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Chapter 1 
 
 
Problems 1-1 through 1-6 are for student research. No standard solutions are provided. 
 
1-7 From Fig. 1-2, cost of grinding to  0.0005 in is 270%. Cost of turning to  0.003 in is 

60%.  
   Relative cost of grinding vs. turning  = 270/60 =  4.5 times  Ans. 
______________________________________________________________________________ 
1-8 CA =  CB, 
 
   10 + 0.8 P = 60 + 0.8 P  0.005 P 2   
 
   P 2 = 50/0.005   P = 100 parts Ans. 
______________________________________________________________________________ 
 
1-9 Max. load = 1.10 P 
 Min. area = (0.95)2A 
 Min. strength = 0.85 S 
 To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be 
 

   
 2

1.10
1.43 .

0.85 0.95
dn A  ns



 

______________________________________________________________________________ 
 
 1-10 (a)  X1 + X2: 

       
1 2 1 1 2 2

1 2 1 2

1 2

error 

     .

x x X e X e

e x x X X

e e Ans

    

    

 
 (b)  X1  X2: 

    
 

   
1 2 1 1 2 2

1 2 1 2 1 2     .

x x X e X e

e x x X X e e Ans

    

     
 

 (c)  X1 X2: 

    

  1 2 1 1 2 2

1 2 1 2 1 2 2 1 1 2

1 2
1 2 2 1 1 2

1 2

    .

x x X e X e

e x x X X X e X e e e

e e
X e X e X X Ans

X X

  

    

 
   

 

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 (d)  X1/X2: 

   

1 1 1 1 1 1

2 2 2 2 2 2

1

2 2 1 1 1 2 1

2 2 2 2 1 2 1

1 1 1 1 2

2 2 2 1 2

1

1

1
1 1    then    1 1 1

1

Thus,      .

x X e X e X

x X e X e X

e e e X e e e 2

2

e

X X e X X X X

x X X e e
e Ans

x X X X X



  
     

      
                 

 
   

 

 



X
  

______________________________________________________________________________ 
 

 1-11 (a) x1 = 7  = 2.645 751 311 1 
   X1 = 2.64 (3 correct digits) 

   x2 = 8  = 2.828 427 124 7 
   X2 = 2.82 (3 correct digits) 
   x1 + x2 = 5.474 178 435 8 
   e1 = x1   X1 = 0.005 751 311 1 
   e2 = x2   X2 = 0.008 427 124 7 
   e = e1 + e2 = 0.014 178 435 8 
   Sum = x1 + x2 = X1 + X2 + e 
           = 2.64 + 2.82 + 0.014 178 435 8 = 5.474 178 435 8 Checks 
 (b) X1 = 2.65,  X2 = 2.83 (3 digit significant numbers) 
   e1 = x1   X1 =  0.004 248 688 9 
   e2 = x2   X2 =  0.001 572 875 3 
   e = e1 + e2 =  0.005 821 564 2 
   Sum = x1 + x2 = X1 + X2 + e 
            = 2.65 +2.83  0.001 572 875 3 = 5.474 178 435 8 Checks 
______________________________________________________________________________ 
 

1-12 
   3

3

25 1016 1000
0.799 in .

2.5d

S
d A

n d



     ns  

 Table A-17:    d = 7

8
in     Ans. 

 Factor of safety: 
 
 
 

3

3
7

8

25 10
3.29 .

16 1000
S

n A




   ns  

______________________________________________________________________________ 

1-13 Eq. (1-5): R =
1

n

i
i

R

 = 0.98(0.96)0.94 = 0.88 

  Overall reliability = 88 percent Ans. 
______________________________________________________________________________ 
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1-14   a = 1.500  0.001 in 
   b = 2.000  0.003 in 
   c = 3.000  0.004 in 
   d = 6.520  0.010 in 
 (a)  d a b c   w = 6.520  1.5  2  3 = 0.020 in 
   = 0.001 + 0.003 + 0.004 +0.010 = 0.018 allt w

t

   w = 0.020  0.018 in                Ans. 
 
 (b) From part (a),  wmin = 0.002 in. Thus, must add 0.008 in to d . Therefore, 
 
   d = 6.520 + 0.008 = 6.528 in        Ans. 
 
______________________________________________________________________________ 
 
1-15 V = xyz, and x = a   a, y = b   b, z = c   c, 
 
  V abc  
 

  
   V a a b b c c

abc bc a ac b ab c a b c b c a c a b a b c

      

                   
 
 The higher order terms in  are negligible. Thus, 
 
  V bc a ac b ab c     
 

 and, .
V bc a ac b ab c a b c a b c

Ans
V abc a b c a b c

           
     

 
 
 For the numerical values given,    31.500 1.875 3.000 8.4375 inV    

 
  

   30.002 0.003 0.004
0.00427 0.00427 8.4375 0.036 in

1.500 1.875 3.000

V
V

V


         

 
  V  = 8.438  0.036  in3     Ans. 
______________________________________________________________________________ 
 

Chapter 1 Solutions - Rev. B, Page 3/6 
 



 
1-16  
 
 
 wmax = 0.05 in,   wmin = 0.004 in 

   
0.05 0.004

0.027 in
2


w =  

 Thus,  w = 0.05  0.027 = 0.023 in, and then, w = 0.027  0.023 in.  

   0.027 0.042 1.5

1.569 in

a b c

a

a

 
  


w =

 

 
   tw =         0.023 = t

all
t a + 0.002 + 0.005        ta = 0.016 in 

 
 Thus, a  = 1.569  0.016 in  Ans. 
 
______________________________________________________________________________ 
 
1-17    2 3.734 2 0.139 4.012 ino iD D d      

 
    all 0.028 2 0.004 0.036 in

oDt t     

 
   Do = 4.012  0.036 in  Ans. 
______________________________________________________________________________ 
 
1-18 From O-Rings, Inc. (oringsusa.com),  D i  = 9.19  0.13 mm, d = 2.62  0.08 mm 
  
    2 9.19 2 2.62 14.43 mmo iD D d      

 
    all 0.13 2 0.08 0.29 mm

oDt t     

 
   Do = 14.43  0.29 mm  Ans. 
______________________________________________________________________________ 
 
1-19 From O-Rings, Inc. (oringsusa.com),  D i  = 34.52  0.30 mm, d = 3.53  0.10 mm 
 
    2 34.52 2 3.53 41.58 mmo iD D d      

 
    all 0.30 2 0.10 0.50 mm

oDt t     

 
   Do = 41.58  0.50 mm  Ans. 
______________________________________________________________________________ 

Chapter 1 Solutions - Rev. B, Page 4/6 
 



 
1-20 From O-Rings, Inc. (oringsusa.com),  D i  = 5.237  0.035 in, d = 0.103  0.003 in 
 
    2 5.237 2 0.103 5.443 ino iD D d      

 
    all 0.035 2 0.003 0.041 in

oDt t     

 
   Do = 5.443  0.041 in  Ans. 
______________________________________________________________________________ 
 
1-21 From O-Rings, Inc. (oringsusa.com), D i  = 1.100  0.012 in, d = 0.210  0.005 in 
 
    2 1.100 2 0.210 1.520 ino iD D d      

 
    all 0.012 2 0.005 0.022 in

oDt t     

 
   Do = 1.520  0.022 in  Ans. 
______________________________________________________________________________ 
 
1-22 From Table A-2, 
 
 (a)    = 150/6.89 = 21.8 kpsi    Ans. 
 
 (b)  F = 2 /4.45 = 0.449 kip = 449 lbf         Ans. 
 
 (c) M = 150/0.113 = 1330 lbf  in = 1.33 kip  in      Ans. 
 
 (d) A = 1500/ 25.42 = 2.33 in2       Ans. 
 
 (e) I = 750/2.544 = 18.0 in4        Ans. 
 
 (f) E = 145/6.89 = 21.0 Mpsi        Ans. 
 
 (g) v = 75/1.61 = 46.6 mi/h       Ans. 
 
 (h) V = 1000/946 = 1.06 qt       Ans. 
______________________________________________________________________________ 
 
1-23 From Table A-2, 

 (a)  l = 5(0.305) = 1.53 m Ans. 

 (b)    = 90(6.89) = 620 MPa       Ans. 

 (c) p = 25(6.89) = 172 kPa         Ans. 
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 (d) Z =12(16.4) = 197 cm3        Ans. 
 
 (e) w = 0.208(175) = 36.4 N/m           Ans. 
 
 (f)   = 0.001 89(25.4) = 0.0480 mm              Ans. 
 
 (g) v = 1200(0.0051) = 6.12 m/s         Ans. 
 
 (h)  = 0.002 15(1) = 0.002 15 mm/mm          Ans. 

 
 (i) V = 1830(25.43) = 30.0 (106) mm3           Ans. 
 

______________________________________________________________________________ 
 
1-24  
 (a)    = M /Z = 1770/0.934 = 1895 psi = 1.90 kpsi     Ans. 
 
 (b)    = F /A = 9440/23.8 = 397 psi           Ans. 
 
 (c)  y =Fl3/3EI = 270(31.5)3/[3(30)106(0.154)] = 0.609 in     Ans. 
 
 (d)  = Tl /GJ = 9740(9.85)/[11.3(106)( /32)1.004] = 8.648(102) rad = 4.95     Ans. 
 
______________________________________________________________________________ 
 
1-25  
 (a)  =F / wt = 1000/[25(5)] = 8 MPa            Ans. 
 
 (b)  I = bh3 /12 = 10(25)3/12 = 13.0(103) mm4        Ans. 
 
 (c)  I = d4/64 =  (25.4)4/64 = 20.4(103) mm4        Ans. 
 
 (d)   =16T / d 3 = 16(25)103/[ (12.7)3] = 62.2 MPa      Ans. 
______________________________________________________________________________ 
 
1-26  
 (a)   =F /A = 2 700/[ (0.750)2/4] = 6110 psi = 6.11 kpsi        Ans. 
 
 (b)   = 32Fa/ d 3 = 32(180)31.5/[ (1.25)3] = 29 570 psi = 29.6 kpsi      Ans. 
 
 (c)  Z = (do

4  di
4)/(32 do) =  (1.504   1.004)/[32(1.50)] = 0.266 in3      Ans. 

 
 (d)  k = (d 4G)/(8D 3 N) = 0.06254(11.3)106/[8(0.760)3 32] = 1.53 lbf/in            Ans. 
 
______________________________________________________________________________ 



Chapter 2 
 
 
2-1 From Tables A-20, A-21, A-22, and A-24c, 
 (a)  UNS G10200 HR: Sut = 380 (55)  MPa (kpsi),  Syt = 210 (30)  Mpa (kpsi)  Ans. 
 (b)  SAE 1050 CD: Sut = 690 (100)  MPa (kpsi),  Syt = 580 (84)  Mpa (kpsi)   Ans. 
 (c)  AISI 1141 Q&T at 540C (1000F):  Sut = 896 (130)  MPa (kpsi),  Syt = 765 (111)   
  Mpa (kpsi)   Ans. 
 (d)  2024-T4: Sut = 446 (64.8)  MPa (kpsi),  Syt = 296 (43.0)  Mpa (kpsi)   Ans. 
 (e)  Ti-6Al-4V annealed: Sut = 900 (130)  MPa (kpsi),  Syt = 830 (120)  Mpa (kpsi)   Ans. 
______________________________________________________________________________ 
 
2-2 (a) Maximize yield strength: Q&T at 425C (800F)   Ans. 
 
 (b)Maximize elongation: Q&T at 650C (1200F)   Ans. 
______________________________________________________________________________ 
 
2-3 Conversion of  kN/m3 to kg/ m3 multiply by 1(103) / 9.81 = 102 
 AISI 1018 CD steel: Tables A-20 and A-5  

    
 
 

3370 10
47.4 kN m/kg .

76.5 102
yS

Ans


    

 2011-T6 aluminum: Tables A-22 and A-5 

    
 
 

3169 10
62.3 kN m/kg .

26.6 102
yS

Ans


    

 Ti-6Al-4V titanium: Tables A-24c and A-5 

    
 
 

3830 10
187 kN m/kg .

43.4 102
yS

Ans


     

 ASTM No. 40 cast iron: Tables A-24a and A-5.Does not have a yield strength. Using the 
ultimate strength in tension 

    
  

 

342.5 6.89 10
40.7 kN m/kg

70.6 102
utS

Ans


    

______________________________________________________________________________ 
 
2-4  
 AISI 1018 CD steel: Table A-5 

    
   

6

6
30.0 10

106 10 in .
0.282

E
Ans


   

 2011-T6 aluminum: Table A-5 

    
   

6

6
10.4 10

106 10 in .
0.098

E
Ans


   

 Ti-6Al-6V titanium: Table A-5 

Chapter 2 - Rev. D, Page 1/19 
 



    
   

6

6
16.5 10

103 10 in .
0.160

E
Ans


   

 No. 40 cast iron: Table A-5 

    
   

6

6
14.5 10

55.8 10 in .
0.260

E
Ans


   

______________________________________________________________________________ 
 
2-5  

2
2 (1 )

2

E G
G v E v

G


     

 From Table A-5   

Steel:  
 

 
30.0 2 11.5

0.304     .
2 11.5

v A


  ns  

 

Aluminum: 
 

 
10.4 2 3.90

0.333     .
2 3.90

v A


  ns  

 

Beryllium copper: 
 

 
18.0 2 7.0

0.286     .
2 7.0

v A


  ns  

 

Gray cast iron:  
 

 
14.5 2 6.0

0.208     .
2 6.0

v A


  ns  

______________________________________________________________________________ 
 
2-6 (a) A0 =  (0.503)2/4,    = Pi  / A0 
 
  For data in elastic range,   =  l / l0  =  l / 2 

  For data in plastic range,  0 0

0 0 0

1 1
l l Al l

l l l A


       

 On the next two pages, the data and plots are presented. Figure (a) shows the linear part of 
the curve from data points 1-7. Figure (b) shows data points 1-12. Figure (c) shows the 
complete range. Note: The exact value of A0 is used without rounding off. 

 
 (b) From Fig. (a) the slope of the line from a linear regression is E = 30.5 Mpsi    Ans. 
 
 From Fig. (b) the equation for the dotted offset line is found to be 
 
      = 30.5(106)   61 000  (1) 

 The equation for the line between data points 8 and 9 is 
      = 7.60(105)  + 42 900  (2) 
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 Solving Eqs. (1) and (2) simultaneously yields    = 45.6 kpsi which is the 0.2 percent 
offset yield strength. Thus, Sy = 45.6 kpsi     Ans. 

 
 The ultimate strength from Figure (c) is Su  = 85.6 kpsi    Ans. 
 
 The reduction in area is given by Eq. (2-12) is 
 

       0

0

0.1987 0.1077
100 100 45.8 % .

0.1987
fA A

R Ans
A

 
    

Data Point Pi l, Ai  

1 0 0 0 0 

2 1000 0.0004 0.00020 5032 

3 2000 0.0006 0.00030 10065 

4 3000 0.001 0.00050 15097 

5 4000 0.0013 0.00065 20130 

6 7000 0.0023 0.00115 35227 

7 8400 0.0028 0.00140 42272 

8 8800 0.0036 0.00180 44285 

9 9200 0.0089 0.00445 46298 

10 8800 0.1984 0.00158 44285 

11 9200 0.1978 0.00461 46298 

12 9100 0.1963 0.01229 45795 

13 13200 0.1924 0.03281 66428 

14 15200 0.1875 0.05980 76492 

15 17000 0.1563 0.27136 85551 

16 16400 0.1307 0.52037 82531 

17 14800 0.1077 0.84506 74479 
 

 
      (a) Linear range 
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      (b) Offset yield 
 

 
 
      (c) Complete range 
 
 (c) The material is ductile since there is a large amount of deformation beyond yield. 
 
 (d) The closest material to the values of Sy, Sut, and R is SAE 1045 HR with Sy = 45 kpsi, 

Sut = 82 kpsi, and R = 40 %.     Ans. 
______________________________________________________________________________ 
 
2-7 To plot  true vs., the following equations are applied to the data. 

     true

P

A
   

 Eq. (2-4) 
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     0

0

ln  for 0 0.0028 in

ln  for 0.0028 in

l
l

l

A
l

A





   

  

 

 where   
2

2
0

(0.503)
0.1987 in

4
A


   

 The results are summarized in the table below and plotted on the next page. The last 5 
points of data are used to plot log   vs log  

 
 The curve fit gives                m = 0.2306 

log 0  = 5.1852  0 = 153.2 kpsi     Ans. 
 
 For 20% cold work, Eq. (2-14) and Eq. (2-17) give, 
 

A = A0 (1 – W) = 0.1987 (1 – 0.2) = 0.1590 in2 
 

   

0

0.2306
0

0.1987
ln ln 0.2231

0.1590

Eq. (2-18): 153.2(0.2231) 108.4 kpsi     .

Eq. (2-19), with 85.6 from Prob. 2-6, 

85.6
107 kpsi     .

1 1 0.2

m
y

u

u
u

A

A

S A

S

S
S Ans

W



 

  

  



   
 

ns

 

P L A   true log  log true 

0 0 0.198 713 0 0  
1000 0.0004 0.198 713 0.000 2 5032.388 -3.699 01 3.701 774
2000 0.0006 0.198 713 0.000 3 10 064.78 -3.522 94 4.002 804
3000 0.001 0.198 713 0.000 5 15 097.17 -3.301 14 4.178 895
4000 0.0013 0.198 713 0.000 65 20 129.55 -3.187 23 4.303 834
7000 0.0023 0.198 713 0.001 149 35 226.72 -2.939 55 4.546 872
8400 0.0028 0.198 713 0.001 399 42 272.06 -2.854 18 4.626 053
8800 0.0036 0.198 4 0.001 575 44 354.84 -2.802 61 4.646 941
9200 0.0089 0.197 8 0.004 604 46 511.63 -2.336 85 4.667 562
9100  0.196 3 0.012 216 46 357.62 -1.913 05 4.666 121

13200  0.192 4 0.032 284 68 607.07 -1.491 01 4.836 369
15200  0.187 5 0.058 082 81 066.67 -1.235 96 4.908 842
17000  0.156 3 0.240 083 108 765.20 -0.619 64 5.036 49 
16400  0.130 7 0.418 956 125 478.20 -0.377 83 5.098 568
14800  0.107 7 0.612 511 137 418.80 -0.212 89 5.138 046
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______________________________________________________________________________ 
 
2-8 Tangent modulus at   = 0 is 
 

   
   6

3

5000 0
25 10  psi

0.2 10 0
E




 
 
 




 Ans. 

  At   = 20 kpsi  
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  
    

3

6
20 3

26 19 10
14.0 10  psi

1.5 1 10
E







   Ans. 

 

  (10-3)   (kpsi) 

0 0 
0.20 5 
0.44 10 
0.80 16 
1.0 19 
1.5 26 
2.0 32 
2.8 40 
3.4 46 
4.0 49 
5.0 54 

 
 
______________________________________________________________________________ 
 
2-9 W = 0.20,  
 (a)  Before cold working: Annealed AISI 1018 steel. Table A-22,  Sy  = 32 kpsi, Su  = 49.5 

kpsi, 0 = 90.0 kpsi, m = 0.25, f  = 1.05 

 After cold working: Eq. (2-16),  u  = m = 0.25 

 Eq. (2-14), 0 1 1
1.25

1 1 0.20i

A

A W
  

 
 

 Eq. (2-17), 0ln ln1.25 0.223i u
i

A

A
      

 Eq. (2-18), S    93% increase  Ans.  0.25

0 90 0.223 61.8 kpsi .m
y i     Ans

 Eq. (2-19), 
49.5

61.9 kpsi .
1 1 0.20

u
u

S
S A

W
   

 
ns    25% increase   Ans. 

 

 (b) Before: 
49.5

1.55
32

u

y

S

S
   After:    

61.9
1.00

61.8
u

y

S

S


 


 Ans. 

 Lost most of its ductility 
______________________________________________________________________________ 
 
2-10 W = 0.20,  
 (a)  Before cold working: AISI 1212 HR steel. Table A-22,  Sy  = 28 kpsi, Su  = 61.5 kpsi, 

0 = 110 kpsi, m = 0.24, f  = 0.85 

 After cold working: Eq. (2-16),  u  = m = 0.24 
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 Eq. (2-14), 0 1 1
1.25

1 1 0.20i

A

A W
  

 
 

 Eq. (2-17), 0ln ln1.25 0.223i u
i

A

A
      

 Eq. (2-18),    174% increase  Ans.  0.24

0 110 0.223 76.7 kpsi .m
y iS A     ns

 Eq. (2-19), 
61.5

76.9 kpsi .
1 1 0.20

u
u

S
S A

W
   

 
ns    25% increase   Ans. 

 

 (b) Before: 
61.5

2.20
28

u

y

S

S
   After:    

76.9
1.00

76.7
u

y

S

S


 


 Ans. 

 Lost most of its ductility 
______________________________________________________________________________ 
 
2-11 W = 0.20,  
 (a)  Before cold working: 2024-T4 aluminum alloy. Table A-22,  Sy  = 43.0 kpsi, Su  = 

64.8 kpsi, 0 = 100 kpsi, m = 0.15, f  = 0.18 

 After cold working: Eq. (2-16),  u  = m = 0.15 

 Eq. (2-14), 0 1 1
1.25

1 1 0.20i

A

A W
  

 
 

 Eq. (2-17), 0ln ln1.25 0.223i
i

A

A f        Material fractures.         Ans. 

______________________________________________________________________________ 
 
2-12 For HB = 275, Eq. (2-21),  Su = 3.4(275) = 935 MPa  Ans. 
______________________________________________________________________________ 
 
2-13 Gray cast iron, HB = 200. 
 Eq. (2-22), Su = 0.23(200)  12.5 = 33.5 kpsi Ans. 
 
 From Table A-24, this is probably ASTM No. 30 Gray cast iron Ans. 
______________________________________________________________________________ 
 
2-14 Eq. (2-21),  0.5HB = 100        HB = 200         Ans. 
______________________________________________________________________________ 
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2-15 For the data given, converting HB to Su using Eq. (2-21) 
  

HB Su (kpsi)   Su
2

 (kpsi)

230 115  13225 

232 116  13456 

232 116  13456 

234 117  13689 

235 117.5  13806.25

235 117.5  13806.25

235 117.5  13806.25

236 118  13924 

236 118  13924 

239 119.5  14280.25

Su = 1172 Su
2 = 137373 

 

   
1172

117.2 117 kpsi .
10

u
u

S
S A

N
    ns  

 
 Eq. (20-8), 
 

    
 

10
2 2

2

1
137373 10 117.2

1.27 kpsi .
1 9u

u u
i

S

S NS
s A

N





  



ns  

______________________________________________________________________________ 
 
2-16 For the data given, converting HB to Su using Eq. (2-22) 
  

HB Su (kpsi)   Su
2

 (kpsi)

230 40.4  1632.16 

232 40.86  1669.54 

232 40.86  1669.54 

234 41.32  1707.342

235 41.55  1726.403

235 41.55  1726.403

235 41.55  1726.403

236 41.78  1745.568

236 41.78  1745.568

239 42.47  1803.701

Su = 414.12 Su
2 =17152.63
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414.12

41.4 kpsi .
10

u
u

S
S A

N
   ns  

 
 Eq. (20-8), 

   
 

10
2 2

2

1
17152.63 10 41.4

1.20 .
1 9u

u u
i

S

S NS
s A

N





  



ns  

______________________________________________________________________________ 
 

2-17 (a)    
2

345.5
34.5 in lbf / in      .

2(30)Ru A  ns  

 
 (b)  

 
 

P L A A0 / A – 1    = P/A0 
0 0 0 0 

1000 0.0004 0.0002 5 032.39 
2000 0.0006 0.0003 10 064.78 
3000 0.0010 0.0005 15 097.17 
4000 0.0013 0.000 65 20 129.55 
7000 0.0023 0.001 15 35 226.72 
8400 0.0028 0.0014 42 272.06 
8800 0.0036 0.0018 44 285.02 
9200 0.0089 0.004 45 46 297.97 
9100  0.1963 0.012 291 0.012 291 45 794.73 

13200  0.1924 0.032 811 0.032 811 66 427.53 
15200  0.1875 0.059 802 0.059 802 76 492.30 
17000  0.1563 0.271 355 0.271 355 85 550.60 
16400  0.1307 0.520 373 0.520 373 82 531.17 
14800  0.1077 0.845 059 0.845 059 74 479.35 

 
 
 From the figures on the next page, 

   

 

   
 

5

1

3 3

1
(43 000)(0.001 5) 45 000(0.004 45 0.001 5)

2

1
45 000 76 500 (0.059 8 0.004 45)

2
81 000 0.4 0.059 8 80 000 0.845 0.4

66.7 10 in lbf/in      .

T i
i

u A

Ans



 

   

   








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 2-18, 2-19 These problems are for student research. No standard solutions are provided. 
______________________________________________________________________________ 
 
2-20 Appropriate tables: Young’s modulus and Density (Table A-5)1020 HR and CD (Table A-

20), 1040 and 4140 (Table A-21), Aluminum (Table A-24), Titanium (Table A-24c) 
 
 Appropriate equations:  

  For diameter, 
  2

4

/ 4 y
y

F F
S d

F

A d S


 
      

 
  Weight/length = A,   Cost/length = $/in = ($/lbf) Weight/length,  
  Deflection/length =  /L  = F/(AE) 
 
 With F = 100 kips = 100(103) lbf, 
 
  

Material 
Young's 
Modulus  Density  

Yield 
Strength  Cost/lbf Diameter

Weight/ 
length 

Cost/ 
length 

Deflection/ 
length 

units  Mpsi  lbf/in^3  kpsi  $/lbf  in  lbf/in  $/in  in/in 

                   
1020 HR  30  0.282  30 $0.27 2.060 0.9400 $0.25  1.000E‐03

1020 CD  30  0.282  57 $0.30 1.495 0.4947 $0.15  1.900E‐03

1040  30  0.282  80 $0.35 1.262 0.3525 $0.12  2.667E‐03
4140  30  0.282  165 $0.80 0.878 0.1709 $0.14  5.500E‐03

Al  10.4  0.098  50 $1.10 1.596 0.1960 $0.22  4.808E‐03

Ti  16.5  0.16  120 $7.00 1.030 0.1333 $0.93  7.273E‐03
  
 The selected materials with minimum values are shaded in the table above.            Ans. 
______________________________________________________________________________ 
 
2-21 First, try to find the broad category of material (such as in Table A-5).  Visual, magnetic, 

and scratch tests are fast and inexpensive, so should all be done.  Results from these three 
would favor steel, cast iron, or maybe a less common ferrous material.  The expectation 
would likely be hot-rolled steel.  If it is desired to confirm this, either a weight or bending 
test could be done to check density or modulus of elasticity.  The weight test is faster.  
From the measured weight of 7.95 lbf, the unit weight is determined to be  

 

  3 3
2

7.95 lbf
0.281 lbf/in 0.28 lbf/in

[ (1 in) / 4](36 in)

W

Al 
   w  

 
which agrees well with the unit weight of 0.282 lbf/in3 reported in Table A-5 for carbon 
steel.  Nickel steel and stainless steel have similar unit weights, but surface finish and 
darker coloring do not favor their selection.  To select a likely specification from Table 
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A-20, perform a Brinell hardness test, then use Eq. (2-21) to estimate an ultimate strength 
of .  Assuming the material is hot-rolled due to the 

rough surface finish, appropriate choices from Table A-20 would be one of the higher 
carbon steels, such as hot-rolled AISI 1050, 1060, or 1080.  Ans. 

0.5 0.5(200) 100 kpsiu BS H  

______________________________________________________________________________ 
 
2-22 First, try to find the broad category of material (such as in Table A-5).  Visual, magnetic, 

and scratch tests are fast and inexpensive, so should all be done.  Results from these three 
favor a softer, non-ferrous material like aluminum.  If it is desired to confirm this, either a 
weight or bending test could be done to check density or modulus of elasticity.  The 
weight test is faster.  From the measured weight of 2.90 lbf, the unit weight is determined 
to be  

  3 3
2

2.9 lbf
0.103 lbf/in 0.10 lbf/in

[ (1 in) / 4](36 in)

W

Al 
   w  

 
which agrees reasonably well with the unit weight of 0.098 lbf/in3 reported in Table A-5 
for aluminum.  No other materials come close to this unit weight, so the material is likely 
aluminum.     Ans. 

______________________________________________________________________________ 
 
2-23 First, try to find the broad category of material (such as in Table A-5).  Visual, magnetic, 

and scratch tests are fast and inexpensive, so should all be done.  Results from these three 
favor a softer, non-ferrous copper-based material such as copper, brass, or bronze.  To 
further distinguish the material, either a weight or bending test could be done to check 
density or modulus of elasticity.  The weight test is faster.  From the measured weight of 
9 lbf, the unit weight is determined to be  

 

  3 3
2

9.0 lbf
0.318 lbf/in 0.32 lbf/in

[ (1 in) / 4](36 in)

W

Al 
   w  

 
which agrees reasonably well with the unit weight of 0.322 lbf/in3 reported in Table A-5 
for copper.  Brass is not far off (0.309 lbf/in3), so the deflection test could be used to gain 
additional insight.  From the measured deflection and utilizing the deflection equation for 
an end-loaded cantilever beam from Table A-9, Young’s modulus is determined to be 

  
 

 
33

4

100 24
17.7 Mpsi

3 3 (1) 64 (17 / 32)

Fl
E

Iy 
    

 
which agrees better with the modulus for copper (17.2 Mpsi) than with brass (15.4 Mpsi).  
The conclusion is that the material is likely copper.        Ans. 

______________________________________________________________________________ 
 
2-24 and 2-25    These problems are for student research. No standard solutions are provided.  
______________________________________________________________________________ 
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2-26 For strength,  = F/A = S       A = F/S 
 For mass,  m = Al = (F/S) l  
 
 Thus, f 3(M ) =  /S , and maximize S/    (  = 1) 
 
 In Fig. (2-19), draw lines parallel to S/   
 

 
 From the list of materials given, both aluminum alloy and high carbon heat treated 

steel are good candidates, having greater potential than tungsten carbide or polycarbonate.  
The higher strength aluminum alloys have a slightly greater potential.  Other factors, such 
as cost or availability, may dictate which to choose.      Ans. 

______________________________________________________________________________ 
 
2-27 For stiffness, k = AE/l       A = kl/E 
 For mass,  m = Al = (kl/E) l =kl2  /E 
 
 Thus, f 3(M) =  /E , and maximize E/    (  = 1) 
 
 In Fig. (2-16), draw lines parallel to E/   
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 From the list of materials given, tungsten carbide (WC) is best, closely followed by 

aluminum alloys, and then followed by high carbon heat-treated steel. They are close 
enough that other factors, like cost or availability, would likely dictate the best choice.  
Polycarbonate polymer is clearly not a good choice compared to the other candidate 
materials.       Ans. 

______________________________________________________________________________ 
 
2-28 For strength,  
      = Fl/Z = S   (1) 
 
  where Fl is the bending moment and Z is the section modulus [see Eq. (3-26b), p. 90 ]. 

The section modulus is strictly a function of the dimensions of the cross section and has 
the units in3 (ips) or m3 (SI). Thus, for a given cross section, Z =C (A)3/2, where C is a 

number. For example, for a circular cross section, C =   1

4 


. Then, for strength, Eq. 

(1) is 

     
2/3

3/2

Fl Fl
S A

CA CS
     
 

       (2) 

Chapter 2 - Rev. D, Page 15/19 
 



 
 

  For mass,    
2/3 2/3

5/3
2/3

  
Fl F

m Al l l
CS C S

           
    




 

 
 Thus, f 3(M) =  /S 2/3, and maximize S 2/3/    (  = 2/3) 
 
 In Fig. (2-19), draw lines parallel to S 2/3/  
 
 

 
 
 
 From the list of materials given, a higher strength aluminum alloy has the greatest 

potential, followed closely by high carbon heat-treated steel. Tungsten carbide is clearly 
not a good choice compared to the other candidate materials.      .Ans. 

______________________________________________________________________________ 
 
2-29 Eq. (2-26), p. 65, applies to a circular cross section. However, for any cross section shape 

it can be shown that I = CA 2, where C is a constant. For example, consider a rectangular 
section of height h and width b, where for a given scaled shape, h = cb, where c is a 
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constant. The moment of inertia is I = bh 3/12, and the area is A = bh. Then I = h(bh2)/12 
= cb (bh2)/12 = (c/12)(bh)2  = CA 2, where C  = c/12 (a constant). 

  Thus, Eq. (2-27) becomes 

    
1/23

3

kl
A

CE

 
  
 

 

 and Eq. (2-29) becomes  

     
1/2

5/2
1/23

k
m Al l

C E

         
   

 

 Thus, minimize  3 1/2
f M

E


 , or maximize

1/2E
M


 . From Fig. (2-16) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 From the list of materials given, aluminum alloys are clearly the best followed by steels 

and tungsten carbide.  Polycarbonate polymer is not a good choice compared to the other 
candidate materials.    Ans. 

______________________________________________________________________________ 
 
2-30 For stiffness, k = AE/l       A = kl/E 
 For mass, m = Al = (kl/E) l =kl2  /E 
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 So, f 3(M) =  /E, and maximize E/ . Thus,   = 1.      Ans. 
______________________________________________________________________________ 
2-31 For strength,  = F/A = S       A = F/S 
 For mass, m = Al = (F/S) l  
 
 So,  f 3(M ) =  /S, and maximize S/ . Thus,   = 1.      Ans. 
______________________________________________________________________________ 
 
2-32 Eq. (2-26), p. 65, applies to a circular cross section. However, for any cross section shape 

it can be shown that I = CA 2, where C is a constant. For example, consider a rectangular 
section of height h and width b, where for a given scaled shape, h = cb, where c is a 
constant. The moment of inertia is I = bh 3/12, and the area is A = bh. Then I = h(bh2)/12 
= cb (bh2)/12 = (c/12)(bh)2  = CA 2, where C  = c/12. 

  Thus, Eq. (2-27) becomes 

    
1/23

3

kl
A

CE

 
  
 

 

 and Eq. (2-29) becomes  

    
1/2

5/2
1/23

k
m Al l

C E

       
  




  

 So, minimize  3 1/2
f M

E


 , or maximize

1/2E
M


 . Thus,   = 1/2.     Ans. 

______________________________________________________________________________ 
 
2-33 For strength,  
      = Fl/Z = S   (1) 
 
  where Fl is the bending moment and Z is the section modulus [see Eq. (3-26b), p. 90 ]. 

The section modulus is strictly a function of the dimensions of the cross section and has 
the units in3 (ips) or m3 (SI). Thus, for a given cross section, Z =C (A)3/2, where C is a 

number. For example, for a circular cross section, C =  1

4 


. Then, for strength, Eq. (1) 

is 

     
2/3

3/2

Fl Fl
S A

CA CS
     
 

       (2) 

 
 

  For mass,    
2/3 2/3

5/3
2/3

  
Fl F

m Al l l
CS C S

           
    




 

 
 So, f 3(M) =  /S 2/3, and maximize S 2/3/. Thus,    = 2/3.     Ans. 
______________________________________________________________________________ 
2-34 For stiffness, k=AE/l, or, A = kl/E. 
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 Thus, m = Al = (kl/E )l = kl  2  /E. Then, M = E / and   = 1. 
 
 From Fig. 2-16, lines parallel to E /  for ductile materials include steel, titanium, 

molybdenum, aluminum alloys, and composites. 
 
 For strength, S = F/A, or, A = F/S. 
 
 Thus, m = Al = F/Sl = Fl  /S. Then, M = S/  and   = 1. 
 
 From Fig. 2-19, lines parallel to S/  give for ductile materials, steel, aluminum alloys, 

nickel alloys, titanium, and composites. 
 
 Common to both stiffness and strength are steel, titanium, aluminum alloys, and 

composites.     Ans. 
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3-1 

  0oM 

  18 6(100) 0BR  

 33.3 lbf     .BR Ans  
 

 
 0yF 

  100 0o BR R  

 66.7 lbf     .oR Ans  

 33.3 lbf     .C BR R A  ns  
 
______________________________________________________________________________ 
 
3-2 
 Body AB: 
 

 
  0xF  Ax BxR R  

  

 
  0yF  Ay ByR R  

 

 
  0BM  (10) (10) 0Ay AxR R 

 Ax AyR R  

 

 Body OAC: 
 

 

  0OM  (10) 100(30) 0AyR  

 

300 lbf     .AyR Ans  

 

               

0xF  300 lbf     .Ox AxR R A    ns  

 

 

       0yF  100 0Oy AyR R  

 

200 lbf .OyR Ans   

______________________________________________________________________________ 
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3-3  
 
 
 
 

 

0.8
1.39 kN .

tan 30
OR Ans   

 

0.8
1.6 kN     .

sin 30
AR Ans   

 
 
 
 
______________________________________________________________________________ 
 
3-4 

 Step 1: Find RA & RE 

 

   

  

     

 

 

  

4.5
7.794 m

tan 30

0

9 7.794(400cos30 )

4.5(400sin 30 ) 0

400 N     .

A

E

E

h

M

R

R Ans

 

 



 








 

 

 
2 2

0     400cos30 0

                    346.4 N

0     400 400sin 30 0

                    200 N

346.4 200 400 N     .

x Ax

Ax

y Ay

Ay

A

F R

R

F R

R

R Ans

  

 

  

 

  







   

 

 

 Step 2: Find components of RC on link 4 and RD 

 

 
 

 

 
4

4

0

      400(4.5) 7.794 1.9 0

  305.4 N     .

0 305.4 N

0 ( ) 400 N

C

D

D

x Cx

y Cy

M

R

R Ans

F R

F R



  



  

   





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Step 3: Find components of RC on link 2 

 
 

 
 

 

2

2

2

0

      305.4 346.4 0

      41 N

0

      200 N

x

Cx

Cx

y

Cy

F

R

R

F

R



  











 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

____________________________________________________________________________________________________________________

_ 
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3-5 

   0CM 
       11500 300(5) 1200(9) 0R   
      1 8.2 kN     .R Ans  
 

  
 0yF 

       28.2 9 5 0R    2 5.8 kN .R Ans  
 
 
 
 
 
 
 
 

  1 8.2(300) 2460 N m     .M Ans    

  2 2460 0.8(900) 1740 N m     .M Ans     

   3 1740 5.8(300) 0 checks!M   
_____________________________________________________________________________ 
 
3-6 
 

 
 0yF 

       0 500 40(6) 740 lbf     .R Ans    

  0 0M 
       0 500(8) 40(6)(17) 8080 lbf in     .M Ans     
       
  1 8080 740(8) 2160 lbf in     .M Ans       

  2 2160 240(6) 720 lbf in     .M Ans        

  
3

1
720 (240)(6) 0   checks!

2
M      

 
 
 
 
 
______________________________________________________________________________ 
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3-7 

 
 0BM 

  
 12.2 1(2) 1(4) 0R   

   1 0.91 kN     .R Ans   

 
 0yF 

  
 20.91 2 4 0R    

  2 6.91 kN     .R Ans  

 

 

 

 

 1 0.91(1.2) 1.09 kN m     .M Ans    
  

 2 1.09 2.91(1) 4 kN m     .M Ans       
  3 4 4(1) 0 checks!M    
 
 
 
 
______________________________________________________________________________ 
 
3-8 
 Break at the hinge at B 

 

 Beam OB: 

    From symmetry,  

  1 200 lbf     .BR V Ans   

 

 Beam BD: 

     0DM 
   2200(12) (10) 40(10)(5) 0R  
  2 440 lbf     .R Ans  

 

    0yF 

   3200 440 40(10) 0R    
  3 160 lbf     .R Ans  
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 1 200(4) 800 lbf in     .M Ans    

  2 800 200(4) 0 checks at hingeM   

 3 800 200(6) 400 lbf in     .M Ans      

 
4

1
400 (240)(6) 320 lbf in     .

2
M Ans      

 
5

1
320 (160)(4) 0   checks!

2
M     
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3-9 

1 1 1

1 2

0 0 0

1 2

1 1 1

1 2

9 300 5 1200 1500

9 300 5 1200 1500             (1)

9 300 5 1200 1500           (2)

q R x x x R x

V R x x R x

M R x x x R x

        

      

      

1

 

 

At x = 1500
+
  V = M = 0.  Applying Eqs. (1) and (2),    

 

1 2 1 29 5 0 14R R R R      

 1 11500 9(1500 300) 5(1500 1200) 0 8.2 kN      .R R A      

2 14 8.2 5.8 kN       .

ns
 

 

R Ans    

 
0 300 :          8.2 kN,   8.2  N m

300 1200 :    8.2 9 0.8 kN

                             8.2 9( 300) 0.8 2700 N m

1200 1500 :  8.2 9 5 5.8 kN

                             8.2 9( 300

x V M x

x V

M x x x

x V

M x x

    
     

      
      

   ) 5( 1200) 5.8 8700 N mx x     

 

Plots of V and M are the same as in Prob. 3-5. 

______________________________________________________________________________ 
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3-10 

1 2 1 0 0

0 0

1 0 1 1

0 0

1 2 2

0 0

500 8 40 14 40 20

500 8 40 14 40 20                      (1)

500 8 20 14 20 20                           (2)

at 20 in,    0,  Eqs. (1) and (2) give

q R x M x x x x

V R M x x x x

M R x M x x x

x V M

R

  





       

       

       

  

 0 0

2

0 0 0

500 40 20 14 0                                          740 lbf                   .

(20) 500(20 8) 20(20 14) 0             8080 lbf in          .

R Ans

R M M

     

         Ans

 

 
0 8 :      740 lbf,   740 8080 lbf in

8 14 :    740 500 240 lbf

                     740 8080 500( 8) 240 4080 lbf in

14 20 :  740 500 40( 14) 40 800 lbf

                     740 8080

x V M x

x V

M x x x

x V x x

M x

     
    

      
        

   2 2500( 8) 20( 14) 20 800 8000 lbf inx x x x       

 

 Plots of V and M are the same as in Prob. 3-6. 
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3-11 

1 1 1 1

1 2

0 0 0

1 2

1 1 1

1 2

2 1.2 2.2 4 3.2

2 1.2 2.2 4 3.2                           (1)

2 1.2 2.2 4 3.2                         (2)

q R x x R x x

V R x R x x

M R x x R x x

         

      

      

 

at x = 3.2
+
, V = M = 0.  Applying Eqs. (1) and (2), 

 

                

Solving Eqs. (3) and (4) simultaneously, 

1 2 1 2

1 2 1 2

2 4 0                 6                    (3)

3.2 2(2) (1) 0        3.2 4                 (4)

R R R R

R R R R

      
     

 R1 = -0.91 kN, R2 = 6.91 kN Ans. 

 

0 1.2 :       0.91 kN,   0.91  kN m

1.2 2.2 :    0.91 2 2.91 kN

                         0.91 2( 1.2) 2.91 2.4 kN m

2.2 3.2 :    0.91 2 6.91 4 kN

                         0.91 2(

x V M x

x V

M x x x

x V

M x x

      
      

       
      

   1.2) 6.91( 2.2) 4 12.8 kN mx x    

 

Plots of V and M are the same as in Prob. 3-7. 

______________________________________________________________________________ 
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3-12 

1 1 1 0 0 1

1 2 3

0 0 1 1 0

1 2 3

1 1 2 2 1

1 2 3

1

400 4 10 40 10 40 20 20

400 4 10 40 10 40 20 20                  (1)

400 4 10 20 10 20 20 20               (2)

0 at 8 in  8 400(

q R x x R x x x R x

V R x R x x x R x

M R x x R x x x R x

M x R

             

          

          

    18 4) 0             200 lbf          .R Ans   

 

at x = 20
+
,  V =M = 0.  Applying Eqs. (1) and (2), 

2 3 2 3

2

2 2

200 400 40(10) 0                  600

200(20) 400(16) (10) 20(10) 0    440 lbf                       .

                                                                           

R R R R

R R A

       

     

3 600 440 160 lbf     .

ns

R Ans  

0 4 :      200 lbf,   200  lbf in

4 10 :    200 400 200 lbf,

                     200 400( 4) 200 1600 lbf in

10 20 :  200 400 440 40( 10) 640 40  lbf

                     200 400( 4)

x V M x

x V

M x x x

x V x x

M x x

    
     

      
        

     2 2440( 10) 20 10 20 640x x x

 

 

4800 lbf inx       
Plots of V and M are the same as in Prob. 3-8. 

______________________________________________________________________________ 
 
3-13 Solution depends upon the beam selected. 
______________________________________________________________________________ 
 

3-14 
(a) Moment at center,  

 

 

 
2

2

2

2
2 2 2 2 4

c

c

l a
x

l l l
M l a a




            
     

w wl
 

At reaction, 
2 2rM a w  

 

a = 2.25, l = 10 in, w = 100 lbf/in 

 

 2

100(10) 10
2.25 125 lbf in

2 4

100 2.25
253 lbf in      .

2

c

r

M

M Ans

    
 

  


 

(b) Optimal occurs when c rM M
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2
2 20.25 0

2 4 2

l l a
a a al l

       
 

w w

 

Taking the positive root 
 

 
   2 21

4 0.25 2 1 0.207      .
2 2

l
a l l l l A         

ns
 

for l = 10 in, w = 100 lbf, a = 0.207(10) = 2.07 in        

   2

min 100 2 2.07 214 lbf inM     

______________________________________________________________________________ 
 

3-15 

(a) 
20 10

5 kpsi
2

C


   

20 10
15 kpsi

2
CD


   

2 215 8 17 kpsiR     

1 5 17 22 kpsi     

2 5 17 12 kpsi      

 

11 8
tan 14.04  cw

2 15
p

    
 



 

1 17 kpsi

45 14.04 30.96  ccws

R



 

    
 

 

 

(b)  
9 16

12.5 kpsi
2

C


   

16 9
3.5 kpsi

2
CD


   

2 25 3.5 6.10 kpsiR     

1 12.5 6.1 18.6 kpsi   
 

2 12.5 6.1 6.4 kpsi     

11 5
tan 27.5  ccw

2 3.5
p

    
 

  

1 6.10 kpsi

45 27.5 17.5  cws

R



 

      
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(c) 
 

2 2

1

2

24 10
17 kpsi

2

24 10
7 kpsi

2

7 6 9.22 kpsi

17 9.22 26.22 kpsi

17 9.22 7.78 kpsi

C

CD

R





 


 

  
  
  

  

 

 

11 7
90 tan 69.7  ccw

2 6
p

        
 

1 9.22 kpsi

69.7 45 24.7  ccws

R



 

    
 

 

 

 

(d)  
 

 

2 2

1

2

12 22
5 kpsi

2

12 22
17 kpsi

2

17 12 20.81 kpsi

5 20.81 25.81 kpsi

5 20.81 15.81 kpsi

C

CD

R




 
 


 

  
  
   

 

11 17
90 tan 72.39  cw

2 12
p

        
 
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1 20.81 kpsi   

72.39 45 27.39  cws

R



 

     

 

 

______________________________________________________________________________ 
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3-16 

(a)  

2 2

1

2

8 7
0.5 MPa

2

8 7
7.5 MPa

2

7.5 6 9.60 MPa

9.60 0.5 9.10 MPa

0.5 9.6 10.1 Mpa

C

CD

R




 
  


 

  
  
    

 
 

11 7.5
90 tan 70.67  cw

2 6
p

        
 

 

1 9.60 MPa

70.67 45 25.67  cws

R



 

    
 

 

 
(b)  

2 2

1

2

9 6
1.5 MPa

2

9 6
7.5 MPa

2

7.5 3 8.078 MPa

1.5 8.078 9.58 MPa

1.5 8.078 6.58 MPa

C

CD

R





 


 

  
  
   

 
 

 

 

 

11 3
tan 10.9  cw

2 7.5
p

    
 



 

1 8.078 MPa

45 10.9 34.1  ccws

R



 

    
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 (c)  

2 2

1

2

12 4
4 MPa

2

12 4
8 MPa

2

8 7 10.63 MPa

4 10.63 14.63 MPa

4 10.63 6.63 MPa

C

CD

R





 


 

  
  
   

 

11 8
90 tan 69.4  ccw

2 7
p

        
 

1 10.63 MPa

69.4 45 24.4  ccws

R



 

    
 

 

 
 

 

 (d) 

2 2

1

2

6 5
0.5 MPa

2

6 5
5.5 MPa

2

5.5 8 9.71 MPa

0.5 9.71 10.21 MPa

0.5 9.71 9.21 MPa

C

CD

R





 


 

  
  
   

 
 

 

 

11 8
tan 27.75  ccw

2 5.5
p

    
 



 

1 9.71 MPa

45 27.75 17.25  cws

R



 

      

 

 
 
______________________________________________________________________________ 
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3-17  

(a) 

2 2

1

2

12 6
9 kpsi

2

12 6
3 kpsi

2

3 4 5 kpsi

5 9 14 kpsi

9 5 4 kpsi

C

CD

R





 


 

  
  
  

 
 

 

11 4
tan 26.6  ccw

2 3
p

     


 

1 5 kpsi

45 26.6 18.4  ccws

R



 

    
 

 

 
(b)  

2 2

1

2

30 10
10 kpsi

2

30 10
20 kpsi

2

20 10 22.36 kpsi

10 22.36 32.36 kpsi

10 22.36 12.36 kpsi

C

CD

R





 


 

  
  
   

 

 

 

11 10
tan 13.28  ccw

2 20
p

    
 



 

1 22.36 kpsi

45 13.28 31.72  cws

R



 

    
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(c)  

 

2 2

1

2

10 18
4 kpsi

2

10 18
14 kpsi

2

14 9 16.64 kpsi

4 16.64 20.64 kpsi

4 16.64 12.64 kpsi

C

CD

R




 
 


 

  
  
   

 
 

 

11 14
90 tan 73.63  cw

2 9
p

        
 

 

1 16.64 kpsi     

73.63 45 28.63  cws

R



 

   
 

 

 

 (d)  
 

 

2 2

1

2

9 19
14 kpsi

2

19 9
5 kpsi

2

5 8 9.434 kpsi

14 9.43 23.43 kpsi

14 9.43 4.57 kpsi

C

CD

R





 


 

  
  
  

 

11 5
90 tan 61.0  cw

2 8
p

        
 

 

1 9.34 kpsi

61 45 16  cws

R



 

      

 

 

______________________________________________________________________________ 
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3-18 

(a)  
 

2 2

1

2

3

80 30
55 MPa

2

80 30
25 MPa

2

25 20 32.02 MPa

0 MPa

55 32.02 22.98 23.0 MPa

55 32.0 87.0 MPa

C

CD

R





 
  


 

  

      
    

 

1 2 2 3 1 3

23 87
11.5 MPa,      32.0 MPa,      43.5 MPa

2 2
      

 
 

(b)  

2 2

1

2

3

30 60
15 MPa

2

60 30
45 MPa

2

45 30 54.1 MPa

15 54.1 39.1 MPa

0 MPa

15 54.1 69.1 MPa

C

CD

R






  


 

  
   

    

 

1 3

1 2

2 3

39.1 69.1
54.1 MPa

2

39.1
19.6 MPa

2

69.1
34.6 MPa

2








 

 

 
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(c)  

2 2

1

2

3

40 0
20 MPa

2

40 0
20 MPa

2

20 20 28.3 MPa

20 28.3 48.3 MPa

20 28.3 8.3 MPa

30 MPaz

C

CD

R



 


 


 

  
  
   
  

 

1 3 1 2 2 3

48.3 30 30 8.3
39.1 MPa,      28.3 MPa,      10.9 MPa

2 2
   

    
 

 

(d)  

2 2

1

2

3

50
25 MPa

2

50
25 MPa

2

25 30 39.1 MPa

25 39.1 64.1 MPa

25 39.1 14.1 MPa

20 MPaz

C

CD

R



 

 

 

  
  
   
  

 

1 3 1 2 2 3

64.1 20 20 14.1
42.1 MPa,      39.1 MPa,      2.95 MPa

2 2
   

    
 

______________________________________________________________________________ 
 

3-19 

(a) 
Since there are no shear stresses on the  

stress element, the stress element  

already represents principal stresses. 

1

2

3

10 kpsi

0 kpsi

4 kpsi

x

y

 

 

 


    

1 3

1 2

2 3

10 ( 4)
7 kpsi

2

10
5 kpsi

2

0 ( 4)
2 kpsi

2







 
 

 

 
 
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(b)  

2 2

1

2 3

0 10
5 kpsi

2

10 0
5 kpsi

2

5 4 6.40 kpsi

5 6.40 11.40 kpsi

0 kpsi,   5 6.40 1.40 kpsi

C

CD

R


 


 


 

  
  
    

 

1 3 1 2 3

11.40 1.40
6.40 kpsi,      5.70 kpsi,      0.70 kpsi

2 2
R       

 
 

(c) 

2 2

1 2

3

2 8
5 kpsi

2

8 2
3 kpsi

2

3 4 5 kpsi

5 5 0 kpsi,    0 kpsi

5 5 10 kpsi

C

CD

R

 


 
  


 

  
    
    

  

 

1 3 1 2 2 3

10
5 kpsi,      0 kpsi,      5 kpsi

2
     

 
 

(d)  

2 2

1

2

3

10 30
10 kpsi

2

10 30
20 kpsi

2

20 10 22.36 kpsi

10 22.36 12.36 kpsi

0 kpsi

10 22.36 32.36 kpsi

C

CD

R






  


 

  
   

    

 

1 3 1 2 2 3

12.36 32.36
22.36 kpsi,      6.18 kpsi,      16.18 kpsi

2 2
      
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3-20 From Eq. (3-15), 

 

 

3 2 2 2

2 2 2

3

( 6 18 12) 6(18) ( 6)( 12) 18( 12) 9 6 ( 15)

    6(18)( 12) 2(9)(6)( 15) ( 6)(6) 18( 15) ( 12)(9) 0

594 3186 0

2  

 

                
             

  
 

 

Roots are: 21.04, 5.67, –26.71 kpsi     Ans.   

1 2

2 3

max 1 3

21.04 5.67
7.69 kpsi

2

5.67 26.71
16.19 kpsi

2

21.04 26.71
 23.88 kpsi      .

2
Ans





 


 


 


  

 

 

 

 

_____________________________________________________________________________ 
 
3-21     
 From Eq. (3-15) 
 

 
   

2
3 2 2

2
2 2

3 2

(20 0 20) 20(0) 20(20) 0(20) 40 20 2 0

    20(0)(20) 2(40) 20 2 (0) 20 20 2 0(0) 20(40) 0

40 2 000 48 000 0

2  

  

            
         

   



 

 

Roots are: 60, 20, –40 kpsi     Ans. 

 

1 2

2 3

max 1 3

60 20
20 kpsi

2

20 40
30 kpsi

2

60 40
50 kpsi     .

2
Ans





 


 


 


  

 
 

 
_____________________________________________________________________________ 
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3-22  

From Eq. (3-15) 
 

   2 23 2 2

2 2 2

3 2

(10 40 40) 10(40) 10(40) 40(40) 20 40 20

10(40)(40) 2(20)( 40)( 20) 10( 40) 40( 20) 40(20) 0

90 0

  

 

            
           
   

Roots are: 90, 0, 0 MPa Ans.

 
 

 

 

2 3

1 2 1 3 max

0

90
45 MPa     .

2
Ans



  



     

 

 

 

_____________________________________________________________________________ 
 
3-23 

  

 
 

2

6

6

1

15000
33 950 psi 34.0 kpsi     .

4 0.75

60
33 950 0.0679 in     .

30 10

0.0679
1130 10 1130      .

60

F
Ans

A

FL L
Ans

AE E

Ans
L




 

 

   

   

   

 

From Table A-5, v = 0.292 
 

   
2 1

6 6

2

0.292(1130) 330      .

330 10 (0.75) 248 10  in     .

v A

d d An

ns

s


 

     

     

 


 

_____________________________________________________________________________ 
3-24 

  

 
 

2

6

6

1

3000
6790 psi 6.79 kpsi     .

4 0.75

60
6790 0.0392 in     .

10.4 10

0.0392
653 10 653      .

60

F
Ans

A

FL L
Ans

AE E

Ans
L




 

 

   

   

   

 

From Table A-5, v = 0.333 
 

   
2 1

6 6

2

0.333(653) 217      .

217 10 (0.75) 163 10  in     .

v Ans

d d Ans


 

     

     

 


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_____________________________________________________________________________ 
3-25 

2

0.0001
0.0001

d d

d d

 
   

 
 From Table A-5, v = 0.326, E = 119 GPa 

 

 

   

   

62
1

6 9

1

2

6

0.0001
306.7 10

0.326

  and ,  so

= 306.7 10 (119) 10 36.5 MPa

0.03
36.5 10 25 800 N 25.8 kN        .

4

v

FL F

AE A

E
E

L

F A An

 










 
  

 

  

   





s

 

 Sy = 70 MPa >  , so elastic deformation assumption is valid. 

_____________________________________________________________________________ 
 
3-26  

 6

8(12)
20 000 0.185 in     .

10.4 10

FL L
Ans

AE E
    

 

_____________________________________________________________________________ 
 

3-27 

   
6

9

3
140 10 0.00586 m 5.86 mm     .

71.7 10

FL L
Ans

AE E
     

 

_____________________________________________________________________________ 
 

3-28 

 6

10(12)
15 000 0.173 in      .

10.4 10

FL L
Ans

AE E
    

 

_____________________________________________________________________________ 
 

3-29  

 With 0,z  solve the first two equations of Eq. (3-19) simulatenously. Place E on the 

left-hand side of both equations, and using Cramer’s rule, 

 

 
2 2

1

1 1 1

1

x

y xx y

x

E v

E EE vE

v v v

v






  
  




   yv

 
 Likewise, 
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 
21

y x

y

E

v









 

 
 

 From Table A-5, E = 207 GPa and ν = 0.292. Thus, 
 

 

       
     

9

6

2 2

9

6

2

207 10 0.0019 0.292 0.000 72
10 382 MPa     .

1 1 0.292

207 10 0.000 72 0.292 0.0019
10 37.4 MPa     .

1 0.292

x y

x

y

E v
Ans

v

Ans









      
 

     


 

 
_____________________________________________________________________________ 
 

3-30  
 With 0,z  solve the first two equations of Eq. (3-19) simulatenously. Place E on the 

left-hand side of both equations, and using Cramer’s rule, 

 

 
2 2

1

1 1 1

1

x

y xx y

x

E v

E EE vE

v v v

v






  
  




   yv

 
 Likewise, 
 

 
21

y x

y

E

v









 

 
 

From Table A-5, E = 71.7 GPa and ν = 0.333. Thus, 

       
     

9

6

2 2

9

6

2

71.7 10 0.0019 0.333 0.000 72
10 134 MPa     .

1 1 0.333

71.7 10 0.000 72 0.333 0.0019
10 7.04 MPa     .

1 0.333

x y

x

y

E v
Ans

v

Ans









      
 

     


 
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3-31 

(a)  1 max 1     
c ac

R F M R a F
l l

    

 

2

2 2

6 6

6

M ac bh l
F F

bh bh l ac


          Ans. 

(b)  
     

  

2 2
1 21( )( ) ( )

    .
( )( )

m m m mm

m m

b b h h l lF s s s
s Ans

F a a c c s s

 
  

3-32 

 

 For equal stress, the model load varies by the square of the scale factor.  

 _____________________________________________________________________________ 
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2

1 max /2
,

2 2 2 2x l

l l l
R M l



    
 

w w
  

8

l


ww
(a)  

2 2

2 2 2

6 6 3 4
      .

8 4 3

M l Wl bh
W A

bh bh bh l

     
w

 ns

 

(b)     
2 2

2( / )( / )( / ) 1( )( )
.

/

m m m m

m

W b b h h s s
s An

W l l s

 
    s

2
2       .m m ml s

s s
l s

   
w w

w w
Ans  

 For equal stress, the model load w varies linearly with the scale factor. 

_____ _____________ 

-33 
(a)  Can solve by iteration or derive 

 _ __________________________________________________________
 

3

equations for the general case.  Find 

maximum moment under wheel 3W . 
 

W W  at centroid of W’s T

3 3d
A T

l x
R W

l


  

 

Under wheel 3, 



 

 3 3

3 3 1 13 2 23 3 1 13 2 23A T

l x d
M R x W a W a W x W a W a

l

 
     

 For maximum,  3 3
3 3 3

3

0 2
2

TdM l dW
l d x x

dx l


       

 Substitute into 
 2

3

3 1 1
4

T

l d
3 2 23M M W W a

l


     W a

intersects the midpoint of the beam. 

 For wheel i,     

 This means the midpoint of 3d

 2
1il dl d

1

,
2 4

ii
T j ji

j

i ix M W W a
l 

    

Note for wheel 1: 



 

 0j jiW a   

1 2 3 4

104.4
104.4, 26.1 kips

4
TW W W W W       

 

 Wheel 1: 
2

1 1

476 (1200 238)
238 in,     (104.4) 20128 kip in

2 4(1200)
d M


      

 Wheel 2: 238 84 154 ind     2
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2

2 max

(1200 154)
(104.4) 26.1(84) 21605 kip in .

4(1200)
M M A


     ns  

 

 Check if all of the wheels are on the rail. 

 

 

(b)  max 600 77 523 in .x Ans    

(c)  See above sketch. 

(d)  Inner axles 

_____________________________________________________________________________ 
 

3-34      
(a) Let a = total area of entire envelope 

 Let b = area of side notch 

 

 

      

 

2

3 3

6 4

2 40(3)(25) 25 34 2150 mm

1 1
2 40 75 34 25

12 12

1.36 10  mm      .

a b

A a b

I I I

I Ans

    

   

  

 Dimensions in mm. 

(b)  
2

2

2

0.375(1.875) 0.703 125 in

0.375(1.75) 0.656 25 in

2(0.703125) 0.656 25 2.0625 in

a

b

A

A

A

 

 

  

 

 

 

 

   

3
4

3
4

2 2

1

2(0.703 125)(0.9375) 0.656 25(0.6875)
0.858 in    .

2.0625

0.375(1.875)
0.206 in

12

1.75(0.375)
0.007 69 in

12

2 0.206 0.703 125(0.0795) 0.00769 0.656 25(0.1705) 0.448 in      .

a

b

y A

I

I

4

ns

I Ans


 

 

 

           

 

(c)    
Use two negative areas.  

2 2

2

625 mm ,  5625 mm ,  10 000 mm

10 000 5625 625 3750 mm ;

a b cA A A

A

  

   

2
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 

 

1

3
4

3
6 4

3
6 4

6.25 mm, 50 mm, 50 mm

10 000(50) 5625(50) 625(6.25)
57.29 mm     .

3750

100 57.29 42.71 mm   .

50(12.5)
8138 mm

12

75(75)
2.637 10  mm

12

100(100)
8.333 10 in

12

a b c

a

b

c

y y y

y Ans

c Ans

I

I

I

  

 
 

  

 

 

 

 

       

 

2 26 2 6

1

6 4

1

8.333 10 10000(7.29) 2.637 10 5625 7.29 8138 625 57.29 6.25

4.29 10  in      .

I

I Ans

               


 

 

(d)  
 
 

 

2

2

2

4 0.875 3.5 in

2.5 0.875 2.1875 in

5.6875 in

2.9375 3.5 1.25(2.1875)
2.288 in     .

5.6875

a

b

a b

A

A

A A A

y Ans

 

 

  


 

       3 2 3

4

1 1
(4) 0.875 3.5 2.9375 2.288 0.875 2.5 2.1875 2.288 1.25

12 12

5.20 in      .

I

I Ans

     



2

 
_____________________________________________________________________________ 
 

3-35     

 3 5

2

1
(20)(40) 1.067 10  mm

12

20(40) 800 mm

I

A

 

 

4

 

Mmax is at A. At the bottom of the section, 

 max 5

450 000(20)
84.3 MPa      .

1.067 10

Mc
Ans

I
     

Due to V, max is between A and B at y = 0.  

max

3 3 3000
5.63 MPa     .

2 2 800

V
Ans

A
     

   
 

 
 
_____________________________________________________________________________ 
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3-36 
3 41

(1)(2) 0.6667 in
12

I    

21(2) 2 inA    
 

0oM   

  8 100(8)(12) 0AR  
  1200 lbfAR 
  1200 100(8) 400 lbfoR   

 is at A. At the top of the beam, maxM
 

max

3200(0.5)
2400 psi     .

0.6667

Mc
Ans

I
     

 

 Due to V, max is at A, at y = 0. 
 

max

3 3 800
600 psi     .

2 2 2

V
Ans

A
     

 
 

_____________________________________________________________________________ 
 
3-37 

3 41
(0.75)(2) 0.5 in

12
I    

2(0.75)(2) 1.5 inA    
 

0AM   

  15 1000(20) 0BR  
  1333.3 lbfBR 
  3000 1333.3 1000 2666.7 lbfAR    

 

 is at B. At the top of the beam, maxM
 

max

5000(1)
10000 psi     .

0.5

Mc
Ans

I
     

 

 Due to V, max is between B and C at y = 0. 
 

max

3 3 1000
1000 psi     .

2 2 1.5

V
Ans

A
     

 
 

_____________________________________________________________________________ 
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3-38 

 
4 4

3 4(50)
306.796 10  mm

64 64

d
I

 
    

2 2
2(50)

1963 mm
4 4

d
A

 
    

0BM   

6(300)(150) 200 0AR   

1350 kNAR   

6(300) 1350 450 kNBR     

maxM is at A.  At the top,  
max

Mc

I
  

Due to V, max is at A, at y = 0. 
 

2

max

4 4 750
0.509 kN/mm 509 MPa     .

3 3 1963

V
Ans

A
      

 
 

_____________________________________________________________________________ 
 
3-39  

2 2

max
max max 2

8
    

8 8

Il l c
M

I cl

    
w w

w

 
(a)    

448 in; Table A-8,  0.537 inl I 

 

    
 

3

2

8 12 10 0.537
22.38 lbf/in     .

1 48
Ans w

 
(b)          3 360 in,  1 12 2 3 1 12 1.625 2.625 2.051 inl I  4

 

 

   
  

3

2

8 12 10 2.051
36.5 lbf/in     .

1.5 60
Ans w

 
(c)     460 in; Table A-6,  2 0.703 1.406 inl I  

 
 y = 0.717 in, cmax = 1.783 in 

 

   
 
3

2

8 12 10 1.406
21.0 lbf/in     .

1.783 60
Ans w

 
(d)    

460 in, Table A-7,  2.07 inl I 

 

    
 

3

2

8 12 10 2.07
36.8 lbf/in     .

1.5 60
Ans w
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3-40  

     4 3 4 2 20.5 3.068 10  in , 0.5 0.1963 in
64 4

I A
       

 

Model 

(c)  3

max

500(0.5) 500(0.75 / 2)
218.75 lbf in

2 2

218.75(0.25)

3.068 10

17 825 psi 17.8 kpsi     .

4 4 500
3400 psi 3.4 kpsi     .

3 3 0.1963

M

Mc

I

Ans

V
Ans

A









   

 

 

   
 

 

 

Model (d)   

 3

500(0.625) 312.5 lbf in

312.5(0.25)

3.068 10

25 464 psi 25.5 kpsi     .

M

Mc

I

Ans







  

 

   

max

4 4 500
3400 psi 3.4 kpsi     .

3 3 0.1963

V
Ans

A
      

 

 

 

 

 

 

 

Model 

(e)
 3

max

500(0.4375) 218.75 lbf in

218.75(0.25)

3.068 10

17 825 psi 17.8 kpsi     .

4 4 500
3400 psi 3.4 kpsi     .

3 3 0.1963

M

Mc

I

Ans

V
Ans

A









  

 

 

   
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   4 4 212 1018 mm , 12 113.1 mm
64 4

I A 2 
      

Model (c)  

2

2

max

2000(6) 2000(9)
15 000 N mm

2 2

15 000(6)

1018

88.4 N/mm 88.4 MPa     .

4 4 2000
23.6 N/mm 23.6 MPa     .

3 3 113.1

M

Mc

I

Ans

V
Ans

A







   

 

 

     
 

 
Model (d)  

 
2

2000(12) 24 000 N mm

24 000(6)

1018

141.5 N/mm 141.5 MPa     .

M

Mc

I

Ans





  

 

 

 

2

max

4 4 2000
23.6 N/mm 23.6 MPa     .

3 3 113.1

V
Ans

A
      

 
 

  

 
 
 
 
Model (e)  

  

2

2000(7.5) 15000 N mm

15000(6)

1018

88.4 N/mm 88.4 MPa     .

M

Mc

I

Ans





  

 

 

 

2

max

4 4 2000
23.6 N/mm 23.6 MPa     .

3 3 113.1

V
Ans

A
      

 
 

 

 

 
_____________________________________________________________________________ 

 
 

4 3

/ 2 32

/ 64

M dMc M

I d d


 
    3-42 (a)
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3 3
32 32(218.75)

0.420 in   .
(30 000)

M
d A

 
     ns

 

 (b) 

 

2 / 4

V V

A d



 

 
 

4 4(
  

500)
0.206 in     .

(15000)

V
d Ans

 
    

 (c)

 

 
 2

4 4

3 3 / 4

V V

A d



 

 
  

4 4 4 4(500)
0.238 in     .

3 3 (15000)

V
d A

 
    ns

______________ __________________ ______________________________ 

 

  

_____________ _
 

_

3-43 
 

1 0 11 2
1

1 21 2
1

2 31 1 2

terms for 

 terms for 
2

 terms for 
2 6

p p
q F x p x l x l x l a

a

p p
V F p x l x l x l a

a

p p p
M Fx x l x l x l a

a

 
        


        


        

 
 

 terms for x > l + a = 0 At x ( ) ,   0,l a V M   
 

21 2
1 1 2

2
           

F
p p  

2
31 1 2

1 2 2

0                             (1)
2

6 ( )
( ) 0          2      (2)

2 6

p p
F p a a

a a

p a p p F l a
F l a a p p

a a


   

 
       

 
 

From (1) and (2)       1 22 2

2 2
(3 2 ),        (3 )          (3)

F F
p l a p l a

a a
     

From similar triang      les       2

2 1 2 1 2

                         (4)
apb a

b
p p p p p

  
 
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Mmax occurs where V = 0 

 

 

max 2x l a b    

2 31 1 2
max

2 31 1 2

( 2 ) ( 2 ) ( 2 )
2 6

( 2 ) ( 2 ) ( 2 )
2 6

p p p
M F l a b a b a b

a

p p p
Fl F a b a b a b

a


       


       

 
Normally Mmax =  Fl 

 

The fractional increase in the magnitude is 

 

   2 3

1 22 ( 2 ) 6 ( 2 )
                   (5)

a b p p a a b     
 

 

For example, consider F = 1500 lbf, a = 1.2 in, l = 1.5 in 
 

(3)    

1( 2 )F a b p 

Fl
 

 1 2

2(1500)
3 1.5 2(1.2) 14 375 lbf/in

1.2
p        

 

 
 2 2

2(1500)
3 1.5 1.2 11 875 lbf/in

1.2
p      

 
  

(4)     b = 1.2(11 875)/(14 375 + 11 875) = 0.5429 in 

 

Substituting into (5) yields 

 
_____________________________________________________________________________ 
 

-44             

 

 = 0.036 89  or  3.7%  higher than -Fl 

 
 
 
 
 
 
 
3
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1

2

300(30)
R 

40
1800 6900 lbf

2 30

300(30) 10
1800 3900 lbf

2 30

3900
13 in

300

R

a

 

  

 
 

 

MB = 1800(10) = 18 000 lbfin 

x = 27 in = (1/2)3900(13) = 25 350 lbfin 

 
 

 

MB = 1800(10) = 18 000 lbfin 

x = 27 in = (1/2)3900(13) = 25 350 lbfin 

  

MM

  

  

  

3 4

1

3 4

2

0.5(3) 2.5(3)
1.5 in

6

1
(3)(1 ) 0.25 in       

12

1
(1)(3 ) 2.25 in   

12

y

I

I


 

 

 
 

Applying the parallel-axis theorem, 

 

(a)

20.25 3(1.5 0.5) 2.25 3zI         
2 4  (2.5 1.5) 8.5 in 

18000( 1.5)
At 10 in,    1.5 in,    3176 psi

8.5

18000(2.5)
At 10 in,    2.5 in,    5294 psi

8.5

25350( 1.5)
At 27 in,    1.5 in,    4474 psi

8.5

At 27 in,    2.5 in,    

x

x

x

x

x y

x y

x y

x y









 
      


    


     

  
25350(2.5)

7456 psi
8.5

  

Max tension 5294 psi          .

Max compression 7456 psi        .

Ans

Ans


 

 

  

aximum shear stress due to V is at B, at the neutral axis. 

 

 (b)   The m

 max 5100 lbfV
 



 

3

max

1.25(2.5)(1) 3.125 in

5100(3.125)
1875 psi        .

8.5(1)V

Q y A

VQ
Ans

Ib


   

    

(c)  There are three potentially critical locations for the maximum shear stress, all at x 

= 27 in: (i) at the top where the bending stress is maximum, (ii) at the neutral axis where 
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the transverse shear is maximum, or (iii) in the web just above the flange where bending 

stress and shear stress are in their largest combination.     

For (i):  

The maximum bending stress was previously found to be 7456 psi, and the shear 

stress is zero.  From Mohr’s circle, 

    max

max

7456
3728 psi   

2 2


   

 
For (ii):  

The bending stress is zero, and the transverse shear stress was found previously to be 

1875 psi.  Thus, max = 1875 psi. 

For (iii):  

The bending stress at y =  – 0.5 in is 

 

18000( 0.5)
1059 psi

8.5
x  
   

 
The transverse shear stress is 

 

3(1)(3)(1) 3.0 in

5100(3.0)
1800 psi        

8.5(1)

Q y A

VQ

Ib


   

  
 

From Mohr’s circle,  

 

2

2

max

1059
1800 1876 psi   

2
     

   

The critical location is at x = 27 in, at the top surface, where max = 3728 psi.        Ans. 

_____________________________________________________________________________ 
 
3-45     (a) L = 10 in. Element A: 
 

 3

4

(1000)(10)(0.5)
10 101.9 kpsi

( / 64)(1)
A

My

I





      

, 0A A

VQ
Q 0

Ib
      

 

2 2

2 2

max

101.9
(0) 50.9 kpsi     .

2 2

A
A Ans

          
  

 

 

Element B: 
 

,    0       0B B

My
y

I
       

 32 3
3

4 0.54 4
1/12 in

3 2 6 6

r r r
Q y A




         
  
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 3

4

(1000)(1/12)
10 1.698 kpsi

( / 64)(1) (1)
B

VQ

Ib



    

 

2

2

max

0
1.698 1.698 kpsi      .

2
Ans     

 
 

 

Element C:  

 

 3

4

(1000)(10)(0.25)
10 50.93 kpsi

( / 64)(1)
C

My

I





      

 

 
     

 

2 2

1 1 1

3/2 3/2 3/2
2 2 2 2 2 2

1

1

3/2
2 2

1

(2 ) 2

2 2

3 3

2

3

r r r

y y y

r

y

Q ydA y x dy y r y dy

r y r r r y

r y

   

          

 

  

  

 For C, y1 = r /2 =0.25 in 

 

 3/2
2 22

0.5 0.25 0.05413
3

Q     in
3 

2 2 2 2

12 2 2 0.5 0.25 0.866 inb x r y       

 

 3

4

(1000)(0.05413)
10 1.273 kpsi

( / 64)(1) (0.866)
C

VQ

Ib



    

 

2

2

max

50.93
(1.273) 25.50 kpsi     .

2
Ans     

 
 

  

 (b) Neglecting transverse shear stress: 

  Element A:  Since the transverse shear stress at point A is zero, there is no change. 

 max 50.9 kpsi     .Ans   

 % error 0% .Ans  

 

 Element B:  Since the only stress at point B is transverse shear stress, neglecting 

 the transverse shear stress ignores the entire stress. 

 

2

max

0
0 psi     .

2
Ans    

 
 

 

1.698 0
% error *(100) 100% .

1.698
Ans

   
 
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Element C: 
2

max

50.93
25.47 kpsi     .

2
Ans    

 
 

25.50 25.47
% error *(100) 0.12% .

25.50
Ans

 
  
 

 

 (c) Repeating the process with different beam lengths produces the results in the table. 

 

 

Bending 

stress, 

kpsi) 

Transverse 

shear stress, 

kpsi) 

Max shear 

stress, 

max  kpsi) 

Max shear 

stress, 

neglecting  
max kpsi) 

% error 

L = 10 in      

 A 102 0 50.9 50.9 0 

 B 0 1.70 1.70 0 100 

 C 50.9 1.27 25.50 25.47 0.12 

L = 4 in      

 A 40.7 0 20.4 20.4 0 

 B 0 1.70 1.70 0 100 

 C 20.4 1.27 10.26 10.19 0.77 

L = 1 in      

 A 10.2 0 5.09 5.09 0 

 B 0 1.70 1.70 0 100 

 C 5.09 1.27 2.85 2.55 10.6 

L = 0.1in      

 A 1.02 0 0.509 0.509 0 

 B 0 1.70 1.70 0 100 

 C 0.509 1.27 1.30 0.255 80.4 

 

 Discussion: 

The transverse shear stress is only significant in determining the critical stress element as 

the length of the cantilever beam becomes smaller. As this length decreases, bending 

stress reduces greatly and transverse shear stress stays the same. This causes the critical 

element location to go from being at point A, on the surface, to point B, in the center. The 

maximum shear stress is on the outer surface at point A for all cases except L = 0.1 in, 

where it is at point B at the center.  When the critical stress element is at point A, there is 

no error from neglecting transverse shear stress, since it is zero at that location.  

Neglecting the transverse shear stress has extreme significance at the stress element at the 

center at point B, but that location is probably only of practical significance for very short 

beam lengths.  

_____________________________________________________________________________ 
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3-46 

 
1

    0

c
R F

l

c
M Fx x a

l



  
 

 
2 2

max

66

6
     0      .

c l FxM

bh bh

Fcx
h x

lb





 

   a Ans
 

_____________________________________________________________________________ 
 

3-47 

From Problem 3-46, 1 ,  0
c

R F V x a
l

     

max

max

3 3 ( / ) 3
               .

2 2 2

V c l F Fc
h A

bh bh lb



    ns

 

From Problem 3-46, 
max

6
( )

Fcx
h x  .   

lb


Sub in x = e and equate to h above.  

max max

max

2

max

3 6

2

3
       .

8

Fc Fce

lb lb

Fc
e A

lb

 





 ns  

_____________________________________________________________________________ 
 
3-48 (a)  

x-z plane 

 
 

20 1.5(0.5) 2(1.5)sin(30 )(2.25) (3)O zM R    

 2 1.375 kN     .zR Ans  

 
 

10 1.5 2(1.5)sin(30 ) 1.375z zF R     

 1 1.625 kN     .zR Ans  

x-y plane 

 
 20 2(1.5)cos(30 )(2.25) (3)O yM R    

 2 1.949 kN     .yR Ans  

 
 

10 2(1.5) cos(30 ) 1.949y yF R    

 1 0.6491 kN     .yR Ans  
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(b) 
 

 

 

  
 
 
 
 
 
 
 
 
 
 
 

(c) The transverse shear and bending moments for most points of interest can readily be 

taken straight from the diagrams.  For 1.5 < x < 3, the bending moment equations are 

parabolic, and are obtained by integrating the linear expressions for shear.  For 

convenience, use a coordinate shift of x = x – 1.5.  Then, for 0 < x < 1.5, 

 

 

2

2

0.125

0.125
2

At 0, 0.9375    0.5 0.125 0.9375

z

y z

y y

V x

x
M V dx x C

x M C M x x

 


    

        




 

 

 

2

2

1.949
0.6491 1.732 0.6491

1.125

1.732
0.6491

2

At 0, 0.9737    0.8662 0.125 0.9375

y

z

z z

V x x

M x x C

x M C M x x

      

    

        

 

By programming these bending moment equations, we can find My, Mz, and their vector 

combination at any point along the beam.  The maximum combined bending moment is 

found to be at x = 1.79 m, where M = 1.433 kN·m.  The table below shows values at key 

locations on the shear and bending moment diagrams.   

 

x (m) Vz (kN) Vy (kN) V (kN) 

My 

(kNm) 

Mz 

(kNm) 

M 

(kNm) 

0 –1.625 0.6491 1.750 0 0 0 

0.5

 –1.625 0.6491 1.750 –0.8125 0.3246 0.8749 

1.5 –0.1250 0.6491 0.6610 0.9375 0.9737 1.352 

1.625 0 0.4327 0.4327 –0.9453 1.041 1.406 

1.875 0.2500 0 0.2500 –0.9141 1.095 1.427 

3

 1.375 –1.949 2.385 0 0 0 
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 (d)  The bending stress is obtained from Eq. (3-27), 

   

y Az A
x

z y

M zM y

I I
 

   

 The maximum tensile bending stress will be at point A in the cross section of Prob. 3-34 

(a), where distances from the neutral axes for both bending moments will be maximum. 

At A, for Mz, yA = –37.5 mm, and for My, zA = –20 mm. 
3 3

6 4 640(75) 34(25)
1.36(10 ) mm 1.36(10 ) m

12 12
zI     4  

3 3
5 4 725(40) 25(6)

2 2.67(10 ) mm 2.67(10 ) m
12 12

yI  
    

 
4  

It is apparent the maximum bending moment, and thus the maximum stress, will be in the 

parabolic section of the bending moment diagrams.  Programming Eq. (3-27) with the 

bending moment equations previously derived, the maximum tensile bending stress is 

found at x = 1.77 m, where My = – 0.9408 kN·m, Mz = 1.075 kN·m, and x = 100.1 MPa.      

Ans. 

_____________________________________________________________________________ 
 

3-49 
 (a) x-z plane 

3 600
0 (1000)(4) (10)

5 2
O OyM M      

1842.6 lbf in     .OyM Ans   

3 6
0 (1000)

5 2
z OzF R    

00
 

175.7 lbf     .OzR Ans  

 

 x-y plane 

4 600
0 (1000)(4) (10)

5 2
O OzM M       

7442.5 lbf in     .OzM Ans   

4 6
0 (1000)

5 2
y OyF R    

00
 

1224.3 lbf     .OyR Ans  
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(b) 
 

  
 
 
 

( 
 
 
 
 
 
 
 
 
 
 
 
(c)   

  

1/2
2 2( ) ( ) ( )y zV x V x V x   

  

1/2
2 2( ) ( ) ( )y zM x M x M x   

 

x (m) Vz (kN) Vy (kN) V (kN) My (kNm) Mz (kNm) M (kNm) 

0 –175.7 1224.3 1237 –1842.6 –7442.6 7667 

4 –175.7 1224.3 1237 –2545.4 –2545.4 3600 

10 424.3 424.3 600 0 0 0 

 
 (d) The maximum tensile bending stress will be at the outer corner of the cross section in 

the positive y, negative z quadrant, where y = 1.5 in and z = –1 in. 
3 3

42(3) (1.625)(2.625)
2.051 in

12 12
zI     

3 3
43(2) (2.625)(1.625)

1.601 in
12 12

yI     

 At x = 0, using Eq. (3-27), 

yz
x

z y

M zM y

I I
     

( 7442.6)(1.5) ( 1842.6)( 1)
6594 psi

2.051 1.601
x   
     

 Check at x = 4 in, 

( 2545.4)(1.5) ( 2545.4)( 1)
2706 psi

2.051 1.601
x   
     

 The critical location is at x = 0, where x = 6594 psi.    Ans. 

_____________________________________________________________________________ 
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3-50 The area within the wall median line, Am, is  

Square:  
2( )mA b t  . From Eq. (3-45) 

2
sq all all2 2( )mT A t b t t   

 

 
Round:    2( ) /mA b t  4

2
rd all2 ( ) / 4T b t t  

 
 

Ratio of Torques 
2

sq all
2

rd all

2( ) 4
1.27

( ) / 2

T b t t

T b t t


 


 




 
 

Twist per unit length from Eq. (3-46) is 

 

all all
1 2 2

2

4 4 2

m m m m

m m m

TL A t L L L
C

GA t GA t G A A

m

m

       

 Square: 

sq 2

4( )

( )

b t
C

b t
 


  

 Round: 

rd 2 2

( ) 4(

( ) / 4 ( )

b t b t
C C

b t b t

)


 
 

   

 

Ratio equals 1.  Twists are the same. 

_____________________________________________________________________________ 
 
3-51 

 (a) The area enclosed by the section median line is Am = (1  0.0625)
2
 = 0.8789 in

2
 and 

the length of the section median line is Lm = 4(1  0.0625) = 3.75 in.  From Eq. (3-45),  

 

2 2(0.8789)(0.0625)(12 000) 1318 lbf in      .mT A t Ans   
    

 From Eq. (3-46), 

  
 

    1 2 6 2

(1318)(3.75) 36
0.0801 rad 4.59    .

4 4 11.5 10 (0.8789) 0.0625

m

m

TL l
l A

GA t
       ns  

(b) The radius at the median line is rm = 0.125 + (0.5)(0.0625) = 0.15625 in. The area enclosed 

by the section median line is Am = (1  0.0625)
2
 – 4(0.15625)

2
 + 4(π /4)(0.15625)

2
 = 0.8579 

in
2
. The length of the section median line is Lm = 4[1 – 0.0625 – 2(0.15625)] + 2π(0.15625) = 

3.482 in. 
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From Eq. (3-45),  

2 2(0.8579)(0.0625)(12 000) 1287 lbf in      .mT A t Ans   
   From Eq. (3-46), 

  
 

    1 2 6 2

(1287)(3.482) 36
0.0762 rad 4.37    .

4 4 11.5 10 (0.8579) 0.0625

m

m

TL l
l A

GA t
       ns  

_____________________________________________________________________________
  

3-52 

 

3
1

1 3

3
            

3

i i
i

i i

T G
T

GL c


    iL c

 

 

3
31

1 2 3
1

     .
3

i i
i

G
T T T T L c Ans




    

From Eq. (3-47), G1c 

G and 1 are constant, therefore the largest shear stress occurs when c is a maximum. 

max 1 max        .G c Ans 
  _____________________________________________________________________________

 3-53 

(b)  Solve part (b) first since the twist is needed for part (a).   

  
 max allow 12 6.89 82.7 MPa   

 

 
 

6

max
1 9

max

82.7 10
0.348 rad/m     .

79.3 10 (0.003)
Ans

Gc

   
 

(a)  

 9 33

1 1 1
1

0.348(79.3) 10 (0.020)(0.002 )
1.47 N m     .

3 3

GL c
T A


    ns

 
 

 

9 33

2 2 2
2

9 33

3 3 3
3

1 2 3

0.348(79.3) 10 (0.030)(0.003 )
7.45 N m    .

3 3

0.348(79.3) 10 (0)(0 )
0    .

3 3

1.47 7.45 0 8.92 N m    .

GL c
T A

GL c
T A

T T T T Ans





   

  

       

ns

ns

 
_____________________________________________________________________________
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3-54 

(b)  Solve part (b) first since the twist is needed for part (a).   

    3max
1 6

max

12000
8.35 10  rad/in     .

11.5 10 (0.125)
Ans

Gc

   
 

(a) 

       

      

      

3 6 33

1 1 1
1

3 6 33

2 2 2
2

3 6 33

3 3 3
3

1 2 3

8.35 10 11.5 10 0.75 0.0625
5.86 lbf in    .

3 3

8.35 10 11.5 10 1 0.125
62.52 lbf in    .

3 3

8.35 10 11.5 10 0.625 0.0625
4.88 lbf in   .

3 3

5.86 62.52 4

GL c
T A

GL c
T A

GL c
T A

T T T T













   

   

   

      .88 73.3 lbf in    .Ans 

ns

ns

ns
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(b)  Solve part (b) first since the twist is needed for part (a).   

  
 max allow 12 6.89 82.7 MPa   

 

 
 

6

max
1 9

max

82.7 10
0.348 rad/m     .

79.3 10 (0.003)
Ans

Gc

   
 

(a) 

 9 33

1 1 1
1

0.348(79.3) 10 (0.020)(0.002 )
1.47 N m     .

3 3

GL c
T A


    ns

 
 

 

9 33

2 2 2
2

9 33

3 3 3
3

1 2 3

0.348(79.3) 10 (0.030)(0.003 )
7.45 N m      .

3 3

0.348(79.3) 10 (0.025)(0.002 )
1.84 N m      .

3 3

1.47 7.45 1.84 10.8 N m     .

GL c
T A

GL c
T A

T T T T Ans





   

   

       

ns

ns
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(a) From Eq. (3-40), with two 2-mm strips, 
    

 

6 22
max

max

80 10 0.030 0.002
3.08 N m

3 1.8 / ( / ) 3 1.8 / 0.030 / 0.002

2(3.08) 6.16 N m     .

bc
T

b c

T Ans


  

 

  


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From the table on p. 102, with b/c = 30/2 = 15, and has a value between 0.313 and 0.333.  

From Eq. (3-40),  

1
0.321

3 1.8 / (30 / 2)
 




 

From Eq. (3-41), 

 

    3 3 9

3.08(0.3)
0.151 rad     .

0.321 0.030 0.002 79.3 10

6.16
40.8 N m     .

0.151
t

Tl
Ans

bc G

T
k Ans






  

      

 

From Eq. (3-40), with a single 4-mm strip, 

    
 

6 22
max

max

80 10 0.030 0.004
11.9 N m     .

3 1.8 / ( / ) 3 1.8 / 0.030 / 0.004

bc
T A

b c


   

 
ns

 

Interpolating from the table on p. 102, with b/c = 30/4 = 7.5, 

 

7.5 6
(0.307 0.299) 0.299 0.305

8 6
 
   


 

From Eq. (3-41) 

    3 3 9

11.9(0.3)
0.0769 rad     .

0.305 0.030 0.004 79.3 10

11.9
155 N m     .

0.0769
t

Tl
Ans

bc G

T
k Ans






  

     

(b) From Eq. (3-47), with two 2-mm strips, 

 

    2 62

max

0.030 0.002 80 10
3.20 N m

3 3

2(3.20) 6.40 N m     .

Lc
T

T Ans


   

    

     3 3 9

3 3(3.20)(0.3)
0.151 rad     .

0.030 0.002 79.3 10

6.40 0.151 42.4 N m     .t

Tl
Ans

Lc G

k T Ans





  

     

  

 From Eq. (3-47), with a single 4-mm strip, 

    2 62

max

0.030 0.004 80 10
12.8 N m     .

3 3

Lc
T A


    ns
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    3 3 9

3 3(12.8)(0.3)
0.0757 rad     .

0.030 0.004 79.3 10

12.8 0.0757 169 N m     .t

Tl
Ans

Lc G

k T Ans





  

     

The results for the spring constants when using Eq. (3-47) are slightly larger than when using 

Eq. (3-40) and Eq. (3-41) because the strips are not infinitesimally thin (i.e. b/c does not equal 

infinity). The spring constants when considering one solid strip are significantly larger (almost 

four times larger) than when considering two thin strips because two thin strips would be able 

to slip along the center plane. 

_____________________________________________________________________________
 3-57 

(a) Obtain the torque from the given power and speed using Eq. (3-44). 

 
(40000)

9.55 9.55 152.8 N m
2500

H
T

n
   

 

max 3

16Tr T

J d



 

 

 
  

1 3
1 3

6
max

16 152.816
0.0223 m 22.3 mm     .

70 10

T
d A

 

             
ns

 

 (b) 
(40000)

9.55 9.55 1528 N m
250

H
T

n
   

 

  

1 3

6

16(1528)
0.0481 m 48.1 mm     .

70 10
d A



 
   
 
 

ns

 

_____________________________________________________________________________
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(a) Obtain the torque from the given power and speed using Eq. (3-42). 

63025 63025(50)
1261 lbf in

2500

H
T

n
   

 

max 3

16Tr T

J d



 

 

  1 31 3

max

16 126116
0.685 in     .

(20000)

T
d A

 
  

     
   

ns

 

 

(b) 
63025 63025(50)

12610 lbf in
250

H
T

n
   

 

 

1 3
16(12610)

1.48 in     .
(20000)

d A

 

  
 

ns

 
_____________________________________________________________________________
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3-59 

    6 33
max

max 3

50 10 0.0316
       265 N m

16 16

dT
T

d

 



     

 

Eq. (3-44),     3265(2000)
55.5 10 W 55.5 kW    .

9.55 9.55

Tn
H A    ns

  
_____________________________________________________________________________

 3-60 

   

   

3 6 3

3

4 9
4

16
      110 10 0.020 173 N m

16 16

0.020 79.3 10 15
180

        
32 32(173)

1.89 m     .

T
T d

d

Tl d G
l

JG T

l Ans

  



 

    

 
 
    





 

_____________________________________________________________________________
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  

   

3 3

3

4 4 6

16
        30 000 0.75 2485 lbf in

16 16

32 32(2485)(24)
0.167 rad 9.57     .

0.75 11.5 10

T
T d

d

Tl Tl
Ans

JG d G

  



 

     

     
 

_____________________________________________________________________________
 3-62  

(a) 
4 4

max max max max
solid hollow

( )
        

16 16

o o

o o

J d J d d
T T

r d r d

     
   

4
i

 

 
 

44
solid hollow

4 4
solid

36
% (100%) (100%) (100%) 65.6%     .

40

i

o

T T d
T A

T d


     ns

 

(b)  2 2
solid hollow,       o oW kd W k d d  2

i
  

 
22

solid hollow

2 2
solid

36
% (100%) (100%) (100%) 81.0%     .

40

i

o

W W d
W A

W d


     ns

 

_____________________________________________________________________________
 3-63  

(a) 
 44

4 max
max max max

solid hollow             
16 16

d xdJ d J
T T

r d r d

    
       

4
4solid hollow

4
soli

( )
% (100%) (100%) (100%)     .

d

T T xd
T x

T d


    Ans
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(b)   22 2
solid hollow               W kd W k d xd  

 

 2

2solid hollow

2
solid

% (100%) (100%) (100%)     .
xdW W

W x
W d


    Ans

 

 Plot %T and %W versus x. 

 

 
The value of greatest difference in percent reduction of weight and torque is 25% and 

occurs at 2 2x  .   

_____________________________________________________________________________
 3-64 

(a)    
   

 4

6

344

2.8149 104200 2
       120 10

32 0.70

dTc

J dd d



   

    

   
1 3

4

2

6

2.8149 10
6.17 10  m 61.7 mm

120(10 )
d 

 
   
 
 

  d

 From Table A-17, the next preferred size is d = 80 mm.       Ans. 

i = 0.7d = 56 mm.  The next preferred size smaller is di = 50 mm    Ans. 

 

 (b) 

 
 

   
 

     4 4 44

4200 2 4200 0.050 2
30.8 MPa         .

32 0.080 0.05032

i

i

dTc
Ans

J d d



   

      

 

_____________________________________________________________________________
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3-65 

 
(1500)

9.55 9.55 1433 N m
10

H
T

n
   

 
 

  

1 3
1 3

3 6

16 143316 16
       = 0.045 m 45 mm    

80 10
C

C

T T
d

d


 

 
           

 
 

From Table A-17, select 50 mm.     Ans. 

(a) 
  
   6

start 3

16 2 1433
117 10  Pa 117 MPa     .

0.050
Ans


  

 

 (b) Design activity 

_____________________________________________________________________________
 3-66 

 
 

1 31 3

3

63 025 63 025(1)
7880 lbf in

8

16 788016 16
        = 1.39 in 

15 000
C

C

H
T

n

T T
d

d


 

   

       
     

 From Table A-17, select 1.40 in.      Ans. 

_____________________________________________________________________________
 3-67 For a square cross section with side length b, and a circular section with diameter d, 

2 2

square circular     
4 2

A A b d b d
 

    
 

 From Eq. (3-40) with b = c, 

 
3

max 2 3 3square

1.8 1.8 2
3 3 (4.8) 6.896

/ 1

T T T

bc b c b d d



                   

3

T

 

 For the circular cross section, 

 max 3 3circular

16
5.093

T T

d d



 

 

 
 

3max square

max circular
3

6.896

1.354

5.093

T

d
T

d




 

 

 The shear stress in the square cross section is 35.4% greater.        Ans. 

 (b)  For the square cross section, from the table on p. 102, β = 0.141.  From Eq. (3-41), 
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square 43 4
11.50

0.141
2

Tl Tl Tl Tl

bc G b G d G
d G


  

   
 
 
 

4

 

 For the circular cross section, 

  44
10.19

32
rd

Tl Tl Tl

GJ d GG d



  

 

4

4

11.50

1.129

10.19

sq

rd

Tl

d G
Tl

d G




 
 

 The angle of twist in the square cross section is 12.9% greater.      Ans. 

_____________________________________________________________________________
 3-68 (a) 

  

    

 

1 2

2 1 2 2

2 2

1

0.15

0 (500 75)(4) 5 1700 0.15 5

1700 4.25 0 400 lbf       .

0.15 400 60 lbf         .

T T

T T T T

T T Ans

T Ans



       

   

 

 T

s

(b)  

  

0 575(10) 460(28) (40)

178.25 178 lbf         .

0 575 460 178.25

293.25 lbf       .

O C

C

O

O

M R

R An

F R

R Ans

    



    

 






(c)  
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(d) The maximum bending moment is at x = 10 in, and is M = 2932.5 lbf·in.  Since the 

shaft rotates, each stress element will experience both positive and negative bending 

stress as it moves from tension to compression. The torque transmitted through the shaft 

from A to B is T = (500  75)(4) = 1700 lbf·in.  For a stress element on the outer surface 

where the bending stress and the torsional stress are both maximum, 

 

 
 

3 3

32 2932.532
15 294  psi = 15.3 kpsi .

(1.25)

Mc M
Ans

I d


 
     

3 3

16 16(1700)
4433 psi = 4.43 kpsi        .

(1.25)

Tr T
Ans

J d


 
   

 (e)  

 

 

   

   

2 2
2 2

1 2

1

2

2 2
2 2

max

15.3 15.3
,  4.43

2 2 2 2

16.5 kpsi          .

1.19 kpsi         .

15.3
4.43 8.84 kpsi       .

2 2

x x
xy

x
xy

Ans

Ans

Ans

   




 

          
  


 

         
    

_____________________________________________________________________________
 3-69 (a) 

  

       
 

 

2 1

3

2 1 1 1

3

1 1

2

0.15

0 1800 270 (200) (125) 306 10 125 0.15

306 10 106.25 0 2880 N   .

0.15 2880 432 N   .

T T

T T T

T T Ans

T Ans



       

   

 

 T T

(b)  

  

0 3312(230) (510) 2070(810)

1794 N   .

0 3312 1794 2070

3036 N   .

O C

C

y O

O

M R

R Ans

F R

R Ans

   



    

 





(c) 
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(d) The maximum bending moment is at x = 230 mm, and is M = –698.3 N·m.  Since the 

shaft rotates, each stress element will experience both positive and negative bending 

stress as it moves from tension to compression. The torque transmitted through the shaft 

from A to B is T = (1800  270)(0.200) = 306 N·m.  For a stress element on the outer 

surface where the bending stress and the torsional stress are both maximum, 

 

 
   3

3 3

32 698.332
263 10 Pa 263  MPa .

(0.030)

Mc M
Ans

I d


 
      

 6

3 3

16 16(306)
57.7 10 Pa  57.7MPa        .

(0.030)

Tr T
Ans

J d


 
    

 

 (e)  

 

   

   

2 2
2 2

1 2

1

2

2 2
2 2

max

263 263
,  57.7

2 2 2 2

275 MPa          .

12.1 MPa       .

263
57.7 144 MPa       .

2 2

x x
xy

x
xy

Ans

Ans

Ans

   




 

          
  


 

         
    

_____________________________________________________________________________
 3-70 

 (a) 

     

 

2 1

2 1 1 1

1 1

2

0.15

0 300 50 (4) (3) 1000 0.15 (3)

1000 2.55 0 392.16 lbf  .

0.15 392.16 58.82 lbf  .

T T

T T T

T T Ans

T Ans



       

   

 

 T T

 

 (b) 
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0 450.98(16) (22)

327.99 lbf   .

0 450.98 327.99

122.99 lbf   .

0 350(8) (22)

127.27 lbf   .

0 350 127.27

222.73 lbf   .

O y C z

C z

z O z

O z

O z C y

C y

y O y

O y

M R

R Ans

F R

R Ans

M R

R Ans

F R

R Ans

   

 

   

 

  

 

   

 








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(c)  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
(d)  Combine the bending moments from both planes at A and B to find the critical 

location. 
2 2

2 2

(983.92) ( 1781.84) 2035 lbf in

(1967.84) ( 763.65) 2111 lbf in

A

B

M

M

   

    


 

The critical location is at B.  The torque transmitted through the shaft from A to B is T = 

(300  50)(4) = 1000 lbf·in.  For a stress element on the outer surface where the bending 

stress and the torsional stress are both maximum, 

 

 
 

3 3

32 211132
21502 psi = 21.5 kpsi .

(1)

Mc M
Ans

I d


 
     

3 3

16 16(1000)
5093 psi = 5.09 kpsi        .

(1)

Tr T
Ans

J d


 
   

 (e)  

 

 

   

   

2 2
2 2

1 2

1

2

2 2
2 2

max

21.5 21.5
,  5.09

2 2 2 2

22.6 kpsi          .

1.14 kpsi         .

21.5
5.09 11.9 kpsi       .

2 2

x x
xy

x
xy

Ans

Ans

Ans

   




 

          
  


 

         
    
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3-71 (a) 

  

     

 

2 1

2 1 1 1

1 1

2

0.15

0 300 45 (125) (150) 31 875 0.15 (150)

31 875 127.5 0 250 N mm   .

0.15 250 37.5 N mm   .

T T

T T T T

T T Ans

T Ans



       

    

  

 T

(b) 

  

o

o

o

o

0 345sin 45 (300) 287.5(700) (850)

150.7 N       .

0 345cos 45 287.5 150.7

107.2  N       .

0 345sin 45 (300) (850)

86.10  N       .

0 345cos 45 86.10

O y C z

C z

z O z

O z

O z C y

C y

y O y

O y

M R

R Ans

F R

R Ans

M R

R Ans

F R

R

   

 

    



  

 

   








157.9  N      .Ans 

 (c)  

 

 

 

(
d
)
 
 
F

r

o

m

 

t

h

e

 

b

e

n

ding moment diagrams, it is clear that the critical location is at A where both planes have 

the maximum bending moment.  Combining the bending moments from the two planes, 

   2 2
47.37 32.16 57.26 N mM        
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The torque transmitted through the shaft from A to B is T = (300  45)(0.125) = 31.88 

N·m.  For a stress element on the outer surface where the bending stress and the torsional 

stress are both maximum, 

 
   6

3 3

32 57.2632
72.9 10 Pa 72.9  MPa       .

(0.020)

Mc M
Ans

I d


 
      

 6

3 3

16 16(31.88)
20.3 10 Pa 20.3 MPa        .

(0.020)

Tr T
Ans

J d


 
    

 

 (e)  

 

   

   

2 2
2 2

1 2

1

2

2 2
2 2

max

72.9 72.9
,  20.3

2 2 2 2

78.2 MPa          .

5.27 MPa       .

72.9
20.3 41.7 MPa       .

2 2

x x
xy

x
xy

Ans

Ans

Ans

   




 

          
  


 

         
    

_____________________________________________________________________________
 3-72 

(a) 

  

0 300(cos 20º )(10) (cos 20º )(4)

750 lbf   .

B

B

T F

F Ans

   




(b) 

  

0 300(cos 20º )(16) 750(sin 20º )(39) (30)

183  lbf   .

0 300(cos 20º ) 183 750(sin 20º )

208 lbf   .

0 300(sin 20º )(16) (30) 750(cos 20º )(39)

861  lbf   .

0 300

O z C y

C y

y O y

O y

O y C z

C z

z O z

M R

R Ans

F R

R Ans

M R

R Ans

F R

   



    

 

   

 

  







 (sin 20º ) 861 750(cos 20º )

259  lbf    .O zR Ans

 


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(c) 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
(d) Combine the bending moments from both planes at A and C to find the critical 

location. 
2 2

2 2

( 3336) ( 4149) 5324 lbf in

( 2308) ( 6343) 6750 lbf in

A

C

M

M

     

     
 

 

The critical location is at C.  The torque transmitted through the shaft from A to B is 

.  For a stress element on the outer surface where the 

bending stress and the torsional stress are both maximum, 

  300cos 20º 10 2819 lbf inT   

 

 
 

3 3

32 675032
35 203 psi = 35.2 kpsi     .

(1.25)

Mc M
Ans

I d


 
     

3 3

16 16(2819)
7351 psi = 7.35 kpsi        .

(1.25)

Tr T
Ans

J d


 
   

 (e)  

 

 

   

   

2 2
2 2

1 2

1

2

2 2
2 2

max

35.2 35.2
,  7.35

2 2 2 2

36.7 kpsi          .

1.47 kpsi         .

35.2
7.35 19.1 kpsi       .

2 2

x x
xy

x
xy

Ans

Ans

Ans

   




 

          
  


 

         
    
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3-73 

(a) 

  

0 11000(cos 20º )(300) (cos 25º )(150)

22 810 N       .

B

B

T F

F Ans

  




(b) 

 

 
0 11 000(sin 20º )(400) 22 810(sin 25º )(750) (1050)

8319 N      .

O z C y

C y

M R

R Ans

    




 

 

0 11000(sin 20º ) 22 810sin(25º ) 8319

5083 N      .

0 11 000(cos 20º )(400) 22 810(cos 25º )(750) (1050)

10 830  N   .

0 11 000(cos 20º ) 22 810(cos 25º ) 10 830

494  N    .

y O y

O y

O y C z

C z

z O z

O z

F R

R Ans

M R

R Ans

F R

R Ans

    



   

 

    









(c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(d) From the bending moment diagrams, it is clear that the critical location is at B where 

both planes have the maximum bending moment.  Combining the bending moments from 

the two planes, 

   2 2
2496 3249 4097 N mM    



 

The torque transmitted through the shaft from A to B is 

 .     11000cos 20º 0.3 3101 N mT  
For a stress element on the outer surface where the bending stress and the torsional stress 

are both maximum, 
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   6

3 3

32 409732
333.9 10 Pa 333.9  MPa       .

(0.050)

Mc M
Ans

I d


 
      

 6

3 3

16 16(3101)
126.3 10  Pa 126.3 MPa        .

(0.050)

Tr T
Ans

J d


 
    

 (e)  

 

 

   

   

2 2
2 2

1 2

1

2

2 2
2 2

max

333.9 333.9
,  126.3

2 2 2 2

376 MPa          .

42.4 MPa       .

333.9
126.3 209 MPa       .

2 2

x x
xy

x
xy

Ans

Ans

Ans

   




 

          
  


 

         
    
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 3-74 

 (a)  
    6.13 3.8(92.8) 3.88(362.8) 0D xz

M C    

287.2 lbf     .xC A ns

ns

 

  6.13 2.33(92.8) 3.88(362.8) 0C xz
M D      

194.4 lbf     .xD A  

  3.8
0 (808) 500.9 lbf     .

6.13
D zx

M C Ans    

  2.33
0 (808) 307.1 lbf     .

6.13
C zx

M D A     ns

 

(b) For DQC, let x, y, z correspond to the original  y, x, z axes. 
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(c)  The critical stress element is just to the right of Q, where the bending moment in both 

planes is maximum, and where the torsional and axial loads exist. 

 
   808(3.88) 3135 lbf inT   

 2 2669.2 1167 1345 lbf inM      

 
 3 3

16 16(3135)
11 070 psi     .

1.13

T
Ans

d


 
  

 
 3 3

32 32(1345)
9495 psi     .

1.13
b

M
Ans

d


 
       

 2

362.8
362 psi     .

( / 4) 1.13
a

F
Ans

A



       

 (d) The critical stress element will be where the bending stress and axial stress are both in 

compression. 

 

max 9495 362 9857 psi       

2

2

max

9857
11 070 12118 psi 12.1 kpsi     .

2
Ans      

 
 

 
2

2

1 2

9857 9857
, 11 070

2 2
       

 
 

1 7189 psi 7.19 kpsi     .Ans    

2 17 046 psi 17.0 kpsi     .Ans      

_____________________________________________________________________________
  

3-75  
 (a)  

  
  0

6.13 3.8(46.6) 3.88(140) 0

D z

x

M

C

 

  

ns



ns

117.5 lbf     .xC A  

  0

6.13 2.33(46.6) 3.88(140) 0

C z

x

M

D

 

  
 

70.9 lbf     .xD A  

  3.8
0 (406) 251.7 lbf     .

6.13
D zx

M C A    

 

ns

2.33
0 (406) 154.3 lbf     .

6.13
C zx

M D A     ns  

Chapter 3 - Rev. A, Page 58/100 



 
(b) For DQC, let x, y, z correspond to the original  y, x, z axes. 

 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
(c)  The critical stress element is just to the right of Q, where the bending moment in both 

planes is maximum, and where the torsional and axial loads exist. 

 
   406(3.88) 1575 lbf inT   

 2 2273.8 586.3 647.1 lbf inM      

 
 3 3

16 16(1575)
8021 psi     .

1

T
Ans

d


 
  

 
 3 3

32 32(647.1)
6591 psi     .

1
b

M
Ans

d


 
       

 2

140
178.3 psi     .

( / 4) 1
a

F
Ans

A



     

 
 

 (d) The critical stress element will be where the bending stress and axial stress are both in 

compression. 

 

max 6591 178.3 6769 psi       

2

2

max

6769
8021 8706 psi 8.71 kpsi     .

2
Ans      

 
 

 
2

2

1 2

6769 6769
, 8021

2 2
       

 
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1 5321 psi 5.32 kpsi     .Ans    

2 12090 psi 12.1 kpsi     .Ans      

 

_____________________________________________________________________________
  

3-76 
   

 

 

 

 

 

 

 

 

 

    5.62(362.8) 1.3(92.8) 3 0B yz
M A     

639.4 lbfyA         Ans. 

  2.62(362.8) 1.3(92.8) 3 0A yz
M B       

276.6 lbfyB         Ans. 

  5.62
0 (808) 1513.7 lbf

3
B zy

M A            Ans. 

  2.62
0 (808) 705.7 lbf

3
A zy

M B           Ans. 

(b) 
 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) The critical stress element is just to the left of A, where the bending moment in both 

planes is maximum, and where the torsional and axial loads exist. 

Chapter 3 - Rev. A, Page 60/100 



 
  808(1.3) 1050 lbf inT   

 
 3

16(1050)
7847 psi     .

0.88
Ans


   

 2 2(829.8) (2117) 2274 lbf inM    

 
 3 3

32 32(2274)
33 990 psi     .

0.88
b

M
Ans

d


 
     

 

 
 2

92.8
153 psi     .

( / 4) 0.88
a

F
Ans

A



        

 (d) The critical stress will occur when the bending stress and axial stress are both in 

compression. 

 

max 33 990 153 34143 psi       

2

2

max

34143
7847 18 789 psi 18.8 kpsi     .

2
Ans      

 
 

2

2

1 2

34143 34143
, 7847

2 2
       

 
 

1 1717 psi 1.72 kpsi     .Ans    

2 35 860 psi 35.9 kpsi     .Ans      

_____________________________________________________________________________
  

3-77  

 

100
1600 N

/ 2 0.125 / 2
t

T
F

c
    

 

   

   

1600 tan 20 582.4 N

2 1600 0.250 2 200 N m

200
2667 N

2 0.150 2

n

C t

C

F

T F b

T
P

a

 

  

  

  0

450 582.4(325) 2667(75) 0

865.1 N

A z

Dy

Dy

M

R

R



  







 

 

 

  0 450 1600(325)A Dzy
M R   

0 865.1 582.4 2667y AyF R    
0 1156 1600        z AzF R    

      1156 NDzR 

      2384 NAyR 

444 NAzR 
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AB The maximum bending moment will either be at B or C.  If this is not obvious, sketch 

the shear and bending moment diagrams.  We will directly obtain the combined moments 

from each plane. 

 

2 2 2 2

2 2 2 2

0.075 2384 444 181.9 N m

0.125 865.1 1156 180.5 N m

y z

y z

B A A

C D D

M AB R R

M CD R R

     

     
 

The stresses at B and C are almost identical, but the maximum stresses occur at B.     Ans. 

 

   

   

6

3 3

6

3 3

32 32(181.9)
68.6 10  Pa 68.6 MPa

0.030

16 16(200)
37.7 10  Pa 37.7 MPa

0.030

B
B

B
B

M

d

T

d


 


 

   

   
 

 

2 2
2 2

max

68.6 68.6
37.7 85.3 MPa     .

2 2 2 2

B B
B Ans

             
  

 

 

2 2
2 2

max

68.6
37.7 51.0 MPa     .

2 2

B
B Ans

          
    

_____________________________________________________________________________
  

3-78   

 
100

1600 N
/ 2 0.125 / 2

t

T
F

c
    

 

   

   

1600 tan 20 582.4 N

2 1600 0.250 2 200 N m

200
2667 N

2 0.150 2

n

C t

C

F

T F b

T
P

a

 

   

  

 

 

 

 

 

 

 
 

0 450 582.4(325)                      420.6 N

0 450 1600(325) 2667(75)   711.1 N

0 420.6 582.4                              161.8 N

0 711.1 1600 2667      

A Dy Dyz

A Dz Dzy

y Ay Ay

z Az

M R R

M R R

F R R

F R

    

      

     

    





               1778 NAzR  
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The maximum bending moment will either be at B or C.  If this is not obvious, sketch 

shear and bending moment diagrams.  We will directly obtain the combined moments 

from each plane. 

 

 22 2 2

2 2 2 2

0.075 161.8 1778 133.9 N m

0.125 420.6 711.1 103.3 N m

y z

y z

B A A

C D D

M AB R R

M CD R R

     

     


 

The maximum stresses occur at B.     Ans. 

 

   

   

6

3 3

6

3 3

32 32(133.9)
50.5 10  Pa 50.5 MPa

0.030

16 16(200)
37.7 10  Pa 37.7 MPa

0.030

B
B

B
B

M

d

T

d


 


 

   

   
 

 

2 2
2 2

max

50.5 50.5
37.7 70.6 MPa     .

2 2 2 2

B B
B Ans

             
  

 

 

2 2
2 2

max

50.5
37.7 45.4 MPa     .

2 2

B
B Ans

          
    

_____________________________________________________________________________
  

3-79  

 

900
180 lbf

/ 2 10 / 2
t

T
F

c
    

 

   

   

180 tan 20 65.5 lbf

2 180 5 2 450 lbf in

450
150 lbf

2 6 2

n

C t

C

F

T F b

T
P

a

 

  

  

  

 

 

 

 

 

 

 

 

 
 

0 20 65.5(14) 150(4)    75.9 lbf

0 20 180(14)                     126 lbf

0 75.9 65.5 150                    140 lbf

0 126 180                             

A Dy Dyz

A Dz Dzy

y Ay Ay

z Az

M R R

M R R

F R R

F R

     

     

      

   





     54.0 lbfAzR 
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The maximum bending moment will either be at B or C.  If this is not obvious, sketch 

shear and bending moment diagrams.  We will directly obtain the combined moments 

from each plane. 

 

2 2 2 2

2 2 2 2

4 140 54 600 lbf in

6 75.9 126 883 lbf in

y z

y z

B A A

C D D

M AB R R

M CD R R

     

     
 

The maximum stresses occur at C.     Ans. 

  

 

 

3 3

3 3

32 32(883)
3460 psi

1.375

16 16(450)
882 psi

1.375

C
C

C
C

M

d

T

d


 


 

  

  
 

 

2 2
2 2

max

3460 3460
882 3670 psi     .

2 2 2 2

C C
C Ans

                
 

 

2 2
2 2

max

3460
882 1940 psi     .

2 2

C
C Ans

               
_____________________________________________________________________________

 3-80 
(a) Rod AB experiences constant torsion throughout its length, and maximum bending 

moment at the wall.  Both torsional shear stress and bending stress will be maximum on 

the outer surface.  The transverse shear will be very small compared to bending and 

torsion, due to the reasonably high length to diameter ratio, so it will not dominate the 

determination of the critical location.  The critical stress element will be at the wall, at 

either the top (compression) or the bottom (tension) on the y axis.  We will select the 

bottom element for this analysis. 

(b) Transverse shear is zero at the critical stress elements on the top and bottom surfaces.   

 
    

 34 3

/ 2 32 8 20032
16 297 psi 16.3 kpsi

/ 64 1
x

M dMc M

I d d


  
       

 
    

 34 3

/ 2 16 5 20016
5093 psi 5.09 kpsi

/ 32 1
xz

T dTr T

J d d


  
       
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(c) 

 

   

   

2 2
2 2

1 2

1

2

2 2
2 2

max

16.3 16.3
,  5.09

2 2 2 2

17.8 kpsi          .

1.46 kpsi       .

16.3
5.09 9.61 kpsi       .

2 2

x x
xz

x
xz

Ans

Ans

Ans

   




 

          
  


 

         
  

 

_____________________________________________________________________________
 3-81 

(a) Rod AB experiences constant torsion throughout its length, and maximum bending 

moments at the wall in both planes of bending.  Both torsional shear stress and bending 

stress will be maximum on the outer surface.  The transverse shear will be very small 

compared to bending and torsion, due to the reasonably high length to diameter ratio, so 

it will not dominate the determination of the critical location.  The critical stress element 

will be on the outer surface at the wall, with its critical location determined by the plane 

of the combined bending moments. 

  

 My = – (100)(8) = – 800 lbf·in 

 Mz = (175)(8) = 1400 lbf·in 

  

2 2

tot

2 2

1 1

800 1400 1612 lbf in

800
= tan tan 29.7º

1400

y z

y

z

M M M

M

M
  

 

    

           

 

The combined bending moment vector is at an angle of 29.7º CCW from the z axis.  The 

critical bending stress location, and thus the critical stress element, will be ±90º from this 

vector, as shown.  There are two equally critical stress elements, one in tension (119.7º 

CCW from the z axis) and the other in compression (60.3º CW from the z axis).  We’ll 

continue the analysis with the element in tension. 

(b) Transverse shear is zero at the critical stress elements on the outer surfaces.   

 
   

 
tottot tot

34 3

/ 2 32 161232
16 420 psi 16.4 kpsi

/ 64 1
x

M dM c M

I d d


  
       

 
    

 34 3

/ 2 16 5 17516
4456 psi 4.46 kpsi

/ 32 1

T dTr T

J d d


  
       

 
 
 
 
 
  
 

Chapter 3 - Rev. A, Page 65/100 



(c) 

 

 

 

2 2
22

1 2

1

2

2 2
22

max

16.4 16.4
,  4.46

2 2 2 2

17.5 kpsi          .

1.13 kpsi       .

16.4
4.46 9.33 kpsi       .

2 2

x x

x

Ans

Ans

Ans

   




 

          
  


 

         
  

 

_____________________________________________________________________________
 3-82 

(a) Rod AB experiences constant torsion and constant axial tension throughout its length, 

and maximum bending moments at the wall from both planes of bending.  Both torsional 

shear stress and bending stress will be maximum on the outer surface.  The transverse 

shear will be very small compared to bending and torsion, due to the reasonably high 

length to diameter ratio, so it will not dominate the determination of the critical location.  

The critical stress element will be on the outer surface at the wall, with its critical 

location determined by the plane of the combined bending moments. 

  

 My = – (100)(8) – (75)(5) = – 1175 lbf·in 

 Mz = (–200)(8) = –1600 lbf·in 

    

2 2

tot

2 2

1 1

1175 1600 1985 lbf in

1175
= tan tan 36.3º

1600

y z

y

z

M M M

M

M
  

 

     

           
 

The combined bending moment vector is at an angle of 36.3º CW from the negative z 

axis.  The critical bending stress location will be ±90º from this vector, as shown.  Since 

there is an axial stress in tension, the critical stress element will be where the bending is 

also in tension.  The critical stress element is therefore on the outer surface at the wall, at 

an angle of 36.3º CW from the y axis. 

(b) Transverse shear is zero at the critical stress element on the outer surface.   

 
   

 
tottot tot

,bend 34 3

/ 2 32 198532
20220 psi 20.2 kpsi

/ 64 1
x

M dM c M

I d d


  
       

 
 ,axial 22

75
95.5 psi 0.1 kpsi

/ 4 1 / 4

x x
x

F F

A d


 
     , which is essentially negligible 

 
,axial ,bend 20 220 95.5 20 316 psi 20.3 kpsix x x         

 
  
 33

16 5 20016
5093 psi 5.09 kpsi

1

Tr T

J d


 
      
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(c) 

 

 

2 2
22

1 2

1

2

2 2
22

max

20.3 20.3
,  5.09

2 2 2 2

21.5 kpsi          .

1.20 kpsi       .

20.3
5.09 11.4 kpsi       .

2 2

x x

x

Ans

Ans

Ans

   




 

          
  


 

         
  

 

_____________________________________________________________________________
 3-83 

T = (2)(200) = 400 lbf·in 

The maximum shear stress due to torsion occurs in the middle of the longest side of the 

rectangular cross section.  From the table on p. 102, with b/c = 1.5/0.25 = 6,  = 0.299.  

From Eq. (3-40),  

 
    max 22

400
14 270 psi 14.3 kpsi      .

0.299 1.5 0.25

T
Ans

bc



     

____________________________________________________________________________ 
 
3-84 

(a) The cross section at A will experience bending, torsion, and transverse shear.  Both 

torsional shear stress and bending stress will be maximum on the outer surface.  The 

transverse shear will be very small compared to bending and torsion, due to the 

reasonably high length to diameter ratio, so it will not dominate the determination of the 

critical location.  The critical stress element will be at either the top (compression) or the 

bottom (tension) on the y axis.  We’ll select the bottom element for this analysis. 

(b) Transverse shear is zero at the critical stress elements on the top and bottom surfaces.   
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(c) 
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(a) The cross section at A will experience bending, torsion, axial, and transverse shear.  

Both torsional shear stress and bending stress will be maximum on the outer surface.  The 

transverse shear will be very small compared to bending and torsion, due to the 

reasonably high length to diameter ratio, so it will not dominate the determination of the 

critical location.  The critical stress element will be on the outer surface, with its critical 

location determined by the plane of the combined bending moments. 

  

 My = (300)(12) = 3600 lbf·in 

 Mz = (250)(11) = 2750 lbf·in 
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The combined bending moment vector is at an angle of 37.4º CCW from the y axis.  The 

critical bending stress location will be 90º CCW from this vector, where the tensile 

bending stress is additive with the tensile axial stress.  The critical stress element is 

therefore on the outer surface, at an angle of 37.4º CCW from the z axis. 

(b)  
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(c) 
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(a) The cross section at A will experience bending, torsion, axial, and transverse shear.  

Both torsional shear stress and bending stress will be maximum on the outer surface.  The 

transverse shear will be very small compared to bending and torsion, due to the 

reasonably high length to diameter ratio, so it will not dominate the determination of the 

critical location.  The critical stress element will be on the outer surface, with its critical 

location determined by the plane of the combined bending moments. 

  

 My = (300)(12) – (–100)(11) = 4700 lbf·in 

 Mz = (250)(11) = 2750 lbf·in 
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The combined bending moment vector is at an angle of 30.3º CCW from the y axis.  The 

critical bending stress location will be 90º CCW from this vector, where the tensile 

bending stress is additive with the tensile axial stress.  The critical stress element is 

therefore on the outer surface, at an angle of 30.3º CCW from the z axis. 

(b)  
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(c) 
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(a) The cross section at A will experience bending, torsion, and transverse shear.  Both 

torsional shear stress and bending stress will be maximum on the outer surface, where the 

stress concentration will also be applicable.  The transverse shear will be very small 

compared to bending and torsion, due to the reasonably high length to diameter ratio, so 

it will not dominate the determination of the critical location.  The critical stress element 

will be at either the top (compression) or the bottom (tension) on the y axis.  We’ll select 

the bottom element for this analysis. 

(b) Transverse shear is zero at the critical stress elements on the top and bottom surfaces.  
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(c) 
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(a) The cross section at A will experience bending, torsion, axial, and transverse shear.  

Both torsional shear stress and bending stress will be maximum on the outer surface, 

where the stress concentration will also be applicable.  The transverse shear will be very 

small compared to bending and torsion, due to the reasonably high length to diameter 

ratio, so it will not dominate the determination of the critical location.  The critical stress 

element will be on the outer surface, with its critical location determined by the plane of 

the combined bending moments. 

  

 My = (300)(12) = 3600 lbf·in 

 Mz = (250)(11) = 2750 lbf·in 
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

 

 

The combined bending moment vector is at an angle of 37.4º CCW from the y axis.  The 

critical bending stress location will be 90º CCW from this vector, where the tensile 

bending stress is additive with the tensile axial stress.  The critical stress element is 

therefore on the outer surface, at an angle of 37.4º CCW from the z axis. 

(b)   
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  Fig. A-15-7 
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  Fig. A-15-8 
,torsion 1.39tK 

  Fig. A-15-9 
,bend 1.59tK 
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(a) The cross section at A will experience bending, torsion, axial, and transverse shear.  

Both torsional shear stress and bending stress will be maximum on the outer surface, 

where the stress concentration is also applicable. The transverse shear will be very small 

compared to bending and torsion, due to the reasonably high length to diameter ratio, so 

it will not dominate the determination of the critical location.  The critical stress element 

will be on the outer surface, with its critical location determined by the plane of the 

combined bending moments. 

  

 My = (300)(12) – (–100)(11) = 4700 lbf·in 

 Mz = (250)(11) = 2750 lbf·in 
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The combined bending moment vector is at an angle of 30.3º CCW from the y axis.  The 

critical bending stress location will be 90º CCW from this vector, where the tensile 

bending stress is additive with the tensile axial stress.  The critical stress element is 

therefore on the outer surface, at an angle of 30.3º CCW from the z axis. 

(b)  
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  Fig. A-15-7 
, 1.75t axialK 

  Fig. A-15-8 
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  Fig. A-15-9 
,bend 1.59tK 
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(a) M = F(p / 4),  c = p / 4,  I = bh
3 
/ 12,  b =  dr nt,   h = p / 2 
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(c) The bending stress causes compression in the x direction.  The axial stress causes 

compression in the y direction.  The torsional stress shears across the y face in the negative z 

direction. 

 
(d) Analyze the stress element from part (c) using the equations developed in parts (a) and (b). 
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Use Eq. (3-15) for the three-dimensional stress element. 
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The roots are at 0.2543, – 4.584, and –1.476.  Thus, the ordered principal stresses are  

 

 1 = 0.2543 kpsi, 2 = –1.476 kpsi, and 3 = – 4.584 kpsi.      Ans. 

 

From Eq. (3-16), the principal shear stresses are 

Chapter 3 - Rev. A, Page 74/100 



  

 

   

 

1 2
1/2

2 3
2/3

1 3
1/3

0.2543 1.476
0.8652 kpsi      .

2 2

1.476 4.584
1.554 kpsi      .

2 2

0.2543 4.584
2.419 kpsi      .

2 2

Ans

Ans

Ans

 

 

 

 
  

  
  

 
  

 

____________________________________________________________________________ 
 
3-91  As shown in Fig. 3-32, the maximum stresses occur at the inside fiber where r = ri. 

Therefore, from Eq. (3-50) 
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3-92 If pi = 0, Eq. (3-49) becomes 
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 The maximum tangential stress occurs at r = ri. So 
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 For σr, we have 

   

2 2 2 2

2 2

2 2

2 2 2

/

1

o o i o o
r

o i

o o i

o i

p r r r p r

r r

p r r

r r r

  




 
    

 

 So σr = 0 at r = ri. Thus at r = ro 
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3-93 The force due to the pressure on half of the sphere is resisted by the stress that is 

distributed around the center plane of the sphere. All planes are the same, so 
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 The radial stress on the inner surface of the shell is, 3 =  p   Ans.
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3-94 σt > σl > σr 
 τmax = (σt − σr)/2 at r = ri  

 

   

2 2 2 2 2

max 2 2 2 2 2 2 2 2

2 2 2 2

max2 2

1
1 1

2

3 2.75
(10 000) 1597 psi    .

3

i i o i i o o i

o i i o i i o i

o i
i

o

r p r r p r r p

r r r r r r r r

r r
p Ans

r





    
              

 
   

 

______________________________________________________________________________ 

 

3-95 σt > σl > σr 

 τmax = (σt − σr)/2 at r = ri  

 

 

2 2 2 2 2 2 2

max 2 2 2 2 2 2 2 2 2 2 2

6

max

6
max

1
1 1

2

( ) (25 4)10
100 91.7 mm

25 10

100 91.7 8.3 mm     .

i i o i i o i i o o i

o i i o i i o i i o i

i
i o

o i

r p r r p r r p r r p

r r r r r r r r r r r

p
r r

t r r Ans






      
                   

 
   

    



 

______________________________________________________________________________ 

 

3-96 σt > σl > σr 

 τmax = (σt − σr)/2 at r = ri  

 

 

2 2 2 2 2 2 2

max 2 2 2 2 2 2 2 2 2 2 2

1
1 1

2

i i o i i o i i o o i

o i i o i i o i i o i

r p r r p r r p r r p

r r r r r r r r r r r


      
                    

 

 

2

2 2

4 (500)
4129 psi   .

4 3.75
Ans 



 
______________________________________________________________________________ 

 

3-97 From Eq. (3-49) with pi = 0, 
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2 2

2 2 2

2 2

2 2 2

1

1

o o i
t

o i

o o i
r

o i

r p r

r r r

r p r

r r r





 
     

 
     

 

σt > σl > σr, and since σt and σr are negative, 

τmax = (σr − σt)/2 at r = ro  

 

 

2 2 2 2 2 2 2

max 2 2 2 2 2 2 2 2 2 2

2 2 2 2

max2 2

1
1 1

2

3 2.75
(10 000) 1900 psi    .

2.75

o o i o o i o o i i o

o i o o i o o i o o i

o i
o

i

r p r r p r r p r r p

r r r r r r r r r r r

r r
p Ans

r





      
                    

 
   

2

 
______________________________________________________________________________ 

 

3-98 From Eq. (3-49) with pi = 0, 

   

2 2

2 2 2

2 2

2 2 2

1

1

o o i
t

o i

o o i
r

o i

r p r

r r r

r p r

r r r





 
     

 
     

 

 

 σt > σl > σr, and since σt and σr are negative, 

 τmax = (σr − σt)/2 at r = ro  

 

   

 
 

2 2 2 2 2 2 2

max 2 2 2 2 2 2 2 2 2 2

6

max

6

max

1
1 1

2

25 10
100 92.8 mm

( ) 25 4 10

100 92.8 7.2 mm     .

o o i o o i o o i i o

o i o o i o o i o o i

i o

o

o i

r p r r p r r p r r p

r r r r r r r r r r r

r r
p

t r r Ans






      
                    

   
 

    

2
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3-99 From Eq. (3-49) with pi = 0, 

 

   

2 2

2 2 2

2 2

2 2 2

1

1

o o i
t

o i

o o i
r

o i

r p r

r r r

r p r

r r r





 
     

 
     

 

 

 σt > σl > σr, and since σt and σr are negative, 

 τmax = (σr − σt)/2 at r = ro  
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2 2 2 2 2 2 2

max 2 2 2 2 2 2 2 2 2 2

2

2 2

1
1 1

2

3.75 (500)
3629 psi   .

4 3.75

o o i o o i o o i i o

o i o o i o o i o o i

r p r r p r r p r r p

r r r r r r r r r r r

Ans


      

                    

 


2

 
______________________________________________________________________________ 

 

3-100 From Table A-20, Sy=490 MPa 

 From Eq. (3-49) with pi = 0, 

 

   

2 2

2 2 2
1o o i

t

o i

r p r

r r r


 
       

 

 Maximum will occur at r = ri  
 

 

  2 22 22
,max

,max 2 2 2 2

0.8( 490) 25 19( )2
82.8 MPa     .

2 2(25 )

t o io o
t o

o i o

r rr p
p Ans

r r r




 
       


 

______________________________________________________________________________ 

 

3-101 From Table A-20, Sy = 71 kpsi 

 From Eq. (3-49) with pi = 0, 

 

   

2 2

2 2 2
1o o i

t

o i

r p r

r r r


 
       

 

 Maximum will occur at r = ri  
 

 

    2 2 2 22
,max

,max 2 2 2 2

0.8( 71) 1 0.752
12.4 kpsi     .

2 2(1 )

t o io o
t o

o i o

r rr p
p Ans

r r r




  
       


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3-102 From Table A-20, Sy=490 MPa 

 From Eq. (3-50) 
 

   

2 2

2 2 2
1i i o

t

o i

r p r

r r r


 
      

 

 Maximum will occur at r = ri  
 

   

 

 

2 22 2

,max 2 2 2 2 2

2 2 2 2

,max

2 2 2 2

1

( ) 0.8(490) (25 19 )
105 MPa   .

(25 19 )

i o ii i o
t

o i i o i

t o i

i

o i

p r rr p r

r r r r r

r r
p Ans

r r





 
     

 
   

   
______________________________________________________________________________ 
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3-103 From Table A-20, Sy =71 MPa 

 From Eq. (3-50) 
 

   

2 2

2 2 2
1i i o

t

o i

r p r

r r r


 
      

  

 Maximum will occur at r = ri  

   
 

2 2 2 2

,max 2 2 2 2 2

2 2 2 2

,max

2 2 2 2

( )
1

( ) 0.8(71) (1 0.75 )
15.9 ksi   .

(1 0.75 )

i i o i o i
t

o i i o i

t o i

i

o i

r p r p r r

r r r r r

r r
p Ans

r r





  
     

 
   

 

 

______________________________________________________________________________ 

 

3-104 The longitudinal stress will be due to the weight of the vessel above the maximum stress 

point. From Table A-5, the unit weight of steel is s = 0.282 lbf/in
3
. The area of the wall 

is 

   Awall = ( /4)(360
2
  358.5

2
) = 846. 5 in

2 

 

 The volume of the wall and dome are 

 

   Vwall = Awall h = 846.5 (720) = 609.5 (10
3
) in

3
 

 

   Vdome = (2 /3)(180
3
  179.25

3
) = 152.0 (10

3
) in

3
 

 

 The weight of the structure on the wall area at the tank bottom is 

 

   W = s Vtotal = 0.282(609.5 +152.0) (10
3
) = 214.7(10

3
) lbf 

   
 3

wall

214.7 10
254 psi

846.5
l

W

A
        

 The maximum pressure will occur at the bottom of the tank, pi = water h. From Eq. (3-50) 

with 
 ir r

   

2 2 2 2

2 2 2 2 2

2 2 2

2 2 2

1

1 ft 180 179.25
62.4(55) 5708 5710 psi   .

144 in 180 179.25

i i o o i
t i

o i i o i

r p r r r
p

r r r r r

Ans


   

         
    

         


 

   

2 2 2

2 2 2 2

1 ft
1 62.4(55) 23.8 psi .

144 in

i i o
r i

o i i

r p r
p Ans

r r r


   
               

 Note: These stresses are very idealized as the floor of the tank will restrict the values 

calculated. 
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 Since 1  2  3, 1 = t = 5708 psi, 2 = r =  24 psi and3 = l  =  254 psi.  

From Eq. (3-16), 

 

    

1 3

1 2

2 3

5708 254
2981 2980 psi

2

5708 24
2866 2870 psi .

2

24 254
115 psi   

2

Ans








 


 

 
 




 

______________________________________________________________________________ 

 
3-105 Stresses from additional pressure are, 

 Eq. (3-51),  

    
   2

2 250psi

50 179.25
5963 psi

180 179.25
l  

  
    (r)50 psi  =  50 psi 

 Eq. (3-50) 

    
 

2 2

2 250psi

180 179.25
50 11 975 psi

180 179.25
t


 

  
 Adding these to the stresses found in Prob. 3-104 gives 

 

    t = 5708 + 11 975 = 17683 psi = 17.7 kpsi    Ans. 

    r =  23.8  50 =  73.8 psi     Ans. 

    l  =  254 + 5963 = 5709 psi     Ans. 

 

 Note: These stresses are very idealized as the floor of the tank will restrict the values 

calculated. 

 From Eq. (3-16) 

   

1 3

1 2

2 3

17 683 73.8
8879 psi

2

17 683 5709
5987 psi .

2

5709 23.8
2866 psi   

2

Ans








 


 


 

 

______________________________________________________________________________ 
 

3-106  Since σt and σr are both positive and σt > σr 
 

 
 max max

2t 
 

 

 From Eq. (3-55), t is maximum at r = ri = 0.3125 in. The term 
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  2

2
2 50003 0.282 3 0.292

82.42 lbf/in
8 386 60 8


          

      

  

 
    

2 2

2 2 2

2max

0.3125 2.75 1 3(0.292)
82.42 0.3125 2.75 0.3125

3 0.2920.3125

1260 psi

t
     
 
 



 

 

  max

1260
630 psi     .

2
Ans  

 

 

 Radial stress: 

   

2 2
2 2 2

2
i o

r i o

r r
k r r r

r


 
     

 
 Maxima: 

  

2 2

3
2 2 0 0.3125(2.75) 0.927 ini or

i o

r rd
k r r r r

dr r

  
        

   

  

 
 2 2

2 2

2max

0.3125 2.75
82.42 0.3125 2.75 0.927

0.927

490 psi     .

r

Ans


 
    
 
 



2

 

______________________________________________________________________________ 

 

3-107   = 2 (2000)/60 = 209.4 rad/s,    = 3320 20 kg/m
3
,  = 0.24, ri = 0.01 m, ro = 0.125 m 

 
 Using Eq. (3-55) 

    2 22 2 23 0.24 1 3(0.24)
3320(209.4) 0.01 (0.125) (0.125) 0.01 (10)

8 3 0.24

1.85 MPa     .

t

Ans

 6             


 

______________________________________________________________________________ 
 
3-108   = 2 (12 000)/60 = 1256.6 rad/s, 

  
 

     4 2

2 2

5 /16
6.749 10  lbf s /  in

386 1 16 4 5 0.75



 


4  

 

 The maximum shear stress occurs at bore where max = t /2. From Eq. (3-55) 

 
 24 2 2 2 2

max

3 0.20 1 3(0.20)
( ) 6.749(10 ) 1256.6 0.375 2.5 2.5 (0.375)

8 3 0.20

5360 psi

t
        


   


  
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 max = 5360 / 2 = 2680 psi     Ans. 

 

______________________________________________________________________________ 

3-109   = 2 (3500)/60 = 366.5 rad/s,  

 mass of blade = m = V = (0.282 / 386) [1.25(30)(0.125)] = 3.425(10
3

) lbfs2
/in 

 

 F = (m/2)  2
r  

     = [3.425(10
3

)/2]( 366.5
2
)(7.5) 

     = 1725 lbf 

 

 Anom = (1.25  0.5)(1/8) = 0.093 75 in
2
 

 

 nom = F/ Anom = 1725/0.093 75 = 18 400 psi   Ans. 

 

 Note: Stress concentration Fig. A-15-1 gives Kt = 2.25 which increases σmax and fatigue. 

______________________________________________________________________________ 

 

3-110  = 0.292, E = 207 GPa, ri = 0, R = 25 mm, ro = 50 mm 
 

 Eq. (3-57), 

   
9 2 2 2

9 3

3 2

207(10 ) (0.05 0.025 )(0.025 0)
10 3.105(10 ) (1)

2(0.025) (0.05 0)
p

   
   

 

 where p is in MPa and  is in mm. 

 

 Maximum interference, 

  
max

1
[50.042 50.000] 0.021 mm     .

2
Ans     

 Minimum interference, 

  
min

1
[50.026 50.025] 0.0005 mm     .

2
Ans     

 

 From Eq. (1) 

  pmax = 3.105(10
3
)(0.021) = 65.2 MPa      Ans. 

 

  pmin = 3.105(10
3
)(0.0005) = 1.55 MPa      Ans. 

______________________________________________________________________________ 

 

3-111  = 0.292, E = 30 Mpsi, ri = 0, R = 1 in, ro = 2 in 

 Eq. (3-57), 

  
6 2 2 2

7

3 2

30(10 ) (2 1 )(1 0)
1.125(10 ) (1)

2(1 ) (2 0)
p

 
  

   
 

 where p is in psi and  is in inches. 

 

 Maximum interference, 
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max

1
[2.0016 2.0000] 0.0008 in     .

2
Ans     

 Minimum interference, 

 

  
min

1
[2.0010 2.0010] 0 .

2
Ans     

  

 From Eq. (1), 

 

  pmax = 1.125(10
7
)(0.0008) = 9 000 psi      Ans. 

 

  pmin = 1.125(10
7
)(0) = 0      Ans. 

______________________________________________________________________________ 

 

3-112  = 0.292, E = 207 GPa, ri = 0, R = 25 mm, ro = 50 mm 
 

 Eq. (3-57), 

   
9 2 2 2

9 3

3 2

207(10 ) (0.05 0.025 )(0.025 0)
10 3.105(10 ) (1)

2(0.025) (0.05 0)
p

   
   

 

 where p is in MPa and  is in mm. 

 

 Maximum interference, 

  
max

1
[50.059 50.000] 0.0295 mm     .

2
Ans     

 Minimum interference, 

  
min

1
[50.043 50.025] 0.009 mm     .

2
Ans     

 

 From Eq. (1) 

  pmax = 3.105(10
3
)(0.0295) = 91.6 MPa      Ans. 

 

  pmin = 3.105(10
3
)(0.009) = 27.9 MPa      Ans. 

______________________________________________________________________________ 

 

3-113  = 0.292, E = 30 Mpsi, ri = 0, R = 1 in, ro = 2 in 

 Eq. (3-57), 

  
6 2 2 2

7

3 2

30(10 ) (2 1 )(1 0)
1.125(10 ) (1)

2(1 ) (2 0)
p

 
  

   
 

 where p is in psi and  is in inches. 

 

 Maximum interference, 

  
max

1
[2.0023 2.0000] 0.00115 in     .

2
Ans     

 Minimum interference, 
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min

1
[2.0017 2.0010] 0.00035 .

2
Ans     

  

 From Eq. (1), 

 

  pmax = 1.125(10
7
)(0.00115) = 12 940 psi      Ans. 

 

  pmin = 1.125(10
7
)(0.00035) = 3 938      Ans. 

 

______________________________________________________________________________ 

 

3-114  = 0.292, E = 207 GPa, ri = 0, R = 25 mm, ro = 50 mm 
 

 Eq. (3-57), 

   
9 2 2 2

9 3

3 2

207(10 ) (0.05 0.025 )(0.025 0)
10 3.105(10 ) (1)

2(0.025) (0.05 0)
p

   
   

 

 where p is in MPa and  is in mm. 

 

 Maximum interference, 

  
max

1
[50.086 50.000] 0.043 mm     .

2
Ans     

 Minimum interference, 

  
min

1
[50.070 50.025] 0.0225 mm     .

2
Ans     

 

 From Eq. (1) 

  pmax = 3.105(10
3
)(0.043) = 134 MPa      Ans. 

 

  pmin = 3.105(10
3
)(0.0225) = 69.9 MPa      Ans. 

______________________________________________________________________________ 

 

3-115  = 0.292, E = 30 Mpsi, ri = 0, R = 1 in, ro = 2 in 

 Eq. (3-57), 

  
6 2 2 2

7

3 2

30(10 ) (2 1 )(1 0)
1.125(10 ) (1)

2(1 ) (2 0)
p

 
  

   
 

 where p is in psi and  is in inches. 

 

 Maximum interference, 

  
max

1
[2.0034 2.0000] 0.0017 in     .

2
Ans     

 Minimum interference, 

 

  
min

1
[2.0028 2.0010] 0.0009 .

2
Ans     

  

 From Eq. (1), 
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  pmax = 1.125(10
7
)(0.0017) = 19 130 psi      Ans. 

 

  pmin = 1.125(10
7
)(0.0009) = 10 130      Ans. 

______________________________________________________________________________ 

3-116 From Table A-5, Ei = Eo = 30 Mpsi, i o ri = 0, R = 1 in, ro = 1.5 in 

The radial interference is  1
2.002 2.000 0.001in     .

2
Ans     

 

Eq. (3-57), 

  

    
 

  
 

2 2 2 2 6 2 2 2

3 2 2 3 2

30 10 0.001 1.5 1 1 0

2 2 1 1.5 0

8333 psi 83.3 kpsi .

o i

o i

r R R rE
p

R r r

Ans

       
   

 


     
 


 

 

The tangential stresses at the interface for the inner and outer members are given by Eqs. 

(3-58) and (3-59), respectively. 

  
2 2 2 2

2 2 2 2

1 0
( ) (8333) 8333 psi 8.33 kpsi    .

1 0

i
t i r R

i

R r
p Ans

R r




 
      

 
  

 

  
2 2 2 2

2 2 2 2

1.5 1
( ) (8333) 21 670 psi 21.7 kpsi    .

1.5 1

o
t o r R

o

r R
p Ans

r R




 
  

 
  

______________________________________________________________________________ 

 

3-117  From Table A-5, Ei = 30 Mpsi, Eo =14.5 Mpsi, i  o 
 ri = 0, R = 1 in, ro = 1.5 in  

The radial interference is  1
2.002 2.000 0.001in     .

2
Ans     

 

Eq. (3-56), 

   

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 26 6

1 1

0.001
4599 psi .

1 1.5 1 1 1 0
1 0.211 0.292

1.5 1 1 014.5 10 30 10

o i
o i

o o i i

p
r R R r

R
E r R E R r

p Ans



 


     
           

 
                 

 

 

The tangential stresses at the interface for the inner and outer members are given by Eqs. 

(3-58) and (3-59), respectively. 

 
2 2 2 2

2 2 2 2

1 0
( ) (4599) 4599 psi    .

1 0

i
t i r R

i

R r
p Ans

R r




 
     

 
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2 2 2 2

2 2 2 2

1.5 1
( ) (4599) 11960 psi    .

1.5 1

o
t o r R

o

r R
p Ans

r R




 
  

 
 

______________________________________________________________________________ 

 

3-118 From Table A-5, Ei = Eo = 30 Mpsi, i o ri = 0, R = 0.5 in, ro = 1 in 

The minimum and maximum radial interferences are 

   min

1
1.002 1.002 0.000 in     .

2
Ans     

  max

1
1.003 1.001 0.001in     .

2
Ans     

 

Since the minimum interference is zero, the minimum pressure and tangential stresses are 

zero.      Ans. 

 

The maximum pressure is obtained from Eq. (3-57). 

 

 

  

 
 

  
 

2 2 2 2

3 2 2

6 2 2 2

3 2

2

30 10 0.001 1 0.5 0.5 0
22 500 psi

2 0.5 1 0

o i

o i

r R R rE
p

R r r

p Ans

   
 

  
  
  

  

 

 

The maximum tangential stresses at the interface for the inner and outer members are 

given by Eqs. (3-58) and (3-59), respectively. 

 
2 2 2 2

2 2 2 2

0.5 0
( ) (22 500) 22 500 psi    .

0.5 0

i
t i r R

i

R r
p Ans

R r




 
     

 
 

 

 
2 2 2 2

2 2 2 2

1 0.5
( ) (22 500) 37 500 psi    .

1 0.5

o
t o r R

o

r R
p Ans

r R




 
  

 
 

______________________________________________________________________________ 

 

3-119  From Table A-5, Ei = 10.4 Mpsi, Eo =30 Mpsi, i  o 
 ri = 0, R = 1 in, ro = 1.5 in  

 

The minimum and maximum radial interferences are 

 
min

1
[2.003 2.002] 0.0005 in     .

2
Ans     

max

1
[2.006 2.000] 0.003 in     .

2
Ans     

 

Eq. (3-56), 
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   
 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 26 6

6

1 1

1 1.5 1 1 1 0
1 0.292 0.333

1.5 1 1 030 10 10.4 10

6.229 10 psi .

o i
o i

o o i i

p
r R R r

R
E r R E R r

p

p Ans



 






     

           


              







 

     6 6

min min6.229 10 6.229 10 0.0005 3114.6 psi 3.11 kpsi      .p Ans     

     6 6

max max6.229 10 6.229 10 0.003 18 687 psi 18.7 kpsi      .p Ans     

The tangential stresses at the interface for the inner and outer members are given by Eqs. 

(3-58) and (3-59), respectively.   

Minimum interference: 

 
2 2 2 2

min 2 2 2 2min

1 0
( ) (3.11) 3.11 kpsi    .

1 0

i
t i

i

R r
p Ans

R r
  

     
 

 

 

 
2 2 2 2

min 2 2 2 2min

1.5 1
( ) (3.11) 8.09 kpsi    .

1.5 1

o
t o

o

r R
p Ans

r R
  

  
 

 

Maximum interference: 

 

2 2 2 2

max 2 2 2 2max

1 0
( ) (18.7) 18.7 kpsi    .

1 0

i
t i

i

R r
p Ans

R r
  

     
 

 

2 2 2 2

max 2 2 2 2max

1.5 1
( ) (18.7) 48.6 kpsi    .

1.5 1

o
t o

o

r R
p Ans

r R
  

  
 

 

______________________________________________________________________________ 

 

3-120  20 mm, 37.5 mm, 57.5 mmi od r r  
 

 From Table 3-4, for R = 10 mm, 
 

37.5 10 47.5 mmcr     

 
2

2 2

10
46.96772 mm

2 47.5 47.5 10
nr  

 
 

47.5 46.96772 0.53228 mmc ne r r      

46.9677 37.5 9.4677 mmi n ic r r      

57.5 46.9677 10.5323 mmo o nc r r      
2 2/ 4 (20) / 4 314.16 mmA d    2  

4000(47.5) 190 000 N mmcM Fr     
 

 Using Eq. (3-65) for the bending stress, and combining with the axial stress, 
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4000 190 000(9.4677)
300 MPa     .

314.16 314.16(0.53228)(37.5)

4000 190 000(10.5323)
195 MPa     .

314.16 314.16(0.53228)(57.5)

i
i

i

o
o

o

McF
Ans

A Aer

McF
Ans

A Aer





    

     
 

______________________________________________________________________________ 

 

3-121   0.75 in, 1.25 in, 2.0 ini od r r  
 

 From Table 3-4, for R = 0.375 in, 
 

1.25 0.375 1.625 incr     

 
2

2 2

0.375
1.60307 in

2 1.625 1.625 0.375
nr  

 
 

1.625 1.60307 0.02193 inc ne r r      

1.60307 1.25 0.35307 ini n ic r r      

2.0 1.60307 0.39693 ino o nc r r      
2 2/ 4 (0.75) / 4 0.44179 inA d    2  

750(1.625) 1218.8 lbf incM Fr     
 

 Using Eq. (3-65) for the bending stress, and combining with the axial stress, 
 

750 1218.8(0.35307)
37 230 psi 37.2 kpsi     .

0.44179 0.44179(0.02193)(1.25)

750 1218.8(0.39693)
23 269 psi 23.3 kpsi     .

0.44179 0.44179(0.02193)(2.0)

i
i

i

o
o

o

McF
Ans

A Aer

McF
Ans

A Aer





     

       
 

______________________________________________________________________________ 

 

3-122  6 mm, 10 mm, 16 mmi od r r  
 

 From Table 3-4, for R = 3 mm, 
 

10 3 13 mmcr     

 
2

2 2

3
12.82456 mm

2 13 13 3
nr  

 
 

13 12.82456 0.17544 mmc ne r r      

12.82456 10 2.82456 mmi n ic r r      

16 12.82456 3.17544 mmo o nc r r      
2 2/ 4 (6) / 4 28.2743 mmA d    2  

300(13) 3900 N mmcM Fr     
 

 Using Eq. (3-65) for the bending stress, and combining with the axial stress, 
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300 3900(2.82456)
233 MPa     .

28.2743 28.2743(0.17544)(10)

300 3900(3.17544)
145 MPa     .

28.2743 28.2743(0.17544)(16)

i
i

i

o
o

o

McF
Ans

A Aer

McF
Ans

A Aer





    

     
 

______________________________________________________________________________ 

 
3-123   6 mm, 10 mm, 16 mmi od r r  
 

 From Table 3-4, for R = 3 mm, 
 

10 3 13 mmcr     

 
2

2 2

3
12.82456 mm

2 13 13 3
nr  

 
 

13 12.82456 0.17544 mmc ne r r      

12.82456 10 2.82456 mmi n ic r r      

16 12.82456 3.17544 mmo o nc r r      
2 2/ 4 (6) / 4 28.2743 mmA d    2  

The angle  of the line of radius centers is 

   

1 1/ 2 10 6 / 2
sin sin 30

10 6 10

/ 2 sin 300 10 6 / 2 sin 30 1950 N mm

R d

R d R

M F R d





                
     





 

 

 Using Eq. (3-65) for the bending stress, and combining with the axial stress, 
 

sin 300sin 30 1950(2.82456)
116 MPa     .

28.2743 28.2743(0.17544)(10)

sin 300sin 30 1950(3.17544)
72.7 MPa     .

28.2743 28.2743(0.17544)(16)

i
i

i

o
o

o

McF
Ans

A Aer

McF
Ans

A Aer





    

     





 
Note that the shear stress due to the shear force is zero at the surface. 

______________________________________________________________________________ 

 
3-124  0.25 in, 0.5 in, 0.75 ini od r r  
 

 From Table 3-4, for R = 0.125 in, 
 

0.5 0.125 0.625 incr     

 
2

2 2

0.125
0.618686 in

2 0.625 0.625 0.125
nr  

 
 

0.625 0.618686 0.006314 inc ne r r      

0.618686 0.5 0.118686 ini n ic r r      

0.75 0.618686 0.131314 ino o nc r r      
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2 2/ 4 (0.25) / 4 0.049087 inA d    2  

75(0.625) 46.875 lbf incM Fr     
 

 Using Eq. (3-65) for the bending stress, and combining with the axial stress, 
 

75 46.875(0.118686)
37 428 psi 37.4 kpsi     .

0.049087 0.049087(0.006314)(0.5)

75 46.875(0.131314)
24 952 psi 25.0 kpsi     .

0.049087 0.049087(0.006314)(0.75)

i
i

i

o
o

o

McF
Ans

A Aer

McF
Ans

A Aer





     

       
 

______________________________________________________________________________ 

 
3-125  0.25 in, 0.5 in, 0.75 ini od r r  
 

 From Table 3-4, for R = 0.125 in, 
 

0.5 0.125 0.625 incr     

 
2

2 2

0.125
0.618686 in

2 0.625 0.625 0.125
nr  

 
 

0.625 0.618686 0.006314 inc ne r r      

0.618686 0.5 0.118686 ini n ic r r      

0.75 0.618686 0.131314 ino o nc r r      
2 2/ 4 (0.25) / 4 0.049087 inA d    2

 
The angle  of the line of radius centers is 

   

1 1/ 2 0.5 0.25 / 2
sin sin 30

0.5 0.25 0.5

/ 2 sin 75 0.5 0.25 / 2 sin 30 23.44 lbf in

R d

R d R

M F R d





                
     





 

 

 Using Eq. (3-65) for the bending stress, and combining with the axial stress, 
 

sin 75sin 30 23.44(0.118686)
18 716 psi 18.7 kpsi     .

0.049087 0.049087(0.006314)(0.5)

sin 75sin 30 23.44(0.131314)
12 478 psi 12.5 kpsi  

0.049087 0.049087(0.006314)(0.75)

i
i

i

o
o

o

McF
Ans

A Aer

McF

A Aer





     

       





  .Ans

 
 Note that the shear stress due to the shear force is zero at the surface. 

______________________________________________________________________________ 

 
3-126  

 (a) 
  

 3

3(4) 0.5(0.1094)
8021 psi 8.02 kpsi     .

(0.75) 0.1094 /12

Mc
Ans

I
        

 

 
  

(b)  ri = 0.125 in, ro = ri + h = 0.125 + 0.1094 = 0.2344 in 

 From Table 3-4, 
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0.125 (0.5)(0.1094) 0.1797 in

0.1094
0.174006 in

ln(0.2344 / 0.125)

0.1797 0.174006 0.005694 in

0.174006 0.125 0.049006 in

0.2344 0.174006 0.060394 in

0.75(0.1094) 0.08205

c

n

c n

i n i

o o n

r

r

e r r

c r r

c r r

A bh

  

 

    
    

    

   2 in

3(4) 12 lbf inM       
 

The negative sign on the bending moment is due to the sign convention shown in Fig. 3-34.  Using 

Eq. (3-65), 
 

12(0.049006)
10 070 psi 10.1 kpsi     .

0.08205(0.005694)(0.125)

12(0.060394)
6618 psi 6.62 kpsi    .

0.08205(0.005694)(0.2344)

i
i

i

o
o

o

Mc
Ans

Aer

Mc
Ans

Aer






     


     

 
 

 (c)  
10.1

1.26      .
8.02

i
iK Ans





  


 

6.62
0.825      .

8.02

o
oK Ans




    

 

______________________________________________________________________________ 

 
3-127  

 (a) 
  

 3

3(4) 0.5(0.1406)
4856 psi 4.86 kpsi     .

(0.75) 0.1406 /12

Mc
Ans

I
        

 

 
  

(b)  ri = 0.125 in, ro = ri + h = 0.125 + 0.1406 = 0.2656 in 

 From Table 3-4, 

0.125 (0.5)(0.1406) 0.1953 in

0.1406
0.186552 in

ln(0.2656 / 0.125)

0.1953 0.186552 0.008748 in

0.186552 0.125 0.061552 in

0.2656 0.186552 0.079048 in

0.75(0.1406) 0.10545

c

n

c n

i n i

o o n

r

r

e r r

c r r

c r r

A bh

  

 

    
    

    

   2 in

3(4) 12 lbf inM       
 

The negative sign on the bending moment is due to the sign convention shown in Fig. 3-34.  Using 

Eq. (3-65), 
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12(0.061552)
6406 psi 6.41 kpsi     .

0.10545(0.008748)(0.125)

12(0.079048)
3872 psi 3.87 kpsi    .

0.10545(0.008748)(0.2656)

i
i

i

o
o

o

Mc
Ans

Aer

Mc
Ans

Aer






     


     

 
 

 (c)  
6.41

1.32      .
4.86

i
iK Ans





  


 

3.87
0.80      .

4.86

o
oK Ans




    

______________________________________________________________________________ 

 
3-128 

 (a) 
  

 3

3(4) 0.5(0.1094)
8021 psi 8.02 kpsi     .

(0.75) 0.1094 /12

Mc
Ans

I
        

 

 
  

(b)  ri = 0.25 in, ro = ri + h = 0.25 + 0.1094 = 0.3594 in 

 From Table 3-4, 

0.25 (0.5)(0.1094) 0.3047 in

0.1094
0.301398 in

ln(0.3594 / 0.25)

0.3047 0.301398 0.003302 in

0.301398 0.25 0.051398 in

0.3594 0.301398 0.058002 in

0.75(0.1094) 0.08205 in

c

n

c n

i n i

o o n

r

r

e r r

c r r

c r r

A bh

  

 

    
    

    

   2

3(4) 12 lbf inM       
The negative sign on the bending moment is due to the sign convention shown in Fig. 3-34.  Using 

Eq. (3-65), 
 

12(0.051398)
9106 psi 9.11 kpsi     .

0.08205(0.003302)(0.25)

12(0.058002)
7148 psi 7.15 kpsi    .

0.08205(0.003302)(0.3594)

i
i

i

o
o

o

Mc
Ans

Aer

Mc
Ans

Aer






     


     

 
 

 (c)  
9.11

1.14      .
8.02

i
iK Ans





  


 

7.15
0.89      .

8.02

o
oK Ans




    

______________________________________________________________________________ 
 

3-129 ri = 25 mm,  ro = ri + h = 25 + 87 = 112 mm,  rc = 25 + 87/2 = 68.5 mm 
 The radius of the neutral axis is found from Eq. (3-63), given below. 
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 /
n

A
r

dA r

  

For a rectangular area with constant width b, the denominator is 

ln
o

i

r
o

r
i

rbdr
b

r r

   
 

 
Applying this equation over each of the four rectangular areas, 

 

45 54.5 92 112
9 ln 31 ln 31 ln 9 ln 16.3769

25 45 82.5 92

dA

r

                  
         

  22 20(9) 31(9.5) 949 mmA     

 
949

57.9475 mm
16.3769/

n

A
r

dA r
  


 

68.5 57.9475 10.5525 mmc ne r r      

57.9475 25 32.9475 mmi n ic r r      

112 57.9475 54.0525 mmo o nc r r      

 M = 150F2 = 150(3.2) = 480 kN·mm 

 

We need to find the forces transmitted through the section in order to determine the axial 

stress.  It is not immediately obvious which plane should be used for resolving the axial 

versus shear directions.  It is convenient to use the plane containing the reaction force at 

the bushing, which assumes its contribution resolves entirely into shear force.  To find the 

angle of this plane, find the resultant of  F1 and F2. 

 

 

1 2

1 2

1 2
2 2

2.4cos60 3.2cos0 4.40 kN

2.4sin 60 3.2sin 0 2.08 kN

4.40 2.08 4.87 kN

x x x

y y y

F F F

F F F

F

    

    

  

 

 

 
 

 This is the pin force on the lever which acts in a direction 
 

1 1 2.08
tan tan 25.3

4.40

y

x

F

F
     

 
 

On the surface 25.3° from the horizontal, find the internal forces in the tangential and 

normal directions.  Resolving F1 into components, 

  

 
 

2.4cos 60 25.3 1.97 kN

2.4sin 60 25.3 1.37 kN

t

n

F

F

  

  

 

 

 
 

The transverse shear stress is zero at the inner and outer surfaces.  Using Eq. (3-65) for 

the bending stress, and combining with the axial stress due to Fn, 

Chapter 3 - Rev. A, Page 93/100 



  

  

3200 150 (32.9475)1370
64.6 MPa     .

949 949(10.5525)(25)

3200 150 (54.0525)1370
21.7 MPa     .

949 949(10.5525)(112)

n i
i

i

n o
o

o

F Mc
Ans

A Aer

F Mc
Ans

A Aer





      

       
 

______________________________________________________________________________ 
 
3-130 ri = 2 in,  ro = ri + h = 2 + 4 = 6 in,  2 0.5(4) 4 incr     

  2(6 2 0.75)(0.75) 2.4375 inA    
 

 Similar to Prob. 3-129, 
 

3.625 6
0.75ln 0.75ln 0.682 920 in

2 4.375

dA

r
    

2.4375
3.56923 in

0.682 920( / )
n

A
r

dA r
  


 

4 3.56923 0.43077 inc ne r r      

3.56923 2 1.56923 ini n ic r r      

6 3.56923 2.43077 ino o nc r r      

6000(4) 24 000 lbf incM Fr     
 

 Using Eq. (3-65) for the bending stress, and combining with the axial stress, 
 

6000 24 000(1.56923)
20 396 psi 20.4 kpsi     .

2.4375 2.4375(0.43077)(2)

6000 24 000(2.43077)
6 799 psi 6.80 kpsi     .

2.4375 2.4375(0.43077)(6)

i
i

i

o
o

o

McF
Ans

A Aer

McF
Ans

A Aer





     

       
 

______________________________________________________________________________ 
 
3-131  ri = 12 in,  ro = ri + h = 12 + 3 = 15 in, rc = 12 + 3/2 = 13.5 in 

 
3 3(1.5 )(0.75) 1.988 in

4 4

(1.5)(0.75) 3.534

I a b

A ab

4 

 

  

  
 

20(3 1.5) 90 kip inM      
Since the radius is large compared to the cross section, assume Eq. 3-67 is applicable for 

the bending stress. Combining the bending stress and the axial stress, 

 

  
20 90(1.5)(13.5)

82.1 kpsi .
3.534 (1.988)(12)

i c
i

i

Mc rF
Ans

A Ir
       

  
20 90(1.5)(13.5)

55.5 kpsi     .
3.534 1.988(15)

o c
o

o

Mc rF
Ans

A Ir
        

 

______________________________________________________________________________ 
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3-132  ri = 1.25 in,  ro = ri + h = 1.25 + 0.5 + 1 + 0.5 = 3.25 in 
 rc = (ri + ro) / 2 =  (1.25 + 3.25)/2 = 2.25 in      Ans. 

 

For outer rectangle, ln o

i

rdA
b

r r

   
 

 

For circle, 
   

2
2

O
2 2

O
O

,    
2 c c

A r
A r

dA r r r r


               
 

2 2

O

2 ( )c c

dA
r r r

r
      

 

Combine the integrals subtracting the circle from the rectangle 

 

 2 23.25
1.25ln 2 2.25 2.25 0.5 0.840 904 in

1.25

dA

r
     

 

2 21.25(2) (0.5 ) 1.714 60 in .A A   ns

 
1.71460

2.0390 in .
0.840904( / )

n

A
r A

dA r
  


ns



 
2.25 2.0390 0.2110 in     .c ne r r Ans    

 2.0390 1.25 0.7890 ini n ic r r    

 3.25 2.0390 1.2110 ino o nc r r    

 
2000(4.5 1.25 0.5 0.5) 13 500 lbf inM     

 
2000 13 500(0.7890)

20 720 psi = 20.7 kpsi     .
1.7146 1.7146(0.2110)(1.25)

i
i

i

McF
Ans

A Aer
       

2000 13 500(1.2110)
12 738 psi 12.7 kpsi      .

1.7146 1.7146(0.2110)(3.25)

o
o

o

McF
Ans

A Aer
          

______________________________________________________________________________ 
 

3-133 From Eq. (3-68), 

 
 

1 3
2

1 3 1 3
2 13

8 2 1

E
a KF F

d

          
     

 

 Use 0.292,  F in newtons, E in N/mm
2
 and d in mm, then 

1/3
23 [(1 0.292 ) / 207 000]

0.03685
8 1/ 30

K
     
    

From Eq. (3-69), 
 

1/3 1/3
1/3

max 2 1/3 2 2 2

3 3 3 3
352  MPa

2 2 ( ) 2 2 (0.03685)

F F F F
p F

a KF K   
    
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From Eq. (3-71), the maximum principal stress occurs on the surface where z = 0, and is 

equal to – pmax. 

 

1/3

max max 352  MPa        .z p F A      ns  

                          

 From Fig. 3-37, 
 

1/3

max max0.3 106  MPa          .p F A   ns  

______________________________________________________________________________ 
 

3-134 From Eq. (3-68), 

 

 

   

         

2 2

1 1 2 2
3

1 2

2 2

3

1 13

8 1 1

1 0.292 207 000 1 0.333 717003 10
0.0990 mm

8 1 25 1 40

E EF
a

d d

a

        

   
    

 

 

From Eq. (3-69), 

 
 

 max 2 2

3 103
487.2 MPa

2 2 0.0990

F
p

a 
    

 

From Fig. 3-37, the maximum shear stress occurs at a depth of z = 0.48 a. 

  0.48 0.48 0.0990 0.0475 mm       .z a A   ns  

 

The principal stresses are obtained from Eqs. (3-70) and (3-71) at a depth of z/a = 0.48. 

 

      
1

1 2 2

1
487.2 1 0.48 tan 1/ 0.48 1 0.333 101.3 MPa

2 1 0.48
  

               
 

 
3 2

487.2
396.0 MPa

1 0.48
 

  


 

 

From Eq. (3-72),  

 
   1 3

max

101.3 396.0
147.4 MPa       .

2 2
Ans

 
  

    

Note that if a closer examination of the applicability of the depth assumption from Fig. 3-

37 is desired, implementing Eqs. (3-70), (3-71), and (3-72) on a spreadsheet will allow 

for calculating and plotting the stresses versus the depth for specific values of .  For = 

0.333 for aluminum, the maximum shear stress occurs at a depth of z = 0.492a with max 

= 0.3025 pmax.   
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This gives max = 0.3025 pmax = (0.3025)(487.2) = 147.38 MPa.  Even though the depth 

assumption was a little off, it did not have significant effect on the the maximum shear 

stress. 

______________________________________________________________________________ 
3-135  From the solution to Prob. 3-134, a = 0.0990 mm and  pmax

 
= 487.2 MPa.  Assuming 

applicability of Fig. 3-37, the maximum shear stress occurs at a depth of z = 0.48 a = 

0.0475 mm.    Ans. 

 

The principal stresses are obtained from Eqs. (3-70) and (3-71) at a depth of z/a = 0.48. 

 

      
1

1 2 2

1
487.2 1 0.48 tan 1/ 0.48 1 0.292 92.09 MPa

2 1 0.48
  

               
 

 
3 2

487.2
396.0 MPa

1 0.48
 

  


 

 

From Eq. (3-72),  

 
   1 3

max

92.09 396.0
152.0 MPa       .

2 2
Ans

 
  

    

Note that if a closer examination of the applicability of the depth assumption from Fig. 3-

37 is desired, implementing Eqs. (3-70), (3-71), and (3-72) on a spreadsheet will allow 

for calculating and plotting the stresses versus the depth for specific values of .  For = 

0.292 for steel, the maximum shear stress occurs at a depth of z = 0.478a with max = 

0.3119 pmax.   

______________________________________________________________________________ 
 
3-136  From Eq. (3-68), 

 

 

 

     

2

3

1 2

2

3

2 13

8 1 1

2 1 0.292 207 0003 20
0.1258 mm

8 1 30 1

EF
a

d d

a

     

 
     

 

 

From Eq. (3-69), 

 
 

 max 2 2

3 203
603.4 MPa

2 2 0.1258

F
p

a 
    

 

From Fig. 3-37, the maximum shear stress occurs at a depth of  

  0.48 0.48 0.1258 0.0604 mm       .z a A   ns

  

 

 

Also from Fig. 3-37, the maximum shear stress is  

max max0.3 0.3(603.4) 181 MPa         .p Ans     
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_____________ ____________________________________ _____________________________ 

 

 
-137 Aluminum Plate-Ball interface: From Eq. (3-68), 3

   

           

3

1 2

2 6 2 6

3 1/33

8 1 1

1 0.292 30 10 1 0.333 10.4 103
3.517 10  in

8 1 1 1

a
d d

F
a F

    

               

 

 

rom Eq. (3-69), 

2 2

1 1 2 21 13 E EF     

F

 
 4 1/3

max 22
3 1/3

3F
p   

3
3.860 10  psi

2 2 3.517 10

F
F

a F  


 
 

 

By examination of Eqs. (3-70), (3-71), and (3-72), it can be seen that the only difference 

 in the maximum shear stress for the plate and the ball will be due to poisson’s ratio in Eq.

(3-70).  The larger poisson’s ratio will create the greater maximum shear stress, so the 

aluminum plate will be the critical element in this interface.  Applying the equations for 

the aluminum plate, 

 

       
4 1/3 1 1/3

1 2

1
3.86 10 1 0.48 tan 1/ 0.48 1 0.333 8025  psi

2 1 0.48
F F 

              
 

 
   

4 1/3

4 1/3

3 2

3.86 10
3.137 10  psi

1 0.48

F
F


  


 

 

From Eq. (3-72),  

 
      

1/3 4 1/3

4 1/31 3  
 max

8025 3.137 10
1.167 10  psi       

2 2

F F
F

  
  

omparing this stress to the allowable stress, and solving for F, 

 

C

 

3

20 000 
4

5.03 lbf
1.167 10

F   
  

  

 

 able-Ball interface: From Eq. (3-68), 

 

 

T
 

           
2 6 2 6

3 1/33
1 0.292 30 10 1 0.211 14.5 103

3.306 10  in
8 1 1 1

F
a F

               
 

 

From Eq. (3-69), 
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 
 4 1/3

max 22
3 1/3

3 3
4.369 10  psi

2 2 3.306 10

F F
p F

a F  
  

 
 

 

The steel ball has a higher poisson’s ratio than the cast iron table, so it will dominate. 

 

       
4 1/3 1 1/3

1 2

1
4.369 10 1 0.48 tan 1/ 0.48 1 0.292 8258  psi

2 1 0.48
F F 

              
 

 
   

4 1/3

4 1/3

3 2

4.369 10
3.551 10  psi

1 0.48

F
F


  


 

 

From Eq. (3-72),  

 
      

1/3 4 1/3

4 1/31 3
max

8258 3.551 10
1.363 10  psi       

2 2

F F
F

 
  

    

Comparing this stress to the allowable stress, and solving for F, 

 
 

3

4

20 000
3.16 lbf

1.363 10
F

 
  
  

  

 The steel ball is critical, with F = 3.16 lbf.       Ans. 

______________________________________________________________________________ 
 
3-138 v1 = 0.333, E1 = 10.4 Mpsi, l = 2 in, d1 = 1.25 in, v2 = 0.211, E2 = 14.5 Mpsi, d2 = –12 

in. 

 

With b = KcF
1/2 

 

       

 

1 2
2 6 2 6

4

1 0.333 10.4 10 1 0.211 14.5 102

(2) 1/1.25 1/12

2.336 10

cK




        
 
 





 
 

By examination of Eqs. (3-75), (3-76), and (3-77, it can be seen that the only difference 

in the maximum shear stress for the two materials will be due to poisson’s ratio in Eq. (3-

75).  The larger poisson’s ratio will create the greater maximum shear stress, so the 

aluminum roller will be the critical element in this interface.  Instead of applying these 

equations, we will assume the poisson’s ratio for aluminum of 0.333 is close enough to 

0.3 to make Fig. 3-39 applicable. 
 

max max

max

0.3

4000
13 300 psi

p

p
0.3

 

 
 

 

From Eq. (3-74), pmax = 2F / (bl ), so we have 
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1 2

max 1 2

2 2

c c

F F
p

lK F lK 
 

 
 

 So, 

 

2

max

2
4

2

(2)(2.336) 10 (13 300)

2

95.3 lbf     .

clK p
F

Ans



 

   
 

 
 
 
 

  

______________________________________________________________________________ 
 

3-139  

 v = 0.292, E = 30 Mpsi, l = 0.75 in, d1 = 2(0.47) = 0.94 in, d2 = 2(0.62) = 1.24 in. 

Eq. (3-73): 

 
     

1 2
2 6

3
2 1 0.292 30 102(40)

1.052 10  in
(0.75) 1/ 0.94 1/1.24

b



      
 
 

 

 

 Eq. (3-74):
 

 
 

   max 3

2 402
32 275 psi 32.3 kpsi               .

1.052 10 0.75

F
p Ans

bl  
   

   

 From Fig. 3-39, 
 

max max0.3 0.3(32 275)=9682.5 psi 9.68 kpsi                       .p Ans   
 

 

______________________________________________________________________________ 
 

3-140 Use Eqs. (3-73) through (3-77). 
1/2

2 2

1 1 2 2

1 2

(1 ) / (1 ) /2

(1/ ) (1/ )

E v EF
b

l d d




   
     

         

1/2
2 6 2 62(600) (1 0.292 ) / (30(10 )) (1 0.292 ) / (30(10 ))

(2) 1/ 5 1/
   

    
 

0.007 631 inb   
 

max

2 2(600)
25 028 psi

(0.007 631)(2)

F
p

bl 
  
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  
2

2

max 2
2 1 2 0.292 25 028 1 0.786

7102 psi 7.10 kpsi       .

x

z z
p

b b

Ans

 
 

         
 

   

0.786

 

 
 

 
2

max
2 2

2

2 25 028 2 0.786
1 0.786

1

4 646 psi 4.65 kpsi      .

y

zbp
bz

b

Ans

               
 

   

2

21 2 1 2 0.786
z 

   

 

max

2 2

25 028
19 677 psi 19.7 kpsi               .

1 0.786
z

p
Ans

z
  

     
  

2
1

b


 
max

4 646 19 677
7 516 psi 7.52 kpsi            .

y z
Ans


2 2




   
   
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3-141 Use Eqs. (3-73) through (3-77). 

 

    1 2
2 2

1 1 2 2

1 2

1 12

1/ 1/

E EF

l d d

 



   
 
  

 b

       
1 2

2 30.211 100 10

/

 2 31 0.292 207 10 12(2000)

(40) 1/150 1

        
  

           

 
0.2583 mmb   

 

max

2 2(2000)
123.2 MPa

(0.2583)(40)

F
p

bl 
  

 

  
2

2

max 2
2 1 2 0.292 123.2 1 0.786

35.0 MPa       .

x

z z
p

b b

Ans

 
 

         
 

 

0.786

 

 
 

 

2

21 2

0.786

z 
  
 
  
 

2

max
2 2

2

1 2 0.786
2 123.2 2

1 0.786
1

22.9 MPa      .

y

zbp
bz

b

Ans


      

   
 

 

 

max

2 2

123.2
96.9 MPa               .

1 0.786
z

p
Ans

z
  

   
  

2
1

b

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 
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max

22.9 96.9
37.0 MPa           .

2 2

y z
Ans

 


   
  

 
 

______________________________________________________________________________ 
3-142  Note to the Instructor: The first printing incorrectly had a width w = 1.25 mm instead of 

w = 1.25 in.  The solution presented here reflects the correction which will be made in 

subsequent printings.  

Use Eqs. (3-73) through (3-77). 

    1 2
2 2

1 1 2 2

1 2

1 12

1/ 1/

E EF

l d d

 



   
 
 

b

 
 

       
1 2

2 60.211 14.5 10 2 61 0.211 14.5 10 12(250)

(1.25) 1/ 3 1/

     
 

  
 

         

 
0.007 095 inb   

 

max

2 2(250)
17 946 psi

(0.007 095)(1.25)

F
p

bl 
  

 

  
2

2

max 2
2 1 2 0.211 17 946 1 0.786 0.

3 680 psi 3.68 kpsi       .

x

z z
p

b b

Ans

 
 

         
 

   

786

 

 
 

 
2

max
2 2

2

1 2 0.786
2 17 946 2 0.786

1 0.786
1

3 332 psi 3.33 kpsi      .

y

zbp
bz

b

Ans


              

 
   

2

21 2
z 

  

 

max

2 2

17 946
14109 psi 14.1 kpsi               .z

p
Ans  

     

2

1 0.786
1

z

b


  

 
max

3 332 14109
5 389 psi 5.39 kpsi            .

2 2

y z
Ans

 


   
   
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Chapter 4 
 

 

4-1 For a torsion bar, kT = T/ = Fl/, and so  = Fl/kT. For a cantilever, kl  = F/ , = F/kl . For 

the assembly, k = F/y, or, y = F/k = l +  

 Thus 

    
2

T l

F Fl F
y

k k k
    

 Solving for k 

    
2 2

1
.

1

l T

l T

T l

k k
k A

l k l k
k k

 


ns  

______________________________________________________________________________ 

 

4-2 For a torsion bar, kT = T/ = Fl/, and so  = Fl/kT. For each cantilever, kl  = F/ l ,  l  = 

F/kl , and,L = F/kL. For the assembly, k = F/y, or, y = F/k = l +  l  +L. 

 Thus 

   
2

T l

F Fl F F
y

k k k k
   

L

 

 Solving for k 

    
2 2

1
.

1 1

L l T

l L T L T l

T l L

k k k
k A

l k k l k k k k
k k k

 
  

ns  

______________________________________________________________________________ 

 

4-3 (a) For a torsion bar, k =T/ =GJ/l. 
 

 Two springs in parallel, with J =di
 4

/32, 

 and d1 = d1 = d, 

 

4 4

1 2 1 2

4

32

1 1
. (1)

32

J G J G d d
k G

x l x x l x

Gd Ans
x l x





 
      

    

 

 Deflection equation, 

 

 

 

 

21

2

1results in (2)

T l xT x

JG JG
T l x

T
x




 




 

 From statics, T1 + T2 = T = 1500. Substitute Eq. (2) 

 

Chapter 4 - Rev B, Page 1/81 



 
2 2 21500 1500 . (3)

l x x
T T T Ans

x l

      
 

  

 Substitute into Eq. (2) resulting in 
1 1500 . (4)

l x
T An

l
s


  

 (b) From Eq. (1),      4 6 31 1
0.5 11.5 10 28.2 10 lbf in/rad .

32 5 10 5
k A

       
ns  

 From Eq. (4), 
1

10 5
1500 750 lbf in .

10
T Ans


    

 From Eq. (3), 
2

5
1500 750 lbf in .

10
T Ans    

 From either section, 
 
   3

3 3

16 150016
30.6 10 psi 30.6 kpsi .

0.5

i

i

T
Ans

d


 
     

______________________________________________________________________________ 

 

4-4 Deflection to be the same as Prob. 4-3 where T1 = 750 lbfin,  l 1 = l / 2 = 5 in, and d1 = 0.5 

in 

      1 =  2 =  
 

    
     

 
 1 2 31 2

4 4
4 4 4 1 2

1 2

4 6 750 5 4 6
60 10 (1)

0.5
32 32 32

T T T T

d dd G d G G
        

 

 Or,      3 4

1 115 10 (2)T d

      3 4

2 210 10 (3)T d

 Equal stress, 1 2 1 2
1 2 3 3 3 3

1 2 1 2

16 16
(4)

T T T T

d d d d
 

 
      

 

 Divide Eq. (4) by the first two equations of Eq.(1) results in 

    

1 2

3 3

1 2
2 1

1 2

4 4

1 2

1.5 (5)
4 4

T T

d d
d d

T T

d d

    

 

 Statics,  T1 + T2 = 1500  (6) 

 

 Substitute in Eqs. (2) and (3), with Eq. (5) gives 

 

        43 4 3

1 115 10 10 10 1.5 1500d d 

 Solving for d1 and substituting it back into Eq. (5) gives 

   d1 = 0.388 8 in, d2 = 0.583 2 in  Ans. 
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 From Eqs. (2) and (3), 

 

   T1 = 15(10
3
)(0.388 8)

4
 = 343 lbfin                  Ans. 

   T2 = 10(10
3
)(0.583 2)

4
 = 1 157 lbfin               Ans. 

 

 Deflection of T is 
 

    
1 1

1 4 6
1

343 4
0.053 18 rad

/ 32 0.388 8 11.5 10

T l

J G



    

 Spring constant is  3

1

1500
28.2 10 lbf in .

0.053 18

T
k Ans


     

 

 The stress in d1 is 
 

 
 31

1 33

1

16 34316
29.7 10 psi 29.7 kpsi .

0.388 8

T
Ans

d


 
     

 

 The stress in d1 is 
 

 
 32

2 33

2

16 115716
29.7 10 psi 29.7 kpsi .

0.583 2

T
Ans

d


 
     
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4-5 (a) Let the radii of the straight sections be r 1 = d1 /2 and r 2 = d2 /2. Let the angle of the 

taper be  where tan  = (r 2  r 1)/2. Thus, the radius in the taper as a function of x is  

 r = r 1 + x tan , and the area is A =  (r 1 + x tan )
2
. The deflection of the tapered portion 

is 

   

   

 

2

10 0 1 0

1 1 1

2 1

1 2 1 2 1 2

1 2

1

tan tantan

1 1 1

tan tan tan tan

tan

tan tan

4
.

ll lF F dx F
dx

AE E E r xr x

F F

E r r l E r r

r rF F l Fl

E r r E r r r r E

Fl
Ans

d d E



2

1

  

     


    



   


   
         


  



  

 

 

 (b) For section 1,  
 

   4

1 2 2 6

1

4 4(1000)(2)
3.40(10 ) in     .

(0.5 )(30)(10 )

Fl Fl
Ans

AE d E


 
     

 

 For the tapered section, 

   4

6

1 2

4 4 1000(2)
2.26(10 ) in .

(0.5)(0.75)(30)(10 )

Fl
Ans

d d E


 
    

 For section 2, 
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   4

2 2 2 6

1

4 4(1000)(2)
1.51(10 ) in .

(0.75 )(30)(10 )

Fl Fl
Ans

AE d E


 
     
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4-6 (a) Let the radii of the straight sections be r 1 = d1 /2 and r 2 = d2 /2. Let the angle of the 

taper be  where tan  = (r 2  r 1)/2. Thus, the radius in the taper as a function of x is  

 r = r 1 + x tan , and the polar second area moment is J = ( /2) (r 1 + x tan )
4
. The 

angular deflection of the tapered portion is 

   

   

 
 

4 3

0 0 1 1 0

33 3

1 11

2 23 3 3 3
1 1 2 22 1 2 1

3 3 3 3 3 3

1 2 2 1 1 2 1 2

2 1 2 1

3tan tan tan

2 1 1 2 1 1

3 tan 3 tantan tan

2 2 2

3 tan 3 3

32

3

l
l lT T dx T

dx
GJ G Gr x r x

T T

G r G r rr l

r r r rr r r rT T l Tl

G r r G r r r r G r r

T


  

    

   



   
 

   
      

    

   
    



 

3

2



 2 2

1 1 2 2

3 3

1 2

.
d d d dl

Ans
G d d

 

 

 

 (b) The deflections, in degrees, are 

 For section 1, 
 

   
1 4 4 6

1

180 32 180 32(1500)(2) 180
2.44 deg       .

(0.5 )11.5(10 )

Tl Tl
Ans

GJ d G


    
             
       

 

 For the tapered section, 
 

   

2 2

1 1 2 2

3 3

1 2

2 2

6 3 3

( )32 180

3

(1500)(2) 0.5 (0.5)(0.75) 0.7532 180
1.14 deg       .

3 11.5(10 )(0.5 )(.75 )

Tl d d d d

Gd d

Ans


 

 

     
 

       
 

 

 

 For section 2, 
 

   
2 4 4 6

2

180 32 180 32(1500)(2) 180
0.481 deg       .

(0.75 )11.5(10 )

Tl Tl
Ans

GJ d G


    
             
       

______________________________________________________________________________ 

 

4-7 The area and the elastic modulus remain constant, however the force changes with respect 

to x. From Table A-5 the unit weight of steel is  = 0.282 lbf/in
3
, and the elastic modulus is 

E = 30 Mpsi. Starting from the top of the cable (i.e. x = 0, at the top). 

 

   F = (A)(lx) 
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 22

2

60
0

0.282 500(12)1
( ) 0.169 in

2 2 2(30)10

l
l l

c o

Fdx l
l x dx lx x

AE E E E

           
  

w
 

 

 From the weight at the bottom of the cable, 
 

   
 

2 2 6

4(5000) 500(12)4
5.093 in

(0.5 )30(10 )
W

Wl Wl

AE d E


 
     

   0.169 5.093 5.262 in         .c W Ans        

 

 The percentage of total elongation due to the cable’s own weight 

 

   
0.169

(100) 3.21%       .
5.262

Ans  

______________________________________________________________________________ 

 

4-8 Fy = 0 = R 1  F    R 1 = F 

 MA = 0 = M1  Fa      M1 = Fa 

 VAB = F, MAB =F (x  a ), VBC = MBC = 0 

  

 Section AB: 

   
2

1

1

2
AB

F x
F x a dx ax C

EI EI


 
    

 
    (1) 

  AB = 0 at x = 0    C1 = 0 

 

  
2 3

2
2 6

AB

F x F x x
y ax dx a

EI EI

   
      

   


2

2
C  (2) 

 

  yAB = 0 at x = 0    C2 = 0 

   
2

3 .
6

AB

Fx
y x a Ans

EI
   

 

 Section BC: 

 

    3

1
0 0BC dx C

EI
     

 

 From Eq. (1), at x = a (with C1 = 0), 
2 2

( )
2

F a Fa
a a

EI EI


 
    

  2
= C3. Thus, 

  
2

2
BC

Fa

EI
    

  
2 2

4
2 2

BC

Fa Fa
y dx x C

EI EI
       (3) 
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 From Eq. (2), at x = a (with C2 = 0), 
3 2F a a 3

6 2 3

Fa
y a

EI EI

 
    

 
. Thus, from Eq. (3) 

 

  
2 3Fa Fa 3

4 4
2 3 6

Fa
a C C

EI EI EI
       Substitute into Eq. (3) 

   

 

 
2 3 2

3 .
2 6 6

BC

Fa Fa Fa
y x a x

EI EI EI
       Ans

maximum deflection occurs at x= l, 
 

 The 

 

   
2

max 3 .
Fa

6
y a l Ans   

EI

 

 MAB = R 1 x = Fx /2 

 : 

 =  F /2,       MBC = R 1 x  F ( x  l / 2) = F (l   x) /2 

______________________________________________________________________________ 

 

4-9 MC = 0 = F (l /2)  R1 l      R1 = F /2 

 

 Fy = 0 = F /2 + R 2  F    R 2 = F /2 

 

 Break at 0  x  l /2: 

 

  VAB = R 1 = F /2, 

 

 Break at l /2  x  l
 

  VBC = R 1  F =  R 2

 

 Section AB: 

 
2

1  
1

AB

Fx   2 4

F x
dx C

EI EI
   

 

 From symmetry, AB = 0 at x = l /2    

2

2

1 1

2
0

4 1

l
F

Fl
C C

EI EI

 
 
       

6
. Thus, 

 

 
2 2

2 2F x Fl F
x  4

4 16 16
AB l

EI EI EI
      (1) 

 

  
34x 2 2 2

24
16 16 3

AB

F F
y x l dx l x C

EI EI
     

 
    
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at x = 0          C2 = 0, and,  yAB = 0 

 

   2 24 3
48

AB

Fx
y x l

EI
   (2) 

 is not given, because with symmetry, Eq.  (2) can be used in this region. The 

maximum deflection occurs at x =l /2, 

  

 

 yBC

 

2

2

l
F

l 3
2

max 4 3 .
48 2 48

Fl
y l Ans

EI EI
     

   
 

4-10  From Table A-6, for each angle, I  = 207 cm
4
. Thus,   I = 2(207) (10

4
) = 4.14(10

6
) mm

4 

From Table A-9, use beam 2 with F = 2500 N, a = 2000 mm, and l = 3000 mm; and beam 

 

 
     

______________________________________________________________________________ 

 

1-1

 

 

3 with w = 1 N/mm and l = 3000 mm. 

 

 

2 4

max ( 3 )
Fa l

y a l  
w

 

6 8EI EI

         
 

2 4

3 6 3

2500(2000) (1)(3000)
2000 3(3000)

6(207)10 (4.14)10 8(207)(10 )(4.14)(10 )

25.4 mm       .Ans

  

 

       6

 

)

           =  2500(2000)  [1(3000
2
)/2] =  9.5(10

6
) Nmm 

rom Table A-6, from id to upper surface is y = 29 mm. From centroid to bottom 

is compressive at the bottom of 

the beam at the wall. This stress is 

 

  2( / 2OM Fa l   w  

  

 

 F  centro

surface is y = 29.0  100=  71 mm. The maximum stress 

 

 
6

max 6

9.5(10 )( 71)
163 MPa     .

4.14(10 )

My
Ans

I
  

        

______________________________________________________________________________ 
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4-11 

 

14 10
(450) (300) 465 lbf

20 20

6 10
(450) (300) 285 lbf

20 20

O

C

R

R

  

  
 

 
 M1 = 465(6)12 = 33.48(10

3
) lbfin 

 M2 = 33.48(10
3
) +15(4)12 

       = 34.20(10
3
) lbfin 

 

 3max
max

34.2
      15      2.28 in

M
Z

Z Z
      

 For deflections, use beams 5 and 6 of Table A-9 

 

2 3
21 2

10ft

3
2 2 2

6 6

4 4

[ ( / 2)]
2

6 2 2 48

450(72)(120) 300(240 )
0.5 120 72 240

6(30)(10 ) (240) 48(30)(10 )

12.60 in   / 2 6.30 in

x

F a l l F ll l
y a l

EIl EI

I I

I I



        
   

    

  

 

 

 Select two 5 in-6.7 lbf/ft channels from Table A-7, I = 2(7.49) = 14.98 in
4
, Z =2(3.00) = 

6.00 in
3
 

  
midspan

max

12.60 1
0.421 in

14.98 2

34.2
5.70 kpsi

6.00

y



     
 

 
 

______________________________________________________________________________ 

 

4-12   4 4(1.5 ) 0.2485 in
64

I


   

 From Table A-9 by superposition of beams 6 and 7, at x = a = 15 in, with b = 24 in and  

 l = 39 in 

   2 2 2 2 3 3[ ] (2
6 24

Fba a
y a b l la a )l

EIl EI
     

w
 

 

      

2 2 2

6

2 3 3

6

340(24)15
15 24 39

6(30)10 (0.2485)39

(150 /12)(15)
2(39)(15 ) 15 39 0.0978 in     .

24(30)10 (0.2485)

Ay

Ans

    

      

 

 

          At x = l /2 = 19.5 in 

Chapter 4 - Rev B, Page 8/81 



   

2 2

2 3[ ( / 2)] ( / 2)
2 2

6 2 2 24 2 2

Fa l l l l l l l
y a l l

EIl EI

                   
         

w
3

l


 


 

          

2 2 2

6

2 3 3

6

340(15)(19.5)
19.5 15 39

6(30)(10 )(0.2485)(39)

(150 /12)(19.5)
2(39)(19.5 ) 19.5 39 0.1027 in .

24(30)(10 )(0.2485)

y

Ans

    

      

 

 

 
0.1027 0.0978

% difference (100) 5.01% .
0.0978

Ans
 

 


 

______________________________________________________________________________ 

 

4-13  3 31
(6)(32 ) 16.384 10  mm

12
I   4  

 

 From Table A-9-10, beam 10 

 
2

( )
3

C

Fa
y l a

EI
    

  2 2

6
AB

Fax
y l x

EIl
   

 2 2( 3
6

ABdy Fa
l x

dx EIl
  )  

 

 At x = 0, AB
A

dy

dx
  

 
2

6 6
A

Fal Fal

EIl EI
    

 
2

6
O A

Fa l
y a

EI
     

 

 With both loads, 
 

 
2 2

( )
6 3

O

Fa l Fa
y l a

EI EI
     

        
2 2

3 3

400(300 )
(3 2 ) 3(500) 2(300) 3.72 mm     .

6 6(207)10 (16.384)10

Fa
l a Ans

EI
         

 At midspan, 

 
   

2 2 2
2

3 3

2 ( / 2) 3 3 400(300)(500 )
1.11 mm     .

6 2 24 24 207 10 16.384 10
E

Fa l l Fal
y l

EIl EI

        
   

Ans  

_____________________________________________________________________________ 

4-14 4 4(2 1.5 ) 0.5369 in
64

I 4
    
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 From Table A-5, E = 10.4 Mpsi 

 From Table A-9, beams 1 and 2, by superposition 

 
     

3 23 2

6 6

200 4(12) 300 2(12)
( 3 ) 2(12) 3(4)(12)

3 6 3(10.4)10 (0.5369) 6(10.4)10 (0.5369)

B A
B

F l F a
y a l

EI EI


        

 1.94 in     .By Ans   

______________________________________________________________________________ 

 

4-15 From Table A-7, I = 2(1.85) = 3.70 in
4
  

 From Table A-5, E = 30.0 Mpsi 

 From Table A-9, beams 1 and 3, by superposition 

  

 
  443 3

6 6

5 2(5 /12) (60 )( ) 150(60 )
0.182 in     .

3 8 3(30)10 (3.70) 8(30)10 (3.70)

c
A

lFl
y Ans

EI EI


       

w w
 

______________________________________________________________________________ 

4-16 4

64
I d


  

 From Table A-5,  3207(10 ) MPaE 
 From Table A-9, beams 5 and 9, with FC = FA = F, by superposition 

 
3

2 2 3 2 21
(4 3 ) 2 (4 3 )

48 24 48

B
B B

B

F l Fa
y a l I F l Fa a l

EI EI Ey
            

     
 

3 2

3

3 4

1
550(1000 ) 2 375 (250) 4(250 ) 3(1000 )

48(207)10 2

53.624 10  mm

I 2     


 

 

 3
4 4

64 64
(53.624)10 32.3 mm .d I A

 
   ns  

______________________________________________________________________________ 

 

4-17 From Table A-9, beams 8 (region BC for this beam with a = 0) and 10 (with a = a), by 

superposition 
 

 
   

   

3 2 2 2 2

3 2 2 2 2

3 2
6 6

1
3 2

6

A
AB

A

M Fax
y x lx l x l x

EIl EIl

.M x lx l x Fax l x An
EIl

    

       s

 

  3 2 2 2( )
3 2 ( ) [( ) (3

6 6

A
BC

x l

Md F x l
y x lx l x x l x l a x l

dx EIl EI

             
)]  

           2( )
( ) [( ) (3 )

6 6

AM l F x l
]x l x l a x l

EI EI


        
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              2( )
( ) (3 )

6
A

x l
.M l F x l a x l Ans

EI

          

______________________________________________________________________________ 

4-18 Note to the instructor: Beams with discontinuous loading are better solved using 

singularity functions. This eliminates matching the slopes and displacements at the 

discontinuity as is done in this solution. 

  1 10 2
2 2

C

a a
.M R l a l a R l a Ans

l
         
 

 w
w  

  
2

2 20 2
2 2

y

a a
F l a R a R

l l
       w w

w .Ans  

      2

1 2 2 .V R  
2 2

AB

a
l a l a x a Ans

l l
       

w w
wx = wx =

 
2

2 .
2

BC

a
V R A

l
   

w
ns  

 
2

2

12
2 2

AB AB

x
M V dx l ax a x C

l

  
      

  


w
 

 2

10 at 0 0 2 .
2

AB ABM x C M al a lx A
l
         

wx
ns  

 
2 2

2
2 2

BC BC

a a
M V dx dx x C

l l
      

w w
 

 
2 2

20 at    ( )      .
2 2

BC BC

a a
M x l C M l x Ans

l
      

w w
 

 

 2 2 2 2

3

2 2 2 3

3

3 2 3 4

3 4

4

1 1 1
2

2 2 2

1 1 1

2 2 3

1 1 1 1

2 3 6 12

0 at 0  0

AB
AB

AB AB

AB

M x
dx al a lx dx alx a x lx C

EI EI l EI l

y dx alx a x lx C dx
EI l

alx a x lx C x C
EI l

y x C





31

3

             
          

          
   

 

 

w w

w

w

 

 
2 2

2

5

2 3
2 4 3 2

3 5 3

1 1 1
( )

2 2 2

 at 

1 1 1 1 1
            (1)

2 2 3 2 2 6

BC
BC

AB BC

M a a
dx l x dx lx x C

EI EI l EI l

x a

a a
ala a la C la a C C C

EI l EI l



 

           
  

                        

 
w w

w w w
5
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2 2
2 2 3

5 5

2 2

6 5

2
2 3 3

5

1 1 1 1 1

2 2 2 2 6

0 at   
6

1 1 1 1
( )

2 2 6 3

BC BC

BC

BC

a a
y dx lx x C dx lx x C x

EI l EI l

a l
y x l C C l

a
y lx x l C x l

EI l


                      

     

          

 
w w

w

w

6C




 

 

 

 

2
3 5 4 2 3 3

3 5

2
2 3

3 5

 at  

1 1 1 1 1 1
( )

2 3 6 12 2 2 6 3

3 4 ( ) (2)
24

AB BCy y x a

a
ala a la C a la a l C a l

l l

a
C a la l C a l

l

  

             
   

   

w w

w

 

 Substituting (1) into (2) yields 
2

2 2

5 4
24

a
C a

l
  

w l . Substituting this back into (2) gives 

  
2

2 2

3 4 4
24

a
C al a

l
  

w
l . Thus, 

  3 2 3 4 3 4 2 24 2 4 4
24

ABy alx a x lx a lx a x a l x
EIl

     
w

 

  22 3 22 (2 ) 2       
24

AB

x
y ax l a lx a l a .Ans

EIl
       

w
 

  2 2 2 3 4 2 2 46 2 4
24

BCy a lx a x a x a l x a l Ans.
EIl

    
w

 

 This result is sufficient for yBC. However, this can be shown to be equivalent to 

 
 3 2 3 4 2 2 3 4

4

4 2 4 4 (
24 24

( )       .
24

BC

BC AB

y alx a x lx a l x a lx a x x a
EIl EI

y y x a Ans
EI

      

  

w w

w

4)
 

 by expanding this or by solving the problem using singularity functions. 

______________________________________________________________________________ 

 

4-19 The beam can be broken up into a uniform load w downward from points A to C and a 

uniform load upward from points A to B. 

 
   

   

2 22 3 2 2 3 2

2 22 2 2 2

2 (2 ) 2 2 (2 ) 2
24 24

2 (2 ) 2 2 (2 ) 2       .
24

AB

x x
y bx l b lx b l b ax l a lx a l

EIl EIl
x

bx l b b l b ax l a a l a Ans
EIl

            

         

w w

w

a  
 

 
 

 

23 4 2

3 2 3 4 2 2 3 4 4

2 (2 ) 2
24

4 2 4 4 ( )

BCy bx l b lx b x l b
EIl

alx a x lx a l x a lx a x l x a Ans

    

        

w

.
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3 2 3 4 2 2 3 4 4

3 2 3 4 2 2 3 4 4

4 4

4 2 4 4 ( )
24

4 2 4 4 ( )
24

( ) ( ) .
24

CD

AB

y blx b x lx b l x b lx b x l x b
EIl

alx a x lx a l x a lx a x l x a
EIl

x b x a y Ans
EI

         

        

      

w

w

w

  

______________________________________________________________________________ 

 

4-20 Note to the instructor: See the note in the solution for Problem 4-18. 

  
2

0 2
2 2

y B B

a a
F R a R l a A

l l
       w w

w .ns  

 For region BC, isolate right-hand element of length (l + a  x) 

  
2

, .
2

AB A BC

a
V R V l a x An

l
      

w
w s  

  
2

2
, .

2 2
AB A BC

a
M R x x M l a x Ans

l
       

w w
 

 
2

2

1
4

AB AB

a
EI M dx x C

l
   

w
  

 
2

3

1 2
12

AB

a
EIy x C x C

l
   

w
 

 yAB = 0 at x = 0        C2 = 0      
2

3

1
12

AB

a
EIy x C x

l
  
w

 

 yAB = 0 at x = l        
2

1
12

a l
C 

w
     

   
2 2 2 2

3 2 2 2 .
12 12 12 12

AB AB

a a l a x a x
EIy x x l x y l x Ans

l l EIl
       
w w w w 2  

  3

3
6

BC BCEI M dx l a x     
w

C  

  4

3 4
24

BCEIy l a x C x C     
w

 

 yBC = 0 at x = l        
4 4

3 4 40
24 24

a a
C l C C C l      

w w

3       (1) 

 AB = BC at x = l          
2 2 3 2

3 3
4 12 6 6

a l a l a
C C l       

w w wa w
a  

 Substitute C3 into Eq. (1) gives     
2

2

4 4
24

a
C a l l a    

w
. Substitute back into yBC 

 

     

    

2 4 2
4

4 2 4

1

24 6 24 6

4 .
24

BC

l
y l a x x l a

EI

l a x a l x l a a Ans
EI

 
         

 

         

w wa wa wa

w

l a
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4-21 Table A-9, beam 7, 

 
1 2

100(10)
500 lbf

2 2

l
R R   

w
  

 
     
   

2 3 3 2 3 3

6

6 2 3

100
2 2(10) 10

24 24 30 10 0.05

2.7778 10 20 1000

AB

x x
y lx x l x x

EI

x x x

       

  

w

 

 Slope:     2 3 36 4
24

AB
AB

d y
lx x l

d x EI
    

w
 

 At x = l,    
3

2 3 36 4
24 24

AB x l

l
l l l l

EI EI



   

w w
 

           
33

3

6

100 10
10 2.7778 10 10

24 24(30)10 (0.05)
BC AB x l

l
y x l x l x x

EI
 


       

w
 

 

 From Prob. 4-20, 

 
       

22 100 4 100 4
80 lbf 2 2(10) 4 480 lbf

2 2(10) 2 2(10)
A B

a a
R R l a

l l
        
w w

  

    
        

22
2 2 2 2 6 2

6

100 4
10 8.8889 10 100

12 12 30 10 0.05
AB

xa x
y l x x x

EIl
     

w x  

 

    

         

   

4 2 4

4 2 4

6

46

4
24

100
10 4 4 4 10 10 4 4

24 30 10 0.05

2.7778 10 14 896 9216

BCy l a x a l x l a a
EI

x x

x x

         

         

      

w

 

 Superposition, 

 500 80 420 lbf 500 480 980 lbf .A BR R A        ns  

        6 2 3 6 22.7778 10 20 1000 8.8889 10 100 .ABy x x x x x Ans       

       43 62.7778 10 10 2.7778 10 14 896 9216 .BCy x x x          Ans  

 The deflection equations can be simplified further. However, they are sufficient for 

plotting.  

 Using a spreadsheet, 

x 0 0.5 1 1.5 2 2.5 3 3.5 

y 0.000000 -0.000939 -0.001845 -0.002690 -0.003449 -0.004102 -0.004632 -0.005027

         

x 4 4.5 5 5.5 6 6.5 7 7.5 

y -0.005280 -0.005387 -0.005347 -0.005167 -0.004853 -0.004421 -0.003885 -0.003268
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x 8 8.5 9 9.5 10 10.5 11 11.5 

y -0.002596 -0.001897 -0.001205 -0.000559 0.000000 0.000439 0.000775 0.001036

         

x 12 12.5 13 13.5 14    

y 0.001244 0.001419 0.001575 0.001722 0.001867    

 
______________________________________________________________________________ 

 

4-22 (a) Useful relations 

     
3

33
4

6

48

1800 36
0.05832 in

48 48(30)10

F EI
k

y l

kl
I

E

 

  

 

 

 From I = bh 3
/12, and b = 10 h, then I = 5 h 4

/6, or, 
 

   

4 4
6 6(0.05832)

0.514 in
5 5

I
h     

 

 h is close to 1/2 in and 9/16 in, while b is close to 5.14 in. Changing the height drastically 

changes the spring rate, so changing the base will make finding a close solution easier. 

Trial and error was applied to find the combination of values from Table A-17 that 

yielded the closet desired spring rate. 

 

h (in) b (in) b/h k (lbf/in)

1/2 5 10 1608 

1/2 5½ 11 1768 

1/2 5¾ 11.5 1849 

9/16 5 8.89 2289 

9/16 4 7.11 1831 
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 h = ½ in, b = 5 ½ in should be selected because it results in a close spring rate and b/h is 

still reasonably close to 10. 

 

 (b)   

 

3 45.5(0.5) /12 0.05729 inI  

 
 

3

33

6

( / 4) 4 4(60)10 (0.05729)
    1528 lbf

36 (0.25)

(1528) 36
0.864 in     .

48 48(30)10 (0.05729)

Mc Fl c I
F

I I l c

Fl
y A

EI

      

   ns
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4-23 From the solutions to Prob. 3-68, 1 260 lbf and 400 lbfT T         

  
4 4

41198 in
(1.25)

0.
64 64

d
I

 
    

 

 From Table A-9, beam 6, 
 

   

 

2 2 2 2 2 21 1 2 2
1 2

10in

2 2 2

6

2 2 2

6

( ) ( )
6 6

( 575)(30)(10)
10 30 40

6(30)10 (0.1198)(40)

460(12)(10)
10 12 40 0.0332 in       .

6(30)10 (0.1198)(40)

A
x

Fb x F b x
z x b l x b l

EIl EIl

Ans



        


  

   

 

 

 

 

 

2 2 2 2 2 21 1 2 2
1 2

10in 10in

2 2 2 2 2 21 1 2 2
1 2

10in

2 2 2

6

( ) ( )
6 6

(3 ) (3 )
6 6

(575)(30)
3 10 30 40

6(30)10 (0.1198)(40)

460(12)

6(30

A y
x x

x

Fb x F b xd z d
x b l x b l

dx dx EIl EIl

Fb F b
x b l x b l

EIl EIl


 



                   

        
 

     


  2 2 2

6

4

3 10 12 40
)10 (0.1198)(40)

6.02(10 ) rad .Ans

   


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4-24 From the solutions to Prob. 3-69, 1 22880 N and 432 NT T   
 

    
4 4

3 4(30)
39.76 10  mm

64 64

d
I

 
    

 

Chapter 4 - Rev B, Page 16/81 



 The load in between the supports supplies an angle to the overhanging end of the beam. 

That angle is found by taking the derivative of the deflection from that load. From Table 

A-9, beams 6 (subscript 1) and 10 (subscript 2), 

 

    2 beam10beam6A BC AC
y a y     (1) 

 

  

     

 

1 1 2 2 2 2 21 1
1 1

2 21 1
1

2 6 3
6 6

6

BC C
2

x lx l

F a l x F ad
x a lx lx x a l

dx EIl EIl

F a
l a

EIl




                  

 

 

 Equation (1) is thus 
 
 

 

 

    

2
2 21 1 2 2

1 2 2

2
2 2

3 3 3 3

( )
6 3

3312(230) 2070(300 )
510 230 300 510 300

6(207)10 (39.76)10 (510) 3(207)10 (39.76)10

7.99 mm .

A

F a F a
y l a a l a

EIl EI

Ans

   


  

 

  

 

 The slope at A, relative to the z axis is 

 

 

 

 

 

2

2

2 2 21 1 2
1 2

2 2 21 1 2
1 2 2

2 2 21 1 2
1 2 2

2

3 3

( )
( ) ( ) (3 )

6 6

3( ) 3 ( ) (3 )
6 6

( ) 3 2
6 6

3312(230)
510 2

6(207)10 (39.76)10 (510)

A z
x l a

x l a

F a F x ld
l a x l a x l

EIl dx EI

F a F
l a x l a x l a x l

EIl EI
F a F

l a a la
EIl EI


 

 

              

         

   


  2

2

3 3

30

2070
3(300 ) 2(510)(300)

6(207)10 (39.76)10

0.0304 rad .Ans

   

 
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4-25 From the solutions to Prob. 3-70, 1 2392.16 lbf and 58.82 lbfT T   

 

    
4 4

4(1)
0.049 09 in

64 64

d
I

 
    

 From Table A-9, beam 6, 
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    2 2 2 2 2 21 1
1 6

8in

( 350)(14)(8)
8 14 22 0.0452 in   .

6 6(30)10 (0.049 09)(22)
A

x

Fb x
y x b l Ans

EIl 

         
 

 

 

 2 2 2 2 2 22 2
2 6

8in

( 450.98)(6)(8)
( ) 8 6 22 0.0428 in   .

6 6(30)10 (0.049 09)(22)
A

x

F b x
z x b l

EIl 

         
Ans

 

  The displacement magnitude is 

 
2 2 2 20.0452 0.0428 0.0622 in .A Ay z Ans       

 

 

   

 
11

2 2 2 2 2 21 1 1 1
1 1

2 2 2

6

(3 )
6 6

( 350)(14)
3 8 14 22 0.00242 rad .

6(30)10 (0.04909)(22)

A z
x ax a

Fb x Fbd y d
1x b l a b l

d x dx EIl EIl

Ans




                

      



 

 

  

   

 
11

2 2 2 2 2 22 2 2 2
2 1

2 2 2

6

( ) 3
6 6

(450.98)(6)
3 8 6 22 0.00356 rad .

6(30)10 (0.04909)(22)

A y
x ax a

F b x F bd z d
2x b l a b l

d x dx EIl EIl

Ans




                    

      
 

 The slope magnitude is  220.00242 0.00356 0.00430 rad .A Ans      
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4-26 From the solutions to Prob. 3-71, 1 2250 N and 37.5 NT T   

    
4 4

4(20)
7 854 mm

64 64

d
I

 
    

 

 

   
o

1 1 2 2 2 2 2 2

1 3

300mm

345sin 45 (550)(300)
( ) 300 550 850

6 6(207)10 (7 854)(850)

1.60 mm    .

y
A

x

F b x
y x b l

EIl

Ans


 
      
 


2 2 2 2 2 21 1 2 2

1 2

300mm

( ) ( )
6 6

z
A

x

F b x F b x
z x b l x b l

EIl EIl 

        
 

 

   

 

o

2 2 2

3

2 2 2

3

345cos 45 (550)(300)
300 550 850

6(207)10 (7 854)(850)

287.5(150)(300)
300 150 850 0.650 mm       .

6(207)10 (7 854)(850)
Ans

  


    

 

 The displacement magnitude is  22 2 21.60 0.650 1.73 mm .A Ay z Ans        
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   

   

1 1

1 1 1 12 2 2 2 2 2

1 1

o

2 2 2

3

(3 )
6 6

345sin 45 (550)
3 300 550 850 0.00243 rad .

6(207)10 (7 854)(850)

y y
A z

x a x a

F b x F bd y d
x b l a b l

d x dx EIl EIl

Ans


 

               
     


     

1

 

 

     

   
   

11

2 2 2 2 2 21 1 2 2
1 2

2 2 2 2 2 21 1 2 2
1 1 1 2

o

2 2 2

3

3

6 6

3 3
6 6

345cos 45 (550)
3 300 550 850

6(207)10 (7 854)(850)

287.5(150)

6(207)10 (7 85

z
A y

x ax a

z

F b x F b xd z d
x b l x b l

d x dx EIl EIl

F b F b
a b l a b l

EIl EIl




                   

      

     


  2 2 2 43 300 150 850 1.91 10 rad .

4)(850)
Ans     

 

 The slope magnitude is 2 20.00243 0.000191 0.00244 rad .A Ans     
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4-27 From the solutions to Prob. 3-72, 750 lbfBF   

   
4 4

4(1.25)
0.1198 in

64 64

d
I

 
    

 

 From Table A-9, beams 6 (subscript 1) and 10 (subscript 2) 

 

  

   

       

1 1 2 22 2 2 2 2

1

16in

o o

2 2 2 2 2

6 6

6 6

300cos 20 (14)(16) 750sin 20 (9)(16)
16 14 30 30 16

6(30)10 (0.119 8)(30) 6(30)10 (0.119 8)(30)

0.0805 in .

y y
A

x

F b x F a x
y x b l l x

EIl EIl

Ans



 
     
 


   



  

 

  

   

       

2 2 2 2 21 1 2 2
1

16in

o o

2 2 2 2 2

6 6

6 6

300sin 20 (14)(16) 750cos 20 (9)(16)
16 14 30 30 16

6(30)10 (0.119 8)(30) 6(30)10 (0.119 8)(30)

0.1169 in .

z z
A

x

F b x F a x
z x b l l x

EIl EIl

Ans



       


   

 

  

 The displacement magnitude is  22 2 20.0805 0.1169 0.142 in .A Ay z Ans        

 

Chapter 4 - Rev B, Page 19/81 



  

     

   
   

 

1 1

1 1 2 22 2 2 2 2

1

1 1 2 22 2 2 2 2

1 1 1

o

2 2 2

6

o

6

6 6

3 3
6 6

300cos 20 (14)
3 16 14 30

6(30)10 (0.119 8)(30)

750sin 20 (9)
3

6(30)10 (0.119 8)(30)

y y
A z

x a x a

y y

F b x F a xd y d
x b l l x

d x dx EIl EIl

F b F a
a b l l a

EIl EIl


 

              
     

    


    

    2 2 50 3 16 8.06 10 rad .Ans   

 

 

     

   
     

11

2 2 2 2 21 1 2 2
1

2 2 2 2 21 1 2 2
1 1 1

o o

2 2 2

6 6

6 6

3 3
6 6

300sin 20 (14) 750cos 20 (9)
3 16 14 30 3

6(30)10 (0.119 8)(30) 6(30)10 (0.119 8)(30)

z z
A y

x ax a

z z

F b x F a xd z d
x b l l x

d x dx EIl EIl

F b F a
a b l l a

EIl EIl




                  

     


        2 20 3 16

0.00115 rad .Ans

  

  

 

The slope magnitude is   2
5 28.06 10 0.00115 0.00115 rad .A Ans       

______________________________________________________________________________ 

 

4-28 From the solutions to Prob. 3-73, FB = 22.8 (10
3
) N 

    
   

44
3 4

50
306.8 10  mm

64 64

d
I


    

 From Table A-9, beam 6, 

 

   

   

1 1 2 22 2 2 2 2 2

1 2

400mm

3 o

2 2 2

3 3

3 o

2 2

3 3

( ) ( )
6 6

11 10 sin 20 (650)(400)
400 650 1050

6(207)10 (306.8)10 (1050)

22.8 10 sin 25 (300)(400)
400 300 1050

6(207)10 (306.8)10 (1050)

3.735

y y
A

x

F b x F b x
y x b l x b l

EIl EIl


 
      
 

   

   

   mm       .

2





Ans
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   

   

2 2 2 2 2 21 1 2 2
1 2

400mm

3 o

2 2 2

3 3

3 o

2 2 2

3 3

( ) ( )
6 6

11 10 cos 20 (650)(400)
400 650 1050

6(207)10 (306.8)10 (1050)

22.8 10 cos 25 (300)(400)
400 300 1050 1.791

6(207)10 (306.8)10 (1050)

z z
A

x

F b x F b x
z x b l x b l

EIl EIl 

        

    

       mm       .Ans
 

The displacement magnitude is  22 2 23.735 1.791 4.14 mm .A Ay z Ans        

 

     

   
   

 

11

2 2 2 2 2 21 1 2 2
1 2

1 1 2 22 2 2 2 2 2

1 1 1 2

3 o

2 2 2

3 3

3 o

6 6

3 3
6 6

 11 10 sin 20 (650)
3 400 650 1050

6(207)10 (306.8)10 (1050)

22.8 10 sin 25

z z
A z

x ax a

y y

F b x F b xd y d
x b l x b l

d x dx EIl EIl

F b F b
a b l a b l

EIl EIl




                 

     

       

  2 2 2

3 3

(300)
3 400 300 1050

6(207)10 (306.8)10 (1050)

0.00507 rad .Ans

      

   

 

     

   
   

 

11

2 2 2 2 2 21 1 2 2
1 2

2 2 2 2 2 21 1 2 2
1 1 1 2

3 o

2 2 2

3 3

3

6 6

3 3
6 6

11 10 cos 20 (650)
3 400 650 1050

6(207)10 (306.8)10 (1050)

22.8 10 co

z z
A y

x ax a

z z

F b x F b xd z d
x b l x b l

d x dx EIl EIl

F b F b
a b l a b l

EIl EIl




                   

      

        


  

o

2 2 2

3 3

s 25 (300)
3 400 300 1050

6(207)10 (306.8)10 (1050)

0.00489 rad .Ans

      

 

 

 

The slope magnitude is    2 2
0.00507 0.00489 0.00704 rad .A Ans       

______________________________________________________________________________ 

 

4-29 From the solutions to Prob. 3-68, T1 = 60 lbf and T2 = 400 lbf , and Prob. 4-23, I = 0.119 8 

in
4
. From Table A-9, beam 6, 
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     

     

 

2 2 2 2 2 21 1 2 2
1 2

00

2 2 2 2 2 21 1 2 2
1 2 6

2 2

6

6 6

575(30)
30 40

6 6 6(30)10 (0.119 8)(40)

460(12)
12 40 0.00468 rad      

6(30)10 (0.119 8)(40)

z z
O y

xx

z z

F b x F b xd z d
x b l x b l

d x dx EIl EIl

F b F b
b l b l

EIl EIl




                   


       

     .Ans

 

 

         

   

   
 

1 1 2 22 2 2 2

1 2

2 2 2 2 2 21 1 2 2
1 2

2 2 2 21 1 2 2
1 2

2 2

2 2
6 6

6 2 3 6 2 3
6 6

6 6

575(10) 40 10

6(3

z z
C y

x l x l

z z

x l

z z

F a l x F a l xd z d
x a lx x a lx

d x dx EIl EIl

F a F a
lx l x a lx l x a

EIl EIl

F a F a
l a l a

EIl EIl


 



                  
     

           

    

 
 

 2 2

6 6

460(28) 40 28
0.00219 rad       .

0)10 (0.119 8)(40) 6(30)10 (0.119 8)(40)
Ans


  

 

______________________________________________________________________________ 

 
4-30 From the solutions to Prob. 3-69, T1 = 2 880 N and T2 = 432 N, and Prob. 4-24, I = 39.76 

(10
3
) mm

4
. From Table A-9, beams 6 and 10 

 

 

 

2 2 2 2 21 1 2 2
1

00

2 2 2 2 2 2 21 1 2 2 1 1 2 2
1 1

0

2 2

3 3

( ) ( )
6 6

(3 ) ( 3 ) ( )
6 6 6

3 312(280) 2 070(300)
280 510

6(207)10 (39.76)10 (510)

O z
xx

x

Fb x F a xd y d
x b l l x

d x dx EIl EIl

Fb F a Fb F a l
x b l l x b l

EIl EIl EIl EI






                

          


  

6

3 3

(510)

6(207)10 (39.76)10

0.0131 rad        .Ans

 

 

  2 2 2 21 1 2 2
1

2 2 2 2 2 2 21 1 2 2 1 1 2 2
1 1

2

3 3

( )
( 2 ) ( )

6 6

(6 2 3 ) ( 3 ) ( )
6 6 6

3 312(230)
(510 230

6(207)10 (39.76)10 (510)

C z
x lx l

x l

F a l x F a xd y d
x a lx l x

d x dx EIl EIl

3

F a F a F a
lx l x a l x l a

F a l

EIl EIl EIl EI






                 

           


  2

3 3

2 070(300)(510)
)

3(207)10 (39.76)10

0.0191 rad        .Ans



   
______________________________________________________________________________ 

 

4-31 From the solutions to Prob. 3-70, T1 = 392.19 lbf and  T2 = 58.82 lbf , and Prob. 4-25, I = 

0.0490 9 in
4
. From Table A-9, beam 6 
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   

 

1 1 1 12 2 2 2 2

1 1

0 0

2 2

6

( )
6 6

350(14)
14 22 0.00726 rad       .

6(30)10 (0.04909)(22)

y y
O z

x x

F b x F bd y d
x b l b l

d x dx EIl EIl

Ans


 

             
     


  


 

 

  

     

 

2 2 2 2 22 2 2 2
2 2

00

2 2

6

6 6

450.98(6)
6 22

6(30)10 (0.04909)(22)

0.00624 rad       .

z z
O y

xx

F b x F bd z d
x b l b l

d x dx EIl EIl

Ans




                   


  

   

 

The slope magnitude is  220.00726 0.00624 0.00957 rad .O Ans      

  

   

 

 

1 1 2 2

1

1 1 1 12 2 2 2 2

1 1

2 2

6

( )
2

6

6 2 3 ( )
6 6

350(8)
22 8 0.00605 rad       .

6(30)10 (0.0491)(22)

y
C z

x l x l

y y

x l

F a l xd y d
x a lx

d x dx EIl

F a F a
lx l x a l a

EIl EIl

Ans


 



             
     

 
      
 


   

 

 

 

  

   

   

 

2 22 2
2

2 2 2 2 22 2 2 2
2 2

2 2

6

( )
2

6

6 2 3
6 6

450.98(16)
22 16 0.00846 rad       .

6(30)10 (0.04909)(22)

z
C y

x lx l

z z

x l

F a l xd z d
x a lx

d x dx EIl

F a F a
lx l x a l a

EIl EIl

Ans






                 

          


   
 

 

The slope magnitude is  2 20.00605 0.00846 0.0104 rad .C Ans      

______________________________________________________________________________ 

 

4-32 From the solutions to Prob. 3-71, T1 =250 N and T1 =37.5 N, and Prob. 4-26, I = 7 854 

mm
4
. From Table A-9, beam 6 

 

 
 

 

   

 

1 1 1 12 2 2 2 2

1 1

0 0

o

2 2

3

( )
6 6

345sin 45 (550)
550 850 0.00680 rad       .

6(207)10 (7 854)(850)

y y
O z

x x

F b x F bd y d
x b l b l

d x dx EIl EIl

Ans


 

             
     

    


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     

     

 

2 2 2 2 2 21 1 2 2
1 2

00

o

2 2 2 2 2 21 1 2 2
1 2 3

2 2

3

6 6

345cos 45 (550)
550 850

6 6 6(207)10 (7 854)(850)

287.5(150)
150 850

6(207)10 (7 854)(850)

z z
O y

xx

z z

F b x F b xd z d
x b l x b l

d x dx EIl EIl

F b F b
b l b l

EIl EIl




                   

         


  0.00316 rad       .Ans

  

 

The slope magnitude is 2 20.00680 0.00316 0.00750 rad .O Ans     

 

     

 

1 1 1 12 2 2 2 2

1 1

o

1 1 2 2 2 2

1 3

( )
2 6 2 3

6 6

345sin 45 (300)
( ) 850 300 0.00558 rad       .

6 6(207)10 (7 854)(850)

y y
C z

x l x lx l

y

F a l x F ad y d
x a lx lx l x a

d x dx EIl EIl

F a
l a Ans

EIl


 

                   
      

       





 

 

     

     

2 2 2 21 1 2 2
1 2

o

2 2 2 2 2 21 1 2 2
1 2 3

3

( ) ( )
2 2

6 6

345cos 45 (300)
850 300

6 6 6(207)10 (7 854)(850)

287.5(700)

6(207)10 (7 854)(850

z z
C y

x lx l

z z

F a l x F a l xd z d
x a lx x a lx

d x dx EIl EIl

F a F a
l a l a

EIl EIl




                    

         






   2 2 5850 700 6.04 10 rad       .
)

Ans 
  

 

The slope magnitude is     22 50.00558 6.04 10 0.00558 rad .C Ans        

________________________________________________________________________ 

 

4-33 From the solutions to Prob. 3-72, FB = 750 lbf, and Prob. 4-27, I = 0.119 8 in
4
. From 

Table A-9, beams 6 and 10 

 

     

     

 

1 1 2 22 2 2 2 2

1

0 0

1 1 2 2 1 1 2 22 2 2 2 2 2 2

1 1

0

o

2 2

6

6 6

3 3
6 6 6 6

300cos 20 (14) 750sin 2
14 30

6(30)10 (0.119 8)(30)

y y
O z

x x

y y y y

x

F b x F a xd y d
x b l l x

d x dx EIl EIl

F b F a F b F a l
x b l l x b l

EIl EIl EIl EI


 



              
     

 
        
 

    
o

6

0 (9)(30)
0.00751 rad        .

6(30)10 (0.119 8)
Ans

   
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     

     

 

2 2 2 2 21 1 2 2
1

00

2 2 2 2 2 2 21 1 2 2 1 1 2 2
1 1

0

o

2 2

6

6 6

3 3
6 6 6 6

300sin 20 (14) 750cos
14 30

6(30)10 (0.119 8)(30)

z z
O y

xx

z z z z

x

F b x F a xd z d
x b l l x

d x dx EIl EIl

F b F a F b F a l
x b l l x b l

EIl EIl EIl EI






                  

            

      
o

6

20 (9)(30)
0.0104 rad        .

6(30)10 (0.119 8)
Ans

   

 

The slope magnitude is 2 20.00751 0.0104 0.0128 rad .O Ans     

 
 

     

   

1 1 2 22 2 2 2

1

1 1 2 2 1 1 2 22 2 2 2 2 2 2

1 1

o

2

6

( )
2

6 6

6 2 3 3 ( )
6 6 6

300cos 20 (16)
30

6(30)10 (0.119 8)(30)

y y
C z

x l x l

y y y

x l

F a l x F a xdy d
x a lx l x

dx dx EIl EIl

F a F a F a F a l
lx l x a l x l a

EIl EIl EIl EI


 



               
     

 
         
 

    

3

y

o

2

6

750sin 20 (9)(30)
16 0.0109 rad        .

3(30)10 (0.119 8)
Ans

     

 

 

 

     

     

2 2 2 21 1 2 2
1

2 2 2 2 2 2 21 1 2 2 1 1 2 2
1 1

o

2

6

( )
2

6 6

6 2 3 3
6 6 6

300sin 20 (16)
30 1

6(30)10 (0.119 8)(30)

z z
C y

x lx l

z z z

x l

F a l x F a xd z d
x a lx l x

d x dx EIl EIl

F a F a F a F a l
lx l x a l x l a

EIl EIl EIl EI






                   

             

     

3

z

o

2

6

750cos 20 (9)(30)
6 0.0193 rad        .

3(30)10 (0.119 8)
Ans

    
 

 

The slope magnitude is    2 2
0.0109 0.0193 0.0222 rad .C Ans       

______________________________________________________________________________ 

 

4-34 From the solutions to Prob. 3-73, FB = 22.8 kN, and Prob. 4-28, I = 306.8 (10
3
) mm

4
. 

From Table A-9, beam 6  

 

 

     

       

 

1 1 2 22 2 2 2 2 2

1 2

0 0

3 o

1 1 2 22 2 2 2 2 2

1 2 3 3

3 o

3

6 6

11 10 sin 20 (650)
650 1050

6 6 6(207)10 (306.8)10 (1050)

22.8 10 sin 25 (300)

6(207)10 (

y y
O z

x x

y y

F b x F b xd y d
x b l x b l

d x dx EIl EIl

F b F b
b l b l

EIl EIl


 

               
     

       

    2 2

3
300 1050 0.0115 rad       .

306.8)10 (1050)
Ans  
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     

   
   

 

2 2 2 2 2 21 1 2 2
1 2

00

2 2 2 21 1 2 2
1 2

3 o

2 2

3 3

3 o

3

6 6

6 6

11 10 cos 20 (650)
650 1050

6(207)10 (306.8)10 (1050)

22.8 10 cos 25 (300)

6(207)10

z z
O y

xx

z z

F b x F b xd z d
x b l x b l

d x dx EIl EIl

F b F b
b l b l

EIl EIl




                   

    

    

    2 2

3
300 1050 0.00427 rad       .

(306.8)10 (1050)
Ans    

 

The slope magnitude is    2 2
0.0115 0.00427 0.0123 rad .O Ans       

 

     

 

     

1 1 2 22 2 2 2

1 2

1 1 2 22 2 2 2 2 2

1 2

3 o

1 1 2 22 2 2 2

1 2

( ) ( )
2 2

6 6

(6 2 3 ) 6 2 3
6 6

11 10 sin 20 (4

6 6

y y
C z

x l x l

y y

x l

y y

F a l x F a l xd y d
x a lx x a lx

d x dx EIl EIl

F a F a
lx l x a lx l x a

EIl EIl

F a F a
l a l a

EIl EIl


 



                
     

 
        
 

      



 

   

2 2

3 3

3 o

2 2

3 3

00)
1050 400

6(207)10 (306.8)10 (1050)

22.8 10 sin 25 (750)
1050 750 0.0133 rad       .

6(207)10 (306.8)10 (1050)
Ans



    
 

 

     

   

     

2 2 2 21 1 2 2
1 2

2 2 2 2 2 21 1 2 2
1 2

3 o

2 2 2 21 1 2 2
1 2

( ) ( )
2 2

6 6

6 2 3 6 2 3
6 6

11 10 cos 20 (40

6 6

z z
C y

x lx l

z z

x l

z z

F a l x F a l xd z d
x a lx x a lx

d x dx EIl EIl

F a F a
lx l x a lx l x a

EIl EIl

F a F a
l a l a

EIl EIl






                    

           

        



 

   

2 2

3 3

3 o

2 2

3 3

0)
1050 400

6(207)10 (306.8)10 (1050)

22.8 10 cos 25 (750)
1050 750 0.0112 rad       .

6(207)10 (306.8)10 (1050)
Ans



    
 

The slope magnitude is 2 20.0133 0.0112 0.0174 rad .C Ans   

 

 

______________________________________________________________________________ 

 

4-35 The required new slope in radians is  new = 0.06( /180) = 0.00105 rad.  

  In Prob. 4-29, I = 0.119 8 in
4
, and it was found that the greater angle occurs at the bearing 

at O where (O)y =  0.00468 rad.  

 

 Since  is inversely proportional to I,  
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     new I new =  old I old         I new =  /64 =  4

newd  old I old / new 

 

 or,   

1/4

old
new old

new

64
d I


 

 
   
 

 

 

 The absolute sign is used as the old slope may be negative. 

 

    

1/4

new

64 0.00468
0.119 8 1.82 in .

0.00105
d A


  

  
 

ns  

______________________________________________________________________________ 

 

4-36 The required new slope in radians is  new = 0.06( /180) = 0.00105 rad. 

 In Prob. 4-30, I = 39.76 (10
3
) mm

4
, and it was found that the greater angle occurs at the 

bearing at C where (C)y =  0.0191 rad. 

 

 See the solution to Prob. 4-35 for the development of the equation 

 

     

1/4

old
new old

new

64
d I


 

 
   
 

 

 

      
1/4

3

new

64 0.0191
39.76 10 62.0 mm .

0.00105
d A


  

  
 

ns  

______________________________________________________________________________ 

 

4-37 The required new slope in radians is  new = 0.06( /180) = 0.00105 rad. 

 In Prob. 4-31, I = 0.0491 in
4
, and the maximum slope is C = 0.0104 rad. 

 

 See the solution to Prob. 4-35 for the development of the equation 

     

1/4

old
new old

new

64
d I


 

 
   
 

 

 

     

1/4

new

64 0.0104
0.0491 1.77 in .

0.00105
d A


 

  
 

ns  

______________________________________________________________________________ 

 

4-38 The required new slope in radians is  new = 0.06( /180) = 0.00105 rad. 

 In Prob. 4-32, I = 7 854 mm
4
, and the maximum slope is O = 0.00750 rad. 

 

 See the solution to Prob. 4-35 for the development of the equation 
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1/4

old
new old

new

64
d I


 

 
   
 

 

 

     

1/4

new

64 0.00750
7 854 32.7 mm .

0.00105
d A


 

  
 

ns  

______________________________________________________________________________ 

 

4-39 The required new slope in radians is  new = 0.06( /180) = 0.00105 rad. 

 In Prob. 4-33, I = 0.119 8 in
4
, and the maximum slope  = 0.0222 rad. 

 

 See the solution to Prob. 4-35 for the development of the equation 

 

     

1/4

old
new old

new

64
d I


 

 
   
 

 

 

     

1/4

new

64 0.0222
0.119 8 2.68 in .

0.00105
d A


 

  
 

ns  

______________________________________________________________________________ 

 

4-40 The required new slope in radians is  new = 0.06( /180) = 0.00105 rad. 

 In Prob. 4-34, I = 306.8 (10
3
) mm

4
, and the maximum slope is C = 0.0174 rad. 

  

 See the solution to Prob. 4-35 for the development of the equation 

 

     

1/4

old
new old

new

64
d I


 

 
   
 

 

 

      
1/4

3

new

64 0.0174
306.8 10 100.9 mm .

0.00105
d A


 

  
 

ns  

______________________________________________________________________________ 

 

4-41 IAB =  1
4
/64 = 0.04909 in

4
, JAB = 2 IAB = 0.09818 in

4
, IBC = (0.25)(1.5)

3
/12 = 0.07031 in

4
,  

ICD =  (3/4)
4
/64 = 0.01553 in

4
. For Eq. (3-41), p. 102, b/c = 1.5/0.25 = 6     = 0.299. 

 

 The deflection can be broken down into several parts 

 

 1. The vertical deflection of B due to force and moment acting on B (y1). 

 2. The vertical deflection due to the slope at B, B1, due to the force and moment acting on 

 B (y2 = CDB1 = 2B1). 
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 3. The vertical deflection due to the rotation at B, B2, due to the torsion acting at B (y3 = 

 BCB1 = 5B1). 

 4. The vertical deflection of C due to the force acting on C (y4). 

 5. The rotation at C, C, due to the torsion acting at C (y3 = CDC = 2C). 

 6. The vertical deflection of D due to the force acting on D (y5). 

 

 1. From Table A-9, beams 1 and 4 with F =  200 lbf and MB =  2(200) = 400 lbfin 

   
 

   
 

   

3 2

1 6 6

200 6 400 6
0.01467 in

3 30 10 0.04909 2 30 10 0.04909
y


     

 2. From Table A-9, beams 1 and 4 

 

   

          

22

1

6

3 3 6
6 2 6

6
2 200 6 2 400 0.004074 rad

2 2 30 10 0.04909

B B
B

x lx l

B

M x M xd Fx Fx
x l x l

dx EI EI EI EI

l
Fl M

EI




                  

             

 

 

   y 2 = 2(0.004072) = 0.00815 in 

 

 3. The torsion at B is TB = 5(200) = 1000 lbfin. From Eq. (4-5) 

 

   
 

 2 6

1000 6
0.005314 rad

0.09818 11.5 10
B

AB

TL

JG
     

 
 

 

   y 3 = 5(0.005314) = 0.02657 in 

 

 4. For bending of BC, from Table A-9, beam 1 

 

   
 

   

3

4 6

200 5
0.00395 in

3 30 10 0.07031
y


    

 

 5. For twist of BC, from Eq. (3-41), p. 102, with T = 2(200) = 400 lbfin 

 

   
 

   3 6

400 5
0.02482 rad

0.299 1.5 0.25 11.5 10
C    

 

   y 5 = 2(0.02482) = 0.04964 in 

 

 6. For bending of CD, from Table A-9, beam 1 

 

   
 

   

3

6 6

200 2
0.00114 in

3 30 10 0.01553
y


    
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 Summing the deflections results in 

 

  
6

1

0.01467 0.00815 0.02657 0.00395 0.04964 0.00114 0.1041 in .D i
i

y y A


        ns

 

 This problem is solved more easily using Castigliano’s theorem. See Prob. 4-71. 

______________________________________________________________________________ 

 

4-42 The deflection of D in the x direction due to Fz is from: 

 1. The deflection due to the slope at B, B1, due to the force and moment acting on B (x1 = 

 BCB1 = 5B1). 

 2. The deflection due to the moment acting on C (x2). 

   

 1. For AB, IAB =  1
4
/64 = 0.04909 in

4
. From Table A-9, beams 1 and 4 

  

 

   

          

22

1

6

3 3 6
6 2 6

6
2 100 6 2 200 0.002037 rad

2 2 30 10 0.04909

B B
B

x lx l

B

M x M xd Fx Fx
x l x l

dx EI EI EI EI

l
Fl M

EI




                  

              

 

 

   x 1 = 5( 0.002037) =  0.01019 in 

 

 2. For BC, IBC = (1.5)(0.25)
3
/12 = 0.001953 in

4
. From Table A-9, beam 4 

 

    
 

   
2

2 6

2 100 5
0.04267 in

2 2 30 10 0.001953

CM l
x

EI


     

 

 The deflection of D in the x direction due to Fx is from: 

 

 3. The elongation of AB due to the tension. For AB, the area is A =  1
2
/4 = 0.7854 in

2
 

 

   
 

   5

3 6

150 6
3.82 10 in

0.7854 30 10AB

Fl
x

AE
     

 
 

 

 4. The deflection due to the slope at B, B2, due to the moment acting on B (x1 = BCB2 = 

 5B2). With IAB = 0.04907 in
4
, 

 

   
 

 2 6

5 150 6
0.003056 rad

30 10 0.04909

B
B

M l

EI



     
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   x4 = 5( 0.003056) =  0.01528 in 

 

 5. The deflection at C due to the bending force acting on C. With IBC = 0.001953 in
4
 

 

    
 

   

33

5 6

150 5
0.10667 in

3 3 30 10 0.001953
BC

Fl
x

EI

 
      
 

 

 

 6. The elongation of CD due to the tension. For CD, the area is A =  (0.75
2
)/4 = 0.4418 

in
2
 

 

    
 

   5

6 6

150 2
2.26 10 in

0.4418 30 10CD

Fl
x

AE
     

 
 

 

 Summing the deflections results in 

   
 

 

6
5

1

5

0.01019 0.04267 3.82 10

0.01528 0.10667 2.26 10 0.1749 in .

D i
i

x x

Ans







    

    


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4-43 JOA = JBC =  (1.5
4
)/32 = 0.4970 in

4
, JAB =  (1

4
)/32 = 0.09817 in

4
, IAB =  (1

4
)/64 = 

 0.04909 in
4
, and ICD =  (0.75

4
)/64 = 0.01553 in

4
. 

  

6

250(12) 2 9 2
0.0260 rad        .

11.5(10 ) 0.4970 0.09817 0.4970

OA BCAB

OA AB BC OA AB BC

l llTl Tl Tl T

GJ GJ GJ G J J J

Ans


                 

       
     
 

 

 Simplified 

    6

250(12)(13)

11.5 10 0.09817

0.0345 rad        .

s

s

Tl

GJ

Ans





 



 

  Simplified is 0.0345/0.0260 = 1.33 times greater   Ans. 
 

     
 

 
 

3 33 3

6 6

250 13 250 12
0.0345(12)

3 3 3(30)10 0.04909 3(30)10 0.01553

0.847 in        .

y OC y CD
D s CD

AB CD

D

F l F l
y l

EI EI

y Ans

     



 

______________________________________________________________________________ 

 

4-44 Reverse the deflection equation of beam 7 of Table A-9. Using units in lbf, inches 
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   

        
   

32 3 3 2 3

6

10 6 2 3

3000 /12
2 2 25 25 12

24 24 30 10 485

7.159 10 27 10 600 .

xx
y lx x l x x

EI

x x x Ans

          

    

w

 

 

 The maximum height occurs at x = 25(12)/2 = 150 in 

 

         10 6 2 3

max 7.159 10 150 27 10 600 150 150 1.812 in .y Ans        

______________________________________________________________________________ 

 

4-45 From Table A-9-6, 

     2 2 2

6
L

Fbx
y x b l

EIl
    

 

     3 2 2

6
L

Fb
y x b x l x

EIl
    

 

     2 2 23
6

Ldy Fb
x b l

dx EIl
    

 

    
 2 2

0 6

L

x

Fb b ldy

dx EIl


  

 

  Let 
0




 L

x

dy

dx
and set

4

64


 Ld

I . Thus, 

 

    
  1/4

2 232
    .

3
L

Fb b l
d A

El 


 ns  

 

 For the other end view, observe beam 6 of Table A-9 from the back of the page, noting 

that a and b interchange as do x and –x 
 

    
  1/4

2 232
    .

3
R

Fa l a
d A

El 


 ns  

 

 For a uniform diameter shaft the necessary diameter is the larger of    and .L Rd d

______________________________________________________________________________ 

 

4-46 The maximum slope will occur at the left bearing. Incorporating a design factor into the 

solution for of Prob. 4-45, Ld
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 

 

1/4
2 2

2 2

4
3

32

3

32(1.28)(3000)(200) 300 200

3 (207)10 (300)(0.001)

38.1 mm     .

nFb l b
d

El

d

d Ans

 



 
 
  






 

 

    
   

4

3 4
38.1

103.4 10 mm
64

I


   

 From Table A-9, beam 6, the maximum deflection will occur in BC where dyBC /dx = 0 

 

   
    2 2 2 2 22 0 3 6 2

6

Fa l xd
x a lx x lx a l

dx EIl

 
        

 
 0  

 

      2 2 2 23 6 300 100 2 300 0 600 63333 0x x x x           

   21
600 600 4(1)63 333 463.3, 136.7 mm

2
x      

 

 

   x = 136.7 mm is acceptable. 

  

 

   

   
       

2 2

max

136.7mm

3

2 2

3 3

2
6

3 10 100 300 136.7
136.7 100 2 300 136.7 0.0678 mm .

6 207 10 103.4 10 300

x

Fa l x
y x a lx

EIl

Ans



 
   
 


      

 

______________________________________________________________________________ 

 

4-47 I =  (1.25
4
)/64 = 0.1198 in

4
. From Table A-9, beam 6 

 

     

   

2 2

2 2 2 2 21 1 2 2
1 2

2

2 2

6

1/2
2

2 2 2

6

( )
( 2 ) (

6 6

150(5)(20 8)
8 5 2(20)(8)

6(30)10 0.1198 (20)

250(10)(8)
8 10 20

6(30)10 0.1198 (20)

0.0120 in       .

F a l x F b x
x a lx x b l

EIl EIl

Ans

           

    
 

 

)
 

   
 






 

______________________________________________________________________________ 
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4-48 I =  (1.25
4
)/64 = 0.1198 in

4
. For both forces use beam 6 of Table A-9. 

 For F1 = 150 lbf: 

  0  x  5 

  
       

 

   

2 2 2 2 2 21 1
1 6

6 2

150 15
15 20

6 6 30 10 0.1198 20

5.217 10 175 (1)

xFb x
y x b l x

EIl

x x

     

 

 

  5  x  20 

 
   

    
      

   

1 1 2 2 2 2

1 6

6 2

150 5 20
2 5 2 20

6 6 30 10 0.1198 20

1.739 10 20 40 25 (2)

F a l x x
x a lx x x

EIl

x x x

 
      y  

   

 

 For F2 = 250 lbf: 

  0  x  10 

  
       

 

   

2 2 2 2 2 22 2
2 6

6 2

250 10
10 20

6 6 30 10 0.1198 20

5.797 10 300 (3)

xF b x
z x b l x

EIl

x x

     

 

 

  10  x  20 

 
   

    
      

   

2 2 2 2 2 2

2 6

6 2

250 10 20
2 10 2 20

6 6 30 10 0.1198 20

5.797 10 20 40 100 (4)

F a l x x
z x a lx x x

EIl

x x x

 
       

   

 

 Plot Eqs. (1) to (4) for each 0.1 in using a spreadsheet. There are 201 data points, too 

numerous to tabulate here but the plot is shown below, where the maximum deflection of 

 = 0.01255 in occurs at x = 9.9 in.    Ans. 
 

  
______________________________________________________________________________ 
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4-49 The larger slope will occur at the left end. 

 From Table A-9, beam 8 
 

  

2 2 2

2 2 2

( 3 6 2 )
6

(3 3 6 2 )
6

B
AB

AB B

M x
y x a al l

EIl
dy M

x a al l
dx EIl

   

   
 

 

 With  I
   

 =  d 4
/64, the slope at the left bearing is 

  
 

2 2

4
0

(3 6 2 )
6 / 64

AB B
A

x

dy M
a al l

dx E d l




     

 

 Solving for d 

 
   2 2 2

44
6

32 32(1000)
3 6 2 3(4 ) 6(4)(10) 2 10

3 3 (30)10 (0.002)(10)

0.461 in        .

B

A

M
d a al l

E l

Ans

  
2       



 

______________________________________________________________________________ 

 

4-50 From Table A-5, E = 10.4 Mpsi 

 MO = 0 = 18 FBC   6(100)        FBC = 33.33 lbf 

 The cross sectional area of  rod BC is A =  (0.5
2
)/4 = 0.1963 in

2
. 

 

 The deflection at point B will be equal to the elongation of the rod BC. 
 

  
     5

6

33.33(12)
6.79 10  in     .

0.1963 30 10
B

BC

FL
y Ans

AE
    

 
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4-51 MO = 0 = 6 FAC   11(100)         FAC  = 183.3 lbf 
 

 The deflection at point A in the negative y direction is equal to the elongation of the rod 

AC. From Table A-5, Es = 30 Mpsi.  
 

 
 

     4

2 6

183.3 12
3.735 10  in

0.5 / 4 30 10
A

AC

FL
y

AE 
            

 

  

 By similar triangles the deflection at B due to the elongation of the rod AC is 
 

 41
1 3 3( 3.735)10 0.00112 in

6 18

A B
B A

y y
y y         

 

 From Table A-5, Ea = 10.4 Mpsi 
 

 The bar can then be treated as a simply supported beam with an overhang AB. From Table 

A-9, beam 10 
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 

 

2 2
2

2

2 2
2

6 3

( )
( ) 7 ( ) (3 ) (

3 6 3

7
7 3( ) 3 ( ) (3 ) | ( ) (2 3 ) ( )

6 3 6

7 100 5

6(10.4)10 0.25(2 ) /

BC
B

x l a x l a

x l a

dy Fa d F x l Fa
y BD l a x l a x l l

dx EI dx EI EI

F Fa Fa
x l a x l a x l l a l a l a

EI EI EI EI

   

 

                     

              

 
 

)

3

a

Fa



   
 

2

6 3

100 5
2(6) 3(5) (6 5)

12 3(10.4)10 0.25(2 ) /12

0.01438 in

  

 
 

 yB = yB1 + yB2 =  0.00112  0.01438 =  0.0155 in        Ans. 
______________________________________________________________________________ 

 

4-52 From Table A-5, E = 207 GPa, and G = 79.3 GPa.  

 

     
2 23 3

4 4

3

2

4 4 4

3 / 32 / 32 3 / 64

32 2

3

OC AB AC ABAB AB
B AB AB

OC AC AB OC AC

OC ACAB AB

OC AC AB

Fl l Fl lFl FlTl Tl
y l l

GJ GJ EI G d G d E d

l lFl l

Gd Gd Ed

  



           
   

 
   

 

4

 

 

 The spring rate is k = F/ yB. Thus 

 

  
 

   
 

   

1
2

4 4 4

1
2

3 4 3 4 3 4

32 2

3

32 200 2 200200 200

79.3 10 18 79.3 10 12 3 207 10 8

8.10 N/mm .

OC ACAB AB

OC AC AB

l ll l
k

Gd Gd Ed

Ans









       
   

       
    


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4-53 For the beam deflection, use beam 5 of Table A-9. 

  

1 2

1 2

1 2

2 31 2
1

2 32 1

1 1 2

2

,  and 
2 2

(4 3 )
48

1
(4 3 )        .

2 2 48

AB

AB

F
R R

F F

k k

Fx
y x x l

l EI

k k x
y F x x l

k kk l EI

 

 

 

 


    

 
     

 
Ans
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 For BC, since Table A-9 does not have an equation (because of symmetry) an equation 

will need to be developed as the problem is no longer symmetric. This can be done easily 

using beam 6 of Table A-9 with a = l /2 

  

  

   

2
22 1

1 1 2

2 22 1

1 1 2

/ 2
2

2 2 4

1
4 8        .

2 2 48

BC

F l l xFk FkF l
y x x

k k k l EIl

l xk k

lx

F x x l lx
k k k l EI

  
     

 
 

      
 

Ans
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4-54  

  

 

1 2

1 2

1 2

2 21 2
1

2 2

2 12

1 1 2

,  and ( )

,  and ( )

( )
6

( )         .
6

AB

AB

Fa F
R R l a

l l
Fa F

l a
lk lk

Fax
y x l x

l EIl

a x ax
y F k a k l a l x

k l k k l EIl

 

 

  

  


    

 
         

 
Ans

 

  
 

21 2
1

2

2 12

1 1 2

( )
( ) (3 )

6

( )
( ) (3 )         .

6

BC

BC

F x l
y x x l a x l

l EI

a x x l
y F k a k l a x l a x l An

k l k k l EI
s

            

                
 

 

______________________________________________________________________________ 
 
4-55 Let the load be at x ≥ l/2. The maximum deflection will be in Section AB 

 (Table A-9, beam 6) 
 

   2 2 2

6
AB

Fbx
y x b l

EIl
    

 

   2 2 2 2 2 23 0  3
6

ABdy Fb
x b l x b l

dx EIl
       0  

 

  
2 2 2

max,    0.577      .
3 3

l b l
x x l


   Ans  

 

 For x   l/2, min 0.577 0.423 .x l l l A   ns  

______________________________________________________________________________ 
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4-56 

   6

1(3000)(1500) 2500(2000)

9.5 10  N·mm

1(3000) 2500 5 500 N

O

O

M

R

 



  
 

  6 4From Prob. 4-10, 4.14(10 ) mm  I 
  

  
2

169.5 10 5500 2500 - 2000
2

x
M x     x  

  
3

26 2

19.5 10 2750 1250 2000
6

dy x
EI x x x C

dx
        

 

  
10 at 0 0

dy
x C

dx
     

  

 

 

3
26 2

4
36 2 3

2

9.5 10 2750 1250 2000
6

4.75 10 916.67 416.67 2000
24

dy x
EI x x x

dx

x
EIy x x x C

     

      
 

  y , and therefore 20 at 0 0x C   
 

        36 2 3 3 4 31
114 10 22 10 10 10 2000

24
y x x x x

EI
         

 

 

  

       

  

6 2 3 3

3 6

34 3

1
114 10 3000 22 10 3000

24 207 10 4.14 10

3000 10 10 3000 2000

25.4 mm .

By

Ans

  

   
 

  

 

 MO = 9.5 (10
6
) Nm. The maximum stress is compressive at the bottom of the beam where 

y = 29.0  100 =  71 mm 

 

  
   

6

6

ma  x 6

9.5 10 ( 71)
163 10 Pa 163MPa     .

4.14(10 )

My
Ans

I

 
       

 The solutions are the same as Prob. 4-10. 

______________________________________________________________________________ 

 

4-57 See Prob. 4-11 for reactions: RO = 465 lbf and RC = 285 lbf. Using lbf and inch units 

 

Chapter 4 - Rev B, Page 38/81 



  M  = 465 x  450 x  721  300 x  1201 

  
2 22

1232.5 225 72 150 120
dy

EI x x x
dx

     C  

  EIy = 77.5 x3
  75 x  723  50 x  1203  C1x 

 

  y = 0 at x = 0           C2 = 0 

  y = 0 at x = 240 in 

  0 = 77.5(240
3
)  75(240 72)

3
  50(240  120)

3
 + C1 x         C1 =  2.622(10

6
) lbfin2

 

and, 

  EIy = 77.5 x3
  75 x  723  50 x  1203 2.622(10

6
) x 

 

 Substituting y  =  0.5 in at x = 120 in gives 

 

  30(10
6
) I ( 0.5) = 77.5 (120

3
)  75(120  72)

3
  50(120  120)

3
 2.622(10

6
)(120) 

 

   I  = 12.60 in
4
 

 

 Select two 5 in  6.7 lbf/ft channels; from Table A-7, I = 2(7.49) = 14.98 in
4
 

 

 
midspan

12.60 1
0.421 in .

14.98 2
y A

     
 

ns  

 The maximum moment occurs at x = 120 in where Mmax = 34.2(10
3
) lbfin 

 

 
3

max

34.2(10 )(2.5)
5 710 psi

14.98

Mc

I
         O.K. 

The solutions are the same as Prob. 4-17. 

______________________________________________________________________________ 

 

4-58 I  =  (1.5
4
)/64 = 0.2485 in

4
, and w = 150/12 = 12.5 lbf/in. 

   1 24
12.5 39 (340) 453.0 lbf

2 39
OR     

  
1212.5

453.0 340 15
2

M x x x     

  
22 3

1

12.5
226.5 170 15

6

dy
EI x x x

dx
    C  

  33 4

1 275.5 0.5208 56.67 15EIy x x x Cx     C  
 

  20at 0 0y x C   

 Thus, 4 2

10 at 39 in           6.385(10 ) lbf iny x C     
 

  33 4 41
75.5 0.5208 56.67 15 6.385 10y x x x x

EI
        

 

 Evaluating at x = 15 in, 
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       33 4 4

6

1
75.5 15 0.5208 15 56.67 15 15 6.385 10 (15)

30(10 )(0.2485)

0.0978 in     .

Ay

Ans

      

 

 

   

       33 4 4

midspan 6

1
75.5 19.5 0.5208 19.5 56.67 19.5 15 6.385 10 (19.5)

30(10 )(0.2485)

 0.1027 in     .

y

Ans

      

 

 

 

 5 % difference     Ans. 
 

The solutions are the same as Prob. 4-12. 

______________________________________________________________________________ 

4-59 I  = 0.05 in
4
, 

   3 14 100 7 14 100
420 lbf and 980 lbf

10 10
A BR R       

 M  = 420 x  50 x2
 + 980  x  10 1 

 

 
22 3

1210 16.667 490 10
dy

EI x x x
dx

    C  

 

 
33 4

1 270 4.167 163.3 10EIy x x x Cx     C  

 

 y = 0 at x = 0      C2 = 0 

 y = 0 at x = 10 in      C1 =  2 833 lbfin2
. Thus, 

 

  
 

33 4

6

37 3 4

1
70 4.167 163.3 10 2833

30 10 0.05

6.667 10 70 4.167 163.3 10 2833 .

y x x x x

x x x x

      

       Ans

 

 The tabular results and plot are exactly the same as Prob. 4-21. 

______________________________________________________________________________ 

 

4-60 RA = RB = 400 N, and I = 6(32
3
) /12 = 16 384 mm

4
. 

 First half of beam, 

  M =  400 x + 400  x  300 1 

  
22

1200 200 300
dy

EI x x
dx

    C  

 

 From symmetry, dy/dx = 0 at x = 550 mm          0 =  200(550
2
) + 200(550 – 300)

 2
 + C1 

 

      C1 = 48(10
6
) N·mm

2
 

 

  EIy =  66.67 x3
 + 66.67  x  300 3 + 48(10

6
) x + C2 
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 y = 0 at x = 300 mm          C2 =  12.60(10
9
) N·mm

3
.  

 

 The term (EI)1
 = [207(10

3
)16 384]

 1
 = 2.949 (10

10
 ) Thus 

 

  y = 2.949 (10
10

) [ 66.67 x3
 + 66.67  x  300 3 + 48(10

6
) x  12.60(10

9
)] 

 

  yO =  3.72 mm    Ans. 
 

  yx = 550 mm =2.949 (10
10

) [ 66.67 (550
3
) + 66.67 (550  300)

3
  

       + 48(10
6
) 550  12.60(10

9
)] = 1.11 mm   Ans. 

 

 The solutions are the same as Prob. 4-13. 

______________________________________________________________________________ 

 
4-61  

   
 

 

1 1

2 2

1
0

1
0 ( )

B A A

A A A

M Rl Fa M R M Fa
l

M M R l F l a R Fl Fa M
l

      

        




 

 
  1

1 2AM R x M R x l     

 

  

22

1 2 1

33 2

1 2

1 1

2 2

1 1 1

6 2 6

A

A

dy
EI R x M x R x l C

dx

1 2EIy R x M x R x l C x C

    

     
 

  

 y = 0 at x = 0          C2 = 0 

 y = 0 at x = l          2

1 1

1 1

6 2
AC Rl M   l . Thus, 

 

 
33 2 2

1 2 1

1 1 1 1 1

6 2 6 6 2
A AEIy R x M x R x l R l M l x        

 
 

 

      33 2 2 21
3 2

6
A A A Ay M Fa x M x l Fl Fa M x l Fal M l x Ans.

EIl
            

 

 In regions, 
 

  

   

   

3 2 2 2

2 2 2 2

1
3 2

6

3 2
6

AB A A A

A

y M Fa x M x l Fal M l x
EIl
x

.M x lx l Fa l x Ans
EIl

      

      
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      

     
        

      

33 2 2 2

3 33 2 2 3 2

22

2

1
3 2

6

1
3 2

6

1
3

6

3 .
6

BC A A A A

A

A

A

y M Fa x M x l Fl Fa M x l Fal M l x
EIl

M x x l x l xl F ax l a x l axl
EIl

M x l l Fl x l x l a x l
EIl
x l

M l F x l a x l Ans
EI

          

              

         

        




   

 The solutions reduce to the same as Prob. 4-17. 

______________________________________________________________________________ 

4-62        1 1

1
0 2

2 2
D

b a
M R l b a l b b a R l b a

l

             


w
w  

 
2 2

1
2 2

M R x x a x b    
w w

 

 
3 32

1 1

1

2 6 6

dy
EI R x x a x b

dx
     

w w
C   

 
4 43

1 1

1

6 24 24
2EIy R x x a x b C x C      

w w
 

 

 y = 0 at x = 0           C2 = 0 

 y = 0 at x = l 
 

    4 43

1 1

1 1

6 24 24
C Rl l a l b

l
        

w w
 

 

 

   

       

  
       

4 43

4 43

4 43

4 42

1 1
2

6 2 24 24

1 1
2

6 2 24 24

2 2
24

2 2

b a
y l b a x x a x b

EI l

b a
x l b a l l a l

l l

b a l b a x l x a l x b
EIl

.

b

x b a l b a l l a l b Ans


      


        
 

       

         

w w w

w w w

w

 

 

 The above answer is sufficient. In regions, 
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          
         

4 43 2

4 42 2

2 2 2 2
24

2 2 2 2
24

ABy b a l b a x x b a l b a l l a l b
EIl

b a l b a x b a l b a l l a l b
EIl

             

             

w

wx
 

 

 
    
       

43

4 42

2 2
24

2 2

BCy b a l b a x l x a
EIl

x b a l b a l l a l b

     

         

w

 

 

 
      
       

4 43

4 42

2 2
24

2 2

CDy b a l b a x l x a l x b
EIl

x b a l b a l l a l b

      

         

w


 

 

 These equations can be shown to be equivalent to the results found in Prob. 4-19. 

______________________________________________________________________________ 

 

4-63 I 1 =  (1.375
4
)/64 = 0.1755 in

4
, I 2 =  (1.75

4
)/64 = 0.4604 in

4
, 

  

 R1 = 0.5(180)(10) = 900 lbf 

 

 Since the loading and geometry are symmetric, we will only write the equations for half 

the beam 

 For 0  x  8 in   
2

900 90 3M x x    

  At x = 3, M = 2700 lbfin  

 

 Writing an equation for M / I, as seen in the figure, 

 the magnitude and slope reduce since I  2 > I  1.  

 To reduce the magnitude at x = 3 in, we add the  

 term,  2700(1/I  1  1/ I  2) x  3 0. The slope of 900 at x = 3 in is also reduced. We 

account for this with a ramp function,  x  31 . Thus, 

 

  

0 1

1 1 2 1 2 2

0 1 2

900 1 1 1 1 90
2700 3 900 3 3

5128 9520 3 3173 3 195.5 3

M x
x x

2
x

I I I I I

x x x x

   
           

   

      

I I  

   

  
1 22

12564 9520 3 1587 3 65.17 3
3dy

E x x x x C
dx

         

 

 Boundary Condition: 0 at 8 in
dy

   x
dx
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             2 2

10 2564 8 9520 8 3 1587 8 3 65.17 8 3 C       3 

 C1 =  68.67 (10
3
)  lbf/in

2
 

 

 
2 3 43 3

2854.7 4760 3 529 3 16.29 3 68.67(10 )Ey x x x x x        C  

 

 y = 0 at x = 0           C2 = 0 

 

 Thus, for 0  x  8 in  

  
2 3 43 3

6

1
854.7 4760 3 529 3 16.29 3 68.7(10 )      .

30(10 )
x x x x x Ans          y

 

 Using a spreadsheet, the following graph represents the deflection equation found above  

 

 
 

 The maximum is max 0.0102 in at 8 in     .y x A   ns  

______________________________________________________________________________ 
 
4-64 The force and moment reactions at the left support 

  are F and Fl respectively. The bending moment  

 equation is 

 

  M = Fx  Fl 
 

 Plots for M and M /I are shown. 

 

 M /I can be expressed using singularity functions  

 

 

0 1

1 1 1 12 2 4 2 2 2

M F Fl Fl l F l
x x x

I I I I I
       
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 where the step down and increase in slope at x = l /2 are given by the last two terms. 

Integrate 

 

1 2

2

1

1 1 1 14 2 4 2 4 2

dy F Fl Fl l F l
E x x x x

dx I I I I
      C      

 dy/dx = 0 at x = 0       C1 = 0 

 

2 3

3 2

2

1 1 1 112 4 8 2 12 2

F Fl Fl l F l
Ey x x x x C

I I I I
        

 y = 0 at x = 0       C2 = 0 

 

2 3

3 2

1

2 6 3 2
24 2 2

F l
y x lx l x x

EI

 
       

 

l
 

 

3 2 3

/2
1 1

5
2 6 3 (0) 2(0) .

24 2 2 96x l

F l l F l
y l l

EI EI

             
     

Ans  

    
2 3 3

3 2

1 1

3
2 6 3 2

24 2 2 16x l

F l l Fl
y l l l l l x

EI EI

               
     

.Ans  

 

 The answers are identical to Ex. 4-10. 

______________________________________________________________________________ 

 

4-65 Place a dummy force, Q, at the center. The reaction, R1 = wl / 2 + Q / 2 

   
2

2 2 2 2

Q x M
M x

Q

       
wl w x

 

 Integrating for half the beam and doubling the results 

 

   
/2 /2 2

max

0 00

1 2
2

2 2 2

l l

Q

M x
y M dx x

EI Q EI


                         
 

wl w x
dx  

 

 Note, after differentiating with respect to Q, it can be set to zero 

 

    
/2

/2 3 4
2

max

0 0

5
   .

2 2 3 4 384

ll x l x
y x l x dx Ans

EI EI EI

 
     

 


w w w
 

______________________________________________________________________________ 

 

4-66 Place a fictitious force Q pointing downwards at the end. Use the variable x originating at 

the free end at positive to the left 

  
2

2

x M
M Qx x

Q


    


w
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 
2

3

max

0 00

4

1 1

2 2

.
8

l l

Q

M
y M dx x dx x dx

EI Q EI EI

l
Ans

EI




    
        

    



 
wx w

w

0

l


 

______________________________________________________________________________ 

 

4-67 From Table A-7, I 1-1 = 1.85 in
4
. Thus, I = 2(1.85) = 3.70 in

4 
 

 First treat the end force as a variable, F.  

 Adding weight of channels of 2(5)/12 =  

 0.833 lbf/in. Using the variable x  as 

 shown in the figure 

 

 

2 25.833
2.917

2
M F x x F x x

M
x

F

     


 



 

 

 
60 60

2

0 0

1 1
( 2.917 )( ) A

M
M d x F x x x d x

EI F EI
 

  
   

 

 
3 4

6

(150 / 3)(60 ) (2.917 / 4)(60 )
0.182 in

30(10 )(3.70)


    in the direction of the 150 lbf force  

 0.182 in     .Ay Ans    

______________________________________________________________________________ 

 

4-68 The energy includes torsion in AC, torsion in CO, and bending in AB.  

 

 Neglecting transverse shear in AB 

 

  ,  
M

M Fx x
F




   

 In AC  and CO, 

 
,  AB AB

T
T Fl l

F


 


 

 The total energy is 

 

 

2 2 2

0
2 2 2

ABl

ABAC CO

T l T l M
U d

GJ GJ EI

   
     
   

 x
 

The deflection at the tip is 
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2

30 0

1AB ABl l

AC CO AC AB CO AB

AC CO AC CO AB

Tl Tl Tl l Tl lU T T M M
dx Fx dx

F GJ F GJ F EI F GJ GJ EI
    
      
    

 
 

 

 

 

 

 
     

2 23 3

4 4 4

2

4 4 4

3 / 32 / 32 3 / 64

32 2

3

AC AB CO AB AC AB CO ABAB AB

AC CO AB AC CO AB

AC COAB AB

AC CO AB

Tl l Tl l Fl l Fl lFl Fl

GJ GJ EI G d G d E d

l lFl l

Gd Gd Ed


  



     

 
   

 

 

 

     
 

   

1

2 4 4 4

1

2 3 4 3 4 3 4

2

32 3

2 200200 200
8.10 N/mm     .

32 200 79.3 10 18 79.3 10 12 3 207 10 8

AC CO AB

AB AC CO AB

l l lF
k

l Gd Gd Ed

Ans










 
    

 

 
    
 
 

 

______________________________________________________________________________ 

 

4-69 I 1 =  (1.375
4
)/64 = 0.1755 in

4
, I 2 =  (1.75

4
)/64 = 0.4604 in

4
 

 

 Place a fictitious force Q pointing downwards at the midspan of the beam, x = 8 in 

  

   
1

1 1
(10)180 900 0.5

2 2
R Q Q     

 For 0  x  3 in    900 0.5 0.5
M

M Q x x
Q


  

  

 For 3  x  13 in     2900 0.5 90( 3) 0.5
M

M Q x x x
Q


    


 

 

 By symmetry it is equivalent to use twice the integral from 0 to 8 

 

  

 

     
 

 

8 3 8
22

1 20 0 30

3 8
3

3 4 3 2

1 20 3

3

3 3

6 6
1 2

1 1
2 900 900 90 3

300 1 1 9
300 90( 2 )

4 2

120.2 108100 1 8100
145.5 10 25.31 10

30 10 0.1755 30 10 0.4604

0.0102 in .

Q

M M
dx x dx x x x dx

EI Q EI EI

x
x x x x

EI EI

EI EI

Ans




           

       

      



  

 

______________________________________________________________________________ 

Chapter 4 - Rev B, Page 47/81 



 

4-70 I  =  (0.5
4
)/64 = 3.068 (10

3
) in

4
, J  = 2 I = 6.136 (10

3
) in

4
, A = (0.5

2
)/4 = 0.1963 in

2
. 

 

 Consider x to be in the direction of OA, y vertically upward, and z in the direction of AB. 

 Resolve the force F into components in the x and y directions obtaining 0.6 F in the 

horizontal direction and 0.8 F in the negative vertical direction. The 0.6 F force creates 

strain energy in the form of bending in AB and OA, and tension in OA. The 0.8 F force 

creates strain energy in the form of bending in AB and OA, and torsion in OA. Use the 

dummy variable x to originate at the end where the loads are applied on each segment, 

 

 0.6 F: AB 0.6 0.6
M

M F x x
F


 


 

 

    OA 4.2 4.2
M

M F
F


 


 

 

     0.6 0.6a
a

F
F F

F


 


 

 

 0.8 F: AB 0.8 0.8
M

M F x x
F


 


 

 

    OA 0.8 0.8
M

M F x x
F


 


 

 

     5.6 5.6
T

T F
F


 


 

 Once the derivatives are taken the value of F = 15 lbf can be substituted in. The deflection 

of B in the direction of F is* 

 

  

 

 
     

     

       
   

       

6 3 6

27 1
2

6 3 6 3

0 0

7
2

6 3 6

0

1

0.6 15 15 5.6 15 15
0.6 5.6

0.1963 30 10 6.136 10 11.5 10

15 4.215
0.6

30 10 3.068 10 30 10 3.068 10

15 15
0.8

30 10 3.068 10 30 10 3.06

a a
B F

OAOA

F L FU TL T M
M d x

F AE F JG F EI F

x d x d x

x d x





 



               

 

 

 



 

  

5



 

   

15
2

3

0

5 3

0.8
8 10

1.38 10 0.1000 6.71 10 0.0431 0.0119 0.1173

0.279 in .

x d x

Ans



      




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 *Note. This is not the actual deflection of point B. For this, dummy forces must be placed 

 

   B = 0.0831 i  0.2862 j   0.00770 k  in 

 is 

  

on B in the x, y, and z directions. Determine the energy due to each, take derivatives, and 

then substitute the values of Fx = 9 lbf, Fy =  12 lbf, and Fz = 0. This can be done 

separately and then use superposition. The actual deflections of B are 

 

 From this, the deflection of B in the direction of F
 

       0.6 0.0831 0.8 0.2862 0.279 inB F
     

 which agrees with our result. 
____ ________________________________________________ 

-71 Strain energy.  AB: Bending and torsion, BC: Bending and torsion, CD: Bending. 

031 in
4
, 

 1) is in the form of  =TL/(JG), where the equivalent of 

 

Use the dummy variable 

_ _________________________

 

4
 IAB =  (1

4
)/64 = 0.04909 in

4
, JAB = 2 IAB = 0.09818 in

4
, IBC = 0.25(1.5

3
)/12 = 0.07

ICD =  (0.75
4
)/64 = 0.01553 in

4
.  

For the torsion of bar BC, Eq. (3-4

J  is Jeq = bc 3
. With b/c = 1.5/0.25 = 6, JBC = bc 3

 = 0.299(1.5)0.25
3
 = 7.008 (10

3
) in

4
. 

 x to originate at the end where the loads are applied on each 

 ing 

segment, 

 AB: Bend 2 2
M

M F x F x
F


   


 

   Torsion 5 5
T

T F
F


 


 

M
M F x x

F


 


  BC: Bending 

   Torsion 2 2
T

T F
F


 


 

 CD: Bending 
M

M F x x
F


 


 

 

 
     

       

   
         

6
2

6 3 6 6

0

5 2

2 2

6 6

0 0

4 4 4 5 6

1

5 6 2 5 1
5 2

0.09818 11.5 10 7.008 10 11.5 10 30 10 0.04909

1 1

30 10 0.07031 30 10 0.01553

1.329 10 2.482 10 1.141 10 1.98 10 5.72 10

5.207 10

D

U Tl T M
M d x

F JG F EI F

F F
2F x d

F x d x F x d x

F F F F F





    



  
  
  

  

 

    



  



 

   4 45.207 10 200 0.104 in .F Ans 

  

x

______________________________________________________________________________ 
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4-72 AAB =  (1
2
)/4 = 0.7854 in

2
, IAB =  (1

4
)/64 = 0.04909 in

4
, IBC = 1.5 (0.25

3
)/12 = 1.953 

(10
3

) in
4
, ACD =  (0.75

2
)/4 = 0.4418 in

2
, IAB =  (0.75

4
)/64 = 0.01553 in

4
. For (D )x let  

 F = Fx =  150 lbf and Fz =  100 lbf . Use the dummy variable x to originate at the end 

where the loads are applied on each segment, 

 CD:  0
y

y z

M
M F x

F


 


 

   1a
a

F
F F

F


 


 

 BC:  2
y

y z

M
M F x F x

F


  


 

   0a
a z

F
F F

F


 


 

 AB:  5 2
y

y z z

M
M F F F x

F
5


   


 

   1a
a

F
F F

F


 


 

  

   

  

 
           

         
   

 

5

0

6

0

3 2

6 6 3

2

66

7

1
2

1
5 2 5

2 1
1 5 5

0.4418 30 10 330 10 1.953 10

61
25 6 10 6 6 5 1

2 0.7854 30 1030 10 0.04909

1.509 10 7.112 1

a
D zx

CD BC

a
z z

ABAB

z

z
z

FU FL
F x F x d x

F AE F EI

FFL
F F F x d x

EI AE F

F F
F

FF
F F

F







        

        

     

      

 





     
       

4 4 4

4 7 4 4

0 4.267 10 1.019 10

1.019 10 2.546 10 8.135 10 5.286 10

z

z z

F F F

F F F

  

   

 

    F

 

 

 Substituting F = Fx =  150 lbf and Fz =  100 lbf gives 

 

          4 48.135 10 150 5.286 10 100 0.1749 in .D x
Ans         

______________________________________________________________________________ 

 
4-73 IOA = IBC =  (1.5

4
)/64 = 0.2485 in

4
, JOA = JBC = 2 IOA = 0.4970 in

4
, IAB =  (1

4
)/64 = 

0.04909 in
4
, JAB = 2 IAB = 0.09818 in

4
, ICD =  (0.75

4
)/64 = 0.01553 in

4
 

 

 Let Fy = F, and use the dummy variable x to originate at the end where the loads are 

applied on each segment, 
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 OC:  ,  12  12
M T

M F x x T F
F F

 
  

 
  

 

 DC:  
M

M F x x
F


 


 

   

    1
D y

OC

U TL T M
M d x

F JG F EI F
        

  



 

 The terms involving the torsion and bending moments in OC must be split up because of 

the changing second-area moments. 

 

 

   
     

     

     
     
     

2

2

6 6 6

0

11 13 12

2 2

6 6 6

2 11

4 3 7

4 5 3

12 4 12 9 1
12 12

0.4970 11.5 10 0.09818 11.5 10 30 10 0.2485

1 1 1

30 10 0.04909 30 10 0.2485 30 10 0.01553

1.008 10 1.148 10 3.58 10

2.994 10 3.872 10 1.2363 10

D y

F F
F x d x

2

0

F x d x F x d x F x d x

F F F

F F F



  

  

  

  

  

  



 

   3 32.824 10 2.824 10 250 0.706 in .F Ans   



 

 For the simplified shaft OC,  

 

 

   
       

         

13 12

2 2

6 6 6

0 0

3 4 3 3 3

12 13 1 1
12

0.09818 11.5 10 30 10 0.04909 30 10 0.01553

1.6580 10 4.973 10 1.2363 10 3.392 10 3.392 10 250

0.848 in .

B y

F
F x d x F x d x

F F F F

Ans



    

  

    



 

 

 Simplified is 0.848/0.706 = 1.20 times greater   Ans. 
______________________________________________________________________________ 

 

4-74 Place a dummy force Q pointing downwards at point B. The reaction at C is  

 

  RC = Q + (6/18)100 = Q + 33.33 

 

 This is the axial force in member BC. Isolating the beam, we find that the moment is not a 

function of Q, and thus does not contribute to the strain energy. Thus, only energy in the 

member BC needs to be considered. Let the axial force in BC be F, where 
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   33.33 1
F

F Q
Q


  


 

 

  

 
 
   

   5

2 6
0 0

0 33.33 12
1 6.79 10 in

0.5 / 4 30 10
B

BCQ Q

U FL F
Ans

Q AE Q





 

               
.  

______________________________________________________________________________ 

 

4-75 IOB = 0.25(2
3
)/12 = 0.1667 in

4 
 

 AAC =  (0.5
2
)/4 = 0.1963 in

2
 

 

  MO = 0 = 6 RC  11(100)  18 Q 

 

   RC = 3Q + 183.3 

 

  MA = 0 = 6 RO  5(100)  12 Q         RO = 2Q + 83.33 

 

 Bending in OB.  

 

  BD:   Bending in BD is only due to Q which when set to zero after differentiation  

      gives no contribution. 

 

  AD:  Using the variable x as shown in the figure above 

 

       100 7 7
M

M x Q x x
Q


      


 

  OA:  Using the variable x as shown in the figure above 

 

     2 83.33 2
M

M Q x
Q

x


    


 

 

 Axial in AC: 

    3 183.3 3
F

F Q
Q


  


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 
        

     

     

0 0 0

5
6

2

6 0
0

5
6

3 2

6 0
0

3 7

1

183.3 12 1
3 100 7 2 83.33

0.1963 30 10

1
1.121 10 100 7 166.7

10.4 10 0.1667

1.121 10 5.768 10 100 129.2 166.

B

Q Q Q

U FL F M
M dx

Q AE Q EI Q

x x d x x dx
EI

x x d x x dx


  



 

                       

   

 
    

 

  



 

 

 7 72 0.0155 in .Ans  
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4-76 There is no bending in AB. Using the variable, rotating counterclockwise from B 
 

  sin  sin
M

M PR R
P

 
 


 

  cos  cosr
r

F
F P

P
 

 


 

  
2

sin  sin

2 sin

F
F P

P
MF

PR
P






  




 







  

 

  2 1 1
2 2

6(4) 24 mm ,   40 (6) 43 mm,  40 (6) 37 mm,o iA r r         

 From Table 3-4, p.121, for a rectangular cross section 

  
6

39.92489 mm
ln(43 / 37)

nr    

 From Eq. (4-33), the eccentricity is  e = R  rn =40  39.92489 = 0.07511 mm  

 From Table A-5, E = 207(10
3
) MPa, G = 79.3(10

3
) MPa 

 From Table 4-1, C = 1.2 

 From Eq. (4-38) 

  
 2 2 2 2

0 0 0 0

1 r r
MFF R F CF R FM M

d d d
AeE P AE P AE P AG P

   
  d   

                       


 

  
     2 2 2 2

2 2 2

0 0 0 0

sin sin cos2 sinP R PR CPRPR
d d d

AeE AE AE AG

     
2

d


           

  
3

3 3

(10)(40) 40 (207 10 )(1.2)
1 2 1 2

4 4(24)(207 10 ) 0.07511 79.3 10

PR R EC

AE e G

                  
 

  0.0338 mm         .Ans   

______________________________________________________________________________ 
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4-77 Place a dummy force Q pointing downwards at point A. Bending in AB is only due to Q 

which when set to zero after differentiation gives no contribution. For section BC use the 

variable, rotating counterclockwise from B 

     sin sin  1 sin
M

M PR Q R R R
Q

  
    


 

   cos  cosr
r

F
F P Q

Q
 

  


 

   sin  sin
F

F P Q
Q


  
  


 

     sin 1 sin sinMF PR QR P Q        

    2sin sin 1 sin 2 sin 1 sin
MF

PR PR QR
Q

     
     


 

 

 But after differentiation, we can set Q = 0. Thus, 

   sin 1 2sin
MF

PR
Q

  
 


 

 

  2 1 1
2 2

6(4) 24 mm ,   40 (6) 43 mm,  40 (6) 37 mm,o iA r r         

 From Table 3-4, p.121, for a rectangular cross section 

  
6

39.92489 mm
ln(43 / 37)

nr    

 From Eq. (4-33), the eccentricity is  e = R  rn =40  39.92489 = 0.07511 mm  

 From Table A-5, E = 207(10
3
) MPa, G = 79.3(10

3
) MPa 

 From Table 4-1, C = 1.2 

 From Eq. (4-38) 

 

 

   

2 2 2 2

2 2 2

2

0 0 0 0

2
2

0 0 0

2

0

2

1

sin 1 sin sin sin 1 2sin

cos

1 2
4 4 4

r r
MFF R F CF R FM M

d d d
AeE Q AE Q AE Q AG Q

PR PR PR
d d d

AeE AE AE
CPR

d
AG

PR PR PR

AeE AE

   

  



  d   

       

 

  

      
               

    



          
   

   

  






 
 

 
 

3

3 3

1 2
4 4 4

10 40 1.2 207 1040
1 2

24 207 10 4 0.07511 4 79.3 10

0.0766 mm .

CPR PR R CE

AE AG AE e G

Ans

  

 

          
       
   


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4-78 Note to the Instructor. The cross section 

shown in the first printing is incorrect and the 

solution presented here reflects the correction 

which will be made in subsequent printings. 

The corrected cross section should appear as 

shown in this figure. We apologize for any 

inconvenience. 

 

 A = 3(2.25) 2.25(1.5) = 3.375 in
2
  

 
(1 1.5)(3)(2.25) (1 0.75 1.125)(1.5)(2.25)

2.125 in
3.375

R
   

   

 

 Section is equivalent to the “T” section of Table 3-4, p. 121, 
 

  
2.25(0.75) 0.75(2.25)

1.7960 in
2.25ln[(1 0.75) /1] 0.75ln[(1 3) / (1 0.75)]

nr


 
   

 

    2.125 1.7960 0.329 inne R r      

 

 For the straight section 

  

 

 

3 2

2

3

4

1
(2.25) 3 2.25(3)(1.5 1.125)

12

1 2.25
(1.5) 2.25 1.5(2.25) 0.75 1.125

12 2

2.689 in

zI   

       
   



 

 

  

 

 

 

 

 

 For 0  x  4 in 

     ,        1
M V

x x V FM F
F F

 
     

 
 

   

 For    /2 

 

  cos    cos ,     sin    sinr
rF

FF
F F F

F F


   
  

 
  

 

  

(4 2.125sin )    (4 2.125sin )

(4 2.125sin ) sin 2 (4 2.365sin )sin

M
M F

F
MF

MF F F F
F




 

   


   




   

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 Use Eqs. (4-31) and (4-24) (with C = 1) for the straight part, and Eq. (4-38) for the 

curved part, integrating from 0 to π/2, and double the results 
 

  

2
4 /2

2

0 0

2
/2 /2

0 0

2
/2

0

2 1 (4)(1) (4 2.125sin )

3.375( / ) 3.375(0.329)

sin (2.125) 2 (4 2.125sin )sin

3.375 3.375

(1) cos (2.125)

3.375( / )

F
Fx dx F d

E I G E

F F
d d

F
d

G E



 



 

   

 

 
  




 



 

 



 

 Substitute I = 2.689 in
4
, F = 6700 lbf, E = 30 (10

6
) psi, G = 11.5 (10

6
) psi 

 

 
   

   

3

6

2 6700 4 4 1
16 17(1) 4.516

3 2.689 3.375(11.5 / 30) 3.375(0.329) 2 430 10

2.125 2 2.125
4 1 2.125

3.375 4 3.375 4 3.375 11.5 / 30 4

0.0226 in .Ans

 

 





                  

                        





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4-79 Since R/h = 35/4.5 = 7.78 use Eq. (4-38), integrate from 0 to  , and double the results 

      1  cos 1  cos
M

M FR R
F

 
   


 

   sin sinr
r

F
F F

F
 

 


 

   cos cos
F

F F
F


  
 


 

   

 
   

2 cos 1  cos

2 cos 1  cos

MF F R

MF
FR

F





 

 

 


 



 

 From Eq. (4-38), 

   

    

2
2 2

0 0

2

0 0

2 (1 cos ) cos

2 1.2
cos 1 cos sin

2 3 3
0.6

2 2

FR FR
d d

AeE AE

FR FR
d d

AE AG

FR R E

AE e G

 

 

    

    

  


  


   

    
 

 

 

 

 

 

 A = 4.5(3) = 13.5 mm
2
, E = 207 (10

3
) N/mm

2
, G = 79.3 (10

3
) N/mm

2
, and from Table 3-4, 

p. 121, 
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4.5

34.95173 mm
37.25

lnln
32.75

n
o

i

h
r

r

r

      

 and  e = R  rn = 35  34.95173 = 0.04827 mm. Thus, 

 
  3

2 35 3 35 3 207
0.6 0.08583

13.5 207 10 2 0.04827 2 79.3

F
F

      
 

  

 where F is in N. For  = 1 mm, 
1

11.65 N .
0.08583

F Ans   

 Note:  The first term in the equation for  dominates and this is from the bending moment. 

Try Eq. (4-41), and compare the results. 

______________________________________________________________________________ 

4-80 R/h = 20 > 10 so Eq. (4-41) can be used to determine deflections. Consider the horizontal 

reaction, to applied at B, subject to the constraint ( ) 0.B H   

 

 

 

 

 

 

 

  

   (1 cos ) sin    sin     0
2 2

FR M
M HR R

H

   
      


 

 

 By symmetry, we may consider only half of the wire form and use twice the strain energy 

 Eq. (4-41) then becomes, 

 

  
/2

0

2
( )  0B H

U M
M Rd

H EI H



       

  
/2

  
0

(1 cos ) sin ( sin )  0
2

FR
HR R R d         

   
30

0  9.55 N     .
2 4 4

F F F
H H Ans


 
        

 

 Reaction at A is the same where H goes to the left. Substituting H into the moment 

equation we get, 

 

   (1 cos ) 2sin    [ (1 cos ) 2sin ]     0
2 2

FR M R

2
M

F

      



 


     


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2
/2

2

20

3
/2

2 2 2 2 2

2 0

3
2 2 2

2

2 3

2 2
[ (1 cos ) 2sin ]  

4

( cos 4sin 2 cos 4 sin 4 sin cos ) 
2

4 2 4 2
2 2 4 4

(3 8 4)

8

P

U M FR
M Rd R d

P EI F EI

FR
d

EI

FR

EI

FR

EI





    




           


      


 


        

     

                       
 

 

 





   
2 3

3 4

(3 8 4) (30)(40 )
0.224 mm     .

8 207 10 2 / 64
Ans

 
 

 


  
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4-81 The radius is sufficiently large compared to the wire diameter to use Eq. (4-41) for the 

curved beam portion.  The shear and axial components will be negligible compared to 

bending.   

 Place a fictitious force Q pointing to the left at point A. 

   sin ( sin )    sin
M

M PR Q R l R l
Q

  
   


  

 Note that the strain energy in the straight portion is zero since there is no real force in that 

section. 

 From Eq. (4-41),   

 

 

     

/2 /2

0 0
0

2 2 2
/2

2

6 40

1 1
sin sin

1(5 )
sin sin (5) 4

4 430 10 0.125 / 64

0.551 in         .

Q

M
M Rd PR R l Rd

EI Q EI

PR PR
R l d R l

EI EI

Ans

 



    

   




  
      

            


 

  

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4-82 Both the radius and the length are sufficiently large to use Eq. (4-41) for the curved beam 

portion and to neglect transverse shear stress for the straight portion. 
 

  Straight portion:     AB
AB

M
M Px x

P


 


 

  Curved portion:    (1 cos )     (1 cos )BC
BC

M
M P R l R l

P
 

     


 

 

 From Eq. (4-41) with the addition of the bending strain energy in the straight portion of 

the wire, 
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 

 

/2

0 0

/2 22

0 0

3
/2

2 2 2

0

3
/2

2 2 2 2

0

3

1 1

(1 cos )

(1 2cos cos ) 2 (1 cos )
3

cos 2 2 cos ( )
3

3

l
BCAB

AB BC

l

MM
M dx M Rd

EI P EI P

P PR
x dx R l d

EI EI

Pl PR
R Rl l d

EI EI

Pl PR
R R Rl R l d

EI EI

Pl P

EI









 

 

   

  

           

   

        

       

 

 

 





 

 

      

2 2 2

3
3 2 2

3
23 2

6 4

2 2 ( )
4 2

2 2 ( )
3 4 2

1 4
(5 ) 5 2(5 ) 2(5)(4) 5 5 4

3 4 230 10 0.125 / 64

0.850 in     .

R
R R Rl R l

EI

P l
R R R Rl R R l

EI

Ans

 

 

 


      
 

      
 

 
        

 

  
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4-83 Both the radius and the length are sufficiently large to use Eq. (4-41) for the curved beam 

portion and to neglect transverse shear stress for the straight portion. 

 

 Place a dummy force, Q, at A vertically downward. The only load in the straight section is 

the axial force, Q. Since this will be zero, there is no contribution. 

 

 In the curved section 

 

       sin 1 cos 1 cos
M

M PR QR R
Q

  
    


 

 

 From Eq. (4-41) 

    

 

 

 
   

/2 /2

0 0
0

3 3
/2

0

3

6 4

1 1
sin 1 cos

1
sin sin cos 1

2 2

1 5
0.174 in .

2 30 10 0.125 / 64

Q

M

3

M Rd PR R Rd
EI Q EI

PR PR PR
d

EI EI EI

Ans

 



  

   





  
         

      
 

 
  

 



 
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4-84 Both the radius and the length are sufficiently large to use Eq. (4-41) for the curved beam 

portion and to neglect transverse shear stress for the straight portion. 
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 Place a dummy force, Q, at A vertically downward. The load in the straight section is the 

axial force, Q, whereas the bending moment is only a function of P and is not a function 

of Q. When setting Q = 0, there is no axial or bending contribution. 

 

 In the curved section 

     1 cos sin sin
M

M P R l QR R
Q

  
        

 

 From Eq. (4-41) 

   

 

   

   

 
   

 

/2 /2

0 0
0

/22 2

0

2

6 4

1 1
1 cos sin

1
sin sin cos sin 2

2 2

1 5
5 2 4 0.452 in

2 30 10 0.125 / 64

Q

M
M Rd P R l R Rd

EI Q EI

PR PR PR2

R R l d R l R R
EI EI EI

 



    

    





  
           

            
 

        

 

 l  

 Since the deflection is negative,   is in the opposite direction of Q. Thus the deflection is 

 

       0.452 in .Ans  
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4-85 Consider the force of the mass to be F, where F = 9.81(1) = 9.81 N. The load in AB is 

tension 

    1AB
AB

F
F F

F


 


 

 

 For the curved section, the radius is sufficiently large to use Eq. (4-41). There is no 

bending in section DE. For section BCD, let  be counterclockwise originating at D 

   sin sin 0
M

M FR R
F

   
   


 

 Using Eqs. (4-29) and (4-41) 

   

 

 

   
 
 

3
2

0 0

33 3

3 2 4

1
1 sin

409.81 80

2 2 207 10 2 / 4 2 2 / 64

6.067 mm        .

AB

AB

FFl M Fl FR
M Rd d

AE F EI F AE EI

Fl FR F l R

AE EI E A I

Ans

 
 

 
 

              
 

                     


 
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4-86 AOA = 2(0.25) = 0.5 in

2
,  

 IOAB = 0.25(2
3
)/12 = 0.1667 in

4
,  

 IAC =  (0.5
4
)/64 = 3.068 (10

-3
) in

4
 

 

 Applying a force F at point B, using 

  statics, the reaction forces at O and C 

 are as shown. 

 

 OA:  Axial   3 3OA
OA

F
F F

F


 


 

 

  Bending   2 2OA
OA

M
M Fx x

F


   


 

 

 AB: Bending    AB
AB

M
M F x x

F


   


 

 

 AC:  Isolating the upper curved section 

 

      3 sin cos 1 3 sin cos 1AC
AC

M
M FR R

F
   

     


 

  

   

   

 
     

   
 

   
 

     

10 20

2 2

0 0

/23
2

0

3 3

6 6 6

3 /2

2 2

6 3

0

1 1
4

9
sin cos 1

4 10 203 10
3

0.5 10.4 10 3 10.4 10 0.1667 3 10.4 10 0.1667

9 10
sin 2sin cos 2sin cos 2cos 1

30 10 3.068 10

1

OA

OA OAB OAB

AC

FFl
Fx dx F x d x

AE F EI EI

FR
d

EI

F FF

F
d







  

      


      

  

  

    



 





     



 

5 4 3.731 10 7.691 10 1.538 10 0.09778 1 2 2
4 4

0.0162 0.0162 100 1.62 in .

F F F F

F Ans

2

              
 

  
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4-87 AOA = 2(0.25) = 0.5 in
2
,  

 IOAB = 0.25(2
3
)/12 = 0.1667 in

4
,  

 IAC =  (0.5
4
)/64 = 3.068 (10

-3
) in

4 
 

 Applying a vertical dummy force, Q, at A, 

 from statics the reactions are as shown. The 

  dummy force is transmitted through section 
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 OA and member AC.  

  OA: 3 1OA
OA

F
F F Q

Q


  


 

  AC:            3 sin 3 1 cos sin cos 1AC
AC

M
M F Q R F Q R R

Q
   

       


 

 

  
     

 
 

 
   

/2

0 0

/23
2

0

3

6 6 3

1

3 3
sin cos 1

3 100 10 3 100 10
1 2 2 0.462 in .

4 4 210.4 10 0.5 30 10 3.068 10

OA AC
AC

OA AC Q

OA

OA AC

F MFl
M Rd

AE Q EI Q

Fl FR
d

AE EI

Ans





 

  

  





                  

   

         
 



  
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4-88  I =  (6
4
)/64 = 63.62 mm

4 
 

 

 0      / 2 

  

sin           sin

(1 cos )      (1 cos )

M
M FR R

F
T

T FR R
F

 

 


 




   


 

 According to Castigliano’s theorem, a positive 

  U/ F will yield a deflection of A in the negative y direction. Thus the deflection in the 

positive y direction is 

 

 
/2 /2

2 2

0 0

1 1
( ) ( sin )  [ (1 cos )]A y

U
 F R Rd F R Rd

F EI GJ

 
                 

 

 Integrating and substituting  2  and / 2 1J I G E       
 

  

 

 

3 3

3

3

3
( ) (1 ) 2 4 8 (3 8)

4 4 4

(250)(80)
[4 8 (3 8)(0.29)]  12.5 mm      .

4(200)10 63.62

A y

FR FR

EI EI

Ans

     

 

               

      
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4-89 The force applied to the copper and steel wire assembly is  

      (1) 400 lbfc sF F 
 Since the deflections are equal, c s   
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c s

Fl Fl

AE AE
      
   

 

 

  
2 6 23( / 4)(0.1019) (17.2)10 ( / 4)(0.1055) (30)10

c sF l F l

 


6

sF

 

 

 Yields, . Substituting this into Eq. (1) gives 1.6046cF 

   
1.604 2.6046 400        153.6 lbf 

1.6046 246.5 lbf

s s s s

c s

F F F F

F F

    

 

  
2

246.5
10 075 psi 10.1 kpsi     .

3( / 4)(0.1019)

c
c

c

F
Ans

A



     

  
2

153.6
17 571 psi 17.6 kpsi     .

( / 4)(0.1055 )

s
s

s

F
Ans

A



     

  
2 6

153.6(100)(12)
0.703 in      .

( / 4)(0.1055) (30)10s

Fl
Ans

AE



    
 
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4-90  (a) Bolt stress  0.75(65) 48.8 kpsi     .b Ans    
 

  Total bolt force  26 6(48.8) (0.5 ) 57.5 kips
4

b b bF A
     
 

 

  Cylinder stress  
2 2

57.43
13.9 kpsi     .

( / 4)(5.5 5 )

b
c

c

F
Ans

A



    


 

 

 (b) Force from pressure 

     
2 2(5 )

(500) 9817 lbf 9.82 kip
4 4

D
P p

 
     

  Fx = 0 

 

  Pb + Pc = 9.82        (1) 
 

 Since ,c b   

  
2 2 2( / 4)(5.5 5 ) 6( / 4)(0.5 )

c bPl P l

E E 



 

 

  Pc = 3.5 Pb               (2) 
 

 Substituting this into Eq. (1) 

  Pb + 3.5 Pb = 4.5 Pb = 9.82    Pb = 2.182 kip. From Eq. (2),  Pc = 7.638 kip 
 

 Using the results of (a) above, the total bolt and cylinder stresses are 

  
2

2.182
48.8 50.7 kpsi     .

6( / 4)(0.5 )
b    Ans



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2 2

7.638
13.9 12.0 kpsi     .

( / 4)(5.5 5 )
c Ans


    


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4-91  Tc + Ts = T                 (1) 

 

  c =  s           
   

 
 

(2)c s c
c s

c s s

JGT l T l
T T

JG JG JG
    

 

 Substitute this into Eq. (1) 

   
 
 

 
   

c s
s s s

s s

JG JG
T T T T T

JG JG JG
   


c

 

 

 The percentage of the total torque carried by the shell is 

 

    
 

   
100

% Torque .s

s c

JG
Ans

JG JG



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4-92 RO + RB = W               (1) 
  OA = AB 

  
OA AB

Fl Fl

AE AE
      
   

 

 

  
400 600 3

(2)
2

O B
O B

R R
R R

AE AE
    

 Substitute this unto Eq. (1) 

 

 
3

4 1.6 kN     .
2

B B BR R R    Ans  

 

 From Eq. (2)       
3

1.6 2.4 kN     .
2

OR Ans   

   
3

2400(400)
0.0223 mm     .

10(60)(71.7)(10 )
A    

OA

Fl
Ans

AE
   
 
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4-93 See figure in Prob. 4-92 solution. 

 

 Procedure 1: 

 

 1.  Let RB be the redundant reaction. 
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 2. Statics.  RO  + RB  = 4 000 N        RO  = 4 000  RB     (1) 

 

 3. Deflection of point B.  
    600 4000 400

0 (2
B B

B

R R

AE AE



   )  

 

 4. From Eq. (2), AE cancels and RB = 1 600 N      Ans. 
  and from Eq. (1), RO = 4 000  1 600 = 2 400 N      Ans. 
 

   
3

2400(400)
0.0223 mm     .

10(60)(71.7)(10 )
A

OA

Fl
Ans

AE
     

 
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4-94 (a) Without the right-hand wall the deflection of point C would be 

 

   

 
   

 
   

3 3

2 6 2 6

5 10 8 2 10 5

/ 4 0.75 10.4 10 / 4 0.5 10.4 10

0.01360 in 0.005 in Hits wall .

C

Fl

AE

Ans


 

  

  

  

 

 (b) Let RC be the reaction of the wall at C acting to the left (). Thus, the deflection of   

   point C is now 

 

   

 
   

 
   

 

3 3

2 6 2

6 2 2

5 10 8 2 10 5

/ 4 0.75 10.4 10 / 4 0.5 10.4 10

4 8 5
0.01360 0.005

10.4 10 0.75 0.5

C C

C

C

R R

R


 



      

     
 

6



 

  or,   

  60.01360 4.190 10 0.005 2053 lbf 2.05 kip .C CR R A      ns  

 

 Statics.  Considering  +,  5 000  RA  2 053 = 0      RA = 2 947 lbf = 2.95 kip  Ans. 
 

 Deflection. AB is 2 947 lbf in tension. Thus 

 

   
   

     3

2 6

8 2947 8
5.13 10 in .

/ 4 0.75 10.4 10

A
B AB

AB

R
Ans

A E
 


      
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4-95 Since   OA = AB, 

 

    
(4) (6) 3

(1)
2

OA AB
OA AB

T T
T T

JG JG
    
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 Statics.   TOA + TAB = 200    (2) 

 

 Substitute Eq. (1) into Eq. (2),         

3 5
200 80 lbf in .

2 2
AB AB AB ABT T T T An      s  

 

 From Eq. (1)      
3 3

80 120 lbf in .
2 2

OA ABT T An    s  

    
 

   
0

4 6

80 6 180
0.390 .

/ 32 0.5 11.5 10
A Ans

 
   

 

    
 
 max 3 3

16 12016
4890 psi 4.89 kpsi .

0.5
OA

T
Ans

d
 

 
      

 

     
 
 3

16 80
3260 psi 3.26 kpsi .

0.5
AB Ans


    
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4-96 Since   OA = AB, 

 

    
   4 4

(4) (6)
0.2963 (1)

/ 32 0.5 / 32 0.75

OA AB
OA AB

T T
T T

G G 
    

 

 Statics.   TOA + TAB = 200    (2) 

 

 Substitute Eq. (1) into Eq. (2),         

 0.2963 1.2963 200 154.3 lbf in .AB AB AB ABT T T T An      s

 

 From Eq. (1)       0.2963 0.2963 154.3 45.7 lbf in .OA ABT T    Ans  

    
 

   
0

4 6

154.3 6 180
0.148 .

/ 32 0.75 11.5 10
A Ans

 
   

 

    
 
 max 3 3

16 45.716
1862 psi 1.86 kpsi .

0.5
OA

T
Ans

d
 

 
      

 

     
 
 3

16 154.3
1862 psi 1.86 kpsi .

0.75
AB Ans


    
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4-97 Procedure 1. 

 1. Arbitrarily, choose RC as a redundant reaction.  
 2. Statics.    Fx = 0, 

   12(10
3
)  6(10

3
)  RO  RC  = 0 

   RO = 6(10
3
)  RC        (1) 

 3. The deflection of point C. 

 

   

3 3 312(10 ) 6(10 ) (20) 6(10 ) (10) (15)
0

C C C
C

R R R

AE AE AE


             

 4. The deflection equation simplifies to 

    45 RC + 60(10
3
) = 0        RC = 1 333 lbf   1.33 kip    Ans. 

 

  From Eq. (1),     RO = 6(10
3
)  1 333 = 4 667 lbf   4.67 kip    Ans. 

 

   FAB =  FB + RC = 6 +1.333 = 7.333 kips  compression 

 

   
7.333

14.7 kpsi     .
(0.5)(1)

AB
AB

F
Ans

A
  


   

  Deflection of A. Since OA is in tension, 

   
6

4667(20)
0.00622 in     .

(0.5)(1)(30)10

O OA
A OA

R l
Ans

AE
      
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4-98 Procedure 1. 

 1. Choose RB as redundant reaction. 

 

 2. Statics. RC = wl   RB      (1) 

 

    21
(2)

2
C BM l  R l a  w

 3. Deflection equation for point B. Superposition of beams 2 and 3 of Table A-9, 

   
       

3 2

2 24 6
3 24

B
B

R l a l a
0l l a l a l

EI EI

          
w

y  

 

 4. Solving for RB. 

   
     

   

22

2 2

6 4
8

3 2
8

BR l l l a l a
l a

l al a An
l a

      

  


w

w
.s

 

 

  Substituting this into Eqs. (1) and (2) gives 
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   2 25 10

8
C B .R l R l al a Ans

l a
    


w

w  

 

      2 2 21
2 .

2 8
C BM l R l a l al a Ans     

w
w  
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4-99 See figure in Prob. 4-98 solution. 

 

 Procedure 1. 

 1. Choose RB as redundant reaction. 

 

 2. Statics. RC = wl   RB      (1) 

 

    21
(2)

2
C BM l R l a  w  

 3. Deflection equation for point B. Let the variable x start at point A and to the right. Using 

 singularity functions, the bending moment as a function of x is 

 

   
1 121

2
B

B

M
M x R x a x a

R


     


w  

 

  

     

0

2 2

0

1

1 1 1 1
0 0

2 2

l

B
B B

l l

B

a

U M
y M dx

R EI R

x dx x R x a x adx
EI EI

 
 
 

          



 w w

 

 or, 

          3 34 4 3 31 1
0

2 4 3 3

BRa
l a l a l a a a

              
w   

 Solving for RB gives 

 

  
 

       4 4 3 3 2 2

3
3 4 3 2

88
B .R l a a l a l al a Ans

l al a
         

w w
 

 

 From Eqs. (1) and (2) 

 

  
   2 25 10

8
C B .R l R l al a Ans

l a
    


w

w  

 

     2 2 21
2 .

2 8
C BM l R l a l al a Ans     

w
w  
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4-100 Note:  When setting up the equations for this problem, no rounding of numbers was 

made. It turns out that the deflection equation is very sensitive to rounding. 

 

 Procedure 2. 

 

 1. Statics. R1 + R2 = wl              (1) 

 

    2

2 1

1
(2)

2
R l M l  w  

 2. Bending moment equation. 

 

   

2

1 1

2 3

1 1 1

3 4 2

1 1 1

1

2

1 1
(3)

2 6

1 1 1
(4)

6 24 2

M R x x M

dy

2

R x x M x C
dx

EIy R x x M x C x C

  

   

    

w

w

w

EI  

 

 EI = 30(10
6
)(0.85) = 25.5(10

6
) lbfin2

. 

 3. Boundary condition 1. At x = 0, y =  R1/k1 =  R1/[1.5(10
6
)]. Substitute into Eq. (4) 

 with value of EI yields C2 =  17 R1. 

 

  Boundary condition 2. At x = 0, dy /dx =  M1/k2 =  M1/[2.5(10
6
)]. Substitute into 

Eq.  (3) with value of EI yields C1 =  10.2 M1. 

 

  Boundary condition 3. At x = l, y =  R2/k3 =  R1/[2.0(10
6
)]. Substitute into Eq. (4) 

 with value of EI yields 

 

   3 4 2

2 1 1 1 1

1 1 1
12.75 10.2 17 (5)

6 24 2
R Rl l M l M l R      w





  For the deflection at x = l /2 = 12 in, Eq. (4) gives 

  Equations (1), (2), and (5), written in matrix form with w = 500/12 lbf/in and l = 24 in, 

 are 

 

      
1

3

2

1

1 1 0 1

0 24 1 12 10

2287 12.75 532.8 576

R

R

M

    
         
        

 

  Solving, the simultaneous equations yields 

 

   R1 = 554.59 lbf, R2 = 445.41.59 lbf,  M1 = 1310.1 lbfin             Ans. 
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     

   
 

3 4

12in 6

3

1 1 1 500 1
554.59 12 12 1310.1 12

6 24 12 225.5 10

10.2 1310.1 12 17 554.59

5.51 10 in .

x
y

Ans





  

  

 

 

2

______________________________________________________________________________ 

-101 Cable area, 

 

4 2 2(0.5 ) 0.1963 in
4

A


   

 Procedure 2.  

1. Statics.   RA + FBE + FDF = 5(10
3
)        (1) 

          3 FDF + FBE = 10(10 )           (2) 

. 

 

 

 
3

 
 

 2 Bending moment equation. 

 

  
1 1

16 5000 32A BEM R x F x x      

  

2 22

1

3 33

1 2

1 1
16 2500 32 (3)

2 2

1 1 2500
16 32 (4)

6 6 3

A BE

A BE

dy
EI R x F x x C

dx

EIy R x F x x C x C

     

      
 

 

B.C. 1 3. :   At  x = 0,  y = 0         C2 = 0 

 B.C. 2

 

 :  At x = 16 in, 

 

 

  6

6

(38)
6.453(10 )

0.1963(30)10

BE
B BE

BE

FFl
y F

AE
       

 
 

 

 Substituting into Eq. (4) and evaluating at x = 16 in  

   6 6 1
30(10 )(1.2)( 6.453)(10 ) 16EIy F R   3

1(16)
6

B BE A C  

lifying gives    682.7 RA + 232.3 FBE + 16 C1 = 0           (5) 

 B.C. 2

  Simp

 

 :  At x = 48 in, 

  

 

6

6

(38)
6.453(10 )

0.1963(30)10

DF
D DF

DF

FFl
y F

AE
       

 
   

 Substituting into Eq. (4) and evaluating at x = 48 in, 
 

 3 3

1

32500
232.3 48 (48 16) (48 32) 48

6 6 3
F A BE

1 1
  E D DIy F R F C         

plifying gives    18 432 RA + 5 461 FBE + 232.3 FDF + 48 C1 = 3.413(10 )           (6)  Sim
6
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 Equations (1), (2), (5) and (6) in matrix form are 

  

 

 6

1

50001 1 1 0

100000 1 3 0

0682.7 232.3 0 16

3.413 1018432 5461 232.3 48

A

BE

DF

R

F

F

C

   
   

                    

 

 

Solve simultaneously or use software. The results are 

 RA =  970.5 lbf,     FBE = 3956 lbf,    FDF = 2015 lbf,   and C1 =  16 020 lbfin2
. 

 

 

 

   
3956 2015

20.2 kpsi,     10.3 kpsi     .
0.1963 0.1963

BE DF Ans      

  EI = 30(10
6
)(1.2) = 36(10

6
) lbfin2

 

  

 

 

   

3 33

6

3 33

6

1 970.5 3956 2500
16 32 16 020

6 6 336 10

1
161.8 659.3 16 833.3 32 16 020

36 10

y x x x x

x x x

        
 

x     
 

 

B: x = 16 in,     



     3

6

1
161.8 16 16 020 16 0.0255 in .

36 10
By A         ns

 

 C: x = 32 in,      

    

 

      33

6

1
161.8 32 659.3 32 16 16 020 32

36 10

0.0865 in     .

C     y 

Ans



 

 

 D:  x = 48 in, 

 

   

        3 33

6

1
161.8 48 659.3 48 16 833.3 48 32 16 020 48

36 10

0.0131 in     .

D 

Ans

       

 

 

______________________________________________________________________________ 

-102 Beam: EI = 207(10 )21(10 )  
2
. 

A

Procedure 2.  

1. Statics.    

y 

 
3 34

        = 4.347(10
9
) Nmm

 Rods:  = ( /4)8
2
 = 50.27 mm

2
. 
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  RC + FBE  FDF  = 2 000       (1) 

 RC + 2FBE = 6 000     (2) 

2. Bending moment equation. 

 M =  2 000 x + FBE x  75 1 + RC x  150 1 

  

 

 

 

 

 

 

 

2 22

1

3 33

1 2

1 1
1000 75 150 (3)

2 2

1000 1 1
75 150 (4)

3 6 6

BE C

BE C

dy
EI x F x R x C

dx

EIy x F x R x C x C

      

       
 

 

3. B.C 1 . At x = 75 mm, 

 

 

 
   6

3

50
4.805 10

50.27 207 10

BE
B BE

BE

FFl
y F

AE
       

 
   

 

Substituting into Eq. (4) at x = 75 mm, 

  

 

 

       9 6 3

1 2

1000
4.347 10 4.805 10 75 75

3
BEF C C        

Simplifying gives 

  

 

 

 

    3 6

1 220.89 10 75 140.6 10 (5)BEF C C    

 

 B.C 2. At x = 150 mm, y = 0. From Eq. (4), 

  

 

     33

1 2

1000 1
150 150 75 150 0

3 6
BEF C       C 

 or, 

   3 9

1 231 10 150 1.125 10 (6)BEF C C       70.

 

 B.C 3. At x = 225 mm, 

 

 

 
   6

3

65
6.246 10

50.27 207 10

DF
D DF

DF

FFl
y F

AE
    

 
   

 

Substituting into Eq. (4) at x = 225 mm,  
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       

   

39 6 3

3

1 2

1000 1
4.347 10 6.246 10 225 225 75

3 6

1
225 150 225

6

DF BE

C

F F

R C C

      

   
 

 Simplifying gives 

 

        3 3 3 9

1 270.31 10 562.5 10 27.15 10 225 3.797 10 (7)C BE DFR F F C C       

 

 Equations (1), (2), (5), (6), and (7) in matrix form are 

 

   
 

     

 
 
 
 
 

3

3

3
6

3
9

1

3 3 3
2 9

2 101 1 1 0 0

1 2 0 0 0 6 10

0 20.89 10 0 75 1 140.6 10

0 70.31 10 0 150 1 1.125 10

70.31 10 562.5 10 27.15 10 225 1 3.797 10

C

BE

DF

R

F

F

C

C

                     
    
    
         

 

 Solve simultaneously or use software. The results are 

 

 RC =  2378 N, FBE = 4189 N, FDF =  189.2 N                 Ans. 
 and C1 = 1.036 (10

7
)  Nmm

2
, C2 =  7.243 (10

8
)  Nmm

3
. 

 

 The bolt stresses are BE = 4189/50.27 = 83.3 MPa, DF =  189/50.27=  3.8 MPa Ans. 
 

 The deflections are 

 

 From Eq. (4)   
   8

9

1
7.243 10 0.167 mm .

4.347 10
Ay A      ns  

 For points B and D use the axial deflection equations*. 

 

   
 

  3

4189 50
0.0201 mm .

50.27 207 10
B

BE

Fl
y A

AE
       
 

ns  

 

   
 

   3

3

189 65
1.18 10 mm .

50.27 207 10
D

DF

Fl
y A

AE
     

 
ns  

 *Note. The terms in Eq. (4) are quite large, and due to rounding are not very accurate for 

calculating the very small deflections, especially for point D. 

______________________________________________________________________________ 

 

4-103 (a) The cross section at A does not rotate. Thus, for a single quadrant we have 
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     0
A

U

M





 

 The bending moment at an angle  to the x axis is 

     1 cos 1
2

A
A

FR M
M M

M
 

   


 

 The rotation at A is 

    
/2

0

1
0A

A A

U M
M Rd

M EI M



  
  
   

 

 Thus,        
/2

0

1
1 cos 1 0 0

2 2
A A

FR FR FR
M Rd M

EI

                 2 2
 

 or, 

    
2

1
2

A

FR
M


   
 

 

 Substituting this into the equation for M gives 

       
2

cos
2

FR
M 


   
 

    (1) 

 The maximum occurs at B where  =  /2 

 

     
max .B

FR
M M Ans


    

 (b) Assume B is supported on a knife edge. The deflection of point D is  U/ F. We will 

deal with the quarter-ring segment and multiply the results by 4. From Eq. (1) 

     
2

cos
2

M R

F



      

 

 Thus, 

   

 

2/2 /23 3

0 0

3
2

4 2
cos

4

8 .
4

D

U M FR FR
M Rd d

F EI F EI EI

FR
Ans

EI

      2

 




               

 

  

  

______________________________________________________________________________ 

 

4-104  

   

   

2

cr 2

4
4 4 41 where

64 64

C EI
P

l

D d
I D d K K

D



 



    

 

 
2 4

4

cr 2
1

64

C E D
P K

l

  
  

 
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 

1/4
2

cr

3 4

64
.

1

P l
D A

CE K

 
 

  
ns  

______________________________________________________________________________ 

 

4-105      2 2 4 4 4 2 21 , 1 1 1
4 64 64

A D K I D K D K K  ,  
        where K = d / D. 

 The radius of gyration, k, is given by 

     
2

2 21
16

I D
k K

A
    

 From Eq. (4-46) 

   
      

2 2 2 2

cr

2 22 2 2 2 24/ 4 1 4 /16 1

y y
y y

S l S lP
S S

k CED K D K C 
   

  E
 

       
 

2 2 2 2

2 2

cr 2 2 2

4 1
4 1

1

y

y

S l D K
P D K S

D K C







  

 E
 

       
 

2 2 2

2 2

cr 2

4 1
1 4

1

y

y

S l K
D K S P

K CE





  


 

    
 

 
   

   

1/2
2 2 2

cr

2 2 2

1/2
2

cr

2 2 2

4 14

1 1 1

2 .
1 1

y

y y

y

y

S l KP
D

S K K CE K S

S lP
Ans

S K CE K

  

 

 
  

    

 
  

   

 

______________________________________________________________________________ 

 

4-106 (a)  
2 2

0.9
0, (0.75)(800) (0.5) 0 1373 N

0.9 0.5
A BOM F     


BOF   

 

 Using nd = 4, design for Fcr = nd FBO = 4(1373) = 5492 N 

  
2 20.9 0.5 1.03 m, 165 MPayl S     

 In-plane: 

   

 

1/21/2 3 /12
0.2887 0.2887(0.025) 0.007 218 m, 1.0

I bh
k h

A bh

         
   

C  

  
1.03

142.7
0.007218

l

k
   

  

1/2
2 9

6

1

2 (207)(10 )
157.4

165(10 )

l

k

      
   
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 Since use Johnson formula. 1( / ) ( / )l k l k
 Try 25 mm x 12 mm, 

      2
6

6

cr 9

165 10 1
0.025(0.012) 165 10 (142.7) 29.1 kN

2 1(207)10
P



      
    





 

 This is significantly greater than the design load of 5492 N found earlier.  Check out-of-

plane. 

 

 Out-of-plane:     0.2887(0.012) 0.003 464 in,     1.2k C 

   
1.03

297.3
0.003 464

l

k
   

 Since use Euler equation. 1( / ) ( / )l k l k

  
 2 9

cr 2

1.2 207 10
0.025(0.012) 8321 N

297.3
P


   

 This is greater than the design load of 5492 N found earlier.  It is also significantly less 

than the in-plane Pcr found earlier, so the out-of-plane condition will dominate.  Iterate 

the process to find the minimum h that gives Pcr greater than the design load. 

  

 With   h = 0.010, Pcr = 4815 N (too small) 

            h = 0.011, Pcr = 6409 N  (acceptable) 

 

 Use 25 mm x 11 mm. If standard size is preferred, use 25 mm x 12 mm.   Ans. 
 

 (b)  61373
10.4 10 Pa 10.4 MPa

0.012(0.011)
b

P

dh
            

  No, bearing stress is not significant.  Ans. 
______________________________________________________________________________ 

 

4-107 This is an open-ended design problem with no one distinct solution. 

______________________________________________________________________________ 

 

4-108    F = 1500( /4)2
2
 = 4712 lbf. From Table A-20,  Sy = 37.5 kpsi 

    Pcr = nd F = 2.5(4712) = 11 780 lbf 

 

 (a) Assume Euler with C = 1 

 

   
 
   

1/4
1/4 22 2

4 cr cr

2 3 3 6

64 11790 5064
1.193 in

64 1 30 10

P l P l
I d d

C E CE


  

  
       
    

 

 Use d = 1.25 in. The radius of gyration, k = ( I / A)
1/2

 = d /4 = 0.3125 in 
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 

 
   

1/21/2 2 62

3
1

2 6 4

cr 2

50
160

0.3125

2 (1)30 102
126 use Euler

37.5 10

30 10 / 64 1.25
14194 lbf

50

y

l

k

l CE

k S

P



 

 

                   

 

 

 

 Since 14 194 lbf  > 11 780 lbf, d = 1.25 in is satisfactory.     Ans. 
 

 (b)   
 
   

1/4
2

3 6

64 11780 16
0.675 in,

1 30 10
d



 
  
  

 so use d = 0.750 in 

    k = 0.750/4 = 0.1875 in 

    
16

85.33 use Johnson
0.1875

l

k
   

 

        
 

2
3

2 3

cr 6

37.5 10 1
0.750 37.5 10 85.33 12748 lbf

4 2 1 30 10
P  




       
    

  Use d = 0.75 in. 

 

 (c)  

    

( )

( )

14194
3.01 .

4712

12748
2.71 .

4712

a

b

n A

n A

 

 

ns

ns
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4-109 From Table A-20, Sy = 180 MPa 

 

  4F sin = 2 943 

 

  
735.8

sin
F


  

 In range of operation, F is maximum when  = 15 

   
max o

735.8
2843 N per bar

sin15
F    

 

   Pcr = ndFmax = 3.50 (2 843) = 9 951 N 

 
 l = 350 mm, h = 30 mm 
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 Try b = 5 mm. Out of plane, k = b / 12  = 5/ 12  = 1.443 mm 

 

   
   

 

 
 

 

1/2
2 9

6
1

2 32

cr 2 2

350
242.6

1.443

2 1.4 207 10
178.3 use Euler

180 10

1.4 207 10
5(30) 7 290 N

/ 242.6

l

k

l

k

C E
P A

l k





 

 

 

 
    

  

  

 Too low. Try b = 6 mm. k = 6/ 12  = 1.732 mm 

   

 
 

 

2 32

cr 2 2

350
202.1

1.732

1.4 207 10
6(30) 12605 N

/ 202.1

l

k

C E
P A

l k



 

  
 

 O.K. Use 25  6 mm bars    Ans. The factor of safety is 

 

   
12605

4.43 .
2843

n A  ns 

______________________________________________________________________________ 

 

4-110 P = 1 500 + 9 000 = 10 500 lbf    Ans. 
 

 MA = 10 500 (4.5/2)  9 000 (4.5) +M = 0 

 

 M = 16 874 lbfin 

 

 e = M / P = 16 874/10 500 = 1.607 in    Ans. 
 

 From Table A-8, A = 2.160 in
2
, and I = 2.059 in

4
. The stresses are determined using Eq. 

(4-55) 

 

   

2 2

2

2.059
0.953 in

2.160

1.607 3 / 210500
1 1 17157 psi 17.16 kpsi .

2.160 0.953
c

I
k

A

P ec
Ans

A k


  

             
   

 

______________________________________________________________________________ 

 

4-111 This is a design problem which has no single distinct solution. 

______________________________________________________________________________ 
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4-112 Loss of potential energy of weight = W (h + ) 

 Increase in potential energy of spring = 21

2
k  

    W (h + ) = 21

2
k  

 or,  2 2 2
0

W W
h

k k
    .  W = 30 lbf, k = 100 lbf/in, h = 2 in yields 

 

      2
  0.6  

  1.2 = 0 

 

 Taking the positive root (see discussion on p. 192) 

    2

max

1
0.6 ( 0.6) 4(1.2) 1.436 in .

2
Ans       

 

 

    Fmax = k  max = 100 (1.436) = 143.6 lbf           Ans. 
______________________________________________________________________________ 

 

4-113 The drop of weight W1 converts potential energy, W1 h, to kinetic energy 21
1

1

2

W

g
v . 

Equating these provides the velocity of W1 at impact with W2. 

 

    21
1 1 1

1
2

2

W
W h gh

g
  v v        (1) 

 Since the collision is inelastic, momentum is conserved. That is, (m1 + m2) v2 = m1 v1, 

where v2 is the velocity of W1 + W2 after impact. Thus 

 

    1 2 1 1 1
2 1 2 1

1 2 1 2

2
W W W W W

gh
g g W W W W


   

 
v v v v       (2) 

 

 The kinetic and potential energies of W1 + W2 are then converted to potential energy of 

the spring. Thus, 

 

     2 21 2
2 1 2

1 1

2 2

W W
W W k

g
 

  v  

 Substituting in Eq. (1) and rearranging results in 

 

    
2

2 1 2 1

1 2

2 2
W W W h

k W W k
 

 


0          (3) 

 Solving for the positive root (see discussion on p. 192) 

 

    

2 2

1 2 1 2 1

1 2

1
2 4 8

2

W W W W W h

k k W


           W k
       (4) 
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 W1 = 40 N, W2 = 400 N, h = 200 mm, k = 32 kN/m = 32 N/mm. 

 

   

 

2 21 40 400 40 400 40 200
2 4 8 29.06 mm .

2 32 32 40 400 32
Ans

                  
 

 

  Fmax = k  = 32(29.06) = 930 N     Ans. 
______________________________________________________________________________ 

4-114 The initial potential energy of the k1 spring is Vi  = 2

1

1

2
k a . The movement of the weight 

W the distance y gives a final potential of Vf  =  2 2

1

1

2 2
k a y k y  2

1
. Equating the two 

energies give 

 

      22 2

1 1

1 1 1

2 2 2
k a k a y k y   2

 

 

 Simplifying gives 

        2

1 2 12 0k k y ak y  
 

 This has two roots, y = 0, 1

1 2

2k a

k k
. Without damping the weight will vibrate between 

these two limits. The maximum displacement is thus y max = 1

1 2

2k a

k k
   Ans. 

 With W = 5 lbf, k1 = 10 lbf/in, k2 = 20 lbf/in, and a = 0.25 in 

 

     
 

max

2 0.25 10
0.1667 in .

10 20
y Ans 


 

______________________________________________________________________________ 
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p. 238 n = K I c

K I

(5–38)

where K I c is found in Table 5–1 (p. 238)

Stochastic Analysis

Mean factor of safety defined as n̄ = µS/µσ (µS and µσ are mean strength and stress,

respectively)

Normal-Normal Case

p. 241 n = 1 ±
√

1 − (1 − z2C2
s )(1 − z2C2

σ )

1 − z2C2
s

(5–42)

where z can be found in Table A–10, CS = σ̂S/µS , and Cσ = σ̂σ/µσ .

Lognormal-Lognormal Case

p. 242 n = exp

[

−z

√

ln(1 + C2
n) + ln

√

1 + C2
n

]

.= exp

[

Cn

(

−z + Cn

2

)]

(5–45)

where

Cn =
√

C2
S + C2

σ

1 + C2
σ

(See other definitions in normal-normal case.)

PROBLEMS

5–1 A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of 50 kpsi.

Using the distortion-energy and maximum-shear-stress theories determine the factors of safety

for the following plane stress states:

(a) σx = 12 kpsi, σy = 6 kpsi

(b) σx = 12 kpsi, τx y = −8 kpsi

(c) σx = −6 kpsi, σy = −10 kpsi, τx y = −5 kpsi

(d) σx = 12 kpsi, σy = 4 kpsi, τx y = 1 kpsi

5–2 Repeat Prob. 5–1 for:

(a) σA = 12 kpsi, σB = 12 kpsi

(b) σA = 12 kpsi, σB = 6 kpsi

(c) σA = 12 kpsi, σB = −12 kpsi

(d) σA = −6 kpsi, σB = −12 kpsi

5–3 Repeat Prob. 5–1 for a bar of AISI 1020 cold-drawn steel and:

(a) σx = 180 MPa, σy = 100 MPa

(b) σx = 180 MPa, τx y = 100 MPa

(c) σx = −160 MPa, τx y = 100 MPa

(d) τx y = 150 MPa

5–4 Repeat Prob. 5–1 for a bar of AISI 1018 hot-rolled steel and:

(a) σA = 100 MPa, σB = 80 MPa

(b) σA = 100 MPa, σB = 10 MPa

(c) σA = 100 MPa, σB = −80 MPa

(d) σA = −80 MPa, σB = −100 MPa
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5–5 Repeat Prob. 5–3 by first plotting the failure loci in the σA , σB plane to scale; then, for each stress

state, plot the load line and by graphical measurement estimate the factors of safety.

5–6 Repeat Prob. 5–4 by first plotting the failure loci in the σA , σB plane to scale; then, for each stress

state, plot the load line and by graphical measurement estimate the factors of safety.

5–7 An ASTM cast iron has minimum ultimate strengths of 30 kpsi in tension and 100 kpsi in com-

pression. Find the factors of safety using the MNS, BCM, and MM theories for each of the fol-

lowing stress states. Plot the failure diagrams in the σA , σB plane to scale and locate the

coordinates of each stress state.

(a) σx = 20 kpsi, σy = 6 kpsi

(b) σx = 12 kpsi, τx y = −8 kpsi

(c) σx = −6 kpsi, σy = −10 kpsi, τx y = −5 kpsi

(d) σx = −12 kpsi, τx y = 8 kpsi

5–8 For Prob. 5–7, case (d ), estimate the factors of safety from the three theories by graphical mea-

surements of the load line.

5–9 Among the decisions a designer must make is selection of the failure criteria that is applicable to

the material and its static loading. A 1020 hot-rolled steel has the following properties:

Sy = 42 kpsi, Sut = 66.2 kpsi, and true strain at fracture ε f = 0.90. Plot the failure locus and, for

the static stress states at the critical locations listed below, plot the load line and estimate the fac-

tor of safety analytically and graphically.

(a) σx = 9 kpsi, σy = −5 kpsi.

(b) σx = 12 kpsi, τx y = 3 kpsi ccw.

(c) σx = −4 kpsi, σy = −9 kpsi, τx y = 5 kpsi cw.

(d) σx = 11 kpsi, σy = 4 kpsi, τx y = 1 kpsi cw.

5–10 A 4142 steel Q&T at 80◦F exhibits Syt = 235 kpsi, Syc = 275 kpsi, and ε f = 0.06. Choose and

plot the failure locus and, for the static stresses at the critical locations, which are 10 times those

in Prob. 5–9, plot the load lines and estimate the factors of safety analytically and graphically.

5–11 For grade 20 cast iron, Table A–24 gives Sut = 22 kpsi, Suc = 83 kpsi. Choose and plot the fail-

ure locus and, for the static loadings inducing the stresses at the critical locations of Prob. 5–9,

plot the load lines and estimate the factors of safety analytically and graphically.

5–12 A cast aluminum 195-T6 has an ultimate strength in tension of Sut = 36 kpsi and ultimate

strength in compression of Suc = 35 kpsi, and it exhibits a true strain at fracture ε f = 0.045.

Choose and plot the failure locus and, for the static loading inducing the stresses at the critical

locations of Prob. 5–9, plot the load lines and estimate the factors of safety analytically and graph-

ically.

5–13 An ASTM cast iron, grade 30 (see Table A–24), carries static loading resulting in the stress state

listed below at the critical locations. Choose the appropriate failure locus, plot it and the load

lines, and estimate the factors of safety analytically and graphically.

(a) σA = 20 kpsi, σB = 20 kpsi.

(b) τx y = 15 kpsi.

(c) σA = σB = −80 kpsi.

(d) σA = 15 kpsi, σB = −25 kpsi.

5–14 This problem illustrates that the factor of safety for a machine element depends on the particular point

selected for analysis. Here you are to compute factors of safety, based upon the distortion-energy

theory, for stress elements at A and B of the member shown in the figure. This bar is made of AISI

1006 cold-drawn steel and is loaded by the forces F = 0.55 kN, P = 8.0 kN, and T = 30 N · m.
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5–15 The figure shows a crank loaded by a force F = 190 lbf which causes twisting and bending of

the 3
4

-in-diameter shaft fixed to a support at the origin of the reference system. In actuality, the

support may be an inertia which we wish to rotate, but for the purposes of a strength analysis we

can consider this to be a statics problem. The material of the shaft AB is hot-rolled AISI 1018

steel (Table A–20). Using the maximum-shear-stress theory, find the factor of safety based on the

stress at point A.

250 Mechanical Engineering Design

Problem 5–14

20-mm D.

100 m
m

y

z

B

A

T P

F

x

Problem 5–15

A

z

y

1 in

4 in

x

F

C

B

5 in

1
1

4
in

1

4
in

3

4
-in dia. -in dia.

1

2

5–16 Solve Prob. 5–15 using the distortion energy theory. If you have solved Prob. 5–15, compare the

results and discuss the difference.

5–17* Design the lever arm CD of Fig. 5–16 by specifying a suitable size and material.

5–18 A spherical pressure vessel is formed of 18-gauge (0.05-in) cold-drawn AISI 1018 sheet steel. If the

vessel has a diameter of 8 in, estimate the pressure necessary to initiate yielding. What is the esti-

mated bursting pressure?

*The asterisk indicates a problem that may not have a unique result or may be a particularly challenging

problem.
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5–19 This problem illustrates that the strength of a machine part can sometimes be measured in units

other than those of force or moment. For example, the maximum speed that a flywheel can reach

without yielding or fracturing is a measure of its strength. In this problem you have a rotating ring

made of hot-forged AISI 1020 steel; the ring has a 6-in inside diameter and a 10-in outside diameter

and is 1.5 in thick. What speed in revolutions per minute would cause the ring to yield? At what

radius would yielding begin? [Note: The maximum radial stress occurs at r = (rori )
1/2; see Eq.

(3–55).]

5–20 A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures.

This cylinder has a 3 1

2
-in OD, a 0.065-in wall thickness, and ν = 0.334. The purchase order spec-

ifies a minimum yield strength of 46 kpsi. What is the factor of safety if the pressure-release valve

is set at 500 psi?

5–21 A cold-drawn AISI 1015 steel tube is 300 mm OD by 200 mm ID and is to be subjected to an

external pressure caused by a shrink fit. What maximum pressure would cause the material of the

tube to yield?

5–22 What speed would cause fracture of the ring of Prob. 5–19 if it were made of grade 30 cast iron?

5–23 The figure shows a shaft mounted in bearings at A and D and having pulleys at B and C. The

forces shown acting on the pulley surfaces represent the belt tensions. The shaft is to be made of

ASTM grade 25 cast iron using a design factor nd = 2.8. What diameter should be used for the

shaft?

Failures Resulting from Static Loading 251

5–24 By modern standards, the shaft design of Prob. 5–23 is poor because it is so long. Suppose it is

redesigned by halving the length dimensions. Using the same material and design factor as in

Prob. 5–23, find the new shaft diameter.

5–25 The gear forces shown act in planes parallel to the yz plane. The force on gear A is 300 lbf.

Consider the bearings at O and B to be simple supports. For a static analysis and a factor of safe-

ty of 3.5, use distortion energy to determine the minimum safe diameter of the shaft. Consider

the material to have a yield strength of 60 kpsi.

5–26 Repeat Prob. 5–25 using maximum-shear-stress.

5–27 The figure is a schematic drawing of a countershaft that supports two V-belt pulleys. For each

pulley, the belt tensions are parallel. For pulley A consider the loose belt tension is 15 percent of

the tension on the tight side. A cold-drawn UNS G10180 steel shaft of uniform diameter is to be

selected for this application. For a static analysis with a factor of safety of 3.0, determine the

minimum preferred size diameter. Use the distortion-energy theory.

Problem 5–23

27 lbf

x

A

360 lbf

300 lbf

50 lbf

z

8 in

8 in

8-in D.

6-in D.

6 in

y

C

D

B
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Problem 5–27

Dimensions in millimeters

5–28 Repeat Prob. 5–27 using maximum shear stress.

5–29 The clevis pin shown in the figure is 12 mm in diameter and has the dimensions a = 12 mm and

b = 18 mm. The pin is machined from AISI 1018 hot-rolled steel (Table A–20) and is to be

loaded to no more than 4.4 kN. Determine whether or not the assumed loading of figure c yields

a factor of safety any different from that of figure d. Use the maximum-shear-stress theory.

5–30 Repeat Prob. 5–29, but this time use the distortion-energy theory.

5–31 A split-ring clamp-type shaft collar is shown in the figure. The collar is 2 in OD by 1 in ID by 1

2

in wide. The screw is designated as 1

4
-28 UNF. The relation between the screw tightening torque

T, the nominal screw diameter d, and the tension in the screw Fi is approximately T = 0.2 Fi d .

The shaft is sized to obtain a close running fit. Find the axial holding force Fx of the collar as a

function of the coefficient of friction and the screw torque.

270 N

z

300

400

150

O

y

250 Dia. A

45°

T2
T1

50 N

B

C

300 Dia.

x

Problem 5–25 z

y

20 in

16 in

10 in

20°

O

FC

FA

A

x

Gear A

24-in D.

Gear C

10-in D.

20°

B

C
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Problem 5–29

a a

d

b

(a)

F

F

(c)

b

2

a + b

b

(d )

a + b

(b)

Problem 5–31

A

5–32 Suppose the collar of Prob. 5–31 is tightened by using a screw torque of 190 lbf · in. The collar

material is AISI 1040 steel heat-treated to a minimum tensile yield strength of 63 kpsi.

(a) Estimate the tension in the screw.

(b) By relating the tangential stress to the hoop tension, find the internal pressure of the shaft on

the ring.

(c) Find the tangential and radial stresses in the ring at the inner surface.

(d) Determine the maximum shear stress and the von Mises stress.

(e) What are the factors of safety based on the maximum-shear-stress hypothesis and the distortion-

energy theory?

5–33 In Prob. 5–31, the role of the screw was to induce the hoop tension that produces the clamping.

The screw should be placed so that no moment is induced in the ring. Just where should the screw

be located?

5–34 A tube has another tube shrunk over it. The specifications are:

Inner Member Outer Member

ID 1.000 ± 0.002 in 1.999 ± 0.0004 in
OD 2.000 ± 0.0004 in 3.000 ± 0.004 in

Both tubes are made of a plain carbon steel.

(a) Find the nominal shrink-fit pressure and the von Mises stresses at the fit surface.

(b) If the inner tube is changed to solid shafting with the same outside dimensions, find the

nominal shrink-fit pressure and the von Mises stresses at the fit surface.
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5–35 Steel tubes with a Young’s modulus of 207 GPa have the specifications:

Inner Tube Outer Tube

ID 25 ± 0.050 mm 49.98 ± 0.010 mm

OD 50 ± 0.010 mm 75 ± 0.10 mm

These are shrink-fitted together. Find the nominal shrink-fit pressure and the von Mises stress in

each body at the fit surface.

5–36 Repeat Prob. 5–35 for maximum shrink-fit conditions.

5–37 A 2-in-diameter solid steel shaft has a gear with ASTM grade 20 cast-iron hub (E = 14.5 Mpsi)

shrink-fitted to it. The specifications for the shaft are

2.000
+ 0.0000

− 0.0004
in

The hole in the hub is sized at 1.999 ± 0.0004 in with an OD of 4.00 ± 1

32
in. Using the midrange

values and the modified Mohr theory, estimate the factor of safety guarding against fracture in the

gear hub due to the shrink fit.

5–38 Two steel tubes are shrink-fitted together where the nominal diameters are 1.50, 1.75, and 2.00

in. Careful measurement before fitting revealed that the diametral interference between the tubes

to be 0.00246 in. After the fit, the assembly is subjected to a torque of 8000 lbf · in and a bend-

ing-moment of 6000 lbf · in. Assuming no slipping between the cylinders, analyze the outer

cylinder at the inner and outer radius. Determine the factor of safety using distortion energy with

Sy = 60 kpsi.

5–39 Repeat Prob. 5–38 for the inner tube.

5–40 For Eqs. (5–36) show that the principal stresses are given by 

σ1 = K I√
2πr

cos
θ

2

(

1 + sin
θ

2

)

σ2 = K I√
2πr

cos
θ

2

(

1 − sin
θ

2

)

σ3 =







0 (plane stress)
√

2

πr
νK I cos

θ

2
(plane strain)

5–41 Use the results of Prob. 5–40 for plane strain near the tip with θ = 0 and ν = 1

3
. If the yield

strength of the plate is Sy , what is σ1 when yield occurs?

(a) Use the distortion-energy theory.

(b) Use the maximum-shear-stress theory. Using Mohr’s circles, explain your answer.

5–42 A plate 4 in wide, 8 in long, and 0.5 in thick is loaded in tension in the direction of the length.

The plate contains a crack as shown in Fig. 5–26 with the crack length of 0.625 in. The material

is steel with K I c = 70 kpsi ·
√

in, and Sy = 160 kpsi. Determine the maximum possible load that

can be applied before the plate (a) yields, and (b) has uncontrollable crack growth.

5–43 A cylinder subjected to internal pressure pi has an outer diameter of 350 mm and a 25-mm wall

thickness. For the cylinder material, K I c = 80 MPa · √m, Sy = 1200 MPa, and Sut = 1350 MPa.
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If the cylinder contains a radial crack in the longitudinal direction of depth 12.5 mm determine

the pressure that will cause uncontrollable crack growth.

5–44 A carbon steel collar of length 1 in is to be machined to inside and outside diameters, respec-

tively, of

Di = 0.750 ± 0.0004 in Do = 1.125 ± 0.002 in

This collar is to be shrink-fitted to a hollow steel shaft having inside and outside diameters,

respectively, of

di = 0.375 ± 0.002 in do = 0.752 ± 0.0004 in

These tolerances are assumed to have a normal distribution, to be centered in the spread interval,

and to have a total spread of ±4 standard deviations. Determine the means and the standard devi-

ations of the tangential stress components for both cylinders at the interface.

5–45 Suppose the collar of Prob. 5–44 has a yield strength of Sy = N(95.5, 6.59) kpsi. What is the

probability that the material will not yield?

5–46 A carbon steel tube has an outside diameter of 1 in and a wall thickness of 1

8
in. The tube is to

carry an internal hydraulic pressure given as p = N(6000, 500) psi. The material of the tube has

a yield strength of Sy = N(50, 4.1) kpsi. Find the reliability using thin-wall theory.
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Chapter 5

5-1

MSS: σ1 − σ3 = Sy/n ⇒ n = Sy

σ1 − σ3

DE: n = Sy

σ ′

σ ′ =
(

σ 2
A − σAσB + σ 2

B

)1/2 =
(

σ 2
x − σxσy + σ 2

y + 3τ 2
xy

)1/2

(a) MSS: σ1 = 12, σ2 = 6, σ3 = 0 kpsi

n = 50

12
= 4.17 Ans.

DE: σ ′ = (122 − 6(12) + 62)1/2 = 10.39 kpsi, n = 50

10.39
= 4.81 Ans.

(b) σA, σB = 12

2
±

√

(

12

2

)2

+ (−8)2 = 16, −4 kpsi

σ1 = 16, σ2 = 0, σ3 = −4 kpsi

MSS: n = 50

16 − (−4)
= 2.5 Ans.

DE: σ ′ = (122 + 3(−82))1/2 = 18.33 kpsi, n = 50

18.33
= 2.73 Ans.

(c) σA, σB = −6 − 10

2
±

√

(−6 + 10

2

)2

+ (−5)2 = −2.615, −13.385 kpsi

σ1 = 0, σ2 = −2.615, σ3 = −13.385 kpsi

MSS: n = 50

0 − (−13.385)
= 3.74 Ans.

DE: σ ′ = [(−6)2 − (−6)(−10) + (−10)2 + 3(−5)2]1/2

= 12.29 kpsi

n = 50

12.29
= 4.07 Ans.

(d) σA, σB = 12 + 4

2
±

√

(

12 − 4

2

)2

+ 12 = 12.123, 3.877 kpsi

σ1 = 12.123, σ2 = 3.877, σ3 = 0 kpsi

MSS: n = 50

12.123 − 0
= 4.12 Ans.

DE: σ ′ = [122 − 12(4) + 42 + 3(12)]1/2 = 10.72 kpsi

n = 50

10.72
= 4.66 Ans.

�B

�A

Extracted from 8th ed.
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5-2 Sy = 50 kpsi

MSS: σ1 − σ3 = Sy/n ⇒ n = Sy

σ1 − σ3

DE:
(

σ 2
A − σAσB + σ 2

B

)1/2 = Sy/n ⇒ n = Sy/
(

σ 2
A − σAσB + σ 2

B

)1/2

(a) MSS: σ1 = 12 kpsi, σ3 = 0, n = 50

12 − 0
= 4.17 Ans.

DE: n = 50

[122 − (12)(12) + 122]1/2
= 4.17 Ans.

(b) MSS: σ1 = 12 kpsi, σ3 = 0, n = 50

12
= 4.17 Ans.

DE: n = 50

[122 − (12)(6) + 62]1/2
= 4.81 Ans.

(c) MSS: σ1 = 12 kpsi, σ3 = −12 kpsi , n = 50

12 − (−12)
= 2.08 Ans.

DE: n = 50

[122 − (12)(−12) + (−12)2]1/3
= 2.41 Ans.

(d) MSS: σ1 = 0, σ3 = −12 kpsi, n = 50

−(−12)
= 4.17 Ans.

DE: n = 50

[(−6)2 − (−6)(−12) + (−12)2]1/2
= 4.81

5-3 Sy = 390 MPa

MSS: σ1 − σ3 = Sy/n ⇒ n = Sy

σ1 − σ3

DE:
(

σ 2
A − σAσB + σ 2

B

)1/2 = Sy/n ⇒ n = Sy/
(

σ 2
A − σAσB + σ 2

B

)1/2

(a) MSS: σ1 = 180 MPa, σ3 = 0, n = 390

180
= 2.17 Ans.

DE: n = 390

[1802 − 180(100) + 1002]1/2
= 2.50 Ans.

(b) σA, σB = 180

2
±

√

(

180

2

)2

+ 1002 = 224.5, −44.5 MPa = σ1, σ3

MSS: n = 390

224.5 − (−44.5)
= 1.45 Ans.

DE: n = 390

[1802 + 3(1002)]1/2
= 1.56 Ans.
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(c) σA, σB = −160

2
±

√

(

−160

2

)2

+ 1002 = 48.06, −208.06 MPa = σ1, σ3

MSS: n = 390

48.06 − (−208.06)
= 1.52 Ans.

DE: n = 390

[−1602 + 3(1002)]1/2
= 1.65 Ans.

(d) σA, σB = 150, −150 MPa = σ1, σ3

MSS: n = 390

150 − (−150)
= 1.30 Ans.

DE: n = 390

[3(150)2]1/2
= 1.50 Ans.

5-4 Sy = 220 MPa

(a) σ1 = 100, σ2 = 80, σ3 = 0 MPa

MSS: n = 220

100 − 0
= 2.20 Ans.

DET: σ ′ = [1002 − 100(80) + 802]1/2 = 91.65 MPa

n = 220

91.65
= 2.40 Ans.

(b) σ1 = 100, σ2 = 10, σ3 = 0 MPa

MSS: n = 220

100
= 2.20 Ans.

DET: σ ′ = [1002 − 100(10) + 102]1/2 = 95.39 MPa

n = 220

95.39
= 2.31 Ans.

(c) σ1 = 100, σ2 = 0, σ3 = −80 MPa

MSS: n = 220

100 − (−80)
= 1.22 Ans.

DE: σ ′ = [1002 − 100(−80) + (−80)2]1/2 = 156.2 MPa

n = 220

156.2
= 1.41 Ans.

(d) σ1 = 0, σ2 = −80, σ3 = −100 MPa

MSS: n = 220

0 − (−100)
= 2.20 Ans.

DE: σ ′ = [(−80)2 − (−80)(−100) + (−100)2] = 91.65 MPa

n = 220

91.65
= 2.40 Ans.
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5-5

(a) MSS: n = O B

O A
= 2.23

1.08
= 2.1

DE: n = OC

O A
= 2.56

1.08
= 2.4

(b) MSS: n = O E

O D
= 1.65

1.10
= 1.5

DE: n = O F

O D
= 1.8

1.1
= 1.6

(c) MSS: n = O H

OG
= 1.68

1.05
= 1.6

DE: n = O I

OG
= 1.85

1.05
= 1.8

(d) MSS: n = O K

O J
= 1.38

1.05
= 1.3

DE: n = O L

O J
= 1.62

1.05
= 1.5

O

(a)

(b)

(d)

(c)

H

I

G

J

K
L

FE
D

A

B
C

Scale

1" � 200 MPa

�B

�A
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5-6 Sy = 220 MPa

(a) MSS: n = O B

O A
= 2.82

1.3
= 2.2

DE: n = OC

O A
= 3.1

1.3
= 2.4

(b) MSS: n = O E

O D
= 2.2

1
= 2.2

DE: n = O F

O D
= 2.33

1
= 2.3

(c) MSS: n = O H

OG
= 1.55

1.3
= 1.2

DE: n = O I

OG
= 1.8

1.3
= 1.4

(d) MSS: n = O K

O J
= 2.82

1.3
= 2.2

DE: n = O L

O J
= 3.1

1.3
= 2.4

�B

�A

O

(a)

(b)

(c)

(d)

H

G

J

K

L

I

F

E
D

A

B

C

1" � 100 MPa
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5-7 Sut = 30 kpsi, Suc = 100 kpsi; σA = 20 kpsi, σB = 6 kpsi

(a) MNS: Eq. (5-30a) n = Sut

σx

= 30

20
= 1.5 Ans.

BCM: Eq. (5-31a) n = 30

20
= 1.5 Ans.

MM: Eq. (5-32a) n = 30

20
= 1.5 Ans.

(b) σx = 12 kpsi,τxy = −8 kpsi

σA, σB = 12

2
±

√

(

12

2

)2

+ (−8)2 = 16, −4 kpsi

MNS: Eq. (5-30a) n = 30

16
= 1.88 Ans.

BCM: Eq. (5-31b)
1

n
= 16

30
− (−4)

100
⇒ n = 1.74 Ans.

MM: Eq. (5-32a) n = 30

16
= 1.88 Ans.

(c) σx = −6 kpsi, σy = −10 kpsi,τxy = −5 kpsi

σA, σB = −6 − 10

2
±

√

(−6 + 10

2

)2

+ (−5)2 = −2.61, −13.39 kpsi

MNS: Eq. (5-30b) n = − 100

−13.39
= 7.47 Ans.

BCM: Eq. (5-31c) n = − 100

−13.39
= 7.47 Ans.

MM: Eq. (5-32c) n = − 100

−13.39
= 7.47 Ans.

(d) σx = −12 kpsi,τxy = 8 kpsi

σA, σB = −12

2
±

√

(

−12

2

)2

+ 82 = 4, −16 kpsi

MNS: Eq. (5-30b) n = −100

−16
= 6.25 Ans.
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BCM: Eq. (5-31b)
1

n
= 4

30
− (−16)

100
⇒ n = 3.41 Ans.

MM: Eq. (5-32b)
1

n
= (100 − 30)4

100(30)
− −16

100
⇒ n = 3.95 Ans.

(c)

L

(d)

J

(b)

(a)

H

G

K

F

O

C

D

E

A

B1" � 20 kpsi

�B

�A
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5-8 See Prob. 5-7 for plot.

(a) For all methods: n = O B

O A
= 1.55

1.03
= 1.5

(b) BCM: n = O D

OC
= 1.4

0.8
= 1.75

All other methods: n = O E

OC
= 1.55

0.8
= 1.9

(c) For all methods: n = O L

O K
= 5.2

0.68
= 7.6

(d) MNS: n = O J

O F
= 5.12

0.82
= 6.2

BCM: n = OG

O F
= 2.85

0.82
= 3.5

MM: n = O H

O F
= 3.3

0.82
= 4.0

5-9 Given: Sy = 42 kpsi, Sut = 66.2 kpsi, ε f = 0.90. Since ε f > 0.05, the material is ductile and

thus we may follow convention by setting Syc = Syt .

Use DE theory for analytical solution. For σ ′, use Eq. (5-13) or (5-15) for plane stress and

Eq. (5-12) or (5-14) for general 3-D.

(a) σ ′ = [92 − 9(−5) + (−5)2]1/2 = 12.29 kpsi

n = 42

12.29
= 3.42 Ans.

(b) σ ′ = [122 + 3(32)]1/2 = 13.08 kpsi

n = 42

13.08
= 3.21 Ans.

(c) σ ′ = [(−4)2 − (−4)(−9) + (−9)2 + 3(52)]1/2 = 11.66 kpsi

n = 42

11.66
= 3.60 Ans.

(d) σ ′ = [112 − (11)(4) + 42 + 3(12)]1/2 = 9.798

n = 42

9.798
= 4.29 Ans.
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For graphical solution, plot load lines on DE envelope as shown.

(a) σA = 9, σB = −5 kpsi

n = O B

O A
= 3.5

1
= 3.5 Ans.

(b) σA, σB = 12

2
±

√

(

12

2

)2

+ 32 = 12.7, −0.708 kpsi

n = O D

OC
= 4.2

1.3
= 3.23

(c) σA, σB = −4 − 9

2
±

√

(

4 − 9

2

)2

+ 52 = −0.910, −12.09 kpsi

n = O F

O E
= 4.5

1.25
= 3.6 Ans.

(d) σA, σB = 11 + 4

2
±

√

(

11 − 4

2

)2

+ 12 = 11.14, 3.86 kpsi

n = O H

OG
= 5.0

1.15
= 4.35 Ans.

5-10 This heat-treated steel exhibits Syt = 235 kpsi, Syc = 275 kpsi and ε f = 0.06. The steel is

ductile (ε f > 0.05) but of unequal yield strengths. The Ductile Coulomb-Mohr hypothesis

(DCM) of Fig. 5-19 applies — confine its use to first and fourth quadrants.

(c)

(a)

(b)

(d)

E

C

G

H

D

B

A

O

F

1 cm � 10 kpsi

�B

�A
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(a) σx = 90 kpsi, σy = −50 kpsi, σz = 0 � σA = 90 kpsi and σB = −50 kpsi. For the

fourth quadrant, from Eq. (5-31b)

n = 1

(σA/Syt ) − (σB/Suc)
= 1

(90/235) − (−50/275)
= 1.77 Ans.

(b) σx = 120 kpsi, τxy = −30 kpsi ccw.  σA, σB = 127.1, −7.08 kpsi. For the fourth

quadrant

n = 1

(127.1/235) − (−7.08/275)
= 1.76 Ans.

(c) σx = −40 kpsi, σy = −90 kpsi, τxy = 50 kpsi . σA, σB = −9.10, −120.9 kpsi.

Although no solution exists for the third quadrant, use

n = − Syc

σy

= − 275

−120.9
= 2.27 Ans.

(d) σx = 110 kpsi, σy = 40 kpsi, τxy = 10 kpsi cw. σA, σB = 111.4, 38.6 kpsi. For the

first quadrant

n = Syt

σA

= 235

111.4
= 2.11 Ans.

Graphical Solution:

(a) n = O B

O A
= 1.82

1.02
= 1.78

(b) n = O D

OC
= 2.24

1.28
= 1.75

(c) n = O F

O E
= 2.75

1.24
= 2.22

(d) n = O H

OG
= 2.46

1.18
= 2.08

O

(d)

(b)

(a)

(c)

E

F

B

D

G

C

A

H

1 in � 100 kpsi

�B

�A
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5-11 The material is brittle and exhibits unequal tensile and compressive strengths. Decision:

Use the Modified Mohr theory. 

Sut = 22 kpsi, Suc = 83 kpsi

(a) σx = 9 kpsi, σy = −5 kpsi. σA, σB = 9, −5 kpsi. For the fourth quadrant,

|σB

σA
| = 5

9
< 1, use Eq. (5-32a)

n = Sut

σA

= 22

9
= 2.44 Ans.

(b) σx = 12 kpsi, τxy = −3 kpsi ccw. σA, σB = 12.7, −0.708 kpsi. For the fourth quad-

rant, |σB

σA
| = 0.708

12.7
< 1,

n = Sut

σA

= 22

12.7
= 1.73 Ans.

(c) σx = −4 kpsi, σy = −9 kpsi, τxy = 5 kpsi . σA, σB = −0.910, −12.09 kpsi. For the

third quadrant, no solution exists; however, use Eq. (6-32c)

n = −83

−12.09
= 6.87 Ans.

(d) σx = 11 kpsi, σy = 4 kpsi,τxy = 1 kpsi. σA, σB = 11.14, 3.86 kpsi. For thefirstquadrant

n = SA

σA

= Syt

σA

= 22

11.14
= 1.97 Ans.

30

30

Sut � 22

Sut � 83

�B

�A

–50

–90

(d )

(b)

(a)

(c)
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5-12 Since ε f < 0.05, the material is brittle. Thus, Sut
.= Suc and we may use MM which is

basically the same as MNS.

(a) σA, σB = 9, −5 kpsi

n = 35

9
= 3.89 Ans.

(b) σA, σB = 12.7, −0.708 kpsi

n = 35

12.7
= 2.76 Ans.

(c) σA, σB = −0.910, −12.09 kpsi (3rd quadrant)

n = 36

12.09
= 2.98 Ans.

(d) σA, σB = 11.14, 3.86 kpsi

n = 35

11.14
= 3.14 Ans.

Graphical Solution:

(a) n = O B

O A
= 4

1
= 4.0 Ans.

(b) n = O D

OC
= 3.45

1.28
= 2.70 Ans.

(c) n = O F

O E
= 3.7

1.3
= 2.85 Ans. (3rd quadrant)

(d) n = O H

OG
= 3.6

1.15
= 3.13 Ans.

5-13 Sut = 30 kpsi, Suc = 109 kpsi

Use MM:

(a) σA, σB = 20, 20 kpsi

Eq. (5-32a): n = 30

20
= 1.5 Ans.

(b) σA, σB = ±
√

(15)2 = 15, −15 kpsi

Eq. (5-32a) n = 30

15
= 2 Ans.

(c) σA, σB = −80, −80 kpsi

For the 3rd quadrant, there is no solution but use Eq. (5-32c).

Eq. (5-32c): n = − 109

−80
= 1.36 Ans.

O

G

C D

A

B

E

F

H

(a)

(c)

(b)

(d)

1 cm � 10 kpsi

�B

�A
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(d) σA, σB = 15, −25 kpsi, |σB |σA| = 25/15 > 1,

Eq. (5-32b):
(109 − 30)15

109(30)
− −25

109
= 1

n

n = 1.69 Ans.

(a) n = O B

O A
= 4.25

2.83
= 1.50

(b) n = O D

OC
= 4.24

2.12
= 2.00

(c) n = O F

O E
= 15.5

11.3
= 1.37 (3rd quadrant)

(d) n = O H

OG
= 4.9

2.9
= 1.69

5-14 Given: AISI 1006 CD steel, F = 0.55 N, P = 8.0 kN, and T = 30 N · m, applying the

DE theory to stress elements A and B with Sy = 280 MPa

A: σx = 32Fl

πd3
+ 4P

πd2
= 32(0.55)(103)(0.1)

π(0.0203)
+ 4(8)(103)

π(0.0202)

= 95.49(106) Pa = 95.49 MPa

O

(d)

(b)

(a)

(c)

E

F

C

B

A

G

D

H

1 cm � 10 kpsi

�B

�A
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τxy = 16T

πd3
= 16(30)

π(0.0203)
= 19.10(106) Pa = 19.10 MPa

σ ′ =
(

σ 2
x + 3τ 2

xy

)1/2 = [95.492 + 3(19.1)2]1/2 = 101.1 MPa

n = Sy

σ ′ = 280

101.1
= 2.77 Ans.

B: σx = 4P

πd3
= 4(8)(103)

π(0.0202)
= 25.47(106) Pa = 25.47 MPa

τxy = 16T

πd3
+ 4

3

V

A
= 16(30)

π(0.0203)
+ 4

3

[

0.55(103)

(π/4)(0.0202)

]

= 21.43(106) Pa = 21.43 MPa

σ ′ = [25.472 + 3(21.432)]1/2 = 45.02 MPa

n = 280

45.02
= 6.22 Ans.

5-15 Sy = 32 kpsi

At A, M = 6(190) = 1 140 lbf·in, T = 4(190) = 760 lbf · in.

σx = 32M

πd3
= 32(1140)

π(3/4)3
= 27 520 psi

τzx = 16T

πd3
= 16(760)

π(3/4)3
= 9175 psi

τmax =

√

(

27 520

2

)2

+ 91752 = 16 540 psi

n = Sy

2τmax

= 32

2(16.54)
= 0.967 Ans.

MSS predicts yielding

5-16 From Prob. 4-15, σx = 27.52 kpsi, τzx = 9.175 kpsi. For Eq. (5-15), adjusted for coordinates,

σ ′ =
[

27.522 + 3(9.175)2
]1/2 = 31.78 kpsi

n = Sy

σ ′ = 32

31.78
= 1.01 Ans.

DE predicts no yielding, but it is extremely close. Shaft size should be increased.
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5-17 Design decisions required:

• Material and condition

• Design factor

• Failure model

• Diameter of pin

Using F = 416 lbf from Ex. 5-3

σmax = 32M

πd3

d =
(

32M

πσmax

)1/3

Decision 1: Select the same material and condition of Ex. 5-3 (AISI 1035 steel, Sy =
81 000).

Decision 2: Since we prefer the pin to yield, set nd a little larger than 1. Further explana-

tion will follow.

Decision 3: Use the Distortion Energy static failure theory.

Decision 4: Initially set nd = 1

σmax = Sy

nd

= Sy

1
= 81 000 psi

d =
[

32(416)(15)

π(81 000)

]1/3

= 0.922 in

Choose preferred size of d = 1.000 in

F = π(1)3(81 000)

32(15)
= 530 lbf

n = 530

416
= 1.274

Set design factor to nd = 1.274

Adequacy Assessment:

σmax = Sy

nd

= 81 000

1.274
= 63 580 psi

d =
[

32(416)(15)

π(63 580)

]1/3

= 1.000 in (OK )

F = π(1)3(81 000)

32(15)
= 530 lbf

n = 530

416
= 1.274 (OK)
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5-18 For a thin walled cylinder made of AISI 1018 steel, Sy = 54 kpsi, Sut = 64 kpsi.

The state of stress is

σt = pd

4t
= p(8)

4(0.05)
= 40p, σl = pd

8t
= 20p, σr = −p

These three are all principal stresses. Therefore,

σ ′ = 1√
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]1/2

= 1√
2

[(40p − 20p)2 + (20p + p)2 + (−p − 40p)2]

= 35.51p = 54 ⇒ p = 1.52 kpsi (for yield) Ans.

For rupture, 35.51p
.= 64 ⇒ p

.= 1.80 kpsi Ans.

5-19 For hot-forged AISI steel w = 0.282 lbf/in3, Sy = 30 kpsi and ν = 0.292. Then ρ = w/g =
0.282/386 lbf · s2/in; ri = 3 in; ro = 5 in; r2

i = 9; r2
o = 25; 3 + ν = 3.292; 1 + 3ν = 1.876.

Eq. (3-55) for r = ri becomes

σt = ρω2

(

3 + ν

8

)[

2r2
o + r2

i

(

1 − 1 + 3ν

3 + ν

)]

Rearranging and substituting the above values:

Sy

ω2
= 0.282

386

(

3.292

8

)[

50 + 9

(

1 − 1.876

3.292

)]

= 0.016 19

Setting the tangential stress equal to the yield stress,

ω =
(

30 000

0.016 19

)1/2

= 1361 rad/s

or n = 60ω/2π = 60(1361)/(2π)

= 13 000 rev/min

Now check the stresses at r = (rori )
1/2 , or r = [5(3)]1/2 = 3.873 in

σr = ρω2

(

3 + ν

8

)

(ro − ri )
2

= 0.282ω2

386

(

3.292

8

)

(5 − 3)2

= 0.001 203ω2

Applying Eq. (3-55) for σt

σt = ω2

(

0.282

386

)(

3.292

8

)[

9 + 25 + 9(25)

15
− 1.876(15)

3.292

]

= 0.012 16ω2
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Using the Distortion-Energy theory

σ ′ =
(

σ 2
t − σrσt + σ 2

r

)1/2 = 0.011 61ω2

Solving ω =
(

30 000

0.011 61

)1/2

= 1607 rad/s

So the inner radius governs and n = 13 000 rev/min Ans.

5-20 For a thin-walled pressure vessel,

di = 3.5 − 2(0.065) = 3.37 in

σt = p(di + t)

2t

σt = 500(3.37 + 0.065)

2(0.065)
= 13 212 psi

σl = pdi

4t
= 500(3.37)

4(0.065)
= 6481 psi

σr = −pi = −500 psi

These are all principal stresses, thus,

σ ′ = 1√
2
{(13 212 − 6481)2 + [6481 − (−500)]2 + (−500 − 13 212)2}1/2

σ ′ = 11 876 psi

n = Sy

σ ′ = 46 000

σ ′ = 46 000

11 876

= 3.87 Ans.

5-21 Table A-20 gives Sy as 320 MPa. The maximum significant stress condition occurs at ri

where σ1 = σr = 0, σ2 = 0, and σ3 = σt . From Eq. (3-49) for r = ri , pi = 0,

σt = − 2r2
o po

r2
o − r2

i

= − 2(1502) po

1502 − 1002
= −3.6po

σ ′ = 3.6po = Sy = 320

po = 320

3.6
= 88.9 MPa Ans.

5-22 Sut = 30 kpsi, w = 0.260 lbf/in3 , ν = 0.211, 3 + ν = 3.211, 1 + 3ν = 1.633. At the inner

radius, from Prob. 5-19

σt

ω2
= ρ

(

3 + ν

8

)(

2r2
o + r2

i − 1 + 3ν

3 + ν
r2

i

)
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Here r2
o = 25, r2

i = 9, and so 

σt

ω2
= 0.260

386

(

3.211

8

)(

50 + 9 − 1.633(9)

3.211

)

= 0.0147

Since σr is of the same sign, we use M2M failure criteria in the first quadrant. From Table

A-24, Sut = 31 kpsi, thus,

ω =
(

31 000

0.0147

)1/2

= 1452 rad/s

rpm = 60ω/(2π) = 60(1452)/(2π)

= 13 866 rev/min

Using the grade number of 30 for Sut = 30 000 kpsi gives a bursting speed of 13640 rev/min.

5-23 TC = (360 − 27)(3) = 1000 lbf · in , TB = (300 − 50)(4) = 1000 lbf · in

In xy plane, MB = 223(8) = 1784 lbf · in and MC = 127(6) = 762 lbf · in.

In the xz plane, MB = 848 lbf · in and MC = 1686 lbf · in. The resultants are

MB = [(1784)2 + (848)2]1/2 = 1975 lbf · in

MC = [(1686)2 + (762)2]1/2 = 1850 lbf · in

So point B governs and the stresses are

τxy = 16T

πd3
= 16(1000)

πd3
= 5093

d3
psi

σx = 32MB

πd3
= 32(1975)

πd3
= 20 120

d3
psi

Then

σA, σB = σx

2
±

[

(

σx

2

)2

+ τ 2
xy

]1/2

σA, σB = 1

d3







20.12

2
±

[

(

20.12

2

)2

+ (5.09)2

]1/2






= (10.06 ± 11.27)

d3
kpsi · in3

B
A D

C

xz plane

106 lbf

8" 8" 6"

281 lbf

387 lbf

B
A D

C

223 lbf

8" 8" 6"

350 lbf

127 lbf

xy plane

y
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Then

σA = 10.06 + 11.27

d3
= 21.33

d3
kpsi

and

σB = 10.06 − 11.27

d3
= −1.21

d3
kpsi

For this state of stress, use the Brittle-Coulomb-Mohr theory for illustration. Here we use

Sut (min) = 25 kpsi, Suc(min) = 97 kpsi, and Eq. (5-31b) to arrive at

21.33

25d3
− −1.21

97d3
= 1

2.8

Solving gives d = 1.34 in. So use d = 1 3/8 in Ans.

Note that this has been solved as a statics problem. Fatigue will be considered in the next

chapter.

5-24 As in Prob. 5-23, we will assume this to be statics problem. Since the proportions are un-

changed, the bearing reactions will be the same as in Prob. 5-23. Thus

xy plane: MB = 223(4) = 892 lbf · in

xz plane: MB = 106(4) = 424 lbf · in

So

Mmax = [(892)2 + (424)2]1/2 = 988 lbf · in

σx = 32MB

πd3
= 32(988)

πd3
= 10 060

d3
psi

Since the torsional stress is unchanged,

τxz = 5.09/d3 kpsi

σA, σB = 1

d3







(

10.06

2

)

±
[

(

10.06

2

)2

+ (5.09)2

]1/2






σA = 12.19/d3 and σB = −2.13/d3

Using the Brittle-Coulomb-Mohr, as was used in Prob. 5-23, gives

12.19

25d3
− −2.13

97d3
= 1

2.8

Solving gives d = 1 1/8 in. Ans.

5-25 (FA)t = 300 cos 20 = 281.9 lbf , (FA)r = 300 sin 20 = 102.6 lbf

T = 281.9(12) = 3383 lbf · in, (FC )t = 3383

5
= 676.6 lbf

(FC )r = 676.6 tan 20 = 246.3 lbf
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MA = 20
√

193.72 + 233.52 = 6068 lbf · in

MB = 10
√

246.32 + 676.62 = 7200 lbf · in (maximum)

σx = 32(7200)

πd3
= 73 340

d3

τxy = 16(3383)

πd3
= 17 230

d3

σ ′ =
(

σ 2
x + 3τ 2

xy

)1/2 = Sy

n
[

(

73 340

d3

)2

+ 3

(

17 230

d3

)2
]1/2

= 79 180

d3
= 60 000

3.5

d = 1.665 in so use a standard diameter size of 1.75 in Ans.

5-26 From Prob. 5-25,

τmax =
[

(

σx

2

)2

+ τ 2
xy

]1/2

= Sy

2n

[

(

73 340

2d3

)2

+
(

17 230

d3

)2
]1/2

= 40 516

d3
= 60 000

2(3.5)

d = 1.678 in so use 1.75 in Ans.

5-27 T = (270 − 50)(0.150) = 33 N · m, Sy = 370 MPa

(T1 − 0.15T1)(0.125) = 33 ⇒ T1 = 310.6 N, T2 = 0.15(310.6) = 46.6 N

(T1 + T2) cos 45 = 252.6 N

xz plane

z

107.0 N

174.4 N

252.6 N

320 N

300 400 150

y

163.4 N 89.2 N252.6 N

300 400 150

xy plane

A

B C
O

xy plane

x

y

A B C

ROy = 193.7 lbf

RBy = 158.1 lbf
281.9 lbf

20" 16" 10"

246.3 lbf

O

xz plane

x

z

A B C

ROz = 233.5 lbf

RBz = 807.5 lbf

O

102.6 lbf

20" 16" 10"

676.6 lbf
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MA = 0.3
√

163.42 + 1072 = 58.59 N · m (maximum)

MB = 0.15
√

89.22 + 174.42 = 29.38 N · m

σx = 32(58.59)

πd3
= 596.8

d3

τxy = 16(33)

πd3
= 168.1

d3

σ ′ =
(

σ 2
x + 3τ 2

xy

)1/2 =
[

(

596.8

d3

)2

+ 3

(

168.1

d3

)2
]1/2

= 664.0

d3
= 370(106)

3.0

d = 17.5(10−3) m = 17.5 mm, so use 18 mm Ans.

5-28 From Prob. 5-27,

τmax =
[

(

σx

2

)2

+ τ 2
xy

]1/2

= Sy

2n

[

(

596.8

2d3

)2

+
(

168.1

d3

)2
]1/2

= 342.5

d3
= 370(106)

2(3.0)

d = 17.7(10−3) m = 17.7 mm, so use 18 mm Ans.

5-29 For the loading scheme shown in Figure (c),

Mmax = F

2

(

a

2
+ b

4

)

= 4.4

2
(6 + 4.5)

= 23.1 N · m

For a stress element at A:

σx = 32M

πd3
= 32(23.1)(103)

π(12)3
= 136.2 MPa

The shear at C is 

τxy = 4(F/2)

3πd2/4
= 4(4.4/2)(103)

3π(12)2/4
= 25.94 MPa

τmax =
[

(

136.2

2

)2
]1/2

= 68.1 MPa

Since Sy = 220 MPa, Ssy = 220/2 = 110 MPa, and

n = Ssy

τmax

= 110

68.1
= 1.62 Ans.

x

y

A

B

V

M

C
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For the loading scheme depicted in Figure (d )

Mmax = F

2

(

a + b

2

)

− F

2

(

1

2

)(

b

2

)2

= F

2

(

a

2
+ b

4

)

This result is the same as that obtained for Figure (c). At point B, we also have a surface

compression of

σy = −F

A
= −F

bd
− −4.4(103)

18(12)
= −20.4 MPa

With σx = −136.2 MPa. From a Mohrs circle diagram, τmax = 136.2/2 = 68.1 MPa.

n = 110

68.1
= 1.62 MPa Ans.

5-30 Based on Figure (c) and using Eq. (5-15)

σ ′ =
(

σ 2
x

)1/2

= (136.22)1/2 = 136.2 MPa

n = Sy

σ ′ = 220

136.2
= 1.62 Ans.

Based on Figure (d) and using Eq. (5-15) and the solution of Prob. 5-29,

σ ′ =
(

σ 2
x − σxσy + σ 2

y

)1/2

= [(−136.2)2 − (−136.2)(−20.4) + (−20.4)2]1/2

= 127.2 MPa

n = Sy

σ ′ = 220

127.2
= 1.73 Ans.

5-31

When the ring is set, the hoop tension in the ring is 

equal to the screw tension.

σt =
r2

i pi

r2
o − r2

i

(

1 + r2
o

r2

)

We have the hoop tension at any radius. The differential hoop tension d F is 

d F = wσt dr

F =
∫ ro

ri

wσt dr =
wr2

i pi

r2
o − r2

i

∫ ro

ri

(

1 + r2
o

r2

)

dr = wri pi (1)

dF

r

w
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The screw equation is

Fi = T

0.2d
(2)

From Eqs. (1) and (2)

pi = F

wri

= T

0.2dwri

d Fx = f piri dθ

Fx =
∫ 2π

o

f piwri dθ = f T w

0.2dwri

ri

∫ 2π

o

dθ

= 2π f T

0.2d
Ans.

5-32

(a) From Prob. 5-31, T = 0.2Fi d

Fi = T

0.2d
= 190

0.2(0.25)
= 3800 lbf Ans.

(b) From Prob. 5-31, F = wri pi

pi = F

wri

= Fi

wri

= 3800

0.5(0.5)
= 15 200 psi Ans.

(c) σt =
r2

i pi

r2
o − r2

i

(

1 + r2
o

r

)

r=ri

=
pi

(

r2
i + r2

o

)

r2
o − r2

i

= 15 200(0.52 + 12)

12 − 0.52
= 25 333 psi Ans.

σr = −pi = −15 200 psi

(d) τmax = σ1 − σ3

2
= σt − σr

2

= 25 333 − (−15 200)

2
= 20 267 psi Ans.

σ ′ =
(

σ 2
A + σ 2

B − σAσB

)1/2

= [25 3332 + (−15 200)2 − 25 333(−15 200)]1/2

= 35 466 psi Ans.

(e) Maximum Shear hypothesis

n = Ssy

τmax

= 0.5Sy

τmax

= 0.5(63)

20.267
= 1.55 Ans.

Distortion Energy theory

n = Sy

σ ′ = 63

35 466
= 1.78 Ans.

dFx

piri d�
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5-33

The moment about the center caused by force F

is Fre where re is the effective radius. This is 

balanced by the moment about the center 

caused by the tangential (hoop) stress.

Fre =
∫ ro

ri

rσtw dr

=
wpir

2
i

r2
o − r2

i

∫ ro

ri

(

r + r2
o

r

)

dr

re =
wpir

2
i

F
(

r2
o − r2

i

)

(

r2
o − r2

i

2
+ r2

o ln
ro

ri

)

From Prob. 5-31, F = wri pi . Therefore,

re = ri

r2
o − r2

i

(

r2
o − r2

i

2
+ r2

o ln
ro

ri

)

For the conditions of Prob. 5-31, ri = 0.5 and ro = 1 in

re = 0.5

12 − 0.52

(

12 − 0.52

2
+ 12 ln

1

0.5

)

= 0.712 in

5-34 δnom = 0.0005 in

(a) From Eq. (3-57)

p = 30(106)(0.0005)

(13)

[

(1.52 − 12)(12 − 0.52)

2(1.52 − 0.52)

]

= 3516 psi Ans.

Inner member:

Eq. (3-58) (σt )i = −p
R2 + r2

i

R2 − r2
i

= −3516

(

12 + 0.52

12 − 0.52

)

= −5860 psi

(σr )i = −p = −3516 psi

Eq. (5-13) σ ′
i =

(

σ 2
A − σAσB + σ 2

B

)1/2

= [(−5860)2 − (−5860)(−3516) + (−3516)2]1/2

= 5110 psi Ans.

Outer member:

Eq. (3-59) (σt )o = 3516

(

1.52 + 12

1.52 − 12

)

= 9142 psi

(σr )o = −p = −3516 psi

Eq. (5-13) σ ′
o = [91422 − 9142(−3516) + (−3516)2]1/2

= 11 320 psi Ans.

R

�t

1

2

"

1"R
re

r
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(b) For a solid inner tube,

p = 30(106)(0.0005)

1

[

(1.52 − 12)(12)

2(12)(1.52)

]

= 4167 psi Ans.

(σt )i = −p = −4167 psi, (σr )i = −4167 psi

σ ′
i = [(−4167)2 − (−4167)(−4167) + (−4167)2]1/2 = 4167 psi Ans.

(σt )o = 4167

(

1.52 + 12

1.52 − 12

)

= 10 830 psi, (σr )o = −4167 psi

σ ′
o = [10 8302 − 10 830(−4167) + (−4167)2]1/2 = 13 410 psi Ans.

5-35 Using Eq. (3-57) with diametral values,

p = 207(103)(0.02)

(503)

[

(752 − 502)(502 − 252)

2(752 − 252)

]

= 19.41 MPa Ans.

Eq. (3-58) (σt )i = −19.41

(

502 + 252

502 − 252

)

= −32.35 MPa

(σr )i = −19.41 MPa

Eq. (5-13) σ ′
i = [(−32.35)2 − (−32.35)(−19.41) + (−19.41)2]1/2

= 28.20 MPa Ans.

Eq. (3-59) (σt )o = 19.41

(

752 + 502

752 − 502

)

= 50.47 MPa,

(σr )o = −19.41 MPa

σ ′
o = [50.472 − 50.47(−19.41) + (−19.41)2]1/2 = 62.48 MPa Ans.

5-36 Max. shrink-fit conditions: Diametral interference δd = 50.01 − 49.97 = 0.04 mm. Equa-

tion (3-57) using diametral values:

p = 207(103)0.04

503

[

(752 − 502)(502 − 252)

2(752 − 252)

]

= 38.81 MPa Ans.

Eq. (3-58): (σt )i = −38.81

(

502 + 252

502 − 252

)

= −64.68 MPa

(σr )i = −38.81 MPa

Eq. (5-13):

σ ′
i =

[

(−64.68)2 − (−64.68)(−38.81) + (−38.81)2
]1/2

= 56.39 MPa Ans.
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5-37

δ = 1.9998

2
− 1.999

2
= 0.0004 in

Eq. (3-56)

0.0004 = p(1)

14.5(106)

[

22 + 12

22 − 12
+ 0.211

]

+ p(1)

30(106)

[

12 + 0

12 − 0
− 0.292

]

p = 2613 psi

Applying Eq. (4-58) at R,

(σt )o = 2613

(

22 + 12

22 − 12

)

= 4355 psi

(σr )o = −2613 psi, Sut = 20 kpsi, Suc = 83 kpsi

∣

∣

∣

∣

σo

σA

∣

∣

∣

∣

= 2613

4355
< 1, ∴ use Eq. (5-32a)

h = Sut/σA = 20/4.355 = 4.59 Ans.

5-38 E = 30(106) psi, ν = 0.292, I = (π/64)(24 − 1.54) = 0.5369 in4

Eq. (3-57) can be written in terms of diameters,

p = Eδd

D

[

(

d2
o − D2

) (

D2 − d2
i

)

2D2
(

d2
o − d2

i

)

]

= 30(106)

1.75
(0.002 46)

[

(22 − 1.752)(1.752 − 1.52)

2(1.752)(22 − 1.52)

]

= 2997 psi = 2.997 kpsi

Outer member:

Outer radius: (σt )o = 1.752(2.997)

22 − 1.752
(2) = 19.58 kpsi, (σr )o = 0

Inner radius: (σt )i = 1.752(2.997)

22 − 1.752

(

1 + 22

1.752

)

= 22.58 kpsi, (σr )i = −2.997 kpsi

Bending:

ro: (σx )o = 6.000(2/2)

0.5369
= 11.18 kpsi

ri : (σx )i = 6.000(1.75/2)

0.5369
= 9.78 kpsi

Torsion: J = 2I = 1.0738 in4

ro: (τxy)o = 8.000(2/2)

1.0738
= 7.45 kpsi

ri : (τxy)i = 8.000(1.75/2)

1.0738
= 6.52 kpsi
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Outer radius is plane stress 

σx = 11.18 kpsi, σy = 19.58 kpsi, τxy = 7.45 kpsi

Eq. (5-15) σ ′ = [11.182 − (11.18)(19.58) + 19.582 + 3(7.452)]1/2 = Sy

no

= 60

no

21.35 = 60

no

⇒ no = 2.81 Ans.

Inner radius, 3D state of stress

From Eq. (5-14) with τyz = τzx = 0

σ ′ = 1√
2

[(9.78 − 22.58)2 + (22.58 + 2.997)2 + (−2.997 − 9.78)2 + 6(6.52)2]1/2 = 60

ni

24.86 = 60

ni

⇒ ni = 2.41 Ans.

5-39 From Prob. 5-38: p = 2.997 kpsi, I = 0.5369 in4, J = 1.0738 in4

Inner member:

Outer radius: (σt )o = −2.997

[

(0.8752 + 0.752)

(0.8752 − 0.752)

]

= −19.60 kpsi

(σr )o = −2.997 kpsi

Inner radius: (σt )i = −2(2.997)(0.8752)

0.8752 − 0.752
= −22.59 kpsi

(σr )i = 0

Bending: 

ro: (σx )o = 6(0.875)

0.5369
= 9.78 kpsi

ri : (σx )i = 6(0.75)

0.5369
= 8.38 kpsi

Torsion:

ro: (τxy)o = 8(0.875)

1.0738
= 6.52 kpsi

ri : (τxy)i = 8(0.75)

1.0738
= 5.59 kpsi

yx

—2.997 kpsi

9.78 kpsi

22.58 kpsi

6.52 kpsi

z
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The inner radius is in plane stress: σx = 8.38 kpsi, σy = −22.59 kpsi, τxy = 5.59 kpsi

σ ′
i = [8.382 − (8.38)(−22.59) + (−22.59)2 + 3(5.592)]1/2 = 29.4 kpsi

ni = Sy

σ ′
i

= 60

29.4
= 2.04 Ans.

Outer radius experiences a radial stress, σr

σ ′
o = 1√

2

[

(−19.60 + 2.997)2 + (−2.997 − 9.78)2 + (9.78 + 19.60)2 + 6(6.52)2
]1/2

= 27.9 kpsi

no = 60

27.9
= 2.15 Ans.

5-40

σp = 1

2

(

2
K I√
2πr

cos
θ

2

)

±
[

(

K I√
2πr

sin
θ

2
cos

θ

2
sin

3θ

2

)2

+
(

K I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

)2
]1/2

= K I√
2πr

[

cos
θ

2
±

(

sin2 θ

2
cos2 θ

2
sin2 3θ

2
+ sin2 θ

2
cos2 θ

2
cos2 3θ

2

)1/2
]

= K I√
2πr

(

cos
θ

2
± cos

θ

2
sin

θ

2

)

= K I√
2πr

cos
θ

2

(

1 ± sin
θ

2

)

Plane stress: The third principal stress is zero and

σ1 = K I√
2πr

cos
θ

2

(

1 + sin
θ

2

)

, σ2 = K I√
2πr

cos
θ

2

(

1 − sin
θ

2

)

, σ3 = 0 Ans.

Plane strain: σ1 and σ2 equations still valid however,

σ3 = ν(σx + σy) = 2ν
K I√
2πr

cos
θ

2
Ans.

5-41 For θ = 0 and plane strain, the principal stress equations of Prob. 5-40 give

σ1 = σ2 = K I√
2πr

, σ3 = 2ν
K I√
2πr

= 2νσ1

(a) DE:
1√
2

[(σ1 − σ1)2 + (σ1 − 2νσ1)2 + (2νσ1 − σ1)2]1/2 = Sy

σ1 − 2νσ1 = Sy

For ν = 1

3
,

[

1 − 2

(

1

3

)]

σ1 = Sy ⇒ σ1 = 3Sy Ans.
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(b) MSS: σ1 − σ3 = Sy ⇒ σ1 − 2νσ1 = Sy

ν = 1

3
⇒ σ1 = 3Sy Ans.

σ3 = 2

3
σ1

Radius of largest circle

R = 1

2

[

σ1 − 2

3
σ1

]

= σ1

6

5-42 (a) Ignoring stress concentration

F = Sy A = 160(4)(0.5) = 320 kips Ans.

(b) From Fig. 6-36: h/b = 1, a/b = 0.625/4 = 0.1563, β = 1.3

Eq. (6-51) 70 = 1.3
F

4(0.5)

√

π(0.625)

F = 76.9 kips Ans.

5-43 Given: a = 12.5 mm, K I c = 80 MPa ·
√

m, Sy = 1200 MPa, Sut = 1350 MPa

ro = 350

2
= 175 mm, ri = 350 − 50

2
= 150 mm

a/(ro − ri ) = 12.5

175 − 150
= 0.5

ri/ro = 150

175
= 0.857

Fig. 5-30: β
.= 2.5

Eq. (5-37): K I c = βσ
√

πa

80 = 2.5σ
√

π(0.0125)

σ = 161.5 MPa

Eq. (3-50) at r = ro:

σt =
r2

i pi

r2
o − r2

i

(2)

161.5 = 1502 pi (2)

1752 − 1502

pi = 29.2 MPa Ans.

�1, �2
�

�1

�

2
3
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5-44

(a) First convert the data to radial dimensions to agree with the formulations of Fig. 3-33.

Thus

ro = 0.5625 ± 0.001in

ri = 0.1875 ± 0.001 in

Ro = 0.375 ± 0.0002 in

Ri = 0.376 ± 0.0002 in

The stochastic nature of the dimensions affects the δ = |Ri | − |Ro| relation in

Eq. (3-57) but not the others. Set R = (1/2)(Ri + Ro) = 0.3755. From Eq. (3-57)

p = Eδ

R

[

(

r2
o − R2

) (

R2 − r2
i

)

2R2
(

r2
o − r2

i

)

]

Substituting and solving with E = 30 Mpsi gives

p = 18.70(106) δ

Since δ = Ri − Ro

δ̄ = R̄i − R̄o = 0.376 − 0.375 = 0.001 in

and

σ̂δ =
[

(

0.0002

4

)2

+
(

0.0002

4

)2
]1/2

= 0.000 070 7 in

Then

Cδ = σ̂δ

δ̄
= 0.000 070 7

0.001
= 0.0707

The tangential inner-cylinder stress at the shrink-fit surface is given by

σi t = −p
R̄2 + r̄2

i

R̄2 − r̄2
i

= −18.70(106) δ

(

0.37552 + 0.18752

0.37552 − 0.18752

)

= −31.1(106) δ

σ̄i t = −31.1(106) δ̄ = −31.1(106)(0.001)

= −31.1(103) psi

Also

σ̂σi t
= |Cδσ̄i t | = 0.0707(−31.1)103

= 2899 psi

σi t = N(−31 100, 2899) psi Ans.
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(b) The tangential stress for the outer cylinder at the shrink-fit surface is given by

σot = p

(

r̄2
o + R̄2

r̄2
o − R̄2

)

= 18.70(106) δ

(

0.56252 + 0.37552

0.56252 − 0.37552

)

= 48.76(106) δ psi

σ̄ot = 48.76(106)(0.001) = 48.76(103) psi

σ̂σot
= Cδσ̄ot = 0.0707(48.76)(103) = 34.45 psi

� σot = N(48 760, 3445) psi Ans.

5-45 From Prob. 5-44, at the fit surface σot = N(48.8, 3.45) kpsi. The radial stress is the fit

pressure which was found to be

p = 18.70(106) δ

p̄ = 18.70(106)(0.001) = 18.7(103) psi

σ̂p = Cδ p̄ = 0.0707(18.70)(103)

= 1322 psi

and so

p = N(18.7, 1.32) kpsi

and

σor = −N(18.7, 1.32) kpsi

These represent the principal stresses. The von Mises stress is next assessed.

σ̄A = 48.8 kpsi, σ̄B = −18.7 kpsi

k = σ̄B/σ̄A = −18.7/48.8 = −0.383

σ̄ ′ = σ̄A(1 − k + k2)1/2

= 48.8[1 − (−0.383) + (−0.383)2]1/2

= 60.4 kpsi

σ̂σ ′ = Cpσ̄
′ = 0.0707(60.4) = 4.27 kpsi

Using the interference equation

z = − S̄ − σ̄ ′
(

σ̂ 2
S + σ̂ 2

σ ′
)1/2

= − 95.5 − 60.4

[(6.59)2 + (4.27)2]1/2
= −4.5

p f = α = 0.000 003 40,

or about 3 chances in a million. Ans.
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5-46

σt = pd

2t
= 6000N(1, 0.083 33)(0.75)

2(0.125)

= 18N(1, 0.083 33) kpsi

σl = pd

4t
= 6000N(1, 0.083 33)(0.75)

4(0.125)

= 9N(1, 0.083 33) kpsi

σr = −p = −6000N(1, 0.083 33) kpsi

These three stresses are principal stresses whose variability is due to the loading. From

Eq. (5-12), we find the von Mises stress to be

σ ′ =
{

(18 − 9)2 + [9 − (−6)]2 + (−6 − 18)2

2

}1/2

= 21.0 kpsi

σ̂σ ′ = Cpσ̄
′ = 0.083 33(21.0) = 1.75 kpsi

z = − S̄ − σ̄ ′
(

σ̂ 2
S + σ̂ 2

σ ′
)1/2

= 50 − 21.0

(4.12 + 1.752)1/2
= −6.5

The reliability is very high

R = 1 − �(6.5) = 1 − 4.02(10−11)
.= 1 Ans.



Chapter 6 
 

 

6-1 Eq. (2-21):  3.4 3.4(300) 1020 MPaut BS H  
 Eq. (6-8):  0.5 0.5(1020) 510 MPae utS S   
 Table 6-2:   1.58, 0.085a b  
 Eq. (6-19):  0.0851.58(1020) 0.877b

a utk aS   

 Eq. (6-20):   0.107 0.1071.24 1.24(10) 0.969bk d   
 Eq. (6-18):   (0.877)(0.969)(510) 433 MPa     .e a b eS k k S Ans  
______________________________________________________________________________ 

 

6-2 (a)  Table A-20:   Sut = 80 kpsi 

  Eq. (6-8):   0.5(80) 40 kpsi     .eS A   ns

ns

ns

 (b)  Table A-20:   Sut = 90 kpsi  

 Eq. (6-8):     0.5(90) 45 kpsi     .eS A  

 (c)  Aluminum has no endurance limit.     Ans.  

 (d)  Eq. (6-8):   Sut > 200 kpsi, 100 kpsi     .eS A   

______________________________________________________________________________ 

 

6-3 rev120 kpsi,  70 kpsiutS    

 Fig. 6-18:  0.82f   
 

 Eq. (6-8):     0.5(120) 60 kpsi  e eS S   

 Eq. (6-14):  
 22 0.82(120)( )

161.4 kpsi
60

ut

e

f S
a

S
    

 Eq. (6-15):  
1 1 0.82(120)

log log 0.0716
3 3 60

ut

e

f S
b

S

           
  

 

 Eq. (6-16):  

1
1/

0.0716
rev 70

116 700 cycles     .
161.4

b

N A
a

        
  

ns  

______________________________________________________________________________ 
 

6-4 rev1600 MPa, 900 MPautS    
 

 Fig. 6-18:  Sut  = 1600 MPa = 232 kpsi.  Off the graph, so estimate f = 0.77. 
 

 Eq. (6-8):  Sut > 1400 MPa, so Se = 700 MPa   

 Eq. (6-14):  
 22 0.77(1600)( )

2168.3 MPa
700

ut

e

f S
a

S
    
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Eq. (6-15):  
1 1 0.77(1600)

log log 0.081838
3 3 700

ut

e

f S
b

S

           
  

 

Eq. (6-16):  

1
1/

0.081838
rev 900

46 400 cycles     .
2168.3

b

N A
a

        
  

ns  

______________________________________________________________________________ 
 

6-5  230 kpsi, 150 000 cyclesutS N 
 

Fig. 6-18, point is off the graph, so estimate:  f  = 0.77 
 

Eq. (6-8):  Sut > 200 kpsi, so 100 kpsie eS S    
 

Eq. (6-14):   
 22 0.77(230)( )

313.6 kpsi
100

ut

e

f S
a

S
    

Eq. (6-15):   
1 1 0.77(230)

log log 0.08274
3 3 100

ut

e

f S
b

S

           
  

 

 

Eq. (6-13):   
0.08274313.6(150 000) 117.0 kpsi     .b

fS aN Ans  

______________________________________________________________________________ 

 

6-6 = 160 kpsi 1100 MPautS 
 

Fig. 6-18:  f = 0.79 
 

Eq. (6-8):   0.5(1100) 550 MPa  e eS S   
 

Eq. (6-14):   
 22 0.79(1100)( )

1373 MPa
550

ut

e

f S
a

S
    

Eq. (6-15):   
1 1 0.79(1100)

log log 0.06622
3 3 550

ut

e

f S
b

S

           
  

 

 

Eq. (6-13):   
0.066221373(150 000) 624 MPa        .b

fS aN Ans  

______________________________________________________________________________ 

 

6-7 
 150 kpsi, 135 kpsi, 500 cyclesut ytS S N  

 
Fig. 6-18:   f = 0.798 

  

 From Fig. 6-10, we note that below 10
3
 cycles on the S-N diagram constitutes the low-

cycle region, in which Eq. (6-17) is applicable. 
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 Eq. (6-17):  
     log 0.798 /3log /3

150 500 122 kpsi             .
f

f utS S N Ans
    

 
 The testing should be done at a completely reversed stress of 122 kpsi, which is below 

the yield strength, so it is possible.     Ans. 
______________________________________________________________________________ 
 
6-8 The general equation for a line on a log Sf - log N scale is Sf  = aNb

, which is Eq. (6-13).  

By taking the log of both sides, we can get the equation of the line in slope-intercept 

form. 
 

    
 log log logfS b N  a

a

 

 Substitute the two known points to solve for unknowns a and b.  Substituting point (1, 

Sut),  

  

     log log(1) logutS b 
 

 From which . Substituting point uta S 3(10 , ) and ut utf S a S  

 

    
3log log10 logut utf S b S   

 

 From which   1/ 3 logb f
 

    
(log )/3 3    1 10f

f utS S N N   

N

N

 

______________________________________________________________________________ 

 

6-9 Read from graph:  From   3 610 ,90  and (10 ,50). bS aN
 

    

 
1 1

2 2

log log log

log log log

S a b

S a b

 
 

 

 From which 
 

    

1 2 2

2 1

log log log log
log

log /

S N S N
a

N N
1

  

        

6 3

6 3

log 90log10 log 50log10

log10 /10

2.2095




  
 

    

log 2.2095

0.0851 3 6

10 10 162.0 kpsi

log 50 / 90
0.0851

3

( ) 162      10 10  in kpsi     .

a

f ax

a

b

S N N

  

  

   Ans
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 Check: 
 

    

 
3

6

3 0.0851

10

6 0.0851

10

( ) 162(10 ) 90 kpsi

( ) 162(10 ) 50 kpsi

f ax

f ax

S

S





    

    
 

 The end points agree. 

______________________________________________________________________________ 
 

6-10 d = 1.5 in, Sut = 110 kpsi  

 

 Eq. (6-8):  0.5(110) 55 kpsieS  
 Table 6-2: a = 2.70, b =  0.265 

 Eq. (6-19):  0.2652.70(110) 0.777b
a utk aS   

 

 Since the loading situation is not specified, we’ll assume rotating bending or torsion so 

Eq. (6-20) is applicable.  This would be the worst case.  

 

     

0.107 0.1070.879 0.879(1.5) 0.842

Eq. (6-18): 0.777(0.842)(55) 36.0 kpsi .

b

e a b e

k d

S k k S Ans

   
  

______________________________________________________________________________ 
 

6-11 For AISI 4340 as-forged steel, 

 

 Eq. (6-8): Se = 100 kpsi 

 Table 6-2: a = 39.9, b =  0.995 

 Eq. (6-19): ka = 39.9(260)
0.995

 = 0.158 

 Eq. (6-20): 

0.107
0.75

0.907
0.30

bk


   
 

 

 

 Each of the other modifying factors is unity. 

    Se = 0.158(0.907)(100) = 14.3 kpsi 
 

 For AISI 1040: 

    

 0.995

0.5(113) 56.5 kpsi

39.9(113) 0.362

0.907 (same as 4340)

e

a

b

S

k

k



  

 


 

 Each of the other modifying factors is unity 
 

     
0.362(0.907)(56.5) 18.6 kpsieS  

 

 Not only is AISI 1040 steel a contender, it has a superior endurance strength. 

______________________________________________________________________________ 
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6-12 D = 1 in, d = 0.8 in, T = 1800 lbfin, f  = 0.9, and from Table A-20 for AISI 1020 CD,  

 Sut = 68 kpsi, and Sy = 57 kpsi. 

 (a)  
0.1 1

Fig. A-15-15: 0.125, 1.25, 1.40
0.8 0.8

ts

r D
K

d d
    

 
 
 Get the notch sensitivity either from Fig. 6-21, or from the curve-fit Eqs. (6-34) and  

 (6-35b).  We’ll use the equations. 

 

  
        23 5 8 30.190 2.51 10 68 1.35 10 68 2.67 10 68 0.07335a         

    
1 1

0.812
0.07335

11
0.1

sq
a

r

  


 

 Eq. (6-32): Kfs = 1 + qs (Kts  1) = 1 + 0.812(1.40  1) = 1.32

 

 

 For a purely reversing torque of T = 1800 lbfin, 
 

    
3 3

16 1.32(16)(1800)
23 635 psi 23.6 kpsi

(0.8)

fs
a fs

K TTr
K

J d


 
    

 
 

 Eq. (6-8):  0.5(68) 34 kpsieS  
 

 Eq. (6-19): ka = 2.70(68)
0.265

 = 0.883 

 

 Eq. (6-20): kb = 0.879(0.8)
0.107

 = 0.900 

 

 Eq. (6-26): kc = 0.59 

 

 Eq. (6-18) (labeling for shear): Sse = 0.883(0.900)(0.59)(34) = 15.9 kpsi 

 

 For purely reversing torsion, use Eq. (6-54) for the ultimate strength in shear. 

 

 Eq. (6-54): Ssu = 0.67 Sut = 0.67(68) = 45.6 kpsi 

 

 Adjusting the fatigue strength equations for shear, 

 Eq. (6-14): 
   2 2

0.9(45.6)
105.9 kpsi

15.9

su

se

f S
a

S
    

 Eq. (6-15): 
1 1 0.9(45.6)

log log 0.137 27
3 3 15.9

su

se

f S
b

S

           
  

 

 Eq. (6-16):  
1 1

0.137 27
323.3

61.7 10  cycles .
105.9

b
aN A
a

        
  

ns  
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 (b) For an operating temperature of 750 the temperature modification factor, F,

  from Table 6-4 is kd = 0.90. 

 

    Sse = 0.883(0.900)(0.59)(0.9)(34) = 14.3 kpsi 

 

    

   2 2
0.9(45.6)

117.8 kpsi
14.3

1 1 0.9(45.6)
log log 0.152 62

3 3 14.3

su

se

su

se

f S
a

S

f S
b

S

  

           
  

 

    
 

1 1

0.152 62
323.3

40.9 10  cycles .
117.8

b
aN A
a

        
  

ns

y

 

______________________________________________________________________________ 

 

6-13 (Table A-20) 
40.6 m, 2 kN, 1.5, 10  cycles, 770 MPa, 420 MPaa utL F n N S S     

 First evaluate the fatigue strength. 

 

   
 0.5(770) 385 MPaeS  

   
 0.71857.7(770) 0.488ak  

 

 Since the size is not yet known, assume a 

 typical value of kb = 0.85 and check later. 

 All other modifiers are equal to one. 

 

 Eq. (6-18): Se = 0.488(0.85)(385) = 160 MPa 

 

 In kpsi,  Sut = 770/6.89 = 112 kpsi 

 

 Fig. 6-18:   f = 0.83 

 Eq. (6-14): 
   2 2

0.83(770)
2553 MPa

160

ut

e

f S
a   

S
 

 Eq. (6-15): 
1 1 0.83(770)

log log 0.2005
3 3 160

ut

e

f S
b

S

           
  

 

 Eq. (6-13):  
4 0.20052553(10 ) 403 MPab

fS aN   
 

 Now evaluate the stress. 

   
 max (2000 N)(0.6 m) 1200 N mM   

   

   
max 3 3 3

/ 2 6 12006 7200

( ) /12
a

M bMc M
3I b b b b b

       Pa, with b in m. 

 

 Compare strength to stress and solve for the necessary b. 
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 6403 10

fS
3

1.5
7200 /a

n
b

    

 

    b = 0.0299 m   Select b = 30 mm.  
 

Since the size factor was guessed, go back and check it now.  

 Eq. (6-25):    1/2
0.808 0.808 0.808 30 24.24ed hb b     mm  

 Eq. (6-20): 

0.107
24.2

0.88
7.62

bk


   
 

 

 Our guess of 0.85 was slightly conservative, so we will accept the result of  

    b = 30 mm.     Ans. 
 

Checking yield, 

 

 

 6

max 3

7200
10 267 MPa

0.030
         

    

 

max

420
1.57

267

y
y

S
n


     

______________________________________________________________________________ 

-14 Given: w =2.5 in, t = 3/8 in, d = 0.5 in, nd = 2. From Table A-20, for AISI 1020 CD,  

Eq. (6-8): 

b = 1 (axial loading) 

Eq. (6-18): Se = 0.88(1)(0.85)(34) = 25.4 kpsi 

notch sensitivity either from Fig. 6-20, or from the curve-fit Eqs. (6-34) and  

h 

 

  

 

6
 Sut = 68 kpsi and Sy = 57 kpsi. 

 

 0.5(68) 34 kpsieS    

 Table 6-2: 88k 0.2652.70(68) 0. 
 a

 Eq. (6-21): k   

 Eq. (6-26): kc  = 0.85 

 

 
 

Table A-15-1: / 0.5 / 2.5 0.2,  2.5td K  w  
  
 

 Get the 

 (6-35a).  The relatively large radius is off the graph of Fig. 6-20, so we’ll assume the 

curves continue according to the same trend and use the equations to estimate the notc

sensitivity. 

        23 5 8 30.246 3.08 10 68 1.51 10 68 2.67 10 68 0.09799a         

    

1 1
0.836

0.09799
11

0.25

q
a

r

  


 

 Eq. (6-32): 1 ( 1) 1 0.836(2.5 1) 2.25f tK q K        
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2.25
= 3

(3 / 8)(2.5 0.5)

a a
a f

F F
K F

A
  


 

    
a

 

e life was not mentioned, we’ll assume infinite life is desired, so the 

    

 Since a finit

completely reversed stress must stay below the endurance limit. 

 

25.4
2

3

e
f

a a

S
n

F
    

    
ns4.23 kips     .aF A  

____ __________ ___ ____________________ _________________________________________ 

ble A-20, for AISI 1095 HR, Sut = 120 kpsi and Sy = 66 kpsi. 

 

-15 Given:6  max min2 in, 1.8 in, 0.1 in, 25 000 lbf in, 0.D d r M M     
 

 From Ta
 

(6-8):  0.5 0.5 120 60 kpsiS S      Eq. e ut
 

 Eq. (6-19):  0.2652.70(120) 0.76b
a utk aS   

 Eq. (6-24):  ie 0.370 0.370(1.8) 0.666 nd d    
 

 Eq. (6-20): 70.107 0.100.879 0.879(0.666) 0.92b ek d     

Fig. A-15-14:      

 

 Eq. (6-26): 1ck   
 

 Eq. (6-18): (0.76)(0.92)(1)(60) 42.0 kpsie a b c eS k k k S    

 

 / 2 /1.8 1.11,     / 0.1 /1.8 0.056D d r d    2.1tK 
 

 

 Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Eqs. (6-34) and  

 (6-35a).  We’ll use the equations. 

 

  
        23 5 8 30.246 3.08 10 120 1.51 10 120 2.67 10 120 0.04770a         

    

1 1
0.87

0.04770
11

0.1

q
a

r

  


 

 
Eq. (6-32):  1 ( 1) 1 0.87(2.1 1) 1.96f tK q K        

    
4

     

4 4( / 64) ( / 64)(1.8) 0.5153 inI d     
 

max

min

25 000(1.8 / 2)
43 664 psi 43.7 kpsi

0.5153

0

Mc

I




   


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 Eq. (6-36):      
max min

43.7 0
1.96 42.8 kpsi

2 2
m fK

 


    

 

        
max min

43.7 0
1.96 42.8 kpsi

2 2
a fK

 


    

 

 Eq. (6-46):   
1 42.8 42.8

42.0 120

a m

f e utn S S

 
   

 

   

 
 

     
 0.73 .fn A ns

 

 A factor of safety less than unity indicates a finite life. 

 

 Check for yielding.  It is not necessary to include the stress concentration for static 

yielding of a ductile material. 
 

     max

66
1.51 .

43.7

y
y

S
n A


   ns  

______________________________________________________________________________ 
 

6-16 From a free-body diagram analysis, the bearing reaction forces are found to be 2.1 kN at 

the left bearing and 3.9 kN at the right bearing. The critical location will be at the 

shoulder fillet between the 35 mm and the 50 mm diameters, where the bending moment 

is large, the diameter is smaller, and the stress concentration exists.  The bending moment 

at this point is  M = 2.1(200) = 420 kN·mm.  With a rotating shaft, the bending stress will 

be completely reversed. 
 

    

2

rev 4

420 (35 / 2)
0.09978 kN/mm 99.8 MPa

( / 64)(35)

Mc

I



   

 

 This stress is far below the yield strength of 390 MPa, so yielding is not predicted. Find 

the stress concentration factor for the fatigue analysis. 

 

  Fig. A-15-9:  r/d = 3/35 = 0.086,  D/d = 50/35 = 1.43,  Kt =1.7 

 

 Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Eqs. (6-34) and  

 (6-35a).  We’ll use the equations, with Sut = 470 MPa = 68.2 kpsi and r = 3 mm = 0.118 

in. 

  
        2 33 5 80.246 3.08 10 68.2 1.51 10 68.2 2.67 10 68.2 0.09771a         

    

1 1
0.78

0.09771
11

0.118

q
a

r

  


 

  Eq. (6-32):       1 ( 1) 1 0.78(1.7 1) 1.55f tK q K      
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 Eq. (6-8):  ' 0.5 0.5(470) 235 MPae utS S  

 Eq. (6-19):  0.2654.51(470) 0.88b
a utk aS   

 Eq. (6-24):  0.107 0.1071.24 1.24(35) 0.85bk d   

 
Eq. (6-26):

 
 1ck 

 Eq. (6-18):  ' (0.88)(0.85)(1)(235) 176 MPae a b c eS k k k S  
 

   
 rev

176
1.14   Infinite life is predicted.            .

1.55 99.8

e
f

f

S
n A

K 
   ns

 
______________________________________________________________________________ 
 

6-17 From a free-body diagram analysis, the 

bearing reaction forces are found to be RA = 

2000 lbf and RB = 1500 lbf.  The shear-force 

and bending-moment diagrams are shown.  

The critical location will be at the shoulder 

fillet between the 1-5/8 in and the 1-7/8 in 

diameters, where the bending moment is 

large, the diameter is smaller, and the stress 

concentration exists.  
 

   

 

  M = 16 000 – 500 (2.5) = 14 750 lbf · in 

 With a rotating shaft, the bending stress will 

be completely reversed. 
 

 
rev 4

14 750(1.625 / 2)
35.0 kpsi

( / 64)(1.625)

Mc

I



  

 
 This stress is far below the yield strength of 71 kpsi, so yielding is not predicted. 

 

 Fig. A-15-9:  r/d = 0.0625/1.625 = 0.04,  D/d = 1.875/1.625 = 1.15,  Kt =1.95 

 Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Eqs. (6-34) and  

 (6-35a). We will use the equations. 

  
        2 33 5 80.246 3.08 10 85 1.51 10 85 2.67 10 85 0.07690a         

     

1 1
0.76

0.07690
11

0.0625

q
a

r

  


. 

 Eq. (6-32):   
 

1 ( 1) 1 0.76(1.95 1) 1.72f tK q K      

 

 Eq. (6-8): S S  ' 0.5 0.5(85) 42.5 kpsie ut  
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 Eq. (6-19):  0.2652.70(85) 0.832b
a utk aS   

 Eq. (6-20):  0.107 0.1070.879 0.879(1.625) 0.835bk d   
 Eq. (6-26):  1ck 

 Eq. (6-18):  ' (0.832)(0.835)(1)(42.5) 29.5 kpsie a b c eS k k k S  
 

    
 rev

29.5
0.49               .

1.72 35.0

e
f

f

S
n A

K 
   ns

 
 Infinite life is not predicted.  Use the S-N diagram to estimate the life. 
 

 Fig. 6-18:  f = 0.867 

 

   2 2
0.867(85)

Eq. (6-14): 184.1
29.5

1 1 0.867(85)
Eq. (6-15): log log 0.1325

3 3 29.5

ut

e

ut

e

f S
a

S

f S
b

S

  

           
  

 

 

 

1 1

0.1325
rev (1.72)(35.0)

Eq. (6-16):   4611 cycles     
184.1

b
fK

N
a

         
  

 

    N = 4600 cycles              Ans. 
______________________________________________________________________________ 

 

6-18 From a free-body diagram analysis, the 

bearing reaction forces are found to be RA = 

1600 lbf and RB = 2000 lbf.  The shear-force 

and bending-moment diagrams are shown.  

The critical location will be at the shoulder 

fillet between the 1-5/8 in and the 1-7/8 in 

diameters, where the bending moment is 

large, the diameter is smaller, and the stress 

concentration exists. 

 

  M = 12 800 + 400 (2.5) = 13 800 lbf · in 

 

 With a rotating shaft, the bending stress will 

be completely reversed.

 

 

 
rev 4

13 800(1.625 / 2
  

)
32.8 kpsi

( / 64)(1.625)

Mc

I



 

 

 This stress is far below the yield strength of 71 kpsi, so yielding is not predicted. 

 

  Fig. A-15-9:  r/d = 0.0625/1.625 = 0.04,  D/d = 1.875/1.625 = 1.15,  Kt =1.95 
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 Get the notch sensitivity either from Fig. 6-20, or from the curve-fit Eqs. (6-34) and  

 (6-35a).  We will use the equations 

 

   
        2 33 5 80.246 3.08 10 85 1.51 10 85 2.67 10 85 0.07690a         

     

1 1
0.76

0.07690
11

0.0625

q
a

r

  


 

 Eq. (6-32):  
 

1 ( 1) 1 0.76(1.95 1) 1.72f tK q K      

 

 Eq. (6-8):   ' 0.5 0.5(85) 42.5 kpsie utS S  

 Eq. (6-19):   0.2652.70(85) 0.832b
a utk aS   

 Eq. (6-20):   0.107 0.1070.879 0.879(1.625) 0.835bk d   
 Eq. (6-26):   1ck 

 Eq. (6-18):   ' (0.832)(0.835)(1)(42.5) 29.5 kpsie a b c eS k k k S  
 

     
 rev

29.5
0.52               .

1.72 32.8

e
f

f

S
n A

K 
   ns

 
 Infinite life is not predicted.  Use the S-N diagram to estimate the life. 

 Fig. 6-18:   f = 0.867 

 

   2 2
0.867(85)

Eq. (6-14): 184.1
29.5

1 1 0.867(85)
Eq. (6-15): log log 0.1325

3 3 29.5

ut

e

ut

e

f S
a

S

f S
b

S

  

           
  

 

 

 

1 1

0.1325
rev (1.72)(32.8)

Eq. (6-16): 7527 cycles     
184.1

b
fK

N
a

         
  

 

    N = 7500 cycles              Ans. 
______________________________________________________________________________ 

 
6-19 Table A-20:    120 kpsi, 66 kpsiut yS S 
 N = (950 rev/min)(10 hr)(60 min/hr) = 570 000 cycles 

 

 One approach is to guess a diameter and solve the problem as an iterative analysis 

problem. Alternatively, we can estimate the few modifying parameters that are dependent 

on the diameter and solve the stress equation for the diameter, then iterate to check the 

estimates.  We’ll use the second approach since it should require only one iteration, since 

the estimates on the modifying parameters should be pretty close.   
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 First, we’ll evaluate the stress.  From a free-body diagram analysis, the reaction forces at 

the bearings are R1 = 2 kips and R2 = 6 kips. The critical stress location is in the middle 

of the span at the shoulder, where the bending moment is high, the shaft diameter is 

smaller, and a stress concentration factor exists.  If the critical location is not obvious, 

prepare a complete bending moment diagram and evaluate at any potentially critical 

locations.  Evaluating at the critical shoulder, 

 

   

 
 2 kip 10 in 20 kip inM   

   

   
rev 4 3 3 3

/ 2 32 2032 203.7
kpsi

/ 64

M dMc M

I d d d d


  
      

 

 Now we’ll get the notch sensitivity and stress concentration factor. The notch sensitivity 

depends on the fillet radius, which depends on the unknown diameter.  For now, we’ll 

estimate a value for q = 0.85 from observation of Fig. 6-20, and check it later.   

 

  Fig. A-15-9: 
 

/ 1.4 / 1.4,    / 0.1 / 0.1,      1.65tD d d d r d d d K    
 

 Eq. (6-32): 
 

1 ( 1) 1 0.85(1.65 1) 1.55f tK q K      

 

 Now we will evaluate the fatigue strength. 

 

    

'

0.265

0.5(120) 60 kpsi

2.70(120) 0.76

e

a

S

k 

 

 

  Since the diameter is not yet known, assume a typical value of k
 

b = 0.85 and check later.  

All other modifiers are equal to one.  

 

    Se = (0.76)(0.85)(60) = 38.8 kpsi 

 

 Determine the desired fatigue strength from the S-N diagram. 

 

 Fig. 6-18:   f = 0.82 

 

   2 2
0.82(120)

Eq. (6-14): 249.6
38.8

1 1 0.82(120)
Eq. (6-15): log log 0.1347

3 3 38.8

ut

e

ut

e

f S
a

S

f S
b

S

  

           
  

 

 

 
 

0.1347Eq. (6-13): 249.6(570 000) 41.9 kpsib
fS aN   

 

 Compare strength to stress and solve for the necessary d. 
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  3

rev

    d = 2.29 in

 

41.9
1.6

1.55 203.7 /

f
f

f

S
n

K d
  

 

 

 Since the size factor and notch sensitivity were guessed, go back and check them now. 

 

 Eq. (6-20):      0.1570.1570.91 0.91 2.29 0.80bk d
  

 

 Our guess of 0.85 was conservative.  From Fig. 6-20 with r = d/10 = 0.229 in, we are off 

the graph, but it appears our guess for q is low.  Assuming the trend of the graph 

continues, we’ll choose q = 0.91 and iterate the problem with the new values of kb and q. 

 Intermediate results are Se = 36.5 kpsi, Sf = 39.6 kpsi, and Kf = 1.59.  This gives 

  

    
  3

rev

39.6
1.6

1.59 203.7

    d = 2.36 in  Ans.
 

/

f
f

f

S
n

K d
  

a

 

 

 A quick check of kb and q show that our estimates are still reasonable for this diameter. 

______________________________________________________________________________ 
 

6-20 40 kpsi, 60 kpsi, 80 kpsi, 15 kpsi, 25 kpsi, 0e y ut m a mS S S            

 Obtain von Mises stresses for the alternating, mid-range, and maximum stresses. 

    
   

   

1/21/2 22 2 2

1/21/2 22 2 2

3 25 3 0 25.00 kpsi

3 0 3 15 25.98 kpsi

a a a

m m m

  

  

       

       

   
     

 

1/21/2 2 22 2

max max max

1/2
2 2

3 3

25 3 15 36.06 kpsi

a m a m              

    

 

   max

60
1.66     .

36.06

y
y

S
n A


  


ns  

 
 (a) Modified Goodman, Table 6-6 
 

   

1
1.05     .

(25.00 / 40) (25.98 / 80)
fn A 


ns  

 
 (b) Gerber, Table 6-7 

   

22
1 80 25.00 2(25.98)(40)

1 1 1.31 .
2 25.98 40 80(25.00)

fn A
                       

ns  
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 (c) ASME-Elliptic, Table 6-8 
 

   
2 2

1
1.32 .

(25.00 / 40) (25.98 / 60)
fn A 


ns

a

 

______________________________________________________________________________ 
 

6-21 40 kpsi, 60 kpsi, 80 kpsi, 20 kpsi, 10 kpsi, 0e y ut m a mS S S            

 Obtain von Mises stresses for the alternating, mid-range, and maximum stresses. 

     
   

   

1/21/2 22 2 2

1/21/2 22 2 2

3 10 3 0 10.00 kpsi

3 0 3 20 34.64 kpsi

a a a

m m m

  

  

       

       

    
     

 

1/21/2 2 22 2

max max max

1/2
2 2

3 3

10 3 20 36.06 kpsi

a m a m              

    

 

    max

60
1.66     .

36.06

y
y

S
n A


  


ns  

 
 (a) Modified Goodman, Table 6-6 

    

1
1.46     .

(10.00 / 40) (34.64 / 80)
fn A 


ns  

 (b) Gerber, Table 6-7 
 

    

22
1 80 10.00 2(34.64)(40)

1 1 1.74 .
2 34.64 40 80(10.00)

fn A
               

      

ns  

 

 (c) ASME-Elliptic, Table 6-8 
 

    
2 2

1
1.59 .

(10.00 / 40) (34.64 / 60)
fn A 


ns

m

 
______________________________________________________________________________ 

 

6-22 40 kpsi, 60 kpsi, 80 kpsi, 10 kpsi, 15 kpsi, 12 kpsi, 0e y ut a m aS S S            

 Obtain von Mises stresses for the alternating, mid-range, and maximum stresses. 

     
   

   

1/21/2 22 2 2

1/21/2 22 2 2

3 12 3 10 21.07 kpsi

3 0 3 15 25.98 kpsi

a a a

m m m

  

  

       

       
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     

   

1/21/2 2 22 2

max max max

1/2
2 2

3 3

12 0 3 10 15 44.93 kpsi

a m a m              

      

 

    max

60
1.34     .

44.93

y
y

S
n A


  


ns  

 

 (a) Modified Goodman, Table 6-6 

 

    

1
1.17     .

(21.07 / 40) (25.98 / 80)
fn A 


ns  

  
 (b) Gerber, Table 6-7 

    

22
1 80 21.07 2(25.98)(40)

1 1 1.47 .
2 25.98 40 80(21.07)

fn A
               

      

ns  

 (c) ASME-Elliptic, Table 6-8 

 

   
2 2

1
1.47 .

(21.07 / 40) (25.98 / 60)
fn A 


ns

a

 

______________________________________________________________________________ 

 

6-23 40 kpsi, 60 kpsi, 80 kpsi, 30 kpsi, 0e y ut a m aS S S            
 

 Obtain von Mises stresses for the alternating, mid-range, and maximum stresses. 

     
   

 

1/21/2 22 2 2

1/2
2 2

3 0 3 30 51.96 kpsi

3 0 kpsi

a a a

m m m

  

  

       

   

    

     

 

1/21/2 2 22 2

max max max

1/2
2

3 3

3 30 51.96 kpsi

a m a m              

   

 

    max

60
1.15     .

51.96

y
y

S
n A


  


ns  

 

 (a) Modified Goodman, Table 6-6 
 

    

1
0.77     .

(51.96 / 40)
fn A  ns  

  
 (b) Gerber criterion of Table 6-7 is only valid for m > 0; therefore use Eq. (6-47). 
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40
1 0

51.96

a e
f f

e a

S
n n

S
.77 .Ans





    


 

 

 (c) ASME-Elliptic, Table 6-8 
 

    
2

1
0.77 .

(51.96 / 40)
fn A  ns  

 

 Since infinite life is not predicted, estimate a life from the S-N diagram.  Since 'm = 0, 

the stress state is completely reversed and the S-N diagram is applicable for 'a.   
 Fig. 6-18:  f = 0.875 

 Eq. (6-14):  
 22 0.875(80)( )

122.5
40

ut

e

f S
a

S
    

 Eq. (6-15):  
1 1 0.875(80)

log log 0.08101
3 3 40

ut

e

f S
b

S

           
  

 

 Eq. (6-16):  

1
1/

0.08101
rev 51.96

39 600 cycles     .
122.5

b

N A
a

        
  

ns

a

 

______________________________________________________________________________ 
 
6-24 40 kpsi, 60 kpsi, 80 kpsi, 15 kpsi, 15 kpsi, 0e y ut a m mS S S            

 Obtain von Mises stresses for the alternating, mid-range, and maximum stresses. 

        
1/21/2 22 2 23 0 3 15 25.98 kpsia a a          

        
1/21/2 22 2 23 15 3 0 15.00 kpsim m m          

    

     

   

1/21/2 2 22 2

max max max

1/2
2 2

3 3

15 3 15 30.00 kpsi

a m a m              

    

 

    max

60
2.00     .

30

y
y

S
n A


  


ns  

 
 (a) Modified Goodman, Table 6-6 
 

    

1
1.19     .

(25.98 / 40) (15.00 / 80)
fn A 


ns  

  
 (b) Gerber, Table 6-7 

    

22
1 80 25.98 2(15.00)(40)

1 1 1.43 .
2 15.00 40 80(25.98)

fn A
               

      

ns  
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 (c) ASME-Elliptic, Table 6-8 

 

    
2 2

1
1.44 .

(25.98 / 40) (15.00 / 60)
fn A 


ns  

______________________________________________________________________________ 
 

6-25 Given: . From Table A-20, for AISI 1040 

CD,  
max min28 kN, 28 kNF F  
590 MPa, 490 MPa, yS S ut

 Check for yielding 

    

2max
max

28 000
147.4 N/mm 147.4 MPa

10(25 6)

F

A
    


 

 

    max

490
3.32 .

147.4

y
y

S
n A


   ns  

 Determine the fatigue factor of safety based on infinite life 

 

 Eq. (6-8): '  0.5(590) 295 MPaeS  

 Eq. (6-19):  0.2654.51(590) 0.832b
a utk aS   

 Eq. (6-21):  1    (axial)bk 
 Eq. (6-26):  0.85ck 

 Eq. (6-18):  ' (0.832)(1)(0.85)(295) 208.6 MPae a b c eS k k k S  

 
 

 Fig. 6-20:  q = 0.83 

 Fig. A-15-1:  t/ 0.24, 2.44d K w

    
 1 ( 1) 1 0.83(2.44 1) 2.20f tK q K      

 

    

 
max min

max min

28 000 28 000
2.2 324.2 MPa

2 2(10)(25 6)

0
2

a f

m f

F F
K

A

F F
K

A





 
  




 

 

    

1 324.2 0

208.6 590

0.64 .

a m

f e ut

f

n S S

n Ans

 
   


 

 Since infinite life is not predicted, estimate a life from the S-N diagram.  Since m = 0, 

the stress state is completely reversed and the S-N diagram is applicable for a.   
 

   Sut = 590/6.89 = 85.6 kpsi 

  

 Fig. 6-18:   f = 0.87 
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 Eq. (6-14):  
 22 0.87(590)( )

1263
208.6

ut

e

f S
a

S
    

 Eq. (6-15):  
1 1 0.87(590)

log log 0.1304
3 3 208.6

ut

e

f S
b

S

           
  

 

 Eq. (6-16):  

1
1/

0.1304
rev 324.2

33 812 cycles     
1263

b

N
a

        
    

    N = 34 000 cycles                 Ans.
 

________________________________________________________________________ 
 
6-26  

max min590 MPa, 490 MPa, 28 kN, 12 kNut yS S F F   
 

 Check for yielding 
 

    

2max
max

28 000
147.4 N/mm 147.4 MPa

10(25 6)

F

A
    


 

    max

490
3.32 .

147.4

y
y

S
n A


   ns

 
 

 Determine the fatigue factor of safety based on infinite life. 

 From Prob. 6-25: 
 

208.6 MPa, 2.2e fS K 

    

 
max min

28 000 12 000
2.2 92.63 MPa

2 2(10)(25 6)
a f

F F
K

A



  

  

max min 28 000 12 000
2.2 231.6 MPa

2 2(10)(25 6)
m f

F F
K

A


  
    

 

    
 

 Modified Goodman criteria: 
 

    

1 92.63 231.6

208.6 590

a m

f e utn S S

 
     

 

    
 1.20 .fn A ns

 

 Gerber criteria: 

    

2 2

21
1 1

2

ut a m e
f

m e ut a

S S
n

S S

 
 

                

 

             

22
1 590 92.63 2(231.6)(208.6)

1 1
2 231.6 208.6 590(92.63)

                 
 

 

    
 1.49 .fn A ns
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 ASME-Elliptic criteria: 

 

    
2 2 2

1 1

( / ) ( / ) (92.63 / 208.6) (231.6 / 490)
f

a e m y

n
S S 

 
  2

 

 

          = 1.54    Ans.  

 

 The results are consistent with Fig. 6-27, where for a mean stress that is about half of the 

yield strength, the Modified Goodman line should predict failure significantly before the 

other two. 

______________________________________________________________________________ 
 
6-27  590 MPa, 490 MPaut yS S 
 

 (a)  max min28 kN, 0 kNF F 
 

 Check for yielding 
 

    

2max
max

28 000
147.4 N/mm 147.4 MPa

10(25 6)

F

A
    


 

 

    max

490
3.32 .

147.4

y
y

S
n A


   ns

 
 

 From Prob. 6-25:  208.6 MPa, 2.2e fS K 

    

max min

max min

28 000 0
2.2 162.1 MPa

2 2(10)(25 6)

28 000 0
2.2 162.1 MPa

2 2(10)(25 6)

a f

m f

F F
K

A

F F
K

A





 
  



  
    

 

 

    

1 162.1 162.1

208.6 590

a m

f e utn S S

 
     

 

     
0.95 .fn A ns

 Since infinite life is not predicted, estimate a life from the S-N diagram.  First, find an 

equivalent completely reversed stress (See Ex. 6-12).   

 

    
rev

162.1
223.5 MPa

1 ( / ) 1 (162.1/ 590)

a

m utS




  
 

 

 

 Fig. 6-18:   f = 0.87 

 Eq. (6-14):  
 22 0.87(590)( )

1263
208.6

ut

e

f S
a

S
    
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 Eq. (6-15):  
1 1 0.87(590)

log log 0.1304
3 3 208.6

ut

e

f S
b

S

           
  

 

 Eq. (6-16):  

1
1/

0.1304
rev 223.5

586 000 cycles             .   
1263

b

N A
a

        
  

ns
 

 

 (b)  max min28 kN, 12 kNF F 
 

 The maximum load is the same as in part (a), so  

    max 147.4 MPa   

     
3.32 .yn A ns

 

 Factor of safety based on infinite life: 
 

    

max min

max min

28 000 12 000
2.2 92.63 MPa

2 2(10)(25 6)

28 000 12 000
2.2 231.6 MPa

2 2(10)(25 6)

a f

m f

F F
K

A

F F
K

A





 
  



  
    

 

    

1 92.63 231.6

208.6 590

a m

f e utn S S

 
     

 

    
 1.20 .fn A ns

 

 (c)  max min12 kN, 28 kNF F  
 

 The compressive load is the largest, so check it for yielding. 
 

    

min
min

28 000
147.4 MPa

10(25 6)

F

A
 

   


 

 

    min

490
3.32 .

147.4

yc
y

S
n A




  


ns  

 

 Factor of safety based on infinite life: 
 

    

 

 

max min

max min

12 000 28 000
2.2 231.6 MPa

2 2(10)(25 6)

12 000 28 000
2.2 92.63 MPa

2 2(10)(25 6)

a f

m f

F F
K

A

F F
K

A





 
  



  
     

 

 

 For m < 0, 
208.6

0.90 .
231.6

e
f

a

S
n A


   ns  
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 Since infinite life is not predicted, estimate a life from the S-N diagram.  For a negative 

mean stress, we shall assume the equivalent completely reversed stress is the same as the 

actual alternating stress.  Get a and b from part (a). 

 Eq. (6-16):  

1
1/

0.1304
rev 231.6

446 000 cycles             .   
1263

b

N A
a

        
  

ns



 
______________________________________________________________________________ 
 
6-28 Eq. (2-21):   Sut = 0.5(400) = 200 kpsi 

 
 Eq. (6-8): '  0.5(200) 100 kpsieS  

 Eq. (6-19):  0.71814.4(200) 0.321b
a utk aS   

 Eq. (6-25):  e 0.37 0.37(0.375) 0.1388 ind d  

 Eq. (6-20):  0.107 0.1070.879 0.879(0.1388) 1.09b ek d   
 

 Since we have used the equivalent diameter method to get the size factor, and in doing so 

introduced greater uncertainties, we will choose not to use a size factor greater than one.  

Let kb = 1. 

 

 Eq. (6-18):  (0.321)(1)(100) 32.1 kpsieS  

    

40 20 40 20
10 lb          30 lb

2 2
a mF F

 
     

    

3 3

3 3

32 32(10)(12)
23.18 kpsi

(0.375)

32 32(30)(12)
69.54 kpsi

(0.375)

a
a

m
m

M

d

M

d


 


 

  

  
 

 
 (a) Modified Goodman criterion 
 

    

1 23.18 69.54

32.1 200

a m

f e utn S S

 
     

    
 0.94            .fn A ns

 

 Since infinite life is not predicted, estimate a life from the S-N diagram.  First, find an 

equivalent completely reversed stress (See Ex. 6-12).   

 

    
rev

23.18
35.54 kpsi

1 ( / ) 1 (69.54 / 200)

a

m utS




  
 

 

 Fig. 6-18:  f = 0.775 

 Eq. (6-14):  
 22 0.775(200)( )

748.4
32.1

ut

e

f S
a

S
    
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 Eq. (6-15):  
1 1 0.775(200)

log log 0.228
3 3 32.1

ut

e

f S
b

S

           
  

 

 Eq. (6-16):  

1
1/

0.228
rev 35.54

637 000 cycles             .   
748.4

b

N 
 

Ans
a

       
  

 

 (b) Gerber criterion, Table 6-7 
 

   

2 2

22

21
1 1

2

1 200 23.18 2(69.54)(32.1)
1 1

2 69.54 32.1 200(23.18)

1.16      Infinite life is predicted    .

ut a m e
f

m e ut a

S S
n

S S

Ans

 
 

                
                 



 

______________________________________________________________________________ 
 
6-29  207.0 GPaE 

 (a) 3 41
(20)(4 ) 106.7 mm

12
I   

    

3

3

3

3

Fl EIy
y F

EI l
    

    

9 12 3

min 3 9

3(207)(10 )(106.7)(10 )(2)(10 )
48.3 N .

140 (10 )
F A

 

  ns  

 

    

9 12 3

max 3 9

3(207)(10 )(106.7)(10 )(6)(10 )
144.9 N     .

140 (10 )
F A

 

  ns  

 
 (b) Get the fatigue strength information. 

 Eq. (2-21):     Sut = =3.4HB = 3.4(490) = 1666 MPa 

 From problem statement:  Sy = 0.9Sut = 0.9(1666) = 1499 MPa 

 Eq. (6-8):    700 MPaeS 

 Eq. (6-19):    ka = 1.58(1666)
-0.085

 = 0.84 

 Eq. (6-25):    de = 0.808[20(4)]
1/2

 = 7.23 mm 

 Eq. (6-20):    kb = 1.24(7.23)
-0.107

 = 1.00 
 Eq. (6-18):    Se = 0.84(1)(700) = 588 MPa 

 

 This is a relatively thick curved beam, so 

use the method in Sect. 3-18 to find the 

stresses.  The maximum bending moment 

will be to the centroid of the section as 

shown. 
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 M = 142F N·mm, A = 4(20) = 80 mm

2
, h = 4 mm, r i  = 4 mm, ro = r i  + h = 8 mm, 

 rc = r i  + h/2 = 6 mm 

 

 Table 3-4:    
4

5.7708 mm
ln( / ) ln(8 / 4)

n
o i

h
r

r r
    

    
 6 5.7708 0.2292 mmc ne r r    

    
 5.7708 4 1.7708 mmi n ic r r    

     
8 5.7708 2.2292 mmo o nc r r    

 Get the stresses at the inner and outer surfaces from Eq. (3-65) with the axial stresses 

added.  The signs have been set to account for tension and compression as appropriate. 

 

    

(142 )(1.7708)
3.441  MPa

80(0.2292)(4) 80

(142 )(2.2292)
2.145  MPa

80(0.2292)(8) 80

i
i

i

o
o

o

Mc F F F
F

Aer A

Mc F F F
F

Aer A





       

    
 

    

min

max

min

max

( ) 3.441(144.9) 498.6 MPa

( ) 3.441(48.3) 166.2 MPa

( ) 2.145(48.3) 103.6 MPa

( ) 2.145(144.9) 310.8 MPa

i

i

o

o






   
   

 
 

 

    
 166.2 498.6

( ) 166.2 MPa
2

i a
  

   

    

 166.2 498.6
( ) 332.4 MPa

2
i m

  
    

    
310.8 103.6

( ) 103.6 MPa
2

o a 
   

    

310.8 103.6
( ) 207.2 MPa

2
o m 

   

 To check for yielding, we note that the largest stress is –498.6 MPa (compression) on the 

inner radius.  This is considerably less than the estimated yield strength of 1499 MPa, so 

yielding is not predicted.  

 

 Check for fatigue on both inner and outer radii since one has a compressive mean stress 

and the other has a tensile mean stress.  

 Inner radius:   

 Since m < 0, 
588

3.54
166.2

e
f

a

S
n


    
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 Outer radius: 

 Since m > 0, we will use the Modified Goodman line. 

     

103.6 207.2
1/

588 1666

3.33

a m
f

e ut

f

n
S S

n

 
   


 

 Infinite life is predicted at both inner and outer radii.      Ans. 
______________________________________________________________________________ 

 
6-30 From Table A-20, for AISI 1018 CD,

 
64 kpsi, 54 kpsiut yS S 

 
 

 Eq. (6-8): '  0.5(64) 32 kpsieS  

 Eq. (6-19):  0.2652.70(64) 0.897ak  
 Eq. (6-20):  1   (axial)bk 
 Eq. (6-26):  0.85ck 
 Eq. (6-18):  (0.897)(1)(0.85)(32) 24.4 kpsieS  
 

 Fillet:  

   Fig. A-15-5:       / 3.5 / 3 1.17,    / 0.25 / 3 0.083,    1.85tD d r d K    
 Use Fig. 6-20 or Eqs. (6-34) and (6-35a) for q. Estimate a little high since it is off the 

graph. q = 0.85 
 

    
 1 ( 1) 1 0.85(1.85 1) 1.72f tK q K      

 

    

max
max

2

min

max min

max min

5
3.33 kpsi

3.0(0.5)

16
10.67 kpsi

3.0(0.5)

3.33 ( 10.67)
1.72 12.0 kpsi

2 2

3.33 ( 10.67)
1.72 6.31 kpsi

2 2

a f

m f

F

h

K

K





 

 

  


  

  
  

          
  

w

 

 

    min

54
5.06 Does not yield.

10.67

y
y

S
n


   


 

 

 Since the midrange stress is negative, 
 

    

24.4
2.03

12.0

e
f

a

S
n


    
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 Hole: 

   Fig. A-15-1: 
 1/ 0.4 / 3.5 0.11 2.68td K   w

 Use Fig. 6-20 or Eqs. (6-34) and (6-35a) for q. Estimate a little high since it is off the 

graph. q = 0.85 

 

    
 1 0.85(2.68 1) 2.43fK    

 

    

 

 

max
max

1

min
min

1

5
3.226 kpsi

0.5(3.5 0.4)

16
10.32 kpsi

0.5(3.5 0.4)

F

h d

F

h d





  
 


   

 

w

w

 

 

    

max min

max min

3.226 ( 10.32)
2.43 16.5 kpsi

2 2

3.226 ( 10.32)
2.43 8.62 kpsi

2 2

a f

m f

K

K

 

 

  
  

          
  

 

 

    min

54
5.23 does not yield

10.32

y
y

S
n


   


 

 

 Since the midrange stress is negative, 
 

    

24.4
1.48

16.5

e
f

a

S
n


    

 

 Thus the design is controlled by the threat of fatigue at the hole with a minimum factor of 

safety of  1.48. .fn A ns

______________________________________________________________________________ 
 
6-31  64 kpsi, 54 kpsiut yS S 

 Eq. (6-8): '  0.5(64) 32 kpsieS  

 Eq. (6-19):  0.2652.70(64) 0.897ak  

 Eq. (6-20):  1   (axial)bk 
 Eq. (6-26):  0.85ck 
 Eq. (6-18):  (0.897)(1)(0.85)(32) 24.4 kpsieS  
 

 Fillet:  

   Fig. A-15-5:       / 2.5 /1.5 1.67,    / 0.25 /1.5 0.17,    2.1tD d r d K    
 Use Fig. 6-20 or Eqs. (6-34) and (6-35a) for q. Estimate a little high since it is off the 

graph. q = 0.85 
 

    
 1 ( 1) 1 0.85(2.1 1) 1.94f tK q K      
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max
max

2

min

16
21.3 kpsi

1.5(0.5)

4
5.33 kpsi

1.5(0.5)

F

h




  


  

w

 

    

max min

max min

21.3 ( 5.33)
1.94 25.8 kpsi

2 2

21.3 ( 5.33)
1.94 15.5 kpsi

2 2

a f

m f

K

K

 

 

  
  

         
  

 

 

    max

54
2.54 Does not yield.

21.3

y
y

S
n


     

 

 Using Modified Goodman criteria, 
 

    

1 25.8 15.5

24.4 64

a m

f e utn S S

 
     

 

    
 0.77fn 

 Hole: 

  Fig. A-15-1: 
 1/ 0.4 / 2.5 0.16 2.55td K   w

 Use Fig. 6-20 or Eqs. (6-34) and (6-35a) for q. Estimate a little high since it is off the 

graph. q = 0.85 
 

    
 1 0.85(2.55 1) 2.32fK    

 

    

 

 

max
max

1

min
min

1

16
15.2 kpsi

0.5(2.5 0.4)

4
3.81 kpsi

0.5(2.5 0.4)

F

h d

F

h d





  
 


   

 

w

w

 

 

    

max min

max min

15.2 ( 3.81)
2.32 22.1 kpsi

2 2

15.2 ( 3.81)
2.32 13.2 kpsi

2 2

a f

m f

K

K

 

 

      
 

         
  

 

    max

54
3.55 Does not yield.

15.2

y
y

S
n


     

 

 Using Modified Goodman criteria 
 

    

1 22.1 13.2

24.4 64

a m

f e utn S S

 
     

    
 0.90fn 
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 Thus the design is controlled by the threat of fatigue at the fillet with a minimum factor 

of safety of  0.77 .fn A ns

______________________________________________________________________________ 
 
6-32 

 
64 kpsi, 54 kpsiut yS S 

 From Prob. 6-30, the fatigue factor of safety at the hole is nf  = 1.48.  To match this at the 

fillet,  

    
24.4

      16.5 kpsi
1.48

e e
f a

a f

S S
n

n



      

 

 where Se is unchanged from Prob. 6-30.  The only aspect of a that is affected by the 

fillet radius is the fatigue stress concentration factor.  Obtaining a in terms of Kf, 
 

    

max min 3.33 ( 10.67)
7.00

2 2
a f f fK K K

    
  

 
 

 Equating to the desired stress, and solving for Kf, 

 

     7.00 16.5          2.36a f fK K      

 

 Assume since we are expecting to get a smaller fillet radius than the original, that q will 

be back on the graph of Fig. 6-20, so we’ll estimate q = 0.8. 
 

    
 1 0.80( 1) 2.36 2.7f t tK K K     

 

 From Fig. A-15-5, with D / d = 3.5/3 = 1.17 and Kt = 2.6, find r / d.  Choosing r / d = 

0.03, and with d = w2 = 3.0,  
 

     2 0.03 0.03 3.0 0.09 in r   w  
 At this small radius, our estimate for q is too high.  From Fig. 6-20, with r = 0.09, q 

should be about 0.75.  Iterating, we get Kt = 2.8.  This is at a difficult range on Fig. A-15-

5 to read the graph with any confidence, but we’ll estimate r / d = 0.02, giving r = 0.06 

in.  This is a very rough estimate, but it clearly demonstrates that the fillet radius can be 

relatively sharp to match the fatigue factor of safety of the hole.       Ans. 
______________________________________________________________________________ 
 
6-33  60 kpsi, 110 kpsiy utS S 
 

 Inner fiber where 3  / 4 incr 

    

3 3
0.84375

4 16(2)

3 3
0.65625

4 32

o

i

r

r

  

  
 

 Table 3-4, p. 121,
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3 /16
0.74608 in

0.84375
lnln

0.65625

n
o

i

h
r

r

r

    

 

    

 
0.75 0.74608 0.00392 in

0.74608 0.65625 0.08983

c n

i n i

e r r

c r r

    

    

    

23 3
0.035156 in

16 16
A

     
  

 

 Eq. (3-65), p. 119,  

 

    

(0.08983)
993.3

(0.035156)(0.00392)(0.65625)

i
i

i

Mc T
T

Aer
 

     

 

 where T is in lbf·in and i  is in psi. 
 

    

1
( 993.3) 496.7

2

496.7

m

a

T T

T





   


 

 Eq. (6-8):   ' 0.5 110 55 kpsieS  

 Eq. (6-19):  0.2652.70(110) 0.777ak  

 Eq. (6-25):     1/2

e 0.808 3 /16 3 /16 0.1515 ind    
 Eq. (6-20):    0.107

0.879 0.1515 1.08 (round to 1)bk


 

 Eq. (6-19):  (0.777)(1)(55) 42.7 kpsieS  
 

 For a compressive midrange component, / . Thus,a e fS n   
 

    

42.7
0.4967

3
T   

     28.7 lbf inT  
 

 Outer fiber where 2  .5 incr 
 

    

3
2.5 2.59375

32

3
2.5 2.40625

32

o

i

r

r

  

  
 

    

3 /16
2.49883

2.59375
ln

2.40625

nr    

    

 
2.5 2.49883 0.00117 in

2.59375 2.49883 0.09492 ino

e

c

  
  
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(0.09492)
889.7  psi

(0.035156)(0.00117)(2.59375)

1
(889.7 ) 444.9  psi

2

o
o

o

m a

Mc T
T

Aer

T T



 

  

  

 

 (a) Using Eq. (6-46), for modified Goodman, we have 

    

1

0.4449 0.4449 1

42.7 110 3

a m

e utS S n

T T

 
 

 

 

 

     23.0 lbf in .T A  ns
 

 (b) Gerber, Eq. (6-47), at the outer fiber,  
 

    

2

2

1

3(0.4449 ) 3(0.4449 )
1

42.7 110

a m

e ut

n n

S S

T T

  
  
 

   
 

 

 

     28.2 lbf in .T A  ns
 (c) To guard against yield, use T of part (b) and the inner stress. 
 

    

60
2.14 .

0.9933(28.2)

y
y

i

S
n A


   ns  

______________________________________________________________________________ 
 
6-34 From Prob. 6-33,  42.7 kpsi, 60 kpsi,  and 110 kpsie y utS S S  
 

 (a) Assuming the beam is straight, 
 

    

 
max 3 2 3

/ 2 6 6
910.2

/12 (3 /16)

M hMc M T
T

I bh bh
       

  

 Goodman:  
0.4551 0.4551 1

42.7 110 3

T T
   

 

     22.5 lbf in .T A  ns
 

 (b) Gerber:  

2
3(0.4551 ) 3(0.4551 )

1
42.7 110

T T   
 

 

     27.6 lbf in .T A  ns
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 (c)   
max

60
2.39 .

0.9102(27.6)

y
y

S
n A


   ns  

______________________________________________________________________________ 
6-35  

,bend ,axial ,tors1.4, 1.1, 2.0, 300 MPa, 400 MPa, 200 MPaf f f y ut eK K K S S S     

 Bending:  0,  60 MPam a    

 Axial:   20 MPa, 0m a    

 Torsion:  25 MPa, 25 MPam a    

 Eqs. (6-55) and (6-56): 

 

    

   

   

2 2

2 2

1.4(60) 0 3 2.0(25) 120.6 MPa

0 1.1(20) 3 2.0(25) 89.35 MPa

a

m





    

    
 

 

 Using Modified Goodman, Eq. (6-46), 
 

    

1 120.6 89.35

200 400

a m

f e utn S S

  
     

 

    
 1.21 .fn A ns

 

 Check for yielding, using the conservative max a m      , 
 

    

300
1.43 .

120.6 89.35

y
y

a m

S
n A

 
  

  
ns  

______________________________________________________________________________ 
 
6-36  

,bend ,tors1.4, 2.0, 300 MPa, 400 MPa, 200 MPaf f y ut eK K S S S    

 Bending: max min150 MPa, 40 MPa, 55 MPa, 95 MPam a         

 Torsion: 90 MPa, 9 MPam a  
 

 Eqs. (6-55) and (6-56): 
 

    

   

   

2 2

2 2

1.4(95) 3 2.0(9) 136.6 MPa

1.4(55) 3 2.0(90) 321.1 MPa

a

m





   

   
 

 

 Using Modified Goodman, 
 

    

1 136.6 321.1

200 400

a m

f e utn S S

  
     

    
 0.67 .fn A ns

 Check for yielding, using the conservative max a m      , 
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300
0.66 .

136.6 321.1

y
y

a m

S
n A

 
  

  
ns

 
 Since the conservative yield check indicates yielding, we will check more carefully with 

with max  obtained directly from the maximum stresses, using the distortion energy 

failure theory, without stress concentrations.  Note that this is exactly the method used for 

static failure in Ch. 5. 

 

    

       2 2 2 2

max max max

max

3 150 3 90 9 227.8 MPa

300
1.32 .

227.8

y
y

S
n Ans

  



      

  
  

 Since yielding is not predicted, and infinite life is not predicted, we would like to 

estimate a life from the S-N diagram.  First, find an equivalent completely reversed stress 

(See Ex. 6-12).   

 

    
rev

136.6
692.5 MPa

1 ( / ) 1 (321.1/ 400)

a

m utS





  

 
 

 This stress is much higher than the ultimate strength, rendering it impractical for the S-N 

diagram.  We must conclude that the stresses from the combination loading, when 

increased by the stress concentration factors, produce such a high midrange stress that the 

equivalent completely reversed stress method is not practical to use.  Without testing, we 

are unable to predict a life. 

______________________________________________________________________________ 
 
6-37 Table A-20:  

ut y64 kpsi,  54 kpsiS S 

 From Prob. 3-68, the critical stress element experiences  = 15.3 kpsi and  = 4.43 kpsi. 

The bending is completely reversed due to the rotation, and the torsion is steady, giving 

a = 15.3 kpsi, m = 0 kpsi, a = 0 kpsi, m = 4.43 kpsi.
  
Obtain von Mises stresses for 

the alternating, mid-range, and maximum stresses. 

 

    

 

   

   

   

1/21/2 22 2 2

1/21/2 22 2 2

1/21/2 22 2 2

max max max

3 15.3 3 0 15.3 kpsi

3 0 3 4.43 7.67 kpsi

3 15.3 3 4.43 17.11 kpsi

a a a

m m m

  

  

  

       

       

       
 

 Check for yielding, using the distortion energy failure theory.  

    max

54
3.16

17.11

y
y

S
n


  


 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):   0.5 64 32 kpsieS  
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 Eq. (6-19):  0.2652.70(64) 0.90ak  

 Eq. (6-20):  0.1070.879(1.25) 0.86bk  
 Eq. (6-18):  0.90(0.86)(32) 24.8 kpsieS  
 Using Modified Goodman, 
 

    

1 15.3 7.67

24.8 64

a m

f e utn S S

  
     

 

       
 1.36 .fn A ns

______________________________________________________________________________ 
 
6-38 Table A-20:  

ut y440 MPa,  370 MPaS S 

 From Prob. 3-69, the critical stress element experiences  = 263 MPa and  = 57.7 MPa. 

The bending is completely reversed due to the rotation, and the torsion is steady, giving 

a = 263 MPa, m = 0, a = 0 MPa, m = 57.7 MPa.
  
Obtain von Mises stresses for the 

alternating, mid-range, and maximum stresses. 

 

    

 

   

   

   

1/21/2 22 2 2

1/21/2 22 2 2

1/21/2 22 2 2

max max max

3 263 3 0 263 MPa

3 0 3 57.7 99.9 MPa

3 263 3 57.7 281 MPa

a a a

m m m

  

  

  

       

       

       
 

 Check for yielding, using the distortion energy failure theory.  
 

    max

370
1.32

281

y
y

S
n


  


 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):   0.5 440 220 MPaeS  

 
Eq. (6-19):

 
 0.2654.51(440) 0.90ak  

 
Eq. (6-20):

 
 0.1071.24(30) 0.86bk  

 
Eq. (6-18):

  
0.90(0.86)(220) 170 MPaeS  

 

 Using Modified Goodman, 
 

    

1 263 99.9

170 440

a m

f e utn S S

  
     

        
Infinite life is not predicted.         Ans. 0.56fn 

______________________________________________________________________________ 
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6-39 Table A-20:  
ut y64 kpsi,  54 kpsiS S 

 From Prob. 3-70, the critical stress element experiences  = 21.5 kpsi and  = 5.09 kpsi. 

The bending is completely reversed due to the rotation, and the torsion is steady, giving 

a = 21.5 kpsi, m = 0 kpsi, a = 0 kpsi, m = 5.09 kpsi.
  
Obtain von Mises stresses for 

the alternating, mid-range, and maximum stresses. 

 

    

 

   

   

   

1/21/2 22 2 2

1/21/2 22 2 2

1/21/2 22 2 2

max max max

3 21.5 3 0 21.5 kpsi

3 0 3 5.09 8.82 kpsi

3 21.5 3 5.09 23.24 kpsi

a a a

m m m

  

  

  

       

       

       
 

 Check for yielding, using the distortion energy failure theory.  
 

    max

54
2.32

23.24

y
y

S
n


  


 

 

 Obtain the modifying factors and endurance limit. 

    
 0.2652.70(64) 0.90ak  

    
 0.1070.879(1) 0.88bk  

     
0.90(0.88)(0.5)(64) 25.3 kpsieS  

 Using Modified Goodman, 
 

    

1 21.5 8.82

25.3 64

a m

f e utn S S

  
     

 

       
 1.01 .fn A ns

______________________________________________________________________________ 
 
6-40 Table A-20:  

ut y440 MPa,  370 MPaS S 

 From Prob. 3-71, the critical stress element experiences  = 72.9 MPa and  = 20.3 MPa. 

The bending is completely reversed due to the rotation, and the torsion is steady, giving 

a = 72.9 MPa, m = 0 MPa, a = 0 MPa, m = 20.3 MPa.
  
Obtain von Mises stresses for 

the alternating, mid-range, and maximum stresses. 

 

    

 

   

   

   

1/21/2 22 2 2

1/21/2 22 2 2

1/21/2 22 2 2

max max max

3 72.9 3 0 72.9 MPa

3 0 3 20.3 35.2 MPa

3 72.9 3 20.3 80.9 MPa

a a a

m m m

  

  

  

       

       

       
 

 Check for yielding, using the distortion energy failure theory.  
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    max

370
4.57

80.9

y
y

S
n


  


 

 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):   0.5 440 220 MPaeS  

 Eq. (6-19):
 

 0.2654.51(440) 0.90ak  

 
Eq. (6-20):

 
 0.1071.24(20) 0.90bk  

 
Eq. (6-18):

  
0.90(0.90)(220) 178.2 MPaeS  

 

 Using Modified Goodman, 
 

    

1 72.9 35.2

178.2 440

a m

f e utn S S

  
     

 

      
 2.04 .fn An s

______________________________________________________________________________ 
 
6-41 Table A-20:  

ut y64 kpsi,  54 kpsiS S 

 From Prob. 3-72, the critical stress element experiences  = 35.2 kpsi and  = 7.35 kpsi. 

The bending is completely reversed due to the rotation, and the torsion is steady, giving 

a = 35.2 kpsi, m = 0 kpsi, a = 0 kpsi, m = 7.35 kpsi.
  
Obtain von Mises stresses for 

the alternating, mid-range, and maximum stresses. 

 

    

 

   

   

   

1/21/2 22 2 2

1/21/2 22 2 2

1/21/2 22 2 2

max max max

3 35.2 3 0 35.2 kpsi

3 0 3 7.35 12.7 kpsi

3 35.2 3 7.35 37.4 kpsi

a a a

m m m

  

  

  

       

       

       
 

 Check for yielding, using the distortion energy failure theory.  
 

    max

54
1.44

37.4

y
y

S
n


  


 

 
 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):  0.5(64) 32 kpsieS  

 
Eq. (6-19):

 
 0.2652.70(64) 0.90ak  

 
Eq. (6-20):

 
 0.1070.879(1.25) 0.86bk  

 
Eq. (6-18):

  
0.90(0.86)(32) 24.8 kpsieS  
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 Using Modified Goodman, 
 

    

1 35.2 12.7

24.8 64

a m

f e utn S S

  
     

 

       
Infinite life is not predicted.         Ans. 0.62fn 

______________________________________________________________________________ 
 
6-42 Table A-20:  

ut y440 MPa,  370 MPaS S 

 From Prob. 3-73, the critical stress element experiences  = 333.9 MPa and  = 126.3 

MPa. The bending is completely reversed due to the rotation, and the torsion is steady, 

giving a = 333.9 MPa, m = 0 MPa, a = 0 MPa, m = 126.3 MPa.
  
Obtain von Mises 

stresses for the alternating, mid-range, and maximum stresses. 

 

    

 

   

   

   

1/21/2 22 2 2

1/21/2 22 2 2

1/21/2 22 2 2

max max max

3 333.9 3 0 333.9 MPa

3 0 3 126.3 218.8 MPa

3 333.9 3 126.3 399.2 MPa

a a a

m m m

  

  

  

       

       

       
 

 Check for yielding, using the distortion energy failure theory.  
 

    max

370
0.93

399.2

y
y

S
n


  


 

 The sample fails by yielding, infinite life is not predicted.       Ans. 
 

 The fatigue analysis will be continued only to obtain the requested fatigue factor of 

safety, though the yielding failure will dictate the life. 

 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):  0.5(440) 220 MPaeS  

 
Eq. (6-19):

 
 0.2654.51(440) 0.90ak  

 
Eq. (6-20):

 
 0.1071.24(50) 0.82bk  

 
Eq. (6-18):

  
0.90(0.82)(220) 162.4 MPaeS  

 

 Using Modified Goodman, 
 

    

1 333.9 218.8

162.4 440

a m

f e utn S S

  
     

 

        
Infinite life is not predicted.         Ans. 0.39fn 

______________________________________________________________________________ 
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6-43 Table A-20:  64 kpsi,  54 kpsiut yS S 
 From Prob. 3-74, the critical stress element experiences completely reversed bending 

stress due to the rotation, and steady torsional and axial stresses.   

 

    

,bend ,bend

,axial ,axial

9.495 kpsi,      0 kpsi

0 kpsi,      0.362 kpsi

0 kpsi,      11.07 kpsi

a m

a m

a m

 

 

 

 

  

 

 

 

 Obtain von Mises stresses for the alternating, mid-range, and maximum stresses. 

 

    

 

     

     

     

1/21/2 2 22 2

1/21/2 2 22 2

1/21/2 2 22 2

max max max

3 9.495 3 0 9.495 kpsi

3 0.362 3 11.07 19.18 kpsi

3 9.495 0.362 3 11.07 21.56 kpsi

a a a

m m m

  

  

  

       

        

         
 

 Check for yielding, using the distortion energy failure theory.  

    max

54
2.50

21.56

y
y

S
n


  


 

 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):  0.5(64) 32 kpsieS  

 
Eq. (6-19):

 
 0.2652.70(64) 0.90ak  

 
Eq. (6-20):

 
 0.1070.879(1.13) 0.87bk  

 
Eq. (6-18):

  
0.90(0.87)(32) 25.1 kpsieS  

 

 Using Modified Goodman, 
 

    

1 9.495 19.18

25.1 64

a m

f e utn S S

  
     

 

       
 1.47 .fn A ns

______________________________________________________________________________ 
 
6-44 Table A-20:  

ut y64 kpsi,  54 kpsiS S 
 From Prob. 3-76, the critical stress element experiences completely reversed bending 

stress due to the rotation, and steady torsional and axial stresses.   

    

,bend ,bend

,axial ,axial

33.99 kpsi,      0 kpsi

0 kpsi,      0.153 kpsi

0 kpsi,      7.847 kpsi

a m

a m

a m

 

 

 

 

  

 
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 Obtain von Mises stresses for the alternating, mid-range, and maximum stresses. 

    

 

     

     

     

1/21/2 2 22 2

1/21/2 2 22 2

1/21/2 2 22 2

max max max

3 33.99 3 0 33.99 kpsi

3 0.153 3 7.847 13.59 kpsi

3 33.99 0.153 3 7.847 36.75 kpsi

a a a

m m m

  

  

  

       

        

         
 

 Check for yielding, using the distortion energy failure theory.  
 

    max

54
1.47

36.75

y
y

S
n


  


 

 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):  0.5(64) 32 kpsieS  

 
Eq. (6-19):

 
 0.2652.70(64) 0.90ak  

 
Eq. (6-20):

 
 0.1070.879(0.88) 0.89bk  

 
Eq. (6-18):

  
0.90(0.89)(32) 25.6 kpsieS  

 

 Using Modified Goodman, 
 

    

1 33.99 13.59

25.6 64

a m

f e utn S S

  
     

 

       
Infinite life is not predicted.         Ans. 0.65fn 

______________________________________________________________________________ 
 
6-45 Table A-20:  

ut y440 MPa,  370 MPaS S 

 From Prob. 3-77, the critical stress element experiences  = 68.6 MPa and  = 37.7 MPa. 

The bending is completely reversed due to the rotation, and the torsion is steady, giving 

a = 68.6 MPa, m = 0 MPa, a = 0 MPa, m = 37.7 MPa.
  
Obtain von Mises stresses for 

the alternating, mid-range, and maximum stresses. 

    

 

   

   

   

1/21/2 22 2 2

1/21/2 22 2 2

1/21/2 22 2 2

max max max

3 68.6 3 0 68.6 MPa

3 0 3 37.7 65.3 MPa

3 68.6 3 37.7 94.7 MPa

a a a

m m m

  

  

  

       

       

       
 Check for yielding, using the distortion energy failure theory.  
 

    max

370
3.91

94.7

y
y

S
n


  


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 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):  0.5(440) 220 MPaeS  

 Eq. (6-19):  0.2654.51(440) 0.90ak  

 Eq. (6-20):  0.1071.24(30) 0.86bk  
 Eq. (6-18):  0.90(0.86)(220) 170 MPaeS  
 

 Using Modified Goodman, 
 

    

1 68.6 65.3

170 440

a m

f e utn S S

  
     

 

        
 1.81 .fn An s

______________________________________________________________________________ 
 
6-46 Table A-20:  64 kpsi,   54 kpsiut yS S 

 From Prob. 3-79, the critical stress element experiences  = 3.46 kpsi and  = 0.882 kpsi. 

The bending is completely reversed due to the rotation, and the torsion is steady, giving 

a = 3.46 kpsi, m = 0, a = 0 kpsi, m = 0.882 kpsi.
  
Obtain von Mises stresses for the 

alternating, mid-range, and maximum stresses. 

 

    

 

   

   

   

1/21/2 22 2 2

1/21/2 22 2 2

1/21/2 22 2 2

max max max

3 3.46 3 0 3.46 kpsi

3 0 3 0.882 1.53 kpsi

3 3.46 3 0.882 3.78 kpsi

a a a

m m m

  

  

  

       

       

       
 

 Check for yielding, using the distortion energy failure theory.  
 

    max

54
14.3

3.78

y
y

S
n


  


 

 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):  0.5(64) 32 kpsieS  

 
Eq. (6-19):

 
 0.2652.70(64) 0.90ak  

 
Eq. (6-20):

 
 0.1070.879(1.375) 0.85bk  

 
Eq. (6-18):

  
0.90(0.85)(32) 24.5 kpsieS  

 

 Using Modified Goodman, 
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1 3.46 1.53

24.5 64

a m

f e utn S S

  
     

 

        
    Ans. 6.06fn 

______________________________________________________________________________ 
 
6-47 Table A-20:  64 kpsi,   54 kpsiut yS S 

 From Prob. 3-80, the critical stress element experiences  = 16.3 kpsi and  = 5.09 kpsi. 

Since the load is applied and released repeatedly, this gives max = 16.3 kpsi, min = 0 

kpsi, max = 5.09 kpsi, min = 0 kpsi.  Consequently,m = a = 8.15 kpsi, m = a = 2.55 

kpsi.
   

 

 For bending, from Eqs. (6-34) and (6-35a), 

 

  
        2 33 5 80.246 3.08 10 64 1.51 10 64 2.67 10 64 0.10373a         

    

1 1
0.75

0.10373
11

0.1

q
a

r

  


 

 Eq. (6-32):   
 

1 ( 1) 1 0.75(1.5 1) 1.38f tK q K      

 For torsion, from Eqs. (6-34) and (6-35b), 

  
        2 33 5 80.190 2.51 10 64 1.35 10 64 2.67 10 64 0.07800a         

    

1 1
0.80

0.07800
11

0.1

q
a

r

  


 

 Eq. (6-32):   
 

1 ( 1) 1 0.80(2.1 1) 1.88fs s tsK q K      

 

 Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and 

(6-56). 

 

    

      1/2
2 2

1.38 8.15 3 1.88 2.55 13.98 kpsi

13.98 kpsi

a

m a



 

         

  
 

 

 Check for yielding, using the conservative max a m      , 

    

54
1.93

13.98 13.98

y
y

a m

S
n

 
  

  
 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):  0.5(64) 32 kpsieS  

 Eq. (6-19):  0.2652.70(64) 0.90b
a utk aS   
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 Eq. (6-24):  0.370 0.370 1 0.370 ined d    

 Eq. (6-20):  0.107 0.1070.879 0.879(0.370) 0.98b ek d    

 

Eq. (6-18):

 

 (0.90)(0.98)(32) 28.2 kpsieS  
 

 Using Modified Goodman, 

    

1 13.98 13.98

28.2 64

a m

f e utn S S

  
     

 

    
 1.40 .fn A ns

______________________________________________________________________________ 
 
6-48 Table A-20:  64 kpsi,   54 kpsiut yS S 

 From Prob. 3-81, the critical stress element experiences  = 16.4 kpsi and  = 4.46 kpsi. 

Since the load is applied and released repeatedly, this gives max = 16.4 kpsi, min = 0 

kpsi, max = 4.46 kpsi, min = 0 kpsi.  Consequently,m = a = 8.20 kpsi, m = a = 2.23 

kpsi.
   

 

 For bending, from Eqs. (6-34) and (6-35a), 

   
        2 33 5 80.246 3.08 10 64 1.51 10 64 2.67 10 64 0.10373a         

    

1 1
0.75

0.10373
11

0.1

q
a

r

  


 

 Eq. (6-32):   
 

1 ( 1) 1 0.75(1.5 1) 1.38f tK q K      

 

 For torsion, from Eqs. (6-34) and (6-35b), 

   
        2 33 5 80.190 2.51 10 64 1.35 10 64 2.67 10 64 0.07800a         

    

1 1
0.80

0.07800
11

0.1

q
a

r

  


 

 Eq. (6-32):   
 

1 ( 1) 1 0.80(2.1 1) 1.88fs s tsK q K      

 

 Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and 

(6-56). 

    

      1/2
2 2

1.38 8.20 3 1.88 2.23 13.45 kpsi

13.45 kpsi

a

m a



 

         

  
 

 

 Check for yielding, using the conservative max a m      , 
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54
2.01

13.45 13.45

y
y

a m

S
n

 
  

  
 

 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):  0.5(64) 32 kpsieS  

 Eq. (6-19):  0.2652.70(64) 0.90b
a utk aS   

 Eq. (6-24):  0.370 0.370(1) 0.370 ined d  

 Eq. (6-20):  0.107 0.1070.879 0.879(0.370) 0.98b ek d    
Eq. (6-18):

 

 (0.90)(0.98)(32) 28.2 kpsieS  
 

  

 Using Modified Goodman, 

    

1 13.45 13.45

28.2 64

a m

f e utn S S

  
     

 

    
 1.46 .fn A ns

______________________________________________________________________________ 
 
6-49 Table A-20:  64 kpsi,   54 kpsiut yS S 
 From Prob. 3-82, the critical stress element experiences repeatedly applied bending, 

axial, and torsional stresses of x,bend = 20.2 kpsi,  x,axial = 0.1 kpsi, and  = 5.09 kpsi.. 

Since the axial stress is practically negligible compared to the bending stress, we will 

simply combine the two and not treat the axial stress separately for stress concentration 

factor and load factor.  This gives max = 20.3 kpsi, min = 0 kpsi, max = 5.09 kpsi, min = 

0 kpsi.  Consequently,m = a = 10.15 kpsi, m = a = 2.55 kpsi.
   

 

 For bending, from Eqs. (6-34) and (6-35a), 

 

   
        2 33 5 80.246 3.08 10 64 1.51 10 64 2.67 10 64 0.10373a         

    

1 1
0.75

0.10373
11

0.1

q
a

r

  


 

 Eq. (6-32):   
 

1 ( 1) 1 0.75(1.5 1) 1.38f tK q K      

 

 For torsion, from Eqs. (6-34) and (6-35b), 

   
        2 33 5 80.190 2.51 10 64 1.35 10 64 2.67 10 64 0.07800a         

    

1 1
0.80

0.07800
11

0.1

q
a

r

  

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 Eq. (6-32):   
 

1 ( 1) 1 0.80(2.1 1) 1.88fs s tsK q K      

 

 Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and 

(6-56). 

   

      1/2
2 2

1.38 10.15 3 1.88 2.55 16.28 kpsi

16.28 kpsi

a

m a



 

         

  
 

  

 Check for yielding, using the conservative max a m      , 

    

54
1.66

16.28 16.28

y
y

a m

S
n

 
  

  
 

 

 Obtain the modifying factors and endurance limit. 

 

 Eq. (6-8):  0.5(64) 32 kpsieS  

 Eq. (6-19):  0.2652.70(64) 0.90b
a utk aS   

 Eq. (6-24):  0.370 0.370(1) 0.370 ined d  

 Eq. (6-20):  0.107 0.1070.879 0.879(0.370) 0.98b ek d    
Eq. (6-18):

 

 (0.90)(0.98)(32) 28.2 kpsieS  
 

  

 Using Modified Goodman, 

    

1 16.28 16.28

28.2 64

a m

f e utn S S

  
     

 

    
 1.20 .fn A ns

____________________________________________________________________________ 
 
6-50 Table A-20: 

 64 kpsi,   54 kpsiut yS S 
 From Prob. 3-83, the critical stress element on the neutral axis in the middle of the 

longest side of the rectangular cross section experiences a repeatedly applied shear stress 

of max = 14.3 kpsi, min = 0 kpsi.  Thus, m = a = 7.15 kpsi.  Since the stress is entirely 

shear, it is convenient to check for yielding using the standard Maximum Shear Stress 

theory. 

    
max

/ 2 54 / 2
1.89

14.3

y
y

S
n


    

 

 Find the modifiers and endurance limit. 

 

 Eq. (6-8):  0.5(64) 32 kpsieS  

 Eq. (6-19):  0.2652.70(64) 0.90b
a utk aS   
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 The size factor for a torsionally loaded rectangular cross section is not readily available.  

Following the procedure on p. 289, we need an equivalent diameter based on the 95 

percent stress area.  However, the stress situation in this case is nonlinear, as described on 

p. 102.  Noting that the maximum stress occurs at the middle of the longest side, or with a 

radius from the center of the cross section equal to half of the shortest side, we will 

simply choose an equivalent diameter equal to the length of the shortest side.  

 

     0.25 ined 

 Eq. (6-20):  
0.107 0.1070.879 0.879(0.25) 1.02b ek d    

 

 We will round down to kb = 1. 

 

 Eq. (6-26):  0.59ck 
 Eq. (6-18):  0.9(1)(0.59)(32) 17.0 kpsiseS  
 

 Since the stress is entirely shear, we choose to use a load factor kc = 0.59, and convert the 

ultimate strength to a shear value rather than using the combination loading method of 

Sec. 6-14.  From Eq. (6-54), Ssu = 0.67Su = 0.67 (64) = 42.9 kpsi. 

 
 Using Modified Goodman, 

 

   

1 1
1.70 .

( / ) ( / ) (7.15 /17.0) (7.15 / 42.9)
f

a se m su

n Ans
S S 

  
 

 

______________________________________________________________________________ 
 
6-51 Table A-20:  64 kpsi,   54 kpsiut yS S 

 From Prob. 3-84, the critical stress element experiences  = 28.0 kpsi and  = 15.3 kpsi. 

Since the load is applied and released repeatedly, this gives max = 28.0 kpsi, min = 0 

kpsi, max = 15.3 kpsi, min = 0 kpsi.  Consequently,m = a = 14.0 kpsi, m = a = 7.65 

kpsi.  From Table A-15-8 and A-15-9, 
 

    
 

,bend ,tors

/ 1.5 /1 1.5,      / 0.125 /1 0.125

1.60,       1.39t t

D d r d

K K

   
 

 

 Eqs. (6-34) and (6-35), or Figs. 6-20 and 6-21:     qbend = 0.78,  qtors = 0.82 

 Eq. (6-32):   

    
   
   

,bend bend ,bend

,tors tors ,tors

1 1 1 0.78 1.60 1 1.47

1 1 1 0.82 1.39 1 1.32

f t

f t

K q K

K q K

      

      
 

 

 Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and 

(6-56). 
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      1/2
2 2

1.47 14.0 3 1.32 7.65 27.0 kpsi

27.0 kpsi

a

m a



 

         

  
 

  

 Check for yielding, using the conservative max a m      , 

    

54
1.00

27.0 27.0

y
y

a m

S
n

 
  

  
 

 Since stress concentrations are included in this quick yield check, the low factor of safety 

is acceptable. 

 

 Eq. (6-8):  0.5(64) 32 kpsieS  

 Eq. (6-19):  0.2652.70(64) 0.897b
a utk aS   

 Eq. (6-24):  0.370 0.370 1 0.370 ined d    

 Eq. (6-20):  0.107 0.1070.879 0.879(0.370) 0.978b ek d    
Eq. (6-18):  (0.897)(0.978)(0.5)(64) 28.1 kpsieS  

   Using Modified Goodman, 

  

 

    

1 27.0 27.0

28.1 64

a m

f e utn S S

  
     

 

     0.72 .fn A ns

 
 Since infinite life is not predicted, estimate a life from the S-N diagram.  First, find an 

equivalent completely reversed stress (See Ex. 6-12).   

 

    
rev

27.0
46.7 kpsi

1 ( / ) 1 (27.0 / 64)

a

m utS





  

 
 

 Fig. 6-18:  f = 0.9 

 Eq. (6-14):  
 22 0.9(64)( )

118.07
28.1

ut

e

f S
a

S
    

 Eq. (6-15):  
1 1 0.9(64)

log log 0.1039
3 3 28.1

ut

e

f S
b

S

           
  

 

 Eq. (6-16):  

1
1/

0.1039
rev 46.7

7534 cycles 7500 cycles       .   
118.07

b

N A
a

        
  

 ns
 

______________________________________________________________________________ 
 
6-52 Table A-20:  64 kpsi,   54 kpsiut yS S 
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 From Prob. 3-85, the critical stress element experiences x,bend = 46.1 kpsi, x,axial = 0.382 

kpsi and  = 15.3 kpsi. The axial load is practically negligible, but we’ll include it to 

demonstrate the process.  Since the load is applied and released repeatedly, this gives 

max,bend = 46.1 kpsi, min,bend = 0 kpsi, max,axial = 0.382 kpsi, min,axial = 0 kpsi, max = 

15.3 kpsi, min = 0 kpsi.  Consequently,m,bend = a,bend = 23.05 kpsi, m,axial = a,axial = 

0.191 kpsi, m = a = 7.65 kpsi.  From Table A-15-7, A-15-8 and A-15-9, 
 

    
 

,bend ,tors ,axial

/ 1.5 /1 1.5,      / 0.125 /1 0.125

1.60,       1.39,        1.75t t t

D d r d

K K K

   
  

 

 Eqs. (6-34) and (6-35), or Figs. 6-20 and 6-21:     qbend = qaxial =0.78,  qtors = 0.82 

 Eq. (6-32):   

    

   
   
   

,bend bend ,bend

,axial axial ,axial

,tors tors ,tors

1 1 1 0.78 1.60 1 1.47

1 1 1 0.78 1.75 1 1.59

1 1 1 0.82 1.39 1 1.32

f t

f t

f t

K q K

K q K

K q K

      

      

      

 

 

 Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and 

(6-56). 

           
1/2

2

20.191
1.47 23.05 1.59 3 1.32 7.65 38.45 kpsi

0.85
a

            
   

 

         1/2
2 2

1.47 23.05 1.59 0.191 3 1.32 7.65 38.40 kpsim             

  
 

 Check for yielding, using the conservative max a m      , 

    

54
0.70

38.45 38.40

y
y

a m

S
n

 
  

  
 

 

 Since the conservative yield check indicates yielding, we will check more carefully with 

with max  obtained directly from the maximum stresses, using the distortion energy 

failure theory, without stress concentrations.  Note that this is exactly the method used for 

static failure in Ch. 5. 

 

  

       2 2 2 2

max max,bend max,axial max

max

3 46.1 0.382 3 15.3 53.5 kpsi

54
1.01 .

53.5

y
y

S
n Ans

   



       

  
  

 

 This shows that yielding is imminent, and further analysis of fatigue life should not be 

interpreted as a guarantee of more than one cycle of life. 
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 Eq. (6-8):  0.5(64) 32 kpsieS  

 Eq. (6-19):  0.2652.70(64) 0.897b
a utk aS   

 Eq. (6-24):  0.370 0.370 1 0.370 ined d    

 Eq. (6-20):  0.107 0.1070.879 0.879(0.370) 0.978b ek d    
Eq. (6-18):  (0.897)(0.978)(0.5)(64) 28.1 kpsieS  

   Using Modified Goodman, 

  

 

    

1 38.45 38.40

28.1 64

a m

f e utn S S

  
     

     0.51 .fn A ns

 
 Since infinite life is not predicted, estimate a life from the S-N diagram.  First, find an 

equivalent completely reversed stress (See Ex. 6-12).   

 

    
rev

38.45
96.1 kpsi

1 ( / ) 1 (38.40 / 64)

a

m utS





  

 
 

 

 This stress is much higher than the ultimate strength, rendering it impractical for the S-N 

diagram.  We must conclude that the fluctuating stresses from the combination loading, 

when increased by the stress concentration factors, are so far from the Goodman line that 

the equivalent completely reversed stress method is not practical to use.  Without testing, 

we are unable to predict a life. 

______________________________________________________________________________ 
 
6-53 Table A-20:  64 kpsi,   54 kpsiut yS S 

 From Prob. 3-86, the critical stress element experiences x,bend = 55.5 kpsi, x,axial = 0.382 

kpsi and  = 15.3 kpsi. The axial load is practically negligible, but we’ll include it to 

demonstrate the process.  Since the load is applied and released repeatedly, this gives 

max,bend = 55.5 kpsi, min,bend = 0 kpsi, max,axial = 0.382 kpsi, min,axial = 0 kpsi, max = 

15.3 kpsi, min = 0 kpsi.  Consequently,m,bend = a,bend = 27.75 kpsi, m,axial = a,axial = 

0.191 kpsi, m = a = 7.65 kpsi.  From Table A-15-7, A-15-8 and A-15-9, 

    
 

,bend ,tors ,axial

/ 1.5 /1 1.5,      / 0.125 /1 0.125

1.60,       1.39,        1.75t t t

D d r d

K K K

   
  

 

 Eqs. (6-34) and (6-35), or Figs. 6-20 and 6-21:     qbend = qaxial =0.78,  qtors = 0.82 

 Eq. (6-32):   

    

   
   
   

,bend bend ,bend

,axial axial ,axial

,tors tors ,tors

1 1 1 0.78 1.60 1 1.47

1 1 1 0.78 1.75 1 1.59

1 1 1 0.82 1.39 1 1.32

f t

f t

f t

K q K

K q K

K q K

      

      

      
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 Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and 

(6-56). 

   

         

         

1/2
2

2

1/2
2 2

0.191
1.47 27.75 1.59 3 1.32 7.65 44.71 kpsi

0.85

1.47 27.75 1.59 0.191 3 1.32 7.65 44.66 kpsi

a

m





            
   

          

 

 

 Since these stresses are relatively high compared to the yield strength, we will go ahead 

and check for yielding using the distortion energy failure theory. 

  

       2 2 2 2

max max,bend max,axial max

max

3 55.5 0.382 3 15.3 61.8 kpsi

54
0.87 .

61.8

y
y

S
n Ans

   



       

  
  

 

 This shows that yielding is predicted.   Further analysis of fatigue life is just to be able to 

report the fatigue factor of safety, though the life will be dictated by the static yielding 

failure, i.e. N = 1/2 cycle.        Ans. 
 

 Eq. (6-8):   0.5 64 32 kpsieS  

 Eq. (6-19):  0.2652.70(64) 0.897b
a utk aS   

 Eq. (6-24):  0.370 0.370 1 0.370 ined d    

 Eq. (6-20):  0.107 0.1070.879 0.879(0.370) 0.978b ek d    
 Eq. (6-18):  (0.897)(0.978)(0.5)(64) 28.1 kpsieS  

   

 

 Using Modified Goodman, 
 

    

1 44.71 44.66

28.1 64

a m

f e utn S S

  
     

 

     0.44 .fn A ns

______________________________________________________________________________ 
6-54 From Table A-20, for AISI 1040 CD, Sut = 85 kpsi and Sy = 71 kpsi. From the solution to 

Prob. 6-17 we find the completely reversed stress at the critical shoulder fillet to be rev = 

35.0 kpsi, producing a = 35.0 kpsi and m = 0 kpsi.  This problem adds a steady torque 

which creates torsional stresses of 

 

    
 

 4

2500 1.625 / 2
2967 psi 2.97 kpsi,    0 kpsi

1.625 / 32
m a

Tr

J
 


       

 

 From Table A-15-8 and A-15-9, r/d = 0.0625/1.625 = 0.04,  D/d = 1.875/1.625 = 1.15,  

Kt,bend =1.95, Kt,tors =1.60 
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 Eqs. (6-34) and (6-35), or Figs. 6-20 and 6-21:     qbend = 0.76,  qtors = 0.81 

 Eq. (6-32):   

    
   
   

,bend bend ,bend

,tors tors ,tors

1 1 1 0.76 1.95 1 1.72

1 1 1 0.81 1.60 1 1.49

f t

f t

K q K

K q K

      

      
 

 

 Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and 

(6-56). 

 

    

      
      

1/2
2 2

1/2
2 2

1.72 35.0 3 1.49 0 60.2 kpsi

1.72 0 3 1.49 2.97 7.66 kpsi

a

m





         

         

 

 Check for yielding, using the conservative max a m      , 

    

71
1.05

60.2 7.66

y
y

a m

S
n

 
  

  
 

 

 From the solution to Prob. 6-17, Se = 29.5 kpsi.  Using Modified Goodman, 
 

    

1 60.2 7.66

29.5 85

a m

f e utn S S

  
     

 

     0.47 .fn A ns

 Since infinite life is not predicted, estimate a life from the S-N diagram.  First, find an 

equivalent completely reversed stress (See Ex. 6-12).   

 

    
rev

60.2
66.2 kpsi

1 ( / ) 1 (7.66 / 85)

a

m utS





  

 
 

 

 Fig. 6-18:   f = 0.867 

 

   2 2
0.867(85)

Eq. (6-14): 184.1
29.5

1 1 0.867(85)
Eq. (6-15): log log 0.1325

3 3 29.5

ut

e

ut

e

f S
a

S

f S
b

S

  

           
  

 

 

 

1
1/

0.1325
rev 66.2

Eq. (6-16):   2251 cycles     
184.1

b

N
a

        
    

 

    N = 2300 cycles              Ans. 
______________________________________________________________________________ 
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6-55  From the solution to Prob. 6-18 we find the completely reversed stress at the critical 

shoulder fillet to be rev = 32.8 kpsi, producing a = 32.8 kpsi and m = 0 kpsi.  This 

problem adds a steady torque which creates torsional stresses of 

 

   
 

 4

2200 1.625 / 2
2611 psi 2.61 kpsi,    0 kpsi

1.625 / 32
m a

Tr

J
 


       

 

 From Table A-15-8 and A-15-9, r/d = 0.0625/1.625 = 0.04,  D/d = 1.875/1.625 = 1.15,  

Kt,bend =1.95, Kt,tors =1.60 
 

 Eqs. (6-34) and (6-35), or Figs. 6-20 and 6-21:     qbend = 0.76,  qtors = 0.81 

 Eq. (6-32):   

    
   
   

,bend bend ,bend

,tors tors ,tors

1 1 1 0.76 1.95 1 1.72

1 1 1 0.81 1.60 1 1.49

f t

f t

K q K

K q K

      

      
 

 

 Obtain von Mises stresses for the alternating and mid-range stresses from Eqs. (6-55) and 

(6-56). 

          1/2
2 2

1.72 32.8 3 1.49 0 56.4 kpsia            

      1/2
2 2

1.72 0 3 1.49 2.61 6.74 kpsim            

     Check for yielding, using the conservative max a m      , 

    

71
1.12

56.4 6.74

y
y

a m

S
n

 
  

  
 

 

 From the solution to Prob. 6-18, Se = 29.5 kpsi.  Using Modified Goodman, 
 

    

1 56.4 6.74

29.5 85

a m

f e utn S S

  
     

 

     0.50 .fn A ns

 Since infinite life is not predicted, estimate a life from the S-N diagram.  First, find an 

equivalent completely reversed stress (See Ex. 6-12).   

 

    
rev

56.4
61.3 kpsi

1 ( / ) 1 (6.74 / 85)

a

m utS





  

 
 

 

 Fig. 6-18:   f = 0.867 
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   2 2
0.867(85)

Eq. (6-14): 184.1
29.5

1 1 0.867(85)
Eq. (6-15): log log 0.1325

3 3 29.5

ut

e

ut

e

f S
a

S

f S
b

S

  

           
  

 

 

 

1
1/

0.1325
rev 61.3

Eq. (6-16):   4022 cycles     
184.1

b

N
a

        
    

 

    N = 4000 cycles              Ans. 

______________________________________________________________________________ 
 
6-56  

min max55 kpsi, 30 kpsi, 1.6, 2 ft, 150 lbf , 500 lbfut y tsS S K L F F     
 

 Eqs. (6-34) and (6-35b), or Fig. 6-21:     qs = 0.80 

 Eq. (6-32):       1 1 1 0.80 1.6 1 1.48fs s tsK q K        

 

    max min500(2) 1000 lbf in, 150(2) 300 lbf inT T     
 

   

max

max 3 3

16 16(1.48)(1000)
11 251 psi 11.25 kpsi

(0.875)

fsK T

d


 
     

   

min

min 3 3

16 16(1.48)(300)
3375 psi 3.38 kpsi

(0.875)

fsK T

d


 
     

   

max min

max min

11.25 3.38
7.32 kpsi

2 2

11.25 3.38
3.94 kpsi

2 2

m

a

 

 

 
  

 
  

 
 
 Since the stress is entirely shear, it is convenient to check for yielding using the standard 

Maximum Shear Stress theory. 

     
max

/ 2 30 / 2
1.33

11.25

y
y

S
n


    

 

 Find the modifiers and endurance limit. 

 Eq. (6-8):  0.5(55) 27.5 kpsieS  

 Eq. (6-19):  0.71814.4(55) 0.81ak  
 Eq. (6-24):  0.370(0.875) 0.324 ined  

 Eq. (6-20):  0.1070.879(0.324) 0.99bk  

 Eq. (6-26):  0.59ck 

  

 

Eq. (6-18):  0.81(0.99)(0.59)(27.5) 13.0 kpsiseS  
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 Since the stress is entirely shear, we will use a load factor kc = 0.59, and convert the 

f 

 
(a) Modified Goodman, Table 6-6 

  

ultimate strength to a shear value rather than using the combination loading method o

Sec. 6-14.  From Eq. (6-54), Ssu = 0.67Su = 0.67 (55) = 36.9 kpsi. 

 
 

 

1 1
1.99 .

( / ) ( / ) (3.94 /13.0) (7.32 / 36.9)
f

a se m su

n Ans
S S 

  
 

 

 

 (b) Gerber, Table 6-7 

           

 

2 2

21
1 1

2

su a m se
f

m se su a

S S
n

S S

 
 

                

 

 

22
1 36.9 3.94 2(7.32)(13.0)

1 1
2 7.32 13.0 36.9(3.94)

                       
        

    
ns

__ ________________ ____________________________________________ 

-57 

From Eqs. (6-34) and (6-35a), or Fig. 6-20, with a notch radius of 0.1 in, q = 0.9.  Thus, 

   

    

2.49 .fn A  

____ __________ __
 
6 145 kpsi, 120 kpsiut yS S   

 

 

with Kt = 3 from the problem statement, 
 

1 ( 1) 1 0.9(3 1) 2.80f tK q K        
 

max 2 2

4 2.80(4)( )
2.476

(1.2)
f

P P
K P

d


 


      

1
( 2.476 ) 1.238

2
m a P P        

    

    

   
max

0.3 6 1.2
0.54

4 4

f P D d P
T P

 
    

 

From Eqs. ( 6-34) and (6-35b), or Fig. 6-21, with a notch radius of 0.1 in, Thus, 

 

    

0.92.sq 
 

with Kts = 1.8 from the problem statement, 

   
1 ( 1) 1 0.92fs s tsK q K     (1.8 1) 1.74   

max 3 3

16 16(1.74)(0.54 )
2.769

(1.2)

fsK T P
P

d


 
    

    

max 2.769
1.385

2 2
a m

P
P

      

 Eqs. (6-55) and (6-56): 
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2 2 1/2 2 2 1/2

2 2 1/2 2 2 1/2

[( / 0.85) 3 ] [(1.238 / 0.85) 3(1.385 ) ] 2.81

[ 3 ] [( 1.238 ) 3(1.385 ) ] 2.70

a a a

m m m

P P

P P P

  

  

     

      

P

 

 Eq. (6-8):  0.5(145) 72.5 kpsieS  

 

Eq. (6-19):

 

 
0.2652.70(145) 0.722ak  

 
Eq. (6-20):

 
 0.1070.879(1.2) 0.862bk  

 
Eq. (6-18):

 
 (0.722)(0.862)(72.5) 45.12 kpsieS  

 

 Modified Goodman:  
1 2.81 2.70 1

45.12 145 3

a m

f e ut

P P

n S S

  
    

 
 

     4.12 kips .P A ns
 

 Yield (conservative):  
120

5.29 .
(2.81)(4.12) (2.70)(4.12)

y
y

a m

S
n A

 
  

  
ns  

______________________________________________________________________________ 
 
6-58 From Prob. 6-57,  2.80, 1.74, 45.12 kpsif f s eK K S  
 

    

max
max 2 2

4 4(18)
2.80 44.56 kpsi

(1.2 )
f

P
K

d


 
       

    

min
min 2 2

4 4(4.5)
2.80 11.14 kpsi

(1.2)
f

P
K

d


 
       

    
max max

6 1.2
0.3(18) 9.72 kip in

4 4

D d
T f P

         
   

  

    
min min

6 1.2
0.3(4.5) 2.43 kip in

4 4

D d
T f P

         
   

  

    

max
max 3 3

16 16(9.72)
1.74 49.85 kpsi

(1.2)
f s

T
K

d


 
    

    

min
min 3 3

16 16(2.43)
1.74 12.46 kpsi

(1.2)
f s

T
K

d


 
    

    

44.56 ( 11.14)
16.71 kpsi

2
a

  
   

    

44.56 ( 11.14)
27.85 kpsi

2
m

  
    

    

49.85 12.46
18.70 kpsi

2
a


   

    

49.85 12.46
31.16 kpsi

2
m


   
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 Eqs. (6-55) and (6-56): 

 

    

 

2 2 1/2 2 2 1/2

2 2 1/2 2 2 1/2

[( / 0.85) 3 ] [(16.71/ 0.85) 3(18.70) ] 37.89 kpsi

[ 3 ] [( 27.85) 3(31.16) ] 60.73 kpsi

a a a

m m m

  

  

     

      
 

 Modified Goodman:  
1 37.89 60.73

45.12 145

a m

f e utn S S

  
   

 
     nf = 0.79 

 

 Since infinite life is not predicted, estimate a life from the S-N diagram.  First, find an 

equivalent completely reversed stress (See Ex. 6-12).   

 

    
rev

37.89
65.2 kpsi

1 ( / ) 1 (60.73 /145)

a

m utS





  

 
 

 

 Fig. 6-18:   f = 0.8 

 

 
   2 2

0.8(145)
Eq. (6-14): 298.2

45.12

ut

e

f S
a

S
    

 

1 1 0.8(145)
Eq. (6-15): log log 0.1367

3 3 45.12

ut

e

f S
b

S

           
  

 

 

 

1
1/

0.1367
rev 65.2

Eq. (6-16):   67 607 cycles     
298.2

b

N
a

        
    

 

    N = 67 600 cycles              Ans. 
______________________________________________________________________________ 
 
6-59 For AISI 1020 CD, From Table A-20,  Sy = 390 MPa, Sut = 470 MPa. Given: Se = 175 

MPa. 

 First Loading:     
1 1

360 160 360 160
260 MPa, 100 MPa

2 2
m a  

     

 

 Goodman:    
 

1

1

1

100
223.8 MPa finite life

1 / 1 260 / 470

a
a ee

m ut

S
S





    

 
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 

 

2

1/0.127767

0.9 470
1022.5 MPa

175

0.9 4701
log 0.127 767

3 175

223.8
145 920 cycles

1022.5

a

b

N


   

   

   
 

 

 Second loading:        
2 2

320 200 320 200
60 MPa, 260 MPa

2 2
m a 

   
     

 

     
2

260
298.0 MPa

1 60 / 470
a e

  


 

 

 (a) Miner’s method: 

1/0.127767

2

298.0
15 520 cycles

1022.5
N


   
 

 

 

   1 2 2
2

1 2

80 000
1 1 7000 cycles .

145 920 15 520

n n n
n A

N N
       ns  

 

 (b) Manson’s method: The number of cycles remaining after the first loading 

 

   Nremaining =145 920  80 000 = 65 920 cycles 

 

  Two data points: 0.9(470) MPa, 10
3
 cycles 

     223.8 MPa, 65 920 cycles 

    

   
 

 

 

2

2

2

3

2

2

2

2 0.151 997

1/ 0.151 997

2

100.9 470

223.8 65 920

1.8901 0.015170

log1.8901
0.151 997

log 0.015170

223.8
1208.7 MPa

65 920

298.0
10 000 cycles .

1208.7

b

b

b

a

a

b

a

n A









  

 

   
 

ns

 

______________________________________________________________________________ 

 

6-60 Given: Se = 50 kpsi,  Sut = 140 kpsi, f =0.8. Using Miner’s method, 
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 

 

2

0.8 140
250.88 kpsi

50

0.8 1401
log 0.116 749

3 50

a

b

   

   

 

   

1/ 0.116 749

1 1

1/ 0.116 749

2 2

1/ 0.116 749

3 3

95
95 kpsi, 4100 cycles

250.88

80
80 kpsi, 17 850 cycles

250.88

65
65 kpsi, 105 700 cycles

250.88

N

N

N













    
 

    
 

    
 

 

 

    
0.2 0.5 0.3

1 12 600 cycles .
4100 17 850 105 700

N N N
N Ans      

______________________________________________________________________________ 

 

6-61 Given: Sut = 530 MPa, Se = 210 MPa, and f = 0.9.  

 (a) Miner’s method 

    

 

 

2

0.9 530
1083.47 MPa

210

0.9 5301
log 0.118 766

3 210

a

b

   

   

 

 

    
1/ 0.118 766

1 1

350
350 MPa, 13 550 cycles

1083.47
N


    
 

 

    

1/ 0.118 766

2 2

1/ 0.118 766

3 3

260
260 MPa, 165 600 cycles

1083.47

225
225 MPa, 559 400 cycles

1083.47

N

N









    
 

    
 

 

      31 2

1 2 3

1
nn n

N N N
    

    35000 50 000
184 100 cycles .

13 550 165 600 559 400

n
Ans    

 

 (b) Manson’s method: 

  The life remaining after the first series of cycling is NR1 = 13 550  5000 = 8550 

 cycles. The two data points required to define 
,1eS are [0.9(530), 10

3
] and (350, 8550). 
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   

 
 

2

2

2

3

2

2

100.9 530
1.3629 0.11696

350 8550

b

b

b

a

a
    

 

     

 
 

 

2

2 0.144 280

1/0.144 280

2

2

log 1.362 9
0.144 280

log 0.116 96

350
1292.3 MPa

8550

260
67 090 cycles

1292.3

67 090 50 000 17 090 cyclesR

b

a

N

N





  

 

   
 

  

 

 

    
   

 
 

3

2

3

3

3

3

100.9 530
1.834 6 0.058 514

260 17 090

b

b

b

a

a
    

 

    
 
   3 3 0.213 785

log 1.834 6 260
0.213 785, 2088.7 MPa

log 0.058 514 17 090
b a       

 

     

1/0.213 785

3

225
33 610 cycles .

2088.7
N Ans


   
 

 

______________________________________________________________________________ 

 

6-62 Given: Se = 45 kpsi, Sut = 85 kpsi, f = 0.86, and a = 35 kpsi and m = 30 kpsi for 12 

(10
3
) cycles. 

 Gerber equivalent reversing stress:  
   rev 2 2

35
39.98 kpsi

1 / 1 30 / 85

a

m utS




  
 

 

 (a) Miner’s method: rev <  Se. According to the method, this means that the endurance 

 limit has not been reduced and the new endurance limit is eS  = 45 kpsi.    Ans. 

 

 (b) Manson’s method: Again, rev <  Se. According to the method, this means that the 

 material has not been damaged and the endurance limit has not been reduced. Thus, 

 the new endurance limit is eS  = 45 kpsi.    Ans. 

______________________________________________________________________________ 

 

6-63 Given: Se = 45 kpsi, Sut = 85 kpsi, f = 0.86, and a = 35 kpsi and m = 30 kpsi for 12 

(10
3
) cycles. 

 Goodman equivalent reversing stress:  
   rev

35
54.09 kpsi

1 / 1 30 / 85

a

m utS




  
 

 

 Initial cycling 
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 

 

2

0.86 85
116.00 kpsi

45

0.86 851
log 0.070 235

3 45

a

b

   

   

 

 

    

1/ 0.070 235

1 1

54.09
54.09 kpsi, 52 190 cycles

116.00
N


    
 

 

 

 (a) Miner’s method (see discussion on p. 325): The number of remaining cycles at 54.09 

 kpsi is Nremaining = 52 190  12 000 = 40 190 cycles. The new coefficients are b = b, 

 and a =Sf /N
b
 = 54.09/(40 190)

  0.070 235
 = 113.89 kpsi. The new endurance limit is 

 

      0.070 235
6

,1 113.89 10 43.2 kpsi .b
e eS aN An

    s  

 

 (b) Manson’s method (see discussion on p. 326): The number of remaining cycles at 

 54.09 kpsi is Nremaining = 52 190  12 000 = 40 190 cycles. At 10
3
 cycles,  

  Sf = 0.86(85) = 73.1 kpsi. The new coefficients are  

  b = [log(73.1/54.09)]/log(10
3
/40 190) =  0.081 540 and a = 1/ (Nremaining)

 b
 = 

  54.09/(40 190) 
 0.081 540

 = 128.39 kpsi. The new endurance limit is 

 

      0.081 540
6

,1 128.39 10 41.6 kpsi .b
e eS aN An

    s  

______________________________________________________________________________ 

 

6-64 Given Sut =1030LN (1, 0.0508) MPa 

 

 From Table 6-10:  a = 1.58, b =  0.086, C = 0.120 

 Eq. (6-72) and Table 6-10):       0.086
1.58 1030 1, 0.120 0.870 1, 0.120a

 k L N LN

 

 From Prob. 6-1:  kb = 0.97 

 

 Eqs. (6-70) and (6-71):           Se = [0.870LN (1, 0.120)] (0.97) [0.506(1030)LN (1, 

0.138)] 

 

      0.870S e (0.97)(0.506)(1030) = 440 MPa 

 

 and,    CSe  (0.12
2
 + 0.138

2
)

1/2
 = 0.183 

 

      Se =440LN (1, 0.183) MPa       Ans. 
______________________________________________________________________________ 
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6-65 A Priori Decisions: 

 

   � Material and condition: 1020 CD, Sut = 68 LN (1, 0.28), and 

        Sy = 57 LN (1, 0.058) kpsi 

   � Reliability goal: R = 0.99   (z =  2.326, Table A-10) 

   � Function: 

        Critical location—hole 

   � Variabilities: 

 

 1/2
2 2 2 2 2 2 1/2

2 2 1/2

2 2 2 2

2 2

0.058

0.125

0.138

(0.058 0.125 0.138 ) 0.195

0.10

0.20

(0.10 0.20 ) 0.234

0.195 0.234
0.297

1 1 0.234

e

e

ka

kc

S

Se ka kc S

Kf

Fa

a

Se a
n

a

C

C

C

C C C C

C

C

C

C C
C

C
















      





  

 
  

 

 

 

 Resulting in a design factor nf of, 

 

 Eq. (6-59):   
2 2exp[ ( 2.326) ln(1 0.297 ) ln 1 0.297 ] 2.05fn         

   � Decision: Set nf = 2.05 

 

 Now proceed deterministically using the mean values: 

 

 Table 6-10:   0.265
2.67 68 0.873ak

   

 Eq. (6-21): kb = 1 

 

 Table 6-11:   0.0778
1.23 68 0.886ck

   

 

 Eq. (6-70):  0.506 68 34.4 kpsieS    

 

 Eq. (6-71):   0.873 1 0.886 34.4 26.6 kpsieS    

 

 From Prob. 6-14, Kf = 2.26. Thus, 
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 
 
 

2.5 0.5 2

2.05 2.26 3.8
0.331 in

2 2 26.6

a a a
a f f f

e

f

f f a

e

F F F
K K K

S

A t t

n K F
t

S

    
 n

   

 

 Decision:  Use t = 3

8
 in     Ans. 

______________________________________________________________________________ 

 

6-66 Rotation is presumed. M and Sut are given as deterministic, but notice that  is not; 

therefore, a reliability estimation can be made. 

 

 From Eq. (6-70): Se = 0.506(780)LN (1, 0.138) = 394.7 LN(1, 0.138) 

 

 Table 6-13: ka = 4.45(780)
 0.265LN (1, 0.058) = 0.762 LN(1, 0.058) 

 Based on d = 32  6 = 26 mm, Eq. (6-20) gives 

 
0.107

26
0.877

7.62
bk


   
 

 

 

 Conservatism is not necessary 

 

   

2 2 1/2

0.762 1,  0.058 (0.877)(394.7) (1,  0.138)

263.8 MPa

(0.058 0.138 ) 0.150

263.8 (1,  0.150) MPa

e

e

Se

e

S

C

   


  



S LN LN

S LN

 

 

 Fig. A-15-14: D/d = 32/26 = 1.23, r/d = 3/26 = 0.115. Thus, Kt  1.75, and Eq. (6-78) 

and Table 6-15 gives 

     
   

1.75
1.64

2 1.75 12 1 104 / 780
11

1.75 3

t
f

t

t

K
K

K a
K r

 



   

 From Table 6-15, CKf = 0.15. Thus, 

 

     K f  = 1.64LN (1, 0.15) 

 

 The bending stress is 

 
3 3

6

32 32(160)
1.64 (1, 0.15)

(0.026)

152 10 (1,  0.15) Pa 152 (1,  0.15) MPa

f

M

d 
 

   
 

 

K L N

LN LN


 

 From Eq. (5-43), p. 250, 

Chapter 6 - Rev. A, Page 60/66 



  
     

  

2

2

2 2

2 2

2 2

1
ln

1

ln 1 1

ln 263.8 /152 1 0.15 / 1 0.15

2.61

ln 1 0.15 1 0.15

S

S

S

C

C
z

C C










 
    
   

       
   

 

 From Table A-10,  pf = 0.004 53. Thus, R = 1  0.004 53 = 0.995    Ans. 
 

 Note: The correlation method uses only the mean of Sut ; its variability is already 

included in the 0.138. When a deterministic load, in this case M, is used in a reliability 

estimate, engineers state, “For a Design Load of M, the reliability is 0.995.” They are, in 

fact, referring to a Deterministic Design Load. 

______________________________________________________________________________ 

 

6-67 For completely reversed torsion, ka and kb of Prob. 6-66 apply, but k c must also be 

considered. utS = 780/6.89 = 113 kpsi 

 Eq. 6-74:  k c = 0.328(113)
0.125LN (1, 0.125) = 0.592LN (1, 0.125) 

 Note 0.590 is close to 0.577. 

 

2 2 2 1/2

0.762[ (1,  0.058)](0.877)[0.592 (1,  0.125)][394.7 (1,  0.138)]

0.762(0.877)(0.592)(394.7) 156.2 MPa

(0.058 0.125 0.138 ) 0.195

156.2 (1,  0.195) MPa

e a b c e

e

Se

e

k

S

C




 

   



S k k S

LN LN LN

S LN

 

 

 Fig. A-15-15: D/d = 1.23, r/d = 0.115, then Kts  1.40. From Eq.  (6-78) and 

 Table 7-8 

    
   

1.40
1.34

2 1.40 12 1 104 / 780
11

1.40 3

ts
fs

ts

ts

K
K

K a
K r

 



  

 From Table 6-15, CKf = 0.15. Thus, 

 

     K fs  = 1.34LN (1, 0.15) 

 

 The torsional stress is 

 
 

 

33

6

16 16016
1.34 (1,  0.15)

0.026

62.1 10 (1,  0.15) Pa 62.1 (1,  0.15) MPa

fs

T

d 

 
   

  

 

K L N

LN LN


 

Chapter 6 - Rev. A, Page 61/66 



 From Eq. (5-43), p. 250, 

 

2 2

2 2

ln (156.2 / 62.1) (1 0.15 ) / (1 0.195 )
3.75

ln[(1 0.195 )(1 0.15 )]
z

      
 

 

 

 From Table A-10, pf  = 0.000 09 

R = 1  pf  = 1  0.000 09 = 0.999 91     Ans. 
  

 For a design with completely-reversed torsion of 160 N · m, the reliability is 0.999 91. 

The improvement over bending comes from a smaller stress-concentration factor in 

torsion. See the note at the end of the solution of Prob. 6-66 for the reason for the 

phraseology. 

______________________________________________________________________________ 

 

6-68  

 

 

 

 
 

 

 

 Given:  Sut = 58 kpsi. 

 

 Eq. (6-70):  Se = 0.506(76) LN (1, 0.138) = 38.5 LN(1, 0.138) kpsi 

 

 Table 6-13:   ka = 14.5(76)
 0.719 LN (1, 0.11) = 0.644 LN (1, 0.11) 

 

 Eq. (6-24):  de = 0.370(1.5) = 0.555 in 

 

 Eq. (6-20):  kb = (0.555/0.3)
0.107

 = 0.936 

 Eq. (6-70):  Se = [0.644 LN (1, 0.11)](0.936)[38.5 LN(1, 0.138)] 

 

       0.644 0.936 38.5 23.2 kpsieS    

 

     CSe = (0.11
2
 + 0.138

2
)

1/2
 = 0.176 

 

     Se =23.2 LN (1, 0.176) kpsi 

 

 Table A-16: d/D = 0, a/D = (3/16)/1.5 = 0.125, A = 0.80  Kt = 2.20. 

 

 From Eqs. (6-78) and (6-79) and Table 6-15 
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 
2.20 (1,  0.10)

1.83 (1,  0.10)
2 2.20 1 5 / 76

1
2.20 0.125

fK  




LN
LN  

 

 Table A-16: 
3 3

3

net

net

(0.80)(1.5 )
0.265 in

32 32

1.5
1.83 (1,  0.10)

0.265

10.4 (1,  0.10) kpsi

10.4 kpsi

0.10

f

AD
Z

M

Z

C

 



  

    
 





K L N

LN



 

 Eq. (5-43), p. 250:  

2 2

2 2

ln (23.2 /10.4) (1 0.10 ) / (1 0.176 )
3.94

ln[(1 0.176 )(1 0.10 )]
z

      
 

 

 

 Table A-10:  pf  = 0.000 041 5      R = 1  pf = 1  0.000 041 5 = 0.999 96    Ans. 
______________________________________________________________________________ 

 

6-69 From Prob. 6-68: Se = 23.2 LN(1, 0.138) kpsi 

 

     ka = 0.644LN (1, 0.11) 

 

     kb =  0.936 

 

  Eq. (6-74):  k c = 0.328(76)
0.125LN (1, 0.125) = 0.564 LN(1, 0.125) 

 

  Eq. (6-71):  Se = [0.644LN (1, 0.11)](0.936)[ 0.564 LN(1, 0.125)][ 23.2 LN(1, 0.138)] 

 

        0.644 0.936 0.564 23.2 7.89 kpsieS    

     CSe = (0.11
2
 +0.125

2
 + 0.138

3
)
1/2

 = 0.216 

 

 Table A-16: d/D = 0, a/D = (3/16)/1.5 = 0.125, A = 0.89, Kts = 1.64 

 From Eqs. (6-78) and(7-79), and Table 6-15 

 

 
1.64 (1,  0.10)

1.40 (1,  0.10)
2 1.64 1 5 / 76

1
1.64 3 / 32

f s  




LN
K L N  

Chapter 6 - Rev. A, Page 63/66 



 

 Table A-16: 

 

4 4
4

net

 

net

(0.89)(1.5 )
0.4423 in

32 32

2(1.5)
1.40[ (1,  0.10)] 4.75 (1,  0.10) kpsi

2 2 0.4423

a
a f s

AD
J

T D

J

 



  

  K L N LN
 

 

 From Eq. (6-57): 
2 2

2 2

ln(7.89 / 4.75) (1 0.10 ) / (1 0.216 )
2.08

ln[(1 0.10 )(1 0.216 )]
z

 
   

 
 

 Table A-10, pf = 0.0188,         R = 1  pf  = 1  0.0188 = 0.981     Ans. 
______________________________________________________________________________ 

 

6-70 This is a very important task for the student to attempt before starting Part 3. It illustrates 

 the drawback of the deterministic factor of safety method. It also identifies the a priori 

decisions and their consequences. 

 The range of force fluctuation in Prob. 6-30 is  16 to + 5 kip, or 21 kip. Let the 

repeatedly-applied Fa be 10.5 kip. The stochastic properties of this heat of AISI 1018 CD 

are given in the problem statement. 

 

Function Consequences 

Axial Fa = 10.5 kip 

Fatigue load CFa = 0 

Ckc = 0.125 

Overall reliability R ≥ 0.998;

with twin fillets 

0.998 0.999R   

z =  3.09 

CKf = 0.11 

 

Cold rolled or machined 

surfaces 

Cka = 0.058 

 

Ambient temperature Ckd = 0 

Use correlation method 0.138C   

Stress amplitude CKf = 0.11 

C a = 0.11 

Significant strength Se 2 2 2 1/2(0.058 0.125 0.138 ) 0.195SeC      

 

 Choose the mean design factor which will meet the reliability goal. From Eq. (6-88) 

 
2 2

2

2 2

0.195 0.11
0.223

1 0.11

exp ( 3.09) ln(1 0.223 ) ln 1 0.223

2.02

nC

n

n


 


       


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 In Prob. 6-30, it was found that the hole was the significant location that controlled the 

analysis. Thus, 

 1

  

e
a

e a
a f

S F
K

n h d




  


S
n



w

eS

n

 

 

 We need to determine eS  

 

    -0.265 -0.2652.67 2.67(64) 0.887a utk S    

    kb = 1 

    0.0778 0.07781.23 1.23(64) 0.890c utk S     

    1d ek k   

    0.887(1)(0.890)(1)(1)(0.506)(64) 25.6 kpsieS       

 

 From the solution to Prob. 6-30, the stress concentration factor at the hole is Kt = 2.68. 

From Eq. (6-78) and Table 6-15 

 

    

 

   1

2.68
2.20

2 2.68 1 5 / 64
1

2.68 0.2

2.20(2.02)(10.5)
0.588     .

3.5 0.4 (25.6)

f

f a

e

K

K nF
h Ans

d S

 




  
 w
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6-71 
1200 lbf

80 kpsi

a

ut

F

S




 

 
 (a) Strength 
 

   ka = 2.67(80)
 0265LN (1, 0.058) = 0.836 LN(1, 0.058) 

 

   kb = 1 

 

   k c = 1.23(80)
 0.0778LN (1, 0.125) = 0.875 LN(1, 0.125) 
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   

2 2 2 1/2

0.506(80) (1,  0.138) 40.5 (1,  0.138) kpsi

0.836 (1,  0.058) (1) 0.875 (1,  0.125) 40.5 (1,  0.138)

0.836(1)(0.875)(40.5) 29.6 kpsi

(0.058 0.125 0.138 ) 0.195

e

e

e

Se

S

C

  



 

   

S LN LN

S LN LN LN
 

  Stress: Fig. A-15-1; d/w = 0.75/1.5 = 0.5, Kt = 2.18. From Eqs. (6-78), (6-79) and  

  Table 6-15 

 

     
2.18 (1,  0.10)

1.96 (1,  0.10)
2 2.18 1 5 / 80

1
2.18 0.375

f  




LN
K L N  

   
  

     
  

2 2

2 2

2 2

2 2

,    0.10
( )

1.96(1.2)
12.54 kpsi

( ) (1.5 0.75)(0.25)

29.6 kpsi

ln ( / ) 1 1

ln 1 1

ln 29.6 /12.48 1 0.10 / 1 0.195

3.9

ln 1 0.10 1 0.195

a
a f

f a
a

a e

a a S

S

F
C

d t

K F

d t

S S

S C C
z

C C











 


  
 

 

     
   

      
   

K
w

w



 

 

 

  From Table A-20,  pf = 4.81(10
 5

)         R = 1  4.81(10
 5

) = 0.999 955     Ans. 
 

 (b) All computer programs will differ in detail. 

______________________________________________________________________________ 

 

6-72 to 6-78 Computer programs are very useful for automating specific tasks in the design 

process. All computer programs will differ in detail.  



Chapter 7 
 
 
7-1 (a) DE-Gerber, Eq. (7-10): 
 

        2 2 2 2
4 3 4 (2.2)(70) 3 (1.8)(45) 338.4 N mf a fs aA K M K T       

        2 2 2 2
4 3 4 (2.2)(55) 3 (1.8)(35) 265.5 N mf m fs mB K M K T       

 
  

  
  

1/3
1/2

2
6

6 6

2(265.5) 210 108(2)(338.4)
1 1

210 10 338.4 700 10
d



                     

 

 d = 25.85 (10
3

) m = 25.85 mm      Ans. 
 

 (b) DE-elliptic, Eq. (7-12) can be shown to be 
 

 
 

  
 

  

1/3
1/3 2 22 2

2 22 2
6 6

338.4 265.516 16(2)

210 10 560 10e y

n A B
d

S S 

                      

 

 d = 25.77 (10
3

) m = 25.77 mm      Ans. 
 

 (c) DE-Soderberg, Eq. (7-14) can be shown to be 
 

 
   

1/31/3

6 6

16 16(2) 338.4 265.5

210 10 560 10e y

n A B
d

S S 

    
                 

 

 d = 27.70 (10
3

) m = 27.70 mm      Ans. 
 

 (d) DE-Goodman: Eq. (7-8) can be shown to be 
 

 
   

1/3
1/3

6 6

16 16(2) 338.4 265.5

210 10 700 10e ut

n A B
d

S S 

                     
 

 d = 27.27 (10
3

) m = 27.27 mm      Ans. 
________________________________________________________________________ 

Criterion  d (mm)    Compared to DE-Gerber   

DE-Gerber  25.85 

DE-Elliptic  25.77   0.31% Lower  Less conservative 

DE-Soderberg  27.70   7.2% Higher  More conservative 

DE-Goodman  27.27   5.5% Higher  More conservative  

______________________________________________________________________________ 

 

7-2 This problem has to be done by successive trials, since Se is a function of shaft size. The 

material is SAE 2340 for which Sut = 175 kpsi, Sy = 160 kpsi, and HB ≥ 370.  
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 Eq. (6-19), p. 287:  0.2652.70(175) 0.69ak  
 

 Trial #1: Choose dr  = 0.75 in 

 

 Eq. (6-20), p. 288: 
 

0.1070.879(0.75) 0.91bk  

 Eq. (6-8), p.282:   0.5 0.5 175 87.5 kpsie utS S   
 Eq. (6-18), p. 287: Se = 0.69 (0.91)(87.5) = 54.9 kpsi 

 

    2 0.75 2 / 20 0.65rd d r D D D    

   
0.75

1.15 in
0.65 0.65

rd
D     

  
1.15

0.058 in
20 20

D
r     

 

 Fig. A-15-14: 

   2 0.75 2(0.058) 0.808 inrd d r    

  
0.808

1.08
0.75r

d

d
   

  
0.058

0.077
0.75r

r

d
   

  Kt = 1.9  

 Fig. 6-20, p. 295: r = 0.058 in, q = 0.90 

 Eq. (6-32), p. 295: Kf  = 1 + 0.90 (1.9 – 1) = 1.81 

 Fig. A-15-15:  Kts = 1.5 

 Fig. 6-21, p. 296: r = 0.058 in, qs = 0.92 

 Eq. (6-32), p. 295: Kfs  = 1 + 0.92 (1.5 – 1) = 1.46 

 

 We select the DE-ASME Elliptic failure criteria, Eq. (7-12), with d as dr , and  

 Mm = Ta = 0, 

  
   

1/3
1/2

2 2

3 3

16(2.5) 1.81(600) 1.46(400)
4 3

54.9 10 160 10
rd



                       

 

  dr  = 0.799 in 

  

Trial #2: Choose dr  = 0.799 in. 

 

    0.1070.879(0.799) 0.90bk  

   Se = 0.69 (0.90)(0.5)(175) = 54.3 kpsi 

  
0.799

1.23 in
0.65 0.65

rd
D   

 
  r = D  / 20 = 1.23/20 = 0.062 in 
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  Figs. A-15-14 and A-15-15: 

   2 0.799 2(0.062) 0.923 inrd d r    

  
0.923

1.16
0.799r

d

d
   

  
0.062

0.078
0.799r

r

d
   

  

With these ratios only slightly different from the previous iteration, we are at the limit of 

readability of the figures. We will keep the same values as before. 

 

   1.9, 1.5, 0.90, 0.92t ts sK K q q   
  1.81, 1.46f fsK K    

Using Eq. (7-12) produces dr  = 0.802 in. Further iteration produces no change.  With  

dr  = 0.802 in, 

  

0.802
1.23 in

0.65

0.75(1.23) 0.92 in

D

d

 

 
 

 

A look at a bearing catalog finds that the next available bore diameter is 0.9375 in.  In 

nominal sizes, we select d = 0.94 in, D = 1.25 in, r = 0.0625 in     Ans. 
______________________________________________________________________________ 

 

7-3 F cos 20(d / 2) = TA,  F = 2 TA / ( d cos 20) = 2(340) / (0.150 cos 20) = 4824 N. 

The maximum bending moment will be at point C, with MC  = 4824(0.100) = 482.4 N·m.  

Due to the rotation, the bending is completely reversed, while the torsion is constant.   

Thus, Ma = 482.4 N·m, Tm = 340 N·m, Mm = Ta = 0.  

 

For sharp fillet radii at the shoulders, from Table 7-1, Kt = 2.7, and Kts = 2.2.  Examining 

Figs. 6-20 and 6-21 (pp. 295 and 296 respectively) with 560 MPa,utS  conservatively 

estimate q = 0.8 and  These estimates can be checked once a specific fillet radius 

is determined. 

0.9.sq 

 

 Eq. (6-32):   1 0.8(2.7 1) 2.4fK    

         1 0.9(2.2 1) 2.1fsK    
 

(a) We will choose to include fatigue stress concentration factors even for the static 

analysis to avoid localized yielding. 

 Eq. (7-15): 

1/2
2 2

max 3 3

32 16
3

f a fs mK M K T

d d


 

    
      

     
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 Eq. (7-16):     
3 1/2

2 2

max

4 3
16

y y
f a fs m

S d S
n K M K






T     
 

 Solving for d, 

  

       

1/3

1/2
2 2

1/3

1/2
2 2

6

16
4( ) 3( )

16(2.5)
4 (2.4)(482.4) 3 (2.1)(340)

420 10

f a fs a
y

n
d K M K T

S



      
  

 
  
 
 

 

 

      d = 0.0430 m = 43.0 mm                Ans.   
 

 (b)    0.2654.51(560) 0.84ak  
 

Assume kb = 0.85 for now.  Check later once a diameter is known. 

 

  Se = 0.84(0.85)(0.5)(560) = 200 MPa 

 

 Selecting the DE-ASME Elliptic criteria, use Eq. (7-12) with 0.m aM T   

  

   

1/3
1/2

2 2

6 6

16(2.5) 2.4(482.4) 2.1(340)
4 3

200 10 420 10

0.0534 m 53.4 mm

d


                       
   

   
With this diameter, we can refine our estimates for kb and q. 

 

 Eq. (6-20): 
 

  0.1570.1571.51 1.51 53.4 0.81bk d
  

  

Assuming a sharp fillet radius, from Table 7-1,  r = 0.02d = 0.02 (53.4) = 1.07 mm. 

 

Fig. (6-20): q = 0.72 

Fig. (6-21): qs = 0.77 

 

Iterating with these new estimates, 

 

 Eq. (6-32):  Kf = 1 + 0.72 (2.7 – 1) = 2.2 

   Kfs = 1 + 0.77 (2.2 – 1) = 1.9 

Eq. (6-18): Se = 0.84(0.81)(0.5)(560) = 191 MPa 

Eq. (7-12): d = 53 mm  Ans. 
 

 Further iteration does not change the results. 

_____________________________________________________________________________ 
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7-4  We have a design task of identifying bending moment and torsion diagrams which are 

preliminary to an industrial roller shaft design. Let point C represent the center of the 

span of the roller. 
 

 

 

 

 

 

 

30(8) 240 lbfy
CF    

0.4(240) 96 lbfz
CF    

(2) 96(2) 192 lbf inz
CT F     

192
128 lbf

1.5 1.5

z
B

T
F   

 
tan 20 128 tan 20 46.6 lbfy z

B BF F     

 

 (a)   xy-plane 
 

 
240(5.75) (11.5) 46.6(14.25) 0y

O AM F    
240(5.75) 46.6(14.25)

62.3 lbf
11.5

y
AF


   

(11.5) 46.6(2.75) 240(5.75) 0y
A OM F      

240(5.75) 46.6(2.75)
131.1 lbf

11.5

y
OF


 

 
 

 Bending moment diagram: 
 

 
 

xz-plane 
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0 96(5.75) (11.5) 128(14.25)z
O AM F      

 
96(5.75) 128(14.25)

206.6 lbf
11.5

z
AF


   

0 (11.5) 128(2.75) 96(5.75)z
A OM F      

96(5.75) 128(2.75)
17.4 lbf

11.5

z
OF


 

 
 

Bending moment diagram: 

 
2 2100 ( 754) 761  lbf inCM       

2 2( 128) ( 352) 375 lbf inAM      
 

  

Torque:  The torque is constant from C to B, with a magnitude previously obtained of 192 

lbf·in. 

 

 (b)   xy-plane 

     
2 2

131.1 15 1.75 15 9.75 62.3 11.5xyM x x x x        1

 
 

Bending moment diagram: 
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 Mmax = –516 lbf · in and occurs at 6.12 in. 

 
2131.1(5.75) 15(5.75 1.75) 514 lbf inCM       

 

This is reduced from 754 lbf · in found in part (a).   The maximum occurs 

at rather than C, but it is close enough. 6.12 inx 
 

 xz-plane 
 

 
 

 
2 2

17.4 6 1.75 6 9.75 206.6 11.5xzM x x x x       1
 

 

Bending moment diagram: 

     

   

 

 

 

 Let 2 2

net xy xzM M M   

     

  Plot Mnet(x),  1.75 ≤ x ≤ 11.5 in 

  

 Mmax = 516 lbf · in at x = 6.25 in 

      

Torque: The torque rises from 0 to 192 lbf·in linearly across the roller, then is constant to 

B.     Ans. 
______________________________________________________________________________ 

 
7-5 This is a design problem, which can have many acceptable designs. See the solution for 

Prob. 7-17 for an example of the design process. 

______________________________________________________________________________ 
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7-6 If students have access to finite element or beam analysis software, have them model the 

shaft to check deflections. If not, solve a simpler version of shaft for deflection. The 1 in 

diameter sections will not affect the deflection results much, so model the 1 in diameter 

as 1.25 in. Also, ignore the step in AB.  

 

 
 From Prob. 7-4, integrate Mxy and Mxz.  

 

 xy plane, with dy/dx = y' 
 

  3 32

1

131.1 62.3
5 1.75 5 9.75 11.5

2 2

2
EIy x x x x C            (1) 

  4 4 33

1 2

131.1 5 5 62.3
1.75 9.75 11.5

6 4 4 6
EIy x x x x C x C           

 

   20 at 0     0y x C   

   
3

10 at 11.5 1908.4 lbf iny x C    
From (1), x = 0:  EIy' = 1908.4 

  x = 11.5: EIy' = –2153.1 

 

 xz plane (treating ) z 
 

  3 32

3

17.4 206.6
2 1.75 2 9.75 11.5

2 2

2
EIz x x x x C           (2) 

  4 4 33

3 4

17.4 1 1 206.6
1.75 9.75 11.5

6 2 2 6
EIz x x x x C x C          

 

    40 at 0    0z x C   

    3

30 at 11.5 8.975 lbf inz x C    
From (2), x = 0:  EIz' = 8.975 

   x = 11.5: EIz' = –683.5 

   

 At O:  
2 21908.4 8.975 1908.4 lbf inEI    3  
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 At A:  2 2( 2153.1) ( 683.5) 2259.0 lbf inEI       3  (dictates size)   

   
   6 4

2259
0.000 628 rad

30 10 / 64 1.25



   

   
0.001

1.59
0.000 628

n   

 

 At gear mesh, B 
 xy plane 

 

 With 1I I  in section OCA,  

  12153.1/Ay EI    

 

 Since y'B/A is a cantilever, from Table A-9-1, with 2I I  in section AB 

/ 2

2 2

( 2 ) 46.6
(2.75)[2.75 2(2.75)] 176.2 /

2 2
B A

Fx x l
y E

EI EI

      I  

       / 6 4 6

2153.1 176.2

30 10 / 64 1.25 30 10 / 64 0.875
B A B Ay y y

 
  

4
       

 

 
  

         = –0.000 803 rad   (magnitude greater than 0.0005 rad) 

 
xz plane 

 
 

 2

/

1 2

128 2.75683.5 484
,

2
A B Az z

2EI EI
      

EI
 

       6 4 6 4

683.5 484
0.000 751 rad

30 10 / 64 1.25 30 10 / 64 0.875
Bz

 
       

2 2( 0.000 803) ( 0.000 751) 0.00110 radB       

 

 Crowned teeth must be used. 

 

Finite element results:  Error in simplified model 
45.47(10 ) radO

       3.0% 
47.09(10 ) radA

     11.4% 
31.10(10 ) radB

       0.0% 
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 The simplified model yielded reasonable results. 

  

Strength  72 kpsi, 39.5 kpsiut yS S 
 

 

 At the shoulder at A,  From Prob. 7-4, 10.75 in.x 

   
209.3 lbf in,   293.0 lbf in,   192 lbf inxy xzM M T       

 

  
2 2( 209.3) ( 293) 360.0 lbf inM        

  
 0.5(72) 36 kpsieS  

  
 0.2652.70(72) 0.869ak  

  

0.107
1

0.879
0.3

bk


   
 

 

  
 1c d e fk k k k   

  
 0.869(0.879)(36) 27.5 kpsieS  

   D / d = 1.25, r / d = 0.03 

 Fig. A-15-8: Kts = 1.8 

 Fig. A-15-9: Kt = 2.3 

 Fig. 6-20: q = 0.65 

 Fig. 6-21: qs = 0.70 

 Eq. (6-32):  1 0.65(2.3 1) 1.85fK    

          1 0.70(1.8 1) 1.56fsK    

 Using DE-ASME Elliptic, Eq. (7-11) with 0,m aM T   

 

1/2
2 2

3

1 16 1.85(360) 1.56(192)
4 3

27 500 39 5001n 

          
     

 

 

n = 3.91 

 

 Perform a similar analysis at the profile keyway under the gear. 

 

The main problem with the design is the undersized shaft overhang with excessive slope 

at the gear. The use of crowned-teeth in the gears will eliminate this problem. 

______________________________________________________________________________ 

 

7-7 through 7-16  
These are design problems, which can have many acceptable designs. See the solution for 

Prob. 7-17 for an example of the design process. 

______________________________________________________________________________ 

 

7-17 (a) One possible shaft layout is shown in part (e). Both bearings and the gear will be 

located against shoulders. The gear and the motor will transmit the torque through the 
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keys. The bearings can be lightly pressed onto the shaft. The left bearing will locate the 

shaft in the housing, while the right bearing will float in the housing. 
 

 (b) From summing moments around the shaft axis, the tangential transmitted load 

through the gear will be 

 

  
 / ( / 2) 2500 / (4 / 2) 1250 lbftW T d  

 The radial component of gear force is related by the pressure angle. 

 

  
 tan 1250 tan 20 455 lbfr tW W   

  
   1/2 1/2

2 2 2 2455 1250 1330 lbfr tW W W      

Reactions  and ,A BR R and the load W are all in the same plane. From force and moment 

balance, 

  
 1330(2 /11) 242 lbfAR  

  
 1330(9 /11) 1088 lbfBR  

  
 max (9) 242(9) 2178 lbf inAM R   

 

 Shear force, bending moment, and torque diagrams can now be obtained. 

 

 
 (c) Potential critical locations occur at each stress concentration (shoulders and keyways). 

To be thorough, the stress at each potentially critical location should be evaluated. For 
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now, we will choose the most likely critical location, by observation of the loading 

situation, to be in the keyway for the gear. At this point there is a large stress 

concentration, a large bending moment, and the torque is present. The other locations 

either have small bending moments, or no torque. The stress concentration for the 

keyway is highest at the ends. For simplicity, and to be conservative, we will use the 

maximum bending moment, even though it will have dropped off a little at the end of the 

keyway. 

 

 (d) At the gear keyway, approximately 9 in from the left end of the shaft, the bending is 

completely reversed and the torque is steady. 

 

2178 lbf in 2500 lbf in 0a m mM T M     aT   

From Table 7-1, estimate stress concentrations for the end-milled keyseat to be Kt = 2.14 

and Kts = 3.0.  For the relatively low strength steel specified (AISI 1020 CD), roughly 

estimate notch sensitivities of q = 0.75 and qs = 0.80, obtained by observation of Figs. 6-

20 and 6-21, assuming a typical radius at the bottom of the keyseat of r / d = 0.02 (p. 

373), and a shaft diameter of up to 3 inches. 

 

 Eq. (6-32):  1 0.75(2.14 1) 1.9fK    

    1 0.8(3.0 1) 2.6fsK    

 Eq. (6-19):  0.2652.70(68) 0.883ak  
   For estimating , guess 2 in.bk d   

 Eq. (6-20)  0.107(2 / 0.3) 0.816bk  
 Eq. (6-18)  0.883(0.816)(0.5)(68) 24.5 kpsieS  
 

 Selecting the DE-Goodman criteria for a conservative first design, 

 

 Eq. (7-8): 
   

1/3
1/2 1/2

2 2

4 3
16 f a fs m

e ut

K M K Tn
d

S S

                 
  

    

 

 

   
   

1/3
1/2 1/2

2 2
4 1.9 2178 3 2.6 250016(1.5)

24 500 68 000
d



              
    

 

 

    1.57 in     .d A ns
  

With this diameter, the estimates for notch sensitivity and size factor were conservative, 

but close enough for a first iteration until deflections are checked.  Check yielding with 

this diameter. 
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Eq. (7-15): 

1/2
2 2

max 3 3

32 16
3

f a fs mK M K T

d d


 

    
      

     
 

   

 

 

1/2
2 2

max 3 3

32(1.9)(2178) 16(2.6)(2500)
3 18389 psi 18.4 kpsi

(1.57) (1.57)


 

            
     

 

 
max/ 57 /18.4 3.1 .y yn S Ans     

 

 (e) Now estimate other diameters to provide typical shoulder supports for the gear and 

bearings (p. 372). Also, estimate the gear and bearing widths.   

 

 
 (f) Entering this shaft geometry into beam analysis software (or Finite Element software), 

the following deflections are determined: 

Left bearing slope:    0.000 532 rad 

Right bearing slope:             0.000 850 rad 

Gear slope:              0.000 545 rad 

Right end of shaft slope:             0.000 850 rad 

Gear deflection:              0.001 45 in 

Right end of shaft deflection:      0.005 10 in 

Comparing these deflections to the recommendations in Table 7-2, everything is within 

typical range except the gear slope is a little high for an uncrowned gear. 

 

(g) To use a non-crowned gear, the gear slope is recommended to be less than 0.0005 rad. 

Since all other deflections are acceptable, we will target an increase in diameter only for 

the long section between the left bearing and the gear. Increasing this diameter from the 

proposed 1.56 in to 1.75 in, produces a gear slope of  0.000 401 rad. All other 

deflections are improved as well. 

______________________________________________________________________________ 
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7-18 

(a) Use the distortion-energy elliptic failure locus. The torque and moment loadings on 

the shaft are shown in the solution to Prob. 7-17. 

 

Candidate critical locations for strength: 

 Left seat keyway 

 Right bearing shoulder 

 Right keyway 

 

Table A-20 for 1030 HR:  68 kpsi, 37.5 kpsi, 137ut y BS S H    

Eq. (6-8): 0.5(68) 34.0 kpsieS    

Eq. (6-19):  0.2652.70(68) 0.883ak  
 1c d ek k k    

Left keyway 
See Table 7-1 for keyway stress concentration factors, 

 

 
2.14

Profile keyway
3.0

t

ts

K

K

 
 

 

For an end-mill profile keyway cutter of 0.010 in radius, estimate notch sensitivities. 

 

 Fig. 6-20:         0.51q   

 Fig. 6-21:         0.57sq   

 Eq. (6-32):        1 ( 1) 1 0.57(3.0 1) 2.1fs s tsK q K        

          1 0.51(2.14 1) 1.6fK      

 Eq. (6-20):         

0.107
1.875

0.822
0.30

bk


   
 

 

 Eq. (6-18):         0.883(0.822)(34.0) 24.7 kpsieS    

 Eq. (7-11):         

1
2 2 2

3

1 16 1.6(2178) 2.1(2500)
4 3

(1.875 ) 24 700 37 500fn 

          
     

 

           nf = 3.5  Ans. 

 

 Right bearing shoulder 
The text does not give minimum and maximum shoulder diameters for 03-series bearings 

(roller). Use D = 1.75 in. 

 

0.030 1.75
0.019, 1.11

1.574 1.574

r D

d d
     

 

Fig. A-15-9: 2.4tK   

Fig. A-15-8: 1.6tsK   
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Fig. 6-20:  0.65q 
Fig. 6-21: 0.70sq   

Eq. (6-32): 1 0.65(2.4 1) 1.91fK      

 
1 0.70(1.6 1) 1.42fsK      

 
0.453

2178 493 lbf in
2

M
    
 

 

Eq. (7-11): 

1/2
2 2

3

1 16 1.91(493) 1.42(2500)
4 3

(1.574 ) 24 700 37 500fn 

    
     
       

              nf = 4.2  Ans. 
 

 Right keyway 
Use the same stress concentration factors as for the left keyway.  There is no bending 

moment, thus Eq. (7-11) reduces to: 

 
 3 3

16 31 16 3(2.1)(2500)

1.5 (37 500)

fs m

f y

K T

n d S 
   

 nf = 2.7  Ans. 
 

 Yielding 
Check for yielding at the left keyway, where the completely reversed bending is 

maximum, and the steady torque is present.  Using Eq. (7-15), with Mm = Ta = 0, 

 

 

  
 

  
 

1/2
2 2

max 3 3

1/2
2 2

3 3

32 16
3

32 1.6 2178 16 2.1 2500
3

1.875 1.875

8791 psi 8.79 kpsi

f a fs mK M K T

d d


 

 

    
      

     

    
    
  


     

 

 

 
max

37.5
4.3

8.79

y
y

S
n


  


  Ans. 

Check in smaller diameter at right end of shaft where only steady torsion exists. 

 

  
 

1/2
2

max 3

1/2
2

3

16
3

16 2.1 2500
3

1.5

13 722 psi 13.7 kpsi

fs mK T

d






  
    

   

  
  
    

 
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max

37.5
2.7

13.7

y
y

S
n


  


  Ans. 

 

 (b) One could take pains to model this shaft exactly, using finite element software. 

However, for the bearings and the gear, the shaft is basically of uniform diameter, 1.875 

in. The reductions in diameter at the bearings will change the results insignificantly. Use 
E = 30 Mpsi for steel. 

 

 To the left of the load, from Table A-9, case 6, p. 1015, 

 
2 2 2

2 2 2

6 4

6 2

1449(2)(3 2 11 )
(3 )

6 6(30)(10 )( / 64)(1.875 )(11)

2.4124(10 )(3 117)

AB
AB

d y Fb x
x b l

dx EIl

x






 
    

 

 

 At x = 0 in:  42.823(10 ) rad  
 At x = 9 in:  43.040(10 ) rad 
 To the right of the load, from Table A-9, case 6, p. 1015, 

 

  2 23 6 2
6

BC
BC

d y Fa 2x xl l a
dx EIl

        

At x = l = 11 in:

  
2 2

2 2 4

6 4

1449(9)(11 9 )
4.342(10 ) rad

6 6(30)(10 )( / 64)(1.875 )(11)

Fa
l a

EIl





     

      

 

Obtain allowable slopes from Table 7-2. 

  

 Left bearing: 

 

Allowable slope 0.001
3.5       .

Actual slope 0.000 282 3
fsn Ans    

 

 Right bearing: 

 

0.0008
1.8                  .

0.000 434 2
fsn Ans   

 

 Gear mesh slope: 
Table 7-2 recommends a minimum relative slope of 0.0005 rad. While we don’t know the 

slope on the next shaft, we know that it will need to have a larger diameter and be stiffer. 

At the moment we can say 

 

 

0.0005
1.6                  .

0.000 304
fsn Ans   

______________________________________________________________________________ 
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7-19 The most likely critical locations for fatigue are at locations where the bending moment is 

high, the cross section is small, stress concentration exists, and torque exists. The two-

plane bending moment diagrams, shown in the solution to Prob. 3-72, indicate decreasing 

moments in both planes to the left of A  and to the right of C, with combined values at A 

and C of MA = 5324 lbf·in and MC = 6750 lbf·in.   The torque is constant between A and 

B, with T = 2819 lbf·in.  The most likely critical locations are at the stress concentrations 

near A and C.  The two shoulders near A can be eliminated since the shoulders near C 

have the same geometry but a higher bending moment.  We will consider the following 

potentially critical locations:   

 keyway at A 

 shoulder to the left of C 

 shoulder to the right of C 

 

 

Table A-20: Sut = 64 kpsi, Sy = 54 kpsi 

Eq. (6-8):  0.5(64) 32.0 kpsieS  

Eq. (6-19):  0.2652.70(64) 0.897ak  
  1c d ek k k  
Keyway at A 
Assuming r / d = 0.02 for typical end-milled keyway cutter (p. 373), with d = 1.75 in,   

r = 0.02d = 0.035 in.   

Table 7-1: Kt = 2.14, Kts = 3.0 

Fig. 6-20: q = 0.65 

Fig. 6-21: qs = 0.71 

Eq. (6-32): 

 
 

 1 1 1 0.65(2.14 1) 1.7f tK q K      

1 ( 1) 1 0.71(3.0 1) 2.4fs s tsK q K      

Eq. (6-20): 

0.107
1.75

0.828
0.30

bk


   
 

 

Eq. (6-18):  0.897(0.828)(32) 23.8 kpsieS  
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We will choose the DE-Gerber criteria since this is an analysis problem in which we 

would like to evaluate typical expectations.   

sing Eq. (7-9) with M  = T  = 0, 

 

U m a

    

    

2 2

2 2

4 4 1.7 5324 18102 lbf in 18.10 kip in

3 3 2.4 2819 11 718 lbf in 11.72 kip in

f a

fs m

A K M

B K T

      

      

 




 

 
  

   
  

1/2
2

3

1/2
2

3

21 8
1 1

8 18.10 2 11.72 23.8
1 1

18.10 6475 .8

e

e ut

BSA

n d S AS

         
     

    
1. 23

          

 

  

oulder to the left of C 
625 / 1.75 = 0.036,  D / d = 2.5 / 1.75 = 1.43  

: 

: 

q = 0.71 

Fig. 6-21: q  = 0.76 

q. (6-32): 

 n = 1.3  

 

 Sh
  r / d = 0.0

  

Fig. A-15-9 Kt = 2.2 

Fig. A-15-8 Kts = 1.8 

Fig. 6-20: 

E
s

 1 1 1 0.71(2.2 1) 1.9f tK q K      

1 ( 1) 1 .76(1.8 1) 1.6fs s tsK q K        
 

0

0.107
1.75

0.828
0.30

bk


   
 

 Eq. (6-20): 

Eq. (6-18): 0.897(0.828)(32) 23.8 kpsieS    

 

For convenience, we will use the full value of the bending moment at C, even though it 

will be slightly less at the shoulder.  Using Eq. (7-9) with Mm = Ta = 0,  

 

 

    

    

2 2

2 2

4 4 1.9 6750 25 650 lbf in 25.65 kip in

3 3 1.6 2819 7812 lbf in 7.812 kip in

f a

fs m

A K M

B K T

      

      

 




 

 
  

  
  

1/2
2

3

1/2
2

21 8
1 1

8 25.65 2 7.812 23.8
1 1

25.65 643.8

e

e ut

BSA

n d S AS

         
     

    
31.75 2

          
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 n = 0.96           

oulder to the right of C 
625 / 1.3 = 0.048,  D / d = 1.75 / 1.3 = 1.35 

: 

: 

q = 0.71 

Fig. 6-21: qs = 0.76 

q. (6-32): 

 
Sh
  r / d = 0.0

  

Fig. A-15-9 Kt = 2.0 

Fig. A-15-8 Kts = 1.7 

Fig. 6-20: 

E  1 1 1 0.71(2.0 1) 1.7f tK q K      

1 ( 1) 1 .76(1.7 1) 1.5fs s tsK q K        
 

0

0.107
1.3

0.855Eq. (6-20): 
0.30 

Eq. (6-18): 0.897(0.855)(32) 24.5 kpsieS    

bk


     

or convenience, we will use the full value of the bending moment at C, even though it 

will be slightly less at the shoulder.  Using Eq. (7-9) with Mm = Ta = 0,  

 

F

 

    

    

2 2

2 2

4 4 1.7 6750 22 950 lbf in 22.95 kip in

3 3 1.5 2819 7324 lbf in 7.324 kip in

f a

fs m

A K M

B K T

      

      

 




 

 
  

  
  

1/2
2

3

1/2
2

21 8
1 1

8 22.95 2 7.324 24.5
1 1

22.95 6424.5

e

e ut

BSA

n d S AS

         
     

    
31.3

           

 

  
The critical location is at the shoulder to the right of C, where n = 0.45 and finite life is 

 

plicitly called for in the problem statement, a static check for yielding is 

especially warranted with such a low fatigue factor of safety.  Using Eq. (7-15), with  

Mm = Ta = 0,

 

 n = 0.45   

       

predicted.      Ans. 

Though not ex

  
 

  
 

1/2
2 2

max 3 3

1/2
2 2

3 3

32 16
3

32 1.7 6750 16 1.5 2819
3 55 845 psi 55.8 kpsi

1.3

f a fs mK M K T

d d


 

 

    
      

     

    
       
      

 

1.3 
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max

0.97
55.8

yn


  


  

 

his indicates localized yielding is predicted at the stress-concentr

54S

ation, though after 

o be 

f 

static, 

 
7-20 

te the deflections.  Entering 

the geometry from the shaft as defined in - loading as defined in Prob. 

3-72, the following defle itude te

 

D

T

localized cold-working it may not be a problem.  The finite fatigue life is still likely t

the failure mode that will dictate whether this shaft is acceptable. 

 

It is interesting to note the impact of stress concentration on the acceptability of the 

proposed design.  This problem is linked with several previous problems (see Table 1-1, 

p. 24) in which the shaft was considered to have a constant diameter of 1.25 in. In each o

the previous problems, the 1.25 in diameter was more than adequate for deflection, 

and fatigue considerations.  In this problem, even though practically the entire shaft has 

diameters larger than 1.25 in, the stress concentrations significantly reduce the 

anticipated fatigue life. 

______________________________________________________________________________ 

For a shaft with significantly varying diameters over its length, we will choose to use 

shaft analysis software or finite element software to calcula

 Prob. 7

e

19, and the 

rmined: ction magn s are d

Location Slope 
(rad) 

eflection
(in) 

Left bearing O 0.00640 0.00000 

Right bearing C 0.00434 0.00000 

Left Gear A 0.00260 0.04839 

Right Gear B 0.01078 0.07517 

 

Comparing these values to the recommended limits in Table 7-2, we find that they are all

out of the desired range.  This is not unexpected since the stress analysis of Prob. 7-19 

also indicated the shaft is undersized for infinite life.  The sl

 

ope at the right gear is the 

ost excessive, so we will attempt to increase all diameters to bring it into compliance.  

sing Eq. (7-18) at the right gear,  

m

U

 
 

1/4
1/4

new old

old all

2.15
slope 0.0005d

     
/ (1)(0.01078)dn dy dxd

Multiplying all diameter e ob  fo lections: 

 

D

 

s by 2.15, w tain the llowing def

Location Slope 
(rad) 

eflection
(in) 

Left bearing O 0.00030 0.00000 

Right bearing C 0.00020 0.00000 

Left Gear A 0.00012 0.00225 

Right Gear B 0.00050 0.00350 
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This brings the slope at the right gear just to the limit for an uncrowned gear, and all 

other slopes well below the recommended limits.  For the gear deflections, the values are 

______________________________________________________________________________ 

 
7-21 is 

o-

 with the keyway at B, the 

rimary difference between the two is the stress concentration, since they both have 

eyway at A 
d-milled keyway cutter (p. 373), with d = 50 mm,   

Kt = 2.14, Kts = 3.0 

Fig. 6-20: q = 0.66 

ig. 6-21: qs = 0.72 

e
50 = 0.04,  D / d = 75 / 50 = 1.5  

: 

below recommended limits as long as the diametral pitch is less than 20. 

The most likely critical locations for fatigue are at locations where the bending moment 

high, the cross section is small, stress concentration exists, and torque exists. The tw

plane bending moment diagrams, shown in the solution to Prob. 3-73, indicate both 

planes have a maximum bending moment at B.  At this location, the combined bending 

moment from both planes is M = 4097 N·m, and the torque is T = 3101 N·m.  The 

shoulder to the right of B will be eliminated since its diameter is only slightly smaller, 

and there is no torque.  Comparing the shoulder to the left of B
p

essentially the same bending moment, torque, and size. We will check the stress 

concentration factors for both to determine which is critical.  

 

 

Table A-20: Sut = 440 MPa, Sy = 370 MPa 

 

K
Assuming r / d = 0.02 for typical en

r = 0.02d = 1 mm.  

 

Table 7-1: 

F

Eq. (6-32): 1fK q 1 1 0.66(2.14 1) 1.8tK      

 
1 ( 1) 1 0.72(3.0 1) 2.4fs s tsK q K      

 
 
Shoulder to th  left of B 
  r / d = 2 / 

  

Fig. A-15-9 Kt = 2.2 
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Fig. A-15-8:

F

 Kts = 1.8 

Fig. 6-20: q = 0.73 

ig. 6-21: q  = 0.78 

n of the stress concentration f ctors indicates the keyway will be the critical 

Eq. (6-19): 

s

 1 1 1 0.73(2.2 1) 1.9

fs s tsK q K      

Eq. (6-32): f tK q K      

 
1 ( 1) 1 0.78(1.8 1) 1.6  

 

Examinatio a

location. 

 

0.5(440) 220 MPaeS    Eq. (6-8): 
0.2654.51(440) 0.899ak    

0.107

Eq. (6-20): 
50

0.818
7.62

bk


   
 

 

We will choose the DE-Gerber criteria since this is an analysis problem in which we 

ould like to evaluate typical expectations.  Using Eq. (7-9) with Mm a = 0, 

 

 1c d ek k k    

Eq. (6-18): 0.899(0.818)(220) 162 MPaeS    

 

w  = T
 

    

    

2 2

2 2

4 4 1.8 4097 14 750 N m

3 3 2.4 3101 12 890 N m

f a

fs m

A K M

B K T

    

    

 




 

 
   

   
   

1/2
2

3

1/2
2

6

3 6 6

21 8
1 1

08 14

0.050 162 10 14 750 440 10

e

e ut

BSA

n d S AS



         
     

2 12 890 162 1750
1 1

               
 n = 0.25 Infinite life is not predicted.       Ans.   

 

Though not explicitly called for in the problem statement, a static check for yielding is 

especially warranted with such a low fatigue factor of safety.  Using Eq. (7-15), with  

Mm = Ta = 0, 

 

     
  

 

1/2
2 2

max 3 3

1/2
2 2

8

3 3

32 16
3

32 1.8 4097 16 2.4 3101
3 7.98 10  Pa 798 MPa

050 0.050

f a fs mK M K T

d d


 

    
      

     

    
 


    

 

0. 
     
   
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max

370
0.46

798

yS
n


  


  

 

This indicates localized yielding is predicted at the stress-concentration.  Even without 

the stress concentration effects, the static factor of safety turns out to be 0.93. Static 

failure is predicted, rendering this proposed shaft design unacceptable. 

 

This problem is linked with several previous problems (see Table 1-1, p. 24) in which 

shaft was considered to have a constant diameter of 50 mm. The results here ar

the 

e 

______________________________________________________________________________ 

 
-22 th, we will choose to use 

shaft analysis software o ment s  t e deflections.  Entering 

the geometry from the shaft as defined in -2 ading as defined in Prob. 

3-73, the following itud erm

 

De n 

consistent with the previous problems, in which the 50 mm diameter was found to 

slightly undersized for static, and significantly undersized for fatigue.  Though in the 

current problem much of the shaft has larger than 50 mm diameter, the added 

contribution of stress concentration limits the fatigue life.   

For a shaft with significantly varying diameters over its leng7
r finite ele oftware

 7

o calculate th

1, and the lo

i

Prob. 

deflection magn es are det ned: 

Location Slope 
(rad) 

flectio
(mm) 

Left bearing O 0.01445 0.000 

Right bearing C 0.01843 0.000 

Left Gear A 0.00358 3.761 

Right Gear B 0.00366 3.676 

 

Comparing these values to the recommended limits in Table 7-2, we find that they are all 

well out of the desired range.  This is not unexpected since the stress analysis in Prob.  

-21 also indicated the shaft is undersize7

the lef

d for infinite life.  The transverse deflection at 

t gear is the most excessive, so we will attempt to increase all diameters to bring it 

to compliance.  Using Eq. (7-17) at the left gear, assuming from Table 7-2 an allowable 

 yall = 0.01 in = 0.254 mm, 

in

deflection of

 
1/4 1/4

new old (1)(3.761)
1.96dd n y

     
old alld y

 

Multiplying all diam btai wi : 

 

De n 

0.254

eters by 2, we o n the follo ng deflections

Location Slope 
(rad) 

flectio
(mm) 

Left bearing O 0.00090 0.000 

Right bearing C 0.00115 0.000 

Left Gear A 0.00022 0.235 

Right Gear B 0.00023 0.230 
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This brings the deflection at the gears just within the limit for a spur gear (assuming P < 

______________________________________________________________________________ 

 
7-23 , 

 

 

stress element will be completely reversed, while the torsional stress will be steady.  

Since we do not have any information about the fan, we will ignore any axial load that it 

would introduce.  It would not likely contribute much compared to the bending anyway.   

 

10 teeth/in), and all other deflections well below the recommended limits. 

(a)  Label the approximate locations of the effective centers of the bearings as A and B
the fan as C, and the gear as D, with axial dimensions as shown.  Since there is only one 

gear, we can combine the radial and tangential gear forces into a single resultant force

with an accompanying torque, and handle the statics problem in a single plane.  From 

statics, the resultant reactions at the bearings can be found to be RA = 209.9 lbf and RB =

464.5 lbf.  The bending moment and torque diagrams are shown, with the maximum 

bending moment at D of MD = 209.9(6.98) = 1459 lbf·in and a torque transmitted from D 
to C of T = 633 (8/2) = 2532 lbf·in.  Due to the shaft rotation, the bending stress on any 

 
Potentially critical locations are identified as follows: 

 Keyway at C, where the torque is high, the diameter is small, and the keyway creates 

a stress concentration. 
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 Keyway at D, where the bending moment is maximum, the torque is high, and the

keyway creates a stress concentration. 

 

. 

eter is smaller than at D or E, the bending moment is 

 The shoulder to the left of D can be eliminated since the change in diameter is very 

ill undoubtedly be much less than at D. 

 

 Sut = 68 kpsi, Sy = 57 kpsi

ince there is only steady torsion here, only a static check needs to be performed.  We’ll 

aximum shear stress theory. 

 

 Groove at E, where the diameter is smaller than at D, the bending moment is still 

high, and the groove creates a stress concentration.  There is no torque here, though

 Shoulder at F, where the diam

still moderate, and the shoulder creates a stress concentration.  There is no torque 

here, though. 

slight, so that the stress concentration w

Table A-20:  

q. (6-8): 0.5(68) 34.0 kpsieS    E
0.2652.70(68) 0.883ak    Eq. (6-19): 

 
Keyway at C 
S

use the m

 

 
 4

2532 1.00 / 2
12.9 kpsi

1.00 / 32

Tr

J



    

/ 2 57 / 2
2.21

12.9

y
y

S
nEq. (5-3): 


    

ssuming r / d = 0.02 for typical end-milled keyway cutter (p. 373), with d = 1.75 in,   

Kts = 3.0 

q = 0.66 

Fig. 6-21: qs = 0.72 

q. (6-32): 

 
A

 

Keyway at D 

r = 0.02d = 0.035 in.  

  

Table 7-1: Kt = 2.14, 

Fig. 6-20: 

E  1 1 1 0.66(2.14 1) 1.8f tK q K      

1 ( 1) 1 .72(3.0 1) 2.4fs s tsK q K        
 

0

0.107
1.75

0.828
0.30

bk


   
 

 Eq. (6-20): 

Eq. (6-18): 0.883(0.828)(34.0) 24.9 kpsieS    

 

We will choose the DE-Gerber criteria since this is an analysis problem in which we 

ould like to evaluate typical expectations.   

Using Eq. (7-9) with Mm = Ta = 0, 

w
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    

    

2 2

2 2

4 4 1.8 1459 5252 lbf in 5.252 kip in

3 3 2.4 2532 10 525 lbf in 10.53 kip in

f a

fs m

A K M

B K T

      

      

 



 

 
  

  
  

1/2
2

3

1/2
2

3

21 8
1 1

8 5.252 2 10.53 24.9
1 1

5.252 681.75 24.9

e

e ut

BSA

n d S AS



         
     

            

 

    
 n = 3.59  Ans.   
 

 

roove at E 
he right of the 

w and will likely not allow the stress flow to fully develop. (See 

 the  concept.)   

  r / d = 0.1 / 1.55 = 0.065,       D / d = 1.75 / 1.55 = 1.13 

: Kt = 2.1 

Fig. 6-20: q = 0.76 

G
We will assume Figs. A-15-14 is applicable since the 2 in diameter to t

groove is relatively narro

Fig.7-9 for  stress flow

 

Fig. A-15-14

Eq. (6-32): ) 1 1 1 0.76(2.1 1 1.8f tK q K        

0.107
1.55

0.839
0.30

bk
     Eq. (6-20): 



 

Using Eq. (7-9) with Mm = Ta = Tm = 0, 

 

0.883(0.839)(34) 25.2 kpsieS    Eq. (6-18): 

 

 

    2 2

4 4 1.8 1115 4122 lbf in 4.122 kip inf aA K M       

 
B = 0  

 
 

  
  

1/2
2

3

1/2
2

31.55 25.2

21 8
1 1

8 4.122
1 1 0

e

e u

BSA

A

         
   tn d S S   

    

 

 Ans. 

F 
  r / d = 0.125 / 1.40 = 0.089,       D / d = 2.0 / 1.40 = 1.43 

 Kt = 1.7 

Fig. 6-20: q = 0.78 

 n = 4.47  

 
Shoulder at 

Fig. A-15-9:
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Eq. (6-32): ) 1 1 1 0.78(1.7 1 1.5f tK q K        

0.107
1.40

0.848
0.30

bk
   
 

 Eq. (6-20): 



Eq. (6-18): 

Using Eq. (7-9) with Mm = Ta = Tm = 0, 

0.883(0.848)(34) 25.5 kpsieS    

 

 

    2 2

4 4 1.5 845 2535 lbf in 2.535 kip inf aA K M       

 
B = 0  

 

 
 

  
  1/2

2

3

2.53
1 1 0

1.40 25.5

1/2
2

3

21 8
1 1 e

e ut

BSA

AS

         
  

n d S  

8 5     

 n = 5.42 Ans.  
        

 

 
(b) The deflection will not be much affected by the details of fillet radii, grooves, and 

keyways, so these can be  A g

narrow 2.0 in diameter section, can be cted.  ill model the shaft with the 

following three sections: 

 

Section Diameter
(in) 

Length
(in) 

 

ignored. lso, the sli ht diameter changes, as well as the 

negle We w

1 1.00 2.90 

2 1.70 7.77 

3 1.40 2.20 

 

The deflection problem can readily (though tediously) be solved with singularity 

functions.  For example -7, p.  the solution to Prob. 7-24.  Alternatively, 

shaft analysis software or finite element software may be used.  Using any of the 

methods, the results low

 

ation D

 

 

s, see Ex. 4 159, or

should be as fol s: 

Loc Slope 
(rad) 

eflection
(in) 

Left bearing A 0.000290 0.000000 

Right bearing B 0.000400 0.000000 

Fan C 0.000290 0.000404 

Gear D 0.000146 0.000928 
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Comparing these values to the recommended limits in Table 7-2, we find that they

within the r

 are all 

ecommended range.   

______________________________________________________________________________ 

 

7-24 

ill ignore the steps near the bearings where the bending moments 

w  mm dia. be 35 mm. Secondly, the 55 mm dia. is very thin, 10 

Th tresses will not develop at the outer fibers so full stiffness will not 

iameter be 45 mm. 

tatics: L ort

             R r

 

 

 100 140 210 275 315 

Shaft analysis software or finite element software can be utilized if available. Here we 

will demonstrate how the problem can be simplified and solved using singularity 

functions. 

 

Deflection: First we w

are lo . Thus let the 30

mm. e full bending s

develop either. Thus, ignore this step and let the d

 

S eft supp : R1 15 140) / 315 889   7(3 3. kN  

ight suppo t: 2 7(14 0R ) / 315  3.111 kN  

Determine the bending moment at each step. 

x(mm) 0 40

M(N · m) 0 155.56 388.89 544.44 326.67 124.44 0 

 

I 35 = (/64)(0.035
4
) = 366(10 ) m

4
, I 0 = 1.257(1 , I 45 = 2. -7

) m
4
 

 

Plot M/I nction

 

) M N/m
3
) Step 

 7. -8
4 0

-7
) m

4
013(10

as a fu  of x. 

x(m /I (10
9
  Slope Slope 

0 0   52.8  

0.04 2.112    

0.04 1.2375 0.8745 21.86 

4 

 1.162 11.617 

05 0 15.457 34.78 

0.21 1.623    

0.21 2.6   0.977 -24.769 -9.312 

0.275 0.99    

0.275 1.6894   0.6994 -42.235 -17.47 

0.315 0    

–  30.942 –

0.1 3.09    

0.1 1.932 –  19.325 –

0.14 2.705    

0.14 2.7   – –
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The steps and the change of slopes are evaluated in the table. From these, the function 

M/I can be generated: 

 
0 1

1 1 0

1 0 9

/ 52.8 0.8745 0.04 21.86 0.04 1.162 0.1

11.617 0.1 34.78 0.14 0.977 0.21

9.312 0.21 0.6994 0.275 17.47 0.275 10

M I x x x x

x x x

x x x

      
     

      

 

0

1

 

Integrate twice: 

 

1 2226.4 0.8745 0.04 10.93 0.04 1.162x x x x      
1

3 2

0.1

0.04 0.581 0.1

7

E
dx

x

x

  

dy

2 2 1

2 1 2 9

1

23

5.81 0.1 17.39 0.14 0.977 0.21

4.655 0.21 0.6994 0.275 8.735 0.275 10  (1)

8.8 0.4373 0.04 3.643

x x x

x x x C

Ey x x x

     

       
   

 

1.93 3 3 2

3 9

0.1 0.14 0.21

52 0. 0.2 0.275 10

x

x x x

   

  

Boundary conditions:  y yields C2 

 y = 0 at x = 0.315 m yields C1 = –0.295 25 N/m
2. 

 

3  2  1 2C x C 

5.797 0.4885 x

1.5 21 0.3497 75 2.912  

= 0 at x = 0 = 0; 

 
Equation (1) with C1 = –0.295 25 provides the slopes at the bearings and gear. The 
following table gives the results in the second column. The third column gives the results

from a similar finite element model. The fourth column gives the results of a full model 

which models the 35 and 55 mm diameter steps. 
 

x (mm)  (rad) F.E. Model Full F.E. Model

0 –0.001 4260 –0.001 4270 –0.001 4160

140 –0.000 1466 –0.000 1467 –0.000 1646

315 0.001 3120 0.001 3280 0.001 3150
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The main discrepancy between the results is at the gear location (x = 140 mm). The larger 

value in the full model is caused by the stiffer 55 mm diameter step. As was stated 

arlier, this step is not as stiff as modeling implicates, so the exact answer is somewhere 

between the full model and the simplified model which in any event is a small value. As 

xpected, modeling the 30 mm dia. as 35 mm does not affect the results much. 

     

 can be seen that the allowable slopes at the bearings are exceeded. Thus, either the load 

ed or the shaft “beefed” up. If the allowable slope is 0.001 rad, then the 

aximum load should be Fmax = (0.001/0.001 426)7 = 4.91 kN. With a design factor this 

would be reduced further. 

      

To increase the stiffness of th , E 8  f  deflection (at 

 = 0) to determine a multiplier to be used for all diameters.   

 

e

e

It

has to be reduc

m

e shaft  apply q. (7-1 ) to the most o fending

x
 

 
 

1/4
1/4

new old

old

/ (1)(0.0014260)
1.093

n dy dxd

d
   

 

orm a table: 

all
slope 0.001

d 

F

 

Old d, mm 20.00 30.00 35.00 40.00 45.00 55.00 

New ideal d, mm 21.86 32.79 38.26 43.72 49.19 60.12 

Rounded up d, mm 22.00 34.00 40.00 44.00 50.00 62.00 

 

Repeating the full finite element mo lts in del resu

x  9

40 :   –1  1  

5   .
 

stress concentrations and reduced shaft diameters, there are a number of 

 at. A table of nominal stresses is given below. Note that torsion is only 

f the 7 kN load. Using   = 32 (d3
) and   = 16T/(d3

), 

 

0  275 300 330 

 

 = 0:    = – .30  10
-4

 rad 

x = 1  mm   = .09  0
-4

 rad
-4x = 31  mm:   = 8 65  10  rad 

This is well within our goal. Have the students try a goal of 0.0005 rad at the gears. 

 

Strength: Due to 

 looklocations to

to the right o M/

x (mm) 15 40 100 110 140 210

 (MPa) 0 39.6   17.6     0 

    0     6     8.5   12.7   20.2   68.1

22.0 37.0   61.9   47.8   60.9   52.0   

  (MPa) 0   0   0     0 

(MPa)   0 22.0 37.0   61.9   47.8   61.8   53.1   45.3   39.2 118.0

 

 for Sy = 390 MPa 

 

Eq. (6-19): 

Table A-20  AISI 1020 CD steel:   Sut = 470 MPa,   

At x = 210 mm: 
0.2654.51(470) 0.883ak    
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Eq. (6-20): 0.107(40 / 7.62) 0.837bk    

Eq. (6-18): Se = 0.883 (0.837)(0.5)(470) = 174 MPa 

 D / d = 45 / 40 = 1.125,    r / d = 2 / 40 = 0.05 

Fig. A-15-8:  Kts = 1.4  

Fig. A-15-9:  Kt = 1.9  

Fig q = 0.75 

Fig qs = 0.79 

 = 1 + 0.75(1.9 –1) = 1.68 

ld check, from Eq. (7-11), with 

. 6-20:  

. 6-21: 

Eq. (6-32): Kf

K  f s = 1 + 0.79(1.4 – 1) = 1.32 
 

Choosing DE-ASME Elliptic to inherently include the yie

Mm = Ta = 0,  

  
     

1/2
2 2

6

1.32(107)
3

390 103 6

1.68(326.67)
4

0.04 174 10n 

    1 16      
       

 

  
 

 At 

The von Mises stress is the highest but it comes from the steady torque only. 

Fig. 6-21: qs = 0.79 

.42 – 1) = 1.33 

1.98n   

x = 330 mm: 

 
 D / d = 30 / 20 = 1.5,    r / d = 2 / 20 = 0.1 

Fig. A-15-9: Kts = 1.42 

Eq. (6-32): Kf s = 1 + 0.79(1

Eq. (7-11):  

      
1 16 1.33(107)

3 6390 10n 
3
 
 

      

 n = 2.49
 

Note that since there is only a steady torque, Eq. (7-11) reduces to essentially the 

equivalent of the distortion energy failure theory. 

 

 s at x = 210 mm, the changes discussed for the slope criterion will 

______________________________________________________________________________ 

7-2 se design tasks each student will travel different paths and almost all 

 The student gets a blank piece of paper, a statement of function, and some constraints 

Check the other locations. 

 

If worse-case i

 improve the strength issue. 

 

5 and 7-26  With the

details will differ. The important points are 

– explicit and implied. At this point in the course, this is a good experience. 

 It is a good preparation for the capstone design course. 
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 The adequacy of their design must be demonstrated and possibly include a designer’s 

notebook. 

 Many of the fundaments of the course, based on this text and this course, are useful. 

. 

 Don’t let the students create a time sink for themselves. Tell them how far you want 

______________________________________________________________________________ 

 
7-27 oblem.  This problem is a learning experience. 

ollowing the task statement, the following guidance was added. 

ting the temptation of putting pencil to paper, and decide 

what the problem really is. 

ld implement it. 

The students’ initial reaction is that he/she does not know much from the problem 

lowly the realization sets in that they do know some important things 

that the designer did not. They knew how it failed, where it failed, and that the design 

wasn’t good enough; it was close, though. 

Also, a fix at the bearing seat lead-in could transfer the problem to the shoulder fillet, and 

the problem may not be 

 

tudents’ credit, they chose to keep the shaft geometry, and selected a new 

material to realize about 

______________________________________________________________________________ 

-28 

The student will find them useful and notice that he/she is doing it


them to go. 

This task was once given as a final exam pr

F

 

 Take the first half hour, resis

 Take another twenty minutes to list several possible remedies. 

 Pick one, and show your instructor how you wou

 

statement. Then, s

 

solved. 

To many s

twice the Brinell hardness. 

 

7 In Eq. (7-22) set 
4 2d d

,
64 4

I A
 

   

 to obtain 
2

4l
 d gE


   

 

    
   

 (1) 

or 
2

2 gE

4l
d

 
  (2) 

 (a) From Eq. (1) and Table A-5 

 




 

 
2 90.025 9.81(207)(10 )

.A
3

883 rad/s     
0.6 4 76.5 10

ns
   

      
   
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(b) From Eq. (1), we observe that the critical speed is linearly proportional to the 

diameter.  Thus, to double the critical speed, we should double the diameter to d = 50 

mm.        Ans. 
   

 (c) From Eq. (2), 

 
2 d g

l

4

E

l 
  

 

 Since d / l is the same regardless of the scale, 

 
constant 0.6(883) 529.8l     

529.8
1766 rad/s     .A

0.3
ns    

 Thus the first critical speed doubles. 

______________________________________________________________________________ 

 

7-29 From Prob. 7-28,

 

883 rad/s   

 

     4 2 8 4 44.909 10  m , 1.917 10 m , 7.65 10  N/mA I      3

   9 4 4207(10 ) Pa,     4.909 10 7.65 10 (0.6) 22.53 NE A l    w  

  

 One element: 

 

 Eq. (7-24): 

 
     

2 2 2

6

11 9 8

0.3(0.3) 0.6 0.3 0.3
1.134 10 m/N

6(207) 10 (1.917) 10 (0.6)
 



 
   

 

   6 5

1 1 11 22.53(1.134) 10 2.555 10  my     w  

 2 1

1 6.528 10y   0

   5 422.53(2.555) 10 5.756 10y    w  

   2 1022.53(6.528) 10 1.471 10y    w  8

 

 
 

4

1 2 8

5.756 10
9.81 620 rad/s

1.471 10

y
g

y







  


w

w
     (30% low) 

 

 Two elements: 
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 
     

2 2 2

7

11 22 9 8

0.45(0.15) 0.6 0.45 0.15
6.379 10  m/N

6(207) 10 (1.917) 10 (0.6)
  



 
    

     
2 2 2

7

12 21 9 8

0.15(0.15)(0.6 0.15 0.15 )
4.961 10  m/N

6(207) 10 (1.917) 10 (0.6)
  



 
    

 

     7 7

1 2 1 11 2 12 11.265(6.379) 10 11.265(4.961) 10 1.277 10 my y         w w  5

 2 2 102 10  
1 2 1.63y y 

   5 42(11.265)(1.277) 10 2.877 10y    w  

   2 102(11.265)(1.632) 10 3.677 10y    w  9

 

 
 

4

1 9

2.877 10
9.81 876 rad/s

3.677 10






 
  
  

 (0.8% low) 

 

 Three elements: 

 

 
     

2 2 2

7

11 33 9 8

0.5(0.1) 0.6 0.5 0.1
3.500 10  m/N

6(207) 10 (1.917) 10 (0.6)
  



 
    

 
     

2 2 2

6

22 9 8

0.3(0.3) 0.6 0.3 0.3
1.134 10  m/N

6(207) 10 (1.917) 10 (0.6)
 



 
   

 
     

2 2 2

7

12 32 9 8

0.3(0.1) 0.6 0.3 0.1
5.460 10  m/N

6(207) 10 (1.917) 10 (0.6)
  



 
    

 
     

2 2 2

7

13 9 8

0.1(0.1) 0.6 0.1 0.1
2.380 10  m/N

6(207) 10 (1.917) 10 (0.6)
 



 
   

 

       7 7 7

1 7.51 3.500 10 5.460 10 2.380 10 8.516 10         6y

       7 6 7

2 7.51 5.460 10 1.134 10 10 1.672 10y          55.460

       7 7 7

3 7.51 2.380 10 5.460 10 3.500 10 8.516 10y          6

       6 5 6 47.51 8.516 10 1.672 10 8.516 10 2.535 10y          w  

        2 2 2
2 6 5 6 97.51 8.516 10 1.672 10 8.516 10 3.189 10y                  w  
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 
 

42.535 10
9.81 883 ra

 
  1 93.189 10  

d/s  

7-28.  The point was to show that convergence is rapid 

using a static deflection beam equation. The method works because: 

 If a deflection curve is chosen which meets the boundary conditions of moment-

free and deflection-free ends, as in this problem, the strain energy is not very 

sensitive to the equation used. 

ation is available, and meets the moment-free and 

deflection-free ends, it works. 

______________________________________________________________________________ 

 
7-30 (a) For two bodies, Eq. (7-26) is 

 

The result is the same as in Prob. 

 Since the static bending equ

 
2

1 11( 1/ )
0

m  2 12

2

1 21 2 22( 1/ )

m

m m



  



 

 Expanding the determinant yields, 

 

 
2

1 
1 11 2 22 1 2 11 22 12 212 2

1

1
( ) ( ) 0m m mm     

 
 

      
   

 (1) 

 

 Eq. (1) has two roots 2 2

1 21/  and 1 / . 
 
Thus 

 

2 2 2 2

1 2

1 1 1 1  
0

   
    

  
 

 

 or, 

 
2

1 1 
2

2 2 2 2 2

1 2 1 2

1 1 1 1
0

     
              

       
   (2) 

 

Equate the third terms of Eqs. (1) and (2), which must be identical.  

 

2

1 2 11 22 12 21 1 1 2 11 22 12 212 2 2

1 1 1
( ) ( )m m m m

1 2 2

        
  

    
 

 

 and it follows that 
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2

2

1 1 11 22 12

.
( )

Ans
   


w w

 
2 21

1 g



(b) In Ex. 7-5, part (b), the first critical speed of the two-disk shaft (w1 = 35 lbf,  

w 2 = 55 lbf) is 1 = 124.8 rad/s.  From part (a), using influence coefficients, 

 

 

 
2

2 2 8

1 386
466 rad/s .

124.8 35(55) 2.061(3.534) 2.234 10
Ans


 

  
 

______________________________________________________________________________ 

 

7-31 In Eq. (7-22), for 1, the term /I A appears. For a hollow uniform diameter shaft, 

 

 
 

  4 2 2 2 2

2 2o o i o id d d d dI
d d




 
     

4

1 2 22 2

/ 64 1 1

16 4/ 4

i

o i
o io i

d

A d dd d






 

This means that when a solid shaft is hollowed out, the critical speed increases beyond 

 solid shaft of the same size. By how much? that of the

 
22 2

2
1

(1/ 4)

o i i

oo
dd

   
 

 

The possible values of  are 0 ,i i od d d

(1/ 4) d d d  

 

   so the range of the critical speeds is 

 

1 1 0   to about 1 1 1   

 

 or from 1 1to 2 . .Ans  

______________________________________________________________________________ 

 
7-32 All steps w  b g t t pr s et.  Programming 

both loads will enable the user to first set the left load to 1, the right load to 0 and 

calculate 11 and 21. Then set the left load to 0 and the right to 1 to get 12 and 22. The 

spreadsheet shows the 11 and 21 calculation. A table for M / I  vs. x is easy to make. 

First, draw the bending-moment diagram as shown with the data. 

 

x 0 1 2 3 4 5 6 7 8 



ill e modeled using sin ulari y func ions with a s ead he

M 0 0.875 1.75 1.625 1.5 1.375 1.25 1.125 1 

 

x 9 10 11 12 13 14 15 16   

M 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0   
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 The second-area moments are: 

 

   4 4

10 1 in and 15 16 in, 2 / 64 0.7854 inx x I        

   
 
 

4 4

2

4 4

3

1 9 in , 2.472 / 64 1.833 in

9 15 in , 2.763 / 64 2.861 in

x I

x I





   

   

 

 Divide M by I at the key points x = 0, 1, 2, 9, 14, 15, and 16 in and plot 

  

x 0 1 1 2 2 3 4 5 6 7 8 

M/I 0 1.1141 0.4774 0.9547 0.9547 0.8865 0.8183 0.7501 0.6819 0.6137 0.5456

            

x 9 9 10 11 12 13 14 14 15 15 16 

M/I 0.4774 0.3058 0.2621 0.2185 0.1748 0.1311 0.0874 0.0874 0.0437 0.1592 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 From this diagram, one can see where changes in value (steps) and slope occur. Using a 

spreadsheet, one can form a table of these changes. An example of a step is, at x = 1 in, 

M/I goes from 0.875/0.7854 = 1.1141 lbf/in
3
 to 0.875/1.833 = 0.4774 lbf/in

3
, a step 

change of 0.4774  1.1141 =  0.6367 lbf/in
3
. A slope change also occurs at at x = 1 in. 
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The slope for 0  x  1 in is 1.1141/1 = 1.1141 lbf/in
2
, which changes to (0.9547  

0.4774)/1 = 0.4774 lbf/in
2
, a change of  0.4774  1.1141 =  0.6367 lbf/in

2
. Following 

this approach, a table is made of all the changes. The table shown indicates the column 

letters and row numbers for the spreadsheet. 

 

  A B C D E F 

1 x M M/I step Slope  Slope 

2 1a 0.875 1.114085 0.000000 1.114085 0.000000 

3 1b 0.875 0.477358 -0.636727 0.477358 -0.636727 

4 2 1.75 0.954716 0.000000 0.477358 0.000000 

5 2 1.75 0.954716 0.000000 -0.068194 -0.545552 

6 9a 0.875 0.477358 0.000000 -0.068194 0.000000 

7 9b 0.875 0.305854 -0.171504 -0.043693 0.024501 

8 14 0.25 0.087387 0.000000 -0.043693 0.000000 

9 14 0.25 0.087387 0.000000 -0.043693 0.000000 

10 15a 0.125 0.043693 0.000000 -0.043693 0.000000 

11 15b 0.125 0.159155 0.115461 -0.159155 -0.115461 

12 16 0 0.000000 0.000000 -0.159155 0.000000 

 

 The equation for M / I in terms of the spreadsheet cell locations is: 

 

    

0 1 1

0 1 0

/ E2 ( ) D3 1 F3 1 F5 2

D7 9 F7 9 D11 15 F11 15

M I x x x x

x x x x

      

        1

5

5





 

 

 Integrating twice gives the equation for Ey. Assume the shaft is steel. Boundary 

conditions y = 0 at x = 0 and at x = 16 inches provide integration constants (C1 =  4.906  

lbf/in and C2 = 0). Substitution back into the deflection equation at x = 2 and 14 in 

provides the  ’s. The results are: 11 = 2.917(10
–7

) and 12 = 1.627(10
–7

).  Repeat for  

 F1 = 0 and F2 = 1, resulting in 21 = 1.627(10
–7

) and 22 = 2.231(10
–7

). This can be 

verified by finite element analysis. 

 
7 7

1

7 7

2

2 10 2 10

1 2

4 2 9

18(2.917)(10 ) 32(1.627)(10 ) 1.046(10 )

18(1.627)(10 ) 32(2.231)(10 ) 1.007(10 )

1.093(10 ),    1.014(10 )

5.105(10 ),    5.212(10 )

y

y

y y

y y

 

 

 

 

  
  
 
  w w

 

 

 Neglecting the shaft, Eq. (7-23) gives 

 
4

1 9

5.105(10 )
386 6149 rad/s   or   58 720 rev/min     .

5.212(10 )
Ans



 
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Without the loads, we will model the shaft using 2 elements, one between 0  x  9 in, 

and one between 0  x  16 in. As an approximation, we will place their weights at  

x = 9/2 = 4.5 in, and x = 9 + (16  9)/2 = 12.5 in. From Table A-5, the weight density of 

steel is   = 0.282 lbf/in
3
. The weight of the left element is  

     2 2 2

1 0.282 2 1 2.472 8 11.7 lbf
4 4

d l
            
w  

The right element is 

     2 2

2 0.282 2.763 6 2 1 11.0 lbf
4

         
w  

 

 

 

 

 

 

 

 

The spreadsheet can be easily modified to give 

 

       7 7

11 12 21 229.605 10 , 5.718 10 , 5.472 10        7  

      5 5

1 21.753 10 , 1.271 10y y    

      2 10 2

1 23.072 10 , 1.615 10y y   10  

      4 23.449 10 , 5.371 10y y   w w
9  

   
 
 

4

1 9

3.449 10
386 4980 rad/s

5.371 10






 
  
  

 

 
A finite element model of the exact shaft gives 1 = 5340 rad/s. The simple model is 

6.8% low. 

 
Combination:   Using Dunkerley’s equation, Eq. (7-32): 

 

  
12 2 2

1

1 1 1
3870 rad/s .

6149 4980
Ans


    

______________________________________________________________________________ 

 

7-33 We must not let the basis of the stress concentration factor, as presented, impose a view-

point on the designer. Table A-16 shows Kts 
as a decreasing monotonic as a function of 

a/D. All is not what it seems.  Let us change the basis for data presentation to the full 

section rather than the net section. 

 

0 0ts tsK K      

Chapter 7 - Rev. A, Page 39/45 



3 3

32 32
ts ts

T T
K K

AD D 
    
 

 

 

 Therefore 

 

ts
ts

K
K

A
   

 

 Form a table: 

 

  

tsK  has the following attributes: 

 It exhibits a minimum; 

 It changes little over a wide range; 

 Its minimum is a stationary point minimum at a / D  0.100; 

 Our knowledge of the minima location is 

 
0.075 ( / ) 0.125a D   

We can form a design rule: In torsion, the pin diameter should be about 1/10 of the shaft 

diameter, for greatest shaft capacity. However, it is not catastrophic if one forgets the 

rule. 

______________________________________________________________________________ 

 

7-34 From the solution to Prob. 3-72, the torque to be transmitted through the key from the 

gear to the shaft is T = 2819 lbf·in.  From Prob. 7-19, the nominal shaft diameter 

supporting the gear is 1.00 in.  From Table 7-6, a 0.25 in square key is appropriate for a 

1.00 in shaft diameter.  The force applied to the key is  

 

  
2819

5638 lbf
1.00 / 2

T
F

r
    

 

Selecting 1020 CD steel for the key, with Sy = 57 kpsi, and using the distortion-energy 

theory, Ssy = 0.577 Sy = (0.577)(57) = 32.9 kpsi.   

 

Failure by shear across the key: 
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  
 

1.1 5638
           0.754 in

/ 0.25 32 900

sy sy

sy

F F

A tl
S S nF

n l
F tl tS





 

     
 

 

Failure by crushing: 

 

 / 2

F F

A t l
  

 
  
  3

2 5638 1.12
          0.870 in

2 / 0.25 57 10

y y

y

S S Fn
n l

F tl tS
       

 

Select ¼-in square key, 7/8 in long, 1020 CD steel.    Ans. 
______________________________________________________________________________ 

 

7-35 From the solution to Prob. 3-73, the torque to be transmitted through the key from the 

gear to the shaft is T = 3101 N·m.  From Prob. 7-21, the nominal shaft diameter 

supporting the gear is 50 mm.  To determine an appropriate key size for the shaft 

diameter, we can either convert to inches and use Table 7-6, or we can look up standard 

metric key sizes from the internet or a machine design handbook.  It turns out that the 

recommended metric key for a 50 mm shaft is 14 x 9 mm.  Since the problem statement 

specifies a square key, we will use a 14 x 14 mm key.  For comparison, using Table 7-6 

as a guide, for d = 50 mm = 1.97 in, a 0.5 in square key is appropriate. This is equivalent 

to 12.7 mm.  A 14 x 14 mm size is conservative, but reasonable after rounding up to 

standard sizes. 

 

 The force applied to the key is  

 

   33101
124 10  N

0.050 / 2

T
F

r
    

 

Selecting 1020 CD steel for the key, with Sy = 390 MPa, and using the distortion-energy 

theory, Ssy = 0.577 Sy = 0.577(390) = 225 MPa.   

 

Failure by shear across the key: 

 

 

 
  

   
3

6

1.1 124 10
           0.0433 m 43.3 mm

/ 0.014 225 10

sy sy

sy

F F

A tl

S S nF
n l

F tl tS





 

      
 

 

Failure by crushing: 
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 / 2

F F

A t
  

l

 
   

   
3

6

2 124 10 1.12
           0.0500 m 50.0 mm

2 / 0.014 390 10

y y

y

S S Fn
n l

F tl tS
        

 Select 14 mm square key, 50 mm long, 1020 CD steel.    Ans. 
______________________________________________________________________________ 

 

7-36 Choose basic size D = d = 15 mm. From Table 7-9, a locational clearance fit is 

designated as 15H7/h6. From Table A-11, the tolerance grades are D = 0.018 mm and 

d = 0.011 mm.   From Table A-12, the fundamental deviation is F = 0 mm. 

 
Hole:  
Eq. (7-36): Dmax = D + D = 15 + 0.018 = 15.018 mm  Ans.

 
 Dmin = D = 15.000 mm    Ans. 

 

Shaft:  
Eq. (7-37): dmax = d + F = 15.000 + 0 = 15.000 mm  Ans. 
  dmin = d + F – d = 15.000 + 0 – 0.011 = 14.989 mm Ans. 

______________________________________________________________________________ 

7-37 Choose basic size D = d = 1.75 in. From Table 7-9, a medium drive fit is designated as 

H7/s6. From Table A-13, the tolerance grades are D = 0.0010 in and d = 0.0006 in.   

From Table A-14, the fundamental deviation is F = 0.0017 in. 

 
Hole:  
Eq. (7-36): Dmax = D + D = 1.75 + 0.0010 = 1.7510 in  Ans.

 
 Dmin = D = 1.7500 in     Ans. 

 

Shaft:  
Eq. (7-38): dmin = d + F = 1.75 + 0.0017 = 1.7517 in  Ans. 
  dmax = d + F + d = 1.75 + 0.0017 + 0.0006 = 1.7523 in Ans. 

______________________________________________________________________________ 

 

7-38 Choose basic size D = d = 45 mm. From Table 7-9, a sliding fit is designated as H7/g6. 

From Table A-11, the tolerance grades are D = 0.025 mm and d = 0.016 mm.   From 

Table A-12, the fundamental deviation is F = –0.009 mm. 

 
Hole:  
Eq. (7-36): Dmax = D + D = 45 + 0.025 = 45.025 mm  Ans.

 
 Dmin = D = 45.000 mm    Ans. 

 

Shaft:  
Eq. (7-37): dmax = d + F = 45.000 + (–0.009) = 44.991 mm  Ans. 
  dmin = d + F – d = 45.000 + (–0.009) – 0.016 = 44.975 mm Ans. 

______________________________________________________________________________ 
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7-39 Choose basic size D = d = 1.250 in. From Table 7-9, a close running fit is designated as 

H8/f7. From Table A-13, the tolerance grades are D = 0.0015 in and d = 0.0010 in.   

From Table A-14, the fundamental deviation is F = –0.0010 in. 

 
Hole:  
Eq. (7-36): Dmax = D + D = 1.250 + 0.0015 = 1.2515 in Ans.

 
 Dmin = D = 1.2500 in     Ans. 

 

Shaft:  
Eq. (7-37): dmax = d + F = 1.250 + (–0.0010) = 1.2490 in Ans. 
  dmin = d + F – d = 1.250 + (–0.0010) – 0.0010 = 1.2480 in Ans. 

______________________________________________________________________________ 

 

7-40 Choose basic size D = d = 35 mm. From Table 7-9, a locational interference fit is 

designated as H7/p6. From Table A-11, the tolerance grades are D = 0.025 mm and  

 d = 0.016 mm.   From Table A-12, the fundamental deviation is F = 0.026 mm. 

 
Hole:  
Eq. (7-36): Dmax = D + D = 35 + 0.025 = 35.025 mm  

 
 Dmin = D = 35.000 mm     
 

The bearing bore specifications are within the hole specifications for a locational 

interference fit.  Now find the necessary shaft sizes. 

 

Shaft:  
Eq. (7-38): dmin = d + F = 35 + 0.026 = 35.026 mm  Ans. 
  dmax = d + F + d = 35 + 0.026 + 0.016 = 35.042 mm Ans. 

______________________________________________________________________________ 

 
7-41 Choose basic size D = d = 1.5 in. From Table 7-9, a locational interference fit is 

designated as H7/p6. From Table A-13, the tolerance grades are D = 0.0010 in and  

 d = 0.0006 in.   From Table A-14, the fundamental deviation is F = 0.0010 in. 

 
Hole:  
Eq. (7-36): Dmax = D + D = 1.5000 + 0.0010 = 1.5010 in 

 
 Dmin = D = 1.5000 in      

  

The bearing bore specifications exactly match the requirements for a locational 

interference fit.  Now check the shaft. 

 

Shaft:  
Eq. (7-38): dmin = d + F = 1.5000 + 0.0010 = 1.5010 in   
  dmax = d + F + d = 1.5000 + 0.0010 + 0.0006 = 1.5016 in   
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The shaft diameter of 1.5020 in is greater than the maximum allowable diameter of 

1.5016 in, and therefore does not meet the specifications for the locational interference 

fit.     Ans. 
______________________________________________________________________________ 

 
7-42 (a) Basic size is D = d = 35 mm. 

Table 7-9: H7/s6 is specified for medium drive fit. 

Table A-11: Tolerance grades are D = 0.025 mm and d = 0.016 mm. 

Table A-12: Fundamental deviation is 0.043 mm.F    

Eq. (7-36): Dmax = D + D = 35 + 0.025 = 35.025 mm  
 

 Dmin = D = 35.000 mm     
Eq. (7-38): dmin = d + F = 35 + 0.043 = 35.043 mm  Ans. 
  dmax = d + F + d = 35 + 0.043 + 0.016 = 35.059 mm Ans. 

 

(b)  
Eq. (7-42): min min max 35.043 35.025 0.018 mmd D       

Eq. (7-43): max max min 35.059 35.000 0.059 mmd D       

Eq. (7-40): 
  2 2 2 2

max
max 3 2 22

o i

o i

d d d dE
p

d d d

   
 

  
 

  
 

  9 2 2 2

23

207 10 0.059 60 35 35 0
115 MPa .

60 02 35
Ans

  
  

  
 

   

 
  2 2 2 2

min
min 3 2 22

o i

o i

d d d dE
p

d d d

   
 

  
 

  
 

  9 2 2 2

23

207 10 0.018 60 35 35 0
35.1 MPa .

60 02 35
Ans

  
  

  
 

(c) For the shaft: 

Eq. (7-44): 
,shaft 115 MPat p      

Eq. (7-46): 
,shaft 115 MPar p      

Eq. (5-13):   1/2
2 2

1 1 2 2       

       
1/2

2 2( 115) ( 115)( 115) ( 115) 115 MPa         

 
/ 390 /115 3.4 .yn S Ans   

 
 For the hub: 

Eq. (7-45): 
2 2 2 2

,hub 2 2 2 2

60 35
115 234 MPa

60 35

o
t

o

d d
p

d d


  
     

 

Eq. (7-46): 
,hub 115 MPar p      
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Eq. (5-13):   1/2
2 2

1 1 2 2       

  
1/2

2 2(234) (234)( 115) ( 115) 308 MPa       
    

 / 600 / 308 1.9 .yn S Ans     

(d) A value for the static coefficient of friction for steel to steel can be obtained online or 

from a physics textbook as approximately f = 0.8. 

Eq. (7-49) 2

min( / 2)T f p ld  

  6 2( / 2)(0.8)(35.1) 10 (0.050)(0.035) 2700 N m .Ans  
 

______________________________________________________________________________ 
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Chapter 8 
 

Note to the Instructor for Probs. 8-41 to 8-44. These problems, as well as many others in this 

chapter are best implemented using a spreadsheet. 

 

 

8-1 (a)  Thread depth= 2.5 mm     Ans. 

 Width = 2.5 mm     Ans. 

 dm = 25 - 1.25 - 1.25 = 22.5 mm 

 dr = 25 - 5 = 20 mm 

 l = p = 5 mm     Ans. 

 
 
 
 
 
 
 
(b) Thread depth = 2.5 mm     Ans. 

 Width at pitch line = 2.5 mm     Ans. 

 dm = 22.5 mm 

 dr = 20 mm 

 l = p = 5 mm     Ans. 

 

______________________________________________________________________________ 

 

8-2 From Table 8-1, 

1.226 869

0.649 519

1.226 869 0.649 519
0.938 194

2

r

m

d d p

d d p

d p d p
d d

 
 

  
  p

 

 
2

2( 0.938 194 )      .
4 4

t

d
A d p

 
   Ans  

______________________________________________________________________________ 

 

8-3 From Eq. (c) of Sec. 8-2, 

 

tan

1 tan

tan

2 2 1 tan

R

R m m
R

f
P F

f

P d Fd f
T

f













 


 

0 / (2 ) 1 tan 1 tan
tan      .

/ 2 tan tanR m

T Fl f f
e A

T Fd f f
ns

  
 

 
  

 
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 Using f = 0.08, form a table and plot the efficiency curve. 

, deg. e 

0 0 

0 0.678 

20 0.796 

30 0.838 

40 0.8517 

45 0.8519 

 

 

 

 

 

 

 

______________________________________________________________________________ 

 

8-4 Given F = 5 kN, l = 5 mm, and dm = d  p/2 = 25  5/2 = 22.5 mm, the torque required to 

raise the load is found using Eqs. (8-1) and (8-6) 
 

   
   

   
 5 22.5 5 0.09 22.5 5 0.06 45

15.85 N m .
2 22.5 0.09 5 2

RT A



 

    
ns  

 

 The torque required to lower the load, from Eqs. (8-2) and (8-6) is 

 

   
   

   
 5 22.5 0.09 22.5 5 5 0.06 45

7.83 N m .
2 22.5 0.09 5 2

LT A


 

    
ns  

 

 Since TL is positive, the thread is self-locking. From Eq.(8-4) the efficiency is 

 

    
 
 
5 5

0.251 .
2 15.85

e Ans


   

______________________________________________________________________________ 

 

8-5 Collar (thrust) bearings, at the bottom of the screws, must bear on the collars. The bottom 

segment of the screws must be in compression. Whereas, tension specimens and their 

grips must be in tension. Both screws must be of the same-hand threads. 

______________________________________________________________________________ 
 

8-6 Screws rotate at an angular rate of 

 
1720

28.67 rev/min
60

n    
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 (a) The lead is 0.25 in, so the linear speed of the press head is 

V = 28.67(0.25) = 7.17 in/min     Ans. 

 (b) F = 2500 lbf/screw 

 

o

2 0.25 / 2 1.875 in

sec  1 / cos(29 / 2) 1.033

md


  
 

 

 

 Eq. (8-5): 

 

2500(1.875) 0.25 (0.05)(1.875)(1.033)
221.0 lbf · in

2 (1.875) 0.05(0.25)(1.033)
RT




 
   

 

 

 Eq. (8-6): 

 

2500(0.08)(3.5 / 2) 350 lbf · in

350 221.0 571 lbf · in/screw

571(2)
20.04 lbf · in

60(0.95)

20.04(1720)
0.547 hp     .

63 025 63 025

c

total

motor

T

T

T

Tn
H A

 
  

 

   ns

 

______________________________________________________________________________ 

 

8-7 Note to the Instructor: The statement for this problem in the first printing of this edition 

was vague regarding the effective handle length. For the printings to follow the statement 

“The overall length is 4.25 in.” will be replaced by “ A force will be applied to the handle 

at a radius of 
1

2
3 in from the screw centerline.” We apologize if this has caused any 

inconvenience. 

3 3

3.5 in

3.5

3 3
3.5 3.125

8 8

41 kpsi

32 32(3.125)
41 000

(0.1875)

8.49 lbf

y

y

L

T F

M L F F

S

M F
S

d

F


 



          
   



   



F

ns

 

            3.5(8.49) 29.7 lbf · in     .T A 
 
 (b) Eq. (8-5), 2 = 60 , l = 1/10 = 0.1 in,  f = 0.15, sec  = 1.155, p = 0.1 in  
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 

clamp

clamp

clamp

3
0.649 519 0.1 0.6850 in

4

(0.6850) 0.1 (0.15)(0.6850)(1.155)

2 (0.6850) 0.15(0.1)(1.155)

0.075 86

29.7
392 lbf     .

0.075 86 0.075 86

m

R

R

R

d

F
T

T F

T
F A




  

 
   


   ns

 

 

 (c) The column has one end fixed and the other end pivoted. Base the decision on the 

mean diameter column. Input: C = 1.2, D = 0.685 in, A = (0.685
2
)/4 = 0.369

 
in

2
, Sy = 41 

kpsi, E = 30(10
6
) psi, L = 6 in, k = D/4 =0.171 25 in, L/k = 35.04. From Eq. (4-45), 

 

    
    1/21/2 2 62

1

2 1.2 30 102
131.7

41 000y

l CE

k S

                  
 

 From Eq. (4-46), the limiting clamping force for buckling is 

 

   

   
   

2

clamp cr

2
3

3 3

6

1

2

41 10 1
0.369 41 10 35.04 14.6 10 lbf

2 1.2 30 10

y

y

S l
F P A S

k CE

Ans





  
    

   
       

    

 

 

 (d) This is a subject for class discussion. 

______________________________________________________________________________ 
8-8   T  =  8(3.5)  =  28 lbf  in 

 

   
3 1

0.6667 in
4 12

md     

 

   l   =  
1

6
 = 0.1667 in,        =  

029

2
 =  14.5

0
,    sec 14.5

0
 = 1.033 

 

 From Eqs. (8-5) and (8-6) 

 

   
   

    
 

total

0.1667 0.15 0.6667 1.033 0.15 10.6667
0.1542

2 0.6667 0.15 0.1667 1.033 2

FF
T F



 

   
  

 

     
28

182 lbf .
0.1542

F Ans   

_____________________________________________________________________________ 
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8-9 dm = 1.5  0.25/2 = 1.375 in, l = 2(0.25) = 0.5 in 
 

 From Eq. (8-1) and Eq. (8-6) 

 

   3 32.2 10 (1.375) 2.2 10 (0.15)(2.25)0.5 (0.10)(1.375)

2 (1.375) 0.10(0.5) 2

330 371 701 lbf · in

RT



 

   
  

 

 

 Since n = V/l = 2/0.5 = 4 rev/s = 240 rev/min 

 

 so the power is 

   
 701 240

2.67 hp .
63 025 63 025

Tn
H A   ns  

______________________________________________________________________________ 
 
8-10 dm = 40  4 = 36 mm, l = p = 8 mm 

 

      From Eqs. (8-1) and (8-6) 

 

   

36 8 (0.14)(36) 0.09(100)

2 (36) 0.14(8) 2

(3.831 4.5) 8.33  N · m (  in kN)

2 2 (1) 2  rad/s

3000
477 N · m

2
477

57.3 kN     .
8.33

F F
T

F F F

n

H T

H
T

F Ans




   


 

 
   
  
  


  

 

 

 

   
57.3(8)

0.153     .
2 2 (477)

Fl
e A

T 
   ns  

______________________________________________________________________________ 

 

8-11 (a) Table A-31, nut height H = 12.8 mm. L ≥  l + H = 2(15) + 12.8  = 42.8 mm. Rounding 

up, 

   L = 45 mm Ans. 

 

  (b) From Eq. (8-14), LT  = 2d + 6  = 2(14) +6  = 34 mm 

 From Table 8-7, ld  = L  LT  = 45 34  = 11 mm, lt  = l  ld  = 2(15)  11  = 19 mm, 

 

 Ad  =   (14
2
) / 4  = 153.9 mm

2
. From Table 8-1, At  =  115 mm

2
. From Eq. (8-17) 
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 

   
153.9 115 207

874.6 MN/m .
153.9 19 115 11

d t
b

d t t d

A A E
k A

A l A l
  

 
ns  

 

 (c) From Eq. (8-22), with l  = 2(15)  = 30 mm 

 

  
 
   
   

0.5774 207 140.5774
3 116.5 MN/m .

0.5774 0.5 0.5774 30 0.5 14
2ln 5 2ln 5

0.5774 2.5 0.5774 30 2.5 14

mk  
Ed

Ans
l d

l d


  

   
      

 

 

8-12 (a) Table A-31, nut height H  = 12.8 mm. Table A-33, washer thickness t = 3.5 mm. Thus, 

the grip is l = 2(15) + 3.5 = 33.5 mm. L ≥  l + H  = 33.5 + 12.8  = 46.3 mm. Rounding up 

   L = 50 mm Ans. 

 

 (b) From Eq. (8-14), LT  = 2d + 6  = 2(14) +6  = 34 mm 

 From Table 8-7, ld  = L  LT  = 50 34  = 16 mm, lt  = l  ld  = 33.5  16  = 17.5 mm, 

 Ad  =   (14
2
) / 4  = 153.9 mm

2
. From Table 8-1, At  =  115 mm

2
. From Eq. (8-17) 

 

   
 

   
153.9 115 207

808.2 MN/m .
153.9 17.5 115 16

d t
b

d t t d

A A E
k A

A l A l
  

 
ns  

 

  (c)  

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 From Eq. (8-22) 

  

 
 

   
   

0.5774 207 140.5774
2 969 MN/m .

0.5774 0.5 0.5774 33.5 0.5 14
2ln 5 2ln 5

0.5774 2.5 0.5774 33.5 2.5 14

m

Ed
k A

l d

l d


  

   
      

ns  

______________________________________________________________________________ 
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8-13 (a) Table 8-7, l = h + d /2 = 15 + 14/2 = 22 mm. L ≥  h + 1.5d = 36 mm. Rounding up 

   L = 40 mm Ans. 

 

 (b) From Eq. (8-14), LT = 2d + 6 = 2(14) +6 = 34 mm 

 From Table 8-7, ld  = L  LT  = 40 34  = 6 mm, lt  = l  ld  = 22  6  = 16 mm 

 

 Ad =   (14
2
) / 4 = 153.9 mm

2
. From Table 8-1, At = 115 mm

2
. From Eq. (8-17) 

 

   
 

   
153.9 115 207

1 162.2 MN/m .
153.9 16 115 6

d t
b

d t t d

A A E
k A

A l A l
  

 
ns  

 

 (c) From Eq. (8-22), with l  = 22 mm 

 

  

 
 
   
   

0.5774 207 140.5774
3 624.4 MN/m .

0.5774 0.5 0.5774 22 0.5 14
2ln 5 2ln 5

0.5774 2.5 0.5774 22 2.5 14

m

Ed
k Ans

l d

l d


  

   
      

 

______________________________________________________________________________ 
 
 

8-14 (a) From Table A-31, the nut height is H = 7/16 in.  L ≥ l + H = 2 + 1 + 7/16 = 3 7/16 in. 

Rounding up, L = 3.5 in       Ans. 

 

 (b) From Eq. (8-13), LT = 2d + 1/4 = 2(0.5) + 0.25 = 1.25 in 

 

 From Table 8-7,  ld  = L  LT  = 3.5  1.25  = 2.25 in, lt  = l  ld  = 3  2.25  = 0.75 in 

 

 Ad =  (0.5
2
)/4 = 0.1963 in

2
. From Table 8-2, At = 0.1419 in

2
. From Eq. (8-17) 

 

  
 

   
0.1963 0.1419 30

1.79 Mlbf/in .
0.1963 0.75 0.1419 2.25

d t
b

d t t d

A A E
k A

A l A l
  

 
ns  
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 (c)  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Top steel frustum: t  = 1.5 in, d  = 0.5 in, D  = 0.75 in, E  = 30 Mpsi. From Eq. (8-20) 

 

   
 

   
   

1

0.5774 30 0.5
22.65 Mlbf/in

1.155 1.5 0.75 0.5 0.75 0.5
ln

1.155 1.5 0.75 0.5 0.75 0.5

k


 
    
    

 

 

 Lower steel frustum: t  = 0.5 in, d  = 0.5 in, D  = 0.75 + 2(1) tan 30  = 1.905 in, E  = 30 

Mpsi. Eq. (8-20)     k2  =  210.7 Mlbf/in 

 

 Cast iron: t  = 1 in, d  = 0.5 in, D  = 0.75 in, E  = 14.5 Mpsi (Table 8-8). Eq. (8-20)      

 k3  =  12.27 Mlbf/in 

 

 From Eq. (8-18) 

 

  km  = (1/k1 + 1/k2 +1/k3)
1

  = (1/22.65 + 1/210.7 + 1/12.27)
1

  = 7.67 Mlbf/in     Ans. 

 

 

 

8-15 (a) From Table A-32, the washer thickness is 0.095 in. Thus, l = 2 + 1 + 2(0.095) = 3.19 

in. From Table A-31, the nut height is H = 7/16 in.  L ≥ l + H = 3.19 + 7/16 = 3.63 in. 

Rounding up, L = 3.75 in       Ans. 

 

 (b) From Eq. (8-13), LT = 2d + 1/4 = 2(0.5) + 0.25 = 1.25 in 

 

 From Table 8-7,  ld  = L  LT  = 3.75  1.25  = 2.5 in, lt  = l  ld  = 3.19  2.5  = 0.69 in 

 

 Ad =  (0.5
2
)/4 = 0.1963 in

2
. From Table 8-2, At = 0.1419 in

2
. From Eq. (8-17) 
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 

   
0.1963 0.1419 30

1.705 Mlbf/in .
0.1963 0.69 0.1419 2.5

d t
b

d t t d

A A E
k A

A l A l
  

 
ns

 
 

 (c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Each steel washer frustum: t = 0.095 in, d = 0.531 in (Table A-32), D = 0.75 in, E  = 30 

Mpsi. From Eq. (8-20) 

 

   

 
   
   

1

0.5774 30 0.531
89.20 Mlbf/in

1.155 0.095 0.75 0.531 0.75 0.531
ln

1.155 0.095 0.75 0.531 0.75 0.531

k


 
    
    

 

  

 Top plate, top steel frustum: t = 1.5 in, d = 0.5 in, D = 0.75 + 2(0.095) tan 30 = 0.860 in, 

E  = 30 Mpsi. Eq. (8-20)  k2 = 28.99 Mlbf/in 

 

 Top plate, lower steel frustum: t = 0.5 in, d = 0.5 in, D  = 0.860 + 2(1) tan 30  = 2.015 in, 

E  = 30 Mpsi. Eq. (8-20)     k3 = 234.08 Mlbf/in 

 

 Cast iron: t  = 1 in, d  = 0.5 in, D  = 0.75 + 2(0.095) tan 30 = 0.860  in, E  = 14.5 Mpsi 

(Table 8-8). Eq. (8-20)     k4 = 15.99 Mlbf/in 

 From Eq. (8-18) 

  km = (2/k1 + 1/k2 +1/k3+1/k4)
1

  = (2/89.20 + 1/28.99 + 1/234.08  + 1/15.99)
1

   

         = 8.08 Mlbf/in     Ans. 

______________________________________________________________________________ 

 

8-16 (a) From Table 8-7, l = h + d /2 = 2 + 0.5/2 = 2.25 in.  

 L ≥  h + 1.5 d  = 2 + 1.5(0.5) = 2.75 in    Ans. 

 

 (b) From Table 8-7,  LT  = 2d + 1/4  = 2(0.5) + 0.25  = 1.25 in 

Chap. 8 Solutions - Rev. A, Page 9/69 



   ld  = L  LT  = 2.75  1.25  = 1.5 in, lt  = l  ld  = 2.25  1.5  = 0.75 in 

 

 Ad =  (0.5
2
)/4  = 0.1963 in

2
. From Table 8-2, At = 0.1419 in

2
. From Eq. (8-17) 

  

  
 

   
0.1963 0.1419 30

2.321 Mlbf/in .
0.1963 0.75 0.1419 1.5

d t
bk

A l


 d t t d

A A E
Ans

A l
 

 
 
 (c)  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 Top steel frustum: t = 1.125 in, d = 0.5 in, D = 0.75 in, E = 30 Mpsi. From Eq. (8-20) 

 

   
 

   
   

1

0.5774 30 0.5
24.48 Mlbf/in

1.155 1.125 0.75 0.5 0.75 0.5
ln

1.155 1.125 0.75 0.5 0.75 0.5

k


 
    
    

 

 

 Lower steel frustum: t = 0.875 in, d = 0.5 in, D  = 0.75 + 2(0.25) tan 30  = 1.039 in, E  = 

30 Mpsi. Eq. (8-20)     k2 = 49.36 Mlbf/in 

 

 Cast iron: t = 0.25 in, d = 0.5 in, D = 0.75 in, E = 14.5 Mpsi (Table 8-8). Eq. (8-20)      

 k3 = 23.49 Mlbf/in 

 

 From Eq. (8-18) 

 

  km = (1/k1 + 1/k2 +1/k3)
1

  = (1/24.48 + 1/49.36 + 1/23.49)
1

  = 9.645 Mlbf/in     Ans. 

______________________________________________________________________________ 

 

8-17 a) Grip, l = 2(2 + 0.095) = 4.19 in.  L ≥ 4.19 + 7/16 = 4.628 in.  

 Rounding up, L = 4.75 in       Ans. 
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 (b) From Eq. (8-13), LT = 2d + 1/4 = 2(0.5) + 0.25  = 1.25 in 

 

 From Table 8-7,  ld  = L  LT  = 4.75  1.25  = 3.5 in, lt  = l  ld  = 4.19  3.5  = 0.69 in 

 

 Ad =  (0.5
2
)/4 = 0.1963 in

2
. From Table 8-2, At = 0.1419 in

2
. From Eq. (8-17) 

  

  
 

   
0.1963 0.1419 30

1.322 Mlbf/in .
0.1963 0.69 0.1419 3.5

d t
bk

A l


 d t t d

A A E
Ans

Al
 

 
 

 (c)  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Upper and lower halves are the same. For the upper half, 

 Steel frustum: t  = 0.095 in, d  = 0.531 in, D  = 0.75 in, and E  = 30 Mpsi. From Eq. (8-20) 

 

   
 

   
   

1

0.5774 30 0.531
89.20 Mlbf/in

1.155 0.095 0.75 0.531 0.75 0.531
ln

1.155 0.095 0.75 0.531 0.75 0.531

k  


 
    
    

 

 Aluminum: t  = 2 in, d  = 0.5 in, D =0.75 + 2(0.095) tan 30 = 0.860 in, and E  = 10.3 

Mpsi. Eq. (8-20)    k2  =  9.24 Mlbf/in 

 For the top half,  = (1/kmk 1 + 1/k2)
1

  = (1/89.20 + 1/9.24)
1

  = 8.373 Mlbf/in 

 Since the bottom half is the same, the overall stiffness is given by 

 

  km  = (1/  + 1/ k )mk m
 1

  = km
 /2  =  8.373/2  = 4.19 Mlbf/in  Ans 

______________________________________________________________________________ 

 

8-18 (a) Grip, l = 2(2 + 0.095) = 4.19 in.  L ≥ 4.19 + 7/16 = 4.628 in.  

 Rounding up, L = 4.75 in       Ans. 
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 (b) From Eq. (8-13),  LT  = 2d + 1/4  = 2(0.5) + 0.25  = 1.25 in 

 

 From Table 8-7,  ld  = L  LT  = 4.75  1.25  = 3.5 in, lt  = l  ld  = 4.19  3.5  = 0.69 in 

 

 Ad =  (0.5
2
)/4 = 0.1963 in

2
. From Table 8-2, At = 0.1419 in

2
. From Eq. (8-17) 

  

  
 

   
0.1963 0.1419 30

1.322 Mlbf/in .
0.1963 0.69 0.1419 3.5

d t
bk

A l


 d t t d

A A E
Ans

Al
 

 
 

  (c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Upper aluminum frustum: t = [4 + 2(0.095)] /2 = 2.095 in, d = 0.5 in, D = 0.75 in, and  

 E = 10.3 Mpsi. From Eq. (8-20) 

    
 

   
   

1

0.5774 10.3 0.5
7.23 Mlbf/in

1.155 2.095 0.75 0.5 0.75 0.5
ln

1.155 2.095 0.75 0.5 0.75 0.5

k


 
    
    

 

 

Lower aluminum frustum: t = 4  2.095 = 1.905 in, d = 0.5 in,  

 
 

 D = 0.75 +4(0.095) tan 30 = 0.969 in, and E = 10.3 Mpsi. Eq. (8-20)  k2 = 11.34 

Mlbf/in 

 Steel washers frustum: t = 2(0.095) = 0.190 in, d = 0.531 in, D = 0.75 in, and E = 30 Mpsi. 

Eq. (8-20)  k3 = 53.91 Mlbf/in 

 

 From Eq. (8-18) 

  km = (1/k1 + 1/k2 +1/k3)
1

  = (1/7.23 + 1/11.34 + 1/53.91)
1

  = 4.08 Mlbf/in     Ans. 

______________________________________________________________________________ 

 

8-19 (a) From Table A-31, the nut height is H = 8.4 mm. L > l + H = 50 + 8.4 = 58.4 mm. 
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  Rounding up, L = 60 mm        Ans. 

 

 (b) From Eq. (8-14), LT = 2d + 6 = 2(10) + 6 = 26 mm, ld = L  LT = 60  26 =  

 34 mm,  lt = l  l = 50  34 = 16 mm. Ad =  (10
2
) / 4 = 78.54 mm

2
. From Table 8-1,  

 At = 58 mm
2
. From Eq. (8-17) 

 

    
 

   
78.54 58.0 207

292.1 MN/m .
78.54 16 58.0 34

d t
b

d t t d

A A E
k A

A l A l
  

 
ns  

 

 (c)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Upper and lower frustums are the same. For the upper half, 

  Aluminum: t = 10 mm, d = 10 mm, D = 15 mm, and from Table 8-8, E = 71 GPa. 

From Eq. (8-20) 

    
 

   
   

1

0.5774 71 10
1576 MN/m

1.155 10 15 10 15 10
ln

1.155 10 15 10 15 10

k


 
    
    

 

 

  Steel: t  = 15 mm, d  = 10 mm, D  = 15 + 2(10) tan 30  = 26.55 mm, and E  = 207 

 GPa. From Eq. (8-20) 

 

    
 

   
   

2

0.5774 207 10
11 440 MN/m

1.155 15 26.55 10 26.55 10
ln

1.155 15 26.55 10 26.55 10

k


 
    
    

 

 

  For the top half,  = (1/kmk 1 + 1/k2)
1

  = (1/1576 + 1/11 440)
1

  = 1385 MN/m 
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  Since the bottom half is the same, the overall stiffness is given by 

 

  km  = (1/  + 1/ )mk mk 1
  = mk /2  =  1385/2  = 692.5 MN/m  Ans. 

 

 

 

8-20 (a) From Table A-31, the nut height is H = 8.4 mm. L > l + H = 60 + 8.4 = 68.4 mm. 
 

  Rounding up, L = 70 mm        Ans. 

 

 (b) From Eq. (8-14), LT = 2d + 6 = 2(10) + 6 = 26 mm, ld = L  LT = 70  26 =  

 44 mm,  lt = l  ld = 60  44 = 16 mm. Ad =  (10
2
) / 4 = 78.54 mm

2
. From Table 8-1,  

 At = 58 mm
2
. From Eq. (8-17) 

 

    
 

   
78.54 58.0 207

247.6 MN/m .
78.54 16 58.0 44

d t
b

d t t d

A A E
k A

A l A l
  

 
ns  

  

 (c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Upper aluminum frustum: t = 10 mm, d = 10 mm, D = 15 mm, and E = 71 GPa. From Eq. 

(8-20) 
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 

   
   

1

0.5774 10.3 71
1576 MN/m

1.155 2.095 15 10 15 10
ln

1.155 2.095 15 10 15 10

k


 
    
      

  
Lower aluminum frustum: t = 20 mm, d = 10 mm, D = 15 mm, and E = 71 GPa. Eq.  

 (8-20)  k2 = 1 201 MN/m 

 
 Top steel frustum: t = 20 mm, d = 10 mm, D = 15 + 2(10) tan 30  = 26.55 mm, and E = 

207 GPa. Eq. (8-20)  k

 

3 = 9 781 MN/m 

 

 Lower steel frustum: t = 10 mm, d = 10 mm, D = 15 + 2(20) tan 30  = 38.09 mm, and E = 

207 GPa. Eq. (8-20)  k4 = 29 070 MN/m 

 

 From Eq. (8-18) 

 

  km = (1/k1 + 1/k2 +1/k3+1/k4)
1

  = (1/1 576 + 1/1 201 + 1/9 781 +1/29 070)
1

   

        = 623.5 MN/m      Ans. 

______________________________________________________________________________ 

 

8-21 (a) From Table 8-7, l = h + d /2 = 10 + 30 + 10/2 = 45 mm. L ≥  h + 1.5 d =  

 10 + 30 + 1.5(10) = 55 mm    Ans. 

 

 (b) From Eq. (8-14), LT  = 2d + 6  = 2(10) + 6  = 26 mm, ld  = L  LT  = 55  26  =  

 29 mm,  lt  = l  ld  = 45  29  = 16 mm. Ad  =  (10
2
) / 4  = 78.54 mm

2
. From Table 8-1,  

 At = 58 mm
2
. From Eq. (8-17) 

   
 

   
78.54 58.0 207

320.9 MN/m .
78.54 16 58.0 29

d t
bk  

d t t d

A A E
Ans

A l A l
  

 
  

 (c)  
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 Upper aluminum frustum: t = 10 mm, d = 10 mm, D = 15 mm, and E = 71 GPa. From Eq. 

(8-20) 

    
 

   
   

1

0.5774 10.3 71
1576 MN/m

1.155 2.095 15 10 15 10
ln

1.155 2.095 15 10 15 10

k


 
    
      

Lower aluminum frustum: t = 5 mm, d = 10 mm, D = 15 mm, and E = 71 GPa. Eq.  

 (8-20)  k2 = 2 300 MN/m 

 
 Top steel frustum: t = 12.5 mm, d = 10 mm, D = 15 + 2(10) tan 30  = 26.55 mm, and E = 

207 GPa. Eq. (8-20)  k

 

3 = 12 759 MN/m 

 Lower steel frustum: t = 17.5 mm, d = 10 mm, D = 15 + 2(5) tan 30  = 20.77 mm, and E 

= 207 GPa. Eq. (8-20)  k4 = 6 806 MN/m 

 

 From Eq. (8-18) 

  km = (1/k1 + 1/k2 +1/k3+1/k4)
1

  = (1/1 576 + 1/2 300 + 1/12 759 +1/6 806)
1

   

        = 772.4 MN/m      Ans. 

______________________________________________________________________________ 

8-22 Equation (f ), p. 436: b

b m

k
C

k k



 

 

 Eq. (8-17): d t
b

d t t d

A A E
k

A l A l



 

 

 Eq. (8-22): 
 
 
 

0.5774 207

0.5774 40 0.5
2 ln 5

0.5774 40 2.5

m

d
k

d

d




 
  

 

 

 See Table 8-7 for other terms used. 

 Using a spreadsheet, with coarse-pitch bolts (units are mm, mm
2
, MN/m): 

 

d At Ad H L > L LT 

10 58 78.53982 8.4 48.4 50 26 

12 84.3 113.0973 10.8 50.8 55 30 

14 115 153.938 12.8 52.8 55 34 

16 157 201.0619 14.8 54.8 55 38 

20 245 314.1593 18 58 60 46 

24 353 452.3893 21.5 61.5 65 54 

30 561 706.8583 25.6 65.6 70 66 
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d l ld lt kb km C 

10 40 24 16 356.0129 1751.566 0.16892 

12 40 25 15 518.8172 2235.192 0.188386 

14 40 21 19 686.2578 2761.721 0.199032 

16 40 17 23 895.9182 3330.796 0.211966 

20 40 14 26 1373.719 4595.515 0.230133 

24 40 11 29 1944.24 6027.684 0.243886 

30 40 4 36 2964.343 8487.533 0.258852 

 

 The 14 mm would probably be ok, but to satisfy the question, use a 16 mm bolt   Ans. 

_____________________________________________________________________________ 

8-23 Equation (f ), p. 436: b

b m

k
C

k k



 

 Eq. (8-17): d t
b

d t t d

A A E
k

A l A l



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 For upper frustum, Eq. (8-20), with D = 1.5 d and t = 1.5 in: 

 

   
 

   
   

 
 
 

1

0.5774 30 0.5774 30

1.733 0.51.155 1.5 0.5 2.5
ln 5ln

1.733 2.51.155 1.5 2.5 0.5

d d
k

dd d

dd d

 
 

         




      

 Lower steel frustum, with D = 1.5d + 2(1) tan 30 = 1.5d + 1.155, and t = 0.5 in: 

                         

 
 
 




2

0.5774 30

1.733 0.5 2.5 1.155
ln

1.733 2.5 0.5 1.155

d
k

d d

d d




  
     
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 For cast iron frustum, let E = 14. 5 Mpsi, and D = 1.5 d, and t = 1 in: 

 

   
 

 
 

3

0.5774 14.5

1.155 0.5
ln 5

1.155 2.5

d
k

d

d




 
  

 

 

 Overall,   km = (1/k1 +1/k2 +1/k3)
1

 

 

  

 See Table 8-7 for other terms used. 

 Using a spreadsheet, with coarse-pitch bolts (units are in, in
2
, Mlbf/in): 

 

d At Ad H L > L LT l  

0.375 0.0775 0.110447 0.328125 3.328125 3.5 1 3  

0.4375 0.1063 0.15033 0.375 3.375 3.5 1.125 3  

0.5 0.1419 0.19635 0.4375 3.4375 3.5 1.25 3  

0.5625 0.182 0.248505 0.484375 3.484375 3.5 1.375 3  

0.625 0.226 0.306796 0.546875 3.546875 3.75 1.5 3  

0.75 0.334 0.441786 0.640625 3.640625 3.75 1.75 3  

0.875 0.462 0.60132 0.75 3.75 3.75 2 3  

                

d ld lt kb k1 k2 k3 km C 

0.375 2.5 0.5 1.031389 15.94599 178.7801 8.461979 5.362481 0.161309

0.4375 2.375 0.625 1.383882 19.21506 194.465 10.30557 6.484256 0.175884

0.5 2.25 0.75 1.791626 22.65332 210.6084 12.26874 7.668728 0.189383

0.5625 2.125 0.875 2.245705 26.25931 227.2109 14.35052 8.915294 0.20121

0.625 2.25 0.75 2.816255 30.03179 244.2728 16.55009 10.22344 0.215976

0.75 2 1 3.988786 38.07191 279.7762 21.29991 13.02271 0.234476

0.875 1.75 1.25 5.341985 46.7663 317.1203 26.51374 16.06359 0.24956

 

 Use a 9

16
12 UNC  3.5 in long bolt  Ans. 

______________________________________________________________________________ 

 

8-24 Equation (f ), p. 436: b

b m

k
C

k k



 

 

 Eq. (8-17): d t
b

d t t d

A A E
k

A l A l



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 Top frustum, Eq. (8-20), with E = 10.3Mpsi, D = 1.5 d, and t = l /2: 

 

    
 

1

0.5774 10.3

1.155 / 2 0.5
ln 5

1.155 / 2 2.5

d
k

l d

l d




 
  

 

 

 Middle frustum, with E = 10.3 Mpsi, D = 1.5d + 2(l  0.5) tan 30, and t = 0.5  l /2 

 

 
 

      
      

2 0 0

0 0

0.5774 10.3

1.155 0.5 0.5 0.5 2 0.5 tan 30 2.5 2 0.5 tan 30
ln

1.155 0.5 0.5 2.5 2 0.5 tan 30 0.5 2 0.5 tan 30

d
k

l d l d l

l d l d l




         
         




  

 

 Lower frustum, with E = 30Mpsi, D = 1.5 d, t = l  0.5 

 

    
 

 
 

3

0.5774 30

1.155 0.5 0.5
ln 5

1.155 0.5 2.5

d
k

l d

l d




           

 

  

 See Table 8-7 for other terms used. 

 Using a spreadsheet, with coarse-pitch bolts (units are in, in
2
, Mlbf/in) 
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Size d A t Ad L > L LT l ld 

1 0.073 0.00263 0.004185 0.6095 0.75 0.396 0.5365 0.354 

2 0.086 0.0037 0.005809 0.629 0.75 0.422 0.543 0.328 

3 0.099 0.00487 0.007698 0.6485 0.75 0.448 0.5495 0.302 

4 0.112 0.00604 0.009852 0.668 0.75 0.474 0.556 0.276 

5 0.125 0.00796 0.012272 0.6875 0.75 0.5 0.5625 0.25 

6 0.138 0.00909 0.014957 0.707 0.75 0.526 0.569 0.224 

8 0.164 0.014 0.021124 0.746 0.75 0.578 0.582 0.172 

10 0.19 0.0175 0.028353 0.785 1 0.63 0.595 0.37 

                  

Size d l t kb k1 k2 k3 km C 

1 0.073 0.1825 0.194841 1.084468 1.954599 7.09432 0.635049 0.23478

2 0.086 0.215 0.261839 1.321595 2.449694 8.357692 0.778497 0.251687

3 0.099 0.2475 0.333134 1.570439 2.993366 9.621064 0.930427 0.263647

4 0.112 0.28 0.403377 1.830494 3.587564 10.88444 1.090613 0.27 

5 0.125 0.3125 0.503097 2.101297 4.234381 12.14781 1.258846 0.285535

6 0.138 0.345 0.566787 2.382414 4.936066 13.41118 1.434931 0.28315

8 0.164 0.41 0.801537 2.974009 6.513824 15.93792 1.809923 0.306931

10 0.19 0.225 1.15799 3.602349 8.342138 18.46467 2.214214 0.343393

 The lowest coarse series screw is a 164 UNC  0.75 in long up to a 632 UNC  0.75 in 

long. Ans. 

______________________________________________________________________________ 

 

8-25 For half of joint, Eq. (8-20): t = 20 mm, d = 14 mm, D = 21 mm, and E = 207 GPa 

 

    
 

   
   

1

0.5774 207 14
5523 MN/m

1.155 20 21 14 21 14
ln

1.155 20 21 14 21 14

k


 
    
    

 

 

 km = (1/k1 + 1/k1)
1

  = k1/2 = 5523/2  = 2762 MN/m  Ans. 

 

 From Eq. (8-22) with l = 40 mm 

 

    
 
   
   

0.5774 207 14
2762 MN/m .

0.5774 40 0.5 14
2ln 5

0.5774 40 2.5 14

mk A


 
 
  

ns  

 

 which agrees with the earlier calculation. 
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 For Eq. (8-23), from Table 8-8, A = 0.787 15, B  = 0.628 73 

 

   km = 207(14)(0.78 715) exp [0.628 73(14)/40]  = 2843 MN/m Ans. 

 

 This is 2.9% higher than the earlier calculations. 

______________________________________________________________________________ 

 

8-26 (a) Grip, l = 10 in. Nut height, H = 41/64 in (Table A-31). 

  L ≥ l + H = 10 + 41/64 = 10.641 in. Let L = 10.75 in. 

 Table 8-7, LT = 2d + 0.5 = 2(0.75) + 0.5 = 2 in, ld = L  LT = 10.75  2 = 8.75 in, 

 lt = l  ld = 10  8.75 = 1.25 in 

 Ad = (0.75
2
)/4 = 0.4418 in

2
, At = 0.373 in

2
 (Table 8-2) 

 Eq. (8-17), 

   
 

   
0.4418 0.373 30

1.296 Mlbf/in .
0.4418 1.25 0.373 8.75

d t
b

d t t d

A A E
k A

A l Al
  

 
ns  

 Eq. (4-4), p. 149, 

   
  2 2/ 4 1.125 0.75 30

1.657 Mlbf/in .
10

m m
m

A E
k A

l

 
   ns  

 Eq. (f), p. 436, C = kb/(kb + km) = 1.296/(1.296 + 1.657) = 0.439 Ans. 

 (b)  

 

 

 

 

 

 

 

 Let:  Nt = no. of turns, p = pitch of thread (in), N = no. of threads per in = 1/p. Then, 

      = b + m = Nt p = Nt / N   (1) 

 But, b = Fi / kb, and, m = Fi / km. Substituting these into Eq. (1) and solving for Fi  gives 
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 

  6

2

1.296 1.657 10 1/ 3
15 150 lbf .

1.296 1.657 16

b m t
i

b m

k k N
F

k k N

Ans




 


  

______________________________________________________________________________ 

8-27 Proof for the turn-of-nut equation is given in the solution of Prob. 8-26, Eq. (2), where 

  Nt  =  / 360. 
 

 The relationship between the turn-of-nut method and the torque-wrench method is as 

follows. 

 

     (turn-of-nut)

                    (torque-wrench)

b m
t i

b m

i

k k
N F N

k k

T KFd

 
  
 


 

 

 Eliminate Fi 

 

    .
360

b m
t

b m

k k NT
N A

k k Kd

 
     ns  

______________________________________________________________________________ 

 

8-28 (a) From Ex. 8-4, Fi = 14.4 kip, kb = 5.21(10
6
) lbf/in, km = 8.95(10

6
) lbf/in 

 Eq. (8-27):   T = kFid = 0.2(14.4)(10
3
)(5/8) = 1800 lbf · in     Ans. 

 From Prob. 8-27, 

 

 
3

6

5.21 8.95
(14.4)(10 )11

5.21 8.95 10

0.0481 turns 17.3      .

b m
t i

b m

k k
N F N

k k

Ans

   
    

    
  

 

 

 Bolt group is (1.5) / (5/8) = 2.4 diameters. Answer is much lower than RB&W 

recommendations.  

______________________________________________________________________________ 

 

8-29 C = kb / (kb + km) = 3/(3+12)  = 0.2, P  = Ptotal/ N  = 80/6  = 13.33 kips/bolt 

 Table 8-2, At = 0.141 9 in
2
; Table 8-9, Sp = 120 kpsi; Eqs. (8-31) and (8-32),  

 Fi = 0.75 At Sp = 0.75(0.141 9)(120)  = 12.77 kips 

 (a) From Eq. (8-28), the factor of safety for yielding is 

 

   
 

 
120 0.141 9

1.10 .
0.2 13.33 12.77

p t

p

i

S A
n A

CP F
  

 
ns  

 (b) From Eq. (8-29), the overload factor is 
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 

 
120 0.141 9 12.77

1.60 .
0.2 13.33

p t i

L

S A F
n A

CP

 
   ns  

 

 (c) From Eq. (803), the joint separation factor of safety is 

 

   
   0

12.77
1.20 .

1 13.33 1 0.2

iF
n A

P C
  

 
ns  

______________________________________________________________________________ 

 

8-30  1/2  13 UNC Grade 8 bolt, K = 0.20 

 (a)  Proof strength, Table 8-9, Sp = 120 kpsi 

  Table 8-2, At = 0.141 9 in
2
 

  Maximum, Fi = Sp At = 120(0.141 9) = 17.0 kips      Ans. 

 (b) From Prob. 8-29, C = 0.2, P = 13.33 kips 

  Joint separation, Eq. (8-30) with n0 = 1 

  Minimum Fi = P (1  C)  = 13.33(1  0.2) = 10.66 kips    Ans. 

 (c) 
iF  = (17.0 + 10.66)/2 = 13.8 kips 

  Eq. (8-27),   T = KFi d = 0.2(13.8)10
3
(0.5)/12 = 115 lbf  ft                Ans. 

______________________________________________________________________________ 
 
8-31 (a) Table 8-1, At = 20.1 mm

2
. Table 8-11, Sp = 380 MPa. 

 

 Eq. (8-31),   Fi = 0.75 Fp  = 0.75 At Sp = 0.75(20.1)380(10
3

) = 5.73 kN 

 

 Eq. (f ), p. 436,  
1

0.278
1 2.6

b

b m

k
C

k k
  

 
 

 Eq. (8-28) with np = 1, 

    
   30.25 20.1 380 100.25

6.869 kN
0.278

p t i p tS A F S A
P

C C


     

  Ptotal = NP = 8(6.869) = 55.0 kN      Ans. 

 

 (b) Eq. (8-30) with n0 = 1, 

    
5.73

7.94 kN
1 1 0.278

iF
P

C
  

 
 

  Ptotal = NP = 8(7.94) = 63.5 kN      Ans.   Bolt stress would exceed proof strength 

______________________________________________________________________________ 

 

8-32 (a) Table 8-2, At = 0.141 9 in
2
. Table 8-9, Sp = 120 kpsi. 

 

 Eq. (8-31),   Fi =  0.75 Fp  = 0.75 At Sp = 0.75(0.141 9)120 = 12.77 kips 

 

 Eq. (f ), p. 436,  
4

0.25
4 12

b

b m

k
C

k k
  

 
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 Eq. (8-28) with np = 1, 

    
 

 

total

total

0.25

80 0.25
4.70

0.25 0.25 120 0.141 9

p t i p t

p t

S A F NS A
P N

C C

P C
N

S A

 
  

 

  

 

 Round to N = 5 bolts      Ans. 

 

 (b) Eq. (8-30) with n0 = 1, 

    
   

total

total

1

1 80 1 0.25
4.70

12.77

i

i

F
P N

C

P C
N

F

    
 

  
 

 Round to N = 5 bolts      Ans.    

______________________________________________________________________________ 

   

8-33 Bolts:  From Table A-31, the nut height is H = 10.8 mm. L ≥ l +H = 40 + 10.8 = 50.8 

 mm. Although Table A-17 indicates to go to 60 mm, 55 mm is readily available 

 

  Round up to L = 55 mm  Ans. 

 

   Eq. (8-14):  LT = 2d + 6 = 2(12) + 6 = 30 mm 

 

  Table 8-7: ld = L  LT  = 55  30  = 25 mm, lt  = l ld  = 40  25  = 15 mm 

 

  Ad = (12
2
)/4 = 113.1 mm

2
, Table 8-1: At = 84.3 mm

2
 

 

  Eq. (8-17):  

    
 

   
113.1 84.3 207

518.8 MN/m
113.1 15 84.3 25

d t
b

d t t d

A A E
k

A l A l
  

 
 

 

 Members: Steel cyl. head: t = 20 mm, d = 12 mm, D  = 18 mm, E  = 207 GPa. Eq. (8-20), 

 

    
 

   
   

1

0.5774 207 12
4470 MN/m

1.155 20 18 12 18 12
ln

1.155 20 18 12 18 12

k


 
    
    

 

 

  Cast iron: t = 20 mm, d = 12 mm, D = 18 mm, E = 100 GPa (from   

 Table 8-8). The only difference from k1 is the material 

 

     k2 = (100/207)(4470)  = 2159 MN/m 

 

   Eq. (8-18):   km = (1/4470 + 1/2159)
1

 = 1456 MN/m 
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  C = kb / (kb + km) = 518.8/(518.8+1456)  = 0.263 

 

 Table 8-11:    Sp = 650 MPa 

 Assume non-permanent connection. Eqs. (8-31) and (8-32) 

 

     Fi = 0.75 At Sp = 0.75(84.3)(650)10
3

  = 41.1 kN 

 

 The total external load is Ptotal = pg Ac, where Ac is the diameter of the cylinder which is 

100 mm. The external load per bolt is P = Ptotal /N. Thus 

 

     P = [6 (100
2
)/4](10

3
)/10  = 4.712  kN/bolt 

 

 Yielding factor of safety, Eq. (8-28): 

 

     
 

 

3650 84.3 10
1.29 .

0.263 4.712 41.10

p t

p

i

S A
n A

CP F



  
 

ns  

 

 Overload factor of safety, Eq. (8-29): 

 

     
 

 

3650 84.3 10 41.10
11.1 .

0.263 4.712

p t i

L

S A F
n A

CP

 
   ns  

 

 Separation factor of safety, Eq. (8-30): 

 

     
   0

41.10
11.8 .

1 4.712 1 0.263

iF
n A

P C
  

 
ns  

______________________________________________________________________________ 

  

8-34  Bolts:  Grip, l = 1/2 + 5/8 = 1.125 in. From Table A-31, the nut height is H = 7/16 in.  

 L ≥ l + H = 1.125 + 7/16 = 1.563 in.  

 

  Round up to L = 1.75 in  Ans. 

 

   Eq. (8-13):  LT = 2d + 0.25 = 2(0.5) + 0.25 = 1.25 in 

 

  Table 8-7: ld = L  LT  = 1.75  1.25  = 0.5 in, lt  = l ld  = 1.125  0.5  = 0.625 in 

 

  Ad =  (0.5
2
)/4 = 0.196 3 in

2
, Table 8-2: At = 0.141 9 in

2
 

 

  Eq. (8-17):  

    
 

   
0.196 3 0.141 9 30

4.316 Mlbf/in
0.196 3 0.625 0.141 9 0.5

d t
b

d t t d

A A E
k

A l A l
  

 
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 Members: Steel cyl. head: t = 0.5 in, d  = 0.5 in, D  = 0.75 in, E  = 30 Mpsi. Eq. (8-20), 

 

    
 

   
   

1

0.5774 30 0.5
33.30 Mlbf/in

1.155 0.5 0.75 0.5 0.75 0.5
ln

1.155 0.5 0.75 0.5 0.75 0.5

k


 
    
    

 

 

  Cast iron: Has two frusta. Midpoint of complete joint is at (1/2 + 5/8)/2 =  

  0.5625 in.  

   Upper frustum, t = 0.5625 0.5 = 0.0625 in, d = 0.5 in,  

   D = 0.75 + 2(0.5) tan 30 = 1.327 in, E = 14.5 Mpsi (from Table 8-8) 

 

   Eq. (8-20)     k2 = 292.7 Mlbf/in 

 

   Lower frustum, t = 0.5625 in, d = 0.5 in, D = 0.75 in, E  = 14.5 Mpsi 

 

   Eq. (8-20)     k3 = 15.26 Mlbf/in 

 

   Eq. (8-18):   km = (1/33.30 + 1/292.7 + 1/15.26)
1

 = 10.10 Mlbf/in 

 

  C = kb / (kb + km) = 4.316/(4.316+10.10)  = 0.299 

 

 Table 8-9:    Sp = 85 kpsi 

 Assume non-permanent connection. Eqs. (8-31) and (8-32) 

 

     Fi = 0.75 At Sp = 0.75(0.141 9)(85)  = 9.05 kips 

 

 The total external load is Ptotal = pg Ac, where Ac is the diameter of the cylinder which is 

3.5 in. The external load per bolt is P = Ptotal /N. Thus 

 

     P = [1 500 (3.5
2
)/4](10

3
)/10  = 1.443  kips/bolt 

 

 Yielding factor of safety, Eq. (8-28): 

 

     
 
 

85 0.141 9
1.27 .

0.299 1.443 9.05

p t

p

i

S A
n A

CP F
  

 
ns  

 

 Overload factor of safety, Eq. (8-29): 

 

     
 

 
85 0.141 9 9.05

6.98 .
0.299 1.443

p t i

L

S A F
n A

CP
ns

 
    

 

 Separation factor of safety, Eq. (8-30): 
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   0

9.05
8.95 .

1 1.443 1 0.299

iF
n A

P C
  

 
      ns

______________________________________________________________________________ 

-35 Bolts:  Grip: l = 20 + 25 = 45 mm. From Table A-31, the nut height is H = 8.4 mm.  

m is 

  

 Round up to L = 55 mm  Ans. 

  Eq. (8-14):  LT = 2d + 6 = 2(10) + 6 = 26 mm 

 Table 8-7: ld = L  LT  = 55  26  = 29 mm, lt  = l ld  = 45  29  = 16 mm 

 Ad = (10
2
)/4 = 78.5 mm

2
, Table 8-1: At = 58.0 mm

2
 

 Eq. (8-17):  

 

8
 L ≥ l +H = 45 + 8.4 = 53.4 mm. Although Table A-17 indicates to go to 60 mm, 55 m

readily available 

 

 

 

 

 

 

 

 

 

 
   

78.5 58.0 207
320.8 MN/m

78.5 16 58.0 29

d t
b

d t t d

A A E
k

A l A l
  

 
      

 

Members: Steel cyl. head: t = 20 mm, d = 10 mm, D  = 15 mm, E  = 207 GPa. Eq. (8-20), 

    

 

 

 
   
   

1

0.5774 207 10
3503 MN/m

1.155 20 15 10 15 10
ln

1.155 20 15 10 15 10

k


 
    
    

  

    

n: Has two frusta. Midpoint of complete joint is at (20 + 25)/2 = 22.5 mm 

m Table 8-8),  

 Lower frustum, t = 22.5 mm, d = 10 mm, D = 15 mm, E = 100 GPa 

  Eq. (8-20)     k3 = 1632 MN/m 

  Eq. (8-18):   km = (1/3503 + 1/45 880 + 1/1632)
1

 = 1087 MN/m 

 C = kb / (kb + km) = 320.8/(320.8+1087)  = 0.228 

Table 8-11:    Sp = 830 MPa 

ection. Eqs. (8-31) and (8-32) 

    Fi = 0.75 At Sp = 0.75(58.0)(830)10
3

  = 36.1 kN 

   Cast iro

  Upper frustum, t = 22.5  20 = 2.5 mm, d = 10 mm,  

  D = 15 + 2(20) tan 30 = 38.09 mm, E = 100 GPa (fro

  Eq. (8-20)     k2 = 45 880 MN/m 

 

 

 

 

 

 

 

 

  

 

 Assume non-permanent conn
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 The total external load is Ptotal = pg Ac, where Ac is the diameter of the cylinder which is 

 

    P = [550 (0.8
2
)/4]/36 = 7.679 kN/bolt 

Yielding factor of safety, Eq. (8-28): 

     

0.8 m. The external load per bolt is P = Ptotal /N. Thus 

 

 

 

 

 
 

3830 58.0 10
1.27 .

0.228 7.679 36.1

p t

p

i

S A
n A

CP F



  
 

 ns

 

Overload factor of safety, Eq. (8-29): 

     

 

 

 
 

3830 58.0 10 36.1
6.88 .

0.228 7.679

p t i

L

S A F
n A

CP

 
    ns

 

Separation factor of safety, Eq. (8-30): 

    

 

 

   0

36.1
6.09 .

1 7.679 1 0.228

iF
n A

P C
  

 
 

 ns

______________________________________________________________________________ 

-36 Bolts:  Grip, l = 3/8 + 1/2 = 0.875 in. From Table A-31, the nut height is H = 3/8 in.  

 Let L = 1.25 in  Ans. 

  Eq. (8-13):  LT = 2d + 0.25 = 2(7/16) + 0.25 = 1.125 in 

 Table 8-7: ld = L  LT  = 1.25  1.125  = 0.125 in, lt  = l ld  = 0.875  0.125  =  

 

 Ad =  (7/16) /4 = 0.150 3 in
2
, Table 8-2: At = 0.106 3 in

2
 

 Eq. (8-17), 

 

8
 L ≥ l + H = 0.875 + 3/8 = 1.25 in.  

 

 

 

 

 

 

  0.75 in 

2
 

 

 

 
   

0.150 3 0.106 3 30
3.804 Mlbf/in

0.150 3 0.75 0.106 3 0.125

dA
k      t

b

d t t d

A E

A l A l


 
 

 

Members: Steel cyl. head: t = 0.375 in, d  = 0.4375 in, D  = 0.65625 in, E  = 30 Mpsi. Eq. 

 

 

(8-20), 

Chap. 8 Solutions - Rev. A, Page 28/69 



   

 
 

   
   

1

0.5774 30 0.4375
31.40 Mlbf/in

1.155 0.375 0.65625 0.4375 0.65625 0.4375
ln

1.155 0.375 0.65625 0.4375 0.65625 0.4375

k


 
    
    

 

 

  Cast iron: Has two frusta. Midpoint of complete joint is at (3/8 + 1/2)/2 =  

  0.4375 in.  

   Upper frustum, t = 0.4375 0.375 = 0.0625 in, d = 0.4375 in,  

   D = 0.65625 + 2(0.375) tan 30 = 1.089 in, E = 14.5 Mpsi (from Table  

  8-8) 

 

   Eq. (8-20)     k2 = 195.5 Mlbf/in 

 

   Lower frustum, t = 0.4375 in, d = 0.4375 in, D = 0.65625 in, E = 14.5  

  Mpsi 

 

   Eq. (8-20)     k3 = 14.08 Mlbf/in 

 

   Eq. (8-18):   km = (1/31.40 + 1/195.5 + 1/14.08)
1

 = 9.261 Mlbf/in 

 

  C = kb / (kb + km) = 3.804/(3.804 + 9.261)  = 0.291 

 

 Table 8-9:    Sp = 120 kpsi 

 Assume non-permanent connection. Eqs. (8-31) and (8-32) 

 

     Fi = 0.75 At Sp = 0.75(0.106 3)(120)  = 9.57 kips 

 

 The total external load is Ptotal = pg Ac, where Ac is the diameter of the cylinder which is 

3.25 in. The external load per bolt is P = Ptotal /N. Thus 

 

     P = [1 200 (3.25
2
)/4](10

3
)/8  = 1.244  kips/bolt 

 

 Yielding factor of safety, Eq. (8-28): 

 

     
 
 

120 0.106 3
1.28 .

0.291 1.244 9.57

p t

p

i

S A
n A

CP F
  

 
ns  

 

 Overload factor of safety, Eq. (8-29): 

 

     
 

 
120 0.106 3 9.57

8.80 .
0.291 1.244

p t i

L

S A F
n A

CP
ns

 
    

 

 Separation factor of safety, Eq. (8-30): 
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   0

9.57
10.9 .

1 1.244 1 0.291

iF
n A

P C
  

 
 

     ns

______________________________________________________________________________

 

-37 From Table 8-7, h = t1 = 20 mm 

/2  = 26 mm 

p to L = 40 mm 

From Table 8-1, At = 84.3 mm
2
. Ad =  (12

2
)/4 = 113.1 mm

2
 

 

8
 For t2 > d, l = h + d /2  = 20 + 12

 L ≥ h + 1.5 d = 20 + 1.5(12) = 38 mm. Round u

 LT = 2d + 6 = 2(12) + 6 = 30 mm 

 ld = L  LT  = 40  20 = 10 mm 

 lt = l  ld  = 26  10 = 16 mm 

 

 

 Eq. (8-17), 

 
   

113.1 84.3 207
744.0 MN/m

113.1 16 84.3 10

d t
b

d t t d

A A E
k

A l A l
  

 
     

 Similar to Fig. 8-21, we have three frusta. 

m, D = 18 mm, E  = 207 GPa. Eq. (8-20) 

  

 Top frusta, steel: t = l / 2 = 13 mm, d = 12 m

 

 
   
   

1

0.5774 207 12
5 316 MN/m

1.155 13 18 12 18 12
ln

1.155 13 18 12 18 12

k


 
    
    

   

 

Middle frusta, steel: t = 20  13 = 7 mm, d = 12 mm, D = 18 + 2(13  7) tan 30  = 24.93 

 

Lower frusta, cast iron:  t = 26  20 = 6 mm, d = 12 mm, D = 18 mm, E  = 100 GPa (see 

 

Eq. (8-18),  km = (1/5 316 + 1/15 660 + 1/3 887)
1

  = 1 964 MN/m 

   C = kb / (kb + km) = 744.0/(744.0 + 1 964)  = 0.275 

Table 8-11:  Sp = 650 MPa. From Prob. 8-33, P = 4.712 kN. Assume a non-permanent 

 

   Fi = 0.75 At Sp = 0.75(84.3)(650)10
3

  = 41.1 kN 

Yielding factor of safety, Eq. (8-28) 

  

 

mm, E  = 207 GPa. Eq. (8-20)       k2 = 15 660 MN/m 

 

Table 8-8). Eq. (8-20)        k3 = 3 887 MN/m 

 

 

 

 

 

connection. Eqs. (8-31) and (8-32), 

 

 

 

 

 
 

3650 84.3 10
1.29 .

0.275 4.712 41.1

p t

p

i

S A
n A

CP F



  
 

 

  ns

 Overload factor of safety, Eq. (8-29) 
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 
 

3650 84.3 10 41.1
10.7 .

0.275 4.712

p t i

L

S A F
n A

CP

 
  

     

ns

r of safety, Eq. (8-30) 

    

 Separation facto

 

   0

41.1
12.0 .

1 4.712 1 0.275

iF
n A

P C
  

 
 

ns

___________________________________________ ________________ 

1

.5/2 = 0.75 in 

 1.25 in 

b = At E / l = 0.141 9(30)/0.75 = 

 in, D = 0.75 in, E = 30 Mpsi 

__________________ _

 

-38 From Table 8-7, h = t  = 0.5 in 8
 For t2 > d, l = h + d /2 = 0.5 + 0

 L ≥ h + 1.5 d = 0.5 + 1.5(0.5) = 1.25 in. Let L =

 LT = 2d + 0.25 = 2(0.5) + 0.25 = 1.25 in. All threaded. 
2

 From Table 8-1, At = 0.141 9 in . The bolt stiffness is k

5.676 Mlbf/in 

 Similar to Fig. 8-21, we have three frusta. 

 Top frusta, steel: t = l / 2 = 0.375 in, d = 0.5

    
 

   
   

1

0.5774 30 0.5
38.45 Mlk


  bf/in

1.155 0.375 0.75 0.5 0.75 0.5
ln

1.155 0.375 0.75 0.5 0.75 0.5

    
    

 

 Middle frusta, steel: t = 0.5  0.375 = 0.125 in, d = 0.5 in,  

d = 0.5 in, D = 0.75 in, E = 14.5 Mpsi. 

m
1

 = 13.51 Mlbf/in 

b b m

p e a non-permanent 

i t p

   

 D = 0.75 + 2(0.75  0.5) tan 30  = 1.039 in, E = 30 Mpsi.  

 Eq. (8-20)       k2 = 184.3 Mlbf/in 

 

Lower frusta, cast iron:  t = 0.75  0.5 = 0.25 in,  

Eq. (8-20)        k3 = 23.49 Mlbf/in 

 

Eq. (8-18), k  = (1/38.45 + 1/184.3 + 1/23.49) 

 

   C = k  / (k  + k ) = 5.676 / (5.676 + 13.51) = 0.296  

 

Table 8-9, S  = 85 kpsi. From Prob. 8-34, P = 1.443 kips/bolt. Assum 

connection. Eqs. (8-31) and (8-32), 

 

   F  = 0.75 A S  = 0.75(0.141 9)(85) = 9.05 kips  

 

Yielding factor of safety, Eq. (8-28)  

 

 
 

85 0.141 9
1.27 .

0.296 1.443 9.05

p t

p

i

S A
n A

CP F
  

 
 

 ns

 Overload factor of safety, Eq. (8-29) 
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 
 

85 0.141 9 9.05
7.05 .

0.296 1.443

p t i

L

S A F
n A

CP

 
  

     

ns

r of safety, Eq. (8-30) 

    

 Separation facto

 

   0

9.05
8.91 .

1 1.443 1 0.296

iF
n A

P C
  

 
 

ns

__________________________________________ ________________ 

1

2 = 25 mm 

 35 mm 

t
2
. Ad =  (10

2
)/4 = 78.5 mm

2
 

__________________ __

 

-39 From Table 8-7, h = t  = 20 mm 8
 For t2 > d, l = h + d /2 = 20 + 10/

 L ≥ h + 1.5 d = 20 + 1.5(10) = 35 mm. Let L =

 LT = 2d + 6 = 2(10) + 6 = 26 mm 

 ld = L  LT  = 35  26 = 9 mm 

 lt = l  ld  = 25  9 = 16 mm 

 

From Table 8-1, A  = 58.0 mm 

 Eq. (8-17), 

 
   

78.5 58.0 207
530.1 MN/m

78.5 16 58.0 9

d t
b

d t t d

A A E
    k

A l A l
  

 
 

-21, we have three frusta. 

 mm, D = 15 mm, E = 207 GPa. Eq. (8-20) 

 Similar to Fig. 8

 Top frusta, steel: t = l / 2 = 12.5 mm, d = 10

    
 

   
   

1

0.5774 207 10
4 163 MN/mk


   

1.155 12.5 15 10 15 10
ln

1.155 12.5 15 10 15 10

    
    

 Middle frusta, steel: t = 20  12.5 = 7.5 mm, d = 10 mm, D = 15 + 2(12.5  7.5) tan 30  = 

, E = 100 GPa (see 

m
1

 = 1 562 MN/m 

b b m

p = 830 MPa. From anent 

i t p
3

  = 36.1 kN 

20.77 mm, E  = 207 GPa. Eq. (8-20)       k2 = 10 975 MN/m 

 

Lower frusta, cast iron:  t = 25  20 = 5 mm, d = 10 mm, D = 15 mm 

Table 8-8). Eq. (8-20)        k3 = 3 239 MN/m 

 

Eq. (8-18),  k  = (1/4 163 + 1/10 975 + 1/3 239) 

 

   C = k  / (k  + k ) = 530.1/(530.1 + 1 562)  = 0.253  

 

Table 8-11:  S  Prob. 8-35, P = 7.679 kN/bolt. Assume a non-perm 

connection. Eqs. (8-31) and (8-32), 

 

   F  = 0.75 A S  = 0.75(58.0)(830)10 

 

Yielding factor of safety, Eq. (8-28)  
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 
 

3830p tS A
    

58.0 10
1.27 .

0.253 7.679 36.1
p

i

n Ans
CP F



  
 

 

 of safety, Eq. (8-29) 

    

 Overload factor

 

 
 

358.0 10 36.1
6.20 .

0.253 7.679

p t i

Ln Ans
CP

 
  

 

 Separation factor of safety, Eq. (8-30) 

  

830S A F

 

   0

36.1
6.29 .

1 7.679 1 0.253

iF

  

n Ans
P C

  
 

 
______________________________________________________________________________ 

For t2 > d, l = h + d /2 = 0.375 + 0.4375/2 = 0.59375 in 

) = 1.031 in. Round up to L = 1.25 in 

 8-2: At = 0.106 3 in
2
 

 

8-40 From Table 8-7, h = t1 = 0.375 in 

 

 L ≥ h + 1.5 d = 0.375 + 1.5(0.4375

 LT = 2d + 0.25 = 2(0.4375) + 0.25 = 1.125 in 

 ld = L  LT  = 1.25  1.125 = 0.125 

 lt = l  ld  = 0.59375  0.125 = 0.46875 in 

 Ad =  (7/16)
2
/4 = 0.150 3 in

2
, Table

 

 Eq. (8-17), 

 
   
0.150 3 0.106 3 30

5.724 Mlbf/in
0.150 3 0.46875 0.106 3 0.125

d t
b

d t t d

A A E
    k

A l A l
  

 
 

-21, we have three frusta. 

 Top frusta, steel: t = l / 2 = 0.296875 in, d = 0.4375 in, D = 0.65625 in, E = 30 Mpsi 

 Similar to Fig. 8

   

 
   
   

1k 
0.5774 30 0.4375

35.52 Mlbf/in


   
1.155 0.296875 0.656255 0.4375 0.75 0.656255

ln
1.155 0.296875 0.75 0.656255 0.75 0.656255

    
    

 Middle frusta, steel: t = 0.375  0.296875 = 0.078125 in, d = 0.4375 in,  

 D  = 0.65625 + 2(0.59375  0.375) tan 30  = 0.9088 in, E  = 30 Mpsi.  

 0.375 = 0.21875 in, d = 0.4375 in, D = 0.65625 in, 

E = 14.5 Mpsi. Eq. (8-20)        k3 = 20.55 Mlbf/in 

 

   C = kb / (kb + km) = 5.724/(5.724 + 12.28)  = 0.318 

 Eq. (8-20)       k2 = 215.8 Mlbf/in 

 

 Lower frusta, cast iron:  t = 0.59375 

 

Eq. (8-18), km = (1/35.52 + 1/215.8 + 1/20.55)
1

 = 12.28 Mlbf/in 
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 Table 8-9, Sp = 120 kpsi. From Prob. 8-34, P = 1.244 kips/bolt. Assume a non-permanent 

connection. Eqs. (8-31) and (8-32), 

 5(0.106 3)(120) = 9.57 kips 

 

   Fi = 0.75 At Sp = 0.7

 

 Yielding factor of safety, Eq. (8-28) 

 

 
 

12p tS A
n A     

0 0.106 3
1.28 .

0.318 1.244 9.57
p

i

ns
CP F


 

 

 of safety, Eq. (8-29) 

    

 Overload factor

 

 
 

120p t iS A F 0.106 3 9.57
8.05 .

0.318 1.244
Ln Ans

CP


  

 

 Separation factor of safety, Eq. (8-30) 

  

 

   0

9.57
11.3 .

1 1.244 1 0.318

iF

  

n Ans
P C

  
 

 
______________________________________________________________________________ 

What is presented here is one possible iterative approach. We will demonstrate this with 

  

g using Eq. (8-18), yields km = 1 141 MN/m (see Prob. 8-33 for method of 

 

 e nut height in Table A-31. For the example, H = 8.4 mm. From this, L is 

rounded up from the calculation of l + H = 40 + 8.4 = 48.4 mm to 50 mm. Next, 

 

4 mm
2
. 

 

  for Db in Eq. 

(8-34), the number of bolts are 

 
8-41 This is a design problem and there is no closed-form solution path or a unique solution. 

an example. 

1. Select the diameter, d. For this example, let d = 10 mm. Using Eq. (8-20) on members,

and combinin

calculation. 

2. Look up th

calculations are made for LT = 2(10) + 6 = 26 mm, ld = 50  26 = 24 mm, lt = 40  24 =

16 mm. From step 1, Ad = (10
2
)/4 = 78.54 mm

2
. Next, from Table 8-1, At = 78.5

From Eq. (8-17), kb = 356 MN/m. Finally, from Eq. (e), p. 421, C = 0.238. 

3. From Prob. 8-33, the bolt circle diameter is E = 200 mm. Substituting this

 

   


 


 
200

bD
N


  15.7

4 4 10d
  

p gives N = 16. 

 

d on the solution to Prob. 8-33, the strength of ISO 9.8 

was so high to give very large factors of safety for overload and separation. Try ISO 4.6 

 Rounding this u

 4. Next, select a grade bolt. Base
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with Sp = 225 MPa. From Eqs. (8-31) and (8-32) for a non-permanent connection, Fi = 

9.79 kN. 

5.  The ex

 

 ternal load requirement per bolt is P = 1.15 pg Ac/N, where from Prob 8-33, pg = 

6 MPa, and A  =  (100
2
)/4. This gives P = 3.39 kN/bolt. 

 nd n0 = 3.79. 

 for the tables 

used from the text. The results for four bolt sizes are shown below. The dimension of each 

 

lt Ad At kb 

c

 

6.  Using Eqs. (8-28) to (8-30) yield np = 1.23, nL = 4.05, a

 

 Steps 1 - 6 can be easily implemented on a spreadsheet with lookup tables

term is consistent with the example given above. 

 

d km H L LT ld 

8 854 6.8 50 22 28 12 50.26 36.6 233.9 

10 1  78.54 356 141 8.4 50 26 24 16 58 

12 1456 10.8 55 30 25 15 113.1 84.3 518.8 

14 1950 12.8 55 34 21 19 153.9 115 686.3 

          

d C N S  p F  i P n  p n  L n  0  
8 0.215 20 225 6.18 2.71 1.22 3.53 2.90  
10 0.238 16 225 9.79 3.39 1.23 4.05 3.79  
12 0.263 13* 225 14.23 4.17 1.24 4.33 4.63  
14 0.276 12 225 19.41 4.52 1.25 5.19 5.94  

 

 *Rounded down from 89  g eters. 

N   cost/bolt, and/or N   cost per hole, etc. 

____ __ 

n. 

What is presented here is one possible iterative approach. We will demonstrate this with 

  

4 solution), and combining using Eq. (8-19), yields km = 10.10 Mlbf/in. 

 

rounded up from the calculation of l + H = 1.125 + 0.4375 = 1.5625 in to 1.75 in. Next, 

 

 

 

34), for the number of bolts 

 

13.0 97, so spacin  is slightly greater than four diam

 

 Any one of the solutions is acceptable. A decision-maker might be cost such as 

 

_ _________________________________________________________________

 

8-42 This is a design problem and there is no closed-form solution path or a unique solutio

an example. 

1. Select the diameter, d. For this example, let d = 0.5 in. Using Eq. (8-20) on three frusta

(see Prob. 8-3

 

2. Look up the nut height in Table A-31. For the example, H = 0.4375 in. From this, L is 

calculations are made for LT = 2(0.5) + 0.25 = 1.25 in, ld = 1.75  1.25 = 0.5 in, lt = 1.125

 0.5 = 0.625 in. From step 1, Ad = (0.5
2
)/4 = 0.1963 in

2
. Next, from Table 8-1, At = 

0.141 9 in
2
. From Eq. (8-17), kb = 4.316 Mlbf/in. Finally, from Eq. (e), p. 421, C = 0.299. 

3. From Prob. 8-34, the bolt circle diameter is E = 6 in. Substituting this for Db in Eq. (8-
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 
    

 
6

9.425
4 4

bD
N

d


    

0.5

Rounding this up gives N = 10. 

 4. Next, select a grade bolt. Based on the solution to Prob. 8-34, the strength of SAE grade 

 = 85 kpsi. From Eqs. (8-31) and (8-32) for a non-

permanent connection, Fi = 9.046 kips. 

 4,   

 s gives P = 1.660 kips/bolt. 

b 

 

 

5 was adequate. Use this with Sp

 

5.  The external load requirement per bolt is P = 1.15 pg Ac/N, where from Prob 8-3

pg  = 1 500 psi, and Ac =  (3.5
2
)/4 . Thi

 

 6.  Using Eqs. (8-28) to (8-30) yield np = 1.26, nL  = 6.07, and n0  = 7.78. 

  

d km H L LT ld lt Ad At k

0.375 6.75 0.3281 1.5 1 0.5 0.625 0.1104 0.0775 2.383 

0.4375 9.17 0.375 1.5 1.125 0.375 0.75 0.1503 0.1063 3.141 

0.5 10.10 0.4375 1.75 1.25 0.1963 0.1419 4.316 0.5 0.625

0.5625 11.98 0.4844 1.75 1.375 0.375 0.75 0.2485 0.182 5.329 

          

d C N Sp Fi P np nL n  0  
0.375 0.261 13 85 4.941 1.277 1.25 4.95 5.24  
0.4375 0.273 11 85 6.777 1.509 1.26 5.48 6.18  

0.5 0.299 9.046 1.660 1.26 6.07 7.78 10 85  
0.5625 0.308 9 85 11.6 1.844 1.27 6.81 9.09  

 

 Any on th io  ac a d - r  b  such as 

 N   c r N  cos r h t

_______________________________________________________________________ 

 solution path or a unique solution. 

ith 

an example. 

ta 

 

calculations are made for L  = 2(10) + 6 = 26 mm, l  = 55  26 = 29 mm, l  = 45  29 = 

 

 

e of e solut ns is cept ble. A ecision make might e cost

ost/bolt, and/o    t pe ole, e c. 

_

 

8-43 This is a design problem and there is no closed-form

What is presented here is one possible iterative approach. We will demonstrate this w

 1. Select the diameter, d. For this example, let d = 10 mm. Using Eq. (8-20) on three frus

(see Prob. 8-35 solution), and combining using Eq. (8-19), yields km = 1 087 MN/m. 

 2. Look up the nut height in Table A-31. For the example, H = 8.4 mm. From this, L is 

rounded up from the calculation of l + H = 45 + 8.4 = 53.4 mm to 55 mm. Next, 

T d t

16 mm. From step 1, Ad = (10
2
)/4 = 78.54 mm

2
. Next, from Table 8-1, At = 58.0 mm

2
. 

From Eq. (8-17), kb = 320.9 MN/m. Finally, from Eq. (e), p. 421, C = 0.228. 

3. From Prob. 8-35, the bolt circle diameter is E = 1000 mm. Substituting this for Db in 

Eq. (8-34), for the number of bolts 
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 
 
1000

78.5
4 4 10

bD
N

d


    

 Rounding this up gives N = 79. A rather large number, since the bolt circle diameter, E is 

ger bolts. 

 

rge factors of safety for overload and separation. Try ISO 5.8 

with Sp = 380 MPa. From Eqs. (8-31) and (8-32) for a non-permanent connection, Fi = 

 

   

a, and Ac =  (800
2
)/4 . This gives P = 4.024 kN/bolt. 

 

Steps 1 - 6 can be easily implemented on a spreadsheet with lookup tables for the tables 

mension of 

each term is consistent with the example given above. 

so large. Try lar

 4. Next, select a grade bolt. Based on the solution to Prob. 8-35, the strength of ISO 9.8 

was so high to give very la

16.53 kN. 

5.  The external load requirement per bolt is P = 1.15 pg Ac/N, where from Prob 8-35, pg

= 0.550 MP

 

 6.  Using Eqs. (8-28) to (8-30) yield np = 1.26, nL  = 6.01, and n0  = 5.32. 

 

used from the text. The results for three bolt sizes are shown below. The di

  

d km H L LT ld lt Ad At kb 

10 1087 8.4 55 26 29 16 78.54 58 320.9 

20 3055 18 65 46 19 26 314.2 245 1242 

36 6725 31 80 78 2 43 1018 817 3791 

          

d C N Sp Fi P np nL n0  

1  0 0.2 8 2 7  9 380 16.53 4.024 1.26 6. 1 0 5. 2 3  

20 0.308 40 380 69.83 7.948 1.29 12.7 9.5  

36 0.361 22 380 232.8 14.45 1.3 14.9 25.2  
 

 A large range e  he n l  i ep  A decision-maker 

might be cost such as  co lt o r h tc

_______________________________________________________________________ 

8-44 r a unique solution. 

ith 

an example. 

. 

 

 

made for L  = 2(0.375) + 0.25 = 1 in, l  = 1.25  1 = 0.25 in, l  = 0.875  0.25 = 0.625 in. 

 is pres nted re. A y one of the so utions s acc table.

N   st/bo , and/or N   c st pe ole, e . 

_

 

This is a design problem and there is no closed-form solution path o

What is presented here is one possible iterative approach. We will demonstrate this w

 1. Select the diameter, d. For this example, let d = 0.375 in. Using Eq. (8-20) on three 

frusta (see Prob. 8-36 solution), and combining using Eq. (8-19), yields km = 7.42 Mlbf/in

 2. Look up the nut height in Table A-31. For the example, H = 0.3281 in. From this,  

L  ≥  l + H = 0.875 + 0.3281 = 1.2031 in. Rounding up, L = 1.25. Next, calculations are 

T d t

Chap. 8 Solutions - Rev. A, Page 37/69 



From step 1, Ad = (0.375
2
)/4 = 0.1104 in

2
. Next, from Table 8-1, At = 0.0775 in

2
. From

Eq. (8-17), k

 

 

 for Db in Eq. (8-

34), for the number of bolts 

b = 2.905 Mlbf/in. Finally, from Eq. (e), p. 421, C = 0.263. 

3. From Prob. 8-36, the bolt circle diameter is E = 6 in. Substituting this 

 

   
 

 
6

12.6
4 4 0.375

bD
N


  

d


  

p gives N  = 13. 

 

d on the solution to Prob. 8-36, the strength of SAE grade 

8 seemed high for overload and separation. Try SAE grade 5 with Sp = 85 kpsi. From Eqs. 

 

 from Prob 8-34,   

pg = 1 200 psi, and Ac =  (3.25 )/4. This gives P = 0.881 kips/bolt. 

.81. 

 for the tables 

used from the text. For this solution we only looked at one bolt size,

 Rounding this u

 4. Next, select a grade bolt. Base

(8-31) and (8-32) for a non-permanent connection, Fi = 4.941 kips.  

5.  The external load requirement per bolt is P = 1.15 pg Ac/N, where 
2

 

 

 6.  Using Eqs. (8-28) to (8-30) yield np = 1.27, nL = 6.65, and n0  = 7

 

 Steps 1 - 6 can be easily implemented on a spreadsheet with lookup tables
3

8

changing the bolt grade. The results for four bolt grades are shown below. The dimension

of each term is consistent with the example given above. 

 

16 , but evaluated 

 

 

 

 Note t he t gr  onl fe  , d n of the 

solutio le eci  the lowest grade bolt.  

 

hat changing t  bol ade y af cts Sp, Fi , np nL, an  n0. A y one 

ns is acceptab , esp ally

________________________________________________________________________ 

ment is contributed by the line load in the interval 0 ≤  ≤  

Ad At kb d km H L LT ld lt 

0.375 7.42 0.3281 1.25 1 0.25 0.625 0.1104 0.0775 2.905 

          

d C N grade S  F  P n  n  n  

SAE 

p i p L 0

0.375 0.281 13 1 33 1.918 0.881 1.18 2.58 3.03 

0. 5 0.  3.197 0.881 1  4  5.05 37 281 13 2 55 .24 .30

0.375 0.281 13 4 65 3.778 0.881 1.25 5.08 5.97 

0.375 0.281 13 5 85 4.941 0.881 1.27 6.65 7.81 

8-45 (a) 
,max sinb bF RF    

 Half of the external mo
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2 2

,max
0 0

2

,max

sin  sin
2

2 2

b b

b

M
F R d F R d

M
F R

 
2    



  

 

  
 

 

 from which 
,max 2b

M
F

R
  

 

 
2 2

1 1
max 1 22

sin  sin  (cos - cos )b

M M
F F R d R d

R R

 

 
    

 
      

 

 Noting 1 = 75, 2 = 105, 
 

max

12 000
(cos 75 - cos105 ) 494 lbf     .

(8 / 2)
F A


   ns  

 

 (b)      
max ,max 2

2 2
( )b

M M
F F R R

R N R




        N
 

max

2(12 000)
500 lbf     .

(8 / 2)(12)
F A  ns  

 (c)   F = Fmax sin  

 

M = 2 Fmax R [(1) sin
2
 90 + 2 sin

2
 60 + 2 sin

2
 30 + (1) sin

2 
(0)] = 6FmaxR 

  

 from which, 

 

     max

12 000
500 lbf     .

6 6(8 / 2)

M
F A

R
   ns  

 The simple general equation resulted from part (b) 

 

max

2M
F

RN
  

________________________________________________________________________ 

 

8-46 
 (a)  From Table 8-11, Sp = 600 MPa.  From Table 8-1, At = 353 mm

2
. 

 

   Eq. (8-31):     30.9 0.9 353 600 10 190.6 kNi t pF A S     

 

  Table 8-15:   K = 0.18 

 

   Eq. (8-27):  T =  K Fi d  =  0.18(190.6)(24)  =  823 Nm         Ans. 
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  (b) Washers: t  =  4.6 mm, d  =  24 mm, D  =  1.5(24)  =  36 mm, E  = 207 GPa. 

 

  Eq. (8-20), 

    
 

   
   

1

0.5774 207 24
31 990 MN/m

1.155 4.6 36 24 36 24
ln

1.155 4.6 36 24 36 24

k


 
    
    

 

 

 Cast iron: t  =  20 mm, d  =  24 mm, D  =  36 + 2(4.6) tan 30  =  41.31 mm, E  = 135 GPa. 

Eq. (8-20)      k2 = 10 785 MN/m 

 

 Steel joist: t = 20 mm, d = 24 mm, D = 41.31 mm, E = 207 GPa. Eq. (8-20)      k3 = 16 

537 MN/m 

 

 Eq. (8-18): km = (2 / 31 990 + 1 / 10 785 +1 / 16 537)
1

 = 4 636 MN/m 

 

 Bolt: l = 2(4.6) + 2(20) = 49.2 mm. Nut, Table A-31, H = 21.5 mm. L > 49.2 + 21.5 = 70.7 

mm. From Table A-17, use L = 80 mm. From Eq. (8-14) 

 

 LT  =  2(24) + 6  =  54 mm, ld  =  80  54  =  26 mm, lt  =  49.2  26  =  23.2 mm 

 

 From Table (8-1), At = 353 mm
2
, Ad =   (24

2
) / 4 = 452.4 mm

2
 

 

 Eq. (8-17): 

   
 

   
452.4 353 207

1680 MN/m
452.4 23.2 353 26

d t
b

d t t d

A A E
k

A l A l
  

 
 

 

 C = kb / (kb + km) = 1680 / (1680 + 4636) = 0.266, Sp = 600 MPa, Fi = 190.6 kN,  

 P = Ptotal / N = 18/4 = 4.5 kN 

 

 Yield:  From Eq. (8-28) 

 

    
 
 

3600 353 10
1.10 .

0.266 4.5 190.6

p t

p

i

S A
n A

CP F



  
 

ns  

 

 Load factor: From Eq. (8-29) 

 

    
 

 

3600 353 10 190.6
17.7 .

0.266 4.5

p t i

L

S A F
n A

CP

 
   ns  

 

 Separation: From Eq. (8-30) 
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   0

190.6
57.7 .

1 4.5 1 0.266

iF
n A

P C
  

 
ns

m

 

 

 As was stated in the text, bolts are typically preloaded such that the yielding factor of 

safety is not much greater than unity which is the case for this problem. However, the 

other load factors indicate that the bolts are oversized for the external load. 
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8-47 (a) ISO M 20  2.5 grade 8.8 coarse pitch bolts, lubricated. 

 Table 8-2,   At = 245 mm
2
 

 Table 8-11,   Sp = 600 MPa 

    Fi = 0.90 At Sp = 0.90(245)600(10
3

) = 132.3 kN 

 Table 8-15,  K = 0.18 

 

 Eq. (8-27),  T = KFi d = 0.18(132.3)20 = 476 N  m Ans. 

    
 (b) Table A-31, H = 18 mm, L ≥ LG + H = 48 + 18 = 66 mm. Round up to L = 80 mm per 

Table A-17. 
 

     

2 6 2(20) 6 46 m

- 80 46 34 mm

- 48 34 14 mm

T

d T

t d

L d

l L L

l l l

    
   
   

 

 Ad =  (20
2
) /4 = 314.2 mm

2
, 

 

314.2(245)(207)
1251.9 MN/m

314.2(14) 245(34)

d t
b

d t t d

A A E
k

A l Al
  

 
 

 

 Members: Since all members are steel use Eq. (8-22) with E = 207 MPa, l = 48 mm, d = 

20mm 

   

 
 
   
   

0.5774 207 200.5774
4236 MN/m

0.5774 0.5 0.5774 48 0.5 20
2ln 5 2ln 5

0.5774 2.5 0.5774 48 2.5 20

m

Ed
k

l d

l d


  

   
      

 

 

   
1251.9

0.228
1251.9 4236

b

b m

k
C

k k
  

 
 

 P = Ptotal / N = 40/2 = 20 kN, 

 

 Yield:  From Eq. (8-28) 

    
 
 

3600 245 10
1.07 .

0.228 20 132.3

p t

p

i

S A
n A

CP F



  
 

ns  
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 Load factor: From Eq. (8-29) 

 

    
 

 

3600 245 10 132.3
3.22 .

0.228 20

p t i

L

S A F
n A

CP

 
   ns  

 

 Separation: From Eq. (8-30) 

 

   
   0

132.3
8.57 .

1 20 1 0.228

iF
n A

P C
  

 
ns
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8-48 From Prob. 8-29 solution, Pmax =13.33 kips, C = 0.2, Fi = 12.77 kips, At = 0.141 9 in
2
 

     
12.77

90.0 kpsi
0.141 9

i
i

t

F

A
     

 Eq. (8-39),  
 

 
0.2 13.33

9.39 kpsi
2 2 0.141 9

a

t

CP

A
     

 Eq. (8-41),  9.39 90.0 99.39 kpsim a i        

 (a) Goodman Eq. (8-45) for grade 8 bolts, Se = 23.2 kpsi (Table 8-17), Sut = 150 kpsi 

(Table 8-9) 

     
 
 

 
 

23.2 150 90.0
0.856 .

9.39 150 23.2

e ut i

f

a ut e

S S
n A

S S




 
  

 
ns  

 

 (b) Gerber Eq. (8-46) 

 

 

      

2 2

2 2

1
4 2

2

1
150 150 4 23.2 23.2 90.0 150 2 90.0 23.2 1.32 .

2 9.39 23.2

f ut ut e e i ut i e

a e

n S S S S S S
S

Ans

 


      

       

 

 

 (c) ASME-elliptic Eq. (8-47) with Sp = 120 kpsi (Table 8-9) 

  
   

   

2 2 2

2 2

2 2 2

2 2

23.2
120 120 23.2 90 90 23.2 1.30 .

9.39 120 23.2

e
f p p e i i e

a p e

S
n S S S S

S S

Ans

 


   


     

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8-49 Attention to the Instructor . Part (d) requires the determination of the endurance strength, 

Se, of a class 5.8 bolt. Table 8-17 does not provide this and the student will be required to 

estimate it by other means [see the solution of part (d)]. 

 

 Per bolt, Pbmax = 60/8 = 7.5 kN, Pbmin = 20/8 = 2.5 kN 
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1

0.278
1 2.6

b

b m

k
C

k k
  

 
 

 (a) Table 8-1, At = 20.1 mm
2
;  Table 8-11, Sp = 380 MPa 

 Eqs. (8-31) and (8-32), Fi = 0.75 At Sp = 0.75(20.1)380(10
3

) = 5.73 kN 

 Yield, Eq. (8-28), 
 
 

3380 20.1 10
0.98 .

0.278 7.5 5.73

p t

p

i

S A
n A

CP F



  
 

ns  

 (b) Overload, Eq. (8-29), 
 

 

3380 20.1 10 5.73
0.915 .

0.278 7.5

p t i

L

S A F
n A

CP

 
   ns  

 (c) Separation, Eq. (8-30), 
   0

5.73
1.06 .

1 7.5 1 0.278

iF
n A

P C
  

 
ns  

 (d) Goodman, Eq. (8-35),   
   

 

3

max min 0.278 7.5 2.5 10
34.6 MPa

2 2 20.1

b b

a

t

C P P

A


 
    

  Eq. (8-36),  
   

 
 33

max min
5.73 100.278 7.5 2.5 10

354.2 MPa
2 2 20.1 20.1

b b i
m

t t

C P P F

A A


 
      

 Table 8-11, Sut = 520 MPa, i = Fi /At = 5.73(10
3
)/20.1 = 285 MPa 

 

 We have a problem for Se. Table 8-17 does not list Se for class 5.8 bolts. Here, we will 

estimate Se using the methods of Chapter 6. Estimate eS   from the,   

 Eq. (6-8), p. 282,  0.5 0.5 520 260 MPae utS S    .  

 Table 6-2, p. 288, a = 4.51, b =  0.265 

 Eq. (6-19), p. 287,  0.2654.51 520 0.860b

a utk aS     

 Eq. (6-21), p. 288, kb = 1 

 Eq. (6-26), p.290, kc = 0.85 

 The fatigue stress-concentration factor, from Table 8-16, is Kf  = 2.2. For simple axial 

loading and infinite-life it is acceptable to reduce the endurance limit by Kf and use the 

nominal stresses in the stress/strength/design factor equations. Thus, 

 Eq. (6-18), p. 287, Se = ka kb kc eS   / Kf  = 0.86(1)0.85(260) / 2.2 = 86.4 MPa 

  

 Eq. (8-38), 

   
 

 
 

   
86.4 520 285

0.847 .
520 34.6 86.4 354.2 285

e ut i

f

ut a e m i

S S
n A

S S


  

 
  

   
ns  

 

 It is obvious from the various answers obtained, the bolted assembly is undersized. This 

can be rectified by a one or more of the following: more bolts, larger bolts, higher class 

bolts. 

______________________________________________________________________________ 

 

8-50 Per bolt,  Pbmax =  Pmax /N = 80/10 = 8 kips, Pbmin =  Pmin /N = 20/10 = 2 kips 

 C = kb / (kb + km) = 4/(4 + 12) = 0.25 

 (a) Table 8-2, At = 0.141 9 in
2
,   Table 8-9, Sp = 120 kpsi and Sut = 150 kpsi  
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 Table 8-17, Se = 23.2 kpsi 

  Eqs. (8-31) and (8-32), Fi = 0.75 At Sp    i =  Fi /At = 0.75 Sp = 0.75(120) =90 kpsi 

 

 Eq. (8-35), 
   

 
max min 0.25 8 2

5.29 kpsi
2 2 0.141 9

b b

a

t

C P P

A


 
    

 Eq. (8-36), 
   

 
max min 0.25 8 2

90 98.81 kpsi
2 2 0.141 9

b b

m i

t

C P P

A
 

 
      

 Eq. (8-38), 

   
 

 
 

   
23.2 150 90

1.39 .
150 5.29 23.2 98.81 90

e ut i

f

ut a e m i

S S
n A

S S


  

 
  

   
ns  
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8-51 From Prob. 8-33, C = 0.263, Pmax =  4.712 kN / bolt, Fi  = 41.1 kN, Sp = 650 MPa, and  

 At  = 84.3 mm
2
 

     i  = 0.75 Sp = 0.75(650) = 487.5 MPa 

 Eq. (8-39):  
 
 

30.263 4.712 10
7.350 MPa

2 2 84.3
a

t

CP

A
     

 

 Eq. (8-40)  7.350 487.5 494.9 MPa
2

i
m

t t

FCP

A A
       

 

 (a) Goodman: From Table 8-11, Sut = 900 MPa, and from Table 8-17, Se  = 140 MPa 

 Eq. (8-45):   
 
 

 
 

140 900 487.5
7.55 .

7.350 900 140

e ut i

f

a ut e

S S
n A

S S




 
  

 
ns  

 

 (b) Gerber:  

 Eq. (8-46): 

  

 

      

2 2

2 2

1
4 2

2

1
900 900 4 140 140 487.5 900 2 487.5 140

2 7.350 140

11.4 .

f ut ut e e i ut i e

a e

n S S S S S S
S

Ans

 


      

      



   

 

 (c) ASME-elliptic: 

 

 Eq. (8-47): 
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   

   

2 2 2

2 2

2 2 2

2 2

140
650 650 140 487.5 487.5 140 9.73 .

7.350 650 140

e
f p p e i i e

a p e

S
n S S S S

S S

Ans

 


   


     

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8-52 From Prob. 8-34, C = 0.299, Pmax = 1.443 kips/bolt,Fi  = 9.05 kips, Sp = 85 kpsi, and  

 At = 0.141 9 in
2
 

      0.75 0.75 85 63.75 kpsii pS     

 Eq. (8-37):  
 

 
0.299 1.443

1.520 kpsi
2 2 0.141 9

a

t

CP

A
     

 

 Eq. (8-38)  1.520 63.75 65.27 kpsi
2

m i

t

CP

A
       

 

 (a) Goodman: From Table 8-9, Sut = 120 kpsi, and from Table 8-17, Se = 18.8 kpsi 

 Eq. (8-45):   
 
 

 
 

18.8 120 63.75
5.01 .

1.520 120 18.8

e ut i

f

a ut e

S S
n A

S S




 
  

 
ns  

 (b) Gerber:  

 Eq. (8-46): 

  

 

      

2 2

2 2

1
4 2

2

1
120 120 4 18.6 18.6 63.75 120 2 63.75 18.6

2 1.520 18.6

7.45 .

f ut ut e e i ut i e

a e

n S S S S S S
S

Ans

 


      

      



   

 

 (c) ASME-elliptic: 

 

 Eq. (8-47): 

 

  

   

   

2 2 2

2 2

2 2 2

2 2

18.6
85 85 18.6 63.75 63.75 18.6 6.22 .

1.520 85 18.6

e
f p p e i i e

a p e

S
n S S S S

S S

Ans

 


   


     

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8-53   From Prob. 8-35, C = 0.228, Pmax = 7.679 kN/bolt, Fi  = 36.1 kN, Sp = 830 MPa, and  

 At  = 58.0 mm
2
 

     i  = 0.75 Sp = 0.75(830) = 622.5 MPa 

 Eq. (8-37):  
 
 

30.228 7.679 10
15.09 MPa

2 2 58.0
a

t

CP

A
     

 

 Eq. (8-38)  15.09 622.5 637.6 MPa
2

m i

t

CP

A
       

 (a) Goodman: From Table 8-11, Sut = 1040 MPa, and from Table 8-17, Se  = 162 MPa 

 Eq. (8-45):   
 
 

 
 

162 1040 622.5
3.73 .

15.09 1040 162

e ut i

f

a ut e

S S
n A

S S




 
  

 
ns  

 (b) Gerber:  

 Eq. (8-46): 

  

 

      

2 2

2 2

1
4 2

2

1
1040 1040 4 162 162 622.5 1040 2 622.5 162

2 15.09 162

5.74 .

f ut ut e e i ut i e

a e

n S S S S S S
S

Ans

 


      

      



   

 

 (c) ASME-elliptic: 

 

 Eq. (8-47): 

 

  

   

   

2 2 2

2 2

2 2 2

2 2

162
830 830 162 622.5 622.5 162 5.62 .

15.09 830 162

e
f p p e i i e

a p e

S
n S S S S

S S

Ans

 


   


     

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8-54 From Prob. 8-36, C = 0.291, Pmax = 1.244  kips/bolt, Fi  = 9.57 kips, Sp = 120 kpsi, and  

 At  = 0.106 3 in
2
 

      0.75 0.75 120 90 kpsii pS     

 Eq. (8-37):  
 

 
0.291 1.244

1.703 kpsi
2 2 0.106 3

a

t

CP

A
     
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 Eq. (8-38)  1.703 90 91.70 kpsi
2

m i

t

CP

A
       

 

 (a) Goodman: From Table 8-9, Sut = 150 kpsi, and from Table 8-17, Se  = 23.2 kpsi 

 Eq. (8-45):   
 
 

 
 

23.2 150 90
4.72 .

1.703 150 23.2

e ut i

f

a ut e

S S
n A

S S




 
  

 
ns  

 

 (b) Gerber:  

 Eq. (8-46): 

  

 

       

2 2

2 2

1
4 2

2

1
150 150 4 23.2 23.2 90 150 2 90 23.2

2 1.703 23.2

7.28 .

f ut ut e e i ut i e

a e

n S S S S S S
S

Ans

 


      

      



  

 

 (c) ASME-elliptic: 

 

 Eq. (8-47): 

 

  

   

   

2 2 2

2 2

2 2 2

2 2

23.2
120 120 23.2 90 90 23.2 7.24 .

1.703 120 18.6

e
f p p e i i e

a p e

S
n S S S S

S S

Ans

 


   


     

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8-55 From Prob. 8-51, C  = 0.263, Se  = 140 MPa, Sut  = 900 MPa, At  = 84.4 mm
2
, i  = 

487.5 MPa, and Pmax  = 4.712 kN. 

 

   Pmin  =  Pmax / 2  = 4.712/2  = 2.356 kN 

 

 Eq. (8-35):  
   

 

3

max min 0.263 4.712 2.356 10
3.675 MPa

2 2 84.3
a

t

C P P

A


 
    

 

 Eq. (8-36):  
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 

 
 

max min

3

2

0.263 4.712 2.356 10
487.5 498.5 MPa

2 84.3

m i

t

C P P

A
 


 


  

 

 Eq. (8-38): 

 

  
 

 
 

   
140 900 487.5

11.9 .
900 3.675 140 498.5 487.5

e ut i

f

ut a e m i

S S
n A

S S


  

 
  

   
ns  
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8-56 From Prob. 8-52, C  = 0.299, Se  = 18.8 kpsi, Sut  = 120 kpsi, At  = 0.141 9 in
2
, i  = 63.75 

kpsi, and Pmax  = 1.443 kips 

 

   Pmin  =  Pmax / 2  = 1.443/2  = 0.722 kips 

 

 Eq. (8-35):  
   

 
max min 0.299 1.443 0.722

0.760 kpsi
2 2 0.141 9

a

t

C P P

A


 
    

 

 Eq. (8-36):  

    

 

 
 

max min

2

0.299 1.443 0.722
63.75 66.03 kpsi

2 0.141 9

m i

t

C P P

A
 


 


  

 

 

 

 Eq. (8-38): 

 

  
 

 
 

   
18.8 120 63.75

7.89 .
120 0.760 18.8 66.03 63.75

e ut i

f

ut a e m i

S S
n Ans

S S


  

 
  

   
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8-57 From Prob. 8-53, C  = 0.228, Se  = 162 MPa, Sut  = 1040 MPa, At  = 58.0 mm
2
, i  = 622.5 

MPa, and Pmax  = 7.679 kN. 

 

   Pmin  =  Pmax / 2  = 7.679/2  = 3.840 kN 

 

 Eq. (8-35):  
   

 

3

max min 0.228 7.679 3.840 10
7.546 MPa

2 2 58.0
a

t

C P P

A


 
    
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 Eq. (8-36):  

    

 

 
 

max min

3

2

0.228 7.679 3.840 10
622.5 645.1 MPa

2 58.0

m i

t

C P P

A
 


 


  

 

 

 

 Eq. (8-38): 

 

  
 

 
 

   
162 1040 622.5

5.88 .
1040 7.546 162 645.1 622.5

e ut i

f

ut a e m i

S S
n A

S S


  

 
  

   
ns  

______________________________________________________________________________ 

 

8-58 From Prob. 8-54, C  = 0.291, Se  = 23.2 kpsi, Sut  = 150 kpsi, At  = 0.106 3 in
2
, i  = 90 

kpsi, and Pmax  = 1.244 kips 

 

   Pmin  =  Pmax / 2  = 1.244/2  = 0.622 kips 

 

 Eq. (8-35):  
   

 
max min 0.291 1.244 0.622

0.851 kpsi
2 2 0.106 3

a

t

C P P

A


 
    

 

 Eq. (8-36):  

    

 

 
 

max min

2

0.291 1.244 0.622
90 92.55 kpsi

2 0.106 3

m i

t

C P P

A
 


 


  

 

 

 

 Eq. (8-38): 

 

  
 

 
 

   
23.2 150 90

7.45 .
150 0.851 23.2 92.55 90

e ut i

f

ut a e m i

S S
n A

S S


  

 
  

   
ns  
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8-59 Let the repeatedly-applied load be designated as P. From Table A-22, Sut = 93.7 kpsi. 

Referring to the Figure of Prob. 3-122, the following notation will be used for the radii of 

Section AA. 

ri = 1.5 in,   ro = 2.5 in,   rc = 2.0 in 

 From Table 3-4, p. 121, with R = 0.5 in 
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   
2 2

2 2 2 2

2 2

0.5
1.968 246 in

2 2 2 2 0.5

2.0 1.968 246 0.031 754 in

- 2.5 1.968 246 0.531 754 in

- 1.968 246 1.5 0.468 246 in

(1 ) / 4 0.7854 in

n

c c

c n

o o n

i n i

R
r

r r R

e r r

c r r

c r r

A 

  
   

    
   
   
 

 

 

 If P is the maximum load 

 

2

2(0.468)
1 1 26.29

0.785 4 0.031 754(1.5)

26.294
13.15

2 2

c

c i
i

i

i
a m

M Pr P

P r c P
P

A er

P
P



 

 
   

       
  

   

 

 

 (a) Eye: Section AA, 

 Table 6-2, p. 288,  a = 14.4 kpsi, b =  0.718 

 Eq. (6-19), p. 287, 

      0.71814.4(93.7) 0.553ak  
 Eq. (6-23), p. 289, 

     de = 0.370 d 

 Eq. (6-20), p. 288, 

     

0.107
0.37

0.978
0.30

bk


   
 

 

 Eq. (6-26), p. 290, 

     kc = 0.85 

 Eq. (6-8), p. 282, 

      0.5 0.5 93.7 46.85 kpsie utS S     

 Eq. (6-18) p. 287, 

     Se = 0.553(0.978)0.85(46.85) = 21.5 kpsi 

 

 From Table 6-7, p. 307, for Gerber 

    

2 2

21
1 1

2

ut a m e
f

m e ut a

S S
n

S S

 
 

                

 

 With m =  a, 

 

 

2 22 21 2 1 93.7 2(21.5) 1.557
1 1 1 1

2 2 13.15 (21.5) 93.7

ut e
f

a e ut

S S
n

S S P

                            
P

 

 where P is in kips. 
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 Thread: Die cut. Table 8-17 gives Se = 18.6 kpsi for rolled threads. Use Table 8-16 to find 

Se for die cut threads 

Se = 18.6(3.0/3.8) = 14.7 kpsi 

 Table 8-2,  At = 0.663 in
2
,   = P/At = P /0.663 = 1.51 P, a = m  =   /2 = 0.755 P 

 From Table 6-7, Gerber 

 

2 22 21 2 1 93.7 2(14.7) 19.01
1 1 1 1

2 2 0.755 (14.7) 93.7

ut e
f

a e ut

S S
n

S S P

                            
P

 

 

 Comparing 1910/P with 19 200/P, we conclude that the eye is weaker in fatigue.   Ans. 

 

 (b) Strengthening steps can include heat treatment, cold forming, cross section change (a 

round is a poor cross section for a curved bar in bending because the bulk of the material 

is located where the stress is small).     Ans. 

 
(c) For nf  = 2 

 31.557 10
779 lbf, max. load     .

2
P A  ns  
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8-60 Member, Eq. (8-22) with E =16 Mpsi, d = 0.75 in, and l = 1.5 in 

 

  
 

   
   

0.5774 16 0.750.5774
13.32 Mlbf/in

0.5774 0.5 0.5774 1.5 0.5 0.75
2ln 5 2ln 5

0.5774 2.5 0.5774 1.5 2.5 0.75

m

Ed
k

l d

l d


  

   
      

 

 

 Bolt, Eq. (8-13), 

 

    LT   = 2d + 0.25 = 2(0.75) + 0.25 = 1.75 in 

 

    l = 1.5 in 

 

    ld = L  LT  = 2.5  1.75  =  0.75 in 

  

    lt = l   ld  = 1.5  0.75  =  0.75 in 

 

 Table 8-2, 

    At = 0.373 in
2
 

 

    Ad = (0.75
2
)/4  =  0.442 in

2
 

 Eq. (8-17), 

Chap. 8 Solutions - Rev. A, Page 51/69 



    
 

   
0.442 0.373 30

8.09 Mlbf/in
0.442 0.75 0.373 0.75

d t
b

d t t d

A A E
k

A l A l
  

 
 

 

    
8.09

0.378
8.09 13.32

b

b m

k
C

k k
  

 
 

 Eq. (8-35), 

    
   

 
max min 0.378 6 4

1.013 kpsi
2 2 0.373

a

t

C P P

A


 
    

 Eq.(8-36), 

    
   

 
max min 0.378 6 4 25

72.09 kpsi
2 2 0.373 0.373

i
m

t t

C P P F

A A


 
      

 

 (a) From Table 8-9, Sp = 85 kpsi, and Eq. (8-51), the yielding factor of safety is 

 

    
85

1.16 .
72.09 1.013

p

p

m a

S
n A

 
  

 
ns  

 

 (b) From Eq. (8-29), the overload factor of safety is 

 

    
 

 max

85 0.373 25
2.96 .

0.378 6

p t i

L

S A F
n A

CP

 
   ns  

 

 (c) From Eq. (8-30), the factor of safety based on joint separation is 

 

    
   0

max

25
6.70 .

1 6 1 0.378

iF
n A

P C
  

 
ns  

 

 (d) From Table 8-17, Se = 18.6 kpsi; Table 8-9, Sut = 120 kps; the preload stress is  

 i = Fi / At = 25/0.373 = 67.0 kpsi; and from Eq. (8-38) 

   

 
 

 
 

   
18.6 120 67.0

4.56 .
120 1.013 18.6 72.09 67.0

e ut i

f

ut a e m i

S S
n A

S S


  

 
  

   
ns  
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8-61 (a) Table 8-2,   At = 0.1419 in
2
 

       Table 8-9,   Sp = 120 kpsi,   Sut = 150 kpsi 

 Table 8-17,   Se = 23.2 kpsi 

 Eqs. (8-31) and (8-32),  i = 0.75 Sp = 0.75(120) = 90 kpsi 
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4
0.2

4 16

0.2
0.705  kpsi

2 2(0.141 9)

b

b m

a

t

k
C

k k

CP P
P

A


  
 

  
 

 

 Eq. (8-45) for the Goodman criterion, 

 
 

23.2(150 90) 11.4
2 5.70 kips   

0.705 (150 23.2)

e ut i

f

a ut e

S S
n P

S S P P




 
     

 
.Ans  

 

 (b) Fi = 0.75At Sp = 0.75(0.141 9)120 = 12.77 kips 

 Yield, Eq. (8-28), 

    
 

 
120 0.141 9

1.22 .
0.2 5.70 12.77

p t

p

i

S A
n A

CP F
  

 
ns  

 Load factor, Eq. (8-29), 

- 120(0.141 9) 12.77
3.74     .

0.2(5.70)

p t i

L

S A F
n A

CP


   ns  

 

 Separation load factor, Eq. (8-30) 

 

0

12.77
2.80     .

(1 - ) 5.70(1 0.2)

iF
n A

P C
  


ns  
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8-62 Table 8-2,  At = 0.969 in
2
 (coarse), At = 1.073 in

2
 (fine) 

 Table 8-9, Sp = 74 kpsi, Sut = 105 kpsi 

 Table 8-17, Se = 16.3 kpsi 

 

 Coarse thread, 

    Fi  = 0.75 At Sp  = 0.75(0.969)74 = 53.78 kips 

    i  = 0.75 Sp = 0.75(74) = 55.5 kpsi 

    
0.30

0.155  kpsi
2 2(0.969)

a

t

CP P
P

A
     

 

 Gerber, Eq. (8-46), 

   

 

 

      

2 2

2 2

1
4 2

2

1 64.28
105 105 4 16.3 16.3 55.5 105 2 55.5 16.3

2 0.155 16.3

f ut ut e e i ut i e

a e

n S S S S S S
S

P P

 


      

       
 

 With nf  =2, 

 

Chap. 8 Solutions - Rev. A, Page 53/69 



64.28
32.14 kip     .

2
P A  ns  

 

 Fine thread,  

    Fi  = 0.75 At Sp  = 0.75(1.073)74 = 59.55kips 

    i  = 0.75 Sp = 0.75(74) = 55.5 kpsi 

    
0.32

0.149  kpsi
2 2(1.073)

a

t

CP P
P

A
     

 

 The only thing that changes in Eq. (8-46) is a. Thus, 

    
0.155 64.28 66.87

2 33.43 kips .
0.149

fn P
P P

     Ans  

  

 Percent improvement, 

33.43 32.14
(100) 4%     .

32.14
Ans

   
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8-63 For an M 30 × 3.5 ISO 8.8 bolt with P = 65 kN/bolt and C  =  0.28 

 

 Table 8-1, At  =  561 mm
2
 

 Table 8-11, Sp  =  600 MPa, Sut  =  830 MPa 

 Table 8-17, Se  =  129 MPa 

 

 Eq. (8-31), Fi  =  0.75Fp  = 0.75 At Sp  

          =  0.75(5610600(10
3

)  =  252.45 kN 

 

    i  = 0.75 Sp  = 0.75(600) = 450 MPa 

       

 

 Eq. (8-39), 
 
 

30.28 65 10
16.22 MPa

2 2 561
a

t

CP

A
     

 

 Gerber, Eq. (8-46), 

    

 

      

2 2

2 2

1
4 2

2

1
830 830 4 129 129 450 830 2 450 129

2 16.22 129

4.75 .

f ut ut e e i ut i e

a e

n S S S S S S
S

Ans

 


      

      



 

             

 The yielding factor of safety, from Eq. (8-28) is 
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 

 

3600 561 10
1.24 .

0.28 65 252.45

p t

p

i

S A
n A

CP F



  
 

ns  

 

 From Eq. (8-29), the load factor is 

 

    
 

 

3600 561 10 252.45
4.62 .

0.28 65

p t i

L

S A F
n A

CP

 
   ns  

 

 The separation factor, from Eq. (8-30) is 

 

    
   0

252.45
5.39 .

1 65 1 0.28

iF
n A

P C
  

 
ns  
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8-64 (a) Table 8-2,  At = 0.077 5 in
2
 

      Table 8-9,  Sp = 85 kpsi,   Sut = 120 kpsi 

      Table 8-17,   Se = 18.6 kpsi 

      Unthreaded grip, 

 
2

2 2 2 2 2

(0.375) (30)
0.245 Mlbf/in per bolt     .

4(13.5)

[( 2 ) - ] (4.75 - 4 ) 5.154 in
4 4

5.154(30) 1
2.148 Mlbf/in/bolt.     .

12 6

d
b

m

m
m

A E
k A

l

A D t D

A E
k A

l



 

  

   

     

ns

ns

 

 

 (b)    Fi = 0.75 At Sp  = 0.75(0.0775)(85) = 4.94 kip 

   

2

0.75 0.75(85) 63.75 kpsi

2000
(4) 4189 lbf/bolt

6 4

0.245
0.102

0.245 2.148

0.102(4.189)
2.77 kpsi

2 2(0.0775)

i p

b

b m

a

t

S

P pA

k
C

k k

CP

A






  

     

  
 

  

 

 

 From Eq. (8-46) for Gerber fatigue criterion, 

 

 

      

2 2

2 2

1
4 2

2

1
120 120 4 18.6 18.6 63.75 120 2 63.75 18.6 4.09 .

2 2.77 18.6

f ut ut e e i ut i e

a e

n S S S S S S
S

Ans

 


      

       
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 (c) Pressure causing joint separation from Eq. (8-30) 

 

   

0

2

1
(1 )

4.94
5.50 kip

1 1 0.102
5.50

6 2.63 kpsi     .
(4 ) / 4

i

i

F
n

P C

F
P

C
P

p Ans
A 

 


  
 

  
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8-65 From the solution of Prob. 8-64, At = 0.077 5 in
2
, Sut = 120 kpsi, Se = 18.6 kpsi, C = 

0.102, i = 63.75 kpsi 

 

 Pmax = pmaxA = 2  (4
2
)/4 = 25.13 kpsi, Pmin = pminA = 1.2  (4

2
)/4 = 15.08 kpsi, 

 

 Eq. (8-35), 
   

 
max min 0.102 25.13 15.08

6.61 kpsi
2 2 0.077 5

a

t

C P P

A


 
    

 Eq. (8-36), 
   

 
max min 0.102 25.13 15.08

63.75 90.21 kpsi
2 2 0.077 5

m i

t

C P P

A
 

 
      

 Eq. (8-38),

 
 

 
 

   
18.6 120 63.75

0.814 .
120 6.61 18.6 90.21 63.75

e ut i

f

ut a e m i

S S
n A

S S


  

 
  

   
ns  

 

 This predicts a fatigue failure. 
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8-66 Members: Sy = 57 kpsi, Ssy = 0.577(57) = 32.89 kpsi.  

 Bolts: SAE grade 5, Sy = 92 kpsi, Ssy = 0.577(92) = 53.08 kpsi 

 

 Shear in bolts, 

    
2

2(0.25 )
2 0.0982 in

4
sA

 
  

 
 

    
0.0982(53.08)

2.61 kips
2

s sy

s

A S
F

n
    

 

 Bearing on bolts, 

    Ab = 2(0.25)0.25 = 0.125 in
2
 

    
0.125(92)

5.75 kips
2

b yc

b

A S
F

n
    

 Bearing on member, 
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0.125(57)

3.56 kips
2

bF    

 

 Tension of members, 

    At  = (1.25  0.25)(0.25) = 0.25 in
2
 

 

0.25(57)
7.13 kip

2
min(2.61,  5.75,  3.56,  7.13) 2.61 kip     .

tF

F Ans

 

 
 

 

The shear in the bolts controls the design. 
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8-67 Members, Table A-20, Sy = 42 kpsi 

 Bolts, Table 8-9, Sy = 130 kpsi, Ssy = 0.577(130)  =  75.01 kpsi 

 

 Shear of bolts, 

   
 2

2
5 /16

2 0.1534 in
4

sA
 

  
  

 

 

   
5

32.6 kpsi
0.1534

s

s

F

A
     

 

   
75.01

2.30 .
32.6

syS
n A


   ns  

 

 Bearing on bolts, 

   Ab  =  2(0.25)(5/16)  =  0.1563 in
2
 

   
5

32.0 kpsi
0.1563

b      

   
130

4.06 .
32.0

y

b

S
n A


   ns  

 

 Bearing on members, 

    
42

1.31 .
32

y

b

S
n A


   ns  

 

 Tension of members, 

    At  =  [2.375  2(5/16)](1/4)  =  0.4375 in
2
 

 

    
5

11.4 kpsi
0.4375

t    
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42

3.68 .
11.4

y

t

S
n A


   ns  
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8-68 Members: Table A-20,  Sy = 490 MPa, Ssy = 0.577(490) = 282.7 MPa 

 Bolts: Table 8-11, ISO class 5.8, Sy = 420 MPa, Ssy = 0.577(420) = 242.3 MPa 

 

 Shear in bolts, 

    
2

2(20 )
2 628.3 mm

4
sA

 
  

 
 

    
3628.3(242.3)10

60.9 kN
2.5

s sy

s

A S
F

n



    

 

 Bearing on bolts, 

    Ab = 2(20)20 = 800 mm
2
 

    
3800(420)10

134 kN
2.5

b yc

b

A S
F

n



    

 Bearing on member, 

    
3800(490)10

157 kN
2.5

bF


   

 

 Tension of members, 

    At  = (80  20)(20) = 1 200 mm
2
 

31 200(490)10
235 kN

2.5
min(60.9,  134,  157,  235) 60.9 kN     .

tF

F A



 

  ns

 

 

 The shear in the bolts controls the design. 
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8-69 Members: Table A-20,  Sy = 320 MPa 

 Bolts: Table 8-11, ISO class 5.8, Sy = 420 MPa, Ssy = 0.577(420) = 242.3 MPa 

 

 Shear of bolts, 

    As =  (20
2
)/4 = 314.2 mm

2
 

    
 

 

390 10
95.48 MPa

3 314.2
s    

    
242.3

2.54     .
95.48

sy

s

S
n A


   ns  

 Bearing on bolt, 

    Ab = 3(20)15 = 900 mm
2
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 390 10

100 MPa
900

b      

    
420

4.2     .
100

y

b

S
n A


   ns  

 Bearing on members, 

    
320

3.2     .
100

y

b

S
n A


   ns  

 Tension on members, 

    

 
 

390 10
46.15 MPa

15[190 3 20 ]

320
6.93     .

46.15

t

y

t

F

A

S
n A





  


   ns
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8-70 Members: Sy  =  57 kpsi 

 Bolts: Sy  =  100 kpsi, Ssy  =  0.577(100)  =  57.7 kpsi 

 Shear of bolts, 

    
 2

2
1/ 4

3 0.1473 in
4

A
 

  
  

 

    
5

33.94 kpsi
0.1473

s

s

F

A
     

 

    
57.7

1.70 .
33.94

sy

s

S
n A


   ns  

 Bearing on bolts, 

    Ab  =  3(1/4)(5/16)  =  0.2344 in
2
 

 

    
5

21.3 kpsi
0.2344

b

b

F

A
        

 

    
100

4.69 .
21.3

y

b

S
n A


   ns  

 

 Bearing on members, 

    Ab = 0.2344 in
2
   (From bearing on bolts calculation) 

 

    b  =   21.3 kpsi  (From bearing on bolts calculation) 
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57

2.68 .
21.3

y

b

S
n A


   ns  

 

 Tension in members, failure across two bolts, 

 

      25
2.375 2 1/ 4 0.5859 in

16
tA       

 

    
5

8.534 kpsi
0.5859

t

t

F

A
   

 

 

    
57

6.68 .
8.534

y

t

S
n A


   ns

B
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8-71 By symmetry, the reactions at each support is 1.6 kN. The free-body diagram for the left 

member is 

 

 

 

 

 

 

 

 

  
0   1.6(250) 50 0      8 kN

0      200(1.6) 50 0      6.4 kN

B A A

A B

M R R

M R R

    

    



 

 Members: Table A-20, Sy = 370 MPa 

 Bolts: Table 8-11, Sy = 420 MPa, Ssy = 0.577(420) = 242.3 MPa 

 Bolt shear, 2 2(12 ) 113.1 mm
4

sA


   

      

3

max 8(10 )
70.73 MPa

113.1

242.3
3.43

70.73

s

sy

F

A

S
n





  

  
 

 

 Bearing on member,  Ab = td = 10(12) = 120 mm
2
 

    

38(10 )
66.67 MPa

120

370
5.55

66.67

b

y

b

S
n





   

  
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 Strength of member. The bending moments at the hole locations are: 

  in the left member at A,  MA = 1.6(200) = 320 N · m. In the right member at B, MB = 

8(50) = 400 N · m. The bending moment is greater at B 

    

3 3 3

3

3

1
[10(50 ) 10(12 )] 102.7(10 ) mm

12
400(25)

(10 ) 97.37 MPa
102.7(10 )

370
3.80

97.37

B

A
B

A

y

A

I

M c

I

S
n





  

  

  

4

 

  At the center, call it point C,   

    MC  = 1.6(350) = 560 N · m 

   

3 3 4

3

3

1
(10)(50 ) 104.2(10 ) mm

12
560(25)

(10 ) 134.4 MPa
104.2(10 )

370
2.75 3.80    more critical at 

134.4

min(3.04,  3.80,  2.75) 2.72     .

C

C
C

C

y

C

I

M c

I

S
n C

n A





 

  

   

  ns
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8-72 The free-body diagram of the bracket, assuming the upper bolt takes all the shear and 

tensile load is 

 

       Fs = 2500 lbf 

 

      
 2500 3

1071 lbf
7

P    

 

 

 

 

 

 

 

 

 

 

 

 

 Table A-31, H = 7/16 = 0.4375 in. Grip, l = 2(1/2) = 1 in. L ≥  l + H = 1.4375 in. Use 1.5 

in bolts.  

 Eq. (8-13), LT = 2d + 0.25 = 2(0.5) + 0.25 = 1.25 in 

 Table 8-7, ld  = L  LT  = 1.5  1.25 = 0.25 in 
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   lt  = l  ld  = 1  0.25 = 0.75 in 

 Table 8-2, At = 0.141 9 in
2
 

   Ad =  (0.5
2
) /4 = 0.196 3 in

2
 

 Eq. (8-17), 
 

   
0.196 3 0.141 9 30

4.574 Mlbf/in
0.196 3 0.75 0.141 9 0.25

d t
b

d t t d

A A E
k

A l A l
  

 
 

 Eq. (8-22),

 
 
   
   

0.5774 30 0.50.5774
16.65 Mlbf/in

0.5774 0.5 0.5774 1 0.5 0.5
2ln 5 2ln 5

0.5774 2.5 0.5774 1 2.5 0.5

m

Ed
k

l d

l d


  

    
       

 

   
4.574

0.216
4.574 16.65

b

b m

k
C

k k
  

 
 

 Table 8-9, Sp = 65 kpsi 

 Eqs. (8-31) and (8-32),  Fi = 0.75 At Sp = 0.75(0.141 9)65 = 6.918 kips 

   i = 0.75 Sp = 0.75(65) = 48.75 kips 

  

 Eq. (a), p. 440,  
 0.216 1.071 6.918

50.38 kpsi
0.141 9

i
b

t

CP F

A



    

 Direct shear, 
3

21.14 kpsi
0.141 9

s
s   

t

F

A
 

 

 von Mises stress, Eq. (5-15), p. 223  

       1/21/2
2 2 2 23 50.38 3 21.14 62.3 kpsib s            

 

 Stress margin, m = Sp    = 65  62.3 = 3.7 kpsi  Ans. 
______________________________________________________________________________ 

 

8-73  

      

 

2 2

3

2 (200) 14(50)

14(50)
1.75 kN per bolt

2(200)

7 kN/bolt

380 MPa

245 mm ,  (20 ) 314.2 mm
4

0.75(245)(380)(10 ) 69.83 kN

0.75 380 285 MPa

s

p

t d

i

i

P

P

F

S

A A

F







2



 




  

 
 
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3

3

2 2 1/ 2

0.25(1.75) 69.83
(10 ) 287 MPa

245

7(10 )
22.3 MPa

314.2

[287 3(22.3 )] 290 MPa

380 290 90 MPa

i
b

t

s

d

p

CP F

A

F

A

m S








     
 

  

   
    

 

 

 Stress margin,  m = Sp   = 380  90 = 90 MPa        Ans. 

______________________________________________________________________________ 
 
8-74 Using the result of Prob. 5-67 for lubricated assembly (replace 0.2 with 0.18 per Table  

 8-15) 

     
2  

0.18
x

f T
F

d


  

 

 With a design factor of nd gives 

 

     
0.18  0.18(3)(1000)

716
2 2 (0.12)

d xn F d d
T d

f 
    

 or T/d = 716. Also, 

     

(0.75 )

0.18(0.75)(85 000)

11 475

p t

t

t

T
K S A

d
A

A






 

 Form a table 

Size At T/d = 11 475At n 
1
4

- 28  0.0364 417.70 1.75

5
16

- 24 0.058 665.55 2.8 

3
8

24  0.0878 1007.50 4.23

 

 where the factor of safety in the last column of the table comes from 

 

2 ( / ) 2 (0.12)( / )
0.0042( / )

0.18 0.18(1000)x

f T d T d
n T

F
d

 
    

 

 Select a 
"3

8
- 24  UNF cap screw. The setting is given by 

 

T = (11 475At )d = 1007.5(0.375) = 378 lbf · in 

 

 Given the coarse scale on a torque wrench, specify a torque wrench setting of 400 lbf · in. 

 Check the factor of safety 
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2  2 (0.12)(400)
4.47

0.18 0.18(1000)(0.375)x

f T
n

F d

 
    

______________________________________________________________________________ 

 

8-75  

 

 

 

 

 

 

 

 

 

 

 

 Bolts, from Table 8-11, Sy  =  420 MPa 

 Channel, From Table A-20, Sy = 170 MPa. From Table A-7, t = 6.4 mm 

 Cantilever, from Table A-20, Sy  =  190 MPa 

  

   FA  =  FB  =  FC  =  F / 3 

 

   M  =  (50 + 26 + 125) F  =  201 F 

 

   
 

201
2.01

2 50
A C

F
F F F     

 

 Max. force, 
1

2.01 2.343
3

C C CF F F F F
       
 

   (1) 

 Shear on Bolts: The shoulder bolt shear area, As = (10
2
) / 4 = 78.54 mm

2
 

 

   Ssy  =  0.577(420)  =  242.3 KPa 

 

    max

syC

s

SF

A n
    

 

 From Eq. (1), FC  =  2.343 F. Thus 

 

    3242.3 78.54
10 4.06 kN

2.343 2.0 2.343

sy s
S A

F
n

       
  

 

 

 Bearing on bolt: The bearing area is Ab  =  td  =  6.4(10)  =  64 mm
2
. Similar to shear 
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    3420 64
10 5.74 kN

2.343 2.0 2.343

y b
S A

F
n

       
  

 

 

 Bearing on channel: Ab  =  64 mm
2
, Sy  =  170 MPa. 

    3170 64
10 2.32 kN

2.343 2.0 2.343

y b
S A

F
n

       
  

 

 

 Bearing on cantilever:  Ab  =  12(10)  = 120 mm
2
, Sy  =  190 MPa. 

 

    3190 120
10 4.87 kN

2.343 2.0 2.343

y b
S A

F
n

       
  

 

 

 Bending of cantilever: At C 

 

        3 3 51
12 50 10 1.24 10 mm

12
I    4  

 

    max

151

151

y yS SMc Fc I
F

n I I n c


 
      

 
 

 

    
 
 

5

3
1.24 10190

10 3.12 kN
2.0 151 25

F 
 
  
  

 

 

 So F = 2.32  kN based on bearing on channel. Ans. 

______________________________________________________________________________ 

 

8-76 Bolts, from Table 8-11, Sy = 420 MPa 

 Bracket, from Table A-20, Sy = 210 MPa 

 

   

2 2

12
4 kN;  12(200) 2400 N · m

3
2400

37.5 kN
64

(4) (37.5) 37.7 kN

4 kN

A B

A B

O

F M

F F

F F

F

    

   

   


 

 

 Bolt shear: 

 The shoulder bolt shear area, As = (12
2
) / 4 = 113.1 mm

2
 

 

   Ssy  =  0.577(420)  =  242.3 KPa 
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337.7(10)
333 MPa

113

242.3
0.728 .

333

syS
n A





 

   ns

 

 

 Bearing on bolts: 

   

2

3

12(8) 96 mm

37.7(10)
393 MPa

96

420
1.07 .

393

b

b

yc

b

A

S
n A





 

   

   ns

 

 

 Bearing on member: 

   

393 MPa

210
0.534 .

393

b

yc

b

S
n Ans





 

    

 

 Bending stress in plate: 

 

   

3 3 3
2

3 3 3
2

6 4

3

6

2
12 12 12

8(136) 8(12) 8(12)
2 (32) (8)(

12 12 12

1.48(10)  mm      .

2400(68)
(10) 110 MPa

1.48(10)

210
1.91 .

110

y

bh bd bd
I a bd

Ans

Mc

I

S
n Ans



12)



 
    

 
 

    
 



  

  

 

 

 Failure is predicted for bolt shear and bearing on member. 

______________________________________________________________________________ 
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8-77  

 

 

 

 

 

  

 

 

             

   

3625
1208 lbf

3

1208 125 1083 lbf, 1208 125 1333 lbf

A B

A B

F F

F F

     
 

     
 

 

 Bolt shear: 

    As = ( / 4)(0.375
2
)  =  0.1104 in

2
 

 

    max
max

1333
12 070 psi

0.1104s

F

A
     

 

 From Table 8-10, Sy = 100 kpsi,  Ssy  =  0.577(100) =  57.7  kpsi  

 

    
max

57.7
4.78 .

12.07

syS
n A


   ns  

 

 Bearing on bolt:  Bearing area is Ab = td = 0.375 (0.375)  =  0.1406 in
2
. 

 

    
1333

9 481 psi
0.1406

b

b

F

A
        

 

    
100

10.55 .
9.481

y

b

S
n A


   ns  

 

 Bearing on member:  From Table A-20, Sy = 54 kpsi. Bearing stress same as bolt 

 

    
54

5.70 .
9.481

y

b

S
n A


   ns  

 

 Bending of member: At B, M = 250(13)  =  3250 lbfin 

 

Chap. 8 Solutions - Rev. A, Page 67/69 



    

3

3 41 3 3
2 0.2484 in

12 8 8
I

          
     

 

 

    
 3250 1

13 080 psi
0.2484

Mc

I
     

 

    
54

4.13 .
13.08

yS
n A


   ns  

______________________________________________________________________________ 

 

8-78 The direct shear load per bolt is F = 2000/6 = 333.3 lbf. The moment is taken only by the 

four outside bolts. This moment is M = 2000(5) = 10 000 lbf · in. 

 Thus 
10 000

1000 lbf
2(5)

F    and the resultant bolt load is 

 
2 2(333.3) (1000) 1054 lbfF     

 

 Bolt strength, Table 8-9, Sy = 100 kpsi; Channel and Plate strength, Sy = 42 kpsi 

 

 Shear of bolt:  As =  (0.5)
2
/4 = 0.1963 in

2
 

 

(0.577)(100)
10.7     .

1.054 / 0.1963

syS
n A


   ns  

 

 Bearing on bolt: Channel thickness is t = 3/16 in, Ab = 0.5(3/16) = 0.09375 in
2
 

 

100
8.89     .

1.054 / 0.09375
n A  ns  

 

 Bearing on channel:  
42

3.74     .
1.054 / 0.09375

n A  ns  

 Bearing on plate:  Ab = 0.5(0.25) = 0.125 in
2
 

 

    
42

4.98     .
1.054 / 0.125

n A  ns  

 

 Strength of plate: 

    

  

3 3

3
2 4

0.25(7.5) 0.25(0.5)

12 12

0.25(0.5)
      2 0.25 0.5 (2.5) 7.219 in

12

I  

 
   

 
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  5000 lbf · in per plate

5000(3.75)
  2597 psi

7.219
42

   16.2     .
2.597

M

Mc

I

n Ans





  

 

 

______________________________________________________________________________ 

 

8-79 to 8-81 Specifying bolts, screws, dowels and rivets is the way a student learns about such 

components. However, choosing an array a priori is based on experience. Here is a chance 

for students to build some experience. 
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Chapter 9 
 
 
 
Figure for Probs.  
9-1 to 9-4 
 
 
 
 
 
 
 
 
9-1 Given, b = 50 mm, d = 50 mm, h = 5 mm, allow = 140 MPa. 
 
   F = 0.707 hlallow = 0.707(5)[2(50)](140)(103) = 49.5 kN      Ans. 
______________________________________________________________________________ 
 
9-2 Given, b = 2 in, d = 2 in, h = 5/16 in, allow = 25 kpsi. 
 
   F = 0.707 hlallow = 0.707(5/16)[2(2)](25) = 22.1 kip          Ans.  
______________________________________________________________________________ 
 
9-3 Given, b = 50 mm, d = 30 mm, h = 5 mm, allow = 140 MPa. 
 
   F = 0.707 hlallow = 0.707(5)[2(50)](140)(103) = 49.5 kN      Ans. 
______________________________________________________________________________ 
 
9-4 Given, b = 4 in, d = 2 in, h = 5/16 in, allow = 25 kpsi. 
 
   F = 0.707 hlallow = 0.707(5/16)[2(4)](25) = 44.2 kip          Ans.  
______________________________________________________________________________ 
 
9-5 Prob. 9-1 with E7010 Electrode. 
 
 Table 9-6: f  = 14.85 h kip/in = 14.85 [5 mm/(25.4 mm/in)] =  2.923 kip/in 
 
        = 2.923(4.45/25.4) = 0.512 kN/mm 
 
    F = f l = 0.512[2(50)] = 51.2 kN        Ans.  
______________________________________________________________________________ 
 
9-6 Prob. 9-2 with E6010 Electrode. 
 
  Table 9-6: f  = 14.85 h kip/in = 14.85(5/16) = 4.64 kip/in 
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    F = f l = 4.64[2(2)] = 18.6 kip        Ans. 
______________________________________________________________________________ 
 
9-7 Prob. 9-3 with E7010 Electrode. 
 
 Table 9-6: f  = 14.85 h kip/in = 14.85 [5 mm/(25.4 mm/in)] =  2.923 kip/in 
 
        = 2.923(4.45/25.4) = 0.512 kN/mm 
 
    F = f l = 0.512[2(50)] = 51.2 kN        Ans.  
______________________________________________________________________________ 
 
9-8 Prob. 9-4 with E6010 Electrode. 
 
  Table 9-6: f  = 14.85 h kip/in = 14.85(5/16) = 4.64 kip/in 
 
    F = f l = 4.64[2(4)] = 37.1 kip        Ans. 
______________________________________________________________________________ 
 
9-9 Table A-20: 
      1018 CD: Sut = 440 MPa,     Sy = 370 MPa 
    1018 HR: Sut = 400 MPa,     Sy = 220 MPa 
 Cold-rolled properties degrade to hot-rolled properties in the neighborhood of the weld. 
 Table 9-4: 

all min(0.30 ,  0.40 )

min[0.30(400),  0.40(220)]
min(120,  88) 88 MPa

ut yS S 

 

 

 
 for both materials. 
 Eq. (9-3):   F = 0.707hlall = 0.707(5)[2(50)](88)(103) = 31.1 kN     Ans. 
______________________________________________________________________________ 
 
9-10 Table A-20: 
      1020 CD: Sut = 68 kpsi,     Sy = 57 kpsi 
     1020 HR: Sut = 55 kpsi,     Sy = 30 kpsi 
 Cold-rolled properties degrade to hot-rolled properties in the neighborhood of the weld. 
 Table 9-4: 

all min(0.30 ,  0.40 )

min[0.30(55),  0.40(30)]
min(16.5,  12.0) 12.0 kpsi

ut yS S 

 

 

 
 for both materials. 
 Eq. (9-3):   F = 0.707hlall = 0.707(5/16)[2(2)](12.0) = 10.6 kip     Ans. 
______________________________________________________________________________ 
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9-11 Table A-20: 
      1035 HR: Sut = 500 MPa,     Sy = 270 MPa 
    1035 CD: Sut = 550 MPa,     Sy = 460 MPa 
 Cold-rolled properties degrade to hot-rolled properties in the neighborhood of the weld. 
 Table 9-4: 

all min(0.30 ,  0.40 )

min[0.30(500),  0.40(270)]
min(150,  108) 108 MPa

ut yS S 

 

 

 for both materials. 
 Eq. (9-3):   F = 0.707hlall = 0.707(5)[2(50)](108)(103) = 38.2 kN     Ans. 
______________________________________________________________________________ 
 
9-12 Table A-20: 
      1035 HR: Sut = 72 kpsi,     Sy = 39.5 kpsi 
     1020 CD: Sut = 68 kpsi,     Sy = 57 kpsi, 1020 HR: Sut = 55 kpsi,     Sy = 30 kpsi 
 Cold-rolled properties degrade to hot-rolled properties in the neighborhood of the weld. 
 Table 9-4: 

all min(0.30 ,  0.40 )

min[0.30(55),  0.40(30)]
min(16.5,  12.0) 12.0 kpsi

ut yS S 

 

 

 for both materials. 
 Eq. (9-3):   F = 0.707hlall = 0.707(5/16)[2(4)](12.0) = 21.2 kip     Ans. 
______________________________________________________________________________ 
 
9-13  

 Eq. (9-3): 
  
 

32 100 102
141 MPa .

5 2 50 50

F
Ans

hl
   

  
 

______________________________________________________________________________ 
 
9-14  

 Eq. (9-3): 
 

   
2 402

22.6 kpsi .
5 /16 2 2 2

F
Ans

hl
   

  
 

______________________________________________________________________________ 
 

9-15  Eq. (9-3): 
  
 

32 100 102
177 MPa .

5 2 50 30

F
Ans

hl
   

  
 

______________________________________________________________________________ 
 

9-16  Eq. (9-3): 
 

   
2 402

15.1 kpsi .
5 /16 2 4 2

F
Ans

hl
   

  
 

______________________________________________________________________________ 
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9-17 b = d =50 mm, c = 150 mm, h = 5 mm, and allow = 140 MPa. 
 (a) Primary shear, Table 9-1, Case 2 (Note: b and d are interchanged between problem 

figure and table figure. Note, also, F in kN and  in MPa): 
 

    
 
  

310
2.829

1.414 5 50y

FV
F

A
      

  Secondary shear, Table 9-1: 
 

    

     
2 22 2

3 3
50 3 50 503

83.33 10 mm
6 6u

d b d
J

       

 
    J = 0.707 h Ju = 0.707(5)(83.33)(103) = 294.6(103) mm4 
 

    
  
 
3

3

175 10 25
14.85

294.6 10
y

x y

FMr
F

J
       

 

       2 22 2
max 14.85 2.829 14.85 23.1x y y F F               (1) 

 

    allow 140
6.06 kN .

23.1 23.1
F Ans


    

 
 (b) For E7010 from Table 9-6, allow = 21 kpsi = 21(6.89) = 145 MPa 
 
  1020 HR bar: Sut = 380 MPa, Sy = 210 MPa 
 
  1015 HR support: Sut = 340 MPa, Sy = 190 MPa 
 
  Table 9-3, E7010 Electrode:  Sut = 482 MPa, Sy = 393 MPa 
 
 The support controls the design. 
 
 Table 9-4: allow = min(0.30Sut, 0.40Sy ) =min[0.30(340), 0.40(190) = min(102, 76)  
 
              = 76 MPa 
 
 The allowable load, from Eq. (1) is 
 

     allow 76
3.29 kN .

23.1 23.1
F Ans


    

______________________________________________________________________________ 
 
9-18 b = d =2 in, c = 6 in, h = 5/16 in, and allow = 25 kpsi. 
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 (a) Primary shear, Table 9-1(Note: b and d are interchanged between problem figure and 
table figure. Note, also, F in kip and  in kpsi): 

 

    
  

1.132
1.414 5 /16 2y

V F
F

A
      

  Secondary shear, Table 9-1: 

    
   2 22 2

3
2 3 2 23

5.333 in
6 6u

d b d
J

       

 
    J = 0.707 h Ju = 0.707(5/16)(5.333) = 1.178 in4 
 

    
 7 1

5.942
1.178

y

x y

Mr F
F

J
       

 

       2 22 2
max 5.942 1.132 5.942 9.24x y y F F               (1) 

 

    allow 25
2.71 kip .

9.24 9.24
F Ans


    

 
 (b) For E7010 from Table 9-6, allow = 21 kpsi 
 
  1020 HR bar: Sut = 55 kpsi, Sy = 30 kpsi 
 
  1015 HR support: Sut = 50 kpsi, Sy = 27.5 kpsi 
 
  Table 9-3, E7010 Electrode:  Sut = 70 kpsi, Sy = 57 kpsi 
 
 The support controls the design. 
 
 Table 9-4: allow = min(0.30Sut, 0.40Sy ) =min[0.30(50), 0.40(27.5) = min(15, 11)  
              = 11 kpsi 
 
 The allowable load, from Eq. (1) is 
 

     allow 11
1.19 kip .

9.24 9.24
F Ans


    

______________________________________________________________________________ 
 
9-19 b =50 mm, c = 150 mm, d = 30 mm, h = 5 mm, and allow = 140 MPa. 
 (a) Primary shear, Table 9-1, Case 2 (Note: b and d are interchanged between problem 

figure and table figure. Note, also, F in kN and  in MPa): 
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 
  

310
2.829

1.414 5 50y

FV
F

A
      

 
  Secondary shear, Table 9-1: 

    

     
2 22 2

3 3
50 3 30 503

43.33 10 mm
6 6u

d b d
J

       

 
    J = 0.707 h Ju = 0.707(5)(43.33)(103) = 153.2(103) mm4 
 

    
  
 

3

3

175 10 15
17.13

153.2 10
y

x

FMr
F

J
    

 

 

    

  
 

3

3

175 10 25
28.55

153.2 10
x

y

FMr
F

J
    

 

 

       2 22 2
max 17.13 2.829 28.55 35.8x y y F F               (1) 

 

    allow 140
3.91 kN .

35.8 35.8
F Ans


    

 
 (b) For E7010 from Table 9-6, allow = 21 kpsi = 21(6.89) = 145 MPa 
 
  1020 HR bar: Sut = 380 MPa, Sy = 210 MPa 
 
  1015 HR support: Sut = 340 MPa, Sy = 190 MPa 
 
  Table 9-3, E7010 Electrode:  Sut = 482 MPa, Sy = 393 MPa 
 
 The support controls the design. 
 
 Table 9-4: allow = min(0.30Sut, 0.40Sy ) =min[0.30(340), 0.40(190) = min(102, 76)  
 
              = 76 MPa 
 
 The allowable load, from Eq. (1) is 
 

     allow 76
2.12 kN .

35.8 35.8
F Ans


    

______________________________________________________________________________ 
 
9-20 b = 4 in, c = 6 in, d = 2 in, h = 5/16 in, and allow = 25 kpsi. 
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 (a) Primary shear, Table 9-1(Note: b and d are interchanged between problem figure and 
table figure. Note, also, F in kip and  in kpsi): 

 

    
  

0.5658
1.414 5 /16 4y

V F
F

A
      

  Secondary shear, Table 9-1: 
 

    
   2 22 2

3
4 3 2 43

18.67 in
6 6u

d b d
J

       

 
    J = 0.707 h Ju = 0.707(5/16)(18.67) = 4.125 in4 
 

    
 8 1

1.939
4.125

y

x

Mr F
F

J
    

 
 

    

 8 2
3.879

4.125
x

y

FMr
F

J
    

 
 

       2 22 2
max 1.939 0.5658 3.879 4.85x y y F F               (1) 

 

    allow 25
5.15 kip .

4.85 4.85
F Ans


    

 
 (b) For E7010 from Table 9-6, allow = 21 kpsi 
 
  1020 HR bar: Sut = 55 kpsi, Sy = 30 kpsi 
 
  1015 HR support: Sut = 50 kpsi, Sy = 27.5 kpsi 
 
  Table 9-3, E7010 Electrode:  Sut = 70 kpsi, Sy = 57 kpsi 
 
 The support controls the design. 
 
 Table 9-4: allow = min(0.30Sut, 0.40Sy ) =min[0.30(50), 0.40(27.5) = min(15, 11)  
 
              = 11 kpsi 
 
 The allowable load, from Eq. (1) is 
 

     allow 11
2.27 kip .

4.85 4.85
F Ans


    

______________________________________________________________________________ 
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9-21 Given, b = 50 mm, c = 150 mm, d = 50 mm, h = 5 mm, allow = 140 MPa. 
 
 Primary shear (F in kN,  in MPa, A in mm2): 

     
 

  

310
1.414

1.414 5 50 50y

FV
F

A
    


 

 Secondary shear: 

   Table 9-1: 
     

3 3

3 350 50
166.7 10 mm

6 6u

b d
J

 
    

     J = 0.707 h Ju = 0.707(5)166.7(103) = 589.2(103) mm4 
 

     
 
 

3

3

175 10 (25)
7.425

589.2 10
y

x y

FMr
F

J
       

 Maximum shear: 
 

       2 22 2
max 7.425 1.414 7.425 11.54x y y F F             

 

    
140

12.1 kN .
11.54 11.54

allowF Ans


    

______________________________________________________________________________ 
 
9-22 Given, b = 2 in, c = 6 in, d = 2 in, h = 5/16 in, allow = 25 kpsi. 
 
 Primary shear: 

     
  

0.5658
1.414 5 /16 2 2y

V F
F

A
    


 

 Secondary shear: 

   Table 9-1: 
   3 3

32 2
10.67 in

6 6u

b d
J

 
    

     J = 0.707 h Ju = 0.707(5/16)10.67 = 2.357 in4 
 

     
7 (1)

2.970
2.357

y

x y

Mr F
F

J
       

 Maximum shear: 
 

       2 22 2
max 2.970 0.566 2.970 4.618x y y F F             

    
25

5.41 kip .
4.618 4.618

allowF Ans


    

______________________________________________________________________________ 
 
9-23 Given, b = 50 mm, c = 150 mm, d = 30 mm, h = 5 mm, allow = 140 MPa. 
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 Primary shear (F in kN,  in MPa, A in mm2): 

     
 

  

310
1.768

1.414 5 50 30y

FV
F

A
    


 

 Secondary shear: 

   Table 9-1: 
     

3 3

3 350 30
85.33 10 mm

6 6u

b d
J

 
    

     J = 0.707 h Ju = 0.707(5)85.33(103) = 301.6(103) mm4 
 

     
 
 

3

3

175 10 (15)
8.704

301.6 10
y

x

FMr
F

J
      

 

     
 
 

3

3

175 10 (25)
14.51

301.6 10
x

y

FMr
F

J
      

 Maximum shear: 
 

       2 22 2
max 8.704 1.768 14.51 18.46x y y F F             

 

    
140

7.58 kN .
18.46 18.46

allowF Ans


    

______________________________________________________________________________ 
 
9-24 Given, b = 4 in, c = 6 in, d = 2 in, h = 5/16 in, allow = 25 kpsi. 
 
 Primary shear: 

     
  

0.3772
1.414 5 /16 4 2y

V F
F

A
    


 

 Secondary shear: 

   Table 9-1: 
   3 3

34 2
36 in

6 6u

b d
J

 
    

     J = 0.707 h Ju = 0.707(5/16)36 = 7.954 in4 
 

     
8 (1)

1.006
7.954

y

x

Mr F
F

J
      

 

     
8 (2)

2.012
7.954

x
y

Mr F
F

J
      

 Maximum shear: 
 

       2 22 2
max 1.006 0.3772 2.012 2.592x y y F F             
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25

9.65kip .
2.592 2.592

allowF Ans


    

______________________________________________________________________________ 
 
9-25 Given, b = 50 mm, d = 50 mm, h = 5 mm, E6010 electrode. 
 
    A = 0.707(5)(50 +50 + 50) = 530.3 mm2 
 
 Member endurance limit:  From Table A-20 for AISI 1010 HR, Sut = 320 MPa. 
 
 Eq. 6-19 and Table 6-2, pp. 287, 288: ka = 272(320)0.995 = 0.875 
 
 kb = 1 (uniform shear), kc = 0.59 (torsion, shear), kd = 1 
 
 Eqs. (6-8) and (6-18):  Se = 0.875(1)(0.59)(1)(0.5)(320) = 82.6 MPa 
 
 Electrode endurance: E6010, Table 9-3, Sut = 427 MPa 
 
 Eq. 6-19 and Table 6-2, pp. 287, 288: ka = 272(427)0.995 = 0.657 
 
 As before, kb = 1 (direct shear), kc = 0.59 (torsion, shear), kd = 1 
 
    Se = 0.657(1)(0.59)(1)(0.5)(427) = 82.8 MPa 
 
 The members and electrode are basically of equal strength. We will use Se = 82.6 MPa. 

For a factor of safety of 1, and with Kfs = 2.7 (Table 9-5) 

    
   3allow

82.6 530.3
16.2 10 N 16.2 kN .

2.7fs

A
F Ans

K


     

______________________________________________________________________________ 
 
9-26 Given, b = 2 in, d = 2 in, h = 5/16 in, E6010 electrode. 
 
    A = 0.707(5/16)(2 +2 + 2) = 1.326 in2 
 
 Member endurance limit:  From Table A-20 for AISI 1010 HR, Sut = 47 kpsi. 
 
 Eq. 6-19 and Table 6-2, pp. 287, 288: ka = 39.9(47)0.995 = 0.865 
 
 kb = 1 (uniform shear), kc = 0.59 (torsion, shear), kd = 1 
 
 Eqs. (6-8) and (6-18):  Se = 0.865(1)(0.59)(1)(0.5)(47) = 12.0 kpsi 
 
 Electrode endurance: E6010, Table 9-3, Sut = 62 kpsi 
 
 Eq. 6-19 and Table 6-2, pp. 287, 288: ka = 39.9(62)0.995 = 0.657 
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 As before, kb = 1 (uniform shear), kc = 0.59 (torsion, shear), kd = 1 
 
    Se = 0.657(1)(0.59)(1)(0.5)(62) = 12.0 kpsi 
 
 Thus the members and electrode are of equal strength. For a factor of safety of 1, and 

with Kfs = 2.7 (Table 9-5) 

    
 allow

12.0 1.326
5.89 kip .

2.7fs

A
F Ans

K


    

______________________________________________________________________________ 
 
9-27 Given, b = 50 mm, d = 30 mm, h = 5 mm, E7010 electrode. 
 
    A = 0.707(5)(50 +50 + 30) = 459.6 mm2 
 
 Member endurance limit:  From Table A-20 for AISI 1010 HR, Sut = 320 MPa. 
 
 Eq. 6-19 and Table 6-2, pp. 287, 288: ka = 272(320)0.995 = 0.875 
 
 kb = 1 (direct shear), kc = 0.59 (torsion, shear), kd = 1 
 
 Eqs. (6-8) and (6-18):  Se = 0.875(1)(0.59)(1)(0.5)(320) = 82.6 MPa 
 
 Electrode endurance: E6010, Table 9-3, Sut = 482 MPa 
 
 Eq. 6-19 and Table 6-2, pp. 287, 288: ka = 272(482)0.995 = 0.582 
 
 As before, kb = 1 (direct shear), kc = 0.59 (torsion, shear), kd = 1 
 
    Se = 0.582(1)(0.59)(1)(0.5)(482) = 82.7 MPa 
 
 The members and electrode are basically of equal strength. We will use Se =82.6 MPa. 

For a factor of safety of 1, and with Kfs = 2.7 (Table 9-5) 

    
   3allow

82.6 459.6
14.1 10 N 14.1 kN .

2.7fs

A
F Ans

K


     

______________________________________________________________________________ 
 
9-28 Given, b = 4 in, d = 2 in, h = 5/16 in, E7010 electrode. 
    A = 0.707(5/16)(4 +4 + 2) = 2.209 in2 
 
 Member endurance limit:  From Table A-20 for AISI 1010 HR, Sut = 47 kpsi. 
 
 Eq. 6-19 and Table 6-2, pp. 287, 288: ka = 39.9(47)0.995 = 0.865 
 
 kb = 1 (direct shear), kc = 0.59 (torsion, shear), kd = 1 
 

Chapter 9, Page 11/36 



 Eqs. (6-8) and (6-18):  Se = 0.865(1)(0.59)(1)(0.5)(47) = 12.0 kpsi 
 
 Electrode endurance: E7010, Table 9-3, Sut = 70 kpsi 
 
 Eq. 6-19 and Table 6-2, pp. 287, 288: ka = 39.9(70)0.995 = 0.582 
 
 As before, kb = 1 (direct shear), kc = 0.59 (torsion, shear), kd = 1 
 
    Se = 0.582(1)(0.59)(1)(0.5)(70) = 12.0 kpsi 
 
 Thus the members and electrode are of equal strength. For a factor of safety of 1, and 

with Kfs = 2.7 (Table 9-5) 

    
 allow

12.0 2.209
9.82 kip .

2.7fs

A
F Ans

K


    

______________________________________________________________________________ 
 
9-29 Primary shear:   = 0    (why?) 
 
 Secondary shear: 
 
  Table 9-1:  Ju = 2 r3 =  2 (1.5)3 = 21.21 in3 
 
     J  = 0.707 h Ju = 0.707(1/4)(21.21) = 3.749 in4 
 

  2 welds: 
 

 
8 1.5

1.600
2 2 3.749

FMr
F

J
      

    allow 1.600 20 12.5 kip .F F Ans        

______________________________________________________________________________ 
 
9-30 l = 2 + 4 + 4 = 10 in 
 

 

     

     

2 1 4 0 4 2
1 in

10
2 4 4 2 4 0

1.6 in
10

x

y

 
 

 
 

 

 
   M = FR = F(10  1) = 9 F  
 

        2 2 22
1 21 1 4 1.6 2.4 in, 1 2 1.6 1.077 inr r          

 

    2 2
3 2 1 1.6 1.887 inr     
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      
1

3 41
0.707 5 /16 2 0.1473 in

12GJ  
 

   
   

2 3

3 41
0.707 5 /16 4 1.178 in

12G GJ J  
 

 

    

 
       
   

3
2

1

2 2

2 4

0.1473 0.707 5 /16 2 2.4 1.178 0.707 5 /16 4 1.077

1.178 0.707 5 /16 4 1.887 9.220 in

ii i G

i

J J A r


 

   

  



 
 

   1 o1.6
tan 28.07

4 1
      

 

 

    221.6 4 1 3.4 inr     

 
 
 Primary shear ( in kpsi, F in kip) : 
 

    
  

0.4526
0.707 5 /16 10

V F
F

A
      

 
 Secondary shear: 

    
 9 3.4

3.319
9.220

FMr
F

J
      

 

       2 2o o
max 3.319 sin 28.07 3.319 cos 28.07 0.4526

3.724

F F

F

   



F  

 
   max =  allow          3.724 F = 25         F = 6.71 kip        Ans. 
______________________________________________________________________________ 
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9-31 l = 30 + 50 + 50 = 130 mm 
 

 

     

     

30 15 50 0 50 25
13.08 mm

130
30 50 50 25 50 0

21.15 mm
130

x

y

 
 

 
 

 

 
 M = FR = F(200  13.08)  
  = 186.92 F (M in Nm, F in kN) 
 

      2 2 22
1 215 13.08 50 21.15 28.92 mm, 13.08 25 21.15 13.63 mmr r          

  2 2
3 25 13.08 21.15 24.28 mmr      

 

  
     

1

3 31
0.707 5 30 7.954 10 mm

12GJ   4

 

        
2 3

3 31
0.707 5 50 36.82 10 mm

12G GJ J   4

2

 

 

  

 
           
       

3
2

1

3 2 3

3 2 3 4

7.954 10 0.707 5 30 28.92 36.82 10 0.707 5 50 13.63

36.82 10 0.707 5 50 24.28 307.3 10 mm

ii i G

i

J J A r


 

   

  



 
 

   1 o21.15
tan 29.81

50 13.08
      

  
 

    2221.15 50 13.08 42.55 mmr     

 
 Primary shear ( in MPa, F in kN) : 

    
 
  

310
2.176

0.707 5 130

FV
F

A
      

 
 Secondary shear: 

    
  
 

3

3

186.92 10 42.55
25.88

307.3 10

FMr
F

J
      
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       2 2o o
max 25.88 sin 29.81 25.88 cos 29.81 2.176

27.79

F F

F

   



F  

 
   max =  allow          27.79 F = 140         F = 5.04 kN        Ans. 
______________________________________________________________________________ 
 
9-32  
 Weld 
 Pattern   Figure of merit     Rank______ 

  1.  
3 2/12

fom 0.0833
12

uJ a a a

lh ah h h

 
     

 

2

    5 

  2.  
 
 

2 2 2 23
fom 0.3333

6 2 3

a a a a

a h h h

  
    

 

a
    1 

  3.  
 
 

4 2 2 2 22 6 5
fom 0.2083

12 2 24

a a a a a

a a ah h h

  
      

    4 

  4.  
3 3 3 4 21 8 6

fom 0.3056
3 12 2

a a a a a

ah a a h

       

 
 
 

 2 

  5.  
 3 3 22 1 8

fom 0.3333
6 4 24

a a a

h a ah h

 
    

 
    1 

  6.  
 3 3 22 / 2

fom 0.25
4

a a a

ah ah h




 
    

 
    3 

______________________________________________________________________________ 
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9-33  
 Weld 
 Pattern   Figure of merit     Rank______ 

  1.  
 3 2/12

fom 0.0833u
aI a

lh ah h


    

 


     6 

  2.  
 3 2/ 6

fom 0.0833
2

a a

ah h

 
   

 
     6 

  3.  
 2 2/ 2

fom 0.25
2

aa a

ah h

 
   

 
      1 

  4.*  
  2 2 2/12 6 7

fom 0.1944
3 36

a a a a

ah h h

  
    

 

a
   2 

  5. & 7. 
2

,
2 2

a a
x y

a a
 

 3

a
  

     
23 3

22
2 2

3 3 3u

a a a
I a a a

      
  3

a
 

    
 3 2 2/ 3 1

fom 0.1111
3 9

u
aI a a

lh ah h h

   
       

   
   5 

  6. & 8. 
  2 2 2/ 6 3 1

fom 0.1667
4 6

a a a a a

ah h h

    
     

   
   3 

  9.  
 3 2 2/ 2

fom 0.125
8

a a a

ah h h




 
    

 
     4 

 
 *Note. Because this section is not symmetric with the vertical axis, out-of-plane 

deflection may occur unless special precautions are taken. See the topic of “shear center” 
in books with more advanced treatments of mechanics of materials. 

______________________________________________________________________________ 
 
9-34 Attachment and member (1018 HR), Sy = 220 MPa and Sut = 400 MPa. 
 
 The member and attachment are weak compared to the properties of the lowest electrode. 
 
 Decision  Specify the E6010 electrode 
 
 Controlling property, Table 9-4:   all = min[0.3(400), 0.4(220)] = min(120, 88) = 88 MPa 
 
 For a static load, the parallel and transverse fillets are the same. Let the length of a bead 

be l = 75 mm, and n be the number of beads. 
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 0.707 all

F

n hl
    

    
 
  

3

all

100 10
21.43

0.707 0.707 75 88

F
nh

l
    

 
 where h is in millimeters. Make a table 
 
    Number of beads, n  Leg size, h (mm) 
 
     1          21.43 
     2          10.71 
     3            7.14 
     4             5.36     6 mm 
 
 Decision Specify h = 6 mm on all four sides. 
 
 Weldment specification: 
 
  Pattern: All-around square, four beads each side, 75 mm long 
 
  Electrode: E6010 
 
  Leg size: h = 6 mm 
______________________________________________________________________________ 
 
9-35 Decision: Choose a parallel fillet weldment pattern. By so-doing, we’ve chosen an 

optimal pattern (see Prob. 9-32) and have thus reduced a synthesis problem to an analysis 
problem: 

 Table 9-1, case 2, rotated 90:   A = 1.414hd = 1.414(h)(75) = 106.05h mm2 
 Primary shear  
 

   
 312 10 113.2

106.05y     
V

A h h


 
 
 Secondary shear: 
 

     
   

2 2

2 2
3 3

3 3

(3 )

6
75[3(75 ) 75 ]

281.3 10  mm
6

0.707( )(281.3) 10 198.8 10  mm

u

d b d
J

J h h






4 

 
 

 With  = 45,
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 
 

 

3o

3

22 2
max

12 10 (187.5)(37.5)cos 45 424.4

198.8 10

1 684.9
424.4 (113.2 424.4)

y

x y

x y y

MrMr

J J hh

h h

 

   

     

        2

 

 
 Attachment and member (1018 HR): Sy = 220 MPa, Sut = 400 MPa 
 Decision: Use E60XX electrode which is stronger 
 

all

max all

min[0.3(400),  0.4(220)] 88 MPa
684.9

88 MPa

684.9
7.78 mm

88

h

h



 

 

  

 

 

 
 Decision: Specify 8 mm leg size 
 Weldment Specifications: 
 Pattern: Parallel horizontal fillet welds 
 Electrode: E6010 
 Type: Fillet  
 Length of each bead: 75 mm 
 Leg size: 8 mm 
______________________________________________________________________________ 
 
9-36 Problem 9-35 solves the problem using parallel horizontal fillet welds, each 75 mm long 

obtaining a leg size rounded up to 8 mm.  
 For this problem, since the width of the plate is fixed and the length has not been 

determined, we will explore reducing the leg size by using two vertical beads 75 mm long 
and two horizontal beads such that the beads have a leg size of 6 mm.  

  

 Decision: Use a rectangular weld bead pattern with a leg size of 6 mm (case 5 of Table  
  9-1 with b unknown and d = 75 mm).  
 Materials: 

  Attachment and member (1018 HR): Sy = 220 MPa, Sut = 400 MPa 
  From Table 9-4, AISC welding code, 

all = min[0.3(400), 0.4(220)] = min(120, 88) = 88 MPa 
  Select a stronger electrode material from Table 9-3. 
  Decision: Specify E6010 
 
 Solving for b: In Prob. 9-35, every term was linear in the unknown h. This made solving 

for h relatively easy. In this problem, the terms will not be linear in b, and so we will use 
an iterative solution with a spreadsheet. 

 
  Throat area and other properties from Table 9-1: 
 
   A = 1.414(6)(b + 75) = 8.484(b + 75)  (1) 
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 375

6u

b
J


 ,  J = 0.707 (6) Ju  = 0.707(b +75)3 (2) 

 
 Primary shear ( in MPa, h in mm): 
 

   

 312 10
(3)y

V

A A
     

 

 Secondary shear (See Prob. 9-35 solution for the definition of ) : 

   

  
 

  
 

 

3

3

3

3

22
max

12 10 150 / 2 (37.5)
cos cos (4)

0.707 75

12 10 150 / 2 ( / 2)
sin sin (5)

0.707 75

(6)

y

x

x
y

y x y

Mr

J

bMrMr

J J b

b bMr Mr

J J b



   

   

   

 


    




    



    

 

 Enter Eqs. (1) to (6) into a spreadsheet and iterate for various values of b. A portion of 
the spreadsheet is shown below. 

  

b (mm) A (mm2) J (mm4) 'y (Mpa) "y (Mpa) "x (Mpa)
max 

(Mpa)   

41 984.144 1103553.5 12.19334 69.5254 38.00722 90.12492   

42 992.628 1132340.4 12.08912 67.9566 38.05569 88.63156   

43 1001.112 1161623.6 11.98667 66.43718 38.09065 87.18485 < 88 Mpa

44 1009.596 1191407.4 11.88594 64.96518 38.11291 85.7828   
 
 We see that b  43 mm meets the strength goal. 
 
 Weldment Specifications: 

 Pattern: Horizontal parallel weld tracks 43 mm long, vertical parallel weld tracks 75 mm 
 long 

 Electrode: E6010 
 Leg size: 6 mm 
______________________________________________________________________________ 
 
9-37 Materials: 
  
 Member and attachment (1018 HR):    32 kpsi, 58 kpsiy utS S   

  Table 9-4:        all min[0.3(58), 0.4(32)] 12.8 kpsi    
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 Decision: Use E6010 electrode. From Table 9-3: 50 kpsi, 62 kpsi,y utS S   

all min[0.3(62), 0.4(50)] 20 kpsi    

 
Decision: Since 1018 HR is weaker than the E6010 electrode, use  all 12.8 kpsi   

 
Decision: Use an all-around square weld bead track. 
 
 l1 = 6 + a = 6 + 6.25 = 12.25 in 

 
  Throat area and other properties from Table 9-1: 
 
 

  1.414 ( ) 1.414( )(6 6) 16.97A h b d h h      
 
 Primary shear 
 

 320 10 1179
psi

16.97y

V F

A A h h
       

 
 Secondary shear 
 

3 3
3( ) (6 6)

288 in
6 6u

b d
J

 
    

40.707 (288) 203.6  inJ h h   

 320 10 (6.25 3)(3) 2726
psi

203.6
y

x y

Mr

J h
 


    

h
 

2 2 2 2
max

1 4762
( ) 2726 (1179 2726)  psix y y

h h
             

 
 Relate stress to strength 

 

   
3

max all 3

4762 4762
12.8 10 0.372 in

12.8 10
h

h
        

 Decision: 
 

Specify in leg size 3/ 8
 
 Specifications: 
 

Pattern: All-around square weld bead track 
Electrode: E6010 
Type of weld: Fillet 
Weld bead length: 24 in 
Leg size: in 3/ 8
Attachment length: 12.25 in 

______________________________________________________________________________ 
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9-38 This is a good analysis task to test a student’s understanding. 
 
 (1) Solicit information related to a priori decisions. 
 (2) Solicit design variables b and d. 
 (3) Find h and round and output all parameters on a single screen. Allow return to Step 1 

 or Step 2. 
 (4) When the iteration is complete, the final display can be the bulk of your adequacy 

 assessment. 
 
 Such a program can teach too. 
______________________________________________________________________________ 
 
9-39 The objective of this design task is to have the students teach themselves that the weld 

patterns of Table 9-2 can be added or subtracted to obtain the properties of a 
contemplated weld pattern. The instructor can control the level of complication. We have 
left the presentation of the drawing to you. Here is one possibility. Study the problem’s 
opportunities, and then present this (or your sketch) with the problem assignment. 

 

       
 
 Use as the design variable. Express properties as a function of From Table 9-3,  1b 1.b

 case 3: 
 

    11.414 ( )A h b b

   
2 22

1 1( )

2 2 2u

b d b b dbd
I


    

   0.707 uI hI  

   
11.414 ( )

V F

A h b b
   


 

   
( / 2)

0.707 u

Mc Fa d

I hI
     

 
 Parametric study 
 Let 1 all10 in, 8 in, 8 in, 2 in, 12.8 kpsi, 2(8 2) 12 ina b d b l         
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    21.414 (8 2) 8.48 inA h h  
    2 3(8 2)(8 / 2) 192 inuI   

    40.707( )(192) 135.7  inI h h 

   
10 000 1179

 psi
8.48h h

     

   
10 000(10)(8 / 2) 2948

psi
135.7h h

     

   2 2
max

1 3175
1179 2948 12 800 psi

h h
      

 
 from which  Do not round off the leg size – something to learn. 0.248 in.h 
 

   
192

fom ' 64.5 in
0.248(12)

uI

hl
    

    28.48(0.248) 2.10 inA  
    4135.7(0.248) 33.65 inI  

   
2 2

30.248
vol 12 0.369 in

2 2

h
l    

   
33.65

eff 91.2 in
vol 0.369

I
    

   
1179

4754 psi
0.248

     

   
2948

11 887 psi
0.248

     

   max

3175
12 800 psi

0.248
    

 
 Now consider the case of uninterrupted welds, 
 

    1 0b 
   1.414( )(8 0) 11.31A h h    

    2 3(8 0)(8 / 2) 256 inuI   

    40.707(256) 181  inI h  h

   
10 000 884

11.31h h
     

   
10 000(10)(8 / 2) 2210

181h h
     

   2 2
max all

1 2380
884 2210

h h
      

   max

all

2380
0.186 in

12 800
h




    

 Do not round off h. 

Chapter 9, Page 22/36 



    211.31(0.186) 2.10 inA  
    4181(0.186) 33.67 inI  

   
2

3884 0.186
4753 psi,     vol 16 0.277 in

0.186 2
       

   
2210

11882 psi
0.186

     

   
256

fom ' 86.0 in
0.186(16)

uI

hl
    

   
2 2

33.67
eff 121.7 in

( / 2) (0.186 / 2)16

I

h l
    

 
 Conclusions: To meet allowable stress limitations, I and A do not change, nor do Ĳ and σ. 

To meet the shortened bead length, h is increased proportionately. However, volume of 
bead laid down increases as h

2. The uninterrupted bead is superior. In this example, we 
did not round h and as a result we learned something. Our measures of merit are also 
sensitive to rounding. When the design decision is made, rounding to the next larger 
standard weld fillet size will decrease the merit. 

 
 Had the weld bead gone around the corners, the situation would change. Here is a follow 

up task analyzing an alternative weld pattern. 
 

 
______________________________________________________________________________ 
 
9-40 From Table 9-2 
 For the box 1.414 ( )A h b d   

 Subtracting  1 1 from  and  from b b d d
 

     1 11.414A h b b d d     

       
3 22

2 31 1
1 1

1 1
(3 )

6 6 2 2 6u

d b dd 3I b d b b d d d         

      
 Length of bead  1 12( )l b b d d   
     fom /uI hl  

______________________________________________________________________________ 
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9-41 Computer programs will vary. 
______________________________________________________________________________ 
 
9-42 Note to the Instructor. In the first printing of the ninth edition, the loading was stated 

incorrectly. In the fourth line, “bending moment of 100 kip ⋅ in in” should read, “10 kip 

bending load 10 in from”. This will be corrected in the printings that follow. We 
apologize if this has caused any inconvenience. 

 
 all = 12 kpsi. Use Fig. 9-17(a) for general geometry, but employ       beads and then      

beads. 
 
 Horizontal parallel weld bead pattern 
  b = 3 in, d = 6 in 
        
 
 
 
 Table 9-2:  21.414 1.414( )(3) 4.24  inA hb h h  
 

    
2 2

33(6)
54 in

2 2u

bd
I     

     40.707 0.707( )(54) 38.2  inuI hI h h  

    
10 2.358

kpsi
4.24h h

     

    
10(10)(6 / 2) 7.853

kpsi
38.2

Mc

I h h
      

 

    2 2 2 2
max

1 8.199
2.358 7.853  kpsi

h h
         

 
 Equate the maximum and allowable shear stresses. 
 

    max all

8.199
12

h
     

 
 from which It follows that 0.683 in.h 
 

     438.2(0.683) 26.1 inI  
 
 The volume of the weld metal is 
 

    
2 2

3(0.683) (3 3)
vol 1.40 in

2 2

h l 
    

 The effectiveness, (eff)H, is 
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    H

26.1
(eff) 18.6 in

vol 1.4

I
    

    H

54
(fom ') 13.2 in

0.683(3 3)
uI

hl
  


 

 
 Vertical parallel weld beads 
 
 

        
3 in

6 in

b

d




 

 
 
 From Table 9-2, case 2 
 

     21.414 1.414( )(6) 8.48  inA hd h h  

    
3 3

36
72 in

6 6u

d
I     

    0.707 0.707( )(72) 50.9uI hI h h    

    
10 1.179

psi
8.48h h

     

    
10(10)(6 / 2) 5.894

psi
50.9

Mc

I h h
      

    2 2 2 2
max

1 6.011
1.179 5.894  kpsi

h h
         

 
 Equating max  to all  gives 0.501 in.h  It follows that 
 

     450.9(0.501) 25.5 inI  

    
2 2

30.501
vol (6 6) 1.51 in

2 2

h l
     

    V

25.5
(eff ) 16.7 in

vol 1.51

I
    

    V

72
(fom') 12.0 in

0.501(6 6)
uI

hl
  


 

 
 The ratio of is 16V H(eff ) / (eff ) .7 /18.6 0.898. The ratio  is 

This is not surprising since 
V H(fom') / (fom')

12.0 /13.2 0.909.
 

    
2 2

0.707
eff 1.414 1.414fom'

( / 2) ( / 2)
u uhI II I

vol h l h l hl
      

 The ratios(e  and  give the same information. V Hff ) / (eff ) V(fom') / (fom')H
______________________________________________________________________________ 
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9-43 F = 0, T = 15 kipin. 
 
 Table 9-1: Ju = 2 r

 3 = 2 (1)3 = 6.283 in3,   J = 0.707(1/4) 6.283 = 1.111 in4 
 

    
 

max

15 1
13.5 kpsi .

1.111

Tr
Ans

J
     

______________________________________________________________________________ 
 
9-44 F = 2 kip, T = 0. 
 
 Table 9-2: A = 1.414  h r = 1.414  (1/4)(1) = 1.111 in2 
 
    Iu =  r

 3 =  (1)3 = 3.142 in3,   I = 0.707(1/4) 3.142 = 0.5553 in4 
 

    
2

1.80 kpsi
1.111

V

A
      

 

    
  2 6 1

21.6 kpsi
0.5553

Mr

I
      

 
     max = ( 2 +  2)1/2 = (1.802 + 21.62)1/2 = 21.7 kpsi     Ans. 
______________________________________________________________________________ 
 
9-45 F = 2 kip, T = 15 kipin. 
 
 Bending: 
 
  Table 9-2: A = 1.414  h r = 1.414  (1/4)(1) = 1.111 in2 
 
    Iu =  r

 3 =  (1)3 = 3.142 in3,   I = 0.707(1/4) 3.142 = 0.5553 in4 
 

    
2

1.80 kpsi
1.111

V

A
      

 

        2 6 1
21.6 kpsi

0.5553M

Mr

I
      

 
 Torsion: 
 
  Table 9-1:    Ju = 2 r

 3 = 2 (1)3 = 6.283 in3,   J = 0.707(1/4) 6.283 = 1.111 in4 
 

       15 1
13.5 kpsi

1.111T

Tr

J
      
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       2 22 2 2 2
max 1.80 21.6 13.5 25.5 kpsi .

M T
Ans             

______________________________________________________________________________ 
 
9-46 F = 2 kip, T = 15 kipin. 
 
 Bending: 
 
  Table 9-2: A = 1.414  h r = 1.414  h (1) = 4.442h in2 
 
    Iu =  r

 3 =  (1)3 = 3.142 in3,   I = 0.707 h (3.142) = 2.221h in4 
 

    
2 0.4502

kpsi
4.442

V

A h h
      

 

        2 6 1 5.403
kpsi

2.221M

Mr

I h h
      

 
 Torsion: 
 
 Table 9-1: Ju = 2 r

 3 = 2 (1)3 = 6.283 in3,   J = 0.707 h (6.283) = 4.442 in4 
 

       15 1 3.377
kpsi

4.442T

Tr

J h h
      

   

    
2 2 2

2 22
max

0.4502 5.403 3.377 6.387
kpsi

M T h h h h
                      

     
 

 

  max all

6.387
20 0.319 in .h A

h
      ns  

 
  Should specify a 3

8
in weld.     Ans. 

______________________________________________________________________________ 
 
9-47  9 mm,     200 mm,     25mmh d b  
 
 From Table 9-2, case 2: 
 

   A = 1.414(9)(200) = 2.545(103) mm2 

 

    
3 3

6 3200
1.333 10  mm

6 6u

d
I     

 

   I = 0.707h Iu = 0.707(9)(1.333)(106) = 8.484(106) mm4 
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 3

3

25 10
9.82 MPa

2.545(10 )

F

A
      

 

   M = 25(150) = 3750 Nm 
 

    3
6

3750(100)
10 44.20 MPa

8.484(10 )

Mc

I
      

 

   2 2 2 2
max 9.82 44.20 45.3 MPa     .Ans         

______________________________________________________________________________ 
 
9-48 Note to the Instructor. In the first printing of the ninth edition, the vertical dimension of 

5 in should be to the top of the top plate. This will be corrected in the printings that 
follow. We apologize if this has caused any inconvenience. 

 
 h = 0.25 in, b = 2.5 in, d = 5 in. 
 
 Table 9-2, case 5: A = 0.707h (b +2d) = 0.707(0.25)[2.5 + 2(5)] = 2.209 in2 

     
 

2 25
2 in

2 2.5 2 5

d
y

b d
  

 
 

     
 

        

3
2 2

3

2 2

2
2 2

3

2 5
2 5 2 2.5 2 5 2 33.33 in

3

u

d
I d y b d y   

      
3

 

 
     I  = 0.707 h Iu = 0.707(1/4)(33.33) = 5.891 in4 
 
 Primary shear: 

     
2

0.905 kpsi
2.209

F

A
      

 
 Secondary shear (the critical location is at the bottom of the bracket): 
 
     y = 5  2 = 3 in 
 

     
  2 5 3

5.093 kpsi
5.891

My

I
      

 

     2 2 2 2
max 0.905 5.093 5.173 kpsi         

 

    all

max

18
3.48 .

5.173
n Ans




    

______________________________________________________________________________ 
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9-49 The largest possible weld size is 1/16 in. This is a small weld and thus difficult to 
accomplish. The bracket’s load-carrying capability is not known. There are geometry 
problems associated with sheet metal folding, load-placement and location of the center 
of twist. This is not available to us. We will identify the strongest possible weldment. 

      Use a rectangular, weld-all-around pattern – Table 9-2, case 6: 
 

  

2

2 2
3

4

1.414 ( ) 1.414(1 / 16)(1 7.5)

0.7512 in
/ 2 0.5 in
/ 2 7.5 / 2 3.75 in

7.5
(3 ) [3(1) 7.5] 98.44 in

6 6
0.707 0.707(1 / 16)(98.44) 4.350 in
(3.75 0.5) 4.25

1.331
0.7512

4

u

u

A h b d

x b

y d

d
I b d

I hI

M W W

V W
W

A
Mc

I





   

 
  

    

  
  

   

  

2 2 2 2
max

.25 (7.5 / 2)
3.664

4.350

1.331 3.664 3.90

W
W

W W  



     

 

 Materia

 

l properties: The allowable stress given is low. Let’s demonstrate that. 
 For the 1020 CD bracket, use HR properties of Sy = 30 kpsi and Sut = 55. The 1030 HR 

support, Sy = 37.5 kpsi and Sut = 68. The E6010 electrode has strengths of Sy = 50 and  
 Sut = 62 kpsi. 
 
 Allowable stresses: 
 
 1020 HR:   all = min[0.3(55), 0.4(30)] = min(16.5, 12) = 12 kpsi 
 
 1020 HR:   all = min[0.3(68), 0.4(37.5)] = min(20.4, 15) = 15 kpsi 
 
 E6010:   all = min[0.3(62), 0.4(50)] = min(18.6, 20) = 18.6 kpsi 
 
 Since Table 9-6 gives 18.0 kpsi as the allowable shear stress, use this lower value. 
 Therefore, the allowable shear stress is 
 
     all = min(14.4, 12, 18.0) = 12 kpsi 
 However, the allowable stress in the problem statement is 1.5 kpsi which is low from the 

weldment perspective. The load associated with this strength is 
 

    
max all 3.90 1500

1500
385 lbf

3.90

W

W

   

 
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 If the welding can be accomplished (1/16 leg size is a small weld), the weld strength is 
 12 000 psi and the load associated with this strength is  W = 12 000/3.90 = 3077 lbf. Can 

the bracket carry such a load? 
 There are geometry problems associated with sheet metal folding. Load placement is 

important and the center of twist has not been identified. Also, the load-carrying 
capability of the top bend is unknown. 

   These uncertainties may require the use of a different weld pattern. Our solution provides 
the best weldment and thus insight for comparing a welded joint to one which employs 
screw fasteners. 

______________________________________________________________________________ 
 
9-50  

 
 

all100 lbf ,    3 kpsi
100(16 / 3) 533.3 lbf

533.3cos60 266.7 lbf

533.3cos30 462 lbf

B

x

B

y

B

F

F

F

F

 
 
   
   





 

 
 It follows that and  R562 lbfy

AR  266.7 lbf,x

AR  A = 622 lbf 

     M = 100(16) = 1600 lbf · in 
 

 
 
 The OD of the tubes is 1 in. From Table 9-1, case 6: 
 

       

  2

3 3 3

4

2 1.414( ) 2(1.414)( )(1 / 2) 4.442  in

2 2 (1 / 2) 0.7854 in

2(0.707) 1.414(0.7854) 1.111  in
u

u

A hr h

J r

J hJ h h

 
 

  
  
  

h
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622 140.0

4.442
1600(0.5) 720.1

1.111

V

A h h
Tc Mc

J J h h





   

    
 

 

 The shear stresses,  and ,    are additive algebraically 
 

max

max all

1 860
(140.0 720.1) psi

860
3000

860
0.287 5 / 16 in

3000

h h

h

h



 

  

  

  

 

 
 Decision: Use 5/16 in fillet welds     Ans. 
______________________________________________________________________________ 
 
9-51  
 
 
 
 
 
 
 
 For the pattern in bending shown, find the centroid G of the weld group. 
 

    
     
     

75 6 150 325 9 150
225 mm

6 150 9 150
x


 


 

 

   

 
        

2
6mm 6mm

3
2 6 4

2

0.707 6 150
2 0.707 6 150 225 75 31.02 10 mm

12

GI I Ax 

 
    
  

 

 

   
        

3
2 6 4

9mm

0.707 9 150
2 0.707 9 150 175 75 22.67 10 mm

12
I

 
    
  

 

 
   I  =  I 6 mm  +  I 9 mm  = (31.02 + 22.67)(106) = 53.69(106) mm4 

 
 The critical location is at B. With   in MPa, and F in kN 
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 
  

310
0.3143

2 0.707 6 9 150

FV
F

A
    

  
 

 

    
  

 
3

6

200 10 225
0.8381

53.69 10

FMc
F

I
      

 

   2 2 2 2
max 0.3143 0.8381 0.8951F F         

 
 Materials: 
 
  1015 HR (Table A-20): Sy = 190 MPa,  E6010 Electrode(Table 9-3): Sy = 345 MPa 
 
  Eq. (5-21), p. 225  all = 0.577(190) = 109.6 MPa 
 

     all / 109.6 / 2
61.2 kN .

0.8951 0.8951

n
F Ans


    

______________________________________________________________________________ 
 
9-52 In the textbook, Fig. Problem 9-52b is a free-body diagram of the bracket. Forces and 

moments that act on the welds are equal, but of opposite sense. 
 (a)     M = 1200(0.366) = 439 lbf · in     Ans. 

 (b)     Fy = 1200 sin 30 = 600 lbf     Ans. 

 (c)     Fx = 1200 cos 30 = 1039 lbf     Ans. 

 (d) From Table 9-2, case 6: 
2

2 2
3

1.414(0.25)(0.25 2.5) 0.972 in

2.5
(3 ) [3(0.25) 2.5] 3.39 in

6 6u

A

d
I b d

  

    
 

    The second area moment about an axis through G and parallel to z is 
40.707 0.707(0.25)(3.39) 0.599 in      .uI hI Ans    

 

 (e) Refer to Fig. Problem 9-52b. The shear stress due to Fy is 
 

1

600
617 psi

0.972
yF

A
     

 
        The shear stress along the throat due to Fx is 
 

2

1039
1069 psi

0.972
xF

A
     

 
        The resultant of 1 and 2 is in the throat plane 
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2 2 2 2
1 2 617 1069 1234 psi         

 
        The bending of the throat gives 
 

439(1.25)
916 psi

0.599

Mc

I
     

 
        The maximum shear stress is 
 

2 2 2 2
max 1234 916 1537 psi     .Ans         

 
 (f) Materials: 

  1018 HR Member:  Sy = 32 kpsi, Sut = 58 kpsi (Table A-20) 
   E6010 Electrode:   Sy = 50 kpsi (Table 9-3) 
 

max max

0.577 0.577(32)
12.0     .

1.537
sy yS S

n A
 

    ns  

 

 (g) Bending in the attachment near the base. The cross-sectional area is approximately 
 equal to bh. 

2
1

1
2 2

3

0.25(2.5) 0.625 in
1039

1662 psi
0.625

0.25(2.5)
0.260 in

6 6

x
xy

A bh

F

A

I bd

c



 

  

  



 

  At location A, 

1 /
600 439

2648 psi
0.625 0.260

y

y

y

F M

A I c




 

  
 

  The von Mises stress    is 
2 2 2 23 2648 3(1662) 3912 psiy xy         

  Thus, the factor of safety is, 
32

8.18     .
3.912

yS
n A


   ns


 

 

  The clip on the mooring line bears against the side of the 1/2-in hole. If the clip fills 
 the hole 
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3

1200
9600 psi

0.25(0.50)
32(10 )

3.33     .
9600

y

F

td

S
n A



ns



   

    
 

 

 

  Further investigation of this situation requires more detail than is included in the task 
 statement. 

 (h) In shear fatigue, the weakest constituent of the weld melt is 1018 HR with Sut = 58 
 kpsi, Eq. (6-8), p. 282, gives 

 
0.504 0.504(58) 29.2 kpsie utS S    

 
       Eq. (6-19), p. 287:  ka = 14.4(58)-0.718 = 0.780 
 
   For the size factor estimate, we first employ Eq. (6-25), p. 289, for the equivalent 

 diameter 

0.808 0.707 0.808 0.707(2.5)(0.25) 0.537 ined hb    

 
  Eq. (6-20), p. 288, is used next to find kb 

 
-0.107 -0.107

0.537
0.940

0.30 0.30
e

b

d
k

           
 

 
     Eq.(6-26), p. 290: kc = 0.59 
 
   From Eq. (6-18), p. 287, the endurance strength in shear is 
 

Sse = 0.780(0.940)(0.59)(29.2) = 12.6 kpsi 
 

  From Table 9-5, the shear stress-concentration factor is Kf s = 2.7. The loading is 
 repeatedly-applied 

max 1.537
2.7 2.07 kpsi

2 2a m f sK
      

  Table 6-7, p. 307: Gerber factor of safety nf, adjusted for shear, with Ssu = 0.67Sut 

 
2

22

1 2
1 1

2

1 0.67(58) 2.07 2(2.07)(12.6)
1 1 5.55     .

2 2.07 12.6 0.67(58)(2.07)

su a m se
f

m se su a

S S
n

S S

Ans

 
 

    
       
     

                      

 

       Attachment metal should be checked for bending fatigue. 
______________________________________________________________________________ 
9-53 (a) Use b = d = 4 in. Since h = 5/8 in, the primary shear is 

Chapter 9, Page 34/36 



 

0.2829
1.414(5 / 8)(4)

F
F     

 

  The secondary shear calculations, for a moment arm of 14 in give 
 

2 2
3

4

4[3(4 ) 4 ]
42.67 in

6
0.707 0.707(5 / 8)42.67 18.85 in

14 (2)
1.485

18.85

u

u

y

x y

J

J hJ

Mr F
F

J
 


 

  

    

 

 

  Thus, the maximum shear and allowable load are: 
 

2 2
max

all

1.485 (0.2829 1.485) 2.309
25

10.8 kip     .
2.309 2.309

F F

F A




   

   ns
 

  The load for part (a) has increased by a factor of 10.8/2.71 = 3.99     Ans. 
 
 (b) From Prob. 9-18b, all = 11 kpsi 
 

all
all

11
4.76 kip

2.309 2.309
F


    

 
  The allowable load in part (b) has increased by a factor of 4.76/1.19 = 4     Ans. 
______________________________________________________________________________ 
 
9-54 Purchase the hook having the design shown in Fig. Problem 9-54b. Referring to text Fig. 

9-29a, this design reduces peel stresses. 
______________________________________________________________________________ 
 
9-55 (a) 

 

/ 2
/ 2 / 2

1
1/ 2 / 2

/ 2

1 1

1

1 cosh( )
cosh( ) sinh( )

4 sinh( / 2)

[sinh( / 2) sinh( / 2)] [sinh( / 2) ( sinh( / 2))]

2 sinh( / 2)
[2sinh( / 2)]      .

4 sinh( / 2) 2

l
l l

l l
l

P x A
dx A x dx x

l b l

A A
l l l

A l P P
l An

bl l bl

  
 

   
 

  
 

 


  

     

  

 

l

s



 

 (b)   
cosh( / 2)

( / 2)      .
4 sinh( / 2) 4 tanh( / 2)

P l P
l A

b l b l
ns

  
 

   
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 (c)  
( / 2) 2 / 2

    .
4 tanh( / 2) tanh( / 2)

l P bl l
K Ans

b l P l

  
  

    
 

 

 

  For computer programming, it can be useful to express the hyperbolic tangent in 
 terms of exponentials: 

exp( / 2) exp( / 2)
    .

2 exp( / 2) exp( / 2)

l l l
K A

l l
ns

  
 

 


 
 

______________________________________________________________________________ 
 
9-56 This is a computer programming exercise. All programs will vary. 
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Chapter 10 
 

 

 
10-1 From Eqs. (10-4) and (10-5) 

 

    
4 1 0.615 4 2

4 4 4
W B

C C
K K

C C C 3

 
   

 
 

 

 Plot 100(KW  KB)/ KW  vs. C for 4  C  12 obtaining 

  
 We see the maximum and minimum occur at C = 4 and 12 respectively where 

 

 Maximum = 1.36 %     Ans.,       and Minimum = 0.743 %    Ans. 

______________________________________________________________________________ 

 

10-2 A = Sd
m
 

    dim(Auscu) = [dim (S) dim(d
 m

)]uscu = kpsiinm
 

 

    dim(ASI) = [dim (S) dim(d
 m

)]SI = MPamm
m
 

   

    SI uscu uscu uscu

MPa mm
6.894757 25.4 6.895 25.4 .

kpsi in

m
m m

m
A A A A Ans     

For music wire, from Table 10-4: 

   Auscu = 201 kpsiinm
,    m = 0.145;     what is ASI? 

_____________________________________________________________________________ 

0-3 Given: Music wire, d = 2.5 mm, OD = 31 mm, plain ground ends, Nt = 14 coils. 

 

 

 

 

 

    ASI = 6.895(25.4)
0.145

 (201) = 2215 MPamm
m
       Ans. 

_

 

1
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 (a) Table 10-1: Na = N   1 = 14  1 = 13 coils 

    Ls = d Nt = 2.5(14) = 35 mm 

 Table 10-4: m = 0.145, A = 2211 MPamm
m
 

 Eq. (10-14): 

t

 

 

 

 

 

0.145

2211
1936 MPa

2.5
ut m

A
S

d
     

 

  Table 10-6: Ssy = 0.45(1936) = 871.2 MPa 

    D = OD  d = 31  2.5 = 28.5 mm 

    C = D/d = 28.5/2.5 = 11.4 

  Eq. (10-5):  

 

 

 

 

 

 
 

4 11.4 24 2
1.117

4 3 4 11.4 3
B

C
K

C


  

 
 

 

  Eq. (10-7):  
 
 

33 2.5 871.2
167.9 N

8 8 1.117 28.5

sy

s

B

d S
F

K D


    

 

  Table 10-5): d = 2.5/25.4 = 0.098 in           G = 81.0(10
3
) MPa 

  Eq. (10-9):  

 

 
 

4 34

3 3

2.5 81 10
1.314 N / mm

8 8 28.5 13a

d G
k

D N
    

 

0

167.9
35 162.8 mm .

1.314

s
s

F
L L A

k
           ns

(b)   Fs = 167.9 N Ans. 

(c)   k = 1.314 N/mm      Ans. 

 

 

 

 

 

 
 (d)    0 cr

149.9 mm
0.5

L   .  Spring needs to be supported.     Ans. 
2.63 28.5

_____________________________________________________________________________ 

0-4 Given: Design load, F1 = 130 N.  

4, N  = 13 coils, Ssy = 871.2 MPa, Fs = 167.9 N, 

 Eq. (10-19):  3 ≤ Na ≤ 15  Na = 13  O.K. 

_

 

1
 

 Referring to Prob. 10-3 solution, C = 11. a

 L0 = 162.8 mm and (L0)cr = 149.9 mm. 

 Eq. (10-18):  4 ≤ C ≤ 12  C = 11.4  O.K. 
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 Eq. (10-17): 
1

167.9
1 1 0.29

130

sF

F
       

 Eq. (10-20):   0.15,    0.29    . .O K    

 From Eq. (10-7) for static service 

 

1
1 3 3

1

8 8(130)(28.5)
1.117 674 MPa

(2.5)

871.2
1.29

674

B

sy

F D
K

d

S
n


 



    
 

  
 

 

 Eq. (10-21):   ns ≥ 1.2,   n = 1.29   O.K. 

 

1

167.9 167.9
674 870.5 MPa

130 130

/ 871.2 / 870.5 1

s

sy sS

 



        
   
 

 

 Ssy/s ≥ (ns )d : Not solid-safe  (but was the basis of the design).   Not O.K. 

 

 L0 ≤ (L0)cr: 162.8  149.9   Not O.K. 

 

 Design is unsatisfactory. Operate over a rod?     Ans. 

______________________________________________________________________________ 

 

10-5 Given: Oil-tempered wire, d = 0.2 in, D = 2 in, Nt = 12 coils, L0 = 5 in, squared ends. 

 

 (a) Table 10-1: Ls = d (Nt + 1) = 0.2(12 + 1) = 2.6 in    Ans. 

 

 (b) Table 10-1: Na = Nt  2 = 12  2 = 10 coils 

  Table 10-5: G = 11.2 Mpsi 

 

  Eq. (10-9):  
 
 

4 64

3 3

0.2 11.2 10
28 lbf/in

8 8 2 10

d G
k

D N
    

 

     Fs = k ys = k (L0  Ls ) = 28(5  2.6) = 67.2 lbf       Ans. 

 

 (c) Eq. (10-1):  C = D/d  = 2/0.2 = 10 

 

  Eq. (10-5):  
 
 

4 10 24 2
1.135

4 3 4 10 3
B

C
K

C


  

 
 

 

  Eq. (10-7):  
 
   3

3 3

8 67.2 28
1.135 48.56 10 psi

0.2
s B

FD
K

d


 
    
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  Table 10-4: m = 0.187, A = 147 kpsiinm
 

 

  Eq. (10-14): 
0.187

147
198.6 kpsi

0.2
ut m

A
S

d
    

 

  Table 10-6: Ssy = 0.50 Sut = 0.50(198.6) = 99.3 kpsi 

 

     
99.3

2.04 .
48.56

sy

s

s

S
n A


   ns  

______________________________________________________________________________ 

 

10-6  Given: Oil-tempered wire, d = 4 mm, C = 10, plain ends, L0 = 80 mm, and at F = 50 N,  

 y = 15 mm. 

 

 (a)   k  = F/y = 50/15 = 3.333 N/mm      Ans. 

 

 (b)  D = Cd = 10(4) = 40 mm 

 

   OD = D + d = 40 + 4 = 44 mm        Ans. 

 

 (c)  From Table 10-5, G = 77.2 GPa 

 

  Eq. (10-9):  
 
 

4 34

3 3

4 77.2 10
11.6 coils

8 8 3.333 40
a

d G
N

kD
    

 

  Table 10-1: Nt = Na = 11.6 coils        Ans. 

 

 (d) Table 10-1: Ls = d (Nt + 1) = 4(11.6 + 1) = 50. 4 mm     Ans. 

 

 (e) Table 10-4:  m = 0.187, A = 1855 MPamm
m
 

 

  Eq. (10-14): 
0.187

1855
1431 MPa

4
ut m

A
S

d
    

 

  Table 10-6: Ssy = 0.50 Sut = 0.50(1431) = 715.5 MPa 

 

     ys = L0  Ls = 80  50.4 = 29.6 mm 

 

     Fs = k ys = 3.333(29.6) = 98.66 N 

 

  Eq. (10-5):  
4 2 4(10) 2

1.135
4 3 4(10) 3

B

C
K

C

 
  

 
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  Eq. (10-7):  
 

 3 3

8 98.66 408
1.135 178.2 MPa

4

s
s B

F D
K

d


 
    

     
715.5

4.02 .
178.2

sy

s

s

S
n A


   ns  

______________________________________________________________________________ 

 

10-7  Static service spring with: HD steel wire, d = 0.080 in, OD = 0.880 in, Nt = 8 coils, plain 

and ground ends. 

 Preliminaries 

 Table 10-5:  A = 140 kpsi · in
m
,   m = 0.190 

 Eq. (10-14):  
0.190

140
226.2 kpsi

0.080
ut m

A
S

d
    

 Table 10-6:  Ssy = 0.45(226.2) = 101.8 kpsi 

 Then, 

    D = OD  d = 0.880  0.080 = 0.8 in 

 Eq. (10-1): C = D/d  = 0.8/0.08 = 10 

 Eq. (10-5): 
4 2 4(10) 2

1.135
4 3 4(10) 3

B

C
K

C

 
  

 
 

 Table 10-1: Na = Nt  1 = 8  1 = 7 coils 

    Ls  = dNt  = 0.08(8) = 0.64 in 

 Eq. (10-7) For solid-safe, ns = 1.2 :

 
   3 33 0.08 101.8 10 / 1.2/

18.78 lbf
8 8(1.135)(0.8)

sy s

s

B

d S n
F

K D

       

 Eq. (10-9): 
 
 
4 64

3 3

0.08 11.5 10
16.43 lbf/in

8 8 0.8 7a

d G
k

D N
    

    
18.78

1.14 in
16.43

s
s

F
y

k
    

 

 (a) L0 = ys + Ls = 1.14 + 0.64 = 1.78 in     Ans. 

 (b) Table 10-1: 0 1.78
0.223 in     .

8t

L
p A

N
   ns  

 (c) From above: Fs = 18.78 lbf      Ans. 

 (d) From above: k = 16.43 lbf/in     Ans. 

 (e) Table 10-2 and Eq. (10-13): 
0 cr

2.63 2.63(0.8)
( ) 4.21 in

0.5

D
L


    

  Since L0 < (L0)cr, buckling is unlikely     Ans. 

______________________________________________________________________________ 

 

10-8  Given: Design load, F1 = 16.5 lbf.  

 

 Referring to Prob. 10-7 solution, C = 10, Na = 7 coils, Ssy = 101.8 kpsi, Fs = 18.78 lbf,   

 ys = 1.14 in, L0 = 1.78 in, and (L0)cr = 4.208 in. 
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 Eq. (10-18):  4 ≤ C ≤ 12  C = 10   O.K. 

 Eq. (10-19):  3 ≤ Na ≤ 15  Na = 7   O.K. 

 

 Eq. (10-17): 
1

18.78
1 1 0.14

16.5

sF

F
       

 Eq. (10-20):  0.15,    0.14    . .not O K   , but probably acceptable. 

 From Eq. (10-7) for static service 

 

 31
1 3 3

1

8 8(16.5)(0.8)
1.135 74.5 10  psi 74.5 kpsi

(0.080)

101.8
1.37

74.5

B

sy

F D
K

d

S
n


 



     
 

  
 

 

 Eq. (10-21):  ns ≥ 1.2,   n = 1.37   O.K. 

 

1

18.78 18.78
74.5 84.8 kpsi

16.5 16.5

/ 101.8 / 84.8 1.20

s

s sy sn S

 



        
   

  
 

 Eq. (10-21): ns ≥ 1.2,   ns = 1.2 It is solid-safe (basis of design).   O.K. 

 

 Eq. (10-13) and Table 10-2: L0 ≤ (L0)cr  1.78 in  4.208 in   O.K.  

______________________________________________________________________________ 

 

10-9  Given: A228 music wire, sq. and grd. ends, d = 0.007 in, OD = 0.038 in, L0 = 0.58 in,  

 Nt = 38 coils. 

 

    D = OD  d = 0.038  0.007 = 0.031 in 

 Eq. (10-1): C = D/d = 0.031/0.007 = 4.429 

 Eq. (10-5): 
 
 

4 4.429 24 2
1.340

4 3 4 4.429 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 38  2 = 36 coils (high) 

 Table 10-5: G = 12.0 Mpsi 

 Eq. (10-9): 
 

 
4 64

3 3

0.007 12.0 10
3.358 lbf/in

8 8 0.031 36a

d G
k

D N
    

 Table (10-1): Ls = dNt = 0.007(38) = 0.266 in 

    ys = L0  Ls = 0.58  0.266 = 0.314 in 

    Fs = kys = 3.358(0.314) = 1.054 lbf 

 Eq. (10-7): 
 
   3

3 3

8 1.054 0.0318
1.340 325.1 10 psi

0.007

s
s B

F D
K

d


 
       (1) 

 Table 10-4: A = 201 kpsiinm
,  m = 0.145 
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 Eq. (10-14): 
0.145

201
412.7 kpsi

0.007
ut m

A
S

d
    

 Table 10-6: Ssy = 0.45 Sut = 0.45(412.7) = 185.7 kpsi 

 

 s  > Ssy, that is, 325.1 > 185.7 kpsi, the spring is not solid-safe. Return to Eq. (1) with  

 Fs = kys  and s  = Ssy /ns, and solve for ys, giving 

    
     

   

3 33 185.7 10 /1.2 0.007/
0.149 in

8 8 1.340 3.358 0.031

sy s

s

B

S n d
y

K kD

       

 The free length should be wound to 

 

    L0 = Ls + ys = 0.266 + 0.149 = 0.415 in       Ans. 

 

 This only addresses the solid-safe criteria. There are additional problems. 

______________________________________________________________________________ 

 

10-10  Given: B159 phosphor-bronze, sq. and grd. ends, d = 0.014 in, OD = 0.128 in, L0 = 0.50 

in, Nt = 16 coils. 

 

    D = OD  d = 0.128  0.014 = 0.114 in 

 Eq. (10-1): C = D/d = 0.114/0.014 = 8.143 

 Eq. (10-5): 
 
 

4 8.143 24 2
1.169

4 3 4 8.143 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 16  2 = 14 coils 

 Table 10-5: G = 6 Mpsi 

 Eq. (10-9): 
 

 
4 64

3 3

0.014 6 10
1.389 lbf/in

8 8 0.114 14a

d G
k

D N
    

 Table (10-1): Ls = dNt = 0.014(16) = 0.224 in 

    ys = L0  Ls = 0.50  0.224 = 0.276 in 

    Fs = kys = 1.389(0.276) = 0.3834 lbf 

 Eq. (10-7): 
 

   3

3 3

8 0.3834 0.1148
1.169 47.42 10 psi

0.014

s
s B

F D
K

d


 
       (1) 

 Table 10-4: A = 145 kpsiinm
,  m = 0 

 Eq. (10-14): 
0

145
145 kpsi

0.014
ut m

A
S

d
    

 Table 10-6: Ssy = 0.35 Sut = 0.35(135) = 47.25 kpsi 

 

 s  > Ssy, that is, 47.42 > 47.25 kpsi, the spring is not solid-safe. Return to Eq. (1) with  

 Fs = kys  and s  = Ssy /ns, and solve for ys, giving 

    
     

   

3 33 47.25 10 /1.2 0.014/
0.229 in

8 8 1.169 1.389 0.114

sy s

s

B

S n d
y

K kD

       

 The free length should be wound to 
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    L0 = Ls + ys = 0.224 + 0.229 = 0.453 in       Ans. 

______________________________________________________________________________ 

 

10-11  Given: A313 stainless steel, sq. and grd. ends, d = 0.050 in, OD = 0.250 in, L0 = 0.68 in, 

Nt = 11.2 coils. 

 

    D = OD  d = 0.250  0.050 = 0.200 in 

 Eq. (10-1): C = D/d = 0.200/0.050 = 4 

 Eq. (10-5): 
 
 

4 4 24 2
1.385

4 3 4 4 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 11.2  2 = 9.2 coils 

 Table 10-5: G = 10 Mpsi 

 Eq. (10-9): 
 

 
4 64

3 3

0.050 10 10
106.1 lbf/in

8 8 0.2 9.2a

d G
k

D N
    

 Table (10-1): Ls = dNt = 0.050(11.2) = 0.56 in 

    ys = L0  Ls = 0.68  0.56 = 0.12 in 

    Fs = kys = 106.1(0.12) = 12.73 lbf 

 Eq. (10-7): 
 
   3

3 3

8 12.73 0.28
1.385 71.8 10 psi

0.050

s
s B

F D
K

d


 
    

 Table 10-4: A = 169 kpsiinm
,  m = 0.146 

 Eq. (10-14): 
0.146

169
261.7 kpsi

0.050
ut m

A
S

d
    

 Table 10-6: Ssy = 0.35 Sut = 0.35(261.7) = 91.6 kpsi 

 

    
91.6

1.28
71.8

sy

s

s

S
n


       Spring is solid-safe (ns > 1.2)      Ans. 

______________________________________________________________________________ 

 

10-12  Given: A227 hard-drawn wire, sq. and grd. ends, d = 0.148 in, OD = 2.12 in, L0 = 2.5 in, 

Nt = 5.75 coils. 

 

    D = OD  d = 2.12  0.148 = 1.972 in 

 Eq. (10-1): C = D/d = 1.972/0.148 = 13.32 (high) 

 Eq. (10-5): 
 
 

4 13.32 24 2
1.099

4 3 4 13.32 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 5.75  2 = 3.75 coils 

 Table 10-5: G = 11.4 Mpsi 

 Eq. (10-9): 
 

 
4 64

3 3

0.148 11.4 10
23.77 lbf/in

8 8 1.972 3.75a

d G
k

D N
    

 Table (10-1): Ls = dNt = 0.148(5.75) = 0.851 in 

    ys = L0  Ls = 2.5  0.851 = 1.649 in 
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    Fs = kys = 23.77(1.649) = 39.20 lbf 

 Eq. (10-7): 
 
   3

3 3

8 39.20 1.9728
1.099 66.7 10 psi

0.148

s
s B

F D
K

d


 
    

 Table 10-4: A = 140 kpsiinm
,  m = 0.190 

 Eq. (10-14): 
0.190

140
201.3 kpsi

0.148
ut m

A
S

d
    

 Table 10-6: Ssy = 0.35 Sut = 0.45(201.3) = 90.6 kpsi 

 

    
90.6

1.36
66.7

sy

s

s

S
n


       Spring is solid-safe (ns > 1.2)       Ans. 

______________________________________________________________________________ 

 

10-13  Given: A229 OQ&T steel, sq. and grd. ends, d = 0.138 in, OD = 0.92 in, L0 = 2.86 in,  

 Nt = 12 coils. 

    D = OD  d = 0.92  0.138 = 0.782 in 

 

 Eq. (10-1): C = D/d = 0.782/0.138 = 5.667 

 Eq. (10-5): 
 
 

4 5.667 24 2
1.254

4 3 4 5.667 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 12  2 = 10 coils 

 

 A229 OQ&T steel is not given in Table 10-5. From Table A-5, for carbon steels, 

  G = 11.5 Mpsi. 

 Eq. (10-9): 
 

 
4 64

3 3

0.138 11.5 10
109.0 lbf/in

8 8 0.782 10a

d G
k

D N
    

 Table (10-1): Ls = dNt = 0.138(12) = 1.656 in 

    ys = L0  Ls = 2.86  1.656 = 1.204 in 

    Fs = kys = 109.0(1.204) = 131.2 lbf 

 Eq. (10-7): 
 
   3

3 3

8 131.2 0.7828
1.254 124.7 10 psi

0.138

s
s B

F D
K

d


 
             (1) 

 Table 10-4: A = 147 kpsiinm
,  m = 0.187 

 Eq. (10-14): 
0.187

147
212.9 kpsi

0.138
ut m

A
S

d
    

 Table 10-6: Ssy = 0.50 Sut = 0.50(212.9) = 106.5 kpsi 

 

 s  > Ssy, that is, 124.7 > 106.5 kpsi, the spring is not solid-safe. Return to Eq. (1) with  

 Fs = kys  and s  = Ssy /ns, and solve for ys, giving 

    
     

   

3 33 106.5 10 /1.2 0.138/
0.857 in

8 8 1.254 109.0 0.782

sy s

s

B

S n d
y

K kD

       

 The free length should be wound to 
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    L0 = Ls + ys = 1.656 + 0.857 = 2.51 in       Ans. 

______________________________________________________________________________ 

 

10-14  Given: A232 chrome-vanadium steel, sq. and grd. ends, d = 0.185 in, OD = 2.75 in, L0 = 

7.5 in, Nt = 8 coils. 

 

    D = OD  d = 2.75  0.185 = 2.565 in 

 Eq. (10-1): C = D/d = 2.565/0.185 = 13.86 (high) 

 Eq. (10-5): 
 
 

4 13.86 24 2
1.095

4 3 4 13.86 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 8  2 = 6 coils 

 

 Table 10-5: G = 11.2 Mpsi. 

 Eq. (10-9): 
 

 
4 64

3 3

0.185 11.2 10
16.20 lbf/in

8 8 2.565 6a

d G
k

D N
    

 Table (10-1): Ls = dNt = 0.185(8) = 1.48 in 

    ys = L0  Ls = 7.5  1.48 = 6.02 in 

    Fs = kys = 16.20(6.02) = 97.5 lbf 

 Eq. (10-7): 
 
   3

3 3

8 97.5 2.5658
1.095 110.1 10 psi

0.185

s
s B

F D
K

d


 
             (1) 

 Table 10-4: A = 169 kpsiinm
,  m = 0.168 

 Eq. (10-14): 
0.168

169
224.4 kpsi

0.185
ut m

A
S

d
    

 Table 10-6: Ssy = 0.50 Sut = 0.50(224.4) = 112.2 kpsi 

    
112.2

1.02
110.1

sy

s

s

S
n


       Spring is not solid-safe (ns < 1.2) 

 Return to Eq. (1) with Fs = kys  and s  = Ssy /ns, and solve for ys, giving 

    
     

   

3 33 112.2 10 /1.2 0.185/
5.109 in

8 8 1.095 16.20 2.565

sy s

s

B

S n d
y

K kD

       

 The free length should be wound to 

 

    L0 = Ls + ys = 1.48 + 5.109 = 6.59 in       Ans. 

 

______________________________________________________________________________ 

 

10-15  Given: A313 stainless steel, sq. and grd. ends, d = 0.25 mm, OD = 0.95 mm, L0 = 12.1 

mm, Nt = 38 coils. 

    D = OD  d = 0.95  0.25 = 0.7 mm 

 Eq. (10-1): C = D/d = 0.7/0.25 = 2.8 (low) 

 Eq. (10-5): 
 
 

4 2.8 24 2
1.610

4 3 4 2.8 3
B

C
K

C


  

 
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 Table (10-1): Na = Nt  2 = 38  2 = 36 coils (high) 

 

 Table 10-5:  G = 69.0(10
3
) MPa. 

 Eq. (10-9): 
 

 
4 34

3 3

0.25 69.0 10
2.728 N/mm

8 8 0.7 36a

d G
k

D N
    

 Table (10-1): Ls = dNt = 0.25(38) = 9.5 mm 

    ys = L0  Ls = 12.1  9.5 = 2.6 mm 

    Fs = kys = 2.728(2.6) = 7.093 N 

 Eq. (10-7): 
 
 3 3

8 7.093 0.78
1.610 1303 MPa

0.25

s
s B

F D
K

d


 
             (1) 

 Table 10-4 (dia. less than table): A = 1867 MPamm
m
,  m = 0.146 

 Eq. (10-14): 
0.146

1867
2286 MPa

0.25
ut m

A
S

d
    

 Table 10-6: Ssy = 0.35 Sut = 0.35(2286) = 734 MPa 

 

 s  > Ssy, that is, 1303 > 734 MPa, the spring is not solid-safe. Return to Eq. (1) with  

 Fs = kys  and s  = Ssy /ns, and solve for ys, giving 

    
     

   

33 734 /1.2 0.25/
1.22 mm

8 8 1.610 2.728 0.7

sy s

s

B

S n d
y

K kD


    

 The free length should be wound to 

 

    L0 = Ls + ys = 9.5 + 1.22 = 10.72 mm       Ans. 

 

 This only addresses the solid-safe criteria. There are additional problems. 

______________________________________________________________________________ 

 

10-16  Given: A228 music wire, sq. and grd. ends, d = 1.2 mm, OD = 6.5 mm, L0 = 15.7 mm,  

 Nt = 10.2 coils. 

    D = OD  d = 6.5  1.2 = 5.3 mm 

 Eq. (10-1): C = D/d = 5.3/1.2 = 4.417 

 Eq. (10-5): 
 
 

4 4.417 24 2
1.368

4 3 4 4.417 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 10.2  2 = 8.2 coils 

 

 Table 10-5 (d = 1.2/25.4 = 0.0472 in):  G = 81.7(10
3
) MPa. 

 Eq. (10-9): 
 
 
4 34

3 3

1.2 81.7 10
17.35 N/mm

8 8 5.3 8.2a

d G
k

D N
    

 Table (10-1): Ls = dNt = 1.2(10.2) = 12.24 mm 

    ys = L0  Ls = 15.7  12.24 = 3.46 mm 

    Fs = kys = 17.35(3.46) = 60.03 N 
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 Eq. (10-7): 
 

 3 3

8 60.03 5.38
1.368 641.4 MPa

1.2

s
s B

F D
K

d


 
             (1) 

 Table 10-4: A = 2211 MPamm
m
,  m = 0.145 

 Eq. (10-14): 
0.145

2211
2153 MPa

1.2
ut m

A
S

d
    

 Table 10-6: Ssy = 0.45 Sut = 0.45(2153) = 969 MPa 

 

    
969

1.51
641.4

sy

s

s

S
n


       Spring is solid-safe (ns > 1.2)     Ans. 

______________________________________________________________________________ 

 

10-17  Given: A229 OQ&T steel, sq. and grd. ends, d = 3.5 mm, OD = 50.6 mm, L0 = 75.5 mm,  

 Nt = 5.5 coils. 

 

    D = OD  d = 50.6  3.5 = 47.1 mm 

 Eq. (10-1): C = D/d = 47.1/3.5 = 13.46 (high) 

 Eq. (10-5): 
 
 

4 13.46 24 2
1.098

4 3 4 13.46 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 5.5  2 = 3.5 coils 

 

 A229 OQ&T steel is not given in Table 10-5. From Table A-5, for carbon steels, 

  G = 79.3(10
3
) MPa. 

 Eq. (10-9): 
 

 
4 34

3 3

3.5 79.3 10
4.067 N/mm

8 8 47.1 3.5a

d G
k

D N
    

 Table (10-1): Ls = dNt = 3.5(5.5) = 19.25 mm 

    ys = L0  Ls = 75.5  19.25 = 56.25 mm 

    Fs = kys = 4.067(56.25) = 228.8 N 

 Eq. (10-7): 
 

 3 3

8 228.8 47.18
1.098 702.8 MPa

3.5

s
s B

F D
K

d


 
             (1) 

 Table 10-4: A = 1855 MPamm
m
,  m = 0.187 

 Eq. (10-14): 
0.187

1855
1468 MPa

3.5
ut m

A
S

d
    

 Table 10-6: Ssy = 0.50 Sut = 0.50(1468) = 734 MPa 

    
734

1.04
702.8

sy

s

s

S
n


       Spring is not solid-safe (ns < 1.2) 

 Return to Eq. (1) with Fs = kys  and s  = Ssy /ns, and solve for ys, giving 

    
     

   

33 734 /1.2 3.5/
48.96 mm

8 8 1.098 4.067 47.1

sy s

s

B

S n d
y

K kD


    

 The free length should be wound to 
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    L0 = Ls + ys = 19.25 + 48.96 = 68.2 mm       Ans. 

______________________________________________________________________________ 

 

10-18  Given: B159 phosphor-bronze, sq. and grd. ends, d = 3.8 mm, OD = 31.4 mm, L0 = 71.4 

mm, Nt = 12.8 coils. 

 

    D = OD  d = 31.4  3.8 = 27.6 mm 

 Eq. (10-1): C = D/d = 27.6/3.8 = 7.263 

 Eq. (10-5): 
 
 

4 7.263 24 2
1.192

4 3 4 7.263 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 12.8  2 = 10.8 coils 

 

 Table 10-5:  G = 41.4(10
3
) MPa. 

 Eq. (10-9): 
 

 
4 34

3 3

3.8 41.4 10
4.752 N/mm

8 8 27.6 10.8a

d G
k

D N
    

 Table (10-1): Ls = dNt = 3.8(12.8) = 48.64 mm 

    ys = L0  Ls = 71.4  48.64 = 22.76 mm 

    Fs = kys = 4.752(22.76) = 108.2 N 

 Eq. (10-7): 
 

 3 3

8 108.2 27.68
1.192 165.2 MPa

3.8

s
s B

F D
K

d


 
             (1) 

 Table 10-4 (d = 3.8/25.4 = 0.150 in):      A = 932 MPamm
m
,  m = 0.064 

 Eq. (10-14): 
0.064

932
855.7 MPa

3.8
ut m

A
S

d
    

 Table 10-6: Ssy = 0.35 Sut = 0.35(855.7) = 299.5 MPa 

    
299.5

1.81
165.2

sy

s

s

S
n


       Spring is solid-safe (ns > 1.2)   Ans.  

______________________________________________________________________________ 

 

10-19  Given: A232 chrome-vanadium steel, sq. and grd. ends, d = 4.5 mm, OD = 69.2 mm,  

 L0 = 215.6 mm, Nt = 8.2 coils. 

 

    D = OD  d = 69.2  4.5 = 64.7 mm 

 Eq. (10-1): C = D/d = 64.7/4.5 = 14.38 (high) 

 Eq. (10-5): 
 
 

4 14.38 24 2
1.092

4 3 4 14.38 3
B

C
K

C


  

 
 

 Table (10-1): Na = Nt  2 = 8.2  2 = 6.2 coils 

 

 Table 10-5:  G = 77.2(10
3
) MPa. 

 Eq. (10-9): 
 

 
4 34

3 3

4.5 77.2 10
2.357 N/mm

8 8 64.7 6.2a

d G
k

D N
    

 Table (10-1): Ls = dNt = 4.5(8.2) = 36.9 mm 

Chapter 10 - Rev. A, Page 13/41 



    ys = L0  Ls = 215.6  36.9 = 178.7 mm 

    Fs = kys = 2.357(178.7) = 421.2 N 

 Eq. (10-7): 
 

 3 3

8 421.2 64.78
1.092 832 MPa

4.5

s
s B

F D
K

d


 
             (1) 

 Table 10-4:      A = 2005 MPamm
m
,  m = 0.168 

 Eq. (10-14): 
0.168

2005
1557 MPa

4.5
ut m

A
S

d
    

 Table 10-6: Ssy = 0.50 Sut = 0.50(1557) = 779 MPa 

 

 s  > Ssy, that is, 832 > 779 MPa, the spring is not solid-safe. Return to Eq. (1) with  

 Fs = kys  and s  = Ssy /ns, and solve for ys, giving 

    
     

   

33 779 /1.2 4.5/
139.5 mm

8 8 1.092 2.357 64.7

sy s

s

B

S n d
y

K kD


    

 The free length should be wound to 

 

    L0 = Ls + ys = 36.9 + 139.5 = 176.4 mm       Ans. 

 

 This only addresses the solid-safe criteria. There are additional problems. 

______________________________________________________________________________ 

 

10-20  Given: A227 HD steel. 

 From the figure: L0 = 4.75 in, OD = 2 in, and d = 0.135 in. Thus 

D = OD  d = 2  0.135 = 1.865 in 

 (a) By counting, Nt = 12.5 coils. Since the ends are squared along 1/4 turn on each end, 

 

12.5 0.5 12 turns     .

4.75 / 12 0.396 in     .
aN Ans

p Ans

  
 

 

 

 The solid stack is 13 wire diameters  

 

Ls = 13(0.135) = 1.755 in     Ans. 

 
 (b) From Table 10-5, G = 11.4 Mpsi 

 

 
 

4 64

3 3

0.135 (11.4) 10
6.08 lbf/in     .

8 8 1.865 (12)a

d G
k A

D N
   ns  

 

 (c) Fs = k(L0 - Ls ) = 6.08(4.75  1.755)(10
-3

) = 18.2 lbf     Ans. 

 (d) C = D/d = 1.865/0.135 = 13.81 
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   3

3 3

4(13.81) 2
1.096

4(13.81) 3

8 8(18.2)(1.865)
1.096 38.5 10  psi 38.5 kpsi     .

0.135

B

s
s B

K

F D
K A

d


 


 



    ns  

______________________________________________________________________________

 

 

10-21  For the wire diameter analyzed, G = 11.75 Mpsi per Table 10-5. Use squared and ground 

ends. The following is a spread-sheet study using Fig. 10-3 for parts (a) and (b). For Na, 

k = Fmax /y = 20/2 = 10 lbf/in. For s, F = Fs = 20(1 + ) = 20(1 + 0.15) = 23 lbf. 

 

(a) Spring over a Rod (b) Spring in a Hole 

Source  Parameter Values  Source  Parameter Values  

 d 0.075 0.080 0.085  d 0.075 0.080 0.085 

 ID 0.800 0.800 0.800  OD 0.950 0.950 0.950 

 D 0.875 0.880 0.885  D 0.875 0.870 0.865 

Eq. (10-1) C 11.667 11.000 10.412 Eq. (10-1) C 11.667 10.875 10.176 

Eq. (10-9) Na 6.937 8.828 11.061 Eq. (10-9) Na 6.937 9.136 11.846 

Table 10-1 N t 8.937 10.828 13.061 Table 10-1 N t 8.937 11.136 13.846 

Table 10-1 Ls 0.670 0.866 1.110 Table 10-1 Ls 0.670 0.891 1.177 

1.15y + Ls L0 2.970 3.166 3.410 1.15y + Ls L0 2.970 3.191 3.477 

Eq. (10-13) (L0)cr 4.603 4.629 4.655 Eq. (10-

13) 

(L0)cr 4.603 4.576 4.550 

Table 10-4 A 201.000 201.000 201.000 Table 10-4 A 201.000 201.000 201.000 

Table 10-4 m 0.145 0.145 0.145 Table 10-4 m 0.145 0.145 0.145 

Eq. (10-14) Sut 292.626 289.900 287.363 Eq. (10-

14) 

Sut 292.626 289.900 287.363 

Table 10-6 Ssy 131.681 130.455 129.313 Table 10-6 Ssy 131.681 130.455 129.313 

Eq. (10-5) KB 1.115 1.122 1.129 Eq. (10-5) KB 1.115 1.123 1.133 

Eq. (10-7) s 135.335 112.948 95.293 Eq. (10-7) s 135.335 111.787 93.434 

Eq. (10-3) ns 0.973 1.155 1.357 Eq. (10-3) ns 0.973 1.167 1.384 

Eq. (10-22) fom 0.282 0.391 0.536 Eq. (10-

22) 

fom 0.282 0.398 0.555 

For ns ≥ 1.2, the optimal size is d = 0.085 in for both cases. 

______________________________________________________________________________ 

 
10-22  In Prob. 10-21, there is an advantage of first selecting d as one can select from the 

available sizes (Table A-28). Selecting C first, requires a calculation of d where then a 

size must be selected from Table A-28.  

 Consider part (a) of the problem. It is required that   

 

     ID = D  d = 0.800 in.  (1) 

 

 From Eq. (10-1),  D = Cd. Substituting this into the first equation yields 

 

     
0.800

1
d

C
    (2) 


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 Starting with C = 10, from Eq. (2) we find that d = 0.089 in. From Table A-28, the closest 

diameter is d = 0.090 in. Substituting this back into Eq. (1) gives D = 0.890 in, with C = 

0.890/0.090 = 9.889, which are acceptable. From this point the solution is the same as 

Prob. 10-21. For part (b), use 

     OD = D + d = 0.950 in.  (3) 

 

 and,   
0.800

1C



   (4) d

 

  
 (a) Spring over a rod (b) Spring in a Hole 

Source   Parameter  Values Source Parameter Values 

  C 10.000 10.5   C 10.000 

Eq. (2) d 0.089 0.084 Eq. (4) d 0.086 

Table A-28 d 0.090 0.085 Table A-28 d 0.085 

Eq. (1) D 0.890 0.885 Eq. (3) D 0.865 

Eq. (10-1)  C 9.889 10.412   Eq. (10-1) C 10.176 

Eq. (10-9) Na 13.669 11.061 Eq. (10-9) Na 11.846 

Table 10-1 N t 15.669 13.061 Table 10-1 N t 13.846 

Table 10-1 Ls 1.410 1.110 Table 10-1 Ls 1.177 

1.15y + Ls L0 3.710 3.410 1.15y + Ls L0 3.477 

Eq. (10-13) (L0)cr 4.681 4.655 Eq. (10-13) (L0)cr 4.550 

Table 10-4 A 201.000 201.000 Table 10-4 A 201.000 

Table 10-4 m 0.145 0.145 Table 10-4 m 0.145 

Eq. (10-14) Sut 284.991 287.363 Eq. (10-14) Sut 287.363 

Table 10-6 Ssy 128.246 129.313 Table 10-6 Ssy 129.313 

Eq. (10-5) KB 1.135 1.128 Eq. (10-5) KB 1.135 

Eq. (10-7) s 81.167 95.223 Eq. (10-7) s 93.643 

ns = Ssy/s ns 1.580 1.358 ns = Ssy/s ns 1.381 

Eq. (10-22) fom -0.725 -0.536 Eq. (10-22) fom -0.555 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Again, for ns  1.2, the optimal size is  = 0.085 in. 

 

 Although this approach used less iterations than in Prob. 10-21, this was due to the initial 

values picked and not the approach. 

______________________________________________________________________________ 

 

10-23  One approach is to select A227 HD steel for its low cost. Try L0 = 48 mm, then for 

 y = 48  37.5 = 10.5 mm when F = 45 N. The spring rate is k = F/y = 45/10.5 = 4.286 

N/mm. 

 

 For a clearance of 1.25 mm with screw, ID = 10 + 1.25 = 11.25 mm. Starting with  

 d = 2 mm, 

    D = ID + d = 11.25 + 2 = 13.25 mm 

 

    C = D/d = 13.25/2 = 6.625 (acceptable) 

 

 Table 10-5 (d = 2/25.4 = 0.0787 in): G = 79.3 GPa 
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 Eq. (10-9): 
4 4 3

3 3

2 (79.3)10
15.9 coils

8 8(4.286)13.25
a

d G

kD
  N  

 

 Assume squared and closed. 

 Table 10-1: Nt = Na  + 2 = 15.9 + 2 = 17.9 coils 

    Ls = dNt = 2(17.9) =35.8 mm 

 

    ys = L0  Ls = 48  35.8 = 12.2 mm 

    Fs = kys = 4.286(12.2) = 52.29 N 

 
 Eq. (10-5): 

 
4 6.625 24 2

1.213B

C
K


  

4 3 4 6.625 3C  
 

 Eq. (10-7):  3

8 8(52.29
1.213s

s B

F D
K


 

3

)13.25
267.5 MPa

2d 

 
 

  
 

 Table 10-4: A = 1783 MPa · mm
m
,    m = 0.190 

 Eq. (10-14): 
0.190

1783
1563 MPa

2
ut m

A
S

d
    

 Table 10-6: Ssy = 0.45Sut = 0.45(1563) = 703.3 MPa 

 

    
703.3

2.63 1.2 . .
267.5

sy

s

s

S
n O K


     

 

 No other diameters in the given range work. So specify 

 

 A227-47 HD steel, d = 2 mm, D = 13.25 mm, ID = 11.25 mm, OD = 15.25 mm, squared 

and closed, Nt = 17.9 coils, Na = 15.9 coils, k = 4.286 N/mm, Ls = 35.8 mm, and L0 = 48 

mm.              Ans. 

______________________________________________________________________________ 

 

10-24  Select A227 HD steel for its low cost. Try L0 = 48 mm, then for y = 48  37.5 = 10.5 mm 

when F = 45 N. The spring rate is k = F/y = 45/10.5 = 4.286 N/mm. 

 

 For a clearance of 1.25 mm with screw, ID = 10 + 1.25 = 11.25 mm.  

 

    D  d = 11.25   (1) 

 

 and,  D =Cd    (2) 

 

 Starting with C = 8, gives D = 8d. Substitute into Eq. (1) resulting in  d = 1.607 mm. 

Selecting the nearest diameter in the given range, d = 1.6 mm. From this point, the 

calculations are shown in the third column of the spreadsheet output shown. We see that 

for d = 1.6 mm, the spring is not solid safe. Iterating on C we find that C = 6.5 provides 

acceptable results with the specifications 

 A227-47 HD steel, d = 2 mm, D = 13.25 mm, ID = 11.25 mm, OD = 15.25 mm, squared 
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and closed, Nt = 17.9 coils, Na = 15.9 coils, k = 4.286 N/mm, Ls = 35.8 mm, and L0 = 48 

mm.              Ans. 
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Source   Parameter Values 

  C 8.000 7 6.500 

Eq. (2) d 1.607 1.875 2.045 

Table A-28 d 1.600 1.800 2.000 

Eq. (1) D 12.850 13.050 13.250 

Eq. (10-1) C 8.031 7.250 6.625 

Eq. (10-9) Na 7.206 10.924 15.908 

Table 10-1 N t 9.206 12.924 17.908 

Table 10-1 Ls 14.730 23.264 35.815 

L0 Ls ys 33.270 24.736 12.185 

Fs = kys Fs 142.594 106.020 52.224 

Table 10-4 A 1783.000 1783.000 1783.000 

Table 10-4 m 0.190 0.190 0.190 

Eq. (10-14) Sut 1630.679 1594.592 1562.988 

Table 10-6 Ssy 733.806 717.566 703.345 

Eq. (10-5) KB 1.172 1.200 1.217 

Eq. (10-7) s 1335.568 724.943 268.145 

ns = Ssy/s ns 0.549 0.990 2.623 

 

 The only difference between selecting C first rather than d as was done in Prob. 10-23, is 

that once d is calculated, the closest wire size must be selected. Iterating on d uses 

available wire sizes from the beginning. 

______________________________________________________________________________ 

 

10-25  A stock spring catalog may have over two hundred pages of compression springs with up 

to 80 springs per page listed. 

 �  Students should be made aware that such catalogs exist. 

 �  Many springs are selected from catalogs rather than designed. 

 �  The wire size you want may not be listed. 

 �  Catalogs may also be available on disk or the web through search routines. For 

 example, disks are available from Century Spring at 

1 - (800) - 237 - 5225 

www.centuryspring.com 

 �  It is better to familiarize yourself with vendor resources rather than invent them 

 yourself. 

 �  Sample catalog pages can be given to students for study. 

______________________________________________________________________________ 

 

10-26  Given: ID = 0.6 in, C = 10, L0 = 5 in, Ls = 5  3 = 2 in, sq. & grd ends, unpeened, HD 

A227 wire. 

 

 (a) With ID = D  d = 0.6 in and C = D/d = 10 10 d  d = 0.6   d = 0.0667 in   Ans., 

  and D = 0.667 in. 

 (b) Table 10-1: Ls = dNt = 2 in   Nt = 2/0.0667 30 coils    Ans. 
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 (c) Table 10-1:  Na = Nt  2 = 30  2 = 28 coils 

  Table 10-5: G = 11.5 Mpsi 

 
 

  Eq. (10-9):  
4 64

3 3

0.0667 11.5 10
3.424 lbf/in .

8 8 0.667 28a

d G
k Ans

D N
    

 (d) Table 10-4: A = 140 kpsiinm
,     m = 0.190 

  Eq. (10-14): 
0.190

234.2 kpsi
0.0667

ut m
S

d
  

140A
 

 

 Table 10-6: Ssy = 0.45 Sut = 0.45 (234.2) = 105.4 kpsi 

 

    Fs = kys = 3.424(3) = 10.27 lbf 

 
 

4 10 24 2
1.135

4 3 4 10 3
B

C
K

C


  

 
 Eq. (10-5):   

 Eq. (10-7):           

   

 
 

 366.72 10 psi 66.72 kpsi

K

 

3 3

8 10.27 0.6678
1.135

0.0667

s
s B

F D

d 
 

 

105.4
1.58 .

66.72

sy

s

n A  s

S
ns



 

     

 (e) a = m = 0.5s = 0.5(66.72) = 33.36 kpsi, r = a / m = 1. Using the Gerber fatigue 

 failure criterion with Zimmerli data, 

 

  Eq. (10-30): Ssu = 0.67 Sut = 0.67(234.2) = 156.9 kpsi 

 

  The Gerber ordinate intercept for the Zimmerli data is 

    
 2 2

35
39.9 kpsi

1 / 1 55 /156.9

sa
e

sm su

S
S

S S
  

 
 

  Table 6-7, p. 307, 

 
    

 
 
 

2
2 2 2

1 1
2

i

su se
sa

se su

r S S
S

S rS

           
         

22 21 156.9 2 39.9
1 1 37.61 kps

 

2 39.9 1 156.9   
37.61

1.13 .
33.36

sa
f

a

S
n Ans


       

______________________________________________________________________________ 

10-27  Given: OD  0.9 in, C = 8, L0 = 3 in, Ls = 1 in, ys = 3  1 = 2 in, sq. ends, unpeened, 

music wire. 

 (a) Try OD = D + d = 0.9 in, C = D/d = 8    D = 8d    9d = 0.9   d = 0.1   Ans. 
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  D = 8(0.1) = 0.8 in 

 (b) Table 10-1: Ls = d (Nt + 1)    Nt =  Ls / d   1 = 1/0.1 1 = 9 coils    Ans. 

 

  Table 10-1: Na = Nt  2 = 9  2 = 7 coils 

 

 (c) Table 10-5:  G = 11.75 Mpsi 

 

 
 

  Eq. (10-9):  
4 64

3 3

0.1 11.75 10
40.98 lbf/in .

8 8 0.8 7a

d G
k Ans

D N
    

 (d)    Fs = kys = 40.98(2) = 81.96 lbf 

 

 
 

  Eq. (10-5):  
4 8 24 2

1.172
4 3 4 8 3

B

C
K

C


  

 
 

 

 
 

  Eq. (10-7):   3

3 3

8 81.96 0.88
1.172 195.7 10 psi 195.7 kpsi

0.1

s
s B

F D
K

d


 
     

  Table 10-4: A = 201 kpsiinm
,   m = 0.145 

 

  Eq. (10-14): 
0.145

201
280.7 kpsi

0.1
ut m

A

d
  S  

 

  Table 10-6: Ssy = 0.45 Sut = 0.45(280.7) = 126.3 kpsi 

 

126.3
0.645 .

sy

s

S
n A  

195.7s

ns


      

 

 (e)  a = m = s /2 = 195.7/2 = 97.85 kpsi. Using the Gerber fatigue failure criterion with 

 Zimmerli data, 

 

  Eq. (10-30): Ssu = 0.67 Sut = 0.67(280.7) = 188.1 kpsi 

 

  The Gerber ordinate intercept for the Zimmerli data is 

    
   2 2

/ 1 55 /188.1sm suS S 

35
36.83 kpsi

1

sa
e

S
S     

  Table 6-7, p. 307, 

    

 
 

 
 

2
2 2

22 2

2
1 1

2

1 188.1 2 38.3
1 1 36.83 kpsi

2 38.3 1 188.1

su se
sa

se su

r S S
S

S rS

           
         

   
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36.83
0.376

97.85

sa

a

   .f

S
n Ans


     

 

 Obviously, the spring is severely under designed and will fail statically and in fatigue. 

Increasing C would improve matters. Try C = 12. This yields ns = 1.83 and nf = 1.00. 

______________________________________________________________________________ 

 

10-28  Note to the Instructor: In the first printing of the text, the wire material was incorrectly 

identified as music wire instead of oil-tempered wire. This will be corrected in 

subsequent printings. We are sorry for any inconvenience. 

 

 Given: Fmax = 300 lbf, Fmin = 150 lbf, y = 1 in, OD = 2.1  0.2 = 1.9 in, C = 7, 

unpeened, sq. & grd., oil-tempered wire. 

 

 (a)    D = OD  d = 1.9  d    (1) 

 

     C = D/d = 7    D = 7d  (2) 

 

  Substitute Eq. (2) into (1) 

 

     7d = 1.9  d      d = 1.9/8 = 0.2375 in    Ans. 

 

 (b) From Eq. (2): D = 7d = 7(0.2375) = 1.663 in     Ans. 

 

300 150
150 lbf/in .

1

F
k A

y

 
  


 (c)     ns  

 

 (d) Table 10-5: G = 11.6 Mpsi 

 

 
 

  Eq. (10-9):  
4 64

3 3

0.2375 11.6 10
6.69 coils

8 8 1.663 150
a

d G
N

D k
    

 

  Table 10-1: Nt = Na  + 2 = 8.69 coils         Ans. 

 

 (e) Table 10-4:  A = 147 kpsiinm
,   m = 0.187 

  Eq. (10-14): 
0.187

147
192.3 kpsi

0.2375
ut m

A

d
  S  

  Table 10-6: Ssy = 0.5 Sut = 0.5(192.3) = 96.15 kpsi 

 

 
 

  Eq. (10-5):  
4 7 24 2

1.2
4 3 4 7 3

B

C
K

C


  

 
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  Eq. (10-7):  
3

8 s
s B sy

F D
K S

d



   

 

   
     

 

3 33 0.2375 96.15 10
253.5 lbf

sy

s

d S
F


    

8 8 1.2 1.663BK D

 

     ys = Fs / k = 253.5/150 = 1.69 in 

 

  Table 10-1: Ls = Nt d = 8.46(0.2375) = 2.01 in 

 

     L0 = Ls + ys = 2.01 + 1.69 = 3.70 in         Ans. 

______________________________________________________________________________ 

 

10-29  For a coil radius given by: 

 

2 1
1

-

2

R R
R R

N



      

 

 The torsion of a section is T = PR where dL = R d 

 

 

   

 

2
3

0

3
2

2 1
1

0

2
4

2 1
1

2 1
0

4 4 2 2

2 1 1 2 1 2

2 1

4 2 2

1 2 1 24

1 1
 

2

1 2

4 2

( )
2 ( ) 2

16
     ( )

32

N

P

N

N

p

U T
T dL PR d

P GJ P GJ

P R R
R d

GJ N

P N R R
R

GJ R R N

PN PN
R R R R R R

GJ R R GJ

PN
J d R R R R

Gd







 

 


 


 

 

 
  

 
   

 

                   

    


    

 



 

 
4

2 2

1 2 1 2

     .
16 ( )P

P d G
k Ans

N R R R R
 

 

______________________________________________________________________________ 

 

10-30  Given: Fmin = 4 lbf, Fmax = 18 lbf, k = 9.5 lbf/in, OD  2.5 in, nf = 1.5. 

 

 For a food service machinery application select A313 Stainless wire. 

 Table 10-5:  G = 10(10
6
) psi 

 Note that for   0.013 ≤ d ≤ 0.10 in  A = 169,  m = 0.146 

     0.10 < d ≤ 0.20 in  A = 128,  m = 0.263 

   
18 4 18 4

7 lbf ,    11 lbf ,    7 / 11
2 2

a m r
 

    F F  
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 Try,  
0.146

169
0.080 in,    244.4 kpsi

(0.08)
ut  d S  

   Ssu = 0.67Sut = 163.7 kpsi,      Ssy = 0.35Sut = 85.5 kpsi 

 

 Try unpeened using Zimmerli’s endurance data: Ssa = 35 kpsi, Ssm = 55 kpsi 

 Gerber:  
2 2

35
39.5 kpsi

1 ( / ) 1 (55 / 163.7)

sa
se

sm su

S

S S
  

 
S  

2
2 2

3 3

2 2

(7 / 11) (163.7) 2(39.5)
1 1 35.0 kpsi

2(39.5) (7 / 11)(163.7)

/ 35.0 / 1.5 23.3 kpsi

8 8(7)
(10 ) (10 ) 2.785 kpsi

(0.08 )

2(23.3) 2.785 2(23.3) 2.785

4(2.785) 4(2.785)

sa

sa f

a

S

S n

F

d

C




 

 

         
   

  

 
   

 

 
 

2

3

3 3

4 6

3

3(23.3)
6.97

4(2.785)

6.97(0.08) 0.558 in

4 2 4(6.97) 2
1.201

4 3 4(6.97) 3

8 8(7)(0.558)
1.201 (10 ) 23.3 kpsi

(0.08 )

35 / 23.3 1.50    checks

10(10 )(0.0

8

B

a
a B

f

a

D Cd

C
K

C

F D
K

d

n

Gd
N

kD


 



 
  

 
  

 
  

 
          

 

 

  

4

3

max max

max

0

0

8)
31.02 coils

8(9.5)(0.558)

31.02 2 33 coils,    0.08(33) 2.64 in

/ 18 / 9.5 1.895 in

(1 ) (1 0.15)(1.895) 2.179 in

2.64 2.179 4.819 in

2.63(0.558)
( ) 2.63 2.935 in

0.5

t s t

s

cr

s

N L dN

y F k

y y

L

D
L








     
  
    
  

  



2 2 2 2

1.15(18 / 7) 1.15(18 / 7)(23.3) 68.9 kpsi

/ 85.5 / 68.9 1.24

9.5(386)
109 Hz

(0.08 )(0.558)(31.02)(0.283)

a

s sy s

a

kg
f

d DN




  

 
  

  

n S
 

 

 These steps are easily implemented on a spreadsheet, as shown below, for different 

diameters. 
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  d1 d2 d3 d4 

d 0.080 0.0915 0.1055 0.1205

m 0.146 0.146 0.263 0.263

A 169.000 169.000 128 128

Sut 244.363 239.618 231.257 223.311

Ssu 163.723 160.544 154.942 149.618

Ssy 85.527 83.866 80.940 78.159

Sse 39.452 39.654 40.046 40.469

Ssa 35.000 35.000 35.000 35.000

 23.333 23.333 23.333 23.333

 2.785 2.129 1.602 1.228

C 6.977 9.603 13.244 17.702

D 0.558 0.879 1.397 2.133

KB 1.201 1.141 1.100 1.074

a 23.333 23.333 23.333 23.333

nf 1.500 1.500 1.500 1.500

Na 30.993 13.594 5.975 2.858

Nt 32.993 15.594 7.975 4.858

LS 2.639 1.427 0.841 0.585

ys 2.179 2.179 2.179 2.179

L0 4.818 3.606 3.020 2.764

(L0)cr 2.936 4.622 7.350 11.220

s 69.000 69.000 69.000 69.000

ns 1.240 1.215 1.173 1.133

f,(Hz) 108.895 114.578 118.863 121.775

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The shaded areas depict conditions outside the recommended design conditions. Thus, 

one spring is satisfactory. The specifications are: A313 stainless wire, unpeened, squared 

and ground, d = 0.0915 in, OD = 0.879 + 0.092 = 0.971 in, L0 = 3.606 in, and Nt = 15.59 

turns        Ans. 

______________________________________________________________________________ 

 

10-31  The steps are the same as in Prob. 10-23 except that the Gerber-Zimmerli criterion is 

replaced with Goodman-Zimmerli: 

 

 1

sa
se

sm su

S
S

S S



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 The problem then proceeds as in Prob. 10-23. The results for the wire sizes are shown 

below (see solution to Prob. 10-23 for additional details). 

 

Iteration of d for the first trial 

 d1 d2 d3 d4  d1 d2 d3 d4 

d 0.080 0.0915 0.1055 0.1205 d 0.080 0.0915 0.1055 0.1205

m 0.146 0.146 0.263 0.263 KB 1.151 1.108 1.078 1.058

A 169.000 169.000 128.000 128.000 a 29.008 29.040 29.090 29.127

Sut 244.363 239.618 231.257 223.311 nf 1.500 1.500 1.500 1.500

Ssu 163.723 160.544 154.942 149.618 Na 14.191 6.456 2.899 1.404

Ssy 85.527 83.866 80.940 78.159 Nt 16.191 8.456 4.899 3.404

Sse 52.706 53.239 54.261 55.345 Ls 1.295 0.774 0.517 0.410

Ssa 43.513 43.560 43.634 43.691 ymax 2.875 2.875 2.875 2.875

 29.008 29.040 29.090 29.127 L0 4.170 3.649 3.392 3.285

 2.785 2.129 1.602 1.228 (L0)cr 3.809 5.924 9.354 14.219

C 9.052 12.309 16.856 22.433 s 85.782 85.876 86.022 86.133

D 0.724 1.126 1.778 2.703 ns 0.997 0.977 0.941 0.907

    f (Hz) 140.040 145.559 149.938 152.966

 Without checking all of the design conditions, it is obvious that none of the wire sizes 

satisfy ns ≥ 1.2. Also, the Gerber line is closer to the yield line than the Goodman. Setting 

nf = 1.5 for Goodman makes it impossible to reach the yield line (ns < 1) . The table 

below uses nf = 2. 

 

Iteration of d for the second trial 

 d1 d2 d3 d4  d1 d2 d3 d4 

d 0.080 0.0915 0.1055 0.1205 d 0.080 0.0915 0.1055 0.1205

m 0.146 0.146 0.263 0.263 KB 1.221 1.154 1.108 1.079

A 169.000 169.000 128.000 128.000 a 21.756 21.780 21.817 21.845

Sut 244.363 239.618 231.257 223.311 nf 2.000 2.000 2.000 2.000

Ssu 163.723 160.544 154.942 149.618 Na 40.243 17.286 7.475 3.539

Ssy 85.527 83.866 80.940 78.159 Nt 42.243 19.286 9.475 5.539

Sse 52.706 53.239 54.261 55.345 Ls 3.379 1.765 1.000 0.667

Ssa 43.513 43.560 43.634 43.691 ymax 2.875 2.875 2.875 2.875

 21.756 21.780 21.817 21.845 L0 6.254 4.640 3.875 3.542

 2.785 2.129 1.602 1.228 (L0)cr 2.691 4.266 6.821 10.449

C 6.395 8.864 12.292 16.485 s 64.336 64.407 64.517 64.600

D 0.512 0.811 1.297 1.986 ns 1.329 1.302 1.255 1.210

    f (Hz) 98.936 104.827 109.340 112.409

 

 The satisfactory spring has design specifications of: A313 stainless wire, unpeened, 

squared and ground, d = 0.0915 in, OD = 0.811 + 0.092 = 0.903 in, L0 = 4.266 in, and  

 .Nt = 19.6 turns.    Ans. 

______________________________________________________________________________ 

 

10-32  This is the same as Prob. 10-30 since Ssa = 35 kpsi. Therefore, the specifications are: 
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A313 stainless wire, unpeened, squared and ground, d = 0.0915 in, OD = 0.879 + 0.092 = 

0.971 in, L0 = 3.606 in, and Nt = 15.84 turns        Ans. 

______________________________________________________________________________ 

 

10-33  For the Gerber fatigue-failure criterion, Ssu = 0.67Sut , 

 

2
2 2

2

2
,       1 1

1 ( / ) 2

sa su se
se sa

sm su se su

S r S S
S S

S S S rS

            
 

 
 

 The equation for Ssa is the basic difference. The last 2 columns of diameters of Ex. 10-5 

are presented below with additional calculations. 

 

d  0.105  0.112 d 0.105 0.112 

Sut 278.691 276.096 Na 8.915 6.190 

Ssu 186.723 184.984 Ls 1.146 0.917 

Sse 38.325 38.394 L0 3.446 3.217 

Ssy 125.411 124.243 (L0)cr 6.630 8.160 

Ssa 34.658 34.652 KB 1.111 1.095 

 23.105 23.101 a 23.105 23.101 

 1.732 1.523 nf 1.500 1.500 

C 12.004 13.851 s 70.855 70.844 

D 1.260 1.551 ns 1.770 1.754 

ID 1.155 1.439 fn 105.433 106.922 

OD 1.365 1.663 fom 0.973 1.022 

 

 There are only slight changes in the results. 

______________________________________________________________________________ 

 

10-34  As in Prob. 10-35, the basic change is Ssa. 

 For Goodman,  
1 - ( / )

sa
se

sm su

S
S S


S

 

 Recalculate Ssa with 

se su
sa

su se

rS S
S

rS S



      

 

 Calculations for the last 2 diameters of Ex. 10-5 are given below. 
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d 0.105 0.112 d 0.105 0.112 

Sut 278.691 276.096 Na 9.153 6.353 

Ssu 186.723 184.984 Ls 1.171 0.936 

Sse 49.614 49.810 L0 3.471 3.236 

Ssy 125.411 124.243 (L0)cr 6.572 8.090 

Ssa 34.386 34.380 KB 1.112 1.096 

 22.924 22.920 a 22.924 22.920 

 1.732 1.523 nf 1.500 1.500 

C 11.899 13.732 s 70.301 70.289 

D 1.249 1.538 ns 1.784 1.768 

ID 1.144 1.426 fn 104.509 106.000 

OD 1.354 1.650 fom 0.986 1.034 

 

There are only slight differences in the results. 

______________________________________________________________________________ 

 

10-35  Use: E = 28.6 Mpsi, G = 11.5 Mpsi, A = 140 kpsi · in
m
 , m = 0.190, rel cost = 1. 

 Try   
0.190

140
0.067 ,      234.0 kpsi

(0.067)
utd in S    

 Table 10-6:  Ssy = 0.45Sut = 105.3 kpsi 

 Table 10-7:  Sy = 0.75Sut = 175.5 kpsi 

 Eq. (10-34) with D/d = C and C1 = C 

max ySF
2

22

max

2

2

max

[( ) (16 ) 4]

4 1
(16 ) 4

4 ( 1)

4 1 ( 1) 1
4

A A

y

y

y

y

y

K C
d n

d SC C
C

C C n F

d S
C C C

n F








  

 
 



 
      

 

 

    

2 2

2

max max

1 1
1 1 2 0

4 4 4 4

y y

y y

d S d S
C C

n F n F

    
           

   

    

2
2 2 2

max max max

2 3

2
2 3 2 3

1
2   take positive root

2 16 16 4

1 (0.067 )(175.5)(10 )
  

2 16(1.5)(18)

(0.067) (175.5)(10 ) (0.067) (175.5)(10 )
           

16(1.5)(18) 4(

y y y

y y y

d S d S d S
C

n F n F n F

  



 

            


 


 
  

 
2 4.590

1.5)(18)

 

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 
3 3

4.59 0.067 0.3075 in

33 500 3
1000 4

8 8 exp(0.105 ) 6.5

i
i

D Cd

d d C
F

D D C

  
  

        

 

 
 

 Use the lowest Fi in the preferred range. This results in the best fom. 

 
3(0.067) 33 500 4.590 3

1000 4 6.505 lbf
8(0.3075) exp[0.105(4.590)] 6.5

iF
        

  
 

 

 For simplicity, we will round up to the next integer or half integer. Therefore, use Fi = 7 

lbf 

4 4 6

3 3

0

18 lbf

18 7
22 lbf/in

0.5

(0.067) (11.5)(10 )
45.28 turns

8 8(22)(0.3075)

11.5
45.28 44.88 turns

28.6
(2 1 ) [2(4.590) 1 44.88](0.067) 3.555 in

3.555 0.5 4.055 in

a

b a

b

k

d G
N

kD

G
N N

E
L C N d

L


 

  

    

      
  

 

 

 Body:  
4 2 4(4.590) 2

1.326
4 3 4(4.590) 3

B

C

C

 


 
K    

      

3max
max 3 3

body

max

2
2 2

2

2

8  8(1.326)(18)(0.3075)
(10 ) 62.1 kpsi

(0.067)

105.3
( ) 1.70

62.1

2 2(0.134)
2 2(0.067) 0.134 in,     4

0.067
4 1 4(4) 1

( ) 1.25
4

( )

B

sy

y

B

K F D

d

S
n

r
r d C

d
C

K
C

F D
K


 





  

  

     

 
  

 

  max

3

4 4(4) 4

8

 

B B
d  

38(18)(0.3075)
1.25 (10 ) 58.58 kpsi

( )

fom (1 0.160
4 4

sy

y B

B

S
n



 
 

 

3

2 2 2 2

(0.067)

105.3
1.80

58.58

( 2) (0.067) (44.88 2)(0.3075)
) bd N D



 

 
 

  

 
   

 

 Several diameters, evaluated using a spreadsheet, are shown below. 
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d 0.067 0.072 0.076 0.081 0.085 0.09 0.095 0.104

Sut 233.977 230.799 228.441 225.692 223.634 221.219 218.958 215.224

Ssy 105.290 103.860 102.798 101.561 100.635 99.548 98.531 96.851

Sy 175.483 173.100 171.331 169.269 167.726 165.914 164.218 161.418

C 4.589 5.412 6.099 6.993 7.738 8.708 9.721 11.650

D 0.307 0.390 0.463 0.566 0.658 0.784 0.923 1.212

Fi (calc) 6.505 5.773 5.257 4.675 4.251 3.764 3.320 2.621

Fi (rd) 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0

k 22.000 24.000 25.000 26.000 27.000 28.000 29.000 30.000

Na 45.29 27.20 19.27 13.10 9.77 7.00 5.13 3.15

Nb 44.89 26.80 18.86 12.69 9.36 6.59 4.72 2.75

L0 3.556 2.637 2.285 2.080 2.026 2.071 2.201 2.605

L18  lbf 4.056 3.137 2.785 2.580 2.526 2.571 2.701 3.105

KB 1.326 1.268 1.234 1.200 1.179 1.157 1.139 1.115

max 62.118 60.686 59.707 58.636 57.875 57.019 56.249 55.031

(ny)body 1.695 1.711 1.722 1.732 1.739 1.746 1.752 1.760

B 58.576 59.820 60.495 61.067 61.367 61.598 61.712 61.712

(ny)B 1.797 1.736 1.699 1.663 1.640 1.616 1.597 1.569

(ny)A 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500

fom 0.160 0.144 -0.138 0.135 0.133 0.135 0.138 0.154

 

 Except for the 0.067 in wire, all springs satisfy the requirements of length and number of 

coils. The 0.085 in wire has the highest fom. 

______________________________________________________________________________ 

 

10-36  Given: Nb = 84 coils, Fi = 16 lbf, OQ&T steel, OD = 1.5 in, d = 0.162 in. 

     D = OD  d = 1.5  0.162 = 1.338 in 

 (a) Eq. (10-39): 

     L0 = 2(D  d) + (Nb + 1)d 

               = 2(1.338  0.162) + (84 + 1)(0.162) = 16.12 in     Ans. 

 

   or     2d + L0 = 2(0.162) + 16.12 = 16.45 in overall 

1.338
8.26

0.162

D
C

d
   (b)      

                            

3 3

4 2 4(8.26) 2
1.166

4 3 4(8.26) 3

8 8(16)(1.338)
1.166 14 950 psi     .

(0.162)

B

i
i B

C
K

C

F D
K Ans

d


 

 
  

 
     

 

 (c) From Table 10-5 use: G = 11.4(10
6
) psi     and     E = 28.5(10

6
) psi 
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4 4 6

3 3

28.5

(0.162) (11.4)(10 )
4.855 lb

8 8(1.338) (84.4)a

E

d G

D N
  

11.4
84 84.4 turns

f/in     .

a b

G
N N

k Ans

    
 

 (d) Table 10-4:  A = 147 psi · in
m
 ,  m = 0.187 

0.187

147
207.1 kpsi

(0.162)
utS  

     0.75(207.1) 155.3 kpsi

0.50(207.1) 103.5 kpsi

y

sy

S

S

 
 

 

 

  Body 
3

3 3(0.162) (103.5)(10 )

sy

B

d S
F

K D







110.8 lbf
8(1.166)(1.338)

 
 

 

  Torsional stress on hook point B 

 

2
2

2

2 2(0.25 0.162 / 2)
4.086

0.162
4 1 4(4.086) 1

( ) 1.243B

r
C

d
C

K
2

3 3

4 4 4(4.086) 4

(0.162) (103.5)(10 )
103.9 lbf

8(1.243)(1.338)

C

F



  

 
  

 

 

 

 

  Normal stress on hook point A 

 

   

1
1

2 2

1 1

1 1

2 1.338
8.26

0.162

4 1 4(8.26) 8.26 1
)

4 ( 1) 4(8.26)(8.26 1)

16( ) 4

A

A

r
C

d

C C
K

C C

K D
S F

  

   
 

 
   

3 2

3

3 2

( 1.099

155.3(10 )
85.8 lbf

16(1.099)(1.338) / (0.162) 4 / (0.162)

min(110.8,  103.9,  85.

yt
d d

F

 

 



  

 
      

 8) 85.8 lbf     .Ans

 

    

 

 (e) Eq. (10-48): 

85.8 16
14.4 in     .

4.855

iF F
y Ans

k

 
    

______________________________________________________________________________ 
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10-37  Fmin = 9 lbf,     Fmax = 18 lbf 

   
18 9 18 9

4.5 lbf ,      13.5 lbf
2 2

a mF F
 

     

 A313 stainless:   0.013 ≤ d ≤ 0.1  A = 169 kpsi · in
m
 ,  m = 0.146 

      0.1 ≤ d ≤ 0.2  A = 128 kpsi · in
m
 ,  m = 0.263 

      E = 28 Mpsi,  G = 10 Gpsi 

 Try d = 0.081 in and refer to the discussion following Ex. 10-7    

    

0.146

169
243.9 kpsi

(0.081)

0.67 163.4 kpsi

0.35 85.4 kpsi

ut

su ut

sy ut

S

S S

S S

 

 
 

 

0.55 134.2 kpsiy utS S 
 

 Table 10-8:   Sr = 0.45Sut = 109.8 kpsi 

2 2

/ 2 109.8 / 2
57.8 kpsi

1 [ / (2 )] 1 [(109.8 / 2) / 243.9]

/ 4.5 / 13.5 0.333

r
e

r ut

S

S S

r F F

 
 

  a m

S 
             

 

2
2 2 2

1 1
2

ut e
a

e ut

r S S
S

S rS

           

 Table 7-10:     

2
2 2(0.333) (243.9 ) 2(57.8)

1 1 42.2 kpsi
2(57.8) 0.333(243.9)

aS

           
           

 

 Hook bending 

 

2 2

2

2

16 4
( ) ( )

( ) 2

4.5 (4 - - 1)16
4

4 ( - 1) 2

a a
a A a A

f A

a

C S S
F K

d d n

C C C S

d C C


 



      
 

  
 

 

 

 This equation reduces to a quadratic in C (see Prob. 10-35). The useable root for C is 
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2
2 2 2

2
2 3 2 3

2
144 36

(0.081) (42.2)(10 ) (0.081) (42.2)(10 )

a a ad S d S  

 

          

 
 

2 3

0.5
144

(0.081) (42.2)(10 )
0.5 2

144 144 36

4.91

d S
C

     
   



 

 
 

3 3 33 500
1000 4

8 8 exp(0.105 ) 6

id d

D D C

  
0.398 in

3

.5
i

D Cd

C
F

 
  

 


     

 


 

 Use the lowest Fi in the preferred range. 

 
3(0.081) 33 500 4.91 3

1000 4
8(0.398) exp[0.105(4.91)] 6.5

8.55 lbf

iF
         



 

 

 For simplicity we will round up to next 1/4 integer. 

 

4 4 6

8.75 lbf

18 9
36 lbf/in

0.25

(0.081) (10)(10 )

iF

k

d G




 

3 3

0

max 0 max

23.7 turns
8 8(36)(0.398)

10
23.7 23.3 turns

28
(2 1 ) [2(4.91) 1 23.3](0.081) 2.602 in

(  ) / 2.602 (18 8.75) / 36 2.

a

b a

b

i

N
kD

G
N N

E
L C N d

L L F F k

  

    

      
      

 

2

2

859 in

4.5(4) 4 1
( ) 1

1
a A

C C

d C



  

  
-3 2

2

18(10 ) 4(4.91 ) 4.91 1
1 21.1 kpsi

(0.081 ) 4.91 1

42.2
( ) 2 checks

( ) 21.1

a
f A

a A

S
n





 
  

    

  

 

 Body:   
4 2 4(4.91) 2

1.300
4 3 4(4.91) 3

B

C
K

C

 
  

 
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3

3

8(1.300)(4.5)(0.398)
(10 ) 11.16 kpsi

(0.081)

13.5
(11.16) 33.47 kpsi

4.5

a

m
m a

a

F

F




 

 

  
 

 

The repeating allowable stress from Table 7-8 is 

Ssr = 0.30Sut = 0.30(243.9) = 73.17 kpsi 

The Gerber intercept is 

 

2

73.17 / 2
38.5 kpsi

1 [(73.17 / 2) / 163.4]
seS  


 

 From Table 6-7, 

22

body

1 163.4 11.16 2(33.47)(38.5)
( ) 1 1 2.53fn

                
2 33.47 38.5 163.4(11.16)       

 

 Let r2 = 2d = 2(0.081) = 0.162 

2
2

2 4(4) 1
4,      ( ) 1.25

4(4) 4

( ) 1.25
( ) (11.16) 10.73 kpsi

1.30

( ) 1.25
( ) (33.47) 32.18 kpsi

1.30

B

B
a B a

B

B
m B m

B

r
C K

d

K

K

K

K

 

 


   



  

  

 

 

 Table 10-8: (Ssr )B = 0.28Sut = 0.28(243.9) = 68.3 kpsi 

2

22

68.3 / 2
( ) 35.7 kpsi

1 [(68.3 / 2) / 163.4]

1 163.4 10.73 2(32.18)(35.7)
( ) 1 1 2.51

2 32.18 35.7 163.4(10.73)

se B

f B

S

n

 


                       

        

 Yield 

 Bending: 
2

max
max 2

2
-3

2

4 (4 1)
( ) 1

1

4(18) 4(4.91) 4.91 1
1 (10 ) 84.4 kpsi

(0.081 ) 4.91 1

134.2
( ) 1.59

84.4

A

y A

F C C

d C

n






  
   

  
    

 

 

 Body: 
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body

( / ) (8.75 / 4.5)(11.16) 21.7 kpsi

  /( )  11.16 / (33.47  21.7)  0.948

0.948
( ) ( ) (85.4 21.7) 31.0 kpsi

1 0.948 1
( ) 31.0

( ) 2.78
11.16

i i a a

a m i

sa y sy i

sa y

y

a

F F

r

r
S S

r
S

n

 
  





  
    

    
 

  

  

 Hook shear:  Hook shear: 

max

 0.3 0.3(243.9) 73.2 kpsi

( ) ( ) 10.73 32.18 42.9 kpsi

73.2
( ) 1.71

42.9

sy ut

a B m B

y B

S S

n

  
  
    

 

2 2 2 27.6 ( 2) 7.6 (0.081) (23.3 2)(0.398)
fom 1.239

4 4

bd N D  
       

 A tabulation of several wire sizes follow 

 

d 0.081 0.085 0.092 0.098 0.105 0.12 

Sut 243.920 242.210 239.427 237.229 234.851 230.317 

Ssu 163.427 162.281 160.416 158.943 157.350 154.312 

Sr 109.764 108.994 107.742 106.753 105.683 103.643 

Se 57.809 57.403 56.744 56.223 55.659 54.585 

Sa 42.136 41.841 41.360 40.980 40.570 39.786 

C 4.903 5.484 6.547 7.510 8.693 11.451 

D 0.397 0.466 0.602 0.736 0.913 1.374 

OD 0.478 0.551 0.694 0.834 1.018 1.494 

Fi (calc) 8.572 7.874 6.798 5.987 5.141 3.637 

Fi (rd) 8.75 9.75 10.75 11.75 12.75 13.75 

k 36.000 36.000 36.000 36.000 36.000 36.000 

Na 23.86 17.90 11.38 8.03 5.55 2.77 

Nb 23.50 17.54 11.02 7.68 5.19 2.42 

L0 2.617 2.338 2.127 2.126 2.266 2.918 

L18 lbf 2.874 2.567 2.328 2.300 2.412 3.036 

(a)A 21.068 20.920 20.680 20.490 20.285 19.893 

(nf)A 2.000 2.000 2.000 2.000 2.000 2.000 

KB 1.301 1.264 1.216 1.185 1.157 1.117 

(a)body 11.141 10.994 10.775 10.617 10.457 10.177 

(m)body 33.424 32.982 32.326 31.852 31.372 30.532 

Ssr 73.176 72.663 71.828 71.169 70.455 69.095 

Sse 38.519 38.249 37.809 37.462 37.087 36.371 

(nf)body 2.531 2.547 2.569 2.583 2.596 2.616 

(K)B 1.250 1.250 1.250 1.250 1.250 1.250 

(a)B 10.705 10.872 11.080 11.200 11.294 11.391 

(m)B 32.114 32.615 33.240 33.601 33.883 34.173 

(Ssr)B 68.298 67.819 67.040 66.424 65.758 64.489 

(Sse)B 35.708 35.458 35.050 34.728 34.380 33.717 
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(nf)B 2.519 2.463 2.388 2.341 2.298 2.235 

Sy 134.156 133.215 131.685 130.476 129.168 126.674 

(A)max 84.273 83.682 82.720 81.961 81.139 79.573 

(ny)A 1.592 1.592 1.592 1.592 1.592 1.592 

i 21.663 23.820 25.741 27.723 29.629 31.097 

r 0.945 1.157 1.444 1.942 2.906 4.703 

(Ssy)body 85.372 84.773 83.800 83.030 82.198 80.611 

(Ssa)y 30.958 32.688 34.302 36.507 39.109 40.832 

(ny)body 2.779 2.973 3.183 3.438 3.740 4.012 

(Ssy)B 73.176 72.663 71.828 71.169 70.455 69.095 

(B)max 42.819 43.486 44.321 44.801 45.177 45.564 

(ny)B 1.709 1.671 1.621 1.589 1.560 1.516 

fom 1.246 1.234 1.245 1.283 1.357 1.639 

  optimal fom 

 The shaded areas show the conditions not satisfied.  

______________________________________________________________________________ 

 

10-38  For the hook, 

 

        M = FR sin,    ∂M/∂F = R sin 

 

        
 

3
/ 2 2

0

1
sin  

2

FR
F R R d

EI EI

      F

 

 

 The total deflection of the body and the two hooks 

 
3 3 3 3

4 4 4

3 3

4 4

8 8 ( / 2)
2

2 ( / 64)( )

8 8

b b

a
b

FD N FR FD N F D

d G EI d G E d

FD G FD N
N

d G E d G

G
N N

 


 
    

 
    
 

     Q.E.D.a b
E

 

______________________________________________________________________________ 

 

10-39  Table 10-5 (d = 4 mm = 0.1575 in): E = 196.5 GPa 

 

 Table 10-4 for A227: 

     A = 1783 MPa · mm
m
,  m = 0.190 

 Eq. (10-14):  
0.190

1783
1370 MPa

4
ut m

A
S

d
    

 

 Eq. (10-57):  Sy = all = 0.78 Sut = 0.78(1370) = 1069 MPa 
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     D = OD  d = 32  4 = 28 mm 

 

     C = D/d = 28/4 = 7 

 
 Eq. (10-43):  

22 4 7 7 14 1
1.119

4 ( 1) 4(7)(7 1)
i

C C
K

C C

  
  

 
 

 

 Eq. (10-44):  
3

32
i

Fr
K

d
  


 At yield, Fr = My ,  = Sy. Thus, 

   3 33 4 1069 10
y

y

d S  

  6.00 N · m
32 32(1.119)i

M
K

  

     
 

 Count the turns when M = 0 

     2.5
yM

N    
k

4

10.8

d E
k

DN
   where from Eq. (10-51): 

 

 Thus, 

     
4

2.5
/ (10.8 )

yM
N

d E DN
   

 Solving for N gives 

  

4

2.5

1 [10.8 / ( )]

2.5

y

N
DM d E




4
2.413 turns

1 10.8(28)(6.00) / 4 (196.5)
 

   

 

 

 This means (2.5 - 2.413)(360) or 31.3 from closed.     Ans. 

 

 Treating the hand force as in the middle of the grip, 

    

 3

max

87.5
112.5 87.5 68.75 mm

2

6.00 10
87.3 N     .

68.75

y

r

M
F Ans

r

   

  
 

______________________________________________________________________________ 

 

10-40  The spring material and condition are unknown. Given d = 0.081 in and OD = 0.500, 

 (a) D = 0.500  0.081 = 0.419 in 

  Using E = 28.6 Mpsi for an estimate 
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4 4 6(0.081) (28.6)(10 )
24.7 lbf · in/turn

10.8 10.8(0.419)(11)

d E
k

DN
    

 

       for each spring. The moment corresponding to a force of 8 lbf 

 

Fr = (8/2)(3.3125) = 13.25 lbf · in/spring 

 

       The fraction windup turn is 

 

13.25
ns

Fr
n

k
  0.536 tur

24.7
  


 

       The arm swings through an arc of slightly less than 180, say 165. This uses up 

      165/360 or 0.458 turns. So n = 0.536  0.458 = 0.078 turns are left (or 

    0.078(360) = 28.1 ). The original configuration of the spring was 

 

 

 

                                                                         

  

  

 Ans. 

 
 
 
 
 
 (b) 

 

 3

3 3

1.168
4 1 4(5.17)(5.17 1)

32 32(13.25)
1.168 297 10  psi 297 kpsi     .

i

i

C C

M
K A

  
 

 
    

2 2

0.419
5.17

0.081

4 1 4(5.17) 5.17 1

(0.081)

D
C

d

C C
K

ns
d 

  

   

 

 

 

  To achieve this stress level, the spring had to have set removed. 

______________________________________________________________________________ 

 

10-41  (a) Consider half and double results 

 

 

  Straight section:                                                                                                                                        M = 3FR,  3
M

 R
P



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  Upper 180 section: 

 
[ (1 cos )]

s )

M F R R

(2 cos ),    (2 co
M

FR R
F

 

 

 


   


 

 

 

 

 

  Lower section:  M = FR sin ,    sin
M

R


F
  


  Considering bending only: 

 

  

/ 2 / 2
2 2 2 2

0

2 2

2
9  (2 cos )  ( sin )  

2 9

4

2 19 9
(19 18 )

4 2 2

lU
FR dx FR R d F R R d

F EI

F
R l

EI

FR FR
R l R l

EI EI

 

0 0

2 3 3

0
4 4sin

2 2
R R



   

 

        
           

     
 

  
    



   

 

  The spring rate is 

 

   
2 (19

ns
R R l 

 


2
.

18 )

F EI
k A  

 

 (b) Given: A227 HD wire,  d = 2 mm, R = 6 mm, and l = 25 mm. 

 

  Table 10-5 (d = 2 mm = 0.0787 in):  E = 197.2 MPa 

 

     
   

    310 N/m 10.65 N/mm .ns



  

  

9 4

2

2 197.2 10 0.002 / 64
10.65

0.006 19 0.006 18 0.025
k A  

 

 (c) The maximum stress will occur at the bottom of the top hook where the bending-

 moment is 3FR and the axial fore is F. Using curved beam theory for bending, 

 

  Eq. (3-65), p. 119:  
   2

3

/ 4 / 2

i i
i

i

Mc FRc

Aer d e R d



 


 

 

  Axial: 
F F

2 / 4
a

A d



   
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  Combining, 
 max 2

34
1

/ 2

i
i a

RcF
S

d e R d
  


 

      
y

 

 

 

     

2

(1) .
3

4 1
/ 2

y

i

d S
F Ans

Rc

e R d




 
  

 

 

  For the clip in part (b), 

 

  Eq. (10-14) and Table 10-4: Sut = A/d
m
 = 1783/2

0.190
 = 1563 MPa 

 

  Eq. (10-57): Sy = 0.78 Sut = 0.78(1563) = 1219 MPa 

 

  Table 3-4, p. 121: 

     

 
2

2 2

1
5.95804 mm

2 6 6 1
nr  

 
 

     e = rc  rn = 6  5.95804 = 0.04196 mm 

 

     ci = rn  (R  d /2) = 5.95804  (6  2/2) = 0.95804 mm 

 

  Eq. (1): 

   
 

 

2 60.002 1219 10
46.0 N .

3 6 0.95804
4 1

0.04196 6 1

F A


 
 

  

ns       

______________________________________________________________________________ 

 

10-42  (a)        
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   

 

    

/2 2

0 0

3 2 2

,    

1 cos ,    1 cos     0

1
( ) 1 cos

4 3 2 4 2 3 8
12

l

F

M
M Fx

F
    0x x l

M
M Fl FR l R l

F

Fx x dx F l R Rd
EI

F
l R l l R R

EI



  

  

  


 



       


       

       

 

   



 

 

  The spring rate is 

 

   
   3 24 3 2F

2

12
.

4 2 3 8

F EI
ns

l R l l R R   
 

      
k A  

 

 (b) Given: A313 stainless wire, d = 0.063 in, R = 0.625 in, and l = 0.5 in. 

 

  Table 10-5: E = 28 Mpsi 

 

 4 40.063 7.733
64 64

I d
  7 410 in

          

 

    

 

   
            

6 7

3 2 2

12 28 10 7.733 10

0.625
k




  



 

4 0.5 3 0.625 2 0.5 4 2 0.5 0.625 3 8

36.3 lbf/in .Ans

       

 

 (c)  Table 10-4: A = 169 kpsiinm
,   m = 0.146 

 

  Eq. (10-14): Sut = A/ d 
m
 = 169/0.063

0.146
 = 253.0 kpsi 

 

  Eq. (10-57): Sy = 0.61 Sut = 0.61(253.0) = 154.4 kpsi 

 

  One can use curved beam theory as in the solution for Prob. 10-41. However, the 

equations developed in Sec. 10-12 are equally valid. 

 

     C = D/d = 2(0.625 + 0.063/2)/0.063 = 20.8 

 

 
  

  Eq. (10-43): 

22 4 20.8 20.8 14 1
1.037

4 1 4 20.8 20.8 1
i

C C

C C

  
  

 
K  

 

  Eq. (10-44), setting  = Sy: 
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 
   3

3 3

32 0.5 0.62532
1.037 154.4 10

0.063
i y

FFr
K S

d 


    

 

  Solving for F yields F = 3.25 lbf           Ans. 

 

 Try solving part (c) of this problem using curved beam theory. You should obtain the 

same answer. 

______________________________________________________________________________ 

 

10-43  (a)  M =  Fx 

 

   
2/ / / 6

M Fx Fx

I c I c bh
    

 

  Constant stress, 

   
2 6

(1) .
6

Fx Fx
h Ans

b 
  

bh
 

 

  At x = l,  

   
6

/ .o o

Fl
h x l Ans

b
  

 

h h  

 

 (b)  M =  Fx,    M / F = x 

 

   

 
 

3/2
1/2

3/2 31 3
0 0 012

3/2 3
3/2

3 3

/ 1 12

/

2 12 8

3

l l l

oo

o o

M M F Fx x Fl
y dx dx x dx

EI E bh Ebh x l

Fl Fl
l

bh E bh E

   
  

 

  
 

 

   
3

3
.

8

obh EF
ns

y l
 k A  
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10-44  Computer programs will vary. 

______________________________________________________________________________ 

 

10-45  Computer programs will vary. 

 



Chapter 11 
 

 
11-1 For the deep-groove 02-series ball bearing with R = 0.90, the design life xD, in multiples 

of rating life, is 

    

 
6

10

60 25000 35060
525 .

10
D D D

D

R

L n
x Ans

L L
   


 

 
 The design radial load is  
      1.2 2.5 3.0 kNDF  

 Eq. (11-6): 
   

1/3

10 1/1.483

525
3.0

0.02 4.459 0.02 ln 1/ 0.9
C

    
     

 

 
    C10 = 24.3 kN  Ans. 

 

 Table 11-2:  Choose an 02-35 mm bearing with C10 = 25.5 kN.     Ans. 

 

 Eq. (11-18): 
 

1.4833
525 3 / 25.5 0.02

exp 0.920       .
4.459 0.02

R Ans

           
 ______________________________________________________________________________ 

 
11-2 For the angular-contact 02-series ball bearing as described, the rating life multiple is 

    

 
6

10

60 40000 52060
1248

10
D D D

D

R

L n
x

L L
   


 

 
 The design radial load is  
 
      1.4 725 1015 lbf 4.52 kNDF   
 Eq. (11-6): 

       

1/3

10 1/1.483

1248
1015

0.02 4.459 0.02 ln 1/ 0.9

10 930 lbf 48.6 kN

C
    

     
 

 

 
 Table 11-2:  Select an 02-60 mm bearing with C10 = 55.9 kN.     Ans. 

 Eq. (11-18): 
 

1.4833
1248 4.52 / 55.9 0.02

exp 0.945      .
4.439

R Ans

       
    

 

______________________________________________________________________________ 
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11-3 For the straight-roller 03-series bearing selection, xD = 1248 rating lives from Prob. 11-2 
solution. 

      1.4 2235 3129 lbf 13.92 kNDF   

    
3/10

10

1248
13.92 118 kN

1
C

   
 

 

 
 Table 11-3:  Select an 03-60 mm bearing with C10 = 123 kN.     Ans. 

 

 Eq. (11-18): 
 

1.48310/3
1248 13.92 /123 0.02

exp 0.917 .
4.459 0.02

R Ans

           

 

______________________________________________________________________________ 
 
11-4 The combined reliability of the two bearings selected in Probs. 11-2 and 11-3 is  
    
      0.945 0.917 0.867     .R Ans   

 We can choose a reliability goal of 0.90 0.95 for each bearing. We make the 
selections, find the existing reliabilities, multiply them together, and observe that the 
reliability goal is exceeded due to the roundup of capacity upon table entry. 

 
 Another possibility is to use the reliability of one bearing, say R1. Then set the reliability 

goal of the second as 
 

    2
1

0.90
R

R
  

 
 or vice versa. This gives three pairs of selections to compare in terms of cost, geometry 

implications, etc. 
______________________________________________________________________________ 
 

11-5 Establish a reliability goal of 0.90 0.95 for each bearing. For an 02-series angular 
contact ball bearing, 

     

1/3

10 1/1.483

1248
1015

0.02 4.439 ln 1/ 0.95

12822 lbf 57.1 kN

C
    

    
 

  

 Select an 02-65 mm angular-contact bearing with C10 = 63.7 kN. 
 

    
 

1.4833
1248 4.52 / 63.7 0.02

exp 0.962
4.439AR

       
    
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 For an 03-series straight roller bearing, 
 

    
 

3/10

10 1/1.483

1248
13.92 136.5 kN

0.02 4.439 ln 1/ 0.95
C

    
    

 

 
 Select an 03-65 mm straight-roller bearing with C10 = 138 kN. 
 

    
 

1.48310/3
1248 13.92 /138 0.02

exp 0.953
4.439BR

       
    

 

 
 The overall reliability is R = (0.962)(0.953) = 0.917, which exceeds the goal. 
______________________________________________________________________________ 
 
11-6 For the straight cylindrical roller bearing specified with a service factor of 1, R = 0.95 and 

FR = 20 kN. 

    
 

6
10

60 8000 95060
456

10
D D D

D

R

L n
x

L L
   


 

    
 

3/10

10 1/1.483

456
20 145 kN       .

0.02 4.439 ln 1/ 0.95
C A

    
    

ns  

______________________________________________________________________________ 
 
11-7 Both bearings need to be rated in terms of the same catalog rating system in order to 

compare them.  Using a rating life of one million revolutions, both bearings can be rated 
in terms of a Basic Load Rating. 

 

 Eq. (11-3): 
    1/31/ 1/

6

3000 500 6060
2.0

10

8.96 kN

a a

A A A
A A A

R R

L n
C F F

L L

    
       

     



  

 
 Bearing B already is rated at one million revolutions, so CB = 7.0 kN.  Since CA > CB, 

bearing A can carry the larger load.  Ans. 

______________________________________________________________________________ 
 
11-8 FD = 2 kN, LD = 109 rev, R = 0.90 
 

 Eq. (11-3): 
1/ 1/39

10 6

10
2 20 kN     .

10

a

D
D

R

L
C F An

L

   
     

  
s  

______________________________________________________________________________ 
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11-9 FD = 800 lbf, D = 12 000 hours, nD = 350 rev/min, R = 0.90 

 

 Eq. (11-3): 
   1/31/

10 6

12 000 350 6060
800 5050 lbf     

10

a

D D
D

R

n
C F An

L

  
    

   


s  

______________________________________________________________________________ 
 
11-10 FD = 4 kN, D = 8 000 hours, nD = 500 rev/min, R = 0.90 

 

 Eq. (11-3): 
   1/31/

10 6

8 000 500 6060
4 24.9 kN     

10

a

D D
D

R

n
C F An

L

  
    

   


s  

______________________________________________________________________________ 
 
11-11 FD = 650 lbf, nD = 400 rev/min, R = 0.95 
    D = (5 years)(40 h/week)(52 week/year) = 10 400 hours 

 
 Assume an application factor of one. The multiple of rating life is  
 

    
   

6

10 400 400 60
249.6

10
D

D

R

L
x

L
    

 Eq. (11-6):   
 

1/3

10 1/1.483

249.6
1 650

0.02 4.439 ln 1/ 0.95
C

    
    

 

             4800 lbf     .Ans
______________________________________________________________________________ 
 
11-12 FD = 9 kN, LD = 108 rev, R = 0.99 
 
 Assume an application factor of one. The multiple of rating life is  
 

    
8

6

10
100

10
D

D

R

L
x

L
    

 Eq. (11-6):   
 

1/3

10 1/1.483

100
1 9

0.02 4.439 ln 1/ 0.99
C

    
    

 

            69.2 kN     .Ans
______________________________________________________________________________ 
 
11-13 FD = 11 kips, D = 20 000 hours, nD = 200 rev/min, R = 0.99 

 Assume an application factor of one.  Use the Weibull parameters for Manufacturer 2 on 
p. 608. 

Chapter 11, Page 4/28 



 The multiple of rating life is  
 

    
   

6

20 000 200 60
240

10
D

D

R

L
x

L
    

 Eq. (11-6):   
 

1/3

10 1/1.483

240
1 11

0.02 4.439 ln 1/ 0.99
C

    
    

 

            113 kips     .Ans  
______________________________________________________________________________ 
 
11-14  From the solution to Prob. 3-68, the ground reaction force carried by the bearing at C is 

RC = FD = 178 lbf.  Use the Weibull parameters for Manufacturer 2 on p. 608. 
 

    
  

6

15000 1200 60
1080

10
D

D

R

L
x

L
    

 Eq. (11-7): 
  

1/

10 1/

0 0 1

a

D
f D b

D

x
C a F

x x R

 
  

    
 

     
  

1/3

10 1/1.483

1080
1.2 178

0.02 4.459 0.02 1 0.95

2590 lbf     .

C

Ans

 
  

    


   

______________________________________________________________________________ 
 
11-15 From the solution to Prob. 3-69, the ground reaction force carried by the bearing at C is 

RC = FD = 1.794 kN.  Use the Weibull parameters for Manufacturer 2 on p. 608. 
 

    
  

6

15000 1200 60
1080

10
D

D

R

L
x

L
    

 Eq. (11-7): 
  

1/

10 1/

0 0 1

a

D
f D b

D

x
C a F

x x R

 
  

    
 

     
  

1/3

10 1/1.483

1080
1.2 1.794

0.02 4.459 0.02 1 0.95

26.1 kN     .

C

Ans

 
  

    


 

______________________________________________________________________________ 
 
11-16 From the solution to Prob. 3-70, RCz = –327.99 lbf, RCy = –127.27 lbf 

        
1/22 2

327.99 127.27 351.8 lbfC DR F        
 Use the Weibull parameters for Manufacturer 2 on p. 608. 
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  

6

15000 1200 60
1080
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L
    

 Eq. (11-7): 
  

1/

10 1/
1

a

D
f D b

o o D

x
C a F

x x R

 
  

    
 

     
  

1/3

10 1/1.483

1080
1.2 351.8

0.02 4.459 0.02 1 0.95

5110 lbf     .

C

Ans

 
  

    


 

______________________________________________________________________________ 
 
11-17 From the solution to Prob. 3-71, RCz = –150.7 N, RCy = –86.10 N 

        
1/22 2

150.7 86.10 173.6 NC DR F        
 Use the Weibull parameters for Manufacturer 2 on p. 608. 
 

    
  

6

15000 1200 60
1080

10
D

D

R

L
x

L
    

 Eq. (11-7): 
  

1/

10 1/

0 0 1

a

D
f D b

D

x
C a F

x x R

 
  

    
 

     
  

1/3

10 1/1.483

1080
1.2 173.6

0.02 4.459 0.02 1 0.95

2520 N     .

C

Ans

 
  

    


 

______________________________________________________________________________ 
 
11-18  From the solution to Prob. 3-77, RAz = 444 N, RAy = 2384 N 

      1/22 2444 2384 2425 N 2.425 kNA DR F    

 Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to 
the speed of shaft AD,  

     125
191 95.5 rev/min

250
F

D i

C

d
n n

d
    

 

    
  

6

12000 95.5 60
68.76
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L
x

L
    

 Eq. (11-7): 
  

1/

10 1/

0 0 1

a

D
f D b

D

x
C a F

x x R

 
  

    
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      
  

1/3

10 1/1.483

68.76
1 2.425

0.02 4.459 0.02 1 0.95

11.7 kN     .

C

Ans

 
  

    


 

______________________________________________________________________________ 
 
11-19  From the solution to Prob. 3-79, RAz = 54.0 lbf, RAy = 140 lbf     

     1/22 254.0 140 150.1 lbfA DR F   

 Use the Weibull parameters for Manufacturer 2 on p. 608. The design speed is equal to 
the speed of shaft AD,  

     10
280 560 rev/min

5
F

D i

C

d
n n

d
    

 

    
  

6

14000 560 60
470.4
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L
x

L
    

 Eq. (11-7): 
  

1/

10 1/

0 0 1

a

D
f D b

D

x
C a F

x x R

 
  

    
 

      
  

3/10

10 1/1.483

470.4
1 150.1

0.02 4.459 0.02 1 0.98

1320 lbf     .

C

Ans

 
  

    


 

______________________________________________________________________________ 
 
11-20 (a)  3 kN, 7 kN, 500 rev/min, 1.2a r DF F n V   
 From Table 11-2, with a 65 mm bore, C0 = 34.0 kN.    
 
    Fa / C0 = 3 / 34 = 0.088 
 
 From Table 11-1,  0.28  e  3.0. 
 

    
  

3
0.357

1.2 7
a

r

F

VF
    

 Since this is greater than e, interpolating Table 11-1 with Fa / C0 = 0.088, we obtain  
 X2 = 0.56 and Y2 = 1.53. 
 
 Eq.  (11-9):       0.56 1.2 7 1.53 3 9.29 kNe i r i aF X VF Y F      Ans. 

    Fe > Fr so use Fe. 
 
 (b) Use Eq. (11-7) to determine the necessary rated load the bearing should have to carry 

 the equivalent radial load for the desired life and reliability.  Use the Weibull 
 parameters for Manufacturer 2 on p. 608. 
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  
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    

  Eq. (11-7): 
  

1/

10 1/

0 0 1

a

D
f D b

D

x
C a F

x x R

 
  

    
 

      
  

1/3

10 1/1.483

300
1 9.29

0.02 4.459 0.02 1 0.95

73.4 kN 

C
 

  
    



 

 
 From Table 11-2, the 65 mm bearing is rated for 55.9 kN, which is less than the 

necessary rating to meet the specifications.  This bearing should not be expected to meet 
the load, life, and reliability goals.  Ans. 

______________________________________________________________________________ 
 
11-21 (a)   2 kN,   5 kN,  400 rev/min,  1a r DF F n V   
 
 From Table 11-2, 30 mm bore, C10 = 19.5 kN, C0 = 10.0 kN 
 
    Fa / C0 = 2 / 10 = 0.2 
 
 From Table 11-1, 0.34  e   0.38. 
 

    
  

2
0.4

1 5
a

r

F

VF
   

 
 Since this is greater than e, interpolating Table 11-1, with Fa / C0 = 0.2, we obtain X2 = 

0.56 and Y2 = 1.27. 
  Eq.  (11-9):       0.56 1 5 1.27 2 5.34 kNe i r i aF X VF Y F      Ans. 

    Fe > Fr so use Fe. 
 
 (b)  Solve Eq. (11-7) for xD. 
 

      1/10
0 0 1

a

b

D D

f D

C
x x x R

a F


           
 

    
     

3

1/1.48319.5
0.02 4.459 0.02 1 0.99

1 5.34Dx
           

 

     10.66Dx 

    
 
6
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10
D DD

D

R

nL
x

L
 


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 
 

 
  

6 610 10.66 10
444 h     .

60 400 60
D

D

D

x
Ans

n
    

______________________________________________________________________________ 
 
11-22  98 kN, 0.9,   10  revr DF R L  
 

 Eq. (11-3): 
1/ 1/39

10 6

10
8 80

10

a

D
D

R

L
C F

L

   
     

  
 kN  

 
 From Table 11-2, select the 85 mm bore.    Ans.    
______________________________________________________________________________ 
 
11-23  8 kN,   2 kN,   1,   0.99r aF F V R   
 Use the Weibull parameters for Manufacturer 2 on p. 608. 
 

    
  

6

10000 400 60
240

10
D

D

R

L
x

L
    

 
 First guess: Choose from middle of Table 11-1,  X = 0.56, Y = 1.63 
 
 Eq. (11-9):     0.56 1 8 1.63 2 7.74 kNeF     

    Fe < Fr, so just use Fr as the design load.  

 Eq. (11-7): 
  

1/

10 1/
1

a

D
f D b

o o D

x
C a F

x x R

 
  

    
 

      
  

1/3

10 1/1.483

240
1 8 82.5 kN

0.02 4.459 0.02 1 0.99
C

 
  

    
 

 From Table 11-2, try 85 mm bore with C10 = 83.2 kN, C0 = 53.0 kN 
 Iterate the previous process: 
 
    Fa / C0 = 2 / 53 = 0.038 
 Table 11-1: 0.22  e   0.24 

    
 
2

0.25
1 8

a

r

F
e

VF
  

 
 Interpolate Table 11-1 with Fa / C0  = 0.038 to obtain X2 = 0.56 and Y2 = 1.89. 
 
 Eq. (11-9):  0.56(1)8 1.89(2) 8.26 > e rF F  

 Eq. (11-7):   
  

1/3

10 1/1.483

240
1 8.26 85.2 kN

0.02 4.459 0.02 1 0.99
C

 
  

    
 

Chapter 11, Page 9/28 



 Table 11-2: Move up to the 90 mm bore with C10 = 95.6 kN, C0 = 62.0 kN. 
 Iterate again: 
 
    Fa / C0 = 2 / 62 = 0.032 
 
 Table 11-1:  Again, 0.22  e   0.24 

    
 
2

0.25
1 8

a

r

F
e

VF
  

 
 Interpolate Table 11-1 with  Fa / C0 = 0.032 to obtain X2 = 0.56 and Y2 = 1.95. 
 
 Eq. (11-9):  0.56(1)8 1.95(2) 8.38 > e rF F  

 Eq. (11-7):   
  

1/3

10 1/1.483

240
1 8.38 86.4 kN

0.02 4.459 0.02 1 0.99
C

 
  

    
 

 The 90 mm bore is acceptable.  Ans. 
______________________________________________________________________________ 
 
11-24  88 kN, 3 kN, 1.2, 0.9, 10  revr a DF F V R L    
 
 First guess: Choose from middle of Table 11-1,  X = 0.56, Y = 1.63 
 
 Eq. (11-9):     0.56 1.2 8 1.63 3 10.3 kNeF     

     e rF F

 Eq. (11-3): 
1/ 1/38

10 6

10
10.3 47.8 kN

10
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D
e

R

L
C F

L

   
     

  
 

 
 From Table 11-2, try 60 mm with C10 = 47.5 kN, C0 = 28.0 kN 
 Iterate the previous process: 
 
    Fa / C0 = 3 / 28 = 0.107 
 
 Table 11-1:  0.28  e   0.30 

    
 
3

0.313
1.2 8

a

r

F
e

VF
  

 
 Interpolate Table 11-1 with Fa / C0  = 0.107 to obtain X2 = 0.56 and Y2 = 1.46 
 
 Eq. (11-9):     0.56 1.2 8 1.46 3 9.76 kN > e rF F    

 Eq. (11-3): 
1/38

10 6

10
9.76 45.3 kN

10
C

 
  

 
 

 From Table 11-2, we have converged on the 60 mm bearing.     Ans. 
______________________________________________________________________________ 
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11-25  10 kN,   5 kN,   1,   0.95r aF F V R   
 Use the Weibull parameters for Manufacturer 2 on p. 608. 
 

    
  

6

12000 300 60
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10
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D

R

L
x

L
    

 
 First guess: Choose from middle of Table 11-1,  X = 0.56, Y = 1.63 
 
 Eq. (11-9):     0.56 1 10 1.63 5 13.75 kNeF     

    Fe > Fr, so use Fe as the design load.  

 Eq. (11-7): 
  

1/

10 1/

0 0 1

a

D
f D b

D

x
C a F

x x R

 
  

    
 

      
  

1/3

10 1/1.483

216
1 13.75 97.4 kN

0.02 4.459 0.02 1 0.95
C

 
  

    
 

 
 From Table 11-2, try 95 mm bore with C10 = 108 kN, C0 = 69.5 kN 
 Iterate the previous process: 
 
    Fa / C0 = 5 / 69.5 = 0.072 
 
 Table 11-1: 0.27  e   0.28 

     
5

0.5
1 10

a

r

F
e

VF
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 Interpolate Table 11-1 with Fa / C0  = 0.072 to obtain X2 = 0.56 and Y2 = 1.62  1.63 

 
 Since this is where we started, we will converge back to the same bearing.  The 95 mm 

bore meets the requirements. Ans. 

______________________________________________________________________________ 
 
11-26 Note to the Instructor. In the first printing of the 9th edition, the design life was 

incorrectly given to be 109 rev and will be corrected to 108 rev in subsequent printings. 
We apologize for the inconvenience. 

 
  9 kN,   3 kN,   1.2,   0.99r aF F V R   
 Use the Weibull parameters for Manufacturer 2 on p. 608. 
 

    
8
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10
100

10
D

D

R

L
x

L
    

 
 First guess: Choose from middle of Table 11-1,  X = 0.56, Y = 1.63 
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 Eq. (11-9):     0.56 1.2 9 1.63 3 10.9 kNeF     

    Fe > Fr, so use Fe as the design load.  

 Eq. (11-7): 
  

1/
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0 0 1

a

D
f D b

D

x
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x x R

 
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      
  

1/3

10 1/1.483
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1 10.9 83.9 kN

0.02 4.459 0.02 1 0.99
C

 
  

    
 

 
 From Table 11-2, try 90 mm bore with C10 = 95.6 kN, C0 = 62.0 kN.  Try this bearing. 
 Iterate the previous process: 
 
    Fa / C0 = 3 / 62 = 0.048 
 
 Table 11-1: 0.24  e   0.26 

     
3

0.278
1.2 9
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r

F
e

VF
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 Interpolate Table 11-1 with Fa / C0  = 0.048 to obtain X2 = 0.56 and Y2 = 1.79 
 
 Eq. (11-9):     0.56 1.2 9 1.79 3 11.4 kNe rF F     

    10

11.4
83.9 87.7 kN

10.9
C    

 From Table 11-2, this converges back to the same bearing.  The 90 mm bore meets the 
requirements.    Ans. 

______________________________________________________________________________ 
 
11-27 (a)  1200 rev/min, 15 kh, 0.95, 1.2D Dn L R   fa 
  From Prob. 3-72, RCy = 183.1 lbf, RCz = –861.5 lbf. 

      
1/222183.1 861.5 881 lbfC DR F       

    
  
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  Eq. (11-7):  
 

1/3

10 1/1.483

1080
1.2 881

0.02 4.439 1 0.95
C

 
  

   
 

           12800 lbf 12.8 kips     .Ans   
 
 (b)  Results will vary depending on the specific bearing manufacturer selected.  A general 

 engineering components search site such as www.globalspec.com might be useful as 
 a starting point. 

______________________________________________________________________________ 
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11-28 (a)  1200 rev/min, 15 kh, 0.95, 1.2D Dn L R   fa 
  From Prob. 3-72, ROy = –208.5 lbf, ROz = 259.3 lbf. 

      
1/222259.3 208.5 333 lbfC DR F       

    
  

6

15000 1200 60
1080

10
D

D

R

L
x

L
    

  Eq. (11-7):  
 

1/3

10 1/1.483
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0.02 4.439 1 0.95
C

 
  

   
 

           4837 lbf 4.84 kips     .Ans   
 (b)  Results will vary depending on the specific bearing manufacturer selected.  A general 

 engineering components search site such as www.globalspec.com might be useful as 
 a starting point. 

______________________________________________________________________________ 
 
11-29 (a)  900 rev/min, 12 kh, 0.98, 1.2D Dn L R   fa 
  From Prob. 3-73, RCy = 8.319 kN, RCz = –10.830 kN. 

      
1/2228.319 10.830 13.7 kNC DR F       
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  Eq. (11-7):  
 

1/3

10 1/1.483
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1.2 13.7 204 kN     .

0.02 4.439 1 0.98
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 
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   
ns

fa 

 

 (b)  Results will vary depending on the specific bearing manufacturer selected.  A general 
 engineering components search site such as www.globalspec.com might be useful as 
 a starting point. 

______________________________________________________________________________ 
 
11-30 (a)  900 rev/min, 12 kh, 0.98, 1.2D Dn L R  
  From Prob. 3-73, ROy = 5083 N, ROz = 494 N. 
 

      1/22 25083 494 5106 N 5.1 kNC DR F    

    
  

6

12000 900 60
648

10
D

D

R

L
x

L
    

  Eq. (11-7):  
 

1/3

10 1/1.483

648
1.2 5.1 76.1 kN     .

0.02 4.439 1 0.98
C A

 
  

   
ns  

 (b)  Results will vary depending on the specific bearing manufacturer selected.  A general 
 engineering components search site such as www.globalspec.com might be useful as 
 a starting point. 

______________________________________________________________________________ 
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11-31 Assume concentrated forces as shown. 
 
    8 28 224 lbfzP  

      8 35 280 lbfyP  

    224 2 448 lbf inT   

    448 1.5 cos 20 0xT F    

  
 
448

318 lbf
1.5 0.940

F    

     
 
 
     5.75 11.5 14.25 sin 20 0z y

O y AM P R F    

         5.75 280 11.5 14.25 318 0.342 0y

AR    

     5.24 lbfy

AR  

     5.75 11.5 14.25 cos 20 0y z

O z AM P R F     

         5.75 224 11.5 14.25 318 0.940 0z

AR     

        
1/22 2

482 lbf;     482 5.24 482 lbfz

A AR R         
     cos 20 0z z z

O z AF R P R F     

     224 482 318 0.940 0z

OR      

     40.9 lbfz

OR  

     sin 20 0y y y

O y AF R P R F     

     280 5.24 318 0.342 0y

OR      

     166 lbfy

OR  

        
1/22 2

40.9 166 171 lbfOR       
 
 So the reaction at A governs. 

 Reliability Goal: 0.92 0.96  
 
      1.2 482 578 lbfDF  

       635000 350 60 /10 735Dx    

       

1/3

10 1/1.483

735
578

0.02 4.459 0.02 ln 1/ 0.96

6431 lbf 28.6 kN

C
    

     
 

 

 
 From Table 11-2, a 40 mm bore angular contact bearing is sufficient with a rating of  
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 31.9 kN. Ans. 

______________________________________________________________________________ 

1-32 For a combined reliability goal of 0.95, use
 
1 0.95 0.975 for the individual bearings. 

 

 
 
 
 

  
6

40000 420 60
1008

10Dx    

 
 
 
 
 
 
 
 The resultant of the given forces are  

  RO = [(–387) + 467]  = 607 lbf   
 

At O:  

 Eq. (11-6): 

 
2 2 1/2

 

   RB = [3162 + (–1615)2]1/2 = 1646 lbf
 
 

 
   

1/3

10 1/1.483

1008
1.2 607

0.02 4.459 0.02 ln 1/ 0.975
C

    
     

  

9978 lbf  44.4 kN   

 

         
 

From Table 11-2, select an 02-55 mm angular-contact ball bearing with a basic load 

 
At B: 

 Eq. (11-6): 

 
rating of 46.2 kN.   Ans. 

 

 
   

3/10

10 1/1.483

1008
1.2 1646

0.02 4.459 0.02 ln 1/ 0.975
C

    
     

       20827 lbf 92.7 kN   

   

   
 

From Table 11-3, select an 02-75 mm or 03-55 mm cylindrical roller.     Ans. 

_____ _________ 

1-33 The reliability of the individual bearings is 

 
_ _______________________________________________________________
 
1 0.98 0.9899R    
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 From statics, 
 
 T = (270  50) = (P1  P2)125  
     = (P1  0.15 P1)125 
 P1 = 310.6 N,     
 P2 = 0.15 (310.6) = 46.6 N 
 P1 + P2 = 357.2 N   

357.2sin 45 252.6 Ny z

A AF F  

zR

 

     
 
 
     850 300(252.6) 0 89.2 Nz y y

O E EM R R     
     252.6 89.2 0 163.4 Ny y y

O OF R R      
     850 700(320) 300(252.6) 0 174.4 Ny z z

O E EM R R       
     174.4 320 252.6 0 107 Nz z

O OF R       
 

    
 

   

2 2

2 2

163.4 107 195 N

89.2 174.4 196 N

O

E

R

R

   

    
 

 The radial loads are nearly the same at O and E. We can use the same bearing at both 
locations. 

 

    
  

6

60000 1500 60
5400

10Dx    

 Eq. (11-6):  
 

1/3

10 1/1.483

5400
1 0.196  5.7 kN

0.02 4.439 ln 1/ 0.9899
C

    
    

   
 From Table 11-2, select an 02-12 mm deep-groove ball bearing with a basic load rating 

of 6.89 kN.  Ans. 

______________________________________________________________________________ 
 
11-34  0.96 0.980R    
     

  12(240cos 20 ) 2706 lbf inT   
     

 
2706

498 lbf
6cos 25

F    

 
 In xy-plane: 

    
 16(82.1) 30(210) 42 0z y

O CM R     
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     181 lbfy

CR 

     82.1 210 181 111.1 lbfy

OR    
 In xz-plane: 
     16(226) 30(451) 42 0y z

O CM R    
     236 lbfz

CR  

     226 451 236 11 lbfz

OR    

     1/22 2111.1 11 112 lbf     .OR Ans    

     1/22 2181 236 297 lbf     .CR Ans    

    
  

6

50000 300 60
900

10Dx    

 

    
   

 

1/3

10 1/1.483

900
1.2 112

0.02 4.439 ln 1/ 0.980

1860 lbf 8.28 kN

O
C

    
    

 

 

    
   

 

1/3

10 1/1.483

900
1.2 297

0.02 4.439 ln 1/ 0.980

4932 lbf 21.9 kN

C
C

    
    

 

 

 
 Bearing at O: Choose a deep-groove 02-17 mm.     Ans. 
 Bearing at C: Choose a deep-groove 02-35 mm.     Ans. 
______________________________________________________________________________ 
 
11-35 Shafts subjected to thrust can be constrained by bearings, one of which supports the 

thrust. The shaft floats within the endplay of the second (roller) bearing. Since the thrust 
force here is larger than any radial load, the bearing absorbing the thrust (bearing A) is 
heavily loaded compared to bearing B. Bearing B is thus likely to be oversized and may 
not contribute measurably to the chance of failure. If this is the case, we may be able to 
obtain the desired combined reliability with bearing A having a reliability near 0.99 and 
bearing B having a reliability near 1.  This would allow for bearing A to have a lower 
capacity than if it needed to achieve a reliability of 0.99 .  To determine if this is the 
case, we will start with bearing B. 

 
 Bearing B (straight roller bearing) 

    
  

6

30000 500 60
900

10Dx    

      1/22 236 67 76.1 lbf 0.339 kNrF    

 Try a reliability of 1 to see if it is readily obtainable with the available bearings. 
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 Eq. (11-6):  
 

3/10

10 1/1.483

900
1.2 0.339 10.1 kN

0.02 4.439 ln 1/1.0
C

    
    

 

  
 The smallest capacity bearing from Table 11-3 has a rated capacity of 16.8 kN.  

Therefore, we select the 02-25 mm straight cylindrical roller bearing.    Ans. 

 
 Bearing at A (angular-contact ball) 
 With a reliability of 1 for bearing B, we can achieve the combined reliability goal of 0.99 

if bearing A has a reliability of 0.99. 
 

      1/22 236 212 215 lbf 0.957 kNrF    

     555 lbf 2.47 kNaF  
 
 Trial #1: 
 Tentatively select an 02-85 mm angular-contact with C10 = 90.4 kN and C0 = 63.0 kN. 
 

    
0

2.47
0.0392

63.0
aF

C
   

    
  

6

30000 500 60
900

10Dx    

 
 Table 11-1:  Interpolating, X2 = 0.56, Y2 = 1.88 
 
 Eq. (11-9):    0.56 0.957 1.88 2.47 5.18 kNeF     

 Eq. (11-6):  
 

1/3

10 1/1.483

900
1.2 5.18

0.02 4.439 ln 1/ 0.99
C

    
    

 

     99.54 kN 90.4 kN 
 Trial #2: 
 Tentatively select a 02-90 mm angular-contact ball with C10 = 106 kN and C0 = 73.5 kN. 
 

    
0

2.47
0.0336

73.5
aF

C
   

 
 Table 11-1:  Interpolating, X2 = 0.56,  Y2 = 1.93 
 
       0.56 0.957 1.93 2.47 5.30 kNeF     

    
 

1/3

10 1/1.483

900
1.2 5.30 102 kN < 106 kN    O.K.

0.02 4.439 ln 1/ 0.99
C

    
    
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 Select an 02-90 mm angular-contact ball bearing.     Ans. 
______________________________________________________________________________ 
 
11-36 We have some data. Let’s estimate parameters b and θ from it. In Fig. 11-5, we will use 

line AB. In this case, B is to the right of A. 
 

 For F = 18 kN,     
61

115 2000 60
13.8

10
x    

  
 This establishes point 1 on the R = 0.90 line. 
 

 
 
 The R = 0.20 locus is above and parallel to the R = 0.90 locus. For the two-parameter 

Weibull distribution, x0 = 0 and points A and B are related by [see Eq. (20-25)]: 
 

        (1)   1/
ln 1/ 0.90

b

Ax    

       1/
ln 1/ 0.20

b

Bx     
 
 and xB/xA is in the same ratio as 600/115. Eliminating θ, 
 

    
   

 
ln ln 1/ 0.20 / ln 1/ 0.90

1.65     .
ln 600 /115

b A
    ns  

 
 Solving for θ in Eq. (1), 
 

    
   1/1.65 1/1.65

1
3.91 .

ln 1/ ln 1/ 0.90
A

A

x
Ans

R
   

      
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 Therefore, for the data at hand, 
 

    
1.65

exp
3.91

x
R

     
   

 

 
 Check R at point B: xB = (600/115) = 5.217 
 

    
1.65

5.217
exp 0.20

3.91
R

      
   

 

 Note also, for point 2 on the R = 0.20 line, 
 

           
2

log 5.217 log 1 log log 13.8mx    

    
  2

72mx 
______________________________________________________________________________ 
 
11-37 This problem is rich in useful variations. Here is one. 
 
 Decision: Make straight roller bearings identical on a given shaft. Use a reliability goal of 

(0.99)1/6 = 0.9983. 
 
 Shaft a 

      1/22 2239 111 264 lbf 1.175 kNr

AF    

      1/22 2502 1075 1186 lbf 5.28 kNr

BF    

 
 Thus the bearing at B controls. 
 

    
  

6

10000 1200 60
720

10Dx    

       1/1.483
0.02 4.439 ln 1/ 0.9983 0.08026   

     
0.3

10

720
1.2 5.28 97.2 kN

0.08026
C

 
  

 
 

 
 Select either an 02-80 mm with C10 = 106 kN or an 03-55 mm with C10 = 102 kN.     Ans. 

 Shaft b 

      1/22 2874 2274 2436 lbf     or     10.84 kNr

CF   

      1/22 2393 657 766 lbf     or     3.41 kNr

DF   

 
 The bearing at C controls. 
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  

6

10000 240 60
144

10Dx    

     
0.3

10

144
1.2 10.84 123 kN

0.080 26
C

 
  

 
 

 
 Select either an 02-90 mm with C10 = 142 kN or an 03-60 mm with C10 = 123 kN.     Ans. 
 
 Shaft c 

      1/22 21113 2385 2632 lbf     or     11.71 kNr

EF   

      1/22 2417 895 987 lbf     or     4.39 kNr

FF   

 
 The bearing at E controls. 
 

    
  

6

10000 80 60
48

10Dx    

     
0.3

10

48
1.2 11.71 95.7 kN

0.08026
C

 
  

 
 

 
 Select an 02-80 mm with C10 = 106 kN or an 03-60 mm with C10 = 123 kN.     Ans. 

______________________________________________________________________________ 
 
11-38 Express Eq. (11-1) as 
 
     1 1 10 10

a aF L C L K 
 
 For a ball bearing, a = 3 and for an 02-30 mm angular contact bearing, C10 = 20.3 kN. 
 

         3 6 920.3 10 8.365 10K    

 
 At a load of 18 kN, life L1 is given by: 
 

    
   

9

6
1 3

1

8.365 10
1.434 10  rev

18a

K
L

F
    

 For a load of 30 kN, life L2 is: 
 

    
   

9

6
2 3

8.365 10
0.310 10  rev

30
L    

 
 In this case, Eq. (6-57) – the Palmgren-Miner cycle-ratio summation rule – can be 

expressed as 
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    1 2

1 2

1
l l

L L
   

 
 Substituting, 
 

    
   

2
6 6

200 000
1

1.434 10 0.310 10

l
   

      6
2 0.267 10  rev     .l A ns

______________________________________________________________________________ 
 
11-39 Total life in revolutions 
 
 Let: 
  l = total turns 
  f1 = fraction of turns at F1 
  f2 = fraction of turns at F2 
 
 From the solution of Prob. 11-38, L1 = 1.434(106) rev and L2 = 0.310(106) rev. 
 
 Palmgren-Miner rule: 
 

    1 2 1 2

1 2 1 2

1
l l f l f l

L L L L
     

 
 from which 

    
1 1 2 2

1

/ /
l

f L f L



 

         6 6

1

0.40 / 1.434 10 0.60 / 0.310 10

451 585 rev     .

l

Ans


    




  

 
 Total life in loading cycles 
 
   4 min at 2000 rev/min = 8000 rev/cycle 
 

   
6 min at 2000 rev/min = 12 000 rev/cycle 

  
  Total rev/cycle = 8000 + 12 000 = 20 000 
 

    

451585rev
22.58 cycles     .

20000 rev/cycle
Ans  
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 Total life in hours 

    

min 22.58 cycles
10 3.76 h     .

cycle 60 min/h
Ans

     
  

 

______________________________________________________________________________ 
 
11-40     560 lbfrAF 
     1095 lbfrBF 
     200 lbfaeF 

    
  
 6

40 000 400 60
10.67

90 10
D

D

R

L
x

L
    

    0.90 0.949R    
 

 Eq. (11-15): 
 0.47 5600.47

175.5 lbf
1.5

rA
iA

A

F
F

K
    

 Eq. (11-15): 
 0.47 10950.47

343.1 lbf
1.5

rB
iB

B

F
F

K
    

      ?iA iB aeF F F  

      175.5 lbf 343.1 200 543.1 lbf, so Eq. (11-16) applies.  
  
 We will size bearing B first since its induced load will affect bearing A, but is not itself 

affected by the induced load from bearing A [see Eq. (11-16)]. 
 
 From Eq. (11-16b), FeB = FrB = 1095 lbf. 
 

 Eq. (11-7):  
 

3/10

1/1.5

10.67
1.4 1095 3607 lbf

4.48 1 0.949
RBF

 
  
  

  Ans. 

  Select cone 32305, cup 32305, with 0.9843 in bore, and rated at 3910 lbf with K = 1.95.   
Ans. 

 

  
 With bearing B selected, we re-evaluate the induced load from bearing B using the actual 

value for K. 

 Eq. (11-15): 
 0.47 10950.47

263.9 lbf
1.95

rB
iB

B

F
F

K
    

 Find the equivalent radial load for bearing A from Eq. (11-16), which still applies. 
 
 Eq. (11-16a):  0.4eA rA A iB aeF F K F F    

       0.4 560 1.5 263.9 200 920 lbfeAF      
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     eA rAF F

 Eq. (11-7):  
 

3/10

1/1.5

10.67
1.4 920 3030 lbf

4.48 1 0.949
RAF

 
  
  

 

  
 Tentatively select cone M86643, cup M86610, with 1 in bore, and rated at 3250 lbf with 

K = 1.07.  Iterating with the new value for K, we get FeA = 702 lbf and FrA = 2312 lbf. 
Ans. 

 

 By using a bearing with a lower K, the rated load decreased significantly, providing a 
higher than requested reliability.  Further examination with different combinations of 
bearing choices could yield additional acceptable solutions. 

______________________________________________________________________________ 
 
11-41  The thrust load on shaft CD is from the axial component of the force transmitted through 

the bevel gear, and is directed toward bearing C.  By observation of Fig. 11-14, direct 
mounted bearings would allow bearing C to carry the thrust load.     Ans. 

 
 From the solution to Prob. 3-74, the axial thrust load is Fae = 362.8 lbf, and the bearing 

radial forces are FCx = 287.2 lbf,  FCz = 500.9 lbf,  FDx = 194.4 lbf, and  FDz = 307.1 lbf.  
Thus, the radial forces are 

 

    2 2287.2 500.9 577 lbfrCF     

    2 2194.4 307.1 363 lbfrDF     

  
 The induced loads are 

 Eq. (11-15): 
 0.47 5770.47

181 lbf
1.5

rC
iC

C

F
F

K
    

 Eq. (11-15): 
 0.47 3630.47

114 lbf
1.5

rD
iD

D

F
F

K
    

 Check the condition on whether to apply Eq. (11-16) or Eq. (11-17), where bearings C 

and D are substituted, respectively, for labels A and B in the equations. 
 
     ?iC iD aeF F   F

     181 lbf 114 362.8 476.8 lbf, so Eq.(11-16) applies  
 
 Eq. (11-16a):  0.4eC rC C iD aeF F K F F     

        ,0.4 577 1.5 114 362.8 946 lbf   so use rC eCF F      

 
 Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 

are applicable. 
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     
8

6

10
1.11

90 10
D

D

R

L
x

L
    

    0.90 0.949R    

 Eq. (11-7):  
 

3/10

1/1.5

1.11
1 946 1130 lbf     .

4.48 1 0.949
RCF Ans

 
  
  

 

 Eq. (11-16b):  363 lbfeD rDF F   

 Eq. (11-7):  
 

3/10

1/1.5

1.11
1 363 433 lbf     .

4.48 1 0.949
RDF Ans

 
  
  

 

______________________________________________________________________________ 
 
11-42  The thrust load on shaft AB is from the axial component of the force transmitted through 

the bevel gear, and is directed to the right.  By observation of Fig. 11-14, indirect 
mounted bearings would allow bearing A to carry the thrust load.     Ans. 

 
 From the solution to Prob. 3-76, the axial thrust load is Fae = 92.8 lbf, and the bearing 

radial forces are FAy = 639.4 lbf,  FAz = 1513.7 lbf,  FBy = 276.6 lbf, and  FBz = 705.7 lbf.  
Thus, the radial forces are 

 

    2 2639.4 1513.7 1643 lbfrAF     

    2 2276.6 705.7 758 lbfrBF     

  
 The induced loads are 

 Eq. (11-15): 
 0.47 16430.47

515 lbf
1.5

rA
iA

A

F
F

K
    

 Eq. (11-15): 
 0.47 7580.47

238 lbf
1.5

rB
iB

B

F
F

K
    

 Check the condition on whether to apply Eq. (11-16) or Eq. (11-17). 
 
     ?iA iB aeF F   F

     515 lbf 238 92.8 330.8 lbf, so Eq.(11-17) applies  
  
 Notice that the induced load from bearing A is sufficiently large to cause a net axial force 

to the left, which must be supported by bearing B. 

  
 Eq. (11-17a):  0.4eB rB B iA aeF F K F F     

        ,0.4 758 1.5 515 92.8 937 lbf   so use rB eBF F      

 
 Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 

are applicable. 
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 
 

6

6

500 10
5.56

90 10
D

D

R

L
x

L
    

    0.90 0.949R    

 Eq. (11-7):  
 

3/10

1/1.5

5.56
1 937 1810 lbf     .

4.48 1 0.949
RBF Ans

 
  
  

 

 Eq. (11-16b):  1643 lbfeA rAF F   

 Eq. (11-7):  
 

3/10

1/1.5

5.56
1 1643 3180 lbf     .

4.48 1 0.949
RAF Ans

 
  
  

 

______________________________________________________________________________ 
 
11-43 The lower bearing is compressed by the axial load, so it is designated as bearing A. 

 
     25 kNrAF 
     12 kNrBF 
     5 kNaeF 

 Eq. (11-15): 
 0.47 250.47

7.83 kN
1.5

rA
iA

A

F
F

K
    

 Eq. (11-15): 
 0.47 120.47

3.76 kN
1.5

rB
iB

B

F
F

K
    

 Check the condition on whether to apply Eq. (11-16) or Eq. (11-17) 
 
     ?iA iB aeF F   F

     7.83 kN 3.76 5 8.76 kN, so Eq.(11-16) applies  
 
 Eq. (11-16a):  0.4eA rA A iB aeF F K F F     

        ,0.4 25 1.5 3.76 5 23.1 kN   so use rA rAF F      

 
   

   

 6

60 min 8 hr 5 day 52 weeks
250 rev/min 5 yrs

hr day week yr

156 10  rev

DL
             

      



 

 Assume for tapered roller bearings that the specifications for Manufacturer 1 on p. 608 
are applicable. 

 Eq. (11-3):    
 

3/103/10 6

6

156 10
1.2 25 35.4 kN     .

90 10
D

RA f D

R

L
F a F An

L

  
    
    

s

 

 

 
 Eq. (11-16b):  12 kNeB rBF F 
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 Eq. (11-3):  
3/10

156
1.2 12 17.0 kN     .

90RBF Ans
    

 

______________________________________________________________________________ 
 
11-44 The left bearing is compressed by the axial load, so it is properly designated as bearing A. 
 
     875 lbfrAF 
     625 lbfrBF 
     250 lbfaeF 
  
 Assume K = 1.5 for each bearing for the first iteration.  Obtain the induced loads. 
 

 Eq. (11-15): 
 0.47 8750.47

274 lbf
1.5

rA
iA

A

F
F

K
    

 Eq. (11-15): 
 0.47 6250.47

196 lbf
1.5

rB
iB

B

F
F

K
  

 
 
 Check the condition on whether to apply Eq. (11-16) or Eq. (11-17). 
 
     ?iA iB aeF F   F

     274 lbf 196 250 lbf, so Eq.(11-16) applies 
 
 We will size bearing B first since its induced load will affect bearing A, but it is not 

affected by the induced load from bearing A [see Eq. (11-16)]. 
 
 From Eq. (11-16b), FeB = FrB = 625 lbf. 
 

 Eq. (11-3):     
 

3/103/10

6

90 000 150 60
1 625

90 10
D

RB f D

R

L
F a F

L

  
   
    

 

     1208 lbf     RBF 

  Select cone 07100, cup 07196, with 1 in bore, and rated at 1570 lbf with K = 1.45.   Ans. 

 

  
 With bearing B selected, we re-evaluate the induced load from bearing B using the actual 

value for K. 

 Eq. (11-15): 
 0.47 6250.47

203 lbf
1.45

rB
iB

B

F
F

K
    

 
 Find the equivalent radial load for bearing A from Eq. (11-16), which still applies. 
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 Eq. (11-16a):  0.4eA rA A iB aeF F K F F    

       0.4 875 1.5 203 250 1030 lbf     

     eA rAF F

 Eq. (11-3):     
 

3/103/10

6

90 000 150 60
1 1030

90 10
D

RA f D

R

L
F a F

L

  
   
    

 

     1990 lbf     RAF 
  
 Any of the bearings with 1-1/8 in bore are more than adequate.  Select cone 15590, cup 

15520, rated at 2480 lbf with K = 1.69.  Iterating with the new value for K, we get FeA = 
1120 lbf and FrA = 2160 lbf.  The selected bearing is still adequate.  Ans. 

______________________________________________________________________________ 
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Chapter 12 
 

 
12-1 Given: dmax = 25 mm, bmin = 25.03 mm, l/d = 1/2, W = 1.2 kN,  = 55 mPas, and  N = 

1100 rev/min. 

    min max
min

25.03 25
0.015 mm

2 2

b d
c

 
    

 

    r  25/2 = 12.5 mm 

 

    r/c = 12.5/0.015 = 833.3 

 

    N = 1100/60 = 18.33 rev/s 

 

    P = W/ (ld) = 1200/ [12.5(25)] = 3.84 N/mm
2
 = 3.84 MPa 

 

 Eq. (12-7): 
 

 
32

2

6

55 10 18.33
833.3 0.182

3.84 10

r N
S

c P


       

    
 

 

 Fig. 12-16: h0 /c = 0.3  h0  = 0.3(0.015) = 0.0045 mm     Ans. 

 

 Fig. 12-18: f r/c = 5.4  f = 5.4/833.3 = 0.006 48 

 

    T =f Wr = 0.006 48(1200)12.5(10
3

) = 0.0972 Nm 

 

    Hloss = 2 TN = 2 (0.0972)18.33 = 11.2 W      Ans. 

 

 Fig. 12-19: Q/(rcNl) = 5.1     Q = 5.1(12.5)0.015(18.33)12.5 = 219 mm
3
/s 

 

 Fig. 12-20: Qs /Q = 0.81  Qs  = 0.81(219) = 177 mm
3
/s      Ans. 

______________________________________________________________________________ 

 

12-2 Given: dmax = 32 mm, bmin = 32.05 mm, l = 64 mm, W = 1.75 kN,  = 55 mPas, and  N = 

900 rev/min. 

    min max
min

32.05 32
0.025 mm

2 2

b d
c

 
    

 

    r  32/2 = 16 mm 

 

    r/c = 16/0.025 = 640 

 

    N = 900/60 = 15 rev/s 
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    P = W/ (ld) = 1750/ [32(64)] = 0.854 MPa 

    l/d = 64/32 = 2 

 

 Eq. (12-7): 
 32

2
55 10 15

640 0.797
0.854

r N
S

c P


       

    
 

 

 Eq. (12-16), Figs. 12-16, 12-19, and 12-21 

 

     l/d y  y1  y1/2  y1/4  yl/d 

h0/c 2 0.98 0.83 0.61 0.36 0.92 

P/pmax 2 0.84 0.54 0.45 0.31 0.65 

Q/rcNl 2 3.1 3.45 4.2 5.08 3.20 

 

 

 

 

 

    h0 =  0.92 c = 0.92(0.025) = 0.023 mm         Ans. 

 

    pmax = P / 0.065 = 0.854/0.65 = 1.31 MPa        Ans. 

 

    Q = 3.20 rcNl = 3.20(16)0.025(15)64 = 1.23 (10
3
) mm

3
/s        Ans. 

______________________________________________________________________________ 

 

12-3 Given: dmax = 3.000 in, bmin = 3.005 in, l = 1.5 in, W = 800 lbf, N = 600 rev/min, and 

SAE 10 and SAE 40 at 150F. 

min max
min

3.005 3.000
0.0025 in

2 2
3.000 / 2 1.500 in

/ 1.5 / 3 0.5

/ 1.5 / 0.0025 600

600 / 60 10 rev/s

800
177.78 psi

1.5(3)

b d
c

r

l d

r c

N

W
P

ld

 
  


 
 

 

  



 

 

 Fig. 12-12: SAE 10 at 150F, 1.75 reynµ µ  

 
2 6

2 1.75(10 )(10)
600 0.0354

177.78

r N
S

c P

           
 

 

 Figs. 12-16 and 12-21:   h0/c = 0.11  and   P/pmax = 0.21 

                                    0

max

0.11(0.0025) 0.000 275 in     .

177.78 / 0.21 847 psi     .

h A

p Ans

 
 

ns

 

 Fig. 12-12: SAE 40 at 150F, 4.5 reynµ µ  
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0 max

0

max

4.5
0.0354 0.0910

1.75

/ 0.19,    / 0.275

0.19(0.0025) 0.000 475 in     .

177.78 / 0.275 646 psi     .

S

h c P p

h A

p A

   
 

 
 
 

ns

ns

 

______________________________________________________________________________ 

 

12-4 Given: dmax = 3.250 in, bmin = 3.256 in, l = 3.25 in, W = 800 lbf, and N = 1000 rev/min. 

   

min max
min

3.256 3.250
0.003

2 2
3.250 / 2 1.625 in

/ 3 / 3.250 0.923

/ 1.625 / 0.003 542

1000 / 60 16.67 rev/s

800
82.05 psi

3(3.25)

b d
c

r

l d

r c

N

W
P

ld

 
  


 
 

 

  



 

 Fig. 12-14: SAE 20W at 150F,  = 2.85  reyn  

 

        

2 6
2 2.85(10 )(16.67)

542 0.1701
82.05

r N
S

c P

           
 

 

 From Eq. (12-16), and Figs. 12-16 and 12-21: 

 

   l/d y  y1  y1/2  y1/4  yl/d 

ho/c 0.923 0.85 0.48 0.28 0.15 0.46 

P/pmax 0.923 0.83 0.45 0.32 0.22 0.43 

 

max

0.46 0.46(0.003) 0.001 38 in     .

82.05
191 psi     .

0.43 0.43

oh c A

P
p A

  

  

ns

ns
 

 

 Fig. 12-14: SAE 20W-40 at 150F,  = 4.4  reyn 

 
6

2 4.4(10 )(16.67)
542 0.263

82.05
S



   

 

 From Eq. (12-16), and Figs. 12-16 and 12-21: 

   

   l/d y  y1  y1/2  y1/4  yl/d 

ho/c 0.923 0.91 0.6 0.38 0.2 0.58 

P/pmax 0.923 0.83 0.48 0.35 0.24 0.46 
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0

max

0.58 0.58(0.003) 0.001 74 in     .

8205 82.05
178 psi     .

0.46 0.46

h c A

p A

  

  

ns

ns
 

______________________________________________________________________________ 

 

12-5 Given: dmax = 2.000 in, bmin = 2.0024 in, l = 1 in, W = 600 lbf, N = 800 rev/min, and SAE 

20 at 130F.  

min max
min

2.0024 2
0.0012 in

2 2
2

1 in,    / 1 / 2 0.50
2 2

/ 1 / 0.0012 833

800 / 60 13.33 rev/s

600
300 psi

2(1)

b d
c

d
r l d

r c

N

W
P

ld

 
  

   

 
 

  



 

 

 Fig. 12-12: SAE 20 at 130F, 3.75 reynµ µ  

 

    

2 6
2 3.75(10 )(13.3)

833 0.115
300

r N
S

c P

           
 

 

 From Figs. 12-16, 12-18 and 12-19: 

 

0

0

/ 0.23,     / 3.8,    / ( ) 5.3

0.23(0.0012) 0.000 276 in     .

3.8
0.004 56

833

h c r f c Q rcNl

h A

f

 
 

 

ns


 

 

 The power loss due to friction is 

 

    
3

2  2 (0.004 56)(600)(1)(13.33)

778(12) 778(12)

0.0245 Btu/s     .

5.3

5.3(1)(0.0012)(13.33)(1)

0.0848 in / s     .

f WrN
H

Ans

Q rcNl

Ans

 
 




  

______________________________________________________________________________ 

 

12-6 Given: dmax = 25 mm, bmin = 25.04 mm, l/d = 1, W = 1.25 kN,  = 50 mPas, and N = 

1200 rev/min. 
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min max
min

2

25.04 25
0.02 mm

2 2
/ 2 25 / 2 12.5 mm,    / 1

/ 12.5 / 0.02 625

1200 / 60 20 rev/s

1250
2 MPa

25

b d
c

r d l d

r c

N

W
P

ld

 
  

  
 

 

  


 

 For µ = 50 MPa · s,  

2 3
2

6

50(10 )(20)
625 0.195

2(10 )

r N
S

c P

           
 

 From Figs. 12-16, 12-18 and 12-20: 

 

    

0

0

/ 0.52,     / 4.5,    / 0.57

0.52(0.02) 0.0104 mm     .

4.5
0.0072

625
 0.0072(1.25)(12.5) 0.1125 N · m

sh c f r c Q Q

h A

f

T f Wr

  
 

 

  

ns

 

 

 The power loss due to friction is 

 

    H = 2πT N = 2π (0.1125)(20) = 14.14 W     Ans. 

 

    Qs = 0.57Q   The side flow is 57% of Q     Ans. 
______________________________________________________________________________ 

 

12-7 Given: dmax = 1.25 in, bmin = 1.252 in, l  = 2 in, W = 620 lbf,  = 8.5  reyn, and  N = 

1120 rev/min. 

min max
min

2 6
2

1.252 1.25
0.001 in

2 2
/ 2 1.25 / 2 0.625 in

/ 0.625 / 0.001 625

1120 / 60 18.67 rev/s

620
248 psi

1.25(2)

8.5(10 )(18.67)
625 0.250

248

/ 2 / 1.25 1.6

b d
c

r d

r c

N

W
P

ld

r N
S

c P

l d

 

 
  

  
 

 

  

          
 

 

 

 From  Eq. (12-16), and Figs. 12-16, 12-18, and 12-19 
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   l/d y  y1  y1/2  y1/4  yl/d 

h0/c 1.6 0.9 0.58 0.36 0.185 0.69 

fr/c 1.6 4.5 5.3 6.5 8 4.92 

Q/rcNl 1.6 3 3.98 4.97 5.6 3.59 

 

    h0 = 0.69 c = 0.69(0.001) =0.000 69 in          Ans. 

 

    f  = 4.92/(r/c) = 4.92/625 = 0.007 87       Ans. 

 

    Q = 1.6 rcNl  = 1.6(0.625) 0.001(18.57) 2 = 0.0833 in
3
/s      Ans. 

______________________________________________________________________________ 

 

12-8 Given: dmax = 75.00 mm, bmin = 75.10 mm, l = 36 mm, W = 2 kN, N = 720 rev/min, and 

SAE 20 and SAE 40 at 60C. 
 

    

min max
min

75.10 75
0.05 mm

2 2
/ 36 / 75 0.48 0.5    (close enough)

/ 2 75 / 2 37.5 mm

/ 37.5 / 0.05 750

720 / 60 12 rev/s

2000
0.741 MPa

75(36)

b d
c

l d

r d

r c

N

W
P

ld

 
  

 
  

 
 

  



 

 

 Fig. 12-13: SAE 20 at 60C, µ = 18.5 MPa · s 

 

    

2 3
2

6

18.5(10 )(12)
750 0.169

0.741(10 )

r N
S

c P

           
 

 

 From Figures 12-16, 12-18 and 12-21: 

 

    

 

0 m

0

/ 0.29,       / 5.1,      / 0.315

0.29(0.05) 0.0145  mm     .

5.1 / 750 0.0068

 0.0068(2)(37.5) 0.51 N · m

h c f r c P p

h An

f

T f Wr

 
 
 
  

ax

s



 

 The heat loss rate equals the rate of work on the film 

 

    Hloss = 2πT N = 2π(0.51)(12) = 38.5 W     Ans. 

    pmax = 0.741/0.315 = 2.35 MPa     Ans. 

 

 Fig. 12-13: SAE 40 at 60C, µ = 37 MPa · s 
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    S = 0.169(37)/18.5 = 0.338 

 

 From Figures 12-16, 12-18 and 12-21: 

 

    

 

0 m

0

loss

max

/ 0.42,       / 8.5,      / 0.38

0.42(0.05) 0.021 mm     .

8.5 / 750 0.0113

 0.0113(2)(37.5) 0.85 N · m

2 2 (0.85)(12) 64 W     .

0.741 / 0.38 1.95 MPa     .

h c f r c P p

h Ans

f

T f Wr

H TN Ans

p A

 

 
 
 
  

  
 

ax

ns



_____________________________________________________________________________ 

 

12-9 Given: dmax = 56.00 mm, bmin = 56.05 mm, l = 28 mm, W = 2.4 kN, N = 900 rev/min, and 

SAE 40 at 65C. 

    

min max
min

56.05 56
0.025 mm

2 2
/ 2 56 / 2 28 mm

/ 28 / 0.025 1120

/ 28 / 56 0.5,      900 / 60 15 rev/s

2400
1.53 MPa

28(56)

b d
c

r d

r c

l d N

P

 
  

  
 
   

 

 

 

 Fig. 12-13: SAE 40 at 65C, µ = 30 MPa · s 
2 3

2

6

30(10 )(15)
1120 0.369

1.53(10 )

r N
S

c P

           
 

 

 From Figures 12-16, 12-18, 12-19 and 12-20: 

 

     

0

0

/ 0.44,       / 8.5,      / 0.71,      / ( ) 4.85

0.44(0.025) 0.011 mm     .

8.5 / 1000 0.007 59

 0.007 59(2.4)(28) 0.51 N · m

2 2 (0.51)(15) 48.1 W     .

4.85 4.85(28)(0.0

sh c f r c Q Q Q rcNl

h Ans

f

T f Wr

H TN Ans

Q rcNl

 

  
 
 
  
  
  3

3

25)(15)(28) 1426 mm /s

0.71(1426) 1012 mm /s     .sQ Ans


 



_____________________________________________________________________________ 

 

12-10 Consider the bearings as specified by 

 

  minimum f :   0

0,    b

d

t

td b
   

  maximum W:   0

0,    b

d

t

td b
   
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d  and differing only in d and . 

     

ig. µ = 1.38(10
6

) reyn 

/448) = 0.185(10
6

) 

     

 

Preliminaries:  

2

/ 1

/ ( ) 700 / (1.25 ) 448 psi

3600 / 60 60 rev/s

l d

P W ld

N


  
 

 

 

Fig. 12-16:  

       minimum f :  

 

S 0.08  

    maximum W: 0.20S   

 

F  12-12:    

 

    µN/P = 1.38(10
6

)(60 

 Eq. (12-7): 

 

/

r S

c µN
  

P

m 

     

 

For minimu f :  

 

6

0.08
 658

0.185(10 )

0.625 / 658 0.000 950 0.001 in

r

c

c

 

  
 

 

If this is c min, 

 b  d = 2(0.001) = 0.002 in 

     

    

 

The median clearance is  

0.001
2 2

d b d bt t t t
minc c


   

ran nge for this bearing is 

 

 

and the clea ce ra 

2

dtc bt
   

 which is a function only of the tolerances. 

 

For maximum W:  

6

0.2
 1040

0.185(10 )

0.625 / 1040 0.000 600 0.0005 in

r
 

c

c



  
 

 

If this is cmin  
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min

min

2 2(0.0005) 0.001 in

0.0005
2 2

2

d b d b

d b

b d c

t t t t
c c

t t
c

   
 

   


 

 

 

 The difference (mean) in clearance between the two clearance ranges, crange, is 

    

 

range 0.001 0.0005
2 2

0.0005 in

d b d bt t t t
c

      
 


 

 

 For the minimum f  bearing 

b  d = 0.002 in 

  d = b  0.002 in 

d = b  0.001 in 

For the same b, tb and td, we need to change the journal diameter by 0.001 in. 

 

Increasing d of the minimum friction bearing by 0.001 in, defines of the maximum 

_____________________________________________________________________________ 

2-11 Given: SAE 40, N = 10 rev/s,  Ts = 140F,  l/d = 1,  d = 3.000 in,  b = 3.003 in, W = 675 

    

      

 or 

    

 For the maximum W bearing 

      

 

 

 

0.001 ( 0.002)

0.001 in

d d b b     


 

 d 
load bearing. Thus, the clearance range provides for bearing dimensions which are 

attainable in manufacturing.     Ans. 

 

1
lbf. 

min max
min

3.003 3
0.0015 in

2 2
/ 2 3 / 2 1.5 in

/ 1.5 / 0.0015 1000

675
75 psi

3(3)

b d
c

r d

r c

W
P

ld

 
  

  
 

  

 

 

Trial #1: Fr om Figure 12-12 for T = 160°F, µ = 3.5 µ reyn, 

 

2 6
2

2(160 140) 40

3.5(10 )(10)
1000 0.4667

75

T F

r N
S

c P

 

    

          

 

 From Fig. 12-24, 
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29.70
0.349 109 6.009 40(0.4667) 0.047 467(0.4667) 3.16

75
3.16 3.16 24.4 F

9.70 9.70

T

P
P

T


   

    
 

 

 Discrepancy = 40  24.4 = 15.6°F 

Trial #2: T = 150°F, µ = 4.5 µ reyn, 

    

 

 

 

 6

2

2(150 140) 20

4.5 10 10
1000 0.6

75

T F

S



    
 

  
  

 

 From Fig. 12-24, 

    

 

29.70
0.349 109 6.009 40(0.6) 0.047 467(0.6) 3.97

75
3.97 3.97 30.7 F

9.70 9.70

T

P
P

T


   

    
 

 

 Discrepancy = 20  30.7 =  10.7°F 

Trial #3: T = 154°F, µ = 4 µ reyn,     

    

 

 

 

 6

2

2(154 140) 28

4 10 10
1000 0.533

75

T F

S



    
 

  
  

 

 From Fig. 12-24, 

    

 

29.70
0.349 109 6.009 40(0.533) 0.047 467(0.533) 3.57

75
3.57 3.57 27.6 F

9.70 9.70

T

P
P

T


   

    
 

 

 Discrepancy = 28  27.6 = 0.4°F      O.K. 

   T  = 140 +28/2 = 154°F     Ans. 

    
s 12-16, 12-18, to 12-20: 

 

 av

2 av

) 140

/ 2 154 (28 / 2) 168

0.4

F

T T T F

S

 
      


 
1 av / 2 154 (28 / 2T T T    

 From Figure
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 
   

 

0

0

loss

0.75,      11,      3.6,      0.33
 

0.75(0.0015) 0.00113 in     .

11
0.011

1000
 0.0075(3)(40) 0.9 N · m

2 0.011 675 1.5 102
0.075 Btu/s     .

778 12 778 12

3.6 3.

sh f r Q Q

c c rcN l Q

h Ans

f

T f Wr

f WrN
H A

Q rcN l



   

 

 

  

  

  3

3

6(1.5)0.0015(10)3 0.243 in /s .

0.33(0.243) 0.0802 in /s     .s

Ans

Q Ans


 

     

ns

_____________________________________________________________________________ 

2-12 Given: d = 2.5 in, b = 2.504 in, cmin = 0.002 in,  W = 1200 lbf, SAE = 20,  Ts = 110°F,  

  P = W/(ld) = 1200/(2.5)  = 192 psi,       N = 1120/60 = 18.67 rev/s 

For a trial film temperature, let Tf = 150°F 

Table 12-1:   = 0.0136 exp[1271.6/(150 + 95)] = 2.441  reyn 

 Eq. (12-7): 

 

1
 N = 1120 rev/min, and l = 2.5 in. 

 
2

 

 

 

 

 

 

 62 2 2.441 10 18.672.5 / 2
0.927

0.002 192

r N
S

c P




        
   

 

 

Fig. 12-24: 

    

 

   2192
0.349 109 6.009 40 0.0927 0.047 467 0.0927

9.70

17.9 F

T     

 
 

  

    av

av

17.9
110 119.0 F

2 2
150 119.0 31.0 F

s

f

T
T T

T T


     

    
 

 

which is not 0.1 or less, therefore try averaging for the new trial film temperature, let 

    

 

 

new

150 119.0
( ) 134.5 F

2
fT


   

ing a spreadsheet (table also shows the first trial) 

 

Proceed with additional trials us 
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Trial     

Tf ' S T Tav Tf Tav 

New     

Tf 

150.0 2.441 0.0927 17.9 119.0 31.0 134.5 

134.5 3.466 0.1317 22.6 121.3 13.2 127.9 

127.9 4.084 0.1551 25.4 122.7 5.2 125.3 

125.3 4.369 0.1659 26.7 123.3 2.0 124.3 

124.3 4.485 0.1704 27.2 123.6 0.7 124.0 

124.0 4.521 0.1717 27.4 123.7 0.3 123.8 

123.8 4.545 0.1726 27.5 123.7 0.1 123.8 

 

 Note that the convergence begins rapidly. There are ways to speed this, but at this point 

 they would only add complexity.  

 
 (a)    64.545(10 ),    0.1726µ S  
 

   From Fig. 12-16:  0
00.482,    0.482(0.002) 0.000 964 in

h
h

c
    

 

  From Fig. 12-17:   = 56°     Ans. 

 

 (b) e = c  h0 = 0.002  0.000 964 = 0.001 04 in     Ans. 

 (c) From Fig. 12-18:  
 

4.10,     4.10(0.002 /1.25) 0.006 56     .
f r

f Ans
c

    

 

 (d) T = f Wr = 0.006 56(1200)(1.25) = 9.84 lbf · in 

 

    

2 2 (9.84)(1120 / 60)
0.124 Btu/s     .

778(12) 778(12)

T N
H Ans

 
    

 

 (e) From Fig. 12-19:  4.16
Q

rcNl
  

    31120
4.16(1.25)(0.002) (2.5) 0.485 in /s .

60
Q A

   
 

ns  

  From Fig. 12-20:  30.6,     0.6(0.485) 0.291 in /s     .s
s

Q
Q A

Q
   ns  

 

  (f) From Fig. 12-21:  
  2

max

max

/ 1200 / 2.5
0.45,    427 psi     .

0.45 0.45

W ldP
p Ans

p
     

  From Fig. 12-22: 
max

16  .p Ans    
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 (g) From Fig. 12-22: 
0

82      .p Ans    

 (h) From the trial tabl   Ans. e, Tf = 123.8°F   

 T = 110 + 27.5 = 137.5°F     Ans. 

_____ 

2-13 Given: d = 1.250 in, td = 0.001 in, b = 1.252 in, tb = 0.003 in, l = 1.25 in, W = 250 lbf, 

 P = W/(ld) = 250/1.25  = 160 psi,     N = 1750/60 = 29.17 rev/s 

 For the clearance, c = 0.002  0.001 in. Thus, cmin = 0.001 in, cmedian = 0.002 in, and  

For cmin = 0.001 in, start with a trial film temperature of Tf = 135°F 

Table 12-1:    = 0.0158 exp[1157.5/(135 + 95)] = 2.423  reyn 

 Eq. (12-7): 

 (i) With T = 27.5°F from the trial table, Ts +

________________________________________________________________________

 

1
 N = 1750 rev/min, SAE 10 lubricant, sump temperature Ts = 120°F. 

 
2

 

 

 

 cmax = 0.003 in. 

 

 

 

 

 

 62 2 2.423 10 29.171.25 / 2
0.1725

0.001 160

r N
S

c P




        
   

 

 

 Fig. 12-24: 

    
   2160

0.349 109 6.009 40 0.1725 0.047 467 0.1725
9.70

22.9 F

T     

 
 

  

    av

av

22.9
120 131.4 F

2 2
135 131.4 3.6 F

s

f

T
T T

T T


     

    
 

 

which is not 0.1 or less, therefore try averaging for the new trial film temperature, let 

    

 

 

new

135 131.4
( ) 133.2 F

2
fT


   

h additional trials using a spreadsheet (table also shows the first trial) 

Trial     

' S T Tav TfTav 

New     

 Proceed wit

 

Tf Tf 

1  2. 0.1 5 1  135.0 423 72 22.9 31.4 3.6 33.2 

133.2 2.521 0.1795 23.6 131.8 1.4 132.5 

132.5 2.560 0.1823 23.9 131.9 0.6 132.2 

132.2 2.578 0.1836 24.0 132.0 0.2 132.1 

132.1 2.583 0.1840 24.0 132.0 0.1 132.1 
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 With Tf  = 132.1°F, T = 24.0°F,  = 2.583  reyn, S = 0.1840, 

   Tmax = Ts + T = 120 + 24.0 = 144.0°F 

Fig. 12-16:  h0/c = 0.50,   h0 = 0.50(0.001) = 0.000 50 in 

     = 1   h0/c = 1  0.50 = 0.05 in 

Fig. 12-18: r f /c = 4.25,   f = 4.25/(0.625/0.001) = 0.006 8 

Fig. 12-19: Q/(rcNl) = 4.13,  Q = 4.13(0.625)0.001(29.17)1.25 = 0.0941 in
3
/s 

Fig. 12-20: Qs/Q = 0.58,   Qs = 0.58(0.0941) = 0.0546 in /s 

The above can be repeated for cmedian = 0.002 in, and cmax = 0.003 in. The results are 

 

  

cmin   0.001 cmedian 

0.002 in 

cmax   0.003 

 

 

 

 

 

 

 

 

 

 

 
3

 

 

 

shown below. 

in in 

T 132.1 125.6 124.1 


1  

0.00050 0.00069 0.00038 

f
 

0.0068 0.0058 0.0059 

Q/( )
 

0.0941 0.207 0.321 

Q

0.0546 0.170 

f 

 2.583 3.002 3.112 

S 0.184 0.0534 0.0246 

 24.0 11.1 8.2 

Tmax 144.0 131.1 28.2

h0/c
 

0.5 0.23 0.125 

h0 

 0.50 0.77 0.88 

r/c 4.25 1.8 1.22 

f 

rcNl 4.13 4.55 4.7 

Q 
 

s /Q 0.58 0.82 0.90 

Qs 0.289 

 

____________________________________________________________________________ 

2-14 Computer programs will vary. 

______________________________________________ 

2-15 Note to the Instructor: In the first printing of the 9th edition, the l/d ratio and the 

ill be 

_

 

1
_______________________________

 

1
lubrication constant  were omitted. The values to use are l/d = 1, and  = 1. This w

updated in the next printing. We apologize for any inconvenience this may have caused. 
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ring 

nowledge the environmental temperature’s role in establishing the sump 

Given: dmax = 2.500 in, bmin = 2.504 in, l/d = 1, N = 1120 rev/min, SAE 20 lubricant, W = 

 

600 lbf load with minimal clearance: We will start by using W = 600 lbf (nd = 2). The 

lo

 

In a step-by-step fashion, we are building a skill for natural circulation bearings. 

 � Given the average film temperature, establish the bearing properties. 

 � Given a sump temperature, find the average film temperature, then establish the bea

    properties. 

 � Now we ack

    temperature. Sec. 12-9 and Ex. 12-5 address this problem. 

 

 

300 lbf, A = 60 in
2
, T = 70F, and  = 1. 

 

 task is to iteratively find the average film temperature, Tf , which makes Hgen and 

H ss  equal. 

   min max
min

2.504 2.500
0.002 in

2 2

b d
c

 
    

 

   N = 1120/60 = 18.67 rev/s 

   

 

 

 
2

600
96 psi

2.5

W
P

ld
    

 

 62 2 10 18.671.25
0.0760

0.002 96

r N
S

c P

 
         

   
     

 

 Table 12-1:   = 0.0136 exp[1271.6/(Tf + 95)] 

    

 

 

   gen

2545 2545
600 18.67 0.002

1050 1050

54.3

f r f
H WNc

c c
f r

c

   
 


 

r

 

    

     

 

CR
loss

2.7 60 / 144
70

1 1 1

0.5625 70

f f

f

A
H T T T

T

    
 

 



 

  Start with trial values of Tf of 220 and 240F. 

Trial Tf  S f r/c Hgen Hloss 

 

220 0.770 0. 9 05 1.9 103.2 84.4 

240 0.605 0.046 1.7 92.3 95.6 

 

 As a linear approximation, let Hgen = mTf  + b. Substituting the two sets of values of 

f  

 

T and Hgen we find that Hgen =  0.545 Tf  +223.1. Setting this equal to Hloss and 

solving  for Tf  gives Tf  = 237F. 
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Tr  S ial Tf f r/c Hgen Hloss 

237 0.627 0. 8 04 1.73 93.9 94.0 

 

 which is satisfactory. 

 Table 12-16: h0/c = 0.21,      h0 = 0.21 (0.002) = 000 42 in 

 Fig. 12-24:  

     

 

 

 

 

 

   296
0.349 109 6.009 4 0.048 0.047 467 0.048

9.7

6.31 F

T      

 
 

     T1 = Ts = Tf   T = 237  6.31/2 = 233.8F 

    Tmax = T1 + T = 233.8 + 6.31 = 240.1F 

Trumpler’s design criteria: 

0.002 + 0.000 04d = 0.002 + 0.000 04(2.5) = 0.000 30 in < h0     O.K. 

   Tmax = 240.1F < 250F   O.K. 

   

 

 

 

 

  

    

 

 

 

 
2

300
48 psi 300 psi . .

2.5

stW
O K

ld
    

 

    nd  =  2  (assessed at W = 600 lbf)     O.K. 

 We see that the design passes Trumpler’s criteria and is deemed acceptable. 

For an operating load of W = 300 lbf, it can be shown that Tf  = 219.3F,  = 0.78, S = 

_____________________________________________________________________________ 

2-16 Given: , SAE 30, Ts = 120F, ps = 50 psi,  

0/60 = 33.33 rev/s, W = 4600 lbf, b  0.250 in, 

 

 

 

 

 

0.118, f r/c =  3.09, Hgen = Hloss = 84 Btu/h, h0 = , T = 10.5F, T1 = 224.6F, and Tmax = 

235.1F. 

 

1 0.000 0.005

0.001 0.0003.500  in, 3.505 ind b 
  

 N = 200 earing length = 2 in, groove width =

and Hloss  5000 Btu/hr. 

   minb
c  max

min

3.505 3.500
0.0025 in

2 2

d 
   

r = d/ 2 = 3.500/2 = 1.750 in 

   r / c = 1.750/0.0025 = 700 

   l  = (2  0.25)/2 = 0.875 in 
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   l  / d = 0.875/3.500 = 0.25 

   

 

 
4600W

P   751 psi
4 4 1.750 0.875rl




 
 Trial #1: Choose (Tf )1 = 150°F. From Table 12-1, 

     = 0.0141 exp[1360.0/(150 + 95)] = 3.63 µ reyn 

 

 

 
 

2 6
2 3.63(10 )(33.33)

700 0.0789
751

r N
S

c P

           
 

  From Figs. 12-16 and 12-18:           = 0.9,   f r/ c = 3.6 

 From Eq. (12-24),       

    

 

 

 
   

 

2

2 4

2

2 4

0.012
T 

3(  / )

1 1.5

0.0123 3.6 0.0789 4600
71.2 F

1 1.5(0.9) 50 1.750

s

f r c SW

p r

  
  


 

    Tav = Ts  + T / 2 = 120 + 71.2/2 = 155.6F 

Trial #2: Choose (Tf )2 = 160°F. From Table 12-1 

    = 0.0141 exp[1360.0/(160 + 95)] = 2.92 µ reyn 

   

 

 

 

 

 

2.92
0.0789 0.0635

3.63
S

   
 

  

  From Figs. 12-16 and 12-18:        = 0.915,  f r/ c =3 

    

   
   

20.0123 3 0.0635 4600

2 4
46.9 F

1 1.5 0.915 50 1.750
T   

  
 

    Tav  = 120 + 46.9/2 = 143.5F 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 12, Page 17/26 

D
ra
ft



 Trial #3: Thus, the plot gives (Tf )3 = 152.5°F. From Table 12-1 

    = 0.0141 exp[1360.0/(152.5 + 95)] = 3.43 µ reyn 

    

 

 

3.43
0.0789 0.0746

    
3.63

S  
 

gs. 12-16 and 12-18:             = 0.905,  f r/ c =3.4 

    

  From Fi

 

   
   

2

2 4

0.0123 3.4 0.0746 4600
63.2 F

1 1.5 0.905 50 1.750
T   

  
 

   

Tav  = 120 + 63.2/2 = 151.6F
 

   152.5 151.6
152.1 F Try 152 F

2
fT


     Result is close. Choose   

 Table 12-1:       = 0.0141 exp[1360.0/(152 + 95)] = 3.47 µ reyn

    

   

 

 

   
   

0

2

2 4

av

3.47
0.0789 0.0754S

  

   

3.63

 
3.4,    0.902,    0.098

0.0123 3.4 0.0754 4600
64.1 F

1 1.5 0.902 50 1.750

120 64.1 / 2 152.1 F     O.K.

f r h

c c

T

T

 
 

  

   
  

   


 

 h0 = 0.098(0.0025) = 0.000 245 in 

   Tmax = Ts + T = 120 + 64.1 = 184.1F 

 Eq. (12-22):          

   

 

 

 

 

     
     6

3

1 1.5 1 1.5 0.902
3 3 3.47 10 0.875

1.047 in /s

sQ
l 

33
2 2

50 1.750 0.0025
sp rc       




 

 

   Hloss =  CpQs T = 0.0311(0.42)1.047(64.1) = 0.877 Btu/s 

   0.0002 + 0.000 04(3.5) = 0.000 34 in > 0.000 245      Not O.K. 

. 

__ __ ____________________________________ 

 

             = 0.877(60
2
) = 3160 Btu/h     O.K. 

      

 Trumpler’s design criteria: 

 

 

    Tmax = 184.1°F < 250°F     O.K. 

    Pst = 751 psi  > 300 psi    Not O.K

    n = 1,    as done    Not O.K. 

____ __________ _______________________

Chapter 12, Page 18/26 

D
ra
ft



12-17 Given: 0.00 0.010

0.05 0.00050.00  mm, 50.084 mmd b 
   , SAE 30, Ts = 55C, ps = 200 kPa,  

 N = 288 gth = 55 mm, groove width = 5 mm, 0/60 = 48 rev/s, W = 10 kN, bearing len and 

 

Hloss  300 W. 

   min max
min

50.084 50
0.042 mm

2 2

b d
c

 
    

    r  = d/ 2 = 50/2 = 25 mm 

   r / c = 25/0.042 = 595 

   l  = (55  5)/2 = 25 mm 

   l  / d = 25/50 = 0.5 

    

 

 

 

 

 

 

 
 

310 10W
4 MPa

4 4 25 25
P

rl
  


 

 Trial #1: Choose (Tf )1 = 79°C. From Fig. 12-13, µ = 13 MPa · s. 

 
2 3

2

6

13(10 )(48)
595 0.0552

4(10 )

r N
S

c P

           
 

 

  From Figs. 12-16 and 12-18:           = 0.85,   f r/ c = 2.3 

 From Eq. (12-25),       

    

 

 
6 2

2 4

6 2

2 4

978(1
T 

0 ) (  / )

1 1.5

978(10 ) 2.3(0.0552)(10 )
76.3 C

1 1.5(0.85) 200(25)

s

f r c SW

p r
 

     


 

    Tav = Ts  + T / 2 = 55 + 76.3/2 = 93.2C 

Trial #2: Choose (Tf )2 = 100°C. From Fig. 12-13, µ = 7 MPa · s. 

   

 

 

 

7
0.0552 0.0297

13
S

   
 

  

  From Figs. 12-16 and 12-18:        = 0.90,  f r/ c =1.6 

    

6 2978(10 ) 1.6(0.0297)(10 ) 
2 4

26.9 C
1 1.5(0.9) 200(25)

T      
 

    Tav  = 55 + 26.9/2 = 68.5C 
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 Trial #3: Thus, the plot gives (Tf )3 = 85.5°C. From Fig. 12-13, µ = 10.5 MPa · s. 

    

10.5
0.0552 0.0446

13
S

   
 

 

  From Figs. 12-16 and 12-18:             = 0.87,  f r/ c =2.2 

 

    
6 2

2 4

978(10 ) 2.2(0.0457)(10 )
58.9 C

1 1.5(0.87 ) 200(25)
T

 
      

 Tav  = 55 + 58.9/2 = 84.5C
 

      Result is close. Choose    85.5 84.5
85 C

2
fT


    

 

  Fig. 12-13:        µ = 10.5 MPa · s 

                                     
0

6 2

2 4

av

10.5
0.0552 0.0446

13

 
0.87, 2.2,    0.13

978(10 ) 2.2(0.0457)(10 )
58.9 C or 138 F

1 1.5(0.87 ) 200(25 )

55 58.9 / 2 84.5 C     O.K.

S

f r h

c c

T

T

   
 

  

 
       

   


 

 

  From Eq. (12-22) 

 

    h0 = 0.13(0.042) = 0.005 46 mm or 0.000 215 in 

 

    Tmax = Ts + T = 55 + 58.9 = 113.9C     or     237°F 

 

                         
     

   
 

33
2 2

6

3 3 3

200 25 0.042
(1 1.5 ) 1 1.5 0.87

3 3 10.5 10 25

3156 mm /s 3156 25.4 0.193 in /s

s
s

p rc
Q

µl






 
          

  



 

    

Hloss =  CpQs T = 0.0311(0.42)0.193(138) = 0.348 Btu/s 

             = 1.05(0.348) = 0.365 kW = 365 W    not O.K. 

Chapter 12, Page 20/26 

D
ra
ft



 

 Trumpler’s design criteria: 

 

    0.0002 + 0.000 04(50/25.4) = 0.000 279 in > h0       Not O.K. 

    Tmax = 237°F   O.K. 

    Pst = 4000 kPa    or    581 psi > 300 psi    Not O.K. 

    n = 1,    as done    Not O.K. 

_____________________________________________________________________________ 

 

12-18 So far, we’ve performed elements of the design task. Now let’s do it more completely. 

 

 The values of the unilateral tolerances, tb and td , reflect the routine capabilities of the 

bushing vendor and the in-house capabilities. While the designer has to live with these, 

his approach should not depend on them. They can be incorporated later. 

 

 First we shall find the minimum size of the journal which satisfies Trumpler’s constraint 

of Pst ≤ 300 psi. 

 

2

min

300
2

300  
2 / 600( / )

900
1.73 in

2(300)(0.5)

st

W
P

dl

W W
d

d l d l d

d

 


  
 

 

 

 

 In this problem we will take journal diameter as the nominal value and the bushing bore 

as a variable. In the next problem, we will take the bushing bore as nominal and the 

journal diameter as free. 

 

 To determine where the constraints are, we will set tb = td = 0, and thereby shrink the 

design window to a point. 

 

 We set   d = 2.000 in 

     b = d + 2cmin = d + 2c 

              nd = 2 (This makes Trumpler’s nd ≤ 2 tight) 

 

 and construct a table. 
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c b d *
fT  Tmax ho Pst Tmax n fom 

0.0010 2.0020 2 215.50 312.0     -5.74 

0.0011 2.0022 2 206.75 293.0     -6.06 

0.0012 2.0024 2 198.50 277.0     -6.37 

0.0013 2.0026 2 191.40 262.8     -6.66 

0.0014 2.0028 2 185.23 250.4     -6.94 

0.0015 2.0030 2 179.80 239.6     -7.20 

0.0016 2.0032 2 175.00 230.1     -7.45 

0.0017 2.0034 2 171.13 220.3     -7.65 

0.0018 2.0036 2 166.92 213.9     -7.91 

0.0019 2.0038 2 163.50 206.9     -8.12 

0.0020 2.0040 2 160.40 200.6     -8.32 

 

  *Sample calculation for the first entry of this column. 

  Iteration yields:   215.5 FfT    

  With 215.5 FfT   , from Table 12-1 

         

6 6

2 6

0.0136(10 )exp[1271.6 / (215.5 95)] 0.817(10 ) reyn

900
3000 / 60 50 rev/s,    225 psi

4

1 0.817(10 )(50)
0.182

0.001 225

µ

N P

S

 



  

   

         

 

 

  From Figs. 12-16 and 12-18:   e = 0.7,    f r/c = 5.5 

  Eq. (12–24): 

 
2

2 4

av

0.0123(5.5)(0.182)(900 )
191.6 F

[1 1.5(0.7 )](30)(1 )

191.6 F
120 F 215.8 F 215.5 F

2

FT

T

   



     

 

 

 For the nominal 2-in bearing, the various clearances show that we have been in contact 

with the recurving of (ho)min. The figure of merit (the parasitic friction torque plus the  

pumping torque negated) is best at c = 0.0018 in. For the nominal 2-in bearing, we will 

place the top of the design window at cmin = 0.002 in, and b = d + 2(0.002) = 2.004 in. At 

this point, add the b and d unilateral tolerances: 

 
0.000 0.003

0.001 0.0002.000 in,    2.004 ind b 
    

 

 Now we can check the performance at cmin , c , and cmax . Of immediate interest is the 

fom of the median clearance assembly,  9.82, as compared to any other satisfactory 

bearing ensemble. 
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  If a nominal 1.875 in bearing is possible, construct another table with tb = 0 and td = 0. 

 

c b d fT  Tmax ho Pst Tmax n fom 

0.0020 1.879 1.875 157.2 194.30      7.36 

0.0030 1.881 1.875 138.6 157.10      8.64 

0.0035 1.882 1.875 133.5 147.10      9.05 

0.0040 1.883 1.875 130.0 140.10      9.32 

0.0050 1.885 1.875 125.7 131.45      9.59 

0.0055 1.886 1.875 124.4 128.80      9.63 

0.0060 1.887 1.875 123.4 126.80      9.64 

 

 The range of clearance is 0.0030 < c < 0.0055 in. That is enough room to fit in our 

design window. 

 
0.000 0.003

0.001 0.0001.875 in,     1.881 ind b 
    

 

 The ensemble median assembly has a fom =  9.31. 

      We just had room to fit in a design window based upon the (h0)min constraint. Further 

reduction in nominal diameter will preclude any smaller bearings. A table constructed for 

a d = 1.750 in journal will prove this. 

 

 We choose the nominal 1.875-in bearing ensemble because it has the largest figure of 

merit.     Ans. 

_____________________________________________________________________________ 

 

12-19 This is the same as Prob. 12-18 but uses design variables of nominal bushing bore b and 

radial clearance c. 

 

 The approach is similar to that of Prob. 12-18 and the tables will change slightly. In the 

table for a nominal b = 1.875 in, note that at c = 0.003 in the constraints are “loose.” Set 

 

     b = 1.875 in 

     d = 1.875  2(0.003) = 1.869 in 

 

 For the ensemble 
0.003 0.000

0.001 0.0011.875 in,     1.869 inb d 
    

 

 Analyze at cmin = 0.003, c  = 0.004 in and cmax = 0.005 in 

 

 At min loss0.003 in:  138.4,    3.160,    0.0297,    1035 Btu/hfc T µ S H     and the 

Trumpler conditions are met. 

 

 At 0.004 in: 130 F,fc T     = 3.872, S = 0.0205, Hloss = 1106 Btu/h, fom = 9.246 
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and the Trumpler conditions are O.K. 

 At max 0.005 in: 125.68 F,fc T     = 4.325, S = 0.014 66, Hloss = 1129 Btu/h
 
 and the 

Trumpler conditions are O.K. 

 

 The ensemble figure of merit is slightly better; this bearing is slightly smaller. The 

lubricant cooler has sufficient capacity. 

_____________________________________________________________________________ 

 

12-20 Table 12-1:  ( reyn) =  0 (10
6
) exp [b / (T + 95)]         b and T in F 

 

 The conversion from  reyn to mPas is given on p. 620. For a temperature of C degrees 

Celsius,  T = 1.8 C + 32.  Substituting into the above equation gives 

 

     (mPas) = 6.89  0 (10
6
) exp [b / (1.8 C + 32+ 95)] 

 

          = 6.89  0 (10
6
) exp [b / (1.8 C + 127)]               Ans. 

 

 For SAE 50 oil at 70C, from Table 12-1,  0 = 0.0170 (10
6

) reyn, and b = 1509.6F. 

From the equation, 

 

      = 6.89(0.0170) 10
6

(10
6
) exp {1509.6/[1.8(70) + 127]} 

 

           = 45.7 mPas              Ans. 

 

 From Fig. 12-13,    = 39 mPas              Ans. 

 

 The figure gives a value of about 15 % lower than the equation. 

_____________________________________________________________________________ 

 

12-21 Originally 
0.000 0.003

0.001 0.0002.000  in,    2.005  ind b 
    

 

 Doubled, 
0.000 0.006

0.002 0.0004.000  in,    4.010 ind b 
    

 

 The radial load quadrupled to 3600 lbf when the analyses for parts (a) and (b) were 

carried out. Some of the results are: 

 

Part c   S T f f r/c Qs h0 /c e H loss h0 

Trumpler 

h0 f 

(a) 0.007 3.416 0.0310 135.1 0.1612 6.56 0.1032 0.897 9898 0.000 722 0.000 360 0.005 67 

(b) 0.0035 3.416 0.0310 135.1 0.1612 0.870 0.1032 0.897 1237 0.000 361 0.000 280 0.005 67 

 

 The side flow Qs differs because there is a c
3
 term and consequently an 8-fold increase. 

 Hloss is related by a 9898/1237 or an 8-fold increase. The existing h0 is related by a 2-fold 

increase. Trumpler’s (h0)min is related by a 1.286-fold increase. 
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_____________________________________________________________________________ 

12-22 Given: Oiles SP 500 alloy brass bushing, L = 0.75 in, D = 0.75 in, T = 70F, F = 400 

lbf, N = 250 rev/min, and w = 0.004 in. 

 

 Table 12-8: K = 0.6(10
10

) in
3min/(lbffth) 

 

    P = F/ (DL) = 400/ [0.75(0.75)] = 711 psi 

 

    V = DN/ 12 =  (0.75)250/12 = 49.1 ft/min 

 

 Tables 12-10 and 12-11: f  1 = 1.8,   f  2 = 1.0 

 

 Table 12-12: PVmax = 46 700 psift/min,   Pmax = 3560 psi,   Vmax = 100 ft/min 

 

    
max 2

4 4 400
905 psi 3560 psi . .

0.75

F
P O

DL
K

 
     

 

    PV = 711 (49.1) = 34 910 psift/min < 46 700 psift/min    O.K. 

 

 Eq. (12-32) can be written as 

 

    
1 2

4 F
f f K Vt

DL
w  

 

 Solving for t, 

 

    

   
     

 

10

1 2

0.75 0.75 0.004

4 4 1.8 1.0 0.6 10 49.1 400

833.1 h 833.1 60 49 900 min

DL
t

f f KVF


 

  

w

 

 

    Cycles = Nt = 250 (49 900) = 12.5 (10
6
) cycles           Ans. 

_____________________________________________________________________________ 

 
12-23 Given: Oiles SP 500 alloy brass bushing, wmax = 0.002 in for 1000 h, N = 400 rev/min, F 

= 100 lbf, CR = 2.7 Btu/ (hft2F), Tmax = 300F, f  s = 0.03, and nd = 2. 

 

 Estimate bushing length with f1 = f2 = 1, and K = 0.6(10
-10

) in
3
 · min/(lbf · ft · h) 

 

 Using Eq. (12-32) with ndF for F, 

    
10

1 2 1(1)(0.6)(10 )(2)(100)(400)(1000)
0.80 in

3 3(0.002)

df f Kn FNt
L



  
w

 

 

 From Eq. (12-38), with fs = 0.03 from Table 12-9 applying nd = 2 to F 
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 and  2

CR 2.7 Btu/(h · ft  · °F)
 

 
720 720(0.03)(2)(100)(400)

3.58 in
778(2.7)(300 70)

0.80 3.58 in

s d

CR f

f n FN
L

J T T

L



 


 


  

 

 Trial 1: Let L = 1 in, D = 1 in 

 

max

4 4(2)(100)
255 psi 3560 psi     . .

(1)(1)

2(100)
200 psi

1(1)

(1)(400)
104.7 ft/min 100 ft/min      . .

12 12

d

d

n F
P O

DL

n F
P

DL

DN
V N

 

 

   

  

   

K

ot O K

 

 

 Trial 2: Try D = 7/8 in = 0.875 in, L = 1 in 

 

max

4(2)(100)
291 psi 3560 psi     . .

(0.875)(1)

2(100)
229 psi

0.875(1)

(0.875)(400)
91.6 ft/min 100 ft/min     . .

12

P O

P

V O





  

 

  

K

K

 

 

   PV = 229(91.6) = 20 976 psi · ft/min < 46 700 psi · ft/min     O.K. 

 

V f1  

  33 1.3 

  91.6 f1 

 100 1.8  
1

new 1

91.6 33
1.3 (1.8 1.3) 1.74

100 33

        1.74 0.80 1.39 inold

f

L f L

       
  

 

 

 Trial 3: Try D = 7/8 in = 0.875 in, L = 1.5 in 

 

max

4(2)(100)
194 psi 3560 psi     . .

(0.875)(1.5)

2(100)
152 psi,    91.6 ft/min

0.875(1.5)

152(91.6) 13 923 psi · ft/min 46 700 psi · ft/min     . .

7 / 8 in,    1.5 in is acceptable     .

P O

P V

PV O K

D L Ans


  

  

  
 

K
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13-1    17 / 8 2.125 inPd  

    2

3

1120
2.125 4.375 in

544
G P

N
d d

N
    

    8 4.375 35 teeth       .G GN Pd An   s

ns

ns

s

 

     2.125 4.375 / 2 3.25 in     .C A  
______________________________________________________________________________ 
 

13-2     1600 15 / 60 400 rev/min .Gn A 
   3  mm     .p m An    

    3 15 60 2 112.5 mm     .C A     ns

ns

 

______________________________________________________________________________ 
 
13-3     16 4 64 teeth     .GN A 

    64 6 384 mm     .G Gd N m An   s  

    16 6 96 mm     .P Pd N m An   s

ns

s

ns

s

 

     384 96 / 2 240 mm     .C A  
______________________________________________________________________________ 
 

13-4 Mesh:   1/ 1/ 3 0.3333 in     .a P An  
    1.25 / 1.25 / 3 0.4167 in     .b P A  
    0.0834 in     .c b a Ans  
   / / 3 1.047 in     .p P An     

    / 2 1.047 / 2 0.523 in     .t p Ans  
 

 Pinion Base-Circle:  1 1 / 21/ 3 7 id N P n    

      
1 7 cos 20 6.578 in     .bd A  ns

  

 Gear Base-Circle:  2 2 / 28 / 3 9.333 ind N P    

      
2 9.333cos 20 8.770 in     .bd A  ns

 

 Base pitch:   cos / 3 cos 20 0.984 in     .b cp p A    ns  

 

 Contact Ratio:   / 1.53 / 0.984 1.55     .c ab bm L p Ans  
 See the following figure for a drawing of the gears and the arc lengths. 
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______________________________________________________________________________ 
 

13-5 

 (a) 

1/2
2 2

0

14 / 6 32 / 6
2.910 in     .

2 2
A  Ans

          
     

 (b)
  1tan 14 / 32 23.63      .Ans   

 

  1tan 32 /14 66.37 .Ans     

 
 (c)  
     Ans. 14 / 6 2.333 inPd  
  32 / 6 5.333 in     .Gd A  ns
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(d) From Table 13-3, 0.3A0 = 0.3(2.910) = 0.873 in and 10/P = 10/6 = 1.67 
   0.873 < 1.67  0.873 in     .F Ans   

______________________________________________________________________________ 
 

13-6 

 

 

 

 

 (a) / / 4 0.7854 inn np P       

   / cos 0.7854 / cos30 0.9069 int np p   

   / tan 0.9069 / tan 30 1.571 inx tp p   

 

 (b) Eq. (13-7): cos 0.7854cos 25 0.7380 in     .nb n np p A   ns  

  

 (c)  cos 4cos30 3.464 teeth/int np P   

   1 1tan tan / cos tan (tan 25 / cos30 ) 28.3 .t n Ans       
 

 

 (d) Table 13-4: 

    1/ 4 0.250 in     .a A  ns

ns    1.25 / 4 0.3125 in     .b A 

   
20

5.774 in     .
4cos30

Pd A  ns  

   
36

10.39 in     .
4cos30

Gd A  ns  

______________________________________________________________________________ 
 

13-7 

 

 

 

 

    19 teeth, 57 teeth, 20 , 2.5 mmP G n nN N m   

  

(a)  2.5 7.854 mm     .n np m A    ns  

 
7.854

9.069 mm     .
cos cos30

n
t

p
p Ans


    

 
9.069

15.71 mm     .
tan tan 30

t
x

p
p Ans


    

(b) 
2.5

2.887 mm     .
cos cos30

n
t

m
m A


   ns  
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 1 tan 20
tan 22.80 .

cos30
t Ans   
  

 




  

(c)  2.5mm     .na m Ans 

   1.25 1.25 2.5 3.125 mm     .nb m A   ns

  19 2.887 =54.85 mm     .P t

t

N
d Nm

P
   Ans  

  57 2.887 164.6 mm     .Gd A  ns  

______________________________________________________________________________ 
 
13-8 (a) Using Eq. (13-11) with k = 1, = 20º, and m = 2, 

  

    
 

            

2 2

2

2 2

2

2
1 2 sin

1 2 sin

2 1
2 2 1 2 2 sin 20 14.16 teeth

1 2 2 sin 20

P

k
N m m m

m



   



        




 

 

Round up for the minimum integer number of teeth. 

  NP = 15 teeth  Ans. 

 

 (b) Repeating (a) with m = 3, NP = 14.98 teeth.  Rounding up, NP = 15 teeth.   Ans. 

 (c) Repeating (a) with m = 4, NP = 15.44 teeth.  Rounding up, NP = 16 teeth.   Ans. 

 (d) Repeating (a) with m = 5, NP = 15.74 teeth.  Rounding up, NP = 16 teeth.   Ans. 

 
Alternatively, a useful table can be generated to determine the largest gear that can mesh 
with a specified pinion, and thus also the maximum gear ratio with a specified pinion.  
The Max NG column was generated using Eq. (13-12) with k = 1, = 20º, and rounding 
up to the next integer.  

 

Min NP Max NG Max m = Max NG / Min NP 
13 16 1.23 

14 26 1.86 

15 45 3.00 

16 101 6.31 

17 1309 77.00 

18 unlimited unlimited 

 

With this table, we can readily see that gear ratios up to 3 can be obtained with a 

minimum NP of 15 teeth, and gear ratios up to 6.31 can be obtained with a minimum NP 

of 16 teeth.  This is consistent with the results previously obtained. 

______________________________________________________________________________ 
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13-9  Repeating the process shown in the solution to Prob. 13-8, except with = 25º, we obtain 

the following results. 

(a) For m = 2, NP = 9.43 teeth.  Rounding up, NP = 10 teeth.   Ans. 

(b) For m = 3, NP = 9.92 teeth.  Rounding up, NP = 10 teeth.   Ans. 

(c) For m = 4, NP = 10.20 teeth.  Rounding up, NP = 11 teeth.   Ans. 

(d) For m = 5, NP = 10.38 teeth.  Rounding up, NP = 11 teeth.   Ans. 

 

 For convenient reference, we will also generate the table from Eq. (13-12) for = 25º. 

 

Min NP Max NG Max m = Max NG / Min NP 
9 13 1.44 

10 32 3.20 

11 249 22.64 

12 unlimited unlimited 

______________________________________________________________________________ 
 
13-10 (a) The smallest pinion tooth count that will run with itself is found from Eq. (13-10). 
    

   

 
   

2

2

2

2

2
1 1 3sin

3sin

2 1
1 1 3sin 20

3sin 20

12.32 13 teeth     .

P

k
N

Ans




  

  

 


  

   

(b) The smallest pinion that will mesh with a gear ratio of mG = 2.5, from Eq. (13-11) 

is  

 

   

    
 

 
  

2 2

2

2 2

2

2
1 2 sin

1 2 sin

2 1
2.5 2.5 1 2 2.5 sin 20

1 2 2.5 sin 20

14.64          15 teeth     .

P

k
N m m m

m

Ans




   


       
 


  

 

  The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-12) is 

 

   
 

   

2 2 2

2

22 2

2

sin 4

4 2 sin

15 sin 20 4 1

4 1 2 15 sin 20

45.49 45 teeth     .

P
G

P

N k
N

k N

Ans














 



  
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 (c) The smallest pinion that will mesh with a rack, from Eq. (13-13), 

 

   

 
2 2

2 12

sin sin 20

17.097 18 teeth     .

P

k
N

Ans


 

 

  

______________________________________________________________________________ 
 

13-11  20 , 30n   

 From Eq. (13-19),  1tan tan 20 / cos30 22.80t
     

 (a) The smallest pinion tooth count that will run with itself, from Eq. (13-21) is 

   

   

 
   

2

2

2

2

2 cos
1 1 3sin

3sin

2 1 cos30
1 1 3sin 22.80

3sin 22.80

8.48 9 teeth     .

P t

t

k
N

Ans

 


  

  

 




  

 

(b) The smallest pinion that will mesh with a gear ratio of m = 2.5, from Eq. (13-22) 

is 

 

 
 

  2 2

2

2 1 cos30
2.5 2.5 1 2 2.5 sin 22.80

1 2 2.5 sin 22.80

9.95 10 teeth     .

PN

Ans

       
 




  

 

The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-23) is 

 

 
 

   

2 2 2 2

2

2 2 2

2 2

sin 4 cos

4 cos 2 sin

10 sin 22.80 4 1 cos 30

4 1 cos 30 2 20 sin 22.80

26.08 26 teeth     .

P t
G

P t

N k
N

k N

Ans

 
 











 

 

   

 

 (c) The smallest pinion that will mesh with a rack, from Eq. (13-24) is 

 

   

 
2 2

2 1 cos302 cos

sin sin 22.80

11.53 12 teeth     .

P

t

k
N

Ans




 

 



  

______________________________________________________________________________ 
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13-12 From Eq. (13-19),  1 1tan tan 20
tan tan 22.796

cos cos30

n
t




    
    

   




  

Program Eq. (13-23) on a computer using a spreadsheet or code, and increment NP. The 

first value of NP that can be doubled is NP = 10 teeth, where NG  ≤ 26.01 teeth. So NG = 

20 teeth will work. Higher tooth counts will work also, for example 11:22, 12:24, etc. 

 

   Use NP = 10 teeth, NG = 20 teeth     Ans. 

  

 Note that the given diametral pitch (tooth size) is not relevant to the interference problem. 

______________________________________________________________________________ 
 

13-13 From Eq. (13-19),  1 1tan tan 20
tan tan 27.236

cos cos 45

n
t




    
    

   




  

Program Eq. (13-23) on a computer using a spreadsheet or code, and increment NP. The 

first value of NP that can be doubled is NP = 6 teeth, where NG  ≤ 17.6 teeth. So NG = 12 

teeth will work. Higher tooth counts will work also, for example 7:14, 8:16, etc. 

 

   Use NP = 6 teeth, NG = 12 teeth     Ans. 

______________________________________________________________________________ 

 

13-14 The smallest pinion that will operate with a rack without interference is given by Eq. (13-

13). 

   
2

2

sin
P

k
N


  

 

Setting k = 1 for full depth teeth, NP = 9 teeth, and solving for ,  

 

 1 1
2 12

sin sin 28.126         .
9P

k
Ans

N
       

______________________________________________________________________________ 
 

13-15  

 

 

 

 
 (a) Eq. (13-3): 3  mm     .n np m Ans    

  Eq. (13-16): / cos 3 / cos 25 10.40 mm     .t np p A    ns  

  Eq. (13-17): / tan 10.40 / tan 25 22.30 mm     .x tp p A   ns  

 

 (b) Eq. (13-3): / 10.40 / 3.310 mm     .t tm p Ans     
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  Eq. (13-19): 1 1tan tan 20
tan tan 21.88 .

cos cos 25

n
t Ans




   



  

 

(c) Eq. (13-2): dp = mt Np = 3.310 (18) = 59.58 mm   Ans.  

 Eq. (13-2): dG = mt NG = 3.310 (32) = 105.92 mm  Ans. 

______________________________________________________________________________ 

 

13-16 (a) Sketches of the figures are shown to 

determine the axial forces by inspection.   

 

The axial force of gear 2 on shaft a is in the 

negative z-direction. The axial force of gear 3 on 

shaft b is in the positive z-direction.      Ans. 

 

The axial force of gear 4 on shaft b is in the 

positive z-direction. The axial force of gear 5 on 

shaft c is in the negative z-direction.      Ans. 
 

(b)  5

12 16
700 77.78 rev/min ccw     .

48 36
cn n Ans

     
 

 

(c)   2 12 / 12cos30 1.155 inPd  

   3 48 / 12cos30 4.619 inGd  

 
1.155 4.619

2.887 in     .
2

abC A


  ns

ns

 

   4 16 / 8cos 25 2.207 inPd  

   5 36 / 8cos 25 4.965 inGd  

  3.586 in     .bcC A
______________________________________________________________________________ 
 

13-17   
20 8 20 4

40 17 60 51
e

     
  

 

    4
00 47.06 rev/min cw     .

51
dn A   ns  

______________________________________________________________________________ 

 

13-18   
6 18 20 3 3

10 38 48 36 304
e

       
   

 

    9

3
1200 11.84 rev/min cw     .

304
n A  ns  

______________________________________________________________________________ 
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13-19 (a)  12 1
540 162 rev/min cw about . .

40 1
cn x   Ans  

 (b)   12 / 8cos 23 1.630 inPd  

    40 / 8cos 23 5.432 inGd  

  3.531 in     .
2

P Gd d
Ans


  

 

 (c) 
32

8 in at the large end of the teeth.     .
4

d A  ns  

______________________________________________________________________________ 

 

13-20 Applying Eq. (13-30), e = (N2 / N3) (N4 / N5) = 45.  For an exact ratio, we will choose to 

factor the train value into integers, such that  

 

N2 / N3 = 9  (1) 

N4 / N5 = 5  (2) 

 

Assuming a constant diametral pitch in both stages, the geometry condition to satisfy the 

in-line requirement of the compound reverted configuration is 

 

 N2 + N3 = N4 + N5 (3) 

 

With three equations and four unknowns, one free choice is available.  It is necessary that 

all of the unknowns be integers.  We will use a normalized approach to find the minimum 

free choice to guarantee integers; that is, set the smallest gear of the largest stage to unity, 

thus N3 = 1.  From (1), N2 = 9.  From (3),  

 

 N2 + N3 = 9 + 1 = 10 = N4 + N5 

 

Substituting N4 = 5 N5 from (2) gives 

 

  10 = 5 N5 + N5 = 6 N5 

  N5 = 10 / 6 = 5 / 3 

  

To eliminate this fraction, we need to multiply the original free choice by a multiple of 3.  

In addition, the smallest gear needs to have sufficient teeth to avoid interference.  From 

Eq. (13-11) with k = 1, = 20°, and m = 9, the minimum number of teeth on the pinion to 

avoid interference is 17.  Therefore, the smallest multiple of 3 greater than 17 is 18.  

Setting N3 = 18 and repeating the solution of equations (1), (2), and (3) yields 

  

 N2 = 162 teeth 

 N3 = 18 teeth 

 N4 = 150 teeth 

 N5 = 30 teeth   Ans. 

______________________________________________________________________________ 
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13-21  The solution to Prob. 13-20 applies up to the point of determining the minimum number 

of teeth to avoid interference.  From Eq. (13-11), with k = 1, = 25°, and m = 9, the 

minimum number of teeth on the pinion to avoid interference is 11.  Therefore, the 

smallest multiple of 3 greater than 11 is 12.  Setting N3 = 12 and repeating the solution of 

equations (1), (2), and (3) yields 

  

 N2 = 108 teeth 

 N3 = 12 teeth 

 N4 = 100 teeth 

 N5 = 20 teeth   Ans. 

______________________________________________________________________________ 

 
13-22 Applying Eq. (13-30), e = (N2 / N3) (N4 / N5) = 30.  For an exact ratio, we will choose to 

factor the train value into integers, such that  

 

N2 / N3 = 6  (1) 

N4 / N5 = 5  (2) 

 

Assuming a constant diametral pitch in both stages, the geometry condition to satisfy the 

in-line requirement of the compound reverted configuration is 

 

 N2 + N3 = N4 + N5 (3) 

 

With three equations and four unknowns, one free choice is available.  It is necessary that 

all of the unknowns be integers.  We will use a normalized approach to find the minimum 

free choice to guarantee integers; that is, set the smallest gear of the largest stage to unity, 

thus N3 = 1.  From (1), N2 = 6.  From (3),  

 

 N2 + N3 = 6 + 1 = 7 = N4 + N5 

 

Substituting N4 = 5 N5 from (2) gives 

 

  7 = 5 N5 + N5 = 6 N5 

  N5 = 7 / 6  

  

To eliminate this fraction, we need to multiply the original free choice by a multiple of 6.  

In addition, the smallest gear needs to have sufficient teeth to avoid interference.  From 

Eq. (13-11) with k = 1, = 20°, and m = 6, the minimum number of teeth on the pinion to 

avoid interference is 16.  Therefore, the smallest multiple of 3 greater than 16 is 18.  

Setting N3 = 18 and repeating the solution of equations (1), (2), and (3) yields 

  

 N2 = 108 teeth 

 N3 = 18 teeth 

 N4 = 105 teeth 

 N5 = 21 teeth   Ans. 

______________________________________________________________________________ 
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13-23 Applying Eq. (13-30), e = (N2 / N3) (N4 / N5) = 45.  For an approximate ratio, we will 

choose to factor the train value into two equal stages, such that  

 

2 3 4 5/ /N N N N  45    

 

If we choose identical pinions such that interference is avoided, both stages will be 

identical and the in-line geometry condition will automatically be satisfied.  From Eq. 

(13-11) with k = 1, = 20°, and 45m  , the minimum number of teeth on the pinions 

to avoid interference is 17.  Setting N3 = N5 = 17, we get  

  

 2 4 17 45 114.04 teethN N    

 

Rounding to the nearest integer, we obtain 

  

 N2 = N4 = 114 teeth 

 N3 = N5 = 17 teeth  Ans. 

 

Checking, the overall train value is e = (114 / 17) (114 / 17) = 44.97. 

______________________________________________________________________________ 

 
13-24 H = 25 hp, i = 2500 rev/min 

 Let ωo = 300 rev/min for minimal gear ratio to minimize gear size. 

 

   
300 1

2500 8.333

o

i




   

   2 4

3 5

1

8.333

o

i

N N

N N




   

 

 Let  2 4

3 5

1 1

8.333 2.887

N N

N N
    

 

From Eq. (13-11) with k = 1, = 20°, and m = 2.887, the minimum number of teeth on 

the pinions to avoid interference is 15. 

 

 Let  N2 = N4 = 15  teeth 

   N3 = N5 = 2.887(15) = 43.31 teeth 

  

 Try N3 = N5 = 43 teeth. 

 

    15 15
2500 304.2

43 43
o

     
  

 

 

 Too big. Try N3 = N5 = 44. 

Chapter 13, Page 11/35 



    15 15
2500 290.55 rev/min

44 44
o

     
  

 

 

 N2 = N4 = 15 teeth, N3 = N5 = 44 teeth     Ans. 

______________________________________________________________________________ 

 
13-25 (a)   The planet gears act as keys and the wheel speeds are the same as that of the ring 

gear.  Thus, 

   3 900 16 / 48 300 rev/min     .An n Ans    

 

 (b)   5 60, , 1F Ln n n n e    

   6 300
1

0 300

n 
 


 

    6300 300n 
    6 600 rev/min     .n A ns

 
 (c) The wheel spins freely on icy surfaces, leaving no traction for the other wheel. 

The car is stalled.     Ans. 

______________________________________________________________________________ 

 

13-26 (a) The motive power is divided equally among four wheels instead of two. 

 

 (b) Locking the center differential causes 50 percent of the power to be applied to the 

rear wheels and 50 percent to the front wheels. If one of the rear wheels rests on a 

slippery surface such as ice, the other rear wheel has no traction. But the front 

wheels still provide traction, and so you have two-wheel drive. However, if the 

rear differential is locked, you have 3-wheel drive because the rear-wheel power 

is now distributed 50-50. 

______________________________________________________________________________ 

 

13-27 Let gear 2 be first, then nF = n2 = 0. Let gear 6 be last, then nL = n6 = –12 rev/min. 

 

   
20 16 16

30 34 51

L A

F A

n n
e

n n

      
 

    16
0 1

51
A An n   2  

   
12

17.49 rev/min (negative indicates cw)     .
35 / 51

An A


   ns  

______________________________________________________________________________ 

 

13-28 Let gear 2 be first, then nF = n2 = 0 rev/min. Let gear 6 be last, then nL = n6 = 85 

rev/min. 
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20 16 16

30 34 51

L A

F A

n n
e

n n

      
 

      16
0 85

51
A An n    

   
16

85
51

A An n
    
 

 

   
16

1 8
51

An
   
 

5  

   
85

123.9 rev/min
16

1
51

An  


 

  

 The positive sign indicates the same direction as n6.     123.9 rev/min ccw     .An Ans   

______________________________________________________________________________ 

 

13-29 The geometry condition is 5 2 3/ 2 / 2d d d 4d   .  Since all the gears are meshed, they 

will all have the same diametral pitch.  Applying d = N / P,  

 
   5 2 3/ (2 ) / (2 ) / /N P N P N P N   4 P

   5 2 3 42 2 12 2 16 2 12 68 teeth     .N N N N Ans        

 
 Let gear 2 be first, nF = n2 = 320 rev/min. Let gear 5 be last, nL = n5 = 0 rev/min. 

 

   
12 16 12 3

16 12 68 17

L A

F A

n n
e

n n

         
 

    

    17
320 0

3
A An n    

 3
320 68.57 rev/min

14
An      

 

 The negative sign indicates opposite of n2.      68.57 rev/min cw     .An Ans   

______________________________________________________________________________ 

 

13-30 Let nF = n2, then nL = n7 = 0. 

 

   5

5

20 16 36
0.5217

16 30 46

L

F

n n
e

n n

           
 

    

   5

5

0
0.5217

10

n

n


 


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     5 50.5217 10 n n   

    5 55.217 0.5217 0n n   

     5 1 0.5217 5.217n  

   
5

5.217

1.5217
n   

    5 3.428 turns in same directionbn n 
______________________________________________________________________________ 

 

13-31 (a)  2 / 60n   

   2 / 60 (  in N m,  in W)H T Tn T H     

 

 So  

 360 10

2

9550 /  (  in kW,  in rev/min)

H
T

n

H n H n






 

   
 9550 75

398 N m
1800

aT     

   
 

2
2

5 17
42.5 mm

2 2

mN
r     

  

 So  
32

2

398
9.36 kN

42.5

t aT
F

r
    

 

    

 

 

 

 

 

 

 

 

 3 3 2 9.36 18.73 kN in the positive -direction.     .b bF F x An    s  

 

 (b)  
 

4
4

5 51
127.5 mm

2 2

mN
r     

     4 9.36 127.5 1193 N m ccwcT   

   4 1193 N m cw     .cT Ans    
 
 
 Note: The solution is independent of the pressure angle. 

______________________________________________________________________________ 
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13-32  
6

N N
d

P
   

   2 4 5 64 in, 4 in,  6 in,  24 ind d d d   

  
24 24 36

1/ 6
24 36 144

e
          
   

 

   2 1000 rev/minFn n 
   6 0Ln n 

  
0 1

1000 6

L A A

F A A

n n n
e

n n n

 
 

 
  

   200 rev/minAn  
 
 Noting that power equals torque times angular velocity, the input torque is 

 

2

2

25 hp 550 lbf ft/s 60 s 1 rev 12 in
1576 lbf in

1000 rev/min hp min 2  rad ft

H
T

n 
            

    
 

 

 For 100 percent gear efficiency, the output power equals the input power, so 

  

 
25 hp 550 lbf ft/s 60 s 1 rev 12 in

7878 lbf in
200 rev/min hp min 2  rad ft

arm

A

H
T

n 
            

    
 

 

Next, we’ll confirm the output torque as we work through the force analysis and 

complete the free body diagrams. 

 

 Gear 2 

 

  
1576

788 lbf
2

tW    

  
32 788 tan 20 287 lbfrF  

 

  

 

 

 Gear 4 

       

   4 2 2 788 1576 lbft

AF W  
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 Gear 5 

 

 

 

 

 

 

 

 

 Arm 

    

     out 1576 9 1576 4 7880 lbf in     .T A    ns

 

 

______________________________________________________________________________ 

 
13-33 Given:  m = 12 mm, nP = 1800 rev/min cw, 

N2 = 18T, N3 = 32T, N4 = 18T, N5 = 48T 

 

Pitch Diameters:   d2 = 18(12) = 216 mm, d3 = 32(12) = 384 mm,  

d4 = 18(12) = 216 mm, d5 = 48(12) = 576 mm 

  

 Gear 2 

From Eq. (13-36), 

 
  

60000 15060000
7.368 kN

216 1800
t

H
W

dn 
  

2
2

216
7.368 795.7 N m

2 2
a t

d
T W

        
  

 

   7.368 tan 20 2.682 kNrW  

 

 

Gears 3 and 4 

 

 384216
7.368

2 2

tW
   
 

 

13.10 kNtW   

  W  13.10 tan 20 4.768 kNr  

      Ans. 

 

 

 

 

______________________________________________________________________________ 
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13-34 Given: P = 5 teeth/in,  N2 = 18T,   N3 = 45T,      

20 ,n    H = 32 hp,  n2 = 1800 rev/min 

 

 Gear 2 

 

 
 

in

63025 32
1120 lbf in

1800
T     

 
18

3.600 in
5

Pd    

 
45

9.000 in
5

Gd    

 
32

1120
622 lbf

3.6 / 2

tW    

  
32 622 tan 20 226 lbfrW  

  
2 32 2 32622 lbf,     226 lbft t r r

a aF W F W   

   1/2
2 2

2 622 226 662 lbfaF   

  

Each bearing on shaft a has the same radial load of RA = RB = 662/2 = 331 lbf. 

 

Gear 3 

 

 

  
23 32 622 lbft tW W 

  
23 32 226 lbfr rW W 

  3 2 662 lbfb bF F 
  662 / 2 331 lbfC DR R    

 

 

Each bearing on shaft b has the same radial load which is equal to the radial load of 

bearings  A and B. Thus, all four bearings have the same radial load of 331 lbf.     Ans. 

______________________________________________________________________________ 

 

13-35 Given: P = 4 teeth/in,          N20 ,n  
P = 20T,     n2 = 900 rev/min 

 

   
2

20
5.000 in

4

PN
d

P
    

   
  

in

63025 30 2
4202 lbf in

900
T     

      32 in 2/ / 2 4202 / 5 / 2 1681 lbft d  W T  

   W  
32 1681 tan 20 612 lbfr  
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 The motor mount resists the equivalent forces and torque.  

The radial force due to torque is 

 

  
 

4202
150 lbf

14 2

rF    

 

Forces reverse with rotational sense as  

torque reverses. 

 

 

 

 

 

The compressive loads at A and D are absorbed by the base plate, not the bolts. For  

the tensions in C and D are 

32 ,tW

 

    0 1681 4.875 15.25 2 15.25 0 1109 lbfABM F     F  
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If  reverses, 15.25 in changes to 13.25 in, 4.815 in changes to 2.875 in, and the forces 

change direction. For A and B, 

32

tW

 

      1 11681 2.875 2 13.25 0 182.4 lbfF F     

 For , 
32

rW

 

 
 

     612 4.875 11.25 / 2 6426 lbf inM    

      2 2
14 / 2 11.25 / 2 8.98 ina     

   
 2

6426
179 lbf

4 8.98
F    

 

 At C and D, the shear forces are: 

 

      2 2

1 153 179 5.625 / 8.98 179 7 / 8.98SF        



 

 

 At A and B, the shear forces are: 

 

   
  2 2

2 153 179 5.625 / 8.98 179 7 / 8.98

145 lbf

SF       


  

  

 The shear forces are independent of the rotational sense. 

 The bolt tensions and the shear forces for cw rotation are, 
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 For ccw rotation, 

 

 
______________________________________________________________________________ 

 

13-36 (a)  N2 = N4 = 15 teeth,     N3 = N5 = 44 teeth 

 

  
N N

P d
d P

    

  
2 4

15
2.5 in     .

6
d d Ans    

  
3 5

44
7.33 in     .

6
d d Ans    

 

 (b) 
  

2 2
2 3

2.5 2500
1636 ft/min     .

12 12
i

d n
V V V Ans


      

  
    

4 4
4 5

2.5 2500 15 / 44
558 ft/min     .

12 12
o

d n
V V V Ans

         

 
 (c) Input gears: 

 33000 25
33000 504.3 lbf 504 lbf .

1636
ti

i

H
W A

V
    ns  

   tan 504.3 tan 20 184 lbf .ri tiW W Ans  

  
504.3

537 lbf .
cos cos 20

ti
i

W
W A


   ns  

 
  Output gears: 

 33000 25
33000 1478 lbf     .

558
to

o

H
W A

V
   ns  

   tan 1478 tan 20 538 lbf     .ro toW W Ans  

  
1478

1573 lbf     .
cos 20 cos 20

to
o

W
W A    ns  

 

 (d) 2 2.5
504.3 630 lbf in     .

2 2
i ti

d
T W Ans

        
  
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 (e) 
2 2

44 44
630 5420 lbf in .

15 15
o iT T Ans

         
   

 

______________________________________________________________________________ 

 

13-37  35 hp, 1200 rev/min,  =20iH n   

2 4 3 516 teeth,   48 teeth,   10 teeth/inN N N N P      

 (a)  2
intermediate 3 4

3

16
1200 400 rev/min

48
i

N
n n n n

N
      Ans. 

   2 4

3 5

16 16
1200 133.3 rev/min

48 48
o i

N N
n n

N N

    
 

  Ans. 

 

 (b) 
N N

P d
d P

    

  
2 4

16
1.6 in     .

10
d d Ans    

  
3 5

48
4.8 in     .

10
d d Ans    

  
2 2

2 3

1.6 1200
502.7 ft/min     .

12 12
i

d n
V V V Ans


      

  
4 4

4 5

1.6 400
167.6 ft/min     .

12 12
o

d n
V V V Ans


      

 

 (c) 
 33000 35

33000 2298 lbf lbf .
502.7

ti

i

H
W A

V
   ns  

   tan 2298 tan 20 836.4 lbf .ri tiW W Ans  

  
2298

2445 lbf .
cos cos 20

ti
i

W
W A


   ns  

 

  
 33000 35

33000 6891 lbf     .
167.6

to

o

H
W A

V
   ns  

   tan 6891tan 20 2508 lbf     .ro toW W Ans  

  
6891

7333 lbf     .
cos 20 cos 20

to
o

W
W A    ns  

 

 (d) 2 1.6
2298 1838 lbf in     .

2 2
i ti

d
T W Ans

        
  

 

 (e) 
2 2

48 48
1838 16 540 lbf in .

16 16
o iT T Ans

         
   

 

______________________________________________________________________________ 
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13-38 (a) For 
2

,
1

o

i




  from Eq. (13-11), with m = 2, k = 1,  20  

   
 

 
  2 2

2

2 1
2 2 1 2 2 sin 20 14.16

1 2 2 sin 20
PN        


 

ns

 

 So   
min

15 .PN A
 

 (b)  
15

1.875 teeth/in     .
8

N
P Ans

d
    

 
(c) To transmit the same power with no change in pitch diameters, the speed and 

transmitted force must remain the same. 

 

For A, with  = 20°,     

 

  WtA = FA cos20° = 300 cos20° = 281.9 lbf 

 

For A, with  = 25°, same transmitted load,  

 

  FA = WtA/cos25° = 281.9/cos25° = 311.0 lbf     Ans. 

 

 Summing the torque about the shaft axis, 

 

   
2 2

A B
tA tB

d d
W W

      
   

 

   
 
   / 2 20

281.9 704.75 lbf
/ 2 8

A A
tB tA tA

B B

d d
W W W

d d

         
  

 

   
704.75

777.6 lbf .
cos 25 cos 25

tB
B

W
F Ans     

______________________________________________________________________________ 

 

13-39 (a) For 
5

,
1

o

i




  from Eq. (13-11), with m = 5, k = 1,  20  

   
 

 
  2 2

2

2 1
5 5 1 2 5 sin 25 10.4

1 2 5 sin 25
PN        


 

ns

 

 So   
min

11 .PN A
 

 (b)  
300

27.3 mm/tooth     .
11

d
m Ans

N
    

 
(d) To transmit the same power with no change in pitch diameters, the speed and 

transmitted force must remain the same. 
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For A, with  = 20°,     

 

  WtA = FA cos20° = 11 cos20° = 10.33 kN 

 

For A, with  = 25°, same transmitted load,  

 

  FA = WtA/cos25° = 10.33 / cos 25° = 11.40 kN     Ans. 

 

 Summing the torque about the shaft axis, 

 

   
2 2

A B
tA tB

d d
W W

      
   

 

   
 
   / 2 600

11.40 22.80 kN
/ 2 300

A A
tB tA tA

B B

d d
W W W

d d

         
  

 

   
22.80

25.16 kN .
cos 25 cos 25

tB
B

W
F Ans     

______________________________________________________________________________ 

 
13-40 (a) Using Eq. (13-11) with k = 1, = 20º, and m = 2, 

  

    
 

            

2 2

2

2 2

2

2
1 2 sin

1 2 sin

2 1
2 2 1 2 2 sin 20 14.16 teeth

1 2 2 sin 20

P

k
N m m m

m



   



        




 

 

Round up for the minimum integer number of teeth. 

  NF = 15 teeth, NC = 30 teeth  Ans. 

 

 (b)  
125

8.33 mm/tooth     .
15

d
m Ans

N
    

 

(c)  
2 kW 1000 W rev 60 s

100 N m
191 rev/min kW 2  rad min

H
T

 
         
   

 

 

(d) From Eq. (13-36),  

 

 
  
60 000 260 000

1.60 kN 1600 N
125 191

t

H
W

dn 
      Ans. 

 

Or, we could have obtained Wt directly from the torque and radius, 
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100

1600 N    
/ 2 0.125 / 2

t

T
W

d
    

 

      tan 1600 tan 20 583 N     .r tW W Ans  

1600
1700 N     .

cos cos 20

tW
W A


   ns  

______________________________________________________________________________ 

 
13-41 (a) Using Eq. (13-11) with k = 1, = 20º, and m = 2, 

  

    
 

            

2 2

2

2 2

2

2
1 2 sin

1 2 sin

2 1
2 2 1 2 2 sin 20 14.16 teeth

1 2 2 sin 20

P

k
N m m m

m



   



        




 

 

Round up for the minimum integer number of teeth. 

  NC = 15 teeth, NF = 30 teeth  Ans. 

 

 (b)  
30

3 teeth/in     .
10

N
P Ans

d
    

 

(c)  
1 hp 550 lbf ft/s 12 in rev 60 s

70 rev/min hp ft 2  rad min

H
T

 
         

   





 

   Ans. 900 lbf inT  
 

(d) From Eqs. (13-34) and (13-35), 

  
  10 70

183.3 ft/min
12 12

dn
V


    

   
 33000 1

33000 180 lbf
183.3

t

H
W

V
        Ans. 

 

      tan 180 tan 20 65.5 lbf     .r tW W Ans  

180
192 lbf     .

cos cos 20

tW
W A


   ns  

______________________________________________________________________________ 

13-42 (a) Eq. (13-14): 1 1 1 1.30
tan tan tan 18.5

3.88

P P

G G

N d

N d
                

    
   Ans. 

 (b) Eq. (13-34): 
   2 1.30 600

408.4 ft/min
12 12

dn
V


      Ans. 
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 (c) Eq. (13-35): 
10

33 000 33 000 808 lbf
408.4

t

H
W

V

    
 

   Ans. 

  Eq. (13-38):   Ans. tan cos 808 tan 20 cos18.5 279 lbfr tW W     

 

  Eq. (13-38):   Ans. tan sin 808 tan 20 sin18.5 93.3 lbfa tW W     

 

The tangential and axial forces agree with Prob. 3-74, but the radial force given in Prob. 

3-74 is shown here to be incorrect.   Ans. 

______________________________________________________________________________ 

 
13-43   in 63 025 / 63025 2.5 / 240 656.5 lbf inT H n   

0

k

 

  / 656.5 / 2 328.3 lbftW T r  
 

   1tan 2 / 4 26.565   

 

   1tan 4 / 2 63.435   

 

   2 1.5cos 26.565 / 2 2.67 ina   

 

  328.3 tan 20 cos 26.565 106.9 lbfrW   

 

  328.3 tan 20 sin 26.565 53.4 lbfaW   

 

 

 W = 106.9i – 53.4j  + 328.3k lbf 
 
 

 RAG = –2i + 5.17j ,     RAB = 2.5j 
 

  4 +AG AB B     M R W R F T
 
 Solving gives 

   2.5 2.5z x

AB B B BF F  R F i

  1697 656.6 445.9AG    R W i j k  

 

 So 

     1697 656.6 445.9 2.5 2.5z x

B BF F T    i j k i k j 0  

   1697 / 2.5 678.8 lbfz

BF    
   656.6 lbf inT   
   445.9 / 2.5 178.4 lbfx

BF    
 

 So 

     
1/2

2 2
678.8 178.4 702 lbf     .BF Ans        

    

FA  = – (FB + W) 

                              = – (–178.8i – 678.8k + 106.9i – 53.4j  + 328.3k) 

                              = 71.5i + 53.4j  + 350.5k 
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   1/2
2 2(radial) 71.5 350.5 358 lbf     .AF Ans    

   (thrust) 53.4 lbf     .AF A ns

______________________________________________________________________________ 

 

13-44   2 318 /10 1.8 in,   30 /10 3.0 ind d   

  1 12

3

/ 2 0.9
tan tan 30.96

/ 2 1.5

d

d
          

  


 
180 59.04      

  
9

0.5cos59.04 0.8197 in
16

DE     

  W    25 lbft 

  W  25 tan 20 cos59.04 4.681 lbfr   

 

  W  25 tan 20 sin 59.04 7.803 lbfa   

 

  W = –4.681i – 7.803j  +25k 
 

  RDG = 0.8197j  + 1.25i 
 

  RDC = –0.625j 
 

    D DG DC C     M R W R F T 0
 

  20.49 31.25 5.917DG    R W i j k  
 

  R F  0.625 0.625z x

DC C C CF F   i k
 

   
     20.49 31.25 5.917 0.625 0.625z x

C CF F T     i j k i k j 0  

31.25 lbf in     .T A  ns  
 

  F i  9.47 32.8  lbf     .C Ans  k
 

   1/2
2 29.47 32.8 34.1 lbf      .CF Ans    

 

     0 4.79 7.80 57.8  lbfD    F F i j k

      
1/2

2 2
(radial) 4.79 57.8 58.0 lbf     .DF A       ns

Ans   (thrust) 7.80 lbf     .a

DF W 
______________________________________________________________________________ 
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13-45  

 

 

 

 

       

 

 

 

 

 

 

 

   

  
 cos 4cos30 3.464 teeth/int nP P   

  

1 1tan tan 20
tan tan 22.80

cos cos30

n
t




   



  

18
5.196 in

3.464
Pd  

 
 

The forces on the shafts will be equal and opposite of the forces transmitted to the 

gears through the meshing teeth. 

 
 

 Pinion (Gear 2) 

    tan 800 tan 22.80 336 lbfr t

tW W   

    tan 800 tan 30 462 lbfa tW W   

   336 462 800  lbf     .Ans   W i j k  

   
1/2

2 2 2336 462 800 983 lbf     .W A        ns  

 

 Gear 3 
   336 462 800  lbf     .Ans  W i j k  

    983 lbf     .W A ns

   
32

9.238 in
3.464

Gd    

    800 9.238 7390 lbf int

GT W r     

______________________________________________________________________________ 
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13-46 From Prob. 13-45 solution, 

 
 

Notice that the idler shaft reaction contains a couple tending to turn the shaft end-over-

end. Also the idler teeth are bent both ways. Idlers are more severely loaded than other 

gears, belying their name. Thus, be cautious. 

______________________________________________________________________________ 

 

13-47 Gear 3: 
   cos 7 cos30 6.062 teeth/int nP P   

  
tan 20

tan 0.4203, 22.8
cos30

t t   



  

  
3

54
8.908 in

6.062
d    

   500 lbftW 
   500 tan 30 288.7 lbfaW  

   500 tan 22.8 210.2 lbfrW  

   3 210.2 288.7 500  lbf     .Ans  W i j k
Gear 4:  

  
4

14
2.309 in

6.062
d    

  
8.908

500 1929 lbf
2.309

tW    

   1929 tan 30 1114 lbfaW  

   1929 tan 22.8 811 lbfrW  

   4 811 1114 1929  lbf     .Ans   W i j k
______________________________________________________________________________ 

 
13-48 
   6cos30 5.196 teeth/intP  

  
3

42
8.083 in

5.196
d    

   22.8t  
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2

16
3.079 in

5.196
d    

  
 

2

63025 25
916 lbf in

1720
T      

  
916

595 lbf
3.079 / 2

t T
W

r
    

   595 tan 30 344 lbfaW  

   595 tan 22.8 250 lbfrW  

 

    344 250 595  lbf  W i j k
 

  6 , 3 4.04DC DG  R i R i j  
       

        (1) D DC C DG      M R F R W T 0

  2404 1785 2140DG     R W i j k  

  6 6z y

DC C C CF F   R F j k  
 
 Substituting and solving Eq. (1) gives 

 

   2404  lbf in T i
   297.5 lbfz

CF  

   365.7 lbfy

CF  
   

  
 D C    F F F W 0

 

 Substituting and solving gives 

 

   344 lbfx

CF  

   106.7 lbfy

DF 

   297.5 lbfz

DF  
 

   344 356.7 297.5  lbf     .C Ans   F i j k

   106.7 297.5  lbf     .D Ans F j k
______________________________________________________________________________ 
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13-49  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

Since the transverse pressure angle is specified, we will assume the given module is also 

in terms of the transverse orientation. 

 

   2 2 4 16 64 mmd mN  

   3 3 4 36 144 mmd mN  

   4 4 4 28 112 mmd mN  

 

6 kW 1000 W rev 60 s
35.81 N m

1600 rev/min kW 2  rad min

H
T

 
         
     

  2

35.81
1119 N

/ 2 0.064 / 2

t T
W

d
    
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   tan 1119 tan 20 407.3 Nr t

tW W   

   tan 1119 tan15 299.8 Na tW W     

   2 1119 407.3 299.8  N     .a Ans   F i j k

  
   3 1119 407.3 1119 407.3

711.7 711.7  N     .

b

Ans

   

 

F i j

i j
 

   4 407.3 1119 299.8  N     .c Ans  F i j k
______________________________________________________________________________ 

 
13-50 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

2 3

14 36
2.021 in,     5.196 in

cos 8cos30 8cos30n

N
d d

P 
       

4 5

15 45
3.106 in,     9.317 in

5cos15 5cos15
d d      

 
 For gears 2 and 3:    1 1tan tan / cos tan tan 20 / cos30 22.8t n        



 

 For gears 4 and 5:   1tan tan 20 / cos15 20.6t
  

    23 2 2/ 1200 / 2.021/ 2 1188 lbftF T r    

   
54

5.196
1188 1987 lbf

3.106

tF    

    
23 23 tan 1188 tan 22.8 499 lbfr t

tF F   

    
54 1986 tan 20.6 746 lbfrF  

    
23 23 tan 1188 tan 30 686 lbfa tF F   

a    
54 1986 tan15 532 lbfF  

 

Next, designate the points of action on gears 4 and 3, respectively, as points G and H, as 

shown. Position vectors are 
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   1.553 3CG  R j k  

  2.598 R 6.5CH j k  

   8.5CD  R k  
e  Force vectors ar

   54 1986 748 532   F i j k  

   F23 1188 500 686   i j k  

   x y

C C CF F F i j  

   x y z

D D D DF F F  F i j k  

 Now, a summation of moments about bearing C gives 

0  
The terms for this equation are found to be 

 

   54 23C CG CH CD D      M R F R F R F 
 
 

   54 1412 5961CG     R F i j 3086k  

   23 5026 7722 3086CH    R F i j k  

   8.5 8.5y x

CD D D DF F  R F i j  
 

When these terms are placed back into the moment equation, the k terms, representing 

the shaft torque, cancel. The i and j  terms give 

 

   
3614

425 lbf     .y

8.5
DF Ans     

   
13683

1610 lbf     .
8.5

x

DF Ans   

 

 Next, we sum the forces to zero. 

 
   54 23C   F F F F D 0  

es 

 F
 
 Substituting, giv

 

        1987 746 532 1188 499 686y

CF        x

CF i j i j k i j k  

     1610 425 z

DF  i j k 0  

 Solving gives 

 

1987 1188 1610 1565 lbf     .x

CF A        ns

  ns

ns

______________________________ ____________________________ 

 746 499 425 672 lbf     .y

CF A     

   

___________________ _

532 686 154 lbf     .z

DF A     
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13-51  
  0.100 600

m/sW Wd n
V

     
60 60

W

  
2000

637 NW t

W

H
W

V 
    

   25 1 25 mmx WL p N    

 

1

1

tan

25
tan 4.550 lead angle

100

W

L

d












  
   

  
cos sin cos

W t

n

W
W

f  



 

  3V .152 m/s
cos cos 4.550

W
S

V 


    

VS = 3.28(3.152) = 10.33 ft/s = 620 ft/min 

Use f = 0.043 from curve A of Fig. 13-42. Then, from the first of Eq. (13-43) 

 
 In ft/min: 

 

 

   
 

637
5323 NW    

cos14.5 sin 4.55 0.043cos 4.55  

   W W sin 5323sin14.5 1333 Ny

n    

    5323 cos14.5 cos 4.55 0.043 in 4.55 5119 Nz    
    sW 

 against the worm is 

rust bearing.     Ans. 

 

 The force acting

 
   637 1333 51   W i j 19  Nk  
 
 Thus, A is the th

 

   0.05 0.10 ,AG   R j k 0.20AB  R k  

  0   A AG AB B      M R W R F T

   122.6 63.7 31.85AG     R W i j k  

   0.2 0.2y x

AB B B BF F  R F i j  
 
 Substituting and solving gives 

Ans

  

 

   31.85 N m  T      .  

318.5 N,     613 Nx y

B BF F    

 

 So   318.5 613  N     .B Ans F i j
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 Or     
1/2

2 2
613 318.5 691 N radialBF       

   A B    F F W R 0  

   
   37 1333 5119 318.5 613

318.5 1946 5119      .

A B

Ans

         

  

F W F i6 j k i j

i j k
 

 

 Radial  318.5 1946  Nr

A  F i j  

      
1/2

2 2
318.5 1946 1972 Nr

AF        

 Thrust  5119 Na

AF    

___________________ ____________ _______________________________________________ 

 

 

3-52 From Prob. 13-51, 1
  637G  W i 1333 5119 Nj k  

  t xp p  

 So 
 48 25

382 mmGd x
G

N p

 
    

 D takes the thrust load. 

0 

  

Bearing

 

     M R W RD DG G DC C  F T

  0.0725 0.191DG   R i j  

  R i0.1075DC    

The position vectors are in meters. 

 
 
 

 977.7 371.1   R W i 25.02DG G j k  

  0.1075 0.1075z y

DC C C CF F  R F j k  
 
 Putting it together and solving, 

ns  

 

 

 977.7 N m     .T Ans    

  233 3450  N,     3460 N     .C CF A   F j k

  C G D    F F W F 0

    637 1566 1669  N     .D C G Ans      W i j k  F F

 
 Radial 1566 1669  Nr

D  F j k  

 Or 
2 1/

2 21566 1669 2289 N (total radial)r

DF     

  tF i637  N     (thrust)D    
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13-53 

 
 

  
  1.5 600

235.7 ft/min
12

WV


    

 33000 0.75
105.0 lbf

235.7

x

W tW W       

   0.3927 in
8

t xp p


    

    0.3927 2 0.7854 inL    

   
 

1 0.7854
tan 9.46

1.5



    

   
105.0

515.3 lbf
cos 20 sin 9.46 0.05cos9.46

W  
    

   515.3sin 20 176.2 lbfyW    

    515.3 cos 20 cos9.46 0.05sin 9.46 473.4 lbfzW    
    

 So  105 176 473  lbf     .Ans  W i j k  

     105 0.75 78.8 lbf in     .T A   ns

___________________________ ______________________________ ___________________ __
 
3-54 Computer programs will vary. 1

 



Chapter 14 
 

 

14-1     
22

3.667 in
6

N
d

P
    

 

 Table 14-2:  Y = 0.331 

 Eq. (13-34):    
(3.667)(1200)

1152 ft/min
12 12

dn
V

 
    

 Eq. (14-4b):  
1200 1152

1.96
1200

K


 
v

 

 Eq. (13-35) :    
15

33 000 33 000 429.7 lbf
1152

t H
W

V
    

 Eq. (14-7): 
1.96(429.7)(6)

7633 psi 7.63 kpsi     .
2(0.331)

tK W P
Ans

FY
    v  

________________________________________________________________________ 

 

14-2    
18

1.8 in
10

N
d

P
    

 Table 14-2: Y = 0.309 

 Eq. (13-34):    
(1.8)(600)

282.7 ft/min
12 12

dn
V

 
    

 Eq. (14-4b):  
1200 282.7

1.236
1200

K


 
v

 

 Eq. (13-35) :    
2

33 000 33 000 233.5 lbf
282.7

t H
W

V
    

 Eq. (14-7): 
1.236(233.5)(10)

9340 psi 9.34 kpsi     .
1.0(0.309)

tK W P
Ans

FY
    v  

________________________________________________________________________ 

 

14-3    

 

1.25(18) 22.5 mmd mN  
 Table 14-2: Y = 0.309 

    

3(22.5)(10 )(1800)
2.121 m/s

60 60

dn
V

  

    

 Eq. (14-6b): 
6.1 2.121

1.348
6.1

K


 
v

 

 Eq. (13-36):    
60 000 60 000(0.5)

0.2358 kN 235.8 N
(22.5)(1800)

t H
W

dn 
     

 Eq. (14-8):  
1.348(235.8)

68.6 MPa     .
12(1.25)(0.309)

tK W
Ans

FmY
   v

 
________________________________________________________________________ 
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14-4    
 Y = 0.296 

    

8(16) 128 mmd mN  
 Table 14-2:  

3(128)(10 )(150)
1.0053 m/s

60 60

dn
V


 

 

  

 
6.1 1.0053

1.165
6.1

K


 
v

  Eq. (14-6b):

60 000 60 000(6)
5.968 kN 5968 N

(128)(150)

t H
W

dn 
      Eq. (13-36):    

 Eq. (14-8):  
1.165(5968)

32.6 MPa     .
90(8)(0.296)

tK W
Ans

FmY
   v  

________________________________________________________________________ 

4-5    
 Y = 0.296 

    

 

1 1(16) 16 mmd mN  
 Table 14-2:  

3(16)(10 )(400)
0.335 m/s

60 60

dn
V


 

 

  

 
6.1 0.335

1.055
6.1

K


 
v

  Eq. (14-6b):

60 000 60 000(0.15)
0.4476 kN 447.6 N

(16)(400)

t H
W

dn 
      Eq. (13-36):    

 Eq. (14-8):  
1.055(447.6)

10.6 mm
150(1)(0.296)

tK W
F

mY
  v  

 

 From Table 13-2, use F = 11 mm or 12 mm, depending on availability.    Ans. 
_____ ___ 

4-6    
 Y = 0.322 

    

_ _______________________________________________________________

 
1 2(20) 40 mmd mN  
 Table 14-2:  

3(40)(10 )(200)
0.419 m/s

60 60

 

   

 

dn
V




6.1 0.419
1.069

6.1
K


 

v
  Eq. (14-6b):

 Eq. (13-36):    
60 000 60 000(0.5)

1.194 kN 1194 N
(40)(200)

t H
W

dn 
     

 

 Eq. (14-8):  
1.069(1194)

26.4 mm
75(2.0)(0.322)

tK W
F

mY
  v  

 

From Table 13-2, use F = 28 mm.    Ans. 
_____ ________________________________ 

 

_ __________________________________
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14-7    
24

4.8 in
5

N
d

P
    

 Table 14-2: Y = 0.337 

(4.8)(50)
62.83 ft/min

12 12

dn
V


 Eq. (13-34):    


  

 Eq. (14-4b):  

 

1200 62.83
1.052

1200
K


 

v
 

 Eq. (13-35) :    
6

33 000 33 000 3151 lbf
62.83

t H
W

V
    

 Eq. (14-7):  
3

1.052(3151)(5)
2.46 in

20(10 )(0.337)

tK W P
F

Y
  v  

  

 Use F = 2.5 in     Ans. 
_______________________________________________ 

4-8    

_________________________

 

1
16

4.0 in
4

N
d

P
    

 Table 14-2: Y = 0.296 

(4.0)(400)
418.9 ft/min

12 12

dn
V


 Eq. (13-34):    


  

 Eq. (14-4b):  

 

1200 418.9
1.349

1200
K


 

v
 

 Eq. (13-35) :    
20

33 000 33 000 1575.6 lbf
418.9

t H
W

V
    

 Eq. (14-7):  
3

1.349(1575.6)(4)
2.39 in

12(10 )(0.296)

tK W P
F

Y
  v  

 Use F = 2.5 in     Ans. 
_______________________________________________ 

4-9 Try P = 8 which gives d = 18/8 = 2.25 in and Y = 0.309. 

Eq. (13-34):    

_________________________

 

1
 

 
(2.25)(600)

353.4 ft/min
12 12

dn
V

 
    

 

1200 353.4
1.295

1200
K


 

v
  Eq. (14-4b): 

 Eq. (13-35): 
2.5

33 000 33 000 233.4 lbf
353.4

t H
W

V
    

 Eq. (14-7): 
3

1.295(233.4)(8)
0.783 in

10(10 )(0.309)

tK W P
F

Y
  v  

 

 

 

Using coarse integer pitches from Table 13-2, the following table is formed. 
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P d V Kv Wt F 
2 9.000 1413.717 2.178 58.356 0.082

3 6. 0 942.478 1.785 87.535 0.152

1

1

10 1.800 

12 1.500 

00

4 4.500 706.858 1.589 16.713 0.240

6 3.000 471.239 1.393 75.069 0.473

8 2.250 353.429 1.295 233.426 0.782

282.743 1.236 291.782 1.167

235.619 1.196 350.139 1.627

16 1.125 176.715 1.147 466.852 2.773

 

 Other considerat  ta e G i re P = 8  

(F = 7/8 in) and P =10 (F = 1.25 in).     Ans. 
_____ _____ 

   

ions may dic te the sel ction. ood cand dates a

 

_ _____________________________________________________________

 

14-10 Try m = 2 mm which gives d = 2(18) = 36 mm and Y = 0.309. 
 

3(36)(10 )(900)
1.696 m/s

dn
V

  

    
60 60 

 Eq. (14-6b):  
6.1 1.696

1.278
6.1

K


 
v

 

 Eq. (13-36):    
60 000 60 000(1.5)

0.884 kN 884 N
(36)(900)

t H
W

dn 
     

 Eq. (14-8):  
1.278(884)

24.4 mm
75(2)(0.309)

F    

 Using the prefer edr  module sizes from Table 13-2: 

 

Wt F m d V Kv 
1.00 18.0 0.848 1.139 1768.388 86.917 

1.25 22.5 1.060 1.174 1414.711 57.324 

1

1

1

1 1

1

1.50 27.0 1.272 1.209 1178.926 40.987 

2.00 36.0 1.696 1.278 884.194 24.382 

3.00 54.0 2.545 1.417 589.463 12.015 

4.00 72.0 3.393 1.556 442.097 7.422 

5.00 90.0 4.241 1.695 353.678 5.174 

6.00 08.0 5.089 1.834 294.731 3.888 

8.00 44.0 6.786 2.112 221.049 2.519 

0.00 180.0 8.482 2.391 176.839 1.824 

2.00 216.0 0.179 2.669 147.366 1.414 

16.00 288.0 3.572 3.225 110.524 0.961 

20.00 360.0 16.965 3.781 88.419 0.721 

25.00 450.0 21.206 4.476 70.736 0.547 

32.00 576.0 27.143 5.450 55.262 0.406 

40.00 720.0 33.929 6.562 44.210 0.313 

50.00 900.0 42.412 7.953 35.368 0.243 
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1/ 2

3

2

3

1.204(202.6) 1 1
2C  

        

100 100(10 )
cos 20 0.228 0.684

2100 1.204(202.6) 1 1
0.669 in

100(10 ) cos 20 0.228 0.684

F

F

         

             

 

 Use F = 0.75 in     Ans. 
________________________________________________________________________ 

   

 

 

 

14-13    5(24pd  ) 120 mm, 5(48) 240 mmGd    

 
3(120)(10 )(50) 

0.3142 m/s
60

V    

 Eq. (14-6a): 
3.05 0.3142

1.103
3.05

K


 
v

 

360 000 60(10 )
3.183

(120)(50)

t H H
W H

dn 
    

t

    

 where H is in kW and W is in kN 

Table 14-8:  

 

163 MPapC 
  

  
C

[Note:  Using Eq. (14-13) can result in wide variation in 

n properties]. 

 

p due to wide variation in cast iro

Eq. (14-12): 
1 220.52 mm,     41.04 mm

2
r    

120sin 20 240sin 20

2
r

 
 

  1/ 2
31.103(3.183) 10 H

o

1 1
690 163

60cos 20 20.52 41.04

      Eq. (14-14):     
     

 
3.94 kW     .H Ans      

________________________________________________________________________ 

4 

   

 

14-1

3

4(20) 80 mm,     4(32) 128 mmP Gd d


   

 

(80)(10 )(1000)
4.189 m/s

60
V


 

 

 Eq. (14-6a):  
3.05 4.189

2.373
3.05

K


 
v

 

360(10)(10 )
2.387 kN 2387 N

(80)(1000)

tW


        

 

 Table 14-8:  163 MPapC 
  
[Note:  Using Eq. (14-13) can result in wide variation in 

Cp due to wide variation in cast iron properties.] 

(14-12): 
1 2

80sin 20 128sin 20
13.68 mm,     21.89 mm

2 2
r r

 
      Eq. 
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 Eq. (14-14): 
1/ 2

73(2387) 1 1
163 617 MPa     .

50cos 20 13.68
C

2.3

21.89
Ans        

 



________________________________________________ ____ 

14-15  The pinion controls the design. 

   

___________________ _

 

 
 Bending   YP = 0.303,  YG = 0.359 

 

17 30
1.417

12
Pd  

 

 in,     2.500 in
12

1 )
194.8 ft/min

Gd  


 

 Eq. (14-4b):  

( .417)(525

12 12

Pd n
V

 
 

1200 194.8
1.162

1200
K


 

v
 

 Eq. (6-8), p. 282:  

 Eq. (6-19), p. 287:  k  = 2.70(76)  = 0.857 

0.5(76) 38.0 kpsieS    
–0.265

a

2.25 2.25
0.1875 i    n

12d

l
P

    

3 3(0.303)
0.0379 in

2
 Eq. (14-3): 

2(12)
PY

P


37:

x   

 4 4(0.1875)(0.0379) 0.1686 int lx     Eq. (b), p. 7

0.808 0.808 0.875(0.1686) 0.310 ined hb     Eq. (6-25), p. 289: 

0.107
0.310

0.996
0.3

bk


   
   

 Eq. (6-20), p. 288:  

    kc = kd = ke = 1 

y bending with kf = 1.66. (See Ex. 14-2.) 

 

Se = 0.857(0.996)(1)(1)(1)(1.66)(38.0) = 53.84 kpsi 

 

i

 Account for one-wa

 Eq. (6-18), p. 287: 

 For stress co entration, find thnc e rad us of the root fillet (See Ex. 14-2). 

 

0.300 0.300
0.025 in

12
fr

P
  

    
 From Fig. A-15-6, 

    
0.025

0.148
0.1686

frr
 

d t
     

 D/d = 3; from Fig. A-15-6, Kt = 1.68. 
 ut  76 kpsi and r = 0.025 in, q = 0.62.   

 Eq. (6-32): Kf  = 1 + 0.62 (1.68 – 1) = 1.42 

 

 Approximate D/d = ∞ with

 From Fig. 6-20, with S  =
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53.84eS
16.85 psi

1.42(2.25)
all

f dK n
   

0.875(0.303)(16

(12

t P allFY
W

K P


             

850)
320.4 lbf

1.162 )

320.4(194.8)
1.89 hp     .

33 000 33 000

d
tW V

H Ans



  

v

 

 Wear 
   1 =  2 = 0.292,    E1 = E2 = 30(10

6
) psi 

 

 

 

1/ 2

2

6

 Eq. (14-13): 
1

C
 

  2285 psi
1 0.292

2
30 10

p



 
 

      
  

 

 Eq. (14-12):  

 

1

1.417
sin sin 20 0.242 in

2 2

Pd
r      

2

2.500
sin sin 20 0.428 in

2 2

Gd
r        

1

1 2

1 1 1 1
6.469 in

0.242 0.428r r
      

    
 

 Eq. (6-68), p. 329: 

 From the discussion and equation developed on the bottom of p. 329,   

  

8

3

10
( ) 0.4 10 kpsi [0.4(149) 10](10 ) 49 600 psiC BS H      

  810
,allC

49 600
33 067 psi

2.25

CS

n
 

        

 Eq. (14-14): 

2
33 067 0.875cos 20

22.6 lbftW
       

2285 1.162(6.469)
 
   

    
22.6(194.8)

0.133 hp     .
33 000 33 000

tW V
H A    ns

i n controls): 

 

 H1 = 1.89 hp 

     H2 = 0.133 hp 

   Hall = (min 1.89, 0.133) = 0.133 hp     Ans. 
___ __ __ _____ __________________________________________ 

4-16 See Prob. 14-15 solution for equation numbers. 

 Rating power (p nio

        

 
 
___ _ _ _ ____________

 
1
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 Pinion controls: YP = 0.322,  YG = 0.447 

 
 Bending d = 20/3 = 6.667 in,  d  = 100/3 = 33.333 in 

                    

P G

/ 12 (6.667)(870)V d n

0.265

0.5(113) 56.5 kpsi

2.70(113) 0.771

S

k

/ 12 1519 ft/min

/ 6

2.25 / 2.25 / 3 0.75 in

3(0.322) / [2(3)] 0.161 in

4(0.75)(0.161) 0.695 in

0.808 2.5(0.69

e

a

d

e

l P
x

t

d

(1200 1519) 1200 2.26
P

K
  



 
 





  
 
 



  
v

0.107

5) 1.065 in

(1.065 / 0.30) 0.873

1
b

c d e

k
k k k




 
  

 
    kf  = 1.66 (See Ex. 14-2.) 

    0.771(0.873)(1)(1)(1)(1.66)(56.5) 63.1 kpsieS    

0.300 / 3 0.100 in

    0.100
0.144

frr
  

0.695

fr

d t

 
 

    Kt = 1.75, q = 0.85,  Kf = 1.64 

    

63.1
25.7 kpsi

1.64(1.5)

e
all

f d

S

K n
     

all 2.5(0.322)(25

(3)

t PFY
W

K P

700)
3043 lbf

2.266

/ 33 000 3043(1519) / 3 000 140 hp     .

d
t


 

                         

H 3 W V Ans



  
v

 

 
 Wear 

 Eq. (14-13): 

 

1/ 2

2

6

1
2285 psi

1 0.292
2

30 10

pC



 
 
 

       
  

 

 

 Eq. (14-12): r 1 = (6.667/2) sin 20° = 1.140 in 

    r2 = (33.333/2) sin 20° = 5.700 in 

 

Eq. (6-68), p. 329:  SC = [0.4(262) – 10](10
3
) = 94 800 psi  

    ,allC C d/ 94 800 /S n     1.5 77 400 psi   
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2

,all

1 2

2

cos 1

1 / 1 /

77 400 2.5cos 20 1

2285 2.266 1 / 1.140 1 / 5.700

1130 lbf

Ct

p

F
W

C K r r

    
        

            


v

     




    
1130(1519)

52.0 hp     .
33 000 33 000

tW V
H A    ns

les (revolutions of the pinion), the power based on wear is 52.0 hp. 

   

ns
________________________________________________________________________ 

 75 mm, NP = 16 milled teeth, 
 

    

 For 10
8
 cyc

 Rating power (pinion controls): 

 

140 hpH 1

2

rated

52.0 hp

min(140,  52.0) 52.0 hp     .

H
H A


 

  

 

4-17 See Prob. 14-15 solution for equation numbers. 1
 Given:  = 20°, n = 1145 rev/min, m = 6 mm, F =
 NG = 30T, Sut = 900 MPa, HB = 260, nd = 3, YP = 0.296, and YG = 0.359. 
 

Pinion bending  

3

6(16) 96 mm

6(30) 180 mm

(96)(10 )(1145)
5.76 m/s

60 (60)

Pd mN P

G

P

d

d n
V

  

 
 

  

 

6.1 5.76
1.944

6.1
K


 

v
     

0.265

0.107

0.5(900) 450 MPa

4.51(900) 0.744

2.25 2.25(6) 13.5 mm

3 / 2 3(0.296)6 / 2 2.664 mm

4 4(13.5)(2.664) 12.0 mm

0.808 75(12.0) 24.23 mm

24.23
0.884

7.62

1

e

a

e

b

c d e

S

k
l m
x Ym

t lx

d

k

k k k





  
 
  
  
  

 

   
 

      

 f

(1.66)(450) 491.3 MPa  

k   = 1.66 (See Ex. 14-2) 



r/d = r f /t = 1.8/12 = 0.15, Kt = 1.68, q = 0.86, Kf = 1.58 

    

    0.744(0.884)(1)(1)(1)eS 

    
0.300 0.300(6) 1.8 mmfr m    
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 all

491.3
239.2 MPa

1.58 1.3

e

f d

S

K n
     

 

 Eq. (14-8):      all 75(0.296)(6)(239.2)
16 390 N

1.944

t FYm
W

K


  

v

 

 Eq. (13-36): 
16.39 (96)(1145)

94.3 kW     .
60 000 60 000

tW dn
H A

 
   ns  

 
 Wear: Pinion and gear 

 

 Eq. (14-12):  r 1 = (96/2) sin 20 = 16.42 mm 

    r2 = (180/2) sin 20 = 30.78 mm 

 

 Eq. (14-13): 

 

1/ 2

2

3

1
190 MPa

1 0.292
2

207 10

pC



 
 
 

       
  

 

 Eq. (6-68), p. 329:  SC = 6.89[0.4(260) – 10] = 647.7 MPa 

    
,all

647.7
/ 568 MPa

1.3
C C dS n 

      

 Eq. (14-14):  

2

,all

1 2

cos 1
 

1 / 1 /

Ct

p

F
W

C K r

    
         v

r
 

   

2 o568 75cos 20 1
3469 N

190 1.944 1 / 16.42 1 / 30.78

             
 

 Eq. (13-36): 
3.469 (96)(1145)

20.0 kW
60 000 60 000

tW dn
H

 
    

 

 Thus, wear controls the gearset power rating; H = 20.0 kW.     Ans. 
________________________________________________________________________ 

 

14-18     NP = 17 teeth,    NG = 51 teeth 

    

17
2.833 in

6
51

8.500 in
6

P

G

N
d

P

d

  

 
 

    
/ 12 (2.833)(1120) / 12 830.7 ft/minPV d n     

 

 Eq. (14-4b):  Kv = (1200 + 830.7)/1200 = 1.692 
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all

90 000
45 000 psi

2

y

d

S

n
     

 

 Table 14-2: YP = 0.303,    YG = 0.410 

 

 Eq. (14-7): all 2(0.303)(45 000)
2686 lbf

1.692(6)

t PFY
W

K P


  

v

 

 Eq. (13-35): 
2686(830.7)

67.6 hp
33 000 33 000

tW V
H     

 

 Based on yielding in bending, the power is 67.6 hp. 

 
 (a) Pinion fatigue 

      
  Bending 
  Eq. (2-121), p. 41: Sut = 0.5 HB = 0.5(232) = 116 kpsi 

  Eq. (6-8), p. 282: 0.5 0.5(116) 58 kpsie utS S   
   Eq. (6-19), p. 287:  0.2652.70(116) 0.766ak  

 

       Table 13-1, p. 696:  
1 1.25 2.25 2.25

0.375 in
6d d d

l
P P P

      

      

  Eq. (14-3): 
3 3(0.303)

0.0758 in
2 2(6)

PY
x

P
  

 
  Eq. (b), p. 737: 4 4(0.375)(0.0758) 0.337 int lx    

  Eq. (6-25), p. 289: 0.808 0.808 2(0.337) 0.663 ined F t    

  Eq. (6-20), p. 288: 

0.107
0.663

0.919
0.30

bk


   
 

 

    kc = kd = ke = 1  
  

  Account for one-way bending with kf = 1.66. (See Ex. 14-2.) 

 

  Eq. (6-18):  0.766(0.919)(1)(1)(1)(1.66)(58) 67.8 kpsieS  
  

  For stress concentration, find the radius of the root fillet (See Ex. 14-2). 

    

0.300 0.300
0.050 in

6
fr

P
    

  Fig. A-15-6: 
0.05

0.148
0.338

frr

d t
    

 

  Estimate D/d = ∞ by setting D/d = 3, Kt = 1.68.  
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  Fig. 6-20, p. 295: q = 0.86 

  Eq. (6-32), p. 295:  1 (0.86)(1.68 1) 1.58fK    

    all

67.8
21.5 kpsi

1.58(2)

e

f d

S

K n
     

    all 2(0.303)(21500)
1283 lbf

1.692(6)

t P

d

FY
W

K P


  

v

 

    
1283(830.7)

32.3 hp     .
33 000 33 000

tW V
H A   ns  

 
 (b) Pinion fatigue 

     
  Wear 

  Eq. (14-13): 

1/ 2

2 6

1
2285 psi

2 [(1 - 0.292 ) / 30(10 )]
pC


 

  
   

 

  Eq. (14-12): o

1

2.833
sin sin 20 0.485 in

2 2

Pd
r     

     

o

2

8.500
sin sin 20 1.454 in

2 2

Gd
r     

     1 2

1 1 1 1
2.750 in

0.485 1.454r r

 
    

 

  

  Eq. (6-68):  810
( ) 0.4 10 kpsiC BS H   

 

  In terms of gear notation 

 
     C = [0.4(232) – 10]10

3
 = 82 800 psi 

 

  We will introduce the design factor of nd = 2 and because it is a contact stress apply it 

 to the load Wt by dividing by 2  . (See p. 329.) 

     
,all

82 800
58 548 psi

2 2

c
C

        

 

  Solve Eq. (14-14) for Wt
: 

 

     

2 o

all

58 548 2cos 20
265 lbf

2285 1.692(2.750)

265(830.7)
6.67 hp     .

33 000 33 000

t

t

W

W V
H A

         

   ns

 (c) Gear fatigue due to bending and wear 

 

  For 10
8
 cycles (turns of pinion), the allowable power is 6.67 hp. 
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  Bending 

3 3(0.4103)
0.1026 in

2 2(6)

GY
x

P
      Eq. (14-3):  

4 4(0.375)(0.1026) 0.392 int lx      Eq. (b), p. 737: 

  Eq. (6-25): 0.808 0.808 2(0.392) 0.715 ined  F t    

  Eq. (6-20): 

0.107
0.715

0.911
0.30

bk


   
 

 

    k  = kd = ke = 1  
. 14-2.) 



    

c

    kf = 1.66. (See Ex

  Eq. (6-18): 0.766(0.911)(1)(1)(1)(1eS  .66)(58) 67.2 kpsi  

0.050
0.128

0.392

frr

d t
  

 

 
  Fig. 6-20: q = 0.82 

  Approximate D/d = ∞ by setting D/d = 3 for Fig. A-15-6; Kt = 1.80.  

    

  Eq. (6-32): 1 (K   0.82)(1.80 1) 1.66   f

all

67.2
20.2 kpsi

1.66(2)

e

f d

S

K n
     

all 2(0.4103)(20 200)
1633 lbf

1.692(6)

t P

d

FY
W

K P


  

v

     

all

1633(830.7)
41.1 hp     .

33 000 33 000

tW V
H A        ns

 Wear 

 Since the material of the pinion and the gear are the same, and the contact stresses are 

 
(d)   

nion bending:   H1 = 32.3 hp 

  

1.1, 6.67) = 6.67 hp     Ans. 
__ __ ___________ 

4-19    dP = 16/6 = 2.667 in,    dG = 48/6 = 8 in 

  The gear is thus stronger than the pinion in bending. 

 

 
 
 

 the same, the allowable power transmission of both is the same. Thus, Hall = 6.67 hp 

 for 10
8
 revolutions of each. As yet, we have no way to establish SC for 10

8/3 

 revolutions. 

 
  Pi

  Pinion wear:   H2 = 6.67 hp 

  Gear bending:  H3 = 41.1 hp 

  Gear wear:   H4 = 6.67 hp 

  Power rating of the gear set is thus 

    Hrated = min(32.3, 6.67, 4

____ __________ ___________________________________________

 

1
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(2.667)(300)
209.4 ft/minV

12


 

    

 

    

33 000(5)
787.8 lbf

209.4

tW    

 

Assuming uniform loading, K  = 1.  

 

 o
2/36) 0.8255  Eq. (14-28): 6,     0.25(12Q B 

v

    50 56(1 0.8255) 59.77A      

 Eq. (14-27): 

0.8255

59.77 209.4
1.196

59.77
K

 
   
 

v
 

 Table 14-2: 

ec. 14-10 with F = 2 in 

    

0.296,     0.4056P GY Y   

 From Eq. (a), S
 

0.0535

0.0535

2 0.296
( ) 1.192 1.088

6

2 0.4056
( ) 1.192 1.097

6

s P

s G

K

K

 
   

 
   

 

4-30) with C  = 1 

    

 From Eq. (1 mc

2
C  0.0375 0.0125(2) 0.0625

10(2.667)

1,     0.093    (Fig. 14 - 11),     1

1 1[0.0625(1) 0.093(1)] 1.156

p f

pm ma e

m

C C C

K

  

  
   

 

Assuming constant thickness of the gears → KB = 1 

   mG = NG/NP = 48/16 = 3 

With N (pinion) = 10  cycles and N (gear) = 10
8/3, Fig. 14-14 provides the relations: 

    

Fig. 14-6:  

R = 0.85 

 

(14-23): 

 

 

 
 
 

8
 

8 0.0178( ) 1.3558(10 ) 0.977N PY  
8 0.0178( ) 1.3558(10 / 3) 0.996N GY  

 

 

 0.27,     0.38P GJ J   

 Table 14-10: K
    KT = Cf = 1

 

 
o ocos 20 sin 20 3

0.1205
2(1) 3 1

I
    

  Eq. 

 Table 14-8:  2300 psipC   

 
 Strength: Grade 1 steel with HBP = HBG = 200 
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 Fig. 14-2:  (St)P = (St)G = 77.3(200) + 12 800 = 28 260 psi 

Fig. 14-5: (Sc)P = (Sc)G = 322(200) + 29 100 = 93 500 psi 

Fig. 14-15: (ZN )P = 1.4488(10 )  = 0.948 

3 

Sec. 14-12:  HBP/HBG = 1     CH = 1 

Pinion tooth bending 

 

 

 
8 –0.023

 

    (ZN )G = 1.4488(10
8/3)

–0.023
 = 0.97

 

 

 
 

 Eq. (14-15): ( )  t d m B
P o s

P K K
W K K K

F Jv
 

   

6 (1.156)(1)
787.8(1)(1.196)(1.088)

2 0.27

13 170 psi     .Ans

          


 

 

 Eq. (14-41): 
/ ( )

( ) t N T R
F P

S Y K K
S


    

 

   
28 260(0.977) / [(1)(0.85)]

2.47     .
13 170

Ans   

 
 Gear tooth bending 

6 (1.156)(1)
 Eq. (14-15): ( ) 787.8(1)(1.196)(1.097) 9433 psi     .

2 0.38
G Ans

          
 

 Eq. (14-41): 



28 260(0.996) / [(1)(0.85)]
( ) 3.51     .

9433
F GS A   ns

Pinion tooth wear 

 Eq. (14-16): 

 
 

1/ 2

( )
ft m

c P p o s
P P

CK
C W K K K

d F I


 
  

 
v

 
 

               

1/ 2

1.156 1
2300 787.8(1)(1.196)(1.088)

2.667(2) 0.1205

98 760 psi     .Ans

       
   



          

     

 : Eq. (14-42)

   
/( ) 93 500(0.948) /[(1)(0.85)]

( ) 1.06     .
98 760

c NS
S A


 T R

H P
c P

Z K K
ns


     

  
 

 

 Gear tooth wear 
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1/ 2 1/ 2
( )

( )
( )

s G
c G

K 1.097
( ) (98 760) 99 170 psi     .

1.088

93 500(0.973)(1) /[(1)(0.85)]
) 1.08     .

99 170

c P
s P

G( H

Ans

ns

      

 

 

 

 The hardness of the pinion and the gear should be increased. 

_______________________________________________________________________ 

    

K


 
  

S A

_

 

14-20    dP = 2.5(20) = 50 mm,    dG = 2.5(36) = 90 mm 
3

3

(50)(10 )(100)
0.2618 m/s

60 60

P PV   

60(120)
458.4 N

(50)(10 )(100)

t

d n

W

 





 
 

 With no specific information given to indicate otherwise, assume 

:   = 0.8255 

   A = 50 + 56(1 – 0.8255) = 59.77 

 

    KB = Ko = Y = ZR = 1    

 

 Eq. (14-28) Qv = 6, B = 0.25(12 – 6)
2/3

 
0.8255

 
 Eq. (14-27): 

59.77 200(0.2618)

59.77
K


  v

1.099
  

 

P  0.322,    YG = 0.3775 

 

units: 

                        

 Table 14-2: Y  =

 Similar to Eq. (a) of Sec. 14-10 but for SI 

  

     0.05351
0.8433K mF Y   s

bk

    

0.0535

( ) 0.8433 2.5(18) 0.322 1.003     use 1s PK    
0.0535

( ) 0.8433 2.5(18) 0.3775 =1.007     use 1s GK          

 

1

18
18 / 25.4 0.709 in, 0.025 0.011

10(50)

mc e pm

pf

C C C

F C

  

    
       

 

(YN )P = 1.3558(10
8
)

–0.0178
 = 0.977 

   (Y  )G = 1.3558(10
8/1.8)

–0.0178
 = 0.987 

38): YZ = 0.658 – 0.0759 ln(1 – 0.95) = 0.885 

      

4 20.247 0.0167(0.709) 0.765(10 )(0.709 ) 0.259maC      

1 1[0.011(1) 0.259(1)] 1.27HK      

 Fig. 14-14: 

 N

  

 Fig. 14-6:  (YJ )P = 0.33,    (YJ )G = 0.38 

 Eq. (14-
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 Eq. (14-23): 
o ocos 20 sin 20 1.8 

0.103
2(1) 1.8 1

IZ    
 

 Table 14-8: 191 MPaEZ   

 
 Strength       Grade 1 steel, BPH  = HBG = 200 

.9 MPa 

Fig. 14-5: (Sc)P = (Sc)G = 2.22(200) + 200 = 644 MPa 

ding 

 

 Fig. 14-2: (St)P = (St)G = 0.533(200) + 88.3 = 194

 

 Fig. 14-15: (ZN )P = 1.4488(10
8
)

–0.023
 = 0.948 

    N G

 Fig. 14-12: / 1    H H C   

8 0.023( ) 1.4488(10 / 1.8) 0.961Z    

 1BP BG W HZ  

   

 Pinion tooth ben

1
 Eq. (14-15): ( )P  t H B

o s
t J P

K K
W K K K

bm Y

 
 
 

v

          

 1 1.27(1)
458.4(1)(1.099)(1) 43.08 MPa     .

18(2.5) 0.33
Ans

         
 

194.9 0.977
( ) 4.99     .

43.08 1(0.885)

t N
F P

Z P

S Y
S A

Y Y
   

     
  

  Eq. (14-41) for SI:  ns

 Gear tooth bending 

    

 

1 1.27(1)
( )G 458.4(1)(1.099)(1) 37.42 MPa     .

18(2.5) 0.38

194.9 0.987
( ) 5.81     .

37.42 1(0.885)
F G

Ans

S Ans

         
 

  
 

 

 
 wear  Pinion tooth

1

 Eq. (14-16): ( )c
t H R

P E o s
I P

K Z
Z W K K K

d b Z

 
   
 

v

w

     

 1.27 1
191 458.4(1)(1.099)(1) 501.8 MPa     .

50(18) 0.103
Ans

         
 

644 0.948(1)
( ) 1.37     .

501.8 1(0.885)

c N W
H P

c Z P

S Z Z
S A

Y Y
   

     
  

 Eq. (14-42) for SI:

   

ns

 Gear tooth wear          

 

   

1/ 2 1/ 2
( ) 1

( ) ( ) (501.8) 501.8 MPa     .
( ) 1

s G
c G c P

K

s P

Ans
K

 
        

 
 

 
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644 0.961(1)
( ) 1.39     .

501.8 1(0.885)
H GS A   

    

ns

________________________________________________________________________ 

 

14-21 

  

cos 6cos30 5.196 teeth/int nP P    

 

0.8255

16 48
3.079 in,      (3.079) 9.238 in

5.196 16
(3.079)(300)

241.8 ft/min
12

33 000(5) 59.77 241.8
682.3 lbf ,     1.210

241.8 59.77

P G

t

d d

V

W K



   

 

 
     

 
v

 

 

 From Prob. 14-19: 

 

   

0.296,      0.4056

8,      ( ) 1.097,      1

3,      ( ) 0.977,      ( ) 0.996,      0.85

( ) ( ) 28 260 psi,      1,      ( ) ( ) 93 500 psi

( ) 0.948,      ( ) 0.973

G

s P s G B

G N P N G R

t P t G H c P c G

N P N G

Y Y
K K

m Y Y K
S S C S S

Z Z

 
 

   
    

 

( ) 1.08
P

K 

,      2300 psipC 

 

 

 The pressure angle is: 

1 tan 20
tan 22.80

cos30
t

      


     3.079
( ) cos 22.8 1.419 in,     ( ) 3( ) 4.258 in

2
b P b G b Pr r    

    

r

 

     Eq. (14-25): 

  

1 / 1 / 6 0.167 inna P    

 

 

1/ 2 1/ 2
2 2

2 23.079 9.238
0.167 1.419 0.167 4.258

2

3.079 9.238
sin 22.8

2 2

0.9479 2.1852 2.3865 0.7466     Conditions . . for useO K

             
      

    
 

     
 

2
 


Z  

   
cos cos 20 0.4920 in

6
Np n np

     

 

0.492
0.6937

0.95 0.95(0.7466)

N
N

p
m

Z
     Eq. (14-21):  
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 Eq. (14-23):  
sin 22.8 cos 22.8 3

0.193
2(0.6937) 3 1

I
          

 

 

 Fig. 14-7:  0.45,      0.54P GJ J    

 

 Fig. 14-8: Corre . ctions are 0.94 and 0.98

    

 

0.45(0.94) 0.423,     PJ   0.54(0.98) 0.529

2
1,     0.0375 0.0125(2) 0.0525

10(3.079)

1,     0.093,     1

1 (1)[0.0525(1) 0.093(1)] 1.146

G

mc pf

pm ma e

m

J

C C

C C C

K

 

    

  
   

 

 
 bending 

    

 Pinion tooth
5.196 1.146(1)

( ) 682.3(1)(1.21)(1.088) 6323 psi     .
2 0.423

28 260(0.977) / [1(0.85)]
( ) 5.14     .

6323

AP

F P

ns

S Ans

 
 
 

 
 

 
ending 

                     

  

 Gear tooth b
5.196 1.146(1)

( ) 682.3(1)(1.21)(1.097) 5097 psi     .
2 0.529

28 260(0.996) / [1(0.85)]
( ) 6.50     .

5097

AG

F G

ns

S Ans

    
 

 
 

 

                   

 Pinion tooth wear 
1/ 2

1.146 1
( ) 230c P  0 682.3(1)(1.21)(1.088) 67 700 psi    .

3.078(2) 0.193

93 500(0.948) / [(1)(0.85)]
( ) 1.54     .

67 700
H P

Ans

S Ans

            

 

 

 
e oth wear 

                    

 G ar to
 

1/ 2
1.097

( )   (67 700) 67 980 psi     .
1.088

93 500(0.973) /[(1)(0.85)]
( ) 1.57     .

67 980

c G

H G

Ans

S Ans

  

 
 

________________________________________________________________________ 

both 

P G

14-2: YP = 0.303, YG = 0.4103 

 

14-22 Given: R = 0.99 at 10
8
 cycles, HB = 232 through-hardening Grade 1, core and case, 

gears. N  = 17T, N  = 51T,  
 Table 
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 Fig. 14-6: JP = 0.292, JG = 0.396 

   d 17 / 6 = 2.833 in,  dG = 51 / 6 = 8.500 in. 

 Fig. 14-14:  YN = 1.6831(10
8
)

–0.0323
 = 0.928 

P = NP / P = 

 
 Pinion bending 
 From Fig. 14-2: 

70.99( ) 77.3 12 800

77.3(232) 12 800 30 734 psi

t BS H 
  

 10

    
 

 

    P / 12 (2.833)(1120 / 12) 830.7 ft/minV d n     

    
all

1,     2,     K K S S   2

30 734(0.928)
14 261 psi

2(1)(1)

T R F H





 
     

       

2/35,     0.25(12 5) 0.9148Q B   
v

 

50 56(1 0.9148) 54.77A      

    

0.9148

54.77 830.7
1.472

54.77
K

 
   
 

v
 

    

0.0535

2 0.303
1.192 1.089 use 1

6
sK

 
   

 
 

    
)e

    

1 (m mf mc p f pm maK C C C C C C     

1

0.0375 0.0125
10

2
0.0375 0.0125(2) 0.0581

10(2.833)

mc

pf

C
F

C F
d



  

   

 

    
4 2

1

0.127 0.0158(2) 0.093(10 )(2 ) 0.1586

pm

ma

C

C 



   
 

    

 Eq. (14-15): 

1eC   

    

1 1[0.0581(1) 0.1586(1)] 1.217

1
m

B

K
K

   


 

allt P

o s d m

FJ
W

BK K K P K K




v

 

     

2(0.292)(14 261)
775 lbf

1(1.472)(1)(6)(1.217)(1)

775(830.7)
19.5 hp

33 000 33 000

tW V
H

 

  
 

 

 Pinion wear 
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 Fig. 14-15: ZN  = 2.466N–0.056
 = 2.466(10

8
)

–0.056
 = 0.879 

 Eq. (14-23): 

    Gm 51 / 17 3 

 
o ocos 20 sin 20 3

1.205,     1
2 3 1

HI C
    

 

  

 

 

 Fig. 14-5:  (S 70.99 10
) 322 29 100c BH  

       322 103 804 psi  
 

          (232) 29 100

,all

103 804(0.879)
64 519 psi

2(1)(1)
c    

    

 Eq. (14-16): 

2

,allct P

p o s m

Fd I
W

C K K K K C

 
   
  v

 
f

2
64 519 2(2.833)(0.1205)

2300 1(1.472)(1)(1.2167)(1



    

)

      
300 lbf

300(830.7)
7.55 hp

33 000 33 000

tW V
H

 




 

 

 The pinion controls, therefore Hrated = 7.55 hp     Ans. 
________________________________________________________________________ 

    l  = 2.25/ Pd,       x = 3Y / 2Pd 

 

    

 

 

14-23

0.107
0.0535

0.0535

2.25 3 3.674
4 4

2
t lx

P P P

3.674

d d d

0.808 0.808e 1.5487

1.5487 /
0.8389

0.30

1
1.192      .

d d

d
b

d

s
b d

Y
Y

F Y 
d F t F Y

P P

F Y P F Y
k

P

F Y
K Ans

k P

 

  

  


   
         

 
    

 

 

________________________________________________________________________ 

 

14-24 YP = 0.331, YG = 0.422, JP = 0.345, JG = 0.410, Ko = 1.25. The service conditions are 

adequately described by Ko. Set SF = SH = 1. 
 

    dP = 22 / 4 = 5.500 in 

    
  

 


    dG = 60 / 4 = 15.000 in 
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(5.5)(1145)
1649 ft/min

12
V


   

    
 Pinion bending 

  
 

 
3

2 800 77.3(250) 12 800 32 125 psi

1.6831[3(10 )] 0.832N

  

 
 

70.99 10

9 0.032

1t B

Y 

( ) 77.3S H 

 Eq. (14-17):  all

32 125(0.832)
26728 psi

1(1)(1)P
    

 

   

    

   
A 

2/30.25(12 6) 0.8255B     

50 56(1 0.8255) 59.77     
0.8255

59.77 1649
1.534

59.77
K

 
   
 

v
 

1,     1s mK C   
    

0.0375 0.0125
10

mc

F
C F

d
    

    
3.25

0.0375 0.0125(3.25) 0.0622
10(5.5)

                

4 20.127 0.0158(3.25) 0.093(10 )(3.25 ) 0.178maC      
    

    

  

1eC   
    

    mK  1 (1)[0.0622(1) 0.178(1)] 1.240m fC    

1,     1B TK K   

 

1

26 728(3.25)(0.345)
3151 lbf

1.25(1.534)(1)(4)(1.240)

tW     Eq. (14-15):

1

3151(1649)
157.5 hp

33 000
H        

 
 Gear bending  2 23861 lbf and 192.9 hptW H      By similar reasoning,  

 
 

   

   

 Pinion wear
60 / 22 2.727Gm     

o ocos 20 sin 20 2
I

 
 

.727
0.1176

2 1 2.727

  
 

    

    

    0.99(S 710
) 322(250) 29 100 109 600 psic     

9 0.056( ) 2.466[3(10 )] 0.727N PZ    

9 0.056( ) 2.466[3(10 ) / 2.727] 0.769N GZ    

,all

109 600(0.727)
( ) 79 679 psi

1(1)(1)
c P    
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2

,all

3

ct P

p o s m

Fd I
W

C K K K K C

 
   
  v

 

    f

       

2
79 679 3.25(5.5)(0.1176)

1061 lbf
2300 1.25(1.534)(1)(1.24)(1)

         
           

3

1061(1649)
53.0 hp

33 000
H    

    
 
 G r eaea  w r 
 Similarly, 

 

 

? 

______________________________________________________ 

14-24: 

4 41182 lbf ,     59.0 hptW H   

 Rating 

         rated 1 2 3 4min( ,  ,  ,  )

min(157.5,  192.9,  53,  59) 53 hp     .

H H H H H
Ans


 

 

 

 Note differing capacities. Can these be equalized

__________________

 

14-25 From Prob. 

 

1 23151 lbf ,     3861 lbf ,t tW W 

3 41061 lbf ,     1182 lbft tW W   

33 000 33 000(1.25)(40)
1000 lbf

1649

oK H

V
 

 Pinion bending: The factor of safety, based on load and stress, is 

 

   

tW 

 

1 3151
( ) 3.15

1000 1000

t

F P

W
S     

 
 

 Gear bending based on load and stress 

 

2 3861
( ) 3.86

1000 1000

t

F G

W
S     

    
 Pinion wear 

 based on load:   3
3

106tW 1
1.06

1000 1000
n     

( ) 1.06 1.03H PS          based on stress:  

 
 Gear wear 

4
4

1182
1.18

1000 1000

tW
n      based on load:  
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( ) 1.18 1.09H GS       based on stress:  

 

 Factors of safety are used to assess the relative threat of loss of function 3.15, 3.86, 1.06, 

1.18 where the threat is from pinion wear. By comparison, the AGMA safety factors 

(SF)P, (SF)G, (SH)P, ( H)G 

.86, 1.03, 1.09    or    3.15, 3.86, 1.06
1/2

, 1.18
1/2

 

on 

concerning threat. Therefore

______________________________________ ____ ___________ 

 

4-26 Solution summary from Prob. 14-24: n = 1145 rev/min,    K  = 1.25,  Grade 1 materials, 

= 

 min, K  = 1.534, (K  )  = (K  )  = 1, (Y  )P = 

 

 

S
 are 

3.15, 3

 

 and the threat is again from pinion wear. Depending on the magnitude of the numbers, 

using SF and SH as defined by AGMA, does not necessarily lead to the same conclusi

 be cautious. 

_______________ __ __

1 o

NP = 22T, NG = 60T, mG = 2.727, YP = 0.331,YG = 0.422,  JP = 0.345,  JG = 0.410,  Pd 
4T /in,   F = 3.25 in,  Qv = 6,   (Nc)P = 3(10

9
),  R = 0.99, Km = 1.240,  KT = 1,  KB = 1,     

dP = 5.500 in, dG = 15.000 in, V = 1649 ft/ v s P s G N

0.832, (YN )G = 0.859,    KR = 1 

 
 Pinion HB: 250 core, 390 case 

Gear HB: 250 core, 390 case 

 Bending 

all( ) 26 728 pP

    

all

 l

G
t

1 3151
t

W 1

2 2

si      ( ) 32 125 psi

( ) 27 546 psi      ( ) 32 125 psi

bf ,             157.5 hp

3861 lbf ,             192.9 hp

t P

t G

S
S

H

W H

  
 


 

 




 

 Wear 

    

    

o20 ,     0.1176,     ( ) 0.727N PI Z     

( ) 0.769,     2300 psiN G PZ C   

( ) 322(390) 29 100 154 680 psic P cS S     
    

,all

154 680(0.727)
( ) 112 450 psi

1(1)(1)
c P    

    

,all

154 680(0.769)
( ) 118 950 psi

1(1)(1)
c G    

    

  

2

3 3

112 450 2113(1649)
(1061) 2113 lbf ,       105.6 hp

79 679 33 000
H

    
 

 tW


  

2

4 4

118 950 2354(1649)
(1182) 2354 lbf ,     117.6 hp

109 600(0.769) 33 000

tW H
 

    


 

 Rated power 


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 Hrated = min(157.5, 192.9, 105.6, 117.6) = 105.6 hp     Ans. 

 Prob. 14-24: 

Hrated = min(157.5, 192.9, 53.0, 59.0) = 53 hp 

roximately doubled. 

________________ ________________________________ 

 

4-27 The gea obtain Brinell 

 580–600 case. 

 

    
 

 The rated power app

_______________________ _

1 r and the pinion are 9310 grade 1, carburized and case-hardened to 

285 core and Brinell

 

Table 14-3:   70.99 10
( ) 55 000 psitS 

 

 Modification of St by (YN )P = 0.832 produces 

 

    all( ) 45 657 psi,P   

 

Similarly for (Y  )  = 0.859  N G

 

    all( ) 47 161 psi,     andG   

1 14569 lbf ,     228 hptW H 

2 25668 lbf ,     283 hptW H 
 

    
 

 From Table 14-8, 2300pC  psi.  Also, from Table 14-6: 

   

 Modification of Sc by YN  produces 

70.99 10
( ) 180 000 psicS   

 
 

 

    
( ) sic G

,all

,all

( ) 130 525 psi

138 069 p

c P
 


 

 and 

 Rating 
Hrated = min(228, 283, 124, 138) = 124 hp     Ans. 

________________________________________________________ 

 

Grade 2, 9310 carburized and case-hardened to 285 core and 580 case in Prob. 14-27. 

    4 42767 lbf ,     tW H
3 32489 lbf ,     124.3 hp

138.2 hp

tW H 


 

 

____ ____________

 

 

 
14-28 
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 Summary: 

   

 Table 14-3:  70.99 10
( ) 65 000 psitS   

all

all

( ) 53 959 psi

( ) 55 736 psi
P

G







  

 

 and it follows that 

 

    
t

1

tW 1

2 2

5400 lbf ,      270 hp

6699 lbf ,        335 hp

H

W H

 
 

 

 

 From Table 14-8, 2300 psi.pC   Also, from Table 14-6: 

    

 

   cS  225 000 psi  
 

,all( ) 181 285 psic P   

,all( ) 191 762 psic G   
    
 

 Consequently, 

480 240 hptW H 

    
 

 

3 3

t

4 4

1 lbf ,     

5337 lbf ,    267 hpW H


 

 

 Rating 
    
___ __________

Hrated = min(270, 335, 240, 267) = 240 hp.     Ans. 
__ ________________________________________________________ 

in, Ko = 1.25, NP = 22T, NG = 60T, mG = 2.727, dP = 2.75 in, dG = 

7.5 in, YP = 0.331,YG = 0.422, JP = 0.335, JG = 0.405, P = 8T /in, F = 1.625 in, HB = 250,   

e, both gears.   Cm = 1,   F/dP = 0.0591, Cf  = 0.0419, Cpm = 1, Cma = 0.152,   

C  = 1, K  = 1.1942, KT = 1, KB = 1, Ks = 1,V = 824 ft/min, (YN )P = 0.8318, (YN )G = 

I = 0.117 58 

 
 

 

 

    
 

_

 

14-29 Given: n = 1145 rev/m

case and cor

e m

0.859, KR = 1, 

 

   

all

all

( ) 26 668 psi

( ) 27 546 psi
P

G







 

and it follows that 

70.99 10
( ) 32 125 psitS 

1 1

2 2

879.3 lbf ,     21.97 hp

1098 lbf ,      27.4 hp

t

t

W H

W H

 
 

 

 For wear 
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 Rating 
Hrated = min(21.97, 27.4, 7.59, 8.50) = 7.59 hp 

rated = 53 hp. Thus, 

3

tW
3

4 4

304 lbf ,     7.59 hp

340 lbf ,     8.50 hp

tW H

H

 
 

 

    
 

 In Prob. 14-24, H
 

7.59 1 1
0.1432 ,     not      .

53.0 6.98 8
Ans   

    
 
 The transmitted load rating is 

   

In Prob. 14-24 

 

Thus 

   

 
tW    rated min(879.3,  1098,  304,  340) 304 lbf

 
 

 

rated 1061 lbftW   
    
 

 

304
0.2865

1 1
,     not      .

1061 3.49 4
Ans

 
__ _______________________________________ _______________ 

4-30 d = 4,    JP = 0.345,    JG = 0.410,    Ko = 1.25 

 

             

 

____ __________ __
 

1 SP = SH = 1,    P
 
 Bending 

70.99 10
( ) 13 000 psitS    Table 14-4:   

 all all

13 000(1)
( ) ( ) 13 000 psi

1(1)(1)
P G   

 

all 13 000(3.25)(0.345)t PFJ
1 1533 lbf

1)
W

1.25(1.534)(1)(4)(1.24)(o s d m BK K K P K K


  

     v

1

1533(1649)
76.6 hp

33 000
H  

     

2 1

2 1

/ 1533(0.410) / 0.345 1822 lbf

/ 76.6(0.410) / 0.345 91.0 hp

t t
G P

G P

W W J J
H H J J

  
  

 

    
 Wear 

 Table 14-8: 

 

 1960 psipC   

70.99 ,all ,all10
( ) 75 000 psi ( ) ( )c c PS c G      Table 14-7:   
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2

,all

3

2

         3

4 3

4 3

( )

75 000 3.25(5.5)(0.1176)
1295 lbf

1960 1.25(1.534)(1)(1.24)(1)

1295 lbf

1295(1649)
64.7 hp

33 000

pc Pt

p o s m f

t

t t

Fd I
W

C K K K K C

W

W W

H H

 
  
  
   
 

 

  

v

 

 

 Rating 

    Hrated = min(76.7, 94.4, 64.7, 64.7) = 64.7 hp     Ans. 
 

 Notice that the balance between bending and wear power is improved due to CI’s more 

favorable Sc/St ratio. Also note that the life is 10
7
 pinion revolutions which is (1/300) of 

3(10
9
). Longer life goals require power de-rating. 

______________________________________________________ 

1 
 and B

 

__________________

 

14-3 From Table A-24a, Eav = 11.8(10
6
) Mpsi 

For  = 14.5 H  = 156  

 

6

1.4(81)
51 693 psi

2sin14.5 / [11.8(10 )]
CS  


 

    
 For  = 20 

6

1

   

.4(112)
52S    008 psi

.8(10 )]

0.32(156) 49.9 kpsiCS    
 The first two calculations were approximately 4 percent higher.  

__ ______________________________________ _________________ 

ll vary. 
________________________________________________________________________ 

14-33    

2sin 20 / [11
C 

____ __________ _

 

14-32 Programs wi

 

( ) 0.977,     ( ) 0.996N P N GY Y   

( ) ( ) 82.3(250) 12 150 32 725 psit P t GS S         

all

32 725(0.977)  
    

( ) 37 615 psi
1(0.85)

P  

   
1

37 615(1.5)(0.423)
1558 lbftW    

1(1.404)(1.043)(8.66)(1.208)(1) 

1

1558(925)
43.7 hp

33 000
H    
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all

32 725(0.996)
( ) 38 346 psi

1(0.85)
G    

    

2

38 346(1.5)(0.5346)
2007 lbf

1(1.404)(1.043)(8.66)(1.208)(1)

tW    
    

2

2007(925)
56.3 hp

33 000
H    

    
( ) 0.948,     ( ) 0.973N P N GZ Z       

 

 Table 14-6:   70.99 10
( ) 150 000 psicS   

,allow

0.948(1)
( ) 150 000 167 294 psi

1(0.85)
c P

 
  

 
 

    
2

3

167 294 1.963(1.5)(0.195)
2074 lbf

2300 1(1.404)(1.043)

tW
         

 
    

3

2074(925)
58.1 hp

33 000
H    

    

,allow

0.973
( ) (167 294) 171 706 psi

0.948
c G    

    
2

4

171 706 1.963(1.5)(0.195)
2167 lbf

2300 1(1.404)(1.052)

tW
         

 
    

4

2167(925)
60.7 hp

33 000
H    

    

    ns

 Pinion bending is controlling. 

________________________________________________________________________ 

14-34    

   

rated min(43.7,  56.3,  58.1,  60.7) 43.7 p     .H A    h

 

 
8 0.0323( ) 1.6831(10 ) .928N PY    0

8 0.0323( ) 1.6831(10 / 3.059) 0.962N GY    

     

 Table 14-3: St = 55 000 psi 

all

55 000(0.928)
( ) 60 047 psiP    

 1(0.85)

    
1

60 047(1.5)(0.423)
2487 lbf

1(1.404)(1.043)(8.66)(1.208)(1)

tW    

1
33 000

2487(925)
69.7 hpH    

    

all

0.962
( ) (60 047) 62 247 psi

0.928
G    
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2

62 247 0.5346
(2487) 3258 lbf

60 047 0.423

tW
   
 

 

    

2

3258
(69.7) 91.3 hp

2487
H    

    
 

S  = 180 000 psi 

    

 Table 14-6: c
8 0.056( ) 2.466(10 ) 0.8790N PZ    

8 0.056( ) 2.466(10 / 3.059) 0.9358N GZ    
    

,all

180 000(0.8790)
( ) 186 141 psi

1(0.85)
c P    

    
2

3

186 141tW
   

1.963(1.5)(0.195)
2568 lbf

2300 1(1.404)(1.043

 
    

 
)

    

3

2568(925)
72.0 hp

33 000
H    

    

,all

0.9358
( ) (186 141) 198 169 psi

0.8790
c G    

    
2

4

198 169 1.043
(2568) 2886 lbf

186 141 1.052

tW
       
   

 

    

4

2886(925)
80.9 hp

33 000
H    

    

    
 h

 
rated min(69.7,  91.3,  72,  80.9) 69.7 p     .H A   ns

 Pinion bending controlling 

__ _______________________________________ ________________ 

14-35    (YN)P = 0.928,    (YN )G = 0.  

St = 65 000 psi 

____ __________ _

 

962    (See Prob. 14-34)

 

 Table 14-3: 

all( )P 
65 000(0.928)

70 965 psi  
1(0.85)    

1

70 965(1.5)(0.423)
2939 lbftW    

1(1.404)(1.043)(8.66)(1.208)    

1
33 000

H  
2939(925)

82.4 hp  
    

all

65 000(0.962)
( ) 73 565 psi

1(0.85)
G    

    

2

73 565 0.5346
(2939) 3850 lbf

70 965 0.423

tW
   
 

 

    

2

3850
(82.4) 108 hp

2939
H    

    

Chapter 14, Page 31/39 



 Table 14-6: Sc = 225 000 psi 

( ) 0.8790,     ( ) 0.9358N P N GZ Z   
    

,all

225 000(0.879)
( ) 232 676 psi

1(0.85)
c P    

    
2

3

232 676 1.963(1.5)(0.195)
4013 lbf

2300 1(1.404)(1.043)

tW
         

 

    

3

4013(925)
112.5 hp

33 000
H    

    

,all

0.9358
( ) (232 676) 247 711 psi

0.8790
c G    

    
2

4

247 711 1.043
(4013) 4509 lbf

232 676 1.052

tW
       
   

 

    

4

4509(925)
126 hp

33 000
H    

    

    
ns

 The bending of the pinion is the controlling factor. 

________________________________________________________________________ 

14-36    P = 2 teeth/in,  d = 8 in,  N dP = 8 (2) = 16 teeth 

rated min(82.4,  108,  112.5,  126) 82.4 p     .H A   h

 

 

 = 

    4 4 4 2
2

F p
P

           
   

 

    0 10(300)cos 20 4 cox BM F   s20   

    FB = 750 lbf 

cos 20 750cos 20 705 lbft
BW F         

    n = 2400 / 2 = 1200 rev/min 

(8)(1200)
2513 ft/min

12 12

dn
V

 
      

 
ain ed factors, roughly in the o der presented in the textbook. 

St = 102(300) + 16 400 = 47 000 psi 

Sc = 349(300) + 34 300 = 139 000 psi 

J = 0.27 

 

r We will obt  all of the need

 

 Fig. 14-2:  

 

 Fig. 14-5: 

 Fig. 14-6:  
o ocos 20 sin 20 2

0.107
2(1) 2 1

I    
 

 
 Eq. (14-23):   

 Table 14-8:  2300 psipC   

 Assume a typical quality number of 6. 

 Eq. (14-28): 2/3 2 /30.25(12 ) 0.25(12 6)B Q   
v

0.8255  
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50 56(1 ) 50 56(1 0.8255) 59.77A B            

 Eq. (14-27): 

0.8255

59.77 2513
1.65

59.77

B

A V
K

A

    
       
   

  

ze factor, get the Lewis Form Factor from Table 14-2, Y = 0.296. 

    

v

 

 To estimate a si

 From Eq. (a), Sec. 14-10, 
 

0.0535 0.0535

2 0.296
1.192 1.192 1.23

2
s

F Y
K

P

   
        

   
 

The load distribution factor is applicable for straddle-mounted gears, which is not the 

tter, 

 Eq. (14-31): C  = 1 (uncrowned teeth) 

 

case here since the gear is mounted outboard of the bearings.  Lacking anything be

ution factor as a rough estimate.  we will use the load distrib

 

mc

 
2

0.0375 0.0125(2 ) 0.1196


C Eq. (14-32):
10(8)

p f      

 

 

Eq. (14-35): Ce = 1 

cle factors, we need the desired number of load cycles. 

 (10
9
) rev 

 0.8    

Eq. 14-38: 

Eq. (14-33): Cpm = 1.1 

Fig. 14-11: Cma = 0.23 (commercial enclosed gear unit) 

 

 Eq. (14-30): 1 1[0.1196(1.1) 0.23mK    (1)] 1.36  

 
 For the stress-cy  

 

    N = 15 000 h (1200 rev/min)(60 min/h) = 1.1

9  Fig. 14-14: YN  = 0.

 Fig. 14-15: ZN

 

 =

   0.658 0.0759ln 1 0.658 0.0759ln 1 0.95 0.885RK R         

 

With no specific information given to indicate otherwise, assume Ko = KB  = KT = Cf = 1  

 

 Tooth bending 

 Eq. (14-15): t K
W K  d m B

o s

P K
K K

F Jv

  

 2 (1.36)(1)
705(1)(1.65)(1.23) 2294 psi

2 0.27
       

 
   

  

/ ( )t N T R Eq. (14-41): F

S Y K K




    

   

S


47 000(0.9) / [(1)(0.885)]
20.8     .

2294
Ans   

 
 
 Tooth wear 
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 Eq. (14-16): 

1/ 2

ft m
c p o s

P

CK
C W K K K

d F I


 
  

 
v

 

 

1/ 2

1.36 1
2300 705(1)(1.65)(1.23)

8(2 ) 0.107

43 750 psi     


       

   


    

 Since gear B is a pinion, CH  is not used in Eq. (14-42) (see p. 761), where 

    

 

/ ( )c N T R
H

c

S Z K K
S


  

139 000(0.8) / [(1)(0.885)]
2.9     

43 750
Ans

 
 

   


 

 

_ _____ 

4-37    m = 18.75 mm/tooth,  d = 300 mm   

N = d/m = 300 / 18.75 = 16 teeth 

    

____________________________ ______________________________________

 

1
    

   4 4 4 18.75 236 mmF b p m       

    

F  = 22.81 kN 

0 300(11)cos 20 150 cos25x BM F      

    B

    cos 25 22.81cos 25 20.67 kNt
BW F     

    n = 1800 / 2 = 900 rev/min 

    
(0.300)(900)

14.
dn

V 14 m/s
60 60

 
  

 roughly in the order presented in the textbook. 

 + 113 = 324 MPa  

Sc = 2.41(300) + 237 = 960 MPa 

  

 We will obtain all of the needed factors, 

 

 Fig. 14-2:  St = 0.703(300)

 Fig. 14-5: 

 Fig. 14-6:  J = YJ = 0.27 

 
o ocos 20 sin 20 5

0.134
2(1) 5 1

II Z
     

  Eq. (14-23):

 Table 14-8:  191 MPaEZ   

 

 Assume a typical quality number of 6. 
2/3 Eq. (14-28): 0.25(12B   2/3) 0.25(12 6) 0.8255Q   

v
 

50 56(1 ) 50 56(1 0.8255) 59.77A B            

 Eq. (14-27): 

0.8255

59.77 200(14.14)200
1.69

59.77

B

A V
K

A

   
          

  

 Form Factor from Table 14-2, Y = 0.296. 

 Similar to Eq. (a) of Sec. 14-10 but for SI units: 

v

 

 To estimate a size factor, get the Lewis

Chapter 14, Page 34/39 



                          

 0.05351
0.8433s

b

K mF
k

       Y

    

0.0535

0.8433 18.75(236) 0.296 1.28    sK    

  Convert the diameter and facewidth to inches for use in the load-distribution facto

 

 

r 

 = 9.29 in 

: Cmc = 1 (uncrowned teeth) 

 Eq. (14-32): 

equations.  d = 300/25.4 = 11.81 in,  F = 236/25.4

 

 Eq. (14-31)

9.29
0.0375 0.0125(9.29) 0.1573

10(11.81)
pfC      

 Eq. (14-33): Cpm = 1.1 

Fig. 14-11: Cma = 0.27 (commercial enclosed gear unit) 

 

sired number of load cycles. 

h ( 0 rev/min)(60 min/h) = 6.48 (10
8
) rev 

5    

 

 Eq. (14-35): Ce = 1 

Eq. (14-30): 1 1[0.1573(1.1) 0.27(1)] 1.4m HK K     4  

 
 For the stress-cycle factors, we need the de

 

  N = 12 000 90

 

 Fig. 14-14: YN  = 0.9 

 Fig. 14-15: ZN = 0.8

  Eq. 14-38:    0.658 0.0759ln 1 0.658 0.0759ln 1 0.98 0.955RK R        

 

 With no specific information given to indicate otherwise, assume Ko = KB  = KT = ZR = 1. 

 

 Tooth bending 
1t H B

o s
t J

K K
 Eq. (14-15): W K  K K

bm Yv

 
1 (1.44)(1)

20 670(1)(1.69)(1.28) 53.9 MPa
236(18.75) 0.27

         
 

    

/ ( )t N T R Eq. (14-41): F 
S Y K K 

S


   

   

324(0.9) / [(1)(0.955)]
5.66     .

53.9
Ans   

 
 Tooth wear 

 Eq. (14-16): 

1/ 2

1

t H R
c E o s

I

K Z
Z W K K K

d b Z


 
  

 
v

w
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1/ 2

1.44 1
191 20 670(1)(1.69)(1.28)

300(236) 0.134

498 MPa     

       
   



    

 

 Since gear B is a pinion, CH  is not used in Eq. (14-42) (see p. 761), where 

 

    
/ ( )c N T R

H
c

S Z K K
S


  

960(0.85) / [(1)(0.955)]
1.72     

498
Ans   

   
____________________________ _______________________________________ _____ 

4-38 From the solution to Prob. 13-40, n = 191 rev/min, Wt
 = 1600 N, d = 125 mm,  

, m = 8.33 mm/tooth.

    

 

1
N = 15 teeth

    4 4 4 8.33 105 mmF b p m       

(0.125)(191)
1.25 m/s    

60 60

dn
V

 
  

 
tbook. 

t

Sc = 225 kpsi = 1550 MPa 

J = YJ = 0.25 

Eq. (14-23):  

 

 We will obtain all of the needed factors, roughly in the order presented in the tex

 

Table 14-3:  S  = 65 kpsi = 448 MPa   

 Table 14-6: 

 Fig. 14-6:  

 
o ocos 20 sin 20 2

0.107
2(1) 2 1

II Z
     

  

 Table 14-8:  191 MPaZ   E

 Assume a typical quality number of 6. 

 

 Eq. (14-28): 0.25(12B   2/3 2 /3) 0.25(12 6) 0.8255Q   
v

 

    )A B50 56(1 ) 50 56(1 0.8255 59.77        
0.8255

59.77 200(1.25)20
 Eq. (14-27): 

0
  1.21

59.77

B

A V
K

A

   
     

 
v

 

To estimate a size factor, get the Lewis Form Factor from Table 14-2, Y = 0.290. 

) of Sec. 14-10 but for SI units: 

 
 

 

 Similar to Eq. (a
                          

 0.05351
0.8433    sK m 

b

F Y
k

 

0.0535

0.8433 8.33(105) 0.290 1.17    sK        

 

r  Convert the diameter and facewidth to inches for use in the load-distribution facto
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equations.  d = 125/25.4 = 4.92 in,  F = 105/25.4 = 4.13 in 

1): C  = 1 (uncrowned teeth)  Eq. (14-3 mc

 
4.13

0.0375 0.0125(4.13) 0.0981
10(4.92)

pfC       Eq. (14-32):

 Eq. (14-33): Cpm = 1 

Cma = 0.32 (open gearing) 

 

factors, we need the desired number of load cycles. 

in)(60 min/h) = 1.4 (10
8
) rev 

5 

 Fig. 14-11: 

 Eq. (14-35): Ce = 1 

Eq. (14-30): 1 1[0.0981(1) 0.32(1)] 1.4K K     2  m H

 
 For the stress-cycle 

  N = 12 000 h (191 rev/m

 Fig. 14-14: YN  = 0.9

 Fig. 14-15: ZN = 0.88    

    658 0.0759ln 1 0.658 0.0759ln 1 0.95 0.885R        Eq. 14-38: 0.RK 
 

With no specific information given to indicate otherwise, assume K = KB  = KT = ZR = 1.  o 

 

 Tooth bending 
1

 Eq. (14-15): t H B
s

t J
o

K K

bmv
W K K K

Y
 

 
1 (1.42)(1)

1600(1)(1.21)(1.17) 14.7 MPa
105(8.33) 0.25 

        
 

H 
   Since gear is a pinion, C  is not used in Eq. (14-42) (see p. 761), where  

 

/ ( )t N T R    FS
S Y K K


      

   

448(0.95) / [(1)(0.885)]
32.7     .

14.7
Ans   

 Tooth wear 

 Eq. (14-16): 

1/ 2

K Z 

1

t H R
c E o s

I

Z W K K K
d b Z

   
 

v

w

 

    

1/ 2

1.42 1
191 1600(1)(1.21)(1.17)

125(105) 0.107

289 MPa     

       
   



 

 

 Eq. (14-42): 
/ ( )c N T R

H
c

S Z K K


 

  
 

 S

1550(0.88) / [(1)(0.885)]
5.33     

289
Ans

   
 

 
   
________________________________________________________________________ 
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14-39 From the solution to Prob. 13-41, n = 2(70) = 140 rev/min, Wt
 = 180 lbf, d = 5 in  

/in.   

    

N = 15 teeth, P = 3 teeth

4 4 4 4.2 in
3

F p
P

          
   

 

(5)(140)
183.3 ft/min    

12 12

dn
V

 
  

ook. 

 

 St = 65 kpsi  

 Table 14-6: Sc = 225 kpsi  

J = 0.25 

Eq. (14-23):  

  

 We will obtain all of the needed factors, roughly in the order presented in the textb

 Table 14-3: 

 Fig. 14-6:  

 
o ocos 20 sin 20 2

0.107
2(1) 2 1

I
    

  

 Table 14-8:  2300 psiC   p

ber of 6.  Assume a typical quality num

 

 Eq. (14-28): 0.25B  2/3 2 /3(12 ) 0.25(12 6) 0.8255Q   
v

 

    .8A B50 56(1 ) 50 56(1 0 255) 59.77        

 Eq. (14-27): 

0.8255

59.77 183.3
1.18

59.77

B

A V
K

A

    
       
   

v
 

To estimate a size factor, get the Lewis Form Factor from Table 14-2, Y = 0.290. 

c. 14-10, 
 

 

 

 From Eq. (a), Se

0.0535 0.0535

4.2 0.290
1.192 1.192 1.17

3
s

    

F Y
K

P

   
        

   
 

 Eq. (14-31): Cmc = 1 (uncrowned teeth) 

4.2
 Eq. (14-32): 0.0375 0.0125(4.2) 0.099

10(5)
pfC      

 Eq. (14-33): Cpm = 1 

 Fig. 14-11: Cma = 0.32 (Open gearing) 

 Eq. (14-35): Ce = 1 

factors, we need the desired number of load cycles. 

  N = 14 000 h (140 rev/min)(60 min/h) = 1.2 (10
8
) rev 

5 

 Eq. (14-30): 1 1[0.099(1) 0.32(mK   
 

1)] 1.42  

 For the stress-cycle 

 Fig. 14-14: YN  = 0.9

 Fig. 14-15: ZN = 0.88    

    658 0.0759ln 1 0.658 0.0759ln 1 0.98 0.955R        Eq. 14-38: 0.K R

 With no specific nf i ormation given to indicate otherwise, assume Ko = KB  = KT = Cf = 1. 
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 Tooth bending 
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 Eq. (14-15): t d m BP K K
K KoW K  s F Jv

 3 (1.42)(1)
180(1)(1.18)(1.17) 1010 psi

4.2 0.25

          
 

    

/ ( )t N T R Eq. (14-41): FS
S Y K K




    

   



65 000(0.95) / [(1)(0.955)]
64.0     .

1010
Ans   

 
Tooth wear  

 Eq. (14-16): 

1/ 2

ft m
c p o s

P

CK
C W K K K

d F I


 
  

 
v

 

 

1/ 2

1.42 1
2300 180(1)(1.18)(1.17)

5(4.2) 0.107

28 800 psi     

       
   



    

 

 Since gear B is a pinion, CH  is not used in Eq. (14-42) (see p. 761), where 

 

/ ( )c N T R
H

c

S Z K K
S


 

      
 

 

225 000(0.88) / [(1)(0.955)]
7.28     

28 800    

Ans
 

    
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Chapter 15 
 

 
15-1 Given: Uncrowned, through-hardened 300 Brinell core and case, Grade 1, NC = 

109 rev of pinion at R = 0.999, NP = 20 teeth, NG = 60 teeth, Qv = 6, Pd = 6 
teeth/in, shaft angle = 90°, np = 900 rev/min, JP = 0.249 and JG = 0.216 (Fig.  
15-7), F = 1.25 in, SF = SH = 1,  Ko = 1. 

 
 Mesh  dP = 20/6 = 3.333 in, dG = 60/6 = 10.000 in 
 
 Eq. (15-7): vt = (3.333)(900/12) = 785.3 ft/min 
 
 Eq. (15-6):  B = 0.25(12 – 6)2/3 = 0.8255 
    A = 50 + 56(1 – 0.8255) = 59.77 
 

 Eq. (15-5):  

0.8255

59.77 785.3
1.374

59.77
K

 
   
 

v
 

 
 Eq. (15-8): vt,max = [59.77 + (6 – 3)]2 = 3940 ft/min 
 
 Since 785.3 < 3904, Kv = 1.374 is valid. The size factor for bending is: 
 
 Eq. (15-10): Ks = 0.4867 + 0.2132 / 6 = 0.5222 
 
 For one gear straddle-mounted, the load-distribution factor is: 
 
 Eq. (15-11): Km = 1.10 + 0.0036 (1.25)2 = 1.106 
 
 Eq. (15-15): (KL)P = 1.6831(109)–0.0323 = 0.862 
    (KL)G = 1.6831(109 / 3)–0.0323 = 0.893 
 
 Eq. (15-14): (CL)P = 3.4822(109)–0.0602 = 1 
    (CL)G = 3.4822(109 / 3)–0.0602 = 1.069 
 
 Eq. (15-19): KR = 0.50 – 0.25 log(1 – 0.999) = 1.25   (or Table 15-3) 
    1.25 1.118R RC K    

 
 Bending 
 
 Fig. 15-13: 0.9  9 44(300) 2100 15 300 psit atS s   

 Eq. (15-4):  all

15 300(0.862)
( ) 10 551 psi

1(1)(1.25)
at L

P t
F T R

s K
s

S K K
    

w
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 Eq. (15-3): all( )t P x P
P

d o s m

FK J
W

P K K K K




v

 

                 

1

10 551(1.25)(1)(0.249)
690 lbf

6(1)(1.374)(0.5222)(1.106)
690(785.3)

16.4 hp
33 000

H

 

 
 

 

 Eq. (15-4): all

15 300(0.893)
( ) 10 930 psi

1(1)(1.25)G     

    

2

10 930(1.25)(1)(0.216)
620 lbf

6(1)(1.374)(0.5222)(1.106)
620(785.3)

14.8 hp    .
33 000

t
GW

H A

 

  ns

 

 
 The gear controls the bending rating. 
________________________________________________________________________ 
 
15-2 Refer to Prob. 15-1 for the gearset specifications. 
 
 Wear 
 Fig. 15-12: sac = 341(300) + 23 620 = 125 920 psi 
 
 For the pinion, CH = 1. From Prob. 15-1, CR = 1.118. Thus, from Eq. (15-2): 
 

    

,all

,all

( )
( )

125 920(1)(1)
( ) 112 630 psi

1(1)(1.118)

ac L P H
c P

H T R

c P

s C C

S K C






 
 

 
 For the gear, from Eq. (15-16), 
 

    
 1 0.008 98(300 / 300) 0.008 29 0.000 69

1 0.000 69(3 1) 1.001 38H

B
C

  
   

 
 From Prob. 15-1, (CL)G = 1.0685. Equation (15-2) thus gives 
 

    

,all

,all

( )
( )

125 920(1.0685)(1.001 38)
( ) 120 511 psi

1(1)(1.118)

ac L G H
c G

H T R

c G

s C C

S K C






 
 

 
 For steel: 2290 psipC   
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 Eq. (15-9):  0.125(1.25) 0.4375 0.593 75sC   
 
 Fig. 15-6: I = 0.083 
 
 Eq. (15-12):  Cxc = 2 

 Eq. (15-1): 

2

,all( )c Pt P
P

p o m s

Fd I
W

C K K K C C

 
   
  v xc

 

                

2

3

2

4

112 630 1.25(3.333)(0.083)

2290 1(1.374)(1.106)(0.5937)(2)
464 lbf
464(785.3)

11.0 hp
33 000

120 511 1.25(3.333)(0.083)

2290 1(1.374)(1.106)(0.593 75)(2)
531 lbf
531(785.3)

3

t
G

H

W

H

         


 

         


 12.6 hp
3 000



 

 
 The pinion controls wear:  H = 11.0 hp     Ans. 
 
 The power rating of the mesh, considering the power ratings found in Prob. 15-1, 

is  
    H = min(16.4, 14.8, 11.0, 12.6) = 11.0 hp     Ans. 
________________________________________________________________________ 
 
15-3 AGMA 2003-B97 does not fully address cast iron gears. However, approximate 

comparisons can be useful. This problem is similar to Prob. 15-1, but not 
identical. We will organize the method. A follow-up could consist of completing 
Probs. 15-1 and 15-2 with identical pinions, and cast iron gears. 

 
 Given: Uncrowned, straight teeth, Pd = 6 teeth/in, NP = 30 teeth, NG = 60 teeth, 

ASTM 30 cast iron, material Grade 1, shaft angle 90°, F = 1.25, nP = 900 
rev/min, n = 20, one gear straddle-mounted, Ko = 1, JP = 0.268, JG = 0.228, SF 

= 2, 2.HS   

 
 Mesh    dP = 30/6 = 5.000 in,  dG = 60/6 = 10.000 in 
 
    vt =  (5)(900 / 12) = 1178 ft/min 
 
 Set NL = 107 cycles for the pinion. For R = 0.99, 
 
 Table 15-7: sat = 4500 psi 
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 Table 15-5: sac = 50 000 psi 

 Eq. (15-4): 
4500(1)

2250 psi
2(1)(1)

at L
t

F T R

s K
s

S K K
  

w
 

 
 The velocity factor Kv represents stress augmentation due to mislocation of tooth 

profiles along the pitch surface and the resulting “falling” of teeth into 
engagement. Equation (5-67) shows that the induced bending moment in a 

cantilever (tooth) varies directly with E  of the tooth material. If only the 
material varies (cast iron vs. steel) in the same geometry, I is the same. From the 
Lewis equation of Section 14-1, 

    
/

tM K W P

I c FY
   v  

 

 We expect the ratio CI/steel to be 

    CI

steel steel steel

( )

( )
CI CIK E

K E




 v

v

 

 
 In the case of ASTM class 30, from Table A-24(a) 
 

    (ECI)av = (13 + 16.2)/2 = 14.7 kpsi 
 

 Then,
  

CI steel steel

14.7
( ) ( ) 0.7( )

30
K K 

v v
K

v
 

 
 Our modeling is rough, but it convinces us that (Kv)CI < (Kv)steel, but we are not 

sure of the value of (Kv)CI. We will use Kv for steel as a basis for a conservative 
rating. 

 
 Eq. (15-6): B = 0.25(12 – 6)2/3 = 0.8255 
    A = 50 + 56(1 – 0.8255) = 59.77 
 

 Eq. (15-5): 

0.8255

59.77 1178
1.454

59.77
K

 
   
 

v
 

 
 Pinion bending     (all)P = swt = 2250 psi 
 
 From Prob. 15-1, Kx = 1, Km = 1.106, Ks = 0.5222 
 

 Eq. (15-3): all( )t P x P
P

d o s m

FK J
W

P K K K K




v

 

                     

2250(1.25)(1)(0.268)
149.6 lbf

6(1)(1.454)(0.5222)(1.106)
   
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    1

149.6(1178)
5.34 hp

33 000
H    

 Gear bending 

    
2

0.228
149.6 127.3 lbf

0.268
127.3(1178)

4.54 hp
33 000

t t G
G P

P

J
W W

J

H

     

 
 

 
 The gear controls in bending fatigue. H = 4.54 hp     Ans. 
________________________________________________________________________ 
 
15-4 Continuing Prob. 15-3, 
 
 Table 15-5:  sac = 50 000 psi 

    
,all

50 000
35 355 psi

2
t cs   

w
 

 Eq. (15-1): 

2

,allct P

p o m s

Fd I
W

C K K K C C

 
   
  v xc

 

 
 Fig. 15-6:  I = 0.86 
 
 From Probs. 15-1 and 15-2: Cs = 0.593 75, Ks = 0.5222, Km = 1.106, Cxc = 2 
 
 From Table 14-8: 1960 psipC   

 

 Thus,   
2

35 355 1.25(5.000)(0.086)
91.6 lbf

1960 1(1.454)(1.106)(0.59375)(2)
tW

         
 

    3 4

91.6(1178)
3.27 hp

33 000
H H    

 
 Rating    
  Based on results of Probs. 15-3 and 15-4,  
 
    H = min(5.34, 4.54, 3.27, 3.27) = 3.27 hp     Ans. 
 
 The mesh is weakest in wear fatigue. 
________________________________________________________________________ 
 
15-5 Uncrowned, through-hardened to 180 Brinell (core and case), Grade 1, 109 rev of 

pinion at R = 0.999, NP = z1 = 22 teeth, NG = z2 = 24 teeth, Qv = 5, met = 4 mm, 

shaft angle 90°,  n1 = 1800 rev/min, SF = 1, 1,H FS S 

= KT = K = 1 and 

 JP = YJ1 = 0.23,  

JG = YJ2 = 0.205, F = b = 25 mm, Ko = KA 190 MPa .pC   
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 Mesh  d ,      = 4(24) = 96 mm 
 

Eq. (15-7): vet = 5.236(10–5)(88)(1800) = 8.29 m/s 

Eq. (15-6): B = 0.25(12 – 5)  = 0.9148 

 P = de1 = mz1 = 4(22) = 88 mm dG = met z2

 
 

2/3 
    A = 50 + 56(1 – 0.9148) = 54.77 
 

0.9148

54.77 200(8.29) 
 Eq. (15-5): 1.663

 
 

 Eq. (15-10):  Ks = Yx = 0.4867 + 0.008 339(4) = 0.520 

 Eq. (15-11): with Kmb = 1 (both straddle-mounted),  

 Eq. (15-12): Cxc = Zxc = 2    (uncrowned) 

Eq. (15-19): K  = Y  = 0.50 – 0.25 log (1 – 0.999) = 1.25 

54.77
K    v

 

    Km = KH = 1 + 5.6(10–6)(252) = 1.0035 
 
 From Fig. 15-8, 

    L GC Z 
 

9 0.0602( ) ( ) 3.4822(10 ) 1.0L P NT PC Z   
9 0.0602

0

( ) ( ) 3.4822[10 (22 / 24)] 1.0054NT G
 

 

 
 R Z

1.25 1.118R Z ZC Z Y   
    

 

Eq. (15-9): Zx = 0.004 92(25) + 0.4375 = 0.560 

Wear of Pinion 

Fig. 15-12: H lim = 2.35HB + 162.89 
            = 2.35(180) + 162.89 = 585.9 MPa 

Eq. (15-2): 

 
 From Fig. 15-10, CH = Zw = 1 
 
 
 
 
 
 
       
 
 Fig. 15-6: I = ZI  = 0.066 
 

  lim( ) ( )
( ) H P NT P WZ Z

H P
H ZS K Z

   

    

585.9(1)(1)
524.1 MPa

1(1)(1.118)
   

  Eq. (15-1): 

2

1

1000
t H e I

P
p A H

bd Z
W

C K K K Z

 
   
  v

 
x xcZ

t 1 xpresses Wt in kN.  The constan 000 e
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2
524.1 25(88)(0.066)

0.591 kN
190 1000(1)(1.663)(1.0035)(0.56)(2)

t
PW

         

      Eq. (13-36): 1
3

(88)(1tdnW
H

 
 

800)(0.591)
4.90 kW

60 000 60 000
  

 
 Wear of Gear  
    H lim = 585.9 MPa 
 

     
585.9(1.0054)

( ) 526.9 MPa
1(1)(1.118)

H G  

 

    
4

( ) 526.9
0.591 0.594 kN

( )G P
H P

W
 524.1

(88)(1800)(0.594)
4.93 kW

60 000

t t H G

H





    
 

 

  
 Thus in wear, the pinion controls the power rating; H = 4.90 kW     Ans. 
 
 We will rate the gear set after solving Prob. 15-6. 

__ ________________________________________________________ 

5-6 

0HB + 14.48 
              = 0.30(180) + 14.48 = 68.5 MPa 

 
 Kx = Y = 1 

 8.29 m/s, 



W

____ __________
 
1 Refer to Prob. 15-5 for terms not defined below. 
 
 Bending of Pinion 
 

9 0.0323( ) ( ) 1.6831(10 ) 0.862K Y   

    
9 0( ) ( ) 1.6831[10 (22 /L G NT GK Y  .032324)] 0.864

L P NT P
 

 

 
 Fig. 15-13: F lim = 0.3
   

 Eq. (15-13):
 
 From Prob. 15-5: YZ = 1.25,    vet =

    x

 
10.52,    1.0035,    Y 0.23H JY K  

 
1,   1.663,     1,     AK K K  

v

 Eq. (5-4): lim 68.5(0.862)
( )

1(1)(1.25)
F NT

F P

Y

S K Y
47.2 MPa

F Z

     

 Eq. (5-3): 1( )

1000
F P et Jt

P
A x H

bm Y Y
W

K K Y K







v

 

              
47.2(25)(4)(1)(0.23)

1.25 kN
1000(1)(1.663)(0.52)(1.0035)

   
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   
1

88 1800 1.25

    
10.37 kW

60 000
H


   

of Gear 

    

 Bending 
 

lim 68.5 MPaF   

68.5(0.864)
( ) 47.3 MPa

1(1)(1.25)F G    
    

47.3(25)(4)(1)(0.205)
1.12 kN

1000(1)(1.663)(0.52)(1.0035)
t

GW    
    

   
2

88 1800 1.12
9.29 kW

60 000
H


   

    
 Rating of mesh is  

Hrating = min(10.37, 9.29, 4.90, 4.93) = 4.90 kW     Ans. 
wear controlling. 

________________________________________________________________________ 

5-7 

    
 with pinion 

 
1

 (a)   all( ) (F P F
all)G

P G
S S


   

        

  

( / ) ( / )s K K K s K K K

 ( / ) ( / )
at L T R P at L T R G

t t
d o s m x P d o s m x GW P K K K K FK J W P K K K K FK J


v v

     

s cancel except for sat , KL , and J, 
 
    (sat)P(KL)P JP = (sat )G(KL)G JG 

 
 All term  

 
From which  

    

( ) ( )
( ) (at P L P Ps K J
s s )

( )
P

at G at P G
G G

J
m

K J J
 

L G

 

or  = – 0.0323 as appropriate. This equation is the same as 

 
ng 

 
 where  = – 0.0178 
 Eq. (14-44).     Ans. 

 (b) In bendi
 

   all x at L xFK J s K FK J   


11 11F d o s m F T R d o s mS P K K K K S K K P K K K K
   
   v v

 (1) 

   

tW 

 In wear 
1/ 2

22 22

t
ac L U o m s xc

p
H T R P

s C C W K K K C C
C

S K C Fd I

  
  

  
v   




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 Squaring and solving for Wt gives 
 

   
2 2 2

2 2 2 2

22 22

t ac L H P

H T R P o m s xc

s C C Fd I
W

S K C C K K K C C

  
   
   v

 (2) 

Equating the right-hand sides of Eqs. (1) and (2) and canceling terms, and 
 
 

R RC K  and PddP = NP, we obtain recognizing that 

 
2

11 11 11
22 2

22

( )
( )

( ) ( )p H at L x T s xc
ac

L F H P s

s
C S C N K I

  
    

C S s K K J K C C

 
For equal Wt in bending and wear  

 2
2

1
FH

F F

SS

S S
   

    
 
 So we get 

( ) ( )
( )      .

( )
p at P L P P x T s xc

ac G
L G H P s

C s K J K K CC
s A

C C N IK
  

    
ns

    

 (c) 

,all ,all( ) ( ) c c
H P H G

c cP G

S S
 
 

   
        

 

 
g Substitutin  in the right-hand equality gives 

 

  

[ / ( )] [ / ( )]

/ ( ) / ( )
ac L R T P ac L

p o

C

C W
H R T G

t t
m s xc P p o m s xc P

P G

s C C K s C C K

K K K C C Fd I C W K K K C C Fd I


  
   v v

 

Denominators cancel, leaving 
 
     (sac)P(CL)P = (sac)G(CL)GCH 

Solving for (s )  gives, 

 
 

 
 ac P

( )
( )s 

     
( )                                  (1)L G

ac P ac G H

C
s C

C

From Eq. (15-14), 

    

( )L P

   0.0602     0.0602
3.4822  and 3.4822 / .L L L L GP G

C N C N m


  

 Thus, 

       0.0602 0.06021ac ac G H ac G HP G G
s s m C s m

   C Ans. 

 transpose of Eq. (14-45). 
  
 This equation is the
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________________________________________________________________________ 

Given (HB)11 = 30  Brinell

Eq. (15-23): (sat ( 1  300 psi 

   

 
15-8 
 
 
 
 0  
 
  )P = 44 300  +)  2 00 = 15
 

 
 0.0323 0.03230.249

( ) ( )at G at Ps s 15 300 3 17 023 psi
0.216

P
G

G

J
m

J
    

 
 

    
21

17 023 2100
( ) 339 Brinell     .

44BH Ans


   

    

2290 15 300(0.862)(0.249)(1)(0.593 25)(2)
( )

1.0685(1) 20(0.086)(0.5222)
141 160 psi

ac Gs 



 

    
22

141 160 23 600
( ) 345 Brinell     .

341BH Ans


   

     0.0602 0.0602( ) ( ) 141 160(3 ) 1 150 811 psiac P ac G G Hs s m C   

    
12

150 811 23 600
( ) 373 Brinell     .

341BH Ans


     

 
 Core Case  
Pinion 300 373 Ans.
Gear 339 345  

 
______________________ ______ _ _ ______________________________ 
 
15-9 

core 

_ _____ _____ _

 Pinion 

    ( ) 44(300) 2100 15 300 psiat Ps     

    
all

15 300(0.862)
( ) 10 551 psi

1(1)(1.25)P    

    

10 551(1.25)(0.249)
689.7 lbf

6(1)(1.374)(0.5222)(1.106)
tW    

 Gear core 

    ( ) 44(352)  2100  17 588 psiat Gs     

    
all

17 588(0.893)
( ) 12 565 psi

1(1)(1.25)G    

    

12 565(1.25)(0.216)
712.5 lbf

6(1)(1.374)(0.5222)(1.106)
   

 Core Case 
Pinion (HB)11 (HB)12

Gear (H ) (H )B 21 B 22

tW
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 Pinion case 
     472( ) 341(372)  23 620  150  psiac Ps     

,all

150 472(1)
( ) 134 590 psi

1(1)(1.118)c P    
    

2
134 590 1.25(3.333)(0.086)

685.8 lbf
2290 1(1.374)(1.106)(0.593 75)(2)

t

    
W

         
 

 Gear case 
( ) 341(344) 23 620 140 924 psiac Gs         

,all

140 924(1.0685)(1)
( ) 134 685 psi

1(1)(1.118)c G    
    

2
134 685 1.25(3.333)(0.086)

686.8 lbf
2290 1(1.374)(1.106)(0.593 75    )(2)

W
   
 

 

 
oad would be 

Pinion core 

t

 The rating l
 

rated min(689.7,  712.5,  685.8,  686.8) 685.8 lbftW        
 
 which is slightly less than intended. 
 
 

( ) 15 300 psi      (as before)at Ps       

    all( ) 10 551 psi    P   (as before)  

    
 Gear core 

689.7 lbf            (as before)tW   

( ) 44(339) 2100 17 016 psiat Gs         

all

17 016(0.893)
( ) 12 156 psi

1(1)(1.25)G    
    

12 156(1.25)(0.216)
689.3 lbf

6(1)(1.374)(0.5222)(1.106)
tW

    
   

 Pinion case 
( ) 341(373) 23 620 150 813 psiac Ps         

,all

150 813(1)
( ) 134 895 psi

1(1)(1.118)c P    
    

2
134 895 1.25(3.333)(0.086)

689.0 lbf
2290 1(1.374)(1.106)(0.593 75)(2)

t

    
W

         
 

 Gear case 
( ) 341(345) 23 620 141 265 psiac Gs         

,all

141 265(1.0685)(1)
( ) 135 010 psi

1(1)(1.118)c G    
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2
135 010 1.25(3.333)(0.086)

690.1 lbf
2290 1(1.1374)(1.106)(0.593 75)(2)

tW
         

 
    

 
ns developed within Prob. 15-7 are effective.  

________________________________________________________________________ 
 

0  rating is 5.2 hp at 1200 re /min for a straight bevel gearset. Also 
JP = 0.241, JG = 0.201, 

   

 The equatio

15-1 The catalog v
given: NP = 20 teeth, NG = 40 teeth, n = 20, F = 0.71 in, 

 P  = 10 teeth/in, through-hardened to 300 Brinell-General d Industrial Service, and 
 Qv = 5 uncrowned. 
 
 Mesh 

       20 / 10 2.000 in,     40 / 10 4.000 inP Gd d  

(2)(1200)
628.3 ft/min

12 12
P Pd n 

t v    



B = 0.25(12 – 5)2/3 = 0.9148 
A = 50 + 56(1 – 0.9148) = 54.77 

 
1,     1,     1o F HK S S       

 
 Eq. (15-6):  
    
 

0.9148

 Eq. (15-5): 
54.77 628.3

1.412
 

   

= 1.25 + 0.0036(0.71)2 = 1.252,   where Kmb = 1.25 

9 –0.0323

1 

9 –0.0602

10  reli

   

54.77
K   

 
v

 Eq. (15-10): Ks = 0.4867 + 0.2132/10 = 0.508 
 
 Eq. (15-11): Km 
 
 Eq. (15-15): (KL)P = 1.6831(10)  = 0.862 
    (KL)G = 1.6831(109/2)–0.0323 = 0.88
 
 Eq. (15-14): (CL)P = 3.4822(109)–0.0602 = 1.000 
    (CL)G = 3.4822(10/2)  = 1.043 
 
 Analyze for 9 pinion cycles at 0.999 ability. 
 
 Eq. (15-19): K  = 0.50 – 0.25 log(1 – 0.999) = 1R .25 

1.25 8C K    
 

1.11R R

 Pinion: 
 (sat )P = 44(300) + 2100 = 15 300 psi 

 
 
 Bending 

 Eq. (15-23):
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15 300(0.862)
 Eq. (15-4): (s ) 10 551 psit P  

w
 

Eq. (15-3): 

1(1)(1.25)

( )s FK J
 t P x Pt

d o s m

W
P K K K K

 w

v

 

    
1

10 551(0.71)(1)(0.241)
201 lbf

10(1)(1.412)(0.508)(1.252)
201(628.3)

3.8 hp
33 000

H

 

 
 

 
 Gear:  (s  )  = 15 300 psi at G

 Eq. (15-4): 
15 300(0.881)

( ) 10 783 psi
1(1)(1.25)t Gs  

w
 

 Eq. (15-3): 
10 783(0.71)

10(
tW 

(1)(0.201)
171.4 lbf

1)(1.412)(0.508)(1.252)
  

2

171.4(628.3)
3.3 hp

33 000
H        

 Wear 
 Pinion: 

( ) 1,     0.078,     2290 psi,     2

0.125(0.71) 0.4375 0.526 25
H G         p xc

s

C I C C

C

   
  

 

(sac)P = 341(300) + 23 620 = 125 920 psi 
 
 Eq. (15-22): 

,all

125 920(1)(1)
( ) 112 630 psi

1(1)(1.118)c P           

 

 E  ( -1q. 15 ):  

2
 

,all( )c Pt P

p o m s xc

Fd I
W

C K K K C C
  
   v

 

            

2
112 630 0.71(2.000)(0.078)

2290 1(1.412)(1.252)(0.526 25)(2)
144.0 lbf

         


  

   

3

144(628.3)
2.7 hp

33 000
H    

 
 Gear: 

   ( ) 125 920 psiac Gs    

,all

125 920(1.043)(1)
( ) 117 473 psi

1(1)(1.118)c    
    

2
117 473 0.71(2.000)(0.078)

156.6 lbf
2290 1(1.412)(1.252)(0.526 25)(2)

tW
         
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4

156.6(628.3)
3.0 hp

33 000
H    

    
 
 Rating:    

H = min(3.8, 3.3, 2.7, 3.0) = 2.7 hp 
 

 controls the power rating. While the basis of the catalog rating is 
istic (by a factor of 1.9). 

_____ __________________________________________________________ 

5-11 From Ex. 15-1, the core hardness of both the pinion and gear is 180 Brinell. So 

 

n Prob. 
15-7, is 

    

 Pinion wear
unknown, it is overly optim

_ ________
 
1

(HB)11 and (HB)21 are 180 Brinell and the bending stress numbers are: 

    at G

 
The contact strength of the gear case, based upon the equation derived i

( ) 44(180) 2100 10 020 psiat Ps   
 

( ) 10 020 psis 

 

2 ( ) ( )
( )

( )
p H at P L P x P T s xc

ac G
L G H F P s

C S s K K J K C C
s

C C S N IK
  

    
 
 Substituting (s )  from above and the values of the remaining terms from 

15-1, 
at P

 Ex. 

    

2

22

2290 1.5 10 020(1)(1)(0.216)(1)(0.575)(2)
( )

1.32(1) 1.5 25(0.065)(0.529)

114 331 psi


 
114 331 23 620

) 266 Brinell
341

ac G

B

s
 

  
 

 

 
 The pinion contact strength is found using the relation from Prob. 15-7: 
 

(H

0.0602 0.0602

12

( ) ( ) 114 331(1) (1) 114 331 psi
114 331 23 600

( ) 266 Brinell
341

ac P ac G G H

B

s s m C

H

  


 
 

    
 

 Core Case
Pinion 180 266 
Gear 180 266 

 Realization of hardnesses 

 The response of students to his par e ion would be a function of the 
extent to which heat-treatm c aterials and 
manufacturing prerequisites, and ho an ve it was. The most important 

 
 t t of th  quest
ent pro edures were covered in their m

w qu titati
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bout it. 

 
will meet or exceed core hardness in 

the hot-rolled condition, then heat-treating to gain the additional 86 points of 
 in 

 
 
 
  

ay be too costly. In this case the material selection will be different. 
 

ore hardness to 33–38 
Rockwell C-scale (about 300–350 Brinell), which is too much. 

_____
 
5-12 Computer programs will vary. 

________________________________________________________________________ 
 

in Sec. 15-5, p. 806, of the text. The decision set can be organized as follows: 

•  Function: H, Ko, rpm, mG, temp., NL, R 

thing is to have the student think a
 
 The instructor can comment in class when students’ curiosity is heightened. 

Options that will surface may include: 

(a) Select a through-hardening steel which 

Brinell hardness by bath-quenching, then tempering, then generating the teeth
the blank. 

(b)  Flame or induction hardening are possibilities. 

(c)  The hardness goal for the case is sufficiently modest that carburizing and case
hardening m

(d)The initial step in a nitriding process brings the c

_ __________________________________________________________________ 

1

15-13 A design program would ask the user to make the a priori decisions, as indicated 

 
 A priori decisions: 
 

 •  Design factor: nd   (SF = nd , H dS n ) 

•  Tooth system: Involute, Straight Teeth, Crowning,  n

v 

•  Gear hardness: (H ) , (HB)4 

uations one needs, then arrange them before coding. Find 
s, express the consequences of the chosen hardnesses, and 

. 

 
 •  Straddling: Kmb 
 •  Tooth count: NP  (NG = mGNP) 
 
 Design decisions: 
 •  Pitch and Face: Pd , F 
 •  Quality number: Q
 •  Pinion hardness: (HB)1, (HB)3 
 B 2

 
 First, gather all of the eq

the required hardnesse
allow for revisions as appropriate



 Pinion Bending Gear Bending Pinion Wear Gear Wear 

Load-induced 
stress (Allowable 
stress) 

11

t
o m s

t

W PK K K K
s s

FK J
 v

x P

 21

t
o m s

t

W PK K K K
s s

FK J
 v

x G

 

1/ 2

12

t
o s xc

c p
P

W K K C C
C s

Fd I


 
  

 
v

 

s22 = s12 

Tabulated 
strength 

11( )
( )

F T R
at P

L P

s S K K
s

K
  21( )

( )
F T R

at G
L G

s S K K
s

K
  12( )

( ) ( )
H T R

ac P
L P H P

s S K C
s

C C
  22( )

( ) ( )
H T R

ac G
L G H G

s S K C
s

C C
  

Associated 
hardness 

( ) 2100

44Bhn
( ) 5980

48

at P

at P

s

s


  


 

( ) 2100

44Bhn
( ) 5980

48

at G

at G

s

s


  


 

( ) 23 620

341Bhn
( ) 29 560

363.6

ac P

ac P

s

s


  


 

( ) 23 620

341Bhn
( ) 29 560

363.6

ac P

ac P

s

s


  


 

Chosen 
hardness 

(HB)11 ( ( (HB)21 HB)12 HB)22 

22
1

22

341( ) 23 620
( )

363.6( ) 29 560
B

ac G
B

H
s

H


  

 New tabulated 
strength 

11
1

11

44( ) 2100
( )

48( ) 5980
B

at P
B

H
s

H


  

 21
1

21

44( ) 2100
( )

48( ) 5980
B

at G
B

H
s

H


  

 12
1

12

341( ) 23 620
( )

363.6( ) 29 560
B

ac P
B

H
s

H


  

 

Factor of 
safety 

all 1
11

11

( ) ( )at P L P

T R

s K
n

s K K




   1
21

21

( ) ( )at G L G

T R

s K
n

s K K
  

2

1
12

12

( ) ( ) ( )ac P L P H P

T R

s C C
n

s K C

 
  
 

 
2

1
22

22

( ) ( ) ( )ac G L G H G

T R

s C C
n

s K C

 
  
 

 

 
 

 Note: ,    F d H FS n S S   
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15-14 NW = 1, NG = 56, Pt = 8 teeth/in, d = 1.5 in, Ho = 1hp, n = 20, ta = 70F, 
 Ka = 1.25, nd = 1, Fe = 2 in, A = 850 in2 
 
 (a)   mG = NG/NW = 56,    dG = NG/Pt = 56/8 = 7.0 in 
    px = / 8 = 0.3927 in,    C = 1.5 + 7 = 8.5 in 
 
 Eq. (15-39): a = px / = 0.3927 /  = 0.125 in 
 
 Eq. (15-40): b = 0.3683 px = 0.1446 in 
 
 Eq. (15-41): ht = 0.6866 px = 0.2696 in 
 
 Eq. (15-42): do = 1.5 + 2(0.125) = 1.75 in 
 
 Eq. (15-43): dr  = 3 – 2(0.1446) = 2.711 in 
 
 Eq. (15-44): Dt = 7 + 2(0.125) = 7.25 in 
 
 Eq. (15-45): Dr  = 7 – 2(0.1446) = 6.711 in 
 
 Eq. (15-46): c = 0.1446 – 0.125 = 0.0196 in 
 

 Eq. (15-47):   max( ) 2 2 7 0.125 2.646 inWF    

     
(1.5)(1725 /12) 677.4 ft/min
(7)(1725 / 56)

56.45 ft/min
12

W

G

V

V




 

 
 

 Eq. (13-27): 0.3927 inx WL p N 
 

 Eq. (13-28): 1 o0.3927
tan 4.764

(1.5)



  

  
 

 

    

8
8.028

cos cos 4.764

0.3913 in

t
n

n
n

P
P

p
P




  


 
 

 Eq. (15-62): 
(1.5)(1725)

679.8 ft/min
12cos 4.764sV


 


 

 
 (b)    
 Eq. (15-38):  0.4500.103exp 0.110(679.8) 0.012 0.0250f      
 
 Eq. (15-54): 

cos tan cos 20 0.0250 tan 4.764
0.7563     .

cos cot cos  20 0.0250cot 4.764
n

n

f
e A

f
ns

 
 

   
  

   
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 Eq. (15-58): 
33 000 33 000(1)(1)(1.25)

966 lbf     .
56.45(0.7563)

t d o a
G

G

n H K
W Ans

V e
    

 Eq. (15-57): 
cos sin cos

cos cos sin
t t n

W G
n

f
W W

f

  
  





 

cos20 sin 4.764 0.025cos4.764
966

cos20 cos4.764 0.025sin 4.764
106.4 lbf     .Ans

        


                     



 
(c)   

5-33): Cs = 1190 – 477 log 7.0 = 787 

Eq. (15-36): 

 
 Eq. (1
 

 20.0107 56 56(56) 5145 0.767mC       

 
 Eq. (15-37): 

Eq. (15-38): (Wt)all = 787(7)0.8(2)(0.767)(0.312) = 1787 lbf 

Since the mesh will survive at least 25 000 h. 

Eq. (15-61): 

0.659exp[ 0.0011(679.8)] 0.312C   
v

 

 
 
 
  all( ) ,t t

GW W
 

0.025(966)
29.5 lbf

0.025sin 4.764 cos 20 cos 4.764fW  
   

  

 Eq. (15-63): 
29.5(679.8)

0.608 hp
33 000fH    

106.4(677.4)
2.18 hp

33 000
966(56.45)

1.65 hp
33 000

W

G

H

H

 

 
        

 
The mesh is sufficient     Ans. 

   

 
 

 
o/ cos 8 / cos 4.764 8.028n tP P     

    / 8.028 0.3913 innp    

    

966
39 500 psi

0.3913(0.5)(0.125)G    

 
The stress is high. At the rated horsepower,  

 
1

39 500 23 940 psi    acceptable
1.65G    

 

(d)  
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 Eq. (15-52):      Amin = 43.2(8.5)1.7 = 1642 in2 < 1700 in2 

Eq. (15-49):  H loss = 33 000(1 – 0.7563)(2.18) = 17 530 ft · lbf/min 

Assuming a fan exists on the worm shaft, 

Eq. (15-50): 

 
 
 
 
 

2 o1725
0.13 0.568 ft · lbf/(min · in  · F)

3939CR      

 Eq. (15-51): o17 530
70 88.2 F     .

0.568(1700)st A    ns

________________________________________________________________________ 
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15-15 Problem statement values of 25 hp, 1125 rev/min, mG = 10, Ka = 1.25, nd = 1.1, 

n = 20°, ta = 70°F are not referenced in the table.  The first four parameters listed 
in the table were selected as design decisions. 

 
 15-15 15-16 15-17 15-18 15-19 15-20 15-21 15-22 

px 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 
dW 3.60 3.60 3.60 3.60 3.60 4.10 3.60 3.60 
FG 2.40 1.68 1.43 1.69 2.40 2.25 2.4 2.4 
A 2000 2000 2000 2000 2000 2000 2500 2600 
       FAN FAN 

HW 38.2 38.2 38.2 38.2 38.2 38.0 41.2 41.2 
HG 36.2 36.2 36.2 36.2 36.2 36.1 37.7 37.7 
Hf 1.87 1.47 1.97 1.97 1.97 1.85 3.59 3.59 
NW 3 3 3 3 3 3 3 3 
NG 30 30 30 30 30 30 30 30 
KW    125 80 50 115 185 
Cs 607 854 1000      
Cm 0.759 0.759 0.759      
Cv 0.236 0.236 0.236      
VG 492 492 492 492 492 563 492 492 

t
GW  2430 2430 2430 2430 2430 2120 2524 2524 
t

WW  1189 1189 1189 1189 1189 1038 1284 1284 
f 0.0193 0.0193 0.0193 0.0193 0.0193 0.0183 0.034 0.034 
e 0.948 0.948 0.948 0.948 0.948 0.951 0.913 0.913 

(Pt)G 1.795 1.795 1.795 1.795 1.795 1.571 1.795 1.795 
Pn 1.979 1.979 1.979 1.979 1.979 1.732 1.979 1.979 

C-to-C 10.156 10.156 10.156 10.156 10.156 11.6 10.156 10.156 
ts 177 177 177 177 177 171 179.6 179.6 
L 5.25 5.25 5.25 5.25 5.25 6.0 5.25 5.25 
 24.9 24.9 24.9 24.9 24.9 24.98 24.9 24.9 
G 5103 7290 8565 7247 5103 4158 5301 5301 
dG 16.71 16.71 16.71 16.71 16.71 19.099 16.7 16.71 
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Chapter 16 
 

 

16-1 Given: r = 300/2 = 150 mm, a = R = 125 mm, b = 40 mm, f  = 0.28, F = 2.2 kN, 1 = 0, 
2 = 120, and a = 90. From which, sina = sin90 = 1. 

 

 Eq. (16-2):     

   

 

120

0

4

0.28 (0.040)(0.150)
sin (0.150 0.125cos )  

1

 2.993 10 N · m

a
f

a

p
M d

p

  






 



  

 

 Eq. (16-3):     120
2 4

0

(0.040)(0.150)(0.125)
sin  9.478 10  N · m

1

a
N a

p
M d 

 


  p

 
 

     c = 2(0.125 cos 30) = 0.2165 m 

 

 Eq. (16-4): 
     

4 4

3
9.478 10 2.993 10

2.995 10
0.2165

a a

a

p p
F p

 



 

 
 
     pa = F/ [2.995(10

3
)] = 2200/ [2.995(10

3
)]  

          = 734.5(10
3
) Pa    for cw rotation 

 

 Eq. (16-7):    
   4 49.478 10 2.993 10

2200
0.2165

a ap p 
  

 

     pa =  381.9(10
3
) Pa for ccw rotation 

 

 A maximum pressure of 734.5 kPa occurs on the RH shoe for cw rotation.     Ans. 
 
 (b) RH shoe: 
  Eq. (16-6):              

  
3 2 o o0.28(734.5)10 (0.040)0.150 (cos0 cos120 )

277.6 N · m     .
1

RT A


  ns  

  LH shoe: 

    
381.9

277.6 144.4 N · m     .
734.5

LT A  ns  

     Ttotal = 277.6 + 144.4 = 422 N · m     Ans. 
 
  

Chapter 16, Page 1/27 



 
 (c)  
 

 

 

 
 
 
 
 
 
 
 
 
 
 RH shoe: Fx = 2200 sin 30° = 1100 N,    Fy = 2200 cos 30° = 1905 N 

 

 Eqs. (16-8):    

o

o

120 2 /3 rad

2

0 0

1 1
sin 0.375,     sin 2 1.264

2 2 4
A B

           
   

 

 

 Eqs. (16-9): 
 3734.5 10 0.040(0.150)

[0.375 0.28(1.264)] 1100 1007 N
1

xR 
 

   

   

 

 

3

2 2 1/ 2

734.5 10 0.04(0.150)
[1.264 0.28(0.375)] 1905 4128 N

1

[ 1007 4128 ] 4249 N     .

yR

R Ans

  

   


 

 
 LH shoe:          Fx = 1100 N,    Fy = 1905 N 

 

 Eqs. (16-10):  
 3381.9 10 0.040(0.150)

[0.375 0.28(1.264)] 1100 570 N
1

xR      

    

 

 

3

1/ 2
2 2

381.9 10 0.040(0.150)
[1.264 0.28(0.375)] 1905 751 N

1

597 751 959 N     .

yR

R Ans

  

  



 

______________________________________________________________________________ 

 

16-2 Given: r = 300/2 = 150 mm, a = R = 125 mm, b = 40 mm, f  = 0.28, F = 2.2 kN, 1 = 15,  
 2 = 105, and a = 90. From which, sina = sin90 = 1. 
 

 Eq. (16-2):    

 105
4

15

0.28 (0.040)(0.150)
sin (0.150 0.125cos ) 2.177 10

1

a
f a

p
M d p  

 


    
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 Eq. (16-3):  105
2 4

15

(0.040)(0.150)(0.125)
sin  7.765 10

1

a
N a

p
M d p 

 


 

 
 
     c = 2(0.125) cos 30° = 0.2165 m 

 

 Eq. (16-4):    
     

4 4

3
7.765 10 2.177 10

2.581 10
0.2165

a a

a

p p
F p

 



   

 
 RH shoe: pa = 2200/ [2.581(10

 3
)] = 852.4 (10

3
) Pa  

         =  852.4 kPa on RH shoe for cw rotation    Ans. 
 

 Eq. (16-6):    
3 20.28(852.4)10 (0.040)(0.150 )(cos15 cos105 )

263 N · m
1

RT
  

   

 LH shoe: 

 

   

 

4 4

3

7.765 10 2.177 10
2200

0.2165

479.1 10  Pa 479.1 kPa on LH shoe for ccw rotation     .

a a

a

p p

p A

 


  ns

 

3 2

total

0.28(479.1)10 (0.040)(0.150 )(cos15 cos105 )
148 N · m

1
263 148 411 N · m     .

LT

T Ans

  
 

  
 

 

 Comparing this result with that of Prob. 16-1, a 2.6% reduction in torque is obtained by 

using 25% less braking material. 

______________________________________________________________________________ 

 

16-3 Given: 1 = 0°, 2 = 120°, a = 90°, sin a = 1, a = R = 3.5 in, b = 1.25 in, f = 0.30,  

 F = 225 lbf,  r = 11/2 = 5.5 in, counter-clockwise rotation. 

 
 LH shoe: 
  Eq. (16-2), with 1 = 0: 

    

 
2

1

2

2 2

o 2

sin cos (1 cos ) sin
sin sin 2

0.30 (1.25)5.5 3.5
5.5(1 cos120 ) sin 120

1 2

14.31  lbf · in

a a
f

a a

a

a

f p br f p br a
M r a d r

p

p





    
 

       

      




 

  Eq. (16-3), with 1 = 0: 

    

2

1

2 2
2

1
sin sin 2

sin sin 2 4

(1.25)5.5(3.5) 120 1
sin 2(120 )

1 2 180 4

30.41  lbf · in

a a
N

a a

a

a

p bra p bra
M d

p

p





  
 



     

         



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o
o2180

2 cos 2(5.5)cos30 9.526 in
2

30.41 14.31
225 1.690 

9.526
225 / 1.690 133.1 psi

a a
a

a

c r

p p
F p

p

 
   

 


  

 
 

  Eq. (16-6):

 

    

2 2

1 2(cos cos ) 0.30(133.1)1.25(5.5 )
[1 ( 0.5)]

sin 1

2265 lbf · in 2.265 kip · in     .

a
L

a

f p br
T

Ans

 



 

 

 
 

 
 RH shoe: 
 

    

30.41 14.31
225 4.694 

9.526
225 / 4.694 47.93 psi

a a
a

a

p p
F p

p


  

 
 

    
47.93

2265 816 lbf ·in 0.816 kip·in
133.1

RT     

 

    Ttotal  =  2.27 + 0.82 = 3.09 kip  in       Ans. 
______________________________________________________________________________ 

 

16-4 (a) Given: 1 = 10°, 2 = 75°, a = 75°, pa = 10
6
 Pa, f = 0.24, b = 0.075 m (shoe width),    

 a = 0.150 m, r = 0.200 m, d = 0.050 m, c = 0.165 m. 
 

  Some of the terms needed are evaluated here: 

 

 

 

2

2 2 2

11 1

1

2

1

2

1

2

75
75 2

10
10

75 /180 rad

2

10 /180 rad

1
sin  sin cos  cos sin

2

1
200 cos 150 sin 77.5 mm

2

1
sin  sin 2 0.528

2 4

sin cos  0.4514

A r d a d r a

B d

C d


  

 












     

 

  

  







            

      

      

 

 





 

 

  Now converting to Pascals and meters, we have from Eq. (16-2), 

 

 60.24 10 (0.075)(0.200)
(0.0775) 289 N · m

sin sin 75

a
f

a

f p br
M A


  


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  From Eq. (16-3), 

 
610 (0.075)(0.200)(0.150)

(0.528) 1230 N · m
sin sin 75

a
N

a

p bra
M B


  


 

 

  Finally, using Eq. (16-4), we have 

 
1230 289

5.70 kN     .
165

N fM M
F A

c

 
   ns  

 
 (b) Use Eq. (16-6) for the primary shoe. 

 

 

2

1 2

6 2

(cos cos )

sin

0.24 10 (0.075)(0.200) (cos  10 cos  75 )
541 N · m

sin 75

a

a

fp br
T

 





  
 



 

 

  For the secondary shoe, we must first find pa. Substituting 
 

 
 

6 6

6 6
3

1230 289
 and     into Eq. (16 - 7),

10 10

(1230 / 10 ) (289 / 10 )
5.70 ,     solving gives    619 10  Pa

165

N a f a

a a
a

M p M p

p p
p

 


 

 

 

  Then 

 

    3 20.24 619 10 0.075 0.200 cos  10 cos  75
335 N · m

sin 75
T

      


 

 

  so the braking capacity is Ttotal = 2(541) + 2(335) = 1750 N · m     Ans. 
 
 (c) Primary shoes: 
 

 

 

 

6
3

6
3

sin

10 (0.075)0.200
[0.4514 0.24(0.528)](10 ) 5.70 0.658 kN

sin 75

( )
sin

10 (0.075)0.200
[0.528 0.24(0.4514)] 10 0 9.88 kN

sin 75

a
x x

a

a
y y

a

p br
R C f B F

p br
R B f C F









  

   


  

   



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  Secondary shoes: 
 

   

   

6

3

6

3

( )
sin

0.619 10 0.075(0.200)
[0.4514 0.24(0.528)] 10 5.70

sin 75
0.143 kN

( )
sin

0.619 10 0.075(0.200)
[0.528 0.24(0.4514)] 10 0

sin 75
4.03 kN

a
x x

a

a
y y

a

p br
R C f B F

p br
R B f C F









  

 


 

  

 








 

 

  Note from figure that +y for secondary shoe is opposite to 

  +y for primary shoe. 

 

  Combining horizontal and vertical components,  

  
2 2

0.658 0.143 0.801 kN

9.88 4.03 5.85 kN

( 0.801) 5.85

5.90 kN     .

H

V

R
R

R
Ans

    
  

  


 

______________________________________________________________________________ 

 

16-5 Given: Face width b = 1.25 in, F = 90 lbf, f = 0.25. 

 

 Preliminaries: 1 = 45°  tan
1

(6/8) = 8.13°, 2 = 98.13°, a = 90°,     

 a = (6
2
 + 8

2
)

1/2
 = 10 in 

 

 Eq. (16-2): 

 

   
2

1

98.13

8.13

0.25 (1.25)6
sin cos sin 6 10cos

sin 1

3.728  lbf · in

a a
f

a

a

f p br p
M r a d d

p





     






   



   

 

 Eq. (16-3):  

  

2

1

98.13

2 2

8.13

(1.25)6(10)
sin sin

sin 1

69.405  lbf · in

a a
N

a

a

p bra p
M d d

p





  






 



  
 

 Eq. (16-4): Using  Fc  =  MN  Mf , we obtain 

 

  90(20) (69.405 3.728)            27.4 psi    .a ap p A    ns  
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 Eq. (16-6): 

    22

1 2
0.25(27.4)1.25 6 cos8.13 cos98.13cos cos

sin 1

348.7 lbf · in     .

a

a

fp br
T

Ans

 


  
 


 

______________________________________________________________________________ 

 

16-6 For ˆ3 :f  

    ˆ3 0.25 3(0.025) 0.325ff f       

 

 From Prob. 16-5, with f  = 0.25, M f  = 3.728 pa. Thus, M f  = (0.325/0.25) 3.728 pa = 

4.846 pa. From Prob. 16-5, M N  = 69.405 pa. 

 

 Eq. (16-4): Using  Fc  =  MN  Mf , we obtain 

 

    90(20) (69.405 4.846)            27.88 psi     .a ap p A    ns  

 

 From Prob. 16-5, pa = 27.4 psi and T = 348.7 lbf⋅in. Thus, 

 

    
0.325 27.88

348.7 461.3 lbf ·in .
0.25 27.4

T A
     
  

ns  

 
 Similarly, for ˆ3 :f

 

    
ˆ3 0.25 3(0.025) 0.175

(0.175 / 0.25) 3.728 2.610

f

f a a

f f

M p p

    
 

 

 

    90(20) = (69.405  2.610) pa            pa =  26.95 psi 

0.175 26.95
348.7 240.1 lbf · in     .

0.25 27.4
T A

     
  

ns  

    
______________________________________________________________________________ 

 

16-7 Preliminaries: 2 = 180°  30°  tan
1

(3/12) = 136°, 1 = 20°  tan
1

(3/12) = 6°, 

 a = 90, sina = 1, a = (3
2
 + 12

2
)

1/2
 = 12.37 in, r = 10 in, f = 0.30, b = 2 in, pa = 150 psi. 

 

 Eq. (16-2):  
o136

6

0.30(150)(2)(10)
sin (10 12.37cos )  12 800 lbf · in

sin 90
fM d  


  

   

 

 Eq. (16-3):  
136

2

6

150(2)(10)(12.37)
sin  53 300 lbf · in

sin 90
NM d 




 

   

 
 LH shoe: 
    cL = 12 + 12 + 4 = 28 in 
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 Now note that Mf is cw and MN is ccw. Thus, 

 

    

53 300 12 800
1446 lbf

28
LF


   

 

 
 

 Eq. (16-6):  
20.30(150)(2)(10) (cos 6 cos136 )

15 420 lbf · in
sin 90

LT
  

 


 

 
 RH shoe: 

    
53 300 355.3 ,     12 800 85.3

150 150

a a
N a f

p p
aM p M p     

 
 On this shoe, both MN and Mf are ccw. Also, 

 

    cR = (24  2 tan 14°) cos 14° = 22.8 in 

    act sin14 361 lbf     .

/ cos14 1491 lbf
L

R L

F F Ans
F F

  
  

 

 

 Thus,   
355.3 85.3

1491   77.2 psi
22.8

a ap p


    

 

 Then,  
20.30(77.2)(2)(10) (cos6 cos136 )

7940 lbf · in
sin 90

RT
  

 
  

 

     Ttotal = 15 420 + 7940 = 23 400 lbf · in     Ans. 
______________________________________________________________________________ 

 

16-8  

    

2

2

0

0

2 ( )( cos )    where  

2 ( cos ) 0

fM fdN a r dN pbr d

fpbr a r d





 

 

  

  




 

 From which 

 

    

2 2

0 0

2

2

cos  

(60 )( / 180)
1.209 .

sin sin 60

a d r d

r r
a r

 
  
 


 

   


 
Ans
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 Eq. (16-15): 

    

4 sin 60
1.170 .

2(60)( / 180) sin[2(60)]

r
a r




 


Ans
 

 

    a  differs with  a ¢ by  100(1.170 1.209)/1.209 =  3.23 %     Ans. 

______________________________________________________________________________ 

 

16-9 (a) Counter-clockwise rotation, 2 =  / 4 rad,    r = 13.5/2 = 6.75 in 

 Eq. (16-15): 

2

2 2

4 sin 4(6.75)sin( / 4)
7.426 in

2 sin 2 2 / 4 sin(2 / 4)

2 2(7.426) 14.85 in     .

r
a

e a Ans

 
   

  
 

  
 

 
 (b) 
 
  

  
  
   = tan

1
(3/14.85) = 11.4° 

 

0 3 6.375 2.125

0 2

x x
R

x x x x
x .125

M F P F

F F R R F

    

      

P

P



 

  

   

Potan11.4 0.428

0.428 1.428

y x

y y
y

y

F F

F P F R

R P P

 
   

  
   

P

 

  

Left shoe lever.  

0 7.78 15.28

15.28
(2.125 ) 4.174

7.78

0.30(4.174 ) 1.252

0

0.428 1.252 1.68

0

4.174 2.125 2.049

x x
R

x

y x

y y y
y

y y y

x x x
x

x x x

M S F

S P P

S f S P P

F R S F

R F S P P

F R S F

P

R S F P P P

  

 

  
   

       
   

    







 

  
  

Chapter 16, Page 9/27 



 
 

 

(c) The direction of brake pulley rotation affects the sense of Sy
, which has no effect on 

 

 The brake shoe levers carry identical bending moments but the left lever carries a 

ers). 

______________________________________________________________________________ 

6-10 r = 13.5/2 = 6.75 in,    b = 6 in,    2 = 45° =  / 4 rad. 

From Table 16-3 for a rigid, molded non-asbestos lining use a conservative estimate of 

Equation (16-16) gives the horizontal brake hinge pin reaction which corresponds to Sx
 in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 the brake shoe lever moment and hence, no effect on Sx or the brake torque. 

 

 tension while the right carries compression (column loading). The right lever is 

 designed and used as a left lever, producing interchangeable levers (identical lev

 But do not infer from these identical loadings. 

 

1
 

 

 pa = 100 psi,   f = 0.33. 
 

 

Prob. 16-9. Thus, 

      2 2

100(6)6.75
2 sin 2 2 / 4 sin 2 45

2 2
5206 lbf 

x ap
N S 

br         


 

 

which, from Prob. 6-9 is 4.174 P. Therefore, 

   4.174 P = 5206          P = 1250 lbf = 1.25 kip       Ans. 

Applying Eq. (16-18) for two shoes, where from Prob. 16-9, a = 7.426 in 

______________________________________________________________________________ 

6-11 Given: D = 350 mm, b = 100 mm, pa = 620 kPa, f  = 0.30,  = 270. 

 

 

 

 

 

 

2   2(7.426)0.33(5206)

25 520 lbf · in 25.52 kip · in     .

T a f N
Ans

 
 

 

 

1
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 Eq. (16-22): 

1

620(0.100)0.350
10.85 kN     .

2 2

0.30(270 )( / 180 ) 1.414

ap bD
P  Ans

f 

 

   
 

 

Eq. (16-19):  P2 = P1 exp( f  ) = 10.85 exp( 1.414) = 2.64 kN     Ans. 

           s

_____ _ _____ _________________________________________________________

6-12 Given: D = 12 in,    f = 0.28,    b = 3.25 in,     = 270°,    P1 = 1800 lbf. 

Eq. (16-22): 

 

 
 1 2( )( / 2) (10.85 2.64)(0.350 / 2) 1.437 kN · m    .T P P D An      
_ _____ _ __ _ 

 

1
 

12 2(1800)
92.3 psi     .

3.25(12)
a

P
p Ans

bD
    

______________________________________________________________________________ 

3 

   Ans. 

    

o o

2 1

1 2

0.28(270 )( / 180 ) 1.319

exp( ) 1800exp( 1.319) 481 lbf

( )( / 2) (1800 481)(12 / 2)

7910 lbf · in 7.91 kip · in     .

f
P P f
T P P D

Ans

 


 
    
   
 

 

     

16-1  
 

 

 

 

 

 

 

 

 

 

 

  MO = 0 = 100 P2  325 F       P2 = 325(300)/100 = 975 N    

 

 
 

1 100
cos 51.32     

1 2

1 2

3

160

270 51.32 218.7

0.30(218.7) / 180 1.145

exp( ) 975exp(1.145) 3064 N .

( / 2) (3064 975)(200 / 2)

209 10  N · mm 209 N · m     .

f

P P f Ans

T P P D

Ans


 



 
 

     
  
  
   

 

 

______________________________________________________________________________ 

Chapter 16, Page 11/27 



16-14 (a)  D = 16 in,    b = 3 in 
  n = 200 rev/min 

  f = 0.20,    pa = 70 psi 

 

  

  

  

 

  Eq. (16-22):      

   
1 1680 lbf

2 2

aP     
70(3)(16)p bD

         f 0.20(3 / 2) 0.942   
 

 Eq. (16-14):  P2 1 exp(  ) 1680 exp( 0.942) 655 lbfP f       

 

 

   

1 2

1 504 lbf     .
10 10

16
( ) (1680 655)

2 2
8200 lbf · in     .

8200(200)
26.0 hp     .

63 025 63 025
3 3(1680)

D
T P P

Ans
Tn

H Ans

P

   



  
 

 
 (b)  Force of belt on the drum: 

 R = (1680
2
 + 655

2
)

1/2
 = 1803 lbf 

 shaft on the drum: 1680 and 655 lbf 

  
 

  Net torque on drum due to brake band: 

 

r is 1803 lbf. If th

 the drum at center span, the bearing radial load is 1803

P Ans  

 
 
 

  Force of

 

1

2

1680(8) 13 440 lbf · in

655(8) 5240 lbf · in

P

P

T

T

 
 

 

  8200 lbf · in

1 2

13 440 5240

P PT T T 
   

 

  The radial load on the bearing pai e bearing is straddle mounted with 

/2 = 901 lbf.  
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 (c) Eq. (16-21): 

1
0

2

2 2(1680)
70 psi     .

3(16) 3(16)

P
p

bD
P

p Ans  



  
 

  

2
270 27.3 psi     .

3(16) 3(16)

2 2(655)P
p Ans       

______________________________________________________________________________ 

 

16-15 Given:  = 270°, b = 2.125 in, f = 0.20, T =150 lbf · ft, D = 8.25 in, c2 = 2.25 in (see 

figure). Notice that the pivoting rocker is not located on the vertical centerline of the 

drum. 

(a) To have the band tighten for ccw rotation, it is necessary to have c1 < c2 . When 

 friction is fully developed, 

 

     
1 2/ exp( ) exp[0.2(3 / 2)] 2.566P P f     

 

  If friction is not fully developed, 

 

     P1/P2 ≤ exp( f  ) 
  

  To help visualize what is going on let’s add a force W parallel to P1, at a lever arm of 

  c3. Now sum moments about the rocker pivot. 

 

     23 1 1 20M c W c P c P     

  From which 

     

2 2 1 1

3

c P c P
W

c


  

  The device is self locking for ccw rotation if W is no longer needed, that is, W ≤ 0. 

  It follows from the equation above 

 

     

1 2

2 1

P c

P c
  

 

  When friction is fully developed 

 

     

1

1

2.566 2.25 /

2.25
0.877 in

2.566

c

c



 
 

 

  When P1/P2 is less than 2.566, friction is not fully developed. Suppose P1/P2 = 2.25, 
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  then 

     
1

2.25
1 in

2.25
c    

 

  We don’t want to be at the point of slip, and we need the band to tighten. 

 

     

2
1 2

1 2/

c
c c

P P
   

 

  

  When the developed friction is very small, P1/P2 → 1 and c1 → c2     Ans. 
 
 (b) Rocker has c1 = 1 in 

 

1 2

   

2 1 1

ln(

P c

f 
 

1 2

2.25

/ ) ln  2.25
0.172

3 / 2

P P

 

  

 

 is ully developed, no slip. 

     

2.25P c

 

 Friction not f 

 

1
1 2( )

D P
T P P   2 1

2

D
P

22 P

 
   

 
 

  Solve for P2 

2

1 2

1 2

1

2 2(150)(12)
349 lbf

[( / ) 1] (2.25 1)(8.25)

2.25 2.25(349) 785 lbf

2 2(785)
89.6 psi     .

2.125(8.25)

T
P

P P D
P P

P
p Ans

bD

  
 

  

  

 

-fold. 

     
 

 (c) The torque ratio is 150(12)/100 or 18

2

1 2

349
19.4 lbf

18
2.25 2.25(19.4) 43.6 lbf

89.6
4.98 psi     .

18     

P

P P

p Ans

 

  

 

 

 Comment: 

  As the torque opposed by the locked brake increases, P2 and P1 increase (although 

  ratio is still 2.25), then p follows. The brake can self-destruct. Protection could be 

  provided by a shear key. 

__ __ ________________________________________________________ 

 

____ __________ ____

 

16-16 Given: OD = 250 mm, ID = 175 mm, f = 0.30, F = 4 kN. 
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 (a) From Eq. (16-23),   

  22 4000

   

2
a 0.194 N/mm 194 kPa .

( ) (175)(250 175)

F
p Ans

d D d 
 

   

 

  Eq. (16-25): 

34000(0.30)
( ) (250 175)10 127.5  N · m     .

4 4

Ff
T D d Ans      

   

 

 (b) From Eq. (16-26), 

   

 
2

2 2( )
a 2 2

4 4(4000)
0.159 N/mm 159 kPa     .

(250 175 )

F
p Ans


  


 

 Eq. (16-27): 

D d



 

   3
3 3 3 3 3 3( ) (0.30)159 10 250 175 10

12 12
128 N · m     .

aT f p D d

Ans

     

__ _________ ___


 

___ ___ _________________________________________________________ 

6-17 Given: OD = 6.5 in, ID = 4 in, f = 0.24, pa = 120 psi. 

 

 (a) Eq. (16-23): 

_

 

1

(120)(4)
( ) (6.5 4) 1885 lbf     .

2 2   

ap d
F


D d Ans


     

N sliding planes: 

  



  Eq. (16-24) with 

 

2 2 2 2(0.24)(120)(4)
( ) (6.5 4 )

8 8
7125 lbf · in     .

afp d
T D d N

Ans

(6)
 

   


 

 
2 2(0.24)(120 )

(6.5 )(6)
8

d
 (b)   T


 d  

d, in T, lbf · in  
 

2 5191  

3 6769  

4 7125 Ans.
5 5853  

6 2545  

 
 (c) The torque-diameter curve exhibits a stationary point maximum in the range of 

s nearly optimal proportions.    diameter d. The clutch ha   

______________________________________________________________________________ 

 

16-18 (a) Eq. (16-24) with N sliding planes: 
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 
2 2

2 3( )

8 8

a af
T D


 

    

p d D d N f p N
d d


  

respect to d and equating to zero gives 

 

    

 

  Differentiating with 

 2 2

2

2

3 0
8

*d      .
3

3
6

8 4

a

a a

dT f p N
D d

dd
D

Ans

d T f p N f p N
d d

dd



 

  

   

 

egative for all positive d. We have a stationary point maximum. 

 

 (b)    



 
  which is n

6.5
* 3.75 in     .

3
d A   ns

  Eq. (16-24):                 

   2
(0.24)(120) 6.5 / 3

* 6.5T
      

2

6.5 / 3 (6) 7173 lbf · in
8

 
 

 

 (c) The table indicates a maximum within the range:   3 ≤ d ≤ 5 in 

r:   

 

0.45 0.80
d

 (d) Conside
D

   

  Multiply through by D, 

*

0.45 0.80

0.45(6.5) 0.80(6.5)

2.925 5.2 in

1
* / 0.577

3

D d D
d

d

d
d D

D

 
 

 

     
 

 

  which lies within the common range of clutches. 

  Yes.     Ans. 
______________________________________________________________________________ 

 

16-19 Given: d = 11 in,    l = 2.25 in,  = 1800 lbf · i D = 12 in,    f = 0.28. 
 

 

   T n,     

 
 
 

1 0.5   
tan 12.53

2.25
   

 
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 Uniform wear 

45): 

   

  Eq. (16-

 2 2 
8sin

af p d
T D d




   

    

 2 2(0.28) (11)
1800 12 11 128.2

8sin12.53
1800

14.04 psi     .
128.2

a
a

a

p
p

p Ans


  



 
 

 
  Eq. (16-44): 

 
(14.04)11

( ) (12 11) 243 lbf     .
2 2

ap d
F D d Ans


      

pressure 
 

 
 Uniform 
  Eq. (16-48):

 3 3

1 s

f p
T    

2 in

a D d


  




 3 3(0.28)
1800 12 11 134.1

12sin12.53
1800

a
a

p

    
13.42 psi       .

134.1
a

p

p Ans


  

  

    

 

 
  Eq. (16-47): 

 2 2 2 2(13.42)
(ap

) 12 11 242 lbf     .
4 4

F D d Ans
 

     

______________________________________________________________________________ 

 

16-20 Uniform wear 

 Eq. (16-34):   



 2 2

2 1

1
( )

2

F = (

a i o iT f p r r r     

2  1) par i  (ro  r i)  Eq. (16-33):  

 

Thus,  

     
 2 2

2 1(1 / 2)( ) a i o if p r r rT   


2 1  ( ) ( )( )

/ 2 / 2 1
1    . .     .

2 2 4

a i o i

o i

f FD f p r r r D

r r D d d
O K Ans

D D D

  
       

 

 

Uniform pressure 

 Eq. (16-38):   

 
 

 3 3

2 1

1
( )

3
a o iT f p r     r
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 2 2

2 1

1
( )

2
a o i Eq. (16-37):   F p r r     

 Thus, 

 
 

3 3 3 3
2 1

2 22 2

2 1

3 3 3

22 2

(1 / 3)( ) 2 ( / 2) ( / 2)

 3 ( / 2) ( / 2)(1 / 2) ( )

2( / 2) 1 ( / ) 1 1 ( / )
 . .     .

3 1 ( / )3( / 2) 1 ( / )

a o i

a o i

f p r rT D

f FD D d Df p r r D

D d D d D
O K Ans

d DD d D D

 
 

d             
   

    



___ __________

         

 

__ ______________________________________________________________ 

  

   

_

 

6-211

3

2 / 60 2  500 / 60 52.4 rad/s

2(10 )
38.2 N· m

52.4

n

H
T

  



  

  
 

 
 Key: 
 

38.2
3.18 kN

12

T
F

r
    

    
 Average shear stress in key is 

    

33.18(10 )
13.2 MPa     .

6(40)
Ans    

 Average bearing stress is 

    

33.18(10 )
26.5 MPa     .

3(40)
b A

  
b

F
Ans     

tire load.  Let one jaw carry the en

 

1 26 45
17.75 mm

2 2 2

38.2
2.15 kN

17.75

av

av

r

T
F

r

     

  
 

    
 

 The bearing and shear stress estimates are 

    

 

 3

3

2

2.15 10
22.6 MPa     .

10(22.5 13)

2.15(10 )
0.869 MPa     .

10 0.25 (17.75)

b   Ans

Ans







 
  

 

___________________________________________________ ___________________________
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16-22  

    
 From Eq. (16-51), 

    

1

2

2 / 60 2 (1600) / 60 167.6 rad/s

0

n  


  


 

21 2 1

1 2 1 2

2800(8)
133.7 lbf · in · s

167.6 0

I I Tt

I I  
  

  
 

 

  

 Eq. (16-52): 

     2 2 61 2
1 2

1 2

133.7I I

  

(167.6 0) 1.877 10  lbf in
2 2

E
I I

      


 

 

 In Btu, Eq. (16-53): H = E / 9336 = 1.877(10
6
) / 9336 = 201 Btu 

: 

    

 

6-54) Eq. (1

201
41.9 F     .

0.12(40)p

H
T A

C W
    

 

ns

__ ________________________ _____________________________________ 

16-23  

____ __________ _

 

1 2 260 240
250 rev/min    

2

 Eq. (16-62): C
2

n n
n

 
    

 2   1) /   = (n2  n1) / n = (260  240) / 250 = 0.08     Ans. 
 

  = 2 (250) / 60 = 26.18 rad/s 

From Eq. (16-64): 

    

s  = (  

    

 
 

 3

22 1

2 2

6.75 10
123.1 N · m · s

0.08(26.18)s

E E
I

C


    

 

 2 2

2 2 2 2

8 8(123.1)
233.9 kg

8 1.5
o i

o i

m I
I d d m

d d
     

 
     

1.4

Table A-5, cast iron unit weight = 70.6 kN/m
3
       = 70.6(10

3
) / 9.81 = 7197 kg / m

3
. 

 

 Volume: V = m /   = 233.9 / 7197 = 0.0325 m
3
 

 

 
 

   2 2 2 2/ 4 1.5 1.4 / 4 0.2278o iV t d d t           t

Equating the expressions for volume and solving for t, 
 

 

0.0325
0.143 m 143  mm    .

0.2278
t A    ns
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______________________________________________________________________________ 

) The useful work performed in one revolution of the crank shaft is 

 

 U = 320 (10
3
) 200 (10

3
) 0.15 = 9.6 (10

ict e total work done in one revolution is 

 

 U = 9.6(10
3
) / (1  0.20) = 12.0(10

3
) J 

 

nk shaft stroke accounts for 7.5% of a crank shaft revolution, the 

 energy fluctuation is 

E2  E1 = 9.6(10
3
)  12.0(10

3
)(0.075) = 8.70(10

3
) J     Ans. 

(b) For the flywheel, 

16-24 (a

   3
) J 

 

 Accounting for fr ion, th

   

 Since 15% of the cra

 

   
 
 

6(90) 540 rev/min

2 2 (540)
56.5 rad/s

60 60

n
n 

 

  
 

 

Since    C  = 0.10  s

q. (16-64):   
3

22 1

2 2

8.70(10 )
27.25 N · m · s

0.10(56.5)s

E E
I

C


     E

 

 Assuming all the mass is concentrated at the effective diameter, d, 

 
2

2 md
I mr 

       

2 2

4
4 4(27.25)

75.7 kg     .
1.2

I
ns

d
  

 

__ _________________________________________ ____________________ 

6-25 Use Ex. 16-6 and Table 16-6 data for one cylinder of a 3-cylinder engine. 

   

m A

____ __________ _

 

1
 

2 1

22 1

2 2

0.30

2400 rev/min   or   251 rad/s

3(3368)
804 lbf · in       .

10 590
0.560 in · lbf · s      .

0.30(251 )

s

m

s

C
n

T Ans

E E

4
3(3531) 10 590 in · lbfE E

I
 

Ans
C




 


  

 
_____ ___________________________ 


  

_ _____________________________________________
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16-26 (a) 
 (1)

 

 
  
 

2 2
2 1 21( ) P

G

T F r
r

         .P

T T
r Ans

n



 

 

 

 

 Equivalent energy 

      

 

 Equivalent energy 

      

(2)                                                                   (2)                                                                   
    

  

 2 2

2 2 2 1 1

2

2 2
2 1 22 2

1

(1 / 2) (1 / 2)( )

( )      .

I I

I
I I Ans

n

 






 
 

 (3)    
2 2

4

2

G

P P P P P

r
n

r

       
    

 

 From (2)   

G G G GI r m r

I r m r
         

 
4

2 2 1 2 2 P( )      .G PI n I
I n I Ans    

 (b) 

n n
 

2

2
    .L

e M P P

I
I I I n I An

n
   

 
s

  

______________________________________________________________________________ 

 

16-27 (a) Reflect IL, IG2 to the center shaft 
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 Reflect the center shaft to the motor shaft 

 

 

 

 

 

 

 

 

 
2

2 P LI m I

   
2 2 2 2

    .e M P P PI I I n I I      Ans
n n mn

 

(b) For R = constant = nm,   

 
2

2

2 4 2
     .P P L

e M P P

I R I I
I I I n I An

n n
 s       

 

 = 10,   

R

2

3 5

2(1) 4(10 )(1)
0 0 2 (1) 0 0eI n

n n n


      

  
 (c) For R

 

     n6
  n2

  200 = 0 

 

 
 From which 

 
* 2.430     .

10
* 4.115     .

2.430

n Ans

m A



 
 

    
ns

at n*and m* are independent of IL. 

_____________________________________________________________________________ 

6-28 From Prob. 16-27, 

 
 Notice th

_

 

1
 

2
2

2 4 2

2 4 2

2 4

10
1 100

12

2 1 100(1) 100
10 1 (1)

2

P P L
e M P P

I R I I
I I I n I

n n R

n n

n
n n

     



n       

  

 

Chapter 16, Page 22/27 



 
 

Optimizing the partitioning of a double reduction lowered the gear-train inertia to 

of that of a single reduction. This includes the two additional 

gears. 

_____________________________________________________________________________ 

lies, 

   

 

20.9/112 = 0.187, or to 19% 

_

 

16-29 Figure 16-29 app

 

2 110 ,    0.5 t s t s 

2 1-t t

 1

10 0.5
19

0.5t


   

 

 The load torque, as seen by the motor shaft (Rule 1, Prob. 16-26), is 

 

1300(12)
1560 lbf · in

10
LT  

    

 

ue Tr  is 

    

 

 The rated motor torq

 

63 025(3)
168.07 lbf · in

1125
rT    

 

 For Eqs. (16-65): 

    

2
(1125) 117.81 rad/s

60
2

(1200) 125.66 rad/s
60

168.07
21.41 lbf in s/rad

125.66 117.81

168.07(125.66)
2690.4 lbf · in

125.66 117.81

r

s

r

s r

r s

s r

T
a

T
b





 


 

 

 


      

 

  
 
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 The linear portion of the squirrel-cage motor characteristic can now be expressed as 

 

    TM = 21.41 + 2690.4 lbf · in 

 Eq. (16-68): 

    

19

2

2

1560 168.07
168.07

1560
T

T

 
   

 

 

 One root is 168.07 which is for infinite time. The root for 10 s is desired. Use a 

successive substitution method 

 

T2 New T2

0.00 19.30 

19.30 4.40 

26.50 26.67 

2

24.40 26.00 

26.00 26.50 

 Continue until convergence to 

 

     T2 = 26.771 lbf ⋅ in 

Eq. (16-69): 

 

    

 

 
 

2 1 2

2

2
max

min

max min

max

21.41(10 0.5)
110.72 lbf · in · s

ln / ln(26.771 / 168.07)

26.771 2690.4
124.41 rad/s     .

21.41
117.81 rad/s     .

124.41 117.81
121.11 rad/s

2
 

(

r

s

a t t
I

T T

T b
Ans

a
Ans

C





 
 

  
  

 
  












T b

a
 



min

2 2

2 2

2 2

2 1

124.41 117.81
0.0545     .

) / 2 (124.4 117.81) / 2

1 1
(110.72)(117.81) 768 352 in · lbf

2 2
1 1

(110.72)(124.41) 856 854 in · lbf
2 2

856 854 768 352 88 502 in · lbf

r

A
1

1

ns

E I

E I

E E E






 



  

  

     

 

 

 Eq. (16-64): 

 
2 20.0545(110.72)(121.11)

88 508 in · lbf,    close enough     .
sE C I

Ans
  


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 During the punch 

 

    

63 025H

(60 / 2 ) 1560(121.11)(60 / 2 )
28.6 hp

63 025 63 25

L

n
T

H
  

  
 

eel is on 

    

T 

 0
 

 The gear train has to be sized for 28.6 hp under shock conditions since the flywh

the motor shaft. From Table A-18, 

 

   2 2 2 2

o i

2 2

8 8

8 1

o i

o i

m W

2

o
2

i

8(386)( 10.72)

I d d

gI
W

d d

 

 
 

 

 
 If a mean diameter of the flywheel rim of 30 in is acceptable, try a rim thickness of 4 in 

   

d d
g

d d



 

2 2

30 (4 / 2) 28 in

30 (4 / 2) 32 ino

8(386)(110.72)
189.1 lbf

32 28

id

 

d
  




 

 

 Rim volume V is given by 

 

    

  

W 

 2 2 2 2(32 28 ) 188.5
4 4

o i

l l
V d d l

 
      

 
 where l is the rim width as shown in Table A-18. The specific weight of cast iron is 

  = 0.260 lbf / in
3
, therefore the volume of cast iron is 

 

    

3189.1
727.3 in

0.260

W
V


    

 

 Equating the volumes, 

 
188.5 727.3

727.3
3.86 in wide

188.5

l

l



 
 

    
 

 Proportions can be varied. 

_____________________________________________________________________________ 

 

0  solution has I for the motor shaft flywheel as 

_

16-3 Prob. 16-29
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    I = 110.72  lbf · in · s
2
 

 A flywheel located on the crank shaft needs an inertia of 10
2
 I (Prob. 16-26, rule 2) 

 

    I = 10
2
(110.72) = 11 072 lbf · in · s

2
 

inertia increase. On the other hand, the gear train has to transmit 3 hp under 

      

 

 

A 100-fold  

shock conditions. 

      Stating the problem is most of the solution. Satisfy yourself that on the crankshaft: 

 

1300(12) 15 600 lbf · in

10(168.07) 1680.7 lbf · in

117.81 / 10 11.781 rad/s

125.66 / 10 12.566 rad/s

L

r

r

s

T
T



 
 
 
 

 

19

2

2

21.41(100) 2141 lbf · in · s/rad

2690.35(10) 26903.5 lbf · in

2141 26 903.5 lbf · in

b
T 
 
    

15 600 1680.5
1680.6

15 600

M c

a

T
T

   

 
   

 

 

0(26.67) = 266.7 lbf · in  The root is 1

 
121.11

max

min

/ 10 12.111 rad/s

0.0549 (same)

121.11 / 10 12.111 rad/s .

117.81 / 10 11.781 rad/s .

sC
Ans
Ans








 
 

 



    
 

-18  E1, E2, E and peak power are the same. From Table A

 

 6

2 2 2 2 2 2

34.19 108 8(386)(11 072)

o i o i o i

gI
W

d d d d d d
  

 
 

    


d di  , but the gear ratio changed I. Scale up the flywheel in the 

Prob. 16-29 solution by a factor of 2.5. Thickness becomes 4(2.5) = 10 in. 

 

    

 
 Scaling will affect do an

 

30(2.5) 75 in

75 (10 / 2) 80 in

75 (10 / 2) 70 in
o

i

d
d
d

 
  
  
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 634.19 10

2 280 70
3026W

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3

2 2

3026 lbf

11 638 in

11 638

W

V



 

  

 Proportions can be varied. The weight has increased 3026/189.1 or about 16-fold while 

the moment of inertia I increased 100-fold. The gear train transmits a steady 3 hp. But the 

motor armature has its inertia magnified 100-fold, and during the punch there are 

deceleration stresses in the train. With no motor armature information, we cannot 

comment. 

______________________________________________________________________________ 

1 the basis for a class discussion. 

0.260  

(80 70 ) 1178 
4

V l l  

9.88 in
1178

l  

 

 

16-3 This can be 



Chapter 17 
 

 

 

17-1 Given: F-1 Polyamide, b = 6 in, d = 2 in with n = 1750 rev/min, Hnom = 2 hp, C = 9(12) = 

108 in, velocity ratio = 0.5, Ks = 1.25, nd = 1 

   

    V =  d n / 12 =  (2)(1750) / 12 = 916.3 ft/min 

 

    D = d / vel ratio = 2 / 0.5 = 4 in 

 Eq. (17-1): 1 1 4 2
2sin 2sin 3.123 rad

2 2(108)
d

D d

C
      

     
 

 

 

 Table 17-2: t = 0.05 in, dmin = 1.0 in, Fa = 35 lbf/in,   = 0.035 lbf/in
3
, f = 0.5 

 

    w = 12 bt = 12(0.035)6(0.05) = 0.126 lbf/ft 

 

 (a) Eq. (e), p. 885: 

2 2
0.126 916.3

0.913 lbf     .
60 32.17 60

c

V
F Ans

g
        
   

w

 
 

     

 1 2

63 025 63 025(2)(1.25)(1)
90.0 lbf · in

1750
2 2(90.0)

90.0 lbf
2

nom s d

a

H K n
T

n
T

F F F
d

  

     
 

 

  Table 17-4: Cp = 0.70 

 

  Eq. (17-12):  (F1)a = bFaCpCv = 6(35)(0.70)(1) = 147 lbf     Ans. 
 
     F2 = (F1)a  [(F1)a  F2] = 147  90 = 57 lbf     Ans. 
 

  Do not use Eq. (17-9) because we do not yet know f   
 

  Eq. (i), p. 886: 
 1 2 147 57

0.913 101.1 lbf     .
2 2

a
i c

F F
F F A

 
     ns

 

  Using Eq. (17-7) solved for f ¢ (see step 8, p.888), 

   1

2

1 ( ) 1 147 0.913
ln ln 0.307

3.123 57 0.913

a c

d c

F F
f

F F
           

  

 

  The friction is thus underdeveloped. 

 
 (b) The transmitted horsepower is, with F = (F1)a  F2 = 90 lbf, 
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  Eq. (j), p. 887: 
( ) 90(916.3)

2.5 hp     .
33 000 33 000

F V
H Ans


    

nom

2.5
1

2(1.25)
f s

s

H
n

H K
  

      
  Eq. (17-1):  1 1 4 2

2sin 2sin 3.160 rad
2 2(108)

D

D d

C
      

     
 

 

 

  Eq. (17-2):         L = [4C2
  (D  d)

2
]
1/2

 + (DD + dd)/2 

 

               = [4(108)
2
  (4  2)

2
]
1/2

 + [4(3.160) + 2(3.123)]/2 = 225.4 in     Ans. 
 

(c) Eq. (17-13): 
2 23 3(108 / 12) (0.126)

dip 0.151 in     .
2 2(101.1)i

C
Ans

F
  

w
 

 
 Comment: The solution of the problem is finished; however, a note concerning the design 

is presented here.  

 

 The friction is under-developed. Narrowing the belt width to 5 in (if size is available) will 

increase f  . The limit of narrowing is bmin = 4.680 in, whence 

 

    

 

1

2

1 2

0.0983 lbf/ft                          ( ) 114.7 lbf

0.713 lbf                                   24.7 lbf

90 lbf · in   (same)                     0.50

( ) 90 lbf              

a

c

a

F
F F
T f

F F F

 
 

 
   

w

    dip 0.173 in

68.9 lbfiF




f 

 

 Longer life can be obtained with a 6-inch wide belt by reducing F i  to attain  

Prob. 17-8 develops an equation we can use here 

0.50.f 

 

    

1

2 1

1 2

1

2

2

( ) exp( )

exp( ) 1

2

1
ln

3
dip

2

c c

i c

c

d c

i

F F f F
F

f
F F F

F F
F F

F F
f

F F

C

F






  



  


 

     


w

 

 

 which in this case, d = 3.123 rad, exp(f ) = exp[0.5(3.123)] = 4.766, w = 0.126 lbf/ft, 

F = 90.0 lbf, Fc =  0.913 lbf, and gives 

Chapter 17, Page 2/39 



    
 

1

0.913 90 4.766 0.913
114.8 lbf

4.766 1
F

 
 


 

    F2 = 114.8  90 = 24.8 lbf 

 

    F i  = (114.8 + 24.8)/ 2  0.913 = 68.9 lbf 

 

    
1 114.8 0.913

ln 0.50
3.123 24.8 0.913

f
     

 

 

    
 2

3 108 / 12 0.126
dip 0.222 in

2(68.9)
   

    
 So, reducing F

 

i  from 101.1 lbf to 68.9 lbf will bring the undeveloped friction up to 0.50, 

with a corresponding dip of 0.222 in. Having reduced F1 and F2, the endurance of the 

belt is improved. Power, service factor and design factor have remained intact. 

______________________________________________________________________________ 

 

17-2 Double the dimensions of Prob. 17-1.  

 In Prob. 17-1, F-1 Polyamide was used with a thickness of 0.05 in. With what is available 

in Table 17-2 we will select the Polyamide A-2 belt with a thickness of 0.11 in. Also, let 

b = 12 in, d = 4 in with n = 1750 rev/min, Hnom = 2 hp, C = 18(12) = 216 in, velocity 

  ratio = 0.5, Ks = 1.25, nd = 1. 

 

     V =  d n / 12 =  (4)(1750) / 12 = 1833 ft/min 

 

    D = d / vel ratio = 4 / 0.5 = 8 in 

 Eq. (17-1): 1 1 8 4
2sin 2sin 3.123 rad

2 2(216)
d

D d

C
      

     
 

 

 

 Table 17-2: t = 0.11 in, dmin = 2.4 in, Fa = 60 lbf/in,   = 0.037 lbf/in
3
, f = 0.8 

 

    w = 12 bt = 12(0.037)12(0.11) = 0.586 lbf/ft 

 

 (a) Eq. (e), p. 885: 

2 2
0.586 1833

17.0 lbf     .
60 32.17 60

c

V
F Ans

g
        
   

w

 
 

     

 1 2

63 025 63 025(2)(1.25)(1)
90.0 lbf · in

1750
2 2(90.0)

45.0 lbf
4

nom s d

a

H K n
T

n
T

F F F
d

  

     
 

 

  Table 17-4: Cp = 0.73 
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  Eq. (17-12):  (F1)a = bFaCpCv = 12(60)(0.73)(1) = 525.6 lbf     Ans. 
 
     F2 = (F1)a  [(F1)a  F2] = 525.6  45 = 480.6 lbf     Ans. 
 

  Eq. (i), p. 886: 
 1 2 525.6 480.6

17.0 486.1 lbf     .
2 2

a
i c

F F
F F A

 
     ns

 
  Eq. (17-9):  

   1

2

1 ( ) 1 525.6 17.0
ln ln 0.0297

3.123 480.6 17.0

a c

d c

F F
f

F F
           

  

 

  The friction is thus underdeveloped. 

 
 (b) The transmitted horsepower is, with F = (F1)a  F2 = 45 lbf, 

 

    nom

( ) 45(1833)
2.5 hp     .

33 000 33 000
2.5

1
2(1.25)

f s
s

F V
H Ans

H
n

H K


  

  
 

  Eq. (17-1):  1 1 8 4
2sin 2sin 3.160 rad

2 2(216)
D

D d

C
      

     
 

 

 

  Eq. (17-2):        L = [4C2
  (D  d)

2
]

1/2
 + (DD + dd)/2 

 

               = [4(216)
2
  (8  4)

2
]
1/2

 + [8(3.160) + 4(3.123)]/2 = 450.9 in     Ans. 
 

(c) Eq. (17-13): 
2 23 3(216 / 12) (0.586)

dip 0.586 in     .
2 2(486.1)i

C
Ans

F
  

w
 

______________________________________________________________________________ 

 

17-3  

 
 

 As a design task, the decision set on p. 893 is useful. 

 A priori decisions: 

 � Function:   Hnom = 60 hp, n = 380 rev/min, C = 192 in, Ks = 1.1 

 � Design factor:   nd = 1 

 � Initial tension:   Catenary 

 � Belt material. Table 17-2:   Polyamide A-3, Fa = 100 lbf/in,   = 0.042 lbf/in
3
, f = 0.8 

 � Drive geometry:   d = D = 48 in 

 � Belt thickness:   t = 0.13 in 
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 Design variable: Belt width. 

 Use a method of trials. Initially, choose b = 6 in 

2 2

nom

1 1

(48)(380)
4775 ft/min

12 12
12 12(0.042)(6)(0.13) 0.393 lbf/ft

0.393(4775 / 60)
77.4 lbf

32.17

63 025 63 025(60)(1.1)(1)
10 946 lbf · in

380
2 2(10 946)

456.1 lbf
48

( )

c

s d

a

dn
V

bt

V
F

g
H K n

T
n

T
F

d
F F

 



  

  

  

  

   



w

w 

2 1

6(100)(1)(1) 600 lbf

600 456.1 143.9 lbf

a pbF C C

F F F

  
     

v

 

 

 Transmitted power H 

1 2

1

2

( ) 456.1(4775)
66 hp

33 000 33 000
600 143.9

77.4 294.6 lbf
2 2

1 1 600 77.4
ln ln 0.656

143.9 77.4

i c

c

d c

F V
H

F F
F F

F F
f

F F 


  

 
    

        

 

 

 Eq. (17-2): L = [4(192)
2
  (48  48)

2
]
1/2

 + [48() + 48()] / 2 = 534.8 in 

 

 Friction is not fully developed, so bmin is just a little smaller than 6 in (5.7 in). Not having 

 a figure of merit, we choose the most narrow belt available (6 in). We can improve the 

 design by reducing the initial tension, which reduces F1 and F2, thereby increasing belt 

life (see the result of Prob. 17-8). This will bring f   to 0.80 

 

   
 

 

1

exp

exp 1

exp exp(0.80 ) 12.345

c cF F f F
F

f

f




 

  




 
 

 

 Therefore 

1

2 1

1 2

(456.1 77.4)(12.345) 77.4
573.7 lbf

12.345 1
573.7 456.1 117.6 lbf

573.7 117.6
77.4 268.3 lbf

2 2
i c

F

F F F
F F

F F

 
 


     

 
    

 

 

 These are small reductions since f   is close to f , but improvements nevertheless. 
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    1

2

1 1 573.7 77.4
ln ln 0.80

117.6 77.4

c

d c

F F
f

F F 
        

  

 

    

2 23 3(192 / 12) (0.393)
dip 0.562 in

2 2(268.3)i

C

F
  

w
 

______________________________________________________________________________ 

 

17-4 From the last equation given in the problem statement, 

 

    

   

 

   

 
 

0 2

0 2

0 2

0 2

1
exp

1 2 / [ ( ) ]

2
1 exp 1

( )

2
exp exp 1

( )

exp1 2

exp 1

f
T d a a b

T
f

d a a b

T
f f

d a a b

fT
b

a a d f





 





 

 
   

 
   

          

 

 

 But 2T/d = 33 000Hd/V. Thus, 

 
 0 2

exp1 33 000
  . . .

exp 1

d
fH

b Q
a a V f




          
E D  

______________________________________________________________________________ 

 

17-5 Refer to Ex. 17-1 on p. 890 for the values used below. 

 (a) The maximum torque prior to slip is, 

 

nom63 025 63 025(15)(1.25)(1.1)
742.8 lbf · in     .

1750

s dH K n
T A

n
   ns  

 
  The corresponding initial tension, from Eq. (17-9), is, 

 
exp( ) 1 742.8 11.17 1

148.1 lbf     .
exp( ) 1 6 11.17 1

i

T f
F A

d f




           
ns  

 
 (b) See Prob. 17-4 statement. The final relation can be written 
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 
 

 

min 2

2

33 000 exp1

(12 / 32.174)( / 60) [exp 1]

1 33 000(20.6)(11.17)

100(0.7)(1) [12(0.042)(0.13)] / 32.174 (2749 / 60) 2749(11.17 1)

4.13 in     .

a

a p

H f
b

F C C t V V f

Ans


 

       

 
    



v

 

 
  This is the minimum belt width since the belt is at the point of slip. The design must 

 round up to an available width. 

 

   Eq. (17-1): 

1 1

1 1

18 6
2sin 2sin

2 2

3.016 511 rad

18 6
2sin 2sin

2 2

3.266 674 rad

d

D

D d

C

D d

C

  

  

 

 

(96)

(96)

            


            


 

 

  Eq. (17-2): 

2 2 1/ 2 1
[4(96) (18 6) ] [18(3.266 674) 6(3.016 511)]

2
230.074 in     .

L

Ans

    


 

 

 (c)      
2 2(742.8)

247.6 lbf
6

T
F

d
     

    

1 1

2 1

2 2

1 2

( ) 4.13(100)(0.70)(1) 289.1 lbf

289.1 247.6 41.5 lbf

12 12(0.042)4.13(0.130) 0.271 lbf/ft

0.271 2749
17.7 lbf

60 32.17 60

289.1 41.5
17.7 147.6 lb

2 2

a a p

c

i c

F bF C C F

F F F
bt

V
F

g
F F

F F



   
     
  

        
   
 

    

v

w

w

f

 

 

  Transmitted belt power H 
 

nom

( ) 247.6(2749)
20.6 hp

33 000 33 000
20.6

1.1
15(1.25)

fs
s

F V
H

H
n

H K


  

  
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  Dip:  
 22 3(96 / 12) 0.2713

0.176 in
2 2(147.6)i

C
dip

F
  

w
 

 

 (d) If you only change the belt width, the parameters in the following table change as 

 shown. 

 

 Ex. 17-1 This Problem

b 6.00 4.13 

w 0.393 0.271 

Fc 25.6 17.7 

(F1)a 420 289 

F2 172.4 41.5 

F i 270.6 147.6 
f   0.33* 0.80** 

dip 0.139 0.176 

 

     *Friction underdeveloped 

     **Friction fully developed 

______________________________________________________________________________ 

 

17-6 The transmitted power is the same. 

 

 b = 6 in b = 12 in

n-Fold 

Change

Fc 25.65 51.3 2 

F i 270.35 664.9 2.46 

(F1)a 420 840 2 

F2 172.4 592.4 3.44 

Ha 20.62 20.62 1 

nfs 1.1 1.1 1 
f   0.139 0.125 0.90 

dip 0.328 0.114 0.34 

 

 If we relax F i  to develop full friction (f = 0.80) and obtain longer life, then 

 

 

 b = 6 in b = 12 in

n-Fold 

Change

Fc 25.6 51.3 2 

F i 148.1 148.1 1 

F1 297.6 323.2 1.09 

F2 50 75.6 1.51 
f   0.80 0.80 1 

dip 0.255 0.503 2 

______________________________________________________________________________ 

Chapter 17, Page 8/39 



17-7  

 
 
 Find the resultant of F1 and F2: 

 
1

2

2

1 2 1 2

1 2 1 2

sin
2

sin
2

1
cos 1

2 2

1
cos cos ( ) 1      .

2 2

sin sin ( )      .
2

x

y

D d

C
D d

C
D d

C

D d
R F F F F

C

D d
R F F F F Ans

C







 

 

 





   
 

        
   


   



Ans

 

 
 From Ex. 17-2, d = 16 in, D = 36 in, C = 16(12) = 192 in, F1 = 940 lbf, F2 = 276 lbf 

 

1 o

2

1 2

36 16
sin 2.9855

2(192)

1 36 16
(940 276) 1 1214.4 lbf

2 2(192)

36 16
(940 276) 34.6 lbf

2(192)

16
( ) (940 276) 5312 lbf · in

2 2

x

y

R

R

d
T F F

   
  

 
  

     
   
 

   
 

          
   

 

______________________________________________________________________________ 

 

17-8 Begin with Eq. (17-10), 

 

1

2exp( )

exp( ) 1
c i

f
F F F

f




 


 

 

 Introduce Eq. (17-9): 
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1

1

exp( ) 1 2exp( ) 2 exp( )

exp( ) 1 exp( ) 1 exp( ) 1

exp( )

exp( ) 1

c c

c

f f T
F F d F

f f d f
f

F F F
f

 
  




    
       

f 
      

  


  

 

 Now add and subtract 
exp( )

exp( ) 1
c

f
F

f




 
  

 

 

1

exp( ) exp( ) exp( )

exp( ) 1 exp( ) 1 exp( ) 1

exp( ) exp( )
( )

exp( ) 1 exp( ) 1

exp( )
( )

exp( ) 1 exp( ) 1

( )exp( )

ex

c c c

c c c

c
c

c c

f f
F F F F F

f f

f f
F F F F

f f

f F
F F

f f
F F f F

 
 

 
 


 


     
         

f

f


       

   
           

 
      

  
    . . .

p( ) 1
Q E D

f 

 

 
 From Ex. 17-2: d = 3.037 rad, F = 664 lbf, exp( f ) = exp[0.80(3.037)] = 11.35, and  

 Fc = 73.4 lbf. 

 

1

2 1

1

2

(73.4 664)11.35 73.4
802 lbf

(11.35 1)

802 664 138 lbf

802 138
73.4 396.6 lbf

2

1 1 802 73.4
ln ln 0.80     .

3.037 138 73.4

i

c

d c

F

F F F

F

F F
f Ans

F F

 
 


     


  

            

 

______________________________________________________________________________ 

 

17-9 This is a good class project. Form four groups, each with a belt to design. Once each 

group agrees internally, all four should report their designs including the forces and 

torques on the line shaft. If you give them the pulley locations, they could design the line 

shaft.  

______________________________________________________________________________ 

 

17-10 If you have the students implement a computer program, the design problem selections 

may differ, and the students will be able to explore them. For Ks = 1.25, nd = 1.1, d = 14 

in and D = 28 in, a polyamide A-5 belt, 8 inches wide, will do (bmin = 6.58 in) 

______________________________________________________________________________ 

 

17-11 An efficiency of less than unity lowers the output for a given input. Since the object of 
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the drive is the output, the efficiency must be incorporated such that the belt’s capacity is 

increased. The design power would thus be expressed as 

 

nom     .
eff

s d
d

H K n
H Ans  

______________________________________________________________________________ 

 

17-12 Some perspective on the size of Fc can be obtained from 

 
2 2

12

60 60
c

V bt
F

g g

       
   

w V
 

 

 An approximate comparison of non-metal and metal belts is presented in the table below. 

 

 Non-metal Metal

, lbf/in
3 0.04 0.280

b, in 5.00 1.000

t, in 0.20 0.005

 

 The ratio w / wm is 

12(0.04)(5)(0.2)
29

12(0.28)(1)(0.005)m

 w

w
 

 

 The second contribution to Fc is the belt peripheral velocity which tends to be low in 

metal belts used in instrument, printer, plotter and similar drives. The velocity ratio 

squared influences any Fc / (Fc)m ratio. 

 

 It is common for engineers to treat Fc as negligible compared to other tensions in the 

belting problem. However, when developing a computer code, one should include Fc. 

______________________________________________________________________________ 

 

17-13 Eq. (17-8): 

1 2 1 1

exp( ) 1 exp( ) 1
( )

exp( ) exp( )
c

f f
F F F F F F

f f

 
 
 

       

 Assuming negligible centrifugal force and setting F1 = ab from step 3, p. 897,  

 

                                                min

exp( )
                                                   (1)

exp( ) 1

F f
b

a f








 

 

 Also,    
nom

( )

33 000
d s d

F V
H H K n


 

 

     nom33 000 s dH K n
F

V
   
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 Substituting into Eq. (1),  
min

1 33 000 exp( )
    .

exp( ) 1

dH f
b A

a V f




     
ns  

______________________________________________________________________________ 

 

17-14 The decision set for the friction metal flat-belt drive is: 

 

 A priori decisions 

 

 � Function:   Hnom = 1 hp, n = 1750 rev/min, VR = 2 ,  K15 in,C  s = 1.2 , 

                    Np = 10
6
 belt passes. 

 � Design factor: nd = 1.05 

 � Belt material and properties: 301/302 stainless steel 

    Table 17-8:                            Sy = 175 kpsi,   E = 28 Mpsi,    = 0.285 

 � Drive geometry:   d = 2 in,   D = 4 in 

 � Belt thickness:   t = 0.003 in 

 

 Design variables: 

 

 � Belt width, b 
 � Belt loop periphery 

 

 Preliminaries 

nom 1(1.2)(1.05) 1.26 hp

63 025(1.26)
45.38 lbf · in

1750

d s dH H K n

T

  

 
 

 

 A 15 in center-to-center distance corresponds to a belt loop periphery of 39.5 in. The 

 40 in loop available corresponds to a 15.254 in center distance. 

 

1

1

4 2
2sin 3.010 rad

2(15.254)

4 2
2sin 3.273 rad

2(15.274)

d

D

 

 





 
   

 
 

   
 

 

 

 For full friction development 

 

exp( ) exp[0.35(3.010)] 2.868

(2)(1750)
916.3 ft/s

12 12
175 kpsi

d

y

f
dn

V

S


 

 

  



 

 

 Eq. (17-15): 

         0.407
6 0.407 6 6 314.17 10 14.17 10 10 51.212 10 psiy pS N

     
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 From selection step 3, p. 897, 
6

3

2 2

1

28(10 )(0.003)
51.212(10 ) (0.003)

(1 ) (1 0.285 )(2)

16.50 lbf/in   of belt width

( ) 16.50

f

a

Et
a S t

d

F ab b


  

         


 

 

 
 For full friction development, from Prob. 17-13, 

 

min

exp( )

exp( ) 1

2 2(45.38)
45.38 lbf

2

d

d

F f
b

a f

T
F

d









   

 

 So 

min

45.38 2.868
4.23 in

16.50 2.868 1
b

    
 

 

 Decision #1:   b = 4.5 in 

 

1 1

2 1

1 2

( ) 16.5(4.5) 74.25 lbf

74.25 45.38 28.87 lbf

74.25 28.87
51.56 lbf

2 2

a

i

F F ab
F F F

F F
F

   
     

 
  

 

 Existing friction 

1

2

nom

1 1 74.25
ln ln 0.314

3.010 28.87

( ) 45.38(916.3)
1.26 hp

33 000 33 000
1.26

1.05
1(1.2)

d

t

t
fs

s

F
f

F

F V
H

H
n

H K


           


  

  

 

 

 This is a non-trivial point. The methodology preserved the factor of safety corresponding 

to nd = 1.1 even as we rounded bmin up to b. 

 

 Decision #2 was taken care of with the adjustment of the center-to-center distance to 

accommodate the belt loop. Use Eq. (17-2) as is and solve for C to assist in this. 

Remember to subsequently recalculate d and D . 
______________________________________________________________________________ 
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17-15 Decision set: 

 

 A priori decisions 

 � Function:   Hnom = 5 hp,   N = 1125 rev/min,   VR = 3,    K20 in,C  s = 1.25, 

                    Np = 10
6
 belt passes 

 � Design factor:   nd = 1.1 

� Belt material:   BeCu,   Sy = 170 kpsi,   E = 17 Mpsi,     = 0.220 

 � Belt geometry:   d = 3 in,   D = 9 in 

 � Belt thickness:   t = 0.003 in 

 

 Design decisions 

 � Belt loop periphery 

 � Belt width b 
 
 Preliminaries: 
 

nom 5(1.25)(1.1) 6.875 hp

63 025(6.875)
385.2 lbf · in

1125

d s dH H K n

T

  

 
 

 

 Decision #1: Choose a 60-in belt loop with a center-to-center distance of 20.3 in. 

 

1

1

9 3
2sin 2.845 rad

2(20.3)

9 3
2sin 3.438 rad

2(20.3)

d

D

 

 





 
   

 
 

   
 

 

 

 For full friction development: 

 

exp( ) exp[0.32(2.845)] 2.485

(3)(1125)
883.6 ft/min

12 12
56.67 kpsi

d

f

f
dn

V

S


 

 

  



 

 

 From selection step 3, p. 897, 
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6
3

2 2

min

17(10 )(0.003)
56.67(10 ) (0.003) 116.4 lbf/in

(1 ) (1 0.22 )(3)

2 2(385.2)
256.8 lbf

3

exp( ) 256.8 2.485
3.69 in

exp( ) 1 116.4 2.485 1

t
f

d

d

E
a S t

d
T

F
d
F f

b
a f






  
          

   

           

 

 Decision #2:   b = 4 in 

 

    

1 1

2 1

1 2

( ) 116.4(4) 465.6 lbf

465.6 256.8 208.8 lbf

465.6 208.8
337.3 lbf

2 2

a

i

F F ab
F F F

F F
F

   
     

 
  

 

 

 Existing friction 

    

1

2

1 1 465.6
ln ln 0.282

2.845 208.8

( ) 256.8(883.6)
6.88 hp

33 000 33 000
6.88

1.1
5(1.25) 5(1.25)

d

fs

F
f

F

F V
H

H
n


           


  

  

 

 

 Fi  can be reduced only to the point at which 0.32.f f   From Eq. (17-9) 

 

    

exp( ) 1 385.2 2.485 1
301.3 lbf

exp( ) 1 3 2.485 1

d
i

d

T f
F

d f




           
 

 

 Eq. (17-10): 

 

    

1

2 1

2exp( ) 2(2.485)
301.3 429.7 lbf

exp( ) 1 2.485 1

429.7 256.8 172.9 lbf

d
i

d

f
F F

f

F F F




           
     

 

 

 and    0.32f f 
______________________________________________________________________________ 

 

17-16 This solution is the result of a series of five design tasks involving different belt 

thicknesses. The results are to be compared as a matter of perspective. These design tasks 

are accomplished in the same manner as in Probs. 17-14 and 17-15 solutions. 

 

 The details will not be presented here, but the table is provided as a means of learning. 

 Five groups of students could each be assigned a belt thickness. You can form a table 
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from their results or use the table given here. 
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t, in 

 0.002 0.003 0.005 0.008 0.010 

b 4.000 3.500 4.000 1.500 1.500 

CD 20.300 20.300 20.300 18.700 20.200 

a 109.700 131.900 110.900 194.900 221.800 

d 3.000 3.000 3.000 5.000 6.000 

D 9.000 9.000 9.000 15.000 18.000 

F i 310.600 333.300 315.200 215.300 268.500 

F1 439.000 461.700 443.600 292.300 332.700 

F2 182.200 209.000 186.800 138.200 204.300 

nf s 1.100 1.100 1.100 1.100 1.100 

L 60.000 60.000 60.000 70.000 80.000 
f   0.309 0.285 0.304 0.288 0.192 

F i 301.200 301.200 301.200 195.700 166.600 

F1 429.600 429.600 429.600 272.700 230.800 

F2 172.800 172.800 172.800 118.700 102.400 

f 0.320 0.320 0.320 0.320 0.320 

 

 The first three thicknesses result in the same adjusted F i , F1 and F2 (why?). We have no 

figure of merit, but the costs of the belt and pulleys are about the same for these three 

thicknesses. Since the same power is transmitted and the belts are widening, belt forces 

are lessening. 

______________________________________________________________________________ 

 

17-17 This is a design task. The decision variables would be belt length and belt section, which 

could be combined into one, such as B90. The number of belts is not an issue. 

 

 We have no figure of merit, which is not practical in a text for this application. It is 

suggested that you gather sheave dimensions and costs and V-belt costs from a principal 

vendor and construct a figure of merit based on the costs. Here is one trial. 

 

 Preliminaries: For a single V-belt drive with Hnom = 3 hp, n = 3100 rev/min, D = 12 in, 

and d = 6.2 in, choose a B90 belt, Ks = 1.3 and nd = 1. From Table 17-10, select a 

circumference of 90 in. From Table 17-11, add 1.8 in giving 

 

     Lp = 90 + 1.8 = 91.8 in 

 

 Eq. (17-16b):  

   

2

20.25 91.8 (12 6.2) 91.8 (12 6.2) 2(12 6.2)
2 2

31.47 in

C
                      


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    -1 12 6.2
2sin 2.9570 rad

2(31.47)
d 

 
   

 
 

     

exp( ) exp[0.5123(2.9570)] 4.5489

(6.2)(3100)
5031.8 ft/min

12 12

df
dn

V


 

 

  
 

 

 Table 17-13: 

    

180 180
Angle (2.957 rad) 169.42d 

 
      

  

 

 The footnote regression equation of Table 17-13 gives K1 without interpolation: 

 

K1 = 0.143 543 + 0.007 468(169.42°)  0.000 015 052(169.42°)
2
 = 0.9767 

 

 The design power is 

Hd = HnomKsnd = 3(1.3)(1) = 3.9 hp 

 

 From Table 17-14 for B90, K2 = 1. From Table 17-12 take a marginal entry of Htab = 4, 

although extrapolation would give a slightly lower Htab. 

 

 Eq. (17-17):   Ha = K1K2Htab  = 0.9767(1)(4) = 3.91 hp 

 

 The allowable Fa is given by 

 

63 025 63 025(3.91)
25.6 lbf

( / 2) 3100(6.2 / 2)

a
a

H
F

n d
     

 

 The allowable torque Ta is 

 

25.6(6.2)
79.4 lbf · in

2 2

a
a

F d
T


    

 

 From Table 17-16, Kc = 0.965. Thus, Eq. (17-21) gives, 

 
2 2

5031.8
0.965 24.4 lbf

1000 1000
c c

V
F K

        
   

 

 

 At incipient slip, Eq. (17-9) provides: 

 

exp( ) 1 79.4 4.5489 1
20.0 lbf

exp( ) 1 6.2 4.5489 1
i

T f
F

d f




                   
 

 

 Eq. (17-10): 
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1

2exp( ) 2(4.5489)
24.4 20 57.2 lbf

exp( ) 1 4.5489 1
c i

f
F F F

f




             
 

 Thus,   F2 = F1  Fa = 57.2  25.6 = 31.6 lbf 

 

 Eq. (17-26):      
(3.91)(1)

1.003     .
3.9

a b
fs

d

H N
n A

H
   ns  

 

 If we had extrapolated for Htab, the factor of safety would have been slightly less than 

one. 

 
 Life  Use Table 17-16 to find equivalent tensions T1 and T2 . 

 

1 1 1 1

2 1 2 1

576
( ) 57.2 150.1 lbf

6.2
576

( ) 57.2 105.2 lbf
12

b
b

b
b

K
T F F F

d
K

T F F F
D

      

      
 

 

 From Table 17-17, K = 1193, b = 10.926, and from Eq. (17-27), the number of belt passes 

is: 

    

1

1 2

1
10.926 10.926

91193 1193
6.72(10 ) passes

150.1 105.2

b b

P

K K
N

T T

 

 

    
     
     
          
     

 

 

 From Eq. (17-28) for NP > 10
9
, 

 

    

910 (91.8)

720 720(5031.8)

25 340 h      .

P pN L
t

V
t A

 

 ns

 

 
 Suppose nf s was too small. Compare these results with a 2-belt solution. 

 

    

tab

nom

4 hp/belt,    39.6 lbf · in/belt,

12.8 lbf/belt,    3.91 hp/belt

2(3.91)
2.0

3(1.3)

a

a a

b a b a
fs

d s

H T
F H

N H N H
n

H H K

 
  

   

 

 

 Also,  F1 = 40.8 lbf/belt,             F2 = 28.0 lbf/belt 
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 1 2

1 2

10

9.99 lbf/belt,            24.4 lbf/belt

( ) 92.9 lbf/belt,       ( ) 48 lbf/belt

133.7 lbf/belt,          88.8 lbf/belt

2.39(10 ) passes,       605 600 h

i c

b b

P

F F
F F

T T

N t

 
 

 
 

 

 Initial tension of the drive: 

    (F i)drive = NbF i  = 2(9.99) = 20 lbf 

______________________________________________________________________________ 

 

17-18 Given: two B85 V-belts with d = 5.4 in, D = 16 in, n = 1200 rev/min, and Ks = 1.25 

 

 Table 17-11: Lp = 85 + 1.8 = 86.8 in 

 

 Eq. (17-17b): 

 
2

20.25 86.8 (16 5.4) 86.8 (16 5.4) 2(16 5.4)
2 2

26.05 in     .

C

Ans

                      


 

 
 Eq. (17-1): 

    

-1 16 5.4
180 2sin 156.5

2(26.05)
d

 
    

 
  

 

 From table 17-13 footnote: 

 

    K1 = 0.143 543 + 0.007 468(156.5°)  0.000 015 052(156.5°)
2
 = 0.944 

 

 Table 17-14:   K2 = 1 

 

 Belt speed:  
(5.4)(1200)

1696 ft/min
12

V


   

 

 Use Table 17-12 to interpolate for Htab. 
 

 
tab

2.62 1.59
1.59 (1696 1000) 2.31 hp/belt

2000 1000
H

      
Eq. (17-17) for two belts: 1 2 tab 0.944(1)(2)(2.31) 4.36 hpa bH K K N H    

 

 Assuming nd = 1, 

Hd = KsHnomnd = 1.25(1)Hnom 

 

 For a factor of safety of one, 
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nom

nom

4.36 1.25

4.36
3.49 hp     .

1.25

a dH H
H

H A




  ns

 

______________________________________________________________________________ 

 

17-19 Given: Hnom = 60 hp, n = 400 rev/min, Ks = 1.4, d = D = 26 in on 12 ft centers. 

 

 Design task: specify V-belt and number of strands (belts). Tentative decision: Use D360 

belts. 

 

 Table 17-11: Lp = 360 + 3.3 = 363.3 in 

 

 Eq. (17-16b):

 

2

20.25 363.3 (26 26) 363.3 (26 26) 2(26 26)
2 2

140.8 in (nearly 144 in)

C
                      



 

 

,    ,    exp[0.5123 ] 5.0,

(26)(400)
2722.7 ft/min

12 12

d D

dn
V

    
 

  

  
 

 

     Table 17-13:  For   = 180°,   K1 = 1 

 

 Table 17-14:  For D360,   K2 = 1.10 

 

 Table 17-12: Htab = 16.94 hp by interpolation 

 

 Thus,   Ha = K1K2Htab = 1(1.1)(16.94) = 18.63 hp / belt 

 

 Eq. (17-19): Hd = HnomKs nd  = 60(1.4)(1) = 84 hp 

 

 Number of belts, Nb 
 

    

84
4.51

18.63

d
b

a

H
N

H
    

 

 Round up to five belts. It is left to the reader to repeat the above for belts such as C360 

and E360. 
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63 025 63 025(18.63)
225.8 lbf/belt

( / 2) 400(26 / 2)

( ) 225.8(26)
2935 lbf · in/belt

2 2

a
a

a
a

H
F

n d
F d

T

   


  

 

 

 Eq. (17-21): 

    

2 2
2722.7

3.498 3.498 25.9 lbf/belt
1000 1000

c

V
F

           
 

 

 At fully developed friction, Eq. (17-9) gives 

 

    

exp( ) 1 2935 5 1
169.3 lbf/belt

exp( ) 1 26 5 1
i

T f
F

d f




          
 

 

 Eq. (17-10):   
1

2exp( ) 2(5)
25.9 169.3 308.1 lbf/belt

exp( ) 1 5 1
c i

f
F F F

f




               

     
2 1

 

308.1 225.8 82.3 lbf/belt

18.63 5
1.109     .

84

a

a b
f s

d

F F F

H N
n A

H

     

   ns
 

 Life From Table 17-16, 

    
1 2 1

5 680
308.1 526.6 lbf

26

bK
T T F

d
       

  Eq. (17-27): 

     
1

9

1 2

5.28 10 passes

b b

P

K K
N

T T

 


    
      
     

 

 

  Thus, NP  > 10
9

  passes     Ans. 
 

  Eq. (17-28): 
910 (363.3)

720 720(2722.7)

P pN L
t

V
   

 

  Thus, t   > 185 320 h     Ans. 
______________________________________________________________________________ 

 

17-20 Preliminaries: 14-in wide rim, H60 in,D  nom = 50 hp, n = 875 rev/min, Ks = 1.2, 

 nd = 1.1, mG = 875/170 = 5.147, 60 / 5.147 11.65 ind   
 

 (a) From Table 17-9, an 11-in sheave exceeds C-section minimum diameter and 

precludes D- and E-section V-belts. 

 

 Decision: Use d = 11 in, C270 belts 
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 Table 17-11:  Lp = 270 + 2.9 = 272.9 in 

 

 Eq. (17-16b): 

2

20.25 272.9 (60 11) 272.9 (60 11) 2(60 11)
2 2

76.78 in

C
                      



 

 

 This fits in the range 

  

 3( ) 60 3(60 11) 60 in 213 inD C D d C C         

1 60 11
2sin 2.492 rad 142.8

2(76.78)
d   
    

         1 60 11
2sin 3.791 rad

2(76.78)
D   
    

    exp(f d) =  exp[0.5123(2.492)] = 3.5846 

 

 For the flat on flywheel, f = 0.13 (see p. 900), exp(f D) =  exp[0.13(3.791)] = 1.637. 

 

 The belt speed is 

(11)(875)
2520 ft/min

12 12

dn
V

 
    

     Table 17-13:  

 

   K1 = 0.143 543 + 0.007 468(142.8°)  0.000 015 052(142.8°)
2
 = 0.903 

 

 Table 17-14:  K2 = 1.15 

 

 For interpolation of Table 17-12, let x be entry for d = 11.65 in and n = 2000 ft/min, and y 

be entry for d = 11.65 in and n = 3000 ft/min. Then, 

 

    
6.74 7.17 6.74

7.01 hp at 2000 ft/min
11.65 11 12 11

x
x

 
  

 
 

 and 

    
8.11 8.84 8.11

8.58 hp at 3000 ft/min
11.65 11 12 11

y
y

 
  

 
 

 

 Interpolating these for 2520 ft/min gives 

 

    tab
tab

8.58 3000 2520
7.83 hp/belt

8.58 7.01 3000 2000

H
H

 
  

 
  

 

 Eq. (17-17):     Ha = K1K2Htab = 0.903(1.15)(7.83) = 8.13 hp 
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 Eq. (17-19):     Hd = HnomKsnd = 50(1.2)(1.1) = 66 hp 

 

 Eq. (17-20): 
66

8.1 belts
8.13

d
b

a

H
N

H
    

 
 Decision: Use 9 belts. On a per belt basis, 

 

    
63 025 63 025(8.13)

106.5 lbf/belt
( / 2) 875(11 / 2)

a
a

H
F

n d
     

106.5(11)
586.8 lbf · in per belt

2 2

a
a

F d
T


    

 Table 17-16: Kc = 1.716 

     Eq. (17-21): 

2 2
2520

1.716 1.716 10.9 lbf/belt
1000 1000

c

V
F         

   
 

 

 At fully developed friction, Eq. (17-9) gives 

 

exp( ) 1 586.9 3.5846 1
94.6 lbf/belt

exp( ) 1 11 3.5846 1

d
i

d

T f
F

d f




           
 

 Eq. (17-10): 

   1

2exp( ) 2(3.5846)
10.9 94.6 158.8 lbf/belt

exp( ) 1 3.5846 1

d
c i

d

f
F F F

f




             
 

 

    
2 1

 

158.8 106.7 52.1 lbf/belt

9(8.13)
1.11 . .     .

66

a

b a
f s

d

F F F
N H

n O
H

     

   K Ans
 

 Durability: 

    
 

 
 

 
 

1

2

1 1 1

2 1 2

/ 1600 / 11 145.5 lbf/belt

/ 1600 / 60 26.7 lbf/belt

158.8 145.5 304.3 lbf/belt

158.8 26.7 185.5 lbf/belt

b b

b b

b

b

F K d

F K D

T F F

T F F

  

  

    

    

 

 Eq. (17-27) with Table 17-17: 

    

 

1 1
11.173 11.173

1 2

9 9

2038 2038

304.3 185.5

1.68 10 passes 10 passes .

b b

P

K K
N

T T

Ans

                          
            

 

   

 

 Since NP is greater than 10
9
 passes and is out of the range of Table 17-17, life from Eq. 

(17-27)  is 
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     
9

310 (272.9)
150 10 h

720 720(2520)

P pN L
t

V
    

 

 Remember:       (F i)drive = 9(94.6) = 851.4 lbf 

 

 Table 17-9: C-section belts are 7/8 in wide. Check sheave groove spacing to see if 14 in 

width is accommodating. 

 

 (b) The fully developed friction torque on the flywheel using the flats of the V-belts, 

from Eq. (17-9), is 

    
flat

exp( ) 1 1.637 1
94.6(60) 1371 lbf · in per belt

exp( ) 1 1.637 1
i

f
T FD

f




          
 

 

 The flywheel torque should be 

 
    Tfly = mGTa = 5.147(586.9) = 3021 lbf · in per belt 

 

 but it is not. There are applications, however, in which it will work. For example, 

 make the flywheel controlling. Yes.     Ans. 
______________________________________________________________________________ 

 

17-21  
 (a)  
   S is the spliced-in string segment length 

   De is the equatorial diameter 

  D  is the spliced string diameter 
    is the radial clearance 

   S + De = D  = (De + 2) = De + 2 
 

 

 

From which 

    2

S


  

 
 The radial clearance is thus independent of De. 

 

    

12(6)
11.5 in     .

2
Ans


   

 
 This is true whether the sphere is the earth, the moon or a marble. Thinking in terms of a 

radial or diametral increment removes the basic size from the problem. 

 
 (b) and (c) 
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 Table 17-9: For an E210 belt, the thickness is 1 in. 

 

210 4.5 210 4.5

4.5
2

4.5
0.716 in

2

P id d
  








   



 

 

 

The pitch diameter of the flywheel is 

 

2 2 60 2(0.716) 61.43 inP PD D D D          

 

 We could make a table: 

 

Section Diametral 

Growth A B C D E 

2 
1.3


 

1.8


2.9


3.3


4.5


 
 The velocity ratio for the D-section belt of Prob. 17-20 is 

 
2 60 3.3 /

5.55     .
11

G

D
m A

d
ns

  
    

 
 for the V-flat drive as compared to ma = 60/11 = 5.455 for the VV drive. 

 The pitch diameter of the pulley is still d = 11 in, so the new angle of wrap, d, is 

 
1

1

2
2sin      .

2
2

2sin      .
2

d

D

D d
Ans

C
D d

Ans
C

 

 





 
 

 
 
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 Equations (17-16a) and (17-16b) are modified as follows 

 
2

2

2

( )
2 ( 2 )      .

2 4

0.25 ( 2 )
2

( 2 ) 2( 2 )      .
2

p

p p

p

D d
L C D d Ans

C

C L D d

L D d D d

 

 

  

 
    

      
           

Ans

 

 The changes are small, but if you are writing a computer code for a V-flat drive, 

remember that d and D changes are exponential. 

______________________________________________________________________________ 

 

17-22 This design task involves specifying a drive to couple an electric motor running at 1720 

rev/min to a blower running at 240 rev/min, transmitting two horsepower with a center 

distance of at least 22 inches. Instead of focusing on the steps, we will display two 

different designs side-by-side for study. Parameters are in a “per belt” basis with per 

drive quantities shown along side, where helpful. 

 

Parameter Four A-90 Belts Two A-120 Belts 

mG 7.33 7.142 

Ks 1.1 1.1 

nd 1.1 1.1 

K1 0.877 0.869 

K2 1.05 1.15 

d, in 3.0 4.2 

D, in 22 30 

d, rad 2.333 2.287 

V, ft/min 1350.9 1891 

exp(fd ) 3.304 3.2266 
Lp, in 91.3 101.3 

C, in 24.1 31 

Htab, uncorr. 0.783 1.662 

NbHtab, uncorr. 3.13 3.326 

Ta, lbf · in 26.45(105.8) 60.87(121.7) 

Fa, lbf 17.6(70.4) 29.0(58) 

Ha, hp 0.721(2.88) 1.667(3.33) 

nf s 1.192 1.372 

F1, lbf 26.28(105.2) 44(88) 

F2, lbf 8.67(34.7) 15(30) 

(Fb)1, lbf 73.3(293.2) 52.4(109.8) 

(Fb)2, lbf 10(40) 7.33(14.7) 

Fc, lbf 1.024 2.0 

F i , lbf 16.45(65.8) 27.5(55) 

T1, lbf · in 99.2 96.4 
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T2, lbf · in 36.3 57.4 
, passesN  1.61(10

9
) 2.3(10

9
) 

t >  h 93 869 89 080 

 

 Conclusions: 

 � Smaller sheaves lead to more belts. 

 � Larger sheaves lead to larger D and larger V. 
 � Larger sheaves lead to larger tabulated power. 

 � The discrete numbers of belts obscures some of the variation. The factors of safety 

    exceed the design factor by differing amounts. 

______________________________________________________________________________ 

17-23 In Ex. 17-5 the selected chain was 140-3, making the pitch of this 140 chain14/8 = 1.75 

in. Table 17-19 confirms. 

______________________________________________________________________________ 

 
17-24 (a) Eq. (17-32): 

 
1.08 0.9 (3 0.07 )

1 1 10.004 pH N n p 
 

  Eq. (17-33):  
1.5 0.8

1
2 1.5

1

1000 rK N p
H

n
  

  Equating and solving for n1 gives 

 
1/ 2.4

6 0.42

1
1 (2.2 0.07 )

0.25(10 )
     .r

p

K N
n A

p 

 
  
 

ns  

 

 (b) For a No. 60 chain, p = 6/8 = 0.75 in,   N1 = 17,   Kr  = 17 

 
1/ 2.4

6 0.42

1 [2.2 0.07(0.75)]

0.25(10 )(17)(17)
1227 rev/min     .

0.75
n A

 
  
 

ns  

 

  Table 17-20 confirms that this point occurs at 1200 ± 200 rev/min. 

 

 (c) Life predictions using Eq. (17-40) are possible at speeds greater than 1227 rev/min.     

 Ans. 
______________________________________________________________________________ 

 
17-25 Given: a double strand No. 60 roller chain with p = 0.75 in, N1 = 13 teeth at 300 rev/min, 

N2 = 52 teeth. 
 

 (a) Table 17-20:  Htab = 6.20 hp 

  Table 17-22:  K1 = 0.75 

  Table 17-23:  K2 = 1.7 

  Use   Ks = 1 

  Eq. (17-37): 

     Ha = K1K2Htab = 0.75(1.7)(6.20) = 7.91 hp     Ans. 
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 (b) Eqs. (17-35) and (17-36) with L/p = 82 

 

     

2

2

13 52
82  49.5

2

52 13
49.5 49.5 8 23.95

4 2

23.95(0.75) 17.96 in,   round up to 18 in     .

A

p
C p

C A



ns


   

          
 

 

 
 (c) For 30 percent less power transmission, 

 

     

0.7(7.91) 5.54 hp

63 025(5.54)
1164 lbf · in     .

300

H

T A

 

  ns
 

  Eq. (17-29): 

o

0.75
3.13 in

sin(180 /13)

1164
744 lbf     .

3.13 / 2

D

T
F Ans

r

 

  
 

______________________________________________________________________________ 

 
17-26 Given: No. 40-4 chain, N1 = 21 teeth for n = 2000 rev/min, N2 = 84 teeth, h = 20 000 

hours. 
 (a) Chain pitch is p = 4/8 = 0.500 in and  20 in.C 
 

  Eq. (17-34): 

    

 2

1 21 2

2

2

2

2

2 4 /

2(20) 21 84 (84 21)
135 pitches    (or links)

0.5 2 4 (20 / 0.5)

N NL C N N

p p C p




 

 
   


 

    L = 135(0.500) = 67.5 in     Ans. 
 
 (b) Table 17-20:  Htab = 7.72 hp (post-extreme power) 

 

  Eq. (17-40): Since K1 is required, the  term is omitted (see p. 914). 3.75

1N

 

     

 2.5

1/ 2.5

tab

7.72 (15 000)
constant 18 399

135

18 399(135)
6.88 hp     .

20 000
H Ans

 

     
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 (c) Table 17-22: 

     

1.5

1

21
1.37

17
K

    
 

 

  Table 17-23:    K2 = 3.3 

 

      1 2 tab 1.37(3.3)(6.88) 31.1 hp     .aH K K H An   s

 

 (d)     1 21(0.5)(2000)
1750 ft/min

12 12

N pn
V     

     
1

33 000(31.1)
586 lbf     .

1750
F Ans   

______________________________________________________________________________ 

 
17-27 This is our first design/selection task for chain drives. A possible decision set: 

 

A priori decisions 

� Function: Hnom, n1, space, life, Ks 
� Design factor: nd 
� Sprockets: Tooth counts N1 and N2, factors K1 and K2 

 

Decision variables 

� Chain number 

� Strand count 

� Lubrication type 

� Chain length in pitches 

 

Function: Motor with Hnom = 25 hp at n = 700 rev/min; pump at n = 140 rev/min; 

       mG = 700/140 = 5 

Design Factor: nd = 1.1 

Sprockets: Tooth count N2 = mGN1 = 5(17) = 85 teeth–odd and unavailable. Choose 

        84 teeth. Decision: N1 = 17, N2 = 84 

 

Evaluate K1 and K2 

Eq. (17-38):   Hd = HnomKsnd 
Eq. (17-37):   Ha = K1K2Htab 

 

Equate Hd to Ha and solve for Htab : 

    nom
tab

1 2

s dK n H
H

K K
  

Table 17-22:   K1 = 1 

 

Table 17-23:   K2 = 1, 1.7, 2.5, 3.3 for 1 through 4 strands 
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tab

2 2

1.5(1.1)(25) 41.25

(1)
H

K K
   

 

Prepare a table to help with the design decisions: 

 

Strands K2 tabH 
Chain 

No. Htab nf s 

Lub. 

Type 

1 1.0 41.3 100 59.4 1.58 B 

2 1.7 24.3   80 31.0 1.40 B 

3 2.5 16.5   80 31.0 2.07 B 

4 3.3 12.5   60 13.3 1.17 B 

Design Decisions 
We need a figure of merit to help with the choice. If the best was 4 strands of No. 60 

chain, then 

 

Decision #1 and #2: Choose four strand No. 60 roller chain with nf s = 1.17. 

 

    

1 2 tab

nom

1(3.3)(13.3)
1.17

1.5(25)
fs

s

K K H
n

K H
    

 

Decision #3: Choose Type B lubrication 

Analysis: 

Table 17-20:  Htab = 13.3 hp 

Table 17-19:   p = 0.75 in 

 

Try C = 30 in in Eq. (17-34): 

 
2

1 2 2 1

2

2

2

2 ( )

2 4 /

17 84 (84 17)
2(30 / 0.75)

2 4 (30 / 0.75)

133.3

L C N N N N

p p C p



 
 

 
  





 
 

    L = 0.75(133.3) = 100 in (no need to round) 

 

Eq. (17-36) with p = 0.75 in: 1 2 17 84 100
82.83

2 2 0.75

N N L
A

p

 
       

Eq. (17-35): 

   

   

2

2 2 1

2
2

8
4 2

0.75 84 17
82.83 82.83 8 30.0 in

4 2

p N N
C A A





           
             
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Decision #4: Choose C = 30.0 in. 

______________________________________________________________________________ 

 
17-28 Follow the decision set outlined in Prob. 17-27 solution. We will form two tables, the 

first for a 15 000 h life goal, and a second for a 50 000 h life goal. The comparison is 

useful. 

 
Function: Hnom = 50 hp at n = 1800 rev/min, npump = 900 rev/min, mG = 1800/900 = 2,    

      Ks = 1.2, life = 15 000 h, then repeat with life = 50 000 h 

Design factor: nd = 1.1 

Sprockets: N1 = 19 teeth, N2 = 38 teeth 

Table 17-22 (post extreme): 

    

1.5 1.5

1
1

19
1.18

17 17

N
K

           
 

Table 17-23:  K2 = 1, 1.7, 2.5, 3.3, 3.9, 4.6, 6.0 

 
Decision variables for 15 000 h life goal: 

 

    

nom
tab

1 2 2 2

1 2 tab 2 tab
 2 tab

nom

1.2(1.1)(50) 55.9
                               (1)

1.18

1.18
0.0197

1.2(50)

s d

f s
s

K n H
H

K K K K
K K H K H

n K
K H

   

   H
 

 

Form a table for a 15 000 h life goal using these equations. 

 

K2  H'tab Chain # Htab nf s Lub 

1 55.90 120 21.6 0.423 C' 

1.7 32.90 120 21.6 0.923 C' 

2.5 22.40 120 21.6 1.064 C' 

3.3 16.90 120 21.6 1.404 C' 

3.9 14.30 80 15.6 1.106 C' 

4.6 12.20 60 12.4 1.126 C' 

6 9.32 60 12.4 1.416 C' 

 

There are 4 possibilities where nf s ≥ 1.1 

 

Decision variables for 50 000 h life goal 
From Eq. (17-40), the power-life tradeoff is: 
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2.5 2.5

tab tab

1/ 2.5

2.5

tab tab tab

( ) 15 000 ( ) 50 000

15 000
( ) 0.618 

50 000

H H

H H

 

      
H

 

 

Substituting from (1), 

 

tab

2 2

55.9 34.5
0.618H

K K

 
    

 

 

The H   notation is only necessary because we constructed the first table, which we 

normally would not do. 

   

1 2 tab 1 2 tab
 2 tab

nom nom

2 tab

(0.618 )
0.618[(0.0197) ]

0.0122

f s
s s

K K H K K H
n K

K H K H
K H

H
 

  


 

 

Form a table for a 50 000 h life goal. 

 

K2 H'' tab Chain # Htab nf s Lub 

1 34.50 120 21.6 0.264 C' 

1.7 20.30 120 21.6 0.448 C' 

2.5 13.80 120 21.6 0.656 C' 

3.3 10.50 120 21.6 0.870 C' 

3.9 8.85 120 21.6 1.028 C' 

4.6 7.60 120 21.6 1.210 C' 

6 5.80 80 15.6 1.140 C' 

 

There are two possibilities in the second table with nf s ≥ 1.1. (The tables allow for the 

identification of a longer life of the outcomes.) We need a figure of merit to help with 

the choice; costs of sprockets and chains are thus needed, but is more information than 

we have. 

 

Decision #1:  #80 Chain (smaller installation)     Ans. 
   nf s = 0.0122K2Htab = 0.0122(8.0)(15.6) = 1.14   O.K. 
Decision #2:  8-Strand, No. 80     Ans. 
Decision #3:  Type C Lubrication     Ans. 
Decision #4:  p = 1.0 in, C is in midrange of 40 pitches 
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2

1 2 2 1

2

2

2

2 (

2 4 /

19 38 (38 19)
2(40)

2 4 (40)

108.7  110 even integer     .

L C N N N N

p p C p

Ans





 
 

 
  

 

 )

 

Eq. (17-36): 

    

1 2 19 38 110
81.5

2 2 1

N N L
A

p

 
       

 

Eq. (17-35):  

2

21 38 1
( 81.5) ( 81.5) 8 40.64

4 2

C

p 

             

9
 

 
C = p(C/p) = 1.0(40.64/1.0) = 40.64 in (for reference)     Ans. 

______________________________________________________________________________ 

 
17-29 The objective of the problem is to explore factors of safety in wire rope. We will express 

strengths as tensions. 

 

(a) Monitor steel 2-in 6  19 rope, 480 ft long. 

 

Table 17-2: Minimum diameter of a sheave is 30d = 30(2) = 60 in, preferably 

45(2) = 90 in. The hoist abuses the wire when it is bent around a sheave. Table 17-24 

gives the nominal tensile strength as 106 kpsi. The ultimate load is 

 

  

2

nom nom

(2)
( ) 106 333 kip     .

4
u uF S A Ans

 
   

 
 

 
The tensile loading of the wire is given by Eq. (17-46) 

 

  

1

4(2) 8 kip,    1

t

W a
F l

m g
W m

      
  

  

w
 

 

Table (17-24): 

  wl = 1.60d 2 l = 1.60(2
2
)(480) = 3072 lbf = 3.072 kip 

 

Therefore, 

  
2

(8 3.072) 1 11.76 kip     .
32.2

tF Ans
      

 

Eq. (17-48): 

r m
b

E d A
F

D
 w  
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and for the 72-in drum 

 

 
612(10 )

F 
 

2 3(2 / 13)(0.38)(2 )(10 )
39 kip     .

72
b Ans



  

 

in Eq. (17-44), from Fig. 17-21 For use 

 

( / ) 0.0014up S 
240 kpsi,      p. 920

0.0014(240)(2)(72)
24.2 kip     .

2

u

f

S

F Ans



 

 

(b) Factors of safety 

 Static, no bending: 
333

28.3     .
11.76

u

t

F
n A

F
    ns

 
 Static, with bending: 

333 39
25.0     .

11.76

u b
s

t

F F
n A

F
 Eq. (17-49):     ns

 
    

 
 Fatigue without bending: 

24.2
2.06     .

11.
f

t

n
F

 
   

76

fF
Ans  

 

, with bending: For a life of 0.1(10
6
) cycles, from Fig. 17-21 

   

 Fatigue
 

( / ) 4 / 1000 0.004up S  
0.004(240)(2)(72)

69.1 kip
2

fF  
 

 

50):  
69.1 39

2.56     .
11.76

fn A Eq. (17- ns


   

 
 If we were to use the endurance strength at 10

6
 cycles (Ff  = 24.2 kip) the factor of 

safety would be less than 1 indicating 10
6
 cycle life impossible. 

ber of factors of safety used in wire rope analysis. They are different, 

ent meanings. There is no substitute for knowing exactly which factor 

opes, with multiple ropes 

 

 

Comments: 

� There are a num

 with differ

 of safety is written or spoken. 

� Static performance of a rope in tension is impressive. 

 have a finite life. � In this problem, at the drum, we

� The remedy for fatigue is the use of smaller diameter r
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 supporting the load. See Ex. 17-6 for the effectiveness of this approach. It will also 

ar and breaks; such ropes should be retired. Periodic 

______________________________________________________________________________ 

 

ight, acceleration, velocity, life goal 

 

r of strands, number of wires per strand 

pporting wires: m 
rob. 17-29, a 1-in diameter rope is not likely to have much of a 

and m decisions open. 

ity = 2 ft/s, life 

      goal = 10  cycles 

a ri
 plow-steel 6  19 hoisting 

hoose 30-in D n. Table 17-27: w = 1.60d  lbf/ft 

= 1.60d 2l = 1.60d 2
(90) = 144d 2

 lbf, each 

: 

   

 be used in Prob. 17-30. 

� Remind students that wire ropes do not fail suddenly due to fatigue. The outer 

 wires gradually show we

 inspections prevent fatigue failures by parting of the rope. 

17-30 Since this is a design task, a decision set is useful. 

A priori decisions 

� Function: load, he

� Design Factor: nd

� Material: IPS, PS, MPS or other 

� Rope: Lay, numbe

Decision variables: 

� Nominal wire size: d 
� Number of load-su

From experience with P

life, so approach the problem with the d 
 

Function: 5000 lbf load, 90 foot lift, acceleration = 4 ft/s
2
, veloc

5
 

Design Factor: nd = 2 

M te al: IPS 

Rope: Regular lay, 1-in

 

Design variables 
 2

C mi

    wl 
 

Eq. (17-46)

2

2

5000 4
1 144 1

32.2

5620
162  lbf,   each wire

t

W a
F l d

m g m

d
m

             
    

 

w

 





Eq. (17-47): 

( / )

2

u u
f

p S S Dd
F   

   
 

7-21 for 10
5
 cycles, p/Su = 0.004. From p. 920, Su = 240 kpsi, based on 

metal area. 

From Fig. 1

0.004(240 000)(30 )
14 400  lbf   each wire

d
F d   

   2
f

 

 and Table 17-27: Eq. (17-48)
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   6 2

3
12 10 0.067 0.4

10 720  lbf,   each wire
30

m
b

d dE d A
w w

   
F d

D
    

Eq. (17-45): 

   

3

2

14 400 10 720

(5620 / ) 162

f b
f

t

F F d d
n

F m

 
 


 

d

 

se a computer program to build a table similar to that of Ex. 17-6. 

lternatively, we could recognize that 162 d 2
 is small compared to 5620 / m, and 

We could u

A

therefore eliminate the 162d 2
 term. 

 
3

314 400 10 d
n d

 720
(14 400 10 720 )

5620 / 5620
f

d m
d

m
   

 

Maximize nf , 

20 [14 400 3(10 720) ]
5620

fn m
d

d


  


 

From which 

14 400
* 0.669 in

3(10 720)
d    

Back-substituting 

3[14 400(0.669) 10 720(0.669 )] 1.14 m
5620

f

m
n     

 

Thus nf  = 1.14, 2.28, 3.42, 4.56 for m=1, 2, 3, 4 respectively. If we choose d = 0.50 in, 

then m = 2. 
314 400(0.5) 10 720(0.5 )

2.06n


   
2(5620 / 2) 162(0.5)

f 
 

This exceeds nd = 2 

in 

s supporting load. Rope should be inspected weekly for any 

gns of fatigue (broken outer wires). 

ght elevators in terms of velocity. 

 

Decision #1: d = 1/2 

 

Decision #2: m = 2 rope

si

 

Comment: Table 17-25 gives n for frei

 
2

2( ) 106 000 83 252  lbf,   each wire
d

F S A d
 

  nom nom

2

2

4

83 452(0.5)
7.32

(5620 / 2) 162(0.5)

u u

u

t

F
n

F

  

  

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By comparison, interpolation for 120 ft/min gives 7.08 - close. The category of 

construction hoists is not addressed in Table 17-25. We should investigate this before 

proceeding further. 

______________________________________________________________________________ 

 
17-31  2 ft/s

2. 
 

nom = 106 kpsi; Su = 240 kpsi (p. 920); Fig. 17-21: (p/Su)10  = 

 

Given: 2000 ft lift, 72 in drum, 6  19 MS rope, cage and load 8000 lbf, accel. =

(a) Table 17-24: (Su)
6

0.0014 

 Eq. (17-44): 

 / 0.0014(240) (72)

   
12.1  kip

2 2

u u
fF d    

 

p S S dD d

wl = 1.6d 2
 2000(10

3
) = 3.2d 2

  kip 

46):  

 Table 17-24: 

 

( ) 1t

a
F W l

g

 
   w   Eq. (17-

 

          
2 2

(8 3.2 ) 1d
     

2

32.2

8.5 3.4  kipd   

 Note that bending is not included. 

    

 

2

12.1

8.5 3.4

fF d

tF d



 

n 

 

d, in n  

0.500 0.650  

1.000 1.020  

1.500 1.124  

 1 5 ← maximum n     Ans.1.625

1.750

.12

.12

 

  1 0  

2.000 1.095  

 

 (b) Try m = s4 strand  
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2

2

2

8 2
3.2 1

4 32.2

2.12 3.4  kip

12.1  kip

12.1

2.12 3.4

t

f

F d

d
F d

d
n

d

           
 



  

 

d, in n  

0.5000 2.037  

0.5625 2.130  

0.6520 2.193  

0.7500 2.250 ← maximum n     Ans.
0.8750 2.242  

1.0000 2.192  

 

Comparing tables, multiple ropes supporting the load increases the factor of safety, 

and reduces the corresponding wire rope diameter, a useful perspective. 

______________________________________________________________________________ 
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17-32  

    

2

2

2 2

/

( / ) (2 )
0

( / )

ad
n

b m cd
dn b m cd a ad cd

dd b m cd



 

 


 

 From which 

*      .

/ ( )
*      

( / ) [ / ( )] 2

b
d Ans

mc
a b mc a m

n A
b m c b mc bc



 


.ns

 

 
 These results agree closely with the Prob. 17-31 solution. The small differences are due 

to rounding in Prob. 17-31. 

______________________________________________________________________________ 

 
17-33 From Prob. 17-32 solution: 

 

    
1 2/

ad
n

b m cd



 

 

 Solve the above equation for m 
 

       
 

2

1

2

1 1

2
2

1

                                              (1)
/

/ (0) /
0

/

b
m

ad n cd

ad n ad b a n cddm

dd ad n cd




  2      
  

 

 

 From which  
1

*      .
2

a
d A

cn
 ns  

 

 Substituting this result for d into Eq. (1) gives 

 

    
1

2

4
*      .

bcn
m A

a
 ns  

______________________________________________________________________________ 

 
17-34 Note to the Instructor. In the first printing of the ninth edition, the wording of this 

problem is incorrect. It should read “ For Prob. 17-29 estimate the elongation of the rope 

if a 7000 lbf loaded mine cart is placed in the cage which weighs 1000 lbf. The results of 

Prob. 4-7 may be useful”. This will be corrected in subsequent printings. We apologize 

for any inconvenience encountered. 
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 Table 17-27: 

   

 

   

2 2 2

2 2

3

0.40 0.40(2 ) 1.6 in

12 Mpsi,   1.6 1.6(2 ) 6.4 lbf/ft

6.4(480) 3072 lbf

/ 3072 / 1.6(480)12 0.333 lbf/in

m

r

m

A d

E d
l

l A l

  
   
 

 

w

w

w

 

 Treat the rest of the system as rigid, so that all of the stretch is due to the load of 7000 lbf, 

the cage weighing 1000 lbf, and the wire’s weight. From the solution of Prob. 4-7, 

 
2

1

2 2

6 6

2

(1000 7000)(480)(12) 0.333(480 )12

1.6(12)(10 ) 2(12)(10 )

2.4 0.460 2.860 in             .

Wl l

AE E

Ans

  


 

  

 

 

______________________________________________________________________________ 

 
17-35 to 17-38   Computer programs will vary.  
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Chapter 20 
 

 

 

20-1 (a) 

 
 

 (b) f / (Nx) = f / [69(10)] = f / 690 

 

 

 
x f f x f x2 f / (Nx)

60 2 120 7200 0.0029

70 1 70 4900 0.0015

80 3 240 19200 0.0043

90 5 450 40500 0.0072

100 8 800 80000 0.0116

110 12 1320 145200 0.0174

120 6 720 86400 0.0087

130 10 1300 169000 0.0145

140 8 1120 156800 0.0116

150 5 750 112500 0.0174

160 2 320 51200 0.0029

170 3 510 86700 0.0043

180 2 360 64800 0.0029

190 1 130 36100 0.0015

200 0 0 0 0

210 1 210 44100 0.0015

 69 8480 1 104 600  
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 Eq. (20-9): 
8480

122.9 kcycles
69

x    

 

 Eq. (20-10):  

1 2
21 104 600 8480 / 69

30.3 kcycles    .
69 1

xs A
 

   
ns  

______________________________________________________________________________ 

 

20-2 Data represents a 7-class histogram with N = 197. 

 

x        f        f x         f x2 

174 6 1044 181 656

182 9 1638 298 116

190 44 8360 1 588 400

198 67 13 266 2 626 688

206 53 10 918 2 249 108

214 12 2568 549 552

220 6 1320 290 400

 197 39 114 7 789 900

 

   

39 114
198.55 kpsi   .

197
x Ans   

    

1 2
27 783 900 39 114 /197

9.55 kpsi   .
197 1

s A
 

   
ns  

______________________________________________________________________________ 

 

20-3 Form a Table: 

 

 

 

    

 

 

  

 

     

  x         f        fx         fx2 

64 2 128 8192

68 6 408 27 744

72 6 432 31 104

76 9 684 51 984

80 19 1520 121 600

84 10 840 70 560

88 4 352 30 976

92 2 184 16 928

 58 4548 359 088
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4548
78.4 kpsi .

58
x Ans 

 

    

1 2
2359 088 4548 / 58

6.57 kpsi .
58 1

xs A
 

   
ns  

 

 From Eq. 20-14     

    

 
2

1 1 78.4
exp .

2 6.576.57 2

x
f x A



     
   

ns  

______________________________________________________________________________ 

 

20-4 (a) 
 

x       f      f y      f y2 y    f / (Nw)      f (y)      g(y) 
5.625 1 5.625 31.64063 5.625 0.072 727 0.001 262 0.000 295

5.875 0 0 0 5.875 0 0.008 586 0.004 088

6.125 0 0 0 6.125 0 0.042 038 0.031 194

6.375 3 19.125 121.9219 6.375 0.218 182 0.148 106 0.140 262

6.625 3 19.875 131.6719 6.625 0.218 182 0.375 493 0.393 667

6.875 6 41.25 283.5938 6.875 0.436 364 0.685 057 0.725 002

7.125 14 99.75 710.7188 7.125 1.018 182 0.899 389 0.915 128

7.375 15 110.625 815.8594 7.375 1.090 909 0.849 697 0.822 462

7.625 10 76.25 581.4063 7.625 0.727 273 0.577 665 0.544 251

7.875 2 15.75 124.0313 7.875 0.145 455 0.282 608 0.273 138

8.125 1 8.125 66.015 63 8.125 0.072 727 0.099 492 0.106 720

 55 396.375 2866.859     

 

 For a normal distribution, 

  

  1 2
22866.859 396.375 / 55

396.375 / 55 7.207,      0.4358
55 1

yy s
 

    
 

  

   

 
2

1 1 7.207
exp

2 0.43580.4358 2

x
f y



          
 

 For a lognormal distribution, 
2 2ln 7.206 818 ln 1 0.060 474 1.9732,      ln 1 0.060 474 0.0604xx s        

 
   

2
1 1 ln 1.9732

exp
2 0.06040.0604 2

x
g y

x 

        
 

 

Chapter 20, Page 3/29 



 (b) Histogram 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

______________________________________________________________________________ 

 

20-5 Distribution is uniform in interval 0.5000 to 0.5008 in, range numbers are a = 0.5000 in,  

 b = 0.5008 in. 

 (a)  Eq. (20-22) 
0.5000 0.5008

0.5004
2 2

x

a b  
    

 

  Eq. (20-23) 
0.5008 0.5000

0.000 231
2 2 3

x

b a  
    

 

 (b)  PDF, Eq. (20-20)  

     

 
1250     0.5000 x 0.5008 in

( )
0          otherwise

f x
 

 


 

 (c)  CDF, Eq. (20-21)  

     

 

0                0.5000 in

( ) ( 0.5) / 0.0008     0.5000 0.5008 in

1                              0.5008 in

x

F x x x

x


   
 

 

  If all smaller diameters are removed by inspection, a = 0.5002 in, b = 0.5008 in, 

 

    

0.5002 0.5008
0.5005 in

2

0.5008 0.5002
ˆ 0.000 173 in

2 3

x

x






 


 

 

     
1666.7     0.5002 0.5008 in

( )
0              otherwise

x
f x

 
 

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0                                  0.5002 in

( ) 1666.7( 0.5002)     0.5002 0.5008 in

1                                   0.5008 in

x

F x x x

x


   
 

______________________________________________________________________________ 

   
20-6 Dimensions produced are due to tool dulling and wear. When parts are mixed, the 

distribution is uniform. From Eqs. (20-22) and (20-23), 

 

 

 
 

3 0.6241 3 0.000 581 0.6231 in

3 0.6241 3 0.000 581 0.6251 in

x

x

a s

b s





    

    
 

 

 We suspect the dimension was 
0.623

in     .
0.625

Ans  

______________________________________________________________________________ 

 

20-7 F(x) = 0.555x – 33 mm.  

 (a) Since F(x) is linear, distribution is uniform at x = a 
 

    F(a) = 0 = 0.555(a) – 33 

 

   a = 59.46 mm. Therefore at x = b 

 
    F(b) = 1= 0.555b – 33 

 

   b = 61.26 mm. Therefore, 

 

    

 

0                      59.46 mm

( ) 0.555 33     59.46 61.26 mm

1                      61.26 mm

x

F x x x

x


   
 

 

  The PDF is dF/dx, thus the range numbers are: 

 

    

0.555     59.46 61.26 mm
( )      .

0            otherwise

x
f x A

 
 


ns  

 

  From the range numbers, 

 

    

59.46 61.26
60.36 mm     .

2

61.26 59.46
ˆ 0.520 mm     .

2 3

x

x

Ans

Ans






 


 
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 (b)   is an uncorrelated quotient 23600 lbf, 0.112 inF A   

 

    
300 3600 0.083 33,  0.001 0.112 0.008 929F AC C     

 

  From Table 20-6, For    

 

    

 
 

1/2
2 2

2

3600
32 143 psi     .

0.112

0.08333 0.008929
ˆ 32 143 2694 psi     .

1 0.008929

2694 / 32 143 0.0838     .

F

A

Ans

Ans

C Ans










  

 
  

  
 

 

 

  Since F and A are lognormal, division is closed and   is lognormal too. 

 

 = LN(32 143, 2694) psi     Ans. 
______________________________________________________________________________ 

 

20-8 Cramer’s rule 

 

    

 

 

2

3 3 2

1 22 3 2

2 3

2 2

2 22 3 2

2 3

    .

    .

y x

xy x y x xy x
a A

x x x x x
x x

x y

x xy y xy y x
a A

x x x x x
x x


 




 



 
     
    
 
 
     
    
 

ns

ns

 
 

   x      y       x2
       x3

      xy 

 0 0.01 0 0 0

 0 0.15 0.04 0.008 0.030

 0 0.25 0.16 0.064 0.100

 1 0.25 0.36 0.216 0.150

 1 0.17 0.64 0.512 0.136

 1 0.01 1.00 1.000 0.010

 3 0.82 2.20 1.800 0.406

 
    a1 =  1.040 714 a2 = 1.046 43     Ans. 
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  Data Regression 

        x        y       y 

0 0.01 0

0.2 0.15 0.166 286

0.4 0.25 0.248 857

0.6 0.25 0.247 714

0.8 0.17 0.162 857

1.0 -0.01 -0.005 710 

 

 

     
 

______________________________________________________________________________ 

 

20-9  
   Data Regression     

 
       Su 

 

 

 

 
       Su

2
 

 

 

 0  20.356 75    

 60 30 39.080 78 3 600 1 800 

 64 48 40.329 05 4 096 3 072 

 65 29.5 40.641 12 4 225 1 917.5 

 82 45 45.946 26 6 724 3 690 

 101 51 51.875 54 10 201 5 151 

 119 50 57.492 75 14 161 5 950 

 120 48 57.804 81 14 400 5 760 

 130 67 60.925 48 16 900 8 710 

 134 60 62.173 75 17 956 8 040 

 145 64 65.606 49 21 025 9 280 

 180 84 76.528 84 32 400 15 120 

eS  
u eS SeS
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 195 78 81.209 85 38 025 15 210 

 205 96 84.330 52 42 025 19 680 

 207 87 84.954 66 42 849 18 009 

 210 87 85.890 86 44 100 18 270 

 213 75 86.827 06 45 369 15 975 

 225 99 90.571 87 50 625 22 275 

 225 87 90.571 87 50 625 19 575 

 227 116 91.196 00 51 529 26 332 

 230 105 92.132 20 52 900 24 150 

 238 109 94.628 74 56 644 25 942 

 242 106 95.877 01 58 564 25 652 

 265 105 103.054 60 70 225 27 825 

 280 96 107.735 60 78 400 26 880 

 295 99 112.416 60 87 025 29 205 

 325 114 121.778 60 105 625 37 050 

 325 117 121.778 60 105 625 38 025 

 355 122 131.140 60 126 025 43 310 

 5462 2274.5  1 251 868 501 855.5 

 
  m = 0.312 067,     b = 20.356 75     Ans. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

______________________________________________________________________________ 

 

20-10  

    

 
 

2
2

0 2

2

0 22 0
o

y a a x

y a a x
a





  


    






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  

2 2

0 2 0 2

2 3

0 2 0 2

2

0

2 2 0

y na a x y na a x

y a a x x xy a x a x
a



     


      



   
   

     Ans. 

 Cramer’s rule 

    

2

3 3 2

3 22

3

1 3 22

3

o

y x

xy x x y x x
a

n x x xn x

x x

n y

x xy n xy x y
a

n x x xn x

x x


 




 



 
  y   

  
 


    

  
 

 
 

 

   

   Data Regression       

 
        x         y         y         x2          x3      xy 

 20 19 19.2 400 8 000 380 

 40 17 16.8 1600 64 000 680 

 60 13 12.8 3600 216 000 780 

 80 7 7.2 6400 512 000 560 

 200 56  12 000 800 000 2400 

 

 

    

0

1

800 000(56) 12 000(2400)
20

4(800 000) 200(12 000)

4(2400) 200(56)
0.002

4(800 000) 200(12 000)

a

a


 




 



 

 

______________________________________________________________________________ 
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20-11  

   Data Regression           

         x        y         y        x2       y2      xy     x x       
 2
x x  

 0.2 7.1 7.931 803 0.04 50.41 1.42 -0.633 333 0.401 111 111

 0.4 10.3 9.884 918 0.16 106.09 4.12 -0.433 333 0.187 777 778

 0.6 12.1 11.838 032 0.36 146.41 7.26 -0.233 333 0.054 444 444

 0.8 13.8 13.791 147 0.64 190.44 11.04 -0.033 333 0.001 111 111

 1 16.2 15.744 262 1 262.44 16.2 0.166 666 0.027 777 778

 2 25.2 25.509 836 4 635.04 50.4 1.166 666 1.361 111 111

 5 84.7  6.2 1390.83 90.44 0 2.033 333 333

 

    

   
   2

6 90.44 5 84.7
ˆ 9.7656

6 6.2 5

84.7 9.7656(5)ˆ 5.9787
6

i

m k

b F


  




  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a)   
5 84.7

;     14.117
6 6

x y    

  Eq. (20-37): 

    

1390.83 5.9787(84.7) 9.7656(90.44)

6 2

0.556

yxs
 






 

  Eq. (20-36): 

    

 

 

2

ˆ

5 61
0.556 0.3964 lbf

6 2.0333

5.9787,0.3964  lbf   .

b

i

s

F A

  

 ns
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 (b) Eq. (20-35): 

    

ˆ

0.556
0.3899 lbf/in

2.0333

(9.7656,0.3899) lbf/in     .

ms

k A

 

 ns

 

______________________________________________________________________________ 

 

20-12 The expression  =  / l is of the form x / y. Now  = (0.0015, 0.000 092) in, unspecified 

distribution; and  unspecified distribution; (2,000,  0.008 1) in,l =
 

    Cx = 0.000 092 / 0.0015 = 0.0613 

    Cy = 0.0081 / 2.000 = 0.004 05 

 

 Table 20-6: 0.0015 / 2.000 0.000 75 ฀  

 

1/2
2 2

2

5

0.0613 0.004 05
ˆ 0.000 75

1 0.004 05

4.607 10 0.000 046





 
   

 


 

     We can predict ฀and ̂  but not the distribution of . 
______________________________________________________________________________ 

 

20-13  = E 

  = (0.0005, 0.000 034), distribution unspecified; E = (29.5, 0.885) Mpsi, distribution 

unspecified; 

 

    Cx = 0.000 034 / 0.0005 = 0.068 

    Cy = 0.0885 / 29.5 = 0.03 

 

  is of the form xy 

 

 Table 20-6: 60.0005(29.5)10 14 750 psiE     

  1/2
2 2 2 2ˆ 14 750 0.068 0.030 0.068 0.030

1096.7 psi

1096.7 /14 750 0.074 35C





     

 

     ______________________________________________________________________________ 

 

20-14  

    
Fl
AE

  

 
 where F = (14.7, 1.3) kip, A = (0.226, 0.003) in

2
, l = (1.5, 0.004) in, and  

 E = (29.5, 0.885) Mpsi, distributions unspecified. 
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 CF = 1.3 / 14.7 = 0.0884; CA = 0.003 / 0.226 = 0.0133; Cl  = 0.004 / 1.5 = 0.00267; 

 CE =0.885 / 29.5 = 0.03 

 

    

1 1      
  

Fl
Fl

AE A E
  

 

 Table 20-6: 

      

 6

1 1/ 1 1

1 1
14 700(1.5) 0.003 31 in.     .

0.226 29.5 10

F l A E F l A E

Ans

 

      
    



 

 

 For the standard deviation, using the first-order terms in Table 20-6,   

   

   

 

1 2 1 2
2 2 2 2 2 2 2 2

1 2
2 2 2 2

ˆ

ˆ 0.003 31 0.0844 0.002 67 0.0133 0.03

0.000 313 in     .

F l A E F l A E

F l
C C C C C C C C

AE

Ans





 



      

   





 

 

 COV:  ˆ / 0.000 313/ 0.003 31 0.0945 .C A     ns  

 

 Force  COV dominates. There is no distributional information on .  

______________________________________________________________________________ 

 

20-15 M  = (15 000, 1350) lbf ⋅ in, distribution unspecified; d = (2.00, 0.005) in, distribution 

unspecified. 

    
3

32




M
d

  

    CM  = 1350 / 15 000 = 0.09,   Cd  = 0.005 / 2.00 = 0.0025 

 

  is of the form x/y3
, Table 20-6. 

 

 Mean:   15 000 lbf inM    
 

       2 2

3 3 3

1 1 1
1 6 1 6 0.0025 0.125 in *

2
xC

d d
           

3

 

    * Note:   
3 3

1 1

d d
 
 
 

  
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3

32 32(15 000)
(0.125)

19 099 psi     .

M

d
Ans


 

 


 

 Standard Deviation: 

    
   3 3

1 2
2 2 2ˆ / 1M d d

C C C        

  

  

 Table 20-6: 

    

     
   

3

1 2
2 22

1 2
2 2 2

3 3(0.0025) 0.0075

ˆ 3 1 3

19 099 0.09 0.0075 1 0.0075

1725 psi     .

dd

M d d

C C

C C C

Ans

 

 

   
 

    




 

 COV: 

    

1725
0.0903     .

19 099
C A   ns  

 

 Stress COV dominates. No information of distribution of .  

______________________________________________________________________________ 

 

20-16  

 
 

 Fraction discarded is  +. The area under the PDF was unity. Having discarded  +  
fraction, the ordinates to the truncated PDF are multiplied by a. 

 

 
1

1
a

 


 
 

 New PDF, g(x), is given by 

 

  1 2( ) 1      
( )

0                                 otherwise

f x x
g x

  x x      



 

 

 A more formal proof: g(x) has the property 

Chapter 20, Page 13/29 



    

   

     

  

   

2 2

1 1

1

20

1 2

2 1

1

1

1 1 ( ) 1 ( )

1 1

( ) ( ) 1 1

x x

x x

x

x

g x dx a f x dx

a f x dx f x dx f x dx

a F x F x

a
F x F x

1

  

 



 

     
   

  
   

 

  



 

______________________________________________________________________________ 
 
20-17 (a) d = U(0.748, 0.751)  

    

  1

0.751 0.748
0.7495 in

2

0.751 0.748
ˆ 0.000 866 in

2 3

1 1
333.3 in

0.751 0.748

0.748
( ) 333.3( 0.748)

0.751 0.748

d

d

f x
b a

x
F x x








 


 

  
 


  


 

 

 (b)   F(x1) = F(0.748) = 0 

 

    F(x2) = (0.750 – 0.748) 333.3 = 0.6667 

 

  If g(x) is truncated, PDF becomes 

1

2 1

( ) 333.3
( ) 500 in

( ) ( ) 0.6667 0

0.748 0.750
0.749 in

2 2

0.750 0.748
ˆ 0.000 577 in

2 3 2 3

x

x

f x
g x

F x F x

a b

b a





  
 

  
  

  
  

 

______________________________________________________________________________ 
 
20-18 From Table A-10, 8.1% corresponds to z1 = 1.4 and 5.5% corresponds to z2 = +1.6. 

 

    

1 1

2 2

ˆ  

ˆ  

k z

k z

 
 

 

 
 

 

 From which 

    
2 1 1 2

2 1

1.6(9) ( 1.4)11

1.6 ( 1.4)

9.933

z k z k

z z
   
 

  

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2 1

2 1

11 9
ˆ 0.6667

1.6 ( 1.4)

k k

z z
  
  

  

     

 

 The original density function is 
2

1 1 9.933
( ) exp      .

2 0.66670.6667 2

k
f k A



        
ns  

______________________________________________________________________________ 
 
20-19 From Prob. 20-1,  = 122.9 kcycles and ̂  = 30.3 kcycles. 

 

    

10 10
10

10 10

122.9

ˆ 30.3

122.9 30.3

x x
z

x z



 

 

 
 

 From Table A-10, for 10 percent failure,  z10 = 1.282 

 

    x10 = 122.9 + 30.3(1.282) 

              = 84.1 kcycles     Ans. 
______________________________________________________________________________ 
 
20-20  

x f f x f x2   f / (Nw) f (x) 

60 2 120 7200 0.002899 0.000399

70 1 70 4900 0.001449 0.001206

80 3 240 19200 0.004348 0.003009

90 5 450 40500 0.007246 0.006204

100 8 800 80000 0.011594 0.010567

110 12 1320 145200 0.017391 0.014871

120 6 720 86400 0.008696 0.017292

130 10 1300 169000 0.014493 0.016612

140 8 1120 156800 0.011594 0.013185

150 5 750 112500 0.007246 0.008647

160 2 320 51200 0.002899 0.004685

170 3 510 86700 0.004348 0.002097

180 2 360 64800 0.002899 0.000776

190 1 190 36100 0.001449 0.000237

200 0 0 0 0 5.98E-05

210 1 210 44100 0.001449 1.25E-05

 69 8480 

 

    x  = 122.8986  sx = 22.887 19 
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 Eq. (20-14): 

    

2

2

1 1
( ) exp

ˆˆ 22

1 1 122.8986
exp

2 22.8871922.88719 2

x

xx

x
f x

x


 



      
   

     
   

 

 

x f  / (Nw) f (x) x f  / (Nw) f (x) 

55 0 0.000 214 145 0.011 594 0.010 935 

55 0.002 899 0.000 214 145 0.007 246 0.010 935 

65 0.002 899 0.000 711 155 0.007 246 0.006 518 

65 0.001 449 0.000 711 155 0.002 899 0.006 518 

75 0.001 449 0.001 951 165 0.002 899 0.002 21 

75 0.004 348 0.001 951 165 0.004 348 0.003 21 

85 0.004 348 0.004 425 175 0.004 348 0.001 306 

85 0.007 246 0.004 425 175 0.002 899 0.001 306 

95 0.007 246 0.008 292 185 0.002 899 0.000 439 

95 0.011 594 0.008 292 185 0.001 449 0.000 439 

105 0.011 594 0.012 839 195 0.001 449 0.000 122 

105 0.017 391 0.012 839 195 0 0.000 122 

115 0.017 391 0.016 423 205 0 2.8E-05 

115 0.008 696 0.016 423 205 0.001 499 2.8E-05 

125 0.008 696 0.017 357 215 0.001 499 5.31E-06 

125 0.014 493 0.017 357 215 0 5.31E-06 

135 0.014 493 0.015 157    

135 0.011 594 0.015 157    

 

 

 
 

______________________________________________________________________________ 
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20-21  

x f f x f x 2
 f / (Nw) f (x) 

174 6 1044 181656 0.003807 0.001642 

182 9 1638 298116 0.005711 0.009485 

190 44 8360 1588400 0.027919 0.027742 

198 67 13266 2626668 0.042513 0.041068 

206 53 10918 2249108 0.033629 0.030773 

214 12 2568 549552 0.007614 0.011671 

222 6 1332 295704 0.003807 0.002241 

1386 197 39126 7789204    

 

    x  = 198.6091  sx = 9.695 071 

 

x f / (Nw) f (x) 

170 0 0.000529

170 0.003807 0.000529

178 0.003807 0.004297

178 0.005711 0.004297

186 0.005711 0.017663

186 0.027919 0.017663

194 0.027919 0.036752

194 0.042513 0.036752

202 0.042513 0.038708

202 0.033629 0.038708

210 0.033629 0.020635

210 0.007614 0.020635

218 0.007614 0.005568

218 0.003807 0.005568

226 0.003807 0.00076 

226 0 0.00076 

 

 

 

 

 

______________________________________________________________________________ 
 
20-22  

x f f x f x2
 f / (Nw) f (x) 

64 2 128 8192 0.008621 0.00548

68 6 408 27744 0.025862 0.017299

72 6 432 31104 0.025862 0.037705

76 9 684 51984 0.038793 0.056742

80 19 1520 121600 0.081897 0.058959

84 10 840 70560 0.043103 0.042298

88 4 352 30976 0.017241 0.020952

  92    2 184   16928 0.008621 0.007165

624 58 4548 359088
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   x = 78.041379 sx = 6.572 229 

 
x f / (Nw) f (x) 

62 0 0.002684

62 0.008621 0.002684

66 0.008621 0.010197

66 0.025862 0.010197

70 0.025862 0.026749

70 0.025862 0.026749

74 0.025862 0.048446

74 0.038793 0.048446

78 0.038793 0.060581

78 0.0381897 0.060581

82 0.081897 0.052305

82 0.043103 0.052305

86 0.043103 0.03118 

86 0.017241 0.03118 

90 0.017241 0.012833

90 0.008621 0.012833

94 0.008621 0.003647

94 0 0.003647

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
______________________________________________________________________________ 
 
20-23  

    

 

 

2 2

2 2

4 4(40)
50.93 kpsi

1

ˆ4 4(8.5)
ˆ 10.82 kpsi   

1

ˆ 5.9 kpsi
y

P

S

P

d

d


 


 



  

  



 

 For no yield, m = Sy     0 

 

    

   1 2 2
2 2 2 2

0

ˆ ˆ ˆ

78.4 50.93 27.47 kpsi

ˆ ˆ 10.82 5.9 12.32 kpsi

27.47
2.230

ˆ 12.32

y

m m m

m m m

m y

m S

m

m

m
z

S

z



  
  

 

  




 
   

    

    

     

 

 Table A-10,  pf = 0.0129 

R = 1 – pf = 1 – 0.0129 = 0.987     Ans. 
______________________________________________________________________________ 
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20-24 For a lognormal distribution, 

    
 

2

2

Eq. (20-18)   ln ln 1

ˆEq. (20-19)   ln 1

y x x

y x

C

C

 



  

 
 

 

 From Prob. (20-23)  

    

   

   

  

  

 

2 2

2

2

1 2
2 2

2 2

2

2

2 2

2 2

2

ln ln 1 ln ln 1

1
ln

1

ˆ ln 1 ln 1

ln 1 1

1
ln

1

ˆ
ln 1 1

4 4(30)
38.197 kpsi

1

ˆ4 4(5.
ˆ

y

y

y

y

y

y

m y x

y y S

y

S

y S

S

y

S

S

P

S

S C C

S C

C

C C

C C

S C

C
z

C C

P

d

d















  

 









 




  

     

  
  

     

    

  
     
   

  

 
 

  

2

2

2

2 2

1)
6.494 kpsi

1

6.494
0.1700

38.197

3.81
0.076 81

49.6

49.6 1 0.170
ln

38.197 1 0.07681
1.470

ln 1 0.076 81 1 0.170

yS

C

C

z






 

 

 
 

     
   

 

 Table A-10 

    pf  = 0.0708 

 

    R = 1 – pf  = 0.929     Ans. 
______________________________________________________________________________ 
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20-25  

x n nx nx2 

93 19 1767 164 311

95 25 2375 225 625

97 38 3686 357 542

99 17 1683 166 617

101 12 1212 122 412

103 10 1030 106 090

105 5 525 55 125

107 4 428 45 796

109 4 436 47 524

111     2     222      24 642

 136 13 364 1 315 704

 
    x  = 13 364/136 = 98.26 kpsi 

    

1 2
21 315 704 13 364 /136

4.30 kpsi
136 1

xs
 

   
 

 

Under normal hypothesis, 

 

 

 

0.01 0.01

0.01 0.01

98.26 / 4.30

98.26 4.30

98.26 4.30 2.3267

88.26 88.3 kpsi     .

z x

x z

Ans

 

 

  

 

 

 

______________________________________________________________________________ 
 
20-26 From Prob. 20.25, x = 98.26 kpsi, and ˆ 4.30 kpsi.x   

ˆ / 4.30 / 98.26 0.043 76x x xC      

 

 From Eqs. (20-18) and (20-19), 

 

 

2

2

ln 98.26 0.043 76 / 2 4.587

ˆ ln 1 0.043 76 0.043 74

y

y





  

  
 

 

 For a yield strength exceeded by 99% of the population, 

 0.01 0.01 0.01 0.01
ˆ ˆln / lny y y yz x x        z  

 

 From Table A-10, for 1% failure, z0.01 = 2.326. Thus, 
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 0.01

0.01

ln 4.587 0.043 74 2.326 4.485

88.7 kpsi     .

x

x Ans

   


 

 

 The normal PDF is given by Eq. (20-14) as 

 
2

1 1 98.26
exp

2 4.304.30 2

x
f x



        
 

 

 For the lognormal distribution, from Eq. (20-17), defining g(x), 

 
 

2
1 1 ln 4.587

exp
2 0.043 740.043 74 2

x
g x

x 

          

 

x(kpsi) f / (Nw) f (x) g(x)
 x(kpsi) f / (Nw) f (x) g(x) 

92 0.000 00 0.032 15 0.032 63 102 0.036 76 0.063 56 0.061 34

92 0.069 85 0.032 15 0.032 63 104 0.036 76 0.038 06 0.037 08

94 0.069 85 0.056 80 0.058 90 104 0.018 38 0.038 06 0.037 08

94 0.091 91 0.056 80 0.058 90 106 0.018 38 0.018 36 0.018 69

96 0.091 91 0.080 81 0.083 08 106 0.014 71 0.018 36 0.018 69

96 0.139 71 0.080 81 0.083 08 108 0.014 71 0.007 13 0.007 93

98 0.139 71 0.092 61 0.092 97 108 0.014 71 0.007 13 0.007 93

98 0.062 50 0.092 61 0.092 97 110 0.014 71 0.002 23 0.002 86

100 0.062 50 0.085 48 0.083 67 110 0.007 35 0.002 23 0.002 86

100 0.044 12 0.085 48 0.083 67 112 0.007 35 0.000 56 0.000 89

102 0.044 12 0.063 56 0.061 34 112 0.000 00 0.000 56 0.000 89

 Note: rows are repeated to draw histogram 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 

 The normal and lognormal are almost the same. However, the data is quite skewed and 

perhaps a Weibull distribution should be explored. For a method of establishing the 
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Weibull parameters see Shigley, J. E., and C. R. Mishke, Mechanical Engineering 
Design, McGraw-Hill, 5th ed., 1989, Sec. 4-12. 

_____________________________________________________________________________ 
 
20-27  x  410

f ex S 0 = 79 kpsi,    = 86.2 kpsi,   b = 2.6 

   Eq. (20-28): 

 

    

 0 0 (1 1 )

79 (86.2 79) (1 1 2.6)

79 7.2 (1.38)

x x x b    

    
    

 

 From Table A-34, Γ (1.38) = 0.888 54 

 

    79 7.2(0.888 54) 85.4 kpsi     .x Ans    

 Eq. (20-29) 

    

     

     

1 22

0

1 22

1 22

ˆ 1 2 1 1

86.2 79 1 2 2.6 1 1 2.6

7.2 0.923 76 0.888 54

2.64 kpsi     .

ˆ 2.64
0.031     .

85.4

x

x
x

x b b

Ans

C Ans
x

 



       

       

   


  
 

_____________________________________________________________________________ 
 
20-28 x = Sut  x0 = 27.7 kpsi,     = 46.2 kpsi,    b = 4.38 

   

      1 2
2

1 2
2

1 2
2

27.7 46.2 27.7 1 1 4.38

27.7 18.5 (1.23)

27.7 18.5(0.910 75)

44.55 kpsi     .

ˆ 46.2 27.7 1 2 4.38 1 1 4.38

18.5 (1.46) (1.23)

18.5 0.8856 0.920 75

4.38 kpsi     .

4.38

4

x

x

x

Ans

Ans

C





    

  
 


       

    

   


 0.098     .
4.55

Ans

 

 

 From the Weibull survival equation 
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    0

0

exp 1

b
x x

R p
x

  
        

 

40 0
40 40

0

4.38

40 40

exp 1

40 27.7
exp 0.846

46.2 27.7

1 1 0.846 0.154 15.4%     .

b
x x

R p
x

p R A



  
        
         

      ns

 

_____________________________________________________________________________ 
 
20-29 x = Sut,  x0 = 151.9 kpsi,     = 193.6 kpsi,    b = 8 

    

   

      1 2
2

1 2
2

1 2
2

151.9 193.6 151.9 1 1 8

151.9 41.7 (1.125)

151.9 41.7(0.941 76)

191.2 kpsi     .

ˆ 193.6 151.9 1 2 8 1 1 8

41.7 (1.25) (1.125)

41.7 0.906 40 0.941 76

5.82 kpsi     .

5.8

x

x

x

Ans

Ans

C





    

  
 


       

    

   



2

0.030
191.2


 

_____________________________________________________________________________ 
 
20-30 x = Sut,  x0 = 47.6 kpsi,     = 125.6 kpsi,    b = 11.4 

   
 

 

      1 2
2

1 2
2

1 2
2

47.6 125.6 47.6 1 1 11.84

47.6 78 1.08

47.6 78 0.959 73 122.5 kpsi

ˆ 125.6 47.6 1 2 11.84 1 1 11.84

78 (1.08) (1.17)

78 0.959 73 0.936 70 22.4 kpsi

x

x



    

  

  

       

    

    

 

     From Prob. 20-28, 

 
11.84

0

0

100 47.6
1 exp 1 exp 0.0090     .

125.6 47.6

b
x x

p Ans
 

                          
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 y = Sy,  y0 = 64.1 kpsi,     = 81.0 kpsi,    b = 3.77 

    

 

 

 

1 2

1 2
2

3.77

0

0

64.1 (81.0 64.1) 1 1 3.77

64.1 16.9 (1.27)

64.1 16.9(0.902 50) 79.35 kpsi

(81 64.1) (1 2 3.77) 1 1 3.77

16.9 0.887 57 0.902 50 4.57 kpsi

1 exp

70 64.1
1 exp

81

y

y

y y
p

y





    

  
  

       

    
  
       


  

3.77

0.019     .
64.1

Ans
          

_____________________________________________________________________________ 
 
20-31 x = Sut = W[122.3, 134.6, 3.64] kpsi, p(x > 120) = 1 = 100% since x0 > 120 kpsi 

 

    

3.64
133 122.3

( 133) exp
134.6 122.3

0.548 54.8%     .

p x

Ans

         
 

 

_____________________________________________________________________________ 
 
20-32 Using Eqs. (20-28) and (20-29) and Table A-34, 

 

    

       

     

0 0

2

0

1 1 36.9 133.6 36.9 1 1 2.66

=122.85 kcycles

ˆ 1 2 1 1 34.79 kcycles

n

n

n n b

n b b

 

 

         

        

 

 

 For the Weibull density function, Eq. (20-27), 

 

    

2.66 1 2.66
2.66 36.9 36.9

( ) exp
133.6 36.9 133.6 36.9 133.6 36.9

W

n n
f n

                  
 

 For the lognormal distribution, Eqs. (20-18) and (20-19) give, 

 

    

   

 

2

2

ln 122.85 34.79 122.85 2 4.771

ˆ 1 34.79 122.85 0.2778

y

y





  

    

 

 From Eq. (20-17), the lognormal PDF is 
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 
2

LN

1 1 ln 4.771
exp

2 0.27780.2778 2

n
f n

n 

     
   

 

 We form a table of densities f W (n) and f LN (n) and plot. 

 

n(kcycles) f W (n) f LN (n) 

40 9.1E-05 1.82E-05 

50 0.000 991 0.000 241

60 0.002 498 0.001 233

70 0.004 380 0.003 501

80 0.006 401 0.006 739

90 0.008 301 0.009 913

100 0.009 822 0.012 022

110 0.010 750 0.012 644

120 0.010 965 0.011 947

130 0.010 459 0.010 399

140 0.009 346 0.008 492

150 0.007 827 0.006 597

160 0.006 139 0.004 926

170 0.004 507 0.003 564

180 0.003 092 0.002 515

190 0.001 979 0.001 739

200 0.001 180 0.001 184

210 0.000 654 0.000 795

220 0.000 336 0.000 529

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The Weibull L10 life comes from Eq. (20-26) with reliability of R = 0.90. Thus, 

 

    
    1 2.66

0.10 36.9 133.6 36.9 ln 1 0.90 78.4 kcycles     .n A      ns  

 

 The lognormal L10 life comes from the definition of the z variable. That is, 
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 0 0

ˆ ˆln      or     expy y y yn z n       z  

 From Table A-10, for R = 0.90, z = 1.282. Thus, 

 

    
 0 exp 4.771 0.2778 1.282 82.7 kcycles     .n A      ns  

_____________________________________________________________________________ 
 
20-33 Form a table 

 
 

i 
x 

(105)L 
f i f i x⋅(105) f i x

2⋅(1010) g(x)⋅(10
5
) 

1 3.05 3 9.15 27.9075 0.0557 
2 3.55 7 24.85 88.2175 0.1474 
3 4.05 11 44.55 180.4275 0.2514 
4 4.55 16 72.80 331.24 0.3168 
5 5.05 21 106.05 535.5525 0.3216 
6 5.55 13 72.15 400.4325 0.2789 
7 6.05 13 78.65 475.8325 0.2151 
8 6.55 6 39.30 257.415 0.1517 
9 7.05 2 14.10 99.405 0.1000 

10 7.55 0 0 0 0.0625 
11 8.05 4 32.20 259.21 0.0375 
12 8.55 3 25.65 219.3075 0.0218 
13 9.05 0 0 0 0.0124 
14 9.55 0 0 0 0.0069 

15 10.05     1 10.05 101.0025 0.0038 
  100 529.50 2975.95  
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   

   

 

 
 

5 5

1 2
2

10 5

5

5 2

2

529.5 10 100 5.295 10  cycles     .

2975.95 10 529.5 10 100

100 1

1.319 10  cycles     .

1.319 5.295 0.249

ln 5.295 10 0.249 2 13.149

ˆ ln 1 0.249 0.245

l1 1
( ) exp

2ˆ 2

x

x

y

y

y

x Ans

s

Ans

C s x

g x
x





 

 

       
  



  

  

  

 
2

2

n

ˆ

1.628 1 ln 13.149
exp

2 0.245

y

y

x

x

x




  
      

     
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_____________________________________________________________________________ 
 
20-34 X = Su = W[70.3, 84.4, 2.01] 

 

 Eq. (2-28): 

   
 

70.3 84.4 70.3 1 1 2.01

70.3 (84.4 70.3) 1.498

82.8kpsi     .

x

Ans

     

    


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 Eq. (2-29):  

1 2
2

1 2
2

ˆ (84.4 70.3) (1 2 2.01) (1 1 2.01)

ˆ 14.1 0.997 91 0.886 17

6.502 kpsi

6.502
0.079     .

82.8

x

x

xC Ans





        

   


 
 

_____________________________________________________________________________ 
 
20-35 Take the Weibull equation for the standard deviation 

 

    
  1 2

2

0
ˆ (1 2 ) (1 1 )x x b b           

 

 and the mean equation solved for 0x x
 

 

    
   0 0 1 1x x x     b  

 

 and divide the first by the second, 

    
   

 

1 2
2

0

1 2 1 1ˆ

1 1

x
b b

x x b

      
  

 

 
 2

1 24.2
1 0.2763

49 33.8 1 1

b
R

b

 
   

  
 

    
 

 Make a table and solve for b iteratively 

 

      

     

 

 
0

0

4.068  Using MathCad     .

49 33.8
33.8

(1 1/ ) 1 1/ 4.068

49.8 kpsi     .

b A

x x
x

b

Ans

  
   

   





b 1 + 2/b 1 + 1/b  1 2 b   1 1 b  R  

3 1.67 1.33 0.903 30 0.893 38 0.363 

4 1.5 1.25 0.886 23 0.906 40 0.280 

4.1 1.49 1.24 0.885 95 0.908 52 0.271 

ns

 

_____________________________________________________________________________ 
 
20-36 x = Sy = W[34.7, 39, 2.93] kpsi 
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     
 

     

   

1 2
2

1 2
2

1 2
2

34.7 39 34.7 1 1 2.93 34.7 4.3 1.34

34.7 4.3 0.892 22 38.5 kpsi

ˆ 39 34.7 1 2 2.93 1 1 2.93

4.3 1.68 1.34

4.3 0.905 00 0.892 22 1.42 kpsi     .

1.42 38.5 0.037     .

x

x

x

Ans

C Ans



       

  

       

    

    
 

     _____________________________________________________________________________ 
 

 x (Mrev) f f x f x2 

 1 11 11 11

 2 22 44 88

 3 38 114 342

 4 57 228 912

 5 31 155 775

 6 19 114 684

 7 15 105 735

 8 12 96 768

 9 11 99 891

 10 9 90 900

 11 7 77 847

 12 5 60 720

Sum  78 237 1193 7673

20-37  
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 

   

     

6 6

2
12 6

6

1193 10 / 237 5.034 10  cycles

7673 10 1193 10 / 237
ˆ 2.658 10  cycles

237 1

2.658 / 5.034 0.528

x

x

xC





 

    


 

 

 From Eqs. (20-18) and (20-19), 

    

 
 

6 2

2

ln 5.034 10 0.528 / 2 15.292

ˆ ln 1 0.528 0.496

y

y





    

  
 

 

 From Eq. (20-17), defining g(x), 

    
 

2
1 1 ln 15.292

( ) exp
2 0.4960.496 2

x
g x

x 

          

x (Mrev) f / (Nw) g(x)(10
6
)

0.5 0.000 00 0.000 11 
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ln
ˆln 15.292 0.496

ˆ

y
y y

y

x
z x z z


 




       

L10 life, where 10% of bearings fail, from Table A-10,  

z = 1.282. Thus, 

 

0.5 0.046414 0.000 11 

1.5 0.046414 0.052 03 

1.5 0.092827 0.052 03 

2.5 0.092827 0.169 92 

2.5 0.160338 0.169 92 

3.5 0.160338 0.207 54 

3.5 0.240506 0.207 54 

4.5 0.240506 0.178 47 

4.5 0.130802 0.178 47 

5.5 0.130802 0.131 58 

5.5 0.080 17 0.13158 

6.5 0.080 17 0.090 11 

6.5 0.063 29 0.090 11 

7.5 0.063 29 0.059 53 

7.5 0.050 63 0.059 53 

8.5 0.050 63 0.038 69 

8.5 0.046 41 0.038 69 

9.5 0.046 41 0.025 01 

9.5 0.037 97 0.025 01 

10.5 0.037 97 0.016 18 

10.5 0.029 54 0.016 18 

11.5 0.029 54 0.010 51 

11.5 0.021 10 0.010 51 

12.5 0.021 10 0.006 87 

12.5 0.000 00 0.006 87 

ln x = 15.292 + 0.496(1.282) = 14.66 

  x = 2.33 (10
6
) rev     Ans. 
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