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PREFACE

For this would be agreed by all:
that Nature does nothing in vain
nor labours in vain

Olympiodorus, Commentary on
Aristotle’s Meteora translated by

Ivor Thomas in the Greek
Mathematica Works Loeb

Classical Library

La nature, dans la production de
ses effets, agit toujours par les
voies les plus simples

Pierre de Fermat

The CISM course C-1006 ”Variational models and methods in solid
and fluid mechanics” was held July 12-16, 2010 in Udine, Italy.
There were about forty five participants from different european coun-
tries. The papers included in this volume correspond to the content
of five mini-courses of 6 hours each which have been delivered during
this week.

Variational formulation of the governing equations of solid and
fluid mechanics is a classical but a very challenging topic. Varia-
tional methods give an efficient and elegant way to formulate and
solve mathematical problems that are of interest for scientists and
engineers. This formulation allows for an easier justification of the
well-posedness of mathematical problems, the study of stability of par-
ticular solutions, a simpler implementation of numerical methods.
Often, mechanical problems are more naturally posed by means of a
variational method. Hamilton’s principle of stationary (or least) ac-
tion is the conceptual basis of practically all models in physics. The
variational formulation is also useful for obtaining simpler approxi-
mate asymptotical models as done in the theory of homogeneization.
In many problems of mechanics and physics, the functionals being
minimized depend on parameters which can be considered as random



variables. Variational structure of such problems always brings con-
siderable simplifications in their study.

In this course, three fundamental aspects of the variational for-
mulation of mechanics will be presented: physical, mathematical and
applicative ones.

The first aspect concerns the investigation of the nature of real
physical problems with the aim of finding the best variational formu-
lation suitable to those problems. A deep knowledge of the physical
problems is needed to determine the Lagrangian of the system and the
nature of the variations of its motions which may be considered ad-
missible. Actually one could say that all knowledge which is available
about a system is resumed by the choice of:
• a configuration space used to describe mathematically the system
• a set of admissible motions used to describe the different ways
in which the system may evolve

• a Lagrangian functional which once minimized supplies evolu-
tion equations and boundary conditions

The second aspect is the study of the well-posedeness of those mathe-
matical problems which need to be solved in order to draw previsions
from the formulated models. It is relatively simple to conjecture prop-
erties to be required to the Lagrangian functional in order to be as-
sured the well-posedness of the corresponding evolution system. Much
more complex is to get such results of well-posedness studying some
evolution equations which are obtained with euristic schemes different
from those based on Hamilton’s principle. In fact always, when one
needs to study mathematically a set of evolution equations, the first
move is to try to put them in a variational form. It is then advisable
and wiser to try to use a variational principle at the beginning of the
formulation of a mathematical model.

The third aspect is related to the direct application of variational
analysis to solve real engineering problems. Variational principles
supply very powerful tools for getting qualitative previsions about the
behaviour of the studied systems, but also for formulating effective
numerical methods to get quantitative previsions.

The following problems have been presented and studied during
the course :
• Rayleigh-Hamilton’s Principle for establishing governing equa-
tions and boundary conditions for second gradient models for
heterogeneous deformable bodies ;



• A variational approach to multiphase flow problems and de-
scription of diffuse solid-fluid interfaces;

• New variational models of brittle fracture mechanics and some
related problems ;

• The methods of stochastic calculus of variations and their ap-
plications to the homogenization problems and modeling of mi-
crostructures and their evolution ;

• Dynamical problems in damping generation and control in the
situations where the energy initially conferred to a system un-
dergoes a principle of irreversible energy confinement into a
small region ;

We are extremely grateful to all participants of the course for
creating a nice atmosphere for scientific discussions. We would like
also to express our thanks to the CISM staff for their assistance in
the running of the course.

Francesco dell’Isola, University of Rome ”La Sapienza”

Sergey Gavrilyuk, University of Aix-Marseille
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Variational principles are a powerful tool also
for formulating field theories

Francesco dell’Isola *‡ and Luca Placidi †‡
* University of Roma “La Sapienza”

† International Telematic University “Uninettuno”
‡ International Research Centre on “Mathematics & Mechanics of Complex

Systems” M& MOCS

Abstract Variational principles and calculus of variations have al-
ways been an important tool for formulating mathematical models
for physical phenomena. Variational methods give an efficient and
elegant way to formulate and solve mathematical problems that are
of interest for scientists and engineers and are the main tool for the
axiomatization of physical theories.

1 Introduction and historical background

1.1 Metrodoron and his followers

The ideas we want to evocate in this lecture are very old and were put
forward already in the hellenistic period: for a detailed discussion about this
point the reader is referred to the beautiful book by Lucio Russo (2003). In
that book it is established that “modern” science actually was born in the
hellenistic era, when Metrodoron lived. Metrodoron was a pupil of a famous
greek philosopher, Epicurus, and, in our opinion, the following Metrodoron’s
sentence is a statement (the first?) belonging to the modern philosophy of
science:

����������	


“Always remember that you were born mortal and such is your
nature and you were given a limited time: but by means of your
reasonings about Nature you could rise to infinity and to eternity

F. ell' sola et al  (eds.), Variational Models  and Methods  in Solid  and Fluid Mechanics
© CISM, Udine 2011
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2 F. dell’Isola and L. Placidi

and you indeed contemplate “the things that were, and that
were to be, and that had been before””. Metrodoron

Gnomologium Epicureum Vaticanum X (fr.37 Alfred Körte, Metrodori

Epicurei Fragmenta, “ Jahrbücher für classiche Philologie”, Suppl.

XVII, 1890, p. 557).

This dictum, following Körte, comes from a lost letter or book by Metrodoron
(the Epicurean philosopher) addressed to Menestratos who was presumably
one of his pupils. The words quoted in bold are a citation from Iliad, I 70
(the translation into English of the sentence in boldface is ours; except for
this citation the translation has been taken from Homer by Murray (1924),
see the ref. (14)).

In different words, Metrodoron states that by using (the right!) equa-
tions you can forecast future behavior of physical systems.

1.2 Why Variational Principles and Calculus of Variation?

In recent time, a lost Archimedes’ book (19) has been rediscovered. Some
authors claim that Archimedes seems to have solved, in this book and us-
ing a variational principle, the technological problem of finding the optimal
shape of a boat. Archimedes seems to have chosen, as optimality crite-
rion, that the vertical position must be a “very” stable configuration (see
Rorres (2004)). In the book of Russo (21) it is demonstrated in even a
more convincing way that many optimization techniques were well-known
in hellenistic science. In particular Russo proves that the problem of the
determination of the regular polygon having maximal area has been solved
in that period. Thus, the use of a variational principle and optimization
methods to solve technological problems is less recent than it is usually be-
lieved. In general, variational formulation of the governing equations of solid
and fluid mechanics is a classical but very challenging topic. This kind of
formulation allows for an easier proof of the well-posedness of mathematical
problems, for an easier investigation of the study of stability of particular
solutions, and for a simpler implementation of numerical methods. Often
(but one who believes in Russo’s vision about the birth of science could say
instead “always”), mechanical problems are more naturally posed by means
of variational methods. Hamilton’s principle of stationary (or least) Action
is the conceptual basis of practically all models in physics. The variational
formulation is also useful for obtaining simpler approximate asymptotical
models as it is done in the theory of homogenization.

We want simply to state here that the Principle of Virtual Works and
the Principle of Least Action have roots much deeper than many scientists
believe (see Vailati, 1897). Although many histories of science claim dif-
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ferently, most likely the majority of physical theories were first formulated
in terms of these Principles, and only subsequently they were reconsidered
from other points of view. In our opinion the Principle of Least Action,
which supplies a “geometric” version of mechanics was indeed the tool used
by the true founders of mechanics (i.e. the scientists of the hellenistic pe-
riod) to establish it. As argued also by Colonnetti (5) and Netz and Noel
(19)) surely also Archimedes and ancient greek scientists were accepting
such a point of view.

The epigones of the hellenistic science, who were not able to understand
the delicate mathematical arguments used by the first scientists, however
could understand the minimality conditions obtained by their “maitres” (i.e.
the conditions corresponding to those which we call now Euler-Lagrange
equations and boundary conditions) and could grasp the “physical” argu-
ments used to interpret them. This phenomenon is perfectly clear to ev-
eryone who is ready to consider carefully -for instance- the evolution of the
theory of Euler-Bernoulli Beam (a useful reference about this point is the
book of Benvenuto (1981)). Euler postulated a Principle of Least Action
for the Elastica, and gets the celebrated equilibrium differential equation
and boundary conditions for the equilibrium of beams by using the calcula-
tion procedure due to Lagrange (which is the departing idea of Calculus of
Variations). Then Navier prepared his lectures for the Ecole Polytechnique
and resumed the results obtained by Euler deciding to “spare” to the (en-
gineering) students the difficulties of the calculus of variations. He started
directly from the equilibrium equation, obtained by means of an “ad hoc”
principle of balance of force and couple, and imposed boundary conditions
based on “physical” assumptions. As a consequence, for a long while, gen-
erations of engineers believed that the beam equations were to be obtained
in this way. Only when numerical simulations became popular, then they
(actually, some of them) became aware of variational “principles”. However
these principle were proven as theorems starting from “balance postulates”
and were considered simply as a mathematical (rather abstruse) tool and
not as a fundamental heuristic concept. And this attitude is not changed
even when it became clear that every serious advancement of mechanical
science has been obtained using variational principles. Indeed the so called
“physical sense” (a gift that many claim to posses but which nobody can
claim to be able to master or to teach) is not very useful to postulate the
right “balance principles” when one is in “terra incognita”. For instance,
when Lagrange and Sophie Germain wanted to find the plate equations they
needed to employ a variational principle (and they could find the (right!)
natural boundary conditions). Again when Cosserat brothers wanted to
improve Cauchy Continuum Mechanics they “rediscovered” the right tech-
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nique: i.e. the Principle of Least Action. Also QuantumMechanics has been
developed starting from a Variational Principle (see e.g. the references of
Feynman (11), Lagrange (15) and Lanczos (16)).

Therefore an important warning is due to young researcher: refrain from
trying to extend available models by means of “ad hoc” adaptations of avail-
able theories: always look for the right Action functional to be minimized!

1.3 The problem of including dissipation

One useful tool for handling complicated situations is used in Continuum
Mechanics by Paul Germain when formulating second gradient theories:
the Principle of Virtual Powers. Again, as remarked always in the history
of the development of ideas, when this history can be reconstructed, the
effective way to be used to proceed is that which starts from a Principle
of Least Action, eventually generalized into a Principle of Virtual Powers.
For a long time the opponents to Second Gradient Theories argued about
its lack of consistency, due to the difficulties they claim to find in “getting”
boundary conditions. This is a really odd statement. Indeed variational
principles easily produce mathematically correct boundary conditions. So
maybe what those opponents want to say is that as they are not so clever as
Navier, they do not manage to interpret physically the boundary conditions
found via a (correct and meaningful) variational principle. Of course if one
refuses to use the Principle of Least Action he can find very difficult the
job of determining some set of boundary conditions which are compatible
with the (independently postulated!) bulk evolution equations. If instead
one accepts the Archimedean (the reader will allow us to dream, without
definitive evidence that such was the point of view of Archimedes) approach
to mechanics then all these problems of well-posedness of mathematical
models completely disappear.

Variational Principles always produce intrinsically well-posed mathemat-
ical problems, if the Action functional is well behaving. Of course passing
from Lagragian systems (the evolution of which are governed by a Least
Action functional) to non-Lagragian systems (for which such a functional
may not exist) maybe difficult. This problem is related (but is not com-
pletely equivalent) to the problem of modelling dissipative phenomena. It
is often stated that dissipation cannot be described by means of a Least
Action Principle. This is not exactly true, as it is possible to find some Ac-
tion functionals for a large class of dissipative systems. However it is true
that not every conceived system can be regarded as a Lagragian one. This
point is delicate and will be only evocated here. In general a non-Lagragian
system can be regarded as Lagragian in two different ways: i) because it
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is an “approximation” of a Lagrangian system (see the case of Cattaneo
equation for heat propagation), and this approximation leads to “cancel”
the lacking part of the “true” Action Functional ii) because the considered
system is simply a subsystem of a larger one which is truly Lagrangian. The
assumption that variational principle can be used only for non-dissipative
systems is contradicted by, e.g., the work presented in this book by Prof.
Frankfort (12), where you find variational principles modelling dissipative
systems. Indeed it is often stated that a limit of the modelling procedure
based on variational principles consists in their impossibility of encompass-
ing “nonconservative” phenomena. We do not believe that this is the case:
however in order to avoid to be involved in a problem which is very difficult
to treat, when dealing with dissipative systems, we will assume a slightly
different point of view, usually attributed to Hamilton and Rayleigh.

2 Finding a mathematical model for natural
phenomena

2.1 Principle of Least Action

We want to discuss here about the problem of finding a mathematical
model for natural phenomena. We start with an epistemological Principle:

“The Principle of Least Action tells us how to construct a math-
ematical model to be used for describing the world and for pre-
dicting the evolution of the phenomena occurring in it”.

In the following modeling scheme, we give the right heuristic strategy to
be used for finding an effective model using the Principle of Least Action.
The recipe includes the following ingredients:

1. Establish the right kinematics needed to describe the physical phe-
nomena of interest, i.e. the kinematical descriptors modeling the state
of considered physical systems.

2. Establish the set of admissible motions for the system under descrip-
tion, i.e. establish the correct model for the admissible evolution of
the system.

3. Employ the “physical intuition” to find the right Action functional to
be minimized, i.e. modeling what Nature wants to minimize.

We start by finding the kinematical descriptors, because of the need of
modeling the states of the considered system. Then we introduce motion,
in such a way we model the evolution of the system to be described. Finally
we ask Nature what is the quantity to minimize. Keeping this quantity in
mind, we introduce the Action functional. To start with, it is necessary
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to focus the attention on a specific class of systems and on phenomena
occurring to them. A configuration is the mathematical object used to
model the state of considered systems: the set of possible configurations
will be denoted by C. The motion is the mathematical model describing
the evolution of considered systems: it is a C-valued function defined on
time interval (t0, tf ); the set of all admissible motions will be denoted by
M. The Action is a real-valued function, defined on M, which models the
“preferences” of nature.

Finally, to use the Principle of Least Action one needs three steps further,

4. Find the Euler-Lagrange conditions which are consequence of the pos-
tulated Least Action Principle

5. Interpret these condition on a physical ground
6. Determine, in terms of the postulated Action functional, the numerical
integration scheme to be used to get the previsions needed to drive,
by means of our theory, our experimental, technological or engineering
activity.

2.2 The Rayleigh-Hamilton principle

When postulating an extended Rayleigh-Hamilton principle, the point
4 of the previously presented heuristic strategy will be further divided into
two steps as follows:

4a. Once the quantities which expend power on the considered velocity
fields are known in terms of postulated Action, introduce a suitable
definite positive Rayleigh dissipation functional

4b. Equate the first variation of Action functional to the Rayleigh dissipa-
tion functional and get the evolution equations (including boundary
conditions) which govern the motion of the system

Although in the literature the choice of including a Rayleigh-Hamilton
principle in the class of variational principles is sometimes considered inap-
propriate, we will follow what seems to us the preference of the majority
of the authors: therefore we do call “variational” also the strategy which
we just described, not limiting the use of this adjective to the models using
exclusively the Least Action Principle.

2.3 La Cinèmatique d’Abord !

According to Metrodoron, mathematical and physical objects are two
different concepts. Indeed, equations are necessary for modeling physical
systems but they refer to mathematical objects. When one solves the equa-
tions formulated in the framework of his model then he has to transform the
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obtained equations into previsions valid for the physical system he is study-
ing. A good modeling procedure uses mathematics for finding the motion
which minimizes Action. If this mathematics gives a reasonable forecasting
of the observed evolution, then the model is valid. However, not every-
thing is described by a given model. A model is always focused on a set of
phenomena.

The set of phenomena that are focused by a model is established by the
kinematics:

La Cinèmatique d’Abord !

In the previous scheme it is clear that the most “fundamental” step
concerns the choice of the set of configurations used for characterizing the
“accessible” states of the system. When constructing a mathematical model
using the discussed epistemological principle, one must start with a precise
and clear determination of the set C. The second step concerns the deter-
mination of admissible motions which clearly depend on the evolutionary
phenomena one wants to model. A correct modeling process always starts
specifying “admissible” kinematics.

2.4 La Nature agit toujours par les voies les plus simples

After having specified the admissible kinematics, one can wonder about
the desire of Nature. The utility of Nature is a real-valued function defined
on M. Following Maupertuis, we will call Action this “utility”. Also Nature
must consider which is the contingent situation: not all admissible motions
are accessible by a physical system under given specific conditions. There-
fore we must specify a subset MA of the setM: the set of accessible motions.
The real motion will be chosen by the system minimizing the Action in the
subset MA. Indeed:

La Nature agit toujours par les voies les plus simples.

2.5 Two possible choices for the set of admissible and accessible
motions

In the famous textbook of Arnold (1) the author, following the tradi-
tion, does not “try” to explain Maupertuis’ Principle of Least Action. We
instead dare to try to deal with this. In the process of minimization of
the Action, we need to specify the set of motions among which we look for
minima. The choice of Lagrange is that of isochronous motions. Two mo-
tions are isochronous when they both start, at the given instant t0, from a
given configuration C0 and arrive, at the same instant tf , at the same final
configuration Cf . On the other hand, the choice of Maupertuis is to focus



8 F. dell’Isola and L. Placidi

on the set of motions with a “fixed energy content” and which are starting
from the same configuration C0 and ending (the instants of start and stop
are not specified!) at the configuration Cf . In the set of admissible motions
an “energy” functional must then be introduced: i.e. a functional which
associates an energy content to any motion and any time instant t. The
set of accessible motions is constituted by all motions from C0 to Cf which
have a constant energy content. The choice of Maupertuis, if not suitably
modified, seems to limit the range of applicability of variational principles
to non dissipative phenomena.

2.6 Further famous quotes

Many books in Calculus of Variations and/or Variational Principles, see
e.g. that of Lanczos (1970), start with a preface, introduction or introduc-
tory chapter dealing with historical prolegomena and sometimes end with a
philosophical chapter. In presenting this lecture notes, we did not dare to
break with tradition.

“For this would be agreed by all: that Nature does nothing in
vain nor labours in vain”. Olympiodorus, Commentary on Aristo-
tle’s TMMeteora translated by Ivor Thomas in the Greek Mathemat-

ical Works Loeb Classical Library

“La nature, dans la production de ses effets, agit toujours
par les voies les plus simples”. Pierre de Fermat.

Now, the problem is:

What is utility?

3 In other words: How to find “Real Motions”?

Up to now no mathematical structure has been assumed for MA. Indeed,
Action functional is simply a real-valued map defined on MA. “Practical”
problems require the calculation of real motions by means of introduced
model. Following Lagrange (15), we introduce a particular class of Action
functionals in terms of a Lagrangian Action density function: so construct-
ing in a particular way Action functional to obtain so called “Lagrangian
functionals”.

We need to introduce a topological structure in MA, i.e. we need to
clearly define what we mean when we say that “two motions are close”. If
we want to find minima of a real-valued function, then we need to estimate
derivatives and equate these derivatives to zero. Action is a function defined
in the set of motions (not real numbers!). Thus, we need
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• to understand what is an infinitesimal variation of motion,
• to find a differential of a functional and
• to estimate the order of infinitesimal of its remainder.
In other words, we need to learn how to find a first order Taylor expansion

for a Lagrangian functional by establishing the meaning of the expressions
:

• Infinitesimal variation of motion.
• Differential of a functional.
• Order of infinitesimals for remainders.
This implies the need of Frechèt and Gateaux derivatives in manifolds

with charts in Banach spaces. This is the right mathematical frame for
studying this subject. However, Lagrange did not know that he was using
such a mathematical frame and did not know anything about Frechèt and
Gateaux derivatives. Thus, in this notes we try to go around the related
mathematical difficulties and follow the original approach of Lagrange.

The motion minimizing Action will be searched among the mo-
tions for which the first variation of Action vanishes.

For Lagrangian functionals this condition is equivalent to a partial dif-
ferential equation which is called Euler-Lagrange condition relative to the
given Action functional. This procedure generalizes the corresponding one
used for real-valued functions of several real variables. One serious problem
with papers that start from balance equations and “play” with forces is that
they do not “find” boundary conditions. In these references ((7; 8; 9)) one
can find examples of modelling procedures in which one finds simultaneously
bulk and boundary conditions.

From an historical point of view, in the theory of beam we deal with
contact actions (normal and shear forces and momenta) because Navier
has written lecture notes for l’Ecole Polytechique, trying to produce a text
for students that was as simple as possible. He wrote final equations and
explain not only bulk but also boundary conditions with the aid of “physical
sense”. However, it is very difficult in general to find evolution equations
and boundary conditions with physical sense. On the other hand, variational
principles give boundary conditions automatically and without the help of
any physical sense.

Thus, Variational Principles allow Science to unveil Nature and for un-
veiling Nature you need a Lagrangian functional.

4 Lagrangian Action Functionals: technical details

We follow Landau and Lifshitz (1977) and Moiseiwitsch (1966).
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Let Ψσ(xμ) be any set of n tensor fields defined on Rm, (σ being a
multi-index and μ = 1, 2, ...,m). We define the Lagrangian density as:

L

(
xμ,Ψσ,

∂Ψσ

∂xμ

)
. (1)

We can then introduce the Action functional as

A =

∫
T

L

(
xμ,Ψσ,

∂Ψσ

∂xμ

)
(2)

Where T is a hyper-volume in the m−th dimensional space determined by
the coordinates xμ. When we will want to derive the theory of second
gradient materials, this approach will not be appropriate, because we would
need to add the dependence on the second gradient of Ψσ in (1).

4.1 Variation of the Action Functional

We now consider small variations εησ(xμ) of the considered fields Ψσ(xμ):

Ψ̃σ(xμ) = Ψσ(xμ) + εησ(xμ), (3)

where the ησ(xμ) are any set of linearly independent functions of the xμ
which vanish on the part ∂dT (∂dT ⊆ ∂T ) of the boundary ∂T of the hyper-
volume T , on which the kinematical condition are prescribed. The variation
of the Action functional can then be computed as:

ΔA =

∫
T

L

(
xμ, Ψ̃σ,

∂Ψ̃σ

∂xμ

)
−
∫
T

L

(
xμ,Ψσ,

∂Ψσ

∂xμ

)
, (4)

where T is a hyper-volume in them-th dimensional space determined by the
xμ. The computation of the variation of the Action functional now proceeds
as follows:

ΔA =

∫
T

L

(
xμ,Ψσ + εησ,

∂Ψσ

∂xμ
+ ε

∂ησ
∂xμ

)
−
∫
T

L

(
xμ,Ψσ,

∂Ψσ

∂xμ

)
+O

(
ε2
)

(5)
which, with a slight abuse of notations, can be written at the first order in
ε as:

δA = ε

∫
T

∑
σ

(
∂L

∂Ψσ
ησ +

m∑
μ=1

∂L

∂ (∂Ψσ/∂xμ)

∂ησ
∂xμ

)
(6)
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Integrating by parts and recalling that ησ vanish on ∂dT it is easy to get:

δA = ε

∫
T

∑
σ
ησ

(
∂L

∂Ψσ
−

m∑
μ=1

∂

∂xμ

(
∂L

∂ (∂Ψσ/∂xμ)

))
(7)

+ε

∫
∂T/∂dT

∑
σ
ησ

m∑
μ=1

∂L

∂ (∂Ψσ/∂xμ)
Nμ,

where ∂T/∂dT is the difference between ∂T and ∂dT and Nμ is the external
unit normal of ∂T/∂dT . Imposing δA = 0, the arbitrariness of ησ gives, for
any σ:

∂L

∂Ψσ
−

m∑
μ=1

∂

∂xμ

(
∂L

∂ (∂Ψσ/∂xμ)

)
= 0, ∀xμ ∈ T, (8)

m∑
μ=1

∂L

∂ (∂Ψσ/∂xμ)
Nμ = 0, ∀xμ ∈ ∂T/∂dT. (9)

In the case of a discontinuity material surface Σ (with unit normal Nμ) the
(9) have to be completed by

m∑
μ=1

[| ∂L

∂ (∂Ψσ/∂xμ)
|]Nμ = 0, ∀xμ ∈ Σ, (10)

where [| (·) |] is the jump of (·) across the surface Σ. These equations are
known as the Euler-Lagrange equations corresponding to the considered
Lagrangian density.

4.2 The Space-Time Case (m = 4)

Let us now consider the particular case in which m = 4. This case
corresponds, for instance, to the case xμ = (x1, x2, x3, t). We have that
ησ(xμ) are any set of linearly independent functions of the xμ which vanish
on the boundary of time type domain,

ησ(x1, x2, x3, t0) = ησ(x1, x2, x3, t1) = 0

and on the part ∂dV of the boundary ∂V of the volume V , on which the
kinematical conditions are prescribed,

ησ(x1, x2, x3, t) = 0, ∀(x1, x2, x3) ∈ ∂dV, ∀t ∈ [t0, t1] .
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It is easy to show that in this particular case eq. (7) yields

δA = ε

∫ t1

t0

dt

∫
V

∑
σ
ησ[

∂L

∂Ψσ
−

3∑
k=1

∂

∂xk

(
∂L

∂ (∂Ψσ/∂xk)

)
(11)

− ∂

∂t

(
∂L

∂ (∂Ψσ/∂t)

)
]

+ε

∫
∂V/∂dV

∑
σ
ησ

3∑
k=1

∂L

∂ (∂Ψσ/∂xk)
Nk

+

∫
Σ

∑
σ

[∣∣∣∣∣ησ
3∑

k=1

∂L

∂ (∂Ψσ/∂xk)

∣∣∣∣∣
]
Nk

The stationarity δA = 0 of the Action implies, for any σ = 1, 2, ..., n,

∂L

∂Ψσ
−

3∑
k=1

∂

∂xk

(
∂L

∂ (∂Ψσ/∂xk)

)
− ∂

∂t

(
∂L

∂ (∂Ψσ/∂t)

)
= 0, ∀xk ∈ V, (12)

3∑
k=1

∂L

∂ (∂Ψσ/∂xk)
Nk = 0, ∀xμ ∈ ∂V/∂dV, (13)

3∑
k=1

[∣∣∣∣ ∂L

∂ (∂Ψσ/∂xk)

∣∣∣∣]Nk = 0, ∀xμ ∈ Σ. (14)

Which are the standard Euler-Lagrange equations. We will see in the next
chapters of this book how to generalize (14) when Σ can move freely.

5 Principle of Virtual Power and Principle of Least
Action

The principle of least Action, when formulated for Action functionals admit-
ting first differentials, can be regarded as a particular form of the principle
of virtual powers. Indeed, if

A = Aint + Aext + Aine (15)

then
δA = 0 ⇐⇒ δAint + δAext + δAine = 0. (16)

Identifying

δAint = Pint δAext = Pext, δAine = Pine, (17)
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we get

Pint +Pext +Pine = 0. (18)

Which is the standard form of principle of virtual powers.
Is the principle of virtual power more general than principle of least

Action? First answer: the principle of virtual powers involves differentials
which are not exact, in general. Therefore, once fixed the kinematics, the
principle of virtual power is actually more general. In both Pint and Pext

one can include dissipative terms, which cannot, in general, be derived from
an Action functional. However, it is not clear if, suitably extending the space
of configurations and the set of admissible motions, one can introduce an
Action functional also for systems which, in a restricted kinematics, appear
as dissipative. Controversies in the literature about this subject are not yet
solved.

6 Hamilton-Rayleigh Approach

We propose to use the Hamilton-Rayleigh compromise. We introduce an
Action functional and a Dissipation Rayleigh functional and, by means of
them, we formulate the Principle of Virtual Work. Rayleigh dissipation
functional R is defined as a linear functional on the set of velocities, not
on the set of motions as A. Therefore, δR is defined as a linear functional
of the variation δṁ. The principle of virtual works formulated following
Hamilton-Rayleigh takes the form: (the lack of the upper dot on RHS is
not a mistake!)

δA (δm) = R (δm) . (19)

7 Conclusions

We recall an ancient and useful recipe for building theories for describing
effectively physical phenomena:

“In Nomina est Natura Rerum”. Anonymous

This statement (passed to us by the middle age tradition) is formu-
lated for defending mathematical formalism. This sentence claims that it
is impossible to talk about any mathematical model without using the ap-
propriate language. So, for instance, it is impossible to say clearly what is
the first variation of Action using simply “words” from natural language,
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i.e. without writing integrals on T and, to proceed, we need to give “pre-
cisely” names to things. Therefore, to specify precisely how our models are
constructed we need to introduce symbols and formulas.

However, we can also say that

“Nomina sunt Consequentia Rerum.” Iustinianus, Institutiones
Liber II,7,3

This because we are not blindly building our mathematical model. We
get informations about physics and from these informations we actually
formulate our models.

We can finally state that the “old” method of basing the formulation of
mathematical models on the variational approach works: indeed it works
very well.
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Abstract The most general and elegant axiomatic framework on
which continuum mechanics can be based starts from the Principle
of Virtual Works (or Virtual Power). This Principle, which was
most likely used already at the very beginning of the development
of mechanics (see e.g. Benvenuto (1981), Vailati (1897), Colonnetti
(1953), Russo (2003)), became after D’Alembert the main tool for
an efficient formulation of physical theories. Also in continuum
mechanics it has been adopted soon (see e.g. Benvenuto (1981),
Salençon (1988), Germain (1973), Berdichevsky (2009), Maugin
(1980), Forest (2006)). Indeed the Principle of Virtual Works be-
comes applicable in continuum mechanics once one recognizes that
to estimate the work expended on regular virtual displacement fields
of a continuous body one needs a distribution (in the sense of
Schwartz). Indeed in the present paper we prove, also by using
concepts from differential geometry of embedded Riemanniam man-
ifolds, that the Representation Theorem for Distributions allows
for an effective characterization of the contact actions which may
arise in N−th order strain-gradient multipolar continua (as defined
by Green and Rivlin (1964)), by univocally distinguishing them in
actions (forces and n − th order forces) concentrated on contact
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surfaces, lines (edges) and points (wedges). The used approach re-
considers the results found in the pioneering papers by Green and
Rivlin (1964)-(1965) , Toupin (1962), Mindlin (1964)-(1965) and
Casal (1961) as systematized, for second gradient models, by Paul
Germain (1973). Finally, by recalling the results found in dell’Isola
and Seppecher (1995)-(1997), we indicate how Euler-Cauchy ap-
proach to contact actions and the celebrated tetrahedron argument
may be adapted to N−th order strain-gradient multipolar continua.

1 Introduction

In a forthcoming review paper the authors will try to describe why, how and
when many theories were conceived to go beyond the conceptual framework
established for continuum mechanics in the Euler and Cauchy era. In this
introduction are formulated only few comments about some papers which
seem to be the starting point of the most modern studies in continuum
mechanics. In this field -among the many available in the literature- the
textbooks which we have found more instructive are those of Paul Ger-
main and Jean Salençon. In them, without any loss of mathematical rigour,
what nowadays seems the most effective approach to the axiomatization of
mechanics is presented to the students of the École polytechnique. This
approach is based on the Principle of Virtual Works. Paul Germain re-
search paper on second gradient continua (1972) shows how fruitful is the
aforementioned approach. Most likely one of the most illuminating paper
in modern continuum mechanics is due to Green and Rivlin (1964): it is
entitled ”Simple force and stress multipoles” and formulates what the au-
thors call ”multipolar continuum mechanics”. Indeed Green and Rivlin start
there the foundation of what has been later called also the theory of general-
ized continua. They also address the problem of establishing simultaneously
the bulk evolution equations and the correct boundary conditions for gen-
eralized continua: equations and boundary conditions which they find by
postulating the Principle of Virtual Work. In this aspect their theory is
perfectly orthodox with respect to the paradigm put forward, many years
earlier, by Cosserat brothers, in their fundamental textbooks (1908)-(1909).
Of great importance for understanding the relationship between Cosserat
continua and higher order gradient continua studied by Green and Rivlin
is the short but very clear paper by Bleustein (1967), where the boundary
conditions found by Toupin in a previous work are interpreted also from a
physical point of view. We must also cite here the papers by Mindlin, who
also contributed greatly to the development of important generalizations of
Euler-Cauchy continuum models. In particular in Mindlin (1965) is started
the study of third gradient continua, which is developed in a great extent.
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However in all cited papers the Cauchy cuts considered are very regular:
therefore the cited authors refrain from the consideration of contact actions
concentrated on edges and wedges. Instead Germain considers Cauchy cuts
in which the normal can suffer discontinuities of the first kind: he therefore
needs to consider contact actions concentrated on edges. However Germain
limits his treatment to second gradient continua: in his theory there are not
wedge contact actions. Also in Toupin’s strain-gradient theory (1962) the
consideration is limited to second gradient continua. In cited paper Toupin
limits himself to the consideration of a particular class of second gradient
continua: those in which only a particular class of contact double-forces
(using the nomenclature by Germain) can be exerted: the class constituted
by ”couple-stresses”.

Those which are called by many authors (see e.g. Maugin (2010) and
Forest (2005)-(2006)) generalized continua actually strictly include higher
gradient continua which we consider here. In generalized continua together
with the placement field one can introduce many other kinematical de-
scriptors, which are other fields defined in the material configuration of
considered continuum. The first example of such a set further kinematical
descriptors is given by Cosserats who add to the placement field also a field
of ”changes of attitude”, i.e. a field of rotations, which describe a large class
of ”microscopically structured” continua. As clarified by Bleustein (1967)
Toupin’s continua are a class of Cosserat continua in which an internal con-
straint has been introduced. In the following sections, while commenting
some papers recently published in the field, it is discussed how the approach
used by Germain can be reconciled with an approach which parallels more
strictly the one used, for first gradient continua, by Cauchy.

It is not easy (but this analysis will be attempted in the aforementioned
review paper) to explain why the foundation of continuum mechanics ”à
la Cauchy” has been considered ”more physically grounded” than the ax-
iomatization based on the Principle of Virtual Powers. In the present work
we prove that .at least for higher gradient continuum theories, the two ap-
proaches are completely equivalent.

Variational Principles and Calculus of Variations have always been an
important tool in formulating mathematical models for physical phenomena.
Among many others the textbook by Berdichevsky (2009) clearly shows that
this statement holds, in particular, for Continuum Mechanics.

We are sure that the Principle of Virtual Works and the Principle of
Least Action have roots much deeper than many scientists believe. (see e.g.
Vailati (1897)). One can conjecture that the majority of physical theories
were first formulated in terms of these Principles, and only subsequently re-
considered from other points of view. The Principle of Least Action, which
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supplies a ”geometric” (see Russo (2003)) version of mechanics, is likely to
be indeed the tool used by the true founders of mechanics (i.e. the scientists
of the Hellenistic period) to establish it. As conjectured also by Colonnetti
(1953) and Rorres (2004) Archimedes himself was basing his mechanical
investigations on the Principle of Virtual Works. More recently, as already
stated above in a more detailed way, Green, Rivlin, Toupin, Mindlin, Casal,
and Germain formalized various versions of the theory of generalized con-
tinua basing them on the Principle of Virtual Powers: however the most
illuminating treatises in this subject remain those due to Cosserat brothers
(1908)-(1909).

For a long time some opponents to second gradient theories argued about
its ”lack of consistency”, due to the difficulties in ”interpreting” boundary
conditions. However it has to be remarked that if one refuses to use the
Principle of Virtual Powers he can find very difficult the job of finding
some set of boundary conditions which are compatible with the (indepen-
dently postulated!) bulk evolution equations. Actually it happens that
many epigones, after having initially refused to use this principle also in
continuum mechanics, have later rephrased with different notations many
of the results already available in the literature.

If instead one accepts the D’Alembertian approach to mechanics all these
problems of well-posedness of mathematical models completely disappear.

2 Second and Higher Gradient Continuum Theories

In the last fifty years it has been widely recognized that in order to de-
scribe a wealth of physical phenomena it is needed to introduce mechanical
theories which take into account contact actions more complex than those
considered in the format given by Cauchy to continuum mechanics. Some
well-known contributions in this regard are given in the papers listed in the
references by Toupin, Mindlin, Green, Rivlin, Maugin, Forest, Germain,
Suiker, Sokolowski, Triantafyllidis among many others.

More recently it has been recognized that second or even higher gradient
models are needed when continuum models are introduced for describing
systems in which strong inhomogeneities of physical properties are present
at eventually different length scales (see e.g. Abu et al. (2008), Alibert et al.
(2003), Polizzotto (2007), Pideri and Seppecher (1997), Trianttafyllidis et al.
(1986)-(1998), Yang and Misra (2010), Yang et al. (2011)), and may be of
great importance also in continuum systems in which some ”microscopical”
degrees of freedom can ”capture” a relevant amont of deformation energy
(see e.g. Carcaterra (2005) or Carcaterra et al. (2006)).

Actually, immediately after the development of the Cauchy format of
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continuum mechanics, a first relevant generalization in the aforementioned
direction was conceived by Eugène and François Cosserat, but their efforts
were not continued until late in XX century. Cosserat described continuum
bodies in which contact actions were to be modelled not only by means
of surface forces, but also by means of surface couples. The conceptual
differences between Cauchy-type continuum mechanics and Cosserat-type
continuum mechanics were relevant, and the second one could not be ob-
tained by means of simple modifications of the first one. The remarkable
mathematical difficulties confronted by Cosserat rendered their work diffi-
cult to be accepted, and for a long period their results were nearly com-
pletely ignored. This circumstance can be easily understood: the structure
of Cosserat contact actions is complex. Indeed in Cosserat continua one
needs, together with Cauchy stress tensor also a Couple stress tensor, for
representing contact Couples.

2.1 A first method for extending Cauchy model for continuous
bodies

In order to develop continuum mechanics by going beyond the Cauchy
format it is possible to use at least two different approaches.

The most simple of them, used also by Cosserats, starts by postulating
how the power expended by internal actions in a body depends on the ”vir-
tual” velocity field and its gradients. Starting from this postulate one can
deduce, by means of a successive application of the theorem of divergence,
i.e. by means of several iterative integrations by parts, which are the contact
actions which can be exerted at the boundary of the considered body. Hence,
this method starts from the notion of stress tensors and deduces from it the
concept of contact actions. It is based on the D’Alembert Principle of Vir-
tual Work and has been resumed by Green and Rivlin, Mindlin, Casal and
subsequently by Paul Germain, in his enlightening papers (1972-1973). This
Principle is undoubtedly a great tool in Mechanics which has not been im-
proved since its original first and ”standard” formulation, differently to what
stated in Fried and Gurtin (2006)-(2008) and in Podio-Guidugli (2009). It is
not clear why these last authors consider as ”non-standard” a formulation of
the Principle of Virtual Powers which can be found stated ”word-for-word”
for instance in the textbooks of Jean Salençon..

Indeed other authors (e.g. the paper by Degiovanni, Marzocchi, Musesti
(1999)-(2010) in the references ) stated that:

In particular, the approach by means of the theory of distributions, men-
tioned by Germain himself but not fully developed, is here adopted from the
beginning. Clearly, in order to obtain deeper results such as the Cauchy
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Stress Theorem, some extra regularity has to be assumed. Note that a power
depends in general from two variables, the velocity field and the subbody. So
it is a bit more complex than a mere distribution.

In the same spirit in dell’Isola and Seppecher (1995)-(1997) the starting
assumptions concerning contact actions are: i) for every subbody of consid-
ered body the power expended by contact actions on a generic velocity field
is a distribution (i.e. a linear and continuous functional on velocity fields)
ii) the power expended by contact actions is quasi-balanced (generalizing
the assumption used in Noll and Virga (1990)). Then in aforementioned pa-
pers by using different polynomial test velocity fields and different families
of subbodies, the Cauchy construction for stress tensors is obtained.

The works of Green and Rivlin, Mindlin and Germain have been taken
up again and again, (e.g. in Fried and Gurtin (2006)-(2008)) often rephras-
ing them without introducing any notable amelioration and often second
gradient continua are somehow confused with Cosserat continua.

Paul Germain, following a tradition set in France by André Lichnerow-
icz, uses the original version (and more efficient) absolute notation due to
Levi-Civita. This version, at least in this context, is the most adapted, as
many objects of different tensorial order are to be simultaneously handled.
Sometimes those who are refraining from using the most sophisticated ver-
sion of Levi-Civita absolute Calculus are lead to refer to the needed stress
tensors and the related contact actions indistinctly using the names ”hy-
perstresses” and ”hypertractions”. On the contrary Germain (following the
spirit of Green and Rivlin) tries to convey through the nomenclature chosen
the physical meaning to be attached to the new mathematical objects which
he is introducing: for instance he calls ”double forces” the actions which are
expending powers on the velocity gradient in the directions which are nor-
mal to the surfaces of Cauchy cuts. Germain then decomposes these ”double
forces” into ”couples” and ”symmetric double forces” recognizing (following
Bleustein) that couples were already introduced by Cosserats. Germain’s
notation supports the mechanical and physical intuition contrarily to what
does a generic nomenclature based on some ”hyper” prefixes.

2.2 A second method for extending Cauchy model and its rela-
tionship with the first

The second method starts by postulating the type of contact action
which can be exerted on the boundary of every ”regular” part of a body
and then proceeds by proving a ”representation” theorem for the considered
class of contact actions: the existence of stress tensors is then deduced from
the postulated form of contact actions with the addition of a ”balance-type”
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postulate, based on physical grounds. In other words: to the ”constitutive”
assumption adopted for characterizing the class of contact action under
consideration one must add a Principle of Balance: the contact actions
have to be balanced by a bulk action. This is the method followed by
Cauchy which is often considered as the only firm foundation of Continuum
Mechanics. The important contribution due to Noll and Virga (1990) is
to have introduced the assumption of ”quasi-balance” for powers, which
generalized, in the most suitable way, the Euler-Cauchy Postulate used in
Cauchy continuum mechanics.

The mathematical difficulties presented by this second
method

As remarked explicitly in dell’Isola and Seppecher (1995)-(1997) and in
Degiovanni, Mazzocchi and Musesti (1999)-(2010) the mathematical diffi-
culty to be confronted in order to establish a firm foundation for this sec-
ond method relies on the dual dependence of power functional on velocity
fields and on subbodies of the considered continuum. It is obvious, start-
ing from physical plausibility considerations, that power functionals must
be regarded as distributions on the set of test functions represented by the
admissible velocity fields (see e.g. the textbooks of Salençon and Germain).

A fundamental results due to Schwartz allows for representing distri-
butions (with compact support) as finite sums of derivatives of measures
Schwartz (1973). When (as it is important for considering contact ac-
tions) the distribution is concentrated on a smooth submanifold of three-
dimensional Euclidean space, then the derivatives to be considered are only
those ”normal” or ”transversal” to the submanifold itself. Unfortunately in
Schwartz it is not considered a representation theorem for families of distri-
butions ”attached to” the family of measurable subset of a given measurable
set.

Some of the efforts of Degiovanni, Marzocchi and Musesti (1999)-(2010),
Lucchesi, Šilhavý and Zani (2008) are directed, with remarkable results, to
the search of such a generalized Schwartz representation theorem and to the
formulation of weaker versions of Gauss divergence Theorem.

Indeed it is also of relevance the problem arising when one must define
generalized ”stresses” having a flux which allows for the representation of
contact action and a divergence to be used for formulating bulk ”local” form
of balance laws. This problem has been also addressed with some interesting
results (see Lucchesi, Silhavý and Zani (2008), Degiovanni, Marzocchi e
Musesti (1999), Šilhavý (1985)-(1991).
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2.3 The two methods can be reconciled.

During a long period the first method of the two previously described has
been rejected by many researchers and it is lucky for advancement of science
that its power has been, in the last decade, finally nearly unanimously
accepted.

Moreover the two methods can be reconciled.
Indeed the equivalence of the two methods has been explicitly established

by Cauchy him-self and made precise by Noll, for First Gradient Theories.
The same equivalence has been proven for the so called Second Gradient

Theories, i.e. for theories in which the internal power is a second order
distribution: this results has been obtained in the sequence of papers Noll
and Virga (1990), dell’Isola and Seppecher (1995)-(1997). In these last two
papers the relationship between the concept of contact line force and surface
double forces was proven and also a representation formula relating the two
kind of forces was obtained.

3 Some commentaries about a recent paper on second
gradient continua

Unfortunately it seems that the fundamental connection between the two
methods (and the available proof of the existence of this connection at least
for those materials which were called by Germain second gradient materials)
seems still not well understood in part of the mechanics community, while
it has been considered as established by others (see e.g. in the references
the works by Maugin, Markus and Forest).

• For instance, one can read in Podio-Guidugli Vianello (2010) that:
Although here we do not deal with this difficult issue directly, in Sect.

3, the bulk of this article,we do provide a full set of representation formu-
lae not only, as is relatively easy, for tractions and hypertractions in terms
of stresses and hyperstresses (see definition (26) for diffused tractions and
hypertractions, and definition (27) for tractions concentrated on edges), but
also, conversely, for stresses and hyperstresses in terms of diffused and con-
centrated tractions and hypertractions (see definitions (28, 29), and (34).
Such representation formulae generalize the corresponding formulae for sim-
ple (!first-gradient) materials, that we derive in our preparatory Sect. 2.
Since we work in a nonvariational setting, our results apply whatever the
material response. The PVP we use includes edge tractions, both internal
and external; without them, it would not be possible to arrive at the com-
plete representation formula for the hyperstress in terms of hypertractions
we construct in Sect. 3.5.
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However it is not possible to see any difference between the results listed
in the previous statement and those obtained by Casal and then by Germain.
The quoted results are also available in Seppecher (1987)-(1989), Casal and
Gouin (1985) and even recalled in the textbooks by Forest. An interesting
application of second gradient theories to the mechanics of porous media
are proposed e.g. in Collin et al. (2006) or in Sciarra, dell’Isola and Coussy
(2007), where many results listed in the commented paper are explicitly
exploited.

• In the commented one then reads:

An interesting feature of second-gradient materials is that, if bodies and
subbodies having non everywhere smooth boundary are considered, then edge
forces, i.e., line distributions of hypertractions are to be expected (and, if a
dependence on gradients higher than two is allowed, one has to deal also with
vertex forces, as exemplified by Podio-Guidugli [15]). To our knowledge,
a rigorous interaction theory accommodating such a nonstandard behavior
remains to be constructed; interesting attempts in this direction have been
carried out by Forte and Vianello [3], Noll and Virga [14], and Dell’Isola
and Seppecher [1].

This statement is not accurate: indeed the efforts leading to in the papers
Noll and Virga (1990), dell’Isola and Seppecher (1995)-(1997), as recognized
for instance in the works by Maugin and Forest cited in the references,
actually constructs the searched rigorous interaction theory.

• Again in the commented paper the following statement can be found:

Finally, in Sect. 4, we provide a new proof of the following not very
well-known fact in the theory of second-gradient materials: if edge tractions
are constitutively presumed null on whatever edge, then the hyperstress takes
a very special form whose information content is carried by a vector field.
We surmise that inability to develop edge interactions be characteristic of
certain second-gradient fluids, an issue that we take up in a forthcoming
article [17], continuing a line of thought proposed by Podio-Guidugli [16].

Indeed, this results, rather obvious, is obtained in dell’Isola and Seppecher
(1997), Remark 3, page. 48 and systematically exploited in the applica-
tion of second gradient theory presented in Sciarra et al. (2001)-(2008) or
in Madeo et al. (2008). Some interesting consideration about this point
are already available in Seppecher (1987) together with some consideration
about third gradient fluids. This result is well-known: for instance remark
that Equation (35) on page. 173 in the commented paper exactly is equal
to Equation (18) page. 6612 in Sciarra et al. (2007) or to Equation (13)
pag.107 in Sciarra et al. (2008).
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• Finally always in the commented paper one reads

Relations (7) and (8) are also arrived at when, as is customary, only
tractions on body parts are introduced, because stress is constructed à la
Cauchy as a consequence of balance of tetrahedron-shaped parts. The Cauchy
construction is the pillar on top of which the standard theory of diffuse (i.e.,
absolutely continuous with respect to the area measure) contact interactions
stands. For complex (i.e., nonsimple) material bodies, a Cauchy-like con-
struction has been attempted often, but not achieved so far, to our knowl-
edge.

On the contrary in the Conclusions of the paper dell’Isola Seppecher
(1997) one can read:

The most important concepts introduced in this paper are:
(i) the concept of quasi-balanced power of contact force distribution and
(ii) that of prescribed shapes.
They allowed us to develop a system of axioms “à la Cauchy’ for continua

in which edge contact forces are present.
It is not clear if the authors of the commented paper are completely aware

of this last statement and of the assumptions and theorems presented in the
just cited paper. In our opinion, the demanded Cauchy-like construction
for second gradient materials is supplied there.

3.1 Concluding remarks

The connection between internal power and the power expended by ex-
ternal actions has not been yet completely established for a generic N−th
Gradient Theory, although interesting and useful considerations can be
found in the papers by Green, Rivlin, Mindlin, Di Carlo and Tatone and
Podio-Guidugli cited in the references.

In the following sections it will be shown how the work started in dell’Isola
Seppecher (1997) can be continued. The aim in these lecture notes will be
to give a firm framework to those researchers which need to deal with more
complex contact actions (for instance ”wedge forces”), wish to refrain from
using the Principle of Virtual Power and instead prefer to adopt an approach
based on ”contact interactions” rather than on ”virtual power expended on
virtual velocity fields”.

Indeed the ideas presented in the just mentioned paper can be extended
rather easily to treat the case of all types of contact distributions: more
precisely the Cauchy tetrahedron argument can be generalized to prove
that all types of mechanical contact actions can be represented in terms of
a generalized stress tensors.

To our knowledge the results which we present are novel. It is however
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difficult to establish how many of them were already obtained in the litera-
ture: in general while trying to write a scientific work and in particular when
revisiting Cauchy’s, Green’s, Rivlin’s and Germain’s results it is advisable
to try to avoid the attitude of the novelist Pierre Menard (see Borges):

(...) Menard’s visible work can be easily enumerated. Hav-
ing examined with care his personal files, I find that they con-
tain the following items: (a list of works follows) I turn now to
his other work: the subterranean, the interminably heroic, the
peerless. And—such are the capacities of man!—the unfinished.
This work, perhaps the most significant of our time, consists
of the ninth and thirty-eighth chapters of the first part of Don
Quixote and a fragment of chapter twenty-two. I know such an
affirmation seems an absurdity; to justify this “absurdity” is the
primordial object of this note. (....) He did not want to compose
another Quixote —which is easy— but the Quixote itself. Need-
less to say, he never contemplated a mechanical transcription of
the original; he did not propose to copy it. His admirable inten-
tion was to produce a few pages which would coincide—word for
word and line for line—with those of Miguel de Cervantes. “My
intent is no more than astonishing,” (...) To be, in some way,
Cervantes and reach the Quixote seemed less arduous to him—
and, consequently, less interesting—than to go on being Pierre
Menard and reach the Quixote through the experiences of Pierre
Menard. (.....) “My undertaking is not difficult, essentially,”
I read in another part of his letter. “I should only have to be
immortal to carry it out.”

4 Resumé of some results in Differential Geometry of
Riemannian manifolds embedded in the Euclidean
Space.

The reference configuration of the continuum which we want to consider is
a regular region C∗ embedded in E3. Its boundary ∂C∗ is assumed to be a
piecewise regular orientable and rectifiable surface.

Following the ideas already expressed in Cosserat (1908) and formalized
e.g. by Germain (1972) or Salençon (1988-2005) we will assume that the
Principle of Virtual Powers holds at least for every ”regular” subbody of the
considered body. In this section we specify what we mean with ”regular”
subbody and in particular we specify how regular must be its topological
boundary.
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5 Gaussian Geometry of Piecewise Regular Surfaces
in E3

The family of subbodies which we will consider in the Principle of Virtual
Powers will have a topological boundary which is a piecewise regular surface,
as defined in the following section. These surfaces represent a particular
class of ”shapes” as introduced in dell’Isola and Seppecher (1995)-(1997).

5.1 Piecewise regular surfaces embedded in E3.

In the present paper we will use the following nomenclature:

Definition 5.1. A surface S is a piecewise regular (orientable and rectifi-
able) surface embedded in E3when there exist a finite set

{γi ⊂ S, i = 1, ...N}

of C1 curves (called edges) and a finite set of points (called wedges)

{Wi ∈ S, i = 1, ...,M}

such that, once introduced the notation (which is reminiscent of the one
usually encountered in the formulation of Poincaré theorem for exterior
forms)

Support(∂S) :=

(
N⋃
i=1

γi

)
; (1)

Support(∂∂S) :=

(
M⋃
i=1

Wi

)
, (2)

the conditions appearing in the following list are verified.

LIST OF CONDITIONS

• for every p ∈ S− (∂S ∪ ∂∂S) (i.e. for every regular point belonging to
S) there exists a neighborhood in S which is locally (C2−)diffeomorphic
to R2 : we call any such local diffeomorphism

r : R2 → S − (∂S ∪ ∂∂S)

an internal chart of S, We assume that for every internal chart r the
set r(R2) is a rectifiable surface;
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• for every p ∈ S − (∂S ∪ ∂∂S) there exists a translation vector in E3 ,
denoted with the symbol N(p), which is orthogonal to every tangent
vector to S,

• for every p ∈ ∂S − ∂∂S there exist two diffeomorphisms (called also
”border charts”)

r± : [0,∞[× R→ I± ⊂ S (3)

such that

r±(0, 0) = p; r±(0,R) = ∂S ∩ I± (4)

; (∀y ∈ ]0,∞[× R)
(
r± (y) ∈ S − (∂S ∪ ∂∂S)

)
(5)

and both the following limits exist

lim
x→(0,0)

N(r± (x)) := N±(p).

Therefore every curve γi can be regarded as the border of two regular
surfaces S± one on the side + the other on the side − with respect to
γi . We will denote the unit outward pointing normal vector to γi in
the tangent plane to S± respectively with the symbol ν±.

• for every curve γi (the length of which is denoted by li) there exists a
global parametric C1 representation ri

ri : s ∈ [0, li] �→p ∈ S

such that ∥∥∥∥drids

∥∥∥∥ = 1,
dri
ds
·N± = 0.

We will assume that
dri
ds
×N± = ±ν±.

• for every Wj ∈ ∂∂S there exists at least one curve γi such that one of
the two following conditions holds

ri(0) =Wj or ri(li) =Wj .

Roughly speaking piecewise regular orientable and rectifiable surfaces,
in the particular conventional sense specified above, are surfaces where the
normal vector is defined in all points except those belonging to a finite set
of wedges and to a finite set of regular curves (the edges of the surface).
Along these curves a tangent vector is always defined together with both
the normals of the two subsurfaces concurring on the edge.

Definition 5.2. We call face of S every connected component of the set
S − (∂S ∪ ∂∂S)
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5.2 Local parametrizations for regular curves and surfaces. Lo-
cal curvilinear coordinate systems in E3 adapted to surfaces
and surface edges.

We start recalling some basic definitions from differential geometry

Definition 5.3. A parametrization of a regular curve is a C1 one-to-one
function r : ]a1, b1[→ E3 such that

(∀p ∈ r (]a1, b1[))

(
t(p) :=

dr

dx1
(
r−1 (p)

)

= 0

)
.

The vector t(p) is the tangent vector to the curve in p.

Definition 5.4. At every point p of a regular curve γ we can define the
following projection operators

Pγ,p := t(p)⊗ t(p); Qγ,p := N1(p)⊗N1(p) +N2(p)⊗N2(p)

where N1(p) and N2(p) form an independent set of vectors both orthogonal
to t(p).When this will not cause confusion we will skip one or both the
indices of the introduced projectors. Pγ,p will be called the projector in
the tangent bundle (or line) of γ at point p, while Qγ,pwill be called the
projector in the orthogonal bundle (or plane) of γ at point p.

Definition 5.5. A map

r :
(
x1, x2

)
∈ ]a1, b1[× ]a2, b2[ ⊂ R2 �→r

(
x1, x2

)
∈ E3

is called a local parametrization for the regular surface S in the neigh-
borhood of p if r is a C1 diffeomorphism between ]a1, b1[ × ]a2, b2[ and
r (]a1, b1[× ]a2, b2[) =: Ip such that

r (]a1, b1[× ]a2, b2[) =: Ip ⊂ S; (6)

r−1(p) ∈ ]a1, b1[× ]a2, b2[ (7)

Once a local parametrization for the regular surface S is introduced then
a set of coordinate curves on S is established, together with a field of bases
for the tangent planes to S.

We will consider in the following the fields of vectors induced by a local
parametrization

(∀α ∈ {1, 2}) (∀q ∈ Ip)

(
aα(q) :=

∂r

∂xα

(
r−1 (q)

))
.
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The couple {a1(q), a2(q)} is a basis of the tangent plane to S in the point
q. The set of points

r
({
x1
}
× ]a2, b2[

)
, r
(
]a1, b1[×

{
x2
})

are called the coordinate x2 and x1 curves. Remark that the vectors aα are
tangent to the coordinate xα curves. The C1 normal (to S) unit vector
field N can be calculated by the formula

N(q) =
a1(q)× a2(q)

‖a1(q)× a2(q)‖

Definition 5.6. Let the couple {a1(p), a2(p)} denote an othonormal basis
of the tangent plane to S in the point p. At every point p of a regular surface
S we can define the projector operators

PS,p := a1(p)⊗ a1(p) + a2(p)⊗ a2(p); (8)

QS,p := N(p)⊗N(p). (9)

When this will not cause confusion we will skip one or both the indices of
the introduced projectors. PS,p will be called the projector in the tangent
bundle (or plane) of S at point p, while QS,pwill be called the projector in
the ortogonal bundle (or line) of S at point p.

Remark 5.7. Because of the previous definitions, regular curves and sur-
faces are respectively one dimensional and two dimensional manifolds em-
bedded in the three dimensional Euclidean space.

The scalar fields

gαβ : q ∈ Ip �→aα(q) · aβ(q)

represent the components of a tensor field which is called the Riemannian
metric induced on S by the inner product in E3.

Remark 5.8. A given regular curve or surface can be endowed with the
structure of Riemannian manifold simply using the inner product of the
Euclidean space in which they are embedded. Indeed for any couple v and
w of vectors in their tangent bundle one can calculate their inner product
simply by regarding them as vectors in E3.

Although in the Euclidean space E3 the Cartesian system of coordinates,
using at every point the same vector basis to represent displacement vectors,
is in general sufficient, in the present context one needs to introduce the
following
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Definition 5.9. Local curvilinear coordinate systems in E3. A map

ϕ :
(
x1, x2, x3

)
∈ ]a1, b1[× ]a2, b2[× ]a3, b3[ ⊂ R3 �→ϕ

(
x1, x2, x3

)
∈ E3

is called a local chart in E3 in the neighborhood Ip of p ∈ E3 determining
a local curvilinear coordinate system when it is a diffeomorphism between

]a1, b1[× ]a2, b2[× ]a3, b3[ and ϕ (]a1, b1[× ]a2, b2[× ]a3, b3[) =: Ip
A i − th (i ∈ {1, 2, 3}) coordinate curve is obtained fixing in the function
ϕ all arguments except the xi variable, and the tangent vectors of such
coordinate curves are denoted as follows

(∀q ∈ Ip)

(
ai(q) :=

∂ϕ

∂xi

(
ϕ−1 (q)

))
.

Obviously for every q ∈ Ip the set {ai(q), i ∈ {1, 2, 3}} is a basis of the vec-
tor space of translations in E3.Therefore the curvilinear coordinate system
which has been introduced generates a field of bases in all Ip.

Definition 5.10. In Ip we can introduce the following scalar fields

(∀q ∈ Ip) (gij(q) := ai(q) · aj(q))
which are the components, in considered curvilinear coordinate system, of
the Riemann metric in the Euclidean field E3.

Let us consider a piecewise regular surface: as we will see in what follows,
it is possible to introduce in the neighborhood of p charts (i.e. curvilinear
coordinate systems) in the Euclidean space E3 which are ”adapted” to i)
the surface in the neighborhood of regular point p ∈ S − (∂S ∪ ∂∂S) ii) to
the edge of the surface in the neighborhood of a point which is not a wedge.

Local curvilinear coordinate system in E3 adapted to S in
the neighborhood of a regular point.

The following Lemma is a consequence of the inverse function Theorem and
is the basis of an important part of Gaussian differential geometry (for a
proof see e.g. Kosinski (1986), dell’Isola and Kosinski (1989).

Lemma 5.11. Let r be a local parametrization of S in the neighborhood of
the regular point p ∈ S − (∂S ∪ ∂∂S). For a suitably small positive ε the
map ϕ defined by

ϕ :
(
x1, x2, x3

)
∈ ]a1, b1[× ]a2, b2[× ]−ε,+ε[ ⊂ R3 (10)

�→r
(
x1, x2

)
+ x3N

(
r−1

(
x1, x2

))
∈ E3

actually is an invertible function and a diffeomorphism.



Contact Actions in N-th Gradient Generalized Continua 33

Definition 5.12. When the map ϕ considered in the previous Lemma is
a diffeomorphism it is the called the chart adapted to S induced by the
parametrization r.

When this will not be cause of confusion we will admit an abuse of nota-
tion and we will use the symbols N

(
x1, x2

)
, gαβ

(
x1, x2

)
and aα

(
x1, x2

)
in-

stead of the symbolsN
(
r−1

(
x1, x2

))
, gαβ

(
r−1

(
x1, x2

))
and aα

(
r−1

(
x1, x2

))
.

The same abuse of notation will be repeated for all the fields ai and gij not
specifying the composition with the function ϕ−1.

The class of charts we have now introduced was first introduced by Gauss
(see e.g. Spivak (1979)).

We are now able to extend in the neighborhood in E3 of a regular point
p ∈ S the fields of projectors in the tangent and in the orthogonal bundles:

Definition 5.13. Let us consider a chart ϕ adapted to the surface S in
the neighborhood of a point p. For every x3 ∈ ]−ε, ε[ we can consider the
(regular) surface Sx3 which is defined by the following local parametrization

rx3 := r + x3N.

On every surface Sx3 it is easy to introduce the tangent and orthogonal
projectors, which for x3 = 0 reduce to the projectors introduced already for
S = S0.We will denote these fields of projectors, also when defined in the
opens set

ϕ (]a1, b1[× ]a2, b2[× ]−ε,+ε[) ⊂ E3

with the same symbols PS,p and QS,p.

Local curvilinear coordinate system in E3 adapted to an
edge of S in the neighborhood of a point which is not a
wedge.

Let r be a local parametrization of an edge γ of S in the neighborhood of
a point p ∈ ∂S − ∂∂S. When it is a diffeomorphism, we will call the map ϕ
defined by

ϕ :
(
x1, x2, x3

)
∈ ]a1, b1[× ]−ε,+ε[× ]−ε,+ε[ ⊂ R3 (11)

�→r
(
x1
)
+ x2N±(r−1

(
x1
)
) + x3ν±

(
r−1

(
x1
))
∈ E3

a chart adapted to S at the considered edge as induced by the edge parametriza-
tion r on the side + or − (respectively) depending on the consistent choice
adopted.
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Adapting the argument used in the proof of the Lemma of the previous
subsection, and using the assumed regularity hypotheses about S and its
edges, it can be proven again that, when the value of ε is chosen to be
positive and suitably small, ϕ actually is a diffeomorphism and can be used
as a chart in E3.

Definition 5.14. Let us consider a regular point of the edge γand a chart
adapted to S at γ. For every

(
x2, x3

)
∈ ]−ε,+ε[× ]−ε,+ε[ we can consider

the regular curves parametrized by the function

r±x2,x3 := r + x2N± + x3ν±.

For each of these curves we can define the projection on the orthogonal and
tangent bundles, thus obviously extending in the neighborhood of γ the
already introduced projection fields Pγ,p and Qγ,p.

6 Gauss Divergence Theorem for embedded
Riemannian manifolds

We choose a global othonormal basis (ei, i = 1, 2, 3) for the vector field of
displacements in E3. All tensor fields, unless differently specified, will be
represented by means of the components with respect this basis. In this
section we consider an embedded Riemannian manifoldM in E3. This man-
ifold can be therefore a regular curve or surface. Because we were able to
construct the so-called Gaussian coordinate systems adapted to considered
manifolds, then in a whole neighborhood of these manifolds it is possible
to introduce the projection operator fields P and Q. For reducing the com-
plication of the calculation which we will perform in what follows we do
not use directly the adapted curvilinear coordinates: instead, after having
established the existence of the fields P and Q in the neighborhood ofM,we
introduce a global Cartesian coordinate system and represent all fields in it.
This technical choice is exactly the same one which allowed to Germain the
generalization, for second gradient materials, of the results found by Green,
Rivlin, Toupin and Mindlin.

It is easy to prove the following:

Lemma 6.1. If on each manifold M , P denotes the projection on the tan-
gent bundle : we have

δji = P j
i +Qj

i , P j
i P

k
j = P k

i , (12)

Qj
iQ

k
j = Qk

i , P j
i Q

k
j = 0.
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The unit external normal to M on its border is denoted ν; it belongs to the
tangent space to M .

Using these notations the divergence theorem reads (see e.g. Spivak
(1979))

Theorem 6.2. For any vector field W defined in the vicinity of M∫
M

(P i
jW

j),kP
k
i =

∫
∂M

W iP k
i νk (13)

This theorem together with relation

Qi
j,kP

k
i = −Qi

jP
k
i,k

implies that

Corollary 6.3. For any vector field W defined in a neighborhood of M∫
M

(
W i
)
,k P

k
i =

∫
M

(P i
jW

j),kP
k
i + (Qi

jW
j),kP

k
i = (14)

=

∫
M

W jQi
j,kP

k
i +

∫
∂M

W iP k
i νk = (15)

= −
∫
M

W jQi
jP

k
i,k +

∫
∂M

W iP k
i νk. (16)

7 Power expended by internal or external actions

Once we fix a subbody B of a given continuous body C and consider the set
A of all admissible velocity fields for B it is natural to admit that in A are
included all ”test functions” (i.e. infinitely differentiable functions) having
compact support.

It is also natural (as done e.g. by Salençon (1988-2005) or Germain
(1973)) to assume that the power expended by internal or external actions
(with respect to B) is a linear and continuous functional when defined in
the set of test functions (with respect to Frechèt topology).

In other word we accept the following

Postulate (Power)
The power expended by actions exerted on or in a subbody B is

a distribution (in the sense of Schwartz).
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It is clear that, once the previous postulate is accepted, the following
Theorems and Definitions, due to Schwartz (1973), become really relevant
in continuum mechanics:

Theorem 7.1. Every distribution having compact support K can be, in in-
finitely equivalent ways, represented as the sum of a finite number of deriva-
tives (in the weak sense) of continuous functions all having their support
included in a neighborhood of K.

Definition 7.2. A distribution is said to have order smaller than or equal
to k if one can represent it as the sum of derivatives of continuous functions
all having order smaller than or equal to k.

Theorem 7.3. Every distribution having support included in a regular
embedded submanifold M can be uniquely decomposed as a finite sum of
transversal derivatives of extensions of distributions defined on M.

7.1 Representations of distributions which are N−th order deriva-
tives of absolutely continuous measures concentrated on sub-
manifolds of RH with border

In what follows we will need to consider distributions having support con-
centrated on a regular submanifold M embedded in RH which are exactly
the N − th order derivatives of measures which are absolutely continuous
with respect to the corresponding Hausdorff measure.

More specifically we will be interested to consider distributions having
the form

P(V ) =
∫
M

T · ∇NV (17)

where T is a suitably integrable (with respect to the Hausdorff measure of
M) N -times contravariant tensor field.

We have now to get a Lemma which is essential when one wants to study
the structure of contact actions in n− th order continua.

Lemma 7.4. Let us consider a Riemannian ”regular” embedded manifold
M . Let T be a symmetric tensor field defined in the neighborhood of M. Let
us introduce the following ”projected” field

P(T )j1...jN−1l =

(
N−1∑
α=0

CN
α T i1i2...iNQj1

i1
..Qjα

iα
P

jα+1

iα+1
..P

jN−1

iN−1

)
P l
iN (18)
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where CN
α denotes the appropriate binomial coefficient. Then the following

formula of integration by parts holds:∫
M

T i1i2...iNV,i1i2...iN = (19)

=

∫
M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (20)

−
∫
M

((
P(T )j1...jN−1l

)
,jN P jN

l

)
V,j1j2...jN−1 + (21)

+

∫
∂M

P(T )j1...jN−1lV,j1j2...jN−1
P jN
l νjN (22)

Proof. We start decomposing identity tensor field in terms of tangent and
orthogonal projector fields adapted to M∫

M

T i1i2...iNV,i1i2...iN = (23)

=

∫
M

T i1i2...iNV,j1j2...jN (P
j1
i1
+Qj1

i1
)(P j2

i2
+Qj2

i2
) . . . (P jN

iN
+QjN

iN
). (24)

Subsequently we use the symmetry of T and orthogonality of P and Q
projectors thus obtaining with simple algebra∫

M

T i1i2...iNV,i1i2...iN = (25)

=

∫
M

N∑
α=0

CN
α

(
T i1i2...iNQj1

i1
..Qjα

iα
V,j1j2...jN P

jα+1

iα+1
..P jN

iN

)
= (26)

=

∫
M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (27)

+

∫
M

N−1∑
α=0

CN
α

(
T i1i2...iNQj1

i1
..Qjα

iα
V,j1j2...jN P

jα+1

iα+1
..P jN

iN

)
. = (28)

=

∫
M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (29)

+

∫
M

(
N−1∑
α=0

CN
α T i1i2...iNQj1

i1
..Qjα

iα
P

jα+1

iα+1
..P

jN−1

iN−1

)
V,j1j2...jN−1jN P jN

iN
. (30)

We finally introduce the definition of the projected field P(T ), use Leibnitz
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differentiation rule and apply Divergence Theorem on M∫
M

T i1i2...iNV,i1i2...iN = (31)

=

∫
M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (32)

+

∫
M

P(T )j1...jN−1lV,j1j2...jN−1jN P jN
l = (33)

=

∫
M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (34)

−
∫
M

(
P(T )j1...jN−1l

)
,jN P jN

l V,j1j2...jN−1
+ (35)

+

∫
M

(
P(T )j1...jN−1lV,j1j2...jN−1

)
,jN P jN

l = (36)

=

∫
M

T i1i2...iNQj1
i1
Qj2

i2
..QjN

iN
V,j1j2...jN + (37)

−
∫
M

((
P(T )j1...jN−1l

)
,jN P jN

l

)
V,j1j2...jN−1

+ (38)

+

∫
∂M

P(T )j1...jN−1lV,j1j2...jN−1
P jN
l νjN (39)

so concluding the proof.

Remark 7.5. If T is a N − th order tensor field then also P(T ) is a N − th
order tensor field.

Definition 7.6. Let S be a N − th order tensor field having Si1i2...iN as
component fields . We denote by divMS the tensor field having the com-

ponents
((
Sj1...jN−1l

)
,jN P jN

l

)
.Obviously divMS is a tensor field of order

N − 1.

Definition 7.7. We will denote S⊥ the tensor field (equally of order N)
having the following components Si1i2...iNQj1

i1
Qj2

i2
..QjN

iN
.

Using the notation introduced in the previous remark and denoting with
a dot the complete saturation of contravariant with covariant indices, the
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formula obtained in the previous Lemma reads as follows∫
M

T · ∇NV =

∫
M

T⊥ ·
(
∇NV

)
⊥+ (40)

−
∫
M

(divMP(T )) · ∇N−1V+ (41)

+

∫
∂M

P(T ) ·
(
∇N−1V ⊗ ν

)
(42)

We can now apply a second time the Lemma thus obtaining∫
M

T · ∇NV =

∫
M

T⊥ ·
(
∇NV

)
⊥ +

∫
∂M

P(T ) ·
(
∇N−1V ⊗ ν

)
(43)

−
∫
M

(divMP(T )) · ∇N−1V = (44)

=

(∫
M

T⊥ ·
(
∇NV

)
⊥

)
+

∫
∂M

P(T ) ·
(
∇N−1V ⊗ ν

)
+ (45)

−
(∫

M

(divMP(T ))⊥ ·
(
∇N−1V

)
⊥

)
+ (46)

+

(∫
M

divM (P (divMP(T ))) · ∇N−2V

)
+ (47)

−
∫
∂M

P (divMP(T )) ·
(
∇N−2V ⊗ ν

)
. (48)

Applying exactly N times the Lemma we get the following

Corollary 7.8. Under the same assumptions of the previous lemma and
having introduced the conventions

(divMP)0 T = T, (divMP)α T = divMP(divMP......(divMP(T ))︸ ︷︷ ︸
α times

the following equality holds if T is a symmetric tensor field K− times con-
travariant :∫

M

T · ∇KV =

K−1∑
α=0

(−1)α
∫
M

((divMP)α T )⊥ ·
(
∇K−αV

)
⊥+ (49)

+ (−1)K
∫
M

(
(divMP)K T

)
V+ (50)

+
K−1∑
α=0

(−1)α
∫
∂M

P((divMP)α T ) ·
(
∇K−1−αV ⊗ ν

)
(51)
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An alternative expression for the previous representation formula is (the
lower dot indicates the saturation of the last index of the tensor at its left
with the first index of the tensor at his right) obtained by renominating the
indices:∫

M

T · ∇KV =
K∑

J=1

(−1)K−J
∫
M

(
(divMP)K−J

T
)
⊥
·
(
∇JV

)
⊥+ (52)

+ (−1)K
∫
M

(
(divMP)K T

)
V+ (53)

+
K−1∑
L=0

(−1)K−1−L
∫
∂M

P((divMP)K−1−L
T ).ν · ∇LV (54)

The previous corollary allows us to find the unique representation in
terms of transversal derivatives of the distribution of the type specified by
equation 17. The existence of this representation is stated in Theorem 7.3.

8 Principle of Virtual Powers applied to N − th
gradient continua.

On a continuous body B external world can exert actions. While defor-
mation processes occur in the same body its subbodies interact because of
internal actions. We call ”internal” the power expended on an admissi-
ble velocity by internal actions, and ”external” the power expended on an
admissible velocity by external actions.

The following definitions are clearly inspired by Schwartz representation
theorem: however it has to be remarked that such definitions were put
forward by Green and Rivlin who, most likely, were unaware of Schwartz
results.

Definition 8.1. We call N − th gradient continuum a continuous body B
for which the internal power Pint is a distribution of order smaller or equal
to N. In formulas (the dot representing the saturation of contravariant with
covariant indices)

Pint(B, V ) =
N∑

Λ=0

∫
B

TΛ · ∇ΛV. (55)

Following Green and Rivlin we will call the Λ− times contravariant tensors
TΛ ”Λ-th order multipolar stress”.

Remark 8.2. The previous definition is clearly a ”constitutive” assump-
tion, specifying the ”type” of internal actions which are considered ”possi-
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ble” inside the body. The Theorem 7.1, once one accepts the Postulate 7,
proves that for a given body the internal power must be of finite order.

The energy transfer per unit time from the external world to the body
B can also be calculated by means of a suitable distribution calculated on
the admissible velocity field V.

We assume that in order to distinguish long range actions from contact
actions the power of external actions Pext exerted on the body B must
be represented by means of the theorem 7.3: long range external actions
exerted on B can be represented a distribution which is a integrable function
with respect threedimensional Lebesgue measure, while contact actions are
concentrated on the contact surface of B and are distributions which can be
transverse distributional derivatives on the regular part of this surface and
on its edges and wedges: these distributions will be represented by means
of integrals calculated with Hausdorff measures of dimension two or one or
by means of sums of Dirac Deltas.

We are now ready to add a second (for a beautiful presentation of the
ideas inspiring this axiom the reader is referred to Salençon(1988) or to
Cosserat (1908-1909))

Postulate (Principle of Virtual Powers or Power Balance)

For every subbody S of a given body and for every test velocity
field V the following equality holds

Pint(B, V ) = Pext(B, V ). (56)

9 Contact actions in N − th order strain-gradient
multipolar continua: N − th order forces and stress
multipoles.

The Principle of Virtual Powers clearly implies that the admissible external
contact actions which a N − th gradient continuum can ”sustain” belong to
a particular subset of the set of distributions concentrated on ∂B, ∂∂B and
∂∂∂B. The argument we develop here follows the same spirit as the papers
cited in the references by Green, Rivlin and Germain. Also of relevance are
the considerations in Seppecher (1987)-(1989).

In the following we want specify the aforementioned class.
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Lemma 9.1. Let B be a N − th gradient continuum. Let us assume that
the topological boundary of B is a piecewise regular surface as defined in
5.1. If the equality 56 holds then for the part of Pext having support on
∂B, ∂∂B and ∂∂∂B (i.e. for the external actions which are contact actions
concentrated on the topological boundary of B) the following properties hold
i) the part of Pext having support on ∂B and absolutely continuous with
respect to H2 measure is a distribution of order smaller or equal to N − 1,
ii) the part of Pext having support on ∂∂B and absolutely continuous with
respect to H1 measure is a distribution of order smaller or equal to N − 2,
iii) the part of Pext having support on ∂∂∂B is a distribution concentrated
on points, constituted by derivatives of Dirac Deltas of order smaller or
equal to N − 2.

Proof. The proof is easily obtained repeatedly applying to the addends of 55
the Corollary 7.8 to the embedded Riemannian manifolds which constitutes
the regular parts of the topological boundary of B and its edges.

Because of the previous Lemma and the Corollary 7.8 the following rep-
resentation form for Pext holds

Lemma 9.2. The external actions which can be sustained by a N − th
gradient continuum can only expend powers of the type

Pext(B, V ) =

∫
B
EV +

∫
SB

F0V +

N−1∑
Δ=1

∫
SB

FΔ ·
(
∇ΔV

)
⊥+ (57)

+

∫
EB

G0 · V +
N−2∑
Δ=1

∫
EB

GΔ ·
(
∇ΔV

)
⊥ +

N−3∑
Δ=0

∫
WB

HΔ · ∇ΔV

(58)

where we used the notations SB := Support(∂B), EB := Support(∂∂B) and
WB := Support(∂∂B)

Remark 9.3. It is needed here (for more details see e.g. Arnold (1979)) to
precise the relationship between e.g. ∂∂B and its support. If an edge is the
border of two different regular surfaces belonging to ∂B then ∂∂B is the
union of the two borders of these concurring surfaces, with a sign depending
on the relative orientation of the curve, which constitutes the support of
the two different borders, and the concurring surface. These definitions are
those used generally in the theory of integration of differential forms defined
on differential manifolds.
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Definition 9.4. The fields FΔ, GΔ and HΔ are called by Green and Rivlin
”contact n− forces” per unit surface, per unit line or concentrated on points.

Remark 9.5. In all previous considerations we have used the following
obvious but important facts: i) when applying Corollary 7.8 to the body
B there is no transverse direction in the embedding, ii) when the same
corollary was applied to regular parts of the topological boundary of B and
to its edges then the transverse directions in the corresponding embeddings
are the normal to the surfaces or the planes orthogonal to the tangents to
the edges, iii) in wedges all directions are transverse.

We want now to find how to generalize Cauchy representation Theorem
for contact force densities in terms of Cauchy stress to multipolar N− th
gradient continua basing it again on the Postulate 8 and on the Corollary
7.8.

We start from the formula 55

Pint(B, V ) =
N∑

Λ=0

∫
B

TΛ · ∇ΛV. (59)

and apply to each of its addends the formula obtained in the Corollary 7.8
when first identifyingM with B, the projection operator P with the identity
and the outer normal ν with the normal n to the surface ∂B, we get

Pint(B, V ) =
N∑

Λ=0

∫
B

TΛ · ∇ΛV = (60)

=

∫
B

(
N∑

Λ=0

(−1)Λ divΛTΛ
)
V+ (61)

+

N∑
Λ=0

Λ−1∑
L=0

∫
∂B

((−1)Λ−1−L
(div)

Λ−1−L
TΛ).n · ∇LV (62)

We now simply manipulate, using associativity of summation, the ob-
tained expression for getting the coefficients of every power of∇V appearing
in it. Therefore the equality

Pint(B, V ) =
N∑

Λ=0

∫
B

TΛ · ∇ΛV (63)

becomes
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Pint(B, V ) =

∫
B

(
N∑

Λ=0

(−1)Λ divΛTΛ
)
V+ (64)

N−1∑
L=0

∫
∂B

(
N∑

Λ=L+1

(−1)Λ−1−L
divΛ−1−LTΛ.n

)
· ∇LV (65)

A simple inspection of equations 63 and 65 makes natural the introduc-
tion of to the following

Definition 9.6. Bulk and Surface Stress Tensors

T (B,Λ) := TΛ; T (∂B,L) :=

(
N∑

Λ=L+1

(−1)Λ−1−L
divΛ−1−LTΛ.n

)
(66)

Definition 9.7. Bulk Internal Force

F (B, 0) :=

(
N∑

Λ=0

(−1)Λ divΛ(T (B,Λ))
)

By means of introduced notations the expression of internal power is
meaningfully simplified as follows:

Pint(B, V ) =

∫
B

F (B, 0)V +

N−1∑
L=0

∫
∂B

T (∂B,L) · ∇LV (67)

We now apply the Corollary 7.8, by identifying the embedded manifold
M with any of the regular parts of ∂B to transform the integrals involving
surface stresses thus obtaining:(in the following formulas ν represents the
unit normal to ∂∂B which is tangent to ∂B and we denoted with the symbol
Pσ the projector operator relative to the tangent planes of every the regular
parts of ∂B) ∫

∂B

T (∂B,L) · ∇LV = (68)

=

L∑
J=1

(−1)L−J
∫
∂B

(
(div∂BPσ)

L−J
T (∂B,L)

)
⊥
·
(
∇JV

)
⊥+ (69)

+ (−1)L
∫
∂B

(
(div∂BPσ)

L
T (∂B,L)

)
V+ (70)

+
L−1∑
J=0

(−1)L−1−J
∫
∂∂B

Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν · ∇JV (71)
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We get for the sum of all terms involving surface stresses

N−1∑
L=0

∫
∂B

T (∂B,L) · ∇LV =

=

N−1∑
L=0

L∑
J=1

(−1)L−J
∫
∂B

(
(div∂BPσ)

L−J
T (∂B,L)

)
⊥
·
(
∇JV

)
⊥+ (72)

+
N−1∑
L=0

(−1)L
∫
∂B

(
(div∂BPσ)

L
T (∂B,L)

)
V

+
N−1∑
L=0

L−1∑
J=0

(−1)L−1−J
∫
∂∂B

Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν · ∇JV

Using again associativity of summation the last equality becomes

N−1∑
L=0

∫
∂B

T (∂B,L) · ∇LV = (73)

=
N−1∑
J=1

∫
∂B

(
N−1∑
L=J

(−1)L−J
(div∂BPσ)

L−J
T (∂B,L)

)
⊥
·
(
∇JV

)
⊥+ (74)

+

∫
∂B

(
N−1∑
L=0

(−1)L (div∂BPσ)L T (∂B,L)
)
V (75)

+
N−2∑
J=0

∫
∂∂B

(
N−1∑

L=J+1

(−1)L−1−J Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν

)
· ∇JV

(76)

The nomenclature introduced in the previous definitions (which are based
on those introduced by Green and Rivlin) allows us a meaningful interpre-
tation of obtained result

9.1 The terms of surface (1-)forces and surface L+ 1− forces

Surface density F (∂B, 0) of (1−)force appears in the addend 75

F (∂B, 0) :=
N−1∑
L=0

(−1)L (div∂BPσ)L T (∂B,L)

The introduced vector quantity F (∂B, 0) generalizes Cauchy ”traction” vec-
tor: it is expending power on (virtual) velocities.
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Remark 9.8. In Cauchy Continua surface density of force F (∂B, 0) coin-
cides with the only non-vanishing surface stress T (∂B, 0). In Second Gra-
dient Continua (as established by Green and Rivlin, Mindlin and Germain)
the following equality holds

F (∂B, 0) = T (∂B, 0)− (div∂BPσ)T (∂B, 1).

We then consider the addend 74 which leads us to the definition

F (∂B, J) :=

(
N−1∑
L=J

(−1)L−J
(div∂BPσ)

L−J
T (∂B,L)

)
⊥

(77)

Surface J + 1− forces F (∂B, J) expend power on the J − th transverse
gradient of (virtual) velocity fields.

Finally we consider the addend 76 which leads us naturally to the fol-
lowing

Definition 9.9. Line Stress Tensors

T (∂∂B,L) := .

(
N−1∑

L=J+1

(−1)L−1−J Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν

)
(78)

We have thus proven the following intermediate:

Lemma 9.10. For N − th gradient continua the following representation
formula holds

Pint(B, V ) =

∫
B

F (B, 0)V +

∫
∂B

F (∂B, 0) · V (79)

+
N−1∑
L=1

∫
∂B

F (∂B,L) ·
(
∇LV

)
⊥ +

N−2∑
L=0

∫
∂∂B

T (∂∂B,L) · ∇LV (80)

We must now proceed by applying again the Corollary 7.8 (when this
time M is any regular curve with border belonging to ∂∂B) to the terms
involving line stresses. Once we have introduced the projection operator Pλ
relative to every regular curve composing ∂∂B, and the vector t∂∂B denoting
the tangent vector of the generic edge concurring in the considered wedge
we get
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∫
∂∂B

T (∂∂B,L) · ∇LV = (81)

=
L∑

J=1

(−1)L−J
∫
∂∂B

(
(div∂∂BPλ)

L−J
T (∂∂B,L)

)
⊥
·
(
∇JV

)
⊥+ (82)

+ (−1)L
∫
∂∂B

(
(div∂∂BPλ)

L
T (∂∂B,L)

)
V+ (83)

+
L−1∑
H=0

(−1)L−1−H
∫
∂∂∂B

Pλ((div∂∂BPλ)
L−1−H

T (∂∂B,L)).t∂∂B · ∇HV

(84)

Summing over L and using once more associativity we get

N−2∑
L=0

∫
∂∂B

T (∂∂B,L) · ∇LV = (85)

=
N−2∑
J=1

∫
∂∂B

(
N−2∑
L=J

(−1)L−J
(div∂∂BPλ)

L−J
T (∂∂B,L)

)
⊥
·
(
∇JV

)
⊥+

(86)

+

∫
∂∂B

(
N−2∑
L=0

(−1)L (div∂∂BPλ)L T (∂∂B,L)
)
V+ (87)

+
N−3∑
H=0

∫
∂∂∂B

(
N−2∑

L=H+1

(−1)L−1−H Pλ((div∂∂BPλ)
L−1−H

T (∂∂B,L)).t∂∂B

)
·∇HV (88)

9.2 The terms of line (1-)forces and line J + 1− forces.

Concerning the addend in 87 we easily recognize that it must be inter-
preted as a line density of 1-force.

Therefore we introduce, in terms of introduced line stresses, the following

Definition 9.11. Line density of 1-force

F (∂∂B, 0) :=

N−2∑
L=0

(−1)L (div∂∂BPλ)L T (∂∂B,L)

Regarding the addend in 86, it naturally leads to the following
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Definition 9.12. Line density of J+ 1-force

F (∂∂B, J) :=

(
N−2∑
L=J

(−1)L−J
(div∂∂BPλ)

L−J
T (∂∂B,L)

)
⊥

(89)

9.3 The terms of (1-)forces and J + 1− forces concentrated on
wedges

The process of integration by parts is finally ended. We are left with
forces, double forces, triple forces up to N−3 forces concentrated on wedges.
Indeed the terms in 88, naturally lead to the following

Definition 9.13. (1−) forces and H+ 1-forces concentrated on wedges

F (∂∂∂B, 0) :=

(
N−2∑
L=1

(−1)L−1 Pλ((div∂∂BPλ)
L−1

T (∂∂B,L)).t∂∂B

)
(90)

F (∂∂∂B,H) :=

(
N−2∑

L=H+1

(−1)L−1−H

Pλ((div∂∂BPλ)
L−1−H

T (∂∂B,L)).t∂∂B
(91)

In conclusion in the present subsection we have finally obtained the fol-
lowing

Representation formula for power expended by line stresses

N−2∑
L=0

∫
∂∂B

T (∂∂B,L) · ∇LV =

N−2∑
J=1

∫
∂∂B

F (∂∂B, J) ·
(
∇JV

)
⊥+ (92)

+

∫
∂∂B

F (∂∂B, 0)V +
N−3∑
J=0

∫
∂∂∂B

F (∂∂∂B, J) · ∇JV (93)
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9.4 The obtained expression for Internal Power in N − th Gradi-
ent Continua

Gathering all results obtained in the previous subsection we get the
searched representation formula for internal power

Pint(B, V ) =

∫
B

F (B, 0)V +

∫
∂B

F (∂B, 0) · V

+
N−1∑
L=1

∫
∂B

F (∂B,L) ·
(
∇LV

)
⊥+ (94)

+

∫
∂∂B

F (∂∂B, 0)V +
N−2∑
J=1

∫
∂∂B

F (∂∂B, J) ·
(
∇JV

)
⊥+

+
N−3∑
J=0

∫
∂∂∂B

F (∂∂∂B, J) · ∇JV (95)

where all types of forces are represented in terms of bulk, surface and
line stresses by means of the relationships which we recall for convenience
in the following summary.

Remark 9.14. Surface stresses are defined in terms of bulk stresses and
line stresses in terms of surface stresses by means of equations 78 and 66.
Therefore All kind of stresses are defined in terms of bulk stresses. This
implies that all type of forces are represented in terms of bulk stresses.

We list now all introduced definitions for forces and stresses

T (∂B,L) :=

(
N∑

Λ=L+1

(−1)Λ−1−L
divΛ−1−LTΛ.n

)
(96)

T (∂∂B, J) := .

(
N−1∑

L=J+1

(−1)L−1−J Pσ((div∂BPσ)
L−1−J

T (∂B,L)).ν

)
(97)

F (∂B, 0) :=
N−1∑
L=0

(−1)L (div∂BPσ)L T (∂B,L)

F (∂B, J) :=

(
N−1∑
L=J

(−1)L−J
(div∂BPσ)

L−J
T (∂B,L)

)
⊥

(98)
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F (∂∂B, 0) :=
N−2∑
L=0

(−1)L (div∂∂BPλ)L T (∂∂B,L)

F (∂∂B, J) :=

(
N−2∑
L=J

(−1)L−J
(div∂∂BPλ)

L−J
T (∂∂B,L)

)
⊥

(99)

F (∂∂∂B,H) :=

(
N−2∑

L=H+1

(−1)L−1−H Pλ((div∂∂BPλ)
L−1−H

T (∂∂B,L)).t∂∂B
(100)

Finally it is easy to prove the following corollaries:

Corollary 9.15. The tensor TN determines the surface N − 1 forces, the
edge N − 2 forces and the wedge N − 3 forces as established by means of the
following formulas:

F (∂B,N − 1) = T (∂B,N − 1) = (TN .n)⊥ (101)

F (∂∂B,N − 2) := T (∂∂B, n− 2) = (Pσ(TN .n).ν)⊥ (102)

F (∂∂∂B,N − 3) = (Pλ (Pσ(TN .n)).ν)).t∂∂B) (103)

Clearly

Corollary 9.16. The set of equations 96, 97, 98, 99 and 100 allow us to
define three functionals mapping the contact surface ∂B and the N − tuple
of tensor fields {TΛ} on to the set of corresponding contact actions⎧⎨⎩

(F (∂B, J) , J = 0, ...N − 1)
F (∂∂B, J), J = 0, ...N − 1
F (∂∂∂B, J), J = 0, ..., N − 2

⎫⎬⎭ (104)

This map, for a fixed contact surface ∂B, is linear. We will denote the
introduced linear functionals with the symbols introduced by means of the
following definitionsF(∂B), F(∂∂B) and F(∂∂∂B)

F(∂B, {TΛ} , J) := F (∂B, J)
F(∂∂B, {TΛ} , J) := F (∂∂B, J)
F(∂∂∂B, {TΛ} , J) := F (∂∂∂B, J)

(105)

Proof. Simply consider the previous formulas 100, 96 and 97 and evaluate
them when H = N − 3, L = N − 2, L = N − 1.
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We will use the previous corollaries later, when we will consider the
consequence of the Cauchy tetrahedron argument on the structure of contact
actions in N − th gradient continua.

9.5 Some final considerations about obtained results:

Using the Postulate 8 and assuming that the bulk, surface and line
stresses are sufficiently regular so that all needed divergences can be es-
timated, then from the representation formulas 94 and 57 and arbitrariness
of test functions V we can get the following ”strong” version of the Principle
of Virtual Powers

F (B, 0) = E (106)

∀L = 0, ...N − 1 F (∂B,L) = FL (107)

∀J = 0, ...N − 2 F (∂∂B, J) = GJ (108)

∀J = 0, ...N − 3 F (∂∂∂B, J) = HJ (109)

The first of the listed equations is a system of PDE defined inside the ref-
erence configuration of the body B,while the others are appropriate bound-
ary conditions to be verified on regular surfaces, edges and wedges of the
topological boundary of B.

We explicitly remark that

• From equations 98 and 96 it is evident the very particular nature
of so called ”Cauchy Postulate”. Indeed the contact force per unit
surface at any regular part of a surface regarded as a Cauchy cut in
general do not depend only on the normal n of such surface. In N−th
gradient continua such contact force in general depends also on ∇n
up to ∇N−1n.

• From equations 99, 96 and 97 it is evident that line contact force
depends in general on the vectors and tensors ν and ∇Ln relative
to all regular surfaces concurring on considered edge, and on their
derivatives along the edges.

• Concentrated J−forces are present at wedges depending on the ge-
ometry of concurring edges and regular surfaces, and more precisely
on edges tangent vectors, on surface normals and their gradients, on
edges exterior normals and their gradients.

In the present section we have completely characterized the structure
of contact actions in N − th gradient continua by using the first method
delineated in the section 2.
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10 Bodies, Contact Surfaces and Shapes ??

In this section we start attacking the problem of characterizing the structure
of contact actions in N − th gradient continua by using the second method
delineated in the section 2: in other words we use the approach à la Cauchy.

Following Truesdell (1977) we call domains the closures of open Kellogg
(1929) regular regions. We want to describe the contact actions exerted on
a body, identified with the domain C it occupies in Euclidean space, through
its topological boundary S := ∂C (which we will call the contact surface).

Only when we will need to represent with integral formulas the power
expended by contact actions we will choose to limit our attention to a par-
ticular class of contact surfaces: those which are piecewise regular surfaces
with edges and wedges, as defined in the previous section 4.

Remark 10.1. The definition of piecewise regular surface with edges and
wedges will need to be generalized. In a forthcoming paper the present
analysis will be generalized and we will introduce edges and wedges of order
k + 1, i.e. curves (edges) on piecewise regular surfaces on which the k − th
order gradient of the normal suffers a jump (discontinuity of the first kind,
or jump discontinuity), and points (wedges) at which edges of order k are
concurring.

Remark 10.2. The reasonings developed in the previous section 4.prove
that on edges and wedges of order k+1 there may be concentrated h−forces
with h ≥ k + 1.

We are interested in the dependence of contact actions on the shape of
S.

Then we have to define precisely what we call shape of S : it will be a
local concept.

Definition 10.3. Surfaces locally having the same shapeWe say that
the shape of the contact surface S at the point x ∈ S is the same as the
shape of the contact surface S ′ at the point x′ ∈ S ′ if and only if there exist
two open sets I(x) and I(x′) such that

i) x ∈ I(x), x′ ∈ I(x′) and ii) tx′−x(I(x)∩S) = I(x′) ∩ S ′ (110)

where tu denotes the translation of points, vectors and sets induced by the
vector u. To say that the shape of the contact surface S at the point x ∈ S
is the same as the shape of the contact surface S ′ at the point x′ ∈ S ′ we
will occasionally use the notation

(x,S)R (x′,S ′) . (111)
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Definition 10.4. Shapes We call shape of S at the point x ∈ S the
equivalence class with respect to the above defined equivalence relation R
to which belongs the ordered pair (x,S).We denote this equivalence class
by means of the symbol [(x,S)].

Remark 10.5. Note that, according to this definition, when a surface is
rotated it do change its shape.

Definition 10.6. Sets of shapes: Let S be a contact admissible surface.
We introduce the set of the shapes of S

Φ(S) := {[(x,S)] / x ∈ S} (112)

We will also need to consider the set Φ of all admissible shapes:

f ∈ Φ⇔ (∃S admissible) (f ∈ Φ(S)) (113)

Definition 10.7. Plane shapes Obviously the shape of a plane π at any
of its points depends only on the normal n to the plane. When there is no
ambiguity, we denote the shape of a plane simply by n.

Definition 10.8. Dihedral shapes Let us consider a non-degenerate di-
hedron. We denote by n1 and n2 the external normals to the half-planes
forming it, and by τ the unit vector tangent to the edge of the dihedron, i.e.
the line which is the intersection of the two half-planes. We assume that
the ordered triple (n1, n2, τ) verifies the condition

(n2 × n1) · τ > 0.

Each of considered two half-planes is a two-dimensional manifold with bor-
der: the outer normal to this border is given respectively by the vectors
ν1 = n1 × τ and ν2 = −n2 × τ.On the edge of such a dihedron, the shape
is constant and is determined by n1, n2 and τ . This shape will be denoted
by (n1, n2, τ) . Note that (n1, n2, τ) = (n2, n1,−τ) .The angle (−n1, n2) in
the plane oriented by τ will be called the dihedral angle of (n1, n2, τ); it is
different from 0, π and 2π.

Definition 10.9. Nondegenerate k−tuple of vectors. Let us consider
a point x and a k − tuple of vectors (n1, ..., nk) applied at x. The planes
πi are defined by the conditions: i) x ∈ πi and ii) ni⊥πi. The unit tangent
vector τi to the the edge γi := πi ∩ πi+1 is given by τi = ni × ni+1 (we
define nk+1 := n1).Let us denote Pπ the projection operator in the plane π.
The k− tuple (n1, ..., nk) of vectors is said to be nondegenerate when there



54 F. dell’Isola, P. Seppecher and A. Madeo

exists a plane π such that i) x ∈ π, ii) for a unit vector e in π the following
property holds

(∀i ≤ k) (∀j ≤ k)

(
(i < j)⇒

(
0 <

Pπτi
‖Pπτi‖

· e < Pπτj
‖Pπτj‖

· e
))

. (114)

Definition 10.10. (Nondegenerate) Polihedral Wedge Shapes or Mul-
tiple planar shapes with edges concurring in a wedge. Let us consider a
point x and a nondegenerate k − tuple of vectors (n1, ..., nk) applied at
x.We call Ai the angle having vertex in x and as sides the half-lines origi-
nating from x in the direction of τi. Let us consider the piecewise regular
surface

⋃
iAi.We call polihedral wedge shape or multiple planar shape with

edges concurring in a wedge the equivalence class [(x,
⋃

iAi)] . When this
will not lead to confusion we will denote a polihedral wedge shape with the

symbol ̂(n1, ..., nk).

Definition 10.11. Cuts. Let D1, ...Dp be p compact domains having as
(topological) boundaries the contact surfaces denoted S1, ...,Sp. Let S∩ be

the topological boundary of
p⋂

i=1

Di. At each point x in
p⋂

i=1

Si ∩ S∩ the

shape of S∩ depends only on the shape of all Si . For every x ∈
p⋂

i=1

Si ∩S∩

we denote the shape of
p⋂

i=1

Si ∩ S∩ at x by the symbols

Cut ([(x,Si)] , i = 1, .., p) ; or Cut ([(x,S1)] , [(x,S2)] , ..., [(x,Sp)]) .
(115)

Example 10.12. Plane Cuts. Let D be a domain the boundary of
which is the contact surface S. Let π be a plane and H the half-space
with boundary π and outer unit normal n. Let x ∈ π ∩ S . We will
call the Cut ([(x,S)] , [(x, π)]) a plane cut and we will shortly denote it by
Cut ([(x,S)] , n) .
Example 10.13. Multiple Plane Cuts. LetD be a domain the boundary
of which is the contact surface S. Let πi ; i = 1, ...p be planes having as

outer unit normal the vectors ni respectively. Let x ∈
p⋂

i=1

πi ∩ S . We will

call the Cut ([(x,S)] , [(x, π1)] , .., [(x, πp)]) a plane cut and we will shortly
denote it by Cut ([(x,S)] , n1, n2, ..., np) .
Definition 10.14. Admissible domains and contact surfaces. We
only consider domains the topological boundary of which S (contact ad-
missible surface) is piecewise regular. In other words we assume that i) S
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is a finite union of two-dimensional suitably regular compact manifolds with
border (called the faces of S) ii) the union of the borders of these faces is
a finite union of one-dimensional suitably regular compact manifolds with
boundary (called the edges of S), iii) the edges are concurring in wedges
and iv) the set of wedges is finite.

Definition 10.15. Regular points of contact surfaces All internal
points of the faces (i.e. those points which do not belong to the border
of the faces) are called regular points of the face, or points where S has
a regular shape. The set of regular points is denoted by Sr; the set of
all internal points of the edges (i.e. those points which do not belong to
the border of the faces) is denoted by Lr. An internal point of an edge is
also called regular point of the edge, or point where S has an edge shape.
The set of all wedges will be denoted by WS . Moreover, we assume that, i)
everywhere in Lr, S is tangent to a non degenerate dihedron and ii) at every
wedge in S there exists a tangent polihedral plane surface (i.e. a surface
having a polihedral wedge shape or, which is the same, a multiple planar
shape with edges concurring in it).

Remark 10.16. When we say that at a edge regular point the contact
surface is tangent to a nondegenerate dihedron we mean that the two regular
surfaces concurrent at the edge have both a tangent plane and that these
two plane form a nondegenerate dihedron. Similarly when we say that at
every wedge in S there exists a tangent polihedral plane surface we mean
that every edge concurring in the wedge has a tangent line and that every
regular surface concurring in the wedge has a tangent plane and the set
of these tangent lines and planes form a surface having a polihedral wedge
shape.

Definition 10.17. We denote by ΦF (S) the set of all face shapes of S, by
ΦE(S) the set of all edge shapes of S and by ΦW (S) the set of all wedge
shapes of S: in formulas

ΦF (S) := {[(x,S)] , x ∈ Sr} ; ΦE(S) := {[(x,S)] , x ∈ Lr} ; (116)

ΦW (S) := {[(x,S)] , x ∈ WS} . (117)

We remark that in this way we have found a partition of the set of shapes
of a contact admissible surface:

Φ(S) = ΦF (S) ∪ ΦE(S) ∪ ΦW (S) (118)

Definition 10.18. Prescribed shapes: A set of shapes E is called a set
of prescribed shapes if there exists a finite set {S1,S2, ...Sm} of compact
admissible contact surfaces such that E ⊆

m⋃
i=1

Φ(Si).
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The following examples should make clearer the meaning of the just
introduced definition.

Example 10.19. The set of images Ct of a cube C1 under a family of
homothetic transformations of ratio t ∈ ]0, 1] is a set of prescribed shapes;

Example 10.20. The set of images C ′
t of a cube C1 under a family of

rotations of angle t ∈ [0, π] around a given axis is not a set of prescribed
shapes;

Example 10.21. The family of spheres St of centre x and radius t ∈ ]0, 1]
has not prescribed shapes.

Definition 10.22. Let us consider a finite set {S1,S2, ...Sm} of compact
admissible surfaces and a finite set of unit vectors U := {u1, ..., uM}. A set
of shapes E is called a set of prescribed (multiple) plane cuts

E ⊆
M⋃
l=1

{Cut (f, u1, ..., ul) ; f ∈ Φ (Si) ;ui ∈ U, i = 1, ..., l} (119)

In what follows we will need to consider functions defined in some set
of shapes. It would be desirable to introduce in the set of shapes a topo-
logical structure: in the present context we refrain from such a task which
is really challenging. Instead, by introducing the concept of ”set of pre-
scribed shapes” we have considered a kind of ”compactness” in the set of
all admissible shapes. This definition will reveal itself to be sufficient to our
aims.

10.1 Contact Actions

In this paper we consider the class of continua which were introduced by
Green and Rivlin (1964) or Mindlin (1965). In these continua there are con-
tact actions which are not forces. An example of such generalized continua
is given by those studied by Germain, which called them second gradient
continua, as their deformation energy density depends not only on the first
gradient of displacement but also on the second gradient of displacement.
However in generalized continua forces represent an important class of con-
tact actions the properties of which are somehow different from those of the
other contact actions.

As first step we will start by accepting the following:

Generalized Cauchy Postulate: Part I
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Let us consider a continuous body B occupying, in a given
configuration, a domain D having as topological boundary the ad-
missible contact surface S . Let D the set of admissible virtual dis-
placement of B starting from the considered configuration. Each
of these displacements is a field defined in D and having trace on
S and is a vector valued test function. We assume that the power
expended by contact actions exerted on B is a distribution in the
sense of Schwartz.

This postulate has been already introduced in continuum mechanics (in
a slightly less general form) at least already by Cosserat brothers (1908)-
(1909). A detailed historic review of the relevant literature can be found e.g.
in Maugin (1980). In the textbook of Salençon (1988-2005) this postulate
is presented in a attractive didactical form.

Because of the just introduced postulate we can be guided in the formu-
lation of the needed definitions by the already cited (see previous sections)
representation theorem for distributions due to Laurent Schwartz (quoted
in the previous section 4).

Therefore we start by considering contact actions which indeed are (1−)
forces and then proceed by considering k−forces.

Definition 10.23. Surface and Line density of contact (1−)forces.
Contact (1−)forces concentrated on wedges. Let us consider any
admissible domain D.Its boundary S is a contact piecewise regular surface,
including edges and wedges. We call contact (1−)force a contact action
for which the power expended on a virtual velocity field V is given by the
following expression

Pcon
0 (V ) =

∫
Sr

Fs0V +

∫
Lr

Fl0V +

∫
WS

Fc0V. (120)

the vector functions, Fs0,F
l
0 and Fc0 defined respectively on the faces, the

edges and the wedges of S are called i) surface density of contact (1−)forces,
ii) line density of contact (1−)forces, iii) contact (1−)forces concentrated
on wedges.

Remark 10.24. In the following we will be willing to consider surface
contact forces depending continuously on curvature. We will assume that
such forces densities are bounded on a set of prescribed shapes but not on
the set of all admissible shapes.

Definition 10.25. Surface and Line density of contact k−forces.
Contact k−forces concentrated on wedges. Let us consider any ad-
missible domain D.Its boundary S is a contact piecewise regular surface,
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including edges and wedges. We call contact (k−)force a contact action for
which the power expended on a virtual velocity field V is given by the fol-
lowing expression (where we used the notations introduced in the previous
section 4)

Pcon
k (V ) =

∫
Sr

Fsk ·
(
∇kV

)
⊥ +

∫
Lr

Flk ·
(
∇kV

)
⊥ +

∫
WS

Fck · ∇kV. (121)

the tensor functions, Fsk,F
l
k and Fck defined respectively on the faces, the

edges and the wedges of S are called i) surface density of contact k−forces,
ii) line density of contact k−forces, iii) contact k−forces concentrated on
wedges.

On occasion we will denote a generic vector or tensor field in the set{
Fsk,F

l
k,F

c
k; k = 0, ..., L

}
simply with the symbol F,adding some super or

sub script when needed.
All the considerations which we will develop in this work are based on

the following further hypothesis:

Generalized Cauchy Postulate: Part II

Let us consider a body, occupying a region C included in the Euclidean
three-dimensional space and denote by V its space of translations. We
assume that all tensor functions F previously introduced are univocally de-
termined in terms of the position x and on the shape of S at x.

In other words:
we assume that there exists a function F̂k (which we will call k−th order

stress function) of the two independent variables x, and f, where f is a
shape

F̂k: (x, f) ∈ C × ⊕ �→ F̂k (x, f) ∈ V ⊗ ...⊗ V︸ ︷︷ ︸
k times

such that

Fk(x) = F̂k(x, [(x,S)]).

Definition 10.26. We call generalized stress state of the considered
body the set of the functions F̂ the existence of which we have just postu-
lated.

Remark 10.27. We do not assume uniform boundedness of all tensor par-
tial functions F̂(x, ·) in the set of all shapes Φ, i.e. -once x is fixed- with
respect to the variable f.
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Remark 10.28. Because of the previous definition the fields Flk may depend
not only on the geometry of the edge itself, but also on the ”limit properties”
of the faces common border of which is the considered edge.

Remark 10.29. Similarly the k−forces Fck depend on all the ”limit prop-
erties” of the faces and edges concurring in the considered wedge.

In the same way as the Cauchy’s construction of the stress tensor pre-
sumes the continuity of contact forces, our construction will require a list
of

Regularity assumptions.

The functions F̂ verifies all the conditions which follows:

1. Let SF be a face and L an edge of an admissible contact surface S.
The functions

x ∈ SF �→̂Fs(x, [(x,SF )]); x ∈ L �→̂Fl(x, [(x,L)])

are continuous.
2. Let E be a set of prescribed shapes or prescribed plane cuts. We
partition E into three disjoint subsets, El, Es, Ec which contain re-
spectively the edge shapes, the regular shapes and the wedge shapes
in E. For a suitably fixed shape f (i.e. for a regular, edge or wedge
shape depending on the type of F̂ we are considering) we can introduce
the partial function

F̂(·, f) : x �→̂F(x, f).
We assume the equi-continuity of the families of functions{

F̂s(·, f), f ∈ Es
}
,
{
F̂l(·, f), f ∈ El

}
,
{
F̂c(·, f), f ∈ Ec

}
that is, we assume that (the superscript α can assume the values l, s,
c)

(∀ε > 0) (∃η > 0) (∀x0) (∀x) (∀f ∈ Eα)(
‖x− x0‖ < η ⇒

∥∥∥F̂α(x0, f)− F̂α(x, f)
∥∥∥ < ε

)
. (122)

3. Let SF be a given face of an admissible surface S, let u be a unit
vector nowhere normal to SF . We assume that the function which
maps the variables x into the vector

F̂l(x,Cut ([(x,SF )] , u) (123)
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is a continuous function. In formulas

(∀ε > 0) (∀x0 ∈ SF ) (∃δ > 0) (∀x ∈ SF )(
‖x− x0‖ < δ ⇒

⇒
∥∥∥F̂l(x,Cut ([(x,SF )] , u)− F̂l(x0, Cut ([(x0,SF )] , u)

∥∥∥ < ε

)
(124)

4. Let SF be a given face of an admissible surface S, let u1, ..., up be
unit vectors nowhere normal to SF . Let L be a given edge of an
admissible surface S, let u1, ..., uq be unit vectors nowhere normal to
L. Let us assume that for x ∈ SF and y ∈ L, Cut ([(x,SF )] , u1, ..., up)
and Cut ([(y,S)] , u1, ..., uq) are wedge shapes. We assume that the
functions

FSF : (x, u1, ..., up) �→̂Fc(x,Cut ([(x,SF )] , u1, ..., up) (125)

FL : (y, u1, ..., uq) �→̂Fc(y, Cut ([(y,S)] , u1, ..., uq) (126)

are continuous functions respectively with respect to the variables x
or y.

Proposition 10.30. Let SF and L be the intersection with open subsets
of a face and an edge included in an admissible surface S, let u be a unit
vector nowhere normal to SF and let B be a compact set. Let us consider
the following functions, determined by the generalized stress state F̂ :

F s : (x, y) ∈ B × (B ∩ SF ) �→̂Fs (x, [(y,S)]) (127)

F l : (x, y) ∈ B × (B ∩ L) �→̂Fl (x, [(y,S)]) (128)

F l
Cut : (x, y) ∈ B × (B ∩ SF ) �→̂Fl (x,Cut ([(y,S)] , u)) . (129)

F c
Cut,S : (x, y) ∈ B × (B ∩ SF ) �→̂Fc(x,Cut ([(x,SF )] , u1, ..., up) (130)

F c
Cut,L : (x, y) ∈ B × (B ∩ L) �→̂Fc(y, Cut ([(y,S)] , u1, ..., uq) (131)

The regularity assumptions which we have accepted imply that F s, F l and
F l
Cut are uniformly continuous.

Proof. To prove this proposition for the function 127 let us consider (x, y) ∈
B × (B ∩ SF ) and (x̄, ȳ) ∈ B × (B ∩ SF ), the vector u = x − y,the point
ȳ′ = ȳ + u and the translated contact surface S ′ := tu(S). Obviously as
(y, ȳ) ∈ SF ×SF then x = y+u ∈ S ′, ȳ′ = ȳ+u ∈ S ′, [(ȳ,S)] = [(ȳ′,S ′)] and
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[(y,S)] = [(x,S ′)] . It is easy to verify that the following chain of equalities
and inequalities hold∥∥∥F̂s (x, [(y,S)])− F̂s (x̄, [(ȳ,S)])

∥∥∥ = (132)

=
∥∥∥F̂s (x, [(x,S ′)])− F̂s (x̄, [(ȳ′,S ′)])

∥∥∥ ≤ (133)

≤
∥∥∥F̂s (x, [(x,S ′)])− F̂s (ȳ′, [(ȳ′,S ′)])

∥∥∥+ (134)

+
∥∥∥F̂s (ȳ′, [(ȳ′,S ′)])− F̂s (x̄, [(ȳ′,S ′)])

∥∥∥ . (135)

Finally one gets the required uniform continuity by finding separately the
upper bounds for the addends 134 and 135. The first of these upper bounds
is easily found by recalling the assumed continuity (numbered item 1. in
the regularity assumptions) which becomes uniform continuity as the set B
is assumed to be compact. The second upper bound is estimated by using
the equi-uniform continuity (numbered item 2.) when recalling that

‖ȳ′ − x̄‖ = ‖ȳ + u− x̄‖ ≤ ‖y − x‖+ ‖ȳ − x̄‖ .

With similar arguments we can prove the statement for the functions 128,
129, 130 and.131.

Proposition 10.31. . Let us consider a family of admissible contact sur-
faces {Sλ, λ ∈ I} where I is a suitable set of indices and the set of shapes

ΦI := {f ∈ Φ/ (∃λ ∈ I) (f ∈ Φ(Sλ))} . (136)

Let us assume that ΦI is a set of prescribed shapes or prescribed plane cuts.
Then the regularity hypotheses 1., 2. and 3. imply the uniform boundedness
of the families of functions (where k is the needed tensoriality order)⎧⎨⎩F̂(·, f) : x ∈ C �→̂F(x, f) ∈ V ⊗ ...⊗ V︸ ︷︷ ︸

k times

, f ∈ ΦI

⎫⎬⎭ . (137)

Proof. Indeed, Proposition 10.30 implies that, for every admissible surface
Sλ, the functions 127,128,129,130 and 131 (in the definitions replace the
faces, edges and wedges of S with those of Sλ) are bounded in their domains
of definitions. The proposition is then proven simply recalling the definitions
of prescribed shapes and prescribed plane cuts.
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Remark 10.32. Proposition 10.31 states a kind of relative compactness of
the families 137 (see the Corollary to the Arzelà-Ascoli theorem in Abraham,
Marsden and Ratiu (1988)).

Remark 10.33. Our hypotheses allow for any continuous dependence of
contact k−forces densities F on the curvature tensor, edge curvature or
torsion or on any other higher order shape operator of the contact surface,
at any surface, edge or wedge point.

11 A Seeming Impossibility For Edge Forces

This section is very close to section 3. of the paper dell’Isola and Seppecher
(1997). It is aimed to persuade the reader of the validity of an important
statement:

Not all types of Contact Actions are physically admissible.

Indeed we will start by proving that
If a stress state is constituted only by contact surface and line

forces then it is physically admissible only when contact line forces
are always vanishing.

We must, obviously, specify what we mean with the expression: physi-
cally admissible.

We will say that a stress state is physically admissible when it verifies
the regularity assumptions 10.1 and quasi-balance of contact powers.

Quasi-balance of powers expended by contact actions is a condition
which has solid physical grounds: it implies stringent restrictions upon the
dependence of contact actions on shape It is a generalization of the hy-
pothesis of ‘quasi-balance of contact forces’ formulated by Noll and Virga
(1990). This last states that

Hypothesis of quasi-balance of contact forces

There exists a positive scalar K such that, for any admissible domain
V , the following inequality holds

‖F c (V )‖ < K |V | . (138)

In (? ) it is also assumed the following assumptions

Contact actions reduce to surface and edge forces
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In formulas:

F c (V ) =

∫
Sr

F̂s0 (x, [(x,S)]) ds+
∫
Lr

F̂l0 (x, [(x,S)]) dl. (139)

Using the language which we have introduced in this work: in the paper
Noll and Virga (1990) it is assumed that

i) the stress state is e completely specified by the two functions

F̂s0, F̂l0 (140)

ii) the only physically allowed stress states are those for which condition
138 holds.

In this section we prove that by means of its theoretical framework ac-
tually the aforementioned paper does not manage to abandon the Cauchy
format of continuum mechanics.

Instead: to give a framework where the searched generalization can be
obtained we must withdraw from the format of mechanics in which the most
fundamental concept is that of ”force” (so called Newtonian Axiomatics)
and we must embrace the point of view of D’Alembert whose Axiomatics is
based on the fundamental concept of power and who considers the concept
of force as a derived one.

By following the beautiful presentation of continuum mechanics due to
Salençon (1988-2005) we improve the preceding hypothesis 138, assuming
that

Hypothesis of quasi-balance of power expended by contact
actions

The power Pc
U of contact actions distribution expended on any C∞ ve-

locity field U is quasi-balanced. This means that, for any C∞ field U , we
assume the existence of a positive KU such that, for any admissible domain
V , the following inequality holds

|Pc
U | < KU |V | (141)

Remark 11.1. Everybody who wants to develop an axiomatization of me-
chanics must be willing to use power at least as a derived concept. Indeed
nobody is able to refrain from the use of the concept of power or may doubt
about the validity of equation 141. The most faithful followers of so called
Newtonian approach may be willing to deduce (!) 141 from a most funda-
mental (!) assumption but nobody can dare to state that it should not be
accepted as valid.
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Remark 11.2. The condition expressed by (138) is implied by the one
expressed by (142). This can be simply verified by considering that, when
considering in it three linearly independent constant fields, formula (142)
reduces to (138).

Once we accept the hypothesis 140 about contact actions then the hy-
pothesis 141 reads:

Quasi balance of Powers for
Contact Actions reducing to Surface and Line Forces

|Pc
U (V )| =

∣∣∣∣ ∫Sr F̂
s
0 (x, [(x,S)]) .U (x) ds

+
∫
Lr F̂

l
0 (x, [(x,S)]) .U (x) dl

∣∣∣∣ < KU |V | . (142)

for every field U, (v.w denotes the inner product between the vectors v and
w).

Remark 11.3. The dependence of KU on U will be immaterial in what
follows, as in our arguments the field U is always kept fixed.

In this section we want to show that 142 implies that on every edge Lr

of a contact surface S
F̂l0 (x, [(x,S)]) = 0.

This means that actually by assuming 142 one does not obtain any gen-
eralization of Cauchy format of continuum mechanics.

In the language which we have introduced in this work one can state
that: Quasi-balance of contact power and the assumption 140 about stress
state implies that no contact edge forces are possible.

Remark 11.4. The quasi-balance of moment of forces can be obtained
from condition 142 by considering three independent spins.

As hypothesis (142) is stronger than (138) it will imply more stringent
restrictions upon the dependence of contact actions on shape.

Our goal now is to study its consequences on the functions F̂. We begin
by considering edges whose shape is dihedral; we will then extend our results
to general edges.
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11.1 Condition 142 implies that Forces on Dihedral Edges must
vanish.

From the point of view of the logical flow of the presentation, stricto
sensu, the reader can simply jump this section. However the rigorous argu-
ment which is presented here gives a more intuitive ground to the following
Theorem 11.7.

In this subsection we see how quasi balance of power expended by contact
surface and line forces implies that line forces must vanish.

Theorem 11.5. For stess states of the form 140, and verifying the regular-
ity assumption 10.1 inequality (142) is incompatible with nonzero contact
line forces on dihedral edges: indeed (142) implies that for any dihedral
shape d, the following equality holds

F̂l0 (·, d) = 0. (143)

Proof. Let d = (n1,n2,τ).
We use the orthogonal coordinate system (x0;e1,e2,e3), with

e2 = τ, e3 =
n1 + n2
‖n1 + n2‖

(144)

We consider a family of domains, parametrized by the set of integers greater
than a positive N . The general element VN (the boundary of which we
denote by SN ) of this family is a thin slab with a grooved surface (see
Figure 1 in dell’Isola and Seppecher (1997)). This domain is a polyhedron
conceived in such a way that the set of shapes of its boundary is finite and
is independent of N (This set contains exactly 7 different plane shapes and
16 different dihedral shapes.) Its volume |VN | is of the same order as N−4

the total area of its boundary |SN | is of the same order as N−2, when N
tends to infinity. Let us define the following unions of edges:

L1
N = {x ∈ SN : [(x, S)] = (n1, n2, τ)} (145)

L2
N = {x ∈ SN : [(x, S)] = (n2, n1, τ)} (146)

and

L3
N = LN�

(
L1
N ∪ L2

N

)
. (147)

The total length of L3
N is of the same order as N−1 and the total lengths

of L1
N and L2

N tend to 1. Then the forces on the double array of edges
L1
N ∪ L2

N are dominant. As the shapes of VN are prescribed, contact force
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densities are bounded independently of N . Inequality (138) applied to VN
implies

lim
N−→∞

{∫
L1

N

F̂l0 (x, (n1, n2, τ)) dl +

∫
L2

N

F̂l0 (x, (n2, n1, τ)) dl

}
= 0.

Using the mean value theorem for each component of the last equality and
again the continuity of F with respect to x we get an action-reaction prin-
ciple

F̂l0 (x0, (n1, n2, τ)) = −F̂l0 (x0, (n2, n1, τ)) . (148)

Consider the field
U : x �→(x.e3)U0,

U0 being a fixed vector. On VN , N
2U is bounded independently of N . The

same reasoning as before shows that inequality (142) implies

lim
N−→∞

N2

{∫
L1

N

F̂l0 (x, (n1, n2, τ)) .U (x) dl

+

∫
L2

N

F̂l0 (x, (n2, n1, τ)) .U (x) dl = 0.

(149)

On L1
N and L2

N , N
2U does not depend either on N or on x as it is equal

respectively to U0 and 2U0. Then we obtain, because of arbitrariness of U0,

lim
N−→∞

{∫
L1

N

F̂l0 (x, (n1, n2, τ)) dl + 2

∫
L2

N

F̂l0 (x, (n2, n1, τ)) dl

}
= 0.

Using the continuity of F̂l0 with respect to x, the mean value theorem for
each component of the previous equality and Equation (148) we get

F̂l0 (x0, (n1, n2, τ)) = 0. (150)

Remark 11.6. This proof is not the simplest one can conceive (see the
proof of the following Theorem 11.7). However, we present it here because
it is suggestive: our construction shows that a limit of pairs of opposite edge
forces cannot be quasi-balanced. This means that in generalized continua
contact actions can include nonvanishing edge forces only if they also include
nonvanishing surface 2−forces. More precisely: the theorem we have just
proven shows how a sequence of systems of edge forces can converge to a
surface double force: we have thus rigorously illustrated the terms ‘double
forces’ and ‘double normal traction’ introduced by Germain (1973).
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11.2 Condition 142 implies that Forces on General Edges must
vanish.

The Theorem proven in the previous subsection can be actually gener-
alized to any edge of a contact surface.

Theorem 11.7. Let S be an admissible surface. For stess states of the
form 140, and verifying the regularity assumptions 10.1,inequality (142)
imply that, at every regular point x0 of an edge, we have

F̂l0 (x0, [(x0,S)]) = 0. (151)

In other words: inequality (142) implies that Cauchy stress states including
only surface contact forces cannot be generalized simply by adding contact
edge forces.

Proof. Let V be an admissible domain. Let its boundary S contain an edge
L, let x0 be a regular point of this edge. S is tangent at the point x0 to
the dihedral shape (n1, n2, τ). In this proof we consider the case when the
dihedral angle belongs to ]0, π[ (The proof has to be slightly modified if the
angle is greater than π). We use the coordinate system (x0; e1, e2, e3) with

e2 = τ, e3 = n1 + n2� ‖n1 + n2‖ .

For any ε > 0, let us translate V and its contact surface relatively to the
vector ε2e3:

V ′ := tε2e3 (V ) , S ′ := t
ε2e3

(S) , L′ = t
ε2e3

(L) (152)

and let us define Vε as the intersection of the domain V ′ with the paral-
lelepiped (represented in the introduced coordinate system)

Pε =
[
−cε2, cε2

]
× [0, �ε]×

[
0, 2ε2

]
(153)

(see Figure 2 in dell’Isola and Seppecher (1997)). The dihedral angle be-
longs to ]0, π[ and the curvatures of the faces of S and of the edge L are
bounded. Then c and � may be chosen in such a way that, for ε small
enough: i) L′ meets ∂Pε on the surfaces {x.e2 = 0} and {x.e2 = � ε}, so
that at every point x on L′ ∩ Pε, we have x.e3 > 0 ii) S ′ meets ∂Pε on
surfaces {x.e2 = 0},{x.e2 = � ε} and on the surface {x.e3 = 0}. The geom-
etry of considered construction is illustrated by Figure 2 in dell’Isola and
Seppecher (1997). We denote by Sε the boundary of Vε and by Lε the upper
edge of Vε : in formulas

Lε = L′ ∩ Pε. (154)
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The family of shapes
⋃
ε>0

Φ(Sε) is a set of prescribed shapes or prescribed
plane cuts. Then the surface force and the line force densities

F̂l0 (x0, [(x0,Sε)]) F̂s0 (x0, [(x0,Sε)]) (155)

are uniformly bounded with respect to ε. Let us consider the vector field
(this vector field will be kept fixed in our limit process)

U : x �→(x.e3)U0 (156)

U0 being a generic vector. The geometry of Vε assures that ε
−2U is bounded

independently of ε. On the other hand, as U vanishes on the plane (x0, e1, e2),
we do not have to consider the forces exerted on the edges which are in-
cluded in this plane. Considering the measure of each face and edge, we get
from inequality (142)

lim
ε−→0

ε−3

∫
Lε

F̂l0 (x, [(x,Sε)]) .U (x) dl = 0.

The length of Lε is equal to ε� within higher order terms. On the other
hand, there exists a positive scalar k (depending on the curvature of the
edge at x0 and on � but independent of ε) such that

lim
ε−→0

ε−3

∫
Lε

(x.e3) dl = k.

Let δ > 0, the geometry of the domain and Proposition 10.30 – which is a
consequence of our regularity assumptions – imply that, for ε small enough,

∀x ∈ Lε,
∥∥∥F̂l0 (x, [(x,Sε)])− F̂l0 (x0, [(x0,S)])

∥∥∥ < δ. (157)

Then∣∣∣∣kF̂l0 (x0, [(x0,S)]) .U0 − lim
ε−→0

ε−3

∫
Lε

F̂l0 (x, [(x,Sε)]) .U (x) dl

∣∣∣∣ < kδ ‖U0‖ .
(158)

This result holds for any δ and for any U0, so that we can conclude with
the searched equality

F̂l0 (x0, [(x0,S)]) = 0.
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12 Generalized Noll Theorem

Theorem 11.7 states that when stress state is of the form specified as in 140
and if one accepts the quasi-balance of contact powers 142 then there are
no contact edge forces.

In this section we prove a generalization of Noll theorem for such stress
states.

Remark 12.1. In Noll (1959) it is proven (we use the language introduced
in the present work) that given a body i) occupying in a configuration the
compact region D, ii) for which the stress state is characterized by the only

function F̂s0, and iii) such that
∥∥∥F̂s0∥∥∥ is bounded in the set D × Φr (i.e. if

contact surface forces are uniformly bounded in the set Φr of all possible
regular shapes of contact surfaces!!) then for every regular shape f tangent
to the plane π in the point x the following equality holds

F̂s0 (x, f) = F̂s0 (x, [(x, π)]) . (159)

Remark 12.2. The cited result by Noll cannot be applied in those cir-
cumstances in which one wants, e.g., to allow for a linear dependence of
contact surface forces on local curvature of contact surface. In Noll and
Virga (1990) it was announced for a future paper a generalization of Noll’s
result by relaxing the previously considered condition iii). We could not
find such a paper in the literature.

Remark 12.3. The regularity assumptions for stress state proposed in
dell’Isola and Seppecher (1997) and generalized in the present work actu-
ally relaxed the aforementioned condition iii) and allow for a more general
dependence of stress state functions on shapes. In particular our assump-
tions allow for a linear dependence of surface contact forces on curvature
tensor of contact surface.

Remark 12.4. In dell’Isola and Seppecher (1997) it is proved a general-
ization of Noll’s result under the weaker regularity assumptions 10.1 on
which also the present work is based.

We give now a proof of property 159 when stress state is characterized
only by a surface contact force function F̂s0 which, however, is not bounded
in the set of all regular shapes.

Theorem 12.5. When no edge forces are present, and under the regularity
assumptions 10.1, for all regular shapes f tangent to the plane shape n the
validity of quasi-balance of power 142 implies

F̂s0 (x, f) = F̂s0 (x, n) . (160)
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Proof. Let S be the boundary of an admissible domain V and let x0 be
a regular point of Sr. We call n0 the normal to S at x0. We use the
coordinate system (x0, e1, e2, e3) (with e3 = n0). Let us consider the family
of parallelepipeds

Cε = [0, ε]× [0, ε]× [−cε2, cε2].

Let us define the sets

Vε := V ∩ Cε, Sε = S ∩ Cε.

As the curvature of S is bounded in a neighborhood of x0, a positive scalar
c can be found such that, for ε sufficiently small, Sε does not intersect one
of the faces

S+ :=
{
x3 = cε2

}
, S− =

{
x3 = −cε2

}
(161)

of Cε (see Figure 3 in dell’Isola and Seppecher (1997)). The shapes of
the boundary of Vε are either prescribed shapes or prescribed plane cuts.
Inequality (138) when applied to Cε implies

lim
ε−→0

ε−2

∫
S+

F̂s0 (x, n0) ds+ lim
ε−→0

ε−2

∫
S−

F̂s0 (x,−n0) ds = 0,

which leads to

F̂s0 (x, n0) = −F̂s0 (x,−n0) . (162)

Inequality (138) when applied to Vε implies

lim
ε−→0

ε−2

∫
Sε

F̂s0 (x, [(x, S)]) ds+ lim
ε−→0

ε−2

∫
S−

F̂s0 (x,−n0) ds = 0,

which leads to

F̂s0 (x, [(x, S)]) + F̂s0 (x,−n0) = 0. (163)

Equation (160) is then obtained when recalling (162).

Remark 12.6. In the previous proof we just had to modify the argument
used in Truesdell (1977) by using a cylinder whose basis is a square instead
of a circle. The important difference is that -in this way- we use only
prescribed shapes (in the sense defined in ??).
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12.1 CAUCHY THEOREM

Stress states verifying the hypotheses of Theorem 11.7 cannot include
nonvanishing contact edge forces. Then the Cauchy’s construction of stress
tensor, which is strongly depending on the absence of edge contact forces,
(refer to Truesdell (1977)) is valid.

Theorem 12.7. When stress state is of the form specified in 140 and if one
accepts regularity assumptions 10.1 and the quasi-balance of contact powers
142 there exists a continuous tensor field T of order two and symmetric such
that, for any plane shape n,

F̂s0 (x, n) = T (x) .n. (164)

13 The structure imposed on stress states by the
regularity assumptions 10.1 and quasi-balance of
contact power

In this section we show how to generalize the results found in dell’Isola and
Seppecher (1995)-(1997) to N − th gradient continua. The complete proof
strategy is simply drafted: all the details of the mathematical concepts and
proofs will be presented in a forthcoming separate paper.

We start with a ”rough” statement which will be followed immediately
by a more formal one.

Balance of power implies that the stress state in a n− th order
generalized continuum B must verify the following conditions

1. The existence of k−forces concentrated on wedges implies the exis-
tence of line k + 1−forces distributed on edges

2. The existence of lines k + 1−forces distributed on edges implies the
existence of surfaces k + 2−forces distributed on faces

3. The existence of surfaces k+2−forces distributed on faces implies the
existence of n = k + 3−stresses in the volume occupied by the body.

More formally after the following

Remark 13.1. When considering a stress state, instead of using the pre-
viously introduced notation{

Fsk,F
l
k,F

c
k; k = 0, ..., L

}
, (165)

we will use another one slightly different. Indeed: instead of the superscripts
s,l ,c we want to use the superscripts 2,1 ,0.
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This change of notation will be useful in the formulation of the following
definitions and theorem.

Definition 13.2. Let B a body occupying in one of its configurations the
domain D. Let us consider a stress state S of the form

S =
{
F2k,F

1
k,F

0
k; k = 0, ..., L

}
. (166)

where all F are defined in D. Let S be the contact surface of D, and let Sr,
Lr and WS denote the subsets of S constituted by regular surface and edge
points and wedges respectively. The power expended on the velocity field
U by contact actions exerted on D through S (when B is in the stress state
S) is given by the following formula:

PU (S, D) :=

(∫
Sr

F20 · U +

∫
Lr

F10 · U +

∫
WS

F00 · U
)
+ (167)

+

L∑
k=1

(∫
Sr

F2k ·
(
∇kU

)
⊥ +

∫
Lr

F1k ·
(
∇kU

)
⊥ +

∫
WS

F0k · ∇kU

)
(168)

When this will not lead to confusion we will skip the argument S in the
previous expression.

Definition 13.3. Let us consider a stress state S.We say that it is phys-
ically admissible when it verifies i) the regularity assumptions 10.1 and
ii) the quasi-balance of power

|PU (S,D)| ≤ KU |D| . (169)

Theorem 13.4. Let us consider a stress state S of the form

S =
{
F2k,F

1
k,F

0
k; k = 0, ..., L

}
. (170)

If S is physically admissible then there exists a (unique) natural number
N − 1 ≤ L such that

F2N−1 
= 0 (171)

(∀k ∈ {0, ..., L}) (∀a ∈ {0, 1, 2}) ((k + 2 ≥ N + a)⇒ (Fak = 0)) (172)

Proof. It can be sketched by paralleling the previous proof of Theorem
11.7.

Definition 13.5. Let S be a physically admissible stress state. We call
grade of S the unique natural number NS the existence of which has been
proven in the previous theorem.
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It can also be proven the following:

Theorem 13.6. Let S be a physically admissible stress state of grade N.
If F1N−2 = 0 then F0N−3 = 0.

Proof. The searched implication is obtained by means of a construction
generalizing the one used for Theorem 11.7.

Definition 13.7. Let B be a body. We say that B is a N − th gradient
continuum if i) the set of the stress states admissible for B is included in
the set of physically admissible stresses of grade N , and ii) there exists at
least one nonvanishing admissible stress state for B the grade of which is
exactly N.

14 The tetrahedron argument applied to N-th
gradient continua

In this final section we draft a line of thought which proves how the tetrahe-
dron argument valid for second gradient materials which was presented in
dell’Isola and Seppecher (1995),(1997) actually can be extended to encom-
pass all those continua imagined by Green and Rivlin (1964) and described
in the previous sections.

14.1 On contact actions including forces of order greater than
one.

Theorems 13.4 and 13.6 have shown that not all stress states are physi-
cally admissible. In the present subsection we want to establish a character-
ization theorem, which states how to construct physically admissible stress
states by means of suitably introduced (hyper-)stress tensor fields. We start
with second gradient continua.

Surface Double Forces

In dell’Isola and Seppecher (1995)-(1997) it was proven the impossibility
-under the assumption (142)- of considering stress states including only
nonvanishing surface and contact edge forces. The idea developed there was
the following: the power of contact actions is actually quasi-balanced but
the expression for this power used in inequality (142) is too naive. Indeed
the contact actions must be endowed with a more complex structure: to
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be precise (using the presently used notation) the simplest stress states
which can be considered -after those studied by Cauchy- have the following
structure (typical of Germain’s second gradient continua)

S =
{
F20,F

2
1,F

1
0

}
. (173)

Remark 14.1. From a physical point of view, the need of introducing a
contact double force or contact ‘1-normal force’ can be justified as follows:
in the balance of energy an additional term must be considered which does
not appear in the balance of forces. An alternative approach trying to meet
this need is due to Dunn and Serrin (1985), who introduced directly a sup-
plementary flux of energy (‘interstitial working’). Our approach, based on
the concept of Schwartz distributions, has the following advantages when
compared with that found there: (i) it does not assume a priori that the ex-
tra energetic term is a flux, (ii) it shows the mechanical nature of this term,
its linear dependence on the velocity field being a basic assumption, (iii)
it naturally yields general and physically meaningful boundary conditions
(see e.g. Seppecher (1989)).

Most mechanicians will not be surprised by the introduction of contact
double forces distributions, as contact couples are needed already in the
standard theories of beams and shells. Another example of ‘1-normal’ con-
tact forces distribution found in the literature (this time for 3-D continua) is
given by couple stresses introduced by Cosserat (1908)-(1909). The micro-
scopic meaning of contact forces of order greater than one can be understood
by considering the asymptotic limit of non-local short range interactions.

Example 14.2. A system of non-local short range forces converging
to a surface contact double force (1-normal distribution). Using the
Cartesian coordinates (x1;x2;x3), the domain

V = {x : x1 < 0}

is in contact with the external world through the plane

S = {x : x1 = 0} .

Assume that the external forces exerted on V have short range ε � 1
(compared with some other characteristic length) and that these forces are
represented by the volume density

fε (x) = f−γ
0 ϕ

(
ε−1x1

)
where ϕ is a function whose support is a compact set included in ]−∞, 0[
and f0 is a given vector. If γ = 1 and ϕ is a non negative function whose
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integral is equal to 1, the distribution tends, as ε tends to 0, to the vector
measure on S having a surface density equal to f0: this is the classical case
of surface force density. However, if γ = 2 and ϕ is the derivative of a non
negative function whose integral is equal to 1, the distribution tends to a
‘1-normal’ distribution D such that

D (U) =

∫
S

f0 · ∂U�∂x1ds.

This force distribution i) is localized on S, ii) has no influence upon balance
of forces, iii) supplies energy in presence of velocity fields in V , even when
these fields vanish on S .

The assumption of quasi-balance of contact actions for stress states of the
form 173 takes the following particular form:

for all C∞ field U , there exists a scalar KU such that, for any admissible
domain V having contact surface S with surface and edge regular point sets
denoted respectively by Sr and Lr , we have∣∣∣∣ ∫Sr F

2
1(x, [(x, S)]).

∂U
∂n (x) ds+

∫
Sr F

2
0(x, [(x, S)]).U (x) ds

+
∫
Lr F

1
0(x, [(x, S)]).U (x) dl

∣∣∣∣ < KU |V | .
(174)

Remark 14.3. This assumption is less stringent on F10 than the corre-
sponding hypothesis (142). It will imply less stringent restrictions upon
edge contact forces. Indeed condition (174) does not imply that edge con-
tact forces must be vanishing.

Remark 14.4. The fact that (174) implies the quasi-balance of forces (138)
is still true (it can be again verified by considering three linearly independent
constant fields U). Again, we do not need any assumption on the behavior
of KU with respect to U .

Remark 14.5. Note that, in each proof we present, a limit in inequality
(174) is calculated with a fixed field U . For this reason we do not need any
assumption on the behavior of KU with respect to U .

Dependence of second order stress functions on the shape
of the contact surface. A theorem analogous to Noll
Theorem.

We first prove a version of action-reaction principle valid for double forces
i.e. for second order stress functions.
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The theorem, at this stage, concerns only plane shapes.

Theorem 14.6. Under regularity assumptions 10.1 and having postulated
the quasi-balance of contact actions, at every point x, for all plane shape
n and for all dihedral shape (n, e1, e2) we have

F21 (x, n)− F21 (x,−n) = 0. (175)

F10(x0, (n,−e1, e2)) + F10(x0, (n, e1, e2)) = 0;
F10(x0, (−n, e1, e2)) + F10(x0, (n, e1, e2)) = 0;
F10(x0, (n, e1,−e2)) + F10(x0, (n, e1, e2)) = 0

(176)

Proof. Using the coordinate system (x0, e1, e2, e3) (with e3 = n : the vectors
ei are unitary, but not necessarily orthogonal), let introduce for every point
its coordinates (x1, x2, x3) in the introduced system and let us consider the
domain

Cε = [0, εα]×
[
0, εβ

]
× [0, εγ ]

(where α, β and γ are positive) and the vector field

Ū : x �→x3U0 (177)

where U0 is a given vector. We consider each face or edge of ∂Cε on which
some addends of LHS in inequality (174) when calculated on the velocity
field 177 are nonvanishing i.e.

S+
ε := {x : x3 = +εγ} , S−

ε := {x : x3 = 0} (178)

L+
α0 := [0, εα]× {0} × {εγ} L+

αβ := [0, εα]×
{
εβ
}
× {εγ}

L+
β0 := {0} ×

[
0, εβ

]
× {εγ} L+

βα := {εα} ×
[
0, εβ

]
× {εγ} (179)

L→
00 := {(0, 0)} × [0, εγ ] L→

0β :=
{(
0, εβ

)}
× [0, εγ ]

L→
α0 := {(εα, 0)} × [0, εγ ] L→

αβ :=
{(
εα, εβ

)}
× [0, εγ ] (180)

the area or length of which are respectively given by

μ2(S
+
ε ) = μ2(S

−
ε ) = εαβ ; μ1(L

+
α0) = μ1(L

+
αβ) = εα; (181)

μ1(L
+
β0) = μ1(L

+
βα) = εβ ; (182)

μ1(L
→
00) = μ1(L

→
0β) = μ1(L

→
α0) = μ1(L

→
αβ) = εγ . (183)

As (
∀x ∈ S+

ε

)
(x3 = εγ) ; (184)(

∀x ∈ S−
ε

)
(x3 = 0) ; (185)(

∀x ∈ S±
ε

) (
∂Ū/∂n = ±U0

)
(186)
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and μ3(Cε) = εαεβεγ ; the inequality (174) applied to Cε and the field 177
becomes:

∣∣∣∣∫
S+
ε

F21(x, n).U0ds +

∫
S−ε

F21(x,−n). (−U0) ds+

+

∫
S+
ε

F20(x, n).ε
γU0ds+

∫
L+

α

F10(x, [(x, ∂Cε)]).ε
γU0dl+ (187)

+

∫
L+

β

F10(x, [(x, ∂Cε)]).ε
γU0dl+

+

∫
L→ε

F10(x, [(x, ∂Cε)]). ((x− x0) · n)U0dl

∣∣∣∣∣ < KŪ

(
εαεβεγ

)
.

where

L+
α = L+

α0∪L+
αβ ; L+

β = L+
β0∪L+

βα; L→
ε = L→

00∪L→
0β ∪L→

α0∪L→
αβ . (188)

Remarking that

x ∈ L+ ⇒ [(x, S)] = (e1, n, n× e1)

or (e2, n, n× e2) or (−e1, n,−n× e1) or (−e2, n,−n× e2)

x ∈ L→
ε ⇒ [(x, S)] = (−e2,−e1, n)

or (e2,−e1, n) or (e2, e1, n) or (e1,−e2, n)

a simple inspection of previous formulas allows us to recognize that Φ(∂Cε)
is a set of prescribed shapes and therefore that all F are uniformly bounded
on the set ⋃

ε>0

(Cε × Φ(∂Cε)) . (189)

As a consequence we can state that there exist suitable constants K such
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that ∣∣∣∣∫
S±ε

F21(x, n).U0ds

∣∣∣∣ < K2
1 ‖U0‖ εαεβ (190)∣∣∣∣∫

S+
ε

F20(x, n).ε
γU0ds

∣∣∣∣ < K2
0 ‖U0‖ εαεβεγ (191)∣∣∣∣∫

L+
α

F10(x, [(x, ∂Cε)]).ε
γU0dl

∣∣∣∣ < K1
0 ‖U0‖ εαεγ (192)∣∣∣∣∣

∫
L+

β

F10(x, [(x, ∂Cε)]).ε
γU0dl

∣∣∣∣∣ < K1
0 ‖U0‖ εβεγ (193)∣∣∣∣∣

∫
L→ε

F10(x, [(x, ∂Cε)]). ((x− x0) · n)U0dl

∣∣∣∣∣ < K1
0 ‖U0‖ ε2γ . (194)

If one chooses γ > β and γ > α the inequality 187 (multiplied times ε−αε−β)
implies that

lim
ε→0

ε−αε−β

(∫
S+
ε

F21(x, n).U0ds+

∫
S−ε

F21(x,−n). (−U0) ds

)
= 0

The continuity properties of the partial function F21(·, n) and the arbitrari-
ness of U0 finally imply

F21 (x0, n) = F21 (x0,−n) . (195)

On the other hand let us multiply 187 times ε−βε−γ , let us choose arbitrarily
β > 0 and consequently α and γ verifying the conditions:

α > γ α > β > 0 (β > 0) ∧
(
γ2 − β − γ

)
> 0⇔ γ > 1

2

√
4β + 1 + 1

2

and finally calculate the limit for ε→ 0, of the LHS of obtained inequality.
Recalling 188 we get

lim
ε→0

ε−βε−γ

(∫
L+

β =L+
β0∪L+

βα

F10(x, [(x, ∂Cε)]).ε
γU0dl

)
= (196)

= lim
ε→0

ε−β

(∫
L+

β0

F10(x, (n,−e1, e2)).U0dl +

∫
L+

βα

F10(x, (n, e1, e2)).U0dl

)
= 0

(197)

The continuity properties of the partial function F10(·, (u, v, w)) (where (u, v, w)
is a given dihedral shape) and the arbitrariness of U0 finally imply

F10(x0, (n,−e1, e2)) + F10(x0, (n, e1, e2)) = 0 (198)
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The other two relations in 176 are obtained with similar constructions.

We are now able to prove a theorem for ‘1-normal’ distributions analo-
gous to the theorem of Noll (? ), (? ).

Theorem 14.7. Under regularity assumptions 10.1 and having postulated
the quasi-balance of contact actions, at every point x and for every regular
shape f tangent to the plane shape n we have

F21 (x, f) = F21 (x, n) (199)

that is F21, depends on the shape of the contact surface only through its
normal.

Proof. The proof is close to that we have given for the Theorem 12.5. At
a regular point x0 of the boundary S of an admissible domain, we consider
the family of domains Vε described in the proof of the Theorem 12.5 (see
also Figure 3 in dell’Isola and Seppecher (1997)). We consider the vector
field

U : x −→ (x · n0)U0

where n0 denotes the normal to S at x0 and U0 is any vector. The shapes of
∂Vε are either prescribed shapes or prescribed plane cuts. Moreover ε

−2U
is bounded in Vε independently of ε. The inequality (174) applied to Vε
leads to

lim
ε−→0

ε−2

∫
S∩Cε

F21(x, [(x, S)] · U0 (n · n0) ds+

+ lim
ε−→0

ε−2

∫
S−

F21 (x,−n0) · (−U0) ds = 0.

As n · n0 is a continuous function with respect to x on S, the regularity
properties of F21 and the arbitrariness of U0 imply

F21(x0, [(x0, S)] = F21 (x0,−n0) = F21 (x0, n0) . (200)

14.2 A Representation Theorem for surface 1−forces generaliz-
ing the Cauchy tetrahedron Theorem.

The celebrated Cauchy tetrahedron argument can be used also to get a
representation Theorem which is valid for N − th gradient continua. Obvi-
ously it needs to be suitably adapted.
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The reader should not believe that the argument has to be applied, in the
framework of the theory of N − th gradient continua, to the surface density
of 1− force. Instead it has to be applied to surface density of N−forces. It
happens that N−force surface density depends only on the tangent planar
shape to the contact surface and this dependence is a polynomial one: its
grade is exactly N.

Theorem 14.8. Let B a body occupying in one of its configurations the
domain D. Let us consider a stress state S having the form

{
F20,F

2
1,F

1
0

}
.

Let us assume the regularity assumptions 10.1. If quasi balance of power
holds then there exists a continuous three-tensor field C such that, at any
point x0 ∈ D and for any plane shape n,

F21 (x0, n) = (C(x0).n) .n. (201)

Proof. We follow the tetrahedron construction due to Cauchy (see Figure 4
in dell’Isola and Seppecher (1997)). In an orthonormal coordinate system
(x0, e1, e2, e3) , we define the tetrahedron V whose faces S, S1, S2 and S3 are
respectively normal to n,−e1,−e2 and −e3and whose height (perpendicular
to S) is h. In our construction the origin of the coordinate system belongs
to the face S. We denote respectively by f1 = (−e

2
,−e

3
, e

1
) , f2 =

(−e
3 ,−e1 , e2) and f3 = (−e1 ,−e2 , e3) the shapes of the edges L1, L2 and

L3. Let Vε be the image of V under an homothetic transformation of
ratio ε, we denote by Sε, Siε and Liε, and the faces and edges images of
S, Si and Li (i = 1, 2, 3) under this transformation. We consider the field
U : x −→ (x · n)U0, where U0 is any vector. As this field vanishes on Sε ,
the inequality (174) applied to the domain Vε implies∣∣∣∣∣

3∑
i=1

{∫
Siε

(x · n)F20 (x,−ei) .U0ds

}
+

+

3∑
i=1

{∫
Liε

(x · n)F10 (x, fi) .U0dl

}
+

+

3∑
i=1

{∫
Siε

(−ei · n) F21 (x,−ei) .U0ds

}
+

+

∫
Sε

F21 (x, n) .U0ds

∣∣∣∣ < Kε3.

. (202)

Let us multiply this inequality by ε−2 and, changing variables in the inte-
grals in order to transform them into integrals on the boundary of V , we
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obtain ∣∣∣∣∣ε
3∑

i=1

{∫
Si

(x · n)F20 (εx,−ei) · U0ds

}
+

3∑
i=1

{∫
Li

(x · n)F10 (εx, fi) · U0dl

}
+

3∑
i=1

{∫
Si

(−ei · n) F21 (εx,−ei) · U0ds

}
+

∫
S

F21 (εx, n) · U0ds

∣∣∣∣∣ < Kε.

As the partial functions F (·, f) are continuous, evaluating the limit as ε
tends to 0, we get

3∑
i=1

{
F10 (x0, fi) .U0

∫
Li

(x · n) dl
}
+ (203)

+

3∑
i=1

{
|Si| (−ei · n) F21 (x0,−ei) .U0

}
+ (204)

+ |S| F21 (x0, n) .U0 = 0. (205)

This being valid for any U0, we obtain

2 |S| F21 (x0, n) =
3∑

i=1

{
F10 (x0, fi)

(
n · ei

)
|Li|2

}
+ (206)

+2

3∑
i=1

{
F21 (x0,−ei) |Si| (n · ei)

}
. (207)

Using the geometrical relations

h = |L1| (n · e1) = |L2| (n · e2) = |L3| (n · e3) ,
2 |S|h = 2 |S1| |L1| = 2 |S2| |L2| = 2 |S3| |L3| = |L1| |L2| |L3| (208)

and Theorem 14.6, we get

F21 (x0, n) = F10 (x0, f1) (n · e2) (n · e3) + F10 (x0, f2) (n · e3) (n · e1)+

+F10 (x0, f3) (n · e1) (n · e2) +
3∑

i=1

F21 (x0, ei) (n · ei)2 .

(209)
Thus we are led to define a three-tensor field C such that

F21 (x0, n) = (C (x0) .n) .n = C (x0) ..n⊗ n (210)
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This tensor is not uniquely determined, as only its right-side products by
symmetric two tensors are determined. We may impose its right side sym-
metry, by setting

C (x) = 1
2F

1
0 (x, f1)⊗ (e2 ⊗ e3 + e3 ⊗ e2)+

+ 1
2F

1
0 (x, f2)⊗ (e3 ⊗ e1 + e1 ⊗ e3)+

+ 1
2F

1
0 (x, f3)⊗ (e1 ⊗ e2 + e2 ⊗ e1)+

+

3∑
i=1

{
F21 (x, ei)⊗ ei ⊗ ei

}
,

(211)

or its left side symmetry, by setting

C (x) = 1
2F

1
0 (x, f1)⊗ (e2 ⊗ e3 + e3 ⊗ e2)+

− 1
2 (e2 ⊗ e3 + e3 ⊗ e2)⊗ F10 (x, f1)+

+ 1
2

(
e2 ⊗ F10 (x, f1)⊗ e3 + e3 ⊗ F10 (x, f1)⊗ e2

)
+

+ 1
2F

1
0 (x, f2) (e3 ⊗ e1 + e1 ⊗ e3)+

− 1
2 (e3 ⊗ e1 + e1 ⊗ e3)⊗ F10 (x, f2)+

+ 1
2

(
e3 ⊗ F10 (x, f2)⊗ e1 + e1 ⊗ F10 (x, f2)⊗ e3

)
+

+ 1
2F

1
0 (x, f3) (e1 ⊗ e2 + e2 ⊗ e1)+

− 1
2 (e1 ⊗ e2 + e2 ⊗ e1)⊗ F10 (x, f3)+

+ 1
2

(
e1 ⊗ F10 (x, f3)⊗ e2 + e2 ⊗ F10 (x, f3)⊗ e1

)
+

+
3∑

i=1

{
F21 (x, ei)⊗ ei ⊗ ei − ei ⊗ ei ⊗ F21 (x, ei) + ei ⊗ F21 (x, ei)⊗ ei

}
.

(212)

Remark 14.9. The tensor C will be called the double-stress tensor.

Remark 14.10. Imposing the left side symmetry of C (as done in Seppecher
(1987)) may seem complicated and artificial but the following Theorem
14.16 will show the advantage of such a choice.

The representation formula for the tensor C obtained in equation 211
allows us to prove also the following

Corollary 14.11. For a generic dihedral shape (n1, n2, τ) the edge contact
forces can be represented by

F10(x, (n1, n2, τ)) = (C (x) · n1) · ν1 + (C (x) · n2) · ν2, (213)

where
ν1 = τ × n1 ν2 = −τ × n2. (214)
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Proof. Let us first consider the dihedral shapes f1 = (−e2 ,−e3 , e1) , f2 =
(−e

3 ,−e1 , e2) and f3 = (−e1 ,−e2 , e3) where {ei} is an orthonormal basis.
With simple calculations we get from 211

(C (x) .− e2) .− e3 =
1
2F

1
0 (x, f1) (C (x) .− e3) .− e2 =

1
2F

1
0 (x, f1)

(215)
which implies 213 for dihedral shapes verifying the conditions

n1 · n2 = 0; τ · n1 = 0; τ · n2 = 0. (216)

For getting the statement for a generic dihedral shape it is enough to con-
sider the ε−families of 3−prisms with height parallel to the vector τ the
bases of which are triangles with two sides ortogonal to n1 and n2 and
having a right angle.

A first important consequence of the representation formula 211 can be
obtained by means of a very simple reasoning. Indeed we can get the follow-
ing lemma, which has been formulated already in dell’Isola and Seppecher
(1995)-(1997):

Lemma 14.12. The form of surface 2−forces compatible with van-
ishing line 1−forces. When F10 is vanishing equations (210) and (211)
imply that

(C (x0) .n) .n = F21 (x0, n) = (217)

=
∑3

i=1
F21 (x0, ei) (n · ei)2 = (218)

=
∑3

j=1
F21
(
x0, e

′
j

) (
n · e′j

)2
(219)

where {ei} and
{
e′j
}
are two generic orthonormal bases. As the found ex-

pression is valid for every orthonormal vector basis, we can conclude that if
F10 is vanishing then F21 does not depend on n: this is the only case in which
the 1-normal surface distributions (i.e. surface 2−forces) can be nonzero
with vanishing edge forces.

14.3 Representation theorems for contact 1−forces. Cauchy stress
tensor.

To proceed we need to apply Gauss divergence Theorem to some tensor
fields. Therefore we are guided to add some further regularity assumptions
on the considered stress state S,which for second gradient continua has the
form

{
F20,F

2
1,F

1
0

}
.
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Although a careful analysis (which will be included in a forthcoming
paper) is possible, leading us to the determination of the most adapted
functional space to be chosen to ”host” considered fields, for seek of sim-
plicity and in order not to distract the reader with presently unessential
mathematical formalism, we limit ourselves to the consideration of very
regular stress states.

Hypothesis of C1 regularity.

For every given regular shape f and every dihedral shape d, the partial
functions

F21 (·, f) , F10 (·, d) (220)

are C1 functions.
As an obvious consequence of this assumption one easily gets that the

tensor field C defined in 14.8 is also a field of class C1.

Remark 14.13. We now can show how our hypothesis (174), which implies
but is not at all equivalent to hypothesis (138) put forward by Noll and
Virga (1990), allows us to prove the assumption III on page 21 in just
mentioned paper, and to show that the example treated in its Section 9
actually is exhaustive of all possible cases.

Indeed the following two Theorems give the general representation of
edge and surface contact forces. We prove them starting from the quasi
balance of power and under the regularity assumptions 10.1 to which we
add the last assumed hypothesis 14.3.

Theorem 14.14. Let S be the contact surface of an admissible domain V .
Let x be a regular point of an edge of S. Let (n1, n2, τ) be the tangent
dihedral shape to S at x. Then the edge force density at x depends only on
(n1, n2, τ) and is represented in terms of the second order stress tensor by

F10(x, [(x, S)]) = (C (x) · n1) · ν1 + (C (x) · n2) · ν2, (221)

where we have introduced the following notations:

ν1 = τ × n1 ν2 = −τ × n2. (222)

Remark 14.15. The observed arbitrariness regarding the tensor C has no
influence on the representation formula (224) as the ”shape” tensor

n1 ⊗ ν1 + n2 ⊗ ν2 (223)

at any edge actually is a symmetric tensor.
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Theorem 14.16. At any regular point of the surface S it exists a continuous
second order tensor field T such that

F20(x, [(x, S)]) = T (x) .n− divs ((C (x) .n) .Π) , (224)

where Π denotes the projector on the tangent plane to the surface S

(Π = Id− n⊗ n) . (225)

Remark 14.17. The arbitrariness in C has an influence on T . With the
choice (221), the tensor T is symmetric.

Proof. We prove at the same time both Theorems 14.14 and 14.16. Because
of Theorem 14.8, inequality (174) may be written∣∣∣∣∫

Lr

F10(x, [(x, S)]).U (x) dl +

∫
Sr

F20(x, [(x, S)]).U (x) ds+

+

∫
Sr

((C (x) .n) .n) .∂U∂n (x) ds

∣∣∣∣ < K
U
|V | .

(226)

Due to the equality∣∣∣∣∫
V

div (∇U..C) dv
∣∣∣∣ = ∣∣∣∣∫

Sr

∇U.. (C.n) ds
∣∣∣∣ , (227)

the quantity ∫
Sr

∇U.. (C.n) ds (228)

is quasi-balanced. Then there exists a scalar K ′
U such∣∣∣∣∫

Lr

F10(x, [(x, S)]).U (x) dl +

∫
Sr

F20(x, [(x, S)]).U (x) ds+

+

∫
Sr

{
((C (x) .n) .n) .∂U∂n (x)−∇U (x) .. (C.n)

}
ds

∣∣∣∣ < K
′
U
|V | .

(229)

Using now the decomposition

∇U.. (C.n) = ∂U�∂n. ((C.n) .n) +∇sU.. ((C.n) .Π)

where ∇s denotes the surface gradient on S , we get∣∣∣∣∫
Lr

F10(x, [(x, S)]).U (x) dl +

∫
Sr

F20(x, [(x, S)]).U (x) ds+

+

∫
Sr

∇sU (x) .. ((C (x) .n) .Π) ds

∣∣∣∣ < K
′
U
|V | .

(230)
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We apply the divergence theorem on every face of S, so obtaining∣∣∣∣∫
Lr

F ′(x, [(x, S)]).U (x) dl +

∫
Sr

F ′(x, [(x, S)]).U (x) ds

∣∣∣∣ < K ′
U
|V | , (231)

where we used the following definitions F20,F
2
1,F

1
0

F ′(x, [(x, S)]) := F10(x, [(x, S)])− (C (x) · n1) · ν1 + (C (x) · n2) · ν2,
F ′(x, [(x, S)]) := F20(x, [(x, S)]) +∇s · ((C (x) · n) ·Π) .

Because of the regularity hypotheses added in this section, F ′ and F ′ rep-
resent a stress state verifying the assumptions listed in 11. Because of
inequality 231, we may apply to them our results found in 11. Theorem
11.7 implies that F ′(x, [(x, S)]) is vanishing and Theorem ?? establishes
the existence of a continuous second order tensor field T (·) such that

F ′(x, [(x, S)]) = T (x) .n. (232)

14.4 Surface N-th order Forces

In this section we indicate how the results obtained in the previous sub-
section devoted to surface double forces can be further generalized.

Dependence of n-th order stress functions on the shape of
the contact surface. A theorem analogous to Noll Theorem.

We start with action-reaction theorem for surface N−forces and edge N −1
forces in N − th gradient continua.

Theorem 14.18. Let us consider a stress state S of grade N. At every
point x, for all plane shape n, for all dihedral shape (n, e1, e2) and for all
polihedral shape (n1, n2, ...., nk) we have

F2N−1 (x, n) + (−1)N−1 F2N−1 (x0,−n) = 0 (233)

F1N−2(x, (n,−e1, e2)) + (−1)N−2 F1N−2(x, (n, e1, e2)) = 0;

F1N−2(x, (−n, e1, e2)) + (−1)N−2 F1N−2(x, (n, e1, e2)) = 0;

F1N−2(x, (n, e1,−e2)) + (−1)N−2 F1N−2(x, (n, e1, e2)) = 0

(234)

F0N−3

(
x, ̂(−n1,−n2, ....,−nk)

)
+ F0N−3

(
x, ̂(n1, n2, ...., nk

)
= 0 (235)
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Proof. The reasoning proceeds exactly as in the case of stress states of
grade 2,with a difference: while we still consider the coordinate system
(x0, e1, e2, n) and the domain

Cε = [0, ε]× [0, ε]×
[
0, ε2

]
we use instead the vector field (where U0 is a given vector)

U : x �→(x3)N−1
U0 (236)

which has as (N − 1)− th gradient the function

∇N−1U : x �→(N − 1)!U0⊗ n...⊗ n︸ ︷︷ ︸ =:
(N−1)−times

(N − 1)!U0 ⊗ nN−1 (237)

The shapes of ∂Cε are prescribed shapes therefore the functions F in the
stress state S are uniformly bounded in the set⋃

ε>0

(Cε × Φ (∂Cε)) . (238)

Considering the area or length of each face or edge, as in the previous
theorem 14.6 the inequality 169 applied to Cε implies together with the
expression 168 (all other terms in 169 in the limit are vanishing faster than
ε2)

lim
ε−→0

ε−2

∫
S+
ε

F2N−1 (x, n) .U0 ds+ (239)

+ lim
ε−→0

ε−2

∫
S−ε

(−1)N−1 F2N−1 (x,−n) .U0 ds = 0, (240)

where S+
ε and S−

ε denote the upper and lower faces of Cε i.e. in formulas

S+ =
{
x : x · e3 = +ε2

}
, S− = {x : x · e3 = 0}

The regularity assumptions accepted for F2N−1 and the arbitrariness of U0

finally imply

F2N−1 (x, n) + (−1)N−1 F2N−1 (x0,−n) = 0.

Repeating then the construction conceived for dihedral shapes in Theorem
14.6 we easily get also 234. Finally in order to get 235 one needs to consider
the ε2−translation of the considered polihedral shape and construct the
ε−family of volumes so obtained.
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We are now able to prove that inN−th gradient continua contact surface
N− forces and edge (N − 1)-forces on any couple of contact surface which
are tangent assume the same value.

Theorem 14.19. Let us consider a N−th gradient continuum. Under reg-
ularity assumptions 10.1 and having postulated the quasi-balance of contact
actions, we have that: i) at every point x and for every regular shape f
tangent to the plane shape n we have

F2N−1 (x, f) = F2N−1 (x, n) (241)

that is F21 at surface regular points depends on the shape of the contact
surface only through its normal ii) at every point x and for every regular
edge shape f tangent to the dihedral shape (n1, n2, e1) we have

F1N−2(x, f) = F1N−2(x, (n1, n2, e1)). (242)

that is F1N−2 at edge points depends on the shape of the contact surface only
through the tangent dihedral shape; iii) at every point x and for every wedge
shape f tangent to the nondegenerate Polihedral Wedge Shape (n1, ..., nk) we
have

F0N−3(x, f) = F0N−3(x,
̂(n1, ..., nk)). (243)

that is F0N−3 at wedge points depends on the shape of the contact surface
only through the tangent polihedral shape.

Proof. The proof of 241 is very close to that we have given for the Theorem
12.5. The ε−family to be considered is exactly the same: the only difference
to be adopted in the demonstration consists in the need of using as test
function in the quasi-balance of power the vector field

U : x −→ (x · n0)N−1
U0 (244)

where n0 denotes the normal to S at x0 and U0 is a generic vector. On
the other hand slightly different constructions are needed to prove 242 and
243: these constructions require the ε−translation of a neighborhood of the
contact surface keeping fixed the tangent dihedral or polihedral shape.

14.5 A Representation Theorem for surface (N − 1)−forces gen-
eralizing the Cauchy tetrahedron Theorem.

Celebrated Cauchy tetrahedron argument deserves to be admired. It
allows us to prove also for N − th gradient continua a representation theo-
rem for contact (N − 1)-forces in terms of a tensor of order N + 1. Indeed
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N−force surface density (which has been seen to depend only on the tan-
gent planar shape to the contact surface) can be obtained by calculating a
vector-valued polynomial function having grade exactly N.

Theorem 14.20. Let B a body occupying in one of its configurations the
domain D. Let us consider a physically admissible stress state S of grade
N. Let us assume the regularity assumptions 10.1. If quasi balance of power
holds then there exists a continuous tensor field CN of order N + 1 such
that, at any point xh ∈ D and for any plane shape n,

F2N−1 (xh, n) = (CN (xh).n)....).n︸ ︷︷ ︸
N times

(245)

Proof. We adapt the Cauchy tetrahedron construction. We consider the
point x0 and the three unit vectors (e1, e2, e3). We define the tetrahedron
V as follows i) its face S opposed to the vertex in x0 is normal to the unit
vector n; ii) its edges

Li = x0xi = liei (i = 1, 2, 3) (246)

are such that xi ∈ S; iii) its height H parallel to n has length h: if we call
xh the second endpoint of the segment H we have

H = x0xh; xh − x0 = hn. (247)

It is easy to check that: i) the equation of the plane πS orthogonal to n and
passing through the point xh is given by

(x− xh) · n = 0 (248)

ii) as S ⊂ πS and xi ∈ S then

(x0+ liei−xh) ·n = 0⇒ −h+ liei ·n = 0⇒ h = liei ·n⇒
h

ei · n
= li (249)

iii) the edges of the tetrahedron V lying in the plane πS are

−−→x1x2 = l2e2 − l1e1 = h
(

e2
e2·n −

e1
e1·n
)

−−→x2x3 = l3e3 − l2e2 = h
(

e3
e3·n −

e2
e2·n
)

−−→x3x1 = l1e1 − l3e3 = h
(

e1
e1·n −

e3
e3·n
) (250)

iv) the triangles S3, S1 and S2 having a vertex in x0 and respectively x1x2
, x2x3, x3x1 as side opposed to x0 have as outward pointing unit normals
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respectively the vectors

n3 =
e2 × e1
|e2 × e1|

, n1 =
e3 × e2
|e3 × e2|

, n2 =
e1 × e3
|e1 × e3|

; (251)

It is important to establish the relationship between the reciprocal basis(
ej
)
of the introduced basis (ei) and the three normals (nj) . Using the

notation v := e1 · (e2 × e3) we have:

ve1 = e2 × e3; ve2 = e3 × e1; ve3 = e1 × e2; −nj =
ej

|ej | (252)

v) the areas of the faces S, S3, S1 and S2 can be easily calculated. We can
verify some simple relationships:

2 |S| = −−→x1x2 ×−−→x1x3 · n = h2
(

e2
e2 · n

− e1
e1 · n

)
×
(
− e1
e1 · n

+
e3

e3 · n

)
· n =

= h2
(

e2
e2 · n

×
(
− e1
e1 · n

+
e3

e3 · n

)
− e1
e1 · n

×
(

e3
e3 · n

))
· n =

= h2
(− (e2 × e1) · n
(e2 · n) (e1 · n)

+
(e2 × e3) · n
(e2 · n) (e3 · n)

+
− (e1 × e3) · n
(e1 · n) (e3 · n)

)
=

= h2v

(
e3 · n

(e2 · n) (e1 · n)
+

e1 · n
(e2 · n) (e3 · n)

+
e2 · n

(e1 · n) (e3 · n)

)
=

=
h2v

(e3 · n) (e2 · n) (e1 · n)

(
3∑

i=1

(
ei · n

)
(ei · n)

)

=
h2 (e1 · (e2 × e3))

(e3 · n) (e2 · n) (e1 · n)
(253)

2 |S| = vh2

(e2 · n) (e1 · n) (e3 · n)
(254)

2 |S3| = (l2e2 × l1e1) · n3 = h2
(

e2
e2 · n

× e1
e1 · n

)
· n3 (255)

= h2
|e2 × e1|

(e2 · n) (e1 · n)
=

h2v
∣∣e3∣∣

(e2 · n) (e1 · n)
(256)

2 |S1| =
vh2

∣∣e1∣∣
(e2 · n) (e3 · n)

; 2 |S2| =
vh2

∣∣e2∣∣
(e1 · n) (e3 · n)

(257)

so that we have

|S| = |Si|
(ei · n) |ei|

; (i = 1, 2, 3) (258)
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vi) the shapes of the edges L1, L2 and L3 are respectively f1 := (n2, n3, e1)
, f2 := (n3, n1, e2) and f3 := (n1, n2, e3). Let V ε be the image of V under
an homothetic transformation of ratio ε and center xh, we denote by L

ε and
Sε (with eventually suitable subscripts) the images of all edges and surfaces
previously introduced. We will use now the quasi-balance of contact power
for the fixed (it does not vary with ε!) test field

U : x −→ ((x− xh) · n)N−1
U0 (259)

where U0 is a generic vector and for the varying family of domains V
ε, its

contact surface, having the edges and wedges we have just described. The
equation 168 applied to state the quasi-balance of power for a physically
admissible stress state S in the domain Vε becomes

|PU (S, Vε)| :=
∣∣∣∣∣
∫
Sε
r

F20 · U +

∫
Lε

r

F10 · U +

N−1∑
k=1

∫
Sε
r

F2k ·
(
∇kU

)
⊥ + (260)

+

N−2∑
k=1

∫
Lε

r

F1k ·
(
∇kU

)
⊥ +

N−3∑
k=0

∫
Wε

S

F0k · ∇kU

∣∣∣∣∣ ≤ KUε
3 (261)

where with the symbols Sεr , Lε
r and Wε

S we have denoted respectively the
set of regular surface points, regular edges points and wedges belonging to
the contact surface of the domain Vε.We now start by remarking that the
field U vanishes on the surface Sε together with all its derivatives up to the
order N − 2.Indeed:

∇kU =
(N − 1)!

(N − 1− k)!
((x− xh) · n)N−1−k

U0 ⊗ nk

(
∇kU

)
⊥ =

(N − 1)!
(N − 1− k)!

((x− xh) · n)N−1−k
U0 ⊗ (n− (n · ei) ei)k

We now consider one by one all the addends in 275 in which the previous
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equalities have been replaced ∣∣∣∣∣
∫
Sε
r

F20 · U
∣∣∣∣∣ = (262)

=

∣∣∣∣∣
3∑

i=1

∫
Sε
i

F20 · ((x− xh) · n)N−1
U0

∣∣∣∣∣ ≤ K2
0 ‖U0‖ ε2εN−1 (263)

(∀k < N − 1)

⎛⎜⎜⎜⎝
∣∣∣∫Sε

r
F2k ·

(
∇kU

)
⊥

∣∣∣ =
=

∣∣∣∣ 3∑
i=1

∫
Sε
i
F2k ·

(N−1)!
(N−1−k)! ((x− xh) · n)N−1−k

U0 (n · ni)k
∣∣∣∣

≤ K2
k ‖U0‖ ε2εN−1−k

⎞⎟⎟⎟⎠
(264)∣∣∣∣∣

∫
Sε
r

F2N−1 ·
(
∇N−1U

)
⊥

∣∣∣∣∣ =
∣∣∣∣∣

3∑
i=1

∫
Sε
i

F2N−1 · (N − 1)!U0 (n · ni)N−1
(265)

+

∫
Sε

F2N−1 · (N − 1)!U0 ≤ K2
N−1 ‖U0‖ ε2 (266)∣∣∣∣∣

∫
Lε

r

F10 · U
∣∣∣∣∣ =

∣∣∣∣∣
3∑

i=1

∫
Lε

i

F10 · ((x− xh) · n)N−1
U0

∣∣∣∣∣ ≤ K1
0 ‖U0‖ ε1εN−1 (267)

(∀k < N − 2)
(∣∣∣∣∣
∫
Lε

r

F1k ·
(
∇kU

)
⊥

∣∣∣∣∣ = (268)

=

∣∣∣∣ 3∑
i=1

∫
Lε

i
F1k ·

(
(N−1)!

(N−1−k)! ((x− xh) · n)N−1−k
U0 ⊗ (n− (n · ei) ei)k

)∣∣∣∣ ≤
≤ K1

k ‖U0‖ ε1εN−1−k

⎞⎠
(269)∣∣∣∣∣

∫
Lε

r

F1N−2 ·
(
∇N−2U

)
⊥

∣∣∣∣∣ = (270)

=

∣∣∣∣∣
3∑

i=1

∫
Lε

i

F1N−2 ·
((
(N − 1)! ((x− xh) · n)U0 ⊗ (n− (n · ei) ei)N−2

))∣∣∣∣∣
≤ K1

N−2 ‖U0‖ ε2 (271)

(∀k ≤ N − 3)

⎛⎜⎜⎝
∣∣∣∫Wε

S
F0k · ∇kU

∣∣∣ =∣∣∣F0k(x0, [(x0, Sε)]) ·
(
(N−1)!((x−xh)·n)N−1−k

N−1−k!

)
U0 ⊗ nk

∣∣∣ ≤
≤ K0

0 ‖U0‖ εN−1−k

⎞⎟⎟⎠
(272)
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We now simply multiply both terms in 261 (in which we have replaced 259)
times ε−2. Then we take into account all inequality listed from 262 to 272
and we remark that the shapes on every face and edge of the boundary ∂V ε

are spatially constants and, together with wedge shapes, also independent
of ε.We are thus able to calculate the limit for ε tending to zero and finally
get (remark that having already treated the case N = 2, we can consider
N ≥ 3)

lim
ε→0

ε−2

(
3∑

i=1

∫
Sε
i

F2N−1 · (N − 1)!U0 (n · ni)N−1
+ (273)

+

∫
Sε

F2N−1 · (N − 1)!U0+ (274)

+

3∑
i=1

∫
Lε

i

F1N−2 ·
((
(N − 1)! ((x− xh) · n)U0 ⊗ (n− (n · ei) ei)N−2

))
+

(275)

+ F0N−3(xh − εhn, [(xh − εhn, Sε)]) ·
(
(N − 1)! (εh)2

2!

)
U0 ⊗ nN−3

)
= 0

(276)

Before starting to calculate the indicated limit we remark that the set of
shapes

⋃
Φ(∂V ε) is a prescribed set of shapes, so that all the continuous

functions F are equi-uniformly bounded. The previous equality, where we
have now explicitly indicated the argument of the functions F and once we
apply the first mean value theorem for integration, becomes

lim
ε→0

ε−2

(
3∑

i=1

|Sε
i |F2N−1(x

ε
i , ni) · (N − 1)!U0 (n · ni)N−1

+ |Sε|F2N−1(xε, n) · (N − 1)!U0 +

+

3∑
i=1

(∫
Lε

i

((x− xh) · n)
)
F1N−2 (x̃

ε
i , fi)

·
((
(N − 1)!U0 ⊗ (n− (n · ei) ei)N−2

))
+ (277)

+ F0N−3(xh − εhn, ̂(n1, n2, n3)) ·
(
(N − 1)! (εh)2

2!

)
U0 ⊗ nN−3

)
= 0

where xεi ∈ Sε
i , xε ∈ Sε, x̃εi ∈ Lε

i . We now calculate the integral∫
Lε

i

((x− xh) · n) =
1

2
(−ei · n) ε2l2i (278)
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and, as the following limit is finite

lim
ε→0

ε−2 |Sε| = vh2

2 (e2 · n) (e1 · n) (e3 · n)
, (279)

we factorize |Sε| in equality 277, to get

lim
ε→0

(
3∑

i=1

|Sε
i | |Sε|−1 F2N−1(x

ε
i , ni) · (N − 1)!U0 (n · ni)N−1

+

+F2N−1(xε, n) · (N − 1)!U0+ (280)

+

3∑
i=1

(
1

2
(−ei · n) ε2l2i

)
|Sε|−1 F1N−2 (x̃

ε
i , fi) · (281)

·
(
(N − 1)!U0 ⊗ (n− (n · ei) ei)N−2

)
+ (282)

+F0N−3(xh − εhn, ̂(n1, n2, n3))· (283)

·
(
(N − 1)! (εh)2

2!

)
|Sε|−1 (

U0 ⊗ nN−3
))

= 0

To proceed we need i) to use the following formulas (i = 1, 2, 3)

(ei · n)
∣∣ei∣∣ = |Si| |S|−1

= |Sε
i | |Sε|−1

;
h

(ei · n)
= li (284)

ε2l2i |Sε|−1
= l2i |S|−1

= v−1

(
2 (e2 · n) (e1 · n) (e3 · n)

(ei · n)2

)
(285)

|Sε|−1
(εh)

2
= h2 |Sε|−1

ε2 = 2v−1 (e2 · n) (e1 · n) (e3 · n) (286)

which are implied by 254 and 258, ii) to simplify the nonvanishing factor
(N − 1)! and iii) to use simple algebra. We get:

lim
ε→0

(
3∑

i=1

(ei · n)
∣∣ei∣∣F2N−1(x

ε
i , ni) · U0 (n · ni)N−1

+

+F2N−1(xε, n) · U0 (287)

+
3∑

i=1

(
−v−1

) (e2 · n) (e1 · n) (e3 · n)
(ei · n)

F1N−2 (x̃
ε
i , fi) · (288)

·
(
U0 ⊗ (n− (n · ei) ei)N−2

)
+ (289)

+F0N−3(xh − εhn, ̂(n1, n2, n3))· (290)

·v−1 (e2 · n) (e1 · n) (e3 · n)
(
U0 ⊗ nN−3

))
= 0
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It is now possible to calculate the limit and factorize the arbitrary vector
U0 (

3∑
i=1

(ei · n)
∣∣ei∣∣F2N−1(xh, ni) (n · ni)N−1

+ F2N−1(xh, n) +

+
3∑

i=1

(
−v−1

) (e2 · n) (e1 · n) (e3 · n)
(ei · n)

F1N−2 (xh, fi) · (n− (n · ei) ei)N−2
+

(291)

+v−1 (e2 · n) (e1 · n) (e3 · n) F0N−3(xh,
̂(n1, n2, n3)) · nN−3

)
.U0 = 0

As the last equality holds for every nonvanishing vector U0 it implies

3∑
i=1

(ei · n)
∣∣ei∣∣F2N−1(xh, ni) (n · ni)N−1

+ F2N−1(xh, n)+

+
3∑

i=1

(
−v−1

) (e2 · n) (e1 · n) (e3 · n)
(ei · n)

F1N−2 (xh, fi) · (n− (n · ei) ei)N−2
+

(292)

+v−1 (e2 · n) (e1 · n) (e3 · n)F0N−3(xh,
̂(n1, n2, n3)) · nN−3 = 0

The formula which we have just obtained generalizes equation 209. As the
following implication holds

(∀ (ei)) ((ei · ej = δij)⇒ (∀i) (ni = −ei) ∧ (v = 1)) (293)

then 292, together with theorem 14.18 obviously implies that there exists
a tensor of order N which allows for the representation of surface contact
(N − 1)−forces given in formula 245.

Remark 14.21. When re-considering the flow of the demonstration of the
previous theorem the reader will be persuaded that the tetrahedron argu-
ment can be used to get an alternative proof of Theorems 13.6 and 13.4.

The theorem which we have just proven leads us to define a tensor field
CN of order N + 1 such that

F2N−1 (xh, n) = (CN (xh).n)....).n︸ ︷︷ ︸
N times

= CN (x0) · nN (294)

This tensor is not uniquely determined, as only its right-side products by
symmetric (N + 1) − th order tensors are determined. We may impose its
right side symmetry and by using 292 we can easily prove the following
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Lemma 14.22. The only tensor field CN verifying the equation 294 and
completely symmetric with respect its last N indices has the following form

CN (x) =

3∑
i=1

(
F2N−1(x, ni)⊗ (ni)N−2

)
⊗ 1

2

(
ei ⊗ ei + ei ⊗ ei

)
+ (295)

+
3∑

i=1

F1N−2 (x, fi)⊥ ⊗
(
v−1
) 1
2
(ei+1 ⊗ ei+2 + ei+2 ⊗ ei+1)+ (296)

−F0N−3(x,
̂(n1, n2, n3))⊗ v−1Š (297)

where we have introduced the third order tensor S as follows (σ ({1, 2, 3})
denotes the set of all permutations in the set {1, 2, 3})∑

π∈σ({1,2,3})
eπ(1) ⊗ eπ(2) ⊗ eπ(3) =: 6Š (298)

The previous Lemma allows us to state the following

Proposition 14.23. Given a physically admissible stress state S of grade
N. The tensor field CN the existence of which has been proven in the previous
Theorem 14.20 allows for the representation of the highest order nonvan-
ishing contact actions in S

F2N−1,F
1
N−2,F

0
N−3 (299)

This representation is exactly the one given in equations 101,102 and 103.

14.6 Representation theorem for contact k−forces with k < N.

To proceed we will need to apply Gauss divergence Theorem to a se-
quence of tensor fields defined by recursively applying the previously pre-
sented tetrahedron argument. Indeed these tensor fields will be considered
as arguments of the functionals introduced by formulas 105.

Therefore we are naturally induced to add some further regularity as-
sumptions on the considered physically admissible stress state S of grade N.
In the present work we limit ourselves to the consideration of very regular
stress states.

Hypothesis of CK+1 regularity.

For every given regular shape f the partial functions

F2K (·, f) ∈ S (300)
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are CK+1 functions.
As an obvious consequence of this assumption one easily gets that the

tensor field CN defined in 14.20 is a field of class CN .
We can now easily prove the following

Proposition 14.24. Let us consider a physically admissible stress state S

of grade N. The stress state
ˆ

S :=
{
F̂
}

defined by

F̂2J := F2J − F(∂B, {0, ...0, CN} , J)
F̂1J := F1J − F(∂∂B, {0, ...0, CN} , J)
F̂0J := F0J − F(∂∂∂B, {0, ...0, CN} , J)

(301)

is physically admissible, verifies the Hypothesis 14.6 and is a stress state of
grade not greater than N − 1.

Proof. The demonstration is obtained by remarking that because of 14.23

the definition 301 has all vanishing the actions
{
F̂2N−1, F̂

1
N−2, F̂

0
N−3

}
.Therefore

the stress state
ˆ

S cannot have a grade greater than N − 1. Then the defini-
tion itself of the functional F assures that

ˆ

S verifies the regularity condition
14.6. Finally a simple integration by parts argument allows us to conclude

that
ˆ

S is physically admissible.

Definition 14.25. It is possible to apply recursively the tetrahedron argu-
ment and the previous proposition to defined the set of tensors CK where
1 < k ≤ N.

Remark 14.26. Because of Hypothesis 14.6 the tensor fields CK have all
the k − th order derivatives and these derivatives are continuous.

With a simple recursive argument it is then possible to prove the follow-
ing

Theorem 14.27. Existence of Generalized Cauchy Stress Tensors.
Given a physically admissible stress state S =

{
F2J ,F

1
J ,F

0
J

}
of grade N. Then

the following representation formula holds

F2J = F(∂B, {C2, C3..., CN} , J)
F1J = F(∂∂B, {C2, C3..., CN} , J)
F0J = F(∂∂∂B, {C2, C3..., CN} , J)

(302)
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In other words: for every physically admissible stress state of grade N there
exists a N − tuple of stress tensors which allow for the representation of all
admissible contact actions.

15 Conclusions

In this work it is proven, for the class of N − th gradient continua, that
the approach à la Cauchy and the approach à la d’Alembert are absolutely
equivalent.

There are several aspects of the studied theory which deserve further
investigations. We list here few of them.

1. It is needed to study contact actions on contact surfaces in which
there are present curves of discontinuity of Gaussian curvature or its
derivatives.

2. Cauchy tetrahedron argument needs to be extended to Cosserat-type
continua, where further kinematical descriptors, in addition to place-
ment, are introduced.

3. The weakest regularity assumptions for introduced fields which allow
for a Cauchy type representation theorem need to be found.

4. More singular types of wedge shapes need to be introduced and studied
as parts of admissible Cauchy cuts.
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capillarité’, C. R. Acad. Sci. Paris, t. 300, Série II, N. 7 231–233
(1985).

[17] A. Carcaterra , A. Akay , I.M. Koc Near-irreversibility in a con-
servative linear structure with singularity points in its modal
density Journal of the Acoustical Society of America 119 4 2141-2149
(2006)

[18] A. Carcaterra Ensemble energy average and energy flow rela-
tionships for nonstationary vibrating systems Journal of Sound
and Vibration 288, 3, 751-790 (2005)

[19] F.Collin, R.Chambon and R.Charlier A finite element method
for poro mechanical modelling of geotechnical problems us-
ing local second gradient models. Int. J. Num. Meth. Engng. 65,
1749–1772 (2006).

[20] G. Colonnetti, Scienza delle costruzioni, Torino, Edizioni scien-
tifiche Einaudi, 3o ed., (1953-57).

[21] E. Cosserat and F. Cosserat Note sur la théorie de l’action eu-
clidienne. Paris, Gauthier-Villars, (1908).

[22] E. Cosserat, and F. Cosserat Sur la Théorie des Corps
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Abstract. These notes begin with a review of the mainstream
theory of brittle fracture, as it has emerged from the works of Grif-
fith and Irwin. We propose a re-formulation of that theory within
the confines of the calculus of variations, focussing on crack path
prediction. We then illustrate the various possible minimality cri-
teria in a simple 1d-case as well as in a tearing experiment and
discuss in some details the only complete mathematical formula-
tion so far, that is that where global minimality for the total energy
holds at each time. Next we focus on the numerical treatment of
crack evolution and detail crack regularization which turns out to
be a good approximation from the standpoint of crack propagation.
This leads to a discussion of the computation of minimizing states
for a non-convex functional. We illustrate the computational issues
with a detailed investigation of the tearing experiment.

1 From Griffith to the variational

In this section, the starting premise is Griffith’s model for crack evolution, as
presented in Griffith (1920). Of course, continuum mechanics has evolved
and it would make little sense to present fracture exactly as in Griffith
(1920). The reader will find below what we believe to be a very classical
introduction to brittle fracture within a rational mechanical framework.

Our starting assumptions are two-fold. First we restrict our focus to
quasi-static evolution, a huge restriction: At each time, the investigated
sample is in static equilibrium with the loads that are applied to it at that
time. We use the blanket label “loads” for both hard devices (displacement
type boundary conditions) and soft devices (traction type boundary condi-
tions and/or body forces). Then, we do not concern ourselves with changes
in temperature, implicitly assuming that those will not impact upon the
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mechanics of the evolution: in particular, thermal expansion is not covered
by this model, at least to the extent that it couples thermal and mechanical
effects. However, thermal stresses induced by a known temperature field
fall squarely within the scope of the forthcoming analysis.

Also, we only discuss the 2d-case in this section. However, it will be
clear that the resulting formulation applies as well to dimensions 1 and 3.

We consider Ω, a bounded open domain of R2. That domain is filled
with a brittle elastic material. At this level of generality, the type of elas-
tic behavior matters little, as long as it is represented by a bulk energy
F �→W (F ) which will be assumed to be a function of the gradient of the
deformation field ϕ; in linearized elasticity W will become a function of
e(u) := 1

2 (∇u+∇ut) with ϕ(x) = x+ u(x).
Time dependent loads are applied to Ω. We will assume that the force

part of the load is given in the reference configuration (that is defined on
Ω). Those are
• body forces denoted by fb(t) and defined on Ω;
• surface forces denoted by fs(t) and defined on ∂sΩ ⊂ ∂Ω;
• boundary displacements denoted by g(t) and defined on ∂dΩ := ∂Ω \
∂sΩ. Precisely, we assume throughout that g(t) is defined and smooth
enough on all of R2 and that the boundary displacement is the trace
of g(t) on ∂dΩ.

1.1 Griffith’s theory

Griffith’s theory is purely macroscopic. The crack or cracks are discon-
tinuity surfaces for the deformation field of the continuum under investiga-
tion. If that continuum behaves elastically, material response under external
loading will be unambiguous once the laws that preside over the onset and
propagation of the crack(s) are specified. The construction of such laws –
the goal of Griffith’s theory – requires three foundational ingredients,
1. A surface energy associated to the surfaces where the deformation is
discontinuous;

2. A propagation criterion for those surfaces;
3. An irreversibility condition for the cracking process.
The surface energy adopted by Griffith is simple. Throughout the crack-

ing process, a(n isotropic) homogeneous material spends an energy amount
which remains proportional to the area of the surface of discontinuity. We
call fracture toughness of the material the proportionality factor, and denote
it by k.

A simple counting argument demonstrates that, if inter-atomic bonding
is ruled by a Lennard-Jones type interaction potential, then the add-energy
spent in moving two atoms apart while the remaining atoms stay put is
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additive, which ultimately yields a total (macroscopic) energy proportional
to the separation area. In the absence of contact the crack lips do not
interact and cohesiveness is prohibited.

The propagation criterion is energy based. The test is a balance between
the potential energy released through a virtual increase of the crack length
(area) and the energy spent in creating additional length (area). The crack
will extend only if the balance favors creation.

Finally a crack will form where and at the time at which the displacement
field becomes discontinuous. It will then stay so forever, oblivious to the
actual state of displacement at any posterior time.

We now formulate Griffith’s view of the crack evolution problem in a(n
isotropic) homogeneous elastic material. For now, the crack path Γ̂ is as-
sumed to be known a priori. We wish to include partial debonding as
a possible crack behavior, so that Γ̂ ⊂ Ω \ ∂sΩ. The crack at time t is
assumed to be a time increasing connected subset of Γ̂; it can thus live par-
tially, or totally on ∂Ω. It is therefore completely determined by its length
l and denoted by Γ(l).

By the quasi-static assumption, the cracked solid (see Figure 1.1.1) is,
at each time, in elastic equilibrium with the loads that it supports at that
time; in other words, if the crack length at that time is l, then the kinematic
unknown at that time, ϕ(t, l) (the transformation, or displacement) satisfies

�d�

path �
�

���� fs

Figure 1.1.1. The cracked solid.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div ∂W

∂F
(∇ϕ(t, l)) =fb(t) in Ω \ Γ(l)

ϕ(t, l) =g(t) on ∂dΩ\ Γ(l)

∂W

∂F
(∇ϕ(t, l))n =fs(t) on ∂sΩ\Γ(l)

∂W

∂F
(∇ϕ(t, l))n =0 on Ω ∩ Γ(l)

(1.1.1)

where n denotes the appropriate normal vector.
The last relation in (1.1.1) calls for several comments. In an anti-plane

shear setting, it merely states, in accord with Griffith’s premise, the absence
of cohesive forces along the crack lips. In a planar situation, it implicitly
assumes separation of the crack lips, hence non-interpenetration.

The system (1.1.1) assumes that the crack length is known. Griffith’s
contribution is to propose the following criteria for the determination of that
length. At time t, compute the potential energy associated to the crack of
length l, that is

P(t, l) :=
∫
Ω\Γ(l)

W (∇ϕ(t, l)) dx−F(t, ϕ(t, l)) (1.1.2)

with

F(t, ϕ) :=
∫
Ω

fb(t).ϕ dx+

∫
∂sΩ

fs(t).ϕ ds. (1.1.3)

Then, l(t) must be such that it obeys

• The Griffith’s criterion:

i. l
t

↗ (the crack can only grow);

ii. −∂P
∂l
(t, l(t)) ≤ k (the energy release rate is bounded from above by

the fracture toughness);

iii.

(
∂P
∂l
(t, l(t)) + k

)
l̇(t) = 0 (the crack will not grow unless the energy

release rate is critical).

Remark 1.1.1 From a thermodynamical viewpoint, Griffith’s criterion should
be interpreted as follows. The crack length is a global internal variable,
and its variation induces a dissipation which must in turn satisfy Clausius–
Duhem’s inequality.
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A convenient enforcement of Clausius–Duhem’s inequality is provided
through the introduction of a convex dissipation potential D(l̇), further sat-
isfying D(0) = 0. Then, the inequality reduces to

−∂P
∂l
(t, l(t)) ∈ ∂D(l̇(t)). (1.1.4)

The correct dissipation potential in Griffith’s setting is denoted by DG and
given by (see Figure 1.1.2)

DG(l̇) :=

{
kl̇, l̇ ≥ 0

∞, l̇ < 0,
(1.1.5)

and (1.1.4) then yields precisely Griffith’s criteria. So, summing up, Grif-
fith’s modeling of crack evolution reduces to (1.1.1), (1.1.4) with (1.1.5) as
dissipation potential.

Irreversibility

forbidden

region

Figure 1.1.2. Griffith dissipation potential.

Note that the the dissipation potential is positively 1-homogeneous. This
is an essential feature if adopting a variational viewpoint.

We are now ready to explore the system (1.1.1), (1.1.4). For complete-
ness, we should add an initial condition to (1.1.4); we will thus assume
that

l(0) = l0, (1.1.6)

and denote, from now onward, any pair-solution (l(t), ϕ(t, l(t))), if it exists,
by (l(t), ϕ(t)).
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1.2 A variational equivalence

Assuming suitable – and unstated – smoothness of all relevant quanti-
ties, we propose to establish the equivalence between the original system
(1.1.1), (1.1.4), (1.1.6) and a formulation which states that a certain energy
must remain stationary at every time among all virtual admissible crack-
displacement pairs at that time, and that an energy conservation statement
must be satisfied throughout the time evolution. This is the object of the
following

Proposition 1.2.1 The pair (l(t), ϕ(t)) (satisfying (1.1.6)) satisfies (1.1.1),
(1.1.4) (with appropriate smoothness) on [0, T ] iff, for every t ∈ [0, T ], it
satisfies (with that same smoothness)

(Ust) (l(t), ϕ(t)) is a stationary point – in the sense of (1.2.5) below – of

E(t;ϕ, l) :=
∫
Ω\Γ(l)

W (∇ϕ) dx−F(t, ϕ) + kl, (1.2.1)

among all l ≥ l(t) and ϕ = g(t) on ∂dΩ \ Γ(l);
(Ir)

l̇(t) ≥ 0 ; (1.2.2)

(Eb)
dE

dt
(t)=

∫
∂dΩ\Γ(l(t))

∂W

∂F
(∇ϕ(t))n.ġ(t) ds− Ḟ(t, ϕ(t))

with

Ḟ(t, ϕ) :=

∫
Ω

ḟb(t).ϕ dx+

∫
∂sΩ

ḟs(t).ϕ ds (1.2.3)

E(t) :=

∫
Ω\Γ(l(t))

W (∇ϕ(t)) dx−F(t, ϕ(t)) + kl(t)

= P(t, l(t)) + kl(t). (1.2.4)

The unilateral stationarity statement (Ust) is rather unusual because
the functional E(t; ·) that should be stationary at (l(t), ϕ(t)) explicitly de-
pends on l(t); hence the label unilateral. The energy balance (Eb) can be
turned, through various integration by parts in time, into what is referred
to in the literature as the mechanical form of the second law of thermody-
namics; see e.g. Gurtin (2000).

Proof. First we should clearly articulate what is meant by (Ust). To this
effect, we introduce a one-parameter family of variations of the kinematic
variable ϕ(t) and of the crack length l(t) as follows. We set

l(t, ε) := l(t) + εl̂; l̂ ≥ 0; ϕ(t, ε, l) := ϕ(t, l) + εψ(t, l),
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where ψ(t, l) = 0 on ∂dΩ \ Γ(l) and ϕ(t, l(t)) = ϕ(t). Then, unilateral
stationarity is meant as

d

dε
E(t;ϕ(t, ε, l(t, ε)), l(t, ε))

∣∣∣
ε=0

≥ 0. (1.2.5)

Recall the expression (1.2.1) for E . Then, the above also reads as∫
Ω\Γ(l(t))

∂W

∂F
(∇ϕ(t)).∇ψ dx−F(t, ψ) + ∂P

∂l
(t, l(t)) l̂ + kl̂ ≥ 0,

where we recall that P was defined in (1.1.2). Consequently, through inte-
gration by parts, (Ust) is equivalent to

(1.1.1) and
∂P
∂l
(t, l(t)) + k ≥ 0. (1.2.6)

Then, assume that (Ust), (Ir), (Eb) hold. In view of the above, (1.1.1)
is satisfied, so that (Eb) reduces to

(
∂P
∂l
(t, l(t)) + k)l̇ = 0. (1.2.7)

Conversely, if (1.1.1) holds true, then

dE

dt
(t) =

∫
∂dΩ\Γ(l(t))

∂W

∂F
(∇ϕ(t)).ġ(t) ds− Ḟ(t, ϕ(t))

+ {∂P
∂l
(t, l(t)) + k)l̇(t)}, (1.2.8)

and, in view of the third item in Griffith’s criterion, the term in brackets in
(1.2.8) cancels out and (Eb) is established.

The second item in Griffith’s criterion, together with (1.1.1), implies
(Ust). �

Remark 1.2.2 Elimination of the kinematic field in the variational for-
mulation leads to the sometimes more convenient equivalent formulation
for (Ust).
(Ust) l(t) is a stationary point of P(t, l) + kl, among all l ≥ l(t).

Modulo smoothness, Griffith’s formulation and the variational formula-
tion obtained in Proposition 1.2.1 are strictly one and the same and cannot
be opposed on mechanical grounds anymore than the original formulation.
Pre-assuming smoothness is universal practice in deriving a notion of weak
solution, so that we feel perfectly justified in doing so, and will be quite
qualify as “weak” the solutions of what we will, from now onward, label the
“variational evolution”.
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Remark 1.2.3 Consider the case of a p > 1-homogeneous elastic energy
density and of a monotonically increasing load, that is

W (tF ) = tpW (F ), F(t, tu) = tpF(1, u), g(t) = t g,

where u is the displacement field. Then, by homogeneity,

u(t, l) = tū(�), P(t, l) = tpP̄(l),
where P̄(l) is the potential energy associated to a crack of length l and loads
corresponding to the value t = 1. We assume that P̄ is a sufficiently smooth
function of l. Then it can be shown that that energy is a strictly convex
function of l on [l0, l1], if, and only if Griffith’s criterion is satisfied by a
unique smooth crack propagation l(t) on [t0, t1] given by

l(t) = (P̄ ′)−1

(
− k

tp

)
, t1 =

p

√
k

−P̄ ′(l1)
. (1.2.9)

Then, at each time t, −tpP̄ ′(l(t)) = k.
Thus, smoothness of the propagation leads to a reinforcement of the uni-

lateral stationarity principle (Ust). The crack length l(t) must actually be
a minimizer for P(t, l) + kl, because of the necessary convexity of P.

So Griffith’s criterion, because it assumes smoothness of the crack evo-
lutions, implicitly pre-supposes the global convexity of the potential energy
as a function of the crack length.

Stationarity is not a very pleasant mathematical notion from the stand-
point of existence and it it is tempting to somewhat strengthen (Ust). Ob-
serve that (Ust) amounts to a first order optimality condition for (l(t), ϕ(t)))
to be a local unilateral minimizer – in any reasonable topology – of E(t; ·).

The preceding analysis suggests the adoption of some kind of minimality
principle. Consequently, we propose the following two levels of departure
from Griffith’s classical theory:
• Local level – (Ust) is replaced by
(Ulm) (l(t), ϕ(t)) is a local minimizer (in a topology that remains to be
specified) for E(t;ϕ, l) among all l ≥ l(t) and all ϕ = g(t) on ∂dΩ\Γ(l);

• Global level – (Ust) is replaced by
(Ugm) (l(t), ϕ(t)) is a global minimizer for E(t;ϕ, l) among all l ≥ l(t)
and all ϕ = g(t) on ∂dΩ \ Γ(l).

Those criteria are common in mechanics, but can never be justified on
mechanical grounds, at least when departing from a purely convex setting.
Local minimality is equivalent to Lyapunov stability for systems with a
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finite number of degrees of freedom, while the modern treatment of finite
elasticity usually resorts to global minimality of the potential energy. Of
course, in our setting, the minimization criterion, be it global or local, must
also accommodate irreversibility, hence the already mentioned notion of
unilaterality.

We now return to the time-continuous variational evolution and recast
it in a more suitable functional framework.

1.3 Functional framework– A weak variational evolution

Using a minimality criterion immediately frees the crack path. Indeed,
the minimality-modified Griffith variational evolution states that the actual
length l(t) of the crack is a local (or global) minimum among all lengths l
greater than, or equal to l(t) along the pre-determined crack path Γ̂. There
is then no point in restricting the future evolution precisely to the curve Γ̂.
We may as well let the crack choose which future path it wishes to borrow,
according to the minimality principle.1 Thus, denoting by Γ(t) the crack at
time t, we replace (Ulm), resp. (Ugm) by

(Ulm) (Γ(t), ϕ(t)) is a local minimizer (in a topology that remains to be
specified) for

E(t;ϕ,Γ) :=
∫
Ω\Γ

W (∇ϕ) dx−F(t, ϕ) + kH1(Γ), (1.3.1)

among all Γ ⊃ Γ(t) and all ϕ = g(t) on ∂dΩ \ Γ; or, resp.,
(Ugm) (Γ(t), ϕ(t)) is a global minimizer for E(t;ϕ,Γ) among all Γ ⊃ Γ(t) and

all ϕ = g(t) on ∂dΩ \ Γ.
Note that the test ϕ’s depend on the test Γ’s. Correspondingly, we also
replace (1.1.6) by

(Ic) Γ(0) = Γ0,

(1.2.2) by

(Ir) Γ(t)
↗
t ,

and the definition (1.2.4) of E(t) in (Eb) by

E(t) :=

∫
Ω\Γ(t)

W (∇ϕ(t)) dx−F(t, ϕ(t)) + kH1(Γ(t))

= P(t,Γ(t)) +kH1(Γ(t)), (1.3.2)

1It is precisely that freedom which truly distinguishes our approach from those usually

adopted in mechanics; it is also precisely that freedom which confuses the mechanician,

enslaved from a very early stage to a preconceived notion of what the crack can or

cannot do.
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with an obvious extension of the definition (1.1.2) of the potential energy
P.

We allow the test cracks Γ to be pretty much any closed set in Ω \ ∂sΩ
with finite Hausdorff measure. This allows us to envision very rough cracks,
with length that coincide with the usual length when the crack is a rectifiable
curve. We do not allow for the crack to lie on ∂sΩ because the crack cannot
live where soft devices are applied.

We shall refer to the above formulation, that is (Ic), (Ulm) or (Ugm),
(Ir), (Eb), as the strong variational evolution.

Local minimality directly refers to a topology, whereas global minimality
is topology-independent. But, even then, we need to impart upon test cracks
a decent topology. A natural candidate is the Hausdorff metric, defined for
two closed sets A,B as

dH(A,B); = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

Examine for instance the initial time in the global minimality context with
Γ0 = ∅, fb(0) = fs(0) = 0. Then, we should minimize∫

Ω\Γ
W (∇ϕ) dx+ kH1(Γ)

among all pairs (Γ, ϕ) with ϕ = g(0) on ∂dΩ \ Γ. The direct method of the
calculus of variations would have us take an infimizing sequence {(Γn, ϕn)}.
In particular, we are at liberty to assume that H1(Γn) ≤ C. Say that the
sequence Γn converges in the Hausdorff metric to some Γ; this is not a
restriction, thanks to Blaschke’s compactness theorem Rogers (1970). Then
we would like to have

H1(Γ) ≤ lim inf
n

H1(Γn).

But, this is generically false, except in 2d and for, say, connected Γn’s! That
topology has been used with success to prove existence, in the global min-
imality framework, for the 2d variational evolution restricted to connected
cracks in Dal Maso and Toader (2002). We shall come back to this point in
Section 3.

In the context of image segmentation, D. Mumford and J. Shah proposed
to segment image through the following algorithm: Find a pair K, compact
of Ω ⊂ R2 (the picture) representing the contours of the image in the picture,
and ϕ, the true pixel intensity at each point of the picture, an element of
C1(Ω \K), which minimizes
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∫
Ω\K

|∇ϕ|2 dx+ kH1(K) +

∫
Ω

|ϕ− g|2 dx, (1.3.3)

where g is the measured pixel intensity. The minimization proposed in
Mumford and Shah (1989) was then shown in De Giorgi et al. (1989) to
be equivalent to a well-posed one-field minimization problem on a subspace
SBV (Ω) of the space BV (Ω) of functions with bounded variations on Ω,
namely, ∫

Ω

|∇ϕ|2 dx+ kH1(S(ϕ)) +

∫
Ω

|ϕ− g|2 dx, (1.3.4)

where ∇ϕ represents the absolutely continuous part of the weak derivative
of ϕ (a measure), and S(ϕ) the set of jump points for ϕ.

We recall that a function ϕ : Ω �→R is in BV (Ω) iff ϕ ∈ L1(Ω) and
its distributional derivative Dϕ is a measure with bounded total variation.
Then, the theory developed by E. De Giorgi (see e.g. Evans and Gariepy
(1992)) implies that

Dϕ = ∇ϕ(x) dx+ (ϕ+(x)− ϕ−(x))ν(x)H1�S(ϕ) + C(ϕ),

with ∇ϕ, the approximate gradient, ∈ L1(Ω) (∇ϕ is no longer a gradient),
S(ϕ) the complement of the set of Lebesgue points of ϕ, a H1 σ–finite and
countably 1-rectifiable set (a countable union of compacts included in C1–
hypersurfaces, up to a set of 0 H1–measure), ν(x) the common normal to all
those hypersurfaces at a point x ∈ S(ϕ), ϕ±(x) the values of ϕ(x) “above
and below” S(ϕ), and C(ϕ) a measure (the Cantor part) which is mutually
singular with dx and with H1 (it only sees sets that have 0 Lebesgue–
measure and infinite H1–measure). The subspace SBV (Ω) is that of those
ϕ ∈ BV (Ω) such that C(ϕ) ≡ 0. It enjoys good compactness properties
established in Ambrosio (1990), namely

ϕn ∈ SBV (Ω) with

⎧⎪⎪⎨⎪⎪⎩
ϕn bounded in L∞(Ω)

∇ϕn bounded in Lq(Ω;R2), q > 1

H1(S(ϕn)) bounded in R334
∃{ϕk(n)} ⊂ {ϕn}, ∃ϕ ∈ SBV (Ω) s.t.⎧⎪⎪⎨⎪⎪⎩

ϕk(n) → ϕ, strongly in Lp(Ω), p <∞
∇ϕk(n) ⇀ ∇ϕ, weakly in Lq(Ω;R2)

H1(S(ϕ)) ≤ lim infnH1(S(ϕk(n))

(1.3.5)
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Thanks to Ambrosio’s compactness result, a simple argument of the
direct method applied to (1.3.4) establishes existence of a minimizer ϕg

for that functional. The further result that the pair
(
ϕg, (S(ϕg))

)
is a

minimizer for (1.3.3) is highly non-trivial and makes up the bulk of De Giorgi
et al. (1989).

In De Giorgi’s footstep, we thus reformulate the variational evolution in
the weak functional framework of SBV , or rather of those functions that
have all their components in SBV , the jump set S(ϕ) becoming the union
of the jump set of each component of ϕ. To do this, it is more convenient
to view the hard device g(t) as living on all of R2 and to integrate by parts
the boundary term involving ġ(t) in (Eb). So, after elementary integrations
by parts, we propose to investigate

• The weak variational evolution : Find (ϕ(t),Γ(t)) satisfying

(Ic) Γ(0) = Γ0;
(Ulm) (Γ(t), ϕ(t)) is a local minimizer (in a topology that remains to be

specified) for

E(t;ϕ,Γ) :=
∫
Ω

W (∇ϕ) dx−F(t, ϕ) + kH1(Γ), (1.3.6)

among all Ω\∂sΩ ⊃ Γ ⊃ Γ(t) and all ϕ ≡ g(t) on R2\Ω with S(ϕ) ⊂ Γ;
or, resp.,

(Ugm) (Γ(t), ϕ(t)) is a global minimizer for E(t;ϕ,Γ) among all Ω \ ∂sΩ ⊃
Γ ⊃ Γ(t) and all ϕ ≡ g(t) on R2 \ Ω with S(ϕ) ⊂ Γ;

(Ir) Γ(t)
↗
t ;

(Eb)
dE

dt
(t) =

∫
Ω

∂W

∂F
(∇ϕ(t)).∇ġ(t) dx− Ḟ(t, ϕ(t))−F(t, ġ(t))

with
E(t) = E(t;ϕ(t),Γ(t)). (1.3.7)

Remark that, in spite of the previous considerations on SBV , we have
not explicitly indicated where ϕ (or ϕ(t)) should live. This is because,
when dealing with vector-valued SBV -functions (the case of plane (hy-
per)elasticity, for example), that space – that is the Cartesian product of
SBV for each of the component – is not quite sufficient. One should really
work in GSBV Dal Maso et al. (2005). Forget about that here.

Likewise, it is not so that the crack should belong to Ω \ ∂sΩ. Any
rigorous analysis will actually require ∂sΩ, the site of application of the
surface forces, to be part of the boundary of a non-brittle piece of the
material. In other words, we should single out a thin layer around ∂sΩ with
infinite fracture toughness. This also will be overlooked in the sequel.
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Also the test cracks Γ do not have to be even essentially, i.e., up to a set
of H1-measure 0, closed subsets of Ω \ ∂sΩ, but only countably 1-rectifiable
curves. Whether the actual crack Γ(t) that could be produced through the
weak variational evolution is closed or not will be deemed a question of
regularity and briefly commented upon in Paragraph 3.4 in the setting of
global minimization.

Finally, as before, the same labels have been kept. The context will
clearly indicate if the relevant formulation is weak or strong.

Remark 1.3.1 The crack Γ(t) can be identified with Γ0 ∪
[⋃

s≤t S(ϕ(s))
]
;

see Dal Maso et al. (2009).

The recasting of Griffith’s evolution model in a variational framework is
now complete.

2 Stationarity versus local or global minimality – a
comparison

We wish to explore the consequences of minimality. The adopted setting,
or rather settings, for such an analysis are designed so that the “crack
path” is not at stake. Nor is irreversibility a concern here because the
monotonicity of the loads combined with the geometry of the problems result
in an increase of both the measure of the discontinuity set and the magnitude
of the discontinuities on that set. The focus is squarely on minimality,
although, at times energy balance (Eb) will also be invoked.

The two settings are
1. A 1d-traction experiment under a hard or a soft device;
2. A 2d-tearing experiment.
In the first setting, cracks are merely points of discontinuity along the

bar; in the second setting, symmetry of the geometry and of the loads sug-
gests a straight crack path in mode III. In both settings, we assess the
potential existence of weak variational evolutions satisfying unilateral sta-
tionarity (Ust), unilateral minimality (Ulm), or still unilateral global min-
imality (Ugm), together with energy balance (Eb).

2.1 1d traction

A “crack-free” homogeneous linearly elastic bar of length L, cross-sectional
area Σ, Young’s modulus E, toughness k is clamped at x = 0 and subject
to a displacement load εL, 0 ≤ ε ↗ (hard device), or to a force load
σΣ, 0 ≤ σ ↗ (soft device) at x = L. The parameters σ, ε play the role of
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the time variable. Thus, all evolutions will be parameterized by either σ,
or ε. The results are concatenated in Conclusions 2.1.1, 2.1.4.

The soft device Assume that u is an admissible displacement field for a
value σ of the loading parameter; that field may have jumps S(u) ⊂ [0, L],
or it may correspond to the elastic state, in which case it lies in W 1,2(0, L).
In any case we view it as a field defined in SBV (R) and such that u ≡
0 on (−∞, 0). Its associated energy is

E(σ, u) = 1

2

∫
(0,L)

EΣ(u′)2 dx− σΣu(L+) + kΣ#(S(u)), (2.1.1)

and that energy will only be finite if S(u) is finite and u′ ∈ L2(0, L), which
we assume from now onward. This in turn implies that we may as well
restrict the admissible fields to be in SBV (R) ∩ L∞(R). Then,

Conclusion 2.1.1 In a 1d traction experiment with a soft device, the elas-
tic evolution is the only one that satisfies the weak variational evolution
with either (Ust), or (Ulm), and (Eb). There is no solution to the weak
variational evolution with (Ugm) and (Eb).

Remark 2.1.2 Testing the elastic solution against non-interpenetrating jumps
is easy, since it suffices to restrict test jumps to be non-negative. In this
context, the elastic solution is checked to be a global minimum for σ < 0, if
non-interpenetration is imposed.

Remark 2.1.3 The above result demonstrates that soft devices prohibit
global minimality. This is a significant drawback of global minimality and
it clearly militates for a more local criterion. This has to be somewhat tem-
pered, since one can build a reasonable class of non linear soft devices for
which global minimality works; see Dal Maso et al. (2005).

The hard device The admissible deformations are still in SBV (R) and
they satisfy u ≡ 0 on (−∞, 0) and u ≡ εL on (L,∞). The associated energy
is

E(ε, u) = 1

2

∫
(0,L)

EΣ(u′)2 dx+ kΣ#(S(u)), (2.1.2)

and, once again it is only finite if #(S(u)) is finite and u′ ∈ L2(0, L), which
we assume. Then,
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Conclusion 2.1.4 In a 1d traction experiment with a hard device, the elas-
tic evolution, and all admissible evolutions with a set finite number of jumps
satisfy the weak variational evolution with (Ulm) – and also (Ust) – and
(Eb). Only ug(ε) defined as

ug(ε) =

{
εx if 0 < ε ≤

√
2k/EL

0, x ≤ a; εL, x > a if ε ≥
√
2k/EL

satisfies the weak variational evolution with (Ugm) and (Eb).
Also, all evolutions that are elastic, up to ε =

√
2ik/EL, then have i

jumps satisfy (Ulm) – and also (Ust) – and (Eb).

2.2 A tearing experiment

Consider a thin semi-infinite homogeneous, linearly elastic slab of thick-
ness 2H, Ω = (0,+∞) × (−H,+H). Its shear modulus is μ and its tough-
ness k. Tearing amounts to a displacement load tHe3 on {0}× (0,+H) and
−tHe3 on {0} × (−H, 0). The upper and lower edges are traction free and
no forces are applied.

We assume throughout that all solutions respect geometric symmetry,
although doing so cannot be justified; see in this respect the numerical
experiment in Subsection 4.3. The symmetry assumption permits to look
for anti-plane shear solution, anti-symmetric with respect to y = 0 and for
a crack along that axis. We seek a displacement solution field of the form

u(x, y, t) = sign(y)u(t, x)e3 with u(t, 0) = tH (2.2.1)

and note that such a displacement cannot be the exact solution, because it
fails to ensure the continuity of the normal stress at the points (l(t), y), y 
=
0 (see (2.2.3)). The true symmetric solution can only be evaluated numeri-
cally, but it will be close to the proposed approximate solution asH becomes
large.

The field u(t) will be discontinuous at the points x on the y = 0 - axis
where u(x, t) 
= 0, that isS(u(t)) = {x ≥ 0 : u(t, x) 
= 0}. Then, the
energy reads as

E(ϕ) =
∫ ∞

0

μH(u′(x))2dx+ k

∫ ∞

0

sg+(|u(x)|) dx,

with sg+(z) :=

{
0, z ≤ 0
1, z > 0

.

The kinematically admissible test fields u at time t are elements of
W 1,2(0,+∞) and satisfy u(t, 0) = tH. A global minimum for E exists for
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x

y

z

Figure 2.2.1. Tearing.

each t by elementary lower semi-continuity properties. We propose to show
that (Ust), (Eb) has a unique solution, which identifies with the global
minimum for E at t, which is thus unique.

Fix t. First, if u(t) is solution to (Ust), then it is such that, once it
reaches 0, it stays equal to 0. Indeed, assume that a, with 0 ≤ a, is such
that u(t, a) = 0. Take v with v = −u(t, x) in (a,∞) and v = 0 otherwise.
For h ∈ (0, 1), u+ hv is an admissible test and

E(u+ hv)− E(u) = (−2h+ h2)

∫ ∞

a

u′(t, x)2 dx

+k

∫ ∞

a

(
sg+(|(1− h)u(t, x)|)− sg+(|u(t, x)|) dx

)
= (−2h+ h2)

∫ ∞

a

u′(t, x)2 dx.

Thus, invoking (Ust),

0 ≤ d

d h
E(u+ h v)

∣∣∣∣
h=0+

≤ −2
∫ ∞

a

u′(t, x)2dx ≤ 0,

so that u(t) = 0 in (a,∞). But u(t) is continuous in x; thus, there exists
∞ ≥ l(t) > 0 such that S(u(t)) = [0, l(t)) with u(t, 0) = tH and u(t, l(t)) =
0.

We now perform an inner variation in E . Take v be in C∞0 (0,∞). When
|h| is sufficiently small, x �→φh(x) = x + hv(x) is a direct diffeomorphism
onto R+. Moreover, if u(0) = tH, uh(0) = tH and uh converges to u when
h goes to 0. The change of variables y = (φh)

−1(x) in the energy yields

E(u(t) ◦ φ−1
h ) =

∫ ∞

0

(
μH

u′(t, x)2

φ′h(x)
+ φ′h(x)k sg+(u(t, x))

)
dx,
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which in turn leads to

d

dh
E(u(t) ◦ φ−1

h )

∣∣∣∣
h=0

=

∫ ∞

0

(
− μHu′(t, x)2 + k sg+(u(t, x))

)
v′(x)dx.

Thus, provided that (Ust) holds for this kind of variations,

μHu′(t, x)2 − k sg+(u(t, x)) = c, (2.2.2)

for some constant c.
Now, take v ≥ 0 be in C∞0 (0, l(t)). Then,

d

dh
E(u(t) + hv)

∣∣∣∣
h=0

= −2μH
∫ l(t)

0

u′′(t, x)v(x)dx.

Thus, invoking (Ust) again, we get that, on (0, l(t)), u′′ ≤ 0, that is that
u′ is monotonically decreasing there.

Now, if l(t) were infinite, we would have from (2.2.2) that u′ ≡ d, some
negative constant, which contradicts the convergence of u to 0 at infinity.
Thus l(t) is finite and u′ ≡ 0 on (l(t),∞), hence c = 0, and

u′(t, x) = −
√
k sg+(u(t, x))

μH
, x > 0, u(0) = tH. (2.2.3)

We then conclude that the solution u(t) to (Ust) is unique and that it
is given by

S(u) = [0, l(t)) with l(t) = tH

√
μH

k
,

while

u(t, x) = tH

(
1− x

l(t)

)+

.

Also note that l(t) and u(t) increase with t, so that irreversibility is
automatic, while energy balance is guaranteed by the evoked smoothness of
u(t).

Here, in contrast with the setting of Subsection 2.1, unilateral station-
arity, unilateral local, or unilateral global minimality are indistinguishable,
at least for an increasing load.

Remark 2.2.1 Note the surreptitious assumption that inner variations are
valid tests for stationarity. In the presentation of Section 1, stationarity was
introduced in the form of a combination of outer and inner variation (see
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(1.2.5)). It is in that sense that the re-formulated problem of Proposition
1.2.1 was equivalent to the original problem (1.1.1), (1.1.4) and an investi-
gation of possible additional constraints on that problem resulting from the
introduction of inner variations should be undertaken.

For a given length l of the tear (crack), the total energy at time t is
immediately seen to be μH3t2/l + kl, hence strictly convex in l, so that,
according to Remark 1.2.3, the smoothness of the evolution l(t) is hardly
surprising.

3 Global minimality

In a Griffith setting, irreversibility is a simple notion: the crack can only
extend with time,

Γ(t) ⊃ Γ(s), s < t.

With that notion in mind, we now discuss the variational evolution in a
global minimality setting, noting that existence in such a context will auto-
matically provide existence of that evolution for any kind of local minimality
criterion. Once again, the argument put forth in Paragraph 2.1 (see Remark
2.1.3) essentially prohibits force loads. We thus assume throughout this sub-
section that the only load is a displacement g(t) defined on ∂dΩ, or rather,
as we saw earlier in Subsection 1.3, on R2 \ Ω.

3.1 Discrete evolution

As mentioned in the Introduction, the basic tool is also the natural
computational tool: time discretization over the interval [0, T ]. We thus
consider

t0 = 0 < tn1 < ...... < tnk(n) = T with k(n)
n

↗∞, Δn := tni+1 − tni
n

↘ 0.

Time-stepping the strong or weak minimality condition (Ugm), we obtain

(Sde) The strong discrete evolution: Find (Γni+1, ϕ
n
i+1) a minimizer for

min
ϕ,Γ

{∫
Ω\Γ

W (∇ϕ) dx+ kH1(Γ \ ∂sΩ) :

ϕ = g(tni+1) on ∂dΩ \ Γ; Γ ⊃ Γni

}
;

resp.
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(Wde) The weak discrete evolution: Find ϕn
i+1 a minimizer for

min
ϕ

{∫
Ω

W (∇ϕ) dx+ kH1(S(ϕ) \ (Γni ∪ ∂sΩ)) :

ϕ = g(tni+1) on ∂dΩ \ S(ϕ)
}
;

then, Γni+1 = Γni ∪ (S(ϕn
i+1) \ ∂sΩ).

The balance (Eb) seems to have been forgotten all together in the dis-
crete evolution, yet it will reappear in the time-continuous limit of those
evolutions.

The first mathematical issue to confront is the existence of a solution
to those discrete evolutions. As we mentioned before in Subsection 1.3, we
cannot expect, even in 2d, a direct existence proof for the strong discrete
evolution without imposing further restrictions on the class of admissible
cracks. This is easily understood through the Neumann sieve example Mu-
rat (1985).

A Neumann sieve situation occurs when boundaries close up at a critical
speed that creates channels of non–zero capacity in the domain. For exam-
ple, consider Ω = (−1, 1)2 and assume, in a linear anti-plane shear setting,

that the crack Γn is given as {0} × [−1, 1] \
( ⋃

p=−n,...,n

( p
n
−e−n,

p

n
+e−n

))

�n�0 �n�1�n

Figure 3.1.1. The Neumann sieve.

with

ϕn =

{
0 on {x1 = −1},
1 on {x1 = 1}.
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Then ϕn satisfies

−Δϕn = 0 on Ωn := (−1, 1)2 \ Γn,

with
∂ϕn

∂ν
= 0 on all boundaries of Ω \Γn, except {x1 = ∓1}. According to

the results in Murat (1985) ϕn → ϕ strongly in L2(Ω), with Ω = [(−1, 0) ∪
(0, 1)]× (−1, 1) and ϕ is the solution, for some μ
= 0 of

−Δϕ = 0 on Ω,

with⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ϕ

∂x2
= 0 on ∂Ω ∩ {x2 = ±1}

ϕ = 0, resp. 1 on {−1} × (−1, 1), resp. {1} × (−1, 1)
∂ϕ

∂x1
= μ[ϕ] on {0} × (−1, 1).

Hence ϕn does not converge to the solution

ϕ̂ = 0 on (−1, 0)× (−1, 1); 1 on (0, 1)× (−1, 1)

of the Neumann problem on Ω \ Γ, with Γ = {0} × (−1, 1).
The Neumann sieve must thus be prevented so as to ensure the very

existence of a pair-solution to the strong discrete evolution at each time
step. A possible exit strategy consists in “prohibiting” disconnected cracks.
A result of Chambolle and F. Doveri Chambolle and Doveri (1997) (see also
Bucur and Varchon (2000)) states that, if Ω is a Lipschitz two dimensional
domain and {Γn} is a sequence of compact connected sets with H1(Γn) ≤ C
and such that it converges – for the Hausdorff metric – to Γ, the solution
to a Neumann problem of the form⎧⎪⎨⎪⎩

−Δϕn + ϕn = g in Ω \ Γn

∂ϕn

∂ν
= 0 on ∂[Ω \ Γn]

is such that ϕn, ∇ϕn
n−→ ϕ,∇ϕ, strongly in L2(Ω), with ϕ solution to⎧⎪⎨⎪⎩
−Δϕ+ ϕ = g in Ω \ Γ

∂ϕ

∂ν
= 0 on ∂[Ω \ Γ]
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An adaptation of that result by Dal Maso and Toader Dal Maso and Toader
(2002) proves the existence of a minimizer to the strong discrete evolution
at each time step under the restriction that the cracks have an a priori
set number of connected components. In turn, Chambolle in Chambolle
(2003) proves an analogous result for plane elasticity. We will not discuss
the strong evolution any further in these notes.

Note that the connectedness restriction can be weakened to include
cracks with an a priori set number of connected components Dal Maso and
Toader (2002).

The discrete weak evolution behaves better as far as existence is con-
cerned. Indeed, existence is a direct consequence of Ambrosio’s compact-
ness result (1.3.5), together with the following lower semi-continuity result
which applies to the kind of elastic energy under consideration and to the
sequence ϕn in (1.3.5) (see Ambrosio (1994))∫

Ω

W (∇ψ)dx ≤ lim inf
n

∫
Ω

W (∇ϕn) dx. (3.1.1)

(There is a slight modification in (1.3.5) which consists in replacing H1 by
H1�(Γni ∪ ∂sΩ)c.)

To be precise, existence is established in
• The anti-plane shear case: ϕ is scalar-valued andW is convex and has
p-growth, p > 1;

• The non-linear elasticity case: ϕ is vector-valued and W is quasi-
convex with p-growth, p > 1. We refer the reader to the abundant
literature on quasi-convexity (see e.g. Ball and Murat (1984)) for
details on that notion; for our purpose, it suffices to remark that quasi-
convexity, plus growth implies sequential weak lower semi-continuity
on the Sobolev space W 1,p(Ω;R2) Ball and Murat (1984), but also,
see Ambrosio (1994), on

L∞(Ω;R2) ∩
{
ϕ ∈ SBV (Ω;R2) : ∇ϕ ∈ Lp(Ω;R2×2)

}
.

It should be noted that the growth assumption prevents the energy
density W (F ) from blowing up as detF ↘ 0, a desirable feature in
hyperelasticity; and, most recently,

• The case of finite elasticity: ϕ is vector-valued and W is poly-convex
with blow-up as detF ↘ 0 and a weak form of non-interpenetration
is imposed Dal Maso and Lazzaroni (2010). We will not consider this
case in the sequel.

Existence will not however be achieved in the setting of linearized elasticity
which thus seems confined, for the time being, to the strong formulation.
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Consider any setting for which the discrete evolution is meaningful.
Then, for a given n (a given time step), we define the piecewise in time
fields ⎧⎪⎪⎨⎪⎪⎩

ϕn(t) := ϕn
i

Γn(t) := Γni

gn(t) = g(tni )

on [tni , t
n
i+1), and, for i = −1,Γn−1 := Γ0.

Remark that irreversibility is guaranteed at the discrete level because of the
definition of Γni in terms of its predecessors. In other words, Γ

n(t)↗ with t.
Summing up, we have constructed, for each time t ∈ [0, T ], a pair

(Γn(t), ϕn(t)) such that

(Wde) The weak discrete evolution: ϕn(t) is a minimizer for

min
ϕ

{∫
Ω

W (∇ϕ) dx+ kH1(S(ϕ)\(Γn(t−Δn) ∪ ∂sΩ)):

ϕ=gn(t) on ∂dΩ\S(ϕ)
}

and Γn(t) = Γn(t−Δn) ∪ S(ϕn(t)).
Here again, the functional dependence of ϕn(t) is not specified because

it depends upon the scalar/vectorial nature of the specific problem, as well
as on the coercivity/growth properties of the bulk energy density W .

At time t = 0, generically, it is not true that Γn0 (independent of n) ≡
Γ0, but merely that Γ

n
0 ⊃ Γ0. There is an increase in the initial condition.

The goal is to pass to the limit in n and hope that the limit fields will be
solutions to the strong/weak variational evolutions. As will be seen below,
this is not a straightforward proposition.

3.2 Global minimality in the limit

A usual first step in a limit process is to obtain n-independent a priori
estimates on the fields. This will be obtained here upon testing the weak
discrete evolution (Wde) at each time by appropriate test fields. The two
choice test fields are gn(t) and ϕn(t−Δn)+g

n(t)−gn(t−Δn) (the addition of
the terms involving gn are so that the test deformations satisfy the boundary
conditions at time t).

Then, provided we impose decent regularity on g, namely

g ∈W 1,1(0, T ;W 1,p(Ω(;R2)) ∩ L∞((0, T )× Ω(;R2)), (3.2.1)
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for an energy with p>1-growth, we obtain the following a priori bounds:{ ‖∇ϕn(t)‖Lp(Ω(;R2)) ≤ C

H1(S(ϕn(t)) ≤ C,
(3.2.2)

and
H1(Γn(t)) ≤ C, (3.2.3)

together with the following upper bound on the total energy

En(t) :=

∫
Ω

W (∇ϕn(t)) dx+ kH1(Γn(t)\ ∂sΩ)

≤ En(0) +

∫ τn(t)

0

∫
Ω

∂W

∂F
(∇ϕn(s)).∇ġ(s) dx ds,

(3.2.4)

where τn(t) := sup{tni ≤ t}. Remark that the derivation of (3.2.4) actually
requires a bit of care; see Dal Maso et al. (2005), Section 6.

It remains to pass to the n–limit in the minimality statement (Wde)

under the above convergences and to avoid a Neumann sieve phenomenon
as more and more crack components accumulate at a given time when n↗.

To this effect, remark that the circumstances that presided over the
appearance of the Neumann sieve phenomenon in Paragraph 3.1 were de-
ceiving, for they failed to account for the role played by the surface energy.
Indeed, consider n large enough; the pair ϕn,Γn considered in that example
cannot be a joint minimizer of

1

2

∫
Ω\Γ

|∇ϕ|2 dx+H1(Γ), Γ ⊃ Γn

with the same boundary conditions. By lower semi-continuity,

lim inf
n

1

2

∫
Ω\Γ

|∇ϕn|2 dx+H1(Γn) ≥
1

2

∫
Ω\Γ

|∇ϕ|2 dx+ 1,

with ϕ, the solution to the Neumann sieve. Now, ϕ has non zero bulk energy
1
2

∫
Ω\Γ |∇ϕ|2 dx, say C, so that, for n large enough,

1

2

∫
Ω\Γ

|∇ϕn|2 dx+H1(Γn) ≥ 1 +
C
2
.

But the energy associated to the pair ({0}×[−1, 1], ϕ̂) is exactly 1, a strictly
smaller value, while {0}×[−1, 1] ⊃ Γn. For n large enough, closing the holes
of the sieve and taking the crack to be {0}×[−1, 1] is the energetically sound
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choice. There is thus hope for a derivation of the global minimality condition
(Ugm) in the weak variational evolution from (Wde) under refinement of the
time step.

That this is by no means a trivial endeavor can be illustrated as follows.
We note first that, since H1(B \ A) ≥ H1(B) − H1(A), (Wde) implies in
particular that ϕn(t) is a minimizer for its own jump set, that is

1

2

∫
Ω

W (∇ϕn(t)) dx ≤ 1

2

∫
Ω

W (∇ϕ) dx+ kH1(S(ϕ) \ (S(ϕn(t)) ∪ ∂Ωs)).

(3.2.5)
If (Ugm) is to be obtained in the limit, then ϕ(t) should also in particular

be a minimizer for its own jump set. In view of (3.2.2) and of the already
quoted lower semi-continuity result of Ambrosio (1994), the left hand side
of (3.2.5) is well behaved and the result would follow easily, provided that

lim sup
n

H1(S(ϕ) \ S(ϕn(t))) ≤ H1(S(ϕ) \ S(ϕ(t))).

Consider however ϕ such that S(ϕ) ⊂ S(ϕ(t)), while the jump set of ϕn(t)
does not intersect that of ϕ(t) (which would surely happen if S(ϕn(t)) ⊂ Kn,
with Kn∩K = ∅ and the Hausdorff distance from Kn to K goes to 0). Then
H1(S(ϕ)) must be 0!

The stability of the own jump set minimality condition cannot be estab-
lished without a modification of the test fields ϕ. This is the essence of the
jump transfer Theorem Francfort and Larsen (2003), Section 2. We now
quote it without proof in its simplest version.

Theorem 3.2.1 Let ϕn, ϕ ∈ SBV (Ω) with H1(S(ϕ)) <∞, be such that
• |∇ϕn| weakly converges in L1(Ω);and
• ϕn → ϕ in L1(Ω).

Then, for every ζ ∈ SBV (Ω) with ∇ζ ∈ Lp(Ω), 1 ≤ p <∞, and H1(S(ζ)) <
∞, there exists a sequence {ζn} ⊂ SBV (Ω) with ∇ζn ∈ Lp(Ω), such that
• ζn → ζ strongly in L1(Ω);
• ∇ζn → ∇ζ strongly in Lq(Ω); and
• lim supnH1�A (S(ζn) \ S(ϕn)) ≤ H1�A (S(ζ) \ S(ϕ)) , for any Borel
set A.

We fix a time t and recall (3.2.2). Ambrosio’s compactness result permits to
assert the existence of a t-dependent subsequence {ϕnt(t)} of {ϕn(t)} and
of ϕ(t) such that the assumptions of Theorem 3.2.1 – or rather of a corollary
of Theorem 3.2.1 which takes into account the boundary conditions on the
test fields at t, namely ϕnt(t) = gnt(t) on R2 \Ω – are met. The conclusion
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of that theorem then allows for a corresponding sequence {ζnt} that is an
admissible test in (Wde), so that∫

Ω

W (∇ϕnt(t)) dx ≤
∫
Ω

W (∇ζnt) dx+ kH1 (S(ζnt) \ (S(ϕnt(t)) ∪ ∂sΩ)) ,

and then, from the convergences obtained in the theorem, together with the
assumed p-growth of the energy, we pass to the limit in nt and obtain that
the limit ϕ(t) is a minimizer for its own jump set, that is∫

Ω

W (∇ϕ(t)) dx ≤
∫
Ω

W (∇ζ) dx+ kH1 (S(ζ) \ (S(ϕ(t)) ∪ ∂sΩ)) .

We are inching ever closer to the global minimality statement (Ugm)

in the weak variational evolution, but are not quite there yet, because we
would like to remove not only S(ϕ(t))∪∂sΩ but Γ(t)∪∂sΩ in the minimality
statement above. To do this, we need to define the limit crack Γ(t). There
are various setting-dependent paths to a meaningful definition of the limit
crack. An encompassing view of that issue is provided by the notion of
σp-convergence introduced in Dal Maso et al. (2005), Section 4, a kind of
set convergence for lower dimensional sets.

Definition 3.2.2 Γn σp-converges to Γ if H1(Γn) is bounded uniformly with
respect to n, and
(1) Whenever ϕj , ϕ ∈ SBV (R2) are such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕj weak−∗
⇀ ϕ, in L∞(R)

∇ϕj weak
⇀ ∇ϕ, in Lp(R2)

S(ϕj) ⊂ Γnj

for some sequence nj ↗∞, then S(ϕ) ⊂ Γ;
(2) there exist a function ϕ ∈ SBV p(R2) with S(ϕ) = Γ and a sequence

ϕn with the properties of item (1).

The following compactness result proved in Dal Maso et al. (2005), Sec-
tion 4.2, holds true:

Theorem 3.2.3 Let Γn(t) be a sequence of increasing sets defined on [0, T ]
and contained in a bounded set B. Assume that H1(Γn(t)) is bounded uni-
formly with respect to n and t. Then there exist a subsequence Γnj and Γ(t)
defined on [0, T ] such that

Γnj (t) σp-converges to Γ(t), ∀t ∈ [0, T ].
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The estimate (3.2.3) permits to apply the theorem above and thus to
define a meaningful crack Γ(t) such that, for a subsequence still labeled
Γn(t), Γn(t) σp–converges to Γ(t), hence also Γ

nt(t). Thanks to item (2) in
Definition 3.2.2, we can construct ϕ with S(ϕ) = Γ(t) and ϕnt satisfying
the assumptions of Theorem 3.2.1 with S(ϕnt) ⊂ Γnt(t). But (Wde) implies
in particular that∫

Ω

W (∇ϕnt(t)) dx ≤
∫
Ω

W (∇ζ) dx+ kH1(S(ζ)\(Γnt(t) ∪ ∂sΩ))

≤
∫
Ω

W (∇ζ) dx+ kH1(S(ζ)\(S(ϕnt) ∪ ∂sΩ)).

and the jump transfer Theorem 3.2.1 delivers the minimality property (Ugm).
Having obtained global minimality, we still have to derive energy con-

servation (Eb). This is the object of the next paragraph.

3.3 Energy balance in the limit

Inequality (3.2.4) derived at the onset of Paragraph 3.2 hints at the
possibility of an energy inequality. To obtain such an inequality in the
limit, one should ensure that, as nt ↗∞,∫

Ω

W (∇ϕnt(t)) dx→
∫
Ω

W (∇ϕ(t)) dx (3.3.1)

and that

lim sup
nt

∫ τn(t)

0

∫
Ω

∂W

∂F
(∇ϕnt(s)). ∇ġ(s)dx ds ≤∫ t

0

∫
Ω

∂W

∂F
(∇ϕ(s)).∇ġ(s) dx ds.

(3.3.2)
Equality (3.3.1) is nearly immediate; one inequality holds true by lower

semi-continuity as seen several times before. The other is obtained upon
applying the jump transfer Theorem 3.2.1 to ϕ(t) itself and inserting the
resulting test sequence in (3.2.5). This yields the other inequality, namely

lim sup
nt

∫
Ω

W (∇ϕnt(t)) dx ≤
∫
Ω

W (∇ϕ(t)) dx.

The derivation of (3.3.2) is more involved in the non-quadratic case. Indeed,
it amounts, modulo application of Fatou’s lemma for the time integral, to

showing that the stresses
∂W

∂F
(∇ϕnt(t)) converge weakly to the limit stress
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∂W

∂F
(∇ϕ(t)). Although a surprising result, this is indeed the case in view of

the convergences announced for ϕnt(t) to ϕ(t) and of (3.3.1); we omit the
proof and refer the interested reader to Dal Maso et al. (2005), Section 4.3.

The following energy inequality is established:

E(t) :=

∫
Ω

W (∇ϕ(t)) dx+ kH1(Γ(t)\ ∂sΩ)

≤ E(0) +

∫ t

0

∫
Ω

∂W

∂F
(∇ϕ(s)).∇ġ(s) dx ds,

(3.3.3)

The other energy inequality is a byproduct of the minimality statement
(Ugm). Simply test global minimality at time s by ϕ(t)+ g(s)− g(t), t > s.
Then, since S(ϕ(t) ⊂ Γ(t),∫

Ω

W (∇ϕ(s)) dx ≤
∫
Ω

W (∇ϕ(t) + g(s)− g(t)) dx

+H1(S(ϕ(t)) \ (Γ(s) ∪ ∂sΩ))

≤
∫
Ω

W (∇ϕ(t) + g(s)− g(t)) dx

+H1(Γ(t) \ (Γ(s) ∪ ∂sΩ))

=

∫
Ω

W (∇ϕ(t)) dx+H1(Γ(t) \ (Γ(s) ∪ ∂sΩ))

−
∫
Ω

∂W

∂F

(
∇ϕ(t) + ρ(s, t)

∫ t

s

∇ġ(τ) dτ)
)
.∫ t

s

∇ġ(τ) dτ dx,

for some ρ(s, t) ∈ [0, 1]. Hence

E(t)− E(s) ≥
∫
Ω

∂W

∂F

(
∇ϕ(t) + ρ(s, t)

∫ t

s

∇ġ(τ) dτ)
)
.

∫ t

s

∇ġ(τ) dτ dx.

We then choose a partition 0 < sn1 < .... < snk(n) = t of [0, t], with

Δ′
n := sni+1 − sni ↘ 0; summing the contributions, we get

E(t)− E(0) ≥
k(n)∑
i=0

∫
Ω

∂W

∂F

(
∇ϕ(sni+1) + ρ(sni ,s

n
i+1)

∫ sni+1

sni

∇ġ(τ) dτ)
)
.∫ sni+1

sni

∇ġ(τ)dτdx.
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A uniform continuity type result – already implicitly used in the deriva-
tion of (3.2.4) – permits to drop the term depending on ρ(sni ,s

n
i+1) in the

previous inequality in the limit Δ′
n ↘ 0; see Dal Maso et al. (2005), Section

4.3. Thus

E(t)− E(0) ≥ lim sup
n

⎧⎨⎩
k(n)∑
i=0

∫ sni+1

sni

∫
Ω

∂W

∂F

(
∇ϕ(sni+1)

)
.∇ġ(τ) dx dτ

⎫⎬⎭ .

The expression on the right hand-side of the previous inequality looks
very much like a Riemann sum. A not so well-known result in integration
asserts that Riemann sums of a Lebesgue integrable function do converge to
the integral of that function, but only for carefully chosen partitions Hahn
(1914). Since we enjoy complete liberty in our choice of the partition {snj }
of [0, t], we conclude that

E(t)− E(0) ≥
∫ t

0

∫
Ω

∂W

∂F
(∇ϕ(s)) .∇ġ(τ) dx dτ,

which, together with (3.3.3), provides the required equality (Eb).

3.4 The time-continuous evolution

Here, the results obtained in the previous paragraphs are coalesced into
an existence statement to the weak variational evolution. The result is ex-
pressed in a 2d setting, but it applies equally in a 3d setting, upon replacing
H1 by H2. We also recall similar existence results obtained in Dal Maso
and Toader (2002),Chambolle (2003) in the 2d connected case.

In what follows, the energy density W is a nonnegative convex – in the
anti-plane shear setting – or quasiconvex – in the plane setting – C1 function
on R2 with

(1/C)|F |p − C ≤W (F ) ≤ C|F |p + C, ∀F, 1 < p <∞.

Note that the assumptions on W immediately imply that (see, e.g., Da-
corogna (1989))

|DW (F )| ≤ C(1 + |F |p−1).

The domain Ω under consideration is assumed throughout to be Lipschitz
and bounded , and the function g, which appears in the boundary condi-
tion on ∂Ωd, is assumed to be defined on all of R2; actually, each of its
components is taken to be in W 1,1

loc ([0,∞);W 1,p(R2)).
The traction-free part ∂sΩ of the boundary is assumed to be closed.

Finally, the pre-existing crack Γ0 is a closed set in Ω, with H1(Γ0) <∞.
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Theorem 3.4.1 ∃Γ(t) ⊂ Ω and ϕ such that

• each component of ϕ(t)∈SBV (R2), with ∇ϕ p-integrable;

• Γ(t) ⊃ Γ0 increases with t and H1(Γ(t)) < +∞;

• S(ϕ(t)) ⊂ Γ(t) ∪ ∂sΩ and ϕ(t) = g(t) a.e. on R2 \ Ω;
• For every t ≥ 0 the pair (ϕ(t),Γ(t)) minimizes∫

Ω

W (∇ϕ) dx+ kH1(Γ \ ∂sΩ)

among all Γ ⊃ Γ(t) and ϕ with components in SBV (R2) s.t. S(ϕ) ⊂ Γ
and ϕ = g(t) a.e. on R2 \ Ω;

• the total energy

E(t) :=

∫
Ω

W (∇ϕ(t)) dx+ kH1(Γ(t) \ ∂sΩ)

is absolutely continuous, DW (∇ϕ) · ∇ġ ∈ L1
loc([0,∞);L1(R2)), and

E(t) = E(0) +

∫ t

0

∫
Ω

DW (∇ϕ(s)) · ∇ġ(s) dx ds.

We could incorporate body or surface loads, provided they belong to a
certain class of soft devices Dal Maso et al. (2005), Section 3.

Note that, in the vector-valued setting, it is assumed that somehow, the
deformations are always capped in sup-norm by some set number. This is an
a-priori assumption which can be verified for certain classes of quasi-convex
energies Leonetti and Siepe (2005). There is no need for such an assumption
in the anti-plane shear case, provided that the displacement load g is also
bounded in sup-norm.

In 2d only and in the case where the cracks are assumed a priori to be
connected – or to have a pre-set number of connected components – then
the same existence result for the strong variational evolution is obtained in
Dal Maso and Toader (2002) in the quadratic case and in Chambolle (2003)
in the case of linearized elasticity. The statement is identical to that of
Theorem 3.4.1 at the expense of replacing

∫
Ω
by
∫
Ω\Γ, and considering ϕ’s

with components in L1,2(Ω\Γ) := {f ∈ L2
loc(Ω\Γ) : ∇f ∈ L2(Ω\Γ)}, resp.

ϕ ∈ LD(Ω \ Γ) := {ζ ∈ L2
loc(Ω \ Γ;R2) : e(ζ) ∈ L2(Ω \ Γ;R4)}. in the case

of linear elasticity.
This existence result calls for comments. First and foremost, it is an

existence result, not a uniqueness result. As in other non-convex problems
in mechanics, uniqueness should not be expected.
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Then the lack of regularity of the field ϕ(t) indicates that time jumps
could appear in the various fields. Indeed, still referring to that same ex-
ample, we witness there a brutal decrease to 0 at time ti of the bulk energy
with a corresponding increase of the surface energy. The total energy (Eb)

will remain impervious to those jumps.
Third, an implicit change of initial conditions may occur, since it might

happen that Γ(0) contains, but does not equal Γ0.
Finally, the weak evolution might just turn out to be a strong evolution,

as was the case for image segmentation thanks to De Giorgi et al. (1989),
in which case there would be no need for the strong variational evolution.
Recent results of J. F. Babadjian and A. Giacomini seem to confirm this in
a 2d setting.

Remark 3.4.2 The unilateral global minimality condition (item 4. in The-
orem 3.4.1) can actually be strengthened as follows:
For every t ≥ 0 the pair (ϕ(t),Γ(t)) minimizes∫

Ω

W (∇ϕ) dx+ kH1(Γ \ ∂sΩ)

among all Γ ⊃ ∪s<tΓ(s) and ϕ with components in SBV (R2) s.t. S(ϕ) ⊂ Γ
and ϕ = g(t) a.e. on R2 \ Ω.

This states that the admissible test cracks do not have to contain the cur-
rent crack, but only those up to, but not including the current time, a clearly
stronger minimality condition. The two conditions are actually equivalent
because, for s < t, unilateral global minimality implies in particular that∫

Ω

W (∇ϕ(s)) dx+ kH1(Γ(s) \ ∂sΩ) ≤
∫
Ω
W (∇ϕ+∇g(s)−∇g(t)) dx

+kH1(Γ \ ∂sΩ),

for any ϕ with components in SBV (R2) s.t. ϕ = g(t) a.e. on R2\Ω, S(ϕ) ⊂
Γ and any Γ ⊃ ∪s<tΓ(s). Let s↗ t and use item 5. (the continuity of the
total energy) to pass to the limit in the left hand-side of the inequality above.
The stronger minimality result is then obtained by dominated convergence
(since W has p–growth).

4 Numerics

At first glance, numerical implementation of the variational approach advo-
cated in these notes is hopeless because the “classical” numerical methods
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dealing with discontinuous displacement fields rely on some non-negligible
amount of a priori knowledge of that path. This includes the extended finite
element method and other enrichment-based variants. A proper discretiza-
tion scheme for the total energy needs to both approximate potentially
discontinuous displacement fields –and thus the position of their disconti-
nuity sets – and to lead to an accurate and isotropic approximation of the
surface energy. Such a scheme does not easily accommodate cohesive fi-
nite element methods or discontinuous Galerkin methods. Note that this is
partially addressed by a careful estimate of the anisotropy induced by the
mesh in Negri (1999), Negri (2003) or still through the use of adaptive finite
element methods Bourdin and Chambolle (2000).

Further, if the variational framework contends that it addresses crack
initiation and crack propagation in a unified framework, the same should be
true of the numerical method. In particular, methods based on considering
energy restitution caused by small increments of existing cracks are ruled
out. It can actually be shown (see Chambolle et al. (2008)) that “small”
cracks will never lead to descent directions for the global minimization of
the total energy in the absence of strong singularities in the elastic field.

Non-convexity of the total energy is yet another major obstacle to over-
come. The typical size of the discrete problems prohibits appeal to global
or non-deterministic optimization techniques. Global minimization of the
energy is an arguable postulate, but it is at present the only one theoreti-
cally suitable for a thorough investigation of any numerical implementation.
So far, the only exception to that would be the 1d setting where one can
establish convergence of the critical points of the approximating functional
discussed later on in this section Francfort et al. (2009).

Since, as already noted at the onset of Section 3, global minimality deals
badly with force loads, the only loads considered throughout this section
are displacement loads.

The numerical method that will be described below finds, once again,
its inspiration in the Mumford-Shah functional for image segmentation (see
Subsection 1.3). The main ingredients were first introduced in the lat-
ter context in Ambrosio and Tortorelli (1990), Ambrosio and Tortorelli
(1992), Bellettini and Coscia (1994), Bourdin (1998), Bourdin (1999), Negri
and Paolini (2001) and later adapted to fracture in Bourdin et al. (2000),
Giacomini and Ponsiglione (2003), Chambolle (2004), Chambolle (2005),
Giacomini (2005), Giacomini and Ponsiglione (2006).

The method allows for an isotropic and mesh independent approximation
of the total energy. It copes rather successfully with both initiation and
propagation as seen through the various numerical experiments presented
in Subsection 4.3. Like the actual variational model, it applies to the one,
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two, or three dimensional cases without alteration.
Finally, time dependence will be approached through time discretization,

and all computations will be performed for a sequence of times t0 = 0 < tn1 <

...... < tnk(n) = T with k(n)
n

↗∞, Δn := tni+1−tni
n

↘ 0. We will mostly drop
the n-dependence, unless explicitly referring to the putative convergence of
the time-discrete evolution to the time-continuous evolution.

4.1 Numerical approximation of the energy

The essence of the numerical implementation is to be found in the con-
cept of variational convergence. Specifically, the first step consists in devis-
ing a good approximation of the total energy in the sense of Γ–convergence.
We refer the reader to Dal Maso (1993), Braides (2002) for a complete
exposition of the underlying theory.

Consider a R-valued functional F defined over, say a metrizable topo-
logical space X, and a sequence Fε of the same type. Then, Fε Γ–converges
to F as ε↘ 0 iff the following two conditions are satisfied for any u ∈ X:
1. lower–inequality: for any sequence (uε)ε ∈ X converging to u,

lim inf
ε→0

Fε(uε) ≥ F(u); (4.1.1)

2. existence of a recovery–sequence: there exists a sequence (uε)ε ∈ X
converging to u, such that

lim sup
ε→0

Fε(uε) ≤ F(u). (4.1.2)

The interest of Γ–convergence from the standpoint of numerics lies in the
following elementary theorem in Γ-convergence:

Theorem 4.1.1 If Fε Γ–converges to F and u∗ε is a minimizer of Fε and
if, further, the sequence u∗ε is compact in X, then there exists u∗ ∈ X such
that u∗ε → u, u∗ is a global minimizer for F , and Fε(u

∗
ε)→ F(u∗).

Stability of global minimizers under Γ–convergence is indeed a powerful
numerical tool. Rather than attempting to minimize the total energy –
thus having to reconcile discretization and discontinuous functions – we
propose to construct, at each time step ti, a family of regularized energies
E iε that Γ-converge to E i, the energy for the weak variational evolution
at that time step (see (1.3.6)). In the footstep of Ambrosio and Tortorelli
(1990), Ambrosio and Tortorelli (1992), we will approximate the potentially
discontinuous field ϕi and its crack set Γi by two smooth functions. The
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implementation of the first time step, which is very close to that of the
original approximation in the context of the Mumford-Shah functional, is
presented in Paragraph 4.1. while Paragraph 4.1 shows how to account for
irreversibility and approximate the weak discrete time evolution (Wde).

The first time step Consider the first time step of the weak discrete
evolution under the unilateral global minimality condition (Ugm). The irre-
versibility condition is trivially satisfied, so that it suffices to minimize the
total energy

E(ϕ) =
∫
Ω

W (∇ϕ)dx+ kH1(S(ϕ))

with respect to any kinematically admissible ϕ. In all that follows, Ω̃ denotes
a “large enough” open bounded set such that Ω ⊂ Ω̃, and the Dirichlet
boundary conditions are enforced on Ω̃ \ Ω̄, not on R2 \ Ω̄ because, as will
be seen below, the computations are performed on that larger domain, and
not only on Ω.

Following Ambrosio and Tortorelli (1990), Ambrosio and Tortorelli (1992),

we introduce a secondary variable v ∈W 1,2(Ω̃\∂sΩ) and two small positive
parameters ε, and ηε = o(ε), and define, for any kinematically admissible ϕ,

F(ϕ, v) =

⎧⎪⎨⎪⎩
∫
Ω

W (∇ϕ) dx+ kHN−1(S(ϕ) \ ∂SΩ) if v = 1 a.e.

+∞ otherwise,

(4.1.3)

and

Fε(ϕ, v) =

∫
Ω

(v2 + ηε)W (∇ϕ) dx+ k

∫
Ω̃\∂sΩ

[
(1− v)2

4ε
+ ε|∇v|2

]
dx.

(4.1.4)
In the anti-plane case, proving the Γ–convergence of Fε to F is a simple
adaptation of Ambrosio and Tortorelli’s result (see Bourdin (1998)) while
it is more involved in that of linearized elasticity Chambolle (2004). We
limit the analysis to the former case assuming that the energy is quadratic
in the field, i.e., W (F ) := 1/2μ|F |2. The proof of the lower inequality of
Theorem 4.1.1 is technical and does not shed much light on the proposed
numerical method. Instead, we present a simpler but weaker inequality i.e.
a version of (4.1.1) with a “wrong” constant that still highlights the link be-
tween the regularized and weak energies. The construction of the recovery
sequence in Theorem 4.1.1 provides valuable insight and we propose to de-
tail it, at least when the target is a mildly regular kinematically admissible
field for E . Actually, deriving the lim-sup inequality (4.1.2) for minimizers
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can easily be seen to be no restriction. But for those, the mild regularity as-
sumption below holds true, at least in anti-plane shear and energy densities
of the form |F |p with p > 1.

We start with the compactness of minimizing sequences. Let (ϕε, vε) be
a sequence of minimizers for Fε. We show that vε → 1 almost everywhere
and that there exists ϕ ∈ SBV (Ω) such that ϕε → φ in L2.

A simple truncation argument shows that we are at liberty to assume
that

‖ϕε‖L∞ ≤ C (4.1.5)

and
0 ≤ vε ≤ 1. (4.1.6)

Using the classical inequality a2 + b2 ≥ 2ab, we also have that

(1− vε)
2

4ε
+ ε2|∇vε|2 ≥ (1− vε)|∇vε|. (4.1.7)

Finally, testing with v = 1 and ϕ kinematically admissible, we get

Fε(ϕε, vε) ≤ C. (4.1.8)

From (4.1.8), vε → 1 a.e. in Ω. In order to obtain the compactness of
the sequence ϕε, we consider the function ωε := (2vε− v2ε)ϕε and note that
ωε is uniformly bounded in L∞(Ω). We have that

∇ωε = (2vε − vε)
2∇ϕε + 2(1− vε)∇vεϕε.

From (4.1.6) and (4.1.8), we easily obtain that (2vε − vε)
2∇ϕε is uniformly

bounded in L1 and from (4.1.7), (4.1.5), and (4.1.8), that 2(1 − vε)∇vεϕε

is also bounded in L1. Thus ωε is uniformly bounded in L∞(Ω) ∩ BV (Ω),
so that there exists ω such that

ωε → ω a.e. in Ω.

Finally, remark that ϕε = ωε/2vε − v2ε and that, since ωε → ω and vε → 1
a.e. in Ω, ϕ := ω is such that

ϕε → ϕ in L2(Ω).

We now focus on the lower inequality of Γ–convergence, or rather on a

weaker inequality. Take any (ϕε, vε) such that (ϕε, vε)→ (ϕ, 1) in
(
L2(Ω)

)2
.

Then,

lim inf
ε→0

Fε(ϕε, vε) ≥
∫
Ω

W (∇ϕ) dx+ k

2
HN−1(S(ϕ)). (4.1.9)
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We may as well assume that (4.1.5), (4.1.6), (4.1.8) hold true, in which
case ϕ ∈ BV (Ω).

Using (4.1.7) again,

Fε(ϕε, vε) ≥
∫
Ω

v2ε |∇ϕε|2 dx+ k

∫
Ω̃\∂sΩ

(1− vε)|∇vε| dx.

By increasing rearrangement,∫
Ω

v2ε |∇ϕε|2 dx =
∫ 1

0

2s

∫
{vε>s}

|∇ϕε|2 dx ds,

and using the co-area formula for BV -functions (see for instance Ambrosio
et al. (2000); Evans and Gariepy (1992)),∫

Ω̃\∂sΩ

(1− vε)|∇vε| dx =
∫ 1

0

(1− s)HN−1 (∂∗{vε > s} \ ∂sΩ) ds.

Putting the above expressions together, we obtain

Fε(ϕε, vε) ≥
∫ 1

0

2s

∫
{vε>s}

|∇ϕε|2 dx ds

+ k

∫ 1

0

(1− s)HN−1 (∂∗{vε > s} \ ∂sΩ) ds. (4.1.10)

Consider any s 
= 1 and defineωs
ε := ϕεχ{vε>s}. Since ϕε ∈ W 1,2 and

{vε > s} is a set of finite perimeter, ωs
ε ∈ SBV ,

∂∗{vε > s} = S(ωs
ε),

the jump set (set of non Lebesgue points) of ωs
ε , and∫

{vε>s}
|∇ϕε|2 dx =

∫
Ω

|∇ωs
ε |2 dx.

Since vε → 1 a.e., we also obtain that ωs
ε → ϕ in L2.

Combining (4.1.10) and the two identities above and using Fatou’s lemma,
we obtain

lim inf
ε→0

Fε(ϕε, vε) ≥
∫ 1

0

2s lim inf
ε→0

∫
Ω

|∇ωs
ε |2 dx ds

+ k

∫ 1

0

(1− s) lim inf
ε→0

HN−1 (S(ωs
ε) \ ∂sΩ) ds.
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By Ambrosio’s Compactness and lower semi-continuity theorems in SBV ,
we obtain

lim inf
ε→0

Fε(ϕε, vε) ≥
∫ 1

0

2s

∫
Ω

|∇ϕ|2 dx ds

+ k

∫ 1

0

(1− s)HN−1 (S(ϕ) \ ∂sΩ) ds.

Integrating in s yields (4.1.9).
We finally turn to the construction of the recovery sequence (4.1.2). The

following construction does not account for the Dirichlet boundary condition
and the interested reader is referred to Bourdin (1998) for the corresponding

technicalities. As a corollary, we may as well take Ω̃ ≡ Ω in the construction
of the attainment sequence that follows. In the case of interest to us, i.e.,
that with Dirichlet boundary conditions on a part ∂dΩ = ∂Ω\∂sΩ it will be

enough to re-introduce Ω̃ \∂Ωs in lieu of Ω in the second integral in (4.1.4).
We also assume that ϕ is a solution to the minimization of E that satisfies

H1(S(ϕ)) = H1(S(ϕ)). (4.1.11)

For minimizers of the Mumford-Shah functional, this mild, albeit difficult
regularity property was established in De Giorgi et al. (1989). In the scalar-
valued setting, the case of a certain class of convex bulk energies which
includes p > 1-homogeneous energies was investigated in Fonseca and Fusco
(1997). The regularity result was generalized to our setting in Bourdin
(1998), at least for minimizers in anti-plane shear with a quadratic elastic
energy density. The closure property (4.1.11) is not so clearly true in more
general settings, and different approximation processes must be used in such
cases; the interested reader is invited to consult e.g. Braides (2002).

Consider a kinematically admissible field ϕ – an element of SBV (Ω) –
satisfying (4.1.11). Define

d(x) := dist(x, S(ϕ)).

The volume of the area bounded by the s-level set of d is

�(s) :=
∣∣{x ∈ R2 ; d(x) ≤ s

}∣∣ .
The distance function is 1-Lipschitz, i.e., |∇d(x)| = 1 a.e., while, by the
co-area formula for Lipschitz functions (see e.g. Ambrosio et al. (2000)),

�(s) =

∫ s

0

H1 ({x ; d(x) = t}) dt,
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so that, in particular,

�′(s) = H1 ({x ; d(x) = s}) . (4.1.12)

Also, see Federer (1969)-3.2.39,

lim
s→0

�(s)

2s
= H1(S(ϕ)).

We choose αε such that αε = o(ε), ηε = o(αε), which is possible since
ηε = o(ε), and define the functions

vε(x) :=

⎧⎪⎪⎨⎪⎪⎩
0 if d(x) ≤ αε

1− exp
(
−d(x)− αε

2ε

)
otherwise,

(4.1.13)

and

ϕε(x) :=

⎧⎪⎨⎪⎩
d(x)

αε
ϕ(x) if 0 ≤ d(x) ≤ αε

ϕ(x) otherwise.

Note that it is easily seen that ϕε ∈ W 1,2(Ω). Further, ϕε → ϕ in L2(Ω),
and vε → 1 almost everywhere. Since vε ≤ 1,∫

Ω

(
v2ε + ηε

)
|∇ϕε|2dx ≤

∫
d(x)≤αε

ηε|∇ϕε|2dx+
∫
d(x)≥αε

(1 + ηε)|∇ϕ|2dx.

Observe now that, for d(x) ≤ αε, ∇ϕε = d(x)/αε∇ϕ + 1/αεϕ∇d, so, in
view of the 1-Lipschitz character of d and of the L∞-bound on ϕ,

∫
Ω

(v2ε + ηε)|∇ϕε|2 dx ≤ 2

(
ηε

∫
d(x)≤αε

|∇ϕ|2 dx+M2 ηε
α2
ε

�(αε)

)

+

∫
d(x)≥αε

(1 + ηε)|∇ϕ|2dx.

Since
∫
Ω
|∇ϕ|2 dx <∞, the first term in the parenthesis on the right hand

side above converges to 0 as ε→ 0. Recalling that �(αε)/αε = O(1), while
ηε/αε = o(1) permits one to conclude that the limit of the second term in
that parenthesis also converges to 0 with ε. We conclude that

lim sup
ε→0

∫
Ω

(
v2ε + ηε

)
|∇ϕε|2 dx ≤

∫
Ω

|∇ϕ|2 dx. (4.1.14)
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Let us examine the surface energy term. Using once again the 1-Lipschitz
character of d, together with the co-area formula, we get∫

Ω

{
ε|∇vε|2+

(1− vε)
2

4ε

}
dx ≤ �(αε)

4ε
+

∫
d(x)≥αε

1

2ε
exp(−d(x)− αε

ε
)

≤ �(αε)

4ε
+

1

2ε

∫ ∞

αε

exp(−s− αε

ε
)H1 ({d(x) = s}) ds. (4.1.15)

Recalling (4.1.12),

1

2ε

∫ ∞

αε

exp(−s− αε

ε
)H1 ({d(x) = s}) ds = e

αε

ε

2ε

∫ ∞

αε

e−s/ε�′(s) ds

=
e
αε

ε

2

∫ ∞

αε/ε

e−t�′(tε) dt.

(4.1.16)

Since �′(0) = lims→0 �(s)/s = 2H1(S(ϕ)), αε = o(ε) and
∫∞
0

e−t dt = 1,
insertion of (4.1.16) into (4.1.15) and application of Lebesgue’s dominated
convergence theorem yields

lim sup
ε→0

∫
Ω

{
ε|∇vε|2 +

(1− vε)
2

4ε

}
dx ≤ H1(S(ϕ)). (4.1.17)

Collecting (4.1.14), (4.1.17) gives the upper Γ–limit inequality.

Remark 4.1.2 The form of the field vε in (4.1.13) may seem somewhat
ad-hoc. It is not. The choice of the profile for the field vε is derived from
the solution of an “optimal profile” problem (see Alberti (2000)). Consider,
in e.g. 2d, a point x on the crack and a line orthogonal to the crack and
passing through x, parameterized by the variable s. Consider the restriction
of the regularized surface energy to this line

Fε,x(s) = k

∫ ∞

0

{
(1− v(s))2

4ε
+ ε|v′(s)|2

}
ds.

Then the profile

vε(s) = 1− exp
(
− (s− αε)

2ε

)
corresponds to the minimizer of Fε,x under the following boundary condi-
tions:

vε(αε) = 0; lim
s→∞ vε(s) = 1.
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Indeed, it is also possible to construct the field vε for the upper Γ-limit
along lines intersecting the crack set at 900 angles, using the solution to the
optimal profile problem on each of those. Integration of the result along the
crack set will also permit one to recover the upper Γ-limit.

The Γ–convergence result above can be extended to the restriction Fε,h of
Fε to a linear finite element approximation, provided that the discretization
parameter h is such that h = o(ε) (see Bellettini and Coscia (1994), Bourdin
(1999)). A closer look at the construction for the upper Γ–limit and at its
adaptation to Fε,h provides some useful insight into possible error estimates.

The construction of the sequence (ϕε,h, vε,h) for the upper Γ–limit for
Fε,h can be obtained from that above. Let Th be a conforming mesh of

Ω̃\∂Ωs and Sh be the set of all elements in Th intersecting S(ϕ). Let πh be
a linear finite element projection operator associated with Th, and consider

vε,h(x) :=

{
0 if x ∈ Sh;

πh (vε) otherwise,
(4.1.18)

and
ϕε,h(x) := πh (ϕε) . (4.1.19)

Following a path similar that developed in the computation of the upper
Γ-limit above, the first term �(αε)/4ε on the right hand-side of inequal-
ity (4.1.15) becomes |Sh|/4ε ! H1(S(ϕ))h/4ε, which converges to 0 only
if h = o(ε). The consideration of quadratic finite elements in lieu of linear
ones would still induce an error on the surface energy of the order of h/ε,
albeit with a different constant. This is why the proposed implementation
only resorts to piecewise linear finite elements for ϕ and v.

In a different direction, this term links the anisotropy of the mesh to the
quality of the approximation of the surface energy. In Negri (1999), M. Ne-
gri studied the effect of various types of structured meshes on the surface
energy for the Mumford-Shah problem. In the numerical experiments, the
isotropy of the surface term is ensured through the use of “almost” isotropic
Delaunay meshes.

From the construction above, it is deduced that the relation h = o(ε)
only needs to be satisfied “close” to S(ϕ). Of course, barring prior knowl-
edge of S(ϕ), uniformly homogeneous fine meshes are a must. However,
a posteriori re-meshing the domain will then improve the accuracy of the
energy estimate. However, a priori mesh adaption is not advisable because
the local size of the mesh affects the quality of the approximation of the
surface energy and can potentially create spurious local minimizers. So,
a posteriori mesh refinement around the cracks shields the computations
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from artificial cracks that would correspond to local minima created by a
priori mesh refinement! Note that some recent computations in Burke et al.
(2010) seem to deal rather successfully with a priori mesh adaption.

The sequence for the upper Γ–limit is also admissible for the lower Γ–
limit, so that, if ϕ if a minimizer for the total energy, the sequence (ϕε, vε)
constructed above approximates a minimizing sequence for Fε,h and this
asymptotically in h, that is∫

Ω̃\∂Ωs

{
(1− vε)

2

4ε
+ ε|∇vε|2

}
dx =

(
1 +

h

4ε

)
H1(S(ϕ)). (4.1.20)

In practice, it is as if the fracture toughness had been amplified by a fac-
tor 1 + h/4ε, which has to be accounted for when interpreting the results.
The experiments in Section 4.3 highlight the effect of mesh isotropy on the
results, and show how the fracture toughness is overestimated.

Quasi-static evolution The approximation scheme devised in Subsec-
tion 4.1 should now be reconciled with the evolutionary character of the
weak discrete formulation. Irreversibility of the crack growth is enforced at
the time-discrete level in the manner described below.

Consider a fixed ε and a fixed conforming mesh Th of Ω̃ \ ∂Ωs with
characteristic element size h. Introduce a small parameter η > 0, and at
each step ti, the set of vertices

Ki
ε,h,η :=

{
s ∈ Th ; viε,h(s) ≤ η

}
, i > 0; K0

ε,h,η := ∅.

In the light of the Γ-convergence properties of Fε,h, the crack growth
condition translates into a growth condition on the sets Ki

ε,h,η and leads to
the following fully spatially and temporally discrete evolution scheme:

(Fde) Find a sequence
(
ϕi+1
ε,h , v

i+1
ε,h

)
i=0,...,n

of global minimizers for Fε,h

under the constraints
ϕ = g(ti+1) on Ω̃ \ Ω

and
v = 0 on Ki

ε,h,η. (4.1.21)

Recently, Giacomini conducted a rigorous analysis of a slightly different
approach to the time evolution for Fε. In Giacomini (2005), crack growth
is enforced through the monotonicity of v in time, i.e., by successively min-
imizing Fε among all (ϕ, v) such that ϕ = g(ti+1) on Ω̃ \ Ω, and v ≤ vεi
almost everywhere on Ω. In that setting, as both the time discretization
parameter (Δn) and ε go to 0 (in a carefully ordered fashion), the discrete
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evolution converges to a continuous evolution satisfying the conclusions of
Theorem 3.4.1.

In the forthcoming numerical experiments, crack growth is enforced as
described in (4.1.21). Implementing monotonicity would not generate ad-
ditional difficulties, but only slightly increase the computational cost as
equality constraints would have to be replaced by inequality (“box”) con-
straints.

Remark 4.1.3 The Γ-convergence based approach to minimization is not
so easily amenable to the treatment of local minimization. If (ϕ, 1) is an
isolated L1-local minimizer for F (see (4.1.3)), then Theorem 2.1 in Kohn
and Sternberg (1989) can be adapted to the current setting to prove the
existence of a sequence of L1-local minimizers (ϕε, vε) for Fε converging to
(ϕ, 1) in L1. Unfortunately, the isolation hypothesis is generically false: see
for instance the 1d-traction experiment with a hard device in Paragraph 2.1.

Even when the isolation hypothesis applies, the above-mentioned theorem
grants the existence of a sequence of local minimizers for Fε converging to
a local minimizer of F , but does not however guarantee that a converging
sequence of local minimizers for Fε converges to a local minimizer for F .

The only positive results in this direction concern the numerically unin-
teresting 1d case Francfort et al. (2009).

4.2 Minimization algorithm

Recall that Fε,h is the restriction of Fε defined in (4.1.4) to a linear finite
element approximation. Also note that, although Fε is separately convex
in its arguments ϕ and v, it is not convex in the pair (ϕ, v).

In the numerical experiments below, we fix the regularization parameter
ε and generate a mesh with characteristic size h. We do not try to adapt
the values on ε and h during the numerical minimization of Fε,h. Thus,
the numerical implementation reduces to a sequence of minimizations for
Fε,h, each corresponding to a separate time step. All presented experiments
have been tested on meshes of various size and with different values of
the parameter ε and/or of the time discretization length; the results seem
impervious to such changes, at least for reasonably small choices of the
parameters ε, h,Δn.

Because of the lack of convexity of Fε,h, the minimization scheme is
purely heuristic. As per Section 4.1, we should choose a mesh size h which
remains “small” compared to the regularization parameter, which in turn
needs to be “small”. In a 2d setting, this typically results in meshes with
(10)5 elements, while in 3d, meshes will consist of over a million elements.
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Although the analysis of such large problems can be tackled thanks to the
wider availability of massively parallel computers, there are, to our knowl-
edge, no global minimization algorithms capable of handling them. At best,
the algorithms will satisfy necessary optimality conditions for minimality.

The alternate minimization algorithm The first building block in the
numerical implementation is an alternate minimization algorithm, leading
to evolutions satisfying a first set of necessary conditions for optimality.

The functional Fε – and therefore Fε,h – is Gateaux-differentiable around
any (ϕ, v). We compute the first order variation of Fε,h around any kine-
matically admissible (ϕ, v) in the directions (ϕ̃, 0) and (0, ṽ), where ϕ̃ and ṽ

are admissible variations (ϕ̃ = 0 on Ω̃ \ Ω and ṽ = 0 on Ki
ε,h,η) and obtain

that the solution (ϕi+1
ε,h , v

i+1
ε,h ) of the fully discrete evolution at time step ti+1

satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

(
(vi+1

ε,h )
2 + ηε

)
DW (∇ϕi+1

ε,h ).∇ϕ̃ dx = 0∫
Ω

(
vi+1
ε,h ṽ

)
W (∇ϕi+1

ε,h ) dx+ k

∫
Ω̃\∂Ωs

(
vi+1
ε,h ṽ

4ε
+ ε∇vi+1

ε,h · ∇ṽ
)
dx

= k

∫
Ω̃\∂Ωs

ṽ

4ε
dx.

(4.2.1)
This leads to the following algorithm (δ is a fixed tolerance parameter):

Algorithm 1 The alternate minimization algorithm:

1: let p = 0 and v(0) := viε,h.
2: repeat
3: p← p+ 1
4: compute ϕ(p) := argminϕ Fε,h(ϕ, v

(p−1)) under the constraint ϕ(p)=

g(ti+1) on Ω̃ \ Ω.
5: compute v(p) := argminv Fε,h(ϕ

(p), v) under the constraint v(p) = 0
on Ki

ε,h,η

6: until ‖v(p) − v(p−1)‖∞ ≤ δ
7: set ϕi+1

ε,h := ϕ(p) and vi+1
ε,h := v(p)

Since Fε,h is separately convex in each of its arguments, the algorithm
constructs at each time step a sequence with decreasing total energy; it is
therefore unconditionally convergent in energy. A more detailed analysis
conducted in Bourdin (2007) proves that, whenever the cracks are a priori
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known to propagate smoothly, the alternate minimization algorithm con-
verges to the global minimizer of Fε,h for fine enough time discretization
steps. In cases where cracks propagate brutally, this algorithm can only be
proved to converge to critical points of Fε, which may be a local (or global)
minimizers, but also saddle points for Fε. As per Remark 4.1.3, local mini-
mizers of Fε can sometimes be proved to converge to local minimizers of F ,
but similar results are lacking at present in the case of saddle points, except
in 1d. The detection of saddle points require a detailed stability study. Be-
cause of the typical size of the problems, this is a difficult task which has yet
to be implemented. Instead, we investigate additional necessary conditions
for minimality and propose to devise compatible algorithms.

The backtracking algorithm, a tool for global minimization. When
cracks propagate brutally, the alternate minimization algorithm, or any
other descent-based algorithm for that matter, cannot be expected to con-
verge to the global minimizer of Fε,h. Indeed, a numerical method that
relies solely on (4.2.1) will lead to evolutions whose total energy E(t) is
not an absolutely continuous (or even continuous) function (see Figure 11
in Negri (2003) or Figure 3(b) in Bourdin et al. (2000)). This is incom-
patible with Theorem 3.4.1. So, since (4.2.1) is satisfied at each time step,
those evolutions have to correspond to local minimizers or saddle points of
the regularized energy. Such solutions – spurious from the standpoint of
global minimization – can actually be eliminated by enforcing an additional
optimality condition.

Consider a monotonically increasing load, as in Section 1.2.3, and sup-
pose the elastic energy density W to be 2-homogeneous (adapting this ar-
gument to p-homogenous W is trivial). If (ϕi

ε,h, v
i
ε,h) is admissible for a

time step ti, then
(
tj/tiϕ

i
ε,h, v

i
ε,h

)
is admissible for all time steps tj with

0 ≤ j ≤ i, and

Fε,h

(
tj
ti
ϕi
ε,h, v

i
ε,h

)
=

t2j
t2i
Fb
ε,h(ϕ

i
ε,h, v

i
ε,h) + Fs

ε,h(v
i
ε,h),

Fb
ε,h and Fs

ε,h denoting respectively the bulk and surface terms in Fε,h. But

if the sequence {(ϕi
ε,h, v

i
ε,h)} is a solution of the fully discrete evolution,

(ϕj
ε,h, v

j
ε,h) must minimize Fε,h among all admissible pairs (ϕ, v), and in

particular, for 0 ≤ j ≤ i ≤ n,

Fb
ε,h

(
ϕj
ε,h, v

j
ε,h

)
+ Fs

ε,h

(
vjε,h

)
≤

t2j
t2i
Fb
ε,h(ϕ

i
ε,h, v

i
ε,h) + Fs

ε,h(v
i
ε,h). (4.2.2)
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In establishing (4.2.2), the global minimality of the evolution {(ϕi
ε,h, v

i
ε,h)}

was used, so that (4.2.2) is a necessary condition for global minimality but it
is neither necessary, nor sufficient for local minimality. Since tj ≤ ti, the to-
tal energy, that is {Fε,h(ϕ

i
ε,h, v

i
ε,h)}, associated with an evolution satisfying

(4.2.2) is monotonically increasing.
Algorithmically, we check condition (4.2.2) against all previous time

steps tj , with j varying from 0 to i. If for some tj , (4.2.2) is not satis-

fied, then (ϕj
ε,h, v

j
ε,h) cannot be the global minimizer for the time step tj ,

and (tj/tiϕ
i
ε,h, v

i
ε,h) provides an admissible field with a strictly smaller en-

ergy at time tj . In this case, we backtrack to time step tj , and restart the
alternate minimization process, initializing the field v with viε,h. Because
the alternate minimization algorithm constructs sequences with monoton-
ically decreasing energy (at a given time step), repeated backtracking will
converge to a solution such that (4.2.2) is satisfied for this particular choice
of i and j.

4.3 The Tearing experiment

In order to illustrate the numerical method presented in the Sections
above, we revisit the tearing experiment investigated in Section 2.2. Con-
sider this time a rectangular domain Ω = (0, L) × (−H,H) (with traction
free boundary conditions at x = L). The analysis in Subsection 2.2 still
applies and the field constructed there under assumption (2.2.1) is an ad-
missible test field for this problem, provided of course that 0� l(t) ≤ L.

However, when the domain has finite length, a crack splitting the whole
domain is a minimizing competitor. Let ϕc represent that solution. Follow-
ing the notation in Section 2.2, we set{

S(ϕc) = (0, L)× {0}

uc(t, x) = tH,

so that
E(ϕc) = kL.

A comparison of the energy of both types of evolutions demonstrates that,
under assumption (2.2.1), the global minimizer for the tearing problem is
such that u(x, y, t) = sign(y)u(t, x)e3 and S(ϕ) = [0, l(t))× {0}, with

u(x, t) =

⎧⎪⎨⎪⎩tH
(
1− x

l(t)

)+

if t ≤ L

2H

√
k

μH

tH otherwise,

(4.3.1)
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where

l(t) =

⎧⎪⎨⎪⎩tH
√
μH

k
if t ≤ L

2H

√
k

μH

L otherwise.

(4.3.2)

This corresponds to a crack that propagates at constant speed

dl

dt
= H

√
μH

k

along the symmetry axis, until its length reaches L/2, and then jumps
along the x-axis until the end point of that axis in the domain. Note that,
during the smooth propagation phase, the bulk and surface energies of the
sample are equal, and that, throughout the evolution, the total energy of
the solution is

E(t) = min
(
2tH

√
μHk, kL

)
. (4.3.3)

Now, the anti-plane tearing problem is numerically solved by a method
developed in Destuynder and Djaoua (1981), then compared to the crack
evolution analytically obtained above.

We consider a domain with dimensions H = 1, L = 5. The material
properties are E = 1, ν = .2 (corresponding to μ ! .4167), k = 1.125 (10)−2.
Following Subsection 2.2, the analysis is restricted at first to symmetric solu-
tions consisting of a single crack of length l(t) propagating along the x–axis,
starting from the left edge of the domain, with l(0) = 0. In order to esti-
mate l(t), we compute the equilibrium deformation ϕ(1, l) corresponding to
a unit load and a crack of length l, using finite element meshes consisting
of approximately 70,000 nodes, automatically refined around the crack tip.
For various choices of l ∈ [0, L], we estimate the elastic energy Eb(1, l) asso-
ciated with ϕ(1, l), as well as the energy release rate G(1, l) = −∂Eb/∂l(1, l),
using classical formulae for the derivative of Eb with respect to the domain
shape. Figures 4.3.1, 4.3.2 respectively represent the evolution of Eb(1, l)
and G(1, l).

From now onward, we refer to the analytical solution as the “1d solution”
in all figures, as well as in the text.

A quick analysis of the numerical results shows that G(1, l) is strictly
decreasing (and therefore that Eb is strictly convex) for 0 ≤ l < l∗c , with
l∗c ! 4.19. For l∗c ≤ l ≤ 5, G is an increasing function of l. Recalling
Remark 1.2.3 in Section 1, we deduce that the crack will first propagate
smoothly, following Griffith’s criterion. When it reaches the length l∗c , it
will then jump brutally to the right edge of the domain because not doing
so would violate the constraint that G ≤ k. It could be argued that such
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Figure 4.3.1. Tearing experiment: l �→Eb(1, l).

an evolution satisfies (necessary conditions for) (Ulm). We will comment
further on this evolution in the discussion of Figure 4.3.6.

The numerical values of Eb(1, l) lead to an estimate of the position of the
crack tip as a function of the load. Let ϕ(t, l) be the equilibrium deformation
associated with the load t, and Eb(t, l) := t2Eb(1, l) the associated bulk

0

0.1
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0.3

0.4
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5l∗c43lc210

FEM
1D-solution

Figure 4.3.2. Tearing experiment: l �→G(1, l).
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energy. If the crack keeps on propagating smoothly, then

−t2 ∂Eb

∂l
(1, l) = k. (4.3.4)

That relation is used to compute the load t for which the crack length is l,
and thereafter l(t).

Once again, a crack splitting the whole domain along the x–axis is a
minimizing competitor. Consider tc and lc := l(tc) such that Eb(tc, lc) +
klc = kL. For t > tc, splitting the domain is energetically preferable. The
value of tc can be estimated from the computations of Eb(1, l). Using the
finite element computations described above, we get tc ! .47. The critical
length lc is such that

Eb(1, lc) = −(L− lc)
∂Eb

∂l
(1, lc).

Numerically, we obtain lc ! 2.28. That value is strictly less than the length
l∗c for which the constraint G ≤ k can no longer be met, as expected when
global energy minimization presides. Indeed, the energetic landscape is
explored in its entirety through global minimization, allowing the crack to
decrease its energy at lc, rather than waiting for G to reach k at l∗c .

2

Notice the sudden jump introduced in Griffith’s evolution – that satis-
fying (4.3.4) – at tc. Classically, such a jump would not be allowed to take
place and Griffith’s evolution would cease to hold at l∗c .

Figure 4.3.3 represents the numerically computed globally minimizing
evolution of the bulk, surface, and total energies (thin lines), together with
the analytically computed energies of the 1d solution – see (4.3.1), (4.3.2)
– obtained in Section 2.2 and above (thick lines).

The computed evolution has the crack propagating smoothly for 0 ≤
t < tc, until it reaches the critical length lc, then cutting brutally through
the domain. For small loads, the one-dimensional analysis overestimates
the crack length; note that as l → 0, G(1, l) → ∞, and that the accuracy
of our finite element computations cannot be guaranteed. When t, and
therefore l, become large enough, the values of dEb(t)/dt and dEs(t)/dt
become very close to those obtained in Section 2.2. Numerically we obtain
dEb(t)/dt ! 7.43 (10)−2 and dEs(t)/dt ! 6.83 (10)−2 while the 1d result is
dEb(t)/dt = dEs(t)/dt = H

√
kμH ! 7.22 (10)−2.

Next, a numerical experiment that uses the algorithms developed in
this section is conducted. So as to favor symmetric solution, we use a

2 As an aside, note that the critical length lc does not depend upon the fracture tough-

ness k!
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Figure 4.3.3. Evolution of the bulk surface and total energies following
(Ugm), as a function of the load t. They are computed using a classical
finite element analysis and compared to the 1d solution.

structured mesh obtained by a splitting of each square in a structured grid
into two right triangles. It consists of 154,450 nodes and 307,298 elements.
The mesh size is (10)−2; the regularization parameters are ε = (10)−2 and
ηε = (10)−9. We consider 100 equi-distributed time steps between 0 and 1.
Recalling (4.1.20), the effective fracture toughness in the computations is
keff = (1 + h/4ε) k = .0125.

Figure 4.3.4 represents the computed bulk, surface and total energy, as
well as their values obtained via the proposed algorithm, as a function of
t. Once again, the backtracking algorithm leads to an evolution with a
monotonically increasing and continuous total energy.

Figure 4.3.5 represents the v field, representing the crack for t = .49 and
t = .5. The values v = 0 are coded in red and v = 1 in blue.

The agreement with the classical solution is remarkable. The bulk ener-
gies are within 1% of each others, and the surface energies within 10%. For
long enough cracks, the surface and bulk energies grow at a constant rate,
and dEb(t)/dt ! 6.95 (10)−2 and dEs(t)/dt ! 7.03 (10)−2. The critical load
upon which the crack propagates brutally is .49 ≤ tc ≤ .5 (vs. a estimated
value of .47), and the critical length is lc := l(.49) ! 2.46 which, again, is in
agreement with the finite element analysis presented above (lc ! 2.28). The
final surface energy is 6.38 (10)−2, which is consistent with the estimate we
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Figure 4.3.4. Evolution of the bulk surface and total energies following
(Ugm), as a function of the load t. Comparison of values obtained through
the variational approximation with backtracking and through finite element
analysis.

Figure 4.3.5. Position of the crack set in the tearing experiment for t = .49
(top) and t = .50 (bottom).
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gave in Section 4.1 (k(1 + h/4ε)L = 6.25 (10)−2).
As noted before, the first evolution computed above using finite element

analysis – that is that following Griffith until it jumps at l∗c ! 4.19 – can
be argued to be one satisfying (necessary conditions for) (Ulm). It prop-
agates smoothly until it reaches l∗c ! 4.19 at t = t∗c ! .75, then brutally
to the right end-side of the domain. Figure 4.3.6, represent the bulk, sur-
face and total energies of this solution, compared to an experiment using the
variational approximation and the alternate minimization, but without back-
tracking. Following the analysis in Bourdin (2007), we expect that, as long
as the crack propagates smoothly following local minimizers, the alternate
minimization will provide the right evolution. When the crack propagates
brutally, nothing can be said. However, once again, the agreement between
our experiments is striking. Using the variational approximation, we obtain
t∗c ! .82 (instead of .75 using the finite element analysis). The estimate for
the critical length is l∗c ! 4.08 (vs. 4.19 for the finite element computations).

Figure 4.3.6. Evolution of the bulk surface and total energies following
(Ulm), as a function of the load t, computed using a classical finite element
analysis. Comparison to the variational approximation without backtrack-
ing.

The symmetry assumption about the x-axis was instrumental in deriving
the theoretical results in Subsection 2.2; it was also imposed as a meshing
restriction in the previous computation. In its absence, a bona fide theo-
retical prediction is difficult to make, but an educated guess may provide
insight into the possible crack path. We thus introduce a third class of so-
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lutions: a crack propagating along the symmetry axis with length l(t) until
some critical tc at which it brutally bifurcates, reaching one of the sides of
the domain. The crack for t ≥ tc is assumed L- shaped, i.e., of the form
(0, l(tc)) × {0} ∪ {l(tc)} × (0,−H) or its mirror image with respect to the
x–axis. It then remains to minimize in tc. Appealing to (4.3.3), (4.3.2) and
comparing the energy associated with the straight crack, i.e., 2tH

√
μHk,

to that associated with the bifurcated crack, i.e., k(tH
√
μHk +H), yields

tc =

√
k

μH
,

and
l(tc) = H.

The total energy of this branch of solution as a function of the loading
parameter t is

E(ϕ) = min
(
2tH

√
μHk, 2kH

)
.

If L > 2H, this asymmetric solution has a lower energy than its symmetric
counterpart as soon as t ≥

√
k/μH.

We propose a second set of experiments that use a non-symmetric Delaunay-
Voronoi mesh. The mesh size is still h = (10)−2, and the other parameters
are those of the previous experiment.

Figure 4.3.7. Evolution of the bulk surface and total energies as a function
of the load t. Numerical and expected values (tc ! .17).

The energy plot Figure 4.3.7 shows that the evolution is qualitatively as
expected, i.e., smooth propagation of the crack tip, then brutal propagation.
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Figure 4.3.8. Position of the crack set in the tearing experiment for t = .18
(top) and t = .19 (bottom).

Once again, the position of the crack tip lags behind its theoretical po-
sition and the comparison between the numerical and theoretical energies
is difficult.

Figure 4.3.8 shows the crack tip just before (top) and after (bottom)
brutal propagation. The evolution is clearly not globally minimizing: con-
necting the tip of the crack for t = .18 to the upper edge of the domain at a
near 90◦ angle would cost less surface energy. It would be unwise at present
to view the perhaps more realistic numerical solution as an outcome of the
true minimization.
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Abstract We present here a variational approach to derivation of
multiphase flow models. Two basic ingredients of this method are as
follows. First, a conservative part of the model is derived based on
the Hamilton principle of stationary action. Second, phenomenolog-
ical dissipative terms are added which are compatible with the en-
tropy inequality. The variational technique is shown up, and math-
ematical models (classical and non-classical) describing fluid-fluid
and fluid-solid mixtures and interfaces are derived.

1 Introduction

For any vectors a,b we shall use the notations a · b for their scalar product
(the line vector (covector) is multiplied by the column vector) and a⊗b for
their tensor product (the column vector is ”multiplied” by the line vector).
Linear transformations of vectors into vectors (second order tensors) are
denoted by uppercase letters. The divergence of a linear transformation A
is the covector divA such that, for any constant vector a

div(A) · a = div(Aa).

In particular, for any vector field v

div(Av) = divA · v + tr

(
A
∂v

∂x

)

div(u⊗ v) = vdivu+
∂v

∂x
u

In the last formula we have been identified the line vectors and the column
vectors. The identical transformation is denoted by I, and the gradient
operator by ∇. The elements of a linear transformation A in a given base
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ej , j = 1, 2, 3 are denoted be Ai
j : Aej = Ai

jei where i means lines and j
columns. The repeated Latin indices imply summation. In particular,

(a⊗ b)
i
j = aibj .

If f(A) is a scalar function of A, the matrix of
∂f

∂A
is defined by the formula

(
∂f

∂A

)j

i

=
∂f

∂Ai
j

.

The definition of the divergence of a linear transformation used in France
is opposite to the one used in USA where the divergence of A is defined as
follows

div(A) · a = div(ATa)

for any constant vector a. Once an appropriate definition has been selected,
it should remain unchanged during calculations.

2 Variations

The results of this Section are well known and can be partially found, for
example, in the book by Berdichevsky (2009).

Let D(t) be a volume of the physical space occupied by a fluid at time t.
A particle is labeled by its initial position X in the reference space D(t0),
the motion of the continuum is defined as a diffeomorphism from D(t0) into
D(t) :

x = ϕt(X).

The velocity u and the deformation gradient F are defined by

v =
∂ϕt(X)

∂t
, F =

∂x

∂X
=

∂ϕt(X)

∂X
,

Let
x = Φt(X, ε),

be a one-parameter family of virtual motions of the medium such that

Φt(X,ε)|ε=0 = ϕt(X).

Here ε is a scalar defined in the vicinity of zero. We define the virtual
displacement δx (t,X) associated with the virtual motion :

δx (t,X) =
∂Φt(X,ε)

∂ε

∣∣∣∣
ε=0

. (1)
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Let us consider any quantity f defined in the Eulerian coordinates (or in
the Lagrangian coordinates)

(t,x) −→ f(t,x)

or
(t,X)→ f(t,X)

We abuse the notation by using the same letter f for completely different
functions, because the last one is obtained from the first one by replac-
ing x = ϕt(X). To avoid a possible confusion, we will often indicate the
arguments of these functions. The corresponding virtual families of f in
the Eulerian coordinates will be denoted by f̂(t,x, ε) and f̃(t,X, ε). The
relation between them is as follows :

f̃(t,X, ε) = f̂(t,Φt(X, ε), ε) (2)

Let us define the Eulerian variations of f

δ̂f(t,x) =
∂f̂

∂ε

∣∣∣∣∣
ε=0

and the Lagrangian variation :

δ̃f(t,X) =
∂f̃

∂ε

∣∣∣∣∣
ε=0

Differentiating (2) with respect to ε we obtain the following relation between
two types of variations :

δ̃f = δ̂f +
∂f

∂x
δx =δ̂f +∇f · δx (3)

Variation of density
The density ρ (t,X) is determined by

ρ detF = ρ0(X),

where ρ0(X) is the reference density.
Lemma

δ̃F =
∂δx

∂X
, δ̃ (detF ) = detF tr

(
F−1δ̃F

)
= detF div (δx)
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Here the variation δx defined by (1) is considered as a function of the Eu-
lerian coordinates. In the following, all operations from the vector analysis
(div, ∇, ... ) will be applied only to functions of the Eulerian coordinates.

Proof
By definition,

F̃ (t,X, ε) =
∂Φt(X, ε)

∂X
.

Differentiating it ones with respect to ε we obtain the first formula. The
proof of the second formula we present below is due to P. Casal. Let w1,
w2, ...,wn be n constant vectors. We denote by det (w1,w2, ...,wn) the
determinant of the matrix having columns w1,w2, ...,wn. For any linear
transformation A its determinant and its trace satisfy the following rela-
tions:

det (Aw1, Aw2, ..., Awn) = detA det (w1,w2, ...,wn) ,

tr (A) det(w1,w2, ...,wn)

= det(Aw1,w2, ...,wn) + ...+ det(w1,w2, ..., Awn).

Hence

d (detA) det (w1,w2, ...,wn) = det(dAw1, Aw2, ..., Awn)

+...+ det(Aw1, Aw2, ..., dAwn)

= det(dAA−1Aw1, Aw2, ..., Awn) + ...

+det(Aw1, Aw2, ..., dAA
−1Awn)

= tr(dAA−1) det(Aw1, Aw2, ..., Awn)

= tr(dAA−1) det (A) det(w1,w2, ...,wn)

= det (A) tr(A−1dA) det(w1,w2, ...,wn).

Hence,

d (detA) = detA tr
(
A−1dA

)
.

It is now sufficient to take d = δ̃ and to apply this result to det (F ). The
Lemma has been proved.

In particular, the Lemma and (3) imply :

δ̃ρ = −ρdiv (δx) , δ̂ρ = −div (ρδx) .

Variation of entropy
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The entropy per unit mass η is conserved along trajectories, so it is
a function only of the Lagrangian coordinates : η = η0(X). Hence, its
Lagrangian and Eulerian variations are :

δ̃η = 0, δ̂η = −∇η · δx.
Variation of velocity
The variation of the velocity is direct :

δ̃v =
∂δx

∂t
, δ̂v =

Dδx

Dt
− ∂v

∂x
δx,

where the material derivative D
Dt is defined as

D

Dt
=

∂

∂t
+ v · #.

3 Hamilton’s principle

Let us consider the Hamilton action :

a =

t1∫
t0

Ldt,

where [t0, t1] is a time interval and L is the corresponding Lagrangian. The
Hamilton principle is : for any virtual motion satisfying

Φt0(X,ε) = ϕt0(X), Φt1(X,ε) = ϕt1(X), (4)

Φt(X,ε) = ϕt(X), X ∈ ∂D(t0), (5)

and imposed constraints, the variation of the Hamilton action is stationary
:

δa = 0.

Let us remark that (4), (5) imply

δx|t=t0
= δx|t=t1

= 0, δx|∂D(t) = 0.

We will recall first the Lagrangians for classical models of continuum me-
chanics and the corresponding constraints.

Lagrangian of an incompressible fluid

L =

∫
D(t)

ρ |v|2
2

dD
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The density ρ and the velocity field v verify the constraints :

Dρ

Dt
= 0, div (v) = 0.

Lagrangian of a compressible fluid

L =

∫
D(t)

ρ

(
|v|2
2
− e (ρ, η)

)
dD

The density ρ, the velocity field v and the entropy η verify the constraints :

Dρ

Dt
+ ρdiv (v) = 0,

Dη

Dt
= 0.

The specific internal energy e (ρ, η) is a given function satisfying the Gibbs
identity :

θdη = de+ pd

(
1

ρ

)
,

where θ is the temperature and p is the pressure.
Lagrangian of an elastic body

L =

∫
D(t)

ρ

(
|v|2
2
− e (G, η)

)
dD.

Here
G =

(
FFT

)−1
=
(
FT
)−1

F−1

is the Finger tensor. In the case of isotropic solids the energy is a function of
the invariants of G. This Lagrangian is suitable for the Eulerian description
of solids. Another possibility commonly used in the literature is to consider
the specific energy in the form e (C, η) where C = FTF is the right Cauchy-
Green deformation tensor.

4 Governing equations of classical continua

4.1 Incompressible fluids

Let

a =

∫ t1

t0

Ldt =

∫ t1

t0

∫
D(t)

ρ |v|2
2

dD

The constraints
Dρ

Dt
= 0, div (v) = 0
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can be written in the form

ρ = ρ0 (X) , detF = 1.

Hence
δ̂ρ = −∇ρ · δx, div (δx) = 0.

To satisfy the last constraint we take

δx = rot (A)

where A is a smooth vector field vanishing at the boundary D(t) :

A|∂D(t) = 0.

The variation of the Hamilton action is

δa =
d

dε

∣∣∣∣
ε=0

∫ t1

t0

∫
D(t)

ρ̂ |v̂|2
2

dD =

∫ t1

t0

∫
D(t)

δ̂

(
ρ |v|2
2

)
dD

=

∫ t1

t0

∫
D(t)

(
δ̂ρ
|v|2
2

+ ρv·δ̂v
)
dD

=

∫ t1

t0

∫
D(t)

(
−|v|

2

2
∇ρ · δx+ ρv·

(
Dδx

Dt
− ∂v

∂x
δx

))
dD

=

∫ t1

t0

∫
D(t)

(
−#

(
ρ |v|2
2

)
· δx+ ρv·Dδx

Dt

)
dD

=

∫ t1

t0

∫
D(t)

(
−#

(
ρ |v|2
2

)
· δx+ ρv·

(
∂δx

∂t
+
∂δx

∂x
v

))
dD

=

∫ t1

t0

∫
D(t)

(
∂ (ρv·δx)

∂t
+ div

(
(ρv ⊗ v) ·δx−ρ |v|

2

2
δx

))
dD

−
∫ t1

t0

∫
D(t)

(
∂ρv

∂t
+ div (ρv ⊗ v)

)
·δxdD

Using the Gauss-Ostrogradski formula and taking into account the fact that
δx vanishes at ∂D(t) and δx|t=t0

= δx|t=t1
= 0, we finally get

δa = −
∫ t1

t0

∫
D(t)

(
∂ρv

∂t
+ div (ρv ⊗ v)

)
·δxdD
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Let us remark that for any function f∫ t1

t0

∫
D(t)

#f · rot (A) dD =

∫ t1

t0

∫
D(t)

div (f rot (A)) dD

=

∫ t1

t0

∫
∂D(t)

f rot (A) ·ndD = 0

if
rot (A) ·n = 0.

Here n is the external unit normal vector to ∂D(t). But the last condition
is verified if the field A is orthogonal to ∂D(t) :

A · s = 0

for any vector s tangent to ∂D(t). But
A|∂D(t) = 0.

Hence

δa = −
∫ t1

t0

∫
D(t)

(
∂ρv

∂t
+ div (ρv ⊗ v)

)
·δxdD

= −
∫ t1

t0

∫
D(t)

(
∂ρv

∂t
+ div (ρv ⊗ v)

)
·rot (A) dD.

Hence, there exists a scalar function p called pressure such that

∂ρv

∂t
+ div (ρv ⊗ v) = −# p.

So, we have obtained the Euler equations of incompressible non-homogeneous
fluids :

∂ρv

∂t
+ div (ρv ⊗ v+pI) = 0,

Dρ

Dt
= 0, div (v) = 0.

When the mass forces f are added, the equations become

∂ρv

∂t
+ div (ρv ⊗ v+pI) = ρf , (6)

Dρ

Dt
= 0, div (v) = 0.

In the case of potential forces (f = −∇Ψ (x)) the equations admit the
energy conservation law :

∂

∂t

(
ρ

(
|v|2
2

+Φ

))
+ div

(
ρv

(
|v|2
2

+Φ

)
+ pv

)
= 0.
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4.2 Compressible fluids

Let us consider the Hamilton action for compressible fluids :

a =

∫ t1

t0

Ldt =

∫ t1

t0

∫
D(t)

(
ρ |v|2
2

− ρe(ρ, η)

)
dD

The constraints
Dρ

Dt
+ ρdiv (v) = 0,

Dη

Dt
= 0,

can by rewritten in the Lagrangian coordinates in the form

ρ detF = ρ0 (X) , η = η0(X).

Hence
δ̂ρ = −div(ρδx), δ̂η = −∇η · δx.

The variation of the Hamilton action is :

δa =
d

dε

∣∣∣∣
ε=0

∫ t1

t0

∫
D(t)

(
ρ̂ |v̂|2
2

− ρ̂e(ρ̂, η̂)

)
dD

=

∫ t1

t0

∫
D(t)

δ̂

(
ρ |v|2
2

− ρe(ρ, η)

)
dD

=

∫ t1

t0

∫
D(t)

(
δ̂ρ

(
|v|2
2
−e− p

ρ

)
+ ρv·δ̂v−∂e(ρ, η)

∂η
δ̂η

)
dD

= −
∫ t1

t0

∫
D(t)

div(ρδx)

(
|v|2
2
−
(
e+

p

ρ

))
dD

+

∫ t1

t0

∫
D(t)

(
ρv·
(
Dδx

Dt
− ∂v

∂x
δx

)
+
∂e(ρ, η)

∂η
∇η · δx

)
dD

=

∫ t1

t0

∫
D(t)

ρδx · #
(
|v|2
2
−
(
e+

p

ρ

))
dD

+

∫ t1

t0

∫
D(t)

(
ρv·
(
Dδx

Dt
− ∂v

∂x
δx

)
+
∂e(ρ, η)

∂η
∇η · δx

)
dD

= −
∫ t1

t0

∫
D(t)

ρδx · #
(
e+

p

ρ

)
dD
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+

∫ t1

t0

∫
D(t)

(
ρv·
(
∂δx

∂t
+
∂δx

∂x
v

)
+
∂e(ρ, η)

∂η
∇η · δx

)
dD

=

∫ t1

t0

∫
D(t)

(
−ρδx·#p

ρ
+ ρv·

(
∂δx

∂t
+
∂δx

∂x
v

))
dD

=

∫ t1

t0

∫
D(t)

−
(
∂ρv

∂t
+ div (ρv ⊗ v) +#p

)
·δxdD = 0.

In this derivation, we have used the Gauss-Ostrogradski formula and
have taken into account the fact that δx vanishes at ∂D(t) and δx|t=t0

=
δx|t=t1

= 0. So, we have obtained the Euler equations of compressible fluids
:

∂ρv

∂t
+ div (ρv ⊗ v+pI) = 0,

Dρ

Dt
+ ρdiv (v) = 0,

Dη

Dt
= 0.

These equations admit the energy conservation law :

∂

∂t

(
ρ

(
|v|2
2

+ e(ρ, η)

))
+ div

(
ρv

(
|v|2
2

+ e(ρ, η)

)
+ pv

)
= 0.

4.3 Isotropic elastic bodies

Let

L =

∫
D(t)

ρ

(
|v|2
2
− e (G, η)

)
dD

Here
G =

(
FFT

)−1
= F−TF−1

is the Finger tensor. The tensor G is more convenient for the Eulerian
formulation of governing equations of isotropic elastic materials. Let us
recall that the material is isotropic if for any orthogonal transformation O

e
(
OGOT , η

)
= e (G, η) .

Hence, the internal energy depends only on the invariants of G. In particular,
we choose such invariants in the form :

Ji = tr
(
Gi
)
, i = 1, 2, 3.
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Let X = (Xα) be the Lagrangian coordinates, α = 1, 2, 3, x =
(
xi
)
be the

Eulerian coordinates, i = 1, 2, 3. We introduce the curvilinear cobasis

eα = ∇Xα, α = 1, 2, 3

which is dual to the natural curvilinear basis

eα =
∂x

∂Xα
, α = 1, 2, 3.

In particular, the vector eα is the α - th column of F−T :

F−T =

⎛⎜⎝ ∂X1

∂x1
∂X2

∂x1
∂X3

∂x1

∂X1

∂x2
∂X2

∂x2
∂X3

∂x2

∂X1

∂x3
∂X2

∂x3
∂X3

∂x3

⎞⎟⎠ =
(
e1, e2, e3

)

=

⎛⎝ e11 e21 e31
e12 e22 e32
e13 e23 e33

⎞⎠ , eαj = (eα)j =
∂Xα

∂xj
.

The scalar product of these vectors satisfies

eβ ·eα = δβα

where δβα are the Kronecker symbols. With these definitions

G =
3∑

α=1

eα ⊗ eα, G−1 =
3∑

α=1

eα ⊗ eα. (7)

Since
DXα

Dt
= 0

we have by taking the gradient of that equation :

∂eα

∂t
+∇ (v · eα) = 0, roteα = 0. (8)

In particular, equations (7) and (8) imply that

DG

Dt
+G

∂v

∂x
+

(
∂v

∂x

)T

G = 0.

Remark 1. It is interesting to note that the left hand side of this equa-
tion can be considered as an objective derivative. Indeed, let O(t) be a
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time dependent orthogonal transformation : O(t)O(t)T = I. Consider new
variables denoted with primes :

x′ = O(t)x, v′ =
dO(t)

dt
x+O(t)v.

The aim is to show that the equation for

G′ = O(t)GOT (t)

will be the same as for G. We get :

DG

Dt
=

∂G

∂t
+
∂G

∂x
v

=
∂
(
OT (t)G′O(t)

)
∂t′

+
∂
(
OT (t)G′O(t)

)
∂x′

∂x′

∂t

+
∂
(
OT (t)G′O(t)

)
∂x′

∂x′

∂x

(
OT (t)v′ −OT (t)

dO(t)

dt
OT (t)x′

)

=
∂
(
OT (t)G′O(t)

)
∂t′

+
∂
(
OT (t)G′O(t)

)
∂x′

dO(t)

dt
OT (t)x′

+
∂
(
OT (t)G′O(t)

)
∂x′

(
v′ − dO(t)

dt
OT (t)x′

)

=
∂
(
OT (t)G′O(t)

)
∂t′

+
∂
(
OT (t)G′O(t)

)
∂x′ v′

=
dOT (t)

dt
G′O(t) +OT (t)G′ dO(t)

dt
+OT (t)

D′G′

Dt′
O(t).

Hence
DG

Dt
+G

∂v

∂x
+

(
∂v

∂x

)T

G =

=
dOT (t)

dt
G′O(t) +OT (t)G′ dO(t)

dt
+OT (t)

D′G′

Dt′
O(t)

+OT (t)G′O(t)
(
OT (t)

∂v′

∂x′O(t)−OT (t)
dO(t)

dt

)
+

(
OT (t)

∂v′

∂x′O(t)−OT (t)
dO(t)

dt

)
OT (t)G′O(t)

= OT (t)

(
D′G′

Dt′
+G′ ∂v

′

∂x′ +
(
∂v′

∂x′

)T

G′
)
O(t).
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Finally,

D′G′

Dt′
+G′ ∂v

′

∂x′ +
(
∂v′

∂x′

)T

G′

= O(t)

(
DG

Dt
+G

∂v

∂x
+

(
∂v

∂x

)T

G

)
OT (t).

Remark 2. The differential constraint roteα = 0 in (8) is compatible
with the evolution equation for eα : if roteα vanishes at time t = 0, it
vanishes at all t > 0. This constraint is automatically satisfied in the one-
dimensional case. In the multi-dimensional case equation (8) can also be
replaced by

∂eα

∂t
+∇ (v · eα) = −roteα ∧ v. (9)

We will obtain now the expression for the stress tensor. Let e be the specific
internal energy :

e = e (G, η)

where η is the specific entropy. Let us consider the variation of the internal
energy Ei at fixed value of η :

δEi = δ

∫
D(t)

ρe (G, η) dD

We have

δEi = δ

∫
D(t)

ρe (G, η) dD =

∫
D(0)

ρ0δ̃e (G, η) dD0

=

∫
D(0)

ρ0tr

(
∂e

∂G
δ̃G

)
dD0.

The matrix ∂e/∂G is symmetric. Since

δ̃G =
(
δ̃F−1

)T
F−1 +

(
F−1

)T
δ̃F−1

= −
(
F−1δ̃FF−1

)T
F−1 −

(
F−1

)T
F−1δ̃FF−1

= −
(
∂δx

∂x

)T

G−G
∂δx

∂x

we obtain

δEi = −
∫
D(0)

2ρ0tr

(
∂e

∂G
G
∂δx

∂x

)
dD0
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=

∫
D(t)

tr

(
σ
∂δx

∂x

)
dD.

The tensor

σ = −2ρ ∂e
∂G

G

is called the Murnaghan stress tensor (Godunov, 1978, Godunov and
Romenskii, 2003). It is symmetric, if e is isotropic. Indeed, in the isotropic
case, e depends only on the invariants of G :

Ji = tr
(
Gi
)
, i = 1, 2, 3

In particular, the determinant of G (denoted by |G|) can be expressed in
terms of Ji in the form

|G| = 2J3 − 3J1J2 + J3
1

6

It can be proved that

∂Ji
∂G

= iGi−1, i = 1, 2, 3.

In particular (see also the Lemma)

∂ |G|
∂G

= |G|G−1.

Hence

σ = −2ρ ∂e
∂G

G = −2ρ
(
∂e

∂J1
I + 2

∂e

∂J2
G+ 3

∂e

∂J3
G2

)
G = −2ρG ∂e

∂G
= σT

Here the density ρ is expressed by

ρ = ρ0 |G|1/2

EOS formulation in separable form It is natural to present the energy
in a separable form : the energy is the sum of a ”hydrodynamic” part and
an ”elastic” part :

e = eh (ρ, η) + ee(g)

where

g =
G

|G|1/3
.
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The hydrodynamic part of the energy eh (ρ, η) can be taken in the form of
stiffened gas equation of state :

eh =
p+ γp∞
ρ (γ − 1) , p+ p∞ = A exp

(
η − η0
cv

)
ργ , η0 = const, A = const

(10)
Here γ is the polytropic exponent, p∞ is a constant, cv is the specific heat
at constant volume.

The elastic part of the internal energy ee depends only on g. The tensor
g has a unit determinant, so it is unaffected by the volume change. This idea
to take the arguments of the internal energy in this form was first proposed
by Gouin and Debieve (1986) (see also Plohr and Plohr, 2005), but for the
dependence of the energy on the right Cauchy-Green tensor. The simplest
example of the elastic energy is

ee(g, η) =
μs
4ρ0

tr
(
(g − I)

2
)
=

μs
4ρ0

(
J2

|G|2/3
− 2J1

|G|1/3
+ 3

)
(11)

where μs is the shear modulus. The stress tensor will be then

σ = −2ρ ∂e
∂G

G = −pI + S, tr(S) = 0, (12)

where the deviatoric part is

S = −μs
ρ

ρ0

(
1

|G|2/3
(
G2 − J2

3
I

)
− 1

|G|1/3
(
G− J1

3
I

))

and the thermodynamic pressure is

p = ρ2
∂eh

∂ρ
.

The elastic part of the energy has no influence on the pressure, it is deter-
mined only by the hydrodynamic part. In the case of small displacements,
we obtain the classical Hooke law.
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Governing equations The governing equations can be written in the
form :

∂eα

∂t
+∇ (v · eα) = 0, roteα = 0,

∂ρ

∂t
+ div (ρv) = 0,

∂ρv

∂t
+ div (ρv ⊗ v − σ) = 0,

∂
(
ρ
(
e+ v·v

2

))
∂t

+ div
(
ρv
(
e+

v · v
2

)
− σv

)
= 0.

For the energy in the form (10), 11), the equations are hyperbolic at least
in the one-dimensional case. The proof will be given in a more general
situation involving solid-fluid mixtures.

5 Multiphase flow modeling: general definitions

Consider a multiphase mixture of two compressible components. Each a-
th component (a = 1, 2) has its own phase average characteristics: the
velocity va; the density ρa ; entropy ηa, the internal energy per unit mass
ea(ρa, ηa), the temperature θa etc. The apparent densities ρ̄a are defined
by : ρ̄a = αaρa. The mixture density is : ρ = α1ρ1 + α2ρ2. Here αa is the
volume fraction of the a-th component, α1 + α2 = 1.

The definition of the volume fraction is as follows. At each point (t, x)
consider a representative mixture volume Ω : Ω = Ω1 ∪Ω2 where Ωa is the
volume occupied by the α− th phase. Consider the characteristic function
of the a− th phase :

χa (t,x
′) =

{
1, if (t,x′) ∈ Ωa

0, if (t,x′) /∈ Ωa

Then

αa(t,x) = 〈χa〉 =

∫
Ω

χa (t,x
′) dω′

V ol(Ω)
=

V ol(Ωa)

V ol(Ω)

The phase average characteristics are defined in standard way :

ρa(t,x) =

∫
Ωa

ρ′a (t,x
′) dω′

V ol(Ωa)
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va(t,x) =

∫
Ωa

ρ′a (t,x
′)v′

a (t,x
′) dω′∫

Ωa

ρ′a (t,x′) dω′

etc. Other types of average can be introduced: time average, space-time
average etc. (see, for example, Drew and Passman (1998), Ishii and Hibiki
(2006)). The usual technique in obtaining the governing equations of mul-
tiphase flows is to multiply the system of balance laws by the characteristic
function and average it. In particular, the mass conservation laws become :

∂ (αaρa)

∂t
+ div (αaρava) = 0.

However, applying the same averaging procedure to the conservation laws
of momentum and energy, we immediately arrive to the closure problem
: the balance equations contain more unknowns than equations. A possi-
ble remedy to that is to formulate the Lagrangian of the system directly in
terms of average variables. And then to proceed in usual way by writing the
corresponding Euler-Lagrange equations. The principal difficulty in apply-
ing such an approach is : how to determine this Lagrangian? At least two
approaches can be used. The first is a phenomenological formulation of such
a Lagrangian. The validation of such an approach should be established by
comparing to experiments. The second possibility is an asymptotic model-
ing where the development with respect to a small parameter allows us to
obtain an approximate Lagrangian from the exact one.

Also, it is not sufficient just to obtain the Euler-Lagrange equations :
dissipation terms consistent with the second law of thermodynamics should
be introduced to describe real physics.

6 Equilibrium one-velocity model

Quite often one can suppose that the average velocities of phases are equal
: v1 = v2 = v. We introduce the volume kinetic energy of the system :

T =

2∑
a=1

αaρa
|va|2
2

=

(
2∑

a=1

αaρa

)
|v|2
2

= ρ
|v|2
2

,

and the potential energy

W =

2∑
a=1

αaρaea = ρ

2∑
a=1

Yaea, Ya =
αaρa
ρ

, Y1 + Y2 = 1.
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The variable Ya is called mass fraction. The energies ea(ρa, ηa) verify the
Gibbs identity:

θadηa = dea + pad(
1

ρa
)

where pa are the pressures. The Lagrangian of the mixture is :

L =

∫
D(t)

ρ

(
|v|2
2
− e

)
dD

where we assume the additivity of the mixture energy defined as :

e = Y1e1

(
Y1ρ

α1
, η1

)
+ Y2e2

(
Y2ρ

α2
, η2

)
.

The variation of the Hamilton action can be found under the usual con-
straints :

∂ρ

∂t
+ div (ρv) = 0,

DY1
Dt

= 0,

Dηa
Dt

= 0, a = 1, 2.

The novelty is that a new independent variable appears, the volume fraction,
which is not related to the virtual displacements. Hence, an additional
variation should be taken. The variations of the density, mass fraction and
entropies are given by :

δ̂ρ = −div(ρδx), δ̂ηa = −∇ηa · δx, δ̂Ya = −∇Ya · δx.

The corresponding variation of the Lagrangian can be found in the same
way as for classical compressible fluids :

δa =

∫ t1

t0

∫
D(t)

−
(
∂ρv

∂t
+ div (ρv ⊗ v) +#p

)
·δxdD = 0

where
p = α1p1 + α2p2

is the mixture pressure. It gives the momentum equation :

∂ρv

∂t
+ div (ρv ⊗ v) +#p = 0.
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Doing so, we have supposed that the volume fraction is fixed. Now, it is
necessary to find the variation of the Lagrangian with respect to α1 :

δL =

∫
D(t)

ρ

(
−Y1

∂e1
∂ρ1

(
−Y1ρ
α2
1

)
− Y2

∂e2
∂ρ2

(
Y2ρ

α2
2

))
δα1dD

=

∫
D(t)

(p1 − p2) δα1dD = 0.

Since it is valid for any δα1, it follows from here that

p1 − p2 = 0.

The equilibrium of velocities implies also the pressure equilibrium : p =
p1 = p2. This is an algebraic equation for the volume fraction. The energy
equation is a consequence of the mass conservation laws, the momentum
equation and the entropy equations :(

ρ

(
e+

|v|2
2

))
t

+ div

(
ρv

(
e+

|v|2
2

)
+ pv

)
= 0. (13)

6.1 What is the sound speed in multiphase flow models?

The sound speeds of pure phases are determined as :

c2a =
∂pa (ρa, ηa)

∂ρa

∣∣∣∣
ηa=const

, a = 1, 2.

They correspond to the phase velocity of propagation of linear perturbations
of the corresponding Euler equations linearized at rest. The corresponding
sound speed cw in a two-fluid mixture is called Wood sound speed and is
defined as

1

ρc2w
=

α1
ρ1c21

+
α2
ρ2c22

. (14)

Consider first an euristic method of derivation of this formula. The defini-
tion of the specific mixture volume is :

τ = Y1τ1 + Y2τ2,

where

τ =
1

ρ
, τa =

1

ρa
, a = 1, 2.
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Let us differentiate it with respect to the mixture pressure p = p1 = p2 :

dτ

dp
= − 1

ρ2c2w
= Y1

dτ1
dp1

+ Y2
dτ2
dp2

= − Y1
ρ21c

2
1

− Y2
ρ22c

2
2

.

It implies immediately (14). Another way, more rigorous one, is to calcu-
late the characteristic speeds of the governing system. For simplicity, we
consider only one-dimensional case (v = (u),x = (x)). The equations are :

Dτ

Dt
− ux = 0,

Du

Dt
+
px
ρ
= 0,

DY1
Dt

= 0,

Dη1
Dt

= 0,

Dη2
Dt

= 0.

The mean specific volume is given by :

τ = τ (p, η1, η2, Y1) = Y1τ1 (p, η1) + Y2τ2 (p, η2) .

Obviously,
Dτ

Dt
= Y1

Dτ1 (p, η1)

Dt
+ Y2

Dτ1 (p, η1)

Dt
=

−
(

Y1
ρ21c

2
1

+
Y2
ρ22c

2
2

)
Dp

Dt
= −

(
α1τ

ρ1c21
+

α2τ

ρ2c22

)
Dp

Dt
.

Hence, the system is
Dp

Dt
+ ρc2wux = 0, (15)

Du

Dt
+
px
ρ
= 0,

DY1
Dt

= 0,

Dη1
Dt

= 0,

Dη2
Dt

= 0.
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System (15) can be rewritten in terms of unknowns U = (p, u, Y1, η1, η2)
T
:

Ut +A (U)Ux = 0,

where

A (U) =

⎛⎜⎜⎜⎜⎝
u ρc2w 0 0 0
1
ρ u 0 0 0

0 0 u 0 0
0 0 0 u 0
0 0 0 0 u

⎞⎟⎟⎟⎟⎠
The characteristic values of the matrix A are

λ1,2 = u± cw, λ3,4,5 = u.

On can see that the system is hyperbolic (obviously, the eigenvalue λ = u
of multiplicity three has exactly three eigenvectors).

The Wood sound speed cw has very interesting physical properties. In-
deed, let us fix the phase densities and entropies and plot the Wood sound
speed as a function of the volume fraction.

cw =
1√

(α1ρ1 + α2ρ2)
(

α1

ρ1c21
+ α2

ρ2c22

) .
Its minimal value is much lower than the sound speeds in either medium.
For example, for the ”air-water” mixture with c1 = 330m/s, ρ1 = 1, 24
kg/m3, c2 = 1500m/s, ρ2 = 1000 kg/m3 the minimal sound speed is about
23m/s. This very surprising fact has also been validated experimentally
(Micaelli, 1982).

The model (15) we have derived is usually called ”5 equations model”
(see, for example, Kapila et al. (2001) for the derivation of this model
from a more general two-velocity model). As we have seen, it is hyperbolic.
However, it is not in conservative form. The last renders questionable a
formal determination of the Rankine-Hugoniot relations for this model. A
possible solution to this problem can be found in Saurel et al. (2007).

7 Nonequilibrium one-velocity model

The introduction of dissipation is always a phenomenological procedure
which however should satisfy the entropy inequality. A natural relaxation
equation can be written to replace the algebraic relation p1 − p2 = 0. In-
troducing the dissipation function

D =
1

2μ

(
Dα1
Dt

)2
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Figure 1. The minimal value of the Wood sound speed is much lower than
the sound speeds in either components.

one can replace the equilibrium condition by the following one :

p1 − p2 =
∂D

∂
(
Dα1

Dt

) = 1

μ

Dα1
Dt

.

Here μ is some constant. The physical sense of this equation is clear : the
volume fraction changes due to the pressure difference. This equation is the
simplest one. In more general case it may also contain inertia terms (see
Gavrilyuk and Saurel (2002) and Saurel, Gavrilyuk and Renaud (2003) for
details). The equations for entropies should satisfy the entropy inequality
in the form :

∂ (ρη)

∂t
+ div (ρηv) ≥ 0 (16)

where η is the mixture entropy defined by

ρη = α1ρ1η1 + α2ρ2η2.

We take the equations for the entropies in the form :

αaρaθa
Dηa
Dt

= fa, a = 1, 2

where fa should be chosen to satisfy the entropy inequality (16). The pro-
duction terms fa should also be compatible with the energy equation (13).
Developing the energy equation one can obtain

De

Dt
+ p

D

Dt

(
1

ρ

)
= 0.
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Or

α1ρ1θ1
Dη1
Dt

+ α2ρ2θ2
Dη2
Dt

= μ (p1 − p2)
2 ≥ 0. (17)

To satisfy (17) one can choose

αaρaθa
Dηa
Dt

= fa = (pa − pI)
Dαa

Dt
, a = 1, 2. (18)

where the interface pressure pI can be taken as :

pI = β2p1 + β1p2, β1 + β2 = 1, βa ≥ 0. (19)

Here βi are some constants. In particular, the interface pressure pI can be
taken as the pressure at the contact discontinuity obtained as the solution
of the linearized Riemann problem with initial pressures p1, p2 (Saurel,
Gavrilyuk and Renaud, 2003). For that case

β2 =
Z2

Z1 + Z2
, β1 =

Z1

Z1 + Z2
,

where Za are acoustical impedances of pure phases. With such a choice, the
entropies of each phase increase :

α1ρ1
Dη1
Dt

=
1

θ1
(p1 − pI)

Dα1
Dt

=
μβ1
θ1

(p1 − p2)
2 ≥ 0,

α2ρ2
Dη2
Dt

=
1

θ2
(p2 − pI)

Dα2
Dt

=
μβ2
θ2

(p1 − p2)
2 ≥ 0.

Summing these equations we obtain the entropy inequality (16). Finally,
the corresponding 1D non-equilibrium model is :

∂ρ

∂t
+
∂ (ρu)

∂x
= 0, (20)

Du

Dt
+
1

ρ

∂p

∂x
= 0,

p = α1p1

(
Y1ρ

α1
, η1

)
+ α2p2

(
Y2ρ

α2
, η2

)
,

Dα1
Dt

= μ (p1 − p2) ,

DY1
Dt

= 0,
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Dη1
Dt

=
μβ1

α1ρ1θ1
(p1 − p2)

2
,

Dη2
Dt

=
μβ2

α2ρ2θ2
(p1 − p2)

2
.

The equations are also hyperbolic, however the characteristic speeds are
now : λ1,2 = u ± cf , λk = u, k = 3, 4, 5, 6. Here cf is the ”frozen” sound
speed :

c2f = Y1c
2
1 + Y2c

2
2.

One can prove that
c2f > c2w. (21)

When μ → ∞, we recover in this asymptotic limit the equilibrium model
(15). The condition (21) is known as Whitham’s stability condition (or
Whitham’s subcharacteristic condition) (Whitham, 1974). The Wood sound
speed and the ”frozen” sound speed are the velocities of propagation of long
and short waves, respectively, for (20).

8 Bubbly fluids

In applications (for example, shock wave propagation in bubbly fluids, high
velocity impacts etc.) it is necessary to take into account inertia effects. In
particular, in such media, the internal energy of a mixture is a function not
only of the flow parameters but also their derivatives. Consider a particular
case of fluids containing gas bubbles (”bubbly fluids”). For simplicity, we
will suppose that the liquid phase is incompressible : only gas bubbles are
compressible.

We will use the index ”1” for a liquid and the index ”2” for a gas. The
kinetic energy of an incompressible fluid of density ρ10 = const due to sin-
gle bubble oscillations is (Iordansky (1960), Kogarko (1961), Wijngaarden
(1968)) :

2πR3ρ10

(
dR

dt

)2

where R is the bubble radius. If N2 is the number of bubbles per unit
volume of the mixture satisfying the conservation law

∂N2

∂t
+ div (N2v) = 0,

the corresponding energy per unit volume of N2 moving bubbles (having
the same mean velocity as a surrounding fluid) will be :

2πR3N2ρ10

(
DR

Dt

)2

,
D

Dt
=

∂

∂t
+ v · ∇,



Multiphase Flow Modeling via Hamilton’s Principle 187

The bubble volume fraction is :

α2 =
4

3
πR3N2.

The Lagrangian of the bubbly fluid can be written in the form :

L =

∫
D(t)

(
ρ |v|2
2

+
3

2
α2ρ10

(
DR

Dt

)2

− ρY2e2

(
Y2ρ

α2
, η2

))
dD (22)

We consider the case where the mass concentration of bubbles Y2 =
α2ρ2

ρ ,

the number of bubbles per unit mass n2 =
N2

ρ and the gas entropy η2 are
constant. The bubble radius and the gas density can be expressed through
the average density ρ as :

4

3
πR3 =

(
1

ρ
− Y1
ρ10

)
/n2, ρ2 = Y2

(
1

ρ
− Y1
ρ10

)−1

. (23)

We rewrite (22) in the following generic form :

L =

∫
D(t)

(
ρ |v|2
2

−W

(
ρ,
Dρ

Dt

))
dD (24)

In our particular case

W

(
ρ,
Dρ

Dt

)
= ρ

(
Y2e2 (ρ2, η2)− 2πR3n2ρ10

(
DR

Dt

)2
)

The usual constraint should be respected :

∂ρ

∂t
+ div (ρv) = 0.

Let us define the variation of such a generic Lagrangian (24). Obviously,

δa

=

∫ t1

t0

∫
D(t)

⎛⎝δ̂ρ( |v|2
2
− δW

δρ

)
+ ρv·δ̂v − ∂W

∂
(
Dρ
Dt

) δ̂(Dρ
Dt

)⎞⎠ dDdt

=

∫ t1

t0

∫
D(t)

⎛⎝⎛⎝ρv− ∂W

∂
(
Dρ
Dt

)∇ρ
⎞⎠ ·δ̂v+δ̂ρ( |v|2

2
− δW

δρ

)⎞⎠ dDdt
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+

∫ t1

t0

∫
D(t)

⎛⎝− ∂

∂t

⎛⎝ ∂W

∂
(
Dρ
Dt

) δ̂ρ
⎞⎠− div

⎛⎝ ∂W

∂
(
Dρ
Dt

)vδ̂ρ
⎞⎠⎞⎠ dDdt

=

∫ t1

t0

∫
D(t)

⎛⎝( |v|2
2
− δW

δρ

)
δ̂ρ+

⎛⎝ρv− ∂W

∂
(
Dρ
Dt

)∇ρ
⎞⎠ ·δ̂v

⎞⎠ dDdt

+

∫ t1

t0

∫
D(t)

⎛⎝− ∂

∂t

⎛⎝ ∂W

∂
(
Dρ
Dt

) δ̂ρ
⎞⎠− div

⎛⎝ ∂W

∂
(
Dρ
Dt

)vδ̂ρ
⎞⎠⎞⎠ dDdt

=

∫ t1

t0

∫
D(t)

⎛⎝( |v|2
2
− δW

δρ

)
δ̂ρ+

⎛⎝ρv− ∂W

∂
(
Dρ
Dt

)∇ρ
⎞⎠ ·δ̂v

⎞⎠ dDdt.

since the conservative terms are vanishing at the boundary ∂ ([t0, t1]×D(t))
. Here we have introduced the classical notation for the variational deriva-
tive of W :

δW

δρ
=

∂W

∂ρ
− ∂

∂t

⎛⎝ ∂W

∂
(
∂ρ
∂t

)
⎞⎠− div( ∂W

∂ (#ρ)v
)

=
∂W

∂ρ
− ∂

∂t

⎛⎝ ∂W

∂
(
Dρ
Dt

)
⎞⎠− div

⎛⎝ ∂W

∂
(
Dρ
Dt

)v
⎞⎠

=
∂W

∂ρ
− ρ

D

Dt

⎛⎝1
ρ

∂W

∂
(
Dρ
Dt

)
⎞⎠

Integrating by parts we obtain

δa =

∫ t1

t0

∫
D(t)

δLdDdt

where

δL =l·δx, l =− ρ
Dv

Dt
−∇

(
ρ
δW

δρ
−W

)

−∇W +
δW

δρ
∇ρ+ ρ

D

Dt

⎛⎝1
ρ

∂W

∂
(
Dρ
Dt

)∇ρ
⎞⎠+

∂W

∂
(
Dρ
Dt

) (∂v
∂x

)T

∇ρ
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Let us show that the following term vanishes :

−∇W +
δW

δρ
∇ρ+ ρ

D

Dt

⎛⎝1
ρ

∂W

∂
(
Dρ
Dt

)∇ρ
⎞⎠+

∂W

∂
(
Dρ
Dt

) (∂v
∂x

)T

∇ρ = 0.

Indeed,

−∇W +
δW

δρ
∇ρ+ ρ

D

Dt

⎛⎝1
ρ

∂W

∂
(
Dρ
Dt

)∇ρ
⎞⎠+

∂W

∂
(
Dρ
Dt

) (∂v
∂x

)T

∇ρ

= −∂W
∂ρ
∇ρ− ∂W

∂
(
Dρ
Dt

)∇(Dρ
Dt

)

+

⎛⎝∂W

∂ρ
− ρ

D

Dt

⎛⎝1
ρ

∂W

∂
(
Dρ
Dt

)
⎞⎠⎞⎠∇ρ+ ρ

D

Dt

⎛⎝1
ρ

∂W

∂
(
Dρ
Dt

)
⎞⎠∇ρ

+
∂W

∂
(
Dρ
Dt

)D∇ρ
Dt

+
∂W

∂
(
Dρ
Dt

) (∂v
∂x

)T

∇ρ

= − ∂W

∂
(
Dρ
Dt

)∇(Dρ
Dt

)
+

∂W

∂
(
Dρ
Dt

)D∇ρ
Dt

+
∂W

∂
(
Dρ
Dt

) (∂v
∂x

)T

∇ρ = 0.

Finally, the momentum equation is :

ρ
Dv

Dt
+∇

(
ρ
δW

δρ
−W

)
= 0.

The governing equations can also be rewritten in conservative form :

∂ρ

∂t
+ div (ρv) = 0, (25)

∂ρv

∂t
+ div (ρv ⊗ v) +∇p = 0. (26)

where the pressure is defined by

p = ρ
δW

δρ
−W. (27)
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It admits also the energy conservation law :

∂

∂t

(
ρ |v|2
2

+ E

)
+ div

(
v

(
ρ |v|2
2

+ E + p

))
= 0 (28)

where

E =W − Dρ

Dt

∂W

∂
(
Dρ
Dt

) .
If W depends only on ρ, then W = E and equations (25), (26) coincide
with the classical Euler equations of barotropic fluids.

Let us calculate the pressure equation (27) in explicit form for the bubbly
fluids. We introduce the specific potential w :

W = ρw,

w = Y2e2 (ρ2, η2)− 2πR3n2ρ10

(
DR

Dt

)2

.

Obviously,

p = ρ2

⎛⎝∂w

∂ρ
− D

Dt

⎛⎝ ∂w

∂
(
Dρ
Dt

)
⎞⎠⎞⎠ .

Consider now w
(
ρ, Dρ

Dt

)
as a function of R and DR

Dt . Then

p = − 1

4πR2n2

(
∂w

∂R
− D

Dt

(
∂w

∂
(
DR
Dt

)))

= − 1

4πR2n2

(
−p2

3
(
4π
3 R

3n2
)2

4π
3 R

4n2
− 6πR2n2ρ10

(
DR

Dt

)2
)

− 1

4πR2n2

D

Dt

(
4πR3n2ρ10

(
DR

Dt

))

= − 1

4πR2n2

(
−p2

3
(
4π
3 R

3n2
)2

4π
3 R

4n2
− 6πR2n2ρ10

(
DR

Dt

)2

+4πR3n2ρ10
D2R

Dt2
+ 12πR2n2ρ10

(
DR

Dt

)2
)

= p2 + ρ10

(
3

2

(
DR

Dt

)2

+R
D2R

Dt2

)
.

28
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The equation

p = p2 + ρ10

(
3

2

(
DR

Dt

)2

+R
D2R

Dt2

)
(29)

is known as the Rayleigh-Lamb equation describing oscillations of a single
bubble in an infinite fluid. Model (25), (26) and (29) is called in the liter-
ature Iordansky-Kogarko-Wijngaarden model (Iordansky (1960), Kogarko
(1961), van Wijngaarden (1968)).

8.1 Dispersive shallow water flows as an analogue of bubbly flows

Much work has been done in the derivation of relatively simple mathe-
matical models of long non-linear water waves. One of popular models is the
Green-Naghdi model obtained in the one-dimensional case by Su and Gard-
ner (1969) and in the multi-dimensional case by Green, Laws and Naghdi
(1974, 1976) within the context of a homogeneous one-layer fluid. In the
literature, this model is usually called Green-Naghdi model (GN model or
GN system). A derivation of the GN model based on the variational for-
mulation of the Euler equations was done by Miles and Salmon (1985) (see
also Salmon (1988, 1998)). A mathematical justification of the GN model
was done by Makarenko (1986) and Alvarez-Samaniego and Lannes (2008).
Solitary wave solutions of the GN model were obtained by Su and Gardner
(1969). The linear stability of solitary waves has been proved by Li (2001).
A criterium of stability of shear flows for the GN model was proposed by
Gavrilyuk and Teshukov (2004). A wide class of multi-dimensional solu-
tions and approximate solutions of nonlinear multi-dimensional GN model
has been found by Gavrilyuk and Teshukov (2001) and Teshukov and Gavri-
lyuk (2006). Unsteady undular bores were described by El, Grimshaw and
Smyth (2006).

It is interesting to note that such a model can be viewed as an analogue of
”bubbly fluids” flow model. The Green-Naghdi equations describing shallow
water flows over a plane bottom are :

∂h

∂t
+ div (hv) = 0,

∂hv

∂t
+ div

(
hv ⊗ v+

(
gh2

2
+
h2

3

D2h

Dt2

)
I2

)
= 0.

Here h is the position of free surface, v is the average with respect the
vertical direction 2D velocity field, g is the gravity acceleration, and I2 is
the two-dimensional identity transformation. The Green-Naghdi model is
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formally described with the same type of Lagrangian :

L =

∫
D(t)

(
h |v|2
2

−W

(
h,
Dh

Dt

))
dD

where the function W is :

W (h,
Dh

Dt
) =

gh2

2
− h

6

(
Dh

Dt

)2

.

Obviously,

p = h
δW

δh
−W =

gh2

2
+
h2

3

D2h

Dt2
.

Such an analogy between ”bubbly fluids” and dispersive shallow water flows
is very useful. Indeed, the parameters of waves propagating in bubbly fluids
can not be observed, they can only be measured, while the position of
the free surface (playing the role of average density) can be at least easily
observed.

9 Two-velocity one-pressure model

Consider the case where the averaging velocities of phases are not equal.
The Lagrangian of the mixture is :

L =

∫
D

(
2∑

a=1

αaρa
|va|2
2

−
2∑

a=1

αaρaea

)
dD

Here D is not a material volume, this notion has no sense in the case of
two velocity continua. We will use the Eulerian variations to define the
governing equations. The imposed constraints are

(αaρa)t + div (αaρava) = 0,

(αaρaηa)t + div (αaρavaηa) = 0.

Or, in terms of apparent densities ρ̄a :

(ρ̄a)t + div (ρ̄ava) = 0,

(ρ̄aηa)t + div (ρ̄avaηa) = 0.

At least three types of independent variations should be considered. The
first one is the variation with respect to the volume fraction giving us the
equilibrium condition :

p1 = p2 = p, p = α1p1 + α2p2.
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The second and the third variations in terms of virtual displacements δxa
(which can be introduced in the same way as in the case of one-velocity
continua) give us usual expressions of variations of the density, entropy and
velocity :

δ̂ρ̄a = −div(ρ̄aδxa), δ̂ηa = −∇ηa · δxa, δ̂va =
Daδxa
Dt

− ∂va
∂x

δxa,

Da

Dt
=

∂

∂t
+ va · ∇

The Euler-Lagrange equations correspond to the classical momentum equa-
tions for each phase :

ρ̄a
Dava
Dt

+ αa∇pa = 0.

Taking into account the equilibrium condition they can also be rewritten in
non-conservative form :

∂α1ρ1v1
∂t

+ div (α1ρ1v1 ⊗ v1 + α1p1I) = p∇α1,

∂α2ρ2v2
∂t

+ div (α2ρ2v2 ⊗ v2 + α2p2I) = p∇α2.

Summing them we obtain the equation of the total momentum :(
2∑

a=1

αaρava

)
t

+ div

(
2∑

a=1

αaρava ⊗ va + pI

)
= 0.

The total energy is : (
2∑

a=1

αaρa

(
ea +

|va|2
2

))
t

+div

(
2∑

a=1

αaρava

(
ea +

|va|2
2

)
+ αapava

)
= 0.

9.1 Analysis of the two-velocity one-pressure model

For simplicity, consider the one-dimensional isentropic case ( ηa = const
). The equations are :

(α1ρ1)t + (α1ρ1u1)x = 0, (30)
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(α2ρ2)t + (α2ρ2u2)x = 0,

D1u1
Dt

+
px
ρ1

= 0,

D2u2
Dt

+
px
ρ2

= 0.

The pressures are then functions of densities:

p1

(
ρ̄1
α1

)
= p2

(
ρ̄2
α2

)
= p. (31)

Using the expression for the differential of the volume fraction obtained
from the equilibrium condition (31)

dα1 =

c21
α1
dρ̄1 − c22

α2
dρ̄2

c21ρ̄1

α2
1
+

c22ρ̄2

α2
2

=

c21
α1
dρ̄1 − c22

α2
dρ̄2

c21ρ1

α1
+

c22ρ2

α2

,

and rewriting the equations in variables (ρ̄1, ρ̄2, u1, u2), one can obtain the
following characteristic polynomial for (30) :

(λ− u1)
2(λ− u2)

2 − α2ρc
2
w

ρ2
(λ− u1)

2 − α1ρc
2
w

ρ1
(λ− u2)

2 = 0.

Transforming it to the form

1 =
α2ρc

2
w

ρ2

1

(λ− u2)2
+
α1ρc

2
w

ρ1

1

(λ− u1)2

and looking for the minimal value of the right-hand side, one obtain the
following criterion of hyperbolicity (existence of four real eigenvalues):

(u2 − u1)
2
> ρc2w

((
α1
ρ1

)1/3

+

(
α2
ρ2

)1/3
)3

.

However, this model is not hyperbolic for small relative velocity. One can
prove that the corresponding volume energy

E = α1ρ1e1 + α2ρ2e2 = ρ̄1e1 + ρ̄2e2

has the following differential :

dE = h1dρ̄1 + h2dρ̄2.
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where hi, i = 1, 2 are the phase enthalpies :

dhi =
dpi
ρi

=
dp

ρi
.

Also,
∂2E

∂ρ̄21
=

ρc2w
ρ21

,

∂2E

∂ρ̄22
=

∂h2
∂ρ̄2

=
c22
ρ2

(
1

α2
+

ρ̄2
α2
2

∂α1
∂ρ̄2

)
=

ρc2w
ρ22

,

∂2E

∂ρ̄1∂ρ̄2
=

ρc2w
ρ1ρ2

.

In particular this implies that the corresponding Hessian matrix is degen-
erate:

det

(
∂2E
∂ρ̄2

1

∂2E
∂ρ̄1∂ρ̄2

∂2E
∂ρ̄1∂ρ̄2

∂2E
∂ρ̄2

2

)
= 0.

In mechanics, the non-convexity of the internal energy shows up non-
stability of the mechanical system. In our case, the degeneracy of the inter-
nal energy is responsible for the non-hyperbolicity of the governing equa-
tions and, as a consequence, the ill-posedness of the corresponding Cauchy
problem.

10 Two-velocity two-pressure model

The following non-equilibrium model obtained by adding relaxation terms
in the pressure equilibrium model is called Baer-Nunziato model (1986) (or
BN model) :

∂α1ρ1
∂t

+ div (α1ρ1v1) = 0, (32)

∂α2ρ2
∂t

+ div (α2ρ2v2) = 0,

∂α1ρ1v1
∂t

+ div (α1ρ1v1 ⊗ v1 + α1p1I) = pI∇α1 + λ (v2 − v1) ,

∂α2ρ2v2
∂t

+ div (α2ρ2v2 ⊗ v2 + α2p2I) = pI∇α2 − λ (v2 − v1) ,

∂

∂t

(
α1ρ1

(
|v1|2
2

+ e1

))
+ div

(
α1ρ1v1

(
|v1|2
2

+ e1

)
+ α1p1v1

)
=
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= −pI
∂α1
∂t

+ λv1 · (v2 − v1) ,

∂

∂t

(
α2ρ2

(
|v2|2
2

+ e2

))
+ div

(
α2ρ2v2

(
|v2|2
2

+ e2

)
+ α2p2v2

)
=

= −pI
∂α2
∂t

− λv1 · (v2 − v1) ,

DIα1
Dt

= μ(p1 − p2),
DI

Dt
=

∂

∂t
+ vI · ∇.

Here pI is the ”interface” pressure, vI is the ”interface” velocity, and λ
is the friction coefficient. In the classical BN model the following duality is
supposed pI = p2 and vI = v1, or pI = p1 and vI = v2. The right-hand
side in the momentum equations is the sum of ”nozzling terms” pI∇αa ( the
word ”nozzling” is to underline the analogy between these equations and
those describing gas flow in the duct of variable cross section) and Stokes
type terms λ (v2 − v1). Other choice of ”interface” variables is possible
(see, for example, Saurel, Gavrilyuk and Renaud, 2003). Such a system of
equations satisfies the entropy inequality and has only real eigenvalues.

11 Equilibrium diffuse interface model of solid-fluid
interactions

Pioneering works by Karni (1994), Abgrall (1996) and Saurel and Abgrall
(1999) have shown the attractivity the diffuse interface approach for mod-
elling interfaces between ideal fluids having different thermodynamic char-
acteristics. In such an approach the interface between different materials is
considered as a diffusion zone : it is a mixture of two components where the
volume fraction of the phases varies continuously from zero to one. To as-
sure the non-degeneracy of the governing equations, one also supposes that
even in the bulk (where, formally, we have only pure phases ) a negligible
quantity of the other phase is present. Hence, the interface can be viewed
as an effective fluid mixture. We will generalize this approach to the case of
solid-fluid interfaces by using Hamilton’s principle (Gavrilyuk et al. (2008),
Favrie et al. (2009)).

Consider the following Lagrangian for a solid-fluid mixture :

L =

∫
Ωt

ρ
(v · v

2
− e
)
dΩ

where the average density and the average volume energy are defined as

ρ = αsρs + αgρg, ρe = αsρses + αgρgeg.
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The indices ”s” and ”g” mean ”solid” and ”gas”, respectively. The mass
conservation laws can be rewritten in terms of the mass fractions Ys and Yg
:

DYs
Dt

= 0,
DYg
Dt

= 0, Ys =
αsρs
ρ

, Yg =
αgρg
ρ

, Ys + Yg = 1.

Also, the entropies of each phase are conserved :

Dηs
Dt

= 0,
Dηg
Dt

= 0.

The energy of the solid phase es is a function of the entropy ηs and the
mixture deformation tensor

G =

3∑
β=1

Eβ ⊗Eβ

where

Eβ = ∇Xβ

and X = (Xβ) are the Lagrangian coordinates of a mixture particle. The
mixture density is related to G by the formula :

ρ(t,X) = ρ0(X) |G|1/2

We use here capital letters Eβ to distinguish the mixture case from the pure
solid one. The gas energy eg is a function of the gas density ρg and the gas
entropy ηs.

To apply the Hamilton principle we find the variations of ρ, v, Ys, Yg, ηg,
ηs as functions of virtual displacements δx at fixed Lagrangian coordinates
:

δ̃ρ = −ρdiv (δx) , δ̃v =
∂δx

∂t
, δ̃ηi = 0, δ̃Yi = 0. (33)

δ̃Eβ = −
(
∂δx

∂x

)T

Eβ .

As usually, the symbol δ̃ means the variation at fixed Lagrangian coordi-
nates. The last formula giving the variation of Eβ can be found in the fol-
lowing way. There exist potentials Xβ , β = 1, 2, 3 (the mixture Lagrangian
coordinates) such that

DXβ

Dt
= 0.
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It follows from the definition of Xβ that its Lagrangian variation is zero :

δ̃Xβ = 0.

Since

δ̃F−1 = −F−1δ̃FF−1 = −F−1 ∂δx

∂X
F−1 = −F−1 ∂δx

∂x

we get from the definition of Eβ :

δ̃Eβ = δ̃∇Xβ = δ̃
(
F−T∇XX

β
)
= −

(
F−1 ∂δx

∂x

)T

∇XX
β

= −
(
∂δx

∂x

)T

F−T∇XX
β = −

(
∂δx

∂x

)T

Eβ .

In particular, the variation of G =
3∑

β=1

Eβ ⊗Eβ is given by :

δ̃G = δ̃

⎛⎝ 3∑
β=1

Eβ ⊗Eβ

⎞⎠ = −
(
∂δx

∂x

)T

G−G

(
∂δx

∂x

)
. (34)

The energy of the solid is taken in separable form

es = ehs (ρs, ηs) + ees(g), g =
G

|G|1/3
.

Its variation is :

δ̃es = δ̃ehs

(
Ysρ

αs
, ηs

)
+ δ̃ees (g)

=
∂ehs
∂ρs

δ̃

(
Ysρ

αs

)
+ tr

(
∂ees
∂G

δ̃G

)
+ θsδ̃ηs

=
ρYs
αs

∂ehs
∂ρs

(
δ̃ρ

ρ
− δ̃αs

αs

)
+ tr

(
∂ees
∂G

δ̃G

)

=
ps
ρs

(
δ̃ρ

ρ
− δ̃αs

αs

)
+ tr

(
∂ees
∂G

δ̃G

)

=
ps
ρs

(
δ̃ρ

ρ
− δ̃αs

αs

)
− 1

2ρs
tr
(
SsG

−1δ̃G
)
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=
ps
ρs

(
δ̃ρ

ρ
− δ̃αs

αs

)
+

1

ρs
tr

(
Ss

∂δx

∂x

)

=
ps
ρs

(
δ̃ρ

ρ
− δ̃αs

αs

)
+

1

ρs
tr

(
Ss

∂δx

∂x

)

=
ps
ρs

(
−div (δx)− δ̃αs

αs

)
+

1

ρs
tr

(
Ss

∂δx

∂x

)

=
ps
ρs

(
− δ̃αs

αs

)
+

1

ρs
tr

(
(−psI + Ss)

∂δx

∂x

)

= − 1

ρs
tr

(
σs
∂δx

∂x

)
− ps
αsρs

δ̃αs.

Here

Ss = −2ρs
∂ees
∂G

G

is the deviatoric part of the stress tensor

σs = −psI + Ss, tr(Ss) = 0.

Finally,

δ̃es = −
1

ρs
tr

(
σs
∂δx

∂x

)
− ps
αsρs

δ̃αs (35)

Analogous considerations give a simpler variation for the gas phase :

δ̃eg = −
1

ρg
tr

(
σg

∂δx

∂x

)
− pg
αgρg

δ̃αs =
pg
ρg
divδx− pg

αgρg
δ̃αg (36)

Now, we are ready to take the variation of the Hamilton action. We use
formulas (33), (35), (36), the mass conservation law ρdΩ = ρ0 (X) dΩ0 to
present the variation of a in the form :

0 = δa = δ

t2∫
t1

∫
Ωt

ρ
(v · v

2
− e
)
dΩdt

= δ

t2∫
t1

∫
Ω0

ρ0 (X)
(v · v

2
− e
)
dΩ0dt
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=

t2∫
t1

∫
Ω0

ρ0 (X)
(
δ̃v · v − δ̃e

)
dΩ0dt

=

t2∫
t1

∫
Ω0

ρ0 (X)

(
∂δx

∂t
·v + Ys

(
1

ρs
tr

(
σs
∂δx

∂x

)
+

ps
αsρs

δ̃αs

))
dΩ0dt

−
t2∫

t1

∫
Ω0

ρ0 (X)

(
Yg

(
pg
ρg
divδx− pg

αgρg
δ̃αg

))
dΩ0dt

=

t2∫
t1

∫
Ω0

ρ0 (X)

(
∂δx

∂t
·v
)
dΩ0dt

+

t2∫
t1

∫
Ω0

ρ0 (X)

ρ

(
tr

(
(αsσs − αgpg)

∂δx

∂x

)
+ psδ̃αs + pg δ̃αg

)
dΩ0dt

Since δ̃αs + δ̃αg = 0, it implies the equilibrium condition :

ps − pg = 0. (37)

Here

ps = −
1

3
tr (σs) , pg = −

1

3
tr (σg) .

Turning back to the Eulerian coordinates we transform the last variation to
the following one :

0 = δa =

t2∫
t1

∫
Ωt

(
Dδx

Dt
·ρv + tr

(
(αsσs − αgpg)

∂δx

∂x

))
dΩtdt

Integrating by parts and taking into account the fact that δx is vanishing
at the boundary Ωt × [t1, t2 ] we obtain

0 = δa = −
t2∫

t1

∫
Ωt

(
∂ρv

∂t
+ div (ρv ⊗ v − (αsσs + αgσg))

)
· δxdΩdt

for any δx vanishing at the boundary ∂ (Ωt × [t1, t2 ]). It implies the mo-
mentum equation :

∂ρv

∂t
+ div (ρv ⊗ v − (αsσs + αgσg)) = 0. (38)
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The entropy equations

Dηs
Dt

= 0,
Dηg
Dt

= 0

complemented by the mass and momentum balance laws imply the mixture
energy conservation law:

∂

∂t

(
ρ
(
e+

v · v
2

))
+ div

(
ρv
(
e+

v · v
2

)
− (αsσs + αgσg)v

)
= 0. (39)

Finally, the equilibrium solid-gas governing equations are

∂Eβ

∂t
+∇

(
Eβ · v

)
= −rotEβ ∧ v, (40a)

rotEβ = 0, (40b)

∂ (αgρg)

∂t
+ div (αgρgv) = 0, (40c)

∂ρv

∂t
+ div (ρv ⊗ v − (αsσs + αgσg)) = 0, (40d)

Dηs
Dt

= 0,
Dηg
Dt

= 0, (40e)

ps = pg. (40f)

Equations (40) admit the energy conservation law (39).

12 Non-equilibrium diffuse interface model of
solid-fluid interactions

For numerical reasons it is preferable to use a non-equilibrium model where
the algebraic equation for the volume fraction ps − pg = 0 is replaced by a
differential equation. This procedure will be done in the same way as for
fluid-fluid mixtures. The relaxation equation will be :

ps − pg =
1

μ

Dαs

Dt

Now, we postulate the mixture energy equation :

∂

∂t

(
ρ
(
e+

v · v
2

))
+ div

(
ρv
(
e+

v · v
2

)
− (αsσs + αgσg)v

)
= 0. (41)

As in the case of fluid-fluid mixtures, we can transform the energy equation
(41) to the following one :

αsρsθs
Dηs
Dt

+ αgρgθg
Dηg
Dt

= (ps − pg)
Dαs

Dt
. (42)
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Indeed,

0 =
∂

∂t

(
ρ
(
e+

v · v
2

))
+ div

(
ρv
(
e+

v · v
2

)
− (αsσs + αgσg)v

)
= ρ

De

Dt
− tr

(
(αsσs + αgσg)

∂v

∂x

)

= ρ

(
Ys
∂ehs
∂ρs

Dρs
Dt

+ Ystr

(
∂ees
∂G

DG

Dt

)
+ Ys

∂es
∂ηs

Dηs
Dt

+Yg
∂eg
∂ρg

Dρg
Dt

+ Yg
∂eg
∂ηg

Dηg
Dt

)
− tr

(
(αsσs − αgpgI)

∂v

∂x

)

= αsps

(
− 1

αs

Dαs

Dt
− divv

)
+ tr

(
αsSs

∂v

∂x

)
+ ρYs

∂es
∂ηs

Dηs
Dt

+αgpg

(
− 1

αg

Dαg

Dt
− divv

)
+ ρYg

∂eg
∂ηg

Dηg
Dt

− tr

(
(αsσs − αgpgI)

∂v

∂x

)

= ρ

(
Ysθs

Dηs
Dt

+ Ygθg
Dηg
Dt

)
− (ps − pg)

Dαs

Dt
.

As in the case of fluid mixtures, the same equations (18) for the entropy
production can be used :

αsρsθs
Dηs
Dt

= (ps − pI)
Dαs

Dt
, αgρgθg

Dηg
Dt

= (pg − pI)
Dαs

Dt
.

Obviously, they are compatible with (42). Finally, the non-equilibrium
model is :

∂
(
Eβ
)

∂t
+∇

(
Eβ · v

)
= −rotEβ ∧ v, (43a)

∂ (αgρg)

∂t
+ div (αgρgv) = 0, (43b)

∂ρv

∂t
+ div (ρv ⊗ v − (αsσs + αgσg)) = 0, (43c)

αsρsθs
Dηs
Dt

= (ps − pI)
Dαs

Dt
, αgρgθg

Dηg
Dt

= − (pg − pI)
Dαs

Dt
, (43d)

Dαs

Dt
= μ (ps − pg) , μ > 0. (43e)
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The geometric equations (43a) and the entropy equations (43d) can also
be rewritten in different forms which are more convenient for numerical
computations :

∂Eβ

∂t
+
∂Eβ

∂x
v+

(
∂v

∂x

)T

Eβ = 0, (44a)

∂

∂t
(αsρses) + div (αsρsesv)− αstr

(
σs
∂v

∂x

)
= −pIμ (ps − pg) , (44b)

∂

∂t
(αgρgeg) + div (αgρgegv)− αgtr

(
σg

∂v

∂x

)
= −pIμ (pg − ps) . (44c)

12.1 Hyperbolicity of the non-equilibrium model

Let us show that the non-equilibrium model (43) is hyperbolic. We
present here the proof of hyperbolicity in the one-dimensional case. We
denote v = (u, v, w)

T
. Let Eβ = (A(β), B(β), C(β)). Relation rotEβ = 0 im-

plies that only components A(β) vary, the other components are constant.
We can always suppose that initially the vectors Eβcoincide with the Carte-
sian basis. Hence, B(2) = C(3) = 1 , B(1) = B(3) = C(1) = C(2) = 0. The
matrix G becomes :

G =

⎛⎝ (
A(1)

)2
+
(
A(2)

)2
+
(
A(3)

)2
A(2) A(3)

A(2) 1 0
A(3) 0 1

⎞⎠ .

Obviously,

|G| =
(
A(1)

)2
,

J1 = tr(G) =
(
A(1)

)2
+
(
A(2)

)2
+
(
A(3)

)2
+ 2,

J2 = tr(G2) =

((
A(1)

)2
+
(
A(2)

)2
+
(
A(3)

)2)2

+2

((
A(2)

)2
+
(
A(3)

)2)
+ 2.

We remark that the invariants J1 and J2 depend only on A(1) and Z =
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√(
A(2)

)2
+
(
A(3)

)2
. The one-dimensional governing equations become :

∂A(1)

∂t
+
∂
(
A(1)u

)
∂x

= 0, (45a)

∂A(2)

∂t
+
∂
(
A(2)u+ v

)
∂x

= 0, (45b)

∂A(3)

∂t
+
∂
(
A(3)u+ w

)
∂x

= 0, (45c)

∂ρ

∂t
+
∂ (ρu)

∂x
= 0, (45d)

∂ρYg
∂t

+
∂ (ρYgu)

∂x
= 0, (45e)

∂ρu

∂t
+
∂
(
ρu2 − αsσs11 − αgσg11

)
∂x

= 0, (45f)

∂ρv

∂t
+
∂ (ρuv − αsσs12 − αgσg12)

∂x
= 0, (45g)

∂ρw

∂t
+
∂ (ρuw − αsσs13 − αgσg13)

∂x
= 0, (45h)

∂ραg

∂t
+
∂ (ραgu)

∂x
= ρμ (pg − ps) , μ > 0, (45i)

∂ (ρηs)

∂t
+ div (ρηsv) =

(ps − pI)

Ysθs

Dαs

Dt
, (45j)

∂ (ρηg)

∂t
+ div (ρηgv) =

(pg − pI)

Ygθg

Dαg

Dt
. (45k)

System (45) admits the energy conservation law :

∂

∂t

(
ρ

(
e+

u2 + v2 + w2

2

))
+

∂

∂x

(
ρu

(
e+

u2 + v2 + w2

2

)
(46)

− σ11u− σ12v − σ13w) = 0,

where
σij = αsσsij + αgσgij ,

ρe = ρ

(
Ygeg

(
Ygρ

αg
,
ρηg
ρ

)
+ Yse

h
s

(
Ysρ

1− αg
,
ρηs
ρ

)
+ Yse

e
s

(
G

|G|1/3

))
(47)

Let us recall a general result proved by Godunov, Friedrichs and Lax : if a
system of conservation laws

Vt +G(V)x = 0 (48)
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admits an additional conservation law

ϕ (V)t + ψ (V)x = 0

where ϕ (V) is a convex function of V, the system (48) is hyperbolic (see
Godunov and Romenskii (2003) for detail). In our case this function ϕ is
the total volume energy defined from (46) :

E = ρ

(
e+

u2 + v2 + w2

2

)
and V =

(
A(1), A(2), A(3), ρ, ρYg, ρu, ρv, ρw, ραg, ρηs, ρηg

)T
. Let us re-

mark that the equations for the volume and mass fractions, and the en-
tropies evolve along contact characteristics. Hence, for hyperbolicity it is
sufficient to check the convexity of the energy with respect to a lower num-

ber of variables V̂ =
(
A(1), A(2), A(3), ρ, ρu, ρv, ρw

)T
. The total energy is

in the form :

E = Ek(ρ, ρu, ρv, ρw) + Eh(ρ, αg, Yg, ηg, ηs) + Ees
(
A(1), A(2), A(3)

)
where the kinetic, hydrodynamic and elastic parts of the volume energy are
defined as :

Ek(ρ, ρu, ρv, ρw) = (ρu)
2
+ (ρv)

2
+ (ρw)

2

2ρ
,

Eh = Eh(ρ, αg, Yg, ηg, ηs) = ρYge
h
g

(
ρ
Yg
αg

, ηg

)
+ ρYse

h
s

(
ρ
1− Yg
1− αg

, ηs

)
,

Ees
(
A(1), A(2), A(3)

)
= ρYse

e
s (g) = Ysρ0 |G|1/2 ees (g) .

The energy E is a convex function of V̂, if

Ek + Eh
ρ

=
u2 + v2 + w2

2
+ Ygε

h
g (τg, ηg) + Ygε

h
s (τs, ηs)

is convex with respect to (τ = 1/ρ, u, v, w), and

Ees = Ysρ0 |G|1/2 ees

(
G

|G|1/3

)

is convex with respect to A(β). The function
(
Ek + Eh

)
/ρ is convex with

respect (τ = 1/ρ, u, v, w) if the hydrodynamic energies of pure phases ehg
and ehs are convex with respect to τg and τs, respectively. This is the case,
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for example, of the stiffened gas equation of state we use for applications.
We prove the convexity of Ees in a special case where

ees(g) =
μs
4ρs0

tr
(
(g − I)

2
)
=

μs
4ρs0

(
J2

|G|2/3
− 2J1

|G|1/3
+ 3

)
. (49)

Here ρs0 is the solid reference density. Let us show the convexity of Ees in
the case (49). This energy is in the form :

Ees = Ys
ρ0
ρs0

μs
4
|G|1/2 tr

⎛⎝( G

|G|1/3
− I

)2
⎞⎠

= Ys
ρ0
ρs0

μs
4
A(1)

(
J2(

A(1)
)4/3 − 2J1(

A(1)
)2/3 + 3

)

= Ys
ρ0
ρs0

μs
4

⎛⎜⎝
((
A(1)

)2
+ Z2

)2
+ 2Z2 + 2(

A(1)
)1/3

− 2
(
A(1)

)1/3((
A(1)

)2
+ Z2 + 2

)
+ 3

)
where

Z2 =
(
A(2)

)2
+
(
A(3)

)2
.

If the energy Ees is convex with respect to A(1) and Z , and ∂Ees/∂Z > 0, it
will be convex with respect to A(1), A(2) and A(3). Obviously,

∂Ees
∂Z

= Ys
ρ0
ρs0

μs(
A(1)

)1/3 (Z3 + Z

((
A(1)

)2
−
(
A(1)

)2/3
+ 1

))
> 0

since for any positive x we have x3 − x + 1 > 0. Finally, to prove the
convexity of Ees with respect to variables

(
A(1), Z

)
we have to prove that

the corresponding 2× 2 Hessian matrix is positive definite in all domain of
parameters Z > 0, A(1) > 0 :⎛⎝ ∂2Ee

s

∂(A(1))
2

∂2Ee
s

∂A(1)∂Z

∂2Ee
s

∂A(1)∂Z

∂2Ee
s

∂Z2

⎞⎠ > 0

The proof can be done by direct calculations. The symmetrization method
assures the hyperbolicity but does not give the characteristic eigenvalues in
explicit form.
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12.2 Applications

We made a comparison with experimental results on cylindrical gel sam-
ples (cylindrical drops of jelly-like materials) impacting a rigid surface (see
Figure 2). Jelly-like materials remain elastic even for extreme deformations
(between 100 % and 200 % ). This regime was recently studied experi-
mentally by Luu Lia-Hua and Forterre (2009). A cylindrical gel sample
(carbopol) impacting a rigid hydrophobic surface, first spreads until some
limit size and then a full elastic recoil is observed which may be followed
by a complete rebound. We reproduced this quasi-reversible behavior nu-
merically. The separable form of the energy equation was also used with
μs = 85Pa. The comparison during the spreading phase at a given time
instant is shown in Figure 3.

Air
Drop of jelly

Figure 2. A cylindrical drop of jelly is impacting a rigid surface.
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Figure 3. Comparison of the spreading phase of the cylinder impacting a
rigid surface. Experiments by L. - H. Luu and Y. Forterre (2009) are shown
on the top, computed results are shown on the bottom.
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Introduction to stochastic variational
problems

Victor L. Berdichevsky
Mechanical Engineering, Wayne State University, Detroit MI 48202 USA

Abstract The lectures provide an introduction to the Chapters on
stochastic variational problems from the author’s book Variational
Principles of Continuum Mechanics, Springer, 2009.

0.1 Reminder from complex analysis

The major goal of these lectures is to explain how to compute probabili-
ties in some stochastic variational problems. The lecturers can be used as an
introduction to the Chapters of my book Variational Principles of Contin-
uum Mechanics, Springer-Verlag, 2009, which are concerned with stochastic
variational problems. Before proceeding to stochastic variational problems
we have to learn how to compute probability in much simpler cases, like,
for example, how to find probability distribution of a sum of independent
random variables. Unfortunately, these issues are discussed in engineer-
ing probability courses at the time when the students do not have enough
mathematical background, and a simple and beautiful nature of the clas-
sical results of probability theory, like the central limit theorem or Gauss
distribution, remain unrevealed. Therefore, I will spend the first part of the
course to cover these issues.

To do the calculations we will use complex analysis. I would assume
with a great deal of certainty, that not everyone in this room was exposed
to properly taught complex analysis. In high school you, perhaps, were
taught that the complex unity i is a square root from −1:

i =
√
−1.

What does that mean? Of course, you can solve the equation x2 +
1 = 0 in terms of i and write x = ±i. So what? Well, you can then
write the solution of any polynomial equation in the form α + iβ, where
α and β are real numbers, besides, the number of roots is equal to the
power of the polynom. This is nice indeed. This was the way in which the
complex numbers were introduced in XVI century by Italian mathematicians

F. ell' sola et al  (eds.), Variational Models  and Methods  in Solid  and Fluid Mechanics
© CISM, Udine 2011

.Id



212 V. L. Berdichevsky

Cardano and Bombelli. This way penetrated in modern text books without
much change. Unfortunately, one key word is missing in such a treatment,
the word without which the real understanding of complex numbers is hardly
possible. I begin with an explanation of what the complex numbers are (note
that complex numbers are not numbers!) and why they are needed for the
problems under consideration. Besides, I will review the basics of complex
analysis. Then we spend two lectures for classical results of probability
theory, and then go on to stochastic variational problems.

Complex numbers. We know two basic operations with vectors: We can
multiply vector, �a, by a number, λ; if ai (i = 1, ..., n) are the components of
a vector �a in some basis êi

1,

�a = aiêi,

then vector λ�a has the components λai :

λ�a = λaiêi.

We also can sum vectors; if ai and bi are the components of vectors �a and
�b, then vector �a+�b has the components ai + bi :

�a+�b =
(
ai + bi

)
êi.

The latter definition corresponds to the parallelogram rule (Fig. 1).
Now we wish more. We wish to operate with vectors as we do with

numbers. We wish to introduce multiplication of vectors, �a and �b, in such
a way that the product of vectors is a vector, and, as for numbers,

�a ·�b = �b · �a,
(
�a+�b

)
· �c = �a · �c+�b · �c,

(
�a ·�b

)
· �c = �a ·

(
�b · �c

)
.

Besides, we would like to be able to divide vectors, i.e., for each vectors �a
and �b, we should be able to compute their ratio, a vector �c,

�c = �a /�b.

For given �a and �b, vector �c must be determined uniquely from the equation

�b · �c = �a.

1In all formulas summation over repeated indices is assumed, e.g.

aiêi ≡
n∑

i=1

aiêi.
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Figure 1. The definition of a sum of two vectors and multiplication of a
vector by number.

Clearly, the products of vectors which are introduced in vector analysis,
the vector product, �a×�b, and the dot product, �a ·�b, do not fit: �a×�b is anti-
symmetric

(
�a×�b = −�b× �a

)
, the dot product is a scalar, not a vector. The

multiplication operation we are looking for must be a new one. It turns out
that such product can be introduced only in three spaces: two-dimensional,
four-dimensional and eight-dimensional. The vectors of the corresponding
two-dimensional space are called complex numbers, four-dimensional space
quaternions and eight-dimensional space octonions. Quaternions were first
conceived by W.R. Hamilton, octonions by A. Caley (Caley numbers). Only
vectors of two-dimensional space, complex numbers, possess all the features
of usual numbers; quaternions and octonions do not.

Now we have to define what is the product of two vectors in two-
dimensional space. To this end, it is enough to define the products of the
basic vectors. Then the product of any two vectors can be computed from
the relation(
a1ê1 + a2ê2

)
·
(
b1ê1 + b2ê2

)
= a1b1ê1 · ê1+

(
a1b2 + a2b1

)
ê1 · ê2+a2b2ê2 · ê2.

Let us denote the two basic vectors by the symbols ê1 = 1̂, ê2 = ı̂. Then
any vector z has the form z = x · 1̂ + yı̂. The products of basic vectors are
defined by the following rule:

1̂ · 1̂ = 1̂, 1̂ · ı̂ = ı̂ · 1̂ = ı̂, ı̂ · ı̂ = −1̂.
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Figure 2. Notations in complex plane.

z1 = x1 · 1̂ + y1 ı̂, z2 = x2 · 1̂ + y2 ı̂,

their product is

z1 · z2 = (x1x2 − y1y2) 1̂ + (x1y2 + x2y1) ı̂.

One can prove that such a product has all the features of the product of
usual numbers.

The tradition is not to write the hat at the basic vector ı̂ : one writes
for this basic vector i ≡ ı̂. Moreover, without confusion the basic vector 1̂
in the expression x1̂+ iy can be dropped. So the complex number takes the
form

z = x+ iy.

Such form defines the components of vector z, x and y, uniquely. They
are called real and imaginary parts of z and denoted by Rez and Imz,
respectively. The complex numbers with zero imaginary part are called
real. The two-dimensional space with such defined vector product is called
complex plane. We arrive at the usual definition of complex numbers, which
you can find e.g. in Wikipedia: complex numbers are the numbers of the
form x+ iy, where x, y are real numbers while i2 = −1. What is missing in
this definition is the key word: vector. Complex numbers are not numbers,
they are vectors.

E x e r c i s e s. Complex conjugate of z = x + iy is, by definition, the
number z̄ = x − iy. Show that zz̄ is a real number equal to the squared
length of vector z; the length of z, |z| is defined as |z| =

√
x2 + y2 (see

Fig.2). Find the number 1/z.
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Functions of complex variables. An advantage we gain working in com-
plex plane is that we can operate with vectors in the same way we do with
numbers. In particular, all functions we used in calculus, make sense being
applied to vectors. For example, for numbers, function ex can be defined as
a sum

ex = 1 + x+
1

2
x2 +

1

6
x3 + ... =

∞∑
n=0

1

n!
xn.

In the same way it can be defined for vectors because the sum of vectors
and the powers zn = z...z︸︷︷︸

n times

are well defined:

ez = 1 + z +
1

2
z2 + ... =

∞∑
n=0

1

n!
zn. (1)

Of course, one has to complement this by a notion of convergence, but this
is done in a natural way: sequence zn → 0 as n→∞, if |zn| → 0 as n→∞.
By multiplying two series,

∞∑
0

1

n!
zn1 and

∞∑
0

1

n!
zn2 ,

one can check that

ez1+z2 = ez1ez2 . (2)

An immediate consequence of (1) and (2) is Euler formula

eiy = cos y + i sin y. (3)

Indeed, plugging in (1) z = iy, and using that

in = {.(−1)k i if n = 2k + 1(−1)k if n = 2k,

we get

eiy =
∑

even n

1

n!
zn +

∑
odd n

1

n!
zn =

∞∑
k=0

(−1)k
(2k)!

y2k + i
∞∑
k=0

(−1)k
(2k + 1)!

yk. (4)

Euler formula follows from the Taylor expansion of sin and cos :

cos y =

∞∑
k=0

(−1)k
(2k)!

y2k, sin y =

∞∑
k=0

(−1)k
(2k + 1)!

yk.
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Denote by θ the angle between the vector z and positive real axis. We
use the convention, that angle θ increases in counter clockwise direction and
changes within the limits −π, π. According to Euler formula one can write
z in the polar form:

z = |z| eiθ. (5)

Another important function of complex variable to be encountered fur-
ther is ln z. It is defined as inversion of exponential function, i.e.

eln z = z. (6)

Since, according to (5),
z = eln|z|+iθ,

we can rewrite (6) as
eln z = eln|z|+iθ

from which
ln z = ln |z|+ iθ. (7)

Construction of functions by means of a series makes a class of functions
defined by a converging Taylor series especially important; they are called
analytic functions. More precisely, f(z) is an analytic function in a region
D if it can be presented in D by a converging series. We drop further all
mathematical details, they can be found in numerous sources, and focus
only on the basic ideas.

Derivative of a function of complex variable is defined in terms of its
Taylor series2

f(z) =
∞∑
k=0

akz
k,

as

f ′(z) =
∞∑
k=0

kakz
k−1.

This definition is equivalent to the usual one

f ′(z) = lim
Δz→0

f (z +Δz)− f(z)

Δz

2Here we consider a function which is analytical in a vicinity of the point z = 0. If
a function is analytical in a vicinity of some point z0, Taylor series is written with
respect to the shift z − z0 :

f(z) =
∞∑

k=0

ak (z − z0)
k .
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provided the convergence of all series, which are involved.
Integral over a contour γ in z-plane,∫

γ

f(z)dz,

is defined in the same way as for a contour in two-dimensional real plane.
Integral of an analytic function over a closed contour in a simply-connected

region3 is zero. Indeed, let a function be analytic in a vicinity of the point
z = 0. The integral over closed contour of zn is zero:∮

γ

zndz =

∮
d
zn+1

n
= 0.

Thus, integrating the Taylor series of an analytic function we get zero for
any analytic function. Consideration of functions analytical in vicinity of
non-zero points is similar.

An example of non-analytic function in vicinity of z = 0 is the function
f(z) = 1/z; it is analytic in any region with excluded point z = 0 and
non-analytic in any vicinity of point z = 0.

E x e r c i s e s. 1. Write down polar forms for 1/z, z̄, 1/z̄, −1, zn.
2. Find (1 + i)5, (1 + i)100.
3. Derive from the definitions of trigonometric functions of complex

variables,

sin z =
1

2i

(
eiz − e−iz

)
, cos z =

1

2

(
eiz + e−iz

)
,

that
sin2 z + cos2 z = 1.

4. Hyperbolic sin and cos are defined by the formulas:

sinh z =
1

2

(
ez − e−z

)
, cosh z =

1

2

(
ez + e−z

)
.

Show that
cosh2 z − sinh2 z = 1.

5. Show that
sin 2z = 2 sin z cos z.

3A region is simply-connected if any closed contour can be shrunk by a continuous

transformation to a point.
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Figure 3. To justification of formula (10).

6. Show that for functions f (z) with real coefficients of Taylor expansion

f (z) = f (z̄) .

7. Write Taylor series for the function (ez − 1)/z.
Step function. The only reason why we need complex numbers in what

follows is the presentation of the step function by means of an integral in
complex plane. By the step function, θ (t) , we mean the following function

θ (t) = {.1 t > 00 t < 0. (8)

Usually, the value of this function at t = 0 is not essential. We will set for
definiteness

θ (0) =
1

2
. (9)

We need the following integral presentation of θ (t) :

θ (t) =
1

2πi

a+i∞∫
a−i∞

etz

z
dz, a � 0, (10)

where the integration contour is a straight line in the right half-plane z.
Since formula (10) will play a central role in further calculations, we

outline here its derivation.
First of all we need to specify the meaning of the integral in (10). The

integral has infinite limits, and, in general, one can write

a+i∞∫
a−i∞

etz

z
dz = lim

b1,b2→∞

a+ib2∫
a−ib1

etz

z
dz. (11)
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Such a formula would be meaningful if the integral converges absolutely, i.e.
there exist an integral

a+i∞∫
a−i∞

∣∣∣∣etzz
∣∣∣∣ |dz| .

The role of absolute convergence follows from the inequality: for any contour
γ, ∣∣∣∣∣∣

∫
γ

f(z)dz

∣∣∣∣∣∣ �
∫
γ

|f(z)| |dz| .

This inequality is a consequence of the inequality

|z1 + ...+ zn| � |z1|+ ...+ |zn| ,

which obviously follows from the triangle inequality,

|z1 + z2| � |z1|+ |z2| .

If an integral with infinite limits converges absolutely, it does not matter in
which way the infinite limits are approached. The integral in (11) does not
converge absolutely. Indeed

a+i∞∫
a−i∞

∣∣∣∣etzz
∣∣∣∣ |dz| =

+∞∫
−∞

∣∣et(a+iy)
∣∣

|(a+ iy)|dy =
+∞∫

−∞

eta√
a2 + y2

dy.

This integral diverges logarithmically. Therefore, we have to specify what
is meant by integral in (11). We set

a+i∞∫
a−i∞

etz

z
dz = lim

b→∞

a+ib∫
a−ib

etz

z
dz. (12)

Let us compute this limit. First of all, for t = 0

θ (0) =
1

2πi
lim
b→∞

a+ib∫
a−ib

1

a+ iy
idy =

1

2πi
lim
b→∞

(ln (a+ ib)− ln (a− ib)) .

From (7)

ln (a+ ib) = ln
√
a2 + b2 + i arctan

b

a
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ln (a− ib) = ln
√
a2 + b2 − i arctan

b

a
.

Since

lim
b→∞

arctan
b

a
=

π

2
,

we have

θ (0) =
1

2π

[π
2
−
(
−π
2

)]
=
1

2
.

This is in accord with (9).
Let now t < 0. We aim to show that the limit in (12) is zero. Function

etz/z is analytic in the shadowed region in Fig. 3a. Therefore, integral of
etz/z over the boundary of the shadowed region is zero. Hence, the integral
of etz/z over the straight segment [a− ib, a+ ib] is equal to the integral
over the contour γ. Let γ be an arc of a circle with radius R =

√
a2 + b2

and the center at z = 0. Then the integral is bounded from above:∣∣∣∣∣∣
∫
γ

etz

z
dz

∣∣∣∣∣∣ �
∫ |etz|

|z| |dz| =
θ∫

−θ

etR cos θdθ.

Since t < 0, this integral does not exceed the integral,

J(R) =

π/2∫
−π/2

e−|t|R cos θdθ = 2

π/2∫
0

e−|t|R cos θdθ.

We are going to show that function J(R) tends to zero as R → +∞. This
is the first point in these lectures where we encounter the necessity to find
the asymptotics of an integral; we will have several such problems later on.
If the function in the exponent, cos θ, were strictly positive everywhere on
the integration interval, i.e. cos θ � min cos θ = c > 0, then the integrand
does not exceed e−|t|Rmin(cos θ), and the integral tends to zero as R→ +∞.
In our case, however, min cos θ = 0, (see Fig. 4a), it is achieved at θ = π/2.

We have to study the contribution to the integral of the vicinity of the
point θ = π/2. Let us split the integral in two parts

1

2
J(R) =

π/2−α∫
0

e−|t|R cos θdθ +

π/2∫
π
2 −α

e−|t|R cos θdθ. (13)

The first integral in (13) does not exceed

e−|t|R cos(π
2 −α)

(π
2
− α
)
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Figure 4. Graph of cos θ.

and tends to zero as R→ +∞. For sufficiently small α, in the second integral
we can replace cos θ by the first terms of Taylor expansion

cos θ = cos θ
∣∣
θ=π/2 +

d cos θ

dθ

∣∣∣θ=π/2

(
θ − π

2

)
=
(π
2
− θ
)
.

Then the second integral takes the form

π/2∫
π
2 −α

e−|t|R(π
2 −θ)dθ =

α∫
0

e−|t|Rξdξ.

We can increase this integral replacing the upper limit by +∞. Then we get
the integral which is computed analytically

∞∫
0

e−|t|Rξdξ =
1

|t|R.

Hence, J(R)→ 0 as R→ +∞, and θ (t) = 0 for t < 0 indeed.
Consider now the case t > 0. In this case we introduce a region shadowed

in Fig. 3b. Function etz/z is analytic in a shadowed region, and integral over
the boundary of the shadowed region is zero. Therefore, the integral over
the segment [a− ib; a+ ib] is equal to the sum of integrals over contours γ
and γ′, γ being a circle of radius R. The integral over γ can be estimated
from above as∣∣∣∣∣∣

∫
γ

etz

z
dz

∣∣∣∣∣∣ =
∫
γ

|etz|
|z| |dz| =

3π
2 +α∫

π
2 −α

etR cos θdθ = 2

π∫
π
2 −α

etR cos θdθ. (14)
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Here α is the angle shown in Fig. 3b. The integral in the right hand side
of (14) can be written as a sum

π∫
π
2 −α

etR cos θdθ =

π∫
π
2

etR cos θdθ +

π
2∫

π
2 −α

etR cos θdθ.

Function cos θ on the segment [π/2− α, π] is shown in Fig. 4b. The first
member of the sum coincides with J(R) considered above and thus tends
to zero as R →∞. The behavior of the second integral is not immediately
clear. Let us estimate this integral using that R cos θ � a :

π/2∫
π
2 −α

etR cos θdθ � eta
π/2∫

π
2 −α

dθ = αeta.

As follows from Fig. 3b, α → 0 as R → ∞. Hence, the second integral
tends to zero as well. So, as b→∞, the integral of etz/z over the segment
[a− ib; a+ ib] tends to the integral over γ′, which, in turn, is equal to the
integral over a circle of small radius r,

1

2πi

∮
etz

z
dz =

1

2πi

∫
etre

iθ

reiθ
rieiθdθ

=
1

2π

∮
etre

iθ

dθ|.r→0 →
1

2π

∮
dθ = 1,

as claimed.
Sometimes, it is convenient to have in formula (10) the integral over a

line in the left half-plane. The corresponding relation is obtained from (10),
if we notice that the integral of etz/z over the boundary of the shadowed
region in Fig. 5 is zero.

Therefore, the integral of etz/z over the segment [a− ib; a+ ib] is equal
to the sum of integrals over [−a− ib; − a+ ib] , γ+, γ− and γ′. The integral
over γ+ tends to zero as b→∞ :∣∣∣∣∣∣∣

∫
γ+

etz

z
dz

∣∣∣∣∣∣∣ �
a∫

−a

|etz|
|z| dx =

a∫
−a

etx√
x2 + b2

dx � eta
1

b
· 2a.

Similarly, integral over γ− tends to zero. Integral over γ′ is equal to 1.
Hence,

θ (t) = 1 +
1

2πi

−a+i∞∫
−a−i∞

etz

z
dz, a � 0. (15)
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Figure 5. To the move of integration contour to the left half-plane.

It is known, that derivative of the step function is δ−function:

dθ (t)

dt
= δ (t) . (16)

Differentiating (10) over t we formally obtain a presentation of δ−function

δ (t) =
1

2πi

a+i∞∫
a−i∞

etzdz. (17)

This relation, strictly speaking, does not make sense, because the integral
in (17) does not converge. However, δ−function is used only in the form of
integrals with smooth functions. In such cases, one can write

∫
δ (t)ϕ (t) dt =

1

2πi

a+ib∫
a−ib

∫
ϕ (t) etzdtdz, (18)

and, if the function of z, ∫
ϕ (t) etzdt,

decays fast enough as |z| → ∞, (18) holds true.



224 V. L. Berdichevsky

E x e r c i s e s. 1. Let f(z) be an analytic function in a region D. Show
that for a point z ∈ D and for any contour C, surrounding z,

f(z) =
1

2πi

∫
C

f(ζ)dζ

ζ − z
.

2. Let f(z) = u(x, y) + iv(x, y) be an analytic function. Show that real
and imaginary part of f , u and v, are linked by a system of equations
(Cauchy-Riemann equations)

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x
.

3. Derive from Cauchy-Riemann equations that u(x, y) and v(x, y) are
harmonic functions, i.e.

Δu (x, y) = 0, Δv (x, y) = 0,

where Δ is Laplace’s operator

Δ =
∂2

∂x2
+

∂2

∂y2
.

0.2 Some facts about integrals

Gauss formula. Consider in some finite-dimensional space, Rn, a quadratic
form,

(Au, u) = Aiju
iuj , (19)

The form is assumed to be positive,

(Au, u) > 0 if u
= 0.

Then the Gauss formula holds true:∫
Rn

e−
1
2 (Au,u)du =

1√
detA

. (20)

Here

detA ≡ det ‖Aij‖ , du =
du1√
2π

. . .
dun√
2π

.
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The Gauss formula can be proved by changing the variables, u→ ů,

ui = λij ů
j , det

∥∥λij∥∥ = 1,

ůj being the coordinates in which the tensor Aij is diagonal,

(Au, u) = Aijλ
i
i′λ

j
j′ ů

′iů′j = A1

(
ů1
)2
+ . . .+An (̊u

n)
2
. (21)

In the new variables,∫
Rn

e−
1
2 (Au,u)du =

∫
Rn

e
− 1

2

(
A1(ů1)

2
+...+An(ů

n)2
)
dů

=
1√

A1 . . . An

=
1√
detA

Here we used that4
+∞∫

−∞
e−

1
2x

2

dx =
√
2π. (22)

The Gauss formula admits the following generalization: for any linear
function of u, (l, u) = liu

i,

√
detA

∫
Rn

e−
1
2 (Au,u)+(l,u)du = e

1
2 (A

−1l,l) (23)

where A−1 is the inverse matrix to the matrix A. Formula (23) follows from
(20) and the identity,

1

2
(Au, u)− (l, u) = 1

2

(
A
(
u−A−1l

)
,
(
u−A−1l

))
− 1

2

(
A−1l, l

)
. (24)

Plugging (24) in (23), changing the variables of integration, u→ u+A−1l,
and using (20) we obtain the right hand side of (23).

4The integral (22) can be found by a witty trick suggested by Poisson:

⎛
⎝

+∞∫

−∞
e−

1
2
x2

dx

⎞
⎠

2

=

+∞∫

−∞
e−

1
2
x2

dx

+∞∫

−∞
e−

1
2
y2

dy =

+∞∫

−∞

+∞∫

−∞
e−

1
2
x2

e−
1
2
y2

dxdy

=

+∞∫

−∞

+∞∫

−∞
e−

1
2
(x2+y2)dxdy =

+∞∫

0

2π∫

0

e−
1
2
r2rdrdθ = 2π

+∞∫

0

e−
1
2
r2d

1

2
r2 = 2π.
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E x e r c i s e. Let (Au, u) be a positive quadratic form of variables
u = (u1, ..., un), and u be subject to s linear constraints,

(lα, u) = cα, α = 1, ..., s; s < n.

Consider an integral,

J =

∫
Rn

e−
1
2 (Au,u)

s∏
α=1

δ (cα − (lα, u)) du1...dun.

Show that

J =

√
(2π)

n

detA

√
(2π)

s

detAe−
1
2 (A−1c,c) (25)

where A is the matrix with components

Aαβ =
(
A−1lα, lβ

)
.

H i n t. Use the presentation of δ−function (17) and formula (20).
Laplace’s asymptotics. Consider an integral which depends on a param-

eter, λ, in the following way:

I(λ) =

∫
V

f(x)eλS(x)dV,

where V is a bounded region of n-dimensional space, f(x) and S(x) are
some smooth functions. We wish to find the asymptotics of this integral
as λ → ∞. Laplace suggested that the leading terms of the asymptotics of
I(λ) are the same as that of the integral over the vicinities of the points
where the function, S(x), has the maximum value. Then the asymptotics
can be easily found. Indeed, let S(x) achieve its maximum value only at one
point, x̂, this point is an internal point of V, and the matrix of the second
derivatives,

∥∥∂2S(x̂)/∂xi∂xj∥∥ is non-degenerated, i.e. its determinant, Δ,
is non-zero. We can write,

I(λ) = f(x̂)eλS(x̂)
∫
V

f(x)

f(x̂)
e−λ[S(x̂)−S(x)]dV.

In a small vicinity of the point, x̂, we can replace S(x̂)− S(x) by the non-
degenerated quadratic form,

S(x̂)− S(x) ≈ −1
2
Sij(x

i − x̂i)(xj − x̂j), (26)
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where Sij = ∂2S(x̂)/∂xi∂xj . Note that the quadratic form (26) is positive
because x̂ is the point of maximum of S(x). In a small vicinity of x̂ we can
replace f(x)/f(x̂) by unity thus obtaining

I(λ) ≈ f(x̂)eλS(x̂)
∫
small vicinity of x̂

e−λ[− 1
2Sij(x

i−x̂i)(xj−x̂j)]dV. (27)

Since λ→∞, the function, exp
[
−λ[− 1

2Sij(x
i − x̂i)(xj − x̂j)]

]
, decays very

fast away from x̂. We do not pause to justify that the expansion of the
integration region from a small vicinity of x̂ to the entire space, R,causes
only exponentially small corrections in (27). Thus, we can write:

I(λ) ≈ f(x̂)eλS(x̂)
∫
R

e−λ[− 1
2Sij(x

i−x̂i)(xj−x̂j)]dV.

The integral here, according to the Gauss formula (20), is equal to
√
(2π)n/λn |Δ|.

Finally, the leading term of the asymptotics is

I(λ) ≈
√
(2π)n

λn |Δ|f(x̂)e
λS(x̂). (28)

As a more elaborated derivation shows, the error of the formula (28) is on the
order of (eλS(x̂)/λn/2)/λ. If S(x) achieves its maximum at several internal
points, one should sum the contributions (28) of all points. One can check
that in the cases of the point of maximum lying on the boundary and/or
degeneration of the quadratic form − 1

2Sij(x
i− x̂i)(xj− x̂j) the asymptotics

remains qualitatively the same,

I(λ) ≈ prefactor(λ)eλS(x̂), (29)

with the prefactor being a decaying power function of λ.
The prefactor is a constant independent on λ, if S(x) has maximum

value on a set with non-zero volume. By Laplace’s asymptotics we mean
further the asymptotics of the form (29) where the prefactor changes slower
than the exponential function of λ:

1

λ
ln prefactor(λ)→ 0 as λ→∞.

Changing in the previous consideration S(x) by −S(x) we obtain the
asymptotics, ∫

V

f(x)e−λS(x)dV ≈ prefactor(λ)e−λS(x̌), (30)
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where x̌ is the point of minimum of S(x).
In applications to the variational problems, we need also to know the

asymptotics of integrals of the form (30) for complex values of λ. In this
case we denote the parameter by z,

I(z) =

∫
V

f(x)ezS(x)dV,

and consider the asymptotics of I(z) as |z| → ∞. Note first of all that I(z)
is an analytical function of z at any finite point, z, if the integral, as we
accept, converges absolutely, i.e.∫

V

|f(x)| eRezS(x)dV <∞.

The point z = ∞ can be, however, the singular point of I(z). Usually, the
singularity is essential, i.e. the asymptotics of I(z) along different paths,
z →∞, are different. It turns out that Laplace’s asymptotics,

I(z) ≈
√
(2π)n

zn |Δ|f(x̂)e
zS(x̂)

(
1 +O

(
1

z

))
, (31)

holds true for all paths, z →∞, such that |Arg z| ≤ π/2−ε, for some small ε.
For other paths, this asymptotics does not hold. This is seen from studying
the asymptotics when z → ∞ along the imaginary axis, z = iy, |y| → ∞.
It turns out that in this case the leading contribution to the asymptotics is
provided by not only the point of maximum of S(x), but by all stationary
points of S(x), in particularly, by all points of local maxima and minima.
This asymptotics is called the stationary phase asymptotics; we do not dwell
on it here since it will not be used further.

0.3 Reminder from probability theory

The random variables which we will be dealing with are the points, x, of
some finite-dimensional region, V . Probability of the event that x belongs
to a set A, A ⊂ V , is, by definition,

p(A) =

∫
A

f(x)dx.

Non-negative function f(x) is called the probability density. Since p(V ) = 1,∫
V

f(x)dx = 1.
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Average value of function ϕ(x) is defined as

Mϕ =

∫
V

ϕ(x)f(x)dx.

Here M stands for ”mathematical expectation”. This operation is often
denoted by the symbol E (for expectation), but we reserve E to be the
symbol of energy.

For any function ϕ, ϕ(x) is a random variable. Probability density of
ϕ(x), fϕ, is defined in terms of probability of the event {ξ � ϕ(x) � ξ +Δξ}
for small Δξ :

fϕ(ξ)Δξ = Prob {ξ � ϕ(x) � ξ +Δξ} .

It is convenient to introduce the distribution function,

F (ξ) = Prob {ϕ(x) � ξ} .

If the distribution function is smooth, then

fϕ (ξ) =
dF (ξ)

dξ
.

It is convenient to write the distribution function in terms of the step func-
tion

F (ξ) =Mθ (ξ − ϕ (x)) =

∫
θ (ξ − ϕ (x)) f(x)dx. (32)

This formula explains how the step function, to which we have paid already
much attention, enters our consideration.

Consider a random variable, which is a couple (x, y). Its probability
density is a function of x and y, f(x, y). Let y take values only in some
region B. What would be a probability density of x? It is natural to define
probability density of x under condition that y ∈ B as

f(x) =

∫
B

f (x, y) dy

/∫
V

∫
B

f (x, y) dxdy.

Obviously, ∫
f(x)dx = 1.

In general, the conditional probability density of x depends on the choice of
B. By definition the random variables x and y are statistically independent,
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if the conditional probability does not depend on B. This is possible only
if f (x, y) is the product of two functions

f (x, y) = f (x)g(y) ,

∫
V

f(x)dx = 1,

∫
V

g(y)dy = 1. (33)

The notion of statistical independence is the central one in probabil-
ity theory. All most important facts of probability theory are concerned
with the sets of independent events. The major applications of probability
theory are based to the possibility to identify the independent (or slightly
dependent) events5.

We prepared everything to solve the central for applications problem
of probability theory. Let x1, ..., xn be independent identically distributed
random variables. Find probability distribution of the sum

ϕ (x1) + ...+ ϕ (xN )

where ϕ is a given function. Of course, we expect to get an analytical answer
only in the limit of large N .

Let us find the probability distribution of the arithmetic average

E =
1

N
(ϕ (x1) + ...+ ϕ (xN )) .

We have

FN (E) =Mθ

(
E − 1

N
(ϕ (x1) + ...+ ϕ (xN ))

)
.

We use for the sum the symbol E because in similar problems to be consid-
ered later, it has the meaning of energy. Using the presentation of the step
function (10) we have

FN (E) =M
1

2πi

a+i∞∫
a−∞

dz

z
eEz−z 1

N ϕ(x1)−...−z 1
N ϕ(xN ). (34)

5By the way, the recent financial crisis was caused in part by a wrong identification of

independent events. The hedge fund traders believed that combining mortgage loans

into large packages for sale to banks and pension funds reduces the risk of default.

This is true if the defaults of individual loans were independent. However, as we

have experienced, this is not always the case: there are rare catastrophic events when

probabilities of defaults become strongly correlated. This is what happened in the

recent economic crisis: simultaneous default of many mortgage loans along with other

negative events drove the economy down, which, in turn, resulted in more mortgage

defaults and bankruptcy of financial institutions.
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It is convenient to change variable z by zN . Then

FN (E) =M
1

2πi

a+i∞∫
a−i∞

dz

z
eNEz−zϕ(x1)−...−zϕ(xN ).

In such change, the constant a in the integral limit must be replaced by
Na, but, since this constant is arbitrary, we keep the some notations for the
integral limit. The operation of mathematical expectation is, in essence,
integration. The order of integrals can be changed almost always; we do
not pay attention to degenerated cases. Since the variables x1, ..., xN are
statistically independent and identically distributed,

Me−zϕ(x1)−...−zϕ(xN ) =
(
Me−zϕ(x)

)N
,

and we get

FN (E) =
1

2πi

a+i∞∫
a−i∞

dz

z
eNEz

(
Me−zϕ(x)

)N

=
1

2πi

a+i∞∫
a−i∞

dz

z
eNEz+N lnMe−zϕ(x)

=
1

2πi

a+i∞∫
a−i∞

dz

z
eNS(E,z) (35)

where we introduced a function of E and z

S (E, z) = Ez + lnQ (z) , Q (z) ≡
∫

e−zϕ(x)f (x) dx. (36)

In physical applications, functions S has the meaning of entropy, and we
will call S the entropy of the problem.

The integral (35) contains a large parameter, N . Therefore, probability
distribution FN (E) for large N can be found by studying the asymptotics of
the integral (35) as N →∞. This idea is in the core of all further examples
considered.

Usually, the integral in (35) can be differentiated over E. After differen-
tiation we obtain formula for probability density of the normalized sum,

fN (E) =
N

2πi

a+i∞∫
a−i∞

eNS(E,z)dz. (37)

Note that the integrand, which is equal to

eNEz

(∫
e−zϕ(x)f (x) dx

)N

,
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Figure 6. Plot of Q(z).

does not have singularities for finite z, and, if it decays as |Imz| → ∞, the
line of integration can be moved to the left half-plane. Therefore, a in (37)
can take both positive and negative values.

We consider examples in the next lecture.

0.4 The central limit theorem and the law of large numbers

We begin with the following example. Let x be a random number on
the segment [0,1], which is homogeneously distributed, i.e. f (x) ≡ 1. Then
Q (z) is computed analytically:

Q (z) =

1∫
0

e−zxdx =
1

z

(
1− e−z

)
.

Graph of Q (z) is shown in Fig. 6.
Function S (E, z) is shown in Fig. 7.
Function lnQ (z) is a convex function of z (we will prove it in a more

general case later). Therefore, S = Ez + lnQ is also convex and has a
minimum. To find the minimizer we have to solve the equation

∂S (E, z)

∂z
= E +

Q′ (z)
Q (z)

= 0.

It can be written as

−Q
′ (z)

Q (z)
=
1

z
− e−z

1− e−z
= E. (38)

Function −Q′ (z) /Q (z) takes the values between 0 and 1 (again, we show
this later in a general case). Therefore, for 0 � E � 1, equation (38) has a
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Figure 7. Plot of lnQ(z), Ez and S(E, z) for E = 0.3.

Figure 8. Dependence of inverse temperature β on energy E.

unique solution, which we denote β (E) . This notation is motivated again by
physical problems: in similar physical problems β plays the role of inverse
temperature. Function β (E) is shown in Fig. 8.

If we tend z to zero in (38), we find

1

z
− 1− z + 1

2z
2

1−
(
1− z + 1

2z
2
) → 1

2
.

Therefore, the value of E at which β = 0, is 1/2. If E < 0, then S (E, z) has
the minimum at z = +∞, if E > 1, S (E, z) has the minimum at z = −∞
(Fig. 9).

Denote by S (E) the value of S (E, z) at the point of minimum over z,

S (E) = S (E, β (E)) .

The graph of function S (E) is shown in Fig. 10.
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Figure 9. A qualitative graph of S(E, z) as a function of z for E > 1 and
E < 0.

Figure 10. Dependence of S(E) on E.

E x e r c i s e. Show that

β (E) =
dS(E)

dE
.

In the sum, x1 + ...+ xN , each member takes the values between 0 and
1. Therefore, the admissible values of the sum lie between 0 and N , while
the values of E are between 0 and 1. Probability that E < 0 or E > 1 is
zero. This fact can be derived directly from (35), (36), but we do not pause
on this derivation and focus on the values of E from 0 to 1. We set a in
(37) equal to β (E) . Formula (37) takes the form

fN (E) =
N

2π

+∞∫
−∞

eNS(E,β+iy)dy (39)
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S (E, z) = Ez + ln

[
1− e−z

z

]
.

Since fN (E) is real, the imaginary part of the integral (39) is zero.
Consider function S (E, β + iy) for small y. Since ∂S (E, z) /∂z = 0 at

y = 0, we have

S (E, z) = S (E) +
1

2
S′′ (E) (iy)2 = S (E)− 1

2
S′′ (E) y2, (40)

S′′ (E) ≡ ∂2S (E, z)

∂z2

∣∣∣∣
z=β(E)

=
∂2 lnQ (z)

∂z2

∣∣∣∣
z=β(E)

.

Function S (E, z) is strictly convex on real axis, thus S′′ (E) > 0, and
S (E, β + iy) has a local maximum on y−axis at y = 0. For finite y,
ReS (E, β + iy) decays. Indeed,∣∣∣∣ln [1− e−β−iy

β + iy

]∣∣∣∣ = ln

∣∣1− e−β−iy
∣∣√

β2 + y2

= ln
(
e−β

∣∣eβ − e−iy
∣∣)− ln√β2 + y2.

The first term here is bounded, while the second one goes to −∞. So, the
major contribution to this integral as N → ∞ is provided by a vicinity of
the point y = 0. Replacing S (E, z) by (40) we have

fN (E) = eNS(E) N

2π

+∞∫
−∞

e−
N
2 S′′(E)y2

dy =

√
N

2πS′′ (E)
eNS(E). (41)

Here we made the change of variable y → y
/√

NS′′ and used (22).
Formula (41) is an asymptotic formula as N → ∞. The normalization

condition
+∞∫

−∞
fN (E) dE =

1∫
0

fN (E) dE = 1 (42)

is satisfied asymptotically. Indeed, in the integral

1∫
−1

1√
S′′ (E)

eNS(E)dE
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the major contribution is provided by the vicinity of the point of maximum
of S (E) , which is Ê = 1

2 . At this point S = 0; thus

1∫
−1

1√
S′′ (E)

eNS(E)dE !
+∞∫

−∞

1√
S′′ (E)

e
1
2NSEE(Ê)(E−Ê)

2

dE. (43)

Here we denoted by SEE(E) the second derivative of S(E) :

SEE(E) =
d2S(E)

dE2
.

The derivative SEE(E) is negative, because S(E) is a concave function. For
the integral (43) we have in the leading approximation,√

2π/N√
−SEE(Ê)

1√
S′′
(
Ê
) . (44)

From (38) and (40)

S′′
(
Ê
)
=

d2S (E, z)

dz2

∣∣∣∣
z=β(Ê)

=
d2 lnQ

dz2

∣∣∣∣
z=β(Ê)

= −dE
dβ

∣∣∣∣
z=β(Ê)

.

Hence

S′′
(
Ê
)
· SEE(Ê) = S′′

(
Ê
) dβ

dE

∣∣∣∣
Ê

= −1. (45)

Combining (44), (45) and (41) we obtain (42).
Our asymptotic result converges to the exact one very fast. For N = 10,

the exact and asymptotic results are shown in Fig. 11.
For N = 100 the exact and asymptotic results are practically indistin-

guishable.
As N increases, probability density converges to δ−function, concen-

trated at the point E = 1
2 . This value, E = 1

2 , is the mathematical ex-
pectation of each of the members of the sum. We obtain the law of large
numbers:

1

N
(x1 + ...+ xN )→Mx =

1

2
as N →∞. (46)

Equation (46) can be interpreted in the following way. Let we do some
experiments and the outcome of the experiment is a number, x, 0 � x � 1.
All values of x on the segment [0, 1] are equiprobable. The outcomes of the
experiments are independent. Then the arithmetic average of all outcomes
for large N is approximately equal to the mathematical expectation of x.



Introduction to Stochastic Variational Problems 237

Figure 11. Exact probability density of E compared with the asymptotic
formula when N = 10; the exact and asymptotic results are hardly distin-
guishable.

Figure 12. Exact probability densities of E for N = 5, 10 and 100.
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It is interesting to characterize the deviations of the arithmetic average
from the mathematical expectation,

1

N
(x1 + ...+ xN )−Mx = E′.

To estimate the order of deviations, let us find the mathematical expectation
of E

′2. We can do that using the probability density of E (41). From (41)
we have

ME
′2 =M

(
E − 1

2

)2

=

1∫
0

(
E − 1

2

)2
√

N

2πS′′ (E)
eNS(E)dE

=

√
N

2πS′′ ( 1
2

) +∞∫
−∞

E
′2eNSEE( 1

2 )E
′2
dE′ =

1

N

S′′ ( 1
2

)
√
2π

+∞∫
−∞

x2e−
1
2x

2

dx.

Here we used that S(E) has maximum at E = 1
2 and equal to zero at this

point, besides, equation (45) was also employed.
We see that ME

′2 is of the order 1/N. Hence, E′ is of the order 1/
√
N.

This suggests that the scaled deviations,

ξ =
√
NE′,

are of the order of unity and can have a non-singular probability distribu-
tion. Let us find it. Denote the probability density function of ξ by g(ξ).
Since,

E =
1

2
+

ξ√
N

and
fN (E) dE = g(ξ)dξ,

we have

g(ξ) =
1√
N
fN

(
1

2
+

ξ√
N

)
.

Plugging here (41) we find for large N

g(ξ) =
1√

2πS′′ ( 1
2

)e 1
2SEE( 1

2 )ξ
2

.

Denoting S′′ ( 1
2

)
by σ2 and using (45) we obtain

g(ξ) =
1√
2πσ

e−
1

2σ2 ξ
2

. (47)
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This is Gaussian distribution. The constant σ has the meaning of variance
of ξ,

Mξ2 = σ2.

Formula (47) expresses the so-called central limit theorem. The law of
large numbers and the central limit theorem are simple consequences of
(41). Formula (41) provides much more information: it determines the
probability of large deviations of the arithmetical average from the average
value. This probability is exponentially small because S(E) is negative.

E x e r c i s e s. 1. Let ua be non-negative numbers, a = 1, ..., N .
All points of the space {u1, ..., uN} are equiprobable. Note that we cannot
introduce probability in a usual sense because the volume of the admissible
values is infinite. Let ua be constrained by the condition

1

N

N∑
a=1

ua = 1.

This condition makes the volume of the admissible values finite. Show that
in the limit N →∞ the values of any two numbers (say, u1 and u2) become
statistically independent, and each number has the probability distribution

f(u) = e−u.

2. Let a1, ..., an, ... be an infinite sequence of numbers and x1, ..., xn, ...
a sequence of independent identically distributed variables with mathemat-
ical expectation Mx, variance Mx2 and probability density function f(x).
Consider a random number

ξ = a1x1 + ...+ anxn + ...

show that

Mξ =Mx

∞∑
k=1

ak

Mξ2 =Mx2
∞∑
k=1

a2k

while the probability density function of ξ, fξ (y) is given by the integral

fξ (y) =
1

2πi

a+i∞∫
a−i∞

ezy−g(y)dz,
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g (y) =

∞∑
k=1

ln

∫
e−yakxf (x) dx.

It is assumed that the sums and integrals in these formulas exist. A neces-
sary condition for convergence of series is the decay ak as k →∞.

0.5 Poisson distribution

Now we return to a more general case we have started with, when x was
a point of some region distributed with some probability density f(x). As
we will see all results we obtained for numbers are extended to this case.
We have obtained already the formulas for probability density (37), (36).
Consider the properties of S (E, z) on real axis. This function is a convex
function of z. Indeed,

∂S (E, z)

∂z
= E −

∫
ϕe−zϕfdx∫
e−zϕfdx

(48)

∂2S (E, z)

∂z2
=

∫
ϕ2e−zϕfdx

∫
e−zϕfdx−

(∫
ϕe−zϕfdx

)2(∫
e−zϕfdx

)2 . (49)

Using Cauchy inequality,(∫
f · gdx

)2

�
∫

f2dx

∫
g2dx,

we have (∫
ϕe−zϕfdx

)2

=

(∫
ϕe−

1
2 zϕf

1
2 · e− 1

2 zϕf
1
2 dx

)2

�
∫

ϕ2e−zϕfdx

∫
e−zϕfdx.

Therefore,
∂2S (E, z)

∂z2
� 0,

and S (E, z) is a convex function of z. Hence, it may have only one local
minimum at a finite z. It may have also minimum at z = +∞ or z = −∞.
Consider the case when minimum is achieved at a finite point, ž. According
to (48), z is the solution of the equation∫

ϕe−zϕfdx∫
e−zϕfdx

= E. (50)
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We assume that function ϕ (x) is piecewise continuous and bounded in V
and has the minimum and maximum values, ϕ− and ϕ+. Since

ϕ−
∫

e−zϕfdx �
∫

ϕe−zϕfdx � ϕ+

∫
e−zϕfdx,

the left hand side of (50) is within the limits

ϕ− �
∫
ϕe−zϕfdx∫
e−zϕfdx

� ϕ+.

Therefore, the solution of equation (50) exists only for the values of E
belonging to the segment

ϕ− � E � ϕ+.

According to Laplace asymptotics, the left hand side of (50) tends to ϕ− as
z → +∞ and ϕ+ as z → −∞. So, the picture is completely similar to that
of the case of random numbers.

Consider one special case which has a lot of applications. Let us choose
ϕ (x) to be a characteristic function of some subregion B of volume V , i.e.

ϕ (x) = {.1 if x ∈ B0 otherwise.

Then the sum,

N = ϕ (x1) + ...+ ϕ (xN ) ,

has the meaning of the number of points which are in the region B. This
number is random and takes the values 0, 1, ...N. We wish to find the prob-
abilities that N has values 0, 1, .... To this end, we have to rewrite formula
(35) in terms of probability distribution of the non-scaled sum, N = NE.
Denotes its values by k. Repeating the derivation from (34) to (35) we have

FN (k) =M
1

2πi

a+∞∫
a−∞

dz

z
ekz−zϕ(x1)−...−zϕ(xN )

=
1

2πi

a+∞∫
a−∞

dz

z
ekz
(∫

e−zϕ(x)f (x) dx

)N

. (51)

Let all points be homogeneously distributed over V , i.e.

f (x) =
1

|V | = const.
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Then ∫
e−zϕ(x)f (x) dx =

1

|V |
(
|V | − |B|+ |B| e−z

)
. (52)

Note that region B is not necessarily simply connected and may consist of
many pieces, but formula (52) contains only the volume of region B. We
consider the ”thermodynamic limit”, when |V | → ∞, N → ∞, while the
number of points per unit volume,

n =
N

|V | ,

remains finite. We have(∫
e−zϕ(x)f (x) dx

)N

=

(
1− |B|n

N

(
1− e−z

))N

.

In the limit N →∞(∫
e−zϕ(x)f (x) dx

)N

= e−|B|n(1−e−z).

Hence, (51) takes the form

F∞ (k) =
1

2πi

a+i∞∫
a−i∞

dz

z
ekz−|B|n(1−e−z). (53)

We replace N by ∞ in notation of distribution function because the right
hand side of (53) is the limit as N → ∞. One can show that (53) can be
differentiated over k. We get for probability density

dF∞ (k)

dk
= f∞ (k) = e−|B|n 1

2πi

a+i∞∫
a−i∞

ekz+|B|ne−z

dz.

This integral can be computed analytically. Indeed, let us present exp (|B|ne−z)
as the series

e|B|ne−z

= 1 + |B|ne−z +
1

2
(|B|n)2 e−2z + ...

1

s!
(|B|n)s e−sz + ...

According to (17),

1

2πi

∫
ekz

1

s!
(|B|n)s e−szdz = δ (k − s)

1

s!
(|B|n)s .
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So,

f∞ (k) = e−|B|n
(
δ (k) + |B|nδ (k − 1) + 1

2
(|B|n)2 δ (k − 2) + ...

)
,

i.e. f∞ (k) is a sum of δ−functions, concentrated at the points k = 0, 1, 2....
This means that the region B contains k points with probability

pk =
1

k!
(|B|n)k e−|B|n.

The sum of all probabilities is equal to 1,

∞∑
0

pk = 1,

as follows from Taylor expansion of exponential function

e|B|n =
∞∑
k=0

1

k!
(|B|n)k .

We arrived at the so-called Poisson distribution.

0.6 Stochastic variational problems

Many problems of physics and mechanics can be formulated as varia-
tional problems, i.e. as problems of minimization of some functional, I(u),
on a set of elements, u. We will consider the simplest case, when I(u) is a
quadratic functional, i.e. the functional of the form

I(u) =
1

2
(Au, u)− (l, u) . (54)

By u one can mean a point of a multidimensional space, u =
(
u1, ..., un

)
,

(l, u) a linear function

(l, u) = liu
i, (55)

and (Au, u) a quadratic function

(Au, u) = Aiju
iuj . (56)

In continuum mechanics problems, one considers the limit n→∞, but a
finite-dimensional truncation of continuum mechanics problems (for exam-
ple, by the finite-element method) returns us to the finite-dimensional case
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Figure 13. Minimum value of I(u) is negative; it has the meaning of neg-
ative energy.

(55), (56). The minimum value of I(u) is always negative; in 1D case this
is seen from Fig. 13.

In physical problems the minimum value has the meaning of negative
energy of the system.

If the properties of the system are random, so are the matrix (operator)
A = (Aij) and the vector (linear functional) l = (li) . We consider the
simplest ”probabilistic” question: What is the probability distribution of
minimum values of I(u) (i.e. probability distribution of energy)? It is
enough to discuss the finite-dimensional case; the results for continuum
mechanics are obtained in the limit n→∞.

If the matrix A does not depend on the event, ω, the problem is called
weakly stochastic, otherwise the variational problem is called strongly stochas-
tic. Many physical theories provide examples of such type of problems. The
analytical results can be obtained mostly for weakly stochastic problems.

As is usual in the probabilistic approach, the probabilistic modeling is
especially effective, if one can identify in the phenomenon to be modeled
the statistically independent (or slightly dependent) events. Analytical in-
vestigation can be advanced considerably, if there are many statistically
independent events involved. We focus here on a special case when (l, u)
is a sum of small independent linear functionals. More precisely, there is a
large number, N, of independent identically distributed random variables,
r1, ..., rN , and a given random linear functional, (l0(r), u). Then the lin-
ear functional of the variational problem, (l, u) , is defined as an ”empirical
average” of N values of (l0(r), u):
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(l, u) =
1

N

N∑
a=1

(l0(ra), u) . (57)

Consider a quadratic function of a finite number of variables (54). The
minimum value of this function is

Ǐ = −1
2

(
A−1l, l

)
(58)

where A−1 is the inverse matrix for the matrix A. We wish to find proba-
bility distribution of energy,

f (E) =Mδ
(
E +min

u
I (u)

)
. (59)

Following the same path as for a sum of independent random variables we
plug in (59) the presentation of δ−function (17),

f (E) =M
1

2πi

i∞∫
−i∞

e
Ez+zmin

u
I(u)

dz =
1

2πi

i∞∫
−i∞

eEzMe
zmin

u
I(u)

dz. (60)

It would be desirable to change somehow the operations of mathematical
expectation and minimization: then we would arrive to some deterministic
problem. This can be achieved by presenting exp [−zmin I(u)] by an in-
tegral of some function of u over u. Since mathematical expectation is, in
fact, also integration, the order of integrals can be changed, and we obtain
an integral of the mathematical expectation of the function of u, which can
be found explicitly in some cases. Now let us discuss precisely what this
trick means.

According to (58) formula (23) can be also written as

e
−min

u
I(u)

=
√
detA

∫
e−I(u)du (61)

We see that this relation reduces the computation of the minimum value to
integration indeed. Since any quadratic functional in variational problems of
continuum mechanics admits a finite-dimensional truncation, one can write
formula (61) for a finite-dimensional truncation, and then consider the limit
when the dimension of the truncation tends to infinity. In the limit, in the
right hand side of (61) we obtain what is called the functional integral. We
include

√
detA in the definition of the “volume element” in the functional

space,
DAu =

√
detAdu (62)
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and write (61) as

e
min
u

I(u)
=

∫
e−I(u)DAu. (63)

The notation, DAu, emphasizes that the volume element depends on the
operator A.

E x e r c i s e. Consider a variational problem with a set of constraints:
minimize a quadratic functional,

I(u) =
1

2
(Au, u)

on all u obeying to linear constraints

(lα, u) = cα, α = 1, ..., s.

Show that

e−min I(u) =

∫
e−I(u)

∏
α

δ (cα − (lα, u))Du

where

Du =
√
(2π)

n

detA

√
(2π)

s

detAdu1...dun

and A is a matrix with the components

Aαβ =
(
A−1lα, lβ

)
.

H i n t. Use (25).
In Section 5.12 of the above-cited book Variational Principles of Con-

tinuum Mechanics one can find various generalizations of (63) involving
non-positive quadratic functionals and complex-valued functionals. We il-
lustrate the idea using one of such generalizations,

e
zmin

u
I(u)

=

i∞∫
−i∞

ez[
1
2 (Au,u)−(l,u)]DzAu, for Rez > 0. (64)

In (64) the parameter, z, is also included in the volume element: for
m−dimensional truncation, DzAu =

√
zm detAdu.

If we plug in (64) the linear functional (57), we get

Me
zmin

u
I(u)

=

i∞∫
−i∞

Mez[
1
2 (Au,u)−(l,u)]DzAu
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=

i∞∫
−i∞

ez
1
2 (Au,u)Me−z 1

N

∑N
a=1(l0(ra),u)DzAu

=

i∞∫
−i∞

ez
1
2 (Au,u)

(
Me−z 1

N (l0(r),u)
)N
DzAu.

If we change variable z → Nz, then probability density f (E) (60) takes the
form

f (E) =
N

2πi

i∞∫
−i∞

eNS(E,z,u)DNzAudz, (65)

where S(E, z, u) is a function that is independent on N,

S(E, z, u) = Ez +
z

2
(Au, u) + lnMe−z(l0,u). (66)

The functional integral (65) depends on a large parameter N. In many
cases the asymptotics of this integral can be studied. It is determined by
the stationary points of the entropy functional (66). Examples and further
details can be found in the above-cited book.
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1 A New Point of View about Dissipation:
Introduction

These notes are finalized to a particular study of the damping mech-
anism in Hamiltonian systems, characterized indeed by the absence of
any energy dissipation effect. It is important to make a clear distinction
between the two previous concepts, since they seem to be somehow contra-
dictory. A Hamiltonian system is characterized by an invariant total energy
(the Hamiltonian H) that is equivalent to state any energy dissipation pro-
cess is absent. This circumstance, especially from an engineering point of
view, leads to the wrong expectation that the motion of any part of such
a dissipation-free system, subjected to some initial conditions, maintains
a sort of constant amplitude response. This is, although unexpectedly, a
wrong prediction and the “mechanical intuition” leads, in this case, to a
false belief. It is indeed true the converse: even in the absence of any
energy dissipation mechanisms, mechanical systems can exhibit
damping, i.e. a decay amplitude motion.

This statement makes clear how the two concepts rely on completely
different properties of the Hamiltonian systems.

This fact is the root of very fundamental physical properties of mechan-
ical systems, and touches charming and thorny questions about them. It
is a matter of fact that looking at the atomic scale of mechanical systems,
they can be described through the use of Hamiltonian equations: an atomic
lattice vibrates and moves energy along its structure without any dissipa-
tion mechanisms. But it is a trivial consideration about every day physical
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world, that any energy released at macro-scale to an atomic lattice tends
to disappear at that scale, to be moved into the micro-scale vibrations of
the atoms. Damping is observed. This process is the base for converting
mechanical energy (large scale motion) into heat (small scale thermal vibra-
tion), and without any energy loss. The natural tendency to produce this
process is at the base of the macroscopic irreversibility and at the root
of the second principle of thermodynamics itself.

As it appears, the questions behind the distinction between damping
and dissipation involves fundamental aspects of physical systems, that have
been the subject of diatribes, debates and fascinating investigations starting
from the end of the nineteenth century up to the present days, in the field
of theoretical physics as well as in mathematical physics. Famous names
are involved as those of Boltzmann, Loschmidt, Curvelwell, the Ehrenfests,
Poincarè, Zermelo, Prigogine and many others, turning around the Boltz-
mann’s H-theorem.

The investigation contained in the present notes does not attack directly
the previous questions (wisely), but a problem somehow close to the pre-
vious, and the related possibilities for engineering applications(!). As a
consequence, the obtained results seem to be theoretically intriguing (aes-
thetic in science is a luxury relatively down market) and practically usable
(engineers are sensitive). Optimists would say a good compromise.

But, aside these considerations, let us illustrate the main point we have
here.

More precisely, we consider a partition of the Hamiltonian system S into
two subsystems: we select, among its N degrees of freedom, one of them x,
indicated as master. The remaining part of the system, consisting of N − 1
degrees of freedom x̃, is called the hidden or unmonitored part of the
system. With this view of the problem, we are interested in the following
analysis.

Let the Lagrangian function L of S be:

L (x, ẋ) = Lx (x, ẋ) + Lmix

(
x, ẋ, x̃, ˙̃x

)
+ Lhid

(
x̃, ˙̃x

)
The motion of the whole system S is governed by the minimum principle:

δ

∫ t2

t1

L (x, ẋ) dt = 0

to which correspond the Euler-Lagrange equations:

d

d t

∂L (x, ẋ )

∂ẋ
− ∂L (x, ẋ)

∂x
= 0 (1)

providing the solutions x∗, x̃∗.
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The motion x∗ would be here derived directly from the solution of a
reduced problem, by means of a new equation of motion written in terms
of x only in the form:

d

d t

∂ Lx (x, ẋ)

∂ ẋ
− ∂ Lx (x, ẋ)

∂ x
+Q (x, ẋ, ẍ) = 0 (2)

where the form for Q depends on the structure of the Lagrangian L.
Comparing the complete set of equations for S and that for x, the fol-

lowing replacement is operated:

V
(
x, ẋ, x̃, ˙̃x

)
=
d

d t

∂Lmix

(
x, ẋ, x̃, ˙̃x

)
∂ẋ

−
∂Lmix

(
x, ẋ, x̃, ˙̃x

)
∂x

replaced by
=⇒ Q (x, ẋ, ẍ)

Thus, we desire to determine, if possible, the form of Q such that equations
(1) and (2) provide the same solution x* for x. It is shown in the sections
ahead that in general it is not strictly possible but, under some restrictive
hypotheses, the difference between Q and V can be small, and negligible,
at least in a prescribed time window. The nature of the term Q under
such hypotheses, can be also nicely interpreted as a dissipative effect for the
system x; it means:

Lx (x, ẋ) = Tx (x, ẋ)− Ux (x) ⇒ Ḣx =
d

dt
[Tx (x, ẋ) + Ux (x)] < 0 (3)

Therefore, such analysis explains well the chance of observing damping in
the motion of x even if dissipation in the system S is absent i.e.:

Ḣ =
d

dt
[T (x, ẋ) + U (x)] = 0 (4)

being clear how equations (3) and (4)are not contradictory.
The question of the form of Q is approached in Section 2, namely sub-

sections 1, 2 and 3, where it is illustrated how Q can include a dissipation
term. Subsection 4 studies the time window within which the substitution
of V by Q is permitted because of the small error.

Subsection 5 approach an inverse problem through a variational tech-
nique: design the system S such that Q generates the fastest energy trans-
fer from x to the unmonitored system. Subsection 6 studies examples of
application of the theory presented in 5.

Finally, last but not least, Section 3 describes an industrial application
of the theory outlined, showing how the theoretical speculation can dress
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the clothes of a design procedure for the production of a real innovative
category of damping devices.

Therefore, the main point we have here is that very effective damping
properties can be indeed obtained by coupling a main structure
to a secondary structure that serves as energy storage. This op-
portunity opens a new way to damping control: damping is produced not
acting on a local dissipation process, a weak controllable phenomenon, but
it can be shaped by the designer modifying the purely elastic response of
a secondary part of the structure. This result can be achieved by purely
mechanical means or by electromechanical devices. The theory de-
veloped here applies to both, and in both cases the ability in controlling
the damping properties of the primary structure does not rely on any local
dissipation mechanism.

More precisely, it has been shown how the motion of a principal struc-
ture, called master, can be damped as an effect amounting to an energy
transfer process by which the master energy is moved to a set of resonators
attached to it (1; 2; 3; 4; 5; 6; 7; 8). The phenomenon, sometime called
apparent damping, is intriguing considering that this spontaneous energy
transfer can have irreversible characteristics, i.e. the energy can be perma-
nently transferred from the master to the set of resonators. This result is
always observed when the number of degrees of freedom within the set is in-
finite, or actually very large (9; 10; 11; 20; 21; 22; 23; 26; 27; 28) and not for
small number of oscillators, where recursive phenomena are observed (8; 12).
In some cases, the same irreversible energy transfer can be indeed predicted
considering statistical ensemble average over a population of similar struc-
tures (13). Moreover, a quasi-irreversible energy transfer can be produced
even with a finite number of resonators within the attachment, when select-
ing special distribution of the natural frequencies of the attached resonators,
or alternatively, introducing non-linear or parametric effects within the set
(14; 15; 16; 17; 27; 28). In some cases the attachment can have an electri-
cal nature (24; 25). In (38; 39; 40; 41; 42; 43; 44; 45; 46; 47) it is shown
how an electrical passive network, a sort of electrical-double of the master
mechanical structure, can absorb very effectively the energy pumped in it.
An energy transfer from the mechanical to the electrical part of the system
initially takes place; later, energy is actually dissipated by resistive effects
into the electrical energy storage. Also in this case, the observed damping
is not a direct consequence of a local dissipation, but rather it is due to a
fast energy displacement form the master part of the system to a sacrificial
attachment.

Further interesting readings on the subject can be found in (18; 19; 29;
30; 31; 32; 33; 34; 35; 36; 37).
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2 Pseudo-Dissipative Systems:
an Outline of the Theory

This section outlines an original theory of pseudo-dissipative structures, N-
dimensional Hamiltonian systems for which a certain degree of freedom x,
called master, is separated from the remaining N − 1 dofs, the hidden
variables, and studied apart from them. The effect of the interaction
between x and the hidden dofs is taken into account by terms dependent
only on x, following the procedure outlined in these notes. Namely the
attention is focused on three main aspects: (i) collapse this interaction
effect into simple terms, (ii) provide for them a physical interpretation, (iii)
discuss in depth the limit of these simplifications.

The analysis starts with static systems. For them the effect of the hid-
den variables is not a pseudo-dissipation but rather an additional elastic
restoring force depending on the displacement of x and on the system of
forces acting on the hidden variables. However, the static system allows
to understand simply the way the hidden variables play their effect in the
equation of motion of the master variable, especially looking at the Hamil-
tonian formulation of the reduced problem. This presents a formal analogy
with the dynamic case, the one of main interest for the theory presented in
this course.

The Hamiltonian presentation of the results permits to understand how
the terms depending on the hidden variables and on the mixed terms, are
indeed replaced by simpler equivalent terms in the new Lagrangian function
of the reduced system. On the other hand, the variational approach plays
a key role in determining the conditions for a permanent energy storage
within the master variable x.

2.1 Static systems: the effect of the hidden variables

A static system S is described through the set of variables

x ≡ x0, x1, . . . , xN
x = {x0, x1, . . . , xN}T

Assume S is controlled by the set of equations:

∂L (x)

∂xk
= 0, k = 0, 1, 2, . . . , N

the Euler-Lagrange equations related to the variational principle:

δL (x) = 0
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where the characteristic lagrangian function L for S is dependent on x in a
quadratic fashion

L (x) =
1

2
xTKx− fTx, K =

⎡⎣ k00 . . . k0N
. . . . . . . . .
kN0 . . . kNN

⎤⎦ =

[
k00 k̃T0

k̃0 K̃

]

K̃ =

⎡⎣ k11 . . . k1N
. . . . . . . . .
kN1 . . . kNN

⎤⎦ =

⎡⎣ k̃T1
. . .

k̃TN

⎤⎦ , k̃0 =

⎧⎨⎩ k01
. . .
k0N

⎫⎬⎭ =

⎧⎨⎩ k10
. . .
kN0

⎫⎬⎭
Accordingly to our assumption the equations for S are:

∂ L (x)

∂ xk
= 0, → Kx = f

These can be written separating the degree of freedom x, the master, from
the others as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

k00 x + k̃T0 x̃ = f0
k10 x + k̃T1 x̃ = f1
...

kN0 x + k̃TN x̃ = fN

or

⎧⎨⎩ k00 x + k̃T0 x̃ = f0

k̃0 x + K̃ x̃ = f̃

where:

x̃ =

⎧⎨⎩ x1
. . .
xN

⎫⎬⎭ , f̃ =

⎧⎨⎩ f1
. . .
fN

⎫⎬⎭
We can eliminate from the equation for x the set of other variables (hidden)
derived as the solution of the matrix equation, obtaining a single equation
for x, where the hidden variables disappear:⎧⎨⎩k00 x − k̃T0 K̃−1k̃0 x = f0 − k̃T0 K̃−1f̃

x̃ = K̃−1
(
f̃ − k̃0 x

)
The determined equation for x deserves some comments.

Consider explicitly the lagrangian of the original problem, decoupling
the dependency of it upon x and the other variables:

L (x) =
1

2
xTKx− fTx =

1

2
k00x

2 +
1

2
xk̃T0 x̃+

1

2
xk̃T0 x̃+

1

2
x̃T K̃x̃− f0x− f̃T x̃
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We can distinguish three kind of terms: terms directly dependent on x,
terms dependent on the hidden variables, and mixed terms:

L (x) = LX (x) + Lmix (x, x̃) + Lhid (x̃)

LX (x) =
1

2
k00 x

2 − f0 x
Lmix (x, x̃) = x k̃T0 x̃

Lhid (x̃) =
1

2
x̃T K̃ x̃− f̃T x̃

It comes out the equation for x can be determined by modifying the la-
grangian function L of the complete system retaining only the direct terms
and substituting the mixed terms and the terms depending on the hidden
variables by an interaction potential D(x) and an external force po-
tential Nx:

L′
X (x) = LX (x) +D (x) +N x where:

D (x) =
1

2
k̃T0 K̃−1k̃0x

2

N = k̃T0 K̃−1f̃

2.2 Dynamic systems

The Hamiltonian system S is described through the set of variables

x (t) ≡ x0 (t) , x1 (t) , . . . , xN (t)

x (t) = {x0 (t) , x1 (t) , . . . , xN (t)}T

and governed by the set of equations:

d

d t

∂ L (x, ẋ )

∂ ẋk
− ∂ L (x, ẋ)

∂ xk
= 0, k = 0, 1, 2, . . . , N

the Euler-Lagrange equations related to the well-known variational Hamil-
ton principle:

δ

∫ t2

t1

L (x, ẋ) dt = 0



256 A. Carcaterra

where L is the quadratic form:

L (x, ẋ) =
1

2
ẋTMẋ +

1

2
xTKx− fTx

K =

⎡⎣ k00 . . . k0N
. . . . . . . . .
kN0 . . . kNN

⎤⎦ =

[
k00 k̃T0

k̃0 K̃

]

K̃ =

⎡⎢⎣ k11 . . . k1N

. . . . . . . . .

kN1 . . . kNN

⎤⎥⎦ =

⎡⎢⎣k̃T1
. . .

k̃TN

⎤⎥⎦ , k̃0 =

⎧⎨⎩ k01. . .
k0N

⎫⎬⎭ =

⎧⎨⎩k10. . .
kN0

⎫⎬⎭ ,
M =

⎡⎢⎣m0 0 . . . 0

0 m1 . . . 0

0 0 . . . mN

⎤⎥⎦
This partitioning of matrices is useful ahead.

Accordingly to our assumption, the equations for S are:

d

d t

∂ L (x, ẋ )

∂ ẋk
− ∂ L (x, ẋ)

∂ xk
= 0, → Mẍ + Kx = f

We can separate x from the other degrees of freedom as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m0ẍ+ k00 x + k̃T0 x̃ = f0

m1ẍ1 + k10 x + k̃T1 x̃ = f1

. . .

mN ẍN + kN0 x + k̃TN x̃ = fN

or

⎧⎨⎩m0ẍ+ k00 x + k̃T0 x̃ = f0

M̃ ¨̃x + k̃0 x + K̃ x̃ = f̃

where:

x̃ =

⎧⎨⎩
x1
. . .
xN

⎫⎬⎭ , M̃ =

⎡⎣m1 0 . . . 0
0 m2 . . . 0
0 0 . . . mN

⎤⎦ , f̃ =

⎧⎨⎩
f1
. . .
fN

⎫⎬⎭
The lagrangian function can be written separating the contribution of x
from the others as:

L (x, ẋ) =
1

2
ẋTMẋ +

1

2
xTKx− fTx =

=
1

2
m0 ẋ

2 +
1

2
k00x

2 +
1

2
xk̃T0 x̃ +

1

2
xk̃T0 x̃ +

1

2
˙̃xTM̃ ˙̃x+

+
1

2
x̃T K̃x̃− f0x− f̃T x̃
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The Laplace domain form of the equations of motion reads (capital symbols
for transformed quantities):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m0s

2X + k00X + k̃T0 X̃ = F0

m1s
2X1 + k10X + k̃T1 X̃ = F1

. . .

mNs
2XN + kN0X + k̃TN X̃ = FN

or

⎧⎨⎩m0s
2X + k00X + k̃T0 X̃ = F0

s2M̃X̃ + k̃0X + K̃X̃ = F̃

As for the static case, eliminating the hidden variables from the equation
for x yields:⎧⎪⎨⎪⎩
m0s

2X + k00X − k̃T0

(
s2M̃ + K̃

)−1

k̃0X = F0 − k̃T0

(
s2M̃ + K̃

)−1

F̃

X̃ =
(
s2M̃ + K̃

)−1(
f̃ − k̃0X

)
Transforming the first equation back to the time domain, one obtains the
three equivalent forms:

m0ẍ(t) + k00x(t)− 1

2π

∞∫
0

k̃T0 G(s)k̃0X(s)estdt=f0− 1

2π

∞∫
0

k̃T0 G(s)F̃(s)estdt

m0ẍ(t) + k00x(t) +

∞∫
−∞

k̃T0 g(t− τ)k̃0x(τ)dτ = f0 +

∞∫
−∞

k̃T0 g(t− τ)f̃ (τ)dτ

m0ẍ(t) + k00x(t) +
(
k̃T0 g(t)k̃0

)
∗ x(t) = f0 +

(
k̃T0 g(t)

)
∗ f̃(t)

where

g(t) = − 1

2π

∞∫
0

(
s2M̃ + K̃

)−1

estdt ; G(s) =
(
s2M̃ + K̃

)−1

These equations produce a clear qualitative picture of the nature of the
interaction effect between x and the hidden variables.

More precisely, note that:
1. The reduced equation of the motion for x becomes an integral-dif-

ferential equation, meaning the interaction with the remaining part of
the system, the hidden part, amount to a memory effect (integral
term); this is the dynamic counterpart of the terms related to the
interaction potential D(x) appearing in the static case;
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2. Additionally, the forces applied to the hidden part of the system ap-
pears as a known forcing term, that amounts to a noise effect; this
is the dynamic counterpart of the static external force potential
Nx ;

3. The kernel G apparently is a rational function in terms of s; namely
it can be expressed as a ratio of two polynomials P and Q (the degree
of P being larger than that of Q, because of the causality principle):

[G(s)]ij =

[(
s2M̃ + K̃

)−1
]
ij

=

[
Pij(s)

Q(s)

]
4. The kernel G, since the system is Hamiltonian, is a real function, and

does not contain any imaginary part, as an effect of the absence of
any real dissipation in the motion of the system.

5. In the previous analysis, using the Laplace transform, it has been tac-
itly assumed that all initial conditions are set to zero (generalization
is relatively easy).

As the simplest example, a nice exercise it to apply the previous analysis
to a two degrees of freedom system; one can easily verify that the previously
discussed equations becomes:

m0ẍ(t) + (k1 + k2)x(t) + k22g(t) ∗ x(t) = f0 = k2g(t) ∗ f1(t)

M =

[
m0 0

0 m1

]
, K =

[
k1 + k2 −k2
−k2 k2

]

G(s) =
1

m1s2 + k1
, g(t) = H(t) sin

√
k2
m2
t

2.3 Pseudo-dissipative effects: motion about ω0

The previous analysis shows how following the motion of only one se-
lected degree of freedom of S, its motion becomes controlled by an integral-
differential equation, the integral part amounting to the interaction of x
with the unmonitored part of the system.

However, a more clear and physically interesting picture of the problem
arises from a more detailed analysis of this integral terms. If some approxi-
mations are made, it discloses sharp characteristics about the nature of the
forces they represent.

To enlightening these properties, our following analysis offers two dis-
tinct mathematical approaches, that leads to look at different perspectives
for the interaction terms. Both the approaches are based on an approxi-
mation about the integral term involving G. The idea is to consider
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systems having a dominant frequency in their response, say ω0.
This happens when the natural frequencies of S are all located in a rather
narrow frequency bandwidth. In physical systems this case is actually met
in many cases of interest and it is also a good approximation to approach the
energy sharing process in the general case. For engineering system this can
indeed intended as a design configuration purposely obtained to determine
a desired energy sharing effect.

However, both of the proposed techniques permit to extract informa-
tion about the energy exchange between x and the hidden variables. More
precisely the first approach passes through a Taylor expansion of the
kernel G in terms of s, while the second uses a less intuitive strategy, but
more powerful, we named integral-Padè expansion of the kernel.

In the next sections the two mentioned approaches are developed in
detail.

Pseudo-dissipative effects: Taylor expansion of the kernel G To
carry on our point of view about unmonitored dynamic systems, it helps in-
troduce some additional considerations and then some additional hypotheses
on our system.

The kernel G can be written using a Taylor expansion in the complex
plane in terms of s, valid within a circle around the complex s0:

G (s) = G (s0) + G′ (s0) (s− s0) + R (s)

R (s) =
(s− s0)N
N !

[
d(N)G

dsN

]
s=ζ

=
1

2πi

∮
γ(s0)

G(s)

(s− s0)N+1
ds

Note that this expansion of G produces, neglecting the remainder, a linear
term G′(s0)s plus a constant term G(s0) − G′(s0)s0. In general G(s0),
G′(s0) are complex quantities and it is useful to analyse them in depth.

We assume:
s0 = σ0 + jω0, s = jω

This means: the center of the series expansion is in general on the complex
plane, while the series is evaluated only along the imaginary axis. Since
the expansion is made in the frequency domain (ω) about ω0, we call the
investigated response “motion about ω0”. The physical sense of this
assumption and several cases of applications will be the subject of following
subsections.

Neglecting the remainder one gets the equation:

G≈Re(G0−σ0G′
0)−(ω−ω0)Im(G′

0)+j [Im(G0 − σ0G′
0)+(ω − ω0)Re(G′

0)]
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This expression leads, in general, to four different force contributions in the
equation of motion, that can be categorized as:
Dissipative actions:

(i) viscous damping:
jωRe (G′

0)

(ii) hysteretic damping:

j [Im (G0 − σ0G′
0)− ω0Re (G′

0)]

Conservative actions:
(iii) elastic:

Re (G0 − σ0G′
0) + ω0Im (G′

0)

(iv) gyroscopic effect:
−ωIm (G′

0)

As it is clear two of them are dissipative, the other two conservative.
The last term is here called gyroscopic because this is a velocity depen-

dent conservative contribution, in that the net energy added to the system
along one period is zero, and it adds and subtracts the same amount of
energy in half of the period, that is the characteristic of gyroscopic effects.
For example, in the Euler equations for the rigid body motion, the compo-
nents of the angular velocity are conservative terms coupling the differential
equations in terms of angular velocity components derivatives.

The hysteretic damping is indeed a velocity independent effect frequently
met (at least in the frequency domain) in structural dynamics, to represent
inherent dissipation of the material.

To put the equation for x into a more concise form, let:

ceq = −k̃T0 Re(G′
0)k̃0 ηeq = − k̃T0 [Im(G0 − σ0G′

0)− ω0Re(G′
0)]

k00

keq = −k̃T0 Re(G′
0 − σ0G′

0 + ω0Im(G′
0))k̃0 geq = −k̃T0 Im(G′

0)k̃0

F+(·) =

∫ ∞

0

(·)ejωtdt one sided Fourier tr.

Considering again the Laplace domain equation for x:

m0s
2X + k00X − k̃T0 Gk̃0X = F0 − k̃T0 GF̃

Assume for the sake of simplicity the forces on the hidden variables zero
(zero noise); with the previous determined expression for G, and with
s = jω it becomes:[−m0ω

2 + (k00 + keq) + jωceq + jk00ηeq + ωgeq
]
X(jω) = F0
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It is useful to treat the gyroscopic term in a slightly different manner, as:[−m0ω
2 + (k00 + keq) + jωceq + jk00ηeq + j(jωgeq)

]
X(jω) = F0

One can notice that, under the assumptions made, the interaction between
x and the others degrees of freedom generates: (i) pseudo-damping vis-
cous and hysteretic effects, that amount to an energy release (or energy
absorption, depending on the algebraic sign) from the coordinate x to the
hidden variables, (ii) an additional restoring elastic force, (iii) a gyro-
scopic term.

Let now go back to the time domain representation of this equation.
Introduce the relationships:

x (t) =
1

2 π

+∞∫
−∞

X (jω) ejωtdω = F−1 (X)

x̃ (t) =
1

2π

+∞∫
−∞

−j sign (ω) X (j ω) ejωtdω

x+ (t) =
1

2π

+∞∫
0

X (jω) ej ωtdω = F−1
+ (X) =

1

2
[x (t) + jx̃ (t)]

where the last two equations stands for the so called analytic signal and
Hilbert transform of x, respectively. If the one sided inverse Fourier
transform is applied to the equation of motion, one has:

m0ẍ+ + (k00 + keq)x+ + ceq ẋ+ + jk00ηeqx+ − jgeqẋ+ = f0+

Taking for this complex valued equation only the real part, one finally ob-
tains:

m0ẍ+ (k00 + keq) x+ ceqẋ+ k00ηeqx̃+ geq ˙̃x = f0 (5)

Equation (5) is one of the central result of the present theory.
This shows that, under some hypotheses related to the remainder term,

a simple and strict form for the interaction between the variable x and the
hidden part of the system is born. A nice distinction can be operated be-
tween reactive forces, elastic and gyroscopic, and active forces, viscous and
hysteretic. Note that among the terms depending on x, the one involving
the derivative is related to dissipation, while the opposite is true for those
depending on the Hilbert transform.

This result is derived under the hypothesis of keeping only the first order
term in the Taylor expansion for G. This can be a reasonable approximation
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when the system response presents a rather narrowband spectrum concen-
trated around a certain reference frequency ω0.

Under a substantially equivalent hypothesis, a different approach can be
developed that, although less intuitive, leads to a better development of our
theory.

Pseudo-dissipative effects: integral-Padè expansion of the ker-
nel G It is interesting to start a different approach to the analysis of
G. The one presented in the previous section, based on the Taylor ex-
pansion, can nicely represent the interaction terms in a suggestive physical
manner, but the analysis of the remainder R(s) in that form, does not al-
low a straightforward prediction of the effects produced when neglecting it,
especially in the time domain. In other words we can expect that x is not
controlled strictly by equation (1), and it can depart from it as an effect of
the presence of R(s).

The present approach, based on a completely different idea, produces
similar but simpler results in terms of the physical picture of the interaction
term, but, additionally, it provides a new point of view about the pseudo-
dissipative effect based on the analysis of the remainder term.

More precisely, we can put a list of key questions about the remainder:
Q1. What is the effect of the remainder on the motion of x?
Q2. Can the time domain counterpart of the remainder disclose some ele-

ments answering Q1?
Q3. In which manner the form of the remainder depends on the system

physical properties?
Q4. The presence of the pseudo-dissipative terms, i.e. the energy released

from x to the hidden variables, is a permanent property of the interac-
tion or the existence of a not negligible remainder confines this effect
in some restricted time window?

Q5. There exist physical systems, purposely selected or designed, for which
the effect of the remainder can be controlled, for example making it
as small as possible?

Q6. There is any chance to use answer to Q5 to design special engineering
devices?

The compiled list opens probably the core question of our problem. In fact
the results we found about pseudo-dissipation have their fundament only
when the effect of the remainder term is, in some sense known as unim-
portant. Moreover, there are two additional points that can produce a
breakthrough in our theory: (i) the possible existence of particular systems
exhibiting permanent pseudo-dissipative effects, as those described
for equation (1), pushes our analysis toward a new border: that of the irre-
versible process in Hamiltonian systems, a subject of great charm as it has
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been outlined in the initial survey; at the same time, and not surprisingly,
this circumstance drives us towards engineering design of systems able to
pilot their energy to enhance their dynamic performances.

For these reasons we go more in depth in analyzing the nature of the
remainder term. Starting from the Fourier domain equation for x:

−m0ω
2X + k00X − k̃T0 G (ω) k̃0X = F0

and using the Padè expansion for G (a real valued function of ω):

Gij =
2N∑
n=1

ϑ
(i,j)
n

jω − jωn , G =
2N∑
n=1

Θn

jω − jωn

k̃T0 Gk̃0 =

2N∑
n=1

k̃T0 Θnk̃0

jω − jωn =

N∑
n=1

αn
jω − jωn +

α∗n
jω + jωn

αn = lim
ω→ωn

j (ω − ωn) k̃T0 G (ω) k̃0 = jβn

where the poles of the transfer function occur in imaginary conjugate pairs
because of the absence of any real dissipative effect in the (Hamiltonian)
system.

The equation of motion becomes:

(−m0ω
2 + k00

)
X (ω)−X (ω)

N∑
n=1

αn
jω − jωn +

α∗n
jω + jωn

= F0

Taking the inverse Fourier transform and introducing the Heavisdie func-
tion H(t):

m0ẍ (t) + k00x (t) − x (t) ∗
[
H (t)

N∑
n=1

αne
jωnt + α∗ne

−jωnt

]
= F0

m0ẍ (t) + k00x (t)− 2x (t) ∗
[
H (t)

N∑
n=1

Re
{
αne

jωnt + α∗ne
−jωnt

}]
= F0

m0ẍ (t) + k00x (t) + 2x (t) ∗
[
H (t)

N∑
n=1

βn sinωnt

]
= F0

Let:

S(t) =
1

N

N∑
n=1

βn sinωnt
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With this positions, the equation for x becomes:

m0ẍ (t) + k00x (t) + 2Nx ∗ [HS] = F0

m0ẍ (t) + k00x (t) + 2N

∞∫
0

x (τ)H (t− τ)S (t− τ) dτ = F0

The nature of the interaction between x and the hidden variables expressed
through x ∗ [HS], is difficult to handle because of the discrete summation
appearing in S. An interesting chance comes indeed from the substitution
of S by a suitable integral, that makes the physical interpretation of the
interaction term easier. In fact, the core of our analysis assumes the
system’s eigenfrequencies are “dense enough” over the frequency
axis; this means that all the natural frequencies belong to the same narrow
frequency bandwidth. Under this condition it is reasonable to replace the
summation over n of the Padè expansion by an integral I(t):

I (t) =

∫ 1

0

β (ξ) sin Ω (ξ) t dξ S(t) =

N∑
n=1

βn sinωntΔξ

Δξ =
1

N
I(t) ≈ S(t)

where ξ is a dummy variable that belongs to the interval [0,1]. Introducing
the remainder r(t):

I(t) = S(t) + r (t)

the equation of motion takes the form:

m0ẍ (t) + k00x (t) + 2Nx ∗ [HI] + x ∗ [Hr] = F0

m0ẍ (t) + k00x (t) + 2N

∞∫
0

x (τ)H (t− τ) I (t− τ) dτ+

+ 2N

∞∫
0

x (τ)H (t− τ) r (t− τ) dτ = F0

meaning the equation is rewritten as:

m0ẍ (t) + k00x (t) + 2Nx ∗ [HI] + ε (t) = F0 (6)
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Equation (2) is the new starting station for our analysis. A physical inter-
pretation of the term [HI] should be provided, together with an estimate
for ε that is the force generated by the remainder term.

From the mathematical and physical point of view, the use of [HI] in-
stead of [HS] brings a great benefit to our analysis. In fact its Fourier
transform highlights clearly the effect of this interaction term; moreover an
estimate of some properties of ε can follow.

Thus, move again to the frequency domain:

F {HI} = F {I} ∗ F {H}
The first factor in the convolution is:

F {I} =

1∫
0

β(ξ)

+∞∫
−∞

e−jωt sin Ω(ξ)t dt dξ =

= −j π
2

1∫
0

β(ξ) [δ (ω + Ω(ξ)) + δ (ω − Ω(ξ))] dξ

Let dΩ = Ω′(ξ) dξ:

F {I} = −j π
2

1∫
0

β (ξ)

Ω′ [δ (ω + Ω) + δ (ω − Ω)] dΩ

Writing the distribution of natural frequency Ω(ξ) as the solution of the
differential equation Ω′ = f(Ω), for an arbitrary function f , the previous
integral produces the expression:

F {I} = −jω
[
π

2

β (ω)

ωf (ω)

]
for ω ∈ [Ω(0); Ω(1)]

F {I} = 0 elsewhere

The second factor in the convolution is:

F {H} =
1

2
δ (ω) +

1

jω

Therefore:

F {HI} = −jω
[
π

4

β (ω)

ω f (ω)

]
+

+∞∫
−∞

π

2

β (ζ)

f (ζ) (ζ − ω)
dζ
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This expression provides the frequency domain counterpart of the term
x ∗ [HI]. This result shows a double contribution in the interaction term
between x and the hidden variables: one is imaginary, one is real.

The imaginary dissipative term is a frequency dependent damping con-

trolled by an equivalent viscous coefficient ceq (ω) = π
4

β(ω)
ωf(ω) . The function f

depends on the natural frequency distribution within the hidden
part of the system; more precisely the inverse of f (1/f = n/N)
is proportional to the density n of the natural frequencies over
the frequency axis, so that the more the natural frequencies are dense,
the more the damping effect is large.

The coefficient β is indeed:

β (Ω) = lim
ω→Ω

(ω − Ω) k̃T0 G (ω) k̃0

and corresponds to the reactive part of the interaction term.
For the second contribution, introduced the function Γ = πβ/2f one

has:
+∞∫

−∞

π

2

β (ζ)

f (ζ) (ζ − ω)
dζ = Γ (ω) ∗ 1

ω
= πΓ̃ (ω)

where the tilde stands, as in the previous section, for Hilbert transform.
Without any further simplification, the equation of motion exhibits an

interaction force that is directly the inverse transform of the previous de-
termined term [HI]. However, accordingly with the analysis developed in
the previous section, and on the same line that led to replace S by I under
the hypothesis of eigenvalues “dense enough”, one is pushed to estimate
the determined frequency dependent terms at a given frequency
ω0, that is the characteristic frequency around which the natural frequen-
cies of the hidden system are located. Therefore, the imaginary part can
be approximated by a viscous force represented by an equivalent viscous
damper as:

ceq (ω) =

[
π

4

β (ω)

ωf (ω)

]
≈
[
π

4

β (ω0)

ω0f (ω0)

]
= ceq

The real part can be indeed roughly estimated by identifying 1/f as a delta
function centered at ω0 so that:∫ +∞

−∞

π

2

β (ζ)

f (ζ) (ζ − ω)
dζ ≈ π

2

β (ω0)

ω0
= keq

With these expressions, the time domain equation for x becomes:

m0ẍ+ (k00 + keq) x+ ceqẋ+ ε (t) = f0
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For the reasons arising clearly from the previous analysis, we name again the
motion of x determined by the previous equation, and for ε = 0, motion of
x about ω0. A comparison with the result obtained in the previous section
shows strong analogies, even in the form of the equivalent damping and
equivalent stiffness, with the equation obtained using the Taylor expansion
of G.

As a final point let us summarize the obtained result under a Hamilto-
nian point of view.

If a Hamiltonian system S has stiffness and mass matrices:

K =

[
k00 k̃T0

k̃0 K̃

]
, M =

[
m0 0

0 M̃

]

and lagrangian function:

L (x, ẋ) = Lx (x, ẋ) + Lmix (x, x̃) + Lhid

(
x̃, ˙̃x

)
Lx (x, ẋ) =

1

2
m0ẋ

2 +
1

2
k00x

2 − f0x

Lmix (x, x̃) =
1

2
xk̃T0 x̃ +

1

2
Xk̃T0 x̃

Lhid

(
x̃, ˙̃x

)
=

1

2
˙̃xT M̃ ˙̃x +

1

2
x̃T K̃x̃− f̃T x̃

then, the motion of x about ω0 (in the sense previously specified), when the
other variables are unmonitored, is controlled by the new lagrangian

L′
x (x, ẋ) = Lx (x, ẋ) +

π

4

β (ω0)

ω0
x2

and by the Rayleigh dissipation function:

D (ẋ) =
π

8

β (ω0)

ω0f (ω0)
ẋ2

where:
β (ω0) = lim

ω→ω0
(ω − ω0) k̃T0 G (ω) k̃0

f (ω0) =
Δω

ΔN

∣∣∣∣
ω0

=
N

n (ω0)

Δω in a bandwidth around ω0 and ΔN the number of eigenvalues of G
that falls within Δω, or if n(ω) is the so called modal density, n(ω0) is the
maximum of the modal density of G.
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This is the fundamental result of the paper.
However, as mentioned at the beginning of this section, the present ap-

proach gives the additional chance of estimating interesting properties of
the remainder effect ε. The next section attacks just this problem.

2.4 Remainder term: return time and energy transfer rate

We provide in this section a nice property for ε, that is:

for t<t* the contribution of ε is negligible; t* , named
return time, depends on the form of G.

a. Lemma 1
As a first lemma, a simple asymptotic property for I is enlightened:

lim
t→∞ I(t) = 0

This property follows from an asymptotic expansion (integration by parts)
for I. Precisely (Watson’s Lemma):

If Ω (ξ) �= 0, ∀ξ ∈ [0, 1] :

I(t) =

1∫
0

β (ξ) sin Ω (ξ) tdξ=
1

t

[
β (0)

Ω′ (0)
cos Ω (0) t− β (1)

Ω′ (1)
cos Ω (1) t

]
+o

(
1

t

)

If ∃ξ0 ∈ [0, 1] : Ω′ (ξ0) = 0:

I(t) =

1∫
0

β (ξ) sin Ω (ξ) t dξ =

√
2π

t |Ω′′ (ξ0)|β (ξ0) cos Ω (ξ0) t+ o

(
1√
t

)

This property implies that for t large enough, S(t) is well represented by
the remainder r(t):

S(t) ≈ r(t) , for large t

that provides the behaviour of S at late time.

b. Lemma 2
Classical results in numerical integration theory, shows that:

I(t) = S(t) + r(t)

r(t) =
Δξ

2

d

dξ

[
β (ξ) sin Ω (ξ) t

]
ξ=ξ̄(t)
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And explicitly:

r(t) =
Δξ

2

[
β′ (ξ) sin Ω (ξ) t+ β(ξ)Ω′(ξ)t cos Ω(ξ)t

]
ξ=ξ̄(t)

=
Δξ

2
A(ξ) sin

[
Ω (ξ) t+ ϕ(ξ)

]
ξ=ξ̄(t)

A (ξ) =
√
β′2 + β2Ω′2t2, ϕ (ξ) = arctan

(
βΩ′

β′
t

)
Thus, the late time behaviour for r may be represented by:

lim
t→∞ r(t) =

Δξ

2
β (ξ) Ω′ (ξ) t sin

[
Ω (ξ) t+ ϕ (ξ)

]
ξ=ξ̄(t)

while it appears that:

lim
t→0

r(t) = 0

This permits to conclude that the behaviour of S at early time is well
represented by I:

S(t) ≈
1∫

0

β (ξ) sin Ω (ξ) t dξ, at early time

c. Estimate of the return time
The results provided by the two previous lemmas can be used to give an
estimate for the return time t∗. The general picture for S, I and r is
summarized: at early time, S and I are close because r is small, and the
perturbation ε is small too; as time increases, at late time, I departs from
S: in fact I vanishes and it is not for S, that is indeed close to r, and the
perturbation ε becomes large.

We are interested in providing the order of magnitude of the time needed
for S to depart from I, that provides also an estimate of the time scale over
which the perturbation ε holds small. The strategy is simple: (i) estimate
the peak value Speak for both I and S reached at early time, (ii) then it is
expected that I decreases (because of lemma 1), and that S initially holds
close to I because r is small, (iii) at some late time t∗, it is indeed expected
that S increases departing from I reaching an amplitude close to its initial
peak.
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Let estimate Speak:

S(t) ≈
1∫

0

β (ξ) sin Ω (ξ) t dξ =⇒

dS

dt
≈

1∫
0

β (ξ) Ω (ξ) cos Ω (ξ) t dξ ≈
1∫

0

β (ξ) Ω (ξ)

[
1− 1

2
Ω2 (ξ) t2

]
dξ

dS

dt
(tpeak) = 0 =⇒

1∫
0

β (ξ) Ω (ξ) dξ − t2peak
1

2

1∫
0

β (ξ) Ω3 (ξ) dξ = 0

tpeak ≈

√√√√√√√√
2

∫ 1

0

β (ξ) Ω (ξ) dξ∫ 1

0

β (ξ) Ω3 (ξ) dξ

, Speak ≈
√

2

[∫ 1

0

β (ξ) Ω (ξ) dξ

]3/2
[∫ 1

0

β (ξ) Ω3 (ξ) dξ

]1/2
Let finally estimate the time t∗ for which S regain the value Speak; this
happens at late time, for which S can be approximated by r; evaluating all
the frequency dependent functions at ω0:

S ≈ Δξ

2
β (ξ) Ω′ (ξ) t sin

[
Ω (ξ) t+ ϕ (ξ)

]
ξ=ξ̄(t)

≈ Δξ

2
β (ω0) f (ω0) t

t∗ ≈ 2
√

2N

f (ω0)
= 2
√

2n (ω0)

This is also a central result of the paper.
Note that the time t∗ has not surprisingly this expression: in fact, con-

sidering the special case in which S is a periodic function (a Fourier series),
t∗ would be the period of S:

S =
N∑
k=1

βk sinωkt =
N∑
k=1

βk sin
2πkt

t∗

ωk =
2πk

t∗
=⇒ Δω =

2π

t∗
=⇒ n =

1

Δω
=⇒ t∗ = 2πn

Thus, the obtained expression for t∗ provides essentially a proportionality
between the return time and the modal density n at ω0.

This makes clear how the interaction term in the found simplified form
of an equivalent damping and stiffness is valid only when ε is small, that is
up to time t∗.
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A final interesting result correlates the time t∗ to the equivalent damping
and stiffness. In particular it is easy to find:

t∗ ≈ 4
√

2N

keq
ceq (7)

where an intriguing proportionality is found between the return time and the
equivalent damping. This result states: the faster the energy transfer
from x to the hidden variables, the longer the energy storage
within them.

This result makes meaningful the search of special configurations of the
hidden system that optimize the energy suction and storage from x:
in fact if we are able to make the energy transfer as fast as possible, it comes
together with the longest storage time for the moved energy.

The question is analysed in the next section.

2.5 A variational theorem for the minimum remainder term

The present section describes the conditions under which the series S(t)
approaches the integral I(t) and shows that a criterion of minimum dis-
tance D(t)

D2(t) =

∫
C

[S − I]2W dC = (S − I)2 = r2

can be satisfied with a suitable weighting functionW in a prescribed domain
C within a certain space Σ.

A method to find such a weighting function that depends on I, which
depends on ω(ξ) is described by the use of a variational approach.

The results show there exists a class of functions ω (ξ) that minimizes
the distance between S(t) and I(t). In such cases, the series S(t) tends to
match as close as possible the trend of the integral I(t), producing closely
the apparent damping effects previously discussed, and a nearly irreversible
energy transfer processes in conservative linear systems. The next section
reviews the definitions and properties necessary to form the basis for the
ensuing theoretical development.

The following approach is based on an average defined in a multi-dimens-
ional space C with the use of a non trivial weighting function W. The reason
for this is that, despite the difficult mathematical form, as it appears at a
first glance, it can indeed lead, surprisingly, to a closed form solution of our
minimization problem.

In order to correctly formulate our minimization problem, and some
related constraints, let introduce some preliminary considerations.
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a. Definition of average
For a set of functions si = βi sinωit, i = 1, 2, . . . , N at any time t,
s = [s1, s2, . . . , sN ]

T
defines a point (or a vector) in the space Σ of har-

monics; s exists within the hypercube C ≡ {E × E × · · · × E}, with E ≡
[−βmax, βmax], βmax = max {β1, β2, . . . , βN}.

Let f (s) be an arbitrary function defined over C ⊂ Σ with the vector
s ∈ Σ. In general, the average value f̄ (t) of f (s) over C can be expressed
using a weighting function P (s, I) as:

f̄(t) =

∫
C

f(s)P (s, I) dC, dC =

N∏
k=1

dsk (8)

where the weighting function is selected to depend on s and I as described
below.

As a consequence, scalar product of the two functions f (s) and g (s) in
C follows as

f · g =

∫
C

f(s)g(s)P (s, I) dC (9)

Similarly, the distance D(t) between f (s) and g (s) follows form:

D2(t) = (f − g) · (f − g) = (f − g)2 =

∫
C

[f(s)− g(s)]
2
P (s, I) dC (10)

b. Weighting Function
The weighting function P (s, I) in Eq. (10) is selected to have the form:

P (s, I) =
N∏
k=1

p(sk, I) (11)

where p(sk, I) is an arbitrary function that satisfies the conditions:

Gmax∫
−Gmax

σp(σ, I) dσ = I(t) (12)

Gmax∫
−Gmax

p(σ, I) dσ = 1 (13)

Equation (12) offers a comparison with the integral in Eq.(2) for σ =
β (ω) sinωt and through a change of integration variables in Eq. (12) (first
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from dσ to dω, then to dξ):

I(t) =

Gmax∫
−Gmax

σp(σ, I) dσ =

ωmax∫
ωmin

σ(ω)p[σ(ω), I]
dσ

dω
dω

I(t) =

ξmax∫
0

σ(ω(ξ)]p{σ[ω(ξ)], I}dσ
dω

dω

dξ
dξ

(14)

provided that in the interval [ωmin, ωmax], σ = β (ω) sinωt is single-valued
and σ ∈ [−βmax, βmax]. A comparison of equations (2) and (14) implies that
the function p(σ, I) must satisfy the following compatibility condition :

p(σ, I)
dσ

dω

dω

dξ
= 1 (15)

The condition expressed by Equation (15) also implies a dependence be-
tween p (σ, I) and ω (ξ) for σ = β (ω) sinωt.

It follows that substituting equation (15) in equation (13) yields the
upper bound of ξ as :

Gmax∫
−Gmax

p(σ, I)dσ =

ξmax∫
0

p {σ [ω (ξ)] , I} dσ
dω

dω

dξ
dξ = ξmax

yielding ξmax = 1, which leads to the conclusion about the bounds of ξ as:
ξ ∈ [0, 1].
c. Average of S
The average of the function S(t) in Eq. (1)can be expressed by substituting
for s̄i the averaging property —expressed for f̄(t)— in Eq. (8):

S(t) =
1

N

N∑
i=1

s̄i =
1

N

N∑
i=1

∫
C

siP (s, I) dC

Further substitution for P (s, I) from Eq. (11) and for dC from Eq. (8)yields:

S(t) =
1

N

N∑
i=1

Gmax∫
−Gmax s

sip(si, I) dsi

∫
C(N−1)

N∏
k�=i
p(sk, I) dsk

The condition (13) leads the mutiplication series in the second integral to
produce identity and applying condition (12) to the first integral shows that:

S(t) = I(t) (16)
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By invoking the definition of average value in (8) leads to the fundamental
result:

S (t) =

∫
C

SP (s, I) dC = I(t) (17)

provided that equation (15) is satisfied.

d. Constraints
The weigthing function, as it has been defined in subsection b, must satisfy
the constraints (12) and (13). Equation (12) is automatically satisfied pro-
vided that equation (15) holds, as it will be used ahead. It is indeed suitable
to introduce explicitly the constraint (13) in a form that makes easier to
approach the following variational problem.

Substituting for P (s, I) from Eq. (11) and for dC from Eq. (8) and
invoking the condition in Eq. (13) it can be show that:∫

C

P (s, I) dC = 1 (18)

The first derivative of Eq. (18) with respect to I can be expressed as:∫
C

∂

∂I
P (s, I) dC = 0 =⇒

∫
C

[
1

P (sI)

∂

∂I
P (s, I)

]
P (s, I) dC = 0

Thus: ∫
C

∂

∂I
[logP (s, I)]P (s, I) dC = 0

which is equivalent to stating:

∂

∂I
logP = 0 (19)

that is a constraint derived from (12) or (18). Following the same approach,
the first derivative of Eq. (17) with respect to I, produces a similar expres-
sion:∫

C

S
∂

∂I
P (s, I) dC = 1 =⇒

∫
C

S

[
1

P (s, I)

∂

∂I
P (s, I)

]
P (s, I) dC = 1

S
∂

∂I
logP = 1 (20)

that is a consequence of (17). In order to find the distance between S(t)
and I(t), an equivalent expression for Equation (20) is developed for I(t) by
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multiplying Eq. (19) by the factor I, which is independent of the integration
variable s:

I
∂

∂I
logP = 0 (21)

Finally the combination of (20) and (21) produces:

(S − I) ∂
∂I

logP = 1

e. The Euler-Lagrange equation minimizing D2 = (S− I)2

The problem outlined at the beginning of this section 2.5 is solved indeed
by a variational approach finding the minimum of the modified functional:

δD̃2 = 0 , D̃2 = (S − I)2 + λ

[
(S − I)

(
∂

∂I
logP

)]

where λ is the Lagrange’s multiplier to include the constraint derived in
subsection d.

The variation of D̃2 to be considered is with respect to I, that is, equiv-
alently, with respect to ω (ξ) from which I depends, but it is easier not to
consider explicitly. Therefore:

−2 (S − I) + λ

[
− ∂
∂I

logP + (S − I) ∂
∂I

(
∂

∂I
logP

)]
= 0

where the last is the Euler-Lagrange equation.
This differential equation, as it can be easily verified, admits a solution

of the form:
∂

∂I
logP = − (S − I)

λ
(22)

Condition (22) represents a differential equation in terms of P and its so-

lution leads to a family of exponential functions P (s, I) =
∏N

k=1 p (sk, I).
The solution to Eq. (22), originally obtained by Pitman and Koopman in
the context of the theory of estimators, is given as:

p(σ, I) = exp {A(I)B(σ) + C(σ) +D(I)}

where A(I), B(I), C(σ), and D(σ) are arbitrary functions of their respective
arguments.
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Gauss function also belongs to this family of solutions and provides an ex-
cellent example that can be easily verified by substituting into equation (22):

p(σ, I) =
1

r
√

2π
exp

{
−1

2

(σ − I)2
r2

}
(23)

The solution p(σ, I), with σ (β, ω), has a shape that depends on the function
I(t) and on the parameter r.

Together with equation (23), the compatibility equation (15) becomes
a nonlinear differential equation and its solution provides the frequency
distribution ω(ξ) that minimizes the distance D:

1

r
√

2π
exp

{
−1

2

(σ − I)2
r2

}
d

dω
[β (ω) sinωt]

dω

dξ
= 1 (24)

Equation (24) can be solved for ω(ξ) numerically; however, an alternative
approach using density of harmonic functions, analogous to modal density
in a dynamical system, produces a closed-form expression. Since dξ

dωN rep-
resents the harmonic density, δ(ω), that counts the number of harmonics, or
modes, contained within the frequency band dω, Eq. (24) directly leads to
an expression for δ(ω). With dξ = 1

N dn, N being the total number of har-
monics, si, for ξ ∈ [0, 1], and dn the number of harmonics for ξ ∈ [ξ, ξ + dξ],
it follows that N dω

dξ ∝ dω
dn = 1

δ(ω) . Substituting in equation (24) produces:

δopt(t) =
1

N

1

r
√

2π
exp

{
−1

2

(σ − I)2
r2

}
d

dω
[β (ω) sinωt] (25)

Equations (24) and (25) show that time appears as a parameter in the fre-
quency distribution that minimizes the difference between S and I. Oscil-
lators with time-dependent parameters or, equivalently, with time-varying
natural frequencies, imply presence of parametrically controlled resonators
or nonlinear resonators. The problem under consideration in this paper ad-
dresses linear time-invariant dynamical systems and, thus, equations (24)
and (25) cannot be satisfied at all times t. Thus, the approach taken here
uses the frequency distribution ω(ξ) that results from equation (24) or (25)
for a particular time t0 to solve the compatibility equation

p(σ, I)
dσ

dω

dω

dξ

∣∣∣∣
t=t0

= 1 (26)

The choice for t0, selection of the frequency interval [ωmin, ωmax] within
which ω(ξ) falls, which also depends the choice of t0, and the implication of
their selection are discussed with examples in the next sections.
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Normally, the form of Eq. (23) satisfies Eqs. (12) and (13) automatically
for an integration domain [−∞,+∞]; however, since the actual domain is
finite E ≡ [−Gmax, Gmax], r and I (t0) must satisfy the additional con-
straints:

r � Gmax, I(t0) ∈ E (27)

These constraints guarantee that the function represented by equation (23)
has its primary distribution within the interval E and therefore (approxi-
mately) satisfying equations (9) and (10).

2.6 Examples of application: set of parallel resonators

The examples given in this section illustrate application of the theory de-
scribed above. Each case demonstrates how to minimize the difference be-
tween a sum of harmonic functions and the corresponding integral summa-
tion. The first example consists of a simple summation of sine functions for
which β (ω) ≡ 1. In the second example, β (ω) ≡ ω represents the reaction
force of a set of undamped resonators on a common rigid base. Subsections
c and d examine more complex examples.

a. Simple sine series β (ω) ≡ 1
Summation of a series of N = 100 sine functions with frequencies ωi results
from Eq. (1)by substituting for β (ω) ≡ 1:

S(t) =
1

N

N∑
i=1

sinωit

and the corresponding integral from Eq. (2)becomes:

I(t) =

∫ 1

0

sinω (ξ) t dξ

For this case, the nonlinear differential equation (24) becomes:

1

r
√

2π
exp

{
−1

2

(σ − I0)2
r2

}
t0 cosωt0

dω

dξ
= 1 (28)

where σ and I0 from Eqs. (26) and (2)become

σ = sinω (ξ) t0, I0 =

ξmax∫
0

sinω (ξ)t0 dξ
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In this case, E ≡ [−1, 1]. Restricting the selection to monotonic fre-
quency distributions ω(ξ), so that dω

dξ > 0 for ω ∈ [ωmin, ωmax], implies

that according to Eq. (28), d σ
dω = cos ω (ξ) t0 must always be positive

forω ∈ [ωmin, ωmax]. It follows that assigning, for example, t0 = π
4 , yields

dω
dξ > 0 for ω ∈ [0, 1]. Under these conditions, the values for I0 may be ar-

bitrary, except that they must satisfy the inequalities in (27) and p satisfies
the conditions (11) and (15).

Figures 1-5 illustrate the results obtained for N = 100, t0 = π
4 , r = 0.05,

ω ∈ [0, 1] and with the choice of I0 = 0.2 and r � 1, both of which
satisfy equation (27). Figure 1 represents the frequency distribution ω (ξ)
determined by a numerical integration of equation (28) from which the set
ωi (i = 1, . . . , 100) is determined by sampling 100 points equally spaced
alongξ. Figure 2 represents the harmonic density and Figure 3 the time
history of S(t). As shown in Figures 4 and 5 for different time scales, in
the time history of the series obtained using the theory developed here the
strong periodicity disappears when compared with the corresponding series
consisting of a linear frequency distribution with period 2πN/ωmaxfor two
different time scales.

Figures 6-9 show a case analogous to the previous one except for r =
0.01, representing a higher harmonic density around its peak resulting in a
somewhat better performance.

The third example, shown in Figures 10-12, uses t0 = π
8 and N = 100,

r = 0.05, ω ∈ [0, 1].
The results of the examples above show that the frequency distributions

satisfying the minimum distance bound requirements produce time histo-
ries that bring the summation S(t) very close to I(t), without recurrence
or periodicity in its time history unlike, say, the case of a linear frequency
distribution. The envelope of the summation in Eq. (1)decays significantly
with respect to its early oscillations and without regaining its initial am-
plitude, following closely the same trend that its integral counterpart I(t)
exhibits in Eq. (3).

b. Reaction force of a set of parallel oscillators on a rigid base,
β (ω) ≡ ω
Consider a set of N parallel oscillators attached to a common rigid base. Os-
cillators have equal massm and uncoupled natural frequencies ωi =

√
ki/m,

where ki represents the stiffness of oscillator i. Impulse response of each os-
cillator is expressed as:

hi(t) =
1

mωi
sinωit

The total reaction force exerted on the base by a set of N oscillators can be
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represented as:

S(t) =

N∑
i=1

kihi(t) =

N∑
i=1

ωi sinωit

S(t) has the same form as the series in (1) with G ≡ ω. In this case, for
time t = t0, Eq. (26) together with Eq. (23) for p(σ), provides:

1

r
√

2π
exp

{
−1

2

(σ − I0)
2

r2

}
[sinωt0 + t0 cosωt0]

dω

d ξ
= 1

σ = ω (ξ) sinω (ξ) t0, I0 =

ξmax∫
0

ω (ξ) sinω(ξ)t0 dξ

(29)

As before, restricting the analysis only to monotonic frequency distributions
ω (ξ), such that dσ

dω = sinωt0 + t0 cosωt0 > 0, and choosing, for example,
t0 = π

4 , leads to the condition that in the frequency interval ω ∈ [0, 2],
d σ
dω
> 0 and σ ∈ [0, 2]. Again, r and I0 can be assigned arbitrarily, but

consistent with inequalities (27); in this case, r = 0.1 and I0 = 0.8.
Figure 13 displays the frequency distribution obtained by solving Eq.

(29) and Figure 14 shows the corresponding optimal modal density from
equation (25). The time history of the reaction force on the rigid base,
shown in Figure 15, exhibits a rapid decay and remains at a negligibly low
amplitude.

c. Pseudo-damping in conservative continuous structures,
β (ω) ≡ 1

ω
A continuous linear undamped dynamic system, excited by a unit impulse
at point x0, satisfies the equation of motion:

L [w(x, t)] +m′ ∂
2w(x, t)

∂t2
= 0

with initial conditions w(x, 0) = 0, ẇ(x, 0) = δ(x − x0), where δ is the
Dirac’s distribution. L [ ], w(x, t), m′ represent the system operator, the
displacement response and the mass density, respectively. The general re-
sponse of such a linear system can be represented by its orthonormal modes
Φi(x) and principal co-ordinates qi(t), as

w(x, t) =

N∑
i=1

Φi(x), qi(t)

qi(t) = Ai sinωit , Ai =
m′

ωi
Φi(x0)
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Then its impulse response at x0 can be represented by the series expression
S(t) in Eq. (1), with Gi = m′

ωi
Φ2
i (x0).

In general, in the absence of damping, this finite series, a superposi-
tion of pure sine functions, exhibits an almost-periodic trend. For exam-
ple, the case of a Fourier series of sine functions with linearly distributed
frequencies ωi = iω0, where ω0 is the fundamental frequency, becomes pe-
riodic. As before, a decaying trend in S(t) is expected only in the pres-
ence of energy dissipation. However, as shown in previous studies that in
cases where condensation points exist within the frequency distribution or,
equivalently, natural frequencies accumulate around a particular frequency,
impulse response of that linear system exhibits a decaying characteristic
even in the absence of dissipation sources, a phenomenon referred here as
near-irreversibility or apparent-damping.

Application of the theory developed in this paper to the continuous sys-
tem described above provides a theoretical basis to the numerically obtained
results in earlier studies and demonstrates how a class of frequency distri-
butions ωi can produce apparent-damping.

As an example, consider a simply-supported beam as a prototypical lin-

ear system for which Φi (x0) =
√

2
m′ L sin πix0

L , x0
L = 1

2 . Substituting for

Gi = 1
ωi

2
L

(
sin πi

2

)2
in Eq. (1), and retaining only the odd terms:

S(t) =

N/2∑
i=1

2

L

1

ω2i−1
sinω2i−1t

Selecting t0 = π
4

, the function σ = 1
ω

sinωt0 has a monotonically increasing
trend, for example, within the interval ω ∈ [8, 9]. Choosing values I0 = 0.05,
r = 0.005, which satisfy the conditions (27), the frequency distribution and
the corresponding modal density can be obtained from equations (24) and
(25), as shown in Figures 16 and 17. The impulse response of the beam
with such a frequency distribution is shown in Fig. 18 for N = 200 (but
includes only the 100 odd modes). The impulse response shows a rapid
decay reminiscent of the impulse response of a highly-damped system, being
indeed the system is Hamiltonian.

d. Pseudo-irreversible energy transfer between a single dof res-
onator and a set of parallel oscillators, β (ω) ≡ ω3
Figure 19 depicts the system under consideration in this section, which
consists of set of resonators with natural frequencies ωi (i = 1, 2, . . . , N),
that are connected in parallel to a common principal structure. The system
does not possess any means of energy dissipation. For a very large number
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of oscillators N, approaching infinity, but with a constant total mass, the
attached oscillators can be considered as a continuous distribution with the
equations of motion for the coupled system expressed as:⎧⎪⎪⎨⎪⎪⎩

MẍM (t) +KMxM (t) +

1∫
0

k(ξ) (xM (t)− x(ξ, t)) dξ = 0

mẍ(ξ, t)− k(ξ) (xM (t)− x(ξ, t)) = 0

(30)

where M , KM , xM are the mass, stiffness and displacement of the mas-
ter structure, respectively; m, k, x represent the same quantities of the
distributed oscillators in the attached set.

Several studies have shown that such a distribution of oscillators, pro-
duce a damping effect on the principal mass (1; 2; 3; 4; 5; 6; 7; 8) as N
approaches infinity.

An alternative derivation of this result, presented in the Appendix, shows
that the impulse response of the principal oscillator progressively decays and
vanishes asymptotically with time. Energy initially imparted to the princi-
pal structure migrates to the attached set of infinite number of oscillators
that have frequencies that fall within a finite bandwidth, where it remains
indefinitely. As discussed earlier, it is commonly accepted that, in general,
such irreversible energy transfer does not hold for a finite N (8). However, as
the following application of the theory developed in this paper shows, there
exist particular frequency distributions which afford a nearly-irreversible
energy transfer even for a finite set of oscillators.

Considering the second of equations (29), the displacement of the con-
tinuous set of resonators in terms of the master response can be expressed
by the convolution integral:

x(ξ, t) = ωn(ξ)

t∫
0

xM (τ)H (t− τ) sinωn(ξ) (t− τ) dτ

where H is the Heaviside function. Introducing this expression into the first
of Eq. (29), an integro-differential equation results in terms of xM :

MẍM (t) +KMxM (t) + xM (t)

1∫
0

k(ξ) dξ+

−
t∫

0

xM (τ)

1∫
0

mω3n(ξ)H(t − τ) sinωn(ξ)(t− τ) dξ dτ = 0
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which can be also expressed as:

MẍM (t) + (KM + k̄)xM (t)− xM (t) ∗ [I(t)H(t)] = 0 (31)

where I(t)H(t) is the kernel of the integral part of the previous equation
and

k̄ =

1∫
0

k (ξ) dξ, I(t) =

1∫
0

mω3n (ξ) sinωn (ξ) t dξ (32)

In the case of a finite set of N resonators, the equation of motion takes a
different form where integrals over ξ are substituted by summations. Thus,
Eq. (31) remains applicable provided that k̄ =

∑N
i=1 ki and I(t) is replaced

by its discrete counterpart S(t) = 1
N

∑N
i=1mω

3
i sinωit:

MẍM (t) + (KM + k̄)xM (t)− xM (t) ∗ [S(t)H(t)] = 0 (33)

The apparent damping and near irreversibility as manifested by the decay
characteristics of the impulse response result from the application of the
present theory by considering G (ω) = mω3 with σ = m ω3 sinωt0 and
searching for the optimum frequency distribution.

As an example, consider a master structure, with an uncoupled natural
frequency ωM = 1, with N = 100 attached oscillators. Assuming t0 = π

4
and searching for a monotonic frequency distribution ω (ξ), it follows that,
within the frequency intervalω ∈ [0, 2], dσ

dω > 0 and σ ∈ [0, 8]. The values of
r and I0 (r = 0.4 and I0 = 0.6) are selected to be consistent with inequalities
(27), and to assure that the function represented by equation (23) has its
peak around ω = ωM = 1.

Figures 20 and 21 show the frequency distribution and the frequency
density of the attached oscillators determined by solving equations (24) and
(26). Figure 22 shows the master response following an impulse applied at
t = 0, which illustrates how a significant part of its energy is transferred
to the set of oscillators and remains there without returning back to the
master, producing an irreversible energy transfer.
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3 UNISAT: An Engineering Application

This section presents an application of a vibration damper based on a cluster
of beams, based on the theory developed in section B. The theory is applied
to a cluster of continuous beams structures attached to a continuous master,
outlining an analysis for predicting the expected performances of the damper
with particular emphasis to an optimal design of the device.

A built-up system is applied to a satellite aerospace structure to be
launched next year, capable of absorbing the vibration energy at the lift-
off, accordingly with the findings of the theory outlined in the paper. The
experimental results illustrate the feasibility and the attractiveness of this
new damping technique.

a. Pseudo-damping effect induced by a cluster of beams
Aim of the section is to derive the master-cluster coupled equations of mo-
tion.

Figure 1. Sketch of the mastercluster coupling.

The cluster consists of a set of N beams, all clamped at the same sup-
port AB, attached to the main structure (master) by the connector QP as
illustrated in figure 1. AB and QP are assumed to be rigid (their stiffness
much higher than those of the beams) and the attachment between QP and
the master is assumed to be a point connection.
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The coupled equations of motion The master, a continuous linear
undamped structure, is described by the governing equation:

L [w(x, t)] + m′
M

∂2w(x, t)

∂t2
= Rδ(x− xP ) (34)

where δ is the Dirac’s distribution, L [ ], w(x, t), m′
M are the structural

operator, the structural displacement and the mass density. x is the space
variable along the master and R is the reaction force exerted by the cluster
on the master at xP .

The master is coupled to the beams of the cluster through R:

R =

N∑
i=1

Ti =

N∑
i=1

Bi
∂3wi
∂ξ3i

∣∣∣∣
ξi=0

(35)

where Ti, Bi, wi, ξi are: the shear force at the clamping support, the
bending stiffness, the flexural displacement (in the same direction of w) and
the abscissa along the i-th beam of the cluster, respectively.

The N + 1 coupled equations of motion for the N beams and for the
master are:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L [w(x, t)] +m′

M

∂2w(x, t)

∂t2
− δ(x− xP )

N∑
i=1

Bi
∂3wi
∂ξ3i

∣∣∣∣
ξi=0

= 0

Bi
∂4wi(ξi, t)

∂ξ4i
+m′

i

∂2wi(ξi, t)

∂t2
= m′

i

∂2w(xP , t)

∂ t2
, i = 1, 2, . . .N

(36)

where m′
i is the mass per unit length of the i-th beam, and the beams of

the cluster are forced by the inertial term related to the motion of AB that
moves as P .

Φih(ξi) and qih(t) are the i-th orthonormal mode of the h-th beam
(clamped-free) and the associated principal co-ordinates of the master, re-
spectively. The beam vibration fields within the cluster are described by:

wi(ξi, t) =

∞∑
i=1

Φi h(ξi)qi h(t) (37)

Substitution for these expressions into the beams equations (the second of
system (36)) and the use of the orthonormality conditions produces:

q̈ih(t) + ω2ihqih(t) = Lih
∂2w (xP , t)

∂t2
(38)
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where ωih is the i-th natural frequency of the h-th beam and

Li h =

li∫
0

m′
i Φi h(ξi) dξi (39)

For equations (38), the convolution-form solutions hold:

qih(t) =

[
Γ(t)

Li h
ωi h

sinωiht

]
∗ ∂

2w (xP , t)

∂t2
(40)

where Γ(t) is the Heaviside distribution.
Equations (37) and (40) permit, after simple mathematics, to rewrite

the equation of the master (first of equations (36)) in the form:

L [w(x, t)] +m′
M

∂2w(x, t)

∂t2
− δ(x− xP ) [S(t)Γ(t)] ∗ ∂

2w (xP , t)

∂t2
= 0 (41)

where

S(t) =

∞∑
h=1

N∑
i=1

Uih
ωi h

sinωiht, Uih = BiLih
∂3Φi h

∂ξ3i

∣∣∣∣
ξi=0

(42)

Equation (41) is integral-differential in terms of the master displacement
w. This prototype equation has been studied in the previous section and
remarkable properties of the kernelS(t)H(t) have been established. Of par-
ticular interest, the possibility, under certain conditions, of replacing the
summation through the set of beams (index i) appearing into S(t) by an
integral, enlightening in this way the damping effect the cluster produces
in the master motion. Physically, this means that the beams of the clus-
ter, having a discrete spectrum of natural frequencies within the set, are
replaced by a continuous distribution of frequencies with a spacing tending
to zero. Introduction of the dummy variable χ, varying between 0 and 1
through the set of resonators with Δχ = 1/N , allows summation (42) to be
written as an integral I(t):

S(t) =
∞∑
h=1

N

N∑
i=1

Uh (χi)

ωh(χi)
sinωh(χi)t

1

N
≈

≈ I(t) =

∞∑
h=1

N

1∫
0

Uh(χ)

ωh(χ)
sinωh(χ)t dχ

(43)
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whereωh(χ) represents the continuous distribution of the h-th natural fre-
quency through the set of the beams that depends on the section and lengths
of the beams within the cluster. This integral can be fruitfully manipulated

replacing the integration variable χ byωh. Let dωh(χ)
dχ = f (ωh) and change

the integration limits:

I(t) =

∞∑
h=1

N

∫ ωh(1)

ωh(0)

Uh(χ)

ωhf(ωh)
sinωht dωh (44)

f (ωh) is the frequency density of the h-th mode of the beams. The final
step consists in expressing Uh(χ) in terms of ωh. As shown in Appendix A,
for a set of beams of different lengths and cross section area:

Uh(χ) =
4B (χ)β2h
l3 (χ)

(
sinh βh − sinβh
cosβh − coshβh

)2

(45)

where β1 = 1.875, β2 = 4.694, β3 = 7.855 . . . etc.
The distribution of natural frequencies ωh(χ) depends on the bending

stiffness B(χ) and the length l(χ) distributions through ωh(χ) =
β2h
l2(χ)

√
B(χ)
m′(χ) ,

where m′(χ) is the mass per unit length across the beams set. Substitution
for this last expression into equation (45) gives:

Uh(χ) = μhω
2
h (χ)m (χ) , μh =

4

β2h

(
sinh βh − sinβh
cosβh − coshβh

)2

where m(χ) = m′(χ)l (χ) is the beams mass distribution within the set;
m(χ) can be replaced by m(ωh), since, through the distribution ωh(χ), a
frequencyωh remains associated at anyχ.

Thus, S can be conveniently approximated by I(t):

S(t) ≈ I(t) =

∞∑
h=1

N

ωh(1)∫
ωh(0)

μh
ωhm (ωh)

f(ωh)
sinωht dωh (46)

and the final equation for the master motion is obtained by substitution of
(46) into (41):

L [w(x, t)] +m′
M

∂2w(x, t)

∂t2
+

− δ(x− xP )

⎡⎢⎣ ∞∑
h=1

NΓ(t)

ωh(1)∫
ωh(0)

μh
ωhm(ωh)

f(ωh)
sinωht dωh

⎤⎥⎦ ∗ ∂2w (xP , t)

∂t2
= 0

(47)
The third addend represents the global action of the cluster on the master.
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Equivalent damping of the cluster The crucial point of the present
theory relies in showing how the frequency representation of (47), through
Fourier transform F ,

L [W (x,Ω)]−m′
MΩ2W (x,Ω)+

− δ(x− xP )F

⎧⎪⎨⎪⎩
⎡⎢⎣ ∞∑
h=1

NΓ(t)

ωh(1)∫
ωh(0)

μh
ωhm(ωh)

f(ωh)
sinωht dωh

⎤⎥⎦∗ ∂2w (xP , t)

∂t2

⎫⎪⎬⎪⎭= 0

(48)
produces for the third term a nonzero imaginary part, implying the cluster
effect amounts to an equivalent dissipation.

The third addend can be indeed written as:

W (xP ,Ω)

∞∑
h=1

−Ω2NF {Γ(t)} ∗ F

⎧⎪⎨⎪⎩
ωh(1)∫
ωh(0)

μh
ωhm(ωh)

f(ωh)
sinωht dωh

⎫⎪⎬⎪⎭ (49)

where:

F {Γ} =
1

2
δ (Ω) +

1

jΩ
(50)

and

F

⎧⎪⎨⎪⎩
ωh(1)∫
ωh(0)

μh
ωhm(ωh)

f(ωh)
sinωht dωh

⎫⎪⎬⎪⎭ =

=

ωh(1)∫
ωh(0)

μh
ωhm(ωh)

f(ωh)

+∞∫
−∞

e−jΩt sinωht dt dωh =

= −jπ
ωh(1)∫

ωh(0)

μh
ωhm(ωh)

f(ωh)
[δ (Ω + ωh)− δ (Ω− ωh)] dωh =

= −jπ
[
μh

Ωm(Ω)

f (Ω)

]
Πh (Ω)

(51)

with

Πh =

⎧⎨⎩1 for Ω ∈ [ωh(0), ωh(1)]

0 elsewhere
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Therefore:

F {Γ(t)} ∗ F

⎧⎪⎨⎪⎩
ωh(1)∫
ωh(0)

μh
ωhm(ωh)

f(ωh)
sinωht dωh

⎫⎪⎬⎪⎭ =

= −jΩ
[
π

2
μh
m(Ω)

f(Ω)

]
Πh (Ω)−

+∞∫
−∞

πμh
Πh (ζ) ζm(ζ)

f (ζ) (ζ − Ω)
dζ

In the integral on the rhs, the kernel of the Hilbert transform H is recog-
nized:

+∞∫
−∞

πμh
Πh (ζ) ζm(ζ)

f (ζ) (ζ − Ω)
dζ = π2μhH

{
Πh (Ω) Ωm(Ω)

f (Ω)

}
Thus, equation (48) takes the final equivalent form:

L [(x,Ω)] −m′
MΩ2W (x,Ω)+

+ δ(x− xP )W (x,Ω)N

∞∑
h=1

−jΩ
[
π

2
μh

Ω2m(Ω)

f(Ω)

]
Πh (Ω) +

− π2μhΩ2H

{
Πh (Ω) Ωm(Ω)

f (Ω)

}
= 0

Neglecting the real part of the series (small compared to L [W (x,Ω)] −
m′
MΩ2W (x,Ω)), the equation of the master finally reads:

L [W (x,Ω)]−m′
MΩ2W (x,Ω)+

+ jΩ

[
π

2
N

Ω2m(Ω)

f(Ω)

∞∑
h=1

μhΠh (Ω)

]
W (x,Ω)δ(x − xP ) = 0

This expression provides the frequency domain counterpart of the master
equation and apparently suggests that the set of oscillators introduces a
frequency dependent equivalent damping

Ceq (Ω) =
π

2
N

Ω2m(Ω)

f(Ω)

∞∑
h=1

μhΠh (Ω) (52)

even in the absence of any dissipation effect.
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An alternative and still significant expression of the apparent damping
is obtained. In fact dm = m(Ω)N dχ = m(Ω) dN is the mass of the number
dN of beams having natural frequency within the bandwidth [Ω,Ω + dΩ].
Thus, equation (52) becomes:

Ceq (Ω) =
π

2
Ω2 dm

dΩ

∞∑
h=1

μhΠh (Ω) (53)

b. Physical considerations and properties of Ceq

Physical meaning of Ceq: frequency and time domain The presence
of a damping term in the master equation, in the absence of any energy
dissipation within the whole system, amounts to an effect of energy transfer
from the master to the beams, equivalent for the master to a loss of energy.
In this view the cluster works as a vibration or shock absorber.

However, deriving Ceq, in equation (43) an approximation is made re-
placing the summation S(t), through the set of beams, by the integral I(t),
and the simple frequency domain expressions (52) or (53) are produced.
These hold only if suitable conditions for this replacement occur, and the
question can be more conveniently examined in time domain. In general S
and I(t) differ indeed for a remainder term R = I − S. As shown in (3),
R is small at early times and, within a suitable time interval [0, t∗], R ≈ 0.
Thus, for t smaller than t∗, S ≈ I, |R| � |S| ≈ |I|, the replacement of S by
I is legitimated and equations (52) and (53) hold.

More in detail, applying the argument based on the wave analogy illus-
trated in (3), for the present case, t∗ can be estimated by (see Appendix B):

t∗ ≈ 2πN

f (Ωtun)
(54)

where Ωtun is the frequency in correspondence of which the set of beams is
tuned. It follows that for t ∈ [0, t∗], Ceq is the actual apparent damping of
the master, while for later times the cluster effect is not anymore correctly
represented by it. Physically, after t∗, the energy temporarily released to
the set of resonators is indeed suddenly returned back to the master.

In section 2 it is shown that, in some remarkable cases, this energy
return phenomenon can be prevented. In fact, R depends on the functions
ωh (χ) and a special class of them, able to minimize a suitable average of
R, is found, permitting the replacement of the summation by an integral
with a minimized error. In a sense, these ‘optimal’ frequency distributions
makes t∗ the largest possible, and the energy return to the master is not
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practically observed. In fact, a large t∗, in real structures, is substantially
equivalent to an infinite t∗. Indeed even small dissipation transforms the
most of vibration energy trapped in the cluster into heat and the energy
returned back to the master, after t∗, is only a negligible fraction of that
trapped initially.

Finally, as shown in the previous section 2, the return time and apparent
damping are related: the faster the energy transfer from the master to the
cluster, i.e. the higher Ceq , the longer t∗, as it also appears by comparison
of equations (53) and (54), from which results Ceq (ΩM ) ∝ t∗.

Thus, as detailed in the next section, an effective design of the damper
gains an important benefit in using these optimal frequency distributions,
having better performances both in terms of Ceq and t∗.

c. Optimal frequency distributions and properties of Ceq (Ω)
Theoretically, the best frequency distribution ωh (χ) is found in found in the
previous section by solving for a functional minimization of the remainder
square average. The found solutions belong to exponential families. Among
them, that proposed ahead is rather simple and effective:

ωopt (χ) =
W

2

[
2χ− 1

|2χ− 1|
eα|2χ−1| − 1

eα − 1
+ 1

]
+ ωmin

where χ ∈ [0, 1], W = ωmax − ωmin and α is a parameter that modifies
the shape of the frequency distribution (its optimal value for best energy
absorption is 2.5). Assuming ω1(χ) = ωopt (χ), i.e. the optimal distribution
across the set for the first mode, the set of the beams lengths within the

cluster follows as l (χ) = β1√
ωopt(χ)

4

√
B
m′ , assumed that all the beams of

the cluster have the same bending stiffness B and same cross section area
(thickness h, width b, mass per unit length m′) differing only for their
lengths.

Thus, the frequency distributions for the h-th mode across the beams
set:

ωh (χ) =

(
βh
β1

)2

ωopt (χ) (55)

All these distributions present a typical trend forχ ∈ [0, 1]: a rapid growth
close toχ = 0, an almost flat branch aroundχtun = 0.5, and again a rapid
growth close to χ = 1, as shown in figure 2.

Consequently, 1
f = 1

dωh/dχ
is a Gaussian-like function with sharp peak

aroundχtun, to which corresponds the tuning frequency

ωtun h =

(
βh
β1

)2
ωmax + ωmin

2
,
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Figure 2. Typical optimal frequency distribution within the cluster.

the values around which the natural frequencies of the distribution ωh (χ)
condense (see figure 3). An intuitive understanding of the optimal charac-
teristics in terms of t∗ and Ceq of these distributions is seen from expressions
(52) and (54) that contain the factor 1

f , implying they confer a large t∗ and
a large Ceq around the tuning frequency ωtunh.

Besides these typical peaks of the equivalent damping related to 1
f , ex-

pressions (52) and (53) reveal other remarkable properties of Ceq discussed
ahead.

Figure 3. Gauss-like frequency density distribution within the cluster.
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From equation (54) the frequency average damping can be estimate. The
frequency intervals [ωh(0), ωh(1)] can be partially overlapped or not. In the
last case (as in the built-up device here presented) ωh(1) < ωh+1(0) for any

h, meaning
βh+1

βh

lmin

lmax
> 1, where lmin, lmax are the minimum and maximum

beams lengths through the set. Thus, in each frequency window Πh, the
damping expression simplifies as Ceq h (Ω) = π

2Ω2 dm
dΩ μh. An estimate of its

average over the frequency bandwidth Ω ∈ [ωh(0), ωh(1)] is:

C̄eq h =
1

Wh

∫ ωh(1)

ωh(0)

π

2
Ω2 dm

dΩ
μh dΩ ≈ πω

2
tun h

2Wh
μhMcl (56)

where Wh = ωh(1) − ωh(0) and Mcl are the h-th device tuning bandwidth
and the total mass of the cluster, respectively.

Finally a relationship between Mcl and N holds:

Mcl = m′
N∑
i=1

l (χi) = m′N
N∑
i=1

l (χi) Δχ ≈ m′N

1∫
0

l (χ) dχ =

= m′Nβ1
4

√
B

m′

1∫
0

1√
ωopt (χ)

dχ

(57)

Equations (52), (54), (55), (56) and (57) provide the basis for the cluster
design.

d. Cluster design and performances of the built-up device
A device based on the previous theory has been designed to be used on board
of UNISAT, that stands for UNIversity SATellite, a permanent space project
developed at the University of Rome La Sapienza by the Gauss Group. It
is a small scientific satellite (14 kg- 20 kg depending on the flying payload)
launched four times in orbit (2000-2006) and next launch, equipped with the
presented vibration suppressor, is planned in 2008. Severe vibrations occur
to the electronic equipment of the satellite during the lift-off operations of
the carrier and the present device is aimed at reducing shock and vibration
on the plate carrying the electronic package.

The material used for the damper is still (namely ρ = 7780 kg/m
3
,

E = 187.5 GPa,) and the cluster of beams are realized by milling machines
from a still sheet of thickness h = 0.6mm. The maximum allowed room on
board for the device is 90 mm × 90 mm × 40 mm, with a maximum allowed
mass agreed by the satellite designers equal to 150 g.

The design procedure follows the steps ahead:

• a) Frequency bandwidth and tuning frequency.
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Figure 4. Experimental response at the selected attachment point.

On the basis of the experimental drive point frequency response at the
attachment point P for Ω ∈ [0, 1000] Hz (see figure 4), the frequency band-
width W and its central frequency ωtun are selected. Looking at the highest
peak, the choice is ωtun = 440 Hz, W = 140 Hz.

• b) Optimal frequency distribution.
With ωtun = 440 Hz, W = 140 Hz, ωmax, ωmin are determined, and they
completely define the optimal frequency distributions given by equation (55)
(see figure 5) and the related values ωtunh, Wh.

Figure 5. Optimal frequency distribution.
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Figure 6. Optimal length distribution within the set of beams of the device.

• c) Lengths distribution.
The length distribution (see figure 6) is determined on the basis of ωopt (χ) as

l (χ) = β1
√
h√

ωopt(χ)
4

√
E
12ρ , that yields minimum and maximum lengths of 30.7

and 35.6 mm, respectively. Considering that the device is made of symmet-
ric beams (see figure 6), the maximum dimension along the beams axes is
twice the maximum beam length, i.e. 71.2 mm, to which the clamped part of
width of the beams, 10 mm, should be added leading to a maximum dimen-
sion equal to 81.2 mm that satisfies the design constraint (max 90 mm).

• d) Number of beams.
The number N of the beams is to guarantee a return time large enough to
prevent energy comes back to the master. As it appears indeed form equa-
tion (56), once given the frequency bandwidth and the tuning frequency,
only the total mass of the cluster has an effect on Ceq , but not the number
of beams over which the mass is spread.
t∗ is the time the energy is stored within the beams. It is desired that

only a small fraction r of the initially trapped energy should be returned to
the master. If η is the hysteretic damping factor of a beam, roughly energy
decays as e−ηωt for a harmonic motion at frequency ω. Lower frequencies
have a slower decay, and the lowest decay is with the lowest frequency ωmin

within the cluster. Thus, we can ask the factor e−ηωmint
∗

be equal to r:

e−ηωmint
∗

= r =⇒ t∗ = − ln r

ηωmin

and from (54):
N = −f (ωtun) ln r

ηωmin
(58)
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that provides the order of magnitude for the number of beams to be included
within the cluster. Since f (ωtun) ≈ 500 rad/s, ωmin ≈ 2350 rad/s, η ≈ 0.03
and assuming r = 0.01, N ≈ 30.

• e) Width and gap.
The maximum allowed width of the device is D = 90 mm, g is the gap
between two adjacent beams, and b the width, then:

D = Nb+ (N − 1)g (59)

Since, as it appears from equation (56), it is convenient to increase the
mass of the cluster, i.e. b must be the largest, compatibly with equation
(59). This implies g must be the smallest. Actually, it depends on the
smallest thickness of the milling cutter disk that generates the gap between
the beams, in this case is g = 1 mm. Thus, form the previous equation
follows b = 2 mm.

• f) Maximization of the cluster mass (multiple layer).
The previous analysis completely defines the optimal cluster satisfying the
prescribed design requirements. However, since the maximum allowed height
of the whole device is up to 40 mm, a multiple layered structure can be
hosted, with the advantage of increasing the total mass of the cluster, as
suggested by equation (56). Thus, three equal sets of beams are in col-
umn, separated by two aluminum spacers with height 5mm that guarantee
each beam does not hit the upper or the lower beam when undergoing the
maximum accelerations at lift-off provided by the satellite builder.

The final mass MDEV of the complete assembled device (represented in
figure 7) is 130 g.

Figure 7. View of the build up device tuning frequency 440 Hz, total weight
130 g.
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Figure 8. Apparent damping coefficient vs frequency of the device theo-
retically determined with an infinite number of resonators

With the previous data, the theoretical equivalent damping is determined
through equation (52) and represented in figure 8.

Finally, the validation experiments are performed following the lines ex-
plained below.

As a first step, the best location for attachment point P is identified
(fig. 9). An electro-dynamic shaker excites the structure with a spectrum

Figure 9. Selection of the test “point P” on board at which the suppression
vibration device is applied.
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similar to that meet in operating conditions and the maximum displacement
point is identified as P. At the same time the drive point FRF at P is
determined and a peak frequency identified (see figure 4, frequency peak at
440 Hz) used for determining bandwidth and tuning frequency.

A first comparison is made between the theoretical Ceq (Ω) and the
experimentally identified apparent damping of the device. The FRF at
the device attachment point is determined and the experimental apparent
damping CEXP

eq (Ω) is identified by fitting the obtained response by using a
theoretical FRF of the form:

FRFTH (Ω) =
1

−Ω2MDEV + jΩCeq (Ω)

whereMDEV is known. The plot of CEXP
eq (Ω) is shown in figure 10, and the

comparison with figure 8 shows a good agreement. The smoothness of the
theoretical curve is because the developed theory uses an integral instead
of the discrete summation through the set, while the experimental peaks
corresponds to the separate resonance frequencies of the single beams of the
cluster.

The built-up device is then installed on the satellite plate. Comparison
of the new attenuated drive point FRF and the old one is shown in figure 12
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Figure 10. Experimental measurement of the apparent damping of the
device (tuning frequency 438 Hz).
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Figure 11. View of the final installation of the vibration suppression device
on board of UNISAT.

in the frequency band covered by the first mode of the cluster of beams. In
figure 13, the second modes of the device are indeed within the frequency
bandwidth 2200-3000 Hz. It appears how also in this higher frequency band
the damper effectively reduces the amplitude of vibration.

Frequency  (Hz)

FR
F

Figure 12. Comparison of the FRFs at “point P” with (black curve) and
without (circled curve) the vibration suppression device.
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Frequency  (Hz)
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Figure 13. Experimental evidence of the second modes effect on the sup-
pression of vibration.
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Abstract A general set of boundary conditions at the interface be-
tween dissimilar fluid-filled porous matrices is established starting
from an extended Hamilton-Rayleigh principle. These conditions
do include inertial effects. Once linearized, they encompass bound-
ary conditions relative to volume Darcy-Brinkman and to surface
Saffman-Beavers-Joseph-Deresiewicz dissipation effects.

1 Introduction

Many interesting mechanical phenomena occur in porous media when the
saturating fluid flows under the action of pressure and the solid matrix is
deformable. Modeling these phenomena represents an important challenge
for engineering sciences.

The aim of this paper is to use the principle of virtual work –when dissi-
pative and inertial effects cannot be neglected– for deducing a set of evolu-
tion equations and coherent boundary conditions valid at a fluid-permeable
interface between dissimilar fluid-filled porous matrices. The spirit of the
approach adopted here for modeling porous systems is very similar to the
one used to develop models for two fluid mixtures by Gavrilyuk et al.
(1997), Gavrilyuk et al. (1998), Gavrilyuk and Perepechko (1998), Gouin
and Gavrilyuk (1998), Gavrilyuk and Gouin (1999), Gouin (1990). It also
has some similarities with the treatment used to describe fluid saturated
porous media by Dormieux and Stolz (1992), Dormieux et al. (1991) and
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Coussy and Bourbie (1984). To frame the results presented here and to
compare them with those available in the literature it is necessary to de-
tail some of the features of the model we develop. Slightly modifying the
conceptual scheme used by e.g. Dormieux et al. (1991) we conceive a kine-
matical description which seems suitable to model porous systems which are
open with respect to the fluid constituent: i.e. systems in which the fluid
can freely leave or enter the porous solid matrix through which it flows.
Indeed, while we still use as a basic kinematical descriptor the solid matrix
macroscopic placement field χs we replace the fluid macroscopic placement
field χf with a macroscopic field φs defined in the homogenized macroscopic
solid reference configuration. The field φs maps any solid material particle
Xs into a precise particle Xf in the fluid reference configuration: it is the
fluid material particle which occupies, at the given instant, the same spatial
position as Xs. The adjective “macroscopic“ in the previous sentences is
intended to remind to the reader that the model which is used here does not
attempt to describe in a detailed way how the complex geometrical struc-
ture of the pores varies in the deformation process (see infra for a discussion
of this point). Obviously the placement field χf can be easily recovered as
it equals

(
χs ◦ φ−1

s

)
.

The introduced kinematical description is adapted to describe the evo-
lution of porous systems in which the solid matrix is open to fluid filtration
(as it happens in consolidation problems, see e.g. Mandel (1953), Cryer
(1963), Madeo (2008)). For such open systems, it is necessary to follow the
placement of a solid matrix when an unknown amount of fluid, taken from
a given reservoir and free to enter or leave the solid matrix, is saturating its
pores and flowing through its interconnection canals.

It has to be remarked explicitly that our approach is “purely macro-
scopic” and “variational”. The approach is purely “macroscopic” because
the kinematical descriptors for the solid matrix and saturating fluid can
be regarded as “averaged” placement fields obtained from corresponding
“microscopic” ones (see infra). Moreover, in the scheme we use, all “micro-
scopic” descriptors which may be relevant are assumed to be given by consti-
tutive equations depending on the two previously introduced basic “macro-
scopic” placements χs and φs. Here, differently to what done for instance
in Dormieux and Stolz (1992), we do not attempt to deduce any “macro-
scopic” constitutive equations from those valid at “microscopic” level. The
approach is “variational” because the evolution equations for the kinemati-
cal fields are deduced by paralleling the Hamilton-Rayleigh approach. The
variational approach has been successfully adapted to continuous systems
in different contexts: see e.g. Seliger and Witham (1968), Germain (1973),
Houlsbya, Puzrin (2002), Sonnet et al. (2004) for (dissipative or non-
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dissipative) Cauchy continua, Bedford and Drumheller (1979) for porous
media, Bedford and Drumheller (1978) for immiscible mixtures, Bedford
and Drumheller (1983) for structured mixtures and in Mobbs (1982) for
viscous fluids.

In this paper we construct an action functional accounting for all con-
servative phenomena occurring in the system and a Rayleigh dissipation
function (i.e. a dissipation given in terms of a quadratic pseudo-potential).
When formulating the principle of virtual work, we assume that the work
done by inertial and internal conservative forces can be expressed as the first
variation of the action functional and that the work done by dissipative ac-
tions can be expressed in terms of the Rayleigh dissipation function. The
action-based postulation scheme is well posed as the introduced kinemati-
cal fields χs and φs are both functions defined on the solid matrix reference
configuration. To be able to deal with systems in which surface solid ma-
terial discontinuities are present we allow χs and φs to present gradient
discontinuities concentrated on surfaces. In our analysis we generalize some
results found in Batra et al. (1986).

We recover the bulk evolution equations, already available in the litera-
ture, which are valid in the regularity points of the kinematical fields. We
obtain the boundary conditions valid at solid material discontinuity surfaces
which are open to fluid flow. These boundary conditions may be interpreted
as a “surface balance of force” and a “surface continuity of chemical poten-
tial”. An Eulerian form of the first of these conditions (including inertial
terms) has been obtained in Dormieux et al. (1991) where the principle of
virtual work was applied to multiphase systems.

Several authors (see e.g. Ochoa-Tapia and Whitaker (1995), Jager and
Mikelic (2000), Ochoa-Tapia (1995b), Hassanizadeh and Gray (1989)) for-
mulated different boundary conditions to be used at solid material inter-
faces separating porous media and pure fluid. The main part of their efforts
was directed to the justification and discussion of the boundary conditions
originally proposed by Beavers and Joseph (1967), and Saffman (1971) for
describing dissipation phenomena at the external interface of a porous sys-
tems. Some authors also focused on the deduction of such conditions by
means of a micro-macro identification method: see e.g. Buridge and Keller
(1981), Prat (1988), Chateau and Dormieux (1998), Marle (1982), Chan-
desris and Jamet (2006) , Chandesris and Jamet (2007), Ochoa-Tapia and
Withaker (1995) or Valdes-Paradaa et al. (2006) and references there cited.
On the other hand, in Deresiewicz (1963) a set of boundary conditions valid
at interfaces between dissimilar fluid-filled porous media are proposed which
assure uniqueness of the solution of field equations proposed by Biot (1956).

The boundary condition stating the “surface continuity of chemical po-
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tential” obtained in the present paper include an inertial term which, to
our knowledge, is not deduced in the literature. It generalizes the condi-
tion found e.g. in Baek and Srinivasa (2004) (the spirit of which is very
similar to the one adopted here). Several versions of “surface balance of
force” or “kinematical boundary conditions” can be found in Deresiewicz
(1963), Ciezko and Kubik (1998a-b), Debergue et al. (1999), Goyeau et
al. (2003), Haber and Mauri (1983), Kuznetsov (1997), Le Bars and Grae
Worster (2006), Levy and Sanchez-Palencia (1975), Rajagopal and Tao
(1995), Sharma (2008), Ochoa-Tapia and Whitaker (1998).

Our boundary conditions seem suitable to describe (macroscopically)
the behavior of solid material interfaces open to fluid flow. They are de-
duced without introducing any “small perturbation” assumption, so that
they seem suitable also when the assumptions of small deformations of the
solid matrix and linearized Stokes fluid flow cannot be accepted. However
our results are subject to all the limitations implicit in any Rayleigh-like
description of dissipative phenomena based on the introduction of a pseudo-
potential.

The newly found boundary conditions are effectively Galilean invari-
ant. To check this statement we revisited Reynolds Transport Theorem
and Hadamard Conditions to derive some kinematical formulas implicitly
used already by Gavrilyuk et al. (1997-1998). In these papers these for-
mulas were needed to show that some evolution equations and boundary
conditions assume the form of conservation laws.

We explicit warn the reader that: i) we decided to introduce an explicit
notation for distinguish fields defined on the solid-reference configuration
from those defined on the spatial or fluid-reference configuration, ii) we
found more convenient to deduce all kinematical formulas using a space-time
(Galilean) four-dimensional formalism, iii) we did separate all kinematical
deductions and properties from those which are more physical in nature.

Concerning point i) we start remarking that when studying one con-
stituent continua it is possible to proceed in presence of an abuse of notation
in which fields defined in different configurations (and therefore correspond-
ing to different mathematical functions) are denoted with the same symbol.
This does not seem careful enough when multicomponent continua are con-
sidered. Indeed such an abuse of notation is, in this case, even more risky
than usual, as one is dealing with models where it is necessary to introduce
many different placement fields and where discontinuity surfaces for at least
one of these fields may be present. In fluid-saturated porous media at least
three configurations, and therefore domains of definitions for all considered
fields, need to be considered. Therefore we use a notation which is more
precise than the usual one, as it allows us to specify clearly for every consid-
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ered tensor field in which spatial or material domain it is defined. Should
the reader be disturbed by the notation which we introduced he is invited
to recover the standard one simply ignoring all the circled superscripts.

Concerning point ii) we remark that it is simpler and more convenient
to consider (as done for instance by Gavrilyuk and Gouin (1999)) the
four-dimensional Galilean space-time as domain for all handled kinematical
fields. In this way: a) any moving bi-dimensional surfaces in the phys-
ical space becomes a fixed co-dimension one surface in four dimensional
space-time, b) piecewise regular spatial fields depending on time when re-
garded as fields with domain in four-dimensional space-time suffer discon-
tinuities across fixed surfaces, c) space and time differentiation, space gra-
dients and time derivatives, deformation gradients and velocities are dealt
with in a more compact and unified manner, d) Hadamard jump conditions
and Reynolds transport theorems assume a very simple form, e) as a con-
sequence, some useful –but involved– kinematical relationships are easily
seen to stem from elementary differential geometric ones. Indeed, the four-
dimensional Galilean space-time is the suitable setting to be used in order
to deduce from some well-known results in differential geometry many prop-
erties of piecewise differentiable tensor fields. Even if it seems possible to
consider weaker regularity conditions (see e.g. Savar and Tomarelli (1998))
we try to render the presentation the simplest possible still choosing the ad-
missible kinematical fields to be general enough to describe the phenomena
we have in mind.

Concerning point iii): in our deduction it was necessary to deal with
some important topics in differential geometry, concerning the mathemati-
cal properties of tensor fields which can be expressed as gradients of other
tensor fields. In the four-dimensional setting we have chosen, this is equiv-
alent to study kinematical properties of multicomponent continua. Some-
times this kinematical study is presented together with topics the nature
of which is more specifically mechanical, i.e. related to the postulation
scheme -based on phenomenological considerations- which is assumed in a
specific modeling situation. We have chosen to keep separate all kinematical
considerations. The abuse of notation mentioned at point i) is even more
misleading when kinematical assumptions for placement fields are mixted
with the phenomenological ones characterizing either the solid or the fluid
constituent behavior. The conjunction of all these confusing choices may
loose the reader in an indistinct list of properties the origin of which is
unclear.

Referring to de Boer (1996-2000-2005), Rajagopal and Tao (1995), Dormieux
et al. (2006) for an exhaustive and clear review of the development of porous
media theory we limit ourselves to recall the pioneering works of Fillunger
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(1936) (which were made available to the engineers community by Terzaghi
(1943) and Biot (1941)).

The stream of research efforts which were thus originated produced sev-
eral different families of mathematical models differing in the detail in which
they aim to describe the reference and current configurations of solid and
fluid constituents.

Indeed, the solid matrix, when displacing from its reference configura-
tion, occupies a different spatial region which delineates a different empty
pore region left to the fluid constituent. Such a region can have a very com-
plex time-variable shape: therefore the complete description of its evolution
is correspondingly very difficult. Depending on the detail which is required
in such a description one can introduce a macroscopic or a microscopic
model.

In the context of the theory of porous solids a “purely microscopic model”
is one in which the kinematical description allows for the complete charac-
terization of the shapes of all matrix internal pores and of fluid density
and velocity at any point inside these pores. In the present paper, instead,
we consider a mathematical model for the description of saturating-fluid
flow in a porous matrix (having enough interconnected pores so to allow
such flow) which is purely macroscopic in nature. In purely macroscopic
models the “internal” shape of the porous solid matrix, i.e. the shape of
its internal pores, is not described by any kinematical field and therefore
the solid matrix kinematical description is limited to the introduction of a
“homogenized” or “macroscopic” placement field χs. This field is defined
on a “homogenized” reference configuration for the solid matrix in which a
solid material particle represents a cluster of pores together with that part
of solid matrix which is delineating them (for a discussion of the mentioned
homogenization procedure see e.g. Marle (1982), De Buhan et al. (1998a-b),
Hornung (1997)). The placement of such a macroscopic particle represents
the spatial region occupied by the quoted cluster of pores: clearly the Eule-
rian mass density related to it is related to the solid mass effectively placed
in the given Eulerian volume. Thus an “apparent” solid mass density, dif-
fering from the mass density of the material constituting the solid matrix,
is associated to the introduced macroscopic solid placement field. Similarly
the description of the kinematics of the fluid constituent flowing through the
pores, delineated by the solid matrix, is obtained in a purely macroscopic
model by means of the “homogenized” placement function χf defined on
a “homogenized” fluid reference configuration. The velocity and apparent
mass density related to such a macroscopic placement field do not account
for the variations of the “microscopic” fluid velocity and mass density fields
which occur inside the pores. Recall that in the present paper we prefer to
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consider the field φs instead of χf : this is more convenient as φs is defined
in the same domain as χs.

One particular aspect of purely macroscopic models has been sometimes
regarded as their main conceptual weakness. It concerns the physical in-
terpretation which has to be associated to their basic kinematical descrip-
tors, i.e. the “homogenized” placement fields: indeed a “homogenized”
solid particle occupies, at a given instant, the same place as a “homoge-
nized” solid particle. Nevertheless this circumstance is not surprising if one
carefully considers the conceptual modeling assumptions underlying purely
macroscopic models. The intuitive interpretation we just came to give to
purely macroscopic theories for fluid saturated porous solids gains merit
once grounded from a mathematical point of view by the so called “Theory
of Homogenization” i.e. the mathematical theory aiming to rigorously de-
duce macroscopic models from microscopic ones Hornung (1997) with the
references there cited, Chateau and Dormieux (1995)).

The importance of the Theory of Homogenization cannot be denied.
However it is always possible and very useful to formulate “directly” a
macroscopic theory without being forced to deduce it from a “purely mi-
croscopic” one. Moreover up to now very few results are available about
the rigorous deduction of the macroscopic theory of Darcy flow through a
deformable porous medium.

Indeed, it is always possible (and often suitable) to develop a macro-
scopic model independently from any microscopic one. Recall that Cauchy
continuum mechanical models for one constituent bodies are formulated in
a “direct” way without any reference to “atomistic” or “molecular” mod-
els and that very few practical models are rigorously justified by means of
homogenization procedures. In general a mathematically coherent macro-
scopic model can be always formulated and supplies a useful guidance to the
deduction procedure which starts from microscopic models. These proce-
dures are often used to supply effective macroscopic constitutive equations
in terms of the relevant microscopic properties of considered systems Al-
laire (1989-1991), for deduction of rigorous results concerning Darcy flow
and to Pan and Horne (2001) Lee (2004), Kaasschieter and Frijns (2003)
and references there cited for those concerning deformable matrices).

One can call “microscopic models” those intermediate models in which
the macroscopic kinematical description is refined enough to describe in a
more or less detailed way the shapes of the spatial regions separately oc-
cupied by solid and fluid constituents and some aspects of the motion of
the material occupying these regions. The more detailed is the description
of the shape of the solid porous matrix, the more “microscopic” is the for-
mulated model. It is clear that different microscopic features of the pore
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shapes may be retained in the kinematical description : in some descrip-
tions one could decide to account only for the ratio of volumes of the regions
occupied respectively by solid and fluid constituents (thus introducing the
solid volume fraction kinematical field) or for the shape of the canals in-
terconnecting the pore (thus introducing a tortuosity tensor field) or for
some geometrical features of the pores (thus introducing, for instance, the
ratio between two characteristic lengths of the pore). Adding more and
more kinematical descriptors one can more and more precisely approximate
the purely microscopic theory. The choice of an “approximating” or “inter-
mediate” microscopic theory results from a compromise between the need
of a precise description of complex phenomena and the (computational or
analytical) difficulties encountered.

We conclude remarking that the aforementioned modeling efforts re-
spond to a strong demand from applications. Innumerable engineering prob-
lems require the design and the control of complex systems in which the flow
of a fluid occur in a region partially occupied by a deformable solid matrix,
the pores of which are interconnected.

Soil mechanics, geotechnical engineering and geology must supply the
theoretical tools for controlling consolidation and subsidence phenomena,
which are often influenced by related fluid filtration or flow phenomena
(see e.g. Mandel (1953), Terzaghi (1943)) or the phenomena involved in
earthquakes (see e.g. Yang (1999) or in the bradyseism and in the related
micro-earthquakes in the Phlegraean Fields - Campi Flegrei region (South
Italy) (see dell’Isola a et al (1998) and references there cited, Casertano et
al (1976), Orsi et al. (1999)).

In biomechanics some phenomena related to the flow of fluids in a de-
formable porous matrix are also of interest: bone tissues are porous and
several different fluids, with different properties, filtrate or flow through
those pores which are interconnected. Indeed it seems now evident that
bone tissue growth is regulated by a feed-back control system in which the
effect of tissue deformation on fluid flow plays a central role (see e.g. Cowin
(2001)).

Underground engineering (e.g. when designing or maintaining under-
ground cavities for stocking nuclear wastes or gas) also has to face relevant
problems involving phenomena of fluid filtration and flow in a porous ma-
trix coupled to cracks growth and related increase of pore volume fraction
and cracks interconnection (see e.g. dell’Isola et al. (2000), dell’Isola et al.
(2003) and references there quoted).



Shock Wave Generation in Porous Media 323

2 Properties of the Gradients of C2 Vector Fields

In this section the properties of smooth tensor fields which are the gradient
of some vector field are investigated.

It is usual practice in mathematical physics, when transporting tensor
fields by means of changes of variables, to use the same notation for the
different tensor fields. This leads to some difficulties which are overcome
when dealing with a one-constituent medium by introducing the adapted
notations of material and Eulerian space-time derivatives. Such abuse of
notation can be very misleading in the case of multi-constituents media
where several diffeomorphisms are present. This is why we introduce a
more precise notation which, although burdening, seems to be unavoidable
in this context.

Notation 1. Let Ba and Bb be two regular open subdomains of Rn, and let
XX be an homeomorphism from Ba onto Bb. Given two tensor fields tt and
zz defined on Ba and Bb respectively, we denote

tt©b := tt ◦ XX−1, zz©a := zz ◦ XX . (1)

It is trivial that
(
tt©b
)©a

= tt and
(
zz©a
)©b

= zz.

Notation 2. For any differentiable k-th order tensor field tt = tti1...ik we
denote by ∇∇ tt its gradient and, when k ≥ 1 and ik varies in {1, 2, ..., n}, by
DIV tt its divergence.

The components ofe these tensors are given by1

(∇∇ tt)i1i2...ik+1
:= ∂ik+1

(tti1i2...ik) ,

(DIV tt)i1i2...ik−1
:=

n∑
ik=1

∂ik (tti1i2...ik) .

Notation 3. In this section we assume that XX is a C2-diffeomorphism and,
in order to lighten notations, we simply denote F := ∇∇XX and J := detF.

Using the chain rule, it is easy to recognize that∇∇XX−1 =
(
F©b )−1

=
(
F−1

)©b
and so det

(
∇∇XX−1

)
=
(
J©b
)−1

=
(
J−1

)©b
.Moreover, if tt and zz are C1 tensor

1Here and from now on the symbol ∂j indicate the partial derivative of a function

with respect to the j-th component of its argument. Moreover in order to lighten

notations, we adopt the Einstein summation convention on repeated indexes dropping

the summation symbol.
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fields defined on Ba and Bb respectively:
2

∇∇zz©a = (∇∇zz)©a · F and ∇∇tt©b = (∇∇tt)©b ·
(
F−1

)©b
. (2)

Using these notations, the well-known change of variables formula read∫
Bb

zz dBb =

∫
Ba

zz©a J dBa, or∫
Ba

tt dBa =

∫
Bb

tt©b
(
J−1

)©b
dBb, (3)

where dBa and dBb denote the volume measures on Ba and Bb respectively
and will be omitted in the sequel as no confusion can arise.

Next Proposition gives a transport formula for the divergence operator
and states an important property for the gradient of a diffeomorphism.

Proposition 1. Let XX be a C2-diffeomorphism between the domains Ba

and Bb. For any differentiable tensor field zz (of order ≥ 1) defined on Bb

the following equation holds

DIV
(
J zz©a · F−T

)
= J (DIV zz )©a . (4)

In particular

DIV
(
JF−T

)
= 0. (5)

Proof. Let us consider a differentiable scalar field ψ with compact support
included in Ba. Owing to the regularity assumptions on XX , the correspond-
ing scalar field ψ©b on Bb has compact support and is differentiable on Bb.
A simple change of variables gives∫

Bb

ψ©b DIV zz =

∫
Ba

ψ (DIV zz )©a J. (6)

On the other hand, using the divergence theorem and recalling that ψ©b has
compact support ∫

Bb

ψ©b DIV zz = −
∫
Bb

zz .∇∇ψ©b. (7)

2Given two tensors T and S of order k and h the components of which are Ti1...ik

and Sj1...jh the tensor T · S is the (k + h) − 2 order tensor with components (T ·
S)i1...ik−1 j2...jh =

∑
mTi1...ik−1mSmj2...jh .
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Starting from Eq. (7), using successively formula (2) for ψ©b, a change of
variables, the divergence theorem and the fact that ψ has compact support
we get the following equalities∫

Bb

ψ©b DIV zz = −
∫
Bb

zz ·
(
∇∇ ψ · F−1

)©b
= −

∫
Ba

zz©a · F−T · ∇∇ψJ

=

∫
Ba

ψDIV
(
J zz©a · F−T

)
. (8)

The comparison between Eq. (6) and the last term of Eq.(8) gives∫
Ba

ψ (DIV zz )©a J =

∫
Ba

ψ DIV
(
J zz©a · F−T

)
.

The fact that this last equality is satisfied for any ψ with compact support
included in Ba proves (4). It is enough to apply (4) choosing for zz the
identity tensor to get (5).

Note that the previous proposition can be applied to XX−1 so that, for
any differentiable tensor field tt (of order ≥ 1) defined on Ba one gets

DIV
(
J−1 tt · FT

)©b
=
(
J−1DIV tt

)©b
and

DIV
(
J−1 FT

)©b
= 0. (9)

Let U be a C1 vector field defined in Bb and let U©a be its corresponding
vector field on Ba. Let Na and Nb be the outward unit normal vectors to
∂Ba and ∂Bb respectively, then∫

∂Bb

U · Nb =

∫
∂Ba

U©a ·
(
J F−T · Na

)
, (10)

Proof. Recalling Eq. (4), one gets∫
∂Bb

U · Nb =

∫
Bb

DIV (U) =

∫
Ba

(DIV (U))©a J

=

∫
Ba

DIV(JU©a · F−T ) =

∫
∂Ba

U©a ·
(
J F−T · Na

)
.
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Note that the last corollary applied to XX−1 reads∫
∂Ba

U©a · Na =

∫
∂Bb

U ·
((

J−1FT
)©b · Nb

)
.

3 Properties of the Gradients of Piecewise C1 Vector
Fields

In this section we define piecewise differentiable vector fields and investigate
the properties of their gradients.

Let Sa be a smooth codimension-one hyper-surface in Ba; this means
that, at least locally, there exists a parametric representation of Sa, i.e. an
open subset Ω of Rn−1 and a smooth embedding ϕ ∈ C1 (Ω,Ba ⊂ Rn) such
that Sa := ϕ (Ω). By definition of an embedding, for any x = ϕ (s) ∈ Sa
the vectors

Ti (x) := ∂iϕ|s=ϕ−1(x) , i = 1, 2, ..., n− 1

make a basis spanning the tangent space Tx (Sa) of Sa at x. The orthogonal
space to Tx (Sa) is one-dimensional: there exists a unique unit vector Na (x)
in this space which completes {Ti (x)} in a direct basis of Rn. This vector
Na locally provides an orientation for Sa and we call it the normal to Sa.

Notation 4. Let tt be a tensor field defined on Ba (and consequently on
Sa). We say that tt is differentiable on Sa if tt ◦ ϕ ∈ C1 (Ω). The surface
gradient ∇∇Satt (x) at point x is the linear operator which, to any tangent

vector T =
∑n−1

i=1 viTi, associates the derivative of tt in the direction T
defined by

∇∇Satt (x) · T :=

n−1∑
i=1

vi ∂i ( tt ◦ ϕ) .

Recall that, even if the basis Ti depends on the choice of the parametriza-
tion ϕ, the surface gradient (regarded as a linear operator) does not.

Notation 5. We say that a tensor field tt defined on Ba is piecewise contin-
uous (or briefly C0

pw) if there exists a smooth codimension-one C1 hypersur-
face Sa in Ba such that tt belongs to C0 (Ba�Sa,Rp) and admits continuous
traces tt+ and tt− on both sides of Sa. The quantity

[|tt (x)|] := tt+ (x)− tt− (x)

is called jump of tt through the surface Sa at point x. Moreover, the surface
Sa is said to be the singularity surface of the field tt. When tt has vanishing



Shock Wave Generation in Porous Media 327

jump across the singularity surface, we simply indicate by tt the common
value tt+ = tt−.

Indeed, at least locally, the normal Na to Sa defines the “upper” part B+
a

of Ba toward which the normal is pointing and the “lower” part B−
a of Ba

in the opposite direction. Then, for any x ∈ Sa

tt+ (x) = lim
y → x

tt (y) , y ∈ B+
a ; tt− (x) = lim

y → x
tt (y) , y ∈ B−

a .

Notation 6. We say that a tensor field tt defined on Ba is piecewise dif-
ferentiable (or briefly C1

pw) if it is continuous and if its gradient ∇∇tt is
C0
pw.

Property 1. The well-known Hadamard property (see e.g. Kosinski (1986))
states that the jump of the gradient of a C1

pw tensor field tt is a rank-one
matrix field in the form

[|∇∇tt |] = [|∇∇tt |] · Na ⊗ Na =
(
(∇tt)+ · Na − (∇tt)− · Na

)
⊗ Na

=

[∣∣∣∣ ∂tt∂Na

∣∣∣∣]⊗ Na (11)

In other words, for any T ∈ Tx (Sa)

[|∇∇tt (x) · T |] = 0. (12)

This property simply reflects the fact that tt, when restricted to Sa,
reduces to a differentiable field and

∇∇Sa tt · T = (∇∇tt )+ · T = (∇∇tt )− · T (13)

The following proposition states some important consequences of Prop-
erty 1.

Let Ba,Bb be two regular open subsets of Rn respectively, and let XX ∈
C1
pw (Ba,Bb) with singularity surface Sa ⊂ Ba. Assume that J �= 0 every-

where on Sa, then

(i) For any T tangent to Sa, [|F · T|] = 0 on Sa.

(ii) The surface Sb := XX (Sa) is a smooth codimension-one C1 surface in Bb

with tangent vectors (F · Ti)
©b
, i ∈ {1, 2, ..., n− 1}.

(iii) For any normal vector field Mb to Sb, the following jump condition
holds on Sa [∣∣J−1FT

∣∣] ·M©a
b = 0, (14)

(iv) Moreover, the quantity J−1FT ·M©a
b which is continuous through the

surface is orthogonal to Sa.
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Proof. Point (i) is an immediate consequence of (12) if we recall that F
denotes ∇∇XX . To prove point (ii) we note that, as XX is C1

pw, its restriction to
Sa is differentiable and so is ξ := XX ◦ ϕ which makes a parametrization for
Sb := XX (Sa). Moreover, for any y = ξ (s) ∈ Sb and for any i = 1, 2, ..., n−1,
the vectors

∂iξ|s=ξ−1(y) = F±∣∣
XX−1(y)

· ∂iϕ|ϕ−1(XX−1(y)) =
(
F± · Ti

)©b
= (F · Ti)

©b

make a basis spanning the tangent space Ty (Sb) of Sb at y.
To prove points (iii) and (iv) we consider, at any point x of Sa, the three

linear applications La and L±
b respectively defined on Rn by

La (U) := det (T1,T2, ...,Tn−1,U) , (15)

L±
b (V) := det

((
F± · T1

)©b
,
(
F± · T2

)©b
, ...,

(
F± · Tn−1

)©b
,V
)
. (16)

Owing to point (ii) one easily gets L+
b (V) = L−

b (V). In virtue of the Rietz

theorem there exist unique vectors M̃a and M̃b such that

La (U) = M̃a · U, ∀U ∈ Rn, Lb (V) = M̃b · V ∀V ∈ Rn. (17)

Hence
M̃a · U = det (T1,T2, ...,Tn−1,U) , (18)

and

M̃b ·
(
F± · U

)©b
= det

((
F± · T1

)©b
,
(
F± · T2

)©b
, ...,

(
F± · Tn−1

)©b
,
(
F± · U

)©b)
=
(
J±
)©b
det

(
(T1)

©b
, (T2)

©b
, ..., (Tn−1)

©b
,U©b

)
. (19)

From (18) and (19) we get

M̃©a
b ·
(
F± · U

)
= J± det (T1,T2, ...,Tn−1,U)

and so
M̃©a

b ·
(
F± · U

)
= J± M̃a · U

Since this last identity is satisfied for any U ∈ Rn then

M̃a =
(
J+
)−1 (

F+
)T · M̃©a

b =
(
J−
)−1 (

F−)T · M̃©a
b , (20)

thus [∣∣J−1FT
∣∣] · M̃©a

b = 0. (21)
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From (18), (19) we also get that for any i ∈ {1, 2, ..., n− 1},

M̃a · Ti = 0, and M̃b ·
(
F± · Ti

)©b
= 0.

Hence, M̃a and M̃b belong to the one dimensional orthogonal spaces to Sa
and Sb respectively. As they clearly are non vanishing, Eq. (14) remains
valid for any Mb normal to Sb.

We call piecewise diffeomorphism a C1
pw homeomorphism XX from Ba

onto Bb such that XX−1 ∈ C1
pw (Bb,Ba).

Note that if XX is a piecewise diffeomorphism with singularity surface Sa
then the previous proposition can be applied to both XX and XX−1. Thus we
also have, for any Ma ⊥ Sa the following jump condition on Sb = XX (Sa)[∣∣∣∣(JF−T

)©b ∣∣∣∣] ·M©b
a = 0, (22)

and the quantity
(
JF−T ·Ma

)©b
is orthogonal to Sb . If tt is a differentiable

tensor field defined on Ba then its corresponding tensor field tt©b on Bb may
be not differentiable on Sb. However, tt©b is C1

pw and on Sb we have

(
∇∇tt©b

)+
=
(
∇∇tt ·

(
F+
)−1

)©b
;
(
∇∇tt©b

)−
=
(
∇∇tt ·

(
F−)−1

)©b
. (23)

4 Bulk Kinematical Identities and Hadamard
Conditions at Moving Boundaries

Let χ : Ba := Ba × (0, T ) → R3 be the placement map of a three dimen-
sional continuum; the fixed domain Ba ⊂ R3 is usually referred to as the
reference configuration and the moving volume Bb(t) := χ(Ba, t) as the
current configuration. We assume that, at any instant t, χ(., t) is a C1

pw

diffeomorphism.
From now on, we denote F := ∇χ and v := ∂χ/∂t, the usual 3D space

gradient of the map χ in the domain Ba and the usual velocity field in Ba.
The singularity surface Sa(t) is a moving surface which can be parametrized,

at least locally, by a function ϕ : (Ω× (0, T )) → Ba where Ω is an open
subset of R2.
It is well known that, as only the global position of the set Sa(t) is relevant,
the physical quantities attached to Sa(t) should not depend on the choice
of its parametrization.
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From now on, we assume that χ is C1
pw on the space-time domain Ba

and thus that the function ϕ is C1. Therefore it is possible to introduce,
for any point x (t) = ϕ (s, t) ∈ Sa(t), the vectors

τi (x (t)) := ∂iϕ|ϕ−1(x(t),t) , i = 1, 2

which span a basis for the tangent plane to Sa (t) and the unit vector
Na (x (t)) orthogonal to the tangent plane to Sa which completes {τi} in
a direct basis of R3. For any x, we introduce the “velocity of the surface
Sa(t)” as:

w (x (t)) :=
∂ϕ

∂t

∣∣∣∣
ϕ−1(x(t),t)

.

It is well known, (see e.g.Kosinski (1986)), that even if this velocity depends
on the choice of the parametrization ϕ, its normal part ca := w ·Na, com-
monly called the celerity of the surface, does not. Analogously we introduce
Nb and cb the normal and celerity of Sb = χ(Sa) .

In this section we show that kinematical conditions which are usually
derived in different (and sometimes intricate) ways are simple consequences
of Hadamard’s property. We emphasize that they are purely kinematical
constraints and that neither physical assumptions nor balance principles
should be used, as it is sometimes done, to derive them.

Proposition 2. For any tensor fields f and f defined on Bb (f of order
k ≥ 1), we have at any regular point of χ:

div
(
J f ©a · F−T

)
= J(div f)©a and

∂
(
J f ©a)
∂t

− div
(
Jf ©a ⊗ F−1 · v

)
= J

(
∂f

∂t

)©a
, (24)

and in particular,

div
(
JF−T

)
= 0,

∂J

∂t
= div

(
JF−1 · v

)
, (25)

(div f)©a = ∇f©a : F−1,

(
∂f

∂t

)©a
=

∂f©a

∂t
−∇f©a · F−1 · v. (26)

Moreover,at any point of the singularity surface Sa:

[|F|] · τ1 = 0, [|F|] · τ2 = 0, [|F|] · caNa + [|v|] = 0, (27)[∣∣∣J−1FT ·N©a
b

∣∣∣] = 0,
[∣∣∣J−1

(
v · N©a

b − c©ab
)∣∣∣] = 0 (28)
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and
[|v |]⊗

(
J−1FT · N©a

b

)
+ J−1

(
c©ab − v · N©a

b

)
[|F |] = 0. (29)

Finally, the normals and celerities of Sa and Sb are related by

Nb =

(
JF−T ·Na

)©b∥∥∥(JF−T ·Na)
©b
∥∥∥ and cb =

(
Jca + J

(
F−1 · v

)
·Na

)©b∥∥∥(JF−T ·Na)
©b
∥∥∥ . (30)

Notice that considering XX−1 instead of XX gives equations symmetrical
to (24)-(30)

Proof. To prove this proposition, let us extend χ in order to consider it
as a fourth-dimensional piecewise diffeomorphism. We consider the C1

pw-
diffeomorphism XX defined on Ba := Ba × (0, T ) by XX (a, t) := (χ(a, t), t)
and let us denote by Bb its image. The map XX resumes all needed in-
formation about the motion of the considered continuum. In particular,
Bb := ∪t∈(0,T )Bb (t)× {t}. The singularity surface Sa of XX is related to the
motion of the singularity surface Sa(t) by Sa := ∪t∈(0,T )Sa (t)× {t}.
Notation 7. If ff is a tensor field of order k ≥ 1 the components of which
are ffi1,i2,...,ik , with ik ∈ {1, 2, 3, 4}, we decompose ff writing ff = (f , f).
Here f and f are the tensors of order k and k − 1 defined by

fi1i2...ik−1 j = ffi1i2...ik−1 j , j = 1, 2, 3, fi1,i2,...,ik−1
= ffi1i2...ik−1 4.

Using this decomposition for ff and U we write

ff · U = f · u+ fu. (31)

Notation 8. The 4D space-time gradient and divergence of a tensor ff
defined in the space-time are related to its 3D gradient and time derivative
by

∇∇ff = (∇ff, ∂ff/∂t) and DIVff = div f + ∂f/∂t. (32)

In particular, if ff is a vector field, the 4 × 4 matrix ∇∇ff admits the block
decomposition3:

∇∇ff =

(
∇f (∂f/∂t)

T

∇f ∂f/∂t

)
. (33)

Applying this block decomposition to the gradient of XX gives

F := ∇∇ XX =

(
F v
0 1

)
, (34)

3When defining matrices, we identify any vector with the corresponding row matrix.
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and we can remark that J := detF coincides with J := detF.

Applying the chain rule to the identity χ−1 ◦ χ = Id we get ∂χ−1/∂t =
−F−1 · v and consequently

F−1 =

(
F−1 (−F−1 · v)T
0 1

)
, F−T =

(
F−T 0

−F−1 · v 1

)
. (35)

Let ff = (f , f) be of order k ≥ 1. Equation (4) reads

div
(
J f ©a · F−T − Jf ©a ⊗ F−1 · v

)
+
∂
(
J f ©a)
∂t

= J

(
div f +

∂f

∂t

)©a
(36)

which implies (24). Similarly, Eq. (5) becomes (25). It is then easy to prove
that using (25) in (24) gives (26). We notice that equations (26) encompass
the classical relationships between material and Eulerian derivatives.

The singularity surface Sa admits the parametrization Φ defined by
Φ (s, t) = (ϕ (s, t) , t) on the set Ω × (0, T ). A 4D vector (m,m) is or-
thogonal to Sa if it is orthogonal to the three tangent vectors ∂1Φ = (τ1, 0),
∂2Φ = (τ2, 0) and ∂Φ/∂t = (w, 1); that is if

τ1 ·m = 0, τ2 ·m = 0, w ·m+m = 0. (37)

From the two first equalities we deduce thatm is proportional to the normal
Na to Sa. Hence the vectors orthogonal to Sa are those proportional to
Ma = (Na,−ca).

Noticing that the three vectors

T1 = (τ1, 0) , T2 = (τ2, 0) , T3 = (caNa, 1) (38)

span the tangent hyper-plane to Sa and applying point (i) of Proposition 3
to these vectors gives (27).

We notice that Mb := (Nb,−cb) is orthogonal to Sb so that point (iii) of
Proposition 3

[∣∣J−1FT
∣∣] ·M©a

b =
[∣∣∣(J−1FT ·N©a

b , J−1(v ·N©a
b − c©ab )

)∣∣∣] = 0, (39)

which implies (28).
Point (iv) of Proposition 3 states that
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J−1FT ·M©a
b =

(
J−1FT ·N©a

b , J−1(v ·N©a
b − c©ab )

)
is orthogonal to Sa and

so co-linear to (Na , −ca). This implies

Na =
J−1FT ·N©a

b∥∥∥J−1FT ·N©a
b

∥∥∥ and ca =
J−1

(
c©ab − v ·N©a

b

)
∥∥∥J−1FT ·N©a

b

∥∥∥ . (40)

Equations (30) are the symmetrical relationships obtained by considering
XX−1.

Finally let us apply the rank-one property (11) for the jump of the
gradient of the map XX . It states the existence of a 4D vector U = (u , u),
such that

[|F|] =
(
[|F|]

[∣∣vT ∣∣]
0 0

)
= U⊗Ma,

the space-time decomposition of which gives

[|F|] = u⊗Na and [|v|] = −u ca.

Eliminating u gives the following jump condition on Sa(t):

ca [|F|] = − [|v|]⊗Na. (41)

Replacing in this equation Na and ca by formulas (40) gives (29).

5 Balance Equations and Corresponding Jump
Conditions in the Space-Time

Any balance equation for a quantity f on Bb is of the type div f+∂f/∂t = r,
where f is the corresponding flux and r is a source term. This equation is
written in the time-space (see Eq. (32)), introducing the 4D field defined
on Bb by ff = (f , f), in the simple form

DIV ff = r, (42)

Owing to proposition 1 this balance equation is easily transported on Ba

in the form DIV
(
J ff©a · F−T

)
= Jr©a which reads

div
(
J f©a · F−T − Jf©a ⊗ F−1 · v

)
+
∂
(
J f ©a)
∂t

= Jr©a. (43)

The jump condition on Sb associated to this balance equation is easily
recovered by considering equation (42) in the sense of distributions. If we do
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not consider any surface source term, this jump condition reads [|ff ·Mb|] = 0
which, recalling that Mb = (Nb,−cb), reduces to the more usual equation

[|f ·Nb − fcb|] = 0. (44)

This jump condition is easily transported on Sa: it takes the form[∣∣∣f©a ·N©a
b − f©a c©ab

∣∣∣] = 0 which recalling (30) also reads

[∣∣Jf©a · (F−T ·Na

)
− Jf©a ⊗

(
F−1 · v

)
·Na − Jcaf

©a∣∣] = 0. (45)

6 Porous Medium with a Solid-Material Surface
Singularity

6.1 Kinematics

As we intend to give a macroscopic description of a porous medium, we
consider a continuum made by the superposition of two continuous phases:
a fluid one and a solid one.

Let us introduce the domains Bs ⊂ R3 and Bf ⊂ R3 (usually referred
to as the Lagrangian configurations of the two constituents) and the maps

χs : Bs := Bs × (0, T )→ R3, and χf : Bf := Bf × (0, T )→ R3

which represent the placement of the solid and fluid constituents. The
motion of the fluid inside the solid matrix is described by the function
φs : Bs → Bf which, at any time t, associates to each solid particle Xs that
particular fluid material particle Xf = φs (Xs, t) occupying the same phys-
ical position as Xs. The three introduced maps are related by χs = χf ◦φs.
We can assume, extending Bs and φs if necessary, that φs is an homeomor-
phism from Bs to Bf . This extension and the resulting extension of χs have
no physical sense, but make easier the description of open porous media. It
will be mandatory to check that our final equations do not depend on the
choice of this extension. Therefore χs (Bs, t) = χf (Bf , t) and we denote
Be (t) this time-varying 3D domain referred to as the Eulerian configura-
tion. In the sequel, in order to apply our previous results, we assume that
the 4D-counterparts of χs, χf and φs are piecewise C

1-diffeomorphisms.
We still adopt the superscript notation ©s (respectively ©f and ©e ) to

denote the transport of a tensor field from the configuration where it is
defined to Bs (resp. Bf , Be). For instance, if a tensor t is defined on
Bf , then t©s := t ◦ φs, while if it is an Eulerian field defined on Be, then
t©s := t ◦ χs.
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We denote the space gradient of the three placements by

Fs := ∇χs, Ff := ∇χf , Gs := ∇φs, (46)

and its determinant by

Js := detFs, Jf := detFf , Is := detGs

It is immediate to check, that the chain rule gives Fs = F©s
f ·Gs and Js =

J©s
f Is.
We define now the classical Lagrangian velocity fields vs and vf , asso-

ciated to the motion of the solid and of the fluid constituent, on Bs and Bf

and, on Bs, the time derivative us of the map φs, which is not a velocity in
the classical sense, but plays a central role in further calculations:

vs :=
∂χs
∂t

, vf :=
∂χf
∂t

, us :=
∂φs
∂t

. (47)

By the chain rule we get

0 =
∂

∂t

(
φs
(
φ−1
s (Xf , t) , t

))
= G©f

s ·
∂φ−1

s

∂t
+ u©f

s · (48)

This relationship allows us to link vs, vf and us:

vf =
∂χf
∂t

=
∂

∂t

(
χs
(
φ−1
s (Xf , t) , t

))
= F©f

s ·
∂φ−1

s

∂t
+ v©f

s

= −F©f
s · (G©f

s )
−1 · u©f

s + v©f
s . (49)

Transporting this relationship on Bs gives

v©s
f = vs − Fs .G

−1
s .us. (50)

Let us define the acceleration fields γs, γf and as as the time derivatives
of vs, vf and us respectively. Using Eq. (26) for the diffeomorphism φs, it
is straightforward that

∂

∂t
v©s
f = γ©sf +∇v©s

f ·G−1
s · us (51)

Finally, since it is needed for further calculations, we compute the time
derivative of the tensor Fs ·G−1

s ; using (26) for the map φs it is straight-
forward to recover that

∂

∂t

(
Fs ·G−1

s

)
=

∂

∂t
F©s
f = ∇F©s

f ·G−1
s · us + (∇vf )©s

= ∇
(
Fs ·G−1

s

)
·G−1

s · us +∇v©s
f ·G−1

s . (52)
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In the sequel we focus on a surface Ss (t) which may be a surface of
singularity for χs and/or φs and on the image surfaces Sf (t) = φs (Ss (t) , t)
and Se (t) = χs (Ss (t) , t) = χf (Sf (t) , t) which are moving surfaces in Bf

and Be (t). We apply to these surfaces the notations and formulas stated in
the previous sections. In particular, we introduce the celerities cs, cf and
ce of Ss (t), Sf (t) and Se (t) respectively.

Actually, in this paper we only consider the case in which the surface Ss
is a solid-material surface discontinuity which means that it does not depend
on time. From now on we assume that Ss is parametrized by a function ϕ
which does not depend on time. Consequently, the celerity cs of the surface
Ss is vanishing. This particular case of solid-material surface has many
applications. It models all those phenomena in which Ss divides the solid
skeleton in two parts with different mechanical properties (e.g. different
porosities, rigidities, etc.) It also models, as a limit case, the boundary of a
fluid-filled porous matrix in contact with a pure fluid.

The hypothesis that the surface is solid-material (cs = 0), applying (41)
to both χs and φs, implies

[|vs|] = 0 and [|us|] = 0 on Ss. (53)

We underline that these equations do not imply [|vf |] = 0.

We finally remark that if (v©e
s − v©e

f ) ·Ne = 0, or equivalently by (50)

and (30) us ·N©s
f = 0, then from (27)[∣∣∣F©s

f · us

∣∣∣] = [∣∣∣vs − v©s
f

∣∣∣] = 0. (54)

6.2 Balance of Masses

The massesMs(B) andMf (B) of solid skeleton and fluid contained in
a part B ⊂ Be of the physical space at time t are represented by means of
two Eulerian densities ρs and ρf respectively in the form

Ms (B) =

∫
B

ρs, Mf (B) =

∫
B

ρf .

These densities are usually called “apparent densities” and they do not
coincide with the mass densities of the materials which constitute the solid
skeleton or the fluid. Simple changes of variables give

Ms (B) =

∫
χ−1
s (B)

ρ©ss Js and

Mf (B) =

∫
χ−1
s (B)

ρ©sf Js =
∫
χ−1
f (B)

ρ©ff Jf , .
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which leads us to introduce the “solid-Lagrangian apparent densities” ηs,
mf for the solid and the fluid constituent defined on Bs by ηs := Jsρ

©s
s ,

mf := Jsρ
©s
f and the “fluid-Lagrangian apparent density” ηf of the fluid

constituent on Bf by ηf := Jfρ
©f
f . The densities mf and ηf are related by

mf = Is η
©s
f .

As we do not intend to model melting, dissolution or erosion phenomena,
we assume conservation of mass for each constituent. Mass conservation for
the solid skeleton and the fluid take the form of the balance laws

∂

∂t
ηs = 0, and

∂

∂t
ηf = 0. (55)

which are of the type studied in section 5. The results of section 5 give
the associated jump conditions [|ηs|] cs = 0 and [|ηf |] cf = 0 on Ss and
Sf respectively. As cs = 0 the first equation is trivially satisfied. So is
is the second one if one assumes (which, as it is well known, can be done
for a fluid without loss of generality) that ηf is constant in space and time.
However, the pull-back on Bs of the fluid balance and jump equations, using
the transport formulas (43) and (45) together with equation (50) gives the
non-trivial equations

ṁf + divD = 0 on Bs, (56)

[|D|] ·Ns = 0 on Ss,

where D := −mfG
−1
s · us and ṁf := ∂mf/∂t. The vector D is interpreted

as the mass fluid flux through the porous medium in the Lagrangian con-
figuration of the skeleton. The quantity D ·Ns, which is well defined at the
interface Ss, is the flux (per unit area of Ss) of fluid flowing through the
interface. We introduce

d :=

(
D ·Ns

‖JsFs ·Ns‖

)©e
= ρf (v

©e
f − v©e

s ) ·Ne

= η©ef ‖(J−1
f FT

f )
©e ·Ne‖(Nf · us)

©e (57)

which is well defined at the interface Se and corresponds to the flux (per
unit area of Se) of fluid flowing through the interface.
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7 Evolution Equations and Associated Jump
Conditions in Presence of Dissipation

7.1 Action and Rayleigh Functionals

Recall that the kinematics of the considered porous medium is described
by means of the fields χs and φs defined on Bs.

We introduce the kinetic energy

1

2

∫
Be

(
ρs(v

©e
s )

2 + ρf (v
©e
f )

2
)
=

∫
Bs

Λ
(
ηs,mf ,vs,v

©s
f

)
where Λ

(
ηs,mf ,vs,v

©s
f

)
= 1/2

(
ηs (vs )

2
+mf (v

©s
f )

2
)
is the solid-Lagrangian

pull-back of the kinetic energy density.
We now assume that the potential energy of the porous medium is char-

acterized by a local density Ψ on Bs which depends on the kinematic
descriptors χs and φs through the placement χs, the strain tensor ε :=
1/2(FT

s · Fs − I) and the quantity of fluid contained in the porous medium
mf = Is ηf . For instance Ψ can be the sum of a non-homogeneous deforma-
tion energy potential Ψi(ε,mf ,Xs) and a potential accounting for external
body forces Ψg = (ηs +mf )Ep(χs (Xs)). As we do not intend to model
surface tension phenomena, we do not consider any concentration of energy
on the singularity surface Ss. Neither do we consider any dependence of Ψ
on higher gradients of the kinematical fields as done for instance in Sciarra
et al. (2008).
Setting Bs := Bs × (0, T ), we define the action functional A for the porous
system as

A :=

∫
Bs

(Λ−Ψ) . (58)

It is well known that, in absence of dissipation, imposing the stationar-
ity of the action implies that the kinematic descriptors satisfy the virtual
power principle i.e. a weak form of the balance of momentum. As we want
to account for dissipation phenomena, we introduce a generalized Rayleigh
dissipation pseudo-potentialR on the Eulerian configuration. In linear ther-
modynamics the dissipation 2R is a quadratic form of the velocity fields

2R =

∫
Be\Se

D
(
v©e
s − v©e

f ,∇
(
v©e
s

)
,∇(v©e

f )
)

+

∫
Se

DS

(
(v©e

s )
−, (v©e

s )
+, (v©e

f )
−, (v©e

f )
+
)

(59)

where the volume density D is a positive quadratic form, the surface density
DS is a Galilean invariant quadratic form (the coefficients of these two forms
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may also depend on all the static parameters). In the sequel, we limit
ourselves to the case

D = (v©e
s − v©e

f ) ·K · (v©e
s − v©e

f ) +∇
(
v©e
s − v©e

f

)
: B : ∇

(
v©e
s − v©e

f

)
+∇v©e

f :M : ∇v©e
f (60)

DS =
[∣∣∣v©e

f

∣∣∣] · S · [∣∣∣v©e
f

∣∣∣] (61)

where K and S are second order symmetric, positive tensors, M and
B are symmetric positive fourth order tensors, the symbol : stands for the
double contraction product. The tensor K accounts for the Darcy dissipa-
tion; its inverse (if invertible) is called the Darcy permeability tensor. The
tensor B accounts for Brinkman dissipation. Classical fluid viscous effects
are described by M, while S describes friction effects at the interface. We
already noticed that, as the extension of χs is arbitrary in a pure fluid re-
gion, the model should not depend on vs in this region. Hence, K and B
have to vanish in any pure fluid region.

We introduce respectively, the Darcy friction force κ, the Brinkman
stress tensor Π, the fluid viscous stress tensor Πf and the friction surface
force σ as

κ := K · (v©e
s − v©e

f ), Π := B : ∇
(
v©e
s − v©e

f

)
, (62)

Πf :=M : ∇v©e
f , σ := S ·

[∣∣∣v©e
f

∣∣∣] . (63)

This Rayleigh dissipation is pulled back on Bs by simply changing the
variables

2R =

∫
Bs\Ss

JsD©s +
∫
Ss

D©s
S

∥∥JsF−T
s ·Ns

∥∥ . (64)

In the application of this formula, the change of variables in DS and in the
first term of D is straightforward. The terms involving gradients in D need
to be transported according to formula (2).

7.2 Equations of Motion

Let us denote by q := (χs, φs) the kinematic descriptor of the medium
(a field defined on Bs). Hence the action A is a functional of q. Moreover,
let us denote by qt, q̇t the fields defined at any instant t on Bs by qt(Xs) :=
q(Xs, t) and q̇t(Xs) := ∂q/∂t(Xs, t). The Rayleigh potential R is at each
instant t a functional of (qt, q̇t).
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The physical principle which determines the motion of a system can
be alternatively stated in the framework of second Newton’s law (balance
of momentum), of D’Alembert principle (weak formulation of momentum
balance) or of Rayleigh-Hamilton principle. We adopt this last approach
which reads

∂A
∂q

· δq =
∫ T

0

(
∂R
∂q̇t

| δqt
)
dt. (65)

Here, ∂A/∂q and ∂R/∂q̇t must be understood in the sense of Frechet dif-
ferentials. Considering δq = (δχs, δφs) with compact support included in
Bs, we get after a long but straightforward calculation (cfr. Appendix B):

δA :=
∂A
∂q

· δq

=

∫
Bs\Ss

[
−
(
ηsγs +mfγ

©s
f

)
+ div

(
Fs ·

∂Ψ

∂ε

)
− ∂Ψ

∂χs

]
· δχs+∫

Bs\Ss

[
G−T

s ·mf

(
FT
s · γ©sf +∇

(
∂Ψ

∂mf

))]
· δφs (66)

+

∫
Ss

([∣∣∣∣v©s
f ⊗D− Fs ·

∂Ψ

∂ε

∣∣∣∣] ·Ns

)
· δχs

+

∫
Ss

([∣∣∣∣G−T
s ·

(
mf

(
1

2

(
v©s
f

)2
− ∂Ψ

∂mf

)
I

− FT
s · v©s

f ⊗D ·Ns · δφs.

On the other hand, computation of the right hand side of (65), reads
(cfr. Appendix C for details)∫

Bs\Ss
− div

(
JsΠ

©s
f · F−T

s

)
· δχs +

∫
Ss

[∣∣∣JsΠ©s
f · F−T

s ·Ns

∣∣∣]·δχs+∫
Bs\Ss
G−T

s · FT
s ·
(
Jsκ

©s − div
(
Js(Π

©s −Π©s
f )

T · F−T
s

))
· δφs (67)

+

∫
Ss

[∣∣∣JsG−T
s ·FT

s ·
((
(Π©s −Π©s

f )
T
)
·F−T

s ·Ns

−
∥∥JsF−T

s ·Ns

∥∥σ©s ·δφs.

Considering arbitrary test functions δχs and δφf with compact support
included in Bs\Ss the variational principle (65) implies the following system
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of equations valid in Bs \ Ss

−
(
ηsγs +mfγ

©s
f

)
+ div

(
Fs ·

∂Ψ

∂ε

)
− ∂Ψ

∂χs

= − div
(
JsΠ

©s
f · F−T

s

)
,

(68)

mf

(
FT
s · γ©sf +∇

(
∂Ψ

∂mf

))
= FT

s ·
(
Jsκ

©s − div
(
Js(Π

©s −Π©s
f )

T · F−T
s

))
.

Then, considering test functions with compact support which intersects
Ss, we get the jump conditions valid on Ss:[∣∣∣∣v©s

f ⊗D− Fs ·
∂Ψ

∂ε

∣∣∣∣] ·Ns =
[∣∣∣JsΠ©s

f · F−T
s

∣∣∣] ·Ns, (69)[∣∣∣∣G−T
s ·

(
mf

(
1

2

(
v©s
f

)2
− ∂Ψ

∂mf

)
I− FT

s · v©s
f ⊗D

)∣∣∣∣] ·Ns (70)

=
[∣∣∣G−T

s ·FT
s ·
(
Js

(
(Π©s −Π©s

f )
T
)
·F−T

s ·Ns

−
∥∥JsF−T

s ·Ns

∥∥σ©s .

We remark that equations (68) and (69) encompass the well known La-
grangian balance equation for the total stress and the corresponding jump
condition; these equations only involve physical quantities. As for equations
(70), they are not available in the literature. It is not obvious that in their
present form they are Galilean invariant, that they do not depend on the
choice of the reference configuration of the fluid and that, when considering
pure fluid regions, they do not depend on the extension of χs in this region.

7.3 Galilean Invariance

In this section we check that the set of evolution equations (68), together
with the associated jump conditions (69), (70), respect Galilean invariance.
In order to do so we just rewrite them in a new Galilean reference frame
which moves with a constant velocity v0 with respect to the original one and
we check that the system of equations do not change. We start by noticing
that the dissipative terms appearing on the right hand sides of (68)-(70) are
Galilean invariant since they only involve relative velocities or gradients of
velocities.

As for the equations of motion (68) they are Galilean invariant since

the accelerations γs and γ©sf do not change when changing the Galilean
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reference frame, as the relative velocity v0 is constant with respect to time.
The invariance of the jump condition (69) is immediately verified simply

noticing that
[∣∣∣v©s

f

∣∣∣] = [∣∣∣v©s
f − v0

∣∣∣] and that D, being a relative velocity,
is also Galilean invariant.

Equation (70) does not have an evident Galilean invariant form. How-
ever, let us prove that it is equivalent to[∣∣∣∣G−T

s ·
(
mf

(
1

2

(
v©s
f − vs

)2
− ∂Ψ

∂mf

)
I

− FT
s ·
(
v©s
f − vs

)
⊗D ·Ns

=
[∣∣∣G−T

s ·FT
s ·
(
Js

(
(Π©s −Π©s

f )
T
)
·F−T

s ·Ns −
∥∥JsF−T

s ·Ns

∥∥σ©s
) ∣∣∣] , (71)

in which only Galilean invariant quantities appear.
Indeed, the difference Q between the left hand sides of (71) and (70), using
continuity of vs and recalling Eq. (50), reads

Q =
1

2
v2s
[∣∣mfG

−T
s

∣∣] ·Ns

+
[∣∣∣−mf

(
v©s
f · vs

)
G−T

s +G−T
s · FT

s · vs ⊗D
∣∣∣] ·Ns.

We know that, applying formula (28) to the map φ−1
s under the assumption

[|ηf |] = 0, one gets [∣∣mfG
−T
s

∣∣] ·Ns = 0. (72)

Hence, using again the continuity of vs it is easy to get

Q = vs ·
[∣∣∣−mfv

©s
f ⊗G−T

s + Fs ·G−1
s ⊗D

∣∣∣] ·Ns,

which using the balance of mass (56) and again (72) is equivalent to

Q = vs ·
{
−
[∣∣∣v©s

f

∣∣∣]⊗mfG
−T
s +

[∣∣Fs ·G−1
s

∣∣]⊗D
}
·Ns.

Moreover, by Eq. (30) applied to the map χs it is clear that

Ns =
(
J−1
s FT

s ·N©s
e

)
/
∥∥J−1

s FT
s ·N©s

e

∥∥ ,
where Ne is the unit normal vector to the Eulerian surface Se. Using this
result and recalling the definitions of mf and D, it can be recognized that
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Q = −
η©sf vs∥∥∥J−1

s FT
s ·N©s

e

∥∥∥ ·
[∣∣∣v©s

f

∣∣∣] IsJ−1
s

(
Fs ·G−1

s

)T
+

η©sf vs∥∥∥J−1
s FT

s ·N©s
e

∥∥∥ · IsJ−1
s

[∣∣Fs ·G−1
s

∣∣]⊗ (v©s
f − vs

)
·N©s

e .

Therefore, the quantity Q vanishes owing to the purely kinematical formula
(29) applied to the diffeomorphism χs ◦ φ−1

s (notice that vs ·N©s
e = c©se ).

It follows that the Galilean invariance of the last jump condition remains
proven.

7.4 The equations do not depend on the choice of the fluid ref-
erence configuration

Equation (71) seems to depend on the choice of the fluid reference con-
figuration through the tensorGs (all others equations clearly do not depend
on this choice). Let us first project this equation on the tangent plane to Sf .
Hence, if τe is an arbitrary tangent vector to Se, multiplication of equation
(71) by Gs · F−1

s · τ©se gives

τ©se ·
[∣∣∣ (v©s

f − vs)
∣∣∣] d©s + τ©se ·

[∣∣∣(Π©s −Π©s
f )

T
∣∣∣] ·N©s

e

−
∥∥JsF−T

s ·Ns

∥∥ τ©se · S · [∣∣∣v©s
f − vs

∣∣∣] = 0 (73)

Now let us project equation (71) in a different direction, multiplying it

by the continuous quantity −us = Gs ·F−1
s · (v©s

f − vs): notice that, owing
to (57) and (54), this projection gives additional information to (73) only if
d �= 0 . We get[∣∣∣∣(−12 (v©s

f − vs

)2
− ∂Ψ

∂mf

)∣∣∣∣] d©s
=
[∣∣∣(v©s

f − vs) ·
((
(Π©s −Π©s

f )
T
)
·N©s

e − σ©s
) ∣∣∣] . (74)

Notice that this equation does not depend on the choice of the reference
configuration of the fluid.

8 The Case of a Deformable Porous Medium
Surrounded by a Pure Fluid

We now assume that the surface discontinuity Ss separates a given porous
medium (which occupies the volume B+

s ) from a pure fluid (which occupies
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the volume B−
s ). Proper evolution equations and boundary conditions are

deduced from our previous results.
Clearly, the equations of motion of the porous medium in B+

s coincide
with (68) where the potential Ψ is replaced by its restriction Ψ+ in B+

s .
When the fluid is pure, its Eulerian energy density, its chemical potential

and its pressure are functions of its mass density only. These three real
functions are denoted respectively by Ψf , μf and pf . They are related by

μf (y) = Ψ′
f (y) and pf (y) = −Ψf (y) + yΨ′

f (y), (75)

Therefore, the restriction Ψ− of the potential Ψ in B−
s is that of a pure

fluid: transporting the Eulerian density Ψf (ρf ) on Bs, we get

Ψ− (ε,mf ) = JsΨf

(
ρ©sf
)
= JsΨf

(
J−1
s mf

)
, (76)

note that Js is a function of ε only, as we have Js = detFs = det
√
2ε+ I =√

det (2ε+ I).
In the pure fluid region B−

s we clearly have ηs = 0 and, as already
noticed, K©s = 0, M©s = 0. We also neglect external body forces and
viscous forces by setting ∂Ψ−/∂χs = 0 and Π = Πf = 0.

With these assumptions, the equation of motion (68) in B−
s reads

mfγ
©s
f = div

(
Fs ·

∂Ψ−

∂ε

)
= div

[
Fs ·

(
Ψf |ρ©sf

∂Js
∂ε

+ Js
∂

∂ε
Ψf |ρ©sf

)]
(77)

= div

[
Fs ·

(
Ψf |ρ©sf

∂Js
∂ε

+ Js
∂Ψf

∂ρf

∣∣∣∣
ρ©sf

∂

∂ε

(
J−1
s mf

))]
.

Recalling that ∂Js/∂ε = JsF
−1
s · F−T

s and ∂J−1
s /∂ε = −J−2

s ∂Js/∂ε, equa-
tion (77) can be simplified in

mfγ
©s
f = div

[(
Js Ψf |ρ©sf −mf μf |ρ©sf

)
F−T
s

]
;

or equivalently, recalling the inverse of Eq. (28) and (75), in

mfγ
©s
f = −JsF−T

s · ∇
(
pf |ρ©sf

)
. (78)

This last equation, when transported on the Eulerian configuration, reads

∇pf + ρfγ
©e
f = 0; (79)
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we thus recover the usual equation for the motion of a non-viscous fluid
fluid.

Let us now study the second of equations (68) also valid in B−
s . Indeed,

the existence of an supplementary equation may seem astonishing. Under
the hypotheses we formulated, recalling (76) and (75), Eq. (68) can be
rewritten

mf∇
(
μf |ρ©sf

)
+mfF

T
s · γ©sf = 0,

which, multiplied on the left by F−T
s , gives

Jsρ
©s
f F

−T
s · ∇

(
μf |ρ©sf

)
+mf γ

©s
f = 0,

This last equation is clearly equivalent to Eq. (78) as

∇(pf )|ρ©sf = ρ©sf ∇(μf )|ρ©sf . Hence, as expected, the fluid is governed only by

the usual equation for an non-viscous fluid.

Let us consider the jump condition given by Eq. (69) on the surface
Ss which divides the porous medium region B+

s from the pure fluid region
B−
s . Considering the expression (76) for the potential of the pure fluid, it

becomes (
−F+

s ·
(
∂Ψ

∂ε

)+

+
(
v©s
f

)+
⊗D

)
·Ns

=

(
J+
s

(
F+
s

)−T
pf |ρ©sf +

(
v©s
f

)−
⊗D

)
·Ns, (80)

where we used the fact that J−
s F

−
s · Ns = J+

s F
+
s · Ns (here again the

superscripts + and − indicate the traces on Ss of quantities defined on B
+
s

and B−
s respectively).

As for the second jump condition (70), it becomes

(
G+

s

)−T ·
[(
−m+

f

∂Ψ+

∂m+
f

+
1

2
m+

f

(
v©s
f

)+
2

)
I

−
(
F+
s

)T · (v©s
f

)+
⊗D ·Ns = (81)(

G−
s

)−T ·
[((

−m−
f μf |ρ©sf +

1

2
m−

f

(
v©s
f

)−
2

)
I

−
(
F−
s

)T · (v©s
f

)−
⊗D ·Ns.
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In conclusion, the motion of the porous medium is driven by two indepen-
dent equations of the type (68), while the motion of the pure fluid is driven
by a simple equation in the form (78). The differential system is completed
by two independent jump conditions given by (80) and (81). Equation (80)
states that at a permeable interface between a porous medium and a pure
fluid the jump of stress equals the negative of the jump of transported fluid
momentum. Equation (81) states how at the same interface the jump of
chemical potential plus fluid kinetic energy is related to transported fluid
momentum.

9 Conclusions

To our knowledge, the inertia terms appearing in the jump condition (69)2
are not found in the literature. Moreover all boundary conditions (69) are
valid also when the solid matrix is suffering large deformations and when
the Stokes fluid-flow condition is not applicable.
A deduction of the jump condition valid in the particular case of absence of
inertia, of Darcy-Brinkman and Beavers-Joseph dissipation is presented in
Baek and Srinivasa (2004).
Other authors (see e.g. Neale and Nader (1974), Vafai and Thiyagaraja
(1987), Vafai and Kim (1990), Poulikakos and Kazmierczak (1997)) based
themselves on the pioneering works of Beavers and Joseph (1967) and Saffman
(1971) to justify the so-called slip boundary conditions at the interface
between a porous matrix and an external viscous fluid. Beavers-Joseph-
Saffman conditions include the continuity of the normal components of the
relative velocity and of the gradient of the relative velocity at the interface
between the porous medium and the external fluid: nevertheless, they only
describe phenomena related to the viscosity of the outflowing fluid with no
consideration of inertial effects and Darcy-Brinkman dissipation. Beavers-
Joseph-Saffman conditions can be deduced from jump condition (69), once
assuming that the solid matrix is suffering small deformation and when
Stokes fluid-flow condition is verified.
The jump conditions deduced in Deresiewicz (1960-1964), are suitable to as-
sure that the differential problem of Darcy-Fillunger-Terzaghi-Biot is well-
posed (see Fillunger (1936), Terzaghi (1943), Biot (1941-1963)): these last
jump conditions can be obtained as a particular case from Beavers-Joseph-
Saffman conditions, once it is possible to neglect dissipative phenomena at
the considered interface. In Albers (2006), Wilmanski (1999-2006), De La
Cruz et al. (1992), Quiroga-Goode and Carcione (1997) the jump condi-
tions proposed by ? are used to study wave propagation phenomena at
discontinuity surfaces in porous media.
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In (Coussy and Bourbie (1984), Coussy et al. (1998), Rasolofosaon and
Coussy (1985-1986), a variational approach is used to study some wave
propagation phenomena of interest in oil industry: the boundary conditions
proposed by Deresiewicz (1963) are examined there with a view towards the
applications.
In Kubik and Cieszko (2005) a dissipative Rayleigh surface potential is pro-
posed which is suitable to produce a particular form of Beavers-Joseph-
Saffman boundary conditions: many versions of them are compared in
Alazmi and Vafai (2001).

The jump conditions (69) also allow for describing phenomena in which
inertial effects are relevant. The inertial terms here newly introduced are
quadratic in the velocity fields at the interface: when Stokes fluid-flow con-
ditions hold (and when the solid matrix is subject to “small deformations”)
they may be negligible. Indeed, when the equations are linearized in the
neighborhood of a state of rest (i.e. when all velocity fields and their gradi-
ents are vanishing) the aforementioned inertial terms do not produce, in the
resulting boundary conditions, any term additional to those appearing in
Beavers-Joseph-Saffman conditions. However, when the linearization pro-
cedure is performed in the neighborhood of a state in which some velocity
fields are not vanishing then inertial terms cannot be neglected, even when
Rayleigh modeling hypothesis applies. Finally one should remark that in
Ochoa-Tapia and Whitaker (1998) some inertial effects at the interface are
considered. However, they deduce no-slip conditions for tangential velocity
and a normal-to-the-interface boundary condition by means of an averaging
procedure involving “excess quantities”. Their assumptions produce inertial
terms in which only the tangential part of the fluid velocity appears.

Future investigations will be aimed to get a generalization of the newly
found boundary conditions to the case of shock waves.

A Appendix: Some Preliminary Variations

We now compute how the different quantities appearing in A vary when the
two independent kinematical variables χs and φs change. We denote δχs
and δφs the infinitesimal changes of χs and φs respectively.
Recall that we have assumed that the singularity surface Ss (if any) of
the fields χs and φs is fixed in Bs. Owing to this assumption, the fact
of considering the fields δχs and δφs regular in Bs is sufficient to explore
the whole space of considered functions χs and φs i.e. the set of the C

1
pw

functions the singularity surface of which, if any, must be the surface Ss.
This would not be the case if one wants to consider a moving singularity
surface. Such a situation requires a more delicate treatment and will be
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developed in a forthcoming paper.
As far as the fields ε, ηs and vs attached to the solid constituent are

concerned, their variation in terms of the independent kinematical fields
are given by:4

δε =
1

2
δ
(
FT
s · Fs − I

)
=
1

2

(
δFT

s · Fs + FT
s · δFs

)
=
(
FT
s · ∇ (δχs)

)sym
, (82)

δηs = 0, δvs = δχ̇s

We now compute the variation of the fields mf and v©s
f attached to the

fluid constituent. In particular, if we want to compute δmf the preliminary

variation of the fields Is and η©sf must be established5:

δIs = δ (det (∇φs)) = IsG
−T
s | ∇ (δφs) ;

δη©sf = δ (ηf ◦ φs) = (∇ηf )©s · δφs = ∇η©sf ·G−1
s · δφs.

The variation δmf can be now computed as follows:

δmf = δ
(
Isη

©s
f

)
= η©sf δIs + Is δη

©s
f

= Is

(
η©sf G−T

s | ∇ (δφs) +∇η©sf ·G−1
s · δφs

)
= div

(
η©sf IsG

−1
s · δφs

)
= div

(
mfG

−1
s · δφs

)
, (83)

where we used the fact that div
(
IsG

−T
s

)
= 0 proved in Eq. (5).

The variation of the solid Lagrangian fluid velocity v©s
f is now computed.

Recalling Eq. (50) it is easy to show that6

δv©s
f = δvs − δFs ·G−1

s · us + Fs ·G−1
s · δGs ·G−1

s · us − Fs ·G−1
s · δus

= δχ̇s −∇ (δχs) ·G−1
s · us + Fs ·G−1

s .∇ (δφs) ·G−1
s · us

− Fs ·G−1
s · δφ̇s. (84)

4Given a tensor field σ, σsym := 1
2

(
σ + σT

)
denotes the symmetric part of σ. Moreover,

we denote in the sequel the partial time derivatives of solid-Lagrangian fields by a

superposed dot.
5We recall that, given a tensor field M, the derivation rule for the determinant reads:

δ (detM) = detM
(
M−T | δM

)
.

6Given a matrix G, the differentiation formula for its inverse G−1 reads δ
(
G−1

)
=

−G−1.δG.G−1. This result is easily recovered differentiating the equality G·G−1 = I.
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B Appendix: Variation of the Action Functional

In order to suitably perform the solid-Lagrangian variation δA of the action
functional, an arbitrary compact set K ⊂ Bs is defined across the discon-
tinuity Ss and the variation of the action functional is performed assuming
that the test functions δχs and δφs have support included in the setK. This
means that δχs and δφs are assumed to be suitably regular and to vanish
on the boundary and outside the set K. In the sequel, the intersection of
the surface Ss with the set K is denoted by Σ.

Recalling that we assumed Ψ to be a function of ε, mf and χs and that

Λ = 1/2
(
ηs (vs )

2
+mf (v

©s
f )

2
)
it is easy to recognize that

δΨ =
∂Ψ

∂ε
| δε+ ∂Ψ

∂χs
δχs +

∂Ψ

∂mf
δmf (85)

and

δΛ = ηsvs · δvs +mfv
©s
f · δv

©s
f +

1

2
v2s δηs +

1

2

(
v©s
f

)2
δmf . (86)

Recalling Eqs. (82), (83) and (84) and the fact that ∂Ψ/∂ε is a symmetric
tensor, these equations can be rewritten as

δΨ =
∂Ψ

∂ε
|
(
FT
s · ∇ (δχs)

)
+

∂Ψ

∂χs
· δχs +

∂Ψ

∂mf
div

(
mfG

−1
s · δφs

)
and

δΛ = δΛs + δΛf (87)

where

δΛs :=
(
ηsvs +mfv

©s
f

)
· δχ̇s −mfv

©s
f · ∇ (δχs) ·G−1

s · us,

δΛf :=
1

2

(
v©s
f

)2
div

(
mfG

−1
s · δφs

)
+mfv

©s
f · Fs ·G−1

s · ∇ (δφs) ·G−1
s · us −mfv

©s
f · Fs ·G−1

s · δφ̇s.

Some processes of integration by parts in space and in time are now needed
in order to rewrite the variations δΨ and δΛ in terms of the variations δχs
and δφs of the primitive kinematical fields.
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We first compute the variation of the potential energy: integrating by
parts in space Eq. (87) it is easy to get∫

Bs×(0,T )

δΨ =

∫
K×(0,T )

[
∂Ψ

∂χs
− div

(
Fs ·

∂Ψ

∂ε

)]
· δχs

−
∫
K×(0,T )

[
mfG

−T
s · ∇

(
∂Ψ

∂mf

)]
· δφs+ (88)

∫
Σ×(0,T )

[∣∣∣∣Fs ·
∂Ψ

∂ε
Ns

∣∣∣∣] · δχs + ∫
Σ×(0,T )

[∣∣∣∣mfG
−T
s · ∂Ψ

∂mf
Ns

∣∣∣∣] · δφs.
In order to obtain simpler calculations, the variation of the kinetic energy

is now computed evaluating separately the two terms appearing in Eq. (87).
Integrating by parts in space and time the first term, recalling that ηs is
constant in space and time and thatD = −mfG

−1
s ·us it is easy to recognize

that 7

∫
Bs×(0,T )

δΛs

= −
∫
K×(0,T )

[
ηsγs +mf v̇

©s
f + ṁfv

©s
f + div

(
v©s
f ⊗D

)]
· δχs

+

∫
Σ×(0,T )

([∣∣∣v©s
f ⊗D

∣∣∣] ·Ns

)
· δχs.

Finally, using expression (51) for v̇©s
f , the balance of mass (56) for ṁf and

simplifying, it is easy to recognize that

∫
Bs×(0,T )

δΛs = −
∫
K×(0,T )

(
ηsγs +mfγ

©s
f

)
· δχs

+

∫
Σ×(0,T )

([∣∣∣v©s
f ⊗D

∣∣∣] ·Ns

)
· δχs. (89)

The second term appearing on the right hand side of Eq. (87) is now
evaluated: integrating by parts in space and time and recalling Eqs. (50)
and the definition of the mass flux vector D, we get

7From now on, we assume that δχs (·, 0) = δχs (·, T ) and δφs (·, 0) = δφs (·, T ) so

that no time boundary terms are present in our calculation.
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∫
Bs×(0,T )

δΛf =

∫
K×(0,T )

[
−1
2
mf∇

((
v©s
f

)2)
·G−1

s

]
+

∫
K×(0,T )

[
div

(
v©s
f · Fs ·G−1

s ⊗D
)
+

∂

∂t

(
mfv

©s
f · Fs ·G−1

s

)]
· δφs

+

∫
Σ×(0,T )

[
1

2

[∣∣∣∣mf

(
v©s
f

)2
G−T

s

∣∣∣∣] ·Ns

−
[∣∣∣v©s

f · Fs ·G−1
s ⊗D

∣∣∣] ·Ns · δφs.

Using expressions (56), (51) and (52) for ṁf , v̇
©s
f and ∂

(
Fs ·G−1

s

)
/∂t re-

spectively, recalling again the definition ofD and noting that∇
((

v©s
f

)2)
=

2v©s
f · ∇v

©s
f , this equation can be simplified in∫

Bs×(0,T )

δΛf =

∫
K×(0,T )

(
mfγ

©s
f · Fs ·G−1

s

)
· δφs (90)

+

∫
Σ×(0,T )

([∣∣∣∣12mfG
−T
s

(
v©s
f

)2
−G−T

s · FT
s · v©s

f ⊗D

∣∣∣∣] ·Ns

)
· δφs.

Merging Eqs. (88), (89) and (90), and recalling that they hold for any
δχs, δφs with compact support K included in Bs, expression (66)for the
variation of the action functional is finally recovered.

C Appendix: Computation of the Rayleigh-Hamilton
Dissipation

We recall that, owing to (60), (61) and (2), (50), the pull back of the
dissipation densities reads

D©s = (Fs ·G−1
s · us) ·K©s · (Fs ·G−1

s · us)

+
(
∇v©s

f · F−1
s

)
:M©s :

(
∇v©s

f · F−1
s

)
(91)

+
(
∇
(
Fs ·G−1

s · us

)
· F−1

s

)
: B©s :

(
∇
(
Fs ·G−1

s · us

)
· F−1

s

)
,

D©s
S =

[∣∣∣v©s
f

∣∣∣] · S©s ·
[∣∣∣v©s

f

∣∣∣] . (92)

We consider arbitrary test functions δq = (δχs, δφs) with compact support
included in Bs We now compute the term appearing on the right hand side
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of Eq.(65); in particular we start by noticing that owing to Eq. (64) we get∫ T

0

(
∂R
∂q̇t

| δqt
)
dt =

∫
Bs\Ss

Js(Fs ·G−1
s · δφs) · κ©s)+∫

Bs\Ss
Js
(
∇(δχs − Fs ·G−1

s · δφs) · F−1
s

)
: Π©s

f

+

∫
Bs\Ss

Js
(
∇
(
Fs ·G−1

s · δφs
)
· F−1

s

)
: Π©s+∫

Ss

∥∥JsF−T
s ·Ns

∥∥ [∣∣δχs − Fs ·G−1
s · δφs

∣∣] · σ©s. (93)

Integrating by parts in space the right hand side of equation (93) gives∫
Bs\Ss

− div
(
JsΠ

©s
f · F−T

s

)
· δχs

+

∫
Bs\Ss

G−T
s · FT

s ·
(
Jsκ

©s − div
(
Js(Π

©s −Π©s
f )

T · F−T
s

))
· δφs

+

∫
Ss

[∣∣∣JsΠ©s
f · F−T

s ·Ns

∣∣∣] · δχs
+

∫
Ss

[∣∣∣G−T
s · FT

s ·
(
Js

(
(Π©s −Π©s

f )
T
)
· F−T

s ·Ns

−
∥∥JsF−T

s ·Ns

∥∥σ©s · δφs.
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