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Chapter 1

Problemsl-1 throughl-6 are for student research. Narstlard solutions are provided.

1-7 From Fig. 1-2, cost of grinding t©0.0005 in is 270%. Cost of turning4d.003 in is
60%.
Relative cost of grinding véurning = 270/60 = 4.5 times Ans.

1-8 CA = CB,
10 + 0.8P =60 + 0.8° — 0.005P 2

P2 =50/0.005 = P = 100 partsAns.

1-9 Max. load =1.1(P
Min. area = (0.93A
Min. strength = 0.8%
To offset the absolute uncertainties ttesign factor, from Eq. (1-1) should be

1.10

- == 143 Ans.
0.850.99

Ny

1-10 (a) Xi + Xa:
X+%=X+6+ X+ ¢
error =e=(x%+ %)—( X+ X,)

=e+¢€ Ans
(b) X1 —Xs:
X—%=X+g-( X+ §)
e=(x-%)-(X-X)=¢ ¢ s
(©) X1 Xa:

X% =( X+ ¢g)( X+ §)
e=x%- X X= Xe+ X e gg

i)<1ez+x2q= Xlxz(%+xiJ Ans
1 2
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(d) Xu/Xo:

X,+6 1+ ¢/ X%
-1
w2 g R
x2 XZ 1+ eZ/XZ Xl XZ xl XZ
Thus, e:ﬁ—ﬁi Xl[ g ——%J Ans
X2 X2 XZ Xl XZ

1-11 (8) x1=+/7 =2.6457513111

X, =2.64 (3 correct digits)

X, = /8 =2.828 427 124 7
X, =2.82 (3 correct digits)
X1+ X =5.474 178 435 8
e =x1— X7 =0.0057513111
€ =Xo— X =0.008 427 124 7
e=e +e=0.014178 4358
Sum=X1 +x =X+ X, + e
=2.64 +2.82 +0.014 178 435 8 = 5.474 178 435CGhecks
(b) X1 = 2.65, X, = 2.83 (3 digit significant numbers)
e1 =Xy — Xy =—0.004 248 688 9
€ =X, — X, =—0.0015728753
e=e; +e =-0.005 821564 2
Sum=x; +X=X;+ X, +e
=2.65 +2.83 0.001 572 875 3 =5.474 178 435 8Checks

1-12 o=—

s 16(1009 _25(10)

3 = d=0.799 in Ans.
Ny rd 2.5
Table A-17: d= gin Ans.
Factor of safet s_2(109) .9
actor of safety: =—=— 7 -3, )
A T S

#(3)

1-13 Eq. (1-5):  R=)'R =0.98(0.96)0.94 = 0.88

i=1

Overall reliability = 88 percent  Ans.
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1-14

a=1.500+ 0.001 in
b = 2.000+ 0.003 in
c = 3.000+ 0.004 in
d=6.520+ 0.010 in
(a) w=d-a-b-ct=6.520- 1.5- 2— 3 =0.020in
t, = t, =0.001 +0.003 + 0.004 +0.010 = 0.018

w = 0.020+ 0.018 in Ans.

(b) From part (a),wmin = 0.002 in. Thus, must add 0.008 indo Therefore,

d =6.520 + 0.008 = 6.528 in Ans.

1-15

V=xyzandx=atAay=btAb,z=ctAc,
V =abc

V =(atAa)(brAB( ctA g
=abctbAat ad i+ ah ¢ A A £ YA ia AcAaHA AaAb c

The higher order termin A are negligible. Thus,
AV =bcAa+ ad\ b+ ah ¢

AV . baAa+ aa br abc:_A_+A_
\ abc a b

and,

For the numerical values givew, =1.500( 1.875 3.008 8.4375%n

AV._000z, 0003 0002, 4,057 — Av= 0.0042¢ 8.4375

\V 1500 1875 3.000

V =8.438+0.036 if Ans.

0.036'in
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1-16

Pin, a
Winax = 0.05 in, wmin = 0.004 in GEP i Clovice EJ, ,
w=w4=o.oz7 in
Thus, A w = 0.05— 0.027 = 0.023 in, and them,= 0.027+ 0.023 in.
w=a-b-T
0.027=3- 0.042 1.5
a=1.569 in

ty= Y.t = 0.023=,+0.002+0.005= t,=0.016in

Thus, a =1.569+ 0.016 in Ans.

1-17 D, =D, +2d =3.734+ 4 0.139= 4.012 in
tp, = > t, =0.028+ 1 0.004= 0.036 in

Do, = 4.012+ 0.036 in Ans.

1-18 From O-Rings, Inc. (oringsusa.cont); = 9.19+ 0.13 mmd = 2.62+ 0.08 mm
D, =D, +2d =9.19+ 2 2.62= 14.43 mm
tp, = >ty =0.13+ A 0.08= 0.29 mm

Do =14.43+ 0.29 mm Ans.

1-19 From O-Rings, Inc. (oringsusa.con); = 34.52+ 0.30 mmd = 3.53+ 0.10 mm

D, =D, +2d =34.52+ 4 3.53= 41.58 mm
tp, = > t; =0.30+ 2 0.10= 0.50 mm

Do =41.58+ 0.50 mm AnNs.
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1-20 From O-Rings, Inc. (oringsusa.cont); = 5.237+ 0.035 in,d = 0.103+ 0.003 in
D, =D, +2d =5.237+ Z 0.10B= 5.443 in
tp, = > t, =0.035+ 1 0.003= 0.041 in

Do =5.443+ 0.041 in Ans.

1-21 From O-Rings, Inc. (oringsusa.cor), = 1.100+ 0.012 in,d = 0.210+ 0.005 in
D, =D, +2d =1.100+ Z 0.21p= 1.520 in
tp, = >ty =0.012+ 4 0.005= 0.022 in

Do = 1.520+ 0.022 in Ans.

1-22 From Table A-2,
(@ o =150/6.89 = 21.8 kpsi Ans.
(b) F=2/4.45=0.449 kip = 449 Ibf  Ans.
(c) M = 150/0.113 = 1330 Ibfin = 1.33 kip- in  Ans.
(d) A= 1500/ 254=2.33iF Ans.
(e)1 =750/2.54=18.0if  Ans.
(f) E=145/6.89 = 21.0 Mpsi  Ans.
(9) v=75/1.61 =46.6 mi/h Ans.

(h) V = 1000/946 = 1.06 gt Ans.

1-23 From Table A-2,
(@ 1=5(0.305)=1.53m Ans.
(b) o =90(6.89) =620 MPa Ans.

() p=25(6.89) =172 kPa Ans.
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(d) Z=12(16.4) = 197 cth  Ans.

(&) w=0.208(175) = 36.4 N/m Ans.

(f) 6 =0.001 89(25.4) = 0.0480 mm Ans.
(g) v =1200(0.0051) =6.12 m/s Ans.

(h) e =0.002 15(1) = 0.002 15 mm/mm  Ans.

(i) V = 1830(25.3) = 30.0 (16) mn?® Ans.

1-24
(@ o =M/z2=1770/0.934 = 1895 psi = 1.90 kpsAns.

(b) o =F/A=9440/23.8=397 psi  Ans.
(c) y =FI33EI = 270(31.5¥[3(30)1F(0.154)] = 0.609 in Ans.

(d) 0= TI/GJ = 9740(9.85)/[11.3(10( /32)1.00] = 8.648(10%) rad = 4.95 Ans.

1-25
(@) o=F / wt = 1000/[25(5)] =8 MPa  Ans.

(b) 1=bh®/12 = 10(25¥12 = 13.0(18) mn*  Ans.
() | =7 d"64 =z (25.4f/64 = 20.4(16) mm*  Ans.

(d) r=16T /zd*=16(25)16/[~(12.7f] = 62.2 MPa  Ans.

1-26
(@) 7=F /A =2 700/fz(0.750%/4] = 6110 psi = 6.11 kpsi Ans.

(b) o= 32Fa/rd®=32(180)31.54 (1.25§] = 29 570 psi = 29.6 kpsi Ans.
(©) Z=r(d,* - di*/(32d,) = 7 (1.50' — 1.00)/[32(1.50)] = 0.266 ih  Ans.

d) k= (d*G)/(8D*N) = 0.0625(11.3)16/[8(0.760) 32] = 1.53 Ibf/in Ans.

Chapter 1 Solutions - Rev. B, Page 6/6



Chapter 2

2-1 From Tables A-20, A-21, A-22, and A-24c,
(@ UNS G10200 HRS;; = 380 (55) MPa (kpsi)S,: = 210 (30) Mpa (kpsiAns.
(b) SAE 1050 CDS,: = 690 (100) MPa (kpsi)S,: = 580 (84) Mpa (kpsi)Ans.
(c) AISI 1141 Q&T at 540C (1000F): S, = 896 (130) MPa (kpsi)S,: = 765 (111)
Mpa (kpsi) Ans.
(d) 2024-T4:S,: = 446 (64.8) MPa (kpsi)S: = 296 (43.0) Mpa (kpsi)Ans.
(e) Ti-6Al-4V annealedS,; = 900 (130) MPa (kpsi)S: = 830 (120) Mpa (kpsi)Ans.

2-2 (@) Maximize yield strength: Q&T at 426 (800F) Ans.

(b)Maximize elongation: Q&T at 65C (1200F) Ans.

2-3  Conversion of kN/rhto kg/ n? multiply by 1(16) / 9.81 = 102
AISI 1018 CD steel: Tables A-20 and A-5

s, _370(10)

P 76.5( 102
2011-T6 aluminum: Tables A-22 and A-5

s, _ 16910)

p 26.6(102
Ti-6Al-4V titanium: Tables A-24c and A-5

s, _ 830(10)

p 434102
ASTM No. 40 cast iron: Tables A-24a andbAoes not have a yield strength. Using the
ultimate strength in tension

42.56.89( 10
S, _ 425689 ):40.7 KN-m/kg  Ans

P 70.6(109

=47.4 kN- m/kg Ans.

=62.3 kN- m/kg Ans.

=187 kN- m/kg Ans.

2-4
AISI| 1018 CD steel: Table A-5
30.0( 16
E=L:106(1(?) in  Ans.
y 0.282
2011-T6 aluminum: Table A-5
10.4( 16
E:L:mG(l(‘i) in Ans.
y 0.098
Ti-6Al-6V titanium: Table A-5
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E:%:NB(M) in Ans.
, 0160

No. 40 cast iron: Table A-5
14.5 16

E_ 5( )_ 8(1(5) in Ans.
y 0.260

2-5

2G(1l+v)=E = v=

From Table A-5
30.0- 1 11.5)

2(11.5

10.4- 23.90

2(3.99

180279 485 ns.
2(7.0

Steel: v= =0.304 Ans.

Aluminum: v= =0.333 Ans.

Beryllium copper: v=

145- 2 6.9

-0.208 Ans.
2(6.0

Gray cast iron: V=

2-6  (a) Ao = 7(0.503%/4, o =P; | A

For data in elastic range,=Al/ly =Al/2

For data in plastic range; _Al_T- =|__1:ﬁ_1

I0 IO I 0
On the next two pages, the datal plots are presented. Figuag ghows the linear part of
the curve from data points 1-7. Figub} $hows data points 1-12. Figu® $hows the
complete rangeNote: The exact value oA is used without rounding off.

(b) From Fig. &) the slope of the line from a linear regressiol 30.5 Mpsi Ans.

FromFig. (b) the equation for the dottexdfset line is found to be

o =30.5(16)¢ — 61 000 1)
The equation for the line between data points 8 and 9 is
o =7.60(18)¢ + 42 900 (2)

Chapter 2 - Rev. D, Page 2/19



Solving Egs. (1) and (2) simultaneously yields= 45.6 kpsi which is the 0.2 percent
offset yield strength. Thu§, = 45.6 kpsi Ans.

The ultimate strength from Figure) (s S, = 85.6 kpsi Ans.

The reduction in area given by Eq. (2-12) is

r-DA (100)= 22987 01077, 459 _ 45896 Ans .
0.1987

Data Poin P; Al, A € o
1 0 0 0 0
2 1000 | 0.0004 0.00020 | 5032
3 2000 | 0.0006 0.00030 | 10065
4 3000 0.001 0.00050 | 15097
5 4000 | 0.0013 0.00065 | 20130
6 7000 | 0.0023 0.00115 | 35227
7 8400 | 0.0028 0.00140 | 42272
8 8800 0.0036 0.00180 | 44285
9 9200 | 0.0089 0.00445 | 46298
10 8800 | 0.1984 0.00158 | 44285
11 9200 0.1978 0.00461 | 46298
12 9100 0.1963 0.01229 | 45795
13 13200 | 0.1924 0.03281 | 66428
14 15200 | 0.1875 0.05980 | 76492
15 17000 | 0.1563 0.27136 | 85551
16 16400 | 0.1307 0.52037 | 82531
17 14800 | 0.1077 0.84506 | 74479
50200

o vy s

& 30000

g 20000 —&—5orosl
10300 Linear (Seriesl)

G

0.00C 0.C01 0001 0.002

Strain

(@ Linear range
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i
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i
I
i
]
J
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i
0.000 0002 0.004 0006 0.008 0.010 0012 0.014

Straln

(b) Offset yield

90000
80000 -

-

70000

60000

50000
40000

Stress {psi)

30000
20000
10000

4]

00 C¢1 G2

62 ¢4 05 €66 07 08 09

Strain

(©) Complete range

(c) The material is ductile since thereaitarge amount of deformation beyond yield.

(d) The closest material to the valuesSpf Sy, andRis SAE 1045 HR witts, = 45 kpsi,

Sut = 82 kpsi, andR = 40 %.

ANS.

2-7

To plot o e VS 4, the following equations are applied to the data.

Eq.(2-4)

O-true =

Lid
A
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&= Inl— for 0< Al £0.0028 in

0

A

&= InX for Al > 0.0028 in

=0.1987 irf

where A = —n(O.iOSf

The results are summarized in the tableweand plotted on the next page. The last 5
points of data are used to plot legvs loge

m= 0.2306
log oo =5.1852= op = 153.2 kpsi  Ans.

The curve fit gives

For 20% cold work, Eg. (2-14) and Eq. (2-17) give,

A=Ao (1-W)=0.1987 (1 — 0.2) = 0.1590%n

oo Inﬁ I 0.1987

A 0.1590
Eq. (2-18):S, =o,¢™ = 153.2(0.223%*= 108.4 kpsiAns
Eq. (2-19), withS, = 85.6 from Prob. 2-6,

=0.2231

S =i—ﬁ:107 kpsi

= Ars .
1-w 1-0.2
P AL A £ O true log ¢ l0g Otrue
0 O 0.198 713 O 0

1000 0.0004 0.198 713 0.000 2 5032.388 -3.699 01 3.701 774

2000 0.0006 0.198 713 0.000 3 10 064.78 -3.522 94 4.002 804

3000 0.001 0.198 713 0.0005 15097.17 -3.30114 4.178 895

4000 0.0013 0.198 713 0.000 65 20 129.55 -3.187 23 4.303 834

7000 0.0023 0.198 713 0.001 149 35226.72 -2.93955 4.546 872

8400 0.0028 0.198 713 0.001 399 42272.06 -2.85418 4.626 053

8800 0.0036 0.198 4 0.001 575 44 354.84 -2.80261 4.646 941

9200 0.0089 0.197 8 0.004 604 46 511.63 -2.33685 4.667 562

9100 0.1963 0.012216 46357.62 -1.91305 4.666 121
13200 0.192 4 0.032284 68607.07 -1.49101 4.836 369
15200 0.1875 0.058082 81066.67 -1.23596 4.908 842
17000 0.156 3 0.240 083 108 765.20 -0.61964 5.036 49
16400 0.1307 0.418 956 125478.20 -0.377 83 5.098 568
14800 0.107 7 0.612511 137 418.80 -0.21289 5.138 046
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160000
[ 40000
120000
% [ OHOHCHO
E 80000
B
60000
40000
20000 -
0 | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Ell'lll.“
— 52
— 5.1
v = 0.2306x + 5.1852 5
— 5 &l
=
— 49
| | | | ] | | | 48
-6 —-14 -12 -1 -0.8 -06 -04 —02 0
log &
2-8 Tangent modulus at =0 is
A 5000- 0 :
E==Z= =25(10) psi  Ans.

At o = 20 kpsi
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. (26-19)(10) _
- N 7 _14. Ans.
E, L5 (10) 14.0(16) psi
3 . 6l =
e (10°% o (kpsi)
0 0 50 |-
0.20 5
0.44 10 s
0.80 16 £ (S )oo = 35kpsi Ans,
1.0 19 C
1.5 26
2.0 32
2.8 40
3.4 46
4.0 49 . . !
5.0 54 7 ! i
10 )
2-9  W=0.20,

(a) Before cold working: Anealed AISI 1018 steel. Table A-28, =32 kpsi,S, =49.5
kpsi, oo = 90.0 kpsim=0.25, = 1.05
After cold working: Eq. (2-16) =m=0.25

Eq.(2-14), %: : 1w = é =128

Eq.(2-17), & :In%:lnl.ZS: 0.223< ¢,

0.25

Eq.(2-18), S, =0, =90(0.223 " = 61.8 kpsi Ans .93% increase  Ans.

y

Eq.(2-19), S = ! = 49.5 =61.9 kpsi Ans. 25% increase Ans.
1-W 1-0.20
(b) Before: i:ﬂszl.SS After: i=£’9=1.OO Ans.
S 32 Sy' 61.8

Lost most of its ductility

2-10 W=0.20,
(a) Before cold working: ABl 1212 HR steel. Table A-2%, = 28 kpsi,S, = 61.5 kpsi,

oo =110 kpsim=0.24, =0.85
After cold working: Eq. (2-16) =m=0.24
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Eq.(2-14), %: : 1w =3 é =125

Eq.(2-17), & =Inizln1.25= 0.223<¢,

Eq.(2-18), S, =o0pe" =110 0.2230'24: 76.7 kpsi Ans .174% increase Ans.

y

Eq.(2-19), S/'= S _ 815 444 kpsi Ans. 25% increase Ans.
1-w 1-0.20
(b) Before: i:ES:Z.ZO After: i=E)=1.OO Ans.
, 28 s/ 767

y
Lost most of its ductility

2-11 W=0.20,
(a) Before cold working: 2024-T4 aluminum alloy. Table A-Z, = 43.0 kpsiS, =
64.8 kpsi,op = 100 kpsim=0.15, =0.18

After cold working: Eq. (2-16) =m=0.15

Eq.(2-14), %: : 1w =3 é =125

Eq.(2-17), gizln%:ln1.25= 0.223>¢, Material fractures.  Ans.

2-12 ForHg = 275, Eq. (2-21)S, = 3.4(275) = 935 MPa Ans.

2-13 Gray cast ironHg = 200.
Eq.(2-22), S, =0.23(200)- 12.5 = 33.5 kpsi Ans.

From Table A-24, this is probly ASTM No. 30 Gray castiron Ans.

2-14 Eq.(2-21), 0.Hg =100 = Hp=200  Ans.
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2-15 For the data given, convertifs to S, using Eq. (2-21)

Hs  Su(kpsi) S.? (kpsi)
230 115 13225
232 116 13456
232 116 13456
234 117 13689
235 1175 13806.25
235 117.5 13806.25
235 117.5 13806.25
236 118 13924
236 118 13924
239 119.5 14280.25
¥S, = 1172 ¥S.2= 137373

S =&:%:117.2ﬁ 117 kpsi Ans .
N 10

Eq.(20-8),

=1.27 kpsi  Ans.

10
2 c2
28N \/13737& 10 1178
N-1 9

2-16 For the data given, convertiifs to S, using Eq. (2-22)

Hs  Su(kpsi) S/* (kpsi)
230 40.4 1632.16
232 40.86 1669.54
232 40.86 1669.54
234 41.32 1707.342
235 41.55 1726.403
235 41.55 1726.403
235 41.55 1726.403
236 41.78 1745.568
236 41.78 1745.568
239 42.47 1803.701
X5 = 41412 ¥S/% = 17152.63
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_ 258 _414.12

=41.4 kpsi Ans.
=N 10 P
Eq.(20-8),
17152.63- 10 414
s, = = =120  Ans.
9
2
2-17 (a) uR£45'5 =34.5in Ibf /i Ans.
2(30)
(b)
P AL A Ag/A-1 € o =PIAg
00 0 0
1000 0.0004 0.0002 5 032.39
2000 0.0006 0.0003 10 064.78
3000 0.0010 0.0005  15097.17
4000 0.0013 0.000 65 20 129.55
7000 0.0023 0.001 15 35 226.72
8400 0.0028 0.0014  42272.06
8800 0.0036 0.0018 44 285.02
9200 0.0089 0.004 45 46 297.97
9100 0.1963 0.012291 0.012291 45794.73
13200 0.1924 0.032811 0.032811 66 427.53
15200 0.1875 0.059 802 0.059 802 76 492.30
17000 0.1563 0.271355 0.271355 85 550.60
16400 0.1307 0.520 373 0.520 373 82531.17
14800 0.1077 0.845059 0.845059 74 479.35

From the figures on the next page,

5
u=> A= %(43 000)(0.001 5} 45 000(0.004 45 0.001 5)

i=1

1

+§(45 000+ 76 50p+ (0.059-8 0.004 45)

+81 00 0.4 0.059)8 80 000 0.845 p.4
=66.7(10) in Ibflir®  Ans.
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2-18, 2-19 These problems are for student reseakio standard solutions are provided.

2-20 Appropriate tables: Youngisodulus and Density (Table A-5)1020 HR and CD (Table A-
20), 1040 and 4140 (Table A-21), Aluminum (Table A-24), Titanium (Table A-24c)

Appropriateequations:
F F 4F

Fordiameter, c =—=—-—-—=S . d= |—
A (72'/4)d Y 71'3/

Weight/length= pA, Cost/length = $/in = ($/Ibf) Weight/length,
Deflection/length= 6 /L =F/(AE)

With F = 100 kips = 100(19 Ibf,

Young's Yield Weight/ Cost/ Deflection/
Material Modulus Density Strength Cost/Ibf Diameter length length length
units Mpsi Ibf/in"3 kpsi S/lbf in Ibf/in S/in in/in

1020 HR 30 0.282 30 S0.27 2.060 0.9400 $0.25[ 1.000E-03
1020 CD 30 0.282 57 $0.30 1.495 0.4947 $0.15 1.900E-03
1040 30 0.282 80 S0.35 1.262 0.3525. S0.12 2.667E-03
4140 30 0.282 165 $0.80 0.878 0.1709 $0.14 5.500E-03
Al 10.4 0.098 50 $1.10 1.596 0.1960 $0.22 4.808E-03
Ti 16.5 0.16 120 S$7.00 1.030 0.1333 $0.93 7.273E-03

The selected materials with minimum valuessivaded in the table above. Ans.

2-21 First, try to find the broad category of masisuch as in Table A-5). Visual, magnetic,
and scratch tests are fast and inexpensivehsold all be done. Results from these three
would favor steel, cast iron, or maybe a lessimon ferrous material. The expectation
would likely be hot-rolled steellf it is desired to confirm tis, either a weight or bending
test could be done to check digywer modulus of elasticity.The weight test is faster.

From the measured weight of 7.95 Ibf timit weight is determined to be

w 7.95 Ibf

w=—= — — =0.281 Ibf/ir’ = 0.28 Ibf/ii
Al [z in)"/4](36 in)

which agrees well with the unit weight of 0.282 Ibt/ieported in Table A-5 for carbon
steel. Nickel steel and stéess steel have similar unit igats, but surface finish and
darker coloring do not favor their selectioho select a likely specification from Table
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A-20, perform a Brinell hardness test, then Hge(2-21) to estimatan ultimate strength
of §, =0.5H; = 0.5(200)% 100 kpsi Assuming the materi# hot-rolled due to the

rough surface finish, appropriate choicesirTable A-20 would be one of the higher
carbon steels, such as hot-rolled AISI 1050, 1060, or 1080. Ans.

2-22

First, try to find the broad category of mas#éiisuch as in Table A-5). Visual, magnetic,
and scratch tests are fast and inexpensivehsold all be done. Results from these three
favor a softer, non-ferrous material like aluminuhhit is desired taconfirm this, either a
weight or bending test coultk done to check density or modulus of elasticity. The
weight test is faster. From the measured weight of 2.90 Ibf, the unit weight is determined
to be

wW 2.9 Ibf

— - __=0.103 Ibffirf = 0.10 Ibf/ir
Al [z(Lin)?/4](36 in)

which agrees reasonably well with the unit weight of 0.098 fbféported in Table A-5
for aluminum. No other materials come closé¢his unit weight, so the material is likely
aluminum. Ans.

2-23

First, try to find the broad category of maa#éiisuch as in Table A-5). Visual, magnetic,
and scratch tests are fast and inexpensivehsold all be done. Results from these three
favor a softer, non-ferrous copper-based matstiah as copper, brass, or bronze. To
further distinguish the material, either aiglg or bending test edd be done to check
density or modulus of elasticity. The weighdttes faster. From the measured weight of
9 Ibf, the unit weight is determined to be

w 9.0 Ibf

—- = __-0.318 Ibf/irf = 0.32 Ibf/ir
Al [z(Lin)?/4](36 in)

which agrees reasonably well with the unit weight of 0.322 fbféiported in Table A-5

for copper. Brass is not far off (0.309 Ibflinso the deflection test could be used to gain
additional insight. From the measured ddftacand utilizing thaleflection equation for
an end-loaded cantilever bedrmm Table A-9, Young’'s modulus is determined to be

g F°__ 100029 ~17.7 Mpsi
3y 3(z(1)/64) (17/32)

which agrees better with the modulus fopper (17.2 Mpsi) than with brass (15.4 Mpsi).
The conclusion is that the maternsalikely copper.  Ans.

2-24 and 2-25 These problems are for student resiealNo standard sdions are provided.
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2-26 For strengthc=F/A=S = A=F/S
For mass,m = Alp= (F/§) Ip

Thus, f3(M)=p/S, and maximiz&lp (B =1)
In Fig. (2-19), draw lines parallel &jp
e
00 s P Ceramics i
E' Stren.gﬂl—dermly | SNy T allc\}és i
J Composites AL, ool =
2| Metals and polymers yield sirengih s Al nlljf 1, 3 rilloy,
Ceramics end glasses MGR . o “, — Tungsten
: : CFRE w alloy
1000 | Elasiomers tensile tear sirength We allovs T ‘1'”! s
% | Composites tensile foilure Polymers and EGF'F'.-F' J 'fﬂlr U Tungsten
: elastomers PEE .‘ﬁft";; a¥ i / i I . cartide
4 - et .‘,:_:_; -
100 - Wood 1 | / allows
= et -r‘ ' )
o ] » A
= - .
e | s -
= 10 Rizid petfym y Ll P
= 3 foi i) Zinc alloys oo
E 1 ' i Lead alloys »" -* "
o E 3 f":"':"' =2
Foams | e
b i Buty] i = Concrete,, ,‘/;f :
: QY Vol Siooee o 2gR | (G lresfor)
4 ey L o graen clastomers . ‘_a;z PRI MASS |
4 Cork L | design |}
- - e ——
0.1 = A BT
T P o
| = - -
4 _,.-"P 5..'.‘_{1 o B o
- L7 Fexible polymer _# P ’-";
= [ o T
R R e it}
1 T i
.01 .1 1 L]

Densty p, Mg.‘m3

From the list of materials given, batluminum alloy andhigh carbon heat treated
steelare good candidates, having gezgotential than tungstexarbide or polycarbonate.
The higher strength aluminum alloys have ghliy greater potential. Other factors, such

as cost or availability, may dictate which to chooseAns

2-27 For stiffnessk = AE/l = A =kl/E

For mass,m = Alp = (KI/E) |p =kI p IE
Thus, f3(M)=p/E, and maximiz&/p (B =1)

In Fig. (2-16), draw lines parallel &/p
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Techni g Steeks
; echnical SN, 2 | Tielloys f =™ W
1000 2 CETAmCS B = — — ___,..-’
i
Al alloys™ m/ W alloys -
Compasites -~ CFRP

Co alloys

100 3 e
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. o nIMLA l" el yesicr Ck “er.;'. — Lead alloys
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3 - ¥ i alboys
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= 1 wovespeed =" S e "* P‘-‘I-’ -
g ] L o Veood ps . = "

! - ‘ E"l Lies - |
- 10* mifs - ’
g | = - -t A

i
e T 5
= #.r P
B 2
3 .-"';’ 1
B ~ Palymers =T g pgar
# 1n-1 - s B
=] -
= [H] e 7 7P |
I___..-"' & .p"
".- ‘f - E -
- =
.I:J'l"I .-""l- P
-
Silicone elaxiomer Pa’ -
i e lastomers | 4 # 1
]-"nlu.n:!h.m:_. —'"'.g.'r —
- - ,':r‘ Guidelings for
- .
- ,"’f“ ""\-..__‘ AR R
: Fl lecin
Neoprene, * 4 L design
1077 == ’m;. i
-~ I
; 1 Fl
] ~ Flexible polymer :
! oamimn - = Flastomors
J.‘ i
. ’
T
107 mfs MEACY

Density p, Mg/m?

From the list of materials givetyngsten carbide(WC) is best, closely followed by
aluminum alloys, and then followed by highloan heat-treated steel. They are close
enough that other factors, like cost or avallghiwould likely dictae the best choice.
Polycarbonate polymer is clearly not a gebdice compared to the other candidate
materials. Ans

2-28 For strength,
oc=FlIZ=S Q)

whereFl is the bending moment a&ds the section modulus [see Eq. (BdRG. 90 ].
The section modulus is strictyyfunction of the dimensiord the cross section and has
the units il (ips) or ni (SI). Thus, for a given cross secti@sC (A)*?, whereC is a

number. For example, for a circular cross secﬂbn,(4\/;) . Then, for strength, Eq.

(1) s
s = A ( i j )
CA cs
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FI 2/3 F 2/3 p
For mass, m=Ap=|—1| lp=|—| 1% L
r (cs] p (CJ [gj

Thus, f3(M)=,p/S?? and maximiz&?3p (B = 2/3)

In Fig. (2-19), draw lines parallel %

HO0ch: | 1 Ceramics

Metals and polymers yield strength

Ceramics and glasses MGR Tungsten

Elastomers tensile tear sirength = alloys

Composites tensile ferlare Polymers and — ~ i i f U Y Tungsten
elastomers 5

Naiural

1a

Strength 8, MPa

L
LY
%

- - F = - Bl
Silicone .,.-"'..;';‘_‘\h‘ Guide lines for |

- i
elastomess .-"f" # FIIRERTILAT FRARS

=t o lesign
- () i
- P e HHER A
- ar a
- ___.-" ’-" .-‘"
-
j"" - £
- 2m." L
- k) 1%
It - e s i
Flexible polymer .~ ¥ =
=" foams i L# ML [
Q.01 _1- T 'I"I"I_P'F T i"f-r T PR R | e T
0. 0.1 | 10

Density p. M;_:-"n|3'

From the list of materials given, a higher strerajtminum alloy has the greatest
potential, followed closely by high carbon heatated steel. Tungstearbide is clearly
not a good choice compared to the other candidate materiafns

2-29

Eq. (2-26), p. 65, applies to a circulapss section. However, for any cross secsioape
it can be shown that= CA? whereC is a constant. For example, consider a rectangular
section of heighlh and widthb, where for a given scaled shapes cb, wherec is a
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constant. The moment of inertialis bh %12, and the area & = bh. Thenl = h(bH?)/12
= cb (bh)/12 = /12)(bh)*> =CA? whereC =c/12 (a constant).
Thus, Eq. (2-27) becomes

3 1/2
A:( kI J
3CE

and Eq. (2-29) becomes

k 1/2
m=ap=(55) (&)

P 1/2
Thus,minimize f,(M )=F, or maximizeM =—— . From Fig. (2-16)
1 WE .F-.#.-
Technical T
1000 ceramics WC
W alloys
1 Al alloys ‘_-____..--"'
- -
fnnlpmm\\x‘{_"FRP -
100 4 Glaw2 1 Co allovs
| : =" My alboys o -
] Woodle RPL__ —Metals__~
3 - -
- -__..r -"
1 — -
10+ " Lead allovs
= | -
3 Lomgatudind L -
25 i | g i ] - -
2 ] wanve speed - . -t
3 ! -7 Epouics G
i - =P -
= - - ) - g
| Rigid pohymer PTFE .-~ e
z foams - g
' - \ =P e
3 - =T pn
5 - | - g
= [ —;,.. - ’;r ', ol
z P i
, LT E="
2 o ———
!/‘-, e [
g 10'1 I'I'..": "f:""f
{1} il __f
: | - ’ E— _—
] ) Guude ey for |
y Lt ““-\_“ ML s
= ’ L design ]
10 5= X
— Flexible polymer
foams
s
. &
1 s — ’ g MFLCY
"= - ——— . — -

00l . - 0l r . . . ‘. 10
Deasity o, Mg/m”
From the list of materials givealuminum alloys are clearly the best followed by steels
and tungsten carbide. Polybanate polymer is not a good choice compared to the other
candidate materials.Ans

2-30 For stiffnessk = AE/l = A =kl/E
Formassm = Alp = (KI/E) 1 p =kI* p IE
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So, f 3(M) = p/E, and maximizé&/p . Thus,f = 1. Ans.

2-31 Forstrengthg=F/A=S = A=F/S
Formassm = Alp= (F/9 lp

So, f3(M) = p /S and maximiz&jp . Thus,f =1. Ans.

2-32 Eq. (2-26), p. 65, applies to a circulanss section. However, for any cross secsioape
it can be shown that= CA? whereC is a constant. For example, consider a rectangular
section of heighh and widthb, where for a given scaled shapes cb, wherec is a
constant. The moment of inertialis bh*12, and the area i = bh. Thenl = h(bh)/12
= cb (bh9)/12 = /12)(bh)*> = CA? whereC =c/12.
Thus, Eq. (2-27) becomes

31/2
Az(m

3CE
and Eq. (2-29) becomes

K U2 o
m= Alp: %) |5/2(Ej

So,minimizef,(M )= ﬁ , Or maximizeM =

1/2

. Thus,p =1/2. Ans.
Yo,

2-33 For strength,
oc=FlIZz=S ()

whereFl is the bending moment a&ds the section modulus [see Eq. (dRG. 90 ].
The section modulus is strictyyfunction of the dimensiorg the cross section and has
the units iff (ips) or n¥ (SI). Thus, for a given cross secti@=C (A)*?, whereC is a

-1
number. For example, for a circular cross secﬂbn(4\/;) . Then, for strength, Eq. (1)

is
——=S = A=| — 2
CA3/2 (CS} ( )
FI 2/3 F 2/3 p
For mass, m= Ap=|—| lp=|—| 1" L=
P (cs] P (CJ (ﬁj

So,f 3(M) = p/S?3, and maximiz&?3p. Thus, 8 = 2/3. Ans.

2-34 For stiffnessk=AE/l, or, A = kI/E.
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Thus,m = pAl =p (KI/E)l =kl ? p/E. ThenM = E /pandg = 1.

From Fig. 2-16, lines parallel #/p for ductile materials include steel, titanium,
molybdenum, aluminum alloys, and composites.

For strengthS = F/A or,A = F/S
Thus,m = pAl =p F/SI = Fl p/S Then,M = Slp andg = 1.

From Fig. 2-19, lines parallel ®)p give for ductile materials, steel, aluminum alloys,
nickel alloys, titanium, and composites.

Common to both stiffness and strengté stieel, titanium, aluminum alloys, and
composites. Ans.
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Chapter 3

R,
M, =0 e
18R, —6(100) =0
R, =3331bf Ans.
SF, =0 _
100 Ibf K
R, +R,—100=0 R, %
F
R =667 Ibf Ans. l L l %
A
R.=R,=3331bf Ans. 0( ° _ s
] 6 in 12 in
3-2

Body 4B:
XF =0 R, =Ry,
SF, =0 R, =R,
M, =0 R, (10)-R, (10)=0
R, =R,

i R, 100 1bf

Y

Body OAC: = Ry l
M, =0 R,,(10)~100(30) =0 o—=R, do—R, )C

R, =300 1Ibf  Ans.
XF =0
LF,=0 R, +R, -100=0
R,, =-2001bf  Ans.

R, =—R, =-3001bf Ans.

O
L 10 1n J— 101 J— 10 illJ
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3-3

Ry=—2% _139kN  ns. Fo
tan 30°

R, = _0'8 -=1.6 kN  Ans.
sin30

90°? 60°

0.8 kN

3-4
Step 1: Find R4 & Rg

h= 4.5 =7.794 m

"~ tan30°
M, =0

9R,. —7.794(400cos30")
—4.5(400sin30") =0
R, =400 N A4ns.

Y F,=0 R, +400c0s30°=0

R, ™ 9m -

R, =-3464N IR, R,
> F,=0 R, +400-400sin30° =0
R, =-200N

R, =+/346.4* +200* =400N  Ans.

Step 2: Find components of R¢ on link 4 and Rp

> M.=0
400(4.5)—(7.794-1.9)R, =0
R,=3054N Ans.

DF=0 = (R,),=3054N

DF,=0 = (R,),=—400N

400 N
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Step 3: Find components of R¢ on link 2

D F. =0
(R,),+305.4-346.4=0
(Re,),=4IN

2 F,=0

(Re,),=200N

B

3464 N

2000 M

[Rh’ﬂ

1R( '.I.]E
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3-5
M. =0 y
—1500R, +300(5)+1200(9) =0
R =82KkN Ans.

SF,=0
—_— —_— = = 1 ;
82-9-5+R,=0R,=5.8kN  Ans. I"(kN)

M, =82(300)=2460 N-m  Ans.
M, =2460-0.8(900)=1740 N-m  Ans.
M, =1740-5.8(300)=0 checks!

36 ) ‘ 500 Ibf 40 Ibfiin
2F, =0 U(O . -4l - B“Hllll( N
R, =500+40(6) =740 Ibf  Ans. oo 8m T 6m T 6in

M, =0 7 (Ibf)
M, =500(8)+40(6)(17) =8080 Ibf -in  Ans. e

M, =-8080+740(8) =—-2160 Ibf -in  Ans. 0

— —_ 1 M
M, =-2160+240(6) =720 Ibf -in  Ans. e

M, =-T720+ %(240)(6) =0 checks! 0

- 8080
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3-7 ,
~0 o 1.2m l lm F 1lm l .
“22R +1(2)-1(4) =0 . 4 lR ©
1
R =—091kN Ans. ¥ (k) 4 ’
SF, =0
~091-2+R,~4=0 . .
R, =691kN  Ans. -0.91
M
M, =-091(12)=—-1.09kN-m  Ans. 0
M,=-1.09-291(1)=-4 kN-m  Ans.
M, =-4+4(1)=0 checks!
3-8

Break at the hinge at B . 400 Ibf 40 Ibf/in

S

From symmetry,

R =V, =2001Ibf Ans. L _\_ _I l_ _IR
10 1n

4 1n

Beam BD:
XM, =0
200(12) - R,(10)+40(10)(5) =0
R, =440 Ibf  Ans.

SF, =0

—200+440-40(10)+ R, =0
R, =160 Ibf  Ans.
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Hinge

y hf bl
M, =200(4) =800 Ibf -in  Ans. T Aot / 10 Iofin
M, =800-200(4)=0 checks at hinge o t ¢ ¢ 1 l l l l l l ] l D
M, =800—200(6) =400 Ibf -in  Ans. ) B et [ S | ¥
4in  4in 2in 10

M, = -400+ %(240)(6) =320 Ibf-in  Ans.

M, =320 —%(1 60)(4)=0 checks!

3-9

g=R {x)" ~9(x=300)" ~5(x~1200)" +R, (x~1500)"
V =R ~9{x-300)" -5(x~1200)" + R, (x~1500)" (1)
M = Rx-9(x~300)' ~5(x~1200)' + R, (x~1500)’ 2)

Atx=1500" V=M=0. Applying Egs. (1) and (2),

R-9-5+R, =0 = R+R,=14
1500R, —9(1500—300)—5(1500-1200)=0 = R =82kN  Ans.
R,=14-82=58kN  Ans.

0<x<300: V=82KkN, M =82xN-m
300<x<1200: V' =82-9=-0.8 kN

M =8.2x—-9(x—-300)=-0.8x+2700 N-m
1200<x<1500: V' =82-9-5=-5.8kN

M =82x—-9(x—-300)-5(x—1200) =-5.8x+8700 N-m
Plots of V" and M are the same as in Prob. 3-5.
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3-10
q=Ry(x)" =M, (x)" ~500{x~8)" —40(x—14)" +40(x~20)’

V=R, —M,(x)" ~500({x~8)’ —40({x~14)" +40(x-20) (1)

M = Ryx—M,~500{x~8) —20(x~14)" +20(x~-20)’ 2)
atx=20"in, V=M =0, Egs. (1) and (2) give

R,—-500-40(20-14)=0 = R, =740 Ibf Ans.

R,(20)— M, —500(20—8)—20(20—14)> =0 = M, =8080 Ibf-in  Ans.

<x<8: V=740 Ibf, M =740x-8080 Ibf -in
8<x<14: ¥V =740-500=240 Ibf
M =740x—-8080—500(x —8) =240x — 4080 Ibf -in
14<x<20: V=740-500-40(x—14) =—40x + 800 Ibf
M =740x-8080—500(x —8) —20(x —14)> = =20x> +800x — 8000 Ibf -in
Plots of V and M are the same as in Prob. 3-6.

3-11
g=R{x)" -2(x-12)" +R,(x-22)" —4(x-32)"
V=R -2(x-12)"+R,(x-22)" -4(x-3.2)’ (1)
M =Rx-2(x-12) +R,(x-2.2) —4(x-3.2) 2)
atx=23.2", V=M=0. Applying Egs. (1) and (2),
R -2+R,-4=0 = R+R,=6 3)
32R -22)+R,(1)=0 = 32R+R,=4 (4)

Solving Egs. (3) and (4) simultaneously,
R =-091kN, R, =691 kN Ans.

0<x<1.2: V=-091kN, M =-0.91x kN-m

1.2<x<22: V=-091-2=-291kN
M=-091x-2(x-1.2)=-291x+2.4 kN-m

22<x<32: V=-091-2+691=4kN
M=-091x-2(x-12)+691(x—2.2)=4x—12.8 kN-m

Plots of V" and M are the same as in Prob. 3-7.
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3-12
g=R(x)" —400(x—4)" +R,(x~10)" ~40(x~10)" +40(x~20)" + R, {x~20)"
V =R -400(x—4)" +R, (x~10)" ~40(x~10)' +40(x~20)' + R, (x~20)" (1)
M = Rx—400(x—4)' + R, (x~10) =20(x~10)" +20(x~20)" + R, (x—20) )
M=0atx=8in ~8R -4008-4)=0 = R =200Ibf  Ans.
atx=20", ¥=M=0. Applying Egs. (1) and (2),
200-400+R, —40(10)+ R, =0 = R, +R, =600
200(20)—400(16) + R,(10)-20(10)* =0 => R, =440 Ibf Ans.
R, =600-440=160 Ibf  Ans.

0<x<4: V=200Ibf, M =200x Ibf-in
4<x<10: V¥V =200-400=-200 Ibf,
M =200x—400(x —4)=-200x+1600 Ibf -in
10<x<20: V=200-400+440—40(x—10) = 640—40x Ibf
M =200x—400(x—4)+440(x—10) —20(x—10)2 = —20x" +640x — 4800 Ibf -in
Plots of V" and M are the same as in Prob. 3-8.

3-13 Solution depends upon the beam selected.

3-14
(a) Moment at center,

_(l—2a)
=T

Mc=§{g<z_za)_@}wjz&_aj

M |=wa*/[2

At reaction,

a=2.25,1=101n, w =100 Ibf/in

M, = 100d0) {E—z.zsj =125 Ibf-in
2 (4
100(2.25%) _
M, |= ——5 =253 1bf-in  Ans.

(b) Optimal occurs when M, = |Mr
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=a*+al-025>=0

wl(l ] wa*
— ——a | =
2 \4 2

Taking the positive root

a =%[—1+1/12 +4(o.2512)] :é(\/i—l) =0.207

for /=10 in, w = 100 Ibf, @ = 0.207(10) = 2.07 in
M, =(100/2)2.07* =214 Ibf -in

3-15
(a)
C= 20;10 =5 kpsi

= 20+10 =15 kpsi

CD

R=A+15"+8 =17 kpsi
o, =5+17=22 kpsi
o, =5-17=-12 kpsi

1. (8
=—tan | — |=14.04" cw
¢p 2 (15)
7, =R =17 kpsi

$ =45 —14.04" =30.96" cow

(b)
c=2%10 15 5ipsi
CD:@:&S kpsi

2
R=+/5+3.5 =6.10 kpsi
0, =12.5+6.1=18.6 kpsi
o, =12.5-6.1=6.4 kpsi

1 a5
=—tan | — |=27.5 ccw
¢P 2 (3.5)

7, =R =6.10 kpsi
¢ =45 =275 =175 cw
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(©)

24410

C =17 kpsi

24-10

CD =7 kpsi

R=~7"+6" =922 kpsi
0,=17+9.22=26.22 kpsi
o, =17-9.22="7.78 kpsi

¢, = l[9O° +tan™’ (Zﬂ =69.7" ccw
2 6

7, =R =9.22 kpsi
@, =69.7" —45 =247 ccw

(d)
Czﬂ:Skpsi (=12, 12°%) 0
CD= 12+22 =17 kpsi

{10, 5™y .

24.7°

R=~17"+12% =20.81 kpsi
0, =5+20.81=25.81 kpsi
o0, =5-20.81=-15.81 kpsi

4, =+ 90" +tan (1—7] =72.39" cw
) 12




7, = R =20.81 kpsi
¢, =72.39-45=27.39" cw
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3-16
(@)

C:—8+7

=-0.5 MPa

847

CD —E—=TSMPa

R=+7.5+6* =9.60 MPa
0,=9.60-0.5=9.10 MPa
o, =—0.5-9.6=-10.1 Mpa

¢ =L 90" 4 tan™! (Ej =70.67" cw
P2 6
7, =R=9.60 MPa
g, =70.67° —45 =25.67" cw

10.1

70.67°
9.1

(b)
C=ﬁ=1.5 MPa
2
cp=2"%_75Mpa

2
R=+/7.5+3%* =8.078 MPa

25.67°

o, =1.5+8.078 =9.58 MPa
o, =1.5-8.078 =—6.58 MPa

1. (3 .
=—tan | — |=10.9" cw
4’ 2 (TS)

7, =R=8.078 MPa
4, =45 —10.9" =34.1" cew
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(c)
C:%=4 MPa

1244

CD =8 MPa

R=+/8"+7? =10.63 MPa
0, =4+10.63=14.63 MPa
o, =4-10.63=-6.63 MPa

¢ :l 90° + tan [§j =69.4° ccw
p 2 7

7, =R =10.63 MPa
¢, =69.4"—45 =24.4" ccw

(d)
c=82_05Mpa

2
CD:%:&S MPa
R=+/5.5+8"=9.71 MPa
0,=0.5+9.71=10.21 MPa
0,=0.5-9.71=-9.21 MPa

1. (8
=—tan | — |=27.75 ccw
¢p 2 (5.5)

7, =R=9.71 MPa
§ =45 —27.75 =17.25" cw

Chapter 3 - Rev.

A, Page 13/100



3-17

(@)

C:12+6

=9 kpsi ™

CD=?=3 kpsi

R=+/3"+4> =5 kpsi
o, =5+9=14 kpsi
o, =9-5=4 kpsi

oW

1 1(4] .
=—tan | —|=26.6" ccw
¢” 2 3

7, =R =5 kpsi
@, =45 -26.6"=18.4" ccw

(b)
c=30719 4 kpsi
cp =391 _ 50 kpsi

R =+/20" +10% =22.36 kpsi
o, =10+22.36 =32.36 kpsi
o, =10-22.36 =-12.36 kpsi

1 (10
=—tan | — |=13.28" ccw
¢p 2 (ZOJ

7, =R =22.36 kpsi
¢, =45 -13.28" =31.72" cw
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(€)

e 1018
2
ep <1018 _ 1o

R=+14"+9* =16.64 kpsi
o, =4+16.64 =20.64 kpsi
0, =4-16.64 =—-12.64 kpsi

9, = 1[90" +tan™ (Eﬂ =73.63" cw
2 9

7, = R =16.64 kpsi
¢, =73.63—-45=28.63" cw

(d)
C:9+19 =14 kpsi
D=2 =5 kpsi

R=+/5"+8" =9.434 kpsi
0, =14+9.43 =23.43 kpsi
0, =14-9.43=4.57 kpsi

1 . (5 .
9, 7{90 +tan ‘(gﬂzsl.o cw

7, = R =9.34 kpsi
g =61"—45 =16" cw

oo
T

14

61°
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3-18

(@)
c-=80230 _ <5 Mpa

(=80, 20°%)
CD = 80-30 =25 MPa

o

R=+/25+20* =32.02 MPa
o, = 0 MPa (=30, 20°°%)
0, =—-55+32.02=-22.98=-23.0 MPa
o, =-55-32.0=-87.0 MPa

2
Ty =73=11.5 MPa, 7,,=32.0MPa, 7, =%=43.5 MPa

(b) i 7
C:30_60:—15 MPa
cp=20730_ 45 \pa

R =+/45%+30% =54.1 MPa
0, =—15+54.1=39.1 MPa

(—60, 30°%)

o, =0 MPa v
o, =—-15-54.1=-69.1 MPa
T3 = 39.1+69.1_ 54.1 MPa
2
Ty, = % =19.6 MPa
Ty = % =34.6 MPa
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(€)

c=240 50 MPa

D=0 wpy
R=+20°+20% =28.3 MPa
o, =20+28.3=48.3 MPa
0, =20-28.3=-8.3 MPa
o, =0, =-30 MPa

T3 = @ =39.1 MPa,

(d)

C:5—20:25 MPa

CD:5—20225 MPa

R =+/25"+30% =39.1 MPa
0, =25+39.1=64.1 MPa
0, =25-39.1=-14.1 MPa
o, =0, =—20 MPa

SO0 g

T3

7, =28.3 MPa,

7,=391MPa, 7,,=

(0, 305%™y

20-14.1

=2.95 MPa

3-19

(@)

Since there are no shear stresses on the
stress element, the stress element
already represents principal stresses.

o, =0, =10 kpsi

o, =0 kpsi

o, =0, =-4kpsi

Ty = w =7 kpsi
=5 kpsi

Ty = ?

Ty = 0_;_4) =2 kpsi
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(b)
c_0+10

=5 kpsi

CD=M=5 kpsi

2
R =5 +4" =6.40 kpsi
0, =5+6.40=11.40 kpsi

o, =0kpsi, o, =5-6.40=-1.40 kpsi

7, =R=640kpsi, 7,,= % =5.70 kpsi, 17, = % =0.70 kpsi
(C) -2-8 2 circles (=2, 4% X J
C=——-=-5kpsi

2

8— ) Circle 1s a point
CD = - =3 kpsi /

00,

R=~/3"+4" =5 kpsi

o,=-5+5=0kpsi, o, =0kpsi
o, =-5-5=-10 kpsi

10 . , .
T1/3 = 7 =5 kpSl, Tl/g =0 kpSI, 72/3 =5 kpSl

(d)
1023019 kpsi
e =19739_ 50 kpsi

R=+/20>+10% =22.36 kpsi

o, =-10+22.36=12.36 kpsi
o, =0 kpsi

o, =—-10-22.36 =-32.36 kpsi

Fe=2236kpsi, T, =Tt =618 kpsi, =2 1618 kpsi
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3-20 From Eq. (3-15),

o’ —(-6+18-12)c” + [—6(1 8) +(—6)(=12) +18(=12) = 9% — 6> — (=15)° ] o
—[-6(18)(~12) +2(9)(6)(~15) — (=6)(6)* ~18(~15)" = (~12)(9)’ | = 0

0’595 +3186=0 G

Roots are: 21.04, 5.67, -26.71 kpsi ~ Ans. i

Ty =w=7.69 kpsi o

Ty = w =16.19 kpsi —— — o7 © (e
T =Ty = w = 23.88kpsi  Ans. y

3-21
From Eq. (3-15)

o° —(20+0+20)c> + [20(0) +20(20)+0(20) - 40° - (~20v2 )2 —0? } -

- [20(0)(20) +2(40) (—20& ) (0)— 20(—20\5 )2 —0(0)’ — 20(40)2} =0

o’ =400 =2 0000 +48 000 =0

7ikpsi) | 7 .

Roots are: 60, 20, —40 kpsi ~ A4ns.

Ty = @ =20 kpsi

Ty = w =30 kpsi

60 e (kpsi)

60+40

Toax = T3 = =50kpsi  Ans.
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3-22

From Eq. (3-15)

o — (10 +40 + 40)c +[10(40) +10(40) +40(40) —20* — (-40)’ —(—20)2}7

—[10(40)(40) +2(20)(~40)(~20) — 10(~40)* — 40(-20)" — 40(20)’ | = 0

o’ =900’ =0

Roots are: 90, 0, 0 MPa Ans. (MPa)

1-2/3 - 0 Ta3

a(MPa)

T =03 = T = % =45 MPa  Ans. o\

90

3-23

o= F =ﬂ= 33950 psi =34.0 kpsi ~ Ans.

4 (/4)(0.75)

L 5L _33950—90 _0.0679in  Ans.
AE E 30(10°)

fl _ 0 _0.0679 =1130(10°)=11304  Ans.

L 60

From Table A-5, v=0.292

¢, =—ve, =—0.292(1130) = -330u  Ans.
Ad = 6,d =-330(10°)(0.75) = -248(10°) in  Ans.

5:

3-24

F 3000

C=—=— " " _6790 psi=6.79 kpsi  Ans.
A4 (z/4)(0.75%) b P

s=TL _ ;L 67900 _00392in Ans.
AE E 10.4(106)

o 0.0392
61 = —=
L
From Table A-5, v=0.333
6, =-ve =-0.333(653) =-217u  Ans.

Ad =ed =-217(10°)(0.75)=-163(10° ) in  Ans.

=653(10°)=653u  Ans.
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3-25
_Ad_-0.0001d

€ " =-0.0001
From Table A-5,v=0.326, £ =119 GPa
¢ =20 00001 306.7(10°°)
v 0.326
522 and O'ZE, SO
AE
oF

o===GE = 306.7(10°)(119)(10°) =36.5 MPa

2
)M —25800 N=258kN  Ans.

F=0A= 36.5(106

S, =70 MPa > o, so elastic deformation assumption is valid.

3-26
§=£:a£:20000L2)6:O.185in Ans.
AE E 10.4(10)
3-27
:ﬂ:a£:140(106);:0.00586m:5.86mm Ans.
AE E 71.7(109)
3-28
s=tL L 150002292 _ 017310 Ans.
AE E 10.4(10")
3-29

With o, =0, solve the first two equations of Eq. (3-19) simulatenously. Place E on the
left-hand side of both equations, and using Cramer’s rule,

Ee. —v
Efy 1 E5X+vE€y E(Ex +V€y)
O_ = = =
¥ 1 —v 1-v* 1—v?
v 1
Likewise,
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Ele, +ve,
%= (jy—v2€ )

From Table A-5, E =207 GPa and v = 0.292. Thus,

9
. E(e, +ve,) _ 207(10”)[ 0.0019+0.292(~0.000 72)] (10°)=382 MPa ns.
x 1—1? 1-0.292°

207(10°)[-0.000 72+0.292(0.0019)]
= o307 (10°)=-37.4MPa  Ans.

o,

3-30

With o, =0, solve the first two equations of Eq. (3-19) simulatenously. Place E on the
left-hand side of both equations, and using Cramer’s rule,

Ee. —v

Efy 1 E5X+vE€y E(fx +V€y)
O_ = = =

¥ 1 —v 1-v* 1—v?
-v 1
Likewise,

E (éy + fo)

DT

From Table A-5, E=71.7 GPa and v = 0.333. Thus,
E(e,+ve,) 71.7(10%)[0.0019+0.333(-0.000 72)]
i o5y (10°)=134 MPa  Ans.

71.7(10°)[ -0.000 72+0.333(0.0019) ],
_ ) o (10°)=-7.04 MPa  Ans.

O =

X

o

3-31

oc=—F=—7—F=F-= Ans.
bh bh~ |

6ac
) P (@u/0)(bu/B) (/) (L/1) 1Y) _ 2y
F (a,/a)(c,/c) (5)(s)

For equal stress, the model load varies by the square of the scale factor.

3-32
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2 8
2 2
0_26]\/52 62 wl :3le - W:iabh Ans
bh bh~ 8 4bh 3 1
2 2
(b) W:n — (o-m /O-)(bm /b)(hm /h) — I(S)(S) — S2 AnS.
w [ /1 s
2
Mzsz = Yn_f 5 ns.
wl w s

For equal stress, the model load w varies linearly with the scale factor.

3-33
(@)  Can solve by iteration or derive W, W, W «o. IWp .. [W,
equations for the general case. Find A ,I, l, ", 1 B
maximum moment under wheel W, . 4 [Pr. ’ T
Ry —a— . Ry

W, =ZW at centroid of s

~ vy >

RA = M WT < i >|
[
Under wheel 3,
(I—x,—d;)
My =R x; =Wiay =Wty = ~————Wrxy = Wa,; —W,ay,
For maximum, aM, =0= (l —d, —2x3)% = x= I-d,
dx, [ 2
. . (l B d3 )2
Substitute into M = M, = 2 W, -Wa, —W,a,,
This means the midpoint of d, intersects the midpoint of the beam.
—d, I-d)Y) = &
For wheel i, x, = M, M, :MWT —ZW,a ;
2 41 = JJ
Note for wheel 1: ZW,a;, =0
104.4

Wy =1044, W =W, =W, =W, =— = =26.1 kips

476 _ (1200-238)°

Wheel I: d, == ==238in, M, 41200 (104.4) =20 128 kip-in

Wheel 2: d, =238-84 =154 in

Chapter 3 - Rev. A, Page 23/100



~ (1200—154)*

(104.4)—-26.1(84) = 21605 kip-in=M__ Ans.

2 4(1200)
BT 115" 4"
Check if all of the wheels are on the rail. - o] |~
2 O o O
[ 3 | T
(b) x, =600-77=523in  Ans. S e
00" et ()" —»l
(c) See above sketch.
(d)  Inner axles
3-34 5
(a) Let a = total area of entire envelope )
Let b = area of side notch c=375 -
A=a—-2b=40(3)(25)—-25(34) = 2150 mm’ e
Vb b
1=1,-21, = (40)(75) -~ (34)(25) c=375 ?
12 12
[=136(10°) mm*  Ans. T le—d0—]"
Dimensions in mm.
(b)
A, =0.375(1.875)=0.703 125 in’ S I —
A4, =0.375(1.75) = 0.656 25 in’ tlml ’ . 7 o]
A=2(0.703125)+0.656 25 =2.0625 in’ L -1 s

G e 017
V=0 _o.sséit ; : 1
| | v I O

" A 3 3"
= 2(0.703 125)(0.9375)+0.656 25(0.6875) —0.858in  Ans.
2.0625
3
I, = 0.375(1.875)° =0.206 in*
12
3
I, = % =0.007 69 in*

017057 !

0.6875"

I, =2[0.206+0.703 125(0.0795) |+[ 0.00769+0.656 25(0.1705)° | =0.448 in*  Ans.

(€)

Use two negative areas.
A, =625 mm?, 4, =5625 mm?, 4 =10000 mm?

A=10000-5625-625=3750 mm?;

o =4271

37.5 :

"l__""_Ls.zs

¢ Ge—
A
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y,=625mm,y, =50 mm,y, =50 mm
— 10000(50)—-5625(50)—625(6.25)
Yo 3750

¢, =100-57.29=42.71 mm Ans.

3
; _5002.5)

a

=5729 mm Ans.

=8138 mm*

3
; _75(15)

b

= 2.637(106) mm*

3
; _100(100)

c

=8.333(10° )in*
1,=[8.333(10°) +10000(7.29)" || 2.637(10°) + 5625(7.29)" | - | 8138 +625(57.29~ 6.25)’ |

[,=429(10°) in*  Ans.

(d)

A,=4(0.875)=3.5in’ ¢
e, =1.087"| |@

A, =2.5(0.875)=2.1875 in’ B —

A=A4,+A4,=5.68751in> ¢y = 288"
- b

_ 2.9375(3.5)+1.25(2.1875) ,

y= =2288m Amns. T A

5.6875
I= %(4)(0.875)3 +3.5(2.9375-2.288)’ +$(0.875)(2.5)3 +2.1875(2.288—1.25)"

1=520in* Ans.

3-35 14500 N
I =é(20)(40)3 =1.067(10°) mm* 0 on 3 |B
A =20(40) =800 mm” 1500 N 3000 N
M. 1s at A. At the bottom of the section, B
O = % - %‘m =843 MPa  dns. e ,\
Due to V, 7max 1s between 4 and B at y = 0. s
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3-36
100 Ibf/in

EEEEERE

1 , " 400 bf
1=—()(2)" =0.6667 in [

0

- —9in?
A4=12)=2in 1200 Ibf

XM, =0 V (Ibf) 800
8R, —100(8)(12) =0 -
R, =1200 Ibf 400 \
R, =1200-100(8) =400 Ibf

M _ . is at A. At the top of the beam, (1bf.ff)

c,.. = % = w =2400 psi  Ans. g 23200
Ji 0.6667

Dueto V, 7 isat 4, aty=0.

__ 3V _3(800
max 2A 2

Tj =600 pSl Ans.

3-37 3000 Ibf 1000 1bf

= é(0.75)(2)3 =0.5in* j l
0 4 B &

.2 i .
A4=(0.75)(2)=1.5 in Sin] — 15m

SM,=0
15R, —1000(20) = 0
V(N)
R,=3000-1333.3+1000 =2666.7 Ibf

2666.7 Ibf 1333.3 Ibf

M _ . 1is at B. At the top of the beam, -3333

Me 30000 _ 16000 psi - ans. o

O-max 4l
1 0.5 (N-m) x
Dueto V, 7, is between B and C aty = 0. ¢ \/

5000
TmaXZEKZE 1000 =1000 psi  Ans.
24 2015
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3-38

6 kN/mm

B zd* B 7r(50)4

wIEZEIZENIITIE:
El B

- - 306.796(103) mm*
64
A ﬂjz _ 7(50)°

SM, =0

= 1963 mm2 ¥ (kN)

1350 kN 450 kKN

750

\ 75 mm

6(300)(150) — 200R,, = 0
R,=1350 kN
R, = 6(300)—1350 = 450 kN (kN-mm)

25mm o~ \

-600 -450

16875

M _ . isat A. At the top, 0

Dueto V, r, isatA4,aty=0.

4V 4

rym =L 22 ) 509 kN/mm? = 509 MPa
343

1963

-30000 max Ji

Ans.

3-39

wl? wl’c 8o
max = O-max = = w = 2
8 87 cl

(a) /=48 in; Table A-8, I =0.537 in*
8(12)(10°)(0.537)

w= =2238 Ibf/in Ans.
1(482)

max

(b) 1=601n, 7=(1/12)(2)(3’)-(1/12)(1.625)(2.625") =

8(12)(10%)(2.051)
(1.5)(60%)
(c) =60 in; Table A-6, I =2(0.703)=1.406 in*
Y =0.7171n, cmax = 1.783 in
8(12)(10%)(1.406)

w= =21.01bf/in Ans.
1.783(602)

(d) =60 in, Table A-7, I =2.07 in*
8(12)(10%)(2.07)
 1.5(60?)

=36.51bf/in Ans.

=36.8Ibf/in Auns.

2.051 in*

1.783"
(K
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3-40
I =6—’;(o.54) =3.068(107) in*, 4 =%(0.52) ~0.1963 in’

Model
~500(0.5) N 500(0.75/2)
2
Mc 218.75(0.25)
G ="
(©) I 3.068(107)
o =17 825 psi=17.8 kpsi
. _4V _4 500
™34 30.1963

M =218.75 Ibf -in

Ans.

=3400 psi=3.4 kpsi  Ans.

Model (d)
M =500(0.625)=312.5 Ibf -in

_ Mc _312.5(0.25)

I 3.068(107)

o =25 464 psi=25.5 kpsi
o _4V _4 500

34 30.1963

Ans.

=3400 psi=3.4 kpsi  Ans.

Model
M =500(0.4375)=218.75 Ibf -in

_ Mec  218.75(0.25)
T 3.068(107)
o =17 825 psi=17.8 kpsi
o _4V _4 500
XT3 4 30,1963

(e)
Ans.

=3400 psi=3.4 kpsi  Ans.

1333.3 Ibf/in

” 0.5 in 0.5in
0.751in
1000 Ibf/in 1000 1bfin
V (1bf)
500

NN

-500
M 218.75
(bfin)) 455 125
x
(0]
|1000 Ibf
0 0.6251n
1.25 in |
500 Ibf 500 1bf
¥ (Ibf) 500
0 Y
=500
M
(Ibf-in) 3185
x
(0]
500 Ibf 500 Ibf
0 om0
125in |
500 Ibf 500 Ibf
7 (1bf) 500
0 x
-500
M 21875
(Ibf-in)
'
0

3-41
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I :6—’;(124) ~1018 mm*, 4= %(122) ~113.1 mm>

222 N/mm

Model (¢)
3333 N/mm 3333 N/mun
M = 2000(6) + 200009) =15 000 N-mm (N
2 2 "M 2000
_ % 15 000(6)
1 1018 R .
o =88.4 N/mm> =88.4 MPa  Ans. \_30{
15000
Toax = g% = g(%;)(ij =236 N/mm2 =23.6 MPa Ans. [N'Illif) 6000 6000
0 :
4000 N
o 12 mm |
24 mm
Model (d)
M =2000(12) =24 000 N-mm 2000 N 2000 N
_ Mc 24 000(6) ] L
I 1018 . ‘
o =141.5N/mm’ =141.5 MPa  Ans.
7’-max = iK = i(Mj = 236 N/mm2 = 236 MPa AnS. -2000
34 3\113.1 M 24000
(N-mm)
2000N 2000 N
7.5 9 7.5
Model () o 24 mm
M =2000(7.5)=15000 N - mm 2000 N 2000 N
_ Mc _ 15000(6) ra| 2000
1 1018
o =88.4 N/mm’ =88.4 MPa  Ans. 0
Toox = iK = i(wj =23.6 N/'mm?” =23.6 MPa  Ans.
34 3\113.1 -2000
~ M) 15000
“mm
O X
M(d/2
342 (o= Me _M(d/2) 32M
I zd /164  xwd
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g i/32M _ i/32(218.75): 0420 in Ans.

o (30 000)
v oov
b = —=
®) =" =773
d= |2 _ | 2050 6006 Ans.
T 7(15000)
4V 4 ¥
(©r=5" =t
34 3( d> /4)
d:\/i“_V_ 4_4600) 5380 dns.
32z \3 2(15000)
3-43 A S L
%| |-

Py

[~ (| — =

q:—F<x>_1 +p, <x—l>0 —%(X—l)l + terms for x>/ +a

V=-F+p, (x—l}1 —%{x—l}z + terms forx >/ +a

M:—Fx+l;1 (x—l)z—%<x—l>3+ terms forx >/+a
a

At x=(+a)", V=M =0, terms forx>/+a=0

—F+pa- = ap2a =0 = p- pzzz (1)
2
_F(lta)+ P PP g o 2pl_p2:%2+a) )
2 6a a
2F 2F
From (1) and (2) p=—Bl+2a), p,=—5@Cl+a) 3)
a a
From similar triangles b -4 - p= 4)
P, Ptp ptp,
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M nax occurs where V=10

F

[ ———— — f

|
/I)/' -

M, =-F(+a —2b)+%(a —2h)? —%(a —2hY’
a

X =[+a—2b

= —Fl-F(a=2b)+ 2 a—2by? ~ PPy _opy
2 6a
Normally Myax =— Fl

The fractional increase in the magnitude is

_ F(a=2b)—(p,/2)(a=2b) +[(p, + p,)/6a ](a—2b)’

5
7 )
For example, consider F'= 1500 Ibf,a=1.2in,/=1.5in
2(1500
(3) p = ( )[3 1.5)+2(1.2) ] =14 375 Ibf/in
2(1
p,= ( 500)[3 1.5)+1.2]=11875 Ibf/in
4) b=1.2(11875)/(14 375+ 11 875) = 0.5429 in
Substituting into (5) yields
A=0.036 89 or 3.7% higher than -F/
4 10in 48 30 in \C
R, R,
V (Ibf) 5100
3-44
e a —]
0
-1800
3900
M
(Ibfin) 25350
0

-18000



_300030) _ 40

R —1800 = 6900 Ibf
30

1

~300(30) 10

R, ——1800=3900 Ibf
30

3900

a=——=131in
300

Mg =-1800(10) = —18 000 Ibfin

My =27 = (1/2)3900(13) = 25 350 Ibfin

_05(3)+253) _, .

<|

1 .
I = E(3)(13) =0.25 in*

1 .
I, = E(1)(33) =2.25in* -

Applying the parallel-axis theorem,

4 lin

2.5in

y=15in

1,=[025+3(1.5-0.5)" |+[2.25+3(2.5-1.5)’ | =8.5 in

_ —18000(~1.5)

Atx=10in, y=-15in, o, = T——3176 psi
Atx=10in, y=25in, o, _ Z180002-5) _ 5594 psi

@ 253?5?) 1.5
Atx=27in, y=-15in, o, :—%:4474 psi
Atx=271im, y=25in, o, = —%05(2'5)=—7456 psi

Max tension = 5294 psi Ans.
Max compression = —7456 psi Ans.

(b)  The maximum shear stress due to V' is at B, at the neutral axis.
V_ =5100 Ibf

0=y'4"=1.252.5)1)=3.125 in’
VO 5100(3.125)

T =1875 psi Ans.
(7 )y =, 8.5(1) P

(© There are three potentially critical locations for the maximum shear stress, all at x
= 27 in: (1) at the top where the bending stress is maximum, (ii) at the neutral axis where
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the transverse shear is maximum, or (iii) in the web just above the flange where bending
stress and shear stress are in their largest combination.

For (1):
The maximum bending stress was previously found to be —7456 psi, and the shear

stress is zero. From Mohr’s circle,

O] _ 7456 _ 3 psi

T = —

max 2 2

For (ii):
The bending stress is zero, and the transverse shear stress was found previously to be

1875 psi. Thus, 7max = 1875 psi.
For (iii):
The bending stress at y = — 0.5 in is
__—18000(-0.5) — 1059 psi

o =
' 8.5
The transverse shear stress is
0=y4'=1(3)(1)=3.0 in’
. =Q _ 5100(3.0) _ 1800 psi
1b 8.5(1)

From Mohr’s circle,
2
= \/(#j +1800% =1876 psi

max

The critical location is at x = 27 in, at the top surface, where 7y.x = 3728 psi. Ans.
3-45 (a) L =10 in. Element 4: v
o, =M __ _(IOOOXIO)(?'S) (107) =101.9 kpsi ‘a
1 (/64)(1) ! o4
) —_—
vo b1
r,=—=, 0=0 = 7,=0
AT 0 Ty
2 2 z
ro= 9] w2 = [1OL0) L0y =509 kpsi  Ans.
2 2
Element B:
O-B = _ﬂ, y = O - O-B = y
1 B
2 4(0.5) a
O=y4 = ar\(mr | 4t _4(05) =1/12 in’ %i__.-_l__r
3 2 6 6 o /rs :
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—C =%(”12)(1o-3) =1.698 kpsi
b (z/64)1)*(1)

2
T = (gj +1.698% =1.698 kpsi  Ans.
y
Element C: .
M 1000)(10)(0.25 =/,
Oq = —_y [ _( )( )( 4- ) (1073 ) =50.93 kpSl iy ? )I______l,:—}—
I (7 /64)(1) L / x

0= yad=[ y@ndy=] y(2r =y )av

_ —%(7”2 _y2)3/2 ’ ——%[(rz _r2)3/2 —(rz i
8|
=§(r2 —yf )3/2

For C,y, =r/2=0.25in

0= %(0.52 ~025%)"" =0.05413 in’

b=2x=2\r* -y =240.5* —0.25> = 0.866 in

=12 (IOOO)(O;?S“B) (107°)=1.273 kpsi
b (m/64)(1)*(0.866)

2
Toax = \/(%j +(1.273)* =25.50 kpsi ~ Ans.

(b) Neglecting transverse shear stress:
Element 4: Since the transverse shear stress at point 4 is zero, there is no change.

7. =509 kpsi  Ans.
% error =0% Ans.

Element B: Since the only stress at point B is transverse shear stress, neglecting
the transverse shear stress ignores the entire stress.

0Y .
T =.l—1| =0pst Ans.
2] 05

1.698-0

*(100)=100% Ans.
1.698

% error =(
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Element C:

2
Toax = (%) =25.47 kpsi  Ans.

% error = (M] *(100)=0.12% Ans.
25.50
(c) Repeating the process with different beam lengths produces the results in the table.
Bending Transverse Max shear Mgéesshsear
stress, shear stress, stress, neglec tiI;g . % error
o (kpsi) 7 (kpsi) Tmax (Kpsi) foe (kpsi)
L=10in
A 102 0 50.9 50.9 0
B 0 1.70 1.70 0 100
C 50.9 1.27 25.50 25.47 0.12
L=4in
A 40.7 0 20.4 20.4 0
B 0 1.70 1.70 0 100
C 20.4 1.27 10.26 10.19 0.77
L=1in
A 10.2 0 5.09 5.09 0
B 0 1.70 1.70 0 100
C 5.09 1.27 2.85 2.55 10.6
L =0.1lin
A 1.02 0 0.509 0.509 0
B 0 1.70 1.70 0 100
C 0.509 1.27 1.30 0.255 80.4

Discussion:

The transverse shear stress is only significant in determining the critical stress element as
the length of the cantilever beam becomes smaller. As this length decreases, bending
stress reduces greatly and transverse shear stress stays the same. This causes the critical
element location to go from being at point 4, on the surface, to point B, in the center. The
maximum shear stress is on the outer surface at point 4 for all cases except L =0.1 in,
where it is at point B at the center. When the critical stress element is at point 4, there is
no error from neglecting transverse shear stress, since it is zero at that location.
Neglecting the transverse shear stress has extreme significance at the stress element at the
center at point B, but that location is probably only of practical significance for very short
beam lengths.
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3-46
l .

M =%Fx 0<x<a

6M  6(c/l)Fx TRI
O_: =

bh? bh?

h= bFcx 0<x<a Ans.
Ibo

3-47
From Problem 3-46, R, :§F:V, 0<x<a
AL BEDE 3 R
2bh 2 bh 21br
From Problem 3-46, h(x) = OFcx ’*é_..
l O_max
Sub inx = d te to & above. r = X
x = e and equate to / above h* N
3 Fe _ |6Fce ¥ ~
2lbe,,. \lbo,, T~
F
e:E co;max Ans.
8 Ibr,,
3-48 (a)
x-z plane

IM,=0=1.5(0.5)+2(1.5)sin(30°)(2.25) - R,_(3)
R,.=1375kN Ans.

IF. =0=R,-1.5-2(1.5)sin(30")+1.375
R_=1.625kN Ans.

x-y plane
IM,=0=-2(1.5)cos(30°)(2.25)+ R, ,(3)

R, =1.949 kKN  Ans.
IF,=0=R, —2(1.5)cos(30°)+1.949
R, =0.6491kN  Ans.
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(b)

1.625 kN 1.375 kN
y| 2¢0s(30°) kN/m 5
X x
J 0.6491 kN 1.949 kN‘ —| I T_T TT_T
- - e el
1.5 kN 2sin(30°)
s Bt 1.375
0.6491
& 0.375 T > ¥ | -0.125 fe—1.375— .
-1.625
-1.949 =
M,
M, 0.9737 e (kN-m)
(KN-m) 0 2
0 5 /
08125

-0.9375 -0.9453

(c) The transverse shear and bending moments for most points of interest can readily be
taken straight from the diagrams. For 1.5 <x <3, the bending moment equations are
parabolic, and are obtained by integrating the linear expressions for shear. For
convenience, use a coordinate shift of x' = x — 1.5. Then, for 0 <x' < 1.5,

V. =x"-0.125

N2
My=.|.Vzdx’=ﬂ—O.125x’+C
2

Atx'=0,M, =C=-09375 = M, =0.5(x')" ~0.125x"+0.9375

= —%x'+0.6491 =-1.732x"+0.6491
1.125

M o= —-1.732

z

(x') +0.6491x"+ C

Atx'=0,M,=C=09737 = M, =-0.8662(x")" —0.125x'~0.9375
By programming these bending moment equations, we can find M,, M., and their vector
combination at any point along the beam. The maximum combined bending moment is
found to be at x = 1.79 m, where M = 1.433 kN-m. The table below shows values at key
locations on the shear and bending moment diagrams.

M, M, M
x(m) | V. (&kN) |V, (kN) | 7 (&kN) | (kN-m) | (kN-m) | (kN-m)
0 | -1.625 | 0.6491 | 1.750 0 0 0
0.5 | -1.625 | 0.6491 | 1.750 |[-0.8125] 0.3246 | 0.8749

1.5 |-0.1250| 0.6491 | 0.6610 | 0.9375 | 0.9737 | 1.352
1.625 0 0.4327 | 0.4327 | —0.9453 | 1.041 1.406
1.875 | 0.2500 0 0.2500 |-0.9141 | 1.095 1.427

3 1.375 | -1.949 | 2.385 0 0 0
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(d) The bending stress is obtained from Eq. (3-27),
o, = M.y, - M.z,
I, I,

The maximum tensile bending stress will be at point 4 in the cross section of Prob. 3-34
(a), where distances from the neutral axes for both bending moments will be maximum.
At A, for M., y, =-37.5 mm, and for M,, z, =20 mm.

_40(75)°  34(25)°

: 12 12

3 3
I, = 2[25(40) } 256) _ 2.67(10°) mm* =2.67(10"") m*
12 12

It is apparent the maximum bending moment, and thus the maximum stress, will be in the
parabolic section of the bending moment diagrams. Programming Eq. (3-27) with the
bending moment equations previously derived, the maximum tensile bending stress is
found at x = 1.77 m, where M, = —0.9408 kN-m, M. = 1.075 kN-m, and o, = 100.1 MPa.
Ans.

=1.36(10°) mm* =1.36(10°) m*

3-49

(a) x-z plane
600

SM,=0=2 (1000)(4)—T(IO)+M@
M, =1842.6 Ibf-in  Ans.
SF.=0=R, - (1 000) + 600
N2
R, =175.71bf Ans.
x-y plane
600
M, = :__(1000)(4)—T(IO)+MOZ
M, =744251bf-in  Ans.
600
IF, =0=R,, - (1000)—$

R, =1224.3 Ibf  Ans.

Chapter 3 - Rev. A, Page 38/100



(b)

800 Ibf 4243 Ibf 175.7 Iof 4243 Ibf
g
7442.6 lr . 18426 l’ x
Ibf-in \ ; Ibfin
12243 Ibf z
600 Ibf
12243
7, (Ibf) 7. (Ibf) 4243
4243
0 | 0 x
1757
M, M,
(Ibf-in) (Ibfein)
0 % 1) x
22545.4 :
74426 / 1842.6 \/
225454

(C) 1/2
V() =V, () +V.(x) ]

M) =[M ) +M (0]

x(m) | VLG&N) | 7, &kN) | V&N) M, (kKN-m)| M, (kN-m)| M (kKN-m)
0 ~175.7 | 12243 1237 | —1842.6 | —7442.6 | 7667
4 1757 | 12243 1237 | 25454 | 25454 | 3600
10° 4243 4243 600 0 0 0

(d) The maximum tensile bending stress will be at the outer corner of the cross section in
the positive y, negative z quadrant, where y = 1.5 in and z = -1 in.

2(3)°  (1.625)(2.625)°

Iz = =2.051 i1’14
12 12
3 3
;32 (62501625 | o
»7 12 12
At x =0, using Eq. (3-27),
_ sz N MyZ
* Iz 1)’
__(7442.6)15) | (1820 _ (oo
, 2.051 1.601

Check at x =4 1n,
_(=2545.4)(1.5) N (—=2545.4)(-1)

* 2.051 1.601
The critical location is at x = 0, where o, = 6594 psi.  Ans.

= 2706 psi
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3-50

The area within the wall median line, 4,,, is

Square: A, =(b—1)*. FromEq. 3-45)  [-oooooooo-
Toq =247y =2(b- 0 ity

Round: 4, = z(b—1)*/4
Ty=2x(b—1t)try /4

_____________

Ratio of Torques < b

2
&: 2(b—t2) 1T :i:1.27
Ty #nb-t)try/2 =«

Twist per unit length from Eq. (3-46) is

TLm 2AmtTalle 2-all Lm Lm
91 = 2 = 2 == C—
4GA,t 4GA;t 2G A, A,
Square:
4b—t
b =C ( 2)
(b-1)
Round:

z(b—1) 4(b—1)
=C
zb-0*/4  (b-t)

d —

Ratio equals 1. Twists are the same.

3-51

(a) The area enclosed by the section median line is 4,, = (1 — 0.0625)* = 0.8789 in” and
the length of the section median line is L,, = 4(1 — 0.0625) = 3.75 in. From Eq. (3-45),

T =2A4,tr =2(0.8789)(0.0625)(12 000) =1318 Ibf -in  Ans.

From Eq. (3-46),
TL,l (1318)(3.75)(36)

- - : =0.0801 rad =4.59° Ans.
4GA,t 4(11.5)(10°)(0.8789)* (0.0625)

= IZ:

(b) The radius at the median line is 7, = 0.125 + (0.5)(0.0625) = 0.15625 in. The area enclosed
by the section median line is 4,, = (1 — 0.0625)* — 4(0.15625)* + 4(x /4)(0.15625)* = 0.8579
in”. The length of the section median line is L,, = 4[1 —0.0625 —2(0.15625)] + 22(0.15625) =
3.482 in.
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From Eq. (3-45),
T =24,tr =2(0.8579)(0.0625)(12 000) =1287 Ibf -in  Ans.
From Eq. (3-46),

1287)(3.482)(36
0=06l= TL’”ZI = ( c X )(2 ) =0.0762 rad =4.37" Ans.
4GA,t 4(11.5)(10°)(0.8579)* (0.0625)
3-52
3T, Lc?
91 — 13 — Tl — HIG iCi
GL.c; 3
3
T=T+T,+T, :‘%TGzLic? Ans.
i=1
From Eq. (3-47), 7= G6,c
G and 6, are constant, therefore the largest shear stress occurs when ¢ is a maximum.
Toax = GO Chax ~ Ans.
3-53

(b) Solve part (b) first since the twist is needed for part (a).
Toax = Taiow = 12(6.89) =82.7 MPa

max _ allow
82.7 (106)

6 = —max_ _ =0.348 rad/m  Ans.
GCrmax 79.3(109)(0.003)
()

3 0.348(79.3)(10°)(0.020)(0.002°

T1=6'1G3Llc1 _ 03 )(107) 0020 ) _l47Nm s,
3 0.348(79.3)(10°)(0.030)(0.003°

1;:92G3L2"2 _ 0348793 )(0.030x ) 745Nem Ans.
3 0.348(79.3)(10 ) (0)(0°

r - 0GLe _ (79.3)(10”) (0X( ) 0 tne

3 3
T'=T+T,+T,=147+745+0=892 N-m Ans.
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3-54
(b) Solve part (b) first since the twist is needed for part (a).

g = —tmax 12000 =835(107) rad/in  Ans.
G 11.5(10°)(0.125)
@)

_3 6 3

I 91(;;1013 :(8.35)(10 )(11.5)(;0 )(0.75)(0.0625 ):5'86 bfin s
-3 6 3

- 92(;;20; =(8.35)(10 )(11.53)(10 )(1)(0.125 )262.52 b s
-3 6 3

r_ 93G3L;c§ _(833)(10 )(11.5)(130 )(0.625)(0.0625 ):4_88 b A,

T=T+T,+T,=586+62.52+4.88=73.3 Ibf-in Ans.

3-55
(b) Solve part (b) first since the twist is needed for part (a).
Toax = Tatiow = 12(6.89) =82.7 MPa
. 82.7(10°)
6, =" = 5 =0.348 rad/m  Ans.
GCppa 79.3(10 )(0.003)
()
3 0.348(79.3)(10°)(0.020)(0.002°)
r=96ha _ (') =147N-m Ans.
3 3
3 0.348(79.3)(10° )(0.030)(0.003
- 0GLe (79.3)(10”)(0.030)( ) o ds N s
3 3
30.348(79.3)(10%)(0.025)(0.002°
T3=93G3L3c3 _ 0348793 3)( X ) _18aNm  Ans.
T=T+T,+1,=147+7.45+1.84=10.8 N-m  Ans.
3-56

(a) From Eq. (3-40), with two 2-mm strips,

6 2
b :(80)(10 )(0.030)(0.002 ):3 N
3+1.8/(b/c)  3+1.8/(0.030/0.002)

T.. =203.08)=6.16 N-m dns.
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From the table on p. 102, with b/c = 30/2 = 15, = f and has a value between 0.313 and 0.333.
From Eq. (3-40),
o= 1 =0.321
3+1.8/(30/2)
From Eq. (3-41),
Tl 3.08(0.3)
pbc’G - 0.321(0.030)(0.002)(79.3)(10°)

k, =Z=ﬂ:40.8 N-m Ans.
6 0.151

=0.151rad Ans.

From Eq. (3-40), with a single 4-mm strip,

2 80)(10°)(0.030)(0.004>
LU ! )(10°)(0050) ):11.9N-m Ans.
3+1.8/(b/c)  3+1.8/(0.030/0.004)

Interpolating from the table on p. 102, with b/c =30/4 =17.5,

B= 7;_‘66(0.307 ~0.299)+0.299 = 0.305

From Eq. (3-41)
Tl 11.9(0.3)

H = =
pbc’G0.305(0.030)(0.004°)(79.3)(10°)
T 119
70 0.0769
(b) From Eq. (3-47), with two 2-mm strips,

=0.0769 rad  Ans.

=155N-m Ans.

Le2r (0.030)(0.0027)(80)(10°)

T= = =320N-m
3 3
T =2(320)=640N-m Ans.
371 3(3.20)(0.3)

=0.151rad Ans.

9: =
L*G - (0.030)(0.002°)(79.3)(10%)
k =T/6=640/0.151=42.4N-m  Ans.

From Eq. (3-47), with a single 4-mm strip,

. Lt (0.030)(0.004* ) (80)(10°)
maX: 3 = 3

=128 N-m Auns.
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p_ 3T _ 3(12.8)(0.3)
Lc*G - (0.030)(0.004°)(79.3) (10
k =T/6=128/0.0757=169 N-m  Ans.

=0.0757 rad Ans.

The results for the spring constants when using Eq. (3-47) are slightly larger than when using
Eq. (3-40) and Eq. (3-41) because the strips are not infinitesimally thin (i.e. b/c does not equal
infinity). The spring constants when considering one solid strip are significantly larger (almost
four times larger) than when considering two thin strips because two thin strips would be able

to slip along the center plane.

3-57
(a) Obtain the torque from the given power and speed using Eq. (3-44).
T = 9.55£ = 9.55M =152.8 N-m
n 2500
Tr 16T
Thax = 5 = 3
J zd?
/3
67 )" | 16(152.8)
d= = =0.0223 m=223 mm Ans.
7T max 72'(70)(106)
(b) T = 9.55E = 9.55M =1528 N-m
n
/3
d= _1eds2®) | _ 0.0481 m=48.1mm Ans.
7(70)(10°)
3-58

(a) Obtain the torque from the given power and speed using Eq. (3-42).
7o 63025H _ 63025(50) 1261 Ibf-in

n 2500
Tr 16T
Thax =5 =3
J zd’

113 13

16(1261

d= 167 = ( ) =0.6851in  Ans.
7T hax 7(20000)

(b) T = 63025H _ 63025(50) 12610 Ibf-in
n 250
1/3
d= w =148 in Ans.
7(20000)
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3-59

3 (50)(10%)z(0.03°
TmaX=_16T = T=Tmax7[d =( )( ) ( ):265 N'm
zd? 16 16
Eq. (3-44), H= In =265(2000)=55.5(103)W=55.5 kW  Ans.
9.55 9.55
3-60
16T T 3 T 6 3
r=—r = T=""rd’=2(110)(10°)(0.020’)=173N-m
zd 16 16
0.020*)(79.3)(10°)[ 15- %
TI 7d*Go d J(793)( )( 180)
f=— = I= =
JG 32T 32(173)
[=1.89m Ans.
3-61
=1L T == rd* =2(30000)(0.75*) = 2485 Ibf -in
zd 16 16
_ I 324” - 32(5485)(24) —=0.167 rad =9.57"  Ans.
JG  7d'G x(075")(11.5)(10°)
3-62
Jt rdir Jt x(d?—dhr
a T L= max — 0~ max T — max — o 1 max
( ) solid 16 dO hollow B 16 do
L 4 36
%AT = M(m%) = d—’4(100%) = u(100%) =65.6% Ans.
T, d (404)
solid o
(b) VVsolid = kd02’ Whollow = k(d02 _diz)
o 2 367
Yoy = solid = Wholiow (100%) = d—3(100%) = (—2)(100%) =81.0% Ans.
W,ia d; (40%)
3-63
4 4
@ T, 4= J Tinax _ ﬂ-d47max T _ J T inax _ ﬂ|:d _(Xd) :|Tmax
solid — B - 16d hollow — B - 16d
_ 4
%AT = M(IOO%) = (’;"14) (100%) = x*(100%)  Ans.

solid
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(b) Wyypg = kd® Whollow =k (d ?—(xd )2)

2
. d
%AW:MQOO%):(X ) (100%) = x*(100%)  Ans.

2
solid d

Plot %AT and %AW versus x.

Percent Reduction in
Torque and Weight

— i

= = Torgue

Percent Reduction

seeesee difforence

The value of greatest difference in percent reduction of weight and torque is 25% and
occurs atx = \/5/2 :

3-64
2.8149(10*
@r=2 = 120(10°) = 4200(d/2) - 3( )
J (7/32)] a* ~(0.704)" | d
2.8149(104) v
d=| ——=—| =617(10") m=61.7 mm
120(10%)

From Table A-17, the next preferred size isd = 80 mm.  Awns.
d; =0.7d = 56 mm. The next preferred size smaller is d; = 50 mm  Ans.

(b)

Tc 4200(d, /2) 4200(0.050/2)
r=ic_ _

J (7/32)] d*~(a))'] (#/32)[ (0.080)* ~(0.050)" |

=30.8 MPa Ans.
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3-65

T=9.55£=9.55w=1433 N-m
n 10
13

1/3
r:16—7; = d. :(M—T] = M =0.045 m =45 mm
zde T 77(80)(106)
From Table A-17, select 50 mm.  Ans.
16(2)(1433)
(a) z,,, =W=117(1oé) Pa=117 MPa  Ans.

(b) Design activity

3-66

63 025H 63 025(1)
n

/3 3

16(7880

,zg N dc:(ﬂ) _| 16(7880) | o
zdg T 7r(15 OOO)

From Table A-17, select 1.40in.  Ans.

= 7880 Ibf -in

T

3-67

For a square cross section with side length b, and a circular section with diameter d,

A =4 - bZ:%dz - b=%d

square circular

From Eq. (3-40) with b = ¢,

3
(T =%(3+ﬁj=%(3+ﬁjzg 2 (4.8):6.89613
suare e b/lc) b 1 d*\r d

For the circular cross section,

16T T
(TmaX )circular = ﬂ_dS = 5093?
( . ) 6.89613
e - - 1354
(Tmax )circular 5 093 ?
The shear stress in the square cross section is 35.4% greater. Ans.

(b) For the square cross section, from the table on p. 102, f# = 0.141. From Eq. (3-41),
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Tl Tl Tl Tl

quuare:ﬂb 3G:ﬂb4G: 4 :1150d4G
c
0.141[\/;dJ G
2
For the circular cross section,
g, =T 519 L
GJ  G(zd*/32) d*G
g 11.50 747
Ysq _ d"G _
= 7 =1.129
% 10.19 i

The angle of twist in the square cross section is 12.9% greater.  Ans.

3-68 (a)
T, =0.15T,

D T=0=(500-75)(4)—(T,—T;)(5)=1700—(T, - 0.15T, )(5)
1700-4.257, =0 = T, =400 Ibf  Ans.
T, =0.15(400)=60 Ibf  Ans.
(b)
D M, =0=-575(10)+460(28) - R.(40)
R.=17825=178 Ibf  Ans.
> F=0=R,+575-460+178.25
R, =-293251bf  Ans.

()
293251bf 575 Ibf 460 Ibf 178.25 Ibf
o 10 in 18 in 12 in l

| A4 B o

v (Ibf) 293 25

178.25
Q X
-281.75
M 2932.5
(Ibfiin)
. \/ '
-2139
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(d) The maximum bending moment is at x = 10 in, and is M = 2932.5 Ibf'in. Since the
shaft rotates, each stress element will experience both positive and negative bending
stress as it moves from tension to compression. The torque transmitted through the shaft
from A to Bis T = (500 — 75)(4) = 1700 Ibf-in. For a stress element on the outer surface
where the bending stress and the torsional stress are both maximum,

_ Mc  32M  32(2932.5)
T T ad T z125)
__Tr _16T _16(1700)

J nd  m(.25)

=15294 psi=15.3 kpsi Ans.

= 4433 psi = 4.43 kpsi Ans.

(e)

3-69 (a)
T,=0.15T,

> T =0=(1800-270)(200)+(T, - T; ) (125) = 306(10° ) +125(0.157; - T; )
306(10°)-106.25T, =0 =  T,=2880 N Ans.
T,=0.15(2880) =432 N Ans.
(b)
> M, =0=3312(230)+ R.(510)— 2070(810)
R.=1794 N Ans.
D> F,=0=R,+3312+1794-2070
R, =-3036 N Ans.
(€)

y
(}‘ 230mm B 280mm €' 300mm A .

3036 N 3312N 1794 N 2070 N

V(N)

276
0 &

3036
M
(N-m)
0

Chapter 3 - Rev. A, Page 49/100
Joi..o- 621 apter ev age



(d) The maximum bending moment is at x = 230 mm, and is M =-698.3 N-m. Since the
shaft rotates, each stress element will experience both positive and negative bending
stress as it moves from tension to compression. The torque transmitted through the shaft
from A4 to Bis T = (1800 — 270)(0.200) = 306 N-m. For a stress element on the outer
surface where the bending stress and the torsional stress are both maximum,

1
Tr
T=—=
J
(e)
o,, O,

_ Mc _32M _32(698.3)

. . :263(103) Pa =263 MPa Ans.
zd®  7(0.030)

16T 16(306)

= -=57.7(10°) Pa = 57.7MPa  Ans.
zd®  7(0.030)

2 2
o. |0, : 263, |(263
= (2j +(z,) == i\/(—2 J +(57.7)

o, =275 MPa Ans.
o,=-12.1MPa  Ans.

2 2
ij +(z,) :\/(?j +(57.7) =144 MPa  dns.

(@)

T,=0.15T
> 7=0=(300-50)(4)+(T, ~7;)(3) =1000 +(0.157, - 7;) (3)
1000-2.557, =0 = T =392.16 Ibf Ans.

T, =0.15(392.16) = 58.82 Ibf Ans.

(b)
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> M, =0=-450.98(16) - R..(22)
R..=-327.99 Ibf Ans.

D> F.=0=R,, +450.98-327.99
R,. =-122.99 Ibf Ans.

D M,, =0=350(8)+ R, (22)

R., =-127.27 Ibf Ans.

Y. F =0=R,, +350-127.27

R,, =-222.73 Ibf Ans.
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(c)

350 Ibf 122.99 1bf 45098 Ibf 327.99 Ibf
] T | .1
’ 8in 8in 6 in ; 8 in § in 6 in .
0 5 z c X @) ” 4 o X
222.73 1bf 127.27 1bf
¥ (Ibf)
o 1307 122 .99
| 0 X
0 X
rrrT -327.99
i M) M 1967.84
i L
( x (Ibfin)| g3 99
0]
~763.65 0 x
-1781.84

(d) Combine the bending moments from both planes at A and B to find the critical
location.

M, =/(983.92)? +(~1781.84)* = 2035 Ibf -in

M, = \/(1967.84)2 +(=763.65)* =2111Ibf -in
The critical location is at B. The torque transmitted through the shaft from 4 to Bis 7' =

(300 — 50)(4) = 1000 Ibf-in. For a stress element on the outer surface where the bending
stress and the torsional stress are both maximum,

oM _32M _ 32(2111)
1 rd’ z(1)’
o Tr 16T _16(1000)
J #xd®  zQ)
(e)

2 2
o, azzgzw_r (‘;] +(z,) :%i\/[%j +(5.09)°

o, =22.6 kpsi Ans.
o, =—1.14 kpsi Ans.

’ > |21y
rmax=\/[‘§j +(z,) :\/(Tj +(5.09)" =11.9 kpsi ~ Ans.

=21502 psi=21.5 kpsi Ans.

=5093 psi = 5.09 kpsi Ans.
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3-71 (a)
T,=0.15T,

> T=0=(300-45)(125)+(T, - T;)(150) =31 875+(0.157, - ;) (150)
31875-127.5T, =0 = T =250 N-mm Ans.
T,=0.15(250)=37.5 N-mm Ans.

(b)
> M, =0=3455in45°(300) - 287.5(700) - R...(850)

R.,=-150.7N  Ans.

D> F.=0=R, —345c0s45° +287.5-150.7
R,.=1072 N Ans.

D> M, =0=3455in45°(300)+ R, (850)
R.,=-86.10 N Ans.

D> F,=0=R,, +345c0s45° —86.10

R,, =-1579 N Ans.

(c)
1072 N 2440N 2875N 150.7N
}. h
4 B e R \ _
o 300 mm I 400 mm 150 mm 1 X & 300mm 4 400mm  p 150 mm I A
1579N 2440N 86.1 N
V(N) V(N)
36.1 136.8
o X 0 X
1579 ~107.2 1507
M M
() (N-m) 22.56
0 X @] /\ L
4737 -32.16
n

ding moment diagrams, it is clear that the critical location is at 4 where both planes have
the maximum bending moment. Combining the bending moments from the two planes,

M =(~47.37)" +(-32.16) =57.26 N-m
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The torque transmitted through the shaft from 4 to B is 7= (300 — 45)(0.125) = 31.88
N-m. For a stress element on the outer surface where the bending stress and the torsional
stress are both maximum,

_ Mc 32M  32(57.26)
1 xd® 7(0.020)
__Tr_16T _16(31.88)
J xd’ 7(0.020)’

(e)

2 2
o, 0, = ‘; + (%j +(z, ) :%i \/(%9] +(203)

o, =78.2 MPa Ans.
0,=-527MPa  Ans.

o\ > 72.9Y
Tmax :\/( 2xj +(Txy) :\/[Tj +(2O3)2 :417 MPa AI’ZS.

= 72.9(106) Pa =729 MPa  Ans.

= 20.3(10") Pa =203 MPa  Ans.

3-72
(a)
DT =0=-300(cos 20°)(10) + F (cos 20° )(4)

F, =750 Ibf Ans.
(b)
Z M, =0=300(cos20°)(16) —750(sin 20°)(39) +R ., (30)
R., =183 Ibf Ans.
Z F,=0=R,, +300(cos20°)+183—750(sin 20°)
R,, =-208 Ibf Ans.
ZMOJ, =0=300(sin 20°)(16) — R, (30) — 750(cos 20°)(39)
R.. =-861 Ibf Ans.
Z F,=0=R,, —300(sin 20°) —861+750(cos 20°)
R,. =259 Ibf Ans.
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(€)

2593 1bf 102.61bf 861.5 Ibf 704.8 1bf

¥
7 16 in 4 14in O 9@ B s Ol 16in l4in 9in
A C B
Z
20851bf 281.91bf 183.11bf 256.5 Ibf 704 8
V (IbH) 2565 V (Ibf)
73.4
0 X 0
X
L T 1z
-208.5 2593 -156.7
M M
(Ibf-in) (Ibf-in) &
O X 0
-4149
-2308
3336 -6343

(d) Combine the bending moments from both planes at 4 and C to find the critical
location.

M, =J(-3336)* +(~4149)* = 5324 Ibf -in
M, = \/(—2308)2 +(—6343)* =6750 Ibf -in

The critical location is at C. The torque transmitted through the shaft from 4 to B is
T =300c0s(20°)(10)=2819 Ibf -in. For a stress element on the outer surface where the

bending stress and the torsional stress are both maximum,

oM _32M _ 32(6750)
1 xd®  7(1.25)
Tr 16T 16(2819)

r=— =7351 psi = 7.35 kpsi Ans.
J rd  nm(.25) P P
(e)

2 2
A RS = EE e

o, =36.7 kpsi Ans.
o, =—1.47 kpsi Ans.

’ » [(35.2Y
rmax=\/(‘2xj +(z,) =\/(T] +(7.35)" =19.1kpsi ~ Ans.

=35203 psi=35.2kpsi  Ans.
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3-73

(a)
3T =0=—11000(cos 20°)(300) + F, (cos 25°)(150)

F,=22810N  dns.

(b)
> M,,. =0=—11000(sin 20°)(400) — 22 810(sin 25°)(750) +R,., (1050)

R.,=8319N  Ans.

sz =0=R,, —11000(sin 20°)—22 810sin(25°) + 8319

R,,=5083 N  Ans.

ZMOy =0=11000(cos 20°)(400) —22 810(cos 25°)(750) - R, (1050)
R.,=-10830 N Ans.

ze =0=R,, —11000(cos20°)+22 810(cos25°)—-10830

R,, =494 N Ans.

(c)
494N 10337N 20673 N 10830N
¥ \
o t0omm A 350mm B 300mmC ()l 400mm ] 350 mm ¥ 300mm]|
l T i 4 B C
5083 N 3762 N 9640 N 8319N
V(N) 9843
V(N)
5083 —— ;
——— 11 5 ,
g . 1494
-10830
-8319 " 3249
M N-
(N-m) 2033 2496 (N-m)
0
O X
! -198

(d) From the bending moment diagrams, it is clear that the critical location is at B where
both planes have the maximum bending moment. Combining the bending moments from
the two planes,
M =(2496)’ +(3249)" =4097 N-m
The torque transmitted through the shaft from A4 to B is
T=11 00000s(20°)(0.3) =3101 N-m.

For a stress element on the outer surface where the bending stress and the torsional stress
are both maximum,
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Mc 32M  32(4097)
I xd®  7(0.050)
__Tr_16T _ 16(3101)
J #xd’  7(0.050)°

(€)

2 2
o, 02:02% (Zj +(z,) :3323'9i\/(3323'9j +(126.3)’

o, =376 MPa Ans.
o,=-42.4MPa  Ans.

2 2
T =\/(GXJ +(z,) =\/(wj +(126.3) =209 MPa  dns.
2 2

=333.9(106) Pa =333.9 MPa  Ans.

- 126.3(106) Pa=1263MPa  Aus.

3-74
(a)
(EM,,). =6.13C, ~3.8(92.8) ~3.88(362.8) =0

C.=28721bf Ans.
(M, )Z =6.13D_+2.33(92.8)-3.88(362.8) =0
D, =194.41bf Ans.

808 Ibf
x
E /

92.8 Ibf 3028 Ibf

(ZMD) =0 = C. = ﬁ(808) =500.9 Ibf Ans.
¥ 6.13 362.8 Ibf
2.33
(ZMC )x =0 = DZ = 5(808) =307.11bf Ans.

(b) For DQC, let x, y’, z’ correspond to the original — y, x, z axes.

v
| E 3628 [bf 307.11bf 808 Ibf 500.9 Ibl
194.4 Ibf l Y
92.8 Ibf ,
xr - A
D 0 C T | D 0 (%
287.2 Ivf
7 Ve 307.1
ol v (0] x'
-194.4
-287.2 -500.9
M.,
Mz M, 307.1(3.8) = 1167 Ibf-in
287.2(233) = 669.2 Ibf-in
0 |\ ‘_‘,; () .

-194.4(3.8) = -738.7 Ibf-in
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(c) The critical stress element is just to the right of O, where the bending moment in both
planes is maximum, and where the torsional and axial loads exist.

T =808(3.88) = 3135 Ibf -in

M =+669.2% +1167% =1345 Ibf -in
16T 16(3135)
T=—17F= 3
zd 7r(1.13 )
o =i32A34 :i32(134f)
7d n(1.13 )

F 362.8

o, =——=—— 220 __362psi Ans.
T4 (r/49(113) P

(d) The critical stress element will be where the bending stress and axial stress are both in
compression.

=11070 psi  Ans.

=19495 psi  Ans.

o, =-9495-362 = 9857 psi

max

2
:\/(‘9§57j +11070° =12118 psi=12.1kpsi  Ans.

2
o0, =7189 psi=7.19 kpsi  Ans.
0, =—17046 psi=—17.0 kpsi  Ans.

2
0,0, = 9857 i\/(_9§57j +11070°

3-75 B, 406 1bf
@) . _
(M, ) =0

6.13C, —3.8(46.6)—3.88(140) =0
C.=117.51bf Ans.

(M) =0

—6.13D —2.33(46.6)+3.88(140) =0
D_=7091bf Ans.

(ZM,) =0 = C =£(406)=251.7 Ibf  Ans.
Pl ©6.13
2.33

(EM.) =0 = D, =="-(406)=154.3 Ibf Ans.
< © 613
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(b) For DQC, let x’, y’, z’ correspond to the original — y, x, z axes.

¥ | . 1543 Ibf 406 1bf 251.7 Ibf
140 Ibf
170.9 Ibf l )
46.6 1bf —
At = D ¢ C
D 0 C T
i 117.5 Ibf v, —
y’ 1
O 5! 0 %
-70.9 [
117.5 2517
M, M 154.3(3.8)=586.3 Ibf-in
117.5(2.33) =273.8 Ibf+in
I\ , () xr
0 it

-70.9(3.8) = -269.4 Ibf-in

(c) The critical stress element is just to the right of O, where the bending moment in both
planes is maximum, and where the torsional and axial loads exist.

T =406(3.88)=1575 Ibf -in

M =+/273.8 +586.3% =647.1 Ibf -in
__ 167 _ 16(1575)

=8021psi  Ans.

w0 ()
o, =422 _  32O8TD) _ 4 6501 psi dns.
()
F 140

=——=———————=-1783psi  Ans.

=Y (2l 4)(1)

(d) The critical stress element will be where the bending stress and axial stress are both in

compression.

o, =—6591-178.3=-6769 psi

max

2
_ \/(#j +8021° =8706 psi =8.71 kpsi  Ans.

2
0,0, = 6769 , J[ _6769j +8021°
2 2
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0, =5321psi=5.32kpsi  Ans.
0, =—12090 psi=—12.1kpsi  Ans.

3-76

92.8 Ibf

02.8 Ibf T 808 Ibf
362.8 Ibl

(ZMB )Z =-5.62(362.8)+1.3(92.8)+34, =0
A, =639.4 Ibf Ans.
(ZMA )Z =-2.62(362.8)+1.3(92.8)+3B, =0
B, =276.6 Ibf Ans.

(EMy) =0 = 4 =E(808)=1513.7 Ibf  Ans.
By z 3

2.62

(ZM,), =0 = B =T(808) =705.7 Ibf  Ans.
(b)
639.4 Ibf 208 Iof 151317 Ibf
y
| 262 in '— 28I B 928Iof |  2.62in «—0281bf B
P ' : x P 1 3in
362.8 Ibf 4 3in T B
705.7 Ibf
¥ (Ibf)
7 (Ibf) 362.8 o
0 X
X
2766 -705.7
| M (Ibf-in) 22U
829.8 M (Ibf-in
M (1bf-in)
0 X 0 x
1206

(c) The critical stress element is just to the left of 4, where the bending moment in both
planes is maximum, and where the torsional and axial loads exist.
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T =808(1.3) = 1050 Ibf -in
__ 16(1050)

7[(0.883) =7847 psi  Ans.

M =J(829.8)> +(2117)* =2274 Ibf -in
32M _, 32(2274)
zd®  7(0.88°)
F 92.8

o, =——=——""2 ___—_153psi Ans.
A (7r/4)(0.882)

o,=t =133990 psi  Ans.

(d) The critical stress will occur when the bending stress and axial stress are both in

compression.

o, =-33990—153 =-34143 psi

2
T = \/(_342143j +7847% =18 789 psi=18.8 kpsi  Ans.

2
6,0, = 28 i\/(_34143j +7847
2 2

o, =1717 psi=1.72 kpsi ~ Ans.
0, =—35860 psi=—-359 kpsi  A4ns.

3-77
T 100

00 N

c/2 0.125/2 Shaft ABCD
|

F,=1600tan 20 = 582.4 N
T = F,(h/2) =1600(0.250/2) =200 N-m
T, 200

P= = =2667 N
(a/2) (0.150/2)

Z(MA )Z =0

450RDy —582.4(325)—-2667(75)=0

RDy =865.1 N

> (M), =0=-450R), +1600(325) = Rp, =1156N
> F,=0=R,, +865.1-582.4-2667 = R, =2384N
S F =0=R, +1156-1600 = R, =444 N

Gear F 100 N'm
@62.5 mm

£
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AB The maximum bending moment will either be at B or C. If this is not obvious, sketch
the shear and bending moment diagrams. We will directly obtain the combined moments
from each plane.

My =AB /Rjy +R; =0.075v2384% +444’ =181.9 N-m
M. =CD /ng +R} =0.125V865.1* +1156” =180.5 N-m

The stresses at B and C are almost identical, but the maximum stresses occur at B.  Ans.

32M,  32(1819) )
. f0030) 68.6(10°) Pa = 68.6 MPa

£, = 16T _ 16(200) _ 37.7(10°) Pa=37.7 MPa

wd? 7[(0.0303)

2
Oy =L+ { BJ +75 = 26+\/(%] +37.7 =853 MPa  Ans.

\/( j +37.72 =51.0 MPa  Ans.

Op =

Q
7\
w‘wq
;/
Dot\)
Il

Gear F 100 N-m
r 62.5 mm
=t 19 60N

c/2 0.125/2 Shaft ABCD

200 N-'m

F,=1600tan 20 = 582.4 N
T, = F,(b/2) =1600(0.250/2) =200 N-m

5824N

Z/R z
_ TC _ 200 _ 2667 N 2667 N ‘ 200 N'm
(a/2) (0.150/2) ’\ oy

R Dz

>.(M ). =0=450R,, —582.4(325) = Ry, =420.6 N
(M), =0=—450Ry, +1600(325)~2667(75) = Rp, =711.IN
2. F,=0=R,, +420.6-582.4 = R, =161.8N
> F,=0=R, +711.1-1600+2667 = R, =-1778N
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The maximum bending moment will either be at B or C. If this is not obvious, sketch
shear and bending moment diagrams. We will directly obtain the combined moments
from each plane.

M, =AB /Rjy +R}. :0.075\/161.82 +(-1778)* =133.9N-m
M. =CD /R,Z)y +R}, =0.125v/420.62 +711.12 =103.3 N-m

The maximum stresses occur at B.  A4ns.

M, 32(1339) )
i 000 50.5(10°) Pa=50.5 MPa

.- 16Tz33 __16(200) =37.7(10°) Pa=37.7 MPa
zd ;z(o.0303)

2
O = [ 28] 422 =202 [[202F 13792 _70.6MPa  ns.
2 2 2 2

2
\/(?j 72 = \/(&Zsj +37.72 =454 MPa  Ans.

GB:

3_79 Gear F 900 Ibf-in
5in
F=L -9 g0 1pf r
c/2 10/2

F, =180tan 20 = 65.5 Ibf e “BCD.\| T
=F,(b/2)=180(5/2) =450 Ibf -in
150 Ibf
T, 450
S =75y =150 Ibf 450 i

“(a2) (6/2)

65.5 Ibf
450 Ibfsin

Z(MA )Z =0=20Rp, —65.5(14)-150(4) = Rp, =759 Ibf

> (M), =0=-20Rp, +180(14) = R, =126 Ibf
> F,=0=R,,+759-655-150 = R, =140 Ibf
Y F, =0=R, +126-180 = R, =54.0 Ibf
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The maximum bending moment will either be at B or C. If this is not obvious, sketch
shear and bending moment diagrams. We will directly obtain the combined moments
from each plane.

M, :E\/Rjy +R% = 4140 +54> = 600 Ibf -in

M, =E\/R,3y +R3 =6375.97 +126% =883 Ibf -in

The maximum stresses occur at C.  Ans.

O_C:32MC: 32883) 1460 o
zd® 7r(1.3753)

16T, 16(450)
zd® ;z(1.3753)

2 2
o =9, [[Gc| 2 3400 34001 ger2 3670 psi dns.
> 3 2 2

2
J(ch 2 = \/(@j 18822 =1940 psi  Ans.

=882 psi

TC:

3-80
(a) Rod 4B experiences constant torsion throughout its length, and maximum bending
moment at the wall. Both torsional shear stress and bending stress will be maximum on
the outer surface. The transverse shear will be very small compared to bending and
torsion, due to the reasonably high length to diameter ratio, so it will not dominate the
determination of the critical location. The critical stress element will be at the wall, at
either the top (compression) or the bottom (tension) on the y axis. We will select the
bottom element for this analysis.
(b) Transverse shear is zero at the critical stress elements on the top and bottom surfaces.

5 M _ M(d/2) 32M _32(8)(200)
Y1 nd/e4 nd z(1)
Tr _T(d/2) 16T 16(5)(200)

;=i _1or _ — 5093 psi = 5.09 kpsi
=TT T RdR2 a2l ) P P

=16 297 psi =16.3 kpsi

— T = 5.09 kpsi

X
l | o, = 16.3 kpsi
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(c)
o o\ » 163 [(163Y )
o, o, =—% |l = | +(r.) =—==,|| — | +(5.09)
2 2
o, =17.8 kpsi Ans.
o, =-1.46 kpsi  Ans.

? 16.3Y’
r :\/(‘ij +(sz)2 =\/(T) +(5.09)2 =9.61kpsi  Ans.

3-81
(a) Rod 4B experiences constant torsion throughout its length, and maximum bending
moments at the wall in both planes of bending. Both torsional shear stress and bending
stress will be maximum on the outer surface. The transverse shear will be very small
compared to bending and torsion, due to the reasonably high length to diameter ratio, so
it will not dominate the determination of the critical location. The critical stress element
will be on the outer surface at the wall, with its critical location determined by the plane

of the combined bending moments. ,

critical in
M, =—(100)(8) =— 800 Ibf'in compression
M. = (175)(8) = 1400 Ibf*in M, /g\
M, = M?>+M> 2 —de—
tot y z ‘
|
= /(~800)’ +1400” = 1612 Ibf -in 1 ¥ it
________ tension
Mror M,

M
f=tan'| |—| |=tan™’ 800, =29.7°
M. 1400

The combined bending moment vector is at an angle of 29.7° CCW from the z axis. The
critical bending stress location, and thus the critical stress element, will be £90° from this
vector, as shown. There are two equally critical stress elements, one in tension (119.7°
CCW from the z axis) and the other in compression (60.3° CW from the z axis). We’ll
continue the analysis with the element in tension.

(b) Transverse shear is zero at the critical stress elements on the outer surfaces.

o= M}O‘c = M“"Sd/z) = 32M3‘°t = 32(16132) =16 420 psi =16.4 kpsi
nd" /64 wd z(1)

Ir _T(d/2) 16T 10G)UTS) _ 446 i — 446 kpsi

J #d" /32 7xd z(1)

X
a, = 16.4 kpsi

~—— 7= 4.46 kpsi
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(€)

2 2
oy 02=(Z“_r (Zj +7° =%i\/{%j +(4.46)2

o, =17.5 kpsi Ans.
o,=-1.13kpst  Ans.

o\ 16.4Y
T =\/[ 2Xj +7? =\/(Tj +(4.46)2 =933 kpsi  Ans.

3-82
(a) Rod 4B experiences constant torsion and constant axial tension throughout its length,
and maximum bending moments at the wall from both planes of bending. Both torsional
shear stress and bending stress will be maximum on the outer surface. The transverse
shear will be very small compared to bending and torsion, due to the reasonably high
length to diameter ratio, so it will not dominate the determination of the critical location.
The critical stress element will be on the outer surface at the wall, with its critical
location determined by the plane of the combined bending moments.

y

M, =—(100)(8) — (75)(5) =— 1175 Ibfin

M = (-200)(8) =—-1600 Ibf'in /‘Kﬁical
_ 2 2
M, =M, +M; i M 1,
\
|
|
|

= J(-1175)’ +(~1600)" =1985 Ibf -in
M \ |
O=tan'| || |=tan”' (—1 175) =36.3° M, Mior
M. 1600 ~

The combined bending moment vector is at an angle of 36.3° CW from the negative z
axis. The critical bending stress location will be £90° from this vector, as shown. Since
there is an axial stress in tension, the critical stress element will be where the bending is
also in tension. The critical stress element is therefore on the outer surface at the wall, at
an angle of 36.3° CW from the y axis.

(b) Transverse shear is zero at the critical stress element on the outer surface.

Mg M, (d/2) _32M,, 32(1985)

o = — 20220 psi = 20.2 kpsi
e ST T d 6d ad (1) P P

O axial = Ly 1} = 73 =95.5 psi = 0.1 kpsi , which is essentially negligible
’ A nd /4 ;;(1) /4

O, =0, aial T O peng = 20220+95.5=20316 psi = 20.3 kpsi

_Tr 16T _16(5)(200)
J xd’ 7z(1)3

=5093 psi =5.09 kpsi
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1 x
J | 7, = 20.3 kpsi

~— 1= 5.09 kpsi

(€)
2 2
o,, 0, = O * (ij +77 =—2O3 i\/(—223j +(509)2

2
o, =21.5 kpsi Ans.
o, =-120kpsi  Ans.

2 2
T =\/(O;j + 72 =\/(%j +(5.09)2 =114 kpsi  Ans.

3-83
T=(2)(200) =400 Ibf'in
The maximum shear stress due to torsion occurs in the middle of the longest side of the
rectangular cross section. From the table on p. 102, with b/c = 1.5/0.25 = 6, o= 0.299.
From Egq. (3-40),
To = d = 400 ~=14270 psi=14.3 kpsi  Ans.
abc® ~ (0.299)(1.5)(0.25)
3-84

(a) The cross section at 4 will experience bending, torsion, and transverse shear. Both
torsional shear stress and bending stress will be maximum on the outer surface. The
transverse shear will be very small compared to bending and torsion, due to the
reasonably high length to diameter ratio, so it will not dominate the determination of the
critical location. The critical stress element will be at either the top (compression) or the
bottom (tension) on the y axis. We’ll select the bottom element for this analysis.

(b) Transverse shear is zero at the critical stress elements on the top and bottom surfaces.

_Me _M(d/2) 32m _32(11)(250)

1 xd*l6A nd z(1)’
- E:T(j’/z):m{ :16(12)(350)=15 279 psi =15.3 kpsi
J nd*/32 nd z(1)

=28011 psi=28.0 kpsi

—_—

X
l ‘ g, = 28.0 kpsi

—~— T,,=15.3 kpsi
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(€)

o, =34.7 kpsi Ans.
o,=-6.7kpsi  Ans.

2 2
Toax = \/( (;xj +(7, )2 = \/(%) +(15.3)2 =20.7 kpsi  Ans.

3-85
(a) The cross section at 4 will experience bending, torsion, axial, and transverse shear.
Both torsional shear stress and bending stress will be maximum on the outer surface. The
transverse shear will be very small compared to bending and torsion, due to the
reasonably high length to diameter ratio, so it will not dominate the determination of the
critical location. The critical stress element will be on the outer surface, with its critical
location determined by the plane of the combined bending moments.

M, = (300)(12) = 3600 Ibfin ?
M. = (250)(11) = 2750 Ibfin Mrorhe———— e

M, =, /My2 +M:

= J(3600)" +(2750)" = 4530 Ibf -in

f=tan™ M =tan"' (—2750) =37.4° %
My 3600 critical

The combined bending moment vector is at an angle of 37.4° CCW from the y axis. The
critical bending stress location will be 90° CCW from this vector, where the tensile
bending stress is additive with the tensile axial stress. The critical stress element is
therefore on the outer surface, at an angle of 37.4° CCW from the z axis.

(b)

M (d/2 32(4530
T bend = M€ P E ). 32M;°t 32 - )_ 46142 psi = 46.1 kpsi
” 1 nd” | 64 nd 7[(1)
O axial = F‘c = ]} = 3020 =382 pSl =0.382 kpSl
’ A nmd /4 ;;(1) /4
O, =0, aia + Oy peng = 46142 +382 =46 524 psi=46.5 kpsi
_Ir 16T _ 16(12)(250)
J xd’ 77(1)3

=15279 psi =15.3 kpsi
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X
J | g, =46.5 kpsi

—~ T =15.3 kpsi
(©)

2 2
o, 0,=2rt (ij +7° =$i\/($) +(15.3)°

2
o, =51.1 kpsi Ans.
o, =—4.58kpsi  Ans.

2 2
Tone =\/(‘;j +7° =\/(£25j +(15.3) =27.8 kpsi  Ans.

3-86
(a) The cross section at 4 will experience bending, torsion, axial, and transverse shear.
Both torsional shear stress and bending stress will be maximum on the outer surface. The
transverse shear will be very small compared to bending and torsion, due to the
reasonably high length to diameter ratio, so it will not dominate the determination of the
critical location. The critical stress element will be on the outer surface, with its critical
location determined by the plane of the combined bending moments.

M, = (300)(12) — (~100)(11) = 4700 Ibfin
M. = (250)(11) = 2750 Ibfin

M, =, /My2 +M?

= J(4700)’ +(2750)" = 5445 Ibf -in

6= tan™ M. tan™' (@j =30.3°
M, 4700

The combined bending moment vector is at an angle of 30.3° CCW from the y axis. The
critical bending stress location will be 90° CCW from this vector, where the tensile
bending stress is additive with the tensile axial stress. The critical stress element is
therefore on the outer surface, at an angle of 30.3° CCW from the z axis.

(b)

O pend = Mt M Ed 2)_ 32M;°t = 32(54‘15) =55 462 psi = 55.5 kpsi
’ 1 zd” | 64 nd 7;(1)
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G\* axial i = Fz; = 3020 =382 pSl =0.382 kpSl
” A nd /4 ;;(1) /4
+ = O axial T O peng = 29 462 +382 =55 844 psi=55.8 kpsi
16(12)(250
T=E 16]; ( )(3 )=15279 psi =15.3 kpsi

B

X
l a, = 55.8kpsi

—~— T =153 kpsi

2 2
cp [ Fe] 42 2238, (338, 455y
2 T\ 2 2 W2

o, =59.7 kpsi Ans.
o, =-392kpst  Ans.

2 2
T =\/(O;j +72 =\/(¥j +(15.3)2 =31.8 kpsi  Ans.

o

(€)

O, 0, =

3-87
(a) The cross section at 4 will experience bending, torsion, and transverse shear. Both
torsional shear stress and bending stress will be maximum on the outer surface, where the
stress concentration will also be applicable. The transverse shear will be very small
compared to bending and torsion, due to the reasonably high length to diameter ratio, so
it will not dominate the determination of the critical location. The critical stress element
will be at either the top (compression) or the bottom (tension) on the y axis. We’ll select
the bottom element for this analysis.
(b) Transverse shear is zero at the critical stress elements on the top and bottom surfaces.

r/d=0.125/1=0.125

D/d=15/1=15

K, ouon =139 Fig. A-15-8
K, =159  Fig. A-15-9
. =K, i Mc =K, pend 3— = (1. 59)M 44 538 psi=44.5 kpsi
e 7(1)
6(12)(2
sz = Kt torsion E = Kt torsion 16_3 = (1 39) ( )( 3 50) 21 238 pS1 21 2 kpSI
’ J ’ nd z(1)
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X
I o, =44.5 kpsi

—~—— 1,,=21.2 kpsi

<_}

(c)
2 2
o} (o3 2 44.5 44.5 2
, — i X + :—i _— + 21.2
O-l O-Z 2 ( 2 j (sz) 2 \/( 2 ] ( )
o, =53.0 kpsi Ans.
o, =—848 kpsi  Ans.
2 2
- :\/(O;J +(sz)2 :\/(#j +(21.2)2 =30.7 kpsi

Ans.

3-88

(a) The cross section at 4 will experience bending, torsion, axial, and transverse shear.
Both torsional shear stress and bending stress will be maximum on the outer surface,
where the stress concentration will also be applicable. The transverse shear will be very
small compared to bending and torsion, due to the reasonably high length to diameter
ratio, so it will not dominate the determination of the critical location. The critical stress
element will be on the outer surface, with its critical location determined by the plane of

the combined bending moments.

M, = (300)(12) = 3600 Ibf-in
M., = (250)(11) = 2750 Ibfin

M, =, /My2 +M:?

= J(3600)’ +(2750)" = 4530 Ibf -in

6= tan™' M an”' (@j =37.4°
M 3600

4

y

The combined bending moment vector is at an angle of 37.4° CCW from the y axis. The
critical bending stress location will be 90° CCW from this vector, where the tensile
bending stress is additive with the tensile axial stress. The critical stress element is
therefore on the outer surface, at an angle of 37.4° CCW from the z axis.

(b)
r/d=0.125/1=0.125

D/d=15/1=1.5

K, =175  Fig. A-15-7
K, yuon =139 Fig. A-15-8
K,y =159  Fig. A-15-9
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Mc 32M 32(4530)

O vent = K pend N =K, e — = (1,59)W =73 366 psi=73.4 kpsi
F . .
O, i =K, i === (1.75)% =668 psi = 0.668 kpsi
’ A z(1) /4
O, =0y + O pong =73 366+ 668 =74 034 psi = 74.0 kpsi
16(12)(250
T=K, rsion E =K, rsion 16]; = (1.39)# =21238 psi=21.2 kpsi

D

X
J | 0. = 74.0 kpsi

p— = 2 2
()

2 2
0,, 0, = % t (ﬁJ +7’ 2—740i\/(—7420j +(212)2

2 2 2
o, =79.6 kpsi Ans.
o, =-5.64 kpst  Ans.

2 2
T imnax =\/(O;J +7’ =\/(?j +(21.2)2 =42.6 kpsi  Ans.

3-89
(a) The cross section at 4 will experience bending, torsion, axial, and transverse shear.
Both torsional shear stress and bending stress will be maximum on the outer surface,
where the stress concentration is also applicable. The transverse shear will be very small
compared to bending and torsion, due to the reasonably high length to diameter ratio, so
it will not dominate the determination of the critical location. The critical stress element
will be on the outer surface, with its critical location determined by the plane of the
combined bending moments.

M, = (300)(12) — (-100)(11) = 4700 Ibfin L
M. = (250)(11) = 2750 Ibf'in '

M., =1/My2+Mz2

= J(4700)’ +(2750)" = 5445 Ibf -in

(2750 . :
] =tan ! (—470()) =30.3 critical

<

4
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The combined bending moment vector is at an angle of 30.3° CCW from the y axis. The
critical bending stress location will be 90° CCW from this vector, where the tensile
bending stress is additive with the tensile axial stress. The critical stress element is
therefore on the outer surface, at an angle of 30.3° CCW from the z axis.
(b)

r/d=0.125/1=0.125

D/d=15/1=1.5

K, =175  Fig A-15-7
K, oun =139  Fig. A-15-8
K, =159  Fig. A-15-9
32(5445
o-x,bend = Kt,bend % = t,bend ﬂ = (1 59)(—3) = 88 185 pSl = 882 kpSI
ax,axial = Kt axial F‘r = (175)& =668 pSl =0.668 kpSl
A z(1) /4
O, =0, i+ Oy = 88 185+ 668 = 88 853 psi = 88.9 kpsi
16(12)(250
1=K, =K, (1.39)# = 21238 psi =21.2 kpsi
’ J ’ zd (1

X
I | 7, = 88.9 kpsi

~e———— 7 =212 kpsi

(c)

(@) M=Fp/4), c=pl4 I=bk’/12, b=rxd.n, h=p/2
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Me [Flp/9](e/4)_, By

o, =% =T 3 == 3
1 bh’ /12 16(7d.n,)(p/2) /12
o,=% oF Ans
nd n,p
(b) o, :—Ez ul 4r Ans.

A xd /4 rd’
_Tr T(d./2) 16T
‘" J  #d'132  xd
(c) The bending stress causes compression in the x direction. The axial stress causes
compression in the y direction. The torsional stress shears across the y face in the negative z
direction.

Ans.

(d) Analyze the stress element from part (c) using the equations developed in parts (a) and (b).
d=d-p=15-025=1251in

c.=0,=— OF =— 6(1500) =—4584 psi = —4.584 kpsi
} nd n,p 7(1.25)(2)(0.25)
o,=0,= A 4(1500) = —1222 psi= —1.222 kpsi

- 7(1.25%)

167 16(235) : :
T =—7 =-— =— = —-612.8psi= —0.6128 kpsi
o nd? 71'(1.253) P P

r

Use Eq. (3-15) for the three-dimensional stress element.

07 ~(~4.584-1222)0" +| (~4.584)(~1222) ~(-0.6128)" |o | ~(~4.584)(-0.6128)" | =0
o’ +5.8060° +5.2260 —1.721=0
The roots are at 0.2543, — 4.584, and —1.476. Thus, the ordered principal stresses are

o1 =0.2543 kpsi, 0, =—1.476 kpsi, and 03 =—4.584 kpsi. ~ Ans.

From Eq. (3-16), the principal shear stresses are
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o,—0c, 0.2543-(-1.476)

T, = 5 5 =0.8652 kpsi  Ans.
- ~1.476)—(~4.584

7, =2 _( )=( ) 1554 kpsi  Ans.
2 2
_o,  0.2543—(-4.584

7, =2"% ( ) 2419 kpsi  Ans.
2 2

3-91 As shown in Fig. 3-32, the maximum stresses occur at the inside fiber where » = r;.
Therefore, from Eq. (3-50)

2 2
1 p; 7
— l 1 [
Otmax =3 2(1+ 2]
o

r, —r

3-92 Ifp;=0, Eq. (3-49) becomes

2 2.2 2
_ TP, H P

o,

2 2
o =T

2 2

_ poro 7/;
=-m I+
v r

The maximum tangential stress occurs at » = r;. So

2p. 1’

_ o' o

Oimx =~ 5 Ans.
o =1

For o,, we have
2 2.2 2
— _p(]r() _r; r{) pO /r

(o

I

2 2
r-r

2 2

— poro rl__l
T2 2| 2
ro—r\r

Soog,=0atr=r;. Thusatr=r,

2 2 2
p0r0 }/; _rO
O, max = 5 =-p, Ans.

2.2
v .

o
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3-93 The force due to the pressure on half of the sphere is resisted by the stress that is
distributed around the center plane of the sphere. All planes are the same, so

/4)d’ _
(0,)y =0,=0, = plr/4)d _ pd, Ans.
dt 4t

The radial stress on the inner surface of the shell is, o3 =—p Ans.

3-94 o,> 0> 0,
Tmex = (0: —0,)2 atr=r;

2 2 2 2 2
B /0 /3 O L 3 P | Y
max_2 22 2 22 2 22

PN AR A N 7y =T

22 2
= p=l"lig _#(10000)—1597@ Ans.

3-95 o¢,>0,>0,
Tmax = (at 0.)2atr= r,

_1 rp, - Als rp, nl__wp
rl—r’ -\ ) -

6

. :r (max /(25 4)10

t=r,—1r,=100-91.7=8.3 mm Ans.

3-96 o,>0;> o0,
Tmex = (0: —0,)/2 atr=r;

2 2 2 2 2 2 2
B I /2 YL/ B -/ O O /8 (S N

2 2 2 2 2 2 2 2 2 2 2
2 - r) or-r n- v\t ) -

42(500) )
=—— 7 =4129 psi Ans.
4* —3.75 P

3-97 From Eq. (3-49) with p; =0,
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2 2
O-t:_ }/;)po l+rz_
2 2 2

ro —7} r

2 2

__ P hi
o, =——"%|1-—+
2_ 2 2

r—r r

o, > 0; > o,, and since o, and o, are negative,
Tmex = (0, —0y)/2 atr=r,

2 2 2 2 2 2 2
=21 o B 1 )| ) 2
2| -1 v, ro—F v, ro—=ro\r r—",
-7 3°-2.75° .
= p =t Tmax:TSZ(lo 000) =1900 psi  Ans.

3-98 From Eq. (3-49) with p;=0,

2 2
O.t:_ ’/;)po 1+7’;_
2 2 2

7"0 —7’;. r

2 2
__ 5D 5
o, =——"%|1-—+
2_ 2 2

r—r r

o: > 0, > o, and since o, and o, are negative,
Tmax = (0, —0y)/2atr=r,

wtpy \N(@s+a)0t
t=r,—r,=100-92.8=72mm Ans.

3-99 From Eq. (3-49) with p; =0,
’p r
o =——2fo |14
t 7"02 _77_2 rZ

2 2

Y
r 2.2 2
e r

o: > 0, > o,, and since o, and o, are negative,
Tmex = (0, —0y)/2atr=r,
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2 2 2 2 2 2 2
S ¥ B/ -3 PO WY 7 O/ | DY 5 R L
max 2 7'02—7’;.2 }"2 7'2—7".2 1’2 I"Z—V.Z l"2 1"2—}".2

~3.75%(500)

7375 =3629 psi Ans.

3-100 From Table A-20, S,=490 MPa
From Eq. (3-49) with p, =0,

Maximum will occur at » = r;

2 242 0.8(—490)(25* —19?
O max = ——2;” Lo = p,=- Foen ;roz ) _ —[ ( 2()2]£2) ) =828 MPa  Ans.
ro _7/; ro

3-101 From Table A-20, S, =71 kpsi
From Eq. (3-49) with p; =0,

2 2
T ’;0 pgz (1-";:_2}
v r
Maximum will occur at r = r;
2 o r—r 0.8(=71D)](1* =0.75
Gtmax=_221”0p02 = p,=- t’max(oz l )=—[ ( )](2 )=12.4 kpsi  Ans.
’ r, T 2r; 2(1%)

3-102 From Table A-20, S,=490 MPa
From Eq. (3-50)

2 2

rep, r

_ i i 0
o, =5 1+—2
v r

Maximum will occur at » = r;

_ﬂ(lﬂszw

(o

t,max rgz —l’;-z 7/;_2 7"02 _ri2
o, Py 0.8(490)](25% —19°
= p= ”maxz(r” > i) :[ ( z]( : ) =105 MPa Ans.
v+ (257 +19%)
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3-103 From Table A-20, S, =71 MPa
From Egq. (3-50)

2 2
rop. r
_ i i To
o, =75 1+5
7"0 —7;- r

Maximum will occur at r = r;

N N R I AR
t,max 1"02 _r}z I’;.z 7"02 _};2
2 2 2 2
o r,—r 0.8(71)|(1"=0.75
= p= t’maxz( L ):[ ( 2)]( 5 )215.9 ksi Ans.
v+ (1" +0.757)

3-104 The longitudinal stress will be due to the weight of the vessel above the maximum stress
point. From Table A-5, the unit weight of steel is 7, = 0.282 Ibf/in’. The area of the wall
is

Ayan = (7/4)(360% — 358.5%) = 846. 5 in’

The volume of the wall and dome are
Val = Awan b = 846.5 (720) = 609.5 (10°) in’
Vaome = (277/3)(180° — 179.25%) = 152.0 (10°) in®
The weight of the structure on the wall area at the tank bottom is

W =y, Vieta = 0.282(609.5 +152.0) (10*) = 214.7(10%) Ibf
214.7(10°
o, =— Wwo__ ( )=—254psi
A, 846.5

The maximum pressure will occur at the bottom of the tank, p; = Jyater #. From Eq. (3-50)

with r=r,
2 2
v v+
o, = 21171 (1+ ] pl(" }
rl—r’ r—

2 2
_| 62.4(55) 1 1802”79 25 | _5708=5710 psi Ans.
1441n° ) |\ 180°—179.25

¥ p, r 11t
o =—"1-%|=—p. =—-62.4(55 =-23.8psi  Ans.
, =T 3 D; (55) YRR p

o =h hi

1

N\:

Note: These stresses are very idealized as the floor of the tank will restrict the values
calculated.
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Since o1 > 0, > 03, 01 = 0, = 5708 psi, 0» = 0, =— 24 psi andos = o7 = — 254 psi.

From Eq. (3-16),

T = w — 2981 = 2980 psi
T = w — 2866 = 2870 psi Ans.
7,5 :M:HS psi
3-105 Stresses from additional pressure are,
Eq. (3-51),
50(179.25%) 5063 o
(o} e T T S1
(% )ns = T30 179,257 P
(O'r)s() psi = — 50 pSi
Eq. (3-50)
180% +179.25°

0, =500 T2 11 975 psi
(% )ns = 207507 170,257 P

Adding these to the stresses found in Prob. 3-104 gives

0, =5708+ 11975 =17683 psi = 17.7 kpsi

0, =—-238-50=-73.8psi Ans.

Ans.

o1 =—254 45963 = 5709 psi Ans.
Note: These stresses are very idealized as the floor of the tank will restrict the values
calculated.
From Eq. (3-16)
7y = 17 683+73.8 _ 8879 psi
2
1 - .
T = 7 683-5709 _ 5987 psi
2
Ty = 5709+23.8 _ 2866 psi

3-106 Since o, and g, are both positive and o, > o,
Tinax = (O_f)max /2

From Eq. (3-55), o7 is maximum at » = ; = 0.3125 in. The term
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2
27(5000
pw2(3+vj::0282 7 (5000) [3+0292j:82421bﬂm
8 386 | 60 8

(0.31252)(2.752) 1+3(0.292)

(0,) =82.42|0.3125"+2.75" + (0.31252)
*Jmax 0.3125° 3+0.292
=1260 psi
Tax = ? =630 psi  Ans.

Maxima:

do,
dr

]/,3

2.2
:k(zrf T —2rj:O = r=\rr, =J03125(2.75) =0.927 in

0.3125> (2.752)

o 0.927°

(0,),., =82:42/0.3125% +2.75% -

r

=490 psi  Ans.

3-107 @ = 27(2000)/60 = 209.4 rad/s, p = 3320 20 kg/m’, v=0.24, ;= 0.01 m, r, = 0.125 m

Using Eq. (3-55)

o, = 3320(209.4)2( 1+3(0.24)

2 2 2
j[(o.m) +(0125) +(0.125) - —= =

=1.85 MPa Ans.

3-108 @ =2x(12 000)/60 = 1256.6 rad/s,

) (5/16) ) ) e ) it
p_386(1/16)(7r/4)(52—0.752)_6'749(10 Jior <7/

The maximum shear stress occurs at bore where 7. = oy /2. From Eq. (3-55)

(6,)er = 6.749(107)(1256.6)° (3 - 020][0.3752 +25+2.5 —%(0.375)2}
+ 0.

=5360 psi
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Tmax = 5360 /2 =2680 psi  Ans.

3-109 @ =27(3500)/60 =366.5 rad/s,
mass of blade = m = pV' = (0.282 / 386) [1.25(30)(0.125)] = 3.425(10°) Ibf:s*/in

F = (ml2) o* at
= [3.425(107)/2]( 366.5%)(7.5) F <=5 v > F
= 1725 Ibf e 7.5 >

Arom = (1.25 - 0.5)(1/8) = 0.093 75 in’
Onom = F/ Anom = 1725/0.093 75 = 18 400 psi  Ans.

Note: Stress concentration Fig. A-15-1 gives K, = 2.25 which increases om,x and fatigue.

3-110 v=0.292, E=207 GPa, r; =0, R =25 mm, r, = 50 mm
Eq. (3-57),
~207(10°)5 | (0.05> —0.025%)(0.025 - 0)
~2(0.025)° (0.05> - 0)

where p is in MPa and Jis in mm.

(107)=3.10510)s (1)

Maximum interference,

O = %[50.042 —50.000]=0.021 mm  Ans.
Minimum interference,

5. = %[50.026 ~50.025]=0.0005 mm  Ans.

From Eq. (1)
Pmax = 3.105(10%)(0.021) = 65.2 MPa  Ans.

Pmin = 3.105(10%)(0.0005) = 1.55 MPa  Ans.

3-111 v=0.292, E=30Mpst, »;=0,R=11n,7,=21n
Eq. (3-57),
~30(10°)8 | (2° -1%)(17-0)
21 { (2>-0)

where p is in psi and J'is in inches.

}: 1.125(107)8 1))
Maximum interference,
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S = %[2.0016 ~2.0000]=0.0008 in  Ans.

Minimum interference,
0. = %[2.0010 —2.0010]=0  Ans.
From Eq. (1),
Pmax = 1.125(107)(0.0008) = 9 000 psi  Ans.

Pmin = 1.125(10")(0)=0  Ans.

3-112 v=0.292, E=207 GPa, r; =0, R=25 mm, r, = 50 mm
Eq. (3-57),
~207(10%)5 | (0.05° —0.025%)(0.025% - 0)
©2(0.025)° (0.052 —0)

where p is in MPa and J1s in mm.

(107)=3.10510)s (1)

Maximum interference,

5. = %[50.059 ~50.000]=0.0295 mm  Ans.

Minimum interference,

5. = %[50.043 ~50.025]=0.009 mm  Ans.

From Eq. (1)
Pmax = 3.105(10%)(0.0295) =91.6 MPa  Ans.

Pmin = 3.105(10°)(0.009) =27.9 MPa  Ans.

3-113 v=0.292, E=30Mpsi,»;=0,R=11in,7, =2 in
Eq. (3-57),
_30(10%)8 | (22 -1%)(1° -0)
2(1%) (2> -0)

where p is in psi and J'is in inches.

} =1.125(10")8 )

Maximum interference,

5 = %[2.0023 ~2.0000]=0.00115in  Ans.

Minimum interference,
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o :%[2.0017—2.0010] =0.00035  Ans.
From Eq. (1),
Pmax = 1.125(107)(0.00115) = 12 940 psi ~ Ans.

Pmin = 1.125(107)(0.00035) =3 938 Ans.

3-114 v=0.292, E=207 GPa, r; =0, R=25 mm, r, = 50 mm
Eq. (3-57),
~207(10%)5 | (0.05° —0.025%)(0.025% - 0)
2(0.025)° (0.05% —0)

where p is in MPa and Jis in mm.

(107)=3.10510)s (1)

Maximum interference,

0 ax =%[50.086—50.000] =0.043 mm Ans.

m
Minimum interference,

5. = %[50.070 ~50.025]1=0.0225 mm  Ans.

From Eq. (1)
Pmax = 3.105(10%)(0.043) = 134 MPa  Ans.

Pmin = 3.105(10°)(0.0225) = 69.9 MPa  Ans.

3-115 v=0.292, E=30Mpsi,r;=0,R=11in,r, =2 in
Eq. (3-57),
~30(10°)8 | (2° -1%)(17-0)
21 { (2>-0)

where p is in psi and J'is in inches.

} =1.125(10")8 1)

Maximum interference,

5. = %[2.0034 ~2.0000]=0.0017 in  Ans.

Minimum interference,

5. = %[2.0028 ~2.0010]=0.0009  Ans.

From Eq. (1),
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Pmax = 1.125(107)(0.0017) =19 130 psi ~ Ans.

Pmin = 1.125(107)(0.0009) = 10 130 Ans.

3-116 From Table A-5, E; = E, =30 Mpsi, v;=v, =0.292. r;=0,R=11in,7,=1.51n
The radial interference is 6 = %(2.002 - 2.000) =0.001in Ans.

Eq. (3-57),

s {(M)(ﬁﬂ}30(106)0-001[@.5212)(12o)}

2R} r2—p 2(1) (1.5°-0)

1

p
=8333 psi =83.3 kpsi Ans.

The tangential stresses at the interface for the inner and outer members are given by Egs.
(3-58) and (3-59), respectively.

2 2 2 2
)] =-p 22 J_“; -8 333)% — 8333 psi=-8.33 kpsi Ans.
2 RZ ) 2 2 ) .
©)o],.c =P tRZ - (8333)1;—22 = 21670 psi =21.7 kpsi Ans.

o

3-117 From Table A-5, E; = 30 Mpsi, E, =14.5 Mpsi, v; =0.292, v, =0.211.
ri=0,R=1in,r,=1.51n

The radial interference is o = %(2.002 - 2.000) =0.001in Ans.

Eq. (3-56),
e )
1 (r*+R? 1 (R +77
R| — % stV |t 5V
E \r —R E\R —r,

0.001
p= 2 2 2 2
L (LS ) B P (e 1)
14.5(106) 1.5 -1 30(106) -0

The tangential stresses at the interface for the inner and outer members are given by Egs.
(3-58) and (3-59), respectively.
R +77 1 +0°

()], g =P PO —(4599)m

= 4599 psi Ans.

=—4599 psi  Ans.

1

Chapter 3 - Rev. A, Page 85/100



1P+ R 1.5° +1°
T oy

(),

=11960 psi  Ans.

r=R

3-118 From Table A-5, E; = E, =30 Mpsi, v;=v, =0.292. r;,=0,R=0.51in,r,=1in
The minimum and maximum radial interferences are

5. = %(1.002 ~1.002)=0.000in  Ans.

5 X:%(I.OOS—I.OOI):O.OOIin Ans.

ma;

Since the minimum interference is zero, the minimum pressure and tangential stresses are
zero.  Ans.

The maximum pressure is obtained from Eq. (3-57).

_ES {(ffRz)(Rzrf)]

p

2R3 ’/;)2 _192
6 2 &2 2
- 30(10 )0.001 (1 0.5 )(0.5 0) 22500 pi e
2(0.53) (12 —0)

The maximum tangential stresses at the interface for the inner and outer members are
given by Egs. (3-58) and (3-59), respectively.

R +7’ 0.5° +0° :
O] =P = (Q2500) T = <2250 st s
7P+ R 1 +0.5%

(o)), =37500 psi  Ans.

12-05°

= P = (22500)

o

3-119 From Table A-5, E; = 10.4 Mpsi, E, =30 Mpsi, v; = 0.333, v, =0.292.
ri=0,R=1in,r,=1.51n

The minimum and maximum radial interferences are

5. = %[2.003 ~2.002]=0.0005 in  Ans.

5. = %[2.006 ~2.000]=0.003in  Ans.

Eq. (3-56),
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o

p:
1(r’+R 1 (R +77
R 2 2 tVo [T o 2TV
E \r —R E\R -r,

o

p:
2 2 2 2
N M Y 3 R (S MR £
30(10°)(1.5° -1 10.4(10°){ 1 -0

p=6229(10°)5psi  Ans.
Puin = 6.229(10°)8,, =6.229(10°)(0.0005) =3114.6 psi=3.11 kpsi ~ Ans.
P =6.229(10°)5,,,, =6.229(10°)(0.003) =18 687 psi=18.7 kpsi ~ Ans.

max

The tangential stresses at the interface for the inner and outer members are given by Eqgs.
(3-58) and (3-59), respectively.
Minimum interference:

2
)| =P Rz” el 11)1 0 3ilkpsi Ans.
min R _ . 0
R2 2
(o-t)o min = Pnin r2 - = ( 11)1 5 +1 = 8 09 kpSl AnS.
Maximum interference:
R*+717 1> +0°
o). =— ! 18.7 =-18.7 kpsi  Ans.
( t)l max pmax R2 7’1 ( ) O p
7 +R2 +12
(00| = Prmax TR =(18 7) =48.6 kpsi  Ans.

3-120 d =20 mm, r, =37.5mm, r, =57.5 mm
From Table 3-4, for R = 10 mm,
r,=37.5+10=47.5 mm

2
r,= 10 =46.96772 mm

2(47.5—\/47.52 —102)

e=r,—r,=47.5-46.96772=0.53228 mm

c

¢, =r,—1,=46.9677-37.5=9.4677 mm

¢, =r,—r, =57.5-46.9677=10.5323 mm
A=7rd? | 4=mr(20)/4=314.16 mm’
M = Fr, =4000(47.5) =190 000 N -mm

Using Eq. (3-65) for the bending stress, and combining with the axial stress,
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o _F Mc _ 4000 190 000(9.4677)

"4 der 31416 314.16(0.53228)(37.5)

o P Me, _ 4000 190 000005323) _ ooyipe g
A Aer, 314.16 314.16(0.53228)(57.5)

=300 MPa Ans.

3-121 d=0.751in,7, =1.25in,7, =2.0 in
From Table 3-4, for R = 0.375 in,
r,=125+0.375=1.625 in
0.375

r, = =1.60307 in
2(1.625 _J1.625° 0375 )

r,—r, =1.625-1.60307 =0.02193 in
r,—r. =1.60307-1.25=0.35307 in
r,—r, =2.0-1.60307 = 0.39693 in
A=rd* /| 4=7(0.75)"/4=0.44179 in’
M = Fr, =750(1.625) =1218.8 Ibf -in

e =
C =
cO

Using Eq. (3-65) for the bending stress, and combining with the axial stress,
_£+ Mc, 750 N 1218.8(0.35307)

o, = = =37230 psi=37.2 kpsi  Ans.
A Aer, 0.44179 0.44179(0.02193)(1.25)

o, = F_Me, 750 1218.8(039693) _ —23269 psi=-23.3 kpsi  Ans.
A Aer, 0.44179 0.44179(0.02193)(2.0)

3-122 d =6 mm, 7, =10 mm, 7, =16 mm
From Table 3-4, for R = 3 mm,

r,=10+3=13 mm

32
r, 2(13_m) 12.82456 mm
e=r,—r,=13-12.82456 =0.17544 mm
¢, =r,—1,=12.82456-10=2.82456 mm
¢, =r —r, =16-12.82456 =3.17544 mm
A=7rd’ | 4=r(6)"/4=282743 mm’
M = Fr, =300(13) =3900 N -mm

Using Eq. (3-65) for the bending stress, and combining with the axial stress,

Chapter 3 - Rev. A, Page 88/100



o o P Me _ 300 3900Q824560) _ppyp g
A Aer 282743  28.2743(0.17544)(10)

o o F Me, 300 3900B.17544)  _ v o
A Aer, 282743 28.2743(0.17544)(16)

3-123 d=6 mm, 7, =10 mm, r, =16 mm
From Table 3-4, for R = 3 mm,
r,=10+3=13 mm
32
r,= =12.82456 mm
2(13— 132—32)

e=r,—r,=13-12.82456 = 0.17544 mm
¢, =r,—1r, =12.82456-10 =2.82456 mm
¢, =r,—r,=16—-12.82456 =3.17544 mm
A=rd’ | 4=7(6)"/4=28.2743 mm’

The angle & of the line of radius centers is
H:Sin{ R+d/2 jzsinl( 10+6/2 j:30

R+d+R 10+6+10

M =F(R+d/2)sind=300(10+6/2)sin30° =1950 N-mm

Using Eq. (3-65) for the bending stress, and combining with the axial stress,

o, = Fsing N Mec, _ 300sin 30 N 1950(2.82456) _116 MPa  Ans.
A Aer,  28.2743  28.2743(0.17544)(10)

o, = Fsinf Mc, _ 300sin30°  1950(3.17544) — 727 MPa  Ans.
A Aer,  28.2743  28.2743(0.17544)(16)

Note that the shear stress due to the shear force is zero at the surface.

3-124 d=0.25in,7,=0.51n,7, =0.75 in
From Table 3-4, for R = 0.125 in,
r.=0.5+0.125=0.625 in
0.125°

r = —0.618686 in
2(0.625 _J0.625—0.125 )

e=r,—r,=0.625-0.618686 =0.006314 in
¢, =1,—1=0.618686—0.5=0.118686 in
c,=1,—1,=0.75-0.618686=0.131314 in
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A=rd® 1 4=7(0.25) /4 =0.049087 in>
M = Fr. =75(0.625) = 46.875 Ibf -in

Using Eq. (3-65) for the bending stress, and combining with the axial stress,

F M, 75 46.875(0.118686)
o, =—+ = +

= _ =37 428 psi = 37.4 kpsi
A Aer. 0.049087 0.049087(0.006314)(0.5)

o _F_ M, 75 46.875(0.131314)

Ans.

= = — =-24952 psi =—-25.0 kpsi
A Aer, 0.049087 0.049087(0.006314)(0.75)

Ans.

3-125 d=0.251in,7,=0.5in,7, =0.75 in
From Table 3-4, for R = 0.125 in,
r,=0.5+0.125=0.625 in

2

r = 0.125 =0.618686 in

2(0.625 ~J0.625 —0.125° )
e=r,—r,=0.625-0.618686 = 0.006314 in
¢, =r,—1,=0.618686-0.5=0.118686 in
¢, =r,—r,=0.75-0.618686=0.131314 in
A=rd?/4=m(0.25)/4=0.049087 in’

The angle @ of the line of radius centers is

. 4 R+d/2 . 4 0.5+0.25/2

f=sin | ——— |=sin
R+d+R 0.5+0.25+0.5

M = F(R +d /2)sin@=75(0.5+0.25/2)sin30" = 23.44 Ibf -in

Using Eq. (3-65) for the bending stress, and combining with the axial stress,

. _Fsin0 Mc _75sin30°  23.44(0.118686)
"7 A4 Aer. 0.049087 ' 0.049087(0.006314)(0.5)
_Fsin@ Mc, 75sin30° 23.44(0.131314)

o

Note that the shear stress due to the shear force is zero at the surface.

=18716 psi =18.7 kpsi

A

ns.

= - =—12478 psi=—12.5 kpsi  Ans.
A Aer,  0.049087 0.049087(0.006314)(0.75)

3-126
Me _ [34)][0-5(0.1094)]
I 7 (0.75)(0.1094°) /12

(b) r,=0.1251in,r,=r; + h=0.125+ 0.1094 = 0.2344 in
From Table 3-4,

(@ o=+

=18021 psi =+8.02 kpsi  Ans.
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r. =0.125+(0.5)(0.1094) = 0.1797 in
L 0109

" In(0.2344/0.125)
e=r —r =0.1797—0.174006 = 0.005694 in
¢ =r —r. =0.174006—0.125 = 0.049006 in
¢, =r —r, =0.2344-0.174006 = 0.060394 in
A=bh=0.75(0.1094) = 0.08205 in’

M =-3(4)=-12 Ibf -in

=0.174006 in

The negative sign on the bending moment is due to the sign convention shown in Fig. 3-34. Using

Eq. (3-65),
o, = Me ____ —12(0.049006) =—-10 070 psi=—10.1 kpsi  Ans.
Aer,  0.08205(0.005694)(0.125)
o =M __ —12(0.060394) = 6618 psi=6.62 kpsi  Ans.
Aer,  0.08205(0.005694)(0.2344)
© K =2-"01_ 156 s
o -8.02
K, =280 _g05  ns.
o 8.02

3-127
3(4)][0.5(0.1406
(@) o =+ Me _ LO][0501400)
I (0.75)(0.1406*) /12
(b) r;=0.1251n, r, = r; + h = 0.125 + 0.1406 = 0.2656 in

From Table 3-4,
r, =0.125+(0.5)(0.1406) = 0.1953 in

L 0.1406
" 1n(0.2656/0.125)
e=r —r =0.1953-0.186552 = 0.008748 in
¢ =r —r =0.186552-0.125=0.061552 in
¢, =r —r, =0.2656—0.186552 = 0.079048 in
A=bh=0.75(0.1406) = 0.10545 in’

M =-3(4)=—12 Ibf -in

=14856 psi =+4.86 kpsi  Ans.

=0.186552 in

The negative sign on the bending moment is due to the sign convention shown in Fig. 3-34. Using
Eq. (3-695),
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Me _ —12(0.061552) = 6406 psi=—6.41kpsi  Ans.
Aer. 0.10545(0.008748)(0.125)

Mec, —12(0.079048)

c,=- =-— =3872 psi=3.87 kpsi  Ans.
Aer,  0.10545(0.008748)(0.2656)
(c) K, zﬁzﬂ:l.?ﬂ Ans.
o -4.86
k=238 _680  ns
o .86
3-128
3(4)]{0.5(0.1094
(@ o= i%= + [ ( )][ ( )] =+8021 psi =+8.02 kpsi ~ Ans.

I (0.75)(0.1094°) /12
(b) »;=0.25in,r, =7r; + h=0.25+0.1094 = 0.3594 in
From Table 3-4,
7, =0.25+(0.5)(0.1094) = 0.3047 in

. __ 0.1094
" 1n(0.3594/0.25)

e=r,—r, =0.3047-0.301398 =0.003302 in
¢, =r,—r=0.301398-0.25=0.051398 in
¢, =r,—r, =0.3594-0.301398 = 0.058002 in
A=bh=0.75(0.1094) = 0.08205 in’
M =-3(4)=-12 Ibf -in
The negative sign on the bending moment is due to the sign convention shown in Fig. 3-34. Using

=0.301398 in

Eq. (3-65),
o =M 1O g106 59 11kpsi  dns.
der;  0.08205(0.003302)(0.25)
o, =— Me, _ —12(0.058002) =7148 psi=7.15 kpsi Ans.

Aer,  0.08205(0.003302)(0.3594)

o, -9.11

() K,=—t=——=1.14  Ans.
o —8.02

K, =2-T15_080  ns
o 8.02

3-129 r;=25mm, ro,=r; +h=25+87=112mm, r. =25+ 87/2=68.5 mm
The radius of the neutral axis is found from Eq. (3-63), given below.
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4

v, ="
[(darr)
For a rectangular area with constant width b, the denominator is
J.ro K%j ~bln’e
T r ]’;

Applying this equation over each of the four rectangular areas,

A _ o[ B )31 10222 131 122 |10 m 12 ] 2163769
r 25 45 82.5 92
A=2[20(9)+31(9.5)] =949 mm’

A 949

r = = =157.9475 mm
" [(d4arr) 163769

e=r,—1,=685-57.9475=10.5525 mm
¢, =r1,—1,=57.9475-25=32.9475 mm
c,=r,—r,=112-57.9475=54.0525 mm
M = 150F, = 150(3.2) = 480 kN-mm

We need to find the forces transmitted through the section in order to determine the axial
stress. It is not immediately obvious which plane should be used for resolving the axial
versus shear directions. It is convenient to use the plane containing the reaction force at
the bushing, which assumes its contribution resolves entirely into shear force. To find the
angle of this plane, find the resultant of F; and F’.

F =F +F, =24c0s60°+3.2cos0" =4.40 kN
F,=F, +F,, =24sin60"+3.2sin0" =2.08 kN 480 kNemm

//\{.’37 Ibf

F = (440" +2.08°)" = 4.87 kN
- : - 1.97 Ibf .~
This is the pin force on the lever which acts in a direction

F
f=tan" F} =tan 421_4013 =253

X

On the surface 25.3° from the horizontal, find the internal forces in the tangential and
normal directions. Resolving F'; into components,

F, =2.4cos(60° ~25.3") =1.97 kN
F,=2.4sin(60°-25.3)=1.37 kN

The transverse shear stress is zero at the inner and outer surfaces. Using Eq. (3-65) for
the bending stress, and combining with the axial stress due to £,
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_E, Mc _1370 [(3200)(150)](32.9475)

o, = =64.6 MPa  Ans.
A Aer, 949 949(10.5525)(25)
3200)(150) [(54.0525
O'ozi—Mc" 21370—[( ) )]( ):—21.7 MPa  Ans.
A Aer, 949 949(10.5525)(112)

3-130 r;=21in, ro=ri+h=2+4=61n, r, =2+0.5(4)=41n
A=(6-2-0.75)(0.75) = 2.4375 in®

Similar to Prob. 3-129,

a4 = 0.751n@+ 0.75 lnL =0.682 920 in
r 2 4.375
A 2.4375

n

= =3.56923 in
[(a4rr) 0682920

e=r —r =4-3.56923=0.43077 in
r -1 =3.56923-2=156923 in

¢, =r —r =6-3.56923=2.43077 in

M = Fr. =6000(4) = 24 000 Ibf -in

Using Eq. (3-65) for the bending stress, and combining with the axial stress,
F M _ 6000 N 24 000(1.56923)
A Aer, 24375 2.4375(0.43077)(2)
F  Mc, 6000  24000(2.43077)
A

O'.:

1

=20396 psi=20.4 kpsi  Ans.

o

= =—-6799 psi=-6.80 kpsi  Ans.
Aer, 2.4375 2.4375(0.43077)(6)

3-131 ri=121in, ro=r;i+h=12+3=15in,r.=12+3/2=1351n

I :%cfb =%(1.53)(0.75) ~1.988 in*
A=rzab=z(1.5)0.75) = 3.534
M =20(3+1.5) =90 kip-in

Since the radius is large compared to the cross section, assume Eq. 3-67 is applicable for
the bending stress. Combining the bending stress and the axial stress,

o _F Mer, 20 90(1.5)13.5) _
"4 In 3534 (1.988)(12)

_F Moy 20 900.535) _ ooy oa

2.1kpsi  Ans.

O =
A I 3.534  1.988(15)

Chapter 3 - Rev. A, Page 94/100



3-132 ri=125in, r,=r;+h=125+05+1+05=3.251n
re=i+r,)/2=(125+3.25)/2=225in  Ans.

For outer rectangle, (Id—AJ =b 1nr_0
[l

, =7r

For circle, [

14 —
j(dA/r)L 2(4_ /7’,(:2_7/2)
[J.dTA} =27 (r, =17 =7%)

Combine the integrals subtracting the circle from the rectangle

O

zj——1 251n%—27z(2 25-4225 0.5 ) — 0.840 904 in

A=12512)-r(0.5")=1.71460 in>  Ans.
A 1.71460

r, = = =2.0390 in  Ans.
Z [(darry 0.840904

—rn—225 2.0390=0.2110in  Ans.
— 7 =2.0390-1.25=0.7890 in

’ ro—rn—325 2.0390=1.2110 in

M =2000(4.5+1.25+0.5+0.5) =13 500 Ibf -in

o _F Mc _ 2000 13500(0.7890)

"7 A der 17146 1.7146(0.2110)(1.25)
F_Mec, 2000  13500(1.2110)

o =—— = =
° A der, 17146 1.7146(0.2110)(3.25)

(B

o 0

=20720 psi =20.7 kpsi ~ Ans.

—12738 psi =—12.7 kpsi ~ Ans.

3-133 From Eq. (3-68),
a=KF"?=F" (EJM

8)" 2(1/d)

Usev =0.292, F in newtons, £ in N/mm? and d in mm, then

P 1/3
o [gJ[(l—o.wz )/2070001 " _ ;) 1ases
8 1/30

1/3

From Eq. (3-69),

1/3 1/3
o - 3F2 _ 3F1/3 - 3F - 3F 350" MPa
2ra®  2x(KF")  27K* 27(0.03685)
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From Eq. (3-71), the maximum principal stress occurs on the surface where z = 0, and is
equal to — pmax.
o, =0.=—p_ =-352F" MPa  Ans.

From Fig. 3-37,

r. =03p._ =106F" MPa Ans.

3-134 From Eq. (3-68),

:i/(ﬁj(l—vf)/Eﬁ(l—vf)/Ez

8 1/d, +1/d,
1-0.292%)/(207 000)+(1-0.333%) /(71700
a=3 3(10) ( )/( )+( )/( ) =0.0990 mm
8 1/25+1/40
From Eq. (3-69),
JE 3 = 3(10) =487.2 MPa

21a’ 2;;(0.09902)

From Fig. 3-37, the maximum shear stress occurs at a depth of z=0.48 a.
z=0.484=0.48(0.0990)=0.0475 mm  Ans.

The principal stresses are obtained from Egs. (3-70) and (3-71) at a depth of z/a = 0.48.

] 1
o, =0,= —487.2{[1 ~0.48tan"" (1/0.48) |(1+0.333) —m} =-101.3 MPa
o, =512 __396.0 MPa
1+0.48

From Eq. (3-72),
— —-101.3)—(-396.0
r =2 2"3 _ )2( ) _1474MPa  dns
Note that if a closer examination of the applicability of the depth assumption from Fig. 3-
37 is desired, implementing Egs. (3-70), (3-71), and (3-72) on a spreadsheet will allow
for calculating and plotting the stresses versus the depth for specific values of v. For v =

0.333 for aluminum, the maximum shear stress occurs at a depth of z = 0.492a with 7«
=0.3025 pmax-

Chapter 3 - Rev. A, Page 96/100



This gives Tmax = 0.3025 pmax = (0.3025)(487.2) = 147.38 MPa. Even though the depth
assumption was a little off, it did not have significant effect on the the maximum shear
stress.

3-135From the solution to Prob. 3-134, a = 0.0990 mm and p.x = 487.2 MPa. Assuming
applicability of Fig. 3-37, the maximum shear stress occurs at a depth of z=0.48 a =
0.0475 mm. Ans.

The principal stresses are obtained from Eqgs. (3-70) and (3-71) at a depth of z/a = 0.48.

] 1
o, =0, = 487.2{[1 ~0.48tan"' (1/0.48) |(1+0.292) m} =-92.09 MPa

—487.2

o, = > =-396.0 MPa
1+0.48

From Eq. (3-72),
— —92.09)—(-396.0
r =2 2‘73 _ )2( ) 1520 MPa  ns.
Note that if a closer examination of the applicability of the depth assumption from Fig. 3-
37 is desired, implementing Eqgs. (3-70), (3-71), and (3-72) on a spreadsheet will allow
for calculating and plotting the stresses versus the depth for specific values of v. For v =

0.292 for steel, the maximum shear stress occurs at a depth of z = 0.478a with 7yax =
0.3119 pmax-

3-136 From Eq. (3-68),

_§/[3Fj2(l—vz)/E
N8 ) d, 11/,
} :#[3(20)}2(1—0.2922)/(207 000) 01258

8 1/30+1/o0

From Eq. (3-69),
3F - 3(20)
2ra’ 27[(0.12582)

Piax = =603.4 MPa

From Fig. 3-37, the maximum shear stress occurs at a depth of
z=0.48a = 0.48(0. 1258) =0.0604 mm  Ans.

Also from Fig. 3-37, the maximum shear stress is
r..=03p =0.3(603.4)=181 MPa Ans.
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3-137 Aluminum Plate-Ball interface: From Eq. (3-68),

:J(szj(l—vf)/m(l—v;)/a

8 1/d, +1/d,

:3.517(10‘3)F”3 in

azi/(ﬁ)(l0.2922)/[(30)(106)}(10.3332)/[(10.4)(106)}

8 1/1+1/o0

From Eq. (3-69),

P = 3F__ 3E =3.860(10*) F'* psi

27a° 22[3517(10°)F |
By examination of Egs. (3-70), (3-71), and (3-72), it can be seen that the only difference
in the maximum shear stress for the plate and the ball will be due to poisson’s ratio in Eq.
(3-70). The larger poisson’s ratio will create the greater maximum shear stress, so the
aluminum plate will be the critical element in this interface. Applying the equations for
the aluminum plate,

_ 1 .
o, =-3.86(10") F'” {[1 —~0.48tan"' (1/0.48) |(1+0.333) Yy (ivoae )} =—8025F" psi

_ 4\ 13
o, = 3'§6+(32ng =-3.137(10*) F"* psi

From Eq. (3-72),
1/3 4 1/3
oo (-8025F"°)—(-3.137(10%) F**)
max 2 2
Comparing this stress to the allowable stress, and solving for F,

=1.167(10* ) F'* psi

3
_ 20000 5 03 1uf
1.167(104)

Table-Ball interface: From Eq. (3-68),

ai/(ﬁj(1—0.2922)/[(30)(106)]+(1—o.2112)/[(14.5)(106)}

8 1/1+1/o0

= 3.306(10’3)F”3 in

From Eq. (3-69),
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3F 3F
27a’ 22[3306(107) F"* |

The steel ball has a higher poisson’s ratio than the cast iron table, so it will dominate.

Prax = - =4369(10°) " psi

1

o, =-4.369(10") F"” {[1 ~0.48tan"" (1/0.48) |(1+0.292) “2(iv0as)

} =—8258F" psi

_ 4\ 13
o, = 4'316321282) r =-3.551(10%) F"" psi

From Eq. (3-72),
-0, (-8258F")~(-3551(10')F")

T == : =1.363(10*) F'* psi
Comparing this stress to the allowable stress, and solving for F,
3
F= _20000 | _ 3.16 Ibf
1.363(10)

The steel ball is critical, with = 3.16 1bf. Ans.

3-138 v; =0.333, E; =10.4 Mpsi, [=2 in,d; = 1.25 in, v, =0.211, E, = 14.5 Mpsi, d, =12
in.

With b = K F"?

(2 (1-0333)/[104(10°) |+ (1-0.211%) [ 14.5(10°) | 2

| 7(2) 1/1.25+1/12

= 2.336(10’4)

By examination of Egs. (3-75), (3-76), and (3-77, it can be seen that the only difference
in the maximum shear stress for the two materials will be due to poisson’s ratio in Eq. (3-
75). The larger poisson’s ratio will create the greater maximum shear stress, so the
aluminum roller will be the critical element in this interface. Instead of applying these
equations, we will assume the poisson’s ratio for aluminum of 0.333 is close enough to
0.3 to make Fig. 3-39 applicable.

z-max = 0'3pmax
_ 4000

~13 300 psi
Pmax =703 P

From Eq. (3-74), pmax = 2F / (nbl ), so we have
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2F 2F"?

T 2K F T 7K,

pmax

So,

F — (ﬂ-chpmax Jz
2

2
=953 1bf Ans.

) [72’(2)(2.336)(10—4)(13 300)]2

3-139
y=0.292, E =30 Mpsi, = 0.75 in, dy = 2(0.47) = 0.94 in, d, = 2(0.62) = 1.24 in.,
Eq. (3-73):
12
2340y 2(1-0.292%)/[30(10%)]

b= = 1.052(10-3) in
7(0.75)  1/0.94+1/1.24

Eq. (3-74):
2F 2(40) : .
Y 7(1.052)(107)(0.75) P > "

From Fig. 3-39,
7. =03p =0.3(32275)=9682.5 psi =9.68 kpsi Ans.

3-140 Use Egs. (3-73) through (3-77).
o (2F A=)/ E + 1=V E, "
xl (/d)+(1/d,)
~(2(600) (1-0.292%)/ (30(10°)) + (1-0.292%) / (30(10°)) |~
7(2) 1/5+1/w
b=0.007 631 in
2F  2(600)
zbl  7(0.007 631)(2)

P = =25 028 psi
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J = 2(0.292)(25 028)(V1+0.786" ~0.786)

=-7102 psi=—-7.10 kpsi  Ans.

2

1422 (0.786)
5 1+2(0.786
&, =P b2 —25| | =25 028] ————L-2(0.786)
2
e 1+(0.7867)
b
=—4646 psi=—4.65 kpsi  Ans.
o = Pon 25028 19677 psi=—19.7 kpsi Ans.
2 N1+0.786°
e
o,~0., —4646—(-19677) . :
T o = ST 5 =7516 psi="7.52 kpsi Ans.

3-141 Use Egs. (3-73) through (3-77).

(2r (o) B 1), }
7l 1/d, +1/d,
2(2000) (1—0.2922)/[207(103)}(1—0.2112)/[100(103)] "
| x40 1/150+1/ o0
b=0.2583 mm
o =22 220000 _ 1535 ppy

zbl ~ 7(0.2583)(40)
Z

2
o .=-2vp. . (1/1+Z—2— 5

=-35.0 MPa Ans.

J: -2(0.292)(123.2)(V1+0.786° ~0.786)

2

z
1+25 ) 1+2(0.786°)
) =Py —2|5] | = -123.2| ————L-2(0.786)
(L2 b 1+(0.7862)
+7
b2
=-229 MPa Ans.
o, = Prnax — e =-96.9 MPa Ans.
2 J1+0.786>
e
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0, =0, _229-(969) _ 1 0 Mpa Ans.

3-142 Note to the Instructor: The first printing incorrectly had a width w = 1.25 mm instead of
w = 1.25 in. The solution presented here reflects the correction which will be made in

subsequent printings.
Use Egs. (3-73) through (3-77).

b= Z_F(lvlz)/E1+(1V2z)/E2Tz

7l 1/d,+1/d,

2250) (1-0211)[145(10°) ]+ (1-0211) [145(10°)] )

7(1.25) 1/3+1/0
b=0.007 095 in
DPiax = 2F 2(250) =17 946 psi

zbl  7(0.007 095)(1.25)

z

- J =2(0211)(17946)(V1+0.786" ~0.786

=-3680 psi=-3.68 kpsi  Ans.

1+2-5 1+2(0.786°
O, =Py | =27 |= 17946 ¥—2(0.786)
A 1+(0.7867)
I3
=-3332psi=-3.33 kpsi  Ans.
o = Pon 17986 14109 psi=—14.1 kpsi Ans.
\/ 2 N1+0.786°
1+b—2
o,—o. -3332-(-14109) . .
T = ST 5 =5389 psi =5.39 kpsi Ans.
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Chapter 4

4-1 For a torsion bar, kt = T/@= Fl/ 6, and so 8= Fl/kt. For a cantilever, k| = F/5,0= F/k;. For
the assembly, k= F/y, or, y=F/k=16+ 6
Thus
,F_F*F
k K
Solving for k
k=— L. lgkf Ans.
[T
ki Kk
4-2  For a torsion bar, kr = T/0= Fl/ 6, and so &= Fl/ks. For each cantilever, ky = F/¢&, 6 =
F/k, and,o1 = F/k, . For the assembly, K= F/y, or,y=F/k=18+ & +4..
Thus
F FI’ F F
k k k
Solving for k
1 kkk .
T 1 KkPrkkkk
ki kK
4-3 (@) For a torsion bar, k =T/6=GJ/I.

Two springs in parallel, with J =zd; /32,
and d1 = d1 = d,

k:£+—JQG:£G i+—ql
X |l=x 32 x l=x

:£Gd4(l+Lj Ans (1)
32 X |-=x

Deflection equation,

QZE:TZ(I - X)
JG  JG
resultsin =~ T = L(-%) (2)

From statics, T, + T, = T = 1500. Substitute Eq. (2)
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Tz("_xjnz:woo = 1;:1500TX s (3)
X

Substitute into Eq. (2) resultingin =~ T, = 1500|_|—X Ans.  (4)

11
(b) From Eq. (1), k =%(o.54)11.5(106)(§+ 1

J: 28.2(103) Ibf -in/rad  Ans.

From Eq. (4), T, = 1500101—;5= 750 Ibf-in  Ans

From Eq. (3), T, = 1500% =750 Ibf-in  Ans

16T, 16(1500)
=d}  7(0.5)

From either section, 7 = = 30.6(103) psi =30.6 kpsi  Ans

4-4

Deflection to be the same as Prob. 4-3 where T; = 750 Ibf'in, |, =1/2=51in,and d; =0.5
n
91 = 192 =0

T(4)  T,(6)  750(5) - 4_T1:6_T2=60(103) M

- - 4 2
Zdc Zdc Z(0s')G d 4
32 32 32
Or, T, =15(10°) d ()
T, =10(10°)d; 3)
Equal stress, 7, =7, = 161, = 16T, = l:l (4)

7rd13 7rd23 df df

Divide Eq. (4) by the first two equations of Eq.(1) results in

LI
d _d _
dat  d
Statics, T; + T» = 1500 (6)

Substitute in Egs. (2) and (3), with Eq. (5) gives
15(10°)d;! +10(10°)(1.5d,)" =1500

Solving for d; and substituting it back into Eq. (5) gives
d; =0.388 8 in,d, =0.583 2 in Ans.

Chapter 4 - Rev B, Page 2/81



From Egs. (2) and (3),

T) = 15(10%(0.388 8)* = 343 Ibf:in Ans.
T, =10(10%(0.583 2)* = 1 157 Ibfiin Ans.
: : T, 343(4)
Deflection of T is = = " =0.053 18 rad
JG (z/32)(0.3888")11.5(10°)
Spring constant is k=t - 1500 _ 28.2(10°) Ibf-in  Ans
6, 0.05318

16(343
The stress in d; is 7, = 16T31 __16(3%) -=29.7(10°) psi=29.7 kpsi ~ Ans
zd’  7(0.3888)

16(1157
The stress in d; is 7, = 16T§ _ 1o )3 =29.7(10°) psi =29.7 kpsi ~ Ans
zdy  7(0.583 2)

4-5 (@) Let the radii of the straight sections be r{ =d,; /2 and r, = d, /2. Let the angle of the
taper be a where tan o= (r, — r)/2. Thus, the radius in the taper as a function of X is

r=r, +Xxtan ¢, and the area is A= 7 (r; + X tan @)”. The deflection of the tapered portion
is

| | !
PO VL . S S N—
. AE 7By (1 +Xtana) TE(r+ Xtanoz)tanoz‘0

Rl 1 CF (11
7E| ntana tana(r,+ltana)| zEtanalr r,

_F nL-r,_F ltana  Fl
rEtana rr, zEtana r1r, ar E
__4F ANS
zd d, E

(b) For section 1,

FI _ 4F1 _ 4(1000)(2)

§=——=— = : _=340(10")in  Ans
AE zdE  7(0.5%)(30)(10°%)

For the tapered section,

_4 R4 1000(2) —=226(10")in  Ans
7 dd,E 7 (0.5)0.75)(30)(10°%)
For section 2,
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s _ FL_ 4F _  41000)2)
T AE zd?E 2(0.75%)(30)(10°%)

=1.5110*)in  Ans

4-6 (@) Let the radii of the straight sections be r; = d; /2 and r, = d, /2. Let the angle of the
taper be o where tan = (r, — r)/2. Thus, the radius in the taper as a function of X is
r =r; + Xtan ¢, and the polar second area moment is J= (7/2) (r; + X tan a)4. The
angular deflection of the tapered portion is
|
| |
oo Taeo & 12T 1
G Gy (r+xtana) 37G (r,+xtan) tana‘o
2T 2 T (11
37 G| r’ tana tan e (r, +| tana)3 37 Gtana \ I’ T,
2 T e 2T g _iT_I(rl2 +rr, +r22)
37 Gtana r’r;  3zG\r-r ) r’r;  3zG rr)
327 (47 +dd+ o)
=—— e Ans
3G d’d,
(b) The deflections, in degrees, are
For section 1,
0 :T_I(180j: 322'I (180)2 32(1500)(2)6 (180)22'44 deg  Ans
G\« 7d G\ 7 7(0.5)11.510°)\ =
For the tapered section,
e_ng(dﬁ +dd, + dj)[lsoj
3z Gd’d/’ T
1500)(2)| 0.5° +(0.5)(0.75) +0.75>
_ 32 (15000 +0.9(075) ](180]:1'14 g Ans
3z 11.5(10°)(0.57)(.757) Vs
For section 2,
6, :T_I[lsoj _ 324T| (180) _ 32(14500)(2) : [180} _0481deg  Ans
GJ\ 7d, G\ 7 7(0.75)11.5(10")\ 7
4-7 The area and the elastic modulus remain constant, however the force changes with respect

to x. From Table A-5 the unit weight of steel is y= 0.282 Ibf/in’, and the elastic modulus is
E = 30 Mpsi. Starting from the top of the cable (i.e. X =0, at the top).

F= 1A
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| 2 2
5 - |Fdx wj(l— ke 2 (Ix—lxzj :i20.282[500(162)]
27 ), 2E 2030)10

=0.169 in

From the weight at the bottom of the cable,

5 = AWl _ 4(5000) [500(12)]
TAE 2dE  72(0.5)30(10%)

0=0,+0,=0.169+5.093=5.262 in Ans

5.093 in

The percentage of total elongation due to the cable’s own weight

;”ﬁ(loo) 321%  Ans

4-8 2Fy=0=R;-F = R;=F
Ma=0=M;-Fa = M;=Fa
Vag=F, Mag =F (x—a), Vec =Mgc =0

Section AB:

1 F(x
9AB=EJF(x—a) dx=a(7— a% C (1)

Opg=0atx=0 = C; =0

F o[ x F(xX X
yAB_E Eg—axjdx_a(z—aTJ+C2 (2)

YVa=0atx=0 = C,=0

Fx’
Yoo = ¢ (x-3a) Ans
Section BC:
By =—[(0)dx=0+C,
BC — EI

F(a Fa’
F Eq. (1), atx=a(withC, =0), =—| —-a(a) |=— = C;s. Thus,
rom Eq. (1), a (wi 1=0) EI(2 ()j EI 3. Thus

__F#
B¢ 2E
Fa’ Fa’
=~ dx=-— X+ 3
Yoo =5 | =+ G 3)
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F(a & Fa’
From Eq. (2),atx=a(withC, =0), y=—| ——a— |=— . Thus, from Eq. (3
q.(2) (with C, )yEI(6 2} e q.(3)

2 3 3
_Fa a+C,=- Fa = C = Fa Substitute into Eq. (3)
2El 3El 6El

Fa’ Fa@ F&
X+ =
2EI  6El 6El

Yoo = — (a—3x) Ans,

The maximum deflection occurs at X= 1,

y - Fa’
max 6EI

(a-3l) Ans

4-9 XEIMc=0=F(/2)-R/ | = R =F2
2Fy=0=F2+R,-F = Ry=F/2
Break at 0 <x<1/2:
Vae =R =F/2, Mas =R x=Fx/2
Break atl /2 <x<1:
Vec=R|-F=-R;=-F/2, Mpc=RiXx-F(x-1/2)=F(1-x/2

Section AB:

From symmetry, @ag=0atx=1/2 =

EXC P F e

.. = -
" El 4 16El 16El

3
Yas F (4x2—lz)dx F (étl—lzxj+c2

(1)

" 16El “16EI| 3
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yae=0atx=0 = C,=0,and,

B Fx
Yo = 1Sl

(4% -317) Q)

Yac 1s not given, because with symmetry, Eq. (2) can be used in this region. The
maximum deflection occurs at X =| /2,

I
48El 2 48El

4-10 From Table A-6, for each angle, |,.; =207 cm®*. Thus, |=2(207) (10*) = 4.14(10°) mm*

From Table A-9, use beam 2 with F =2500 N, a= 2000 mm, and | = 3000 mm; and beam
3 with w =1 N/mm and | = 3000 mm.

2 4

_Fa (a-31)— wl
6El 8EI

_2500(2000)
6(207)10°(4.14)10°

=-25.4 mm Ans

ymax

(1)(3000)*
8(207)(10°)(4.14)(10°%)

[2000-3(3000)] -

M, =-Fa—(wl*/2)
=—2500(2000) — [1(3000%)/2] = — 9.5(10°) N-mm

From Table A-6, from centroid to upper surface is y = 29 mm. From centroid to bottom
surface is Y = 29.0 — 100= — 71 mm. The maximum stress is compressive at the bottom of
the beam at the wall. This stress is

My -9.5(1 0°)(-71) _

o, =——2= 7 —_163MPa Ans
| 4.14(10%)
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4-11 y 450 Ibf 300 1bf

6ft lélft l 10 fi C
—y

R. =2 (450)+Y (300) = 285 Ibf OT 4 B ?
20 20

14 10
=—(450)+—(300) = 465 Ibf
Ro =7, (450)+5,,(300)

M, = 465(6)12 = 33.48(10%) Ibfiin
M, = 33.48(10%) +15(4)12
=34.20(10%) Ibfin

o :Mma" = 15:% Z=228in’

For deflections, use beams 5 and 6 of Table A-9

L U () (I_j2+az_2ll_ R
Yo =75y 2 2| 48EI
300(240%)
48(30)(10)1

o 450(72)(120)
T 6(30)(10%)1(240)
| =12.60 in* = 1/2=6.30in"

(1202 +72° —2402)—

Select two 5 in-6.7 Ibf/ft channels from Table A-7, | =2(7.49) = 14.98 in*, Z=2(3.00) =

6.00 in®

1260 1
dom =——| —— |=—0.4211n
ymldspan 1498[ J

2
_342 =5.70 kpsi

Gmax -
6.00

4-12 | = 6—7;(1.54) =0.2485 in*
From Table A-9 by superposition of beams 6 and 7, at X = a= 15 in, with b= 24 in and
| =39 in

Fba_, » » wa 2 33
=——[a +b" -I"]l+—(2la’—-a’ -
y 6E||[ ] 24E]| ( )

= 342(24)15 (157 +247 =397 |
6(30)10°(0.2485)39

(150/ 162)(15) [239)(15°)-15°~39° | =-0.0978 in  Ans
24(30)10°(0.2485)

Atx=1/2=19.5in
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yzwli(l—jz +a -2l l—}+ wl /2) {2I (l—jz —C—j} —I3}
6Ell 2 2 24El 2 2

_340(15)(19.5) [19.5 115 ~39°]
6(30)(10°)(0.2485)39) L

150/ 13)09'5) [2(39)(19.5%)-19.5* ~39° | ==0.1027 in Ans
24(30)(10°)(0.2485)
% difference = 1027 00978 550 5019 Ans

—-0.0978

4-13 | = %(6)(323) =16.384(10°) mm*

From Table A-9-10, beam 10

Fa’
=— | +a
Ye 3EI( )
Fax
—__ =" |2_X2
Yre 6EII( )
%:E(P_&@)
dx 6Ell

Atx=0, Do _ O,
dx

_Fal*> _Fal
A 6EIl  6El
Fa’l
=—@.a=—
Yo =0 6El
With both loads,
Fa’l Fa’
=- - | +a
Yo =T 6El T 3EI (+a)
2 2
__fa (Bl +2a)=- 4003(300 ) -[3(500)+2(300)] =-3.72mm  Ans.
6El 6(207)10°(16.384)10
At midspan,

=1.11lmm Ans

_2Fa(l/2) |2—(|—j2 _ 3 Fal® _ 3 400(300)(500°)
® 6EIl 2 24 El 24207(10°)16.384(10°)

4-14 | = é(z“ ~1.5*)=0.5369 in*
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From Table A-5, E=10.4 Mpsi
From Table A-9, beams 1 and 2, by superposition

R F@ L —200[402)] 300[2(12)] )
Yo = 3g1 o ) T 3004)10%05369) T 6(10.4)10°(0.5369) [202)-3(402)]

Vg =—194in Ans

4-15 From Table A-7, | =2(1.85)=3.70 in*
From Table A-5, E=30.0 Mpsi
From Table A-9, beams 1 and 3, by superposition

3 4 3 5+2(5/12)](60*
yoo oD _(wrwolt _ 150(60) [5+2 6)]( ) 012 Ans
3EI 8EI 3(30)10°(3.70)  8(30)10°(3.70)
4-16 | =~ g*
64

From Table A-5, E =207(10°) MPa
From Table A-9, beams 5 and 9, with F¢c = Fa = F, by superposition

3
yo ool PR g gy o]
48El | 24El 43Ey,
1

" 48(207)10° (-2)
=53.624(10" ) mm*

[ -Fel* +2Fa(4a’ —31%) ]

{—550(10003)+ 2(375)(250)] 4(250°) —3(10002)]}

\/— | = \/—(53 624)10° =323 mm  Ans.

4-17 From Table A-9, beams 8 (region BC for this beam with a = 0) and 10 (with a= a), by
superposition

Voo = 6E”(x3 31 +217°X) + Falxl(v_xz)
— [ M (X306 2]+ Fax(1 - ¢ )| Ans

Yoo = {;ijEl(XS 3¢ +21° X )}}(x )+ F(X )[(x ) — a3 %= )]
== el (x-)+ EOEDpx- 1y —ax-1)

6El
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N

4-18 Note to the instructor: Beams with discontinuous loading are better solved using
singularity functions. This eliminates matching the slopes and displacements at the
discontinuity as is done in this solution.

ZMC:OZRI—wa[I—a+§j = R_ (2I—) Ans

ZFY:O:Z—?(ZI—aHRZ—wa SN Rzzwza

s =R —wx=azj—?(2| —a)—wx=%[2l (a—x)_a2] As.

ANs.

2

wa
-R =- Ans,
R 2l
w
M g = | VagdX=— I ax——
AB J‘ AB 2||: :|
wx 2
Mgp=0atx=0.C=0 = Mg I[zd—a —IX] Ans.
BC
wa’ wa’
Mg.=0atx=I .. C, = 5 = MBC:T(l_X) Ans
M 5 1

Oro = [z dy= [ (2al- & - I¥) dx=i[ﬂ( alf - & k-1 |9<j+ }
el El £l 2 29773

1
AB_jeAde_Ej[zl( a1 dz-! |>zj+ (;} dx

1 |w(l 3_1 2 _L 4
_E[—[galx 6a>€ = Ixj+(;x+ Q}

Yag=0atx=0 .. G =0

Mg _L_ _ wa [ 1
Ouc = | e g (1= dx= EI{2I (lx 2)%} Q}

L{ﬂ(alaz—%a“—%lé}Q}:Ei{waz(a—— j+C;} C= wa3+(; (1)
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2 2
I@Bcdx I wa Elx—lx j+C dx— | L2 [llxz—lx3)+csx+c6
El 2l 2 ElI| 2 \2 6

wa’l?

Yec =0atx=I| .. C,=—

1| wa’(1 1, 1
=— —IX ==X == |+ C (x~I
Yec El{zl (2 6 3 j st )}

~c|

Yas = Yac at X=a .~

ﬂ(lala3 BRI Ia“]+ Ca= wa
21\ 3 6 12 2l

2

1 1 1
(Eld—gd—gF}LQ(arb

wa’ 2 3
Ca=— (312 —4F)+Cy(a-1) 2)

2

- Zgz‘l (_a2 —4| 2) . Substituting this back into (2) gives

Substituting (1) into (2) yields C

a2 2 2
C = 24| (4a|—a -4 ).Thus,
Vag = 4EII (4alx3 2axX—-IX+4dIx- d x4 é‘”l))
__wX 2091 Ay I3 — 22 (7] — A)2
= yAB—24EII [2ax Q2l-a)-Ix' —a’* (2l a)} Ans.
Yoo = (68 28X~ d x-4 41 x &) Ans

24Ell
This result is sufficient for ygc. However, this can be shown to be equivalent to

gal 28X - I¥ -4 Fx+4dIx é>)+ ( x 3

Yac =

24EI|( 24El

= X— As.
Yoc = Yast 24E|( a)

by expanding this or by solving the problem using singularity functions.

4-19 The beam can be broken up into a uniform load w downward from points A to C and a
uniform load upward from points A to B.

’ 2 : X 2 3 2 2
Yae =546 [2b>< (2 -b) - Ix’ —b* (21 -b) }— 2B [2ax (2l -a)-Ix’ -a’ (21 -a) ]
_24E” [sz2(2|—b) F(21-b)’ —2aX2 - 3+ &(2 - 9 } ANS
Yec =m[sz (21 -b)—-Ix* —b’x(2 —b)

—(4alx3—2a2)?— IX -4a8Fx+4dIx4d >§— { % a“] Ans
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w 4o - ¥
yCD_m[4bl><3—2b2x”—lx 4B Fx+4BIx B x ( x b)}

~ Y Taalk 28X — ¥ —4@Px+4dlx dx ( x a“]
24Ell
w 4y a4

=g (D =0 at -y, Ans

4-20 Note to the instructor: See the note in the solution for Problem 4-18.
2
SF,=0= RB—“’;‘ —wa = Fg:zg—la(z ka) Ans

For region BC, isolate right-hand element of length (I + a —X)
2

wa

Ta

wa’
2l

2
EIQAB:J'MAde:—%x% C

Vg=—-R,=— Ve =w( +a-x) Ans.

Mg = —RaX=—

X Mg = —%( I+ a- ¥’ Ans

2
EIyAB:—%xHC,H C

2
yae=0atx=0 = C,=0 .. EIyAB:—%%+Clx

wa’l
=0atx=1 = C =
Yas D)
wa’ wa’l wa’x wax
Ely,.=— X + X= F-x) = =—2(F-x%X) Ans
Yao 121 12 121 ( ) Yo 12EII( )
EIQBC:IMBCdx:—%(I+a—x)3+C3
Elyge :—z—u;(l +a-x)' +Cx+ G
4 4
yec=0atx=1 = -2 .cl+c,=0 = =22 _c1 ()
4 24
wa’l wa’l wa’ wa’
Opg= Ogcatx=1 = - + = +C3 = Cjz— (I+a)

12

wa’

Substitute C; into Eq. (1) gives C, = 4

[az +41(1+ a)] . Substitute back into Ygc

Vac :%[—%(I +a—x)4 _wa’ x(l+a)+ wa' | wal (I +a)}
=i (va-x)" 4@ (1-x)(1+a)- & | Ans
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4-21 Table A-9, beam 7,

R=R =—z;' _10000) _ 550 s 1
WX 100X
= 21X - x* -1%) = 2(10)x* - X’ ~10°
Yao 24EI( KX T) 24(30)106(0.05)[( X |

=2.7778(10"° ) x(20x* - X' ~1000)
Slope: QAB:%:%(6IXZ—4X3—I3)
Atx =1, 9A3|x_.=ﬁ(6”2‘4‘3—'3)=%
Yoo = Ouel,., (x~1) = %(X D= 24(;231(;60(30).05) (

x—10)=2.7778(10"*)(x-10)

From Prob. 4-20,
2 100(4?

R, =22 _ (+) —801bf ¥ R =22(l+a)= 100(4)[2(10)+4] — 480 Ibf 1
2l 2(10) 2l 2(10)

100(4%) x

_ wazx( 5 _x )_
Yoo = 12EN ~12(30)10°(0.05)

=g a1+

(10°—x°) =8.8889(10°) x(100- x)

100 4 2 4
=— 10+4-x)" —4(4*)(10-x)(10+4)—4
24(30)106(0.05)[( #4)" = 4(#)(10-2)(10.+4)-4'
=-2.7778(107)| (14~ )" +896x-9216
Superposition,
R, =500-80 =420 Ibf T R, =500+480=980 Ibf T Ans

Yas =2.7778(10°)x(20X* - X' ~1000)+8.8889(10°) X100~ X) A
Yo = 2.7778(10-3)(x—10)—2.7778(1o-")[(14— x)’ +896x—9216} Ans

The deflection equations can be simplified further. However, they are sufficient for
plotting.
Using a spreadsheet,

X _. 0 0.5 1 1.5 2 2.5 3 3.5
y 0.000000 -0.000939 -0.001845 -0.002690 -0.003449 -0.004102 -0.004632 -0.005027
X . 4 4.5 5 5.5 6 6.5 7 75
y -0.005280 -0.005387 -0.005347 -0.005167 -0.004853 -0.004421 -0.003885 -0.003268
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X 8 8.5 9 9.5 10 10.5 11 11.5
y -0.002596 -0.001897 -0.001205 -0.000559 0.000000 0.000439 0.000775 0.001036
x |12 12.5 13 135 |14
0.001244 0.001419 0.001575 0.001722 0.001867
0.002 -
0.001 ﬂeanﬂ I)eiiectidn. ﬂob. 4-21 il
0.000
-0.001 \\ y
(i) -0.002 \ //
0.003 /
\\ /
-0.004
N
-0.005
-0.006

4-22 (@) Useful relations
_F _48El

y P
K’ 1800(36°)
" 48E  48(30)10°

Kk

=0.05832 in*

From | = bh?/12, and b = 10 h, then | =5 h*/6, or,

=% = /w ~0.5141in

his close to 1/2 in and 9/16 in, while b is close to 5.14 in. Changing the height drastically
changes the spring rate, so changing the base will make finding a close solution easier.
Trial and error was applied to find the combination of values from Table A-17 that
yielded the closet desired spring rate.

h(in) | b (in) | b/h | K (Ibf/in)
12 |5 10 | 1608
12 |5% |11 | 1768
12 |5% |11.5]1849
9/16 |5 8.89 | 2289
9/16 |4 7.11] 1831
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h=11in, b=35 % in should be selected because it results in a close spring rate and b/h is
still reasonably close to 10.

(b) 1=5.5(0.5)’/12=0.05729 in*
_Mc _ (Fl/4)c 41 4(60)10°(0.05729)

| | lc (36)(0.25)

SE (1528)(36)
48El  48(30)10°(0.05729)

=0.864in Ans

y:

4-23 From the solutions to Prob. 3-68, T, = 60 Ibf and T, = 400 Ibf

4 4
A U0 N ST
64 64
From Table A-9, beam 6,
Fbx Fbx
z X + 22 Bx? 4
" {6EII X+’ Tl ol X R } o

__ (=575)30)10)
 6(30)10°(0.1198)(40)
460(12)(10)
6(30)10°(0.1198)(40)

(00), =~ (iij:_{d[ggﬁ( il 622“(X+Q . }}

—_ 1b1 v Fz_bz 2 p
_{6EII(3 - )+6EII(3X2+Q l)}

= (5675)(3 0 [3(107)+30” -40° |
6(30)10°(0.1198)(40)

) [3(10%)+12> -40" |
6(30)10°(0.1198)(40)

=6.0200")rad  Ans

(107 +30? —402)

(102 +12° —402) ~0.0332in  Ans

x=10in

4-24 From the solutions to Prob. 3-69, T, =2880 Nand T, =432 N

4 4
| =ﬂ=ﬂ=39.76(103) mm*
64 64
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The load in between the supports supplies an angle to the overhanging end of the beam.
That angle is found by taking the derivative of the deflection from that load. From Table
A-9, beams 6 (subscript 1) and 10 (subscript 2),

Ya= |:QBC|C (82 )]beamﬁ + ( yA)beamlO (1)

93c|c={%{%(xz+az—2lx)ﬂl { 1a|1|(6lx 3% - g 2F)}

x=I

_ Fa )
—a

~ 6EIl sanl )

Equation (1) is thus

Fal(

Fa’
6Ell EE

3El *a)

-a’)a, -
B ~3312(230)
 6(207)10°(39.76)10°(510)

=-7.99 mm ANS

Ya=

2070(300°) (510

(5107 -2307)(300) - ¢ .
3(207)10°(39.76)10

+300)

The slope at A, relative to the z axis is

Fa . B s
(0n), =g (" a0+ {x[ oBT L0 -0 I)ﬂ}

F
6Ea|1|( a‘2)+

—6;'( a’)- (3a2 +2la,)
~ —3312(230)
 6(207)10°(39.76)10°(510)
2070
6(207)10°(39.76)10°
=-0.0304rad  Ans

x=l+a,

R [3(x— )’ -3a,(x—)—a,(3x- DL

(5102 —2302)

[3(300%) +2(510)(300) |

4-25 From the solutions to Prob. 3-70, T, =392.16 Ibf and T, = 58.82 Ibf

4 4
=792 049 09 in
64 64

From Table A-9, beam 6,
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Ya = {F‘—hx(x2 +h’ - Iz)} = (_365 0)d4)®) (87 +14°-227)=0.0452in Ans
6Ell 6(30)10°(0.049 09)(22)

X=8in

zA=[—F2b2X(>8+bj—|2)} = (_430‘98)(6)(8) (8°+6°-227)=0.0428 in Ans.
6EIl e 6(30)10°(0.049 09)(22)

The displacement magnitude is & = /Y2 + Z. =+/0.0452> +0.0428° =0.0622 in A

d d F1 2 2 2 Fl 2 2 _ |2
(eA)Z=(d—i’j ={E<[6—E|T(X B )} =6—E'q”(3a1 TR P
ra ca

(=350)14) [3(8%)+14*-22? |=0.00242rad ~ Ans

B 6(30)10°(0.04909)(22)
_ _E ___d_szzX 2 w2 :th} 2 Nt
(QA)y‘[ dxl:q ) {dx{ o < )}}qu ARy

- (45098)6) [3(8%)+6°~22 | =-0.00356 rad ~ Ans
6(30)10°(0.04909)(22)

The slope magnitude is © , = \/0.002422 +(—O.OO356)2 =0.00430 rad Ans

4-26 From the solutions to Prob. 3-71, T, =250 Nand T, =37.5 N
_zd* 7(20)*
64 64

=7 854 mm*

"F bx _3453in45° ) (550)(300
Ya = i(xz+bf—lz) :( - )( X )(3002+5502—8502)
6Ell 6(207)10°(7 854)(850)
=1.60 mm AnS
_Fl bIX XZ 2 2 FQX 2 2 2
_ z - 227 b-°—I
N TR B =R R T
345c0s45° )(550)(300
_ . Jssox )(3002+5502—8502)
6(207)10°(7 854)(850)
—287.5(150)(300) (300° +150°~850°) =~0.650 mm  Ans
6(207)10°(7 854)(850)

The displacement magnitude is & =+/Y, + Z, = \/1.602 +(—0.650)2 =1.73mm Ans

X=300mm

X=300mm
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(60), :[%]X . {dx[ 6 gr( Sl 'Z)R_a = 6]|y;:| Ga+ -

B —(3455in45°)(550)
 6(207)10°(7 854)(850)

o0, (2] LBy B ]|
=D (g p) - R (3 - )

" 6Ell 6Ell
_ (34500s45°)(550) [3(3002)+5502 —8502}
6(207)10° (7 854)(850)
B —287.5(150)
6(207)10° (7 854)(850)

The slope magnitude is © , = /000243 +0.000191> = 0.00244 rad Ans

[3(3002 )+550° —8502] ~0.00243rad  Ans

[3(3002)+1502—8502}=1.91-10’4rad Ans

4-27 From the solutions to Prob. 3-72, F; =750 Ibf
zd*  7(1.25)"

= =0.1198 in*
64 64

From Table A-9, beams 6 (subscript 1) and 10 (subscript 2)

b|X 2y82x 2_ 32
Ya= [6E” (Xz b' ) 6Ell (I - ):|x—]6in

( ~300c0s 20° ) (14)(16) @
6(30)10°(0.119 8)(30) (
=0.0805 in Ans

I:lz 2 2 F22 2 2
z, = [—6Eblllx( X +b? - )+—6EE:2I X(I ~X )me
(300 5in20° ) (14)(16) (~750c0s20°)(9)(16)
+

6(30)106(0 119 8)(30)( - ) 6(30)10°(0.119 8)(30)( )
=-0.1169 in ANns

The displacement magnitude is & =/ + Z, = \/0.08052 +(—O.1169)2 =0.142in  As

(750sin20°)(9)(16)
6(30)10°(0.119 8)(30)(

2—302)+ 2—162)
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dy d Flyblx 2 2 2 Fzyazx 2 2
(QA)Z{H]M ={E<[ 6 Ell (b= 1)+ 6 Ell (F-x )}}a

_F bl 2 2 2 F az 2 2
_ﬁ(m +B -1 Fg?n“ -3a/)

B (~300c0s20° ) (14)
~ 6(30)10°(0.119 8)(30)
(750sin20°)(9)
+
6(30)10°(0.119 8)(30)

d d Flz 2 > 2 Fzz 2 2
(eA)y=_[d_ij= =_{EX{6_2”X(X R L (O )}}

T R S N A s P W4T 2
_—H(Sai +h -1 )—62E—”(| -3a’)

oo 01 e o 30
=0.00115rad Ans

2
The slope magnitude is ©, = \/[8.06(10-5)} +0.00115% =0.00115 rad Ans

[3(167)+14” =307 ]

[302 -3(16? )] =8.06(10°)rad ~ Ans

4-28 From the solutions to Prob. 3-73, Fg =22.8 (10°) N

4
| =”—d4=M=3O6.8(103) mm*

64 64
From Table A-9, beam 6,

yA:|:F1ybIX(X2+b12—I2)+ FZyQX

6Ell oEn < P )}

-
[1 1(10%)sin 20° } (650)(400)
6(207)10°(306.8)10°(1050)
[22.8 (10°)sin25° } (300)(400)
6(207)10°(306.8)10°(1050)
=-3.735 mm Ans

(4002 +650° —10502)

(4002 +300° — 10502)
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le 2 2 FzzQX 2 2 2
= [6EII B =19+ 6Ell o+, )1 00

[1 1(10%)cos 20° ] (650)(400)

6(207)10°(306.8)10°(1050)

[—22.8(103)cos 25°](300)(400)
6(207)10°(306.8)10°(1050)

The displacement magnitude is & =4/Y; + Z, :\/ —3.735 *+1.791> =4.14mm  As

(HA)Z:(%j q_{dx{62IT(2+hz P+ 6EQIIX(X2 8- )}}q

lybl 2ybz 2 2
_6E||(a1 Y -P)+ 6EII(3a1+Q2_I)

[1 1(10°)sin 20°}(650)
6(207)10°(306.8)10° (1050)
[22.8(103)sin 25°}(300)
6(207)10°(306.8)10° (1050)
=-0.00507rad Ans

_ dz _ FoX/ 2 2 F.b x 2 p
(HA)V_{RJ N {dx[6EII(X Hb =P g (X 4 _l)}}m

1z Fzz 2 2
gl (8 )= (% 8 )

; o
- ! 1(103)“)8 - ]5650) [3(400%)+650° ~1050° |
(207)10°(306.8)10°(1050)
[—22.8(103)cos 25°](300)
6(207)10°(306.8)10° (1050)
=-0.00489rad  Ans

The slope magnitude is ©, =1/(~0.00507)" +(~0.00489)’ =0.00704 rad Ans

(4002 +650 —10502)

(4002 +300? —10502) ~1.791mm  Ans

[3(4002 )+650? —10502]

[3(4002)+3002 —10502]

(o)}

[3(4002 )+300? —10502]

4-29 From the solutions to Prob. 3-68, T; = 60 Ibf and T, =400 Ibf, and Prob. 4-23,1=0.119 8
in*. From Table A-9, beam 6,
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o {) {25 B -]

__m 212 _FQ_ZQ 2 _ 12\ = _ _575(30) 2 An2
~ 6Ell (b*~F) 6Ell (b ~F°) 6(30)106(0.1198)(40)(30 40)

B 460(12) (12
6(30)10°(0.119 8)(40)

(6.), = —{gjl _ { dx{%(% g B2 U e g Ix)}}

_ _[':1;""1(6lx—2|2 -3x? —a12)+|;2E—2T;2(6|X—2|2 —3% - af)}

—402) =-0.00468rad  Ans

x=I

6Ell o
F, F,
e -a) a7 -ad)

—575(10)(40° ~10%)  460(28)(40° —28°)
=— - - - =-0.00219rad  Ans
6(30)10°(0.119 8)(40)  6(30)10°(0.119 8)(40)

4-30 From the solutions to Prob. 3-69, T, =2 880 N and T, =432 N, and Prob. 4-24, | = 39.76
(10*) mm*. From Table A-9, beams 6 and 10

_(9y) T A RBX e ey, BB X
(HO)Z_(dXJO_{dx[6EII(X HE BT )}}X_O

_| Fb 2+ Ra ., .. Fl? Fal l
[6EII (X =gy (P 3% )L TR
CF T T G 6(200%?83?53732?303

=0.0131rad ANS

— M — Fal(l ) 2 2 _ anzx 22
(HC)Z_[dle {dx[ IR T=T X)}}X_I

{ R2 (6l —217 —3x> ) + 222 (12 3 )} _Fa g Rl

Ell 6Ell Tl |
_ —33312(230)3 (510"~ 230°) — 2 070(3300)(510) 3
6(207)10°(39.76)10°(510) 3(207)10°(39.76)10

=-0.0191 rad Ans

4-31 From the solutions to Prob. 3-70, T; =392.19 Ibfand T, = 58.82 Ibf, and Prob. 4-25, | =
0.0490 9 in*. From Table A-9, beam 6
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_(dy _ 1yb|X B _Fl_yb 2 2
(90)2_[51_0 {dx{6EII( e I)}}X_O%En(b‘ "

_ ~350(14) (14
6(30)10°(0.04909)(22)

(0, 52| o e (o) | ——EB )

- —450.98(6) (6-22°)
6(30)10°(0.04909)(22)
=-0.00624rad  Ans

—222) —0.00726rad  Ans

The slope magnitude is ©, = \/0.007262 +(—O.00624)2 =0.00957 rad Ans

() (el e e ram

_ Flya'l A _ lya1 2
_[6EII(6|X AT al)x_l e ()

_ ~350(8) (22
6(30)10°(0.0491)(22)

(%), =~ (33 lz_{dx[ 22a62(E|II )(Xz+a§_2lx)}

B g o12 __ B3
_ [6EII (6lx—21> -3x° aj)ll_ = (P-a)

_ —450.98(16) (222 —162) =0.00846rad  Ans

6(30)10°(0.04909)(22)

—g8? ) =-0.00605rad  Ans

x=I

The slope magnitude is O, = \/(—0.00605)2 +0.00846> =0.0104 rad Ans

4-32 From the solutions to Prob. 3-71, T; =250 N and T; =37.5 N, and Prob. 4-26, | =7 854
mm*. From Table A-9, beam 6

o= () ot )] -G

B [ -345sin45° |(550)
 6(207)10° (7 854)(850)

(5502 —8502) =0.00680rad  Ans
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(QO)VZ_(%Z(]X_Oz {dx[ 62I)|(( X+t -F)r 6E” (X " )}}X—O

C FRBe oy BBe oy [ 345¢c0s45° |(550)
~ 6EIl (B -1) 6Ell (b7 -1°)= 6(207)10°(7 854)(850)

_ -287.5(150)
6(207)10° (7 854)(850)

The slope magnitude is ©, =+/0.00680* +0.00316> =0.00750 rad Ans

(ec)f(j—i}x_l—{ dx{%lnx)( g 2|X)}}X_I{%(ﬂx—zlzﬁxz—qz)}

B 1y31 . [—345sin45°](300)
 6El o )= 6(207)10° (7 854)(850)

(28] B S ]

[ 345c0s45° |(300)
6(207)10° (7 854)(850)

(5507 —8502)

(1502 —8502) =0.00316rad  Ans

x=I

(8502 ~300° ) =-0.00558rad  Ans

x=I

F F

_ -287.5(700)
6(207)10° (7 854)(850)

(8502 —3002)

(8502 —7002) = 6.04(10‘5 ) rad  Ans

. . 2 2
The slope magnitude is O = \/(—0.00558) +|:6.O4(1075 )} =0.00558 rad Ans

4-33 From the solutions to Prob. 3-72, Fg = 750 Ibf, and Prob. 4-27,1=0.119 8 in*. From
Table A-9, beams 6 and 10

_(dy _ F.bx, n, Byaxo,
(90)2‘(510 {dx{ IR Ary=n U )}}
[Fb‘(?ax - I2)+F2£(I2—3x2)} -5y, Bl

6Ell 6Ell oEll

[-300c0s20° (14) [ 750sin20° | (9)(30)
= - (147 =30 )+ -
6(30)10°(0.119 8)(30) 6(30)10°(0.119 8)

=0.00751rad ANsS
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o0,-{32) oS - e,

_|Rhb F.a 2 __Fh >\ F,al
- [6EII (3 b1+ GEIl (1% -3x )L__6E_|l(hz_I )& GEl

[ 300sin20° | (14) (14 -30°) [ ~750c0s20° (9)(30)
~6(30)10°(0.119 8)(30) 6(30)10°(0.119 8)
The slope magnitude is O, = J0.00751% +0.0104> =0.0128 rad Ans

_ d_y _ i Flyai(l_x) 2 2 I:Zyazx 2
(gc)z_[dx]x_l_{dx[ 6 Ell (X 4 2IX)+ 6 Ell (l XZ)}}I

:{Fli(ax—zlz—3x2—a12)+|:2£(lz—3x2)} =M(|2—af)— Ryal
x=|

=0.0104 rad ANS

6Ell 6EIl 6Ell 3E|
~300c0s20° |(16 750sin 20° |(9)(30
= [ - Jao (30°- 2)—[ - Jox ) 001091ad  Ans
6(30)10°(0.119 8)(30) 3(30)10°(0.119 8)

— d_Z _ ]za'l(I X) ZZaZX 2
(%), = [dxjx_l_ {dx[ 6 Ell (X + & -2+ 6EII(|

F, F, F, E,al
:{61?‘?"(6Ix—2l2 -3x’ —a12)+62E—T:2(I2 —3x2)l_I =—1—a}(l2 —a12)+2—q

__[300sin20° J16) (0 _162)+[

6(30)10°(0.119 8)(30)
The slope magnitude is ©¢ =1/(~0.0109)’ +(-0.0193)" =0.0222 rad Ans

~750c0820° |(9)(30)

3 =-0.0193 rad ANsS
3(30)10°(0.119 8)

4-34 From the solutions to Prob. 3-73, Fg = 22.8 kN, and Prob. 4-28, | =306.8 (10*) mm".
From Table A-9, beam 6

0. -§2) e B e v -r)s 2R 2 |

BB, o BB, o [11(103)sin20°](650)
_ﬁ(bl - )+6E—|l(bz - )_6(207)103(306.8)103(1050)

[22.8(103)sin 250}(300)
6(207)10°(306.8)10° (1050)

x=0

(6502 —10502)

(3002 —10502) —-0.0115rad  Ans
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(o))

(HO)VZ_[%L_ {dx[62|)|(( Xt =) FZZEIIX(XZHf_Iz)}}

__m 2_2_ﬁ 22
- 6Ell(b‘ ) 6EIl (b 1)

[1 1(10%)cos 200}(650)

= 3 : (650° -1050°)
6(207)10°(306.8)10°(1050)
[—22.8(103)cos 25°](300)

 6(207)10°(306.8)10°(1050) (

x=0

2 —10502) = -0.00427rad  Ans

The slope magnitude is © = /(~0.0115)’ +(-0.00427)" =0.0123 rad  Ans

(HC)Zz(%L_{ dx{%lnx)( b g -20)+ %ln_)o(haf—zlx)}}x_l

2ya2

I:lyal 2
=|——(6lx-21"-3
Dot

oI (6|x—2|2—3x2—a§)}

[1 1(10°)sin20° ] (400)
6(207)10°(306.8)10° (1050) (

3 Ry
} 6lé||( —al )y 2=

[22.8(103)sin25°}(750)
6(207)10°(306.8)10° (1050)

(HC)VZ_[%Z(]M = {dx{ lzzl(é” X)(X2+af—2IX) %M)O(Xz+ g - 2Ix)}}

I:Z 2 2 2 FZ 2 2 2
:—{61??"(6IX—ZI —3x —a1)+62E—T:2(6Ix—2I —3x —az)}

> -4007)

(10502—7502)=O.0133rad AnNs

x=I

[1 1(10%)cos20° } (400)
6(207)10°(306.8)10°(1050)

F F

[—22.8(103)cos 25°](750)
T 6(207)10° (306.8)10° (1050)
The slope magnitude is O = J0.01332+0.01122 =0.0174 rad  Ans

(10502 —4002)

(10502 - 7502) =0.0112rad  Ans

4-35 The required new slope in radians is @ pew = 0.06(7/180) = 0.00105 rad.
In Prob. 4-29, | =0.119 8 in”, and it was found that the greater angle occurs at the bearing

at O where (6o)y = — 0.00468 rad.

Sinced is inversely proportional to I,
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— _ 4 _
Hnew Inew - eold Iold = |new =7 d /64 = Hold Iold /Hnew

new
1/4
64
or, dnew = (_ Iold

T

The absolute sign is used as the old slope may be negative.
d,., = (ﬁ

T

4-36 The required new slope in radians is @ pew = 0.06(7/180) = 0.00105 rad.
In Prob. 4-30, | =39.76 (10*) mm*, and it was found that the greater angle occurs at the

bearing at C where (6c)y = — 0.0191 rad.

eold

7

new

—-0.00468

1/4
0.1198| =1.82in  Ans
0.00105 ‘ j

See the solution to Prob. 4-35 for the development of the equation

64 9 1/4

dnew = ol Iold}
64]-0.0191 v

Oy =| —|————139.76(10°) | =620mm  Ans
7 |0.00105

4-37 The required new slope in radians is @ pey = 0.06(7/180) = 0.00105 rad.
In Prob. 4-31, | = 0.0491 in*, and the maximum slope is &c = 0.0104 rad.

See the solution to Prob. 4-35 for the development of the equation

64|09 "
dnew = (_ —oL Iold]

7 |0,
dnew=(ﬁ 0.0104

1/4
0.0491| =1.77in  Ans
7 10.00105

4-38 The required new slope in radians is @ pew = 0.06(7/180) = 0.00105 rad.
In Prob. 4-32, 1 =7 854 mm4, and the maximum slope is @ = 0.00750 rad.

See the solution to Prob. 4-35 for the development of the equation
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new

new

0.00750

7 10.00105

1/4
‘7 854} =327mm  Ans

4-39 The required new slope in radians is @ pey = 0.06(7/180) = 0.00105 rad.
In Prob. 4-33, 1 =0.119 8 in*, and the maximum slope @= 0.0222 rad.

See the solution to Prob. 4-35 for the development of the equation

7|6

7 10.00105

eold

1/4
IoldJ

0.0222

new

1/4
‘0.119 8] =2.68in  Ans

4-40 The required new slope in radians is @ pew = 0.06(7/180) = 0.00105 rad.
In Prob. 4-34, | =306.8 (10°) mm*, and the maximum slope is @c = 0.0174 rad.

See the solution to Prob. 4-35 for the development of the equation

64|06,

64| 0.0174

1/4
IoldJ

6,

new

1/4
306.8(103) -1009 mm Ans
0.00105

4-41 |pg= 71%64 =0.04909 in*, Jag =2 Iag = 0.09818 in®, Izc = (0.25)(1.5)*/12 = 0.07031 in*,
lcp = 7(3/4)/64 = 0.01553 in*. For Eq. (3-41), p. 102, b/c=1.5/0.25=6 = £ =0.299.

The deflection can be broken down into several parts

1. The vertical deflection of B due to force and moment acting on B (y;).
2. The vertical deflection due to the slope at B, g, due to the force and moment acting on

B (y2 = C_D¢931 = 2951).
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3. The vertical deflection due to the rotation at B, g;, due to the torsion acting at B (y; =

B_C 951 =5 (951).
4. The vertical deflection of C due to the force acting on C (Y4).

5. The rotation at C, 6c, due to the torsion acting at C (y; = CD6c = 26c).
6. The vertical deflection of D due to the force acting on D (ys).

1. From Table A-9, beams 1 and 4 with F = — 200 1bf and Mg = 2(200) = 400 Ibf in
-200(6") 400(6% )

3 (30)106 (0.04909) " 2(30)106 (0.04909)

2. From Table A-9, beams 1 and 4

0, ={E{E(x—3l)+ MeX }} :[ﬂ(sx_sm '\"BX}
dx| 6EI 261 |[ " [6El El |

| 6
- {E[_Fl +2M B]} ~ 2(30)10°(0.04909)

=0.01467 in

Y =—

[—(—200)(6) + 2(400)] =0.004074 rad

y2 =2(0.004072) = 0.00815 in

3. The torsion at B is Tg = 5(200) = 1000 Ibf in. From Eq. (4-5)

TL 1000(6)
O =| — | = ~=0.005314 rad
JG).e 0.09818(11.5)10

y3=15(0.005314) = 0.02657 in
4. For bending of BC, from Table A-9, beam 1

-200(5)

=0.00395 i
3(30)10°(0.07031) "

Yy =—

5. For twist of BC, from Eq. (3-41), p. 102, with T =2(200) = 400 Ibf'in

g _ 400(5)
€ 0.299(1.5)0.25° (11.5)10°

=0.02482 rad

Y5 =2(0.02482) = 0.04964 in
6. For bending of CD, from Table A-9, beam 1

~200(2’)

=0.00114 i
3(30)10°(0.01553) "

Yo =—
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Summing the deflections results in

6
Yo = Z y. =0.01467+0.00815+0.02657 +0.00395 + 0.04964 +0.00114 = 0.1041 in Ans,

i=l

This problem is solved more easily using Castigliano’s theorem. See Prob. 4-71.

4-42

The deflection of D in the X direction due to F; is from:

1. The deflection due to the slope at B, g, due to the force and moment acting on B (X; =
ﬁ 951 =5 951).

2. The deflection due to the moment acting on C (Xy).

1. For AB, | g = 7 1/64 = 0.04909 in*. From Table A-9, beams 1 and 4

Oy, ={i{ﬁ(x—3l)+ MpX° }} ={ﬂ(3x—6l)+ MBX}
dx| 6El 2€1 || |6El El |

= {;E[—FI +2M B]} =5 (30)1066(0.04909) [~(100)(6)+2(-200) ] =~-0.002037 rad

X1 = 5(-0.002037) = —0.01019 in
2. For BC, lgc = (1.5)(0.25)*/12 = 0.001953 in*. From Table A-9, beam 4

S ME 2(-100)5

- - =—0.04267 i
= 2E1 ~ 2(30)10°(0.001953) "

The deflection of D in the X direction due to Fy is from:

3. The elongation of AB due to the tension. For AB, the area is A= 7 1°/4 = 0.7854 in’

X, =( Fl J ___—150(6) -=-3.82(10") in
AE s 0.7854(30)10

4. The deflection due to the slope at B, &g,, due to the moment acting on B (X; = BC g, =
50g). With 1 a5 = 0.04907 in”,

Ml 5(-150)6

- - = -0.003056 rad
B2 El 30(106)0.04909
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X4 = 5(=0.003056) = - 0.01528 in

5. The deflection at C due to the bending force acting on C. With Igc =0.001953 in*

=E 150(5) ,
X =|-——| =- - =-0.10667 in
3EI ). 3(30)10°(0.001953)

6. The elongation of CD due to the tension. For CD, the area is A= 7 (0.75%)/4 = 0.4418
.2
in

= ~150(2)
%=\ AE). T 04418 6
o 0.4418(30)10

= —2.26(10’5) in

Summing the deflections results in

X, = 26: % =—0.01019-0.04267-3.82(10°)

i=l

~0.01528—0.10667 —2.26(10‘5 ) —-0.1749 in Ans

4-43 Joa=Jac= 7(1.5")/32=0.4970 in*, Jag = 7 (1*)/32 = 0.09817 in*, | a5 = 7 (1*)/64 =
0.04909 in*, and I cp = 7(0.75%/64 = 0.01553 in*.

QZ(T_') {T_'j +(T_I] T IOA+IAB+IBCJ
G‘] OA G‘] AB G‘] BC AA ‘lB ‘gc

:250(12)( 2 9 2
11.5(10°)10.4970 * 0.09817 ~ 0.4970
Simplified

ST 25012)(13)

*GJ 11.5(10°)(0.09817)

0, =0.0345 rad Ans
Simplified is 0.0345/0.0260 = 1.33 times greater AnS.

j =0.0260 rad Ans

Fl.3 Fl].2 250(13°
yD:y—OC+05(|CD)+ JCD — 6( )
3El,, 3El,,  3(30)10°(0.04909)

Y, =0.847 in Ans.

250(12°)
3(30)10°(0.01553)

+0.0345(12) +

4-44 Reverse the deflection equation of beam 7 of Table A-9. Using units in Ibf, inches
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WX (3000/12) x ;

—_ 2 — % —17) = - {2 25)%% — X —[25(12 }
V= agr (XX 1) 24(30)10° (485) (25)% -~ 25(12)]
=7.159(107") x| 27(10°) - 600 +X | Ans.

The maximum height occurs at X =25(12)/2 =150 in

Yowe = 7-159(107°)150[ 27(10°) - 600(150°) +150° | =1.812in  Ans

4-45 From Table A-9-6,
_ Fbx
=T
Fb
= X3 + b2X - | 2X
Y=gl )

%:6':—;”(3x2+b2—lz)
dy, | _Fb(bz—lz)

dx|.,  6Ell

(x2+b2—I2)

4
and set| = 7a, . Thus,
64

dy,
Let £ =—%
ote dx

x=0

4

32Fb(1 - )|’
3zEl&

Ans.

L

For the other end view, observe beam 6 of Table A-9 from the back of the page, noting
that a and b interchange as do X and —X

1/4

_|32Fa(|2—a2)|
dR_‘ 37EIE ‘ Ans

For a uniform diameter shaft the necessary diameter is the larger of d, and d;.

4-46 The maximum slope will occur at the left bearing. Incorporating a design factor into the
solution for d, of Prob. 4-45,
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37ElE

1/4
; {32an(|2b2)}

37(207)10°(300)(0.001)
d=38.1mm Ans

i i/32(1 28)(3000)(200)(300” —200% )

7(38.1
| =u =103.4(10’) mm*
64
From Table A-9, beam 6, the maximum deflection will occur in BC where dygc/dx= 0

i{M(xz+a2—2lx)}:0 = 3x2—6lx+(af+2lz):0
dx| 6Ell

3% =6(300) x+[100° +2(300°) |=0 = X ~600x+63333=0

x:%[600i\/6002 —4(1)63 333} _ 463.3,136.7 mm

X =136.7 mm is acceptable.

Vo :{%(XZ va —2Ix)}

Xx=136.7mm

3(10°)100(300-136.7) L
= - - [136.7° +100° —2(300)136.7 | =-0.0678 mm  Ans
6(207)10° (103.4)10° (300)

4-47 | = 7(1.25%/64 =0.1198 in*. From Table A-9, beam 6

_[Ral-% o o 5] [RRX N
5_\/[ SEll (xX*+4a 2Ix)} {6EII (X +1h F)}

(8°+5 - 2(20)(8))}

~ 150(5)(20 —8)
|| 6(30)10°(0.1198)(20)

1/2

{ 2560(10)(8) (8°+10° —202)} }
6(30)10° (0.1198)(20)

=0.0120 in ANns
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4-48 | = 7(1.25%/64 = 0.1198 in*. For both forces use beam 6 of Table A-9.
For F{ = 150 Ibf:

0<x<5
qu , 150(15) x 2 e A
=eein )= oneg o) 1S 20)
=5.217(10°)x( X ~175) M
5<x<20
CRa(l=X) . o o 150(5)(20-%)
ST (x'+a 2|X)_6(30)106(0.1198 [Xz +5-2(20)
=1.739(10°)(20- x)( X’ —40x+25) 2)
For F, =250 Ibf:
0<x<10
_Fz_bzx 22\ _ 250(10))( 2 2 02
~ 6Ell (X +b; I)_6(30)106(0.1198)(20)()( #10°-20)
=5.797(10°) x( X —300) 3)
10 < x<20

Fa,(I-x) ) 250(10)(20- x)
‘= 6E (X2+a2_2IX):6(30)106(0.1198)(20)[
=5.797(10°)(20 - x)( X —40x+100) (4)

Plot Egs. (1) to (4) for each 0.1 in using a spreadsheet. There are 201 data points, too
numerous to tabulate here but the plot is shown below, where the maximum deflection of
0=0.01255 in occurs at Xx=9.9 in. Ans.

X +10” =2(20) x|

0.015

0.6l N
! p. ~
0.065 / \

Displacement (In) 0 ( > - = = ylin}

N ﬂ‘ -“ .
0.065 N, il WO RPY ' - = z{in}
. L Total {in}
0.01 \'g._..’.,
£.015
4] 5 10 15 20
A (i)
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4-49 The larger slope will occur at the left end.
From Table A-9, beam 8

M g X

Yag = 6 +21%)

Wag ~ Ms 300,300 6a 1202

dx 6EII
With | = 7d*/64, the slope at the left bearing is

dYae Mg

—mBl —g =— B (35’ —6a +2I°

0 |, T GE(md" S6d)1 :
Solving for d
d =, >2Me 5 (38’ —6al +217) = 4 32(61000) [3(42)—6(4)(10)+2(102)]

37zEt9 | 37(30)10°(0.002)(10)

=0.461 in ANns

4-50 From Table A-5, E=10.4 Mpsi
XMo=0=18 Fgc —6(100) = Fgc=33.33Ibf
The cross sectional area of rod BCis A= 7(0.5%)/4 = 0.1963 in’.

The deflection at point B will be equal to the elongation of the rod BC.

FL 33.33(12) S
= - =6.79(10 Ans
Ve (AE)BC (0.1963)30(10°) (107) in

4-51 EMo=0=6 Fac —11(100) = Fac =183.3 Ibf

The deflection at point A in the negative Y direction is equal to the elongation of the rod
AC. From Table A-5, Es =30 Mpsi.

(FL 183.3(12)
Ya=~| 2g

AEJAC ~ [#(05°)r430(10%)

= —3.735(10*4) in

By similar triangles the deflection at B due to the elongation of the rod ACis

Yo _ Yu
6 18

From Table A-5, Ea = 10.4 Mpsi

=Yg =3Y,=3(-3.73510" =-0.00112 in

The bar can then be treated as a simply supported beam with an overhang AB. From Table
A-9, beam 10
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3El dx 6 El .

Fa’ d [ F(x=1I) , Fa
» X_HJ— (I+a):7{—[—[(x—l) —a(3x—|)]j} —ﬁ(na)

Yo, = (ﬁ)(dyi

F 2 Fa’ __TFa _Fa’
_75[3@—0 —3a(x-l)— a3 x— l)]lx='*a_ﬁ(l+a)_ 5 (21+3a) 3EI(|+a)
100(5%)

©3(10.4)10° (0.25(2")/12

7(100)5
6(10.4)10°(0.25(2°) /12
=-0.01438 in

) [2(6)+3(5)] ) (6+5)

Ye =VYe1 +Ys2 =—0.00112 - 0.01438 =—-0.0155 in Ans.

4-52 From Table A-5, E=207 GPa, and G=79.3 GPa.

|y |:(T_|j | _,_(T_lj |+ Fla _ Flod as N FI ol ao Fl, g
TG ® NG 3Bl G(ndy'/32) G(ndy/32) 3E(zd/64)

32FL G| e | e 2l g
= i i 3
T Gd,.' Gd,. 3Edg

The spring rate is K = F/ |yg|. Thus

-1
k = 32|A82 loc n | ac n 2 e
r |Gd. Gd. 3Ed,

_{32(2002){ 200 200 2(200) ”1
8')

| x| 79.3(10°)18¢ 79.3(103)124+3(207)103(

=8.10 N/mm ANsS

4-53 For the beam deflection, use beam 5 of Table A-9.

F
R= 3—5
5 =4 and s, -
2k 2k,
o, —0. Fx
=0 +1—2x+ 4x* -3I°
yAB 1 I 48E|( )

Yoo=F|———+ K0 X a3y Ans
2k 2kk|  4SEl
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For BC, since Table A-9 does not have an equation (because of symmetry) an equation
will need to be developed as the problem is no longer symmetric. This can be done easily
using beam 6 of Table A-9 witha =1/2

_-F  Fk-Fk X+F(|/2)(|_X)(X2 E_Z'X)
2k, 2kk,| Ell 4

Yec

_plo 1 k-k x+(|_x)(4x2+|2—8lx) Ans.
2k 2kk,|  48El

4-54
R:?, andF§=|E(|+a)
Fa F
= nd =g m(ra)
o —0. Fax
=0, +—1—2x 12 —x°
e TR
a
S = a-k(l+a +—I2 Ans.
yAB { kll kISIZI:kz :I ( )}
yBC:_é‘l_’_é‘l_&z X+ F(X_I)[(X—l)z—a(3x—|):|

I
Yec = F ——[ka-k I+a)]+(x—_|)[(x— )’ —aBx ] Ans.
kI kkzlz 6EI

4-55 Let the load be at x> /2. The maximum deflection will be in Section AB
(Table A-9, beam 6)

Fbx
X +b* —|?
Yre = 6EII( )
dyAB Fb(3 +b* - I):O = 3X+0-F=
dx 6EII

12 b2
3 X . = =0.5771 Ans

Forx< 12, X, =1-0.5771 =0.423  Ans
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4-56

Y

Mg =1(3000)(1500) +2500(2000) < 3m

=9.5(10°) N-mm I - o
R, =1(3000)+2500 = 5 500 N | ¥
“HHHHH% 1y .

From Prob. 4-10, |=4.14(106) mm"* ()Z __"“—-l-‘!'-‘Ili’-‘l'_‘ri Hl B
-1

2

M =—9.5(106)+5500x—X7—2500<x-2000}1

El d—iz -9.5(10°) x+2750x’ —§—1250< x—2000)" + G

dy
—Z=0atx=0 ..C =0
dx : G

g Y. -9.5(10°) x+2750% —£—1250< X—2000)°
dx 6

4
Ely=-4.75(10°) X +916.67X —%—416.67( x-2000)" + G
y=0atx=0 ..C, =0, and therefore

1
y= —ﬁ[114(106) X =22(10°) %" + X’ +10(103)<x—2000>3}

1
R I CATII [ 114(10)3000” - 22(107)3000°

+3000°* +10(103)(3000—2000)3}

=-25.4 mm ANns

Mo = 9.5 (10°) N-m. The maximum stress is compressive at the bottom of the beam where
y=29.0-100=-71 mm

— o) (—
_ My 9'5(10 )( 71)=_163(106)Pa=—163MPa Ans

O-max -
| 4.14(1 06)
The solutions are the same as Prob. 4-10.

4-57 See Prob. 4-11 for reactions: Ro = 465 1bf and Rc = 285 1bf. Using Ibf and inch units

Chapter 4 - Rev B, Page 38/81



M =465 x— 450 (x—72)! =300 (x — 120)"

El g—y= 232.5%* —225(x~72)" ~150(x~120)" +C,
X
Ely=77.5 X — 75 (x— 72)" = 50 (x — 120)’ — C;x

y=0atx=0 = GC,=0
y=0atXx=2401n

0 =77.5(240%) — 75(240 =72)* = 50(240 - 120’ + C; X = C; =—2.622(10°% Ibfiin?

and,
Ely=77.5 X — 75 (x— 72)° — 50 (x — 120)* —2.622(10°) x

Substituting y = — 0.5 in at Xx= 120 in gives

30(10°%) | (- 0.5) = 77.5 (120%) — 75(120 — 72)° — 50(120 — 120)* —2.622(10°%)(120)

| =12.60in*

Select two 5 in x 6.7 Ibf/ft channels; from Table A-7, | = 2(7.49) = 14.98 in*

1260 1
o =———| == |=-0.421in  Ans
ymldspan 1498 [ 2)

The maximum moment occurs at X = 120 in where M ,.x = 34.2(103) Ibf'in

3
o =Mc 34200025 541006 oK.
I 14.98
The solutions are the same as Prob. 4-17.

4-58 | = 7(1.5%/64 =0.2485 in*, and w = 150/12 = 12.5 Ibf/in.
R, =%(12.5)39+%(340) =453.0 Ibf

M = 453.0x—127'5 X —340( x-15)'
Bl W o pesx2 120 ~170(x~15)" +C,

dx
Ely =75.5%* - 0.5208x" —56.67( x-15)’ + Gx+C,

y=0atx=0 = C =0
y=0at x=39in = G =-6.385(10") Ibf-in* Thus,

1
y= E[75.5x3 ~0.5208X —56.67( x-15)" —6.385(10*) x]

Evaluating at X =15 in,
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1
~30(10°)(0.2485)
=-0.0978in Ans

Vs [75.5(153)—0.5208(154)—56.67(15—15)3 —6.385(104)(15)]

1
Yitspn. = 30(10°)(0.2485)
= —0.1027in Ans

[75.5(19.53)—0.5208(19.54)—56.67(19.5 ~15)° —6.385(104)(19.5)]

5 % difference  Ans.

The solutions are the same as Prob. 4-12.

3(14)100 7(14)100

4-59 | =0.05in*, R, = =420 Ibf T and R, = =980 Ibf T

M =420 x—50 %+ 980 ( x— 10 )!

El %’: 210x* ~16.667% +490( x~10)" +C,
X

Ely =70%* - 4.167x +163.3(x~10)" + Gx+C,

y=0atx=0 = C,=0
y=0atx=10in = C;=-2 833 Ibfin’. Thus,

1

S U e ) L
y—30(106>0.05[70x3 4.167x" +163.3(x~10) 2833x}

= 6.667(107)| 70X’ ~4.167x" +163.3(x-10)' ~2833x|  Ans

The tabular results and plot are exactly the same as Prob. 4-21.

4-60 Ra=Rg=400N, and | = 6(32%) /12 =16 384 mm".
First half of beam,
M = — 400 X + 400 { x— 300 )!

El g_y = -200x” +200(x~300)" +C,
X
From symmetry, dy/dx=0atx=550mm = 0=—200(550%) + 200(550 — 300)* + C,
= C; =48(10° N-mm’

Ely=—66.67 X’ + 66.67 { x— 300 )* + 48(10° x+ C,
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y=0atx=300mm = C,=-12.60(10") N-mm".

The term (EI)™"' = [207(10%)16 384] ' =2.949 (107" ) Thus
y=2.949 (107"%) [- 66.67 X’ + 66.67 { x— 300 )’ + 48(10°%) x — 12.60(10%)]
Yo=-3.72mm AnS.

Yix= 550 mm =2.949 (107'%) [~ 66.67 (550°) + 66.67 (550 — 300)°
+48(10% 550 — 12.60(10°)] = 1.11 mm Ans.

The solutions are the same as Prob. 4-13.

4-61
> My=0=RlI+Fa-M, = R:%(MA—Fa)

dM,=0=M,+RI-F(l+a) = Rzzll(FhLFa—MA)

M=Rx- M, +R{x )

dy _lppe 1 2
Eldx_lexz |\/|Ax+2 R(x ) +¢C
1

Ely:%m&—% |\/|A>8+g R(x )+ G¢x C

y=0atx=0 = GC,=0
y=0atx=1 = CI:—%RI2+%MAI.Thus,

1 1 1 3 1 1
EIy—gRl)?—E 'V'A’“g R{ % ) +(—g R‘HE Ngﬂ X

1

:ﬁ[(MA_ Fa) X —=3M, X l+( Fl+ Fa- M,){ x- )’ +( Faf +2M,F) x] Ans

y
In regions,
1

Vs =ﬁ[(MA— Fa) X ~3M,X I+( Faf +2M,F") x]

=EX”[MA(X2—3|X+2|2)+ Fa(lz—xz)} Ans
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é (Ma=Fa) X =3M ¢ 1+ (A +Fa- M )(x= 1) +(Fal’ +2M |*)x]
é MA[X —3X—(x- ) +2x|2}+ F[—ax3 +(1+a)( x- I)3+axF}}
% M (x=1)17 R (=) (x1) - (3x-1) ]|

_(x=

o { M |+F[( I -a(3x-1)]} Ans

The solutions reduce to the same as Prob. 4-17.

4-62 > My=0=RI-w(b- a){l b+— (b—a)} - R:w(b_a)(zl—b-a)
M :Rlx—9< X— a}2+ﬂ< - b’

dy 1 w 3
El -2 o 2Rx _E<X a) + 6<x—b> +C,

4 w 4
EIy——R|x3—£< X- g +£< b+ Cx C

y=0atx=0 = C,=0
y=0atx=|

:L{lw(m “bea) 2 (xa)'+ L (b’

El |6 2

‘X%EW(ZI ~b-a)l’ _2_“;(| —a)' + 21 _b)ﬂ}

24
w

=m{2(b—a)(2l—b— Q)X —1(x- 3"+ I x b’
x[2(b-a)(21-b-a)F~(I-a)' +(1-b)' || Ans

The above answer is sufficient. In regions,
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w

yAB:m{z(b— a)(21-b- a) >2—>{2( b- a2 F b Al-( - &' +(F H}

wx

——=[2(b-a)(21-b-a) ¥ -2(b- 3(2 - b- § T+(F ' ~(1- ']

yBC:ﬁ{z(b—a)(zl—b—a)x3—l(x—a)4
X[ 2(b-8)(21-b- 3 F~(1-a)' +(1-)' |}
Yeo :TZI"E”{z(b-a)(m-b- a) X —I(x- 3"+ I x b’

~x[2(b-8)(21-b-3) F~(1-a)' +(1-)' |

These equations can be shown to be equivalent to the results found in Prob. 4-19.

4-63 |, = 7(1.375%/64 =0.1755 in*, |, = 7(1.75")/64 = 0.4604 in*,
R; = 0.5(180)(10) = 900 Ibf

Since the loading and geometry are symmetric, we will only write the equations for half
the beam v

For0<x<8in M =900x—90({x~-3)’ T

Atx=3, M =2700 Ibfin V—\

Writing an equation for M / 1, as seen in the figure,
the magnitude and slope reduce since | ; > | ;.

To reduce the magnitude at X = 3 in, we add the
term, — 2700(1/1 1 — 1/ 1 ){ x—=3 )0. The slope of 900 at X = 3 in is also reduced. We
account for this with a ramp function, ( X — 3)1 . Thus,

M_ 900X—2700[l—lj<x—3>° —900[l—L}<x—3>1 —|9—0<x—3>2

I I 1 1 2 1 2 2

2

=5128x-9520(x~3)" ~3173(x-3)' ~195.5( x-3)

3—3): =2564%* —9520(x~3) —1587(x-3)" -65.17(x-3)" + G

Boundary Condition: %’ =0atx=81in
X
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0=2564(8)" —9520(8-3)-1587(8-3)" -65.17(8-3) +C, =
Ci =-68.67 (10%) Ibf/in’

Ey=2854.7x" —4760(x~3)" —529( x-3)’ ~16.29( x-3)" ~68.67(10") x+C,
y=0atx=0 = GC,=0

Thus, for 0 < x<8in

85470 ~4760(x-3)" ~529(x-3) ~16.29( x-3)" ~68.7(10") x| Ans

1
y= 30(10°)

Using a spreadsheet, the following graph represents the deflection equation found above

Beam Deflection

_0.00: l\ ] k 4 L l 7 l
’ 0.006 - \

0,008 - \\

\
0.01 -
0012 - + (i
The maximumis y _=-0.0102inatXx=8in Ans

4-64 The force and moment reactions at the left support . |

are F and Fl respectively. The bending moment (j

equation is

I

M = Fx — FI ;

Plots for M and M /I are shown.
~Fl
M /1 can be expressed using singularity functions

M
4]

M F_ A FI/ 1\ F o\ )‘/ §
—=—X—————(X==) +=——( X—= _ _ -
| 21 2l 4 2 .| 2 —Firt, F !
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where the step down and increase in slope at X = | /2 are given by the last two terms.
Integrate

1 2
Eﬂ:ixz—iI x—ﬂ< x—|—> +i< x—|—> +C,
dx 41 21" 41\ 2/ "4l 2

dy/dx=0atx=0 = C;=0

2 3
Ey= F )@—ﬂ%—F—I x—l— — x—l— + C
20,7 4 8\ 2/ 1\ 2

y=0atx=0 = C,=0

y:L(Zf—6lx2—3l<x—l—> +2<x—|—> ]
24El, 2 2
F Y | \? SFI°
Y, _24E|1[2(§j —6I(Ej —3|(0)+2(0)}_—96E|1 Ans.

Y, = 24FE|1 {2(03 —6l (I2)—3| (| _'ET +2(X_I§ﬂ _ _136FEII31 Ans,

The answers are identical to Ex. 4-10.

4-65

Place a dummy force, Q, at the center. The reaction, Ry =wl /2 +Q/2
M - ﬂl + g X—ﬂ a_M — 5
2 2 2 oQ 2
Integrating for half the beam and doubling the results

1/2 1/2 2
ymax — (2L M [%j de — i |:(ﬂj X_ﬂ:| (zjdx
Ely \oQ) ), El3[l2 2 |\2

Note, after differentiating with respect to Q, it can be set to zero

1/2 5
—w Ans

172 3 4
w ) w [ X1 X

2E1Y 2EI 3 4

4-66

Place a fictitious force Q pointing downwards at the end. Use the variable X originating at

the free end at positive to the left
2
M:—Qx—wx GM:_X
2 Q
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1+ (oM '
Yien = {E! M (%J deO -5

_wl’

= ANs
SEI

4-67 From Table A-7, 1, =1.85 in*. Thus, | =2(1.85) =3.70 in*

First treat the end force as a variable, F.
Adding weight of channels of 2(5)/12 =

0.833 Ibf/in. Using the variable X as
shown in the figure

y

60

A

5 Ibf/in

P

in

Y

150 Ibf

A

M=-F 7—5'83378 =—FX-2917%
M _ o
oF
1 o0 OM 1 60
O,=—| M—dx=— FX+2917%X) (X d¥x
ATEIY T GF EI-[O( X

_ (150/3)(60%)+(2.917/ 4)(60%)
30(10°)(3.70)
S Ya=-0.1821in Ans

=0.182 in in the direction of the 150 Ibf force

4-68 The energy includes torsion in AC, torsion in CO, and bending in AB.

Neglecting transverse shear in AB

M =Fx, @zx
oF

In AC and CO,

rop T

AB> GF _lAB

The total energy is

2 2 lap 2
U=(T|j +(T|j +IM—dx
2GJ ). \2GJ)_, ¢ 2Elg

The deflection at the tip is
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|AB

IAB
LU _The 0T Tleo 0T M M Thlp Tled o, ! [ rea
“OF Gl 0F Gl,0F i ElLOF Gl. G, Eksy

_TlACI AB+TI C(J AB+ Fli\B _ Fl A!:zAB + FI (!OzAB + FIZB

Gl Glo 3Elg G(zdi./32) G(zd,/32) 3z dy/64)

32|:|,2MB | pc leo 2
_ | +

7 \Gdy Gd, 3Ed,
F oz (e 1o 2. )
—= + +
5 3215, \Gd. Gd', 3Ed%,

-1
4 200 200 2(200) B

4-69 |, = (1.375%/64 =0.1755 in", |, = 7 (1.75")/64 = 0.4604 in*

Place a fictitious force Q pointing downwards at the midspan of the beam, X = 8 in

R——(10)180+ ! 0-900+050

For0<x<3in M=(900+0.5Q)X 2—'\(_3=0.5X

For3<x<13in M =(900+0.5Q) Xx—90( x-3)’ %zO.SX

By symmetry it is equivalent to use twice the integral from 0 to 8

8 3
5:[2 Mﬂdx} =éj9oox2 dxt
Q= 10

8
2
![900 x-90( *3)" | xdx

) El 0Q El,
8
=300X3 ! [300x —90(—x4 2% +2 % )}
El |, =0 277,
8100 1 , \ 8100 120.2(10°)
"~ El +EI2[ 3(10°)-2s31(10 )] 30(106)01755+30(106)046O4
=0.0102 in Ans
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4-70 | = 7(0.5%/64=3.068 (107)in*,J =21=6.136 (107 in*, A =7(0.5%)/4 = 0.1963 in’.

Consider X to be in the direction of OA y vertically upward, and z in the direction of AB.
Resolve the force F into components in the X and y directions obtaining 0.6 F in the
horizontal direction and 0.8 F in the negative vertical direction. The 0.6 F force creates
strain energy in the form of bending in AB and OA and tension in OA The 0.8 F force
creates strain energy in the form of bending in AB and OA and torsion in OA Use the
dummy variable X to originate at the end where the loads are applied on each segment,

0.6F: AB M =0.6F%X M _06%
oF
OA M =42F M _45
oF
F, =0.6F R 06
oF
08F: AB M =0.8FX M _o8x%
oF
OA M =08FX M _osx
oF
oT

T=5.6F —=5.6
oF

Once the derivatives are taken the value of F = 15 Ibf can be substituted in. The deflection
of B in the direction of F is*

oU (FLY) oF, (TL) oT 1 oM
5 = = a a —_— e M_d_
() = (AEJOAaF{JGJOAaHEIZI F o
0.6(15)15 5.6(15)15
= : 5.6
0.1963(30)106( )+6.136(103)11.5(106)( )
15(4.22 13
(0.6X)" d X+ (42) [ dx+
30(10°)3.068(107) 5
15 15

)j(o.gi)2 dX

+30(106)3.068(10‘3 .

15
+3O(106)3.O68(10‘3)
15 N2
+30(106)3.068(10‘3) (08x) d
:1.38(10‘5)+0.1000+6.71(10‘3)+0.0431+0.0119+0.1173
=0.279 in FAYRIS

Ol J O
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*Note. This is not the actual deflection of point B. For this, dummy forces must be placed
on B in the X, y, and z directions. Determine the energy due to each, take derivatives, and
then substitute the values of Fy =9 Ibf, Fy = — 12 Ibf, and F, = 0. This can be done
separately and then use superposition. The actual deflections of B are

95 =0.08311-0.2862 ] —0.00770 k in
From this, the deflection of B in the direction of F is

(85). =0.6(0.0831)+0.8(0.2862) =0.279 in

which agrees with our result.

4-71

Strain energy. AB: Bending and torsion, BC: Bending and torsion, CD: Bending.

lag = 7(1%)/64 = 0.04909 in”, Jag =2 lag = 0.09818 in*, Izc = 0.25(1.5%)/12 = 0.07031 in®,
lcp = 7(0.75%)/64 = 0.01553 in”.

For the torsion of bar BC, Eq. (3-41) is in the form of 8 =TL/(JG), where the equivalent of
J is Jeg = foC’. With b/c=1.5/0.25 = 6, Jgc = Aoc’ = 0.299(1.5)0.25° = 7.008 (107°) in®.

Use the dummy variable X to originate at the end where the loads are applied on each
segment,

AB: Bending M =FX+2F %:7(+2
Torsion T =5F a =5
oF
BC: Bending M =FX ™M =X
oF
Torsion T=2F a =2
oF
CD:Bending M =FX % =X

oU Tl oT 1 oM | _
5=y T 5 L Max

T OF “~JGoF oF
____5F() 2F (5) . «
_0.09818(11.5)106( )+7.008(10'3)11.5(106)2+30(106)0_04909£F(X+2) dx
1 i - 1 L
+3o(106)0.07031£FX ax 30(106)0.01553! P dx

= 1.329(10-4) F +2.482(10‘4) F +1.141(10-4) F +1.98(10‘5)F +5.72(1o-6) F
= 5.207(10*4) F= 5.207(10*4)200 =0.104 in Ans.
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4-72 Apg= 7(1%)/4=0.7854 in*, 1 ag = 7 (1%)/64 = 0.04909 in*, 1gc = 1.5 (0.25°)/12 = 1.953
(107 in*, Acp = 7(0.75%)/4 = 0.4418 in’, | ag = 7(0.75%)/64 = 0.01553 in*. For (Jp )y let
F=Fx=-150Ibfand F,=— 100 Ibf. Use the dummy variable X to originate at the end
where the loads are applied on each segment,

oM,

oF

=0

CD: M, =FX

BC: M,=FX+2F =X

a I:Z 6Fa =
oF

AB: M, =5F +2F,+FX Y =5

oF,

oF

() =Q=(FLJ oF, |
“oF | AE

F.=F ~1

F 2E )X d¥X
oo OF EIBJ( X+2R)X

1

+ _|-(5F+2FZ+FZY)(5)d7<+(E] oF,

AB 0 AE AB 6':
(1)+

___F()
©0.4418(30)10°

F
30(106 1953 10*3 [3 }
]
+
30(106)0.04909

2 0.7854(30)10°

[25F(6)+10F v (6%)5 } F(6) (1)
)

=1.509(107)F +7.112(10)F +4.267(10"

F,+1.019(10°)F
+1.019(10*)F,+2.546(107 ) F =8.135(10™* ) F +5.286(10* ) F,

Substituting F = Fy =— 150 Ibf and F, = — 100 Ibf gives

(6), =8.135(107*)(~150)+5.286(10*)(~100) =-0.1749 in ~ Ans

4-73 lop=lpc= 7 (1.5%/64 = 0.2485 in*, Jop= Jgc =2 loa= 0.4970 in”, | s = 7 (1*)/64 =
0.04909 in”, Jag =2 I ag = 0.09818 in®, Icp = 7(0.75%)/64 = 0.01553 in*

Let Fy = F, and use the dummy variable X to originate at the end where the loads are
applied on each segment,
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oc M=Fx M_x T1-2Fr Lopp

oF
pc: M=rx M_x
oF
oU TLY oT « 1, oM
5.) =M (It} ot s Ly Myx
(%), =5 Z(JGJOCGFJrZEIJ. F o

The terms involving the torsion and bending moments in OC must be split up because of
the changing second-area moments.

12F (4) 12F (9) 1 w2y
5). = 2 Fxd
(%), 0.4970(11.5)106( )+0.09818(11.5)106( )+30(106)0.2485£ e

1 1 13 _ _ 1 12
’ 30(10°)0.04909 30(10°)0.2485 l P d 30(10°)0.01553 j P d

0
=l.008(10‘4)F +1.148(10‘3)F +3.58(10‘7)F
+2.994(10‘4)F +3.872(10‘5)F +1.2363(10‘3)F
= 2.824(10’3) F= 2.824(10’3)250 =0.706 in Ans.

11
jFi2d7<+
2

For the simplified shaft OC,

12

_ 12F(13) (12)+ 1 I [ Fx ax
0.09818(11.5)10 30(10°)0.04909 30(10°)0.01553

= 1.6580(10’3) F +4.973(104‘) F +1.2363(10’3) F= 3.392(10*3) F= 3.392(10*3)250
=0.848 in ANs

(%),

13
IF¥2d7(+
0

Simplified is 0.848/0.706 = 1.20 times greater AnNS.

4-74 Place a dummy force Q pointing downwards at point B. The reaction at C is
Rc=Q+ (6/18)100 = Q + 33.33
This is the axial force in member BC. Isolating the beam, we find that the moment is not a

function of Q, and thus does not contribute to the strain energy. Thus, only energy in the
member BC needs to be considered. Let the axial force in BCbe F, where
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F=0Q+33.33 *
oQ
0+33.33)12
5= K&j ﬁ} ADBINE) g0(10%)in Ans
Qlo, [\AE Jgc Q] [n(o.s )/4}30(10 )
4-75 log=0.25(2%)/12 =0.1667 in* R,
Anc = 7(0.5%)/4 = 0.1963 in’ oo

RO 12 in Q

Mo =0=6Rc - 11(100) - 18 Q i 61n Sin 7in l

0 . '- j

Rc =3Q+ 183.3 L AL ?

X X

Ma=0=6Ro—-5(100)-12Q = Ro=2Q+83.33

Bending in OB.

BD: Bending in BD is only due to Q which when set to zero after differentiation
gives no contribution.

AD: Using the variable X as shown in the figure above

M=-100x-Q(7+%) M __(7¢7%)
Q

OA: Using the variable X as shown in the figure above

M =-(2Q+83.33) x aﬂ:—2X
Q
Axial in AC:
F=30Q+183.3 ﬁ=3
aQ
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(el fezv el

o 1833(12) 0
_0.1963(30)106(3) Bl (100X)(7+X Jd X+ ['2(83.33) Xelx

_ 3 1 o S\A v 6 2
=1.121(10 )+10.4(106)0.1667[100£X(7+ X)dX+166.7[ xdx}

=1.121(107)+5.768(107)[100(129.2) +166.7(72) | =0.0155 in  Ans

4-76 There is no bending in AB. Using the variable, rotating counterclockwise from B

M = PRsin @ M _ Rsin @
oP

F =Pcosd i =cos @

F, =Psiné ai=sin9
oP

OMF, _ 2PRsin*

A=6(4)=24 mm’, 1,=40+1(6)=43 mm, r,=40-1(6)=37 mm,
From Table 3-4, p.121, for a rectangular cross section

= =39.92489 mm

In(43/37)

From Eq. (4-33), the eccentricity is € = R—r, =40 — 39.92489 = 0.07511 mm
From Table A-5, E =207(10°) MPa, G = 79.3(10%) MPa

From Table 4-1,C=1.2
z o(MF
_IL—( 9)d9+I CFZ(ange
o AE 0 P °o  AG 0

From Eq. (4-38)
_ ﬁl(aﬂjdmf@(%)dg
° AeE\ 0P o AE\ 0P
x CPI'\QCOSH)2

: P(Rsin6)’ P 0)

—_[ ( sin dH J- F{sm 40— J~ 2PRsin’ Hd¢9+j do
o AeE AE AE AG

B ﬁPR( R, Ecj 7(10)(40) 40 o, (207 10°)(1.2)
4AE G ) 4(24)(207-10%)( 0.07511 79.3-10°

0 =0.0338 mm Ans
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4-77 Place a dummy force Q pointing downwards at point A. Bending in AB is only due to Q
which when set to zero after differentiation gives no contribution. For section BC use the
variabled, rotating counterclockwise from B

M = PRsind+ Q( R+ Rin6) ™M = Ri+sind)

F. =(P+Q)cosd ?g:cosﬁ

F,=(P+Q)siné %:SM

MF, =[ PRsin @+ QR(1+sin8) |( P+ Qsind
OMF,
aQ

= PRsin’ 8+ + PF€1n9(1+s1n6’)+2 QRlnH(lJrsmé’)

But after differentiation, we can set Q = 0. Thus,

MF, = PRsin§(1+2sin6)

A=6(4)=24 mm’, 1,=40+1(6)=43 mm, r,=40-1(6)=37 mm,
From Table 3-4, p.121, for a rectangular cross section

= ~39.92489 mm
In(43/37)
From Eq. (4-33), the eccentricity is € = R—r, =40 —39.92489 = 0.07511 mm
From Table A-5, E = 207(10°) MPa, G = 79.3(10*) MPa
From Table 4-1,C=1.2
From Eq. (4-38)
z Z a MF
: M (oM d6+IFR oF, do-[*-L 1 0(MF,) CFR aF do
0AeE6Q o AE( 0 Q 0AE&Q
E s1n0(1+s1n0)d6+—'[ sin ede—ﬂ;{ sin@(1+2sin 0) do
AeE’° A
+% , €08 >0do
AG

V4 PR 7 PR (x PR nCPR PR(rx R T C
= —+]|——F+—-—| —+2 +— = —+l|—=2+——
4 AeE 4 AE \ 4 AE 4 AG AH\4 e 4 G

10(40) [(Llj 40 _2+£1.2(207)103}

:24(207)103 4 0.07511 4 79.3(103)
=0.0766 mm Ans
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= 3in -

4-78 Note to the Instructor. The cross section Y
shown in the first printing is incorrect and the ] 0375in
solution presented here reflects the correction }
which will be made in subsequent printings. 075 in— - 1.5 in
The corrected cross section should appear as
§hown in ‘thls figure. We apologize for any <] _LU.S?:‘) in
inconvenience.

A=3(2.25)-2.25(1.5) = 3.375 in’ Section -1
m_ (1+1.5)(3)(2.25) - (13+ 307.25 FLI2SL522) s

Section is equivalent to the “T” section of Table 3-4, p. 121,

o 2.25(0.75) +0.75(2.25)
" 2.25In[(1+0.75)/1]+0.75In[(1+3)/ (1+0.75)]
e= R- [ =2.125-1.7960 = 0.329 in

=1.7960 in

For the straight section

1 3 2
:E(z.zs)(:a )+2.25(3)(1.5-1.125)

I z

] 2.25 2
—| —1.5)(2.25%)+1.5(2.25)| 0.75+===-1.125
= (1.5)(2.25°)+1.5( )( : ”
=2.689 in*
F
4in
X —»‘
For0<x<4in
oF oF

For 8< /2

F. =Fcosé al:'=cos6?, F,=Fsind @=sin0
oF oF
. oM .
M =F(4+2.125sin0) ¥=(4+2.1255m6’)

MF, = F(4+2.125sin 0)F sin @ ME,

=2F(4+2.365sin0)sin @
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Use Egs. (4-31) and (4-24) (with C = 1) for the straight part, and Eq. (4-38) for the
curved part, integrating from 0 to /2, and double the results

S zz{lj“ Fx dx+ F(4HD) +J‘”/2 F(4+2.1255in0)2 "
ELI 3.375(G/E) % 3.375(0.329)
+I’”2 F sin® 6(2.125) de‘fm 2F (4+2.125sin 6)sin 0

0 3.375 0 3.375
+J-7r/2 (D)F cos” 6(2.125) 40
o 3375(G/E)

de

Substitute | =2.689 in*, F = 6700 Ibf, E =30 (10°) psi, G=11.5 (10°) psi
2(6700 3
_Ae00) ] 4 4 + ! 16(£j+17(1)+4.516[1j
30(10°) |3(2:689) 3.375(11.5/30) 3.375(0.329) 2 4

+2.125(£j_ 2 4(1)+2'125(1) L 2125 (zj
3375\4) 3.375 4)| 3.375(11.5/30)\ 4

=0.0226 in ANS

4-79 Since R/h=35/4.5="7.78 use Eq. (4-38), integrate from 0 to 7, and double the results
M= FR(I - cosH) 2—’:;': R(l - cos@)

F. =Fsind o, =sin@
oF

F, =Fcosd @:cosﬁ
oF
MF, = F*Reos@(1 — cosd)
8(MF6)

——>=2FRcosd(1 — cosd)
oF

From Eq. (4-38),

2
5=2 ﬂj (1—0059)2d9+Ej cos’> 0do
AeEo AEY0

_2FR ”cosﬁ(l—cosﬁ)d6’+1'2FRJ‘”sin26d¢9
AE Jo AG 7o

2FR(37 R 3z E
= R T 06—
AEL2 e 2 G

A=45(3)=13.5 mm’, E=207 (10°) N/'mm?, G = 79.3 (10*) N/mm?, and from Table 3-4,
p. 121,
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h 4.5
ro= —= 37'25—34.95173 mm
In° In—-
I 32.75

and €=R—ry=35-34.95173 = 0.04827 mm. Thus,
2F (35
- (39) 3(3—” B 37 06n£j 0.08583F
13.5(207)10° | 2 0.04827 2 79.3

1

0.08583
Note: The first term in the equation for 6 dominates and this is from the bending moment.
Try Eq. (4-41), and compare the results.

where F is in N. For =1 mm, F = =11.65 N Ans

4-80 R’h=20>10so Eq. (4-41) can be used to determine deflections. Consider the horizontal
reaction, to applied at B, subject to the constraint (5;), =0.

M=TR(1_cos®)—HRsind M__Rino 0<o<Z
2 oH 2

By symmetry, we may consider only half of the wire form and use twice the strain energy
Eq. (4-41) then becomes,

.2 2 oM
(8y)y = (M

—— |Rd@ =0
oH EI

j:/ [—(1 cos @) — HRsin } Rsind) R #=0

F R HZ 0= H-= _30_955N Ans
2 4 4

Reaction at A is the same where H goes to the left. Substituting H into the moment
equation we get,

M :E[ﬁ(l—cosﬁ)—%inﬁ] a—M:—R[7r(1—cos<9)—25in¢9] 0<o<Z
2z oF 2& 2
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2
5, _oV. J‘i(M aﬂdeg:i ” FR2 [7(1-cos@)—2sind]’ RdO
El oF El 70 4rx

P

3
_ 2F|§EI J'O (22 + 7% cos? @+ 4sin® 0277 cos @ — 47 sin O+ 47 sin O cos 0) dO
T
3
— FZR 2 r + 72 z +4 z 27t —4An+27
27 El 2 4 4
2 3 2 3
_Gr 8xmHFR G 84 BOEY)  _r04mm Ans
gz El 87 207(10°)[ z(2*)/64]

4-81 The radius is sufficiently large compared to the wire diameter to use Eq. (4-41) for the

curved beam portion. The shear and axial components will be negligible compared to
bending.
Place a fictitious force Q pointing to the left at point A.

M = PRsin0+ Q Rind+ ) aa_l\cg: Rind+ |

Note that the strain energy in the straight portion is zero since there is no real force in that
section.
From Eq. (4-41),

.

j””L(M a_Mdee} - %jo’”z PRsin 0( Rsin 0 + |)Rd@
Q=0

o EIl oQ
_PR prn o _PR(z o ) 1(5%) z
==, (Rsm 9+|sm9)d¢9_ = (4 R+ )_30(106)[7[(0_1254)/64](4(5)+4j

=0.5511in Ans

4-82

Both the radius and the length are sufficiently large to use Eq. (4-41) for the curved beam
portion and to neglect transverse shear stress for the straight portion.

Straight portion: M 5 = PX % = X
. oM
Curved portion: Mgc = P[R(1-cos6)+ ] 5 = [R1-cos&)+ ]

From Eq. (4-41) with the addition of the bending strain energy in the straight portion of
the wire,
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1 oM 5 =2 ] OM g
5—.[05('\/'/\3 s jdx+jo E(MBC prs Rdé&
P, PR (=2 2
—E 0X dX+EJ-0 [RI—C059)+ |] Cp
P’ PR =2
=t
3EI  ElJo
P> PR =2
= + —
3EI  El Y0
3
_Pl +E[£R2—(2Rz+2 F{)+£(R+I)2}
3EI EI| 4 2

[F22(1—20059+cos2 0)+2H(1—cos€)+|2]dt9

[R2 cos’ 0 (2R +2R|)cos9+(R+|)2]d<9

PIIP 7 Vs
_E{TFZR ~R(2R+2 R)+3 RR )F}

= ! 4_3 53y 2 K 2
_30(106)7r(0.1254)/64{ 3273259+ 200@ ]+ 5 (5)(5+4) }

=0.850in Ans

4-83 Both the radius and the length are sufficiently large to use Eq. (4-41) for the curved beam
portion and to neglect transverse shear stress for the straight portion.

Place a dummy force, Q, at A vertically downward. The only load in the straight section is
the axial force, Q. Since this will be zero, there is no contribution.

In the curved section

M = PRsin 8+ QR1-cos ) %: R1-cos0)

From Eq. (4-41)
/2 1 aM 1 /2 .
5{] E(M —]Rdel_o :E'[O PRin6[ Rl-cos6)]| Rd

0 oQ
:E m(sin6’—si110c050)d(9:P—F\3 1—l :E
0 El 2 2El
1(53)
=0.174 in Ans

" 2(30)10° [ 7(0.125*)/64]

4-84 Both the radius and the length are sufficiently large to use Eq. (4-41) for the curved beam
portion and to neglect transverse shear stress for the straight portion.
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Place a dummy force, Q, at A vertically downward. The load in the straight section is the
axial force, Q, whereas the bending moment is only a function of P and is not a function
of Q. When setting Q = 0, there is no axial or bending contribution.

In the curved section

M = P[ R(1-cos @)+ |]|- QRsin@ %:—Rine

From Eq. (4-41)

5{
P /2 PRZ
= j (RsinH—Rsin9c056’+|sin¢9)d0=_E(
0

Bl
1(5%)
2(30)106[71'(0.1254)/64}[

Since the deflection is negative, J is in the opposite direction of Q. Thus the deflection is

2 1 aM 1 /2 .
.[o E(M %deGL_O —EJ.O P[ R(1—cos @)+ |](—Rsm 6) Rio
PR

R+| —lez——( R+2l)
2 2El

5+2(4)]=-0.452 in

5=0452in T  Ans

4-85

Consider the force of the mass to be F, where F =9.81(1) = 9.81 N. The load in AB s
tension

Fa=F

For the curved section, the radius is sufficiently large to use Eq. (4-41). There is no
bending in section DE. For section BCD, let &be counterclockwise originating at D

M = FRsiné aa—'\élstinH 0<6<r
Using Eqgs. (4-29) and (4-41)

3
5:( F'j %4” 1 (M@dee— F (1)+j”3sin29d9
o El

AE),, oF Yo EIl oF " AE
_A AR’ :E(l+nR3): 9.81 0, 7(40)
AE 2Bl E(A 21) 207(10) [7;(22)/4} 2[;;(24)/64]

=6.067 mm ANs
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4-86 Aoa=2(0.25)=0.5 in’, 3
loas = 0.25(2*)/12 = 0.1667 in®,
lac = 7(0.5%)/64 = 3.068 (107) in*

Applying a force F at point B, using
statics, the reaction forces at O and C
are as shown.

10 in

OFon _
oF

=

OA Axial F.,=3F 3

Mon _

Bending Mg, =-2Fx -2X

Mg _ o

AB: Bendin M,.=—-FX
g AB oF

AC: Isolating the upper curved section

oM

M ,c =3FR(sin@+cosd—1) ?’*C=3R(sin9+cosé—l)

10 20
5=( FIJ 8FOA+ ! J.4Fx2dx+ ! IFT@ dx
AE ), oF (EI)

/2
IFR’ j(sin¢9+cosé’—1)2 do

(EDxc 0

_3F(10) ; 4F(103) F(203)
" 0.5(10.4)10° (3)+ 3(104)10°(0.1667) ' 3(10.4Y10°(0.1667)
9F (10°) 712

+30(106)3.068(10’3) .([(sin20+2sin90059—2sin0+cosz9—2c0s9+1)d9

OAB 0 ( )OAB 0

+

=1.731(10"°) F +7.691(10™ ) F +1.538(107 ) F +0.09778F (1+1—2+5—2+£j
4 4 2

=0.0162F :0.0162(100):1.62 in Ans,

4-87 Aoa=2(0.25)=0.5 in’,
loas = 0.25(2*)/12 = 0.1667 in®,
lac = 7(0.5%)/64 = 3.068 (10™) in*
Applying a vertical dummy force, Q, at A,
from statics the reactions are as shown. The
dummy force is transmitted through section

T 30

10 in

3F+0 O

=1




OA and member AC.
oF

OA F,,=3F+Q —ag:l
oM

AC: M, =(3F+Q)Rsind—(3F+Q)R(1-cos8) WAC:R(sinéwcos@—l)

oo T ) T
AEJoal 0Q El)ac b Q

3 /2
= 3Flos + 3FR I(sin@+cos€—l)2d9

(AE)on  (El)uc 0
3(100)10 3(100)10° (7[

= o T 5 7 a6
_10.4(106)0.5+30(10")3.068(10’3) PR 2+2J 04621 Ans

Q=0

4-88

| = 7(6%)/64 = 63.62 mm*

0<0<x/2
M = FRsin @ %: Rsin @
oF

T = FR(1—cos ) 2—-;: R1-cos )
According to Castigliano’s theorem, a positive F
AJUIJF will yield a deflection of A in the negative y direction. Thus the deflection in the

positive y direction is

_oU 1 =2 P 1 =2 >
(5A)y_—a—F_—{Ejo F(Rsin 0) Rde+aj0 F[R(1—cos 6)] Rde}

Integrating and substituting J =21 and G= E/ [2(1 + v)]

(5A)y=—FE—F?3E+(1+v)(3T”—2ﬂ=—[4ﬂ—8+(37z—8)v] ZS
C {47-8+(Gr-8)(029)— 0BT s Ans

4(200)10° (63.62)

4-89

The force applied to the copper and steel wire assembly is
F. +F, =400 Ibf (1)

Since the deflections are equal, J, = J,
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e el

F 3 Fd

3(7/4)(0.1019)>(17.2)10°  (x/4)(0.1055)>(30)10°

Yields, F, =1.6046F,. Substituting this into Eq. (1) gives
1.604F, + F,=2.6046F =400 = F_=153.61bf
F, =1.6046F, = 246.5 Ibf

o, = F_ 246.5 >=10075 psi=10.1kpsi Ans
A 3(x/4)(0.1019)
O'S:i: 153.6 —=17 571 psi=17.6 kpsi Ans
A (7/4)(0.1055%)
:( Fl j _ 153.6(100)2(12) - 0703in  Ans
AE ). (7 /4)(0.1055)°(30)10
4-90 (@) Bolt stress o, =0.75(65) =48.8 kpsi Ans
Total bolt force F, =60, A =6(48.8) (%j (0.5%) =57.5 kips
Cylinder stress o, = K 57.43 =-139kpsi Ans

A (n/4(5.5-5)

(b) Force from pressure
2 2
p_ 7D D= 7(57%)
4 4

(500) = 9817 Ibf =9.82 kip
ZFX = O

Po+P:=9.8 (1)

Since o, =0, _ ’ $743-P,
PCIz Y= i - ' 6 bols Ql)—p- 5743 + B, x
(7/4)(5.5 -5)E  6(x/4)(0.5)E | P55 kp

P.=3.5Pp (2)
Substituting this into Eq. (1)
Pp+ 3.5Pp,=45Py,=9.82 = Pp=2.182 kip. From Eq. (2), P.=7.638 kip
Using the results of (a) above, the total bolt and cylinder stresses are
2.182

+— =2 _507kpsi Ans
6(r / 4)(0.5%)

Oy, =
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7.638
A 139+ 5
(r/4)5.5 -5

=-12.0kpsi Ans

4-91 T+ Ts=T (1)
JG
om0 » T (O
(36), (J6), (38,
Substitute this into Eq. (1)
(JG) (JG)
ST +T,=T = T = k T

(J6),

The percentage of the total torque carried by the shell is

, IOO(JG)S
LT he) s, M
4-92 Ro+Rg=W (1) R
5oA = 5AB t ]
(ﬂj (F_IJ TT
AE Joa AE) g
00 mm
W=4 kN
400 600 3
Substitute this unto Eq. (1) 400 mm
O - -

%RB+RB=4 = R=16kN Ans

From Eq. (2) R, = %1.6 =24kN Ans

5 _( Flj _2400(400)
A LAE )y, 10(60)(71.7)(10%)

=0.0223 mm Ans

4-93 See figure in Prob. 4-92 solution.
Procedure 1:

1. Let Rg be the redundant reaction.
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2. Statics. Ro +Rg =4000N = Ro =4000-Rg (1)

Ry (600) _(R,~4000)(400)

3. Deflection of point B. 6 = AE AE

=0 (2

4. From Eq. (2), AEcancelsand Rg =1 600 N  Ans.
and from Eq. (1), Ro=4000-1600=2400 N  Ans.

5A=(i'] ___2400(400) —=0.0223mm  Ans
AE )., 10(60)(71.7)(10%)

4-94 (a) Without the right-hand wall the deflection of point C would be

5 = 5(10°)8 2(10°)5
=2 AE  (7/4)0.75 (104)10°  (7/4)0.5 (10.4)10°
=0.01360 in > 0.005in .. Hitswall Ans

(b) Let Rc be the reaction of the wall at C acting to the left («—). Thus, the deflection of
point C is now

[5(10°)-R 8 [2(10°)-R s
¢ (7/4)0.75(10.4)10° * (7/4)0.5>(10.4)10°

~ 001360~ — % 6( L. Szjzo.oos
7(10.4)10°( 0.75* * 0.5

or,
0.01360-4.190(10°)R; =0.005 = R, =20531bf=2.05kip < Ans

Statics. Considering — +, 5000 -Ra—-2053=0 = Ra=29471bf=2.95 kip < Ans
Deflection. ABis 2 947 1bf in tension. Thus

_R(8) _ 2947(8)
" AGE  (7/4)0.75(10.4)10°

=5.13(10*3) in > Ans

4-95 Since HOAZQAB,

To® _Te® o 3
JG JG 2
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Statics. Toa+ Tag =200 (2)

Substitute Eq. (1) into Eq. (2),

%TAB + T = % T,s=200 = T,,=80 Ibf -in As.

FromEq. (1) T, :%TAB :%802120 Ibf -in Ans.
80(6
= (4 ) ; 180 _0.300° Ans
(7/32)0.5*(11.5)10° =
to1 16(120) 4890 psi=4.89 kpsi Ans
T = - T = = S1=4. S1
max 7Z'd3 OA 72_(053) p p
16(80
Tag = ( 3) =3260 psi=3.26 kpsi ~ Ans
72'(0.5 )
4-96 Since HOAZQAB,
Ton®  _ Tae(6)

= Ton =0.2963T 1
(7/32)0.5'G  (7/32)0.75'G = loa w (O

Statics. Toa+ Tag =200 (2)

Substitute Eq. (1) into Eq. (2),
0.2963T 5 + T,z =1.2963T,;=200 = T,z=154.3 Ibf -in Ans.

From Eq. (1) Ty, =0.2963T,;=0.2963(154.3)=45.7 Ibof -in  Ans.

0, = 154'34(6) ; 180 _ 148 Ans
(7/32)0.75' (11.5)10° =
167 = —16(45'7) 1862 psi=1.86 kpsi Ans
T = Tan = = =1
max 7Z'd3 OA ”(053) p p

16(154.3)

ro=— ") _1862 psi=1.86 kpsi  Ans
ne 7r(0.753) P P
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4-97 Procedure 1.

1. Arbitrarily, choose Rc as a redundant reaction.
2. Statics. XFx=0,
12(10°) = 6(10°) = Ro — Rc =0
R, ~t—
Ro=6(10)-Rc (1) ’
3. The deflection of point C.

12 kdp 6 kip
Fy mpe e [y (g | ——x

B [12(10-6(10)-R. [(20) [6(10")+R.|(10) R (15) "
¢ AE - AE  AE
4. The deflection equation simplifies to
—45Rc+60(10°)=0 = Rc=13331bf =133kip Ans

From Eq. (1), Ro=6(10")—1333=4667 Ibf =4.67kip Ans
Fae= Fg+ Rc=6+1.333 =7.333 kips compression

F 7333
O =", =
A (0.5)1)
Deflection of A. Since OA s in tension,
Roloa 4667(20)
Op=0cn = = 6
AE  (0.5)(1)(30)10

=-14.7 kpsi  Ans

=0.00622in  Ans

4-98

Procedure 1.

1. Choose Rg as redundant reaction. |
i |
2. Statics. Re =wl — Rg (1) -4L B [ %
o —=
| RB R
MC:Ewlz—RB(I—a) (2)

3. Deflection equation for point B. Superposition of beams 2 and 3 of Table A-9,

Yo = RBgIE—la) +wg'4‘Ef‘) [41(1-2)-(1-a)’ ~6*]=0

4. Solving for Rg.
w

R 8 _a)[mz ~4l(1-a)+(1-a)’]

8(I—a)(

317 +2al +a”) Ans.
Substituting this into Egs. (1) and (2) gives
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w

8(1-a)

R =wl -R, = (5I2—10al—a2) Ans

1 w
MC:EwIZ—RB(I—a):§(I2—2aI—a2) Ans.

4-99 See figure in Prob. 4-98 solution.

Procedure 1.
1. Choose Rg as redundant reaction.

2. Statics. Rc=wl - Rg (1)

1
MC:EwIZ—RB(I—a) (2)
3. Deflection equation for point B. Let the variable X start at point A and to the right. Using
singularity functions, the bending moment as a function of X is

1 2 1 GM _ . 1
M=—wa +R(x-a i_b( 3

|
yB:Q:L M@dx
R, BI R,

=é' —%wxz(o)dx+LI——wx2+ R (% a)}( % 4dx=0

0
or,

RB=L3[3(I4—a4)—4a(I3—a3)}: (3 +2al+a’) Ans

(5I2—10al—a2) Ans
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4-100 Note: When setting up the equations for this problem, no rounding of numbers was
made. It turns out that the deflection equation is very sensitive to rounding.

Procedure 2.

1. Statics. R + Ry =wl (1) ‘ w

( RRRRARRRRRRRRRRREEE SN

M
1
2. Bending moment equation. R R,

R I+ |v|1:%w|2 2)

M :Rlx—%wxz— M

dy _ Tee Llix_
Bl = ~R¥——wX - Mx G 3)
1 1 1

El =30(10°)(0.85) = 25.5(10°) Ibf-in’.
3. Boundary condition 1. At x=0, y=— R/k; = — R/[1.5(10%)]. Substitute into Eq. (4)
with value of El yields C, = - 17 R;.

Boundary condition 2. At x =0, dy /dx=— M, /k, = — M/[2.5(10°)]. Substitute into
Eq.  (3) with value of El yields C; =—10.2 M.

Boundary condition 3. At x=1, y=— Ry/k; = — R;/[2.0(10%)]. Substitute into Eq. (4)
with value of El yields

1 1 1
—“12.75R =— RPP——wl*=—M | =10.2M | -17R 5
R, p R A >V | ' (5)

Equations (1), (2), and (5), written in matrix form with w = 500/12 1bf/in and | = 24 in,
are

1 1 0 R 1
0 24 1 R, t=1 12 ¢(10%)
2287 12.75 -532.8 ) [M,| |576

Solving, the simultaneous equations yields
R =554.59 Ibf, R, =445.41.59 1bf, M; =1310.1 Ibfin Ans

For the deflection at x=1/2 =12 in, Eq. (4) gives
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Lissasoyiz - L3950 Ligsi0.0)12
24 12 2

Yt =W&(
~10.2(1310.1)12-17(554.59) |
=—5.51(10"") in Ans

4-101 Cable area, A=%(0.52) =0.1963 in’ TFBE A For
Procedure 2' A 16 in 16 in (-, 16 in
A B D
1. Statics. Ra+ Fge+ For=5(10) (1) |g,
5000 1bf
3 For + Fee = 10(10°) ()
2. Bending moment equation.
M = R X+ Ry ( x-16)' =5000( x-32)
dy 1 1 2 2
El=2=—R, X += F (x=16) —2500( x-32)" + 3
4o R+ Re(x-16) (x32)+ G 3)
Ely:% R, X +% Re ( x-16)’ —@( %32+ Cx C (4
3.B.C.1: At x=0,y=0 = C,=0
B.C.2: Atx=161n,
Yy = —(ﬂj — FeB® 45300,
AE ). 0.1963(30)10
Substituting into Eq. (4) and evaluating at X= 16 in
Ely, =30(10°)(1.2)(—=6.453)(10°) Fy =% R,(16)+C,(16)
Simplifying gives 682.7 Ra+232.3 Fge+ 16 C; =0 (5)
B.C.2: Atx=48in,
y, = —(ﬂj - FeBY _ 645300)F,
AE ). 0.1963(30)10
Substituting into Eq. (4) and evaluating at X = 48 in,
Ely, =—232.3F,, = % RA(483)+% - (48-16)° —¥(48—3z)3 +48C
Simplifying gives 18 432 Ra + 5 461 Fgg + 232.3 Fpr + 48 C; =3.413(10% (6)
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Equations (1), (2), (5) and (6) in matrix form are

1 1 1 0)[(R, 5000
0 1 3 0 ||Fg| | 10000
6827 2323 0 16 ||Foe | 0

18432 5461 2323 48)| C 3.413(10°)
Solve simultaneously or use software. The results are

Ra=-970.51Ibf, Fge=39561bf, Fpg=2015Ibf, and C; =— 16 020 Ibf:in>.

3956 2015
Oge = =202 kpsi, o, = =103 kpsi Ans
B 0.1963 P o 0.1963 P

El =30(10°(1.2) = 36(10°) Ibf:in’

1 (9705 5 3956, s 2500, .
y_36(106)( s X (x-16) S (x-32) 16020x}
1 3 3
=36(106)(—161.8x3+659.3<x—16> ~8333(x-32)" =16 020
B: x =16 in, yB=36(106)[—161.8(163)—16020(16)}=—0.02551n Ans
C:x=321n,
1 3
= ~161.8(32")+659.3(32-16)" ~16 020(32
Yo =g OS2 r6503(2-16)' 16 020(32)
=—0.0865in  Ans
D: x=48 in,
S S : _16) - _3) -
yD_36(106)[ 161.8(48")+659.3(48-16)' ~833.3(48-32)' =16 020(48) |

=-0.0131in ANS

4-102 Beam: El =207(10%21(10%) ¥
=4.347(10°) N-mm®.

F
Rods: A= (7/4)8 = 5027 mm?. |~ BE
75 mm 75 mm C T5mm D
Procedure 2. —
A B
1. Statics. R, Fop
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Rc + Fge — Fpr =2 000 (D)
Rc + 2Fge = 6 000 (2)
2. Bending moment equation.

M=—2 000X+ Fgg (X—75 ) + R (x— 150}’

EI%:—IOOOX2+%FBE<X—75>2+%RC<X—150>2+ G 3)

E|y=—$x3+éFBE<x—75>3+%Q(x—150>3+ Cx C (4

3.B.C1. AtXx=75mm,

FI Fae (50) By
Tl ag) T =-4.805(10°) R,
& (AELE 50.27(207)10° (10°) Fae

Substituting into Eq. (4) at Xx=75 mm,

4347(107)] -4.805(10) Fye | = —@(753)%1 (75)+C,

Simplifying gives
20.89(10° ) Fye +75C, +C, =140.6(10°) (5)

B.C2. At x=150 mm, y= 0. From Eq. (4),
—@(1503)%@4150—75)3 +C,(150)+C, =0

or,
70.31(10°) Fye +150C, +C, =1.125(10") (6)

B.C 3. At x=225 mm,

FI For (65) .
=l xg] = = 6.246(10°)
& (AEJDF 50.27(207)10° (10°) Fer

Substituting into Eq. (4) at X =225 mm,
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4.347(10")[ 6.246(10° ) Fpe. | = —¥(2253)+% Foe (225-75)’

+é R. (225-150) +C, (225)+C,

Simplifying gives
70.31(10°)R, +562.5(10°) Fe —27.15(10° ) Ry +225C, +C, =3.797(10°)  (7)

Equations (1), (2), (5), (6), and (7) in matrix form are

1 1 -1 0 0 2(10°

1 2 0 0 O EC 6(103;

0 2089(10) 0 75 1 Fsi _L1a0.6(10°

0 70.31(10°) 0 150 1| C, 1125(10°
70.31(10°) 562.5(10°) -27.15(10°) 225 1 G 3.797(10°)

Solve simultaneously or use software. The results are

Rc=—2378 N, Fge =4189 N, Fpr =— 189.2 N Ans
and C; = 1.036 (10") N-mm®, C, = - 7.243 (10*) N-mm’.

The bolt stresses are oge = 4189/50.27 = 83.3 MPa, opr = — 189/50.27= — 3.8 MPa Ans

The deflections are

1
From Eq. (4 =—————-7.243(10°) | =-0.167 mm Ans.
=& Vs 4.347(10")[ (107)]
For points B and D use the axial deflection equations®.
Fl 4189(50)
Vo=—|—| =- +=-0.0201 mm Ans.
AE Joe  50.27(207)10
—189(65
yD=(ﬂj = (65) -=-1.18(10") mm Ans
AE ), 50.27(207)10

*Note. The terms in Eq. (4) are quite large, and due to rounding are not very accurate for
calculating the very small deflections, especially for point D.

4-103 (a) The cross section at A does not rotate. Thus, for a single quadrant we have
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o
oM ,
The bending moment at an angle fto the X axis is

0

M :MA—B(I—COSH) L
2 oM ,
The rotation at A is
/2
_u :ij M-M Rdo=0

oM, El g M,

/2
Thus, éI{MA—?(l—cose)}(l)Rdezo = (MA_BJE-’_F_R:O

0 2 )2 2
or,
FR 2
M,=—/|1-—
"2 [ nj
Substituting this into the equation for M gives
M :E(cosﬁ—gj (1)
2 Vs

The maximum occurs at B where 8= /2

I\/Imalele:_E Ans‘
T
(b) Assume B is supported on a knife edge. The deflection of point D is JU/JF. We will

deal with the quarter-ring segment and multiply the results by 4. From Eq. (1)

oM R( 2)
—=—|cosf@——
oF 2

Vs
Thus,
z/2 3 /2 2 3

5D=Q=i MﬂRd9=FR I cost9—g dt9=FR r_2
oF El 3 oF El ¢ s El \4 =«

3

_ R (7z2—8) Ans
4r7E|
4-104
_C7Z'2E|

P

cr |2

D’ d
I=6—7;(D4—d4)=”4 (1-K*)  where K==

Cr’E| D
o = 7|[2 {24 (I_Kﬂ
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5 1/4
= & Ans
7r3CE(1— K“)

4105 A=2D*(1-K?), 1=2D*(1-K*)=—-D*(1-K?)(1+K?), where K = d / D.
4 64 64
The radius of gyration, kK, is given by
=L D e
A 16

From Eq. (4-46)
P, IS [ Sf
(z/4)D*(1-K*) ~ 42°K’CE 47*(D*/16)(1+K?)CE
48Pz D (1-K?)
7*D’ (1+K*)CE
<)s, - +4sj|2(1—K2)
= 7(1+K*)CE

4P, =7D’(1-K*) S, -

zD*(1

(1-
[ 1—K2 (1+1?;|;1(57;(1)K2)s]l/2

1/2
=2 R Sylz Ans
- 7S, (1- K2) 7 CE(1+K?)
4-106 >M, =0, (0.75)(800 0.9 F..(0.5)=0 F..=1373 N
- (a) A=0, (0.75) )_W 0(0.5)=0 = k=

Using Ng = 4, design for F; =Ng Fgo =4(1373) = 5492 N
| =40.9°+0.5 =1.03m, S,=165MPa

In-plane:

12 3
k= (l—Aj = [bhbr/]l2j =0.2887h=0.2887(0.025)=0.007218 m, C=1.0

103
0.007218

1
k
( J 27 (207)(109) _1574
165(10%) '
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Since (I /k), > (I /k) use Johnson formula.
Try 25 mm x 12 mm,

165(10°) 1
P, =0.025(0.012)1165(10° ) - — a7 13070 =29.1kN
T

This is significantly greater than the design load of 5492 N found earlier. Check out-of-
plane.

Out-of-plane:  k =0.2887(0.012) = 0.003 464 in, C=1.2
| 1.03
Kk 0.003 464
Since (I /k), < (I /k)use Euler equation.
1.27*(207)10

97.3

297.3

P.=0.025(0.012) =8321N

This is greater than the design load of 5492 N found earlier. It is also significantly less
than the in-plane P, found earlier, so the out-of-plane condition will dominate. Iterate
the process to find the minimum h that gives P, greater than the design load.

With h=0.010, P,,=4815 N (too small)
h=0.011, P,;= 6409 N (acceptable)

Use 25 mm x 11 mm. If standard size is preferred, use 25 mm x 12 mm. AnS.

P_ 1373
dh  0.012(0.011)
No, bearing stress is not significant. Ans.

(b) o, =— =—10.4(10°) Pa=—-10.4 MPa

4-107 This is an open-ended design problem with no one distinct solution.

4-108 F = 1500(/4)2> = 4712 Ibf. From Table A-20, S, = 37.5 kpsi
Pe = Ng F=2.5(4712) = 11 780 Ibf

(a) Assume Euler with C=1

) 5 \1/4 ) 1/4
_Tgte Rl g [SRD ) w =1.193 in
64 Cr’E 7' CE 7* (1)30(10°)

Use d = 1.25 in. The radius of gyration, k= (1/A)"*=d /4 =0.3125 in
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I 50

- —160
T 03
| ZCE " (2 (1)30(106)
s — =126 .. use Euler
k 37. 5(103)
(30 106 / 64)1.25*
P - 7 5(;[ ) —14194 Ibf

Since 14 194 Ibf > 11 780 Ibf, d = 1.25 in is satisfactory. ~Ans

1/4
64(11780)16
(b) d= % =0.675 in, so use d=0.750 in
7* (1)30(10°)
k=0.750/4=0.1875 in
l—: 16 =85.33 use Johnson
k 0.1875
37.5(10°) oy
P, =2-(0.750%)137.5(10° ) | ———/8533 | ———— [ =12748 Ibf
4 27 1(30)10
Use d=0.75 in.
(©)
Na _149% 301 A
4712
Nip) _12748 2.71 Ans.
4712

4-109 From Table A-20, S, = 180 MPa "=9.81(300)=2943 N

4F sind= 2 943

735.8
sin @
In range of operation, F is maximum when 6= 15°

7_35 8 =2843 N per bar
sin15°

F =

max

Per = NgFmax =3.50 (2 843) =9 951 N

| =350 mm, h=30 mm
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Try b=5 mm. Out of plane, k=b/V12 =5/4/12 =1.443 mm

1_350 _ 242.6
k 1.443

222 (1.4)207(10°) ]
(IEJ _[ (14207 )} ~1783 - use Euler
1

180(106)

2 1.477(207)10°
p, = ACTE _ 530) 147 (207)
(17k) (242.6)
Too low. Try b= 6 mm. k= 6/~/12 = 1.732 mm
I 350

— =2 22021
k 1.732

Cr’E 1.47*(207)10°

P, = A2 — =6(30) .
(1K) (202.1)

O.K. Use 25 x 6 mm bars Ans.The factor of safety is

=7290 N

=12605 N

12605

= =443 Ans
2843

1500 Ibf 9000 1bf
4-110 P=1500+9000=10 500 Ibf Ans J l

IMa = 10 500 (4.5/2) — 9 000 (4.5) +M = 0

| |
M = 16 874 Ibfiin A I C

e=M/P=16874/10 500 = 1.607 in Ans U”

From Table A-8, A=2.160 in’, and | =2.059 in*. The stresses are determined using Eq.

(4-55)
kzz'—A §05(9)_0953
1.607(3/2
:_E( Ej: 105001, 1607(/2) | 17157 psi =—17.16 kpsi  Ans
AL k)T 2160 0.953

4-111 This is a design problem which has no single distinct solution.
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4-112 Loss of potential energy of weight =W (h +0)
Increase in potential energy of spring = %k& ?
W(h +5)= % ko?
2W

or, &’ —75—%\%:0. W =30 Ibf, k=100 Ibf/in, h =2 in yields

52-066-12=0

Taking the positive root (see discussion on p. 192)

5 = %[om J=0.6) + 4(1.2)} ~1.436in  Ans
Fwe = K Smax = 100 (1.436) = 143.6 Ibf  Ans

4-113

Equating these provides the velocity of W, at impact with W,.

——Lo =

= =,/2gh
2 g Y g

(M

The drop of weight W, converts potential energy, W, h, to kinetic energy%\M v;.
g

Since the collision is inelastic, momentum is conserved. That is, (m; + M) v, = mM; vy,

where v, is the velocity of W, + W, after impact. Thus

w

)\

Wew W

—7, =

W \J2gh

g g

v, = v, =
WHW, — W+W,

2

The kinetic and potential energies of W, + W, are then converted to potential energy of

the spring. Thus,

IW+W , .
— TR (W AW) == kS
g (W +W)&=-

Substituting in Eq. (1) and rearranging results in

oWt , W h
k W +W, k
Solving for the positive root (see discussion on p. 192)

51[2M+J4(W+Wj+g W _j @
2|7 k& k W +W, K
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W, =40 N, W, =400 N, h=200 mm, k=32 kN/m = 32 N/mm.

2 2
s=1 (Mj+ 4(40”00) 1840 2000 506 mm  Ans
2 32 32 40+400 32

Fmax = k5 = 32(2906) =030 N Ans

4-114 The initial potential energy of the k; spring is V; = %kl a’ . The movement of the weight

W the distance y gives a final potential of V¢ = 1 k (a- y)2 +% k ¥ . Equating the two

N

energies give

1o 1 NI
Ekla_zlg(a y)+2lg>9

Simplifying gives
(k1+kz) y —2aky=0

2ka

This has two roots, y =0, . Without damping the weight will vibrate between

1

2k a

K +k,
With W= 5 Ibf, k; = 10 Ibf/in, k, = 20 Ibf/in, and a= 0.25 in

these two limits. The maximum displacement is thus Y max = Ans

2(0.25)10
Y nax :u:0.1667 in Ans
10+20
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IExtracted form 8th ed. I

solutions to chap. 5 are
missing; best substitute
available is used (chap. 5
of 8th edition)

KIC
K

p. 238 n= (5-38)

where K/, is found in Table 5-1 (p. 238)

Stochastic Analysis

Mean factor of safety defined as n = g/, (s and u, are mean strength and stress,
respectively)

Normal-Normal Case

1+ /1—(1-22CH(1 - z2C2)
1 —z2C?
where z can be found in Table A-10, Cs = 65/us, and Cy = 04/ lhe -

p. 241 = (5-42)

Lognormal-Lognormal Case

C
7 — _ 2 P _ n
p. 242 n —exp|: Z\/ln(l +C}) —i—ln\/l +Cni| = exp [C,l < z+ > )i|

(5-45)
c o Ci+C2
! 1+ C2

(See other definitions in normal-normal case.)

PROBLEMS

A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of 50 kpsi.
Using the distortion-energy and maximum-shear-stress theories determine the factors of safety
for the following plane stress states:

where

(a) o, = 12 kpsi, o, = 6 kpsi

(b) o, = 12 kpsi, 1., = —8 kpsi

(¢) oy = —6 kpsi, 0, = —10 kpsi, 7,y = —5 kpsi
(d) o, = 12 kpsi, o, = 4 kpsi, 7,, = 1 kpsi

Repeat Prob. 5-1 for:

(a) o4 = 12 kpsi, o = 12 kpsi
(b) 04 = 12 kpsi, o = 6 kpsi

(c) o4 = 12 kpsi, op = —12 kpsi
(d) o4 = —6kpsi, o5 = —12 kpsi

Repeat Prob. 5-1 for a bar of AISI 1020 cold-drawn steel and:
(a) o = 180 MPa, o, = 100 MPa

(b) 0 = 180 MPa, 1,, = 100 MPa

(¢) oy = —160 MPa, 7., = 100 MPa

(d) Ty = 150 MPa

Repeat Prob. 5-1 for a bar of AISI 1018 hot-rolled steel and:
(a) 04 = 100 MPa, o5 = 80 MPa

(b) oo = 100 MPa, o3 = 10 MPa

(¢) o4 = 100 MPa, o5 = —80 MPa

(d) oy = —80 MPa, o3 = —100 MPa


Unmarked set by CD1
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Repeat Prob. 5-3 by first plotting the failure loci in the o4, o5 plane to scale; then, for each stress
state, plot the load line and by graphical measurement estimate the factors of safety.

Repeat Prob. 54 by first plotting the failure loci in the o4, o5 plane to scale; then, for each stress
state, plot the load line and by graphical measurement estimate the factors of safety.

An ASTM cast iron has minimum ultimate strengths of 30 kpsi in tension and 100 kpsi in com-
pression. Find the factors of safety using the MNS, BCM, and MM theories for each of the fol-
lowing stress states. Plot the failure diagrams in the o4, o0 plane to scale and locate the
coordinates of each stress state.

(a) o, = 20 kpsi, o, = 6 kpsi

(b) o, = 12 kpsi, 1., = —8 kpsi

(¢) oy = —6 kpsi, 0, = —10 kpsi, 7, = —5 kpsi

(d) o, = —12kpsi, 7,y = 8 kpsi

For Prob. 5-7, case (d), estimate the factors of safety from the three theories by graphical mea-
surements of the load line.

Among the decisions a designer must make is selection of the failure criteria that is applicable to
the material and its static loading. A 1020 hot-rolled steel has the following properties:
S, =42 kpsi, S,; = 66.2 kpsi, and true strain at fracture £, = 0.90. Plot the failure locus and, for
the static stress states at the critical locations listed below, plot the load line and estimate the fac-
tor of safety analytically and graphically.

(a) ox =9 kpsi, 0, = =5 kpsi.

(b) 0 = 12 kpsi, 1,, = 3 kpsi ccw.

(¢) o, = —4 kpsi, 0, = =9 kpsi, 7., = 5 kpsi cw.

(d) ox = 11 kpsi, o, = 4 kpsi, 7, = 1 kpsi cw.

A 4142 steel Q&T at 80°F exhibits Sy, = 235 kpsi, Sy = 275 kpsi, and &; = 0.06. Choose and
plot the failure locus and, for the static stresses at the critical locations, which are 10 times those
in Prob. 5-9, plot the load lines and estimate the factors of safety analytically and graphically.

For grade 20 cast iron, Table A-24 gives S,; = 22 kpsi, S, = 83 kpsi. Choose and plot the fail-
ure locus and, for the static loadings inducing the stresses at the critical locations of Prob. 5-9,
plot the load lines and estimate the factors of safety analytically and graphically.

A cast aluminum 195-T6 has an ultimate strength in tension of S,, = 36 kpsi and ultimate
strength in compression of S, = 35 kpsi, and it exhibits a true strain at fracture &, = 0.045.
Choose and plot the failure locus and, for the static loading inducing the stresses at the critical
locations of Prob. 5-9, plot the load lines and estimate the factors of safety analytically and graph-
ically.

An ASTM cast iron, grade 30 (see Table A—24), carries static loading resulting in the stress state
listed below at the critical locations. Choose the appropriate failure locus, plot it and the load
lines, and estimate the factors of safety analytically and graphically.

(a) o4 =20 kpsi, o = 20 kpsi.

(b) Ty, = 15 kpsi.

(c) o4 = op = —80 kpsi.

(d) o4 = 15 kpsi, o = —25 kpsi.

This problem illustrates that the factor of safety for a machine element depends on the particular point
selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy
theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI
1006 cold-drawn steel and is loaded by the forces F = 0.55 kN, P = 8.0kN, and 7 =30 N - m.
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Problem 5-14

5-15

Problem 5-15

5-16

5-17*
5-18

The figure shows a crank loaded by a force F' = 190 Ibf which causes twisting and bending of
the %—in—diameter shaft fixed to a support at the origin of the reference system. In actuality, the
support may be an inertia which we wish to rotate, but for the purposes of a strength analysis we
can consider this to be a statics problem. The material of the shaft AB is hot-rolled AISI 1018
steel (Table A—20). Using the maximum-shear-stress theory, find the factor of safety based on the
stress at point A.

Solve Prob. 5-15 using the distortion energy theory. If you have solved Prob. 5-15, compare the
results and discuss the difference.

Design the lever arm CD of Fig. 5-16 by specifying a suitable size and material.

A spherical pressure vessel is formed of 18-gauge (0.05-in) cold-drawn AISI 1018 sheet steel. If the
vessel has a diameter of 8 in, estimate the pressure necessary to initiate yielding. What is the esti-
mated bursting pressure?

*The asterisk indicates a problem that may not have a unique result or may be a particularly challenging
problem.
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5-24

5-25
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This problem illustrates that the strength of a machine part can sometimes be measured in units
other than those of force or moment. For example, the maximum speed that a flywheel can reach
without yielding or fracturing is a measure of its strength. In this problem you have a rotating ring
made of hot-forged AISI 1020 steel; the ring has a 6-in inside diameter and a 10-in outside diameter
and is 1.5 in thick. What speed in revolutions per minute would cause the ring to yield? At what
radius would yielding begin? [Note: The maximum radial stress occurs at r = (r,7;)'/?; see Eq.
(3-55).]

A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures.
This cylinder has a 3 % -in OD, a 0.065-in wall thickness, and v = 0.334. The purchase order spec-
ifies a minimum yield strength of 46 kpsi. What is the factor of safety if the pressure-release valve
is set at 500 psi?

A cold-drawn AISI 1015 steel tube is 300 mm OD by 200 mm ID and is to be subjected to an
external pressure caused by a shrink fit. What maximum pressure would cause the material of the
tube to yield?

What speed would cause fracture of the ring of Prob. 5-19 if it were made of grade 30 cast iron?

The figure shows a shaft mounted in bearings at A and D and having pulleys at B and C. The
forces shown acting on the pulley surfaces represent the belt tensions. The shaft is to be made of

ASTM grade 25 cast iron using a design factor n, = 2.8. What diameter should be used for the
shaft?

By modern standards, the shaft design of Prob. 5-23 is poor because it is so long. Suppose it is
redesigned by halving the length dimensions. Using the same material and design factor as in
Prob. 5-23, find the new shaft diameter.

The gear forces shown act in planes parallel to the yz plane. The force on gear A is 300 Ibf.
Consider the bearings at O and B to be simple supports. For a static analysis and a factor of safe-
ty of 3.5, use distortion energy to determine the minimum safe diameter of the shaft. Consider
the material to have a yield strength of 60 kpsi.

Repeat Prob. 5-25 using maximum-shear-stress.

The figure is a schematic drawing of a countershaft that supports two V-belt pulleys. For each
pulley, the belt tensions are parallel. For pulley A consider the loose belt tension is 15 percent of
the tension on the tight side. A cold-drawn UNS G10180 steel shaft of uniform diameter is to be
selected for this application. For a static analysis with a factor of safety of 3.0, determine the
minimum preferred size diameter. Use the distortion-energy theory.
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Problem 5-25

Problem 5-27

Dimensions in millimefers

5-28
5-29

5-30
5-31

10-in D.
20°

Z

270N

Repeat Prob. 5-27 using maximum shear stress.

The clevis pin shown in the figure is 12 mm in diameter and has the dimensions ¢ = 12 mm and
b = 18 mm. The pin is machined from AISI 1018 hot-rolled steel (Table A—20) and is to be
loaded to no more than 4.4 kN. Determine whether or not the assumed loading of figure ¢ yields
a factor of safety any different from that of figure d. Use the maximum-shear-stress theory.

Repeat Prob. 5-29, but this time use the distortion-energy theory.

A split-ring clamp-type shaft collar is shown in the figure. The collar is 2 in OD by 1 in ID by %
in wide. The screw is designated as %—28 UNF. The relation between the screw tightening torque
T, the nominal screw diameter d, and the tension in the screw F; is approximately 7 = 0.2 F;d.
The shaft is sized to obtain a close running fit. Find the axial holding force F, of the collar as a
function of the coefficient of friction and the screw torque.
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DR &

e

(d)

Suppose the collar of Prob. 5-31 is tightened by using a screw torque of 190 Ibf - in. The collar

material is AISI 1040 steel heat-treated to a minimum tensile yield strength of 63 kpsi.

(a) Estimate the tension in the screw.

(b) By relating the tangential stress to the hoop tension, find the internal pressure of the shaft on
the ring.

(c) Find the tangential and radial stresses in the ring at the inner surface.

(d) Determine the maximum shear stress and the von Mises stress.

(e) What are the factors of safety based on the maximum-shear-stress hypothesis and the distortion-
energy theory?

In Prob. 5-31, the role of the screw was to induce the hoop tension that produces the clamping.
The screw should be placed so that no moment is induced in the ring. Just where should the screw
be located?

A tube has another tube shrunk over it. The specifications are:

D 1.000 £0.002 in 1.999 £ 0.0004 in
OD 2.000 £+ 0.0004 in 3.000 £ 0.004 in

Both tubes are made of a plain carbon steel.

(a) Find the nominal shrink-fit pressure and the von Mises stresses at the fit surface.

(b) If the inner tube is changed to solid shafting with the same outside dimensions, find the
nominal shrink-fit pressure and the von Mises stresses at the fit surface.
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5-35

5-36
5-37

5-38

5-39
5-40

5-41

5-42

5-43

Steel tubes with a Young’s modulus of 207 GPa have the specifications:

Inner Tube Outer Tube

D 25+0.050 mm 49.98 £0.010 mm
oD 50+ 0.010 mm 75+0.10 mm

These are shrink-fitted together. Find the nominal shrink-fit pressure and the von Mises stress in
each body at the fit surface.

Repeat Prob. 5-35 for maximum shrink-fit conditions.

A 2-in-diameter solid steel shaft has a gear with ASTM grade 20 cast-iron hub (E = 14.5 Mpsi)
shrink-fitted to it. The specifications for the shaft are
+ 0.0000

2.000 in
— 0.0004

The hole in the hub is sized at 1.999 &+ 0.0004 in with an OD of 4.00 £ % in. Using the midrange
values and the modified Mohr theory, estimate the factor of safety guarding against fracture in the
gear hub due to the shrink fit.

Two steel tubes are shrink-fitted together where the nominal diameters are 1.50, 1.75, and 2.00
in. Careful measurement before fitting revealed that the diametral interference between the tubes
to be 0.00246 in. After the fit, the assembly is subjected to a torque of 8000 Ibf - in and a bend-
ing-moment of 6000 Ibf - in. Assuming no slipping between the cylinders, analyze the outer
cylinder at the inner and outer radius. Determine the factor of safety using distortion energy with
S, = 60 kpsi.

Repeat Prob. 5-38 for the inner tube.

For Egs. (5-36) show that the principal stresses are given by

K, 0 <1+ . 0)
0] = ———— CO0S — Sin —
' Ve 2 2

K, 0 (1 . 9)
Oy = COS — — S1n —
2T Vamr 2 2

0 (plane stress)

03 = 2 0
— vK; cos — (plane strain)
r 2

Use the results of Prob. 5-40 for plane strain near the tip with 6 =0 and v = % If the yield
strength of the plate is S,, what is o when yield occurs?

(a) Use the distortion-energy theory.

(b) Use the maximum-shear-stress theory. Using Mohr’s circles, explain your answer.

A plate 4 in wide, 8 in long, and 0.5 in thick is loaded in tension in the direction of the length.
The plate contains a crack as shown in Fig. 5-26 with the crack length of 0.625 in. The material
is steel with K, = 70 kpsi - «/Tn, and S, = 160 kpsi. Determine the maximum possible load that
can be applied before the plate (a) yields, and (b) has uncontrollable crack growth.

A cylinder subjected to internal pressure p; has an outer diameter of 350 mm and a 25-mm wall
thickness. For the cylinder material, K;. = 80 MPa - /m, S, = 1200 MPa, and S,, = 1350 MPa.
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If the cylinder contains a radial crack in the longitudinal direction of depth 12.5 mm determine
the pressure that will cause uncontrollable crack growth.

A carbon steel collar of length 1 in is to be machined to inside and outside diameters, respec-
tively, of
D; = 0.750 & 0.0004 in D, = 1.125+0.002 in

This collar is to be shrink-fitted to a hollow steel shaft having inside and outside diameters,
respectively, of

d; =0375+£0.002in  d, = 0.752 & 0.0004 in

These tolerances are assumed to have a normal distribution, to be centered in the spread interval,
and to have a total spread of +4 standard deviations. Determine the means and the standard devi-
ations of the tangential stress components for both cylinders at the interface.

Suppose the collar of Prob. 5-44 has a yield strength of S, = N(95.5, 6.59) kpsi. What is the
probability that the material will not yield?

A carbon steel tube has an outside diameter of 1 in and a wall thickness of é in. The tube is to
carry an internal hydraulic pressure given as p = N(6000, 500) psi. The material of the tube has
a yield strength of Sy = N(50, 4.1) kpsi. Find the reliability using thin-wall theory.



| Extracted from 8th ed. |

Chapter 5
5-1
Sy
MSS: 0'1—0'3:Sy/n = n=
01 — 03
Sy
DE: n—=—
O-/
o' = (03 —oaop + O’é)l/z = (oxz — o0y + 0y2 + 3ffy)1/2
(a) MSS: o1 =12, 00 =6, 03 = 0 kpsi
50
n= I =4.17 Ans.
/ 2 211/2 . 50
DE: o' = (122 = 6(12) + 6°)'/2 = 1039 kpsi, n = 039 = 4.81 Ans.
12 12\
(b) oa, 08 = 5 + \/(7> + (—8)2 = 16, —4 kpsi
o1 =16, 0, =0, 03 = —4 kpsi
MSS 50 25 A
. n—=-——— = 4. .
16— (—4) "
50
DE: o' = (12> +3(—8%)"/> = 18.33 kpsi, n = 533 =273 Ans.
—6—10 —6+10\?
(¢) 04,08 = > i/( ;r ) +(=5)2 = —2.615, —13.385 kpsi
o1 =0,0, = —2.615, 05 = —13.385 kpsi
50 %
MSS: n= =3.74 Ans. ====
0 — (—13.385) !
DE: o' =[(=6)* = (=6)(~10) +(~10)* + 3(=5)*]'"/* a /.
= 12.29 kpsi -~/
50 /
n=——=4.07 Ans. S
12.29
12+4 12 — 4\? ,
@) op,o5=——* /() + 12 = 12.123, 3.877 kpsi
o1 = 12.123, 0, = 3.877, 03 = 0 kpsi
50
MSS: =— " =412 Ans.
"= 12123 -0 "
DE: o’ =[12% — 12(4) + 4> + 3(1%)]"/? = 10.72 kpsi
50
n=——=4.66 Ans.
10.72
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5-2 S, = 50 kpsi

S
MSS: op—o3=S8,/n = n= Y
0] — 03
) 2 Nn\1/2 _ 2 2\1/2
DE: (O’A—O'AO'B +UB) =S§,/n = I’l—Sy/(O'A—O'AO'B -|-GB)
. 50
(a) MSS: o1 =12kpsi,03 =0,n = —0 =4.17 Ans.
DE >0 4.17 A
: n= =4, )
[122 — (12)(12) + 122]/2 s
) 50
(b) MSS: o1 = 12kpsi,o3 =0,n = B =4.17 Ans.
50
DE: = =4.81 Ans.
" T2 = (12)(6) + 621172 "
(¢) MSS 12 kpsi 12 kpsi 50 208 A
: o] = ,03 = — N=—— =2, ns.
1 p 3 p 12— (-12)
50
DE: = =241 Ans.
T2 —(12)(—12) + (—12)2]1/3 "
) 50
(d) MSS: o1 =0,03 = —12kpsi,n = ——— =4.17 Ans.
—(—12)
DE 20 481
: n= = 4.
[(—6)2 — (—6)(—12) + (— 12712
5-3 S, =390 MPa
S
MSS: op—o3=S8,/n = n= Y
o1 — 03
) 2 n1/2 _ _ 2 2\1/2
DE: (O'A OAOB +JB) =S8/n = n=S)/ (O'A OAOB —|—O‘B)
390
(a) MSS: o1 =180MPa, 05 =0,n = 180 = 2.17 Ans.
390

DE: n =250 Auns.

- [1802 — 180(100) + 1002]1/2

180 180\ 2
(b) 04,0 = — =+ > + 1002 = 224.5, —44.5 MPa = o, 03

2
390
MSS: n= =1.45 Ans.
224.5 — (—44.5)
390
DE: =156 Ans.

T 11802 1 3(1002)]172
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160 160\ >
(€) 04,05 = —— =+ \/<_T> + 1002 = 48.06, —208.06 MPa = o, 03

2
390
MSS: = = 1.52 Ans.
" 48,06 — (—208.06) s
390
DE: = —=1.65 Ans.
"= 21602 + 3(1002)]172 s
(d) 04,0 =150, —150 MPa = o4, o3
390
MSS: n=———=130 Ans.
150 — (—150)
DE 390 150 A
N n—-—————=1]. .
[3(150)2]1/2 "
5-4 S, = 220 MPa
(a) o1 =100, 0, = 80, 03 = 0 MPa
220
MSS: n= =220 Ans.
100 — 0
DET: o' = [100%> — 100(80) + 80%]'/? = 91.65 MPa
_ 220 _ 240 A
T 9les T s
(b) o] = 100, 0y = 10, 03 = 0 MPa
MSS 220 220 A
. = — = 4. S.
"= 100 "
DET: o’ = [100? — 100(10) + 10%]'/? = 95.39 MPa
_ 220 _ 231 A
"= 9539 < e
(¢) o1 =100, 0, =0, 03 = —80 MPa
220
MSS: n=——=1.22 Ans.
100 — (—80)
DE: o’ = [100> — 100(—80) + (—80)*]'/? = 156.2 MPa
220
n=——=1.41 Ans.
156.2
(d) 01 =0, 00, = —80, 03 = —100 MPa
220
MSS: n=——=220 Ans.
0 — (—100)
DE: o’ = [(—80)> — (—=80)(—100) + (—100)] = 91.65 MPa
220
—— =240 Ans.

"= 91.65
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5-5
(a) MSS:

DE:

(b) MSS:

DE:

(c) MSS:

DE:

(d) MSS:

DE:

OB 223
n=——="""=21
0OA  1.08
oc 2.6
n=——=""=24
0OA  1.08
OE 165
n=—=-"-=2=15
oD~ 1.10
OF 18
n=—=-"=16
oD 1.1

Scale
1" = 200 MPa

OH 168

_ P07 _ 1% 6
"=0G6 T 1.05
oI 185

ne 2L =2 g
0G _ 1.05
OK 138

ne2n 1% 3
07 1.05
oL 1.62

n =1.5

07 105
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5.6 S, = 220 MPa

MSS: = = =22
(a) n= =13
oc 3.1
DE: n= = =24
OA 13
OE 22
(b) MSS: n=——=—=22
oD 1
OF 233
DE: n= =""_23
oD 1

T

1" = 100 MPa

(d) MSS: n=—=——=22
oJ 1.3
OL 1
UJ 1.5
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(a) MNS: Eq. (5-30a)

BCM: Eq. (5-31a)

MM: Eq. (5-32a)

MNS: Eq. (5-30a)

BCM: Eq. (5-31b)

MM: Eq. (5-32a)

(b) ox = 12 kpsi, 7y, = —8 kpsi

2
12 .
oA, 0p = — % \/<—> + (—8)%? = 16, —4 kpsi

5-7 Sur = 30 kpsi, S, = 100 kpsi; 04 = 20 kpsi, op = 6 kpsi

Sur 30

n o 0 ns
30
n=—=1.5 Ans.
20
30
n=—=15 Ans.
20

2

30
n=— =188 Ans.

16
1 16 —4
—:——u = n=1.74 Ans.
n 30 100

30
n=—=1.88 Ans.

16

(¢) ox = —6Kkpsi, oy = —10 kpsi, 7, = —5 kpsi

—6—10 —6+10\°
Op, 0B = + \/< ;_ ) +(=5)? = —2.61, —13.39 kpsi
100
MNS: Eq. (5-30b) n=— =747 Ans.
—13.39
100
BCM: Eq. (5-31c¢) n=— =747 Ans.
—13.39
100
MM: Eq. (5-32¢) n=— =747 Ans.
—13.39
(d) or = —12 kpsi, 7,y = 8 kpsi
12 12\? ,
0p,0p = —— + —— ) +8=4,—-16kpsi
2 2
—100
MNS: Eq. (5-30b) n=——==625 Ans.

—16
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BCM: Eq. (5-31b) S22 B9 341 ans
n 30 100
MM: Eq. (5-32b) % = (1(1)80(3?)(;)4 — 1;(? = n=2395 Ans.
o
.
.
.
.
.
.
.
.
i
1" = 20 kpsi ?;I, (a)
R
o = |
= ,
/N T~ I
K/ \‘ D (b)
/AR
A
/ \
/ \
/ \
/ \
/ \
/ \
/ Yo
/ \
/ ¥ H
/ \
/ \
/ \
/ \
/ \
/ \
Ao v

(d)
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5-8

See Prob. 5-7 for plot.

OB 1.55

(a) For all methods: n=—=——=1.5
OA 1.03
oD 14

(b) BCM: n=——=—=175
oc 08
OE 1.55

All other methods: n=—=——=19
ocC 0.8
OL 52

(¢) For all methods: n=—=——=7.6
OK 0.68
oJ 512

d) MNS: =—=—=06.2
@ "TO0F T 082
oG 2.85

BCM: =—=—+-=235
"TOoF T 082
OH 3.3
OF 0.82

5-9

Given: §y = 42kpsi, S,; = 66.2kpsi, e = 0.90. Since ey > 0.05, the material is ductile and
thus we may follow convention by setting Sy, = Sy;.

Use DE theory for analytical solution. For o’ use Eq. (5-13) or (5-15) for plane stress and
Eq. (5-12) or (5-14) for general 3-D.

@) o' =[9* —9(—=5) 4+ (—=5)1"/? = 12.29 kpsi

42
n=——=27342 Ans.
12.29
(b) o’ = [12% + 3(3%)1"/? = 13.08 kpsi
42
n=——=2321 Ans.
13.08
(© o =[(—=4)? = (—=4)(=9) + (=9)% 4+ 3(59)1"/% = 11.66 kpsi
42
n=——=23.60 Ans.
11.66
(d) o’ =[11%> = (11)(4) + 4% + 3(1*)]"/* = 9.798
42
n=——=429 Ans.

9.798
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1

Tp

(d)
cm = 10 kpsi "

For graphical solution, plot

load lines on DE envelope as shown.

(a) oa=9,0p = —5 kpsi

OB 35
n=—=—=23.5 Ans.
OA 1
12 12\? ,
(b) 04,0 = 5} + ) + 32 =12.7, —0.708 kpsi
OD 42
n=—=—=2323
ocC 1.3
—4-9 4—-9\? ,
(¢) op,0 = 5 + — + 52 =-0.910, —12.09 kpsi
OF 4.5
OE 1.25

1144 11 —4\? _
d) op,0p=—— =+ + 12 =11.14, 3.86 kpsi

2 2
OH 5.0
n=——=——=435 Ans.
oG 1.15

5-10

This heat-treated steel exhibits Sy, = 235 kpsi, Sy = 275 kpsi and ¢y = 0.06. The steel is
ductile (¢4 > 0.05) but of unequal yield strengths. The Ductile Coulomb-Mohr hypothesis

(DCM) of Fig. 5-19 applies

— confine its use to first and fourth quadrants.
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(a) oy, =90 kpsi, 0y = —50 kpsi, 0, =0 .. 04 = 90 kpsi and op = —50 kpsi. For the
fourth quadrant, from Eq. (5-31b)
1 1
n = =
(0a/Sy1) — (0B/Suc)  (90/235) — (=50/275)
(b) o =120 kpsi, 7y = —30 kpsi ccw. 04, 0p = 127.1, —7.08 kpsi. For the fourth
quadrant

=1.77 Ans.

1
"= (127.1/235) — (—=7.08/275)
(¢) ox = —40kpsi, oy = —90kpsi, 17,y =50kpsi. o4, op =—9.10, —120.9 kpsi.
Although no solution exists for the third quadrant, use
Sye 275
oy  —1209

(d) oy =110 kpsi, oy = 40 kpsi, 7,y = 10 kpsi cw. 04, 0p = 111.4, 38.6 kpsi. For the
first quadrant

=1.76 Ans.

=2.27 Ans.

n —

S
n:—ytzﬂzz.n Ans.
oa 1114
Graphical Solution:
OB 182 .
=—="Z"=178  [mmmmmmmmmmmmememem—me- .
@ == 1Tn |
|
oD 224 |
b)n=—="""=175 |
OC ~ 1.28 |
|
OF 2.5 !
() n=—="=222 l
OE 1.4 !
|
OH 2.46 |
@n=——-=""-208 -
0G ~ 1.18 .
1in = 100 kpsi G - |
— |
— !
—" |
o —— _______ — /I Oy
~. c T —/,5—«»
! I \~\ ///
: ’ ~. J/
| \ //
| ; N
| /B ()
: ’ //
E 7
| I
| ;
| //
| | /
| //
| N
| |
| i
| e e e . >— — —|
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5-11

The material is brittle and exhibits unequal tensile and compressive strengths. Decision
Use the Modified Mohr theory.
Sur = 22 kpsi, S, = 83 kpsi

(@) o =9 kpsi, 0y =—5 kpsi. 04,03 =9,—5 kpsi. For the fourth quadrant,
28] = 3 < 1, use Eq. (5-320)

9%}

w22

n=—=—=244 Auns.
OA 9
(b) ox =12 kpsi, 7,y = —3 kpsi ccw. 04, 0 = 12.7, —0.708 kpsi. For the fourth quad-
g _ 0.708
rant, |Z_A| =17 < 1,
22
n=S_ 22 93 ans,
OA 12.7

(¢) oy = —4kpsi, oy = =9 kpsi, Tyy = 5 kpsi. 04,0 = —0.910, —12.09 kpsi. For the
third quadrant, no solution exists; however, use Eq. (6-32¢)

—83
n —
—12.09
(d) oy = 11kpsi, 0y = 4kpsi, 7,y = 1kpsi.oa, op = 11.14, 3.86 kpsi. For the firstquadrant

Sa Sy 22

= 6.87 Ans.

n =—=——=1.97 Ans.
OA OA 11.14
Jp
30+
— Su/:22
u @)
—/_
[ C ol 1,
o~ 30
N0
— AN
/ ™
F |
/ |
A )
/
/ /
— /
! /
Lol /
' /
l L/
/
' /
/ |/
/
S, =83 /
L 1/
© 9o
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5-12  Since ¢ < 0.05, the material is brittle. Thus, S,; = S, and we may use MM which ig

basically the same as MNS.

(@) 04,0 =9, =5 kpsi
35

n= 3 =389 Ans.
(b) o4, 0p = 12.7, —0.708 kpsi
35
n=-——=276 Ans.
12.7
(¢) 04,0 = —0.910, —12.09 kpsi  (3rd quadrant)
36
= =2, Ans.
n 7.0 98 ns o
(d) o4, 0p = 11.14,3.86 kpsi """""""""i
|
n:i:3.14 Ans. |
11.14 |
1 cm = 10 kpsi |
|
Graphical Solution: _Me-@
0B 4 o
@ n=_—=7=40 Ans. S _i_mo
~ C - D -(
OD 3.45 I \X\\ i
b)n=—=—-=2.70 Ans. Ex ~ |
0C ~ 128 ! |
(c)n—ﬁ—ﬁ—. ns. (3rd quadrant) , i
|
OH 3.6 ——————————————f.L-————————————————'
d =——=——=373.13 Ans. '
D =56~ 115 " ©

5-13

Sur = 30 kpsi, S, = 109 kpsi
Use MM:
(@) o4,0p = 20, 20 kpsi

30
Eq. (5-32a): n= 0= 1.5 Ans.
(b) 04,08 = £/(15)2 = 15, —15 kpsi
30
Eq. (5-32a) n= 5= 2 Ans.

(¢) 04,05 = —80, —80 kpsi

For the 3rd quadrant, there is no solution but use Eq. (5-32¢).

109
Eq. (5-32¢): n= — = 1.36 Auns.
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(d) 04,0 =15, =25 kpsi, |oploa| = 25/15 > 1,

(109 —30)15 -—25 1
Eq. (5-32b): _ — _
109(30) 109 n
n=1.69 Ans.
OB 425
=—=—=1.50
@ n=04~ 283
(b) OD 424 500 o5 “
n—=———-=—-—= . p.la
oc 212 -_“““—““.Z
OF 155 a
(¢) n = —= = —— = 1.37 (3rd quadrant) A/' !
OF 11.3 s !
OH 49 ya |
d =—=—=1.69 . [
@D"=56=129 % |
| 0, —0,
I *
| /
| /
| 7
| /
i 1em = 10 kpsi '/0
| %
| /
| /
| %
| /
| /
: /
: 7
| y
| y
| y
| v
| e
| /
: 7
: /
L
L/

F)(: _________________________________________________

©"

5-14 Given: AISI 1006 CD steel, F =0.55 N, P =28.0 kN, and 7= 30 N - m, applying the
DE theory to stress elements A and B with §, = 280 MPa

_ 32F1 4P 32(0.55)(10%)(0.1) N 4(8)(10%)
Coxd?  md? 7(0.0203) 7(0.0202)
= 95.49(10%) Pa = 95.49 MPa

A: Oy
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- 167 16(30)
VT rd3 T 7(0.020%)

= 19.10(10%) Pa = 19.10 MPa

1/2

o' = (o] +31;,) " =195.49" +3(19.1)’]'/* = 101.1 MPa

Sy 280
o’ 101.1
AP 4(8)(10%)
wd3 7(0.020%)

16T N 4V 16(30) N 4T 0.55(10%)
T = — _—_—= — -
YT rdd  3A T mw(0.0203) 3| (7/4)(0.0202)

= 21.43(10% Pa = 21.43 MPa
o' =[25.47% + 3(21.43%)]'/? = 45.02 MPa

280
n=-——
45.02

=277 Ans.

= 25.47(10°%) Pa = 25.47 MPa

= 6.22 Ans.

5-15 S, = 32kpsi
AtA, M = 6(190) = 1140 Ibf-in, T = 4(190) = 760 Ibf - in.

32M  32(1140)
O’x = =
nd? 7(3/4)3

= 27520 psi

16T _ 16(760)
T nd3 T w(3/4)3

27520\ 2
Toax = /(T) + 91752 = 16 540 psi

Sy 32
n= = = 0.967 Ans.
2Tmax ~ 2(16.54)

= 9175 psi

MSS predicts yielding

5-16 From Prob. 4-15, 0, = 27.52kpsi, 7, = 9.175 kpsi. For Eq. (5-15), adjusted for coordinates,

o' = [27.52% +3(9.175)*]/* = 3178 kpsi

Sy 32
n=— = 3178 =1.01 Ans.

DE predicts no yielding, but it is extremely close. Shaft size should be increased.
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5-17

Design decisions required:

* Material and condition
* Design factor
 Failure model

* Diameter of pin

Using F = 416 1bf from Ex. 5-3

32M
Omax —
‘ nd?

32M \/?
= (o)
TT Omax
Decision 1: Select the same material and condition of Ex. 5-3 (AISI 1035 steel, Sy =

81 000).

Decision 2: Since we prefer the pin to yield, setny a little larger than 1. Further explana-
tion will follow.

Decision 3: Use the Distortion Energy static failure theory.

Decision 4: Initially set ng = 1

S S
Omax = — = —2 = 81000 psi
ng 1
_ [ 2EOUD T 90010
7(81000)
Choose preferred size of d = 1.000 in
3
_ 7(1)°(81000) — 530 Ibf
32(15)
530
n=-—=1274
416
Set design factor tong = 1.274
Adequacy Assessment:
Sy 81000
x = — = ——— = 63580 psi
Tmax =T 1274 Pt
32(416)(15)7/° .
=|—————| = 1.000 OK
[ (63 580) ] in (OK)
1)3(81 000
p= T EI000) a0
32(15)
530
n=—=1274 (OK)

~ 416
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5-18

For a thin walled cylinder made of AISI 1018 steel, Sy = 54 kpsi, S,; = 64 kpsi.

The state of stress is

pd p(8) pd
= — = =40 s =— =20 5 = —
47 4(0.05) P o= p, or==p

These three are all principal stresses. Therefore,
, 1
V2
1
NG
=3551p=54 = p=152kpsi (foryield) Ans.

Ot

o [(01 — 02)* + (02 — 03)* + (03 — 071)?]"/?

[(40p —20p)* + (20p + p)* + (—p — 40p)*]

For rupture, 35.51p = 64 = p = 1.80 kpsi  Ans.

5-19

For hot-forged AISI steel w = 0.282 1bf/in®, Sy = 30kpsi and v = 0.292. Then p = w/g =
0.282/386 Ibf - s%/in; r; = 3in; r, = 5in; r} = 9;r2 = 25; 3 + v = 3.292; 1 + 3v = 1.876)

Eq. (3-55) for r = r; becomes

3+v 1+ 3v
O't:pa)2< 8 )|:2r3—|—r12<1—3+v>i|

Rearranging and substituting the above values:

Sy 0.282 (3.292 1.876
2= T (=) 5049 (1 -
w? 386 8 3.292

=0.01619
Setting the tangential stress equal to the yield stress,
30000 \'/?
= = 1361 rad/
<0.016 19) radss
or n = 60w/2r = 60(1361)/(27)
= 13000 rev/min

Now check the stresses atr = (rori)l/z, orr = [5(3)]'/2 =3.8731n

34+ v
Oy :pwz( )("0_"1')2

8

0.282w? (3.292
- ()

386 8

= 0.001 203w>
Applying Eq. (3-55) for oy

0.282\ (3.292 9(25) 1.876(15)'|
2
o w(386)(8)[+ UST; 3202 |

=

= 0.012 160>
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Using the Distortion-Energy theory

/

o' = (0} — 0,00+ 02) "> = 0011610

' 30000
Solving =

12
—_— = 1607 rad/s
0.01161

So the inner radius governs and n = 13000 rev/min  Ans.

5-20  For a thin-walled pressure vessel,

di =3.5—2(0.065) =3.371in

pd; +1)
o = ————
2t
500(3.37 + 0.065
o = (337 + ):13212psi
2(0.065)
d;  500(3.37 .
oy = P 0063 ey
4t~ 4(0.065)
o, = —pi = —500psi
These are all principal stresses, thus,
1
o' = —{(13212 — 6481) + [6481 — (—500)]> + (=500 — 13212)%}!/2
V2
o' = 11876 psi
S, 46000 46000
T T o T 11876
=387 Ans.

5-21 Table A-20 gives S, as 320 MPa. The maximum significant stress condition occurs at r;
where 0y = 0, =0, 0, =0, and 03 = 0;. From Eq. (3-49) forr =r;, pi =0,

22p,  2(150%)p,
r2—r2 1502 — 1002
o' =3.6p, =S, =320

320 _ cgompa 4
— — . a ns.
Po=73%

o; = = —3.6p,

5-22 S, = 30kpsi, w = 0.2601bf/in®,v = 0.211,3 + v = 3.211, 1 + 3v = 1.633. At the innet
radius, from Prob. 5-19

ﬂ_’o( 8 )(2r0+rl- "3y,

7
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Here rj = 25, rf =9, and so

o, 0260 (3211 1.633(9)
Lo () (5049 — ——22 ) =0.0147
? 38 \ 8 3.211

Since o, is of the same sign, we use M2M failure criteria in the first quadrant. From Table

A-24,S,; = 31kpsi, thus,
31000\ '/
w= ( ) = 1452 rad/s

0.0147
rpm = 60w /(2) = 60(1452)/(2m)
= 13 866 rev/min

Using the grade number of 30 for S,,; = 30 000 kpsi gives a bursting speed of 13640 rev/min.

5-23 Tc = (360 — 27)(3) = 10001bf - in, Tp = (300 — 50)(4) = 10001bf - in

d

223 Ibf 127 1bf

B C
A
3" 3" 6"
350 Ibf
xy plane

D

Inxy plane, Mp = 223(8) = 1784 1bf - in and M¢c = 127(6) = 7621bf - in.

387 Ibf
8" g" 6"
A D

106 1bf 281 1bf

xz plane

In the xz plane, Mp = 8481bf - in and M = 1686 1bf - in. The resultants are
Mp = [(1784)% + (848)%]'/2 = 19751bf - in
Mc = [(1686)% + (762)%]'/? = 18501bf - in

So point B governs and the stresses are

16T 16(1000) 5093

7y I
32Mp  32(1975) 20120 |

o, = = = S1

YT Sy FERL

Then

2 1/2
OA, OB = % + |:<G—2x> + Tfyi|

1/2
1 |20.12 20.12\°
04,08 =51 =5 + [(T) + (5.09)2}

(10.06 £11.27) | . . 4
— d3 1\1_}01 11T
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Then
10.06 +11.27 2133 |
oA = PE =5 kpsi
and
10.06 — 11.27 1.21 )
op = Ve =5 kpsi

For this state of stress, use the Brittle-Coulomb-Mohr theory for illustration. Here we use
Sur(min) = 25 kpsi, S, (min) = 97 kpsi, and Eq. (5-31b) to arrive at

2133 —1.21 1

2543 97d3 2.8
Solving givesd = 1.34in. Soused = 13/8in Ans.

Note that this has been solved as a statics problem. Fatigue will be considered in the next
chapter.

5-24  As in Prob. 5-23, we will assume this to be statics problem. Since the proportions are un-
changed, the bearing reactions will be the same as in Prob. 5-23. Thus
xy plane: Mp = 223(4) = 8921bf - in
xz plane: Mp = 106(4) = 424 1bf - in
So
Mumax = [(892)% + (424)%1'/? = 9881bf - in
32Mp  32(988) 10060 .
O, — = = S1
T B T ad I
Since the torsional stress is unchanged,
Tyr = 5.09/d> kpsi
1| /1006 10.06) 2 2
op=— 11— ||| —— 5.09)
o= (92) [ (22 o]
oa = 12.19/d°> and op = —2.13/d°
Using the Brittle-Coulomb-Mohr, as was used in Prob. 5-23, gives
12.19  -2.13 1
2543 9743 2.8
Solving givesd = 11/8 in. Ans.
5-25 (Fa); =300c0s20 = 281.9 Ibf, (F4), = 300sin20 = 102.6 Ibf

3383
T =281.9(12) =33831Ibf-in, (Fc); = < = 676.6 1bf

(Fc)r = 676.6tan 20 = 246.3 1bf
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y

Rp, = 193.7 Ibf 246.3 Ibf Ry, =233.5 Ibf 676.6 Ibf
A B c A B c
0 —x 0 —
20" T 16" T 10" 20" 1 16" T 10"
Ry, = 158.1 Ibf z Ry, = 807.5 Ibf
281.9 Ibf i 102.6 Ibf
xy plane xz plane

M4 = 20v/193.72 + 233.52 = 6068 Ibf - in

Mp = 10v/246.32 + 676.62 = 72001bf - in  (maximum)
_32(7200) 73340

wd3 d?
16(3383) 17230
WETOS T D
2 2\ 1/2 Sy
o' = (o7 +37;,) " = -

1/2
73340\ 172300217 79180 60000
+ 3 = =
d3 d3 d3 35

d = 1.665in so use a standard diameter size of 1.75in Ans.

5-26 From Prob. 5-25,

5 12
_ | (% 2 _ 5
Tmax = |:(7) + Txy:| - E

2 2 1/2
73 340 N 17230 40516 60000
2d3 d3 o d3 2(3.5)

d=1.678in sousel.75in Ans.

5-27 T = (270 —50)(0.150) = 33N -m, S, = 370 MPa

(T —0.1571)(0.125) =33 = T} =310.6N, T, =0.15(310.6) =46.6N
(T1 + Tz) cos45 =252.6N

y | l107.0 N [ 2526 N

163.4 N 252.6 N 89.2N 300 400 150
300 A 400 150

o z

B C ’ 320Nl 1]74‘4N
xy plane xz plane
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My =0.3v163.42 4+ 1072 =58.59N-m  (maximum)

Mg =0.15y/89.22 + 174.42 = 29.38N - m
_32(58.59)  596.8

Ox

wd3 a3
16(33)  168.1
B

2 »1/2 p
P2 a2z | (5968 168.1 _664.0  370(10°
o' = (o7 +31;,) _[< o) T35 =— =33

d=17510"%)m = 17.5mm, souse 8 mm Ans.
1/2

Tmax = ox ’ + 2 = &

max — 2 Xy - 2]/[

1/2
596.8 2+ 168.1\2]"" 3425 370010
2d° a3 4 230

d=177(10")m = 17.7mm, sousel8mm Ans.

5-28 From Prob. 5-27,

5-29  For the loading scheme shown in Figure (¢),

V| |
Flfa b 4.4
Mpyx=—|=+—-)=—(6+45
d (2 i 4) 26445 L
—23IN-m BTN
For a stress element at A: - B
M 32(23.1)(10° JE_'_'_'C_'_'_|_
M (1
oy = _ 2@ DUY) 565 Mpa A
wd3 7(12)3
The shear at C is

CAF2) 444/2)(10%)
YT 324 T 3n(12)2/4

,71/2
136.2
Tmax = — = 68.1 MPa

Since Sy = 220 MPa, S,y = 220/2 = 110 MPa, and

= 25.94 MPa

o
L
Tmax  08.1

n —=
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For the loading scheme depicted in Figure (d)

F(a+b F (1\ /(b\> F (a b
Mpax = — e = ==—\|\z+-
2\ 2 2\2/\2 2\2 "4

This result is the same as that obtained for Figure (c). At point B, we also have a surface
compression of

—F —F —4.4(10%
A bd 18(12)

With o, = —136.2 MPa. From a Mohrs circle diagram, tp,,x = 136.2/2 = 68.1 MPa.

110
n=——=162MPa Ans.
68.1

oy = = —20.4 MPa

5-30 Based on Figure (¢) and using Eq. (5-15)
o = (02)1/2
X
= (136.2%)"/? = 136.2MPa
S 220
n=-—2=""_-=162 Ans.
o’ 136.2
Based on Figure (d) and using Eq. (5-15) and the solution of Prob. 5-29,
o = (af — ooy + Uyz)l/z
= [(—136.2)% — (—136.2)(—20.4) 4+ (—20.4)*]'/2
= 127.2 MPa
S 220
n=-—=2=-"""_=173 Ans.
o’ 1272
5-31

When the ring is set, the hoop tension in the ring is
equal to the screw tension.

2 2
- i Pi r

/{ / oy = Zl 3 (1 + —02>
e rg —r; r

We have the hoop tension at any radius. The differential hoop tensiond F is

dF = wo; dr

To wr’p; (T r2
F:/r‘ watdr:rzir;/r. (1+r—02>dr=wripi (1
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The screw equation is

F; = T 2
"7 0.2d

From Egs. (1) and (2)

p;r;do L F . T
% . pi= wri  0.2dwr;
-
aF, \' .~ dF, = fpir;do

-
2 2
fTw /
F, = iwr; df = ; do
x= | Jpiwri 0.2dwr; ' J,
2n T
= rf Ans.
0.2d

5-32
(a) From Prob. 5-31, T =0.2F;d
P — r 190
' 0.2d  0.2(0.25)
(b) From Prob. 5-31, F = wr;p;

= 38001bf Ans.

F F; 3800

o — 15200psi  Ans.
P T wr . 0.5(0.5) pst - Aans
2, 2 (2 42
(C) o, = Zripl2 (1+r_0> _ pl(;l +;0)
ry —r; Ay — ry —r;

15200(0.52 + 12
= O+ 1) 5333psi Ans.
12-0.52

o, = —p; = —15200 psi

oy — 03 O — Oy

d max — ==

(d) Tma 5 5
25333 — (—15200)

2

=20267psi Ans.

o' = (o;+o0f— O'AO'B)I/z

= [25333% 4 (—15200) — 25333(—15200)]'/?
= 35466psi Ans.
(e) Maximum Shear hypothesis
Sey 058,  0.5(63)

= = = =1.55 Ans.
Tmax Tmax 20.267
Distortion Energy theory
Sy 63
n=— =1.78 Ans.
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5-33

The moment about the center caused by force F
is Fr, where r, is the effective radius. This is
balanced by the moment about the center
caused by the tangential (hoop) stress.

rO
Fre:/ ro;wdr
T

i

2 T, 2
wp;r; 0
= 2pl 12 / (l" + r_o) dr
rg—riJn, r
2 2 2
wp;r; ro—r; sy To
Fe = +r.In—
e F(I’Z _ r_z) ( B 0 i )
From Prob. 5-31, F = wr; p;. Therefore,

2 2
ri r; —r: ro
Ve = 5 ° ! +r02 ln—
r2—r; 2 r;

For the conditions of Prob. 5-31,r;, =0.5and r, = lin

0.5 12 —-0.5°
12 —-0.5?

Ve =

1
1’In— | =0.712i
; n0.5) mn

5-34

Snom = 0.0005 in
(a) From Eq. (3-57)

B 30(108)(0.0005) [(1.52 —1%)(1> - 0.5%)

—3516psi Ans.
(1) 2(1.57 — 0.52) ] psbAns

Inner member:

R?+r? 12 4+ 0.52
Eq. (3-58) (0,)i = —p L —3516 (+—) = —5860 psi

R*—r? 12 —0.52
(0r)i = —p = —3516 psi
Eq. (5-13) o/ = (03 —oaop +0p)"

= [(—5860)% — (—5860)(—3516) + (—3516)]"/?
= 5110 psi Ans.

Outer member:
1.5+ 12 )
(0y)o = —p = —3516 psi
Eq. (5-13) o) =[9142% — 9142(—3516) + (—3516)*]"/?

— 11320 psi Ans.
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(b) For a solid inner tube,

_30(10%)(0.0005) [(1.5% — 1%)(1?)
B 1 [ 2(12)(1.52)

(o) = —p = —4167 psi, (0,); = —4167 psi
o] = [(—4167)> — (—4167)(—4167) 4+ (—4167)*]"/> = 4167 psi  Ans.

1.52 4+ 12
1.52 — 12

o) =[10830%> — 10830(—4167) + (—4167)*1'/> = 13410 psi  Ans.

] = 4167 psi Ans.

(01)o = 4167 ( ) = 10830 psi, (07), = —4167 psi

5-35 Using Eq. (3-57) with diametral values,
207(10%)(0.02) [ (75% — 50%)(50% — 252
= (107)(0.02) 1/( X ) = 19.41 MPa Ans.
(503%) 2(75% — 252)
507 + 252
(0r)i = —19.41 MPa
Eq. (5-13) o/ = [(—32.35)% — (—32.35)(—19.41) + (—19.41)*]'/2
= 28.20 MPa Ans.
75% 4+ 50°
Eq.(3-59)  (01)o = 1941 | -o5—/5 | = 5047 MPa,
(0r)o = —19.41 MPa
0! = [50.47% — 50.47(—19.41) + (—19.41)*]'/? = 62.48 MPa  Ans.
5-36 Max. shrink-fit conditions: Diametral interference §; = 50.01 — 49.97 = 0.04 mm. Equa-

tion (3-57) using diametral values:

~207(10°)0.04 [ (75% — 50%)(50° — 25%)
P50 2(752 — 25
507 4 25°
502 — 252
(0,)i = —38.81 MPa

] = 38.81 MPa Ans.

Eq. (3-58): (07); = —38.81 ( ) = —064.68 MPa

Eq. (5-13):
al-/ = [(—64.68)2 — (—64.68)(—38.81) + (—38.81)2]1/2
= 56.39 MPa Ans.
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5-37
s 1.9998  1.999
2 2

= 0.0004 in

Eq. (3-56)

0.0004 =

p() [22+17
14.5(106) | 22 — 12
p = 2613 psi

1 12
+0.211]+ p(D) [ +0

—0.292
30(10%) | 12—0 ]

Applying Eq. (4-58) at R,
27 +12 ,
(O'[)o = 2613 ﬂ = 4355 Jo !

(0r)o = —2613 psi, S, =20 kpsi, S, = 83 kpsi

—| = —2613 1 Eq. (5-32a)
_ - . (5-
on 1355 , .. use Eq a

h = Sy o = 20/4.355 = 4.59 Ans.

Oo

5-38 E = 30(10%) psi, v = 0.292, I = (7/64)(2* — 1.5%) = 0.5369 in*
Eq. (3-57) can be written in terms of diameters,

ES; | (df — D*)(D*—d?) | 30(10°
D 2D%(d? — d?) L5

p:

2 2 2 1g2
(0.00246) [(2 1.75%)(1.75 1.5 )]

2(1.75%)(22 — 1.52)
= 2997 psi = 2.997 kpsi

Outer member:
1.75%(2.997)

Outer radius: (0y)o = 2175 (2) = 19.58 kpsi, (6,)o =0
. 1.75%(2.997) 22 . .
Inner radius: (07); = 71752 752 = 22.58 kpsi, (0r); = —2.997 kpsi
Bending:
6.000(2/2) .
o (0y)o = T%é = 11.18 kpsi
6.000(1.75/2) .
ri. (O'x)l' = T@/ =9.78 kpSl
Torsion: J =21 =1.0738 in*
8.000(2/2) .
Fo: (Txy)o = —1'073g =17.45 kpSl

8.000(1.75/2) )
ri (Toy)i = Tm/ = 6.52 kpsi

T-U7T00
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Outer radius is plane stress

oy = 11.18 kpsi, o, = 19.58 kpsi, 7., = 7.45 kpsi

S, 60
Eq. (5-15) o' =[11.18% — (11.18)(19.58) + 19.58% + 3(7.45%)]'/? = =X = —
60
21.35=— = n,=281 Auns.
no

Inner radius, 3D state of stress Z|

—2.997 kpsi

9.78 kpsi

22.58 kpsi

From Eq. (5-14) with 7y, = 7,, =0

1
o = E[(9.78 —22.58)% 4+ (22.58 + 2.997)% + (—2.997 — 9.78)% + 6(6.52)%]'/* =
60
2486 =— = n; =241 Ans.
n;

60

nj

5-39

From Prob. 5-38: p = 2.997 kpsi, I = 0.5369 in*, J = 1.0738 in*

Inner member:

. (0.875% 4+ 0.75%) .
Outer radius: (01)o = —2.997 |:(O.8752 ~ 075 = —19.60 kpsi
(07)0 = —2.997 kpsi
2(2.997)(0.875%
Inner radius: (0)i = — (().8752)£ 0.752) = —22.59 kpsi
(0,)i =0
Bending:
6(0.875) .
o (0x)o = 0.5360 = 9.78 kpsi
6(0.75) .
= = =8.38k
v (oy)i 0.5369 psi
Torsion:
8(0.875) .
o (Tay)o = L0738 = 6.52 kpsi
8(0.75
ri (Tay)i = ( ) = 5.59 kpsi

1.0738
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The inner radius is in plane stress: o, = 8.38 kpsi, 0y = —22.59 kpsi, 7, = 5.59 kpsi

o/ =[8.38% — (8.38)(—22.59) + (—22.59)? + 3(5.59%)]"/* = 29.4 kpsi

S 60
nj=—=——=204 Ans.
of! 29.4
Outer radius experiences a radial stress, o,

1
o, = — [(—19.60 4 2.997)> + (=2.997 — 9.78)* + (9.78 + 19.60)* + 6(6.52)*] "*

T2
= 27.9 kpsi

60
n,=—— =215 Ans.
27.9

5-40

1(2 K; 9)i (K, 0 9,39)2
0, = — COS — S1n — COS — S1In —
P 2ar 2 Lor 222

( K .6 0 39)}
+ SIn — COS — COS —

2rr 2 2 2
K 0 0 0 . ,36 0 0 36\ /2
= ! cos — =+ [ sin? = cos? = sin> — + sin® — cos> — cos’> —
2Tr 2 2 2 2 2 2 2
K 0 0 0 K 6 6
:—I(cos—:lzcos—sin—) = ! cos—(l:l:sin—)
2r 2 22 S27r 2 2

Plane stress: The third principal stress is zero and

K 0 0 K % %
o] = ! CcoS — (1 + sin —), oy = ! CoS — (1 — sin —), o3 =0 Ans.
N2r 2 2 2Tr 2 2

Plane strain: o1 and o, equations still valid however,

0
03 =v(oy +0y) =2v cos — Ans.

2r

S5-41 For 6 = 0 and plane strain, the principal stress equations of Prob. 5-40 give

K w R,
0] =0p = , 03 =2 = 2vo
: ? N2y : N2k l
1
(a) DE: Sl —01)* + (01 — 2vo1)* + 2voy —01)?]'? =,

o] — 21)0’1 = Sy

1 1
Forv = 3 |:1 -2 (§>:| or=S8, = o1=35 Ans
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(b) MSS: op—o3=3S8, = o—2vo =23
1
v:§ = o1 =35, Ans.
03 = 50’]

Radius of largest circle

1 2 o1
R:—Ul——O'I = —
2 3 6

RN -
AN G
1

@[

5-42 (a) Ignoring stress concentration
F = S8yA =160(4)(0.5) =320 kips Ans.
(b) From Fig. 6-36: h/b =1, a/b =0.625/4 =0.1563, = 1.3
v 1 (0.625
40.5) V(002

F =769kips Ans.

Eq. (6-51) 70 = 1.3

5-43 Given: a = 12.5 mm, K;. = 80 MPa - /m, S, = 1200 MPa, S,; = 1350 MPa

350 350 — 50
ro=—=175mm, r,=——— =150 mm
2 2
i )= 125 0.5
Ao I =95 150
150
ri/ro = — = 0.857
175
Fig. 5-30: B =25
Eq. (5-37): Ki. = Boma
80 = 2.50+/m(0.0125)
o = 161.5 MPa
Eq. (3-50) at r =ry:
2
ripi
= 2
Oy I"g’ _ ]"12( )
150° pi(2)
161.5 = ———
1752 — 1502

pi =29.2 MPa Ans.
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5-44
(a) First convert the data to radial dimensions to agree with the formulations of Fig. 3-33
Thus

ro = 0.5625 + 0.0011in

ri = 0.1875 £ 0.001 in

R, = 0.375 £ 0.0002 in

R; = 0.376 £ 0.0002 in
The stochastic nature of the dimensions affects the § = |R;| — |R,| relation in

Eq. (3-57) but not the others. Set R = (1/2)(R; + R,) = 0.3755. From Eq. (3-57)

_E_«s{vs—Rz) <R2—rf>}
)

R 2R? (r02 —r?

1

Substituting and solving with £ = 30 Mpsi gives

p = 18.70(10% 8
Sinced = R; — R,

§ =R;i — R, =0.376 — 0.375 = 0.001 in

and
,71/2
R 0 0002 0.0002
05 = —_—
4
000 070 7 in
Then
o 0.0000707
Cs=2 = 22 0.0707
) 0.001
The tangential inner-cylinder stress at the shrink-fit surface is given by
R +7

0.3755% + 0.18752
= —18.70(10%) & ( + )

0.3755% — 0.18752
= —31.1(10% ¢
&1 = —31.1(10% § = —31.1(10°)(0.001)
= —31.1(10%) psi
Also
65, = |Cs61,| = 0.0707(—31.1)10°

= 2899 psi
o;; = N(—31100, 2899) psi Ans.
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(b) The tangential stress for the outer cylinder at the shrink-fit surface is given by

. 72+ R?
Ot_p FZ—RZ

4

0.5625% + 0.37552
= 18.70(10%) & ( + )

0.56252 — 0.37552
= 48.76(10%) § psi
5o = 48.76(10°)(0.001) = 48.76(10°) psi
6o, = CsGor = 0.0707(48.76)(10%) = 34.45 psi
c.0r = N(48760, 3445) psi Ans.

5-45 From Prob. 5-44, at the fit surface o, = N(48.8, 3.45) kpsi. The radial stress is the fit

pressure which was found to be
p = 18.70(10%) §
p = 18.70(10°)(0.001) = 18.7(10°) psi
6, = Csp = 0.0707(18.70)(10%)
= 1322 psi
and so
p = N(18.7, 1.32) kpsi
and
o,r = —N(18.7, 1.32) kpsi
These represent the principal stresses. The von Mises stress is next assessed.
op =48.8kpsi, op = —18.7 kpsi
k =o0p/os = —18.7/48.8 = —0.383
o' =aa(l —k +kH'?
= 48.8[1 — (—0.383) + (—0.383)%]"/2
= 60.4 kpsi
6o = Cpa’ =0.0707(60.4) = 4.27 kpsi
Using the interference equation
S—a’
(63+32)"

B 95.5 — 60.4 _ s
T [(6.59)2 + (4.27)212 T

pr = a = 0.000 003 40,

Z=-

or about 3 chances in a million. Ans.
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5-46
., _ Pd _ 6000N(1, 0.083 33)(0.75)
T 2(0.125)
= 18N(1, 0.083 33) kpsi
., _ Pd _ 6000N(1,0.08333)(0.75)
N

4 4(0.125)
= 9N(1, 0.083 33) kpsi
o, = —p = —6000N(1, 0.083 33) kpsi

These three stresses are principal stresses whose variability is due to the loading. From
Eq. (5-12), we find the von Mises stress to be

o {(18 —9)2+[9 — (=6)]* + (=6 — 18)? }‘/2

2
= 21.0 kpsi
65 = Cpo' =0.08333(21.0) = 1.75 kpsi
S—o'
LT a2
(GS + GU’)
50 —-21.0

(4.12 +1.75%)1/2

The reliability is very high
R=1-—®(65) =1-4.02(100")Y=1 Ans.




Chapter 6

6-1 Eq.(2-21): S =34 H; =3.4(300)=1020 MPa

Eq. (6-8): S.=0.58, =0.51020) =510 MPa

Table 6-2: a=1.58 b=-0.085

Eq. (6-19): k, = aS) =1.58(1020) " =0.877

Eq. (6-20):  k,=1.24d'" =1.24(10) """ = 0.969

Eq. (6-18): S =k k $=(0.877)(0.969)(510) =433 MPa  As.
6-2  (a) Table A-20: Sit = 80 kpsi

Eq. (6-8): S, =0.5(80)=40 kpsi Ans.

(b) Table A-20: Sut = 90 kpsi

Eq. (6-8): S, =0.5(90) =45 kpsi  Ans.

(¢) Aluminum has no endurance limit. ~ Ans.

(d) Eq. (6-8): Sut > 200 kpsi, S, =100 kpsi ~ Ans.
6-3 §, =120 kpsi, o, =70 kpsi

Fig. 6-18: f=0.82

Eq. (6-8): S, = §=0.5(120) = 60 kpsi

2 0.82(120)]
Eq. (6-14): a=(f ) =[ (120)] =161.4 kpsi
S 60
1 fS, 1 0.82(120)j
Eq. (6-15): b=——log| —* |=—=log| ———= [=-0.0716
q. (6-15) 3g£SeJ 3g( <0
o Ve 70 —O.(i7l6
Eq. (6-16): N=| — :( ] =116700 cycles Ans.
a 161.4

6-4 §,=1600MPa, o, =900 MPa

Fig. 6-18: Sit = 1600 MPa = 232 kpsi. Off the graph, so estimate f=0.77.
Eq. (6-8): Sut> 1400 MPa, so S = 700 MPa

2 10.77(1600)]
Eq. (6-14): a= (S0 :[ (1600)] —2168.3 MPa
S 700

e
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1, (fs, 1. (0.77(1600)
Eq. (6-15): b=——log| — |=—~log| ——~"" |=-0.081838
e (&-15) 3°g(s J 3°g( 700

e
1

o Ve 900 -0.081838
Eq. (6-16): N=| | = ' =46 400 cycles Ans.
a 2168.3

6-5 §, =230 kpsi, N=150000 cycles

Fig. 6-18, point is off the graph, so estimate: f=0.77

Eq. (6-8): Sut > 200 kpsi, so S, = § =100 kpsi

2 0.77(230)]
Eq. (6-14): a= (S0 _ [0.77230)] =313.6 kpsi
S 100
1 fSs, 1 0.77(230))
Eq. (6-15): b=——log| —™* |=——log| ———= |=-0.08274
% (6-13) 3‘({56] 3g( 100

Eq. (6-13): S, = aN” =313.6(150 000) ***™* =117.0 kpsi ~ Ans.
6-6 S, =1100 MPa= 160 kpsi

Fig. 6-18: f=0.79

Eq. (6-8): S.= §=0.5(1100) =550 MPa

(fs,)° [0.79(1100)]
Eq. (6-14): a= L= =1373 MPa
S, 550
1 fS 1 0.79(1 100))
Eq. (6-15): b=——log| —=* |=——=log| ———= |=-0.06622
e (¢-13) Sg[SeJ 3g£ 550

Eq. (6-13): S, = aN” =1373(150 000) ***** =624 MPa  Ans.

6-7 S, =150kpsi, §, =135 kpsi, N=500 cycles

Fig. 6-18: f=0.798

From Fig. 6-10, we note that below 10° cycles on the S-Ndiagram constitutes the low-

cycle region, in which Eq. (6-17) is applicable.
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0.798) /3

Eq. (6-17): S = S N"% =150(500)" =122 kpsi Ans.

The testing should be done at a completely reversed stress of 122 kpsi, which is below
the yield strength, so it is possible. ~ Ans.

6-8  The general equation for a line on a log & - log N scale is & = aN’, which is Eq. (6-13).
By taking the log of both sides, we can get the equation of the line in slope-intercept
form.

log S; = blog N+loga
Substitute the two known points to solve for unknowns a and b. Substituting point (1,
SJI)»
log S, = blog(1)+1loga
From which a= S, . Substituting point (10°, f S,) and a= S,
log f S, = blog10’ +log S,
From which b=(1/3)log f
S =8 N=° 1< Ne10°
6-9  Read from graph: (103,90) and (10°,50). From S= aN’

log S =log a+blog N,
logS =log a+blogN,

From which
log S log N, —log Slog N
logN, /' N,
_ 1log901log10° —log 5010g10°
log10°/10°

loga=

=2.2095

a=10"* =10**"° =162.0 kpsi

log50/90

b= =-0.0851

(S;),, =162 N""™" 10’ < N<10° inkpsi Ans.
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Check:
[(S)ar ], =162(10°)%" =90 kpsi

10

[(Sf )ax]106 —162(10°) %1 = 50 kpsi

The end points agree.

6-10 d=1.5in, S;t=110 kpsi

Eq. (6-8): S, =0.5(110) =55 kpsi
Table 6-2: a=2.70,b=-0.265
Eq. (6-19):  k,=aS,” =2.70(110)"** =0.777

Since the loading situation is not specified, we’ll assume rotating bending or torsion so
Eq. (6-20) is applicable. This would be the worst case.

k, =0.879d """ = 0.879(1.5) "' =0.842
Eq. (6-18): S, = k k $=0.777(0.842)(55)=36.0 kpsi  As

6-11 For AISI 4340 as-forged steel,

Eq. (6-8): Se = 100 kpsi
Table 6-2:  a=39.9, b=-0.995
Eq. (6-19):  ka=39.9(260) """ =0.158

-0.107
Eq. (6-20): K, = (%j =0.907

Each of the other modifying factors is unity.
Se =0.158(0.907)(100) = 14.3 kpsi

For AISI 1040:
S, =0.5(113) =56.5 kpsi
k, =39.9(113)""° =0.362
kK, =0.907 (same as 4340)
Each of the other modifying factors is unity

S, =0.362(0.907)(56.5) = 18.6 kpsi

Not only is AISI 1040 steel a contender, it has a superior endurance strength.
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6-12 D=11in,d=0.8in, T= 1800 Ibf'in, f = 0.9, and from Table A-20 for AISI 1020 CD,
Sut = 68 kpsi, and Sy = 57 kpsi.

@) Fig. A-15-15: L =91 0125 DL 155k —140
d

1
d 08 0.8

Get the notch sensitivity either from Fig. 6-21, or from the curve-fit Egs. (6-34) and
(6-35b). We’ll use the equations.

Ja=0.190-2.51(10")(68)+1.35(107)(68)" —2.67(10°*)(68’ ) =0.07335
1 1

%= a = 007335 0812
1+= 1+
NN

Eq. (6-32): Kis=1+0s(Kis—1)=1+0.812(1.40 — 1) =1.32

For a purely reversing torque of T = 1800 Ibf-in,

Tr  Kel6T  1.32(16)(1800)
T :Kfs_: =

— 23635 psi = 23.6 kpsi
2 1 xd 7(0.8)° psl ps!

Eq. (6-8): S, =0.5(68) =34 kpsi

Eq. (6-19):  ka=2.70(68)"*% =0.883

Eq. (6-20):  kp = 0.879(0.8) "' = 0.900

Eq. (6-26):  kc.=0.59

Eq. (6-18) (labeling for shear): Sse=0.883(0.900)(0.59)(34) = 15.9 kpsi
For purely reversing torsion, use Eq. (6-54) for the ultimate strength in shear.
Eq. (6-54):  Su=0.67 Syt = 0.67(68) = 45.6 kpsi

Adjusting the fatigue strength equations for shear,
(fs.)  [0.9(45.6)]

Eq.(6-14): a= =105.9 kpsi
% (6-14) S. 15.9 P
1, (fs 1. (0.9(45.6)
Eq. (6-15):  b=——log| —2 |=——log| =) | = 0.137 27
% (6-13) 3‘({556] 3g£ 15.9]

1 1
‘ NEA b 3 23.3 \-0.13727 3 3
Eq. (6-16): N—(—j _(@] =61.7(10%) cycles  Ans
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(b) For an operating temperature of 750°F, the temperature modification factor,
from Table 6-4 is kq = 0.90.

Sse = 0.883(0.900)(0.59)(0.9)(34) = 14.3 kpsi

(fs.)  [0.9(45.6)]

S. 143
3 S 3 14.3

—-0.152 62
( j ( j =40.9(10°) cycles  Ans

6-13 L=0.6m,F, =2kN,n=1.5, N=10* cycles, S, =770 MPa, $ =420 MPa (Table A-20)

First evaluate the fatigue strength.

F=t21kN
=0.5(770) =385 MPa Rad— ﬁﬂﬂﬂuﬂ;.ﬁ

k, =57.7(770) 7' = 0.488 ] 3
e

Since the size is not yet known, assume a
typical value of kp = 0.85 and check later.
All other modifiers are equal to one.

Eq. (6-18): S =10.488(0.85)(385) = 160 MPa
In kpsi, Syt=770/6.89 = 112 kpsi

Fig. 6-18:  f=0.83
(fs.)  [0.83770)]

Eq.(6-14): a= =2553 MPa
% (6-14) S 160

fs, 1. (0.83(770)
Eq.(6-15):  b=-—Io L =——log| =" | =—0.2005
% (6-13) 3g[se] 3g( 160

Eq. (6-13): S, = a\” =2553(10*) ** =403 MPa

Now evaluate the stress.
M_.. =(2000 N)(0.6 m)=1200 N-m
b/2 6 1200
o, =0 =MC ( ) oM ( ):7200Pa,withbinm.

AU T p)/12 B b b

Compare strength to stress and solve for the necessary b.
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S 403(106) B
o 7200/b°

a

b=10.0299 m Select b=30 mm.
Since the size factor was guessed, go back and check it now.

Eq.(6-25):  d,=0.808(hb)"* = 0.808b=0.808(30) = 24.24 mm

-0.107
Eq. (6-20): Kk, = (%) =0.88

Our guess of 0.85 was slightly conservative, so we will accept the result of

b=30mm. AnSs.

Checking yield,
O = L003(10-6) =267 MPa
0.030
S
s e
o 267

max

6-14

Given: w =2.51in,t=3/8 in, d= 0.5 in, ng = 2. From Table A-20, for AISI 1020 CD,
Sut = 68 kpsi and S, = 57 kpsi.

38— |=—

Eq. (6-8): S, =0.5(68) =34 kpsi

Table 6-2: k, =2.70(68) "> =0.88 a :Tj _L{ 0.3 F,
Eq. (6-21):  kp =1 (axial loading) l {020
Eq. (6-26): ke =0.85

Eq. (6-18):  So=0.88(1)(0.85)(34) = 25.4 kpsi
Table A-15-1:d/w=0.5/25=02, K =2.5

Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Egs. (6-34) and
(6-35a). The relatively large radius is off the graph of Fig. 6-20, so we’ll assume the
curves continue according to the same trend and use the equations to estimate the notch
sensitivity.

Ja=0.246-3.08(107)(68)+1.51(107)(68)" -2.67(10™)(68*) =0.09799

1 1
4= a1, 0079 = 0836
T oo

Eq. (6-32): K, =1+q(K,—1)=1+0.836(2.5-1) = 2.25
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F. 225F,
Oy = Kf N =
A (3/8)(25-0.5)

Since a finite life was not mentioned, we’ll assume infinite life is desired, so the
completely reversed stress must stay below the endurance limit.

S

S 254,
o, 3F,

F,=423kips Ans

f

6-15 Given: D=2in,d=1.81in,r=0.1in, M_, =250001bf-in, M _, =0.
From Table A-20, for AISI 1095 HR, Syt = 120 kpsi and S, = 66 kpsi.
Eq. (6-8): S.=058, = 0.5(120) =60 kpsi
Eq. (6-19):  k,=aS =2.70(120)*** =0.76
Eq. (6-24): d, =0.370d =0.370(1.8) = 0.666 in
Eq. (6-20): k, =0.879d, """ =0.879(0.666) """ = 0.92
Eq. (6-26): k. =1
Eq. (6-18): S. = Kk k §=(0.76)(0.92)(1)(60) = 42.0 kpsi

Fig. A-15-14: D/d=2/1.8=1.11, r/d=0.1/1.8=0.056 .. K, =2.1

Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Egs. (6-34) and
(6-35a). We’ll use the equations.

Ja=0.246-3.08(107)(120)+1.51(107)(120)° —2.67(10°*)(120° ) = 0.04770

1 1
q= = =0.87
a1, 004770

Jr Jo.1

Eq. (6-32): K, =1+q(K,—1)=1+0.87(2.1-1)=1.96
| =(z/64)d* = (r/64)(1.8)" =0.5153 in*

> _w_ 25000(1.8/2)
e I 0.5153
o. =0

min

=43 664 psi =43.7 kpsi
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Eq. (6-36): o, =K, % = =42.8 kpsi
_ 43.7-
o, = K [T . Tuin| — (1.96) ( )‘ = 42.8 kpsi
Eq. (6-46): 1 _0,, 0n_428 428
nn S S 420 120

n,=0.73 Ans

A factor of safety less than unity indicates a finite life.

Check for yielding. It is not necessary to include the stress concentration for static
yielding of a ductile material.

S
n =—2, —izl.SI Ans.

Yo 437

max

6-16

From a free-body diagram analysis, the bearing reaction forces are found to be 2.1 kN at
the left bearing and 3.9 kN at the right bearing. The critical location will be at the
shoulder fillet between the 35 mm and the 50 mm diameters, where the bending moment
is large, the diameter is smaller, and the stress concentration exists. The bending moment
at this pointis M = 2.1(200) =420 kN-mm. With a rotating shaft, the bending stress will
be completely reversed.

~Mc 420(35/2)

Grev - 4
I (7 /64)(35)
This stress is far below the yield strength of 390 MPa, so yielding is not predicted. Find

=0.09978 kN/mm?* =99.8 MPa

the stress concentration factor for the fatigue analysis.
Fig. A-15-9: r/d =3/35=0.086, D/d=50/35=1.43, K;=1.7

Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Egs. (6-34) and
(6-35a). We’ll use the equations, with S;; =470 MPa = 68.2 kpsiandr =3 mm =0.118
in.
Ja=0.246-3.08(107)(68.2)+1.51(10°)(68.2)" —2.67(10™*)(68.2) =0.09771
9= &, 009771
N T

Eq. (6-32): K, =1+q(K,-1)=1+0.78(1.7-1) =1.55

0.78

Chapter 6 - Rev. A, Page 9/66



Eq. (6-8): S, =0.5S, =0.5(470) = 235 MPa

Eq. (6-19):  k, =aS, =4.51(470)"** =0.88

Eq. (6-24):  k,=1.24d™"" =1.24(35)"'" =0.85

Eq. (6-26): k. =1

Eq. (6-18): S =k k k S=(0.88)(0.85)(1)(235) =176 MPa

n, = > = 176 =1.14 Infinite life is predicted. Ans.
Ko, 1.55(99.8)

6-17

From a free-body diagram analysis, the
bearing reaction forces are found to be Ra =
2000 Ibf and Rg = 1500 1bf. The shear-force
and bending-moment diagrams are shown.
The critical location will be at the shoulder
fillet between the 1-5/8 in and the 1-7/8 in
diameters, where the bending moment is
large, the diameter is smaller, and the stress
concentration exists.

@ X
-500
-1500
M =16 000 — 500 (2.5) = 14 750 Ibf - in M| 16000 14750 o
With a rotating shaft, the bending stress will (bfi)
be completely reversed. " -
o = Mc 14 750(1.625/24) _35.0 kpsi
I (7 /64)(1.625)

This stress is far below the yield strength of 71 kpsi, so yielding is not predicted.

Fig. A-15-9: r/d =0.0625/1.625 = 0.04, D/d=1.875/1.625=1.15, K;=1.95
Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Egs. (6-34) and
(6-35a). We will use the equations.

Ja=0.246-3.08(107)(85)+1.51(107)(85)" =2.67(10™*)(85)’ = 0.07690

1 1
q_1 Ja |, 0.07690 =076,
T 00625

Eq. (6-32): K, =1+q(K,—1)=1+0.76(1.95-1)=1.72

Eq. (6-8): S, =0.5S, =0.5(85)=42.5 kpsi
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Eq. (6-19):  k, =aS’ =2.70(85)°% =0.832

Eq. (6-20):  k, =0.879d'7 =0.879(1.625) """ =0.835

Eq. (6-26): k. =1

Eq. (6-18): S =k k k S=(0.832)(0.835)(1)(42.5) = 29.5 kpsi

S

— e
Ko

rev

_ 295
1.72(35.0)

n, =0.49

Ans.

Infinite life is not predicted. Use the S-Ndiagram to estimate the life.

Fig. 6-18: f=0.867

(fs.)  [0:867(85)]
S 295

e

Eq. (6-14): a= =184

Eq. (6-15): b:_llog(f Shtj:_llog(%ﬂsfﬁ)

3 S

e

3

A

)2—0.1325

1 1
K b ~0.1325
Eq. (616 N= (L] =(w) " _ 4611 cycles

a 184.1
N= 4600 cycles Ans.

6-18

From a free-body diagram analysis, the
bearing reaction forces are found to be Ra =
1600 1bf and Rg = 2000 1bf. The shear-force
and bending-moment diagrams are shown.
The critical location will be at the shoulder
fillet between the 1-5/8 in and the 1-7/8 in
diameters, where the bending moment is
large, the diameter is smaller, and the stress
concentration exists.

M = 12 800 + 400 (2.5) = 13 800 Ibf - in

With a rotating shaft, the bending stress will
be completely reversed.
~ Mc  13800(1.625/2)

Grev -
I (7/64)(1.625)*

=32.8 kpsi

l—[;in ‘ g in \jin'l iliiu
g f. - -

V(Ibh)| 1600
400
0 %
2000
M 13800 __al6000
(eriny| 12800 7000
O i

This stress is far below the yield strength of 71 kpsi, so yielding is not predicted.

Fig. A-15-9: r/d =0.0625/1.625 = 0.04, D/d=1.875/1.625=1.15, K;=1.95
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Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Egs. (6-34) and
(6-35a). We will use the equations

Ja=0.246-3.08(107)(85)+1.51(107)(85)" —2.67(10™*)(85)" =0.07690
1 1

q=1 Ja |, 0.0769 =076
+f 7\/@
Eq. (6-32): K, =1+q(K,~1)=1+0.76(1.95-1) =1.72
Eq. (6-8): S, =0.5S, =0.5(85) = 42.5 kpsi
Eq. (6-19): k, = aS, =2.70(85)"** =0.832
Eq. (6-20): k, =0.879d"'" =0.879(1.625) """ = 0.835
Eq. (6-26): k. =1
Eq. (6-18): S, = k k k $=(0.832)(0.835)(1)(42.5) = 29.5 kpsi
n, = S 295 0.52 Ans.
Kio., 1.72(328)

Infinite life is not predicted. Use the S-Ndiagram to estimate the life.
Fig. 6-18: f=0.867

(fS,) _ [0.867(85)]

Eq. (6-14): a= —184.1
e (6-19) S, 295

1 fS, 1 0.867(85)}
Eq. (6-15):  b=——log| ~u |= _Ljg| 280744355
% (1) 3g(sej 3g( 29.5

1 1
K.o_ )b .
Eq. (6-16;  N=| T P _[ATDEZ8) 052 00+ es
a 184.1

N= 7500 cycles Ans.

6-19

Table A-20: S, =120 kpsi, §, = 66 kpsi
N = (950 rev/min)(10 hr)(60 min/hr) = 570 000 cycles

One approach is to guess a diameter and solve the problem as an iterative analysis
problem. Alternatively, we can estimate the few modifying parameters that are dependent
on the diameter and solve the stress equation for the diameter, then iterate to check the
estimates. We’ll use the second approach since it should require only one iteration, since
the estimates on the modifying parameters should be pretty close.
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First, we’ll evaluate the stress. From a free-body diagram analysis, the reaction forces at
the bearings are R; = 2 kips and R, = 6 kips. The critical stress location is in the middle
of the span at the shoulder, where the bending moment is high, the shaft diameter is
smaller, and a stress concentration factor exists. If the critical location is not obvious,
prepare a complete bending moment diagram and evaluate at any potentially critical
locations. Evaluating at the critical shoulder,

M :2kip(10in):20 kip-in
- _Mc_M(d/2) 32M 32(20) 203.7
L xdi/64 xdd T ozdd &

kpsi

Now we’ll get the notch sensitivity and stress concentration factor. The notch sensitivity
depends on the fillet radius, which depends on the unknown diameter. For now, we’ll
estimate a value for g = 0.85 from observation of Fig. 6-20, and check it later.

Fig. A-15-9: D/d=1.4d/d=14, r/d=0.1d/ d=0.1, K=1.65

Eq. (6-32): K, =1+q(K,—1)=1+0.85(1.65-1) =1.55

Now we will evaluate the fatigue strength.

S, =0.5(120) = 60 kpsi
k, =2.70(120)"** =0.76

Since the diameter is not yet known, assume a typical value of ky = 0.85 and check later.
All other modifiers are equal to one.

S =(0.76)(0.85)(60) = 38.8 kpsi
Determine the desired fatigue strength from the S-Ndiagram.

Fig. 6-18:  f=0.82
(fs,)  [0.820120)]

Eq. (6-14): a= =249.6
e (-19) S, 38.8
1 fS, 1 0.82(120))
Eq. (6-15): b=-—log| —=* |=——log| ———+~ |=-0.1347
e (1) 3‘({36} 3g( 38.8

Eq. (6-13): S, = aN®=249.6(570 000) *"**" = 41.9 kpsi

Compare strength to stress and solve for the necessary d.
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S 41.9

b o (1.55)(203.7/d%)

d=2291in

Since the size factor and notch sensitivity were guessed, go back and check them now.
Eq. (6-20):  k,=0.91d"% =0.91(2.29) """ =0.80

Our guess of 0.85 was conservative. From Fig. 6-20 with r = d/10 = 0.229 in, we are off
the graph, but it appears our guess for g is low. Assuming the trend of the graph
continues, we’ll choose = 0.91 and iterate the problem with the new values of k, and .
Intermediate results are S = 36.5 kpsi, & = 39.6 kpsi, and K; = 1.59. This gives

NS 39.6 _
' Ko, (1.59)(203.7/d°)
d=2361in Ans.

A quick check of ky and q show that our estimates are still reasonable for this diameter.

6-20

S, =40kpsi, § =60 kpsi, § =80 kpsi, 7, =15 kpsi, o, =25 kpsi, o, =7,=0
Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.

o= (o2 +302) " =[ 25"+ 3(0)2}“2 = 25.00 kpsi

m m

on=(on+33) =] 0° +3(15)2T/2 = 25.98 kpsi

ol = (Gfm +372 )1/2 = [(o*a + O'm)2 +3(ra+rm)2}l/2

max max

=[25% 4315 )T/z —36.06 kpsi

S
n,=—2= :i=1.66 Ans.
Yool 36.06

max

(a) Modified Goodman, Table 6-6

1

= =1.05 Ans
(25.00/ 40) +(25.98/80)

N

(b) Gerber, Table 6-7

2 2
n, :l( 80 j (25'0()) 1+ 1+ w =131 Ans.
21.25.98 40 80(25.00)
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(c) ASME-Elliptic, Table 6-8

n; = 5 : >=132  Ans
(25.00/40)" +(25.98/60)

6-21 S, =40kpsi, § =60 kpsi, § =80 kpsi, 7, =20 kpsi, o, =10 kpsi, o, =7,=0
Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.
1/2
o, =(02+3e2) " =[10°+3(0)" | " =10.00 kpsi

/

2
=34.64 kpsi

m m

o =(ont3er) =|0° +3(2o)2}l
o = (0'2 +372 )1/2 = |:(O'a + O'm)2 +3(ra+rm)2}l/2

max max max

=[10° +3(20° )T/z —36.06 kpsi

S
n =—2> :i:1.66 Ans.
Yool 36.06

max

(a) Modified Goodman, Table 6-6
1

= =1.46
(10.00/ 40) + (34.64/ 80)
(b) Gerber, Table 6-7

2 2
, :l( 80 Nlo.ooj e 1o [2646HE0 ) | o A
2(34.64) \ 40 80(10.00)

(c) ASME-Elliptic, Table 6-8

n, = . ! ~ =159 Ans
(10.00 /40 + (34.64/ 60)

ANs.

Ny

6-22 S, =40kpsi, § =60 kpsi, § =80 kpsi, r, =10 kpsi, 7, =15 kpsi, o, =12 kpsi, o, =0
Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.

o, =(o2+302) " =[12° +3(10)2]”2 —21.07 kpsi

on=(on+3mh) =[O +3(15) T/z — 25.98 kpsi
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Ot = (02 +322) " =[(Gur0n) +3(raben) |
=|(12+0)’ +3(10+15)2T/2 =44.93 kpsi

S
n =—2> :i:1.34 Ans.
Yool 44.93

(a) Modified Goodman, Table 6-6

1
n, = :1.
" (21.07/40)+(25.98/80)

17 Ans
(b) Gerber, Table 6-7
2 2
nle( 80 ](21.07) I AN ECEX T TC) N S
2025.98) | 40 80(21.07)

(c) ASME-Elliptic, Table 6-8

n; = 21 >=147  Ans
(21.07/40)" +(25.98/60)

6-23 S, =40kpsi, § =60 kpsi, § =80 kpsi, 7, =30 kpsi, o,=0,=17,=0

Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.

o, =(o2+327) " =|0° +3(30)2T/2 = 51.96 kpsi

ol = (0;+3rfn)1/2 =0 kpsi
o= (ajm +372 )1/2 = [(oa + O'm)2 +3(7,+ rm)2 T/z
2 1/2
=[3(30)"] " =51.96 kpsi
S
n =—* - 90 15 oans
o’ 51.96

max

(a) Modified Goodman, Table 6-6

1

n=———=077 Ans
(51.96/ 40)

(b) Gerber criterion of Table 6-7 is only valid for o, > 0; therefore use Eq. (6-47).
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o, S 40

n, = ——=0.77 Ans
S o; 51.96

(c) ASME-Elliptic, Table 6-8

n, = ;2:0.77 Ans.
(51.96/40)

Since infinite life is not predicted, estimate a life from the S-Ndiagram. Since o'm =0,
the stress state is completely reversed and the S-Ndiagram is applicable for ¢',.

Fig. 6-18: f=0.875

> [0.875(80)]

(f S,
Eq. (6-14): a= =122.5
e ) S 40
fS 1 0.875(80)
Eq. (6-15): b———l Ll=—=log| ————= |=-0.08101
e ) 3 og( S J 3 og[ 40 j

1
1/b
Eq. (6-16): N =| Ze SL96 0% _ 35600 cycles  Ans

a 122.5

6-24 S, =40kpsi, § =60 kpsi, § =80 kpsi, 7, =15 kpsi, o, =15 kpsi, 7,=0,=0

Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.

o, =(02+322) " =[ 024315 | <2598 kpsi
ol = (a§1+3r3n)”2 -[15° +3(0)2T/2 —15.00 kpsi

v = (0o #370)  =[(ar o) +3(r,57,) ]
(15) +3(15)2T/2 =30.00 kpsi

n =—2, :@=2.00 Ans.
30

y i
max

1/2

(a) Modified Goodman, Table 6-6

1

n, = = Ans.
(25.98/40)+(15.00/80)

(b) Gerber, Table 6-7

2 2
nf=l( 80 ][25.98} e 1 [205.00¢40) Y [ L 4n ane
215.00 40 80(25.98)
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(c) ASME-Elliptic, Table 6-8

ne = 21 >=144 Ans
(25.98/40)" +(15.00/ 60)

6-25 Given: F_ =28 kN, F . =-28 kN . From Table A-20, for AISI 1040

CD, S, =590 MPa, S, =490 MPa,
Check for yielding
P 28000 147.4 N/mm* =147.4 MPa

O-max -
A 10(25-6)

S
y Y = ﬂ =332 Ans
o 147.4

max

Determine the fatigue factor of safety based on infinite life

Eq. (6-8): S, =0.5(590) = 295 MPa

Eq. (6-19):  k,=aS =4.51(590) """ =0.832

Eq. (6-21): k, =1 (axial)

Eq. (6-26):  k, =0.85

Eq. (6-18): S =k k k S=(0.832)(1)(0.85)(295) = 208.6 MPa

Fig. 6-20:  q=0.83
Fig. A-15-1: d/w=0.24, K =2.44
K, =1+q(K, —1)=1+0.83(2.44—1)=2.20

Foue — Foia| - 5|28000—(~28000)]
o, = K |max ~Tmin) — 5 ) =324.2 MPa
2A | 7] 2010)25-6) |
Fou +Fo
o_m — l(f max + min — O
2A
1 _0a,0On_ 3242, 0
nn S S 2086 590
n =064 Ans

Since infinite life is not predicted, estimate a life from the S-Ndiagram. Since oy, =0,
the stress state is completely reversed and the S-Ndiagram is applicable for os.

Sut = 590/6.89 = 85.6 kpsi

Fig. 6-18:  f=0.87
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Eq (614 a=l' So° _[0-87(590)]

=1263
S 208.6
1 fS, 1 0.87(590))
Eq. (6-15): b=-——log| —% |=——log| ————~ |=-0.1304
e (&15) 3 g( SEJ 3 g( 208.6

1/b

o 324.2 \-0.1304

Eq. (6-16): N=| = =33812 cycles
a- ( ) ( a ] (1263) 4

N= 34 000 cycles Ans.

6-26 S, =590 MPa, § =490 MPa, £, =28kN, £, =12kN

> ‘max >  ‘min

Check for yielding
Omax = i = 28 000 =147.4 N/mm® =147.4 MPa
A 10(25-6)
S
n,=—~ 490 —=332 Ans
o, 147 4

max

Determine the fatigue factor of safety based on infinite life.
From Prob. 6-25: S, =208.6 MPa, K, =2.2

F —-F |28 000—(12000)|
o, =K, | —m=7 =92.63 MPa
2A | \ 2(10)(25 6) |
o K. F..+F.. 99 28 000+12 000 _931.6 MPa
2A 2(10)(25-16)
Modified Goodman criteria:
L_% %_92.63 231.6
n, § § 2086 590
n, =120 Ans
Gerber criteria:
n, = i U— -1+ 1+ 20”“8"}
Gm S a
590 9 el 2(231.6)(208. 6)
2 231.6) 208.6 590(92.63)
n, =149 Ans
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ASME-Elliptic criteria:

1 1
n, = =
f \/(O'a /8) +(o,/ Sy)2 \/(92.63/208.6)2 +(231.6/490)°
=154 Ans
The results are consistent with Fig. 6-27, where for a mean stress that is about half of the

yield strength, the Modified Goodman line should predict failure significantly before the
other two.

6-27

Sy =590 MPa, S, =490 MPa

(@) F, =28kN,F_ =0kN

> " min

Check for yielding
O = P 28000 _ )47 4 Nimm? = 147.4 MPa
A 10(25-6)
S
n,=—~ 0 ——=332 Ans
o, 147 4

max

From Prob. 6-25: S, =208.6 MPa, K, =2.2

o, =K, P _me = | 28000 -0 |:162.1MPa
2A |2(10)(25 6)|

o =K, ot Fmin _ 9| 2890040 165 | mpa
2A 2(10)(25—-6)

Os O _le2.1 162.1

- m

n S S 2086 590

n, =095 Ans

Since infinite life is not predicted, estimate a life from the S-Ndiagram. First, find an
equivalent completely reversed stress (See Ex. 6-12).

o =— % 1021 535 yp,
1-(0,/S,) 1-(162.1/590)

Fig. 6-18:  £=0.87

(S,)* [0.87(590)]
S 2086

e

Eq. (6-14):  a= =1263
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1, (fs, 1. (0.87(590)
Eq. (6-15):  b=——log| —M |=——log| ——— | =—0.1304
% (6-15) 3 Og( J 3 Og( 208.6 J

1/b
Eq. (6-16): N=|Zm= 2235100 _ 506000 cycles Ans
a 1263

(b) F. =28 kN,F._ =12 kN

max > " min

The maximum load is the same as in part (a), so
o, =147.4 MPa

n, = 3.32 Ans

Factor of safety based on infinite life:

o = K, | = me 5 5[28000-12000] _ o o o
2A | 2(10)(25-6) |
o =K, F .+ me _29 28000+12000 | _ 231.6 MPa
2A 2(10)(25 - 6)
1 _ o, o, 9263 2316
n § § 2086 590
n, =120 Ans
() F,,. =12kN,F  =-28 kN
The compressive load is the largest, so check it for yielding.
Gy = = 28000 _ 474 Mpa
A 10(25-06)
S —
n =—*= 90 _ 332 Ans
o, —147.4
Factor of safety based on infinite life:
-F_ 12 000 —(-28 000)
o, =K, P = Fon | _ .2| = |—231 6 MPa
2A |77 200025-6) |
: 12 000 +(—28 000
o =K, ot Fon 55 ( )| = 92,63 MPa
2A 2(10)(25-6)
For om <0, nf=i=%=0.90 Ans,
o, 231.6
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Since infinite life is not predicted, estimate a life from the S-Ndiagram. For a negative
mean stress, we shall assume the equivalent completely reversed stress is the same as the
actual alternating stress. Get a and b from part (a).

o\ (2316w
Eq. (6-16): N=—| = =446 000 cycles Ans.
a 1263

6-28

Eq. (2-21): Su = 0.5(400) = 200 kpsi

Eq. (6-8): S, =0.5(200) =100 kpsi

Eq. (6-19):  k, =aS) =14.4(200) """ = 0.321

Eq. (6-25): d, =0.37d=0.37(0.375) = 0.1388 in

Eq. (6-20): k, =0.879d. """ =0.879(0.1388) "' =1.09

Since we have used the equivalent diameter method to get the size factor, and in doing so
introduced greater uncertainties, we will choose not to use a size factor greater than one.

Letky=1.

Eq.(6-18): S, =(0.321)(1)(100) =32.1 kpsi

=220 1o =020 3y
o, = 32'\/'; = 32(10)(123) = 23.18 kpsi
zd®  7(0.375)
o, = 32M3m = 32(30)(123) =69.54 kpsi
zd 7(0.375)
(a) Modified Goodman criterion
1 o, o, 2318 69.54
- =4 M _- 4 -
nn S S 321 200
n, =0.94 Ans

Since infinite life is not predicted, estimate a life from the S-Ndiagram. First, find an
equivalent completely reversed stress (See Ex. 6-12).

o Oos 2318
' 1-(0,/S,)  1-(69.54/200)
Fig. 6-18:  f=0.775

Eq. (6-14): o (S0 _[0775C00) 0
S 32.1

e

=35.54 kpsi
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S 3 32.1

e

Eq. (6-15): b= —élog (EJ —Liog (MJ = -0.228

1/b L
Eq. (6-16)  N=|Zm | [ 339019 030600 cycles Ans.
a 7484

(b) Gerber criterion, Table 6-7

nf :l(iJZ& -1+ 1+[MJ2
2lo,) S So

m e a

_1( 200 jz 23.18| |, [2(69.54)32.) ’
2069.54 ) 32.1 200(23.18)

=1.16 Infinite life is predicted Ans

6-29 E=207.0 GPa
@l :é(zo)(@) =106.7 mm*

_RE L 3Bl

y

3El B
F oo 3(207)(10°)(106.7)(107%)(2)(107) _483N Ans
140°(107%)
F oo 3(207)(10°)(106.7)(10"*)(6)(10*) _ 449N Ans
140°(107)

(b) Get the fatigue strength information.

Eq. (2-21):  Sit==3.4Hg =3.4(490) = 1666 MPa

From problem statement: S, =0.95,;= 0.9(1666) = 1499 MPa
Eq. (6-8): S, =700 MPa

Eq. (6-19):  ka=1.58(1666)"% =0.84

Eq. (6-25):  de=0.808[20(4)]"* = 7.23 mm

Eq. (6-20):  kp=1.24(7.23)*' = 1.00

Eq. (6-18): S =0.84(1)(700) = 588 MPa

This is a relatively thick curved beam, so 142.0 s F
use the method in Sect. 3-18 to find the !
stresses. The maximum bending moment

|
will be to the centroid of the section as l’r_
M F

shown.
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M= 142F N'mm, A= 4(20) = 80 mm?, h=4 mm, r; =4 mm, r, = r; + h= 8 mm,
re=ri+h/2=6mm

. h __ 4

" In(r,/r}) In(8/4)
e=1 -1 =6-5.7708=0.2292 mm
C=r —r =57708—4=1.7708 mm
[ —r =8-5.7708=2.2292 mm

Get the stresses at the inner and outer surfaces from Eq. (3-65) with the axial stresses
added. The signs have been set to account for tension and compression as appropriate.

Table 3-4: =5.7708 mm

CO

o =———— = — =-3.441F MPa
Aer A 80(0.2292)(4) 80

Mc, F _(142F)(22292) F

Mg F  (142F)(1.7708) F

o, =—2— =2.145F MPa
Aer A 80(0.2292)(8) 80

(0)),.. =—3.441(144.9) = —498.6 MPa

(0)),., =—3.441(48.3) =—166.2 MPa

(0,).., =2.145(48.3) =103.6 MPa

(0,),.. =2.145(144.9) = 310.8 MPa
|-166.2—(—498.6)|

(), =‘ ) | =166.2 MPa
~166.2+(~498.6)

(0 = 5 =-332.4 MPa

(0,), = ‘M‘ ~103.6 MPa

(). = 310841036 _ )00 vipa

To check for yielding, we note that the largest stress is —498.6 MPa (compression) on the
inner radius. This is considerably less than the estimated yield strength of 1499 MPa, so
yielding is not predicted.

Check for fatigue on both inner and outer radii since one has a compressive mean stress
and the other has a tensile mean stress.
Inner radius:

S 588

Since om <0, N, =—=——-=3.54
o, 166.2

a
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Outer radius:
Since om > 0, we will use the Modified Goodman line.

o, o, 103.6 2072
/n ==2+-0=—_—+— =

S S, 58 1666
n, =3.33

Infinite life is predicted at both inner and outer radii. ~ Ans.

6-30 From Table A-20, for AISI 1018 CD, §, =64 kpsi, S =54 kpsi

Eq. (6-8): S, =0.5(64) = 32 kpsi

Eq. (6-19):  k, =2.70(64)"* =0.897

Eq. (6-20):  k,=1 (axial)

Eq. (6-26):  k =0.85

Eq. (6-18): S =(0.897)(1)(0.85)(32) = 24.4 kpsi

Fillet:

Fig. A-15-5: D/d=3.5/3=1.17, r/d=0.25/3=0.083, K, =1.85
Use Fig. 6-20 or Egs. (6-34) and (6-35a) for g. Estimate a little high since it is off the
graph. = 0.85

K, =1+q(K, —1)=1+0.85(1.85-1)=1.72

o =Fm 5 333y

w,h ~ 3.0(0.5)
o= 16 _ 167 kpsi

3.0(0.5)
o, = K, |Zmex ~ Tnin =1.72|3'33_(2_10'67)|=12.0 kpsi
o - f(amax +amm]=1.72(3.33+(—10.67)j=_6'31 kpsi

2 2

S

n, :| 4 |:| >4 |=5.O6 .. Does not yield.
0| 1-10.67]

Since the midrange stress is negative,

S 244

=2 =903
o, 12.0

a
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Hole:

Fig. A-15-1: d/w, =0.4/3.5=0.11 .. K =2.68
Use Fig. 6-20 or Egs. (6-34) and (6-35a) for g. Estimate a little high since it is off the
graph. = 0.85

K =1+0.85(2.68-1)=2.43

o, = Fows_ > =3.226 kpsi
h(w,—d) 0.5(3.5-0.4)
o = Fmi 16 o3 kpsi

" h(w,—d)  0.535-04)

max

- 2.43|3'226 _;_10'32)| =16.5 kpsi

o — O-min

o, =K;

o =K, (%] _ 2.43(3'22“;‘10'32)} _ _8.62 kpsi

I =5.23  ..does not yield

Since the midrange stress is negative,

S 244

o 16.5

a

=1.48

f =

Thus the design is controlled by the threat of fatigue at the hole with a minimum factor of
safety of n, =1.48. Ans.

6-31

S =64 kpsi, § =54 kpsi

Eq.(6-8): S =0.5(64) =232 kpsi

Eq. (6-19):  k, =2.70(64) " =0.897

Eq. (6-20): k, =1 (axial)

Eq. (6-26): k.=0.85

Eq. (6-18): S, =(0.897)(1)(0.85)(32) = 24.4 kpsi

Fillet:
Fig. A-15-5: D/d=2.5/1.5=1.67, r/d=0.25/15=0.17, K =2.1

Use Fig. 6-20 or Egs. (6-34) and (6-35a) for g. Estimate a little high since it is off the
graph. = 0.85

K, =1+q(K,—1)=1+0.85(2.1-1)=1.94
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Fow 16

O max = -
w,h  1.5(0.5)
4
o_. =
™ 5(0.5)

=21.3 kpsi

=-5.33 kpsi

O, — 0.

max min

2

o =K, (%x#%jzl.%(wj:ls.s kpsi

S
n,=—= :i:2.54 .. Does not yield.
o 21.3

max

o, =K; =25.8 kpsi

=1.94‘21.3—;—5.33)‘

Using Modified Goodman criteria,

1 o, o0, 258 155

n, S § 244 64
n; =0.77
Hole:
Fig. A-15-1: d/w, =0.4/2.5=0.16 .. K =2.55
Use Fig. 6-20 or Egs. (6-34) and (6-35a) for g. Estimate a little high since it is off the
graph. = 0.85

K, =1+0.85(2.55-1)=2.32

F 16

O = e =15.2 kpsi
h(w1 - d) 0.5(2.5-0.4)

O in = Foin___ - =—3.81 kpsi
h(w1 - d) 0.5(2.5-0.4)

o = Kf O-max — O-min

= 2.32(%) =22.1kpsi

o, =K, (%j = 2,32(WJ =13.2 kpsi

o-max

= .. Does not yield.
15.2

y

Using Modified Goodman criteria

1 o, o, 221 132
n, S S 244 64

n, =0.90
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Thus the design is controlled by the threat of fatigue at the fillet with a minimum factor
of safety of n; =0.77  Ans.

6-32

S =64 kpsi, § =54 kpsi

From Prob. 6-30, the fatigue factor of safety at the hole is Ny = 1.48. To match this at the
fillet,

nf=i = 0'a=§=£=16.5kpsi
oy n, 1.48

where & is unchanged from Prob. 6-30. The only aspect of o3 that is affected by the
fillet radius is the fatigue stress concentration factor. Obtaining o; in terms of K,

3.33-(=10.67)|

Opw — O
=K =7.00K
f| ) | f

max min

O-asz 7 |

Equating to the desired stress, and solving for Kj,
o, =7.00K,; =16.5 = K;=236

Assume since we are expecting to get a smaller fillet radius than the original, that q will
be back on the graph of Fig. 6-20, so we’ll estimate = 0.8.

K, =1+0.80(K,~1)=2.36 = K, =27

From Fig. A-15-5, withD / d=3.5/3=1.17 and K; =2.6, find r / d. Choosingr/d=
0.03, and with d = w, = 3.0,

r=0.03w, =0.03(3.0) = 0.09 in

At this small radius, our estimate for q is too high. From Fig. 6-20, with r = 0.09, q
should be about 0.75. Iterating, we get K; = 2.8. This is at a difficult range on Fig. A-15-
5 to read the graph with any confidence, but we’ll estimate r / d = 0.02, giving r = 0.06
in. This is a very rough estimate, but it clearly demonstrates that the fillet radius can be
relatively sharp to match the fatigue factor of safety of the hole. ~ Ans.

6-33

S, =60 kpsi, § =110 kpsi

Inner fiber where r, =3/4 in

=SS 084375
47 16(2)
303

h=———=0.65625
4 32

Table 3-4, p. 121,
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h 3/16 )
ro= ; _l 0.84375—0.74608m

n2 In
r 0.65625

-1 =0.75-0.74608 = 0.00392 in
0.74608 - 0.65625 = 0.08983

A= i] 3 =0.035156 in”
16 ) 16

Eq. (3-65), p. 119,

o o
Il

S o
|

-~ >
Il

Mc ~T(0.08983)

o =—

' Aer B (0.035156)(0.00392)(0.65625)
where T is in Ibf'in and o, is in psi.

o, = %(—993.3)T = -496.7T

o, =496.7T
Eq. (6-8): S.=0.5(110) = 55 kpsi
Eq. (6-19):  k,=2.70(110)"*" =0.777
Eq. (6-25):  d, =0.808[(3/16)(3/16)] " =0.1515in
Eq. (6-20):  k,=0.879(0.1515)""
Eq. (6-19): S =(0.777)(1)(55) = 42.7 kpsi

=-993.3T

=1.08 (roundto 1)

For a compressive midrange component, o, =S,/ n,. Thus,

0.4967T = 427

T =28.7 Ibf-in

Outer fiber where r, =2.5 in

= 2.5+ =2.59375
32

= 2.5 =2.40625
32
3/16
r = 359375 2.49883
2.40625

€=2.5-2.49883=0.00117 in
C, =2.59375-2.49883 =0.09492 in

Chapter 6 - Rev. A, Page 29/66



Mc, T(0.09492) _889.7T psi

o, = = =
° Aer  (0.035156)(0.00117)(2.59375)

o, =0,= %(889.7T) = 44497 psi
(a) Using Eq. (6-46), for modified Goodman, we have

o, o, 1

s s n

0.4449T N 0.4449T 1
42.7 110 3

T=23.0Ibf-in Ans
(b) Gerber, Eq. (6-47), at the outer fiber,
2
No nNo
a + m :1
S [ & j
3(0.4449T) (3(0.4449T) t |
427 110

T=282Ibf-in Ans
(c) To guard against yield, use T of part (b) and the inner stress.

S, 60

n =———=214 Ans
Yo 0.9933(28.2)

6-34 From Prob. 6-33, S, =42.7 kpsi, S =60 kpsi, and § =110 kpsi
(a) Assuming the beam is straight,

_Mc_M(h/2) em _ 6T

O-max = 3 - 5 = 3 :9102T
| bh’ /12 bh (3/16)
0.4551T 0.4551T 1
Goodman: + =—
42.7 110 3
T=2251bf-in Ans
2
(b) Gerber: 3(0'4551T)+ 3(0.4551T) 1
42.7 110

T=2761bf-in Ans
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S, 60

(c) n, = = =239 Ans
... 0.9102(27.6)
6-35 Ko =14, K i =1L K =2.0,S, =300 MPa, § =400 MPa, $=200 MPa
Bending: c,=0, o,=60 MPa
Axial: 0,=20MPa, o,=0
Torsion: 7,,=25MPa, r,=25 MPa

Egs. (6-55) and (6-56):

o, =[14(60)+ 0] +3[2.0025)] =120.6 MPa

o1, = [0+1.120) +3[2.025)]" =89.35 MPa

Using Modified Goodman, Eq. (6-46),
O,  On_120.6 8935

=2 m_ 4+
n, S S 200 400
n =121 Ans

Check for yielding, using the conservative o, =0, +0,

S
n = Y 300 =143 Ans

Vol +ol, 120.6+89.35

6-36

Ky pena =14 Ky o =2.0, S, =300 MPa, § =400 MPa, $=200 MPa
Bending: o,, =150 MPa, o, =—-40 MPa, o, =55 MPa, o, =95 MPa
Torsion: 7, =90 MPa, 7, =9 MPa

Egs. (6-55) and (6-56):

o, =\[1403)] +3[2.09)] =136.6 MPa

o, =[L4G5)] +3[2.000)]" =321.1 MPa

Using Modified Goodman,
o, o, 136.6 321.1
- a4 m__- " 4
n § § 200 400

n, =0.67 Ans

Check for yielding, using the conservative o, =0, +07,
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S
n = Y 300 0.66 Ans

Y ol+ol 136.6+321.1
Since the conservative yield check indicates yielding, we will check more carefully with
with o _obtained directly from the maximum stresses, using the distortion energy

failure theory, without stress concentrations. Note that this is exactly the method used for
static failure in Ch. 5.

e = (O ) +3(ran )’ =(150)’ +3(90+9)" =227.8 MPa
s

n,=—" 5% 45 ans
ol 2278

max

Since yielding is not predicted, and infinite life is not predicted, we would like to
estimate a life from the S-Ndiagram. First, find an equivalent completely reversed stress
(See Ex. 6-12).

o, 136.6

— a —
O T (0l,/S,)  1-(321.1/400)
This stress is much higher than the ultimate strength, rendering it impractical for the S-N
diagram. We must conclude that the stresses from the combination loading, when
increased by the stress concentration factors, produce such a high midrange stress that the
equivalent completely reversed stress method is not practical to use. Without testing, we
are unable to predict a life.

=692.5 MPa

6-37

Table A-20: S, =64 kpsi, § =54 kpsi

From Prob. 3-68, the critical stress element experiences o= 15.3 kpsi and 7= 4.43 kpsi.
The bending is completely reversed due to the rotation, and the torsion is steady, giving
0a = 15.3 kpsi, om = 0 kpsi, 7a = 0 kpsi, 7m = 4.43 kpsi. Obtain von Mises stresses for
the alternating, mid-range, and maximum stresses.

1/

oy =(02+372) = [15.32 +3(0)2] " 153 kpsi

1/

o =(o%+302) " = [02 +3(4.43)2} © = 7.67 kpsi

, 5 ) \12 ) 5,12 '
Ol = (020 +372,) = [15.3 +3(4.43) } ~17.11 kpsi
Check for yielding, using the distortion energy failure theory.
S, 54
n — —_——
Yool 1711

max

3.16

Obtain the modifying factors and endurance limit.

Eq. (6-8): S =0.5(64)=32 kpsi
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Eq. (6-19): k, =2.70(64)"** =0.90

Eq. (6-20): k, =0.879(1.25)'" =0.86
Eq. (6-18): S, =0.90(0.86)(32) = 24.8 kpsi
Using Modified Goodman,

o, o, 153 767

— a m

R e
nn S S 248 64

n, =136 Ans

6-38 Table A-20: S, =440 MPa, § =370 MPa

From Prob. 3-69, the critical stress element experiences o= 263 MPa and 7= 57.7 MPa.
The bending is completely reversed due to the rotation, and the torsion is steady, giving
0a =263 MPa, om =0, 7 =0 MPa, 7, = 57.7 MPa. Obtain von Mises stresses for the
alternating, mid-range, and maximum stresses.

oy =(02+322) " = 263° +3(0)2T/2 — 263 MPa

1/2

on=(c%+30%) = [02 +3(57.7)2] =99.9 MPa

1/2

Oho = (00 +370, ) =] 263 +3(57.7) | =281 MPa

max max

Check for yielding, using the distortion energy failure theory.

S
n =—2 =3ﬂ=1.32
Yool 281

max

Obtain the modifying factors and endurance limit.

Eq. (6-8): S, =0.5(440) =220 MPa

Eq. (6-19):  k, =4.51(440)"" =0.90

Eq. (6-20):  k,=1.24(30)"""" =0.86

Eq. (6-18): S, =0.90(0.86)(220) =170 MPa

Using Modified Goodman,
1 _oi, on_263 999
nn S S 170 440
n, =0.56 Infinite life is not predicted. Ans.
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6-39

Table A-20: S, =64 kpsi, § =54 kpsi

From Prob. 3-70, the critical stress element experiences o= 21.5 kpsi and 7= 5.09 kpsi.
The bending is completely reversed due to the rotation, and the torsion is steady, giving
0a = 21.5 kpsi, om = 0 kpsi, 7a = 0 kpsi, 7m =5.09 kpsi. Obtain von Mises stresses for
the alternating, mid-range, and maximum stresses.

172

oy =(02+3e2)" {21.52 +3(0)2} = 21.5 kpsi

o =(0+32%) " = [02 +3(5.09)2T/2 - 8.82 kpsi

m

Oh = (00 437, ) =|215° +3(5.09)2T/2 = 2324 kpsi

max max max

Check for yielding, using the distortion energy failure theory.

S
n, =—> :iz 2.32
Yoo 23.24

max

Obtain the modifying factors and endurance limit.
k, =2.70(64)"** =0.90
k, =0.879(1) """ = 0.88
S, =0.90(0.88)(0.5)(64) = 25.3 kpsi
Using Modified Goodman,

o, o, 215 8282

a m

n S S 253 64

n, =101 Ans

6-40

Table A-20: S, =440 MPa, § =370 MPa

From Prob. 3-71, the critical stress element experiences o= 72.9 MPa and 7= 20.3 MPa.
The bending is completely reversed due to the rotation, and the torsion is steady, giving
0a="72.9 MPa, on =0 MPa, 7, = 0 MPa, 7, =20.3 MPa. Obtain von Mises stresses for
the alternating, mid-range, and maximum stresses.

172

(02+322)" = [72.92 +3(0)2} ~72.9 MPa

!
Ua

on=(on+33) =] 0° +3(2o.3)2T/2 =352 MPa

m

1/2

Ol = (02 302 )1/2=[72.92+3(20.3)2] ~80.9 MPa

max max

Check for yielding, using the distortion energy failure theory.
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S
n-—x 370 45
Yol 809

max

Obtain the modifying factors and endurance limit.

Eq. (6-8): S, =0.5(440) =220 MPa

Eq. (6-19):  k, =4.51(440)""* =0.90

Eq. (6-20):  k, =1.24(20)*"7 =0.90

Eq. (6-18): S =0.90(0.90)(220) =178.2 MPa

Using Modified Goodman,

a m

1 _oh, on_T129 352
nn S S 1782 440

n, =2.04 Ans

6-41

Table A-20: S, =64 kpsi, § =54 kpsi

From Prob. 3-72, the critical stress element experiences o= 35.2 kpsi and 7= 7.35 kpsi.
The bending is completely reversed due to the rotation, and the torsion is steady, giving
0a = 35.2 kpsi, om = 0 kpsi, 7a = 0 kpsi, 7m = 7.35 kpsi. Obtain von Mises stresses for
the alternating, mid-range, and maximum stresses.

1/2

(o2+372) " =[352°+3(0)"| " =35.2 kpsi

!
O-a

Onm

L =(02+322) = [02 +3(7.35) T/z =12.7 kpsi

max max max

Ot = (02 +32) " =[35.2243(735)' | =37.4 kpsi

Check for yielding, using the distortion energy failure theory.

S
n =—2> :5—4=1.44
Yoo 37.4

max

Obtain the modifying factors and endurance limit.

Eq. (6-8): S, =0.5(64) =32 kpsi

Eq. (6-19): K, =2.70(64)"* =0.90

Eq. (6-20): K, =0.879(1.25)"'" =0.86
Eq. (6-18): S =0.90(0.86)(32) =24.8 kpsi
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Using Modified Goodman,
O,  Om_352 127

a m

=24 e
n S S 248 64

n, =0.62 Infinite life is not predicted. Ans.

6-42 Table A-20: S, =440 MPa, § =370 MPa

From Prob. 3-73, the critical stress element experiences o= 333.9 MPa and 7= 126.3
MPa. The bending is completely reversed due to the rotation, and the torsion is steady,
giving 0, = 333.9 MPa, o =0 MPa, 7, = 0 MPa, 7y = 126.3 MPa. Obtain von Mises
stresses for the alternating, mid-range, and maximum stresses.

oy =(o2+372) " =[333.9°+ 3(0)2}”2 —333.9 MPa

1/2

o =(0+32%) " = [02 +3(126.3)2} = 218.8 MPa

Ol = (0% +322 )1/2:[333.92+3(126.3)2T/2:399.2 MPa

max max max

Check for yielding, using the distortion energy failure theory.

S, 370

YT o 73992

max

0.93

The sample fails by yielding, infinite life is not predicted. Ans.

The fatigue analysis will be continued only to obtain the requested fatigue factor of
safety, though the yielding failure will dictate the life.

Obtain the modifying factors and endurance limit.

Eq. (6-8): S =0.5(440) = 220 MPa

Eq. (6-19): Kk, =4.51(440)""* =0.90

Eq. (6-20):  k, =1.24(50)"*"" =0.82

Eq. (6-18): S =0.90(0.82)(220) =162.4 MPa

Using Modified Goodman,
Oa  Om_3339 2188

a m

——Za m_ +
nn S S 1624 440

n, =0.39  Infinite life is not predicted. Ans.
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6-43 Table A-20: §, =64 kpsi, S, =54 kpsi

From Prob. 3-74, the critical stress element experiences completely reversed bending
stress due to the rotation, and steady torsional and axial stresses.

Oapend = 9495 kpsi, 0 png =0 kpsi

=0kpsi, o =-0.362 kpsi

meaxial

7,=0kpsi, 7,=11.07 kpsi

O-a,axial

Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.

oy =(o2+372) " =[(9.495)" +3(0) T/Z =9.495 kpsi
1/2

o =(o+373) " =[(-0362) +3(11.07)" | " =19.18 kpsi

m

1/2
Ol = (02 +372,) = [(—9.495 ~0.362)" + 3(11.07)2] —21.56 kpsi
Check for yielding, using the distortion energy failure theory.
S, 54
n = ==
Yoo 21.56

max

2.50

Obtain the modifying factors and endurance limit.

Eq. (6-8): S, =0.5(64) =32 kpsi

Eq. (6-19): K, =2.70(64)"* =0.90

Eq. (6-20):  k, =0.879(1.13)*'7 =0.87
Eq. (6-18): S =0.90(0.87)(32) =25.1 kpsi

Using Modified Goodman,
o, o, 9495 19.18

— a m

M=
nn S S 251 64

n, =147 Ans

6-44 Table A-20: S, =64 kpsi, § =54 kpsi
From Prob. 3-76, the critical stress element experiences completely reversed bending

stress due to the rotation, and steady torsional and axial stresses.

Oapend =33-99 kpsi, 0 ,q =0 kpsi
=0kpsi, o =-0.153 kpsi

meaxial

7,=0kpsi, 7,=7.847 kpsi

O-a,axial
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Obtain von Mises stresses for the alternating, mid-range, and maximum stresses.

oy =(o2+372) " =[(33.99)" + 3(0)2}1/2 = 33.99 kpsi

on=(on+33)  =|(-0.153)° +3(7.847)2]V2 =13.59 kpsi

1/2

Op = (00 #3700 )  =[ (-33.99-0.153) +3(7.847)" | =36.75 kpsi

max max max

Check for yielding, using the distortion energy failure theory.

S
n,=—2 2 4
o 36.75

max

Obtain the modifying factors and endurance limit.

Eq.(6-8): S =0.5(64) =32 kpsi

Eq. (6-19): K, =2.70(64)"> =0.90

Eq. (6-20): kK, =0.879(0.88) "' =0.89
Eq. (6-18): S =0.90(0.89)(32) = 25.6 kpsi

Using Modified Goodman,
o, o, 3399 13.59

- a,__m

nn S S 256 64

n, =0.65 Infinite life is not predicted. Ans.

6-45

Table A-20: S, =440 MPa, § =370 MPa

From Prob. 3-77, the critical stress element experiences o= 68.6 MPa and 7= 37.7 MPa.
The bending is completely reversed due to the rotation, and the torsion is steady, giving
0a = 68.6 MPa, o, = 0 MPa, 7, = 0 MPa, 7, = 37.7 MPa. Obtain von Mises stresses for
the alternating, mid-range, and maximum stresses.

oy =(o2+372) " =[ 686 +3(0)2T/2 ~68.6 MPa
1/2

on=(on+33) = 0°+3(37.7) | =653 MPa

1/2

Ol = (02 +372,,) [68.62+3(37.7)2}m:94.7 MPa

max max max

Check for yielding, using the distortion energy failure theory.

n, = S =ﬂ=3.91
Yoo 94.7

max
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Obtain the modifying factors and endurance limit.

Eq. (6-8): S, =0.5(440) =220 MPa

Eq. (6-19):  k, =4.51(440)"* =0.90

Eq. (6-20):  k, =1.24(30)"'" =0.86

Eq. (6-18): S =0.90(0.86)(220) =170 MPa

Using Modified Goodman,
1 o, o, 686 653

a m

= — =4 —
nn S S 170 440

n, =181 Ans

6-46

Table A-20: S, =64 kpsi, §, =54 kpsi

From Prob. 3-79, the critical stress element experiences o= 3.46 kpsi and 7= 0.882 kpsi.
The bending is completely reversed due to the rotation, and the torsion is steady, giving
0a = 3.46 kpsi, om =0, 72 = 0 kpsi, 7m = 0.882 kpsi. Obtain von Mises stresses for the
alternating, mid-range, and maximum stresses.

1/2

oy =(02+322) " = [3.462 +3(0)1 = 3.46 kpsi

/2

on=(on+3my) =[O +3(0.882)2]l/2 = 1.53 kpsi

m

Ol = (0% +322 )1/2:[3.462+3(0.882)2T/2=3.78 kpsi

Check for yielding, using the distortion energy failure theory.

n =i =ﬁ=14.3
Y oo 3.78

Obtain the modifying factors and endurance limit.

Eq. (6-8): S, =0.5(64) =32 kpsi

Eq. (6-19):  k, =2.70(64)""*" =0.90

Eq. (6-20):  k, =0.879(1.375)"'" =0.85
Eq. (6-18): S =0.90(0.85)(32) = 24.5 kpsi

Using Modified Goodman,
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o, o, 346 153

a m

= —+ =
n, S S 245 64

n; =6.06 Ans.

6-47 Table A-20: S, =64 kpsi, S, =54 kpsi

From Prob. 3-80, the critical stress element experiences o= 16.3 kpsi and 7= 5.09 kpsi.
Since the load is applied and released repeatedly, this gives oyax = 16.3 kpsi, Opin =0
kpsi, Tmax = 5.09 kpsi, zmin = 0 kpsi. Consequently, om = 0a = 8.15 kpsi, tm = 72 =2.55
kpsi.

For bending, from Egs. (6-34) and (6-35a),

Ja=0.246-3.08(107)(64)+1.51(107)(64)" —2.67(10*)(64) =0.10373
1

—_—

O=—7=="01m373 0"
Ya
N3 Jo1

Eq. (6-32): K, =1+q(K,~1)=1+0.75(1.5-1)=1.38
For torsion, from Egs. (6-34) and (6-35b),
Ja=0.190-2.51(10")(64)+1.35(10" ) (64)" —2.67(10™*) (64) = 0.07800

1 1
4=—73 = "o07s00
1+= 1+
i Jo.1

Eq. (6-32): K, =1+0(K —1)=1+0.80(2.1-1)=1.88

Obtain von Mises stresses for the alternating and mid-range stresses from Egs. (6-55) and
(6-56).

/2
o, = {[(138)(8.15)] +3[(1.88)(2.55)]2}1 ~13.98 kpsi
o, =0,=13.98 kpsi

! !
Check for yielding, using the conservative o =0, +0,,

S
n-—> M g
Y ol+ol 13.98+13.98

Obtain the modifying factors and endurance limit.

Eq. (6-8): S, =0.5(64) =32 kpsi
Eq. (6-19):  k, = aS, =2.70(64) """ =0.90
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Eq. (6-24):  d,=0.370d=0.370(1)=0.370 in
Eq. (6-20):  k, =0.879d, %' =0.879(0.370) """ = 0.98
Eq. (6-18): S =(0.90)(0.98)(32) = 28.2 kpsi

Using Modified Goodman,
1 _i+i 1398 13.98

a m

NS S 282 64

n, =140 Ans

6-48 Table A-20: §, =64 kpsi, S =54 kpsi

From Prob. 3-81, the critical stress element experiences o= 16.4 kpsi and 7= 4.46 kpsi.
Since the load is applied and released repeatedly, this gives omax = 16.4 kpsi, Omin =0
kpsi, Tmax = 4.46 kpsi, 7min = 0 kpsi. Consequently, om = 0a = 8.20 kpsi, 7m = 72 =2.23
kpsi.

For bending, from Egs. (6-34) and (6-35a),
Ja=0.246-3.08(107)(64)+1.51(107)(64)" —2.67(10*)(64) =0.10373

1 1
=~ oisn 7
1+= 1+
Jr Jo1

Eq. (6-32): K, =1+q(K,—1)=1+0.751.5-1)=1.38

For torsion, from Egs. (6-34) and (6-35b),
Ja=0.190-2.51(10")(64)+1.35(10"° ) (64)" —2.67(10™*) (64) = 0.07800

I I
4=—73 = o000 ¥
[ va 007800
o Jo1

Eq. (6-32): K, =1+0(K —1)=1+0.80(2.1-1)=1.88

Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and

(6-56).
1/2
o = {[(1:38)(8:20)] +3[(1:88)(2.23) '}~ =13.45 kpsi
o, =0, =13.45 kpsi
Check for yielding, using the conservative o/ =0, +0,,
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S
N % 5o
Yol 4ol 13.45+13.45

Obtain the modifying factors and endurance limit.

Eq. (6-8): S, =0.5(64) =32 kpsi

Eq. (6-19):  k, = aS, =2.70(64) """ =0.90

Eq. (6-24):  d_ =0.370d=0.370(1) = 0.370 in

Eq. (6-20):  k, =0.879d. "' =0.879(0.370) "' = 0.98
Eq. (6-18): S, =(0.90)(0.98)(32) = 28.2 kpsi

Using Modified Goodman,

| _o,, op_1345 1345

a m

nn S S 282 64

n, =146 Ans

6-49 Table A-20: §, =64 kpsi, S =54 kpsi
From Prob. 3-82, the critical stress element experiences repeatedly applied bending,
axial, and torsional stresses of Oypend = 20.2 kpsi, Oxaxial = 0.1 kpsi, and 7= 5.09 kpsi..
Since the axial stress is practically negligible compared to the bending stress, we will
simply combine the two and not treat the axial stress separately for stress concentration
factor and load factor. This gives Omax = 20.3 kpsi, Omin = 0 kpsi, Tmax = 5.09 kpsi, Tmin =
0 kpsi. Consequently, om = 04 = 10.15 kpsi, 7m = 72 = 2.55 kpsi.

For bending, from Egs. (6-34) and (6-35a),

Ja=0.246-3.08(107)(64)+1.51(10°)(64)" -2.67(10™*)(64)’ =0.10373

1 1
=z~ 01073 "
1+~2 I+
N Jo1

Eq. (6-32): K, =1+q(K,—1)=1+0.75(1.5-1)=1.38

For torsion, from Egs. (6-34) and (6-35b),
Ja=0.190-2.51(10")(64)+1.35(107 ) (64)" - 2.67(10™*) (64) = 0.07800

1 1
A=—73 ~oomo0 ¥
[ Y2, 007800
N Jo
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Eq. (6-32): Ke=1+9,(K—1)=1+0.80(2.1-1)=1.88
Obtain von Mises stresses for the alternating and mid-range stresses from Egs. (6-55) and
(6-56).
1/2
o = {[(138)(1015)] +3[(1.88)(255)] | =16.28 kpsi
o, =0, =16.28 kpsi

Check for yielding, using the conservative o’ =0, +07,,
S 54
n = Y _

Y ol vl 1628+1628

Obtain the modifying factors and endurance limit.

Eq. (6-8): S, =0.5(64) =32 kpsi

Eq. (6-19):  k, = aS, =2.70(64) " =0.90

Eq. (6-24):  d,=0.370d=0.370(1) = 0.370 in

Eq. (6-20):  k, =0.879d. "' =0.879(0.370) "' = 0.98
Eq. (6-18): S, =(0.90)(0.98)(32) = 28.2 kpsi

Using Modified Goodman,

o, o, 1628 16.28
-2+

a m

n, S S 282 64

n =120 Ans

6-50

Table A-20: §, =64 kpsi, § =54 kpsi
From Prob. 3-83, the critical stress element on the neutral axis in the middle of the
longest side of the rectangular cross section experiences a repeatedly applied shear stress
of Tmax = 14.3 kpsi, Tmin = 0 kpsi. Thus, 7m = 74 = 7.15 kpsi. Since the stress is entirely
shear, it is convenient to check for yielding using the standard Maximum Shear Stress
theory.

S,/2_54/2

- 14.3

max

n —=1.89

Find the modifiers and endurance limit.

Eq. (6-8): S, =0.5(64) =32 kpsi
Eq. (6-19):  k, =aS, =2.70(64) """ =0.90
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The size factor for a torsionally loaded rectangular cross section is not readily available.
Following the procedure on p. 289, we need an equivalent diameter based on the 95
percent stress area. However, the stress situation in this case is nonlinear, as described on
p. 102. Noting that the maximum stress occurs at the middle of the longest side, or with a
radius from the center of the cross section equal to half of the shortest side, we will
simply choose an equivalent diameter equal to the length of the shortest side.

d, =0.25 in
Eq. (6-20):  k,=0.879d, """ =0.879(0.25) "' =1.02

We will round down to kp = 1.

Eq.(6-26):  k =0.59
Eq. (6-18):  S,.=0.9(1)(0.59)(32) =17.0 kpsi

Since the stress is entirely shear, we choose to use a load factor K = 0.59, and convert the
ultimate strength to a shear value rather than using the combination loading method of
Sec. 6-14. From Eq. (6-54), Ssu=0.67S, = 0.67 (64) = 42.9 kpsi.

Using Modified Goodman,

1 1
(1, /S)+(r,/ Sy (7.15/17.0)+(7.15/42.9)

1.70  Ans

N

6-51

Table A-20: S, =64 kpsi, §, =54 kpsi
From Prob. 3-84, the critical stress element experiences o= 28.0 kpsi and 7= 15.3 kpsi.
Since the load is applied and released repeatedly, this gives omax = 28.0 kpsi, Omin =0
kpsi, Tmax = 15.3 kpsi, Zmin = 0 kpsi. Consequently, om = 0a = 14.0 kpsi, tm = 72 = 7.65
kpsi. From Table A-15-8 and A-15-9,

D/d=15/1=1.5 r/d=0.125/1=0.125

K =1.60, K, . =139

t,bend t,tors

Egs. (6-34) and (6-35), or Figs. 6-20 and 6-21:  Qvend = 0.78, Qiors = 0.82
Eq. (6-32):
K ¢ pend =1+ Ohend ( Kipena =1) =1+0.78(1.60 —1) =1.47

K s =1+ O (Ko =1) =1+0.82(1.39 -1) =1.32

Obtain von Mises stresses for the alternating and mid-range stresses from Egs. (6-55) and
(6-56).
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oy ={[(1:47)(14.0) +3[(1.32)(7.65)]2}1/2 —27.0 kpsi

o, =0,=27.0kpsi

L . . b
Check for yielding, using the conservative o, =0, +0,,

S
n,=— L = >4 =1.00
o,+o,, 27.0+27.0
Since stress concentrations are included in this quick yield check, the low factor of safety
is acceptable.

Eq. (6-8): S, =0.5(64) = 32 kpsi

Eq. (6-19):  k, = aS, =2.70(64) " =0.897

Eq. (6-24):  d,=0.370d =0.370(1) =0.370 in

Eq. (6-20):  k,=0.879d,""" =0.879(0.370) ' = 0.978
Eq. (6-18): S, =(0.897)(0.978)(0.5)(64) = 28.1 kpsi

Using Modified Goodman,
o, o, 210 270

— a4, - m

=4 —t—
n, § § 281 64
n, =072 Ans

Since infinite life is not predicted, estimate a life from the S-Ndiagram. First, find an
equivalent completely reversed stress (See Ex. 6-12).

O-rev = O-a = 27.0 = 467 kpSI

1-(o7,/S,) 1-(27.0/64)

Fig. 6-18: f=0.9
2 10.9(64)]

Eq. (6-14): a:(fsﬂ) :[ (64)] =118.07

S, 28.1

1 fs, 1 0.9(64)
Eq. (6-15): b=——log| — |=—"Jog| —~"7 |=-0.1039
q- (6-15) 3°g[ seJ 3°g( 28.1)

1

o b 46.7 \-0.1039
Eq. (6-16): N =( revj =( ' j ~ =7534 cycles = 7500 cycles  Ans.

a 118.07

6-52 Table A-20: S, =64 kpsi, S, =54 kpsi
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From Prob. 3-85, the critical stress element experiences Oxpend = 46.1 kpsi, Oy axial = 0.382
kpsi and 7= 15.3 kpsi. The axial load is practically negligible, but we’ll include it to
demonstrate the process. Since the load is applied and released repeatedly, this gives
Omax,bend — 46.1 kPSi, Omin,bend — 0 kpSi, Omax,axial — 0.382 kPSi, Omin,axial — 0 kpSi, Tmax —
15.3 kpsi, Tmin = 0 kpsi. Consequently, Gmpend = Gapend = 23.05 Kpsi, Omaxial = Taaxial =
0.191 kpsi, 7m = 74 = 7.65 kpsi. From Table A-15-7, A-15-8 and A-15-9,

D/d=15/1=1.5 r/d=0.125/1=0.125
K =1.60, Kiws =1.39, K =1.75

t,bend t,tors t,axial

Egs. (6-34) and (6-35), or Figs. 6-20 and 6-21:  Qvend = Jaxial =0.78, Qors = 0.82
Eq. (6-32):
Kt pent = 14 Cheng (K pena —1) =1+0.78(1.60—1) =1.47

K ot =1+ Qi (K —1) =1+0.78(1.75-1) =1.59
K ors = 1 O ( Clors —1) =1+0.82(1.39-1)=1.32
Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and
(6-56).
0.191

= {(1.47)(23.05) +(1.59)%}2 +3[(1.32)(7.65)]2} = 38.45 kpsi

_ {[(1.47)(23.05) +(1.59)(0.191)] + 3[(1.32)(7.65)]2}”2 =38.40 kpsi

Check for yielding, using the conservative o =0, +0,,,

n = Sy _ 54 —
Y ol+ol, 38.45+38.40

Since the conservative yield check indicates yielding, we will check more carefully with
with o’ obtained directly from the maximum stresses, using the distortion energy

failure theory, without stress concentrations. Note that this is exactly the method used for
static failure in Ch. 5.

ol = \/(am,bmd O )2 +3(2 ) = \/(46.1+0.382)2 +3(15.3)" =53.5 kpsi

S
n =—2, zﬁZI.Ol ANS.
. 53.5

max

This shows that yielding is imminent, and further analysis of fatigue life should not be
interpreted as a guarantee of more than one cycle of life.
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Eq. (6-8): S =0.5(64) = 32 kpsi

Eq. (6-19):  k, = aS, =2.70(64) " =0.897

Eq. (6-24):  d,=0.370d=0.370(1)=0.370 in

Eq. (6-20):  k,=0.879d."'" =0.879(0.370) """ = 0.978
Eq. (6-18): S, =(0.897)(0.978)(0.5)(64) = 28.1 kpsi

Using Modified Goodman,
O,  Om_3845 3840

a4 m_ -

n S S 281 64
n =051 Ans

Since infinite life is not predicted, estimate a life from the S-Ndiagram. First, find an
equivalent completely reversed stress (See Ex. 6-12).

Oy = % - O84S =96.1 kpsi
1-(o,/S,) 1-(38.40/64)

This stress is much higher than the ultimate strength, rendering it impractical for the S-N
diagram. We must conclude that the fluctuating stresses from the combination loading,
when increased by the stress concentration factors, are so far from the Goodman line that
the equivalent completely reversed stress method is not practical to use. Without testing,
we are unable to predict a life.

6-53

Table A-20: S, =64 kpsi, §, =54 kpsi

From Prob. 3-86, the critical stress element experiences Oxpend = 55.5 kpsi, Oxaxial = 0.382

kpsi and 7= 15.3 kpsi. The axial load is practically negligible, but we’ll include it to

demonstrate the process. Since the load is applied and released repeatedly, this gives

Omax,bend — 55.5 kpSi, Omin,bend = 0 kPSi, Omax,axial — 0.382 kpSI Omin,axial = 0 kpSI Tmax —

15.3 kpsi, 7min = 0 kpsi. Consequently, Ompend = Gapend = 27.75 KpSi, Omaxial = Oaaxial =

0.191 kpsi, 7m = 7a = 7.65 kpsi. From Table A-15-7, A-15-8 and A-15-9,
D/d=15/1=1.5, r/d=0.125/1=0.125

Kipd =1.60, Koo =139, K =175

t,tors t,axial

Egs. (6-34) and (6-35), or Figs. 6-20 and 6-21:  Qvend = Jaxial =0.78, Qors = 0.82
Eq. (6-32):
Kt pent = 14 Cheng (K pena —1) =1+0.78(1.60—1) =1.47

K it =1+ O ( Ky i —1) =1+ 0.78(1.75-1) = 1.59
K o =1 O (Ko —1) =1+ 0.82(1.39-1) =1.32
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Obtain von Mises stresses for the alternating and mid-range stresses from Egs. (6-55) and
(6-56).

(0'191)}2 +3[(1.32)(7.65)T} =44.71 kpsi

ol = {[(1.47)(27.75)+(1.59)W

ol = {[(1.47)(27.75)+(1.59)(0.191)]2 +3[(1.32)(7.65)]2}1/2 — 44.66 kpsi

Since these stresses are relatively high compared to the yield strength, we will go ahead
and check for yielding using the distortion energy failure theory.

o :\/(amx,bend O o )2 +3(7 ) =\/(55.5+O.382)2 +3(15.3)" =61.8 kpsi

S
n =—2> :5—4:0.87 Ans.
Yool 61.8

max

This shows that yielding is predicted. Further analysis of fatigue life is just to be able to
report the fatigue factor of safety, though the life will be dictated by the static yielding
failure, i.e. N=1/2 cycle. Ans.

Eq. (6-8): S, =0.5(64) =32 kpsi

Eq. (6-19):  k, = aS, =2.70(64) " =0.897

Eq. (6-24):  d,=0.370d=0.370(1) =0.370 in

Eq. (6-20):  k, =0.879d. "' =0.879(0.370) "' =0.978
Eq. (6-18): S =(0.897)(0.978)(0.5)(64) = 28.1 kpsi

Using Modified Goodman,
Op O _ 4471 44,66

a m

=24 M= +
n S S 281 64

n, =044  Ans

6-54

From Table A-20, for AISI 1040 CD, S;; = 85 kpsi and Sy = 71 kpsi. From the solution to
Prob. 6-17 we find the completely reversed stress at the critical shoulder fillet to be oy =
35.0 kpsi, producing oz = 35.0 kpsi and om = 0 kpsi. This problem adds a steady torque
which creates torsional stresses of

2500(1.625/2
J 7z(1.625 )/32

From Table A-15-8 and A-15-9, r/d = 0.0625/1.625 = 0.04, D/d=1.875/1.625=1.15,
Kt,bend =1.95, Kt,tors =1.60
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Egs. (6-34) and (6-35), or Figs. 6-20 and 6-21:
Eq. (6-32):

qbend = 0~76, qtors = 0.81

Kf,bend = 1 + qbend ( Kt,bend _1) = 1 + 076(195 _1) = 172
Ko =1+ Oy (Ko —1) =1+0.81(1.60—1) =1.49

Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and
(6-56).

1/2

=60.2 kpsi

ol = {[(1.72)(35.0)]2 +3[(1.49)(0)]2}

o ={[(1.72)(0)] +3[(1.49)(2.97)]2}1/2 —7.66 kpsi

Check for yielding, using the conservative o/ =0, +0,.,
S 71

— y

n = = =
Yol vl 60.2+7.66

1.05

From the solution to Prob. 6-17, S¢ = 29.5 kpsi. Using Modified Goodman,

!

ol o' 602 7.66
- =y m - 4
nn S S 295 85
n, =047 Ans

Since infinite life is not predicted, estimate a life from the S-Ndiagram. First, find an
equivalent completely reversed stress (See Ex. 6-12).

o, 60.2

Oy = & = =66.2 kpsi
1-(on,/S,) 1-(7.66/85)
Fig. 6-18:  f=0.867
(fS.) [0.86785)]
Eq. (6-14): a= = =184.1
S 29.5
1 fS, 1 0.867(85)]
Eq. (6-15): b=——=log| — |=——log| ———2% |=-0.1325
e (1) 3g(sej 3g( 29.5
1/b —_
o 66.2 )-0.1325
Eq. (6-16): N=|—| =|— =2251 cycles
4. (6-16) ( a j (184.1} Y

N= 2300 cycles

ANS.
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6-55 From the solution to Prob. 6-18 we find the completely reversed stress at the critical
shoulder fillet to be oy = 32.8 kpsi, producing o, = 32.8 kpsi and oy, = 0 kpsi. This
problem adds a steady torque which creates torsional stresses of

Tr 2200(1.625/2) , _ _
T, =—= " =2611psi=2.61kpsi, 7,=0 kpsi
J 7(1.625%)/32

From Table A-15-8 and A-15-9, r/d = 0.0625/1.625 = 0.04, D/d=1.875/1.625=1.15,
Kt,bend :1-957 Kt,tors =1.60

Egs. (6-34) and (6-35), or Figs. 6-20 and 6-21:  Qvenda = 0.76, Qiors = 0.81
Eq. (6-32):
Kf,bend =1+ qbend ( Kt,bend - 1) =1+ 076(1 95— 1) =1.72

K ion =14 G Ky =1) =1+ 0.81(1.60 1) = 1.49

Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and
(6-56).

172

oy ={[(1.72)(328)] +3[(149) ()]} =56.4 kpsi

o ={[(1.72)(0)] +3[(1.49)(2.61)]2}1/2 = 6.74 kpsi

!

Check for yielding, using the conservative o =0, +0,,
S
n=—> - "Ly
o,+o, 564+6.74

From the solution to Prob. 6-18, S¢ = 29.5 kpsi. Using Modified Goodman,
o, o, 564 6.74

— a4, - m

=24 e
nn S S 295 85

n, =050 Ans

Since infinite life is not predicted, estimate a life from the S-Ndiagram. First, find an
equivalent completely reversed stress (See Ex. 6-12).

ol 56.4

(03 = =
™ 1—(cl,/S,) 1-(6.74/85)

=61.3 kpsi

Fig. 6-18:  f=0.867
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(fS) _ [0.867(85)]

Eq. (6-14): a= =184.1
e (6-149) S 29.5

1 fS, 1 0.867(85)]
Eq. (6-15): b=-—log| —2* |=—=log| ————~ |=—-0.1325
e (1) 3g[sej 3g( 29.5

Eq. (6-16): N=|Z= C_(s13 s 4022 cycl
. - N = v = = CycCIES
a a 184.1 Y

N= 4000 cycles Ans.

6-56

Sy =55kpsi, §, =30 kpsi, K,=1.6,L =2 ft, F,,, =150 Ibf, F,, =500 Ibf

> " min > ' max

Egs. (6-34) and (6-35b), or Fig. 6-21: qs=0.80
Eq. (6-32): K =1+0,(K—1)=1+0.80(1.6—1)=1.48

T =500(2)=1000 Ibf-in, T

min

=150(2) =300 Ibf -in

16K (T, 16(1.48)(1000)

T = = =11251 psi=11.25 kpsi
e d’ 7(0.875)° P P
16K . T

7 =t 16AABG00) _ 5555 G 3 38 kpsi
7zd 7(0.875)

. Tinax T Tin _ 11.25+3.38 7.32 kpsi
2 2

o T ;rmm 1252338 oo

Since the stress is entirely shear, it is convenient to check for yielding using the standard

Maximum Shear Stress theory.
S,/2 30/2
n = = =
Yooz 11.25

max

1.33

Find the modifiers and endurance limit.

Eq. (6-8): S, =0.5(55)=27.5 kpsi

Eq. (6-19): k, =14.4(55)"""* =0.81

Eq. (6-24): d, =0.370(0.875) = 0.324 in

Eq. (6-20): k, =0.879(0.324) "' =0.99

Eq. (6-26): k. =0.59

Eq. (6-18): S, =0.81(0.99)(0.59)(27.5) =13.0 kpsi
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Since the stress is entirely shear, we will use a load factor ke = 0.59, and convert the
ultimate strength to a shear value rather than using the combination loading method of
Sec. 6-14. From Eq. (6-54), Ssu=0.67S, = 0.67 (55) = 36.9 kpsi.

(a) Modified Goodman, Table 6-6

n, = ! = ! =199 Ans
(r,/S)+(r,/ Sy) (3.94/13.0)+(7.32/36.9)

(b) Gerber, Table 6-7

1(s,) =, 20, S,
n =—| — | = -1+,/1+
27, ) S Q7

m * a

:l(ﬁf(ﬁj _1+\/l+(2(7.32)(13.0)J
2\732) (13.0 36.9(3.94)

n, =249 Ans

6-57 §, =145 kpsi, § =120 kpsi

From Egs. (6-34) and (6-35a), or Fig. 6-20, with a notch radius of 0.1 in, q=0.9. Thus,
with K; = 3 from the problem statement,

K, =1+q(K,—1)=1+0.93 - 1) = 2.80
4P —2.80(4)(P)

O =K ——= ) = 2.476P
zd 7(1.2)
o =—0, =%(—2.476P) =-1238P
fP(D+d) 03P(6+1.2)
o == ~0.54P

From Egs. (6-34) and (6-35b), or Fig. 6-21, with a notch radius of 0.1 in, g, =0.92. Thus,
with Kis = 1.8 from the problem statement,
Ke=1+9(K-1)=14+0.92(1.8-1)=1.74
. 16K T 16(1.74)(0.54P)
" pd? 7(1.2)°
T  2.769P
= ’Z'm = —=
2
Egs. (6-55) and (6-56):

=2.769P

=1.385P
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ol =[(0,/0.85) +372]"> =[(1.238P/ 0.85)> +3(1.385P)*]"> = 2.81P
ol =[o. > +3c2]"2 =[(-1.238P)* +3(1.385P)’]"> = 2.70 P

Eq. (6-8): S, =0.5(145) =72.5 kpsi

Eq. (6-19):  k, =2.70(145)"** =0.722

Eq. (6-20):  k,=0.879(1.2)"'"" = 0.862

Eq. (6-18): S =(0.722)(0.862)(72.5) = 45.12 kpsi

o, o, 28IP 270P 1

Modified Goodman: i= ay_—m
nn S S 4512 145 3

P=4.12kips Ans

> 120 =5.29
olL+ol (2.81)(4.12)+(2.70)(4.12)

m

Yield (conservative): n, = Ans.

6-58 From Prob. 6-57, K; =2.80, K, =1.74, S, = 45.12 kpsi

O-max = _Kf 4P—m;x =-2.80 4(1 83 =-44.56 kpSl
7d 7(1.2%)

o_min :_Kf 4P_m12n:_280 4(45)2 :_1114 kpSl
zd 7(1.2)

max

T =fP (Dzdj=0.3(18)(6+41‘2J=9.72 kip-in

T =fpP_ ( DI d ) - 0.3(4.5)(6 +41'2j = 2.43 kip-in
16T , .
z-max = Kfs 6 m3ax :174M:4985 kpSl
7d 7(1.2)
Toin = Ky % =174 16(2'4:? =12.46 kpsi
zd 7(1.2)
o - |—44.56 —2(—11.14)| 1671 kpsi
o —44.56 +2(—11.14) _ 2785 kpsi
_A98571246 15 70 kpsi
T :M=31.16 kpsi
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Egs. (6-55) and (6-56):

=[(c,/0.85)* +372]"> =[(16.71/0.85)* +3(18.70)*]"* = 37.89 kpsi
o 2 +372]"? =[(-27.85)> +3(31.16)*]'* = 60.73 kpsi
[0 i ) +3( ) p

o
ot
Modified Goodman: 1 _% +%m 37.89 + 60.73
n § § 4512 145
ng=0.79

Since infinite life is not predicted, estimate a life from the S-Ndiagram. First, find an
equivalent completely reversed stress (See Ex. 6-12).

o, 37.89

Oy = = = =65.2 kpsi
1-(ol,/S,) 1-(60.73/145)
Fig. 6-18:  f=0.8
(fS) [0.8149)]
Eq.(6-14): a= A =298.2
S 45.12
Eq. (6-15): b:—llog 1S :—llog(wj:—O.BM
3 S 3 45.12
Eq. (6-16): N =| Jev (652 Yoe 67 607 cycl
. - . = = — = CyClEeS
a a 2982 Y
N= 67 600 cycles Ans.

6-59

For AISI 1020 CD, From Table A-20, S, =390 MPa, S;t =470 MPa. Given: S; =175
MPa.

First Loading: (o), =010 _s60 MPa,  (0,), =221 _ 100 MPa
Goodman:  (o,), = (), _ 100 _538Mmpas S, .. finite life
“ 1-(0,), /S, 1-260/470
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o [0.9(470)T

=1022.5 MPa
0.9(470
b= —%logﬁ =-0.127767
-1/0.127767
N :( 223.8 j =145 920 cycles
1022.5
320+(-200 320—-(-200
Second loading: (o, )2 = # =60 MPa, (()'a)2 = # =260 MPa
260

(aa) , =—————=298.0 MPa
® 1-60/470

298 0 —-1/0.127767
() Miner’s method: N, = : =15 520 cycles
1022.5
iJri=1 = 80 000 + " =1 = n,=7000 cycles Ans
N, N, 145920 15520

(b) Manson’s method: The number of cycles remaining after the first loading
Nremaining =145 920 — 80 000 = 65 920 cycles
Two data points: 0.9(470) MPa, 10° cycles
223.8 MPa, 65 920 cycles
b,
0.9(470)  &(10°)

2238 a,(65920)

1.8901=(0.015170)"
log1.8901

b,=—"——"—=-0.151997
log0.015170
223.8
= (65 920)_04151997 =1208.7 MPa
1/-0.151997
= (12290107j =10 000 cycles Ans.

6-60 Given: S =50 kpsi, Syt = 140 kpsi, f =0.8. Using Miner’s method,

Chapter 6 - Rev. A, Page 55/66



2
= M =250.88 kpsi

=-0.116 749
3

95
250.88

80
250.88

1/-0.116 749
=95kpsi, N, = ( j =4100 cycles

1/-0.116 749
o, =80 kpsi, N, =( ) =17 850 cycles

65 1/-0.116 749
o, = 65 kpsi, N, = =105 700 cycles
’ P ’ (250.88) Y

O.2N+ 0.5N N 0.3N
4100 17 850 105700

=1 = N=12600 cycles Ans

6-61 Given: St =530 MPa, S =210 MPa, and f=0.9.
(a) Miner’s method

[0.9(530)
L) - 1083.47 MPa
210
b=—10g 22530 _ 4 115 766
37210

350 1/-0.118 766
o, =350 MPa, N, :( j =13 550 cycles
1083.47

260
1083.47

1/-0.118 766
o, =260 MPa, N, :( j =165 600 cycles

1/-0.118 766
o, =225 MPa, ( 225 ) =559 400 cycles
L
N,

083.4

n f—

'\k

=184 100 cycles Ans

Nl
5000 N 50 000 N n,
13550 165600 559 400

(b) Manson’s method:
The life remaining after the first series of cycling is Ng; = 13 550 — 5000 = 8550
cycles. The two data points required to define S, are [0.9(530), 10°] and (350, 8550).

Chapter 6 - Rev. A, Page 56/66



10°)”
09(530) _ )bz = 13629=(0.11696)"
350 a,(8550)

~ log(1.3629)
~ 1og(0.116 96)
350

=————-=1292.3 MPa
(8550)—0.144 280

—1/0.144 280
N, = 260 =67 090 cycles
1292.3

Ng, =67 090-50 000 =17 090 cycles

=-0.144280

10°)”
0.9(530) _ a,(10°) = = 1.8346=(0.058 514)
260 a,(17 090)

log(1.834 6
02(1:8346) _ 113785 a=— 200 50887 Mpa

" 1og(0.058 514) (17 090)

-1/0.213 785
N, = 225 =33 610 cycles Ans
2088.7

6-62 Given: So =45 kpsi, Syt = 85 kpsi, f=0.86, and 0, = 35 kpsi and o, = 30 kpsi for 12
(10%) cycles.

o, B 35
1-(0,/S.) 1-(30/85)°
(a) Miner’s method: oy < Se. According to the method, this means that the endurance

limit has not been reduced and the new endurance limit is S, =45 kpsi. Ans.

Gerber equivalent reversing stress: o, =

rev

=39.98 kpsi

(b) Manson’s method: Again, oy < Se. According to the method, this means that the
material has not been damaged and the endurance limit has not been reduced. Thus,
the new endurance limit is S, =45 kpsi.  Ans.

6-63 Given: S =45 kpsi, Syt = 85 kpsi, f=0.86, and 0, = 35 kpsi and o, = 30 kpsi for 12
(10%) cycles.
o 35

Goodman equivalent reversing stress: o, = 2 = =54.09 kpsi

“1-(0,/S,) 1-(30/85)

Initial cycling
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[0.86(85)]
a=t—

=116.00 kpsi
0.86(85
b= —élog—() =-0.070 235
1/-0.070 235
o, =54.09 kpsi, N, = >4.09 =52 190 cycles
116.00

(a) Miner’s method (see discussion on p. 325): The number of remaining cycles at 54.09
kpsi is Nremaining = 52 190 — 12 000 = 40 190 cycles. The new coefficients are b’= b,
and a’=S; IN° = 54.09/(40 190) 7033 = 113.89 kpsi. The new endurance limit is

S, = dNy =113.89(10° =432 kpsi  Ans.

)—0.070 235
(b) Manson’s method (see discussion on p. 326): The number of remaining cycles at
54.09 kpsi is Nremaining = 52 190 — 12 000 = 40 190 cycles. At 10° cycles,
S =0.86(85) = 73.1 kpsi. The new coefficients are
b’=[log(73.1/54.09)]/1og(10°/40 190) = — 0.081 540 and a’= &1/ (Nremaining) b=
54.09/(40 190) ~ %1% = 128.39 kpsi. The new endurance limit is

S, = aN. =128.39(10°

)—0.081 540

=41.6 kpsi  Ans.

6-64 Given Sy =1030LN(1, 0.0508) MPa

From Table 6-10: a=1.58,b=-0.086,C=0.120

Eq. (6-72) and Table 6-10): k, =1.58(1030) """ LN(1, 0.120) = 0.870L N(1, 0.120)
From Prob. 6-1: kp =0.97

Egs. (6-70) and (6-71): Se = [0.870LN(1, 0.120)] (0.97) [0.506(1030)LN(1,
0.138)]

S, =0.870 (0.97)(0.506)(1030) = 440 MPa

and, Cse= (0.122 +0.138%)"*=0.183

Se=440LN(1,0.183) MPa  Ans
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6-65 A Priori Decisions:

* Material and condition: 1020 CD, S;; = 68 LN(1, 0.28), and
S =57 LN(1, 0.058) kpsi

* Reliability goal: R=0.99 (z=-2.326, Table A-10)

* Function:
Critical location—hole

* Variabilities:

C,. =0.058
C. =0.125
Cq =0.138

Coo=(Clut Gt Cy) = (0.058” +0.125° +0.138*)* =0.195
Cy =0.10

C, =020

C,. =(0.10°+0.20%)"> = 0.234

c_ (:§e+(:ja_\/0.1952+0.2342
"\ 1+C 1+0.234°

=0.297

Resulting in a design factor ny of,

Eq. (6-59): N, =exp[—(=2.326)y/In(1+0.297%) + Iny/1+0.297° ] = 2.05

* Decision: Set nf = 2.05

Now proceed deterministically using the mean values:

Table 6-10:  k, =2.67(68) """ =0.873
Eq. (6-21):  kp=1
Table 6-11:  k =1.23(68)""" =0.886

Eq. (6-70): S, =0.506(68)=34.4 kpsi
Eq. (6-71): S, =0.873(1)(0.886)34.4 = 26.6 kpsi

From Prob. 6-14, K; = 2.26. Thus,
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Ea:Kfi:Kf . :Kfi:%
A t(2.5-0.5) ton
nK.F,  2.05(2.26)3.8 .
St= — = =0.3311n
25, 2(26.6)
Decision: Uset= % in Ans.

6-66 Rotation is presumed. M and S;; are given as deterministic, but notice that ¢ is not;
therefore, a reliability estimation can be made.

From Eq. (6-70): S'e = 0.506(780)LN (1, 0.138) = 394.7 LN(1, 0.138)

Table 6-13:  ka=4.45(780) "**LN(1, 0.058) = 0.762 LN(1, 0.058)
Based on d =32 — 6 =26 mm, Eq. (6-20) gives

-0.107
k, = (%) =0.877

Conservatism is not necessary

S, =[0.762LN(1, 0.058)](0.877)(394.7)[LN(1, 0.138)]
S, =263.8 MPa

Ce.=(0.058% +0.138%)"2 = 0.150
S, =263.8LN(1, 0.150) MPa

Fig. A-15-14: D/d=32/26 = 1.23, r/d = 3/26 = 0.115. Thus, K; = 1.75, and Eq. (6-78)
and Table 6-15 gives
Q< K 1.75

= t = =1.64
f 2(K,-1)va |, 2(1.75-1)104/780
K, Jr 1.75 3
From Table 6-15, Cks = 0.15. Thus,

1+

t

K = 1.64LN(1, 0.15)

The bending stress is

o=K, M _ 1 64l N@t, 0.15)] 22100
zd 7(0.026)
=152(10°)LN(1, 0.15) Pa=152LN (I, 0.15) MPa

From Eq. (5-43), p. 250,
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(e )]

:_ln[(263.8/152)\/(1+0.152)/(1+0.152)} e

\/1n[(1+o.152)(1+0.152)}

From Table A-10, ps=0.004 53. Thus, R=1-0.004 53 =0.995 Ans

Note:The correlation method uses only the mean of Sy ; its variability is already
included in the 0.138. When a deterministic load, in this case M, is used in a reliability
estimate, engineers state, “For a DesignLoad of M, the reliability is 0.995.” They are, in
fact, referring to a Deterministic Design Load.

6-67

For completely reversed torsion, K, and ky, of Prob. 6-66 apply, but k. must also be
considered. S, = 780/6.89 = 113 kpsi

Eq. 6-74: ke =0.328(113)""*LN(1, 0.125) = 0.592LN(1, 0.125)
Note 0.590 is close to 0.577.

S, =k kkS.
=0.762[LN (1, 0.058)](0.877)[0.592LN (1, 0.125)][394.1LN (1, 0.138)]
S, =0.762(0.877)(0.592)(394.7) =156.2 MPa
Ce.=(0.058> +0.125% +0.138%)"> = 0.195
S, =156.2LN(1, 0.195) MPa

Fig. A-15-15: D/d=1.23, r/d = 0.115, then Kis = 1.40. From Eq. (6-78) and
Table 7-8

< - Kis _ 1.40 iy
© L 2(K-D)Va | 2(140-1)104/780
Ke T 1.40 NE]

From Table 6-15, Cks = 0.15. Thus,
K ts =1.34LN(1, 0.15)

The torsional stress is

r=K 2T _ 1340 NG, 0.15) m
d 7(0.026)

=62.1(10°)LN(1, 0.15) Pa=62.1LN (I, 0.15) MPa
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From Eq. (5-43), p. 250,

ln[(156.2 / 62.1)\/(1+O.152)/(1+0.1952)}

Z= =-3.75

JIn[(1+0.195%)(1+0.15%)]

From Table A-10, pr =0.000 09
R=1-pf =1-0.00009=0.99991 Ans.

For a design with completely-reversed torsion of 160 N - m, the reliability is 0.999 91.
The improvement over bending comes from a smaller stress-concentration factor in

torsion. See the note at the end of the solution of Prob. 6-66 for the reason for the
phraseology.

Given: Syt = 58 kpsi.

6-68

Eq. (6-70): S'e=0.506(76) LN(1, 0.138) = 38.5 LN(1, 0.138) kpsi
Table 6-13: Ka=14.5(76) " LN(1, 0.11) = 0.644 LN(1, 0.11)
Eq. (6-24): de =0.370(1.5) = 0.555 in

Eq. (6-20): kp = (0.555/0.3) "' = 0.936

Eq. (6-70): Se =1[0.644 LN(1, 0.11)](0.936)[38.5 LN(1, 0.138)]

S, =0.644(0.936)(38.5) =23.2 kpsi
Cse=(0.11% +0.138%)2=0.176
Se=23.2 LN(1, 0.176) kpsi

Table A-16: d/D =0, a/D = (3/16)/1.5=0.125, A= 0.80 .. K;=2.20.

From Egs. (6-78) and (6-79) and Table 6-15
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2.20LN(1, 0.10)
, 2(220-1) 5/76

220 +/0.125

K =

=1.83LN(1, 0.10)

Table A-16:
B 7AD’ 3 72'(0.80)(1.53)

Znet
32 32

=0.265 in’

c=K, £:1.83L N(1, 0.10) LS

Z. 0.265
=10.4LN (1, 0.10) kpsi

o =10.4 kpsi

C,=0.10
ln[(23.2/10.4)\/(1+0.102)/(1+O.1762)J

Eq. (5-43),p. 250:  z=-— =-3.94

JIn[(1+0.176>)(1+0.10%)]

Table A-10: pr =0.0000415 = R=1-pr=1-0.0000415=0.99996 Ans.

6-69 From Prob. 6-68:  S'e¢=23.2 LN(1, 0.138) kpsi
Ka=0.644LN(1, 0.11)
kp = 0.936
Eq. (6-74): ke =0.328(76)'LN(1, 0.125) = 0.564 LN(1, 0.125)
Eq. (6-71): Se=[0.644LN(1, 0.11)](0.936)[ 0.564 LN(1, 0.125)][ 23.2 LN(1, 0.138)]

S, =0.644(0.936)(0.564)(23.2) = 7.89 kpsi
Cse= (0.117 +0.125% + 0.138%'2=0.216

Table A-16: d/D=0, a/D = (3/16)/1.5 = 0.125, A= 0.89, Kis = 1.64
From Egs. (6-78) and(7-79), and Table 6-15

K LO6ALN(, 0.10)
o 2(1.64-1) 5/76
1+

1.64 /3/32

= 1.40L N(1, 0.10)
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Table A-16:
3 7 AD* B 7(0.89)(1.5%)

.. = 0.4423 in*
32 32
T.D . .
r =K, ~22 _1 a0 N, 0.10)—212) 4750 N(@, 0.10) kpsi
23 2(0.4423)

From Eq. (6-57):

P 2
o In(7.89/4.75)/(1+0.10°)/(1+0.216*) _ 208

JIn[(1+0.10*)(1+0.216%)]
Table A-10, pr=0.0188,  R=1-p; =1-0.0188=0.981 Ans.

6-70

This is a very important task for the student to attempt before starting Part 3. It illustrates
the drawback of the deterministic factor of safety method. It also identifies the a priori

decisions and their consequences.
The range of force fluctuation in Prob. 6-30 is — 16 to + 5 kip, or 21 kip. Let the

repeatedly-applied F4 be 10.5 kip. The stochastic properties of this heat of AISI 1018 CD

are given in the problem statement.

Function Consequences

Axial Fa=10.5 kip

Fatigue load Cra=0
Cikc=0.125

Overall reliability R>0.998; z=-3.09

with twin fillets Cki=0.11

R>+/0.998 =0.999

Cold rolled or machined Cka=0.058

surfaces

Ambient temperature Cka=0

Use correlation method C,=0.138

Stress amplitude Cki=0.11
Csa=0.11

Significant strength S Cs.=(0.058* +0.125% +0.138%)"* = 0.195

Choose the mean design factor which will meet the reliability goal. From Eq. (6-88)

2 2
C - /0.195 +O.211 0223
1+0.11

il =exp [—(—3.09)\/111(1 +0.223%) +In+/1+0.2232 J

n=2.02
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In Prob. 6-30, it was found that the hole was the significant location that controlled the
analysis. Thus,

|
-
= RO

We need to determine S,

Il
>—‘p—¢ l\)

6757 =2.67(64)"" =0.887

33;"”78 1.23(64) " = 0.890

W FFIE
Il

Il
O mx|
I

.887(1)(0.890)(1)(1)(0.506)(64) = 25.6 kpsi

From the solution to Prob. 6-30, the stress concentration factor at the hole is K; = 2.68.
From Eq. (6-78) and Table 6-15

2.68

f = = 2.20
1, 2(2:68-1)5/64
268 0.2
K, nF,
he AL 2.20(2.02)(10.5) 0588  ANs
(w,-d)S (3.5-0.4)(25.6)
6-71 1 =
F, =1200 Ibf s 1 1200 Ibf
) e 1= .
S, =80 kpsi f-

(a) Strength 4>{ }473
ka=2.67(80)" “*LN(1, 0.058) = 0.836 LN(1, 0.058)

kp=1

ke =1.23(80)"“778LN (1, 0.125) = 0.875 LN(1, 0.125)
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S, =0.506(30) LN(1, 0.138) =40.5LN(1, 0.138) kpsi
S, =[0.836LN(1, 0.058)](1)[0.875LN(1, 0.125)][40.5LN(1, 0.138)]
S, =0.836(1)(0.875)(40.5) = 29.6 kpsi

Cq.=(0.0587 +0.125% +0.138%)"2 = 0.195

StressFig. A-15-1; dfw = 0.75/1.5= 0.5, K; = 2.18. From Egs. (6-78), (6-79) and
Table 6-15

K, =—2I8N@ 0100 ) 5 N, 0.10)
1, 2(2.18-1) 5/80

2.18  +/0.375

C,=0.10

c,=K; R ,
(w-d)t
KR 1.96(1.2)
(w—d)t  (1.5-0.75)(0.25)
S = 3—29 6 kpsi

=12.54 kpsi

In| (5,/5 Wi+ G 1+02)J

[(1+C§)(1+ C: )]

In (29 6/12. 48)\/(1+0102) (1+o.1952)}
- =-3.9
Jin[(1+0.10°)(1+0.195*) |

From Table A-20, pr=4.81(10"°) = R=1-4.81(10"°)=0.999955 Ans.

(b) All computer programs will differ in detail.

6-72 to 6-78 Computer programs are very useful for automating specific tasks in the design
process. All computer programs will differ in detail.
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Chapter 7

7-1 (@) DE-Gerber, Eq. (7-10):

A:\/4(KfMa) +3(KfSTa =\/4[(2.2)(70)]2+3[(1.8)(45)]2 =3384N-m

fsm

B=\/4(KfM ) +3(K T =\/4[(2.2)(55)]2+3[(l.8)(35)]2 =265.5N-m

2 1/3

8(2)(338.4) 2(265.5)(210)(10°)

d=25.85(10")m=25.85mm Ans.

(b) DE-elliptic, Eq. (7-12) can be shown to be

_[16n |A B m: 16(2) | (3384) N (265.5)°
; £” \/;J 4 [(210)(106)]2 [(560)(106)}2

d=25.77(10*)m=25.77mm Ans.

1/3

(c) DE-Soderberg, Eq. (7-14) can be shown to be

on( A B |16 3384 2655 N
d= — = +
{ (s Syﬂ [ P {210(106) 560(106)H

d=27.70 (10 ) m=27.70 mm  Ans.

(d) DE-Goodman: Eq. (7-8) can be shown to be

16n( A, BJ ey 3384 265.5 -
d= - N
{ S S 7 | 210(10°) 700(10°)

d=2727(10%)m=2727mm Ans.

Criterion d (mm) Compared to DE-Gerber
DE-Gerber 25.85

DE-Elliptic 25.77 0.31% Lower Less conservative
DE-Soderberg 27.70 7.2% Higher More conservative
DE-Goodman 27.27 5.5% Higher More conservative

7-2  This problem has to be done by successive trials, since S is a function of shaft size. The
material is SAE 2340 for which Sy = 175 kpsi, S, = 160 kpsi, and Hg > 370.
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Eq. (6-19), p. 287:  k, =2.70(175)>* =0.69
Trial #1: Choose d, =0.75 in

Eq. (6-20), p. 288:  k, =0.879(0.75)"'"" = 0.91

Eq. (6-8), p.282: S/ =055, =0.5(175)=87.5 kpsi
Eq. (6-18), p. 287:  Se=0.69 (0.91)(87.5) = 54.9 kpsi

d =d-2r=0.75D-2D/20=0.65D

= d =%=1.15in
0.65 0.65

D —g=0.058 in

T20 20

Fig. A-15-14:
d=d +2r=0.75+2(0.058) = 0.808 in

_ 0598 4 05

d
d 075
r_0058 077
d 075
Kt =19
Fig. 6-20, p. 295: r=0.058in, = 0.90
Eq. (6-32), p. 295: Ki =1+0.90(1.9-1)=1.81
Fig. A-15-15: Kis=1.5
Fig. 6-21, p. 296: r=0.058 in, gs = 0.92
Eq. (6-32), p. 295: Kis =1+092(1.5-1)=1.46

We select the DE-ASME Elliptic failure criteria, Eq. (7-12), with d as d,, and
Mmn=Ta=0,

1/3
) V2

4 =) 16Q25)] [ 1.81(600) | [ 1.46(400)
r 54.9(103) 160(103)

d: =0.799 in
Trial #2: Choose d, = 0.799 in.

k, =0.879(0.799) """ =0.90

S =0.69 (0.90)(0.5)(175) = 54.3 kpsi
_ 4 07 s
0.65 0.65

r=D/20=1.23/20=0.062 in
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Figs. A-15-14 and A-15-15:
d=d +2r=0.799+2(0.062) = 0.923 in

d_093_
d 0799
r_0062 e
d 0.799

With these ratios only slightly different from the previous iteration, we are at the limit of
readability of the figures. We will keep the same values as before.

K.=19, K,=15 =090, ¢,=0.92
Ky =1.81, K =146
Using Eq. (7-12) produces d; = 0.802 in. Further iteration produces no change. With
dr = 0.802 in,
p=2%2_123in
0.65

d =0.75(1.23)=0.92 in

A look at a bearing catalog finds that the next available bore diameter is 0.9375 in. In
nominal sizes, we select d=0.94 in, D =1.25in,r =0.0625in  AnNS.

7-3

F cos20°(d/2)=Ta, F=2Ta/(dcos20°) =2(340)/(0.150 cos 20°) = 4824 N.

The maximum bending moment will be at point C, with Mc = 4824(0.100) = 482.4 N-m.
Due to the rotation, the bending is completely reversed, while the torsion is constant.
Thus, Ma =482.4 N'm, Ty =340 N'm, Mp=Ta=0.

For sharp fillet radii at the shoulders, from Table 7-1, K; = 2.7, and Kis = 2.2. Examining
Figs. 6-20 and 6-21 (pp. 295 and 296 respectively) with S, =560 MPa, conservatively

estimate 0= 0.8 and g, =0.9. These estimates can be checked once a specific fillet radius
is determined.

Eq. (6-32): K, =1+0.82.7-1)=2.4
K.=1+0.92.2-1)=2.1

(a) We will choose to include fatigue stress concentration factors even for the static
analysis to avoid localized yielding.

1/2
Eq. (7-15) , 32K, M, Y S 16K T, ’
(7-15): o =||——— | +3| ——
a e 7d’ zd’
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S rd'S 2 2 7V2
Eq. (7-16): n=0;; T y[4(Kf|\/|a) +3(KT,) }
Solving for d,
16n 1/2 "
— 2 2
d—{ﬂ—sy[«KfMa) +3(KTL | }
1/3
16(2.5) ) )12
=| ——2_14[(2.4)(482.4)] +3[(2.1)(340
(ﬂ(m)(mﬁ){ (4824 +3[2.DG40)] | J
d=0.0430 m = 43.0 mm Ans.
(b) k, = 4.51(560) " = 0.84

Assume Ky, = 0.85 for now. Check later once a diameter is known.

Se = 0.84(0.85)(0.5)(560) = 200 MPa

Selecting the DE-ASME Elliptic criteria, use Eq. (7-12) with M_ =T, =0.

1/3
5712

g 1623)] [24(4824) | | 2.1(340)
7 200(10°) 420(10°)

=0.0534 m=53.4 mm
With this diameter, we can refine our estimates for Ky and @.
Eq. (6-20):  k,=1.51d""""" =1.51(53.4) """ =0.81

Assuming a sharp fillet radius, from Table 7-1, r =0.02d = 0.02 (53.4) = 1.07 mm.

Fig. (6-20): q=0.72
Fig. (6-21): Qs=0.77

Iterating with these new estimates,

Eq. (6-32): Ki{=1+0.72(2.7-1)=22
Kis=1+0.7722-1)=1.9

Eq. (6-18): S =0.84(0.81)(0.5)(560) = 191 MPa

Eq. (7-12):  d=53 mm Ans.

Further iteration does not change the results.
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7-4  We have a design task of identifying bending moment and torsion diagrams which are

preliminary to an industrial roller shaft design. Let point C represent the center of the
span of the roller.

FY =30(8) = 240 Ibf

FZ =0.4(240) =96 Ibf

T = F2(2) =96(2) =192 Ibf -in
, T 192

1.5 15
Fy = F5 tan 20" =128tan 20° = 46.6 1bf
(a) xy-plane
" 466
F! Fi
i IR S
‘ 5.15" C A 215 B
240

SM, = 240(5.75)— F) (11.5)— 46.6(14.25) = 0
240(5.75) — 46.6(14.25)
11.5
SM, = FY(11.5)—46.6(2.75) - 240(5.75) = 0
240(5.75) + 46.6(2.75)
11.5

Fy = = 62.3 Ibf

FS = =131.1 Ibf

Bending moment diagram:

J".:I:'l:'n'
{Ibfsin)

o

xz-plane
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|.¢_ 5_?5"44[‘ ] b
] —x
'y 11.5" 4 B
I 17
IM,=0=96(5.75)-F;(11.5)+128(14.25)
7o 96(5.75) +128(14.25) _ 206.6 Ibf
11.5
M, =0=F5(11.5)+128(2.75)—96(5.75)
Fio 96(5.75)-128(2.75) _ 17.4 Tbf
11.5
Bending moment diagram:
M
(Ibf+in)
oo
0 - 3
€ \i/_ |
|
|

M¢ =+/100% +(~754)* =761 Ibf -in
M, =+/(~128)? +(~352)* =375 Ibf -in

Torque: The torque is constant from C to B, with a magnitude previously obtained of 192
Ibfin.

(b) xy-plane

l].’-l.] 63.3‘ 46.61

k L J
L-T—" 30 Ibffin

M, =-1311x+15(x=1.75)" =15(x=9.75)" —62.3( x-11.5)’

Bending moment diagram:
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ﬁrfxv
iIbf «in)
1.75 ' A R
lf_} T | i —
I 4
2% | =128
—514

Mmax =516 1bf - in and occurs at 6.12 in.
M. =131.1(5.75)-15(5.75-1.75)* =514 Ibf -in

This is reduced from 754 Ibf - in found in part (a). The maximum occurs
at X=6.12 in rather than C, but it is close enough.

".T_h 12 Ibffin 125
| 4

{ f

17.4 2066

xz-plane

M,, =17.4x—6(x~1.75)" +6(x~9.75)" +206.6 ( x~11.5)’

Bending moment diagram: y

(Ibfein)

e

|
|
Let M, = (M2 + M2 " i | —3%
| :
|

p S |
(lbfsin) I
231 |

|

|

Muyax =516 Ibf - in at Xx=6.25 in i)

Torque: The torque rises from 0 to 192 Ibf-in linearly across the roller, then is constant to
B. Ans.

7-5  This is a design problem, which can have many acceptable designs. See the solution for
Prob. 7-17 for an example of the design process.
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7-6  If students have access to finite element or beam analysis software, have them model the
shaft to check deflections. If not, solve a simpler version of shaft for deflection. The 1 in
diameter sections will not affect the deflection results much, so model the 1 in diameter
as 1.25 in. Also, ignore the step in AB.

From Prob. 7-4, integrate My, and My.

Xy plane,with dy/dx =y’

Ely’' = T(x2)+5<x—1.75>3—5<x—9.75>3—%<x—11.5>2+ G (1)

1311

_ BLI 5y 5,00 a 5, 4 623, 3
Ely =—— (x)+4<x 175) = (x=9.75) - (x-11.5) + Gx G
y=0atx=0 = C=0
y=0at x=11.5 = G =1908.4 Ibf -in’

From (1), x=0: Ely'=1908.4
x=11.5: Ely'=-2153.1

xz plang(treating z T +)

17.4

Elz' = T(x2)—2< X-1.75Y +2( x-9.75)' + 206.6

(x-11.5)+ G (2)

17.4 1 4 1 4 206.6 3
ElZ—T(X3)—5<X—l.75> +§<X_9'75> = (x-115) + G % G

z=0at x=0 = C=0
z=0at x=11.5 = G =8.9751Ibf-in’

From (2), x=0: Elz'=8.975
x=11.5: Elz'=-683.5
At O: E10 =+/1908.4> +8.975> =1908.4 Ibf -in
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At A: Elg = \/(—2153.1)2 +(—683.5)> =2259.0 Ibf -in’ (dictates size)

= 2259 =0.000 628 rad
30(10°) (7 / 64)(1.25*)
_0.001
0.000 628
At gear mesh, B ¥
Xyplane 46.6 1bf
With | =1, in section OCA ) .
y, =—2153.1/El, ' B
Since Y'ga 1s a cantilever, from Table A-9-1, with | =1, in section AB
Fx(x=21) 46.6
BA= = 2.75)[2.75-2(2.75)]=-176.2/ HI
=) 261, (2.75) (2.75)] >
YL =yt Yo, = 2153.1 B 176.2
TP TR 30(10%) (n/64)(125%) 30(10°)(7/64)(0.875%)
=—0.000 803 rad (magnitude greater than 0.0005 rad)
XZplane
128 1bf
o L4ty 4 |
O X
f !
6835 128(275°) 44
A B, > o 2El, El,
z = 683.5 484 =-0.000 751 rad

30(10°)(z/64)(1.25%)  30(10°)(/ 64)(0.875")

6, = /(~0.000 803)* +(—0.000 751)> =0.00110 rad

Crowned teeth must be used.

Finite element results: Error in simplified model
0, =5.4710"*) rad 3.0%
0, =7.09(10"") rad 11.4%
0, =1.10(107) rad 0.0%
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The simplified model yielded reasonable results.

Strength St =72 kpsi, § =39.5 kpsi

At the shoulder at A, Xx=10.75 in. From Prob. 7-4,
M,, =-209.3 Ibf-in, M ,,=-293.0 Ibf-in, T =192 Ibf-in

M =/(=209.3)* +(~293)* =360.0 Ibf -in
S =0.5(72) =36 kpsi
k, =2.70(72) °** —0.869
1 -0.107
=l—1] =0.879
% (0.3)
ke =ky =k =K =1
S, =0.869(0.879)(36) = 27.5 kpsi
D/d=125r/d=0.03
Fig. A-15-8: Ki=1.8
Fig. A-15-9: K;=2.3
Fig. 6-20: g=0.65
Fig. 6-21:  gs=0.70
Eq. (6-32): K, =1+0.65(2.3—1)=1.85
K, =1+0.70(1.8—1)=1.56

Using DE-ASME Elliptic, Eq. (7-11) withM =T, =0,
1/2
116 | [1.85360)T _[1.56(192)T
—= 4 3]
n 7[(13) 27500 39500

n=3.91

Perform a similar analysis at the profile keyway under the gear.

The main problem with the design is the undersized shaft overhang with excessive slope
at the gear. The use of crowned-teeth in the gears will eliminate this problem.

7-7 through 7-16
These are design problems, which can have many acceptable designs. See the solution for

Prob. 7-17 for an example of the design process.

7-17 (a)One possible shaft layout is shown in part (¢). Both bearings and the gear will be
located against shoulders. The gear and the motor will transmit the torque through the
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keys. The bearings can be lightly pressed onto the shaft. The left bearing will locate the
shaft in the housing, while the right bearing will float in the housing.

(b) From summing moments around the shaft axis, the tangential transmitted load
through the gear will be

W, =T/(d/2)=2500/(4/2)=1250 Ibf
The radial component of gear force is related by the pressure angle.

W, = Wtan ¢ =1250tan 20° = 455 Ibf
W= (W + W) = (455 +1250°) =130 Ibf

Reactions R, and R;, and the load W are all in the same plane. From force and moment

balance,
R, =1330(2/11) =242 Ibf

R, =1330(9/11) =1088 Ibf
M, =R,(9)=242(9)=2178 Ibf -in

Shear force, bending moment, and torque diagrams can now be obtained.

W

-+ tin 2in |-'— bin —=
w

R N t "I"IH

2421

Ans.

[01=s [

2174 Ibfein

2500 Ibfsin

(c) Potential critical locations occur at each stress concentration (shoulders and keyways).
To be thorough, the stress at each potentially critical location should be evaluated. For
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now, we will choose the most likely critical location, by observation of the loading
situation, to be in the keyway for the gear. At this point there is a large stress
concentration, a large bending moment, and the torque is present. The other locations
either have small bending moments, or no torque. The stress concentration for the
keyway is highest at the ends. For simplicity, and to be conservative, we will use the
maximum bending moment, even though it will have dropped off a little at the end of the
keyway.

(d) At the gear keyway, approximately 9 in from the left end of the shaft, the bending is
completely reversed and the torque is steady.

M,=21781bf-in T =25001bf-in M =T,=0
From Table 7-1, estimate stress concentrations for the end-milled keyseat to be K; = 2.14
and K = 3.0. For the relatively low strength steel specified (AISI 1020 CD), roughly
estimate notch sensitivities of = 0.75 and gs = 0.80, obtained by observation of Figs. 6-
20 and 6-21, assuming a typical radius at the bottom of the keyseat of r / d = 0.02 (p.
373), and a shaft diameter of up to 3 inches.

Eq. (6-32): K, =1+0.75(2.14-1)=1.9
K,=1+0.83.0-1)=2.6

Eq. (6-19):  k, =2.70(68) " =0.883
For estimating Kk, guess d =2 in.

Eq. (620)  k, =(2/0.3)"' =0.816

Eq.(6-18) S, =0.883(0.816)(0.5)(68) = 24.5 kpsi

Selecting the DE-Goodman criteria for a conservative first design,

. [ ( )2 1/2 ( )2 /2 1/3
4(K, M, } [3 KT, }
Eq (7-8):  d= 176[” fS N f%
I 22 o217
4| 160.5) [4(1-92178)} +[3(2.6-2500)J
oz 24500 68 000

d=1.57in Ans

With this diameter, the estimates for notch sensitivity and size factor were conservative,
but close enough for a first iteration until deflections are checked. Check yielding with
this diameter.
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1/2

Eq. (7-15) , 32K, M, Y’ S 16K T, ’
(7-15): o =||———| +
1 o xd’ zd’

1/2

ij +3[wj ] 18389 psi —18.4 kpsi
7(1.57) 7(1.57)

n,=S,/ol, =57/184=3.1 As

max

(e) Now estimate other diameters to provide typical shoulder supports for the gear and
bearings (p. 372). Also, estimate the gear and bearing widths.

- 8 >
L 72 R
- 035 . - 045
1.250 H%_ ['fb 2:00 1 I‘f _»LL F I
Tt B et

- 11 > 6 >|

(f) Entering this shaft geometry into beam analysis software (or Finite Element software),
the following deflections are determined:

Left bearing slope: 0.000 532 rad
Right bearing slope: —0.000 850 rad
Gear slope: —0.000 545 rad
Right end of shaft slope: —0.000 850 rad
Gear deflection: —0.001 45 in

Right end of shaft deflection: 0.005 10 in
Comparing these deflections to the recommendations in Table 7-2, everything is within
typical range except the gear slope is a little high for an uncrowned gear.

(9) To use a non-crowned gear, the gear slope is recommended to be less than 0.0005 rad.
Since all other deflections are acceptable, we will target an increase in diameter only for
the long section between the left bearing and the gear. Increasing this diameter from the
proposed 1.56 in to 1.75 in, produces a gear slope of — 0.000 401 rad. All other
deflections are improved as well.
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7-18

(a) Use the distortion-energy elliptic failure locus. The torque and moment loadings on
the shaft are shown in the solution to Prob. 7-17.

Candidate critical locations for strength:
o Left seat keyway
e Right bearing shoulder
e Right keyway

Table A-20 for 1030 HR: S, = 68 kpsi, § =37.5 kpsi, H;=137

Eq. (6-8): S, =0.5(68) =34.0 kpsi

Eq. (6-19): k, =2.70(68) "> =0.883
k== k=1

Left keyway

See Table 7-1 for keyway stress concentration factors,

k=204
TOI111€ K€ a
K_=3.0 yway

ts

For an end-mill profile keyway cutter of 0.010 in radius, estimate notch sensitivities.

Fig. 6-20: q=0.51
Fig. 6-21: g, =0.57
Eq. (6-32): Ke=1+q(K -1)=14+0.57(3.0-1)=2.1
K;=1+0.51(2.14-1)=1.6
1875 -0.107
Eqg. (6-20): =] —— =0.822
q. (6-20) Ky (0.30]
Eq. (6-18): S, =0.883(0.822)(34.0) = 24.7 kpsi
1
2 2137
Eq. (7-11): L: 16 14 1.6(2178) 43 2.1(2500)
n, x(1.875%) 24700 37500
ni=3.5 ANS.

Right bearing shoulder
The text does not give minimum and maximum shoulder diameters for 03-series bearings
(roller). Use D =1.75 in.

r 0.030

— =0.019, le'lzl.ll
d 1574 d 1.574

Fig. A-15-9: K, =24

Fig. A-15-8: Ke=1.6
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Fig. 6-20: q=0.65

Fig. 6-21: g, =0.70
Eq. (6-32): K; =1+0.65(2.4-1)=1.91

K =1+0.70(1.6—1)=1.42

M =2178($j=493 Ibf -in

P ) 1/2

Eq. (7-11): 1 _ 16 |4 1.91(493) 3 1.42(2500)

n, z(1.574°) 24700 37500

ng=4.2 Ans.

Right keyway

Use the same stress concentration factors as for the left keyway. There is no bending
moment, thus Eq. (7-11) reduces to:

1 16V3K (T, 164/3(2.1)(2500)

n zd’s,  2(1.5°)(37500)
ng=2.7 Ans.

Yielding
Check for yielding at the left keyway, where the completely reversed bending is
maximum, and the steady torque is present. Using Eq. (7-15), with My, =Ta =0,

r 2 P 1/2
, 32K M, 16K T,
O = 3 +3 3
zd zd

_ 32(1.6)(2178)]2+3[16(2.1)(2500)]2

7(1.875) 7(1.875)

1/2

=8791 psi =8.79 kpsi
S, 375

Yool 879

max

Check in smaller diameter at right end of shaft where only steady torsion exists.

4.3 Ans.

2 1/2
, 16K T,
O-max = 3 3
zd

r 1/2

s 16(2.1)(2500)]2

7[(1.5)3

=13 722 psi=13.7 kpsi
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0]
w

n, =—* =372 g Ans.
o 13.7

max

(b) One could take pains to model this shaft exactly, using finite element software.
However, for the bearings and the gear, the shaft is basically of uniform diameter, 1.875
in. The reductions in diameter at the bearings will change the results insignificantly. Use
E =30 Mpsi for steel.

To the left of the load, from Table A-9, case 6, p. 1015,

0, =%=F—b(3x2 SBP)= 1449(62)(3x2 +2? —1142)
dx o6Ell 6(30)(10°)(7 / 64)(1.8757)(11)
=2.4124(10"°)(3x* —-117)
Atx=0in: 6=-2.823(10"") rad
Atx=9in:  6=3.040(10"") rad
To the right of the load, from Table A-9, case 6, p. 1015,

dy, Fa
6, =—2 = ——(-3x* +6xl-2I°-a’
B¢ dx 6EII( )

Atx=I1=111in;
:E(p a?)- 1449(9)(112 —9%)
6Ell 6(30)(10°)(7z / 64)(1.875)(11)

= 4.342(10*) rad

Obtain allowable slopes from Table 7-2.

Left bearing:
_ Allowable slope ~ 0.001

n, = = =3.
®  Actual slope  0.0002823

Ans

Right bearing:
0.0008

Ng=————=1. Ans
0.000 4342

Gear mesh slope:

Table 7-2 recommends a minimum relative slope of 0.0005 rad. While we don’t know the
slope on the next shaft, we know that it will need to have a larger diameter and be stiffer.
At the moment we can say

N < 00005 _ 1.6 Ans
0.000 304
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7-19 The most likely critical locations for fatigue are at locations where the bending moment is
high, the cross section is small, stress concentration exists, and torque exists. The two-
plane bending moment diagrams, shown in the solution to Prob. 3-72, indicate decreasing
moments in both planes to the left of A and to the right of C, with combined values at A
and C of Ma = 5324 Ibf'in and M¢ = 6750 Ibf'in. The torque is constant between A and
B, with T= 2819 Ibf'in. The most likely critical locations are at the stress concentrations
near A and C. The two shoulders near A can be eliminated since the shoulders near C
have the same geometry but a higher bending moment. We will consider the following
potentially critical locations:

e keyway at A
e shoulder to the left of C
e shoulder to the right of C

Gear center Gear center
05— |< 16 >« 14 »|< 9 -

1.00 1.3 L75 zf 1.75 1.3 1.00
y llo v Yl cy Y B
—K = ———]

- 15 > - 10 -

- 17 > I~ 11 >

- 41 >

Table A-20: Syt = 64 kpsi, S, = 54 kpsi

Eq. (6-8): S, =0.5(64) =32.0 kpsi

Eq. (6-19):  k, =2.70(64)"*" =0.897
k. =k =k =1

Keyway at A

Assuming r / d = 0.02 for typical end-milled keyway cutter (p. 373), with d=1.75 in,

r=0.02d=0.035 in.

Table 7-1: Ki=2.14, Kis= 3.0

Fig. 6-20: g=0.65

Fig. 6-21: gs=0.71

Eq. (6-32): K, =1+q(K,~1)=1+0.65(2.14-1)=1.7
Ki=1+09(K-D=1+0.71(3.0-1)=2.4

0.30
Eq. (6-18): S =0.897(0.828)(32) = 23.8 kpsi

—0.107
Eq.(6-20): k= ( 175) =0.828
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We will choose the DE-Gerber criteria since this is an analysis problem in which we
would like to evaluate typical expectations
Using Eq. (7-9) with My, = Ta

A:\/4 K, M \/4[ 1. 7 (5324  =18102 Ibf-in =18.10 kip-in

B= \/3 KiT,) \/3[24 2819)] =11718 Ibf-in=11.72 kip-in

1/2
1 8A
—= 1+
n zd’S { }

P 1/2
_ 8(18.10) 2(11.72) 238
7r(1.75 ) 23.8) (18.10)(

n=13

Shoulder to the left of C
r/d=0.0625/1.75=0.036, D/d=2.5/1.75=1.43

Fig. A-15-9: K{=2.2

Fig. A-15-8: Ki=1.8

Fig. 6-20:  q=0.71

Fig. 6-21:  Qs=0.76

Eq. (6-32): K, =1+q(K,—-1)=1+0.71(22-1)=1.9

Ko=1+0K—1)=1+0.76(1.8-1)=1.6

-0.107
Eq. (6-20): Kk, = ((l)%j =0.828

Eq. (6-18): S =0.897(0.828)(32) = 23.8 kpsi

For convenience, we will use the full value of the bending moment at C, even though it
will be slightly less at the shoulder. Using Eq. (7-9) with M, = T4 =0,

A= \/4 KM,) = \/4[(1.9)(6750)]2 =25 650 Ibf -in = 25.65 kip-in

B= \/3 Ki.T,) =\/3[(1.6)(2819)]2=78121bf~in=7.812kip.in

2 1/2
1_8A ) | (28BS
n zd’§ 5,

8(25.65) 1+[1+[2(7.812)(23.8)IT2

- 7(1.75%)(23.8) (25.65)(64)
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n=0.96

Shoulder to the right of C
r/d=0.0625/13=0.048, D/d=1.75/13=1.35

Fig. A-15-9: K{=2.0

Fig. A-15-8: Ki=1.7

Fig. 6-20:  q=0.71

Fig. 6-21:  Qs=0.76

Eq. (6-32): K, =1+q(K,—1)=1+0.71(2.0-1)=1.7

Ke=1+0(K~1)=1+0.76(1.7-1)=1.5

1 3 -0.107
Eq. (6-20): Kk, = (ﬁj =0.855

Eq. (6-18): S =0.897(0.855)(32) = 24.5 kpsi

For convenience, we will use the full value of the bending moment at C, even though it
will be slightly less at the shoulder. Using Eq. (7-9) with My, = Ta =0,

A= \/4( KM,)" = J4[(1.7)(6750)] =22950 Ibf in =22.95 kip-in

B= \/3( KfSTm)2 = \/3[(1.5)(2819)]2 = 7324 Ibf -in = 7.324 kip - in

o V2
1__8A 1+{1+ 2889]]

n zd’S S

u

8(22.95) 1+[1+(2(7'324)(24'5)TT

7(1.3)(24.9) (22.95)(64)

n=10.45

The critical location is at the shoulder to the right of C, where n= 0.45 and finite life is
predicted.  Ans.

Though not explicitly called for in the problem statement, a static check for yielding is
especially warranted with such a low fatigue factor of safety. Using Eq. (7-15), with
Mm = Ta = 09

2 2 1/2
, 32K, M, 16K T,
Omx =|| ——— +3 —
zd zd

r P 1/2

_ MT +3(M} _ 55845 psi = 55.8 kpsi
7(13) 7(13) '
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= i = 4 =0.97

o 558
This indicates localized yielding is predicted at the stress-concentration, though after
localized cold-working it may not be a problem. The finite fatigue life is still likely to be
the failure mode that will dictate whether this shaft is acceptable.

It is interesting to note the impact of stress concentration on the acceptability of the
proposed design. This problem is linked with several previous problems (see Table 1-1,
p. 24) in which the shaft was considered to have a constant diameter of 1.25 in. In each of
the previous problems, the 1.25 in diameter was more than adequate for deflection, static,
and fatigue considerations. In this problem, even though practically the entire shaft has
diameters larger than 1.25 in, the stress concentrations significantly reduce the
anticipated fatigue life.

7-20

For a shaft with significantly varying diameters over its length, we will choose to use
shaft analysis software or finite element software to calculate the deflections. Entering
the geometry from the shaft as defined in Prob. 7-19, and the loading as defined in Prob.
3-72, the following deflection magnitudes are determined:

Location Slope | Deflection
(rad) (in)
Left bearing O | 0.00640 | 0.00000
Right bearing C | 0.00434 | 0.00000
Left Gear A 0.00260 | 0.04839
Right Gear B 0.01078 | 0.07517

Comparing these values to the recommended limits in Table 7-2, we find that they are all
out of the desired range. This is not unexpected since the stress analysis of Prob. 7-19
also indicated the shaft is undersized for infinite life. The slope at the right gear is the
most excessive, so we will attempt to increase all diameters to bring it into compliance.
Using Eq (7-18) at the right gear

|n dy/ d)§ ld| |(1)(0 01078)|l/4 915
dOld ‘ (slope)., ‘ | 0.0005 | '

Multiplying all diameters by 2.15, we obtain the following deflections:

Location Slope | Deflection
(rad) (in)
Left bearing O | 0.00030 | 0.00000
Right bearing C | 0.00020 | 0.00000
Left Gear A 0.00012 | 0.00225
Right Gear B 0.00050 | 0.00350
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This brings the slope at the right gear just to the limit for an uncrowned gear, and all
other slopes well below the recommended limits. For the gear deflections, the values are
below recommended limits as long as the diametral pitch is less than 20.

7-21

T
Y
'y

The most likely critical locations for fatigue are at locations where the bending moment is
high, the cross section is small, stress concentration exists, and torque exists. The two-
plane bending moment diagrams, shown in the solution to Prob. 3-73, indicate both
planes have a maximum bending moment at B. At this location, the combined bending
moment from both planes is M = 4097 N-m, and the torque is T=3101 N-m. The
shoulder to the right of B will be eliminated since its diameter is only slightly smaller,
and there is no torque. Comparing the shoulder to the left of B with the keyway at B, the
primary difference between the two is the stress concentration, since they both have
essentially the same bending moment, torque, and size. We will check the stress
concentration factors for both to determine which is critical.

Gear center Gear center
400 =|= 350 ‘:—|—= 300 |
= 75 =
40 50 | 20 42 30
y |lo Y YA 13 Y & |
T Y |
— L 30 f f f f T 30 —*-| =
< 385 > - 285 -
e 425 - - 325 >
< 1080 >

Table A-20: S, =440 MPa, S, =370 MPa

Keyway at A
Assuming r / d = 0.02 for typical end-milled keyway cutter (p. 373), with d= 50 mm,
r=0.02d=1 mm.

Table 7-1: Ki=2.14, K= 3.0

Fig. 6-20: g=0.66

Fig. 6-21: gs=0.72

Eq. (6-32): K, =1+q(K,~1)=1+0.66(2.14—1)=1.8

Ke=1+0(K~1)=1+0.72(3.0-1) = 2.4

Shoulder to th left of B
r/d=2/50=0.04, D/d=75/50=1.5

Fig. A-15-9: K;=2.2
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Fig. A-15-8: K= 1.8
Fig. 6-20:  q=0.73
Fig. 6-21:  gs=0.78
Eq. (6-32): K, =1+q(K,—1)=1+0.732.2-1)=1.9

K.=1+0(K ~1)=1+0.78(1.8-1)=1.6

Examination of the stress concentration factors indicates the keyway will be the critical
location.

Eq. (6-8): S =0.5(440) = 220 MPa
Eq. (6-19):  k, =4.51(440) """ =0.899

7.62
kC = kd = ke =1
Eq. (6-18): S, =0.899(0.818)(220) =162 MPa

0.107
Eq. (6-20): Kk, = (ij =0.818

We will choose the DE-Gerber criteria since this is an analysis problem in which we
would like to evaluate typical expectations. Using Eq. (7-9) with My, = Ta=0,

A:\/4 K, |v| \/4[ 4097 *—14750 N-m

B= \/3 KioTo) =\/3[(2.4)(3101)] =12890 N-m

l= ila lj{H{zBS‘?T}
n zd’S§ 5,

_ 8(14750) , 1+[2(12 890)(162)(106)J2

7(0.0507)(162)(10°) (14 750)(440)(10°)

1/2

172

n=0.25 Infinite life is not predicted. =~ Ans.

Though not explicitly called for in the problem statement, a static check for yielding is
especially warranted with such a low fatigue factor of safety. Using Eq. (7-15), with
Mm= Ta 0,

1/2
, 32K M, Y (16K,T Y
O'max = -3 +3 3
d zd

— 1/2

_ MT +3[MT =7.98(10%) Pa =798 MPa
7(0.050)’ 7(0.050)’ '
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n= 237046

o .. 798
This indicates localized yielding is predicted at the stress-concentration. Even without
the stress concentration effects, the static factor of safety turns out to be 0.93. Static
failure is predicted, rendering this proposed shaft design unacceptable.

This problem is linked with several previous problems (see Table 1-1, p. 24) in which the
shaft was considered to have a constant diameter of 50 mm. The results here are
consistent with the previous problems, in which the 50 mm diameter was found to
slightly undersized for static, and significantly undersized for fatigue. Though in the
current problem much of the shaft has larger than 50 mm diameter, the added
contribution of stress concentration limits the fatigue life.

7-22

For a shaft with significantly varying diameters over its length, we will choose to use
shaft analysis software or finite element software to calculate the deflections. Entering
the geometry from the shaft as defined in Prob. 7-21, and the loading as defined in Prob.
3-73, the following deflection magnitudes are determined:

Location Slope | Deflection
(rad) (mm)
Left bearing O 0.01445 0.000
Right bearing C | 0.01843 0.000
Left Gear A 0.00358 3.761
Right Gear B 0.00366 3.676

Comparing these values to the recommended limits in Table 7-2, we find that they are all
well out of the desired range. This is not unexpected since the stress analysis in Prob.
7-21 also indicated the shaft is undersized for infinite life. The transverse deflection at
the left gear is the most excessive, so we will attempt to increase all diameters to bring it
into compliance. Using Eq. (7-17) at the left gear, assuming from Table 7-2 an allowable
deflection of y,; = 0.01 in = 0.254 mm,

1/4

Iy |G 76D)|
dol v || 0254 |

=1.96

Multiplying all diameters by 2, we obtain the following deflections:

Location Slope | Deflection
(rad) (mm)
Left bearing O 0.00090 0.000
Right bearing C | 0.00115 0.000
Left Gear A 0.00022 0.235
Right Gear B 0.00023 0.230
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This brings the deflection at the gears just within the limit for a spur gear (assuming P <
10 teeth/in), and all other deflections well below the recommended limits.

7-23 (a) Label the approximate locations of the effective centers of the bearings as A and B,
the fan as C, and the gear as D, with axial dimensions as shown. Since there is only one
gear, we can combine the radial and tangential gear forces into a single resultant force
with an accompanying torque, and handle the statics problem in a single plane. From
statics, the resultant reactions at the bearings can be found to be Ry =209.9 Ibf and Rg =
464.5 Ibf. The bending moment and torque diagrams are shown, with the maximum
bending moment at D of Mp = 209.9(6.98) = 1459 1bf'in and a torque transmitted from D
to Cof T=633 (8/2) =2532 Ibf-in. Due to the shaft rotation, the bending stress on any
stress element will be completely reversed, while the torsional stress will be steady.
Since we do not have any information about the fan, we will ignore any axial load that it
would introduce. It would not likely contribute much compared to the bending anyway.

- 1287 =
830 My == |- .20
- 275 = A58 —= ta— — (175 |a—
e 2.0 —{ =T 1181 1,70 1.750 i s
| 1181
r 1.000 I I_ t —'l'—,E_:jT ¥ i
o g [ L Ear g
I T Fi L 'Y ;
N 7o -l ; 1
r Il'r~ R. | ! o + g & / 1‘ ¢ _E'-\ + I\_\\__JI
i i LS s ' / R 1 " ) by
3% * ® h kevway X 3
b1 orfe-1.27- 6.93 314 ~| |+—038
M
(bf - m) 1459
1115
| 245
. x
=
) 2532
C:;. X

Potentially critical locations are identified as follows:
o Keyway at C, where the torque is high, the diameter is small, and the keyway creates
a stress concentration.
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o Keyway at D, where the bending moment is maximum, the torque is high, and the
keyway creates a stress concentration.

e Groove at E, where the diameter is smaller than at D, the bending moment is still
high, and the groove creates a stress concentration. There is no torque here, though.

e Shoulder at F, where the diameter is smaller than at D or E, the bending moment is
still moderate, and the shoulder creates a stress concentration. There is no torque
here, though.

e The shoulder to the left of D can be eliminated since the change in diameter is very
slight, so that the stress concentration will undoubtedly be much less than at D.

Table A-20: S, = 68 kpsi, S, = 57 kpsi
Eq. (6-8): S, =0.5(68) =34.0 kpsi

Eq. (6-19):  k, =2.70(68)"*" =0.883

Keyway at C
Since there is only steady torsion here, only a static check needs to be performed. We’ll
use the maximum shear stress theory.

T 2532(1.00/2) 129 kpsi
J ﬂ(1.004)/32

L _S/2_57/2

= =221
Y T 12.9

Eq. (5-3):

Keyway at D
Assuming r / d = 0.02 for typical end-milled keyway cutter (p. 373), with d=1.75 in,
r=0.02d =0.035 in.

Table 7-1: Ki=2.14, Kis = 3.0

Fig. 6-20:  q=0.66

Fig. 6:21:  Qs=0.72

Eq. (632): K, =1+q(K,~1)=1+0.66(2.14-1)=1.8

Ke=1+0(K ~1)=1+0.72(3.0-1)=2.4

0.30
Eq. (6-18): S =0.883(0.828)(34.0) = 24.9 kpsi

—0.107
Eq.(6-20): k= ( 1'75) =0.828

We will choose the DE-Gerber criteria since this is an analysis problem in which we
would like to evaluate typical expectations.
Using Eq. (7-9) with My, = T4 =0,
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A:\/ \/4[ (1.8)(1459)] =5252 Ibf -in = 5.252 kip-in
3K I

B=,/3(K,T, m \/3[24 2532) —105251bf-in:10.53kip-in
1/2
1__8A |, 2B
n zd’S
2 1/2

_ 8(5.252) 2(10.53) 249

7z(1.75 ) 24.9) 5252
n=3.59

Groove at E

We will assume Figs. A-15-14 is applicable since the 2 in diameter to the right of the
groove is relatively narrow and will likely not allow the stress flow to fully develop. (See
Fig.7-9 for the stress flow concept.)

r/d=0.1/155=0.065, D/d=1.75/1.55=1.13
Fig. A-15-14: K;=2.1
Fig. 6-20:  q=0.76
Eq. (6-32): K, =1+q(K,~1)=1+0.76(2.1-1)=1.8

-0.107
Eq. (6-20): Kk, = (%} =0.839

Eq. (6-18): S, =0.883(0.839)(34) = 25.2 kpsi

Using Eq. (7-9) with M =Ta=Tn =0,

A:\/4(KfMa)2 =\/4[(1.8)(1115)]2 = 4122 Ibf -in = 4.122 kip-in
B=0
2 1/2
1__8A 1+| 1+ 2BS,
n zd'S§ AS,

_ 8(4.122) ){”[”(0)2}”2}

7(1.55°)(25.2
n=4.47 Ans.

Shoulder af

r/d=0.125/1.40=0.089, D/d=2.0/1.40=1.43
Fig. A-15-9: K{=1.7
Fig. 6-20: g=0.78
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Eq.(6-32): K, =1+q(K,~1)=1+0.78(1.7-1)=1.5
140 -0.107
Eq. (6-20): = == =0.848
q. (6-20): K, (0'3())
Eq. (6-18): S =0.883(0.848)(34) =25.5 kpsi
Using Eq. (7-9) with My = Ta=Tm =0,

A= \/4( KM,)" = /4[(1.5)(845)] =2535 Ibf -in = 2.535 kip-in

B=0
l= 8'36‘ 1+ 1+
n zd$S

8(2.535)

n=542 Ans.

(b)

28BS
AS,

- 7(1.40%)(25.5) {H[H(O)z}m}

The deflection will not be much affected by the details of fillet radii, grooves, and

keyways, so these can be ignored. Also, the slight diameter changes, as well as the
narrow 2.0 in diameter section, can be neglected. We will model the shaft with the

following three sections:

Section| Diameter| Length
(in) (in)
1 1.00 2.90
1.70 7.77
3 1.40 2.20

The deflection problem can readily (though tediously) be solved with singularity
functions. For examples, see Ex. 4-7, p. 159, or the solution to Prob. 7-24. Alternatively,
shaft analysis software or finite element software may be used. Using any of the
methods, the results should be as follows:

Location Slope | Deflection
(rad) (in)
Left bearing A | 0.000290 | 0.000000
Right bearing B | 0.000400 | 0.000000
Fan C 0.000290 | 0.000404
Gear D 0.000146 | 0.000928
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Comparing these values to the recommended limits in Table 7-2, we find that they are all
within the recommended range.

7-24

Shaft analysis software or finite element software can be utilized if available. Here we
will demonstrate how the problem can be simplified and solved using singularity
functions.

Deflection First we will ignore the steps near the bearings where the bending moments
are low. Thus let the 30 mm dia. be 35 mm. Secondly, the 55 mm dia. is very thin, 10
mm. The full bending stresses will not develop at the outer fibers so full stiffness will not
develop either. Thus, ignore this step and let the diameter be 45 mm.

Statics Left support: R =7(315-140)/315=3.889 kN
Right support: R, =7(140)/315=3.111 kN

Determine the bending moment at each step.

X(mm) 0 40 100 140 210 275 315
M(N-m) 0 155.56 388.89 544.44 326.67 12444 0

35 = (764)(0.035%) = 7.366(10°%) m?, 140 = 1.257(107) m*, 145 =2.013(10") m*

Plot M/l as a function of X.

x(m) M/ (10° N/m?) Step Slope ASlope
0 0 52.8

0.04 2.112

0.04 1.2375 —0.8745 30942  -21.86
0.1 3.094

0.1 1.932 ~1.162 19.325  -11.617
0.14 2.705

0.14 2.705 0 ~15.457  —34.78
0.21 1.623

0.21 2.6 0.977 247769 -9.312
0.275 0.99

0.275 1.6894 0.6994  -42.235  -17.47
0.315 0
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M/T(10° N/m™)

0 | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

o imm)

The steps and the change of slopes are evaluated in the table. From these, the function
M/l can be generated:

M /I = [52.8x —~ 0.8745(x - 0.04)" — 21.86(x - 0.04)' —1.162(x~ 0.1)"
~11.617(x — 0.1)' — 34.78(x — 0.14)' + 0.977(x~ 0.21)"
~9.312(x ~ 0.21) + 0.6994(x — 0.275)" —17.47(x~ 0.275)1}109

Integrate twice:

g—i = [26.4x2 —~ 0.8745(x — 0.04)' —10.93(x~ 0.04)" —1.162( x— 0.1)

~5.81{x - 0.1) =17.39(x~ 0.14)" + 0.977( x~ 0.21)
~4.655(x — 0.21)" + 0.6994(x — 0.275)' — 8.735(x~ 0.275)" + CI}IO" (1)
Ey = [8.8)@ ~0.4373( X~ 0.04)" — 3.643( x— 0.04)’ — 0.581(x — 0.1)°
~1.937(x = 0.1’ = 5.797(x - 0.14)" + 0.4885(x — 0.21)°
~1.552(x — 0.21)" + 0.3497(x — 0.275)" — 2.912(x~ 0.275)" + Cx + 02}109
Boundary conditionsy =0 at x= 0 yields C, = 0;
y=0at x=0.315 m yields C, =—-0.295 25 N/m”.

Equation (1) with C; =—-0.295 25 provides the slopes at the bearings and gear. The
following table gives the results in the second column. The third column gives the results
from a similar finite element model. The fourth column gives the results of a full model
which models the 35 and 55 mm diameter steps.

X (mm) 0 (rad) F.E. Model Full F.E. Model
0 —0.001 4260 —0.001 4270 —0.001 4160
140 —0.000 1466 —0.000 1467 —0.000 1646
315 0.001 3120 0.001 3280 0.001 3150

Chapter 7 - Rev. A, Page 29/45



The main discrepancy between the results is at the gear location (X = 140 mm). The larger
value in the full model is caused by the stiffer 55 mm diameter step. As was stated
earlier, this step is not as stiff as modeling implicates, so the exact answer is somewhere
between the full model and the simplified model which in any event is a small value. As
expected, modeling the 30 mm dia. as 35 mm does not affect the results much.

It can be seen that the allowable slopes at the bearings are exceeded. Thus, either the load
has to be reduced or the shaft “beefed” up. If the allowable slope is 0.001 rad, then the
maximum load should be F,.x = (0.001/0.001 426)7 = 4.91 kN. With a design factor this
would be reduced further.

To increase the stiffness of the shaft, apply Eq. (7-18) to the most offending deflection (at
X =0) to determine a multiplier to be used for all diameters.

1/4

1/4
Qoo _ [N (dy/ X[ _|)0.0014260) | o
dy | (slope), | 0.001 '
Form a table:
Old d, mm 20.00 30.00 35.00 40.00 45.00 55.00

New ideal d, mm  21.86 32.79 3826 43.72 49.19 60.12
Rounded up d, mm 22.00 34.00 40.00 44.00 50.00 62.00

Repeating the full finite element model results in

X=0: =_-930x 10 rad
X=140 mm: & =-1.09 x 10 rad
X=315mm: 6 =8.65x 10" rad

This is well within our goal. Have the students try a goal of 0.0005 rad at the gears.
Strength Due to stress concentrations and reduced shaft diameters, there are a number of

locations to look at. A table of nominal stresses is given below. Note that torsion is only
to the right of the 7 kN load. Using o = 32M/(zd’) and 7 = 16T/(zd"),

X(mm) O 15 40 100 110 140 210 275 300 330
oc(MPa) 0 220 370 619 478 609 520 39.6 17.6 0
r(MPa) 0 O 0 0 0 6 85 12.7 202 68.1
o'(MPa) 0 22.0 370 619 478 61.8 531 453 392 118.0

Table A-20 for AISI 1020 CD steel: S,y =470 MPa, S,=390 MPa

At X=210 mm:
Eq. (6-19): k, = 4.51(470)"0‘265 =0.883
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Eq. (6-20):  k, =(40/7.62)"""" =0.837

Eq. (6-18):  S.=0.883 (0.837)(0.5)(470) = 174 MPa
D/d=45/40=1.125, r/d=2/40=0.05

Fig. A-15-8: K= 1.4

Fig. A-15-9: K(=1.9

Fig. 6-20:  q=0.75

Fig. 6-21:  gs=0.79

Eq. (6-32):  Ki=1+0.75(1.9-1)=1.68
Kis=1+0.79(1.4—1)=1.32

Choosing DE-ASME Elliptic to inherently include the yield check, from Eq. (7-11), with
Mm=Ta=0,

2\ V2

1__ 16 |,|1.68(326.67) 2+3 1.32(107)
n z(0.04)] | 174(10°%) 390(10°)

n=1.98

At X=330 mm:
The von Mises stress is the highest but it comes from the steady torque only.

D/d=30/20=1.5, r/d=2/20=0.1
Fig. A-15-9: K= 1.42

Fig. 6-21:  gs=0.79
Eq. (6-32):  Kis=1+0.79(1.42 — 1) = 1.33

Eq. (7-11):
1_ 16 1.33(107)
n n(o.oz3)(ﬁ)[39o(1oé)]
n=249

Note that since there is only a steady torque, Eq. (7-11) reduces to essentially the
equivalent of the distortion energy failure theory.

Check the other locations.

If worse-case is at X = 210 mm, the changes discussed for the slope criterion will
improve the strength issue.

7-25 and 7-26 With these design tasks each student will travel different paths and almost all
details will differ. The important points are
e The student gets a blank piece of paper, a statement of function, and some constraints
— explicit and implied. At this point in the course, this is a good experience.
e Itisa good preparation for the capstone design course.
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e The adequacy of their design must be demonstrated and possibly include a designer’s
notebook.

e Many of the fundaments of the course, based on this text and this course, are useful.
The student will find them useful and notice that he/she is doing it.

e Don’t let the students create a time sink for themselves. Tell them how far you want
them to go.

7-27 This task was once given as a final exam problem. This problem is a learning experience.

Following the task statement, the following guidance was added.

e Take the first half hour, resisting the temptation of putting pencil to paper, and decide
what the problem really is.

e Take another twenty minutes to list several possible remedies.

e Pick one, and show your instructor how you would implement it.

The students’ initial reaction is that he/she does not know much from the problem
statement. Then, slowly the realization sets in that they do know some important things
that the designer did not. They knew how it failed, where it failed, and that the design
wasn’t good enough; it was close, though.

Also, a fix at the bearing seat lead-in could transfer the problem to the shoulder fillet, and
the problem may not be solved.

To many students’ credit, they chose to keep the shaft geometry, and selected a new
material to realize about twice the Brinell hardness.

7-28

In Eq. (7-22) set

| zd* A zd?
64~ 4
to obtain
2
(JEE o
4)\ r
or
o |y
d= < 2
7’ gE @)

(a) From Eq. (1) and Table A-5

2 9
“’:(ij (o.ozs) 9.81207)(10) _¢as 1 ans
0.6 4 76.5(103)
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(b) From Eq. (1), we observe that the critical speed is linearly proportional to the
diameter. Thus, to double the critical speed, we should double the diameter to d = 50
mm. Ans.

(c) From Eq. (2),

2
oo 9 [9E
4 |\ y

Since d / | is the same regardless of the scale,

o = constant = 0.6(883) = 529.8

= w =1766 rad/s Ans

Thus the first critical speed doubles.

7-29 From Prob. 7-28, @ =883 rad/s

A=4909(10") m*, 1=1917(10")m*, y=7.65(10*) N/m’
E=207(10°) Pa, w= Ayl =4.909(10*)7.65(10*)(0.6)=22.53 N

One element
Eq. (7-24):
0.3(0.3)(0.6* —0.3* =0.3%)

~6(207)(10°)(1.917)(10%) 0.6) =1.134(10 ) m/N

11

Y, = w,5,, =22.53(1.134)(10°) =2.555(10° ) m
y; =6.528(10")

Swy =22.53(2.555)(107°) =5.756(10™)

Swy’ =22.53(6.528)(107°) =1.471(10™")

5.756(107
o= g2y - 9.81#:620 rad/s  (30% low)
Swy 1.471(10°%)

Two elements:

11265 H 11265 H

] i
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0.45(0.15)(0.6* —0.45” —0.15%)
6(207)(10%)(1.917)(10™)(0.6)

0.15(0.15)(0.6> —0.15* —=0.15%)
6(207)(10°)(1.917)(10™)(0.6)

511 :522 =

= 6.379(10‘7) m/N

512 2521 =

=4.961(10’7) m/N

Y, = Y, = 0,5, +w,05, =11.265(6.379) (107 ) +11.265(4.961) (107 ) =1.277(10" ) m
=y, =1.632(10™")

Swy =2(11.265)(1.277)(107°) = 2.877(10™*)

Swy’ =2(11.265)(1.632)(10™°) =3.677(10"")

2.877(104)
w = [9.81| ————=|=876rad/s (0.8% low)

Three elements:
THH TAHN THN

M mm——

=10 mm—»

200 mm — = 100 mm—>
3 ¥

0.5(0.1)(0.6* =0.5* 0.1°)
6(207)(10°)(1.917)(10™*)(0.6)

0.3(0.3)(0.6* —0.3* =0.3)
6(207)(10°)(1.917)(10)(0.6)

5, =06,= =3.500(107) m/N

=1.134(1o-6) m/N

2 =

0.3(0.1)(0.6*—0.3*~0.1*)
6(207)(10°)(1.917)(10™*)(0.6)

0.1(0.1)(0.6" —0.1* =0.1°)
6(207)(10°)(1.917)(10™)(0.6)

5,=0, = =5.460(107) m/N

=2.380(10‘7) m/N

13~

y, = 7.51[3.500(10-7)+5.460(10—7)+2.380(10 7)}

Y, =7.51[5.460(107)+1.134(10°) +5.460(107) | =1.672
v, =7.51[2.380(10-7)+5.460(10-7)+3.500(10 7)] -
Zwyz7.51[8.516(10—6)+1.672(10 )+8.516(10" 6)]:2.535 107)

(
Swy’ = 7.51{[8.516(10“’)}2 +[1.672(107)] +[8. 516(10“’)}2} ~3.189(107)
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[2.535(10*‘)]
w, = [9.81| ————= | =883 rad/s
3.189(10‘9)

The result is the same as in Prob. 7-28. The point was to show that convergence is rapid
using a static deflection beam equation. The method works because:

e [fa deflection curve is chosen which meets the boundary conditions of moment-
free and deflection-free ends, as in this problem, the strain energy is not very
sensitive to the equation used.

¢ Since the static bending equation is available, and meets the moment-free and
deflection-free ends, it works.

7-30 (a)For two bodies, Eq. (7-26) is

‘(rnlé‘ll _l/a’z) mo,,
mo,, (ms,, _1/0)2)

Expanding the determinant yields,

1Y 1
(Ej _(mlé‘u"' n}é‘zz)(;j"" m(é‘né‘zz_é‘lzé‘m)zo (D

1

Eq. (1) has two roots1/ @ and 1/ ;. Thus

(%—%](%—%}o

o o o o
TR e
@ o, o, )\o o )\ o,

Equate the third terms of Egs. (1) and (2), which must be identical.

or,

I 1 1
ol M (010, =0,0n) = PV a)l2 m (9,0, —6,,6,,)

1 CC)2 C()2

and it follows that
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1 \/ g’
o, =— Ans
wlwz(éllé‘zz - 512521)

(b) In Ex. 7-5, part (b), the first critical speed of the two-disk shaft (w; = 35 Ibf,
w , =55 1bf) is w; = 124.8 rad/s. From part (a), using influence coefficients,

2
w, = 1 386 5 oy =466rad’s  Ans
124.8135(55)[ 2.061(3.534)-2.234" |(10™)

7-31

In Eq. (7-22), for w;, the term+/l / A appears. For a hollow uniform diameter shaft,

a)loc\/Iz n(dj—di“)/64:\/i(d§+df)(d§—cf):l rET
A\ xz(d;-d?)/4 |16 d; —d’ 4

This means that when a solid shaft is hollowed out, the critical speed increases beyond
that of the solid shaft of the same size. By how much?

(1/4)d? + d?
(1/4)Jd? V do

The possible values of d, are 0 < d <d_, so the range of the critical speeds is

@,N1+0 to about @ v1+1

or from @, to \/Ea)l. Ans

7-32

All steps will be modeled using singularity functions with a spreadsheet. Programming
both loads will enable the user to first set the left load to 1, the right load to 0 and
calculate 01, and 6. Then set the left load to 0 and the right to 1 to get 012 and 62;. The
spreadsheet shows the J;; and &, calculation. A table for M /| vs. X is easy to make.
First, draw the bending-moment diagram as shown with the data.

X 0 1 2 3 4 5 6 7 8
M 0 i0.875 175 :1.625: 1.5 :1.375: 1.25 :1.125

X 9 10 11 12 13 14 15 16

M :0.875 0.75 0.625 0.5 0375 025 0.125 0
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2 4 @ 8 16 12 14 16
x(n)

The second-area moments are:

0<x<linand I5<x<16in, | =x(2")/64=0.7854in’
1<x<9in, |,=7x(2472")/64=18331n"
3 =7

9<x<15in, | (2.7634)/64 —-2.861in"

Divide M by | at the key points x=10, 1,2, 9, 14, 15, and 16 in and plot

X Jr o1 2 0z 3 4 5 6 7 | 8
M 1.1141 0.4774 0.9547 0.9547 0.8865 0.8183 0.7501 0.6819 0.6137 0.5456
X 9 9 0 11 12 13 14 14 15 15 16

M/l 0.4774 0.3058 0.2621 0.2185 0.1748 0.1311 0.0874 0.0874 0.0437 0.1592 0

1.2

i

AT {Ibfm?)
© o o
(=] [+]
" —

0 Lj L] L] L] L] L] 1 1 L]

8 10 12 14 16

(=]
™~
£
[~1]

x(in)

From this diagram, one can see where changes in value (steps) and slope occur. Using a
spreadsheet, one can form a table of these changes. An example of a step is, at X=1 in,
M/I goes from 0.875/0.7854 = 1.1141 Ibf/in’ to 0.875/1.833 = 0.4774 Ibf/in’, a step
change of 0.4774 — 1.1141 = — 0.6367 Ibf/in’. A slope change also occurs at at X =1 in.
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The slope for 0 < x< 1 inis 1.1141/1 = 1.1141 Ibf/in’, which changes to (0.9547 —
0.4774)/1 = 0.4774 1bf/in®, a change of 0.4774 — 1.1141 = - 0.6367 Ibf/in’. Following
this approach, a table is made of all the changes. The table shown indicates the column

letters and row numbers for the spreadsheet.

A B C D E F
1 X M M/ step Slope | A Slope
2 la 0.875 |1.114085|0.000000 | 1.114085 [ 0.000000
3 1b 0.875 10.477358 |-0.636727{0.477358 |-0.636727
4 2 1.75 10.954716 [ 0.000000 | 0.477358 | 0.000000
5 2 1.75 10.954716 [ 0.000000 |-0.068194|-0.545552
6 9a 0.875 10.477358 | 0.000000 [-0.068194( 0.000000
7 9b 0.875 ]0.305854 |-0.171504|-0.043693| 0.024501
8 14 0.25 |0.087387 | 0.000000 |-0.043693] 0.000000
9 14 0.25 ]0.087387 | 0.000000 |-0.043693] 0.000000
10 15a 0.125 ]0.043693 | 0.000000 {-0.043693 | 0.000000
11 15b 0.125 ]0.159155|0.115461 [-0.159155|-0.115461
12 16 0 0.000000 | 0.000000 [-0.159155] 0.000000

The equation for M / | in terms of the spreadsheet cell locations is:

M /1 =E2 (x)+D3 (x-1) +F3(x-1)' +F5(x-2)

+D7 <x—9>0 +F7 <x—9)1 +DI11 <x—15>0 +F11( x—15>1

Integrating twice gives the equation for Ey. Assume the shaft is steel. Boundary
conditions Y = 0 at X = 0 and at X = 16 inches provide integration constants (C; = —4.906
Ibf/in and C, = 0). Substitution back into the deflection equation at x=2 and 14 in
provides the ’s. The results are: 61, = 2.917(1077) and o1, = 1.627(1077). Repeat for

F, =0and F, = 1, resulting in &; = 1.627(10 ") and &, = 2.231(10""). This can be
verified by finite element analysis.

y, = 18(2.917)(107) + 32(1.627)(107) = 1.046(107)
y, = 18(1.627)(1077) + 32(2.231)(107) = 1.007(10°°)
y? =1.093(107), y: =1.014(10™")

D wy =5.105107"), D wy =5.212(10")

Neglecting the shaft, Eq. (7-23) gives

o = \/386

5.105(10%)

> = 6149 rad/s or 58720 rev/min
5.212(107)

ANs
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Without the loads, we will model the shaft using 2 elements, one between 0 < X< 9 in,
and one between 0 < X < 16 in. As an approximation, we will place their weights at
X=9/2=4.51n,and X=9 + (16 — 9)/2 = 12.5 in. From Table A-5, the weight density of
steel is ¥ = 0.282 Ibf/in’. The weight of the left element is

w, = y%Zdzl —0.282 Gj[zz (1)+2.472% (8) ] =11.7 Ibf
The right element is
w, == 0.282 (%)[2.7632 (6)+2°(1)]=11.0 Ibf

11.7 Ibf 11.0 Ibf

4.51n 45  3.5In 3.51In
L  —
T e
T 9in T
R, R,

The spreadsheet can be easily modified to give

-

5,=9.605(107), 5,=6, =5.718(107),5,, =5.472(107)
y, =1.753(107), 'y, =1271(107)

y; =3.072(10™"), y; =1.615(10™")

> wy=3449(10"), Y wy =5.371(10")

o = [386 w =4980 rad/s
: 5.371(10°)

A finite element model of the exact shaft gives @ = 5340 rad/s. The simple model is
6.8% low.

Combination Using Dunkerley’s equation, Eq. (7-32):

I . 1 1

= 4+ —
o]  6149°  4980°

= o =3870 rad/s Ans

7-33

We must not let the basis of the stress concentration factor, as presented, impose a view-
point on the designer. Table A-16 shows Kis as a decreasing monotonic as a function of
a/D. All is not what it seems. Let us change the basis for data presentation to the full
section rather than the net section.

_ _ ! !/
r= KtsTO - Ktsz-o

Chapter 7 - Rev. A, Page 39/45



K 32T =K,(32Tj

=AD" D
Therefore
Kt's = Kts
A

Form a table:

(a/D) A Ky K.:'.
0.050 0.95 1.77 1.86
0.075 0.93 1.71 1.84
0.100 0.92 1.68 1.83 «<— minimum
0.125 0.89 1.64 1.84
0.150 0.87 1.62 1.86
0.175 0.85 1.60 1.88
0.200 0.83 1.58 1.90

K has the following attributes:

e It exhibits a minimum;
e It changes little over a wide range;

e [ts minimum is a stationary point minimum at a / D = 0.100;

¢ Our knowledge of the minima location is

0.075<(a/ D)<0.125
We can form a design rule: In torsion, the pin diameter should be about 1/10 of the shaft
diameter, for greatest shaft capacity. However, it is not catastrophic if one forgets the
rule.

7-34

From the solution to Prob. 3-72, the torque to be transmitted through the key from the
gear to the shaft is T= 2819 Ibf-in. From Prob. 7-19, the nominal shaft diameter
supporting the gear is 1.00 in. From Table 7-6, a 0.25 in square key is appropriate for a
1.00 in shaft diameter. The force applied to the key is

F=I= 2819 =5638 Ibf
r1.00/2

Selecting 1020 CD steel for the key, with S, = 57 kpsi, and using the distortion-energy
theory, Ssy=0.577 S, = (0.577)(57) = 32.9 kpsi.

Failure by shear across the key:
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F F
T=—=—
Al
_S_ S R LIG6R) oo

¢ F/il tS,,  0.25(32900)
Failure by crushing:
o-F__F .5__53 g2 2Fn_ 2008)(LY) o esn

A (t/2)1 o 2F/(t) tS,  0.25(57)(10%)

Select Y4-in square key, 7/8 in long, 1020 CD steel. Ans.

7-35

From the solution to Prob. 3-73, the torque to be transmitted through the key from the
gear to the shaft is T=3101 N'-m. From Prob. 7-21, the nominal shaft diameter
supporting the gear is 50 mm. To determine an appropriate key size for the shaft
diameter, we can either convert to inches and use Table 7-6, or we can look up standard
metric key sizes from the internet or a machine design handbook. It turns out that the
recommended metric key for a 50 mm shaft is 14 x 9 mm. Since the problem statement
specifies a square key, we will use a 14 x 14 mm key. For comparison, using Table 7-6
as a guide, for d=50 mm = 1.97 in, a 0.5 in square key is appropriate. This is equivalent
to 12.7 mm. A 14 x 14 mm size is conservative, but reasonable after rounding up to
standard sizes.

The force applied to the key is

gt __ 3101 ~124(10°) N
r - 0.050/2

Selecting 1020 CD steel for the key, with S, = 390 MPa, and using the distortion-energy
theory, Ssy=0.577 S, = 0.577(390) = 225 MPa.

Failure by shear across the key:

F F
T=—=—
Al
S 1.1(124)(10°
N VR NP (124)(10°) =0.0433 m =433 mm
r F/(U) tS, (0.014)(225)(10°)

Failure by crushing:
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A (t/2)l
S 2(124)(10°)(1.1
oS 2P (124)(10°)( )=0.0500m=50.0mm
o 2F/(t) tS,  (0.014)(390)(10°)

Select 14 mm square key, 50 mm long, 1020 CD steel. Ans.

7-36 Choose basic size D = d = 15 mm. From Table 7-9, a locational clearance fit is
designated as 15H7/h6. From Table A-11, the tolerance grades are AD = 0.018 mm and
Ad=0.011 mm. From Table A-12, the fundamental deviation is o = 0 mm.

Hole:

Eq. (7-36): Dhax =D+AD=15+0.018=15.018 mm Ans.
Dpin = D = 15.000 mm AnNs.

Shaft:

Eq. (7-37):  dpax =d+ 0 =15.000 + 0 = 15.000 mm Ans.

Omin =d+ 0 — Ad=15.000 + 0 — 0.011 = 14.989 mm Ans.

7-37 Choose basic size D =d = 1.75 in. From Table 7-9, a medium drive fit is designated as
H7/s6. From Table A-13, the tolerance grades are AD = 0.0010 in and Ad = 0.0006 in.
From Table A-14, the fundamental deviation is ¢ = 0.0017 in.

Hole:

Eq. (7-36): Dmax =D +AD=1.75+0.0010=1.7510 in Ans.
Dpin =D =1.7500 in Ans.

Shaft:

Eq. (7-38):  dmin=d+ & =1.75+0.0017 =1.7517 in Ans.

Omax =d+ O + Ad=1.75+0.0017 + 0.0006 = 1.7523 in  Ans.

7-38 Choose basic size D = d =45 mm. From Table 7-9, a sliding fit is designated as H7/g6.
From Table A-11, the tolerance grades are AD = 0.025 mm and Ad=0.016 mm. From
Table A-12, the fundamental deviation is o = —0.009 mm.

Hole:
Eq. (7-36): Diyax =D +AD =45+ 0.025 =45.025 mm Ans.
Din = D =45.000 mm AnNs.
Shaft:
Eq. (7-37):  dpax =d+ 0 =45.000 + (—0.009) = 44.991 mm Ans.

Omin =d + 0 — Ad =45.000 + (-0.009) — 0.016 = 44.975 mm Ans.
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7-39

Choose basic size D = d = 1.250 in. From Table 7-9, a close running fit is designated as
H8/f7. From Table A-13, the tolerance grades are AD = 0.0015 in and Ad=0.0010 in.
From Table A-14, the fundamental deviation is o =—0.0010 in.

Hole:

Eq. (7-36): D =D+ AD=1.250+ 0.0015 = 1.2515 in Ans.
Dpin =D =1.2500 in Ans.

Shaft:

Eq. (7-37);  Omax = d+ S = 1.250 + (=0.0010) = 1.2490 in Ans.
Omin = d + 5 — Ad = 1.250 + (=0.0010) — 0.0010 = 1.2480 in Ans.

7-40

Choose basic size D = d = 35 mm. From Table 7-9, a locational interference fit is
designated as H7/p6. From Table A-11, the tolerance grades are AD = 0.025 mm and
Ad=0.016 mm. From Table A-12, the fundamental deviation is o = 0.026 mm.

Hole:
Eq. (7-36):  Diax = D + AD =35 + 0.025 = 35.025 mm

The bearing bore specifications are within the hole specifications for a locational
interference fit. Now find the necessary shaft sizes.

Shaft:
Eq. (7-38):  Omin = d+ & =35 +0.026 = 35.026 mm Ans.
Opax =d+ 6 + Ad=35+0.026+0.016 = 35.042 mm ANS.

7-41

Choose basic size D = d= 1.5 in. From Table 7-9, a locational interference fit is
designated as H7/p6. From Table A-13, the tolerance grades are AD = 0.0010 in and
Ad=0.0006 in. From Table A-14, the fundamental deviation is o = 0.0010 in.

Hole:
Eq. (7-36): Dmax =D +AD =1.5000 + 0.0010 = 1.5010 in
Dmin = D =1.5000 in

The bearing bore specifications exactly match the requirements for a locational
interference fit. Now check the shaft.

Shaft:
Eq. (7-38):  Omin =d + 8 = 1.5000 + 0.0010 = 1.5010 in
Opax =d+ 6 + Ad=1.5000 + 0.0010 + 0.0006 = 1.5016 in
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The shaft diameter of 1.5020 in is greater than the maximum allowable diameter of
1.5016 in, and therefore does not meet the specifications for the locational interference
fit. Ans.

7-42

(a) Basic size is D=d =35 mm.

Table 7-9: H7/s6 is specified for medium drive fit.

Table A-11:  Tolerance grades are AD = 0.025 mm and Ad = 0.016 mm.
Table A-12:  Fundamental deviation is o =+0.043 mm.

Eq. (7-36): Dmax =D +AD =35+ 0.025 = 35.025 mm

Dmin = D =35.000 mm

Omin =d + 6 =35+ 0.043 = 35.043 mm Ans.

Omax = d+ S + Ad=35+0.043 + 0.016 = 35.059 mm Ans.

Eq. (7-38):

(b)
Eq.(7-42): 8, =d_ —D_ =35043-35.025=0.018 mm

Eq.(7-43): &, =d_ —D_ =35059-35.000=0.059 mm

d2 _ d2 d2 _
Eq. (7-40): P, = EZCZ’?X [( : dz)_(d_z qz)}

:207(109)(0.059) (60° -35*)(35% -0) s MPa A
2(35%) 60> -0

_E5,, {(didz)(dz Olz)}

pmin 2d3 dj _diz

=2O7(109)(0.018) (607 -35%)(35° -0) s iMPa Ans
2(35%) 60> -0

(c) For the shaft:
Eq. (7-44): 0,y =—P=-115MPa

Eq (7-46) Gr,shaft == p =-1 15 MPa
Eq. (5-13): o"=(c712 -0,0,+0; )1/2

=[(-1157 ~(-115)(-115)+ (-115)*] * =115 MPa
n=S, /o' =390/115=34 Ans
For the hub:
2 2 2 2
Eq. (7-45): O\ = p%:ns(%
Eq. (7-46):  0,,, =—P=-115MPa

J =234 MPa
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1/2

Eq. (5-13): o'= (0'12 -0,0, +0'22)

=[(239) ~(234)(-115) +(-115)* ]~ =308 MPa

n=S§,/0c'=600/308=1.9 Ans

(d) A value for the static coefficient of friction for steel to steel can be obtained online or

from a physics textbook as approximately f=0.8.
Eq.(7-49) T=(/2)fp_ Id?

min

= (7/2)(0.8)(35.1)(10°)(0.050)(0.035)* =2700 N-m  Ans

Chapter 7 - Rev. A, Page 45/45



Chapter 8

Note to the Instructor for Probs. 8-41 to 8-44These problems, as well as many others in this
chapter are best implemented using a spreadsheet.

8-1 (@) Thread depth=2.5 mm  Ans. |<_« - +|
Width=2.5mm Ans.
dp=25-1.25-1.25=22.5mm J Liw
d,=25-5=20mm
I=p=5mm Ans. 2.5 mm—=| .
25 mm
(b) Thread depth =2.5 mm  Ans. |+ 5 mm *’|

Width at pitch line = 2.5 Ans.
S
d, =20 mm _/L \j/ \_

I=p=5mm Ans.

8-2 From Table 8-1,
d =d—1226869p
d =d—0649519p
d —1.226 869p ; d —0.649 519p =d —0938194p

3

S

72
4 = ”Z - %(d ~0.938194p)>  Ans.

8-3  From Eq. (c) of Sec. 8-2,

P =F tand + f
l- ftanA
T Pd, Fd, tand+ f
. 2 2 1- ftanAd
_EZFl/(27z)1—ftan/1:tanll—ftanxi Ans.
I, Fd, /2 tand+ f tanA + f
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Using /= 0.08, form a table and plot the efficiency curve.

A, deg. e

0 0 i
0 0.678

20 0.796

30 0.838

40 0.8517 e

45 0.8519

8-4 Given F=5kN,/=5mm,and d,, =d — p/2 =25 - 5/2 = 22.5 mm, the torque required to
raise the load is found using Egs. (8-1) and (8-6)
5(22.5)| 5+7(0.09)22.5 5(0.06)45
T,= + =1585N-m  Ans.
2 7(22.5)-0.09(5) 2
The torque required to lower the load, from Egs. (8-2) and (8-6) is
5(22.5)| #(0.09)22.5-5 5(0.06)45
T, = + =783 N-m  Ans.
2 7z(22.5)+0.09(5) 2
Since T, is positive, the thread is self-locking. From Eq.(8-4) the efficiency is
5(5)
e=—>——=0.251  Ans.
27(15.85)

8-5 Collar (thrust) bearings, at the bottom of the screws, must bear on the collars. The bottom
segment of the screws must be in compression. Whereas, tension specimens and their
grips must be in tension. Both screws must be of the same-hand threads.

8-6 Screws rotate at an angular rate of

n= @ = 28.67 rev/min
60
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(a) The lead is 0.25 in, so the linear speed of the press head is
V'=28.67(0.25)=7.17 in/min  Ans.
(b) F=2500 Ibf/screw

d =2-025/2=1875in
sec @ =1/ cos(29° / 2) =1.033

Eq. (8-5):

7 _ 2500(1.875)( 025 + 7(0.05)(1.875)(1.033) ) _ 1 o et
. 2 7(1.875) — 0.05(0.25)(1.033) '

Eq. (8-6):

T, = 2500(0.08)(3.5 / 2) = 350 Ibf - in
T, =350+ 221.0 = 571 1bf - in/screw
rotor = 7@ _ 20.04 Ibf - in

60(0.95)
Tn  20.04(1720)

63025 63025

= 0.547 hp Ans.

8-7

Note to the Instructor: The statement for this problem in the first printing of this edition
was vague regarding the effective handle length. For the printings to follow the statement
“The overall length is 4.25 in.” will be replaced by “ A force will be applied to the handle

at a radius of 3% in from the screw centerline.” We apologize if this has caused any

inconvenience.

L =35in

T =3.5F
3 3

M=|L-=|F=|35-=1|F =3.125F
8 8

S, = 41 kpsi

o = Sy _ 32M _ 32(3.125)F 41 000

zd®  7(0.1875)°
F = 8.49 Ibf
T =3.58.49) = 29.7 Ibf-in  Ans.

(b) Eq. (8-5),2a=60°,/=1/10=0.1 in, f=0.15,sec = 1.155,p=0.1in
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d, = % ~0.649 519(0.1) = 0.6850 in

m

T o= F 1y (0.6850) (0.1 + 7(0.15)(0.6850)(1.155)
k 2 7(0.6850) — 0.15(0.1)(1.155)
T, = 0.075 86F,,,

F I _ 297 _3051bf  dns.

“wm = 0.07586  0.075 86
(¢) The column has one end fixed and the other end pivoted. Base the decision on the

mean diameter column. Input: C=1.2, D=0.685in, 4 = n(0.6852)/4 =0.3691in%, S, =41
kpsi, E = 30(106) psi, L=6in, k= D/4 =0.171 25 in, L/k = 35.04. From Eq. (4-45),

(Ll =£2,,2CE]”2 =[27r2(1.2)30(106)]1/2 s

k S, 41 000
From Eq. (4-46), the limiting clamping force for buckling is

S, 1) 1
F::lamp :B:r = A[Sv _(2)} %] CE:I
: T

3 2
=0.369 41(103){@35.04} W
T .

= 14.6(103) Ibf  Ans

(d) This is a subject for class discussion.

8-8 T = 8(3.5) = 28 Ibf - in

d =§—i=0.6667 in
4 12

m

1 . 29° 0 0
[ = g =0.16671n, a= T = 14.5°, sec 14.5"=1.033

From Egs. (8-5) and (8-6)

_0.6667F 0.1667+7r(0.15)(0.6667)(1.033) +0.15(1)F

= =0.1542F
o 2 | 7(0.6667)-0.15(0.1667)(1.033)

= 28 =182 Ibf Ans.

0.1542
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8-9 d,=15-0.252=1.3751in,1=2(0.25)=0.51n

From Eq. (8-1) and Eq. (8-6)

_ 2.2(10°)(1.375)[ 0.5 + 2(0.10)(1.375) N 2.2(10°)(0.15)(2.25)
f 2 7(1.375) — 0.10(0.5) 2
=330 + 371 = 701 Ibf - in

Since n=V/[=2/0.5 = 4 rev/s = 240 rev/min

so the power is
_Tn701(240)
63025 63025

=2.67 hp Ans.

8-10 d,,=40-4=36 mm, /=p =8 mm

From Egs. (8-1) and (8-6)

2 | 7(36) — 0.14(8) 2
= (3.831+4.5)F =833F N-m (F inkN)
o =2rn = 2x(1) = 2z rad/s

;_ 36F {8 + 7r(0.14)(36)} , 0.09(100)F

H=Tw

r=H_3990 _ 47N m
w 27

F=477

—— =573kN Ans.
8.33

L__Fl _ 5730
22T 27(477)

=0.153 Ans.

8-11 (a) Table A-31, nut height H=12.8 mm. L> [+ H=2(15)+ 12.8 =42.8 mm. Rounding
up,
L=45mm  Ans.

(b) From Eq. (8-14), Ly =2d +6 =2(14) +6 =34 mm
From Table 8-7,1;, =L —Ly =45-34 =11mm, /[, =/ —-1; =2(15)-11 =19 mm,

Ag = 7(14%) /4 =153.9 mm’. From Table 8-1, 4, = 115 mm”’. From Eq. (8-17)
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_ A,AE 153.9(115)207
" AL AL 153.9(19)+115(11)

=874.6 MN/m Ans.

(c) From Eq. (8-22), with / =2(15) =30 mm

- OGSZ;jZEdo - 057747(20T)14 41165 MN/m  dns.
21n(5'+'j 51| 5 0-5774(30)+0.5(14)
0.57741+2.5d | 0.5774(30)+2.5(14) |

8-12 (a) Table A-31, nut height H = 12.8 mm. Table A-33, washer thickness ¢ = 3.5 mm. Thus,
the gripis /=2(15) +3.5=33.5mm. L> [+ H =33.5+12.8 =46.3 mm. Rounding up
L=50mm Ans.

(b) From Eq. (8-14), Ly =2d+6 =2(14) +6 =34 mm
From Table 8-7,/;, =L —Ly =50-34 =16 mm, [, =/—-1; =33.5-16 =17.5 mm,
Aq = 7(14%) /4 =153.9 mm’. From Table 8-1, 4, = 115 mm®. From Eq. (8-17)

AAE  1539(115)207

= = =808.2 MN/m Ans.
Al +A41, 153.9(17.5)+115(16)

(C) }31 mm diaa{
Steel 15 mm
Steel 15 mm
i 3.5 mm
}27 mm di?‘ _f
Not drawn to scale
25.04 mm dia
From Eq. (8-22)
0.57747(207)14
g o= 0STazEd 7(207) ~2969 MN/m  Ans.

" 2ln(5 0.5774l+0.5dj 0.5774(33.5)+0.5(14)
0.57741+2.5d 0.5774(33.5)+2.5(14)
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8-13 (a) Table 8-7,/=h+d/2=15+14/2=22mm. L > h+ 1.5d = 36 mm. Rounding up
L=40mm  Ans.

(b) From Eq. (8-14), Ly =2d + 6 = 2(14) +6 = 34 mm
From Table 8-7,/; =L —Ly =40-34 =6 mm, [/, =/ -1, =22-6 =16 mm

Aq= 7 (14%) /4 =153.9 mm’. From Table 8-1, 4, = 115 mm®. From Eq. (8-17)

AAE  1539(115)207

- - =11622 MN/m  dns.
Al + A1, 153.9(16)+115(6)

(c) From Eq. (8-22), with / =22 mm

p oo O0STTAmEd _ 0.57747(207)14 ~3624.4 MN/m  Ans.
21n(50.57741+0.5dj 0.5774(22)+0.5(14)
0.57741+2.5d 0.5774(22)+2.5(14)

8-14 (a) From Table A-31, the nut heightis H=7/16in. L>/+H=2+1+7/16=37/16 in.
Roundingup, L=3.5in  Ans.

(b) From Eq. (8-13), Ly =2d + 1/4=2(0.5) + 0.25=1.25 in
From Table 8-7, [, =L —Ly =3.5-125 =225in,Il, =[/-1; =3-225 =0.751n
Aq = 7(0.5%)/4 =0.1963 in”. From Table 8-2, 4, = 0.1419 in”. From Eq. (8-17)

AAE  0.1963(0.1419)30

s = = =1.79 Mlbf/in Ans.
Al +Al, 0.1963(0.75)+0.1419(2.25)
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(©

0.75" dia

1.5"
Steel

0.5"

—

Cast iron

ft—————

%.75" dia-l

1.905" dia

Top steel frustum: ¢t =1.5in,d =0.51in, D =0.75 in, E = 30 Mpsi. From Eq. (8-20)

0.57747(30)0.5
4= [1.155
155(1.5)+0.75-0.5](0.75+0.5)
[1.155(1.5)+0.75+0.5](0.75-0.5)

=22.65 MlIbf/in

Lower steel frustum: # =0.51in,d =0.51in, D =0.75 +2(1) tan 30° =1.905 in, £ =30
Mpsi. Eq. (8-20) = k, = 210.7 Mlbf/in

Castiron: t =1in,d =0.51in, D =0.75in, £ = 14.5 Mpsi (Table 8-8). Eq. (8-20) =
ks = 12.27 Mlbf/in

From Eq. (8-18)

ky =(Uky + Uk, +1/k3)™" = (1/22.65 + 1/210.7 + 1/12.27) " =7.67 MlIbf/in  Ans.

8-15 (a) From Table A-32, the washer thickness is 0.095 in. Thus, /=2 + 1 + 2(0.095) = 3.19
in. From Table A-31, the nut heightis H=7/16in. L>/+ H=3.19+7/16=3.63 in.
Rounding up, L=3.75in  Ans.

(b) From Eq. (8-13), L7 = 2d + 1/4=2(0.5)+ 0.25=1.25 in
From Table 8-7, [, =L —Lr =3.75-1.25 =25in, I, =1-1; =3.19-2.5 =0.69 in
Ay = 7(0.5%)/4 =0.1963 in’. From Table 8-2, 4, = 0.1419 in’. From Eq. (8-17)
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AAE  0.1963(0.1419)30

= - —1.705 Mibf/in  Ans.
Al + AL, 0.1963(0.69)+0.1419(2.5)

(©

Stesl

Castiron

075" dia

Each steel washer frustum: = 0.095 in, d = 0.531 in (Table A-32), D=0.75 in, E =30
Mpsi. From Eq. (8-20)

0.57747(30)0.531
k = 7(30) —89.20 Mibf/in

| 1.155(0.095) +0.75-0.531](0.75+0.531)
" [1.155(0.095)+0.75+0.531](0.75-0.531)

Top plate, top steel frustum: t= 1.5 in, d = 0.5 in, D = 0.75 + 2(0.095) tan 30° = 0.860 in,
E =30 Mpsi. Eq. (8-20) = k, =28.99 MIbf/in

Top plate, lower steel frustum: t= 0.5 in, d = 0.5 in, D =0.860 + 2(1) tan 30° =2.015 in,
E =30 Mpsi. Eq. (8-20) = k3 =234.08 Mlbf/in

Castiron: ¢t =1in,d =0.51in, D =0.75 + 2(0.095) tan 30° = 0.860 in, E = 14.5 Mpsi
(Table 8-8). Eq. (8-20) = k4 = 15.99 MIbf/in
From Eq. (8-18)
km = Q/ky + Vky +1/ks+1/ks)™" = (2/89.20 + 1/28.99 + 1/234.08 +1/15.99)
= 8.08 MIbf/in  Ans.

8-16 (a) From Table 8-7,/=h+d/2=2+0.52=2.25in.
L>h+15d =2+1.50.5)=2.75in Ans.

(b) From Table 8-7, Ly =2d + 1/4 =2(0.5)+0.25 =125 in
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lg =L —Ly =275-125 =15in,l, =1-1; =225-1.5 =0.75in
Aq = 7(0.5%)/4 =0.1963 in>. From Table 8-2, 4, = 0.1419 in®. From Eq. (8-17)

AAE  0.1963(0.1419)30

Y = = =2.321 Mlbf/in Ans.
Al + Al 0.1963(0.75)+0.1419(1.5)

(©
1.125"
Steel
0.875"
0.25"
Castiron

1.039" dia
Top steel frustum: £ =1.125 in, d = 0.5 in, D = 0.75 in, E = 30 Mpsi. From Eq. (8-20)
0.57747(30)0.5

| [1.155(1.125)+0.75-0.5](0.75+0.5)
" 1155(1.125)+0.75+05](0.75-0.5)

k, = = 24.48 Mibf/in

Lower steel frustum: = 0.875in,d=0.5in, D =0.75 + 2(0.25) tan 30° =1.039 in, £ =
30 Mpsi. Eq. (8-20) = k&, =49.36 Mlbf/in

Cast iron: t=0.25in, d = 0.5 in, D = 0.75 in, E = 14.5 Mpsi (Table 8-8). Eq. (8-20) =
ks = 23.49 MlIbf/in

From Eq. (8-18)

k= (ky + Vky +1/k3)™" = (1/24.48 + 1/49.36 + 1/23.49)" =9.645 MlIbf/in  Ans.

8-17 a) Grip, /=2(2+0.095)=4.19in. L>4.19+ 7/16 =4.628 in.
Rounding up, L=4.75in  Ans.
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(b) From Eq. (8-13), Ly =2d + 1/4=2(0.5) + 0.25 =1.25in
From Table 8-7, I, =L —Ly =4.75-125 =3.5in,l, =1—-1; =4.19-3.5 =0.69 in
Aq = 7(0.5%)/4 =0.1963 in”. From Table 8-2, 4, = 0.1419 in>. From Eq. (8-17)

AAE  0.1963(0.1419)30

= = =1.322 Mlibf/in Ans.
Al +Al, 0.1963(0.69)+0.1419(3.5)

(©) P}H dia‘{ .
!

0.095"

Aluminum 2"

Aluminum

0.860" dia

Upper and lower halves are the same. For the upper half,
Steel frustum: ¢+ =0.095 in, d =0.531in, D =0.75 in, and £ = 30 Mpsi. From Eq. (8-20)

P 0.57747(30)0.531
b [1.155(0.095)+0.75-0.531](0.75+0.531)
" [1.155(0.095)+0.75+0.531](0.75-0.531)

=89.20 Mlbf/in

Aluminum: ¢t =2 in,d =0.5 in, D =0.75 + 2(0.095) tan 30° = 0.860 in, and £ = 10.3
Mpsi. Eq. (8-20) = k&, = 9.24 Mlbf/in

For the top half, k' = (1/k; + 1/k)™" = (1/89.20 + 1/9.24)"" = 8.373 Mlbf/in

Since the bottom half is the same, the overall stiffness is given by

kw = (1K, +1/K. )" =k /2 = 8.373/2 =4.19 Mlbflin Ans

8-18 (a) Grip, /=2(2 +0.095)=4.191in. L>4.19+7/16 =4.628 in.
Rounding up, L=4.75in  Ans.
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(b) From Eq. (8-13), Ly =2d + 1/4 =2(0.5)+0.25 =1.25in
From Table 8-7, I, =L —Ly =4.75-125 =3.5in,l, =1-1; =4.19-3.5 =0.69 in
Aq = 7(0.5%)/4 =0.1963 in”. From Table 8-2, 4, = 0.1419 in>. From Eq. (8-17)

AAE  0.1963(0.1419)30

= = =1.322 Mlibf/in Ans.
Al +Al, 0.1963(0.69)+0.1419(3.5)

© i
}_9.75 d *{

Aluminum 2"

" 2"
Aluminum 1.905

0.095"

~70.969" dia

Upper aluminum frustum: ¢ = [4 + 2(0.095)] /2 =2.095 in, d = 0.5 in, D = 0.75 in, and
E =10.3 Mpsi. From Eq. (8-20)

0.57747(10.3)0.5
1.155(2.095)+0.75-0.5(0.75+0.5)

1 L
"[1.155(2.095)+0.75+05](0.75-0.5)

=7.23 MIbf/in

k, =

Lower aluminum frustum: t=4 —2.095=1.905 in, d = 0.5 in,
D =0.75 +4(0.095) tan 30° = 0.969 in, and £ = 10.3 Mpsi. Eq. (8-20) = k, =11.34
MiIbf/in

Steel washers frustum: # =2(0.095) = 0.190 in, d = 0.531 in, D = 0.75 in, and £ = 30 Mpsi.
Eq. (8-20) = k3 = 53.91 MlIbf/in

From Eq. (8-18)
k= (Uky + Vky +1/k3)™" = (1/7.23 + 1/11.34 + 1/53.91)"' =4.08 MIbf/in  Ans.

8-19 (a) From Table A-31, the nut heightis H=8.4mm. L >/ + H=50+ 8.4 = 58.4 mm.
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Rounding up, L = 60 mm Ans.

(b) From Eq. (8-14), Ly =2d + 6 =2(10)+ 6 =26 mm, Iy = L — L7 = 60 — 26 =
34mm, [, =1—-1=50-34=16 mm. 4, = 7(10%) / 4 = 78.54 mm’. From Table 8-1,
A, =58 mm®. From Eq. (8-17)

AAE  78.54(58.0)207

y = = =292.1 MN/m Ans.
Al +Al, 78.54(16)+58.0(34)

© s

26.55 min
10 mm g

30 mm

’_J S mumn ‘_‘

Aluminum

10*111111 ( ( Alumimum

Upper and lower frustums are the same. For the upper half,
Aluminum: =10 mm, d = 10 mm, D = 15 mm, and from Table 8-8, £ =71 GPa.
From Eq. (8-20)

0.57747(71)10
k= — a =1576 MN/m
[1.155(10)+15-10](15+10)

I
n[1.155(10)+15+10](15—10)

Steel: t =15 mm,d =10 mm, D =15+ 2(10) tan 30° =26.55 mm, and £ =207
GPa. From Eq. (8-20)

L 0.57747(207)10
* [1.155(15)+26.55-10 ](26.55+10)
n[1.155(15)+26.55+10](26.55—10)

=11 440 MN/m

For the top half, k' = (1/k) + 1/k;)™" =(1/1576 + 1/11 440)" = 1385 MN/m
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Since the bottom half is the same, the overall stiffness is given by

m =k, +1/k] Y= =k /2 = 1385/2 =692.5 MN/m Ans.

8-20 (a) From Table A-31, the nut heightis H=8.4mm. L >/ + H=60 + 8.4 = 68.4 mm.
Rounding up, L =70 mm Ans.

(b) From Eq. (8-14), L7 =2d +6=2(10)+ 6 =26 mm, [, = L — LT—7O 26 =
44 mm, [; = l l;=60-44=16mm. 4, = 7z(102)/4 78.54 mm”. From Table 8- 1,
A, =58 mm®. From Eq. (8-17)

A,AE  78.54(58.0)207

, = = =247.6 MN/m Ans.
Al + Al 78.54(16)+58.0(44)

(©

20.55 nun

£ S —

’_Ji 1111114‘

10 mm g Alumimum
30 nun
30 nun
Steel
Aluminum
20 nun

38.09 mm

Upper aluminum frustum: £ = 10 mm, d = 10 mm, D = 15 mm, and £ = 71 GPa. From Eq.
(8-20)
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‘o 0.57747(10.3)71
b [1.155(2.095)+15-10](15+10)
n
[1.155(2.095)+15+10 ](15-10)

=1576 MN/m

Lower aluminum frustum: £ =20 mm, d = 10 mm, D = 15 mm, and £ = 71 GPa. Eq.
(8-20) = k>, =1 201 MN/m

Top steel frustum: =20 mm, d = 10 mm, D =15 + 2(10) tan 30° =26.55 mm, and £ =
207 GPa. Eq. (8-20) = k3 =9 781 MN/m

Lower steel frustum: =10 mm, d = 10 mm, D = 15 + 2(20) tan 30° = 38.09 mm, and £ =
207 GPa. Eq. (8-20) = k4 =29 070 MN/m

From Eq. (8-18)

ke = (1/ky + Vky +1/ks+1/ks)™ = (1/1 576 + 1/1 201 + 1/9 781 +1/29 070"
=623.5 MN/m  Ans.

8-21

(a) From Table 8-7,/=h+d /2=10+30+102=45mm. L> h+1.5d =
10 +30 + 1.5(10) = 55 mm  Ans.

(b) From Eq. (8-14), Ly =2d+6 =2(10)+6 =26 mm, [/, =L— Ly =55-26 =
29mm, /, =1 -1, =45-29 =16 mm. A4 = 7(10%) /4 =78.54 mm®. From Table 8-1,
A, =58 mm®. From Eq. (8-17)

b o AAE 78.54(58.0)207 oo
Al + Al 78.54(16)+58.0(29)

26.55 mm
Cc
( ) PS nnnﬂ
10 mm

30 mim

Aluminum

|

12.5 mm

Steel

S mm .
10}111111 ( ‘ Alumimum

I
20.77 mm
le =" -
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Upper aluminum frustum: = 10 mm, d = 10 mm, D = 15 mm, and £ = 71 GPa. From Eq.
(8-20)
0.57747(10.3)71
k, =
[1.155(2.095)+15-10](15+10)
n
[1.155(2.095)+15+10 |(15-10)

Lower aluminum frustum: =5 mm, d = 10 mm, D = 15 mm, and £ = 71 GPa. Eq.
(8-20) = k> =2 300 MN/m

=1576 MN/m

Top steel frustum: 1= 12.5 mm, d = 10 mm, D = 15 + 2(10) tan 30° =26.55 mm, and £ =
207 GPa. Eq. (8-20) = k3 = 12 759 MN/m
Lower steel frustum: = 17.5 mm, d = 10 mm, D = 15 + 2(5) tan 30° =20.77 mm, and E
=207 GPa. Eq. (8-20) = k4 = 6 806 MN/m

From Eq. (8-18)
ke = (1ky + Vky +1/ks+1/ks) ™ = (1/1 576 + 1/2 300 + 1/12 759 +1/6 806) "
=7724MN/m  Ans.

8-22

Equation (f'), p. 436: C= ky
k,+k,
Eq. (8-17): k, = _AAE
Al + Al

Eq. (8-22): k= 0.57747[(207)(]
0.5774(40)+0.5d
2In| 5
O.5774(40)+2.5d

See Table 8-7 for other terms used.
Using a spreadsheet, with coarse-pitch bolts (units are mm, mm?, MN/m):

d A, Aqg H L> L Ly
10 58 [78.53982| 8.4 48.4 50 26
12 84.3 |113.0973] 10.8 50.8 55 30
14 115 [153.938| 12.8 52.8 55 34
16 157 1201.0619] 14.8 54.8 55 38
20 245 |314.1593] 18 58 60 46
24 353  [452.3893| 21.5 61.5 65 54
30 561 ]706.8583| 25.6 65.6 70 66
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d |l |1ls]1 kp km C

10140 (24 ]16 356.0129 1751.566 0.16892
12140 [ 25| 15 518.8172 2235.192 0.188386
14140]21 |19 686.2578 2761.721 0.199032
16140 | 17 | 23 895.9182 3330.796 0.211966
2014014 | 26 1373.719 4595.515 0.230133
24140 | 11 |29 1944.24 6027.684 0.243886
30[40] 4 |36 2964.343 8487.533 0.258852

The 14 mm would probably be ok, but to satisfy the question, use a 16 mm bolt Ans.

8-23 Equation (f), p. 436: C= ky
k,+k,
Eq (817 k =—ahE
Al + Al

Steel

< AR

i
Cast Iron ( N A > [
;

For upper frustum, Eq. (8-20), with D=1.5d and t= 1.5 in:

B 0.57747(30)d _0.57747(30)d

b= 1n|:[1.155(1.5)+0.5d](2.5d)] - h{s (1.733+0.5d)}

[1.155(1.5)+2.5d |(0.5d) (1.733+2.5d)

Lower steel frustum, with D = 1.5d + 2(1) tan 30° = 1.5d + 1.155, and t = 0.5 in:
B 0.57747(30)d

k. =
’ | (1.733+0.5d)(2.5d +1.155)
(1.733+2.5d)(0.5d +1.155)
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For cast iron frustum, let £ =14. 5 Mpsi,and D=1.5d,and t=1 in:

Overall,

ky =
In [5

ke = (1ky +1/ks +1/k3)™!

0.57747(14.5)d

(1.155+0.5d)
(1.155+2.5d)

See Table 8-7 for other terms used.

Using a spreadsheet, with coarse-pitch bolts (units are in, in”, MIbf/in):

d A; Ag H L> L Ly [
0.375 | 0.0775 ]0.110447|0.328125|3.328125| 3.5 1 3
0.4375 | 0.1063 |0.15033 | 0.375 3.375 3.5 1.125 3
0.5 0.1419 | 0.19635 | 0.4375 | 3.4375 3.5 1.25 3
0.5625 | 0.182 ]0.248505|0.484375|3.484375| 3.5 1.375 3
0.625 0.226 (0.306796|0.546875|3.546875| 3.75 1.5 3
0.75 0.334 ]0.441786|0.640625|3.640625| 3.75 1.75 3
0.875 0.462 |0.60132| 0.75 3.75 3.75 2 3
d lq l; kp ki ko ks K C
0.375 2.5 0.5 ]1.031389|15.94599(178.7801(8.461979|5.362481|0.161309
0.4375 | 2.375 0.625 |1.383882(19.21506| 194.465 [10.30557(6.484256|0.175884
0.5 2.25 0.75 [1.791626]22.65332|210.6084|12.26874|7.668728|0.189383
0.5625 | 2.125 0.875 (2.245705|26.25931|227.2109|14.35052|8.915294(0.20121
0.625 2.25 0.75 |2.816255|30.03179(244.2728|16.55009(10.22344/0.215976
0.75 2 1 3.988786|38.07191(279.7762(21.29991{13.02271{0.234476
0.875 1.75 1.25 |5.341985| 46.7663 |317.1203]26.51374/16.06359| 0.24956
Usea ;- —12 UNC x 3.5 in long bolt Ans.

8-24 Equation (f), p. 436: C = ky
k,+k,
Eq (8-17) &, =—edE
Al + Al
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0.5"

Aluminum L 05"-0.5]

Steel

fe————

1.54+2(1-0.5)tan 30°

Top frustum, Eq. (8-20), with £=10.3Mpsi, D=1.5d,and t=1/2:

0.57747(10.3)d

: 1.1551/2+0.5d
In| 5
1.1551/2+2.5d

Middle frustum, with £=10.3 Mpsi, D =1.5d + 2(/ - 0.5) tan 30°, and t = 0.5 — [ /2

0.57747(10.3)d
[1.155(0.5-0.51)+0.5d +2(1-0.5) tan 30° | 2.54 +2(I-0.5)tan 30" ]}

[1.155(0.5-0.51)+2.5d +2(1-0.5) tan 30" ][ 0.5d +2(I~0.5)tan 30" |}

k,=

In g
Lower frustum, with £=30Mpsi, D=1.5d,t=1-0.5

B 0.57747(30)d

ol 1n5{[1.155(l—0.5)+0.5d]}

[1.155(1-0.5)+2.5d |

See Table 8-7 for other terms used.
Using a spreadsheet, with coarse-pitch bolts (units are in, in”, Mlbf/in)
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Size d A4, Aaq L> L Ly [ Ly

1 0.073 ] 0.00263 |0.004185| 0.6095 0.75 0.396 0.5365 0.354
2 0.086 0.0037 |0.005809| 0.629 0.75 0.422 0.543 0.328
3 0.099 | 0.00487 |0.007698 | 0.6485 0.75 0.448 0.5495 0.302
4 0.112 | 0.00604 |0.009852| 0.668 0.75 0.474 0.556 0.276
5 0.125 | 0.00796 [0.012272| 0.6875 0.75 0.5 0.5625 0.25

6 0.138 | 0.00909 |0.014957| 0.707 0.75 0.526 0.569 0.224
8 0.164 0.014 ]0.021124| 0.746 0.75 0.578 0.582 0.172
10 0.19 0.0175 ]0.028353| 0.785 1 0.63 0.595 0.37

Size d l ky k ko ks ko C

1 0.073 0.1825 ]0.194841]1.084468 | 1.954599 | 7.09432 | 0.635049 | 0.23478
2 0.086 0.215 ]0.261839|1.321595 | 2.449694 | 8.357692 | 0.778497 | 0.251687
3 0.099 0.2475 10.333134|1.570439 | 2.993366 |9.621064 | 0.930427 | 0.263647
4 0.112 0.28 10.403377]1.830494 | 3.587564 |110.88444|1.090613| 0.27

5 0.125 0.3125 [0.503097|2.101297 | 4.234381 | 12.14781 | 1.258846 | 0.285535
6 0.138 0.345 |0.566787|2.382414 | 4.936066 | 13.41118|1.434931 | 0.28315
8 0.164 0.41 ]0.801537[2.974009 | 6.513824 | 15.93792|1.809923 | 0.306931
10 0.19 0.225 | 1.15799 |3.602349 | 8.342138 | 18.46467|2.214214|0.343393

The lowest coarse series screw is a 1-64 UNC x 0.75 in long up to a 6—-32 UNC x 0.75 in

long.  Ans.

8-25

o T1s5(20) + 2114211 14)
n[1.155(20)+21+14](21—14)

0.57747(207)14

kp = (Uky + Vky)™" =k/2=5523/2 =2762 MN/m

From Eq. (8-22) with / =40 mm

which agrees with the earlier calculation.

m

0.577472'(207)14

0.5774(40)+0.5(14)

0.5774(40)+2.5(14)

=5523 MN/m

Ans.

=2762 MN/m

Ans.

For half of joint, Eq. (8-20): =20 mm, d = 14 mm, D =21 mm, and £ =207 GPa
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For Eq. (8-23), from Table 8-8, 4 =0.787 15, B =0.628 73
km =207(14)(0.78 715) exp [0.628 73(14)/40] = 2843 MN/m Ans.

This is 2.9% higher than the earlier calculations.

8-26 (a) Grip, /=10 in. Nut height, H = 41/64 in (Table A-31).
L>1+H=10+41/64=10.641 in. Let L = 10.75 in.
Table 8-7, Ly =2d +0.5=2(0.75)+ 0.5=2in, [y=L — Ly =10.75 -2 =8.75 in,
I,=1-1;,=10-8.75=125in
Ay =7(0.75%)/4 = 0.4418 in’, 4, = 0.373 in’ (Table 8-2)
Eq. (8-17),
k, = AAE 0.4418(0.373)30 =1.296 MIbf/in Ans.
Al +Al, 0.4418(1.25)+0.373(8.75)
Eq. (4-4), p. 149,
o _AE, (7/4)(1.125° -0.75%)30

" [ 10

=1.657 Mlibf/in Ans.

Eq. (), p. 436, C = kp/(ky + kn) = 1.296/(1.296 + 1.657) = 0.439  Ans.

(b)

10 1 | Tube compression o
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Nut advance & =/,
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(
=

Bolt extension  —

Let: N, =no. of turns, p = pitch of thread (in), N = no. of threads per in = 1/p. Then,
O0=0p+6y=N/p=N,/N (1)

But, 6, = F; / kp, and, 0,, = F; / k,,. Substituting these into Eq. (1) and solving for F; gives

Chap. 8 Solutions - Rev. A, Page 21/69



k,k, N,
bk N )
b m
1.296(1.657)10° 1/3

= =15150 Ibf Ans.
1.296+1.657 16

E:

8-27 Proof for the turn-of-nut equation is given in the solution of Prob. 8-26, Eq. (2), where
N, = 6/360°.

The relationship between the turn-of-nut method and the torque-wrench method is as
follows.

N, = Ky + oy EN  (turn-of-nut)
khkm

T = KFd (torque-wrench)
Eliminate F;

(k,+k, YNT 0

=Tk, Jka T30

8-28 (a) From Ex. 8-4, F; = 14.4 kip, k, = 5.21(10°) Ibf/in, &, = 8.95(10°) Ibf/in
Eq. (8-27): T=kF;d=0.2(14.4)(10*)(5/8) = 1800 Ibf - in ~ Ans.
From Prob. 8-27,

N = ky + &, FN = ngsé (14.4)(10%)1 1
Kk, 5.21(8.95)10

= 0.0481 turns = 17.3°  Ans.

Bolt group is (1.5) /(5/8) = 2.4 diameters. Answer is much lower than RB&W
recommendations.

8-29 C=ky/ (kp+kn)=3/(3+12) =0.2, P = P/ N = 80/6 = 13.33 kips/bolt
Table 8-2,4,=0.141 9 inz; Table 8-9, S, = 120 kpsi; Eqgs. (8-31) and (8-32),
Fi=0.754,S,=0.75(0.141 9)(120) = 12.77 kips
(a) From Eq. (8-28), the factor of safety for yielding is

S, 4, 120(0.1419)
n = = =1.
’ CP+F, 0.2(13.33)+12.77
(b) From Eq. (8-29), the overload factor is

Ans.
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P i

CP 0.2(13.33)

S,4,—F 120(0.1419)-12.77
= =1.60 Ans.

nL=

(c) From Eq. (803), the joint separation factor of safety is

F, .
n, = : 1277 =1.20 Ans.

P(1-C) 1333(1-02)

8-30 1/2 — 13 UNC Grade 8 bolt, K =0.20
(a) Proof strength, Table 8-9, S, = 120 kpsi
Table 8-2, 4,=0.141 9 in’
Maximum, F; =S, 4,=120(0.141 9)=17.0 kips ~ Ans.
(b) From Prob. 8-29, C=0.2, P =13.33 kips
Joint separation, Eq. (8-30) with ny =1
Minimum F; =P (1 -C) =13.33(1 - 0.2) =10.66 kips Ans.
(€) F, =(17.0 +10.66)/2 = 13.8 kips

Eq. (8-27), T=KF;d=0.2(13.8)10°0.5)/12 =115 Ibf - ft Ans.

8-31 (a) Table 8-1, 4, =20.1 mm®. Table 8-11, S, =380 MPa.
Eq. (8-31), F;i=0.75F, =0.754,S,= 0.75(20.1)380(107*) = 5.73 kN

k, 1

= = =0.278
ky+k, 1+2.6

Eq. (1), p. 436, C

Eq. (8-28) with n, = 1,

p S, ACE 02554 0.25(20.1)380(10™)
C C 0.278

Piotal = NP = 8(6.869) =55.0kN  Ans.

=6.869 kN

(b) Eq. (8-30) with no = 1,

F_ 5T 794N

T1-C 1-0278
Piota = NP =8(7.94)=63.5kN  Ans. Bolt stress would exceed proof strength

8-32 (a) Table 8-2, 4, =0.141 9 in®. Table 8-9, S, = 120 kpsi.
Eq.(8-31), F;= 0.75F, =0.75 4, S, = 0.75(0.141 9)120 = 12.77 kips

k, 4

ky+k, 4+12

Eq. (f), p. 436, C
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Eq. (8-28) with n,, = 1,
S,4,—F ) 0.25NS 4
Ptotal = =
C C
80(0.25
— ])totalc — ( ) — 470
0.255,4, 0.25(120)0.1419
Round to N=5bolts  Ans.

(b) Eq. (8-30) with no = 1,

F
P =N|——
total (I_CJ

Round to N=5bolts  Ans.

8-33 Bolts: From Table A-31, the nut height is H=10.8 mm. L >/ +H =40+ 10.8 =50.8
mm. Although Table A-17 indicates to go to 60 mm, 55 mm is readily available

Round up to L =55 mm Ans.

Eq. (8-14): Ly=2d+6=2(12) + 6 =30 mm

Table 8-7: 1, =L —Ly =55-30 =25mm, [/, =/-l; =40—-25 =15mm
Aq=r(12%/4=113.1 mm’, Table 8-1: 4, = 84.3 mm’

Eq. (8-17):
| AAE  113.1(84.3)207
"4l + AL 113.1(15)+84.3(25)

=518.8 MN/m

Members: Steel cyl. head: =20 mm, d =12 mm, D = 18 mm, £ =207 GPa. Eq. (8-20),

0.57747(207)12
k= [1.155
155(20)+18-12](18+12)
[1.155(20)+18+12](18-12)

=4470 MN/m

Cast iron: t =20 mm, d = 12 mm, D = 18 mm, £ = 100 GPa (from
Table 8-8). The only difference from &, is the material

k> = (100/207)(4470) = 2159 MN/m
Eq. (8-18): Ky = (1/4470 + 1/2159)"" = 1456 MN/m
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C=ky/ (kp + kp)=518.8/(518.8+1456) =0.263

Table 8-11: S, =650 MPa
Assume non-permanent connection. Egs. (8-31) and (8-32)

Fi=0754,5,= 0.75(84.3)(650)10° =41.1 kN

The total external load is Piowl = pg 4¢, Where 4. is the diameter of the cylinder which is
100 mm. The external load per bolt is P = Pioa /N. Thus

P =[67(100%/4](107)/10 =4.712 kN/bolt
Yielding factor of safety, Eq. (8-28):

S, 4, 650(84.3)107

n = - =129  Ans.
" CP+F  0.263(4.712)+41.10

Overload factor of safety, Eq. (8-29):

S,4,—F 650(84.3)107 —41.10

n, = =11.1 Ans.
CP 0.263(4.712)
Separation factor of safety, Eq. (8-30):
1, i 41.10 =11.8 Ans.

“P(1-C) 4712(1-0.263)

8-34 Bolts: Grip,/=1/2+5/8 =1.125 in. From Table A-31, the nut height is H = 7/16 in.
L>1+H=1.125+7/16=1.563 in.

Roundupto L=1.751in Ans.

Eq. (8-13): Ly=2d+0.25=2(0.5)+0.25=1.25in

Table 8-7: 1, =L —-Ly =1.75-125 =05in,/; =/-1;, =1.125-0.5 =0.6251in
Ay = 7(0.5%)/4=0.196 3 in’, Table 8-2: 4, =0.141 9 in’

Eq. (8-17):

0.196 3(0.1419)30
k= —aAE ( ) = 4.316 MiIbf/in
Al + AL, 0.196 3(0.625)+0.1419(0.5)
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Members: Steel cyl. head: t=0.51in,d =0.51in, D =0.75 in, E =30 Mpsi. Eq. (8-20),

L 0.57747(30)0.5
b [1.155(0.5)+0.75-0.5](0.75+0.5)
" [1.155(0.5)+0.75+0.5](0.75-0.5)

=33.30 MlIbf/in

Cast iron: Has two frusta. Midpoint of complete joint is at (1/2 + 5/8)/2 =
0.5625 in.
Upper frustum, t = 0.5625 —0.5 = 0.0625 in, d = 0.5 in,
D =0.75+2(0.5) tan 30° = 1.327 in, £ = 14.5 Mpsi (from Table 8-8)

Eq. (8-20) = k, =292.7 Mlbf/in
Lower frustum, 1= 0.5625 in, d = 0.5 in, D= 0.75 in, £ = 14.5 Mpsi
Eq. (8-20) = k3 =15.26 Mlbf/in

Eq. (8-18): K, =(1/33.30 + 1/292.7 + 1/15.26)"" = 10.10 Mlbf/in

C=ky/ (kp+kn)=4.316/(4316+10.10) =0.299

Table 8-9: S, = 85 kpsi
Assume non-permanent connection. Egs. (8-31) and (8-32)

F;=0.754,S,=0.75(0.141 9)(85) =9.05 kips

The total external load is Pioa1 = pg A¢, Where 4. is the diameter of the cylinder which is
3.5 in. The external load per bolt is P = Pyoa /N. Thus

P=[15007(3.5%/4](107%)/10 =1.443 kips/bolt

Yielding factor of safety, Eq. (8-28):

S .4, 85(0.1419)
n = P = :127 AnS.
" CP+F, O.299(1.443)+9.05
Overload factor of safety, Eq. (8-29):
S, 4 - F 85(0.141 9)—9.05
n, = = =6.98 Ans.

CP 0.299(1.443)

Separation factor of safety, Eq. (8-30):
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£, 9.05 =8.95 Ans.

" T P(1-C)  1.443(1-0.299)

8-35 Bolts: Grip: /=20 + 25 =45 mm. From Table A-31, the nut height is # = 8.4 mm.
L>[+H=45+ 8.4 =534 mm. Although Table A-17 indicates to go to 60 mm, 55 mm is
readily available

Round up to L =55 mm Ans.

Eq. (8-14): Lr=2d+6=2(10) + 6 =26 mm

Table 8-7: 1, =L —Ly =55-26 =29 mm, [, =[/-l; =45-29 =16 mm
Ay =m(10%)/4 =78.5 mm?, Table 8-1: 4, = 58.0 mm’

Eq. (8-17):
AAE  785(58.0)207

= = =320.8 MN/m
Al + 41, 785(16)+58.0(29)

Members: Steel cyl. head: =20 mm, d =10 mm, D =15 mm, £ =207 GPa. Eq. (8-20),

‘o 0.57747(207)10
' [1.155(20)+15-10](15+10)
n
[1.155(20)+15+10 ](15-10)

=3503 MN/m

Cast iron: Has two frusta. Midpoint of complete joint is at (20 + 25)/2 = 22.5 mm
Upper frustum, t =22.5 - 20 =2.5 mm, d = 10 mm,
D =15+ 2(20) tan 30° = 38.09 mm, £ = 100 GPa (from Table 8-8),
Eq. (8-20) = k, =45 880 MN/m
Lower frustum, = 22.5 mm, d = 10 mm, D = 15 mm, £ = 100 GPa
Eq. (8-20) = k3 =1632 MN/m
Eq. (8-18): k, =(1/3503 + 1/45 880 + 1/1632)™" = 1087 MN/m
C=ky/ (kp+ kn)=320.8/(320.8+1087) =0.228

Table 8-11: S, = 830 MPa
Assume non-permanent connection. Egs. (8-31) and (8-32)

F;=0.754, S, = 0.75(58.0)(830)10 =36.1 kN
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The total external load is Piowl = pg 4¢, Where 4. is the diameter of the cylinder which is
0.8 m. The external load per bolt is P = Pioa /N. Thus

P =550 (0.8%)/4)/36 = 7.679 kN/bolt

Yielding factor of safety, Eq. (8-28):

S, 4, 830(58.0)107 y
= = =1. ns.
” CP+F, 0.228(7.679)+36.1
Overload factor of safety, Eq. (8-29):
S,4,—F,  830(58.0)107 -36.1
n, = = =6.88 Ans.
CP 0.228(7.679)
Separation factor of safety, Eq. (8-30):
£ 36.1 =6.09 Ans.

" T P(1-C)  7.679(1-0.228)

8-36 Bolts: Grip, /=3/8 +1/2 =0.875 in. From Table A-31, the nut height is H = 3/8 in.
L>1+H=0.875+3/8=1.251n.

Let L =1.25in Ans.
Eq. (8-13): Lyr=2d+0.25=2(7/16) +0.25=1.125 in

Table 8-7:l; =L —Ly =1.25-1.125 =0.1251in,/, =1-1; =0.875-0.125 =
0.75 in

Ay = 7(7/16)*/4 =0.150 3 in’, Table 8-2: 4, = 0.106 3 in’

Eq. (8-17),
AAE 0.150 3(0.106 3)30

= - =3.804 MIbf/in
Al + AL, 0.150 3(0.75)+0.106 3(0.125)

Members: Steel cyl. head: £=0.375 in,d =0.4375 in, D = 0.65625 in, E =30 Mpsi. Eq.
(8_20)3
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P 0.57747(30)0.4375
b | [1.155(0.375)+0.65625 - 0.4375 |(0.65625 +0.4375)
" [1.155(0.375)+0.65625 +0.4375](0.65625 - 0.4375)

=31.40 Mlbf/in

Cast iron: Has two frusta. Midpoint of complete joint is at (3/8 + 1/2)/2 =
0.4375 in.
Upper frustum, ¢ = 0.4375 —-0.375 = 0.0625 in, d = 0.4375 in,
D =0.65625 +2(0.375) tan 30° = 1.089 in, £ = 14.5 Mpsi (from Table
8-8)
Eq. (8-20) = k, =195.5 Mlbt/in

Lower frustum, = 0.4375 in, d = 0.4375 in, D = 0.65625 in, E = 14.5
Mpsi

Eq. (8-20) = k3 = 14.08 Mlbf/in
Eq. (8-18): Ky, = (1/31.40 + 1/195.5 + 1/14.08)"' = 9.261 MIbf/in
C=ky ! (kp + kn) = 3.804/(3.804 + 9.261) =0.291

Table 8-9: S, =120 kpsi
Assume non-permanent connection. Egs. (8-31) and (8-32)

F;=0.75 4, S, =0.75(0.106 3)(120) =9.57 kips

The total external load is Pioa1 = pg A¢, Where 4. is the diameter of the cylinder which is
3.25 in. The external load per bolt is P = Pioa /N. Thus

P=[12007(3.25%)/4](107)/8 =1.244 kips/bolt

Yielding factor of safety, Eq. (8-28):

S A 120(0.106 3)
n =—2*1 = =1. Ans.
" CP+F, 0.291(1.244)+9.57
Overload factor of safety, Eq. (8-29):
S, 4 - F 120(0.106 3)—9.57
n, = = =8.80 Ans.

CP 0.291(1.244)

Separation factor of safety, Eq. (8-30):
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£, 9.57 =10.9 Ans.

" T P(-C) 1244(1-0291)

8-37 From Table 8-7, h = t; =20 mm
Fort,>d,l=h+d/2 =20+ 12/2 =26 mm
L>h+15d=20+1.5(12) =38 mm. Round up to L = 40 mm
Lr=2d+6=2(12)+ 6 =30 mm
ly=L—-Lr =40-20=10 mm
l,=1-1;, =26—-10=16 mm

From Table 8-1, 4, = 84.3 mm’. 4, = 7 (12%)/4 = 113.1 mm’
Eq. (8-17),
_ AAE 113.1(84.3)207
" AL+ AL 113.1(16)+84.3(10)
Similar to Fig. 8-21, we have three frusta.
Top frusta, steel: t=17/2 =13 mm, d =12 mm, D = 18 mm, £ =207 GPa. Eq. (8-20)

=744.0 MN/m

P 0.57747(207)12
b [1155(13)+18-12](18+12)
n[1.155(13)+18+12](18—12)

=5316 MN/m

Middle frusta, steel: =20 — 13 =7mm, d =12 mm, D =18 + 2(13 — 7) tan 30° =24.93
mm, £ =207 GPa. Eq. (8-20) = k&, =15 660 MN/m

Lower frusta, cast iron: t=26—-20=6 mm,d =12 mm, D =18 mm, £ = 100 GPa (see
Table 8-8). Eq. (8-20) = k3 =3 887 MN/m

Eq. (8-18),  kn=(1/5316+1/15660 + 1/3 887)"" = 1964 MN/m
C=ky/(kp + k) = 744.0/(744.0 + 1 964) =0.275

Table 8-11: S, = 650 MPa. From Prob. 8-33, P =4.712 kN. Assume a non-permanent
connection. Egs. (8-31) and (8-32),

Fi=0.754,S,= 0.75(84.3)(650)10° =41.1 kN
Yielding factor of safety, Eq. (8-28)

S 4, 650(84.3)10
n=—=+r——= =1.29 Ans.
’ CP+F, 0.275(4.712)+41.1

Overload factor of safety, Eq. (8-29)
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S, 4 ~F 650(84.3)107 —41.1
CP 0.275(4.712)

Separation factor of safety, Eq. (8-30)

n, = F__ 4.1 =12.0 Ans
" P(1-C) 4712(1-0275) '

8-38 From Table 8-7, A=t =0.51n
Fort,>d,I=h+d/2=05+0.52=0.751in
L>h+15d=0.5+1.50.5)=1.251in. Let L=1.25 in
Lr=2d+0.25=2(0.5)+0.25=1.25 in. All threaded.
From Table 8-1, 4,=0.141 9 in. The bolt stiffness is ky =4, E/1=0.141 9(30)/0.75 =
5.676 Mlbf/in
Similar to Fig. 8-21, we have three frusta.
Top frusta, steel: t=1/2=0.3751in,d = 0.5 in, D =0.75 in, E =30 Mpsi
r 0.57747(30)0.5
b [1.155(0.375)+0.75-0.5](0.75+0.5)
" [1.155(0.375)+0.75+0.5](0.75-0.5)

Middle frusta, steel: t=0.5 - 0.375=0.1251in, d = 0.5 in,
D=0.75+2(0.75 - 0.5) tan 30° =1.039 in, £ = 30 Mpsi.
Eq. (8-20) = k, =184.3 Mlbf/in

=38.45 Mlbf/in

Lower frusta, cast iron: 1=0.75-0.5=0.251n,d=0.51in, D=0.75 in, E = 14.5 Mpsi.
Eq. (8-20) = k3 =23.49 MIbf/in

Eq. (8-18), k= (1/38.45+ 1/184.3 + 1/23.49)" = 13.51 Mlbf/in
C=tky/(kp + k) =5.676/ (5.676 + 13.51) = 0.296

Table 8-9, S, = 85 kpsi. From Prob. 8-34, P = 1.443 kips/bolt. Assume a non-permanent
connection. Egs. (8-31) and (8-32),

F;=0.75 4,8, = 0.75(0.141 9)(85) = 9.05 kips

Yielding factor of safety, Eq. (8-28)

S, 4, 85(0.1419)
n,= = =1.27 Ans.
CP+F, 0.296(1.443)+9.05

Overload factor of safety, Eq. (8-29)
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S,4,—F  85(0.1419)-9.05

l

n, = = =7.05 Ans.
cpP 0.296(1.443)

Separation factor of safety, Eq. (8-30)

F 9.05
n, : =8.91 Ans.

" P(1-C)  1.443(1-0.296)

8-39

From Table 8-7, 4 = ¢t; =20 mm
Fort,>d,l=h+d/2=20+10/2=25mm
L>h+15d=20+1.5(10) =35 mm. Let L =35 mm
Lr=2d+6=2(10)+ 6 =26 mm

ly=L—-Lr =35-26=9 mm

l,=1-1;, =25-9=16 mm

From Table 8-1, 4; = 58.0 mm?>. A= 7r(102)/4 = 78.5 mm>
Eq. (8-17),
_ AAE  785(58.0)207

" Al + 41, 78.5(16)+58.0(9)
Similar to Fig. 8-21, we have three frusta.
Top frusta, steel: r=17//2=12.5 mm, d =10 mm, D = 15 mm, £ = 207 GPa. Eq. (8-20)

0.57747(207)10

[1.155(12.5)+15-10 |(15+10)
& [1.155(12.5)+15+10](15-10)

Middle frusta, steel: £ =20 - 12.5=7.5 mm, d =10 mm, D =15 + 2(12.5 — 7.5) tan 30° =
20.77 mm, E =207 GPa. Eq. (8-20) = 4k, =10975 MN/m

=530.1 MN/m

=4163 MN/m

k, =

Lower frusta, cast iron: t=25—-20=5mm, d =10 mm, D =15 mm, £ = 100 GPa (see
Table 8-8). Eq. (8-20) = k3 =3239 MN/m

Eq. (8-18),  ky=(1/4163 +1/10 975+ 1/3 239)"' = 1 562 MN/m
C=ky/(kp + k) =530.1/(530.1 + 1 562) =0.253

Table 8-11: S, = 830 MPa. From Prob. 8-35, P = 7.679 kN/bolt. Assume a non-permanent
connection. Egs. (8-31) and (8-32),

Fi=0754,5,= 0.75(58.0)(830)10° =36.1 kN

Yielding factor of safety, Eq. (8-28)
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S, 4, 830(58.0)107

n = = =1.27 Ans.
" CP+F, 0.253(7.679)+36.1
Overload factor of safety, Eq. (8-29)
S,4,—F, 830(58.0)107 -36.1
n, = = =6.20 Ans.
CP 0.253(7.679)
Separation factor of safety, Eq. (8-30)
F 36.1 =6.29 Ans.

" T P(1-C) 7.679(1-0.253)

8-40 From Table 8-7, h =t =0.375 in
Fort,>d, 1=h+d/2=0375+0.4375/2=0.59375 in
L>h+15d=0375+1.5(0.4375)=1.031 in. Round up to L = 1.25 in
Lr=2d+0.25=2(0.4375)+0.25=1.125 in
ly=L—L; =125-1.125=0.125
I,=1-1; =0.59375 - 0.125 = 0.46875 in
Ay = 7(7/16)*/4 =0.150 3 in’, Table 8-2: 4, =0.106 3 in’

Eq. (8-17),
_ AAE 0.150 3(0.106 3)30
" AL+ Al 0.150 3(0.46875)+0.106 3(0.125)

Similar to Fig. 8-21, we have three frusta.
Top frusta, steel: t=1/2=0.296875 in, d = 0.4375 in, D = 0.65625 in, E = 30 Mpsi

=5.724 Mlbf/in

P 0.57747(30)0.4375
b [1.155(0.296875) +0.656255 - 0.4375 ](0.75 + 0.656255)
" [1.155(0.296875)+0.75+0.656255 |(0.75—0.656255)
Middle frusta, steel: t = 0.375 — 0.296875 = 0.078125 in, d = 0.4375 in,

D =0.65625 +2(0.59375 — 0.375) tan 30° = 0.9088 in, £ = 30 Mpsi.
Eq. (8-20) =k, =215.8 Mlbf/in

=35.52 Mlbf/in

Lower frusta, cast iron: = 0.59375—-0.375=0.21875 in, d =0.4375 in, D = 0.65625 in,
E=14.5 Mpsi. Eq. (8-20) = k3 =20.55 Mlbf/in

Eq. (8-18), Ky =(1/35.52 + 1/215.8 + 1/20.55)"" = 12.28 MIbf/in

C=ky/(kp + kn)=5.724/(5.724 + 12.28) =0.318
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Table 8-9, S, = 120 kpsi. From Prob. 8-34, P = 1.244 kips/bolt. Assume a non-permanent
connection. Egs. (8-31) and (8-32),

F;=0.75 4,8, = 0.75(0.106 3)(120) = 9.57 kips

Yielding factor of safety, Eq. (8-28)

S A 120(0.106 3)
n =—-r—-= =1.28 Ans.
" CP+F, 0.318(1.244)+9.57
Overload factor of safety, Eq. (8-29)
S,4,—F, 120(0.106 3)-9.57
nL = = = Al’lS.
CcP 0.318(1.244)
Separation factor of safety, Eq. (8-30)
F 9.57 =11.3 Ans.

" T P(1-C)  1244(1-0318)

8-41

This is a design problem and there is no closed-form solution path or a unique solution.
What is presented here is one possible iterative approach. We will demonstrate this with
an example.

1. Select the diameter, d. For this example, let d = 10 mm. Using Eq. (8-20) on members,
and combining using Eq. (8-18), yields k,, = 1 141 MN/m (see Prob. 8-33 for method of
calculation.

2. Look up the nut height in Table A-31. For the example, H = 8.4 mm. From this, L is
rounded up from the calculation of / + H =40 + 8.4 = 48.4 mm to 50 mm. Next,
calculations are made for Ly =2(10) + 6 =26 mm, /[, =50 — 26 =24 mm, [, =40 — 24 =
16 mm. From step 1, A4 =7z(102)/4 = 78.54 mm®. Next, from Table 8-1, 4, = 78.54 mm”.
From Eq. (8-17), k;, = 356 MN/m. Finally, from Eq. (e), p. 421, C = 0.238.

3. From Prob. 8-33, the bolt circle diameter is £ =200 mm. Substituting this for D in Eq.
(8-34), the number of bolts are

zD, 7[(200
4d — 4(10)
Rounding this up gives N = 16.

N = ):15.7

4. Next, select a grade bolt. Based on the solution to Prob. 8-33, the strength of ISO 9.8
was so high to give very large factors of safety for overload and separation. Try ISO 4.6
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with S, = 225 MPa. From Eqgs. (8-31) and (8-32) for a non-permanent connection, F; =
9.79 kN.

5. The external load requirement per bolt is P =1.15 p, A4./N, where from Prob 8-33, p, =
6 MPa, and 4. = 7(100%)/4. This gives P =3.39 kN/bolt.

6. Using Eqgs. (8-28) to (8-30) yield n, = 1.23, n; = 4.05, and no = 3.79.
Steps 1 - 6 can be easily implemented on a spreadsheet with lookup tables for the tables

used from the text. The results for four bolt sizes are shown below. The dimension of each
term is consistent with the example given above.

d ko H L Ly Ly [ Aq A, kp

8 854 68 50 22 28 12 5026 366 2339
10 1141 84 50 - 26 -~ 24 16 7854 58 356

14 1950 12.8 55 34 21 19 1539 115 686.3

d _C N S [ B P n  nm no
8 0215 20 225 618 271 122 3.53 290
10 10238 16 | 225 1979 1339 123 | 405 3.79
120263 13% 225 14237417 124 433 4.63
14 0276 12 225 1941 452 125 5.19 594

*Rounded down from13.08997, so spacing is slightly greater than four diameters.

Any one of the solutions is acceptable. A decision-maker might be cost such as
N x cost/bolt, and/or N x cost per hole, etc.

8-42

This is a design problem and there is no closed-form solution path or a unique solution.
What is presented here is one possible iterative approach. We will demonstrate this with
an example.

1. Select the diameter, d. For this example, let d = 0.5 in. Using Eq. (8-20) on three frusta
(see Prob. 8-34 solution), and combining using Eq. (8-19), yields &,, = 10.10 MIbf/in.

2. Look up the nut height in Table A-31. For the example, H = 0.4375 in. From this, L is
rounded up from the calculation of / + H=1.125+ 0.4375 = 1.5625 in to 1.75 in. Next,
calculations are made for Ly =2(0.5) +0.25=1.251n,/,=1.75-125=0.51n,/,=1.125
—0.5=10.625 in. From step 1, 44 =7(0.5%)/4 = 0.1963 in. Next, from Table 8-1, 4, =
0.141 9 in®. From Eq. (8-17), k» = 4.316 Mlbf/in. Finally, from Eq. (e), p. 421, C = 0.299.

3. From Prob. 8-34, the bolt circle diameter is £ = 6 in. Substituting this for D, in Eq. (8-
34), for the number of bolts
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NoZDe_7(0) s
4d ~ 4(05)

Rounding this up gives N = 10.

4. Next, select a grade bolt. Based on the solution to Prob. 8-34, the strength of SAE grade
5 was adequate. Use this with S, = 85 kpsi. From Egs. (8-31) and (8-32) for a non-
permanent connection, F; = 9.046 kips.

5. The external load requirement per bolt is P =1.15 p, A./N, where from Prob 8-34,
pe = 1500 psi, and 4. = 7(3.5%)/4 . This gives P = 1.660 kips/bolt.

6. Using Egs. (8-28) to (8-30) yield n, = 1.26, n;, =6.07, and no =7.78.

d ke H L Ly 14 I, As A ky
0.375] 6.75 032811 1.5 1 1 [ 0.5 [0.625/0.11040.0775 2.383
0.4375 9.17 0375 1.5 1.125 0375 0.75 0.15030.1063 3.141
0.5 10.10 04375 1.75 125 0.5 0.625 0.19630.1419 4316
0.5625 11.98 0.4844 1.75 1375 0.375 0.75 0.2485 0.182 5.329

4 C N S Fi P n  n _n
037510261 13 | 85 |4.941|1.277| 1.25 | 495 | 5.24
0.4375 0273 11 85 6.777 1.509 1.26 548 6.18
0.5 0299 10 85 9.046 1.660 1.26 6.07 7.78
0.5625 0308 9 | 85 | 11.6 |1.844| 1.27 | 6.81 | 9.09

Any one of the solutions is acceptable. A decision-maker might be cost such as
N x cost/bolt, and/or N x cost per hole, etc.

8-43

This is a design problem and there is no closed-form solution path or a unique solution.
What is presented here is one possible iterative approach. We will demonstrate this with
an example.

1. Select the diameter, d. For this example, let d = 10 mm. Using Eq. (8-20) on three frusta
(see Prob. 8-35 solution), and combining using Eq. (8-19), yields &, = 1 087 MN/m.

2. Look up the nut height in Table A-31. For the example, H = 8.4 mm. From this, L is
rounded up from the calculation of / + H =45 + 8.4 = 53.4 mm to 55 mm. Next,
calculations are made for Ly =2(10) + 6 =26 mm, /; =55 -26=29 mm, [, =45 -29 =
16 mm. From step 1, A4 =7 (10%)/4 = 78.54 mm®. Next, from Table 8-1, 4, = 58.0 mm®.
From Eq. (8-17), k» = 320.9 MN/m. Finally, from Eq. (e), p. 421, C =0.228.

3. From Prob. 8-35, the bolt circle diameter is £ = 1000 mm. Substituting this for D; in
Eq. (8-34), for the number of bolts
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zD, 7(1000)
4d — 4(10)

Rounding this up gives N = 79. A rather large number, since the bolt circle diameter, E is
so large. Try larger bolts.

N: = 78.5

4. Next, select a grade bolt. Based on the solution to Prob. 8-35, the strength of ISO 9.8
was so high to give very large factors of safety for overload and separation. Try ISO 5.8
with §, = 380 MPa. From Egs. (8-31) and (8-32) for a non-permanent connection, F; =

16.53 kN.

5. The external load requirement per bolt is P =1.15 p, A./N, where from Prob 8-35, p,
=0.550 MPa, and 4. = 7(800%)/4 . This gives P = 4.024 kN/bolt.

6. Using Egs. (8-28) to (8-30) yield n, = 1.26, n;, =6.01, and no =5.32.
Steps 1 - 6 can be easily implemented on a spreadsheet with lookup tables for the tables

used from the text. The results for three bolt sizes are shown below. The dimension of
each term is consistent with the example given above.

10 55 026 29 16 7854 58 3209
20 65 46 19

36 80 | 78

d _C Sy AL ony -onp no
100228 79 380 14024 126 601 5.32
20 40 380 69.83 129 95 127

36 0361 | 380 1232.8/14.45 13 | 149 252

A large range is presented here. Any one of the solutions is acceptable. A decision-maker
might be cost such as N x cost/bolt, and/or N x cost per hole, etc.

8-44

This is a design problem and there is no closed-form solution path or a unique solution.
What is presented here is one possible iterative approach. We will demonstrate this with
an example.

1. Select the diameter, d. For this example, let d = 0.375 in. Using Eq. (8-20) on three
frusta (see Prob. 8-36 solution), and combining using Eq. (8-19), yields k,, = 7.42 MIbf/in.

2. Look up the nut height in Table A-31. For the example, H = 0.3281 in. From this,

L > [+ H=0.875+0.3281 =1.2031 in. Rounding up, L = 1.25. Next, calculations are
made for L7 =2(0.375)+0.25=11in,/,=125-1=0.251n,1,=0.875 - 0.25 = 0.625 in.
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Fromstep 1, A4 =7z(0.3752)/4 =0.1104 in>. Next, from Table 8-1, 4, = 0.0775 in®. From
Eq. (8-17), k, = 2.905 Mlbf/in. Finally, from Eq. (e), p. 421, C =0.263.

3. From Prob. 8-36, the bolt circle diameter is £ = 6 in. Substituting this for D, in Eq. (8-
34), for the number of bolts

oD 7(6) ¢
4d  4(0.375)

Rounding this up gives N = 13.

4. Next, select a grade bolt. Based on the solution to Prob. 8-36, the strength of SAE grade
8 seemed high for overload and separation. Try SAE grade 5 with S, = 85 kpsi. From Egs.
(8-31) and (8-32) for a non-permanent connection, F; = 4.941 kips.

5. The external load requirement per bolt is P =1.15 p, A./N, where from Prob 8-34,
pe=1200psi,and 4. = 7(3.25%)/4. This gives P = 0.881 kips/bolt.

6. Using Eqgs. (8-28) to (8-30) yield n, = 1.27, n;, = 6.65, and ny =7.81.

Steps 1 - 6 can be easily implemented on a spreadsheet with lookup tables for the tables
used from the text. For this solution we only looked at one bolt size, % —16, but evaluated

changing the bolt grade. The results for four bolt grades are shown below. The dimension
of each term is consistent with the example given above.

d km H L LT ,,,,,,,l,d,,,,,,,, ll‘ ,,,,,,A,d,,,,, Al‘ L,,,,,,k,b,,,,,,,
0.375 7.42 0.3281 1.25 1 0.25 0.625 0.11040.0775 2.905

SAE
d  C | N |grade S, Fi P n  n m

0375 0281 13 1 | 33 1918 0.881 1.18 258 3.03 |
03750281 13 | 2 | 55 13.197]0.881 1.24 | 430 | 5.05
0.375 0281 13 4 65 3778 0.881 1.25 5.08 5.97

0.375/0.281 13 5 85 4941 0.881 1.27  6.65  7.81

Note that changing the bolt grade only affects S,, F;, n,, n;, and no. Any one of the
solutions is acceptable, especially the lowest grade bolt.

8-45

(@) F} = RF/_, sin@

b,max

Half of the external moment is contributed by the line load in the interval 0 < < 7
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M ["FR*singdo = ["F;, R*sin® 0 do
2 0 0o b

max

= —F) R

2 b,max

% T
2

from which F' = M

b,max 2
T

M
7R?

¢ . b M
Fmax = I¢l E"R Sln@d@ = I¢l RSlngde = ﬂ__R(COS ¢1 - COS ¢2)

Noting ¢, = 75°, ¢, = 105°,

F. = 12 000 (cos75" - cos105°) = 494 Ibf  Ans.
7(8/2)
M 27 2M
b F_=F_RA¢J = R[—j:—
( ) max b,max ¢ 7TR2( ) N RN
_ 2020000 _ 500 1pp g,

T (8/2)(12)
(C) F=Fpaxsin 0

M =2 Fax R [(1) sin® 90° + 2 sin® 60° + 2 sin” 30° + (1) sin” (0)] = 6F maxR
from which,

_ M 12000
"™ 6R  6(8/2)
The simple general equation resulted from part ()

= 500 Ibf Ans.

_am
max RN

540 (a) From Table 8-11, S, = 600 MPa. From Table 8-1, 4, =353 mm®.
Eq. (8-31): F,=0.94,5,=0.9(353)(600)(107)=190.6 kN
Table 8-15: K=0.18
Eq. (8-27): T= KF;d = 0.18(190.6)(24) = 823N-m  Ans.
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(b) Washers: t = 4.6 mm,d = 24 mm, D = 1.5(24) = 36 mm, £ =207 GPa.

Eq. (8-20),
P 0.57747(207)24
b [1.155(4.6)+36-24](36+24)
" [1.155(4.6)+36+24 |(36-24)

=31990 MN/m

Castiron: # = 20mm, d = 24 mm, D = 36 + 2(4.6) tan 30° = 41.31 mm, E = 135 GPa.
Eq. (8-20) = k, =10 785 MN/m

Steel joist: £ =20 mm, d =24 mm, D =41.31 mm, £ =207 GPa. Eq. (8-20) = k3 =16
537 MN/m

Eq. (8-18):  kn=(2/31990+1/10785+1/16537)" =4 636 MN/m

Bolt: / =2(4.6) + 2(20) = 49.2 mm. Nut, Table A-31, H=21.5 mm. L >49.2 +21.5=70.7
mm. From Table A-17, use L = 80 mm. From Eq. (8-14)

Ly =2(24)+6 = 54mm,l; = 8054 = 26 mm, /, = 49.2 26 = 23.2 mm
From Table (8-1), 4, =353 mm?%, Ay = 7(24%) /4 =452.4 mm’

Eq. (8-17):
_ AAE 4524(353)207
" Al + Al 452.4(23.2)+353(26)

=1680 MN/m

C=ky/ (ky+ky)=1680/(1680 + 4636) = 0.266, S, = 600 MPa, F'; = 190.6 kN,
P:Ptotal /N=18/4=4.5kN

Yield: From Eq. (8-28)

S,4,  600(353)10°

" CP+F, 0.266(4.5)+190.6

Load factor: From Eq. (8-29)

1

CP 0.266(4.5)

S A -F, 600(353)1073—190.6
—_r = =17.7 Ans.

np

Separation: From Eq. (8-30)
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£, 190.6 =577 Ans.

" T P(1-C)  4.5(1-0.266)

As was stated in the text, bolts are typically preloaded such that the yielding factor of
safety is not much greater than unity which is the case for this problem. However, the
other load factors indicate that the bolts are oversized for the external load.

8-47 (a) ISO M 20 x 2.5 grade 8.8 coarse %aitch bolts, lubricated.

Table 8-2, A; =245 mm
Table 8-11, S, = 600 MPa
F;=0.90 4, S,=0.90(245)600(10) = 132.3 kN
Table 8-15, K=0.18
Eq. (8-27), T=KF;d=0.18(132.3)20=476 N - m Ans.
(b) Table A-31, H=18 mm, L > Ls + H=48 + 18 = 66 mm. Round up to L = 80 mm per
Table A-17.
L, =2d+6=220)+ 6 =46 mm
[, =L-L, =80-46 =34 mm
[ =1-1, =48 -34 =14 mm

Ay =7 (20%) /4 =314.2 mm’,

_ AAE 314.2(245)(207)
AL+ AL, 314.2(14) + 245(34)

=1251.9 MN/m

Members: Since all members are steel use Eq. (8-22) with £ =207 MPa, [ =48 mm, d =

20mm
0.57747(207)20
f o= 0ST74nkd 7(207) — 4236 MN/m
0.57741+0.5d 0.5774(48)+0.5(20)
2In| 5= 5
0.57741+2.5d 0.5774(48)+2.5(20)
co k12519 o

k,+k, 1251.9+4236
P:Ptotal /N: 40/2 =20 kN,
Yield: From Eq. (8-28)

S A4, 600(245)10°°
£ = =1.07 Ans.

" T CP+F  0228(20)+1323
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Load factor: From Eq. (8-29)

S,4,—F  600(245)107 ~132.3

l

cP 0.228(20)

n, = =3.22  Ans.

Separation: From Eq. (8-30)

F 1323
= d = :857 A .
" T P1-C) 20(1-0228) "

8-48 From Prob. 8-29 solution, P« =13.33 kips, C=0.2, F; =12.77 kips, 4,=0.141 9 in’
o, _E_ 1277 90.0 kpsi
A 0.1419

t

e 02(13.33)

Eq. (8-39), = = =9.39 kpsi
% (8:39) %724~ 2(0.1419) P
Eq. (8-41), o,=0,+0,=9.39+90.0=99.39 kpsi
(a) Goodman Eq. (8-45) for grade 8 bolts, S, = 23.2 kpsi (Table 8-17), S, = 150 kpsi
(Table 8-9)

S,(S,~c,) 23.2(150-90.0)
n, = = =0.856  Ans.
« +S,) 9.39(150+23.2)

(b) Gerber Eq. (8-46)
[ S,\[S2 +45, (S, +0'l.)—Sft—20'l.Se]

= 20,8,
.
2(9.39)23.2

[150\/1502 +4(23.2)(23.2+90.0) ~150? —2(90.0)23.2} =132 dns.

(c) ASME-elliptic Eq. (8-47) with S, = 120 kpsi (Table 8-9)
S ( 2 2 2 )
n.:—sﬂ/s +8*-c-0.8
/ (S +52 ) P

~ 232
- 9.39(120” +23.2%)

[120\/1202 +23.2% -90° —90(23.2)] =130 dns.

8-49 Attention to the Instructor . Part (d) requires the determination of the endurance strength,
S., of a class 5.8 bolt. Table 8-17 does not provide this and the student will be required to
estimate it by other means [see the solution of part (d)].

Per bolt, Pymax = 60/8 = 7.5 kN, Ppmin =20/8 = 2.5 kN
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— kb — 1
k,+k, 1+2.6
(a) Table 8-1, 4, =20.1 mm?; Table 8-11, S, =380 MPa
Egs. (8-31) and (8-32), F; = 0.75 4, S, = 0.75(20.1)380(107*) = 5.73 kN
, S 4, 380(20.1)10°°
Yield, Eq. (8-28), n =—>~—-= =0.
" CP+F, 0278(7.5)+5.73
S,4,—F, 380(20.1)107 -5.73

b) Overload, Eq. (8-29), = i
® % (529 T ep 0.278(7.5)

. F, 5.73
C) Separation, Eq. (8-30), n, = ! = =1.06  Ans.
(0) Sep G @30 = ) T 75(1-0.278)

=0.278

Ans.

=0.915 Ans.

P —P__ 2 5-2.5)10°
(d) Goodman, Eq. (8-35), o, = C (B =B ) = 0.278(7.5-2.5)10 =34.6 MPa
24, 2(20.1)
4 3 5.73(10°
Eq. (8-36), o, = C(P”ma"+P”mm)+5=0'278(7‘5+2'5)10 + ( )=354.2 MPa
24 A 2(20.1) 20.1

Table 8-11, S, = 520 MPa, o; = F; /4, = 5.73(10%)/20.1 = 285 MPa

We have a problem for S.. Table 8-17 does not list S, for class 5.8 bolts. Here, we will
estimate S, using the methods of Chapter 6. Estimate S from the,

Eq. (6-8), p. 282, S!'=0.55,=0.5(520) =260 MPa.

Table 6-2, p. 288, a=451,b=-0.265

Eq. (6-19),p.287,  k,=aS,, =4.51(520""")=0.860

Eq. (6-21), p. 288, kyp=1

Eq. (6-26), p.290, ke.=0.85

The fatigue stress-concentration factor, from Table 8-16, is K, = 2.2. For simple axial
loading and infinite-life it is acceptable to reduce the endurance limit by K and use the

nominal stresses in the stress/strength/design factor equations. Thus,
Eq. (6-18), p. 287, Se =ka kp k. S. /Ky =0.86(1)0.85(260) / 2.2 = 86.4 MPa

Eq. (8-38),
Se(Su, —0'[) 86.4(520—285)
n,= = =(0.847 Ans.
S0, +Se(0'm —O'i) 520(34.6)+86.4(354.2—285)

It is obvious from the various answers obtained, the bolted assembly is undersized. This
can be rectified by a one or more of the following: more bolts, larger bolts, higher class
bolts.

C=ky/ (kp+kn)=4/(4+12)=0.25
(a) Table 8-2, 4, = 0.141 9 in®, Table 8-9, S, =120 kpsi and S, = 150 kpsi

Chap. 8 Solutions - Rev. A, Page 43/69



Table 8-17, S, =23.2 kpsi
Egs. (8-31) and (8-32), F; =0.754,S, = oi= F;/4,=0.75S, =0.75(120) =90 kpsi

Eq.(8-35), o, = C (s = Fomn) _ 025(8-2) =5.29 kpsi
“ 24 2(0.1419)
Eq. (8-36), o, = C (s * B t+o, =w+9o =98.81 kpsi
24 2(0.1419)
Eq. (8-38),
S,(S,-0o,) 23.2(150-90)
n,= = =1.39 Ans.

S,0,+8,(0,—0,) 150(5.29)+23.2(98.81-90)

8-51 From Prob. 8-33, C=10.263, Pnax = 4.712 kN / bolt, F; =41.1 kN, S, = 650 MPa, and

A, =84.3 mm>
o; =0.75 S, =0.75(650) = 487.5 MPa
0.263(4.712)10°
Eq. (8-39): o, = CP_ ( ) =7.350 MPa
24, 2(84.3)
Eq. (8-40) o, :2%)+§ =7.350+487.5=494.9 MPa

t

(a) Goodman: From Table 8-11, S, = 900 MPa, and from Table 8-17, S, = 140 MPa
S, (Sm al.) B 140(900 487.5)

o, (S, +5S,)  7.350(900+140)

Eq. (8-45): n, = =755  Ans.

(b) Gerber:
Eq. (8- 46)'

| S2+4S,(S,+0,) -5 —20.3}
.f 20S |: ut\/ 1) ut e

ut

1

= ——————[900,/900° + 4(140) (140 + 487.5) ~900° - 2(487.5)(140)
2(7.350)140[ V900" +4(140)(140 +487.5) (487.5)(140)

=114 Ans.
(c) ASME-elliptic:

Eq. (8-47):
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s,
n_,.—m(s JS;+8i-07-a.,)

~ 140
~ 7.350(6507 +140°)

|650V/650° +140° ~487.57 ~487.5(140)|=9.73 s

8-52 From Prob. 8-34, C =0.299, Puax = 1.443 kips/bolt,F; = 9.05 kips, S, = 85 kpsi, and

A4,=0.141 9 in’
0,=0.75§, = 0.75(85) =63.75 kpsi
0.299(1.443
Eq. (8-37): o, = cP = ( ) =1.520 kpsi
24, 2(0.141 9)
CP
Eq. (8-38) o, =g+a =1.520+63.75=65.27 kpsi

1

(a) Goodman: From Table 8-9, S,, = 120 kpsi, and from Table 8-17, S, = 18.8 kpsi

S,(S,~o,) 18.8(120-63.75)

Eq. (8-45): = =301 dAns.
q- (8-45) = o,(S,+58,) 1.520(120+18.8) "
(b) Gerber:
Eq. (8- 46)‘
S2+4S,(S,+0,) -5 —2a.SJ
ny = 20,8, |: ”f\/ ’) u be

1

= [ 120,/120° + 4(18.6)(18.6 + 63.75) ~120° -2(63.75)(18.6)
2(1.520)18.6[ 120" +4(18.6)(18.6+63.75) (63.75)(18.6)

=745 Ans.
(c) ASME-elliptic:

Eq. (8-47):

S, [
nf—W(S S2+S2—O' —O'S)

~ 18.6
- 1.520(85” +18.67)

|85V857+18.67~63.757 ~63.75(18.6) [ =622 ns.
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8-53 From Prob. 8-35, C = 0.228, Pua = 7.679 kN/bolt, F; =36.1 kN, S, = 830 MPa, and

A, =58.0 mm?
o =0.75 8, =0.75(830) = 622.5 MPa
0.228(7.679)10°
Eq. (8-37): o, = P _ ( ) =15.09 MPa
24, 2(58.0)
CP
Eq. (8-38) O, = 2 O =15.09+622.5=637.6 MPa

1

(a) Goodman: From Table 8-11, S,; = 1040 MPa, and from Table 8-17, S, = 162 MPa
S (S —o, 162(1040-622.5
Eq. (8-45): n, = Se(Su)) 162 )
o, (SM+S€) 15.09(1040+162)

=373 Ans.

(b) Gerber:
Eq. (8- 46)'

[ S,\[S2 +45, (S, +0',.)—Sjt—20'l.SeJ

!
————[1040,/1040° + 4(162) 162+ 622.5) ~1040* ~2(622.5)(162)
2(15.09)162[ 10407 +4(162) 162+ 622.5) (622.5)(162)

=5.74 Ans.
(c) ASME-elliptic:

Eq. (8-47):

S f
nf_(S2—+S)(S S2+S2—G —O'S)

_ 162
~15.09(830 +162°)

|830V830° +162° -622.5° ~622.5(162) |=5.62  ns.

8-54 From Prob. 8-36, C=0.291, Py. = 1.244 kips/bolt, F; =9.57 kips, S, = 120 kpsi, and
A, =0.106 3 in®

0,=0.75§8, = 0.75(120) =90 kpst

Eq. (8-37): o = CP _0.291(1.244)
24, 2(0.106 3)

=1.703 kpsi
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Eq. (8-38) o, =%+ o, =1.703+90=91.70 kpsi

t

(a) Goodman: From Table 8-9, S,, = 150 kpsi, and from Table 8-17, S, =23.2 kpsi

Eq. (8-45) S,(S,-0o;,)  23.2(150-90) i
A = - =4. ns.
! "6, (S, +S,) 1.703(150+23.2)

ut

(b) Gerber:
Eq. (8- 46)'

| S2+4S,(S.+0,) -5 —ZG.S}
f 20_ S |: ut\/ ut 1) ut i~e

1

=W[150\/1502 +4(23.2)(23.2+90) ~ 150 —2(90)(23.2)}

=7.28 Ans.
(c) ASME-elliptic:

Eq. (8-47):

S, [
I’%‘W(S S2+S2—G —GS)

~ 232
- 1.703(120° +18.67)

(12081207 +23.27-90° ~90(23.2) | = 7.24 s,

8-55 From Prob. 8-51, C =0.263, S. = 140 MPa, S, =900 MPa, A, =84.4mm% o; =
487.5 MPa, and Pn.x =4.712 kN.

Pin = Pmax /2 =4.712/2 =2.356 kKN

C(P,, —P,,) 0.263(4.712-2356)10’
Eq. (8-35): o, = = =3.675 MPa
24, 2(84.3)

Eq. (8-36):

Chap. 8 Solutions - Rev. A, Page 47/69



C(P. +P,

max min )

Gm :—+O-i
24,
0.263(4.712+2.356)10°
= 2(543) +487.5=498.5 MPa
Eq. (8-38):
S.(S,-0,) 140(900 —487.5)

=11.9 Ans.

17 S,0,+5.(0,-0,)  900(3.675)+140(498.5-487.5)

ut a

8-56

From Prob. 8-52, C =0.299, S. =18.8 kpsi, S,;, = 120 kpsi, 4, =0.141 9 inz, o; =63.75
kpsi, and Pyax = 1.443 kips

Prin = Pmax /2 =1.443/2 =0.722 kips

Bq. (8-35): o C(Puy —Py)  0.299(1.443-0.722) 0760 kbsi
4 ' T 24 2(01a19) P
Eq. (8-36):
C(Pmax +Pmin)
Gm :—+Ji
24
0.299(1.443+0.722) )
= +63.75=66.03 kpsi
2(0.1419)
Eq. (8-38):
S, (S, -o) 18.8(120-63.75) 7 89 )
n. = — =/. ns.
’S,0,+8,(0,-0,) 120(0.760)+18.8(66.03-63.75)

8-57

From Prob. 8-53, C =0.228, S, =162 MPa, S, = 1040 MPa, 4; = 58.0 mmz, o; =622.5
MPa, and Pax = 7.679 kN.

Puin = Pmax /2 =7.679/2 =3.840 kN

— _ 3
Eq. (8-35): o = C(Puw = Fun) _0228(7.679-3.840)10

: =7.546 MPa
24 2(58.0)
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Eq. (8-36):
C(P+P

max min )

O =——++0,;

~0.228(7.679 +3.840)10°
- 2(58.0)

+622.5=645.1 MPa

Eq. (8-38):

S, (S,-o)) 162(1040—-622.5)
n,= = =5.88 Ans.
7 8,0,+8,(0,—0,) 1040(7.546)+162(645.1-622.5)

8-58

From Prob. 8-54, C =0.291, S, =23.2 kpsi, S, =150 kpsi, 4, =0.106 3 in®, o; =90
kpsi, and Pmax = 1.244 kips

Pin = Pmax /2 =1.244/2 = 0.622 kips

C(P -P. ) _ 0.291(1.244—0.622)

Eq. (8-35): = - =0.851 kpsi
% (5-33) i 24, 2(0.106 3) b
Eq. (8-36):
C(Pmax +Pmin)
O-m :—+O-i
24,
0.291(1.244+0.622) _
= +90=92.55 kpsi
2(0.106 3)
Eq. (8-38):
. S,(S,-0,) 23.2(150-90) s s

' 8,0,+8,(c,—0,) 150(0.851)+23.2(92.55-90)

8-59

Let the repeatedly-applied load be designated as P. From Table A-22, §,, = 93.7 kpsi.
Referring to the Figure of Prob. 3-122, the following notation will be used for the radii of
Section AA.

ri=15in, r,=2.5in, r.=2.01in
From Table 3-4, p. 121, with R =0.5 in
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2 2
.o R _ 0.5 — 1.968 246 in

' 2(1;,—«/1;2—132) 2(2—\/22—0.52)

e=r —r1 =20-1968 246 = 0.031 754 in

¢, =r -r =25-1968 246 = 0.531 754 in
¢, =r -r =1968246 — 1.5 = 0.468 246 in
A=7z(1>)/4=07854in’

If P is the maximum load

M = Pr. = 2P

o =Llipralo P [, 20468 1 _,69p
AU e ) 078540 0.031754(1.5)

o, = o, =%:M:13.15P

(a) Eye: Section AA,
Table 6-2, p. 288, a=14.4 kpsi, b=-0.718
Eq. (6-19), p. 287,
k, =14.493.7)"""" = 0.553
Eq. (6-23), p. 289,

d.=0370d
Eq. (6-20), p. 288,
—-0.107
k, = (Mj = 0.978
0.30
Eq. (6-26), p. 290,
ke=0.85

Eq. (6-8), p. 282,
S!=0.5S, =0.5(93.7) = 46.85 kpsi

Eq. (6-18) p. 287,
Se =0.553(0.978)0.85(46.85) = 21.5 kpsi

From Table 6-7, p. 307, for Gerber

1(s. Yo, 26 8\
ny=~| 2 | Zel gy f14] S22
2 O-m Se Suto-a

With o, = oy,

1 S2 25 Y| 1 937 221.5)Y | 1.557
n,=——"—-1+ 1+ =——— | -1+ ,[l+ =
20,8, S 2 13.15P(21.5) 93.7 P

ut

where P is in kips.
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Thread: Die cut. Table 8-17 gives S, = 18.6 kpsi for rolled threads. Use Table 8-16 to find

S, for die cut threads
S.=18.6(3.0/3.8) = 14.7 kpsi

Table 8-2, 4,=0.663 in’, o=P/4,=P/0.663=151P, 0,= 0, =0 /2=0.755P
From Table 6-7, Gerber

1 S? 25V 1 937 2047 | 19.01
n,o= -2 1y |1+ S AU e A e
' 2068, S 2 0.755P(14.7) 93.7 P

ut

Comparing 1910/P with 19 200/P, we conclude that the eye is weaker in fatigue. Ans.

(b) Strengthening steps can include heat treatment, cold forming, cross section change (a
round is a poor cross section for a curved bar in bending because the bulk of the material

is located where the stress is small).  Ans.

(c) Forny =2

1.557(103)
P=———2 =779 1Ibf, max. load Auns.

8-60 Member, Eq. (8-22) with £ =16 Mpsi, d=0.75 in,and /= 1.5 in

0.57747(16)0.75
0.5774xEd 7(16) —13.32 Mibflin

ko=
21n(50-57741+0~5d) 0.5774(1.5)+0.5(0.75)
0.57741+2.5d 0.5774(1.5)+2.5(0.75)

Bolt, Eq. (8-13),
Lr =2d+0.25=2(0.75)+0.25=1.751in
/[=1.51n
ly=L—-Lr =25-1.75 = 0.751in
lLi=1-1;=15-0.75 = 0.75in

Table 8-2,
A,=0.373 in’

Ay =7(0.75%)/4 = 0.442 in’
Eq. (8-17),
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_ AAE 0.442(0.373)30
" AL+ AL 0.442(0.75)+0.373(0.75)

=8.09 Mlibf/in

k,+k, 8.09+13.32
Eq. (8-35),
o, = C(Pma" _Pmi“) = 0'378(6_4) =1.013 kpsi
24, 2(0.373)
Eq.(8-36),
o - C(Poy + L) LB 0.378(6+4) 25 209 kpsi
24 4, 2(0373) 0373

(a) From Table 8-9, S, = 85 kpsi, and Eq. (8-51), the yielding factor of safety is

S
n = P — 85 =1.16  Ans.
" "o o, 72.09+1.013

(b) From Eq. (8-29), the overload factor of safety is

S,4,~F 85(0.373)-25
nL = = =2.96 AI’lS.
CP, 0.378(6)

max

(c) From Eq. (8-30), the factor of safety based on joint separation is

F 25
P (1-C) 6(1-0378) "

max

I’lO:

(d) From Table 8-17, S. = 18.6 kpsi; Table 8-9, S,, = 120 kps; the preload stress is
o, =F;/ A,=25/0.373 = 67.0 kpsi; and from Eq. (8-38)

S, (Sut —O'l.) 18.6(120—67.0)
n,= = =4.56 Ans.
TS0, +Se(0m —O'i) 120(1.013)+18.6(72.09—67.0)

8-61 (a) Table 8-2, A,=0.1419 in?
Table 8-9, S, =120 kpsi, S. =150 kpsi
Table 8-17, Se. =23.2 kpsi
Egs. (8-31) and (8-32), 01 =0.75 S, = 0.75(120) = 90 kpsi
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— kb — 4 —
k, +k ~ 4+16
cp 0.2P

o, = = = 0.705P kpsi
24, 2(0.1419)

t

Eq. (8-45) for the Goodman criterion,
_S,(S,-0,)  232150-90) 114
"o, (S, +S,)  0.705P(150 +232) P

n

=2 = P =570 kips Ans.

(b) Fi=0.754,S, = 0.75(0.141 9)120 = 12.77 kips
Yield, Eq. (8-28),

S A 120(0.1419)
n =—~——= =1.22 Ans.
" CP+F, 02(5.70)+12.77
Load factor, Eq. (8-29),
S A -F _
=2l 120(0.1419) — 12.77 “ 374 Ans.

CP 0.2(5.70)
Separation load factor, Eq. (8-30)

n, = £ 1277 =2.80 Ans.
Pq - C) 5.70(1 - 0.2)

8-62 Table 8-2, A4, =0.969 in” (coarse), 4, = 1.073 in’ (fine)
Table 8-9, S, =74 kpsi, S, = 105 kpsi
Table 8-17, S =16.3 kpsi

Coarse thread,
F; =0.754,S, =0.75(0.969)74 = 53.78 kips
o; =0.755,=0.75(74) = 55.5 kpsi

o, = r_ _030F 0.155P kpsi
24, 2(0.969)

1

Gerber, Eq. (8-46),

" 0es [ S,[S2 +45,(S, +a,.)—Sjt—2al.Se}

1
2(0.155P)16.3
With ny =2,

64.28

1105,/105° +4(16.3)(16.3+55.5) ~105* ~2(55.5)16.3 | =

Chap. 8 Solutions - Rev. A, Page 53/69



P = @ =32.14kip Ans.

Fine thread,
F; =0.754,S, =0.75(1.073)74 = 59.55kips
o; =0.75 5, =0.75(74) = 55.5 kpsi

cp _ 032P = 0.149P kpsi

o =
‘724 201.073)

The only thing that changes in Eq. (8-46) is o,. Thus,

q 0135 648 6687 ) b siasiios ams
0.149 P P

Percent improvement,
3343 -32.14

(100) = 4%  Ans.
32.14

8-63 Foran M 30 x 3.5 ISO 8.8 bolt with P =65 kN/boltand C = 0.28

Table 8-1, A, = 561 mm?
Table 8-11, S, = 600 MPa, S,, = 830 MPa
Table 8-17, S. = 129 MPa

Eq.(8-31), F; = 0.75F, =0.75 4,5,
= 0.75(5610600(107°) = 252.45 kN

o; =0.75S, =0.75(600) = 450 MPa

CP 0.28(65)10°
O = =
“ 24 2(561)

t

Eq. (8-39), =16.22 MPa

Gerber, Eq. (8-46),

[ 8,52 +45,(5, +c71.)—Su2,—201.Se}

= 20,8,
1
— | 830,/8307 + 4(129)(129 + 450) ~830° - 2(450)129 |
2(16.22)129[ V830" +4(129)(129+ 450) (450)
=4.75 Ans.

The yielding factor of safety, from Eq. (8-28) is
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S, 4, 600(561)107

n = = =124 Ans.
" CP+F, 0.28(65)+252.45

From Eq. (8-29), the load factor is

S,4,—F,  600(561)107 —252.45

pot i

n, = = =4.62 Ans.
CP 0.28(65)
The separation factor, from Eq. (8-30) is
F .
n, = L B2 5.39 Ans.
P(1-C) 65(1-0.28)
8-64 (a) Table 8-2, A4,=0.077 5 in®
Table 8-9, S, =85 kpsi, S. =120 kpsi
Table 8-17, S. = 18.6 kpsi
Unthreaded grip,
2
K, = AL _ 2O3T GO _ 545 Mibin per bolt  Ans.

/ 4(13.5)
_ T 2 21 _ T 2 2\ _ 102
A, = ZUD + 21 - D) = T(4TS - 4) = 5154 in

AE _ 5.154(30)
m 12

(6j = 2.148 Mlbf/in/bolt.  Ans.

(b) F;i=0.754, S, =0.75(0.0775)(85) = 4.94 kip
o, = 0.755, = 0.75(85) = 63.75 kpsi
2000

P=pd-= T[ (4)? } = 4189 Ibf/bolt

k0245
k,+k, 0245+ 2148
CP  0.102(4.189)

o, = = = 2.77 kpsi
24 2(0.0775)

4

= 0.102

From Eq. (8-46) for Gerber fatigue criterion,

ut

_ [ S, \[S2 +4S,(S, +0,) - 52—205J

1

= [120,/1207 +4(18.6)(18.6+63.75) ~120° ~2(63.75)18.6 | =4.09  Ans.
2(2.77)18.6[ V120 +4(18.6)(18.6+63.75) (63.75) s
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() Pressure causing joint separation from Eq. (8-30)

F.
ny=——"—=1
P(1-0)
A A S sokip
1-C 1-0.102
p=£=5'2—506=2.63kpsi Ans.
A m(dd) /4

8-65 From the solution of Prob. 8-64, 4, =0.077 5 in’, S,, = 120 kpsi, S, = 18.6 kpsi, C =
0.102, 0; = 63.75 kpsi

Proax = PmaxA = 2 71(4%)/4 = 25.13 kpsi, Pmin = pmind = 1.2 7 (4%)/4 = 15.08 kpsi,

Eq.(835), o - C (P = Pn) _ 0.102(25.13-15.08)

‘ 24 2(0.077 5)

1

=6.61 kpsi

Eq. (8-36), o, = C(Poas * Frn) +o,= 0.102(25.13+15.08) +63.75=90.21 kpsi
24, 2(0.077 5)
Eq. (8-38),
S, (S,—o)) 18.6(120—63.75)
n, =0.814  Ans.

" S,0,+8,(0,-0,) 120(6.61)+18.6(90.21-63.75)

This predicts a fatigue failure.

8-66 Members: S, = 57 kpsi, Sy, = 0.577(57) = 32.89 kpsi.
Bolts: SAE grade 5, S, = 92 kpsi, S, = 0.577(92) = 53.08 kpsi

Shear in bolts,

s

2
A = 2[M} = 0.0982 in?

A4S, _ 0.0982(53.08)

F = = 2.61 kips
. 5 p
Bearing on bolts,
Ay =2(0.25)0.25 = 0.125 in’
AS
F =12 = 0'122(92) = 5.75 kips
n

Bearing on member,
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~0.125(57)

F, = 3.56 kips

Tension of members,
A4, =(1.25-0.25)(0.25) = 0.25 in’

F = = 7.13 kip
F = min(2.61, 5.75, 3.56, 7.13) = 2.61 kip  Ans.

0.25(57)
2

The shear in the bolts controls the design.

8-67 Members, Table A-20, S, =42 kpsi
Bolts, Table 8-9, S, = 130 kpsi, S;, = 0.577(130) = 75.01 kpsi

Shear of bolts,

2
A = 2{@} =0.1534 in’

T= F__> =32.6 kpsi
A 0.1534

n=-—= =ﬂ=2.30 Ans.
T 326

Bearing on bolts,
Ay = 2(0.25)(5/16) = 0.1563 in®

5
o, =- =-32.0 kpsi
" 0.1563 P
S,
n:—yzﬂ:4.06 Ans.
loy| 320
Bearing on members,
S
n——y—£=1.31 Ans
loy| 32

Tension of members,
A, = [2.375-2(5/16)](1/4) = 0.4375 in’

5
o, =
0.4375

=11.4 kpsi
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8-68

Members: Table A-20, S, =490 MPa, S, = 0.577(490) = 282.7 MPa
Bolts: Table 8-11, ISO class 5.8, S, = 420 MPa, S,, = 0.577(420) = 242.3 MPa

Shear in bolts,
2
A = 2{”(10 )} = 628.3 mm’

A4S, 628.3(242.3)10°

F == = 60.9 kN
) n 2.5
Bearing on bolts,
Ay =2(20)20 = 800 mm”
AS -
B e 800(420)10~ _ 134 KN

n
Bearing on member,

-3
Fh:%:mm

Tension of members,
A, = (80 —20)(20) = 1 200 mm’

-3
F = 1200890107 _ 5354

F = min(60.9, 134, 157, 235) = 60.9kN  Ans.

The shear in the bolts controls the design.

8-69

Members: Table A-20, S, =320 MPa
Bolts: Table 8-11, ISO class 5.8, S, =420 MPa, S,, = 0.577(420) = 242.3 MPa

Shear of bolts,
Ay = 7(20%)/4 = 314.2 mm*

90(103)
7, =———=95.48 MPa
3(314.2)

S
w2423 5 g
. 9548

Bearing on bolt,
Ay =3(20)15 = 900 mm*
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_90(103)

o, =————==-100 MPa
900
S
n:—"’:@:4.2 Ans.
lo,| 100
Bearing on members,
S
n:—y:@:_’).Z Ans.
oy 100
Tension on members,
90(10°
i 1) _ 4615 wpa
A 15190 — 3(20)]
S
n:_y:ﬂ:@% Ans.
o, 46.15

t

8-70 Members: S, = 57 kpsi
Bolts: S, = 100 kpsi, S, = 0.577(100) = 57.7 kpsi

Shear of bolts,
1/4)
4 = 3[#} —0.1473 in®

T, _£__ =33.94 kpsi
" A 0.1473
S
=_¥ :—57'7 =1.70 Ans.
. 3394

Bearing on bolts,
A, = 3(1/4)(5/16) = 0.2344 in’

0'b=—£=— > =-21.3 kpsi
A, 0.2344

n——y:m=4.69 Ans.
loy| 213

Bearing on members,
A, =0.2344 in? (From bearing on bolts calculation)

o, = —21.3 kpsi (From bearing on bolts calculation)
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S
y 3T =2.68 Ans.

n=—nm=—
lo,| 213
Tension in members, failure across two bolts,
5
A =—]2375-2(1/4)|=0.5859 in®
=2 [2375-2(1/4)]

5

L = 8.534 kpsi
A 0.5859
S
n:—y=i=6.68 Ans.
o 8534

t

8-71 By symmetry, the reactions at each support is 1.6 kN. The free-body diagram for the left

member is
R,

1.6 kN

dMy=0 16(250)-50R, =0 = R, =8kN
YM,=0 200(1.6)-50R, =0 = R, =64kN

Members: Table A-20, S, =370 MPa
Bolts: Table 8-11, S, =420 MPa, S, = 0.577(420) = 242.3 MPa

Bolt shear, A = %(122) =113.1 mm®
3
T :@:w: 70.73 MPa
A, 113.1
S
S 2 T
T 70.73

Bearing on member, A, = td = 10(12) = 120 mm®
3
o, = _8a0) = —66.67 MPa
120
S, 370

n=—

o 6667
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Strength of member. The bending moments at the hole locations are:
in the left member at 4, M, = 1.6(200) =320 N - m. In the right member at B, M =
8(50) =400 N - m. The bending moment is greater at B

I, = %[10(503) —10(12%)] = 102.7(10°) mm*
 M,c  40025)

o, = " (10°) = 97.37 MPa
I,  102.7(10%)
S
p=2e 2 370 g
o, 9737

At the center, call it point C,
Mc =1.6(350)=560 N - m

1. = é(lO)(503) =104.2(10°) mm*

_ M.c  560(25)

o = 10°) = 134.4 MPa
<L 104.2(103)( )
S
n=-*= ﬂ =275 < 3.80 more critical at C
o. 1344

n = min(3.04, 3.80, 2.75) = 2.72  Ans.

8-72 The free-body diagram of the bracket, assuming the upper bolt takes all the shear and

tensile load is

p B F, = 2500 Ibf
AT

»_2500(3)

=1071 Ibf

2500 Ibf

in

¢ )\Piv ot about
this point

Table A-31, H=7/16 =0.4375 in. Grip, [=2(1/2)=11in. L> [+ H=1.4375in. Use 1.5
in bolts.

Eq. (8-13), Lr=2d+025=2(0.5)+025=1.251n
Table 8-7, ly=L—-L;r =15-125=0.251n
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I, =1-1; =1-0.25=0.751in
Table 8-2, A,=0.141 9 in’
Ag=(0.5%) /4=0.196 3 in*
AAE 0.196 3(0.1419)30

Eq.(8-17), Kk, = = = 4.574 Mlbf/in
% (&-17) " Al + AL 0.196 3(0.75)+0.141 9(0.25)
Eq. (8-22),
0.57747(30)0.5
g o= 0577wk 7 (30) =16.65 Mlbf/in
h{s 0.5774l+0.5d] o1 5 0-5774(1)+0.5(0.5)
N n
0.57741+2.5d 0.5774(1)+2.5(0.5)
k, 4574 _oo16

k,+k, 4.574+16.65
Table 8-9, S, = 65 kpsi
Eqgs. (8-31) and (8-32), Fi=0.754,S,=0.75(0.141 9)65 = 6.918 kips
0;=0.75 8, =0.75(65) = 48.75 kips

CP+F,_0216(1.071)+6.918

Eq. (a), p. 440, o, = 01419

=50.38 kpsi

Direct shear, rsiﬂz 3 =21.14 kpsi
4, 0.1419

von Mises stress, Eq. (5-15), p. 223
1/2

o'=(0? +372)" =[ 5038 +3(21.14) | " =623 kpsi

Stress margin, m =S, —o’ =65 —62.3=3.7kpsi Ans.

8-73 2P 35“;
¥ 2P(200) = 14(50)
P = 1460) _ 1.75 kN per bolt
14 kN 2(200)
F. =7 kN/bolt
200 mm Sp = 380 MPa

50 mm

A =245mm> 4, = %(202) = 314.2 mm?

F, = 0.75(245)(380)(10) = 69.83 kN
o, = 0.75(380) = 285 MPa

(_')N\Pi\rot about
this point
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o - CP+F _ (0.25(1.75) +69.83
= =

A 245

1

F. 7(10%

4, 3142
o' =[287% +3(22.3%)]"% = 290 MPa
m=S -o =380 -290 = 90 MPa

1(103) = 287 MPa

= 22.3 MPa

Stress margin, m =S, — 0’= 380 — 90 = 90 MPa Ans.

8-74 Using the result of Prob. 5-67 for lubricated assembly (replace 0.2 with 0.18 per Table
8-15)
P 2nf T

Y0184

With a design factor of n, gives

7 _ 0181, Fd _ 0.183)(1000)d

= T716d
2rf 27(0.12)
or 7/d = 716. Also,
g = K(0.755,4,)
= 0.18(0.75)(85 000) 4,
=114754,
Form a table
Size A, T/d=114754, n
1.28 0.0364 417.70 1.75
2 -24 0.058 665.55 2.8
224 0.0878 1007.50 4.23

8

where the factor of safety in the last column of the table comes from

L, 2 2mf(@/d) _ 27(0.12)(T/ d)

= 0.0042(T / d)
0.18F. 0.18(1000)

Select a % - 24 UNF cap screw. The setting is given by

T= (114754, )d = 1007.5(0.375) = 378 Ibf - in

Given the coarse scale on a torque wrench, specify a torque wrench setting of 400 1bf - in.
Check the factor of safety
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C_2af T _ 27(0.12)400) _
0.18F.d  0.18(1000)(0.375)

8-75

W
—=(T
s
Al
)
e

l
152 -

Bolts, from Table 8-11, S, = 420 MPa
Channel, From Table A-20, S, = 170 MPa. From Table A-7, t = 6.4 mm
Cantilever, from Table A-20, S, = 190 MPa

F)y=F% =Fc=F/3
M = (50 +26+125)F = 201 F

201F

2(50)

F/=F/= =2.01F
Max. force,  F, =FC’+FC”=(§+2.OIJF =2343F (1)
Shear on Bolts: The shoulder bolt shear area, 4, = 7(10%) / 4 = 78.54 mm”

Sy = 0.577(420) = 242.3 KPa

. RS
max_AS_ n

From Eq. (1), F¢c = 2.343 F. Thus

S
P Sy( A j:242.3[78.54j103:4'06 N

n \2.343 2.0 \2.343

Bearing on bolt: The bearing area is 4, = td = 6.4(10) = 64 mm’. Similar to shear
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s
(A ) _A200 64 Vo 54N
n\2343) 2.0\ 2343

Bearing on channel: 4, = 64 mmz, S, = 170 MPa.

S
F:—y( 4, jz”o( o4 j103:2.32 kN
n\2343) 2.0\2.343

Bearing on cantilever: 4, = 12(10) =120 mm’, S, = 190 MPa.

N
o =190( 120 j10‘3=4.87 kN
n\2343) 2.0\2.343

Bending of cantilever: At C
I =$(12)(503 ~10%)=1.24(10°) mm*

Sy%ISIchFiI
I 1 n

B 151c

190 1.24(10%)
2.0 151(25)

}103 =3.12 kN

So F'=2.32 kN based on bearing on channel.Ans.

8-76 Bolts, from Table 8-11, S, = 420 MPa

F, = 4KkN
Bracket, from Table A-20, S, =210 MPa ¥
—I-EF !
12 Fi = 375kN
F’=?:4kN;M:12(200)=24OON-m '
32
Fo=4kN
F/;':Fl;':ﬂ:W.SkN v
64 . S
F, = F, = (47 + 37.57 = 37.7kN {[
F, = 4kN .
Fy=4kN
Bolt shear:
The shoulder bolt shear area, 4, = 72(122) /4=113.1 mm’ i Fgm 315 KN

Sy = 0.577(420) = 242.3 KPa
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__ 37700y
113
2423

S
n=-2="""==0(0.728 Ans.
T 333

= 333 MPa

Bearing on bolts:
A4, =12(8) = 96 mm’

3
o, = _w - ~393 MPa
S
_ Py _ @ =1.07 Ans.
o, 393

Bearing on member:

o, = =393 MPa
S
=X = 210 = 0.534 Ans.
o]
Bending stress in plate: I b b
3 3 3
[:bh _ bd 5 bd v ibd
12 12 12 —r'——“
3 3 3
_ 80136y 812 5 8(12) + (32°@8)(12) i
12 12 12 ) %_____
=1.4810)° mm*  Ans. ;
o = Me _ 240068) (13 _ 110 Mpa v
1 1.48(10) Ky
S, 210
n=-—-<+="—=191 Ans.
o 110

Failure is predicted for bolt shear and bearing on member.
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8-77

F, =125Ibf Fj =125 Ibf
M =14.5(250) 250 Ibf
=36251bf-in 1 14.5" 1 ‘_1,|\ 1.5 1.5 IJ_\B
() o~ o
V=250 Ibf
Fy' =1208 Ibf Fy =1208 Ibf

F;’=FB”=(@) ~ 1208 Ibf
3

F,=1208-125=1083 Ibf,  F,=1208+125=1333 Ibf

Bolt shear:
Ay = (7/4)(0.375%) = 0.1104 in®

T _ F 1333 =12 070 psi
A 0.1104

From Table 8-10, S, = 100 kpsi, S, = 0.577(100) = 57.7 kpsi

S, 5710

sy

1207

max

4.78 Ans.

Bearing on bolt: Bearing area is A, = td = 0.375 (0.375) = 0.1406 in”.

O-b :—iz— 1333 =-9 481 pSl
A4, 0.1406
S
n:—y:&:lO.SS Ans.
loy| 9.481

Bearing on member: From Table A-20, S, = 54 kpsi. Bearing stress same as bolt

n:i:i:im Ans.
|ab| 9.481

Bending of member: At B, M =250(13) = 3250 Ibf'in
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3
! :L(Ej 2} —(Ej =0.2484 in*
12\ 8 8

Mc _3250(1) _ 13 080 psi

I 0.2484

S
St 413 s,
o 13.08

8-78 The direct shear load per bolt is #’= 2000/6 = 333.3 Ibf. The moment is taken only by the
four outside bolts. This moment is M = 2000(5) = 10 000 Ibf - in.

10000 = 1000 Ibf and the resultant bolt load is

Thus F" =

F = \/(333.3)2 + (1000)* = 1054 Ibf
Bolt strength, Table 8-9, S, = 100 kpsi; Channel and Plate strength, S, = 42 kpsi

Shear of bolt: A, = 7(0.5)*/4 = 0.1963 in’

= S— _ _(0577)0100) =10.7 Ans.

Sy

T T 1054/ 0.1963
Bearing on bolt: Channel thickness is 7 = 3/16 in, 4, = 0.5(3/16) = 0.09375 in’

n= 100 = 8.89  Ans.
1.054 / 0.09375

Bearing on channel: n = 42 =3.74 Ans.
1.054 / 0.09375

A, =0.5(0.25)=0.125 in®

Bearing on plate:

n= L =498 Ans.
1.054 / 0.125

Strength of plate:
_ 025(7.5°  0.25(0.5)°

12 12
- 2[% + (0.25)(0.5)(2.5)2} =7.219 in*
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M = 5000 Ibf - in per plate
Mc _ 5000(3.75)

= = 2597 psi
I 7.219
n= i =16.2 Ans.
2.597

8-79 10 8-81 Specifying bolts, screws, dowels and rivets is the way a student learns about such
components. However, choosing an array a priori is based on experience. Here is a chance
for students to build some experience.
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Chapter 9

Figure for Probs.

9-1to 9-4 p T‘%‘
4 |
d | —
¥ F
il b .

9-1 Given,b =50 mmd =50 mmj =5 mm, zaiow = 140 MPa.

F = 0.707hl zai0w = 0.707(5)[2(50)](140)(18) = 49.5 kN Ans.

9-2 Given,b=2in,d =2 in,h = 5/16 in,za10w = 25 Kkpsi.

F = 0.707hl zai0w = 0.707(5/16)[2(2)](25) = 22.1 kip  Ans.

9-3 Given,b =50 mmd =30 mm/J =5 mm, zaiow = 140 MPa.

F = 0.707hl zai0w = 0.707(5)[2(50)](140)(18) = 49.5 kN Ans.

9-4 Given,b=4in,d = 2in,h = 5/16 in,za10w = 25 kpsi.

F = 0.707hl zai0w = 0.707(5/16)[2(4)](25) = 44.2 kip  Ans.

9-5  Prob. 9-1 with E7010 Electrode.
Table9-6:  f = 14.85k kip/in = 14.85 [5 mm/(8.4 mm/in)] = 2.923 kip/in
= 2.923(4.45/25.4) = 0.512 kKN/mm

F=f1=0512[2(50)] =51.2 kN Ans.

9-6 Prob. 9-2 with E6010 Electrode.

Table 9-6:  f = 14.85% kip/in = 14.85(5/16) = 4.64 kip/in
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F=f1=464[2(2)] =18.6 kip  Ans.

9-7

Prob. 9-3 with E7010 Electrode.
Table9-6: /" = 14.85k kip/in = 14.85 [5 mm/(8.4 mm/in)] = 2.923 kip/in
= 2.923(4.45/25.4) = 0.512 KN/mm

F=f1=0512[2(50)] = 51.2 KN  Ans.

9-8

Prob. 9-4 with E6010 Electrode.
Table 9-6: /' = 14.854 kip/in = 14.85(5/16) = 4.64 kip/in

F=f1=464[2(4)]=37.1kip Ans.

9-9

TableA-20:
1018 CDS,, = 440 MPa, S, =370 MPa
1018 HRS,, = 400 MPa, S, =220 MPa
Cold-rolledpropertiesdegrae to hot-rolled properties ithhe neighborhood of the weld.
Table9-4.
7, = min(0.3%5,, 0.409 )

all
min[0.30(400), 0.40(220)]
min(120, 88)= 88 MPa

for both materials.
Eq.(9-3): F=0707hlzy = 0707(5)[2(50)](88)(103) =31.1 KN Ans.

9-10

Table A-20:
1020 CDS,, = 68 kpsi, S, =57 kpsi
1020 HRS,, = 55 kpsi, S, =30 kpsi
Cold-rolledpropertiesddegrae to hot-rolled properties itme neighborhood of the weld.
Table9-4:
7y = min(0.3%,, , 0.46, )
min[0.30(55), 0.40(30)]
min(16.5, 12.0= 12.0 kpsi

for both materials.
Eq.(9-3): F=0707hlty = 0707(516)[2(2)](120) = 10.6 kip Ans.

Chapter 9, Page 2/36



9-11 Table A-20:
1035 HRS,, = 500 MPa, S, =270 MPa
1035 CDS,, = 550 MPa, S, =460 MPa
Cold-rolledpropertiesdegrae to hot-rolled properties itme neighborhood of the weld.
Table9-4:
Ty = Min(0.3%5,,, 0.48, )
min[0.30(500), 0.40(270)]
= min(150, 108)= 108 MPa

for both materials.
Eq.(9-3): F=0707hlzry = 0707(5)[2(50)](108)(10°’) =38.2 KN Ans.

9-12 Table A-20:
1035 HRS,, = 72 kpsi, S, = 39.5 kpsi
1020 CDS,, = 68 kpsi, S, =57 kpsi, 1020 HRS,, = 55 kpsi, S, = 30 kpsi
Cold-rolledpropertiesdegrae@ to hot-rolled properties itme neighborhood of the weld.
Table9-4:
Ty = Min(0.3%,,, 0.40, )
= min[0.30(55), 0.40(30)]
= min(16.5, 12.0= 12.0 kpsi

for both materials.

Eq.(9-3): F=0707hl7a = 0707(516)[2(4)](120) = 21.2 kip  Ans.
9-13
2(100)( 16
Eq.(9-3): r:\/EF:\F( )( ):141 MPa Ans .
hl 5[ 2(50+ 50 |
9-14
Eq.(9-3): T= J2r \/5(40) =22.6 Kkpsi Ans .

W (5116 A2 3]

_J2F _2(100)(16)

15 Eq. (O3 r=—1—= 5[ 2(50+ 30

=177 MPa Ans .

J2F  \2(40)
hl (5/16) A 4+ 2]

9-16 Eq. (9-3): 7 =

=15.1 kpsi Ans .
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9-17 b =d =50 mm,c = 150 mmj =5 mm, andraiow = 140 MPa.
(@) Primary shear, Table 9-1, Case 2 (Notk:andd are interchanged between problem
figure and table figure. Note, alsBjn kN andzin MPa):

d ﬂ =2.82%

NS T14145( 50

Secondary shear, Table 9-1.:

y ~d(3?+d?) 50 56)+ 50]
6 6

=83.3a( 16) mn

J=0.707h J, = 0.707(5)(83.33)(1) = 294.6(16) mn

Mr, 175F(16)( 25

T T 204.416) =148y

rmax=\/r;2+(r;+ry")2 - F\14.85 +(2.829 14.86 = 231 (1)

_Taow _ 140 _ o 06 0N ans

231 231
(b) For E7010 from Table 9-Gajow = 21 kpsi = 21(6.89) = 145 MPa
1020 HR bar: S, = 380 MPaS§, = 210 MPa
1015 HR supportS,, = 340 MPaS$, = 190 MPa
Table 9-3, E7010 Electrods,, = 482 MPaSs, = 393 MPa
The support controls the design.
Table9-4:  zaiow = Min(0.3%,,, 0.435, ) =min[0.30(340), 0.40(190) = min(102, 76)
=76 MPa
The allowable load, from Eq. (1) is

_Taow _ 18 _ 359 kN Ans .

231 23.1

9-18 b=d=2in,c¢=6in,h=5/16 in, andryow = 25 kpsi.
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(@) Primary shear, Table 9-1(Noteb andd are interchanged between problem figure and
table figure. Note, alsd; in kip andz in kpsi):

7! —K— r
Y4 1414 5/16( 2
Secondary shear, Table 9-1:
d(3?+d?) 2/3(Z)+ 2
J, = ( 6+ )= [( 6) }=5.333irf

=1.132F

J=0.707h J, = 0.707(5/16)(5.333) = 1.178"n

., M 7F(1)
T =7 =——=—7-=05.942F
B J 1.178

rmax=\/r;'2+(r;+r}",)2=F\/5.942?+(1.132r 5940 = 9.7 (1)

Callow =é =2.71kip Ans.

9.24 9.24

F=

(b) For E7010 from Table 9-Gaiow = 21 Kpsi

1020 HR bar: S, = 55 kpsi,S, = 30 kpsi

1015 HR supports,, = 50 kpsi,S, = 27.5 kpsi

Table 9-3, E7010 Electrode,,, = 70 kpsi,S, = 57 kpsi
The support controls the design.

Table9-4: Talow = MiN(0.3%,,, 0.405,, ) =min[0.30(50), 0.40(27.5) = min(15, 11)
=11 kpsi

The allowable load, from Eq. (1) is

Taow — 11 g 19 1p Ans .

9.24 9.24

F =

9-19 b =50 mm,c = 150 mmd = 30 mm,z =5 mm, andraiow = 140 MPa.
(8) Primary shear, Table 9-1, Case 2 (Notk:andd are interchanged between problem

figure and table figure. Note, alsBjn kN andzin MPa):
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o= ) 2.82%F

"4 1414 9(50

Secondary shear, Table 9-1.:
J - d(3b26+d2) _ 50[3( 3(3)+ 56}

= 43.33( 16) mm

J=0.707h J, = 0.707(5)(43.33)(1) = 153.2(16) mn

Mr, 175¢(16)( 19
A —17.13F
g 153.2( 16)

. Mr 175F(16)( 25
z‘ = — =

" 153.916) =285

rmaxz\/r;'2+(r;+r;)2:F\/17.132+(2.829 28.56 = 358 (1)

F—Ta'ﬂ:l;‘ro:?;.gl kN Ans.
35.8

- 35.8
(b) For E7010 from Table 9-Gyi0w = 21 kpsi = 21(6.89) = 145 MPa
1020 HR bar: S, = 380 MPaS, = 210 MPa
1015 HR supportS,; = 340 MPasS, = 190 MPa
Table 9-3, E7010 Electrode,,, = 482 MPaJS, = 393 MPa
The support controls the design.
Table9-4:  zaiow = Min(0.3,,, 0.405, ) =min[0.30(340), 0.40(190) = min(102, 76)
=76 MPa
The allowable load, from Eq. (1) is

76

falow _ D _ 9 19 kN Ans .
35.8

F — allow
35.8

9-20 b=4in,c=6in,d=2in,h =5/16 in, andraiow = 25 Kpsi.
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(@) Primary shear, Table 9-1(Noteb andd are interchanged between problem figure and
table figure. Note, alsd; in kip andz in kpsi):

= K = il
Y4 1414 5/16( 4
Secondary shear, Table 9-1:

=0.5658"

;- d(3b26+d2) i 4 3( 226)+ #] et

J=0.707h J, = 0.707(5/16)(18.67) = 4.125"n

, Mr, 8F(1)
=2 =" -1 93F
Y J 4125
o =M 87025 grer
J 4125

r =\/r;;2+(r;+r;')2=F\/1.939?+(o.5658 387%0= 485 (1)

Zallow :£:5_15 Kip Ans.

4.85 4.85

F=

(b) For E7010 from Table 9-Ggjow = 21 kpsi
1020 HR bar: S, = 55 kpsi,S, = 30 kpsi
1015 HR supports,, = 50 kpsi,S, = 27.5 kpsi
Table 9-3, E7010 Electrode,,, = 70 kpsi,S, = 57 kpsi
The support controls the design.
Table9-4: Talow = MiN(0.3%,,, 0.405,, ) =min[0.30(50), 0.40(27.5) = min(15, 11)
=11 kpsi

The allowable load, from Eq. (1) is

F=2gow == _2 27 kip Ans .
4.85 4.85

T 11
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9-21 Given,b =50 mmec =150 mmd =50 mmj =5 mm, za0n = 140 MPa.

Primary shear (F in kKN, 7in MPa,4 in mrr12):
N F(lOB)

. —1.414F
T4 1.414 5( 50- 50
Secondary shear:
3 3
Table 9-1: s = (2*4) _(50+50 -166.7(16) mm
6 6

J=0.707h J, = 0.707(5)166.7(1) = 589.2(18) mni

Mr, 1757 (10) (25) - ao

T.=7T =

g 589.4 10)
Maximumshear:

rmax=\/r;'2+(r;+rj)2 :F\/7.4252+(1.414 7.426 = 11.54

_ Tallow _

= —ﬂzlllkN Ans .
11.54 1154

9-22 Given,b=2in,c=61in,d =2 in,h = 5/16 in,zai0w = 25 Kkpsi.

Primary shear:
14 F
l=—= =0.565&
T 4T 1414516( 2 2

Secondary shear:

b+d) (2+2)
Table 9-1: =\ +6 ) _( +6) ~10.67 irf
J=0.707h J, = 0.707(5/16)10.67 = 2.357%n

M
o 2 _TFD 5 70
"7y T 2387

Maximumshear:

T max =\/r,f2+(r; +rf)2 =F\/2.97G+( 0.566 2.97).?1 = 4.618

_ z-a[[()w _ﬁ = 541 k|p AnS .

"~ 4.618 4.618

9-23 Given,b =50 mme = 150 mmd = 30 mmyj =5 mm, za0n = 140 MPa.
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Primary shear (F in kN, zin MPa,4 in mn?):
N F(103)

== =1.76&
74T 1414 9( 50 30
Secondary shear:
3 3
Table 9-1: Ju=(b+6d) _(50+39 -85.3416) mn

J=0.707h J, = 0.707(5)85.33(19) = 301.6(16) mn

Mr, 175F(1G) (15) 6 7047

" __

T

g 301.6 16)

M 175F(16) (25): e
v 301.§ 16)

Maximumshear:

fom =777 +2) = F\8.704+( 1768 1451 - 18.46

_ Tanow _ 140 _ 2 og VN ns.
18.46 18.46

9-24 Given,b=4in,c=61in,d =2in,h =5/16 in,zgi0w = 25 kpsi.

Primary shear:

v F
o2 ~0.377F
T4 1414 5/16( 4 2
Secondary shear:
3 3
Tableo-1: g =L (442 40

6
J=0.707h J, = 0.707(5/16)36 = 7.954n

M

= 8D g gogr
"T7J T 7.954

= Mr, 8F(2) 2 019F
"7 T 7.954

Maximumshear:

o =77+ (c)+7) = F\[1LO0E +( 03772 2.0 = 2502
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_ Fu 25 _g65kip Ans.

2592 2592

9-25 Given,bh =50 mmd =50 mm, =5 mm, E6010 electrode.
A =0.707(5)(50 +50 + 50) = 530.3 Am
Member endurance limit: From Table A-20 for AISI 1010 MR = 320 MPa.
Eq. 6-19 and Table 6-2, pp. 287, 288:  k, = 272(320)°°%*=0.875
k, = 1 (uniform shear);. = 0.59 (torsion, shearj, = 1
Egs. (6-8) and (6-18): S, = 0.875(1)(0.59)(1)(0.5)(320) = 82.6 MPa
Electrode endurance: E6010, Table 9-3, S,, = 427 MPa
Eq. 6-19 and Table 6-2, pp. 287, 288:  k, = 272(427)*%%= 0.657
As before k, = 1 (direct shear). = 0.59 (torsion, shearj,; = 1
S. = 0.657(1)(0.59)(1)(0.5)(427) = 82.8 MPa

The members and electrode are basically of equal strength. We will a82.6 MPa.
For a factor of safety of 1, and wikf), = 2.7 (Table 9-5)

A 82.6(530.3
27

F — Tallow

e :16.2(16) N= 16.2 kN  Ans .

J5

9-26 Given,b=2in,d=2in,h =5/16 in, E6010 electrode.
A =0.707(5/16)(2 +2 + 2) = 1.326%In
Member endurance limit: From Table A-20 for AISI 1010 MR~ 47 kpsi.
Eq. 6-19 and Table 6-2, pp. 287, 288:  k, = 39.9(47)°°%°= 0.865
k, = 1 (uniform shear);,. = 0.59 (torsion, shearj, = 1
Egs. (6-8) and (6-18): S, = 0.865(1)(0.59)(1)(0.5)(47) = 12.0 kpsi
Electrode endurance: E6010, Table 9-3, S,, = 62 kpsi

Eq. 6-19 and Table 6-2, pp. 287, 288:  k, = 39.9(62)*°%°= 0.657
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As before,k, = 1 (uniform shear),. = 0.59 (torsion, shearj, = 1
S. =0.657(1)(0.59)(1)(0.5)(62) = 12.0 kpsi

Thus the members and electrode are of lesjuength. For a factor of safety of 1, and

with K5 = 2.7 (Table 9-5)

4 12.0(1.329
27

F — 2-alllow
K

=5.89 kip Ans .
J5

9-27 Given,h =50 mmd =30 mm,: =5 mm, E7010 electrode.
A =0.707(5)(50 +50 + 30) = 459.6 rAm
Member endurance limit: From Table A-20 for AISI 1010 MR = 320 MPa.
Eq. 6-19 and Table 6-2, pp. 287, 288:  k, = 272(320)°°%*=0.875
k, = 1 (direct shear),. = 0.59 (torsion, shearj; = 1
Egs. (6-8) and (6-18): S, = 0.875(1)(0.59)(1)(0.5)(320) = 82.6 MPa
Electrode endurance: E6010, Table 9-3, S,, = 482 MPa
Eq. 6-19 and Table 6-2, pp. 287, 288:  k, = 272(482)°°%= 0.582
As before k, = 1 (direct shear). = 0.59 (torsion, shearj,; = 1
S, = 0.582(1)(0.59)(1)(0.5)(482) = 82.7 MPa

The members and electrode are basically of equal strength. We wi|l a88.6 MPa.
For a factor of safety of 1, and wikf), = 2.7 (Table 9-5)

A 82.6(459.9
2.7

F — Tallow
K

:14.1(16) N= 14.1kN  Ans .
s

9-28 Given,b=41in,d =2 in,h =5/16 in, E7010 electrode.
A =0.707(5/16)(4 +4 + 2) = 2.20%in

Member endurance limit: From Table A-20 for AISI 1010 MR = 47 kpsi.
Eq. 6-19 and Table 6-2, pp. 287, 288:  k, = 39.9(47)*°%°= 0.865

k, = 1 (direct shear),. = 0.59 (torsion, shearj, = 1
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Egs. (6-8) and (6-18): S. =0.865(1)(0.59)(1)(0.5)(47) = 12.0 kpsi
Electrode endurance: E7010, Table 9-3, S,; = 70 kpsi
Eq. 6-19 and Table 6-2, pp. 287, 288:  k, = 39.9(70)°°%°= 0.582
As before k, = 1 (direct shear). = 0.59 (torsion, shearj,; = 1
S. = 0.582(1)(0.59)(1)(0.5)(70) = 12.0 kpsi

Thus the members and electrode are of lesjuength. For a factor of safety of 1, and
with Kz = 2.7 (Table 9-5)

12.0( 2.20
o faed 12002209 o, kip  Ans.
K, 2.7
9-29 Primary shear: 7 =0 (why?)

Secondary shear:
Table9-1: J, = 2z/°= 27 (1.5F =21.21 iR
J =0.707h J, = 0.707(1/4)(21.21) = 3.749%n

, Mr 8F(L5)
i =—=—""

27 2(3.749
" =740 = 1600F =20 = F=125kp dns .

— ‘tallow

2 welds: =1.60QF

; G, 2in
9-30 /=2+4+4=10in
-lin_______ ]
__20+40+43 1
10 A
G2
J7=2(4)+4(2)+A(g=1.6in ) ]
10 o _1
M=FR=F(10-1) = 9F 4in

n=y(1-0+(4-1.6°= 24in, =y 1+( 2 1B= 1.077in

r=4(2-1)"+1.6 = 1.887in
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1
Jo, _1—2(0.707)( 5/16( 2)= 0.1473h

1 .
Jg —JG3—1—2(0.707)(5/1()( 3)= 1.178 h

2

Jzzs:(Ji+Airé)
=0.1473+ 0.707 5/1f ® 24+ 1.1%8 0.707 5)(6)( 4 14977
+1.178+ 0.707 5/1f K 1.88]= 9.220%in

a =tan* [1—6j = 28.07
4-1

r=y16+(4-1° = 34in

Primary shear (zin kKpsi,F in Kip) :

V F
! = —= = 0.45287
" T4 0.7075/16( 10
Secondary shear:
7" _Mr_ 9F(3'4) =3.31F
J 9.220

rmax=\/(3.319v sin28.07) +( 3.31® cos2807 0.4526
= 3.724F

Tmax — Tallow = 3724F’: 25 = F= 671 k|p Ans.
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9-31 [/=30+50+50=130 mm

G, 30 mm
o

=|

50 mm
_ 30(19+ 50 9+ 50 2}3: 13.08 mm

130 " y
130 2
M = FR = F(200- 13.08) X1 \r3

‘__,I

=186.92F (M in N-m, F'in kN)

50mm U3

r=(15-13.08°+( 56- 21.16 = 28.92 mm, = 1308 25 2115
5y =y(25-13.08°+ 21.15= 24.28 mm

1

JG1=1—2(0.707)(5)(36)= 7.950 1) mfn

JGZ:JG3:1—12(O.707)(5)( 50)= 36.82 1 min

J= 23:(.1,. +477)
i=1

=7.954 16)+ 0.707 ¥ 3¢ 28.8p+ 3682°)6 0.{0F( 5)(50 13.63
+36.82 16)+ 0.707 H 5¢ 24.28= 307.3°J0 rhm

a=tan* _ 2115 29.81
50-13.08

r=y21.18 +( 50- 13.0f = 42.55 mm

Y
Primary shear (zin MPa,F in kN) :
,_V__ F(0)
7 =—=
A4 0.7075( 139

=2.176F

Secondary shear:

Mr 186.9%( 18)( 42.5p

=7 307.9416) 2588

13.63 mm
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- [(25.88 sin20.8)" +( 2588 cos20%1 2.F7B

=27T.7TF
TmaX: Tallow = 27.79F: 140 = F: 5.04 kN AnS.
9-32
Weld
Pattern Figureof merit Rank
2
1, fom/ = Ju_a’112_ a 15, = 0:083 a 5
Ih ah h
3a2+a 2
2. fom=— a —“ _ 033334 1
6(24)h h
2 2 2
3. fom' = (Za) —baa _a =0.20 a— 4
12(a+a) uh 24 h
3 3 3 4 2
4, fom =+ |86 +a”  a’ | _g3n5h 2
3ah 12 2a+a h
2 3 3 2
5. om=2a) 1 _ & G qaafd 1
6h 4a 2Aah h
27(al2) &8 2
6. fom' = ﬁ(a ) - =0.2 a 3
ah 4ah h
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9-33

Weld
Pattern Figureof merit Rank
a®l12 2
1, fom':ﬁzu:0.0SS 4 6
lh ah h
(a3/6) a?
2. fom'=~—~2=0.0833 — 6
2ah h
aa®l?2 2
3. fom’:( ):0.2 a 1
2ah h
a’112)(6Ga+a 2 2
4. om = 3)61(}1 )_7"}1:0.194{“—] 2
2
5.&7. ¥=%, y=——=2
2 a+2a 3
3 2 3
1 =2 58 <a+za)@ @
3 3 3 3
3/3 2 2
fom’ = “_(a )_5 4 —o01111% 5
lh 3ah o\ & h
a’16)(3a+a 2 2
6.&8. fom' («76) )_1fa —-0.1667 L 3
4ah 6\ & h
3 2 2
9. fom’:M:a_:().lz a_ 4
wah 8h h

*Note. Because this section is not symneetvith the vertical axis, out-of-plane
deflection may occur unless special precautions are taken. See the topic of “shear center”
in books with more advanced treatmseof mechanics of materials.

9-34 Attachment and member (1018 HR),= 220 MPa and,, = 400 MPa.

The member and attachment are weak comgar#te properties of the lowest electrode.

Decision Specify the E6010 electrode

Controlling property, Table 9-4:zy; = min[0.3(400), 0.4(220)] = min(120, 88) = 88 MPa

For a static load, the parallel and transvéitsts are the same. Let the length of a bead
be/ =75 mm, ana be the number of beads.
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et
n(0.70)h

F 100(16)

h= = =21.43
" 0707z,  0.707 7% 8B
wherer is in millimeters. Make a table
Number of beads, Leg size/s (mm)
1 21.43
2 10.71
3 7.14
4 5.36— 6 mm
Decision Specifyh = 6 mm on all four sides.

Weldmentspecification:
Pattern: All-around square, fobeads each side, 75 mm long
Electrode:E6010

Legsize:h =6 mm

9-35

Decision: Choose a parallel fillet weldmenttpern. By so-doing, we’ve chosen an

optimal pattern (see Prob. 9-32) and have tedsiced a synthesis problem to an analysis
problem:

Table 9-1, case 2, rotated®904 = 1414hd = 1414(:)(75) = 106.0% mnr

Primary shear

_ v 12(10) 1132 =
4 106.0% h ‘ y )
.r",l. !"/' - T
! d TJ'
s
Secondary shear: P
J - d3b? + d?)
6
_ 75[3(78)+ 78] _ 261.910) mih
6
J =0.707¢:)(281.3) 1Y) = 198(8 2pr nfm
With a = 47,
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"

L _ Mrcos4s _ Mr, 12(10) (87.5)@75) 4244

x J J  198.416)h ho
N N %J424.z€ ¥ (1132 4244)- _68h4'9

Attachment and member (1018 HR):= 220 MPaS,, = 400 MPa
Decision: Use E60XX electrode which is stronger

7, = Min[0.3(400), 0.4(220)k 88 MPa

T =T =%4'9=88MPa

max all

h =£49: 7.78 mm
88

Decision: Specify 8 mm leg size
WeldmentSpecifications:

Pattern: Parallel horizontal fillet welds
ElectrodeE£6010

Type:Fillet

Length of each bead: 75 mm

Leg size: 8 mm

9-36

Problem 9-35 solves the problem using peraorizontal fillet welds, each 75 mm long
obtaining a leg sizeounded up to 8 mm.

For this problem, since the width of thkate is fixed and the length has not been
determined, we will explore reducing theg lgize by using two vertical beads 75 mm long
and two horizontal beads such thia beads have a leg size of 6 mm.

Decision: Use a rectangular weld bead pattern witleg size of 6 mm (case 5 of Table
9-1with » unknown and/ = 75 mm).
Materials:
Attachment and member (1018 HR):= 220 MPaS,, = 400 MPa
From Table 9-4, AISC welding code,
Ta1 = MiN[Q.3(400), 04(220)] = min(120, 88) = 88 MPa
Select a stronger electrod®terial from Table 9-3.
Decision: Specify E6010

Solving for b: In Prob. 9-35, every termas linear in the unknowi This made solving
for & relatively easy. In this problem, the terms will not be linedr; Bind so we will use
an iterative solution with a spreadsheet.

Throat area and othergprerties from Table 9-1:

A =1.414(6)p + 75) = 8.484 + 75) (1)
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J =@, J=0.707 (6)), =0.707p +75F (2)

u

Primary shear (zin MPa,h in mm):

LV 12(10) -
' 4 A

Secondary shear (See Prob. 9-35 solution for the definitionaf:

n _ Mr
" =—
J
12(16)( 150+ b / 3 (37.5
T;’ = 7"cosa = % Co%x = Mr}’ — ( )( Z ( ) (4)
4 J 0.707(b + 75
12(10)(150+ b 13 & /2
7} = 7"sina = %sina _ M _ ( )( 33& ) -
7 J 0.707(b + 79
Tmax = \/T;z + (T:: + T;)z (6)

Enter Egs. (1) to (6) into a spreadshand iterate for various valueshofA portion of
the spreadsheet is shown below.

Tmax

b(mm) A (mnf) J(mnm) 7, (Mpa) ", (Mpa) ", (Mpa) (Mpa)
41  984.144 1103553.5 12.19334 69.5254 38.00722 90.12492
42 992,628 11323404 12.08912 67.9566 38.05569 88.63156
43  1001.112 1161623.6 11.98667 66.43718 38.09065 87.18485 < g8 Mpa
44 1009.596 1191407.4 11.88594 64.96518 38.11291 85.7828

We see thak > 43 mm meets the strength goal.

Weldment Specifications:

Pattern: Horizontal paralleleld tracks 43 mm long, verticparallel weld tracks 75 mm
long

ElectrodeE£6010

Leg size: 6 mm

9-37

Materials:

Member and attachment (1018 HR)S, =32 kpsi, S, = 58 kpsi
Table 9-4: 7, = Min[0.3(58), 0.4(32)F 12.8 kpsi
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Decision: Use E6010 electrode. From Table 953:=50 kpsi,S,, = 62 kpsi,
7, =min[0.3(62), 0.4(50)F 20 kpsi

Decision: Since 1018 HR is weaker théime E6010 electrode, usg, =12.8 kpsi
Decision: Use an all-around square weld bead track.
[h=6+a=6+6.25=12.25in

Throat area and othergmrerties from Table 9-1:
A=1.41% ¢p+d )= 1.414% )(6 6% 16.97

Primary shear

,_v _F_20(10) 1179

Si
BT A e9m P

Secondary shear

3 3
J = (b+6d) _(6+6)
J=0.707: (288)- 203% ih
Mr, 20(1C)(6.25 3)(3) 2726 s

T =T, = '— =
’ 203@1 h

m \/27262+ 1179 27262)_%62 psi

Relate stress to strength
Tmax = T al = i62=128( 16) = h=L62= 0.372in
h 12.9(10)

=288 irt

Decision:

Specify3/8in leg size

Specifications:

Pattern: All-around square weld bead track
Electrode: E6010

Type of weld: Fillet

Weld bead length: 24 in

Leg size:3/8in

Attachment length: 12.25 in
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9-38 This is a good analysis tasktist a student’anderstanding.

(1) Solicit information related to a priori decisions.

(2) Solicit design variablgsandd.

(3) Find 2 and round and output all parameters @mgle screen. Allow return to Step 1
or Step 2.

(4) When the iteration is complete, the fidesplay can be the bulk of your adequacy
assessment.

Such a program can teach too.

9-39 The objective of this design task is to hétve students teach themselves that the weld
patterns of Table 9-2 can heded or subtracted tdtain the properties of a
contemplated weld pattern. The instructam cantrol the level of complication. We have
left the presentation of the drawing to you. Herexis possibility. Study the problem’s
opportunities, and then present this (or ysketch) with the problem assignment.

Section AA
A |"_ by _"|
I . i s S
[P I ——— I 4
L
| 2
_al__:‘,_ 8 d
1018 HE
sessposssssssg X X
A - 8" g |« b -
[e—a Body welds Attachment weld
10000 Ibf not shown pattern considered

Useb, as the design variable. Expeeproperties as a functionsof From Table 9-3,
cases:
A=14140-b))
I bd? _bld2 _ (b—b,))d?
‘2 2 2
I1=0.7071,
, Vo F
T 1414 6-b,)
T"=%= Fa(d2)
I 0.707l,

Parametric study
Leta=10in,b=8ind= 8inp = 2inz, = 12.8kpsi= 28 2) 12in
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A=1.41%4 (8- 2)= 8.48 in
I, =(8-2)(8 /2)= 192 ir
I=0.707¢)(192¢ 1357 ih
_10000_ 1179

8.49  k
.+ 10000010)(8/2) 2948
135.7 h

=%\/1179?+ 294 =%3= 12 800 psi

fromwhich/ =0.248 in.Do not round off the leg size — something to learn.

m':I—”:iz 64.5in
hl 0.248(12)

A=8.48(0.248%= 2.10 ih
1=135.7(0.248)% 33.65 ih

2
vol = %1 —#12: 0.369 iri

o L I 33 65_ 91.2 in
vol 0.369
T’ = 1179 = 4754 psi
0.248

,_ 2948
T

0.248
3175

Tmax
0.248

——=11 887 psi

=12 800 psi

Now consider the case of uninterrupted welds,

b =0

A=1.414¢)8- 0= 11.31
I, =(8-0)(& /2)= 256 i
I1=0.707(256) = 184 if
_10000_ 884

113% &
o 10000(10)(8/2) 2210
181 h

= %x/8842 + 22106 = %80= T

poTma_ 2380 _ g joai
- 12800

all

Do not round offi.
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A=11.31(0.186)% 2.10 fn
1=181(0.186)= 33.67 ih

r’:&=4753 psi, vok 0.188 16 0.2771n
0.186
r":@:nssz psi
0.186
fom':l—”:ﬂz%.o in
hl  0.186(16)
I 33.67

o= ~121.7in
(h212)  (0.188 /2)16

Conclusions: To meet allowable stress limitatiodand4 do not change, nor doando.
To meet the shortened bead lengtls increased proportiondye However, volume of
bead laid down increases/gs The uninterrupted bead ispgrior. In this example, we
did not round: and as a result we learned sonmmehOur measures of merit are also
sensitive to rounding. When the design deciss made, rounding to the next larger
standard weld fillet size will decrease the merit.

Had the weld bead gone around the corneessitivation would change. Here is a follow
up task analyzing artarnative weld pattern.

b

9-40 From Table 9-2
Forthe box A4=1.41%4b+d)

Subtracting, fromb andd, from/
A=1.41%(b—b+d—d,)

d* df_bldz_l

1
[ =% (3b+d)-
u 6( )

Ty Z(b—bl)d2+6(d3—df)
Length of bead [=2(b-b+d-d,)
fom=1, /hl
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9-41 Computer programs will vary.

9-42 Note to the Instructor. In the first printing of the nihtedition, the loading was stated
incorrectly. In thefourth line, “bendng moment of 100 kipin in” should read, “10 kip

bending load 10 in from”. This will be o@cted in the printings that follow. We
apologize if this has caused any inconvenience.

7an = 12 Kpsi. Use Fig. 9-1d) for general geometry, but empl — beads and | |en
beads.
Horizontal parallel weld bead pattern

b=3in,d=61In

&

|

Table9-2:  A=1.414b=1.414 )(3F 4.24

2 2
I, _bd” _3O) g4y
2
I1=0.7071,= 0.707k )(54% 38R In
, 10 2358, .
7'=————=—— kpsi
4.24n h
o _Mc _10(10)(6/2)_ 7.853kpSi
I 38.2 h

SN S :%\/2.3582+ 7.853=%3 kpsi

Equate the maximum and allowable shear stresses.

. _, _8199_,

max all
h

fromwhich/ =0.683 inlt follows that
1=38.2(0.683):= 26.1ih

The volume of the weld metal is

2
vol = % = %)zuo i

The effectiveness, (eff) is
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I 261 .

eff), =—=—"=18.6in

(eff), vol 1.4

(fom’), :I—“:L:B.Z in
hl  0.683(3+ 3)

Vertical parallel weld beads

b=3in
d=6in

From Table 9-2, case 2
A=1.41%d = 1.414 )(6% 8.48 m

3 3
=L % iy
6 6
[=0.70%, = 0.707 )(72} 50/
, 10 1179 _
' = psi
848 h
, Mc 10(10)(6/2) 5.894
T'=—-= = ps
1 50% h

r =" = \/1 179 + 5894—6211 kpsi

tor

all

[=50.9(0.501) 25.5 ih

2
voI:hzl 0520f (6+6)=1.51in

Equatingr gives 4 =0.501 inlt follows that

max

I 255 .
eff), =—=——-=16.7 in
(eff), vol 1.51

(fom), =12 _150in

nl 0.501(6+ 6)

The ratio of(eff), / (eff),is 167/18.6= 0.898The ratiafom"), / (fom’), is
12.0/13.2=0.909.This is not surprising since
ff = L L 0'720%[" =1.414[—": 1.414fom’
vol (h 12)  (h°12) hi
Theratios(eff), / (eff),, and(fom’), /(fom"), give the same information.
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9-43 F =0,T =15 kipin.

Table9-1: J,=2zr3=27(1)*=6.283if, J=0.707(1/4) 6.283 = 1.111%n

15(1
?:ﬂ:B.S kpsi  Ans .

9-44 F=2kip,T=0.
Table9-2: A =1414xhr=1.4147(1/4)(1) = 1.111 iA

L= ard= (1% =3.142iR, 71=0.707(1/4) 3.142 = 0.5553%n

=1.80 kpsi
1.111

_Mr_ 2(6)(9 =21.6 kpsi
I 0.5553

Tmax = (27 + 792 = (1.8G + 21.6)"2 = 21.7 kpsi  4ns.

9-45 F =2kip, T = 15 kipin.
Bending:
Table9-2: 4 = 1.414x h r = 1.4147 (1/4)(1) = 1.111 if

I, =zr¥=71)P=3.142id, I=0.707(1/4) 3.142 = 0.5553"%n

=1.80 kpsi

M 2(6)(3) j
n M _216k
(7)== =" 5853 ps!

Torsion:.
Table 9-1: J, = 2zr3=27(1)* = 6.283 i, J=0.707(1/4) 6.283 = 1.111%n

") =—=—2=135k
(T )T J 1. ps!
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rmaX:\/z"2+(z'")12w +(r")i :\/1.802+ 21.6+ 13.5= 255 kpsi Ans

9-46 F =2 kip,T = 15 kipin.
Bending:
Table9-2: 4 = 1.414z h r = 1.4147h (1) = 4.442 in®
L= rri=x (1P =3.142 iR, 1=0.707h (3.142) = 2.224in*

2 0.4502
4442 K

!

kps

v
===
(") :%:2(6)(1):5.403
Mo 222B h

kps

Torsion:
Table9-1: J,=2zr3=27(1)=6.283i1, J=0.707h (6.283) = 4.442 ih

T 15(1)  3.377

" — — — k S
(), 7 aaam n P
T, o.4502j2 (5.4032 ( 3.372 6.387 .
Tmax \/T (T )M (T )T \/{ h h h h p
ro =Ty = %87 20 = h=0.319in Ans.

Should specify &in weld.  Ans.

9-47 h=9mm, d= 200 mm, b= 25mm

From Table 9-2, case 2:
A = 1.414(9)(200) = 2.545(3pmn?
3
I, =d—=@=1.333( 16) mm
6 6
[=0.70% 1, = 0.707(9)(1.333)(19 = 8.484(16) mnm'
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F 25(10)
" T4 T 2545010)
M = 25(150) = 3750 Nn
_v_ Me _ 3750(100)

=9.82 MPa

frm =T+ 77 =\0.82+ 4426 = 45.3 MPa Ans

9-48 Note to the Instructor. In the first printing of the nintkdition, the vertical dimension of
5 in should be to the top of the top plateistwill be corrected in the printings that
follow. We apologize if this has caused any inconvenience.

h=0.25inh=25ind=5in.

Table 9-2, case 5: A4 =0.70% (b +2d) = 0.707(0.25)[2.5 + 2(5)] = 2.209%n

d* 5
b+2d 25+2(5)
2d°

u

1,==3 —2d*y +(b+2d)y*
:@—2(52)(2){2.& 15]( 2)= 3333

[ =0.707h I, = 0.707(1/4)(33.33) = 5.891%n

Primary shear:

7' o2 0.905 kpsi
A 2.209

Secondary shear (the critical location is at the bottom of the bracket):

y=5-2=3in

My 20909 _g 95 kpsi
I 5891

T

7. =77+ =4/0.905 + 5.0083= 5.173 kpsi
_ Ta _ 18
T 5.173

max

=3.48 Ans .
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9-49 The largest possible weld size K@ in. This is a small weld and thus difficult to
accomplish. The bracket’s load-carrying capability is not known. There are geometry
problems associated with sheet metal folding, load-placement eattbloof the center
of twist. This is not available to us. We will identify the strongest possible weldment.
Use a rectangular, weld-alfound pattern — Table 9-2, case 6:

A=1414h b6 +d )= 1.4141/16)& 7.5) 4
=0.7512 irf
x=b/2=0.5In
y=d/2=75/2= 3.75in
d? 7.5 .
I = E(319 +d) = n [31) + 7.5]= 98.44 ii 7.5

[ =0.707, = 0.707(1/16)(98.443 4.350%in
M = (3.75+ 0.5V = 4.2§

A S v
4 0.7512 |
Mc 4257 (7.5 2)
v Me _ _ 3.6647 :
LT 4.350 > 1

r =7+ 1% =W+1.33F + 3.664 = 3.90

Material properties: The allowable stress givenl®v. Let's demonstrate that.
For the 1020 CD bracket, use HR propertieS,of 30 kpsi and,; = 55. The 1030 HR

support,S, = 37.5 kpsi and,, = 68. The E6010 electrodws strengths ¢, = 50 and
St = 62 kpsi.

Allowable stresses:

1020 HR: za1 = MiN[0.3(55), 04(30)] = min(165, 12) = 12 kpsi
1020 HR: za1 = Min[0.3(68), 04(37.5)] = min(20.4, 15) = 15 kpsi
E6010: za = Min[0.3(62), 04(50)] = min(186, 20) = 18 kpsi

Since Table 9-6 gives 18.0 kpsi as thevadlble shear stress, use this lower value.
Therefore, the allowable shear stress is

Tan = Min(144, 12, 180) = 12 kpsi
However, the allowable stress in the probkatement is 1.5 kpsi which is low from the
weldment perspective. The load associated with this strength is

Thax = T

L = 3.907 = 1500

w = 1900 _ 3ge 1
3.90
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If the welding can be accomplished1@ leg size is a small weld), the weld strength is
12 000 psi and the load associated with this strengifi#s12 000/3.90 = 3077 Ib€Can

the bracket carry such a load?

There are geometry problems associatikd sheet metal folding. Load placement is
important and the center tfist has not been identified. Also, the load-carrying
capability of the top bend is unknown.

These uncertainties may require the usz different weld pattern. Our solution provides
the best weldment and thus insight for camipg a welded joint to one which employs
screw fasteners.

9-50

F =100 Ibf, 7, = 3Kkpsi
F, =100(16 / 3)= 533.3 Ibf
F; = -533.3c0s60= - 266.7 Ibf

F; = -533.3c0s30= — 462 Ibf

It follows that R} = 562 Ibfand R} = 266.7 Ibf, R, = 622 |bf
M =100(16) = 1600 Ibf - in

100

l 462

266.7

262

The OD of the tubes is h.iFrom Table 9-1, case 6:

A =2[1.414¢@hr | = 2(L.414)th YA/ 2x 4.442 n
J, =2xr® =271/ 2} = 0.7854 in
J = 2(0.707)J, = 1.414(0.7854)= 1.141 ‘in

Chapter 9, Page 30/36



Vv 622  140.0

A 4447 &
. _Te _ Me _1600(0.5)_ 720.1

J J 1.11% h

!

The shear stresses,andz” ,are additive algebraically

Toax = %(140.0+ 720.1= %) psi
Trax = Tl = ? = 3000
h =@=0.287—> 5/16in
3000
Decision: Use 916 in fillet welds  Ans.
9-51 ¥
6 mm |[ ) G [ 1 9 mm
________ .

) B
6 mm [ ] [ ] 9mm
|<—225 min 175 mm ——I

For the pattern in beimy shown, find the centroi@ of the weld group.

75(6)(150+ 326 §( 15p .

T (9)(1507+(9(159
Ton = 2(1g + A7)
_,| 070n 2( 156)+o.707( §( 150( 225 7;6] 31021 nim
Lo = 2_0'707(192( 156)+0.707( 9( 150( 175 7)%] = 2247 9D nim

I =Igmm + Lomm = (31.02 + 22.67)(1) = 53.69(16) mm’

The critical location is a&. With r in MPa, and” in kN
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el M) gy

~ 4 2[0.707 6+ 9( 15)]

o Me _ 200F(1d)( 225: 0.838T
)i 53.69( 1(9)

r =t +7"? = F0.3143 + 0.8381= 0.89%1

Materials:
1015 HR (Table A-20)S, = 190 MPa, E6010 Electrode(Table 9-8)= 345 MPa
Eq. (5-21), p. 225 7a1 = 0.577(190) = 109.6 MPa

Ty ln :109.6/2: 61.2 kN Ans .

©0.8951 0.8951

9-52 In the textbook, Fig. Problem 9-5% a free-body diagram of the bracket. Forces and
moments that act on the welds agpial, but of opposite sense.

@) M =1200(0366) = 439 Ibf - in  Ans.
(b) F, =1200 sin 30= 600 Ibf Ans.
(© F,=1200 cos 30= 1039 Ibf Ans.

(d) From Table 9-2, case 6:
A =1.414(0.25)(0.25 2.5 0.972%n
2 2
I, = d—(3b +d) = 2.5
6 6
The second area moment about an axis threugihd parallel ta is
I =0.707I, = 0.707(0.25)(3.3% 0.599%in Ans

[3(0.25)+ 2.5]= 3.39if

(e)Refer to Fig. Problem 9-%2 The shear stress dueRpis

F, 600
== ——

= 617 psi
4 0.972

The shear stress along the throat dug te

F, 1039

X

= 1069 psi
A 0972

7, =

The resultant af; andr is in the throat plane
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' = 2 + 2 = 617 + 1069 = 1234 psi

The bending of the throat gives

Mc _ 439(1.25)
I 0599

L/ —

916 psi

The maximum shear stress is

r =~r?+ 12 =123# + 916 = 1537 psi Ans

() Materials:
1018 HR Member: S, = 32 kpsi,S.. = 58 kpsi (Table A-20)
E6010 Electrode: S, =50 kpsi (Table 9-3)

S, _ 0.57%, _0.577(32)_
r 1.537

max

12.0 Ans .

n =

z-m ax

(g) Bending in the attachment near the bd$e cross-sectional e is approximately
equal tobh.
A, = bh = 0.25(2.5)= 0.625 ih

T, zizwzlGGZpsi
Y4 0.625
2
1 _ bd _ 0.25(2.5§ _ 0.260ir?
c 6 6
At location4,
F, M
o =—+—
A4 e
o, = 600 + 439 = 2648 psi
’0.625 0.260

The von Mises stress’ is
o' = \Jo? +3r% = /2648 + 3(1662) = 3912 psi
Thus, the factor of safety is,

n=-—<=——=8.18 Ans.

The clip on the mooring line bears against the side of/2wélhole. If the clip fills
the hole
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F -1200

oc=—=———=-9600 psi
td  0.25(0.50)
S
n=-—-%= —32(16) =3.33 Ans.
o’ -9600

Further investigation of thisituation requires more detaikih is included in the task
statement.

(h) In shear fatigue, the weakest constituagfrthe weld melt is 1018 HR wit}, = 58
kpsi, Eq. (6-8), p. 282, gives

S’ = 0.5045, = 0.504(58F 29.2 kpsi
Eq. (6-19), p. 287: k. = 144(58)*"8= 0780

For the size factor estingatwe first employ Eq. (6-25p,. 289, for the equivalent
diameter

d, = 0.808/0.70%> = 0.80¢ 0.707(2.5)(0.25) 0.537 in

Eq. (6-20), p. 288, is used next to find

-0.107

-0.107
R L R
0.3 0.30

Eq.(6-26), p. 290k, = 0.59

From Eq. (6-18), p. 287, the endurance strength in shear is
Sse = 0.780(0940)(059)(292) = 126 kpsi

From Table 9-5, the shestress-concentration factorA$, = 27. The loading is
repeatedly-applied
r o=z =k, Tmx _ 278937 5 7 ks
a m fs 2 2
Table 6-7, p. 307: Gerber factor of safetyadjusted for shear, with, = 0.67S,,

, T
n, = 1 & Lol 14 (14 —ZTmS“
» 2 TWI SSC SSI/ITCI

21[0.67(58)_2( 2.03 14 (14 2(2.07)(12.6) _EEE s
2| 2.07 |\ 126 0.67(58)(2.07) ' '

Attachment metal should be checked for bending fatigue.

9-53 (a) Useb =d =4 in. Sincer = 58 in, the primary shear is
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r-— L _0oso%
1.414(5 / 8)(4)

The secondary shear calculatidios,a moment arm of 14 in give

_ABE) A pp 670

u

J =0.70%J, = 0.707(5/ 8)42.6% 18.85in

M,
T” — T” — ry — 14F(2)

7 J 18.85

=1.48%F

Thus, the maximum shear and allowable load are:

7o = F\/1.485 + (0.2829- 1.488%)= 2.309
Tai 25

"~ 2309 2.309
The load for part (a) has increadwda factor of 10.8/2.71 = 3.99 4ns.

=10.8 kip Ans .

(b) From Prob. 9-18 7, = 11 kpsi

Fy=—a = 1 _ 476 kip

9~ 5300  2.309

The allowable load in part (b) has ieased by a factor of 4.76/1.19 = 4Mns.

9-54 Purchase the hook having thesidgm shown in Fig. Problem 9-b4Referring to text Fig.
9-2%, this design reduces peel stresses.

9-55 (a)
_ 112 Pwcoshgx) 12 4 . 12
== dx = A cosh dx = - sin
‘ 1I1/24bsinh@l 12y [ pcoshtox ) = 1 sinx )
= é[sinh(a)l | 2)— sinh{wl | 2)]= 4 [sinhgl /2 € sinhgl [/ 2))]
w w
_24sinhel 12) PO pginnel 1 2)]= L= ans.
) 4bl sinh@! | 2) 2!
(b) H12) = Pwcoshl /2) Pw s

= A
dbsinhwl 12) 4 tanhgl /2)
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© K=r(l/2)_ Po {Zblj_ ol |2

T dbtanh@l /2\ P ) tanhgl /2)

For computer programming, it can be uséd express the hyperbolic tangent in
terms of exponentials:
_ ol expl 1 2)- exptal |2)

2 exp! | 2)+ exptol 1 2)

9-56 This is a computer programmiegercise. All programs will vary.
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Chapter 10

10-1 From Egs. (10-4) and (10-5)

4C-1 0.615 4C+2
W_KB: + -
4C -4 C 4C-3

Plot 100(Kw — Kp)/ Kw vs. C for 4 < C < 12 obtaining
14

™.
1.3
1.2 ~\

~

11
100 Eg-E 3y Ky L

0.9

0.8 \

0.7

4 6 8 10 12
.

We see the maximum and minimum occur at C = 4 and 12 respectively where

Maximum=1.36 % Ans., and Minimum = 0.743 % Ans.

10-2 4 =Sd"
dim(A4 yseu) = [dim (S) dim(d ™)]useu = kpsi-in™
dim(A4s) = [dim (S) dim(d™)]s; = MPa-mm”
MPa mm” m ) m
A= T A, = 6894757(254) 4, 26.895(254)" 4, Ans
psi in

For music wire, from Table 10-4:
Ayseu = 201 kpsi-in™, m =0.145; whatis Ag?

Asi = 6.895(25.4)"% (201) = 2215 MPa-mm™  Ans.

10-3 Given: Music wire, d = 2.5 mm, OD = 31 mm, plain ground ends, N, = 14 coils.
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(a) Table 10-1:

Table 10-4:

Eq. (10-14);

Table 10-6:

Eq. (10-5):

Eq. (10-7):

Table 10-5):

Eq. (10-9):

N,=N;,—-1=14—-1=13 coils
Ly=dN;=2.5(14)=35 mm
m=0.145, A=2211 MPa-mm"

S :i=ﬂ:1936 MPa

ut dm 2.50.145

Sy = 0.45(1936) = 871.2 MPa
D=0D-d=31- 2.5=28.5mm
C=D/d=28525=114

X _4C+2  4(114)+2

- = =1.117
Pac-3 4(11.4)-3

xd’s, 7(25°)871.2
== =167.9 N
' 8K,D 8(1.117)28.5

d=2.5/254=0.098in = G =81.0(10°) MPa

d‘G  2.5'(81)10°

=— = ; =1.314 N/ mm
8D'N, 8(28.5°)13
LO:£+LS:@+35:162.8 mm Ans.
k 1.314

(b) F,=1679N Ans.

(©  k=1314N/mm Ans.

(d) (LO )cr

~2.63(28.5)

=149.9 mm . Spring needs to be supported.

Ans.

10-4

Given: Design load, F'; = 130 N.

Referring to Prob. 10-3 solution, C=11.4, N, = 13 coils, Sy, = 871.2 MPa, 'y =167.9 N,

Lo=162.8 mm and (L¢)cr = 149.9 mm.
Eq. (10-18): 4<C<12 Cc=114 OK.
Eq. (10-19): 3<N,<15 N,=13 OK.
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F 167.9
Eq. (10-17): &="2-1=—""2-1=029
q- ( ) ¢ F 130
Eq. (10-20): £>0.15 £=029 OK.

From Eq. (10-7) for static service

7 = KB(SFIDJ _ 11173308 _ 674 Mpa

rd’ 7(2.5)
S
n="o 2872y g
7, 674
Eq. (10-21): ns>12, n=129 OK.

r, = 0| 222 2 674) 172 ) _ g70.5 MPa
130 130
S, /7, =871.2/870.5 =1
Ss/Ts > (ng )a : Not solid-safe (but was the basis of the design). Not O.K.

Lo<(Lo)er: 162.82149.9 Not O.K.

Design is unsatisfactory. Operate over a rod?  Ans.

10-5

Given: Oil-tempered wire, d = 0.2 in, D =2 in, N, = 12 coils, Ly = 5 in, squared ends.

(a) Table 10-1: Li=d(N;,+1)=02(12+1)=2.61in Ans.
(b) Table 10-1: N,=N,-2=12-2=10 coils
Table 10-5: G=11.2 Mpsi
4 0.2*(11.2)10°
Eq. (10-9): = d 3G = ( ) =28 Ibf/in
8D’N 8(2°)10
Fs=kys=k(Lo—Ls;)=28(5-2.6)=67.21bf  Ans.
(c) Eq. (10-1): C=D/id =2/02=10
4(10)+2
Eq. (10-5): A2 (10)+2 135
4C-3  4(10)-3
8FD 8(67.2)2 N
Eq. (10-7): 7. =K =1.135———~—=48.56(10 S1
q ( ) s B ﬂ-d3 7[(0.23) ( )p
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Table 10-4: m=0.187, A = 147 kpsi-in™

A 147

Eq (10-14) Sut :d—m:W:1986 kpSl
Table 10-6: Ssy =0.50 S, = 0.50(198.6) = 99.3 kpsi
S
=—2= 93 _ 2.04  Ans.
T 48.56

s

10-6 Given: Oil-tempered wire, d =4 mm, C = 10, plain ends, Ly = 80 mm, and at 7= 50 N,
y=15mm.

@ k =Fp=50/15=3.333N/mm Ans.
(by D =Cd=104)=40 mm
OD=D+d=40+4=44mm  Ans.

(c) From Table 10-5, G =77.2 GPa

L d'G 4(772)10°

Eq. (10-9): = = =11.6 coils
% (10-9) “T8kD'  8(3.333)40°
Table 10-1: N; =N, =11.6 coils Ans.
(d) Table 10-1: Li=d(N,+1)=4(11.6+ 1)=50. 4 mm  Ans.
(e) Table 10-4: m=0.187, A = 1855 MPa-mm"
A 1855
Eq (10-14) Sut :d—m=W: 1431 MPa
Table 10-6: S5 =0.50 S, = 0.50(1431) = 715.5 MPa
yvs=Lo—Ls;=80—-50.4=29.6 mm
Fy=ky;=3.333(29.6) = 98.66 N
Eq. (10-5): K, =302 _4d0+2 ) |54

T 4C-3 4(10)-3
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8(98.66)40
Eq. (10-7): r, =K, LD :1.135(—3)=178.2 MPa
T
S
n, 212@24_02 Ans.
oo, 1782

N

10-7 Static service spring with: HD steel wire, d = 0.080 in, OD = 0.880 in, N, = 8 coils, plain
and ground ends.

Preliminaries
Table 10-5: A4 =140 kpsi - in”, m=0.190
A 140
Eqg. (10-14): S =-"—"—=——_— =226.2 kpsi
q ( ) ut dm 0.0800.190 p

Table 10-6: S, = 0.45(226.2) = 101.8 kpsi
Then,
D=0D-d=0.880-0.080=0.8 in
Eq. (10-1):  C=D/d =0.8/0.08=10
Eq (10-5): K, = 4C+2  4(10)+2
4C -3  4(10)-3
Table 10-1: N,=N,—-1=8-1=7 coils
Ly =dN; =0.08(8)=0.64 in
Eq. (10-7) For solid-safe, ny, = 1.2 :

zd’s, /n, 7(0.08)[101.8(10°) /1.2]

=1.135

F = - = 18.78 Ibf
‘ 8K ,D 8(1.135)(0.8)
4 0.08*(11.5)10°
Eq. (10-9): k& = d3G = ( 3) = 16.43 Ibf/in
8D°N, 8(0.8°)7
= BT g
k1643

(@) Lo=y, +L;=1.14+0.64=1.78in  Ans.

(b) Table 10-1: p = % = % =0.2231in  Ans.

t

(c) From above: Fy = 18.78 Ibf  Ans.
(d) From above: k= 16.43 Ibf/in  Ans.
263D 2.63(0.8)

(e) Table 10-2 and Eq. (10-13): (Ly)., = =4.2l1in

Since Ly < (Lo)r, buckling is unlikely — Ans.

10-8 Given: Design load, F'; = 16.5 Ibf.

Referring to Prob. 10-7 solution, C =10, N, = 7 coils, S, = 101.8 kpsi, Fy = 18.78 Ibf,
ys=1.141in, Lo = 1.78 in, and (L¢) = 4.208 in.
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Eq. (10-18): 4<C<12 C=10 O.K.
Eq. (10-19): 3<N,<15 N,=7 O.K.
F 18.78
Eq. (10-17): ==—-1l=—F--1=0.14
q. ( ) & F 163
Eq. (10-20): & >0.15, & =0.14 not OK., but probably acceptable.
From Eq. (10-7) for static service
7, = KB[8F"?] = 1.135%)(0'38) = 74.5(10°) psi = 74.5 kpsi
rd 7(0.080)
S
_ By _ 1018 _ 137
T, 74.5
Eq. (10-21): ny,>1.2, n=137 O.K.
o= | I8 _ 74 5[ B8 _ g4 g kpsi
‘ 16.5 16.5
n,=S8,/7, =101.8/84.8 =120
Eq. (10-21): ny>1.2, ny=1.2It1is solid-safe (basis of design). O.K.

Eq. (10-13) and Table 10-2: Lo < (Lo)cr 1.781in<4.208in O.K.

10-9

Given: A228 music wire, sq. and grd. ends, d =0.007 in, OD = 0.038 in, Ly = 0.58 in,

N, =38 coils.

Eq. (10-1):
Eq. (10-5):

Table (10-1):
Table 10-5:

Eq. (10-9):

Table (10-1):

Eq. (10-7):

Table 10-4:

D=0D-d=0.038—0.007 =0.031 in
C = D/d=0.031/0.007 = 4.429
_4C+2  4(4.429)+2
P 4C-3 4(4.429)-3
N,=N;—-2=38—-2=36coils (high)
G =12.0 Mpsi
d‘G  0.007*(12.0)10°
8D'N,  8(0.031°)36
L, = dN,=0.007(38) = 0.266 in
ys=Lo—L;=0.58-0.266=0.314in
Fy = ky, =3.358(0.314) = 1.054 Ibf
8(1.054)0.031
r. =K, —8Fv? = 1.340—( ) .
‘ zd 7(0.007°)
A =201 kpsi-in”, m=0.145

=1.340

k= =3.358 Ibf/in

=325.1(10°) psi (1)
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A 201
Eq. (10-14); § =4 -2 _
q ( ) ut dm 0.00704145

Table 10-6: S, =0.45 S, =0.45(412.7) = 185.7 kpsi

=412.7 kpsi

7, > Sy, thatis, 325.1 > 185.7 kpsi, the spring is not solid-safe. Return to Eq. (1) with
Fy =kyy and 7, =S, /n,, and solve for y,, giving
3 3
(8, /n)md® [185.7(10°)/1.2]x(0.007°)

- - =0.149 i
Y 8K kD 8(1.340)3.358(0.031) "

The free length should be wound to

Lo=L; +y,=0.266+0.149=0.415in  Ans.

This only addresses the solid-safe criteria. There are additional problems.

10-10 Given: B159 phosphor-bronze, sq. and grd. ends, d = 0.014 in, OD = 0.128 in, Ly, = 0.50
in, N, = 16 coils.

D=0D-d=0.128-0.014=0.114 in
Eq. (10-1):  C=D/d=0.114/0.014=8.143
_4C+2  4(8143)+2
P 4C-3 4(8.143)-3
Table (10-1): N, =N,—-2=16-2 =14 coils
Table 10-5: G =6 Mpsi
4 0.014*(6)10°
Eq. (10-9): k= d3G = ( )
8D’N,  8(0.114°)14
Table (10-1): L, =dN,=0.014(16) = 0.224 in
ys =Lo—Ls=0.50 — 0.224 = 0.276 in
Fy=ky, =1.389(0.276) = 0.3834 Ibf

1.169

Eq. (10-5):

=1.389 Ibf/in

8F.D 8(0.3834)0.114 3\
Eq.(10-7): 7,=K,~—=>=1.169 =47.42(10%) psi (1
(07 =Ky 7(0.014) (10%) psi )
Table 10-4: A4 = 145 kpsi-in”, m=0
A 145
Eq. (10-14): § == =145 kpsi
e S S = = 01a P

Table 10-6: S, =0.35 S, =0.35(135) = 47.25 kpsi

7, > Sy, that s, 47.42 > 47.25 kpsi, the spring 1s not solid-safe. Return to Eq. (1) with
Fy =kys and 7, =S, /n,, and solve for y;, giving
(8, /n)za’ |47.25(10°)/12]7(0.014)

- - =0.229 i
Y T8k kD 8(1.169)1.389(0.114) "

The free length should be wound to
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Lo=Ly +y,=0224+0229=0453in  Ans.

10-11 Given: A313 stainless steel, sq. and grd. ends, d = 0.050 in, OD = 0.250 in, L, = 0.68 in,
N,=11.2 coils.

Eq. (10-1):
Eq. (10-5):

Table (10-1):
Table 10-5:

Eq. (10-9):

Table (10-1):

Eq. (10-7):

Table 10-4:
Eq. (10-14):
Table 10-6:

D=0D —d=0.250 — 0.050 = 0.200 in
C = D/d = 0.200/0.050 = 4
_4C+2 4(4)+2
' 4Cc-3 4(4)-3
N,=N,-2=112-2=92 coils
G =10 Mpsi
d‘G  0.050*(10)10°
8D'N,  8(0.2°)92
L, = dN,=0.050(11.2) = 0.56 in
ys=Lo—L;=0.68—-0.56=0.12 in
F, = ky, = 106.1(0.12) = 12.73 Ibf
8(12.73)0.2
8F;? :1.385—( ) .
wd 7(0.050%)
A =169 kpsi-in”, m=0.146

A 169 .
S, =d_’”=—0 05007 =261.7 kpsi

S5y =0.35 8, =0.35(261.7) = 91.6 kpsi

=1.385

k= =106.1 Ibf/in

. =K,

91.6

=71.8(10°) psi

S
n =—= T 1.28  Spring is solid-safe (n; > 1.2)  Ans.

10-12

Given: A227 hard-drawn wire, sq. and grd. ends, d = 0.148 in, OD =2.12 in, Ly = 2.5 in,
N;=5.75 coils.

Eq. (10-1):
Eq. (10-5):

Table (10-1):
Table 10-5:

Eq. (10-9):

Table (10-1):

D=0D-d=2.12-0.148=1.972 in
C =D/d=1.972/0.148 = 13.32 (high)
_4C+2  4(13.32)+2
P 4C-3 4(13.32)-3
N,=N;—-2=5.75-2=3.75 coils
G =11.4 Mpsi
d*G  0.148*(11.4)10°
8D'N,  8(1.972°)3.75
Ly =dN,=0.148(5.75) = 0.851 in
ys=Lo—Ly=2.5-0.851=1.649 in

=1.099

k= =23.77 Ibf/in
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F, = kys = 23.77(1.649) = 39.20 Ibf

8F.D 8(39.20)1.972 o
Eq. (10-7): 7. =K, ——=1099——F——=66.7(10" ) psi
q ( ) K B 7Z_d3 7[(0.1483) ( )p
Table 10-4: A4 =140 kpsi-in™, m =0.190
Eq. (10-14): S 4 140 =201.3 kpsi

w = = 01480
Table 10-6: S, = 0.35 S, = 0.45(201.3) = 90.6 kpsi

S
= _90.6 _ 1.36  Spring is solid-safe (n; > 1.2)  Ans.
T, 66.7

s

10-13 Given: A229 OQ&T steel, sq. and grd. ends, d = 0.138 in, OD = 0.92 in, Ly =2.86 in,
N; =12 coils.

D=0D-d=0.92-0.138=0.782 in

Eq. (10-1):  C=D/d=0.782/0.138 = 5.667

_4C+2  4(5.667)+2
P 4C-3 4(5.667)-3
Table (10-1): N, =N,-2=12-2=10coils

Eq. (10-5): K =1.254

A229 OQ&T steel is not given in Table 10-5. From Table A-5, for carbon steels,

G =11.5 Mpsi.

d‘'G B 0.138* (11.5)106
8D'N,  8(0.782°)10
Table (10-1): Ly =dN,=0.138(12) = 1.656 in

vy =Lo—Ls=2.86—-1.656=1.204 in
Fy=ky,=109.0(1.204) = 131.2 Ibf
8F.D 8(131.2)0.782

Eq. (10-9): k= =109.0 Ibf/in

Eq. (10-7): . =K =1.254 =124.7(10°) psi 1
Q- (107 7 =K, — 20.139) (10°)p (1)
Table 10-4: A4 =147 kpsi-in”, m =0.187
A 147

Eq. (10-14): =212.9 kpsi

S =
“dm 0138
Table 10-6: S, =0.50 S, =0.50(212.9) = 106.5 kpsi

7, > Sy, thatis, 124.7 > 106.5 kpsi, the spring is not solid-safe. Return to Eq. (1) with
Fy =ky, and 7, =S, /n,, and solve for y,, giving

(S, /n)zd® [1065(10°)/1.2]7(0.138)
DITTRKAD | 8(1.254)109.0(0.782)
The free length should be wound to

=0.857 in
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Ly=Ls; +y,=1.656+0.857=251in  Ans.

10-14 Given: A232 chrome-vanadium steel, sq. and grd. ends, d = 0.185 in, OD =2.75in, Ly =
7.5 in, N, = 8 coils.

D=0D-d=275-0.185=2.565 in
Eq. (10-1):  C=D/d=2.565/0.185=13.86 (high)
_4C+2  4(13.86)+2
®74C-3 4(13.86)-3
Table (10-1): N, =N,—-2=8-2=6coils

Eq. (10-5): =1.095

Table 10-5: G =11.2 Mpsi.

‘G 0.185%(11.2)10°
8D°N. 8(2.565°)6
Table (10-1): Ly =dN,=0.185(8) =1.48 in

yvs=Lo—Ls=7.5-148=6.02in
Fy=ky,=16.20(6.02) = 97.5 1bf

=16.20 1bf/in

Eq. (10-9): k=

8F D 8(97.5)2.565 N
Eq. (10-7): T = *—=1.095———"———=110.1(10" ) psi 1
Q- (107 7 =K, — (0155 (10°) p (1)
Table 10-4: 4 =169 kpsi-in”, m =0.168
A 169
Eq. (10-14): =—=———"—=2244 kpsi
q ( ) ut dm 0.1850.168 p
Table 10-6: S, =0.50 S, = 0.50(224.4) = 112.2 kpsi
S
n,=—"-= 122 _ 1.02  Spring is not solid-safe (n, < 1.2)
r. 110.1

Return to Eq. (1) with Fy = ky, and 7, =S, /ny, and solve for y;, giving
(S, /n)zd* [1122(10°)/12]7(0.185°)

= = =5.109 i
Y 8K kD 8(1.095)16.20(2.565) "

The free length should be wound to

Lo=L; +y,=148+5.109=6.591n  Ans.

10-15 Given: A313 stainless steel, sq. and grd. ends, d = 0.25 mm, OD = 0.95 mm, L, = 12.1
mm, N; = 38 coils.
D=0D-d=0.95-025=0.7mm
Eq.(10-1): C=D/d=0.7/0.25=2.8 (low)
4C+2  4(28)+2

Fa-(10-3) Ky =e3= 4(2.8)-3

=1.610
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Table (10-1): N, =N, —2=38-2=36coils (high)

Table 10-5: G =69.0(10%) MPa.

d'G  0.25%(69.0)10°
8D'N,  8(0.7°)36
Table (10-1): Ly =dN,=0.25(38) = 9.5 mm

yvs=Lo—Lg=12.1-9.5=2.6 mm
Fy=ky,=2.728(2.6) =7.093 N

Eq. (10-9): k= =2.728 N/mm

8F.D 8(7.093)0.7
Eq. (10-7): 7, =K, ——=1.610———~—=1303 MPa 1
A0 L =K T 7(025°) M
Table 10-4 (dia. less than table): A= 1867 MPa-mm”, m = 0.146
Eq. (10-14): _A =ﬂ=2286 MPa

ut d" 0.250146
Table 10-6: S, =0.35S,, =0.35(2286) = 734 MPa

7, > Sy, that is, 1303 > 734 MPa, the spring is not solid-safe. Return to Eq. (1) with
F¢ =kys and 7, =S, /n,, and solve for y;, giving
(S, /n)zd® (734/12)7(0.25%)

_ _ ~1.22
TSk D 8(1.610)2.728(0.7) o

The free length should be wound to

Lo=Ls; +y,=95+122=10.72mm  Ans.

This only addresses the solid-safe criteria. There are additional problems.

10-16 Given: A228 music wire, sq. and grd. ends, d = 1.2 mm, OD = 6.5 mm, L, = 15.7 mm,
N;=10.2 coils.
D=0D-d=65-12=53mm
Eq. (10-1):  C=D/d=53/12=4.417
4C+2  4(4417)+2
4C-3  4(4.417)-3
Table (10-1): N, =N,—-2=10.2-2=28.2 coils

Eq. (10-5): K, = =1.368

Table 10-5 (d = 1.2/25.4 = 0.0472 in): G =81.7(10°) MPa.
d‘G 12°(81.7)10°

8D'N,  §(5.3')8.2

Table (10-1): Ly =dN,=1.2(10.2) = 12.24 mm

ys =Lo—Ly=15.7-12.24 = 3.46 mm
F, = ky, = 17.35(3.46) = 60.03 N

Eq. (10-9): k= =17.35 N/mm
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8(60.03)5.3
Eq. (10-7): 7, =K, 8Fs3D :1.368%= 641.4 MPa (1)
d 7[(1.2 )
Table 10-4: A4 =2211 MPa-mm"”, m =0.145
A 2211
Eq (10-14) Sut = d'” ZIQ’W: 2153 MPa

Table 10-6: S, =0.45 S, =0.45(2153) = 969 MPa

Sy 969 o .
) —=——+—=1.51 Spring is solid-safe (n, > 1.2)  Ans.
o7, 6414

S
I
I

10-17 Given: A229 OQ&T steel, sq. and grd. ends, d = 3.5 mm, OD = 50.6 mm, Ly = 75.5 mm,
N,=5.5 coils.

D=0D-d=50.6-35=47.1 mm
Eq. (10-1):  C=D/d=47.1/35=13.46 (high)
4C+2  4(13.46)+2
4C-3 4(13.46)-3
Table (10-1): N, =N,-2=5.5-2=3.5coils

=1.098

Eq. (10-5): K, =

A229 OQ&T steel is not given in Table 10-5. From Table A-5, for carbon steels,

G =79.3(10%) MPa.

d‘G 3.5'(79.3)10°
8D'N,  8(47.I')3.5
Table (10-1): Ly =dN,=3.5(5.5) =19.25 mm

vs=Lo—Ls=755-19.25=56.25 mm
Fy=ky;=4.067(56.25)=228.8 N

Eq. (10-9): k= = 4.067 N/mm

8(228.8)47.1
Eq. (10-7): =KBW—S?=1.098%=702.8 MPa (1)
‘ wd 7r(3.5 )
Table 10-4: 4= 1855 MPa-mm"”, m =0.187
A 1855
Eq (10-14) ut :d—m:W:1468 MPa
Table 10-6:  S;, = 0.50 S, = 0.50(1468) = 734 MPa
S, 734 - ,
n,=——=——=1.04 Spring is not solid-safe (n, <1.2)
S o7, 7028

Return to Eq. (1) with Fy = ky, and 7, =S, /ny, and solve for y,, giving

(S, /n)zd®  (734/12)7(3.5")
Yy = = =48.96 mm
8K kD 8(1.098)4.067(47.1)

The free length should be wound to
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Lo=Ls;+y,=19.25+48.96 =68.2 mm

Ans.

10-18 Given: B159 phosphor-bronze, sq. and grd. ends, d = 3.8 mm, OD =31.4 mm, L, =71.4

mm, N, = 12.8 coils.

D=0D-d=31.4-3.8=27.6 mm

Eq. (10-1):  C=D/d=27.6/38=7.263
_4C+2  4(7.263)+2
©T4C-3 4(7.263)-3
Table (10-1): N, =N,-2=12.8-2=10.8 coils

Eq. (10-5): 1.192

Table 10-5: G =41.4(10°) MPa.
4 3.8%(41.4)10°
Eq. (10-9): k= d3G = ( )
8D'N,  8(27.6°)10.8
Table (10-1): Ly = dN,=3.8(12.8) = 48.64 mm

ys =Lo—L,=71.4—48.64 =22.76 mm
F, = ky, = 4.752(22.76) = 108.2 N

=4.752 N/mm

Eq. (10-7): 7, =K, 872? :1.192%
Table 10-4 (d =3.8/25.4=0.150 in): A =932 MPa-mm”
Eq. (10-14): S, :dim :%: 855.7 MPa
Table 10-6: S, =0.35 S, = 0.35(855.7) = 299.5 MPa
_ Sy 2995
" 1652

s

=165.2 MPa (1)

, m=0.064

=1.81 Spring is solid-safe (n; > 1.2) Ans.

10-19

Given: A232 chrome-vanadium steel, sq. and grd. ends, d =

Lo=215.6 mm, N; = 8.2 coils.

D=0D-d=69.2-4.5=64.7 mm

Eq.(10-1):  C=D/d=64.7/45=1438 (high)
_4C+2  4(1438)+2

P 4C-3 4(1438)-3
Table (10-1): N, =N,—-2=8.2-2=6.2coils

Eq. (10-5): 1.092

Table 10-5: G =77.2(10%) MPa.

d‘G  4.5'(77.2)10°
8D'N,  8(64.7)6.2
Table (10-1): Ly =dN,=4.5(8.2) =36.9 mm

=2.357 N/mm

Eq. (10-9): k=

4.5 mm, OD = 69.2 mm,
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yy=Lo—Ly;=215.6-36.9=178.7 mm
F,=ky, =2.357(178.7) = 4212 N

FD 8(421.2)64.7
Eq. (10-7): T, :KBS—S3:1.092%:832 MPa (1)
rd 72'(4.5 )
Table 10-4: A=2005 MPa-mm"”, m=0.168
A 2005
Eq (10-14) Sut :d—m:W:1557 MPa

Table 10-6: S, =0.50 S, = 0.50(1557) = 779 MPa

7, > S, that is, 832 > 779 MPa, the spring is not solid-safe. Return to Eq. (1) with
Fy =kyy and 7, =S, /n,, and solve for yy, giving

(S, /n)xd®  (779/12)7(4.5)
Yy = = =139.5 mm
8K kD 8(1.092)2.357(64.7)

The free length should be wound to

Lo=Ls +y,=369+1395=176.4mm  Ans.

This only addresses the solid-safe criteria. There are additional problems.

10-20 Given: A227 HD steel.
From the figure: Lo =4.75 in, OD =2 in, and d = 0.135 in. Thus
D=0D-d=2-0.135=1.865in
(a) By counting, N, = 12.5 coils. Since the ends are squared along 1/4 turn on each end,

N, =125-05 =12 turns Ans.
p=475/12=039%in Ans.

The solid stack is 13 wire diameters
Ly;=13(0.135)=1.7551in  Ans.

(b) From Table 10-5, G = 11.4 Mpsi

4G _0.1354(11.4)(106)

= ; = ; = 6.08 Ibf/in Ans.
8D’N, 8(1.865%)(12)

(C)Fy=k(Lo - Ly ) = 6.08(4.75 — 1.755)(107) = 18.2 Ibf  Ans.
(d) C=D/d =1.865/0.135 = 13.81
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41381 +2

p = 1.096
4(13.81) - 3
rs:<KB§E¥?::1096§g§59g3¥§2::385(Mf)pﬁ::3&5kpﬂ Ans.
wd 7(0.135%)

10-21 For the wire diameter analyzed, G = 11.75 Mpsi per Table 10-5. Use squared and ground
ends. The following is a spread-sheet study using Fig. 10-3 for parts («) and (b). For N,,
k= Fmax /y = 20/2 =10 Ibf/in. For z,, F = F; =20(1 + & =20(1 + 0.15) = 23 Ibf.

(a) Spring over a Rod (b) Spring in a Hole

Source Parameter Values Source Parameter  Values
d 0.075 0.080 0.085 d 0.075 0.080 0.085
1D 0.800 0.800 0.800 OD 0.950 0.950 0.950
D 0.875 0.880 0.885 D 0.875 0.870 0.865
C C

Na

N;

Eq. (10-1) 11.667  11.000 10412 | Eq. (10-1) 11.667  10.875 10.176
Eq. (10-9) N, 6.937 8.828  11.061 | Eq.(10-9) 6.937 9.136  11.846
Table 10-1 N, 8937  10.828 13.061 | Table 10-1 8937  11.136  13.846
Table 10-1 L, 0.670 0866  1.110 | Table 10-1 L, 0.670 0891  1.177
115y + L, Lo 2.970 3.166 3410 | 1.15y+L, L, 2.970 3.191 3477

Eq. (10-13)  (Lo)e  4.603 4629 4655 | Eq.(10-  (Lo)e  4.603 4576 4550
13)

Table 10-4 A 201000 201.000 201.000 | Table 10-4 4  201.000 201.000 201.000

Table 10-4 m 0.145 0.145  0.145 | Table 104 m 0.145 0.145  0.145

Eq. (10-14) S,  292.626 289.900 287.363 | Eq. (10- S.  292.626 289.900 287.363
14)

Table 10-6 S, 131.681 130.455 129.313 | Table 10-6 S,  131.681 130.455 129313
Eq. (10-5) Ky 1.115 1.122 1.129 | Eq.(10-5) K 1.115 1.123  1.133

Eq. (10-7) s, 135335 112948 95293 | Eq.(10-7) 7 135335 111.787 93.434

Eq. (10-3) n, 0.973 1.155 1357 | Eq.(10-3)  n, 0.973 1.167 1384

Eq.(10-22) fom  -0282  -0.391 -0.536 | Eq.(10- fom  —0282 0398 -0.555
22)

For n, > 1.2, the optimal size is d = 0.085 in for both cases.

10-22 In Prob. 10-21, there is an advantage of first selecting d as one can select from the
available sizes (Table A-28). Selecting C first, requires a calculation of d where then a
size must be selected from Table A-28.
Consider part (a) of the problem. It is required that

ID=D—-d=0.800 in. (1)
From Eq. (10-1), D = Cd. Substituting this into the first equation yields

0.800
d=—— 2
1 ()
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Starting with C = 10, from Eq. (2) we find that d = 0.089 in. From Table A-28, the closest
diameter is d = 0.090 in. Substituting this back into Eq. (1) gives D = 0.890 in, with C =
0.890/0.090 = 9.889, which are acceptable. From this point the solution is the same as
Prob. 10-21. For part (b), use

OD=D+d=0.950in. 3)
and, d= —0'800 (4)
Cc-1

(a) Spring over a rod

(b) Spring in a Hole

Source Parameter Values Source  Parameter Values
C 10.000 10.5 C 10.000
Eq. (2) d 0.089 0.084 Eq. (4) d 0.086
Table A-28 d 0.090 0.085 | Table A-28 d 0.085
Eq. (1) D 0.890 0.885 Eq. (3) D 0.865
Eq. (10-1) C 9.889 10.412 | Eq.(10-1) C 10.176
Eq. (10-9) N, 13.669 11.061 | Eq. (10-9) N, 11.846
Table 10-1 N, 15.669 13.061 | Table 10-1 N, 13.846
Table 10-1 L, 1.410 1.110 | Table 10-1 Ly 1.177
1.15y+ L, Ly 3.710 3.410 1.15y + L, Ly 3.477
Eq. (10-13) (Lg)g 4.681 4.655 | Eq.(10-13) (Lo)er 4.550
Table 10-4 A 201.000  201.000 | Table 10-4 A 201.000
Table 10-4 m 0.145 0.145 | Table 10-4 m 0.145
Eq. (10-14) S, 284.991 287.363 | Eq. (10-14) S 287.363
Table 10-6 S|, 128.246  129.313 | Table 10-6 S 129.313
Eq. (10-5) K 1.135 1.128 | Eq. (10-5) Kp 1.135
Eq. (10-7) 7 81.167 95.223 | Eq. (10-7) 7, 93.643
ngy = S4/7s ng 1.580 1.358 | ny, =Sy/7 ng 1.381
Eq. (10-22) fom -0.725 -0.536 | Eq. (10-22) fom -0.555

Again, for ny >

1.2, the optimal size is = 0.085 in.

Although this approach used less iterations than in Prob. 10-21, this was due to the initial
values picked and not the approach.

10-23 One approach is to select A227 HD steel for its low cost. Try Ly = 48 mm, then for
y=48 —37.5=10.5 mm when F'= 45 N. The spring rate is k = F/y =45/10.5 =4.286
N/mm.

For a clearance of 1.25 mm with screw, ID =10 + 1.25 = 11.25 mm. Starting with
d=2 mm,

D=ID+d=1125+2=13.25 mm

C=D/d=13.25/2=6.625 (acceptable)

Table 10-5 (d =2/25.4=0.0787 in): G =79.3 GPa
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4 4 3
Eq.(10-9): N, = d G3 = 2 (19.3)10 +=15.9 coils
8kD®  8(4.286)13.25

Assume squared and closed.
Table 10-1: N;,=N, +2=159+2=17.9 coils
Ly =dN,;=2(17.9) =35.8 mm

ys =Lo—L; =48 -35.8=12.2 mm
F, = ky, =4.286(12.2) =52.29 N

_4C+2  4(6.625)+2
T 4C-3 4(6.625)-3

Eq. (10-5): K, =1.213

Eq. (10-7): 7, = K, 8KD _ 1.23{%

zd’ 7z(23)
Table 10-4: A4 =1783 MPa- mm”, m=0.190
Eq. (10-14): S =4 1783 1563 Mmpa

ut = d_m - 204190

} = 267.5 MPa

Table 10-6: S, =0.45S,, = 0.45(1563) = 703.3 MPa

S
ns‘:i:w:2.63 >1.2 OK.
ST, 2675

No other diameters in the given range work. So specify

A227-47 HD steel, d =2 mm, D = 13.25 mm, ID = 11.25 mm, OD = 15.25 mm, squared
and closed, N, =17.9 coils, N, = 15.9 coils, k =4.286 N/mm, Ly = 35.8 mm, and L, = 48
mm. Ans.

10-24

Select A227 HD steel for its low cost. Try Lo = 48 mm, then for y =48 —37.5=10.5 mm
when F'= 45 N. The spring rate is k = F/y =45/10.5 = 4.286 N/mm.

For a clearance of 1.25 mm with screw, ID =10 + 1.25=11.25 mm.

D-d=11.25 (1)
and, D =Cd (2)
Starting with C = 8, gives D = 8d. Substitute into Eq. (1) resulting in d =1.607 mm.
Selecting the nearest diameter in the given range, d = 1.6 mm. From this point, the
calculations are shown in the third column of the spreadsheet output shown. We see that
for d = 1.6 mm, the spring is not solid safe. Iterating on C we find that C = 6.5 provides

acceptable results with the specifications
A227-47 HD steel, d =2 mm, D = 13.25 mm, ID = 11.25 mm, OD = 15.25 mm, squared
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and closed, N; = 17.9 coils, N, = 15.9 coils, k =4.286 N/mm, L, = 35.8 mm, and Ly = 48
mm. Ans.
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Source Parameter Values
C 8.000 7 6.500
Eq. (2) d 1.607 1.875 2.045
Table A-28 d 1.600 1.800 2.000
Eq. (1) D 12.850 13.050 13.250
Eq. (10-1) C 8.031 7.250 6.625
Eq. (10-9) N, 7.206 10.924 15.908
Table 10-1 N, 9.206 12.924 17.908
Table 10-1 L, 14.730 23.264 35.815
Ly—L, Vs 33.270 24.736 12.185
F, =ky, F, 142.594 106.020 52.224
Table 10-4 A 1783.000 1783.000 1783.000
Table 10-4 m 0.190 0.190 0.190
Eq. (10-14) S 1630.679 1594.592 1562.988
Table 10-6 Sy 733.806  717.566  703.345
Eq. (10-5) Kp 1.172 1.200 1.217
Eq. (10-7) 7 1335.568 724.943  268.145
ny, =S,,/7 ng 0.549 0.990 2.623

The only difference between selecting C first rather than d as was done in Prob. 10-23, is
that once d is calculated, the closest wire size must be selected. Iterating on d uses
available wire sizes from the beginning.

10-25 A stock spring catalog may have over two hundred pages of compression springs with up

to 80 springs per page listed.

Students should be made aware that such catalogs exist.
Many springs are selected from catalogs rather than designed.

The wire size you want may not be listed.

Catalogs may also be available on disk or the web through search routines. For

example, disks are available from Century Spring at

1 -(800) - 237 - 5225

WWwWw.centuryspring.com

It is better to familiarize yourself with vendor resources rather than invent them

yourself.

Sample catalog pages can be given to students for study.

10-26

Given: ID=0.6in, C=10,Lo=51n, Ly =5 —3 =2 in, sq. & grd ends, unpeened, HD
A227 wire.

@ WithID=D-d=0.6inand C=D/d=10=10d-d=0.6 = d=0.0667 in Ans.,

(b) Table 10-1:

and D = 0.667 in.

Ly;=dN,=21in = N,=2/0.0667 30 coils Ans.

Chapter 10 - Rev. A, Page 19/41



(c) Table 10-1: N,=N,-2=30-2=28 coils
Table 10-5: G =11.5 Mpsi
d‘G  0.0667°(11.5)10°

Eq. (10-9): = _ —3.424 bffin  Ans.
a 8D'N,  8(0.667°)28
(d) Table 10-4: A =140 kpsi-in”, m=0.190
Eq. (10-14): s = A 10 o3 psi

"4 0.0667%
Table 10-6: Sy, = 0.45 S, = 0.45 (234.2) = 105.4 kpsi

F, = ky, = 3.424(3) = 10.27 Ibf
_4C+2 4(10)+2

Eq. (10-5): = = =1.135
% (10-3) ' 4Cc-3 4(10)-3
Eq. (10-7):
FD 8(10.27)0.667
TSZKBg 2 =1.135 (10.27) -
zd 7(0.0667)
=66.72(10%) psi = 66.72 kpsi
S
,=—= :wzl.SS Ans.
T 66.72

S

(e 7,=1,=0.57,=0.5(66.72) = 33.36 kpsi, » = 7, / 7,, = 1. Using the Gerber fatigue
failure criterion with Zimmerli data,

Eq. (10-30): Sy =0.67 S, = 0.67(234.2) = 156.9 kpsi

The Gerber ordinate intercept for the Zimmerli data is

S, = S = 35 =39.9 kpsi

“1-(S,,/S,) 1-(55/156.9)
Table 6-7, p. 307,

sm

I’ (156.9°) \/ {2(39.9)}2 .
=—— -1+, [1+| ——=| =37.61 kpsi

2(39.9) 1(156.9)
nf:S‘““ zﬂzl.lf’a Ans.
T 33.36

a

10-27 Given: OD<09in,C=8,Ly=31in,L;=11n, y;=3 — 1 =2 in, sq. ends, unpeened,
music wire.
@ TryOD=D+d=09in,C=D/d=8 = D=8d = 9d=0.9 = d=0.1 Ans.
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D=8(0.1)=0.8 in

(b) Table 10-1: Li=d(N;,+1) = N,=L;/d —1=1/0.1-1=9 coils Ans.
Table 10-1: N,=N,—-2=9-2=7coils
(c) Table 10-5: G =11.75 Mpsi

d‘G _ 0.1'(11.75)10°

Egq. (10-9): = = =40.98 Ibffin  Ans.
a 8D’ N, 8(0.8")7
(d) F, = ky, = 40.98(2) = 81.96 Ibf
4(8)+2
Eq. (10-5): a2 (®)+2_ 17
4C-3  4(8)-3
8(81.96)0.8
Eq. (10-7): z, =K38F—Sl3)=1.172¥=195.7(103) psi =195.7 kpsi
wd 7z(0.13)
Table 10-4: A =201 kpsi-in”, m=0.145
A 201 .
Eq (10-14) Sut :d—m:W:2807 kpSl
Table 10-6: Sy =0.45 S, = 0.45(280.7) = 126.3 kpsi
S, .
n =—2= 1263 _ 0.645  Ans.
1957

N

(& 7,=1,=1,/2=195.7/2=97.85 kpsi. Using the Gerber fatigue failure criterion with
Zimmerli data,

Eq. (10-30): So =0.67 S, =0.67(280.7) = 188.1 kpsi
The Gerber ordinate intercept for the Zimmerli data is
S, = S = 35 =36.83 kpsi

C1-(8,,/8,)  1-(55/188.1)°
Table 6-7, p. 307,

202 2
5, =0l 1y 14 2
28 S

se Su

12(188.12 ’
:u -1+ |1+ M =36.83 kpsi
2(38.3) 1(188.1)
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S, 3683

sa

T 97.85

a

n,= =0.376 Ans.

Obviously, the spring is severely under designed and will fail statically and in fatigue.
Increasing C would improve matters. Try C = 12. This yields n, = 1.83 and n,= 1.00.

10-28 Note to the Instructor: In the first printing of the text, the wire material was incorrectly
identified as music wire instead of oil-tempered wire. This will be corrected in
subsequent printings. We are sorry for any inconvenience.

Given: Fiax = 300 1bf, Fpin = 150 Ibf, Ay=1in,OD=2.1-02=191in, C=7,
unpeened, sq. & grd., oil-tempered wire.

@ D=0D-d=19-d (1)
C=D/d=7 = D=7d (2)
Substitute Eq. (2) into (1)
7d=19-d = d=19/8=0.2375in Ans.

(b) FromEq. 2): D =7d="7(0.2375)= 1.663in  Ans.

(€) g= B 3902150 56 1bin Ans.
Ay
(d) Table 10-5: G =11.6 Mpsi
4 0.2375*(11.6)10°
Eq. (10-9): L= d 3G = ( . ) =6.69 coils
8Dk 8(1.663")150

Table 10-1: N,=N, +2=28.69 coils Ans.
(e) Table 10-4: A =147 kpsi-in”, m=0.187

Eq. (10-14): S = 4 —14—7—1923 kpsi

q‘ * ut dm 0'237504187 : p
Table 10-6: S =0.58,=0.5(192.3) = 96.15 kpsi

_4C+2 4(7)+2

Fq. (105) "7 4C-3 4(7)-3

=12
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8F.D
Eq. (10-7): 7, =K, 7[&’3 = Ssy

nd’s,  x(02375%)96.15(10°)

= - = 253.5 Ibf
" 8K,D 8(1.2)1.663

vy = F, | k=253.5/150 = 1.69 in
Table 10-1: L, =N, d=28.46(0.2375)=2.01 in

Lo=L;+y,=2.01+1.69=3.70 in Ans.

10-29 For a coil radius given by:

Rz - Rl
27N

0

The torsion of a section is 7= PR where dL = R d@

52U 1 por

oP  GJ? oP

P an(R R, — R,
1

3
== + —9) do
GJ °°
27N

2nN
_i(lj 27N (R+R2—R19T
GJ\4 )\ R, - R ' 22N .
7PN 4 4\ _ 7PN ) )
(R - R') = oy R R) (R + R))

dL = LIZ”NPRS 40
GJ b

" 2GJ(R, - R)
T 16PN
J = 5d“ w8, = (R R)(R’ +RY)
P d‘G

— = 3 5 Ans.
S, 16N(R + R)(R! + R;)

10-30 Given: Fiyin =4 Ibf, Fnax = 18 Ibf, £=9.5 1bf/in, OD < 2.5 in, ny= 1.5.

For a food service machinery application select A313 Stainless wire.

Table 10-5: G =10(10° psi
Note that for 0.013<d<0.10in A=169, m=0.146
0.10<d<020in  A4=128, m=0.263

F :%:ﬂbf, Fo-18r4

a

=11Ibf, r=7/11
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169
Try, d=0080in, S, =——
ry (0.08)0.146

So=0.67S,;, =163.7kpsi, S, =0.355,, = 85.5 kpsi

= 244 .4 kpsi

Try unpeened using Zimmerli’s endurance data: S;, = 35 kpsi, Ss, = 55 kpsi

Gerber: S, = S - = 35 — = 39.5 kpsi
1-¢S,/S,) 1-(55/163.7)

2 2 ?
¢ _ /110637 _H\/l{ﬂ} — 35.0 kpsi

2(39.5) (7 /11)(163.7)
@ =S, /n =350/15=233kpsi
8F 8(7) . .
=—2107) =| ——=L—1(107) = 2.785 kpsi
F=at) [7[(0.082)}( ) P
C = 2(23.3) — 2.785 N 2(23.3) — 2.785 ? B 3(23.3)
4(2.785) 4(2.785) 4(2.785)
D = Cd = 6.97(0.08) = 0.558 in
K - 4C + 2 _ 4(6.97) + 2 1201

P40 -3 4(6.97) -3

r = KBLSFG?j =1.201 waoﬂ = 23.3 kpsi
nd 7(0.08%)

n, =35 / 23.3 =1.50 checks

4 6 4
= Gd__ 1000008 _ 31 05 coils
8kD®  8(9.5)(0.558)°
N, =31.02 + 2 =33 coils, L =dN, = 0.0833) = 2.64 in

t

y. =F_ /k=18/9.5=1895in
y, =1+ &y, =(1+0.15(1.895) = 2.179 in
L, =2.64+2.179 = 4819 in

D 2.63(0.558)

(L), = 2.63= = 2.935in
(94

r = 11518 / 7)z, = 1.15(18 / 7)(23.3) = 68.9 kpsi
n =S, /7, =85/689 =124

s

f:\/ ke :\/ ____9:5086) 109 Hy
7*d’DN,y  \ 7°(0.08°)(0.558)(31.02)(0.283)

These steps are easily implemented on a spreadsheet, as shown below, for different
diameters.
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dl dz d3 d4
d 0.080 0.0915 0.1055 0.1205
m 0.146 0.146 0.263 0.263
A 169.000 169.000 128 128
Sut 244.363 239.618 231.257 223.311
Ssu 163.723 160.544 154.942 149.618
Sy 85.527 83.866 80.940 78.159
Sse 39.452 39.654 40.046 40.469
Ssa 35.000 35.000 35.000 35.000
a 23.333 23.333 23.333 23.333
p 2785 2.129 1.602 1.228
C 6.977 9.603 13.244 17.702
D 0.558 0.879 1397 2.133
Kp 1.201 1.141 1.100 1.074
Ta 23.333 23.333 23.333 23.333
ny 1.500 1.500 1.500 1.500
N, 30.993 13.594 5975 2.858
N, 32993 15.594 7975 4.858
Ls 2.639 1427 0.841 0.585
Vs 2179 2179 2179 2179
Ly 4.818 3.606 3.020 2.764
(Lo)er 2936 4.622 7350 11.220
T, 69.000 69.000 69.000 69.000
N 1.240 1.215° 1.173 1.133
f(Hz) 108.895 114.578 118.863 121.775

The shaded areas depict conditions outside the recommended design conditions. Thus,
one spring is satisfactory. The specifications are: A313 stainless wire, unpeened, squared
and ground, d =0.0915 in, OD = 0.879 + 0.092 = 0.971 in, Ly = 3.606 in, and N, = 15.59

turns Ans.

10-31 The steps are the same as in Prob. 10-23 except that the Gerber-Zimmerli criterion is
replaced with Goodman-Zimmerli:

se

S

sa

1-(S,,/S.,,)
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The problem then proceeds as in Prob. 10-23. The results for the wire sizes are shown
below (see solution to Prob. 10-23 for additional details).

Iteration of d for the first trial

di d, ds ds di d> ds ds
d 0.080 0.0915 0.1055 0.1205 d 0.080 0.0915 0.1055 0.1205
m  0.146 0.146 0.263 0.263 Kz 1.151 1.108 1.078 1.058
A 169.000 169.000 128.000 128.000 ¢, 29.008  29.040 29.090 29.127
Sw 244363 239.618 231.257 223311 ny 1.500 1.500 1.500 1.500
Sq 163.723  160.544 154.942 149.618 N, 14.191 6.456 2.899 1.404
Sy 85527  83.866 80.940 78.159 N, 16.191 8.456 4.899 3.404
Sse 52706  53.239 54261 55345 L, 1.295 0.774 0.517 0.410
S 43.513 43560  43.634  43.691  ymax 2.875 2.875 2.875 2.875
a 29.008 29.040 29.090 29.127 L, 4.170 3.649 3.392 3.285
LS 2785 2.129 1.602 1.228 (Lo)er 3.809 5.924 9.354 14.219
C 9.052 12.309 16.856 22433 85.782  85.876 86.022  86.133
D 0.724 1.126 1.778 2.703 R 0.997 0.977 0.941 0.907
f(Hz) 140.040 145.559 149.938 152.966

Without checking all of the design conditions, it is obvious that none of the wire sizes

satisfy n, > 1.2. Also, the Gerber line is closer to the yield line than the Goodman. Setting

ny= 1.5 for Goodman makes it impossible to reach the yield line (n; < 1) . The table

below uses ny= 2.

Iteration of d for the second trial
di d, ds ds di d> ds ds

d 0.080 0.0915 0.1055 0.1205 d 0.080 0.0915 0.1055 0.1205
m 0.146 0.146 0.263 0.263 Kp 1.221 1.154 1.108 1.079
A 169.000 169.000 128.000 128.000 ¢, 21.756  21.780 21.817 21.845
Sw 244363 239.618 231.257 223311 ny 2.000 2.000 2.000 2.000
Sq 163.723  160.544 154.942 149.618 N, 40.243  17.286 7.475 3.539
Sy 85527  83.866 80.940 78.159 N, 42.243  19.286 9.475 5.539
Sse 52706 53.239 54261 55.345 L, 3.379 1.765 1.000 0.667
S 43513 43560 43.634  43.691 ymax 2.875 2.875 2.875 2.875
a 21.756  21.780 21.817 21.845 L, 6.254 4.640 3.875 3.542
Yis 2.785 2.129 1.602 1.228 (Lo)er 2.691 4.266 6.821  10.449
C 6.395 8.864 12292 16.485 1 64.336  64.407 64517 64.600
D 0.512 0.811 1.297 1.986 n; 1.329 1.302 1.255 1.210

f(Hz) 98.936 104.827 109.340 112.409

The satisfactory spring has design specifications of: A313 stainless wire, unpeened,
squared and ground, d = 0.0915 in, OD =0.811 + 0.092 = 0.903 in, L, = 4.266 in, and
N;=19.6 turns. Ans.

10-32 This is the same as Prob. 10-30 since S, = 35 kpsi. Therefore, the specifications are:
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A313 stainless wire, unpeened, squared and ground, d = 0.0915 in, OD = 0.879 + 0.092 =
0.971 in, Ly = 3.606 in, and N, = 15.84 turns Ans.

10-33 For the Gerber fatigue-failure criterion, Sy, = 0.67S,, ,

2¢Q2 2
Sqe — Ssa T W = r Ssu 1+ 1+ 2S se
‘ 1- (Ssm / Ssu) ‘ 2Sse rSsu

The equation for Sy, is the basic difference. The last 2 columns of diameters of Ex. 10-5
are presented below with additional calculations.

d 0105 0112 |d 0.105  0.112
S. 278.691 276.096 | N, 8915  6.190
S 186723 184.984 | L, 1.146 0917
S. 38325 38394 | Lo 3.446 3217
Sy 125411 124243 | (Lo)e  6.630  8.160
S 34.658  34.652 | Ky 1111 1.095
a 23105 23.101 | f, 23.105  23.101
Vi 1732 1523 | ny 1,500 1.500
C 12004 13.851 | 70.855  70.844
D 1260 1551 | n, 1,770 1.754
I 1155 1439 |, 105.433  106.922
OD 1365 1663 fom  —0973 —1.022

There are only slight changes in the results.

10-34 As in Prob. 10-35, the basic change is Sj,.

For Goodman, S = S
o1-(8,,/S8,)
Recalculate Sy, with
— rSSL’SSu
o rS, + S,

Calculations for the last 2 diameters of Ex. 10-5 are given below.
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d 0105 0112 |d 0.105  0.112
S.u 278.691 276.096 | N, 9.153  6.353
Sw 186723 184984 | L, 1171 0.936
S  49.614 49810 | Lo 3471 3.236
Sy 125411 124243 | (Lo)e 6572 8.090
S 34386 34380 | Kj 1112 1.096
a 22924 22920 g, 22924 22.920
Y 1732 1523 | n, 1.500  1.500
C 11899 13.732] ¢, 70.301  70.289
D 1249  1.538 | n, 1784 1.768
ID 1144 1426 f, 104.509  106.000
OD 1354 1650 fom  —098 —1.034

There are only slight differences in the results.

10-35 Use: E=28.6 Mpsi, G =11.5 Mpsi, 4 = 140 kpsi - in” , m = 0.190, rel cost = 1.

14 .
Tl'y d = 0.067 il’l, Sut = W = 234.0 kpSl
Table 10-6: Sy, =0.45S,, = 105.3 kpsi
Table 10-7: S, =0.75S,, = 175.5 kpsi
Eq. (10-34) with D/d=Cand C, =C
Fmax S}’
o, ="2[(K),[16C) + 4] = —
zd n,
l_C- d*S
- C ey +a= 00
4C(C -1 nF ..
5 zd*S
4C-C-1=(C -1 > 1
nyFmax

d’s d’S
Pl I S PO UL B M I
4 4n F 4\ 4n F

y*© max

7d’S 7d’S, | #d’s, N
y 4+ L — “- + 2| take positive root

C =

1
2116n F A\l 16n F

y~ max y* max

1 7(0.067%)(175.5)(10°)
) 16(1.5)(18)

+ 2 =4.590

L [[7(0-067)*175.5)10%) " 2(0.067)%(175.5)(10°)
16(1.5)(18) 4(1.5)(18)
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D = Cd = 4.59(0.067) = 0.3075 in

3 3 _
Fi:ﬂdrl. _zd’[ 33500 i1000[4_c 3)
8D 8D | exp(0.105C) 6.5

Use the lowest F; in the preferred range. This results in the best fom.

3 —
F - 7(0.067) 33 500 ~ 1000[4 ~ 4.590 3} _ 6.505 Ibf
8(0.3075) | exp[0.105(4.590)] 6.5

For simplicity, we will round up to the next integer or half integer. Therefore, use F; =7
Ibf

187

= 22 Ibf/in

4 4 ¥
- d G3 _ (0.067) (11-5)(1?) — 45.28 turns
8kD 8(22)(0.3075)

N, =N, - G 45.28 — 115 44 .88 turns
E 28.6

L, = 2C — 1+ N,)d = [2(4.590) — 1 + 44.88](0.067) = 3.555 in
Ly = 3.555+0.5 = 4055 in

4C+2  4(4590)+2

Body: K, = = 1.326
AC -3 4(4.590) -3
i 8K, Fr;axD _ 8(1.326)(18)(0.33075) (107 = 62.1 kpsi
zd 7(0.067)
S, 1053
(ny)body = . Y = E =1.70

max

;= 2d = 2(0.067) = 0.1341in, C, =22 =201 _,

d  0.067
_A4C -1 _ A -1 s
4C, -4 4(4) -4

7y = (K)B{—gim;;l) } =125 [—8(1 8)(0.3075)

}(10-3) = 58.58 kpsi

7(0.067)°
S, 1053
= v - 2 180
1) r, 5858
2 72 2 2
fom = (1" d (N:; +2)D _ 7(0.067) (44.38 +2)(03075) _ 10

Several diameters, evaluated using a spreadsheet, are shown below.
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d 0.067 0.072 0.076 0.081 0.085 0.09 0.095 0.104
Sut 233.977 230.799 228.441 225.692 223.634 221.219 218958 215.224
Sy 105.290 103.860 102.798 101.561 100.635 99.548 98.531 96.851
Sy 175.483 173.100 171.331 169.269 167.726 165914 164.218 161.418
C 4.589 5412 6.099 6.993 7.738 8.708 9.721 11.650
D 0.307 0.390 0.463 0.566 0.658 0.784 0.923 1.212
F'; (calc) 6.505 5.773 5.257 4.675 4.251 3.764 3.320 2.621

F; (rd) 7.0 6.0 5.5 5.0 45 4.0 3.5 3.0
k 22.000 24.000 25.000 26.000 27.000 28.000 29.000  30.000
N, 4529 2720 1927 1310 977  7.00 513 3.5
Ny 4489 2680 1886 1269 936 659 472 275
Lo 3556  2.637 2285 2080  2.026 2071 2201  2.605
Lis bf 4056  3.137 2785 2580 2526 2571 2701 3.105
K 1326 1268 1234 1200 1179  1.157 1139  1.115
T 62.118 60.686 59.707 58.636 57.875 57.019 56249  55.031
(M)besy  1.695 1711 1722 1732 1739 1746 1752 1.760
75 58.576 59.820 60.495 61.067 61367 61.598 61.712 61.712
(n,)5 1,797 1736 1.699  1.663 1.640 1616 1597  1.569
(n,).4 1,500  1.500  1.500  1.500  1.500  1.500  1.500  1.500
fom ~0.160 -0.144 -0.138 —0.135 -0.133 —0.135 —-0.138 —0.154

Except for the 0.067 in wire, all springs satisfy the requirements of length and number of
coils. The 0.085 in wire has the highest fom.

10-36 Given: N, = 84 coils, F; = 16 Ibf, OQ&T steel, OD = 1.5 in, d = 0.162 in.
D=0D-d=15-0.162=1.338 in
(a) Eq. (10-39):
LOZZ(D—d)+(Nb+ l)d
=2(1.338-0.162) + (84 + 1)(0.162) = 16.12 in  Ans.

o 2d+ Lo = 2(0.162) + 16.12 = 16.45 in overall
(b) c_D_138
d 0162
L 4C+2 4(826)+2
PT4C -3 4826)-3
T, = KBPFI‘?} = “66%1'3338)
nd 7(0.162)

(c) From Table 10-5 use: G=11.4(10% psi and E =28.5(10°) psi

=1.166

=14 950 psi  Ans.
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N, =N, +£:84+&:84.4turns
E 28.5
d'G  (0.162)*(11.4)(10°%)

= - = ; = 4.8551bf/in Ans.
8D°N, 8(1.338)"(84.4)

(d) Table 10-4: A=147 psi - in", m=0.187
147
= ——— = 207.1 kpsi
ut (0.162)0187 p

S, = 0.75(207.1) = 155.3 kpsi
S,, = 0.50(207.1) = 103.5 kpsi

Body
_nd ’ A
~ 7K,D
7(0.162)*(103.5)(10°)

= = 110.8 Ibf
8(1.166)(1.338)

Torsional stress on hook point B

C =2 _2025+0.162/2)
>4 0.162

_ 4G, -1 _ 44086) -1
4C, — 4 4(4.086) — 4

7(0.162)*(103.5)(10%)

F = =103.9 Ibf
8(1.243)(1.338)

= 4.086

243

(K)

Normal stress on hook point A

2 1338

1 = =8.26
d  0.162
&), - 4CT - C —1 _ 4826 -826-1 _ oo
4C(C, —1)  4(8.26)(8.26 — 1)
16(K),D 4 }
zd’® d’
P 155.3(10%)
[16(1.099)(1.338)] / | 7(0.162)° | + {4 / [7:(0.162)2]}

= min(110.8, 103.9, 85.8) = 85.8 Ibf  Ans.

S =O'=F|:

vt

= 85.8 Ibf

(e)Eq. (10-48):
_F-F 858-16
k 4.855

=1441in Ans.

y
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10-37 Fmin =9 1bf, Fpax = 18 1bf

F :?: 451bf, F, = 18;9 = 13.5 Ibf

a

A313 stainless: 0.013<d<0.1 A=169 kpsi -in", m=0.146
0.1<d<02 A=128kpsi-in", m=0.263
E =28 Mpsi, G =10 Gpsi
Try d = 0.081 in and refer to the discussion following Ex. 10-7
w = ﬁ =2439 kpSl
= 0.67S,, = 163.4 kpsi
S, =0.35S, = 85.4 kpsi

S, = 0.55S,, = 134.2 kpsi

Table 10-8: S, =0.45S,, = 109.8 kpsi
- S /2 - 109.8 /2 578 kpsi
1-[S. /(2S)F 1-[(109.8/2)/243.9]
r=F | F =45/13.5=0.333
r2S? 28, Y
Table 7-10: S, =—>"| -1+ 1+ €
28, rS,
2 2 2
- (0.333)7(243.9%) R 2(57.8) _ 422 kpsi
2(57.8) 0.333(243.9)
Hook bending
16C 4 S S
(o-a)Azf;[(K)A -+ 2}= R
md wd (n,), 2
45| (4C* - C -1)16C alo S,
rd’® 4C(C - 1) 2

This equation reduces to a quadratic in C (see Prob. 10-35). The useable root for C is
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2 20 \? 2
C:O.SﬂdS”+ nd"S, _ﬂdSa+2
144 144 36

= 0.

5) 7(0.081°(42.2)10°) [ 2(0.0817(42.2)(10°) " 7(0.081)°(42.2)(10%) L
144 144 36
= 491

D =Cd =0.398 in

3 3
E:ﬂdq:ﬂd 33500 i1000[4_C—3j
8D 8D | exp(0.105C) 6.5

Use the lowest F; in the preferred range.

3 —_—
F - 7(0.081) 33500 1000(4 491 3)
8(0.398) | exp[0.105(4.91)] 6.5

= 8.55 Ibf

For simplicity we will round up to next 1/4 integer.

F = 8.75 Ibf
k=879 3¢ bgin
025

4 4 6
N = 4G QOO0
8kD 8(36)(0.398)
N, =N, _G. 23.7 - 10 23.3 turns
E 28
L, =2C -1+ N,)d =[2(4.91) — 1+ 23.3](0.081) = 2.602 in
L. =L +(F, —F)/k=2602+(18—-8.75)/36 =2.8591n
2
_454)(4C —C—1_|_1
rd’ Cc-1
_18(107%) | 4(4.91°) — 491 -1 N
7(0.081%) 491 -1
S, 422

= a = ——— = 2 checks
(o), 211

(0,).4

1} = 21.1 kpsi

(nf)A

_4C+2_4@an+2

, = = =1.300
4C -3 4(491)-3

Body:
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o = B0300A49O0398) |56

‘ 7(0.081)°
T, = iz‘a = 13—'5(11.16) = 33.47 kpsi
F 4.5

The repeating allowable stress from Table 7-8 is
S =0.30S,, =0.30(243.9) = 73.17 kpsi
The Gerber intercept is

¢ - 73.17 / 2
T 1-[(73.17 / 2) / 16347

= 38.5 kpsi
From Table 6-7,
2 2
1) o 21(163.4j (11.16) e 4] 26347)385) 553
Foed 213347 ) \ 3855 163.4(11.16)
Let r, =2d =2(0.081) = 0.162

C, :ﬁ=4, (K), A= s
d 4(4) - 4

(K), 125 .
7)), =—=1, =——(11.16) = 10.73 kpsi
( a)B KB a 1.30( ) p
(K), 1.25 .
7)), = —=1, =——(33.47) = 32.18 kpsi

Table 10-8: (S, )5 = 0.28S., = 0.28(243.9) = 68.3 kpsi
68.3/2

(Sse)B = 2

1 - [(68.3/2) /163.4]

2 2
n), = 1(163.4j (10.73} e 2621865 1 _ o
: 2(32.18 ) \ 35.7 163.4(10.73)

= 35.7 kpsi

Yield
Bending:
4F | (4C* - C - 1)
— max _+_ 1
(o = 2 { c-1 }
2 — —
_ 4(18)2 4(4.91)° - 491 1_|_1 (107) = 84.4 kpsi
7(0.0817) 491-1
134.2
=——=1.59
)i =22
Body:
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T, =(F / F)r, =8.75/4.5)11.16) = 21.7 kpsi
r = t/(r,—1) = 11.16 / (33.47 — 21.7) = 0.948

r 0.948
S = S —7)=—"—-(854-21.7) = 31.0 kpsi
)y =770 =8 = Goas 1 ) P
(S,) 31.0
(ny)body = == 1116 = 278
Hook shear:

S = 038, =0.3(243.9) = 73.2 kpsi
r=(1), + (1), =10.73 + 32.18 = 42.9 kpsi

73.2
n), =-—= =171
()5 429
2 72 2 2
fom — _1.67°d (i\/b +2)D _ 7.67°(0.081) (243.3 +2)(0.398) _ 1239

A tabulation of several wire sizes follow

d 0.081 0.085 0.092 0.098 0.105 0.12
Sut 243.920 242.210 239.427 237.229 234.851 230.317
Ssu 163.427 162.281 160.416 158.943 157350 154.312
S, 109.764 108.994 107.742 106.753 105.683 103.643
Se 57.809 57.403 56.744 56.223  55.659  54.585
Sq 42.136  41.841 41.360 40.980 40.570 39.786
C 4.903 5.484 6.547 7.510 8.693 11451
D 0.397 0.466 0.602 0.736 0913 1.374
OD 0.478 0.551 0.694 0.834 1.018 1.494
F (calc) 8.572 7.874 6.798 5.987 5.141 3.637
Fi (rd) 8.75 9.75 10.75 11.75 12.75 13.75
k 36.000 36.000 36.000 36.000 36.000 36.000
N, 23.86 17.90 11.38 8.03 5.55 2.77
Ny 23.50 17.54 11.02 7.68 5.19 242
Lo 2.617 2.338 2.127 2.126 2.266 2918
Lig s 2.874 2.567 2.328 2.300 2412 3.036
(Ou)4 21.068 20920 20.680 20.490 20.285 19.893
(1) 4 2.000 2.000 2.000 2.000 2.000 2.000
Kp 1.301 1.264 1.216 1.185 1.157 1.117

(tbosy 11141 10994 10775 10.617 10457 10.177
(Tu)bosy 33424 32982 32326 31.852 31372 30532

Ssr 73.176  72.663  71.828 71.169  70.455  69.095
Se 38.519 38249 37.809 37.462 37.087 36.371
(1/) body 2.531 2.547 2.569 2.583 2.596 2.616
(K)s 1.250 1.250 1.250 1.250 1.250 1.250
(74)B 10.705 10.872 11.080 11.200 11.294 11.391

(7m)B 32.114 32,615 33.240 33.601 33.883 34.173
(Ssr)B 68.298 67.819 67.040 66.424 65.758 64.489
(Sse)B 35.708 35.458 35.050 34.728 34.380 33.717
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(ny)g 2.519 2.463 2.388 2.341 2.298 2.235

Sy 134.156 133.215 131.685 130.476 129.168 126.674
(04) max 84.273  83.682 82720 81.961 81.139 79.573
(1)) 4 1.592 1.592 1.592 1.592 1.592 1.592
T 21.663  23.820 25.741 27.723  29.629 31.097
r 0.945 1.157 1.444 1.942 2.906 4.703

(So)vody 85372 84.773  83.800 83.030 82.198  80.611
(S5a)y 30.958  32.688 34302 36.507 39.109 40.832
(1) body 2.779 2.973 3.183 3.438 3.740 4.012
(Ssy)B 73.176  72.663  71.828 71.169  70.455  69.095
(78) max 42.819 43486 44321 44801 45.177 45.564
(n,)B 1.709 1.671 1.621 1.589 1.560 1.516
fom -1.246 -1.234 -1.245 -1.283 -1.357 -1.639

4
L optimal fom

The shaded areas show the conditions not satisfied.

10-38 For the hook,

—~R =D/ M = FR sin6, OM/OF =R sin@
=D/2

3
5, = [ F(Rsino) Rdo = ZLE
EI Yo 2 EI

The total deflection of the body and the two hooks

8FD’N, r FR® 8FD’N, xF(D /2y
0= b+ 2| = = by
d'G 2 EI d'G  E(z/64)d"
8FD’ G 8FD’N,
= T Nb _ = T
d'G E d'G

.. N, =N, +% QE.D.

10-39 Table 10-5 (d=4 mm =0.1575 in): E=196.5 GPa

Table 10-4 for A227:

A4=1783 MPa - mm", m = 0.190
A 1783
Eq (10-14) Sm = d_m = W = 1370 MPa
Eq. (10-57): S, = oa1 = 0.78 S, = 0.78(1370) = 1069 MPa
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D=0D-d=32-4=28 mm

C=D/d=28/4=17

X _C_ 4(7*) -7 -1
Eq. (10-43): K = 4 -C-1_ ( ) =1.119
4C(C - 1) 47)(7 - 1)

Eq. (10-44): o=K

Atyield, Fr = M,, o=S,. Thus,
zd’s, x(4)1069(107)

= =6.00 N -m
Y 32K, 32(1.119)
Count the turns when M =0
M
N=25-—2
k
4
where from Eq. (10-51): k= d E
10.8 DN
Thus,
M,
N=25-— .
d"E / (10.8DN)
Solving for N gives
N - 2.5 :
1+[10.8DM , / (d"E)]
= 25 = 2.413 turns

1+ {[10.8(28)(6.00)] / [4°196.5) ]}

This means (2.5 - 2.413)(360°) or 31.3° from closed.  Ans.

Treating the hand force as in the middle of the grip,

r=112.5-87.5+ ? = 68.75 mm

M 6.00(103)
F . =—-= =873N Ans.
r 68.75

10-40 The spring material and condition are unknown. Given d = 0.081 in and OD = 0.500,
(8) D=10.500 - 0.081 =0.419 in
Using E = 28.6 Mpsi for an estimate
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_d'E (0.081)*(28.6)(10%)
" 10.8DN  10.8(0.419)(11)

!

= 24.7 1bf - in/turn

for each spring. The moment corresponding to a force of 8 1bf
Fr=1(8/2)(3.3125) = 13.25 1Ibf - in/spring
The fraction windup turn is

= Fr = —13'25 = (0.536 turns

k' 24.7

The arm swings through an arc of slightly less than 180°, say 165°. This uses up
165/360 or 0.458 turns. So n = 0.536 — 0.458 = 0.078 turns are left (or
0.078(360°) = 28.1°). The original configuration of the spring was

Ans.
|
28.1°
™~
(b)
:2:0.419:517
d 0.081
2 _ _ 2 _ _
_4C"-C-1 _ 4(5.17) 517 -1 1168

"oAc(C-1)  45ITGAT =)
32M _ 1.168[32(13.25)

o=K 3 3
7(0.081)

} = 297(10°) psi = 297 kpsi  Ans.
zd

To achieve this stress level, the spring had to have set removed.

10-41 (a) Consider half and double results

3FR
172 oM
Straight section: —> ' M=3FR, P - 3R
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Upper 180° section:

q M = F[R + R(1 — cos¢@)]

& = FR(2 — cos¢), Z—AI;[ = R(2 — cos¢)

F

Lower section: M = FR sin 6, aa—];[ = Rsind

Considering bending only:

_oU 212, mmo T, 5 /2 o
5_6_F_E[0 9FR dx+L FR (2—cos¢)Ral¢+J.0 F(Rsm&’)Rd&}

_ 2N py 47r—4sin¢$|”+£ + R Z
El2 o2 4

(197R + 181)

R+ =/
EI 4 2 2EI

_ 2FR2(19_7Z 9 j_ FR?
The spring rate is

i F 2ET
5 R*(197R+181)

Ans.

(b) Given: A227 HD wire, d =2 mm, R =6 mm, and /=25 mm.
Table 10-5 (d =2 mm = 0.0787 in): E=197.2 MPa

2(197.2)10°7(0.002*)/(64)
©0.006”[1977(0.006)+18(0.025) |

- 10.65(103) N/m = 10.65 N/mm Ans.

(c) The maximum stress will occur at the bottom of the top hook where the bending-
moment is 3FR and the axial fore is F. Using curved beam theory for bending,

Me, 3FRe,
Eq. (3-65), p. 119: M |
% (3-63).p 7" der, (zd? 14)e(R-d12)
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Combining, c,. =0+0,= Re )=
e(R—d/2) ’

F = - (1) Ans.

For the clip in part (b),
Eq. (10-14) and Table 10-4: Sy = A/d" = 1783/2°"° = 1563 MPa
Eq. (10-57): S, =0.78 S,, = 0.78(1563) = 1219 MPa
Table 3-4, p. 121:
r = r =5.95804 mm

2(6—\/62—12)

e=r.—r,=6-595804=0.04196 mm

ci=r, —(R—-d/2)=5.95804 — (6 — 2/2) = 0.95804 mm

Eq. (1):
7(0.0027)1219(10°)
F = =46.0 N Ans.
{ 3(6)0.95804 }
gl 0 g

0.04196(6-1)

10-42 (a)
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oM

M=-Fx, —=-x 0<x</
oF

M =FI+FR(1-cos6), ‘Z—A;=I+R(1—cos¢9) 0<0<I
1 ¢! 72
5 = [,~Fa(=x)dx+ [ F[ 1+ R(1-cosB) ] Rd6
F
:ﬁ{4l3+3R[2ﬁ12+4(7z—2)lR+(37z—8)R2}}
The spring rate is

kziz 12£1 Ans
Sy 4 +3R[ 27" +4(7~2)IR+(37—8) R’ ] '

(b) Given: A313 stainless wire, d = 0.063 in, R = 0.625 in, and /= 0.5 in.

Table 10-5: E =28 Mpsi

= %d“ - 614(0.0634) =7.733(107) in*

12(28)10°(7.733)107
4(0.5)+3(0.625)[ 27(0.5” )+ 4(7—2)0.5(0.625) + (37 -8)(0.625 )
=36.3 Ibf/in Ans.

k=

(c) Table 10-4: A =169 kpsi-in”, m=0.146
Eq. (10-14): Su=A4/d"™=169/0.063""=253.0 kpsi
Eq. (10-57): S, =0.61 S, =0.61(253.0) = 154.4 kpsi

One can use curved beam theory as in the solution for Prob. 10-41. However, the
equations developed in Sec. 10-12 are equally valid.

C =D/d=2(0.625+0.063/2)/0.063 = 20.8

2_c_1 4(20.8%°)-20.8-1
Eq. (10-43): K = 4c —C-1 = ( ) =1.037
4C(C-1)  4(20.8)(20.8-1)

Eq. (10-44), setting o = S,:
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32F(0.5+0.625
K.E:S = 1.037 ( )

Cadd Y 7z(0.0633)

=154.4(103)

Solving for F yields F=3.251bf Ans.

Try solving part (c) of this problem using curved beam theory. You should obtain the
same answer.

10-43 (8) M= —Fx

_|M|_ Fx _ Fx

“irel T T e

Constant stress,

2
%:E = h= SFx (1)  Ans.
6 o bo
Atx =1,
h, = ?)—Fl = h=h~Nx/l Ans.
o

by M=-Fx, dIM/OF =—x

oM / OF ) 1. —Fx(- 12FP"? |
J’:J ( Z_J v 3/2 dx =—— le/zdx
o B E 4 Lok ( bRE
:212”3/2 P 8FI’
3 BRE bR E
3
E
k ZEZ bh"3 Ans.
y 8

10-44 Computer programs will vary.

10-45 Computer programs will vary.
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Chapter 11

11-1 For the deep-groove 02-series ball bearing wRith0.90, the design lifep, in multiples
of rating life, is
60( 25000 350
Xp _Ly _804m, ( 9 =525 Ans.
L, L, 10°

The design radial load is
F,=1.2(2.5= 3.0kN

13
525
Eq.(11-6):  (,,=3.0
’ {0.02+(4.459f 0.0f If 1/o_)§”1-483}

ClO =24.3 kN Ans.

Table 11-2: Choose an 02-35 mm bearing With= 25.5 kKN. Ans.

525 3/25.5°~ 0.0
4.459- 0.02

1.483
EQ.(11-18): R=ex [ 1 =0.920 Ans .

11-2 For the angular-contact 02-series ball begaas described, the rating life multiple is

L, _ 60L,n,, _ 60( 40000 520: 1248

Ly L 10
The design radial load is

F,=1.4(729= 1015 IbE 4.52 kN

1/3
1248

C,,=101

B {0.02+(4.459 0.07 I6 1/0@”1'483}

=10930 Ibf= 48.6 kN

Eq.(11-6):

Table 11-2:  Select @R2-60 mm bearing witl';p = 55.9 kN.  Ans.

1.483
1248 4.52/55.9 — 0.0
EQ.(11-18): R=exps- =0.945 Ans .

4.439
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11-3

For the straight-roller O3esies bearing selection, = 1248 rating lives from Prob. 11-2
solution.

F,=1.4(2239= 3129 Ibk 13.92 kN

3/10
Cpo :13.92(%4? = 118 kN

Table 11-3:  Select &B-60 mm bearing with';p = 123 KN.  Ans.

1.483
- 0.0
= 0.917 Ans .

0/3

124813.92/128
4.459- 0.02

Eq. (11-18): R=exp [

11-4

The combined reliability of the two beags selected in Probs. 11-2 and 11-3 is

R=(0.945( 0.91J= 0.867 Ans

We can choose a reliability goal ¢0.90= 0.950r each bearing. We make the
selections, find the existing reliabilities, multiply them together, and observe that the
reliability goal is exceeded due tioe roundup of capacity upon table entry.

Another possibility is to use ¢treliability of one bearing, sa&4. Then set the reliability
goal of the second as

0.90

R, =
2 Rl

or vice versa. This gives three pairs okstibns to compare in terms of cost, geometry
implications, etc.

11-5

Establish a reliability goal 0f/0.90= 0.950r each bearing. For an 02-series angular
contact ball bearing,

1/3
1248
C. =101
0 5{0.02+ 4.439 If 1/0.9ﬁ1’1'483}

=12822 Ibf= 57.1 kN
Select an 02-65 mm anguicontact bearing with';o = 63.7 kN.

1.483
1248 4.52/63.F - 0.0
R, =expy— 4.439 = 0.962
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For an 03-series stght roller bearing,

3/10
Cio _13.92{ 1248 ]m_m} — 136.5 kN

0.02+ 4.439 If 1/0.95

Select an 03-65 mm sight-roller bearing withC10 = 138 kN.

0/3 1.483
124813.92/138"° - 0.0
R, =expy— 4.439 = 0.953

The overall reliability it = (0.962)(0.953) = 0.917, which exceeds the goal.

11-6 For the straight cylindricabller bearing specified ith a service factor of 18 = 0.95 and

FR = 20 kN.
60(800Q 950
xD:L_D:esoanD _60(8009 ) 456
L, L, 10°
3/10
C,=20 456 sl =145 KN Ans .
0.02+ 4.439 If 1/0.9§

11-7 Both bearings need to be rated in termthefsame catalog rating system in order to
compare them. Using a rating life of one million revolutions, both bearings can be rated
in terms of a Basic Load Rating.

(M]Ml = 2.0[(3000)( 500 69}1/3

1/a
L
. C,=F/|-—4| =F
Eq.(11-3): 4 A(L] ‘L, 10°

R

=8.96 kN

BearingB already is rated at omeillion revolutions, sa’s = 7.0 kN. Since&”, > Cj,
bearing4 can carry the larger load. Ans.

11-8 Fp=2kN,Lp =10 rev,R = 0.90

L 1/a 109 1/3
Eq (11'3) ClO = FD (i} = Z(F] = 20 kN Ans .
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11-9 Fp =800 Ibf,£» =12 000 hours;,, = 350 rev/minR = 0.90

1/a 1/3
12 00q( 35Q( 6
Eq.(11-3): cm:FD(@j :800[ og & 9 @j = 5050 Ibf Ans
R

11-10 Fp =4 kN, £p = 8 000 hoursy, = 500 rev/minR = 0.90

1/a 1/3
8.000( 500( 6
Eq. (11-3): ClO:FD(@j :4( 0(1069( oj —249KN Ans
R

11-11 Fp =650 Ibf,n, = 400 rev/iminR = 0.95
Lp = (5 years)(40 h/iweek)(52 week/year) = 10 400 hours

Assume an application factor of one. The multiple of rating life is

L, _(10400(409( 69 .5 .

xD:—_

L, 10°

1/3

Eq.(116):  Co=(1)(650

249.6
0.02+ 4.439 If 1/0.95
=4800 Ibf Ans .

11-12 Fp =9 kN,Lp = 1G rev,R = 0.99

Assume an application factor of one. The multiple of rating life is

L, 10
5 2V 100
o L, 1C°
1/3
100
Eq.(11-6):  C, =(1)(9
=) 0.02+ 4.439 If 1/0.99
=69.2 kN Ans .

11-13 Fp = 11 kips,£p = 20 000 hours;, = 200 rev/iminR = 0.99

Assume an application factor of one. Wse Weibull parameters for Manufacturer 2 on
p. 608.

Chapter 11, Page 4/28



The multiple of rating life is

L, _(20000(209( 69 _, -

T 10
1/3
240
Eq.(11-6):  C,, =(1)(11
0= ){0.02+ 4.439 I 1/0.9}9]1’“83}
=113 kips Ans .

11-14 From the solution to Prob. 3-68, the@gnd reaction force cardeby the bearing at' is
Rc=Fp =178 Ibf. Use the Weibull parameters for Manufacturer 2 on p. 608.

. - E_D _ 1500((1?09)( SP_, 060
R

b

1/a
Xo +(0x0)(1RD)1/b}

1/3
1080
Cro=1.2(17
=12 a[o.oz+(4.459 0.0% 4 0.9%”83}

=2590 Ibf Ans .

Eq.(11-7):  Cy=a,F, {

11-15 From the solution to Prob. 3-69, the grougdction force carried by the bearingCas
Rc=Fp=1.794 kN. Use the Weibull parameters for Manufacturer 2 on p. 608.

. - E_D _ 1500((1?09)( SP_. 060
R

b

1/a
X, +(0x0)(1RD)1/b}

1/3
1080
Cpp=1.2(1.79
=12 Z){0.02+(4.45s» 0.0% 2 0.9)%1"‘83]

=26.1kN Ans .

Eq.(11-7):  Cy=a,F, {

11-16 From the solution to Prob. 3-7R¢. = -327.99 IbfR¢, = —127.27 |bf
1/2
R.=F,=|(-327.99"+(- 127.2f | = 351.8 Ibf

Use the Weibull parameters for Manufacturer 2 on p. 608.
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_ 1, 1500011209 6p_
L 10 -

Xp

Xp

1/a
x, +(9—x0 )(1— R, )Ub ]

1/3
1080
0.02+( 4.459- 0.0% 1 0.95"

=5110 Ibf Ans .

Eq.(11-7):  Cy=a,F, {

Cpo=1.2( 351.3[

11-17 From the solution to Prob. 3-7R¢. = -150.7 NR¢, = —86.10 N
1/2
R.=F,=|(-150.7" +(-86.1¢° | = 1736 N

Use the Weibull parameters for Manufacturer 2 on p. 608.

_ _L, _1500q 1209( 6p
)

= =1080
L, 10°

Xp

1/a
X, +(6’—xo)(1—RD)l/b}

1/3
1080

Co=1.2(173.

=12 Q!o.oz+(4.459 0.0p 2 o.g%l"‘“]

=2520 N Ans .

Eq.(11-7):  Cy,= afF{

11-18 From the solution to Prob. 3-7H,. = 444 N,R 4, = 2384 N
R,=F,=(44% + 2384) = 2425 N 2.425 kN

Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to
the speed of shaftD,
d,, _125

n, :Zni 250(191) = 95.5 rev/min
1200q 95.5( 6
x, = Lo _ A 955 6P _ g 76
L, 10°

Xp

1/a
X, +(c9—xo)(1—RD)l/b}

Eq.(11-7):  Cy,= a,F,{
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1/3

68.76
Cro=(1)(2.42
0 =(1)(2429 0.02+(4.459- 0.0 ¢ 0.95

=11.7 kN Ans .

11-19 From the solution to Prob. 3-7R,. = 54.0 Ibf,R 4, = 140 Ibf
R,=F,=(54.0+146) = 150.1Ibf

Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to
the speed of shaftD,

n, :d—Fnl. :1—0(280): 560 rev/min
5

C

Ly 1400Q 560( 6@:470.4
L, 10°

Xp

*p

1/a
X, +(0x0)(1RD)Ml

3/10
470.4

Cyo =(1)(150.

0= ])[o.oz+(4.459 0.0f % o.gﬁ““}

=1320 Ibf Ans .

Eq.(11-7):  Cy=a,F, {

11-20 (a) F, =3 kN,F. =7 kNy,, = 500 rev/iminf’ = 1.2
From Table 11-2, with a 65 mm boxg; = 34.0 kN.

F,1Co=3/34=0.088
From Table 11-1, 0.28¢ < 3.0.

F 3 =0.357

VE, (12)(7)
Since this is greater thaninterpolating Table 11-1 with, / Co = 0.088, we obtain
X, =0.56 andr, = 1.53.

Eq. (11-9): F,=XJVF +YF,=(0.56)(1.9( J+( 1.58 B= 9.29 kN 4ns.
F.>F, SO US€F.,.
(b) Use Eq. (11-7) to determine the necessaegdribad the bearing should have to carry

the equivalent radial load for the desi life and reliability. Use the Weibull
parameters for Manufacturer 2 on p. 608.
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L, 10000 509( 6)_,

- D
L, 10°

Xp

*p

1/a
X, +(0x0)(1RD)1/b}

1/3
300
0.02+( 4.459- 0.0f 1 0.9)%1"‘83}

Eq.(11-7):Cy=a,F, {

Cio (1)(9'29){
=73.4 kN
From Table 11-2, the 65 mm bearing iedafor 55.9 kN, which is less than the

necessary rating to meet the specificationsis bharing should ndie expected to meet
the load, life, and reliability goals. Ans.

11-21 (a) F,=2kN, F =5KkN, n,= 400 rev/min} = 1
From Table 11-2, 30 mm bor€;p = 19.5 KN,Cy = 10.0 kN
F,1Cy=2/10=0.2

From Table 11-1, 0.3d e < 0.38.

Since this is greater than interpolating Table 11-1, witR, / Co = 0.2, we obtaink, =
0.56 andY, = 1.27.

Eq. (11-9):F, = XVF. +YF, =(0.56)()( §+( 1.2J( 2= 5.34kN Ans.
F,>F, SO US&F,.

(b) Solve Eg. (11-7) foxp.

xDz[ Cio J [xo+(0—xo)(1—RD)1/b}

a F,

X, =(ﬁ] 0.02+(4.459- 008 2 0.98]

x, =10.66
. L, Lon, (60)
L, 10°
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L, = % (19) = 1064 16) —444 h Ans .

n,(60)  (400( 69

11-22 F.=8kN, R=0.9, L, = 10 rev

L 1/a 109 1/3
Eq.(11-3):: C,,=F (—D) :8[—] =80 kN
10 D L, 10°

From Table 11-2, select the 85 mm borduns.

11-23 F. =8kN, F,=2kN, V=1, R= 0.99
Use the Weibull parameters for Manufacturer 2 on p. 608.
1, 1000Q 400( 69

=2 =240
L, 10°

Xp

First guess: Choose fromiddle of Table 11-1X = 0.56,Y = 1.63

Eq.(11-9): F,=0.56(1)( 8§+ 1.68 2= 7.74 kN
F.<F,, sojust usé, as the design load.
xD

1/a
x, +(9—x0 )(1— R, )Ub ]

B 240
Cl°(1)(8)[o.02+(4.459 0.0f 4 0.98“

From Table 11-2, try 85 mm bore witho = 83.2 kKN,Co = 53.0 kN
Iterate the previous process:

Eq.(11-7):  Cy=a,F, {

13
:l =82.5 kN

F,lCo=2/53=0.038
Tablel1-1: 0.22<e< 0.24

£, —1:0.25>e

VF.  1(8)
Interpolate Table 11-1 with, / Co = 0.038 to obtaitk, = 0.56 and'> = 1.89.

Eq. (11-9): F. =0.56(1)8+ 1.89(2 8.26 ¥
1/3

240
Eq.(11-7):  Cp=(1)(8.26 ~85.2 kN
0=(0)(8.29 0.02+(4.459- 0.0f + 0.98"
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Table 11-2:  Move up to the 90 mm bore withy = 95.6 kKN,Co = 62.0 kN.
Iterateagain:

F,lCo=2/62=0.032

Table 11-1: Again, 0.22¢< 0.24

fe o 2 0250
VE, 1(8)

Interpolate Table 11-1 witl¥, / Co = 0.032 to obtaitk, = 0.56 and', = 1.95.

Eq. (11-9): F =0.56(1)8+ 1.95(2 8.38 ¥
1/3

240
Eq.(11-7):  Cp,=(1)(8.3 —86.4 kN
0=(1)(8.59 0.02+(4.459- 0.0 1 0.95

The 90 mm bore is acceptabléus.

11-24 F. =8kN,F,=3kN,V = 1.2R= 0.9,, = 10 rev
First guess: Choose fromiddle of Table 11-1 X = 0.56,Y = 1.63

Eq.(11-9): F, =0.561.2( §+ 1.68 B= 10.3 kN
F>F,

I 1/a 108 1/3
Eq.(11-3): C,=F|-2| =103 —| = 47.8kN
P T

From Table 11-2, try 60 mm wiiti;o = 47.5 kN,Cp = 28.0 KN
Iterate the previous process:

F,lCo=3/28=0.107

Tablel1-1: 0.28<e< 0.30

fo o3 __0313-.
VE, 1.2(9

Interpolate Table 11-1 with, / Co = 0.107 to obtaitk; = 0.56 andr, = 1.46

Eq.(11-9): F,=0.561.9( §+ 1.46 B- 9.76 kNE

108 1/3
Eq.(11-3): C10:9'76£ﬁj = 45.3 kN

From Table 11-2, we have converged on the 60 mm bearidgs.
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11-25

F. =10kN, F,=5kN, V= 1, R= 0.95
Use the Weibull parameters for Manufacturer 2 on p. 608.
L, 1200Q 300( 60

=L = =216
L, 10°

Xp

First guess: Choose fromiddle of Table 11-1 X = 0.56,Y = 1.63
Eq.(11-9): F,=0.56(1)( 10+ 1.68 b= 13.75kN

F.>F,, so usé, as the design load.
‘xD

1/a
X, +(t9x0)(1RD)1/b}

216
0.02+(4.459- 0.0% 1 0.95*"

Eq.(11-7):  Cy=a,F, {

13
} =97.4 kN

c10=(1><13-7-s>[

From Table 11-2, try 95 mm bore witho = 108 kN,Co = 69.5 kN
Iterate the previous process:

F,1Cy=5/69.5=0.072

Tablel1-1: 0.27<e< 0.28

£, i:O.5>e

vE. 1(10)
Interpolate Table 11-1 with, / Co = 0.072 to obtaik; = 0.56 and/> = 1.62= 1.63

Since this is where we started, we wdhwerge back to the same bearing. The 95 mm
bore meets the requiremeniss.

11-26

Note to the Instructor.In the first printing of the @t edition, the design life was
incorrectly given to be faev and will be corrected to 46ev in subsequent printings.
We apologize for the inconvenience.

F.=9kN, F,=3kN, V=12, R= 0.99
Use the Weibull parameters for Manufacturer 2 on p. 608.

L, 10
==D == =100
AT

First guess: Choose fromiddle of Table 11-1X = 0.56,Y = 1.63
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Eq.(11-9): F,=0.561.9( 9+ 1.68 B= 10.9 kN
F.>F,, so usé, as the design load.

1/a
*p
Xo+(0-x,)(1-R, )ﬂb

100
0.02+( 4.459- 0.09 1 0.98*"

Eq.(11-7):  Cy=a fF{

13
} =83.9 kN

Cpo= (1)(10'9){

From Table 11-2, try 90 mm bore witho = 95.6 kKN,Co = 62.0 KN. Try this bearing.
Iterate the previous process:

F,lCo=3/62=0.048

Tablel1-1: 0.24<e< 0.26

F, =i=0.278>e

VE. 1.2(9
Interpolate Table 11-1 with, / Co = 0.048 to obtaitk; = 0.56 andr> = 1.79

Eq.(11-9): £ =0561.3( 9+ 1.70 B= 11.4KkNF,

C, = x%83.9- 87.7 kN
10.9

From Table 11-2, this converges back to the same bearing. The 90 mm bore meets the
requirements. Ans.

11-27 (a) n, =1200 rev/minL, = 15 khk = 0.9%, = 1.2
FromProb.3-72,R¢, = 183.1 Ibf,Rc. = —861.5 Ibf.
1/2
R.=F,=|183.2+(-8615 | - 881Ibf
1, 15000 1200( 6p

_Io —~1080
e 1¢F

1/3

1080
0.02+ 4.43¢ + 0.9
~12800 Ibf= 12.8 kips dns .

Eq.(11-7):C,, =1.2(88)

(b) Results will vary depending on the specbigaring manufacturer selected. A general
engineering components search site aastvww.globalspec.com might be useful as
a starting point.
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11-28 (a) n, =1200 rev/min,, = 15 khk = 0.9%, = 1.2
FromProb.3-72,R¢, = —208.5 IbfR(. = 259.3 Ibf.

R.=F, = [259.32 (- 208.52}1/2 = 333 Ibf

15000 1200( 6p

L =1080

_tp _
X, = =

L, 10°

1/3

1080
0.02+ 4.43¢ + 0.9p

=4837 Ibf= 4.84 kips Ans .

(b) Results will vary depending on the specbi&aring manufacturer selected. A general
engineering components search site actvww.globalspec.com might be useful as
a starting point.

Eq.(11-7):C,, =1.2(333

11-29 (a) n, =900 rev/iminl, = 12 khR= 0.98 = 1.2
FromProb.3-73,R¢, = 8.319 KN,R¢. = —10.830 kN.

R.=F, = [8.3192 (- 10.839)2}1/2 = 13.7 kN

- L, _1200q 909( 69 _ 648
L, 10°
1/3
Eq.(11-7):C,, =1.2(13.9) 648 = 204 kN Ans .

0.02+ 4.43¢ + 0.9

(b) Results will vary depending on the specligaring manufacturer selected. A general
engineering components search site actvww.globalspec.com might be useful as
a starting point.

11-30 (a)n, =900 rev/iminL, = 12 khR= 0.98 = 1.2
FromProb.3-73,Ro, = 5083 N,Ro. = 494 N.

R, =F,=(5083 + 494) " = 5106 N 5.1kN

L, _120000900( 69 _
L, 10° -

Xp =

1/3

648
Eq.(11-7):C,, =1.2(5. = 76.1kN Ans .
0=t 25§ o 4.43¢ + 0.9
(b) Results will vary depending on the specbiaring manufacturer selected. A general
engineering components search site actvww.globalspec.com might be useful as
a starting point.
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11-31 Assume concentrated forces as shown. y

P. =8(28)= 224 Ibf

o

P, =8(35) = 280 Ibf /

T=224(2 = 448 Ibf in /*
XT"=-448+ 1.9 cos20= O ~

1=
Fo 28 318 bf :
1.5(0.949

SM} =5.75,+ 1LR] - 14.25 sin26- 0
5.75 280+ 11.R, - 14.25 3)¢ 0.3#2 0
R} =-5.24 Ibf
SM}=-5.75 - 11.R: - 14.25 c0s28 0
575 22)- 11.8; - 1435 318 0.9 O
R;=-482 Iof; R, =|(-487 +(- 5.2)ch/2= 482 Ibf
YF"=R,+P +R,+Fcos20= 0
R;+224- 482+ 318 0.940= 0O
R; =—40.9 Ibf
SF* =R}+P,+R,~Fsin20 = 0
R} +280-5.24- 31§ 0.342- 0
R} =166 Ibf

R, =| (~40.9 +(- 16@11/2 = 171 Ibf

So the reaction at governs.
Reliability Goal: /0.92= 0.96

F,=1.2(482 = 578 Ibf
x, =3500Q 350( 60 /10= 735

1/3
735
C,, =57
° 8{0.027L(4.459 0.0 If 1/0.9@1’“‘83
= 6431 Ibf= 28.6 kN

From Table 11-2, a 40 mm bore angular corttaetring is sufficient with a rating of
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31.9kN. Ans.

11-32 For a combined reliability goal of 0.95, u$@.95= 0.9750r the individual bearings.

~4000q 420( 60
- 10°

=1008

Xp

The resultant of the given forces are

Ro = [(-387F + 467> = 607 Ibf
R = [316 + (=1615¥]" = 1646 Ibf

At O:

1/3
1008
Eq.(11-6):  Cyo=1.2(60
=12 7){0.02+(4.459> 0.0f 16 1/0.9@”‘483}

=9978 Ibf= 44.4 kN

From Table 11-2, select an 02-55 mm anguatantact ball bearingith a basic load
rating of 46.2 kKN. Ans.

At B:

3/10
1008
Eq.(11-6):  C,,=1.2(164
=12 6{0.02+(4.459 0.0f 16 1/0.915“1"‘83}

=20827 Ibf= 92.7 kN

From Table 11-3, select an 02-75 mn08r55 mm cylindrical roller. Ans.

11-33 The reliability of the individual bearings ®=+/0.98= 0.9899
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Fromstatics,

T= (270— 50) = Q)l —P2)125
= (Pl - 015P1)125
P1=310.6 N,
P> =0.15 (310.6) = 46.6 N
Pi+P;=357.2N
F; =357.2sin45= 2526 N F;

> M =850R; + 300(252.6) 0= R} =- 89.2N

> F' =2526- 89.2+ R} = 0= R, =—- 163.4 N

> M} = -850R; — 700(320)- 300(252.6) &> R; =- 174.4 N
D> F=-174.4+ 320- 252.6 R; = > R, = 107 N

R, = |(-163.4° + 107 = 195 N

R, = (-89.9" + (~174.4" = 196 N
The radial loads are nearly the sam@ aindE. We can use the same bearing at both

locations.
60000 1500( 6
r, = 50000 1500( 6p_
10°
1/3
Eq.(11-6):  C,,=1(0.199 >400 =it = 5.7 kN

0.02+ 4.439 If 1/0.989

From Table 11-2, select an 02-12 mm deemgedoall bearing witla basic load rating
of 6.89 kN. Ans.

11-34 R=+/0.96= 0.980
T =12(240c0s20 3+ 270Bf -in

F = 2706 =498 Ibf

 6c0s25

In xy-plane:
IM; =-16(82.1- 30(210) 4R’ = O
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R} =181 Ibf
R} =82.1+ 210- 18% 111.1 Ibf
In xz-plane:
XM} =16(226)- 30(451) 4R .= O
R; =-236 Ibf
R; =226- 45% 236= 11 Ibf

1/2

R,=(111.%+ 1) "= 112 Ibf 4ns .

R =(18% + 236) = 207 Ibf Ans .

_ 50000 300( 69_
_ = _

Xp

U3
900
(Clo)o = 1'2( 113{ 1/1483}

0.02+ 4.439 If 1/0.980
=1860 Ibf= 8.28 kN

U3
900
(ClO)C = 1'2( 297){ 1/1.482}

0.02+ 4.439 Irf 1/0.98()
= 4932 Ibf= 21.9 kN

Bearingat O: Choose a deep-groove 02-17 mmdns.
Bearingat C: Choose a deep-groove 02-35 mnuuns.

11-35

Shafts subjected to thrust can be caised by bearings, one of which supports the
thrust. The shaft floats within the endplaiythe second (roller) beag. Since the thrust
force here is larger than any radialdo#he bearing absorbing the thrust (beadhgs
heavily loaded compared to beariBgBearingB is thus likely to be oversized and may
not contribute measurably to the chance of faillf this is the case, we may be able to
obtain the desired combinedliability with bearing4 having a reliability near 0.99 and
bearingB having a reliability near 1This would allow for bearing to have a lower

capacity than if it needed to achieve a reliability/®.99 . To determine if this is the
case, we will start with bearing)

Bearing B (straight roller bearing)

_ 30000 500( 69_
_ T _

F,=(36"+67) = 76.1bf= 0.339 kN
Try a reliability of 1 to see if it is redy obtainable with the available bearings.

Xp
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3/10

900 = 10.1 kN

0.02+ 4.439 If 1/1.p]

Eq.(11-6):  C,,=1.2(0.339

The smallest capacity bearing from Talll-3 has a rated capacity of 16.8 kN.
Therefore, we select the 02-25 mm straight cylindrical roller bearidgs.

Bearing at A (angular-contact ball)
With a reliability of 1 for bearin@, we can achieve the combined reliability goal of 0.99

if bearing4 has a reliability of 0.99.

F =(36%+212) = 215 Ibf= 0.957 kN
F, =555 Ibf = 2.47 kN

Trial #1:
Tentatively select an 025 mm angular-contact witfi;o = 90.4 kKN and”y = 63.0 kN.
F - 2.41 =0.0392
C, 63.0
3000Q 500( 6
20000 S00( 60,
10°

Tablel1-1: Interpolating,X, = 0.56,Y, = 1.88

Eq.(11-9): F =0.56(0.95]+ 1.88 2.47%= 5.18 kN

13

900
Eq.(11-6): C,= 1.2( 5.13 :|1/1.483

0.02+ 4.439 If 1/0.9p

=99.54 KN> 90.4 kN

Trial #2:
Tentatively select a 02-93@m angular-contact ball with;o = 106 kN and”o = 73.5 kN.

F,_247_ 0.0336

C, 735

Tablel1-1: Interpolating,X, = 0.56, Y, = 1.93

F,=0.56(0.95]+ 1.98 2.4 5.30 kN

1/3

C,,=1.2(5.30 = 102 kN <106 kN O.K.

900
0.02+ 4.439 If 1/0.99
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Select an 02-90 mm angulawrgact ball bearing. Ans.

11-36 We have some data. Let’s estimate parameétarsdd from it. In Fig. 11-5, we will use
line AB. In this caseB is to the right o#4.

For F = 18 kN, (x),= 1 21%29( 9 128

This establishes point 1 on tRe= 0.90 line.

log F F
2 100

on
[ 3]

=
e

| |
1 10 100 ¥

0 1 2 logx

TheR = 0.20 locus is abovand parallel to th& = 0.90 locus. For the two-parameter
Weibull distribution,xo = 0 and pointst andB are related by [see Eq. (20-25)]:

1/b

x,=6[In(1/0.90 | 1)
x, =0[In(1/0.20"

andxg/x4 is in the same ratio as 600/115. Eliminatihg

. In[In(1/0.20 /In(1/0.99] _

165 Ans .
In(600/113 "

Solvingfor 8 in Eq. (1),

X4

= 1 3.91 Adns.
(/)" [in(1/0.90]

Ules -

0=
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Therefore, for the data at hand,

oo {35

Checkr at pointB: xz = (600/115) = 5.217

Note also, for point 2 on the= 0.20 line,

log(5.2179 - lod }= logx, ), - log 13.8

(,), =72

11-37 This problem is rich in usef variations. Here is one.

Decision: Make straight roller bearings identical a given shaft. Use a reliability goal of
(0.99)¢ = 0.9983.

Shaft a
F;=(23¢ +112) = 264 Ibt= 1.175 kN

1/2

F; =(502 +1073) "= 1186 Ibk 5.28 kN

Thus the bearing & controls.

10000 1200( 6p
B 10
0.02+ 4.439 If 1/0.9983 “°= 0.08026

=720

Xp

0.3
720
610:1.2(5.23(0_08026j = 97.2kN

Select either an 02-80 mm wiho = 106 kKN or an 03-55 mm with;o = 102 kKN. Ans.
Shaft b

1/2
F{ =(87#+2274) "= 2436 Ibf or 10.84 kN
F;=(393 + 657) = 766 Ibf or 3.41kN

Thebearingat C controls.
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~1000q 249( 69
- 10°

Cuo =1.2(1o.8z)(

=144

Xp

0.3
i = 123 kN
0.080 26

Select either an 02-90 mm wiho = 142 kN or an 03-60 mm withio = 123 kKN. Ans.

Shaft ¢
- 1/2
F=(1113 + 2388) "= 2632 Ibf or 11.71kN

1/2

F{=(417+895) "= 987 Ibf or 4.39kN

Thebearingat £ controls.

1000q 89( 60
- 10° =48

Co :1.2(11.7;(

Xp

0.3
48 = 95.7 kN
0.08026

Select an 02-80 mm witfi;g = 106 kN or an 03-60 mm witf;g = 123 kN. Ans.

11-38 Express Eq. (11-1) as
F'L = Cily,=K
For a ball bearing; = 3 and for an 02-30 mm angular contact beaking= 20.3 kN.
K =(20.3’(10)= 8.365 1Y)
At a load of 18 kN, lifd.; is given by:

8.365 16
Lo K _8360419)
Ef 18’
For a load of 30 kN, lifé» is:

= 1.434( 16) rev

L, :w =0.310( 16) rev

In this case, Eqg. (6-57) — the Palmgreme# cycle-ratio summation rule — can be
expressed as
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Substituting,

200000 L, _,
1.434( 16) 0.31() 1‘1)
1,=0.267(10) rev dns .

11-39 Total life in revolutions

Let:
[ = total turns
f1 = fraction of turns a¥’;
f> = fraction of turns af’,

From the solution of Prob. 11-38; = 1.434(16) rev andL, = 0.310(16) rev.
Palmgren-Minerule:

l_1+l_2:ﬁ+ﬂ:1

Ll L2 Ll L2

fromwhich
1

j=— =
J(l/Ll—}_fZ/LZ

/- 1

{0.40/[1.434 16))}}+{ 0.6/ 0.3{0 i))}}

=451585rev Ans .

Total life in loading cycles
4 min at 2000 rev/min = 8000 rev/cycle
6 min at 2000 rev/min = 12 000 rev/cycle

Total rev/cycle = 8000 + 12 000 = 20 000

451585rev =22.58 cycles Ans .
20000 rev/cycle
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Total life in hours

[10 min J[zz.ss Cyc'ejz 3.76 h Ans .

cycle 60 min/h

11-40

3/10
/15] = 3607 Ibf Ans.

F,, =560 Ibf

F, =1095 Ibf

F,, =200 Ibf

L, 4000Q 400( 60
X = —=
"L, 90(10)
R =+/0.90= 0.949
0.47( 56
Eq.11s)y <2470 04560 1on o
K, 1.5
0.47(109
Eq.115) £, <2470 041099 o o s
K, 1.5

F,<?2(F,+F,)

175.5 Ibf<(343.% 20p= 543.11Ibf, so Eq. (11-16) applies.
We will size bearing first since its inducetbad will affect bearingt, but is not itself
affected by the induced load from bearih{see Eq. (11-16)].
FromEq. (11-1&), F.3 = F,5 = 1095 Ibf.
Eq.(11-7):  F,, =1.4(1099 10.67

4.48 - 0.94

Select cone 32305, cup 32305, with 0.984Bdre, and rated at 3910 Ibf wikh= 1.95.
Ans.

With bearingB selected, we re-evaluate tineluced load from bearing using the actual

value fork.
047, 0.47( 1095)

Eq.(11-15): F
q ( ) iB KB 195

=263.9 Ibf

Find the equivalent radial load for beariidgrom Eqg. (11-16), which still applies.

Eq.(11-167): F,,=0.4F, +K,(F,+F,)
F,=04(560+ 1.5 263.9 206- 920 Iof
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F

ed

>F

r4

10.67
4.48 1- 0.949

3/10
Eq.(11-7): FRA=1.4(92()( ’“’J = 3030 Iof

Tentatively select cone M86643, cup M8661@hvt in bore, and rated at 3250 Ibf with
K =1.07. Iterating with the new value f&r we getF'., = 702 Ibf andF,, = 2312 Ibf.
Ans.

By using a bearing with a lowd, the rated load decreaksignificantly, providing a
higher than requested reliability. Furtheamination with different combinations of
bearing choices could yieldlditional acceptable solutions.

11-41

The thrust load on shafiD is from the axial component of the force transmitted through
the bevel gear, and is directed toward beafin@y observation of Fig. 11-14, direct
mounted bearings would allow beari@go carry the thrust load. 4ns.

From the solution to Prob. 3-74, the axial thrust lodd,is= 362.8 Ibf, and the bearing
radial forces aré'¢, = 287.2 Ibf, F. = 500.9 Ibf, Fp, = 194.4 Ibf, andFp, = 307.1 Ibf.
Thus, the radial forces are

F.=+/287.2 + 500.8 = 577 lof
F,=194.4 + 3071= 363 Ibf

The induced loads are
_047F,. 0.47( 577)

Eq. (11-15): F, = ~181 Ibf
KC
0.47( 36
Eq. (11-15): F, = 0-‘1271*10 _ 047369 114 1t
D

Check the condition on whether to apply. £11-16) or Eq. (11-17), where bearings
andD are substituted, respectively, for lahélandB in the equations.

Fo<?2F,+F,
181 Ibf < 114+ 362.8 476.8 Iof, so Eq.(11-16) applies

Eq. (11-1G): F,. =0.4F +K.(F,+F,)
=0.4(577)+ 1.% 114 362)8- 946 Ibf F,.  so Usg

Assume for tapered roller bearings ttia specifications for Manufacturer 1 on p. 608
are applicable.
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_L,_ 10 _
=7 90(10) -t

R=+0.90= 0.949

3/10
Eq.(11-7):  Fy. =1(946 LI | _ 1130 Ibf dns .
4.48 1- 0.949"
Eq.(11-16): F,, =F,, =363 Ibf
3/10
EqQ.(11-7):  F,, =1(363 LI 1 4331bf Ans .
4.4 1- 0.949"

11-42

The thrust load on shatB is from the axial component of the force transmitted through
the bevel gear, and is diredtto the right. By obseation of Fig. 11-14, indirect
mounted bearings would allow beariado carry the thrust load. Ans.

From the solution to Prob. B3, the axial thrust load i5,, = 92.8 Ibf, and the bearing
radial forces aré’,, = 639.4 Ibf, F,. = 1513.7 Ibf, F5, = 276.6 Ibf, andFz. = 705.7 Ibf.
Thus, the radial forces are

F,=+639.4+1513.7= 1643 Ibf
F,=+276.6+ 705.7 = 758 Ibf

The induced loads are
047, 0.47( 1643

Eq. (11-15): F, = _ 515 Ibf
q ( ) iA KA 15

0.47( 75
Eq. (11-15): Egzo"[‘g%: 1(5 9_ 238 Ibf

B

Check the condition on whetherapply Eq. (11-16) or Eq. (11-17).

F,<?2F,+F,
515 Ibf > 238+ 92.8& 330.8 Ibf, so Eq.(11-17) applies

Notice that the induced load from bearing sufficiently large to cause a net axial force
to the left, which must be supported by beaing

Eq. (11-12): F,=0.4F,+K, (F;‘A _F;le)
=0.4(759+ 1.% 515 92)8 937 |bf F,, sousg

Assume for tapered roller bearings ttra specifications for Manufacturer 1 on p. 608
are applicable.
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3/10
5.56
Eq.(11-7):  Fy, =1(93 = 1810 Ibf Ans .
=1 7)(4.48(1— 0.949”1'5J
Eq.(11-1@): F,, =F,, =1643 Ibf
3/10
Eq.(11-7):  F,, =1(1643 >0 | _ 3180 Ibf dns .
4.48(1- 0.94"

11-43 The lower bearing is compressed by theldwad, so it is designated as bearihg

F,=25kN
F,=12 kN
F_=5kN
0.47( 2
Eq. (11-15): F, = 0477, 04729 _, oo\
) 1.5
0.47(1
Eq. (11-15): F, = 0477, 04713 _ 56N
K, 1.5

Check the condition on whether tpopdy Eq. (11-16) or Eq. (11-17)

F;A < 92 F;B + F;e
7.83 kN< 3.76+ 5 8.76 kN, so Eq.(11-16) applies

Eq. (11-1G): F, =0.4F, +K,(F,+F,)
=0.4(29+ 1.8 3.76 b= 23.1kN F, so uBg

1, (250 rev/mir)(GohTinj( 8 hr)[ 5 daj( 52 Weej?S 9

day )\ wee yr
:156(1(?) rev

Assume for tapered roller bearings ttia specifications for Manufacturer 1 on p. 608
are applicable.

7 T 156(1(7) 3110
Eq. (11-3): F,,=a,F, L_D =1.2(29|—~—-| =35.4kN 4ns .

. 90( 1(?)

Eq.(11-16h): F, =F, =12 kN
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156 3/10
Eq.(11-3): FRB:1.2(12)[%} = 17.0kN Ans .

11-44

The left bearing is compressed by the axiatllcso it is properly designated as bearing

F, =875 Ibf
F, =625 Ibf
F., =250 Ibf

Assumek = 1.5 for each bearing for the firstiaition. Obtain the induced loads.

 0.47F, 0.47(87§

Eq. (11-15); F 274 b
q ( ) iA KA 15
0.47( 62
Eq. (11-15): £, =247 041629 _ o0
X, 15

Check the condition on whether tppdy Eq. (11-16) or Eq. (11-17).

F,<?>F,+F,
274 Ibf < 196+ 250 Ibf, so Eq.(11-16) applies

We will size bearing first since its inducetbad will affect bearingt, but it is not
affected by the induced load from bearihfsee Eq. (11-16)].

FromEq. (11-1&), F.3 = F,5 = 625 Ibf.

N i L_D 3/10 ) 90 Ooq 15()( 6@ 310
Eq. (11-3):  Fy —afFDLJ 1(625)[ 90(10) ]

F,, =1208 Ibf

Select cone 07100, cup 07196, with bare, and rated at 1570 Ibf wikh= 1.45. Ans.

With bearingB selected, we re-evaluate tineluced load from bearing using the actual
value fork.

0.47F, 0.47(625
- K, 145

Eq.(11-15): F, =203 Ibf

Find the equivalent radial load for bearihdgrom Eqg. (11-16), which still applies.
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Eq.(11-167): F,, =0.4F, +K,(F,+F,)
=0.4(879+ 1.% 203 250= 1030 Ibf

F;’A > F:*A
L, T 90 000 150( 6]
Eq. (11-3):  Fp, =a,F,| 2| =1(103
q. ( ) ra = D|:LR:| ( Q{ 90(103) :l
F,, =1990 Ibf

Any of the bearings with 1-1/8 in boreeamnore than adequate. Select cone 15590, cup
15520, rated at 2480 Ibf witki = 1.69. Iterating with the new value &y we getF'.4, =
1120 Ibf andF,, = 2160 Ibf. The selected bearing is still adequdie.
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Chapter 12

12-1 Given: dmax =25 mm, bpin =25.03 mm, I/d =1/2, W= 1.2 kN, =55 mPa-s, and N=
1100 rev/min.

min max

b. —d._. =25'03_25:O.015 mm

c. =

min 2
r=25/2=12.5 mm

r/c=12.5/0.015=833.3
N=1100/60 = 18.33 rev/s

P =W/ (ld)= 1200/ [12.5(25)] = 3184 N/mfn’ = 3.84 MPa

2 55(107)18.33
Eq. (12-7): S=(£j AN _g333 55(10° R =0.182
c) P 3.84(10°)

Fig. 12-16:  ho/c=03 =  ho[=0.30.015)=0.0045 mm Ans.
Fig. 12-18:  fr/c=54 =4 f=5.4/833.340.006 48

T =fWr = 0.006:48(1200)12.5(10%) = 0.0972 N-m

Higss =27 TN =27(0.0972)18.33 =112 W  Ans.
Fig. 12-19:  Q/(reNl)=5.1 & 0=5.1(12.5)0.015(18.33)12.5 = 219 mm’/s

Fig. 12-20:  0,/0=081 = O, =0.81(219)=177 mm’/s  Ans.

12-2  Given: dmax = 32 mm, b, = 32.05 mm, /= 64 mm, W= 1.75 kN, =55 mPa-s, and N=
900 rev/min.

¢ =t 32'03 ~32_0.025 mm

min 2

r=32/2=16 mm

r/c =16/0.025 = 640

N=900/60 =15 rev/s
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P = W/ (Id) = 1750/ [32(64)] = 0.854 MPa
I/d=64/32 =2

2 55(107)15
EBq (12-7):  s=| 2] #Y _6a02 ss(o)s =0.797
c) P 0.854

Eq. (12-16), Figs. 12-16, 12-19, and 12-21

vd Yo Y1 Yi/2 Yi/4 Y

ho/c 2 0.98 0.83 0.61 0.36 0.92
P/P nax 2 0.84 0.54 0.45 0.31 0.65
O/reNI 2 3.1 3.45 4.2 5.08 3.20

ho= 0.92 ¢=0.92(0.025) = 0.023 mm Ans.

Pmax = P/ 0.065 =0.854/0.65 = 1.31'MPa Ans.

O = 3.20 reNI = 3.20(16)0.025¢15)64 = 1123 (10°) mm’/s  Ans.

12-3  Given: dmax = 3.000 in, bmin = 3.0054n, /= 1.5 in, W =800 Ibf, N = 600 rev/min, and

SAE 10 and SAE 40 at 150°F.

. e —d _ 3.005 ; 3.000 — 0.0025 in

min >

r = 3.000/2=1.500"1n

I/d=15/3=0.5

rile=1.5/0.0025 = 600

N =600 / 60=10 rev/s
w 800

=—=——=177.78 psi
id 1.503)

Fig. 12-12: SAE 10 at 150°F, x4’ = 1.75 ureyn

2 -6
S = (ﬁj AN 02| L7200 NA0) | 1354
c 177.78

Figs. 12-16 and 12-21: ho/c=0.11 and P/pmax =0.21

hy = 0.11(0.0025) = 0.000 275 in  Ans.

Poae = 17778/ 0.21 = 847 psi  Ans.

Fig. 12-12: SAE 40 at 150°F, u' = 4.5 ureyn
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S = 0.0354(£j = 0.0910
1.75
hy,/c=0.19, P/ p,.=0275
h, = 0.19(0.0025) = 0.000 4751in  Ans.
Doax = 177.78 1 0.275 = 646 psi  Ans.

12-4 Given: dpax = 3.250 in, bmin = 3.256 in, [ = 3.25 in, W= 800 1bf, and N = 1000 rev/min.
¢ - b_.. —2dmax _ 3.256 — 3.250 0,003
r=3250/2=1.6251n
l/d=3/3.250=0.923
r/c=1.625/0.003 =542
N =1000/ 60 = 16.67 rev/s
= K = 800 = 82.05 psi
ld  33.25)

Fig. 12-14: SAE 20W at 150°F, = 2.85 preyn

2 -6
g (1] UN _ 540 2.85(107")(16.67) ~0.1701
c P 82.05

From Eq. (12-16), and Figs. 12-16 and 12-21:

l/d Vo Y1 Y Yi/a Yid
h,/c 0.923 0.85 0.48 0.28 0.15 0.46
P/Pmax 0.923 0.83 0.45 0.32 0.22 0.43
h, = 0.46¢/=0.46(0.003) = 0.001 38 in  Ans.
P 82.05 .
= ——=—"=191psi Ans.
P =043 = 0,43 P
Fig. 12-14: SAE 20W-40 at 150°F, u’= 4.4 ureyn
-6
S = 54 4.4107°)(16.67) 0963
82.05
From Eq. (12-16), and Figs. 12-16 and 12-21:
l/d Voo V1 Yip2 Vi/a Vi
h,/c 0.923 091 0.6 0.38 0.2 0.58
P/p max 0.923 0.83 0.48 0.35 0.24 0.46
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hy = 0.58c = 0.58(0.003) = 0.001 74 in  Ans.

Do = 8205 = 82.05 =178 psi  Ans.
0.46  0.46

12-5 Given: dpax = 2.000 in, bmin = 2.0024 in, / = 1 in, W= 600 Ibf, N = 800 rev/min, and SAE

20 at 130°F.
Do — Ao 2.0024 — 2

min max

cmin

2
i:gzlin, [/d=1/2=0.50
2 2

r/c=1/00012 = 833
N =800/ 60 = 13.33 rev/s
W 600

= — = —— =300 psi
d 2(1)

= 0.0012 in

7y =

Fig. 12-12: SAE 20 at 130°F, ' = 3.75 ureyn

o (ﬁj % _ 833{3.75(10-6)(13.3)} o115

300

C

From Figs. 12-16, 12-18-and 12-19:

/¢=023 "“rf/c=38 Q/(rcNl)=53

3.8

hy
hy=0.23(0.0012) = 0.000 276 in  Ans.
—— = 0.004 56

s 833

The power loss due to friction is

_2zf WrN  27(0.004 56)(600)(1)(13.33)
~778(12) 778(12)
= 0.0245 Btu/s  Ans.
0O = 5.3rcNI
= 5.3(1)(0.0012)(13.33)(1)
= 0.0848 in’/s  Ans.

12-6  Given: dyax =25 mm, byin = 25.04 mm, I/d =1, W= 1.25 kN, =50 mPa-s, and N =

1200 rev/min.
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2 -3
Foru=50MPa-s, S = (ﬁj % = 6252[M} = 0.195
C

o bun 25.042— 25 _ .09

min 5
r=d/2=25/2=125mm, [/d =1
r/c=12.5/0.02 = 625
N =1200/ 60 = 20 rev/s

_ w1250

T ld 25

= 2 MPa

2(10%

From Figs. 12-16, 12-18 and 12-20:

hylc=052 fric=45 0./0=057
hy =052(002)—00104mm Ans.

= —— = 0.0072
625

T = f Wr = 0.0072(1.25)(12.5) = 0:1125 N *'m

The power loss due to friction is

H=2aTN=2x(0.1125)(20) = 14.14W  Ans.

0;=0.57Q Theside flow is 57% of O  Ans.

12-7

Given: dmax =
1120 rev/min.

1.25 M, byin = 1.252 in, '=2 in, W= 620 1bf, u’= 8.5 pureyn, and N=

O b..—d.. ) 1.2522— 1.25 _ 0.001in
r=d/2=125/2=0.6251n
r/c=0.625/0.001 = 625
N =1120/ 60 = 18.67 rev/s

W 620

= = = 248 psi
ld ~ 1.25(2)

248

g _( j u}])\’ _ 625{8.5(10‘6)(18.67)} _ 0.250
C

[/d=2/125=1.6

From Eq. (12-16), and Figs. 12-16, 12-18, and 12-19
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l/d Voo V1 Vip2 Vi/a Yid
ho/c 1.6 0.9 0.58 0.36 0.185 0.69
fr/c 1.6 4.5 5.3 6.5 8 492
Q/rcNI 1.6 3 3.98 4.97 5.6 3.59
ho=10.69 ¢=0.69(0.001) =0.000 69 in Ans.
f=4.92/(r/c)=4.92/625=0.007 87 Ans.

O=1.6 reNl =1.6(0.625) 0.001(18.57) 2=0.0833 in’/s  Ans.

12-8 Given: dmax = 75.00 mm, by = 75.10 mm, / = 36 mm, W =2 kN, N = 720 rev/min, and
SAE 20 and SAE 40 at 60°C.

b. —d

min max

_75.10 - 75

c.. = = (0.05 mm

min 2
[/d=36/175=0.48 = 0.5 (close enough)

r=d/2=75/2=37.5mm
r/c=375/0.05=750
N =720/ 60 = 12aev/s

V. _ 20005 g 741 MPa

" 1d' T 75@36)

Fig. 12-13: SAE 20 at 60°C, x =18.5 MPa - s

2 -3
S = (1) HN dgsy M =0.169
c) P 0.741(10%)

From Figures 12-16, 12-18 and 12-21:

hy/c=029, fr/c=51 P/p, =0315
h, = 0.29(0.05) = 0.0145 mm  Ans.

f =5.1/750 =0.0068

T = f Wr =0.0068(2)37.5) =051 N-m

The heat loss rate equals the rate of work on the film

Hyoss =27T N =27(0.51)(12) =38.5W  Ans.
Pmax = 0.741/0.315=2.35 MPa  Ans.

Fig. 12-13: SAE 40 at 60°C, u =37 MPa - s
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§=0.169(37)/18.5 =0.338
From Figures 12-16, 12-18 and 12-21:

hy/c=042, fr/c=85 P/p, . =038
h, = 0.42(0.05) = 0.021 mm  Ans.

f =85/750=0.0113

T =fWwr=001132)375) = 08N -m

H, . =27TN = 27(0.85)(12) = 64 W Ans.
Do = 0.741/0.38 =1.95 MPa  Ans.

12-9 Given: dpax = 56.00 mm, by = 56.05 mm, /=28 mm, W= 2.4 kN, N =900 rev/min, and
SAE 40 at 65°C.
bow — e 56.05 — 56

min max

= 0025 mm

cmin = 2

r=d/2=56/2=28mm

r/c=28/0.025=1120

[/d=28/56=0.5 N =900 /460 =15rev/s
2400

P =" _153MPa
28(56)

Fig. 12-13: SAE 40 at 65°C, o= 30'MPa - s

S = (szﬂ =120 {M} ~ 0.369
¢c) P 1.53(10%

From Figures 12-16, 12-18, 1219 and 12-20:

hylc=044, fric=85 0/0=07, Q/@FcNl) =485
hy = 0.44(0.025) = 0.011 mm  Ans.

f =8.5/1000 = 0.007 59

T = f Wr = 0.007 59(2.4)(28) = 0.5I N - m

H = 272TN = 27(0.51)(15) = 48.1W  Ans.

O = 4.85r¢NI = 4.85(28)(0.025)(15)(28) = 1426 mm’/s

0 =0.71(1426) = 1012 mm’/s  Ans.

12-10 Consider the bearings as specified by

minimum f: a7, by

_[d’

maximum W: d?*, b

—t;? -0
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and differing only ind and d’ .

Preliminaries:
I/d=1
P =W /(ld) =700 / (1.25%) = 448 psi
N =3600/ 60 = 60 rev/s
Fig. 12-16:
minimum f: S =0.08
maximum W: S =0.20
Fig. 12-12: u=1.38(10"% reyn
uN/P = 1.38(107°)(60/448) = 0.185(10%)
Eq. (12-7):

r

3 S
c uN/P
r_ LS% —(658
¢ \0.18510°)
@

= 0:625 /658 = 0.000 950 = 0.001 in

For minimum f:

If this 1S ¢min,
b—d=2(0.001)=0.002 in

The median clearance 1s

_ t,+1 t,+1
c =¢,, +-4+—2=0.001+-<L—>
and the clearance range for this bearing is
Ao = lath
2

which is a function only of the tolerances.
For maximum W:

r_ |02  _ 1040
¢ \0.185(10°°)
C

= 0.625 /1040 = 0.000 600 = 0.0005 in

If this 1S ¢pin
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S
|
S
[

2¢.. = 2(0.0005) = 0.001 in

Ezcmm+m:0.0005+%
Ao = Lot
2

The difference (mean) in clearance between the two clearance ranges, Crange, 1S

range

¢ =0001+ath _ [o.ooos + M)
2 2
— 0.0005 in

For the minimum f bearing

b—-d=0.002 in
or
d=b-0.002 in
For the maximum W bearing
d’=b-0.001 in

For the same b, ¢, and ¢,, we need to change'the journal diameter by 0.001 in.

d' —d = b=0.001 (b - 0.002)
—.0.001 in

Increasing d of the minimum friction bearing by 0.001 in, defines d’ of the maximum
load bearing. Thus, the clearance range provides for bearing dimensions which are
attainable in manufacturing.  A4ns.

12-11 Given: SAE 40, N = 10'tev/s, Ts = 140°F, //d=1, d=3.000 in, b=3.003 in, W = 675
Ibf.
by —d,.. _3.003-3

__ “min max
c. =

min 5
r=d/2=3/2=15in
¥ /e =15/0.0015 = 1000
_w_ 675
d 33)

= 0.0015 in

75 psi

Trial #1: From Figure 12-12 for 7= 160°F, 4 = 3.5 u reyn,

AT = 2(160 — 140) = 40°F

2 -6
g [Zj AN 10002 2200001 6 4667
c) P 75

From Fig. 12-24,

Chapter 12, Page 9/26



9.70AT

AT = 3.16L = 3.16£ = 24.4°F
9.70 9.70

Discrepancy = 40 — 24.4 = 15.6°F
Trial #2: T=150°F, u = 4.5 u reyn,
AT = 2(150 — 140) = 20°F

75

From Fig. 12-24,

9.70AT _ 0.349 109 + 6.009 40(0.6) + 0.047:467(0.6)" = 3.97
AT = 3.97i = 3.97£ =30.7°F
9.70 9.70

Discrepancy =20 — 30.7 =—10.7°F
Trial #3: T=154°F, u = 4 u reyn,
AT =2(154 —140) = 28°F
,| 4(107%)10
S'=1000°| ———=——| = 0.533
75
From Fig. 12-24,

9.70AT

AT = 3.57i = 3.57£ = 27.6°F
9.70 9.70

Discrepancy =28 —27.6 =0.4°F OK

Ty =140 +28/2 =154°F  Ans.
I,=T,6 - AT /2 =154 -(28/2) = 140°F
T,=T,6+AT /2 =154+ (28 / 2) = 168°F
S=04

From Figures 12-16, 12-18, to 12-20:

= 0.349 109 + 6.009 40(0.4667) + 0.047 467(0.4667)> = 3.16

= 0.349 109 + 6.009 40(0.533) + 0.047 467(0.533)* = 3.57
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ho_ggs, LTy, © _36 2 _03
c c reN | 0
h, = 0.75(0.0015) = 0.001 13 in  Ans.
11

=—— =0.011
7= T000
T = f Wr =0.00753)(40) = 09N - m

27(0.011)675(1.5)10
L L 7(OOL)OTS(LII0 _ o o5 B ans:
778(12) 778(12)

Q = 3.6rcN1 = 3.6(1.5)0.0015(10)3 = 0.243 in*/s Ans.

Q. = 0.33(0.243) = 0.0802 in’/s  Ans.

12-12 Given: d=2.51n, b =2.504 in, cpmin = 0.002 in, W= 1200 Ibf, SAE =20, T, = 110°F,
N=1120 rev/min, and / = 2.5 in.

P =W/ld)=1200/(2.5)° =192 psi, ~ N=1120/60=18.67 rev/s
For a trial film temperature, let 7y = 150°F

Table 12-1: " =0.0136 exp[1271.6/(150 + 95)] =2.441 pz reyn

2 22.441(10°)18.67
Eq. (12-7): S:(Zj “N:(z'S/zJ (10 =0.927
c P | 0.002 192

Fig. 12-24:

AT=£[

0.349 109+ 6.009 40(0.0927)+0.047 467(0.0927°) |
=17.9F

T, =T, +A—2T:110+%:119.0°F
T, -T, =150-119.0 = 31.0°F

which is not 0.1 or less, therefore try averaging for the new trial film temperature, let

150 +119.0

(7))o = = 134.5°F

Proceed with additional trials using a spreadsheet (table also shows the first trial)
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Trial New
Tf ,u’ S AT Tav Tf—TaV Tf
150.0 2.441 0.0927 17.9 119.0 31.0 134.5
134.5 3.466 0.1317 22.6 121.3 13.2 127.9
127.9 4.084 0.1551 25.4 122.7 5.2 125.3
125.3 4.369 0.1659 26.7 123.3 2.0 124.3
124.3 4.485 0.1704 27.2 123.6 0.7 124.0
124.0 4.521 0.1717 27.4 123.7 0.3 123.8
123.8 4.545 0.1726 27.5 123.7 0.1 123.8

Note that the convergence begins rapidly. There are ways to speed this, but at this point
they would only add complexity.

@) 4 =454510°), S =0.1726

From Fig. 12-16: h = 0.482, h, = 0482(0.002) =,0.000 964 in
c

From Fig. 12-17: ¢ =56°  Ans.

(b) e = c — hy = 0.002 —.0.000 964 =0.001 04in" Ans.
(c) From Fig. 12185 7" — 40, /2.4.100.002/125) = 0.006 56  Ans.
C

(d) T=£Wr=0.00656(1200)(1.25) = 9.84 Ibf - in

b~ 27ENL27(9.84)(1120 / 60)

- = = (0.124 Btu/s Ans.
778(12) 778(12)

(e) From Fig. 12-19: Q0 _ 4.16
rcNI

0= 4.16(1.25)(0.002)[%) (2.5) = 0.485in’/s  Ans.

From Fig. 12-20: % =0.6, Q. =0.6(0.485) = 0.291in’/s Ans.

w/(ld :
(f) From Fig. 12-21: £ 045, p... = (1d) _ 1200725
Doa 0.45 0.45

From Fig. 12-22: ¢, = 16° Ans.

= 427 psi  Ans.
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(9) From Fig. 12-22: ¢, = 82°

(h) From the trial table, 7= 123.8°F  Ans.
(i) With AT = 27.5°F from the trial table, T, + AT=110 + 27.5=137.5°F  Ans.

Ans.

12-13

Given: d=1.2501n, t,=0.001 in, b= 1.252 in, t, = 0.003 in, [ = 1.25 in, W = 250 1bf,

N =1750 rev/min, SAE 10 lubricant, sump temperature 75 = 120°F.

P = WAId) = 250/1.25* = 160 psi,

N=1750/60=29.17 rev/s

For the clearance, ¢ = 0.002 + 0.001 in. Thus, ¢min = 0.001 in, Cmedian = 0.002 in, and
Cmax = 0.003 in.

For cmin = 0.001 in, start with a trial film temperature of 7= 135°F

Table 12-1:

Eq. (12-7):

Fig. 12-24:

1’ =0.0158 exp[1157.5/(135 + 95)] = 2.423 1 reyn

AT

= 2219°F

I, =T +— =120 +
2

AT

22.9

T, <L, =135 - 131.4 = 3.6°F

160

g _(zjz LN _(1,25/2)2 2.423(10:%)29.17
¢c) P\ 0.001
_ 160 [

50:349 109+ 6,009 40(0,1725)+0.047 467(0.1725%) |

—— =131.4°F
2

=0.1725

which is not 0.1 or less, theréfore try averaging for the new trial film temperature, let

135+ 131.4
(Tf)new =T

=133.2°F

Proceed with additional trials using a spreadsheet (table also shows the first trial)

Trial New
Ty o S AT Tay Tr—Tay Ty
135.0 2.423 0.1725 22.9 131.4 3.6 133.2
133.2 2.521 0.1795 23.6 131.8 1.4 132.5
132.5 2.560 0.1823 23.9 131.9 0.6 132.2
132.2 2.578 0.1836 24.0 132.0 0.2 132.1
132.1 2.583 0.1840 24.0 132.0 0.1 132.1
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With T, = 132.1°F, AT = 24.0°F, /= 2.583 ureyn, S=0.1840,
Toax = Ts + AT =120 +24.0 = 144.0°F
Fig. 12-16:  hole=0.50, ho = 0.50(0.001) = 0.000 50 in
€=1- hole=1-0.50=0.05 in
Fig. 12-18:  rf/c=4.25, f=4.25/(0.625/0.001)=0.006 8
Fig. 12-19:  Q/(reNl) = 4.13, O =4.13(0.625)0.001(29.17)1.25 = 0.0941 in’/s
Fig. 12-20:  0,/0=0.58, O, =0.58(0.0941) = 0.0546 in’/s

The above can be repeated for cmedian = 0.002 in, and €iax = 0.003 in. The results are
shown below.

Cmin 0.001 Cmedian . Cmax 0.003
in 0.002'in in

Ty 132.1 125.6 12401
W 2.583 3.002 3.112
S 0484 0.0534 | 0.0246
AT 24.0 11.1 8.2
. 144.0 131.1 128.2
holc 0.5 0.23 0.125
ho 0.00050  0.00069  0.00038
€ 0.50 0.77 0.88
frle 4.25 1.8 1.22
f 0.0068  0.0058  0.0059
O/reNI) 4.13 4.55 4.7
0 0.0941 0.207 0.321
0, /0 0.58 0.82 0.90
Os 0.0546 0.170 0.289

12-14 Computer programs will vary.

12-15 Note to the Instructor: In the first printing of the 9th edition, the //d ratio and the
lubrication constant o were omitted. The values to use are //d = 1, and = 1. This will be
updated in the next printing. We apologize for any inconvenience this may have caused.
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In a step-by-step fashion, we are building a skill for natural circulation bearings.

* Given the average film temperature, establish the bearing properties.

* Given a sump temperature, find the average film temperature, then establish the bearing
properties.

* Now we acknowledge the environmental temperature’s role in establishing the sump
temperature. Sec. 12-9 and Ex. 12-5 address this problem.

Given: dpax = 2.500 in, byin = 2.504 in, I/d =1, N= 1120 rev/min, SAE 20 lubricant, W =
300 Ibf, 4 = 60 in?, T, = 70°F, and = 1.

600 Ibf load with minimal clearance: We will start by using W = 600 Ibf (n; =2). The

task is to iteratively find the average film temperature, 7, which makes Hyen and
Hyss  equal.

b — doy 2504 — 2,500

- max — 0.002 in
2
N=1120/60 = 18.67 rev/s
w600
_ 000 g6 i
25 P
2 2/ (107°) 18267
S=(5 N _ (125 P a0”) — 0.0760/
¢) P L0002 9%

Table 12-1: 1" =0,0136 exp[1271.6/(T;+ 95)]

- %Wm(ﬂj = ﬁ(600)18.67(0.002)ﬂ
1050 1050

c c
= 54.3ﬂ
c
hegd 2.7(60 / 144)
=—=—\T,-T,)=———=(T, =70
loss 0(+1(f 00) 1+1 (f )
= 0.5625(7, — 70)
Start with trial values of 7 of 220 and 240°F.
Trial 7 o’ S fr/c Hoen Hioss
220 0.770 0.059 1.9 103.2 84.4
240 0.605 0.046 1.7 92.3 95.6

As a linear approximation, let Hyen = mTy + b. Substituting the two sets of values of
Ty and Hgen we find that Hyen = — 0.545 Tr +223.1. Setting this equal to Hoe and
solving for Ty gives Ty = 237°F.
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Trial T

4

fr/c

H gen

H loss

237

U
0.627

0.048

1.73

93.9

94.0

which is satisfactory.

Table 12-16:  holc=0.21,  ho=0.21(0.002) = 000 42 in
Fig. 12-24:
AT = %[0.349 109 + 6.009 4(0.048) + 0.047 467(0.048’) |

= 6.31°F
In=T,=T; —AT=237-6.31/2=233.8°F

Tmax =T + AT =233.8 +6.31/= 240.1°F
Trumpler’s design criteria:
0.002 + 0.000 04d = 0.002 + 0.000 04(2.5) = 0.00030 in< 4y, OK.
Tmax = 240.1°F <250°F 0O.K.

W, 300 . :
o = 220 — 48 psi <300 psi OK.
d 25 : 1

ng = 2 (assessed at W' =600 1bf) O.K.
We see that the design passes Trumpler’s criteria and is deemed acceptable.
For an operating load of // = 300 Ibf, it can be shown that 7y =219.3°F, 4’=0.78, §' =

0.118, fr/c = 3.09, Hgen = Higss = 84 Btu/h, hy =, AT =10.5°F, T} = 224.6°F, and Tnax =
235.1°F.

12-16 Given: d = 3.500" 00 in, b = 3.505"0 0 in, SAE 30, T, = 120°F, p, = 50 psi,
N =2000/60 = 33.33 rev/s, W= 4600 lbf, bearing length = 2 in, groove width = 0.250 in,

and Hjos < 5000 Btu/hr.
b. —d

j— min max

c. =
min 2
r=d/2=3.500/2=1.750 in

_ 3.505 - 3.500 — 0.0025 in

r/c=1.750/0.0025 = 700

[”=(2-0.25)/2=0.8751in
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[”/d=0.875/3.500 = 0.25

W_

4600

p= _
4]’

4(1.750)0.875

= 751 psi

Trial #1: Choose (7)1 = 150°F. From Table 12-1,

1/=0.0141 exp[1360.0/(150 + 95)] = 3.63  reyn

2 -6
S - (1) HUN _ 7002 3.63(107)(33.33) — 0.0789
c) P 751

€e=0.9, fr/c=3.6

From Figs. 12-16 and 12-18:

From Eq. (12-24),
_0.0123(f r / c)SW?
(1+1.5€¢)p, 7

~0.0123(3.6)0.0789(4600%)
 [1+1.5(0.9) ]50(1.750%)
Ta =T, +AT/2 =120+ 742/2= 155.6°F

AT

= 71.2°F

Trial #2: Choose (I7), = 160°F. From Table 12-1

1’=0.0141 exp[1360.0/(160 +95)] = 2.92 1 reyn

8= 0.0789(&J = 0.0635
3.63

From Figs. 12-16 and 12-18: e=0915, fr/c=3
~10.0123(3)0.0635(4600° )
- [1+15(0915%)]50(1.750")
Ta =120 +46.9/2 = 143.5°F

T

av

= 46.9°F

160 (160°F, 160°F)
(150°F. 155.6°F)
T

av

Ty

B0 15008 150°F) |
: (160°F, 143.5°C)
1
N !
T T T T,
140 150|160

152.5°F

140
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Trial #3: Thus, the plot gives (77)3 = 152.5°F. From Table 12-1
1’=0.0141 exp[1360.0/(152.5 + 95)] = 3.43 u reyn
S=0. 0789(3 43j = 0.0746
3.63

From Figs. 12-16 and 12-18: €=0.905, fr/c=3.4

0.0123(3.4)0.0746(4600° )
T = = 6320F

[1 + 1.5(0.9052)]50(1.7504)
Th =120+ 63.2/2 =151.6°F

Result is close. Choose T, = w = 152.1°F Try 152°F

Table 12-1:  u’=0.0141 exp[1360.0/(152 +95)] =3.47 u reyn
S =0.0789] — 3471 _ = 0.0754
3.63

T34 e=0902, M- 0008
C C
0.0123(3.4)0:0754(4600°)
- = 64.1°F

1+ 1.5(0.9022)] 0(1.7504)

T, =120+ 64:1 / 2= 152.1°F O.K.
hg=10.098(0.0025).= 0.000.245 in

Thax =T+ AT=120+64.1 = 184.1°F

Eq. (12-22):
3 50)1.750(0.0025°

0, =PI (1 4 1.5¢) = 7(30) 5 )

3ul 3(3.47)107°(0.875)

=1.047 in’/s

[1+1.5(0.902%)]

Hioss = p C,O5 AT=0.0311(0.42)1.047(64.1) = 0.877 Btu/s
=0.877(60%) =3160 Btu/h O.K.

Trumpler’s design criteria:

0.0002 + 0.000 04(3.5) = 0.000 34 in > 0.000 245  Not O.K.
Tax = 184.1°F <250°F  O.K.

Py, =751 psi >300psi Not O.K.

n=1, asdone NotO.K.
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12-17 Given: d = 50.0070; mm, b = 50.084°00¢0 mm, SAE 30, T, = 55°C, p; = 200 kPa,
N =2880/60 =48 rev/s, W =10 kN, bearing length = 55 mm, groove width = 5 mm, and

Hioss <300 W.
by —doo  50.084 — 50

min max

= 0.042 mm

c. . =
min 2
r =d/2=50/2=25mm

r/c=25/0.042 = 595
[”7=(55-15)/2=25mm

[”/d=25/50=0.5
wo 10(10%)
T4 4(25)25
Trial #1: Choose (Ty); = 79°C. From Fig. 12-13, u = 13 MPa - s.

S = (ﬁjzﬂ - 5952[M} — 0.0552
¢c) P 4(10°)

= 4 MPa

From Figs. 12-16 and 12-18: €=0.85 frie=23

From Eq. (12-25),
7 97810%).( f rle)SW?
1+1.5¢ p.r
0 978(10%) [ 2.3(0.0552)(10%)
0+ 1.5(0.85)° [ 200(25)°

Tow=T, +AT/2=55+76.3/2=93.2°C

} = 76.3°C

Trial #2: Choose (T7 ), = 100°C. From Fig. 12-13, u =7 MPa - s.

S = 0.0552(%) = 0.0297

From Figs. 12-16 and 12-18: €=0.90, fr/c=1.6
_978(10% | 1.6(0.0297)(10%)
1 +1.5(0.9)° 200(25)*
Ty =55+26.9/2=68.5°C

} = 26.9°C
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a

100 (1007C, 1009}

(79°C. 93.2°C)
90

50 -1
(7900, 79°C)

L (100°C, 68.59C)

T T T,
90 100
83.50C

Trial #3: Thus, the plot gives (7)3 = 85.5°C. From Fig. 12-13, u = 10.5 MPa - s.

S = 0.0552(?—;) = 0.0446

From Figs. 12-16 and 12-18: €e=0.87, fr/c=2.2

_978(10%) [ 2.2(0.0457)(10%)
1+1.50.87°)|  200(25)*
Taw =55+ 58.9/2=84.5°C

} = 58.9°C

Result is close. Choose 7_“/, = w = 85°C

Fig. 12-13: u=10.5MPa {s
S = 0.0SS2(%) =.0.0446

=087, L0 M 13
C C

D 978(10%) [ 2.2(0.0457)(10%)
1+1.5087")|  200(25%)
T, =55+589/2=845C OK.

} = 58.9°C or 138°F

From Eq. (12-22)
ho =0.13(0.042) = 0.005 46 mm or 0.000 215 in

Tmax =Ts + AT=55+589=113.9°C or 237°F

_ W ADIC 7| 7(200)25(0.042°)
0, =(1+15¢ )—W, = [1+1.5(0.87 )]{ (10510 (25)

= 3156 mm’/s = 3156(25.4’3) = 0.193 in’/s

Hioss = p C,05 AT =0.0311(0.42)0.193(138) = 0.348 Btu/s
=1.05(0.348) = 0.365 kW =365 W not O.K.
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Trumpler’s design criteria:

0.0002 + 0.000 04(50/25.4) = 0.000 279 in > h Not O.K.
Tmax =237°F OK.

P, =4000kPa or 581 psi>300psi NotO.K.

n=1, asdone NotO.K.

12-18 So far, we’ve performed elements of the design task. Now let’s do it more completely.
The values of the unilateral tolerances, ¢, and ¢, , reflect the routine capabilities of the
bushing vendor and the in-house capabilities. While the designer has to live with these,

his approach should not depend on them. They can be incorporated later.

First we shall find the minimum size of the journal which‘satisfies Trumpler’s constraint

of Py, <300 psi.
P, = i < 300
oo2dl
fV <300 = d > U
2d°l' /1 d 600(/"./ d)

d =200 _ 30
2(300)(0.5)

In this problem we will take journal diameter as the nominal value and the bushing bore
as a variable. In the next problem, we will take the bushing bore as nominal and the
journal diameter as free.

To determine where the constraints are, we will set 7, = t;= 0, and thereby shrink the
design window to a point.

We set d=2.000 in
b=d+2cmn=d+2c
ng =2 (This makes Trumpler’s n, < 2 tight)

and construct a table.
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_ %

c b d Tf Twax ho Pg Tmax n fom
0.0010 2.0020 2 215.50 312.0 x V x v =574
0.0011 2.0022 2 206.75 293.0 x V vV -6.06
0.0012 2.0024 2 198.50 277.0 x V v Vv -6.37
0.0013 2.0026 2 19140 2628 x V vV -6.66
0.0014 2.0028 2 18523 2504 x V vV -6.94
0.0015 2.0030 2 179.80 239.6 x V v v -7.20
0.0016 2.0032 2 175.00 230.1 x V v v 745
0.0017 2.0034 2 171.13 2203 x V v v -7.65
0.0018 2.0036 2 16692 2139 Vv V v v 791
0.0019 2.0038 2 163.50 2069 Vv V VooV =812
0.0020 2.0040 2 160.40 200.6 Vv V vV -8.32

*Sample calculation for the first entry of this column.
Iteration yields: ]_"f = 215.5°F

With T, = 215.5°F, from Table 12-1

1 = 0.0136(10")exp[1271.6 / (215.54%95)] = 0.817(10°) reyn

N =3000/60 =50rev/s, P = %{O = 225 psi

S =( 1 j {0.817(10‘6)(50)} _ ol

0.001 225
From Figs. 12-16 and 12-18: e=0.7, fric=55
Eq. (12-24):

7 200.0123(5.5)(0.182)(900%) _ |
T I 1.5(0.72)](30)(1Y)
191.6°F

91.6°F

= 215.8°F = 215.5°F

T, =120°F +

For the nominal 2-in bearing, the various clearances show that we have been in contact
with the recurving of (4,)min. The figure of merit (the parasitic friction torque plus the
pumping torque negated) is best at ¢ = 0.0018 in. For the nominal 2-in bearing, we will
place the top of the design window at ¢yin = 0.002 in, and b = d + 2(0.002) = 2.004 in. At
this point, add the b and d unilateral tolerances:

d = 2.0007%" in, b = 2.00473%0 in

Now we can check the performance at cyin , ¢ , and cmax . Of immediate interest is the

fom of the median clearance assembly, — 9.82, as compared to any other satisfactory
bearing ensemble.
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If a nominal 1.875 in bearing is possible, construct another table with ¢, = 0 and ¢, = 0.

c b d T, Tmax  ho Py Tmax n fom
0.0020 1.879 1.875 157.2 19430 x V vV =736
0.0030 1.881 1.875 138.6 157.10 v V v VvV —8.64
0.0035 1.882 1.875 1335 147.10 v V v v =905
0.0040 1.883 1.875 130.0 140.10 v V v v =932
0.0050 1.885 1.875 125.7 13145 Vv V v v =959
0.0055 1.886 1.875 1244 12880 v V v o v —-963
0.0060 1.887 1.875 1234 12680 x V v v =964

The range of clearance is 0.0030 < ¢ < 0.0055 in. That is enough room to fit in our
design window.

d =1.8750% in, b =(1.881:000 in

-0.001

The ensemble median assembly has a fom = — 9.31.

We just had room to fit in a design window.based upon the (/o) min constraint. Further
reduction in nominal diameter will preclude any smaller bearings. A table constructed for
a d=1.750 in journal will prove this.

We choose the nominal 1.875-indbearing ensemblebecause it has the largest figure of
merit.  Ans.

12-19

This is the same as Prob. 12-18 but uses design variables of nominal bushing bore b and
radial clearance c.

The approach is similar to that of Prob. 12-18 and the tables will change slightly. In the
table for a nominal » = 1.875 1n, note that at ¢ = 0.003 in the constraints are “loose.” Set

b=1.8751in
d=1.875-2(0.003) = 1.869 in

For the ensemble
b =1.8750% in  d =1.869"% in

Analyze at ciin = 0.003, ¢ =0.004 in and ¢yax = 0.005 in

At ¢ = 1035 Btu/h and the

min loss

= 0.003 in: 7_} =1384, 4 =3.160, S =0.0297, H,

Trumpler conditions are met.

At ¢ = 0.004 in: 7_”/, = 130°F, " =3.872, § = 0.0205, Hjoss = 1106 Btu/h, fom = -9.246
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and the Trumpler conditions are O.K.
At ¢, = 0.005 in: ff =125.68°F, u” =4.325,§=0.014 66, Hioss = 1129 Btu/h and the

Trumpler conditions are O.K.

The ensemble figure of merit is slightly better; this bearing is slightly smaller. The
lubricant cooler has sufficient capacity.

12-20 Table 12-1:  u(ureyn)=pu, (10% exp [b/(T+95)] band T in °F

The conversion from g reyn to mPa-s is given on p. 620. For a temperature of C degrees
Celsius, 7=1.8 C + 32. Substituting into the above equation gives

L (mPa-s)=6.89 (10% exp [b/ (1.8 C+ 32+ 95)]
=6.89 110 (10% exp [6/(1.8.C+.127)] Ans.

For SAE 50 oil at 70°C, from Table 12-1, u o = 0.0170 (10_6) reynyand b = 1509.6°F.
From the equation,

4 =6.89(0.0170) 107°(10%) exp {1509.6/[1.8(70) + 1271}
=45.7 mPa-s Ans.
From Fig. 12-13, u.=39 mPa-s Ans.

The figure gives a value of about 15 % lower than the equation.

12-21 Originally
d = 2100077 in, b = 2.0050%" in

Doubled,
d = 4.000°0% in, b = 4.010"% in

The radial load quadrupled to 3600 Ibf when the analyses for parts (a) and (b) were
carried out. Some of the results are:

_ Trumpler
Part c )7 S T, fr/c [OR hy /c e Hss hg hg f

() 0.007  3.416  0.0310 135.1 0.1612  6.56 0.1032 0.897 9898 0.000 722 0.000 360 0.005 67
(b) 0.0035 3.416  0.0310 135.1 0.1612 0.870  0.1032 0.897 1237 0.000361  0.000 280 0.005 67

The side flow O, differs because there is a ¢’ term and consequently an 8-fold increase.
H\oss 1s related by a 9898/1237 or an 8-fold increase. The existing 4, is related by a 2-fold
increase. Trumpler’s (/19)min 1s related by a 1.286-fold increase.
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12-22 Given: Oiles SP 500 alloy brass bushing, L = 0.75 in, D =0.75 in, T, = 70°F, F'= 400
Ibf, N =250 rev/min, and w = 0.004 in.

Table 12-8: K =0.6(10""%) in’-min/(Ibf-ft-h)
P = F/(DL) =400/ [0.75(0.75)] = 711 psi
V=7nDN/12 = 7(0.75)250/12 = 49.1 ft/min
Tables 12-10 and 12-11: f1=18, f,=1.0

Table 12-12:  PViyax =46 700 psi-ft/min, Puax = 3560 psi, Vimax = 100 ft/min

4 F 4 400

AT 905 psi, < 3560psi OK.
pa 7 0.

PV=711 (49.1) = 34 910 psi-ft/min <46 700 psi-f/min  O.K.

Eq. (12-32) can be written as

4 F
w = K——"t
U 7w DL

Solving for ¢,

(. 7DLw _ 7(0.75)0.75(0.004)
“A4ff,KVE  4(1.8)1.0(0.6)107°(49.1)400

=833.1h = 833.1(60) = 49 900 min

Cycles = Nt =250 (49 900) = 12.5 (10% cycles Ans.

12-23 Given: Oiles SP 500 alloy brass bushing, wmax = 0.002 in for 1000 h, N =400 rev/min, F
=100 Ibf, 7ick = 2.7 Btu/ (h~ft2-°F), Tmax = 300°F, /5 =0.03, and n, = 2.

Estimate bushing length with f; = > = 1, and K = 0.6(10"'°) in® - min/(Ibf - ft - h)

Using Eq. (12-32) with nyF for F,
_ fif,Kn FNe 1(1)(0.6)(107°)(2)(100)(400)(1000)
3w 3(0.002) -

L 0.80 in

From Eq. (12-38), with f; = 0.03 from Table 12-9 applying ny, =2 to F
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and A, = 2.7 Bw/(h - fi> - °F)

[ = _720/n,FN__ 720(0.03)(2)(100)(400) _ , oo .
Jhe (T, - T,) 778(2.7)(300 — 70)

0

0.80 < L £3.58in

Trial I: Let L=1in,D=11in

_4nF_ 42)(100)

max = 255 psi < 3560 psi  OK.
7 DL z()(1)

- M — M =200 ps]
DL~ 10)
V- ”f)zN _ ”(1)1(;00) - 104.7 fymin'> 100fmin  Nor OK.

Trial 2: Try D=7/8in=0.8751in, L=1in

= AN _ 591 psidk 3560psi Ok
2(0.875)(1)
= 2(100) = 229 pst
0.875(1)
- %?(400) =916 ft/min < 100 f/min  OK.

PV=229(91.6) =20 976 psi - ft/min < 46 700 psi - ft/min  O.K.

Ve
33 13
91.6 — 33
= f=13+18-13)|—=|=1.74
oL6 fi =/ ( )(100_33]
100 1.8 L., = fL,, =1.74(0.80) =139 in

Trial 3: Try D=7/81n=0.8751n,L=1.51n

o= OO y9q psi < 3560 psi O
7(0.875)(1.5)
= 2009 _ 15506 7 = 91.6 fimin
0.875(1.5)

PV =152(91.6) = 13 923 psi - ft/min < 46 700 psi - ft/min  OK.
D =7/8in, L =1.51inisacceptable Ans.
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Suggestion: Try smaller sizes.

Q&
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13-1

Chapter 13

. =17/8=2.125in

d
d 2d, =%(2.125)=4.375 in

G

Ny
N3

Ng =Pd; =8(4.375)=35teeth  Ans.
C=(2.125+4.375)/2=325in  Ans.

13-2

ng =1600(15/60) =400 rev/min  Ans.
p=rmm=37r mm Ans.
C=[3(15+60)]/2=112.5mm  Ans.

13-3

N, =16(4)=064 teeth  Ans.
d;=Ngm=64(6)=384 mm Ans.
d,=N,m=16(6)=96 mm Ans.
C=(384+96)/2=240 mm  Ans.

13-4

Mesh: a=1/P=1/3=03333in Ans.
b=1.25/P=1.25/3=0.4167 in Ans.
c=b-a=0.08341in Ans.
p=n/P=7/3=1.047in Ans.
t=p/2=1.047/2=0.523in Ans.

Pinion Base-Circle: d =N,/P=21/3=71in
d,, =7c0s20°=6.578 in  Ans.

Gear Base-Circle: d,=N,/P=28/3=9.333in
d,, =9.333¢c0s20° =8.770 in  Ans.

Base pitch: Py =p.cosp=(m/3)cos20"=0.984 in  Ans.

Contact Ratio: m,=L,/p, =1.53/0984=1.55 Ans.

See the following figure for a drawing of the gears and the arc lengths.
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Arc of approach = 0.87 in Ans.
Arcofrecess = 0,77 in Ans.
Arcofaction = 1.64in  Ans.

L,=153in

13-5

P 21/2
SR NET |

(b)
y=tan" (14/32)=23.63  Ans. ™

[ =tan"'(32/14)=66.37"  dns.

(©)
d,=14/6=2333in Ans.

[
- (] —————

d;=32/6=5.3331in Ans.

.y
|
¥
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(d)  From Table 13-3, 0.34, = 0.3(2.910) = 0.873 in and 10/P = 10/6 = 1.67
0.873<1.67 . F=0873in Ans.

13-6 o |
AL NN NN
B G

(a) p,=n/P =71/4=0.7854 in
p,=p,/cosy =0.7854/cos30° = 0.9069 in
p, =p,/tany =0.9069/tan30° =1.571 in

(b)  Eq.(13-7):  p,, =p,cosg, =0.7854cos25 =0.7380 in  Ans.

(c) p, =P, cosy =4cos30° =3.464 teeth/in
¢, =tan"' (tang, /cosy ) =tan" (tan25" /cos30") =28.3" Ans.

(d) Table 13-4:
a=1/4=0.2501in Ans.
b=1.25/4=0.3125in Ans.

d, __ 20 5774 in  Ans.
4cos30°

¢ = L =10.391in  Ans.
4cos30

13-7

N ¢
30°
N, =19 teeth, N, =57 teeth, ¢ =20°,m, =2.5 mm

(@  p,=mm,=x(25)=7.854mm Ans.

= Pn _ 7'8540 =9.069 mm Ans.
cosy  cos30
= P _ 9.069 =15.71mm Ans.
tany  tan30°
0 m=r 25 o887 mm  Ans.

‘T cosy  cos30°
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g =tan| B020 120 80° ns.
cos30

(c) a=m,=2.5mm Ans.
b=125m,=125(2.5)=3.125mm  Ans.

d,= % = Nm, =19(2.887)=54.85mm  Ans.

t

dy=57(2.887)=164.6 mm  Ans.

13-8 (a) Using Eq. (13-11) with k=1, ¢=20°, and m =2,

2k 2 )
szm(m+\/m +(1+2m)s1n ¢)

“h +2(2§](;)n2 0] {(2)+\/(2)2 +[1+2(2)]sin’ (20°)} =14.16 teeth

Round up for the minimum integer number of teeth.
Np =15 teeth Ans.

(b)  Repeating (a) with m =3, Np = 14.98 teeth. Rounding up, Np = 15 teeth. Ans.
(c)  Repeating (a) with m =4, Np = 15.44 teeth. Rounding up, Np = 16 teeth. Ans.
(d)  Repeating (a) with m =5, Np = 15.74 teeth. Rounding up, Np = 16 teeth. Ans.

Alternatively, a useful table can be generated to determine the largest gear that can mesh
with a specified pinion, and thus also the maximum gear ratio with a specified pinion.
The Max N column was generated using Eq. (13-12) with £ =1, ¢ = 20°, and rounding
up to the next integer.

Min Np Max Ng Max m = Max Ng/ Min Np
13 16 1.23
14 26 1.86
15 45 3.00
16 101 6.31
17 1309 77.00
18 unlimited unlimited

With this table, we can readily see that gear ratios up to 3 can be obtained with a
minimum Np of 15 teeth, and gear ratios up to 6.31 can be obtained with a minimum Np
of 16 teeth. This is consistent with the results previously obtained.
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13-9 Repeating the process shown in the solution to Prob. 13-8, except with ¢ =25°, we obtain
the following results.
(@  Form=2,Np=9.43 tecth. Rounding up, Np =10 teeth. Ans.
(b) For m =3, Np =9.92 teeth. Rounding up, Np =10 tecth. Ans.
(c) For m =4, Np = 10.20 tecth. Rounding up, Np = 11 teeth. Ans.
(d) Form =5, Np=10.38 teeth. Rounding up, Np = 11 teeth. Ans.

For convenient reference, we will also generate the table from Eq. (13-12) for ¢ = 25°.

Min Np Max Ng Max m = Max Ng/ Min Np
9 13 1.44
10 32 3.20
11 249 22.64
12 unlimited unlimited

13-10 (a) The smallest pinion tooth count that will run with itself is found from Eq. (13-10).

2k (1+«/1+3sin2¢)

"7 3sin’ ¢
2(1
z#(lﬂmssw 20)
3sin” 20°

>12.32 — 13teeth Ans.

(b)  The smallest pinion that will mesh with a gear ratio of m¢g = 2.5, from Eq. (13-11)
is

2k

N, Zm(m+\/mz +(1+2m)sin’ ¢

> = (2.25()1])Sin2 - {2.5 +)J2.5% +[1+2(2.5) ]sin’ 20°}

>14.64 —  15teeth Ans.
The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-12) is
2 2 2
< N,sin” ¢ - 42k

4k —2N,sin" ¢
15%sin? 20"~ 4(1)’

<
4(1)-2(15)sin® 20°

<4549 — 45teeth Ans.
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(c) The smallest pinion that will mesh with a rack, from Eq. (13-13),

2(1
NPZ‘2/2€ :2()
sin“¢ sin” 20

>17.097 — 18teeth Ans.

13-11 ¢, =20",y =30°
From Eq. (13-19), ¢, = tan™' (tan 20° /cos 30°) =22.80°
@) The smallest pinion tooth count that will run with itself, from Eq. (13-21) is

LA errery

~ 3sin’ g,

2 (l)cos 30°
>/ -

3sin? 22.80°
>848 — Oteeth Ans.

(1+\/1+3sin2 22.80")

(b)  The smallest pinion that will mesh with a gear ratio of m = 2.5, from Eq. (13-22)
is

2(l)cos30°
[1+2(2.5)]sin’ 22.80°
2995 — 10teeth Ans.

N, >

{2.5+\/2.52 +[1+2(2.5)]sin’ 22.80°}

The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-23) is

< N, sin® ¢, — 4k’ cos’ y

“ " 4kcosy —2N,sin’ 4,
__10%sin®22.80" — 4(1)cos” 30°
~ 4(1)cos?30" —2(20)sin’ 22.80°
<26.08 — 26tecth Ans.

(c) The smallest pinion that will mesh with a rack, from Eq. (13-24) is
N3 2keosy 2(1)cos30°
"7 sin’¢g,  sin®22.80°
>11.53 — 12 teeth Ans.
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13-12 From Eq. (13-19), ¢, = tan™ (M) ~ tan™" (taﬂ 20 ] —22.796°
cosy cos 30

Program Eq. (13-23) on a computer using a spreadsheet or code, and increment Np. The

first value of Np that can be doubled is Np = 10 teeth, where Ng <26.01 teeth. So Ng =

20 teeth will work. Higher tooth counts will work also, for example 11:22, 12:24, etc.
Use Np =10 teeth, Ng =20 teeth  Ans.

Note that the given diametral pitch (tooth size) is not relevant to the interference problem.

tan 20 j =27.236°

13-13 From Eq. (13-19), ¢, = tan"'| 2% | = an”
cos45

cosy

Program Eq. (13-23) on a computer using a spreadsheet or code, and increment Np. The
first value of Np that can be doubled is Np = 6 teeth, where Ng < 17.6 teeth. So Ng =12
teeth will work. Higher tooth counts will work also, for example 7:14, 8:16, etc.

Use Np = 6 teeth, Ng = 12 teeth  Ans.

13-14 The smallest pinion that will operate with a rack without interference is given by Eq. (13-
13).

2k
N, =——
sin” ¢

Setting k£ =1 for full depth teeth, Np =9 teeth, and solving for ¢,

2(1
$=sin"' /]2\]—1{ =sin"', /% =28.126° Ans.
P

13-15 | |

187 NN\ 2 /;V/ %t
| |
=25 ¢, =20°, m=3mm

(@ Eq.(13-3):  p,=7mm,=37 mm Ans.
Eq. (13-16): p,=p,/cosy =37/cos25 =10.40 mm  Ans.
Eq. (13-17):  p, = p,/tany =10.40/tan25 =22.30 mm  Ans.

(b) Eq.(13-3): m,=p,/7=1040/7=3310mm Ans.
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Eq (13-19) ¢ =tan" 0% _ 8020 o1 0g s,
cosy cos 25
(©)  Eq. (132  d,=m,N,=3310(18)=59.58 mm Ans.

Bq.(13-2):  dg=m,Ng=3310(32)=10592mm  Ans.

13-16 (a) Sketches of the figures are shown to
determine the axial forces by inspection.

The axial force of gear 2 on shaft a is in the
negative z-direction. The axial force of gear 3 on
shaft b is in the positive z-direction.  A4ns.

The axial force of gear 4 on shaft b is in the 2 E
positive z-direction. The axial force of gear 5 on
shaft c is in the negative z-direction.  Ans. ——

NN/

ST EY:
(€©)  dp,=12/(12c0s30")=1.155 in
dgy =48/(12c0s30°) = 4.619 in
1.155+4.619

(b) n =n 12 (EJUOO) =+77.78 rev/min ccw  Ans.

C, =2.8871n Ans.

d,, =16/(8c0s25")=2.207 in

dgs =36/(8cos257) =4.965 in
C, =3.586in Ans.

13-17 e=20(81720)_ 4
40\17 )L 60 ) 51
n, = %(600) =47.06 rev/min cw  Ans.
13-18 ezi(ﬁ](ﬁj(ijzi
10\38 )\ 48 )\36 ) 304
3

ny =——(1200)=11.84 rev/min cw  Ans.
304
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13-19 (@) =n = %-%(540) =162 rev/min cw about x. Ans.
(b)  d,=12/(8c0s23")=1.630 in
d, =40/(8c0s23")=5.432 in

%:3.531 in  Ans.

(c) d= 3272 =8 in at the large end of the teeth.  Ans.

13-20 Applying Eq. (13-30), e = (N2 / N3) (N4 / Ns) =45. For an exact ratio, we will choose to
factor the train value into integers, such that

N2/N3:9 (1)
N4/Ns=5 )

Assuming a constant diametral pitch in both stages, the geometry condition to satisfy the
in-line requirement of the compound reverted configuration is

N2+N3:N4+N5 (3)

With three equations and four unknowns, one free choice is available. It is necessary that
all of the unknowns be integers. We will use a normalized approach to find the minimum
free choice to guarantee integers; that is, set the smallest gear of the largest stage to unity,
thus N3=1. From (1), N, =9. From (3),

Ny, +N3=9+1=10=N4 + N;s
Substituting Ny = 5 N5 from (2) gives

10=5Ns+Ns=6Ns
Ns=10/6=5/3

To eliminate this fraction, we need to multiply the original free choice by a multiple of 3.
In addition, the smallest gear needs to have sufficient teeth to avoid interference. From
Eq. (13-11) with k=1, ¢=20°, and m = 9, the minimum number of teeth on the pinion to
avoid interference is 17. Therefore, the smallest multiple of 3 greater than 17 is 18.
Setting N3 = 18 and repeating the solution of equations (1), (2), and (3) yields

N, = 162 teeth

N3 = 18 teeth
N4 =150 teeth
N5 =30 teeth Ans.
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13-21

The solution to Prob. 13-20 applies up to the point of determining the minimum number
of teeth to avoid interference. From Eq. (13-11), with k=1, ¢=25° and m =9, the
minimum number of teeth on the pinion to avoid interference is 11. Therefore, the
smallest multiple of 3 greater than 11 is 12. Setting N3 = 12 and repeating the solution of
equations (1), (2), and (3) yields

N, =108 teeth

N3 =12 teeth
N4 =100 teeth
N5 =20 teeth Ans.

13-22

Applying Eq. (13-30), e = (N2 / N3) (N4 / Ns) = 30. For an exact ratio, we will choose to
factor the train value into integers, such that

N2 /N3 =6 (1)

N4/ Ns=5 (2)

Assuming a constant diametral pitch in both stages, the geometry condition to satisfy the
in-line requirement of the compound reverted configuration is

N2+N3:N4+N5 (3)

With three equations and four unknowns, one free choice is available. It is necessary that
all of the unknowns be integers. We will use a normalized approach to find the minimum
free choice to guarantee integers; that is, set the smallest gear of the largest stage to unity,
thus N3=1. From (1), N, = 6. From (3),

Ny +N3=6+1=T7=N4+ N;
Substituting Ny = 5 N5 from (2) gives

7:5N5+N5:6N5
N5=7/6

To eliminate this fraction, we need to multiply the original free choice by a multiple of 6.
In addition, the smallest gear needs to have sufficient teeth to avoid interference. From
Eq. (13-11) with k=1, ¢=20°, and m = 6, the minimum number of teeth on the pinion to
avoid interference is 16. Therefore, the smallest multiple of 3 greater than 16 is 18.
Setting N3 = 18 and repeating the solution of equations (1), (2), and (3) yields

N, =108 teeth

N3 = 18 teeth
N4 =105 teeth
N5 =21 teeth Ans.
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13-23 Applying Eq. (13-30), e = (N2 / N3) (N4 / N5) =45. For an approximate ratio, we will
choose to factor the train value into two equal stages, such that

N,/N,=N, /N, =+/45

If we choose identical pinions such that interference is avoided, both stages will be
identical and the in-line geometry condition will automatically be satisfied. From Eq.

(13-11) with k=1, ¢=20°, and m = J45 , the minimum number of teeth on the pinions
to avoid interference is 17. Setting N3 = N5 =17, we get

N, = N, =17/45 =114.04 teeth

Rounding to the nearest integer, we obtain

N, = N4 =114 teeth
N3 = N5 =17 teeth Ans.

Checking, the overall train value is e = (114 /17) (114 /17) = 44.97.

13-24 H =25 hp, w; = 2500 rev/min
Let w, = 300 rev/min for minimal gear ratio to minimize gear size.

Let

@, 300 _ 1
o, 2500 8.333
o, 1 _N,N,
@, 8333 N, N,
N, N, [ 1 1
N, N, V8333 2887

w
w

From Eq. (13-11) with £ =1, ¢=20°, and m = 2.887, the minimum number of teeth on
the pinions to avoid interference is 15.

Let

N>, =N4=15 teeth
N5 = Ns = 2.887(15) = 4331 teeth

Try N3 = N5 =43 teeth.

, = (Ej (Ej(zsoo) =304.2
43 )\ 43

Too big. Try N3 = Ns = 44.
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w, = 15315 (2500) =290.55 rev/min
44 )\ 44

N> = N4 =15 teeth, N3 = N5 =44 teeth  Ans.

13-25 (a) The planet gears act as keys and the wheel speeds are the same as that of the ring

gear. Thus,
n,=n, =900(16/48) =300 rev/min  Ans.
(b) n.=ns=0, n,=n, e=-1
ny —300
~0-300
300 =n, —300

ny =600 rev/min  Ans.

(c)  The wheel spins freely on icy surfaces, leaving no traction for the other wheel.
The car is stalled.  Ans.

13-26 (a) The motive power is divided equally among four wheels instead of two.

(b) Locking the center differential causes 50 percent of the power to be applied to the
rear wheels and 50 percent to the front wheels. If one of the rear wheels rests on a
slippery surface such as ice, the other rear wheel has no traction. But the front
wheels still provide traction, and so you have two-wheel drive. However, if the
rear differential is locked, you have 3-wheel drive because the rear-wheel power
is now distributed 50-50.

13-27 Let gear 2 be first, then ny = n, = 0. Let gear 6 be last, then n;, = ng =—12 rev/min.

_20(&)_&_ n,—n,

e=— = =
30\34) 51 n.-n,
16
(O—nA)E:—IZ—nA
-12 ) D
n,= 35751 =—17.49 rev/min (negative indicates cw)  Ans.

13-28 Let gear 2 be first, then np = n, = 0 rev/min. Let gear 6 be last, then n; = ng = 85
rev/min.
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- B(16)_le_nn,
30\34) 51 n.-n,

(O—nA)15—61=(85—nA)

16
-n,|— |+n,=85
(5]
1@(1—2—?)285

n,= LA 123.9 rev/min
16
-2
51
The positive sign indicates the same direction as ng. .. n, =123.9 rev/min ccw  Ans.

13-29 The geometry conditionis d;/2=d,/2+d,+d,. Since all the gears are meshed, they
will all have the same diametral pitch. Applyingd=N/P,

N,/(2P)=N,/(2P)+N,/P+N, /P
Ny =N, +2N, +2N, =12+2(16)+2(12) = 68 teeth  Ans.

Let gear 2 be first, np = n, = 320 rev/min. Let gear 5 be last, n;, = ns = 0 rev/min.
e_E(EJ(Ej_i_u
16\12 )\ 68) 17 n,-n,
17

320—n, :?(O—nA)

n,= —1(320) =—68.57 rev/min
14

The negative sign indicates opposite of n,.  ..n, =68.57 rev/min cw  Ans.

13-30 Let nrg=njp, then np=ny= 0.

e=-20( 1010300 _ g5p17 -
1630 ) 46 ny—n,

0—n,
10— n,

=-0.5217
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—0.5217 (10— ng) = —n;
~5.217+0.5217n; +ns =0
ns(1+0.5217)=5.217

5217

ng =
1.5217
ny =n, =3.428 turns in same direction

13-31 (a)

So

So

(b)

Note: The solution is independent of the pressure angle.

w=2xn/60
H=Tw=2zTn/60 (T inN-m, H in W)

60H (10°
- 60H (10°)
27n
=9550 H/n (H in kW, n in rev/min)
9550(75)
L =———>=398 N-m
1800
5(17
=02 307 5 om
2 2
Y 93 |
T~ 398 T,
F,=-%="—"=936kN "~
¥ 425 v \
f’r( EAN
! O \t
- " | f .b II
N Fo| 1813 ' |
\ S
| Y f
| \ /
// T‘T- \\‘“ﬂ-q_h -”’/-I:_:.}
7 ¥BNem o it el
[ — |

F,, =—F,; =2(9.36) =18.73 kN in the positive x-direction.  Ans.

L LS /-~ i
4 2 2 Il.r \ﬁl
T, =936(127.5)=1193 N-m ccw [ L

T, =1193N-mcw  Ans.
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13-32

a=N_N
P 6
d,=41in, d,=41n, d;=61n, d, =24 in
_2L 300 6
36 144

n—-n, 0-n, =1

n,—n, 1000—n, 6

n, =-200 rev/min

Noting that power equals torque times angular velocity, the input torque is

H 25 hp

n, 1000 rev/min

1 rev

550 Ibf - ft/s (6%]( j(mn]:l% Ibf -in
hp min )\ 27 rad )\ ft

For 100 percent gear efficiency, the output power equals the input power, so

2

H _ 25hp ‘ 550 Ibf - ft/s (60sj( 1 rev j(l2lnj=7878 Ibf-in
n, 200 rev/min hp min /\ 2 rad ft

Next, we’ll confirm the output torque as we work through the force analysis and
complete the free body diagrams.

arm

Gear 2

Foa
= T, = 1576 Ibfein
Filz - " 2
=170 _ 788 1bf {; \\(
F}, =788tan 20" = 287 Ibf A [
N |
.| W
Gear 4 w| al %\4\ W
/ Y
F,=2W'= 2(788) =1576 1bf L l'
Fr i | : |I N Fr
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2W' = 1576 Ibf

— s

Gear 5 | //’{ K\\\.

A\

| \
f ! |
L i

Fr CFT =287 Ibf
)
W \ /q W= 788 Ibf

T, 1576 Ibf
Arm Im 1 |
|'{-;-:-H' r’_:_‘* r’_:_“
1. = 1576(9)—1576(4) =7880 Ibf-in  Ans. KT’J \T) k“"l

le— 4" —f=—5"—={ 1576 Ibf

13-33 Given: m = 12 mm, np = 1800 rev/min cw,
N, = 18T, N3 =32T, Ny = 18T, Ns = 48T

Pitch Diameters: d, =18(12) =216 mm, d3 = 32(12) = 384 mm,
ds=18(12) =216 mm, ds = 48(12) = 576 mm

W= 2682 kN
Gear 2 1
From Eq. (13-36), el [ wr=73688N
60000(150 , N
w = S0000H _ (150) _s6gun /
zdn 7[(216)(1800) I 14 '=
I,=W, [ﬁj - 7.368(£j =795.7N-m "2
2 2 \_ _f/%'ﬂ =795.7Nem
W' =7.368tan20° =2.682 kN
Y
_p wenaoe
Gears 3 and 4 // -3 ™. !
|
. \ i
384 b v _
W (ﬁj _ 7263384 [ A N
2 2 |I [ i .
W' =13.10 kN \ I W= 4768KN
W' =13.10tan 20° = 4.768 kN A /-”
Ans. N ’
W' =7.368 kN u
L W = 2,682 kN
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13-34 Given: P =5 teeth/in, N, = 187, N; =45T,
¢, =20°, H=232hp, n, = 1800 rev/min

Gear 2
63 025(32) )
7 =————2=1120 1bf -in

" 1800 ‘
18 /

dp =~ =3.600 in /

d, = ? =9.000 in

. :LZOZ: 622 Ibf

W), = 622 tan 20° = 226 Ibf

F' =W, =622 1bf, F/,
1/2

F,, =(622"+226%) " =662 Ibf

W), =226 Ibf

Each bearing on shaft a has the same radial load of R4 = Rz = 662/2 = 331 Ibf.

Geal” 3 P i \-\rou = “_rrﬂlr.s
= 2799 Ibf=in
/ Ff, R\

Wi =W, =622 Ibf Y.
r r \ b
W), =W}, =226 Ibf \
F,=F, =662 Ibf “\
R.=R, =662/2=3311bf e W
Wwr

Each bearing on shaft b has the same radial load which is equal to the radial load of

bearings A and B. Thus, all four bearings have the same radial load of 331 Ibf.

Ans.

13-35 Given: P =4 teeth/in, ¢, =20"°, Np=207, n,=900rev/min
/L R
63 025(30)(2) )
T =———"22=4202 Ibf-in

in

900
Wi =T, /(d,/2)=4202/(5/2)=1681 Ibf
W/, =1681 tan20° = 612 Ibf
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_%
- s 3 ",I
= N
1
Load on 2 ¥
dlllje tvaDg-l | Equivalent .
~‘ \ 4202 Ibf«in
+ "f = elalt (2 1 \ 612 1bf
NP T N ]
= 1681 1bf 1681 Ibf

The motor mount resists the equivalent forces and torque.
The radial force due to torque is

Fr=22 150 1o

14(2)

Forces reverse with rotational sense as
torque reverses.

The compressive loads at 4 and D are absorbed by the base plate, not the bolts. For W,

32
the tensions in C and D are

M, =0  1681(4.875+15.25)-2F(1525)=0  F=1109 Ibf

B

A T
et 4.875 11681 Ibf
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If W, reverses, 15.25 in changes to 13.25 in, 4.815 in changes to 2.875 in, and the forces
change direction. For 4 and B,

1681(2.875)-2F (13.25)=0 = F =182.4Ibf
For W,

320

153 Ibf

(=01

% = 153 Ibf

153 Ibf

153 1bf

M= 612(4.875+11.25/2) = 6426 Ibf -in

a=(14/2) +(11.25/2) =8.98 in
6426
4(8.98)

F, = =179 Ibf

At C and D, the shear forces are:

Fy = \/[153+179(5.625/8.98)]2 +[179(7/8.98)T

At A and B, the shear forces are:

Fy, = \/[153 ~179(5.625/8.98) ] +[179(7/8.98) ]
— 145 Ibf

The shear forces are independent of the rotational sense.
The bolt tensions and the shear forces for cw rotation are,

Tension (Ibf) Shear (Ibf)
0 145
0 145

1109 300
1109 300

oW
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For ccw rotation,

Tension (1bf) Shear (Ibf)
182 145
182 145

0 300
0 300

ONnwE

13-36 (@) N,=Njs=15teeth, N;=Ns5=44teeth

d
d,=d, :§:2.5 in  Ans.
6

4—64 =7.331in Ans.

X
Il
X
I

_mdyn, _ 7(2:5)(2500) 1636 ft/min  Ans.

b  V=1,=V,

12 12
2.5)[(2500)(15/ 44
Vo=V,=Vs= ”f“zn“ = [ > ) ) =558 ft/min  Ans.

(©) Input gears:
H 33000(25)

W,.=33000—=————"=-=50431bf =504 Ibf  Ans.
|4 1636

W,=W, tang =504.3 tan20° =184 Ibf  Ans.

W, = W, = 504.3 =537 Ibf  Ans.

cos¢g cos20°

Output gears:
H 33000(25)

W, =33000—=————-==1478 Ibf  Ans.
v 558

o

W, =W, tang=1478tan 20" =538 Ibf  Ans.
w, 1478

to

© c0s20°  cos20

~-=1573 Ibf  Ans.

o

d T W(%j=so4.3(%5j=630 Ibf-in  Ans.

i ti
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e T = T(fjj _630(;‘9 =5420 Ibf-in  Ans.

13-37 H =35 hp, n, =1200 rev/min, ¢=20

N, =N, =16 teeth, N, =N, =48 teeth, P =10 teeth/in
N 16 .
(@) Byediae =75 =1y = Fz 13 —(1200) = 400 rev/min Ans.

no=£ﬂ n, 16(16j(1200) 133.3 rev/min Ans.
N, N, 4848

b) P== = d="

d
d,=d, :1—21.6 in  Ans.

d,=d, = ?5—481n Ans.

v =y, =y, = 7dom _F(LO)1200) ) 2 piin s
12 12
1.6)(4
V,=V,=V;= 72-61[42”4 = 7[( 61)2( OO) =167.6 ft/min  Ans.

33000(35
© W, _330005:# 2298 IbfIbf  Ans.
V.o 5027

1

W,=W,tang =2298tan20° =836.4 Ibf  Ans.

W, = W _ 22980 =24451bf  Ans.

cosg cos20

H 33000(35)
W, =33000—="—"""=6891Ibf Ans.
v, 1676

W, =W, tangd=6891tan 20° = 2508 Ibf  Ans.
4 6891

= __ — =7333 1bf Ans.
cos20° cos20°

i ti

(d) T=W(‘;j 2298(126j 1838 Ibf-in  Ans.

2 2
(e) z:z(%) =1838(%) =16540 Ibf-in  Ans.
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13-38 (a) For &=%, from Eq. (13-11), withm=2, k=1, ¢ =20°
1)

i

2(1) { 2 < 2 o}
N, = 24,27+ 1+2(2 20" =14.16
" [1+2(2) Jsin® 20 +\/ +[1+2(2)Jsin
So N, =15 Ans.
(b) P=E=E=1.875teeth/in Ans.
d 8

(c) To transmit the same power with no change in pitch diameters, the speed and
transmitted force must remain the same.

For 4, with ¢ =20°,
Wi =F4c0s20° =300 cos20° = 281.9 1bf
For 4, with ¢ =25°, same transmitted load,
Fy=W4/c0s25° =281.9/c0s25° =311.0 Ibf  Ans.

Summing the torque about the shaft axis,

d d
’A(ZA): ’B(zBJ
d,

tA(dB/z)_ tA(dB

= M _TO8TS s 6 ibt ans,
cos25°  cos25

J = (281.9)(%) =704.75 Ibf

13-39 (a) For &:% from Eq. (13-11), withm=5,k=1, ¢ =20"

i

2(1) { ; — }
= 545 +|1+2(5 257, =10.4
" [1+2(5)]sin® 25° +‘/ #[1+2(5) Jsin
So N, =11 Ans.
(b) m:i:@:27.3 mm/tooth  Ans.
N 11

(d) To transmit the same power with no change in pitch diameters, the speed and
transmitted force must remain the same.
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For 4, with ¢ =20°,
W =F4c0820°=11 c0s20°=10.33 kN

For 4, with ¢ =25°, same transmitted load,

Fy=W4/c0s25°=10.33/cos 25°=11.40 kN  Ans.
Summing the torque about the shaft axis,

d d
VV[A [TAJ = VVtB (TBJ

Wy, =W, (d,/2) W, (d—A] = (11.40)(%] =22.80 kN

B

W,  22.80

F,= - = -=25.16 kN Ans.
cos25°  cos25

13-40 (a) Using Eq. (13-11) withk=1, ¢=20° and m =2,

2k 2 )
szm(m+\/m +(1+2m)s1n ¢)

_ 2(1) ){(2)+\/(2)2 +[1+2(2)]sin’ (20")} ~14.16 teeth

[1+2(2)]sin* (20°

Round up for the minimum integer number of teeth.
Npg =15 teeth, Nc = 30 teeth Ans.

(b) m= d =%=8.33 mm/tooth  Ans.

N
© Tzﬂ 2 kW (IOOOWJ( rev J(605j:100N'm
w

- 191 rev/min kW 27 rad J\ min

(d) From Eq. (13-36),

W = 60000/ = 60 000(2) =1.60 kN =1600 N Ans.
dn 7(125)(191)

Or, we could have obtained W, directly from the torque and radius,
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T 100

d/2 0.125/2

W =W tang=1600tan20° =583 N Ans.
W, 1600

13

W = =
cosgd cos?20°

=1700 N  Ans.

13-41 (a) Using Eq. (13-11) with k=1, ¢=20° and m =2,

2k 2 )
NPZW(WI'F\/WI +(1+2m)s1n ¢)

"m0 2(2?](;)112 ) {(2)+\/(2)2 +[1+2(2)]sin® (20°)} =14.16 teeth

Round up for the minimum integer number of teeth.
Nc¢ =15 teeth, Nr = 30 teeth Ans.

Pzﬁzﬁzf&teeth/in Ans.
d 10

© T—ﬁ— 1 hp 550 Ibf - ft/s (12in]( rev j(60 s]
@ 70 rev/min hp ft 27 rad J\ min

T =900 Ibf -in Ans.

(b)

(d)  From Egs. (13-34) and (13-35),

dn _7(10)(70)
12

V= =183.3 ft/min

H 33000(1)
W,=33000—="——" =180 Ibf  Ans.
V1833

W =W, tang =180tan 20" = 65.5 Ibf  Ans.
w, 180

W=—-="—= =192 Ibf  Ans.
cosgd cos?20°
13-42 (a) Eq.(13-14): y=tan™ Ne |- tan ap =tan”' (ﬂjzl&f Ans.
N, d. 3.88
2)(1.30)(600
(b)  Bq (13-34) ¥ =ZN_ 7(2)(130)(600) _ 406 4 fymin Ans.

12 12
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(c) Eq. (13-35): W, =33 000E =33 000 10, 808 Ibf Ans.
Vv 408.4
Eq. (13-38): W =W, tangcosy =808tan 20" cos18.5" =279 Ibf Ans.

Eq. (13-38): W, =W, tan¢siny =808tan 20°sin18.5" =93.3 Ibf Ans.

The tangential and axial forces agree with Prob. 3-74, but the radial force given in Prob.
3-74 is shown here to be incorrect.  Ans.

13-43 T, =63025H /n=63025(2.5)/240 = 656.5 Ibf -in

W'=T/r=656.5/2=3283 Ibf

. ¥ A
y=tan"' (2 / 4) =26.565" . ,}\\ | -

s W= /
[ =tan” (4/2) =63.435° (\“ﬂl\ | a
a=2+(1.5c0526.565")/2=2.67 in W -6 o |
W’ =328.3tan 20" c0s26.565" =106.9 Ibf FEW ’fjl
Fx S

W* =328.3tan 20" sin 26.565° = 53.4 Ibf ,,J| 7 ﬁ
W =106.9i — 53.4j + 328.3k Ibf Fi -

RAG:—2i+5.17j, RAB:2-5j
SM, =R ,, xW +R , xF, +T =0

Solving gives | i
R, xF, =2.5F/i—2.5FK
R, xW =1697i +656.6] —445.9k

Mat to scale

So
(16971 +656.6] — 445.9k )+ (2.5F,i —2.5F;k +1]) =0
F; =-1697/2.5=-678.8 Ibf
T =—656.6 Ibf -in
Ff=-4459/2.5=-178.4 Ibf
So

Fy=|(-678.8) +(—178.4)2T/2 =702 1bf  Ans.
i =—(Fp+W)

—  (~178.8i — 678.8K + 106.9i — 53.4j + 328.3K)
= 71.5i + 53.4j +350.5k
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1/

F ,(radial) :(71.52 +350.52) " =358 Ibf  Ans.
F (thrust) =53.4 Ibf  Ans.

13-44 d,=18/10=1.81n, d,=30/10=3.01n

y =tan”' [Mj =tan"' (%j =30.96°
d, /2 1.5

I'=180°—y =59.04°
DE =%+0.5 €0s59.04° =0.8197 in

W' =25 Ibf

W' =25tan 20" c0s59.04° = 4.681 Ibf
W =25tan 20" sin 59.04° = 7.803 Ibf
W =—-4.681i — 7.803] +25k

Rpc = 0.8197) + 1.25i

Rpc =—0.625j

M, =R . xW +R , . xF_+T =0

R, xW =20.49 —31.25] —5.917K |
R, xF, =—0.625F i +0.625F’K i

Mot to scale

(20.49i —31.25j —5.917k)+(—0.625FCZi +0.625F’k )+TJ =0
T=31251bf-in Ans.
F.=9.471+32.8k Ibf Ans.

F,=(947°+32.8%) " =34.11bf  Ans.

SF=0  F,=-4.79i+7.80j-57.% Ibf

F, (radial) = | (-4.79)’ +(—57.8)2T/2 =58.01bf Ans.
F,(thrust) = 7* =7.80 Ibf  Ans.

Chapter 13, Page 26/35



13-45

P =P cosy =4cos30" =3.464 teeth/in

¢, = tan™' LU ﬂ =22.80°
cosy cos30
d, :i:il% in
3.464

The forces on the shafts will be equal and opposite of the forces transmitted to the
gears through the meshing teeth.

Pinion (Gear 2)
W' =W'tang, =800tan22.80° =336 Ibf
W =W"tany =800tan30° = 462 Ibf
W =-3361 —462j +80(k 1bf Ans.

W =| (-336)" +(-462) + SOOZT/Z ~983 Ibf  Ans.

Gear 3
W =336 +462] —80(k Ibf Ans.
W =983 Ibf Ans.
d, =2 _9238in
3.464

T, =W'r =800(9.238) = 7390 Ibf -in
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13-46 From Prob. 13-45 solution,

500 /
1y & .,
;/ L*{ 736
\ ) % \ , /-
Y 462

s

200 .

Notice that the idler shaft reaction contains a couple tending to turn the shaft end-over-
end. Also the idler teeth are bent both ways. Idlers are more severely loaded than other

gears, b

elying their name. Thus, be cautious.

13-47 Gear 3:

Gear 4:

P =P cosy =7cos30" =6.062 teeth/in

tan 20°

tang = =0.4203, §=22.8"
CcOS
d,=—2 _8908in
6.062
W' =500 Ibf

W =500tan30° = 288.7 Ibf
W™ =500tan22.8" =210.2 Ibf

W, =210.2i +288.7] =50k 1bf Ans.

d,= 14 5309in
6.062

w'= SOO% =1929 Ibf
2.309
W =1929tan30" =1114 Ibf
W™ =1929tan22.8" =811 Ibf
W, =-811i +1114j =192k 1bf Ans.

{ < W
x“*x! /u,/ T W

- -, W
|
|
|
~._| -
T
LN | -
// |
. X
w"/ﬁ‘:‘“ﬁr' ~ g
/>i<“xh
-~

13-48

P =6c0s30" =5.196 teeth/in

4= _3083in D
5.196

$ =228

s

(%]

]

75NN SSNSNAN

. Ty
Koo
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d,=—% _3079in
5.196

63025(25)
L=—r
1720
=L 210 sos g
r 3.079/2
W =595tan30° =344 Ibf

W' =595tan22.8" = 250 Ibf

=916 Ibf -in

W =344i +250j +59% Ibf
R,-=6i, R,;=31-4.04j
EM =R e xFe +R o xW +T =0 (1)
R, xW =-2404i —1785] + 2140k
R, xF. =—6F ] +6F:k
Substituting and solving Eq. (1) gives

T =2404i Ibf -in
F; =-297.5 Ibf
F2 =-365.7 Ibf

XF=F,+F.+W=0
Substituting and solving gives

F} =—-344 Ibf
F} =106.7 Ibf
F; =-297.5 Ibf

F.=-344i —356.7j —297.% Ibf  Ans.
F, =106.7j—297.5 Ibf  Ans.
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13-49

b

Since the transverse pressure angle is specified, we will assume the given module is also
in terms of the transverse orientation.

d,=mN, =4(16) =64 mm
d; =mN; =4(36) =144 mm
d,=mN, =4(28)=112 mm

T:ﬂz 6 kW 1000 W rev 60 s 3581 N-m
o 1600 rev/min kW 27 rad /\ min

T _ 3581 _lox

Td,/2 006472
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W"=W'"tang, =1119tan20° =407.3 N

W*=W"tany =1119tan15° =299.8 N
F, =-11191—407.3j —299.& N Ans.

Fy, =(1119-407.3)i —(1119-407.3)]
=711.71-711.7] N Ans.
F,. =407.3i +1119j +299.%k N Ans.

13-50

N 14 36

d, = = =2.021in, d,= =5.196 in
P cosy  8cos30° 8cos30°

d, = 15 -=3.1061n, d = 45 -=9.317 in
5cosls Scosls

For gears 2 and 3: ¢, =tan™' (tan ¢, / cosy ) = tan™ (tan 20° / cos 30°) =22.8°
For gears 4 and 5: ¢, = tan™' (tan 20° /coslS”) =20.6
Fl =T, /r,=1200/(2.021/2) =1188 Ibf

Fi, =1 188w= 1987 Ibf
3.106

F), = F), tan ¢, =1188tan 22.8" =499 Ibf
F,, =1986tan 20.6" = 746 1bf

F), =F,, tany =1188tan30° = 686 1bf
F,, =1986tan15° =532 Ibf

Next, designate the points of action on gears 4 and 3, respectively, as points G and H, as
shown. Position vectors are
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R, =1.553j -3k
R, =-2.598] — 6.5k
R, = 8.5k

Force vectors are
F,, =—1986i —748) + 532k

F,; =—1188i +500j — 686k
Fo=Fli+F]j
F,=Fji+Fjj+Fk
Now, a summation of moments about bearing C gives
M. =R xF,, +R, xF,; +R , xF, =0
The terms for this equation are found to be

R xF, =—1412i +5961j +3086k
R, x F,y = 5026i +7722j - 3086k
R, xF, =8.5Fi —8.5F]

When these terms are placed back into the moment equation, the k terms, representing
the shaft torque, cancel. The i and j terms give

Fy = —% =-4251bf Ans.

F :%:1610 Ibf  Ans.

D

Next, we sum the forces to zero.
2F=F.+F,+F;+F,=0
Substituting, gives

(Fei+F2j)+(~1987i —746] + 532Kk )+ (—1188i +499] — 686k )
+(1610i —425) + F;k ) =0

Solving gives

F7=1987+1188-1610=1565 Ibf  Ans.
F =746—-499+425=672 Ibf  Ans.
FJ =-532+686=154 Ibf Ans.
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13-51

_ zdym, _ 7(0.100)(600)

v, = =7 m/s Y]
60 60 ‘
L N '
Vi T N ‘
. |
L=pN, =25(1)=25mm .. |
~.
A=tan”' L K,ff;//
rdy, 100" | Tt
125 _ 4550 lead ang h 1 -
= tan~ =4.550" lead angle 2 -
7(100) % cj< |
_ Wy, 2 ~. w, "
cos@, sinA+ fcos A Worm shaft diagram
vo=tv o T _3152mis

" cosd  cos4.550°

In ft/min: Vg =3.28(3.152) = 10.33 ft/s = 620 ft/min
Use f=0.043 from curve A of Fig. 13-42. Then, from the first of Eq. (13-43)

637
W =
cos14.5° (sin 4.55° ) +0.043¢c0s4.55°

WY =W sing, =5323sin14.5" =1333 N
W = 5323[cos14.5° (cos4.55")~0.043sin 4.55"} ~5119 N

=5323 N

The force acting against the worm is

W =-637i +1333] +5119k N
Thus, A4 is the thrust bearing.  Auns.

R, =-0.05]—-0.10k, R, =-0.20k
SM, =R ,,xW +R ,xF,+T =0
R, xW =—122.6i +63.7j —31.85k
R, xF, =02F}i—0.2F]]

Substituting and solving gives

T=3185N-m Ans.
F}=3185N, FJ=613N

So F, =318.51+613] N  Ans.
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2 2 V2 )

Or F,=|(613)' +(318.5)" | =691 N radial
2F=F,+W+R, =0
F,=—(W+F,)=—(-637i +1333] +5119K +318.5i +613j)

= 318.5~1946j ~511k  Ans.

Radial F; =318.51 ~1946] N
1/2
F; = (318:5)" +(-1946)" | =1972N
Thrust F;/=-5119N

13-52 From Prob. 13-51,

W, =637i —1333]-5119k N ¥ e
e
p.=p, 1 -
48(25 W e
4 4 Mot to scale
Bearing D takes the thrust load.
rc 191
SM, =R ,, xW, +R , xF.+T =0 r /,f""#
R,, =—0.0725i +0.191j N |
R, =—0.1075i - <
- .
The position vectors are in meters. 2 |

R, x W, =—977.7i —371.1j —25.02K
R, xF.=0.1075F?]—0.1075F.K

Putting it together and solving,

T=9777N-m Ans.
F.=-233j+3450k N, F.=3460N Ans.

SF=F.+W,.+F,=0
FD:—(FC+WG):—637i+1566j +166Kk N  Ans.

Radial F, =1566]+1669k N

Or  F;=(1566"+1669°) " =2289 N (total radial)
F, =—637i N (thrust)
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13-53

¥ |

. )
| -
I | “

e N

)
\\'\.._ _H__/z
v, = % —235.7 ft/min
) 33000(0.75)
wr=w, =2 1050 [bf
235.7

P =p, = % =0.3927 in

L=03927(2)=0.7854 in
L, 0.7854

=9.46°
7(1.5)

A =tan

105.0

|
Y7 17777 B
— R

L
L
1
k"‘-\.\_“
\H\H"-\.
75" .
0.73 ‘“‘x_i.
ﬁ,/
-

W =
€0s20°sin9.46° +0.05c0s9.46°

W' =5153sin20" =176.2 1bf

=515.3 Ibf

W = 515.3[cos 20" (c0s9.46" )~ 0.05sin 9.46"] — 473.4 Ibf

So W =105 +176] +47% Ibf  Ans.
T=105(0.75)=78.8 Ibf -in  Ans.

13-54 Computer programs will vary.
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Chapter 14

N 22

14-1 d=—=—=3.667in
P 6

Table 14-2: Y =0.331
zdn  7(3.667)(1200)

Eq. (13-34): V = — 1152 ft/min
12 12
Eq. (14-4b); K, = 120001152 o
1200
H 15

Eq. (13-35): W' =33000— = 33000—— = 429.7 Ibf
i 1152

o _ KW'P _ 1.96(429.7)(6)

Eq. (14-7): = 7633 psi = 7.63 kpsi Ans
a-(147) FY 2(0.331) P P
14-2 da=N_18_ ¢
P10
Table 14-2: Y =0.309
Eq. (13-34): v = 790 _ 7U3600) _ »er 5 fmin
12 12
Eq. (14-4b); K, = 1200+ 2827 o5
1200

Eq. (13-35): W' =233 000i =33 OOOL = 2335 Ibf
\% 282.7

KW'P 1.236(233.5)(10)

Eq. (14-7):
0147 o=y 1.00.309)

= 9340 psi = 9.34 kpsi  Ans

14-3 d = mN = 1.25(18) = 22.5 mm
Table 14-2:  Y=10.309

-3
y - 7dn _ z(22.5)(107)(1800) _ 5 5y
60 60
Eq (14-6b): K, = % ~1.348

60 000H _ 60000(0.5)
zdn  7(22.5)(1800)
o _ KW' 1.348(235.8)
FmY  12(1.25)(0.309)

Eq. (13-36): W' = = 0.2358 kN = 2358 N

Eq. (14-8): = 68.6 MPa Ans
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14-4 d = mN = 8§(16) = 128 mm
Table 14-2:  Y=0.296
zdn  7(128)(10°)(150)

V = — 1.0053 m/s
60 60
Eq. (14-6b): K, = % - 1.165
Eq. (13-36):  w' = S0000H _ 600006) _ 5 o0q i _ s968 N
zdn  z(128)(150)
t
Eq (14-8): o = oV _ 1165(968) _ 55 cyip  Ans
FmY  90(8)(0.296)
14-5 d=mN = 1(16) = 16 mm

Table 14-2: Y =0.296

V - zdn _ z(16)(10°)(400) _ 0335 /s
60 60 .
Eq. (14-6b): K, = % 1055
zdn 7(16)(400)
t
_ KW' _ 1.055(447.6) _ |

omY  150(1)(0.296)

=0.4476 kN = 447.6 N

Eq. (14-8): F

From Table 13-2, use F = 11 mm or 12 mm, depending on availability. Ans.

14-6 d = MmN = 2(20) = 40 mm
Table 14-2:  Y=0.322

-3
v = Zdn _ 2(40)107)(200) _ 419 s
60 60
Eq (14-6b): K. = w - 1.069
60 000H _ 60000(0.5)

zzdn 7(40)(200)

1.194 kN = 1194 N

Eq. (13-36): W' =

KW' 1.069(1194)

B (%8 F =N = 752000322)

From Table 13-2, use F =28 mm. AnSs.
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14-7 dzﬂzﬁ:4.8in
P 5

Table 14-2: Y =10.337
zdn  7(4.8)(50)

Eq. (13-34): V = — 62.83 ft/min
12 12
Eq. (14-4b); K, — 1200+ 06283 o5,
1200
H 6

Eq. (13-35): W' =33000— = 33000———— = 3151 Ibf
v 62.83

t
_ KW'P _ 1L052615DES) _, ¢

Fa- (47 == 20(10°)(0.337)

UseF=2.5in AnSs.

14-8 d:E:E:4.0in
P 4
Table 14-2: Y =0.296

zzdn _ 7(4.0)(400)

Eq. (13-34): V = — 418.9 ft/min
12 12
Eq. (14-4b); K, =200+ 4189 59
1200
H 20

Eq. (13-35): W' =33000— = 33000——— = 1575.6 Ibf
Y, 418.9

CKW'P 1.349(1575.6)(4) _

2.39 in
oY 12(10%)(0.296)

Eq. (14-7): F

UseF=2.5in Ans.

14-9 Try P =8 which gives d=18/8 =2.25 in and Y= 0.309.

zdn _ 7(2.25)(600)

Eq. (13-34): V= — 353.4 fi/min
12 12
Eq. (14-4b): K, = 120043334 545
1200
H 25

Eq. (13-35): W' =33000— = 33000—— = 233.4 Ibf
\% 353.4

t
Eq (14-7: F =WV P_ 1'295(3233 AD®) _ 0783 in
oY 10(10°)(0.309)

Using coarse integer pitches from Table 13-2, the following table is formed.
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P d V Ko W F

2 9.000 1413.717 2.178 58.356 0.082
3 6.000 942.478 1.785 87.535 0.152
4 4500 706.858 1.589 116.713 0.240
6 3.000 471.239 1.393 175.069 0.473
8 2250 353.429 1.295 233.426 0.782
10 1.800 282.743 1.236 291.782 1.167
12 1.500 235619 1.196 350.139 1.627
16 1.125 176.715 1.147 466.852 2.773

Other considerations may dictate the selection. Good candidates are P =8
(F=7/8 in) and P =10 (F = 1.25 in).

ANS.

14-10 Try m=2 mm which gives d=2(18) =36 mm and Y = 0.309.

v _ 7dn _ 7(36)(107)(900)
60 60
Eq. (14-6b); K, = O H 1090y g
Eq. (13-36):  w' = 20000H _ 600000.5)
zdn 7(36)(900)
Eq. (14-8): _ 1278884 4 m
75(2)(0.309)

=1.696 m/s

Using the preferred module sizes from Table 13-2:

= 0.884 kN = 884 N

m d Vv K, w F

1.00 18.0 0.848 1.139 1768.388 86.917
1.25 225 1.060 1.174 1414711 57.324
1.50 27.0 1272 1.209 1178.926 40.987
2.00 36.0 1.696 1.278 884.194 24.382
3.00 540 2545 1.417 589.463 12.015
400 72.0 3.393 1.556 442.097 7.422
500 90.0 4241 1.695 353.678 5.174
6.00 108.0 5.089 1.834 294731 3.888
8.00 144.0 6.786 2.112 221.049 2.519
10.00 180.0 8.482 2.391 176.839 1.824
12.00 216.0 10.179 2.669 147366 1.414
16.00 288.0 13.572 3.225 110.524 0.961
20.00 360.0 16.965 3.781  88.419 0.721
25.00 450.0 21.206 4.476  70.736  0.547
32.00 576.0 27.143 5450 55262 0.406
40.00 720.0 33.929 6.562 44210 0313
50.00 900.0 42412 7953 35368 0.243
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1/2
ou = 2100 1.204202.6)( 1 1 j  _10000%)
Fcos20° (0228  0.684

2
£ _[_2100 [1.204(202.6)}( P j20'669in
100(10%) c0s 20° 0.228  0.684

Use F=0.75in Ans.

14-13 d,=5(24)=120 mm, dg =5(48) =240 mm

v - 720 07°)(50)
60
3.05+0.3142
’ 3.05
3
wt = 60000H _ 60(10YH _ . os
zdn 7(120)(50)

where H is in kW and W is in kN

=0.3142 m/s

Eq. (14-6a): K =1.103

Table 14-8: C, = 163YyMPa [Note: Using Eq. (14-13) can result in wide variation in
C), due to wide variation in cast iron properties].

Eq. (14-12): 1 = M =20.52mm, I, = M = 41.04 mm
11033.183)(10°)H [ 1 s
Eq. (14-14):  —690 = —163| — : +
60c0s 20° 2052 41.04

H=394kW Ans

14-14
d, = 420) = 80 mm, d, = 4(32) = 128 mm
3
Y ZB010N1000) _ o
60
Eq. (14-6a): K, = 20+ 418 5373
3.05
3
¢ 00A0A0) _ 5 367 N = 2387 N
7(80)(1000)

Table 14-8:  C, =163yMPa [Note: Using Eq. (14-13) can result in wide variation in
C), due to wide variation in cast iron properties. ]

Eq. (14-12); 1 = 508207 13 e mm, r, = 22581020° _ 5 69 mm
: 2 ? 2
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1/2
Eq. (14-14): o, = -163 23732387 1 1 = -617MPa Ans
50c0s20° \13.68  21.89

14-15 The pinion controls the design.
Bending Yp=0.303, Ys=0.359

1
d, = LUy in, dg= 30 5500
12 12
md.n 7(1.417)(525)
12 12
o 1200 +1948 _ |
1200
Eq. (6-8), p. 282: S, = 0.5(76) = 38.0 kpsi
Eq. (6-19), p. 287:  ka=2.70(76) "% =0.857
225 225

V = = 194.8 ft/min

Eq. (14-4b): K

| = =22 - 0.1875in
P 12
Eq. (14-3); = % = % = 0.0379 in

Eq. (b), p. 737: t = \4Ix = \/4(0.1875)(0.0379) = 0.1686 in
Eq. (6-25), p. 289:  d_ = 0.808hb = 0.808,/0.875(0.1686) = 0.310 in

-0.107
Eq. (6-20), p. 288:  k, = (%;Oj = 0.996

kc = kd = ke = 1
Account for one-way bending with ki = 1.66. (See Ex. 14-2.)
Eq. (6-18), p. 287: S =0.857(0.996)(1)(1)(1)(1.66)(38.0) = 53.84 kpsi

For stress concentration, find the radius of the root fillet (See Ex. 14-2).

0300 _ 0.300

r = 0.025 in
P 12
From Fig. A-15-6,
r
d t 0.1686

Approximate D/d = oo with D/d = 3; from Fig. A-15-6, K; = 1.68.
From Fig. 6-20, with S;; = 76 kpsi and r = 0.025 in, = 0.62.

Eq. (6-32):  Ki=1+0.62(1.68—1)=142
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S 53.84

Oy = —— = = 16.85 psi
Kin, 1.42(2.25)
Wt = FYoou _ 0.875(0.303)(16850) _ 320.4 [bf
K,P, 1.162(12)
t
_ WV 320.4(194.8) _ 189hp Ans

33000 33000

Wear
vi=v,=0292, E,=E,=30(10° psi

r 1/2

1

Eq. (14-13): C = = 2285,/psi
1-0.292°
27|
30(10°)
do . 1.417 . .
Eq. (14-12): 1, = 7s1n¢ = sin20° = 0.242 in
r, = dTGsin¢ _ 2500 sin20° = 0.428 in

= 6.469 in™'

1 1 1 1
—+—= +
rhor, 0242 0428
Eq. (6-68), p.329: (&), = 0.4H; — 10 kpsi = [0.4(149) — 10](10°) = 49 600 psi
From the discussion and equation developed on the bottom of p. 329,

(S),¢  —49 600

A = = 33067 psi
Call \/ﬁ \/ﬁ p
2 o
Eq. (14-14); W' :(_33 067j 0.875¢0520° | _ 55 6 Ibf
2285 ) | 1.162(6.469)
t
_ WV 2260948) i ang

33000 33000
Rating power (pinion controls):

H, = 1.89 hp
H, =0.133 hp

Hai = (min 1.89, 0.133)=0.133 hp  Ans.

14-16 See Prob. 14-15 solution for equation numbers.

Chapter 14, Page 8/39



Pinion controls: Yp=0.322, Yg=0.447

Bending @ =20/3=6.667 in, dg=100/3=33.333in
V = zd,n/ 12 = 7(6.667)(870) / 12 = 1519 ft/min
K, = (1200 + 1519) / 1200 = 2.266
S = 0.5(113) = 56.5 kpsi
k, = 2.70(113)°%% = 0.771
| =225/P, =225/3=0.751in
X = 3(0.322) / [2(3)] = 0.161 in
t = \/4(0.75)(0.161) = 0.695 in
d. = 0.808,/2.5(0.695) = 1.065 in
k, = (1.065 / 0.30)*'"” = 0.873
ke =k =k=1
ki =1.66 (See Ex. 14-2.)
S, = 0.771(0.873)(D)(1)(1)(1.66)(56.5) = 63.1 kpsi

r, =0.300 /3 = 0.100 in

r

LT 0100y

d t 0695

K¢ =1.75,q=0.85, K;=1.64
S 63.1

Oy =——— = = 25.7 kpsi
Kin, 1.64(1.5)
_ FY.o,  2.5(0.322)(25700) 3043 Ibf
(o 2.266(3)

H =W'V /33000 =3043(1519) / 33000 = 140 hp  Ans

Wt

Wear

Eq. (14-13): C_ = ! = 2285,/psi

P 5[ 1-0292°
30(10°)

Eq. (14-12): 1 = (6.667/2) sin 20° = 1.140 in
r, = (33.333/2) sin 20° = 5.700 in

Eq. (6-68), p. 329: S =[0.4(262) — 10](10%) = 94 800 psi
Oca = =So /[Ty = —94800 / V1.5 = —77 400 psi
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2
Wt _ GC,all FCOS¢ 1
C K 1/n+1/r,

p v

(=77 400" ( 2.5¢0820° 1
2285 2266 )\1/1.140 +1/5.700

= 1130 Ibf
WV 1130(1519)
33000 33000

For 10® cycles (revolutions of the pinion), the power based on wear is 52.0 hp.
Rating power (pinion controls):

=52.0hp Ans

H, =140 hp
H, =52.0hp
H... = min(140, 52.0) = 52.0hp Ans

14-17 See Prob. 14-15 solution for equation numbers.
Given: ¢=20° n= 1145 rev/min, m= 6 mm, F =75 mm, Np = 16 milled teeth,
Ng = 30T, S;t = 900 MPa, Hg = 260, nqg = 3, Yp = 0.296, and Yg = 0.359.

Pinion bending
d. = MN, = 6(16) = 96 mm
d; = 6(30) = 180 mm
zdon  72(96)(107°)(1145)
60 (60)
K — 6.1+ 5.76

v

V = =5.76 m/s

=1.944

S = 0.5(900) = 450 MPa

k, = 4.51(900) % = 0.744

| = 2.25m = 2.25(6) = 13.5 mm

X = 3Ym/ 2 = 3(0.296)6 / 2 = 2.664 mm
t = JaIx = \[4(13.5)(2.664) = 12.0 mm
d, = 0.808/75(12.0) = 24.23 mm

—-0.107
k, = (%] = 0.884

ko =ki=k=1
ki = 1.66 (See Ex. 14-2)
S, = 0.744(0.884)(1)(1)(1)(1.66)(450) = 491.3 MPa

r, = 0.300m = 0.300(6) = 1.8 mm
rid=r¢ /t=1.8/12=0.15, K, = 1.68, q= 0.86, K; = 1.58
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s 4913

Oy = = = 239.2 MPa
K.n, 1.58(1.3)

FYmo,, _ 75(0.296)(6)(239.2)

Eq. (14-8): W' = =16390 N
K, 1.944
t

Eq. (13-36) H = W7zdn= 16.397(96)(1145) _043KkW  Ans

60 000 60 000
Weat Pinion and gear
Eq. (14-12):  ry=(96/2) sin 20° = 16.42 mm

r, = (180/2) sin 20° = 30.78 mm

r —1/2

Eq. (14-13): C_ = ! = 1904MPa

P 1 —0.2922
2|~
207(103)

Eq. (6-68), p. 329:  Sc = 6.89[0.4(260) — 10] = 647.7 MPa
Oem =S /[0y = _3‘1‘_73'7 = —568 MPa

2
Eq. (14-14): W = Ocai F cos¢g 1
| | c K, \1/q+1/T,

p

2 (o)
_ —568) 75¢c0s20 1 j _ 3469 N
190 1.944 1/16.42 +1/30.78

_ Wizdn  3.4697(96)(1145)
60 000 60 000

Eq. (13-36): H = 20.0 kW

Thus, wear controls the gearset power rating; H=20.0 kW. Ans.

14-18 Np =17 teeth, Ng =51 teeth
do :E:1—7:2.833in
P 6

dy = = =8.500 in
Vv

—

5
6
= 7d,n /12 = 7(2.833)(1120) / 12 = 830.7 ft/min

Eq. (14-4b): K, = (1200 + 830.7)/1200 = 1.692
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O, = 3 _ 20000 _ 45 000 psi
n, 2

Table 14-2:  Yp=0.303, Yg=0.410

Eq (147) W' = FYeOu _ 200303)(45000) _ )0y
KP 1.692(6)

t
Eq. (13-35) H = VY _ 2686@30.7)
33000 33000

= 67.6 hp

Based on yielding in bending, the power is 67.6 hp.
(a) Pinion fatigue

Bending
Eq. (2-121), p. 41:S,t= 0.5 Hg = 0.5(232) = 116 kpsi
Eq. (6-8),p.282: S, =0.5S, = 0.5(116) = 58 kpsi

Eq. (6-19), p. 287: k_ = 2.70(116) % = 0.766

Table 13-1, p. 696: | = L + 125 225 225 _ 0.375 in
R R R 6

3Y, _ 3(0.303)

2P 2(6)

Eq. (b), p. 737: t = V/4Ix = \/4(0.375)(0.0758) = 0.337 in

Eq. (6-25), p. 289: d, = 0.808,/Ft = 0.808,/2(0.337) = 0.663 in

Eq. (14-3): x = = 0.0758 in

0663 —-0.107
Eq. (6-20), p. 288: k, = | —— = 00919
q. (6-20), p K ( 0_3())
k=kq=ke=1
Account for one-way bending with ki = 1.66. (See Ex. 14-2.)

Eq. (6-18): S, = 0.766(0.919)(1)(1)(1)(1.66)(58) = 67.8 kpsi

For stress concentration, find the radius of the root fillet (See Ex. 14-2).
0.300 0.300 .
r. = = = 0.050 in

f P

r
=_f_&=o_14g

Fig. A-15-6: =" —
d_t 0338

Estimate D/d = « by setting D/d = 3, K; = 1.68.
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Fig. 6-20, p. 295: q=0.86
Eq. (6-32), p. 295: K, =1+(0.86)(1.68—1)=1.58

o, = S _ 678 21.5 kpsi
Kn, 1.58(2)
W = FYoou _ 2(0.303)(21500) _ 1283 Ibf
K,P, 1.692(6)
t
_ WV 1283(830.7) _ 323hp  Ans
33 000 33 000
(b) Pinion fatigue
Wear
1 1/2
Eq. (14-13): C = = 2285,/psi
q-(14-13) g {2;;[(1 i 0.2922)/30(106)]} P
Eq. (14-12): [ = %sin¢ _ 2833 0200 = 0,485 in
r, = d76sin¢ _ 8:500 sin20° = 1.454 in
l+l =;+;=2.750in
oor,) 0485 1454
Eq. (6-68): (&),s = 0.4H; — 10 kpsi

In terms of gear notation
oc = [0.4(232) — 10]10° = 82 800 psi

We will introduce the design factor of Ng =2 and because it is a contact stress apply it
to the load W by dividing by ~/2 . (See p. 329.)

o 82 800 .
O. = ——c — _ = —58 548 psi
C,all /2 12 p

Solve Eq. (14-14) for W

Wi (—58 548}2[ 2¢0820°
2285 ) | 1.692(2.750)
W'V 265(830.7)
“ 733000 33000

For 10® cycles (turns of pinion), the allowable power is 6.67 hp.
(c) Gear fatigue due to bending and wear

} = 265 Ibf

= 6.67hp AnNs
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Bending

Hq. (14-3): 3Y,  3(0.4103)

X = =

P 26)
Eq. (b), p. 737: t = J4Ix = \4(0.375)(0.1026) = 0.392 in +
Eq. (6-25): d, = 0.808,/Ft = 0.808,/2(0.392) = 0.715 in

= 0.1026 in

—-0.107
Eq. (6-20): k, = (%) = 0911

k=ki=ke=1
ki = 1.66. (See Ex. 14-2.)
Eq. (6-18): S, = 0.766(0.91 1)(1)(1)(1)(1.66)(58) = 67.2 kpsi

r
r_ T 0050 _ oo

f
d t 039
Approximate D/d = « by setting D/d = 3 for Fig. A-15-6; K; = 1.80.
Fig. 6-20: q=0.82
Eq. (6-32): K, =1+(0.82)(1.80—1) =1.66
Oy = > _ 672 20.2 kpsi
Kin, 1.66(2)
Wt FYeou _ 204103)20200) | oo
K,P, 1.692(6)
W'V 1633(830.7)

733000 33000
The gear is thus stronger than the pinion in bending.

=41.1hp Ans

Wear

Since the material of the pinion and the gear are the same, and the contact stresses are
the same, the allowable power transmission of both is the same. Thus, Hy; = 6.67 hp
for 10® revolutions of each. As yet, we have no way to establish S for 10%/3

revolutions.

(d)
Pinion bending: H, =323 hp
Pinion wear: H, =6.67 hp
Gear bending: H; =41.1 hp
Gear wear: Hs=6.67 hp

Power rating of the gear set is thus
Hratea = min(32.3, 6.67,41.1, 6.67) =6.67 hp  Ans.

14-19 dp =16/6 =2.667 in, dg=48/6=28 in
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7(2.667)(300)

V = 5 = 209.4 ft/min
wt = 330000) _ seq g pr
209.4

Assuming uniform loading, Ko = 1.
Eq. (14-28): Q, =6, B=0.2512-6)"" =0.8255
A =50 + 56(1 — 0.8255) = 59.77
0.8255
K = 59.77 + ~209.4 119
59.77

Table 14-2: Y, = 0.296, Y, = 0.4056
From Eq. (a), Sec. 14-10 with F =2 in

Eq. (14-27):

( \0.0535
(K., = 1.192L2—“O'296J — 1.088
6
( \\00535
(K)o = 1.192 2—“0'64056J ~ 1.097

From Eq. (14-30) with Cypc= 1
2
Cot =
10(2.667)
Com=1 C,=0093 (Fig.14-11), C =1
K, =1+10.0625(1) + 0.093(1)] = 1.156

—0.0375 + 0.0125(2) = 0.0625

Assuming constant thickness of the gears — Kg =1
me = Ng/Np =48/16 =3

With N (pinion) = 10® cycles and N (gear) = 10*/3, Fig. 14-14 provides the relations:
(Yy)p = 1.3558(10%) """ = 0.977
(Yy)e = 1.3558(10° / 3)™ "' = 0.996

Fig. 14-6: Jp =027, Jg =038
Table 14-10: Kr=0.85

KT = Cf =1
Eq. (14-23); | = cosZ(;(IS)m2O (3 i J = 0.1205

Table 14-8:  C, = 23004/psi

Strength Grade 1 steel with Hgp = Hgg = 200
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Fig. 14-2:  (S)p=(S)c = 77.3(200) + 12 800 = 28 260 psi
Fig. 14-5:  (So)p = (So)s = 322(200) + 29 100 = 93 500 psi

Fig. 14-15:  (Zn)p = 1.4488(10%) "% = 0.948
(Zn ) = 1.4488(10%/3) 9% = 0.973

Sec. 14-12: HBP/HBG =1 CH =1

Pinion tooth bending

Eq. (14-15):  (0), = W'K K, K, P KoK

_d_*m B

F J

= 787.8(1)(1.196)(1.088)(%)[
=13170 psi Ans

Eq. (14-41):  (S.)p = [M}

28 260(0.977) / [(1)(0.85)]
B 13170

(1.156)(1)}
0.27

=247 Ans

Gear tooth bending

Eq. (14-15): (o), = 787.8(1)(1.196)(1.097)(%)[%} = 9433 psi  Ans
Bq (144D (S, = 2 2600.996) / [DO39] _ 5 5, s

9433

Pinion tooth wear

1/2
C
Eq. (14-16): (o), = C,| W' K,K K, K 2t
d.F | )

= 2300{787.8(1)(1 196)(1 '088)( > 16é§(62) j ( 0 112()5 H

=98 760 psi Ans

Eq. (14-42):
(S)p = [SCZN/(KT KR)} _ {93 500(0.948)/[(1)(0.85)]} _ 106 As
A o 98 760
Geartoothwear
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1/2 1/2
(){g;_;} (@00 = (227} 95 760) - 99 170 psiAns
s/P :

(S = 93 5000.973)DAMO3 _ | 4o ms

99170

The hardness of the pinion and the gear should be increased.

14-20 dp =2.520)=50 mm, dg=12.5(36)=90 mm
-3
V= e, _ 2(50)107)(100) _ 02618 /s
60 60

W = 60(120) _
7(50)(107)(100)
With no specific information given to indicate otherwise, assume

584N

KB:KO=Y9=ZR=1

Eq. (14-28): Q,=6,B=0.25(12 - 6)** = 0.8255
A=50+56(1 —0.8255) =59.77

0.8255
Bq (1427 K, = |27 J/200(0.2618) 1099
59.77
Table 14-2:  Yp=0322, Yo=0.3775

Similar to Eq. (a) of Sec. 14-10 but for SI units:

K = - 0.8433(mFY )
K
0.053
(K))p = 0.8433 2.518)1/0322 | 21003 usel

(K))g = 0.8433[2.5(18)\/0.3775}0'0535=1.007 use 1
Cp=C,=C, =1
F =18/254 = 0709 in, C, = —o — 0,025 = 0,011
10(50)
C.. = 0.247 + 0.0167(0.709) — 0.765(107)(0.709%) = 0.259
K,, =1+ 1[0.011(1) + 0.259(1)] = 1.27

Fig. 14-14:  (Yn)p = 1.3558(10%) """ = 0.977
(Yn)o = 1.3558(10%/1.8) *°'"8 = 0.987

Flg 14-6: (YJ )p = 0.33, (YJ )G =0.38
Eq. (14-38):  Yz=10.658 —0.0759 In(1 — 0.95) = 0.885
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Eq (1423) Z, = c0s20° sin 20 ( 1.8

2(1) 1.8 +1
Table 14-8: Z. = 191¥MPa

]: 0.103

Strength Grade 1 steel, Hgp = Hgg = 200

Fig. 14-2:  (S)p =(S)e = 0.533(200) + 88.3 = 194.9 MPa
Fig. 14-5:  (S)p = (So)e = 2.22(200) + 200 = 644 MPa
Fig. 14-15:  (Zn)p = 1.4488(10%) "% =0.948

(Zy)e = 1.4488(10° / 1.8) " = 0.961

Fig. 14-12:  Hg /Hg=1 . Z,=C,=1

Pinion tooth beding

: [ we 1 KK
Eq. (14-15):  (0)p = [W KKK J
B 1 1.27(1) |
= 458.4(1)(1.099)(1){18(2.5)}{ 033 } = 43.08 MPa Ans
Eq. (14-41) for SI: (S;), = (%%) = 11240?3{1(?)987875)} =499 As

Gear tooth bending

(0)s = 458.4(1)(1.099)(1)Lg(l2 5)}{162;(81)} =3742MPa Ans

194.9{ 0.987

=581 /s
37.42|1(0.885)

(S)e =

Pinion toothwear

| K, 7
Eq. (14-16): (o), = (ZE\/W KOK”Kdelb Z jp

= 191\/458.4(1)(1.099)(1){ 1.27 M 1 } =501.8 MPa Ans

50(18) || 0.103
Eq. (14-42) for SL: (S,), = (i f{w fNJ _ 5?)‘148{?(3‘;88(51;} ~137 s

Geartoothwear

[koe]” ()" _
(0)s = {(KS)J (0)p = (J (501.8) = 501.8 MPa Ans
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644 0.961(1)

- As
(Si)e 501.8 1(0.885)
14-21

P = P cosy = 6cos30° = 5.196 teeth/in

d =% _3079in, d,=23.079) =9238in
5.196 16

V = w = 241.8 ft/min
33 000(5 5977 + 2418 )

wt = 30000) _ gor 31pp, K = | DTTENAL = 1210

241.8 59.77

From Prob. 14-19:

Y, = 0296, Y, = 0.4056

(K)p=1.088, (K)g=1097, K,=1

m =3, (%)p=0977, (X)s =099, K =085

(S)p = () =28260psi, G =1 (p=( Jg=93500psi
(Zy)p = 0948,  (Zy)g = 0973, C, = 2300,/psi

The pressure angle is:
4 = tan’l(tanzo ) — 22.80°

cos30°
3.079

(t,)p = c0s22.8° = 1.4191in, (r)s = 3(r,) = 4.258 in
a=1/P =1/6=0.167 in

Eq. (14-25):

2 1/2 P 1/2
307 + 0. 167) - 1.4192} + {(% + 0.167) - 4.2582}

( 228 g
= 0.

9479 + 2.1852 — 2.3865 = 0.7466  Conditions O.K. for use
72- .
Py = P,cosg, = gcos20° = 0.4920 in

Eq (1421 m, = —Pu 082 6037
0.95Z  0.95(0.7466)
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]z 0.193

Eq.(1423) | = sin22.8°cos22.8 ( 3
2(0.6937) 3+1

Fig. 14-7:  J, 2045 J, =0.54

Fig. 14-8: Corrections are 0.94 and 0.98.

Jo = 0.45(0.94) = 0.423, Jg = 0.54(0.98) = 0.529

Coc=1 C,= 20,0375+ 0.0125(2) = 0.0525
10(3.079)

Cpn=1 Cua=0093 C,=1

K. =1+ (1)[0.0525(1) + 0.093(1)] = 1.146

Pinion toothbending

(o), = 682.3(1)(1 .21)(1.088)(

5.196}1.146(1) _6323psi Ans

2 0.423
28 260(0.977) / [1(0.85)]

6323

514 As

(SF)P =

Gear tooth ending

(0)s = 682.3(1)(1'21)(1'097)(5.196j1.146(1)

2 0.529
28 260(0.996) / [1(0.85)]

(S)s 5097

= 5097 psi  Ans

Pinion tooth wear

(0.)p = 2300{682.3(1)(1.21)(1.088)L)10';2(62)}(0 1193} = 67700 psi  Ans

93 500(0.948) / [(1)(0.85)]

_ =154 Ms
S)e 67 700
Gear tooth wear
1.097 1"
=|—=——==| (67700)=67980psi Ans
(@) {1.088} ( ) pst
(S.)e = 93 500(0.973)/[(1)(0-85)] _ 157 s

67 980

14-22 Given: R=10.99 at 10® cycles, Hg = 232 through-hardening Grade 1, core and case, both
gears. Np = 17T, Ng = 51T,
Table 14-2:  Yp =0.303, Y =0.4103
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Fig. 14-6: Jp=0.292, Jc = 0.396
de=Np/P=17/6=2.833in, dg=51/6=8.500 in.

Pinionbending
From Fig. 14-2:

000(S),y = 77-3 Hy +12 800
= 77.3(232) + 12 800 = 30 734 psi

Fig. 14-14: Yy = 1.6831(10%) "% =0.928

V = zd,n /12 = 7(2.833)(1120 / 12) = 830.7 ft/min
Ki=Ky=1 S. =2, § =2
_307340.928) _ o) oo

2(H()
Q, =5 B=02512-5)7 =09148
A =50+ 56(1 — 0.9148) = 54.77

0.9148
K - {54.77 + \/830.7J _Lam

O

54.77
0.0535
K, = 1'192(2—V()63()3J = 1.089 = use |
Kn = Cor = 1+ Coo(Cy; G + G G)
C. =1
F
Cy = — — 0.0375 + 0.0125F
10d
-2 00375+ 0.01252) = 0.0581
10(2.833)
Con =1
C,.. = 0.127 + 0.0158(2) — 0.093(10*)(2%) = 0.1586
C =1
K. =1+ 10.0581(1) + 0.1586(1)] = 1.217
K, =1
Eq. (14-15); W' = — 6%
KoKvaPdeKB
_ 2029014260 _ oo
1(1.472)(1)(6)(1.217)(1)
t
_ WV TISE30) sy

33000 33000

Pinionwear
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Fig. 14-15:  Zy =2.466N "% =2.466(10*) "% =0.879

m, =51/17 =3

c0s20°sin 20 3 ~1205, C, =1
2 3+1

009(S),y = 322H5 + 29100

= 322(232) + 29100 = 103 804 psi
103 804(0.879) _ 4 <19 osi
V2(1)(1)

2
Eq. (14-16): W' = Ocan Fd,I
C KK KK,.C,

p o' Yo' s Ym

Eq. (14-23):

Fig. 14-5:

Ocanl =

:(64 519] [ 2(2.833)(0.1205) }

2300 / | 1(1.472)(1)(1.2167)(1)
= 300 Ibf

t
_ WV 300830.7) ooy
33000 33000

The pinion controls, therefore Hyyeqg = 7.55 hp  Ans.

14-23 | =225/ Py, Xx=3Y/2Pyq

Jmm

d, = 0.808,/Ft = 0.808 F 3674

t = f4Ix

=1.5487
Pd
—0.107 ~0.0535
1.5487\FNY / P,
k, = AR = 0.8389| —— FY
0.30 2
0.0535
K, = 1 = 1.192(':\/7) Ans
Ky R
14-24 Yp=0.331, Y =0.422, Jp = 0.345, Jg = 0.410, Ko, = 1.25. The service conditions are
adequately described by Ko. Set Sc =Sy = 1.

dp=22/4=5.500 in
dec =60/4=15.000 in
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V = %;“45) — 1649 ft/min

Pinionbending

Eq. (14-17):

Eq. (14-15):

Wi = 26 728(3.25)(0.345)

090(S),; = 77.3 Hy + 12800 = 77.3(250) + 12 800 = 32 125 psi
Y, = 1.6831[3(10°)] "> = 0.832

32 125(0.832)

(Cu)p="—
1(D(1)

B = 0.25(12 - 6)*”* = 0.8255

A = 50 + 56(1 — 0.8255) = 59.77

=26728 psi

0.8255
€ = [T+ J1649 s34
59.77
K.=1 C,=1
C. = 00375+ 0.0125F
10d
3.25

= — 0.0375 + 0.0125(3.25) = 0.0622
10(5.5)

C.. = 0.127 + 0.0158(3.25) — 0.093(104)(3.25%) = 0.178
C, =1

K. =C., =1+ 1[0.0622(1) + 0.178(1)] = 1.240
Ko=1 K, =1

= 3151 1bf

T 1.25(1.534)(1)(4)(1.240)
_ 3151(1649)

—1575h
1T 733000 P

Gear bending By similar reasoning, W, = 3861 Ibfand H, = 192.9 hp

Pinionwear

m, = 60 /22 = 2.727

_ c0s20°sin 20°( 2.727
2 1+ 2.727
000(S),y = 322(250) + 29 100 = 109 600 psi
(Zy)p = 2.466[3(10°)] " = 0.727
(Zy)e = 2:466[3(10°) / 2.7277°%° = 0.769
109 600(0.727)
1M

j = 0.1176

(Cca)p = =79 679 psi
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2
Wt — O-C,all I:dP I
} C, | KK,KK,.C,

(79 679)2[ 3.25(5.5)(0.1176) } — 1061 Ibf

2300 ) | 1.25(1.534)(1)(1.24)(1)
H = 10611649) _ g3y
33 000

Gea wear
Similarly, V\/4t =11821bf, H, =59.0hp

Rating
H.., =min(H, H,, H,, H,))
min(157.5, 192.9, 53, 59) = 53hp Ans

Note differing capacities. Can these be equalized?

14-25 From Prob. 14-24:

W = 31511bf, W = 3861 Ibf,
W, = 1061 1bf, W = 1182 Ibf
~ 33000K,H 33 000(1.25)(40)
- V - 1649

W = 1000 Ibf

Pinionbending The factor of safety, based on load and stress, is

W' 3151
= == =315
(S)e 1000 1000

Gearbendingbased on load and stress

W 3861
= =——=386
(S)e 1000 1000
Pinionwear
t
based on load: n, = W, _ 1061 1.06
1000 1000

based on stress:  (S,), = Vv1.06 =1.03

Gearwear

t
based on load: n, = W, _ 1182

= = =1.18
1000 1000
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based on stress:  (§;); = Vv1.18 =1.09

Factors of safety are used to assess the relative threat of loss of function 3.15, 3.86, 1.06,
1.18 where the threat is from pinion wear. By comparison, the AGMA safety factors
(S)p. (S9)a. (S)ps (S)c
are
3.15,3.86,1.03,1.09 or 3.15,3.86,1.06", 1.18"

and the threat is again from pinion wear. Depending on the magnitude of the numbers,
using S¢ and Sy as defined by AGMA, does not necessarilylead to the same conclusion
concerning threat. Therefore be cautious.

14-26

Solution summary from Prob. 14-24: n= 1145 rev/min, K, =1.25, Grade 1 materials,
Np =22T, Ng = 60T, mg = 2.727, Yp = 0.331,Ys = 0.422, Jp =0.345, Jc=0.410, Pyq=
4T /in, F=3.251in, Q. =6, (N¢)p= 3(109), R=0.99, Kn,=1.240, Ky=1, Kg=1,
dp =5.500 in, dg = 15.000 in, V = 1649 ft/min, K, = 1.534, (Ks)p=(Ks)c=1, (Y N)p=
0.832, (Yn)c=0.859, Kr=1

Pinion Hg: 250 core, 390 case
Gear Hg: 250 core, 390 case

Bending
(o,)p = 26 728 psi (§)p = 32125 psi
(o) = 27546 psi (§)g = 32125 psi
W' = 3151 Ibf, H, = 157.5 hp
W, = 3861 Ibf, H, =192.9 hp

Wear
¢ =20° 1 =0.1176, (Z,), = 0.727
(Zy)s = 0.769, C, = 2300 /psi
(S)p = § =322(390) + 29 100 = 154 680 psi
(G)p = 154 680(0.727) ~ 112 450 psi
1(D()
154 680(0.769)

1@

2
j (1061) = 2113 Ibf,  H,

(Ta)s = =118 950 psi

_ 2113(1649)
33 000

| 2354(1649)
33 000

t:(m 430 — 105.6 hp

’ 79 679
Wi = 118 950
109 600(0.769)

2
j (1182) = 2354 Ibf, H, =117.6 hp

Ratedpower
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Hratea = min(157.5, 192.9, 105.6, 117.6) = 105.6 hp  Ans.

Prob. 14-24:

Hiatea = min(157.5, 192.9, 53.0, 59.0) = 53 hp

The rated power approximately doubled.

14-27

The gear and the pinion are 9310 grade 1, carburized and case-hardened to obtain Brinell

285 core and Brinell 580-600 case.

Table 14-3:  (,(S),,, = 55 000 psi

Modification of § by (Yn )p = 0.832 produces
(Ou)p = 45 657 psi,
Similarly for (Yn )c = 0.859

(o) = 47161 psi, and
W' = 4569 Ibf, H, =228 hp
W, = 5668 Ibf, H, =283 hp

From Table 14-8, Cp = 23004/psi. Also, from Table 14-6:

099(S)),; = 180 000 psi

Modification of S by Yy produces

(Oca)p = 130 525 psi
(0. = 138 069 psi
and
W, = 2489 Ibf, H, =124.3hp
W, = 2767 Ibf, H, =1382hp

Rating
Haed = min(228, 283, 124, 138) = 124 hp

AnNS.

14-28 Grade 2, 9310 carburized and case-hardened to 285 core and 580 case in Prob. 14-27.
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Summary:
Table 14-3: (), = 65 000 psi

(o)p = 53959 psi
(o) = 55 736 psi

and it follows that

W' = 5400 Ibf,  H, = 270 hp
W' = 6699 Ibf,  H, =335hp

From Table 14-8, Cp = 23004/psi. Also, from Table 14-6:

S, = 225 000 psi
(Oca)p = 181 285 psi
(O = 191762 psi

Consequently,
W, = 48011bf, H, =240hp
W, =53371Ibf, H, =267hp

Rating
Hiatea = min(270, 335, 240, 267) =240 hp.  Ans.

14-29

Given: n= 1145 rev/min, Ko = 1.25, Np = 22T, Ng = 60T, ng =2.727, dp = 2.75 in, dg =
7.51n, Yp=0.331,Ys =0.422, Jp = 0.335, Jg = 0.405, P=8T /in, F = 1.625 in, Hg = 250,
case and core, both gears. C=1, F/dp =0.0591, C; =0.0419, Com=1, Cna=0.152,
Ce=1,Kn=1.1942, Kr=1,Kg =1, Ks = 1,V = 824 ft/min, (Yy )p—08318 (Yn)e =
0.859, KR 1,1=0.117 58

090(S),; = 32 125 psi
(o,)p = 26 668 psi
(O = 27 546 psi

and it follows that

W' =87931bf, H, =21.97 hp
W' = 1098 Ibf, H, = 27.4hp

For wear
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W! =304 1bf, H, =7.59hp
W! =340 Ibf, H, =8.50 hp

Rating
Hatea = min(21.97, 27.4, 7.59, 8.50) = 7.59 hp

In Prob. 14-24, Hseq = 53 hp. Thus,

759 = 0.1432 = L, not 1 Ans
6.98 8

53.0

The transmitted load rating is

V\/rfltecl = min(879.3, 1098, 304, 340) = 304 Ibf
In Prob. 14-24

V\/rflted = 1061 Ibf
Thus

ﬁ = 0.2865 = L, not l Ans

1061 3.49 4

14-30 Ss=S4=1, Pg=4, Jp=0.345 Jc=0410, K,=1.25

Bending
Table 14-4: (), = 13 000 psi
13 000(1) .
= = ———= =13 000 psi
(Gae = (Ou)s 101 p
- o,,FJs _130003.25)(0.345) 1533 Ibf
'K K KPK K 1.251.534)(1)(4)(1.24)(1)
H, - 1533(1649) _ 76.6 hp
33 000
W =W 1/ 1 =1533(0.410) / 0.345 = 1822 Ibf
H, =HJ;/ J, =76.6(0.410) / 0.345 = 91.0 hp
Wear

Table 14-8:  C, = 1960,/psi
Table 14-7: 0A99(Sc)107 = 75000 psi = (0. )p = (G
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2
W = (O-C,all) P Fd p I
} C KK KK C,

p
2
- (75 oooj 3.25(5.5)(0.1176)  _ 1295 Ibf
1960 ) 1.25(1.534)(1)(1.24)(1)
W = W = 1295 Ibf
H, = H, = 1295(1649) _
33 000

64.7 hp

Rating

Hrated = min(76.7, 94.4, 64.7, 64.7) = 64.7hp  Ans.

Notice that the balance between bending and wear power is improved due to CI’s more
favorable S¢/S; ratio. Also note that the life is 10’ pinion revolutions which is (1/300) of

3(10°). Longer life goals require power de-rating.

14-31

From Table A-24a, E4, = 11.8(10°% Mpsi
For ¢=14.5° and Hg = 156

S = . LABY — = 51693 psi
2sin14.5° / [11.8(10%)]
For ¢=20°
S = . 14(112) - = 52 008 psi
2sin20° / [11.8(10%)]

S = 0.32(156) = 49.9 kpsi
The first two calculations were approximately 4 percent higher.

14-32 Programs will vary.

14-33

)p = 0977, (Y)s = 0.996
(S)p = () = 82.3(250) + 12 150 = 32 725 psi
), = 32 7125(0.977)
(0.85)
C 37 615(1.5)(0.423)
' 1(1.404)(1.043)(8.66)(1.208)(1)
b 1558(925) _
‘ 33 000

= 37 615 psi

= 1558 Ibf

43.7 hp
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_32725(0.996)

= = 38 346 psi
(Ca)s 1(0.85) psi1
szt _ 38 346(1.5)(0.5346) 9007 Ibf
1(1.404)(1.043)(8.66)(1.208)(1)
2007029
33 000

(Z\)p = 0.948, (Z,)g = 0.973

Table 14-6: ,0(S.),, = 150 000 psi

(T aiow)p = 150 000 09480 | _ 167 204 psi
’ 1(0.85)
2
W - (167 294] 1.963(1.5)(0.195) | _ 5074 o
2300 1(1.404)(1.043)
= 207802 _ 55y
33 000
0.973

o =——(167 294) = 171 706 psi
( C,allow)G 0948( ) p

2
Wi - (171 706] [1.963(1.5)(0.195)} 167 bf

4

2300 1(1.404)(1.052)
H, = 2167025 _ 447 hp

33 000
H__ = min(43.7, 56.3, 58.1, 60.7) = 43.7hp  Ans

Pinion bending is controlling.

14-34 (Yy)p = 1.6831(10%) " = 0.928
Y)e = 1.6831(10° / 3.059) %% = 0.962

Table 14-3: & =55 000 psi
55 000(0.928)

1(0.85)
. 60 047(1.5)(0.423)
"7 1(1.404)(1.043)(8.66)(1.208)(1)
b 2487(925)

(0)p = = 60 047 psi

= 2487 Ibf

69.7 h
! 33 000 P
0.962 .
O )e = —2—=(60 047) = 62 247 psi
( all)G 0.928( ) p
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w = 2 247(0'5346j(2487) = 3258 Ibf

2 60047\ 0.423
3258
H, = 22°2(69.7) = 91.3 h
? 2487( ) P

Table 14-6: S = 180 000 psi
(Zy)p = 2.466(10%) %% = 0.8790
(Zy)e = 2.466(10° / 3.059) %" = 0.9358
~ 180 000(0.8790)

o = =186 141 psi
( c,all)P 1(0.85) p
2
W - (186 141) 1.963(1.5)(0.195) | _ cce 1
2300 1(1.404)(1.043)
H3 = M =720 hp
33000
0.9358 )
o = 186 141) = 198 169 psi
(Tca)e 0.8790( ) p
2
Wi = 198169 ) ( 1.043 (2568) = 2886 Ibf
186 141 ) \1.052
H, = M =80.9 hp
33000
H .. = min(69.7, 91.3, 72, 80.9) = 69.7hp Ans

Pinion bending controlling

14-35 (Yn)p=0.928, (Yn)s=0.962 (See Prob. 14-34)

Table 14-3: & =65 000 psi
), = 65 ?00(0.928)
(0.85)
. 70965(1.5)(0.423)

' 1(1.404)(1.043)(8.66)(1.208)
H, = 2939(925) _
33 000
65 000(0.962)

1(0.85)
. 73565(0.5346
270 965( 0.423

3850

H =>2""(82.4) =108 h
? 2939( ) P

= 70 965 psi

= 2939 Ibf

82.4 hp

(Cu)s = = 73 565 psi

j(2939) = 3850 Ibf
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Table 14-6: S =225 000 psi
(Zy)p = 0.8790, (Z,)s = 0.9358

225 000(0.879)

Tea)p = = 232 676 psi
( C,all)P 1(085) p
2
- (232 676] 1.963(1.5)(0.195) | _ 4013 1uf
2300 1(1.404)(1.043)
3= M =112.5 hp
33 000
0.9358 .
= —7""2(232 676) = 247 711 psi
(O-C,all)G 08790( ) p
2
W, = (247 711) (1'043j(4013) = 4500 Ibf
232 676 ) \1.052
H4 = M =126 hp
33 000
Hoe = min(82.4, 108, 112.5,126) = 82.4hp  Ans

The bending of the pinion is the controlling factor.

14-36 P =2 teeth/in, d=8 in, N=dP=8 (2) = 16 teeth

o= F)-4(5)-2s

Z M, =0=10(300)cos 20" —4F; cos20°
Fg =750 Ibf
W' = F, c0s20° =750¢0s20° = 705 Ibf
n=2400/2 = 1200 rev/min

zdn _ 7(8)(1200)

V = = = 2513 ft/min
12 12

We will obtain all of the needed factors, roughly in the order presented in the textbook.
Fig. 14-2: S =102(300) + 16 400 = 47 000 psi

Fig. 14-5: S = 349(300) + 34 300 = 139 000 psi

Fig. 14-6: J=0.27

c0s20°sin20° (2
2(1) (2 +1

Table 14-8:  C, = 23004/psi

Assume a typical quality number of 6.
Eq. (14-28): B =0.2512 - Q))*” = 0.2512 - 6)*”° = 0.8255

Eq. (14-23): | =

J: 0.107
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A =50+ 56(1 — B) = 50 + 56(1 — 0.8255) = 59.77

B 0.8255
A+ \/V] B [59.77 + \/2513J 165

A 59.77

Eq. (1427): K, = (

To estimate a size factor, get the Lewis Form Factor from Table 14-2, Y = 0.296.
From Eq. (a), Sec. 14-10,

K, =1.192 =123

0.0535 0.0535
[FW} L m(zﬂo.z%}
P ' 2

The load distribution factor is applicable for straddle-mounted gears, which is not the
case here since the gear is mounted outboard of the bearings. Lacking anything better,
we will use the load distribution factor as a rough estimate.

Eq. (14-31): Cmc=1 (uncrowned teeth)

Eq. (14-32): ot = 2—” —0.0375 + 0.0125(27) = 0.1196
10(8)

Eq. (14-33): Cpm=1.1

Fig. 14-11: Cma=0.23 (commercial enclosed gear unit)

Eq. (14-35); Ce=1
Bq. (14-30): K, =1+ 1[0.1196(1.1) + 0.23()] = 1.36

For the stress-cycle factors, we need the desired number of load cycles.
N =15 000 h (1200 rev/min)(60 min/h) = 1.1 (10°) rev
Fig. 14-14: Yy =0.9

Fig. 14-15:  Zy=0.38
Eq 1438 K, =0.658-0.07591n(1-R)=0.658—0.07591n(1-0.95) = 0.885

With no specific information given to indicate otherwise, assume Ko =Kg =Kt =C; =1

Toothbending

Eq. (14-15): o = WtKOKUKS%_KnSKB
= 21300 | _ .
- 705(1)(1.65)(1.23)(27[][ - } 2294 psi
Eq. (14-41): S = [M}
(2
_ 4700000.9) /[OO889] _ 106 ans

2294

Toothwear
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K C 1/2
Eq. (14-16): o, = CP(WI K, K, K—m —fj

*d.F |

136 ) 1 ]”

= 2300| 705(1)(1.65)(1.23)| —— (—j
8(27) )\ 0.107

= 43750 psi

Since gear B is a pinion, Cy is not used in Eq. (14-42) (see p. 761), where
S.Z,/ (KK
5, - S KK

Cc

~ [139000(0.8) / [(1)(0.885)]
B 43750

} =29 Ans

14-37 m= 18.75 mm/tooth, d =300 mm
N=d/m=300/18.75 = 16 teeth

F=b=4p=4(zm)=47(18.75) =236 mm
Z M, =0=300(11)cos 20" —150F; cos25’
Fg=22.81kN

W' = F, cos25° =22.81¢c0s25" =20.67 kN

n=1800/2 =900 rev/min
zdn  7(0.300)(900)

60 60
We will obtain all of the needed factors, roughly in the order presented in the textbook.

=14.14 m/s

Fig. 14-2: S =0.703(300) + 113 = 324 MPa

Fig. 14-5: S =2.41(300) + 237 = 960 MPa

Fig. 14-6: J=Y;=0.27

c0s20° sin 20° ( 5
2(1) 541

Table 14-8:  Z_ = 191YMPa

Eq. (14-23): | =2, =

)= 0.134

Assume a typical quality number of 6.
Eq. (14-28): B =02512-Q,)"" = 02512 - 6)°” = 0.8255
A =50+ 561 - B) =50+ 56(1 — 0.8255) = 59.77

B 0.8255
Eq (1427 K. = (A+ Jzoovj _ (59.77 + ‘/200(14.14)J o

A 59.77

To estimate a size factor, get the Lewis Form Factor from Table 14-2, Y = 0.296.
Similar to Eq. (a) of Sec. 14-10 but for SI units:
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K, =+ = 0.8433(mF Y )|
K
K, = 0. 8433[18 75(236)3/0.296 ] - 1.28

Convert the diameter and facewidth to inches for use in the load-distribution factor
equations. d=300/25.4=11.81 in, F=236/25.4=9.29 in

Eq. (14-31):  Cpc=1 (uncrowned teeth)

Eq. (14-32): C, = _929 0.0375 + 0.0125(9.29) = 0.1573
10(11.81)

Eq. (14-33): Cpm=1.1

Fig. 14-11:  Cya= 0.27 (commercial enclosed gear unit)

Eq. (14-35): Ce=1

Eq. (14-30): K, =K, =1+1[0.1573(1.1) + 0.27(1)] = 1.44

For the stress-cycle factors, we need the desired number of load cycles.

N =12 000 h (900 rev/min)(60 min/h) = 6.48 (10°) rev

Fig. 14-14: Yy =0.9
Fig. 14-15:  Zy=0.85
Eq. 14-38: K, =0.658-0.07591n(1-R)=0.658 —0.07591n(1-0.98) = 0.955

With no specific information given to indicate otherwise, assume Ko = Kg = Kr=2Zg=1.

Toothbending

Eq. (14-15): o = W'K K K — Ky Ke

bm Y,

~ 20 670(1)(1.69)(1.28){236(118 75)}{“ '(;1421)7(1)} = 53.9 MPa

Eq. (14-41); S = {M}

(e
_ 32400.9) /[MO0955)] _ ¢ ang
53.9
Toothwear
Z 1/2
Eq. (14-16): o.=2Z (WtK K, K, ZRJ
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= 191[20 670(1)(1-69)(1-28)(301)'(24;6)j(0 11 34)}

= 498 MPa

Since gear B is a pinion, Cy is not used in Eq. (14-42) (see p. 761), where

s - 8%/ (5K

o

~960(0.85) / [(1)(0.955)]
- 498

=172 Ans

14-38 From the solution to Prob. 13-40, n= 191 rev/min, W = 1600 N, d = 125 mm,
N = 15 teeth, m= 8.33 mm/tooth.
F :b:4p:4(7rm)=47z(8.33)=105 mm
dn  7(0.125)(191)

v =" = 1.25m/s
60 60

We will obtain all of the needed factors, roughly in the order presented in the textbook.

Table 14-3: S = 65 kpsi = 448 MPa

Table 14-6: S =225 kpsi = 1550 MPa

Fig. 14-6: J=Y;=0.25

co0s 20°sin 20° ( 2
2(1) 2+1

Table 14-8:  Z. = 191VMPa

Assume a typical quality number of 6.

Eq. (14-23): | =2, = j: 0.107

Eq. (14-28): B = 02512 - Q,)* = 0.25(12 - 6)*” = 0.8255
A =50+ 56(1 — B) = 50 + 56(1 — 0.8255) = 59.77

B 0.8255
Eq (1427) K, = [A + Jzoovj _ (59.77 + 1/200(1.25)J 1ol

A 59.77

To estimate a size factor, get the Lewis Form Factor from Table 14-2, Y = 0.290.
Similar to Eq. (a) of Sec. 14-10 but for SI units:

K. = é = 0.8433(mF Y )0'0535

S

K, = 0.8433[8.33(105)\/0.290]0'0535 ~1.17

Convert the diameter and facewidth to inches for use in the load-distribution factor
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equations. d=125/25.4=4.921in, F=105/25.4=4.13 in

Eq. (14-31): Cmc=1 (uncrowned teeth)

Eq. (14-32): of = 413 0.0375 + 0.0125(4.13) = 0.0981
10(4.92)

Eq. (14-33): Cpm=1

Fig. 14-11:  Cpa= 0.32 (open gearing)

Eq. (14-35): Ce=1

Eq. (14-30): K, = K, =1+ 1[0.0981(1) + 0.32(1)] = 1.42

For the stress-cycle factors, we need the desired number of load cycles.
N =12 000 h (191 rev/min)(60 min/h) = 1.4 (10%) rev
Fig. 14-14: Yy =0.95
Fig. 14-15: Zn=0.88
Eq. 14-38: Kg=0.658—-0.07591In(1- R) =0.658 —0.0759ln(1 —0.95) =0.885

With no specific information given to indicate otherwise, assume Ko = Kg = Kr=2Zg=1.

Toothbending

Eq. (14-15): o =W'K K, K,_;ﬁ%

Y,

= 1600(1)(1 .21)(1.17){105(:g 33)}[(1 g?s(l)} = 14.7 MPa

Since gear is a pinion, Cy is not used in Eq. (14-42) (see p. 761), where

O
_448(0.95) / [(1)(0.885)]
B 14.7

SMEELEY

=327 Ans

Toothwear

1/2

K, Z

Eq. (14-16): o, =Z_|W' KK K —H —R
q( ) c E( KO 14 delsz

1.42 1 -
= 289 MPa

O

Eq. (14-42): S, = {SCZ“ /(KTKR)}

~ {1550(0.88) / [(1)(0.885)]
a 289

} =533 Ans
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14-39 From the solution to Prob. 13-41, n=2(70) = 140 rev/min, W =180 Ibf,d= 5 in
N = 15 teeth, P = 3 teeth/in.

F :4p=4(£j=4(£j=42 in
P 3

v = A0 _ zG)A40) _es 3 pimin
12 12

We will obtain all of the needed factors, roughly in the order presented in the textbook.

Table 14-3: S = 65 kpsi

Table 14-6: S =225 kpsi

Fig. 14-6: J=0.25

c0s20° sin 20° ( 2
2(1) 2+1

Table 14-8:  C, = 23004/psi

Eq. (14-23): | = j = 0.107

Assume a typical quality number of 6.

Eq. (14-28): B = 02512 - Q,)* = 0.25(12 — 6)*” = 0.8255
A =50+ 56(1 — B) = 50 + 56(1 — 0.8255) = 59.77

A+ NT ) (59.77 + 1833 JMS s

A 59.77

Eq. (14-27): K, :(

To estimate a size factor, get the Lewis Form Factor from Table 14-2, Y= 0.290.
From Eq. (a), Sec. 14-10,

=1.17

0.0535 0.0535
oo Y] - i 42020

Eq. (14-31): Cmc=1 (uncrowned teeth)

Eq. (14-32): =42 00375 + 0.0125(4.2) = 0.099
10(5)

pf
Eq (14-33) Cpm: 1

Fig. 14-11: ma = 0.32 (Open gearing)

Eq. (14-35): Ce=1

Eq. (14-30): K, =1+10.099(1) + 0.32(1)] = 1.42

For the stress-cycle factors, we need the desired number of load cycles.
N = 14 000 h (140 rev/min)(60 min/h) = 1.2 (10°) rev
Fig. 14-14: YN =0.95
Fig. 14-15: Zn=10.88
Eq. 14-38: Kg =0.658—0.0759In(1-R) =0.658 —0.07591n (1-0.98) = 0.955

With no specific information given to indicate otherwise, assume Ko = Kg = K1 =Cs = 1.
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Toothbending

Eq. (14-15): o = WtKoKva% KT]KB
_ 3\ 20] ‘
—wswnai&ain(4zﬁ}35§—} 1010 psi

Eq. (14-41): S, = {M}
O

_ 65000(0.95) / [(1)(0.955)]

=64.0 Ans
1010
Toothwear
K C 1/2
Eq. (14-16): o, = Cp WIKOKJ K —m ~t
d.F |
142 1 1/2
= 2300|180(1)(1.18)(1.17)| ——— (_j
5(4.2) )\ 0.107
= 28800 psi

Since gear B is a pinion, Cy is not used in Eq. (14-42) (see p. 761), where

O

&zﬁau&m}

_ {225 000(0.88) / [(1)(0.955)]

=728 Ans
28 800 }

Chapter 14, Page 39/39



Chapter 15

15-1 Given: Uncrowned, through-harden®@O Brinell core and case, GradeNt, =
10° rev ofpinion atR = 0.999,Np = 20 teethNg = 60 teethQ, = 6,Py = 6
teeth/in, shaft angle §0°,n, = 900 rev/minJp = 0.249 andJg = 0.216 (Fig.
15-7),F=125In,S5=5=1, Ko =1.

Mesh dp = 2056 = 3333 in, dg = 60'6 = 10000 in
Eq.(15-7); o= 2(3.333)(90012) = 7853 ft/min

Eq.(15-6): B=0.25(12 — 6¥° = 08255
A= 50 + 56(1 — B255) = 5977

0.8255
K - (59.77+ J 785.3j a7

Eq.(15-5): 59 77

Eq.(15-8):  vymax = [59.77 + (6 — 3)f = 3940 ft/min

Since7853 < 3904,K, = 1.374 is valid. The size factor for bending is:
Eq.(15-10): Ks= 04867 + 02132/ 6 = 05222

For one gear straddle-mountect tbad-distribubn factor is:
Eq.(15-11): K, =110 + Q0036 (125f = 1106

Eq.(15-15): (K.)p = 1.6831(16)%%**= 0.862
Ko = 1.6831(10/ 3)°%323= 0893

Eq.(15-14): (CL)p = 34822(10) %=1
(CL)e = 34822(1G/ 3)°%%%2= 1069

Eq.(15-19): Kr=0.50-025log(1—-099) =125 (or Table 15-3)
C, = K, =+1.25= 1.118

Bending

Fig.15-13:  ,,S = S, = 44(300)+ 2100= 15 300 psi

s.K.  15300(0.862)

Eq.(15-4): (o) =S, = S KK TR 10 551 psi
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— (GaII)P FKX‘] P

Eq.(15-3): W! =
A ( ) i I:)dKoKvaKm
__105510.25)@)(0.249) _ oo
6(1)(1.374)(0.5222)(.106)
| 690(7853) o
33 000
15 300(0.893 .
EQ(15-4) (O-aII)G = W(ZS)): 10 930 psi
W - 109300.25)1(0.216) _ o
6(1)(1.374)(0.5222)(1.106)
H, = 620(785.3) 14.8 hp Ans.
33 000

The gear controlthe bending rating.

15-2 Refer to Prob. 15-1 for the gearset specifications.

Wear
Fig.15-12:  s5c=341(300) + 23 620 = 125 920 psi

For the pinionCy = 1. From Prob. 15-1Cgr = 1.118. Thus, from Eq. (15-2):

((7 ) — Sac(CL)PCH
cal/pP SH KTQQ
(Cem)p = 125 920)W)_ 115 g30 psi

1(1)(1.118)
For the gear, from Eq. (15-16),

B, = 0.008 98(300 / 300} 0.008 29  0.000 69
C, =1+ 0.000 69(3- 1= 1.00138

From Prob. 15-1,(; )¢ = 1.0685 Equation (15-2) thus gives

(G ) — Sac(CL)GCH
call/G 34 KTQQ
(G.u)e = 125 920(1.0685)(1.001 38=) 120 511 psi

1(1)(1.118)

Forsteel: C, = 2290/ psi
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Eq.(15-9): C, = 0.125(1.25)+ 0.4375 0.59%
Fig.15-6: 1 =0083
Eq. (15-12); Cye=2

. t _ (Tca)p i
Eq.(15-1): W, —[ c J

p

Fd,|
KKK, ,CC

0O "v "MTSsSTXC

_ (112 ss(ﬂ 1.25(3.333)(0.083) L
)

2290 ) | 1(1.374)(L.106)(0.5937)(
= 464 |bf
33 000
Wi = [120 51]j2 1.25(3.333)(0.083)
6 = {72200 / | 1(1.374)(1.106)(0.593 75)(2)
= 531 Ibf
| _53UT853) o
33 000

The pinion controls wear: H=110hp Ans.

The power rating of the mesh, considgrthe power ratings found in Prob. 15-1,
is
H = min(164, 148, 110, 126) =110 hp Ans.

15-3

AGMA 2003-B97 does not fully address casn gears. However, approximate
comparisons can be useful. This desb is similar to Prob. 15-1, but not
identical. We will organize the method. A follow-up could consist of completing
Probs. 15-1 and 15-2 with identigahions, and cast iron gears.

Given: Uncrowned, straight teefPy = 6 teeth/inNp = 30 teethNg = 60 teeth,
ASTM 30 cast iron, material Grade 1, shaft angle BG2,1.25,np = 900
rev/min, ¢, = 2(°, one gear straddle-mountdd, = 1,Jp = 0.268,Jc = 0.228,S

=2,S, =2

Mesh dp = 306 = 5000 in, dg = 60/6 = 10000 in
vy = 7(5)(900 / 12) = 1178 ft/min

SetN, = 10’ cycles for the pinion. FdR = 0.99,

Tablel5-7: s4 = 4500 psi
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Tablel5-5: s, =50 000 psi
Eq.(154); s, = - _ 49000 _ oog
S KKy 2@

The velocity factoK, represents stress augmentatiome to mislocation of tooth
profiles along the pitch surface and tiesulting “falling” of teeth into
engagement. Equation (5-67) showatithe induced bending moment in a

cantilever (tooth) vaes directly withVE of the tooth material. If only the
material varies (cast iron vs. steel) in the same geontesryhe same. From the
Lewis equation of Section 14-1,
M KW'P
O = =
| /c FY
We expect the ratioc)/osee t0 be

oa _ Ko _ |Ey

O_steel (Kv) steel E steel

In the case of ASTM class 30, from Table A&4(
Ec)ay = (13 + 162)/2 = 147 kpsi

14.7

Then, (Ke = E

(Kv)steel = 07(Kv )steel

Our modeling is rough, but it convinces us thaf) € < (Ko)swees but we are not
sure of the value oK{)c;. We will useK, for steel as a basis for a conservative
rating.

Eq.(15-6): B=025(12 — 6§° = 08255
A= 50 + 56(1 — B255) = 5977

0.8255
59.77+ /1178 _ 1454
59.77

Eq.(15-5): K, = (

Pinion bending (oai)p = Swt = 2250 psi
FromProb.15-1,K, = 1,Ky, = 1.106,Ks = 0.5222

(JaII)PFKx‘]P
I:)dKoKvaKm
__ 2250(1.25)(1)(0-268) _ 1,0 s s
6(1)(1.454)(0.5222)(1.106)

Eq.(15-3): W, =
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_ 149.6(1178)

! 33 000
Gearbending

W, = V\{;‘J]—G - 149.6{8%@ = 127.3 Ibf
; .

127.3(1178)
2~ 33000

5.34 hp

4.54 hp

The gear controls in bending fatiglt= 454 hp Ans.

15-4 Continuing Prob. 15-3,

Tablel5-5: s =50 000 psi

Sot = Ocal = M= 35 355 psi
' V2
2
Eq.(15-1): W' = Ocal Fd.I
C, ) KKK CC,
Fig. 15-6: | = 0.86

From Probs. 15-1 and 1525 = 0593 75K = 05222, K, = 1.106,Cyc = 2

FromTable14-8: C, = 196Q psi

2
Thus, Wt = 35 355} 1.25(5.000)(0.086) _ 916 Ibf
1960 1(1.454)(1.106)(0.59375)(R)
H, = H, = 91.6(1178)_ 3.27 hp
33 000
Rating

Based on results of Probs. 15-3 and 15-4,
H = min(534, 454, 327, 327) =327 hp Ans.

The mesh is weakest in wear fatigue.

15-5 Uncrowned, through-hardened to 18Gr8tl (core and case), Grade 1°t6v of
pinion atR = 0.999,Np = z; = 22 teethNg = z; = 24 teethQ, = 5, Mt = 4 mm,

shaft angle 90°n; = 1800 reviminS= =1, S, = /S = V1, Jp = Y = 023,
Jes=Yp = 0.205,F = b=25 mMmKy; =Ka=Kr=Kp=1 ande =19 MPa .
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Mesh @ =deg =mz =4(22) =88 mm dg =M 2 = 4(24) = 96 mm
Eq.(15-7):  ve = 5.236(10°)(88)(1800) = 29 m/s

Eq.(15-6): B=025(12 — 5} = 09148
A=50 + 56(1 — ®148) = 5477

0.9148
Eq.(55): K |57+ 2008.29)  _, sen
5477

Eq. (15-10): Ks= Yy = 0.4867 + 0008 339(4) = (520

Eq. (15-11): withKKy, = 1 (both straddle-mounted),
Km=Knp =1+ 56(10°(25%) = 10035

FromFig. 15-8,
(C)p = (Zyr)p = 3.4822(16 )= 1.0
(Cs = (Zyr) = 3.4822[10 (22 / 24)P** = 1.0054

EQ.(15-12): Cyc=Zy.=2 (uncrowned)

Eq.(15-19): Kg=Yz= 050 — 025 log (1 — (99) = 125

Ce=2,=.Y,=+125= 1118
FromFig.15-10,Cy=Z, =1
Eq.(15-9):  Z, = 0.004 92(25) + @375 = 0560
Wear of Pinion

Fig. 15-12:  owim = 235Hg + 16289
= 235(180) + 1689 = 5859 MPa

Fig. 15-6: | =Z, = 0.066
: (04 im)e(Zyr) $Z
E.15-2. — H lim/P NT/ P&—W
HEA =T ke,
_ 98590 _ 554 1 ypq
J1(1)(1.118)
2
Eq.(15-1): W, =|Z& bd, Z
C, ) 1000K K K, ,Z,Z,

The constanl 000x@ressedV in kN.
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W = 0.591 kN

1000(2)(1.663)(1.0035)(0.56)(R)

(524.1}2 25(88)(0.066)
190

zdnW _ 7(88)(1800)(0.591) _

Eq.(13-36): H, = 4.90 kW
60000 60 000
Wear of Gear
OH lim — 5859 MPa
(0,)e = 585.9(1. 0054) 526.9 MPa
J1()(1.118)
W = w3 Zrle Ous _ g 591(526 9) — 0.594 kN
" (0n)e 524.1
H, 7(88)(1800)(0. 594) 4.93 kW
60 000

Thus in wear, the piniocontrols the power ratingd = 490 kW  Ans.

We will rate the gear set after solving Prob. 15-6.

15-6 Refer to Prob. 15-5 for terms not defined below.

Bendingof Pinion

(K)p = (Yyr)p = 1.6831(16 )*** = 0.862
(K)e = (Yyr)e = 1.683110 (22 24)]°** = 0.864

Fig.15-13:  oFim = 0.30Hg + 1448
= 0.30(180) + 148 = 685 MPa

Eq.(15-13): Ky=Yz=1
FromProb.15-5: Yz =125, ve=8.29 m/s,

K,=1 K, =1663 K,= 1,
Y, =052, K,,=1.0035 Y, = 023

oo Yy 68.5(0.862)

Eq.(5-4): = = =47.2 MP
GO =gy T ey 2
Eq.(5-3): W, = (0p)ebm, %, Yy
100K K.Y, K,

_ 47225@M0-23) 4 o5 N
1000(1)(1.663)(0.52)(1.0035)
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o 7(88)(1800( 1.25 1037 KW
! 60 000

Bendingof Gear

Crim = 68.5 MPa

0.), = BB50864)_ 40y
1(1)(1.25)
Wi - 47-3(25)(4)(1)(0.205)

° ~ 1000(1)(1.663)(0.52)(1.0035)

oo 7(88)(1800( 1.12 _ 9.29 kW
2 60 000

Rating of mesh is
Hyrating = Min(10.37, 9.29, 4.90, 4.93) 99 kKW  Ans.
with pinionwear controlling.

15-7
o (%) (%)

(KT KK)e (K KK
WRKKKK,/FKJ), WPKKKK,/FKJ 4

All terms cancel except fax: , K., andJ,

Sa)p(KL)p Jp = (Sat )e(KL) e Jo

Fromwhich

(Sat)P( KL)P‘]P ‘]P
St = = = t P—”r
( a)G (KL)G‘]G (Sa) JG €

wheref = - 00178or = - 00323 as appropriate. This equation is the same as
Eq. (14-44). Ans.

(b) In bendng

wt{ﬂ FK,J jz(i K. FKJ J )
S RKKKKL S Kk RKGK KKy,

Lsacqcuj e (vv KK KnC;C;CJ”Z
SHKTQ? 22 ’ FCLI 22

In wear
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Squaring and solving fai gives

Wi = szczqi}( Fd, | ] 5
( SKGG ), KKK,.CCo, @

Equating the right-hand sides of E¢E) and (2) and canceling terms, and
recognizing thaC, = \/K, andP4dp = Np, we obtain

_ G S (8du(K)u K3 K GG
(Sic)2z
C\ S CZ. NK,|

ForequalW in bending and wear

s W) |
S 3
So we get
( ac G \/ at) (KL)PJPKXK Cg: XC ms
(C )G N 1K
(c)

o) _(Cew)
). "o,

Substitutig in the right-hand equality gives

(S = (S)s = [

5.5/ (GKNe  _ [8,CC. /(G KL
[CAWKKKCC I (FD | | CIWKKKGGI(Fd)]|

Denominators cancel, leaving
(Sac)P(CL)pP = (Sac)s(CL)cCH

Solving for Gac)p gives,

e Cs .
(8)r = (S ey Cn W

FromEq.(15-14),(C, ), = 3.482N""* and C ), = 3.4842N ni
Thus,

)—0.0602

(Sac)P = (Sac)G (]/ mG)i()lOGOZ CH :( %C)G rﬁ;OGOZC H AnNs.

This equation is theanspose of Eq. (14-45).

Chapter 15, Page 9/20



15-8 | Core Case
Pinion Q"B)ll (HB)12
Gear | Hg)2r (Hg)22

Given(Hg)11 = 30 Brinell

EQ.(15-23): (Sat)p = 44(300) + 2 00 = 1800 psi

(Sw)e = (%t)p% Mm% = 15 30((%’j(3- °9%3 = 17 023 psi

G 0.216
(Hgp),, = 17023~ 2100 339 Brinell Ans.
44
(s.). - 2290 [15300(0.862)(0.249)(1)(0.593 25)(2)
2/ = 1 .0685(L 20(0.086)(0.5222)
— 141160 psi
(Hg),, = 141 16;);1 23 600, 345 Brinell Ans.

(S0)p = (S0 MPPC,, = 14116037} 1= 150 811 psi
150 811~ 23 600

H = = 373 Brinell Ans.
( B)12 341
| Core Case
Pinion| 300 373 Ans.

Gear 339 345

15-9

Pinioncore
(s,)p = 44(300)+ 2100= 15 300 psi
(G)s = 15 300(0.862)= 10 551 psi

1(1)(.25)
W = 10 551(1.25)(0.249) _ 689.7 Ibf
6(1)(1.374)(0.5222)(1.106)
Gearcore

(s.)e = 44(352) + 2100= 17 588 psi

17 588(0.893)_ 1 gg5 i
1(1)(1.25)

. __ 12565(.25)(0.216) _ L5 o

6(1)(1.374)(0.5222)(1.106)

(Ca)e =
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Pinioncase
(s,)p =341(372) + 23620= 15872 psi
150 472(1)

= =134 590 psi
(Gc,all) P 1(1) (1 ] 118) p

2
C_ (134 590j 1.25(3.333)(0.086) _ 685.8 Ibf
2290 1(1.374)(1.106)(0.593 75)(R)
Gearcase
(S.)s = 341(344)+ 23 62G= 140 924 psi
(0.)e = 140 924(1.0685)(1): 134 685 psi
’ 11)(2.118)
2
Wi = (134 685j 1.25(3.333)(0.086) _ 686.8 Ibf
2290 1(1.374)(1.106)(0.593 X3)

The rating bad would be

W;. ., = min(689.7, 712.5, 685.8, 686.8) 685.8 Ibf

rated —

which is slightly less than intended.

Pinion core
(s,)p =15300 psi (as before)
(o4)p =10551psi (as before)
W' = 689.7 Ibf (as before)
Gearcore
(Sy)e = 44(339)+ 2100= 17 016 psi
(04)a = 17 016(0.893): 12 156 psi
1(1)(1.25)
W = 12 156(1.25)(0.216) _ 689 3 Ibf
6(1)(1.374)(0.5222)(1.106)
Pinioncase
(S,)p = 341(373)+ 23 62G= 150 813 psi
(.)s = 220813D)_ 5, g95 i
' 1(1)(1.118)
2
W = (134 895] 1.25(3.333)(0.086) _ 6890 Ibf
2290 1(1.374)(1.106)(0.593 75)(R)
Gearcase

(S.)c = 341(345)+ 23 620= 141 265 psi

.. = 141 265(1.0685)1) 35 (10 s
' 1(1)(1.118)
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2
C_ (135 01oj 1.25(3.333)(0.086) | _ o0 1 1o
2290 ) | 1(1.1374)(1.106)(0.593 75)(R)

The equatins developed withifProb. 15-7 are effective.

15-10 The catalogating is 5.2 hp at 1200 re /miior a straight bevel gearset. Also
given:Np = 20 teethNg = 40 teethg, = 20°, F = 0.71 in,Jp = 0.241,Jc = 0.201,
Pg4 = 10 teeth/in, through-haeded to 300 Brinell-Gendrindustrial Service, and
Qvu = 5 uncrowned.

Mesh
d, = 20 /10= 2.000in, d, = 40/18 4.000 in
o = ZeMe _ m(2)1200) _ eog o fymin
12 12

K,=1, S.=1 S =1

Eq.(15-6): B=025(12 - 5°= 09148
A =50+ 56(1 — ®148) = 5477

0.9148
K - (54.77+ J 628.3j a1

54.77
Eq.(15-10): Ks = 0.4867 + 0213210 = Q508

Eq.(15-5):

Eq.(15-11): Kmp=1.25 + 00036(Q71) = 1252, wherm, = 1.25

Eq.(15-15): (K )p = 1.6831(16)°%**= 0862
KL )e = 1.6831(10/2) %% = 0881

Eq.(15-14): (C.)p = 3.4822(16)%°%2= 1000
(CL)e = 34822(10/2)°%%2= 1043

Analyzefor 10° pinion cycles at 0.99€li  ability.

Eq.(15-19): Kg= 050 — 025 log(1 — 0999) = 125

C. =K, =+1.25=1.118

Bending
Pinion:
Eq.(15-23): (Sat)p = 44(300) + 2100 = 15 300 psi
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15 300(0.862)

Eq.(15-4): S,)p = ——————— =10 551 psi
q.(15-4):  (su)e 10)(1.25) p
S, FK,J
Eq.(15-3): W' = Lu)e AT,
F)d KOKU KsKm
_ 105510.7))(0-24) _ 511 s
10(1)(2.412)(0.508)(1.252)
- 201(628.3)_ , o hp
33 000
Gear: (Sat ) = 15 300 psi
15 300(0.881) .
EqQ.(15-4): S =———"=10 783 psi
q.(15-4):  (s,)e 10)(L.25) P
Eqg.(15-3): W' = 10 783(0.741)(0.201) =171.4 Ibf
10()(1.412)(0.508)(1.252)
. 171.4(628.3)_ 3.3 hp
33 000
Wear
Pinion:
(Ci)e =1, 1 =0078 C,= 2298 psi,C. = 2
C, =0.125(0.71+ 0.437% 0.526 25
EqQ.(15-22): (Sac)p = 341(300) + 23 620 = 125 920 psi
(C.a)p = M): 112 630 psi
' 1(1)(1.118)
2
Eq(15_1) Wt — (O-c,aII)P del
Cp KoKvaCsCxc
3 (112 63(.‘?2 0.71(2.000)(0.078)
2290 1(1.412)(1.252)(0.526 25)(R)
= 144.0 Ibf
H, - 144(628.3) _ 2.7 hp
33 000
Gear:
(S.0)e =125 920 psi
(6.) = 125 920(1.043)(1) 117 473 psi
' 1(1)(1.118)
2
Wi = (117 473j 0.71(2.000)(0.078) | _ . cp it
2290 1(1.412)(1.252)(0.526 25)(R)
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_ 156.6(628.3)

3.0h
4 33 000 P

Rating:
H =min(38, 33, 27, 30) =27 hp

Pinion wearcontrols thgpower rating. While the basbf the catalog rating is
unknown, it is overly optimstic (by a factor of 1.9).

15-11

From Ex. 15-1, the core tdness of both the pinion agear is 180 Brinell. So
(Hg)11 and Hpg)21 are 180 Brinell and the bding stress numbers are:

(Sy)p = 44(180)+ 2100= 10 020 psi
(sy)e =10 020 psi

The contact strength of the gear ¢dsesed upon the eduan derived n Prob.
15-7,is

(). = Ce Jsi(at)p(KL)pwpKTcscxc
“C(CDCH\ S N, IK,

Substituting(sa;)p from above and the values of the remaining terms from
Ex.15-1,

() 2290 \/1.3( 10 020(1)(1)(0.216)(1)(0.575)32)

B 1.32(1)\ 1.5 25(0.065)(0.529)
=114 331 psi
(Hp),, = 114 331- 23 620 _ 266 Brinell
341

The pinion contact strength isund using the relation from Prob. 15-7:

(S)p = (S0 MPXC , =114 331(1** ()= 114 331 psi

(He)p, = 114 331~ 23 600 266 Brinell
341

| Core Case
Pinion| 180 266
Gear | 180 266
Realizatiorof hardnesses

The response of studentstto histpdithe quesion would be a function of the
extent to which heat-treaemt pro edugs were covered in theiraterials and
manufacturing prerequisites, andshqu titati  ve it was. The most important
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thing is to have the student thinkaut it.

The instructor can comment in classemtstudents’ curiosity is heightened.
Options that will surface may include:

(a) Select a through-hardening steel wahigll meet or exceed core hardness in
the hot-rolled condition, then heat-trewfito gain the additional 86 points of
Brinell hardness by bath-quenching, thempering, then generating the teeth
the blank.

(b) Flame or induction hardening are possibilities.

(c) The hardness goal for the case figantly modest thatarburizing and case
hardening ray be too costly. In this case the material selection will be different.

(d)The initial step in aitriding process bringthe ore hardness to 33—-38
Rockwell C-scale (about 300-350 Bgzll), which is too much.

15-12

Computer programs will vary.

15-13 A design program would ask the user take¢ghe a priori desions, as indicated

in Sec. 15-5, p. 806, of the text. The c&mn set can be organized as follows:

A priori decisions:

* Function:H, Ko, rpm,mg, temp.,N., R

» Design factong (S=ng, S, = \/E)

» Tooth system: Involute, Straight Teeth, Crowniqg,

* Straddling:Kmp
* Tooth couniNlp (Ng = mgNp)

Designdecisions:

e Pitch and Facey , F

* Quality numbe®,

+ Pinion hardnes$ig)1, (Hg)3
+ Gear hardnes$id),, (Hg)4

First, gather all of thequations one needs, themange them before coding. Find

the required hardnesseexpress the coeguences of the chosen hardnesses, and
allow for revisions as appropriate
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Pinion Bending Gear Bending Pinion Wear Gear Wear
t 1/2
Load-induced CWIPK KK K, CW'PK K K K, o, = C"(Mj _ s, B
stress (Allowable = Fk 3. 87 FKJ, % Fd,| S22 = S12
stress)
Tabulated (S ) _ %1& K’ K? (S ) _ Sﬂ& K’ KR (S ) _ 51234 K Qz (S ) _ 32er| K’ Q
strength o (KD e (Koo T (CR(CY)e % (Ce(Ci)e
(s,)p — 2100 (s, — 2100 (S,)p — 23620 (S.)p — 23 620
Associated Bhn = 44 Bhn = 44 Bhn = 341 Bhn = 341
hardness (Sy)p — 5980 (Sy) — 5980 (S,0)p — 29 560 (S,0)p — 29 560
48 48 363.6 363.6
Ch
har(():isneenss (He)11 (Hg)21 (He)12 (Hg)22
New tabulated (5.0). = 44H;), + 2100 (5.0, = 44H;),, + 2100 (5.). = 341H; ), + 23 620 _ 341H; ), + 23 620
strength WP 48(Hg), + 5980 Y |48(H,), + 5980 YP |363.6H, ), + 29560 U |363.6(Hg ), + 29 560
Factor of n, = Ol — (Sat_’I.)P( KL) P n, = (Satl)G( KL)G _ (Sad) p(CL) p( CH) p i n. — (Sacl)G(CL) G( CH) G i
safety o S: Kt Kg S Kr Kg ? s, K Cq “ S, K G

Note:S. = n, S =48
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15-14 Nw = 1,Ng = 56,P; = 8 teeth/ind = 1.5 in, Ho = 1hp, ¢, = 20°, to = 70°F,
Ka=125ng=1,Fe=2in,A=850irf

(a) mG:NG/NW: 56, dG:NG/Pt:5618:7.O in
pc=7/8=03927in, C=15+7=85in

Eq.(15-39): a=py/ 7= 03927/ = = 0125 in
Eq.(15-40): b= 0.3683p, = 0.1446 in
Eq.(15-41): h; = 0.6866p, = 0.2696 in
Eq.(15-42): do =15 + 2(Q125) = 175 in
Eq.(15-43): d, = 3 — 2(01446) = 2711 in
Eq.(15-44): D=7 + 2(0125) = 725 in
Eq.(15-45): D, = 7 — 2(01446) = 6711 in

Eq.(15-46): c= 01446 — 0125 = 00196 in

EQ.(15-47):  (Fy)mae = 22(7)(0.125 = 2.646 in

V,, = 7(1.5)(1725/12)= 677.4 ft/min

V, = ”(7)(117225/ %0)_ 56 45 fi/min
Eq. (13-27): L= p,N, = 0.3927 in
EqQ.(13-28): A =tan' 0.3927) _ 4.764
7(1.5)
p-_f ___ 8 _go8
cosA cos4.764
P, = = = 0.3913in
P,
Eq.(15-62): V, = 272D 679 g gymin
12cos4.764
(b)

Eq.(15-38): f =0.103exp— 0.110(679.8°| + 0.0:2 0.0250

Eq.(15-54):

o cosg, — f tamt _  cos20- 0.0250tan4.764 07563 Ans .

~cosp + f cotl  cos 20+ 0.0250cot4.764
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_ 33000\,H,K, 33000(1)1)1.25) 966 Ibf  Ans.
Ve 56.45(0.7563)
Eq.(15-57): W, = Wécos¢n siv + f cgﬁ
cosg, cost — f sik
B 966(00520 sin 4.76%+ 0.0250054.7’34
4

c0s20 cos4.764- 0.025sin4.P
=106.4 Ibf Ans.

Eq.(15-58): W,

()
Eq.(15-33): Cs= 1190 — 477 log.D = 787

Eq.(15-36): C, = 0.010%/- 56 + 56(56) 5145 0.767
Eq.(15-37): C, = 0.659expf 0.0011(679.8}} 0.312
Eq.(15-38): (W) = 787(79%(2)(0.767)(0312) = 1787 Ibf

SinceW; < (W'),,, the mesh will survive at least 25 000 h.

all?

0.025(966)

Eqg.(15-61): W, = _ = —29.5 Ibf
0.025sin4.764— co0s20 cos4.764
Eq.(15-63): H, = 2226798 6na g
33 000
. 106.4(6774)_, 1g hp
33 000
- 966(56.45) _ 1.65 hp
33 000
The mesh is sufficient Ans.
P = PR /cosi= 8/cos4.764= 8.028
p, = 7 /8.028= 0.3913in
g = 966 = 39 500 psi
0.3913(0.5)(0.125)
The stress is high. At the rated horsepower,
O = %6539 500= 23940 psi acceptable

(d)

Chapter 15, Page 18/20



Eq. (15-52):  Amin = 432(85)"" = 1642 irf < 1700 irf
EQ.(15-49): Hjess=33 000(1 — 0563)(218) = 17 530 ft - Ibf/min
Assuming a fan exists on the worm shatft,

Eq.(15-50); fig, = %22 +0.13= 0.568 ft - Ibf/(min - h © F)

17 530

+ =122 _882F Ans.
0.568(1700)

Eq.(15-51): t = 70

S
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15-15 Problem statement values of 25 hp, 1125 rev/imig;= 10,K, = 1.25,ng = 1.1,
¢n = 20°,t, = 70°F are not referenced in the table. The first four parameters listed
in the table were selected as design decisions.

15-15 15-16  15-17 15-18 15-19 15-20 15-21 15-22
Px 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75
dw 3.60 3.60 3.60 3.60 3.60 4.10 3.60 3.60
Fo 2.40 1.68 1.43 1.69 2.40 2.25 2.4 2.4
A 2000 2000 2000 2000 2000 2000 2500 2600
FAN FAN
Hw 38.2 38.2 38.2 38.2 38.2 38.0 41.2 41.2
He 36.2 36.2 36.2 36.2 36.2 36.1 37.7 37.7
H¢ 1.87 1.47 1.97 1.97 1.97 1.85 3.59 3.59
Nw 3 3 3 3 3 3 3 3
Ng 30 30 30 30 30 30 30 30
Kw 125 80 50 115 185
Cs 607 854 1000
Cnm 0.759 0.759 0.759
Co 0.236 0.236 0.236
Ve 492 492 492 492 492 563 492 492
W 2430 2430 2430 2430 2430 2120 2524 @ 2524
W, 1189 1189 1189 1189 1189 1038 1284 1284
f 0.0193 0.0193 0.0193 0.0193 0.0193 0.0183 0.034 0.034
e 0.948 0.948 0.948 0948 0948 0951 0913 0.913
(P)e 1795 1795 1.795 1.795 1.795 1571 1795 1.795
Pn 1.979 1979 1979 1979 1979 1.732 1979 1.979
C-to-C 10.156 10.156 10.156 10.156 10.156 11.6 10.156 10.156
ts 177 177 177 177 177 171 179.6 179.6
L 5.25 5.25 5.25 5.25 5.25 6.0 5.25 5.25
A 24.9 24.9 24.9 24.9 249 2498 249 24.9
oG 5103 7290 8565 7247 5103 4158 5301 5301
de 16.71 16.71 16.71 16.71 16.71 19.099 16.7 16.71
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Chapter 16

16-1 Given: r=300/2=150mm,a=R=125mm, b=40 mm, f =0.28, F=2.2kN, &, =0°,
6, = 120°, and 6, = 90°. From which, sin&; = sin90° = 1.

Eq. (16-2):
M, = 228 pa(O'Ol40)(0'15 0 [~ sin6(0.150 ~ 0.125c0s6) do
= 2.993(10*)p, N-m
Eq (163) M, = pa(o.o40)(oi150)(0.125) J'Oljocsinz 0.do = 9.478(10%) p, N - m
c=2(0.125 cos 30°) = 0.2165 m
9.478(107*) p, — 2.993(10™*
Eq. (16-4): F = (107) P, (107) =2.995(107) p,

0.2165

P = F/ [2.995(107%)] = 2200/ [2.995(107)]
= 734.5(103) Pa for cw rotation

9.478(10*) p, +2.993(10*) p,
0.2165

Eq. (16-7): 2200 =

Pa= 381.9(10°) Pa for ccw rotation
A maximum pressure of 734.5 kPa occurs on the RH shoe for cw rotation.  Ans.

(b) RH shoe
Eq. (16-6):

3 2 o o
T - 0.28(734.5)10°(0.040)0.150°(c0s 0° — c0s120°) _ o o po

1

LH shoe
T = 277.6w =1444N-m Ans
734.5

Tiotal =277.6 + 144.4=422N-m Ans.
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Foree vectors mol to scale

(c) F, F,

~_/ 'y
—_— — - —
"(fh\. ) -/{- i k
r-'f I Secondary
& J
1 g, shoe

Prinary
shoe

RHshoe Fx=2200sin30°=1100 N, Fy=2200 cos 30°=1905N

120° 0 1 27/3 rad
=0.375, B= (— — —sin 2(9) =1.264
2 4

0

Egs. (16-8): A= (lsin2 6’]
2 v
734.5(10)0.040(0.150)

1
~ 734.5(10°)0.04(0.150)

1
R =[(~1007)" + 4128°]"> = 4249N  Ans

Egs. (16-9):

[0.375 — 0.28(1.264)] — 1100 = 1007 N

[1.264 + 0.28(0.375)] — 1905 = 4128 N

LH shoe Fx=1100N, Fy=1905N

381.9(10°)0.040(0.150)

1

381.9(10°)0.040(0.150)
R, = 1 [1.264 — 0.28(0.375)] — 1905 = 751N

R= (597> + 7512)”2 ~ 959N Ans

Egs. (16-10): R = [0.375 + 0.28(1.264)] — 1100 = 570 N

16-2 Given: r=300/2=150 mm, a=R=125mm, b=40 mm, f =0.28, F=2.2kN, 6, = 15°,
6, = 105°, and &, = 90°. From which, sin@; = sin90° = 1.

Eq. (16-2):
0.28p,(0.040)(0.150)
M, = |

105°
[ sin6(0.150 = 0.125c0s6) d6 = 2.177(10™*) p,
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_ P,(0.040)(0.150)(0.125)
1

Eq. (163): M, [sin*0 do = 7.765(10) p,

c=2(0.125) cos 30°=0.2165 m

—4 —4
Eo. (164 F 7.765(107*) p, — 2.177(10°*) p,
0.2165

=2.581(107°) p,

RHshoe Pa = 2200/ [2.581(10"*)] = 852.4 (10°) Pa
= 852.4 kPa on RH shoe for cw rotation AnNS.

3 2 o _ o
Eq (166): T, = 0.28(852.4)10(0.040)(0.150°)(cos15° — c0s105°) _ oo

1
LH shoe

7.765(107*) p, + 2.177(107*
2200 = ( )p’" ( ) e
0.2165
P, = 479.1(103) Pa = 479.1 kPa on LH shoe for ccw rotation ~ Ans.

_0.28(479.1)10°(0.040)(0.150%)(cos 15° — cos105°)

1
=263+148=411N-m Ans

=148 N-m

TL
T

total

Comparing this result with that of Prob. 16-1, a 2.6% reduction in torque is obtained by
using 25% less braking material.

16-3 Given: 6, =0°, 6, =120°, 6,=90°,sin 6,=1,a=R=3.51in, b=1.25in, f=0.30,
F=2251bf, r=11/2 =5.5 in, counter-clockwise rotation.

LH shoe
Eq. (16-2), with 6 = 0:
0,
M, = Mjsinﬁ(r - acosé’)d@ = M

sind, ; sin @

[r(l —cosd,) — éisin2 6’2}
B O.30pa(1.25)5.5[
1

5.51 — cos120°) — 3?SsinZIZO"}

=14.31p, Ibf- in
Eq. (16-3), with 6, = 0:
92

M, = F)j‘—mlfsinz 0do = pa—t’ra[ﬁ - lsinZHZ}

sind, ; sinf, 2 4
_ p.(125)5.5(3.5)[ 120 ( z j_lsin2(120°)
1 2 \180°) 4

= 30.41p, Ibf - in
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C= 2rcos{¥j = 2(5.5)c0s30° = 9.526 in

£ _ yos _ 3041p, —1431p,
9.526

p, = 225/1.690 = 133.1 psi

= 1.690 p,

Eq. (16-6):
, ~ 2
r_ Ipbreeosq —cost) _ 03033DI2GT) (oo
sin 6, 1
= 2265 1bf-in = 2.265kip-in  Ans
RHshoe
F - s 2 041D F 14310 0
9.526
p, = 225/ 4.694 = 47.93 psi
T, - —‘1‘;9':’ 2265 = 816 Ibf-in = 0.816 kip-in

Tt = 2.27+0.82=3.09kip-in  Ans

16-4 (a)Given: 8, =10°, 6, =75°, 0,="75°, Pa= 10°Pa, f=0.24,b=0.075m (shoe width),
a=0.150m, r =0.200 m, d= 0.050 m, c=0.165 m.

Some of the terms needed are evaluated here:

HZ
A= [rrz sin@d d@ — ajez sin @ cos @ dﬁ} = r[—cosﬁ]g2 - a{lsin2 9}
6 6 é 2 a
. 1 75°
= 200[—cos 6’]175 - 150{—sin2 6} = 77.5 mm
2 10°
757 /180 rad

B= Iez sin’@ do = 9 _ lsinza =0.528
g 2 4

107/180 rad

C= j: sin@cos6 do = 0.4514

Now converting to Pascals and meters, we have from Eq. (16-2),

0.24(10°)(0.075)(0.200
_ fpbr, _ 024(10°)(0.075)(0.200)

siné@, sin 75°

M, (0.0775) = 289 N - m
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From Eq. (16-3),

pbra_  10°(0.075)(0.200)(0.150)
M, = B =

sin g, sin 75°

(0.528) = 1230 N - m

Finally, using Eq. (16-4), we have

My — M, 1230 — 289

F = =570kN Ans
C 165
(b) Use Eq. (16-6) for the primary shoe.
T fp,br’(cos @, — cosb,)
sin 6,
0.24(10°)(0.075)(0.200)*(cos 10° — cos 75°
_ 0.24(10°)(0.075)(0.200)*( ) N

sin 75°

For the secondary shoe, we must first find pa. Substituting

1230 289 .
MN:Wpaande:Wpa into Eq. (16 - 7),
6 6
5.70 = (1230 /10 )pfi;j(289 /10 )pa, solving gives p, = 619(103) Pa
Then

. 024/ 619(10°) [0.075(0.200%) (cos 10° ~ cos 75°)

sin 75°

=335N'm

so the braking capacity is Tioa = 2(541) + 2(335)=1750 N-m  Ans.

(c) Primary shoes

p,br
_ PO ety F
R sin Ga( ) "
6
_ 107007500200/ 4514 — 0.24(0.528)1(10™%) — 5.70 = ~0.658 kN
sin 75°
p,br
=—_ (B+fC)-F
R sinﬁa( =5
6
- 10007992005 555 + 0.24(0.4514))(107) - 0 = 9.88 kN
sin 75°
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Secondarghoes

R =P cirp-F

sin @,

0.619(10°)0.075(0.200) :

sin 75°
= —0.143 kN

p,br
R, =—-(B-fC)-F,

sin @,

~0.619(10°)0.075(0.200)

sin 75°
= 4.03 kN

0.4514 + 0.24(0.528))(107") - 5.70

[0.528 — 0.24(0.4514)](107*) - 0

Note from figure that +Yy for secondary shoe is opposite to
+y for primary shoe.

Combining horizontal and vertical components,
R, = —0.658 — 0.143 = —0.801 kN
R, =9.88 —4.03 = 5.85kN

R = /(-0.801)> + 5.85°
=3590kN Ans

16-5 Given: Face width b= 1.25 in, F =90 Ibf, f = 0.25.

Preliminaries: 6, = 45° — tan_1(6/8) =8.13°, 6, =98.13°, 6, =90°,
a=(6"+8)""=10in

Eq. (16-2):
0, 98.13°

M, :Mj‘siné’(r —acosé?)dé’:%(l'zs)6 I sin@(6 — 10cos§) dd
sind, 1 8.13°

= 3.728p, Ibf - in

Eq. (16-3):

0, 98.13°
M, = p_abrajsinzeda _ _R(1:256010) [ sinodo
sin & 1

a g 8.13°

= 69.405p, Ibf - in
Eq. (16-4): Using Fc = My — M¢, we obtain

90(20) = (69.405 — 3.728)p, = p,=274psi Ans
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Eq. (16-6):

fp,br’(cos g, — cos6,) 0.25(27.4)1.25(62)(0058.13O — €0s98.13°)
sin 6, - 1

=348.7Ibf-in  Ans

T=

16-6

For +36,:

f = +36, =025+ 3(0.025) = 0.325

From Prob. 16-5, with f =0.25, M =3.728 pa. Thus, M =(0.325/0.25) 3.728 pa =
4.846 pa. From Prob. 16-5, M y = 69.405 pa.

Eq. (16-4): Using Fc = My — M;, we obtain

90(20) = (69.405 — 4.846)p, = p,=27.88psi AnS

From Prob. 16-5, pa =27.4 psi and T = 348.7 Ibf'in. Thus,

T = 0.3251(27.88 348.7 = 461.3 Ibf -in Ans.
0.25 27.4

Similarly, for -36,:
f =f —36, =0.25-3(0.025) = 0.175
M, = (0.175/ 0.25) 3.728p, = 2.610p,

90(20) = (69.405 —2.610) pa = pa= 26.95 psi

T = 0.175 )(2695 348.7 = 240.11bf-in  Ans.
025 )\ 274

16-7

Preliminaries: 6, = 180° — 30° — tan™'(3/12) = 136°, ) =20° — tan"'(3/12) = 6°,
02 =90°,sinf,=1,a=(3*+ 129" =12.37 in, r = 10 in, f = 0.30, b= 2 in, pa = 150 psi.

Eq (162 M, = 22A0@0) [ *sin (10 — 12.37cos6) dg = 12800 Ibf - in
sin 90° 6°

Eq. (16-3): M, = 1202100237) [ sin*0.do = 53300 Ibf - in
sin 90° 6°

LH shoe
c=12+12+4=281in
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Now note that M; is cw and My is ccw. Thus,

~ 53300 -12 800

F
- 28

= 1446 Ibf

Fy = 1446 Ibf

=361 Ibf

~0.30(150)(2)1 0)*(cos 6° — cos136°)
sin 90°

Eq. (16-6): T, = 15420 Ibf - in

RHshoe
M, = 53300-P2 —3553p, M, = 1280022 = 853,
150 150

On this shoe, both My and My are ccw. Also,

Cr= (24 — 2 tan 14°) cos 14°=22.8 in
F. = F. sinl4° = 361 1bf Ans
Fr = F_ / cos14° = 1491 Ibf

Thus, 1491 = % P, = p, = 77.2 psi

_ 0.30(77.2)(2)(10)*(cos 6° — cos136°)

Then, T n90°

= 7940 Ibf - in

Tiotal = 15420+ 7940 =23 400 Ibf - in ~ Ans.

16-8
M, =2[" (fdN)(dcos@ — )  where dN= pbr &?
= 2fpbr[” (alcosf ~ 1) df = 0

From which

0, 6,
a’j cos@ d@ = rj deo
0 0
re,  r(60°)(z /180)
sin 6, sin 60°

a = =1.209r Ans
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Eq. (16-15):

a= 4r sin 60 - =1.170r Ans.
2(60)(7r / 180) + sin[2(60)]
a differs with a’ by 100(1.170 —1.209)/1.209 = —3.23 % Ans

16-9 (a) Counter-clockwise rotation, 6, = 7/ 4 rad, r=13.5/2=6.75in

Eq. (16-15):
_ 4r 31r'102 _ 4(6.75)s1.n(77 / 4) 7426 in
20, +sin260, 27/ 4+ sin(2x / 4)
e=2a=2(7426) =1485in As
(6) 2

P Actuation
lever

a=tan '(3/14.85)=11.4°

0.428P 2125p
2.125P tie rm_l

D Mg =0=3F"-6375P = F*=2125P
oagp 2R =0=-F*+R* = R'=F*=2125P

FY = F*tan11.4° = 0.428P
YF=-P-F +R
RY = P + 0.428P = 1.428P

F Left shoe lever.
F' Y Mg =0 =7.785 —15.28F"

s =528 5 1osp = 4174P
7.78

S = fS*=0.304.174P = 1252 P
s D F=0=R +S +F’

Tﬁ s RV =-FY-S=-0428P—-1.252 P= —-1.68P
" dF=0=R-S+F

R =S"- F*=4.174P-2.125P=2.049 P
y
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(L428P L4287
2.125P

2.125P

[.252F
4.174P

4.174P Ans.
1.252F
2.04up 20408
I 1.65P I 2.68P
Lelt shoe lever Fight shoe lever

(c) The direction of brake pulley rotation affects the sense of §, which has no effect on
the brake shoe lever moment and hence, no effect on S’ or the brake torque.

The brake shoe levers carry identical bending moments but the left lever carries a
tension while the right carries compression (column loading). The right lever is
designed and used as a left lever, producing interchangeable levers (identical levers).
But do not infer from these identical loadings.

16-10 r=13.5/2=6.75in, b=6in, & =45°= x/4rad.

From Table 16-3 for a rigid, molded non-asbestos lining use a conservative estimate of
Pa = 100 psi, f=0.33.

Equation (16-16) gives the horizontal brake hinge pin reaction which corresponds to S‘in
Prob. 16-9. Thus,

N = 5= P
2
— 5206 Ibf

(26, + sin20,) = M{

2(z / 4) +sin[2(45°) ]}
which, from Prob. 6-9 is 4.174 P. Therefore,

4174 P=5206 = P=1250Ibf=125kip Ans
Applying Eq. (16-18) for two shoes, where from Prob. 16-9, a=7.426 in

T = 2af N = 2(7.426)0.33(5206)
= 25520 Ibf-in = 25.52kip-in  Ans

16-11 Given: D =350 mm, b =100 mm, pa = 620 kPa, f =0.30, ¢=270°.
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Eq. (16-22):

pa;D _ 620(0.1(2)0)0.350 1085KN Ans

1

f$ = 0.30(270°)(x / 180°) = 1.414

Eq. (16-19): P, =P;exp(—f ¢)=10.85 exp(— 1.414)=2.64 kKN Ans.

T=(P-R)D/2) =(10.85-2.64)0350/2)=1437kN-m Ans

16-12 Given:D=121in, f=0.28, b=3.25in, ¢=270°, P;=1800 Ibf.

Eq. (16-22): p, = % = %32)) =923psi  Ans
f¢ =0.28270°)(x / 180°) = 1.319
P, = Pexp(— f¢) = 1800exp(—1.319) = 481 Ibf

T=(P-B)(D/2)= (1800 —-481)(12 / 2)
=79101bf-in =791 kip-in Ans

160

P, F
F ’1\ 100 225

2

TMo=0=100P,-325F = P,=325(300)/100=975N Ans
a = cos”' (@j = 51.32°
160

¢ = 270° — 51.32° = 218.7°
fg = 0.30(218.7)(z / 180°) = 1.145
P = Bexp( f@) = 975exp(1.145) = 3064 N Ans
T = (P - R)(D/2) = (3064 — 975)(200 / 2)

= 209(103) N-mm=209N-m Ans

Chapter 16, Page 11/27



16-14 (a) D=16in, b=3in
n =200 rev/min
f=0.20, p.=70 psi

Eq. (16-22):

> = paZbD = 70(32)(16) = 1680 Ibf

fé=020037/2) = 0.942

Eq. (16-14); P, = Pexp(- f@) = 1680 exp(—0.942) = 655 Ibf

T=(P- Fg)% = (1680 — 655)%
= 8200 Ibf-in ANS

b _ _Tn__ 8200(200)
63025 63025

p=31_';=mzso41bf Ans

=26.0hp AnNs

(b) Force of belt on the drum: 1680 Ihi

635 Ihf

R= (16807 + 655%)"2 = 1803 Ibf
Force of shaft on the drum: 1680 and 655 1bf 13440 ”“"'“'t ) J’m,, Ihfvin

T, = 1680(8) = 13 440 Ibf - in %1503 1t
T, = 655(8) = 5240 Ibf - in

Net torque on drum due to brake band:

T= TH - TF% 168 Thi
=13 440 - 5240 M (555 [
= 8200 Ibf - in B200 ThFvin

The radial load on the bearing pair is 1803 1bf. If the bearing is straddle mounted with
the drum at center span, the bearing radial load is 1803/2 =901 1bf.
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(c) Eq. (16-21):

_2P
P~ D
p|9=0° = 2R = 2(1680) =70 pSl Ans
316)  3(16)
Plysre = 2B _ 2659 _ 7308 Ans
316)  3(16)

16-15 Given: ¢=270°, b= 2.125 in, f=0.20, T=150 Ibf - ft, D = 8.25 in, c; = 2.25 in (see
figure). Notice that the pivoting rocker is not located on the vertical centerline of the
drum.

(a) To have the band tighten for ccw rotation, it is necessary to have ¢; < C; . When
friction is fully developed,

P/ B =exp(fg) = exp[0.237 / 2)] = 2.566
If friction is not fully developed,
P]/Pz < exp( f ¢)

To help visualize what is going on let’s add a force W parallel to P, at a lever arm of
C3;. Now sum moments about the rocker pivot.

DM=0=cW+¢P-¢cP
From which
w - GR-GP
C,

The device is self locking for ccw rotation if W is no longer needed, that is, W< 0.
It follows from the equation above

When friction is fully developed

2.566 = 2.25/¢
¢ =22 _0877in
2.566

When P,/P; is less than 2.566, friction is not fully developed. Suppose P,/P, = 2.25,
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then
225

C = =1lin
2.25

We don’t want to be at the point of slip, and we need the band to tighten.

&<
R/R

G <c

When the developed friction is very small, P,/P, — 1andc; —» ¢, Ans.
(b) Rocker has ¢; =1 in
B 1
_ In(R/B) In 225
¢ 37/2

~ 8 2B s
G

—h I\)-U |—-U

=0.172

Friction is not fully developed, no slip.

T=<R—F;>§=PZ(5— jR

R )2
Solve for P,
oA 20500D) .
[(R/PR)—1]D  (2.25— 1)(3.25)
R = 225B, = 2.25(349) = 785 Ibf
p=20_ 208 _g96psi Ans

" bD  2.125(8.25)

(c) The torque ratio is 150(12)/100 or 18-fold.
P = 349 _ 19.4 Ibf
18

P = 2.25B = 2.25(19.4) = 43.6 Ibf

p= 89:6 =498 psi Ans
18
Comment:
As the torque opposed by the locked brake increases, P, and P; increase (although

ratio is still 2.25), then p follows. The brake can self-destruct. Protection could be
provided by a shear key.

16-16 Given: OD =250 mm, ID = 175 mm, f=0.30, F =4 kN.
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(a) From Eq. (16-23),
oF 2(4000)

p, = = =0.194 N/'mm* = 194 kPa  Ans
7d(D—d)  z(175)250 — 175)
Eq. (16-25):
T = FTf(D + dy = 2000030 555 4 175)10° =127.5 N-m  Ans

(b) From Eq. (16-26),

p, = ?F — = 4(‘2‘000) — = 0.159 N/'mm’® = 159 kPa Ans
(D> —d*)  7(250° —175%)
Eq. (16-27):
_7 3 N _ 7 3 3 3 3)3
T=2 fp@D -d)- E(0.30)159(10 )(250° - 175%)(107)

=128N-m Ans

16-17 Given: OD=6.5in, ID =4 in, f=0.24, p, = 120 psi.

(a) Eq. (16-23):

c_ ﬂgad(D Cdy- 7[(1220)(4)

(6.5-4) =18851bf Ans

Eq. (16-24) with N sliding planes:
T - 7rfpad(D2 _dY)N = 7(0.24)(120)(4)
8 8

= 71251bf-in  Ans

(6.5 — 4°)(6)

(b) T - 72'(0.24;(1200') 6.5 — d*)(6)
d,in T,Ibf-in
2 5191
3 6769
4 7125 Ans.
5 5853
6 2545

() The torque-diameter curve exhibits a stationary point maximum in the range of
diameter d. The clutch has nearly optimal proportions.

16-18 (a) Eq. (16-24) with N sliding planes:
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T =

2 2
f pad(D —d)N _ ﬁfgpdN(Dzd_CP)

8

Differentiating with respect to d and equating to zero gives

aT _~fpN RN(p2 _392) = 0
dd 8

D
d*=— Ans

NE)
2
dT:_67rfpaNd:_37rngd
dd’ 8 4

which is negative for all positive d. We have a stationary point maximum

6.5

b d*=—==375in Ans
(b) NE
Eq. (16-24):
7(0.24)(120)(6.5 / 3 2
T* = 8( )[6.52 - (6.5 / J§) }(6) = 7173 Ibf - in
(c) The table indicates a maximum within the range: 3 <d<5in
(d) Consider: 0.45 = % = 0.80

Multiply through by D,
0.45D <d <0.80D
0.45(6.5) < d < 0.80(6.5)
2925<d<52in

%

(gj :d*/D:L:0.577
D V3
which lies within the common range of clutches.

Yes. AnNS.

16-19 Given:d=11in, 1=2.25in, T=18001bf-in, D=12in, f=0.28.
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Uniformwear

Eq. (16-45):
AR
8sina
1800 = W(uz - 117) = 128.2p,
8sin12.53°
1800 .
=——=14.04pst Ans
Pa 128.2 P
Eq. (16-44):

7(14.04)11

F :%ﬂd(D—d): (12— 11) = 243 1bf  Ans

Uniform pressure

Eq. (16-48):

T=Z P (p )

12sina
1800 = M(lf ~11°) = 134.1p,
12s1n12.53°
1800
=" =1342psi Ans

Pa = 1341 P

Eq. (16-47):

4 4

12° - 11°) = 242 Ibf  Ans

16-20 Uniform wear

Eq. (16-34): T= %(92 —0)fpr(r-r’)
Eq. (16-33): F=(6,—-6)) pari (ro—ri)
Thus,

T /20, -6)f pr(r) -r?)
fFD (6, - 8)p.r(r, —1)D)

_ L+ _D/2+d/2 1 1+g OK.  Ans
2D 2D 4 D

Uniform pressure

Eq. (16-38): T = %(92 —0)fp,(r] - 1)
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Eq. (16-37): F = %(02 —0)p,(12 - 1?)

Thus,

T WG -0fp(r-r) 2 (©/2-d/2y
fFD 1/ 2@, -6)p,(r2-1’)D  3|[(D/2)-(d/2’D]
20/2[1-@/D’] i[1-(d/D)

1-(d/ D)

- 3D/2¢[1-(d/Dy|D 3

} O.K. Ans

16-21
o =27n/60 =27z 500/ 60 =52.4rad/s

H _2310%
0] 52.4

=382N'm

Key:.

F :I:ﬁ=3.18kN
r 12
Average shear stress in key is
. 3.18(10°)
~6(40)
Average bearing stress is

3
o, = _FB__3180) -26.5MPa Ans

A 3(40)

Let one jaw carry the entire load.

=132 MPa Ans

ly = %(é + ﬁj =17.75 mm

2 2
F=l =282 55k
r 17.75

av

The bearing and shear stress estimates are

-2.15(10°)
O'b =
10(22.5 — 13)
2.15(10%)
T =
10[0.257(17.75)" ]

= -22.6 MPa Ans

= (0.869 MPa Ans
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16-22
@, =27zn/ 60 = 27(1600) / 60 = 167.6 rad/s
w, =0
From Eq. (16-51),
I, Tt, 2800(8)

= = =133.7 Ibf - in - s
L +1, @ - 167.6-0

Eq. (16-52):
[ > 1337
E=—"2— - = —""-(167.6 —0)> =1.877(10°) Ibf- i
20,1yl @) = ) (10°) 1or- in

In Btu, Eq. (16-53): H=E/9336 = 1.877(10% /9336 = 201 Btu

Eq. (16-54):
H 201

AT = =
C,W  0.12(40)

=419°F Ans

16-23
SN 260 +240
2 2
Eq. (16-62): Cs =(w2—®1)/ @ = (N —ny)/n= (260 — 240)/250=0.08 Ans

= 250 rev/min

@ =27 (250) /60 =26.18 rad/s

From Eq. (16-64):

_ 6.75(10°
I:E2 ZE‘: ( )2:123.1N-m-s2
C’  0.08(26.18)

m 8l 8(123.1)
| =—(d>+d?) = m= = = 2339k
8( o+ ) A2+ d> 1.5° +1.4° s

Table A-5, cast iron unit weight = 70.6 kN/m* = p=70.6(10%)/9.81 =7197 kg / m’.
Volume: V=m/p =233.9/7197=0.0325 m’

V = zt(d; - d’) /4 = xt(1.5° - 1.4°) / 4 = 02278t
Equating the expressions for volume and solving for t,

t = 0.0325 =0.143m =143 mm Ans
0.2278
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16-24 (a) The useful work performed in one revolution of the crank shaft is
U =320 (10%) 200 (107) 0.15=9.6 (10*) J
Accounting for friction, the total work done in one revolution is
U=19.6(10°)/(1-0.20)=12.0(10°) J

Since 15% of the crank shaft stroke accounts for 7.5% of a crank shaft revolution, the
energy fluctuation is

E, — E; =9.6(10%) — 12.0(10%)(0.075) = 8.70(10*) J  Ans.
(b) For the flywheel,

n = 6(90) = 540 rev/min
2zn  27(540)

o= = 56.5 rad/s
60 60
Since Cs=0.10
_ 3
Eq. (16-64): | = E-§ = 8.7000) =2725N -m-s’

C.w’ 0.10(56.5)
Assuming all the mass is concentrated at the effective diameter, d,

md*

| =mr? =

m=2 _2C@T2) _ 75010 s
12

16-25 Use Ex. 16-6 and Table 16-6 data for one cylinder of a 3-cylinder engine.

C, =0.30

N = 2400 rev/min or 251 rad/s

T, =20 _gos1bf-in  Ans
4

E, - E =3(3531) = 10 590 in - Ibf
 _E-E _ 1059

- == — =0.560in-1bf-s> Ans
Cw 0.30(251%)
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16-26 (a)

(1)
= L Ans
2) Equivalent energy
1/ )0 =1/ 2)(0,),(e})
@? |
(1), = a)_122|2 = n_22 Ans
2 2
r) ()
3) S, 1L =n
el
| n*l, 5
From (2) () =3="g =ml Ans

I
o)1, = IM+IP+n2IP+n—; Ans,

(©) 1,=10+1+10%1)+ 11& =112

L L reflected load inertia
reflected gear inertia

pinion inertia
armature nertia

Ans.

16-27 (a) Reflect I, |, to the center shaft

lp I,

i

2 L
I, $fp+m R
n-
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Reflect the center shaft to the motor shaft

I
. Ip+ ol + 1, fm?
Iy + i, + .
2
=1, +|P+n2|P+L—§+%|P+ nianz Ans
2
(b) For R=constant=nm_ |, = I, +IP+n2|P+I—Z+R—1P+:Q—'5 Ans
n n
ol 2()  4(10H1
(c)For R=10, r‘:=0+0+2n(l)— r(13)_ (ns)()+O:O
" —n*—200=0
From which
n*=2430 Ans
- 1% s A
2.430
Notice that n*and m* are independent of | .
16-28 From Prob. 16-27,
2
=1, +1,+n7 P+:]—F2’+ Rn:" +|¥L
1 100(1) 100
=10+ 1+ (1) + — + +—
@ n* n' 10?

:12+n2+%+1i40
N n
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n I,

1.00 114,00

1.50 34.40 L

200 2250 . .
|l

2.43 200.90) .

3.00 22.30 I '

4.00 28.50 i .

5.00 37.20 Te Lt

6.00 48.10 """"“’_TI e

7.00 61.10 oI 4 6 8 0w

5.00 76,00 T—J-U

9.00 93.00

10.00 112.02

Optimizing the partitioning of a double reduction lowered the gear-train inertia to
20.9/112 = 0.187, or to 19% of that of a single reduction. This includes the two additional

gears.

16-29 Figure 16-29 applies,

t,=10s t =05s
Lot _10-05_
t 0.5

The load torque, as seen by the motor shaft (Rule 1, Prob. 16-26), is

= 1560 Ibf - in

T - 1300(12)
10

The rated motor torque T, is

T _ 630250)

; =168.07 Ibf - in
1125

For Egs. (16-65):
w, = 2—7[(1125) =117.81rad/s

60
o, = 2—75(1200) = 125.66 rad/s
a= T __ 168.07 = —21.41 Ibf-in-s/rad
O. — @ 125.66 — 117.81

S r

Tow, _ 168.07(125.66)
o, — o, 12566 —117.81

S r

b= = 2690.4 Ibf - in
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The linear portion of the squirrel-cage motor characteristic can now be expressed as

Tu = 2141w+ 2690.4 Ibf - in
Eq. (16-68):

19
T - 168'07(1560 — 168.07]

1560 — T,

One root is 168.07 which is for infinite time. The root for 10 s is desired. Use a
successive substitution method

Tz New Tz
0.00 19.30
1930 24.40
24.40 26.00
26.00 26.50
26.50 26.67

Continue until convergence to

T, =26.771 Ibf - in

Eq. (16-69):
—t _ _
_Alboh) | 21400 205) o) e g
In(T,/T,) In(26.771/168.07)
T-b
) =
a
o - T,-b _ 26771 -2690.4 _ 12441 radls  ANS
a -21.41
o, =117.81rad/s Ans
5= 124.41 42- 117.81 _ 121,11 rad/s
C. - Doy = Dy _ 12441 11781 0.0545 Ans
(0, + @) /2 (12441+117.81)/2
E = % o’ = %(110.72)(117.81)2 = 768 352 in - Ibf
E, = %Ia)z2 = %(110.72)(124.41)2 = 856 854 in - Ibf
AE = E, — E =856 854 — 768 352 = 88 502 in - Ibf
Eq. (16-64):

AE = Clo* = 0.0545(110.72)(121.11)°
= 88 508 in - Ibf, close enough Ans
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During the punch

T - 83025H
n
o TL@(60/27) | 1560021 11(60/27) _ o ¢
63 025 63 025

The gear train has to be sized for 28.6 hp under shock conditions since the flywheel is on
the motor shaft. From Table A-18,

= e+ o) = %(dj v d?)

8gl  8(386)(110.72)
d2+d> d2+d

W =

If a mean diameter of the flywheel rim of 30 in is acceptable, try a rim thickness of 4 in

d =30-(4/2)=28in
d, =30+ (4/2) =32in
_ 8(386)(110.72)

W
32° +28°

=189.1 Ibf

Rim volume V is given by

7l 7
V = = (d? - d?) = =(32% — 28%) = 188.5l
o ?) 5 )

where | is the rim width as shown in Table A-18. The specific weight of cast iron is
7=0.260 Ibf / in’, therefore the volume of cast iron is

Vv =W=@=7z7.3in3
y  0.260

Equating the volumes,

188.51 = 727.3
| = w = 3.86 in wide
188.5

Proportions can be varied.

16-30 Prob. 16-29 solution has | for the motor shaft flywheel as
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|=110.72 Ibf-in - s’
A flywheel located on the crank shaft needs an inertia of 10% 1 (Prob. 16-26, rule 2)
|=10%110.72) =11 072 Ibf - in - §*

A 100-fold inertia increase. On the other hand, the gear train has to transmit 3 hp under
shock conditions.

Stating the problem is most of the solution. Satisfy yourself that on the crankshaft:

T, =1300(12) = 15 600 Ibf - in

T =10(168.07) = 1680.7 Ibf - in

o =117.81/10 = 11.781 rad/s

o, = 125.66 / 10 = 12.566 rad/s

a = -21.41(100) = —2141 Ibf - in- s/rad
b = 2690.35(10) = 26903.5 Ibf - in

T, = —2141a, + 26 903.5 Ibf - in

15 600 — 1680.5 )
15600 — T,

T, = 1680.6(

The root is 10(26.67) = 266.7 Ibf - in

w=121.11/10 =12.111rad/s

C, = 0.0549 (same)

o, =121.11/10 = 12.111 rad/s Ans
o . =117.81/10 =11.781 rad/s Ans

min

Ei, E», 4E and peak power are the same. From Table A-18

8gl  8(386)(11072) _ 34.19(10°)
d+d  d+dF  d+d

Scaling will affect d, and d; , but the gear ratio changed |. Scale up the flywheel in the
Prob. 16-29 solution by a factor of 2.5. Thickness becomes 4(2.5) = 10 in.

W =

d =30(2.5) = 75 in
d, =75+ (10/2) =80in
d =75-(10/2)=70in
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B 34.19(106)

802 + 70
v =W _ 3026 gagin’
¥ 0.260
V = %I(802 ~70%) = 1178 |
| =168 g egin
1178

Proportions can be varied. The weight has increased 3026/189.1 or about 16-fold while
the moment of inertia | increased 100-fold. The gear train transmits a steady 3 hp. But the
motor armature has its inertia magnified 100-fold, and during the punch there are
deceleration stresses in the train. With no motor armature information, we cannot
comment.

16-31 This can be the basis for a class discussion.
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Chapter 17

17-1 Given: F-1 Polyamide, b= 6 in, d =2 in with n= 1750 rev/min, H,m =2 hp, C=9(12) =
108 in, velocity ratio = 0.5, Ks=1.25,ng =1

V=rxdn/12=7(2)(1750)/12=916.3 ft/min

D=d/velratio=2/0.5=41in

Bq (171 0, =7 -2sin" 2= = 7 _2gin| 222 | 3123 rad
2C 2(108)

Table 17-2:  t=0.05 in, dpin = 1.0 in, F5 = 35 Ibf/in, y = 0.035 Ibf/in®, f=0.5

w = 12 bt = 12(0.035)6(0.05) = 0.126 Ibf/ft

w(V jz ~ 0.126(916.3
32.17

2
a)Eq. (e),p. 885: F, = —| — 221 =09131bf Ans
(@) Eq. (e),p a\60 60}

_ 63025H,, Kn, 63 0252)(1.25)1)

T =90.0 Ibf - in
n 1750
AF = (Fl)a -F = % _ 2000 _ 90.0 Ibf
Table 17-4: Cp,=0.70
Eq. (17-12): (F1)a=bFaCyCy = 6(35)(0.70)(1) = 147 Ibf ~ Ans.

Fo=(F1)a—-[(F1)a—F2]=147-90=571bf Ans.

Do not use Eq. (17-9) because we do not yet know f’

, F) +F
Eq. (i), p. 886: F = (Rl +F F = 1477”7 ~ 0913 =101.1Ibf Ans

Using Eq. (17-7) solved for f’ (see step 8, p.888),

PR SR G Y ln(147 — 0.913) 0307
6, | F,-F, 3.123 {57 -0913

The friction is thus underdeveloped.

(b) The transmitted horsepower is, with AF = (F1)a — F2 = 90 1bf,
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_(AF)V _ 90(916.3)
33000 33000

Eq. (§), p- 887: H =25hp Ans

o H 25
OH K, 2(1.25)
Eq. (17-1): g, =7 +2sin" 29— 2 o6in| 222 | 23160 rad
2(108)

Eq. (17-2): L=[4C*— (D - d)*]"* + (D& + dby)/2
=[4(108)” — (4 — 2)*]"* + [4(3.160) + 2(3.123)]/2=225.4in  Ans.

3Cw 3108 / 12)°(0.126)
2F 2(101.1)

=0.151in Ans

(c) Eq. (17-13): dip =
CommentThe solution of the problem is finished; however, a note concerning the design
is presented here.

The friction is under-developed. Narrowing the belt width to 5 in (if size is available) will
increase f’. The limit of narrowing is b, = 4.680 in, whence

w = 0.0983 Ibf/ft (F), = 114.7 Ibf
F. = 0.713 Ibf F, = 24.7 Ibf

T =90 Ibf-in (same) f'=1 =0.50
AF = (F), - F, = 90 Ibf dip = 0.173 in
F = 68.9 Ibf

Longer life can be obtained with a 6-inch wide belt by reducing F; to attain f’ = 0.50.
Prob. 17-8 develops an equation we can use here

_ (AF + F) exp(fO) - F,

F =
exp(fO) —1

F, =F - AF

F_ F+F =

I 2 Cc

. im[_ﬁ - ch

0 \F-F
2

dip = 3Cw

2F

which in this case, 04 = 3.123 rad, exp(f 6) = exp[0.5(3.123)] =4.766, w = 0.126 1bf/ft,
AF =90.0 1bf, Fc = 0.913 Ibf, and gives
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F_ (0.913 + 90)4.766 -0.913

! 4766 — 1
Fr=114.8—90=24.8 Ibf

=114.8 Ibf

Fi=(114.8+24.8)/2 - 0.913 = 68.9 Ibf

o | ln[114.8—0.913 050
3123 \ 248 - 0913
3(108 / 12)°0.126

dip = ( ) = 0.222 in

2(68.9)

So, reducing F; from 101.1 Ibf to 68.9 Ibf will bring the undeveloped friction up to 0.50,
with a corresponding dip of 0.222 in. Having reduced F,; and F,, the endurance of the
belt is improved. Power, service factor and design factor have remained intact.

17-2

Double the dimensions of Prob. 17-1.

In Prob. 17-1, F-1 Polyamide was used with a thickness of 0.05 in. With what is available
in Table 17-2 we will select the Polyamide A-2 belt with a thickness of 0.11 in. Also, let
b=12in, d =4 in with n= 1750 rev/min, Hyom = 2 hp, C= 18(12) = 216 in, velocity
ratio= 0.5, Ks=1.25, ng=1.

V =rzdn/12=7(4)(1750)/ 12 = 1833 ft/min

D=d/velratio=4/0.5=8in

Eq. (17-1): 6, = 7 — 2sin™ D-d _ osin| 324 | 23123 rad
2C 2(216)

Table 17-2:  t=0.11 in, dpin = 2.4 in, F4 = 60 Ibf/in, = 0.037 Ibf/in’, f= 0.8

w =12 bt = 12(0.037)12(0.11) = 0.586 Ibf/ft

2 2
(2)Eq. (6),p. 885:  F, = E(l) - @(@) —17.01bf  Ans
g\ 60 32.170 60

L 63025H, KN, _ 630252)0.25(0) _ gy 0 e
n 1750

AF = (F). —F, = 2L 2 20000 _ 4501y

a d 4
Table 17-4: Cp,=0.73
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Eq. (17-12): (F1)a = bFaCpCo = 12(60)(0.73)(1) = 525.6 Ibf  Ans.
Fy = (F1)a—[(F1)a— F2] = 525.6 — 45=480.6 Ibf  Ans.

e _(F),+F _ _5256+4806

Eq. (i), p. 886: i : o= —170=486.11f Ans
Eq. (17-9):
ot BazFe) 1 ln(525'6 — 17'0j = 0.0297
0, | F,—-F 3.123  (480.6 —17.0

The friction is thus underdeveloped.
(b) The transmitted horsepower is, with AF = (F1)a — F, = 45 1bf,

b _ (AP _ 45(1833)

33000 33000
H 25
N, =

*TH K. 20125

nom S

=25hp Ans

Eq. (17-1): 0, = = + 2sin”’ D-d_ 7z+2sin-[ 8 -4

= 3.160 rad
2(216)}
Eq.(17-2): L=[4C*—(D-d)}]"*+ (D6 + dby)/2

=[4(216)* — (8 — 4)*]"* + [8(3.160) + 4(3.123)]/2=450.9 in  Ans.

3C7w 3216 / 12)*(0.586)
2F 2(486.1)

o

Tk

(c) Eq. (17-13): dip = =0.586in Ans

17-3

As a design task, the decision set on p. 893 is useful.

A priori decisions:

* Function: Hjom = 60 hp, n=380 rev/min, C=192 in, Kg= 1.1

* Design factor: ng=1

* Initial tension: Catenary

* Belt material. Table 17-2: Polyamide A-3, F5 =100 Ibf/in, y =0.042 lbf/in3, f=0.8
* Drive geometry: d=D =48 in

* Belt thickness: t=0.13in
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Design variable: Belt width.

Use a method of trials. Initially, choose b= 6 in

_ zmdn _ 7(48)(380)
12 12

w = 12ybt = 12(0.042)(6)(0.13) = 0.393 Ibf/ft

wV?  0.393(4775 / 60’

= 4775 ft/min

F - _ 77.4 1bf
g 32.17
L+ 63025H,, KN, _ 63025600000 _ 0 gu e i
n 380
AF = 2T _ 200946) _ 156 1 1
d 43

F = (F), = bF,C,C, = 6(100)(1)(1) = 600 Ibf
F, = F — AF =600 — 456.1 = 143.9 Ibf

Transmitted power H
H - AF(V)  456.1(4775)

= = 66 hp
33 000 33 000
_F+F E 600 + 143.9

—77.4 = 294.6 1bf

, _F 1, (600-774
f'"=—In =—In| ——
0, F,-F, r \1439-774

j = 0.656

Eq. (17-2): L =[4(192)* — (48 — 48)*]"* + [48(n) + 48(n)] / 2 = 534.8 in

Friction is not fully developed, so by, is just a little smaller than 6 in (5.7 in). Not having
a figure of merit, we choose the most narrow belt available (6 in). We can improve the
design by reducing the initial tension, which reduces F; and F,, thereby increasing belt
life (see the result of Prob. 17-8). This will bring f’ to 0.80

_ (AF + F,)exp(f0) - F,
b exp(f@)—l

exp( f@) = exp(0.807) = 12.345

Therefore
F - (456.1 + 77.4)(12.345) - 77.4 5737 Ibf
12.345 -1
F, =F — AF =573.7 — 456.1 = 117.6 Ibf
F :¥_ E =wJM = 268.3 Ibf

These are small reductions since f’ is close to f, but improvements nevertheless.
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fr=—mI_1—== lln(573'7 — 77'4j = 0.80
w

117.6 — 77.4

3Cw 3192/ 12)3(0.393)
2F 2(268.3)

dip = = 0.562 in

17-4 From the last equation given in the problem statement,

1
{2T /[d(a - a) b}

P._il_ﬁamqu

exp(fg) = -

-~ d(a - a)
2T
[mjexp( f¢) = eXp( f¢) -1

b 1 (ﬁ){ exp( f¢) }
a-ald exp(f¢)—1
But 2T/d= 33 000Hg/V. Thus,
oo | (33 OOOHd]{ exp(f4) } OED.

a, — & \Y exp( f¢)—1

17-5 Refer to Ex. 17-1 on p. 890 for the values used below.
(a) The maximum torque prior to slip is,

63 025H,, K., 63 025(15)(1.25)(1.1)

nom S

n 1750

T = 7428 1bf-in Ans

The corresponding initial tension, from Eq. (17-9), is,

E _ T(exp(fo) +1) _ 742.8(11.17+1

i j:148.llbf Ans
d{exp(fo) -1 6 \11.17 -1

(b) See Prob. 17-4 statement. The final relation can be written
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. 1 {33000Haexp(f6’)}
™ FC,C, —(12yt/32.174)(V / 60)’ | Mexp( f0) 1]

~ 1 33 000(20.6)(11.17)
~100(0.7)(1) — {[12(0.042)(0.13)] / 32.174}(2749 / 60)*| 2749(11.17 — 1)

=4.13in ANnS

This is the minimum belt width since the belt is at the point of slip. The design must
round up to an available width.

Eq. (17-1);
0, =rm— 2sin1(D—_d) — 7 —2sin| 1820
2C 209 |
=3.016 511 rad
0, = m + 2sin” (D—_dj _ 7+ 2sin| B0
2C | 2096) |

= 3.266 674 rad

Eq. (17-2):
L = [4(96)> — (18 — 6))]"* + %[18(3.266 674) + 6(3.016 511)]
=230.074in  Ans

2T 2(742.8)
===
(F), = bF,C,C, = F, = 4.13(100)(0.70)(1) = 289.1 Ibf
F, = F — AF =289.1-247.6 = 41.5 Ibf

w = 12ybt = 12(0.042)4.13(0.130) = 0.271 Ibf/ft

() AF = = 247.6 Ibf

2 2
- g(ij _ 0.271[2749) 71
gl60) ~ 3217\ 60
F - ¥_ =280 4S g0 76

Transmitted belt power H

_AF(V) _ 247.6(2749) _

- — 20.6 hp
33000 33000
. __H 20.6

*TH K. 15125

nom S
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3Cw  3(96 /12)*(0.271)
2F 2(147.6)

Dip: dip = = 0.176 in

(d) If you only change the belt width, the parameters in the following table change as
shown.

Ex. 17-1 This Problem

b 6.00 4.13
w 0.393 0.271
Fe 25.6 17.7
(F)a 420 289
F) 172.4 415
Fi 270.6 147.6
fr 0.33* 0.80%*
dip  0.139 0.176

*Friction underdeveloped
**Friction fully developed

17-6 The transmitted power is the same.

n-Fold
b=6in b=12in Change
Fec 25.65 513 2
Fi 27035 6649 2.46
(Fi)a 420 840 2
F, 172.4 592.4 3.44
Ha 20.62 20.62 1
Nts 1.1 1.1 1
fr 0.139 0.125 0.90

dip 0.328 0.114 0.34

If we relax F; to develop full friction (f = 0.80) and obtain longer life, then

n-Fold
b=6in b=12in Change
Fc  25.6 51.3 2
Fi 148.1 148.1 1
Fi 2976 3232 1.09
F» 50 75.6 1.51
fr 0.80 0.80 1

dip 0.255 0.503 2
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17-7

H

N
} o
llr
{ [N

[ C

Find the resultant of F; and F»:

. ,D-d
a = sin
2
. D-d
sing = ————
2C
, 1(D-dY
cosg =1 — —| ——
2\ 2C

R* = Fcosa + F,cosa = (F, + Fz){l

R’ = Fsina — Fsina = (F - F)

¥

2
D_d)} Ans.
2C

_l(
2
D-d

2C

From Ex. 17-2,d=16in, D =36 in, C=16(12) = 192 in, F; = 940 Ibf, F, =276 Ibf

sin”' 3616 _ 2.9855°
2(192)

2
R* = (940 + 276)| 1 — 1136 =16 V| 15144 1bf
2\ 2(192)
RY = (940 — 276) 307161 34 61bf
| 2(192)
d 16 .
T=(F-F) 5= (940 — 276) = 5312 Ibf - in

17-8 Begin with Eq. (17-10),

F=F

c

+ F

Introduce Eq. (17-9):

2exp(f0)
"exp(fO) -1
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1 C

E_F +d{exp(f6’)+l}{ 2exp(fO) }: F +£[ exp(f0O) }

exp(f@) —1|| exp(fO) +1 ¢ d|exp(fO) -1
F-F +aF_200)
exp(f@) —1

Now add and subtract F, M
exp(f@) -1

c

FoF +F{ exp(f6) }AF{ exp(f6) }_F[ exp(f6) }

exp(fo) —1 exp(fo) —1 exp(fo) —1
—(F +aF)| 2D | el _exp(O)
exp(fo) —1 exp(fo) -1
_ (F, + AF) exp(fg) | F.
exp(fo) -1 exp(fo) —1
_(R+ AF)exp(f0) — F, QED.
exp(fo) —1
From Ex. 17-2: 64 = 3.037 rad, AF = 664 Ibf, exp( f&) = exp[0.80(3.037)] = 11.35, and
Fc=73.41bf.
F - (73.4 + 664)11.35 - 734 _ 202 Ibf
(11.35-1)
F, = F — AF =802 — 664 = 138 Ibf

E_ 802 + 138

f' = iln F-F|__1 11{802 — 734) =0.80 Ans
0, \F,—F ) 3037 \138-73.4

—73.4 =396.6 Ibf

17-9 This is a good class project. Form four groups, each with a belt to design. Once each
group agrees internally, all four should report their designs including the forces and

torques on the line shaft. If you give them the pulley locations, they could design the line
shaft.

17-10 If you have the students implement a computer program, the design problem selections
may differ, and the students will be able to explore them. For Ks=1.25, ngq= 1.1, d= 14
in and D = 28 in, a polyamide A-5 belt, 8 inches wide, will do (D, = 6.58 in)

17-11 An efficiency of less than unity lowers the output for a given input. Since the object of
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the drive is the output, the efficiency must be incorporated such that the belt’s capacity is
increased. The design power would thus be expressed as

_H KJn,

nom S

H
d eff

Ans

17-12

Some perspective on the size of F¢ can be obtained from

£ _ z[i)z _ m[xj
¢ gle6o g (60

An approximate comparison of non-metal and metal belts is presented in the table below.

Non-metal Metal
7, Ibf/in® 0.04 0.280
b, in 5.00 1.000
t, in 0.20 0.005

The ratio w / wm is
w  12(0.04)(5)(02) .
w,.  12(0.28)(1)(0.005)

The second contribution to F is the belt peripheral velocity which tends to be low in
metal belts used in instrument, printer, plotter and similar drives. The velocity ratio
squared influences any F¢/ (F¢)m ratio.

It is common for engineers to treat F. as negligible compared to other tensions in the
belting problem. However, when developing a computer code, one should include F.

17-13

Eq. (17-8):
AF = F —F, = (F, - Fc)exp(fé?) -1 = F exp(fo) -1
exp(f o) exp(f o)
Assuming negligible centrifugal force and setting F; = ab from step 3, p. 897,
_ AF  exp(f6) 0
™ a exp(fo) —1
AISO’ Hd = HnomKSnd = (AF)V
33 000
AF = 33 000H K.,
Vv
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Substituting into Eq. (1), b. = 1[33 OOOHd] exp(f0)

min V exp( f0) — 1

17-14 The decision set for the friction metal flat-belt drive is:
A priori decisions

* Function: Hpom =1 hp, n=1750 rev/min, VR=2, C = 15in, Kg=1.2,
N=10° belt passes.
* Design factor: ng = 1.05
* Belt material and properties: 301/302 stainless steel
Table 17-8: Sy =175 kpsi, E=28 Mpsi, v=10.285
* Drive geometry: d=21in, D=41in
* Belt thickness: t=0.003 in

Design variables:

* Belt width, b
* Belt loop periphery

Preliminaries

H, = H__Kn, =1(1.2)(1.05) = 1.26 hp

nom S

T = 83025020 _ 45 3¢ 1bf - in
1750

A 15 in center-to-center distance corresponds to a belt loop periphery of 39.5 in. The
40 in loop available corresponds to a 15.254 in center distance.

0, = = — 2sin™ 472 1 _30101ad
2(15.254)

0, = 7 + 2sin”’ 472 | 3573rad
2(15.274)

For full friction development

exp(fé,) = exp[0.35(3.010)] = 2.868

_mdn _ 7(2)(1750)
1212

S, =175 kpsi

=916.3 ft/s

Eq. (17-15):
-0.407

S, =14.17(10°) N7 =14.17(10°)(10°) ™ = 51.212(10) psi
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From selection step 3, p. 897,

a:{sf = Et ][:[51.212(103)—28(106)(0'003)}(0.00

v*)d (1 - 0.285%)(2)

=16.50 Ibf/in of belt width
(F), = ab = 16.50b

For full friction development, from Prob. 17-13,

_AF exp(f6y)
" a exp(f6,) -1

AF = % _ 2038538) _ s 38 1bf
So
| _4538( 2868 ) _ o0
16.50 L 2.868 — 1

Decision#l: b=4.51in

F = (F), = ab =16.5(4.5) = 74.25 Ibf
F, = F — AF = 74.25 — 45.38 = 28.87 Ibf
F+F 7425+ 28.87

F=- 2= — = 51.56 Ibf
2 2
Existing friction
,:_ (F) 1 1n[74.25j:0_314
L J 3.010 \28.87

(AF)V 45.38(916.3)

733000 33000
H 1.2
= e 126 1.05
H K. 1.2

nom S

=1.26 hp

n

3)

This is a non-trivial point. The methodology preserved the factor of safety corresponding

to Ng = 1.1 evenas we rounded by, up to b.

Decision#2 was taken care of with the adjustment of the center-to-center distance to
accommodate the belt loop. Use Eq. (17-2) as is and solve for C to assist in this.

Remember to subsequently recalculate 6y and 6p .
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17-15 Decision set:

A priori decisions

* Function: Hpom =5hp, N=1125rev/imin, VR=3, C = 20in, Ks=1.25,
N=10° belt passes

* Design factor: ng=1.1

* Belt material: BeCu, S,=170kpsi, E=17 Mpsi, v =0.220

* Belt geometry: d=3in, D=9 in

* Belt thickness: t=0.003 in

Design decisions
* Belt loop periphery
* Belt width b

Preliminaries

H, = H__Kn, = 51.25)1.1) = 6.875 hp

nom S

T _ 6302563875
1125

=385.2 Ibf- in

Decision#1: Choose a 60-in belt loop with a center-to-center distance of 20.3 in.

0, = x — 2sin”" 9 =3 | _ 5845 rad
2(20.3)

0, = 7 + 2sin”’ 9 =3 | 3438 rad
2(20.3)

For full friction development:

exp(fé,) = exp[0.32(2.845)] = 2.485

_zmdn _ 7(3)(1125)
12 12

S; = 56.67 kpsi

= 883.6 ft/min

From selection step 3, p. 897,
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a= {sf - (L} t= {56.67(103) - M} (0.003) = 116.4 Ibf/in

1-vhd (1-0.22%)(3)
ap = 220850 g gy
| _AF exp(f6,) | _ 256.8( 2.485 J: 3.6 in
a |exp(f,) -1 116.4\2.485 -1

Decision#2: b=41in

F = (F), = ab = 116.4(4) = 465.6 Ibf
F, = F — AF = 465.6 — 256.8 = 208.8 Ibf
F+F, 4656+208.8

F =
2

= 3373 Ibf

Existing friction

fr= iln[i] _ 1n[465'6j = 0.282
0, \F) 2845 \208.8
H = (AFNV _ 256.8883.60) _ ooy
33 000 33 000
H 6.88
N = = =

5(1.25)  5(1.25)

Fi can be reduced only to the point at which f’ = f = 0.32. From Eq. (17-9)

F_Tlexp(fd)+1|_ 385.2(2.485 + 1) 3013 Ibf
d| exp(f6g,) -1 3 \2485-1
Eq. (17-10):
R = | 22000015 20989 [ g1
exp(f6,) +1 2.485 +1
F, = F — AF = 429.7 - 256.8 = 172.9 Ibf
and fr=1 =032

17-16

This solution is the result of a series of five design tasks involving different belt
thicknesses. The results are to be compared as a matter of perspective. These design tasks
are accomplished in the same manner as in Probs. 17-14 and 17-15 solutions.

The details will not be presented here, but the table is provided as a means of learning.
Five groups of students could each be assigned a belt thickness. You can form a table
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from their results or use the table given here.
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t, in

0.002 0.003 0.005 0.008 0.010
b 4.000 3.500 4.000 1.500 1.500
CD 20.300 20.300 20.300 18.700 20.200
a 109.700 131.900 110.900 194.900 221.800
d 3.000 3.000 3.000 5.000 6.000
D 9.000 9.000 9.000 15.000 18.000
Fi 310.600 333.300 315.200 215.300 268.500
Fi 439.000 461.700 443.600 292.300 332.700
F 182.200 209.000 186.800 138.200 204.300
Nts 1.100 1.100 1.100 1.100 1.100
L 60.000 60.000 60.000 70.000 80.000
f! 0.309 0.285 0.304 0.288 0.192
Fi 301.200 301.200 301.200 195.700 166.600
Fi 429.600 429.600 429.600 272.700 230.800
F> 172.800 172.800 172.800 118.700 102.400
f 0.320 0.320 0.320 0.320 0.320

The first three thicknesses result in the same adjusted F;, F, and F, (why?). We have no
figure of merit, but the costs of the belt and pulleys are about the same for these three
thicknesses. Since the same power is transmitted and the belts are widening, belt forces

are lessening.

17-17

This is a design task. The decision variables would be belt length and belt section, which
could be combined into one, such as B90. The number of belts is not an issue.

We have no figure of merit, which is not practical in a text for this application. It is
suggested that you gather sheave dimensions and costs and V-belt costs from a principal
vendor and construct a figure of merit based on the costs. Here is one trial.

Preliminaries For a single V-belt drive with Ho = 3 hp, n=3100 rev/min, D = 12 in,
and d = 6.2 in, choose a B90 belt, Ks= 1.3 and ng = 1. From Table 17-10, select a
circumference of 90 in. From Table 17-11, add 1.8 in giving

Eq. (17-16b):

L,=90+1.8=91.8n

C= 0.25{[91.8 - %(12 + 6.2)} + \/{91.8 - %(12 + 6.2)} ~2(12 - 6.2)2}

=3147in
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12-6.2
2(31.47)
exp(f6,) = exp[0.5123(2.9570)] = 4.5489
zdn _ 7(6.2)(3100)
12 12

0,=rm- ZSil’l_1|: } = 2.9570 rad

V = = 5031.8 ft/min

Table 17-13:

o

180 80 j =169.42°
V2

Angled = 6, = (2.957 rad)[1

The footnote regression equation of Table 17-13 gives K; without interpolation:
K, =0.143 543 + 0.007 468(169.42°) — 0.000 015 052(169.42°)* = 0.9767

The design power is
Hda = HnomKsng =3(1.3)(1) =3.9 hp

From Table 17-14 for B90, K, = 1. From Table 17-12 take a marginal entry of Hy,, =4,
although extrapolation would give a slightly lower Hy,p.

Eq. (17-17): Ha=KiKsHw =0.9767(1)(4) = 3.91 hp

The allowable A4F, is given by

. _ 63025H, _ 63025391 _

; = 25.6 Ibf
n(d/2) 3100(6.2/2)
The allowable torque Tj is
T, = Azad _ 256(62) 79.4 1bf - in

From Table 17-16, K; = 0.965. Thus, Eq. (17-21) gives,

2 2
F, = K(Lj S 0.965(5031'8j = 24.4 Ibf
1000 1000

At incipient slip, Eq. (17-9) provides:

F o (Ij exp(fO) +1| _ (79.4)(4.5489 + 1) _ 200 bf
d )| exp(f) -1 6.2 )\ 4.5489 —1

Eq. (17-10):
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S L L N Y 2O[M} _ 572 1bf
exp(fO) + 1 4.5489 + 1

Thus, F,=F; —AF,=572-25.6=31.6 Ibf

O

Eq. (17-26): n
q ( ) fs Hd 39

If we had extrapolated for Hy,p, the factor of safety would have been slightly less than
one.

Life  Use Table 17-16 to find equivalent tensions T; and T, .

~

576

T=F+(F),=F+—=2=572+=—=150.11bf
d 6.2
T,=FK+(FR), = E+%=57.2+%:105.2lbf

From Table 17-17, K= 1193, b= 10.926, and from Eq. (17-27), the number of belt passes

SR

~10.926 ~10.926 17!
_ (193 L[ 93 = 6.72(10°) passes
150.1 105.2

From Eq. (17-28) for Np > 10,

. NPLp . 109(91.8)
720V 720(5031.8)
t>25340h Ans

Suppose n¢s was too small. Compare these results with a 2-belt solution.

H.. = 4hphelt, T, = 39.6 Ibf - in/belt,

AF, = 12.8 Ibfibelt, H, = 3.91 hp/belt

0= NH. _ NjH, 269D
*TH, H.K. 3013

nom S

Also, Fi =40.8 Ibf/belt, F, =28.0 Ibf/belt
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F. = 9.99 Ibf/belt, F. = 24.4 Ibf/belt
(F,), = 92.9 Ibfibelt,  (F,), = 48 Ibfibelt
T, = 133.7 Ibf/belt, T, = 88.8 Ibf/belt
N, = 2.39(10") passes, t > 605 600 h

Initial tension of the drive:
(Fi)drive = NbFi = 2(9.99) = 20 1bf

17-18

Given: two B85 V-belts with d= 5.4 in, D = 16 in, n = 1200 rev/min, and Ks = 1.25
Table 17-11: L, =85+1.8=286.81in

Eq. (17-17b):

2
C= 0.25{{86.8 - %(16 + 5.4)} + \/[86.8 - %(16 + 5.4)} ~2(16 - 5.4)2}
= 26.05in Ans

Eq. (17-1):

o

0, = 180° — 2sin” {—16 — 5'4}

2(26.05)

From table 17-13 footnote:
K; =0.143 543 + 0.007 468(156.5°) — 0.000 015 052(156.5")2 =0.944
Table 17-14: Ky=1

7(5.4)(1200)

Belt speed: V = = 1696 ft/min

Use Table 17-12 to interpolate for Hyp.

2.62 -1.59
2000 — 1000
Eq. (17-17) for two belts: H, = KK,N,H

Hy = 1.59 + ( j(l696 ~1000) = 2.31 hp/belt

= 0.944(1)(2)(2.31) = 4.36 hp

tab

Assuming Ng = 1,
Hg = KsHpomNdg = 1.25(1)Huom

For a factor of safety of one,
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H, =H,

a

436 = 1.25H

= 436 =349hp Ans
1.25

nom

17-19 Given: Hpom = 60 hp, n=400 rev/min, Ks= 1.4, d=D = 26 in on 12 ft centers.

Design task: specify V-belt and number of strands (belts). Tentative decisiarlUse D360
belts.

Table 17-11: Lp=360+3.3=363.3in

Eq. (17-16b):

2
C = 0.25 {{363.3 - %(26 + 26)} + \/{363.3 - %(26 + 26)} — 2(26 - 26)2}
= 140.8 in (nearly 144 in)

6, =m, 6y,=m exp[0.51237] = 5.0,

v = Zan _ zQ26)(400) _ 5ons 5 fmin
12 12

Table 17-13: For 8 = 180°, K;=1

Table 17-14: For D360, K,=1.10

Table 17-12: Hp, = 16.94 hp by interpolation

Thus, Ha=KiKyHu, = 1(1.1)(16.94) = 18.63 hp / belt
Eq. (17-19): Hg=HpmKsng =60(1.4)(1) =84 hp

Number of belts, Ny

N o Hel B,
H 18.63

a

Round up to five belts. It is left to the reader to repeat the above for belts such as C360
and E360.
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- 0302H, _ 63 025U8:63) _ 5 ¢ e
nd/2) ~ 400(26/2)

T _ (AF)d _ 225.8(26)
a B -

= 2935 Ibf - in/belt

Eq. (17-21):

2 2
F. = 3.498(L) = 3.498[2722'7j = 25.9 Ibf/belt
1000 1000

At fully developed friction, Eq. (17-9) gives

£ I[exp(f@) + 1} _ 2935(5 + 1) — 1653 bfbels

d| exp(fO) -1 26 \5-1
Eq. (17-10): F =F +F _2exp(f) =259 +169.3 20 | 308.1 Ibf/belt
1 [ i
exp(fo) +1 5+1

F, = F — AF, = 308.1 — 225.8 = 82.3 Ibfibelt
CHN, 18.63(5)

n; =1.109 Ans
H, 84
Life  From Table 17-16,
T =T = F+5_3081+2%80 _ 5566 1f
d 26

Eq. (17-27):

-b b7
N, = Kl 4k = 5.28(10‘9) passes
T, T,

Thus, Np >107° passes Ans

_ Nel, | 10°(363.3)
720V~ 720(2722.7)

Eq. (17-28):

Thus, t >185320h Ans

17-20 Preliminaries: D = 60 in, 14-in wide rim, Hyom = 50 hp, n= 875 rev/min, Kg= 1.2,
Ng=1.1, mg=875/170 =5.147, d = 60/5.147 = 11.65 in

(a) From Table 17-9, an 11-in sheave exceeds C-section minimum diameter and
precludes D- and E-section V-belts.

Decision Use d =11 in, C270 belts
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Table 17-11: Lp=270+2.9=272.9 in

Eq. (17-16b):

2
C =025 {272.9 - %(60 + 11)} + \/{272.9 - %(60 + 11)} — 2(60 - 11)2}
= 76.78 in

This fits in the range
D<C<3D+d) = 60<C<360+11) = 60in < C< 213in

0, =1~ 25in ' 20 5 495 rad = 142.8°
2(76.78)

Oy =7+ 25in ' 20 3 99) rad
2(76.78)

exp(f Og) = exp[0.5123(2.492)] = 3.5846
For the flat on flywheel, f = 0.13 (see p. 900), exp(f fp) = exp[0.13(3.791)] = 1.637.

The belt speed is
v = Zan_ 2UDBT) _ 5590 fimin
12 12

Table 17-13:
K; =0.143 543 + 0.007 468(142.8°) — 0.000 015 052(142.8")2 =0.903
Table 17-14: K, =1.15

For interpolation of Table 17-12, let X be entry for d = 11.65 in and n= 2000 ft/min, and y
be entry for d=11.65 in and n= 3000 ft/min. Then,

X—674  7.17-6.74
11.65-11 1211

X = 7.01 hp at 2000 ft/min

and
811-y  8.84-28.11

11.65-11  12-11

y = 8.58 hp at 3000 ft/min

Interpolating these for 2520 ft/min gives

8.58 —H, 3000 - 2520 = H,, = 7.83 hp/belt

8.58 —7.01 3000 — 2000

Eq. (17-17):  Ha=K;KsHup = 0.903(1.15)(7.83) = 8.13 hp
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Eq. (17-19):  Hg = HuomKsha = 50(1.2)(1.1) = 66 hp

Eq. (17-20): N, = % = % = 8.1 belts

Decision Use 9 belts. On a per belt basis,

_ 63025H, 63 025(8.13)

* nd/2)  87511/2)
AFd  106.5(11)

= 106.5 Ibf/belt

T, =

= 586.8 Ibf - in per belt

2
Table 17-16: K¢ =1.716
2 2
Eq. (17-21): F, = 1.716[ —— | = 1.716[ 2222) = 10.9 bfibelt
1000 1000

At fully developed friction, Eq. (17-9) gives

e _T[exp(fo) +1] _ 586.9[3.5846“
" d|exp(fO,) -1 11 |3.5846 -1
Eq. (17-10):

Forr| 200l | _ypq, 94,6{M} — 158.8 Ibf/belt
exp(10,) + 1 3.5846 + 1

} = 94.6 Ibf/belt

F, = F — AF, = 158.8 — 106.7 = 52.1 Ibf/belt
_ NH,  9(8.13)

N —1.11 OK. Ans
H, 66

Durability:

o/ d =1600 /11 = 145.5 Ibf/belt

o / D =1600/ 60 = 26.7 Ibf/belt
(), = 158.8 +145.5 = 304.3 Ibf/belt
(Fy), = 158.8 + 26.7 = 185.5 Ibf/belt

Eq. (17-27) with Table 17-17:

kY (kY] (2038 ]“‘”3 (2038]”'173 h
NP = —_— + —_— = —_— + —_—
T T, 3043 185.5
= 1.68(109) passes > 10° passes Ans

Since Np is greater than 10° passes and is out of the range of Table 17-17, life from Eq.
(17-27) is

Chapter 17, Page 24/39



Nl 1002729)
720V~ 720(2520)

50(103) h

Remember: (Fi)drive = 9(94.6) = 851.4 Ibf

Table 17-9: C-section belts are 7/8 in wide. Check sheave groove spacing to see if 14 in
width is accommodating.

(b) The fully developed friction torque on the flywheel using the flats of the V-belts,
from Eq. (17-9), 1s

T, - Fp| U011 94.6(60)(Mj = 1371 Ibf - in per belt
exp(T0) + 1 1.637 + 1

The flywheel torque should be
Tay = Mg Ta=5.147(586.9) = 3021 Ibf - in per belt

but it is not. There are applications, however, in which it will work. For example,
make the flywheel controlling. Yes. Ans.

17-21

(@)
Sis the spliced-in string segment length
De is the equatorial diameter
D’ is the spliced string diameter
o 1s the radial clearance
S+ 7Z'De= zD' = ﬂ(De+2é)= ﬂDe+27Z'5
- D >
From which
5o S
27

The radial clearance is thus independendf De.

_ 1209
Y

o =11.5in Ans

This is true whether the sphere is the earth, the moon or a marble. Thinking in terms of a
radial or diametral increment removes the basic size from the problem.

(b) and (c)
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Table 17-9: For an E210 belt, the thickness is 1 in.

T \\ ) ) . dF’_di=210+4.5_210=4;5
" ) T T
¢ \ ().?*16 25=£
T
5:£:O.716in
27

The pitch diameter of the flywheel is
Do -20=D = D,=D+25 =60+ 2(0.716) = 61.43 in

We could make a table:

Diametral Section
Growth A B C D E
1.3 1.8 29 33 45
26 —_ = — — —
Y4 T T T T
The velocity ratio for the D-section belt of Prob. 17-20 is
%:D+25:60+3'3/”:5.55 Ans,

d 11

for the V-flat drive as compared to my = 60/11 = 5.455 for the VV drive.
The pitch diameter of the pulley is still d= 11 in, so the new angle of wrap, 8y, is

0,=rm— 2sin"DL5_d Ans
2C

O, =7+ 25in‘lDL5_d Ans
2C
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Equations (17-16a) and (17-16b) are modified as follows

(D + 5 - d)?
4C

Lp=2C+%(D+25+d)+ As

T
C, = 0.25{Lp - E(D +20 + d)}

+\/{Lp —%(D +265 + d)} ~2(D+26 - d)z} Ans

The changes are small, but if you are writing a computer code for a V-flat drive,
remember that 6y and @p changes are exponential.

17-22 This design task involves specifying a drive to couple an electric motor running at 1720
rev/min to a blower running at 240 rev/min, transmitting two horsepower with a center
distance of at least 22 inches. Instead of focusing on the steps, we will display two
different designs side-by-side for study. Parameters are in a “per belt” basis with per
drive quantities shown along side, where helpful.

Parameter Four A-90 Belts Two A-120 Belts
Mg 7.33 7.142
Ks 1.1 1.1

Ng 1.1 1.1

Ki 0.877 0.869
K, 1.05 1.15

d, in 3.0 4.2

D, in 22 30

6y, rad 2.333 2.287

V, ft/min 1350.9 1891
exp(fbq ) 3.304 3.2266
Lp, in 91.3 101.3
C,in 24.1 31

H ., uncorr. 0.783 1.662
NpH¢ap, uncorr. 3.13 3.326
Ta, Ibf - in 26.45(105.8) 60.87(121.7)
AF g, 1bf 17.6(70.4) 29.0(58)
Ha, hp 0.721(2.88) 1.667(3.33)
Nfs 1.192 1.372
Fi, Ibf 26.28(105.2) 44(88)
F,, Ibf 8.67(34.7) 15(30)
(Fp)1, Ibf 73.3(293.2) 52.4(109.8)
(Fp)2, Ibf 10(40) 7.33(14.7)
Fc, Ibf 1.024 2.0

Fi, Ibf 16.45(65.8) 27.5(55)
Ty, Ibf - in 99.2 96.4
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T,, Ibf - in 36.3 57.4
N’, passes 1.61(10%) 2.3(10%)
t>h 93 869 89 080

Conclusions:

* Smaller sheaves lead to more belts.

* Larger sheaves lead to larger D and larger V.

* Larger sheaves lead to larger tabulated power.

* The discrete numbers of belts obscures some of the variation. The factors of safety
exceed the design factor by differing amounts.

17-23 In Ex. 17-5 the selected chain was 140-3, making the pitch of this 140 chain14/8 = 1.75
in. Table 17-19 confirms.

17-24 (a) Eq. (17-32): H, = 0.004N!%n® pt®-07»)

_ 1000K, Nf‘5 p”®
- n11‘5

Equating and solving for n; gives

Eq. (17-33): H,

6 0.42 1/2.4
n ={0.25(10)KrN1 } As

(2.2-0.07p)
P

(b) For a No. 60 chain, p=6/8 =0.75in, N; =17, K;=17

0.25(10°)(17)(17)**
= 0.7522-0.07(075)]

1/2.
} = 1227 rev/min  AnS.

Table 17-20 confirms that this point occurs at 1200 £ 200 rev/min.

(c) Life predictions using Eq. (17-40) are possible at speeds greater than 1227 rev/min.
Ans.

17-25 Given: a double strand No. 60 roller chain with p=0.75 in, N; = 13 teeth at 300 rev/min,

N, = 52 teeth.

(a) Table 17-20: Hep = 6.20 hp
Table 17-22: Ky =0.75
Table 17-23: K,=1.7
Use Ks=1
Eq. (17-37):

Ha = KiKoHeb = 0.75(1.7)(6.20) = 7.91 hp  Ans.
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(b) Egs. (17-35) and (17-36) with L/p = 82

A=l3+52

-82=-495

2
C = E{49.5 + \/49.52 - 8(52 — 13} ] =23.95p
4 2

C =23.95(0.75) = 1796 in, roundupto 18in Ans

(c) For 30 percent less power transmission,

H = 0.7(7.91) = 5.54 hp
63 025(5.54)

T _ 1164 1bf-in  Ans
300
Eq. (17-29):
D-— 95 3130
sin(180° /13)
Fol = 6% i Ans
r 31372

17-26 Given: No. 40-4 chain, N; = 21 teeth for n= 2000 rev/min, N, = 84 teeth, h=20 000
hours.

(a) Chain pitch is p=4/8 =0.500 in and C = 20 in.

Eq. (17-34):
L2 NN (NN
p p 2 47*°C/ p
_ 2
_ 220 21484, G4-2D 55 iches  (or links)
0.5 2 47°20/0.5)

L=135(0.500)= 67.5in  Ans.

(b) Table 17-20: Hwb = 7.72 hp (post-extreme power)

Eq. (17-40): Since K is required, the N;”° term is omitted (see p. 914).

(7.72°%) (15 000)
135

, [18399(135)

b _{ 20 000

constant =

= 18399

1/2.5
} =6.88hp Ans
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(c) Table 17-22:
1.5
o -(2) -1
17

Table 17-23: K,=3.3

H, = KK,H', =137(3.3)(6.88) = 31.1hp Ans

tab

(d) v = Nipn _ 21(0.5)(2000)
12 12

F o 3300081 _ sec e Ans
: 1750

= 1750 ft/min

17-27 This is our first design/selection task for chain drives. A possible decision set:

A priori decisions

* Function: H,,om, Ny, space, life, Kg

* Design factor: ng

* Sprockets: Tooth counts N; and N, factors K; and K,

Decision variables

* Chain number

* Strand count

* Lubrication type

* Chain length in pitches

Function Motor with Hpom = 25 hp at n= 700 rev/min; pump at n= 140 rev/min;
ns = 700/140 =5

Design Factorng=1.1

SprocketsTooth count N, = mgN; = 5(17) = 85 teeth—odd and unavailable. Choose
84 teeth. Decision N; =17, N, = 84

Evaluate K; and K,

Eq (17-38) Hg = HpomKsNg
Eq. (17-37): Ha = KiKaHup
Equate Hq to Ha and solve for Heyy, :
Hlab — KsndHnom
KIKZ
Table 17-22: Ki=1
Table 17-23: K,=1,1.7,2.5, 3.3 for 1 through 4 strands
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_ L5(11)(25) _ 4125

!

tab (1) K2 K

2

Prepare a table to help with the design decisions:

Chain Lub.
Strands K, H, No. Hap Nis  Type
1 1.0 413 100 59.4 1.58
2 1.7 243 80 31.0 140
3 2.5 16.5 80 31.0  2.07
4 33 125 60 133 1.17
Design Decisions
We need a figure of merit to help with the choice. If the best was 4 strands of No. 60
chain, then

vollvelivelive)

Decision #1 and #2 hoose four strand No. 60 roller chain with nfs=1.17.

CKKH,,  133)13.3)

N 1.17
KH... 1.5(25)
Decision #3Choose Type B lubrication
Analysis:
Table 17-20: Hwb, = 13.3 hp
Table 17-19: p=0.751in

Try C=30in in Eq. (17-34):

L. 26 N+N (N- N)*
P p 2 47*C/ p
17484 (84177
2 47°(30 / 0.75)

=2(30/ 0.75) +
= 133.3

L =0.75(133.3) = 100 in (no need to round)

N+N, L 17+84 100
2 p 2 075

2
c_ g{m JAZ 8(u} ]
4 27

_ 0'7?5[_(—82.83) i \/(—82.83)2 - 8(842_ 17)1 ~30.0 in

Eq. (17-36) with p=0.75 in: A = = -82.83

Eq. (17-35):

T
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Decision #4 Choose C = 30.0 in.

17-28

Follow the decision set outlined in Prob. 17-27 solution. We will form two tables, the
first for a 15 000 h life goal, and a second for a 50 000 h life goal. The comparison is

useful.

Function Hpom = 50 hp at n= 1800 rev/min, Npymp = 900 rev/min, Mg = 1800/900 = 2,

Ks = 1.2, life = 15 000 h, then repeat with life = 50 000 h
Design factorng = 1.1

SprocketsN; = 19 teeth, N, = 38 teeth
Table 17-22 (post extreme):

1.5 1.5
K, = (ﬁ) . [Qj - 118
7 7

Table 17-23:

K,=1,1.7,25,3.3,3.9,4.6, 6.0

Decision variables for 15 000 h life goal

H - KngH,om  1.2(1.1)(50) 559
o KK, 1.18K, K,
N, = KiK,Hy, = 118K, H,,, = 0.0197K,H
KH,.., 1.2(50)
Form a table for a 15 000 h life goal using these equations.
K, H'ab Chain # Hab Nis Lub
1 55.90 120 21.6 0.423 C
1.7 32.90 120 21.6 0.923 C
2.5 22.40 120 21.6 1.064 C
33 16.90 120 21.6 1.404 C
39 14.30 &0 15.6 1.106 C
4.6 12.20 60 12.4 1.126 C
6 9.32 60 12.4 1.416 C'

There are 4 possibilities where ngs> 1.1

Decision variables for 50 000 h life goal
From Eq. (17-40), the power-life tradeoff is:

(M

tab
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(H!,)**15 000 = (H”,)**50 000

"

tab

|

Substituting from (1),

15 000
50 000

HH

tab

/2.
(HI )2A5:|1 »
tab

= 0.618

=0.618 H]

The H" notation is only necessary because we constructed the first table, which we
normally would not do.

ts = KKoHy, _ KK(0618H,,) _ 0.618[(0.0197)K,H ]
KSHnom KSHnom
= 0.0122K,H
Form a table for a 50 000 h life goal.

K, H" b Chain # H Nis Lub

1 34.50 120 21.6 0.264 C'
1.7 20.30 120 21.6 0.448 C
2.5 13.80 120 21.6 0.656 C
33 10.50 120 21.6 0.870 C
39 8.85 120 21.6 1.028 C
4.6 7.60 120 21.6 1.210 C
6 5.80 80 15.6 1.140 C

There are two possibilities in the second table with nss> 1.1. (The tables allow for the
identification of a longer life of the outcomes.) We need a figure of merit to help with
the choice; costs of sprockets and chains are thus needed, but is more information than

we have.

Decision #1 #80 Chain (smaller installation)

Ans.

Nes=0.0122K,H e = 0.0122(8.0)(15.6) = 1.14 O.K.
Decision #2 8-Strand, No. 80 Ans.

Decision #3 Type C' Lubrication
Decision #4 p=1.0 in, Cis in midrange of 40 pitches

AnNS.
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P p 2 47*°C/ p
_ 2
_ 2(40) + 19 + 38 N (382 19)
2 47°(40)
=108.7 = 110eveninteger AnNS
Eq. (17-36):
ac NN, L 19+38 110 5
2 p 2 1
2
Eq. (17-35): c_1 —(-81.5) +,[(-81.5)" - 8(38 - 19j = 40.64
p 4 2r

C=p(C/p) =1.0(40.64/1.0) = 40.64 in (for reference) ANS.

17-29 The objective of the problem is to explore factors of safety in wire rope. We will express
strengths as tensions.

(a) Monitor steel 2-in 6 x 19 rope, 480 ft long.
Table 17-2: Minimum diameter of a sheave is 30d = 30(2) = 60 in, preferably

45(2) =90 in. The hoist abuses the wire when it is bent around a sheave. Table 17-24
gives the nominal tensile strength as 106 kpsi. The ultimate load is

7(2)°

F, = (S, Ay = 106{ } =333kip Ans

The tensile loading of the wire is given by Eq. (17-46)

(23

W = 4(2) = 8kip, m=1

Table (17-24):
wl =1.60d*| = 1.60(2%)(480) = 3072 Ibf = 3.072 kip

Therefore,

F =08+ 3.072)[1 + Lj =11.76 kip Ans
32.2

Eq. (17-48):
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and for the 72-in drum

_ 12(10°)(2 / 13)(0.38)(2*)(107)

K =39kip Ans
b 7 p
For use in Eq. (17-44), from Fig. 17-21
(p/S) = 0.0014
S, = 240 kpsi, p. 920
F - 0.0014(24210)(2)(72) _242kip  Ans
(b) Factors of safety
Static, no bending
n=te_ 33 g3 ang
F 11.76
Static, withbending
Eq. (17-49): n, = R=F _333-39 050 ans
F 11.76
Fatigue without bending
F
n, D282 h06 Ans
F 1176

Fatigue with bendingFor a life of 0.1(10°) cycles, from Fig. 17-21

(p/S) =4/1000 = 0.004

. 0.004(2420)(2)(72) ~ 69.1 kip

69.1-39
11.76

Eq. (17-50): n, =256 Ans

If we were to use the endurance strength at 10° cycles (F; = 24.2 kip) the factor of
safety would be less than 1 indicating 10° cycle life impossible.

Comments:

* There are a number of factors of safety used in wire rope analysis. They are different,
with different meanings. There is no substitute for knowing exactly which factor
of safety is written or spoken.

» Static performance of a rope in tension is impressive.

* In this problem, at the drum, we have a finite life.

* The remedy for fatigue is the use of smaller diameter ropes, with multiple ropes
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supporting the load. See Ex. 17-6 for the effectiveness of this approach. It will also
be used in Prob. 17-30.

* Remind students that wire ropes do not fail suddenly due to fatigue. The outer
wires gradually show wear and breaks; such ropes should be retired. Periodic
inspections prevent fatigue failures by parting of the rope.

17-30 Since this is a design task, a decision set is useful.
A priori decisions

* Function: load, height, acceleration, velocity, life goal

* Design Factor: Ny

» Material: IPS, PS, MPS or other

* Rope: Lay, number of strands, number of wires per strand

Decision variables:

* Nominal wire size: d

* Number of load-supporting wires: m

From experience with Prob. 17-29, a 1-in diameter rope is not likely to have much of a
life, so approach the problem with the d and m decisions open.

Function 5000 1bf load, 90 foot lift, acceleration = 4 ft/sz, velocity = 2 ft/s, life
goal = 10° cycles

Design Factorng =2

Materi al: IPS

Rope Regular lay, 1-in plow-steel 6 x 19 hoisting

Design variables
Choose 30-in Dy,. Table 17-27: w = 1.60d? 1bf/ft
wl =1.60d?l = 1.60d%(90) = 144d? Ibf, each

Eq. (17-46):
F :(V—V+wIJ 1+2 :(w+144d2j(1+ij
m g m 322
_ 3620 +162d?* Ibf, each wire
m
Eq. (17-47):
£ _(P/9)§Dd

f 2

From Fig. 17-21 for 10’ cycles, p/S, = 0.004. From p. 920, S, = 240 kpsi, based on
metal area.
_0.004(240 000)(30d)

2

F, = 14 400d Ibf each wire
Eq. (17-48) and Table 17-27:
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CE,d A 12(10°)0.067d(0.4d%)
D 30

=10 720d° Ibf, each wire

Eq. (17-45):
F (5620 / m) + 162d>

n, =

We could use a computer program to build a table similar to that of Ex. 17-6.
Alternatively, we could recognize that 162 d? is small compared to 5620 / m and
therefore eliminate the 162d* term.

_ 3
. 14400d -10 720d> _ m (14 400d — 10 720d%)
5620 / m 5620

f
Maximize ns ,

on
0 =" (14 400 - 3(10 720)d?]
ad 5620

dx = [ 12400 5 660 in
3(10 720)

[14 400(0.669) — 10 720(0.669°)] = 1.14 m

From which

Back-substituting
m

n, = ——

5620

Thus ny = 1.14, 2.28, 3.42, 4.56 for m=1, 2, 3, 4 respectively. If we choose d = 0.50 in,
then m= 2.
o _ 14400(0.5) — 10 720(0.5%)

f °2 =2.06
(5620 / 2) + 162(0.5)

This exceeds Ng = 2
Decision #1d=1/2 in

Decision #2m= 2 ropes supporting load. Rope should be inspected weekly for any
signs of fatigue (broken outer wires).

CommentTable 17-25 gives n for freight elevators in terms of velocity.

2
F, = (S).., A, =106 000[”:' ) = 83252 cf Ibf, each wire
CF, 83452005
F o (5620/2) + 162(0.5)’
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By comparison, interpolation for 120 ft/min gives 7.08 - close. The category of
construction hoists is not addressed in Table 17-25. We should investigate this before

proceeding further.

17-31 Given: 2000 ft lift, 72 in drum, 6 x 19 MS rope, cage and load 8000 Ibf, accel. =2 ft/s>.

(@) Table 17-24: (Sy)nom = 106 kpsi; S, = 240 kpsi (p. 920); Fig. 17-2
0.0014

Eq. (17-44):

F, =

(p/S)S dD_ 0.0014(2240)d(72) — 12.1d kip

2

Table 17-24: wl = 1.6d? 2000(107) = 3.2d? kip

Eq. (17-46): F =W+ wl)[l + g]

=8+ 3.2d2)[1 + L]
32.2

= 8.5 + 3.4d” kip

Note that bending is not included.
F, 12.1d

F 85+34d’

d, in n

0.500 0.650

1.000 1.020

1.500 1.124

1.625 1.125 <« maximumn AnSs.
1.750 1.120

2.000 1.095

(b) Try m= 4 strands

1: (p/S)10° =
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F = (§ + 3.2d2] (1 + L]
4 32.2

= 2.12 + 3.4d” kip

F, =12.1d kip

3 12.1d

T 212 +34d”
d, in n
0.5000 2.037
0.5625 2.130
0.6520 2.193
0.7500 2.250 «— maximumn  Ans.
0.8750 2.242
1.0000 2.192

Comparing tables, multiple ropes supporting the load increases the factor of safety,
and reduces the corresponding wire rope diameter, a useful perspective.
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17-32
ad
n=———
b/ m+ cd
dn _ (b/ m+ cd) a a@ c)j_o
dd (b/ m+ cd)’

d* = ,/L Ans.
mc

. a/b/ (mg ;\/:rgc As

From which

(b/m+db/(mg

These results agree closely with the Prob. 17-31 solution. The small differences are due
to rounding in Prob. 17-31.

17-33 From Prob. 17-32 solution:

ad

= b/m+ cd

Solve the above equation for m

b
M= ad) n - cd O
am_ [(ad/ n)-ad |- (& n-2cd
dd [(ad/ 1) - cd |
From which d* = — >
2cn

Substituting this result for d into Eq. (1) gives

_ 4bcn

m* 7

Ans.

17-34 Note to the Instructor. In the first printing of the ninth edition, the wording of this
problem is incorrect. It should read “ For Prob. 17-29 estimate the elongation of the rope
if a 7000 Ibf loaded mine cart is placed in the cage which weighs 1000 Ibf. The results of
Prob. 4-7 may be useful”. This will be corrected in subsequent printings. We apologize
for any inconvenience encountered.
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Table 17-27:
A, = 0.40d* = 0.40(2%*) = 1.6 in’
E =12 Mpsi, w =1.6d* =1.6(2°) = 6.4 Ibf/ft
wl = 6.4(480) = 3072 Ibf
y=wl/ (Anl) = 3072/ [1.6(480)12] = 0.333 Ibf/in’

Treat the rest of the system as rigid, so that all of the stretch is due to the load of 7000 Ibf,
the cage weighing 1000 1bf, and the wire’s weight. From the solution of Prob. 4-7,

Wl yl?
T A T e
AE 2E
_ (1000 + 7000)(480)(12) | 0.333(480°)12*
1.6(12)(10%) 2(12)(10%
= 2.4+ 0.460 = 2.860 in Ans

17-35 to 17-38 Computer programs will vary.
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Chapter 20

20-1 (a)

[

| |

&0 0BG G0 D00 D10 1200 1300 140 150 160 1T 180 190 20 210

(b) f/ (NAX) = f/ [69(10)] = / 690

X f f X 3¢ f/(NAX)
60 2 120 7200 0.0029
70 1 70 4900  0.0015
80 3 240 19200  0.0043
90 5 450 40500  0.0072

100 8 800 80000  0.0116

110 12 1320 145200 0.0174
120 6 720 86400 0.0087
130 10 1300 169000 0.0145

140 8 1120 156800 0.0116
150 5 750 112500 0.0174
160 2 320 51200 0.0029
170 3 510 86700 0.0043
180 2 360 64800 0.0029
190 1 130 36100 0.0015
200 0 0 0 0
210 1 210 44100 0.0015

)y 69 8480 1104 600
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Eq. (20-9): X = % =122.9 kcycles

1104 600—8480° /69
69 -1

12
Eq. (20-10): s, :{ } =30.3 kcycles Ans.

20-2 Data represents a 7-class histogram with N = 197.

X f f x f X
174 6 1044 181 656
182 9 1638 298 116
190 44 8360 1588400
198 67 13266 2626688
206 53 10918 2249108
214 12 2568 549 552
220 6 1320 290 400
T 197 39114 7789900

X = 39 114 =198.55 kpsi Ans
1/2
52{7 783 900 -39 1142 /197} 055 kpsi Ans
197 -1
20-3 Form a Table:

X f fx fxX
64 2 128 8192
68 6 408 27 744
72 6 432 31 104
76 9 684 51984
80 19 1520 121 600
84 10 840 70 560
88 4 352 30976
92 2 184 16 928
5 58 4548 359 088

Chapter 20, Page 2/29



X = % =78.4 kpsi Ans

_{359 088 — 4548 /58

1/2
=6.57 kpsi Ans.
58-1

From Eq. 20-14

2
f () :;exp{—l[x_m!‘j :| Ans.
6.57\27 2\ 6.57
20-4 (a)

X f fy fy y f/(New) f(y) ay)
5.625 1 5.625 31.64063 5.625 0.072727 0.001262  0.000 295
5.875 0 0 0 5875 0  0.00858  0.004 088
6.125 0 0 0  6.125 0 0042038 0.031 194
6.375 319125 1219219 6375 0218182  0.148106  0.140 262
6.625 3 19.875 1316719  6.625 0218182 0375493  0.393 667
6.875 6 4125 2835938  6.875 0436364 0.685057  0.725 002
7.125 14 9975 7107188  7.125 1.018182 0.899389  0.915 128
7.375 15 110.625 815.8594  7.375 1.090909  0.849 697  0.822 462
7.625 10 7625 5814063  7.625 0727273  0.577665  0.544 251
7.875 2 1575 124.0313  7.875 0.145455 0282608  0.273 138
8.125 1 8125 66.01563 8125 0.072727 0.099492  0.106 720

s 55 396375 2866.859

For a normal distribution,

/
(2866.859 —(396.3752 /55)\1 ’
y=396.375/55=7.207, s, :L 551 J =0.4358

fy)e—L exp _l[x—7.207]2
0.435827 2\ 0.4358

For a lognormal distribution,
X =1n7.206 818 —In~/1+0.060 474° =1.9732, s =In+/1+0.060 474* =0.0604

o(y)= 1 . {_l[lnx—1.9732)2:l
x(0.0604)(+/27 ) P 720 0.0604
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(b) Histogram

0.6

L1

563 538 AI13 638

m— Dk
—_——

713 738 Te3 TEE B3

20-5 Distribution is uniform in interval 0.5000 to 0.5008 in, range numbers are a = 0.5000 in,

b=0.5008 in.
(a) Eq. (20-22)

Eq. (20-23)

(b) PDF, Eq. (20-20)

(c) CDF, Eq. (20-21)

Hy

_a+b_ 0.5000+0.5008

2

_b-a_ 0.5008—0.5000

O-X
2
f00= 1250
o
0

F(xX)=1{(x-0.5)/0.0008

1

=0.000 231

0.5000 < x £0.5008 in

X< 0.5000 in
0.5000 < x<0.5008 in
X>0.5008 in

If all smaller diameters are removed by inspection, a= 0.5002 in, b = 0.5008 in,

~0.5002+0.5008

My

. 0.5008-0.5002

x 2\/5

fo0= 1666.7
o

=0.5005 in

=0.000 173 in

0.5002 < x<0.5008 in

otherwise
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0 X< 0.5002 in
F(X)=41666.7(x—0.5002) 0.5002 < x<0.5008 in
1 X>0.5008 in

20-6 Dimensions produced are due to tool dulling and wear. When parts are mixed, the
distribution is uniform. From Egs. (20-22) and (20-23),

a= 1, —/35=0.6241-+/3(0.000 581) = 0.6231 in
b= s, ++/35=0.6241++/3(0.000 581) = 0.6251 in

3 in  Ans

We suspect the dimension was
0.625

20-7 F(X)=0.555x— 33 mm.
(a) Since F(X) is linear, distribution is uniform at x=a

Ha)=0=0.555(a) — 33
.. a=59.46 mm. Therefore at x=Db
Fb) = 1= 0.555b — 33

.. b=61.26 mm. Therefore,

0 X <59.46 mm
F(X)=<0.555x-33 59.46< x<61.26 mm
1 X>61.26 mm

The PDF is dF/dx thus the range numbers are:

0.555 59.46<x<61.26 mm
f(x)= Ans.

0 otherwise

From the range numbers,

P -

. 61.26-59.46

o
X 2\/5

=0.520mm Ans
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(b) o is an uncorrelated quotient F =3600 Ibf, A=0.112 in’
C. =300/3600 =0.083 33, C, =0.001/0.112 =0.008 929

From Table 20-6, For o

Gt 23000 143 psi  Ans
i, 0.112
172
. (0.08333 +0.0089297) .
6. =3214 . =2694 psi  Ans
(1+0.008929°)

C,=2694/32143=0.0838 Ans.

Since F and A are lognormal, division is closed and ¢ is lognormal too.

o=LN(32 143,2694) psi Ans.

20-8 Cramer’s rule

2y XX

al:ny Z%:ZyZ%—nyZX
XX XX YT (T %)
DRI
2x 2y

NEDRIDNIEDN)IN DI
2x XX Ixy K- (X%
PRI

X y X X Xy

0 0.01 0 0 0

0 0.15 0.04 0.008 0.030

0 0.25 0.16 0.064 0.100

1 0.25 0.36 0.216 0.150

1 0.17 0.64 0.512 0.136

1 -0.01 1.00 1.000 —0.010

> 3 0.82 2.20 1.800 0.406

a = 1.040714 a, =-1.04643 Ans.
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Data Regression

X y y
0 0.01 0
0.2 0.15 0.166 286
0.4 0.25 0.248 857
0.6 0.25 0.247 714
0.8 0.17 0.162 857
1.0 -0.01 -0.005 710

03 o Iata
— Regression

04

0.5

0.8

20-9

Data Regression
s S S/ S SIS
0 20.356 75

60 30 39.080 78 3 600 1 800

64 48 40.329 05 4 096 3072

65 29.5 40.641 12 4 225 1917.5

82 45 45.946 26 6 724 3690
101 51 51.875 54 10 201 5151
119 50 57.492 75 14 161 5950
120 48 57.804 81 14 400 5760
130 67 60.925 48 16 900 8710
134 60 62.173 75 17 956 8 040
145 64 65.606 49 21025 9280
180 84 76.528 84 32 400 15120
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195 78 81.209 85 38 025 15210
205 96 84.330 52 42 025 19 680
207 87 84.954 66 42 849 18 009
210 87 85.890 86 44 100 18 270
213 75 86.827 06 45 369 15975
225 99 90.571 87 50 625 22 275
225 87 90.571 87 50 625 19 575
227 116 91.196 00 51529 26 332
230 105 92.132 20 52900 24 150
238 109 94.628 74 56 644 25942
242 106 95.877 01 58 564 25 652
265 105 103.054 60 70 225 27 825
280 96 107.735 60 78 400 26 880
295 99 112.416 60 87 025 29 205
325 114 121.778 60 105 625 37 050
325 117 121.778 60 105 625 38 025
355 122 131.140 60 126 025 43 310
s 5462 22745 1251868 5018555
m=0.312 067, b=20.35675 Ans.
o |- [ D

120

fili]

&0

fall

40

i

— Regression

20-10
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dYy-ng-ay x=0 = > y=na+ . X
o€

EZzZ(y—ao—azxz)Qx):O = D Xy=a), % B X

Cramer’s rule

Ans.

>y ZXZ‘

IR IPRIIDRAINDRIN'

n ZXZ‘ N X->x %

2x 22X

n >y

aFZX 2Ny xy-3 %y
n Yx| nYyxX-»x X

2X X
Data Regression

X y y X X Xy

20 19 19.2 400 8 000 380

40 17 16.8 1600 64 000 680

60 13 12.8 3600 216 000 780

80 7 7.2 6400 512 000 560
b 200 56 12 000 800 000 2400

_ 800 000(56)~12 000(2400) _
4(800 000)—200(12 000)
4(2400) — 200(56)

= =-0.002
4(800 000)—200(12 000)
5= O [haia
Regression

15 =

10~

=

5 1 | | |

i) £[1] 40 60 B 106
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20-11

Data Regression
—\2
X y y X y Xy X — X (x-X)
0.2 7.1 7.931 803 0.04 50.41 1.42 -0.633333 0401111111
0.4 10.3 9.884 918 0.16 106.09 4.12 -0.433 333 0.187 777 778
0.6 12.1 11.838 032 0.36 146.41 7.26 -0.233 333 0.054 444 444
0.8 13.8 13.791 147 0.64 190.44 11.04 -0.033333 0.001 111111
1 16.2 15.744 262 1 262.44 16.2 0.166 666 0.027 777 778
2 25.2  25.509 836 4 635.04 50.4 1.166 666 1.361 111111
3 5 84.7 6.2 1390.83 90.44 0 2.033333333
— 6(90.44)-5(84.7
m=k= ( ) (2 ):9.7656
6(6.2)—(5)
b Ifl _ 84.7-9.7656(5) 59787
F
- o Data
— Regression
25 -
20+
15+
ok
.i -
0 | I I | |
0 0.3 | 1.5 3 15
5 84.7
a X=—; y=—-=14.117
(a) o Y=
Eq. (20-37):

[0)]

B \/1 390.83-5.9787(84.7)—9.7656(90.44)
¥ 6-2

=0.556
Eq. (20-36):

1 (5/6)
S. =0.556,|—+ -~ =0.3964 Ibf
b 6 2.0333

F =(5.9787,0.3964) Ibf Ans
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(b) Eq. (20-35):
S, = _0.56 0.3899 Ibf/in

1/2.0333

k=(9.7656,0.3899) Ibf/in Ans.

20-12 The expression € =6/ | is of the form X/ y. Now & = (0.0015, 0.000 092) in, unspecified
distribution; and | = (2,000, 0.008 1) in, unspecified distribution;

Cx=0.000 092/0.0015=0.0613
C, = 0.0081/2.000 = 0.004 05
Table 20-6: €= 0.0015 / 2.000 = 0.000 75

0.0613% +0.004 05 |
1+0.004 052

= 4.607(10‘5 ) =0.000 046

. =0.000 75{

We can predict € and &, but not the distribution of e.

20-13 oc=€E
€ =(0.0005, 0.000 034), distribution unspecified; E = (29.5, 0.885) Mpsi, distribution

unspecified,;

Cx=0.000 034 /0.0005 = 0.068
C, =0.0885/29.5=10.03

o is of the form xy

Table 20-6: & = € E = 0.0005(29.5)10° = 14 750 psi
1/2
6, =14 750[ 0.068" +0.030° +0.068* (0.030”) |

=1096.7 psi
C, =1096.7/14 750 =0.074 35

20-14
_F

§=——
AE

where F = (14.7, 1.3) kip, A = (0.226, 0.003) in?, | = (1.5, 0.004) in, and
E =(29.5, 0.885) Mpsi, distributions unspecified.
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Cr=1.3/14.7=0.0884; Ca=0.003/0.226 = 0.0133; C, =0.004 / 1.5 = 0.00267;
Ceg =0.885/29.5=0.03

Table 20-6:

%
I
T
/—\|
=
>
—
—_
[—
~
m
~
-
T
=
=
>
~—
—_
=
m
~

—14 700(1.5)( ! j ! —[=0.00331in. Ans
0.226 29.5(10)

For the standard deviation, using the first-order terms in Table 20-6,
A |E|_ 12 = 1/2
JJ:E(C,§+Q2+C§+ C‘é) =5(@+ C+ G+ Q)
~ 2 2 2 2\V2
65 =0.003 31(0.0844 +0.002 67°+0.0133° +0.03 )
=0.000 313in Ans

COV: C, =6, /8 =0.000313/0.00331 = 0.0945  Ans

Force COV dominates. There is no distributional information on o.

20-15 M = (15 000, 1350) Ibf - in, distribution unspecified; d = (2.00, 0.005) in, distribution
unspecified.
_ 32M
-~ ad?
Cm =1350/15000=0.09, C4 =0.005/2.00=0.0025

o is of the form x/y?, Table 20-6.

Mean: M =15 000 Ibf- in

(i) -3 (1+6C2) = %[1 + 6(0.00252)} — 0.125 in® *
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5o 32_|\/3I _ 32(15 000) (0.125)
zd V4
=19 099 psi  Ans

Standard Deviation:
5,=5](c,+ci)/(1+ )]

Table 20-6:
C,, =3C, =3(0.0025) = 0.0075
A —_ 2 2 1/2
5 =a[(c; +(3¢,)’)/[1+(3¢,) )]
=19 099[(0.09° +0.0075%) /(1+ 0.00752)]1/ ’
=1725psi  Ans
COV:
c =12 _(0003 Ans
19 099

Stress COV dominates. No information of distribution of o.

20-16

Fraction discarded is « +f. The area under the PDF was unity. Having discarded o +
fraction, the ordinates to the truncated PDF are multiplied by a.

1
a=——
1-(a+pB)
New PDF, g(X), is given by

g(x):{f(x)/[l_(“Jfﬁ)] X < X< X,

0 otherwise

A more formal proof: g(X) has the property
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I:J%g(x) dx= z{: f( 3 dx

X

t=al " f(x e[ 1§ e ] 1 ¥ of

1=a{l-F)-[1- F(x)]}
. 1 _ 1 _ 1
FO)-F(x) (1-f)-a 1-(a+p)

20-17 (a) d = U(0.748, 0.751)

gy = LH0TA8 2405 in
6, = L0748 600 866 in
23
| 1 -
f(x)= = =333.31in
b—a 0.751-0.748
Fx=—XZ0748 33334 0.748)
0.751-0.748
(b) F(x) = F(0.748) = 0

F(x2) = (0.750 — 0.748) 333.3 = 0.6667

If g(X) is truncated, PDF becomes

f(x 333.3 _
2(x) = 500 g(x) = &Y = =500 in""
F(x)-F(X) 0.6667-0
(x) = 3333
__________ _Jw= a+b  0.748+0.750 .
I M= = =0.749 in
I 2 2
| I . . b-d 0.750-0.748 :
: o, = = =0.000 577 in
0.748 0749 0750  0.751 e NG

20-18 From Table A-10, 8.1% corresponds to z; = —1.4 and 5.5% corresponds to z, = +1.6.

K =u+zo
k,=u+206
From which
PR zk-27Kk _ 1.6(9)—(-1.4)11
z,-17 1.6—-(-1.4)
=9.933
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11-9

&= kz_kl —
z,—-272 16-(-14)

The original density function is

1 1
f(K)=———F—=ex ——(
0 0.6667V2x p{ 2

=0.6667

2
k—9.933) Ans
0.6667

20-19 From Prob. 20-1, zz=122.9 kcycles and & = 30.3 keycles.

Xo~H _ %o —1229

Z,= ~

o)

X, =122.9+30.3Z,

30.3

From Table A-10, for 10 percent failure, z;p =—1.282

X10 = 122.9 + 30.3(~1.282)

=84.1 kcycles  Ans.
20-20
x f  fx fX f/(Nw)y  f(X)
60 2 120 7200 0.002899 0.000399
70 1 70 4900 0.001449 0.001206
80 3 240 19200 0.004348 0.003009
90 5 450 40500 0.007246 0.006204
100 8 800 80000 0.011594 0.010567
110 12 1320 145200 0.017391 0.014871
120 6 720 86400 0.008696 0.017292
130 10 1300 169000 0.014493 0.016612
140 8 1120 156800 0.011594 0.013185
150 5 750 112500 0.007246 0.008647
160 2 320 51200 0.002899 0.004685
170 3 510 86700 0.004348 0.002097
180 2 360 64800 0.002899 0.000776
190 1 190 36100 0.001449 0.000237
200 0 0 0 0 5.98E-05
210 1 210 44100 0.001449 1.25E-05
Y 69 8480
X =122.8986 s} =22.887 19
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Eq. (20-14):

f(x) =

2
1 1 X= u,
eEXp| ——
6 N2n p{ 2[ 5. M
_ 1 o _l(x—122.8986j2
2288710V27 0| 2\ 22.88719

x f/(Nw)  f(X x f/(Nw)  f(x)

55 0 0.000 214 | 145 0.011594 0.010 935
55 0.002899 0.000214 | 145 0.007246 0.010 935
65 0.002899 0.000711 | 155 0.007246 0.006 518
65 0.001449 0.000 711 | 155 0.002899 0.006 518
75 0.001449 0.001 951 | 165 0.002899 0.002 21
75 0.004 348 0.001 951 | 165 0.004 348 0.003 21
85 0.004 348 0.004425 | 175 0.004 348 0.001 306
85  0.007246 0.004425 | 175 0.002899 0.001 306
95 0.007246 0.008292 | 185 0.002 899 0.000 439
95 0.011594 0.008292 | 185 0.001 449 0.000 439
105 0.011594 0.012839 | 195 0.001 449 0.000 122
105 0.017391 0.012839 | 195 0 0.000 122
115 0.017391 0.016423 | 205 0 2.8E-05

115 0.008696 0.016423 | 205 0.001 499 2.8E-05

125 0.008 696 0.017357 | 215 0.001499 5.31E-06
125 0.014493 0.017357 | 215 0 5.31E-06
135 0.014493 0.015 157
135 0.011594 0.015 157

— — PDE
0018

0olG

ol

o2 -
0o =
0008 =
LS —
0o —

0002 =
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20-21

X f fx fx* f/ (Nw) f(X)
174 6 1044 181656  0.003807  0.001642
182 9 1638 298116  0.005711  0.009485
190 44 8360 1588400  0.027919  0.027742
198 67 13266 2626668  0.042513  0.041068
206 53 10918 2249108  0.033629  0.030773
214 12 2568 549552 0.007614  0.011671
222 6 1332 295704  0.003807  0.002241
1386 197 39126 7789204
X =198.6091 S, =9.695 071
X fl (NZU) f (X) 0045 — Data
170 0 0.000529  qpef (== PDE
170 0.003807  0.000529 .| ol
178 0.003807  0.004297 / ¥
178  0.005711  0.004297 "I ! \
186  0.005711  0.017663 0025 (- / \
186  0.027919  0.017663  amh i \
194 0.027919  0.036752 .| / \
194 0.042513  0.036752 / \
202 0.042513  0.038708 001 1= / \
202 0.033629  0.038708 0005} r,f— ‘Lﬂ
210 0.033629  0.020635 ol - ! ! |
210 0.007614  0.020635 0 o 0 o 4
218 0.007614  0.005568
218 0.003807  0.005568
226 0.003807  0.00076
226 0 0.00076
20-22
x f fx fx f / (Nw) f(X)
64 2 128 8192  0.008621  0.00548
68 6 408 27744 0.025862  0.017299
726 432 31104 0.025862  0.037705
76 9 684 51984  0.038793  0.056742
80 19 1520 121600  0.081897  0.058959
84 10 840 70560  0.043103  0.042298
88 4 352 30976  0.017241  0.020952
92 2 184 16928  0.008621  0.007165
624 58 4548 359088
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X =78.041379 Sx = 6.572 229

X f / (Nw) f (X) 4

62 0 0.002684

62 0.008621 0.002684 "

66  0.008621 0.010197 007

66  0.025862 0.010197 ;6 N

70 0.025862 0.026749 | Ed e

70 0.025862 0.026749 / N

74 0.025862 0.048446 V| K \

74 0.038793  0.048446 o003 / \

78 0.038793 0.060581 ;L 7 AN

78 0.0381897  0.060581 J

82  0.081897 0.052305 "'[ F‘ _vl‘ﬁq
82 0.043103  0.052305  ° - - o =

86 0.043103 0.03118
86 0.017241 0.03118
90 0.017241 0.012833
90 0.008621 0.012833
94 0.008621 0.003647

94 0 0.003647
20-23
o= 4P2 = 4(40) =50.93 kpsi
()
& =% 3B _ 140 ppsi
zd 7Z'(1 )
Os, = 5.9 kpsi

Fornoyield, m=§ -0 >0

G
S,—& =78.4-50.93=27.47 kpsi

) (10.82* +5.9°) =12.32 kpsi

z=- Am = M:—2.230
(o 12.32
Table A-10, ps=0.0129

R=1-pi=1-0.0129=0.987 Ans.
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20-24 For a lognormal distribution,
Eq. (20-18) u, =In g, —In\/1+ C;
Eq. (20-19) &, =,/In(1+C})

From Prob. (20-23)
=8,-0 =4,

Hi,
4, =(ln§y—ln,/l+ Cg )—(ln5—lnm)

Sy 1+C2
1+C2
1+C2 )+1n 1+C2)J/

6, =i
\/ (1+c)(+c)]

In i 1+C2
“a_ & 1+C§y
G \/m[(ncgy)(ncj)}
4P 4(30)
ﬂdz_ﬂ'(lz)
. 46, 4(5.1)
7 ()
6.494

©~38.197

C, = 381 =0.076 81
49.6

s,
{ 496 [1+0170° ]
In
38.197 \ 14 0.076812
Z=— =-1.470
\/1n[(1+o.o76 81°)(1+0.170°) |

=In

o= =38.197 kpsi

6.494 kpsi

=0.1700

Table A-10
p: =0.0708

R=1-p; =0.929 Ans.
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20-25

X n nx nx
93 19 1767 164 311
95 25 2375 225 625
97 38 3686 357 542
99 17 1683 166 617
101 12 1212 122 412
103 10 1030 106 090
105 5 525 55125
107 4 428 45 796
109 4 436 47 524
111 2 222 24 642
136 13364 1315704

X =13 364/136 = 98.26 kpsi

(1315 704-13 3647 /136
S 136 -1

12
} =4.30 kpsi

Under normal hypothesis,

Zyp = ( %01 _98-26)/4.30

X)0 = 98.26+4.307,
=98.26+4.30(-2.3267)
=88.26=88.3 kpsi Ans

20-26 From Prob. 20.25, uy = 98.26 kpsi, and &, = 4.30 kpsi.
C, =6,/ 1, =4.30/98.26 = 0.043 76

From Egs. (20-18) and (20-19),
1, =1n(98.26)—0.043 76° /2 = 4.587

&, = \In(1+0.043 76*) = 0.043 74

For a yield strength exceeded by 99% of the population,
Zoo1 = (ln X001 _ﬂy) / &y = Inx, = Hy+ &yZO.Ol

From Table A-10, for 1% failure, zy¢1 = —2.326. Thus,
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Inx,,, =4.587+0.043 74(—2.326) =4.485
X0 =88.7 kpsi  Ans.

The normal PDF is given by Eq. (20-14) as

f (X) = ;exp{—
43027 2

1

( x—98.26]2
430

For the lognormal distribution, from Eq. (20-17), defining g(X),

o(x)= exp _l[lnx—4.587j2
X(0.043 74)N27 2\ 0.043 74
X(kpsi) f/ (Nw) f(x) a(x) X(kpsi) f/ (Nw) f(x) a(x)
92 0.000 00 0.032 15 0.032 63 102 0.036 76 0.063 56 0.061 34
92 0.069 85 0.032 15 0.032 63 104 0.036 76 0.038 06 0.037 08
94 0.069 85 0.056 80 0.058 90 104 0.018 38 0.038 06 0.037 08
94 0.091 91 0.056 80 0.058 90 106 0.018 38 0.018 36 0.018 69
96 0.091 91 0.080 81 0.083 08 106 0.014 71 0.018 36 0.018 69
96 0.13971 0.080 81 0.083 08 108 0.014 71 0.007 13 0.007 93
98 0.13971 0.092 61 0.092 97 108 0.014 71 0.007 13 0.007 93
98 0.062 50 0.092 61 0.092 97 110 0.014 71 0.002 23 0.002 86
100 0.062 50 0.085 48 0.083 67 110 0.007 35 0.002 23 0.002 86
100 0.044 12 0.085 48 0.083 67 112 0.007 35 0.000 56 0.000 89
102 0.044 12 0.063 56 0.061 34 112 0.000 00 0.000 56 0.000 89
Note: rows are repeated to draw histogram
016 = = Histogram
—_— i)
014 i)
. 012 =
E 0l
= e
2 pos »
E .08 fl
£ 006 /
o b= |4 _IA
# "\

.02

Q0

1 1 l l I |A-t\ﬁ4|:|

o o

L

OF 100 102 4 s 108 1100 112

v (kpsi)

The normal and lognormal are almost the same. However, the data is quite skewed and

perhaps a Weibull distribution should be explored. For a method of establishing the

Chapter 20, Page 21/29



Weibull parameters see Shigley, J. E., and C. R. Mishke, Mechanical Engineering

Design McGraw-Hill, 5th ed., 1989, Sec. 4-12.

20-27 x =(Si.) , X =79kpsi, 6=862kpsi, b=2.6

10*

Eq. (20-28):
X=x+(0-%)T(1+1/b
=79 +(86.2—79)['(1+1/2.6)
=79+7.2T°(1.38)

From Table A-34, I (1.38) =0.888 54

X=79+7.2(0.888 54) =85.4 kpsi Ans

Eq. (20-29)
6,=(0-%)[T(1+2/b)-T*(1+1/b)]"
= (86.2-79)[T(1+2/2.6) T (1+1/2.6)]”
=7.2[0.923 76-0.888 54 |
=2.64 kpsi Ans
C,=2 =28 0031 ans
X 854
20-28 X = Sy Xo=27.7kpsi, 0=462kpsi, b=438

u, =277 +(46.2—27.7)F(1+1/4.38)
=27.7+18.5T°(1.23)
=27.7+18.5(0.910 75)
=44.55kpsi  Ans

6, =(46.2-27.7)[ T (1+2/4.38)-TI" (1+1/4_38)]1/2

12

=18.5[T(1.46)-T’(1.23) |

=18.5[0.8856-0.920 752]'/ ’

=438 kpsi Ans

= ﬁ =0.098 Ans

X 44.55

From the Weibull survival equation
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b
vy -oml (555 |1

4.38
= exp| — A40-27.7 =0.846
46.2-27.7

Py =1-R, =1-0.846=0.154=15.4% Ans.

20-29 x= S, Xo=151.9 kpsi, 6=193.6 kpsi, b=38
1, =151.9+(193.6-151.9)I"(1+1/8)
~151.9+41.70(1.125)
=151.9+41.7(0.941 76)
=191.2kpsi Ans

6, =(193.6-151.9)[T(1+2/8)-T* (1+1/8)]”
=41_7[r(1.25)—r2(1.125)]1/2

= 41.7[0.906 40-0.941 762]‘/2

=5.82kpsi Ans
_5.82

C
191.2

=0.030

20-30 x = Su, Xo=47.6 kpsi, 6=125.6kpsi, b=11.4
X =47.6+(125.6-47.6)T (1+1/11.84)

=47.6+78I(1.08)
=47.6+78(0.959 73) =122.5 kpsi

6, =(125.6-47.6)[ T (1+2/11.84)-T" (1+1/11.84)]1/2
=78[T(1.08) —r2(1.17)]1/2

52 .
=78 0.959 73-0.936 70° |~ = 22.4 kpsi
From Prob. 20-28,

b 11.84
p=1-exp|— X% =1-exp —(Mj =0.0090 Ans
0-0, 125.6-47.6
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y=S,, Yo =64.1 kpsi, 6=81.0kpsi, b=3.77
¥ =64.1+(81.0—64.)['(1+1/3.77)

= 64.1+16.9T(1.27)
= 64.1+16.9(0.902 50) = 79.35 kpsi

o, =(81-64.D)[T(1+2/3.77)-T (1+1/3.77)]"
=16.9[(0.887 57)-0.902 50° | = 4.57 kpsi

y y 3.77
p=1-exp| - Jj
L [H_y() }

3.77
=1-exp —(Mj =0.019 Ans
81-64.1

20-31 x = Syt = WJ122.3, 134.6, 3.64] kpsi, p(x> 120) = 1 = 100% since Xo > 120 kpsi

133-122.3 \**
x>133) =exp| -| —— =22
P( ) Xp{ (134.6—122.3) }

=0.548=54.8% Ans

20-32 Using Egs. (20-28) and (20-29) and Table A-34,

Hy =1, +(0-1, )T (1+1/b) =36.9+(133.6-36.9) [ (1+1/2.66)
=122.85 kcycles
6,=(0-n,)[T(1+2/b)-T* (1+1/b) | =34.79 keycles

For the Weibull density function, Eq. (20-27),

(e 200 ( n-36.9 jz“‘lex _[ n-36.9 )2“
M 133.6-36.9\133.6-36.9 P 1336369

For the lognormal distribution, Egs. (20-18) and (20-19) give,

u, =1n(122.85)—(34.79/122.85)° /2 = 4.771

5, = \/[1 +(34.79/122.85)" | = 0.2778
From Eq. (20-17), the lognormal PDF is
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fo(N)=——exp
0277827

1

2

[

Inn—-4.771

0.2778

We form a table of densities f w (n) and f {x (N) and plot.

n(kcycles) fw (n) f i ()

40 9.1E-05 1.82E-05

50 0.000 991 0.000 241
60 0.002 498 0.001 233
70 0.004 380 0.003 501
80 0.006 401 0.006 739
90 0.008 301 0.009 913
100 0.009 822 0.012 022
110 0.010 750 0.012 644
120 0.010 965 0.011 947
130 0.010 459 0.010 399
140 0.009 346 0.008 492
150 0.007 827 0.006 597
160 0.006 139 0.004 926
170 0.004 507 0.003 564
180 0.003 092 0.002 515
190 0.001 979 0.001 739
200 0.001 180 0.001 184
210 0.000 654 0.000 795
220 0.000 336 0.000 529

rin)
0014

0012

ol

0008

000G

0004

0.002

—_— W

]

]

100

. keycles

150 200

250

The Weibull L10 life comes from Eq. (20-26) with reliability of R= 0.90. Thus,

Mo =36.9+(133.6-36.9)[In(1/0.90)]** = 78.4 keycles  Ans

The lognormal L10 life comes from the definition of the z variable. That is,
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Inn =u,+6,z or n =exp(yy+6'yz)
From Table A-10, for R=0.90, z=—1.282. Thus,

n, =exp[4.771+0.2778(~1.282) | =82.7 keycles  Ans.

20-33 Form a table

G O’fS)L fi fx(10%)  fx(10"%)  g(x)-(10%)
I 305 3 9.15 27.9075 0.0557
2 3.55 7 24.85 88.2175 0.1474
3 4.05 11 44,55 180.4275 0.2514
4 455 16 72.80 331.24 0.3168
5 505 21 106.05 535.5525 0.3216
6 5.55 13 72.15 400.4325 0.2789
7 605 13 7865 475.8325 0.2151
§ 655 6 3930 257.415 0.1517
9 7.05 2 14.10 99.405 0.1000
10 755 0 0 0 0.0625
11 805 4 3220 259.21 0.0375
12 8.55 3 25.65 219.3075 0.0218
13 9.05 0 0 0 0.0124
14 955 0 0 0 0.0069
15 10.05 1 10.05 101.0025 0.0038
100 529.50 2975.95
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X =529.5(10°) /1 00=5.295(10°) cycles  Ans
12

2975.95(1010)—[529.5(105)}2 /100
100—1

SX=

=1.319(10°) cycles  Ans
C, = §X=1.319/5.295=0.249
41, =1n5.295(10°)-0.2497 /2 =13.149

&, =/In(1+0.249*) = 0.245
1 1[ Inx—p,
X)=————exp| ——| ———
9(% Xé'y\/Eﬁ P 2{ o, J
1.628 1[1nx—13.149J2
X 2 0245

10° g(x)

0.5 =

0.4 ] t'i.!.lpﬂpu:u:d
histiogram
and PIF

=,
03 7‘ \

\

0l

I
305010 10.05(10%

r, cycles

[

20-34 X =5,=W]J70.3, 84.4,2.01]

f, =70.3+(84.4-70.3)T(1+1/2.01)
Eq. (2-28): =70.3+(84.4—70.3)['(1.498)
=82.8kpsi Ans
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&, = (84.4-703)[ T(1+2/2.0)-T>(1+ 1/2.01)]‘/ ’

1/2

&, =14.1[0.997 91-0.886 17” |

=6.502 kpsi
~6.502
828

Eq. (2-29):

C =0.079 Ans

20-35 Take the Weibull equation for the standard deviation
6,=(0-x)[Ta+2/b-*1+1/p]”
and the mean equation solved for X - X,

X—% =(0—%)I(1+1/b)

and divide the first by the second,
6, [r(+2b)-r>(1+1b)]"
X— X, I'(1+1/b)
42  |T(1+2/b)
49-33.8 \T?(1+1/b)

—1=JR=02763

Make a table and solve for b iteratively

b 1+2b 1+1/b T(1+2/b) T(1+/b) R

3 1.67 1.33 0.903 30 0.89338  0.363
4 15 1.25 0.886 23 0.90640  0.280
4.1 149 1.24 0.885 95 0.908 52  0.271

b=4.068 Using MathCad Ans.

X=X, _3384 49-33.8
C(1+1/b) [(1+1/4.068)
=498 kpsi Ans

0=x,+

20-36 x=S,=W[34.7, 39, 2.93] kpsi

Chapter 20, Page 28/29



X =34.7+(39-34.7)0(1+1/2.93) =34.7+4.3T (1.34)
=34.7+4.3(0.892 22) =38.5 kpsi

6, =(39-34.7)[T(1+2/2.93)-T*(1+1/2.93)]"
= 43[T(1.68)-12(1.34)]"

2 V2 .
=4.3[0.905 00-0.892 22° | =1.42kpsi Ans
C, =142/38.5=0.037 Ans

20-37 X (Mrev)  f f X fx¢

1 11 11 11

2 22 44 88

3 38 114 342

4 57 228 912

5 31 155 775

6 19 114 684

7 15 105 735

8 12 96 768

9 11 99 891

10 9 90 900

11 7 77 847

12 5 60 720

Sum 78 237 1193 7673

14, =1193(10°)/237 =5.034(10°) cycles

) IJ7673(10”)—[1193(uf)]2/237
O 237-1
C, =2.658/5.034=0.528
From Egs. (20-18) and (20-19),
p, =1n[5.034(10°) |- 0.528? /2 =15.292

&, =,In(1+0.528) =0.496
From Eq. (20-17), defining g(x),
a0 = 1 em)_l[mx—liﬂnjz
x(0.496)~27 2\ 0.496

X (Mrev) f/(Nw) g(x)-(10°%
0.5 0.000 00  0.000 11

=2.658(10°) cycles
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0.5
1.5
1.5
2.5
2.5
3.5
3.5
4.5
4.5
5.5
5.5
6.5
6.5
7.5
7.5
8.5
8.5
9.5
9.5
10.5
10.5
11.5
11.5
12.5
12.5

0.046414
0.046414
0.092827
0.092827
0.160338
0.160338
0.240506
0.240506
0.130802
0.130802
0.080 17
0.080 17
0.063 29
0.063 29
0.050 63
0.050 63
0.046 41
0.046 41
0.037 97
0.037 97
0.029 54
0.029 54
0.021 10
0.021 10
0.000 00

0.000 11
0.052 03
0.052 03
0.169 92
0.169 92
0.207 54
0.207 54
0.178 47
0.178 47
0.131 58
0.13158
0.090 11
0.090 11
0.059 53
0.059 53
0.038 69
0.038 69
0.025 01
0.025 01
0.016 18
0.016 18
0.010 51
0.010 51
0.006 87
0.006 87

025 - = Histogram
— — PDF

0.2 =

015 - \

sl p(10™)
—

0.1 ;

0.05

S In XA— 4y

Oy

Lo life, where 10% of bearings fail, from Table A-10,
z=-1.282. Thus,

= Inx=pu,+6,2=15.292+0.496z

In x=15.292 + 0.496(—1.282) = 14.66
. Xx=2.33(10%rev  Ans.
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