'"'xl) I max v (3)
For a helical spring, the shear stress (7) under an axial force F is given by:
8F¥D
‘ . 2D +d . g '
where k, = shear stress correction factor = =D D = mean coil diameter, and d

== wire diameter.

Ref: J. E. Shigley and C. R. Mischke, "Mechanical Engineering Design," 5th Ed.,
McGraw-Hill, New York, 1989.



Since stress is to be less than the yield stress witth a factor of safety of 1.5, we have

Tyield
< , 5
=73 (5)
T
ry < 124 (6)

where 7, and 7, denote the shear stresses induced in the springs k; and ks, respectwely,
and Ty;e4 is the shear stress correspondmg to the yield stress of the material.

r ™2 {=5000 k9

*2
%2
L—— ™y |= 25000 kg

%,




Chapter 7

Determination of Natural
Frequencies and Mode Shapes

™y ™ma M3
v From Example 6.6, ..
‘ 3 ¢ T r' "2 3 1
11 337 25¢ EX -y ;—“‘l“;— “’l‘“;——"l
1 1’ :
Q. = kA
¥ %8 ET
(@) Eg. (76 ) 9ives
3 3
4 Ix 5 [ 1
. wk + Lot 4 3"5)- o6 T = 613802 =1
9, ET 256 48 25¢ 768 EIL
5, & 2-6917 [EL
m N
3 3
(L)_.i__. ~ wmi 3, 4x5 3 98 m}l; 3760
W9 ET ( 256 = == —— = 0-127 ET
1 EL 48 256 768 ET
Wy >~ 2-7994 E__I_i
mi : ,
Flexib.'l.‘l:y influence coefficients: % ) 93

m,,- ro{:a,tuon of J, when a unit forpue ok, @ xn@ khz

Quy, = 'ro{:a):;on of & B A uhen a it ‘t’crvdﬂ. W t J.E

= 1 R 1
tey, £ Ktz
a3 = rotation of g when a um.ut‘ i'orgue 8 Wh& 1z I3
= i - = -i'-- + "1—‘ + —i
*tea ki kiz *i3

@) EZ'(-"G) gives a—;—: ~ Oy Jd) 4 a,, Jdy + Q3 T3 = ‘ji' (‘+2+3)
‘ | &

631 > o 408‘2 \}"kt ;J;

by 1 _ . Ji_ T (L
( 691_.“\‘:;-‘—2('

R
™~
+
~
Q.{
Py
\
.*-
!’*
S—r
+
W
&
—
ki—h
+
\r-»

k
O x 0.3244 \*¢/ :



BRLY ] m, ™3
R —— > 8-

T, ], |
S, Sy g
x 2 2

(=) = 6Ll (1 —b_xl) : o< x < a *

,‘1 A
ole b ————

=) 4 asxst a i

) < 4 —1

:De.f{e_Cffon due & weight of m,: (_p____ mgq)

— e e s —n e e v e e o e o m e v mm

~ = Pa (£-=) (a,z+xz—2£

sert

¢ezx d

A'é' laca,ffon aJC 'l’r'(, (x: _if_f_, L: _32’3—)—??_-_1) 3
’ ER A : g £

256 €1

At IOCQ—":!‘OY\ a:F ™y a,::_%_’ x:é} £=£> ,

w'= — (m3->(-i—)(z-i> (£+ _,_Q—_L-]z _umg 1
| - s¢ext & 4 . ) 76§ €L
At location of ™3 (o= ‘—ﬁ——, x = %—- > 2..1)

o= = @D (L= Ey g

/?
k2 g’-__é__z’-)__z_l“_%__
73 4 -

, ezl € 765 EL
Depleclion die 5 weight of my (Pz2mg
H hoenbion o (e L s L1ty
’&J’,‘llz (27’-1})(_%_)(__14,) (12__ :ﬁ_—'—,{?’) _ It mg 13
GeEIYf 4.k 384 EI

At /(C’Ca.‘é‘r'on of M2 (7C=él L‘—‘-Jz(—', = f)
4
w= @m2) (2)(5) (1%

T Y &
= - ).._""___

écr l T 24 EI
At Location of M3 (’&‘—' %f—: @=—£—, B:é,f:f) J
s” L 34 2 ot ma
(/3 A zm ) (- = £ 7 92 ¢ g2\ _ &
= (2me) (£)( 7 (77+75—1—‘rl>’mzz,ez:
¢erf |

Deffecffo‘q due +- wz[BH‘: of M3 : (P= Sm})

At location of m, (x=-"-§$—z b= —"—s- > f;f)
e Gm9) (L (4
cexr f

' 3
) gz A5 LB 7mad
(4~ te té ) T 2s¢ e1



At location of my (X=—’£~ ; f

‘%///= 3 m3) (%)({_) (12-— F 11> = X m}f
cex ‘

At location of m3 (9(— ‘i!i, b=

i EDCE (o gy ama

Wy
cex f 2s¢ EI
Tofai C’—’-ﬁ(bctdh |
B N "'——"""‘—"3 g3
U, = UWr 7 oar ’:__ meg [ > |3 m3
i o 3 (256 394 zss EI
_ / 1/ 3 { 3
'&J‘z—-‘wi +'L.Ji”+-1,f"z = ‘ng —‘-——-f-—‘——.;.__'__f__ _:__2_7.:‘1!._
E1 | 76% 24  2z25¢ iv2 ETI
/ " / 3
‘@=@+a5+a§ Z ey 3 N te? mg £
76? Y. YA 25¢ 3072 ET
2 3 ' '
‘ m 2 £ 17
_ 2 ( +o2x A 3 x 87 N\ v
W = Er {19z iz T 3072 2

m* } ,I‘ |
= () 2 () + ;i‘i,z>}

_ EI
= 3. 5387 “‘"!3— . | ’
664 1od
ses

. s, = na.fura,l frezuEnr-j of wing itself = 2o Hy = 125.
= natural Dfrezuencj of weapon ottached ok te fn‘&» cfg-

mmﬁ(ﬂg“ﬁmwd‘ag mass of wing)

[ soooo ! rad
J 386-4 = 2¢-3725
Zoo00 sec

New _-Fre&uency of Vzé-ra:f:non, of the wing with Wea-pon 'S
3:ven Bj . | \ ' .

-y

z = 2 -+ +
“ 5 6 125- 6642 2837257

= 130-55¢3 xrom5

S 09, = 276759 IE“; = 4-4047 H3
Sec




For a simply 'supkor%ec’ beam, natural a "

frezuermj iy gfven b:j (a,.ggumfn9 E{—s' F 1 -
mass te be concentrated ot o
m.‘olo”e) |

_ /ﬁ_ _ 48€T
3y, = ™ where A‘k_ T

Nejlec{inj the mass of beam, f f‘ro”cj is P’a.ceo’ at the
midd le of 31’{0‘8@', its pnatural gcreguenc-.j 15 given E_‘j

W . = s
22 = \/
{tom

Fundamental natural freguency of the com bined system

s Sc'ven bj
—— = L+ = : ¢ lom e
3, @, O, k k

R 6, = o-30is \Em = 30-!57’ of the natural

fregue.n&y of the 9a‘rcfe.r
(Wt‘flxou.'t‘ fl-,e 'frouej)

Flexibili&y coefficients : | | be— 11 — fe- 1; —
Let T = tension in string - .

a, = deflection of my due to wnit

@

force a.fﬂc‘ed to my Unit force
Unit force = sum of ‘O"‘POﬂehfS of tension in vertical direction
. 0-‘11 :
i-€. 1= T(a'" = S I N T oy
)+ 1*,3) Tm.‘(“u)_g_z_rﬂ
Q. =
n ?:F = @, (Lj ijmefry)
A 21 4ml
MoQuy My 4 o ™y = — (Tt = —_—
wz. i 22 2 T ( 3 3T
Wy = 0966 [T . Eract gotifiom wi_,/ (Pro“em 5:8)
m
From Exa,m}:le 6.5, ' |
%« —
[«] = “'Z i - ) oo
- < + ; =
2 2+ 3 - k3 4 -2 5. —3
L ° — ¥ hE ° -3 3
r*m, o o i ) N o o
Ern] = o TNy [#] = ™ 2 Pa)
[ © o ™3 3




ASSumIn7 the mode S}'\a-f'e as —)—: {i}’ Ra_y’efg)sz zuofn'enf
3

becomes

—T -
R(;): (32= X [#1x

—_._-,-—""‘_
X' [m]¥X

(i 2 3) % 3 -7 o 4
-2 5 -3 {1}

(r 2 I)mT1 ) ol (1
o 2 °© 2
S

Exact value & 9, = 0-337¢ /_“_‘__ (Problem ¢.48).
) m

Stiffness matrix : ,
Give each Jdisc a ik olrs?u-zan W to04: ALin dotes

" 300 notation. Torgue regui red il give Stiffness céeff-‘crents .
8, = = - . = ' |

1521, 02=63=0: My=ky+ Kig , M= -#y, , My,=0
9"—-‘.‘1, e,: 93-_»0 H Mfzz ktl+kt3’ mt:’.:—kéz’ mt_az—-kt’

91=1, @)= 6= 0: Myy=x,, , Mt—z"" —Kez s My =0

ker + kep = kg, : e ] {* 1 -
E“] =l —kygy Kip+ Ky L T 2
o -—k{_»g kf‘; J ° -1 1
" 9 o o 3. o o 7]
] o) (=] 3_3 o o 3 -
Assume  the weode Ska.re a1 5‘_ {i}
3

&, ~ 0-2887 | K¢
9o




S‘En'gcfncss‘ matrix:

lt/;:en x-i X,=0;

Fi= &, = 1+ L
T T
Fz"' kzl = - %;
When x,z=0, x,= 1:
- 4, T
Fz— iz * 13
F, = k‘z = - _I___z :
L L - . _ _
(«x7= T (1'+11) Ay ] - _;:_[1‘ ;_]
: -1 o S g ,
2, (n* 1)
(m] = M © :l = m [i ° ]
o i [#) 1
Assume the wmode shape as {z

R(%X) = 0% = “ Ux [ ”']{} ¢ T

1 '2—)!”\ o 4 5 9.7'1
SR
W, ~ 1.0954 /

Exoct value 'Pf (f’ro}:le_m 5. 18).

From problem 7.9, for ¢, -11_ = £,
(«]1 = < [2 _']




D

AH’{Y o unit load to masses m, and m, 0,207\-3 x, amd x5, TESPECt;vg_!j:

: ! ) X, + K
- ——— . - —— - ¢ ]
Wy = 2%, ° a'ZZ 24, + 2kz T 2 4, Kz

Dunkerley’s eguation gives
‘ mi m (kz+ ki ‘ (€ )
—= =y, M+ Oy, My = 2 f 27 7L !
w32 1 ™ 22 ™ Zk, + TR Kz)
Sinie M= Ko m SR 2t mimams memm ard fence (2

qives C:B‘: 2EL
2m 43

)

n-toosesNT L2
2 z 1 i
Ch Wy + Cp Z: -E—) 69;_
. n
=1

(£

Eg- (7-21) gives, for v=m,
R(X)= v,

T e E(ay

i=1 n

Let '%': €, << 1. ‘:‘L’en Eg,- (Ei) becomes
n~

2 2 |
Wn + .Zi € W , ™t n-i 2
R(X) = S L (eezelel)(-2 &)
1+ = € i=g .
i=41 "_‘1 2
-1
~ W) + “Z' e: csf‘ -l = €
i=1 i=1
- wn -+ Z: ((1—94: - wh ) €£ ) (Ez)
=1
Since (,3‘:2 < Q: , in geneml., (E,_) shows that
- 2
R(x) = O,
Egua.t‘fons of motion = ™ % X
(13) W ¢ e oy = o (e £ |

mz ;2 <+ k,(?’-,_—ax,) -+ kz (1‘-1- "tl) =0 _._ (E‘?-)
™y ';3 +‘Kz (7“—;,_) = O ---(8-3)
with X‘:(t) = )(; cos &9t; EZS"(E'i) and (E'z) 9;\/8

m WX, = 6 (X, =Xg) M9 Xy = -  m X, + Kp(X2-%3)

2 .
W X : 2 ~
*l ‘kz

Since the system is free - free, the vesultant force afre_d ‘“ mass 3,
mus": Le 3ero,

or Xz =

3 2
F= = o m; X ,
i=1 :

The compwl:er program , with the subroutine FUN and the ou.{:pwl:,

ore given below:



MO eioIn

L]

e A o W A e e v ek e T W e M TR MR WE L e o w b wRr SR W SV O A A e e SR e AR S WA e M e b e R S SWT e TR e R e W T N T Gh B e W W e

HJLekRrR METHJD

InlS PFUGRAM RELUIKES USER 3uPPLLIED SUBRUUTLINE FUN

W D W an S N S e W WY e Eat e Gy b M e e e A AR i S Mk A A A Sy e e e e dms e et e et T VRN S oAb e was W e e mm WD W G T e o W WA W e A
e A e S ap e e S EA MD M e e G M R v e et TS P R We W M el M SR T WU R W o s P W “mE A AR M um e R IR T M YER EAS Wl e W M MMe M e T W WS TEN e W e e e e e

8T 5 wUCMBER JF FLHES TaCRelidEwl Uk M CrALGRED
Fduwualsn Githe OINTALNG PHRUbLme~=bePE DEAT DATA
MRS wddbkd UE FOOSIS RREGJIFERD
A
Ehv UF PROLEM=DePRLGDELT LALA
NEUn=z]
IVzZQ .1 «=---—
caLl Fdw (O™, F)
PRINT 60 ,5FUN,UM,F
Fe=f
IaF=0
JH4=J,0
1U0 QEeLTlu.d 4=w- -~
_ nl=y
200 CONTINUE
Fl=Fp
10 SMEUM+DEL
CALL FUM (0OM,F)
NEUNSNEUN+ L
PHINT 60,0FUN, UM, F
F2=F1=*xfF
LF (Fé JLT. ULU) GG IO 29
Fl1=F
Gl TU 10
20 NT=dT+1
PRINT 39, UM,F,DEL,srUN

30 FURMAAL (//,314d CHANGE OF SIGH DEVECTIED AT OM=,E15.8,/,3hH F=,

Z &.15.8,/,5H DEL=,E15,.6,7/,0H NFUN=,15,7)
IF (NI LEQ. 63 GU iu 4u
1F (NT JEQe. 1) UMb=0M
OM=0M=DEL
JELSUEL/10.0
GU TO 200

40 InR=18R 1 :
AF (INR JEQ. NR) G T 59
JM=(MB

- CALL FUn (OM,F)
NFEUNSMFUNT
PRINT 0Q,NEUN,OM,F

Fe=F
ad 10 100
59 JINTINUE
oV FORMATD (2X,6H Neilv=,I14,24,30 OM=,EL1S5.8,¢X,3H F=,£15.8)
STUPR ‘
EwD
SUBROUT Ink FUN



PsunkOYLEnE U (O4,F)
Awi=Lo0,.0 .

AM2=23,.0

AA43=2£00.0

LARL=EB000 U

AR =400l v

NERL RS Y

‘x1=1,.9

A2 (1 0= (uno®asl/anl))+al
XIZRL= (Ui /AR Z)IF XM AR XMigkA2)
FoASY¥ ALl AL e X252 L83%K3).
R Turi ‘

MrUN= 1 gz J,1009000U0E+00 Fz2 Q0.31991293E+01
WEUNS 2 a9z U 100u0GULEYL2 FS~U,.43000000E+05

CHANGE OF S1GN DEVEZTED Ar DP3 0.1U000UD0E+UZ
F==5,43000U00E+405
DEL= 0,10000000E+02

NEUN= 2
NFEUnS 3 ND+= $,10000000+01 FE UL31126251E+03
NEUN= 4 U4z V.299UC00UVE+GE b= 0.1140480008+404
NEFUNS 5 gM=E J,.300000Uu08+01 F= D,21803645404
NFUNS 5 UM= J,40000000E UL F= 0.293120008+04%
NFUNS= } A 0,50000000E+01 E= 0.27205625E+04
NEUN= -] U= 0,60000000£¢01 r=s J,703200346+03
NFUN= Y J4a= 2,.70000000E+0] F==0.38541377£+04

CHANGE OF S1G8 DETIECTED Af UM= 0.7000000UE+01
F==0,38581377E+04

DEL= 0,10000000K+01

NFUN= Y

CHANGE OUF 31GN DETEZTED AT Om= U.b22200L16E+01 “« W= &-2220016
F=-0,28649828L+00 2

DEL= 0.9999999ut~01%

NEUNZE 27

NEUN= 28 M=z 0.1000U000E+v2 FE=U,.4300000G0£+05
NFUN=. 29 JMS 0,20000000E402 Fa=3,472000u0E+V0D
NFUyns 39 INZ V.I0Q00OYUEVL2 = 0,23130000£+07

CHAWGE OF Sl&a DETECTED AT OM= D.30000G0UE+L2
F= 0.23130000E+07

DEL= J3.1000000UE+Q2

NFUN= 30

Woa21000000E+02 F==7,1d851225E+06
0,220Ud0VUE U2 "==0,47701113E+00
0,.430000U00E+02 F==0G,4289y80006E400

NEUW= 31 a™
NFUNS 3z I
NFUn= 33 S h]

it u N



CHANGE 0OF S1GN DETECTED AL U4= 9,25715595E+402 — . = 25.715595
Fz 0.21467506E+u2 3
DELZ 0.99999990E-03

NFUN= 58
.a Ec‘genva.lue ProHem is (}\—z) . . X,l »
. ' i (}\"7—) i XZ - Fa) (E.)
™ O
where 4. =4
L x=1, (8) dives  Xp= ~(A-2)X;, xy3=- X, = (A-2) Xz,

E= X2+ (23~3) x5 (should be zero)
The computer program and results are given.

o o T e e e A e D e o A o o e e e A R b o G e el S M e TR B WS e o D e e e o o - — o - - - -
Hrrrrrr ittt it r rr it ittt rrr r i ittt 3t Y11t ¢

HOLZER METHOD
THIS PROGRAM REQUIRES USER SUPPLIED SUBROUTINE FUN

P e T T T L T 2]

NI = NUMBER OF TIMES INCREMENT OF OM CTHANGED
FOLLOWING LINE CONTAINS PROBLEM=DEPENDENT DATA
NR = NUMBER OF KOOTS REQUIRED

QOO n

] LR I —

END OF PROBLEM<«DEPENDENT DATA
NFUN=1
DM=0.01 g —— -
CALL FUN (OM,F)
WRITE(13,60) NFUN,OM,F

(@]

Fa=F
INR=)
aM=0,0

100 DEL=0,25€-----

200 CONTINUE

F1=FB
10 OM=0M+DEL
CALL FUN (OM,F)

NFUNZNFUN+1
WRITE(13,60) NFUN,OM,F
F23F 1%F

IF (F2 .LT. 0,0) GO TO 20
F1=F
GO TO 10

20 NT=NT+1
wRITE(13,30) OM,F,DEL,NFUN
30 FORMAT (//,31H CHANGE OF SIGN DETECTED AT OM=,k15.8,7,3H F=,  _

2 £15,89,/7/,54 DEL=,E15.8,/,6H NFUNZ,I5,/) .
IF (NT .EQ. 6) GO TO 40
IF (NT ,EQ. 1) OMB=OM

OM=0M=DEL
DEL=DEL/10,.0
GO TO 200

40 INRSINR+1



IF (INR .EQ
OM=QMB

« NR) GO TO 50

CALL FUN (Q
NEUN=NFUN+L
WRITE(13,60
TFEsE
GQ TQ 100
50 CONTINUE
60 FURMAT (2X,
SIoe

M,F)

) NFUN,OM,F

&H NFUN=,14,2X,4H4 OM=,E15.8,2X,34 F=,E15.8)

F - o i pp——
C FH 1t b T e e

C SUBROUTINE FUN .

g Bl B et T S —"

zzz=zs==s323r

Emm e e a N S SIS R SRS RS SR EIIIEZISsS.

C =:===:======:====:::=======:=:‘.=====:============::::::::::3:::3::283::
SUBROUTINE FUN (QM,F) .
- X1=1,0
X2==(0OM=2,0)*X1
X3==X1~(0OM=2,0)%X2
F=X2+(2.0%¥0M=3.0)%X3
_RETURN
e BND
NFUNz 1 DM= 0.99999998E-02 F=-0,68310986E+01
NFUN= 2 OM= 0.25000000E+00 F==0,34062500E+401
NFUN= 3 24= 0,50000000E+00 F==0,10000000E+01
NFUN= ~ 4 OM= 0.75000000E+00 F= 0.40625000E400

CHANGE OF SIGN DETECTED AT QM= 0.75000000E+400

F= 0,40625000E+00

DEL= 0.,25000000E+00

NFUN= 4

NFUN= 5 OM= 0,52499998E+00 = F=~0.81746900E+00
NFUN= b OM= 0.54999995E+00 ==0,64475036E+00
NFUN= 7 OM= 0.57499993E+00 F==-0,48165655E+00
NFUNS 8  OM= 0,59999990E+00 F==0,32800055E+00
NFUN= 9 OM= 0.62499988E+00 F=«0,18359447E+00
NFUN= 10 OM= 0,64999986E+00 F==0,48250675E=01
NFUN= 11 OM= 0,67499983E+00 F= 0.78217864E~01
NFUN= 28  OM= 0.65932715E+00 F=-0.38385391E-04
NEUN= 29 oM= 0,65932965E+00 F=z=0,25749207E=04
NFUN= 30 OX= 0,659337216E%00 F==0,127553594E~04 "
NFUN= 31 OM= Q0,65933466E+00 F==0,11920929E=06
NFUN= 32 OM= 0,65933716E+00

CHANGE OF SIGN DETECTED AT OM= 0,.65933716E+00

F= 0,12636185E=04

Fz 0,1206306185E-04

DEL= 0,24999997E=05

MFUN= 32

NFUN= 33 M=

0.75000000E+00

F= 0,.40625000E+00

o« Ay= 0:65333716



NFUN= 34 M=
TNFUNST 35 T aM=
NFUN= 36 OM=
NFUN= 37 M=
NEFUN= 63 M=
NFUN= b4 UM=
NFUN= b5 IM=
NFUN= 66  OM=
NFUN= 67 OM=
NFUN= b8 OM=

0.10000000E+01

0.12500000E+017

0,15000000€+401
0,175000008+01%

0.16789526E+01
0.16789551E+01
0.10789576E+01
0.16789601E+01
0,16789626E+01°
0.16789651E+01

Fz 0.10000000E+01
F= 0.96875000E+00
F= 0,50000000E+00
F==0,21375000E+00

0.32067299E~-04
0.244975096-04
0.16927719E-04
0.93579292E-05
0.
-0.

I T

17881393E~-05
97816505E=05

mmimon o

CHANGE OF SIGN DETECTED AT DM= 0.156789651E+01

F=+0,37816505E=05 S
DEL= 0.24339997E=05
KFUN= 68
"NFUNT 69 OMET0.17500000E+01 ~ F==0.21875000E+00
NFUN= 70  OM= 0.20000000£+01  F==0,10000000E+01
NFUN= 71  OM= 0,22500000E+01 F=-0,16562500E+01
©ONFUN=™ 772 7 0M= 0,25000000E+01 F=~0.20000000E+01
NFUN= 73  0OM= 0.27500000E+01 F=~0,18437500E+01
NFUNz 74  UM= 0,30000000E+0Ll  F=~0,10000000E+01
TTNFUNE TS T OME 0. 32500000E¥0L T F= 0, 7187S000Ev00
NFUN= 95  0OM3 0.31615264E+01  F==0,13036728E-02
T NFUNTT98  0OM= 0.316155156+01 " F==0,11179497E~-02
NFUNS 97  0OM= 0.31615765£+401  F==0.93221664E~03
NFUN= 98  OM= 0,.31616015E+01  F=-0,7463693bE~03
TUNFON= 99 0M= 0.31616266E+01  F==0.5606412%E=03
NFUN= 100  OM= 0,31616516E+401  F==0.37479401E-03
NFUN= 101 ~ OM= 0.31616766E+01  F==0,18906593E~03
NFUN= 102 UMz 0,31617017E+0f  F=«0,32186508E=05
NFUN= 103  0OM= 0,31617267E+01 F= 0,18215179E~03

CHANGE OF SIGN DETECTED AT OM=

F= 0.,18215179£-03

0.,31617267E+01}

« M= 1-6789¢51

"__ N3 =3-1617267

PEL= 0.24999998E~03
NFUN= 103 ,
The progvarn fisted in Problems 7-13 and 7.14 is used with
NR= 1, initial value of OM= 0.0%t, DEL = 0.25 and
c ¥+t - It I Tt rr ittt ti it - iyt it ittt it it it 1
o
& SUBROUTINE FUN e e
-
#2323 ESECERT eSS SEICS S oSS RS ST S SIS I RS IS E S SRS TSR ER RS EERESRIRSSI=ST
A __SUBROUTINE FUN (DM,F) C®y=1 {nw_
ﬁ %200 ~OM) ¥X1 @2 C A+ ®, = —‘-‘:—)
X - A+2)®
X3=eX1+(2,0-0M)*X2 @y= - @+ E242) By

£ 8 . N
FeeX2+(1,0=-0OMY¥X3 ET - ®,F CAF+1)9;



RETURN

N R R e

The output of the program is givern below.

NFUN= 1 OM= 0,9999999BE=02 F= 0.94049907E400
NFUNS 2 0OM= 0.25000000E400 F==0,20312500:+00

CHANGE OF SIGN DETECTED AT OM= 0.25000000L+00
F==0,20312500E+400
DELZ0,25000000E+00

NFUN= 2
NFUN= 3 . OM= 0.25000000E~01 F= 0,85310948E+00
NFUNs 4  OM= 0,5000000i1E~01 F= 0,71237516E+00
NFUN= 5 OM* 0,75000003E=01 F= 0,57770300E+00

TNFUNT 6 0= 0.10000000E+00 F= 0,44899976E+400
NFUN= 7 OM= 0,12500000E+00 F= 0,32617188BE+00
NFUN= 8  0OM= 0,15000001E+400 F= 0,20912516E+00
NFUN= 3 OM= 0.1750000i€+00  F= 0,97765565E=01
‘NFUN= 10 OM= 0,20000002E+00 F==0,80001354E~02

CHANGE OF SIGN DETECTED AT OMz 0,20000002E+00

£2-0,80001354E-02 e,

DEL= 0.25000000E=01

NFUN= 10
NFUN= 11 OM= 0,17750001E+400 F= 0,86938858E=~01
NFUN= 12 OM= 0,18000001E+00 = 0,76168060E=01
NFUN= 13 0M= 0,18250000E+00 = 0.65452933E=01
NFUN= 14 OM= 0,18500000E+00 = 0.54793477E-01
NFUN= 15 OM= 0,18750000E+00 = 0,44189453E-01
NFUN= 16 oMz 0,19000000E+00 F= 0,33641100E=01
NFUN= 17 OM= 0.19250000E+00 = 0.23147941€£-01
NFUN= 18 OM= 0,19499999E+00 = 0,12710214E-01
NFUN= 19 OM= 0,19749999E+00 2 0,2327506143E=02

NFUNZ 20 OM= 0,19999999E+00  F==0,79998970£=02

"CHANGE OF SIGN DETECTTED AT OM= 0.19999999E+00
F==0,79998970E=02

DEL= 0,24999999E=02

NFUN= 20 '

NFUN= 21  OM= 0.19774999E+400  F= 0,12923479E+02
NFUN= 22  oM= 0,19799998E+00  F= 0,25773048E~03
NFUN= 23  OM= 0,19824998E400 F=-0,77641010&-03

CHANGE OF SIGN DETECTED AT OM= 0,.19824998E+00
Fa=-0,77641010E~03

DEL= 0,24999998E-03

NFUN= <3




<15425682£-03
«50902367E=04
+52571297E-04

TNFUN= 24 OM= 0,19802499E+00 ~Fz
NFUN= 25  OM= 0,19804999E+00  F=
NFUN= 26  OM= 0,19807500£+00  F=-

OOQi

CHANGE OF SIGN DETECTED AT OM= 0, 193075005+oo
F==0.52571297E=-04 7

DELz 0,24999998E=04

NFUN= 26

NFUNz= 27 0M= 0,19805250E+00 F= 0.40531158E=04
NFUN= 28 . 0OM= 0,19805500E+00 F= 0,30040741E~04
NFUNS 29 OM= 0,19305750E+00 F= 0,19669533E-04%
NFUN= 730 Od= 0.19806001E+00 F= 0,92933246E=05

NFUN= 31 OM= 0,19806251E+00 F==0,10728836E=05

CHANGE OF SIGN DETECIED AT OM= 0,19806251E+00 < X, =01990¢251
F==0,10728836E=05 e _ ‘
DEL= 0.24999997E-05 ' I T
NFUN= - 31
@ The system can be modeled ﬁx‘ =
a8 ghown. a—v\/\/\/‘-— my AN M2
The system can be redrawn 2k, ] LK, T
ad f’ai_Low.f: 4-”‘k Zm 2"1(
™3 A M2 L AAN T
‘kz )
o | . | ~ I '
x 2 x, i Let X,=1
~ ~ p ) ~ .
. 1 wz’jl X‘
Here mi=m, ﬁ,: 2K, M, =2m, : 5Z_= ’)‘_('," ” ad
1 Jall
*, 2= 4k, X = Xz, Xz = x5 %3%95 2
| = X o
. ¥ - ——— m——
T3 = any value. ' ot (1 7 % )
I 2
1 - A
| 53"52_'?(’31 Xi+ T2 ,xvz>
| ~ 2 :
| - s
m o8 m
: 2 \17 2% ~tl4k
p . ,
| =X+ 2”4— smaﬁ)
4 k* 4 k

Holzgr‘s Proc_eoeur‘e nvolves a,srumunj different values for

avd f!nd\\’tﬂ , out of tHose values, He correct freguency
9 af Ha ane which Stv&r X3 =o0 (Louno‘a_rj condition 4
be Sa.:t‘:.sae e_p()

From the expression for X;, we can Find the correct



freouenc with out trial and error by settin
ey J | b 7

N FE) - (F) + -

2 !

. 5w 25 m +
or z = — N 4+ - r_ 5 m 3m
@ = ‘i'*> \/wk" «*  _ Zx T Ix

("Vext) (m/2k*)

Thus the first natureal }‘reau.ermj s given by

2 5m 3Im / m*
. _ S M <.
of= G- BV GEE) o w= E

Ezs-(7-32) to (7-35) give

2
@z".' ®1— Q__J_;_ &,

= ® - W
@3 @2 —1-4:;_ (J; ®,+ ‘Tz_ @z>

E:jzi' W T ® = sum of inertia torgues (Sl’\ouu b:'z:fo)
=1 £ ' '

The computer program of Problems 7.13 and 7.14 is used = with

NR=3, Om=0.0f a~d DEL =10-0.
The subroutine FUN and results arve given.

PR PR E it et e e R R T R A e e

p

SUBROUTINE FUN

(38363

==’=3===2===================:===========}===========:=:=::::::::::::::::
SUBROUTINE FUN (OM,F)
o XJT=10,0
XJ225,0
XJ3=1.0
XKT1=1.0E+06
XKI2=1,0E+06
X1=1,0
OMSIOM*
X2=X1=(OMS¥XJT/XKT1) ¥X1
X3=X2=-(OMS/KKT2) *¥(XJ1*X1+XJ2%X2)
F=OMS¥ (XJ1%X14XJ2¥X2+XJ3%X3)
RETURN
________ END . W= 0
H OM= 0,99999998E-02 F= 0,16000000E=02
2 92M= 0,10000000E+02 = 0.15992500£+04
3 OM= 0,20000000E+02 = 0.63880034E+04
§ 0M= 0.30000000E+02 = 0.313339287E+05
NFUN= 5  0OM= 0,40000000E+02 = 0,25408205E+05
6
7
3
9
0

...........

M= 0,50000000E+02 = 0.,39532031E+05
OM= 0,60000000E+02 = 0,56630336E+05
UM= 0,70000000E+02 F= 0,76605133E+05
gv= 0,80000000E+02 = 0,99341109E+0S
OM= 0.90000000E+02 = 0,.12470582E+06




50
51

NFUN=
NFUN=

TARNGE OF SIGN GETEZTED AT GM= 0.51000000€303 ~ "
F==0.32486393E+05"

aM= 0,49000000E+03
gM= 0,50000000E+03
TTRFUNET 52 ONET0L,51000000E+03  F==0.32386393E£+05

DEL= 0.10000000E+02

NFUN= 52

REFUNZ 763 UM=70.50750012E+03

NFUNS 70  OM= 0.50750021E+03

NFUN= 71  OM= 0,50750031E+03
TTNFUNE 72 0M= 0.,50750040E+03 k="

NFUN= 73  OM= 0.50750049E+03

NFUN= 74  OM= 0.507500S8E+03

NFUN= 75 ~OM= 0.50750067E+03

NFUN= 76  JdM= 0,50750070E+03

NFUN= 77  0OM= 0,50750085£+03

s

F=

FE
F=
F=

F=

_f=z
&
F
;

0,21006358£4+06
U.93750000££+405

0.93337460E+01
0.79214058£401
0,66932836E+01
0.577219135E+01
0.45440674E+01
0.33159423E+01

0,208781628+01

0.92109573E+0Q0
0,30703202£E+00

CHANGE OF SIGN DETECTED AT UM= 0,50750085E+03

F==0,3070320

2E+00Q

DEL=* 0.999399390E-04

N E’ U N = 7 7 - — et 4 e am — [ — e — -— —
NFUN= 78 - 0OM= 0,51000000E+03 F=2=0,32486393E+05
NFUNS 79  OM= 0,52000000E+403  F=-0,16878158E+06
NFUNZ= B0 OM= 0.53000000E+03  F=-0.31524272E+06
NFUN= 137  OM= 0.11000000£+04 F=z<0,18694431E+07
NFUN= 138 OM= 0,11100000E£+04 F==0,62095219E+08
NFUN= 139  OM= 0.11200000E404 F= 0,74758494E+06

CHANGE OF SIGN DETECTED AT OM= 0,11200000E+04

F= 0,7475849

4E£+00

DEL= 0,10000000E+02

'i?up: 139
NFUN= 168 OM= 0,11146489£+04 F==0,37916328E+02
NFUN= 169 OM= 0.11146490E+04 F==0,23697710E+402
NFUN= 170 OM= 0.11146492E+04 F==0,9479085S9E+01
NFUON= 171 OM= 0.11146333E+04 FE 0,.47395439E+01
ECTED AT OM= 0,111464%3E+04
Fz 0,.47395439E+01

DEL= 0,99993990E-04

WFUN=E" {71

= -500
- w?. 5§07 85

g (9, 11146493

Eigenve

o
E
)

ctor

A

- (1)
X

-1
(5-2)
-z

)
-2

x?) ’
]{XU)} il {
] 2 -
Go=>0) xﬁ') o

[v]
o

;

corresponding to Ay= 10-18068 (: Z,%) s given by

]



€. xi')z ~7-880¢3 Xf') and Xa(.).: - 27497 x,f') = 29.-27¢49 x(')
~» (1) , i
x = o {-—7-?8068} where o = value of x(')
29-276¢49 -
when ?O) is normalized as x°’ ™7 xm = 1, X =0-03296
LM 0:0329G
X = {—0-25975
0.96495
>0 —'(')T '
[D1] = [_:Daj - M X X [m]
2:5 -1:0 0-0 003296 '{0.0323“%-0-2597550-%435}
= |~1o 5.0 —1.4142 —(m~35‘o€8>-0~25975
00 — 141 42 0.0 096495
2.4887218 —~ 0911273 - 0-330!549
={ -0.9Mm273 4297149 1 99738
- 03301549 1876738 0-3342530
— —
— 1-0 . . - = [ P2§ X
Iyp X, = {-7-8806% § 4 waed | the Mw; F"’U’“‘L‘"" X, [P2] X,
29.27649 ‘

qives ta following results (M Xi iy =

Y o - o e A P S A e e e W W W T e W M M e e o e

- -

-t
Ib{‘::.rii) X;,, O:TOW .Yicifir (uteti Xi = 1) --------
ITER= 0 0.10000000£+01-0,78806801E+01 0.29276489£+02
1TER= 1 0410000000E+01=0,10666667E+02 0.29333334E+02
ITER= 2 0el0000000E+01~0.47272644E+01~0.13066354E+01
ITER= 3 0.10000000E+01-0,31531227E+01~0,88291872E+00
ITER= 4 0.10000000E+01=0,27448514E+01~0,77301961E+00
ITER= 5 0.10000000E+01=0,25989382E+01=0,73374254E+00
ITER= b  U,10000000E+01=0,25411220E+01=0.71817952E+00
ITER= 7 0.10000000E+01+0,25172873E+01=0.71176373E£+00
ITER= 8 0.10000000E+01=0,25073018E+01=0,70907575E+00
ITER= 9 0,10000000E+01-0,25030899E401=0,70794201£+00
ITER= 10 0.10000000E+01~0.25013082E+01~0,70746231E+00
ITER= 11 0.10000000E+01~0,25005538E+01~0,70725930£+00
ITER= 12 0s10000000E+01~0.25002341E+01=0,70717323E+00
ITER= 13 770,10000000E+01-0.25000987E+01=0.70713681E+00
ITER= 14 0.10000000E+01=0.25000415E£+01=0,70712131E£400
ITER= 15 0.10000000E+01=0,25000172E+01=0,70711482E+00

--.-.--.‘....---—-.--.--..-_n—--— A Y e - — - - ----—_-_-_--‘--' -

converged value of X,z s-00004216 (or (9,= o- 4472«:7{)

3 us|n9 o s;mvla.r Procecluft, [Dg] i$ founc,

the rvesults obtained from [D;] X

XIH

with the same X,,

are given below.



- . r s em W e S W e W WY Y N TN e AT RN T W % e e e MM A M e e W R e

1, <+

-

£)

0.19000000£+02-0,72824997E+02
0.3B067123E+00 0.68348452E-01
0.3806716BE+00 0, 68312615E=01

Iter. ... al @ vow vector (wEHw X
o2 5 s U SN vk o A A
TITER= 0 0.10000000E+01-0.78806801E+01 0.29276489E+02
ITER= 1 0.10000000E+01

ITER= 2 0,10000000E+0}
ITER= 3 0.10000000E+01
ITER= 4  0.10000000E+01

0.38067159E+00 0,68312593£=01

e B G = SR W e e e = e . e o e e = e e
- - - e o - ————— - e =

Converged value of N;=2.11932243 (W, = 0-68691260)~

- - — e W -

Convergeo' freguency = 4.3730%9 =

Repetition of the Proc_eclu're with [D,7] and CD{J

followng results:

W, 1= =
2J~k

3;(1)

™m
wsJ'a:‘

— ()
X

——

1-.321324

{hoooooo _ 0

2.0285123

{ |-ooooo.o

- 2.

25409%

14801

-1 . 1 1 1 i 1 2
| ["] - |t 2 2 , 1= [“"] [m]"" 1 2 4
S 1 2 s
1 . R .
Ufg'nj -)-zoz 4 s {Le fo“ownj re,su.Lts' are oLta.meJ-
1
TTreration = T L LT N
' = [»p with
numbEr( ) i X£+n [p1 x { X, 1 .(mve'n as row vec'tor)
1TERS 0 0.10000000E+01 0,10000000E+01 0,10000000E+01
ITERS= 1 0.10000000E+01 0.17500000E+01 0.20000000E+01
_IIER= 2 0,10000000E+01 0,18518518E+01 0,21481481E+01
ITER= 37 0,10000000E+01 0,18601036E+01 0,21606219E401
ITER= 4 0,10000000E+01 0,13607503E+01 0,21616161E+01
ITER= 5 0.10000000£+401 0.18608015E+01 0,21616952E+401  —»(2)
ITER= 6 0.10000000+01 0,18608055E+01 0,21617017E+01 <— X

TN S s em e e N e e e e e A B Ak mam e S e e

9y ’-—4:-

j:‘ves the

- 0340706 }

0-(78847 }




1

it o e - e N e i m e e e e e e a a e
T e e W R e T oM W MR A e ey e e

Ttera ion

-..__-.—-_._—---‘_..-__-.._-..—-.—----_.-__—- B o e B 2l

i i 41

[DJ=[1 L L ]
1 5 1.833
X

i 1 -1 14 4 i
1.5 1.5 » k] [m]= {’_ 1 1.5 45
1-5 1.-833 : i 4.5 1.833

b4

i

i - .
E —)?g...1 =ED] X; with Xi =1 (9ven as row ve:.‘f.‘o\")

U,10000000E+01 0.10000000E+01 0,10000000E+01
0.,13000000E+01 0,13333334£+01 0,14443334E+01
Ue.10000000E+01 0.13676430E+01 0.14949605E+401

0.10000000E+01 0,13705537E+01 0.14994360E+01
0.10000000E+01 0.13708007E+01 0.14998223E+01
Ve10000000£+01 0,13708220E+01 0.14998555£401

N
&

CO'HVC

0,10000000e+01 0.13708237E+01 0.14998584E+01
_Frez,uenc.j = 0-5082 8409 = (491

0.10000000E+01 0.10000000E+01 0,.10000000E+0}
0.10000000E+01-0,56849640E=-01~0.61459929E+00

i

G.10000000E+01=0,22656711E~01=0,64602280E+00
U,10000000E+01=0,.91092410£-02-0,565840477E+00
0.10000000E+01=0.38191630L=02-0,.66323972E+00

0.10000000E+01=0.17635337E-02=0,66511846E+00
0,10000000E+01-0,960627331E=03-0.66584712E+00
0.10000000E+01~0,65728393E=03=0,566612953E+00

Uo,10000000E+01-0.53756207E-03~0,66623896E+00

0,10000000E+01=0,49118389E=03=0.66628140E+00 -

.0.10000000E+01-0,47320157E~-03~0,66629785E+00

0.10000000E+01~0,46624581E~03-0.66630417E+00
0.10000000E+01~0,46355074E~03-0,66630661E+00
0.10000000E+01-0,46252197E-03=0,66630769E+00

0,10000000E+01~0,46209697E~03~0.66630799E+00
0.10000000E+01~-0,46194042E~03-0,606063U0810E+00
0.10000000E+01~0,46188448E=03-0.66630810E+00

0.10000000E+01=0,4618733JE~03~0,66630816E+00
0.10000000E+01=0,46186216E-03-0.66630822E+00
0.10000000E+01=0,.46185096E~03=0,66630816E+00

- 20
converged
0

1

0.10000000E+01+0,46185098£=03=0,66630822E+00 «—

,frezuenc',j = 1.732317¢ = 9,

0.10000000E+01 0,10000000E+01 0.1000000CE+01
0,10000000E+01+0,23654659E+01 0,15024464E+01

2
3

Conve rgec[

0.10000000E+01=0.23733659E+071 0.15024524E+01
0.10000000E+01~0,23733664E+01 0.,15024524E+01e— X

freguenc:;: 2.783294 = G

1 4 the acouaul'ng results ore obtained (Program 14)-‘

@)

3;&)

@ From Pm-blem

. - 2 =t o - '
6§18, Ek]: _gf_r__ -4 2 _1]) [JJ]: 3;[0

o -1 2 e

0.2% 050 p.75

; oIS c-50 o0.25
[D] = 0-50 hoo o0.50°

o

¢
o
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g

10
11

-

mN~

} the following results are obtained (Progra.m JL4->

v e W VB e @ @ e Wk v 4 N e TE e R e e e e M S A g W e B R AR Y R e e

0.10000000E+01
0.10000000E401
0,10000000E+01
0.10000000E+01
0.10000000E+01
V.10000000E+01

V. 10000000EY01

0.310000000E+01
0,100000Q00E+01

0.10000000E+01

0.10000000E+01
0.19000000£+01

0.20000000E+01
0.16000000E+01
0.13730842E+01
0.14328358E+01
0.14199134E+01
0.14159292E+01

0.14147242E401

0.14133645E+401
0.14142580E+01
0,14142267E+01
0.14142175E+01
0,14142147E+01

0.30000000E+01
0.14000000E+401
0.11052632E401
0,10294507E+01
0.10086581E+01
0,10025285E+01
0.10007399E401
0.10002166E+01
0.10000634E401
"6.10600186E+01
0.100000558+01
0.10000015E+01

converged freguency = 076536608 = o9

' 0.1000000Q0E+0! 0,20000000E+01 Q.30000000E+01
0.10000000E+01 0.29291141E+400-0,14141805E+01
Q. 100000005*01,0 15801974E+400-0,.12234681E+01
0.88471927E~ 01'0 11251128E+01

217
28
29

30—

31
32

converged freguenc

0
1
2

see N Wil = O

0. 10000000E+01

0,10000000E+401
0.,10000000E+01

2.10000000E+01
0.10000000E+01
V.10000000E+01

0.50517395E~-01~

0.,29161b88E~01~

-0,10714371E+01
0.10412357€E+01

0.19669531E~05-0.99995768E£+00
0.18924472E-05-0,99939750£E+00
0.18179417E~05-0,99999750E+00

0.10000000E+01 0.18030403E-05-0,99999738E+00

0.10000000E+01 0.17732382E~05~0,99999744E+00
0.10000000E+01 0.177323B0E=05=0.99999726E+00

-~
—

1- 4142134 = €9,

0,10000000E+01 0,20000000E+01 0,30000000E+0Q1
0.10000000E+01=0,14143940E+01 0.10000018E+01
0.10000000E+01-0,14142135E+01 0.10000004E+01

3

0.10000000E+01~0.141342135E+01 0. 10000004E+01 - X
convergeé frepuency = 1.8477520

=

(93

—

+— X

- X

- ——— - -

(1)

-9@)

X

From Problem 7.9, ] = T[ " ] ["‘]" m[ } ] =~—[ ;]

23

%é

[p] =

With

-

Xo=

z‘

i

—— o — -

Iteration

number (&)

14
z/;

]

----¢------—-----———.—.—_-_-_-——»_——_-_-_———..-.-

— - - —-— P e L. T L e tednde L R R L

- o~

‘0.100000005+01
0,10000000E+0Y
0.10000000E+01

0.20000000E+01}
0,12500000E+01
0.,10769231E+01

0.,10000000E+01
0.100G0000E+01}
0.10000000E+01

0.10250001E+01
0.10082645E+01
0.10027474E+01

-~ NN S LIN O

0.19000000E+01
0,10030000E+01

0.,10009151E+01

0.10003013E+01



8  0,10000000E+01 0,10001017E+0]
9T 0.10000000E+01 0.10000340E+01
19 0.10000000E+01 0.10000113E+01 — 0)
11 0.,10000000E+01 0.1000003BE+01 =~ X

converged freguency = 0-99999300 = G, Jm L4

9 0,10000000E+91 0,20000000E+01

1 0,10000000E+01-0.99991989L+00

2 0.,10000000E+01=0,99998856E+00

T 0L L0000000E+01-3, 999988565400 < 2

Convergeld frepuenty = 1.7320508 = 3, Jom /7
Y. 0.5 0.5

0-5 05 o-5 0'5 '55
-1 1
— . ] 1.0 A ‘. Lo t:Q
@["] = |5ore e ,pl=x |5 2o
0.5 10 2.0 2.0 k {-5 2.0 2.0 2.0
05 1.0 2-0 30 )5 2.0 20 3.0

with ;o"' {i}, the :Fou.aw-‘nj results are o@:":aind for _;n) ard Wy .
s .

e . - ....._._,_.‘..._.—--.._. - - _-_———-——-__.__.--_.-—-._-—----_.-_____‘-.._—_——--—_-—

i::l;{;?f) . =[p]X; with X, ; =1 (3ven as row vector)
0 -0.,10000000E+01 0.10000000E+01‘0.10000000E+01 0,100000G0E+0Q1
1 0,10000000E+01 0.15714285€£+01 0.,21428571£+401 0,24285715E+01
2 *0.10000000E+01 0.17200000E+01 0.25733335£401 0.30266669E+01
3 V.10000000E+0]1 0,17508308E+01 0,26810634E+01 0,31838319E+01
4 0.10000000E+01 0.17574103E+01 0,27059193E+01 0,32208292E+01

5 0.,10000000E+01 0,.17588729E+01 0,27116063E+01 0,322%93591E+01
b 0.10000000E+01 0.17592046E+01 0.27129092E+01 0.32313194E+01
7 0.10000000E+01 0.17592804E+01 0.27132087E+01 0,32317696E+01
8 0.10000000E+01 0,17592978E+01 0.27132771E+01 0,32318730E+401
9 0,10000000E+01 0.,17593019£+401 0,27132931E+01 0.32318966E+01

ConVerged Freguency = 0.40058133 = («91\‘ "/

@ The problem- dependent data for Program 13 and Ou{:pui‘ are 3tven

C_FPOLLONING. 3 LINES CONTAIN PROBLEM=DEPENDEMNT.DATA .
DIMENSLION D(3,3),E(3,3)
DATA N,ITMAX,EPS/B,ZOO,I.OE-OS/
e DATA D/3.0,%2,0,0.0,22,0,5.0,-3.0,0.0,-3,0,3.07
C END UF PROBLEM=DEPENDENT DATA |

S e - - - -

EIGENVALUE SOLUTION BY JACOBI METHOD

GIVEN MATRIX
0.300000E+01 =0,200000E+01 0.000000E+00
_=0,200000FE+01 0.500000E401 =0,300000E+01. .
0.000000E+00 =0.300000E+01 0.300000E+01

- EIGEN YALUES ARE . .. ‘ e et e
0.7741606E+01 0. 300000£+01 0 258343E+00

-EIGEN _VECTORS - - P D
FIRST SECOND THIRD
0.3357348£+00 0.832048BE+00 0.441564E+00
-0.796032E+00 . =0,343903E=05 .. 0,005254£+00
0.503602E+00 =0.554704E+00 0.662336E+400




C FOLLOWING 3 LINES CONTAIN PROBLEM=-DEPENDENT DATA
DIMENSION D(3,3),E(3,3)
DATA N,ITMAX,EPS/3,200,1,0E-05/
OATA 0/3.0,2.0,1.0,2.0,2,0,1.0,1.0,1,0,1.0/
C END OF PROBLEM~DEPENDENT DATA

L T Y

EIGENVALUE SOLUTION BY JACOBI METHOD

@ The problem—alcpendent data for Program 43 and ouﬁpu{ are 3-’ven-

_ GIVEN MATRIX :
0.300000E401  0,200000E+01  0,100000E+01
0,200000E+01  0,200000E+01  0.10000Q0E+01
0.100000E+01  0,100000E+01  0.100Q000E+01

EIGEN VALUES ARE
0.,504892£+01 0.643104E400 0.307979E+00

EIGEN VECTORS
F1IRST SECOND THIRD
0,736978E+400 =0.591004E+00 0.327991E+00
0.591007E+00 0,327977E+400 =0,736982E+00
0,327985E+00 0.736984E+00 0.590999E+00

The main program which calls pECOMP ond results are given.

c
¢
C PROGRAM 15
c
C
C

MAIN PROGRAM WHICH CALLS DECOMP

DIMENSION A(4,4),U(4,4)

"DATA A/4.0,-2.0,6.0,4.0,-2,0,2.0,-1,90,3,0,6,0,-1,0,22.0,13.0,
2 4.0,3.0,13.0,46.0/ . '

N=4 ;

CALL DECOMP (A,U,N)

WwRITE (17,10)

10 - FORMAT (/,25H UPPER TRIANGULAR MATRIX:,/)
oa 30 1=1,N
WRITE (17,20} (U(I,J),J=1,N)
20 FORMAT (3E15.8)
30 CONTINUE
STOP
END

- —— - —

UPPER TRIANGULAR MATRIX:

0,20000000E+01-0,10000000&401 0,30000000E+01
0.20000000E+01

0.00000000E+00 0,10000000L+01 0,20000000E+01
0.00000000E+0O

0.00000000E+00 (,00000000E+00 0,30000000E+01
0.23333333E+01

0.,00000000E+00 0,00000000E+00 0,00000000E+00
0,60461192E+01 ‘ ‘




@ From Ep.(7-34), u,= % = 2.23¢0¢8 , u,= @ o —lo _o0.44721359,

Uy i
uy . w, - 044721359
2 \4
(o,u- ul, ) = 2.408319, U,,= _uz_ (%a - Uy Uz)= - FTTIC4
. 2 2 K ' 2
Uy = (w,,-u,, _-14,3> = 0.55708¢1) ,
2:236068 - 0-441721359 0.44721359
[ul=]o 2.408319 —-1:577864 |
Lo o 0:55708¢ 1
1 )
Ky = o, = 0- 44721359 ! Ayq = -‘u_,_.- ('“lz °(1z) 0:083045475
7“22 : °(23— urz(uza °(33 = 14760702
:
i

o= L. _ 1.7950547
33 n

4
" %13 = —n—;(ufz“‘zz + U3 H33) = ~0.12379687

]-1 [:] = 0-44721359  0.083045475 _ 0-12379€%7
,[U = tldT | o 041522738 1-1760702
o 1-795054 7
From Egs- (7-34) and (7-8) > ,
ez VZ o= 14142135, wyp= 222 2 - 305355339, = Y3 5 ossggsgn
: . Un  HUu Uy
: z .\ /4 i i .
Upy= (Gp = W) = 18708297, Uy ""‘.};z‘;(“*z;- U Wz) = 4-2761798
Uss= (@32 - uf —ugY* = 119272485
[v]- 1 4l4z|35' 3.§355339 5.6568542
1-8708287 4:276179¢%
° 0 1+2272485
1 1
My = u, = 0. 70710677 0(12—- - '7:'—.'(14,2 zz) +3363062

oy = ;L = 053452247

op3= = 2= (Ua3 <33) = - 11859987
22 12

- memN .- .-

o33 = u'—n = 051987447 | o, = - ,?i:_(u,zo(u—; Uy H33) = 0.8894993]
"
[ ]_ ] 0:70706TT =~ 1.32383062 0-8894 993}
v . 0-53452247  _).18599¢%
° 0 0.51887447

The problem - dependent data to be used in Program 13 and results are given.

¢ FOLLOWING 3 LINES CONTAIN PROBLEMeDEPENDENT DATA
DIMENSION D(4,4),E(4,4)
» DATA N, ETMAX,EPS/4,200,1,0£=05/
e BRTA B =2y 64 o200 2e s "1es3u .60 ,o1.,22.,13.,4.,3.,13.,46.7
c E‘.ND OF PROBLEM=DEPENDENT DATA

- - . —



EIGENVALUE SOLUTLON BY JACOBI METHOD
GIVEN MATRIX
0.400000E+01 =~0,200000E+0t  ©,600000E+01
0.400000E+91 :
=3,200000E+01 0,200000E+01 =“0,100000E+01}
0,300000E+01
0.600000E+01 =0,100000E+01  0,220000E+02
0,130000E+02 .
0,400000E+01 0.300000E+01 0.130000£+02
0.460000L+02
EIGEN VALUES ARE
0.525424E+¢02 0.178109!:'.-?02 0,346931E+01 0.177413E+00
EIGEN VYETTIRS
FIRST SECUND THIRD
0,123182E+400 =0_.274316E+400 0,718788E+00
0.626834£+00 0.407039E~-01 U.167114E+00
-0,614583E+00 0,7698B73E+00 " 0,3407591E+00
-0,8517S3E+00 =0,316805E+400 =0,895b647E-01
0.903902E+00 0.413933E+00 0.725754E-01
. =0,79705]1E-01
4 -z o © 3 o P
o -1 2 = . o o ¢
o 6 - i ' o o t
Ep. (7-84) agives, for [A] =[*],
2 -1 0 .
[ul = |e 141421 ~0.T07i07 0 T
o 0 1-22474 -0:81G6497
L% o 0 0-5771350
56.(1.35) 9\ves
‘ 0.5 0-35355338  0-204124/4  ©-233675(0
[wl = |o 0.70710677 0-40824828 0-57735020( 1
o o 0:81649655 1-15 47004 V%
o -] o] 1320507
standard e(genproble-n is [p] T(' = 3 T('
where \
-1\T a
bl=(p1™*) m1 vl
075 »»53033006§ 0-30618620 0+43301266
m | 0-53033008 (-3749999 0-793856¢2 11226827
= % | o030618¢20 o0.79385662 1125 {.5309%899
0-43301266  1-1226827 1-5969 899 5.2499990
A= i/(.9’-
a.nc'! TF‘" [U] X




From £.(7-84).,

r——' Nt ¥ 20 ' @3 249
u11=JQ;“= e = 4'? uiz- u,, = 4 - "5’ 'u,g:- —u—-,—"= T-:"'G

u,,= (a.u- ufz % = (as—zs)'/z - 8 .

- 1
Uzs= w, (9~ %)= 3(-50 - (-5)(-¢)) = -0
u33= (0133 - U?g — u:? )yz - (280 - 36~ 109)1/12 12

A= L1 [vl

. -5 -6
with . 4
‘ fu] = o 8 T
lo] o] 12
From Example 7.3, &= 6-5591 x.;‘f JEI

: _ )
| Since E = 207 x lo‘ N/mz, 9= 298-42¢ \(I' ra.J/;e,:
In order to have (9= 0.5 H3 = 3.1416 rad/fsec,

299- 421 VI = 2-1416 5 L= 0.000 11083 m*

For a tubular Secfe‘on,

I.= fg(n" _&'*)-.—_o-ooauosa B

Ciher pY_af - 0.0022578 m l
D
To m?nl'm133 Wet'jk'b) we neeJ tb minimize (_'pz‘_ot")‘
Problem (s : Frad D axd A to minimiie <D1—0‘1>
Su.bJ'gc,t' to _ J)q_‘p‘?: 0.002257F%8
or Find d M\-‘“ r= 'D/J
‘t‘o mu‘nima‘}e ;: dg' (YZ—-l) (EI)
subject to dH(+4-) = 0.002257¢ (€2)
E’Z’(E’> gives 4% = 0:047516
ré-i

B - (E)) becomes o-047516 (r=1)

ot

ﬁ___i.ﬁ:L. =0
dr  dr \Jr¥—i

(r) 4 (A=) S (ar?) = T (20 )

-

For mmimum of £,

i)

o



e r2(r*-1) = (r‘-«—n)(r"—:)
fiens ri=1 or r%a %4

e r= {1 s the on!y fgasfblc $olt.u‘:|‘on.

ie., A solid circular section.

Since = %2— = 0:00011083, D= o©0:-21798 m
The problem - dependent data for Program 13 and the output ave
given below. |

c FDLLDWIVG 3 LINES CONTAIN PROBLEM-DEPENDENT DATA

DIMENSION D(3,3),E(3,3)

DATR N,ITMAX, LPS/S 200,1,0E-05/

DATA D/2.S,-1.0,0.0,-1.0,5.00'1.41421356,0.0,-1.41421356,10.0/
C END OF PROBLEM~DEPENOENT DATA

- D e e W vn oy

EIGENVALUE SOLUTION BY JACOBI METHOD

GIVEN MATRIX
0.250000E+401 <0,100000E+01 0.000000E+0Q0
=0,.100000E+0) 0,500000E+01 =0,141421E+01
0,000000E+00 =0.141421E+01- 0,100000£+02

EIGEN VALUES ARE
0.,103807E+02 0.500000E+01 0.,211932E+401

EIGEN VECTORS
FIRST SECOND THIRD
0,329706E-01 0.359223E+00 0.932669E+00
~0,259784E+00 =~0,898022E+00 0.,355002E+00
0,965104E+00 =0,253999E+00 0,637121£~-01

The problem- dependent dato for Program 16 and output are
given.

C FOLLOWING 5 LINES CONTAIN PROBLEM<DEPENDENT DATA : ’
DIMENSION BK{3,3),BM(3,3),0U(3,3),Ul(3,3), UT1(3 3),BMU(3, 3):
- 2T - UMUE3,3) ,XF(3,13) LV(3 3)
DATA BK/2.. 1.’0.'-10'3.'-2000.'-2.'2-/
DATA BM/1.,0.,0.,0.,1,,04,0.,0.,2.7
S~ = ND23
C END OF PROBLEM-DEPENDENT DATA

e -] e

UPPER TRIANGULAR MATRLIX {Ul:

0. 141421Ef01 =0.,707107E+00 0.,000000E+00
0.000000E+00 0.158114E+01 ~0.,126491E£+401
0,000000E+00 0.000000E+00 0.632456E+00



INVERSE OF THE UPPER TRIANGULAR MATRIX, {UI},

0.,707107E+00 0.316228E+400 0,632456E+00

0.000000E+00 0.632456E+00 0,126491E+01

0,000000E+00 0.000000E+00 0.158114E+01
MATRIX [UMU) = (UTIJIMI(UL):

0.500000E+00 0,223607E+00 0.447214E+00

0.223607E+00 0.500000E+00 0.,100000E+01

0,447214E+00 0.100000E+01 0.700000E+01
EIGENVALUES:

0.718421E+01 0.572771E+00 0.243019E+00
EIGENVECTORS (CUOLUMNWISE):

0.721309E400 «0,664609E+00 0,194954£+00

0.134220E401 ~0,168876E+00 -0,412289E+00

0.155923E4+01 0,226436E+00 0.132344E+00

The problem - dependent data and results are given (Program 16)).

C FALLOWILING 5 LINES CONTAIN PROBLEM~DEPENDENT DATA
"DIMENSION BK(4,4),bM(4,4),U(4,4),U1(4,4),UTI(4,4),84U(4,14),
2 UMU(4,4),XF(4,4),EV(4,4)
DATA BK/4."’2.10.10.9"2.a3.."1-p0- foo"']-.pz-1-10'001000-1.'1'/
DAIA BM/3.'0.;0-,0.;0"2.0001()‘!0.IOO'IO'OO'OOIOOIO'OIO/
ND=1%
C END OF PROBLEM~DEPENDENT DATA

P N L L R R L

UPPER TRIANGULAR MATRIX [ul:

0,000000E+00

0,200000E+01 =0,100000E4+01 0.000000E+00

0.000000E+00 0.141421E+01 =0,707107E+00 0,000000E+00

0.000000E+00 0.000C00E+00 0.122474E+01 -0.816497E+400

0,000000E+00 0.,000000E+00 0.000000E+00 0.577350E+00
INVERSE OF TI'HE UPPER TRIANGULAR MATRIX, [UI),

0,500000E+00 0,353553E+00 0.204124E+00 0.288675E+00

0.000000E+00 0.707107£+00 0.408248E+00 0,577350E+400

0,.000000E+00 0.,000000E+00 0.,816497E+00 0.115470E+01

0.000000E+00 0,000000E400 0.,000000E+00 0.17320S5E+01
MATRIX [UMU) = (UTI)(M]I{UI):

0.750000E+00 0.530330E+00 - 0.306186E+00 0,433013E+00

0.530330E+00 0.137500£+01 0.793857E+00 0,112268E+401

0.306186E+00 0.793857E+00 0.112500E+01 0.,159099E+01

0.433013E+00 0.112268E+01 0,159099E+01 0,525000E+401
EIGENVALUES:

0.62319J3E+01 0,143190E+01 0.500000E+00 0,336191E+00



EIGENYECTORS (JOLUMNWLISEY S

0.480456E+00 -0.,437028E+00 0.267261E+00 -0.,821001E=01
0.845263E+00 -0,416241E+00 -0.,207258E+00 0.202104E+00
0.130369E+01 J,206727E+00 ~0.2067263E+00 ~0.431800E+00
0.1559270E+01 0.085329E+00 0.207266E+00 0.218693E+00

@ The problem—o(epenclent’ data and ou{'puﬁ' are given ( Program 16).

”~
LY

”~

FOLLJUAING 5 LINES CONTAIN PROBLEM=DEPENDENI DATA
DIMENSION BK(3,3),BM(3,3),U(3,3),U1(3,3),UTI(3,3),8MU(3,3),
2 uUmMu¢3,3),xF(3,3),E¥(3,3)
DATA BK/Z.,"]..,0.."1102-"1v10'a-1.'3./
DAI‘A BM/l.pO.’OQlOQ'IQIOQ'OGJOQJZ-/
: ND=3 ‘
END OF PRODBLEM=-DEPENDENT DATA

- —— - - -

UPPER TRIANGULAR MATRIX (UJ):

0.141421E+01 «0,707107E£+00 0.,000000E+00

0.000000E+00 0.122474E+401 ~0,816497E+00
- 0, 000000E+00U - 0.000000E+00 - 0.152753E+01

INVERSE OF IHE UPPER TRIANGULAR MATRIX, (UL},

0,707107€E+00 0.108243E+00 0.218218E+00

0.000000E+00 " 0.81b6497E400 - 0,436436E+00
- 0.0000008+00 - 0,000000E+00 0.654654E+00

MATRIX (UMUJ = (UTIJIM)JC(UL):

0.,500000E+00 0,288075E+00 0.154303E+00
0.288675E+00 0.,833333E+00 0.445435E+00
0. 154303E+00 0. 445435E900 " 0,109524E+0t

EIGENVALUES:

0.15106BE+01 0.595606E£+00 0.316285E+00

EIGENVECTORS (COLUMNWISE} >

0.610531E+400  =0,468617E+00 9.349193E+00

=y 81 8509E4+00 - O, 15043BEX 00 -0.,405654£+00
0,486814E+00 0,420340E+00 0.122055E+00
The main program which calls the subroutine MITER and output ave
given.
C "::::z=============:================================================3
<
C PROGRAM 14 e
C MAIN PROGRAM FOR CALLING THE SUBROUTINE MITER
C
C B=ccSsE== T SEXS =SS SEZSISSE ISR SIS IS ES TS SRS SIS SRS ST TSI SIRIIIT RIS
C FOLLOWING 8 LINES CONTAIN PROBLEM~-DEPENDENT DATA

DIMENSION D(3,3),X(3),X5(3),8(3,3),C(3,3),XX(3),xM(3,3),FREQ(3),
-2 EIG(3,3)



N=3
NVE
PAT
DAT
DAT
EPS

A D/3-p2.lll42-02011'010ll.al-/
A XM/IQ,O-IOU'0.'10'0~I0w’0101-/
AXS/Lollqpl./

=0,0000]

C END OF PROBLEM-DEPENDENT DATA
CALL MITER (0,X,X5,N,NVEC,B,C,XX,XM,EPS,FREQ,ELG)

10

20
30

40
50

wRITE (18,50) (EIG(I,J),J=1,N}

FORMAT (3(EL5.8,14),/)

ST0P

e END e _
ITER= 0 0.10000000E+01 0.10000000E+01 0,10000000E401
ITER= 1  0.10000000E+01 0,83333331E+00 0.50000000E+00
ITER= 2 0,10000000E+01 0.8064516BE+00 0,45161295E£400
1TER= 3  0.10000000E+01 0,80254781E+00 0,44585988E400
ITER= 4 0,10000000E+01 0.802017STE+00 0,44514498E+00
ITER= 5 0,10000000E+01 0,80194795E+00 0.44505492E+00
ITER= & 0,10000000E+01 0,80193895E+00 0.44504350E400
ITER= 7  0.10000000E404 0.8019378B8E+00 0,44504207E+00
FREQ= 0.44504169E+00
ITER= . 0 _ 0,10000000E+01 0,.10000000E+01 0,10000000E+01
ITER= 1. 0.,10000000E+01~0.36259139E+00=0,15934708E+01
ITER= 2 0.,10000000E+01-0,46800232E+00-0.14036615E+01
ITER= 3 0,10000000E401-0,51440042€+00=-0,13200551E+01
ITER= 4 0,10000000E+01~0,53577375E+00-0,12815419E+01
ITER= S  0.10000000E401=0,54582363E+00-0,12634329E+01
I1TER= 5 0.10000000E+01=0,55059475E+400=0,12548355E+01
ITER= 7  0.10000000E401-0,55287021E+00~0,12507354E+01
ITER= 8 0.10000000E+01=0,55395770E+00=0,12487757E+01
ITER= 9 0,10000000E+01=0,554478056+00-0,12473381E+01
ITERT 10 0,10000000E+01-0,55472714E+400-0,12473894E+01
ITER= 11  0,10000000E+01-0,55484635E400=0,12471745E+401
ITER= 12 0,10000000E+01=0,55490345E+00~0,12470715E+01
ITER= 13 0,10000000E+01~0,55493081E+00-0,12470224E+01
ITERE 14 0,10000000E+01~0.55494392E+00=0.12469983E+01
ITER= 15 0,10000000E+01=-0.55495018E+00=0,12469875E+01
ITER= 16 0.10000000E401~0,55495316E+00~0,12469820E+01
. _FREQ=Z 0,12469784E+01

ITER= 0  0.10000000E+01 0.10000000E+01 0,10000000E+01
ITER= 1 0.10000000E+01=0,22478061E+01 0,18022429E+01
ITER= 2  0.10000000E+01=0,22469645E+01 0,18019053E+01
ITER= 3

wRI

[ (18,10)

FORMAT (//,34H SOLUTION OF EIGENVALUE PROBLEM BY,/,

2 244

"MATRIX ITERATION METRHOD)

WRITE (18,2¢) (FREQ(I),I=1,NVET)
FORMAT (//,20H NATURAL FREQUENCI1ES,//,3(E15.8,1X))

wRI

TE (18,30)

FORMAT (//,26H MUDE SHAPES (COLUMNWISE):,/)
00 40 I=1,NVEC

0,10000000E+01-0,22469645E+01 0.18019053£+01



FREQ= 0,18019379E+01

1
SOLUTION OF EIGENVALUE PROBLEM BY
MATRIX ITERATION METHOO

NATURAL FREQUENTIES
0.44504169E+00 0,12469784E+01 0.18019379E+01

MODE SHAPES (COLUMNWISE):
0.10000000E+01 0.10000000E+01 ©0,10000000E+01

0.,8019378BE+00 ~0.55495316E+00 ~0.22469645E+01

0.44504207E+00 =0.12469820E+01 0.18019053E+01

The problem - dependent data for ngra.m 13 and results are given.

T FOLLOWING ¥ LINES CONTAIN PRUBLEM“DEPENDENT DATA
DIMENSION D(3,3),E(3,3) '
DATA N,ITMAX, EP&/B 200,1.0E=05/

P R DAW“‘D}‘S..W,.III. ’ 1..<,-1 . 'h"-‘,;_.' 'I .H' _4. '3‘,. .

C END OF PROBLEM~DEPENDENT DATA

e o A e e e e . e

BIGENVALUE SDLUTIDN BY JACOBI METHDD

GIVEN MATRIX
0.500000E+01 =0,100000E+01 0.100000E+01
-=05 FOOD00E+OL- - 05000000E+0L -0 400000E+ 0L
0.100000E+01 =0,400000£E+01 0.300000E+01

—EIGEN—YALUES—ARE- - ~——- e
0.923048E401  0.455549E401  0.218034E+00

HGEN’ YECTFORSG -~ = - e e e m e

F1RST SECOND ~THIRD
0.312915E+00 0.948172E+00 =0,552614E=0]
——w Qe FISE20E+00— 0, 288684E400— 0. 561 I15E+00
0.348176E+00 =0.132782E+Q0 0,825755E+00

_ The Problem- aepencfewt date for Program 13 and results are gf{.ren.

CTFOLLONING 3 LINES CONTAIN PROBLEM<DEPENDENT DATA
DIMENSIOUN D(3,3),£(3,3)
DATA N,ITMAX,EPS/3,200,1,.0E~05/
Rl 3 7 ¥ o ﬂfi&.) 2—6.'-21!-; 2'0';,89'. p‘sﬁ.p-24. "'50. ,28“./
C END OF PRUBLEM=DEPENDENT DATA

- i . e B e e w—  —



EIGENVALUt SJLUILUN BY JACDBI METHUD

GIVEN MATRIX
0,160000£+02 =0,200000E+02 =0.240000E+02

~0.200000E+02 V.390000E+02 =0,500000E£+02
-0,240000&E+02  =0,500000E+02 0.280000E+03

EIGEN VALUES AKE
0,233547E+03 0.,855832E+402 0.580943E+01

EIGEN VECFIRS - - -- S s
FIRST SECOND THIRD
0.673506E-01 =0,332765E£+00  0.940601£+00
-8 ZI0FOIEHOD ——05 922386 E+00 -0 309802E D0
~0.970689E+400  0,196140E+00  0,138895E+00

—_— JLP ™= jo0 Moz 5o .
’4——@—’*'*——— "9-———-1:‘ T‘_f:—’f‘— fz—'{ T
§< f | —> ‘ "G————l=2m‘———-—-'->|

'Bds.'c re la.ffonsbtp .

: Pb 2z <i< |
wix)= GEEE(I—L D osme S
—f;fl—‘f-’-‘l(uz_zzg , a=x=g (€2 )

DC:FIQCtI'OY_\ of mass m, due o [load '"‘:3:
USing x=0, b= 2-0, and ﬁ;z;n(eﬂ; |
2’ = (0o x9-81) (z2-4 2 ' (a2 g2 }__ 991 1,"(2—1,)1
: 651(3) D S D Jat TH RERLLENC ()
deflection of maes my duwe & Lozad m, g:
Us”‘“j x = !,-fﬂl,a,:f,, b=2-4,, f=2 in (El>;
2w = _ ('toox 9.3!> £, (z-1,- fz){f,z_+(ll+£2)z_ z(z)(l.-t—f:)}

GEI (2)
gt b (22 b= ) (z£,1+£¢2+2f,21~4£|%4&) (g
I12EXL
Def/ec{:n‘on of mass my due & foud ™y F:
Using x=¢,, f=2,b=@-2-4) i (&):
iR DICE LIRS Sq—(2-0-4a) — 27"}
¢E I (2)
49052, (2- X.-—»Qz)(—?—fa B S R ) 22) (g5)
12€ I




De;{-lecﬁ‘ors of ™mass Ty due to load ™y 3!
7(_$£,+27_: f=2 and b= '2.—.9,——.91 in (E])‘.

Ugt'nj
n (ox9aD( A I) (D) £y - - a- 87 (L]
y =
6EI(2)
490.5 (4,448 (2 -4 -2 (24, 2,42 4 f, + 4ha- A
B 12EL ©

Total G‘Ef‘ecf\‘on of masses m and m, are.

. . s
w= w4y wlu _ 98 £, (z-—f,l‘_r

GETI
490,54, (2-4 - 22) (24,5 27 +n 8+ 4ka-2l, fz)
12& ¢ (E‘r)
W, = w—z’+ w,_” . —q81 L (z-1 '!L)(21‘+fl+l!!2 -—-q! __.4,?1)‘
{2 €1
+ 490:5 (L*b.)(zof,'xq,) (-Z-X,z—— Zl:+4‘1,+ ‘ffz-‘ffl’b)
I12ETX
)

Fundamental natural ;Fre&u?—“cj is given by

4
w= § 3(m,w, + mzw,_) z 2w
- = %032 ( ) (a,)

To max{m.‘ée W, we cwan ma.xirm'se w".

Problem is: I O and A, ,
‘t‘ oD _ Zﬂdf‘ + Wz
o Ma&xim S,e :F_ ( 1)

2 w-‘?"—i‘ Wy

where 1, and w, are given by (£7) amd (Eg).
Problem can be solved as Follows:
Treat £ ar o function of L, and L,.
st f Y L E0)

—_— =0 = O
a‘!| ’ 9,?,_

Solve EZX'(E'O for £, and 1.




Sfl}’fne” of' one 9t'rc?er (""‘”"P’j *®
SuFPori‘eJ Aea.m) 7

Lf‘(? ET ¢ (3 6 L4
k31= 3 = 4 (0)('0)3([7_&1) = 2572 a. Tt
4 (30x|z) S &
, r
where @ = width gnd derH. of cCross—section («'mh)
of girder. : ™y
4 .
ko= 2kg= 5-uy o' Ib/in
40000 2/
M = mass of fro“e—j= 3564 = 103-:!77 W -sec/in
* ) 6
stiffress of rope = g = ﬁz.E_-.: —7-{;-1 (gox'°)=9.9{75 d*
(loxt?..)
where d = diameter of the rope (inch)-
mp= mass of Lifted load = lo0oo . 25.8799 ““"-‘L/u‘n

3764
FrOm section 5.3, the
natural freguencies ,
of w 2 deosf- system
(shown a,dja-cenb :Fc'gu.re.)
are given by

A
2 2%
. = 4 &+ ey my + sy m, - {("l**')"’ﬁ- kzm}__qﬁ("'*"ﬂ):.‘*z}
e 2— L wym,y m;my ™mma

. ’ E
Heve .kl,-k:’ 'kz-:- kr) m'=m'&’ m, = -m‘c (1)

ond  hence 09,7“ and 6922' Canr be Ex.l;re:s&:
@ functions of a amd d:

0911 = c.gl"(a,) ‘l) 5 .03: = C":- (o, ‘D | i(E")

™y ®; my

- Reppisement  is

Wr(a, d) = Qs“?'o&)z 5wy (e, d) > (‘5""’91 (e
Since 1500 rpm = 57.058 rad frec .

choose o omd d  Auch that fthe .‘neauml;t"éf (Ez)

are Sa.t:‘sf.'eo(. A trial and exror proceclure can be used

for this pur pose.




Chapter 8

Continuous Systems

B

@ P = wmass density x orea = 7330 {%(2,‘.53)1} = 24.5987 16> 9/ m

P=250 v, R= 2wm

by ¢ = (Fyf)*/z z( 250 3) Y - Ioo-8L24 m/4

24.5987 =10

cTr ) ™
(@) ©;= 7 = o 7;24 = 158 35¢C1 rad/s = 25.2031 Hz
W, = 3000 (2T) rad/sec = _'"'ZE = I<
¢ = (6000 x /) = 12000
“’3 = 3'77'%[ = 3 (4_9’ = 9000 H}

Con’g.‘na.l = (P/f)yz = 2000 m/s
Chew = ("2 P/f)yz = {+0954 (%)‘/2 = 10954 Com‘gina,L
AN and @ are increased by _9.5‘4Z _

P= 30000 N, fP= 2%/m
4 1
U oK aares o

300

-0 : wr zor
At o P 3 =™ 55 ~ S
At x= L P2 = gw (E2)

Generel solution is .
w(xt)= W) .T(+t) = (A cos ZX + B sin %)(C‘ cos wt + D S LB'L')
Ezua:t'l'ons (E1) and (Eg) give s : (E3)
' {P (_A & sin B2 4 B cos —“%f)(c cos wt + D sinwt)

= ot (A cos 85 4 B sin GXY(C cos ot + D Anwt)]

ey A (ma?y + B (R2) = o ()



Chapter 8

Continuous Systems

(1) e (3" - (s=y"
N = 5
P = mass density x orea =
@ P=250 n~,

7830 {%"(zmé”')’“} = 24-5987 16" ¥9/m
= 2 m
by ¢ = (P/J,)% ':( 250

2
- = - 812 wm/4
245987 » 10 ? ) , foo- 8124 /

‘28-2843 oy

(@) Oy = C;r = ‘oo‘giz"’ Tr; = 158 35¢1 ra.cy,s' = 25.2031 Hz
W = 3000 (2T) rad/sec = lc = Z£

c =(6000T x 2/t) = (2000 mf

Wy= 3T =30, = 90co Hy

Con’g.‘na.l = (Fyf)yz = 2000 m/g
Cnew = (42 P/_,:)V2 = 10954 (Pp)Y% = lossg

orfgina-L
Wy and @95 are :ncrea.seclv bj _9-54-Z _
P= 30000 N, pP= 2 %3/m
i
= (F)* = Goeeya)”

(224745 /g
Time taken = 300

' T27. 4745 - 24495 £
= : o - szf £
At x=o0 P sz =™ S . (&)
At‘x::ﬂ: -2—;-{=*kw (Ez)
General solution is .
w (£ = W) T(#) = (Acos GF + B oin LE)(C (s ot + D sim 0F)
Eguations (E;) and (E3) give: v | (&)
' {P (_A %’l sin E?C.l" + B.ﬁg os E.’é_’_‘)(c cos wt+ D sMcdf)
| = —wmw? (A cos X ¢+ g sin C‘-—’?)(C cos wt + D -""“wt)}x:o
Le. 2 P ¢ -
€ A (mw®) + B (-C-—.> = ©

( E4>



S’fl'}:fnes: of one girder (me’;’j
suprorfeJ Lea_m)

4IET 48 (30 x16°)( 152
/k54= _73_'-' ( lo)(m. )::2'5720.,"

(3o x !2.)3

W‘nere a = width a.,nd Jert'h of cCross—section (l'nch>
of girder. :

4 .
“f-’z 24(3'2- 5.144 a ’u’/'"

my = mass o} ‘ fro“ej = 43‘:’:01: = {03.,5({97 Mv-secz/:‘n
stffress of r = . AE _ md* 6
f rope k, = == "z (3OXIO)=99{75 d*
(20):!2.)
where d = diameter of the rope Cineh .
mf: mass of /e?f{'co' /toa._af = '30900; = 25.8799 “-Seé"/;n
: 6

From section 5.3, the :
natural fre@uenc-'es l &, ™ Kk, wmy
of a4 2 d.osf- system '
(shown adjacent figure)
are given by y
» 2 22
1,2 2 | ‘m.Yﬂg_ ¥ M, my ;‘ mymaq
Here & = k9, k,= k., ml'= MEs M= my (E')
and hence W and C¢9:' Car be E.xfrexsea'
2 functions of a amd d: |
@* = *(a, 4y 'C"': = @, (@, d) | E2)

wf’(a,, d) > 65‘7-08)2 5 Q;(w,d) > (hs—;,o&j" (E3>
Since  i500 rpm = 57.038 rad fsec .

choace o amd d Auch that the .‘neauq,l:t-'és (E3)

are Sa.h’sf;eal. A trial and evror Procec!ure can be used

Sor this purpose.




Egs. (E2) and (E3) yreld o
P(-—‘;—"—A oo w1 + BE o “’I),-k(A Cotf’:'-x- + B Sm—c—-)

[
&

A(“ PG9 Sm_ci’..-‘!-!-k tos w/g)-{-B(Eg Co.fx'c—‘-)c-x +>kS!'n%£):O' (Es)

c

Eps. (54) and (Ez) give the freguency eguation:

(m w?) | CPG%) = ©
G—fﬁsfn_‘%&.;..ﬁwsﬂ% (Pw msf%’!.-f- kS""—‘%{)

wl-m_L, u.}aon s»m)al.f:cai‘on, Eecomcs
Pk — (Pm c? ) o 2

(S5 7 () ~

1: Zwm, d= 0.5 mm, = 7800 ‘kf/mg , W, = "f’;r , €= s
o _ oV
(@) W= 1(27) rod/fsec = e . I P

2 = 2\ Fsop

tan A =

. ’ 2
t-€-, ‘ (ZT\.) - -':#"' Z800
Y- P = 124,800 N

(6) @, = 5(2m) rad fsec = «—— = —~,/_’8°o

2

ey too‘n‘ = s . P
4 (7809)

e P = 320,000 N

Let x=o0 be fixed and == be connected to the pin wh.cl,
can move in a Frictionless slot. _

W) = A cos BX LB g 2X

wio,t) =0 = W(O)::O => Az-o v
2w = AW os @4
F(Lt)=0 > ¥ ()0 5 3eslioo 5> ws B oo

Eh’é: @P+1) T 5 m= 0,12,
or WB,= ntN) TS . 0,12,
24
- o0 nTx nemt ncrt
wx,t) “gzkm 7 [Cn > + Dy Am ]
whene 1 . 3,9 wrx
Ch='%‘f (%) A 7 dx D, = W, (%) At ] »



Since g, (%) —w(" ©)=0, €,=0

[f Za.x 4.‘“"_‘__77_} dx + fﬁ.cu(i,-%)*m ""‘;X Jz]
"
';6 n 4 exvemn

Ten

~-,_’_£:.g._4«:“——~ =

n T o
- 'ﬂ'ach; * { n—1 ?a;ﬂ
(-1) ? $ n iy ol

min? ¢

00 N L S
wint) - 22 F E0T e oot

Tic

'n:i-:ngl-'
z .
t AW 4w |

Eﬂ.(Sva)a LY
Mulliply this eppalion by W(o amd inJizpats.  from ot L
2 : 2 2
Clj W(x) %_g_ﬁ‘l dx = o f [W(z)] L=

0

This ghows that the #gn of o will be fome ar tuk of th
,-mmy.gxgcm e Wt sale . T hegpration !gfcw‘ffgm -
= [Tweo “"‘" de= W) 4L - wE) e-f [““’<==> 4
&mmf‘rsﬁmmmmmﬁm&oﬁmw
omyMﬁrrc_omman MW&M,IMWQ

Camm

Fixed ok ow:'s Wee) = Wil) =0

Free at ende: 4 ()= dW 5y _
ot erd fixed omd hr end pree: W)= HE(D =o
one evd ftx.t.c'am}d’tﬁhem&c_anuchd tﬂaw

W(e) =o; me— ~ % W(R)

= 2000 m , P= 8850 kj/m » 0 < W,
Wp= "D - nTW ff- |
T t Vr

FD\" (A%_ < 20(21.'(') (‘@J/S&C, _{f_[_ﬂ /:’r{i‘ < 4OW |

€., P < 4‘0 kil (2000>
§85%0 = £
- P = 35560 x:og N
Let the permissible (yfeld) stress of the material be

300 MPCD = 3 X |og N/mz.



Assuming the diameter of cable at 0-1m, area of
cross- section is “.(o 1.) = 0007854 m 2 and the
Permnsslkle fenSnon (with factor of sa_,,cetj of one) is
(o- 007854)(3)4:08) = 2,356,200 N
TInitial tension = 2-3562 x1° N

Solu{:tOY'l Ky 9“/3” % x=o

Eg. (8:30) < |

w(x,t)= = T, sin DX oo neTt (e0)
n=1 ’ /e Jg

wkere ﬂ ]

| T, = % f W,(%) s "};x’ dx ’ (E2)

T‘!e lntf:ml alef{ec{:aon w;(x) s given [.,7

W (%) = { 3k For os=x = 4
3!‘([_'"0/2[ For UYs = x = 1A

Substitution of EZ-(ES) into (Ez,) gives

¢ Y S ,1{11@-”.,‘1,
Gn=_i—_.{‘£33f;x §in T{ Jx+g£/ 3(2Z "7“‘}

(€3) |

= ﬁi‘.{ t* sin T2 xq . """’"}_1/3 T( )G |
- xz ‘n"Trz L nim o T /3
3‘ ) ,ez P _’17_}_’: _ xﬂ cos nIrx }
lary N 2 — -
11 hlﬂ' nTr 1 1/3
= 9"" Sin %E
n-mw
‘ shJ3 .
= %g f’“’“": P :FW"--Z, oﬁrr n= 3,
24 I3 For n=4, - 9{“5; for n=5, o Ffor n=g,
3z 7t 5o T _
x t 9J3 21w x 2¢emt
or(x,t) = ff { sin WT cos €U = f sin 7 7




x
95{;5‘1n-—-——-’f" iﬁ—*fl“m#i‘rj—-gﬁn&-ﬁ-ﬂ
w(x,0) = | 7y gr? F2aml £
943 iy, ST
- e i
50TWE ‘ Jé
At t= .‘{LE.
A "Irx '5‘]1‘7‘-
w(x ..X__ - CAL] AN S':nﬂ:"':" — 95 ;\. S‘ln‘i—‘"-{‘_‘g._?_ _&_ N ’z
P 4c 2w |z £ 3L L somw: V2
At t= 37
, . T . WX 4T ! EOE
w(x).s.:té-— = sfi‘_f{ﬁn—-‘{—‘-u-&s'h 1 + e S T—-—-sn J }
At = L
zc
mw
1:.7'(1_,_&— —_ Bﬁ 'l' {Sl“n zl +-—'— Sllnzilr—z-—,}
2c 8-"-3- 'q' l
At t= L. |
sk = po. o 2TTR ) HIx 1 . STE
t‘r(""*é)— = {"" Shh =g d g S T — g S T T s T T}

These deflection shapes are shouwn below :

933700
«700273 o
MEABS0 o

L3425 1

~.223429 A
- L HESA30 7

-.700273

~.933700 — T T T ¥ * N N
0 00040 123000 230900 373000 00000 623006 70000, 87300¢ ! 00Q0G

%/ f



@ Cy = viscous domping coefficient P+ dP
= force /unit ve(oc.'ty/unif length Fet)

e :md
_ e+ de
(P+ dP) sin (o+ d0) 4+ F(x B dx  ____ __ ' Dur
W : a8 ’ -~ at i
~- <y = dx — P smo FITTITIIT I T
_ 7'1.0’ P | PP Jx e}
= p dx aatz .- (&)

with dP = _a.f-. dx and
2

. AERS 92‘
sim(o+de)z =X+ = dx

A ‘ Ix?
E&(E,) can be rewritten as

2 2w N L oy P (o, dur(x,t
2 (PE)+ Fotd = 500 v P

at? ¢ et
@ Free vibration solution is given by
oo .
t
w(%,f) = Z Sin “-'TZ{C cos ned + D, sin nel=
| " T2 1 n Z £
W':tl't C. = K 1 . MU
n T Iowé('x) sin —o— a(x»
a.ﬂc‘ Dh: 1 x Ql
e R R
o
. 2V
Stnce 'Lj;(x).—— —3———' (7() —t: 0) = 0 :Dn;- o)
_ . TTx ' »
FOY‘ ’w;(*) 'IAJ;S‘gn_-—-—-, C’:__Z'LI.J; ﬂ_-ﬂ—x L nTx
£ n Sin — sin d»
7 Y ;
Using the relations
fﬂ'ﬂ M,X Sin N, X Jx = Sin (m'_nl>x Sin (Tnl"*'nl) x
;M EM
2 (m-n) Z(my+n))
fs:‘nzmx de= X _ —— ¢
H 2~ am Siny 2‘m|7¢.,
we 39:*: for n=1,
2
- b g s
a""“‘" fb’f n=2,3, ...
a, = C 2wy {St'n %‘(ﬂ—l) x o —-_;-E-(n.ﬂ) x 1
- = O
4 !-%Q"—(n—u) 2 I (a1 o
Soow(nt) = g st X cmrt

N Sin T Cos




u(z,t):(Qw%fgma—)(cu’swt...p%wt)
—g—'ﬁ-:_é"_’(_ﬁ&cn%+§cd%f)(c@gwt+ D Aim 9t )
az‘_(o,t'):o > B =-o
2Xx
. =0
= ,54,,,-‘1’;2=o 5 &9“2 = nT
¢ C
w. = nme _ nmw [E
n — = PR, —_—
/ g 2 NF
u(x,t) = AR i [cn nmwe £ Dh.&w\“th

amd D, = =— II tu(x) s "X dx
n'trc L

(cu) u(mt) = (4 cos.‘i’;}+amn“9">(cwwt+]>mwt) L
&
At x=0: Fu _ 3u '
Moo T AE e |
9 M, e
2 ) _ ! ‘
“@Ml&‘; AE—C—E = ~ AE)f" *
At x= 1 M, ?_1;_“___ g u M,
- = _AE Y
3t X
3 1} wly _ 91 wl
—tmy (A A G B am B )= AL (A L 4B D)
2 ol .. 04 > wh
i.e A(-wm ot -———AE% A =2 =§JE—A5C‘3U‘SC‘91+C3M;&”‘T)

2 . ‘ )
ve gtm, o8 S nE@ g 0 wmie (-&m sin 080 5 Wh)=o

c
This <2 tkae M C@&Q}I}:E
*
(L) "4(" ‘b) (A Cos —-—— + B sin —‘)(C‘ cos it + D sin cat)__-(&" : i
At =0, = M K, < .
4( " AE 2 x = E = o ’4 "_.(&_z) i
At :)(.:ﬂJ kzu = - AE QU *
q IR x:—'—ﬂ
> (A s D ygan By ae2fpawd g @)
S’ubsf:'{:uting (Ey) inte (E3), we get -=- (Es)

A (e 2 cogih(f_«f_z_u R AR
AEW ‘ AECW €



Hence the freguency epuaition i given by

;¢ Wi K, kg € AE W wl
hy = B2 ¢ ( Tk | AED N, &1
( 1 AEW Cos P AE g ) )S < o
{-e: {am_(‘_?:_g_ = ¥, e® - K, AEWC
1‘14"2."'-1 — A*E* T .
9 -
CC) U(X)t)‘-'-(A ot -c-x-+ ,% Svn g;)(c Cafw't+ D stm Ut) +*
--- (E
At x=o, 4 U= AE%—E— => B = ke A (') x=0
z ~ AECs ™~ - (EZ)
At x=f, AU _ _pMq 2u
A )
> AE(-A Y . O
A ( < sin == 4 B ._‘é_’._ s —C—) el
= A 2 -
=M (A s 2l g 2y 0t () (4]

S’ul-)stitwl:u‘ns () into (&3). we get

AE&S wﬂ X3 asf ke . wf
A + ] WA (ot 85 4+ S o EB2)
( AE® ) =M ( AEw ~ c)
Thcs saves 'Hne_ J:rezqencj eaucm‘:ion

1 AEWc ( k- M *
fa,,.e’c_z{ )

A2e? (9% - M Pk ?

freg 3=21
Ikﬂ&bahub-ixdo.tx—owo:tta.c&&dﬁa.mk‘a*xﬂ .J?

Furmdomednl freguemey o %<
T |
e, C l‘:— . 5 ’
Herne -Ji—:%(lr'% N c(.=4_—0784
Toble 8.4. When B =0t , o= 03113
when  g= (.0, o= 0-8602

This gives () = a+ LB = 06099 B + o0-2503

Forwdaanpd-gw.bah Longilidinal vibrolion, fumdametak

Br  «= 07854, we god = ©0-T7854-0-2503 _ o.3774 =
P 06099 M
MMtLCM:M:W =l'|397h‘l-

08774

Eguation of motion For free vibration c? gz";_ = 3911: (1)
x>

Assume sePo..Ya-‘h‘on of variables m Ez. (€)): wu(x, £ Ulx) - T (&)
> = x) .

2 d*u z
so ti’\avf < AZ'L T = U Jo[; er Ci "l_ JLU - .-l—. = OJ"‘—G’.
v dx* T dt* "~




d*U .
(e, c* _ol—w_c%ﬂ + s U(x) = 0 (53)
2.
and 4 T ;;g_t) + & T(t) = o (€4)

‘_12) show that the constant a on the r:'gk'{: Aq_nJ side of
Eg- (B) s @ negaffve guantity, "‘“*H:EJ’lj Es. (E3) by U(=)
and .'n’cegra,te w-r-t. x  from o to :
: 1
sz U(’X.) Jx - o f {U(t)}z dx (E';)

(o] w9

TS T e FQSL'&I ve mlwsz

Ez:(E}) S‘\DWS' that o witl have the same Slgn ot the
integral on the [feft side:

T = J{ dTU ()
1 J; U(,() sz cix ‘ . (E€>
In{ejro'fe (E) by parts to get J
- Cdul) _ gy . Ve U ) ? e
oy da ot [l e
Since  U(e) =0, the second fgrm on the r.h.s. of (E_-?) w{“ be
33!‘0» AL‘:‘O, E 'Z;'(‘> - 4% U(/’.) (Eg)‘

ok x=f. Mul{:nrl.cﬁ«ho\q of (Eg). by v(d) gives

) 42 =~ fun ) |
This shows that 1 <o and hence o < o.

In Egs- (E3) and (E4),, there exists an eigen (normai)
function for each freguency (constamt) . Let Un (z)a.nrf
Un(%) denote the vormal functions correg,.ong,ng t {;t,e freguencies

W, ond W, , 'resre,chvely Ez. (E3) gives

1- JQ‘U 2 szJn |
w,r E
dx* dx* + ( ao)

m“”—‘)"d (Es) by Un > (Efo> by Um and  subtract the resuLi‘mg
é-zua;f:aons one frm-n the 0’#‘\‘3\" to 36{‘

v Un
C1 U Jaxm _ Cl Urn <*l + (U _ C‘jn > Um n = O (E“>

+ (49 Uh, =O—--—(E7) (&

dxn*
In’tejra,’ce (E“) with rcspec{: tt x from o fo 4 & set,
a,j'-ftr integration B_y Pcu‘fs‘ the desired orfhogona,i ty relotion:

[ 0 U de o L ek )




Set “'F Tt cmrr&-n.aﬁx x, ard X, af . zzrzaT
. shoromn NE
w (xot)= (A et X4 B M O NG g sty b ot) |
A )
Uy (%, t) = (AL 8 WXz g W3 - T ‘*‘
2 (%,,t) (,.,z. =2+ £ Aor czz)(cwg@ff.pmwt) wli !
-u‘(O)t) = 0 = é‘ =0 :z i
U (Rt) = Uz (0,t) = B, A ‘:’%L = Ay
~ , Fand

FA,E, %(f,,t) = A E, 95%_;_(2 (0.t) = tensile force Samme im AR onens
) . 2

AE,C

e AE B L o8 Oh _aE, @ b, » B s Sh g,

) < o Cy ~ ~ Azezc_' < ~
‘uz(xz’t)”' EI 4““—%'}-’- s % + AE Ca w (94, i L9y )

2 A Egc‘ <
u
3 2(Q2,t) =0 = B'.“i{ %wg,%wh ‘ECg_ Mw!’ Lﬂ‘wlz}=~0
v G < 2 AE< < <s

..mewcjeﬁm.f}wia m%‘ﬁm&\z AE, Ca
|

z Ag Eg €

{a) Axial vibration: ' ™, I,

g = Img _ mass of rod

m end mass
Using p = 76.5 kN/m?® for steel, we find

——————— 3

£

2
mg=79¢p_ T _1%] (1) M]:.—malnkg

o fe

ST

4 4 9.81
mp 15.3117
= = 0,1531
m 100

From Table 8.1, the value of oy for § == 0.1531 (using linear interpolation between
values of § = 0.1 and § = 1.0) is:

o, = 0.8099 (0. 1531) + 0.2503 = 0.3437

'\/j _ 9 3437 207 (10°) (9.81) _ 17707958 rad/sec
76500

(b) Torsional vibration:

w1=

In this case, we use the result of Example 8.6.

Jrod -_:pr
Io Ip

where J = polar moment of inertia of the shaft:

8=




iy Vi —
J=— d* = — (0.05)* = 2.4544 (1073} m*

p =176500/9.81 kg/m® ; £=1m
Jroa = (2.4544 (107%)) 76500 (1) = 1.9140 (10™*) kg—m?®

9.81
B=

1.9140 (10"4)
10

Since [ is close to zero, we have from Example 8.8,

w = — \/— = \ / G 'B v (80 (17(::5)())0(9 -81) = 14.0126 rad /sec

= 1.9140 (107°)

®
n
Pho

@ Comnsider *ka.Lb the Shogl amd .
haty tha dikc : o:---—-—- ( - £
x

o(%,t) = (A et ©2 +Bm‘*")(cmwt+pmut)
6(o,t) =0 > A=0

6 - Jd, 26
> GJ_(‘.?_-BCJS £ - % 13»«:““’5l
C = 7 ic
> fon WL _ 267 _ 2c &34
e I, WS¢ wi Tt .
- . &eJ
Fregpency e_vm.lib-n: X fand = f3 M%=%&MP‘ e
I roots of ttce E@.»aatcm are  Givem ,Ly ., =({ﬂ)
(.3“*: 2 Xy Q J J;
i
O(xt) = F 4 WX (cn ot Wt + D, % c.s,,t) ---- (&)
nx1
8(x.0) = = sin D (€h) =0 = C,=o = (&)
nw=4i
oo W% [, 28 X ,
%, = n 2 D = °
Sz £ nt (an) - 24 e
G = G e hee S = ZRT
=z =7 Te
MuUTCP(J Ez,(Eg) by sin 0521 and fn)cegra.f:c from o to 20, :
| (z_r_c_> | - 8 (w" o |
wn Dh j 263“ s"r,l E":L‘,_f ax = 2 f an n A’C <E4)
, 3 5 <
i-e. 'Dn = -—-——-———-——-—8 c 90 (Es)

g ARy



C et s B (IR w8 @

n=4 \ ™4 o*
e(x,t)y= (A &% + B #n LEN(0 cot OF + D 4im 0t)
e(o,t)._o = A=zo
s(lty=om wn Hao 5 Gd

<

G, = nwe _ ww |G s om= 1,2,3, .-
X L Ng

Bouncia.ry c_onali.{:'z'ons‘
At x=o0, 6T 22@t) = Ky 8D+ ¢y () + T gfz@s

}

At x=f, 2%
e:r——(l t)=-ty, 8(LE) -y, 2 39 (Lt) - & quutxt:)
@ 8(x,t)= (A 8 ©= 4 B 45-.‘%’-‘)(:! ot Wt + Dad-wt)
'6(0,{‘)=o = A=0 (
(1 t)=0 = b -"—’L-I_o ; (*—9“C— = (-3
o = -4+ G . =
Wn= (“ 1)1‘- :F.l_i. ; n= 1,2,...
o(xst) = (A cot E‘z—"+ B A L2Y(C of Wt + D aim WOE) ---- (Er)
=0: - 2’6 _ 28 '
ot x=0 oo = 87 ex ---- (e
’ i
= ¢ o
O-k-x K "‘J.Zg_g;: GJ%!;_ ___—_—(EQX
Ey(El)OM‘“ (EZ) 3"‘“ ‘ (J;(..91>A+ G______J@)B =0 --—"'( )

E)ard (€ :
() (€3) give (a;_wzus‘%ngi” &‘mwﬁ)ﬂ*_(g—@ &‘“592_63’6.9 6_%&)3_—.0

S-tﬂfn.g fﬁbmw o's_"b\‘,_ Ca{‘ﬁ'tf“""’"‘t O’B—ﬁ ond 'é“‘"(ES)
%(54)M(Es)€ﬂadﬁjm,1uc§ptmm .

2 ,
g &3 ‘G"IEE
=0
1 .- : o GT© wl i
= w9 Gre 2By ota ol - G128 9D




: = . » cH
Eg/.a,tmsds— YTIG.GJTL- C 5?9 = —a—§ -—~-(Ec)
Let slindy slale vibrodion [  o(x,t) = X(x). ot Ot - - --(ED

(E)a.m.cncgz) 3/%\1-6 C!_.._x .(..-—w—-l X =0
dx? ct
Solution i X()= At B% + B sn 92X

9(7(:0, f) =0 = X{x=0) = o :$ A= O
At free evd, GJ 99 (x~£ t) = m,, cot ot

B.GJ%CA%;Q-M@#'—' mtomwt

B= M © W
cTw C <
Sty = My g L %‘%’—‘.mw’c
G T3 <

From solution of Probiem 8.21, . nw G
T @ 2 F
. wiz———- }o‘?xro
7800

9(1;0)——01 26 (-x,o) :&9 - (EI)
ﬂn?ulah-clkr&uunnoét At Akmgt 4
e(xt)~(,4¢gs.‘i’2.‘+ B e B2 )(g cof Wt + Dz!m.c&t)~°"(57)
MWW\WQJ!‘OMWQ}'XQ |
0 (ot) =0 , 2094 =0 ~--- (€9
Eps-(E2) amd (E3) give A= o 5. 2
BW usu.zizo & o= s et
en(z,t):-&‘m“ﬂ"(c ws Wt + D, ,;f,.,wt) T 4)
e(xt)- Z Aln ﬂn‘X(c @@-{:+D A(Ihc‘gt) "_'-(ES)
n=1,3,.
, - . m
At t=o, 8(x,0) = Z L ’—"ﬁ—’f c, ’ I (-9
n=1,3,...
_éa.;c&(x,o)= = 4 B o, D= w —--- (&7)

n=1,3,...

Since 8(x,0) =0, C,= ©o. By ""‘*’l@"e}u‘*ﬁ E’Utt /‘31.4@3 d& (E‘I)
ly,&z&n“nx niei?hatn-g{lnmnof.‘ofwd“"t“ﬁw

2 4




£
J‘X/k;“" nmx Jx:.& s o9 Mn'n‘x dx = &? -
A 2L 2 A 24 n
2k _ o, 4 - _ sle |
we gd (,f.? T z Do = ’2.4."._".5 Pn > Pp-= " e 3 m=03
o . wMmTx g% W .
e(x,t)= = A Y ( . :’C)%&Snt
n:i,?,--- n Tr
4 4

I= (1) (0-3)3‘:- 2-25 » 10
I= 2m, E= 205x40'° N/m? s P = 7:83 x10” *3/m?

2
A= 003 m" L,

Fig. 815 gives, the values of ﬂnf -

@ (A1) AT

Here [ EI ' {(10.5‘ xi0 ) (2:25 X1o
;T =
J’AI 7830 X 003 x 16
(o) For P;’nnecl-— Fr‘nned l_,ea.m:
f&,f: ™, W= 71'2-(“0-78“[): 1023.3737 Y"“"/SP«C
ﬁzf:: 7T, Wy 4 &= 4373.-4948 TQA/SGC

pal= 3T, ;= 905,= 9840-3¢34 rad/sec

8.28

‘f) %
} = to7814

(b) For fixed- fixed beam:
el= 4730841, = 24793926 vad /e
p A= 7:953205, 6932. 2023 radfrec
Pl = 10995608,

() For fixed -~ free beam :
& = 1-8715104 , @ = 387,509 rad [sec

prl= 4.694091, W, = 2441- o[17 radfsec
£:h = 7.854757, W3 = 6§34 y030 rad /rec

(d) For free- free beam :
s,=0; P d= 4730841,

il =0,
psl= 7853205,

052' =
Gy = 13393. 3474 rad /[sec

W, = 2479-382¢ vod fsec

@3 = 6832.2023 raw?/;-ec,

Mode sha,lbes: The mode sha,re.s are given in Fg. 8.15
- (eguations only). They result in the Following .

- > ee = e -
. —

" ?—-‘——o\:_,,—-’——ﬁ 2 NS R a2z
0333 __aser 035% 841 }#& 132__as0 o
—— gv%,g 7,%,;&
Frxed- free Free - free

Fixed- {ixed

Pinned- pin ned




Bouhala—rj coani‘f:fonS are:

At x=0, fixed end > WE)zo () . dX (=0 --- (&)
atx=l, freeend 5 LM () o (e, W @m0 - (&)
The deflection (viormal) function is 9given by
W)= C Afx+ C, Sinfx+ C; wthpx+ G4 sinh px (&)
Srom Which

s gy s o tpre G sndprr € cokpe] (D
Ept- (E) omd (E5) 9ive G+ Cy=o0 | (&9
Egs- (1) W(Es) Feeld B (.t C4) =0 )

use of (€7) omd (E5) in (£5) Leads to

W)= ¢, (f fx— b px) 4+ cz(,fra“px—Mﬁl) €s)
Use of Eps- (E3), (Ey) ond (E) yields

C,(uspf+mﬁ,sf) + c,_(;,‘:_{5£+m,8f) =0 | (Ew)

Co (A pd — sk ply — ¢, (s pl + et ghy = 0 (&)
The frezuermd e.au.cuh‘on con be obtained by setting the
coefficient watrix in (£,) and (E,) B zero a4

ot pl + it ph s gl 4 acd gl
= o0 ~(Elz)
sin ol = aink gL ~enpl - et pd
Upon sim P'ff,-ca,t‘:a‘on, Eg. ( E”_) yields +the Jf’rezu.encj e,aua;l:,'on
cos gl . Ahpl = -4 (&r3)

Frest four voots of (E;3) ove given by
p,l: t-875104, P,_l: 4.6%40%1, p,f: 7:.854757, (54,?: 10. 995541 .




Boundaxy conditions are:
: 43w _ le o‘w
= ; I & — = o _ e
At X=0; EI 5 =0 (5),  EL S5 =~k 50 (€2)

3
At x=£; Er% - kW --- (E3), EI &"W

€y (8-105) gives

l C” 1774 Y, P : ﬁ

. e W W e w 7w Sw”

{ W, Wy d= = T wE— Ui"[" 7 ", W + W W - W ]o‘
At 'x:f, EB (54) 81'\/85 , : ] T (ES)

| W=0 - (£,  W'=o  --- (e
Eg- (E3) gives ” ! , ?

EL W"'/’: 'kw‘_' - (Ef>: EI h{//‘ = 4 uj —--(E..9>
Mu[tfdafjinj (Eg9) I’J Wj R (61) Ly W . and Su‘:ﬁ'ra.cfa'ng one
from the otker, we get :

/s i : :
ez (Ww — W ) = (W - W) = o -~ (Ere)
This Shows that the v-h-s. of (€5) is zero akt x= X.

#azo. G (E)sies o, (e, e (@)
E7 . (€5 ) 9ives :
/ 4 7 .

‘ ET W = - 'k.e W, - (Eﬂ) » EL wj. = -k l"lj/"‘(E“‘D
Mul.h"'_,lj;nﬁ (Ei3) Lj we | (EH) E'y w':,-) and suéfra_c%,-nj one
gmw\ the otkeyr, we ‘3et

N4 . 7 72 Id Vd
Ex (W’ v - Wi W)= kg (WwW - Wi w Y =0 D

This shows that the r-hs. of Ez. (E5) {5 zevo at x=o.

x

W(x)= C, (B x+ sk Bx) + C, (ot Bx— <otk Bx)

+ C3 (&im Bx+ sinh Px)+ C4 (4 Bx- £ind Bx)
LWy = ¢ B (-t frt cfhfr) + ¢, P-enpx- b 0%)
* +C3 B (- Aim Bx + sinh fx) + C, B"(- #im Bx - 4nh %)

wW@)=0 = <¢,=0

w(o’t):‘ g(mt) = w((t) = i_n_:(,q,e) =0 ; t=> o

2 v

w(f) =0 = ¢ (4n pl+ srd l) + Cy (in PR~ Aind L) = o --(E)

%(2)=0=? C3,(‘&C-PX+MPQ)"C+(& pl+ """J‘ PZ) =0 --E)



Setting the deliminant of the Gthdiciad wmodrix of €5 amd
Gy im (E)) and (B2) 5 32n0, we gekt the guppeney espmalion
= (#im gR 4 sinh YT 4 (86n BR- aink gAY =
or Ain g #inh gl =0
Since Mpﬂ#ongeWkww

i gl = 0

2z 2
n- /EI _
(Qh =nT WOy = e <A n= 1,2,

w(ot)— aw'(ot)— aw(g t) = 33w‘<£ =0, t2 o
ax* 3% |
w(x) C (et fxt whhBx)+ Cy (ot fx — <otk Bx)
+C3 (&wﬂx+m,6x)+c4(44mpx—,&wv&px)
o& (= ¢ B (-@5(‘)(+cg’§/ﬂ(3x)+czp (_cgspx—cﬂipx>
+c,,s(-&m/3x+&onl-/3x)+c4(3 (= AimPx— Hnh Bx)

i“(w)— C\ B2 (5im px + Sk £X) + C; 7 (4 = £k )
+C3 B ( mpx+cﬁﬁpx>+c4fs ( c_agﬁx—-cp'%,sx>
wW®)=z0o = ¢, =0

Al
z;-(o)—o = C,=0

___.,(p_) co o G (sinpl ik ply— ¢ (5in ph+ airh pi)“..f(s)

£ (1) =0 O enple e pl)—Co(enple b PL) = o
Soafr\gmmmnamto’&w%cwmagc3wc im Ezg.
(EOM\J (Ea.) 2 30, ke gu?)d—!mt-y WCM lred%*"‘—“—a
-(..4%'32-&-M@ﬁ)(ca’.’spf%»cﬁﬂﬁﬂ)-f-(&np.(-f M}ef)(«wsﬁx

+ 5t gl) =
or .tzm(sf-tamlpl:o ‘43) ©

For a simply supporteol beam , the firct three natural freguencies
are given by ‘

Gy = (/3:1) (EI/FAI ) = 7T (EIAA,Q“)VI'

("92‘(/81!). (E%,q,[">2 - 4.71'1 (E%,AIA)‘;:
W= (Bsh) (EL/pal*yt = ox™ (EI g 14)72



For steel, E= 2.07 xto N/mT > P= 7880 1‘5/,,,3 , A= tom .
Se't‘l‘:fng

: 1
W, = 1500 Hz = 9424 -3 Y‘a,al/sec _ gt {207 x0 )z

we set (7880) A (L)
A
24, ) 2 o?xoo
(34 43) =z ( 7880 >(A)
or e .
y < 00347 .
we get 7880 A (1)
%— > 00047617 - — (E2)
Let the :»ea.rn ‘f\a,ve warECf;‘“?“J:: section % —Z—
Az wd , I= -+ wd — =
i Zzm

Let -AL—: 0:005 +to Swfxffy megua-lt{?‘es (ED“""’(EZ)
Then o{zz 006 or d= o 2449 m

Taking w=o0-1m (w- cam hanre amy Va.ﬁu.t), we 9et

A=wd= 0.02449 w" and I= h2z4go0 x/o" ‘m""L
From the Ad(ulfm—\,aﬁ problewe 8.31, we find  for  Ain Pf o,
C, = Ce
nmw ®

Hence W, (x)= C, &in B, x = C, Ain
Qerenal feee wibnation gludiom is
. K L,. mTx .
w(x,t) = 2 An T (A“ ot WOt + B, £Lin wnt)
e

-

Whew  feam vibnala i the fined wode,

)4

wix,t) = Ain T"T" (A, ot o + B #im 9, 1)
+R 2 .
— 9 W E . x \ W, t
M=ty = g1 _é;.i_(x,t) =-T)Z‘I M%(A,cvfw,f-ﬂr’w it)




W)= C, ot px+ Cy #n P+ C5 coff p2 + Cy Linh B
alw(x)_ ¢, Bl spx —C, pPosingx 4+ Cy a8t wsﬁ,sxa-gﬂmﬁ"
3w(x)_ c, planpx -Gy B ot px + C3 p7 Aink Bx+C, g’ ook px
Jx
- (&)

EIL A (0):0 = C'- C;
x*
EX jgw (0) =-%, W() = ex p7 (- +C4)+ ¥ ()4 C5)=0

¢, (FET BP) + C3 (+2 K1) + ¢, (EIB?) =0 == (&)

er W () -
;!x"( ) =0 = z(,&.npf)-f- Ca(ca&ﬁpl ca!ﬁ!)—{—c (Aml.pﬂ)_
: . (€3)

-—— -

Er W o+ g wl) o
da?
Cz(Er,e cosBl - *2 ainpf) 4 C;(Etpa ,sanpf+sr,63unlﬁ1
— %2 o8 BA- x,cosh ghy 4 c, (E1p* ok ph— %,

Setﬁ’ngﬂ&mwmrog, fk}_ca%m_z.zmi?og. C,, €3 amd Cy

_(Ez)tCEd to 3en0, we get the WW#W

[
—EI : +2% : y

ey U U U S N

(cosh gl - e pd)
i (exp’ {ain ph+ sinh gl}
- ke /Si.nﬁf)n : ~ta{ct gl + b gL })

Because of sgmmdiy, contiden only haly of beom t5 tha fagt of M-
Bou.rr\.AaJ"g_car\.&i,tEa'rchm

w(est) =0, €I 31‘5(0 ty=o
ax?
Er%m.ﬁv %,__:o,:_txz_‘_z_.
gr 2°w =y I W Lk = 2L
Y : F

: ax? z

W)= C (s fx + o5k an)t+ C, (cof ﬁx-—-codx ﬁx)
+ Ca(&in Bx + aink px) + €, (ain Bx - aink px)

w (o > ¢, =0

sz(o =0 = Cz=0

dx?
w(x) = C3 (Ain px-f-,qupx) + C,

=0

(Ain Bx— &b gD



%(1)7’ B <3 (et Bxt ot Bx) +pC, (ot Bx — ik f%)
_ff;—g(x):: B> Cs (-t Bx+ coth px) - B3¢, (ABx+ otk p)
__"‘i(_{):o:) C3<C95 €1+Ca§ﬁp£>+c(wﬁ£_ccsk ﬁz>-o
(&)
Lwd)--f o wE) =
EI/Q EC;(-—(_:’SIBZI.f-cM%Lt)_C4(cdlg-é-+¢gs{§?£)]=
_ﬂwi[c3(_,§'néé +Mﬁ—1{)+c4(ﬁnvé§~4@l\%{§)]_--(ﬁ)

e R‘ngﬁx—t-g ca%ﬁﬁx = o
R (- @Sp{q+kmﬂ£)+Rz(cﬁﬁx+hwpl)-o

M 32
4 » A= MY .
zer g}

B;/seﬂn.j fﬁWme of R,MARZW'CB}UU’,
we obtai. t W ef/"-"'n""
ok BL (coth RL 4 2 aink BRy 4 w&ﬁéig(casr‘3§+Aun’§§)=o

or A(‘M@é-{-t—a«\%&)zz

FOYCW\MML,M"*?%

coidinadis x, and %, os showm. 7
MR

W (x) = c, oS Bx 4+ C, &cmpx,-,tca car?fv/sx, + C, M,Bx,.

. R|: C3+C4 3 R2=C3—C

= x, ’ xz =

ALY

SAAN
\

dw‘(x,)- C,pmﬁx,+ciﬁMﬁx.+C3ﬁM[3x,+C4pcafﬂpx,
W, (e) = o:;» C,+€C3 =0 = =Gy

Jw‘ (o) o > C2+ C4-O ’ C2=-—C4_
J"l

w, (%)) = C;(ca%px, - S Bx)) + c4(m',,J\ pi,-x«;\px,)
A BR ~ Aink ,s,t)

wi(l)=0 = ¢3=-¢

s Bl - ooh gh
w(%;y= C (M,sz,_un,ex.)_ ,sm,s)l qu.,S)Z oS B~
ol € vy S

W, (x2) = C s Bx; + ¢; &“Plz+c3 ca?ﬁpxz-i—c #inh X,



W /5 4 / ‘o
c_iza_ci(xl =—c, B ,ﬂohﬁxz+c£p (_gfﬁxl-p-(.'j J< MFXz-f-C#ﬁ‘w"rﬁ Plz

woy=o > =]
_/‘_ /

ACE
, . mn,sX—M,BX

Wz(f)z-Orﬁ C?'—'-C‘f- Lﬂ'gﬁi—u:&ﬁfsz >

Wy (%2) = c; [(M (B Xy — Kin ,sxz)ﬁ‘(ﬂ_nﬁf—ﬂ»ﬁ ﬁ'Q)(cas& Bx,- Cﬂ‘ﬁ"z)}

&t Bl - cosh A -e-- (&)
O
&nﬂ MP

¢, [(cosh pl- o8 ph)- (@apz oy )(M pl+ an g2
+ ¢ [k pl- ot o) - e e A N Y N 3

s B - wth gt
2 47 , --- (&)
d W‘(,zk)_— __;“:i}_(xz:g) gives
ek o oy sin B - 5ind BR AE 2
4[( Bl ain p) - (CM,I,_M'GJz (A pl+ s p2) ]
KMIQZ"""“P’?) (&"‘P’g"’&‘”’"/ﬁl (o:ﬁ(pf-;—cd,&f)] =0
Ca"pfe - uﬁfpf _— (E+)

Since the mw%m corpticients of ¢, amd ¢
6 (&) 4 <ally zone mMde&
Cyamd ¢ 4in (Es)M(E4)5}QnOT}v8.Mt5f{::,_
W U;.a,tcms
C_O"Sﬁﬂ wffp,? = 1
General J—ree vibration solution of a ,Sm»p'j Auppsilid éea,m i3

w(x,t) = Z Ain m’:x (A. 5 Wt + Bpin ,t)

n=14
_ 4
At t._O, gf ("‘- o)-—O Q-rNA EL%‘;%*Z(“‘!O): fo
Thus i | |
% B w,. Am 7\"(;)( = 0 d"L Bn - 0
amd oo gl NTCX : '
ex 20 A (*F) = = & ----(&)



/th% £ - (E0) Ly &nfl;-‘f amd Mxﬁ?"b&t\j from o & £,

| 2 2 . 4
An-“—"‘“—'“—"j £ Atn n;x dx = Zl ____.._go (1-(:0’3‘(!17)
o] EI“S’.‘TS

+ 515 .

£ 14 oo

Il

T ET ne 1 B b
' Let W)= 4 - X s o dW \ 2 2
2 2 '
N = ET d w = EIL, L 4 = El,
J; (dx" .r x('i)‘! - 4 3
f £ 02 AR L
D= A 2 ax = Pho _ X N\4 _ Ao £
[ontun] A
2 4ET, (30) 120 ET, ‘

CO:»‘%L.'.‘“. 3 = e —
£ (‘Fﬁol) onl"'

¢ = Jizo ELo \%2
.fAcl")
(@)Ev;a.ﬂon o‘&m.occn:furawwt:{hnlrwmu

tw - '
ex 2 _ g pa B (&)

Let  or(x,t) = Z Wo(2) To(®)  whoe W)= n™ ndvmad mode
saligying  the l.-mmlcm-g condilorns amd tae e?/"’a't’“

dtw
ET T # = (ﬁzfA y = 4,2, ---—-(E;>
Eg-(E.) becomes for the assumed solution ,'
er > 4w " O‘LT
1o Tol®) = f(x,¢t) - pA z: W, (%) - Y ~--- (&)
1
which ,n view of (Ez) becomes "
* T
)

z G Wnlx) To(8) = 2o £(mt) - 2? W) S

mul‘hrf_ymg Eg. (E4_) Ly W) amd ,&mtig’mﬁ\ﬂ from o & £, wcyf

2
N =;§z~ (6 | - )
RCE) = f Px, ) Wal® dx | - (B

Nofeme0§Mww



. |
f W("‘-)W(X)Jx:{o g m=m
° EA d m¥EnN

uted fn
A3 oh)uwm.g (EE‘.) The golution ok Eg,- (Es)mﬂ,cw’hﬁfa\u

Ta(t) = A, cof WOt + B, #in Wt 2
+f/°«lc3 IF(?)%@&*"')JT

W‘were A, amd B, ot comslants
s ---- (E
rom (nitial Co‘fl&&:\ons Thecs e t_f;a!mmtg MA o },-c ( 7).

ﬁxd;)zus&-wl o,s
wx,t) =

(b)ﬁrwh%&wﬁdw

’n(") — ,hn ntrx
For the given Mﬂj» (EG) becomes F.(t)= F, 4in "";“‘ Ain T

5" F() i 5, (£-T) dz AJwr«)

-~~~ (&)

[A A Opt + By Sin O b +
fAlco

Hence () becomes
3 14 [
Tot)= 2fel’ 4 nra ["-_"‘"“"T sim ot - (& /Sénnzcag
er w* )} n*- (-@;') hl{ 4_ (co )z} !

vhone =T
By = f /J’A MM{W ak‘sz.lx_a.:m
Thus the fdrced hv.saao-ruu_o'[,‘f'ki bearm iz \ﬂ-&v\. 2}
wx,tY = 2 K X = Sin (“Wa NI x :
R -t o R
w5y

| o 3 - nw o
L

RS LR Gt v 1 D)
L

Devivation of Ep.(€s):
T
If ghear defor mation s 3ero, M= EI 3w
3 x>

, ax - atl
EZ'(S-lOO)=> 9_'1'. v = pT 3 . gzm—?‘!—fr 34-10,
PAL 3: e’ ax* Bx Ix*at?
oy 1+ A dw o P, o*ur
2 x tz
4 x> 3::"
oy a'w A Mt o4 ur
et 3t +ER S - 8T o —F =0 S (=2}

Deonivalion of Ep- (E6):
EZ‘(E'Q l'cw, for £=0,




er tw S r 2w
LA axt 2t T A axPatr ---- (&2

T wixt)= C Am “T;x ot w,t, . (£.2) becomes

2 4 2 :
ot _T_]__TE) 691 2/ nTr 2 "2 gr
,( . - n - T — w3 = O iz Ex
( . (4}1 ) n ! FA
e, nw el =
i-e 69“2 - « (T_ . | < nd ¥ :rz_ %_
2 /T2 - X
Ly () 24 (t+ h"r‘r__‘) :
: L ;
Derivation of (Ey):
If Yof:a.ry inertia. s ne_g(ecv':ed, M= E£ET %{— (E.i)
- duwr N\
| (3-99) | V= wAG(E S (-2)
A9 > 2
% | —~ 4+ £= pa %—E{— (e-3)
€, (3-100) > M _y =9 ' (e-#)
. ax
Using (- 1) amd CE 2) (e- 3) ard (E. 4) cam be written on
2
~kAG (22 _ 3 =pA 2
(22 Yt =eA S
or 3¢ _ 3"“’ f LA P -5
I T ax* * *KAG *AG Ittt )
amd EX a* oW
_;;’;_g - ‘kAG(¢ _—3-7: =0 N ‘
2 Y] ‘agz! Pwr Y
or ETr 32 =2 %A =0 E¢
ax® ( 2 AG X + @ x? ( )

Sum.t—d: c's (E 5) ,m-ti (E‘G) 91\/834- 1
ger 2%w | BT 2'f  pApr R%Tw 2¥ .o @7
Ix* €AG ax: ZAC 2ottt :F"”f’q% D( )
34’*"4_,,0/4 'w _ PEI bw D)

If f=0, (ET) becomes EL
ax4 2t k& axath

Perivation of (Eg):
With w(x,t) - ¢ sin ATX o5 b, (. 1) gives

7 24

=4 4+ 1
(.3::: "
e

2.8 JE

Mu.Ltrly Ez.(3-83) l'y W(=) omd M\IL_?}LQE from o G
L4 Cwr R
,{: WD %;—7:—’ dx = %—— j; [wea ]" ax

This shows that the 3"_97\'0; o will be same as ttat of +he



,ﬂe&f band side term. I_ntearo.{‘fng the L:)C{— hond aida exfn%ar\

by ot e gt

' ) 2
L Wy dW 4% w
431»,/(,0‘ w('x)l - ix" ) S-C + j: - ()| dx (er)
Ax o
For common brumdory condions, the Krst o Tornems in (D
will be zero, and (E.) will be ]aoS{ffVe . Hence " is pcsit(ve‘
Common _boundary _conditions:
_S\‘mply Auﬂaorted epol : W) = i"w -0
. x*
Fixed end: W(x) = % = 0
Free end : 45w (x) = 4°W _ 4
. dx* dAx*
@- Equation of motion: - -
w w .
" EI"&T‘FpA'Eé—:FOSMWt (1)
For steady state response, we assume the particular solution as
w(x,t) = W(x) sin w t (2)
Substitution of Eq. (2) into (1) gives
4 F
d'w We_ o (3)
dx? c? p A c?
where ¢ = % (4)
The complete solution of Eq. (3) can be written as
| F
W(x) =C; cos fx + Cy sin fx + C;3 cosh fx + C, sinh fx — - AO 5 (5)
pAc
where = iz' (8)
¢ ,
The boundary conditions for a simply supported beam are
W(x=0) =0 @
d*wW
LY (x—=0) = 0 (8
¥V(x=t”) =0 (9)
d*w
™ x=0)=10 (10)
Equations (7) and (5) give:
. ' F
C]+C3— 02 '—_-0 ’ (11)

pPAcC



Equations (8) and (5) yleld:
—C P +Cy =0 or C =C4 (12)
Eqgs. (11) and (12) provide:

Fg
C; =03 = —nr 13
1=0Cs 27AS (13)
Egs. (9) and (5) give: |
F h 3¢ ,
Cysin G €+ Cysinh f€=— —— cos fé+coshfe (14)
pAc 2
Eqs. (10) and (5) yield:
~ F
—Cgsinﬁt’+C4sinhﬁf=—-—?——z—(cos,@é’—-coshﬂé’] (15)
2pAc
Solution of Egs. (14) and (15) gives:
F F ,
Cy= 2 {1 —cosh B¢€) =— —-——0~—-2- tanh Be (18)
2pActsinh B¢ 2pAc -2
Fo ’ Fy B¢ ‘
Cy = l1—cos &)= tan 17
2 ZpAczsinﬂf( P ) 2pAc 2 a7)
Thus the complete solution becomes ‘
Fo ‘ . ﬁ f -
w(x,t) = T AT [[cos Bx+ cosh’ﬁx] + tan ~5— sin Bx

ge

—-tanh-—é—sinhﬁx-——2] sin wt

F(t) = me w? sin @t

— = 2
, ? __)l
e 2,
10 . .
= -—a-g—g (2 7) = 104.72 rad /sec. — = ¥4
F(t) = m e o sin wt = (0.5) (104.72%) sin 104.72 t = Fg sin wt (1)

where Fp =5483.1392 N ; w =104.72 rad /sec
Steady state response of the beam can be expressed as:

w(x,t) = § Wy (x) q(t) (2)

n=1

where the normal modes, Wy (x), are given by (see Fig. 8.15):
Wy(x) =sinh f; x —sin B, x + o [cosh Bn x — cos B, x]‘ (3)



sinh B, € —sin B, ¢

d = 4
st = s Bn € —cosh B, € ®)
The generalized force, Q,(t), can be expressed as:
4
Qut) = [ f056) Wale) dx =Fo Wa(S)simwt (5
0
The steady state values of the generalized coordinates, g, (t), are given by Eq. (8.117):
t
1 )
qp (t) = S YN { Qu(7) sin wy (t —7) dr
' 4
L) Wn("z') t
=—m£smwrsinwn(t——r)d'r (6)
whére b=[Wix)dx=¢ (7
0
The integral of Eq. (6) can be evaluated as:
t
fsinwr{sin wy tcos wy T — cos wy tsin wy T}dr
_ ° 1 ~ 6y |
=sinwntf—2-sin2wn 7dr —cos w, t 5 (1 —cos 2 w, 7) dr
0 0
sin w, t t cos wy t
T 2w, 2 ®)
n
Thus q,(t) can be expressed as
' 4
(t) = Fo Wn(*g") sinw, t teosw,t
Wil = pPAL w, 2 W, 2 '
18.2771 wn(.g) '
= ” {sin wy t —t cos w, t}; (9)
The steady state response of Eq. (2) can be expressed as
’ ¢
‘ oo Wn(?)
w(x,t) = 18.2771 3 ” Wa(x) {sin Wy t —t cos wy, t] m (10)
n=1 n
—~ot £
Steady state displacement of the beam ) 4 F(%) =100 :E’ N
m Al N
can be expressed as o
1 |
oo 7
wnt) = 55 Wale) au(t) (1) T
n=1 i< m

where the normal modes, W, (x), are given by (see Fig. 8.15)



Wn(x) = Cn [Sin ﬁn x — sinh :31,1 X — Oy (COS 16)1 ?L — cosh ﬁn X)] (2) ,

sin §, € + sinh 8, € 3
% = oo Bn € + cosh 3, €
and the generalized coordinates, g, (t), are given by |
dz(lu(t') 2 1 .
e .
where  Q,(t) = [ f(x,t) Wy (x) dx = F(t) W,(¢) (6)
0
The steady state solution of Eq. (5) is given by
N
1 .
qy (t) = m { Qu(7) sin wy (t —7) d7 (7)
4
where b= Wi(x)dx=¢ (8)
0
¢ ¢ ,
f Qo (7) sin wy, (t — 7) dT = 100 W, (¢) f e” %17 sin wy, (t —7)dr
0 0
t—-r=0
=—100W,(&)e 't [ &1t~ gin w (b —7) (—d7) (9)
t—-r=1t%
Using the formula
fe‘xsinbxdx=~?él‘——-e‘x{asinbx——bcosbx} (10)
a® 4 b?

Eq. (9) can be evaluated to obtain
100 W, (¢)
pAEw (Wi +0,01)

a(t) = {wn e 01t 4 0.1 sin wy t — Wy cos wy t} (11)

Using p = 7500 kg/m3 , £ =1m, A = ii (0.022) =3.1416 (10~*) m?, Eq. (11) can be
written as

42.4412 W, (£)
w, (Wi +0.01)
The total steady state solution can be found from Eq. (1).

The solution is assumed as

where the normal modes of a cantilever beam are given by (Fig. 8.15):

an (t) {wn e" 01t 4 0.1 5in wy £ — w, cos wy t} (12}

wit) = 3 Walx) aalt) (1

n=1



M(t)

l RLLERLY
r
.
N
=
o

‘ o]
: { |

W,(x) =sin B, x —sinh f; x — o, {cos B, x — cosh Ba x)

sin By € +sinh 5, ¢
% = [cos By € + cosh G, t’]
where [, € are given by the frequency equation:
| cos B, €cosh B, € =—1

The generalized force Q,(t) given by Eq. (8.115) becomes

, dw,
Qn(t)—":MO dx lx—(

- where
dwW, i .
= |x=¢ =0, (cos By € —cosh By €) + oy By (sin By € + sinh Gy €)
The steady state response of the beam is givén by Eq. (1) with
f v
1 .
qn(t) = m { Qn(T) s1n Wy (t —_ T) dr
1 dW, ¢ .
= AD L M, = | {sm Wy (t —7)dr
r'4
where b= [Wix)dx=~¢
0
Noting that

{ :
’fsinwn(t—-r)de-—]-"——(l—coswn t)
0 e

Egq. (7) can be written as

=2 Wy Y
o ”pAé’wrzl dx ‘*-¢ €08 &

L 4

(2)

(6)

(7)
(8)

8.48

e b et e P

AVLRRLG

le

I'\

w(x,t) = W(x) sin wt
where W(x) = C; cos Sx + C, sin #x + C;3 cosh 8 x + C, sinh Bx

(1)
(2)



Boundary conditions:

w0, 8) =
0, 4) =0
2 Ox
¥ x=4¢1t=0
3){2
Pw Pw
El ——-(x=¢, t) = (x =10, t)
ot
Eq. (2) gives:
%W_:—ﬁcl sin fx + 8 Cy cos Bx + ff Cg sinh Sx + B Cy cosh fx
x N
i\f =P {—- C, cos fx —Cy sin Bx + C3 cosh Bx + Gy sinhﬁx}
&BW Cal .
= ® {Cy sin fx — Cy cos Bx + C3 sinh fx + C, cosh Fx
a8 ' |
" Egs. (2) and (3) give: _
‘ C]_ + C3 = 0
Egs. (2) and (4) lead to:
02 +C¢ =0

Egs. {2) and (5) yield:
—Cycos B¢ —Cysin B€+Cycosh f€+Cysinh =0
Eqs. (2) and (8) result in:

C, (sin € + Xk cos B€) + Cy (—cos B € + k sin [ £)
+ C;3 (sinh B € +k cosh B &) + C4 (cosh B £ + k sinh §€) =0

where
=T o
, EIA
Egs. (10) to (13) can be expressed in matrix form as
| [A]C =0
where '
1 0 1 0
0 1 0 1
[A] =]—cos B ¢ —sin B¢ cosh B ¢ sinh 8¢
(sin B € (—cos B¢ (sinh 8 € (cosh f¢€
+kcos B¢) +ksinfé) +kcoshB€) +ksinh §7)

(10)

(11)

(12)

(16)



~

e}
It

S—
3 0 =1

T oo o o

By setting the determinant of the coefficient matrix, [A], to zero, we obtain the
frequency equation:

+°°‘ de

i =0 (17)

VQ.ncd:‘on n ©- clarecf:.on

Let P = tension
Forces in radial direction are P rdo and P(redr)de
Vertfca.'— ComPOnent Of ra.clna.l j—’orces
P 4 P )Jr de
F(H-Jr)da((jf r)_pro\ere (3@+rp A
= Pr 9"“’. 1%’?)4:‘&6 Lince (3..3'&3“

ar?
Forces in {'a.ngenha.l direction arxe P dr oad P dr.

vertical corr»fmw-i ok W,\M -jlazcu

= J.r(c(+-~c!9)——Pc9ra( = F dr de

I

z
o
—‘=P",';‘a—-—wralrdo Aimcn q—izwwﬂ.&ad -—1—9——-
r de? r 28 Y] r et
Ez)»-ﬂf:ﬂ-ﬁ the tat:.l vertical fcme to mass ftmes accelerolion, ve 311'
Yur
4 qul 4 1 W g
Pr rdo[arz_(-r e Bez] Nl r dr de
"w’ z 2
i-e- R4 low L1 e £ Mw
or r Jr rt et T P 3£*




For harmonic motion, epuation of motion becomes
VW oW L W 2

aw 7
r? r oor Y" aa" = ‘F- © w
Let W(r.e) = X(r) Y(8)
z
S . SANITINPS S~ v S N S L
T v T )Y I ()
’ le + Y = O ( (EI)
49 ,
2 2 .
_4_1_5. + A é}_ -}-(.Ji.c‘.z -— 5—;) X =0 (Ez)
drz . r dr P Y

Solution of (Ez) 4 X(r)= C, J"({’r>+c2 I (f’ r), m= 0,12,

where T and T WWWme firet omd econd
toinda Wrda omnd y= £t

P
Since Lm()’r)—-»oo whitm rr—o, Cy=0 t k;uf X(Y‘) amd
horce wr,e,t) fenite -

" x(r): C, J;,(fr)

At r=R, X(r)=o e, J,(VR)=0 &)
Eg(eowwmab LR, LR, -y Ya Ru |
w2 = WP |
. £
(w) eppolion of mdlion: faa’;y,_? g_:g_r gf_g_f)+; CED

Let the <forced response of the r‘eCfD.n?LJ.ah W,Jy’za.frw_ fe of tha
T gy = B B T () A I i 2T

e (Ez)
T ({:) A3 'tz Le detimined . ‘EZS- (El) Q/Y\A (Ez) 3;ve
1 o2 oo mz n? R R
TP moon* —
: mE Eﬁ. ar L") Tonn (£ £ = A
tp £5 L Tmpy a2 P g =0 (gs)
m=f n=1 dt?*

Mubtiply (g5) &y A 2T2 g (T2 ond idignatt will suspect®
'Xf?zamo'tba;am.a'udt-w:?egi'ﬁy;ﬁm ot:‘y,to—jbt
d4* T m‘ PTF m” * . .

| (e ( b”)T"""(t) T abp Fon (825

d¢
o= L2, (=p



whane b
Fon () = ff FOoyb) Ao IE ao TR gy ay (&)

Sclulion Oﬁ(E.,.)c_am Irc Exf'u/%d ot
Ton () = A, ok er}__(

mp SO0 'ﬂ‘f (Z—+’) +
+ (t‘) Ly P .__.+ («L——'C) dv
Tpoab \/P "'—+L’-> fo_ ! f( | 2-_(%)}
where A, anmd Boan o DB mined from e fmoumn oy
?‘:\&M z’} EZ‘(52.> ik Tonn (t) Mhovon  inm e fost e.z,.;..ni‘._an,(E‘),
(B)  For  f(x,y,t) = %, (Es) becomes

Fon () = f"‘f"’jeo b TS o MTE gty
4 ab
T

G

ab (1— s mﬂ')(i—— s 'nT\'>

TF mn
_ o fzv ™ or n entm
S i‘!—)ca,b for W cred a‘M |
W+ mn
&MWWAJMAWM =B"m=0
amd £, (Bg) Gives
T (t) = 4 4 §oab S"’ . fr‘c') e
n ".W* —_rr—,_—;;— om?rA_(— .
- 16 %o (1 - w8 Tat)
= Tra’m“fﬂ o —
=, 16 %o (1-— c_;:!'ﬁ‘At) for m amd n od
w4 Mnf& »
‘IM A g nt }i/z
FfmJ &dtu;t—ah.d‘

x ® 1 , Tx ,v'n‘ﬂ'ﬁ _ +
) fi-eAsTA
wtE) = 16+£J. 2 (e e e )
-n—- 'P ﬂ—i,}; . al- bz.
m=1,3,...

@ From exomuaﬁt Bt
WY = X Y) T = (( otz + G tim «(x)(Cy cot B +Cp tim B
(A bt + B A& wt)



c,mJ-'-tD’n-J: -
w(e,9,t) = w(a,¥,t) =0; o=y¥=<b ond tZ o
wl(x)o’t)zw’('beJt>=0 4 O£ XL o o.m-& + >0

e, X(@)= X(a) =0 , Y() = Y(b) = ©
Le. C,=0, C3=0 = fiola=o, AnfBb =0
T
O(‘rn: T_.ch;:— (m: I,z, ) R [Gn:‘ %r-(ﬂ:—’ 2, )
z 2
GS:“-:. cz'rr”(% ‘ng) H m,n= 1,2,

General solution
(=] oo " .
wxyt) = = = anT“;“ sin nrd (A,,h" os 3. .t + B LS O t) .
’ m=f n=1{ ( l)

¥ w@y, o) = W, (%)

. ?y 0 AU=S A, E
amd _a,li(x,y,o):: %(x,y). } o:sgzs"b | (z)
EZ (&) 9gives
mé: ‘?——‘-1 A, Sn mmwx . ' "_’Z_Z = 13, (x,%) : (Eg) ]
2 . ImTTR . ¥ oy
=Z‘ %1 LS, B,,,,,‘ s$in — sin 2...;—- = w (%,%) (545
These are double Foun‘er Sine series expansions so that
mITx Conmd
A = '—&' w’ (1)}> sin Sirn ——— daxe al}
L x.:fo ’fo Qs b |
- [T T Dk [ T2 ()
& =0 y=o
B = 4 Jﬂw f~ * . I . nm3 4
mn ab wmn w;(x,;> S T ' L dwe M

xX=0 yzo

o for 9iven date o (EG>

—



US,‘nj the relation. fg{,a <t simpt dt= t{Sl'n(a(—/S)t _ sin (2+@)t
B . (Es) can be St‘m}a}}’.‘cd ad +- X+ f

}; X Fp

A - (m'.) TTx fn§m+li#x]m L[ﬁn(ﬂ-.) J ) S‘,n§n+rb)WJ b
GEDL CIDE N R A TS TR A
b .
= o for m>1 omc‘/or n>1 (E"')
For m=1 oand m=1, E;. (Es) can be- Si‘m'P.J"f'UEJ asd
LW, o0 v ' b .

o

. T T
w‘(x,y)t): U Sin _Eg'- sin -} 2 c.jut

: f Yz
with (43“ = {C yika ( : + -g;)} _
<§r0m the solution of problem 8’-'52)

Generai/Samn o
@ Wk, pt)= Z‘Z‘ Aln AL ’3.__2 (,q of Wmat + B, #in csmt)
m=4 n=1
¥ w(x,y,o).—.—w;(x,;) } 0% X< o, o< y=<b
amd . . o
S (nod= wy) |
o = . mn—x . Wi
Z. A n A A 7 = W (x8)
m=1i wn=i )
%:;f Eo:‘ai Clsvm. Bhn An mTC‘Lx A Tﬂ:} = ’lk('&)})
= n=
These one double Fwueon sine gonces Q-&fO/whc'naS of 10, (%, ¥Y)
amd w(z,;)

L m T X . ™%
A = J; [ ey wm T5 i T3 de dy

= 0 for Giver doto

B = ’ - m . ‘
m ab o, ‘jq f uL (X, %) Rim Ix /&n”z} dx J}

= . mirx Ain = 'nTI‘ KL

(e y” _ «— o (H+pOt
JAon ot tim gt At = {____EL( """-—————-——OS:P } for «#8,




Ey- (€/) lecomes

. . m=)TTx . ()X O
B, = 4:;:‘; {g‘_ e ) —_ i @ }x
@b Smn m- 1 m4+ 1
. o
; gin -DTY 4:_n(n+l mF b
z b~ b
n—2 n+ 2 o
=0 m=%= 1 and n¥E2.
: o
B, = 4 W ( inr TTX alx)(f/tmz 2T J)
abwmn o fe)
. . T 2T
_ 4w ﬁ_m%mf)m}{} Ltn-—z TL
= 2
Oyn 2ar 2 ki
@b Sr, (a’ o (41, ) )
- 44 b\ _ |
() (%) - =
ab s, 3,
. , t F) -~ Tx - 2wy .
w (%, 4,t) oo A o wn I A W, t

Fundamental natural freguency of transverse v:bra,taan is
given by :

C..3“2= ClTl'l( 1+ L ) for re_ch:mjula_r membrane of Szde:‘ (Ea)

o @, and by
with 22 B | - (&)
@) For a=bi=a, rs cwt (L) - (E3)
(¢) For @,=12b, o.,reaa— o, by = a* ._:2;,‘7' T
Chymap s ez Vzo | i:
wi= et W’(:z + “‘:"i) = czwz(—i—}__> c- (B)) e

(?) From solution of problem 3.50, the fundamental natural
freguency of o cireular membrane of radius R is given by

woz‘- = %}i =c? fl where f R= 22404 = first zero of
- Bessel _-thc*f:aon of the first kmof
Since TRY= a}, - a;/\[_' and

wo?; = CL’(2-R40‘I ) - C (4-15‘0) . (E_5>




F° ("‘J":)'J”'

( NS ETEE /TMV)
Iy W .
, M v

v M+dm

f(-w'-dx

i x *;g‘l JZ \ ri
FA dx '3 ur W (x,t)

Bt
(o) If Road due to the car moves with o constant velocity u,

in the x- direction,
F(=tY= F(x- Vo t) (EO
Egufla'kriu.m azua.‘f:(ons are '

(V+dV) - v = Fo(xt) dx + kw dx - _ pA dx ';:{
oV
or 5% = Fo (%t) + 4w = -PA a;g (EQ
a—nol (/h'i'dM)"" M- (V-P dV) dx 4 F(x, !:) dx - 4—; = 0
omMm
or _5-;__‘/ = o CE3>
US‘fna CE;>J (Ed) can be rewritten ag
?.M gzbf .
S RO 4+ kW = —pA ST (Es)
9 , _ .
But M= EI»SJ:" ' ' CEg)
Ezs- (E[') O-H.A (Es) ,fea.J to '
3* ;. %ur
;;L(EL 9-:&) - Fe(mt) 4 & w = _fA %7_ (Ec)
For o umform beam, (E%) Sm-.},' “fies to, in view of (E1)>
CRACA P
EL 814 + fA 9¢T + kW = Fo (Z"‘ Uof) ' (E7)

(b) Solution:
:De{{—{n ?r\j Y= 2=V, t v (EB>
Ep- (E7) can be e,xrresse‘l as
a4 2 At |
EL LE t FA Y j},_- kW = fa (%) (&5)
Let £ = concentrated doad. Then the governing epuation
ok oll fooints of the beam, except ot y=o, <
At z A
EI e A — E
L4 +F ﬁyz+kw‘~o (Ew)
Solution of (E,) can be e,xprcs:eaf ag




(=4
w(y)= e ? (Eu)
Substitution of (g,) into (E,o> gives
ET «' + pAVS ¥ & =o0

(Biz)
whose voots can be exrresseal as
®,p = 2 (°“+ ib) 3 =+ (@ -ib) (Eiz)
with 2
w=Vicc d, b=Viic d, -2

) ' 4 ET K (E )
n _ K N4 : N vl T
and d = (4-——51_) FP2A }

Thus the solution of (E,) becomes

| o, Y «, |
w(f}) = Aje '+ A, et d + Az e%y + Ay € ke (Eis)
where A: (i=1,2,3,4) are constants which can be determined

From the {o“ow(ng cono“{:fonS:

W=0 ok 3:04?

Yous clejlled:u‘on & Be,n&u'nj moment are

oL =0 okt Y=o Zero ok ¥y =

AW _ ok y=o } slope is zero under the foad

Ay ' \

. 31‘)_ . A'&'LU" .

ELI —= - EI dy3 _ = P sheax force has
4% Jy=ot I=0 b discontinuit

. vy P v isconTinuety

e ET %{;; = = under the load

W) =
> 24 ET (l x) 24 EI (xﬁ-f rxtoal= *)

W
%—’Z::ZL;EI (zzl + 4%° —6l z* )

sz - 12 __|z_2x
FrC 2451: (20 +12% )

[
= EI f (sz da = 4ETI (?;;:)z £(11+ze— éfx)z dx
- o |

720 EI

(&)
. 1
D= fA 5 (W(l)) dx = ,_F (2#51) f('xl,ez—i—z —-zlz) =
7.

)
= fAX (Ez>
362 980 EZIZ ‘




e N cfls) 362890 g1t 5o _EI
iy 720 €I PALS cF - eA LY
EL

PA LA
This tan be (_och»re,o( with the exact solution (ng 3!5):

EI ET
c 1300 4] f 733 /
E)&mf @ ) J”!" 223 Alq

3= 22-445%

W(x) = ¢ (1 - cos 2T

'8.58 ? .
' aw _ . o2m . o2mx ; d*w _ o [2X zws 2 T X
dx = t° g § FE O(ﬁ) J
VAN 2 Zom\2 X
N= gz (A W) — z (glr_) 2 27wx
J 2 JX 0 ,[ fo CP{ 2 J
- SEI ek "/1 p
D 2 Z 27 2 x
= PA j‘ (W(x)) dx = fA ¢ f(H-ca" 7 -zc.-ﬂ“z—)dx
[
= 3¢ pAl /2
e N |s'Tr". EX
2 3 pall
- W= 22-7930 EL . Compare thes wt'Hn
FALY
Cexact = (4.7zoo4|)2 EL = 22.3733 [_EX
palt Y
Fram sfrengffa o{: mg_,{:erfa,ls, ,ﬁ_& . L/“’/jangf‘s
the static JC;Fled:-'on curve v x} e
IS given by 4’ - 1 -
~ i
W)= Wo X gy 4 2
47ET (42 (2 -38) = +8EI (547 —2x¥ ~3 0% <%)
dw  _
R
42""’ = 4 x —-I’")
dx* SEI

2

5
N= EX f (J____‘Zu,{)z-dx:. 1
°

d % 320 EI




! |
D= £A [ (W) dx = 13090 ci5% < £AL
o

e*r?

W= D = 239,939 =
P | fA 2‘1 ‘
L w= (5.4510 [ EZX
FALY
T!'ns can Le cornPa_reJ with 1‘:1»8 exa-c.‘?: Va.].ue

Oppact = @szeeoz) EX . / ‘
\/;;;: 4182

W(x)= - 1 2

8.60) W)= “EI( 4x+3l) ; o< xs o A R
(1'7— -
43512 x-1) 3 Le=xs< S b= g —t—{ —

v __{"“‘(“*“‘1) ;0 o< x< _&_

gET

A +
w{ 4-8EI> [fV 4061 + ?1 —2+Xl)¢h+£(1"‘) (4x- 1) di]
FAGT {[tsx +9l*x‘ 24,{: ]’/z

= .
4cogerr*]| b7 s ¢ o
+[!6x’_ 72611: az?l < ”Gi < o 54—1* {21"' 1 ] }
7
= 5%0 (_f’A_wj_"__
EIIZ
- 2
Tmct'mw: %_-m wm, I3 -—.me" W(x.—--—%—_—)
2
— 3
H?.EI E I . e
2 g7
Torax ol = anoGJ’AC‘Sl +l36MoG mw L

E*T g*r?



oA
Veax = 'if Aﬁ > dx
czser[f (16 x* +l~81x)ch+£ (!61+?£~2_421>J]

- 2 311 2 x*
=t [[ie,’? Y Loty 16 ~ 24
XTE: [( s x5 )c +(3 ﬁ+?£ e z )ﬁ/z
3,

]

. T 3v4Er
Toax el = Vg, Goves

2 _ L2 g*r” | __2530.7 EX

384 €T (5x'(,—6fA 27 4 13-¢ xi3° m L6 ) A(5PAL +13-6m)
LW = 50- 9937\/ ' whene m‘::fo=mSS ojlbea,m
,e (Smb+136m>
Let W= ¢, (i1— 2\ = ¢ 1+£2-_.?-_’_‘.
2w ( l)‘ o ( © L ) 1 '
:’;‘{: 2¢C, (%) 7"’1 .Xt-—;
= ®* ! il
Toax = - jfﬁ(’l) [W(")] dx = L7 Lo Aa f (i+—'—" "‘“) dx
& 4
= p’A, 2 [E_t x° 4= 4 3
o LE TRt A mal e
41 523 EY R

_ LOTA SR

B éo - I
Vmaw = & (4 d™w N E.fc
sk e (TR = 5 (5 )(
Toax = Viax gives

maX
w EI, C: 60 _ 60 ET,
T R SR

W= 77460 | EZLo
VF A, 2*

*
b WEOs ettty L e
x=1

z N
d"W _ ¢, 2 2 x=0
dx* h

£,z .2
- EZIX 2
vma.x = o J; (J——B—/-> dx + .zi_ 4 [W(z:l)J + -ZL Ky %(131)]2—

Ax*



Since 2 2
1< =1 — ¥ ¢ ——

1 4
f't' Aw (1:2)] - 4‘('11 Co E‘G/(Ei_rz ’

2 25
-L £F f Co (‘i:rorn /&:‘u.{';bn Qf km“m 8-5’5)
40 ET
8 ¢
Vm=._ff_.~.£+*cl ey
40 EI 128 B% Py
' 2
Tmax = ot FA ‘fl [U(x)jz e = GBzfA (13 ck g2 ) from Praugms
2 e c480 g*1* 3:5

, ‘ * 2
W* = (12-46:5 Erﬂ + 3"942.fﬁ 4+ 6.9231 —*% )j/

pA psA |
2% 7rx
W(x):C,(i—ch> , _&__ug_: |(ur) 2mx
W pl 2 | R\
= = we) ] dx — wrpA < A 2TTX 27X
Tma.x 2 f; ..PA[ ( )] X = -f j ( .2.'.___.. -2 ot 1 )JK
1 )
. PALIC + L+__ L FUx i A%
B [ )+ + (% )]
= 3
= PAW ¢ A
1 'n' ?- 270X
ET _ EI 22" £- 2 dx
V'nr\n:z::u = 2 J = "2"50 = (9_ ) S
4»
-~ J€ET C'?--rr‘?‘ +_“!—.&£n 4T X Z AET c' _
1+ T L o 2?
Toax = VYmax G
ot = 4EI it 4 _ 519-52 EI
L3 IpACH ] - opatt

U(x)= C, Ain lr—}— ~ m(x), EA(®)
- dU _ | ] -*
g ™ e TTX 0 =
il 7 vy | J

ot —

mﬂu: =—*5E‘A() -—-—-) dx



=£ x 2 T 3
ELaea(- ) () o I
= EA, 2. 1[f1wz% Jl—jx%wll}’f— dx]
, a
= o g .. wxr\k T x T !
EAoC)( )[(%+-2.—T.T~MT ___;._(_g_}_l‘ul‘ +Ca'3 1 )]
& (&) °
- EAoC,ﬂ' (i+-4—'— L +2
16 1 7r1> .
— 2 LA 2 2
Temax = %— £ ™ (%) U’- dx ::.(‘%_5; 1m°(1—3£>c?',&m ;TLE- d=
IS R P
o}
- ot (g I (2 T B
0 ' 4 (L‘E (8?") A
= &'mec” L (t-5) ’ rrC
V’mﬂ#" Tma.,z Feves
wz._: EAO'TTZ <1+ T“r"i') 4 = 5.9303 EAG
el m (1~ _-1-__) ™, f2
‘n—l

S = 224146 /EAo
2
‘ ™o

@ We take the cit(,&:.ﬁ’an cswe soliipying . He boumdary condilims
w (oY) = w(a, %)= w(x,0) = w(x, b)=0 a3
W) = Xy (x-ed (3o b) |
W = oy (xmed (3= B+ ¢ Xy (3= b)

2
_a__;_;r_ = Cx (x—-a,)(y- B)+ <, xy (x——a..)

2
(B + (22) = 3 (5B (mmo) w el (-8
+ ot (x-a) (3B + Fxyt (x—a)
= Lyt S e e b)Y 4 Y ab) g @) r P @)
4 ,:La (_zbaj‘) + xy¥ (-2a) 4 X (-za b)) 4+ xy (4ab)
+2’;4 32 + x4(bz> + x*} (-2b) + x* (o,’?L") +x"3(—-zba.‘)
+ 7(B,yl (__za.) +7C3 (_2Q'Lz)+ ~x33— (40,19)4-1.3 }z (‘2‘1’)3




&b . . .
— AN A2 b L
Ofof [<::r 2+(a;; )1:’ dx J} = C‘Z a + o )

45 ‘4-5
2 — * ‘4' 4 T 2 Q_ny,_zo;xsy+
U(i)y)-c,[z;+a.x;¢+bx},¢+
2 3 2
—2bx+’y3+za.5 } +9_a,Ex }..z_a.L’x '}-2&‘:)‘-}]

a b :
{{ whde dy = ¢F o /o0

P c 313 z
vmax = 7 (0- b ) (a' + b )
2. 5
Toax = @ J’ < b
i 900 a
U
Viax = Tma.x anves CO?,P = 20( 1 bl-)
W, = 4.472] \/ P,
1 P (a.." TP
Exact volue = -L + =
O“- C.Si L9 \[ N Lz)
5,66 For a shaft under torsion, the shear stress (7) induced at a-radius r from the center of
. the cross section is given by ,
M{x) r
- | )

where Mg(x) == torque at section x. The potentlal energy of the shaft is given by the
strain energy:

1 1
V=g grdra (2)
Using Eq. (8.81):
a8
M =GJ —— 3
t(x) % ( )
Eq. (2) can be expressed as |
£ 2
1 of
V== —_— 4
5 { GJ Bx] dx (4)
The kinetic energy of the shaft can be written as
——-f J[‘%] dx (5)
By assuming a harmonic variation of &(x,t) as
8(x, t) = O(x) cos wt (6)

and equating V., to Thex, we obtain



£ 2
[ GJ dx
P )
[pJ©E*dx
0

For the shaft shown in Fig. 8.36,
G =80 (10°) N/m*® ; pg=76.5kN/m?

T T l
J=—d* = — (0.05%) = 61.3594 (108} m*
35 3 { ) (107°) m

Let ©(x) be assumed to vary linearly on either side of the disc for simplicity:

; 0<x<0.8
=— ;D.S< <1 | (8)

where 6, is the angular dlsplacement of the disc. Equatlon (8) satisfies the boundary
conditions and gives:

£1d_6_= ; 0<x<0.8

0.8 <x <1.0 (9)

..2_
b
0.2

n

'4

s d6

dx

]. dx =306 797 65 ; [ pJ ©? dx = 159.5384 (107°) 63

[=]

Thus Eq. (7) gives the approximate natural frequency as:

306797 63

= ——— = 1923.0292 (10%)
159.5384 (107°) 43

w = 13,867.3328 rad /sec

For comparison, the torsional natural frequency of a fixed-fixed shaft with no
intermediate disc, is given by (see Fig. 8.12):

wy =2 =T ‘\/E-z T V 80 (10°) (8.81) _ 10,062.3557 rad /sec
¢ ¢ p 1.0 76500




@ (o") wx) = ¢, = (l" 7‘) y | Let P= tension
Vm.ax= %IXP(‘CLW—)’-J"- ':'.."‘LC‘LP 5'1(1"1)()1&1

='PC [Ix+i7‘—21:c]£ —.-_2_1:(:'21?
2
Tma_x= C~9 f f[wj Jz - -i-fcl Q_g J’ze (X.le-*l'- 14—2213)41
=.Lfcl7fw"[—'3-?¢3£1+éxs._-;~ Lx* Jf = —sfo—cazfc,’“lr"
Vinax = gives

10O P /2
oy = = 3, /____,]
e ) 391623 e

Exact value ig 9, =

™ J.r
£
(b) W(x)*C x (f-x) + ¢, x"(!- x)?

OW = c,(fl —2%) + €3 (24% + 4 %>~ ¢4 2*)

= 4 § e A
o W

4. ¢ .
+cz(+2 X rigx 4360 xt 116 fExt —480°~ 24 fgz’)

; 2 2 :
+2¢¢ (2% + 4l — et a2 L gt 41207 ) T

= T(L '2 +T"5‘Cz 17+—~C¢C121)
2
Tma.x: %3‘1 f N EA/(")] dx - va f [C'L(,szz-}-'x“-—?.f 3\'-3)
(- 2 %
g
+ct (24' '+ 6072 -4 X7 -4 131.;)

+¢ ¢z (2 L3 %7 +olk x _ 68t x*

*Z’F‘)]ffx
= L F e A L 47 ]
Pt e r Facas®)
v= .J"(———C QS"'Z;BCzig-*-:;a‘c,czﬂ?)
ac, P(*C£3 _’-_c,_x) %%;_: P(%c227+%;c,25>

? 9 7
ac, f('s’c 2 +352 7)) ?-C_z —-J’(a.s c2 { +-71-5'C.f )
X 2 Y

Y _ 3X 2 3Y _
;Cg 9 3cy T > — - & ©

= ve



P(c 24 +cz{5£;)_wf<c,__ ,_.3_).:0
7
P
(< 4 zos"' C"s’i"F+ '-'f‘):o
e C(’“”z“ = ﬂ§)+c (Zr2°- £247 )20
: 7
e (2 p2’ fw‘ﬂ o (A P07 £t L7
(% )+ < (o )T
mwmmmwo%m co’fgiciemtE ol ¢, amd <
’b;ow Goves |
3 299
(4707~ o™ (G ol - 55 20 27)
-—-(—-—-Pfs ’ wﬂ )(ZPI !Ofw?-x'?’)-_-_o
. 2
€., | f - “2_(;_!3)&92,,, 1008 (ffz) = o
2
8 = . P ‘ P
o ?-38¢97 e > (0241302 Iz
W = 3-14t6 ,P , 0, = lo-1059 £
‘Pgi. ._P!z
First mode Third mode

Exact solution o :

@) Vpax = £ [Fea (Y ' U(x) = 2
8.68 2 4 ‘Jx)& }U(x‘_fx
:.L 1 <, 2 : _J_L{- -
2..[ EA (T) dx pode T
= EAC} Sor fhm fe
21 . e £,
Tonax = J’wlf A Udx = L2 J‘ A S A
o S
- CDZ,f’A cyz 1 » “""‘:66‘7’"“ zrf.o.m
6 fﬁ‘f
Tm = VW ?w (‘31 ..A 3 €

Fl
LWy = t-73205 _E_a_..
| V.pt



}
i
1
dx : gz
= EA c, _i—_C:' 2¢,Cz | Y _ ¢, 2C, >
T[T+3 J '2 J :sz{-'ﬂz
J v ) '

2 .
= PAL [ty d Ry geed ]
Ezs.(E,,) wmc' (E;;) of EXQ.mPIe g-12 3ivc'

X > 2y '
?_E__wl_a.—.:o a.,.J ———-(ﬁj'z;-::o

(1)

2¢, 3¢, 4=

Where X = EA [c + X C + 2¢,C, E-2
21 ] (&)

omad Y= f_’%& [,Jf c,"-g-'; C: + % c,czj (e-3)

Eps. (e:1) to (&-3) give
«(Bf-4 o 79 S

(a-32) (1“7;7/\) A U BA Lt oo
| | = 2 2
CERY R EO N
where 3 _ Wt pl? |
E

A= 2.4859¢, 32-1307

Oy = 41.576689 .E_; , W, = 5.¢7280 'ﬁ_:

8.69

PL
U(x) = ¢ Ain nx Ain 3mx y /2A A :
) ‘ 2’- t+ 'cz 22 : £ ]
du I e ;
£ = €, f —— 4+3C,; oot ITX 2 £
d= 29 ( ' ! + 28 l'*_-ﬁ— o+ 5 A




= — —_— n ——
21 2 T A 1
. < £ E'X__ . 2T X
fuff 1{» oS 3-:1 Az = "y Ao ,
2

AR 5 b S
Eay A
vma.x: Eﬁ.ﬁ[c,‘(%‘-2+£—m"‘)+c (gﬂ)

vec (B F o3t ae Y]

A o ZQ +C7'Mh 21
L 2
3T % 2 Tx
+ 2e,6 A T ol AR AR Ly
3
TR Ko 3:; + zc.c:.éwllr—i An 3:; Jz]
But w2 g o2 A Tx
JA T T
.2 o3mx g o _ K o 3T
f&n 27 dx = = CT\"M 7 o
- mw
fm‘-_r_:_lx_ %3721';&11264»1" _ Adin 1
. 7D (47/¢)
Tma.x— fﬁﬂ?

..E_'.‘\_.T;i[zc,(o. goasly + Cg_(;.zz,os 2) ]

44 ‘
L L
2% - _iﬂ;:[ (ul)+c(’ #in T 32 g 2T
= lE?A‘\Tt'1 [cz(,lg),,,cl(;.“.os_ﬂ)]
RPN ORI SYTHC DS 55 2o 3%

=J’A[2C, (oJSZSé R) + c,_(a—|375’ K) ]
-3—;'—1 FA Cz(i—)+c(—-—*‘-“£—*““ S w)]
FAL (3333 + ¢ (01372 2) ]
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2% Y _ X 1 Y

23X _ 5t g g 2% _ B
BC‘ ac, Bca . o acl
EATE

J

7 0.40225 —~ fAcazﬂ 1-o§76>

give

3
+C (5-'5-1 0-31012 — pA WL 0-1373’> =

C, (E/‘W 0.310}2 ._fAc.s"I 0 4320)

+ Ca (
Fheg pemcy e@m.tm

( 40225 EaT”

EA

—

3.0 — pAw™d 1.3333)

- (Eéz_“'_ o-31o|2...fA¢81 o-1380\% _

9% - 25-709%0 wz( ( -
i g
)fl‘

- ’E'
= 7022 =
4 fl‘

&.

" (15 -70 90 + (8-70l0

,e &91.1

1-8719 E

o]

_ pAW*L zos-ze)(e’”' 3.0 — pA-L 13333)

T x

2L

ERAN

du LS
-5 @ wTr

T Ero (B2 =y ien u—ﬂm (e o
237 x
24 2L
o 2 9EA,T?
(i+ )+ 16 2

2 {
U A= mewt ]

Vinax

+7Cz

+GCC1C0‘S cﬁ;w‘>

(1+ 4

EA, T *
e £

| &
o

-I--C;_.r‘-‘:-n

=

kN
<

691

2

Tma-x

-—
—

T
29

(=

+ ¢;¢p 203 *m, A

g

i

21

+ 2¢Cy An

Y+ ¢

Ain 31"-"-)41
22

L

cl

—

camo.

Tt :
* EA" (o 966?5) + Cr

X C

il

Eﬁo

i

(5-80165) + ¢,
v T"oR (o-14%¢%) + ¢F moﬂ (c-23874) + ¢,c3 mojl
°oX -

2C

= 0 _E_?g (1.7337o)+ C,y Eﬁﬂ(hS)

2
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¢, EAo

TC X
+ 3¢, cof 122

2£
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IEALTTE
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CRag. EAo (,.5) + ¢ EAo (1).4033

¢, © 1 (r5) + T(’ °>
2L = ¢ myf(0r29736) + ¢, mo d (0-20254)

' 1
A= o mod (0-2024¢) + C2 moh (o-47743%)

2

‘ R ’

3X 2 3y _ 2X _ 3" 2Y = ¢ ve
etsg e ed TP ee e

C, (E’;" 173370 — I my Ro

c.(Eﬁo s — @ m,k 020246

Fmguen ey ?)J.a.tah L2

(Eﬂ?. 1.‘7337-—&9 maﬂ 0-29
£

—(

wt — 16 369 wz(f

EAo

1
‘-5 a—— (-IS mol
or

3¢-369 + 24.

"739)(

g A+

19734>+c (Ef‘o 15— mi o zozs4>“°

) + Cz(‘E—Af- h-60330 - @ m‘,i 014—7749) =0

Ez" (1:6033— (3 mol-o.g?'f‘f'?)

. .
o = (
: 2

S By = 2.4062 }Eﬂa
mol"
Forvo: Sfrn‘ng, Vma.x= Jif
. 0

‘Heve W)= c,x(l.—-x) +

% = C,i—zc,x + 2

z
2l "% —g 8 x*+ 4¢, x

0'20264->L
" : | | £ Ao \2 '
) oz (RgE) = e
7998\ EAo

moll.

- EAs
) 6, = 5.5239 [ = 11
l JW A J. : wl 1 2 Ax
P) 4 To=% e

mad

& o (£

3

2 1 5
J’l dw 1&‘_ = C|2.'£_. + €3 —-———-1 + e 24
)
| S 2 g% 1 19 v ¢’
= A C L CCa L
fowdx “ 55t e T TS
: E?)J.atn.g Tenax and vmax , we ?.i' wz = _)\%.
whene S 2 g3 LT, .7 2 45
x= plef S+ a H+ gt ]
omd oy LeE 25 L2 e, A
zEC‘T+C‘m+'1Té"]
2
< 2Ca




2¢, 2 15 ¢ 15
7 1

3% _ Pre 21%,c, 4 A Pre L, e A

2¢, T["s’{_*"’{os ] Y Tv["ro*"‘?l_f
ax _ gt _ el’ 24 15 rxf _ mW) .
¢ 3¢ 140 -
axX _ 23 _ . P!Z‘_ P 5!’ e f2pd7 PN~ o
cz——CJ ¢y = < TS "_TZ-—E") + z( 05 G 30 >

' te A Toinant aﬁ e cotffriciant natiiix of cramd €,
L 3en0, we guf the g pamey evwmtbﬂ as
(%“—}£5> (ﬁ?'—7?b> 2

= XA -2\ + (008 =0

(ls—‘,%*o> Ta'ls"—"é\';;
£l

£ 4 . 2 —— ’ e )
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C MALIN PHUGRAM EU%‘CALLLNG THE SUBRQOQUTINE NQREQM
C

C FOLLOWING LIMES CUNTAIM PROBLEM-DEPENDENT DATA
DIMENSEUN X(2)
COMAUK /ABLOCK/ BETA
DATA N,HINT,{TER,EPS/2,50,100,0.000001/
DO 7 1=1,2
IF (I .EQ. 1) BETA=U.01
IF (1 .EQ. 2) BETA=1.0
WRITE (12,8) BETA
8 FupﬂAr (/7,2X,7H BETA =,£15.6,/)
- =0.001
| .xxuc 0.1
C END OF PRUBLEM-DEPENUDENT DATA 4
WRITE (12,10) N,XS,X1NC,UINT,ITER,EPS

10 FURHMAT (//,28H ROUTS OF NONLIMEAR EQUATION,//,6H DATA:,/,
2 . 2H N,4X,2H =,14,/,3H XS,3X,2H =,E15.6,/,8H XINC =,E15.6,/,
3 BH NINT ='14'/'BH ITER =i14'/¢8H EPS :yEISUG)

CALL NONEQU (I4,X,XS,XINC,NINT,ITER,EPS)
WRITE (12,20) (X(II),11=1,N)
20 FURMAT (/7,78 ROOTS?,/, (E15.6))
7 CONTINUE
STOP
END



C ) B

C FUGLCTION F{Y)

C THl3 FUNCTION 13 PROBLEA=DEPRFUDFMT
C -

FUNCTIUN F(Y)

COMMUN /ABLOCK/ BETA
F=(Y/BETA)*TAN(Y)~1.0
RETURN

RUOOTS UF NINLTNEAR EQUATION

DATA:

N = Z

XS = 0.10G000E=-02
XINC = V. 1000dYE+U0
NINT = 5¢

ITER = 100

EPS = V.1uQQO00E=05
ROOTS:

0.998336E~01

G.314477L+01!

BETA = 0.10000VE+01

RUOUTS OF NUMLINEAR EQUATIOHN

DATA:
N = 2
Xs = 0.10000LORK=0?
XINC = U.1U000UDE+0V
NINT = 50
ITER = 100 -
EPS = G.100U0UE=05
ROOTS:
0.860334+00
0.3425628+01

Freguency eguation for a Srxed - fixed beam is (from Fig-8-15):
s gl esh pl -1 =0

The main program , the function F(Y) and the output are given
below. '
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C PRUGHAM
C WALN PRUGKAM FOk CALLING THE SUBRUOUTINE NONEQH
¢

S i e MmN G N P A A TEG B S W T MW S W MY M W - e e e e A g s A e

e e et A E A WS, W AN W R A W W S e e e et e e
gl o o o e e e Yt N R e s i R e e~ Gipn i — i Sy~ e gpre oo it i ve sl — i

e it o e v ) i s -

C FULLUYING LIMES CUONTALMN PHOBLEM~UEPENDENT DATA
DIMENSIUN XUL5)
DALA ,#1HT,ITER,EP5/5,50,100,0,000001/
XS5=22,0 '
ALNC=0.5
C EMD UF PRUYLEM~-DEPENLENT DATA
' WHITE (12,1U) M,X8,XZINC,NINT,1TER,EPS
1v FORMAT (/7,281 RUOIS UF HONULLINEAR EQUATION,//,6H DATA:,/,
Z 2H M,4%,2H =,14,/,38 %X8,3%X,2H =,£15.6,/.8H4 XINC =,E15.6,/,
3 BH NINT =,IA,/,HH ITER =,14,/,8H EPS =,E15.6)
CALL HOMEQN (N,X,XS,XINC,HINT,ITER,EPS)
WRITE (12,20) (ACQLr),11=1,N)
20 FURMAT (//,7H RODTS:,/,.(E15.6))
S5TiP
END

C FUNCTLOd4 F(Y)
C TH1G FUNCTION 15 PRUDLEM=DEPENDENT

FUNCIIDN F(Y)

FzCus(Y)*¥Ccusd(Yi~1,9

RETURI

END ,
ROOTS OF NUMLINEAR EQUATION

DATA:
- N = 5

XS = 0.200000E+01

XINC = UL.500UVLE+U0

NINT = 50

ITER = 1u0

EPS = 0.100000K=05

ROOUTS: ,
0.473004E+401
0.785320E+01
0.3109950E+02

0.111372E402
0,172788E+072

From Exa.mrle 8.7, the nth mode :fnc»Pe is 9iven L_y
@ W () = Cyp {(w fox = coth o) _ [ il = cHh X (s =4 )]
Ain Bl ~ 2tk Bk
where g0 = 3.926602 , 7-068583, 10-210176 , 13-351768 for n= 1,2,3, 4,
The program and vesults are given below.




DIMENSION X(2),w{4,9)

N=4
M=Y
Mia=10
C H =
C M =
C
C ™D =
C W(N,H) =
DATA

1i=X1(

NUMBER UF

NUMBER OF STATIUNS 1M

15 ReYUIRED

WUMBGR OF SEGMENIS 1N

THE BEAM

MAODE SHAPES TU BE CUMPUTED
THE BEAM AT WHICH VALUE OF DEEIFCIIUN

MAIRIX CUNIALINING THE MODE SHAPES IN ROWS
X/73.926602,7.068583,10.,210176,13.351768/

DU 10 I=1,N
DO 20 J=1,M
¥=X(1)*REAL(J)/REAL(MD)

1

20 WLL,J)=(COS(Y)~COSH(Y)I=-((COS(YY) CDSH(&Y))/(blN(YYJ-SINH(YY)))*
2 (SINCY}=GINH(YX))
10 CUONT1HUE
WR1TE (88,30)

390

DO 40 1=1,M
44 WR1ITE (B6,50) 1,(wW(1,d), J 1,M)
50 FORMAT (/,2X,bH MODE:,14,4E15.6,/,(12X, 4E15 61)

5TOUP
EiD

MUDE SHAPES {JF FlXED~GIMPLY SUPPURTED HEAM

MODE: 1
MODE: 2
MODE: 3
MUDE: | 4

~U,133996E400
~0.141486E+01
-0,557241E400

=0.382233E400
~0.570351E+00
L9171 T5E+00

-U,.b30370E+00
0.130019E+01
-0,120557E441!

~0,100204E+01
U.539917E+00
0.137500E401

-0.455730E+00
~0.150550E+01

~0.107449E+01
0.422676E+00

~0.147476E+01
0.114192E+01

-0,141423E+01
=0,1143441E+U1

~0.848519E+00
=0.136498E+01

=0.149510E401

. 0.119881E+01

~0,112212E+401
“0.111633E+00

0.927429E~-01
~0.10756HE+0]

FORMAT (//,2%,431 MODE SHAPES OF FLIXED=SIMPLY SUPPORTED BEAM, /)

=0.120675E+01
-0.103456E+01

~0.131923E401
0.139349£+01

0.204393E400

' «0.126025E+01

0.139201F+01
0.642578E+00




‘ | Fa
@ : _ vy 4

T '\\Az T
E«aua..{‘u'oh‘ of wmotion is x _
Given by Ep. (9.77): l e “’l 1 |
R A 1
4 z,
2w o ur
EI For) + fFA 23z = Fixt) ()

Representation of load:
L oad is $(x) which /s zero every where except over o
/Qengﬂ- 248x ot x=z'xa, where it is egual to (Fc':/zAx),

The load f(x) Can be.&xramoleo( inte  Fourier sine serdes
ob _

it nmx
:F (%) = = ‘ﬁh Sin 7 ' (E:.)
n=1
< where Xy A% 4 K4 AX
= = on PEX A Fo i nft> d=
Fa L jq ©) sin Ji Jx+ﬂ f a2z 0 [
ox xo-—Ax
2 ' : Xot+ A%
+ = . mirx Fo °
X f (0 sin 2 Ax~ = ﬁ; f sin D-L;‘E A=
Xo t B , x, —Ax
. nm Ax
- 2Fh . onmx,  sim 7 ) (gs)
b R L (*nTrAx ?
b

As Ax —o0, CE; becomes ' 2 F, . MCX,

- JC(I): 2 e Z s nhxe sim 2 - (Ef)

) A g L |
Since  F, s moving o.Lm—\S the. Ln‘c,ljg with nstant
Veloc,i‘lry V, at Fme t, F will be at o distomce x,=vE
From keft suprort. Hence the foad disbiibutmm of - (65)

Can be rewritten o

Fo . x . .
Ft) = 21 {Sm ‘n’;"b an—lrf— 4 Sin }li":.’i: si'n z;’é" + e }
(&)

Setting (9= 111—’ > (E‘> can  be expressed af

:F(xfb)—‘: 2;:° {an-—ﬂii Stn (_.ﬁ‘*: 4+ Sin ?_.trzx sin zw‘l: +"'}' (E7>




Ezua.,bfon 0§ motion, (E‘), becomes

L, lw e . NI .
2 25 e pn TE Sty BRI et (@)
whcre r_-n___

lWe ca.n §mol H'\E Satu{:non o; EZ (Eg> Ly surerroslnj %Ae
Solu{:xons o:F the ndividual /‘\a.rmonu. compchen‘bs T*“*‘ we

’nee.ol to :Fa'nJJ for the nﬁ J\Q..rmom'c, '?:Ae.-Solm‘:«bn oa(-’ the

530 How ng ‘e,&uq,{:l'on :

yar 9"@' . nITx . £ '
9 opz = I Sm T s net (&)
The solution (pavticular (nfegral) of Eg. (Es) can be taken as
w(x,t) = Wy, sin T'T;’ sin nwt . ‘ (E)
Substitution of (Ew) into (Eg) 9nve$‘
- F, 4 , o :
wh = ’e _ ‘ v (EII)

EI (o)’ 4.{, —

W
wherei W, = n?t ( iIl;, \ ; | (E1)
‘ S

‘Aa‘cin'nj the Aomaaeneous‘ solution +o the F"—T'}-""—'“’GJ‘ "‘”feﬂm"l of
Eg - (Ei) , the 3enem[ so[u{:{on ¢can be exPrcned ad

oo - -
'W'('X)t): E: Sin A—’;x {Ai s ‘S;t + B Sin Uzt}
A=

towy sin M s mot €
, The initial conola"!:q‘cns are 9given Lj
w("‘)ﬁ) =0 .; 2w (x,o) = 0 (E“')

These initial conditions ave satis fied if
;20 fvdl i, Bizo for ol i#E 0

Bn= (r._o;;>
(&9"

_ F., . . ‘ :
w(x t) = 2 Sin nhx .{S)‘n nwt- *‘F" tin &9“'{:}

EI(nTr) {1_(““9)} 1

Wy,

(E15)



Since  (9,= m W, where @5, /§ the fundamental

:?re?/u.enc:f of the Ln’olje., EZ,(E;S) becomes
R, 14
w(x,t)= n . mTx . t - 29 o niot
4 4 o~ 2 sin ——— 4 ofn ndd -.nt n )
ET {n _,(_0;‘__)} £ e, .(Z
T")g-f the total ‘Y‘e:f?onsz of +he br‘z'ofse_ tan
. 3 x
‘Lﬂ’(')ﬂ)f) = 2 Fo /A [ $in Ei—

(E)

Le CK’:T‘CSS‘&J alt

Ex T4 ———;——z—.{s“n wt—( 0:3') $Tn w,t}
- (&) T
o 2TCX
L+ 14_(;@‘)2 {s«'n 20t — % $in 4(.9,}:}.
3,7?9( '

. | g
+ _S“T_.___—Z_:i {sin 3w{:—-(:;'> sin 909t } +‘J ,(Err)




Chapter 10

Vibration Measurement
and Applications

: VoLfa,ge sensit:'v;’tyz Vv = 0098 VQU:—meter/Ncwton
thickness= t = 2 mmz= ‘2’ ™ v

, ooo
output voltage = 220 volts , pressure applied = § = 2
= vt t‘ > 220 = ("'098)(40‘:0) P
‘I’z = 11224 x 10° N/m2 ”

m= 05 kg, 4 = (D000 N/m, c~ ©
a_mrl(fu.o!e =Y = 4%000 w
total dl'spla,ceme.n't of mass= x= 200 m

re‘af{vg a;S P,Q-CEYHCT\{: = } = AN~ ? = 8/;000 m

>
Z = r v e, 8 {(‘fﬁoobfz} = r"—_-_z/3

2
{~T | tooo 1 - rZ

©Op= 0-8165 /'—95':-’—;—9 = Is. 4705 rad [sec = 18.3777 Hz

(|

2
r Y . c ]
VA : where T = = —
Je-r*¥ + ex )’ Cortt VR

N r*yY . y2y
.
JE-r*Y + (v r) 1+ r¥
\ Speed range: .
500 ’rpm = 52+3¢ ra.a\/sec = {500 rpm= [57-08 ra,J/Sec

x:'x cos ot 3

Z = ' . T: L . (&)
‘/(1——r‘) + (27 7r)? |

case (i) Let T=o0

Eg-(E() gives, for 2/ error,
Z r®

i et

¥ = TeoT] =102 3 r= == 7414



W = 500 or tsco
n - X m —"7.,“_"“1 = 70-0i473 et 2i0:0428 Trpm
= 111669 or 3.5007 Hz = 7-3319 or 21.9957 rad/sec
L W= I-166% Hz
case (i) : Let T= o
Eg-(E) grves A r2
~ - y = E = {02
Y Vai-r2) 4 (2% )
= 0-0404 r4..- 0-5826 rz + (0404 = 0O

luhulc}l 9|'Vg$‘

f= 2-2562, 3.054¢
Since the Quantity E attains maximum at
1
r=-—=—=—= = (.3898 dJor ¥=o06
yi-2%
we use 1= 2.2562 -

o5 Maximunm p, = 03/1,. = 5’00/(2.2562 xeo) = 3.6935 Hz

Error factor for vibrometer is

Maxfmumof E occcurs ot

FOT '.S":-O)

- Since the fo.nje is

E =

rz
E:‘/<|—Y1>z+(2_3'<f)z
1

Ji-25%

=t

¥ =

r?-

h-r*)

4—§r<0¢;

and

we use r=4 Ffor maximum

eyrovr. 2
Pt
l = — = (-0667
r=4 lt—-4 |
Percent error = (E-t)i00 = c-67 /.
r2 |

Error factor

E attains maxkimum at

For T=067,

Percent ervror = o»SBZ

E = =
NS (z¥r)
T*: l/f,__zj.z'

3.1281 and 5/
r

r¥ = = 1-0053

™, T =007




- o - — o—— — o —— . — o~ "

Select the vibrometer on the basis of lowest freguency Se.fng measured.

By ‘Se‘ecfu‘ng r= 2-7206,

. 1000 T
Wy F — , 1.03
60 (2.7206)

= 19.2458 rad faec
= 3:-0630 Hz

(CU) T: o : )
From %-(10-!9), —% = {03 = ——-——-I , ri=z 103 - 34.3333
“' "il 0-03
r= & = 2m(s00) _ 5.9595
" €0 On |
Wn = 3-9359 rad /sec = I-4222 Hz
(b) T= 0:6 !
- .2
From Eg- (f0'19), Z 1.03 = . - = €
) ,
Qo) {r+rt-2ar®t arts*y o 4
e 0057404 T4 - 0:5¢ Tz '+ 1 = o
e, . v* = 2.3535 7.4018
"€ = 1-‘5'34—11-, 2:7206¢

T The 3ua.m‘:a‘1‘:5 E attamns

maximum akt

r= Y _ _ 4. 3993

Jt —27%

for T= 0-¢. Hence we hont
to ta)u- r= 2.7206 %o avoid

pear of E.
Ss{: - H‘;:Do ™ W= 4000 rpm = 418-88 ra.cl/SCc

= ' .81 /1000
wn-. 9/6‘3,‘: - \/9 8'(-—-‘-5—) = 3}.3209 ra_,c! /SeC

r= w/wn = 4!8~88/§f.3203 = 13.3738
Let T=o0:

Evrovr ;Fa.-cfbr = —_

2

2
r r §3.3738

[t |y - Tr T frmoamns

= {. 0056



(5‘) Maximum o(u's}alax.emen'b =YY= Z 0056 = VoOGSG = 0994 4 mm

(if) Maximum veloc.t'fj: WY = (4-]8'88)(0.9_9445 = 416.-5473 mm/sec_
(iif) Maximum occeleration = CJZY = (413-88\)2(0.9944): |74 48335 """/sec".

Z.——— )
Y Ve-r2) o+ (ayry '

. , - ~ 1
Maximum of 2 occurs when r=7v% =z ———x see .(3-84
Y Ji-2 %2 ( & ( )>
F = p.5 , ¥ 2z

i

= 2 . 2
“ = > = = 111547
2. J@2)t + (2x 05 x vaiazy 1

When error s ome percent, Z =10l or L - 0.3901
b Y z
Eg.(Ei) can be rewritten as:
13—'-\2 R A NN B i e
Z . r+
R e S

For %: 0:9901 and Y= 05, (E;) becomes

c0197 v¥F - v £+ 4 =0 Atz/Yj

r? = 10203, 49.74 11 : :-\547\ﬂ\x
‘ |

- 9 :
T = E;;’:- [-olol , 7-0527 !

Lowest freguency . for

one Percenf accuracy
= 7.0527 (5)
= 35.2G35 Hz

Freguency range > 100 Hz , maximum errovr = 2/,
K= 4000 N/m: Czo=> T=0, m= 2_'

(=]
TT-1 Fo1 | .
+
t I
N
70527f —-mm e e e =]

For vibrometer with v =0 5 z _ r?
Y S (v ) |5 =0
N — rz’
oY Y/(i— r2y = - 102 gince r rmust be greater thon one
» for ‘ln‘gl-:er freguencres
2

or 5= 51 les vz 7.i414



Minimum a'mpress:d freguenc3 = (9= 10 Hz

Since

r= %,, = loo/@n = 7-i414 . (3, = 14-0029 Hz = 87-9827 rtﬁ

= %/m

Lom= K2 o 4-00(/(87-‘?92'7)2= 0. 5167 kg

o Hz, CJJ* 8 Hr = W, \{l- ,h.-;rl = Y= 06

Wy, = =
Lef the ,(owesb grezuengy = wo = = 69%9"

Evrror = 27/, in the vange T, < r < oo
r# |
Error= E = 102 =

=

=
Let

\[(— ") + (@x o-¢ r)

00404 T'4-- 0+ 5826 \" + o404 =0

r= 2-25¢2, 3-0546

(I, = YolWpy = 2.2562 (16) = 22.562 nz

Let To= 3.0546"

W= TP, = 3.0546 (12) = 30-54¢ Hz

.. Lowest freguency = 22.562 Hz = 141.76l6 ra.al/sec

Error

factor Sor accelevometer = E = 1 -
| J(t—r")"-r'(zrf)

Maximum of E ocecurs ok 1% = ,’g.. 2%

when

*

-]

Since the range is o< r < 0:65, we use 1= 0.65 :

Efr= 0-65 }1_ 0,651’

1

= l.731¢

Percent error = (E-1)i10c0 = 7346%

Error

Value
when

Since

..

1

| J@-r)* + (2rr)*
Oj: r ai’ W’nicfn E attains maximum IS ) g 'Ji—Z Tt

1 . |

=0T E = - and v =y1-1.125
J@-r)* t 2.5 ¢?

t = - =imaginary

the range is o< v =< 06, we use v= 06
1

factor = € =

'\ =  0:9055
0-6 \/(1-0 36) + 2.2% (0-6)?

Percent error = (E-1) 100 = -~ 9 45/




m= 0-05 kg , WX errov = 3/, over freguency range of 0 to 100 Hz
FI‘nJ % and C.

' 1
For a<celerometer, error fax-for = E =
JGa-r* )+ @y o)
r=1% \11 -271%
and Emax = E’r# = 1

zjf,__—'

(i) Consideration of wmaximum error:
Lot rror= €= E-{=

E attains meximum at

1
0+03 = —————0r—
2y Ji-v* |
upon reavrangement, this leads to ?4—T2+°'23 5¢5 = o
or Y= 06164, o- 7874

w ok Y=0:6164 = \/""7-(5'@64-)1' = 0-49
T* aﬁ- T:O:7874 J'___ 2—(0‘7?74)2"
(ii) Consideration of minimum eveor :

u errovyz g = E -\ = - 0-03 =

.t-ma..ﬂt'na-f Y

ti

4

\/(1- r‘) +(z‘s‘r)
with Y= 0.6164, &g, (E,) can be simplifred as
¥4 - 0.4802 r* - 0.0628 =0

> rr= 0-587, —~ 0:106% or

- (e1)

r= o<76&2

At the maximum freguency,

w= 2T(100) = ¢28.32 rad [sec

W, = 05/;- = 62932 /o0,7662

| 820-0470 rad /sec

k= meot= o-os‘('ezo-oq‘?)z
= 336238541 N/m

G= 2m W@, = ";_ & ez 2m W, T = z(o-os)(izo-olﬁ) (o-6164)

= 50-5477 N-J/m

I

m=0:1 K9, *= 10000 N/m, c=o0=> T=o0

@Wp= ¥4 = Jiocoo oy = 316-2278 rad /sec

Engine 4peed = W = |00o Tpm = 104.72 Yad/sec
T= (.s/wh = ‘04‘72/315'?—7—78 = o0-33[2
peak~ to- peak travel of mass = o mm

Frd: Y, WY , co*Y.



We ’fna.ve, from Eg- (10-19),
Z o r® 0-3312°

—"f. T=o - ‘f—'f"' - 11—0'3312.1‘

Since peak- to - peak travel of mass

Y= 2/04232 = 5/0-!232 = 40-53

Max oln'sfola-Cemenf of :Founcia-ffon = Y=

Max velocty of foundation =wY =

o-1232

= lormm, Z = § mm

44 . m™mm
405844 mm
4249-9934 T"*"/se.c_

Max accelinadion of foundation = a9%Y = 4450598291 wmm /sec

Ma.x imurmn speecl':: 3000 rpm = 5O Hz - ;r=.-095’—- = —Ff— .—: o-5
n Q0
For accelerometer 1
. e == 5 = tterror= 0.9 &)
Je-ror - @rr
Here c= 20 N-#/m 5 _ _€c _ _ 2° = 0-015915
Zm WS, 2m (oo x2T) m
For r=”o-5, EZ'(EO 9ives T = o- 8198
C
< = "g;“ = 20/p.8198 = 24‘396)2 N—J/m
¢ .
m = €< . 24-3962 — 0-01941 “5 = 19-41 9rams
24, 2 (0o x 27)
2 v
* = mwn"z o.-0194] (lOOxz‘ﬂ') = 76227967 N/m
c.9=z'rr(os) T rad/sec Wy = @, YJ1-73*
A} .
Vi- ¥ Yis,= 94%.s > s= o023
= 8 ; Ty = wa/wn:- 2

o= wl/‘dn = 4-7"/1(‘ = 4 ; r,= wz/w"

¢ = tan (zTri>

) - r:
g,

-1 . °
tan (2022804 _ _;.4934

1-16
#, = fan"(_z.l‘_iﬂ_’f.i = — 4. 0675
1- 64
py= tan ' (22028 x '2—> = ~2-63905°
t- 144
z
n
— - X20 = 21- 0994
Ji-r") + (23 n,)
2
Ty x 10 = 10133}

JG-m)+ (27



r

‘/(i-rf)z + (zrrs)?
Record indicated by vibrometer is given by

x5 = 5.029%94

3(B)= 21:0924 sin (4T + 2.4934°) 4 10-1334 sin (2WE+ 4-06757)
+ 5-0294 sin (fz‘n't + 2‘6?05°)~ mm

| x{(£)= 20 sin Sot 4+ S sn 150 t mm _ (E,)
oe 2 N L R . c t “',/Se 2
x(t) = —20(50) sin S0t -5 (150) sim IS0 m c |

~ —50000 Sin 56t — (12500 sin IS0t wmm/sec” (g2)
W, = 100 radfsec , Wy = W, (i—Y% = 80 = ¥=o-¢
W, 50 3
" - =— =05 ; r,o= % _ 150 _
: Wy, {60 ’ 2 x T(;;_ = .5
— -1 ZTI" -} .
o= fan ( 1’): tan (zx°6x°5> = 33.659%
1=, 1- 0-25
& = {.‘m—l(z‘r r,_> tar (27(0-6&!-5>"_g5.22_220
% 1— 1, - z.28
50 ooo
= = = K2o057- 9206
2 : 2
JA-r*) "+ @yn)
2 500

= &§|335-6229

\/Q - rz")z-{- (27 r,_)z'

output of the o.ccg,leromete.r is given by

'3‘,({':) = —-52 057-920¢ sin (Sot - 32-6598°’)‘

—51335-6229 sin (IS0t +55.2222°) 'mm/sg,cz - (&3)

It can be seen that Ep - (Eg) is suLS{:a.htm.U.g &nf{ercnf

from 6. (E2)-
@ For given beam, . ¥

A= 1(}%) = 0.0625 in ; 1;_/:

' . 13 -6 . 4 - : "/" bt
’ I:-Ti(‘)(lc) = 20-35 xte " ’,L 1 _,/i
.

I: 2" o Io//
For o contilever beam , Frg. 8.15 9ives



w.= &1 (255 )

Where (ﬁll)z = (875 lo4 )z = 3.5{g0l5
() = @-¢94091)" = 22-034479

|

(A1) = (7-854757)° = 6169721
(,841)‘ = (0-995541) = (20-90192 |
For spring steel, E = 30 xi0° psi , P9 =o-283 M/iT
fA£4> { °3§2.34) (o.or.zs) ﬂ‘*} A
w, = (B (3_’351_2;.;9.) | \

The j:-'rsi: four :fygzuenc_:es are gfven below:

il e e T ittt ==~ v e —— - e - ——— o T e e e e
ST N S (A SRS O SRR SRR SRS
£=2"' 4 ! 3210-1020 Ezou'? 4894 156329.5527 | 110383. 4530
e s e e e L i g e e et
1=1¢") 100 | 125:4047 | 04.6996 | 2253- 132l \ 4415.3738)

— - — ——— - = - e e we e e s e A v e M W dh e ——

Hence the range of freguencies that can be measured is
given by w9 > 123-4049 rad [sec.

However , for f£irst wmode only (which is easiest +to excd:e)

the rvange of freguencies is 128.4049 raJ < < 3210102 tod

Sec
kXR _ 1—1'2 =£(assume)
Fo (1—-r*) +(2¢r)? D
dN dD
(k%) Do N, pdN_ g g
“dr | Fo D? - dr dr

or {(1 - + (2 fr)z}(—“h) —(1 —1'2){2 A—r)(—2)+2(2¢)(2 §)}=0
This equation can be simplified as - '

-2 +(1—4¢3)=0

and its solution is given by

=142¢ or r=V1+2¢; V1-2¢

Since

k Xp

1 N
- I e e — 1




and

kX .
T r-\/iT'z_?-’m (2)

we note that r =R; ="V 1 —2¢ corresponds to 2 maximum and r =R, =V1 +2¢

corresponds to a minimum of Xz.

——

‘kXI; —2¢r
Fo - +4 1
dN .dD
p & _ &2 v
4 kX _ dr N dr —0 (1)
dr | Fo D?
where E—I\L=——25‘ and 91:*2(1_1-2)(2,-)4.85-21-
dr 4 dr

By setting the numerator of Eq. (1) equal to zero, we obtain

{14—# —2rf +4 rz}(—-Zg‘)—(—-—2§r){—4r+4 r* +8¢ r}=0
which can be simplified to obtain
3+ —2)rr —1=0 | G
The roots of Eq. (2) are given by '

pol1=28-2Vd-¢+1 1-2¢8+2 Ve -2 +1

3 ; _ 3 - (3

Since it is difficult to determine, from Eq. (3), the correct value of r-that corresponds to
the minimum of Xj, we use a numerical computation. For ¢ = 0.1, for example, Eq. (3)
gives

r? = — 0.0030 ; 0.6583

This shows that
1

ViEe) '

r=d1-28+2 Vet -2 41 . (4)
‘ 3

corresponds to the minimum of Xj. For small values of ¢, ¢¢ << ‘1 and Eq. (4) gives

r=1 (5)

Thus X; attains its minimum value close to r = 1.

Response of a single d.o.f. system with hysteretic damping is: given by Eq. (3.106):
| X _ 1
Fq k—md? +ik S




X

[ P - C A 4 LY
Fo)]  (k—m ) 1 (kB | Fof  (k—md?)? + (kP
2 2
X B | .
Re Fy + Im[Fo] —(k-—mwz)z-{—(kﬁ)z ®

It can be verified that Eq. (1) can be rewritten as
2

X X 1 1 2

Eq. (2) shows that the locus of

'ﬁ“‘] as w increases from zero is part of a circle, with
0

1 . 1 . .
center [0, — m] and radius m, as shown in the following figure.
\ X
Tm [
tom (3

/c.s mnmcecreases

Rz

1023 The peak of Bode diagram is equal to =~ —2}? In the present case, peak-to-peak value is
J 0.45 |

plotted; hence X =~ —2— mil = 0.225 mil. X
y
X _ 0225 _ . _ 1 L SS‘?
b 005 T 3¢ A e

or ¢ = 0.1111.

pors e e . - ——— —

e
R
&
3
Yo




Reduction in amplitude from 6.8 in/sec to 0.8 in / sec in 7 cycles or 22 milliseconds.
Eq. (2.92) gives:

| 1 6.8,
— — ‘5 — 1 ———n == v
] =§ or - o ( 5 ) = 0.3057

Typical Bode plot of phase angle f{
is shown in the figure. o
-50° \
180 T e
o 1 2 3 4 “n
(a) p=90°at r = -i—)— ~= 1. Hence the value of w, can be determined from the value of
n
r corresponding to ¢ = 90°.
(b) Since .
2¢r cw
=tan™! |— = tan~! |— ———
¢ [ 1—r? ] { k —m o ]
we find
c e
k -— m wl k — m Wy

where w; and w, correspond to the half power points. Hence, by finding the values of w
corresponding to.¢ = — 45° and ¢ = — 135°, we obtain w; and w,. From these values,
the damping ratio can be found using the relation:

Wa — Uy

YT




Characteristic Problem 10.26 Problem 10.27 Problem 10.28
n 18 18 18
N 750 rpm 1000 rpm 1500 rpm
d 15 mm 2 em 10 mm
D 100 mm 15 cm 80 mm
o 30° 20° 40°
% cos & 0.1299 0.1253 0.09576
Dominant frequency of
vibration
Inner race 6779.4 cycles/min | 10127.7 cycles/min | 14792.8 cycles/min
defect (1078.97 Hz) (1611.87 Hz) (2354.33 Hz)
Outer race 5220.8 cycles/min | 7872.3 cycles/min | 12207.2 cycles/min
defect (830.88 Hz) (1252.91 Hz) (1942.84 Hz)
Ball or roller 1214.8 cycles/min | 1761.7 cycles/min 2188.1 cycles/min
defect {193.31 Hz) (280.39 Haz) (348.25 Hiz)
Cage 326.3 cycles/min 437.3 cycles/min 678.2 cycles/min
defect (51.93 Hz) (69.61 Hz) (107.93 Hz)
‘ 1
fx) = ; 1<x <5
5 §
— 1 [ x?
x-——-meanvalueofx—ff(x)xdx—z— =1 =3
1 1
o = (standard deviation)? = f (x —x)® f(x
5 3 s
1 2 1 X 2 4
7 &3 1 [ 3 T x] 3
1 . g ° . 1
k = kurtosis = ey [ x—%)*f{x) dx = 3 J (x=3)* (<) dx
| o 16 4 4
Let y = x - 3 so that dy = dx. This gives 9 2
k=gr J va=2




X = mean value of x = ¥ f(x;) x;
i

3 6 1
%35(1)+§§(2)+—1g(3)+16 ()+——(5)+‘§‘2*()+'§5(7)=4

o® = (standard deviation)? = 3 (x; — %) f(x;)

i

=(1—-‘4)2%+(2-—4) 32—!—( 4)? 1%—+(4—-4)2_._

: 6 , 3 135
4 —4) (5 —4) 2 4+ 4 74 4_____~
tA—4) =+ T+ (-9 +( 4) - = 8.4375
: 1 | 8.4375
k = kurtosis = — x —xX)! f{x) = = 2.9630
A 4]_3‘( 1 —X)° f{x;) Toars? |
'Ra.nge of W= 62-832 to 3i14.1¢ ru\/sec = oo to 3000 rpm

Max accelexation flevel = 0g = 98- m/sec
Max weight of specimen = jo N

Max vibration a_mpl.‘éude = 0-0025 m

Frezuencg range : ‘
variable /SrecJ electric motor can be used to obtain

the frepuency range (for a mechanical shaker).
Vibration o_mpl fuo{e :

If  y(t)= A sin wt, | &)
occeleration = Aw?®. o

At = Blé-ls_ra.a‘/sec, a.mrl»‘i:ucle needed to achieve the

maximam occeleration s :

amplitude (A) = occeleration /2

p— ?8 /('3!4 IG) = 09?39 KJOB “m
At = 62.-832 rcw!/sac 5 o.m‘b‘ ‘tude meeded to achleve

the wmaximum acceleration s :



é.m PIH:‘LG{C (A> - a,cc.e,‘ercyfc'on/wz
= 7?'%624331)" = 0-02495 ™
(Q-'"‘F}"b*de s foe {"'.3"’; hence divect a«}v}-’-‘ca.ft‘on éj:
Yy (t) s not Permf{:tec( ) '
Mechanical shaker of the fjrg shown in Fig. i0-t6 can be

used- E’ectrodjna.nu'c shaker of the f.fjre shown in Fig.
1617 (&) can alse be used.

Efec‘l:ra ma._g_ne%«'t shaxer :

e e e s g Won —— e - .

AN

4
Mox force ( qu) T
ovailable cle]aemis on:

(&) magnetic field strength

(b) number of turns
(c) coil dvameter
@) current flowing

W
\\\\
NN

.

Limitations are: (aa)‘mwl:eria.l S{:renaﬂ., () cool.'ns provided.

Mox acceleration = Frnax >
Tn/‘ -+ mt
Where Mg = wmass of specimen and WML = mass of shaker table.

Speed range: 300 - 600 rpm
Frequency range: 31.416 - 62.832 rad/sec
Number of reeds = 12
Uniform spacing of frequencies give the reed frequencies as:
U, ., Dy = 31.418, 34.272, 37.128, 39.984, 42.840,
45.696, 48.552, 51.408, 54.264, 57.120, 59.976, 62.832 rad/sec
Let each reed be' considered as a cantilever beam of cross section a x b inches. Let

lengths of all reeds be same and the material be aluminum for light weight.' The
fundamental natural frequency of a reed is given by (Fig. 8.15):

/

1 1

EI |z : El |z

wy = (6 e)z{pAﬂ}z =(1.87512){I)A£,4}2
1 1

— 3.516 { o1 /:(318(::.1)1)11& yr }7 = 69.1142 (10*) {"XI—(;—}? BNy

-
By equating w; given by Eq. (1) to {1} , ..., (s, in turn, the proper value of { Y f“}



needed for different reeds can be computed. By selecting a common value of € for all
reeds, the cross section of any reed can then be found to achieve the required value of

1
REE
5

Iterative process is to be used.

1.

Select trial values of the design parameters (material of the beam and its

dimensions).

~ Model the beam as a spring-mass system with:

m = end mass = 5095 of mass of beam:

2
k = stiffness of a cantilever beam:
3E1I
k=3 (2

Equations of motion:

mx+k{(x—y)=0

or mz+kz=—my . (3)
where z = relative displacement of end mass.

Since Ypax = 0.2 g, assume a constant force of - m (0.2 g) on the right hand side
of Eq. (3) and solve the equation to find z(t).

From the known zp,, value, compute the maximum stress (Op,y) induced in the
beam. If o,,, is less than the yield stress of the material, the design is complete.
Otherwise, go to step 1 and change one or more design parameters and repeat the
procedure until a satisfactory design is found.
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