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Preface

This book is written to be an undergraduate and introductory graduate level textbook, depending on
whether the more advanced topics appearing at the end of each chapter are covered. Without the advanced
topics, the book is of a level readily comprehensible by junior and senior undergraduate students in science
andengineering. With the advanced topics included, the book can serve as the textbook for the first course in
finite elements at the graduate level. The text material evolved from over 50 years of combined teaching
experience by the authors of graduate and undergraduate finite element courses.

The book focuses on the formulation and application of the finite element method. It differs from other
elementary finite element textbooks in the following three aspects:

1. Itisintroductory and self-contained. Only amodest background in mathematics and physics is needed,
all of which is covered in engineering and science curricula in the first two years. Furthermore, many of
the specific topics in mathematics, such as matrix algebra, some topics in differential equations, and
mechanics and physics, such as conservation laws and constitutive equations, are reviewed prior to
their application.

2. Itis generic. While most introductory finite element textbooks are application specific, e.g. focusing
on linear elasticity, the finite element method in this book is formulated as a general purpose numerical
procedure for solving engineering problems governed by partial differential equations. The metho-
dology for obtaining weak forms for the governing equations, a crucial step in the development and
understanding of finite elements, is carefully developed. Consequently, students from various engi-
neering and science disciplines will benefit equally from the exposition of the subject.

3. Itisahands-on experience. The book integrates finite element theory, finite element code development
and the application of commercial software package. Finite element code development is introduced
through MATLAB exercises and a MATLAB program, whereas ABAQUS is used for demonstrating
the use of commercial finite element software.

The material in the book can be covered in a single semester and a meaningful course can be constructed
from a subset of the chapters in this book for a one-quarter course. The course material is organized in three
chronological units of about one month each: (1) finite elements for one-dimensional problems; (2) finite
elements for scalar field problems in two dimensions and (3) finite elements for vector field problems in two
dimensions and beams. In each case, the weak form is developed, shape functions are described and these
ingredients are synthesized to obtain the finite element equations. Moreover, in a web-base chapter, the
application of general purpose finite element software using ABAQUS is given for linear heat conduction
and elasticity.

Each chapter contains a comprehensive set of homework problems, some of which require program-
ming with MATLAB. Each book comes with an accompanying ABAQUS Student Edition CD, and
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MATLAB finite element programs can be downloaded from the accompanying website hosted by John
Wiley & Sons: www.wileyeurope/college/Fish. A tutorial for the ABAQUS example problems, written by
ABAQUS staff, is also included in the book.

Depending on the interests and background of the students, three tracks have been developed:

1. Broad Science and Engineering (SciEng) track
2. Advanced (Advanced) track
3. Structural Mechanics (StrucMech) track

The SciEng track is intended for a broad audience of students in science and engineering. It is aimed
at presenting FEM as a versatile tool for solving engineering design problems and as a tool for
scientific discovery. Students who have successfully completed this track should be able to appreciate
and apply the finite element method for the types of problems described in the book, but more importantly,
the SciEng track equips them with a set of skills that will allow them to understand and develop the
method for a variety of problems that have not been explicitly addressed in the book. This is our
recommended track.

The Advanced track is intended for graduate students as well as undergraduate students with a strong
focus on applied mathematics, who are less concerned with specialized applications, such as beams and
trusses, but rather with a more detailed exposition of the method. Although detailed convergence proofs in
multidimensions are left out, the Advanced track is an excellent stepping stone for students interested in a
comprehensive mathematical analysis of the method.

The StrucMech track is intended for students in Civil, Mechanical and Aerospace Engineering whose
main interests are in structural and solid mechanics. Specialized topics, such as trusses, beams and energy-
based principles, are emphasized in this track, while sections dealing with topics other than solid mechanics
in multidimensions are classified as optional.

The Table P1 gives recommended course outlines for the three tracks. The three columns on the right list
are the recommended sections for each track.

Table P1 Suggested outlines for Science and Engineering (SciEng) track, Advanced Track and Structural
Mechanics (StrucMech) Track.

Outline SciEng Advanced StrucMech

Part 1: Finite element formulation for
one-dimensional problems

Chapter 1: Introduction All All All

Chapter 2: Direct approach for discrete systems 2.1-2.3 2.1,22,24

Chapter 3: Strong and weak forms for 3.1-3.6 All 3.1.1,3.2-3.5, 3.9
one-dimensional problems

Chapter 4: Approximation of trial solutions, All All All

weight functions and Gauss quadrature for
one-dimensional problems

Chapter 5: Finite element formulation for 5.1-54,5.6,5.6.1 All 5.1,52,54, 5.6,
one-dimensional problems 5.6.1

Part 2: Finite element formulation for scalar
field problems in multidimensions

Chapter 6: Strong and weak forms for 6.1-6.3 All 6, 6.1
multi-dimensional scalar field problems
Chapter 7: Approximation of trial solutions, 7.1-7.4,7.8.1 All 7.1-7.4,7.8.1

weight functions and Gauss quadrature for
multi-dimensional problems

Chapter 8: Finite element formulation for multi 8.1,82 All
dimensional scalar field problems
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Outline SciEng Advanced StrucMech
Part 3: Finite element formulation for
vector field problems in two dimensions
Chapter 9: Finite element formulation for vector 9.1-9.6 All 9.1-9.6
field problems — linear elasticity
Chapter 10: Finite element formulation for beams 10.1-10.4
Chapter 11: Commercial finite element program All All All
ABAQUS tutorial
Chapter 12: Finite Element Programming with 12.1-12.6 12.1, 12.1-12.4,
MATLAB (on the web only) 12.3-12.6 12.6-12.7
A BRIEF GLOSSARY OF NOTATION
Scalars, Vectors, Matrices (x,y) Physical coordinates (x in 1D)
a,B Scalars Vv, Vg Gradient and symmetric gradient
a,B Matrices matrices
d, B Vectors v Gradient vector
a;, B Matrix or vector components
Strong Form-Heat Conduction
Integers T Temperature
Ny Number of nodal points q = (g, qy)T Flux (g in 1D)
Nl Number of element I'r Essential boundary
Ngp Number of Gauss points I, Natural boundary
Nen Number of element nodes s Heat source
e Element number g, T Boundary flux and temperature
oy Kronecker delta D Conductivity matrix
ke, kyy s Ky Conductivities (k in 1D)
Sets
\ For all Strong Form-Elasticity
u Union u = (uy, uy)T Displacements (z in 1D)
n Intersection Gy, 0y stress vectors acting on the planes
< Member of normal to x and y directions
C Subset of €,0 Strain and stress matrices (¢ and ¢
in 1D)
Spaces, Continuity T Stress tensor

U Space of trial solutions

Uy Space of weight functions

c" Functions whose j derivatives
0 <j < nare continuous

H* A space of functions
with s square-integrable
derivatives

Strong Forms-General

Q Problem domain
I Boundary of domain
n = (n,,n,)  Unitnormal to I'(n = 1 inlD)

Exxs Eyys Vay Strain components

Oy, Oyy; Oxy Stress components

b = (by,b,)"  Body forces (b in 1D)

t=(1,1y) Tractions

E,v Young’s modulus and Poisson’s
ratio.

D Material moduli matrix

t=(7.,7,)"  Prescribed traction (7 in 1D)

u = (i, Ety)T Prescribed displacements
(in 1D)

Essential (displacement) and
natural (traction) boundary
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Strong Form - Beams

! (x)
m(x)
s(x)
p(x)

Displacement in x at

midline

Internal moment

Internal shear force
Distributed loading

Moment of inertia

Curvature

Vertical displacements,
Rotations

Prescribed moments and shear
forces

Prescribed vertical displacements
and rotations

Natural boundary: moments
and shear

Essential boundary: vertical
displacements and rotations

Finite Elements-General

5
Aé’

LeT

ge, ot

51 n, 5[
x(&m)

y(&n)
KE7 KF7 KEF

Re

Domain of element e (/¢ in 1D)
Area of element e (cross-sectional
areain 1D)

Coordinates of node / in

element e

Element and global shape
function matrices

Element and global shape
function derivative matrices
Gather matrix

Scatter matrix

Jacobian matrix

Element and global trial solutions
Element and global weight
functions

Gauss quadrature weights
Parent/natural coordinate

x - coordinate mapping

y - coordinate mapping

Partition into E- and F- nodes
Global weight functions matrix
Rotation matrix from element to
global coordinate system

Finite Elements-Heat Conduction

T¢ Finite element temperature

d,d° Global and element
temperature matrices

K, K¢ Global and element conductance
matrices

fr, f} Global and element
boundary flux matrices

fo, £, Global and element source
matrices

r Global residual matrix

f Global flux matrix

Finite Elements-Elasticity
e

u Finite element displacements
ugy, us; Displacements at element node /
) in x and y directions, respectively
d, d¢ Global and element
displacement matrix
K, K¢ Global and element stiffness
matrices
fr, f}, Global and element
boundary force matrix
fo, £, Global and element
body force matrices
f £ Global and element force
matrix
r Global reaction force matrix

Finite Elements-Beams

u; Finite element vertical
displacements

d¢ Element displacement
matrix [uy1, 61, 1y, 92]T

K, K¢ Global and element stiffness
matrices

fr, f1 Global and element
boundary force matrices

fo, £, Global and element body
force matrices

f £ Global and element force
matrices

r Global reaction force matrix
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1.1 BACKGROUND

Many physical phenomena in engineering and science can be described in terms of partial differential
equations. In general, solving these equations by classical analytical methods for arbitrary shapes is almost
impossible. The finite element method (FEM) is a numerical approach by which these partial differential
equations can be solved approximately. From an engineering standpoint, the FEM is a method for solving
engineering problems such as stress analysis, heat transfer, fluid flow and electromagnetics by computer
simulation.

Millions of engineers and scientists worldwide use the FEM to predict the behavior of structural,
mechanical, thermal, electrical and chemical systems for both design and performance analyses. Its
popularity can be gleaned by the fact that over $1 billion is spent annually in the United States on FEM
software and computer time. A 1991 bibliography (Noor, 1991) lists nearly 400 finite element books in
English and other languages. Aweb search (in 2006) for the phrase ‘finite element’ using the Google search
engine yielded over 14 million pages of results. Mackerle (http://ohio.ikp.liu.se/fe) lists 578 finite element
books published between 1967 and 2005.

To explain the basic approach of the FEM, consider a plate with a hole as shown in Figure 1.1 for which
we wish to find the temperature distribution. It is straightforward to write a heat balance equation for each
point in the plate. However, the solution of the resulting partial differential equation for a complicated
geometry, such as an engine block, is impossible by classical methods like separation of variables.
Numerical methods such as finite difference methods are also quite awkward for arbitrary shapes; software
developers have not marketed finite difference programs that can deal with the complicated geometries that
are commonplace in engineering. Similarly, stress analysis requires the solution of partial differential
equations that are very difficult to solve by analytical methods except for very simple shapes, such as
rectangles, and engineering problems seldom have such simple shapes.

The basic idea of FEM is to divide the body into finite elements, often just called elements, connected by
nodes, and obtain an approximate solution as shown in Figure 1.1. This s called the finite element mesh and
the process of making the mesh is called mesh generation.

The FEM provides a systematic methodology by which the solution, in the case of our example, the
temperature field, can be determined by a computer program. For linear problems, the solution is
determined by solving a system of linear equations; the number of unknowns (which are the nodal
temperatures) is equal to the number of nodes. To obtain a reasonably accurate solution, thousands of
nodes are usually needed, so computers are essential for solving these equations. Generally, the accuracy of
the solution improves as the number of elements (and nodes) increases, but the computer time, and hence
the cost, also increases. The finite element program determines the temperature at each node and the heat
flow through each element. The results are usually presented as computer visualizations, such as contour

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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Figure 1.1 Geometry, loads and finite element meshes.

plots, although selected results are often output on monitors. This information is then used in the
engineering design process.

The same basic approach is used in other types of problems. In stress analysis, the field variables are the
displacements; in chemical systems, the field variables are material concentrations; and in electromag-
netics, the potential field. The same type of mesh is used to represent the geometry of the structure or
component and to develop the finite element equations, and for a linear system, the nodal values are
obtained by solving large systems (from 10° to 10° equations are common today, and in special applica-
tions, 10°) of linear algebraic equations.

This textis limited to linear finite element analysis (FEA). The preponderance of finite element analyses
in engineering design is today still linear FEM. In heat conduction, linearity requires that the conductance
be independent of temperature. In stress analysis, linear FEM is applicable only if the material behavior is
linear elastic and the displacements are small. These assumptions are discussed in more depth later in the
book. In stress analysis, for most analyses of operational loads, linear analysis is adequate as it is usually
undesirable to have operational loads that can lead to nonlinear material behavior or large displacements.
For the simulation of extreme loads, such as crash loads and drop tests of electronic components, nonlinear
analysis is required.

The FEM was developed in the 1950s in the aerospace industry. The major players were Boeing and Bell
Aerospace (long vanished) in the United States and Rolls Royce in the United Kingdom. M.J. Turner, R. W.
Clough, H.C. Martin and L.J. Topp published one of the first papers that laid out the major ideas in 1956
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(Turner et al., 1956). It established the procedures of element matrix assembly and element formulations
that you will learn in this book, but did not use the term ‘finite elements’. The second author of this paper,
Ray Clough, was a professor at Berkeley, who was at Boeing for a summer job. Subsequently, he wrote a
paper that first used the term ‘finite elements’, and he was given much credit as one of the founders of the
method. He worked on finite elements only for a few more years, and then turned to experimental methods,
buthis work ignited a tremendous effort at Berkeley, led by the younger professors, primarily E. Wilson and
R.L. Taylor and graduate students such as T.J.R. Hughes, C. Felippa and K.J. Bathe, and Berkeley was the
center of finite element research for many years. This research coincided with the rapid growth of computer
power, and the method quickly became widely used in the nuclear power, defense, automotive and
aeronautics industries.

Much of the academic community first viewed FEM very skeptically, and some of the most prestigious
journals refused to publish papers on FEM: the typical resistance of mankind (and particularly academic
communities) to the new. Nevertheless, several capable researchers recognized its potential early, most
notably O.C. Zienkiewicz and R.H. Gallagher (at Cornell). O.C. Zienkiewicz built a renowned group at
Swansea in Wales that included B. Irons, R. Owen and many others who pioneered concepts like the
isoparametric element and nonlinear analysis methods. Other important early contributors were J.H.
Argyris and J.T. Oden.

Subsequently, mathematicians discovered a 1943 paper by Courant (1943), in which he used triangular
elements with variational principles to solve vibration problems. Consequently, many mathematicians
have claimed that this was the original discovery of the method (though it is somewhat reminiscent of the
claim that the Vikings discovered America instead of Columbus). It is interesting that for many years
the FEM lacked a theoretical basis, i.e. there was no mathematical proof that finite element solutions
give the right answer. In the late 1960s, the field aroused the interest of many mathematicians, who showed
that for linear problems, such as the ones we will deal with in this book, finite element solutions converge
to the correct solution of the partial differential equation (provided that certain aspects of the problem are
sufficiently smooth). In other words, it has been shown that as the number of elements increases,
the solutions improve and tend in the limit to the exact solution of the partial differential equations.

E. Wilson developed one of the first finite element programs that was widely used. Its dissemination was
hastened by the fact that it was ‘freeware’, which was very common in the early 1960s, as the commercial
value of software was not widely recognized at that time. The program was limited to two-dimensional
stress analysis. It was used and modified by many academic research groups and industrial laboratories and
proved instrumental in demonstrating the power and versatility of finite elements to many users.

Thenin 1965, NASA funded a project to develop a general-purpose finite element program by a group in
California led by Dick MacNeal. This program, which came to be known as NASTRAN, included a large
array of capabilities, such as two- and three-dimensional stress analyses, beam and shell elements, for
analyzing complex structures, such as airframes, and analysis of vibrations and time-dependent response to
dynamic loads. NASA funded this project with $3 000 000 (like $30 000 000 today). The initial program
was put in the public domain, but it had many bugs. Shortly after the completion of the program, Dick
MacNeal and Bruce McCormick started a software firm that fixed most of the bugs and marketed the
program to industry. By 1990, the program was the workhorse of most large industrial firms and the
company, MacNeal-Schwendler, was a $100 million company.

At about the same time, John Swanson developed a finite element program at Westinghouse Electric
Corp. for the analysis of nuclear reactors. In 1969, Swanson left Westinghouse to market a program called
ANSYS. The program had both linear and nonlinear capabilities, and it was soon widely adopted by many
companies. In 1996, ANSYS went public, and it now (in 2006) has a capitalization of $1.8 billion.

Another nonlinear software package of more recent vintage is LS-DYNA. This program was first
developed at Livermore National Laboratory by John Hallquist. In 1989, John Hallquist left the
laboratory to found his own company, Livermore Software and Technology, which markets the
program. Intially, the program had nonlinear dynamic capabilities only, which were used primarily
for crashworthiness, sheet metal forming and prototype simulations such as drop tests. But Hallquist
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quickly added a large range of capabilities, such as static analysis. By 2006, the company had almost
60 employees.

ABAQUS was developed by a company called HKS, which was founded in 1978. The program was
initially focused on nonlinear applications, but gradually linear capabilities were also added. The program
was widely used by researchers because HKS introduced gateways to the program, so that users could add
new material models and elements. In 2005, the company was sold to Dassault Systemes for $413 million.
As you can see, even a 5% holding in one of these companies provided a very nice nest egg. That is why
young people should always consider starting their own companies; generally, itis much more lucrative and
exciting than working for a big corporation.

In many industrial projects, the finite element database becomes a key component of product develop-
ment because it is used for a large number of different analyses, although in many cases, the mesh has to be
tailored for specific applications. The finite element database interfaces with the CAD database and is often
generated from the CAD database. Unfortunately, in today’s environment, the two are substantially
different. Therefore, finite element systems contain franslators, which generate finite element meshes
from CAD databases; they can also generate finite element meshes from digitizations of surface data. The
need for two databases causes substantial headaches and is one of the major bottlenecks in computerized
analysis today, as often the two are not compatible.

The availability of a wide range of analysis capabilities in one program makes possible analyses of many
complex real-life problems. For example, the flow around a car and through the engine compartment can be
obtained by a fluid solver, called computational fluid dynamics (CFD) solver. This enables the designers to
predict the drag factor and the lift of the shape and the flow in the engine compartment. The flow in the
engine compartment is then used as a basis for heat transfer calculations on the engine block and radiator.
These yield temperature distributions, which are combined with the loads, to obtain a stress analysis of the
engine.

Similarly, in the design of a computer or microdevice, the temperatures in the components can be
determined through a combination of fluid analysis (for the air flowing around the components) and heat
conduction analysis. The resulting temperatures can then be used to determine the stresses in the
components, such as at solder joints, that are crucial to the life of the component. The same finite element
model, with some modifications, can be used to determine the electromagnetic fields in various situations.
These are of importance for assessing operability when the component is exposed to various electro-
magnetic fields.

In aircraft design, loads from CFD calculations and wind tunnel tests are used to predict loads on the
airframe. A finite element model is then used with thousands of load cases, which include loads in various
maneuvers such as banking, landing, takeoff and so on, to determine the stresses in the airframe. Almost all
of these are linear analyses; only determining the ultimate load capacity of an airframe requires a nonlinear
analysis. Itis interesting that in the 1980s a famous professor predicted that by 1990 wind tunnels would be
used only to store computer output. He was wrong on two counts: Printed computer output almost
completely disappeared, but wind tunnels are still needed because turbulent flow is so difficult to compute
that complete reliance on computer simulation is not feasible.

Manufacturing processes are also simulated by finite elements. Thus, the solidification of castings is
simulated to ensure good quality of the product. In the design of sheet metal for applications such as cars and
washing machines, the forming process is simulated to insure that the part can be formed and to check that
after springback (when the part is released from the die) the part still conforms to specifications.

Similar procedures apply in most other industries. Indeed, it is amazing how the FEM has transformed
the engineering workplace in the past 40 years. In the 1960s, most engineering design departments
consisted of aroom of 1.5 m x 3 m tables on which engineers drew their design with T-squares and other
drafting instruments. Stresses in the design were estimated by simple formulas, such as those that you learn
in strength of materials for beam stretching, bending and torsion (these formulas are still useful,
particularly for checking finite element solutions, because if the finite element differs from these formulas
by an order of magnitude, the finite element solution is usually wrong). To verify the soundness of a design,
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prototypes were made and tested. Of course, prototypes are still used today, but primarily in the last stages
of adesign. Thus, FEA hasled to tremendous reductions in design cycle time, and effective use of this tool is
crucial to remaining competitive in many industries.

A question that may occur to you is: Why has this tremendous change taken place? Undoubtedly, the
major contributor has been the exponential growth in the speed of computers and the even greater decline in
the cost of computational resources. Figure 1.2 shows the speed of computers, beginning with the first
electronic computer, the ENIAC in 1945. Computer speed here is measured in megaflops, a rather archaic
term that means millions of floating point operations per second (in the 1960s, real number multiplies were
called floating point operations).

The ENIAC was developed in 1945 to provide ballistic tables. It occupied 1800 ft* and employed 17468
vacuum tubes. Yet its computational power was a small fraction of a $20 calculator. It was not until the
1960s that computers had sufficient power to do reasonably sized finite element computations. For
example, the 1966 Control Data 6600, the most powerful computer of its time, could handle about
10 000 elements in several hours; today, a PC does this calculation in a matter of minutes. Not only
were these computers slow, but they also had very little memory: the CDC 6600 had 32k words of random
access memory, which had to accommodate the operating system, the compiler and the program.

As can be seen from Figure 1.2, the increase in computational power has been linear on a log scale,
indicating a geometric progression in speed. This geometric progression was first publicized by Moore, a
founder of Intel, in the 1990s. He noticed that the number of transistors that could be packed on a chip, and
hence the speed of computers, doubled every 18 months. This came to be known as Moore’s law, and
remarkably, it still holds.

From the chart you can see that the speed of computers has increased by about eight orders of magnitude
inthelast40 years. However, the improvement is even more dramatic if viewed in terms of cost in inflation-
adjusted currency. This can be seen from Table 1.1, which shows the costs of several computers in 1968 and
2005, along with the tuition at Northwestern, various salaries, the price of an average car and the price of a

100 ASCI
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— ®
CRAY C90
2 |-
10 PC
B & B
al:
as 1+ CDC 6600 @
102 -
IBM 704
10 - ENIAC
10-6 | | | | | | | | | | |
1950 1960 1970 1980 1990 2000

Year of introduction

Figure 1.2 Historical evolution of speed of computers.
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Table 1.1 Costs of some computers and costs of selected items for an
estimate of uninflated dollars (from Hughes—Belytschko Nonlinear FEM Short

Course).
Costs
1968 2005
CDC 6600 (0.5-1 Mflops) $8 000 000
512 Beowulf cluster (2003) 1 Tflop $500 000
Personal computer (200—-1600 Mflops) $500-3000
B.S. Engineer (starting salary, Mech Eng) $9000 $51 000
Assistant Professor of $11 000 $75 000
Engineering (9 mo start salary)
1 year tuition at Northwestern $1800 $31789
GM, Ford or Chrysler sedan $3000 $22 000
Mercedes SL $7000 $90-120K
Decrease in real cost of computations 107 to 108

Some figues are approximate.

decent car (in the bottom line). It can be seen that the price of computational power has decreased by a factor
of over a hundred from 1968 to 2006. During that time, the value of our currency has diminished by a factor
of about 10, so the cost of computer power has decreased by a factor of a billion! A widely circulated joke,
originated by Microsoft, was that if the automobile industry had made the same progress as the computer
industry over the past 40 years, a car would cost less than a penny. The auto industry countered that if
computer industry designed and manufactured cars, they would lock up several times a day and you would
need to press start to stop the car (and many other ridiculous things). Nevertheless, electronic chips are an
area where tremendous improvements in price and performance have been made, and this has changed our
lives and engineering practice.

The price of finite element software has also decreased, but only a little. In the 1980s, the software fees
for corporate use of NASTRAN were on the order of $200 000—1 000 000. Even a small firm would have to
pay on the order of $100 000. Today, NASTRAN still costs about $65 000 per installation, the cost of
ABAQUS starts at $10 000 and LS-DYNA costs $12 000. Fortunately, all of these companies make student
versions available for much less. The student version of ABAQUS comes free with the purchase of this
book; auniversity license for LS-DYNA costs $500. So today you can solve finite element problems as large
as those solved on supercomputers in the 1990s on your PC.

As people became aware of the rapidly increasing possibilities in engineering brought about by
computers in the 1980s, many fanciful predictions evolved. One common story on the West Coast was
that by the next century, in which we are now, when an engineer came to work he would don a headgear,
which would read his thoughts. He would then pick up his design assignment and picture the solution. The
computer would generate a database and a visual display, which he would then modify with a few strokes of
his laser pen and some thoughts. Once he considered the design visually satisfactory, he would then think of
‘FEM analysis’, which would lead the computer to generate a mesh and visual displays of the stresses. He
would then massage the design in afew places, with a laser pen or his mind, and do some reanalyses until the
design met the specs. Then he would push a button, and a prototype would drop out in front of him and he
could go surfing.

Well, this has not come to pass. In fact, making meshes consumes a significant part of engineering time
today, and it is often tedious and causes many delays in the design process. But the quality of products that
can be designed with the help of CAD and FEM is quite amazing, and it can be done much quicker than
before. The nextdecade will probably see some major changes, and in view of the hazards of predictions, we
will not make any, but undoubtedly FEM will play a role in your life whatever you do.
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(a) (b)

Figure 1.3  Applications in predictive medicine. (a) Overlying mesh of a hand model near the wound." (b) Cross-
section of a heart model.” (c) Portion of hip replacement: physical object and finite element model.>

1.2 APPLICATIONS OF FINITE ELEMENTS

In the following, we will give some examples of finite element applications. The range of applications of
finite elements is too large to list, but to provide an idea of its versatility we list the following:

a. stress and thermal analyses of industrial parts such as electronic chips, electric devices, valves, pipes,
pressure vessels, automotive engines and aircraft;

seismic analysis of dams, power plants, cities and high-rise buildings;

crash analysis of cars, trains and aircraft;

fluid flow analysis of coolant ponds, pollutants and contaminants, and air in ventilation systems;
electromagnetic analysis of antennas, transistors and aircraft signatures;

analysis of surgical procedures such as plastic surgery, jaw reconstruction, correction of scoliosis and
many others.

N

This is a very short list that is just intended to give you an idea of the breadth of application areas for the
method. New areas of application are constantly emerging. Thus, in the past few years, the medial
community has become very excited with the possibilities of predictive, patient-specific medicine.

One approach in predictive medicine aims to use medical imaging and monitoring data to construct a
model of a part of an individual’s anatomy and physiology. The model is then used to predict the patient’s
response to alternative treatments, such as surgical procedures. For example, Figure 1.3(a) shows a hand
wound and a finite element model. The finite element model can be used to plan the surgical procedure to
optimize the stitches.

Heart models, such as shown in Figure 1.3(b), are still primarily topics of research, butitis envisaged that
they will be used to design valve replacements and many other surgical procedures. Another area in which
finite elements have been used for a long time is in the design of prosthesis, such as shown in Figure 1.3(c).
Most prosthesis designs are still generic, i.e. a single prosthesis is designed for all patients with some
variations in sizes. However, with predictive medicine, it will be possible to analyze characteristics of a
particular patient such as gait, bone structure and musculature and custom-design an optimal prosthesis.

FEA of structural components has substantially reduced design cycle times and enhanced overall
product quality. For example in the auto industry, linear FEA is used for acoustic analysis to reduce interior
noise, for analysis of vibrations, for improving comfort, for optimizing the stiffness of the chassis and for
increasing the fatigue life of suspension components, design of the engine so that temperatures and stresses
are acceptable, and many other tasks. We have already mentioned CFD analyses of the body and engine

'With permission from Mimic Technologies.
2Courtesy of Chandrajit Bajaj, University of Texas at Austin.
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Figure 1.4 Application to aircraft design and vehicle crash safety: (a) finite element model of Ford Taurus crash;> (b)
finite element model of C-130 fuselage, empennage and center wing* and (c) flow around a car.”

compartments previously. The FEMs used in these analyses are exactly like the ones described in this book.
Nonlinear FEA is used for crash analysis with both models of the car and occupants; a finite element model
for crash analysis is shown in Figure 1.4(a) and a finite element model for stiffness prediction is shown in
Figure 1.4(c). Notice the tremendous detail in the latter; these models still require hundreds of man-hours to
develop. The payoff for such a modeling is that the number of prototypes required in the design process can
be reduced significantly.

Figure 1.4(b) shows a finite element model of an aircraft. In the design of aircraft, itis imperative that the
stresses incurred from thousands of loads, some very rare, some repetitive, do not lead to catastrophic
failure or fatigue failure. Prior to the availability of FEA, such a design relied heavily on an evolutionary

Figure 1.5 Dispersion of chemical and biological agents in Atlanta. The red and blue colors represent the highest and
lowest levels of contaminant concentration.®

3Courtesy of the Engineering Directorate, Lawrence Livermore National Laboratory.
“4Courtesy of Mercer Engineering Research Center.

5Courtesy of Mark Shephard, Rensselaer.

®Courtesy of Shahrouz Aliabadi.
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process (basing new designs on old designs), as tests for all of the loads are not practical. With FEA, it has
become possible to make much larger changes in airframe design, such as the shift to composites.

In a completely different vein, finite elements also play a large role in environmental decision making
and hazard mitigation. Forexample, Figure 1.5 is a visualization of the dispersal of achemical aerosol in the
middle of Atlanta obtained by FEA; the aerosol concentration is depicted by color, with the highest
concentration in red. Note that the complex topography of this area due the high-rise buildings, which is
crucial to determining the dispersal, can be treated in great detail by this analysis. Other areas of hazard
mitigation in which FEA offers great possibilities are the modeling of earthquakes and seismic building
response, which is being used to improve their seismic resistance, the modeling of wind effects on
structures and the dispersal of heat from power plant discharges. The latter, as the aerosol dispersal,
involves the advection—diffusion equation, which is one of the topics of this book. The advection—diffusion
equation can also be used to model drug dispersal in the human body. Of course, the application of these
equations to these different topics involves extensive modeling, which s the value added by engineers with
experience and knowledge, and constitutes the topic of validation, which is treated in Chapters 8 and 9.

Matrix Algebra and Computer Programs

Itis highly recommended that students familiarize themselves with matrix algebra and programming prior
to proceeding with the book. An introduction to matrix algebra and applications in MATLAB is givenin a
Web chapter (Chapter 12) which is available on www.wileyeurope/college/Fish.

This webpage also includes the MATLAB programs which are referred to in this book and other
MATLAB programs for finite element analysis. We have chosen to use a web chapter for this material to
provide an option for updating this material as MATLAB and the programs change. We invite readers who
develop other finite element programs in MATLAB to contact the first author (Jacob Fish) about including
their programs. We have also created a blog where students and instructors can exchange ideas and place
alternative finite element programs. This forum is hosted at http://1coursefem.blogspot.com/
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Direct Approach for
Discrete Systems

The finite element method (FEM) consists of the following five steps:

Preprocessing: subdividing the problem domain into finite elements.

Element formulation: development of equations for elements.

Assembly: obtaining the equations of the entire system from the equations of individual elements.
Solving the equations.

Postprocessing: determining quantities of interest, such as stresses and strains, and obtaining visua-
lizations of the response.

AR

Step 1, the subdivision of the problem domain into finite elements in today’s computer aided engineering
(CAE) environment, is performed by automatic mesh generators. For truss problems, such as the one shown
in Figure 2.1, each truss member is represented by a finite element. Step 2, the description of the behavior of
each element, generally requires the development of the partial differential equations for the problem and
its weak form. This will be the main focus of subsequent chapters. However, in simple situations, such as
systems of springs or trusses, it is possible to describe the behavior of an element directly, without
considering a governing partial differential equation or its weak form.

In this chapter, we focus on step 3, how to combine the equations that govern individual elements to
obtain the equations of the system. The element equations are expressed in matrix form. Prior to that, we
develop some simple finite element matrices for spring assemblages and trusses, step 2. We also introduce
the procedures for the postprocessing of results.

2.1 DESCRIBING THE BEHAVIOR OF A SINGLE BAR ELEMENT

A truss structure, such as the one shown in Figure 2.1, consists of a collection of slender elements, often
called bars. Bar elements are assumed to be sufficiently thin so that they have negligible resistance to
torsion, bending or shear, and consequently, the bending, shear and torsional forces are assumed to vanish.
The only internal forces of consequence in such elements are axial internal forces, so their behavior is
similar to that of springs. Some of the bar elements in Figure 2.1 are aligned horizontally, whereas others are
positioned at an arbitrary angle ¢ as shown in Figure 2.2(b). In this section, we show how to relate nodal
internal forces acting at the nodes to the corresponding nodal displacements, which are denoted by (F{, F%)
and (uf, u5), respectively, for the bar in one dimension as shown in Figure 2.2(a). In two dimensions, the

nodal forces of an element are (FY,, F{,, F5,, F3 ) and the nodal displacements are (uf,, uf, u5,, u5,).

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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element

Figure 2.1 A bridge truss.

Notation. Throughout this textbook, the following notation is used. Element numbers are denoted by
superscripts. Node numbers are denoted by subscripts; when the variable is a vector with components, the
component is given after the node number. When the variable has an element superscript, then the node
number is a local number; otherwise, it is a global node number. The distinction between local and global
node numbers will be described later in this section. For instance, ugs,) is the y-component of the
displacement at node 2 of element 5. We will start by considering a horizontally aligned element in Section
2.1. Two-dimensional problems will be considered in Section 2.4.

Consider a bar element positioned along the x-axis as shown in Figure 2.2(a). The shape of the cross
section is quite arbitrary as shown in Figure 2.3. In this chapter, we assume that the bar is straight, its
material obeys Hooke’slaw and thatit can support only axial loading, i.e. it does not transmit bending, shear
or torsion. Young’s modulus of element e is denoted by E, its cross-sectional area by A¢ and its length by /°.

Because of the assumptions on the forces in the element, the only nonzero internal force is an axial
internal force, which is collinear with the axis along the bar. The internal force across any cross section of
the bar is denoted by p¢. The axial stress is assumed to be constant in the cross section and is given by the
internal force divided by the cross-sectional area:

o =L (2.1)

The axial force and the stress are positive in tension and negative in compression.
The following equations govern the behavior of the bar:

1. Equilibrium of the element, i.e. the sum of the nodal internal forces acting on the element is equal to
zZero:

e e __
F{+F;=0. (2.2)
Fo 5,
F o
e e
Feu e . e Fyly e 2
1 Y Fi A, : e
1 2 . *
le’ulx

(a) (b)

Figure 2.2 Various configurations of bar elements: (a) horizontally aligned bar and (b) bar element positioned at an
arbitrary angle in two dimensions (see Section 2.4).
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Figure 2.3 Examples of cross sections of a bar element.

2. Theelastic stress—strain law, known as Hooke’s law, which states that the stress o is alinear function of
the strain &°:

0¢ = E°. (2.3)

3. The deformation of the structure must be compatible, i.e. no gaps or overlaps can develop in the
structure after deformation.

It is important to recognize the difference between the sign convention for the internal axial force (and
the stress) and that for the nodal internal forces. The internal force p® is positive in tension and negative in
compression, i.e. p° is positive when it points out from the surface on which it is acting; the nodal internal
forces are positive when they point in the positive x-direction and are not associated with surfaces, see
Figure 2.4.

We will also need a definition of strain in order to apply Hooke’s law. The only nonzero strain is the axial
strain &, which is defined as the ratio of the elongation ¢¢ to the original element length:

.5_66

& = - (2.4)

We will now develop the element stiffness matrix, which relates the element internal nodal forces to
the element nodal displacements. The element internal force matrix is denoted by F° and element
displacement matrix by d°. For this two-node element, these matrices are given by

. [F [
F= M’ ¢ = H

Figure 2.4 Elongation of an element and free-body diagrams, showing the positive sense of p and Fy.
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The element stiffness matrix K¢ that relates these matrices will now be developed. The matrix is derived by
applying Hooke’s law, strain—displacement equations and equilibrium:

F5 =p® =A°° definition of stress (Equation (2.1))

=A°E‘¢* Hooke's law (Equation (2.3)) (2.5)

€

1)
= AeE“% definition of strain (Equation (2.4)).
The elongation of an element can be expressed in terms of the nodal displacements (see Figure 2.4) by
8¢ = u§ —us, (2.6)

which is obtained as follows: [, = I + u§ — uf, so from 6 = [, — [°, (2.6) follows.

Note that when u{ = u5, whichis rigid body translation, the elongation vanishes. Substituting (2.6) into
(2.5) gives

F5 = k°(u — uf), (2.7)
where k¢ is given by
A°E*
k¢ = Iz (2.8)

From equilibrium of the bar element (2.2) and (2.7), it follows that
F{ = —F5 = k°(u§ — u5). (2.9)

Equations (2.7) and (2.9) can be written in the matrix form as

Fil T ke =] [us 2.10)
Fs k¢ k] |us]” '
— ——

Ft’ Ke de

Using the underscored definitions, we can write the relation between the nodal forces and nodal
displacements as

(2.11)

F¢ = K°d* where K¢ = { ke *ke} :fﬁ{ 1 *1}
, .

—k¢ k¢ e |-1 1

In the above, K¢ is the element stiffness matrix. We can use this element stiffness for any constant area bar
element in one dimension. This universality of element stiffness matrices is one of the attributes of FEM
that leads to its versatility: for any bar element with constant area A° in one dimension, Equation (2.11)
gives the stiffness matrix. We will later develop element matrices that apply to any triangular element or
quadrilateral element based on the weak solution of differential equations rather than on physical
arguments.

Equation (2.10) describes the relationship between nodal forces and displacements for a single element,
i.e. it describes the behavior of an element. Note that this is a linear relationship: The nodal forces are
linearly related to the nodal displacements. This linearity stems from the linearity of all the ingredients that
describe this element’s behavior: Hooke’s law, the linearity between axial force and stress, and the linearity
of the expression for the strain.

An important characteristic of the element stiffness matrix is that it is symmetric, i.e. K¢ = K°T.
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(b) g B, ug C? b, u,y 5}4, El
3 1 2 2 1
Figure 2.5 (a) Two-element bar structure and (b) the finite element model (element numbers are denoted in
parenthesis).

2.2 EQUATIONS FOR A SYSTEM

The objective of this section is to describe the development of the equations for the complete system from
element stiffness matrices. We will introduce the scatter and assembly operations that are used for this
purpose. These are used throughout the FEM in even the most complex problems, so mastering these
procedures is essential to learning the FEM.

We will describe the process of developing these equations by an example. For this purpose, consider the
two-bar system shown in Figure 2.5, which also gives the material properties, loads and support conditions.
At a support, the displacement is a given value; we will specify it later. Nodal displacements and nodal
forces are positive in the positive x-direction.

The first step in applying the FEM is to divide the structure into elements. The selection and generation of
amesh for finite element models is an extensive topic that we will discuss in subsequent chapters. In the case
of adiscrete structure such as this, it is necessary only to put nodes wherever loads are applied and at points
where the section properties or material properties change, so the finite element mesh consisting of two
elements shown in Figure 2.5(b) is adequate.

The elements are numbered 1 and 2, and the nodes are numbered 1 to 3; neither the nodes nor the
elements need to be numbered in a specific order in FEM. We will comment about node numbering in
Section 2.2.2. At each node, either the external forces or the nodal displacements are known, but not both;
for example, at node 1 the displacement u; = i, is prescribed, therefore the force to be subsequently
referred to as reaction r; is unknown. Atnodes 2 and 3 the external forces f> and f3 are known, and therefore
the displacements u, and u3 are unknown.

For eachbar element shown in Figure 2.6, the nodal internal forces are related to the nodal displacements
by the stiffness matrix given in Equation (2.11).

The stiffness equations of the elements, derived in Section 2.1.1, are repeated here for convenience

(e=1,2):
e 1reqe Fs| | k0 =k || uS
F* = K°d or {Fﬁ} = |:—k€ ke }{ug} (2.12)

[ o m @ @
oy F,7u, K7 u F7 L u;

>0

Figure 2.6 Splitting the structure in figure 2.5 into two elements.
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Figure 2.7 Free-body diagrams of the nodes and elements (external forces are shown above the nodes but act in the
same line): (a) complete system with global node numbers; (b) free-body diagrams of elements with local node numbers
and (c) free-body diagrams of nodes.

The global system equations will be constructed by enforcing compatibility between the elements and
nodal equilibrium conditions.

To develop the system equations, we will write the equilibrium equations for the three nodes. For this
purpose, we construct free-body diagrams of the nodes as shown in Figure 2.7(c). Note that the forces on the
elements are equal and opposite to the corresponding forces on the nodes by Newton’s third law.

0 Fy - 0 -
B po | = |al=|al+]|0]. (2.13)
FiY 0 f f3 0
N—— ~—~— ¥
) e f

Each row of the above matrix equation is an equilibrium equation at a node. On the right-hand side are the
applied external forces and reactions, which are arranged in matrices f and r, respectively. The matrix f
consists of the prescribed (known) external forces at the nodes, f, and f3; the matrix r consists of the
unknown force at node 1, denoted by r;.

The above equation may be summarized in words as follows: The sum of the internal element forces is
equal to that of the external forces and reactions. This differs somewhat from the well-known equilibrium
condition that the sum of forces on any point must vanish. The reason for the difference is that the element
nodal forces, which are the forces that appear in the element stiffness matrix, act on the elements. The forces
exerted by the elements on the nodes are equal and opposite.

Notice that the element forces are labeled with subscripts 1 and 2; these are the local node numbers. The
nodes of the mesh are the global node numbers. The local node numbers of a bar element are always
numbered 1, 2 in the positive x-direction. The global node numbers are arbitrary. The global and local node
numbers for this example are shown in Figure 2.7(a) and (b), respectively.

We will now use the element stiffness equations to express the element internal nodal forces (LHS in
(2.13)), in terms of the global nodal displacements of the element.

For element 1, the global node numbers are 2 and 3, and the stiffness equation (2.12) gives

(1 1 1
F KD —kW | T
=1 { ’ ] . (2.14)
Fél) — k( ) k( ) Uy
Notice that we have replaced the nodal displacements by the global nodal displacements. This enforces
compatibility as it ensures that the displacements of elements at common nodes are identical.
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For element 2, the global node numbers are 1 and 2, and the stiffness equation (2.12) gives

K2 k@ | [u,
:[k(z) ) | (2.15)

The above expressions for the internal nodal forces cannot be substituted directly into the left-hand side
of (2.13) because the matrices are not of the same size. Therefore, we augment the internal forces matrices
in (2.14) and (2.15) by adding zeros; we similarly augment the displacement matrices. The terms of
the element stiffness matrices in (2.14) and (2.15) are rearranged into larger augmented element stiffness
matrices and zeros are added where these elements have no effect. The results are

F?
Fy

0, 0 0 0 7[u
)l =10 & —k0| |u o F d. (2.16)
Fg') 0 —k kM us

——
...(1

) kY d

F

Note that we have added a row of zeros in row 1 corresponding to the force at node 1, as element 1 exerts no
force on node 1, and a column of zeros in column 1, as the nodal displacement at node 1 does not affect
element 1 directly. Similarly, an augmented equation for element 2 is

F K® k@ 0] [w

FO | = [ k@ o |u o FY =K% (2.17)
0 0 0 0] Lus

F(z) K(2) d

The matrices in the above equations are now of the same size as in (2.13) and we can substitute (2.16) and
(2.17) into (2.13) to obtain

0 o0 0 u K2 k@ 07 [u 0 r
0 kY kW fuy |+ | -k® k@ of |wm|=|h|+]|0],
0 —&k kM us 0 0 0] |u f 0
N—— N——
K(l) d K(z) d f r
or in the matrix form
K"+ Ky =f+r. (2.18)

The above are the assembled stiffness equations and the variable within the parentheses is the assembled
stiffness matrix, which in this case is given by

2 k@ —k® 0
K=Y K'=| k@ k4@ 0] (2.19)
e=1 0 — kM k(D

The stiffness matrix K is singular, as can readily be seen by checking the determinant. To obtain a solvable
system, the boundary conditions must be prescribed.

We will now summarize what we have done to obtain the global stiffness matrix. First, we scattered the
terms in an element stiffness into larger matrices of the same order as the global stiffness according to the
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Table 2.1 Matrix scatter and add and direct assembly.

Matrix scatter and add

Element 1 scatter, global nodes 3 and 2

K 0 0
K(l):{k“&) 7]({1(;)};‘12(1): 0 kKD k)
kK 0 k0 kD
Element 2 scatter, global nodes 2 and 1
[ k@ —_x@ o]
2 2 -
KO = | K2 kO g@ | e g g
k@ (@
Y 0 0]
Add matrices
2 k2 o) 0
K=Y K= | k@ k4@ —g
e=1 0 —km k)
Direct assembly
o [0 k] ) k> —k® 0o 10
KP=1 0 o | K= | k@ 10 4r@ _g0|[]
B - 0 —k( KD | 3]
Bl 2]
(1] 2l B3
K2 — K@ —k@ 2]
k@ @
2l

global node numbers. Then, we added these augmented stiffnesses to obtain the global stiffness matrix.
Thus, the process of obtaining the global stiffness matrix consists of matrix scatter and add. This is
summarized in Table 2.1.

We can bypass the addition of zeros and assemble the matrix directly by just adding the terms in the
element stiffness according to their global node numbers as shown in Table 2.1. This process is called direct
assembly. The result is equivalent to the result from the matrix scatter and add. Assembling of the stiffness
matrix in computer programs is done by direct assembly, but the concept of matrix scatter and add is useful
in that it explains how compatibility and equilibrium are enforced at the global level.

2.2.1 Equations for Assembly

We next develop the assembly procedures in terms of equations. In this approach, compatibility between
elements is enforced by relating the element nodal displacements to the global displacement
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matrixd = [u; ux us }T by equations. These equations are written as follows:

w_ [« o o 1" ) o _ [’ 0 1 0][" @
d" = = =L"Yd, d“ = = =L%d,
) {0 1 0} " u? [1 0 o} 2
2 ~—— LUz 2 ————LU3
LM L®
(2.20)
or in general
d° =L°d. (2.21)

The matrices L are called the gather matrices. The name gather originates from the fact that these matrices
gather the nodal displacements of each element from the global matrix. Note that these equations state that
the element displacement at a node is the same as the corresponding global displacement, which is
equivalent to enforcing compatibility.

The matrices L¢ are Boolean matrices that consist strictly of ones and zeros. They play an important role
in developing matrix expressions relating element to global matrices.

Using (2.11), the element equations can be written as

K°L‘d = F*. (2.22)

Compatibility is automatically enforced by Equation (2.20).
It can be observed that the first term on the left-hand side of (2.13) can be expressed as

1) F

Fé =10 1 — LOTR)
0 F ’

F 1 0 2

2

F, 0 1 e

FOl=1[1 0 L L OTRO®)
1 F@
0 00 2

Note that (L° )T scatters the nodal forces into the global matrix. Substituting the above two equations into
(2.13) gives

2
S LTF =f+r. (2.23)

e=1

Although we have shown the relation between internal, external forces and reactions for a specific example,
(2.23) always holds. The general relation is derived in Section 2.5.

In order to eliminate the unknown internal element forces from Equation (2.22), we premultiply (2.22)
by LeT and then add them together. Thus, premultiplying the element equations (2.22) by LeT
yields

LTKLed = L°TF¢, e=1,2.
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We now define the system of equations for the entire system. By adding the element equations (e = 1, 2),
we get

Kd=f+r, (2.24)

where K is called the global stiffness matrix and is given by

el
K=) LTKL* (2.25)

e=1

where n,; is the number of elements; in this case n,; = 2. The above gives the assembly procedure in terms
of an equation. It is equivalent to direct assembly and matrix scatter and add. Whenever this equation
appears, it indicates assembly of the element matrices into the global matrix (for general meshes, the range
of e will be 1 to n,;) . By comparison with (2.19), we can see that

K’ = LTK°L. (2.26)

So the stiffness matrix scatter corresponds to pre- and postmultiplications of K¢ by L¢T and L¢,
respectively.

Substituting the expressions of the element stiffness matrices (2.12) into (2.24) and using (2.25) gives
the global equation

k2 k@ 0 i r
kD k) k@ O w | = A . (2.27)
0 —kM kM u3 /3

The above system of three equations can be solved for the three unknowns u; , 13 and r; as described in the
next section.

2.2.2 Boundary Conditions and System Solution

‘We now proceed with the process of solving the global system of equations. For the purpose of discussion,
we consider prescribed displacement it; = 4/ k@ atnode 1 and external forces f, = —4 andf; = 10 acting
at nodes 2 and 3 as shown in Figure 2.8.

The global system of equations (2.27) is then:

K —k@ 0 i r
k@ kO 4k @ )y, | = | -4 . (2.28)
0 k0 k0 | 10

There are several ways of modifying the above equations to impose the displacement boundary conditions.
In the first method, the global system is partitioned based on whether or not the displacement at the node is
prescribed. We partition the system of equations into E-nodes and F-nodes. The E-nodes are those where
the nodal displacements are known (E stands for essential, the meaning of this will become clear in later
chapters), whereas F-nodes are those where the displacements are unknown; (or free). The subscripts E and

_ 4
J§=1<0> (1) h=—4 ©) =0
— (—E )

3 K 2 k@ 1o

Figure 2.8 Two-element truss structure with applied external forces and boundary conditions.
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F in the global displacement matrix, d = {gE } the global force matrix, f = EE} and reaction matrix,
F F

r . .
r= LE] denote the corresponding blocks; rp = 0 because there are no reactions on free nodes; the
F

external forces in this chapter corresponding to E-nodes are assumed to vanish, fg = 0.

For convenience, when solving the equations either manually or by utilizing the MATLAB program
(Chapter 12), the E-nodes are numbered first. In general, the optimal numbering is based on computational
efficiency considerations.

The system equation (2.28) is then partitioned as follows:

k2 : —k@ 0 i i -
_____ S bern RRS ¢ AVENI O L. W AN SN T K- K
— k@7 kO k@ Oy [ = | -4 or {KTE KEF} {;H = {ﬂ (2.29)
0+ —kM K| L us 10 BF BF JLOR F
where
KD 4+ k@ )
— (k@ = [—k® -
KE - [k L KEF = [ k 0]7 KF - —k(l) k(l) )
ds — [ @ —4 u
I’E:[}’l]7 dE:[Ml] :[4/k L f]:: s dF: .
10 us

The unknowns in the above system of equations are dr and rg, whereas dg, 5, kD and k@ are known. If we
write the second row of Equation (2.29), we have

Kide + Kpdr = fr.
If we subtract the first term from both sides of the above equation and premultiply by K5 ', we obtain
dr = K;! (fr — KL dg). (2.30)

This equation enables us to obtain the unknown nodal displacements. The partitioning approach also
enables us to obtain the reaction force, rg. Writing the first row of (2.29) gives

Ig = KEaE + KEFdF- (231)

Asdgisknown from Equation (2.30), we can evaluate the right-hand side of the above equation to obtain the
reactions rg.
For the two-bar problem, the solution of the unknown displacements by Equation (2.30) using (2.29)

gives
w] [k k@ k0] T4 1@ @
{MJ *{ k) 0 0!l o [4/K9] 0,

which yields
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The reaction force is found from Equation (2.31) and is given by

r = —6.

It can be shown that K is positive definite (see Problem 12.3 in Chapter 12).

The second method for imposing the displacement boundary conditions is to replace the equations
corresponding to prescribed displacements by trivial equations that set the nodal displacements to their
correct value, or in manual computations, to drop them altogether. We put the product of the first column of
K and #; on the right-hand side and replace the first equation by u#; = u; . This gives

1 0 0 uj u
0 kU +k@ kO uy| =|—-4— (kD) |. (2.32)
0 — kM ALY us 10 — (0)iy

Again, it can be seen that the above equations can be solved manually by just considering the last two
equations.

The reactions can then be computed by evaluating the rows of the total stiffness equations that give the
reactions. From row 1 of Equation (2.29), we obtain

r o= [k<2> —k® o} 0 | = —6.

The third method for imposing the boundary conditions is the penalty method. This is a very simple
method to program, but should be used for matrices of moderate size (up to about 10 000 unknowns) only
because it tends to decrease the conditioning of the equations (see Saad (1996) and George and Liu (1986)).
In this method, the prescribed displacements are imposed by putting a very large number in the entry
corresponding to the prescribed displacement. Thus, for the example we have just considered, we change
the equations to

Ji —k@ 0 uy Bty
k@ kD4 k@ | uy | = | =4, (2.33)
0 —kM KD | us 10

where f§ is a very large number. For example, in a computer with eight digits of precision, we make
B ~ 107 average (K;;) . The other terms in row 1 and column 1 then become irrelevant because they are
much smaller than the first diagonal term, and the equations are almost identical to those of (2.32).

The method can physically be explained in stress analysis as connecting a very stiff spring between node
1 and the support, which is displaced by ;. The stiff spring then forces node 1 to move with the support. The
penalty method is most easily understood when #; = 0 ; then it corresponds to a stiff spring linked to the
stationary support and the displacement of the node 1 is very small. The reactions can be evaluated as was
done for the previous method. We will elaborate on the penalty method in Chapters 3 and 5.

Example 2.1

Three bars are joined as shown in Figure 2.9. The left and right ends are both constrained, i.e. prescribed
displacement is zero at both ends. There is a force of 5 N acting on the middle node. The nodes are
numbered starting with the nodes where displacements are prescribed.
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1 k@ 3 b

Figure 2.9 Three-bar example problem.

The element stiffness matrices are

[13 ) [(3]> | [?]) [32 ) [(2])
1 —ka 2 _p2 ) 03
- B e[ £ e[ ]

23

where the global numbers corresponding to the element nodes are indicated above each column and to the

right of each row.
By direct assembly, the global stiffness matrix is

(1] 2] 3]
D 1+ k2 0 kM — @ 1]
K= 0 k3 —k® 2]

—k — k@ k3 ) 4 ;@ 4 (O | [3]

The displacement and force matrices for the system are

0 0 ry
d=|0|, f=10], r=|n
usz 5 0

The global system of equations is given by

KD 1+ k2 0 kM — 2 0 o)
0 k3 —k® 0| =1|n
kD @ G k(D) 4 k2 g3 u3 5

As the first two displacements are prescribed, we partition after two rows and columns

KD +k@ 01—k — k@ 0 r
_____ O KO L k1o =1n
kD k@ kG ) £ k@ 4 kB | | us 5

or
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where
KD 1+ k2 o —kM — k@
— — | 2) (3) —
K . s K¢ [k F D 4k ] Ker o
_ I
dE = d]: = [M;] fp = [5} Ig =
0 &)

The reduced system of equations is given by
(kD + k@ + ks =3,

which yields

5

B0 kD 1 k0

2.3 APPLICATIONS TO OTHER LINEAR SYSTEMS'

The methods described for one-dimensional bars can also be used directly for other networks. For the
methods to be applicable, the systems must be characterized by

1. abalance or conservation law for the flux;
2. alinear law relating the flux to the potential;
3. acontinuous potential (i.e. a compatible potential).

Two examples are described in the following: steady-state electrical flow in a circuit and fluid flow in a
hydraulic piping system.

In an electrical system, the potential is the voltage and the flux is the current. An element of a circuit is
shown in Figure 2.10. By Ohm’s law, the current from node 1 to node 2 is given by

4 €
€ €

2.34
Re’ (3)

o
ly =

where ¢f and e{ are the voltages (potentials) at the nodes and R° is the resistance of the wire. This is the linear
flux—potential law. By the law of charge conservation, if the current is in steady state,

i{ +1i5 =0, (2.35)
which is the second of the above conditions on the element level. Writing (2.34) and (2.35) in matrix form,
we have

g1 1|1 —1]/¢€
-2l 08
——— —_— o~
fl? Ke de
The continuity of the voltage at the nodes is enforced by
d’ =L°d. (2.37)

"Recommended for Science and Engineering Track.
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e e ey e e P° P e
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1 Rc 2 ¢ 1@ 3 ‘
Figure 2.10 A resistance element for a circuit and a hydraulic element for a piping network; the nodal flux is positive
when it exits the domain of the element.

Current balance at the nodes gives
Nl
S LT =f+r (2.38)
e=1
Details can be seen in Example 2.2.
The system equation can then be obtained by enforcing the condition that the sum of the currents at any
node is equal to any external sources of currents. The process is identical to what we did for bar elements.

el
fi4r= ZLfTFf by Equation (2.38)
e=1

Nel

= Z LTKed" by Equation (2.36)
e=1

Nel

=Y LKL‘d by Equation (2.37).
e=1

K

As indicated by the underscore, the assembled system matrix is given by
l’l”
K=Y LKL (2.39)
e=1

This system is obtained by a sequence of scatter and add operations, which corresponds to direct assembly.
For a piping system, a similar procedure can be developed if the flow rate is linearly related to the
pressure drop between two points. A network model is constructed as shown in Figure 2.11. Nodes are
needed only where two pipes join or where the fluid is withdrawn or added. In each element, the nodal
outflow rate Q% at node is proportional to the nodal pressure drop (P§ — P{) (see Figure 2.10), so

0; = r°(Py = PY), (2.40)

where k¢ depends on the cross-sectional area of the pipe, the viscosity of the fluid and the element length.
Linear laws of this type apply over a large range of flows.
Conservation of fluid in an element is expressed by

01 +05=0. (2.41)

The system equations are then obtained by writing the equation for the conservation of fluid at nodes and
using the continuity of the pressure field. The process is identical to that used in obtaining Equation (2.39).
This is left as an exercise, although it will become apparent in the example.

The similarity of these different systems is surprising and can provide a deeper understanding of linear
systems. All of these systems possess a potential and a conservation law. In the mechanical bar, the potential
is not as obvious: it is the displacement. The displacement has all of the properties of a potential: it must be
continuous (compatible) and its change determines the flux, which in this case is the stress.
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Example 2.2

Set up the discrete equations for the systems shown in Figure 2.11 and solve them. The three systems in
Figure 2.11 all have the same basic topology, i.e. the same relationship between nodes and elements. We
first assemble the system matrix by scatter and add. Then the specific equations are set up by enforcing
constants on the flux or potential. We use k¢ = % = k¢ to denote the element coefficients for the three
different systems.

The scatter operations on the elements then give the following (/ and J give the global node numbers of
the element):

Element 1,/ =1,J = 4:

[ &M 0 0 —kM]
1 -1 = (1) 0 00 0
(1) — () -
K=k {—1 1}:”( 0 00 0
kK o o kM
Element2,] =4,J = 2:
[0 0o 0 0 ]
1 -1 -2 |0 k® 0 —k@
@ — (@ _
Ko =k {71 1}§K 0O 0 0 0
0 —k® o k@
Element3,7/=1,J = 3:
K 0 —k® o
G _e| 1 -1 ~3_|[ 0 0 0 0
K=k {—1 1}$K K 0 k™ o
0 0 0 0
k(’l)
kll) I Il; .
4 k@ ml k® 2[&’ ’72210/1‘“
/‘l | ] !
K 3
|

Figure 2.11 Example 2.2: mechanical, electrical and hydraulic systems with an identical network structure.
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Element4,1 =4,J = 3:

00 O 0
oy _ | 1 -1 ~4 |0 0 0 0
K = {—1 1 } =K 00 K9 k@
0 0 —k¥ (@
Element 5,7 =3,J = 2:
[0 0 0 0]
1 -1 - (5) 0 k& —x® o
5) — ;) -
K =k {—1 1 }:K o —k® k9 o
|10 0 0 0]
Assembled system matrix:
KD 4 kB 0 —k® kM
B 5., B 0 K2 Lk —k) k@
K= > K= _0 K k) k@ k) e
= _r _r@ _k@ kD 4 k@ 4 k@
Equations for the mechanical system:
I
JAORAE) 0 i _k3) _km r
Y S B 0[] _ H _|n
_k® —k®) ik<3) + k@ 4 k™ —k@ de | [fe] | O
—kM k@ ! —k® A SORy e Ry A0 0

where the solution matrix for mechanical, piping and electrical systems is

o= [a]=[n]=[a] o= [B]=[2)=[a]= i)

Partitioning above after two rows and columns gives

K 4 k@ 4 k) k@ 0] 10 [—4®
—k@ KD k@ k@ |TF T o] T k0 | k@

Letting k° = 1 for e = 1 to 5 and solving above gives

2.4 TWO-DIMENSIONAL TRUSS SYSTEMS?>

Truss structures, such as the one shown in Figure 2.1, consist of bar elements positioned at arbitrary angles
in space joined by pin-like joints that cannot transmit moments. In order to analyze such general truss

’Recommended for Structural Mechanics Track.
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Figure 2.12 A two-dimensional truss element in the local coordinate system x/’, y.

structures, it is necessary to develop an element stiffness matrix for a bar element aligned arbitrarily in two- or
three-dimensional space. We will first consider the two-dimensional case where the bar elements are in the xy-
plane as shown in Figure 2.2(b). Trusses differ from networks such as electrical systems in that the nodal
displacements in multidimensional problems are vectors. The unknowns of the system are then the components
of the vector, so the number of unknowns per node is 2 and 3 in two and three dimensions, respectively.

We begin by developing the element stiffness matrix for a bar element in two dimensions. A generic bar
element is shown in Figure 2.12, along with the nodal displacements and nodal forces. At each node, the
nodal force has two components; similarly, as can be seen from Figure 2.12, each nodal displacement has
two components, so the element force and displacement matrices are, respectively,

F=[Ff, F, F5, F5)" and & =[d, df, &5, d5]".
To obtain a general relation between the element internal forces F¢ and displacements d°, we start with the
stiffness equations in the local element coordinate system (x"¢, y*); as shown in Figure 2.12, x” is aligned
along the axial direction of the bar element and is positive from node 1 to node 2. The angle ¢ is defined as
positive in the counterclockwise sense.

In the element coordinate system (x’¢, y") , the element stiffness given by Equation (2.10) applies, so

e ) -]
—k¢ k¢ uy, Fy |
The above equation can be expanded by adding the equations F' ’f; = Féi = 0. These nodal force
components perpendicular to the axis of the element can be set to zero because we have assumed that
the element is so slim that the shear forces are negligible.

The nodal forces in the element are independent of the normal displacements in small displacement
theory. This is because the elongation is a quadratic function of the nodal displacements normal to the bar.
As the nodal displacements are assumed to be small, the effect of the normal displacements on the

elongation is therefore of second order, and hence the effects of these displacement components on the
stress and strain can be neglected. So the stiffness matrix in the element coordinate system is given by

Fle 0 —1 07 [u
F, e 0 0 0 0] |uf
FY. -1 0 1 of |us|’
Ff, 0 0 0 0] [u

Fle K/e d/e
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or in terms of the underscored nomenclature
F°=K"*d". (2.42)

Itis easy to see that for the above stiffness matrix, the y"*~components of the forces at the two nodes always
vanish and that the y*-components of the displacements have no effect on the nodal forces; the stiffness
matrix in (2.42) is simply the matrix (2.11) embedded in a matrix of zeros. In other words, we have simply
scattered the axial bar stiffness into a larger matrix; this is valid when the element coordinate system is
aligned with the axis of the element.

The relation between the displacement components in the two coordinate systems shown in Figure 2.12
at the nodes (I = 1, 2) is obtained by means of the relation for vector transformations:

le __ e e e : e
up, = uj, cos ¢° +uy, sin @

le e : e e e
up, = —uj, sin ¢° + uj, cos ¢

These equations can be written in the matrix form as follows:

d° =Rd, (2.43)
where
us, cos¢®  sin¢® 0 0
&= ujy O sin¢¢  cos ¢° 0 0
us, |’ 0 0 cos ¢ sin¢*
Uz, 0 0 —sing® cos ¢°

R? is the rotation matrix. The above combines the vector transformation at the two nodes. As these
transformations are independent of each other, blocks of the matrix relating different nodes are zero, e.g. the
upper right 2 x 2 block is zero as the element components of the nodal displacement at node 1 are
independent of the displacement at node 2.

Note that R® is an orthogonal matrix: its inverse is equal to its transpose, i.e. (R) 'R = R¢(R°)" = Ior

(R)™ =R (2.44)
Premultiplying Equation (2.43) by (R¢)", we obtain
Rerle _ ReTRede — de’

where the second equality follows from the orthogonality relation (2.44). The components of the element
force matrices are related by the same component transformation rule:

(a) F°=RF°, (b) F¢=RTF". (2.45)
We are now in a position to determine the relation between F° and d° . Starting with (2.45b),
F° = RF* by Equation (2.45b)
= RTK"d" by Equation (2.42)

=RTK“R°d® by Equation (2.43)
K(f



30 DIRECT APPROACH FOR DISCRETE SYSTEMS
As indicated above, the underscored term is the element stiffness in the global coordinate system:
K° = RTK“R“. (2.46)

Anexplicitexpression for K¢ is obtained by substituting the matrix expressions for K¢ and R® into Equation
(2.46), which gives

cos? ¢¢ cos ¢° sin ¢° — cos? ¢° — cos ¢° sin ¢°¢
e e | cos¢@® sin@® sin? ¢° —cos ¢°sin ¢° —sin® ¢°
K=k 2 e € o3 e 2 e e o e (247)
— COos”~ — cos ¢° sin ¢ cos” ¢ cos ¢° sin ¢
—cos ¢° sin ¢* — sin? ¢* cos ¢¢ sin ¢° sin? ¢

It can be seen that K is a symmetric matrix.

2.5 TRANSFORMATION LAW?

In the following, we develop a more general method for transformation of stiffness matrices by means of
energy concepts. By transformation here we mean either a rotation from one coordinate system to another
orascatter operation from an element to the global coordinate system. We will denote such a transformation
matrix by T¢. The matrix T transforms the element displacement matrix from a coordinate system where
the stiffness relation K¢ is known to another coordinate system where the stiffness matrix K°is unknown.
We start with

(a) d°=Td’, (b) F° =K< (2.48)

In the case of rotation from one coordinate system to another (Section 2.4), d = R°d¢ , so T¢ = R¢,
d¢ =d¢andd® = d° ; in the case of scatter operation (Section 2.2), d* = L°d,so T = L ,d° = d¢ and
d = d°. In the following, we will describe how to relate F* to F* and how to establish the stiffness relation
F=K'd"

Let F¢ be the internal element force matrix and 6d° be an arbitrary infinitesimal element displacement
matrix. The nodal internal forces must be chosen so that the work done by the internal forces, denoted by

6Win , is given by
Wine = 6d°TF°. (2.49)

Note that §d° has to be infinitesimal so that the internal force matrix F¢ remains constant as the element
deforms. For example, for the two-node element in one dimension, the work done by element e is
Wine = O FS + STSFS.
We now show that if (2.48) holds then
K’ = T'K°T". (2.50)
We first show that if (2.48) holds then

F = TTF* (2.51)
The key concept that makes this proof possible is that the internal work expressed in terms of 6d¢ and F¢
must equal to the internal work expressed in terms of §d¢ and F, so

~eT e

Wine = 6d°TF¢ = 6d° F°. (2.52)

3Optional for all tracks.
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We will discuss why this must be true later. We now substitute the first part of (2.48) into (2.52), which
gives

Wi = 6d° F° = 6d TTF. (2.53)

Rearranging terms in the above gives
5T (F¢ — TTF¢) = 0. (2.54)
As the above must hold for arbitrary éd°, the result (2.51) follows from the vector scalar product theorem

(see Appendix A2).
We next prove the relation (2.50) as follows:

F* = TF* from (2.51)
=TKd by (2.48b)
=TTKTd® by (2.48a).

Hﬁ,—/
K

As the last line in the above defines the transformed element stiffness matrix, (2.50) is proved.

The above proof is based on the fact that any two valid representations of the element must be
energetically consistent, that is, the element must absorb the same amount of energy irrespective of the
coordinate system in which it is described. One way of explaining this is that energy is a scalar, so it is
independent of the alignment of the coordinate system. Scalar physical variables like pressure, temperature
and energy do not depend on the coordinate system that is chosen. Furthermore, energy has to be
independent of what generalized deformation modes are used to describe the deformation of the system.
Energy has a very unique and important role in physics and mechanics: its invariance with respect to the
frame of reference leads to important results such as the principle of virtual work and theorem of minimum
potential energy and appears throughout finite element analysis.

Example 2.3

Figure 2.13 (left) shows material properties, geometry, loads and boundary conditions of the two-bar
structure. In this example, we emphasize the four main steps in the finite element method (FEM), namely
(1) preprocessing, (2) construction of local (element) behavior, (3) assembling the local matrices to
obtain the global behavior and (4) postprocessing.

Figure 2.13 Two-element truss structure.
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1 2

Figure 2.14 Local (element) and global coordinate systems.

Step 1, which is subdividing the structure into elements, assigning the element numbers to each bar,
node numbers to each joint, starting with nodes where the displacements are prescribed, is shown in
Figure 2.13. The finite element model consists of two elements numbered 1 and 2 and three nodes.

Step 2 deals with the formulation of each element starting with element 1.

Element 1:

Element 1 is numbered with global nodes 1 and 3. Itis positioned at an angle ¢(!) = 90° with respect to the
positive x-axis as shown in Figure 2.14. Other relations are as follows:

AWED  AE
cos90° =0, sin90°=1, (M= k= =T
0 0 0 0
AE|0 1 0 -1 1]
KOV =22
110 0 0 0
0 -1 0 1 3]
(LIE]

Element 2:

Element 2 is numbered with global nodes 2 and 3. Itis positioned at an angle ¢(® = 45° with respect to the
positive x-axis as shown in Figure 2.14. Other relations are as follows:

1

1
cos 45° = —, sin 45° = —, 12 — \/El,
V2 V2
o _AVED  AE
12) \/277
(111 17
2 2 2 2
11 | B
@_AE} 2 22 2
V21 1 11
2 2 2 2
(3]
R
L 2 2 2 2
2] (3]

Step 3: deal with construction of the global behavior.

(3a) Direct assembly:
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0 0 0 0 0 0 0
0 1 0 0 0 -1
o o 1 1 1 1
272 22 2V2 22
k=10 o L L L 1 [
l 2V2 22 2V2 2V2
0 0 1 1 1 1
2V2 2V2 22 2v2
1 1 1 1| B3]
0 -1 ——— ——— — 14—
2V2  2vV2 2V2 2v/2 ]
[1] 2] 3]
and
O O rix
0 O rly
_ 0 _ 0 _ Ix
=1y =159 r= ry
U3y 10 0
I/lzy 0 0

Once again notice that if the external force component at a node is prescribed, then the corresponding
displacement component at that node is unknown. On the other hand if a displacement component at a
node is prescribed, then the corresponding force component at that node is an unknown reaction.

(3b) Global system of equations:

[0 0 0 0 0 0
0 1 0 0 0 -1 - o
0 o | I I I 0 Tix
22 22 22 22 || 0 1y
AE 0 o 1 1 1 1 0]  |rx
I 22 2v2 2v2 2v2 0| |ny
0o o0 - LI S b Uy 10
V2 2v2 2v2 22 s, Lo |
0 1 ! ! ! 1+ ! o
i W2 W2 2V2 2V2
(3c) Reduced global system of equations:
The global system is partitioned after four rows and four columns:
Upy 0 1 1
_ u 0 Uy 10
dg=| | = ; de=| ", fr = , Ky = V2 22
Uy 0 usy 0 _1 14+ _1
ﬁZy 0 2\/5 2\/5
0 0
M 0 -1
rly K 1 1
rg = , =|-——= —
T . 22 22
ray L
V2 2V2
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The unknown displacement matrix is found from the solution of the reduced system of equations

1 1
AE |2V2  2V2 ['43} [10]
! e 1 _‘_L Usy 0
2V/2 22
and is given by
Uzy 1 [10+20v2
w, | AE| 10 |
The unknown reaction matrix r is
© o 0
Ix 0
0 -1
Iy - 1 1 10 + 20v/2 10
Ig = =Kgdg + Kgpdp = | ——— ——— =
Fax V2 2V2 -10 -10
2y _ L _ L —-10
L 2v2 2v2)

It can easily be verified that the equilibrium equations are satisfied:
S R0 YR=0 Y=o
Finally, in the postprocessing step the stresses in the two elements are computed as follows:
f,
ue — e E¢ uyy, E¢
o =EE X _"[_1 0 1 0] =—[-1 0 1 OJRY
I le u N

—le
iy,

e

E
=?[fcos¢" —sing® cos¢® sin¢®]d°.

For element 1, we have

oV =90° (cospV =0, sinpM) = 1),

Uy 0
am [ 0 i
Uz 10 +20v2 | AE’
Usy —10
0
0 1 -10

W= -1 0 1 —=—
o =1 Hiog20v3|2~ 2
~10
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For element 2, we have

#P =45° (cos¢® =1/v2, sing® =1/V2),

Uy 0
d® = oy | _ 0 L
Usy 10 +20v2 | AE’
Uusy —10
0
1 0 1 102
D= —[—1/V2 —1/V2 1/V2 1/V2 ==
o7 =l N2 -1V2 V2 1V 10+20v2 |4 A
—10

2.6 THREE-DIMENSIONAL TRUSS SYSTEMS*

Consider a bar element in three dimensions as shown in Figure 2.15. As the element has resistance only to
extensional deformation, we can write the relationship between nodal forces and nodal displacements in

the local coordinate system as
Fr 1 =17l
e | = k 11 el (2.55)
2x 2x

The degrees of freedom included in the above element displacement and force matrices are the only ones
that are involved in the stiffness of the system.

The element in three dimensions will have three degrees of freedom per node: translation components in
the x, y and z directions, so

d® = [uf, ufy uj, us, ug‘. uEZ]T, (2.56)
As the force matrix must be energetically consistent,

¥ =[Fi, Fj, F{ Fj F F5]". (2.57)

Figure 2.15 A three-dimensional truss element in the local coordinate.

“4Optional for all tracks.
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To obtain the stiffness equation in terms of the nodal forces and displacements (2.57) and (2.56),
respectively, we now construct the rotation matrix R® for three-dimensional trusses. Note that the unit
vector along the element is given by

- |
i'= l_e(lel + Y5 + 25,k), (2.58)

where x5, = x5 — x{ and so on. If we treat the nodal displacements as vectors, then

1 et xd

up i+ g+ WK = ul i+ us,j + sk (2.59)

for/ = 1and 2.
Taking a scalar product of the above with i’, we find (because of the orthogonality of the unit vectors)
that

W =ui 7 ul T kT (2.60)
From Figure 2.15 we can see that substituting (2.58) into (2.60) we find that

= e T Yy + 0] 261)
Using the above to write the relations between d’¢ and d¢, we have

{M’l‘;}_l{xil Yo % 000

= . . . de, (2.62)
Lo 0 0 x5 ¥ 2z

le
Uy

Re

which defines the matrix R®. The global stiffness is then given by (2.50)

Ke _ ReT Kle Re
6x2 2x2 2%6’

where K is the matrix givenin (2.55) and R® is given in (2.62). The resultis a6 x 6 matrix. Itis not worth
multiplying the matrices; this can easily be done within a computer program. This procedure can also be
used to obtain the stiffness of the element in two dimensions: the R® matrix would then be the 2 x 4 matrix
with the columns with z5; terms dropped and the result identical to (2.47).
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Problems

Problem 2.1

For the spring system given in Figure 2.16,

Number the elements and nodes.

Assemble the global stiffness and force matrix.

Partition the system and solve for the nodal displacements.
Compute the reaction forces.

o o

Figure 2.16 Data for Problem 2.1.

Problem 2.2
Show that the equivalent stiffness of a spring aligned in the x direction for the bar of thickness 7 with a
centered square hole shown in Figure 2.17 is:

5Etab
(a+b)l’

where Eis the Young’s modulus and ¢is the width of the bar (Hint: subdivide the bar with a square hole into 3
elements).

—> x
v 2b

T ]
v 2b

/1 /10

Figure 2.17 Data for Problem 2.2.

Problem 2.3

Consider the truss structure given in Figure 2.18. Nodes A and B are fixed. A force equal to 10 N acts in the
positive x-direction at node C. Coordinates of joints are given in meters. Young’s modulus is E = 10''Pa
and the cross-sectional area for all bars are A = 2 - 10~ 2m?.

Number the elements and nodes.

Assemble the global stiffness and force matrix.

Partition the system and solve for the nodal displacements.
Compute the stresses and reactions.

e0 o
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c(1,1
D(0,1) (4), 0

A(0,0) B(1,0)

Figure 2.18 Data for Problem 2.3.
Problem 2.4
Given the three-bar structure subjected to the prescribed load at point C equal to 10 N as shown in
Figure 2.19. The Young’smodulusis £ = 10'! Pa, the cross-sectional area of thebar BCis2 x 1072 m?and
that of BD and BF is 1072 m? . Note that point D is free to move in the x-direction. Coordinates of joints are
given in meters.

a. Construct the global stiffness matrix and load matrix.

b. Partition the matrices and solve for the unknown displacements at point B and displacement in the
x-direction at point D.

Find the stresses in the three bars.

d. Find the reactions at nodes C, D and F.

o

B0,0)? v ————————————————p

Figure 2.19 Data for Problem 2.4.

Problem 2.5
In each of the two plane structures shown in Figure 2.20, rigid blocks are connected by linear springs.
Imagine that only horizontal displacements are allowed. In each case, write the reduced global equilibrium

Figure 2.20 Data for Problem 2.5.
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equations in terms of spring stiffness k°, unknown nodal displacements #; and applied loads f; . You
may renumber the nodes so that the nodes where the displacements are prescribed are numbered
first.

Problem 2.6

The plane structure shown in Figure 2.21 consists of a rigid, weightless bar and linear springs of stiffness
kM and k@ . Only small vertical displacements are permitted. The reduced stiffness matrix K of this
structure is 2 X 2 but can have various forms, depending on the choice of global displacement matrix.
Determine K for each of the following choices of lateral translations:

a. uyyatx = 0and uyy at x = L (see Figure 2.21, right).
b. ujyatx =0andusy atx = L/2.
C. upyatx = Land upy, atx = 2L.

Degrees-of-freedom for Part (a)

Figure 2.21 Data for Problem 2.6.

Problem 2.7
Modify the MATLAB finite element code to enforce displacement boundary conditions using the penalty
method (see Equation (2.33)).

a. Solve for the nodal displacements and stresses of the structure shown in Figure 2.22.
b. Plotthe deformed structure with MATLAB. For this purpose, add the mag x displacement to the nodal
coordinates. The factor mag is to magnify the displacements so that they are visible.

E=15-10"Pa
A=10"m’
for all bars

Figure 2.22 Data for Problem 2.7.
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Problem 2.8

Using the MATLAB finite element code, find the displacements and forces in the two truss structures given
in Figure 2.23. For truss structure (b), exploit the symmetry. For the two trusses, check the equilibrium at
node 1. The Young’s modulus E = 10'! Pa, cross-sectional areas of all bars 1072 m?, forces F = 10°> Nand
L=2m.

Figure 2.23 Data for Problem 2.8.



Strong and Weak Forms for
One-Dimensional Problems

In this chapter, the strong and weak forms for several one-dimensional physical problems are developed.
The strong form consists of the governing equations and the boundary conditions for a physical system. The
governing equations are usually partial differential equations, butin the one-dimensional case they become
ordinary differential equations. The weak form is an integral form of these equations, which is needed to
formulate the finite element method.

In some numerical methods for solving partial differential equations, the partial differential equations
can be discretized directly (i.e. written as linear algebraic equations suitable for computer solution). For
example, in the finite difference method, one can directly write the discrete linear algebraic equations from
the partial differential equations. However, this is not possible in the finite element method.

A roadmap for the development of the finite element method is shown in Figure 3.1. As can be seen from
the roadmap, there are three distinct ingredients that are combined to arrive at the discrete equations (also
called the system equations; for stress analysis they are called stiftness equations), which are then solved by
a computer. These ingredients are

1. the strong form, which consists of the governing equations for the model and the boundary conditions
(these are also needed for any other method);

2. the weak form;

3. the approximation functions.

The approximation functions are combined with the weak form to obtain the discrete finite element
equations.

Thus, the path from for the governing differential equations is substantially more involved than that for
finite difference methods. In the finite difference method, there is no need for a weak form; the strong formis
directly converted to a set of discrete equations. The need for a weak form makes the finite element method
more challenging intellectually. A number of subtle points, such as the difference between various
boundary conditions, must be learned for intelligent use of the method. In return for this added complexity,
however, finite element methods can much more readily deal with the complicated shapes that need to be
analyzed in engineering design.

To demonstrate the basic steps in formulating the strong and weak forms, we will consider axially loaded
elastic bars and heat conduction problems in one dimension. The strong forms for these problems will be
developed along with the boundary conditions. Then we will develop weak forms for these problems and
show that they are equivalent to the strong forms. We will also examine various degrees of continuity, or
smoothness, which will play an important role in developing finite element methods.

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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Strong form Weak form

(Chapter 3) g (Chapter 3)
Discrete equations
(Chapter 5)
Approximation of functions

(Chapter 4)

Figure 3.1 Roadmap for the development of the finite element method.

The weak form is the most intellectually challenging part in the development of finite elements, so a
student may encounter some difficulties in understanding this concept; it is probably different from
anything else that he has seen before in engineering analysis. However, an understanding of these
procedures and the implications of solving a weak form are crucial to understanding the character of finite
element solutions. Furthermore, the procedures are actually quite simple and repetitive, so once it is
understood for one strong form, the procedures can readily be applied to other strong forms.

3.1 THE STRONG FORM IN ONE-DIMENSIONAL PROBLEMS
3.1.1 The Strong Form for an Axially Loaded Elastic Bar

Consider the static response of an elastic bar of variable cross section such as shown in Figure 3.2. Thisis an
example of a problem in linear stress analysis or linear elasticity, where we seek to find the stress
distribution '(x) in the bar. The stress will results from the deformation of the body, which is characterized
by the displacements of points in the body, u(x). The displacement results in a strain denoted by ¢(x); strain
is a dimensionless variable. As shown in Figure 3.2, the bar is subjected to a body force or distributed
loading b(x). The body force could be due to gravity (if the bar were placed vertically instead of
horizontally as shown), a magnetic force or a thermal stress; in the one-dimensional case, we will consider
body force per unit length, so the units of b(x) are force/length. In addition, loads can be prescribed at the
ends of the bar, where the displacement is not prescribed; these loads are called tractions and denoted by 7.
These loads are in units of force per area, and when multiplied by the area, give the applied force.

Ax

p(x) P(x+ Ax)
- —B
u(x) ! Bl

u(x+ Ax)

Figure 3.2 A one-dimensional stress analysis (elasticity) problem.
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The bar must satisfy the following conditions:

It must be in equilibrium.

It must satisfy the elastic stress—strain law, known as Hooke’s law: o(x) = E(x)e(x).
The displacement field must be compatible.

It must satisfy the strain—displacement equation.

BN

The differential equation for the bar is obtained from equilibrium of internal force p(x) and external force
b(x) acting on the body in the axial (along the x-axis) direction. Consider equilibrium of a segment of
the bar along the x-axis, as shown in Figure 3.2. Summing the forces in the x-direction gives

—p(x) + b(x + %) Ax+p(x+ Ax) =0.

Rearranging the terms in the above and dividing by Ax, we obtain

W_Fb(x%—%) =0.

If we take the limit of the above equation as Ax — 0, the first term is the derivative dp/dx and the second
term becomes b(x). Therefore, the above can be written as

dp(x)
dx

+b(x) = 0. (3.1)

This is the equilibrium equation expressed in terms of the internal force p. The stress is defined as the force
divided by the cross-sectional area:

o(x) = @, so  p(x) =A(x)o(x). (3.2)

The strain—displacement (or kinematical) equation is obtained by applying the engineering definition of
strain that we used in Chapter 2 for an infinitesimal segment of the bar. The elongation of the segment is
given by u(x + Ax) — u(x) and the original length is Ax; therefore, the strain is given by

o) = elongation  u(x 4 Ax) — u(x)
= original length Ax '

Taking the limit of the above as Ax — 0, we recognize that the right right-hand side is the derivative of u(x).
Therefore, the strain—displacement equation is

e(x) =—. (3.3)

a(x) = E(x)e(x), (3.4)

where E is Young’s modulus.
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Substituting (3.3) into (3.4) and the result into (3.1) yields

%(AE%)—H?:Q O<x<l (3.5)
The above is a second-order ordinary differential equation. In the above equation, u(x) is the dependent
variable, which is the unknown function, and x is the independent variable. In (3.5) and thereafter the
dependence of functions on x will be often omitted. The differential equation (3.5) is a specific form of the
equilibrium equation (3.1). Equation (3.1) applies to both linear and nonlinear materials whereas (3.5)
assumes linearity in the definition of the strain (3.3) and the stress—strain law (3.4). Compatibility is
satisfied by requiring the displacement to be continuous. More will be said later about the degree of
smoothness, or continuity, which is required.

To solve the above differential equation, we need to prescribe boundary conditions at the two ends of the
bar. For the purpose of illustration, we will consider the following specific boundary conditions: atx = /,
the displacement, u(x = /), is prescribed; at x = 0, the force per unit area, or traction, denoted by 7, is
prescribed. These conditions are written as
du) p(0)

x=0

a(0) = (de = 4(0) = -1, (3.6)
u(l) =a.

Note that the superposed bars designate denote a prescribed boundary value in the above and throughout
this book.

The traction 7 has the same units as stress (force/area), but its sign is positive when it acts in the positive
x-direction regardless of which face it is acting on, whereas the stress is positive in tension and negative in
compression, so that on a negative face a positive stress corresponds to a negative traction; this will be
clarified in Section 3.5. Note that either the load or the displacement can be specified at a boundary point,
but not both.

The governing differential equation (3.5) along with the boundary conditions (3.6) is called the strong
form of the problem. To summarize, the strong form consists of the governing equation and the boundary
conditions, which for this example are

(a) i(AE%)+b:O on 0<x</,

®) olx=0)= (%): ] (37)

() ulx=10l=u.

It should be noted that 7, # and b are given. They are the data that describe the problem. The unknown is the
displacement u(x).

3.1.2 The Strong Form for Heat Conduction in One Dimension'

Heat flow occurs when there is a temperature difference within a body or between the body and its
surrounding medium. Heat is transferred in the form of conduction, convection and thermal radiation. The
heat flow through the wall of a heated room in the winter is an example of conduction. On the other hand, in
convective heat transfer, the energy transfer to the body depends on the temperature difference between the
surface of the body and the surrounding medium. In this Section, we will focus on heat conduction. A
discussion involving convection is given in Section 3.5.

"Reccommended for Science and Engineering Track.
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q(x)A(x) q(x + Ax)A(x + Ax)
Furring strips

— Concrete blocks
[— T e g

<

Figure 3.3 A one-dimensional heat conduction problem.

Consider a cross section of a wall of thickness / as shown in Figure 3.3. Our objective is to determine the
temperature distribution. Let A(x) be the area normal to the direction of heat flow and let s(x) be the heat
generated per unit thickness of the wall, denoted by /. This is often called a heat source. A common example
of a heat source is the heat generated in an electric wire due to resistance. In the one-dimensional case, the
rate of heat generation is measured in units of energy per time; in SI units, the units of energy are joules (J)
per unit length (meters, m) and time (seconds, s). Recall that the unit of poweris watts (1 W = 1 J s71). A
heat source s(x) is considered positive when heat is generated, i.e. added to the system, and negative when
heat is withdrawn from the system. Heat flux, denoted by g(x), is defined as a the rate of heat flow across a
surface. Its units are heat rate per unit area; in S units, W m~2.Itis positive when heat flows in the positive
x-direction. We will consider a steady-state problem, i.e. a system that is not changing with time.

To establish the differential equation that governs the system, we consider energy balance (or con-
servation of energy) in a control volume of the wall. Energy balance requires that the rate of heat energy
(gA) that is generated in the control volume must equal the heat energy leaving the control volume, as the
temperature, and hence the energy in the control volume, is constant in a steady-state problem. The heat
energy leaving the control volume is the difference between the flow in at on the left-hand side, gA, and the
flow out on the right-hand side, g(x + Ax)A(x + Ax). Thus, energy balance for the control volume can be
written as

s(x 4+ Ax/2)Ax + q(x)A(x) — g(x + Ax)A(x + Ax) = 0.
—_—  —

heat generated heat flow in heat flow out

Note that the heat fluxes are multiplied by the area to obtain a the heat rate, whereas the source s is multiplied
by the length of the segment. Rearranging terms in the above and dividing by Ax, we obtain
q(x + Ax)A(x + Ax) — g(x)A(x)
Ax

= s(x + Ax/2).

If we take the limit of the above equation as Ax — 0, the first term coincides with the derivative d(gA) /dx
and the second term reduces to s(x). Therefore, the above can be written as
d(gA)

a0 - (3.8)
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The constitutive equation for heat flow, which relates the heat flux to the temperature, is known as Fourier’s
law and is given by

dr
q=—k (3.9)
where T is the temperature and k is the thermal conductivity (which must be positive); in SI units, the
dimensions of thermal conductivity are Wm~' °C~!. A negative sign appears in (3.9) because the heat
flows from high (hot) to low temperature (cold), i.e. opposite to the direction of the gradient of the
temperature field.
Inserting (3.9) into (3.8) yields

d dr
E(Akﬁ)“_o’ O<x<lL (3.10)
When Ak is constant, we obtain
d’T

At the two ends of the problem domain, either the flux or the temperature must be prescribed; these are the
boundary conditions. We consider the specific boundary conditions of the prescribed temperature T atx = [
and prescribed flux g at x = 0. The prescribed flux g is positive if heat (energy) flows out of the bar, i.e.
g(x = 0) = —g. The strong form for the heat conduction problem is then given by

d dr
a(ka)-f—s—o on O<)C<l7

dr 3.12
—q:kazq on x=0, ( )

T=T on x=1

3.1.3 Diffusion in One Dimension?

Diffusion is a process where a material is transported by atomic motion. Thus, in the absence of the motion
of a fluid, materials in the fluid are diffused throughout the fluid by atomic motion. Examples are the
diffusion of perfume into aroom when a heavily perfumed person walks in, the diffusion of contaminants in
alake and the diffusion of salt into a glass of water (the water will get salty by diffusion even in the absence
of fluid motion).

Diffusion also occurs in solids. One of the simplest forms of diffusion in solids occurs when two
materials come in contact with each other. There are two basic mechanisms for diffusion in solids: vacancy
diffusion and interstitial diffusion. Vacancy diffusion occurs primarily when the diffusing atoms are of a
similar size. A diffusing atom requires a vacancy in the other solid for it to move. Interstitial diffusion,
schematically depicted in Figure 3.4, occurs when a diffusing atom is small enough to move between the
atoms in the other solid. This type of diffusion requires no vacancy defects.

Let c be the concentration of diffusing atoms with the dimension of atoms m~3. The flux of atoms, g(x)
(atoms m~2 s~!), is positive in the direction from higher to lower concentration. The relationship between
flux and concentration is known as Fick’s first law, which is given as

*Recommended for Science and Engineering Track.



THE WEAK FORM IN ONE DIMENSION 47

.
eee's .

“ Lattice
Ld. ... [. atoms
aaes .».
LR ... .'. X
cea'as -
L ‘.. -

el . Diffusing

- : :.:?: atoms
.

g(x)A(x)

»
»

Figure 3.4 Interstitial diffusion in an atomic lattice.

where k is the diffusion coefficient, m~2 s~!. The balance equation for steady-state diffusion can be
developed from Figure 3.4 by the same procedures that we used to derive the heat conduction equation by
imposing conservation of each species of atoms and Fick’s law. The equations are identical in structure to
the steady-state heat conduction equation and differ only in the constants and variables:

%(Ak%):O on O0<x<lL

3.2 THE WEAK FORM IN ONE DIMENSION

To develop the finite element equations, the partial differential equations must be restated in an integral
form called the weak form. A weak form of the differential equations is equivalent to the governing
equation and boundary conditions, i.e. the strong form. In many disciplines, the weak form has specific
names; for example, it is called the principle of virtual work in stress analysis.

To show how weak forms are developed, we first consider the strong form of the stress analysis
problem given in (3.7). We start by multiplying the governing equation (3.7a) and the traction boundary
condition (3.7b) by an arbitrary function w(x) and integrating over the domains on which they hold: for the
governing equation, the pertinent domain is the interval [0, /], whereas for the traction boundary condition,
itis the cross-sectional area atx = 0 (no integral is needed because this condition only holds only at a point,
but we do multiply by the area A). The resulting two equations are

0 [ofL(ae) s]ao
0

(b) (m(zz% + i>)x20:0 Y.

The function w(x) is called the weight function; in more mathematical treatments, it is also called the test
function. In the above, ¥Yw denotes that w(x) is an arbitrary function, i.e. (3.13) has to hold for all functions

(3.13)
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w(x). The arbitrariness of the weight function is crucial, as otherwise a weak form is not equivalent to the
strong form (see Section 3.7). The weight function can be thought of as an enforcer: whatever it multiplies is
enforced to be zero by its arbitrariness.

You might have noticed that we did not enforce the boundary condition on the displacement in (3.13) by
the weight function. It will be seen thatit is easy to construct trial or candidate solutions u(x) that satisfy this
displacement boundary condition, so we will assume that all candidate solutions of Equation (3.13) satisfy
this boundary condition. Similarly, you will shortly see that it is convenient to have all weight functions
satisfy

w(l) = 0. (3.14)

So we impose this restriction on the set of weight functions.

As you will see, in solving a weak form, a set of admissible solutions u(x) that satisfy certain
conditions is considered. These solutions are called trial solutions. They are also called candidate solutions.

One could use (3.13) to develop a finite element method, but because of the second derivative of u(x)
in the expression, very smooth trial solutions would be needed; such smooth trial solutions would be
difficult to construct in more than one dimension. Furthermore, the resulting stiffness matrix would not
be symmetric, because the first integral is not symmetric in w(x) and u(x). For this reason, we will
transform (3.13) into a form containing only first derivatives. This will lead to a symmetric stiffness
matrix, allow us to use less smooth solutions and will simplify the treatment of the traction boundary
condition.

For convenience, we rewrite (3.13a) in the equivalent form:

I I
d du
/wa (AEa)dx-Q—/wbdx—O w. (3.15)
0

0

To obtain a weak form in which only first derivatives appear, we first recall the rule for taking the derivative
of a product:

af

L df d dw
dx

d
I e = ) —f

d
o) = R TIT

Integrating the above equation on the right over the domain [0, /], we obtain

i

[t [ [
0 0

0

The fundamental theorem of calculus states that the integral of a derivative of a function is the function
itself. This theorem enables us to replace the first integral on the right-hand side by a set of boundary values
and rewrite the equation as

L I
g . 5
/ wafdx: (Wf)|é)—/fawdxz Wf)t — (Wf)xzo—/fawdx. (3.16)
0 0 o

The above formulais known as integration by parts. We will find that integration by parts is useful whenever
we relate strong forms to weak forms.
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To apply the integration by parts formula to (3.15), let f = AE(du/dx). Then (3.16) can be written as

I I
" d du du "dw | _du
— AE— =(wAE— )| — [ —AE—dx. .1
/de( dx)dx (w dx)o /dx dxdx (3.17)
0 0
Using (3.17), (3.15) can be written as follows:
1
d 1 d d l
u w u .
wAEa f/aAEader/wbdx—O Vw with w(l) = 0. (3.18)

We note that by the stress—strain law and strain—displacement equations, the underscored boundary termis
the stress o (as shown), so the above can be rewritten as

/ 1
(wAg),_, — (WAG), /aw a /wbdx =0 Vw with w(l) = 0.
0 0

The first term in the above vanishes because of (3.14): this is why it is convenient to construct weight
functions that vanish on prescribed displacement boundaries. Though the term looks quite insignificant, it
would lead to loss of symmetry in the final equations.

From (3.13b), we can see that the second term equals (wAT),_,, so the above equation becomes

l l
/%AE%dX = (WAT),_( + /wbdx Vw with w(l) = 0. (3.19)
0 0

Let us recapitulate what we have done. We have multiplied the governing equation and traction

boundary by an arbitrary, smooth weight function and integrated the products over the domains where

they hold. We have added the expressions and transformed the integral so that the derivatives are of lower

order.

‘We now come to the crux of this development: We state that the trial solution that satisfies the above for
all smooth w(x) with w(l) = 0 is the solution. So the solution is obtained as follows:

Find u(x) among the smooth functions that satisfy u(/) = @ such that

/
fdw du . ' , (3.20)
EAdedx (WAT),_q +/ wbdx  Vw with w(l) = 0.

0 0

The above is called the weak form. The name originates from the fact that solutions to the weak form need
not be as smooth as solutions of the strong form, i.e. they have weaker continuity requirements. This is
explained later.

Understanding how a solution to a differential equation can be obtained by this rather abstract statement,
and why it is a useful solution, is not easy. It takes most students considerable thought and experience to
comprehend the process. To facilitate this, we will give two examples in which a solution is obtained to a
specific problem.
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We will show in the next section that the weak form (3.20) is equivalent to the equilibrium equation (3.7a)
and traction boundary condition (3.7b). In other words, the trial solution that satisfies (3.20) is the solution
of the strong form. The proof of this statement in Section 3.4 is a crucial step in the theory of finite elements.
In getting to (3.19), we have gone through a set of mathematical steps that are correct, but we have no basis
for saying that the solution to the weak form is a solution of the strong form unless we can show that (3.20)
implies (3.7).

It is important to remember that the trial solutions u(x) must satisfy the displacement boundary
conditions (3.7¢). Satisfying the displacement boundary condition is essential for the trial solutions, so
these boundary conditions are often called essential boundary conditions. We will see in Section 3.4 that the
traction boundary conditions emanate naturally from the weak form (3.20), so trial solutions need not be
constructed to satisfy the traction boundary conditions. Therefore, these boundary conditions are called
natural boundary conditions. Additional smoothness requirements on the trial solutions will be discussed
in Sections 3.3 and 3.9.

A trial solution that is smooth and satisfies the essential boundary conditions is called admissible.
Similarly, a weight function that is smooth and vanishes on essential boundaries is admissible. When weak
forms are used to solve a problem, the trial solutions and weight functions must be admissible.

Note that in (3.20), the integral is symmetric in w and u. This will lead to a symmetric stiffness matrix.
Furthermore, the highest order derivative that appears in the integral is of first order: this will have
important ramifications on the construction of finite element methods.

3.3 CONIINUITY

Although we have now developed the weak form, we still have not specified how smooth the weight
functions and trial solutions must be. Before examining this topic, we will examine the concept of
smoothness, i.e. continuity. A function is called a C" function if its derivatives of order j for 0 <j <n
exist and are continuous functions in the entire domain. We will be concerned mainly with C°, C~! and C'
functions. Examples of these are illustrated in Figure 3.5. As can be seen, a C° function is piecewise
continuously differentiable, i.e. its first derivative is continuous except at selected points. The derivative of
a C° function is a C~! function. So for example, if the displacement is a C° function, the strain is a C~!
function. Similarly, if a temperature field is a C° function, the flux isa C~! function if the conductivity is C°.
In general, the derivative of a C" function is C"~!.

The degree of smoothness of C°, C~! and C'! functions can be remembered by some simple mnemonic
devices. As can be seen from Figure 3.5,a C~! function can have both kinks and jumps. A C° function has
no jumps, i.e. discontinuities, but it has kinks. A C! function has no kinks or jumps. Thus, there is a
progression of smoothness as the superscript increases that is summarized in Table 3.1. In the literature,
jumps in the function are often called strong discontinuities, whereas kinks are called weak discontinuities.

Itis worth mentioning that CAD databases for smooth surfaces usually employ functions that are at least
C' ; the most common are spline functions. Otherwise, the surface would possess kinks stemming from the
function description, e.g. in a car there would be kinks in the sheet metal wherever C' continuity is not
observed. We will see that finite elements usually employ C° functions.

®  Kinks

X

Figure 3.5 Examples of C~!, C° and C' functions.
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Table 3.1 Smoothness of functions.

Smoothness Kinks Jumps Comments

c! Yes Yes Piecewise continuous

(o Yes No Piecewise continuously differentiable
c' No No Continuously differentiable

3.4 THE EQUIVALENCE BETWEEN THE WEAK AND STRONG FORMS

In the previous section, we constructed the weak form from the strong form. To show the equivalence
between the two, we will now show the converse: the weak form implies the strong form. This will insure
that when we solve the weak form, then we have a solution to the strong form.

The proof that the weak form implies the strong form can be obtained by simply reversing the steps by
which we obtained the weak form. Soinstead of using integration by parts to eliminate the second derivative
of u(x), we reverse the formula to obtain an integral with a higher derivative and a boundary term. For this
purpose, interchange the terms in (3.17), which gives

i

1 1
dw du du d du
WAEL dx = (waES) | — [ wE (AES )dx.
/dx dx (W dx) . /de( dx)
0 0

Substituting the above into (3.20) and placing the integral terms on the left-hand side and the boundary
terms on the right-hand side gives

1
d/ d _
/W{a (AEa”) + b]dx FwA(F+0)_y=0  Vw with w(l) = 0. (3.21)
0

The key to making the proof possible is the arbitrariness of w(x). It can be assumed to be anything we need in
order to prove the equivalence. Our selection of w(x) is guided by having seen this proof before — What we
will do is not immediately obvious, but you will see it works! First, we let

w = (x) {% (AE%) + b} : (3.22)

where (x) is smooth, ¥(x) > 0 on 0 < x < [ and (x) vanishes on the boundaries. An example of a
function satisfying the above requirements is i/ (x) = x(/ — x). Because of how 1/ (x) is constructed, it
follows that w(/) = 0, so the requirement that w = 0 on the prescribed displacement boundary, i.e. the
essential boundary, is met.

Inserting (3.22) into (3.21) yields

/' v [% (AE%) + b} “de=o0. (3.23)
0

The boundary term vanishes because we have constructed the weight function so that w(0) = 0. As the
integrand in (3.23) is the product of a positive function and the square of a function, it must be positive at
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every point in the problem domain. So the only way the equality in (3.23) is met is if the integrand is zero at
every point! Hence, it follows that

d du
—[AE— b=0 0 l 3.24
dx( dx)+ , <x <l ( )

which is precisely the differential equation in the strong form, (3.7a).
From (3.24) it follows that the integral in (3.21) vanishes, so we are left with

(WA(T+0)),_o=0  VYw with w(l) =0. (3.25)

As the weight function is arbitrary, we selectit such that w(0) = 1and w(l) = 0.Itis very easy to construct
such a function, for example, (I — x)/lis a suitable weight function; any smooth function that you can draw
on the interval [0, /] that vanishes at x = [ is also suitable.

As the cross-sectional area A(0) # 0 and w(0) # 0, it follows that

o=—1 at x=0, (3.26)

which is the natural (prescribed traction) boundary condition, Equation (3.7b).

The last remaining equation of the strong form, the displacement boundary condition (3.7¢), is satisfied
by all trial solutions by construction, i.e. as can be seen from (3.20) we required that u(/) = @ . Therefore,
we can conclude that the trial solution that satisfies the weak form satisfies the strong form.

Another way to prove the equivalence to the strong form starting from (3.20) that is more instructive
about the character of the equivalence is as follows. We first let

d du
r(x)fa(AEa) +b for O0<x<l

and
ro = A(0)a(0) +17.

The variable r(x) is called the residual; r(x) is the error in Equation (3.7a) and ry is the error in the traction
boundary condition (3.7b). Note that when r(x) = 0, the equilibrium equation (3.7a) is met exactly and
when ry = 0 the traction boundary condition (3.7b) is met exactly.

Equation (3.20) can then be written as

/
/w(x)r(x) dx +w(0)rp =0 Yw with w(l) = 0. (3.27)
0

We now prove that r(x) = 0 by contradiction. Assume that at some point 0 < a < [, r(a) # 0. Then
assuming r(x) is smooth, it must be nonzero in a small neighborhood of x = a as shown in Figure 3.6(a). We
have complete latitude in the construction of w(x) as itis an arbitrary smooth function. So we construct it as
shown in Figure 3.6(b). Equation (3.27) then becomes

r(a)é # 0.

N =

1
/w(x)r(x) dx +w(0)rg =~
0



THE EQUIVALENCE BETWEEN THE WEAK AND STRONG FORMS 53

r(x) & r(x)a
(a) — —
0 a >
w(x) 4 w(x) b —
14 11
(b)
! £ B
a a
e > ks>
wr 4 wr 4
()
! > —>
a X a X

Figure 3.6 Illustration of the equivalence between the weak and strong forms: (a) an example of the residual function;
(b) choice of the weight function and (c) product of residual and weight functions. On the left, the procedure is shown fora
C° function; on the right for a C~! function.

The above implies that (3.27) is violated, so by contradiction r(a) cannot be nonzero. This can be repeated
atany other point in the open interval 0 < x < /, soitfollows that 7(x) = Ofor0 < x < /,i.e.the governing
equation (3.27) is met. We now let w(0) = 1; as the integral vanishes because r(x) = 0 for 0 < x < [, it
follows from (3.27) that ry = 0 and hence the traction boundary condition is also met.

We can see from the above why we have said that multiplying the equation, or to be more precise
the residual, by the weight function enforces the equation: because of the arbitrariness of the weight
function, anything it multiplies must vanish. The proofs of the equivalence of the strong and weak
forms hinge critically on the weak form holding for any smooth function. In the first proof (Equations
(3.7)-(3.20)), we selected a special arbitrary weight function (based on foresight as to how the proof would
evolve) that has to be smooth, whereas in the second proof, we used the arbitrariness and smoothness
directly. The weight function in Figure 3.6(b) may not appear particularly smooth, but it is as smooth as we
need for this proof.

Example 3.1
Develop the weak form for the strong form:

d du
—|AE— 10Ax = 2
(a) dx< Ex>+ 0Ax =0, 0<x<2,

(b) o = u(0) = 1074, (3.28)
() 0xn = (E%) 72: 10.

Equation (3.28c¢) is a condition on the derivative of u(x), so it is a natural boundary condition; (3.28b)is a
condition on u(x), so it is an essential boundary condition. Therefore, as the weight function must vanish
on the essential boundaries, we consider all smooth weight functions w(x) such that w(0) = 0. The trial
solutions u(x) must satisfy the essential boundary condition u(0) = 107*.
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We start by multiplying the governing equation and the natural boundary condition over the domains
where they hold by an arbitrary weight function:

® / (& (162)) 5 0arfac—0 o -

(b) (wA(EZ—Z—lO))FZ:O Viw(2).

Next we integrate the first equation in the above by parts, exactly as we did in going from (3.13a) to (3.17):

2
d  _du du
—AE— = | WAE—
[ @) o= (e5)
0
We have constructed the weight functions so that w(0) = 0; therefore, the first term on the RHS of the
above vanishes at x = 0. Substituting (3.30) into (3.29a) gives

2
x=2
dw  du
— | —AE—dx. 3.30
I e (3:30)
0

2 2
dwdu du
— | AE—— 10wA AE — = ith =0. 31
dxdxdx+/ OwAx dx + (W dx)x,z 0 Vw(x) with w(0) =0 (3.31)
0

Substituting (3.29b) into the last term of (3.31) gives (after a change of sign)

2

2
AE%}%M — / 10wAxdx — 10(wA),_, =0 Yw(x) with w(0) = 0. (3.32)
0 0

Thus, the weak form is as follows: find u(x) such that for all smooth u(x) with #(0) = 107#, such that
(3.32) holds for all smooth w(x) with w(0) = 0.

Example 3.2
Develop the weak form for the strong form:
d*u
P 0 on 1<x<3,

(%)H: 2, u@)=1 (3.33)

The conditions on the weight function and trial solution can be inferred from the boundary conditions.
The boundary point x = 1 is a natural boundary as the derivative is prescribed there, whereas the
boundary x = 3 is an essential boundary as the solution itself is prescribed. Therefore, we require that
w(3) = 0 and that the trial solution satisfies the essential boundary condition u(3) = 1.

Next we multiply the governing equation by the weight function and integrate over the problem
domain; similarly, we multiply the natural boundary condition by the weight function, which yields

, (3.34)
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Integration by parts of the integrand in (3.34a) gives

3 3
d*u du du dw du
w@dx = ("VE))C:3 — (Wa)x:l— Eadx (335)
1 1
As w(3) = 0, the first term on the RHS in the above vanishes. Substituting (3.35) into (3.34a) gives
; dwd d
wdu u
1

Adding (3.34b) to (3.36) gives
3d d
wdu
——dx+2w(1) =0. .37
/dxdx +2w(l) =0 (3.37)
1

So the weak form is: find a smooth function u(x) with #(3) = 1 for which (3.37) holds for all smooth w(x)
withw(3) = 0.

To show that the weak form implies the strong form, we reverse the preceding steps. Integration by
parts of the first term in (3.37) gives

3
dwdu du |° d*u
——dx = — | - —dx. 3.38
/dxdx (de)l /de2 (3.38)
1 1
Next we substitute (3.38) into (3.37), giving
d d e
u u u
(wa))(:3 - (Wa)lei w@dx+ 2w(l) = 0. (3.39)
1

Since on the essential boundary, the weight function vanishes, i.e. w(3) = 0, the first term in the above
drops out. Collecting terms and changing signs give

3
d*u du
s —_2 =0. 4
wdxzdx+(w<dx ))le 0 (3.40)
1

We now use the same arguments as Equations (3.22)—(3.26). As w(x) is arbitrary, let

du(x)
=5

where
0, x=1,

Yx)=4¢ >0, 1<x<3,
0, x=3.
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Then (3.40) becomes

[ (£ a0

As the integrand is positive in the interval [1, 3], it follows that the only way that the integrand can
vanish is if
d?u(x)
a2

=0 for 1<x<3,

which is the differential equation in the strong form (3.33).

Now let w(x) be a smooth function that vanishes at x = 3 but equals one at x = 1. You can draw an
infinite number of such functions: any curve between those points with the specified end values will do.
As we already know that the integral in (3.40) vanishes, we are left with

(), - ()

so the natural boundary condition is satisfied. As the essential boundary condition is satisfied by all trial
solutions, we can then conclude that the solution of the weak form is the solution to the strong form.

Example 3.3

Obtain a solution to the weak form in Example 3.1 by using trial solutions and weight functions of the
form

u(x) = op + ox,
W(X) = ﬂO + ﬁ1x7

where o and o are unknown parameters and f;, and f§; are arbitrary parameters. Assume that A is
constantand E = 10°. To be admissible the weight function must vanish atx = 0, so §, = 0. For the trial
solution to be admissible, it must satisfy the essential boundary condition u(0) = 1074, s0 09 = 107%.

From this simplification, it follows that only one unknown parameter and one arbitrary parameter
remain, and

u(x) = 107 4 oyx, du(x) =0y,
dx (3.41)
dw
w(x) = px, a:ﬁr

Substituting the above into the weak form (3.32) yields

2 2
/[)’]ocldef /ﬁ1x10dxf(ﬂ,x10))(:2:0.
0 0

Evaluating the integrals and factoring out f§; gives

B,(2aE — 20 — 20) = 0.
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As the above must hold for all f;, it follows that the term in the parentheses must vanish, so
o =20/E =2 X 1074, Substituting this result into (3.41) gives the weak solution, which we indicate
by superscript ‘lin’ as it is obtained from linear trial solutions: u™ = 107#(1 + 2x) and ¢"" = 20 (the
stress-strain law must be used to obtain the stresses). The results are shown in Figure 3.7 and compared to
the exact solution given by

u(x) =107*(1 +3x —x%/6),  o(x) = 10(3 — x?/2).
Observe that even this very simple linear approximation for a trial solution gives a reasonably accurate
result, but it is not exact. We will see the same lack of exactness in finite element solutions.
Repeat the above with quadratic trial solutions and weight functions
u(x) = oo+ oux + o, wlx) = fo+ fro+ frr
As before, because of the conditions on the essential boundaries, &y = 10~* and f, = 0. Substituting the

above fields with the given values of oy and f, into the weak form gives

2 2
/ (B1 + 2B2%) (E(21 + 20x))dx — / (Bix + Bpx*)10dx — ((B1x + ppx*) 10),_, = 0.
0 0

Integrating, factoring out f3;, 3, and rearranging the terms gives

BLE(20y + 4op) — 40] + [32<(4oc1 +323ﬁ)E—¥> =0.

As the above must hold for arbitrary weight functions, it must hold for arbitrary f8; and f3,. Therefore, the
coefficients of #; and f§, must vanish (recall the scalar product theorem), which gives the following linear

algebraic equation in o) and or;:
2 41Ty, 40
E 32 [ } =200

3] L% 3
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Figure 3.7 Comparison of linear (lin) and quadratic (quad) approximations to the exact solution of (a) displace-
ments and (b) stresses.
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The solutionis #; = 3 x 107*and oy = —0.5 x 107*. The resulting displacements and stresses are
u = 1074(1 + 3x — 0.5x%), c®d — 10(3 — x).

The weak solution is shown in Figure 3.7, from which you can see that the two-parameter, quadratic trial
solution matches the exact solution more closely than the one-parameter linear trial solution.

3.5 ONE-DIMENSIONAL STRESS ANALYSIS WITH ARBITRARY
BOUNDARY CONDITIONS

3.5.1 Strong Form for One-Dimensional Stress Analysis

We will now consider a more general situation, where instead of specifying a stress boundary condition
at x = 0 and a displacement boundary condition at x = /, displacement and stress boundary conditions
can be prescribed at either end. For this purpose, we will need a more general notation for the
boundaries.

The boundary of the one-dimensional domain, which consists of two end points, is denoted by I'. The
portion of the boundary where the displacements are prescribed is denoted by I',, ; the boundary where the
traction is prescribed is denoted by I';. In this general notation, both I', and I'; can be empty sets (no points),
one point or two points. The traction and displacement both cannot be prescribed at the same boundary
point. Physically, this can be seen to be impossible by considering a bar such as that in Figure 3.2. If
we could prescribe both the displacement and the force on the right-hand side, this would mean that
the deformation of the bar is independent of the applied force. It would also mean that the material
properties have no effect on the force—displacement behavior of the bar. Obviously, this is physically
unrealistic, so any boundary point is either a prescribed traction or a prescribed displacement
boundary. We write this as I', N I', = 0. We will see from subsequent examples that this can be
generalized to other systems: Natural boundary conditions and essential boundary conditions cannot
be applied at the same boundary points.

We will often call boundaries with essential boundary conditions essential boundaries; similarly,
boundaries with natural boundary conditions will be called natural boundaries. We can then say that a
boundary cannot be both a natural and an essential boundary. It also follows from the theory of boundary
value problems that one type of boundary condition is needed at each boundary point, i.e. we cannot have
any boundary at which neither an essential nor a natural boundary condition is applied. Thus, any boundary
iseither an essential boundary or a natural boundary and their union is the entire boundary. Mathematically,
this can be writtenas I', UT", =T".

To summarize the above, at any boundary, either the function or its derivative must be specified, but we
cannot specify both at the same boundary. So any boundary must be an essential boundary or a natural
boundary, but it cannot be both. These conditions are very important and can be mathematically expressed
by the two conditions that we have stated above:

r,ur,=r, T,n[,=0. (3.42)

The two boundaries are said to be complementary: the essential boundary plus its complement, the natural
boundary, constitute the total boundary, and vice versa.

Using the above notation, we summarize the strong form for one-dimensional stress analysis (3.7) in
Box 3.1.
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Box 3.1. Strong form for 1D stress analysis

d/ d
&(AE—M>+I):O, 0<x<l,

dx

du 343
an—Enazt on I, ( )
u=u on I,

In the above, we have added a unit normal to the body and denoted it by #; as can be seen from Figure 3.2,
n=—1atx=0andn = +1 at x = [. This trick enables us to write the boundary condition in terms of the
tractions applied at either end. For example, when a positive force per unit area is applied at the left-hand
end of the bar in Figure 3.2, the stress at that end is negative, i.e. compressive, and on = —g = 7. At any
right-hand boundary point,n = +1 andsoon = o = 1.

3.5.2 Weak Form for One-Dimensional Stress Analysis

In this section, we will develop the weak form for one-dimensional stress analysis (3.43), with arbitrary
boundary conditions. We first rewrite the formula for integration by parts in the notation introduced in
Section 3.2:

d d d
/ &fdx /f e = (whin)|p, + () /f < dr. (3.44)

Q

In the above, the subscript €2 on the integral indicates that the integral is evaluated over the one-dimensional
problem domain, i.e. the notation 2 indicates any limits of integration, such as [0, I, [a, b]. The subscriptT"
indicates that the preceding quantity is evaluated at all boundary points, whereas the subscripts I', and I,
indicate that the preceding quantities are evaluated on the prescribed displacement and traction boundaries,
respectively. The second equality follows from the complementarity of the traction and displacement
boundaries: Since, as indicated by (3.42), the total boundary is the sum of the traction and displacement
boundaries, the boundary term can be expressed as the sum of the traction and displacement boundaries.

The weight functions are constructed so that w = 0 on I',,, and the trial solutions are constructed so that
u=uonl,.

‘We multiply the first two equations in the strong form (3.43) by the weight function and integrate over the
domains over which they hold: the domain €2 for the differential equation and the domain I, for the traction
boundary condition. This gives

(a) JW(% (AE%) + b) dx=0  Vw, as)
(b) (WA(F—on)p=0  Vw.

Denoting f = AE(du/dx) and using integration by parts (3.44) of the first term in (3.45a) and combining
with (3.45b) yields

(wAan)|r, + (WAT)] / dxAE Lax+ / whbdx =0 Yw with w =0 on T,. (3.46)



60 STRONG AND WEAK FORMS FOR ONE-DIMENSIONAL PROBLEMS

The boundary term on I';, vanishes because W|r“ = 0. The weak form then becomes

dw _du _ .

—AE —dx = (wA?)|p +/wbdx Vw with w =0 on T',,.

dx  dx o

Q Q

Atthis point, we introduce some new notation, so we will not need to keep repeating the phrase ‘u(x) is smooth
enough and satisfies the essential boundary condition’. For this purpose, we will denote the set of all functions
that are smooth enoughby H'. H' functions are C° continuous. Mathematically, thisisexpressedas H' C C°.
However, not all C° functions are suitable trial solutions. We will further elaborate on thisin Section 3.9; H'is
a space of functions with square integrable derivatives.

We denote the set of all functions that are admissible trial solutions by U, where
U = {u(x)|u(x) € H', u=7 onT,}. (3.47)

Any functionin the set U has to satisfy all conditions that follow the vertical bar. Thus, the above denotes the
set of all functions that are smooth enough (the first condition after the bar) and satisfy the essential
boundary condition (the condition after the comma). Thus, we can indicate that a function u(x) is an
admissible trial solution by stating that u(x) is in the set U, or u(x) € U.

We will similarly denote the set of all admissible weight functions by

Uy = {w(x)|w(x) e H', w=0onT,}. (3.48)

Notice that this set of functions is identical to U, except that the weight functions must vanish on the
essential boundaries. This space is distinguished from U by the subscript nought.

Such sets of functions are often called function spaces, or just spaces. The function space H' contains an
infinite number of functions. Therefore, it is called an infinite-dimensional set. For a discussion of various
spaces, the reader may wish to consult Ciarlet (1978), Oden and Reddy (1978) and Hughes (1987).

‘With these definitions, we can write the weak form ((3.45), (3.47) and (3.48)) as in Box 3.2.

Box 3.2. Weak form for 1D stress analysis

Find u(x) € U such that

"dw | _du _
EAEadx = (wAD)|p, + / wb dx Yw € Up. (3.49)
Q Q

Note that the functions w(x) and u(x) appear symmetrically in the first integral in (3.49), whereas they do
notin (3.45a). In (3.49), both the trial solutions and weight functions appear as first derivatives, whereas in
the first integral in (3.45a), the weight functions appear directly and the trial solution appears as a second
derivative. It will be seen that consequently (3.49) leads to a symmetric stiffness matrix and a set of
symmetric linear algebraic equations, whereas (3.45a) does not.

3.6 ONE-DIMENSIONAL HEAT CONDUCTION WITH ARBITRARY
BOUNDARY CONDITIONS?

3.6.1 Strong Form for Heat Conduction in One Dimension with Arbitrary
Boundary Conditions

Following the same procedure as in Section 3.5.1, the portion of the boundary where the temperature is
prescribed, i.e. the essential boundary, is denoted by I'y and the boundary where the flux is prescribed is
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denoted by T, ; these are the boundaries with natural boundary conditions. These boundaries are
complementary, so

r,ur;=T, T,NT;=0. (3.50)

With the unit normal used in (3.43), we can express the natural boundary condition as gn = g. Forexample,
positive flux g causes heat inflow (negative g ) on the left boundary point where gn = —g = g and heat
outflow (positive g ) on the right boundary point where gn = g = gq.

We can then rewrite the strong form (3.12) as shown in Box. 3.3.

Box 3.3. Strong form for 1D heat conduction problems

d dTr
a(Aka) +S:0 on Q,

dr 3.51
qn:—knaz_ on Iy, ( )

3.6.2 Weak Form for Heat Conduction in One Dimension with Arbitrary
Boundary Conditions

We again multiply the first two equations in the strong form (3.51) by the weight function and integrate over
the domains over which they hold, the domain (2 for the differential equation and the domain I, for the flux
boundary condition, which yields

(a) Q/w(i(Aij)dHQ/wsdx_o Yw, )

() (wA(gn—g)ly,=0  Vw.

Using integration by parts of the first term in (3.52a) gives

—Ak—dx =

dw dT
dx  dx
Q

dr

+/wsdx Vw with w =0 on T'r. (3.53)
r

Recalling that w = 0 on I'y and combining (3.53) with (3.52b) gives

Box 3.4: Weak form for 1D heat conduction problems
Find 7'(x) € U such that

dw dT
P AkE  dx = —(wAg
o kdxdx (wAg)

. —l—/wsdx Yw € Up. (3.54)

Q

Notice the similarity between (3.54) and (3.49).
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3.7 TWO-POINT BOUNDARY VALUE PROBLEM WITH GENERALIZED
BOUNDARY CONDITIONS*

3.7.1 Strong Form for Two-Point Boundary Value Problems with Generalized
Boundary Conditions

The equations developed in this chapter for heat conduction, diffusion and elasticity problems are all of the
following form:

d de

o (An&) +f=0 on Q. (3.55)

Such one-dimensional problems are called two-point boundary value problems. Table 3.2 gives the
particular meanings of the above variables and parameters for several applications. The natural boundary
conditions can also be generalized as (based on Becker ez al. (1981))

(mnj—xe - 6) +pO6—-0)=0 on Ts. (3.56)

Equation (3.56) is a natural boundary condition because the derivative of the solution appears in it. (3.56)
reduces to the standard natural boundary conditions considered in the previous sections when f(x) = 0.
Notice that the essential boundary condition can be recovered as a limiting case of (3.56) when f(x) is a
penalty parameter, i.e. a large number (see Chapter 2). In this case, I' = I'sand Equation (3.56) is called a
generalized boundary condition.

An example of the above generalized boundary condition is an elastic bar with a spring attached as
shown in Figure 3.8. In this case, (I) = k and (3.56) reduces to

(E(l)n(l) % (1) — z) Fh(u(l) —7) =0 at x=1, (3.57)

where f3(I) = kis the spring constant. If the spring stiffness is set to a very large value, the above boundary
condition enforces u(l) = u; if we let k = 0, the above boundary condition corresponds to a prescribed
traction boundary. In practice, such generalized boundary conditions (3.57) are often used to model the
influence of the surroundings. For example, if the bar is a simplified model of a building and its foundation,
the spring can represent the stiffness of the soil.

Table 3.2 Conversion table for alternate physical equations of the general form (3.55)

and (3.56).

Field/parameter Elasticity Heat conduction Diffusion
0 u T c

K E k

f b s

o t -4 -4

0 i T c

T's T, Ty Ty

Ty T, T'r T.

p k h h
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¢ - ku()

Figure 3.8 An example of the generalized boundary for elasticity problem.

Another example of the application of this boundary condition is convective heat transfer, where energy is
transferred between the surface of the wall and the surrounding medium. Suppose convective heat transfer
occurs atx = [. Let T(I) be the wall temperature at x = [ and T be the temperature in the medium. Then the
flux at the boundary x = [ is given by ¢(I) = h(T(I) — T), so B(I) = h and the boundary condition is

du _
kna +h(T()-T)=0, (3.58)

where £ is convection coefficient, which has dimensions of W m~2 °C~!. Note that when the convection
coefficient is very large, the temperature 7 is immediately felt at x = / and thus the essential boundary
condition is again enforced as a limiting case of the natural boundary condition.

There are two approaches to deal with the boundary condition (3.56). We will call them the penalty and
partition methods. In the penalty method, the essential boundary condition is enforced as a limiting case of
the natural boundary condition by equating f3(x) to a penalty parameter. The resulting strong form for the
penalty method is given in Box. 3.5.

Box 3.5. General strong form for 1D problems-penalty method
d do
P (A/sa> +f=0 on
» (3.59)
</m575> +BB—-6)=0 on T.

In the partition approach, the total boundary is partitioned into the natural boundary, I'y, and the
complementary essential boundary, I'y. The natural boundary condition has the generalized form defined
by Equation (3.56). The resulting strong form for the partition method is summarized in Box 3.6.

Box 3.6. General strong form for 1D problems-partition method

(a) %(A/@j—)@ +f=0 on 9,
(b) (Fm%e—5>+ﬁ(0—?)):0 on Iy, (3.60)

() =6 on T,

3.7.2 Weak Form for Two-Point Boundary Value Problems with Generalized
Boundary Conditions

In this section, we will derive the general weak form for two-point boundary value problems. Both the
penalty and partition methods described in Section 3.7.1 will be considered. To obtain the general weak
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form for the penalty method, we multiply the two equations in the strong form (3.59) by the weight function

and integrate over the domains over which they hold: the domain €2 for the differential equation and the
domain I for the generalized boundary condition.

(a) Jw(d‘i (An(g) +f) de=0  Vw,
(b) wA((nng - 6) + B0 — 9))

After integrating by parts the first term in (3.61a) and adding (3.61b), the general weak form for 1D
problems is summarized in Box 3.7.

(3.61)

=0 Vw.
r

BOX 3.7. General weak form for 1D problems-penalty method
Find 6(x) € H' such that

dw df ) _ _ X
aAnadxf/wfdxfwA(q)fﬂ(679))|rzO vYweH'. (3.62)
Q Q

Note that in the penalty method, I's = T, the weight function is arbitrary on T, i.e. Vw(x) € H', and the
solution is not a priori enforced to vanish on the essential boundary, i.e. §(x) € H'. The essential boundary
condition is obtained as a limiting case of the natural boundary condition by making f(x) very large, i.e. a
penalty parameter.

In the partition method, the general weak form for one-dimensional problems is given in Box 3.8.

Box 3.8. General weak form for 1D problems-partition method
Find 6(x) € U such that

dw dé _ _
aAnadxf/wfdxfwA@Pfﬁ(é)fﬁ)) L=0 Wwel, (3.63)
Q Q

where U and U are given in (3.47) and (3.48), respectively. Notice that in the partition approach, the
weight function vanishes on the essential boundary, I'y, i.e., Vw € Uy. The boundaries I'y and I'¢ are
complementary.

3.8 ADVECTION-DIFFUSION®

In many situations, a substance is both transported and diffused through a medium. For example, a pollutant
in an aquifer is dispersed by both diffusion and the movement of the water in the aquifer. In cooling ponds
for power plants, heat energy moves through the pond by both diffusion and transport due to motion of the
water. If sugar is added to a cup of coffee, it will disperse throughout the cup by diffusion; dispersal is
accelerated by stirring, which advects the sugar. The dispersal due to motion of the fluid has several names
besides advection: convection and transport are two other widely used names.
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3.8.1 Strong Form of Advection-Diffusion Equation

Consider the one-dimensional advection—diffusion of a species in a one-dimensional model of cross-
sectional area A (x), it could be a pipe or an aquifer; the concentration of the species or energy is denoted by
6(x). In an aquifer, the flow may extend to a large distance normal to the plane, so we consider a unit depth,
where depth is the dimension perpendicular to the plane. In a pipe, A (x) is simply the cross-sectional area.
The velocity of the fluid is denoted by v(x), and it is assumed to be constant in the cross section at each
point along the axis, i.e. for each x. A source s(x) is considered; it may be positive or negative. The latter
indicates decay or destruction of the species. For example, in the transport of a radioactive contaminant,
s(x) is the change in a particular isotope, which may decrease due to decay or increase due to formation. The
fluid is assumed to be incompressible, which has some ramifications that you will see later.

The conservation principle states that the species (be it a material, an energy or a state) is conserved in
each control volume Ax. Therefore, the amount of species entering minus the amount of leaving equals the
amount produced (a negative volume when the species decays). In this case, we have two mechanisms for
inflow and outflow, the advection, whichis (Avé),, and diffusion, which is g(x). The conservation principle
can then be expressed as

(Ava)x + (A )x - (Ave)x+Ax - (Aq)x+Ax + AXSX+AX/2 =0.
Dividing by Ax and taking the limit Ax — 0, we obtain (after a change of sign)

d(Avd) d(Aq) _
™ +Tfs—0. (3.64)

‘We now consider the incompressibility of the fluid. For an incompressible fluid, the volume of material
entering a control volume equals the volume of material leaving, which gives

(Av)x = (Av)x+Ax'
Putting the right-hand side on the left-hand side, dividing by Ax and letting Ax — 0, we obtain

d(Av)
S0, (3.65)

If we use the derivative product rule on the first term of (3.64), we obtain

d(Avf) d(Av) de
=S R 0 ave (3.66)

where the first term on the RHS vanishes by (3.65), so substituting (3.66) into (3.64) yields

dd d(Aqg)
e a e A} .
vV—+ s=0 (3.67)

This is the conservation equation for a species in a moving incompressible fluid. If the diffusion is linear,
Fick’s first law holds, so

do
q=—kg. (3.68)
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where k is the diffusivity. Substituting (3.68) into (3.67) gives

Avd—g _ g (Ak d—g) —s=0. (3.69)

dx

The above is called the advection—diffusion equation. The first term accounts for the advection (sometimes
called the transport) of the material. The second term accounts for the diffusion. The third term is the source
term.

We consider the usual essential and natural boundary conditions

(a) =0 on Ty,
(3.70)

do _
(b) fkan:qn:q on T,

where I'g and I, are complementary, see (3.50).

The advection—diffusion equation is important in its own right, but it is also a model for many other
equations. Equations similar to the advection—diffusion equation are found throughout the field of
computational fluid dynamics. For example, the vorticity equation is of this form. If we replace 6 by v,
then the second term in (3.66) corresponds to the transport term in the Navier—Stokes equations, which are
the fundamental equations of fluid dynamics.

3.8.2 Weak Form of Advection-Diffusion Equation

We obtain the weak form of (3.69) by multiplying the governing equation by an arbitrary weight function
w(x) and integrating over the domain. Similarly, the weak statement of the natural boundary conditions is
obtained by multiplying (3.70b) with the weight function and the area A. The resulting weak equations are

W L)L (D) ) a0

(b) Aw (kn% + ﬁ)
The spaces of trial solution and weight function are exactly as before, see (3.47) and (3.48).

We can see that the second term in Equation (3.71a) is unsymmetric in w and 6 and involves a second
derivative, which we want to avoid as it would require smoother trial solutions than is convenient. We can
reduce the order of the derivatives by integration by parts.

Thefirsttermin (3.71a) is puzzling asitinvolves a first derivative only, butitis not symmetric. It turns out
that we cannot make this term symmetric via integration by parts, as the integrand then becomes
(dw/dx)Av0: In this case, integration by parts just switches the derivative from the trial solution to the
weight function. So we leave this term as it is.

Integration by parts of the second term in (3.71a) and combining with (3. 71b) gives

do dw do
Av | — |dx — Ak — )dx — dx Awg =0 3.72
/QWV(dx) [ (dx) [wsarsana)|, <o, (3.72)

The weak form s then as follows: find the trial solution 6(x) € U suchthat(3.72) holds forallw(x) € Uj.
‘We will not prove that the weak form implies the strong form; the procedure is exactly like before and
consists of simply reversing the preceding steps. An important property of (3.72) is that the first term is not
symmetric in w(x) and 6(x). Therefore, the discrete equations for this weak form will not be symmetric.

(3.71)

=0 Yw.
I'q
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Equation (3.72) and its boundary conditions become tricky when k = 0. In that case, there is no diffusion,
only transport. Treatment of this special case is beyond this book, see Donea and Huerta (2002).

Instead of the flux boundary condition (3.70b), the total inflow of material at the boundary is often
prescribed by the alternate boundary condition

do
(—ka +vf)n =7gr. (3.73)

Integrating the first term in (3.72) by parts and adding the product of the weight function, area A and (3.73)
gives

dw dw do
_ A — Akl — — Awg =0. 74
|, dx v@dx—Q—/de k(dx)dx /Qwsdx—i—( wgr) Y 0 (3.74)

The weak form then consists of Equation (3.74) together with an essential boundary condition (3.70a) and
the generalized boundary condition (3.73).

3.9 MINIMUM POTENTIAL ENERGY ®

An alternative approach for developing the finite element equations that is widely used is based on
variational principles. The theory that deals with variational principles is called variational calculus, and
at first glance it can seem quite intimidating to undergraduate students. Here we will give a simple
introduction in the context of one-dimensional stress analysis and heat conduction. We will also show that
the outcome of these variational principles is equivalent to the weak form for symmetric systems such as heat
conduction and elasticity. Therefore, the finite element equations are also identical. Finally, we will show how
variational principles can be developed from weak forms. The variational principle corresponding to the weak
form for elasticity is called the theorem of minimum potential energy. This theorem is stated in Box 3.9.

Box 3.9. Theorem of minimum potential energy
The solution of the strong form is the minimizer of

2
W(u(x)) for Yu(x) € U where W(u(x)) = %/AE(%) dx — /ubdx+ (uAD)|r, | -(3.75)
)

Wint Wext

Inelasticity, W is the potential energy of the system. We have indicated by the subscripts ‘int” and ‘ext’ that
the first term is physically the internal energy and the second term the external energy.

We will now show that the minimizer of W (u(x)) corresponds to the weak form, which we already know
implies the strong form. Showing that the equation for the minimizer of W (u(x)) is the weak form implies
that the minimizer is the solution, as we have already shown that the solution to the weak form s the solution
of the strong form.

One of the major intellectual hurdles in learning variational principles is to understand the meaning of
W (u(x)). W(u(x)) is a function of a function. Such a function of a function is called a functional. We will
now examine how W (u(x)) varies as the function u(x) is changed (or varied). An infinitesimal change in a
function is called a variation of the function and denoted by du(x) = (w(x), where w(x) is an arbitrary
function (we will use both symbols) and 0 < ¢ < 1, i.e. itis a very small positive number.
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The corresponding change in the functional is called the variation in the functional and denoted by 6W,
which is defined by

OW = W(u(x) + (w(x)) — W(u(x)) = W(u(x) + ou(x)) — W(u(x)). (3.76)

Thisequationis analogous to the definition of a differential exceptthatin the latter one considers achange in
the independent variable see Oden and Reddy (1983) and Reddy (2000) for details on variational calculus.
A differential gives the change in a function due to a change of the independent variable. A variation of a
functional gives the change in a functional due to a change in the function. If you replace ‘function’ by
‘functional” and ‘independent variable’ by ‘function’ in the first sentence, you have the second sentence.

From the statement of minimum potential energy given in Box 3.9, it is clear that the function
u(x) + ¢w(x) must still be in U. To meet this condition, w(x) must be smooth and vanish on the essential
boundaries, i.e.

w(x) € Up. (3.77)

Let us evaluate the variation of the first term in 6 W;,;. From the definition of the variation of a functional,
Equation (3.76), it follows that

1 du 2 1 du\?
Q Q
1/ du du dw 2 1 du\?
:E/AE((E) At <2< ) ) dx—E/AE<a) dx.
Q Q

The first and fourth terms in the above cancel. The third term can be neglected because ( is small, so its
square is a second-order term. We are left with

o 1 (4) (&) .

The variation in the external work is evaluated by using the definition of a variation and the second term in
Equation (3.75); we divide it into the parts due to the body force and traction for clarity. This gives

(3.78)

W —/(u+§w)bdxf/ubdx: C/wbdx
Q Q Q
Wiy = (u+ Cw)AT|p, —(ub)Alp, = C(wAD)|p, (3.80)
W, = oWE +sWE = ¢ /wb dx + (WAT)|, (3.81)
Q

At the minimum of W (u(x)), the variation of the functional must vanish, just as the differentials or the
derivatives of a function vanish at a minimum of a function. This is expressed as W = 0. Thus, we have

0= 6W = §Wint — 6Wex. (3.82)

Substituting (3.79)—(3.81) into the above and dividing by ( yields the following: for u(x) € U,

SW/C = /AE( )(Z)dx—/wbdx—(wm)
Q

=0,  w) e U (3.83)
T,
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Do you recognize the above? It is precisely the statement of the weak form, Equation (3.49) that we
developed in Section 3.6. Also recall that we have shown in Section 3.4 that the weak form implies the
strong form, so it follows that the minimizer of the potential energy functional gives the strong form.

To be precise, we have only shown that a stationary point of the energy corresponds to the strong form. It
can also be shown that the stationary point is a minimizer, see Equation (3.75) or Becker, Carey and Oden
(1981, pp. 60-62).

In most books on variational principles, the change in the function u(x), instead of being denoted by
¢w(x), is denoted by 6u(x). Equation (3.83) is then written as follows. Find u € U such that

I

W = Q/AE(%) (d(j:))dx - Q/(Subdx — (BuAT)| =0  Véue U, (3.84)

This can be further simplified by using the strain—displacement equation and the stress-strain law in the first
terms in the first integrand in (3.84), which gives

6W:/A068dx— /béudx+(fA6u)\r =0
/ ‘ / (3.85)

Q

N———
6Wim 6Wext

The above is called the principle of virtual work: the admissible displacement field (¢ € U) for which the
variation in the internal work 6 Wi, equals the variation in the external work 6 Wy, for all Véu € Uj satisfies
equilibrium and the natural boundary conditions. Note that (3.85) is identical to the weak forms (3.49) and
(3.83), just the nomenclature is different.

A very interesting feature of the minimum potential energy principle is its relationship to the energy of
the system. Consider the term Wj, in Equation (3.75). Substituting the strain—displacement equation (3.3)
and Hooke’s law (3.4) enables us to write it as

1
Wi = /wimAdx :E/AEaz dx. (3.86)
Q Q

If we examine a graph of a linear law, Figure 3.9, we can see that the energy per unit volume is
Wine = (1/ 2)E82. Thus, Wiy, the integral of the energy density over the volume, is the total internal energy

Ao
dWint 1
/ Wint= 50‘8
3 /
>
de

Figure 3.9 Definition of internal energy density or strain energy density wip,.
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of the system, which is why the subscript ‘int’, which is short for ‘internal’, is appended to this term. This
energy is also called the strain energy, which is the potential energy that is stored in a body when it
isdeformed. This energy can be recovered when the body is unloaded. Think of a metal ruler thatis bent or a
spring that is compressed; when the force is released, they spring back releasing the stored energy. The
second term is also an energy, as the two terms that comprise Wy, are products of force (b or 7) and
displacement u; in any case, it has to be an energy for the equation to be dimensionally consistent.

We can rewrite the functional in Equation (3.75) as

W = Wine — Wext (387)

by using the definitions underscored, and the variational principle is W = 0. This clarifies the physical
meaning of the principle of minimum potential energy: the solution is the minimizer (i.e. a stationary point)
of the potential energy Wamong all admissible displacement functions.

Many finite element texts use the theorem of minimum potential energy as a means for formulating finite
element methods. The natural question that emerges in these approaches to teaching finite elements is: How
did this theorem come about and how can corresponding principles be developed for other differential
equations? In fact, the development of variational principles took many years and was a topic of intense
research in the eighteenth and nineteenth centuries. Variational principles cannot be constructed by simple
rules like we have used for weak forms. However, some weak forms can be converted to variational
principles, and in the next section, we show how to construct a variational principle for 1D stress analysis
and heat conduction.

An attractive feature of the potential energy theorem is that it holds for any elastic system. Thus, if we
write the energy for any other system, we can quickly derive finite element equations for that system; this
will be seen in Chapter 10 for beams. Variational principles are also very useful in the study of the accuracy
and convergence of finite elements.

The disadvantage of variational approach is that there are many systems to which they are not readily
applicable. Simple variational principles cannot be developed for the advection—diffusion equation for
which we developed a weak form in Section 3.7 by the same straightforward procedure as for the other
equations. Variational principles can only be developed for systems that are self-adjoint. The weak form for
the advection—diffusion equation is not symmetric, and it is not a self-adjoint system (see Becker, Carey
and Oden (1981) for definition of self-adjoint systems).

Variational principlesidentical to those for elasticity apply to heat transfer and other diffusion equations.
This is not surprising, as the equations are identical except for the parameters. As an example, the
variational principle for heat conduction is given in Box 3.10.

Box 3.10. Variational principle for heat conduction

1 dr\?
Let W(T(x)) :E/Ak(a) dx — /Tsdx— (TAg) .
Q Q !
Wint Wext

then the solution of the strong form of (3.51) is the minimizer of W(7T'(x)) for VT (x) € U.

The functional in this variational principle is not a physical energy; in fact, the temperature itself
corresponds to the physical energy. However, the functional is often called an energy even for diffusion
equations; we will call it a mathematical energy. The proof of the equivalence of this principle to the weak
form (and hence to the strong form) of the heat conduction equations just involves replacing the symbols in
(3.78)—(3.83) according to Table 3.2; the mathematics is identical regardless of the symbols.
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3.10 INTEGRABILITY’

So far we have left the issue of the smoothness of the weight functions and trial solutions rather nebulous.
We will now define the degree of smoothness required in weak forms more precisely. Many readers may
want to skip this material on an initial reading, as the rest of the book is quite understandable without an
understanding of this material.

The degree of smoothness that is required in the weight and trial functions is determined by how smooth
they need to be so that the integrals in the weak form, such as (3.54), can be evaluated. This is called the
integrability of the weak form. If the weight and trial functions are too rough, then the integrals cannot be
evaluated, so then obviously the weak form is not usable.

We nextroughly examine how smooth is smooth enough. If you look ata C~! function thatis not singular
(does not become infinite), you can see that it is obviously integrable, as the area under such a function is
well defined. Even the derivative of a C~! function is integrable, for at a point of discontinuity x = a of
magnitude p, the derivative is the Dirac delta function p6(x — a). By the definition of a Dirac delta function
(See Appendix AS5),

/._pé(x—a)dx:p if x; <a<x.
x1

So the integral of the derivative of a C~! function is well defined. However, the product of the derivatives
of the weight and trial functions appears in the weak form. If both of these functions are C~!, and the
discontinuities occur at the same point, say x =a, then the weak form will contain the term
2 p*(x— a)2 dx. The integrand here can be thought of as ‘infinity squared’: there is no meaningful
v\;'ay to obtain this integral. So C~! continuity of the weight and trial functions is not sufficient.

On the contrary, if the weight and trial functions are C® and not singular, then the derivatives are C~! and
the integrand will be the product of two C~! functions. You can sketch some functions and see that the
product of the derivatives of two C~! functions will also be C~! as long as the functions are bounded (do not
become infinite). Since a bounded C~! function is integrable, C® continuity is smooth enough for the
weight and trial functions.

This continuity requirement can also be justified physically. For example, in stress analysis, a C~!
displacement field would have gaps or overlaps at the points of discontinuity of the function. This would
violate compatibility of the displacement field. Although gaps are dealt with in more advanced methods to
model fracture, they are not within the scope of the methods that we are developing here. Similarly in heat
conduction, a C~! temperature field would entail an infinite heat flux at the points of discontinuity, which is
not physically reasonable. Thus, the notions of required smoothness, which arise from the integrability of
the weak form, also have a physical basis.

In mathematical treatments of the finite element method, a more precise description of the required
degree of smoothness is made: the weight and trial functions are required to possess square integrable
derivatives. A derivative of a function u(x) is called square integrable if Wiy (0), defined as

Wind(6) :% / KA (jz)zdx7 (3.88)

Q

is bounded, i.e. Wiy (6) < co. The value of /Wiy (6) is often called an energy norm. For heat conduction,
6 = T and k(x) = k(x) > 0. Inelasticity, x(x) = E(x) > 0and § = u and (3.88) corresponds to the strain
energy, which appears in the principle of minimum potential energy.

It can be proven that H' is a subspace of C%,i.e. H' C C?, so any function in H' is also a C° function.
However, the converse is not true: C° functions that are notin H' exist. An example of a function that is o,

"Recommended for Advanced Track.
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but not H', is examined in Problem 3.8. However, such functions are usually not of the kind found in
standard finite element analysis (except in fracture mechanics), so most readers will find that the
specification of the required degree of smoothness by C° continuity is sufficient.
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Problems

Problem 3.1

Show that the weak form of

i(AE%)erc:O on 1<x<3,

dx dx
du
1)=|E— =0.1
a( ) ( dx)x:l ’
u(3) = 0.001

is given by

3

3
dw _du .
/aAEadx =—0.1(wA),_, +/2xwdx Vw with w(3) = 0.
1 1

Problem 3.2

Show that the weak form in Problem 3.1 implies the strong form.

Problem 3.3
Consider a trial (candidate) solution of the form u(x) = o + o (x — 3) and a weight function of the same
form. Obtain a solution to the weak form in Problem 3.1. Check the equilibrium equation in the strong form
in Problem 3.1; is it satisfied?

Check the natural boundary condition; is it satisfied?

Problem 3.4
Repeat Problem 3.3 with the trial solution u(x) = oo 4 a1 (x — 3) + oz (x — 3)%.
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Problem 3.5
Obtain the weak form for the equations of heat conduction with the boundary conditions 7°(0) = 100 and
g(10) = hT. The condition on the right is a convection condition.

Problem 3.6

Given the strong form for the heat conduction problem in a circular plate:

d / dT
— | r—= = <R.
kdr<rdr)+rs 0, 0<r<R
- dar
natural boundary condition : = (r=0)=0,
essential boundary condition : T(r=R)=0,

where R is the total radius of the plate, s is the heat source per unit length along the plate radius, 7'is the
temperature and k is the conductivity. Assume that k, s and R are given:

a. Construct the weak form for the above strong form.

b. Use quadratic trial (candidate) solutions of the form 7' = o + o7 + 077 and weight functions of the
same form to obtain a solution of the weak form.

c. Solvethe differential equation with the boundary conditions and show that the temperature distribution
along the radius is given by

Problem 3.7

Given the strong form for the circular bar in torsion (Figure 3.10):

g(JG%>+m:O7 0<x<]I,

dx dx
o do\  —
natural boundary condition : Mx=1)= JGE =M,
1
essential boundary condition : d(x = 0) = ¢,
P(x=0)=¢ x
Mx=0D=M
| ! |
| |
x=0 x=1

Figure 3.10 Cylindrical bar in torsion of Problem 3.7.
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where m(x) is a distributed moment per unit length, M is the torsion moment, ¢ is the angle of rotation, G
is the shear modulus and J is the polar moment of inertia given byJ = 7C*/2, where Cis the radius of the
circular shaft.

a. Construct the weak form for the circular bar in torsion.
b. Assume that m(x) =0 and integrate the differential equation given above. Find the integration constants
using boundary conditions.

Problem 3.8

Consider a problem on 0 < x < / which has a solution of the form

a. Show that for 4 > 0 the solution u is C” in the interval 0 < x < L.
b. Show that for 0 < A < 1/2 the solution « is not in H'.

Problem 3.9
Consider an elastic bar with a variable distributed spring p(x) along its length as shown in Figure 3.11. The
distributed spring imposes an axial force on the bar in proportion to the displacement.

Consider a bar of length /, cross-sectional area A(x), Young’s modulus E(x) with body force b(x) and
boundary conditions as shown in Figure 3.11.

a. Construct the strong form.
b. Construct the weak form.

Problem 3.10
Consider an elastic bar in Figure 3.2. The bar is subjected to a temperature field 7(x). The temperature
causes expansion of the bar and the stress-strain law is

o(x) = E(x)(e(x) — 2(x)T(x)),

where o is the coefficient of thermal expansion, which may be a function of x.

px)

x §>—/////—_\

b(x)
L

l

Figure 3.11 Elastic bar with distributed springs of Problem 3.9.
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a. Develop the strong form by replacing the standard Hooke’s law with the above in the equilibrium
equation; use the boundary conditions given in Problem 3.1.

b. Construct the weak form for (3.43) when the above law holds.

Problem 3.11

Find the weak form for the following strong form:
2

u ,
K@ —Ju+2x*=0, K, A are constants, 0 < x < 1,

subjectto u(0) = 1, u(1) = —2.

Problem 3.12
The motion of an electric charge flux gy is proportional to the voltage gradient. This is described by Ohm’s
law:

dv

qv = —kva’

where ky is electric conductivity and Vis the voltage. Denote Qy as the electric charge source.
Construct the strong form by imposing the condition that the electric charge is conserved.

Problem 3.13

Find the weak form for the following strong form:

du  du
X@‘Fa*.x:o, OSXSI,

subject to #(0) = u(1) = 0.

Problem 3.14
Consider a bar in Figure 3.12 subjected to linear body force b(x) = cx. The bar has a constant cross-
sectional area A and Young’s modulus E. Assume quadratic trial solution and weight function

u(x) = o +mx+ o, wlx) = By + fox + fax’,
where o; are undetermined parameters.

a. For what value of o; is u(x) kinematically admissible?

@l 2 3
. > s
— L2 —fe— L2 ——

Figure 3.12 Elastic bar subjected to linear body force of Problem 3.14.
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Using the weak form, set up the equations for ¢; and solve them. To obtain the equations, express the
principle of virtual work in the form f8, (- - -) + f85(- - -) = 0. By the scalar product theorem, each of the
parenthesized terms, i.e. the coefficients of f§;, must vanish.

Solve the problem in Figure 3.12 using two 2-node elements considered in Chapter 2 of equal size.
Approximate the external load at node 2 by integrating the body force from x = L/4 to x = 3L/4.
Likewise, compute the external at node 3 by integrating the body force from x = 3L/4 to x = L.

Problem 3.15
Consider the bar in Problem 3.14.

Using an approximate solution of the form u(x) = oo -+ o;x + ax?, determine u(x) by the theorem of
minimum potential energy. Hint: after enforcing admissibility, substitute the above trial solution into

(3.75) and minimize with respect to independent parameters. Lu

b. Compare the solution obtained in part (a) to an exact solution of the equation £ e +cx=0.

2
Does o (L) = 0 for the approximate solutions? x

d
Check whether the stress obtained from u(x) by ¢ = E EM satisfies the equilibrium.



Approximation of Trial
Solutions, Weight Functions
and Gauss Quadrature for
One-Dimensional Problems

We now consider the next important ingredient of the finite element method (FEM): the construction of
the approximations. In Chapter 3, we derived weak forms for the elasticity and heat conduction
problems in one dimension. The weak forms involve weight functions and trial solutions for the
temperature, displacements, solute concentrations and so on. In the FEM, the weight functions and
trial solutions are constructed by subdividing the domain of the problem into elements and constructing
functions within each element. These functions have to be carefully chosen so that the FEM is
convergent: The accuracy of a correctly developed FEM improves with mesh refinement, i.e. as element
size, denoted by h, decreases, the solution tends to the correct solution. This property of the FEM is of
great practical importance, as mesh refinement is used by practitioners to control the quality of the finite
element solutions.

For example, the accuracy of a solution is often checked by rerunning the same problem with a finer
mesh; if the difference between the coarse and fine mesh solutions is small, it can be inferred that the coarse
mesh solutionis quite accurate. On the contrary, if a solution changes markedly with refinement of the mesh,
the coarse mesh solution is inaccurate, and even the finer mesh may still be inadequate.

Although the mathematical theory of convergence is beyond the scope of the book, loosely speaking, the
two necessary conditions for convergence of the FEM are continuity and completeness. This can
schematically be expressed as

Continuity |+| Completeness | — | Convergence

By continuity we mean that the trial solutions and weight functions are sufficiently smooth. The degree of
smoothness that is required depends on the order of the derivatives that appear in the weak form. For the
second-order differential equations considered in Chapter 3, where the derivatives in the weak form are first
derivatives, we have seen that the weight functions and trial solutions must be C° continuous.

Completenessis amathematical term that refers to the capability of a series of functions to approximate a
given smooth function with arbitrary accuracy. For convergence of the FEM, it is sufficient that as the
element sizes approach zero, the trial solutions and weight functions and their derivatives up to and

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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Figure 4.1 A two-element mesh and the approximations in each element.

including the highest order derivative appearing in the weak form be capable of assuming constant values.
This can be interpreted physically for various types of problems. For instance, for elasticity, this requires
that the displacement field and its derivative can take constant values so that the finite elements can
represent rigid body motion and constant strain states exactly.

Before we discuss continuity and completeness, we would like to say a few words about our notation and
nomenclature. The finite element functions, weight functions and trial solutions, will collectively be called
approximations or functions. We will use the symbol §(x) for all functions in this chapter, whether they be
temperature, displacement or any other variable. The global finite element approximation will be denoted
by ¢"(x); this function for a particular element e will be denoted by 6 (x), and it is assumed that 6¢(x) is
nonzero only in element e. As in the previous chapters, numerical superscripts refer to a specific element.
For nodal variables, a subscript denotes the node number; for element-related nodal variables, local node
numbers are used; so, for example, x{ is the x-coordinate of local node 1 of element e.

To fix the concepts of continuity and completeness, consider a one-dimensional domain modeled by two
elements as shown in Figure 4.1. We will examine how to construct a continuous approximation in the
entire domain by the FEM.

In constructing a finite element approximation, we approximate the approximation in each element by
6°(x). In each element, we will employ a polynomial for 6 (x) of the form

2 3
0= o + o x 4+ a5x” o5 + -

where of are coefficients that are selected so that continuity is satisfied. It can be seen from the above
that within each element the approximation ¢°(x) is obviously continuous. However, for arbitrary values
of ¢, the approximation will not be continuous between elements. To meet the C continuity requirement,
the field "(x) must be continuous (or compatible) between elements, i.e. it is necessary that
) (x(zl)) =@ (x§2)) in Figure 4.1. We will see in the following that if the coefficients of are expressed
in terms of nodal values, it will be easy to construct continuous approximations.

The second requirement for the FEM to converge to the correct solution is completeness. According
to the guidelines given above, elements with a linear approximation 6° = of 4 o§x are complete. The term
g can represent any constant function as it is arbitrary, and the term ofx can represent any function
with a constant derivative. Thus, the polynomial 6° = o + a{x can be used to construct finite element
approximations that will converge.

Trial solutions approximated by incomplete polynomials but with a complete linear approximation,
such as 0¢ = of + ox + o5x*, will converge, but at a rate comparable to that of linear approximations.
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Figure 4.2 A two-node element.

However, an incomplete approximation, suchas ¢ = o + ox?, cannotbe used to develop a finite element.
This approximation lacks the necessary linear term, and consequently when itis used as a starting point for
constructing a finite element approximation, the resulting elements do not converge.

4.1 TWO-NODE LINEAR ELEMENT

Consider the simplest one-dimensional element, an element with two nodes as shown in Figure 4.2. The

nodal values of the function are denoted by 6 (x{) = 6 and 6 (x5) = 5. We will now develop a procedure

for constructing a complete and C° continuous function for this element. As we indicated in the previous

section, to achieve continuity, we will express the approximation in the element in terms of the nodal values.
To meet the completeness condition, we need to choose at least a linear polynomial

6°(x) = o + ofx. (4.1)

Notice the rather nice coincidence: If we select two nodes at the ends of the element, we have the same
number of nodal values as parameters in (4.1), so we should be able to express the parameters uniquely in
terms of the nodal values. We will now proceed to do this. We can write (4.1) in the matrix form as

() =1 ] {Zﬂ = p(x)ar. (42)
p(x)

e

o

Next we express the coefficients o and «f in terms of the values of the approximation at nodes 1 and 2:
0°(xf) = 05 = of + o5x§ 01 |1 x5 |of
(x5) = ¥ ~ el ’ 43
——

= + o5 %] |
——
de M() ae
where d° is the nodal matrix for element e, which is defined as shown above. In the matrix form, the inverse
of (4.3) is given by
of = (M) 'de. (4.4)

Substituting (4.4) into (4.2) yields
0°(x) = N°(x)d°,  where N¢(x) = p(x)(M¢)~". (4.5)

The row matrix N¢(x) = [N¢(x) N{(x)] = p(x)(M¢) " is called the element shape function matrix. It
consists of the element shape functions associated with element e.

We will see that shape functions play a central role in the FEM; shape functions of various orders and
dimensions enable the FEM to solve problems of many types with varying degrees of accuracy.

We next develop the expressions for the element shape function matrix N¢ by evaluating the matrices in
(4.5). From the expression for M¢ given in (4.3), it follows that

_ 1 x5 —x¢ 1] x5 —x¢
o -5 3RS )
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I i

Ni()

Figure 4.3 Shape functions of the two-node element.
where [° is the length of the element e. Then using (4.5) we obtain

A IR | ] PR TR VY

x5 =5 } 1 1
In the above, N¢ (x) and N5 (x) are the element shape functions corresponding to nodes 1 and 2, respectively.
These shape functions are shown in Figure 4.3. Note that they are nonzero only in element e.

It can be seen that the shape functions are linear in the element, as expected. In addition, the shape
functions have the following properties:

Ni(x() =1, Nj(x}) =0,
N3(x)) =0, N3(x3) =1
In the concise notation, the above can be written as
Ny (x5) = ou,s (4.7)

where §y, is called the Kronecker delta (which is defined exactly like the unit matrix) and is given by

1 if I=1,
6”_{0 it 1#1J. (48)

Equation (4.7) is known as the Kronecker delta property and is related to a fundamental property of
shape functions called the interpolation property. Interpolants are functions that pass exactly through
the data. If you think of nodal values as data, then shape functions are interpolants of the nodal data.
In fact, shape functions can be used as interpolants to fit any data.

To show the interpolation property, we write (4.5) in terms of the shape functions and nodal values:

Ten

0°(x) = N°(x)d = ZN,“(X)G;’.

where n¢,, is the number of element nodes; in this case ne, = 2. We want to show that 6¢(x;) = 6¢. Therefore,
we let x = x§ in the above, which gives

2

2
0 (x) = DN (65)65 =D duty = 6,
I1=1

I=1
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where we have used (4.7) and the last step follows from the definition of the Kronecker delta (4.8). Thus, the
finite element approximation is exactly equal to the nodal values at the nodes. This is not surprising as we
evaluated the coefficients of by this requirement.

In the weak form developed in the previous chapter, we need to evaluate the derivatives of the trial
solutions and weight functions. For the two-node element, we can derive an expression for the derivative as
follows:

e d

dx  dx

e e _dNe e
(Nd)fdxdfdx

dNe . dNg
=L+ d;

05

In the matrix form, this can be written as

dee  [dng ngH@ﬁ]
@ _ v = Bed’, 4.9
dx {dx dx | |05 (49)
where
dng  dng] 1
B¢ = 1 2l =—[—1 1]. 4.1
& = (4.10)

The last step in (4.10) follows from taking derivatives of the terms in (4.6).

As we have already mentioned, in each element, we have used a complete polynomial expansion, so we
have satisfied the completeness requirement. We have expressed the function in terms of nodal values, so it
will be easy to construct globally C° functions. We will examine the continuity requirement in more detail
in Section 4.5.

4.2 QUADRATIC ONE-DIMENSIONAL ELEMENT

To develop a quadratic element, we start with a complete second-order polynomial approximation:

%
0°(x) = o +olx+os* =[1 x 2] || =pr)ac. (4.11)
’ %
x
p( ) \aze—’

The element is shown in Figure 4.4. We need three nodes, because it would otherwise not be possible to
uniquely express the constants (o, «{,5) in terms of nodal values of the trial solution: 6°(x{) =
05, 0°(x5) = 65, 0°(x§) = 05. Two of the nodes are placed at the ends of the element so that the global
approximation will be continuous. The third node can be placed anywhere, but it is convenient and
symmetrically pleasing to putit at the center of the element. In general, these elements perform better if the
third node is at the midpoint.

e
@ @ ®
1 2 3

Figure 4.4 A three-node element.
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Figure 4.5 The quadratic shape functions for a three-node element.

To obtain the shape functions, we first express (o, of, o5 ) in terms of nodal values of the function nodal
values (65, 65, 65):

[ € € Ez € € ez €
07 = o + afx{ + x| 05 I xf Xy of
[—— e € 1€ e — e e” €
05 = of + o§x5 + a2x22 — 93 =11 x5 x5 O(é . (4.12)
05 = of + o5 + S & 1oxg x5 | L%
— —_———

d(’ Me ue
As shown above, we can write (4.12) in the matrix form as d* = M‘a¢. Combining (4.11) and (4.12) yields

Ten

° =p(M°) "' d° =N@° = N (x)ef, (4.13)
N€
where ne, = 3. The shape functions are given by

Ne:l%[(x—xi)(x—%) 2 =) (x —x5) (o= x) (o = x5)]. (4.14)

It can easily be shown that these shape functions satisfy the Kronecker delta property. The shape functions
are shown in Figure 4.5. As can be seen, because of the Kronecker delta property, each shape function is
nonzero only at a single node and at that node its value is unity. Within the element, the shape functions are
quadratic; the mid-node shape function can readily be recognized as an upside-down parabola.

4.3 DIRECTCONSTRUCTION OF SHAPE FUNCTIONS IN ONE DIMENSION

The shape functions in one dimension that we have developed are called Lagrange interpolants. The theory
of Lagrange interpolation is very useful for constructing interpolants of various orders, particularly higher
order functions, such as quadratic or cubic. Such higher order elements, as will be seen from the exercises,
can provide far more accuracy than linear elements.

Lagrange interpolants can be developed more directly than described in the above by a simple procedure
that takes advantage of the Kronecker delta property of the shape functions. Because of this property,
shape function / must vanish at all nodes other than node / and be unity at node /. To see how we use these
properties to construct the shape functions, consider the quadratic shape functions for a three-node
element.
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First we will construct N¢ (x). As the shape function N¢ (x) is at most quadratic in x, it consists of a product
of two linear monomials in x. The most general form of such a quadratic product of monomials is
(x—a)(x—D)
Ni(x) =—F"—,
c
where a, b and c are constants that will set so as to satisfy the Kronecker delta property. We want N{ (x) to
vanish at x§ and x§, which can be accomplished by letting a = x§ and b = x5. This gives

NE(x) = (x— xg)c(x —x5) .

Now we have met two of the conditions on the shape function: that it must vanish at nodes 2 and 3. It
remains to satisfy the condition that N§ (x{) = 1. This condition is met by letting the denominator ¢ equal
the numerator evaluated at x{, which gives

(x = x5)(x = x5)
Ni(x) = — xf, > ;ﬁ .
(xf — x5)(x{ — x5)

We leave it to the reader to show that N (x5) = 61;. The other two shape functions are constructed in an
identical manner giving

(x —x))(x = x5)

N el L = el

(x5 = x{) (x5 —x5)

The above gives the same result as (4.14) if we note that [* = x§ — x{.

The same procedure can be used to construct the cubic shape functions. The element with cubic shape
function will have four nodes, as there are four constants in an arbitrary cubic polynomial. The shape
functions are

(x — ) (x — x5) (x — x§) (2 — xf) (x — x5) (x — x§)

N o) ) ) T ) (d ) )
Ne - @) =) (x — x5) e r—ap)E—x)(x —x9)
P — ) (e — x§) (x5 — x§) g =) — ) (g — )

These shape functions are shown in Figure 4.6.

0.5

-0.5 L L
1

Figure 4.6 Cubic shape functions of the four-node one-dimensional element; note that each shape function is nonzero
only at one node, where it is unity.
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4.4 APPROXIMATION OF THE WEIGHT FUNCTIONS

Itisnotrequired that the weight functions be approximated by the same interpolants that are used for the trial
solutions approximation; however, for most problems it is advantageous to use the same approximation
for the weight functions and the trial solutions, and this is the most common practice. The resulting
method is called the Galerkin FEM. This method is used in the material presented in this book. The weight
functions and their derivatives are then given by

dw*

=Bw.
dx w

we(x) = N°(x)w*,

4.5 GLOBAL APPROXIMATION AND CONTINUITY

In the previous sections of this chapter, we approximated the trial solutions and weight functions on each
element separately. The global approximation of the trial solutions and weight functions, denoted hereafter
by #" and w", respectively, is obtained by gathering the contributions from individual elements. For a mesh
of ne elements,

o = E Ned® = (Z N“L") d,

e=1 e=1

Wh _ iNewe _ <i NEL8>W,
e=1

e=1

(4.15)

where we have used d° = L°d following Equation (2.21). The global shape functions are defined as

Ne|

N=) NL, (4.16)
e=1

and it can be seen from (4.15) that the global approximation of the trial solutions and weight functions can
be expressed as

Tnp

0" =Nd = Ny,
I=1

(4.17)

Tnp

Wh =Nw = E N[W[,
I=1

where 7, is the number of nodes in the mesh. Note that (4.15) and (4.17) are identical functions, as can be
seen by substituting (4.16) into (4.17).

Writing the approximation in the global form is very useful for studying continuity and convergence
properties of the finite element solution.

The matrices of global shape functions N(x) and of element shape functions N° (xx) are both row matrices.
To express the shape functions in a column matrix, we take the transpose of (4.16)

N =3 LN (4.18)

e=1
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Figure 4.7 Global and local node numbers for a finite element mesh.

Equation (4.18) shows that the global shape functions can be obtained by a gather that is identical to that
used in Chapter 2 to assemble the force matrix.

To explain the characteristics of the global shape functions, we consider the two-element mesh depicted
in Figure 4.7. Here the global nodes have been numbered sequentially; recall that the presence of a
superscript on a variable indicates that the subscripts refer to local node numbers.

For the example in Figure 4.7, the scatter matrices L¢, which were introduced in Chapter 2, are given by

(607 ro 1o o1|?
av = | :[1}:{ } 6, | =LWa,
o 0, 010
2 ﬁ/—/_ef’_
LM
- - [0, 1
@) 1
ao — | & :[02}:{0 ! 0} 6, | =L%d.
e 05 00 1
LY2 _03_
L®

From (4.16) we obtain

MY N N NP
—~ e =~ |.
Ny Ny Ns

N=NOLD | NOL® — (4.19)

The number of global shape functions is equal to the number of nodes. The global shape functions, as
obtained from the above, are shown in Figure 4.8. Notice that the global and element shape functions are
identical over an element domain.

It can be seen that the global shape functions also satisfy the Kronecker delta property. One of the salient
features of the global shape functions is that they are C° continuous. As can be seen from (4.17), the finite
element trial solutions and weight functions are linear combinations of the shape functions. As the global
shape functions are C°, any linear combination must be C°, so the C° continuity of both " and w" is
guaranteed.

Moreover, as these shape functions are polynomials, the resulting integrals in the weak form are finite, so the
square integrability requirement of the trial solutions and weight functions discussed in Section 3.10 is met.
Mathematically, we say that shape functions are H',i.e. N; € H' (See Section 3.5.2 for definition of H').

4.6 GAUSS QUADRATURE

In general, the weak form derived in Chapter 3 cannot be integrated in closed form. Therefore, numerical
integration is needed. Although there are many numerical integration techniques, Gauss quadrature, which
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Figure 4.8 Linear global (top) and element (bottom) shape functions for a two-element mesh.

is described in this section, is one of the most efficient techniques for functions that are polynomials or
nearly polynomials. In FEM, the integrals usually involve polynomials, so Gauss quadrature is a natural
choice.

Consider the following integral:

1= / ’ Flx)dx =7 (4.20)

The Gauss quadrature formulas are always given over a parent domain [—1, 1]. Therefore, we will map the
one-dimensional domain from the parent domain [—1, 1] to the physical domain [a, b] using a linear
mapping as shown in Figure 4.9. Note thatatx = a,§ = —landatx = b, £ = 1.

This gives us the following equation relating x and &:

_1
)

X

(a-+b)+36(b~a). (421)

Figure 4.9 Mapping of the one-dimensional domain from the parent domain [—1, 1] to the physical domain [a, b].
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The above map can also be written directly in terms of the linear shape functions:

=&, et

X:X1N1(€)+X2N2(f) =a 2 2

From (4.21) we get the following:

1

dr ==
2

(b —a)d¢ = édf = Jd¢, (4.22)

where J is the Jacobian given by J = (b — a)/2. We now write the integral (4.20) as

1 1

I=1J / f(&)de = JI, where [ = / F(E)de.

-1 —1

In the Gauss integration procedure outlined below, we approximate the integral by

(&)
}_W _ f(§2) _ T
=Wif(&) + Wof (&) + - =[Wi Wo - W,]|" 7 | =W, (4.23)
w £(&)
f

where W; are the weights and &; are the points at which the integrand is to be evaluated.

The basic idea of the Gauss quadrature is to choose the weights and the integration points so that the
highest possible polynomial is integrated exactly. To obtain this formula, the function f (§) is approximated
by a polynomial as

o

FO =t at+m@r=[1 ¢ & || =p@a (4.24)
—"
o

We next express the values of the coefficients o; in terms of the function f (&) at the integration points:

f(&) = o 4 €y + a3éf + - - &) 1&g & 11w

f(&)=u + & + o3+ (&) 1 & & - o
or A e e (429

f(gn) =0+ OCZgn + 0635% + - f(én) 1 fn 65 A Oy,

f M o

Based on (4.25) and (4.23), the integral I will be written as

1=W"Ma. (4.26)
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Gauss quadrature provides the weights and integration points that yield an exact integral of a polynomial of
a given order. To determine what the weights and quadrature points should be, we integrate the polynomial

f(&):

o1
! ; o 2 3 4 !
i [, _ 2 s _le £ € &
I—/lf(f)dé“—/l[l ce e ]l fu=le S S8
B B %, (4.27)

The weights and quadrature points are selected so that I in (4.27) equals I in (4.26) so that, the quadrature
formula gives the exact integral for a polynomial of a given order. This yields

WMa=Pa = |MW=pP| (4.28)

(4.28) is a system of nonlinear algebraic equations for the unknown matrices M and W.
Note that if g}, is the number of Gauss points, the polynomial of order p that can be integrated exactly is
given by

p < 2ng, — 1.

Thereason for thisis thata polynomial of order pis defined by p + 1 parameters. As both the weights and the
integration points are adjustable, the ngp-point Gauss integration scheme has 2n,, parameters that can be
adjusted to integrate a polynomial of order p exactly. Thus, an ng,-point Gauss formula can integrate a
(2ngp — 1)-order polynomial exactly. It follows that the number of integration points needed to integrate a
polynomial of order p exactly is given by

p+1

Ngp = 5

For example, to integrate a quadratic polynomial (p = 2) exactly, we need a minimum of ng =2
integration points.

Example 4.1: Gauss quadrature

Evaluate the integral below using two-point Gauss quadrature.

S
I:/(x3+x2)dx, gy —1=3 = ngp=2.
2

Asng, = 2 (two-pointintegration), the above integral can be evaluated exactly. We use (4.28) to compute
(Wl ’ El) and (W27 62):

Wi=W,=1

1 1.
§1Z—ﬁ§2:7§

& & | Wi N
&g &g w,|

3 ¢3
SES

O W O N
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To obtain the above solution of four nonlinear algebraic equations in four unknowns, we note that by
symmetry W, = W, and £ = —&,. The first equation can then be used to obtain the weights and the third
equation the integration points.

Next, we will use (4.22) witha = 2 and b = 5 to express x and f in terms of &:

x:%(a+b)+%§(b—a) =3.5+ 1.5¢,

) = (354 1.5¢) + (3.5 +1.5¢)°.
Using (4.23), the integral becomes

1

/ ((35+1.5¢) + (3.5 + 1.5¢)%) d¢

-1

L
I=Jl=—
2

= éwl ((3.5+ 1.56)° + (3.5 + 1.56))%) +%Wz((3.5 +1.56)° + (3.5 4 1.56)%)

=37.818 4+ 153.432 = 191.25.

In this case, as Gauss quadrature is exact we can check the result by performing analytical integration,

which yields
2 4 3
3 2 X X
dx=|—++
/(x +x%) (4 + 3)
2

The Gauss quadrature points and weights (W;, &) can be calculated for any number of integration points.
These results are tabulated in Table 4.1. In the finite element program, these values can be programmed
once so that (4.28) does not have to be repeatedly solved.

5

=197.917 — 6.667 = 191.25.
2

Table 4.1 Position of Gauss points and corresponding weights.

Ngp Location, &; Weights, W;

1 0.0 2.0

2 +1/v/3 = +£0.5773502692 1.0

3 +0.7745966692 0.555 555 5556
0.0 0.888 888 8889

4 +0.8611363116 0.347 854 8451

+0.3399810436

0.652 145 1549

5 +0.9061798459 0.236 926 8851
+0.5384693101 0.478 628 6705
0.0 0.568 888 8889
6 +0.9324695142 0.171 324 4924
+0.6612093865 0.360 761 5730
+0.2386191861 0.467 913 9346
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The Gauss formulas of higher order are usually obtained from special functions called Bernstein
polynomials, see Bernstein (1912).

REFERENCE

Bernstein, S. (1912) Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilities. Commun. Soc.
Math. Kharkov, 13, 1-2.

Problems

Problem 4.1
Consider a four-node cubic element in one dimension. The element lengthis 3 withx; = —1; the remaining
nodes are equally spaced.

a. Construct the element shape functions.
b. Find the displacement field in the element when

ui 1
@ =" =107
Uy 4

o

Evaluate the B® matrix and find the strain for the above displacement field.

d. Plot the displacement u(x) and strain £(x).

e. Find the strain field when the nodal displacements are d** =[1 11 1]. Why is this result
expected?

Problem 4.2
Consider a five-node element in one dimension. The element length is 4, with node 1 at x = 2, and the
remaining nodes are equally spaced along the x-axis.

a. Construct the shape functions for the element.
b. The temperatures at the nodes are givenby 7} = 3°C, 7, = 1°C, T3 = 0°C, T, = —1°C,T5 = 2°C.
Find the temperature field at x = 3.5 using shape functions constructed in (a).

Problem 4.3

Derive the shape functions for a two-node one-dimensional element which is C' continuous. Note that the
shape functions derived in Chapter 4 are C° continuous. To enforce C' continuity, it is necessary to enforce
continuity of displacements and their derivatives. Start by considering a complete cubic approximation
U = of + ofx + agx* + ac§x3 and derive four shape functions corresponding to the displacements and their
derivatives at each node. For clarity of notation, denote the derivatives at the nodes by ¢;,i = 1,2.

Problem 4.4
Consider the displacement field u(x) = x*,0 < x < 1. Write a MATLAB program that performs the
following tasks. (The instructor should specitfy how many of these parts should be done.)
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Subdivide the interval [0, 1] into two elements. Compute the displacement field in each element by
letting the nodal displacements be given by u; = x; and using a linear two-node element so that the
displacement field in each element s given by u (x) = N¢(x)d® = N¢(x)L°d, where N°(x) are the linear
shape functions given by (4.6). Plot u(x) and the finite element field ¢ (x) on the same plotin the interval
[0, 1].

. Compute the strain in each element by °(x) = B°(x)d° = B(x)L°d and plot the finite element strain
and the exact strain. How do these compare?

. Repeat parts (a) and (b) for meshes of four and eight elements. Does the interpolation of the strain
improve?

. Theerror of aninterpolationis generally measured by whatis called a L, norm. The error in the L, norm,
which we denote by e, is given by

where u(x) = x> in this case. Compute the error e for meshes of two, four and eight linear displacement
elements. Use Gauss quadrature for integration. Then plot (this can be done manually) the error versus
the element size on a log-log plot. This should almost be a straight line. What is its slope? This slope is
indicative of the rate of convergence of the element.

. Repeat part (d) using quadratic two-node quadratic elements.

Problem 4.5

Modity the functions Nmatrix1D.m and Bmatrix1D.m in Section 12.4 to include four-node elements.

Problem 4.6

Use Gauss quadrature to obtain exact values for the following integrals. Verify by analytical integration:

4
(a) / (@ +1)dx,
0
1

(b) / (€ +26%) ae.

-1

(c) Write a MATLAB code that utilizes function gauss.m and performs Gauss integration. Check your

manual calculations against the MATLAB code.

Problem 4.7

Use three-point Gauss quadrature to evaluate the following integrals. Compare to the analytical

integral.
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Write a MATLAB code that utilizes function gauss.m and performs Gauss integration. Check your manual
calculations against the MATLAB code.

Problem 4.8
1
The integral [ (3€% 4 2)d¢ can be integrated exactly using two-point Gauss quadrature. How is the
-1
accuracy affected if

a. one-point quadrature is employed;
b. three-point quadrature is employed.

Check your calculations against MATLAB code.

Problem 4.9
Verify that the shape functions of two-, three- and four-node elements derived in this chapter satisfy the
following conditions:

Men

> ONj(x) =1
I=1

Explain why the above condition always has to be satisfied.
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Finite Element Formulation for
One-Dimensional Problems

We have now prepared all of the ingredients needed for formulating the finite element equations: (1) the
weak form, which is equivalent to the strong form we wish to solve, and (2) the finite element weight and
trial functions, which will be plugged into the weak form. So we are ready to develop the finite element
equations for the physical systems we have described in Chapter 3: heat conduction, stress analysis and the
advection—diffusion equation. This is the last step in the roadmap in Figure 3.1. This step is often called the
discretization, as we now obtain a finite number of discrete equations from the weak form.

The procedure is similar to the one we used in Example 3.3. We first construct admissible weight
functions and trial solutions in terms of arbitrary parameters. However, in the finite element method, the
parameters are the nodal values of the functions. From the arbitrariness of the nodal values for the weight
function, we then deduce the finite element equations, which are linear algebraic equations. We often call
these the discrete equations the system equations; in stress analysis, they are called the stiffness equations.

The finite element analysis procedure is often broken up into four steps:

preprocessing, in which the mesh is constructed;

formulation of the discrete finite element equations;

solving the discrete equations;

postprocessing, where the solution is displayed and various variables that do not emanate directly from
the solution are calculated.

b s

In one dimension, preprocessing and postprocessing are quite straightforward, so we will have little to say
about these in this chapter. However, in multidimensional problems, these are quite challenging and
important steps for users of software.

5.1 DEVELOPMENT OF DISCRETE EQUATION: SIMPLE CASE

In order to minimize the abstractness of this description, we first consider the specific problem discussed in
Section 3.2, with a finite element model consisting of two linear elements as shown in Figure 5.1a. Ascanbe
seen, atx = 0, the problem has a traction (natural) boundary condition, and an essential boundary condition
is applied at x = /. Nodes on the essential boundary are numbered first as shown in Figure 5.1a.

The weak form has been developed in Chapter 3 and is given as follows.

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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Figure 5.1 (a) Two-element mesh, (b) global shape functions and (c) an example of a trial solution that satisfies an
essential boundary condition.

Find u(x) among the smooth trial solutions that satisfy the essential boundary condition u(/) = &; such
that

/-l (%W)TAE(%) dx — /01 wlbdx — (w'7A) =0 Vw(x) with w(l) = 0. (5.1)

0 x=0

Inthe above, we have taken the transpose of the weight functions; as w(x) is a scalar, this does not change the
value of the expression, but it is necessary for consistency when we substitute matrix expressions for w(x)
or its derivative.

The procedure we will follow is similar to Example 3.3: We will evaluate the weak form for the finite
element trial solutions and weight functions. Then, by invoking the arbitrariness of the weight functions, we
will deduce a set of linear algebraic (discrete) equations.

The finite element weight functions are

w(x) = w(x) = N(x)w, (5.2)

where ~ denotes an approximation and N(x) is the matrix of shape functions. For this mesh,
w(x) = wiNy(x) + waN2(x) + w3N3(x). The finite element trial solutions are approximated by the same
shape functions:

u(x) = u"(x) = N(x)d. (5.3)

For this mesh, u(x) = u; Ny (x) 4+ u2N2(x) + uzN3(x). Notice that we refer to the weight functions and trial
solutions in the plural case as there are infinitely many; our task will be to find that trial solution which
satisfies the weak form. Various shape functions were developed in Chapter 4, and the procedure we will
develop will be applicable to all of them, but first we will focus on the two-node element with linear shape
functions. These finite element shape functions, as we learned in Chapter 4, are sufficiently smooth to be
employed in the weak form.



DEVELOPMENT OF DISCRETE EQUATION: SIMPLE CASE 95

The trial solutions must be constructed so that they satisfy the essential boundary condition. This can be
easily accomplished by letting

uy = L_t]. (54)

The other nodal displacements are unknown and will be determined by the solution of the weak form. The
global shape functions are shown in Figure 5.1(b). Notice that they are the tent functions we have described
in Chapter 4. The finite element approximation is a linear combination of these shape functions. An
example of a finite element trial solution is shown in Figure 5.1(c). Because of (5.4) and the smoothness of
the finite element approximation, all of the trial solutions are admissible.

On the essential boundary, the weight functions must vanish. To meet this requirement, we set
w; =0. (5.5)

The remaining nodal values, w, and w3, are arbitrary, as the weight functions must be arbitrary.
The element and global matrices are related by gather matrices just as in Chapter 2, so we have

w=L°w, d°=L‘d (5.6)

The gather matrices follow from the relation between local and global node numbers.

As the finite element functions and their derivatives have kinks and jumps at the element interfaces,
respectively (see Figure 3.5), efficient integration of the weak form (5.1) necessitates evaluation of the
integral over [0, /] as a sum of integrals over individual element domains [x{, x§]. So we replace the integral
over the entire domain in (5.1) by the sum of the integrals over the element domains:

i /rg dw® TAeEe % oy — /‘X; WeT bdx — (WeTAef) =0 (5 7)
x¢ dx dr 5 = ! |

e=1 1
where we have placed superscript ‘e’ on the weight and trial functions to indicate that these are the parts of
those functions that pertain to element e. In each element e, the weight function (5.2) and trial solution (5.3)
can be written as

du®

€ — Nedé' DR Bedé’
W) =N, =B
BT (5.8)
WeT — VVeTNeT7 ( i ) _ vveTBeT7

where d° and w° are given in terms of the global nodal values by (5.6). Equation (5.8) is the same

approximation as (5.2) and (5.3), and these functions are also admissible. They are a localization of the

global approximations to the elements; they follow from the fact that in element e, the global N and element

shape functions N° are identical (see Figure 4.8). Henceforth in this book, we will write the finite element

approximations at the element level in the form (5.8); the essential boundary conditions will be met on the

global level and it will be implicit that d® and w are given in terms of the global nodal values by (5.6).
Substituting (5.8) into (5.7) gives

e
2

3
X Xy

el
> wT / BTAE® Bédxd® — / NThdx —(NTAT) _, » = 0. (5.9)
. H/_/ 7
e=l X & fre
_,ﬂ_/ ———

K fo.
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In the above, we have defined two matrices that will be very useful in the finite element method (FEM):

(i) the element stiffness matrix

K* = / BTAYE*Bdx = | BTAYE°B‘dx; (5.10)
Qe

e
X

(ii) the element external force matrix

e = / NTp dx+(NTAT) ) = / NTh dx 4 (NTA) (5.11)
Q f

where I;° is the portion of the element boundary on the natural boundary and ff, and 7. in (5.11) are the
element external body and boundary force matrices, respectively. The element matrices will play the same
key roles as in the analysis of discrete systems in Chapter 2: They are the building blocks of the global
equations. We will examine these matrices for stress analysis and heat conduction in more detail later. In
(5.10) and (5.11), the far right-hand side expressions use a notation that we will introduce in the next
section.

Substituting (5.10) and (5.11) into (5.9) and using (5.6) gives

el Nel
w' <Z LTKLd- ) LeTf“> =0. (5.12)
e=1 e=1

Inderiving Equation (5.12) recall that wis not a function of x and is a global matrix, and hence it can be taken
outside of the summation symbol. Moreover, the scatter operator L¢ is not a function of x, but is element
dependent. Therefore, it has been taken out of the integral, but should remain inside the summation over the
elements.

If you compare the first sum in (5.12) to Equation (2.25), the expression can be recognized as the
assembled system (stiffness) matrix

Mel
K=Y LKL (5.13)

e=1

The system matrix for the differential equation is assembled by exactly the same operations as for the

discrete systems: matrix scatter and add, which is also equivalent to direct assembly. It should be stressed

that we do not need to perform the large matrix multiplications indicated above to assemble the global

matrices. The assembly processes are identical to the assembly procedures we have learned in Chapter 2.
The second term in (5.12) is the assembled external force matrix

el

f=> L7 (5.14)
e=1

This is the column matrix assembly operation. It consists of a column matrix scatter and add and is actually
easier to learn than matrix assembly; it will be illustrated in the examples that follow.
Substituting Equations (5.13) and (5.14) into Equation (5.12) yields

w(Kd—f)=0  Vw except w; = w(l) =0, (5.15)
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where we have indicated the arbitrariness of the nodal values, w, which emanates from the arbitrariness of
the weight functions in the statement of the weak form (5.1) and the restriction on w, (5.5). Let

r=Kd-f, (5.16)
where r is called the residual. Then (5.15) becomes
wir=0 Vw except w; = 0. (5.17)

If we write Equation (5.15) for the specific model in Figure 5.1, we have
wary +wirs =0,
where the first term has dropped out because w; = 0. As the above holds for arbitrary w, and ws, we can

deduce that 7, = r3 = 0, but we cannot say anything about r, and in fact, as it is the unbalanced force at
node 1, so it is the reaction force. If we write the equations, we obtain

T Kii Ko Ki|[w [ fi
r= 0 = K21 Kzz K23 up — fz . (518)
0 K3 Kz Ks | |us L3

Rearranging the term in (5.18) gives

[Kii K1 K3 [ (fi+r]
Ky Kn Ky||lw|=| f | (5.19)
K31 Kz Kz | |us 5

Equation (5.19) is a system of three equations with three unknowns, u,, 3 and ry. It is similar to Equation
(2.27) derived in Chapter 2. Various solution procedures such as partition and penalty methods have been
discussed in Chapter 2. For instance, using the partition approach, the nodal displacements u, and u; are

found first by solving
Ky Ky ||uz| _ [ fo—Kniy
K3 K33 ||us =Ky |’

followed by the calculation of unknown reactions at node 1:

u;
rn=fi—Kn Ko Ksl|uw
us

Like the equations for discrete systems, Equation (5.19) can be viewed as equations of discrete equilibrium
at the nodes. The left-hand side is the matrix of internal forces and the right-hand side is that of the external
forces and reactions. Note that the stiffness matrix in (5.19)is still singular. However, the partition approach
does not require its inversion.

5.2 ELEMENT MATRICES FOR TWO-NODE ELEMENT

Consider a two-node linear element with constant cross-sectional area A° and Young’s modulus E¢
subjected to linear distribution of body forces as shown in Figure 5.2. In this section, we derive the element
stiffness matrix and the external force matrix.
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b,
b',//’:

1 E°A° 2
—e > x
e e
X1 X3

Figure 5.2 Two-node element with linear distribution of body force.

Recall thatin Section 4.1 we showed that the two-node element shape functions and their derivatives are
given as

x5 —x5 x5 —x§ le
d1 2 i ; 1 (5-20)
BO=—N'= |-~ —|=—|-11
dx l: le le:l le [ }
The element stiffness matrix is then
i ? 1 1 7
1] — 1 ACE° | —
wz/wuwwm:/kk NH#AHM:EF plu/m
x X — B x|
BeT
_Age oL
P [-1 1 ||
L i 4
e AE[ 1 1]
K==l 1| (5.21)

Note that this resultis identical to that for the bar element derived in Chapter 2 based on physical arguments.
In other words, the stiffness matrix of the two-node element with constant cross-sectional area and constant
Young’s modulus when derived from the weak form is identical to that obtained by physical arguments. It
then may occur to you, why go to all this trouble? The reason is that for higher order elements and in
multidimensions, the procedures described in Chapter 2 do not work, whereas the weak form can be applied
to higher order elements and two and three dimensions.

‘We now turn to the evaluation of the external nodal body forces, the first term in Equation (5.11):

e
2

m:/w%@m

X

pe

As the body force distribution is linear, it can be expressed in terms of linear shape functions as

b(x) = N°b, b:{i}
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Table 5.1 Terminology for finite element matrices.

Matrices Elasticity Diffusion Heat conduction
K Stiffness Diffusivity Conductance

f Force Flux Flux

d Displacement Concentration Temperature

The element body force matrix is then given as

s 2
{ (x§ —x) (x —x)(x —x9)
(x

; L8

fg:/NfTNfdxb: 2/ )
)7L @ =0 —x) =)

1

2 1][h
61 2][b ]
It can be seen that the sum of forces acting on the element is I°(b; + b;) /2, which is exactly the integral of

the body force over the element domain, i.e. the total force. As expected, for b; = by, half of the force goes
to node 1 and half to node 2.

dxb

5.3 APPLICATION TO HEAT CONDUCTION AND DIFFUSION PROBLEMS'

The expressions for heat conduction and other diffusion equations can be obtained by just replacing the
fields and parameters using the conversion table introduced in Chapter 3 (Table 3.2). The terminology of the
matrices in the discrete heat conduction and diffusion equations is summarized in Table 5.1. The element
matrices are given by

K= / BTAk¢ B¢ dx,

fe = / NTF dx + (NTAD) (522)
3 ¢ . 1"(1:"
fn f:_

with parameters defined by using the equivalences given in Table 3.2.

Example 5.1. Heat conduction

We will first use a heat conduction problem to illustrate how the finite element procedure is applied. This
example will illustrate the construction and solution of the finite element equations and discuss the
accuracy of finite element solutions. Most of the procedures and discussion in this example apply equally
to stress analysis.

Consider a bar with a uniformly distributed heat source of s = 5 W m~!. The bar has a uniform cross-
sectional area of A = 0.1 m? and thermal conductivity k = 2W °C~! m~!. The length of the bar is 4 m.
The boundary conditions are T(0) = 0°C and g(x = 4) = 5W m~2 as shown in Figure 5.3. Divide the
problem domain into two linear temperature two-node elements and solve it by the FEM.

Preprocessing

We start by numbering the nodes on I'y. The finite element mesh is shown in Figure 5.4.

'Recommended for Science and Engineering Track.
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T(x=0)=T=0°C gx=4Hn=g=5Wm™>

/ \

0 s=5Wm! x=

SESEEEEEEREEERERERERE

Figure 5.3 Problem definition of Example 5.1.

» X

X m

Element conductance matrix

The two-node element shape functions, their derivatives and the resulting conductance matrix (replace
E° by k° in (5.21))

K= / BTAKBS dx = 5 { ! *1}
le | -1 1
e
were derived in Section 5.2. Note that this resultis similar to the bar element, except that Young’s modulus
is replaced by conductivity.
For element 1, we have

=0, =2, =2 @ =02
go 02 1 -1 for oy
2 1-1 1 -0.1 0.1

@_[ 01 01
K _{—0.1 0.1]°

Conductance matrix

The (global) conductance matrix is obtained by the matrix assembly operation:
N
K= S LKL — LOTKOLWY 4 LOTKALO), (5.23)

e=1

We can use direct matrix assembly to obtain it, but to show that the two procedures are identical we will
first obtain the global conductance matrix by the above equation. We will assemble the entire con-
ductance matrix without taking into account the essential boundary conditions. This means that just as in
Chapter 2, we will obtain equations for which the right-hand side contains unknowns. However, by
assembling all of the equations, we will be able to evaluate the boundary flux matrix at the essential
boundaries.

Iy

\1 (1)

x=0 X5

2 3

2 x3=4

!

Figure 5.4 Finite element mesh of Example 5.1.
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The gather operators for the two elements are

_ _ o -~ N
o TV T 100 o
an = - = T, | =LUq,
T(I) T2 0 1 0
L2l L7
_ _ o -~ N
@)
4o — T _ T _ 01 0 | —Loa
7 T 00 1
e L

— LOTKOL,M = = | =
K LY KYL 0 1 _01 o1llo 1 o 0.1 0.1 0

= (1) Lo { 0.1 70.1H1 0 0] 01 010
0 00

00 0 0 0
KO LOTKOLO — |1 o {96]1 _8'}H8 (1) ﬂ: 0 01 -01
: : 0 —01  01]

The total stiffness is obtained by adding the scattered element stiffnesses given above

01 —0.1 0
+KY=]-01 02 -01]. (5.24)
0 —0.1 0.1

In practice, the above triple products are not performed, but rather a direct assembly, as previously
described in Chapter 2, is employed. The direct assembly for the process is shown below

S i I I SR i

a2 LBl

The resulting global conductance matrix is

01 -0.1 07 [1]

K=|-01 02 —0.1][]].
0 —0.1 01]3
a2 [

This matrix, obtained by direct assembly, is identical to (5.24)
Boundary flux matrix

The element boundary flux matrices are calculated by (5.11) where 7 has been replaced by
—g according to Table 3.2

o= —(NTA°.g)| = —NT(x3) x 0.1 x 5= —0.5NT(x3).

g

Note that the shape functions for element 1 (shown in Figure 5.5) vanish on I';. Only shape functions
that are nonzero on the natural boundary I'; will contribute to the nodal boundary flux. Therefore, in
computing the boundary flux matrix we need to consider only those elements that are on the natural
boundary.
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(

N

1 g
-7 : q =5atx;
: A =0.1 = constant
|
1 12 3
0T o—— >«
0o M (1) X, 2) x

Figure 5.5 Shape functions for element 1.

Using the above equation, the element boundary flux matrices for the two elements are

el 1] &
@
£ = 05 %2)23] = 415{?} = {_8.5] g

The scatter (or direct assembly process) then gives the global boundary flux matrix:
2

fr=> L7,

e=1

1ol 007 0 10
i U P [ B R

Note that this result is the same as assigning (—Ag) |1“(, to the node where the flux is prescribed and zero at
all other nodes. In this way, the boundary matrix can be computed directly.

Source flux matrix

The element source flux matrix is derived in Section 5.2 and is given as

rl2 1][s
e __ eT _ 1
I

e
X

where b in (5.11) has been replaced by s according to Table 3.2. Since s; = s, = s, the above reduces to

. sl

It can be seen that half of the heat goes to node 1 and half to node 2. This also follows from the fact that the
integral of linear shape functions over the element can be computed as an area of a triangle with height
equal to 1 and the base equal to the element length; this follows easily from Figures 5.5 and 5.6.

In the present example, [(!V) = [®) =2 and s = 5, which gives

1 2 5
f§2> :fgl) = {5}

The element source flux matrix is then assembled:

2 1 0 5
fo=> LTty = 10 1 M+
=1 0 0

0
1
0

— o O
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N](Z) N£2)

g =5atx;
A = 0.1 = constant

X1 (1 ) Xy (2) X3
Figure 5.6 Shape functions for element 2.

In practice, a direct assembly is used instead:

(1) 501
i = 3| s 10
= fo=1[54+5]|]2
f2 _ (3]0 5 |3
5]l
Partition and solution
The global system of equations is given by
0.1 -0.1 0 0 5 0 r rn+5
-01 02 —01||T»|=[10]+ 0 + 10| = 10
0 —-0.1 0.1 Ts 5 -0.5 0 4.5

Since node 1 is on the essential boundary, we partition after the first row, which gives
02 —01|(T»| |10 T,| |145
—-0.1 0.1 T:| |45 T [190 |

The temperature gradient is given as

Postprocessing

0
(1) 100
dgx :B(I)L(”d:%[ 11]{0 X 0] 145 | =72.5,
190
dr® 1 o1 07]°
o :B(Z)L(”d—i[fl 1]{0 0 1] 145 | =22.5.
190

103

Note that the temperature gradient is piecewise constant and, as will be seen in plotting it,a C~! function.

Evaluation of solution quality

The finite element solution will now be compared to the exact analytical solution. This type of
comparison can be done only for some simple problems (primarily in one dimension) for which the

exact solution is known.
We start from the strong form from Chapter 3:

i(Akd—T)+s:07 0<x<l,

dx dx
d dr d’r
a(0.2a>+570 = @7—25,

dr dr 5

T(O) =0, Q(4) = _kan|x:4 =5 = 3(4) =—=-25.
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Integrating the governing differential equation gives

d&’r dr dr
=-25=—=-25x+c; = —

w2 o oW ="25="25x4+c1 = =975

The expression for the temperature is obtained by integrating the temperature gradient, which gives

dT
o —25x 4975 = T = —12.5x> + 97.5x + c2,

T(0) = 0= —12.5(0)> +97.5(0) + ¢, =0 = ¢; = 0.

Thus, the exact temperature and temperature gradient are

X

dr
T = —12.5x* + 97.5x, i —25x+97.5.

Figure 5.7 compares the FEM solution with the exact solution. It can be seen that the nodal temperatures
for the FEM solution are exact. This is an unusual anomaly of finite element solutions in one dimension
and does not occur in multidimensional solutions. It is explained in Hughes (1987) p.25. Note that the
essential boundary condition is satisfied exactly. This is not surprising as the trial solution was
constructed so as to satisfy the essential boundary condition. In finite element solutions, essential
boundary conditions will always be satisfied exactly.

Figure 5.8 compares the derivative of the finite element solution with the exact derivative (the
derivative is proportional to the flux). As can be seen from Figure 5.8 and as mentioned before, the
derivative is a C~! function; the derivative of the temperature and hence the flux in the finite element
solution is discontinuous between elements. As pointed out in Figure 5.8, the natural boundary condition
at x = 4 is not satisfied by the finite element solution. However, we will see in other examples and in
exercises that the natural boundary condition is met more accurately as the mesh is refined. Thus,
although we do not have to construct the finite element approximations to satisfy the natural boundary
conditions, they are met approximately.

Itis also informative to see how well the heat conduction equation is met by the finite element solution.
Recall the heat conduction equation (3.12) and substitute the finite element solution for the temperature:

d2
Ak@ (N(x)d) + s(x) = err(x). (5.25)
=~ 12.5x%+ 97 5x
T..: \ —
175 /
150 //
125
P/
100 /7
75 //" \
50 /,/ o
251
X
%% 1 2 3 4
O (@] 0]

Figure 5.7 Comparison of the exact and finite element solutions of temperature.
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dar A
dx

100

75

50 T = 254975

dr”
dx

X
0 >

0 1 2 3 +

Figure 5.8 Comparison of the exact and finite element solutions of temperature gradient.

In the above, we have replaced the zero on the RHS of the heat conduction equation by ‘err’ as the
deviation from zero is indicative of the error in the finite element solution. The first term of Equation
(5.25) will vanish inside an element, as the shape functions are linear in x. Therefore, inside the elements,
the error in the heat conduction equation will be

err(x) = s(x) for x#x;.

This error actually appears to be quite large and furthermore would not decrease with refinement of the
mesh. The behavior at the nodes is more complicated and will not be considered here.

Thus, both the natural boundary condition and the balance equations are met approximately only by
the finite element solution. However, it can be shown that the finite element solution converges to the
exact solution as the mesh is refined, although this is not readily apparent from the weak form.
Convergence of the finite element solution to the exact solution is discussed in Section 5.6.

5.4 DEVELOPMENT OF DISCRETE EQUATIONS FOR ARBITRARY
BOUNDARY CONDITIONS

We will now consider the development of the finite element equations for the weak form with arbitrary
boundary conditions, Equation (3.49). For convenience, we write it again:
find u(x) € U such that

dw\ T du " _
— ) AE— dx— Thdx — (wTA7)| = . 2
/(dx) dxdx /wbdx (w t)r, 0 VYwel (5.26)
Q Q

Consider the finite element mesh shown in Figure 5.9. The elements can be of any size, and as we will see
later, smaller elements are usually used where they are needed for accuracy. The nodes on the essential
boundary are numbered first as we will use the partitioning method described in Chapter 2. The actual data
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@»H @ e Y
—— ° @ ) e o o ».
1 2

x=a x=b

Figure 5.9 Finite element mesh in one dimension.

need not be of that form, as the nodes can be renumbered in the program; most commercial software do not
use partitioning. But for the purpose of the following development, it is assumed that the essential boundary
nodes appear first in all matrices.

Having selected the finite element mesh and constructed smooth approximation functions over
individual element domains (5.8), we now express the integral over €2 in (5.26) as a sum of integrals
over element domains:

Nl dw® T du¢ -
3 / ) acEe Sl dx - / whde — (wTAh| S=0  vwe Uy, (5.27)
=1 (g a dr Qe o

where )¢ are the element domains; integration over )¢ is equivalent to integration over the interval
CEA

We will use the same global approximations for the weight functions and trial solutions, (5.2) and (5.3),
respectively. To deal with arbitrary boundary conditions, we will partition the global solution and weight

function matrices as
d:{aE}7 w:{ E}:{O}.
d]: WE WE

The part of the matrix denoted by the subscript ‘E’ contains the nodal values on the essential boundaries. As
indicated by the overbar on dg, these values of the solution are set to satisfy the essential boundary
conditions, so they can be considered as known. The submatrices denoted by the subscript ‘F’ contain all the
remaining nodal values: these entries are arbitrary for the weight function and unknown for the trial
solution. The resulting weight functions and trial solutions will therefore be admissible.

Substituting (5.8) into (5.27) gives

Ney "
> wt / BTECA“B¢ dx d° — / NThdx — (NTAT)| » =0  Vwg. (5.28)
e=1

e
Qe Qe !

Note that (5.28) is for arbitrary wg as wg is not arbitrary but instead must vanish.
Substituting (5.10) and (5.11) into (5.28) and using (5.6), w* = L¢w and d° = L°d, gives

w' (Z L"TK‘fL") d— (Z Lfof) =0  Vwg (5.29)
e=1 e=1

K f
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The above system can be written as

wir=0 VWE, (530)
wherer = Kd — f as in (5.16).

Partitioning r in Equation (5.30) congruent with w gives

[we wg" {;E} =Wirg +Wirg =0 Vwg. (5.31)
F

As wg = 0 and wg is arbitrary, it follows from the scalar product theorem that rrp = 0. Equation (5.16) can
then be written in the partitioned form as

r= g | _ Keg Kgr aE _ fe
0 Kir Kr || dr fr |’
where Kg, Kr and KgF are partitioned to be congruent with the partitions of d and f.
The above equation can be rewritten as

Ke Kege||de|  [fe+rE
PR 32

Using the two-step approach discussed in Section 5.1, we first solve for the unknown discrete solution dg by
using the second row in the above:

Krdr = fr — Kipde. (5.33)

Once dg is known, the unknown reactions can be computed from the first row of (5.32):

g = KE(_lE + KEFdF — fE- (534)

For purposes of postprocessing, the displacements and stresses are computed in each element using
Equation (5.8) and the stress—strain law:

u®(x) = N°(x)d°, o (x) = E°(x)B(x)d°.

The element nodal values are obtained by the gather operator L¢ using d* = L°d.

An important part of postprocessing is the visual depiction of these results. These are invaluable in
interpreting the results and assessing whether the model is appropriate and has been solved correctly. The
variety and richness of visualization in one-dimensional problems is limited, but we will see that
visualization in two dimensions is quite important.

Example 5.2. Tapered elastic bar

Consider a problem of an axially loaded elastic bar as shown in Figure 5.10. Dimensions are in meters.
Solve for the unknown displacement and stresses with a finite element (nel=3, nel=1) mesh consisting of
a single three-node element (n.,=3, n,;=1) as shown in Figure 5.11.
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E =8 Pa

A =2x

u(x=2)=0

P(x=5)=24N

—_— —  — e

b=8 N/m"! =6

Figure 5.10 Geometry, loads and boundary conditions of Example 5.2.

Recall that the element shape functions for the three-node quadratic element are

=) x-a@x-6) 1

(
(1) x—x )
N = - — g =4 —6),
! (x&1> —x(21>)(x(11) —xgl)) (=2)(—4) 8
1 1
VORI ot 0 (G 0 N Gt (o) N PPV
() =) =) @2 4
N = maeog)) e 1
P - we s
and the corresponding B-matrix is
(1) (1) (1)
O\ m_dN 1, m_dv’ 1
Bl - dx 74('x 5)7 BZ - dx 72(4 'x)’ B3 - dx 74('x 3)7
1
B = (=3 8-20) (x—3)]
Stiffness matrix
The element stiffness matrix is given by
X3 6 | (x - 5) |
KO K= / BUTAVEOB de = [ 2] (8= 20) [ (20)(8) 1 [(x—5) (8 = 20) (x—3)] dx
X 2 (x=13)

6 x(x—5)? x(x=5)(8—=2x) x(x—5)(x—23)
= / x(8—2x)(x—5)  x(8—2x)*  x(8—2x)(x—3)|dx.
2 | x(x=3)(x—5) x(x—3)(8—2x) x(x —3)?

1 2 3
I o o — > X
x{V=12 =4 P V=6

Figure 5.11 Finite element mesh of Example 5.2.
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It can be seen that the integrand is cubic (p = 3). So the number of quadrature points required for exact
integration is 2ng, — 1 > 3, i.e. ng, > 2, that is, two-point Gauss quadrature is adequate for exact
integration of the integrand. The Jacobian is

Writing x in terms of £ and transforming to the parent domain, we have

6 1
[ferae=2 [ fx(e)d 7| W flsle) + W Fix(&2))| =20f) +fl)) (539
2 —1

1 1

where

1
x = x(&1) = 4+ 24 :4+2(——3) = 2.8453,
1
x2:x(§2)24+2§2:4+2(—3 = 5.1547.

Using (5.35), K is given by
6
Ky = /x(x —5)%dx = 2(2.8453(2.8453 — 5)* 4 5.1547(5.1547 — 5)%) = 26.667.
2

The stiffness matrix is given by

26.67 =32 5.33 26.67 =32 5.33
K= 8533 5333 | =| —-32 8533 —53.33
sym 48 533 5333 48

Note that the stiffness matrix is symmetric and the sum of the terms in each row (or column) is equal to
zero. The latter follows from the fact that under rigid body motion (for instance, when the nodal
displacements are all equal to 1) the resulting nodal forces must be zero.

Body force matrix

The matrix of the nodal body forces is obtained by adding the contributions from the distributed loading b
(first term in (5.36)) and the point force P (second term in (5.36)).

X3

fo=f)) = / N dx + (NTP)|,—s . (5.36)
& contribution from the point force

The derivation details of the nodal body forces arising from point forces are given in Appendix AS. Note
that the second term in (5.36) consists of a product of the element shape functions evaluated at the point
where the point force is acting and the value of the point force (positive if it acts in the positive
x-direction). For instance, if the point force is acting in the middle of a linear element, the value of the
shape function in the middle is half, so half of the force flows to each node.
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In the present example, (5.36) gives

5 [0.125(x — 4)(x — 6) 0.125(x —4)(x — 6)
fo :/ [—O.ZS(X—Z)(X—@} x 8dx + [—0.25(x—2)(x—6)} x24.
5 [ 0.125(x —2)(x —4) 0.125(x = 2)(x — 4) | _s

Two-point Gauss quadrature is needed because the function is quadratic, so

6

/}uwuzzvun+ﬂn»

2

Thus,

2[MP 1) + NV ()] 3(5— 4)(5 - 6)
m—82MWm+mel+[46_m&f@

Z[Nél)(xl) +N§1)(x2)] 3(5-2)5-4)

2((2.8453 — 4)(2.8453 — 6) + (5.1547 — 4)(5.1547 — 6)) -3
— | —4((2.8453 — 2)(2.8453 — 6) + (5.1547 — 2)(5.1547—6)) | + | 18
2((2.8453 — 2)(2.8453 — 4) + (5.1547 — 2)(5.1547 — 4)) 9
——
533 -3 233 sum = 24
= 2133 + | 18| = [3933].

533 9 14.33

—_——— ———
8 4 24

Note that the boundary force matrix vanishes, except for the reaction at node 1. Thus the RHS of (5.32) is:
r+2.33]

f+r= 3933 |.

14.33

The resulting global system of equations is

2667 | 32 533 l[o] [r+233
185.33 —53.33(|u | = 3933 |,
'. 48 || 14.33

3

sym

where we have partitioned the equations after the first row and column. The reduced system of equations
are:

Krdr = fr — Kiodg .
0

Solving the above

8533 5333 ||ux| |39.33 o || = 2.1193
—53.33 48 us |~ 1433 us |~ 26534 |°
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V=

Figure 5.12 Comparison of the finite element (solid line) and exact stresses (dashed line) for Example 5.2.

Postprocessing

Once the nodal displacements have been calculated, the displacement field can be obtained by (5.3).
Writing this equation for the three-node element gives
0
u=Nu +NYuy + NVus,  d=dV = |2.1193
2.6534

u(x) = %(x — 4)(x— 6)(0) + _71 (x—2)(x — 6)(2.1193) + é (x — 2)(x — 4)(2.6534)

= —0.198 15x* + 2.248 55x — 3.7045.

The stress field is given by

du d
o(x) = Ea - Ea(N(l)d(l)) — EBWa®
0
= 8%[(x —5) (8—=2x) (x—3)]|2.1193 | = =3.17x+ 17.99.
2.6534

Estimation of solution quality

For brevity, only the quality of the stress will be assessed. As the problem is statically determinate, the
exact stress field can be calculated from the axial force p(x) by dividing it by the cross-sectional area

o = 1@ Figure 5.12 compares the FE solution of the stress field (shown with a solid line) with the

exact stress field (shown with a dashed line). Notice that the FE stress field does not capture the jump that
occurs at the location of the point force.

5.5 TWO-POINT BOUNDARY VALUE PROBLEM WITH GENERALIZED
BOUNDARY CONDITIONS?

We will now consider a two-point boundary value problem with generalized boundary conditions. We will
first consider the penalty method (Equation (3.62)), followed by the partition method (Equation (3.63)).

2Recommended for Advanced Track.
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In the penalty method, the essential boundary conditions are considered as a limiting case of the natural
boundary conditions; thus, the natural boundary extends over the entire boundary. The weak form is
repeated here for convenience:

find 6(x) € H' such that

d—wAnd—edx—/wfdx—wA@—ﬁ(e—(-j)) =0 VweH, (5.37)
J dx” Udx -
Q Q

where the fields and parameters are defined in Table 3.2.

In this approach, there are no essential boundary conditions, so all of the nodal values in d and w are free.
Integrating the weak (5.37) over element domains and substituting interpolants (5.8) into the weak form
yields

Mol .
> w / BTk AB dxd® + (NTA IN°)

e=1

=0 Vw.

d— / NTf dx — (NTA (@ + p0))
. I"z’
Qe Qe

Te

(5.38)

where I' is a portion of element boundary on external boundary. We define the finite element matrices:

Ke — / BeTIieAeBe dx + (NeTAe ﬁNe)

Qe

T

(5.39)

= / NTf dx + (NTA (@ + p))

Qe

Te

Substituting (5.39) into (5.38), using w* = Lw, d° = L°d and defining global matrices by (5.13) and
(5.14) gives the discrete weak form

wir=0 Vw, (5.40)
where r is the residual matrix defined in (5.16). Due to arbitrariness of w, it follows that
r=Kd-f=0 or Kd =f. (5.41)

In (5.41), no partitioning or node renumbering is required; the essential boundary conditions are easily
enforced by selecting f§ to be a large penalty parameter.

We now turn to the partition method, which was used in Section 5.1. The general weak form is stated (see
Box 3.6) as

find 6(x) € U such that

/ —An—dx - / wf dx — wA(® — B(x)(8(x) — 8(x)))| =0 Vw e Up. (5.42)

Ty
Q .
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The global matrices are partitioned as follows:

Ly vl

dp WE WE

The part of the matrix denoted by the subscript ‘E’ contains the nodal values on the essential boundaries. As
indicated by the overbar on dg, these values are known. The submatrices denoted by the subscript ‘F’
contain all remaining degrees of freedom: These entries are arbitrary, or free, for the weight function and

unknown for the trial solution.
Substituting (5.27) into the weak form given in (5.42) yields

el
Z weT / BETK,eAeBe dxd¢ + (NeTAe '[3Ne)

e=1

de—/Nedex—(N"'TA"' (@ + BA)) =0 VYwg

I re

Qe ® Qe
(5.43)

Note that (5.43) is similar to (5.38) except that boundary terms in (5.43) are defined over 'y and (5.43) is
arbitrary for wg rather than for w. The resulting element matrices are identical to (5.39) except that the
boundary term is over ['.

5.6 CONVERGENCE OF THE FEM

Inthe assessment of solution quality for various types of elements, a better measure of element performance
is needed than the residual for ‘eyeballing’ the difference between an exact solution and the finite element
solution. In this section, we describe some general methods for quantifying the error in a finite element
solution. For these purposes, an exact solution is needed, but as we will see in Chapter 8, such exact
solutions can usually be constructed by ‘manufacturing’ the solution.

The basic question addressed in this section is: How can the error in a finite element solution u" (x) be
quantified if we know the exact solution? Obviously, comparing the FE solution to the exact solution at a
single point may not be helpful; if the point is a node, the FE solution in one dimension always gives the
exact value, so there is no error. The answer to our question is provided by norms of functions. A norm of a
functionis ameasure of the ‘size’ of the function, justlike the length of a vector is ameasure of the size of the
vector. The length of a vector d, sometimes called the norm of the vector and denoted by || @ ||, is given by

1
ldll= (Zﬁ) ; (5.44)
i=1

where nis the number of components of the vector. This is the standard formula for the length of a vector; for
example intwo dimensions, n=2 and the xand y components of the vector are givenby a, = a; anda, = as.

Then (5.44) gives || a ||= y/a? + a2, which is the formula for the length of a vector in two dimensions.

The norm of a function is defined by

1
X 2
1£) = / P | (5.45)
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where [x1, x,] is the interval over which the function is defined. The above norm is called the Lebesque (L)
norm.

The similarity between the norm of a vector and the norm of a function can be seen if we normalize (5.44)
by dividing by the number of components, which gives

1

1< 2
@ |I= (an) : (5.46)

1
Now if you let a(x;) = a;, Ax = —, and let n — oo, then the above becomes
n

'y Lo z
12 ||= <;Za?) _ (Z&@@m) ~ /az(x)dx .

Thus, the norm of a function is like the length of an n-component vector, with n tending to infinity. Like
length it must be positive, and as the length of a vector measures its magnitude, the norm of a function
measures the magnitude of the function.

Using this definition of a norm, we can define the error in a finite element solution by

1

X2 2

lell=lu™(x) - u"(x)[I= /(ue"(X)—uh(X))zdx ; (5:47)

X1

where u®(x) is the exact solution and u”(x) is the finite element solution, so the pointwise error is
u®* (x) — u’(x). If we think of norms as measures of distance between two functions, then the above is a
measure of the distance between the exact and the FE displacement solution. The error at any point in the
interval contributes to this measure of error because the integrand is the square of the error at any point. The
above can be considered a root-mean-square measure of the error. Thus, the above provides a measure of
error that is not affected by a serendipitous absence of error at a few points.

In comparing errors of different solutions, it is preferable to normalize the error by the norm of the exact
solution. The normalized error is given by

2

ﬁww—wm%Q

%_mwwmmm_Q ) (5.48)
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X1

The normalized error can be interpreted quite easily: If the normalized error ez, is of the order of 0.02, then
the average error in the displacement is of the order of 2%.

Although the L; error in the displacement is quite useful, often we are more interested in the error in the
derivative of the function. For example, in stress analysis, error in the stress, which is proportional to errorin
the strain, is often of interest. In heat conduction, we are often interested in the heat flux. An error in strain
can be computed by the same formula as (5.47) with the function replaced by its derivative. However, a
more frequently used approach is to compute the error in energy. The error in energy is defined by

=

X

e =) = ) o= {5 [ B 0) = ()" ax ) (5.49)

X
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Comparing the above with Wy, in the principle of minimum potential energy, we can see that the above is
the square root of the energy of the error in the strain, hence the name error in energy. Furthermore, as the
strain is the derivative of the displacement field, it follows that the error in energy is similar to the error in the
derivative of the displacement field. Again, itis preferable in applications to examine the normalized error
in energy, which is given by

D=

X2
%/E(SEX(X)—Sh(X))de
= _ [ u* (x) = " (x) [len _ X1 5.50
en 4 (x) [[en o i (5.50)
: / E(e (1) dr
X

When the exact solution is known, the norm of the error in displacements and the energy error are
computed easily. The integrals are computed by subdividing the domain into elements, and then using
Gauss quadrature in each element. Higher order Gauss quadrature formulas are usually needed
because the exact solution is generally not a polynomial, so the efficiencies of Gauss quadrature
for polynomials are lost.

In the next example, we will examine the errors as measured by these norms for two elements. For this
purpose, we will need exact solutions. In one dimension, exactsolutions can easily be obtained for the stress
analysis and heat conduction equations. As a matter of fact, finite elements are usually not needed in one-
dimensional problems, because the equations can be integrated by software such as MATLAB or MAPLE.
So we have described finite elements in one dimension only because it is the simplest setting in which to
learn the method. In multidimensions, obtaining exact solutions is more difficult, and we will learn how to
manufacture solutions in Chapter 7.

5.6.1 Convergence by Numerical Experiments

We consider a bar of length 2/, cross-sectional area A and Young’s modulus E. The bar is fixed at x = 0,
subjected to linear body force cx and applied traction 7 = —cI? /A at x = 21 as shown in Figure 5.13.
The strong form is given as

d
o AE—M)—FC)C:O,
u(0) =0,
3 Edu cl?
—E—n -
dx x=21 A
7 b(x) = cx
P
=i
) |

Figure 5.13 A bar under compression.
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Figure 5.14 L, norm of error for linear (left) and quadratic (right) finite element meshes.

The exact solution for the above problem can be obtained in the closed form and is given as

The above problem is solved using the FEM. We study the rate of convergence of the FEM with linear and
quadratic finite element meshes. The material parameters considered are E = 10* Nm™2, A = 1 m?,
c=INm ?and/=1m.

Figure 5.14 shows the log of the error norm as a function of the log of element size /. As can be seen from
these results, the log of the error varies linearly with element size and the slope depends on the order of the
element and whether the error is in the function or its derivative. If we denote the slope by ¢, then the error in
the function (the L, norm) can be expressed as

log(|e]l,) = C +a log &, (5.51)

where C is an arbitrary constant, the y-intercept of the curve. The slope « is the rate of convergence of the
element. Taking the power of both sides gives

llellz,= Ch*. (5.52)

For linear two-node elements, o. = 2, whereas for quadratic elements, o = 3. Itis said that the error for
the two-node element is quadratic, whereas the error in the three-node element is of third order. The
constant C depends on the problem and the mesh, and it is not of much importance. The crucial concept tobe
learned from this equation is how the error decreases with element size. It can be seen from (5.52) that if the
element size is halved, the error in the function decreases by a factor of 4 for linear elements. The formula
given above has been generalized in the mathematics literature. The essence of this generalization is thatifa
finite element contains the compete polynomial of order p, then the error in the L, norm of the displacement
varies according to

llell,= ChPT. (5.53)
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Figure 5.15 Energy norm of error for linear (left) and quadratic (right) finite element meshes.

You can see from the above that this formula agrees with our results for errors for the linear and quadratic
elements (p = 1 for linear elements, p = 2 for quadratic elements) considered in the above example. It
can similarly be seen from Figure 5.15 that the slope of the convergence plot for derivatives, i.e. the
error in energy, is one order lower. So the error in energy for an element that is complete up to order p is given
by

llellen= Ch?. (5.54)

Thus, the accuracy in the derivative is one order less than the accuracy in the function.

The implications of these results are many. The most important is that if the element size is halved, the
error in the derivative (error in energy) decreases by factors of 2 and 4 for linear and quadratic elements,
respectively. Thisis one of the important lessons in this chapter; quadratic elements give you more accuracy
for the buck. In fact, in linear analysis, quadratic elements are almost always preferred. Their advantages in
accuracy are overwhelming and come at little cost.

The conditioning of the linear system equations deteriorates for higher order Lagrange elements. The
best tradeoff between accuracy and complexity for Lagrange interpolants seems to be offered by quadratic
elements. This rate of convergence of higher order elements is superior provided that the solution is
sufficiently smooth, i.e., p +1 derivatives of the exact solution should be finite. If the solution is not smooth,
such as for instance u=x'"? (see also Problem 3.8) the estimate in Eq. (5.53) is no longer valid. Gui and
Babuska (1986) showed that

leflen< CHP, (5.55)

where

ﬂ:min(p,i—%), A>1/2, p>1. (5.56)

Forthe bounds (5.55) and (5.56) to be valid, three requirements must be met: (i) the exact solution has to live
in H' (integrability), so the smoothness parameter 4 > 1/2 in Equation (5.56); (ii) the finite element
solution has to be at least C° continuous (continuity) with square integrable derivatives; and (iii) the trial
solution has to be complete up to order p with p > 1 (completeness).
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The fact that finite element solutions are only approximate is very important to bear in mind in their
application. Itis crucial that the user of a finite element program has some way for assessing the quality of
the solution. One way this can be done is by refining the mesh and seeing how much the solution changes
with refinement; if there are large changes, then the original mesh is inadequate and the new mesh may also
be inadequate, so that further refinement may be necessary. Finite element software today often includes
error indicators that provide estimates of the FE solution error. These error indicators make estimates of the
error in the finite element solution on an element-by-element basis. Such error indicators are very useful for
gauging the accuracy of the solution.

5.6.2 Convergence by Analysis*

‘We now turn to formal discussion of convergence. The approximate character of the finite element solution
stems from the replacement of the space of all functions in U and U by finite-dimensional subspaces
U" c Uand U{)’ C Uy, which are defined as

U" = {0"(x)|0"(x) = N(x)d,N € H', 6 =0 on Ty},

h h h 1 (5.57)

Uy = {w'(x)|w"(x) =Nx)w,Ne H', w=0 onTy}.
The above means that U" and U} are sets of functions interpolated with C° shape functions and satisfy the
essential boundary condition on I'y or vanish at the essential boundary, respectively.

There are an infinite number of functions in U and Uy, i.e. these spaces are of infinite dimension. When
we represent the weight functions by shape functions, then the space of weight functions Ul becomes finite
dimensional (equal to the number of nodes excluding those on essential boundary). Similarly, the space U”"
in which we seek our finite element solution becomes finite dimensional. Although the weak form is exactly
equivalent to the strong form for the infinite-dimensional spaces U and U, it is only approximately
equivalent for the finite-dimensional spaces U’ h c Uand U(’} C Uy, which are used in the FEM. Therefore,
the equations that emanate from the weak form, the balance equation, and the natural boundary conditions
are only satisfied approximately. In this section, we will distinguish between the weak forms defined for the
exact and finite element solutions. For the elasticity problem, these equations are given as follows. Find
u(x) € U and u"(x) € U" such that

(a) c%}Ak% dx = (wA?)|p, +/wbdx Yw € Uy,
Q Q
a (5.58)
(b) oy Ak e = (WA, +/whbdx ww' € Uk

Q Q

To analyze how close is " (x) to u(x), we start by showing that " (x) minimizes the energy norm of error
e llen=llu — " [|cn, i.e.

=" J|en= {l{lgll],, [ =t en - (5.59)

To prove (5.59), we expand the right-hand side as

2

= o= (= ") + (" — )
—_—— N———

e h h llen
w' e U

*Recommended for Advanced Track.
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Note that as u" and u* satisfy essential boundary conditions, it follows that (1" — u*) = w" € U and thus

dw" _de
et w! Byl e 1B+ 1w [y + [ SoAES dx
Q

Subtracting the two weak forms in (5.58) and choosing w = w" € U(’} in (5.58a) yields

/—Ak—dx 0.

As || W ||en> O for any w" = 0, we get that || € ||,,, is minimum. From (5.59) we can obtain a quantitative
estimate for the energy norm of error || € ||, by estimating || u — i ||cn, where &z € U" is a suitably chosen
auxiliary function defined in the same subspace as the finite element solution. We denote the error of
auxiliary function in element i as& = u — @ifor (i — 1)k < x < ih, where h = [/n is the length of n equal-
size elements.

Letus choose the auxiliary function i € U”" tobe alinear interpolation function such that it is equal to the
exact solution at the finite element nodes, i.e. it(x;) = u(x;) as shown in Figure 5.16. Note that for
one-dimensional problems the interpolation function coincides with the finite element solution (see
Example 5.1). dii

The derivative of the interpolation function e in element 7 is given by

du ﬁ(XJ+]) — ﬁ(XJ)
() = LA,
Xj+1 — X
where x; = (i — 1)h and x;,1; = ih. By mean value theorem (see Appendix A3), there is a point ¢ in the
interval x; < ¢ < xy4; such that
du  du

=20 (5.60)

d
We now expand the derivative of the exact solution —u(x) using Taylor’s formula with remainder (see
Appendix A3) around point ¢ satisfying (5.60):
du du d’u
—(x) =— —c)==(0), (5.61)

where ¢ < ¢ < x.

element i
Xy Xy+1
® ® @ —> x

Figure 5.16 Interpolation function approximation of the exact solution.
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Subtracting (5.60) from (5.61) and assuming that

du
— < q, h
o (()‘ < o, we have

de
dx

du du

dx dx

< olx — x| < ah, (i—1)h<x<ih (5.62)

The energy norm of error in the interpolation function can be bounded as

ih X
||é||2—1/AE de zdx—li / ae( %€ 2dx<1nh1<(ha)2 (5.63)
) dx 24 dx =2 ’ '
T (i—Dh

Q

where A(x)E(x) < K. Denoting nh = [ and recalling that the energy norm of the finite element solution
error is less than or equal to the energy norm of the interpolation function error, we have

/1
|| & Heng EKIO@I’IZ = Ch. (564)

The error estimate for higher order elements can be obtained in a similar fashion as for the linear element
except that a higher order Taylor’s formula with remainder has to be used instead (see Problem 5.5 for error
estimation in quadratic elements). It can be shown that the energy norm of error for finite elements of order p
p+1

Tl <

p <o In

is bounded by (5.54), provided that p+1 derivative of the exact solution is bounded,

(5.54), Cis independent of / see Strang and Fix (1981).

5.7 FEM FOR ADVECTION-DIFFUSION EQUATION*

To obtain the discrete equations for the diffusion—advection problem, we use the same procedure as before:
We express the weight function and trial solution in terms of shape functions, substitute these into the weak
form and use the arbitrariness of the weight functions to deduce the equation.

The weak form developed in Section 3.8.2 is used with the usual finite element approximations for the
weight functions and trial solutions, (5.2) and (5.3), respectively. The nodal variables are partitioned into
the essential and free nodes, and the nodal values of the trial solution and weight function are given by

d 0

dr WE
where dg are set to satisfy the essential boundary conditions. Therefore, the weight functions and trial
solutions are admissible.

We subdivide the domain €2 into elements €2¢. Substituting (5.2) and (5.3) into (3.74) and following the
procedure given in Section 5.1 yields

Mol . .
> (w)! / AVNTBC drd’ + / AkBTBY dxd’ | — / NTsdx — (A°N“Tg)| 5 =0.
e=1 . Te

Qe Qe Qe q

K} K; fe

(5.65)

“Recommended for Advanced Track.
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The element matrices as indicated by the underscored terms are
(a) K§ = / Ak*B°TB¢ dx,
Qe

(b) K = / AVNTB dx.

Qe

(5.66)

The matrix Kf, accounts for the diffusion and is identical to the matrix we have developed in Section 5.3,
which is given in (5.22). The matrix K¢ accounts for the advection (convection). The product of the area
and velocity must be constant according to (3.65).

The element matrices are

K* =K + K5,

The element force matrix f° is identical to that for the heat conduction equation or diffusion equation,
Equation (5.22), as indicated by the underscored term in (5.65).

The element matrices are assembled by scatter and add procedures described previously and the
resulting linear algebraic equations will be solved as in Equations (5.32)—(5.34).

Ascanbe seen from (5.66b), the advection matrix is not symmetric. To provide a concrete example of the
lack of symmetry, we evaluate the advection matrix for a two-node linear element with constant area A and
velocity v¢ using (5.66b):

1
Ki\:vw/ {I;SHH 1)1d¢
0
1
-(1-9 1,5}
— € A€ d
VAO/{ e ¢ %
11
_ _epe _E E _VeAe -1 1
VAT *T{q 1}'
22

The system matrix, which is obtained by assembling the above advection matrices and diffusivity matrices,
will also not be symmetric. This is a major difference from the previous finite element models that we have
studied.

The system matrix in general is not positive definite. This can be seen by considering the case when
k= 0. Letting zT = [1, 0] and evaluating zZ'K4z yields zTK4z = —(v¢A¢/2) < 0. It will be seen in
Example 5.3 that the loss of symmetry and positive definiteness leads to some exceptional difficulties in
solving these systems.

Example 5.3. Advection—diffusion problem

Solve the one-dimensional advection—diffusion equation

g  d*0

k= .67
v e 0, (5.67)

with boundary conditions
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Figure 5.17 Exact and FEM solutions of Equation (5.67) for P, = 0.1 (left) and P, = 3 (right).

TheareaA® = A = 1.0. Uselinear f finite elements and a 20-element mesh with uniformly spaced nodes.

l@
Let v = 2 and k = 5 so that the Peclet number P, = ;—k = 0.1. Repeat for P, = 3.0.

The element matrices for all elements are the same. The element matrices are given by

K* = Kj, + K =

VA [ -1 +1 +kAe 1 -1 _kKA°| 1-P, —1+4P,
2 | -1 +1 le 1 1| e |-1-P, 1+P, |

Substituting in the values for k, A° and [°, we obtain the following:

e for nodes [ with 1<7I<21, the system equation is assembled to be
(=1 = P)d;_ +2d; + (=1 + P,)dyy 1 = 0;

e fornode 1:d; + (—1 +P,)d, = 0;

e fornode 21: (—1 — P,)day + 2dy; = 0.

The solutions for P, = 0.1 and P, = 3.0 are compared to the exact solution in Figure 5.17. It can be seen
that the FE solution is quite good for P, = 0.1.

However, the solution oscillates wildly for P, = 3.0. Thisis called a spatial instability. For high values
of the Peclet number, i.e. when advection dominates, special techniques must be developed to obtain
accurate solutions of the advection—diffusion equation. One of these techniques is described in Chapter §;
textbook accounts may be found in Donea and Huerta (2003). These techniques are very important in
computational fluid dynamics because many of the equations found there are of this form.
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Problems

Problem 5.1

Consider a heat conduction problem in the domain [0, 20] m. The bar has a unit cross section, constant
thermal conductivity k = 5W°C ' m~' and a uniform heat source s = 100 W m~'. The boundary
conditions are T(x = 0) = 0°C and g(x = 20) = 0 W m™2. Solve the problem with two equal linear
elements. Plot the finite element solution 7" (x) and d7" (x) /dx and compare to the exact solution which is
given by T'(x) = —10x? 4 400x.

Problem 5.2

Repeat Problem 5.1 with 4-, 8- and 16-element uniform meshes (equal-size elements) using MATLAB
program. Compare the finite element solutions to the exact solution. Plot the error in the natural boundary
condition as the mesh is refined. What is the pattern?

Problem 5.3

Consider a heat conduction problem shown in Figure 5.18. The dimensions are in meters. The bar has a
constant unit cross section, constant thermal conductivity k = 5 W °C~! m~! and a linear heat source s as
shown in Figure 5.18.

50
s="=(x+2
=3 (x+2)
Figure 5.18 Heat conduction of Problem 5.3.

The boundary conditions are T(x = 1) = 100°Cand T(x = 4) = 0°C.
Divide the bar into two elements (n,; = 2) as shown in Figure 5.19.

(1) (2
—& S @ ®—> X
x=1 x=2 x=3 x=4

Figure 5.19 Finite element mesh for Problem 5.3.

Note that element 1 is a three-node (quadratic) element (n.,,=3), whereas element 2 is a two-node (n.,=2)
element.

a. State the strong form representing the heat flow and solve it analytically. Find the temperature and flux
distributions.

b. Construct the element source matrices and assemble them to obtain the global source matrix. Note that
the boundary flux matrix is zero.

c. Construct the element conductance matrices and assemble them to obtain the global conductance
matrix.

d. Find the temperature distribution using the FEM. Sketch the analytical (exact) and the finite element
temperature distributions.

e. Find the flux distribution using the FEM. Sketch the exact and the finite element flux distributions.
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Problem 5.4

Given a one-dimensional elasticity problem as shown in Figure 5.20. The bar is constrained at both ends
(A and C). Its cross-sectional area is constant (A = 0.1m?) on segment AB and varies linearly
A = 0.5(x — 1)m? on BC. The Young’s modulus is £ = 2 x 107 Pa. A distributed load » = 10N m~! is
applied along the left portion of the bar AB and a point force P = 150 N acts at point B. The geometry,
material properties, loads and boundary conditions are given in Figure 5.20a.Use a three-node element on
AB (n.,=3) and atwo-node element on BC (n,,,=2) as shown in Figure 20b. The dimensions in Figure 5.20
are in meters.

a. Construct the element body force matrices and assemble them to obtain the global force matrix.
b. Construct the element stiffness matrices and assemble them to obtain the global stiffness matrix.
c. Find and sketch the finite element displacements.
d. Find and sketch the finite element stresses.
b=10 Nm-! E =2x10 Pa
P=150N
—_— > > > > X
@ 7% B C
xp=1 xg=3 xc=35
®) A D B C
® @ @ ®
1 3 4 2
(D (@)

Figure 5.20 (a) Geometry, material properties, loads and boundary conditions for a bar with a variable cross-sectional
area (b) the finite element model.

Problem 5.5

Consider an axial tension problem given in Figure 5.21. The bar has a linearly varying cross-sectional area
A = (x+ 1)m? in the region 0m < x < 1 m and a constant cross-sectional area A = 0.2 m? in the region
Im < x <2m. The Young’s modulus is E =5 x 107 Pa. The bar is subjected to the point load
P = —200N at x = 0.75 m and a quadratically varying distributed loading b = x* N m™" in the region
I m < x < 2m. The bar is constrained at x = 0 m and is traction free atx = 2 m.

u(x = 0)=0 P (x=3/4)=-200 b(x) = x*

R R, ok=2=0
e R
BN KRR

x=0 x=1 x=2

Figure 5.21 Data for Problem 5.5.
Use a single quadratic element (n.,=3, n,/=1) with a center node at x = 1.

1. Construct the element stiffness matrix and force matrix and carry out Gauss quadrature of the element
stiffness matrix using one-point integration and the body force matrix using two-point Gauss
quadrature.

2. Solve the system of linear equations and find the nodal displacements and element stresses.
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3. Find the exact stress distribution and compare it to the finite element solution.
4. Suggest how to improve the finite element model to get more accurate results.

Problem 5.6

Consider a weak form given in (5.26). Prove that for sufficiently smooth functions (having p + 1 bounded
derivatives) the error in energy norm of the finite solution of order p = 2 is bounded by || e || < «/N>.
Follow the steps below to prove the bound.

a. Ineach element, expand the exact temperature using Taylor’s formula with remainder up to quadratic
order. Show that there is a point ¢ within the element domain such that

dZT T(Xg) — 2T(X2) + T(X])

2 (= (1/2) ==t

) )

where [ = x3 — x1,x —x1 = /2.
b. On each element domain, assume a quadratic interpolation function 7 to be exact at three points:

T(x) =T(x1), T(xz) = T(x2), T(x3) = T(x3), and construct a quadratic approximation.
c. Using Taylor’s formula with remainder up to quadratic order, expand — around point ¢ found in (a).
d. Write the derivative of the interpolation function constructed in (b) as *

dT
E:a—kbx,

where a and b are expressed in terms of the exact nodal temperatures.
e. Show that there is a constant ¢ in the interval 0 < ¢ < [ for which the coefficients of the exact and
interpolation temperatures up to linear order are identical.

Problem 5.7

Modify the MATLAB finite element code for heat conduction problem in one dimension.

a. Rename the variables to eliminate confusion.
b. Use your code to solve Problem 5.1.
c. Compare the results of MATLAB program to your manual calculations in Problem 5.1.

Problem 5.8
Develop the finite element equations for heat conduction with surface convection. The strong form in this

case is given by
&’T

where k, A, h, ff and T, are constants. § = 27r is the perimeter of the fin.

Problem 5.9
Modify the MATLAB finite element code to solve the heat conduction problem with surface convection
(see Problem 5.8). Consider also convection boundary conditions

—q=h(T—-Tx) on x=0 or x=1
Using the MATLAB finite element code, solve the problem with the following parameters:

k=400Wm'°C!, I=0.1m, h=3000Wm2°C!, r = 107> m (radius, of pin),
Ty = 20°C.
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Boundary conditions: 7(0) = 80°C; —g=h(T —Tyx) on x=1
Find the temperature and flux with uniform finite element meshes consisting of two, four and eight
elements.

Problem 5.10

Inthe FEM formulated in this chapter, the weight functions and trial solutions were approximated using the
same set of shape functions. This is known as the Galerkin FEM. In the alternative approximation method,
known as the subdomain collocation method, the weight functions are chosen to be unity over a portion of
the domain (for instance element domain) and zero elsewhere:

W (x) = 1 on xe€QFf,
10 on x¢Q°.

a. Derive the weak form for the subdomain collocation method.
Derive the discrete equations.

c. Solve the Problem 5.1 and compare the results to the Galerkin FEM and the exact solution. Is the
stiffness matrix symmetric?

d. How accurate is the subdomain collocation method compared to the Galerkin FEM? Why?

Problem 5.11

Repeat Problem 5.10, but instead of the subdomain collocation method, consider the point collocation
method. In the point collocation method, the weight function is chosen to be the Dirac delta function
w(x) = 6(x — x;). x; are referred to as collocation points selected by the analyst. When considering
Problem 5.1, place the collocation points at the finite element nodes.

Problem 5.12

Given an elastic bar of length / = 4 m with constant cross-sectional area A = 0.1 m? and a piecewise
constant Young’s modulus as shown in Figure 5.22. The bar is constrainted at x = 4 m, and a prescribed
traction 7 = 500N m~2 acts at x = 0 m in the positive x-direction. Consider a finite element mesh
consisting of a single two-node element (ne; = 1, ne, = 2).

Construct the stiffness matrix using an exact integration.

Construct the force matrix.

Find the displacements and strains using the FEM.

Model the problem with two spring elements; solve for the unknown displacements using the

techniques you learned in Chapter 2.

Compare the results of ¢ and d. Which one is better?

f. Ifyoumodel the bar with two linear elements (ne; = 2, ne, = 2) or with one quadratic element (ne; = 1,
Ten = 3), which one will give a more accurate solution of strains.

g. What is an optimal finite element mesh for this problem? An optimal mesh is defined as the one that

gives the best one-dimensional solution (for displacements and stresses) with minimum finite element

nodes.

&~ 0 o

@

E=10°N/m’ E,= 10°N/m’

5T oL X
S e

x=0 x=1/2 x=1

Figure 5.22 A bar with a piecewise constant Young’s modulus.
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Figure 5.23 Data for Problem 5.13.

h. Interm of design of finite element meshes, what kind of a recommendation can you make based on the
results of this problem?

Problem 5.13

Consider a three-node quadratic element in one dimension with unequally spaced nodes (Figure 5.23).

a. Obtain the B¢ matrix.

b. Consideranelementwithx; = 0,x, = 1/4andx; = 1. Evaluate strain ¢ in terms of u and u3 (u; = 0),
and check what happens when £ approaches 0.

c. If you evaluate K by one-point quadrature using BTE°ADB¢ for same coordinates as in (b) and
constrain node 1 (i.e. u; = 0), is K¢ invertible?

d. If u(x) in part (b) is given by (1/2)x? at the nodes, does & = x?

Problem 5.14

Consider a tapered rod (Figure 5.24) with the cross-sectional area given by
X
A© =A(1 =+ Az, where €=

a. Obtain the element stiffness for a linear displacement element, with Young’s modulus = E, by using
K’ = [ B“'DBd.
Qe
b. Obtain the stiffness matrix K¢ using the displacement field

u= (&) =u + (u — )€

Specialize the result for A| = A,; does this answer make sense? What is the stress when you apply a force F'
at one end?

Figure 5.24 Tapered bar for Problem 5.14.
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Problem 5.15
Consider a bar with constant cross-sectional area A and Young’s modulus E discretized with two finite
elements as shown in Figure 5.25. The bar is subjected to linear body force b(x) = cx.

a. Compute the element stiffness and force matrices;

b. Show that " LTK,L, and Y LT give the same stiffness matrix and external force matrix as direct
assembly; ¢ ¢

Obtain the finite element solution and plot u(x) and &(x);

d. Compare to the closed form solution.

o

2

N W

1
A\ (
J \

S
/
(1) @)
L «— L —>»
0

Figure 5.25 Two-element bar structure for Problem 5.15.

X =

Problem 5.16
2

Consider an element shown in Figure 5.26 with a quadratic displacement field u(x) = a; + ax + a3x*.

a. Express the displacement field in terms of the nodal displacements u; , u5, u3. (Hint: Use the Lagrangian
interpolants and the local coordinate &.)

b. For a linear body force field b(€) = b1(1/2)(1 — &) + b3(1/2)(1 + &) show that the external force
matrix is given by £¢ = (AL/6)[—b; 2(b, + b3) bs]".

d
Develop the B¢ matrix such that ¢ = a_ Bed, dT = (w1, Uz, u3).

c.
d. Show that the element stiffness matrix K, = [ BTECAB¢d), is given by
7 -8 1 e
AE
K, = 3L -8 16 -8
1 -8 7 &~
e. Useone three-node quadratic displacement element to solve by finite elements Eﬁ = —b(x) = —cx,

u(—=L/2) =u(L/2) = 0.
f.  Compare the FEM results to the exact solution for u(x), o(x).

1\ v /‘
< / \
x=

}4— L2 —>|<—L/2 —

Figure 5.26 A single quadratic element for Problem 5.15.
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Figure 5.27 Two two-node element mesh of Problem 5.17.

N7

Problem 5.17

Consider the mesh shown in Figure 5.27. The model consists of two linear displacement constant strain
elements. The cross-sectional area is A=1, Young’s modulus is E; both are constant. A body force
b(x) = cxis applied.

a. Solve and plot u(x) and &(x) for the FEM solution.
b. Compare (by plotting) the finite element solution against the exact solution for the equation

d*u

— = —b(x) = —cx.

e (x)

c. Solve the above problem using a single quadratic displacement element.

d. Compare the accuracy of stress and displacement at the right end with that of two linear displacement
elements.

e. Check whether the equilibrium equation and traction boundary condition are satisfied for the two
meshes.






Strong and Weak Forms for
Multidimensional Scalar Field
Problems

In the next three chapters, we will retrace the same path that we have just traversed for one-dimensional
problems for multidimensional problems. We will again follow the roadmap in Figure 3.1, starting with the
development of the strong form and weak form in this chapter. However, we will now consider a more
narrow class of problems; we have called these scalar problems because the unknowns are scalars like
temperature or a potential. The methods that will be developed in these chapters apply to problems such as
steady-state heat conduction, ideal fluid flow, electric fields and diffusion—advection. In order to provide a
physical setting for these developments, we will focus on heat conduction in two dimensions, but details
will be given for some of the other applications.

As can be seen from the roadmap in Figure 3.1, the first step in developing a finite element method is to
derive the governing equations and boundary conditions, which are the strong form. We will see thatin two
dimensions, just as before, we will have essential and natural boundary conditions. Using a formula similar
to integration by parts, we will then develop a weak form. Finally, we will show that the weak form implies
the strong form, so that we can use finite element approximations for trial solutions to obtain approximate
solutions to the strong form by solving the weak form.

One aspect that we will stress in the extension to two dimensions is its similarity to the one-dimensional
formulation. The major equations in two dimensions are almost identical in structure to those in one
dimension, so most of the learning effort can be devoted to learning what these expressions mean in two
dimensions. The expressions for the strong and weak forms in two dimensions, by the way, are identical to
those forthree dimensions, and atthe end of the chapter we will give a shortdescription of how they are applied
to three dimensions. In engineering practice today, most analyses are done in three dimensions, so it is
worthwhile to acquaint yourself with the theory in three dimensions. The extension from two to three
dimensionsisalmosttrivial (we have usually avoided the word ‘trivial” in this book because itis often misused
in texts, for what often seems trivial to an author can be quite baffling, but the extension from 2D to 3D is
indeed trivial).

One complication in extending the methods to two dimensions lies in notation. In two dimensions,
variables such as heat flux and displacement are vectors. You have undoubtedly encountered vectors in
elementary physics. Vectors are physical quantities that have magnitude and direction, and they can be
expressed in terms of components and base vectors. We will denote vectors by superposed arrows, such as g,
which is the flux matrix. Let the unit vectors in the x and y directions be  and J; these are often called the base

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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vectors of the coordinate system. Then a vector ¢ can be expressed in terms of its components by

where g, and g, are the x and y components of the vector, respectively.

When we get to the derivation of finite element equations, it becomes convenient to use matrix notation.
A column matrix can be used to describe a vector ¢ by listing the components of the vector in the order as
shown below:

q= {ZJ (6.2)

Though it is not crucial to deeply understand the difference between vectors and matrices at this point, a
vector differs from a matrix: a vector embodies the direction for a physical quantity, whereas a matrix is
just an array of numbers. We will give most of the formulas of the strong and weak forms in both vector
and matrix notations. In the finite element equations, we will use only matrix notation. You will see that
the derivation of weak and strong forms in matrix notation is a little awkward and differs from the forms
commonly seen in advanced calculus and physics. So if you know vector notation as taught in those
courses, you may find it preferable to use vector notation for the material in this chapter. The transition
to matrix notation is quite easy. On the contrary, some people prefer to learn both parts in matrix notation
for the sake of consistency.

An important operation in vector methods is the scalar product. The scalar product of two vectors in
cartesian coordinates is the sum of the products of the components of the vectors; the scalar product of §
with a vector 7 is given by

Zj' 7= qxTx +qyr}"

The scalar product is commutative, so the order of the two vectors does not matter. If we consider two
matrices q and r that contain the components of g and 7, respectively, then the scalar product is written as

p
qTr = [ q,v] |:rj:| = qxTx + GyTy.

So writing the scalar product in terms of the matrices requires taking the transpose of the first matrix. It can
easily be shown that q'r = r”q. When manipulating vector expressions in matrix form, it is important to
carefully handle the transpose operation.

Another important operation in vector methods is the gradient. The gradient provides a measure of the
slope of a field, so it is the two-dimensional counterpart of a derivative. The gradient vector operator is
defined by

The gradient of the function 6(x, y) is obtained by applying the gradient operator to the function, which
gives

Notice that we have simply replaced the bold dot in () by 0(x, y). The gradient of a function gives the
direction of steepest descent. In other words, if you think of the function as describing a ski slope, the
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gradient gives you the direction along which you would go the fastest. This is further illustrated in
Example 6.1.

The scalar product of the gradient operator with a vector field gives the divergence of the vector field. The
term divergence probably originated in fluid mechanics, where it refers to the flow leaving a point. We will
see later that the divergence of the heat flux is equal to the heat flowing from a point (the negative of the
source in a steady-state situation). The divergence of a vector g is obtained by taking a scalar product of the
gradient operator V and ¢, which gives

= -0 -0 - - Oqx Ogqy .
Veg=|iz=—+j= )" (qui J) = — =divq.
q (’axﬂay) (@i +aj) =5+ B q
Notice that the divergence of a vector field is a scalar. As indicated in the last expression, the divergence
operator is often written by simply preceding the vector by the abbreviation ‘div’.
The above expressions can be written in the matrix form as follows. The gradient operator is defined as a
column matrix. So

9 »
ox ox
V= 2 and Vo = @
Oy Oy

The matrix form of the divergence is written by replacing the dot in the scalar product by a transpose
operation, so

divg = A-§=V'q.
Itisimportant to notice that when we write the gradient operator in vector notation, an arrow is placed on the
inverted del; in matrix notation, the arrow is omitted.
In the following, the students should use whichever notation is more natural. For those not very familiar

with either notation, they should first scan the material and see which one they can understand more readily.
For advanced students, a familiarity with both notations is recommended.

6.1 DIVERGENCE THEOREM AND GREEN’S FORMULA

The two-dimensional equations will be developed for a body of arbitrary shape. We will often refer to the
points inside the body as the domain of the problem we are treating. We will follow common practice and
draw this generic arbitrary body as shown in Figure 6.1(b); the idea of this figure is intended to convey that
we are not placing any restrictions on the shape of the body: The derivations that follow hold for arbitrary
shapes. This body is often called a potato, though heat conduction in potatoes is seldom of interest. It is
worth pointing out that the shape can actually be much more complicated: The body can have holes, it can

n= -1 Q=101 n=1x

«— e,
O\F/l

>

(a) (b)

Figure 6.1 (a) One-dimensional domain and (b) two-dimensional domain.
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have corners and it can consist of different materials with interfaces between them. The boundary of the
domain is denoted by I'. Notice that our nomenclature is identical to that in the previous chapters, but now
the symbols refer to more complicated objects. The correspondence between the definitions in one and two
dimensions is readily apparent by comparing Figure 6.1(a) and Figure 6.1(b).

The unit normal vector to the domain, denoted by 7, is shown at a typical point in Figure 6.1(b) and is
given by

i = nyi + nyj, (6.3)

and n, and n, are the x and y components of the unit normal vector, respectively; this vectoris also called the
normal vector or just the normal. As 7 is a unit vector, it follows that ni + nf =1

The objective of this section is to develop the formula corresponding to the integration by parts formula
(3.16) for a scalar field 6(x, y), where 6(x, y) is defined on the domain Q. Examples of the scalar fields are
temperature fields 7'(x,y) and potential fields ¢(x, y).

Prior to discussing the divergence theorem, itis instructive to recall the fundamental theorem of calculus
that we developed in Chapter 3: for any C° integrable function in a one-dimensional domain, €2, with

boundaries I', we have
do(x)
dx

dx = (On)|p. (6.4)

Recall that the boundary consists of the two end points of the domain and the unit normals point in the
negative x-direction at x = 0 and positive x-direction at x = .
The generalization of this statement to multidimensions is given by Green'’s theorem, which states:

If 6(x,y) € C° and integrable, then

/%eda = f@ﬁdr or /V@dﬂ - ]fandr. (6.5)
Q T T

Q

Note the similarity of (6.4) and (6.5); the operator d/dx is simply replaced by the gradient V.In fact, d/dx
can be considered the one-dimensional counterpart of the gradient. So the one-dimensional form (6.4) is
justaspecial case of (6.5). Equation (6.5) also applies in three dimensions. The proof of Green’s theorem is
given in Appendix A4.

Using the above, we will now develop a theorem that relates the area integral of the divergence of a vector
field to the contour integral of a vector field, which is called the divergence theorem. It states that if  is C°
and integrable, then

/%-quzzfq-ﬁdr or /VquQ:qundr, (6.6)
Q T Q

T

Note that (6.5) in two dimensions represents two scalar equations

) )
(a) / .40 = / On.dl,  (b) / % o = / On, dT". (6.7)
Q T Q T
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Letting 0 = g, in (6.7a) and 6 = ¢, in (6.7b), and adding them together yields

aqx aqv i o -
[ (33 funrune < feun-fone
r Q 7

(6.8)
which is the divergence theorem given in (6.6)

Green’s formula, which is derived next, is the counterpart of integration by parts in one dimension. It
states that

/wﬁ-zde:fwz] iidl /VW GgdQ or /vaqu:]{qundr—/(vw)quQ.
Q I I

Q Q

To develop Green’s formula, we first evaluate v- (wgq) by the derivative of a product rule

—

a 9 9 ow 8x ow oq,

V) = 5 00 + g, (v) = g g o by
o (0 O (O W N S i . (6.9)
_w<0x+ay)+<8qu+ayqy)—WV Gg+Vw-q.

V-G Vw-§
Notice that we can immediately write the last step of the above if we think of the gradient as a generalized
derivative and place dots between any two vectors

Integrating (6.9) over the domain yields

/%.(wq)dfz:/w%.qdfw/W@dQ.
Q Q Q

(6.10)

Applying the divergence theorem to the LHS of (6.10) and then rearranging terms yields Green’s
formula:

/wﬁ-c}dQ:%ij-ﬁde/ﬁwﬁdQ.
Q

(6.11)
T Q

It is interesting to observe that for a rectangular domain / X 1 with one-dimensional heat flow, where
4 = q.iand ii = ni, n(0) = —i, n(l) = i, we have

/ %qx dQ = quwn dr — /a—wq,( dq.
Q Q

(6.12)
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Choosing w to be only a function of x, i.e. w(x), and integrating (6.12) in y the above reduces to the formula
for integration by parts in one dimension (3.16), which is repeated below:

O/I (qow), - 0/1 8—W (6.13)

Note the similarity of (6.11) and (6.13). For additional reading on Green’s theorem, Green’s formula and
the divergence theorem, we recommend Fung (1994) for an introductory approach and Malvern (1969) for
a more advanced treatment.

Example 6.1

Given arectangular domain as shown in Figure 6.2. Consider a scalar function § = x% 4+ 2y?. Letgbe the
gradient of 6 defined as ¢ = V6. Contour lines are lines along which a function is constant.

(a) Find the normal to the contour line of # passing through the point x =y = 0.5.
(b) Verify the divergence theorem for g.

The gradient vector ¢ is given as

i=2r P50y
it =2
q= 0% ayj yJ
Figure 6.3 depicts the contour lines of # and the gradient vector 4. It can be seen that g is normal to the
contour lines and its magnitude represents the slope of 6 at any point.
The gradientof fatx =y = 0.51s

3(0.5,0.5) =7 +72j.

Atthe pointx = y = 0.5, the value of the scalar field §is (0.5, 0.5) = 0.75. The unit normal vector to the
contour line x> 4 2y? — 0.75 = 0 at the point x = y = 0.5 is obtained by dividing the vector g by its
magnitude, which gives

1 - =
7(0.5,0.5) = — (i + 2)).
( ) \/5( )
y
0 0
A A=
D 1 C
0 0
L Lo
Dy _Y 2N e
-1 J 1 X
A -1 B
Z(l):_JE

Figure 6.2 Domain used for illustration of divergence theorem.
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Figure 6.3 Contour lines of a function = x> 4 2y? and its gradient.
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We now verify the divergence theorem. The unit normal vectors at the four boundaries of the domain
ABCD are shown in Figure 6.2. To verity the divergence theorem (6.6), we first evaluate the integrand on

the LHS of (6.6):

04 n dqy,

v'q:(?x Jdy

Integrating the above over the problem domain gives

foon (fos

Q -1 -1

Evaluating the boundary integral counterclockwise gives

fq-ﬁdr: / (—4y) dT +/2x dr + [ 4y dr + / (—2x) dT"

r AB dx BC dy D —dx

-1

Thus, we have verified the divergence theorem for this example.

C
1 1 1

/ +/2dy+/4dx+/2dx:24.
-1 -1 —1

DA

_dy



138 STRONG AND WEAK FORMS FOR MULTIDIMENSIONAL SCALAR FIELD PROBLEMS

A BN -
l (2,0)
7
Figure 6.4 Triangular problem domain used for illustration of divergence theorem.

Example 6.2

Given a vector field g, = 3x%y +3°, ¢, = 3x + ) on the domain shown in Figure 6.4, verify the
divergence theorem.
The integrand on the LHS of (6.6) is given as

- 0qy  0qy
V'§:i+i:

6 3y2.
Ox Oy oy

Integrating the above yields
- 21 p1-0.5x 2
/ V.-3dQ = / [/ (6xy + 3y2)dy} dx = / [3x(1 —0.5%)* + (1 —0.5x)°| dx = 1.5.
o LJo 0
Q

The counterclockwise computed boundary integral on AB is

2
/zj-ﬁ(”dr: /qx(—l)dl“:/—3xdx:—6,
0

AB AB

where #1) = —j, dI" = dxand y = 0 on AB.

For the counterclockwise computed boundary integral on BC, note that equation of the line BC is given
byy =1 —0.5xand @® = /5/5(i + 2j),dI" = —v/5/2dx on BC. The boundary integral on BC is then
given by

0
- ird =2 5 s e 1

/q~n(2)dF:/(qxt—Q—qy])?(l—l-Z])dF:/—5[(3x2+y3)+2(3x+y3)]dx:7.75,

BC AB

Finally, the counterclockwise boundary integral on CA is

0
/é“fi@ dr = / (g + q4/)(—1) dF:/y3 dy = —0.25,
1

BC AB

where #®) = —i, dI" = —dy and x = 0 on CA.
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Adding the contributions of the three segments gives

fq.ﬁdr: /q.ﬁdr+/¢7~ﬁdr+/q‘-ﬁdr:—6+7.75—o.25:1.5,
AB BC CA

which completes the demonstration that the divergence theorem holds for this case.

6.2 STRONG FORM'

To derive the strong form we will apply energy balance to a control volume. The strong form will be
completed by adding the Fourier law, which relates heat flux to the temperature gradient and the boundary
conditions. Finally, the weak form will be formulated by integrating the product of the governing equation
and the natural boundary condition with the weight function over the domains where they hold. A
symmetric form is obtained by applying Green’s formula (equivalent to the integration by parts in one
dimension). We consider only steady-state problems where the temperature is not a function of time.

Consider a plate of unit thickness shown in Figure 6.5(a); the plate contains a heat source s(x, y) (energy
per unit area and time). The control volume is shown in Figure 6.5(b). The balance of heat energy in the
control volume requires that the heat flux g flowing out through the boundaries of the control volume equals
the heat generated s. This is the same energy balance we used in Chapter 3: as the body is in steady state, the
heat energy in any control volume must stay constant, which means that the flow out has to equal the heat
energy generated by the source.

The flux vector ¢ can be expressed in terms of two components: the component tangential to the
boundary ¢, and the component normal to the boundary g,,. The tangential component g, does not contribute
to the heat entering or exiting the control volume. Recall that

G=qi+ qyf, =g+ nyf, n)zc + ni =1.
The normal component g, is given by the scalar product of the heat flux with the normal to the body:
Gn =G =q'n=qmn, +qn,. (6.14)

On AD, where i = —i, the heat inflow is —gn=—4 - (—7) = g, whereas on BC, where 7 = 7, the heat
inflow is —¢q, = —G - i = —qx.

= Ay
Ay q 4 q,(x,y + =)
i D c 2
Sy Ay | oGy
Ay X ) A ,
X q,.(x — 7,)‘) Ax q(x + 7,))
A * (x,y = ﬁ)
> qy >y P

(@) (b)

Figure 6.5 Problem definition: (a) domain of a plate with a control volume shaded and (b) heat fluxes in and out of the
control volume.

'Recommended for Science and Engineering Track.
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InFigure 6.5(b), only the normal components of the flux are shown, as these are the only ones that contribute
to the energy flow into the control volume. The energy balance in the control volume is given by

Ax Ax
X T 5 Ay — X ’ A
q (x ) )’) Y —q (x+ ) y) y
A A
+q, (x,y — %)Ax —qy (x,y + Ty) Ax + s(x,y)AxAy = 0.

where the first four terms are the net heat inflow. Divide the above by AxAy and recall the definition of a

partial derivative:
ot Ax Ax
X N b - X 'x - A b
q TRLl >y o

AI;TO Ax Ox
(2+3) -9 (2-3)

T G A A Y

Ay—0 Ay dy

The above energy balance equation (after a change of sign) can then be written as

Oqx | 9qy
— —s5=0,
Ox + dy ’
or in the vector and matrix forms:
(a) ﬁ-ijfs:o or divg—s=0 or (b) Vig—s=0. (6.15)

If we recall the definition of the divergence operator, we can see that this equation can be obtained just by
reasoning: the first term is the divergence of the flux, i.e. the heat flowing out from the point. The heat
flowing out from the point V - § must equal the heat generated s to maintain a constant amount of heat
energy, i.e. temperature, at a point, which gives equation (6.15).

Recall Fourier’s law in one dimension:

dT
= —k— = —kVT.
q P \Y

In two dimensions, we have two flux components and two temperature gradient components. For isotropic
materials in two dimensions, Fourier’s law is given by

G=—kVT or q = —kVT, (6.16)
where k > 0. As in one dimension, the minus sign in (6.16) reflects the fact that heat flows in the
direction opposite to the gradient, i.e. from high temperature to low temperature. If the conductivity & is

constant, the energy balance equation expressed in terms of temperature is obtained by substituting (6.16)
into (6.15):

kV*T +5 =0, (6.17)

where

(6.18)
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Equation (6.17) is called the Poisson equation and V? is called the Laplacian operator.
The flux and the temperature gradient vectors are related by a generalized Fourier’s law:

aT
G| ke kg | Ox
4] kye k|| OT |’
— 5 Loy
D y
or in the matrix form:
q=-DVT, (6.19)

where D is the conductivity matrix. We write this equation only in the matrix form because the vector form
cannot be written without second-order tensors, which are not covered here.
Substituting the generalized Fourier law (6.19) into the energy balance equation (6.15) yields

VI (DVT) +s=0. (6.20)

The matrix D must be positive definite as heat must flow in the direction of decreasing temperature.
For isotropic materials,

kK 0
D= {0 k} = kL (6.21)
In two dimensions, the symmetry of the material is an important factor in the form of the Fourier law. A
material is said to have isotropic symmetry if the properties are the same in any coordinate system. For
example, most metals, concrete and a silicon crystal are isotropic. The form of the relation between heat
flux and temperature gradient in an isotropic material is independent of how the coordinate system is
placed. In anisotropic materials, D depends on the coordinate system. Examples of anisotropic materials
are radial tires, fiber composites and rolled aluminum alloys. For example, in a radial tire, heat flows much
more rapidly along the direction of the steel wires than in the other directions.

To solve the partial differential equation (6.20), boundary conditions must be prescribed. In multi-
dimensions, the same complementarity conditions that we learned in one dimension hold. At any point of
the boundary (see Figure 6.6), either the temperature or the normal flux must be prescribed, but they both
cannot be prescribed. Therefore, if we denote the boundary where the temperature is prescribed by I'y and
the boundary where the flux is prescribed by Iy, then we have

r,uly =T, I',n'r=0. (6.22)
y
A 4, =G.ii=gon I,
=T, UL,
T=TonTy

> X

Figure 6.6 Problem domain and boundary conditions.
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We write the prescribed temperature boundary condition as
T(x,y) =T(x,y) on T, (6.23)

where T(x,y) is the prescribed temperature; these are the essential boundary conditions; these are also
called Dirichlet conditions. As indicated, the prescribed temperature along the boundary can be a function
of the spatial coordinates.

On a prescribed flux boundary, only the normal flux be prescribed. We can write the prescribed flux
condition as

gn=¢qg-i=q on T (6.24)

These are also called Neumann conditions. For an isotropic material, the normal flux is proportional to the
gradient of the temperature in the normal direction, i.e. it follows from (6.19) and (6.21) that
gn = —knTVT. It can be seen that the flux depends on the derivatives of the temperature, so this is the
natural boundary condition.

The resulting strong form for the heat conduction problem in two dimensions is given in the vector form
forisotropic materials in Box 6.1 and in the matrix form for general anisotropic materials in Box 6.2. These
forms differ from what we used in one dimension in that the energy balance and Fourier’s law are not
combined. This simplifies the development of the weak form and extends the applicability of the weak form
to nonlinear heat conduction.

Box 6.1. Strong form (vector notation) for heat conduction

(a) energy balance : V. g—s= on €,
(b) Fourier’s law : qg= —kVT on Q, (6.25)
(c) natural BC : gn=q¢-i=gq on T
(d) essential BC : T=T on I'7.

Box 6.2. Strong form (matrix notation) for heat conduction

(a) energy balance: V'q—s=0 on,

(b) Fourier's law: q=-DVT  on (Q, (6.26)
(c) natural BC : gn=q'm=g onT, .
(d) essential BC : T=T on 'z,

The variables s, D, T and g are the data for the problem. These, along with the geometry of the domain €2,
must be given.

6.3 WEAK FORM

To obtain the weak form we will follow the same basic procedure as for the one-dimensional problem in
Chapter 3. However, as we have already mentioned, we will develop the weak form of the balance equation
(6.15a). Then we will express the heat flux in terms of the temperature gradient by the Fourier law.

We start with the energy balance equation (6.15a) and the natural boundary condition (6.25c). We
premultiply the two equations by a weight function w and integrate over the problem domain €2 and the
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natural boundary I, respectively:

@ [wV-G—s)d2=0Yw, (b w(@—g-i)dl =0  Vw. (6.27)
/ /

For the equivalence of the strong and weak forms, itis crucial that the weak form hold for all functions w. As
in one dimension, we will find that some restrictions must be imposed on the weight function, but we will
develop these as we need them. Applying Green’s formula to the first term in (6.27a) yields

/Wﬁzjdg = %wcj-ﬁ’dr— /ﬁw.q’dﬂ Yw. (6.28)
Q r Q2

Inserting (6.28) into (6.27a) yields

/Wﬁd@:qu.ﬁdr—/wsdﬂz/wz,.ﬁdr+ /wz,.ﬁdr—/wsdsz. (6.29)
Q T

Q r, Iy Q

where we have subdivided the first integral on the RHS of (6.29) into the prescribed temperature and
prescribed flux boundaries, which is permissible because of (6.22). Substituting (6.27b) into the integral on

T, (6.29) yields
/%w-zde: /wZ]dF+/wc?~r‘idF—/wsdQ.
Q Q

Ty Iy

We now follow the same reasoning as in Chapter 3. Itis easy to construct weight functions that vanish on a
portion of the boundary, so we set w = 0 on the prescribed temperature boundary, i.e. the essential
boundary. Therefore the integral on I'y vanishes and the weak form is given by

/ﬁwﬁdg = / wgdl — /wsdQ Yw € Uy, (6.30)
Q r, Q

where U is the set of sufficiently smooth functions that vanish on the essential boundary, it is the space of
functions defined in (3.48). The space of admissible trial solutions U satisfies the essential boundary
conditions and is sufficiently smooth as defined in (3.47). Recall that according to the definition of these
spaces, the trial solutions and weight functions have to be C° continuous.

Expressing (6.30) in matrix form gives

/(Vw)quQ = /wZ]de/wsdQ Yw € Up.
O I, 0

The above is the weak form for any material, linear or nonlinear. To obtain the weak form for linear
materials, we substitute Fourier’s law into the first term of the above, which yields

Box 6.3. Weak form (matrix notation) for heat conduction

find T € U such that:

/(VW)TDVTdQ =— / wg dI’ +/wsdQ Yw € Up. (6.31)
Q I, Q
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6.4 THE EQUIVALENCE BETWEEN WEAK AND STRONG FORMS?

To demonstrate the equivalence of the strong form and the weak form, it must be shown that the weak form
implies the strong form. This demonstration is similar to the one used in Chapter 3 for showing the
equivalence for one-dimensional problems: we reverse the steps that we have followed in going from the
strong form to the weak form and then invoke the arbitrariness of the weight functions to extract the strong
form from the integral equations. We will do this for the weak form for arbitrary materials.

We start with (6.30), rewritten below:

/ﬁwﬁdQ: /wZ]de/wsdQ.
Q Q

r,

Now we apply Green’s formula (6.11) to the first term, which gives

/w(%-c’j—s)dQJr/w(q—?jﬁ)dl“—/ij-ﬁdF:O Yw € Up. (6.32)
{ T, ILT
We follow the same strategy as in Chapter 3. Since the weight function w(x) is arbitrary, it can be assumed to
be any function that vanishes on I'7.

‘We take advantage of the arbitrariness of the weight function and make it equal to the integrand thatis, we
let

0 on I‘}

w=¢x)(V-G—s),  where 1/)(x):{>0 A (6.33)

Inserting (6.33) into (6.32) yields

/w(@ G —5)*dQ =0. (6.34)
Q

The boundary terms have vanished because our choice of w(x), (6.33), vanishes on the boundaries. Since
1(x) > 0in £, the integrand in (6.34) is positive at every point in the domain. For the integral in (6.34) to
vanish, the integrand has to vanish as well. Hence, since ¢(x) > 0,

V-Gg—s=0 in Q (6.35)

which is the energy balance equation (6.15). After substituting (6.35) into (6.32) we select a weight
function that is nonzero on the natural boundary, but vanishes on the essential boundary (it does not
matter what its value is inside the domain, as by (6.35) we know that the first term in (6.32) will vanish).
So we let

o o o _ 0 on Iy
w=(q—q-i), where ¢ = { >0 on T, } . (6.36)
Substituting (6.36) into (6.32) yields
/ (G —g-A)*dr = 0. (6.37)

Ly

2Recommended for Advanced Track.
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Figure 6.7 Problem domain and boundary conditions in three dimensions.

Astheintegrandin (6.37)is positive onI'y, the quantity inside the parentheses must vanish on every point of
the natural boundary, so the natural boundary condition (6.25c) follows.

6.5 GENERALIZATION TO THREE-DIMENSIONAL PROBLEMS®

The extension from two to three dimensions is almost trivial. The difference is not in the structure of the
strong and weak form equations, which are identical, but in the definitions of the vectors, gradient,
divergence and Laplacian operators.

In three dimensions, the base (unit) vectors are , j and k as shown in Figure 6.7. A vector g expressed in
terms of its components is

qx
G=qxi+ 4yl + q:k, qQ= 14| (6'38)
q:

where the matrix form is shown on the right-hand side. In three dimensions, the problem domain €2 is a
volume (which looks like the potato in Figure 6.7) and its boundary I is a surface. The progression of
dimensionality of the problem domain and its boundary from one-dimensional to three-dimensional
problems is summarized in Table 6.1.

The boundary I', which is the surface encompassing the three-dimensional domain €2, consists of the
complementary essential and natural boundaries, as shown in Figure 6.7.

Table 6.1 Dimensionality of the problem domain and its boundary.

Entity Domain €2 Boundary I'
One dimension (1D) Line segment Two end points
Two dimensions (2D) Two-dimensional area Curve

Three dimensions (3D) Volume Surface

3Recommended for Advanced Track.
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The gradient operator in three dimensions in vector and matrix notations is defined as

I R R R A R,

0 a0
ox ox
0 a0
0 a0
oz 0z

With the above definitions of vectors and the gradient vector operator, the divergence of the vector field and
the Laplacian are

dq. gy  Oq.
div g = 2> S | T

ox Oy 07’
oL 82 62 82
V=V.V=VV=—"t+ -+ _—
2 o oz

The strong form in vector and matrix notations is identical to that given in Equations (6.25) and (6.26). Note
that the Fourier law relating the three components of temperature gradient to the three flux components is
defined in terms of a 3 x 3 symmetric positive definite matrix D:

kxx kxy k)cz
D= |ky ky ke
kzx kz_v ke

The weak form is also identical to that for two-dimensional problems as given in (6.31).

6.6 STRONG AND WEAK FORMS OF SCALAR STEADY-STATE
ADVECTION-DIFFUSION IN TWO DIMENSIONS*

The advection-diffusion equations are obtained from a conservation principle (often called a balance
principle), just like heat conduction. The conservation principle states that the species (be it a material,
an energy or a state) are conserved in each control volume of area Ax x Ay and unit thickness shown in
Figure 6.8. The amount of species entering minus the amount of species leaving equals the amount
produced (a negative volume when the species decays). There are two mechanisms for inflow and outflow,
advection (or convection), which is given by V6, and diffusion, which is given by 4.

A A
n0(x,y + Ty)T qy(x,y + 7}’)

A X
v 0(x — Tx,)’) O(x,y) | wbx+ %,y)

— > | Ay °® —bA
_ Ax g+ 25y)
qx(x 2 ,Y) Ax X 2
Ay Ay
1O(x.y = =) Tq,(x,y -5

Figure 6.8 Control volume for advection—diffusion problem.

#Recommended for Advanced Track.
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Inaddition, advection on each surface results in aninflow of —V - 7. The conservation principle can then
be developed as in section 6.2:

vxé(xf%,y)Ayﬂlx(xf%,y)ﬁy+vy9(x,yf%)ﬁxﬂ]y(x,y*%)m

,vxé(x+%,y)Ayqu<x+%,y)Ayfvyﬁ(x,y+%)Aquy(x,y+%>Ax

+ AxAys(x,y) = 0.

Dividing the above by AxAy and taking the limit Ax — 0, Ay — 0, we obtain

o)  On0)  O(gx) gy
ox dy T T Oy $=0

The above can be written in the vector form as

— —

V(W) +V-G—s=0. (6.39)

This is the general form of the advection—diffusion equation. The first term accounts for the advection or
transport of the material and the second term accounts for the diffusion.

In many cases, the material carrying the species is incompressible. For steady-state problems and
incompressible materials, the rate of material volume entering control volume is equal to the rate of
material volume exiting control volume. Mathematically, this is given by

vx(xf%,y)quLvy(x,yf%)Avax<x+%,y)Ayfvy(x,y+%>Ax:O.

Dividing the above by AxAy and taking the limit Ax — 0, Ay — 0 gives

J(vx) + a(vy) —0.
ox dy
The above in matrix and vector notations is
V-5=0 or Vlv=0. (6.40)

Equation (6.40) is known as the continuity equation for steady-state problems of incompressible
materials.

Substituting the continuity equation (6.40) into (6.39) yields the conservation equation for a species in a
moving incompressible fluid, which can be written as

¥-VO+V-G—s=0 or vV'VO+V'q—s=0. (6.41)

Assuming that the generalized Fourier’s law (6.19) holds, the conservation of species equation in the matrix
form becomes

vVl — VI (DVH) — s = 0. (6.42)
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For isotropic materials D = kI and the conservation equation reduces to

VVO—kVH—5=0 or vV'VO—kV*—s5=0, (6.43)

where V? is the Laplacian defined in (6.18). We consider the usual essential and natural boundary
conditions

(6.44)

where I'y and I, are complementary.
To obtain the weak form of (6.43) we multiply the conservation equation (6.41) and the natural
boundary condition by an arbitrary weight function w and integrate over the corresponding domains:

(a) /W(vﬁwﬁqﬂ)m:o, (b) /w(qf(jvﬁ)dl“:o on Vw.  (6.45)

Q T,

Integration by parts of the second term (the diffusion term) in (6.45a) gives

/wV-%OdSlf/ﬁw-Z]’dQJr/wZ]de/wsdQ(a) Yw € U, (6.46)
Q

Iy

where we have exploited (6.45b) and that w = 0 on I'y.
Finally, the weak form is completed by substituting the generalized Fourier law into (6.46), which gives

find the trial solution 6(x,y) € U such that

/ wvIVedQ + / (Vw)"DVOdQ + / wgdl — / wsdQ  Yw e Up. (6.47)
Q I, S

The above is the weak form for the advection—diffusion equation. Note that the first term is unsymmetric in
the weight function w and the solution 6. This will result in unsymmetric discrete system equations and has
important ramifications on the nature of the solutions, because as in 1D, the solutions can be unstable if the
velocity is large enough.
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Problems

Problem 6.1

Given a vector field g, = —y?, g, = —2xy on the domain shown in Figure 6.2. Verify the divergence
theorem.

Problem 6.2

Givenavectorfieldg, = 3x%y + y?, qy =3x+ y? onthe domain shownin Figure 6.9. Verify the divergence
theorem. The curved boundary of the domain is a parabola.
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n

Figure 6.9 Parabolic domain of Problem 6.2 used for illustration of divergence theorem.

Problem 6.3

Using the divergence theorem prove

ndl’ = 0.

SN

Problem 6.4

Starting with the strong form

dg

dx s =0, q(0) =g, I(l) = T,

develop a weak form. Note that the flux g is related to the temperature through Fourier’s law, but develop the
weak form first in terms of the flux.

Problem 6.5
Consider the governing equation for the heat conduction problem in two dimensions with surface
convection:

VI(DVT) + s = 2h(T — T,) on Q,

dn=q'm=gonT,,

T=TonTIy.

Derive the weak form.

Problem 6.6
Derive the strong form for a plate with a variable thickness #(x, y). Hint: Consider control volume in Figure
6.5(b), and account for the variable thickness. For example the heat inflow at (x — Ax/2,y) is

_H Avt _&
gx| X 27}’ yI|x 2>y-

Derive the weak form for the plate with variable thickness.
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y
A qn:qonrq

r=r,U L,UT,

\T:Tonl"T

> X

q,=hT -Ts) on T,

Figure 6.10 Problem domain and boundary conditions for heat conduction with boundary convection.

Problem 6.7
Consider a heat conduction problem in 2D with boundary convection (Figure 6.10).
Construct the weak form for heat conduction in 2D with boundary convection.

Problem 6.8

Consider a time-dependent heat transfer. The energy balance in a control volume (see Figure 6.5) is given
by

Ax A A
qx(x77,y>Ayqu(x+7x,y>Ay+qy<x,y77y)Ax

A T
— 4y (x7 y+ Ty) Ax + s(x,y)AxAy = cp 27 AxAy

where T'(x, y, f), c and p denote the temperature, material specific heat and density, respectively, and ¢ is the
time. The above equation states that the change in internal energy is not zero, but is rather governed by
density, specific heat and rate of change of temperature.

Derive the weak and strong forms for the time-dependent heat transfer problem.
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Approximations of Trial

Solutions, Weight Functions
and Gauss Quadrature for
Multidimensional Problems

In this chapter, we describe the construction of the weight functions and trial solutions for two-dimensional
applications; we will sometimes collectively call these approximations or just functions. In finite element
methods, these approximations are constructed from shape functions. As in Chapter 4, where weight
functions and trial solutions were constructed for one-dimensional problems, the basic idea is to construct
CY interpolants that are complete. Following the nomenclature introduced in Chapter 4, we will denote the
approximation by 0(x, y). It represents any scalar function such as temperature or material concentration.

We have already noted that the situation in multidimensions is altogether different from that in one-
dimensional problems, as the exact solution of the partial differential equations in multidimensions is
feasible for problems only on simple domains with simple boundary conditions. Thus, numerical solution
of the partial differential equations is generally the only possibility for practical problems. The approach of
finite element methods remains the same: approximate the weight functions and trial solutions by finite
element shape functions so that as the number of elements is increased, the quality of the solution is
improved. In the limitas 7 — 0 (h being the element size) or as the polynomial order is increased, the finite
element solution should converge to the exact solution if the approximations are sufficiently smooth and
complete.

Itis in two-dimensional problems that the power of the finite element method becomes clearly apparent.
We will see that the finite element method provides a method for easily constructing approximations to
solutions for bodies of arbitrary shape. Furthermore, as will become apparent when we examine the
MATLAB programs, finite element methods possess a modularity that enables simple programs to treat a
large class of problems. Thus, the finite element program developed in Chapter 12 can treat any two-
dimensional heat conduction problem, regardless of the shape or the variation of the conductivity.
Furthermore, the two-dimensional programs are almost identical in architecture to the one-dimensional
program, yet the generality of the finite element method enables even these simple MATLAB programs to
handle almost any geometry.

We saw in Chapter 4 that the trial solutions have to be constructed so that the polynomial expansion for
each element is complete and the global approximation is C° continuous or, in other words, compatible. In
multiple dimensions, the requirements remain the same, but the construction of trial solutions and weight

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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c B

A

Figure 7.1 Triangular domain.

functions presents several challenges as the construction of continuous fields for arbitrary meshes of
quadrilaterals and triangles becomes more complicated; in particular, the construction of shape functions
for quadrilaterals requires a new concept to be introduced: the isoparametric element. We will see that in
addition to their usefulness in quadrilaterals, isoparametric elements enable curved boundaries to be
treated with remarkable precision, so that engineering problems can be solved effectively.

7.1 COMPLETENESS AND CONTINUITY

We first consider the issue of completeness. To explain this concept, consider the simple problem domain
shownin Figure 7.1. The domain is subdivided (meshed) into triangular elements, which is one of the finite
elements to be considered in this chapter, as shown in Figure 7.2. The trial solution is then constructed on
each element.

Consider the following possible polynomial expansions:

3

(a) 6°(x,y) = of +a5x + 05y,

(6) 6°(ry) = o + o5+ 57, o
(€) 0°(x,y) = off +os5x + asy + oy + asa® + ogx’y, '
(d) 6°(x,y) = of + o5x + o5y + o4’y + o5y + gy’

Which of the four is a useful polynomial expansion for trial solutions? The answer can be determined by
examining Pascal’s triangle, which is shown in Figure 7.3. Each row of the triangle gives the monomials
that must be included in a finite element approximation to provide an element with the order of complete-
ness indicated to the right. If any of the terms in a row are missing, then the element will not be complete to
that degree and will not have the convergence rate associated with that row of the expansion. For example,
(7.1a)is linear complete, and its convergence rate will be of second order, i.e. quadratic. On the other hand,
(7.1b) will not converge, as it is missing the linear term in y (recall that a complete linear expansion is the
minimum requirement discussed in Chapter4). Similarly, (7.1d) is not quadratically complete and will only

h
ey N

Figure 7.2 Finite element meshes of different refinements for the triangular domain shown in Figure 7.1.
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1 constant
X y linear
2 2 .
X Xy y quadratic
2 2 .
'S X'y Xy y3 cubic

Figure 7.3 Pascal triangle in 2D.

have the convergence rate associated with a linear polynomial (quadratic in the displacements), even
though it has monomials that are of higher order than linear.

Complete polynomial expansions can be obtained from the Pascal triangle by appending unknown
coefficients to all monomials up to a given row. Complete polynomial expansions of linear, quadratic and
cubic orders are given below:

linear: 6°(x,y) = o + ofx + a3y,
quadratic:  6°(x,y) = o + oSx + by + o5x? + agxy + oy,

cubic:  6°(x,y) = o + afx + a5y + aSx” + ahxy + by + ofx® + aSxty + ogyix + aly’.

‘We will use these polynomials to construct finite elements of various orders.
We next consider the issue of C° continuity. To explain what is required in two-dimensional problems,
consider the two adjacent elements shown in Figure 7.4, each with acomplete linear polynomial expansion:

o) = ocf)l) + ot(ll)x + u(zl)y, 0% = oc(()z) + aﬁz)x + oc(22>y,

where the superscripts indicate the element number. Each polynomial is obviously C° continuous within
the element. However, for the function to be globally C?, it must also be C? continuous at every point on the
interfaces between the elements (not just at the nodes). In other words, for the specific example that we are
considering, it is necessary that

Therefore, oc(()l ), oc(ll ), a(zl ), oc(()z), aﬁ” and a? have to be carefully chosen to satisfy C° continuity between the

two elements. In the next two sections, we describe how to construct continous and complete shape
functions for triangular and quadrilateral elements. We will start with the three-node triangular element.

1 X
S

Figure 7.4 Continuity between two linear triangular elements.



154 APPROXIMATIONS OF TRIAL SOLUTIONS, WEIGHT FUNCTIONS

7.2 THREE-NODE TRIANGULAR ELEMENT

The three-node triangular element is one of the most versatile and simplest of finite elements in two
dimensions. One can easily represent almost any geometry with triangular elements and, without too much
trouble, construct meshes that have more elements in areas of high gradients (large derivatives), so that
greater accuracy can be obtained with the same number of elements. Furthermore, mesh generators for
triangular meshes are the mostrobust, i.e. they tend not to make errors. This is a tremendous advantage, as a
robust automatic mesh generator is essential in the solution of complex problems by finite elements.

A disadvantage of the three-node triangle is that it is a relatively inaccurate element, and in fact the
element is not recommended for production analysis with finite element software. However, the simplicity
of the element makes it an ideal vehicle for teaching the multidimensional finite element method, so we will
start with it.

Two finite element meshes consisting of three-node triangular elements are shown in Figure 7.5(a). It
can be seen that nodes are placed at the corners of all elements. An arbitrary number of elements can be
joined to a node. There are no restrictions on the topology of a finite element mesh, though for reasonable
accuracy, none of the angles of any element should be very acute.

As the sides of a triangular element are rectilinear, curved edges of the body must be approximated.
Thus, in the mesh in Figure 7.5(a), the curved sides of the hole are approximated by straight segments,
whichintroduces an errorin the geometry of the finite element model. The finite element solution will be the
solution to the geometry with the straight edges, so some error arises due to this approximation of the shape.
However, in most cases, if a sufficient number of elements are used, this error is quite small. In most cases,
simply placing the nodes on the boundary yields satisfactory results.

A typical element from the mesh shown in Figure 7.5(a) is shown in Figure 7.5(b). The nodal coordinates
of element e are denoted by (x§,¢),I = 1 to 3; we use local node numbers for the nodes of the element. Itis
important that the nodes be numbered counterclockwise. The formulations that follow can also be
developed for clockwise numbering, but most finite element programs, including the ones in this book,
use counterclockwise numbering, and itis important to adhere to this convention, as otherwise some crucial
signs will be wrong. When mesh generators are used, this is no longer of importance, as a mesh generator
numbers the element nodes in the correct order automatically.

The trial solution in each triangular element is approximated by a linear function of the spatial
coordinates x and y:

0°(x,y) = ag + afx + o5y, (7.2)

= 3
hY
il

.-/' x'

’ﬁ(‘\\ f\ y 2

(a) (b)

Figure 7.5 (a) Curved boundary approximation using three-node triangular finite elements and (b) a single three-node
triangular finite element.
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where «f are arbitrary parameters. The above can be written in the matrix form as shown below:

o5

0°(x,y) =og+ofx+agy=[1 x y [af | =plx,y)a. (7.3)
p(x,y) L%
de

Notice the fortuitous circumstance that the number of parameters that describe the field complete linear
6°(x,y) inatriangular element is equal to the number of nodes, so we should be able to uniquely express the
parameter ¢ in terms of the nodal values 6. If there were fewer nodes than constants or vice versa, a unique
expression in terms of the nodal values would not be possible.

Starting from (7.3), we will now construct shape functions for the element following the same procedure
that we used in one dimension in Chapter 4. For this purpose, we first express the nodal values
0°(x5,y5) = 05, 0°(x5, y5) = 65 and 6° (x5, y5) = 0% in terms of the parameters (o, of, 0§) and write this
in the matrix form:

05 = of + o + 053 61 TU o 5] [
05 = of +ofxs +a5ys = 1 =11 x5 » o | . (7.4)
05 = af + ofx§ + a5y 05 1 x5 ¥ o
N’ —_——
de’ M(’? ae‘
The above can be written as
d¢ = M‘a’. (7.5)

Taking the inverse of the above equation, we obtain an expression for the parameters in terms of the nodal
values:

af = (M) 'de. (7.6)
Substituting (7.6) into (7.5) gives
6° (x,y) = p(x,y) (M) "d". (7.7)

As in the one-dimensional case, the matrix product preceding d° gives the shape functions; to make this
clear, compare the above with the general form of a function expressed in terms of shape functions (recall
Equation (4.5)):

0°(x,y) = N°(x, y)d®. (7.8)

From Equations (7.7) and (7.8), it is clear that the shape functions are given by

N(ry) = (e y) (M) ™ = [V (x,y) Ns(x,y) N5(x,y))-

To develop a closed form expression for the shape functions, itis necessary to invert the matrix M. This can
be done analytically or using MATLAB’s Symbolic Toolbox, which gives

e e e € € €
Yo — )3 Y3 — Y Yi—=X
€ € € €
X5 — X3 x]— x5 Xy — X )

£ ,€ e €, £ \,e £ \,e £ ,€
xX5y5 —x5y5  x5yT — x1y§ Xy — x5)

(M)~ =1
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where A€ is the area of the element e; the determinant of the matrix M¢ has been replaced by 2A¢ and is given
by

2A° = det(M*) = (x5y5 — x5¥5) — (x]y5 — x5y7) + (x1y5 — x5¥7)- (7.9)

Evaluating the above expression, we obtain

1
NP = 50 (05 —xyg + 05 —y5)x + (a5 —x3)y),
1
Ny = 522 (501 = x5 + 05 —yi)x + () = x5)y), (7.10)
1
Ny (Y5 — x9y] + (0] — ¥9)x + (x5 — x7)y)-

= iz

Note that the shape functions are linear in x and y and the coefficients of all of the monomials depend on the
nodal coordinates.

The relationship between the area and the determinant of M can be demonstrated as follows. Consider
the triangular element shown in Figure 7.6. The area is given by the product of the base and the height, so

1 1
AC=2bh =z absing. (7.11)

Recall that the magnitude of the triple scalar product of two vectors is given by (this formula can be found in
any introduction to vectors, such as Hoffman and Kunze (1961) and Noble (1969))

—

k- (d@xb)=absing. (7.12)

From Equations (7.11) and (7.12), it can be seen that

I

k-detixs —x{ y5 =
X5 =X Y5

S O =

where the last equality follows from the standard formula for a scalar triple product and @ = (x§ — x{ )7+
(s — ), b = (¥ — x)i + (4 — »¢)j. With a little algebra, (7.9) can be obtained from the above
Notice that the above is based on the right-hand rule for defining the angle ¢. It is for this reason that the
nodes must be numbered counterclockwise. You can easily check thatif the nodes are numbered clockwise,
(7.9) gives a negative area (as two rows of the determinant have been interchanged, which changes
the sign).

Figure 7.6 A diagram for computation of the area of a triangle.
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Figure 7.7 Three-node triangular element shape functions.

The shape functions are drawn for a typical triangular element in Figure 7.7. It can be seen that each
shape function vanishes at all nodes except one and that node is the number on the shape function. In other
words, these shape functions have the Kronecker delta property:

N;(x5,57) = . (7.13)

Recall that the one-dimensional shape functions also have this attribute (see Equation (4.7)) and are
therefore interpolants. Two-dimensional shape functions are also interpolants.

Furthermore, as can be seen from Figure 7.7, the shape functions are planar when their values correspond
to the vertical axis in a 3 D plot. This is an obvious consequence of the linearity of the shape functions in x
and y. It also implies that the projections of the shape functions on straight lines, such as their edges, are
linear. This can be seen from Figure 7.7; the dashed lines correspond to the values of the shape functions on
the edges.

7.2.1 Global Approximation and Continuity

In Chapter 4, we showed that the global shape functions N are given in terms of the element shape functions
N¢ by

Nel
N =3 LINT, (7.14)

e=1

where L¢T is the gather operator. The trial solutions are approximated by a linear combination of C° global
shape functions (7.14):

Nnp
0" =Nd = > Nyd; (7.15)
=1

so the same C? continuity of #" is guaranteed.

For illustration, consider a two-element mesh shown in Figure 7.8. The number of global shape
functions is equal to the number of nodes in the mesh. The global shape functions corresponding to the
mesh in Figure 7.8 are shown in Figure 7.9.

The C° continuity of the global shape functions along interfaces between any two adjacent elements can
be demonstrated as follows. For convenience, we define a common edge between elements 1 and 2 by a
parametric equation in terms of a parameter s so that s = 0 at node 2 and s = 1 at node 3:

x=x+ @ —x)s, y=y2+ (3 —»)s (7.16)
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A 1 @2
Yic=Pte

Figure 7.8 Two-element mesh: local and global node numberings.

As the shape functions are linear along any edge, the functions of the two generic elements 1 and 2 along the
interface can then be written as

0 (s) = BV + s, 00(s) = B + B, (7.17)

where f3; are functions of «{ defined in (7.2) and the nodal coordinates
As 0(1)(s) must equal 6, and 05 at s = 0 and s = 1, respectively, it follows that

b=fy  b=py +5

Similarly, for element 2:
b=y b=Py +h7

It follows immediately from the above that /3((]1) = [382) =0,and f §” =p 52) = 03 — 0,. Therefore, the two
element functions are equal along the interface and hence continuous accross the interface. This argument

A’
3
3 N, N,
4 4
1 1
2 2
3
N3 3 N,
4 V 4
1 1 /
2 2

Figure 7.9 C, global shape functions for a two-element mesh. Only global node numbering is shown. The local node
numbering is given in Figure 7.8.
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holds for all other interfaces in the mesh, so the approximation is globally C°. Notice from Figure 7.9 that
the function has kinks along the interface, so the function is not C'.

Continuity of linear functions between elements with two shared nodes can be argued verbally as
follows. Along any straight side, the element functions are linear functions of the interface parameters. Asa
linear function along a line is determined by two constants, if the two functions are identical at two nodes,
they must be equal along the entire interface. In a mesh of 3-node triangular elements, adjacent elements
share two nodes on each interface, so global continuity is assured.

7.2.2 Higher Order Triangular Elements

The concepts underlying the construction of continuous finite element approximations based on poly-
nomials can be elucidated further if we consider a quadratic element. From the Pascal triangle, it follows
that a quadratic field in an element is given in terms of six parameters o by

B (x,9) = o + o + ay + o5 + oxy + (7.18)

The projection of this function on any straight edge of an element in terms of a parameter s (with s ranging
from O to 1 as in Equation (7.16)) is

0°(s) = B + BSs + B5s°. (7.19)

This can be shown by substituting (7.16) into (7.18). The element functions are thus quadratic functions of
the edge parameter s and are determined by three constants, f§;,i = 1 to 3, in each element. Therefore, for
continuity, the functions of two adjacent elements must have equal values at three points, and three nodes
are needed along each edge.

A nodal configuration that meets this requirement is shown in Figure 7.10(a). It can be seen that the
element has nodes in each corner and a node along the midside of each edge. Again, we have the fortuitous
circumstance that the number of nodes required for continuity corresponds to the number of constants in the
polynomial field (7.18). Therefore, the constants can be uniquely expressed in terms of the element nodal
values 6 of the function 6°(x,y), and following the same procedure as for the triangular three-node
element, the function can be expressed in terms of the element nodal values. Once this is completed, shape
functions can be extracted.

We will not go through these steps, as the algebra is horrendous. Furthermore, the shape functions can be
constructed directly as shown in Section 7.6.2; otherwise, o would be evaluated numerically by the
software.

Figure 7.10 (a) Six-node triangular finite element and (b) 10-node triangular element.
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It is of interest to observe that the nodal structure for the linear and quadratic elements can be gleaned
from Pascal’s triangle. If we consider the outside boundaries of Pascal’s triangle shown in Figure 7.3 as the
edges of an element, then it can be seen that for a three-node element, only two nodes are needed along each
edge, whereas three nodes are needed for each edge of a quadratic element.

The approximation function for a cubic element for Pascal’s triangle (Figure 7.3) is

0 (x,y) = of + afx + by + 057 + afxy + afy? + ogx’ + ax’y + agyix + ady’.

Looking back at the Pascal triangle, it can be seen that for a cubic function, four nodes will be needed along
each edge. This can also be established by the arguments we have used before: along a line, the projection of
a cubic function of x and y on a straight edge is a cubic function of s and defined by four constants.
Therefore, four nodes are needed along each edge to insure continuity of the global approximation. The
nodal arrangement for the cubic element is shown in Figure 7.10(b).

One difference between the quadratic and cubic elements is that the number of nodes on the edges is not
equal to the number of constants: the number of nodes required for continuity is less than the number of
constants. This imbalance is easily rectified by adding another node. It can be placed anywhere, but as
shown in Figure 7.10(b), it is usually placed at the centroid. Notice that Pascal’s triangle also indicates the
need for a center node.

Elements of quartic order and higher can also be developed. However, elements of such high order are seldom
developed from simple polynomial expansions. The drawback of these higher order elements is that the
resulting discrete system of equations are not well conditioned. Therefore, although such elements have
potentially higher rates of convergence, and hence better accuracy, they are not used. Instead, very high order
elements are based on different concepts. For example, high-order elements called spectral elements can be
developed from Legendre polynomials; they do not degrade the conditioning of the system equations as much.

7.2.3 Derivatives of Shape Functions for the Three-Node Triangular Element

The gradient of the shape functions matrix will be expressed in each element by a B matrix as before.
The B¢ matrix is computed by differentiation of the expression for the approximation in terms of the
shape functions. For a triangular three-node element, we obtain the B¢ matrix by taking the gradient of
the approximation as given in Equation (7.10):

[ o0° ON§ ONS ON§
s 23 2 43 3 0
Ve — Ox | | Ox 1+8x 2+8x 3
K R L ONS e ONS
L Oy ay 1oy P ooy ?
OV N5 NG
X X X
= 05 | = Bd".
ON§  ON§  ON§ 2
Ldy Oy Oy 05
B¢ a

Referring to the shape functions as given in (7.10) and the above, we can see that the B¢ matrix is given by

ge = L [05=y5) 05-»1) O1-2%)
240 [ (x5 —x5) (= x5) (x5 —xf)

(7.20)

Note that the B® matrix is constant in each element, i.e. it is independent of x and y, and only depends on the
coordinates of the nodes of the element. Thus, the gradient of any trial solution will be constant within any



FOUR-NODE RECTANGULAR ELEMENTS 161

three-node triangular element; this can also be directly concluded from the linearity of the shape functions.
The three-node triangular element is therefore very similar in character and properties to the two-node
element in one dimension, with a linear approximation field and a constant gradient field.

7.3 FOUR-NODE RECTANGULAR ELEMENTS

As a prelude to the formulation of a four-node quadrilateral element, we first consider a four-node
rectangular element as depicted in Figure 7.11. As for the triangle, the nodes are numbered counter-
clockwise; this convention will also apply to all subsequent elements, except when there are nodes along
the edges, which are numbered after the corner nodes in this book.

As the element has four nodes, it is necessary to start with a polynomial expansion that has four
parameters. Obviously, if we are to restrict ourselves to polynomial expansions, the additional term should
come from the third row of the Pascal triangle. A question then arises: which of the three terms in the third
row should be selected? Only one additional monomial is needed, as we already have three parameters from
the linear field, but we can select any of the three monomials in the third row of the Pascal triangle.

This question is settled by the need for linearity of the approximation along each edge. The monomial x?
will vary quadratically along the edges between nodes 1 and 2 and nodes 3 and 4, whereas the monomial y?
will vary quadratically along the edges between nodes 2 and 3 and nodes 4 and 1. The monomial xy is linear
along each edge, as either x or y is constant along each edge. Therefore, the monomial xy is consistent with
the nodal configuration shown in Figure 7.11, in which there are only two nodes per edge. The monomial xy
is called bilinear. With the addition of the bilinear terms, the element approximation is

0°(x,y) = af + ofx + o5y + o5xy. (7.21)

Itis possible to express (o, a5, o, o) in terms of nodal values (65, 65, 65, 64) as in Section 7.2. However, a
closed form symbolic inversion is very cumbersome. Of course, we can always invert M numerically for
each element in a mesh, but it is useful to develop closed form expressions (in practice, this is not very
important, as 4 x 4 matrices can be inverted very quickly on today’s computers).

The shape functions N° will be constructed by the fensor product method. This approach is based on
taking products of lower dimensional shape functions and exploiting the Kronecker delta property of shape
functions (7.13).

The two-dimensional shape functions for a rectangular element are obtained as a product of the one-
dimensional shape functions as illustrated in Figure 7.12. For example, the shape function N5 (x,y) is
obtained by taking the product of the one-dimensional shape functions N5 (x) and N§ (y). It can be seen from

y
4 3
(4,54 (5,5%)
2b
1D (x3,5)
1 2a 2
» X

Figure 7.11 Four-node rectangular element.
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Figure 7.12 Construction of two-dimensional shape functions.

Figure 7.12 that the product of these two shape functions will vanish at nodes 1 and 4 because N5 (x)
vanishes there and at node 3 because N{ (y) vanishes there. At node 2, both shape functions have unit value,
so the product s also equal to 1. Thus, N5 (x, y) has the Kronecker delta property for the four-node element,
which can also be seen from Figure 7.12.

The tensor product method and the role of the Kronecker delta property can be made clearer if we
number the nodes with dyads as shown in Figure 7.12. The two-dimensional shape function can then be
written as a product of the one-dimensional shape functions by

N (x.y) =Nj(x)N;(y) for I=1,2 and J=1,2. (7.22)

It is straightforward to also show that the above two-dimensional shape function has the Kronecker delta
property:

Nijy (g yy) = Nj ()N (yL) = bmaby.-

From the above, it can be seen that the tensor product of the two one-dimensional shape functions is unity
only when the dyadic node numbers are the same as the dyad of the shape function. The relation between
the dyadic node numbers (/ and J) and the actual node numbers (K) is given in the first three columns of
Table 7.1 Also, the two-dimensional shape functions obtained by the tensor product rule are summarized in
Table 7.1.

Table 7.1 Shape functions of the four-node rectangle (last column) as constructed from one-dimensional shape
functions (nodal values given in second to fifth columns).

K 1 J Ni(g) o Ns(p) o NTOY) N5 (¥9) 2D: N (x,y) = Nj ;(x,y)
1 1 1 1 0 1 0 NE(ONS ()
2 2 1 0 1 1 0 NSNS ()
3 2 2 0 1 0 1 NE(X)N(y)

4 1 2 1 0 0 1 N¢(X)NE(y)
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N3

Figure 7.13 Graphical illustration of rectangular element shape functions.
From Table 7.1 and Equation (7.22), it can be seen that the two-dimensional shape functions are

xX—x5y—y 1
Ni(x,y) =——2——% = — (x—x5)(y — ¥
1(xy) ] Ae( D0 =),

e e
X=X Y=

N¢ — —_ _ e _ 87
5(xy) i 2e =20 —5)
Ne( ) xixtll yfyel 1 ( e)( e) (723)
X = = —(x— X —
TR S AT T
x—x5y—y 1
Ni(x,y) = 2 L= ——(x—x5) (=),

Xpoxyg -y A

where A° is the area of the element. One can also verify that these shape functions satisfy the Kronecker
delta property directly. The element shape functions are shown in Figure 7.13. As can be seen from the
figure, the shape functions are linear along each edge.

Although this element works for rectangles, it is not suitable for arbitrary quadrilaterals. This can be seen
by considering the quadrilateral shown in Figures 7.14a. Consider the edge connecting nodes 1 and 4 along
whichy = x.If we substitute into the equation for the approximation (7.21), we see that the approximationisa
quadratic function along thisedge y = x. The shape functions are also quadratic along this edge, which can be
verified by letting y = x in any of the shape functions in (7.23). Therefore, two nodes no longer suffice to
insure the compatibility, i.e. continuity, of this element with other elements. Thus, the shape functions
developed in this section are only suitable for rectangular elements; to treat a greater variety of four-node
quadrilateral shapes, a more powerful method must be developed for constructing the shape functions.

YA

V=

(@) (®)

Figure 7.14 Four-node quadrilateral elements.
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7.4 FOUR-NODE QUADRILATERAL ELEMENT'

As we have seen, although the bilinear shape functions in terms of x and y work for rectangles, these shape
functions are not linear along the edges of an arbitrary quadrilateral element, so two common nodes do not
suffice to insure C° continuity between elements. Resolving this quandary has led to one of the most
important developments in finite elements, the isoparametric element. The isoparametric concept enables
one to construct elements with curved sides, which are very powerful in modeling many complex
engineering structures. We will first show how this concept can be used to construct continuous approx-
imations for four-node quadrilaterals. Then we will consider higher order elements, which can model
curved boundaries.

We will begin by recalling how we constructed Gauss quadrature formulas in Chapter 4. Recall that we
defined a standard domain [—1, 1] and then mapped that standard domain into the physical domain of the
finite element by

1-¢
2

1+¢&

x = XIN{ () + X5N5(6) = i =,

x5 cel-1, 1. (7.24)

We will call the domain [—1, 1] the parent element domain and £ the parent coordinate; it is also called a
natural coordinate.

Now, rather than writing the approximation for 6 in terms of x, let us write it in terms of the parent element
coordinate . Starting with the shape function expression for the field and substituting in (7.24), we obtain

1% Xy — X
:Hﬁ)x?( _€)+j§(lj_§)_2x§+9§xi(l _£)+x§(lj§)_2xi (725)
2(xf —x5) 2(x5 —x{)
el =& L1+
=0 5 + 65 o

Thus, remarkably, the form of the linear approximation 6(€) is identical to the map from the parent element
to the physical element; in other words, the shape functions for the mapping given in (7.24) are identical to
the shape functions for the approximation in the last line of (7.25). This is the essential feature of an
isoparametric element: the physical coordinates are mapped by the same shape functions as those used for
the approximation.

Infact,itis notnecessary to go through the algebrain (7.24) and (7.25) to develop the expression in terms
of parent element coordinates. As the relationship between the physical and parent coordinates is linear,
any relation that is linear in the parent coordinates is also linear in the physical coordinates.

To develop a quadrilateral element, we let the parent element be a biunit square as shown in Figure 7.15.
Now we map the physical element from the parent element by the four-node shape functions

x(&n) =NR(Enx,  y(&mn) =NQEn)y, (7.26)

where N4Q(§ ,m) are the four-node element shape functions in the parent coordinate system; x° and y° are
column matrices denoting x and y coordinates of element nodes:
I" 1"

_[.e e e e e __ [.e e e e
x“=[N{ x5 x5 K], Y=D7 Y ¥ v

'Recommended for Advanced Track.



FOUR-NODE QUADRILATERAL ELEMENT 165

Table 7.2 Nodal coordinates in the parametric
element domain.

Node / & m
1 —1 —1
2 1 —1
3 1 1
4 - 1

In (7.26), we have changed the notation from N¢ to N*Q to emphasize that, as we will see, the shape
functions are no longer functions of element coordinates, i.e. they are identical for every quadrilateral
element. As the parent element is a biunit square, its shape functions are identical to those of the rectangular
element, except they are expressed in terms of natural coordinates. The shape functions can be obtained by
replacing (x,y) by (£, 1) and the nodal coordinates in the physical domain (x7, y;) by nodal coordinates in
the parent element (£, 7;) in (7.23). The resulting shape functions are summarized below:

N{(Em) =3 (1 + &€ (1 + ), (727)

where (£, 7;) are nodal coordinates in the parent element summarized in Table 7.2 (also see Figure 7.15,
left). The above can be obtained directly by the tensor product method.
The trial solution is approximated by the same shape functions:

0°(&,m) = N* (&, m)ac. (7.28)

Therefore, the element is isoparametric.

The shape functions (7.27) contain a constant term, terms linear in £ and 7 and the monomial &7, the
bilinear monomial; these shape functions are called bilinear shape functions. If we write the monomials in
terms of arbitrary parameters, we obtain the following:

0°(&,m) = og 4 o€ 4 ogm + o5En. (7.29)

The map (7.26) is also bilinear because of the bilinearity of the shape functions, (7.27). Thus, there are four
independent functions in the approximation, which is equal to the number of nodes in the element, and we
could obtain the shape functions by using the procedure of Section 7.2. However, the above procedure with
the tensor product rule is more direct.

ATl 3
YA

[1,2] [2,2]

[1,1] [2,1]
1 -1 2

\ &

Figure 7.15 Mapping from the parent to the physical Cartesian coordinate system; brackets enclose the dyadic node
numbers for the tensor product approach to the construction of two-dimensional shape functions from one-dimensional
shape functions.
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7.4.1 Continuity of Isoparametric Elements

One important question to be considered is: does relation (7.26) map the edges of the parent element
into straight lines in the physical plane? If it does not, then the element will not be compatible with
three-node triangles and may even have difficulties in treating meshes constituted entirely of
quadrilaterals. The answer turns out to be affirmative. As the map (7.26) is bilinear along each of
the edges, either £ or 7 is constant along each edge. Therefore, along any of the edges, the bilinear
term becomes linear. For example, along the edge between nodes 2 and 3, £ = 1, i.e. it is constant,
and the bilinear term is linear in 7. Therefore, the map is linear along the edge between nodes 2 and 3,
and the corresponding edge in the physical plane must be straight. Identical arguments can be
made for the other three edges.

Note that not every straight line in the parent plane maps into a straight line in the physical plane. If we
take the diagonal of the element in the parent plane, where £ = 7, the bilinear term then becomes quadratic
in €. So when the physical element is not a rectangle, the parent element diagonal is a curved line in the
physical element. So in general, not all straight lines in the parent plane map into straight lines in the
physical plane, but the edges always do.

By the same arguments, it can be shown that the global shape functions are C° continuous. For example,
along the edge connecting nodes 2 and 3 (£ = 1), it follows from (7.27) that

N(E=1m) =3 (1~ ).

Thus, the shape function NgQ alongtheedgeislinearinnandisequal to 1 atnode 2 and zero atnode 3. All of
the other shape functions can also be shown to be linear along this edge and all other edges; the linearity of
the approximation along the edges can also be inferred from the bilinear character of the expression for the
approximation (7.29).

Asthe approximationis linear along each edge, it can be expressed in terms of two parameters along each
edge. As each edge has two nodes, the approximation is then uniquely determined along the edge.
Furthermore, if two adjacent elements share an edge, then the global shape function must be continuous
across that edge, and thus the approximation constructed by quadrilateral elements is C° continuous. The
isoparametric four-node quadrilateral elements are also compatible with three-node triangular elements,
so these elements can be mixed in a single mesh.

7.4.2 Derivatives of Isoparametric Shape Functions

We nextdevelop expressions for the gradient of the shape functions of the four-node isoparametric element.
The procedure is more involved than that for the three-node triangle because the shape functions are
expressed in terms of the parent element coordinates. In terms of the physical coordinates, the gradient of a
trial solution for the four-node quadrilateral element is

Vo = Bed’, (7.30)

where

N/ ON;? ONJQ ONJQ
B¢ — Ox ox ox ox
AN/ ON;? ONJQ aNJ
Jy dy dy dy

(7.31)
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To obtain the derivatives of shape functions expressed in the parent element coordinates with respect to the
physical coordinates (x, y), we will use the chain rule

ON;® _ ON[Cox  oN/y ON/® dx ay7 [oN/®

o Ox 9 Oy O o o | |oc o] | ox

ON;Q aN;‘Q@+aN,4Q@ aN/Q Ox 9y | | oN;?

on ox on 9Oy On on dn  On Oy
Je‘

As indicated, the matrix relating the derivatives of the physical coordinates with respect to the element
coordinates is the Jacobian matrix, denoted by J¢. The required derivatives can be obtained by inverting the
above right-hand side expression:

oN;? oN;® ox dy
Ox 1| O o5 O
— (J¢ e — 7.32
Qy on on O
In concise matrix form, we write this as
VNIQ = (J¢) "GN/, (7.33)
where G is the gradient operator in the parent coordinate system defined as
9
29
= 7.34
G P (7.34)
on

By substituting the map (7.26) into the expression for the Jacobian (7.32), amore detailed expression can be
developed for the Jacobian:

iaN;‘Q p iaNfQ v ONY® ON;? ON{Q ONJQT [X ¥
oA E T e & | |s (7.35)
z“:BNfQ p z‘*:aN?Q y ONIQ ONIQ aNIQ ANIQ | | %5 ¥
= oon Tt om ot n on on on X Y4
Equation (7.35) can be written in the matrix form as
JO = GN*x¢ y9. (7.36)
Using (7.31), (7.35) and (7.36), the B® matrix can be written in the matrix form as
B = (J)7'GN*C. (7.37)

For the mapping (7.26) to be unique at each point, it is necessary that the determinant of the Jacobian be
nonzero. Furthermore, the determinant of the Jacobian must be positive, so we require that

|J¢] = det(J¢) >0 Ve and (x,y). (7.38)

It can be shown that this requirement is fulfilled if all angles in all quadrilaterals are less than 180° (see
Problem 7.3).
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Figure 7.16 Nine-node isoparametric quadrilateral in parent and physical domains; brackets enclose the dyadic node
numbers for the tensor product approach to the construction of two-dimensional shape functions from one-dimensional
shape functions.

Note that although the shape functions N*? do not depend on element coordinates, the Jacobian matrix J¢
and the derivatives of shape functions B¢ depend on the element coordinates as can be seen from Equations
(7.37) and (7.36). Therefore, the superscripts appearing in the isoparametric shape functions denote the
element type, whereas in J¢ and B¢ they denote the element number.

7.5 HIGHER ORDER QUADRILATERAL ELEMENTS?

The higher order isoparametric elements provide one of the most attractive features of finite elements, the
ability to model curved boundaries. As an example of a curved-sided isoparametric element, we describe
the nine-node quadratic element.

The nine-node isoparametric element is constructed by a tensor product of the one-dimensional
quadratic shape functions developed in Chapter 4. The parent and physical element domains are shown
in Figure 7.16. The node numbering convention is as follows. The corner nodes are numbered first,
followed by the midside nodes, both in the counterclockwise direction; the first midside node is defined
between nodes 1 and 2, and the internal node is numbered last.

To generate the shape functions for the nine-node quadrilateral by the tensor product method, we take the
product of the three-node shape functions in terms of £ with the three-node shape functions in terms of 7,
yielding

NR2(&m) = N3 (&m) = NiH(©N; (), (7.39)

where N;' are the one-dimensional quadratic shape functions of the three-node element and the standard
node number K can be expressed in terms of the elements of the dyad [/, J] given in Table 7.3.
‘We will not tabulate all of the shape functions, but as an example

N3 = N3 = NI ONS(n) = 5 (1 — )l + 1), (7.40)

N =

These shape functions have the Kronecker delta property.

As N3L(€) are quadratic in € and N3 (n) are quadratic in 7, the shape functions are biquadratic in £ and 7,
i.e. the highest order monomial is £27%. In fact, if you go through the terms of all shape functions carefully,
you will see that there are nine distinct monomials in terms of € and  among all of the shape functions, so the
field for this element can be written as

0° = oy + af& +osn + oc_§§2 +ogén + agnz + ocggzn + oc§§772 + tngznz. (7.41)

?Recommended for Advanced Track.
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Table 7.3 Relationship between one-dimensional and two-
dimensional shape functions for the nine-node quadrilateral element.

K 1 J
1 1 1
2 3 1
3 3 3
4 1 3
5 2 1
6 3 2
7 2 3
8 1 2
9 2 2

Thus, the number of independent monomials is equal to the number of nodes, and we could have used the
same approach as in Section 7.2 to solve of in terms of §5. However, the construction by the tensor product
method is much easier.

In an isoparametric element, the approximation and the map from the parent to the physical planes are
generated by the same shape functions. Thus, for this nine-node quadrilateral,

x(&n) =NUEmxe,  y(En) =N )y, (7.42)
6°(&,m) = N°%(& m)d (7.43)

The important feature of this element is that the edges are curved. Consider for example the edge joining
nodes 1 and 4. The mapping from the parent plane to the physical plane (7.42) has the same monomials as
the function approximation in (7.41). Along this edge & is constant, as can be seen from Figure 7.16, so the
map will contain the monomials 1, , i7>. Consequently, the coordinates (x, y) are quadratic functions of
along the edge and hence curved as shown in the figure.

The advantage of curved edges in finite element modeling is truly impressive in engineering applica-
tions. Far fewer elements can be used around holes and on other curved surfaces than with straight-sided
elements. Similarly, in the modeling of complex shapes such as lakes and bones, the geometry can be
replicated quite accurately with fewer elements when higher order isoparametric elements are used. The
discovery of the isoparametric concept was in fact one of the major advances in finite element methods:
compared to other methods, such as the finite difference method, it provided a way of modeling real objects
with much greater fidelity.

The B¢ matrix for the nine-node element, and for that matter for any isoparametric element,
is obtained by the same procedure as given in Section 7.4.2. For the nine-node element the matrix is
2 x 9, so computational methods are essential for its evaluation and there is little to be gained by
writing it.

Other isoparametric elements can be constructed in the same manner. For example, Figure 7.17
illustrates the 12-node isoparametric quadrilateral in the parent and physical planes. The shape functions
forthe 12-node quadrilateral are obtained by the tensor product of the four-node shape (cubic) functionsin £
and the three-node shape functions (quadratic) in terms of 7, yielding

N29(e,n) = N22(e,m) = NN (), (7.44)
where N}tL are the one-dimensional cubic shape functions of the four-node element. The relationships

between one-dimensional and two-dimensional shape functions are tabulated in Table 7.4. Figure 7.18
gives the graphical illustration of the shape function construction.
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Figure 7.17 Mapping of the physical domain into parent coordinates for the 12-node quadrilateral element.

Table 7.4 Construction table for the 12-node quadrilateral element.
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Figure 7.18 Construction of shape functions for the 12-node quadrilateral element.
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Isoparametric finite elements in two (or three) dimensions constructed by a tensor product of one-
dimensional element shape functions are called Lagrange elements. Some Lagrange elements possess
internal nodes that do not contribute to the interelement compatibility. These nodes can be condensed out
(see Appendix A6) at the element level to reduce the size of the global matrices.

Commercial software usually employs the formulation of higher order element without internal nodes
as shown in Figure 7.19; these are called serendipity elements. The shape functions for the serendipity
family of elements cannot be constructed by a tensor product of one-dimensional shape functions as in the
Lagrange family. The serendipity element shape functions are obtained by a tensor product of carefully
selected functions to satisty the Kronecker delta property of the shape functions. For instance, the shape
function N ?Q for the eight-node serendipity element should be zero at nodes 2 to 8 and should be 1 atnode 1.
The productof (1 — &), (1 —n) and (€ + n + 1) will vanish at all of these nodes except for node 1. Atnode
1, the above triple product is equal to —4, and therefore N fQ is given by

N = (1= (1 — )1 +E+n).

Similarly, the shape function N 11 2Q for the 12-node (cubic) serendipity element is obtained by a product of
(1=¢),(1=n),(&+n+4/3)and (£ +n+ 2/3), followed by normalization gives

NPO = 2 (1= (1 =)y +E+4/3)(-+E+2/3).

The remaining shape functions of the quadratic and cubic serendipity quadrilaterals can be constructed ina
similar fashion. The developers of the serendipity element, Ergatoudis, Irons and Zienkiewicz (1968),

n
A 7 3
4 7 3 YA
4
6
8 3 8
“ 6 :D
AN 1 5 >
1 5 2 g
E+n+1=0
A" 3
4 10 |9 3 A3
L © 4
. 8
11 \"\ o8 11
S > < 7
120 N ®7 I::> 12 5
\\ \\\ 1 6 2
Y B
1 5™ 6.2 o

N
N N

E+n+4/3=0 NErn+2/3=0

Figure 7.19 (a) Eight-node and (b) 12-node serendipity elements. Node numbering and shape function construction.



172 APPROXIMATIONS OF TRIAL SOLUTIONS, WEIGHT FUNCTIONS

derived the above shape functions by inspection, and therefore named them ‘serendipity’ after the princes
of Serendip who were noted for their chance discoveries.

7.6 TRIANGULAR COORDINATES?

For higher order curved-sided triangular elements, the development of the shape functions by the direct
approach discussed in Section 7.2 is algebraically complex. Furthermore, the integration required to
integrate the weak form can be very cumbersome. Considerable simplification of the shape functions can be
obtained via natural (or parent) coordinates. Natural coordinates (or parent element coordinates) that are
specificto triangular elements have several other names: (i) triangular coordinates, (ii) area coordinates and
(iii) barycentric coordinates. We will use the name triangular coordinates. We first develop the linear
triangular element in Section 7.6.1, followed by the quadratic triangular element in Section 7.6.2 and the
cubic triangular element in Section 7.6.3.

7.6.1 Llinear Triangular Element

Triangular coordinates are defined as shown in Figure 7.20. For any point P, the triangular coordinates of a
point are given by

(7.45)

where A is the area of the triangle generated by connecting the two nodes other than node 7 with point P, see
Figure 7.20(a). For example, A3 is the area of the triangle connecting P and nodes 1 and 2.

Itcan easily be seen that as the point P moves to one of the nodes, the corresponding triangular coordinate
becomes unity and the other triangular coordinates become zero; for example (see Figure 7.20(b)), when P
coincides with node 2, &, = 1 and §; = & = 0. Thus, in general,

&(x5,55) = o, (7.46)

so the triangular coordinates have the Kronecker delta property. This suggests that these particular
coordinates are interpolants.

From the definition of the triangular coordinates in (7.45), it follows that the relationship between (x, y)
and the triangular coordinates is linear. This, combined with (7.46), enables us to write the relationship
between the triangular coordinates and the physical coordinates as

3 3
x= foﬁ,, y= ny&. (7.47)
=1 I=1

As we will see shortly, the triangular coordinates are linear in x and y and satisfy the Kronecker delta
property (7.46), so they must be identical to the linear shape functions for a triangle (there is only a single
unique set of linear functions that satisfies these properties). Therefore, we can write a linear approximation
as

3
0 =058 =056 + 056 + 055, (7.48)
I=1

3Recommended for Advanced Track.
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Figure 7.20 Definition of triangular coordinates of a point in the element in terms of the areas generated by that point.

In other words, the linear shape functions given in (7.10) are identical to the triangular coordinates.
Equation (7.48) provides a much more convenient framework for studying triangular elements than the
framework described in Section 7.2.

Equation (7.47) can be viewed as a map between a parent element and the element in the physical plane,
just as in isoparametric elements. If we view the element in the £, & plane and note that by (7.46)
§ixr,y1) =1, &(x1,y1) =0 and §(x2,y2) = 1, &1(x2,¥2) = 0 and & (x3,y3) = &(x3,y3) = 0, then
connecting the nodes by straight lines (which is appropriate because of the linearity of the relationship
between (x,y) and (&1, &,)), it can be seen that the element in the parent plane is a triangle as shown in
Figure 7.21. Equation (7.47) is then the map from this parent element to the physical element.

In order to complete the development of triangular coordinates, it is necessary to express the triangular
coordinates in terms of (x, y). Equation (7.47) provides only two equations for &;, which is insufficient.
To obtain a solvable system of linear algebraic equations, we note from the definition of £; by (7.46) and
Figure 7.21 that

S +&L+G=1 (7.49)

Combining (7.47) and (7.49) in the matrix form gives

1 11174
x| =[x x5 x5||&|. (7.50)
y iovs 1LG

The square matrix in (7.50) corresponds to (M¢)" in (7.4), so the inverse is given by (M) " and we have

& T L Rt R
Q| =g |1 Ve X || Y (7.51)
& X2 T Vi X

&

2(5=1
A/—él"’gz:l

3(&=D 1 =D Si

Figure 7.21 Parent element domain in triangular coordinates.
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where we have used the notation xj; = x{ — x9,yj; = y{ — y5.From (7.51) it can be seen that the triangular
coordinates are linear in (x,y). It is easy to obtain from (7.51) that

%:)’53 %:)’51 %:)’72
Ox 2A¢ Ox 2A¢ Ox 2A¢’
0 x5 0 X3 O 3y

dy 24¢ Oy 24° Oy T 24¢

(7.52)

7.6.2 Isoparamelric Triangular Elements

In the same way as curved-sided elements were developed for quadrilaterals, we can develop curved-sided
triangular elements by the isoparametric concept. Before we do that, we will show how the shape functions
for the quadratic and cubic triangular elements can be constructed without the solution of any equations.

We first consider the six-node triangle shown in Figure 7.22. Recall from Section 7.2.2 that six nodes are
needed for quadratic elements, with nodes along the midpoints of each side. We number the corner nodes
firstin counterclockwise order, and then number the midside nodes as shown in Figure 7.22. The triangular
coordinates of the nodes and the shape functions are given in Table 7.5. Note that the triangular coordinates
of a midside node are always a permutation of (0.5, 0.5, 0.0), as along a side, one of the triangular
coordinates always vanishes and the midpoint node splits the element into two; therefore, the other two
triangular coordinates are each 1/2 as shown in Figure 7.20.

Construction of the shape functions for the six-node triangle is similar to the construction of Lagrange
interpolants: when constructing the shape function N%T, we seek a function that vanishes at all other nodes
and equals unity at node I. We first consider the construction of N§T. The construction of NS begins with
choosing a function that does not vanish at node 2, but vanishes at the other corner nodes; that functionis &;.
Next we find another function so that its product with &, vanishes at the remaining nodes. That function is
(2& — 1), as it vanishes at nodes 4 and 6, and the product, & (2&, — 1), vanishes at all nodes but node 2. It
remains to normalize the shape function, i.e. to insure that NST (x2,y2) = 1;itturns out that this condition is
already met so nothing further needs to be done, and we have the result in Table 7.3. The corner node shape
functions at the other nodes are constructed similarly.

The midpoint node shape functions are constructed by noting which triangular coordinates vanish at the
various nodes. The function &, vanishes at all nodes but node 4, so after normalizing we see that
NST = 4£,&. The other midpoint node shape functions are constructed similarly. Note that the shape
functions are quadratic in £/, which in turn are linear in (x, y), so the shape functions are quadratic in (x, y).

Figure 7.22 Six-node triangular element: (a) node numbering convention and (b) lines of constant values of triangular
coordinates.
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Table 7.5 Table of shape functions for the six-node triangular element.

1 &2, 1) &, y7) &7, ¥7) NiT(&1,6,8)
1 1 0 0 &i(26 -1)
2 0 1 0 £2&% - 1)
3 0 0 1 53(2{3 — l)
4 1/2 1/2 0 46,6

5 0 1/2 1/2 46,85

6 ]/2 0 1/2 4616

By construction, the shape functions satisfy the Kronecker delta property:

N?T(XJ,)’J) = dy.

The approximation is then given by

0°(x,y) = NT(&)d".

When Equation (7.47) is used to map from the parent plane to the physical plane, the element depicted in
Figure 7.20 is a straight-sided six-node element. However, if we use the map

x = N°T(&)x¢, y =N (&),

then the sides of the physical element are curved. This is an example of a triangular isoparametric element.
The elements are compatible with the nine-node isoparametric quadrilateral; this is investigated in
Problem 7.1.

When the map of the geometry uses shape functions of lower order than the shape functions in the
approximation of the function, then the element is called a subparametric element. For example, if the
quadratic six-node shape functions are combined with the linear map (7.47), then the sides are straight, and
itis a subparametric element. This subparametric element can exactly reproduce fields that are quadratic in
x and y, whereas the isoparametric element can reproduce only linear fields exactly. This tends to decrease
the accuracy of the element. In fact, the more distorted the element, the less its accuracy. Therefore, curved
edges should only be used where necessary, such as on the boundaries of the problem domain.

7.6.3 Cubic Element

The same procedure can be used to compute the shape functions for a cubic element. The nodal
arrangement for the cubic element was already discussed in Section 7.2.2 and can be seen from Pascal’s
triangle. As in the six-node triangle, the corner nodes are numbered first and the other nodes after that. The
triangular coordinates of the nodes and the shape functions are given in Table 7.6. The element is shown in
Figure 7.23. As can be seen, as dictated by the Pascal triangle, each edge has four nodes, and a center node is
included. The nodes on the edges are now placed by subdividing the edge into three equal segments. The
triangular coordinates can easily be determined by noting which one vanishes and examining the areas of
the subelements that are generated by connecting the edge node to the opposite node; this is illustrated in
Figure 7.23.
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Table 7.6 Table of shape functions for the ten-node triangular element.

1 &(7,57) &(x7,57) &(x7,57) N (61,6,6)

1 1 0 0 (9/2)& (& — 1/3)(& —2/3)
2 0 1 0 (9/2)&(& — 1/3)(& —2/3)
3 0 0 1 (9/2)&(& — 1/3)(& —2/3)
4 2/3 1/3 0 (27/2)616(& — 1/3)

5 1/3 2/3 0 (27/2)66(& — 1/3)

6 0 2/3 1/3 (27/2)68(& — 1/3)

7 0 1/3 2/3 (27/2)6&(& — 1/3)

8 1/3 0 2/3 (27/2)61&(& — 1/3)

9 2/3 0 1/3 (27/2)61&(& — 1/3)

10 1/3 1/3 1/3 276,66

The shape functions are constructed by the same arguments as for the six-node triangle. The same
arguments on the reproducing capability that were made for the six-node triangle apply to the 10-node
triangle.

The center node of the cubic element is usually not retained in the nodal structure of the mesh. Instead, it
is eliminated by a procedure called static condensation. This is described in Appendix A6.

7.6.4 Triangular Elements by Collapsing Quadrilateral Elements

An alternative approach of generating triangular elements is by assigning the same coordinates to two
neighboring nodes in a quadrilateral as shown in Figure 7.24; this is equivalent to assigning the same node
number for two of the nodes. This technique is used by some commercial software, such as ANSYS.

It can be shown (see Problem 7.11) that superimposing two nodes of a quadrilateral, which corresponds
to collapsing one of the edges, will result in a constant strain triangle. It is interesting to note that the
Jacobian matrix of the collapsed quadrilateral is singular at the point where the nodes have been collapsed.
The B¢ matrix of the degenerated quadrilateral is identical to that of the three-node triangle, except at the
point where the two nodes coincide, where B¢ is not defined (zero divided by zero). A practical consequence
is that solution gradients should not be computed at element nodes.

| s

(a) (b)

Figure 7.23 Ten-node triangular element: (a) node numbering convention and (b) lines of constant value of triangular
coordinates.
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1,2 4

3

Figure 7.24 Degenerate form of four-node quadrilateral element obtained by collapsing nodes 1 and 2.

7.7 COMPLETENESS OF ISOPARAMETRIC ELEMENTS*

Isoparametric elements are linear complete, which means that they can represent a linear field exactly,
regardless of whether the sides are curved or straight. Generally, when the sides are curved, higher
order monomials cannot be represented exactly. However, mathematical proofs are available in the
literature (see, for instance, Ciarlet and Raviart (1973)) that show that if the nodes are not far from
the midpoints of the straight sides, the convergence of isoparametric elements corresponds to the order of
the complete polynomial in the natural coordinates. Here we just show that the isoparametric elements can
represent a linear field exactly, because this is crucial to an important test in finite elements, the patch test
described in Chapter 8.

Inorder to demonstrate linear completeness in the simplest possible setting that still contains the essence of
how one goes about showing completeness, we first consider the three-node, one-dimensional quadratic
element. When the second node is not at the midpoint of the element, the isoparametric element is defined by

3

= 3 NHO) = g6~ )+ (1~ ) +gtle )

R (7.53)

() 6(6) =D GNF€) = Og6le — 1) + 651 — &) + 056(E + 1),

I=1

Showing that (7.53b) contains the linear terms directly would be difficult, because we would need to solve
the quadratic equation (7.53a) to obtain an expression for £ in terms of x.

The standard approach to showing linear completeness avoids this difficulty. Bear in mind that we want
to show that if the nodal values 6§ arise from a linear field, then 6°(x) is exactly that linear field. In other
words, we want to show that if the nodal values are set by

0f = o + oyxy, (7.54)
then
6°(x) = o9 + ox.
We then proceed as follows. Substituting (7.54) for 65 in (7.53b) gives
3

3
=D (0 + X\ IN(E) = a0 Y N + o1 Yy XNH(E). (7.55)
I=1

’;
=1 =1

“Recommended for Advanced Track.



178 APPROXIMATIONS OF TRIAL SOLUTIONS, WEIGHT FUNCTIONS

Itis easy to verify that for these shape functions, ZL, N3L(€) = 1. This can also be verified for any other
shape functions and is known as the partition of unity property.
Using this fact and substituting (7.53a) in the second term in (7.55) gives

0(x) = ag + ayx.

Thus, the function 6(x) is exactly the linear field from which the nodal values 65 were obtained, (7.54).

The development for two-dimensional elements is similar. We now prove it for the general case of two-
dimensional isoparametric elements. Recall that the map between the parent element plane and the
physical plane is given by

Nen en

x=) XN, y=D_ ¥ (756)
I=1 I=1

The function is given by

Nen

0 => ON;. (7.57)
I=1
Consider a linear function when the nodal values are set by a linear field:
0 = oy + o x + o0y. (758)

The nodal values are

07 = o + o x; + o)y (7.59)

We ask the question: if we set the nodal values by (7.59), is the finite element field exactly (7.58)?
Substituting (7.59) into (7.57) yields

Ten

0°(x) = (o0 + 01§ + 0y§)Ny
= (7.60)

Ten Nen Nen

= %12 N¢ + oy ,Z XN¢ +9(2’§; YON§,

where the second equation is obtained by taking o; outside the sums (as it is the same for all terms in the
sum). Then using the partition of unity property and (7.56) gives

0 = oy + o x + o0y.
So the isoparametric element exactly represents the linear field. If this fact does not strike you as

extraordinary, try to show that any of the quadratic terms in the nine-node element (or three-node element)
are represented exactly. It cannot be done, as it is not true.

7.8 GAUSS QUADRATURE IN TWO DIMENSIONS®

As seen in Chapter 5 and encountered again in later chapters, integration of various forms of the shape
functions over the domain of an element is required in formulating element matrices and vectors. We now

SRecommended for Advanced Track.
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show how the one-dimensional Gauss quadrature formulas developed in Section 4.6 are extended to two
dimensions.

7.8.1 Integration Over Quadrilateral Elements

Consider a typical integral defined over the domain of a quadrilateral element:

1= [ feman. (7.61)
Qe
To evaluate the integral, we must express the infinitesimal area d€2 in terms of dn and d¢. Figure 7.25 shows
the infinitesimal area d¢ dn in the parent domain and its image in the physical domain.
The vector 7 represents an arbitrary point P in the physical domain as shown in Figure 7.25(b). Point P
corresponds to the point P’ in the parent coordinate system. Its coordinates are

=xi+ yf.
Points Q' and T" are selected to be at the distance of d£ and dr from P’ in the natural coordinate system,

respectively. The corresponding points in the physical domain are Q and 7. The vectors d and b pointing
from P to T and P to Q, respectively (Figure 7.25), can be expressed by the chain rule as

O e (05,
=g o6~ (5T )

-  OF Ox- Oy
bz—dn—(—lJr )dn,
' o

The infinitesimal area of the physical domain d{2 enclosed by the two vectors, banda, canbe determined by
the scalar triple product:

i 8j k Ox Oy
y = =2
dY=Fk-(@xb)=k- ag g dc a_,,d" O — get gi gﬁ dédn = [J°|dEdn, (7.62)
dy = A
—d —dn 0 an on
% £ ay 7 e
1
where |J¢| is the determinant of the Jacobian matrix J°.
AN Ay
LA
Q. d
9 T
dn PA_, :
¢ idé
pUAET |, JE
f’
X
(@ (b)

Figure 7.25 Mapping of the infinitesimal areas from (a) the parent domain to (b) the physical domain.
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Thus, the integral in Equation (7.61) can be expressed as

1 1
1=/ /\J"(E,n)l.f(f,n)didn-

=1 =1

To evaluate this integral, we first carry out Gauss integration over &, which yields

1 1

1= / / | J(EmIF(E mde | dn = / §Wi|r(§,-7n>v<@,n>dn

n=-1 E=-1 r=—1

Next, integrating over 7 yields

1

1= [ oW 3Gl an=3 S w6 mlf(6m)
—1 =1

el i= i=1

Thus, the integral is evaluated numerically by a double summation, using the same weights and quadrature
points as in one-dimensional quadrature. This involves two nested do loops.

7.8.2 Integration Over Triangular Elements®

For general curved-sided triangular elements, the numerical integration procedures are somewhat different
than those for quadrilaterals. The integration formula is given by

1= [ran =3 wir@lre) (7.63)
G =
where the Jacobian is
ox Oy M ONf , M ONj
-t 22X 0 el
Jo |0 %] o6 o .68
Ox Oy ty ONT D ONT | )

% %) [Tty
Recall that the shape functions are expressed in terms of (1, &2, &3), where & = 1 — & — &. The weights

and quadrature points for triangular elements are summarized in Table 7.7.
For straight-sided three-node triangles, the Jacobian matrix is constant and is given by

€ e € €

J¢ = X=X Y1—)3
- ¥ — x¢ e _ e |

2 3 Vo=

Theresulting constant Jacobianis equal to the twice the area of the triangle givenin Equation (7.9) and is the
ratio between the areas of a triangle in the physical and parent domains.

SRecommended for Advanced Track.



Table 7.7 Gauss quadrature weights and points for triangular domains.
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Integration Degree of

order precision & & Weights

Three-point 2 0.1 666 666 666 0.1 666 666 666 0.1 666 666 666
0.6 666 666 666 0.1 666 666 666 0.1 666 666 666
0.1 666 666 666 0.6 666 666 666 0.1 666 666 666
0.1012 865073 0.1012 865073 0.0 629 695 903
0.7 974 269 853 0.1012 865073 0.0 629 695 903
0.1012 865073 0.7974269 853 0.0 629 695 903

Seven-point 5 0.4 701 420 641 0.0597 158717 0.0 661970 764
0.4701 420 641 0.4701 420 641 0.0661 970 764
0.0597 158717 0.4701 420 641 0.0 661970 764
0.3333 333333 0.3333 333333 0.1125

Monomials of any order can be integrated on straight-sided triangles in the closed form. The following
formula has been developed for these purposes (Cowper, 1973):

i ikt 7 ope. 7
/ngf* (z+;+k+2) (7.65)

This formula can be used to avoid numerical integration.

7.9 THREE-DIMENSIONAL ELEMENTS’

The two basic categories of three-dimensional elements are hexahedral and tetrahedral elements. The
former are generalizations of quadrilateral elements, whereas the latter are generalizations of triangular
elements. Wedge-shaped elements can be constructed by collapsing the nodes of a hexahedral element, just
as a triangle can be constructed from a quadrilateral. In each category, we have the basic lower order
element, such as the eight-node (or trilinear) hexahedral and the four-node tetrahedral element, as well as
various higher order curved-face or flat-face elements. We will give a brief summary of the hexahedral
element followed by tetrahedral elements.

7.9.1 Hexahedral Elements

The parent element domain of the eight-node hexahedral (or brick) element is a biunit cube with element
coordinates &, n and ¢. The map to the physical domain is

x(&,m,¢) = N*™M(&n, Ox¢,
¥(&n,¢) = N¥(&,m, Oy, (7.66)
2(&m,¢) = N¥(&n, Oz,

where N8 (¢, ), ¢) are the eight-node hexahedral shape functions defined in the parent coordinate system
shown in Figure 7.26.

"Recommended for Advanced Track.
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AS

Figure 7.26 Mapping of the eight-node hexahedral from the parent to the physical Cartesian coordinate system. Nodes
at ( = —1 are first numbered counterclockwise, followed by nodes at { = 1.

The eight-node hexahedral shape functions can be constructed by a tensor product of one-dimensional
linear shape functions developed in Chapter 4:

N(€ . ) = NiH(ONF-(mNR-(©)- (7.67)

The relationship between the node numbers of one-dimensional and hexahedral elements is given in
Table 7.8.

The approximation #° is constructed by invoking the isoparametric concept, i.e. using the same shape
functions as (7.66):

06(67 77) = NSH(& 7, g)de- (768)

The continuity of the interpolation functions can be seen by observing the behavior along one of the faces of
the element, say ¢ = 1, where N2%(¢)|c=1 = 1. From (7.67), it follows that ¢° (£, , 1) is a bilinear function,
which can be uniquely defined by four nodal values on the face, so the C° continuity is assured.

Higher order hexahedral elements can be derived by a tensor product of higher order one-dimensional
linear shape functions. Figure 7.27 depicts a 27-node triquadratic hexahedral element. One can also
derive a serendipity higher order hexahedral element with all the nodes positioned on the six bounding
surfaces.

Table 7.8 Relationship between one-dimensional and
three-dimensional shape function numbers for the eight-
node hexahedron.

~
~
~
>

XL N || R[N~
=N == | —
PN = | = | N | = | =
R0 [N [0 = | = | = [ =




THREE-DIMENSIONAL ELEMENTS 183

(b)

Figure 7.27 (a) 27-node curved-face hexahedral element (surface nodes are shown on translated surfaces for clarity
for 3 surfaces) and (b) 20-node serendipity hexahedral element.

The Jacobian matrix J¢ in three dimensions is

Ox Oy 0z
o o ok
ox Oy 0z

o | & ooz} 7.69
n o o (7.69)
Ox Oy 0z
a¢ a¢ o

The integral over a hexahedral element domain can be expressed as

1 1

1
1= Q/ rencea= [ [ [ wenolsenodean

=1 =1 (=1
Mgp  Mgp  Ngp

= Z Z WiWWielJ¢ (&, mj» G f (&, G-

i=1 j=1 k=1

7.9.2 Tetrahedral Elements

The tetrahedral parent and physical domains are illustrated in Figure 7.28. The tetrahedral coordinates of a
point P are denoted by &, &, & and &4. The tetrahedral coordinates define the volume coordinates of the
tetrahedral as follows. Any point P in the physical element domain shown in Figure 7.28(b) subdivides the
original tetrahedral element volume 2¢ into four tetrahedra. The volume coordinates are then defined as
follows:

volume of P234 ¢ volume of P134
_ S =

] - 47 Pl
Qe Oe
volume of P124 volume of P123 (7.70)
T T e

Note that with the above definition, & + & + & + & = 1.
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@ ®)

Figure 7.28 Mapping of the four-node tetrahedron from (a) the parent to (b) the physical Cartesian coordinate system.
Also shown is the interior point P (not a node) in the physical domain (b).

Figure 7.29 A 10-node curved-face tetrahedral element.

Each coordinate is zero on one surface and is equal to 1 at the node opposite to that surface.
The shape functions of the four-node tetrahedral element are given by

Nf’rﬂ = 617
N4Tet — ,

s )
N3 = §37

N =g =1-6-6-6.

The 10-node tetrahedral element is shown in Figure 7.29. The shape functions are obtained in a similar
fashion to that of the six-node triangular elements described in Section 7.6.2. For instance, when

Table 7.9 Table of shape functions construction for the ten-node tetrahedral element.

1 & (7, ¥7) &7, ¥7) &, ¥7) &7, %) NOT(E, 6,8, 6)
1 1 0 0 0 2,(6, — 1/2)
2 0 1 0 0 266 — 1)2)
3 0 0 1 0 26(6 — 1/2)
4 0 0 0 1 26,(6—1)2)
5 12 12 0 0 466,
6 0 12 12 0 466,
7 12 0 12 0 4.6
8 12 0 0 12 46,84
9 0 12 0 12 466,
10 0 0 12 12 468,
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Table 7.10 Gauss quadrature weights and points for tetrahedral domains.

Integration Degree of

order precision & & & Weights

One-point 2 0.25 0.25 0.25 1
0.58 541 020 0.13 819 660 0.13 819 660 0.25
0.13 819 660 0.58 541 020 0.13 819 660 0.25

Four-point 3 0.13 819 660 0.13 819 660 0.58 541 020 0.25
0.13 819 660 0.13 819 660 0.13 819 660 0.25
0.25 0.25 0.25 —0.8
1/3 1/6 1/6 0.45

Five-point 4 1/6 1/3 1/6 0.45
1/6 1/6 1/3 0.45
1/6 1/6 1/6 0.45

constructing the shape function N}°T¢, we seek a function that equals unity at node /, vanishes at all other
nodes and is at most quadratic. These conditions are met by 2&;(&; — 1/2) for I = 1. The 10-node
tetrahedral element shape functions are given in Table 7.9.

The integration formulas for tetrahedra are similar to those given in Equation (7.63) for triangles. The
Jacobian is given by Equation (7.69), where the derivatives with respect to &, 1 and ¢ are replaced by the
derivatives with respect to the volume coordinates &;, & and &3. The quadrature point and weights are
summarized in Table 7.10.

Example 7.1

Applying (7.65), we have

REFERENCES

I =

1

<
w J

I1=2A

24)
——

I= [ §&d.
/

Integrate exactly and numerically the following monomial over a triangular element:

(o

124

(1+34+0+2)! 720

Using three-point Gauss quadrature,

HORHORE

—== = 0.00833(24).

)3> =0.00887(24).

Ciarlet, P.G. and Raviart, P.A. (1973) Maximum principle and uniform convergence for the finite element method.
Comput. Methods Appl. Mech. Eng., 2, 17-31.
Cowper, G.R. (1973) Gaussian quadrature formulas for triangles. Int. J. Numer. Methods Eng., 7, 405-8.
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Problems

Problem 7.1

Given a nine-node rectangular element as shown in Figure 7.30.

(i) Construct the element shape functions by the tensor product method.

(i) Ifthe temperature field at nodes A and B is 1 °C and zero at all other nodes, what is the temperature at
x=y=1?

(iii) Consider the three-node triangular element ABC located to the right of the nine-node rectangular
element. Will the function be continuous across the edge AB? Explain.

Figure 7.30 Nine-node rectangular element and adjacent three-node triangular element of Problem 7.1.

Problem 7.2
Consider two triangular elements as shown in Figure 7.31. If the exact temperature field is x2, can the two
elements represent the exact solution? Explain.

) 32.0)

X

Figure 7.31 Two triangular elements of Problem 7.2.

Problem 7.3

Show that if one of the angles in a quadrilateral is greater than 180°, then det(J¢) may not be positive.
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Problem 7.4

Construct the shape functions for the five-node triangular element shown in Figure 7.32, which has
quadratic shape functions along two sides and linear shape functions along the third. Be sure your shape
functions for all nodes are linear between nodes 1 and 2. Use triangular coordinates and express your
answer in terms of triangular coordinates.

2

k

Linear edge

1

Figure 7.32 Five-node triangular element of Problem 7.4.

Problem 7.5

Derive the derivatives of the shape functions and the B-matrix of the eight-node brick element.

Problem 7.6

Using the tensor product of one-dimensional shape functions, construct the shape functions of the 27-node
hexahedral element.

Problem 7.7

Derive the derivatives of the shape functions and the corresponding B-matrix of the 27-node hexahedral
element.

Problem 7.8

Consider two neighboring triangular elements as shown in Figure 7.8. Express the values of parameters f3;
describing an equation of an element edge defined by Equation (7.17) in terms of parameters o describing
an approximation over element domain 6°(x, y) = af + o§x + aSy.

A)Y
2 1
2
3 4 x

o

Figure 7.33 Four-node quadrilateral of Problem 7.9.
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Problem 7.9

Show that by collapsing side 1-2 of the four-node quadrilateral element shown in Figure 7.33, a constant
strain triangle is obtained.

Problem 7.10 N

Consider the four-node isoparametric element. Show that a—l at the origin, £ =71 =0 is given by
ONi Y *

— = hatJ = ¢ =A/4.

o = 24 and that J = det(J¢(0,0)) /
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Finite Element Formulation
for Multidimensional Scalar
Field Problems

In this chapter, we describe how algebraic systems of equations are developed from the weak form and the
finite element approximations of the trial solutions and weight functions given in Chapter 7. We start by
considering two-dimensional heat conduction. With minor changes, the procedures are applicable to any
other diffusion equation, to three dimensions and to the advection—diffusion equation.

The procedure mirrors what we have done in one dimension. The major changes are that the matrices are
of different dimensions, and the element conductance matrices arise from integrals over an area and the flux
matrices from integrals over a line.

8.1 FINITE ELEMENT FORMULATION FOR TWO-DIMENSIONAL HEAT
CONDUCTION PROBLEMS'

We start with the weak form of the heat conduction equations. The weak form for the heat conduction
problem was developed in Section 6.3. In the matrix form, it is written as

find T'(x,y) € U such that :

/(VW)TDVTdQ = / WTZ]dF+/wTsdQ Yw € U, (8.1)
Q T, Q
where
or
Ox koo Ky
VT = g; D:[' ’}
- kXy ky)"
dy

As a first step, the problem domain is subdivided into triangular, quadrilateral or combinations of these
elements as shown in Figure 8.1; the total number of elements is denoted by ;. The domain of each element
is denoted by Q°.

'Recommended for Science and Engineering Track.

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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A qzqonrq

/

T=TonTy

> X

Figure 8.1 Finite element model in two dimensions.

Next, the integrals in (8.1) are replaced by the sum of integrals over ne elements:

Nel

> / (Vw*)TD(VT®) dQ + / wTgdl — / wTsdQ| =0, (8.2)
e=1 Qe I‘Z Qe

The finite element approximation for the trial solution and the weight function in each element is
given by:

Ten

T(x7y)%Te(x7y) :Ne(x7y)de:ZN;(x7y)TIe (x7y) cQ° (83)
I=1

w’ (6, 3) mwT(x,y) = N(x,y)w* = Y N (e, y)wf  (x,y) € O (8:4)
=1

where n,, is the number of element nodes. In (8.3) and (8.4) N¢ (x, y)is the element shape function matrix,
=175 - T,fw]T the element temperature matrix and w° = [w{ w§ --- wf,w]T the matrix
of element nodal values of weight function. Note that for an isoparametric element formulation
(see Chapter 7), the shape functions are expressed in terms of element (natural) coordinates & and 7).
The element nodal temperatures are related to the global temperature matrix by the scatter matrix L°

(this matrix is constructed exactly as described for the one-dimensional case in Chapter 2) through:

d° = Ld. (8.5)

Combining (8.3), (8.4) and (8.5) we obtain a relation for trial solution and weight function in each element:

(a) T¢(x,y) = N°(x, y)Ld

(8.6)
(b) wT(x,y) = (N(x,y)w)" = wILN(x, )
The gradient field is obtained by taking the gradient of (8.3):
or° ONY ON§ ON¢ ON{ ONj ON¢
T¢ T¢ L en e ce. —
v Ox ox ! + ox 2 ot Ox e Oox  Ox Ox ”

o | fowg,  oNs N, . | |ong ong  oNg
—LT7 + T+ +—=T — M

dy dy Oy gy e dy a9y
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In more compact notation the gradient is given by

VT¢(x,y) = (VN°(x,y))d* = B°(x,y)d* = B°(x,y)L‘d, (8.7)
where
B*(x,y) = VN*(x, y).
Applying the gradient operator to (8.6b), it follows that the gradient of the weight function is
(V)" = Bw)" = wTBT = (L'w)"BT = wTLTBT, (8.8)

We will partition the global matrices as

fap il
dF WE Wg
The part of the matrix denoted by the subscript ‘E’ contains the nodes on the essential boundaries. As
indicated by the overbar on dg, these values are known. The submatrices denoted by the subscript ‘F’
contain all the remaining nodal values: these entries are arbitrary, or free, for the weight function and
unknown for the trial solution.

From the structure of d and w and the C° continuity of the shape functions, it follows that the finite
element approximations of the weight functions and the trial solutions are admissible, i.e. 7"(x) € U and

wh(x) € Uy . Substituting the trial solution and weight function approximations, as givenin (8.6), (8.7) and
(8.8), into (8.2) yields

w! ZLET / BTD’B° dQ Led + / NTgdl — / NTsdQ| » =0  Vwe.  (8.9)
e=1

Qe Ffl Qe

In the above, we have replaced the arbitrary weight functions w(x, y) by arbitrary parameters wg. Wg is a
portion of w corresponding to nodes not on an essential boundary.

As in the derivation outlined in Chapter 5, we define the following element matrices:
Element conductance matrix:

K¢ = / BTD°B° dQ2. (8.10)
Q‘,
Element flux matrix:
fe:f/N"ngFJr/N“TsdQ, (8.11)
1"? Qa

—_— T/
e
fr fo
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where 7. and f{, are the element boundary and source heat flux matrices, respectively. The weak form can
then be written as

w’ KZ LETK"L"> d— (Z L‘W’)] =0  Vwg (8.12)
e=1 e=1
The system (8.12) can be rewritten as
wir=0  Vwg, (8.13)
where
r=Kd-f, (8.14)

and the global matrices are assembled as before:

Nel Ne)
K=> LTKL, f=) L (8.15)

e=1 e=1

Recall that in practice we do not multiply by scatter and gather operators, but rather carry out direct
assembly. This will be illustrated in the two examples that follow.
Following the derivation in Chapter 5, we partition w and r in Equation (8.13) into E- and F-nodes:

and as wg = O and wg is arbitrary, from Equation. (8.16) by using the scalar product theorem, we obtain the

partitioned form as
r— |TE| = Ke Kerl||dg| [f&
0 Ki: Kr | |dr fr |’

where Kg , Kr and Kgp are partitioned to be congruent with the partitions of d and f.
The above equation can be rewritten as

KE KEF &E o fE + I
Rl e
and solved using a two-step partitioned approach or by the penalty method. We illustrate the application of
the finite element method for the heat conduction problem on the domain depicted in Figure 8.2 using

D (0,1) C(2,1)

A (0,0)

Figure 8.2 Problem definition for Example 8.1.
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two triangular elements (Example 8.1) and a single quadrilateral element by utilizing Gauss quadrature
(Example 8.2).

1

Figure 8.3 Finite element mesh of Example 8.1.

Example 8.1

Consider the heat conduction problem depicted in Figure 8.2. The coordinates are given in meters. The

0
0 1
along edges AB and AD. The heat fluxes § = 0 and g = 20 W m~! are prescribed on edges BC and CD,
respectively. A constant heat source s = 6 Wm™? is applied over the plate.

The finite element mesh consisting of two triangular elements is shown in Figure 8.3. Itis important to
note that essential boundary conditions must be met, so nodes at the intersection of essential and natural
boundaries are essential boundary nodes. Therefore, when the partitioning method is used, these nodes
must be among those numbered first, as shown in Figure 8.3.

The B¢ matrix for the three-node triangle is given by (see Equation (7.20))

conductivity is isotropic, with D = k } ,andk = 5W°C~!. The temperature 7 = 0 is prescribed

e

1 TO5=) 05—y 0f-»)

B = :
24 (5 =) (= x5) (5 —x])

where
2A° = (x5y5 — x3y5) — (x1¥5 — x3)7) + (x05 — x5)0).

As B¢ and £ are constant and D¢ = kI, the expression of the conductance matrix can be simplified as

K = / BTDB¢d) = / B Bk d2 = BBk / o
Qe Qe Qe

Figure 8.4 A counterclockwise numbering of element nodes.
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3(0.1)

(1) ,
(2,05}

1(0,0)

Figure 8.5 Local node numbering and coordinates of element 1.

or
K¢ = kAeBeTBe.

A counterclockwise numbering is used for local element nodes as shown in Figure 8.4.
For element 1, the local node numbering and element coordinates are given in Figure 8.5. The area of

element 1is A()) = 1 and the resulting B") matrix is
B _1l{-05 1 -05
202 0 2 [

The conductance matrix and the corresponding global node numbering of rows for element 1 is

53125 —0.625 —4.6875] [1]

KUY =k aWBWTBM = | —0.625 125 —0.625 | [2] .
—4.6875 —0.625 5.3125 | [3]
(1] 2] 3]

Similarly, for element 2, the local node numbering and element coordinates are given in Figure 8.6.
The area of element 2 is A = 0.5 and the B?) matrix is

@_[0 05 -05
B *Lz 2 0 |

3(0,1) 2(2,1)

(2,0.5)

Figure 8.6 Local node numbers for element 2.
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The conductance matrix of element 2 is

10 -10 0o 102
K® = kA@BATB? = | —10 10.625 —0.625| [4].
0 —0625 0.625 |[3]
2] Bl [4]

195

The global conductance matrix is obtained by direct assembly of the two element conductance matrices:

53125 —0.625 —4.6875 0 T[]

K_ | —0625 1125 0625 10 |[]

T | —4.6875 —0.625 59375 —0.625][3] "
0 —10  —0.625 10.625 | [4]
1] 2] B3] [4]

Let us now consider the element source matrix

£, = / NTsdQ,
Qe

where triangular element shape functions are

1

N = 57 ()5 — 25y + 0% = y5)x + (5 —x3)y),
1

Ny = 5 (Y1 =iy + 05 =y + (1 —x5)y),
1

e

N5 = 5 (Y2 =yt + 07 = y2)x + (0 = x7)y).

In the special case when s is constant, using [ N¢ dQ = A°/3, (see Figure 8.7) gives a
QL’
closed form expression for the element source matrix,

1
Ae
f6=s/N"’TdQ:s3 1
Qe 1
The element source matrices for elements 1 and 2 are given by
(17 1 21 1]
AW 6x 1
iy [ 1 =22
1] 1 2| 3]
(1] 1 11 [2]
AP 6 x 0.5
=21 = 1 =|1|[4
1] 1 1] [3]
M
1
1 3
A
2

Figure 8.7 Volume under the shape function N, ](I)A
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The direct assembly of the element source matrices yields the global source matrix

2 27 [1]
‘ 241 _|3][2
27 1241 31 3]
1 1] 4]

‘We now proceed with the calculation of the element boundary flux matrix

£l = — / NTgdr.

e
re

Note that element 1 has two edges on the essential boundary (where the temperature is prescribed) and
one interior edge. None of the edges are on the natural boundary, i.e. Ffll) = 0. Therefore, element 1 does
not contribute to the boundary flux matrix. For element 2, g = 20 on CD, and it is the only element edge
that contributes to the boundary flux matrix. We start by evaluating the shape function N® along the edge
CD:

1 [ (2)(2) (2),(2) () (2) (2) (2)
Xy 'y3 — X3y +<y -y )x+(x —X )y]

A2 [*2 3 32 2 3 3 2 0

1

NO| = | 5 [ =+ 0F P )r+ (37 =] | =] o5

1 » 0 ) ) ) ) —0.5x+1.0

2A®) [x§ e =gy (yﬁ " >)x + <X§ ' ))y]
y=1

It can be seen that the two nonzero shape functions coincide with the two-node element linear shape
functions. The resulting boundary flux matrix for element 2 is given as

x2 0 071
2 = 20 / 05x |de=|—20]|[4].
Jo | -05x+1 —20 | 3]

This result is expected as the total heat energy (—20 x 2) is equally distributed between nodes 3 and 4.
The direct assembly of element 2 boundary flux matrix gives

0
0
-20
—20

fr =

Finally, the right hand side matrix of (8.17), which includes the global flux and the residual matrices, is
given as

2 r
frtfotr=| > |+ |
r @ - —-17 r3

-19 0
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The resulting global system of equations is given by

53125 —0.625 —4.6875 0 0 r +2
—0.625 11.25 —0.625 —10 0| | n+3
—4.6875 —0.625 59375 —0.625 0| |r—17
0 —10 —0.625 10.625 T4 —19
Partitioning after the first three rows and columns gives
T, = —19/10.625 = —1.788.
The resulting global and element temperature matrices are
0 0711 0 TP
0 o) @
d= 0 , d =101 [2], d“ =] -1.788 | [4]
—1.788 0] Bl 0 13
The flux matrices are
| 0
q(l) — _xIBWaM) = _xBMaM = _51 —0.5 —0.5 ol = 0 .
20 -2 0 2 0 0

0
q? = —kB®a? = _5{ 0 05 —0.5} 18| — { 4.47 }
-2 2 0

Example 8.2

Consider the heat conduction problem depicted in Figure 8.2. The domain is discretized (meshed) with a
single quadrilateral element shown in Figure 8.8. The 2 x 2 Gauss quadrature developed in Chapter 7 is
used for integration of element matrices.

1(0,1) 4(2,1)
(1
3
(2,0.5)
2 (0,0)

Figure 8.8 Element numbering for Example 8.2.
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The element coordinate matrix is

¥
¥
Y5
¥4

=& m—m

FINITE ELEMENT FORMULATION FOR MULTIDIMENSIONAL

0.5
1

NN OO

The four-node quadrilateral element shape functions in the parent domain are

Q 71 B 3
]\]?(5777)7&*52771*77474(1 O =),
- — 1
(6 =§_i: — =390 ),
- — 1
N3 (& m) = %H:Z(l + (1 +1),
- — 1
MR = 2 21—+ ),
The gradient in the parent domain is
ONI® oNJ® NI oNj@
eNe_ | % e e o | _1[n-1 l-n ldn —n-1
ONg ONs  oNs oNg | Ale-1 —e—1 1+e 1-¢]

o on o M

The Jacobian matrix, the determinant of the Jacobian matrix and the inverse of the Jacobian matrix are
given below:

0 1
JO = (N y) L [77 L L= L 77771} 0 0 :[o 0.1257 - 0375
4le—1 ——1 1+€ 1-¢ ]2 05| [1 0125¢+0.125
2 1
det J = [JU]| = —0.1251 + 0.375,
1
3ng !
(-1 _ =N
n—73

The derivatives of the shape functions with respect to the global Cartesian coordinates are

147
1+¢

—n—1
1-¢ |

I—n
—£—-1

_11 7’]—1
4le—1

B — (J(l))—l(GN4Q) — (J(l))

The conductance matrix and the flux matrix are computed using 2 x 2 Gauss quadrature with the
following sampling points and weights:

Wi =W, =1
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The conductance matrix is given by

K=K = /BeTDeBedQ—k// DTBW |3 dgdn

2 2
:kZZWlW’J 5!777] ’B 51177/) (1)(51777])

i=1 j=1

Summing the contribution from the four Gauss points yields

476 =351 =298 1.73
=351 4.13 1.73 =236
-298 1.73 6.54 —5.29

1.73 =236 -529 5091

K =

The source matrix is given as

1 1
fo — / S(N'Q)T 402 — / / S(NQ)T(30)| de dny
1/

Qe

N (&) 25
/1 /1 NgQ(é 7])
_ (—0.125) + 0.375) de dy =
-1 (57 77)
4Q 2
N4 (57 77)

element parent domain.

quadrature:
. x=2
fr=— / g(N'9)"dl = — / gN* (¢ = —1,m)" dx
Ccp x=0
=)
1 1 5 n -20
b— 0 0
—-22 % [ Nol=—1nTan =20 [ dn =
2 -1 —1 0 0
1
! 5 (1+m) —20
2
The resulting RHS matrix is given by
ry — 17.5
_ r + 2.5
fo+fr+r= r 42

—18

199

The only contribution to the boundary flux matrix comes from the edge CD. Note that the positive £
direction in the parent element domain is defined from node 1 to node 2; the positive 7 direction points
from node 1 to node 4. Therefore, the edge CD in the physical domain corresponds to £ = —1 in the

The boundary flux matrix can be integrated analytically or by using one-point Gauss
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The global system of equations is

476 —351 —298 1.73 0 r—175
—351 413 173 -236(|0| | n+25
—298 173 654 —529(|0]| | m+2 |
173 236 —529 591 | [Ty —18

which yields 7, = —3.04. The global temperature matrix is

0 0

B TCON Y I B

d=d 0 0
Ty —3.04

The resulting flux matrix is computed at the Gauss points and is given as

qV = —kve = —kBVdY,
[0.907
(1) — kB a =
q (617771) (517771) _3.60_7
AV (€ m) = kB0 (&, m)d® = [ 27
’ ’ 1 19.8 |
[4.957
q"(&,m) = —kBY (&, n3)a) = )
119.8 |
[5.81]
(1) — kB a = )
a' (4,m) (&4,m4) 1560

Example 8.3

Consider the heat conduction problem given in Example 8.1 modeled with 16 quadrilateral finite
elements as shown in Figure 8.9. Solving this problem manually using the finite element method is of
course not feasible. We will solve this problem using the finite element code given in Section 12.5.

2D Heat conduction with 16 elements

1.2 1

0.8

0.6

0.4

= patural B.C. (flux) |

0 0.5 1 1.5 2

Figure 8.9 Sixteen-element mesh and natural boundary.
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Temperature distribution

Figure 8.10 Temperature distribution in the 16-element mesh.

The finite element code and the input files are detailed in Section 12.5 and we recommend that you spend
some time to understand the finite element program syntax.

The postprocessing results for temperature and flux are shown in Figures 8.10 and 8.12. You should be
able to obtain identical plots by running the code.

Fluxes are calculated by looping over the number of elements. For the four-node quadrilateral element,
there are four Gauss points as shown in Figure 8.11. The heat flux matrix is plotted at each Gauss point in
the physical domain as shown in Figure 8.12.

8.2 VERIFICATION AND VALIDATION?

A critical aspect of finite element applications is verification and validation. The quickest way to remember
their meanings is to use the definitions of Roache:

Verification: Are the equations being solved correctly?
Validation: Are the right equations being solved?
4 3
x UR

UL %
x LR
L

1

Figure 8.11 Gauss point locations for the local node numbering shown.

“Recommended for Science and Engineering Track.
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Heat flux

. | o— mnur;ﬂ B.C. (flux) |

08¢

0.6+

04+

02F

Figure 8.12 The heat flux computed at the element Gauss points.

The firstquestionis aquestion of logic and correct programming: part of the answer lies in the correctness of
the elements and the weak form used in the program, the correctness of the solver and the postprocessing.
Part of the answer lies in the programming: are the procedures programmed correctly? For commercial
software, an extensive verification plan is usually in place and most users rely on the adequacy of this plan,
though it is sometimes worthwhile to run one or two problems to assure yourself that the features you are
using work perfectly; there are so many features in commercial programs that it is probably impossible to
verify all combinations, so particularly if you use something unusual or new, verification may be
worthwhile. For programs you develop, verification is essential.

In the verification process, it is necessary to establish that the finite element program solves the strong
form correctly. This is not easy, as the equations are solved approximately, and as we have seen, the finite
element solution does not satisfy the governing equation or the natural boundary conditions exactly. The
customary approach to the verification of finite element programs is through a study of convergence: do the
finite element solutions generated by the program converge to the correct solution? However, it is very
helpful to run the patch test, which is described next, before the convergence studies are performed.

The patch test has become ubiquitous as a means of verifying finite element programs. It is extremely
simple, and it is recommended even for commercial software when firstusing it. For ahomemade code, it is
essential before trying any more complicated problems. The patch test is based on the properties of linear
completeness and the fact that if a finite element approximation contains the exact solution, then the finite
element program must obtain that exact solution.

We will first describe the patch test, and then explain why it works. In the patch test, amesh such as shown
inFigure 8.13 is made; the mesh can be quite arbitrary, butitisimportant to have irregular elements, as some
elements are sometimes satisfactory when of regular shapes, such as rectangles, but perform quite poorly
when skewed. From four to eight elements are sufficient; when checking your own program with the patch
test, a very few elements are preferable, because if you fail the patch test, you will need to output a lot of
element data.

The mesh is now used to solve the heat conduction equation with prescribed temperatures (essential
boundary conditions) at all nodes with the nodal values obtained from the linear field:

T(x,y) = oo + 01X + 02, (8.18)
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X
G >

Figure 8.13 A typical finite element mesh for the patch test.

where o , oy and o, are arbitrary constants; you can set them to whatever you like, but they should all be
nonzero. If you are checking your own program, it is best to give them distinctive values so that you can
recognize them in the output.

When you run the finite element program, the solution for the nodal temperature should be given exactly
by (8.18) with the numbers you picked for «; , and the heat flux should be constant throughout the mesh. The
values should agree to the exact values within machine precision, which can vary from 10™*to 10~'°. Even
differences like 10~ sometimes indicate that something is wrong in the program or formulation.

Why does this work? If you consider the heat conduction equation (6.15), you can see that a linear field is
a solution when there are no sources. Prescribing the temperatures along the boundary by this field means
that the field (8.18) satisfies the governing equation and boundary conditions. As the solution to a linear
problem is unique, this must be the exact solution. Furthermore, because the exact solution is included in
the set of finite element approximations (as the elements must be linear complete), the finite element
solution must be the exact solution. Although there has been some controversy on this topic, there is
considerable research that shows that any element that satisfies the patch test is a convergent element.

The other approach to verification is to check convergence to other exact solutions. For heat conduction,
many such solutions are available in the literature. Verification then consists of solving the problem with
increasingly fine meshes as in Example 8.4 and checking that the solution converges. The rate of
convergence should be greater than 1 in the L, norm and should optimally conform to the rule given in
Section 5.7.

There are many situations in which exact solutions are not available. For example, there are no exact
solutions for problems with variable anisotropic conductivity. Althoughitcan be argued that a program that
is verified for isotropic conductivity should also work for anisotropic conductivity, it is best to verify the
program for such applications if many runs are to be made. When there are no closed form exact solutions
for an equation, it is possible to construct such solutions: such constructed solutions are called manufac-
tured solutions.

The approach is quite straightforward. One first makes up the solution, and it is desirable to make the
form reasonably challenging. For example, a form frequently used to see how accurately the program
captures high gradients is

T = cos 2¢ tanh(c(r — 3)), (8.19)

where (r, ¢) are polar coordinates and c is an arbitrary parameter. This field is next substituted into the
governing equation and used to obtain a source s:

5= { (2c2 tanh[c(r — 3)] — g) sech?[c(r — 3)] +% tanhlc(r — 3)}} cos 2¢ (8.20)



204 FINITE ELEMENT FORMULATION FOR MULTIDIMENSIONAL

that satisfies Equation (6.15). The boundary conditions are also constructed from this field: One can choose
any combination of essential and natural boundary conditions, though enough of the boundary must be an
essential boundary so that the system equations are not singular. For example, the essential boundary
conditions can be constructed by substituting the equation(s) describing the domain boundary into
Equation (8.19). The resulting ‘manufactured’ solution (8.19) will satisfy the boundary conditions and
the governing equations with the source given in (8.20). Because of the uniqueness of solutions to linear
systems, it must therefore be the only solution. The program can therefore be verified by seeing whether the
solution converges to this manufactured solution. The same procedures used to check convergence in
Example 8.4 are used.

Validation centers on the application area and the modeling. Does the model you have developed,
particularly the boundary conditions, sources, the material properties, etc., represents the actual physical
situation appropriately? For example, in the example of heat flow through a wall, we prescribed the inner
surface temperature to be at room temperature and assumed that heat flow through the wall is entirely by
conduction. However, when it gets very cold outside, the inside wall temperature will be significantly lower
than room temperature because convection within the room cannot keep the air at a constant temperature
throughout the room. In addition to conduction, heat moves through the wall by airflow in crevices in the
wall. Furthermore, the conductivity of the various parts of the wall will vary with their moisture content,
installation and so on, and in any case will not match the input values.

One may be tempted to bypass the assumption of constant room temperature by modeling the flow of the
air in the room, and such more complete models are increasingly being used. However, with the more
complete models, modeling assumptions must be made, such as placement of furniture in the room,
occupancy, etc. So modelers must at some point consider the question of what level of detail is sufficient for
their purposes and how can that model be validated.

The most straightforward way to validate a model is to perform a test or experiment that closely
replicates the situation of interest. In the case of heat conduction in a wall, a wall would be constructed,
extensively instrumented, and the model would be validated by comparing temperatures at several points in
the wall with the predictions. It could usually be assumed that the conductivity at least for part of the wall is
known accurately enough so that differences in temperature at two points in the wall are sufficient to
provide a good estimate of the heat flow.

However, validation by these means is very expensive and time consuming. In most cases, for simple
problems such as this, more creative ways must be found to validate the model. One approach is to use the
dataavailable in the literature. Although these data may notbe precisely for the same type of wall, if they are
obtained from measurements, they can account for assumptions such as differences between ambient air
temperature and inside wall temperature and other heat loss factors. One can use tests and experiments that
are quite different from the situation being modeled to validate a program. For example, a model for heat
loss of an electronic component can be validated to some extent by heat loss data on motor fins. The scales of
the two situations are quite different, but scaling laws are available for convective heat loss that can then be
used to assess how well the finite element model applies to the smaller scale model of an electronic
component. Obviously, the closer that data are to the actual situation of interest, the more useful they are for
validation.

In linear analysis, validation is simplified substantially as compared to nonlinear analysis because
the output, i.e. the results, depends linearly on the data. Thus, if there is error of 20% in the
conductivity, the maximum error in the heat flow due to this discrepancy is also 20%. Therefore,
estimates of worst possible situations as compared to the model can easily be made. In nonlinear
analysis, this is no longer the case; for example, a difference of 20% in the yield strength of a material can
spell the difference between acceptable strains and failure. Furthermore, in linear analysis, the major
assumptions in modeling are the source data, the boundary conditions and the material properties. Once
it has been determined that a linear model is adequate, these are the only sources of error. In nonlinear
analysis, there are many other aspects that need to be validated: the nonlinear material law, phase change
laws, stability of solutions, etc.
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Figure 8.14 A square plate with a hole, with prescribed temperature at x = £ b and prescribed flux aty = £ b.

In summary, validation is one of the major challenges in developing a model. Each problem domain
requires a distinct program of validation. Itis crucial to be aware of the assumptions that have been made in
developing a model and the magnitude of their effects on the output and hence the design decisions.

Example 8.4

In this example, we consider a manufactured solution of the form
T = (r—a)2 =22 +y? = 2a\/x2 +y> +d’,

defined over the domain of a square plate with a hole as shown in Figure 8.14. For heat equation with
isotropic conductivity and k = 1, the corresponding source term that satisfies (6.15) is given by

S= VT —2a—— 4

Va2

The essential boundary conditions on I'y are

T(r=a)=0, T(x==£by)=a"+b" +y —2a\/y* + b

H 1
0.51F —{-
a o= 0.8
= 0 0.6
4
-0.5
2
0 0.5 2y -0.5 0 0.5 1 0
X X

Figure 8.15 Temperature distribution for the coarsest (34-element) and the finest (502-elements) meshes.
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Figure 8.16 Temperature along the line GG’ for the coarsest (34-element) the finest (502-elements) meshes.

The natural boundary conditions on I, are (7 = —kn'VT)

or 2a
Ggx,y=b) = ——(x,y=b) =2b[ —————1],
q(x,y = b) ay( y=">) < )

VA )

R o]

Figure 8.15 depicts the coarsest and the finest meshes considered in the convergence studies and the
temperature distribution in the two meshes. Figure 8.16 compares the temperature distribution along the
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Figure 8.17 Convergence in L, and energy norms.
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line GG’ obtained with the two meshes against the exact solution. Finally, Figure 8.17 depicts the log—log
plotof the errorin the L, and energy norms (see Equation (5.51)) and alinear approximation obtained by a
linear least squares regression. It can be seen that the slopes approximately equal 1 and 2 in the L, and
energy norms, respectively, closely matching the theoretical values. Identical results were found in one
dimension in Section 5.7.

8.3 ADVECTION-DIFFUSION EQUATION?

In this section, we develop the discrete finite element equations for the multidimensional advection—
diffusion equation. The development parallels that for one-dimensional advection—diffusion. However,
here we will introduce one way for eliminating the ‘wiggles’,i.e. the instability of the Galerkin formulation.
The equations will be developed only for isotropic constant diffusion.

For purposes that will become clear later, we define the residual r(x) for the advection—diffusion
equation (6.43) as in Chapter 3:

r(x) =7 V0 — kV20 —s. (8.21)

We consider essential and natural boundary conditions as given in (6.44). The trial solutions and the weight
functions are given by the standard finite element approximation, (8.6). These trial solution and weight
function approximations are admissible for the weak form of the advection—diffusion equation as they are
in U and Uy , respectively.

Substituting the finite element approximations (8.6) into the weak form (6.47) and subdividing the
domain €2 into element domains gives

Nep

Wg = Zwe =0,
e=1

: ON¢  ON¢ :
wg = wt / ((VXE+ "y ) + B“Tk"’Be) dQd’ + / N7Tgdr - / NTsdQp =0,
Qe Ie Qe

q

(8.22)

where the term Wg on the left-hand side is used to indicate that this discrete term comes from the Galerkin
method. We define the element matrix to be the coefficient of d and the rest to be the element flux matrix.
This gives

. ON¢  ON¢ e
KG:/ ((WWJrvy 8y)+BT1<B)dQ, (8.23)
Ql’
fe, = —/NeTz;dr+ /NeTsdQ, (8.24)
Te Qe

The first partin (8.23) arises from the advective term. The second part in the element matrix is the diffusivity
matrix and is identical to the matrix derived in Section 8.1, but here it is limited to the isotropic case. The
nodal fluxes are exactly equal to those in the diffusion equation, but we have added a subscript ‘G’ to
distinguish them from another set of nodal fluxes that enter for the stabilized case.

3Recommended for Advanced Track.
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Substituting (8.23) and (8.24) into (8.22) gives

Nel

Wo=> w'(Ksd —fg) =0. (8.25)
e=1

The stabilization method we will describe is GLS, Galerkin least square stabilization developed in Hughes
etal. (1989). We will develop the method only for linear elements. To motivate this method, we first observe
that one could solve the advection—diffusion equation by finite elements, by minimizing the square of the
residual, i.e. by minimizing

1
Wis = E/rz ds. (8.26)
Q

Solving a partial differential equation by minimizing Wy is called a least square method. The solution
corresponds to the minimum of Wy g , which is a stationary point of the functional Wy g. Therefore, its
variation vanishes when the residual vanishes, i.e. at a solution, so using the methods developed in Section
3.9 it follows that

0= 6WLS = /6}”‘(19 (827)
Q

From (8.21), it follows that the variation of the residual is
or =7V — kV260.
If we let 660 = w (the variation does not need to be small), then
6r=7v-Vw — kV2w. (8.28)

The source term does not appear in (8.28) because it is given data and does not change as the function 6(x) is
varied.

The least square method tends to be inaccurate but stable. The Galerkin method (8.25) tends to be
accurate but becomes unstable as the velocity ¥V increases. The idea of GLS is then to add a little of the least
square equation to the Galerkin weak form so that the method is accurate and stable. The resulting weak
form is obtained by adding (8.22)and (8.27), which gives

Ws + t6Wrs = Wi + I/érrdﬂ =0. (8.29)
Q

The parameter 7 is a stabilization parameter, and its selection is discussed in Donea and Huerta (2003).
Substituting (8.28) into (8.29) gives

We + r/ (V- Vw — kV2w)rdQ = 0. (8.30)
Q
Now if you are alert, you will have noticed that the second derivatives of the weight functions and trial

solutions appear in (8.30), so the second integrand in the above is not integrable. As the second derivatives
appear in both the weight function and the trial solution, they cannot be eliminated by integration by parts. It
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is one of the big mysteries of these methods that these unbounded terms are simply neglected, and yet the
method works.

Substituting the trial solution and weight function approximations with the diffusion terms neglected,
the least square integral in (8.30) becomes

. ONe  ON\"/ ON¢  ON¢ . ONe  ON\"
SWis = wT / (V"g—i_ vyﬁ—y) (vxa—ﬁ—v)‘a—y) dQd® — / (VXE—I—V),G—))) sdQ2

e e

(8.31)

The element matrix is the coefficient of d° in the above:

. ONe  ON\T/ ON¢ N
K{s = / <Vx i + vy (‘)y) (v‘xaquy o > dQ. (8.32)
o

The least square term also introduces another nodal flux, which is the second integral in (8.31):

. ON¢  ON\T
fLsi / (VxE—FVy ay) SdQ

2

The total element matrices are then
K° = K§ + 1K{§, £ = £g + ] .

Each matrix consists of a part from the Galerkin method and a part multiplied by the stabilization parameter
7 from the least square stabilization. This follows from the original form (8.29), if the resulting expressions
in terms of the elements are substituted. It can be seen that the least square part of the element matrix is
symmetric. The natural boundary conditions are satisfied by the Galerkin part of the residual. The essential
boundary conditions are satisfied by construction, as usual. The matrices are assembled in the usual
manner; this can be seen by substituting d* = L¢d.
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Problems

Problem 8.1
Consider a problem on a rectangular (2 m X 1 m) domain as shown in Figure 8.18. The conductivity is
k=4W°C™'. T =10°C is prescribed along the edge CD. Edges AB and AD are insulated, i.e.
g = 0Wm™'; along the edge DC, the boundary flux is § = 30 Wm™' . A constant heat source is given:
s =50Wm2.
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Figure 8.18 Rectangular domain of Problem 8.1.

Find the nodal temperature and nodal fluxes; evaluate the element matrices by Gauss quadrature. Use a
single rectangular finite element with node numbering shown in Figure 8.19 so that the local and global
node numberings coincide.

4 1

Figure 8.19 Global and local node numberings of Problem 8.1.

Problem 8.2
Consider a triangular panel made of two isotropic materials with thermal conductivities of k; = 4 W °C™!
and k, = 8 W °C~! as shown in Figure 8.20. A constant temperature of T = 10°C is prescribed along the
edge BC. The edge AB is insulated and a linear distribution of flux, § = 15x W m™! , is applied along the
edge AC. Point source P = 45 W is applied at (x = 3, y = 0). Plate dimensions are in meters.

For the finite element mesh, consider two triangular elements, ABD and BDC. Carry out calculations
manually and find the temperature and flux distributions in the plate.

y
A
B
3 L
Insulated
T=10
ky=4|k,=8
A D C .
q=15x
| 2 | 2 |

Figure 8.20 Bi-material triangular domain of Problem 8.2.
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Figure 8.21 Trapezoidal domain of Problem 8.3.

Problem 8.3

A finite element mesh consisting of a rectangular and a triangular element is shown in Figure 8.21. The
dimensions of the plate are in meters. A constant temperature 7 = 10 °C is prescribed along the boundary
y = 0. A constant and linear boundary flux as shown in Figure 8.21 is applied along theedges y = x + 2and
x = 0, respectively. The edge x = 2 is insulated. A point source P = 10 W is applied at (0, 2) m. The
material is isotropic with k = 1 W °C~! forelement 1 and k = 2 W °C~! for element 2. Compute the nodal
temperatures and fluxes at the two elements center points.

Problem 8.4

Consider a triangular panel as shown in Figure 8.22. All dimensions are in meters. A constant temperature
T = 5 °Cis prescribed along the boundary y = 0. A constant boundary flux g = 10 W m~! is applied along
the edges x = 0.5 and y = x. A constant heat source s = 10 W m~? is supplied over the panel and a point
source P = 7 W acts at the origin. The material is isotropic with k = 2 W°C~!.

1. Number the nodes counterclockwise with nodes on the essential boundary numbered first. In this case
will the element matrices (K¢ and f ¢) be any different from those of the global matrices?

2. Construct the conductance matrix.

Construct the boundary flux matrix resulting from the flux acting on the edges x = 0.5 and y = x.

4. Construct the source matrix consisting of uniformly distributed source s = 10 and point source

P=1.

Calculate the unknown temperature matrix.

6. Find the unknown reactions.

w

“

V=

Figure 8.22 Triangular domain of Problem 8.4.
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7. Calculate the flux matrix.
8. What is the maximal temperature in the panel? Explain.

Problem 8.5

Implement the three-node constant strain triangular element into the heat conduction finite element
program. Note that in this case, element matrices can be computed without numerical integration. Test
the code in one of the following two ways: (a) against manual calculations for a two-element problem (see
Problem 8.4) or (b) against the MATLAB code for the quadrilateral element provided in this chapter. In the
latter case, it is critical to consider very fine meshes (for instance, a 64-element mesh for the problem in
Figure 8.2 is a bare minimum requirement). This is because the results obtained with different (valid)
elements converge to the exact solution as the finite element mesh is sufficiently refined.

Problem 8.6

Consider a chimney constructed of two isotropic materials: dense concrete (k = 2.0 W °C~" ) and bricks
(k = 0.9 W°C~"). The temperature of the hot gases on the inside surface of the chimney is 140 °C, whereas
the outside is exposed to the surrounding air, which is at 7 = 10 °C. The dimensions of the chimney (in
meters) are shown below. For the analysis, exploit the symmetry and consider 1/8 of the chimney cross-
sectional area. Consider a mesh of eight elements as shown below. Determine the temperature and flux in
the two materials.

Analyze the problem with2 x 2,4 x 4 and 8 x 8 quadrilateral elements for 1/8 of the problem domain.
A2 x 2 finite element mesh is shown in Figure 8.23. Symmetry implies insulated boundary conditions on
edges AD and BC. Note that element boundaries have to coincide with the interface between the concrete
and bricks.

g=0

S 06]  (symmewy) | 3 4 7 = 0 (symmery)

0.4

A T=140

A
v

Figure 8.23 Chimney cross section and a four-element finite element mesh for 1/8 of the problem domain.

Problem 8.7

A uniform heat source is distributed over a circular domain 0 < r < R, and the temperature at the outside is

zero, i.e. T(R) = 0.

a. Using sixfold symmetry, solve the problem using a single 3-node triangular element as shown in
Figure 8.24. Compare this solution to the exact solution T'(r) = s/4k(R? — r*); also compare the
gradient.
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Figure 8.24 (a) Problem 1: one-element mesh. (b) Problem 2: four-element mesh.

Repeat problem 2 with the 4-element mesh shown. Assume that nodes 4, 5 and 6 are on I'z, so that
T, =Ts =T =0.

Repeat problem 2 with a single six-node triangular element using the same nodal positions. Evaluate
only those parts of K¢ and f¢ that are needed.






Finite Element Formulation for
Vector Field Problems - Linear
Elasticity

The discipline underlying linear stress analysis is the theory of elasticity. Both linear and nonlinear
elasticity have been studied extensively over the past three centuries, beginning with Hooke, a contem-
porary of Newton. Hooke formulated what has come to be known as Hooke’s law, the stress—strain relation
for linear materials. Linear elasticity is used for most industrial stress analyses, as under operating
conditions most products are not expected to undergo material or geometric nonlinearities.

Linear elasticity also deals with many important phenomena relevant to materials science, such as the
stress and strain fields around cracks and dislocations. These are not considered in this course. We start by
presenting the basic assumptions and governing equations for linear elasticity in Section 9.1, followed by
the exposition of strong and weak forms in Section 9.2. Finite element formulation for linear elasticity is
then given in Section 9.3. Finite element solutions for linear elasticity problems in 2D concludes this
chapter.

9.1 LINEAR ELASTICITY

The theory of linear elasticity hinges on the following four assumptions:

deformations are small;

the behavior of the material is linear;

dynamic effects are neglected;

no gaps or overlaps occur during the deformation of the solid.

BN

In the following, we discuss each of these assumptions.

The first assumption is also made in any strength of materials course that is taught at the undergraduate
level. This assumption arises because in linear stress analysis, the second-order terms in the strain—
displacement equations are neglected and the body is treated as if the shape did not change under the
influence of the loads. The absence of change in shape is a more useful criterion for deciding as to when
linear analysis is appropriate: when the application of the forces does not significantly change the
configuration of the solid or structure, then linear stress analysis is applicable. For structures that are large
enough so that their behavior can readily be observed by the naked eye, this assumption implies that

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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the deformations of the solid should not be visible. For example, when a car passes over a bridge, the
deformations of the bridge are invisible (at least we hope so). Similarly, wind loads on a high-rise building,
although often felt by the occupants, result in invisible deformations. The deformations of an engine block
due to the detonations in the cylinders are also invisible. On the other hand, the deformation of a blank in a
punch press is readily visible, so this problem is not amenable to linear analysis. Other examples that
require nonlinear analysis are

a. the deformations of a car in a crash;
b. the failure of an earth embankment;
c. the deformations of skin during a massage.

As arough rule, the deformations should be of the order of 10~ of the dimensions of a body to apply linear
stress analysis. As we will see later, this implies that the terms that are quadratic in the deformations are of
the order of 102 of the strains, and consequently, the errors due to the assumption of linearity are of the
order of 1%.

Many situations are just barely linear, and the analyst must exercise significant judgment as to whether a
linear analysis should be trusted. For example, the deformations of a diving board under a diver are quite
visible, yet a linear analysis often suffices. Sometimes these decisions are driven by practicality. For
example, you have probably seen the large motions of the wingtip of a Boeing 747 on takeoff. Would a
linear analysis be adequate? It turns out that the design of the aircraft is still primarily analyzed by linear
methods, because the errors due to the assumption of linearity are small and thousands of loadings need to
be considered, and this becomes much more complex with nonlinear analysis.

The linearity of material behavior is also a matter of judgment. Many metals exhibit a relationship
between stress and strain that deviates from linearity by only a few percent until the onset of plastic yielding.
Until the yield point, a linear stress—strain law very accurately reproduces the behavior of the material.
Beyond the yield point, a linear analysis is useless. On the contrary, materials such as concrete and soils are
often nonlinear even for small strains, but their behavior can be fit by an average linear stress—strain law.

The assumption of static behavior corresponds to assuming that the accelerations sustained during the
loading are small. This statement by itself gives no meaningful criterion, as one can immediately ask,
‘small compared to what?” There are several ways to answer this question. One way is to consider the
d’ Alembert force f¢ A°™ due to the acceleration, which is given by

[N = [Mal,

where M is the mass of the body and a is the acceleration; we have put absolute value signs on both sides of
the equation because we are only interested in magnitudes. If the d’ Alembert forces are small compared to
the loads, then dynamic effects are also small. The dynamic effect can be viewed as the overshoot that you
will see on a floor scale if you jump on it compared to stepping on it slowly.

An easier way to judge the appropriateness of a static analysis, i.e. neglecting dynamic effects, is to
compare the time of load application to the lowest period of the solid or structure. The lowest period is the time
for a structure to complete one cycle of vibration when vibrating freely. If the time in which the load is applied
is large compared to the period associated with the lowest frequency, then static analysis is applicable.

The fourth assumption states that as the solid deforms, it does not crack or undergo any interpenetration
of material; in short, no gaps or overlaps develop in the body. Interpenetration of material is generally not
possible, unless one material is liquefied or vaporized, so this part of the assumption is just common sense.
The first part of the assumption states that the material does not crack or fail in some other way. Obviously,
materials do fail, but linear stress analysis is then not appropriate; instead, special nonlinear finite element
methods that account for cracking must be used.

The last assumption can be interpreted in terms of continuity. It states that the displacement field is
smooth. The order of smoothness that is required is something we have already learned and is associated
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with the requirements of the integrability of the weak form, but physically it can be justified by requiring the
deformation to be such that there are no gaps or overlaps.

The requirements of a linear stress analysis solution are closely related to the assumptions. The
requirements are

a. the body must be in equilibrium;
b. it must satisfy the stress—strain law;
c. the deformation must be smooth.

In addition to the above, in order to write a stress—strain law, we need a measure of the strain that expresses
the strain in terms of the deformation, which is called the strain—displacement equation. Equilibrium
requires that the sum of the forces at any point of the solid must vanish. The other two requirements have
already been discussed.

9.1.1 Kinematics

The displacement vector in two dimensions is a vector with two components. We will use a Cartesian
coordinate system, so the components of the displacement are the x-component and the y-component. It can
be written in matrix and vector forms as

u= [ux} 7 =ui+ u)f, (9.1)

where the subscript indicates the component.

Figures 9.1(a) and (b), depict the deformation of a control volume A x x Ay in the x and y directions
respectively. The combined deformation is given in Figure 9.1(c). Under the assumption of small
displacement gradients, we can use three independent variables to describe the deformation of a control
volume. These variables correspond to the strains.

The extensional strains are &, and &, ; sometimes the repeated subscripts are dropped and the extensional
strains are written as ¢, and ¢,. The expressions for these strains can be derived exactly like the one-
dimensional extensional strain. The extensional strains &, and ¢, are the changes in the lengths of the
infinitesimal line segments in the x and y directions, Ax and Ay, respectively, divided by the original lengths
of the line segments. Based on this definition, we obtain the following relations for the extensional strains:

u(x 4+ Ax, y) —ux(x, y)  Ouy

& = lim

Ax—0 Ax o oox’
9.2
uy(x, y+ Ay) —uy(x, ) uy 62
&y = lim : =—,
T A0 Ay dy
The shear strain,y,,, measures the change in angle between the unit vectors in the x and y directions in units
of radians:
Yoy = lim el y+ AY) — el y) (et Ax y) = i (x )
) Ay—0 Ay Ax—0 Ax (9 3)
ou, n Outye n ’
= —+—=a + .
dox Oy ! 2

where o; are shown in Figure 9.1. Two forms of the shear strain appear commonly in finite element software:
the engineering shear strain y,,, given above and the tensor shear strain &;, = (1/2)7,,.
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y

!

i
y(xy + Ay)* i u(x+Axy+Ay)

(@ (b)

T

Y ’;fi(x+Ax,y+Ay)

©

Figure 9.1 Deformation of a control volume: (a) deformation in x due to @ux; (b) deformation in y due to @u_v;
(c) deformation in x and y.

Note that if o = —op, the shear strain vanishes. The resulting deformation is depicted in Figure 9.2. It
can be seen that the control volume undergoes axial elongations in addition to the rotation. The rotation of
the control volume in two dimensions, denoted by w,, is computed by

Way

1 /0u, Ouy\ 1

For an infinitesimal displacement field, #(x, y), the rotation wWyy is very small, and therefore it does not affect
the stress field.

/;V"’ﬁ(x +Axy+Ay)

i(x,y)

ﬁ(x +Axy)

Figure 9.2 Axial strains and rotation of a control volume.
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In finite element methods, the strains are usually arranged in a column matrix &, as shown below:
&= [en &y '/xy]T- (9.5)
Equations (9.2)—(9.3) can be written in terms of the displacements as a single matrix equation:

EXX

g=|&y | =Vsu=Vs {ZX:|7 (9.6)
Va ’

where V is a symmetric gradient matrix operator

9/0x 0
Vs=| 0 9/oy|. (9.7)
8/dy 9/dx

9.1.2 Stress and Traction

Stresses in two dimensions correspond to the forces per unit area acting on the planes normal to the x or y
axes (these are called tractions). The traction on the plane with the normal vector 77 aligned along the x-axis
is denoted by &, and its vector form is &, = O'M?—F ax)i Likewise, the traction with the outer normal unit
vector 7i aligned along the y-axis is denoted by &, and its corresponding components are &, = ayx?+ Uyyf.
We will refer to &, and 0, as stress vectors acting on the planes normal to the x and y directions, respectively.
The stress state ina two-dimensional body is described by two normal stresses o, and o, and shear stresses
Oy and oy, as illustrated in Figure 9.3. From moment equilibrium in a unit square, it can be shown that
Oxy = Oy, SO these stresses are identical.

Figure 9.3 depicts stress components acting on two planes, the normals pointing in the positive x and y
directions. Positive stress components act in the positive direction on a positive face. The first subscript on
the stress corresponds to the direction of the normal to the plane; the second subscript denotes the direction
of the force. The normal stresses are often written with a single subscript as o, and o,.

Stresses can be arranged in a matrix form similarly to strains:

' =on oy oyl (9.8)

Occasionally, it is convenient to arrange stress components in a 2 X 2 symmetric matrix 7 as

T= {"” "*«“}. (9.9)

Oxy Oyy

Figure 9.3 Stress components.
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Figure 9.4 Relationship between stress and traction.

The stress vectors ¢, and &, can be conveniently used to obtain the tractions on any surface of the body.
Tractions, like stresses, are forces per unit area, but they are associated with a specific surface, whereas the
stresses provide information about tractions on any surface ata point. The relationship between stresses and
tractions is written in terms of the unit normal to the surface 7, as illustrated in Figure 9.4.

Consider the triangular body shown in Figure 9.4. The thickness of the triangle is taken to be unity. At the
surface with the unit normal vector 7, the traction vectoris 7. On the planes normal to the coordinate axes, the
traction vectors are —d, and —&,. The components of the unit normal vector are 7i given by

7=nd+ nyf.
The force equilibrium of the triangular body shown in Figure 9.4 requires that
7dl’ — G, dy — &, dx = 0.
Dividing the above equation by dI' and noting that dy = n, dI' and dx = n, dI, we obtain
71— &, — oyny = 0.
Multiplying the above by unit vectors ?andfyields, respectively,

Iy = Oxxlly + Oxylly = Oy *

TR

(9.10)

ly = Oyhy + Oyny = 0y - 1,

where we have used the relations t, =7+ i,ty =7+ j, 04 = 0y + I, Oyy = Oy + I, Oyy = O - jand oyy = G - J.
Equation (9.10) can be written in the matrix form as

t=1n. (9.11)

9.1.3 Equilibrium

Consider an arbitrarily shaped body shown in Figure 9.5 of unit thickness; the body force and the surface
traction are assumed to be acting in the xy-plane.



Ly

LINEAR ELASTICITY

N A
f 8,(vy + )
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\Ay /\M
Ay _GX(X - gs)’) 6X(X + 77}’)
Q Ax r 2 Ax

,/ 5, (v )

(d)

Figure 9.5 Problem definition: (a) domain of the unit-thickness plate and (b) traction vectors acting on the infinite-
simal element.

(@)

The forces acting on the body are the traction vector 7 along the boundary I and the body force b per unit
volume. The body force and the traction vectors are written as b= by + b}f and 7 = 1,0 + t}f, respectively.
Examples of the body forces are gravity and magnetic forces. Thermal stresses also manifest themselves as
body forces.

Next, consider the equilibrium of the infinitesimal domain of unit thickness depicted in Figure 9.5(b).
For a static problem (no dynamic effects), the equilibrium equation on the infinitesimal domain is

given by
A A
— 0y *JJ’ Ay + 0, X+i,y Ay
2 2
A A ~
*Ey(xyy*%)Ax+5v<x,y+7y)Ax+b(x,y)AxAy:0.

Dividing the above by AxAy, taking the limit as Ax — 0, Ay — 0 and recalling the definition of partial

derivatives,
. N Ax . Ax
Ol x+— — Ol Xx——
x ) Y x 5 Y B 03,

lim

Ax—0 Ax Ox
A A
3y x7y+l — 3y x7y_7y -
lim 2 2) 90
Ay—0 Ay - 8y ’

Combining the above two equations yields the equilibrium equation:

05

gy, -
—+b=0. 9.12
Ox + dy * (9.12)
Multiplying (9.12) by unit vectors 7andf gives two equilibrium equations:
00y Ooyy
by, =0
Ox Oy +0:=0,
oy, Ooyy
——=+b, =0, 9.13
o T % + b, (9.13)
or in the vector form:
V-G +b, =0, V-G, +b,=0 (9.14)



222 FINITE ELEMENT FORMULATION FOR VECTOR FIELD PROBLEMS - LINEAR ELASTICITY

The equilibrium equations will also be considered in the matrix form. If you consider the transpose of the
symmetric gradient operator given in (9.7) and the column matrix form of the stress:

2 0 g o
Vg = Ox %y , o= a;; ,
O 8_)7 a O-xy

then the matrix form of equilibrium equations (9.13) can be written as

Vio+b=0. (9.15)

The fact that the equilibrium equation (9.15) is the transpose of the strain—displacement equation (9.6) is an
interesting feature that characterizes what are called self-adjoint (or symmetric) systems of partial
differential equations. The heat conduction (or diffusion) equations are similarly self-adjoint. The self-
adjointness of these partial differential equations is the underlying reason for the symmetry of the discrete
equations, i.e. the stiffness matrix and the conductance matrix.

9.1.4 Constitutive Equation

Now let us consider the relation between stresses and strains, which is called the constitutive equation.
Examples of constitutive equations are elasticity, plasticity, viscoelasticity, viscoplasticity and creep.
Here, we focus on the simplest constitutive theory, linear elasticity.

Recall that in one dimension, a linear elastic material is governed by Hooke’s law o = E¢, where the
material constant £ is Young’s modulus. In two dimensions, the most general linear relation between the
stress and strain matrices can be written as

¢ = Ds, (9.16)

where Disa3 x 3 matrix. This expression is called the generalized Hooke’s law. It is always a symmetric,
positive-definite matrix; these two properties are due to energy considerations, which will not be discussed
here but can be found in any text on continuum mechanics or elasticity.

In two-dimensional problems, the matrix D depends on whether one assumes a plane stress or a plane
strain condition. These assumptions determine how the model is simplified from a three-dimensional
physical body to a two-dimensional model. A plane strain model assumes that the body is thick relative to
the xy-plane in which the model is constructed. Consequently, the strain normal to the plane, ¢,, is zero and
the shear strains that involve angles normal to the plane, y,. and y,,, are assumed to vanish. A plane stress
model is appropriate when the object is thin relative to the dimensions in the xy-plane. In that case, we
assume that no loads are applied on the z-faces of the body and that the stress normal to the xy-plane, o, is
assumed to vanish. The physical arguments for these assumptions are as follows. If a body is thin, as the
stress o, must vanish on the outside surfaces, there is no mechanism for developing a significant nonzero
stress 0,,. On the other hand, when a body is thick, significant stresses can develop on the z-faces, in
particular the normal stress o, can be quite large.

The D matrix depends on the symmetry properties of the material. An isotropic material is a material
whose stress—strain law is independent of the coordinate system, which means that regardless of the
orientation of the coordinate system, the elasticity matrix is the same. Many materials, such as most steels,
aluminums, soil and concrete, are modeled as isotropic, even though manufacturing processes, such as
sheet metal forming, may induce some anisotropy.
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For an isotropic material, the D matrix is given by

Plane stress:

1 v 0
E
:ﬁ v 1 0
Yo 0 (1-w)2
Plane strain:
[1—v v 0
E
D=———" v 1—v 0
(l+l/)(l—2l/)_ 0 0 (1-20)/2

As can be seen from the above, for an isotropic material, the Hookean matrix D has two independent
material constants: Young’s modulus E and Poisson’s ratio v. Note that for plane strain, as v — 0.5, the
Hookean matrix becomes infinite. A Poisson’s ratio of 0.5 corresponds to an incompressible material.
This behavior of the Hookean matrix as the material tends toward incompressibility and other features
of finite elements make the analysis for incompressible and nearly incompressible materials more
difficult than for compressible materials. Therefore, special elements must be used for incompressible
materials. These difficulties do not occur for plane stress problems, but they do occur in three
dimensions.

The Hookean matrix for an isotropic material can also be written in terms of alternative material
constants, such as the bulk modulus K = E/3(1 — v) and the shear modulus G = E/2(1 + v).

In some circumstances, a two-dimensional model is appropriate but the standard plane stress or plane
strain assumptions are not appropriate because although the z components of the stress or strain are
constant, they are nonzero. This is called a state of generalized plane stress or generalized plane strain when
0, OT &, are constant, respectively.

9.2 STRONG AND WEAK FORMS

Let us summarize the relations established so far for 2D linear elasticity.

Equilibrium equation:
Vic+b=0, or V& +b =0 and V-G, +b,=0. (9.17)
Kinematics equation (strain—displacement relation):
¢ = Vsu.
Constitutive equation (stress—strain relation):
o = De.
Asin one dimension, we consider two types of boundary conditions: The portion of the boundary where the

traction is prescribed is denoted by I';, and the portion of the boundary where the displacement is prescribed
is denoted by I',,. The traction boundary condition is written as

m=tonIl, or &,-A=17 and &,-i=17 on I, (9.18)
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The displacement boundary condition is written as

u=a on I,, or ii=u on I, (9.19)
The displacement boundary condition is an essential boundary condition, i.e. it must be satisfied by the

displacement field. The traction boundary condition is a natural boundary condition. As before, the
displacement and traction both cannot be prescribed on any portion of the boundary, so

r.nr,=0.

However, on any portion of the boundary, either the displacement or the traction must be prescribed,
SO

r,ul',=T.

‘We summarize the strong form for the linear elasticity problemin 2D in Box 9.1 in the mixed vector—matrix
notation, relevant for derivation of the weak form.

Box 9.1. Strong form for linear elasticity

a) V-G +b,=0 and ﬁ-&'y+by:O on £,

b) 6 =DVru,

: ! (9.20)
c)
)

(
(
(
(

d

To obtain the weak form, we first define the admissible weight functions and trial solutions as in Section
3.5.2. We then premultiply the equilibrium equations in the x and y directions (9.20a) and the two natural
boundary conditions (9.20c) by the corresponding weight functions and integrate over the corresponding
domains, which gives

(a) /wx vadsn/wxbxdsz:o Yw, € Uy,
Q Q

(b) / wy V-7, dQ + / wyb, d2 =0 Yw, € Uj,
Q Q
(9.21)

t

wy(ty — &, -7)dl =0  Yw, € Uy,

(c) / wy(ty — 0 -7)dl’ =0 Yw, € Uy,

where
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Green’s theorem is applied (see Chapter 6) to the first term in equations (9.21a) and (9.21b), which
yields

/wx ﬁ&de:]{w@.ﬁdr— Vw, - &,dQ,
Q T Q (922)

/wy ﬁ.&),d(z:]{wyav.ﬁdr—/ Vw, - &, dQ.
Q r Q

Adding the two equations in (9.22) and recalling that the weight functions w, and w, vanish on I, yields

/Q (( Vw, -G+ Vw,-3,)dQ= ¢ (WG, -7 +wd, - i) dl + / (Wb +wyb,)dQ.  (9.23)

T Q

Substituting (9.21c¢) and (9.21d) into (9.23) and writing the RHS in (9.23) in the vector form gives

/( Vwy - 6 + ﬁwy-ﬁy)dng sz-?dF+/vT/~l7dQ. (9.24)
Q ' Q

Expanding the integrand on the LHS of (9.24) yields

Owy Ow, Ow, Ow,

§W'X'0_"X+ ﬁwy'ﬁyzaom 8—yO'xy+§0'xy+a—yO'yy
Oxx .
(B (B (O w\TE (Vow)Ts (9.25)
T\ ox Oy dy = Ox w TS ’
Oy

Inserting (9.25) into (9.24) and writing the RHS of (9.24) in the matrix form gives

/(ng)Ton:/ wadl"+/ wbdQ Yw € Up.
0 r, Q

After the substitution of (9.20b) for ¢ the weak form in two dimensions can be written as follows:

Find u € U such that

/ (Vsw) ' DVsudQ = / wltdl + / wibdQ  Yw € U,
Q r, Q (9.26)

where U={ujucH' ,ju=tuonT,}, Uy={wwcH w=00nT,}.

9.3 FINITE ELEMENT DISCRETIZATION

Consider a problem domain €2 with boundary I' discretized with two-dimensional elements (triangles or
quadrilaterals) as shown in Figure 9.6.; the total number of elements is denoted by 7).

The x and y components of the displacement field u = [u, uy}T are generally approximated by the same
shape functions, although in principle different shape functions could be used for each of the components.
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A n=1t on I,

u=u on [, X

»
|

Figure 9.6 Finite element mesh in two dimensions.

There are two degrees-of-freedom per node corresponding to the two components of the global
displacements, so the nodal displacement matrix is:

T
yl Uy uy2 Tt uxn,, » uynnp }

where n,,, is the number of nodes in the finite element mesh. The displacement field in the finite element is
written in terms of the shape functions, which from Chapter 7 we know depend on the type of element and
the number of nodes. The finite element approximation of the trial solution and weight function on each
element can be expressed by:

u(x,y) ~u’(x,y) = N(x,y)d* (x,y) € Q°

(9.27)
wi () = wT(xy) = wIN(x, )" (x,y) €°
where element shape function matrix N° in Eq. (9.27) is given as
N[N0 N 0 N0
0 N O N ... 0 N
and d° = [uy uy ouy U g, u;nmf are the element nodal displacements and
we = [Wfd Wi Wy Wi Wi W;,,M}T are the element nodal values of weight functions.

Recall from Chapter 6 that the finite element approximation is C° continuous, i.e. it is smooth over
element domains but have kinks at the element boundaries. Therefore, the integral over € in the weak form
(9.26) is computed as a sum of integrals over element domains 2¢

nel
> { / Vsw D Vgue d — / wTtdl — / wabdQ} =0 (9.28)
Q¢ e Qe

e=1

Next we express the strains in terms of the element shape functions and the nodal displacements. Recall the
strain-displacement equations (9.6) expressed in terms of the symmetric gradient operator. Applying the
symmetric gradient operator to N¢ gives

8.’CX
e= | &y | ~& = Vou' = VsNd° = B°d’, (9.29)

yxy



FINITE ELEMENT DISCRETIZATION 227

where the strain—displacement matrix B¢ is defined as

[ ONY ON5 ON¢
0 2 0 ... M 0
Ox Ox Ox
ON¢ ONj} ON¢
B =VN'=| 0 L0 20 e
sN dy Ay Ay
ONi ONi ON; ON; M, Ny
Ldy Ox Oy Ox dy ox |
The derivatives of weight functions are:
(Vow)" = (Bw*)" = wTBT. (9.30)

Substituting (9.30), (9.29) and (9.27) into (9.28) and recalling that d° = L¢d, w*T = w'LT yields

US|
LED A / BTDBdQLd — / NTEdl — / NTbdQ| » =0  Vwg. (9.31)

e=l Qe re Qe

i

In the above, we have replaced the arbitrary weight functions w(x, y) by arbitrary parameters wg. g is the
portion of w corresponding to nodes that are not on an essential boundary. Following the derivation outlined
in Chapters 5 and 8, the element matrices are given as follows:

Element stiffness matrix:

K’ = / BTD?B dQ. (9.32)
Oe
Element external force matrix:
= / NThdQ + / NeTedr, (9.33)
Qe I
e
fo L

where £, and 7. in (9.33) are the body and boundary force matrices.
The weak form can then be written as

Hel Ne|
wh | D LKL [d— [ YL (| =0 Ywe (9.34)
e=1 e=1
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Using (9.32) and (9.33) and the assembly operations (5.13) and (5.14), the system (9.34) reduces to
w(Kd—f)=0 Vwg (9.35)
Equation (9.35) can be written as
wir=0  Vwg (9.36)

Partitioning Equation (9.36) into E- and F-nodes gives

T T
WeIp + Werg = 0 VWE.

Aswg = 0and wyisarbitrary, it follows thatry = 0. Consequently, the above equation can be conveniently
rewritten as

5 -]
Kix Kg ||dg fr | ’

where Kg, Kr and Kgp are partitioned to be congruent with the partition of d and f. Equation (9.37) is
solved using the two-step partition approach discussed in Chapter 5.

9.4 THREE-NODE TRIANGULAR ELEMENT

The triangular three-node element is illustrated in Figure 9.7. It is a linear displacement element.
The strains are constant in the element. The nodes must be numbered counterclockwise as shown in the
figure.

Each node has two degrees of freedom, so the column matrix d° consists of six terms:

T
A = [y sy, Uy, Ui, U] (9.38)

The displacement field in the element can then be expressed in the form of
{uxyi {Ni 0O N5 O N5 O],

iy 0 N 0 N, O N¢

¢
U,

Figure 9.7 A single triangular finite element.
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Applying the symmetric gradient operator (9.6) gives
e | ¢ Ni, O N, O N, O
eyl = 0 Ny, 0 N 0 N |d, (9.39)
ny Niy Nf,x NS,V Ng,x N§) N;x

where Ny, = doix’ and N}, = d()iy’ Using the relations given in Chapter 7, it follows that

e

Exx 1 Y 0y 0y, O
g =lon| =5 0 % 0 x5 0 a5 |d, (9.40)
Vxy Xpo Yz Xz Y5 X5 YD

where x§, = x{ — x5, which defines the B® matrix for the element. It can be seen that as expected, the B¢
matrix is not a function of x or y, i.e. the strain is constant in the element.
The stiffness matrix is given by (9.32):

K¢ = / BTD’BdS).
o

In most cases, for a low-order element such as this, the material properties are assumed constant in the
element. Consequently, the integrand is a constant, and for an element of unit thickness, we have

K¢ = A(’BeTDeBe .

The stiffness matrix is 6 X 6, and it is quite large for manual computations, so it is usually evaluated by
computer.

9.4.1 Element Body Force Matrix

The element body force matrix is given by (9.21):

fo, = / N dQ. (9.41)
Q

There are two ways of evaluating this matrix:

(i) by direct numerical integration, and

(ii) by interpolating b, usually with a linear function, and integrating the result in the closed form. Note that
indirect integration, interpolation is still often required as the body forces may only be given at discrete
points and interpolation is required to evaluate the integral.

Evaluation of the matrix in the closed form is extremely difficult unless triangular coordinates are used,
so we will use them here. We interpolate the body force in the element by the linear shape functions in the
triangular coordinates as

bx . 3T bxl
b= = N, 9.42
I:by :| £ I byl I ( )
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where b,; and by; are the x and y components of the body force at node 1. Substituting (9.42) into (9.41), we

obtain
NT 0 2b b b
1 1+ bx2 + b3
(:T N13T 5 ae 2byl + byZ + by3
e Né 0 3T be _ 7 bxl + 2bx2 + bx3
fo = / 0 N3 ;Nl by d@2 = 12 | byt +2byy + by3
Qe N§’T 0 by + by +2by3
0 N%T byl + by2 + 2by3

The last step was performed by using the integration formulas as given in Section 7.8.2.

9.4.2 Boundary Force Matrix

The boundary force matrix is given by

fo = / NTEdr.
I

(9.43)

(9.44)

Asforthe body forces, they can be evaluated by direct integration or by interpolation. We illustrate the latter

approach for a linearly interpolated traction.

To simplify the explanation, consider the triangular element shown in Figure 9.8; in the figure, the
traction is applied to the edge joining nodes 1 and 2, but the results are easily applied to any node numbers.
We know from the Kronecker delta property of shape functions that N5 vanishes at nodes 1 and 2, and as the
shape function is linear along the edge, it vanishes along the entire edge. Furthermore, N?* and N2* are

linear along the edge and can be written in terms of the edge parameter £ as
NE=1-¢  NE=¢

The integral (9.44) then becomes

1 0
fef|
0 0

0

2 32

U, [

uiy, i

element e

/ X i3, fy3

Ui, i X

»
»

Figure 9.8 Triangular three-node element showing nodal displacements and nodal forces (they are shown as collinear

that usually are not).
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where we have used dI' = /d¢ and changed the limits of integration to O to 1 (/ is the length of the edge).
Note that we have used a linear interpolation of the two traction components.
The above is easily integrated in the closed form, giving

2[.!(1 + 1t
2[y1 + tyZ
l ta + 2tx2
6 |ty + 2ty
0
0

Thus, there are no nodal forces on node 3 due to the tractions on the edge connecting nodes 1 and 2. The
nodal force at node 1 (or 2) is more heavily weighted by the traction at node 1 (or 2). For a constant traction,
ty =ty = tyand ty; = 1,5 = t,, we obtain

I

;)
17,
20|
0

which shows that the total forces (the thickness is unity) are split equally among the two nodes.

9.5 GENERALIZATION OF BOUNDARY CONDITIONS

Although we have subdivided the boundary into prescribed displacement and prescribed traction bound-
aries, in fact, one has substantially more versatility in stress analysis: on any portion of the outside surface,
any component of the traction or the displacement can be prescribed. To specify this mathematically, we
denote the portion of the surface on which the ith component of the traction is prescribed by I';, (the i = 1
component is the x-component, the i = 2 component is the y-component). Similarly, the portion of the
boundary on which the ith component of the displacement is prescribed is denoted by I',,,. The boundary
conditions are then written as

ax = ;x on F)‘X7
Gy -1 =1y on Ty,
Uy = Uy on |
Uy = iy on Ty

This weak form can be derived by an appropriate choice of w, and w, on the boundary. Note that the same
component of traction and displacement cannot be prescribed on any part of the boundary, so

[WNTy=0, T,unT,=0.

Furthermore, for each component, either the traction or the displacement can be prescribed, so

Tpuly =T, r,uly =T.
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Observe that these boundary conditions conform to the rule that any two variables that are conjugate in
work cannot be prescribed. Thus, u, and t, are conjugate in work in the sense that an increment of work is
givenby dW = t, du,, whereas t, and u, are not conjugate in work, so they can be prescribed on any portion
of the boundary.

Example 9.1: Illustration of boundary conditions

In the following, we describe how to specify boundary conditions for various problems. We start with
some simple idealized problems and then proceed to situations that are more realistic. For the latter,
choosing appropriate boundary conditions is often an art.

Consider the plate with a hole shown in Figure 9.9 with loads applied at the top and bottom.
Sides AD and BC are traction free, and nothing needs to be done in a finite element model to
enforce a homogeneous (zero) natural boundary condition. Sides CD and AB are also natural
boundaries, but the tractions must be incorporated in the equations through the boundary force
matrix fr. However, these boundary conditions do not suffice to render the system solvable, as
these boundary conditions admit rigid body motion, so there are an infinite number of solutions
and K is singular. To eliminate rigid body motion, at least three nodal displacement components
must be specified so that translation and rotation of the body is prevented (corresponding to
translations in the x and y directions and rotation about the z-axis). One way to make K regular
(nonsingular) is to let

Uxa = Uya = Uyp =0.

Note that if you replace u,p = 0 by u,p = 0, K is still singular as rotation is not prevented. The above
conditions prevent both rigid body translation and rotation.

Another way to model this problem is to use symmetry, resulting in the model shown in
Figure 9.9(b). The lines of symmetry are FG and HK. Along a line of symmetry, the
displacement component normal to the line (or plane) of symmetry must vanish. Otherwise, as the
displacement fields in symmetric subdomains, i.e. {24 and Qg in Figure 9.9(c), are mirror images, so a

y
Ay
F
WYYV YV VYV Y SR
symmetry \>
G
_\ X (b) Line of _i‘ K—XF
> symmetry
F
Overlap " QF
A STV VI AN

(a) ©

Figure 9.9 Plate with ahole: (a) a model of complete problem; (b) a model of symmetric portion; (c) an illustration
of why displacements normal to a line of symmetry must vanish.
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ﬂ“\/ E Yyyv D

(@ (b)

Figure 9.10 A bracket and its model.

nonzero normal displacement along the line (or plane) of symmetry results in either gaps or overlaps,
which violates compatibility. The other symmetry condition is that the shear on the line of symmetry
must vanish. To summarize, for Figure 9.9(b),

u, =0 and t, = o,, = Oon FG,
uy, =0 and t, = o,, = Oon HK.

As the above traction (natural) boundary conditions are homogeneous, they are naturally satisfied if we
do not constrain the corresponding displacement.

Figure 9.10 shows a bracket and a simplified model, which is aimed at finding the maximum stress in
the bracket. In many cases, it would be desirable to model the bolt and vertical rod, but this would entail
substantially more computational effort and the use of contact interfaces, which are nonlinear. Therefore
we model them with prescribed displacements and applied loads. The boundary conditions are as
follows:

1. along AB, u, = 0 and at one node u, = 0;
2. the remaining surfaces are all traction free, i.e. , = ¢, = 0, except on the segment FG.

Note that the frictional force along AB is not modeled; friction is nonlinear and the effect of the frictional
forces would be small. Fillets are also not modeled.

Example 9.2: Quadrilateral element

Consider a linear elasticity problem on the trapezoidal panel domain as shown in Figure 9.11. The
vertical left edge is fixed. The bottom and the right vertical edges are traction free, i.e. t = 0.
Traction 7, = —20Nm™! is applied on the top horizontal edge. Material properties are Young’s
modulus E =3 x 107 Pa and Poisson’s ratio v = 0.3. Plane stress conditions are considered. The
problem is discretized using one quadrilateral element. The finite element mesh and nodal coordi-
nates in meters are shown in Figure 9.12.

The constitutive matrix D is

=]

p v 1 03 0
=== " L0 1 =33x107{03 1 0
1o 0 —= 0 0 035
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=20

222222227

0.5 m

\t_onl"t

Figure 9.11 Problem definition of Example 9.2.

FEERERS
e,

2

1(0,1) 4 (2,1)
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(2,0.5)

2 (0,0)

Figure 9.12 Finite element mesh for Example 9.2.

The coordinate matrix is

XN 0 1

[xy]= E ﬁi - g 0(.)5

%oy 20

The Lagrangian shape functions in the parent element are

Mem =g 2 I S - g1 - ),
NE‘Q(M):%H:%HOU—W
N = g I 21491+ ),
N =g 21— o)1+ 1),
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and the Jacobian matrix is given by

€

AN NI gNi gNR X
o o 0 O ||% Y
ONIQ ONJR ONIQ NI || X V%
o on o onp o on Ik

¥ =

0 1
C1[n—=1 1-n 1+ —n—l} 0 0 _{0 0.1251 — 0.375
C4le—1 —€6—1 14€ 1—¢]]2 05| |1 0125¢40.125]
201

The determinant and the inverse of the Jacobian matrix are

1J| = —0.1257 + 0.375,

1+¢
3-7

1
¥yt =

n—73

The strain—displacement matrix is

0
ON,Q

[oniQ 0 ON3R o ONIQ 0 ONIQ
ox Ox Ox ox

B¢ =

Ny 0 N, 0 NG
dy dy dy
ON{Q ON{? ON,? ONJ? ON3? ON;Q

0

0 By

N, ON,Q

235

| Oy Ox dy Ox ady Ox dy Ox |

The element matrices will be integrated using 2 x 2 Gauss quadrature with the following coordinates in
the parent element and weights:

. Wi=Wy=1.

S-Sl
S-S

The stiffness matrix is
1 pl
K=K = / BTD’B° dQ = / / BTD’B¢|J¢| d¢dn
—1J-1
Q

J(&, )| BT (&, m)DBC (&, ).

:ZZW"Wf

i=1 j=1
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We calculate the stiffness K¢ at a Gauss point (£,71) = (—(1/v/3), —(1//3)).

ON{Q ON;? ONJQ aNjQ ON/Q ON;? ONJQ ONJC
Ox Oox Ox Ox — 39 Em) 3 23 23 29
ONJQ ANIR ONIQ?  ON{? ONy? aNj? ON{?  ON,©
9 9y 9y 9 Jiem) o on on on &)

044 —006 0.2 038
| 088 —088 —024 024]

Thus, the strain—displacement matrix at the Gauss point is given as

—0.44 0 —0.06 0 0.12 0 038 0
B(&1,m) = 0 0.88 0 —0.88 0 —-024 0 024].
0.88 —-044 —-0.88 —-0.06 —-024 0.12 024 038

The stiffness matrix contribution coming from the Gauss point (£, 1) is

Ke(&,m) = WiWi BT (&, )DBE (&, )13 (&1, m)-

Repeating for the remaining three Gauss points at (&1, 1), (&,m1) and (&, 72) yields

2 2

K =>">"K(& )

i=1 j=1

r1.49 -074 -066 0.16 —-098 065 0.15 —0.087
275 024 -246 066 —-1.68 —0.16 1.39

1.08 033 015 -0.16 —-0.56 —041

26 —0.08 139 -041 -1.53

=107
2 —0.82 —1.18 0.25
SYM 382 033 -3.53
1.59  0.25
3.67 |

‘We now turn to calculating the force matrix. As there is no body force, the body force matrix vanishes, i.e.
fo = 0. The only nonzero contribution to the boundary matrix comes from the traction applied along the
edge 1-4 of the panel. The edge 1-4 in the physical domain corresponds to £ = —1 in the natural
coordinate system. The boundary force matrix is integrated analytically as

-
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Note that the integral of N?Q (& =—1,n)over —1 < n < lisequal to one for any shape function / which

does not vanish on £ = —1. Assembling the boundary matrix and accounting for the reactions yields
[ o] [0 ]
T, yl — 20 0
I'x2 0
e e __ I y2 _ 0
fr +r° = 0 , d= s
0 Uy3
0 Uy
—20 L uy4 i

The global system of equations is

[1.49 -074 -0.66 0.16 —-0.98 0.65 0.15 —0.087T 07 [ ora ]
2.75 024 —-246 066 —-168 —-0.16 1.39 0 ry1 — 20
1.08 033 0.15 -0.16 —-056 —-0.41 0 o
107 26 —0.08 139 —-041 -1.53 0| 2
2 —082 —118 025 ||us| 0
SYM 382 033 =353 |us 0
1.59 025 Uya 0
L 3.67 i _Lty4_ L —20
The reduced system of equations is
2 —-0.82 —-1.18 0.25 Uy3 0
107 382 033 353 | |us| _| O
1.59 025 Uy 0o |’
SYM 3.67 Uy4 -20
which yields
[0
0
Uy3 —1.17 0
Uy3 _ —6 —-9.67 e —6 0
| 710 27 | 08 EEOT g
Uy4 -9.94 -9.67
2.67
| —9.94 |
The resulting strains and stresses at the four Gauss points are
SJ\'X ¢ O—XX ¢
(&, m) = | & =BG, o (&) = | oy =D’e(&, ),
Yo d (Gy) Txy 1 (&)
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[ —3.61 ] [—12.5]
£ (&, m) = B(&,m )d° = 10" | —0.628 |, 6°(&1,m) =D (€y,m) = | —5.64 |,
| -394 | | —45.5 ]
8.82 [ 285 ]
£ (&1, m) = B(&,m)d° = 107 | —0.628 |, 6°(&1,m) = De(€1,m) = | 6.65 |,
| —40.3 | | —46.5 |
[—11.7] [—42.07
& (&,m) =B (&m)d =10"| =345 |, o°(&,m) =D (&,m) = | —23.0,
| 2.21 | | 2.55 |
[ 6.65 ] [ 185 ]
£ (&,m) =B (&, m)d° =107 | —3.46 |, o’(&,m) =D (6, m) = | —4.82
| 0.95 | | 1.09 |

Example 9.3

We consider an elasticity problem defined in Example 9.2. The domain is meshed with 16 elements. The
initial finite element mesh and the deformed mesh are shown in Figure 9.13. A user-defined scaling factor
(9.221 x 103) is used to visualize the deformation.

To obtain the fringe or contour plots of stresses, stresses are computed at element nodes and then
averaged over elements connected to the node. Alternatively, stresses can be computed at the Gauss
points where they are most accurate and then interpolated to the nodes. The user is often interested not
only in the individual stress components, but also in some overall stress value such as von Mises stress. In

the case of plane stress, the von Mises stress is given by oy = /07 + 03 — 20, 7,, where o and o, are
Oxx + Oyy i (am —
2 2

N2
principal stresses given by o, = Ty ) +J§y. Figure 9.14 plots the o, stress

contours for the 64-element mesh.

Initial and deformed structure

0.8} 4

0.6+ | _— E

0.4+

P
/

{] L 1 1 L
0 0.5 1 15 2 2.5

Figure 9.13 Deformed and underformed meshes (with scaling factor 9.221 x 10%).



DISCUSSION 239

Ty contours

1 r —
0'9:"____'__'___‘“_"______'__:: 250
= 1 [ 31— 200

| L =
= — 150
0 7 == -‘--_'__.‘-—'_'_'_‘- T ﬂ__‘-—'_'__‘.--«—'—"‘f _‘-N—H//
0.6 e == ’“'/:/ | {100
~05 P *”// = 4/< L ls0
/.-”‘" / /‘ -//
= ,/ // | g
/ ’/ //
| e -50
/ /
max=287.23 -100

‘ min=-199.07 -150

1.5 2

1
X

Figure 9.14 o, contour in the 64-element mesh.

9.6 DISCUSSION

In this section, some characteristics of elastic solutions are presented so that you can understand the finite
element solutions better. The underlying theory is quite extensive, but, a grasp of a few basic facts will help
immensely in developing finite element models and in interpreting and checking the results.

Similarly to the steady-state heat conduction problem considered in the previous chapters, the partial
differential equation that governs linear elasticity is elliptic. One of the most important characteristics of these
types of equations is that their solutions are very smooth: discontinuities in the stresses occur only atinterfaces
between different materials. Thus, the roughness that appears in finite element solution of stresses is an
artifact of the finite element approximation. In order to capture the discontinuities in stresses on interfaces
between different materials, it is necessary that element edges coincide with the interfaces. However, this is
quite natural in the construction of a finite element model, as specifying different material properties to
different subdomains necessitates that the element edges coincide with the interfaces between the materials.

One characteristic of elliptic systems is that they are not sensitive to local perturbations, and as you get
away from the area of the perturbation, it has very little effect. This is known as St Venant’s principle. St
Venant’s principle implies that if you are interested in the stresses reasonably far from where the loads are
applied, it is not necessary to apply the loads as precisely as they would be applied in reality. For example,
the loads applied by a wrench to a pipe would be difficult to model. However, as long as the force you apply
to the model is equal to that of the wrench, the stresses at a small distance from the wrench would be affected
to a very little extent.

Similarly, geometric errors in amodel have little effect on the stresses amoderate distance away. Thus, if
you model a hole with arather rough approximation of 10 or so straight-sided elements, the stresses near the
hole can be quite erroneous, but away from the hole, the errors will be quite small.

One peculiarity of elastic solutions that can be quite troublesome if you try to obtain very accurate
solutions is that some solutions are singular, i.e. the exact stresses for these problems are infinite at some
points. Singularities occur in corners of less than 90°. Therefore, if you compare a fine mesh solution with a



240 FINITE ELEMENT FORMULATION FOR VECTOR FIELD PROBLEMS - LINEAR ELASTICITY

coarse mesh solution near a corner, you will often find large differences in the stresses in the elements
immediately adjacent to the corner, no matter how fine you make the mesh. The stresses in a real material
will not be infinite, because materials will not behave linearly when the stresses get very high. Forexample,
in a metal, a sharp corner would result in a small area in which the material becomes plastic.

Another group of problems associated with singular solutions is problems with point loads. Forexample, if
a point load is applied to a two-dimensional model, then the exact displacement solutions to the elasticity
equations become infinite at the point of the load. Again, this would mean that as you refine the mesh around
the load, the displacement would get larger and larger. In this case, you cannot use arguments like plasticity to
argue the overall meaningfulness of the results. However, according to Saint Venant’s principle, the solution
will be close to the solution for a distributed load with a resultant equal to the point load once you get away
from the area where the point load is applied. Thus, two-dimensional solutions with point loads are also of
engineering value if the displacements in the immediate vicinity of the point load are not of interest.

In this regard, it should be stressed that a point load is an idealization of the actual loads, as a point load
model assumes that the load is applied over zero area. This idealization is adequate when the stresses in the
area near the load are not of primary interest. However, immediately under the point load, the stresses are
infinite, which is not physically meaningful.

The stresses in a solid can be thought of as a force flux: recall the analogy between heat conduction and
linear elasticity, where stress corresponds to the heat flux. Stress behaves very much like a steady-state
flow: where there are obstructions, the stress rises, particularly around the obstruction. For example, around
aholein aplate under tensile load, the stress increases significantly next to the hole: this is known as a stress
concentration.

9.7 LINEAR ELASTICITY EQUATIONS IN THREE DIMENSIONS®

Equilibrium
0 o 0 [0 ]
— 0 0 — — ©0
Ox dy 0z Oyy
0 7] 0 0z
Vi=|0 — 0 — 0 —|, e=| "
dy Ox 0z Oy
0 o 0
0 0 5 0 = — Oxz
N rooy L Oyz |
VEO‘ +b=0.
Stress—traction relation
t = 1n, T= ‘CT,
Oxx Oxy Oxz Iy Ny
T= |Ow Oy Oy |, t= (5|, n= |n,
Oun Oz Oz t, n;

'Recommended for Advanced Track.
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Strain—displacement relation

e=Vu,
e=len &y &z by éx syZ]T7 u=u u uZ]T.
Isotropic Hooke’s law
o = Dg,
1-v v v 0 0 0
v 1—-v v 0 0 0
v v 1—v 0 0 0
E 1 — 2V
D= 0 0 0 0 0
(I+v)(1 -2v) 1 -2
0 0 0 0
2 1-2
—2v
0 0 0 0 0
L 2
Problems

Problem 9.1

Construct row 1 of the B matrix for the six-node triangle.

a. Show that for rigid body translation &, strain vanishes.
b. Letthe nodal displacements be proportional to the coordinates, i.e. u, = ax. Find the strain field. Does
this answer make sense?

Problem 9.2

A three-node triangular element is subjected to linear body force in the x-direction given by
by(X) = by1&1 + b&s + by3&s. Develop the expression for the nodal forces corresponding to this body
force as given in (9.43).

Problem 9.3
Consider a quadrilateral domain model of unit thickness with a single finite element as shown in
Figure 9.15. All dimensions are in meters. The traction applied on the edge 1-2 is normal to the edge
and is given by 6 - n N m™2, where n is the unit vector normal to the edge.

Calculate the element boundary force matrix.

1(0.6, 1.5)
4(1.2,1.5)
6 Nm-!
A S
¥ 3(1.2, 0)
2(0,0)

Figure 9.15 Triangular domain of Problem 9.3.
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Figure 9.16 Problem definition.

Problem 9.4
Consider a rectangular panel as shown in Figure 9.16.

The panel is modeled using a plane stress linear elastic material with the following properties: Young’s
modulus E = 3 x 10'! Pa and Poisson’s ratio v = 0.3. The essential boundary conditions are

Upx = UAy = UBy = 0.

The natural boundary conditions are as follows. Along each edge of the panel, the prescribed traction
consists of normal and lateral components, both equal to 103N m~! as shown in Figure 9.16.

Discretize the panel using a single rectangular element as shown below. For convenience, use identical
global and local numberings as shown in Figure 9.17. Calculate nodal displacements and stresses at the
element Gauss points.

1 2

Figure 9.17 Node numbering for Problem 9.2.

Problem 9.5

Consider aone-element triangular mesh shown in Figure 9.18. The boundary conditions are as follows. The
edge BCisconstrained in y and traction free in x, whereas the edge AB is constrained in x and traction free in
y. The edge AC is subject to traction normal to the edge as shown in Figure 9.18. Assume Young’s modulus
E = 3 - 10'"'Pa and Poisson’s ratio v = 0.3.

Construct the weak form corresponding to the generalized boundary conditions given in Section 9.5.
Construct the stiffness matrix.

Calculate the global force matrix.

Solve for the unknown displacement matrix and calculate the stress at (1.5, 1.5).

&0 o
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Figure 9.18 Triangular domain with mixed boundary conditions.

Problem 9.6
An elastic body subjected to temperature tends to expand. This expansion is given in the form of thermal
(prescribed) strain as

where « is the thermal expansion coefficient (for isotropic materials) and 7 is the temperature. The stress
is

6=D(z—¢")

where the term corresponding to thermal strains is prescribed temperature data. Develop a weak form and
finite element matrices for the case of loads arising due to thermal expansion. Hint: Substitute the above into
the weak form and repeat the derivation given in Section 9.3.

Problem 9.7

Repeat Example 9.2 with two triangular elements as shown in Figure 9.19.

Problem 9.8
Develop MATLAB finite element program for the three-node constant strain triangular element. Note that
in this case, element matrices can be computed without numerical integration. Test the code in one of the

2 4

1

Figure 9.19 Quadrilateral domain meshed with two triangular elements.
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following two ways: (a) against manual calculations for a two-element problem (see Problem 9.7) or (b)
against the MATLAB code for a quadrilateral element provided in chapter 12. In the latter case, consider
very fine meshes (at least 64-element mesh for the problem in Figure 9.14 for quadrilaterals)

Problem 9.9

Repeat Problem 9.8 for the six-node quadratic triangular element. The shape functions for the six-node
triangle and the quadrature scheme for triangular elements are described in Chapter 7. Test the code by
comparing the results of stresses against the MATLAB code of the 64-element mesh of quadrilaterals.

Problem 9.10
Using the 2D elasticity code, analyze the cantilever beam shown in Figure 9.20. Assume material properties
to be as follows: Young’s modulus E = 3 x 10'! Pa and Poisson’s ratio v = 0.3.

0.4 m

4.0m

Figure 9.20 Cantilever beam of Problem 9.8.

Consider the following three meshes: 2 x 5,4 x 10 and 8 x 20, where the first number corresponds to
the number of elements in the thickness direction. Compare the finite element solutions for the maximum
deflection and maximum stress against manual calculations using the beam theory.

Problem 9.11
Consider a square plate with a circular hole subjected to uniform tension load as shown in Figure 9.21. The
plate is of unit thickness and subject to tension in the horizontal direction. Because of the symmetry in
the model and loading, model one quarter of the plate. The plateis 20 cm x 20 cm and the radius of the hole
is 2.5 cm. Assume Young’s modulusis2 x 10'' N/m?and Poisson’sratio is 0.3. The uniform load applied is
t=10"3Ncm .

Calculate the maximum stress component oy, in the plate. Grade the mesh toward the hole. An example
of such ameshis givenin Chapter 11 (see Figure 11.29). Compare the value of the applied load to the value
of the maximum stress component o,, obtained by using the MATLAB finite element code.

L

Figure 9.21 Plate under tension (left) and quarter-symmetry model (right).
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Figure 9.22 Thin sheet of Problem 9.13.

Problem 9.12
Repeat Problem 9.11 but with a radius of the hole equal to 19 cm.

Problem 9.13
Thin sheets which are rotationally symmetric (axisymmetric) can be considered one-dimensional pro-
blems where the only nonzero displacement is u,(r).

The nonzero strains are given by &, = —— and &y = —. The stress strain law for an isotropic material is
r

or

given by 6 =Dg where
or| e _E |1 v
o= [a)e= ] peiall 1]
The weak form is
/ (Vsw)TadQ = /wbdQ + (W27ri)|r, Yw € Uy
Q

“ ow,
where the gradient in cylindrical coordinates of the weight function is Vsw= vavr and A is the thickness
of the sheet. —

r

a. Starting with the equation of equilibrium, ooy + (0, —09)/r+b=0,r, < r <1y, multiply by w(r)
and integrate over the domain €2 to obtain the Weak form given above. Consider all boundary conditions
to be essential boundary conditions. (Hint: Note that d€2 = 27rhdr because the volume of each element
is toroidal.)

b. Consideralinear displacement element and with v = 0. For an element with nodes at r; and r, develop
the B¢ matrix and show that the element stiffness K¢ is

210( 2 Z () = )2 n

o P hE r2ln(rl) (r, — 1) rlr2ln(r1)
(r2=n) rirIn (r_z (r2 — 1)+ 1n (Q
r r

c. Assuming a constant body force b show that f¢ is

o 27hb | 2r1 + 1y
6 |2t

d. Use a 2-element mesh to solve with r, = 10, r, =30, E=10"", v =0, h =1 and b = 100 and
zero essential boundary conditions.

Problem 9.14
Consider a six-node triangular element of unit thickness with a uniform traction in the x-direction applied
along one edge see Figure 9.23.
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]

T |¢— L —>je— L —»|

A

(a) (b)

Figure 9.23 (a) Six-node triangular element subjected to constant pressure loading and (b) two six-node triangular
element mesh.

a. Show that the element external force matrix f¢ is

—h
I

6[104()10]T.

b. Assemble the element force matrix to obtain the global external force matrix f for the nodes 1-5 as
shown in Figure 9.23(b).

Problem 9.15
For the 3D Serendipity element shown in Fig. 9.24, the shape functions are the following:

e At corner nodes

Nj(&m) = g (1 -+ G+ mm)(1 + GO (EGE +mrm+ G~ 2)

e At midpoint nodes the typical formis (if ¢ = 0,7, = £1,§ = £1)

Nj (&) = 3 (1= €)1+ mm)(1 +G0)

¢
A n
O
O
> ¢
U6 5
4
A
1 2 3

Figure 9.24 Twenty-node 3D Serendipity element.
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a. Check that N{ and N5 satisfy the Kronecker delta conditions at nodes 1 and 2.

C.

&G =-1,G=—-1,m=-1;% =0, = -1, = —1,etc.), i.e. show that Nf (x§) = ¢, for nodes
1 and 2.

Consider the case when the parent element is identical to the physical element,i.e.{ =x,n =y,( = z.
For a uniform pressure, p applied on the bottom surface, find the z-components of the nodal forces at
nodes 1 and 2.

Repeat (a) and (b) for 27-node Lagrange element.






10

Finite Element Formulation
for Beams

Avery useful group of elements in finite element software are beam and shell elements. These elements are
used to model structures and components that are thin relative to their major dimensions. Some examples
where beam and shell elements are applied are

1. beams and columns of high-rise structures (Figure 10.1(a));

2. thesheet metal and frame of various vehicles (cars, trains and tractors) that are usually modeled by shell
elements (Figure 10.1(b)—(d));

3. thehull of a ship or fuselage of an aircraft, where shell elements are used for the skin and beam elements
for the stiffeners (Figure 10.1(e)).

The salient feature of entities that can be modeled by beam or shell elements is that they are thin compared
to their other dimensions so that the distribution of strain through the thickness (and hence the form of
the displacement field) takes a very simple form. In this chapter, we will describe the theory of structures
indetail forbeams. We will then sketch the implications of what we have learned from beams to shell elements
and cursorily describe some widely used shell elements so that the reader can intelligently use them.

10.1 GOVERNING EQUATIONS OF THE BEAM'
10.1.1 Kinematics of Beam

The major simplification in beam theory is brought about by assuming how a beam deforms. There are two
major theories for describing the behavior of beams: Euler—Bernoulli beam theory, often called engineer-
ing beam theory, and Timoshenko beam theory. We will consider only the former in detail; most strength of
materials courses deal with engineering beam theory, so most students have had some exposure to it. We
will call it engineering beam theory for brevity.

Abeamis shownin Figure 10.2. The x-axisis placed coincident with the centroid of the cross section A; it
will be called the midline here (it is also called the neutral axis). An important class of loads on beams is
those normal to the axis of the beam, like p(x) in Figure 10.2.

The key assumption in engineering beam theory is that normals to the midline of a beam remain straight
and normal. This is illustrated in Figure 10.3, which shows a beam before and after the application of aload

'Recommended for Structural Mechanics Track.

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd



250 FINITE ELEMENT FORMULATION FOR BEAMS

Figure 10.1 Applications of beam and shell elements: (a) building;2 (b) car; (¢) tractor;” (d) school bus;” (e) fuselage of

an aircraft.

(the deformation of the beam is magnified; in the linear elasticity theory considered here, deformations
should be invisible). In examining Figure 10.3, we can see that the normality assumption determines the

x-component of the displacement through the depth of the beam by

u, = —y sin 0(x),

(10.1)

where 6(x) is the rotation of the midline (positive counterclockwise) at x and y is the distance from the
midline. If (x) is small, then sin § = 6 and the angle of rotation corresponds to the slope of the midline, so

_ Ouy(x)
0= P
Substituting (10.2) into (10.1) gives
Ouy
Uy = —ya
y
A
p(x)
WWA i
|n A e x
bl A\

Midline (neutral axis)

Figure 10.2 Nomenclature for a beam.

“Courtesy of Granite Engineering and Design.
3Cour’cesy of Mercer Engineering.

(10.2)

(10.3)
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A Deformed beam

Figure 10.3 Deformation of an Euler—Bernoulli (engineering) beam.

Applying the standard expression for the elongational strain (3.3) and (10.3), we find that

Ouy u,

T T o

(10.4)

We have assumed in the above that u, is only a function of x. The above equation shows one of the key
features of engineering beam theory: the strain along the axis of the beam varies linearly through the
thickness of the beam. For elastic materials, since as the stress is proportional to the strain, the stress also
varies linearly through the depth of the beam. The maximum stress always occurs on either so the top or the
bottom of the beam, i.e., next to one of the surfaces of the beam.

If we consider the more general case where the midline is also elongated, say due to an axial load, the
displacement through the depth is given by

) = () —y 2ot (105)
where uM is the displacement of the midline.
The strains are then given by applying (9.6) to (10.5):

ouM &u,

XX — - = 10.

. oo (106)
Ou

&y = 8—; =0, (10.7)

_Oux Ouy  Ouy Ouy (10.8)

, + 2= =
Ty Ty Tex T T ax ! ox
These equations reveal several other characteristics of beam deformations:

1. The axial strain is the sum of the midline extensional strain and the strain due to bending, the second
term in (10.6); the strain due to bending is called the bending or flexural strain.

2. The through-the-thickness &y, strain vanishes.

3. The transverse shear strain y,, vanishes.

The fact that the transverse shear y,, vanishes is not unexpected as this shear strain is the change in angle
between the x and y coordinates, and by the fundamental assumption of engineering beam theory that the
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normal remains normal, there is no change in the angle between line segments in the x and y directions. This

resultis somewhat inconsistent with the rest of the theory, as it implies that there is no shear force across the
cross section; this is discussed in Belytschko et al. (2000).

10.1.2 Stress-Strain Law

We assume that the beam is in a state of plane stress (asitis thinin the y-direction), so the only nonzero stress
is given by Hooke’s law and (10.6):

aM  d%u,
= — . 10.9
& Vae ) (109)

O = Eé&yy = E(

(We have reverted to the derivative notation because uﬁ’l and u, are functions of x only.)

The stresses on the cross section of the beam can be related to the moment on the cross section as follows.
Using the standard definition of the moment as the product of the force and moment arm (see Figure 10.4),
we obtain

m= —/yaxdi, (10.10)
A

In the above, o, dA is the force on the area dA and y is the moment arm. The right-hand rule convention has
been used for the moment; the negative sign appears in the expression because the moment is negative when
the stress is positive for y > 0. Substituting (10.9) into (10.10) gives

duM d*u d?u, (x
mzf/yE( x fy—y>dA:/Ey2$dA. (10.11)
A A

dx dx?

The second equality follows because y = 0 is a centroidal axis, so [, ydA = 0.
If E is constant over the cross section, we can take E and dzuy /dx? outside the integral, yielding

d?uy (x) d?u(x)
m :Eﬁ/fdA :EIﬁ:EI/{, (10.12)

A

where [ is the moment of inertia of the cross section and « the curvature given, respectively, by

2
1:/y2dA, = S0 (10.13)

dx2

Figure 10.4 The resultant moment m and shear s on a cross section of the beam.
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Equation (10.12) can be viewed as a generalized stress—strain law: it relates an integral of the stress to
a measure of the deformation, the curvature x. In the form of (10.12), it is not readily recognized as a
stress—strain law, but the only difference between (10.12) and Hooke’slaw o = Eeisthat(10.12)isinterms
of an integral of stress and the generalized strain .

10.1.3 Equilibrium

The equilibrium equations for the beam relate the moment, the shear across and the vertical loading p(x).
An infinitesimal segment of the beam is shown in Figure 10.5. Note that like the stresses, the internal
moment 1 is positive on the positive surfaces and negative on the negatives surfaces; we use the right-hand
rule, so a moment is positive when it is in the direction of your fingers when your thumb points in the
direction of the positive z-axis. The shear s is positive when it acts in the positive y-direction on a positive
face and in the negative y-direction on a negative face.

If we consider vertical equilibrium of the beam segment shown in Figure 10.5 by summing all vertical
forces, we obtain

s(x—O—Ax)—s(x)-‘rp(x-i-%)Ax:O.

Dividing the above by Ax and taking the limit as Ax — 0, we obtain

ds
— =0. 10.14
o P ( )

We next consider moment equilibrium about the pointx =y = 0:

1 Ax
m(x + Ax) — m(x) + Axs(x + Ax) + EAX2P (x + 7) =0.
Dividing the above by Ax and taking the limit as Ax — 0 yields

d
Em-i-s:o. (10.15)

TITIIeIY,

S()C)A y s(x + Ax)

m(x)@ T ) m(x + Ax)
\J

z

\ A"

Ax

[ |
[ |

Figure 10.5 A segment of the beam used for development of equilibrium equations.



254 FINITE ELEMENT FORMULATION FOR BEAMS

Equations (10.14) and (10.15) are the two equilibrium equations for the beam. They can be combined into a
single equation by taking the derivative of (10.15), which gives (d*m/dx?) + (ds/dx) = 0, and using with
(10.14) gives

d®m

e P=0 (10.16)
Equations (10.12) and (10.16) are the strong form of the beam equations. These two equations can be
combined into a single equation, which for beams with constant EI is :

d4uV

El—3 —p=0. (10.17)

The above is a fourth-order ordinary differential equation in the vertical displacement of the midline of the
beam, u, (x). This differential equation is of higher order than the differential equations we have considered
previously, which results in some important changes in the boundary conditions and the development of the
weak form.

10.1.4 Boundary Conditions

The boundary conditions on a beam can be written as follows:

uy =i, on I, (10.18)
%:_g on Ty, (10.19)
mn = EI (gxuzy n=m on T, (10.20)
sn = —El%n =5 on I (10.21)

In (10.20) and (10.21), we have inserted normal n to the natural boundary conditions. This is necessary for
consistency between the positive definition of internal moments (10.10) and shear forces (10.15) and the
definitions of /7 and 5, which are positive when acting counterclockwise and in the positive y direction,
respectively.

These boundary conditions are combined in various ways to model different types of physical end
conditions. Three examples of end conditions are

1. afree end with an applied load:

sn=5 on T, mn=m on I,; (10.22)
2. asimple support:
m=0 on T,, =0 on Ty (10.23)
3. aclamped support:
#,=0 on T, =0 on T, (10.24)

It is interesting to note that the second condition in (10.24) for the clamped support can be explained in
terms of compatibility and the normality assumption: if  # 0 at a clamped support, gaps and overlaps
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Midline

(®)

Figure 10.6 Loss of compatibility in an Euler—Bernoulli beam due to gaps and overlaps: (a) due to 6 # 0 at a support
and (b) due to a kink in the displacement.

develop at the support because any vertical line which was originally normal to the midline overlaps the
support on one side and forms a gap on the other side as shown in Figure 10.6.

It can be seen that each boundary point corresponds to rwo boundary conditions, e.g. a free end is both a
I’y and a I';, boundary. Two boundary conditions are required at each end of the beam because the
equilibrium equation is a fourth-order ordinary differential equation.

It is possible to infer which boundaries are the natural boundary conditions and which boundaries are
conjugate during the construction of the weak form. However, to simplify the development, we use a
guideline that evolved in Chapter 9: Variables that are conjugate in the sense of work cannot both be
prescribed on any point of the boundary, but one of these must be prescribed on the boundary. As séu, and
mdf correspond to increments in work, the conjugacy relations are

Isnl, =0, r,ur,=r. (10.25)
I,NTy=0,  T,UTy=T. (10.26)

10.2 STRONG FORM TO WEAK FORM*

Development of the weak form is accomplished as follows: We multiply the equilibrium equation (10.16)
and the natural boundary conditions (10.21) and (10.20) by a weight function and its derivative, respec-
tively, and then integrate over the corresponding domains, which gives

@ [o(S5-r)a=0 ©) w9

Q

=0, (c) %‘} (mn—m)| =0 Yw.

T

Ty

(10.27)

As before, we now integrate by parts, but we will see that this integral equation needs to be integrated by
parts twice. Integrating (10.27a) by parts the first time yields

d’m d [ dm dw dm
Q Q Q

where we have used the fundamental theorem of calculus and the equilibrium equation (10.16) to obtain the
second equality. As before, we require w to vanish on I',,, which combined with (10.25) and (10.27b)
enables us to change the above to

dwdm
— [ ——dx
dx dx
)

r
¢

&*m

w _dx2
Q

dx = (—w3)

dwdm
- =22 dn. 10.28
) [ (10.28)
i Q

“Recommended for Structural Mechanics Track.
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We now integrate the second term on the RHS of the above by parts:
dwdm d (dw d*w
aadx—/a(am)dx‘ Frek
Q Q Q
dw _
=(—m
dx

In obtaining the above, we have used the fundamental theorem of calculus to convert the first term on the
RHS of the above, required dw/dx to vanish on I'y and substituted (10.27c).
Substituting (10.29) into (10.28) and the result into (10.27a) yields the following weak form:

d*w dw
Q Q

If we substitute the generalized stress—strain law for the moment m given in (10.12) into the above, we
obtain

10.29
& (10.29)

— [ —mdx.
a2
1™
Q

+(ws)|p, for Vw € Up.
T

+(ws)lp,  for Vw € Up. (10.30)
T

dw _d*u, dw _
Q Q

Note that the LHS is symmetric in w and u,, so we can expect symmetry in the discrete equations.

‘We next consider the structure of U and Uy. Examining Equation (10.30), we can see that the second
derivatives of the weight function and the approximation appear in the integral on the LHS. The C°
functions used heretofore are therefore no longer adequate, as the square of the second derivative of a C°
functionis notintegrable. Therefore, C! functions, for which the integral in (10.30) is integrable, denoted as
H?, are needed for the approximation and the weight function.

The essential boundary conditions in a fourth-order system are the boundary conditions on the
displacement and first derivative; this will be seen more clearly in going from the weak form to the strong
form. In going back over the construction of the weak form, we can see that we required w to vanishon I,
dw/dx onT'y. Therefore, taking into account the required continuity, it follows that the function spaces for
the approximation and weight functions are

d _
U= {u),|uy€H27uy:ﬁy onT,, %:aon Fg}, (10.31)
2 dw
Uy = W\WEH7w:00nFu7a:00nF9 . (10.32)

From the above, we can see that the boundary conditions on u, and du,/dx are essential boundary
conditions. The weak form can then be summarized as follows:

find uy(x) € U such that (10.30) holds Vw(x) € Up.

The need for C! functions can also be established physically from the implications of the assumption that
the normal remains straight and normal. Figure 10.6b shows the deformation of a beam at a kink in the
displacement of the midline, u, (x). As can be seen, as the normal remains normal on each side of the kink,
the material overlaps on one side and a gap develops on the other side. Therefore, compatibility is not
satisfied with a C° displacement field in a beam. Thus, the need for C! approximation and weight functions



STRONG FORM TO WEAK FORM 257

can be explained both mathematically (from the integrability of the weak form) and physically (from
compatibility).

10.2.1 Weak Form fo Strong Form

The taxonomy of the various boundary conditions is clarified by considering the development of the strong
form from the weak form. As usual, the strong form is obtained from the weak form by reversing the steps
used in developing the weak form. We start with the weak form (10.30) and only consider beams with
constant EI. Using the integration by parts on the LHS of (10.30), we obtain

1 1
/Eldzwdzuy _/ d Eldwdz /Eldwd3uv
d? d2 ) dx U dx da? dx dx3
0 0
dwdzu)
= [ ET—
dx de "
/Eld—Wd D
TpUl', dx dx

Asdw/dx =0onTyandI,, = ' — Iy, we then obtain

/EI%‘ZX—”; dx (10.33)

— | EI——2 dx. (10.34)

Using the integration by parts on the second term of the above gives

1
dwd3uy d*uy d*u,
El -3 dr = / (EI— dx—/ WEI——F dx
0

1 &
= —(wsn)|p op, — /EIWW dx,

0

(10.35)

where the fundamental theorem of calculus has been used to obtain the second line. Asw = 0onI',, we
obtain

dw d’u, o dhu
/Ela oo dx = —(wsn)|p, — /WEIde (10.36)
0 0

Substituting (10.36), (10.34) and the result into (10.33) yields

—0. (10.37)
L

/
d'u d
/ (E[W_ ) dx +w(sn —3)|p, +aw(mn—rh)

0
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The strong form can then be extracted as before by first selecting

w = 1(x) (EI% —p) (10.38)

where 9 is smooth and positive and ¢)(x) > 0on0 < x < /and ¢(x) = d¢)/dx = Oatx = Oandx = I. For
instance, 1(x) can be chosen as (1 — cos(2mx /1)) or any other positive functionon 0 < x < /satisfying the
above four constraints. Equation (10.38) implies that w = dw/dx = O on I'. Inserting (10.38) into (10.37)
yields

I . )
/«p (Eldl —p) dx = 0. (10.39)
0

integrand

Note that the integrand in (10.39) is positive at every point in the problem domain. So the only way the
integral will vanish is if the integrand is zero at every point. Hence,
du,

Elgy—p=0, 0<x<l (10.40)

Substituting (10.40) into (10.37) yields

d
w(sn —H)lp. + o (mn — )| = 0. (10.41)
©odx r,

We further assume w = 0 on I'y and dw/dx arbitrary on I,,, which gives

dzuy B
mn = Elﬁn =m on T,. (10.42)

Finally, combining (10.42) and (10.41) and taking w arbitrary on I'g yields

3

= —El%n =5 on I, (10.43)
Thus, the weak form yields the strong form, and for infinite-dimensional spaces U the two are equivalent.
The above development also clarifies the essential and natural boundary conditions for a beam. The
essential boundary conditions are those on u, and du, /dx; we must construct the approximation so that they
are met. The natural boundary conditions are the conditions on the second and third derivatives of u,,, which
are the moment and shear, respectively. These boundary conditions will be met in a ‘weak’ sense, i.e.

approximately, by a finite element solution.

10.3 FINITE ELEMENT DISCRETIZATION®
10.3.1 Trial Solution and Weight Function Approximations

As concluded in the previous section, the trial solutions and weight functions for a beam element shown in
Figure 10.7 must be C! functions.

SRecommended for Structural Mechanics Track.
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6, e 0, .
[ =! :

1 2

Figure 10.7 Two-node Euler—Bernoulli beam element.

One class of functions that provides C! continuity is the Hermite polynomials (others are the various
B-splines). In order to use the Hermite polynomials and maintain C' continuity between elements, both
the displacements and the derivatives of the displacement at the nodes must be degrees of freedom. The
derivatives of the displacement field can be viewed as a rotation ¢ of the midline displacement (recall
(10.19)), so the element displacement matrix is

de = [uyl7€l,uy2702]T' (1044)
The nodal forces are conjugate in work, so
£ = [f;‘hmlmf;’%mz}’ra (1045)

where m; are the nodal moments (note that m; # m(xy)).
The Hermite polynomials for an element of length / are given by

Na = 4(1- 92 +8),

Noi :%e(l —&*(1+9),

| (10.46)
No=(1+€*2-9),
° 2
Ny = g(l +&67(E-1),
where
2x
5:1—6717 so —1<¢<1. (10.47)
It can be verified that these shape functions have the following Kronecker delta properties:
dn,
Nu(xy) = b1, Ww(xl) = 0y. (10.48)

So the Hermite shape functions interpolate both the function and its derivatives at the nodes. To obtain the
derivative with respect to x, we need to use

d 1d
& (10.49)



260 FINITE ELEMENT FORMULATION FOR BEAMS
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Figure 10.8 Hermite C' shape functions for a two-node beam.

The four shape functions are shown in Figure 10.8. It can be seen that (10.48) is met.
The weight functions and trial solutions are interpolated with the same shape functions, so

u, = N°d’, w’ = N°w’. 10.50
¥

To evaluate the domain integral in the weak form (10.30), we need to evaluate d? uy / dx?, which from (10.50)
and (10.46) can be shown to be

d®N¢ 1 [6¢ 6¢ u

e e T R 1 — = Bed’. 10.51

dxz e |e 3¢ [ S dx? d (10.51)
Be

As indicated, the above defines the matrix B, which is used in the construction of the stiffness
matrix.

10.3.2 Discrete Equations

We will notrepeat the procedure of writing the weak form in terms of the displacement field butleave itas an

exercise. The outcome is identical to that in the previous chapters we have considered. The finite element
equations are

Kd=f+r. (10.52)
The element matrices are
stiffness matrix:

K* = / EIB°TB dx; (10.53)
Qc
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external force matrix:

e eT eT— dNET _
= [ N"pde+ (N“3)[p, + o , (10.54)
Ly,
Q ~
f5, r

where ff, and f}. are the element body and boundary force matrices, respectively.

These results could easily be obtained by considering a single element. The element matrices are
assembled into a global matrix exactly as before by using scatter and gather operations according to the
node numbers of the elements.

If the flexural stiffness EI is constant over the element, the element stiffness is given by

12 6 -12 oI

2 2

' EI 41 —6l¢  21°
e eTpe
K = / EIBB dr =5 D e (10.55)
Qe Sym 41

Note that the sum of any row of this stiffness no longer vanishes; this is because d® = [1, 1, 1, I]T isnota
rigid body motion, as d° includes both nodal rotations and nodal displacements.
The nodal forces corresponding to a constant load p are given by

e [Na 1

. . Y ple| I¢/6

fQ:/NTpdx:/ N"; pdx="- 1/ . (10.56)
o 0 | Ny —1°/6

It can be seen that the uniform load results in both a nodal moment and vertical nodal forces; the vertical
nodal forces are identical to those on the edge of a linear triangular element loaded by a uniform pressure.

10.4 THEOREM OF MINIMUM POTENTIAL ENERGY*®

The finite element equations for a beam can be developed more readily than in the previous section by
invoking the theorem of minimum potential energy. For a beam,

1 1
Wo= ! [E2da0= [ [Eraaar=t [E(C% zdx (10.57)
lﬂt_2 & - & _2 dxz b .
Q 0 A 0

where the second equality is just another way of expressing the domain of the problem and the third equality
follows from (10.4). The external work is given by

l

Wors = / pty dx + (y3), + (0, (10.58)
0

The theorem of minimum potential energy then states that the solutionu, € U is the minimizer of II, where
II= Wit — Wexh (1059)

where U is defined in (10.31), i.e. it is the set of admissible displacements.

SRecommended for Structural Mechanics Track.
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The theorem of minimum potential energy shows clearly why the derivative of the displacement field
must be square integrable. Obviously, the internal energy cannot be evaluated if the displacement field
derivative du, /dx is not square integrable.

The finite element equations can be obtained by approximating the displacement field by compatible
displacement fields, i.e. displacement fields so that u, € U, and minimizing II with respect to nodal
displacements not on the essential boundary, i.e. with respect to dg. If we use (10.50) for the approximation
of the displacement field, then

Nel
m=1d">" LeT/EIB“Tdex"L“ d
e=1 .
“ (10.60)

Nel

dNeT
,dTE :LET /NeTpdx+<NeT§+ o ﬁi)
e=1
Qe

Te

It can be seen that the first term on the RHS involves the stiffness matrix, whereas the other two terms are due
to applied loads. Using the definitions (10.53) and (10.54) in combination with assembly, we can write the
above as

II=1d"Kd - d"(f +r). (10.61)

The minimum of I is obtained by setting its derivative with respect to the nodal displacements, dg, equal to
zero, which gives

Krdr = fr — Kipdg, (10.62)

where Kp and f; are the stiffness and force matrix blocks corresponding to F-nodes and K. is the coupling
stiffness matrix. For more details on the partitioning see Chapter 5.

Example 10.1

Consider abeam problem shown in Figure 10.9. The beam ABCis clamped at the left side and is free at the
right side. Spatial dimensions are in meters, forces in N and distributed loading p in Nm~'. The beam
bending stiffness is EI = 10* N m?. The natural boundary conditions at x = 12m are 5 = —20 N and
m =20 Nm.

The beam is subdivided into two finite elements as shown in Figure 10.10.

,
4 ww=1 |7 Py
VYVYVYVVVVVVYVVVVY
A B

Figure 10.9 Problem definition of Example 10.1.
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Figure 10.10 Finite element mesh of Example 10.1.

The global displacement matrix is defined as d” = [uy;, 01, uy2, 02, ty3, 03]
Element stiffness matrices:

Based on (10.55) for element 1 (EI = 10*,L = 8):

12 6L -—12 6L 023 094 023 094 |

ke _ EL| oL 4> —6L 207 | 07| 094 500 —094 250 ]

L3 -12 —6L 12 —6L| -023 —094 023 094 )

6L 20* —6L 417 094 250 —094 5.00 2]

(1] 2]
and similarly for element 2 (EI = 10* L = 4):

12 6L —12 6L 188 375 —188 375y

g _EL| 6L 412 —6L 207 | (o3| 375 1000 =375 5.00
L3 | —-12 —6L 12 —6L| —1.88 —-3.75 1.88 —3.75 5

6L 21> —6L 4I? 375 500 -3.75 10.00

2] B3]

Global stiffness matrix:

The global stiffness matrix is computed using direct assembly :

T 023 094 —023 094 0 0 7
094 500 —094 250 0 o |[1]
K_ 10| 02 —094 211 281 188 3.75 2
094 250 281 1500 -3.75 5.00
0 0 -—188 -375 18 -375]3
0 0 375 500 —375  10.00]
(1] 2] 3]

Boundary force matrix :

eT
ff. = (NT5)[, + (dljx m)

Lo

For element 1, f(rl) = [0 00 0]" as it has no boundary on T or T',.
For element 2,

=0 0 0 1]"m+[0 0 1 0]"s=
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The global boundary force matrix is obtained by direct assembly:

0

o |1
= o |0

—20

201 B

Body force matrix:
ien
£, = / Np dx.
Rt

Recall from Chapter 5 that in the case of a point force acting at a coordinate —1 < {4 < 1, the resulting
body force matrix is given by

£, = N (&) Pa.

Forelement I: The body force matrix for element 1 is obtained by superposing the contributions from the
distributed loading p(x) = —1 and a point force P; = —10 acting at £ = 0, which yields

. Nul Nul -9 [1]
Tren | N, N —15.3
£ = / Mlpde+ | P =
0 x Nz P Nz ! -9 [2]
Nop» Nz | ¢ 153
For element 2: The point force in element 2, P, = 5, acts at its first node where £ = —1, which yields
N 5
2
£ _ Ny P, — 0 2]
@ NMZ 2 0 [3]
Noa | ey 0

The direct assembly of the body force matrices yields

9
—153 | 1
—4
fo=1"153 2]
0
0 |

Boundary conditions and solution:

The assembled and partitioned system is given below:

023 094 ,-023 094 0 0 7[uy=0 941
094 500 1-094 250 _ 0 __0_|[6i=0| |-153+m
—023 —09471 211 281 -188 375 0y 4
094 250 | 281 1500 -375 5.00 6, |~ | 153
0 0 188 —375 188 -375|| ugs -20
0 0 1375 500 -375 1000 ]| 6 20
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Note that we have added reaction forces r,; and ry; corresponding to the unknown force and moment
reactions at node 1, respectively. Solution of the above system of equations gives the following global
displacement matrix:

Uy —0.55

92 _ —0.11 Tul | 33
Uy3 o —-1.03 |’ |:r91:| - |:252:|
05 —0.12

Postprocessing:

Moments and shear forces in the two elements are obtained by (10.51), (10.42) and (10.43):
0

d2u 2 2 2 2 0
m) = g E,{d Ny &Ny &N, d Noz} = —240.64 + 25.785x,
Cl)C2 dxz dx2 dx2 dJC2 uy2
0>
0
3 (1
s = _Eld u® = _E[|:d3Nu1 d3N91 d3Nu2 dsNez} 0 = —25.785,
dx? dx3 dx? dx? dx3 Uy
0,
Uy
5 d*u® &N, &N, &N, &N, |2
m( ) — EI = EI|: ul 01 u2 92:| = —104.5 + 3975)C7
dx dx2 dx? dx? dx? Uy3
0
uyz
3.2
S(2> = —EId u( : = —FEI d3Nu1 d3N91 dSNuZ dSNﬁz 92 = —39.75.
dx? dx3 dx? dx? dx3 Uy3
03

Figure 10.11 compares finite element solution of displacements, moments and shear forces with an
analytical solution of the strong form of beam equations (10.17)—(10.21). It can be seen from Figure
10.11(a) that the displacements obtained with the finite element mesh of just two elements are very
accurate. The piecewise linear variation of moments predicted by finite elements represents areasonable
approximation from an engineering point of view as can be seen from Figure 10.11(b); a discontinuity in
moment at the element boundary is evident. On the contrary, a piecewise constant approximation of shear
forces is clearly inadequate to capture a significant variation in shear forces. Note the discontinuity in the
analytical solution of shear forces at the location where point forces are applied. Therefore, it is a good
practice to place a node at the point where point forces are acting.

10.5 REMARKS ON SHELL ELEMENTS’

Shell elements are used for modeling thin structures (see Figure 1.4). Examples of objects that are
conventionally modeled by shell elements rather than by solid elements are shown there. For these
applications, far too many solid elements would be needed to obtain areasonable solution as solid elements
must have a reasonable aspect ratio to be accurate, so for a thin member a huge number of solid elements
would be needed.

"Optional for Structural Mechanics Track.
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Figure 10.11 Finite element solution of Example 10.1 and comparison to the analytical beam solution.

Shells can be viewed as generalizations of beams to curved surfaces in three-dimensional space. Shell
theory is quite involved and beyond the scope of this introductory text, but we would like to describe some
aspects of shells so that the reader has some background to use these elements.

The easiest way to describe shell elements is to consider the triangular flat facet shell element shown in
Figure 10.12. We consider the counterpart of Euler—Bernoulli theory, which is called Kirchoff—Love shell
theory. The central assumption of this shell theory is identical to that in Euler—Bernoulli beam theory:
normals to the midsurface remain straight and normal. In the coordinate system tangent to the midsurface of
the shell, the displacements can then be written in terms of the rotations by using the same procedure used in

obtaining (10.3) for a beam, see Figure 10.12:

—~ ~M  —~7
Uy=u, =70y,
—~ ~M —~7
Uy =1y +70,,
uZ:uZ(x7y)7

(10.63)
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Midsurface

Figure 10.12 Flat facet shell triangular element.

where @M and ﬁi‘/l are the x and y components of the midsurface displacements. Note that the displacement
components are expressed in the local coordinate system of the tangent plane. From the assumption that
normals remain normal, it follows that

. ou, ~  0u,
. : 9,="—"-21L. 10.64
Dy YT ok ( )

From the strain—displacement equations in three dimensions (see the appendix), we then obtain

oM o, 0wy _&a, . oaM o) 5 O
b =% Tioxz Ty Tiasr TwT 55 T T ¥ aray (10.69)

/Ezz =V :?)'z =0.

Itcanbe seen that the strains in a shell have the same basic character as in abeam: they vary linearly through
the thickness of the shell and consist of strains due to the midplane displacement and those due to the
displacements normal to the midplane; these are called the membrane strains and the bending (or flexural)
strains, respectively. The maximum strains occur the top and bottom surfaces of the shell. In an elastic
material, the stresses are related linearly to the strains, so the stresses vary similarly and maximum stresses
occur near the top and bottom surfaces.

Inshell theory, a state of plane stress is assumed in the local 7 -direction. The stress—strain law is obtained
by substituting o, = 0 into Hooke’s law for three-dimensional elasticity (see Section 9.7). For isotropic
material, it reduces to

1oy 0 0 0
v1o0 0 0
g [00 =" 0 0
D—
]_

1= 15 0 o Y o
1—v

00 0
I 2 |

The assumption of plane stress seems somewhat contradictory as €, = 0 according to the displacement
field. This again is one of the contradictions that permeate beam and shell theory, which is tolerated because
the resulting theory is nevertheless quite effective in predicting strains and stresses in shells.

Some of the widely used shell elements in practice are three-node flat facet and curved triangle; six-node
triangle; four-node, eight-node and nine-node quadrilaterals. In all elements, all nodes are in the midsur-
face of the element. Two types of elements are wisely used:

1. elements with five degrees of freedom per node (5 DOF);
2. elements with six degrees of freedom per node (6 DOF).
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Fora 6 DOF element node, the degrees of freedom are the three translations and three rotations. Fora 5 DOF
three-node triangle, the degrees of freedom are

d=[d, dy, d",

~

dlz[uxl Uyr Uy 0 gy[]T-

The corresponding nodal forces are conjugate in the sense of work, so

el 6

fi:[f\fl f;*l fz[ n”ixl fn\yl]-

In the above, éxl and éyl are rotations about the X and y axes, respectively, see Figure 10.12, and 711, and 71,
are the nodal moments about the X and y axes, respectively. The displacement components can be expressed
in either a local or global coordinate system, whereas the rotational components have to be expressed in a
local coordinate system that is tangent to the midsurface of the shell at the node.
For a 6 DOF per node element, all of the components are expressed in the global coordinate
system:
d? = [uxl uyl Uz exl HVI 91] ]a

Z

f]=0fa fu fu ma my myl

The sides of the higher order quadrilateral elements can be curved in space. In fact, these elements
are developed by the same isoparametric conceptemployed to develop curved three-dimensional elements.
In the isoparametric elements, an alternative theory for the transverse shears y,, and y,, is used. In this shell
theory, a normal remains straight but not necessarily normal as the shell deforms. However, the elements
are modified by rather technical procedures so that the element mimics the strains given in (10.65) (mixed
variational methods, selective-reduced integration and assumed strain elements are some of the methods
that are used to effect this artifice, see Belytschko, Liu and Moran (2000)); these techniques are beyond the
scope of this book. To illustrate how the displacement field is constructed, we consider the nine-node
element shown in Figure 10.13. The normal must remain straight (the normality is not enforced in the
displacement field), so the displacement through the thickness must be linear. The displacement can first be
written in terms of a set of secondary nodes as shown in Figure 10.13. These displacements are then related
to the rotations by the transformation techniques as described in Chapter 2.

® Primary nodes (midplane)
o Secondary nodes

Top surface (T)
Bottom surface (B)

Figure 10.13 Nine-node quadrilateral shell element.
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Clamped Simple supported
u,=u,=0 u,=u,=0
6.=6,=0 9,=0
6.=0 g, =

Free end

No displacement conditions

Figure 10.14 Boundary conditions for plates and shells.

The displacement field of the nine-node shell element is isoparametric with linear shape functions
through the thickness and quadratic shape functions in the plane, so

NY = N3H (N m),
NP = NP (ON] (€ m),

where N?L are the one-dimensional two-node shape functions given in Chapter 7 that we studied in Chapter
4 and N,9Q are the two-dimensional isoparamteric shape functions developed in Chapter 7.

The application of boundary conditions is similar to thatin beams. Some typical boundary conditions are
shown in Figure 10.14, though they must be somewhat modified to account for the additional rotations. Ata
clamped support, the rotations and translations must vanish.

Asinone- and two-dimensional elasticity, the rate of convergence of the biquadratic elements is one order
higher than that of the bilinear element. Therefore, the nine-node element is recommended for most linear
applications. Gauss integration is used to evaluate the stiffness matrix. The programming of these elements is
beyond an elementary course, as many technical ‘tricks” must be used to obtain an element that performs well.

REFERENCE

Belytschko, T., Liu, W. K. and Moran, B. (2000) Nonlinear Finite Elements for Continua and Structures, John Wiley
& Sons, LTD, Chichester.

Problems

Problem 10.1
Consider abeam AB subjected to uniform transverse loading as shown in Figure 10.15. Using a single finite
element, calculate the maximum deflection and compare the solution of the elementary beam theory.

p()

Y YYYYYVVVVVVVVVVVVS X
® >

A 7 B

v

Figure 10.15 Uniformly loaded beam of Problem 10.1.
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Problem 10.2

Consider a beam AB supported by an elastic rod BC at point B as shown in Figure 10.16. The
beam is subjected to uniform load p(x). Use Young’s modulus E for the entire structure and
cross-sectional area A and moment of inertial / for the beam and the rod, respectively. Model the
beam with a single beam finite element and the rod with a single truss element (considered in
Chapter 2). Find the nodal displacements and the stresses in the beam.

p(x)
IYYYVYVVVVVVVVVVVVVVY) x

A B

AR

Figure 10.16 The beam—rod structure of Problem 10.2.

Problem 10.3

Consider a beam on an elastic foundation as shown in Figure 10.17. Formulate the strong and weak forms.
Hint: When considering an equilibrium of a beam segment (see Figure 10.3), account for the force of
(—k(x + % Ax) uy(x + § Ax) Ax) arising from the elastic foundation.

Y
A

MWTWTWWTTT

k (x)
A A

\/
»

Figure 10.17 A beam on elastic foundation of Problem 10.3.

Problem 10.4

Consider a tapered beam element shown in Figure 10.18. The beam has a constant thickness, ¢, and
a linearly varying height h(x) = h (1 — (x/2L)). Derive the stiffness matrix for the tapered beam
element.
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Figure 10.18 The tapered beam element of Problem 10.4.

Problem 10.5

Consider the tapered beam element in Figure 10.18. The beam of length L = 4 m and Young’s modulus
E = 10" Paisclamped at node 1. The force in the amount of 10kN in the negative y-direction is applied at
node 2. The beam has a rectangular cross section with thickness 0.1 mand 4. = 0.5 m. Find the maximum
deflection and stress using the following finite element models:

a. asingle tapered beam element;
b. two elements of length L = 2 m with constant height; Choose the height of each element equal to the
height of the tapered beam at the center of each element.

Compare the value of maximum stress obtained with the two finite element models to the stress obtained
from the elementary beam theory.

Problem 10.6

Consider a beam with a rectangular hole as shown in Figure 10.19. The beam has a constant
thickness ¢. Derive the stiffness matrix for the beam element with a rectangular hole. The beam element
should have the usual four degrees of freedom: two rotations and two transverse displacements atx = O and
x=L.

. .
Ih | | —
R A a
« b by
- L .

Figure 10.19 The beam with a rectangular hole of Problem 10.6.

Problem 10.7

Consider a two-span beam shown in Figure 10.20. The beam is subjected to uniformly distributed loading,
pointforce atx = 2 mand pointmomentatx = 6 mas showninFigure 10.20. The beam bending stiffnessis
EI =2 x10"Nm?.
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A,

P=-10kN | p(x)=—2kNm-! M =5KNm-!
YYYVYVVYVYVYVVYVVVYY x
A B ' C

’ 4 m 4m | ’

Figure 10.20 A two-span beam of Problem 10.7.

a. Using the finite element program provided in chapter 12 compute the deflections at x =2 m and
x = 6 m; moments and shear forcesatx = 2 m,x = 4 mandx = 6 m. Consider two elements — one for
each span.

b. If you have three elements, what is an optimal mesh? Repeat (a) with the three-element mesh.

c. Verify the results of (b) with the eight-element mesh, four for each span.

Problem 10.8

Consider a frame structure aligned along the x-axis. A frame is a combination of a beam and a bar
considered in Chapter 2. Itis capable of supporting both transverse and axial loadings. A free-body diagram
of the frame segment is shown in Figure 10.21. Note the axial force F(x) in addition to moments and shear
forces acting at the two ends of the frame segment.

p(x)
tetttttettt
s(x)“ y s(x+ Ax)
F(x) :r F(x+Ax)
<+— > —>
m(x)g T m(x+ Ax)
z
Ax

Figure 10.21 A frame segment used for the development of equilibrium equations.

Develop strong and weak forms for a frame of length L aligned along the x-axis. Assume a constant cross-
sectional area A, moment of inertia / and Young’s modulus E.

Problem 10.9

Consider a frame element in the element coordinate system (x"¢,y’) as shown in Figure 10.22. Write the
stiffness matrix derived in Problem 10.8 in the element coordinate system. Express the element stiffness
matrix in the global coordinate system (x¢, y°).

Hint: The rotation matrix from global to element coordinate system is given by
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Figure 10.22 Nodal displacements in the element coordinate system of a frame element.
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Problem 10.10

Develop a finite element program for frame structures by modifying the finite element program for beams
provided in chapter 12. Verify the program by considering a single frame element subjected to both
transverse and axial loadings.

Problem 10.11

Using the finite element program for frame structures developed in Problem 10.10 compute the maximum
moments, shear forces, horizontal and vertical deflections for the two-story frame structure depicted in
Figure 10.23. The bending stiffness for all beams and columns is EI = 2.5 x 10’ Nm?.

2 kNm-!
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g, bbb
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| i
| |

s e

4 m

Figure 10.23 A two-story frame structure of Problem 10.11.
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Commercial Finite Element
Program ABAQUS Tutorials

by ABAQUS, Inc.

11.1 INTRODUCTION

In this series of tutorials you will become familiar with the process of creating ABAQUS models
interactively using ABAQUS/CAE. Three problems will be considered: (1) steady-state heat conduction
in a trapezoidal plate, (2) bending of a short cantilever beam and (3) the elasticity problem of a plate with a
hole subjected to uniform far-field tension.

11.1.1 Steady-State Heat Flow Example

You will create a model of the plate as shown in Figure 11.1. The system of units is not specified but all units
are assumed to be consistent. The plate is of unit thickness and subjected to the conditions shown in the
figure. You will perform a series of simulations with increasing levels of mesh refinement using both linear
triangular and linear quadrilateral elements.

11.2 PRELIMINARIES

1. Start a new session of ABAQUS/CAE by entering abaqus cae at the prompt.
Note that abaqus should be replaced with the command on your system used to run ABAQUS. For
example, to run the ABAQUS v6.6 Student Edition, the command is abg662se.

2. Select Create Model Database from the Start Session dialog box.
The Model Tree is located to the left of the toolbox area of the ABAQUS/CAE window. If the Model
Tree is not visible, make sure that there is a check mark next to Show Model Tree in the View menu. If
the Model Tree is still not visible, drag the <| |> cursor from the left side of the ABAQUS/CAE window to
expand the Model Tree.
The Model Tree provides a visual description of the hierarchy of items in the model database along
with access to most of the functionality available in ABAQUS/CAE. If you click the mouse button 3
(MB3) on an item in the tree, a menu appears listing the commands associated with the item. For
example, Figure 11.2 shows the menu for the Models container. In the Models menu, the Create menu

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd



276 COMMERCIAL FINITE ELEMENT PROGRAM ABAQUS TUTORIALS

D(0,1) 2m C (2,1)

A (0,0)

Figure 11.1 Trapezoidal plate.

item appears in bold because it is the default action that will be performed when you double-click the
Models container.

3. Before proceeding, rename the current model. In the Model Tree, click MB3 on the model named
Model-1 and select Rename from the menu that appears. Enter heat in the Rename Model dialog
box and click OK.

4. To save the model database, select File — Save As from the main menu bar and enter the name abg-
tutorials in the File Name line of the Save Model Database As dialog box. Click OK.

The . cae extension is added automatically.

11.3 CREATING A PART

The first step in modeling this problem involves sketching the geometry for a two-dimensional, planar,
deformable solid body.

1. Inthe Model Tree, double-click Parts to create a new part.
The Create Part dialog box appears.

Model | Results | Mox
I Model Database :] s B % Y %
5 -

& Model-1 Switch Context Ctrl+Space
(5 Par Create...

-2 mal Copy Objects...

8 Sec” et AsRoot

- & pro Expand All Under

g Ass Collapse &l Under
EE'D& Stl;p: TI; 11

Figure 11.2 Models menu.
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ﬂil Sketch the section For the planar shell

Figure 11.3 Prompt area.

2. Name the part plate. In the Create Part dialog box, select 2D Planar as the part’s modeling space,
Deformable as the type, and Shell as the base feature. In the Approximate size text field, type 15.
3. Click Continue to exit the Create Part dialog box.

ABAQUS/CAE displays text in the prompt area near the bottom of the window to guide you through the
procedure, as shown in Figure 11.3. Click the cancel button to cancel the current task; click the backup
button to cancel the current step in the task and return to the previous step.

The Sketcher toolbox appears in the left side of the main window, and the Sketcher grid appears in the
viewport.

You will first sketch an approximation of the plate and then use constraints and dimensions to refine the
sketch. To select the appropriate drawing tool, do the following:

a. Click the Create Lines: Rectangle tool in the upper-right region of the Sketcher toolbox, as shown in
Figure 11.4.

The rectangle drawing tool appears in the Sketcher toolbox with a white background, indicating that
you selected it. ABAQUS/CAE displays prompts in the prompt area to guide you through the
procedure.

Notice thatas you move the cursor around the viewport, ABAQUS/CAE displays the cursor’s X—and
Y-coordinates in the upper—left corner.

. Select any two points as the opposite corners of the rectangle.

c. Use the dimension tool . to dimension the top and left edges of the rectangle. The top edge should
have a horizontal dimension of 2 m, and the left edge should have a vertical dimension of 1 m. When
dimensioning each edge, simply select the line, click mouse button 1 to position the dimension text and
then enter the new dimension in the prompt area.

d. Use the Delete tool & to delete the perpendicular constraints associated with the bottom edge of
the rectangle (select Constraints as the Scope in the prompt area to facilitate your selections).

e. Dimension the right edge of the plate so that it has a vertical dimension of 0.5 m. The final sketch
appears as shown in Figure 11.5.

f. Click mouse button 2 anywhere in the viewport to finish using the dimension tool. (Mouse button 2 is
the middle mouse button on a three-button mouse; on a two-button mouse, press both mouse buttons
simultaneously.)

g. Click Done in the prompt area to exit the sketcher.

Module: IPart "I M

+ &
ol
l::?;aﬁ} -----------------

Figure 11.4 Connected lines sketch tool.
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Figure 11.5 Trapezoid drawn with sketcher.

Figure 11.6 Finished part.
ABAQUS/CAE displays the new part, as shown in Figure 11.6.

11.4 CREATING A MATERIAL DEFINITION

You will now create a single linear material with a conductivity of 5 units.

To define a material:

1. Inthe Model Tree, double-click Materials to create a new material.

2. Inthe Edit Material dialog box, name the material examp1le. Notice the various options available in
this dialog box.

3. From the material editor’s menu bar, select Thermal — Conductivity, as shown in Figure 11.7.

General Mechanical |1hermal Other

Heat Generation
Inelastic Heat Fraction
Joule Heat Fraction
Latent Heat

Specific Heat

Figure 11.7 Pull-down menu of the material editor.
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Data

Conductivity l

1
Figure 11.8 Conductivity data form.
ABAQUS/CAE displays the Conductivity data form.
Enter a value of 5.0 for the conductivity, as shown in Figure 11.8. Use the mouse to select a cell for

data entry.
Click OK to exit the material editor.

11.5 DEFINING AND ASSIGNING SECTION PROPERTIES

Material properties are associated with part regions through the use of section properties. You will define a
solid section property that refers to the material created above and assign this section property to the part.

To define a homogeneous solid section:

1.

In the Model Tree, double-click Sections to create a new section.
In the Create Section dialog box:

a. Name the section plateSection.
b. In the Category list, accept Solid as the default category selection.
c. In the Type list, accept Homogeneous as the default type selection.

d. Click Continue.
The solid section editor appears.
In the Edit Section dialog box:

a. Accept the default selection of example for the Material associated with the section.
b. Accept the default value of 1 for Plane stress/strain thickness.
c. Click OK.

To assign the section definition to the plate:

1.

2.

In the Model Tree, expand the branch for the part named plate (click the ‘+’ symbol to expand the
Parts container and then click the ‘4’ symbol next to the part named plate).

Double-click Section Assignments to assign a section to the plate.

ABAQUS/CAE displays prompts in the prompt area to guide you through the procedure.

Click anywhere on the plate to select the entire part.

ABAQUS/CAE highlights the plate.

Click mouse button 2 in the viewport or click Done in the prompt area to accept the selected geometry.
The Edit Section Assignment dialog box appears containing a list of existing section definitions.
Accept the default selection of plate Section, and click OK.

ABAQUS/CAE assigns the solid section definition to the plate and closes the Edit Section Assignment
dialog box.
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11.6 ASSEMBLING THE MODEL

Every ABAQUS model is based on the concept of an assembly of part instances. You will create an
assembly containing a single instance of the part created earlier.

To assemble the model:

1. Inthe Model Tree, expand the branch for the Assembly container and double-click Instances to create
anew part instance.
2. Inthe Create Instance dialog box, select plate and click OK.

11.7 CONFIGURING THE ANALYSIS
To simulate the thermal response of the plate, a single heat transfer step will be used.
To create a heat transfer analysis step:

1. Inthe Model Tree, double-click Steps to create a step.

2. From the list of available general procedures in the Create Step dialog box, select Heat transfer and
click Continue.
The Edit Step dialog box appears.

3. In the Description field of the Basic tabbed page, enter Two-dimensional steady-state
heat transfer.

4. Change the response type to Steady-state.

Accept all other default values provided for the step.

6. Click OK to create the step and to exit the step editor.

b

11.8 APPLYING A BOUNDARY CONDITION AND A LOAD
TO THE MODEL

The loads and boundary conditions applied to the model are depicted in Figure 11.1. The temperature 7= 0
is prescribed along the edges AB and AD. The heat fluxes ¢ = 0 and g = 20 are prescribed on the edges BC
and CD, respectively. A constant heat source Q = 6 is applied over the entire plate.

When assigning these attributes, you have the choice of selecting regions directly in the viewport or
assigning them to predefined sets and surfaces. In this example, we adopt the latter approach. Thus, you will
first define sets and surfaces.

To define sets and surfaces:

1. Inthe Model Tree, double-click Sets (underneath the Assembly) to create a new set. In the Create Set
dialog box, name the set Left and click Continue. Select the left vertical edge of the plate and click
Done in the prompt area.

2. Similarly, create the following sets:

- bottom at the bottom (skewed) edge of the plate;
- plate for the entire plate.

3. Inthe Model Tree, double-click Surfaces (underneath the Assembly) to create a new surface. In the
Create Surface dialog box, name the surface top and click Continue. Select the top horizontal edge
of the plate and click Done in the prompt area.
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Figure 11.9 Left edge selected.

To apply boundary conditions to the plate:

1.

AN

In the Model Tree, double-click BCs to create a new boundary condition.
In the Create Boundary Condition dialog box:

- Name the boundary condition 1left temp.

- Select Step-1 as the step in which the boundary condition will be activated.
- In the Category list, select Other.

- In the Types for Selected Step list, select Temperature and click Continue.

In the prompt area, click Sets to open the Region Selection dialog box. Select the set left and toggle on
Highlight selections in viewport. The highlighted edge appears as shown in Figure 11.9.

When you are satisfied that the correct set has been selected, click Continue.

The Edit Boundary Condition dialog box appears.

In the Edit Boundary Condition dialog box, enter a magnitude of 0.

Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform).

Click OK to create the boundary condition and to exit the editor.

ABAQUS/CAE displays yellow squares along the edge to indicate a temperature boundary condition
has been prescribed.

Repeat the above steps to assign the boundary condition to the bottom edge. Name this boundary
condition bottom temp.

To apply a surface flux to the top edge of the plate:

—

In the Model Tree, double-click Loads to create a new load.
In the Create Load dialog box:

- Name the load surface flux.

- Select Step-1 as the step in which the load will be applied.

- In the Category list, select Thermal.

- In the Types for Selected Step list, select Surface heat flux.

- Click Continue.

In the Region Selection dialog box, select the surface named top. The surface appears as shown in
Figure 11.10.

When you are satisfied that the correct surface has been selected, click Continue.

The Edit Load dialog box appears.
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Figure 11.10 Top surface selected.

5. In the Edit Load dialog box:
- Enter a magnitude of 20 for the load.
- Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform).
- Click OK to create the load definition and to exit the editor.
ABAQUS/CAE displays green downward-pointing arrows along the top face of the plate to indicate an
inward flux.

To apply a body flux to the plate:

1. In the Model Tree, double-click Loads to create a new load.
In the Create Load dialog box

- Name the load body flux.

- Select Step-1 as the step in which the load will be applied.
- In the Category list, select Thermal.

- In the Types for Selected Step list, select Body heat flux.
- Click Continue.

hed

In the Region Selection dialog box, select the set named plate and click Continue.
4. In the Edit Load dialog box:

- Enter a magnitude of 6 for the load.
- Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform).
- Click OK to create the load definition and to exit the editor.
ABAQUS/CAE displays yellow squares along the remaining edges of the plate.
The right edge of the plate is fully insulated. This is the default boundary condition for a thermal analysis
model. Thus, you need not apply a boundary condition or load to this edge.

11.9 MESHING THE MODEL

You use the Mesh module to generate the finite element mesh. You can choose the meshing technique that
ABAQUS/CAE will use to create the mesh, the element shape and the element type. ABAQUS/CAE offers
a number of different meshing techniques. The default meshing technique assigned to the model is
indicated by the color of the model when you enter the Mesh module; if ABAQUS/CAE displays the
model in orange, it cannot be meshed without assistance from the user.
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To assign the mesh controls:

Al

In the Model Tree, double-click Mesh in the branch for the part named plate.
From the main menu bar of the Mesh module, select Mesh — Controls.

In the Mesh Controls dialog box, choose Tri as the Element Shape selection.
Accept Free as the default Technique selection.

Click OK to assign the mesh controls and to close the dialog box.

To assign an abaqus element type:

1. From the main menu bar, select Mesh — Element Type.
In the Element Type dialog box, choose the following:
- Standard as the Element Library selection.
- Linear as the Geometric Order.
- Heat Transfer as the Family of elements.

3. Inthe lower portion of the dialog box, examine the element shape options. A brief description of the
default element selection is available at the bottom of each tabbed page.

4. Click OK to assign DC2D3 elements to the part and to close the dialog box.

To mesh the part:

1. From the main menu bar, select Seed — Part to seed the part.
The Global Seeds dialog box displays the default element size that ABAQUS/CAE will use to seed the
part. This default element size is based on the size of the part.

2. Enter an approximate global size of 2. 0 and click OK. This element size is chosen so that only one
element will be created along each edge of the plate.

3. ABAQUS/CAE applies the seeds to the part, as shown in Figure 11.11. The squares in the figure
indicate fixed node locations.

4. From the main menu bar, select Mesh — Part to mesh the part.

5. Click Yes in the prompt area or click mouse button 2 in the viewport to confirm that you want to mesh
the part.

6. ABAQUS/CAE meshes the part and displays the resulting mesh, as shown in Figure 11.12a.

7. Ifyou wish to change the diagonal of the elements, select Mesh — Edit. In the Edit Mesh dialog box,

select Element as the category and Swap diagonal as the method. Click OK. In the viewport, select the
shared diagonal edge of the elements. Click Yes in the prompt area to complete the operation. The mesh
appears as shown in Figure 11.12b.

3

Figure 11.11 Seeded part instance.
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Figure 11.12 Swapped diagonals.

10 CREATING AND SUBMITTING AN ANALYSIS JOB

You will now create a job and submit it for analysis.

To create and submit an analysis job:

A e

11.

11.

In the Model Tree, double-click Jobs to create a new analysis job.

Name the job tri-coarse.

From the list of available models select heat.

Click Continue to create the job.

In the Description field of the Edit Job dialog box, enter Coarse triangle mesh.

Click the tabs to see the contents of each folder of the job editor and to review the default settings. Click
OK to accept the default job settings.

In the Model Tree, expand the Jobs container and click MB3 on the job named tri-coarse. In the menu
that appears, select Submit to submit your job for analysis. The icon for the job will change to indicate
the status of the job in parenthesis after the job name. As the job runs, the status Running will be shown
in the Model Tree.

When the job completes successfully, the status field will change to Completed. You are now ready to
view the results of the analysis in the Visualization module.

11 VIEWING THE ANALYSIS RESULTS

In the Model Tree, click MB3 on the job tri-coarse and select Results from the menu that appears.
ABAQUS/CAE opens the output database created by the job (tri-coarse.odb) and displays the
undeformed model shape.

You will create a contour plot of the temperature distribution.

From the main menu bar, select Result — Field Output and select NT11 as the output variable to be
displayed.

In the Select Plot State dialog box, select As is and click OK.

In the toolbox, click the Plot Contours tool [& to view a contour plot of the temperature distribution,
as shown in Figure 11.13.

12 SOLVING THE PROBLEM USING QUADRILATERALS

You will now solve the problem using quadrilateral elements. This involves changing the element shape
and creating and submitting a new job. The steps are outlined below.
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Step: Step-1, Two-dimensional steady state heat transfer

2 Increment 1: Step Time =

Primary Var: NT11
1 Deformed Var: not set Deformation Scale Factor: not set
3

Figure 11.13 Temperature contour plot: coarse triangle mesh.

To modify a model:

1.

2.

In the Model Tree, double-click Mesh in the branch for the part named plate to switch to the Mesh
module.

From the main menu bar of the Mesh module, select Mesh — Controls. Select Quad as the element
shape and click OK.

A warning is issued indicating that the current mesh will be deleted. Click Delete Meshes in the
ABAQUS dialog box to proceed.

From the main menu bar, select Mesh — Part to mesh the part with DC2D4 elements.

Click Yes in the prompt area or click mouse button 2 in the viewport to confirm that you want to mesh
the part.

Create anew job. Name this job quad-coarse and giveit the following description: Coarse quad
mesh.

Submit the job for analysis and monitor its progress. When the job completes, open the file quad-
coarse.odb in the Visualization module.

Plot the temperature contours for this model. The result is shown in Figure 11.14.

11.13 REFINING THE MESH

Clearly the mesh used to solve this problem was too coarse. For each choice of element shape (triangles and
quadrilaterals), change the mesh seed size to refine the mesh. Use the following mesh seed sizes:

e (.20 (this produces a finer mesh than used previously)
e (.05 (this produces the finest mesh used in this study)

Thus, you will create and run four additional jobs named:

tri-finer
tri-finest
quad-finer
quad-finest
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NT11
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Step: Step-1, Two-dimensional steady state heat transfer
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Primary Var: NT11
1 Deformed Var: not set Deformation Scale Factor: not set
3

Figure 11.14 Temperature contour plot: coarse quad mesh.

For each case, edit the model to redefine the mesh, create a new job, and submit it for analysis. Repeat this
process until all jobs listed above have been submitted.

The results of the refined mesh models are shown in Figure 11.15.

From the main menu bar, select File — Save to save your model database file.
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Figure 11.15 Temperature contour plots: refined meshes.
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Figure 11.16 Cantilever beam.

11.13.1 Bending of a Short Cantilever Beam

In this tutorial, you will modify the model created in the previous exercise to simulate the bending of a short
cantilever beam. The cross-section of the beam has a trapezoidal shape, as shown in Figure 11.16. The
system of units is not specified but all units are assumed to be consistent. The beam is of unit thickness and
subjected to the conditions shown in the figure. The material response is linear elastic with Young’s
modulus E = 30E6 and Poisson’s ratio v = 0.3.

11.14 COPYING THE MODEL

In the model database file saved earlier, copy the existing model to a new model: in the Model Tree, click
MB3 on the model named heat and select Copy Model from the menu that appears. Enter cant ileverin
the Copy Model dialog box and click OK.

All instructions that follow refer to the cantilever model.

11.15 MODIFYING THE MATERIAL DEFINITION

You will now edit the material definition to define linear elastic properties. You do not need to delete the
thermal properties defined earlier. These will be ignored during the static stress analysis that follows.

To edit a material

1. Inthe Model Tree, expand the Materials container and double-click example to edit the material.
From the material editor’s menu bar, select Mechanical — Elasticity — Elastic, as shown in
Figure 11.17.

ABAQUS/CAE displays the Elastic data form.

3. Enteravalue of 30e6 for Young’s modulus and 0 . 3 for Poisson’s ratio, as shown in Figure 11.18. Use
[Tab] or move the cursor to a new cell and click to move between cells.

4. Click OK to exit the material editor.

11.16 CONFIGURING THE ANALYSIS

To simulate the structural response of the beam, replace the heat transfer step defined earlier with a single
general static step. The thermal loads and boundary conditions defined earlier will be automatically
suppressed when the heat transfer step is replaced.
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General |m|3chani-:al Thermal  Other

Elasticity » |

Plasticity > Hyperelastic
Damage For Ductile Metals > Hyperfoam
Damage for Traction Separation Laws & Hypoelastic
Damage for Fiber-Reinforced Composites » Porous Elastic
Deformation Plasticity Viscoelastic
Damping =

Expansion

Brittle Cracking

Figure 11.17 Pull-down menu in material editor.

To replace a step

1. In the Model Tree, expand the Steps container. Click MB3 on the step named Step-1 and select
Replace from the menu that appears.

2. From the list of available general procedures in the Replace Step dialog box, select Static, General

and click Continue.

In the Description field of the Basic tabbed page, enter Beam bending.

Accept all default values provided for the step.

Click OK to create the step and to exit the step editor.

g(xpand the BCs and Loads containers to confirm that their items have been suppressed (denoted by the
symbol).

SNk W

11.17 APPLYING A BOUNDARY CONDITION AND A
LOAD TO THE MODEL

The loads and boundary conditions applied to the model are depicted in Figure 11.16 where edge DA is
fixed. Edges AB and BC are traction free; on edge CD, the traction is 7, = —20.

To apply boundary conditions to the beam

1. Inthe Model Tree, double-click BCs to create a new boundary condition.
2. Inthe Create Boundary Condition dialog box:

- Data

Young's Poisson's
Modulus Ratio

Figure 11.18 Elastic data form.
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- Name the boundary condition fix.
- Select Step-1 as the step in which the boundary condition will be activated.
- In the Category list, select Mechanical.
- In the Types for Selected Step list, Symmetry/Antisymmetry/Encastre and click Continue.
3. Inthe prompt area, click Sets to open the Region Selection dialog box. Select the set left and click
Continue.
The Edit Boundary Condition dialog box appears.
4. Inthe Edit Boundary Condition dialog box, select ENCASTRE.
5. Click OK to create the boundary condition and to exit the editor.

ABAQUS/CAE displays glyphs along the edge to indicate boundary conditions have been applied.

To apply a surface traction to the top edge of the beam:

1. Inthe Model Tree, double-click Loads to create a new load.
In the Create Load dialog box:

- Name the load traction.

- Select Step-1 as the step in which the load will be applied.

- In the Category list, select Mechanical.

- In the Types for Selected Step list, select Surface traction.

- Click Continue.

3. Inthe Region Selection dialog box, select the surface named top and click Continue.

The Edit Load dialog box appears.

4. Inthe Edit Load dialog box:

- Select General as the traction type.

- Click Edit to define the traction direction. Select the top-left corner of the part as the first point
and the bottom-left corner of the part as the second point of the direction vector. This vector
points in the negative 2-direction.

- Enter a magnitude of 20 for the load.

- Accept all other default selections and click OK.

ABAQUS/CAE displays purple downward-pointing arrows along the top face of the beam to indicate a
negative normal traction.
The remaining edges of the beam are traction free. This is default boundary condition for a stress analysis
model. Thus, you need not apply a boundary condition or load to these edges.

11.18 MESHING THE MODEL
You now need to change the element type to use plane strain (CPE4R) elements. Plane strain elements are

used since the beam is thick relative to its cross-sectional dimensions. Use the finest mesh density from the
earlier model (global seed = 0.05) with a quadrilateral element shape.

To change the abaqus element type:

1. Inthe Model Tree, double-click Mesh in the branch for the part named plate.
2. From the main menu bar, select Mesh — Element Type.
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3. Inthe Element Type dialog box, choose the following:

- Standard as the Element Library selection.
- Linear as the Geometric Order.
- Plane Strain as the Family of elements.

4. Inthe lower portion of the dialog box, examine the element shape options. A brief description of the
default element selection is available at the bottom of each tabbed page.
5. Click OK to assign CPE4R elements to the part and to close the dialog box.

11.19 CREATING AND SUBMITTING AN ANALYSIS JOB

You will now create a job and submit it for analysis.

To create and submit an analysis job:

1. Inthe Model Tree, double-click Jobs to create a new analysis job.

2. Name the job beam.

3. From the list of available models select cantilever.

4. Click Continue to create the job.

5. In the Description field of the Edit Job dialog box, enter Bending of a short cantilever
beam.

6. Click OK to accept the default job settings.

7. Inthe Model Tree, expand the Jobs container and click MB3 on the job named beam. In the menu that

appears, select Submit to submit your job for analysis.

11.20 VIEWING THE ANALYSIS RESULTS

1. When the job completes successfully, switch to the Visualization module: In the Model Tree, click
MB3 on the job named beam and select Results from the menu that appears.
ABAQUS/CAE opens the output database created by the job (beam.odb) and displays the unde-
formed model shape.
You will create a contour plot of the Mises stress distribution. The Mises stress is the default field output
variable selection; thus, you do not need to select it prior to creating the contour plot.

2. Inthe toolbox, click the Plot Contours tool [S to view a contour plot of the Mises stress distribution,
as shown in Figure 11.19.

3. Plot the deformed model shape (click in the toolbox).

4. Inthe toolbox, click the Allow Multiple Plot States tool D['jj followed by the Plot Undeformed Shape
tool [l . This will overlay the deformed and undeformed model shapes, as shown in Figure 11.20.

For small-displacement analyses, the displacements are scaled automatically to ensure that they are
clearly visible. The scale factor is displayed in the state block. In this case the displacements have been
scaled by a factor of 7586.

Note: In Figure 11.20, only feature edges of the undeformed shape are visible (set via the Superimpose
Options tool FH).

From the main menu bar, select File — Save to save your model database file.

11.20.1 Plate with a Hole in Tension

You will now create a model of the plate with a hole shown in Figure 11.21. The system of units is not
specified but all units are assumed to be consistent. The plate is of unit thickness and subjected to tension in
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Figure 11.19 Mises stress contour plot.

Step: Step-1
2 Increment 1: Step Time = 1.000

Deformed Var: U Deformation Scale Factor: +7.586e+03
1
Figure 11.20 Overlay of deformed and undeformed model shapes.

the horizontal direction. Because of the symmetry in the model and loading, you need only one quarter of
the model plate. You will perform a series of simulations with increasing levels of mesh refinement
and compare the value of the stress in the horizontal direction at the top of the hole with the theoretical
value.

Figure 11.21 Plate under tension (left); quarter-symmetry model (right).
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Figure 11.22 Rectangle sketch tool.

21 CREATING A NEW MODEL

In the model database file saved earlier, create a new model: in the Model Tree, double-click Models. Enter
plate as the model name in the Edit Model Attributes dialog box and click OK.
All instructions that follow refer to the plate model.

1.

22 CREATING A PART

As before, the first step involves sketching the geometry for a two-dimensional, planar, deformable solid
body.

1.

In the Model Tree, double-click Parts to create a new part.

The Create Part dialog box appears

Name the part plate. In the Create Part dialog box, select 2D Planar as the part’s modeling space,
Deformable as the type and Shell as the base feature. In the Approximate size text field, type 200.
Click Continue to exitthe Create Part dialog box. To sketch the plate, youneed to draw arectangle. To
select the rectangle drawing tool, do the following:

- Click the Create Lines: Rectangle tool in the upper—right region of the Sketcher toolbox as

shown in Figure 11.22.
The rectangle drawing tool appears in the Sketcher toolbox with a white background, indicating

that you selected it. ABAQUS/CAE displays prompts in the prompt area to guide you through the
procedure.

- Click one corner of the rectangle at coordinates (—20, —20).
- Move the cursor to the opposite corner (20, 20).
- Create a circle centered at the origin with a perimeter point located at (2.5, 0.0). The final sketch
appears as shown in Figure 11.23.
- Click Done in the prompt area to exit the sketcher.
- Quarter the plate to remove all but the upper right quadrant. To do this:
o From the main menu bar of the Part module, select Shape — Cut — Extrude.
o Using the Create Lines: Connected tool located in the upper right-hand corner of the Sketcher
toolbox, sketch the series of connected lines shown in Figure 11.24. Click Done to complete the
operation.

ABAQUS/CAE displays the new part, as shown in Figure 11.21 (right).
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Figure 11.23 Rectangle with a hole drawn with sketcher.

11.23 CREATING A MATERIAL DEFINITION

You will now create a single linear elastic material.

To define a material:

In the Model Tree, double-click Materials to create a new material.
In the Edit Material dialog box, name the material steel.

o =

Figure 11.24 Sketch of cutting tool.
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Figure 11.25 Elastic data form.

3. From the material editor’s menu bar, select Mechanical — Elasticity — Elastic, as shown earlier in
Figure 11.17.
ABAQUS/CAE displays the Elastic data form.
4. Enter a value of 2e11 for Young’s modulus and 0. 3 for Poisson’s ratio, as shown in Figure 11.25.
5. Click OK to exit the material editor.

11.24 DEFINING AND ASSIGNING SECTION PROPERTIES

You will define a solid section property that references the material created above and assign this section
property to the part.

To define a homogeneous solid section:

1. Inthe Model Tree, double-click Sections to create a new section.
2. Inthe Create Section dialog box:

- Name the section plateSection.
- In the Category list, accept Solid as the default category selection.
- In the Type list, accept Homogeneous as the default type selection.
- Click Continue.
The solid section editor appears.

3. In the Edit Section dialog box:

- Accept the default selection of steel for the Material associated with the section.
- Accept the default value of 1 for Plane stress/strain thickness.
- Click OK.

To assign the section definition to the plate:

1. Inthe Model Tree, expand the branch for the part named plate.
Double-click Section Assignments to assign a section to the plate.
3. Click anywhere on the plate to select the entire part.
ABAQUS/CAE highlights the plate.
4. Click mouse button 2 in the viewport or click Done in the prompt area to accept the selected geometry.
The Edit Section Assignment dialog box appears containing a list of existing section definitions.
5. Accept the default selection of plateSection as the section definition, and click OK.

ABAQUS/CAE assigns the solid section definition to the plate and closes the Edit Section Assignment
dialog box.
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11.25 ASSEMBLING THE MODEL

You will create an assembly containing a single instance of the part.

To assemble the model:

1. Inthe Model Tree, expand the branch for the Assembly container and double-click Instances to create
anew part instance.
2. Inthe Create Instance dialog box, select plate and click OK.

11.26 CONFIGURING THE ANALYSIS

To simulate the mechanical response of the plate, a single general static step will be used.

To create a general static analysis step:

1. Inthe Model Tree, double-click Steps to create a step.

From the list of available general procedures in the Create Step dialog box, select Static, General and
click Continue.

In the Description field of the Basic tabbed page, enter Plate with hole under tension.
Accept all default values provided for the step.

5. Click OK to create the step and to exit the step editor.

W

11.27 APPLYING A BOUNDARY CONDITION AND A LOAD
TO THE MODEL

You will apply symmetry boundary conditions along the left and bottom edges of the plate and a negative
pressure on the right edge to simulate tension. The use of a pressure load is equivalent to defining a surface
traction normal to a surface. Note that a positive pressure always acts into the surface. Thus, a negative
pressure load will act away from the surface (inducing tension). As before, sets and surfaces will be used to
assign the loads and boundary conditions.

To define sets and surfaces:

1. Inthe Model Tree, double-click Sets (underneath the Assembly) to create a new set. In the Create Set
dialog box, name the set Left and click Continue. Select the left vertical edge of the plate and click
Done in the prompt area.

2. Similarly, create a set named bottom that includes the bottom horizontal edge of the plate.

3. Inthe Model Tree, double-click Surfaces (underneath the Assembly) to create a new surface. In the
Create Surface dialog box, name the surface pul1l and click Continue. Select the right vertical edge
of the plate and click Done in the prompt area.

To apply boundary conditions to the plate:

1. Inthe Model Tree, double-click BCs to create a new boundary condition.
2. Inthe Create Boundary Condition dialog box:

- Name the boundary condition left.
- Select Step-1 as the step in which the boundary condition will be activated.
- In the Category list, select Mechanical.
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Figure 11.26 Left edge selected.

- In the Types for Selected Step list, select Symmetry/Antisymmetry/Encastre and click
Continue.

3. Inthe prompt area, click Sets to open the Region Selection dialog box. Select the set left and toggle on
Highlight selections in viewport. The highlighted edge appears as shown in Figure 11.26.
4.  When you are satisfied that the correct set has been selected, click Continue.
The Edit Boundary Condition dialog box appears.
5. Inthe Edit Boundary Condition dialog box, select XSYMM.
Click OK to create the boundary condition and to exit the editor.
ABAQUS/CAE displays glyphs along the edge to indicate boundary conditions have been applied.
6. Similarly, create a symmetry boundary condition named bottom on the bottom edge of the plate.
Select bottom as the set and YSYMM as the type.

To apply a pressure to the right edge of the plate:

1. Inthe Model Tree, double-click Loads to create a new load.
2. Inthe Create Load dialog box:

- Name the load tension.

- Select Step-1 as the step in which the load will be applied.
- In the Category list, select Mechanical.

- In the Types for Selected Step list, select Pressure.

- Click Continue.

3. Inthe Region Selection dialog box, select the surface named pull. The surface appears as shown in
Figure 11.27.

Y
-
V4

Figure 11.27 Right surface selected
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4.  When you are satisfied that the correct surface has been selected, click Continue.
The Edit Load dialog box appears.
5. Inthe Edit Load dialog box:

- Enter a magnitude of -10e3 for the load.

- Accept the default Amplitude selection (Ramp) and the default Distribution (Uniform).

- Click OK to create the load definition and to exit the editor.
ABAQUS/CAE displays outward-pointing arrows along the edge of the plate to indicate a tensile
load.

11.28 MESHING THE MODEL

As before, use the Mesh module to generate the finite element mesh. You will use quadratic plane stress
(CPS8R) elements to discretize the plate. Quadratic elements are more effective in capturing stress
concentrations (a key feature of this problem) and the relative thinness of the plate suggests plane stress
conditions.

To assign the mesh controls:

In the Model Tree, double-click Mesh in the branch for the part named plate.
From the main menu bar of the Mesh module, select Mesh — Controls.

In the Mesh Controls dialog box, choose Quad as the Element Shape selection.
Accept Free as the default Technique selection.

Click OK to assign the mesh controls and to close the dialog box.

M

To assign an abaqus element type:

1. From the main menu bar, select Mesh — Element Type.
In the Element Type dialog box, choose the following:
- Standard as the Element Library selection.
- Quadratic as the Geometric Order.
- Plane Stress as the Family of elements.
3. Inthe lower portion of the dialog box, examine the element shape options. A brief description of the
default element selection is available at the bottom of each tabbed page.
4. Click OK to accept and assign CPS8R elements to the plate and to close the dialog box.

You will now partition the plate in half in order to gain better control over the mesh.

To partition the plate:

1. From the main menu bar, select Tools — Partition.

2. Inthe Create Partition dialog box, select Face as the type and Sketch as the method. Click OK.

3. Inthe sketcher, draw a line connecting the origin of the circle with the upper right corner of the plate.
4. Click the middle mouse button twice then click Done.

To mesh the part:

1. From the main menu bar, select Seed — Part to seed the part.
2. Inthe Global Seeds dialog box, specify an approximate global size of 2. 0 and press OK.
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Figure 11.28 Seeded part instance.

ABAQUS/CAE applies the seeds to the part, as shown in Figure 11.28. The squares in the figure
indicate fixed node locations. The circles indicate target node locations.

From the main menu bar, select Mesh— Part to mesh the part.

Click Yes in the prompt area or click mouse button 2 in the viewport to confirm that you want to mesh
the part.

ABAQUS/CAE meshes the part and displays the resulting mesh, as shown in Figure 11.29.

29 CREATING AND SUBMITTING AN ANALYSIS JOB

You will now create a job and submit it for analysis.

To create and submit an analysis job

A

In the Model Tree, double-click Jobs to create a new analysis job.

Name the job hole-coarse.

From the list of available models select plate.

Click Continue to create the job.

In the Description field of the Edit Job dialog box, enter Coarse mesh.

Click the tabs to see the contents of each folder of the job editor and to review the default settings. Click
OK to accept the default job settings.

In the Model Tree, expand the Jobs container and click MB3 on the job named hole-coarse. In the
menu that appears, select Submit to submit your job for analysis.

Y
L x
Z

Figure 11.29 Part showing the resulting mesh.
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Figure 11.30 Stress contour plot: coarse mesh model.

11.30 VIEWING THE ANALYSIS RESULTS

1. When the job completes successfully, switch to the Visualization module: In the Model Tree, click
MB3 on the job hole-coarse and select Results from the menu that appears.
ABAQUS/CAE opens the output database created by the job (hole-coarse . odb) and displays the
undeformed model shape.
You will create a contour plot of the stress distribution.

2. From the main menu bar, select Result— Field Output and select S11 as the output variable to be

displayed. This is the component of stress in the horizontal direction.

In the Select Plot State dialog box, select As is and click OK.

4. In the toolbox, click the Plot Contours tool & to view a contour plot of the stress distribution, as
shown in Figure 11.30.

w

11.31 REFINING THE MESH

The theoretical value of the stress at the top of the hole is 3 x the applied stress (30e3 in this case). Clearly
the mesh used to solve this problem was too coarse. Reduce the mesh seed size to refine the mesh. Use the
following mesh seed sizes:

e 1.2 global seed size (uniform)
e 1.2 global seed size with local biased edge seeds along the left, bottom and diagonal edges:

(i)  From the main menu bar of the Mesh module, select Seed — Edge Biased.
(i)  Using [Shift]+[Click], select the left, bottom and diagonal edges at the ends near the hole.
(iii) Enter a bias ratio of 3.

(iv) Enter 20 for the number of elements along the edges.
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Figure 11.31 Stress contour plot: fine mesh model.
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Figure 11.32 Stress contour plot: biased mesh model.
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Thus, you will create and run two additional jobs named:

e hole-fine
e hole-biased

You do not need to create new models for each of these jobs. Simply edit the current model to refine the
mesh. Create a new job and submit it for analysis. Repeat this process until all jobs listed above have been
submitted.

The results of the refined mesh models are shown in Figure 11.31 and Figure 11.32.

From the main menu bar, select File — Save to save your model database file.

Close the ABAQUS/CAE session by selecting File — Exit from the main menu bar.






APPENDIX

A.1 ROTATION OF COORDINATE SYSTEM IN THREE DIMENSIONS

Consider a point P in the global coordinate system xyz as shown in Figure A.1. The position vector
corresponding to point P is denoted by 5. It can be written in terms of its Cartesian components:

F=sd+ sj—b— 5.k, (A1)

where f,fand K are unit vectors in the x, y and z directions, respectively.
We now define the same point P in the rotated coordinate system x'y'z’ as shown in Figure A.1. Writing

the vector 5 in the rotated coordinate system x'y'z’ gives

5=+ s;}" + sgl_(", (A2)

where 7, f’ and ¥’ are unit vectors in the ¥, ¥ and 7’ directions, respectively, and s/, s, and s/, are the
corresponding vector components. As (A.1) and (A.2) represent the same vector, vector components sy, sy
and s, can be obtained by multiplying (A.1) and (A.2) with unit vectors i, j and k, respectively, which yields

sy =1-S=si-1 +si-j +si-k',

g e /A 17T
Sy=J-S=s8j-L+s)J+sjk, (A3)
s;=k-S=sk-i'+sk-j +slk-k.

Denoting i - i’ = cos(x,x') = nyy, i - k' = cos(x,7) = ny3, j- i =cos(y,x') =ny and so on gives in

matrix notation

!

Sx ni npp n3 Sy
! !/

Sy | = | n21 N no3 Sy s s =Rs'. (A.4)
/

Sz n3p nzx o N33 S,

It can be shown that the transformation matrix R is orthogonal, i.e., R" = (R )71 . Thus, the inverse relation
is given by

s’ =R"s. (A5)

A First Course in Finite Elements J. Fish and T. Belytschko
© 2007 John Wiley & Sons, Ltd
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Figure A.1 Position of arbitrary point P in two coordinate systems.

A.2 SCALAR PRODUCT THEOREM

Consider the scalar product of two vectors w and p equal to zero for any vector w denoted as Vw:
wp=0 Yw
or
Wip1+Wwapa+ -+ Wyp, =0 Vw.

As the vector component w; is arbitrary, it is convenient to make the following choices:

wi=lw,=w=-=w,=0=p, =0,
w=1lw=w3=-=w,=0=p, =0,
w,=1lwi=w=---=w,_1 =0=p, =0,

which yields p = 0.

A.3 TAYLOR’S FORMULA WITH REMAINDER
AND THE MEAN VALUE THEOREM

Taylor’s formula with remainder plays akey role in understanding the behavior of the finite element method
discussed in Section 5.7.2.
A function f(x) defined on interval 0 < x < [ can be expanded around a point 0 < xy < [ as follows:

£ =) + (= 0) B (x0) 5 (5 = x0)? 35 (x0)
1 o (A.6)
= xo)k@(c%

where c is some point in the interval x < ¢ < xp.
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The mean value theorem is obtained as a special case for k = 1:
F(x) =f(x0) + (x = x0) fx(c). (A7)
Consider a special case of xo = 0 and x = /, then

af
dx

(0 =101, (A8)

which means that for any differentiable function (x) there isapointin the interval 0 < ¢ < /thathasaslope
defined by (A.8). See Problem A.1 for a specific choice of function f(x).

A.4 GREEN’S THEOREM

The gradient is a vector given by

where ?andfare unit vectors in the x and y directions, respectively. The gradient of a function is given by

L O LOf
folay—F]ay.

Consider any scalar field = 0(x, y) defined on a domain €2, as shown in Figure A.2. The boundary of the
domain is denoted by I' as shown in the figure. The unit normal to the domain is denoted by 7, where in two
dimensions

i = n,i + nyj, (A9)

and n, and n, are the x and y components of the vector normal to the domain, called the normal vector or just
the normal. As 7 is a unit vector, it follows that n? 4+ n2 = 1.

Figure A.2 Two-dimensional domain and its boundary.
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The purpose of Green’s theorem is to relate an integral of a gradient of a function over an area to a contour
integral by

/ V0dQ = %Gﬁdl“. (A.10)
P

Q

In Equation (A.10), in a two-dimensional problem, the LHS integral is a double integral and can also be
writtenas [ [ V6 dx dy, where we have omitted the limits of integration because they are awkward to write
for arbitrary shapes. The RHS of (A.10) in two dimensions is a contour integral. Note that Equation (A.10)
in 2D represents two scalar equations

?d@ /Onxdf‘, ? aQ = /Qn_vdf‘. (A.11)
T T

We will prove Green’s theorem for a convex domain (a convex domain is a domain for which any line
joining two points in the domain is entirely in the domain). This is not a very restrictive assumption because
any domain can be subdivided into convex subdomains and the same methods can then be used to prove the
theorem.

Let us consider the area integral

I = /— Q. (A.12)

The maximum and minimum y-values of the domain are indicated by the points P, and P, in Figure A.2,
where the corresponding y-values are y =y; and y = y», respectively. These two points divide the
boundary into two curves as shown in the figure. The first curve, x = I'; (y), starts at P; and follows a
clockwise path ending at P,. The second curve, x = I';(y), follows a counterclockwise path from P, to P,.
Using these definitions of the boundary of the domain, Equation (A.12) can be rewritten as follows:

Y2 Iy Py
L= [Pao- // dxdy:/ [ e
Ox
Q M I
Now applying the fundamental theorem of calculus to the above, we obtain
Y2 2

L= / (e<x,y> w)dy: [omomae - [oroa.

i Y1 Vi

Ta(y)

Now we reverse the limits of integration on the second integral, which requires that we change the sign on the
integral. It can be seen that the first term is the integral of 6 evaluated on the boundary T';(y) in the
counterclockwise direction. The second term is the integral of 6 taken along I'y(y), also in the counter-
clockwise direction. Thus, the sum of the two integrals gives the complete contourintegraloverI' = I'y U I'p:

y2 Vi

L= [orema+ [ = 75 f(x.y) dy, (A13)

Y1 y2

where 39 is the boundary integral taken counterclockwise on the boundary I'.
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Figure A.3 A segment of the boundary showing the unit normal n.

To complete the proof, let us express dx and dy in terms of the incremental arc length dI' as shown in
Figure A.3. Due to similarity of the two triangles, it follows that

dy n,
== A.14
ar 1 ( )
Combining Equations (A.13) and (A.14) gives
00
—dQ = ¢ On,dl. A.15
[ 500 o (A15)
Q r

Similarly, it can be shown that

o
/gydﬁzj{ﬁnydl“,
Q T

which completes the proof of Green’s theorem.

A.5 POINT FORCE (SOURCE)

Inthis section, we consider abody force (or source) acting ata point inside an element. In practice, however,
it is often desirable to design a finite element mesh so that the point force (source) acts at a finite element
node. Here, we consider the case where a point force (source) is acting anywhere in the interior of the
element domain.

Consider a point force (point source) as shown in Figure A.4. The magnitude of the force (heat source) is
denoted by P. The relation between the body force (distributed source) f(x) and the point force (point
source) can be obtained by integration:

/f(x)dx _p

0

X=a

] ‘I > X
P

0

Figure A.4 Point force (point source) acting in the interior of the element.
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8

X=a

Figure A.5 Graphical illustration of the point force (point source).

Asthe segment size on which the point force (point source) is acting is infinitesimally small and P is finite, it
follows that the equivalent body force (heat source) is infinite at the point where the point force (source) is
applied and vanishes elsewhere as shown in Figure A.5.

Mathematically, this distribution is denoted as

f=Pé(x—a),

where §(x — a) is the Dirac delta defined so that tends to infinity at the point x = g, and its integral over any
problem domain that includes x = ais 1:

/6(x—a)dx:1ifx] <a<x.

X1

In a more general case, for any function g(x), the Dirac delta function has the property that

X2

_ _Jgla) if xy<a<x
/g(x)é(x a)dx = { 0 otherwise. (A.16)
X

‘We now proceed with computing the external nodal forces by (5.11) resulting from the point forces

X

e _ eT _ _NT(@)P ifx; <a<x
r= /N (x)P3(x — a)dv = { 0 otherwise.
X

where the last step follows from (A.16). Similar formulas can be obtained for nodal fluxes.

A.6 STATIC CONDENSATION

Static condensation is a technique aimed at reducing the number of element degrees of freedom prior to

scattering (or assembling) the element matrices. For instance, in the nine-node Lagrange quadrilateral

(Figure 7.16), the center node is not connected to any other element. This degree of freedom can be

eliminated (or condensed out) to obtain the element matrices corresponding to the boundary nodes only.
To establish the static condensation equations, we partition the element equations as

Kep Kpi|[do| _ [T
{Kﬁ, Kii]{di}*{f,}’ (A-17)
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where d,, and d; are nodal displacements of boundary nodes to be retained and those in the interior to be
condensed out, respectively; the remaining matrices in (A.17) correspond to the nodal displacements
partitions.

From the second equation in (A.17), we get

d = (K;) ™' (f; — Kpd,). (A.18)
Substituting (A.18) into (A.17), we get the condensed element equations

(Kpp — Kipi(Kit) "' Kip) dpy = £, — Kpi(Kii) ' . (A.19)

Kb f,

The advantage of using static condensation is that it provides smaller element matrices and thus reduced
global system of equations. Note that the static condensation affects the right-hand side vector, f,, as well.
From the physical point of view, this means that the nodal force that has been acting on the interior node, f;,
has been redistributed to the boundary nodes, according the right-hand side of equation (A.19).

A.7 SOLUTION METHODS

You have probably noticed that for problems considered in this book, it took the MATLAB or ABAQUS
finite element programs a few seconds to obtain the solution. You then ask yourself an obvious question: If
you refine the mesh by a factor of 1000, how much longer will the program run? Will the CPU time increase
to hours and even days?

The answers to these questions depend on many factors. First, you should be aware that a significant
portion of computational cost (often more than 50-90 % of the total running time) goes in solving the linear
system of equations

Krdy = £} (A.20)

The CPU time for solving the symmetric positive-definite system of equations (A.20) is given by
CPU = C -n*, (A.21)

where 7 is the number of unknowns or the number of degrees of freedom in the finite element model. The
values of C and o depend on the choice of solution method (or solver), as well as sparsity and conditioning of
K. Forinstance, if K is a dense matrix (fully populated with few zeros), the value of the exponent o = 3
for most commonly used direct solvers. Consequently, if it takes 1 s to solve the problem with 1000
unknowns, it will take 10° s or approximately 30 years of CPU time to solve a problem with one million
unknowns, not uncommon in engineering practice. Fortunately, the systems of equations arising from the
finite element discretizations are sparse, so the value of « ranges from 1 to 2 depending on the solver and
problem characteristics (sparsity and conditioning). Now assume that you have an optimal solver to your
disposition (« = 1) and assume that it takes 10 s to solve a problem with 1000 unknowns (we took the value
of Cin Equation(A.21) 10 times larger than before), then the above problem with one million degrees of
freedom can be solved in less than 3 h! If on the contrary, o = 2 and assuming that C is the same, then CPU
time goes up to 120 days, which is something that an engineer cannot afford in particular when he has to
solve the same problem many times with different loadings (sources) and boundary conditions.

There are two types of solvers for linear systems: (1) direct solvers and (2) iterative solvers. The constant
Cin Equation (A.21) for iterative methods is significantly higher than that for direct methods, whereas the
exponent « for iterative methods is typically lower. The major advantage of direct methods is their
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robustness, which is manifested by the fact that parameters C and o are independent of problem
conditioning (except for close to singular systems). Direct solvers are ideal for solving small- and
medium-sized problems, but the choice between the two types of solvers depends not only on the problem
characteristics but also on the hardware architecture. On parallel machines, iterative methods offer near-
perfect scalability, i.e. CPU time decreases nearly proportionally with increase in the number of processors.
Direct methods, on the contrary, offer limited scalability. On serial machines, the breakeven point between
the two solvers is in the range between 50 000 and 100 000 unknowns.

Direct Solvers

Any nonsingular matrix K can be expressed as a product Kg = LU, where L and U are lower and upper
triangular matrices. If K is also a symmetric and positive-definite matrix, which is the case for many of the
physical problems considered in this book, then it can be decomposed more efficiently into Kg = LLT,
where

iy 0 ... O
121 122 . 0

L=|. 7 . | (A.22)
lnl ln2 cee lnn

This is known as Cholesky factorization. To solve Equation (A.19), one first solves Ly = f}; fory, and then
LTdg = y for d.

The reader can easily observe that the solution to these equations is trivial.

When a sparse matrix K is factored, it typically suffers some fill-in; this means that the matrix L + LT is
nonzero where entries in Kr are zero. The extent of fill-in is the determining factor of the computational cost
involvedin solving the linear system of equations. State-of-the-art direct solvers are optimized to minimize
fill-in in the factor L. A typical sparse direct solver consists of four steps:

1. An ordering step that reorders the rows and columns such that the factor L has minimal fill.

2. A symbolic factorization that determines the nonzero structures of the factors and creates suitable data
structures for L.

3. A factorization step that computes L.

4. A solution step that solves Ly = 5, for y, and then solves LTdg = y for dg.

Usually steps 1 and 2 involve only integer operations. Steps 3 and 4 involve real number operations. Step 3 is

usually the most time-consuming part, whereas step 4 is about an order of magnitude faster. For more
details we refer to Dongarra et al. (1998) and Heath, Ng and Peyton (1991).

Iterative Solvers

The most general approach to constructing an iterative solution method is by splitting the matrix Kg
as

Kr =P — (P —Kp), (A.23)

where P is a nonsingular matrix, which is called a preconditioner. With this splitting, the solution of the
linear system (A.20) can be written as

dr =P '(P — Kp)dr + P'f}. (A.24)
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An iterative method is constructed by

) —pl(p - Kp)al + P L, (A.25)

where the superscript denotes the iteration count. Starting with dg{> =0, an iterative method (A.25)
calculates a sequence of matrices dg{>, which converge to the solution of the system (A.20); that is

lim () = dg. (A.26)

k—o0

The efficiency of an iterative solver depends on the choice of the preconditioner P. A good preconditioner
must have many desirable attributes. First, the preconditioned system should converge quickly.
This generally means that P~'Kg should be as close as possible to the identity matrix. Second, it
should be easy to solve a linear system of the form Py = z. Finally, the construction of the preconditioner
should be quick.

The simplest possible preconditioner P is a diagonal matrix of K, also known as Jacobi preconditioner.
The generation of good preconditioners involves as much art as science. The best preconditioners tend to be
application specific, exploiting insight into the precise problem being solved. For more details we refer to
Saad (1996). Construction of good preconditioners is still an active area of research. In mid-1990s, Pravin
Vaidya developed a remarkable preconditioner that spurred widespread adoption of iterative methods by
commercial software vendors. He chose not to publish his work, but to commercialize it instead, so he
licensed it to ANSYS for over one million dollars.

Conditioning

To illustrate the purpose and effects of conditioning, consider the two-bar structure described in Chapter 2.
‘We rewrite the system of equations as

KD+ k@ kW7 Tu] [0
_ kM KD ol lus | — |10
We now consider two cases:

Case 1: k() = k@ =1.
Case 2: k) =1 and k® = 10°.

The condition number « is the ratio between the largest and the smallest eigenvalues of matrix Kg. For the
system with equal springs (case 1), the condition number is & = 6.8541, whereas for case 2, k = 4 x 10°.
For case 1, the iterative sequence (A.24) with Jacobi preconditioner converges within 0.1 % of the exact
solutiondg = [10  20]" inabout 20 iterations. For case 2, it takes almost one million iterations to converge
tothe exactsolutiondr = 109 - [1 1]".Inboth cases, we used [0 0]" as the initial guess. The performance of
the iterative method could have been improved with a better preconditioner. The convergence of the
preconditioned iterative solver is governed by the condition number of P~!'Kg and not K¢ alone. For
instance, if P = Kp, then x = 1 and the exact solution is obtained in a single iteration, as can be seen from
Equation (A.24).

This example illustrates the importance of conditioning measured in terms of condition number on the
performance of iterative solution methods. Extremely poor conditioning may even affect the performance



312 APPENDIX

Vv =

Figure A.6 Cubic function f (x) and its linear approximation g(x).

of a direct method due to round-off error. The reader is encouraged to test the direct solver in MATLAB or
other package assuming k) = 1 and k®) = 102,
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Problem

Problem A.1
Consider a cubic function f(x) = x*(31 — 2x) / P defined on the interval 0 < x < [ and its linear approx-
imationf (x) defined such thatf(0) = f(0) andf(I) = f(I) = 1 (Figure A.6). Verify (A.8) and find a point c,

where % (c) = %
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106, 112, 118-120, 142143, 193,
204-205, 209, 224, 242, 245, 256,
258
natural boundary condition, 50, 53-54, 56, 58,
61-64, 66, 69, 72-73,93, 104-105, 112,
118,123,131, 139, 142, 145, 148, 202, 204,
206-207, 209, 224, 232-233,242,
254-255,258, 262
traction boundary condition, 47-48, 50, 52-53,
59, 129, 223-224
homogeneous boundary condition, 232-233
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Boundary,
curved, 152,154, 164, 168
domain, 204, 305-306
flux matrix, 100-102, 123, 196, 199, 211
force matrix, 110, 230, 232, 236, 241, 263-264
generalized, 62-64, 67, 111,242
integral, 137-138, 306
nodes, 106, 193, 308-309
value problem, 58, 62-63, 111
Bulk modulus, 223

C,

(o continuity/continuous, 60, 71-72, 77-79,
85,117, 143,151, 153, 157, 164, 166,
182,226

c? functions, 50, 60, 71, 81, 256

(o (global) shape function, 118, 157-158

cl,

C! continuity, 50, 159, 259
C! functions, 50, 256, 258
C! shape function, 260

Chain rule, 167, 179

Collapsing node, 177, 181, 188

Collapsing quadrilateral element, 176

Commercial software/finite element program,

106, 171, 176, 202, 275-301, 311
Completeness, 77-81, 117, 152-153, 177-178, 202
Conductivity, 46, 50, 99-100, 140-141, 151, 193,

203-205, 278-279

Anisotropic, 141-142, 203
Isotropic, 193, 203, 205
Thermal, 46, 99, 278

Conductance matrix, 100-101, 123, 191, 193-195,

198-199, 211, 222
Conservation,

Laws, 24-25, 47

Energy, 45

principle/equation, 65, 146-148
Constitutive,

Equation, 46, 222-223

Matrix, 233

Continuity, 24-25, 41, 44, 49-50, 71-72, 77-78, 81,

84-85, 117, 147, 152-153, 157, 159-160,

163-164, 166, 182, 191, 216, 256, 259
Control volume, 45, 65, 139-140, 146-147,

149-150,217-218

Convection, 44, 63-64, 73, 121, 125, 146, 149-150,

204
Convergence, 70, 77, 84, 105, 113-120, 152153,

160, 177, 202, 206, 269, 311

by analysis, 118-120

by numerical experiment, 115-118
mathematical theory, 77

property, 84

rate, 116-117, 152-153, 160, 203, 269

Coordinate system,
Cartesiam, 165, 182, 184,217
local, 28, 35, 267-268
global, 30, 32,268,272, 303
element, 28-29, 272-273
Counterclockwise, 28, 137-138, 154, 156, 161,
168, 174, 182, 193-194, 211, 228, 250,
254,306
Cross-section, 7, 12—13, 25, 37-38, 40, 42-43, 45,
47,52, 65,74-75,97-99, 111, 115,
123-124, 126129, 212, 249, 252,
270-272,287, 289
Cubic,
Element, 160, 172, 174-176
serendipity quadrilateral, 171
shape functions, 82-83, 169
Curvature, 252-253

Diffusion, 9, 46-47, 62, 64-67, 70, 93, 99,
120-122, 131, 146-148, 189, 207-209, 222
Direct,
Approach, 11-40, 172
Assembly, 18, 20, 23, 25, 32, 96, 101-103, 192,
195-196, 263-264
construction of shape functions, 82—-83
integration, 229-230
Discrete,
Equation, 26, 4142, 66, 93-97, 105-107, 120,
160, 207, 222, 256, 260-261
Equilibrium, 97
structure, 15
system, 11-40, 96-97, 148
Discretization, 93, 225-228, 258-261, 309
Displacement,
boundary condition, 20, 22, 39, 48, 50, 52,
58,224
element, 13, 19, 30, 35, 124, 259
field, 43, 69,71, 78,90-91, 111, 115, 127-128,
216,218, 224-226, 228,232, 249, 256,
259-260, 262, 267-269
global, 18-19, 21, 39, 226, 263, 265
infinitesimal, 218
matrix, 13, 17, 21, 28, 30, 34, 39, 226-227,
235-236, 242, 259, 263, 265
nodal, 11, 13-22, 28-29, 35-37, 39, 90-91, 95,
97,109, 111, 124, 128, 226, 230, 232,
241-242,261-262, 270,273, 309
of the midline, 251, 254, 256
prescribed, 20, 22, 49, 51, 58-59, 231, 233
small, 28, 217, 290
Distributed,
loading, 42, 109, 124, 240, 262, 264, 271
moment, 74
source, 211, 307
spring, 74



Divergence,

operator, 133, 140

theorem, 134-139, 148-149

element, 85, 95, 99, 106, 112, 125-126,
164-165, 168, 173, 181, 183, 187, 199, 207,
226,307

problem, 11, 46, 52, 54, 59, 99, 137-1338,
141-142, 145, 150, 152, 175, 189, 205, 212,
225,258,308

E-nodes, 20-21, 269
Elasticity,
matrix, 222
linear, 42, 215, 222-224, 233, 239-240, 250
problem, 42, 62-63, 118, 124,215, 224, 233,
238,275
Element,
body force matrix, 99, 109, 124, 229, 236, 264, 307
brick, 181, 187
boundary force matrix, 241
coordinate system, 28-29, 272-273
degrees of freedom, 308
displacement matrix, 13, 30, 259
external force matrix, 96, 227, 246
flux matrix, 191, 207
force matrix, 29-30, 121, 246
gauss points, 202, 242
hexahedral, 181-183, 187

high order, 82,98, 117, 120, 159, 160, 164, 168-172,

181-185,268

iso-parametric-3, 152, 164, 166, 168-169, 173, 175,

177-178, 188, 190, 268
number, 12, 32, 153, 168, 197

parent, 164-167, 172-173, 178, 181, 199, 234-235,

247
physical, 164, 166, 168, 173, 175, 183, 247

quadrilateral, 14, 153, 161, 163-166, 169-170, 176—
177,179,181, 186, 188,193,197-198,201,212,

233,244,268, 275, 284, 289
rectangular, 161, 163, 165, 186, 242
serendipity, 171, 246

shape functions, 79-80, 8485, 90, 94-95, 98, 100,
108-109, 151, 157, 163-164, 171, 185-186,

195, 198, 226
shell, 3, 249-250, 265-269
size, 77,91, 116-117, 151, 283

stiffness matrix, 13-15, 16-17,20, 23, 28,31, 96-98,

108, 124, 128, 227,263, 272
sub-parametric, 175
temperature matrix, 190, 197
tetrahedral, 181, 183185

triangular, 3, 14, 152-157, 159-161, 166, 172-176,
180-181, 184-187, 193, 195, 210-213, 230,

241, 243-246, 261, 267
wedge, 181

INDEX 315

Energy, 30-31, 44-46, 63-65, 67-72, 76, 114-115,
117-120, 125, 139-142, 144, 146, 150, 196,
206-207,222,261-262

balance, 45, 139-142, 144, 150
external, 67

error, 115,117

heat, 45-46, 64, 139-140, 196
internal, 67, 69, 262
mathematical, 70

norm, 71, 117-120, 125, 206-207
physical, 70

principle, 69, 72

strain, 69-71

Engineering beam theory, 249, 251

Equilibrium, 9, 12, 14, 16, 18, 34, 38, 40, 43—44, 50,
52,69, 72,75-76,97, 129, 217, 219-224,
240, 245, 253-255, 270, 272

equation, 16, 34, 43-44, 50, 52, 72,75, 129,
221-224,253-255,272

Error, 52,91, 105, 113-120, 123, 125, 154, 204,
207,216,239,312

average, 114
estimation, 120
energy, 115,117
norm, 116
normalized, 114-115

Essential boundary, 50-51, 53-56, 58, 60, 62—64,
67,73, 93-95, 100, 103-106, 112,
118-120, 142-144, 191, 193, 196,
204-205, 209, 211, 224, 227,242, 245,
256, 258, 262

node, 106, 193

condition, 50, 53-54, 56, 58, 60, 62-64, 67,73,
93-95, 100, 104, 106, 112, 118-120,
142-143, 193, 204-205, 209, 224, 242,
245,256,258

Euler-Bernoulli beam theory, 249, 266

External force, 15-16, 19-21, 33, 43, 96-97, 128,
227,246,261

matrix, 96-97, 128, 227, 246, 261

F-nodes, 20, 192, 228, 262
Finite difference method, 1, 41, 169
Finite Element,
applications, 1, 4, 7-9, 24-25, 62-63, 99, 115,
118, 131, 151, 169, 192, 201, 203-204,
215-216, 249-250, 265, 269, 311
approximation, 78-79, 81, 95, 104, 120, 131,
152, 159, 189-191, 202-203, 207, 226, 239
formulation, 93, 189, 209, 215, 249
model, 2, 4, 7-8, 15, 32,93, 121, 124-125, 154,
169, 190, 204, 232,239, 271, 309
software/program, 6, 106,118, 154, 171, 176,
202,217,249, 275-301, 311
Flexural strain, 251, 267
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Flux, 24-26, 45-46, 50, 60-61, 63, 67,71, 75,
99-102, 104, 114, 123, 126, 131, 133,
139-143, 146, 149, 189, 191-193,
196-203, 205, 207, 209-212, 240,
280-282, 308

boundary flux matrix, 100-102, 123, 196, 199, 211
electric charge, 75
element flux matrix, 191, 207
force, 240
heat, 45, 71, 131, 139, 141, 192, 281-282
matrix, 100-102, 123, 131, 191, 196, 198-201,
207,211-212
nodal, 25, 207, 209-210, 308
prescribed, 46, 142-143, 205
potential law, 24
Force matrix,
body, 99, 109, 124, 229, 236, 264, 307
boundary, 110, 230, 232, 236, 241, 263-264
element, 30, 121, 246
external, 96-97, 126, 227, 246, 261
internal, 13, 30
Fourier law, 139, 141-142, 146, 148
Free node, 21, 120

Galerkin, 84, 126, 207-209
formulation, 207
least square stabilization, 208
method, 207-209
weak form, 208
Gather,
matrix, 19, 84, 95
operator, 101, 107, 157, 192, 261
Gauss, 77, 85-92, 109-110, 115, 124, 151, 164,
179-181, 185, 193, 197-202, 210,
235-238,242,269
formula, 88, 90
integration, 87-88, 91-92, 180, 269
point, 88-89, 199-202, 236-238, 242
quadrature, 77, 85-89, 91-92, 109-110, 115,
124,151, 164,179, 181, 185, 193, 197-199,
210,235
Generalized,
boundary condition, 62-64, 67, 111, 242
Fourier law, 141, 148
Hooke’s law, 222
plane strain, 223
plane stress, 223
strain, 253
stress-strain law, 253, 256
Global,
conductance matrix, 100-101, 123, 195
coordinate system, 30, 32, 268, 272, 303
displacement, 18-19, 21, 39, 226, 263, 265
displacement matrix, 21, 39, 263, 265
flux, 196

force matrix, 21, 124, 242, 246
node, 12, 16-18, 26, 32, 85, 95, 158, 194, 210
node number, 12, 16-18, 26, 95, 158, 194,210
shape function, 8485, 94-95, 157-158, 166
source matrix, 123, 196
stiffness matrix, 17-18, 20, 23, 38, 124, 263
Gradient, 46, 75, 103-105, 132-137, 139-142,
145-146, 154, 160-161, 166-167, 176,
190-191, 198, 203, 212, 217, 219, 222, 226,
229, 245, 305-306
operator, 132-133, 146, 167, 191, 222, 226, 229
shape function/solution, 160, 166, 176,
190-191, 305-306
temperature, 46, 103-105, 136-138, 140-142,
146, 191, 219, 222, 226, 229
Green’s formula, 135-136, 139, 143144

Heat,
conduction, 2, 4, 41, 44-45, 47, 60-62, 67, 70-71,
73,77,93,96,99, 114-115, 123, 125, 131,
133, 142-143, 146, 150-151, 189, 200,
203-204, 239-240, 275
energy, 45-46, 64, 139-140, 196
flow, 4446, 135, 140-141, 204, 275
flux, 45,71, 131, 139, 141, 192, 281-282
inflow, 61, 140
source, 45,99, 123, 139, 193, 209, 211-212,
280, 307-308
transfer, 1, 4, 44, 63, 70, 150, 280, 283, 285-286
Hermite polynomial, 259-260
High order,
Gauss quadrature formulas, 10, 115
Taylor’s formula, 120
element, 82, 98, 117, 120, 159, 160, 164,
168-172, 181-185, 268
Hooke’s law, 12-14, 43, 69, 75, 215,222, 241,
252-253,267

Incompressible,
fluid, 65, 147
material, 147,223
nearly, 223
Integration by parts, 48-49, 51, 55, 59, 61, 66, 131,
134-136, 139, 148, 208, 257
Internal,
energy, 67, 69, 262
force, 11-13, 15, 17, 28, 30, 43,97
moment, 253-254
Interpolation, 80, 82, 91, 119-120, 125, 182, 229-231
function, 119-120, 125, 182
Lagrange, 82
property, 80
Isoparametric, 3, 152, 164, 166, 168-169, 171,
173-175, 177-178, 182, 186, 188, 190, 268
concept, 164, 169, 174, 182,268



element, 3, 152, 164, 166, 168-169, 173, 175,
177-178, 188, 190, 268

shape function, 166, 168

Isotropic, 140-142, 148, 203, 205, 207, 210, 212,

222-223,241,243, 245,267

conductivity, 203, 205

constant diffusion, 207

Hooke’s law, 241

material, 140-142, 148, 210, 212, 222-223, 243,
245,267

symmetry, 141

Jacobian matrix, 167-168, 176, 179-180, 183,
198, 235

L2,
error, 114, 116
norm, 91, 114, 116, 203
Lagrange, 82, 117, 171, 174, 247, 308
family, 171
interpolants, 82, 117, 174
Laplacian operators, 145
Least squares, 207-209

Mapping, 86, 164-165, 167, 169-170, 179, 182, 184
Material moduli matrix,
Mesh, 1-2,4,6-7, 11, 15-16, 20, 77-78, 84-86, 91,
93-94,99-100, 104-108, 116118,
122-123, 126-127, 129, 139, 152, 154,
157-159, 161, 164-166, 169, 176, 182, 193,
197,200-203, 205-207, 210-213, 225-226,
233-234,238-240, 242-246, 260, 263, 265,
272,275,282-286,289,291,297-301, 307,309
coarse, 77, 240, 298-299
fine, 77, 203, 212, 239, 244, 300
generation, 1
refinement, 77, 275, 291
Midside node, 168, 174
Midsurface, 266-268
Minimum potential energy, 31, 67-71, 76, 115,261-262
Moment of inertia, 74, 252, 270, 272
Multidimensional, 28, 93, 104, 131, 151, 154, 189, 207

Natural boundary, 50, 53-54, 56, 58, 61-64, 66, 69,
72-73,93, 96, 101, 104-105, 112, 118, 123,
131, 139, 142-145, 148, 196, 200, 202,
204,206-207, 209, 224, 232-233, 242,
254-255, 258,262
conditions, 50, 58, 61-62, 66, 69, 104, 112, 118,
131, 148,202, 204, 206-207, 209, 224,
232-233, 242, 254-255, 258,262
Nodal,
displacements, 11, 13-16, 18-22, 28, 35-37, 39,
90-91, 95,97, 109, 111, 124, 128, 226,
230, 241-242,261-262, 270, 273, 309
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forces, 11, 13-17, 19, 28-29, 35-36, 109, 230, 241,
247,259,261, 268, 308
fluxes, 207, 210, 308
temperatures, 1, 104, 125, 190, 203, 211
Norm, 28, 45, 59, 61, 65, 71,91, 113-120, 125,
134, 136-137, 139-142, 171, 174, 203,
206-207, 219-220, 222, 232-233, 241-242,
249-250, 252, 254-256, 266268, 289,
295, 305, 307
Normality assumption, 250, 254
Numerical,
integration, 85, 180-181, 212, 229, 243
method/ approach, 1, 41
solution, 151

One-dimensional, 24, 41-42, 45, 58-59, 62, 64-65,
67,77-179, 83, 86,90, 93, 107, 113, 115,
119, 121, 124, 126, 131, 133-135, 142,
144-145, 151, 155, 157, 161-162, 165,
168-169, 171, 177, 179-180, 182, 187, 190,
207,217,222,245,269
approximation, 77-92
finite element formulation, 93—-129
problems, 41-76
Operator,
divergence, 140
gather/scatter, 96, 101, 107, 157, 192, 261
gradient, 132-133, 146, 167, 191, 219, 222, 226, 229
Laplacian, 141, 145
Orthogonality, 29, 36

Parent, 15, 17,57, 76, 86, 109, 145, 164-170, 172-173,
175, 178-184, 198-199, 234-235, 247, 284
coordinate, 164, 167, 170, 172, 179, 181
domain, 86, 109, 179-180, 198-199
element, 164-167, 172-173, 178, 181, 199,
234-235,247
Partition method, 63-64, 111-112
Pascal triangle, 153, 159-161, 175
Patch test, 177, 202-203
Penalty method, 22, 39, 63-64,97, 111-112, 192
Physical,
coordinates, 164, 166-167, 172
domain, 86, 164-165, 168, 170, 179, 181,
183-184, 199, 201, 236
element, 164, 166, 168, 173, 175, 183, 247
energy, 70
Piecewise continuous, 50-51
Plane strain, 222-223, 289-290
Plane stress, 222-223, 233, 238, 242,252, 267, 279,
294,297
Poisson’s ratio, 223, 233, 242, 244,287, 294
Polynomial expansion, 81, 151-153, 160-161
Post-processing, 11, 31, 34,93, 103, 107, 111,
201-202, 265



318 INDEX

Potential, 2-3, 24-26, 31, 67-71, 76, 115, 131, 134,
160, 261-262

energy, 31, 67-71,76, 115,261-262
field, 2, 134

Prescribed,
boundary value, 44
displacement, 20, 22, 49, 51, 58-59, 231, 233
flux, 46, 142-143, 205
temperature, 46, 142—143, 202, 205, 243
traction, 52, 58, 62, 126, 231, 242

Pressure, 7, 25, 31, 246247, 261, 295-296
field, 25
vessel, 7

Programming, 9, 202, 269

Quadratic,
displacement field, 128
element, 81,91, 108, 116-117, 120, 123-124,
126-128, 159-160, 168, 174, 177, 269, 297
shape function, 82, 168, 187, 269
trial solution, 57-58, 75

Rate of,
convergence, 91, 116-117, 152-153, 160, 203, 269
heat energy, 45
heat flow, 45
Reduced stiffness matrix, 39
Residual, 52-53, 97, 112-113, 196, 207-209
Rotations, 261, 266, 268-269, 271
matrix, 29, 36, 272

Scalar field, 131, 134, 136, 189, 305
Scatter and add, 18, 20, 25-26, 96, 121
Scatter matrix, 190
Shape function,
element, 79-80, 8485, 90, 94-95, 98, 100, 108-109,
151, 157, 163-164, 171, 185-186, 190,
195, 198, 226
global, 84-85, 94-95, 157158, 166
Shear,
force, 28, 252,254, 265, 272-273
modulus, 74, 223
strain, 217-218, 222, 251
Shell, 3, 249-250, 265-269, 277,292
element, 3, 249-250, 265-269
theory, 266268
Singular, 17,71, 97, 176, 204, 232, 239-240, 310
Small displacement, 28, 217, 290
Solution quality, 103, 111, 113
Solver, 4, 202, 309-312
Space, 2, 27-28, 60, 66, 71,90, 118-119, 122, 127,
143, 256, 258, 266, 268, 277, 292
St Venant’s principle, 239
Stability, 122, 204, 207
Steady-state heat conduction, 47, 131, 239, 275

Stiffness matrix, 13-18, 20, 23, 28-31, 38-39, 48,
50, 60, 96-98, 108-109, 124, 126-128,
222,227,229, 235-236, 242, 260,
262-263,269-272

Strain,

energy, 69-71
field, 90, 215, 241

Strain-displacement equation, 14, 43, 49, 69, 215,
217,222,226, 267

Stress,

field, 111,218
vector, 219-220

Stress-strain law, 13, 43—-44, 49, 57, 69, 74, 107,
216-217,222, 245, 252-253, 256, 267

Stress-traction relation, 240

Strong form, 41-42, 44, 46-56, 58-67, 69-70,
72-75,93, 103, 115, 118, 123, 125,
131-132, 139, 142, 144, 146, 149-150,
202,224,254, 256-258, 265

Symmetric matrix, 30, 219

Temperature, 1-2, 4,7, 31, 44-46, 50, 60, 63, 70-71,
73-74,77-78, 90, 99, 103-105, 123, 125-126,
131, 134, 139-143, 146, 149-151, 186, 190,
193, 196-197, 200-206, 210-212, 243,
280-281, 284-286
Tetrahedral, 181, 183-185
coordinates, 183
domain, 185
element, 181, 183-185
Thermal,
conductivity, 46, 99, 123, 278
expansion, 74, 243
radiation, 44
Traction, 42, 44, 47-50, 52-53, 58-59, 62, 68,
93,115, 124, 126, 129, 219-221,
223-224,230-233, 236, 240-242, 245,
288-289, 295
boundary condition, 47-48, 50, 52-53, 59, 129,
223-224
vector, 220-221
Transport, 46, 64—67, 147
Transverse shear strain, 251
Trial solutions, 48, 50, 52-54, 56-60, 66, 71, 77-78,
81, 84-85,93-95, 106, 113, 120, 126, 131,
143, 151-152, 157, 189, 191, 207-208,
224,258,260
Triangular,
coordinates, 172-176, 187, 229
domain, 152, 181, 210-211, 241, 243
element, 3, 14, 152-157, 159-161, 166,
172-176, 180-181, 184187, 193, 195,
210-213, 230, 241, 243-246,
261,267
mesh, 154, 242



Truss,
element, 28, 35,270
member, 11
structure, 11, 20, 27, 31, 37,40

Unit normal, 59, 61, 134, 136-137, 220, 305, 307

Variational,
approach/methods, 9, 70, 72, 268
calculus, 67-68
principle, 3, 67, 69-70
Vector field problems, 215
Vertical displacement, 39, 254
Virtual work, 31, 47, 69, 76
Von Mises stress, 238
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Weak form, 11, 41-42, 47-57, 59-61, 63-64,
66-67,69-78, 81, 85, 93-95, 97-98, 105,
112-113, 118-120, 125-126, 131-132, 139,
142-146, 148-150, 172, 189, 192, 202,
207-208, 215,217, 224-227,231,
242-243,245,254-258, 260, 270, 272

Weight function, 47-57, 59-61, 64, 66-67, 71-73,
75,77-18, 81, 84-85,93-95, 97, 106, 113,
118, 120, 126, 139, 142144, 148, 151,
189-191, 207-209, 224-227, 245,
255-256,258, 260

Young’s modulus, 12, 37-38, 40, 43, 74-75, 97-98,
100, 115, 124, 126-129, 222-223, 233, 242,
244,270-272, 287,294
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