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Preface

The contents of this book covers the material required in the Fluid Mechanics
Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a  Ph.D-level
elective course  (MEEN-622), both of which I have been teaching at Texas A&M
University for the past two decades. While there are numerous undergraduate fluid
mechanics texts on the market for engineering students and instructors to choose
from, there are only limited texts that comprehensively address the particular needs
of graduate engineering fluid mechanics courses. To complement the lecture
materials, the instructors more often recommend several texts, each of which treats
special topics of fluid mechanics. This circumstance and the need to have a textbook
that covers the materials needed in the above courses gave the impetus to provide the
graduate engineering community with a coherent textbook that comprehensively
addresses their needs for an advanced fluid mechanics text. Although this text book
is primarily aimed at  mechanical engineering students, it is equally suitable for
aerospace engineering, civil engineering, other engineering disciplines, and especially
those practicing professionals who perform CFD-simulation on a routine basis and
would like to know more about the underlying physics of the commercial codes they
use. Furthermore, it is suitable for self study, provided that the reader has a sufficient
knowledge of calculus and differential equations. 

In the past, because of the lack of advanced computational capability, the subject
of fluid mechanics was artificially subdivided into inviscid, viscous (laminar,
turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
With today’s state of computation, there is no need for this subdivision. The motion
of a fluid is accurately described by the Navier-Stokes equations. These equations 
require  modeling of the relationship between the stress and deformation tensor for
linear and nonlinear fluids only. Efforts by many researchers around the globe are
aimed at directly solving the Navier-Stokes equations (DNS) without introducing the
Reynolds stress tensor, which is the result of an artificial decomposition of the
velocity field into a mean and fluctuating part. The use of DNS for engineering
applications seems to be out of reach because the computation time and resources
required to perform a DNS-calculation are excessive at this time. Considering this
constraining circumstance, engineers have to resort to Navier-Stokes solvers that are
based on Reynolds decomposition. It requires modeling of the transition process and
the Reynolds stress tensor to which three chapters of this book are dedicated. 

The book is structured in such a way that all conservation laws, their derivatives
and related equations are written in coordinate invariant forms. This type of structure
enables the reader to use Cartesian, orthogonal curvilinear, or non-orthogonal body
fitted coordinate systems. The coordinate invariant equations are then  decomposed
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into components by utilizing the index notation of the corresponding coordinate
systems. The use of a coordinate invariant form is particularly essential in
understanding the underlying physics of the turbulence, its implementation into the
Navier-Stokes equations, and the necessary mathematical manipulations to arrive at
different correlations. The resulting correlations are the basis for the following
turbulence modeling. It is worth noting that in standard textbooks of turbulence, index
notations are used throughout with almost no explanation of how they were brought
about. This circumstance adds to the difficulty in understanding the nature of
turbulence by readers who are freshly exposed to the problematics of turbulence.
Introducing the coordinate invariant approach makes it easier for the reader to follow
step-by-step mathematical manipulations, arrive at the index notation and the
component decomposition. This, however, requires the knowledge of tensor analysis. 
Chapter 2 gives a concise overview of the tensor analysis essential for describing the
conservation laws in coordinate invariant form, how to accomplish the index notation,
and the component decomposition into different coordinate systems. 

Using the tensor analytical knowledge gained from Chapter 2, it is rigorously
applied to the following chapters. In Chapter 3, that deals with the kinematics of flow
motion, the Jacobian transformation describes in detail how a time dependent volume
integral is treated. In Chapter 4 and 5 conservation laws of fluid mechanics and
thermodynamics are treated in differential and integral forms. These chapters are the
basis for what follows in Chapters 7, 8, 9, 10 and 11 which exclusively deal with
viscous flows. Before discussing the latter, the special case of inviscid flows is
presented where the order of magnitude of a viscosity force compared with the
convective forces are neglected. The potential flow, a special case of inviscid flow
characterized by zero vorticity , exhibited a major topic in fluid mechanics
in pre-CFD era. In recent years, however, its relevance has been diminished. Despite
this fact, I presented it in this book for two reasons. (1) Despite its major short
comings to describe the flow pattern directly close to the surface, because it does not 
satisfy the no-slip condition, it reflects a reasonably good picture of the flow outside
the boundary layer. (2) Combined with the boundary layer calculation procedure, it
helps acquiring a reasonably accurate picture of the flow field outside and inside the
boundary layer. This, of course, is valid as long as the boundary layer is not
separated. For calculating the potential flows, conformal transformation is used where
the necessary basics are presented in Chapter 6, which is concluded by discussing
different vorticity theorems. 

Particular issues of laminar flow at different pressure gradients associated with
the flow separation in conjunction with the wall curvature constitute the content of
Chapter 7 which seamlessly merges into Chapter 8 that starts with the stability of
laminar, followed by laminar-turbulent transition, intermittency function and its 
implementation into Navier-Stokes. Averaging the Navier-Stokes equation that
includes the intermittency function leading to the Reynolds averaged Navier-Stokes
equation (RANS), concludes Chapter 8. In discussing the RANS-equations, two
quantities have to be accurately modeled. One is the intermittency function, and the
other is the Reynolds stress tensor with its nine components. Inaccurate modeling of
these two quantities leads to a multiplicative error of their product. The transition was
already discussed in Chapter 8 but the Reynolds stress tensor remains to be modeled.
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This, however, requires the knowledge and understanding of turbulence before
attempts are made to model it. In Chapter 9, I tried to present the quintessence of
turbulence required for a graduate level mechanical engineering course and to
critically discuss several different models. While Chapter 9 predominantly deals with
the wall turbulence, Chapter 10 treats different aspects of free turbulent flows and
their general relevance in engineering. Among different free turbulent flows, the
process of development and decay of wakes under positive, zero, and negative
pressure gradients is of particular engineering relevance. With the aid of the
characteristics developed in Chapter 10, this process of wake development and decay
can be described accurately.

Chapter 11 is entirely dedicated to the physics of laminar, transitional and
turbulent boundary layers. This topic has been of particular relevance to the
engineering community. It is treated in integral and differential forms and applied to
laminar, transitional, turbulent boundary layers, and heat transfer.

Chapter 12 deals with the compressible flow.  At first glance, this topic seems to
be dissonant with the rest of the book. Despite this, I decided to integrate it into this
book for two reasons: (1) Due to a complete change of the flow pattern from subsonic
to supersonic, associated with a system of oblique shocks makes it imperative to
present this topic in an advanced engineering fluid text; (2) Unsteady compressible
flow with moving shockwaves occurs frequently in many engines such as transonic
turbines and compressors, operating in off-design and even design conditions. A
simple example is the shock tube, where the shock front hits the one end of the tube
to be reflected to the other end. A set of steady state conservation laws does not
describe this unsteady phenomenon. An entire set of unsteady differential equations
must be called upon which is presented in Chapter 12. Arriving at this point, the
students need to know the basics of gas dynamics. I had two options, either refer the
reader to existing gas dynamics textbooks, or present a concise account of what is
most essential in following this chapter. I decided on the second option.

At the end of each chapter, there is a section that entails problems and projects. 
In selecting the problems, I carefully selected those from the book Fluid Mechanics
Problems and Solutions by Professor Spurk of Technische Universität Darmstadt
which I translated in 1997. This book contains a number of highly advanced problems
followed by very detailed solutions. I strongly recommend this book to those
instructors who are in charge of teaching graduate fluid mechanics as a source of
advanced problems. My sincere thanks go to Professor Spurk, my former Co-Advisor, 
for giving me the permission . Besides the problems, a number of demanding projects
are presented that are aimed at getting the readers involved in solving CFD-type of
problems. In the course of teaching the advanced Fluid Mechanics course MEEN-
622, I insist that the students present the project solution in the form of a technical
paper in the format required by ASME Transactions, Journal of Fluid Engineering. 

In typing several thousand equations, errors may occur. I tried hard to eliminate 
typing, spelling  and other errors, but I have no doubt that some remain to be found
by readers. In this case, I sincerely appreciate the reader notifying me of any mistakes
found; the electronic address is given below. I also welcome any comments or
suggestions regarding the improvement of future editions of the book.  
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(1.1)

1 Introduction

The structure of thermo-fluid sciences rests on three pillars, namely fluid mechanics,
thermodynamics, and heat transfer. While fluid mechanics’ principles are involved
in open system thermodynamics processes, they play a primary role in every
convective heat transfer problem. Fluid mechanics deals with the motion of fluid
particles and describe their behavior under any dynamic condition where the particle
velocity may range from low subsonic to hypersonic. It also includes the special case
termed fluid statics, where the fluid velocity approaches zero. Fluids are encountered
in various forms including homogeneous liquids, unsaturated, saturated, and
superheated vapors, polymers and  inhomogeneous liquids and gases. As we will see
in the following chapters, only a few equations govern the motion of a fluid that
consists of molecules. At microscopic level, the  molecules continuously interact with
each other moving with random velocities. The degree of interaction and the mutual
exchange of momentum between the molecules increases with increasing temperature,
thus, contributing to an intensive and random molecular motion. 

1.1 Continuum Hypothesis 

The random motion mentioned above, however, does not allow to define a molecular
velocity at a fixed spatial position. To circumvent this dilemma, particularly for gases,
we consider the mass contained in a volume element  which has the same order
of magnitude as the volume spanned by the mean free path of the gas molecules. The
volume  has a comparable order of magnitude for a molecule of a liquid .
Thus, a fluid can be treated as a continuum if the volume  occupied by the mass

does not experience excessive changes. This implies that the ratio

does not depend upon the volume . This is known as the continuum hypothesis
that holds for systems, whose dimensions are much larger than the mean free path of
the molecules. Accepting this hypothesis, one may think of a fluid particle as a
collection of molecules that moves with a velocity that is equal to the average velocity
of all molecules that are contained in the fluid particle. With this assumption, the
density defined in Eq. (1.1) is considered as a point function that can be dealt with as
a thermodynamic property of the system. If the p-v-T- behavior of a fluid is given, the
density at any position vector x and time t can immediately be determined by
providing an information about two other thermodynamic properties. For fluids that

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 1–10.
© Springer Berlin Heidelberg 2010
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Fig. 1.1: Viscous fluid between a moving and a stationary flat surface.

(1.2)

(1.3)

are frequently used in technical applications, the p-v-T behavior is available from
experiments in the form of p-v, h-s, or T-s tables or diagrams. For computational
purposes, the experimental points are fitted with a series of algebraic equations that
allow a quick determination of density by using two arbitrary thermodynamic
properties.

1.2 Molecular Viscosity

Molecular viscosity is the fluid property that causes friction. Fig. 1.1 gives a clear
physical picture of the friction in a viscous fluid. A flat plate placed at the top of a
particular viscous fluid is moving with a uniform velocity  relative to the
stationary bottom wall.

The following observations were made during experimentation:

1) In order to move the plate, a certain force  F1 must be exerted in x1-direction.
2) The fluid sticks to the plate surface that moves with the velocity U.
3) The velocity difference between the stationary bottom wall and the moving top

wall causes a velocity change which is, in this particular case, linear. 
4) The force F1 is directly proportional to the velocity change and the area of the

plate.

These observations lead to the conclusion that one may set:

Multiplying the  proportionality (1.2) by a factor  which is the  substance property 
viscosity, results in an equation for the friction force in x1-direction:

The subsequent division of Eq. (1.3) by the plate area A gives the shear stress
component 21:
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(1.4)

Outside the boundary layer:

     << C. Inside the boundary layer
Airfoil boundary layer development at a high Re-number

V

δ xV = 0

C δ

Fig. 1.2: Boundary layer development along the suction
surface of a wing, the effect of viscosity diminishes outside the
boundary layer. 

(1.5)

(1.6)

Equation (1.4) is the Newton’s equation of viscosity for this particular case. The first
subscript refers to the plane perpendicular to the x2-coordinate; the second refers to
the direction of shear stress. Equation (1.4) is valid for a two-dimensional flow of a
particular class of fluids, the Newtonian Fluids, whose shear stress is linearly
proportional to the velocity change. The general three-dimensional version derived
and discussed in Chapter 4 is:

with D as the deformation tensor. The coefficient  is given by , with 
as the absolute viscosity and  the bulk viscosity. Inserting Eq. (1.5) into the equation
of motion (see Chapter 4), the resulting equation independently developed by Navier
[1] and Stokes [2] completely describes the motion of a viscous fluid. In a coordinate
invariant form the Navier-Stokes equation reads:

Although Eq. (1.6) has been known since the publication of the famous paper by
Navier in 1823, with the exception of few special cases, it was not possible to find
solutions for cases of practical interests. Neglecting the viscosity term significantly
reduces the degree of difficulty in finding a solution for Eq. (1.6). This simplification, 
however, leads to results that do not account for the viscous nature of the fluid,
therefore they do not reflect the real flow situations. This is particularly true for the
flow regions that are close to the surface. Consider the suction surface of a wing
subjected to an air flow as shown in Fig. 1.2. 
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Two flow layers are distinguished: (1) a very thin layer close to the surface, called the
boundary layer, where the viscosity effect is predominant and (2) an external layer
where the viscosity may be neglected. As a result, the fluid outside the boundary layer
may be considered inviscid. In this case, the Navier-Stokes equation is reduced to the
Euler equation of motion that can be solved. Prandtl [3] was the first to establish a
concept that couples the solution of the external inviscid layer with the solution of the
viscous boundary layer by developing the boundary layer theory. Using a set of
assumptions that were based on a series of comprehensive experimental studies,
Prandtl [3] and von Kármán [4] significantly simplified the governing system of
partial differential equations and derived an integral method to solve for boundary
layer momentum deficiency thickness for incompressible steady flow. Although the
integral method is capable of providing useful information about the boundary layer
integral parameters such as momentum thickness or wall friction, it is not able to
provide detail information about the velocity distribution within the boundary layer.
Likewise, cases with flow separation cannot be treated. Furthermore, it contains
several empirical correlations that have to be adjusted from case to case. To partially
circumvent the above deficiencies, the integral method can be replaced by a
differential method.

Although the introduction of boundary layer theory was a major breakthrough in
fluid mechanics, its field of applications is limited. With the introduction of powerful
numerical methods and high speed computers, it is now possible to solve the Navier-
Stokes equations for laminar (see Section 1.3.1) flows. To find solutions for turbulent
(see Section 1.3.1) flows, the equations are averaged leading to Reynolds averaged
Navier-Stokes equations (RANS). The averaging process creates a new second order
tensor called the Reynolds stress tensor, with nine unknowns. The numerical solution
of  RANS, however, requires modeling the Reynolds stress tensor. In the last three
decades, a variety of turbulence models have been developed including single
algebraic and  multi-equation models. The trend in computation fluid dynamics goes
toward a direct numerical simulation (DNS) of Navier-Stokes equations, avoiding
time averaging and turbulence modeling altogether.

1.3 Flow Classification 

1.3.1 Velocity Pattern: Laminar, Intermittent, Turbulent Flow 
Laminar flow is characterized by the smooth motion of fluid particles with no random 
fluctuations present. This characteristic is illustrated in Fig. 1.3(a) by measuring the
velocity distribution  of a statistically steady flow at an arbitrary position
vector x.  As Fig. 1.3 reveals, the velocity distribution for laminar flow does not have
any time-dependent random fluctuations. In contrast, random fluctuations are inherent
characteristics of a turbulent flow. Figure 1.3(b) shows the velocity distribution for
a turbulent flow with random fluctuations. For a statistically steady flow, the velocity
distribution is time dependent, given by . 
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Fig. 1.3: (a) Laminar flow velocity, (b) turbulent flow velocity at an
arbitrary position vector 

Fig. 1.4: Dye experiment by Reynolds, (a) subcritical, (b)
super critical.

(1.7)

It can be decomposed as a constant mean velocity  and random fluctuations
:

At this point, the question may arise under which condition the flow pattern may
change from laminar to turbulent. To answer this question,  consider the experiment
by Reynolds [5], late nineteenth century, who injected dye streak into a pipe flow as
shown in Fig. 1.4.
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Fig. 1.5: Boundary layer development along a flat plate

(1.8)

At a lower velocity, Fig. 1.4(a), no fluctuation was observed and the dye filament
followed the flow direction. At certain distances, the diffusion process that was
gradually taking place caused a complete mixing of the dye with the main fluid.
Increasing the velocity, Fig. 1.4(b) however, changed the flow picture completely. 
The orderly motion of the dye with a short laminar length, shown in Fig. 1.4(b), 
changed into a transitional mode that started with a  sinus-like wave, which we
discuss in detail in Chapter 8. The transitional mode was followed by a strong
fluctuating turbulent motion. This resulted in a rapid mixing of the dye with the main
fluid. To explain this phenomenon, Reynolds introduced a dimensionless parameter,
named after him later as the Reynolds number:

with  as the absolute viscosity,  the density, D the pipe diameter and V the flow
velocity. For a critical Reynolds number, , a laminar flow pattern
was observed. Keeping the pipe geometry, as well as the flow substance the same, an
increase in velocity resulting in a Reynold number  changed the flow
pattern. As Fig. 1.4(b) shows, the initially laminar flow underwent a transition
followed by random turbulent fluctuations causing a strong mixing of the dye with
the main fluid. 

Similar flow behavior is observed in boundary layer flow along bodies. As an
example, Fig. 1.5 shows the changes of the flow pattern within the boundary layer
along a flat plate at zero pressure gradient.

Following an arbitrary streamline within the boundary layer within the flow region
, a stable laminar flow is established that starts from the leading edge and extends

to the point of inception of the unstable two-dimensional Tollmien-Schlichting waves.
Region  includes the following subsets: (a) the onset of the unstable two-dimen-
sional Tollmien-Schlichting waves, (b) the bursts of turbulence in places with high
vorticity, (c) the intermittent formation of turbulent spots with high vortical core at
intense fluctuation. Region  indicates the coalescence of turbulent spots into a fully
developed turbulent boundary layer. The issue is discussed in detail in Chapter 8.
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Fig. 1.7: Distribution of Intermittency factor along a flat plate.

Fig. 1.6: Intermittent behavior of a transitional flow

The transitional region is characterized by an intermittently laminar-turbulent
pattern described by the intermittency factor . For a statistically steady flow, this
factor is defined as the ratio of the sum of all time intervals, within which  the flow
is turbulent divided by the period of the observation time T as shown in Fig. 1.6 and 
defined in Eq. (1.9): 

In Eq. (1.9) n is the number of -intervals. The result of an experimental study
along a curved plate at zero pressure gradient is plotted in Fig. 1.6. 

(1.9)
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The intermittency value  indicates a fully laminar flow, for  the flow
is transitional, and for  the flow is fully turbulent. Figure 1.7 illustrates the
intermittency distribution within the boundary layer along a flat plate with

 as the Reynolds number with  as the velocity component in -
direction. Up to Re =15,000, the flow is sub-critically stable laminar with . The
onset of transition starts at Re = 15,000 and continues until  has been reached.
This point indicates the beginning of a fully turbulent boundary layer flow.

1.3.2 Change of Density, Incompressible, Compressible Flow 
Fluid density generally changes with pressure and temperature. As the Mollier
diagram for steam shows, the density of water in the liquid state changes insig-
nificantly with pressure. In contrast, significant changes are observed when water
changes the state from liquid to vapor. A similar situation is observed for other gases. 

Considering a statistically steady liquid flow with negligibly small changes in
density, the flow is termed incompressible. For gas flows, however, the density
change is a function of the flow Mach number.

Fig. 1.8 depicts relative changes of different flow properties as functions of the flow
Mach number. Up to , the relative changes of density may be considered
negligibly small meaning that the flow may be considered incompressible. For Mach
numbers , density changes cannot be neglected. In case the flow velocity
approaches the speed of sound, , the flow pattern undergoes a drastic change
associated with shock waves. 

The density classification based on flow Mach number gives a practical idea about
the density change. A more adequate definition whether the flow can be considered
compressible or incompressible is given by the condition , which in
conjunction with the continuity equation results in .This is the condition for
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Fig. 1.9: Statistically steady and unsteady turbulent flows 

Fig. 1.10: Steady and unsteady laminar flows

a flow to be considered incompressible. This issue is discussed in more detail in
Chapter 4. 

1.3.3 Statistically Steady Flow, Unsteady Flow
Figure 1.9 illustrates the nature of the statistically steady and unsteady flow types. As
an example, Fig. 1.9(a) shows the velocity distribution of a statistically steady
turbulent pipe flow with a constant mean. Fig. 1.9(b) represents the turbulent velocity
of a statistically unsteady flow discharging from a container under pressure. As seen,
the mean velocity is a function of time. A periodic unsteady turbulent flow through
a reciprocating engine is represented by Fig. 1.9(c). In both unsteady cases, the
unsteady mean is the result of an ensemble averaging process that we discuss in
Chapter 10.

In Fig. 1.9, random fluctuations typical of a turbulent flow are superimposed on the
mean flow. For steady or unsteady laminar flows where the Reynolds number is
below the critical one, the velocity distributions do not have random component  as
shown in Fig. 1.10. 

1.4 Shear-Deformation Behavior of Fluids

As briefly discussed in Section 1.2, there is a relationship between the shear stress 21
and the deformation rate . Fluids which exhibits a linear  shear- deformation
behavior are called Newtonian Fluids. There are, however, many fluids which  exhibit
a nonlinear shear- deformation behavior. Fig. 1.11 shows qualitatively the behavior
of few of these fluids. More details are found among others in [6].
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Fig. 1.11: Shear-deformation behavior of different fluids

  While the pseudoplastic fluids are characterized by a degressive slope, dilatant
fluids exhibit progressive slops. For these type of fluids the shear stress tensor can be
described as a polynomial function of deformation tensor, where the degree of
polynomials and the coefficients are determined from experiments. 

Those fluids with linear behavior which will not deform unless certain initial stress
 is exceeded are called Bingham fluids. It should be noted that most of the fluid

used in engineering applications belong to the Newtonian Class. 

References



2 Vector and Tensor Analysis, Applications 
to Fluid Mechanics

2.1 Tensors in Three-Dimensional Euclidean Space

In this section, we briefly introduce tensors, their significance to fluid dynamics  and
their applications. The tensor analysis is a powerful tool that enables the reader to
study and to understand more effectively the fundamentals of fluid mechanics. Once
the basics of tensor analysis are understood, the reader will be able to derive all
conservation laws of fluid mechanics without memorizing any single equation. In this
section, we focus on the tensor analytical application rather than mathematical details
and proofs that are not primarily relevant to engineering students. To avoid
unnecessary repetition, we present the definition of tensors from a unified point of
view and use exclusively the three-dimensional Euclidean space, with N = 3 as the 
number of dimensions. The material presented in this chapter has drawn from
classical tensor and vector analysis texts, among others those mentioned in
References. It is tailored to specific needs of fluid mechanics and is considered to be
helpful for readers with limited knowledge of tensor analysis. 

The  quantities encountered in fluid dynamics are tensors. A physical quantity
which has a definite magnitude but not a definite direction exhibits a zeroth-order
tensor, which is a special category of tensors. In a N-dimensional Euclidean space,
a zeroth-order tensor has N0 = 1 component, which is basically its magnitude. In
physical sciences, this category of tensors is well known as a scalar quantity, which
has a definite magnitude but not a definite direction. Examples are: mass m, volume
v, thermal energy Q (heat), mechanical energy W (work) and the entire thermo-fluid
dynamic properties such as density , temperature T , enthalpy h, entropy s , etc. 

In contrast to the zeroth-order tensor, a first-order tensor encompasses physical
quantities with a definite magnitude with  components and a definite
direction that can be decomposed in  directions. This special category of
tensors is known as vector.  Distance X, velocity V, acceleration A, force F and
moment of momentum M are few examples. A vector quantity is invariant with
respect to a given category of coordinate systems. Changing the coordinate system
by applying certain transformation rules, the vector components undergo certain
changes resulting in a new set of  components that are related, in a definite way, to
the old ones. As we will see later, the order of the above tensors can be reduced if
they are multiplied with each other in a scalar  manner. The mechanical energy 
W  =  F.X is a representative example, that shows how a tensor order can be reduced.
The reduction of order of tensors is called contraction.

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 11–29.
© Springer Berlin Heidelberg 2010
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Fig. 2.1: Vector decomposition in a Cartesian
coordinate system. 

(2.1)

(2.2)

A second order tensor is a quantity, which has definite components and 
definite directions (in three-dimensional Euclidean space: ). General stress
tensor , normal stress tensor , shear stress tensor , deformation tensor D and
rotation tensor  are few examples. Unlike the zeroth and first order tensors (scalars
and vectors),  the second and higher order tensors cannot be directly geometrically
interpreted. However, they can easily be interpreted by looking at their pertinent force
components, as seen later in section 2.5.4.

2.1.1 Index Notation
In a three-dimensional Euclidean space, any arbitrary first order tensor or vector can
be decomposed into 3 components. In a Cartesian coordinate system shown in Fig.
2.1,  the base vectors in x1, x2, x3 directions e1, e2, e3 are perpendicular to each other
and have the magnitude of unity, therefore, they are called orthonormal unit vectors.
Furthermore, these base vectors are not dependent upon the coordinates, therefore,
their derivatives with respect to any coordinates are identically zero. In contrast, in
a general curvilinear coordinate system (discussed in Appendix A) the base vectors
do not have  the magnitude of unity. They depend on the curvilinear coordinates, thus,
their derivatives with respect to the coordinates do not vanish. 

As an example, vector A with its components A1, A2 and A3  in a Cartesian coordinate
system shown in Fig. 2.1 is written as:

According to Einstein's summation convention, it can be written as:
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(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

The above form is called the index notation.  Whenever the same index (in the above
equation i) appears twice, the summation is carried out from 1 to N (N =  3 for
Euclidean space).

2.2 Vector Operations: Scalar, Vector and Tensor Products

2.2.1 Scalar Product
Scalar or dot product of two vectors results in a scalar quantity . We apply
the Einstein's summation convention defined in Eq. (2.2) to the above vectors:

we rearrange the unit vectors and the components separately:

In Cartesian coordinate system, the scalar product of two unit vectors is called
Kronecker delta, which is:

with ij as Kronecker delta. Using the Kronecker delta, we get:

The non-zero components are found only for i = j, or ij = 1, which means in the
above equation the index j must be replaced by i resulting in:

with scalar C as the result of scalar multiplication.

2.2.2 Vector or Cross Product
The vector product of two vectors is a vector that is perpendicular to the plane
described by those two vectors.  Example:

with C as the resulting vector. We apply the index notation to Eq. (2.8):

with ijk as the permutation symbol with the following definition illustrated in Fig. 2.2:

ijk =  0 for i = j, j = k or i = k:  (e.g. 122)
ijk =  1 for cyclic permutation:  (e.g. 123)
ijk = -1 for anticyclic permutation:  (e.g.132)
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Fig. 2.2: Permutation symbol, (a) positive , (b) negative
permutation.  

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

Using the above definition, the vector product is given by:

2.2.3 Tensor Product
The tensor product is a product of two or more vectors, where the unit vectors are not
subject to scalar or vector operation. Consider the following tensor operation:

The result of this purely mathematical operation is a second order tensor with nine
components:

The operation with any tensor such as the above second order one acquires a physical
meaning if it is multiplied with a vector (or another tensor) in scalar manner. 
Consider the scalar product of the vector C and the second order tensor . The result
of this operation is a first order tensor  or a vector. The following example should
clarify this:

Rearranging the unit vectors and the components separately:
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(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

It should be pointed out that in the above equation, the unit vector  ek must be
multiplied with the closest unit vector namely ei

The result of this tensor operation is a vector with the same direction as vector B.
Different results are obtained if the positions of the terms in a dot product of a vector
with a tensor are reversed as shown in the following operation:

The result of this operation is a vector in direction of A. Thus, the products  
is different from  

2.3 Contraction of Tensors

As shown above, the scalar product of a second order tensor with a first order one is
a first order tensor or a vector.  This operation is called contraction.  The trace of a
second order tensor is a tensor of zeroth order, which is a result of a contraction and
is a scalar quantity. 

As can be shown easily, the trace of a second order tensor is the sum of the diagonal
element of the matrix ij.   If the tensor itself is the result of a contraction of two
second order tensors  and D:

then the Tr( ) is:

2.4  Differential Operators in Fluid Mechanics

In fluid mechanics, the particles of the working medium undergo a time dependent
or unsteady motion. The flow quantities such as the velocity V and the thermo-
dynamic properties of the working substance such as pressure p,  temperature T,
density  or any arbitrary flow quantity Q are generally functions of space and time:

During the flow process, these quantities generally change with respect to time and
space. The following operators account for the substantial, spatial, and temporal
changes  of the flow quantities.
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(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

2.4.1 Substantial Derivatives
The temporal and spatial change of the above quantities is described most
appropriately by the substantial  or material derivative. Generally, the substantial
derivative of a flow quantity Q, which may be a scalar, a vector or a tensor valued
function, is given by:

The operator D represents the substantial or material change of the quantity Q, the
first term on the right hand side of Eq. (2.20) represents the local or temporal change
of the quantity Q with respect to a fixed  position vector x.  The operator d symbolizes
the spatial or convective change of the same quantity with respect to a fixed instant
of time. The convective change of Q may be expressed as: 

A simple rearrangement of the above equation results in:

Scalar multiplication of the expressions in the two parentheses of Eq. (2.22) results
in Eq. (2.21)

2.4.2 Differential Operator 
The expression in the second parenthesis of Eq. (2.22) is the spatial differential
operator  (nabla, del) which  has a vector character. In Cartesian coordinate system,
the operator nabla  is defined as:

Using the above differential operator, the change of the quantity Q is written as:

The increment dQ of Eq. (2.24) is obtained either by applying the product , or
by taking the dot product of the vector dx and Q. If Q is a scalar quantity, then  Q
is a vector or a first order tensor with definite components. In this case , Q is called
the gradient of the scalar field. Equation (2.24) indicates that the spatial change of the
quantity Q assumes a maximum if the vector Q (gradient of Q ) is parallel to the
vector dx.  If the vector Q is perpendicular to the vector dx, their product will be
zero. This is only possible, if the spatial change dx occurs on a surface with Q =
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Fig. 2.3: Physical explanation of the gradient of 
scalar field. 

(2.25)

(2.26)

const. Consequently, the quantity Q does not experience any changes. The physical
interpretation of this statement is found in Fig. 2.3. The scalar field is represented by
the point function temperature that changes from the surfaces T to the surface  T + dT.
In Fig. 2.3, the gradient of the temperature field is shown as T, which is
perpendicular to the surface T = const.  at point P. The temperature probe located at
P moves on the surface T = const. to the point M, thus measuring no changes in
temperature (  = /2, cos  = 0). However, the same probe experiences a certain
change in temperature by moving to the point Q, which is characterized by a higher
temperature T + dT ( 0 <  < /2 ). The change dT  can immediately be measured, if
the probe is moved parallel to the vector T. In this case, the displacement dx (see 
Fig. 2.3) is the shortest  (  = 0, cos  = 1).  Performing the similar operation for a
vector quantity as seen in Eq.(2.21) yields:

The right-hand side of Eq. (2.25) is identical with: 

In Eq. (2.26) the product can be considered as an operator that is applied to the
vector V resulting in an increment of the velocity vector. Performing the scalar
multiplication between dx and  gives:
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(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

with Vas the gradient of the vector field which is a second order tensor.  To perform
the differential operation, first  the  operator is applied to the vector V, resulting in
a second order tensor. This tensor is then multiplied with the vector dx in a scalar
manner that results in a first order tensor or a vector. From this operation, it follows
that spatial change of the velocity component can be expressed as the scalar product
of the vector dx and the second order tensor V, which represents the spatial gradient
of the velocity vector. Using the spatial derivative from Eq. (2.27), the substantial
change of the velocity is obtained by: 

where the spatial change of the velocity is expressed as :

Dividing Eq. (2.29) by dt yields the convective part of the acceleration vector:

The substantial acceleration is then:

The differential dt  may symbolically be replaced by Dt indicating the material
character of the derivatives. Applying  the index notation to velocity vector and Nabla
operator, performing the vector operation , and using the Kronecker delta, the index
notation of the material acceleration A is:

Equation (2.32) is valid only for Cartesian coordinate system, where the unit vectors 
do not depend upon the coordinates and are constant. Thus, their derivatives with
respect to the coordinates disappear identically. To arrive at Eq. (2.32) with a unified
index i, we renamed the indices. To decompose the above acceleration vector into
three components, we cancel the unit vector from both side in Eq. (2.32) and get:    
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(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

To find the components in xi -direction, the index i assumes subsequently the values
from 1 to 3, while  the summation convention is applied to the free index j. As a result
we obtain the three components:

2.5 Operator  Applied to Different Functions

This section summarizes the applications of nabla operator to different functions. As
mentioned previously, the spatial  differential operator  has a vector character. If it
acts on a scalar function, such as temperature, pressure, enthalpy etc.,  the result is a
vector and is called the gradient of the corresponding scalar field, such as gradient
of temperature, pressure, etc. (see also previous discussion of the physical
interpretation of Q). If, on the other hand,   acts on a vector, three different cases
are distinguished. 

2.5.1 Scalar Product of  and V
This operation is called the divergence of the vector V. The result is a  zeroth-order
tensor or a scalar quantity. Using the index notation, the divergence of V is written
as:

The physical interpretation of this purely mathematical operation is shown in Fig. 2.4.
The mass flow balance for a steady incompressible flow through an infinitesimal
volume dv = dx1dx2dx3 is shown in Fig. 2.4. We first establish the entering and
exiting mass flows through the cube side areas perpendicular to x1- direction given
by

dA1 = dx2dx3:
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(2.38)

(2.39)

(2.40)

Repeating the same procedure for the cube side areas perpendicular to x2 and x3
directions given by dA2 = dx3dx1 and dA3 = dx1dx2 and subtracting the entering mass
flows from the exiting ones, we obtain the net mass net flow balances through the
infinitesimal differential volume as:

The right hand side of Equation (2.38) is a product of three terms, the density , the
differential volume dv and the divergence of the vector V. Since the first two terms
are not zero, the divergence of the vector must disappear. As result, we find:

Equation (2.39) expresses the continuity equation for an incompressible flow, as we
will see in the following chapters. 

2.5.2 Vector Product 

This operation is called the rotation or curl of the velocity vector V. Its result is a 
first-order tensor or a vector quantity. Using the index notation, the curl of V is
written as:
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(2.41)

(2.42)

(2.43)

The curl of the velocity vector is known as vorticity, . As we will see later, the
vorticity plays a crucial role in fluid mechanics. It is a characteristic of a rotational
flow. For viscous flows encountered in engineering applications, the curl  is
always different from zero. To simplify the flow situation and to solve the equation
of motion, as we will discuss later, the vorticity vector , can under certain
conditions, be set equal to zero. This special case is called the irrotational flow.

2.5.3 Tensor Product of  and V

This operation is called the gradient of the velocity vector V. Its result is a  second
tensor. Using the index notation, the gradient of the vector V is written as:

Equation (2.41) is a second order tensor with nine components and describes the
deformation and the rotation kinematics of the fluid particle. As we saw previously,
the scalar multiplication of this tensor with the velocity vector,  resulted in the
convective part of the acceleration vector, Eq. (2.32). In addition to the applications
we discussed,  can be applied to a product of two or more vectors by using the
Leibnitz's chain rule of differentiation:

For U = V, Eq. (2.42)becomes or

Equation (2.43) is used to express the convective part of the acceleration in terms of
the gradient of kinetic energy of the flow. 

2.5.4 Scalar Product of  and a Second Order Tensor

Consider a fluid element with sides dx1, dx2, dx3 parallel to the axis of a Cartesian
coordinate system, Fig.2.5.  The fluid element is under a general three-dimensional
stress condition. The force vectors acting on the surfaces, which are perpendicular to
the coordinates x1, x2, and x3 are denoted by F1, F2, and F3,. The opposite surfaces are
subject to forces that have experienced infinitesimal changes F1 + dF1, F2 + dF2, and
F3 + dF3. Each of these force vectors is decomposed into three components Fij

according to the coordinate system defined in Fig. 2.5. 
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Fig. 2.5: Fluid element under a general three-dimensional
stress condition.

The first index i refers to the axis, to which the fluid element surface is perpendicular,
whereas the second index j indicates the direction of the force component. We divide
the individual components of the above force vectors by their corresponding area of
the fluid element side.  The  results of these divisions  exhibit the components of a
second order stress tensor represented by  as shown in Fig. 2.6.  As an example, we
take the force component and divide it by the corresponding area  results

in . Correspondingly, we divide the force component on the opposite

surface by the same area  and  obtain .

In a similar way we find the remaining stress components, which are shown in Fig.
2.6. The tensor  has nine components ij as the result of forces that are
acting on surfaces. Similar to the force components, the first index i refers to the axis,
to which the fluid element surface is perpendicular, whereas the second index j
indicates the direction of the stress component. 

Considering the stress situation in Fig.2.6, we are now interested in finding the
resultant force acting on the fluid particle that occupies the volume element

.
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Fig. 2.6: General stress condition.

For this purpose, we look at the two opposite surfaces that are perpendicular to the
axis as shown in Fig. 2.7. As this figure shows, we are dealing with 3 stress
components on each surface, from which one on each side is the normal stress

component such as and . The remaining  components are the 

shear stress components such as  and . According to Fig. 2.7 the 

force balance in -directions is: 

and in -direction, we find
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Fig. 2.7: Stresses on two opposite walls.

Similarly, in , we obtain 

Thus, the resultant force acting on these two opposite surfaces is:

In a similar way, we find the forces acting on the other four surfaces. The total
resulting forces acting on the entire surface of the element are obtained by adding the 
nine components. Defining the volume element , we divide the results
by  and obtain the resulting force vector that is acting on the volume element.
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(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

Since the stress tensor  is written as:

it can be easily shown that:

The expression is a scalar differentiation of the second order stress tensor and
is called the divergence of the tensor field .  We conclude that the force acting on
the surface of a fluid element is the divergence of its stress tensor. The stress tensor
is usually divided into its normal and shear stress parts. For an incompressible fluid
it can be written as 

with Ip as the normal and T as the shear stress tensor.  The normal stress tensor is a
product of the unit tensor  and the pressure p.  Inserting Eq. (2.47) into
(2.46) leads to

Its components are

2.5.5 Eigenvalue and Eigenvector of a Second Order Tensor
The velocity gradient expressed in Eq. (2.41) can be decomposed into a symmetric 
deformation tensor D and an antisymmetric rotation tensor :
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(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

A scalar multiplication of  D with any arbitrary vector A may result in a vector, which
has an arbitrary direction. However, there exists a particular vector V such that its
scalar multiplication with D results in a vector, which is parallel to V but has 
different magnitude:  

with V as the eigenvector and  the eigenvalue of the second order tensor D. Since
any vector can be expressed as a scalar product of the unit tensor and the vector itself

, we may write:

that can be rearranged as:

The index notation gives: 

or

Expanding  Eq. (2.55) gives a system of linear equations,

A nontrivial solution of these Eq. (2.56) is possible if and only if the following
determinant vanishes:

or in index notation:

Expanding Eq. (2.58) results in
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(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

After expanding the above determinant, we obtain an algebraic equation in  in the
following form

where and  are invariants of the tensor D defined as:

The roots of Eq. (2.60) are known as the eigenvalues of the tensor D. The
superscript refers to the roots of Eq. (2.60) - not to be confused with the
component of a vector. 

Problems

Problem 2.1: Show that  with  as a scalar function.
Problem 2.2: Show that  with V as a vector function.
Problem 2.3: Show that  with  as a scalar and A a
vector function.
Problem 2.4: Show that 

Problem 2.5: A scalar function is given as , find .
Problem 2.6:  Show that  with  and A as a scalar,
vector function, respectively.
Problem 2.7: A scalar function is given as  find  and .
Problem 2.8: An incompressible flow field with water as the working fluid is given
by the following vector function, where the coordinates are measured in meters.

a) Find the substantial acceleration of a fluid particle in vector form. 
b) Decompose the acceleration into the components, specify the nature of the flow.
c) Using the Euler equation of motion:
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d) find the pressure gradient at the p(x1,x2) = (1,2).

Problem 2.9: Starting from the above Euler equation of motion for inviscid
incompressible flow obtain: a) the energy equation by multiplying the equation of
motion with a differential displacement using the vector identity

Problem 2.10: The velocity field is given by: 

a) with B as a constant. Determine the components of the velocity gradient tensor.
Start with the coordinate invariant form of the tensor, use index notation, write
components and then plug functions in.

b) Determine the components of the deformation tensor. Start with the coordinate
invariant form of the tensor, use index notation , decompose into components and
then plug values in.

c) Determine the components of the rotation tensor. Start with the coordinate
invariant form of the tensor, use index notation , decompose into components and
then plug the values in. 

Problem 2.11: The velocity field is given by: 

a) Determine the components of the velocity gradient tensor.
b) Determine the components of the deformation tensor.
c) Determine the components of the rotation tensor.

Problem 2.12: The Navier- Stokes equation is given by : 

a) Give the index notation
b) Give the three components 
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Fig. 3.1: Material description of a fluid particle motion.

3 Kinematics of  Fluid Motion

3.1 Material and Spatial Description of the Flow Field

3.1.1 Material Description

Engineering fluid dynamic design process has been experiencing a continuous
progress using the Computational Fluid Dynamics (CFD) tools. The use of CFD-tools
opens a new perspective in simulating the complex three-dimensional (3-D) engineer-
ing flow fields. Understanding the details of the flow motion and the interpretation
of the numerical results require a thorough comprehension of fluid mechanics laws
and the kinematics of fluid motion. Kinematics is treated in many fluid mechanics
texts. Aris [1] and Spurk [2] give an excellent account of the subject. In the following
sections, a compact and illustrative treatment is given to cover the needs of engineers. 

The kinematics is the description of the fluid motion and the particles without
taking into account how the motion is brought about. It disregards the forces that
cause the fluid motion. As a result, in the context of kinematics, no conservation laws
of motion will be dealt with. Consequently, the results of kinematic studies can be
applied to all types of fluids and exhibit the ground work that is necessary for
describing the dynamics of the fluid. The motion of a fluid particle with respect to a
reference coordinate system is in general given by a time dependent position vector
x(t), Fig. 3.1.

To identify the motion of a particle or a material point labeled as 1 at a certain
instance of time t = t0 = 0, we introduce the position vector  = x(t0 ). Thus, the
motion of the fluid is described by the vector:

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 31–49.
© Springer Berlin Heidelberg 2010
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Fig. 3.2: Deformation of a differential volume at different
instant of time. 

with xi as the components of vector x , as explained in (2.1.1). Equation (3.1)
describes the path of a material point that has an initial position vector  that
characterizes or better labels the material point at t = t0. We refer to this description
as the material description also called  Lagrangian description. Considering another
material points labeled i with different - coordinates, their paths are similarly
described by Eq. (3.1). If we assume that the motion is continuous and single valued,
then the inversion of Eq. (3.1) must give the initial position  or material coordinate
of each fluid particle which may be at any position x and any instant of time t; that is,

The necessary and sufficient condition for an inverse function to exist is that the
Jacobian transformation function

does not vanish. Because of the significance of the Jacobian transformation function
to fluid mechanics, we derive this function in the following section.

3.1.2 Jacobian Transformation Function and Its Material Derivative 

We consider a differential material volume at the time t = 0, to which we attach the
reference coordinate system 1, 2, 3, as shown in Fig. 3.2. 

At the time t = 0, the reference coordinate system is fixed so that the undeformed
differential material volume dV0 (Figs. 3.2 and 3.3) can be described as:
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

Moving through the space, the differential material volume may undergo certain
deformation and rotation. As deformation takes place, the sides of the material
volume initially given as d i would be convected into a non-rectangular, or curvilinear
form. The changes of the deformed coordinates are then:

Using the index notation for the position vector , Eq. (3.5) may be
rearranged in the following way:

with the vector  as

where Gi is a transformation vector function that transforms the differential changes
d i into dxi. Figure 3.3 illustrates the deformation of the material volume and the
transformation mechanism. The new deformed differential volume is obtained by:

Introducing Eq. (3.6) into (3.8) leads to:

Inserting Gi from Eq. (3.7) into Eq. (3.9) and considering (2.2.2), we arrive at:
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Fig. 3.3: Transformation of d 1, d 2, d 3 into dx1, dx2, and dx3 using G-
transformation.

(3.11)

(3.12)

(3.13)

(3.14)

Now we replace the vector product and the following scalar product of the two unit
vectors in Eq. (3.10) with the permutation symbol and the Kronecker delta:

Applying the Kronecker delta to the terms with the indices l and n, we arrive at:

The expression in first parenthesis in Eq.(3.12) represents the Jacobian function J.

The second parenthesis in Eq. (3.12) represents the initial infinitesimal material
volume in the undeformed state at t = 0, described by Eq. (3.3). Using these terms,
Eq. (3.12) is rewritten as: 
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(3.15)

Fig. 3.4: Jacobian transformation of a material volume, change of states.

where dV represents the differential volume in the deformed state, dV0 has the same
differential volume in the undeformed state at the time t = 0. The transformation
function J is also called the Jacobian functional determinant. Performing the
permutation in Eq. (3.13), the determinant is given as:

With the Jacobian functional determinant, we now have a necessary tool to directly
relate any time dependent differential volume dV = dV(t) to its fixed reference volume
dV0 at the reference time t=0 as shown in Fig. 3.4. The Jacobian transformation
function and its material derivative are the fundamental tools to understand the
conservation laws using the integral analysis in conjunction with control volume
method. To complete this section, we briefly discuss the material derivative of the
Jacobian function.
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(3.22)

(3.16)

(3.17)

(3.19)

(3.20)

As the volume element dV follows the motion from  to
it changes and, as a result, the Jacobian transformation function undergoes a time
change. To calculate this change, we determine the material derivative of J; that is,

Inserting Eq.(3.13) into (3.16), we obtain:

Let us consider an arbitrary element of the Jacobian determinant, for
example . Since the reference coordinate is not a function of time
and is fixed, the differentials with respect to t and 2, can be interchanged resulting in:

Performing similar operations for all elements of the Jacobian determinant and noting
that the second expression on the right-hand side of Eq. (3.17) identically vanishes,
we arrive at:

The expression in the parenthesis of Eq.(3.19) is the well known divergence of the
velocity vector. Using vector notation, Eq. (3.19) becomes:

3.1.3 Velocity, Acceleration of Material Points
The velocity and the acceleration of a material point are given by: 

The velocity of the material point is written as:

(3.21)

(3.18)
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(3.23)

(3.24)

(3.25)

(3.26)

where the subscript  refers to a fixed material point. The acceleration can be obtained
form:

As seen from Eqs. (3.22) and (3.23), the derivatives were taken at a fixed ; it is the
time derivative for the -th material point, such as 1, 2, 3, i,.... and n. Regarding
the differentiation, confusion is highly unlikely to arise, since  is not a function of
time. The introduction of the term material description we used on several occasions
is obviously descriptive, because the variable  directly labels the material point at the
reference time t = 0.

3.1.4 Spatial Description
The material description we discussed in the previous section deals with the motion
of the individual particles of a continuum, and is used in continuum mechanics. In
fluid dynamics, we are primarily interested in determining the flow quantities such
as velocity, acceleration, density, temperature, pressure, and etc., at fixed points in
space. For example, determining the three-dimensional distribution of temperature,
pressure and shear stress helps engineers design turbines, compressors, combustion
engines, etc. with higher efficiencies. For this purpose, we introduce the spatial
description, which is also called the Euler description. The independent variables for
the spatial descriptions are the space characterized by the position vector x and the
time t. Consider the transformation of Eq. (3.1), where  is solved in terms of x:

The position vector  in the velocity of the material element  is replaced by Eq.
(3.24):

For a fixed x, Eq. (3.26) exhibits the velocity at the spatially fixed position x as a
function of time. On the other hand, for a fixed t, Eq. (3.26) describes the velocity at
the time t. With Eq. (3.26), any quantity described in spatial coordinates can be
transformed into material coordinates provided the Jacobian transformation function
J, which we discussed in the previous section, does not vanish. If the velocity is
known in a spatial coordinate system, the path of the particle can be determined as the
integral solution of the differential equation with the initial condition x(t0) along the
path x = x( ,t).
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(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

3.2 Translation, Deformation, Rotation

During a general three-dimensional motion, a fluid particle undergoes a translational
and rotational motion which may be associated with deformation. The velocity of a
particle at a given spatial, temporal position ( x + dx, t ) can be related to the velocity
at (x, t) by using the following  Taylor expansion:

Inserting in Eq. (3.27) for the differential velocity change , Eq. 
(3.27) is re-written as: 

The first term on the right-hand side of Eq. (3.28) represents the translational motion
of the fluid particle. The second expression is a scalar product of the differential
displacement dx and the velocity gradient . We decompose the velocity gradient,
which is a second order tensor, into two parts resulting in the following identity:

The superscript T indicates that the matrix elements of the second order tensor VT

are the transpositions of the matrix elements that pertain to the second order
tensor . The first term in the right-hand side represents the deformation tensor,
which is a symmetric second order tensor:

with components:

The second term of Eq. (3.28) is called the rotation or vorticity tensor, which is
antisymmetric and is given by:

The components are:
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(3.33)

(3.34)

Fig. 3.5: Translation, rotation and deformation details
of a fluid particle.

(3.35)

Inserting Eq. (3.30) and (3.32) into Eq. (3.28), we arrive at:

Equation (3.34) describes the kinematics of the fluid particle, which has a combined
translational and rotational motion and undergoes a deformation. 

Fig.  3.5 illustrates the geometric representation of the rotation and deformation, [3].
Consider the fluid particle with a square-shaped cross section in the x1-x2 plane at the
time t. The position of this particle is given by the position vector x = x(t). By moving
through the flow field, the particle experiences translational motion to a new position
x + dx. This motion may be associated with a rotational motion and a deformation.
The deformation is illustrated by the initial and final state of diagonal A-C, which is
stretched to A'-C' and the change of the angle 2  to 2 '. The rotational motion can be
appropriately illustrated by the rotation of the diagonal by the angle d 3 =  ' + d  -
, where ' can be eliminated using the relation 2 ' + d  + d  = 2 . As a result, we

obtain the infinitesimal rotation angle: 

where the subscript 3 denotes the direction of the rotation axis, which is parallel to
x3, Fig. 3.5. Referring to Fig. 3.5, direct relationships between d , d  and the velocity
gradients can be established by:
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(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

A similar relationship is given for the angle change d :

Substituting Eqs. (3.36) and (3.37) into Eq. (3.35), the rotation rate in the x3 -
direction is found: 

Executing the same procedure, the other two components are:

The above three terms in Eqs. (3.38) and (3.39) may be recognized as one-half of the
three components of the vorticity vector , which is:

Examining the elements of the rotation matrix,
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(3.41)

(3.42)

(3.43)

(3.44)

we notice that the diagonal elements of the above antisymmetric tensor are zero and
only three of the six non-zero elements are distinct. Except for the factor of one-half,
these three distinct components are the same as those making up the vorticity vector.
Comparing the components of the vorticity vector  given by Eq. (3.40) and the three
distinct terms of Eq. (3.41), we conclude that the components of the vorticity vector,
except for the factor of one-half, are identical with the axial vector of the
antisymmetric tensor, Eq. (3.41). The axial vector of the second order tensor  is the
double scalar product of the third order permutation tensor  with :

Expanding Eq. (3.42) results in:

Comparing Eq. (3.43) to (3.40) shows that the right-hand side of Eq. (3.43) multiplied
with a negative sign is exactly equal the right-hand side of Eq. (3.40). This indicates
that the axial vector of the rotation tensor is equal to the negative rotation vector and
can be expressed as:

The existence of the vorticity vector  and therefore, the rotation tensor , is a
characteristic of viscous flows that in general undergoes a rotational motion. This is
particularly true for boundary layer flows, where the fluid particles move very close
to the solid boundaries. In this region, the wall shear stress forces (friction forces)
cause a combined deformation and rotation of the fluid particle. In contrast, for
inviscid flows, or the flow regions, where the viscosity effect may be neglected, the
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(3.45)

(3.46)

(3.47)

(3.48)

rotation vector  may vanish if the flow can be considered isentropic. This ideal case 
is called potential flow, where the rotation vector  in the entire potential
flow field.

3.3 Reynolds Transport Theorem

The conservation laws in integral form are, strictly speaking, valid for closed systems,
where the mass does not cross the system boundary. In  fluid mechanics, however, we
are dealing with open systems, where the mass flow continuously crosses the system
boundary. To apply the conservation laws to open systems, we briefly provide the
necessary mathematical tools. In this section, we treat the volume integral of an
arbitrary field quantity f(X,t) by deriving the Reynolds transport theorem. This is an
important kinematic relation that we will use in Chapter 4.

The field quantity f(X,t) may be a zeroth, first or second order tensor valued
function, such as mass, velocity vector, and stress tensor. The time dependent volume
under consideration with a given time dependent surface moves through the flow field
and may experience dilatation, compression and deformation. It is assumed to contain
the same fluid particles at any time and therefore, it is called the material volume. The
volume integral of the quantity f(X,t):

is a function of time only. The integration must be carried out over the varying
volume v(t). The material change of the quantity F(t) is expressed as:

Since the shape of the volume v(t) changes with time, the differentiation and
integration cannot be interchanged. However, Eq. (3.46) permits the transformation
of the time dependent volume v(t) into the fixed volume v0 at time t = 0 by using the
Jacobian transformation function:

With this operation in Eq. (3.47), it is possible to interchange the sequence of
differentiation and integration:

The chain differentiation of the expression within the parenthesis results in
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(3.49)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

Introducing the material derivative of the Jacobian function, Eq. (3.19) into Eq. (3.49)
yields:

Equation (3.50) permits the back transformation of the fixed volume integral into the
time dependent volume integral:

According to A4.1, the first term in the parenthesis can be written as:

Introducing Eq. (3.52) into (3.51) results in:

The chain rule applied to the second and third term in Eq. (3.53) yields:

The second volume integral in Eq. (3.54) can be converted into a surface integral by
applying the Gauss' divergence theorem:

where V represents the flux velocity and n the unit vector normal to the surface.
Inserting equation (3.55) into Eq. (3.54) results in the following final equation, which
is called the Reynolds transport theorem 

(3.50)
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(3.57)

(3.58)

(3.59)

(3.60)

Equation (3.56) is valid for any system boundary with time the dependent volume V(t)
and surface S(t) at any time, including the time t = t0 , where the volume V = VC and
the surface S = SC assume fixed values. We call VC and SC the control volume and
control surface.

3.4 Pathline, Streamline, Streakline
Equation (3.23) indicates that the path of a material point is tangential to its velocity. 
Consequently, the pathline can be defined as the trajectory of a material point, in this
case, a fluid particle over a period of time. Pathline is inherent in material description. 
Fig.  3.6 exhibits the pathlines of material points labeled as k. In  spatial description
of the flow, we deal with the streamlines rather than pathlines. Consider a time
dependent (unsteady flow) velocity field at time t, where each position  x is associated
with a velocity vector. The streamlines are curves whose tangent directions have the
same directions as the velocity vectors, Fig. 3.7. To find an analytical expression for
the description of a streamline, we define a unit tangent vector to the streamline curve
S (Fig. 3.7). The direction of this unit tangent vector is then identical with the
direction of the velocity vector at the vector position X. As illustrated in Fig. 3.7, we
define the tangent unit vector as:

Considering the spatial description of the velocity vector, the unit vector tangent to
the velocity vector is constructed by: 

Applying the summation convention, the streamline is fully described by the
following three differential equations:

The infinitesimal arc length dS  can easily be eliminated by rearranging Eq. (3.59)
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A streakline represents the fluid  motion in a way that an observer can easily see. It
is a curve traced out by all particles passing through some fixed point. The plum of
smoke from a  cigarette represents a streakline (we neglect the lateral diffusion of the
smoke particle). A streakline at a fixed time t is the connecting line or the locus of
different fluid particles passing through a fixed location y at a different time . The

pathlines of the particles are given by the equation . Solving
this equation for  and replacing x by the coordinates of the fixed location
y, and setting t = , we locate the fluid particles , that were passing through the fixed
location y at time .  The pathline coordinates are obtained from .
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Thus, at the fixed time t we obtain the streakline as a curve, which connects the
different fluid particles passing though a fixed spatial location y at different time .
Fig. 3.8 explains this statement graphically.

Problems

Problem 3.1:The material description of a fluid motion is given by the pathline
equations

with k as a constant having a dimension, such that the dimensional integrity of both
sides of the above equation systems is preserved. Show that the Jacobian determinant

 does not vanish and obtain the transformation  =  (x, t).

Problem 3.2: The fluid motion is described by:

Show that the Jacobian determinant does not vanish.
Determine the velocity and acceleration components 
1) in material coordinates Vi (  j , t), Ai (  j ,t),
2) in spatial coordinates Vi (xj , t), Ai (x j , t).
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Problem 3.3: The motion of a fluid is given by the material description

a) Find the equation of pathlines in an implicit form and show that for the position
vector x at time  t = 0 the identities: x1 = ± 1 and x2 = ± 2 are valid.

b) Calculate the components of the velocity Vi ( j , t) ?
c) Determine the velocity field Vi (xk , t) and the acceleration field Ai (xk , t).
d) Explain the equation of streamline through the point (x10 , x20 ).

Problem 3.4:The motion of a fluid is described in the material coordinate by:

with a = const and =  (x, t = 0).

1) Calculate the velocity and acceleration components Vi ( j , t) and Ai ( j , t) in
material coordinates.

b) Determine the spatial description of the velocity and acceleration components 
Vi (xk  ,t) and  Ai (xk  ,t) by eliminating the material coordinate j = j (xk ,t) in the
results obtained in (a).

c) Find the acceleration components using the substantial derivatives of Vi (xk ,t).
d) Is this a potential flow?  If yes, find the potential function.

Problem 3.5: Given is the following unsteady velocity field:

a) Find the equation of streamlines through the point (x10 , x20 , x30 ) at time t.
b) Express the pathline equation of a fluid particle with a material coordinate 

x (t = 0) = .
c) Determine the particle velocity along its pathline.
d) Find the equation for streaklines.
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Problem 3.6: The nozzle of a water hose is vertically located at y  = e2 H and
oscillates with the angle = (t). Water leaves the nozzle with a constant exit velocity
U. Neglecting the air forces exerted on the water jet, determine:

a) the velocity components Vi(t) of a fluid particle which was at the nozzle exit at the
time ,

b) its pathline for x(t=0) = ,
c) the equation of streaklines.
d) Has this type of flow streamlines?

Problem 3.7: The components of a velocity flow field Vi ( j ) is given by

with the constants a and W. Determine

a) the divergence V of the flow field,
b) the rotation  × V,
c) the parametric representation of the pathlines xi = xi ( j , t) with j = xj (t = 0),
d) nonparametric representation of the projection of the pathlines in x1 , x2- plane by

eliminating the curve parameter t,
e) the projection of the streamlines in  x1 , x2- plane by integrating the differential

equations for the streamlines.

Problem 3.8: The velocity components of an unsteady two-dimensional flow field are
given by

a) Find the equation of streamline through the point (x10 , x20 )?
b) Find the equation of pathline for a fluid particle at the time t = 0 and the location 

x(t = 0) =
c) Find the equation of the streaklines through the origin (y = 0).
d) What is the velocity change that a probe would measure if it moves along the

streamline x1B = x2B = c0 t?

Problem 3.9: The velocity vector of a plane, unsteady flow field is given in
cylindrical coordinates (r, ) by

with the dimensional constants (A0, B0, a). Using cylindrical coordinates, calculate

a) the equation of streamline through the location P(r = r0,  = 0) and
b) the pathline equation of a fluid particle, which was at time t = 0 at location P.
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Problem 3.10: The velocity components of an unsteady flow field are given as

Determine the components of

a) the velocity gradient tensor,
b) the deformation tensor D and the spin tensor , as well as 
c) curl of u at point P = (1, 0, 3) and time t = t0 .
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4 Differential Balances in Fluid Mechanics

In this and the following chapter, we present the conservation laws of fluid mechanics
that are necessary to understand the basics of flow physics from a unified point of
view. The main subject of this chapter is the differential treatment of the conservation
laws of fluid mechanics, namely conservation law of mass, linear momentum, angular
momentum, and energy. In many engineering applications, such as in turbomachinery,
the fluid particles change the frame of reference from a stationary frame followed by
a rotating one. The absolute frame of reference is rigidly connected with the
stationary parts, such as casings, inlets, and exits of a turbine, a compressor, a
stationary gas turbine or a jet engine, whereas the relative frame is attached to the
rotating shaft, thereby turning with certain angular velocity about the machine axis. 
By changing the frame of reference from an absolute frame to a relative one, certain
flow quantities remain unchanged, such as normal stress tensor, shear stress tensor,
and deformation tensor. These quantities are indifferent with regard to a change of
frame of reference. However, there are other quantities that undergo changes when
moving from a stationary frame to a rotating one. Velocity, acceleration, and rotation
tensor are a few. We first apply these laws to the stationary or absolute frame of
reference, then to the rotating one. 

The differential analysis is of primary significance to all engineering applications
such as compressor, turbine, combustion chamber, inlet, and exit diffuser, where a
detailed knowledge of flow quantities, such as velocity, pressure, temperature,
entropy, and force distributions, are required. A complete set of independent
conservation laws exhibits a system of partial differential equations that describes the
motion of a fluid particle. Once this differential equation system is defined, its
solution delivers the detailed information about the flow quantities within the
computational domain with given initial and boundary conditions.

4.1 Mass Flow Balance in Stationary Frame of Reference
The conservation law of mass requires that the mass contained in a material volume

,  must be constant:

Consequently, Eq. (4.1) requires that the substantial changes of the above mass must
disappear:

(4.1)

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 51–80.
© Springer Berlin Heidelberg 2010
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(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Using the Reynolds transport theorem (see Chapter 2), the conservation of mass, Eq.
(4.2), results in:

Since this integral in Eq. (4.3) is zero, the integrand in the bracket must vanish
identically. As a result, we may write the continuity equation for unsteady and
compressible flow as: 

Equation (4.4) is a coordinate invariant equation. Its index notation in the Cartesian
coordinate system given is:

Expanding Eq. (4.5), we get:

For an orthogonal curvilinear coordinate system, the continuity equation (4.6) for an
incompressible fluid is written as (see Appendix A.34a):

Applying Eq. (4.7) to a cylindrical coordinate system with the Christoffel symbols,
Eq. (4.8), from Appendix A.56, we have

and introducing the physical components, Eq. (4.7) becomes:
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(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Equation (4.9) is valid only for cylindrical coordinate systems. To apply the
continuity balance to any arbitrary orthogonal coordinate system, one has to
determine first the Christoffel symbols as outlined in Appendix A and then find the
continuity equation.

4.1.1 Incompressibility Condition
The condition for a working medium to be considered as incompressible is that the
substantial change of its density along the flow path vanishes. This means that: 

Inserting Eq. (4.10) into (4.4) and performing the chain differentiation of the second
term in Eq. (4.4)  namely, , the continuity equation for an
incompressible flow reduces to: 

In a Cartesian coordinate system, Eq. (4.11) can be expanded as written in (4.12):

In an orthogonal, curvilinear coordinate system, the continuity balance for an in-
compressible fluid is:   

Inserting the Christoffel symbols into Eq.(4.13) and the physical components for
cylindrical coordinate systems, we obtain the continuity equation in terms of its
physical components (4.14):

4.2 Differential Momentum Balance in Stationary Frame 
of Reference

In addition to the continuity equation we treated above, the detailed calculation of the
entire flow field through  different engineering devices and components  requires the
equation of motion in differential form. In the following, we provide the equation of
motion in differential form in a four-dimensional time-space coordinate. We start
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(4.15)

Fig. 4.1: Surface and gravitational forces acting on a volume
element.

(4.16)

(4.17)

from Newton's second law of motion and apply it to an infinitesimal fluid element
shown in Fig. 4.1, with mass dm for which the equilibrium condition is written as:

The acceleration vector A is the well known material derivative (see Chapter 2):

In Eq. (4.16), A is the acceleration vector and dF the vector sum of all forces exerted
on the fluid element. In the absence of magnetic, electric or other extraneous effects,
the force dF is equal to the vector sum of the surface force dFs acting on the particle
surface and the gravity force dmg as shown in Fig. 4.1. Inserting Eq. (4.16) into Eq.
(4.15), we arrive at:
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(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

Consider the fluid element shown in Fig. 4.1 with sides dx1, dx2, dx3 parallel to the
axis of a Cartesian coordinate system. The stresses acting on the surfaces of this
element are represented by the stress tensor  which has the components ij that
produce surface forces. The first index i refer to the axis, on which the fluid element
surface is perpendicular, whereas the second index j indicates the direction of the
stress component. Considering the stress situation in Fig. 4.1, the following resultant
forces are acting on the surface dx2dx3 perpendicular to the x1 axis:

The total resulting forces acting on the entire surface of the element are obtained by
adding the nine components that result in Eq. (4.19):

Since the stress tensor  and the volume of the fluid element are written as:

It can be easily shown that Eq. (4.19) is the divergence of the stress tensor expressed
in Eq. (4.20) 

The expression  is the scalar differentiation of the second order tensor  and is
called divergence of the tensor field  which is a first order tensor or a vector.
Inserting Eq. (4.21) into Eq. (4.17) and divide both sides by dm, results in the
following Cauchy equation of motion:

The stress tensor in Eq. (4.22) can be expressed in terms of deformation tensor, as we
will see in the following section.
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(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

4.2.1 Relationship between Stress Tensor and Deformation Tensor 
Since the surface forces resulting from the stress tensor causes a deformation of fluid 
particles, it is obvious that one should attempt to find a functional relationship
between the stress tensor and the velocity gradient:

As we saw in Chapter 2, the velocity gradient in Eq. (4.23) can be decomposed into
an symmetric part called deformation tensor and an anti-symmetric part, called
rotation or vorticity tensor:

Consequently, the stress tensor may be set:

with the deformation tensor as:

and the rotation tensor, which is antisymmetric, and is given by Eq. (2.27):  

Since the stress tensor  in Eq. (4.25) is a frame indifferent quantity, it remains
unchanged or invariant under any changes of frame of reference. Moving from an
absolute frame into a relative one exhibits such a change in frame of reference. Thus,
the stress tensor  satisfies the principle of frame indifference, also called the
principle of material objectivity. To satisfy the objectivity principle, the arguments
of the functional f must also be frame indifferent quantities. This is true only for the
first argument D in Eq. (4.25). The second argument  in Eq. (4.25) is not a frame
indifferent quantity. As a consequence, the stress tensor is a function of deformation
tensor D only. 

A general form of Eq. (4.28) may be a polynomial in D as suggested in [1]:
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(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

with I = eiej ij as the unit Kronecker tensor. To fulfill the frame indifference
requirement, the functions fi must be invariant. This means they depend on either the
thermodynamic quantities, such as pressure, or the following three-principal invariant
of the deformation tensor:

Of particular interest is the category of those fluids for which there is a linear
relationship between the stress tensor and the deformation tensor. Many working
fluids used in engineering applications, such as air, steam, and combustion gases,
belong to this category. They are called the Newtonian fluids for which Eq. (4.29)
is reduced to: 

where the functions f1 and f2 are given by:

with  as the absolute viscosity and as the bulk viscosity. Introducing Eq. (4.34)
into (4.29) results in the Cauchy-Poisson law:

In Eq. (4.35), the terms with the coefficients involving viscosity are grouped together
leading to a pressure tensor  and a friction stress tensor  that reads:

The first term on the right-hand side of Eq. (4.35) associated with the unit Kronecker
tensor, pI, represents the contribution of the thermodynamic pressure to the normal
stress. The second term, , exhibits a normal stress contribution caused by a
volume dilatation or compression due to the compressibility of the working medium.
For an incompressible medium, this term identically vanishes. The coefficient 
related to the coefficient of shear viscosity  and the bulk viscosity is given in Eq.
(4.34) as . For most of the fluids used in engineering applications, the
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(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

bulk viscosity may be approximated as leading to . This
relation, frequently called the Stokes’ relation, is valid for monoatomic gases [2].
Finally, the last term expresses a direct relationship between the shear stress tensor
and the deformation tensor. For an incompressible fluid, Eq. (4.35) reduces to:

4.2.2 Navier-Stokes Equation of Motion
Inserting Eq. (4.35) into (4.22):

This is often referred to as the Navier-Stokes equation for compressible fluids.  In
Eq. (4.38), the coefficient can be expressed in terms of shear viscosity . This,
however, requires rearranging the second and third term in the bracket by using the
index notation. For we may write:

We apply the same procedure to :

Introducing Eqs.(4.39) and (4.40) into Eq. (4.38), we arrive at
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(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

For , Eq. (4.41)  results in:

For incompressible flows with constant shear viscosity, Eq. (4.38) reduces to:

Performing the differentiation on the right-hand side and dividing by  leads to:

with  = /  as the kinematic viscosity and the Laplace operator .
Equation (4.38) or its special case, Eq. (4.44) with the equation of continuity and
energy, exhibits a system of partial differential equations. This system describes the
flow field completely. Its solution yields the detailed distribution of flow quantities. 
In many engineering applications, with the exception of hydro power generation, the
contribution of the gravitational term compared to the other terms
is negligibly small. Equation (4.44) in Cartesian index notation is written as:

Using the Einstein summation convention, the three components of Eq. (4.45) are:

To obtain the components of the Navier-Stokes equation in an orthogonal curvilinear
coordinate system, we use metric coefficients, Christophel symbols, and the index
notation outlined in Appendix A:
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(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

Using the Christoffel symbols and the physical components for a cylindrical
coordinate system as specified in Appendix A, we arrive at the component of Navier-
Stokes equation in r-direction:

in -direction,

and in z-direction:

4.2.3 Special Case: Euler Equation of Motion
For the special case of steady inviscid flow (no viscosity), Eq. (4.44) is reduced to:
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(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

This equation is called Euler equation of motion. Its index notation is:

Replacing the convective term in Eq. (4.51) by the following vector identity: 

we find that the convective acceleration is expressed in terms of the gradient of the
kinetic energy , and a second term which is a vector product
of the velocity and the vorticity vector . If the flow field under investigation
allows us to assume a zero vorticity within certain flow regions, then we may assign
a potential to the velocity field that significantly simplifies the equation system. This
assumption is permissible for the flow region outside the boundary layer and is
discussed more in detail in Chapter 6. 

Before proceeding with the conservation of energy, in context of the Euler
equation that describes the motion of inviscid flows, it is appropriate to present the
Bernoulli equation, which exhibits a special integral form  of Euler equations. For this
purpose, we first rearrange the gravitational acceleration vector by introducing a
scalar surface potential z, whose gradient  has the same direction as the  unit
vector in -direction. Furthermore, it has only one component that points in the
negative -direction. As a result, we may write  . Thus, the 
Euler equation of motion assumes the following form: 

Equation (4.54) shows that despite the inviscid flow assumption, it contains vorticities
that are inherent in viscous flows and cause additional entropy production. This can
be expressed in terms of the first law of thermodynamics , , where
the changes of entropy, enthalpy, and static pressure, ds, dh, dp, or other thermo-
dynamic properties are expressed in terms of the product of their gradients and a
differential displacement as shown by Eq. (2. 24)  . Replacing the
quantity Q by the following properties, we obtain:

with s as the specific entropy, h as the specific static enthalpy and p the static
pressure. Inserting the above property changes into the first law of thermodynamics,

, we find:
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(4.57)
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Fig. 4.2: Fluid particles at different thermodynamic state conditions.

(4.58)

As we comprehensively discuss in Chapter 5, the expression in the parentheses on the
left-hand side of Eq. (4.56) is the total enthalpy . In the
absence of mechanical or thermal energy addition or rejection, H remains constant
meaning that its gradient vanishes. Furthermore, for steady flow cases,  Eq. (4.56)
reduces to:

Equation (4.57) is an important result that establishes a direct relation between the
vorticity and the entropy production in inviscid flows. In a flow field with
discontinuities as a result of the presence of shock waves, there are always jumps in
velocities across the shock front causing vorticity production and therefore, changes
in entropy.

The Bernoulli equation can be obtained as a scalar product of the Euler differential
equation (4.51) and a differential displacement vector. Figure 4.2 shows different
displacement vectors that, in principle, may be used. The vector shows the
differential distance between two neighboring fluid particles located at positions A
and B at the same time t with the thermodynamic states shown in Fig. 4.2. The
particles  move along their flow paths and at t+dt, they occupy the positions A` and
B`. The distance AA` is denoted by . The thermodynamic conditions at A`, denoted
by , indicate that the changes this particle has under-
gone are different from those of particle B.  Thus, the vector  is the
appropriate vector which we choose to multiply with the Euler equation of motion.
For steady flow cases, the differential distance  along the particle path is identical
with a distance along a streamline. Thus, the multiplication of Euler equation (4.56)
with the differential displacement , gives:

The terms in Eq. (4.58) must be rearranged as follows. The first term starts with a
scalar product of two vectors, eliminating the Kronecker delta and utilizing the
Einstein summation convention results in:
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(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

For rearrangement of the second and third term, we use Eq. (2. 24) .
The fourth term identically vanishes because the vector V is perpendicular to the
vector . As a result, we obtain:

Integrating Eq. (4.60) results in:

Integrating  Eq. (4.60) from a begin point B to an end point E, we arrive at:

For an unsteady, incompressible flow, the integration of Eq. (4.60) delivers:

And finally, for a steady, incompressible flow, Eq. (4.63) is reduced to:

which is the Bernoulli equation. 

4.3 Some Discussions on Navier-Stokes Equations

The flow in engineering applications, such as in a turbine, a  compressor or a
combustion engine is characterized by a three-dimensional, highly unsteady motion
with random fluctuations due to the interactions between the stator and rotor rows.
Considering the flows within the blade boundary layer, based on the blade geometry
and pressure gradient, three distinctly different flow patterns can be identified: 1)
laminar flow (or non-turbulent flow) characterized by the absence of stochastic
motions, 2) turbulent flow, where flow pattern is determined by a fully stochastic
motion of fluid particles, and 3) transitional flow characterized by intermittently
switching from laminar to turbulent at the same spatial position. Of the three patterns,
the predominant one is the transitional flow pattern. The Navier-Stokes equations
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(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

presented in this section generally describe the steady and unsteady flows through a
variety of engineering components. Using a direct numerical simulation (DNS)
approach delivers the most accurate results [3]. However, the computational domain
must be at least as large as the physical domain. As extensively discussed in [1], the
application of DNS, for the time being, is restricted to simple flows at low Reynolds
numbers. For calculating the complex  flow field with a reasonable time frame, the
Reynolds averaged Navier-Stokes (RANS) can be used. This issue is discussed in
Section 4.6. 

4.4 Energy Balance in Stationary Frame of Reference

For the complete description of flow process, the total energy equation is presented.
This equation includes mechanical and thermal energy balances. 

4.4.1 Mechanical Energy
The mechanical energy balance is established by the scalar multiplication of the
equation of motion, Eq. (4.22), with the local velocity vector:

The expression on the right-hand side is obtained from the differentiation:

The velocity gradient  V can be decomposed into deformation D and rotation  part
as shown in Eq. (4.24):

With this operation, the trace of the second order tensor in Eq. (4.66) is calculated
from:

Since the second term on the right-hand side of Eq. (4.68) vanishes identically, Eq.
(4.66) reduces to:

As a result, the mechanical energy balance, Eq. (4.65), becomes:
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(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

Incorporating Eq. (4.35) for Newtonian fluids into (4.70) leads to:

with . For incompressible flow, Eq. (4.71) is reduced to

The index notation of (4.72) is:

The sum of the last two terms in the second bracket of Eq. (4.71) is called the
dissipation function:

The dissipation function Eq. (4.74) is identical with the double scalar product between
the friction stress tensor and the deformation tensor:

The index notation of (4.74) is 
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(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

Expanding (4.76) results in:

In Eq. (4.77) the coefficient  can be replaced by   from Eq. (4.34). For
an incompressible flow, Eq. (4.74) reduces to:

and as a result, Eq. (4.77) is written as:

The dissipation function indicates the amount of mechanical energy dissipated as
heat, which is due to the deformation caused by viscosity. Consider a viscous flow
along a flat plate, an aircraft wing, a compressor stator or turbine rotor blade or any
other engineering surfaces exposed to a flow. Close to the wall in the boundary layer
region, the velocity experiences a high deformation because of a no-slip condition.
By moving outside the boundary layer, the rate of deformation decreases leading to
lower dissipation. To analyze the individual terms in the equation of energy and to
demonstrate the role of shear stress and its effect on the dissipation of mechanical
energy, we introduced the friction stress tensor, Eq. (4.36)

The off-diagonal elements of this tensor represent the shear stress components and
characterize the shear-deformative behavior of this tensor. The diagonal elements  of
this tensor 
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(4.82)

(4.83)

(4.84)

exhibit additional contributions to the normal stress components of the pressure 
tensor . For an incompressible flow with , these terms
identically disappear. Inserting Eq. (4.80) into (4.71), we arrive at:

Equation (4.82) exhibits the mechanical energy balance in differential form. The first
term on the right-hand side represents the rate of mechanical energy due to the change
of pressure acting on the volume element. The second term is the rate of work done
by viscous forces on the fluid particle. The third term represents the rate of
irreversible mechanical energy due to the friction stress. It dissipates as heat and
increases the internal energy of the system. This term corresponds to the dissipation
function defined by Eq. (4.78). Finally, the forth term represents the mechanical
energy  necessary to overcome the gravity force acted on the fluid particle. Equation
(4.82) exhibits the general differential form of mechanical energy balance for a

viscous flow. For a steady, incompressible, inviscid flow, Eq. (4.82) is simplified as:
where the vector g is replaced by . Integration of the above equation leads
to the Bernoulli equation of energy:

This equation is easily derived by multiplying the Euler equation of motion with a
differential displacement. 

4.4.2 Thermal Energy Balance
The thermal energy balance is described by the first law of thermodynamics which
is postulated for a closed “thermostatic system”. For this system, properties, such as
temperature, pressure, entropy, internal energy, etc., have no spatial gradients. Since
in an open system the thermodynamic properties undergo time and spatial changes,
the classical first law must be formulated under open system conditions. To do so, we
start from an open system within which a steady flow process takes place and replaces
the differential operator, d, from classical thermodynamics by the substantial
differential operator D. This operation implies the requirement that the thermo-
dynamic system under consideration be at least in a locally stable equilibrium state.
Starting from the first law for an internally irreversible system:
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(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

where u is the internal energy, and Q the thermal energy added to (or removed from)
the system, p the thermodynamic pressure, v the specific volume, and wf the part of
mechanical energy dissipated as heat by the internal friction. The subscript f refers to
the irreversible nature of the process caused by internal friction. Applying the
differential operator D:

where  is the rate of thermal energy added (or removed) to or from the open
system per unit mass and time. It can be expressed as the divergence of the thermal
energy flux vector . The rate of the mechanical energy dissipated as
heat  is identical to the third term T:D/  in Eq. (4.82):

The negative sign of  is introduced to account for a positive heat transfer to the
system. Furthermore, since the first term on the left-hand side is per unit mass and
time, the divergence of the heat flux vector  as well as the dissipation term T:D,
had to be divided by the density to preserve the dimensional integrity. Multiplying
both sides of Eq. (4.87) with , we obtain

In Eq. (4.88), first we replace the specific volume v by 1/  and consider the continuity
equation

then we insert Eq. (4.89) into (4.88) and arrive at:

In Eq. (4.90) the internal energy can be related to the temperature by the
thermodynamic relation  with cv as the specific heat at constant volume. The
heat flux vector  can also be expressed in terms of temperature using the Fourier
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(4.91)

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

heat conduction law. For an isotropic medium, the Fourier law of heat conduction is
written as: 

with k (kJ/msec K) as the thermal conductivity. Introducing Eq. (4.91) into (4.90), for
an incompressible fluid we get:

For a steady flow, Eq. (4.92) can be simplified as:

The thermal energy equation can equally well be expressed in terms of enthalpy 

Following exactly the same procedure that has lead to Eq. (4.90), we find 

Introducing the temperature in terms of :

The index notation of Eq. (4.96) reads:

and from Eq. (4.79), we can expand (4.97) to arrive at:  
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(4.99)

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

4.4.3 Total Energy
The combination of the mechanical and thermal energy balances, Eqs. (4.82) and Eq.
(4.90), results in the following total energy equation:

We may rearrange the second and third term on the right-hand side of Eq. (4.99)  

The argument inside the parenthesis within the bracket exhibits the stress tensor 

Thus, the second term on the right-hand side constitutes the mechanical energy
necessary to overcome the surface forces. The heat flux vector in Eq. (4.101) can be
replaced by the Fourier equation (4.91) that gives

Equation (4.101) may be written in different forms using different thermodynamic
properties. Since in an open system enthalpy is used, we replace the internal energy
by the enthalpy  and find

and with the Fourier equation (4.91)

The expression in the parenthesis on the left-hand side is called the total enthalpy
which we is defined as . With this definition, the re-arrangement of
Eq. (4.104) gives 

and its index notation reads
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(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

For steady state, the gravitational term may be brought into the parenthesis by
considering .

4.4.4 Entropy Balance
The second law of thermodynamics expressed in terms of Gibbs entropy equation is 

The infinitesimal heat  added to or rejected from the system may include the heat
generated by the irreversible dissipation process. Replacing the differential d by the
material differential operators, we arrive at:

The right-hand side of Eq. (4.108) is expressed by Eq. (4.90) as:

replacing the left-hand side of Eq. (4.109) by Eq. (4.108) results in

The second term on the right-hand side, which includes the second order friction
tensor T, is the dissipation function Eq. (4.74)

This equation shows clearly that the total entropy change generally consists of
two parts. The first part is the entropy change due to a reversible heat supply to the
system (addition or rejection) and may assume positive, zero, or negative values. The
second term exhibits the entropy production due to the irreversible dissipation and is
always positive. Thus, Eq. (4.111) may be modified as:   
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(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

with   and . The reversible part exhibits the

heat added/rejected reversibly to/from the system, thus the entropy change can
assume positive or negative values, whereas, for the irreversible, the entropy change
is always positive. 

4.5 Differential Balances in Rotating Frame of Reference

4.5.1 Velocity and Acceleration in Rotating Frame
We consider now a rotating frame of reference that is attached to the rotor, thus, turns
with an angular velocity  about the machine axis. From a stationary observer point
of view, a fluid particle that travels through a rotation frame has at an arbitrary time
t, the position vector r, and a relative velocity W. In addition, it is subjected to the
inherent rotation of the frame, causing the fluid particle to rotate with the velocity

. Thus, the observer located outside the rotating frame observes the velocity

Inserting Eq. (4.113) into Eq. (4.16), the substantial acceleration is found

We multiply Eq. (4.114) out and find

Investigating the terms in Eq. (4.115), we begin with the second term on the right-
hand side

since in the first term on the right-hand side of Eq. (4.116) . Furthermore,
the last three terms of Eq. (4.115) are:  

Detailed derivations of Eq. (4.117) are given in Vavra [4]. Considering Eqs. (4.116)
and (4.117), Eq. (4.115) becomes
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(4.118)
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(4.119)

The first term on the right-hand side  expresses the local acceleration of the
velocity field within the relative frame of reference. In the second term,  is the
angular velocity acceleration. It is non-zero during any transient operation of
components with rotating shaft, such as a turbomachine, where the shaft speed
experience changes. The third term, , constitutes the convective term within
the relative frame of reference. The forth term is the centrifugal force. Finally, the last
term in Eq. (4.118), , is called the Coriolis acceleration. It can be equal zero
only if the relative velocity vector W and the angular velocity vector  are parallel.
As shown in Eqs. (4.117), two terms contributed to producing the Coriolis
acceleration. The first term originates from the spatial changes of W because of the
rotation. The second one from the changes in circumferential velocity, , in
the direction of W. For the case that  and  W are parallel, both terms become zero.
The centrifugal acceleration and Coriolis accelerations are fictitious forces that are
produced as a result of transformation from absolute into a relative frame of
reference. Figure 4.2 shows the direction of the Coriolis force which is perpendicular
to the plane described by the two vectors  and W. The force vector, , is
perpendicular and pointing toward the axis of rotation. The direction of the radius
vector er is expressed in terms of the radius gradient .

4.5.2 Continuity Equation in Rotating Frame of Reference
Inserting the velocity vector from Eq. (4.113) into the continuity equation for absolute
frame of reference, Eq. (4.4), we obtain:
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(4.120)

(4.122)

(4.123)

(4.124)

When we expand the second term in Eq. (4.119), we find:

After a simple rearrangement, Eq. (4.120) leads to:

It is necessary to discuss the individual terms in Eq. (4.121) before rearranging them.
The first term indicates the time rate of change of density at a fixed station in an
absolute (stationary) frame of reference. The second term involves the spatial change
of density registered by a stationary observer. Combining the first and second terms 
expresses the time rate of change of the density within the rotating frame of reference:

From Eq. (4.122), it becomes clear that in cases where the local change of the density
in an absolute frame might be zero, , in a rotating frame of reference, it will
become a function of time . Since the product exhibits the
circumferential change of the density in the rotating frame, it can vanish only if the
flow within the rotating frame is considered axisymmetric. Since the last term in Eq.
(4.121), , identically vanishes, the equation of continuity in a rotating
frame reduces to: 

Equation (4.123) has the same form as Eq. (4.4), however, the spatial operator  as
well as the time derivative  refer to the relative frame of reference. Since
the flow in the rotor is understood exclusively with reference to a relative frame of
reference, from now on it is unnecessary to differentiate between the operators and
the time derivatives.   

4.5.3 Equation of Motion in Rotating Frame of Reference
Replacing the acceleration in Eq. (4.22) by the expression obtained in (4.118):

and replacing  stress tensor    by Eq. (4.35), , Eq. (4.124)
becomes:

(4.121)
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(4.125)

(4.126)

(4.127)

(4.128)

(4.129)

(4.130)

(4.131)

(4.132)

Combining the last two terms in the bracket as , and
setting for , we re-arrange Eq. (4.125) as:

The friction force f was given a negative sign since it opposes the flow motion and
causes energy dissipation. Using the Clausius entropy relation, the pressure gradient
can be expressed in terms of enthalpy and entropy gradients:   

The thermodynamic properties s, h, and p are uniform continuous scalar point
functions whose changes are expressed as: 

with  as the differential displacement along the path of the fluid particle. We
replace the quantities in Eq. (4.127) by those in Eq. (4.128) and arrive at:

Since the differential displacement in Eq. (4.129) , , the vector sum in the
bracket must vanish

Replacing the pressure gradient term in Eq. (4.126) by Eq. (4.130), we find  

Further treatment of Eq. (4.131) requires a re-arrangement of few terms. As Fig. 4.3
shows, the  centrifugal acceleration points in the negative direction of the gradient of
the radius vector and can be written as:
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(4.133)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

With Eq. (4.132), the equation of motion in a relative frame of reference becomes:

Using the vector identity,

Equation (4.133) is modified as:

For a constant rotational speed and with , we find,

We introduce now the concept of the relative total enthalpy:

4.5.4 Energy Equation in Rotating Frame of Reference
The energy equation for rotating frame of reference is simply obtained by multiplying
the equation of motion with a differential displacement  along the path of
a particle that moves within a rotating frame of reference. It is given by,

Multiplying out and re-arranging the terms, we find:
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(4.140)

(4.141)

(4.142)

(4.143)

(4.144)

(4.145)

(4.146)

In Eq. (4.139),  dR denotes the changes in a relative frame of reference. Since the
vectors  and  are perpendicular to W, their scalar products with W
are zero. As a result, Eq. (4.139) reduces to: 

Multiplying out the right-hand side and considering the identity , Eq.
(4.140) is modified as:

The term  is identified as heat that consists of two contributions. The first
contribution comes from heat supplied or removed from a fluid particle that moves
along its path within the relative frame of reference. We call this contribution the
reversible part, . The second contribution is the irreversible part due to the
internal friction and dissipation of mechanical energy into heat, which is identical
with the friction work, . We summarize the above statement in the
following relation:

A simple re-arrangement of Eq. (4.142) yields:

We insert Eq. (4.143) into Eq. (4.141) and obtain:

With Eq. (4.144), the changes of relative total enthalpy in a relative frame of
reference along the path of a fluid particle is expressed as:

Only for adiabatic steady flow inside the rotating frame of reference the enthalpy
change is zero resulting in:
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(4.147)

Fig. P4.1

It should be pointed out that Eq (4.146) is strictly valid along the path of a fluid
particle. If the flow within the relative frame can be approximated as steady, then Eq.
(4.146) is also valid along the streamline. Its value changes however, by moving from
one streamline to the next. For a turbine or a compressor rotor row under the above
assumption, Eq. (4.146) is written as:

where the subscripts 2 and 3 in Eq. (4.147) refer to the inlet and exit station of the
rotor row.

Problems

Problem 4.1: Incompressible Newtonian fluid with constant density and viscosity
flows between two parallel plates with infinite width. Body forces are neglected.
Given are the plate height h, the components of the pressure gradient,

the velocity field between the plates 

the density  and the absolute viscosity 

a) Show that the given velocity field satisfies the continuity and the Navier-Stokes
equation.

b) Determine the components of the stress tensor.
c) Calculate the dissipation function .
d) Find the energy per unit depth, length, and time dissipated in heat within the gap.
e) Calculate the principal stresses and their directions.

Problem 4.2: Newtonian fluid flows through the sketched channel with infinite
extensions in x1- and x3- direction and the height h. The plane flow is steady, the
density  and the viscosity  are assumed to be constant, and body forces are
neglected. The top and bottom wall are porous such that a constant normal velocity
component VW can be established at the walls. The pressure gradient in x1- direction
is constant ( p/ x1 = -K). Because of the infinite extension of the channel, the
velocity distribution does not depend upon x1. The variables , , K, h, VW are given. 
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a) Using the continuity equation, calculate the distribution of the
velocity component in x2- direction u2(x2).

b) Simplify the x1- component of the Navier-Stokes equation for
this problem.

c) Give the boundary condition for the velocity component u1.
d) Calculate the velocity distribution u1(x2). (Hint: After solving

the homogeneous differential equation, the particular solution
of the inhomogeneous differential equation can be found
setting  = const . x2 .)

Problem 4.3: A Newtonian  fluid with constant density
and viscosity flows steadily through a two dimensional
vertically positioned channel with the width h shown in
Fig. P4.2. The motion of the fluid is described by the
Navier Stokes equations. The flow is subjected to the
gravitational acceleration  and a constant
pressure gradient in flow direction . Assume
that
a) Determine the solution of the Navier-Stokes equa-

tions.
b) Write a computer program; show the velocity

distributions for the following  cases: (a) For K = 0, 
    (b) K >0, and (c) K <0.
c) For which K there is no flow? 

Problem 4.4: A Newtonian  fluid with constant
density and viscosity flows steadily through a
two dimensional positioned channel positioned at
an angle   shown in Fig. P4.3 with the width 2h.
The motion of the fluid is described by the
Navier Stokes equations. The flow is subjected to
the gravitational acceleration 
and a constant pressure gradient in flow direction

. Assume that

a) Determine the solution of the Navier-Stokes
b) Equations. Write a computer program and plot

the velocity distributions for: (a) For K = 0, (b) K >0, and (c) K <0.
c) For which K there is no flow? 
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Problem 4.5: River water considered a Newtonian fluid with constant viscosity and
density steadily flows down an inclined river bed at a constant height h as shown in
the Fig. P4.4. The motion of the fluid is described by the Navier-Stokes equation.
Along the sloped river bed, the flow is driven by the gravitational acceleration and its
free surface is subjected to the constant atmospheric pressure patm. The air viscosity
at the free surface is negligible compared to the water viscosity. Furthermore, we
assume that the flow is unidirectional in x1 direction.

a) Decompose the Navier-Stokes equation into its components.  
b) Show that the    
c) Solve the Navier-Stokes equations and find the velocity distribution in x2-

direction.
d) Determine the velocity ratio 
e) Determine the river mass flow . 

Problem 4.6: Give the index notation of the friction stress tensor Eq. (4.36) and its
matrix and show that the diagonal elements of the matrix is identical with Eq. (4.81). 

Problem 4.7: Give the index notation of the energy Eq. (4.71) and expand the result. 

Problem 4.8: Insert the equation of continuity into the equation of energy (4.86)  to
arrive at Eq.(4.87). 

Problem 4.9: Give the index notation of Eq. (4.93) and expand the result

Problem 4.10: Give the index notation of Eq. (4.111) and expand the result

Problem 4.11: We reconsider the flow calculated in Problem 4.1 and assume a
calorically perfect fluid with a constant heat conductivity . We further assume a
constant temperature at the top wall T0  and a full heat insulation at the bottom wall.

a) Calculate the temperature distribution T(x2 )in the gap.
b) Find the temperature at the bottom wall.
c) Determine the heat flux per unit area through the top wall.
d) Calculate the entropy increase Ds/Dt of the fluid inside the gap.

References



(5.1)

(5.2)

(5.3)

(5.4)

5 Integral Balances in Fluid Mechanics

In the following sections, we summarize the conservation laws in an integral form
essential for applying to fluid mechanics. Using the Reynolds transport theorem
explained in Chapter 2, we will start with the continuity equation which will be
followed by the equation of linear momentum, angular momentum, and energy. Vavra
[1] utilized an alternative approach by directly integrating the differential balances.
Both approaches are valid and lead to the same results.

5.1  Mass Flow Balance

We apply the Reynolds transport theorem by substituting the function f(X,t) in
Chapter 2 by the density of the flow field:

where the density generally changes with space and time. To obtain the integral
formulation, the Reynolds transport theorem from Chapter 2 is applied. The
requirement that the mass be constant leads to:

If the density does not undergo a time change (steady flow), the above equation is
reduced to:

For practical purposes, a fixed control volume is considered where the integration
must be carried out over the entire control surface:

The control surface may consist of one or more inlets, one or more exits, and may
include porous walls, as shown in Fig. 5.1. For such a case, Eq. (5.4) is expanded as:

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 81–138. 
© Springer Berlin Heidelberg 2010
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Fig. 5.1: Control volume, unit normal and tangential vectors

(5.6)

As shown in Fig. 5.1 and by convention, the normal unit vectors, ,
point away from the region bounded by the control surface. Similarly, the tangential
unit vectors, , point in the direction of shear stresses. A representative
example where the integral over the wall surface does not vanish is a film cooled
turbine blade with discrete film cooling hole distribution along the blade suction and
pressure surfaces, as shown in Fig. 5.2. To establish the mass flow balance through
a turbine or cascade blade channel, the control volume should be placed in such a way
that it includes quantities that we consider as known as well as those we seek to find.
For the turbine cascade in Fig. 5.2, the appropriate control surface consists of the
surfaces AB, BC, CD, and DA. The two surfaces, BC and DA, are portions of two
neighboring streamlines. Because of the periodicity of the flow through the cascade,
the surface integrals along these streamlines will cancel each other. As a result, the
mass flow balance reads:
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Fig. 5.2: Flow through a rectilinear turbine cascade with discrete film cooling
holes.

(5.7)

(5.8)

The last surface integral accounts for the mass flow injection through the film cooling
holes. If there is no mass diffusion through the wall surfaces, the last integral in Eq.
(5.6) will vanish, leading to:

5.2 Balance of Linear Momentum

The momentum equation in integral form applied to a control volume determines the
integral flow quantities such as blade lift, drag forces, average pressure, temperature,
and entropy. The motion of a material volume is described by Newton’s second law
of motion which states that mass times acceleration is the sum of all external forces
acting on the system. In the absence of electrodynamic, electrostatic, and magnetic
forces, the external forces can be summarized as the surface forces and the
gravitational forces: 
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(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

Equation (5.8) is valid for a closed system with a system boundary that may undergo
deformation, rotation, expansion or compression. In a component subjected to flow,
however, there is no closed system with a defined system boundary. The mass is
continuously flowing from one point within a t component to another point. Thus, in
general, we deal with mass flow rather than mass. Consequently, Eq. (5.8) must be
modified in such a way that it is applicable to a predefined control volume with mass
flow passing through it. This requires applying the Reynolds transport theorem to a
control volume, as we already discussed in the previous section. For this purpose, we
prepare Eq. (5.8) before proceeding with the Reynolds transport theorem. In the
following steps, we add a zero-term to Eq. (5.8):

Adding this term to Eq. (5.8) leads to:

Using the Leibnitz’s chain rule of differentiation, Eq. (5.10) can be rearranged as:

Applying the Reynolds transport theorem to the left-hand side of Eq. (5.11), we arrive
at:

and replace the second volume integral by a surface integral using the Gauss
conversion theorem (see Chapter 2):

We now consider the surface and gravitational forces acting on the moving material
volume under investigation. The first term on the right-hand side of Eq. (5.10)
represents the resultant surface force acting on the entire control surface. It can be
written as the integral of a scalar product of the normal unit vector with the total stress
tensor acting on the surface element ds:
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(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

The product of the normal vector and the stress tensor gives a stress vector which can
be decomposed into a normal and a shear stress force

with n as the normal unit vector that points away from the surface and t as the
tangential unit vector.  The negative signs of n and t have been chosen to indicate that
the pressure p and the shear stress  are exerted by the surroundings on the surface
S.  Thus, the surface force acting on a differential surface is:

Inserting Eq. (5.16) into Eq. (5.11) and considering Eq. (5.12), we arrive at: 

Since the control volume does not change with time (fixed), Eq. (5.17) becomes with
dv = dm:

In Eq. (5.18) the integration must be carried out over the entire control surface. For
a control surface consisting of inlet, exit, and wall surfaces, the second integral on the
left-hand side gives:

Evaluating the integrands on the right-hand side of Eq. (5.19) by considering the
directions of the unit vectors shown in Fig. 5.3, we find for the single inlet cross 
section:

In the case of a control volume with multiple inlets as Fig. 5.1 shows, we need to
integrate over the entire inlet cross sections. For the exit cross section we obtain:
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(5.21)

Fig. 5.3: Control volume, single inlet, single and outlet and porous wall. 

(5.22)

(5.23)

And, finally, for the wall: 

Inserting the Eqs. (5.20) through (5.22) into Eq. (5.19) and the results into Eq. (5.18),
we obtain a relation that includes the mass flow through the control volume: 

The first term expresses the total momentum exchange of all particles contained in the
region (control volume) under consideration, at the time t, because of velocity
changes produced by a non-steady flow. For a steady flow, it vanishes. The second
and third integral are leaving and entering velocity momenta. The fourth term exhibits
the velocity momentum through the wall. This term is different from zero if the wall
is porous (permeable) or has perforations or slots that may be used for different
purposes such as cooled turbine blades, Fig. 5.2,  boundary layer suctions, etc. For a
solid wall, this term, of course, vanishes identically. The first and the second integral
on the right-hand side of Eq. (5.23) are momentum contributions due to the action of
static pressure and the shear stresses. These integrals must be taken over the entire
bounding surface that includes inlet, exit, and wall surfaces, Fig. 5.3:
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(5.24)

Fig. 5.4:  Reaction force on a turbine blade with F and D as the lift, drag
forces, and R the resultant force.

(5.25)

According to the  convention in Fig. 5.1, the direction of unit normal vectors nin, nout,
and nwall  point away from the region bounded by the control surface SC. The last two
integrals in Eq. (5.24) determine the reaction forces. To demonstrate the physical
significance of the reaction force, we consider a rectilinear turbine cascade, Fig. 5.4. 

The reaction force R which is exerted by the flow on the surface SCw, that is, on the
turbine blade wall between the stations (1) and (2) and the body, is therefore:

As Eq. (5.25) indicates, the flow force equals the negative value of the two last
integrals. Considering a steady flow and implementing Eq. (5.25) into (5.23), the
reaction forces can be determined using the relationship:
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(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

The vector equation (5.26) can be decomposed into three components. An order of
magnitude estimation suggests that the shear stress terms at the inlet and outlet are,
in general, very small compared to the other terms. It should be pointed out that, the
wall shear stress is already included in the resultant force FR.

5.3 Balance of Moment of Momentum
To establish the conservation law of moment of momentum for a time dependent
material volume, we start from the second law of Newton, Eq. (5.18):

The moment of the force given by Eq. (5.27) is then

with X as the position vector originating from a fixed point. To rearrange Eq. (5.28)
for further analysis, its left-hand side is extended by adding the following zero-term
identities:

and:

Introducing the identities (5.29) and (5.30) into Eq. (5.28), we arrive at:

Using the Leibnitz’s chain differential rule, a simple rearrangement of Eq. (5.31)
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(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

allows the application of the Reynolds transport theorem as follows:

Since: , Eq. (5.32) can be written as:

We apply the Reynolds transport theorem and the Gauss conversion theorem (Chapter
2) to the left-hand side of Eq. (5.33) and arrive at: 

We now interchange the sequence of multiplication for the vector product inside the
parenthesis of the second integral in Eq. (5.34), , and
obtain:

Introducing the mass flow , Eq. (5.35) results in:

The surface integral has to be carried out over the entire control surface SC.

Now we consider the moment of momentum of all other forces on the right-hand side
of Eq. (5.33):

Since the right side of Eq. (5.33) is equal to the right side of Eq. (5.38), the equation
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(5.39)

(5.40)

Fig. 5.5:   A mixed flow compressor with control surfaces.

of moment of momentum can be presented in a more compact form that contains the 
contributions of velocity, pressure and shear stress momenta:

The integration of the first two integrals on the right-hand side have to be performed;
over SCin, SCout and SCW.

Similar to the expression for the reaction force, the last two integrals on the right-
hand side of Eq. (5.40) determine the reaction moment, M0. This reaction moment is
exerted by the flow on the solid boundary SW of the system with respect to a fixed
point such as the coordinate origin shown in Fig. 5.5. This figure exhibits the flow
through a mixed axial-radial compressor stage where the flow undergoes a change in
the radial direction associated with certain deflection from the inlet at station 1 to the
exit at station 2. A fixed control volume is placed on the rotor that includes a
compressor blade. The normal unit vectors at the inlet and exit are used to establish
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(5.41)

(5.42)

(5.43)

(5.44)

the mass flow balances at stations 1 and 2. The wall surface SW  represents one blade
surface (pressure or suction surface) that is projected on the drawing plane. The
reaction moment consists of the moment by the surface shear and  pressure forces:

From Eq. (5.41) it is seen that the last two integrals of Eq. (5.40) are equal to - M0.
Therefore, from Eqs. (5.40) and (5.41), the moment M0 exerted by the flow on the
solid boundary SW with respect to a fixed point using the station numbers in Fig. 5.5
is:

Equation (5.42) describes the moment of momentum in general form. The first
integral on the right-hand side expresses the angular momentum contribution due to
the unsteadiness. The second and third term represents the contribution due to the
velocity momenta at the inlet and exit. The forth and sixth terms are formally the
contributions of pressure momenta at the inlet and exit. The shear stress integrals and
the fifth and seventh terms, representing the moment due to shear stresses at the inlet
and exit, are usually ignored in practical cases. For applications to turbomachines, Eq.
(5.42) can be used to determine the moment that the flow exerts on a turbine or
compressor cascade. Of practical interest is the axial moment M = Ma which acts on
the cascade with respect to the axis of rotation. The moment M = Ma is equal to the
component of the moment vector parallel with the axis of surfaces of revolution. As
shown in Fig. 5.6, the axial moment is: 

Neglecting the contribution of the shear stress terms at the inlet and the exit but not
along the wall surfaces, SW, and performing the above scalar multiplication, the
pressure contributions vanish identically. Furthermore, the moment contribution of
gravitational force will vanish. With this premise, Eq. (5.43) reduces to:
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Fig. 5.6:  Illustration of the axial moment by projecting the
reaction moment  on the axial direction .

(5.45)

(5.46)

with Vu as the absolute velocity component in circumferential direction. For steady
flow, Eq. (5.44) reduces to:

As shown in Fig. 5.6, the direction of the axial moment is identical with the direction
of the shaft axis. For the case where the velocity distributions at the inlet and exit of
the channel are fully uniform and the turbomachine is rotating with the angular
velocity ,  the power consumed (or produced) by a compressor (or by a turbine)
stage is calculated by:

Although the application of the conservation laws are extensively discussed in the
following chapters, it is found necessary to present a simple example of how the
moment of momentum is obtained by utilizing the velocity diagram of a single-stage
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(5.47)

Fig. 5.7:  A single-stage axial compressor (a), velocity diagram (b). The
circumferential velocity difference  is responsible for the
power consumption.

axial compressor. Figure 5.7a represents a single stage axial compressor with the
constant hub and tip diameters. We consider the flow situation at the mid-section. The
flow is first deflected by the stator row, Fig 5.7a (bottom). Entering the rotor row, the
fluid particle moves through a rotating frame where the rotational velocity U is
superimposed on the relative velocity W.

The constant radii at the inlet and exit of the mid-section results in ,
resulting in a constant circumferential velocity, . As a consequence,
Eq. (5.46) simplifies as . The expression in the parenthesis,

, is shown in the velocity diagram, Figure 5.7b. It states that the
compressor power consumption is related to the flow deflection expressed in terms
of the circumferential velocity difference. The larger the difference  is,
the higher the pressure ratio that the compressor produces. However, for each type of
compressor design (axial, radial, subsonic, super sonic) there is always a limit to this
difference, which is dictated by the flow separation, as we will see later. For the case
where no blades are installed inside the channel and the axial velocity distributions
at the inlet and exit of the channel are fully uniform, Eq. (5.45) is reduced to:

This is the so called free vortex flow. 
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Fig. 5.8: A modern power generation gas turbine engine with a single shaft, two
combustion chambers, a multi-stage compressor, a single-stage reheat turbine
and a multi-stage turbine.

(5.48)

(5.49)

5.4 Balance of Energy

The conservation law of energy in integral form, which we discuss in the following
sections, is based on the thermodynamic principals, primarily the first law of
thermodynamics for open systems and time independent control volumes. It is fully
independent of the conservation law of energy derived for fluid mechanics. However,
it implicitly contains the irreversibility aspects described by the dissipation process
in the previous chapter. The contribution of the irreversibility is explicitly expressed
by using the Clausius-Gibbs entropy equation, known as the second law of
thermodynamics. The energy equation is applied to a variety of engineering devices
such as internal combustion engines, jet engines, steam and gas turbine engines and
their components in which a chain of energy conversion processes takes place. 

As an example, Fig. 5.8 shows a high performance gas turbine engine with several
components to which we apply the results of our derivations.  

In this chapter, we apply the conservation law of energy to a material volume
with a system boundary that moves through the space where it may undergo
deformation, rotation, and translation. The first law of thermodynamics in integral
form states that if we add thermal energy (heat) Q and mechanical energy (work) W
to a closed system, the total energy of the system E experiences a change from initial
state E1 to the final state E2. Expressing in terms of energy balance, we have:

The total energy E is the sum of internal, kinetic and potential energies,
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(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

In order to apply the conservation law of energy to a control volume, we divide Eq.
(5.49) by the mass m to arrive at the specific total energy,

with e as the specific total energy. Similar to the conservation laws of mass,
momentum, and moment of momentum, we ask for substantial change of the total
energy, i.e.: 

with  as the thermal and mechanical energy flow, respectively. Since
, Eq. (5.51) yields:

To apply the  the conservation of energy to a control volume, we use the Reynolds
transport theorem. Using the Jacobi-transformation function , and
introducing the time fixed volume v0, we arrive at:

We now introduce  for the substantial derivative of the Jacobian 

Developing the first integral term:

Application of the chain rule to the second and third term yields:
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(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

With  Gauss-Divergence Theorem:

The above equation is valid for any volume  including  which might be
a fixed control volume. In Eq. (5.57), the integration must be carried out over the
entire control surface. For a control surface consisting of inlet, exit, and wall surfaces
(Fig. 5.4), the second integral on the left-hand side gives:

Evaluating the integrands on the right-hand side of Eq. (5.58) by considering the
directions of the unit vectors shown in Fig. 5.4, , we find for
the inlet cross-section:

For the exit cross-section we obtain:

Inserting the Eqs. (5.59) and (5.60) into Eq. (5.57), we obtain the energy equation for
a control volume:  

with the specific total energy, ,
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(5.62)

(5.63)
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Fig. 5.9: Explanation of the flow forces, sketch of a turbine component.

(5.64)

(5.65)

For uniform velocity distributions, Eq. (5.62) is reduced to:

The mechanical energy flow  consists of the shaft power  and the mechanical
energy flow  which is needed to overcome the shear and normal stresses at the
system or control volume boundaries:

The shaft power is the sum of the net shaft power and the power dissipated by the
bearings . The second term in Eq. (5.64) is the product of the
flow force vector F and the displacement vector dX
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(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

Consider a turbine component, Fig. 5.9, where the working fluid (gas or steam) enters
the inlet station. To force the differential mass dm into the turbine, which is under
high pressure, a force is required that must compensate the pressure and the shear
stress forces at the inlet. Figure. 5.9 exhibits a simplified schematic of one of the
turbine components in Fig. 5.8. It shows the directions of the forces and the
displacements. At the inlet, the force vector F is expressed in terms of pressure and

 the inlet area and is oriented toward negative e1-direction. The displacement
vector dX has the positive direction. As a result, the product:

is negative. The differential volume can be expressed as the product of the specific
volume and the differential mass. Replacing, in Eq. (5.66), dV with vdm ( )
and dividing the result by dt, we arrive at: 

Inserting Eq. (5.67) into (5.65) and assuming a constant mass flow, the integration
from inlet to outlet  

To eliminate the internal energy from the equation of energy for open systems, we
introduce enthalpy  and Eq. (5.68) into Eq. (5.63) and obtain:

For a fixed control volume, the volume integral can be rearranged as:
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(5.71)

(5.72)

(5.73)

(5.74)

We set , and since  can only change with time, the partial

derivative  is replaced by the ordinary one, . As a result, we obtain:

Equation (5.71) exhibits the general form of energy equation for an open system with
a fixed control volume. For technical applications, several special cases are applied
which we will discuss in the following. 

5.4.1 Energy Balance Special Case 1: Steady Flow
If a power generating or consuming machine such as a turbine or a compressor
operates in a steady design point, the first term on the right-hand side of Eq. (5.71)
disappears, , which leads to:

Equation (5.72) is the energy balance for a machine with heat addition or rejection
and the shaft power supplied or consumed .

5.4.2 Energy Balance Special Case 2: Steady Flow, Constant Mass Flow
In many applications, the mass flow remains constant from the inlet to the exit of the
machine. Examples are uncooled turbines and compressors where no mass flow is
added during the compression or expansion process. In this case, Eq. (5.72) reduces
to:

Now, we define the specific total enthalpy
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(5.75)

(5.76)

and insert it into Eq. (5.73), from which we get:

In Eq. (5.73) or (5.75), the contribution of  compared to and is negligibly
small. Using the above equation, the energy balance for the major components of the
gas turbine engine shown in Fig. 5.8 can be established as detailed in the following
section.

5.5 Application of Energy Balance to Engineering Components

The gas turbine engine shown in Fig. 5.8 consists of a variety of components to which
the energy balance in different form can be applied. These components can be
categorized in three groups. The first group entails all those components that serve
either the mass flow transport from one point of the engine to another or the
conversion of kinetic energy into the potential energy and vice versa.  Pipes,
diffusers, nozzles, and throttle valves are representative examples of the first group.
Within this group no thermal or mechanical energy (shaft work) is exchanged with
the surroundings. We in thermodynamic sense these components are assumed
adiabatic. The second group contains those components within which thermal energy
is generated or exchanged with the surroundings. Combustion chambers and heat
exchangers are typical examples of these components. Thermodynamically speaking,
in these cases we are dealing with diabatic systems. Finally, the third group includes
components within which thermal and mechanical energy is exchanged. In the
following sections, each group is treated individually.

5.5.1 Application: Pipe, Diffuser, Nozzle
Pipes, nozzles, diffusers, compressor and turbine stator cascades, as well as throttle
devices are a few examples. For this group, Eq. (5.75) reduces to:

Replacing the subscripts in and out by 1 and 2, the h-s-diagrams of the pipe, nozzle,
and diffuser are shown in Fig. 5.10. 
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Fig. 5.10:   Energy transfer in pipes, nozzles, and diffusers.

(5.77)

(5.78)

As this figure shows, the viscous flow causes entropy increase which results in a
reduction of  the total pressure from P1 to P2.  The total pressure is the sum of static
pressure, dynamic pressure, and the pressure due to the change of height:    

neglecting the contribution of  results in the following relation for total pressure
loss:

The area under the process-line reflects the irreversibility due to the internal friction
which results in total pressure drop. 

5.5.2 Application: Combustion Chamber
As indicated, combustion chambers or heat exchangers are typical examples of the
components belonging to the group within which heat transfer or conversion of
chemical into thermal energy takes place. The energy balance is:
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(5.79)

(5.80)

Fig. 5.11: Schematic of a gas turbine combustion chamber, h-s-diagram.
Fuel mass flow , primary air mass flow , secondary air mass
flow  and the mixing air mass flow .

(5.81)

As a result, the total enthalpy at the exit is the sum of the inlet total enthalpy plus the
heat added to the system. Introducing the specific thermal energy, , we find

Figure. 5.11 shows a schematic of a typical gas turbine combustion chamber where
the combustion air and fuel are mixed and burned leading to a combustion gas with
an increased exit temperature and enthalpy. The combustion process is shown in Fig.
5.11 where a simplified model of a combustion chamber is presented. 

The flow and combustion process within the combustion chamber is associated
with entropy increases due to the heat addition and internal friction inside the
chamber. The internal friction, the wall friction, and particularly the mixing process
of the primary and secondary air mass flows  causes pressure decreases of up
to 5%. The thermal energy per unit mass flow is shown in Fig. 5.11 as q. It
corresponds to the total enthalpy difference. 

5.5.3 Application: Turbo-shafts, Energy Extraction, Consumption
Within this group, mechanical and thermal energy transfers to/from surroundings take
place. Turbines and compressors are two representative examples. The energy balance
in general form is:

We distinguish in the following cases where we consider steady flow only. Thus, the
first term on the right-hand side, , disappears. 
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Fig. 5.12: Turbine stage consisting of a stator and a rotor row (left),
velocity diagram (middle), h-s-diagram (right).

(5.82)

(5.83)

5.5.3.1 Uncooled Turbine. We start with and adiabatic (uncooled)  turbine com-
ponent where no heat exchange between the turbine blades and the turbine working
medium takes place: . The mass flows at the inlet and exit are the same.
Figure. 5.12 shows a turbine stage which consists of a stator and a rotor row. The
stator row, with several blades, deflects the flow to the following rotor row which
turns with angular velocity . The process of conversion of total energy into
mechanical energy takes place within the rotor. Following the nomenclature in Fig.
5.12, we introduce the specific stage mechanical energy . 

Considering the h-s-diagram in Fig. 5.12 for adiabatic turbine, , Eq. (5.81)
reduces to:

The negative sign of lm indicates that energy is rejected from the system (to the
surroundings). The h-s-diagram in Fig. 5.12 shows the expansion process within the
stator, where the total enthalpy within the stator  remains constant. 

Changes of the total enthalpy occur within the rotor, where the total energy of the
working medium is partially converted into mechanical energy. In addition, the stage
velocity diagram is also shown in Fig. 5.12. This diagram shows the flow angle 
deflection within both stator and rotor blades. As we saw from Eq. (5.46), the stage
power is given by:

Dividing the above equation by the mass flow, we find:
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(5.84)

Fig. 5.13: A simplified schematic of a cooled turbine blade with
internal cooling channels, hs-diagram.

(5.85)

This equation can be found using the energy Equation (5.82) by replacing the static
enthalpies in Eq. (5.82) by the kinetic energies using trigonometric relations and the
angle definition given by the velocity diagram in Fig. 5.12. 

5.5.3.2 Cooled Turbine.  As the second case, we consider a cooled (diabatic) gas
turbine blade where a heat exchange between the turbine material and the cooling
medium takes place. The schematic of such a gas turbine blade is shown in Fig. 5.13.
In a high performance gas turbine engine, the front stages of the turbine component
are exposed to temperatures that are close to the melting point of the turbine blade
material. In order to protect the blades, a substantial amount of heat must be removed 
from the blades. One of the cooling methods currently used introduces cooling air into
the turbine cooling channels. Inside these channels, intensive heat transfer from the
blade material to the cooling medium takes place, resulting in a substantial reduction
of the blade surface temperature. The process of expansion and heat transfer is
depicted in the h-s diagram shown in Fig. 5.13.

Assuming a steady flow through the turbine and neglecting the potential energy by
the gravitational force, the energy equation reads: 

Since in this particular type of cooling scheme the cooling mass flows through the
stator and rotor,  and , and do not join the main turbine mass flow, the inlet
and exit mass flows are the same, . We introduce the specific heat 
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(5.86)

Fig. 5.14:   Compressor stage consisting of stator and rotor rows (left),
velocity diagram (middle), h-s- diagram (right).

(5.87)

which is transferred from the stator and rotor blades to the cooling mass flows,  
and . Considering the negative signs of the specific mechanical energy lm  and the
heat q, we obtain from Eq. (5.85):

The h-s diagram in Fig. 5.13 shows the specific stage mechanical energy lm and the
heat transferred from the turbine stage blade material q. From this diagram, we can
see that the turbine specific stage mechanical energy has been reduced by the amount
of the heat rejected from the blades.

5.5.3.3 Uncooled Compressor.  Figure. 5.14 shows a compressor stage which con-
sists of a stator and a rotor row. 

Similar to the turbine stage, the stator row with several blades deflects the flow to the
following rotor row which is turning with an angular velocity . The process of
conversion of mechanical energy into total energy takes place within the rotor. As in
the case of a turbine component, we follow the nomenclature of Fig. 5.14 for
mechanical energy transfer and introduce the specific stage mechanical energy

. Considering the h-s-diagram in Fig. 5.14, Eq. (5.81) modifies as:

The positive sign of l m indicates that the energy is consumed by the system (from the
surroundings).
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(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

5.6 Irreversibility, Entropy Increase, Total Pressure Loss

The total pressure losses within a component can be calculated using the second law
of thermodynamics:

Using the generalized thermodynamic relations, we find:

or in terms of cp:

With:

For the working media used in thermal turbomachines such as steam, air, and
combustion gases, the thermodynamic properties can be taken from appropriate gas
and steam tables. In general, the specific heats at constant pressure cp and constant
specific volume cv are functions of temperature. Figure 5.15 shows the specific heat
at constant pressure as a function of temperature with the fuel/air ratio  as
parameter. The dry air is characterized by  = 0 and no moisture. As seen at lower
temperatures, changes of cp are not significant. However, increasing the temperature
results in higher specific heat. In the case of combustion gases, the addition of fuel
in a combustion chamber causes a change in the gas constant R and additional
increase in cp. At moderate pressures, the ideal gas relation can be applied               

and the entropy change can be obtained using Eq. (5.89) in terms of enthalpy or
internal energy:
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Fig. 5.15:   Temperature dependency of the specific heat cp for air and combustion
gases at different fuel/air ratios.

(5.94)

(5.95)

Assuming lower temperatures where cp and cv can be approximated as constant, the
entropy change is calculated by integrating Eq. (5.93):

Equations (5.94) and (5.95) are valid under perfect gas assumption, cp and cv f(T),
for estimating the entropy changes. For dry or moist air as working media in
compressors, and combustion gases as the working media in turbines and combustion
chambers, appropriate gas tables must be used in order to avoid significant errors.

5.6.1 Application of Second Law to Engineering Components
To calculate the entropy increase as a result of an irreversible process, a flow through
a simple nozzle or a turbine is considered. The expansion process for both devices are
shown in Fig. 5.16. The entropy change is obtained using the second law of
thermodynamics:
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Fig. 5.16: Total pressure loss and entropy increase in a nozzle and a  turbine
cascade.

(5.96)

(5.97)

(5.98)

(5.99)

where p1, p2 and T1, T2 are static pressures and temperatures, respectively. These
quantities can be related to the total pressure p01, p02 and total temperature  T01, T02 by
the following simple modification:

Introducing the temperature relation by applying the isentropic relation with
,

and inserting Eq. (5.98) into Eq. (5.97) leads to:
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(5.100)

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

If we assume that the fluid is a perfect gas with , then we may set
To1 = To2. With this assumption Eq. (5.99) simplifies as:

The entropy change obtained form Eq. (5.96) becomes:

With:

the first two terms on the right-hand side of (5.101) cancel each other leading to:

Thus, the entropy change is directly related to the total pressure loss. We introduce
the total pressure loss coefficient :

then we have:

or

If the total pressure loss coefficient is known, the entropy change can be calculated
using Eq. (5.106). The loss correlations are developed empirically based on
experimental data.
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5.7   Theory of Thermal Turbomachinery Stages
Turbomachines are devices within which conversion of total energy of a working
medium into mechanical energy and vice versa takes place. Turbomachines are
generally divided into two main categories. The first category is used primarily to
produce power. It includes, among others, steam turbines, gas turbines, and hydraulic
turbines. The main function of the second category is to increase the total pressure of
the working fluid by consuming power. It includes compressors, pumps, and fans.
Gas turbines are also used for thrust generation and utilized in small aircrafts as
propeller gas turbines and as high performance jet engines in medium and large size
civil and military aircrafts. While the power generation gas turbines have a single
spool with a multi-stage compressor, a combustion chamber and a multi-stage turbine,
the aircraft engines may have up to three-spools that rotate at different frequency. The
turbine component of gas and steam turbines are of axial type design, the compressor
may be of axial or radial design, depending on their required mass flow. For small
scale gas turbines, the application of radial compressors is more common than the
axial ones. This is also true for the turbine component of turbochargers. The subject
of turbomachinery aero-thermodynamic design is treated, among others, in [2], [3],
[4] and very recently in [5]. 

5.7.1  Energy Transfer in Turbomachinery Stages
The energy transfer in turbomachinery is established by means of the stages. A
turbomachinery stage comprises a row of fixed guide vanes called stator blades, and
a row of rotating blades termed rotor. To elevate the total pressure of a working fluid,
compressor stages are used that partially convert the mechanical energy into potential
energy. According to the conservation law of energy, this energy increase requires an
external energy input which must be added to the system in the form of mechanical
energy. Figures 5.17 (a,b) schematically represent two single stages within a muti-
stage high pressure turbine and a high pressure compressor environment with constant
mean diameter. These stages consist of one stator row followed by one rotor row. To
define a unified station nomenclature for compressor and turbine stages, we identify
with station number 1 as the inlet of the stator, followed by station 2 as the rotor inlet
and 3, rotor exit. The absolute and relative flow angles are counted counterclockwise
from a horizontal line. This convention allows an easier calculation of the off-design
behavior of compressor and turbine stages during a transient operation. 

The working fluid enters the stator row with an absolute velocity vector V1 and
an absolute inlet flow angle 1. It is deflected and exits the stator row at an exit flow
angle 2 in direction of the rotor's leading edge. The expansion process through the
turbine stage, Fig. 5.17(a), in connection with the rotational motion of the rotor causes
a major portion of the total energy of the working medium to convert into the shaft
power. Conversely, in the compressor stage shown in Fig. 5.17(b), the compression 
process converts a major part of the mechanical energy input into the potential energy
causing the total pressure to rise. In general, the compression process resulting in a
decrease of specific volume requires a decrease in flow path cross sectional area. In
contrast, the expansion process in a multi-stage turbine causes a continuous increase
in specific volume which requires an increase in flow path cross section, Fig. 5.18.
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Fig. 5.17: (a) Turbine and (b) compressor stage configurations with the stator-
rotor arrangements and velocity diagrams. 

Fig. 5.18: The rotor of a power generation steam turbine. The first four stages of
the high pressure part with a constant diameter are followed by intermediate and
low pressure stages with increasing blade heights and mean diameters.

(5.107)

5.7.2 Energy Transfer in Relative Systems
Since the rotor operates in a relative frame of reference (relative system), the energy
conversion mechanism is quite different from that of a stator (absolute system). A
fluid particle that moves with a relative velocity  within the relative system that
rotates with the angular velocity , has an absolute velocity:
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(5.108)

(5.109)

(5.110)

(5.111)

(5.112)

with R in Eq. (5.107) as the radius vector of the particle in the relative system.
Introducing the absolute velocity vector V in the equation of motion and multiplying
the results with a relative differential displacement dR, we obtain the energy equation
for an adiabatic steady flow within a rotating relative system:

or the relative total enthalpy:

Neglecting the gravitational term, gz  0, Eq. (5.109) can be written as:

Equation (5.110) is the energy equation transformed into a relative system. As can be
seen, the transformation of kinetic energy undergoes a change while the
transformation of static enthalpy is frame indifferent. With these equations in
connection with the energy balance, we can analyze the energy transfer within an
arbitrary turbine or compressor stage.

5.7.3 Unified Treatment of Turbine and Compressor Stages
In this chapter, compressor and turbine stages are treated from a unified physical
point of view.  Figures 5.19 and 5.20 show the decomposition of a turbine and a
compressor stage into their stator and rotor rows. The primes “ ” and “  ” refer to
stator and rotor rows, respectively. As seen, the difference between the isentropic and
the polytropic enthalpy difference is expressed in terms of dissipation

 for turbines and  for compressors. For the
stator, the energy balance requires that H2 = H1. This leads to:

Moving to the relative frame of reference, the relative total enthalpy 
remains constant. Thus, the energy equation for the rotor is according to Eq. (5.110),
Fig. 5.20:
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Fig.5.20: Expansion and compression process through a
turbine and a compressor rotor row.

Turbine stator row Compressor stator row

High flow deflection Low flow deflection

Fig. 5.19: Expansion and compression process through a
turbine and a compressor stator row.
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Fig. 5.21: A turbine stage (left) with the velocity diagram (middle) and the
expansion process (right). The direction of the unit vector e1 is identical
with the rotational direction.

The stage specific shaft power balance requires:

Inserting Eq. (5.111) and (5.112) into (5.113) yields :

Equation (5.114), known as the Euler Turbine Equation, indicates that the stage work
can be expressed simply in terms of absolute, relative, and rotational kinetic energies.
This equation is equally applicable to turbine stages that generate shaft power and to
compressor stages that consume one. In the case of a turbine stage, the sign of the
specific mechanical energy  is negative, which indicates that energy is removed
from the system (power generation). In compressor cases, it is positive because
energy is added to the system (power consumption). Figures 5.21 and 5.22 show the
stage configuration, the velocity diagram and the expansion, compression process
within a single stage turbine and compressor. 

Before proceeding with velocity diagrams, it is of interest to evaluate the individual
kinetic energy differences in Eq. (5.114). If we wish to design a turbine or a
compressor stage with a high specific shaft power  for a particular rotational speed,
then we have two options: (1) we increase the flow deflection that leads to an increase
in  or, (2) we increase the radial difference between the inlet and the exit
that leads to a larger . While option (1) is used in axial stages, option (2)
is primarily applied to radial stages. Radial turbine design is used for small size
turbines such as turbocharger or as  power generation component of an open-cycle
ocean thermal energy conversion plant as reported detailed in [6] and [7]. 

(5.113)
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Fig. 5.22: A compressor stage (left) with the velocity diagram (middle)
and the compression process (right).

(5.115)

(5.116)

Using the trigonometric relation with the angle convention from the velocity diagram
in Figs. 5.21 and 5.22, we express the velocity vectors in terms of their components
which are the incorporated in Eq. (5.114) leading to the stage specific shaft power:

Equation (5.115) is valid for axial, radial, and mixed flow turbines and compressors. 
The stage shaft power is then calculated by

A similar relation was obtained in Section 5.3, Eq. (5.46), from the scalar product of
moment of momentum and the angular velocity. There we found the power as

. In order to avoid confusions that may arise from different
signs, it should be pointed out that in Section 5.3, no angle convention was introduced
and the negative sign in Eq. (5.46) was the result of the formal derivation of the
conservation law of moment of momentum. This negative sign implies that  and 
point in the same direction. The unified angle convention introduced in Figs. 5.21 and
5.22, however, takes the actual direction of the velocity components with regard to
a predefined coordinate system. 

5.8 Dimensionless Stage Parameters

Equation (5.114) exhibits a direct relation between the specific stage shaft power lm
and the kinetic energies. The velocities from which these kinetic energies are built can
be taken from the corresponding stage velocity diagram. The objective of this chapter
is to introduce dimensionless stage parameters that completely determine the stage
velocity diagram. These stage parameters exhibit a set of unified relations for
compressor and turbine stages respectively. 
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Fig. 5.23: Turbine and compressor stages with the velocity diagrams.

(5.117)

(5.118)

Starting from a turbine or compressor stage with constant mean diameter and
axial components, shown in Fig. 5.23, we define the dimensionless stage parameters
that describe the stage velocity diagram of a normal stage.

A normal stage is encountered within the high pressure (HP) part of multi-stage
turbines or compressors  and is characterized by , , , and

3. The similarity of the velocity diagrams allows using the same blade profile
throughout the HP-turbine or compressor, thus, significantly reducing manufacturing
costs.

We define the stage flow coefficient as the ratio of the meridional velocity
component and the circumferential component. For this particular case, the meridional
component is identical with the axial component:

The stage flow coefficient  in Eq. (5.117) is a characteristic for the mass flow
behavior through the stage. The stage load coefficient  is defined as the ratio of the
specific stage mechanical energy lm and the exit circumferential kinetic energy U3

 2.
This coefficient directly relates the flow deflection given by the velocity diagram with
the specific stage mechanical energy:

The stage load coefficient  in Eq. (5.118) describes the work capability of the stage.
It is also a measure for the stage loading. The stage enthalpy coefficient  represents
the ratio of the isentropic stage mechanical energy and the exit circumferential kinetic
energy U3

 2.
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(5.119)

(5.120)

(5.121)

(5.122)

The stage enthalpy coefficient represents the stage isentropic enthalpy difference
within the stage. Furthermore, we define the stage degree of reaction r, which is the
ratio of the static enthalpy difference used in the rotor row divided by the static
enthalpy difference used in the entire stage: 

The degree of reaction r indicates the portion of energy transferred in the rotor
blading. Using Eqs. (5.111) and (5.112), expressing the velocity vectors by their
corresponding components and inserting the results into Eq. (5.120), we arrive at:

5.8.1 Simple Radial Equilibrium to Determine r
Expressing the relationship between the degree of reaction and the blade height
requires the knowledge of the radial equilibrium condition within the axial gaps
between the stator and rotor blades. In a fully three-dimensional turbomachinery flow,
describing the  radial equilibrium condition is a complicated issue. Attempts to
numerically analyze the issue of the radial equilibrium have encountered divergence
problems. The streamline curvature method based on an axisymmetric assumption
exhibits a reasonable and practical solution [4]. For the simple cases we discuss in
this Chapter, we further simplify the radial equilibrium condition to arrive at simple
relationships between the degree of reaction and the blade height.

The fluid particles in compressors and turbines experience a rotational and 
translational motion. For the simple turbine and compressor cases case we discuss ed
in this Chapter the rotating fluid is subjected to centrifugal forces that must be
balanced by the pressure gradient in order to maintain the radial equilibrium. Consider
an infinitesimal sector of an annulus with unit depth containing the fluid element
which is rotating with tangential velocity Vu in an absolute frame of reference. The
centrifugal force acting on the element is shown in Fig. 5.24. Since the fluid element
is in radial equilibrium, the centrifugal force per unit width  is obtained from:

with  . The centrifugal force is kept in balance by the pressure forces:
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(5.123)

Fig. 5.24: Explanation for simple radial equilibrium within the axial
gap between the stator and rotor blade.

(5.124)

(5.125)

(5.126)

This result can also be obtained by decomposing the Euler equation of motion (4.51)
for inviscid flows in its three components in a cylindrical coordinate system. The
assumptions needed to arrive at Eq. (5.123) are:

With these assumptions, Eq. (5.124) yields:

Equation (5.125) is identical with Eq. (5.123), where the partial differential  is
replaced by d because of the assumptions in (5.124). Calculation of a static pressure
gradient requires additional information from the total pressure relation. For this
purpose, we apply the Bernoulli equation, neglecting the gravitational term and
differentiating the results in radial direction:

The assumption of a constant total pressure P = const. and a constant axial
component Vax = const. simplifies Eq. (5.126) to:
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(5.127)

(5.128)

(5.129)

(5.130)

(5.131)

(5.132)

Equating (5.125) and (5.127) and separating the variables results in:

The integration of Eq. (5.128) leads to  This type of flow is called free
vortex flow and fulfills the requirement to be potential flow, . We use this
relation to rearrange the specific stage mechanical energy:

Going back to Fig. 5.18, at station (2) the swirl is R2Vu2  = const. = K2; likewise at
station 3 the swirl is  R3Vu3   = K3. Since  = const., the specific stage power is
constant:

Equation (5.130) implies that for a stage with constant spanwise meridional
components and constant total pressure from hub to tip, the specific stage power is
constant over the entire blade height. To express the degree of reaction in the
spanwise direction, we replace the enthalpy differences in Eq. (5.120) by pressure
differences. For this purpose we apply the first law for an adiabatic process through
stator and rotor blades expressed in terms of  with 
as the averaged specific volume. It  leads to:

In the above equation, the ratio of specific volumes was approximated as .
This approximation is admissible for low Mach number ranges. 

Considering R2Vu2  = const, the integration of Eq. (5.127) for station 1 from an
arbitrary diameter R to the mean diameter Rm yields,

Similarly, at station (2) we have,
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(5.133)

(5.134)

(5.135)

(5.136)

(5.137)

(5.138)

and finally, at station (3) we arrive at:

with . Introducing Eqs. (5.132), (5.133) and

(5.134) into (5.131), we finally arrive at a simple relationship for the degree of
reaction:

From a turbomachinery design point of view, it is of interest to estimate the degree
of reaction at the hub radius by inserting the corresponding radii into Eq. (5.135). As
a result, we find: 

If, for example, the degree of reaction at the mean diameter is set at rm = 50%, Eq.
(5.135) immediately calculates r at any radius R. It should be mentioned that, for a
turbine, a negative degree of reaction at the hub may lead to flow separation and is
not desired. Likewise, for the compressor, r should not exceed the value of 100%.

Equation (5.136) represents a simple radial equilibrium condition which allows
the calculation of the inlet flow angle in a radial direction using the free vortex
relation  from Eq. (5.128):

This leads to determination of the inlet flow angle in a spanwise direction,
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Fig. 5.25: Effect of degree of reaction on the stage configuration.

5.8.2 Effect of Degree of Reaction on the Stage Configuration
The value of r has major design consequences. For turbine blades with r = 0, as
shown in Fig. 5.25 (a), the flow is deflected in the rotor blades without any enthalpy
changes. As a consequence, the magnitude of the inlet and exit velocity vectors are
the same and the entire stage static enthalpy difference is partially converted within
the stator row. Note that the flow channel cross section remains constant. For r = 0.5,
shown in Fig. 5.25(b), a fully symmetric blade configuration is established. Figure
5.25(c) shows a turbine stage with r > 0.5. In this case, the flow deflection inside the
rotor row is much greater than the one inside the stator row. In the past, mainly two
types of stages were common designs in steam turbines. 

The stage with a constant pressure across the rotor blading ( ) called
action stage, was used frequently. This turbine stage was designed such that the exit
absolute velocity vector  was swirl free. It is most appropriate for the design of
single stage turbines and as the last stage of a multi-stage turbine. The exit loss, which
corresponds to the kinetic energy of the exiting mass flow, becomes a minimum by
using a swirl free absolute velocity. The stage with r = 0.5 is called the reaction
stage.

5.8.3 Effect of Stage Load Coefficient on Stage  Power
The stage load coefficient  defined in Eq. (5.129) is an important parameter which
describes the stage capability to generate/consume shaft power. A turbine stage with
low flow deflection, thus, low specific stage load coefficient , generates lower
specific stage power lm. To increase lm , blades with higher flow deflection are used
that produce higher stage load coefficient . The effect of an increased  is shown in
Fig. 5.26 where three different bladings are plotted. The top blading with the stage
load coefficient  = 1 has lower deflection. The middle blading has a moderate flow
deflection and moderate  = 2 which delivers the stage power twice as high as the top 
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Fig. 5.26: Dimensionless stage velocity diagram to explain the effect
of stage load coefficient  on flow deflection and blade geometry, r = 0.5.

blading. Finally, the bottom blading with  = 3, delivers three times the stage power
as the first one. In the practice of turbine design, among other things, two major
parameters must be considered. These are the specific load coefficients and the stage
polytropic efficiencies. 

Lower deflection generally yields higher stage polytropic efficiency, but many stages
are needed to produce the required turbine power. However, the same turbine power
may be established by a higher stage flow deflection and, thus, a higher  at the
expense of the stage efficiency. Increasing the stage load coefficient has the
advantage of significantly reducing the stage number, thus, lowering the engine
weight and manufacturing cost. In aircraft engine design practice, one of the most
critical issues besides the thermal efficiency of the engine, is the thrust/weight ratio.
Reducing the stage numbers may lead to a desired thrust/weight ratio. While a high
turbine stage efficiency has top priority in power generation steam and gas turbine
design, the thrust/weight ratio is the major parameter for aircraft engine designers. 

5.9 Unified Description of a Turbomachinery Stage
The following sections treat turbine and compressor stages from a unified standpoint.
Axial, mixed flow, and radial flow turbines and compressors follow the same
thermodynamic conservation principles. Special treatments are indicated when
dealing with aerodynamic behavior and loss mechanisms. While the turbine
aerodynamics is characterized by a negative pressure gradient environment, the 
compression process operates in a positive (adverse) pressure gradient environment.
As a consequence, partial or total flow separation may occur on compressor blade
surfaces leading to partial stall or surge. On the other hand, with the exception of
some minor local separation bubbles on the suction surface of highly loaded low
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(5.139)

(5.140)

(5.141)

pressure turbine blades, the turbine operates normally without major flow separation
or breakdown. These two distinctively different aerodynamic behaviors are due to
different pressure gradient environments. In this section, we present a set of algebraic
equations that describes the turbine and compressor stages with constant mean
diameter.

5.9.1 Unified Description of Stage with Constant Mean Diameter
For a turbine or compressor stage with constant mean diameter (Fig. 5.27), we present
a set of equations that describe the stage by means of the dimensionless parameters
such as stage flow coefficient , stage load coefficient , degree of reaction r, and the
flow angles. From the velocity diagram with the angle definition in Fig. 5.27, we
obtain the flow angles:

Similarly, we find the other flow angles, thus, we summarize:

The stage load coefficient can be calculated from:

As seen from Eq. (5.140), one is dealing with seven unknowns and only four
equations. To obtain a solution, assumptions need to be made relative to the
remaining three unknowns. These may include any of the following parameters: 2,

3, , , or r. The criteria for selecting these parameters are discussed in details in [4].
The preceding discussions that have led to Eqs. (5.140) and (5.141) deal with

compressor and turbine stages with constant hub and tip diameters. These equations
cannot be applied to cases where the diameter, circumferential, and meridional
velocities are not constant. Examples are axial flow turbine and compressor types
shown in Figs. 5.21 and 5.22, radial inflow (centripetal) turbines, and centrifugal
compressors. In these cases, the meridional velocity ratio and the diameter are no
longer constant. The dimensionless parameters for these cases are summarized below:
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(5.142)

(5.143)

(5.144)

(5.145)

As seen, two more parameters, namely the meridional velocity ratio  and the
diameter ratio , are added to the list of unknowns resulting in four equations and nine
unknowns. The set of four equations and the discussions how to select the five
remaining parameters to solve these equations are given in [4].  

5.10  Turbine and Compressor Cascade Flow Forces
The preceding section was dedicated to the energy transfer within turbomachinery
stages. The stage shaft power  production or consumption in turbines and compressors
were treated from a unifying point of view by introducing a set of dimensionless
parameters. As shown, the stage power is the result of the scalar product between the
moment of momentum acting on the rotor and the angular velocity. The moment of
momentum in turn was brought about by the forces acting on rotor blades. The blade
forces are obtained by applying the conservation equation of linear momentum to the
turbine or compressor cascade under investigation. In this section, we first assume an
inviscid flow for which we establish the relationship between the lift force and
circulation. Then we consider the viscosity effect that causes friction or drag forces
on the blading. 

5.10.1 Blade Force in an Inviscid Flow Field
Starting from a given turbine cascade with the inlet and exit flow angles shown in
Fig.5.27, the blade force can be obtained by applying the linear momentum principles
to the control volume with the unit normal vectors and the coordinate system shown
in Fig.5.27.  Applying Eq. (5.26), the blade inviscid force is obtained from:

with the subscript i that refers to inviscid flow and h as the blade height that can be
assumed  unity. The relationship between the control volume normal unit vectors and
the unit vectors pertaining to the coordinate system is given by  and 

. The velocities in Eq.(5.143)  can be expressed in terms of circumferential
as well as axial components:

with  as a result of incompressible flow assumption and  from Fig.
5.22. Equation (5.144) rearranged as:
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Streamline B

Streamline A

1

Fig. 5.27: Inviscid incompressible flow through a turbine cascade,
calculation of blade forces. 

(5.146)

(5.147)

(5.148)

with the circumferential and axial components 

The static pressure difference in Eq. (5.146) is obtained from the following Bernoulli
equation:

Inserting the pressure difference along with the mass flow  into Eq.
(5.146) and the blade height , we obtain the axial as well as the circumferential
components of the lift force: 
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(5.149)

(5.150)

(5.151)

(5.152)

(5.153)

(5.154)

From Eq.(5.147) and considering (5.148), the lift force vector for the inviscid flow is:

This means that the direction of the blade force is identical with the direction of the
vector within the brackets. To further evaluate the inviscid force , we calculate the 
mean velocity vector V  :

and the circulation around the profile shown in Fig. 5.27 is:

with the closed curve as the boundary of the contour integral (5.151) and 
a differential element along C and , the velocity vector. The closed curve is placed
around the blade profile so that it consists of two streamlines that are apart by the
spacing s. Performing the contour integral around the closed curve c, we find:

Since the following integrals cancel each other:

We obtain the circulation and, thus, the circulation vector:

The vector product of the circulation vector and the mean velocity vector gives
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(5.155)

(5.156)

F

V

Γ
h

Γ

V

V

V
1

2

V
1

2V(a) (b)

i
F

i

Fig. 5. 28: A turbine blade in an inviscid flow field with velocity,
circulation and force vector, (a) Schematic 3-D-view, (b) top view.

(5.157)

Comparing Eq. (5.155) with  (5.149), we arrive at the inviscid flow force:

This is the well-known Kutta-Joukowsky lift-equation for inviscid flow. Expressing
Fi in terms of , the inviscid lift force for a turbine cascade is:

Figure 5.28 exhibits a single blade taken from a turbine cascade with the velocities
, , as well as the circulation vector , and the force vector . As seen, the

inviscid flow force vector  is perpendicular to the plane spanned by the mean
velocity vector  and the circulation vector .

Equation (5.156) holds for any arbitrary body that might have a circulation around it
regardless of the body shape. Thus, it is valid for turbine and compressor cascades
and exhibits the fundamental relation in inviscid flow aerodynamics. As shown in Fig.
5.28, the inviscid flow force (inviscid lift) is perpendicular to the plane spanned by
the mean velocity vector  and the circulation vector . 
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Fig. 5.29:  Turbine (top) and Compressor cascade (bottom) with
velocity diagram and inviscid flow forces.

(5.158)

Figure 5.29 exhibits the inviscid flow forces acting on a turbine and a compressor
cascade. The flow deflection through the cascades is shown using the velocity
diagram for an accelerated flow (turbine) and decelerated flow (compressor). The lift
force can be non-dimensionalized by dividing Eq. (5.157) by a product of the exit
dynamic pressure  and the projected area  with the height . Thus,
the lift coefficient is obtained from: 

As shown in the following section, the above relationship can be expressed in terms
of the cascade flow angles and the geometry. 

5.10.2 Blade Forces in a Viscous Flow Field

The working fluids in turbomachinery, whether air, combustion gas, steam or other
substances, are always viscous. The blades are subjected to the viscous flow and
undergo shear stresses with no-slip condition on blades, casing and hub surfaces,
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Fig. 5.30: Viscous flow through a turbine cascade. Station  has a
uniform velocity distribution. At station  wakes are generated by the
trailing edge- and  boundary layer thickness and are mixed out at .

(5.159)

resulting in boundary layer developments. Furthermore, the blades have certain
definite trailing edge thicknesses. These thicknesses together with the boundary layer
thickness, generate a spatially periodic wake flow downstream of each cascade as
shown in Fig. 5.30.

The presence of the shear stresses cause drag forces that reduce the total pressure. In
order to calculate the blade forces, the momentum Eq. (5.143) can be applied to the
viscous flows. As seen from Eq. (5.146), the circumferential component remains
unchanged. The axial component, however, changes in accordance with the pressure
difference as shown in the following relations:

The blade height h in Eq. (5.159) may be assumed as unity. For a viscous flow, the
static pressure difference cannot be calculated by the Bernoulli equation. In this case,
the total pressure drop must be taken into consideration. We define the total pressure
loss coefficient:
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(5.160)

(5.161)

(5.162)

(5.163)

(5.164)

(5.165)

with P1 and P2 as the averaged total pressure at stations 1 and 2. Inserting for the total
pressure the sum of static and dynamic pressures, we get the static pressure difference
as:

Incorporating Eq. (5.161) into the axial component of the blade force in Eq. (5.159)
yields:

We introduce the velocity components into Eq. (5.162) and assume that for an
incompressible flow the axial components of the inlet and exit flows are the same. As
a result, Eq. (5.162) reduces to:

The second term on the right-hand side exhibits the axial component of drag forces
accounting for the viscous nature of a frictional flow shown in Fig. 5.30. Thus, the
axial projection of the drag force is obtained from:

Figure 5.31 exhibits the turbine and compressor cascade flow forces, including the
lift and drag forces on each cascade for viscous flow where the periodic exit velocity
distribution caused by the wakes, and shown in Fig. 5.31, is completely mixed out
resulting in an averaged uniform velocity distribution,  Fig. 5.30. With Eq. (5.164),
the loss coefficient is directly related to the drag force. Since the drag force D is in
the direction of V  , its axial projection Dax can be written as:
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Fig. 5.31: Viscous flow forces on a turbine blade (top) and a
compressor blade (bottom). The resultant force is decomposed
into a drag and a lift component. 

(5.166)

(5.167)

(5.168)

Assuming the blade height h = 1, we define the drag and lift coefficients as:

Introducing the drag coefficient CD, we obtain a direct relationship between the loss
and drag coefficient: 

The magnitude of the viscous lift force is the projection of the resultant force FR on
the plane perpendicular to V  :
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(5.169)

Fig. 5.32: Lift-solidity coefficient as a function of inlet flow angle 1
with the exit flow angle 2 as parameter for turbine and compressor
cascades.

(5.170)

Using the lift coefficient defined previously and inserting the lift force, we find

Introducing the cascade solidity  = c/s into Eq. (5.169) results in:

The lift-solidity coefficient is a characteristic quantity for the cascade aerodynamic
loading.

Using the flow angles defined in Fig. 5.32, the relationship for the lift-solidity
coefficient becomes:
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Fig. 5.33: Profile loss coefficient as a function of chord/spacing ratio

(5.171)

(5.172)

with:

For a preliminary design, the contribution of the second term in Eq. (5.171) compared
with the first term can be neglected. However, for the final design, the loss coefficient
 needs to be calculated as detailed in [4] and inserted into Eq. (5.171). 

Figure 5.33 shows the results as a function of the inlet flow angle with the exit flow
angle as the parameter for turbine and compressor cascades. As an example, a turbine
cascade with an inlet flow angle of 1 = 132o, and an exit flow of 2 = 30o resulting in
a total flow deflection of  = 102o, has a positive lift-solidity coefficient of CL  = 2.0.
This relatively high lift coefficient is responsible for generating large blade forces
and, thus, a high blade specific power for the rotor. In contrast, a compressor cascade
with an inlet flow angle of 1 = 60o and an exit flow of 2 = 80o which result in a total
compressor cascade flow deflection of only  = 20o, has a lift-solidity coefficient of
CL  = -0.8. This leads to a much lower blade force and, thus, lower specific
mechanical energy input for the compressor rotor. The numbers in the above example
are typical for compressor and turbine blades. The high lift-solidity coefficient for a
turbine cascade is representative of the physical process within a highly accelerated
flow around a turbine blade where, despite a high flow deflection, no flow separation
occurs. On the other hand, in case of a compressor cascade, a moderate flow
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deflection, such as the one mentioned above, may result in flow separation. The
difference between the turbine and compressor cascade flow behavior is explained by
the nature of boundary layer flow around the turbine and compressor cascades. In a
compressor cascade, the boundary layer flow is subjected to two co-acting
decelerating effects, the wall shear stress dictated by the viscous nature of the fluid
and the positive pressure gradient imposed by the cascade geometry. A fluid particle
within the boundary layer that has inherently lower kinetic energy compared to a
particle outside the boundary layer has to overcome the pressure forces due to the
governing positive pressure gradient. As a result, this particle continuously
decelerates, comes to a rest, and separates. In the case of a turbine cascade, the
decelerating effect of the shear stress forces is counteracted by the accelerating effect
of the negative pressure gradient that predominates a turbine cascade flow.  

5.10.3 Effect of Solidity on Blade Profile Losses

Equation (5.171) exhibits a fundamental relationship between the lift coefficient, the
solidity, the inlet and exit flow angle, and the loss coefficient . The question is, how
the profile loss  will change if the solidity  changes. The solidity has the major
influence on the flow behavior within the blading. If the spacing is too small, the
number of blades is large and the friction losses dominate. Increasing the spacing,
which is identical to reducing the number of blades, at first causes a reduction of
friction losses. Further increasing the spacing decreases the friction losses and also
reduces the guidance of the fluid that results in flow separation leading to additional
losses. With definite spacing, there is an equilibrium between the separation and
friction losses. At this point, the profile loss  = friction + separation is at a minimum. The
corresponding spacing/chord ratio has an optimum, which is shown in Fig.5.33. To
find the optimum solidity for a variety of turbine and compressor cascades, a series
of comprehensive experimental studies have been performed by several researchers.
A detailed discussion of the results of these studies is presented in [4].

The relationship for the lift-solidity coefficient derived in the preceding sections
is restricted to turbine and compressor stages with constant inner and outer diameters.
This geometry is encountered in high pressure turbines or compressor components,
where the streamlines are almost parallel to the machine axis. In this special case, the
stream surfaces are cylindrical with almost constant diameter. In a general case such
as the intermediate and low pressure turbine and compressor stages, however, the
stream surfaces have different radii. The meridional velocity component may also
change from station to station. In order to calculate the blade lift-solidity coefficient
correctly, the radius and the meridional velocity changes must be taken into account. 
Detailed discussions on this and turbomchinery aero-thermodynamic topics are found
in [4].
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Fig. P5.2

Fig. P5.1

Problems, Project

Problem 5.1: A one-dimensional unsteady flow is given by the following velocity 

and density field 

a) Calculate the substantial change of the density.
b) Check the validity of the continuity equation

     

Problem 5.2: The gap shown in Fig. P5.1 has the length L, the height h(t), and is
filled with a fluid of constant density.  The top wall of the gap moves downward with
the velocity V0.  The velocity distribution at the exit is

a) Given the values: Uo, ho, L, , determine the function of the gap height for 
h(t = 0) = ho.

b) Calculate the maximum velocity Uo at the exit.

Problem 5.3: Figure P5.2 shows an oscillating journal
bearing with the eccentricity e = e(t) and the shaft
radius R. The shaft rotates with a constant rotational
speed . We assume that the bearing has an infinite
width in the direction perpendicular to the shaft axis.
For the clearance distribution h(x1, t) in x 1-
direction can be unwrapped and the following
assumption can be made:

The density of the fluid  is constant and the volume flux per unit width  at
location x1 = 0 is known.  Given the following quantities , calculate
the volume flux per unit width  as a function of time at x10.
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Problem 5.4: Incompressible fluid
flows over a flat plate, Fig. P5.3,
(width b, length L) with constant
velocity Uo. The viscosity effect
causes a boundary layer with the
thickness  (x1). Outside the boundary
layer, the velocity is u1 = Uo = const.
We assume that the velocity distri-
bution within the boundary layer
follows a sine function with no-slip condition at the wall. Given   =  (x1) and L =

(x1 = L), and 

a) Determine the mass flow through the surface BC of the sketched control volume.
b) Calculate the velocity field within the boundary layer ui (xj).
c) Calculate the mass flow through BC using u2 (x1, x2 = ).

Problem 5.5: Fluid with constant velocity U
and density  flows past an infinitely long
cylinder, Fig. P5.4. The flow direction
coincides with the symmetry axis and the only
force on the body is then the drag force FD.
Downstream of the body a wake flow is
generated where the velocity u1 is less than U .
With a given u1/U  calculate the drag force FD
per unit depth acting on the body.

Problem 5.6:  Given is the stress tensor in a non-dimensional form

Calculate:

a) the invariants I1 , I2 , and I3  of the tensor,
b) its principal stresses (1), (2), and (3)

c) and its principal directions.
d) Determine the rotation matrix that transforms ij to a diagram form.  Perform the

transformation.
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Fig. P5.5

Problem 5.7: The radial gap
of an unloaded bearing
shown in Fig. P5.5 is filled
with a Newtonian fluid and
can, for h/R  1, be modeled
by a two-dimensional gap
with the coordinates x1, x 2.
The velocity distribution is
approximated by

 .

We assume a steady plane flow independent upon x1. The material properties (density
, absolute vicosity  and thermal conductivity  are constant. The body forces are

neglected and all quantities are per unit depth.

a) Calculate the torque MA exerted on the journal and the necessary power PA.
b) Determine the dissipation function  for the given velocity distribution.
c) Calculate the energy PL per unit of time dissipated in the bearing gap by

integrating the dissipation function over the gap volume. Compare the result with
the driving power PA.

d) Determine the heat flux  that must be rejected from the fluid in steady
operation.

e) Calculate the temperature gradient at the bushing (x2 = 0), if the total heat flux
 flows through the bushing alone.

f) Determine the temperature distribution T(x2) in the gap, when the bushing is kept
at constant temperature TB.

Given: , , , R, h, , TB

Problem 5.8: An axial air compressor  to be designed for the following data:

Total inlet pressure Pin = 100.00 kPa
Total inlet temperature. Tin = 300.00 K
Hub diameter DH = 558.8 mm 
Tip diameter DT = 685.0 mm
Frequency f =  50.0 Hz 
Mass flow  =  4.00 kg/s
Isentropic efficiency S = 0.90  -
Gas constant R = 287.0J/kgK
Specific heat ratio  = 1.4 

The isentropic efficiency is defined as . The manufacture has a family of
the compressor blades already in stock, from which a blade with the following stage
parameter can be chosen:
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Load coefficient = -0.5
Deg.  of Reaction    r = 0.5
Stator exit angle 2 = 70.340

(1) Find the rest of stage parameters to draw the velocity diagram 
(2) Give the complete compression process in an h-s diagrams 
(3) Sketch the velocity diagram
(4) Find the compressor exit pressure
(5) Find the compressor exit temperature
(6) Find the power consumption by the compressor

References



6 Inviscid Potential Flows

As discussed in Chapter 4, generally the motion of fluids encountered in engineering
applications is described by the Navier-Stokes equations. Considering today’s com-
putational fluid dynamics capabilities, it is possible to numerically solve the Navier-
Stokes equations for laminar flows (no turbulent fluctuations), transitional flows
(using appropriate intermittency models), and turbulent flow (utilizing appropriate
turbulence models). Given today’s computational capabilities, one may argue at this
juncture that there is no need to artificially subdivide the flow regime into different
categories such as incompressible, compressible, viscid or inviscid  ones. However,
based on the degree of complexity of the flow under investigation, a computational
simulation may take up to several days, weeks, and even months for direct Navier-
Stokes simulations (DNS). The difficulties associated with solving the Navier-Stokes
equations are caused by the existence of the viscosity terms in the Navier-Stokes
equations.

Measuring the velocity distributions encountered in engineering applications
such as in a pipe flow, flow around a compressor or turbine blade, or along the wing
of an aircraft, we find that the effect of viscosity is confined to a very thin layer called
the boundary layer with a local thickness . As we discuss in Chapter 11, comprehen-
sive experimental investigations performed earlier by Prandtl [1], [2] show that the
boundary layer thickness  compared to the length L of the subject under investigation
is very small. In the vicinity of the wall, because of the no-slip condition, the velocity
is . Moving away from the wall towards the edge of the boundary layer, the
velocity continuously increases until it reaches the velocity at the edge of the
boundary layer . Within the boundary layer, the flow is characterized by non-
zero vorticity . No major changes in velocity magnitude is expected outside
the boundary layer, provided that the surface of the subject under investigation does
not have a curvature. In case of surfaces with convex or concave curvatures, the
velocity outside the boundary layer changes in  lateral direction.

Outside the boundary layer, the effect of the viscosity can be neglected as long
as the Reynolds number is high enough (Re = 100,000 and above) indicating that the
convective flow forces are much larger than the shear stress forces. Theoretically, the
boundary layer thickness approaches zero as the Reynolds number tends to infinity.
In this case, the flow can be assumed as irrotational, which is then characterized by
zero vorticity . Thus, as Prandtl suggested, the flow may be decomposed
into two distinct regions, the vortical inner region, called the boundary layer, where
the viscosity effect is predominant, and the non-vortical region outside the boundary
layer.

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 139–199. 
© Springer Berlin Heidelberg 2010
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Fig. 6.1: (a) Velocity distribution inside and outside the boundary layer along the
suction surface of a subsonic compressor, (b) velocity at zero viscosity. 

The flow in the outer region can be calculated using the Euler equation of motion,
while the boundary layer method can be applied for calculating the viscous flow
within the inner region. Combining these two methods allows calculation of the flow
field in a sufficiently accurate manner as long as the boundary layer is not separated.
Figure 6.1 exhibits the velocity distributions along the suction surface of an airfoil.
While in case (a) the viscosity is accounted for, in case (b) it is neglected. Thus, the
flow is assumed irrotational, which is characterized by . As a consequence
of this assumption, the velocity on the surface has a non-zero tangential component,
which is in contrast to the reality. These type of flows are called potential flows which
is the subject of the following sections.
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(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

6.1 Incompressible Potential Flows

As seen in Chapter 3, an incompressible flow satisfies the condition  which,
in conjunction with the continuity equation, leads to . Furthermore, we 
assume that the flow is irrotational with everywhere in the flow field. This
assumption, which significantly simplifies the mathematical treatment of the flow
field, allows introduction of a scalar function called the velocity potential , from
which the velocity vector and its components are derived as the gradient of the
potential :

Expanding the index notation results in:

Inserting Eq. (6.1) into the continuity equation for incompressible flow , we
arrive at:

Equation (6.3) is the Laplace equation decomposed as: 

The Laplace equation (6.4) is an elliptic, linear partial differential equation
encountered in many branches of engineering and physics such as electromagnetism,
heat conduction, and theory of elasticity. It can be solved using appropriate boundary
conditions. The introduction of the velocity potential  in conjunction with the
Bernoulli equation having a constant that has the same value everywhere in the flow
field significantly reduces the solution efforts. The solution of the Laplace equation
simultaneously satisfies the continuity condition  (no divergence) as well
as the irrotationality condition . In addition, the solution has to satisfy the
boundary conditions dictated by the solid surfaces that the potential flow is exposed
to. As a simple example, we will consider a potential flow past a flat surface. On the
surface and at infinity, the solution has to satisfy the following two boundary
conditions:
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(6.6)
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z= x + i y

r =
z

θ

z= x - i y

θ+π/2z*

Fig. 6.2: Complex variables. 

with  as the coordinates in longitudinal and lateral directions, respectively. The
boundary condition BC1 requires that on the surface, the normal component of the
velocity must vanish, whereas the boundary condition BC2 necessitates that the
velocity has to approach  as x1 approaches infinity. There are not many potential
flow functions with practical significance that can deliver analytic solutions satisfying
the boundary conditions (6.5). A function that satisfies the Laplace equation and
possesses continuous second derivatives is called analytic. The linear nature of the
Laplace equation allows superposition of analytical functions to build a new harmonic
function that satisfies the above boundary conditions. This unique characteristic of
the Laplace equation allows an indirect approach by composing harmonic functions
that consist of individual functions with the known solutions. Prandtl and his co-
workers, among others, [3] and [4], were the first to provide a list of those individual
functions, based on complex analysis. The complex analysis exhibits a powerful tool
to deal with the potential theory in general and the potential flow in particular. It is
found in almost every fluid mechanics textbook that has a chapter dealing with
potential flow. While they all share the same underlying mathematics, the style of
describing the subject to engineering students differ. A very compact and precise
description of this subject matter is found in an excellent textbook by Spurk [5].

6.2 Complex Potential for Plane Flows

Plane potential flows that satisfy the Laplace equation are treated most effectively
using complex variables. These flows differ from other two-dimensional flows (with
two independent variables) because two independent variables, x and y, can be
combined into one complex variable:

with . The complex variable z and its conjugate complex  are shown in Fig.
6.2. The z-components on x and y-axis are real ( ) and imaginary ( ) which are
parts of the variable z.
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(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

Since every analytic function of the complex coordinate z satisfies Laplace’s
equation, the computation of both the direct and indirect problems becomes
considerably easier. If we know the flow past a cylindrical body whose cross-
sectional surface is simply connected (e.g. circular cylinder), then according to the
Riemann mapping theorem, we can obtain the flow past any other cylinder using a
conformal transformation. By this theorem, every simple connected region in the
complex plane can be mapped into the inside of the unit circle. By doing this, in
principle,  we have solved the problem of flow passt a body, and we only need to find
a suitable mapping function. 

The complex function F(z) is called analytic (holomorphic), if it is complex
differentiable at every point z, where the limit 

exists and is independent of the path from z to z + z. If this requirement is not
satisfied, the point is a singular point. Along a path parallel to the x axis, the relation

holds and the same holds for the path parallel to the y axis 

Since every complex function F(z) is of the form 

we then have

Clearly for the derivative to exist, it is necessary that 

holds true. Equations (6.12) called the Cauchy-Riemann differential equations are
sufficient for the existence of the derivative of F(z). We can also show easily that both
the real part, (F) = (x, y), and the imaginary part, (F) = (x, y), satisfy the
Laplace’s equation. To do this, we differentiate the first differential equation in (6.12)
by x and the second by y and add the results. We then see that  satisfies Laplace’s
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(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

equation. If we differentiate the first by y and the second by x and subtract the results,
we see that the same also holds for . Both functions can, therefore, serve as the
velocity potential of a plane flow. We choose  as the velocity potential and shall
now consider the physical meaning of . The velocity vector, as the gradient of scalar
potential , is obtained from:

To comply with the nomenclature generally used in two-dimensional complex
analysis, we replaced in Eq. (6.13) the components V1 and V2 by u and v,
respectively. Because of Cauchy-Riemann condition (6.12) we also have

with x1  x and x2  y, respectively. From  we conclude that  is
perpendicular to the velocity vector V, and therefore  = const are streamlines. Thus,
we have identified  as a stream function and note that introducing a stream function
is not restricted to potential flows. Constructing an array of streamlines, we define a
particular streamline that is identical with the body contour, which is exposed to a
potential flow by assigning a constant to . In this case, 

represents the equation of the body contour. With  known, we obtain the velocity
vector directly from the following relationship 

therefore

so that the continuity equation

is identically satisfied. The velocity components can be most easily calculated using
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(6.19)

x

y y

U  > 0ψ = const,

co
ns

t
ψ

 =
 

ψ =
co

nst.

Φ =const

y

x x

(a) (b) (c)
V  > 0 U  > 0, V > 0

Fig. 6.3: Uniform Flows, (a) parallel to x-axis, (b) parallel to y-axis, (c)
flow velocity at an angle.

(6.20)

(6.21)

(6.22)

(6.23)

as the complex conjugate velocity

as the mirror image of the complex velocity w = u + iv at the real axis. 

6.2.1 Elements of Potential Flow
As mentioned previously, the Laplace equation allows any linear combination of
complex functions that satisfy the Laplace requirement. In the following, first we
discuss the basic elements of complex potentials that are used for superposition
purposes.

6.2.2.1 Translational Flows

Translational flows in x-direction, y-direction and at an angle are shown in Figure 6.3.

The complex function of the translational flow is defined as 

or

For a horizontal flow from left to right and vertical stream upward Eq. (6.21) is
reduced to:

and
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(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

Because of Eq. (6.10), we find

and

For a streamline with  = const, we obtain , where the constant C can
be varied to construct the desired streamlines. The complex conjugate velocity is
found as 

6.2.2.2 Sources and Sinks

Sources and sinks shown in Fig. 6.4 are represented by the complex potential

that is located at the origin with positive E as the source strength and negative E as
the strength of the sink. Replacing z = rei  leads to

from which the velocity potential and the stream function are determined as 

and

As shown in Fig. 6.4, the streamlines  = const and the potentials = const are
straight lines through the origin and concentric circles ( r = const), respectively. 

6.2.2.3 Potential Vortex

The potential vortex shown in Fig. 6.4 is represented by the complex potential: 
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Fig. 6.4: Plane source, sink and vortex located at the origin.

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

with  as the vortex strength. The positive sign refers to the counter clockwise
circulation direction, Fig. 6.4, whereas the negative sign indicates the clockwise
direction. In polar coordinates, Eq. (6.31), a vortex with a clockwise circulation
direction can be written as

therefore

and

As seen in Fig. 6.4, the streamlines  = const and the potentials  = const are
concentric circles (r = const) and straight lines through the origin, respectively. 

6.2.2.4 Dipole Flow

This element also called doublet is actually a superposition of a source and a sink that
are arranged on the real axis at a distance ±c from the origin. Taking advantage of the
superposition principle applied to a source-sink pair described by Eq. (6.27), we find

which is rearranged as
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(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

y

φ 
= c

on
st

ψ = const

x

constψ = 

M > 0

ψ = 
x

const

y y

M > 0

x

(a) Dipole located on x-axis (b) Dipole located on y-axis of a dipole ψ, φ(c)

Fig. 6.5: Streamlines and equipotenial lines of a dipole.

Using the Taylor expansion of the expression in the parentheses results in: 

we set now , and as c approaches zero we find:

resulting in a simple relationship for F(z)

or

from which we read off directly: 

and

For  = const we obtain with sin  = y/r

that is, the streamlines and potential lines are circles which are tangent to the x- and
y-axis at the origin shown in Fig. 6.5.
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Fig. 6.6: Corner flow with the exponent n as a parameter. 

(6.44)

(6.45)

(6.46)

(6.47)

6.2.2.5 Corner Flow

Fig. 6.7 shows the streamline plot for different corner flow configurations described
in the following section. 

The complex potential of this element is described by

with z = rei  it follows that 

and therefore 

and
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(6.48)

(6.49)

(6.50)

(6.51)

For the magnitude of the velocity, we obtain 

The streamlines are constructed by setting  = const. The corner walls are represented
by the streamlines  = 0, thus, sin n  = 0 or  = k /n (k = 0,1,2,. .).

6.3 Superposition of Potential Flow Elements

This section presents the superposition of the few basic elements we discussed above
to arrive at a more complicated flow picture. It contains the superposition of source
and vortex, uniform flow, source and dipole flow, uniform flow and combined dipole
and vortex flow.

6.3.1 Superposition of a Uniform Flow and a Source 
Combining the uniform complex potential, Eq. (6.22) with the source potential Eq.
(6.27), leads to a new complex potential that satisfies the Laplace equation:

Decomposing Eq. (6.49) into its real and imaginary parts, we arrive at stream function 

and the potential function

Figure 6.7 exhibits the streamlines resulting from superposition Eq. (6.50).
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Fig. 6.7: Superposition of a uniform flow and a source to construct a flow past a
plane semi-infinite body.

(6.52)

(6.53)

(6.54)

The velocity components are obtained by differentiating Eq. (6.49) with respect to the
complex variable z and decomposing the result into its real and imaginary parts, we
find the velocities in x- and y-direction as:

Figure 6.7 exhibits the streamlines resulting from superposition Eq. (6.50). As seen,
the location of the stagnation point is on the x-axis at an angle  =  and x, y
positions, found by setting in Eq. (6.52)  respectively. This results in

, which, in conjunction with Eq. (6.50), determines the
stagnation streamline . 

6.3.2 Superposition of a Translational Flow and a Dipole 
The potential flow around a circular cylinder can be simulated by a combination of
a translational flow described by Eq. (6.22) and a dipole as defined by Eq. (6.39). 

In Eq. (6.53) we introduced . Inserting z = rei , Eq. (6.53) results in 
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(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

and therefore

and

The stagnation streamline  is found by setting r = R and  = 0, ,
respectively. From the complex conjugate velocity 

and by setting dF/dz = 0 we find the location of the stagnation points at z = ± R. The
velocity components in r and  directions are determined from:

and

Using the Bernoulli equation for inviscid flows

and setting , we find the pressure coefficient as

Figure 6.8 shows the results of the superposition of a translational potential flow with
a dipole flow simulating the inviscid potential flow past a cylinder. The cylinder with
a radius R =1 separates the dipole streamlines that constitute the interior of the
cylinder from the exterior streamlines pertinent to the translational potential flow.
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Fig. 6.8: Superposition of a translational flow and a dipole simulating a potential
flow past a circular cylinder without circulation. 
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Fig. 6.9: Pressure distribution and the distribution of the pressure gradient
around a cylinder exposed to a potential flow.

Figure 6.9 Shows a symmetric Cp- distribution around the cylinder. Maximum Cp is
obtained at the stagnation points A and C with  = 0o and 180o. Strong suction with
Cp =-3 occurs at points B and D with  = 90o and 270o. Figure 6.9 also shows the
distribution of the pressure gradient. Changes of pressure gradient from negative to
positive values are observed at the top and the bottom of the cylinder marked with 
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(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

B and D. Integrating the pressure distribution around the cylinder surface results in
a zero net reaction force in the streamwise direction. This means that the cylinder
exposed to a potential flow experiences no drag force. As a consequence of the
boundary conditions and the assumption of irrotationality, the flow is fully attached
to the cylinder surface with non-zero tangential components. In reality, there is
always a drag force acting on the cylinder surface. The existence of the shear stress
caused by the flow viscosity in conjunction with boundary layer instability and
separation due to the change of pressure gradient, causes the pressure distribution to
significantly deviate from the potential flow solution. The maximum velocity

is reached for r = R, i.e. on the body at points B and D with  = 90o and
270o. At the stagnation points A and C, the velocity diminishes ( ).

6.3.3 Superposition of a Translational Flow, a Dipole and a Vortex 
Adding to the case discussed in section 6.3.2, a potential vortex in the clockwise
direction (negative) and the potential flow past a rotating circular cylinder is
simulated. This superposition is possible since a potential vortex satisfies the
kinematic boundary condition. The complex potential of this flow is 

Extracting its real and imaginary parts, we find the velocity potential and the stream
function as 

and

The function F(z) represents the flow past a circular cylinder with the circulation
strength as a parameter. When  > 0, the vortex has a counterclockwise direction,
whereas a  < 0 refers to a clockwise direction. Equation (6.64) simulates the flow
around a cylinder with a radius R that rotates with an angular velocity . The
circulation around the cylinder in Eq. (6.64) is obtained using the relationship:

with  and  as the angular velocity of the rotating cylinder. The stagnation
points on the cylinder contour are computed from:
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(6.67)
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Fig. 6.10: Potential flow past a circular cylinder with clockwise
circulation  as parameter.

Setting Eq. (6.66) equal to zero, we obtain the angular positions of the stagnation
points:

Figure 6.10 shows the flow pictures for different circulation values .
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Fig. 6.11: Distribution of pressure coefficient Cp as a function of  with the  as
parameter. 

As seen in Fig. 6.9, for  = 0, the front and rear stagnation points were located at
 and . Imposing a negative circulation (clockwise) causes the

two stagnation points to move closer together, Fig. 6.10(a). Consequently, the
streamlines on top of the cylinder are crowded together, while the bottom streamlines
are spaced farther apart leading to larger flow velocities above the cylinder than
below. This results in higher pressure below the cylinder than above. Increasing the
vortex strength moves the streamlines closer together, Fig. 6.10 (b, c, and d). Further
increase of circulation strength to reach causes the two stagnation points
to merge together leading to a single point at an angle of , Fig, 6.10 (e). For

, Fig. 6.10(f), the stagnation point moves out. Using the Bernoulli
equation (6.60), the pressure coefficient is calculated from:

Figure 6.11 shows the Cp-distributions as a function of  for different -values.

For comparison purposes, it also entails the distribution for  = 0. The constant 
Cp = 1 is the locus of all stagnation points. They can be found easily by intersecting
the individual Cp-curves for  with the line Cp =1, as shown in Fig.
6.11.  The Cp-curve for  tangents the Cp =1-line indicating the existence
of only one stagnation point which is located at  = 90.The results plotted in Figs.
6.10 exhibit qualitatively similar trends as the flow pictures by Prandtl [6] display.
Figure 6.12 shows the flow around a cylinder that rotates with a velocity
ratio . With the exception of different velocity ratios and the boundary
layer separation, the flow pattern in Fig. 6.12 qualitatively resembles the one shown
in Fig. 6.10(e) with the ratio ( ). Comparing these two 
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Fig. 6.12: Viscous flow around a rotating cylinder from [6]. Unlike the potential
flow the viscous flow has caused a separation zone.

(6.69)

(6.70)

(6.71)

(6.72)

figures reveals two distinctive characteristics: (1) the viscous flow exposed to a major
positive pressure gradient as we discussed previously leads to flow separation that is
clearly visible in Fig. 6.12, (2) in order for the two stagnation points to merge, a
velocity ratio far above  must be applied. 

Calculating the static pressure distribution from Eq. (6.68), the component of the
force per unit of depth acting on the cylinder in positive x-direction is calculated
from:

which vanishes for symmetry reasons. The component in positive y-direction is: 

Inserting the static pressure from Eq. (6.68) into Eq.(6.70) results in: 

Note that Fy is positive for counter clockwise direction  < 0. In the following
sections dealing with the Kutta-Joukowsky theorem, it is shown that Eq. (6.71) is
generally valid for any two-dimensional body regardless of its shape. This equation
was independently developed by W. Kutta (1902) and N. Joukowsky (106). The
generalized relationship in vector form is:
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(6.73)

Equation (6.72) states that a body of any arbitrary shape exposed to a potential flow
with the velocity and the circulation vector  generates a lift vector L (per unit
depth) which is perpendicular to the plane spanned by and .

Figure 6.13 exhibits an airfoil that is subjected to an inviscid flow with the velocity
V1. The airfoil shown in Fig. 6.13(a) has a certain camber which causes the velocity
direction to deflect by an amount of , Fig. 6.13(b) , whose magnitude determines the
magnitude of the circulation . Immediately downstream of the training edge, the
velocity assumes the value V2. These two velocities form the mean velocity vector
which determines the magnitude of the lift force as well. The direction of the velocity
vector , the circulation vector  vector and the lift vector L are shown in Fig.
6.13(b). In this case, the circulation is generated by the flow velocity deflection 
between  and  caused by passing over the airfoil, resulting in a mean velocity
vector . Using Eq. (6.65) and considering Fig. 6.13(c), the
expansion of circulation integral leads to: 

The integrals in Eq. (6.73) from B to C and D to A are performed along two adjacent
streamlines 1 and 2. These two integrals are equal and opposite, therefore, they
cancel each other. For a positive value of  obtained from Eq. (6.73) along a closed
curve surrounding the blade (Fig. 6.13 c), its vector  must form a right-handed screw
with the chosen direction. It should be pointed out that the circulation integral can be
carried out around any curve that surrounds the body. In carrying out the integration
only for practical reasons, we chose the closed curve ABCDA. 
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Fig. 6.14: Superposition of a uniform flow, a source and a sink.

(6.74)

As shown in Fig. 6.13, the specific lift force L (force per unit of depth) forms a
right- handed screw with the direction obtained by rotating  toward , such that
forms the angle of 90o between these two vectors. As seen, the circulation does not
necessarily need to be generated by rotation. Any flow deflection caused by passing
over a body that generates certain flow deflection produces circulation and, therefore,
a lift. The phenomenon of a rotating body in a cross flow that experiences a lift is
called Magnus effect.

6.3.4 Superposition of a Uniform Flow, Source, and Sink 
Figure 6.14 exhibits the superposition of a uniform flow, a source and a sink
discussed in the following section. 

Combining the uniform complex potential, Eq. (6.22) with a source located at
and a sink at  with the complex potentials described by Eq. (6.27), we

obtain a new complex potential that satisfies the Laplace equation:

Decomposing Eq. (6.74) into its real and imaginary parts, we arrive at the potential
function
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x

y

-2 0 2-2

0

2

Fig. 6.15: Superposition of a source and vortex.

(6.77)

and the stream function

Figure 6.14 exhibits the streamlines resulting from superposition Eq. (6.76). The
velocity components are obtained by differentiating Eq. (6.76) with respect to the
complex variable z and decomposing the result into its real and imaginary parts. The
process of differentiation and decomposition is the same as shown in section 6.2.3.1. 

6.3.5 Superposition of a Source and a Vortex 
The superposition of a source and a vortex is plotted in Fig. 6.15 and discussed
below.

As in the last example, we combine the complex potential of a source , Eq.(6.27), and
a vortex with the complex potential described by Eq (6.31). The source and the vortex
are located at the origin.
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(6.81)

Decomposing Eq. (6.77) into its real and imaginary parts, we arrive at the potential
function

and the stream function

The combination of source and a vortex is frequently referred to as a logarithmic
spiral. The streamlines are plotted in Fig. 6.15.

6.4 Blasius Theorem

In this section, we utilize the complex analysis to provide the equation structure that
is needed to derive the Kutta-Joukowsky lift equation from a potential theoretical
point of view. As we saw in Chapter 5, any force exerted on any body of any shape
that is subjected to a viscous or inviscid flow can be calculated using the integral
balance of linear momentum. Thus, the following procedure is an alternative that can
be applied only to potential flow. Equation (5.25) applied to a two-dimensional body
results in:

with n and t as the normal and tangential unit vectors shown in Fig. 6.16.

 Assuming an inviscid irrotational flow, Eq. (6.80) is reduced to:
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(6.82)

(6.83)

(6.84)

(6.85)

(6.86)

(6.87)

(6.88)

The integration has to be performed over the entire body surface. For a two-
dimensional body, the differential surface element is  with w as the width
of the body and dC as a differential element of the body contour C, Fig. 6.16. By
moving along the contour, the normal unit vector changes the direction. However, it 
can be related to the velocity direction along the body contour. For the normal and
tangential unit vectors, we may write:

Expanding t in (6.82) and multiplying the results with -i, we find: 

Inserting Eq. (6.83) into (6.81), we get:

With ,  and assuming , we find:

Thus, the surface integral in (6.84) is converted into a contour integral (closed line
integral). The static pressure p is calculated from Bernoulli equation: 

with  as the constant total pressure. We substitute the static pressure in Eq.
(6.85) by (6.86) and obtain the force vector: 

In Eq. (6.87), the constant total pressure term does not appear because the contour
integral over the constant total pressure vanishes. Since the contour of the body is a
closed curve with  = const and d  = 0 from Eq. (6.10), it follows that: 

and, thus, Eq. (6.87) reduces to:
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(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)

(6.95)

Equation (6.89) is called the Blasius Theorem.

6.5 Kutta-Joukowski Theorem

With Eq. (6.89) we are now able to calculate the force acting on a cylinder of
arbitrary contour using the Kutta-Joukowsky lift equation. We assume the cylinder
is exposed to a flow with the velocity vector V and the components V x + iV y at
infinity. We further assume that there are no singularities outside the body, although
there will be inside in order to represent the body and to produce the lift. The velocity
field can be represented by a Laurent series of the form 

with  as the conjugate velocity vector. The integration of Eq. (6.90) yields the
complex potential 

The boundary condition at infinity requires

which determines the coefficient A0

To calculate the coefficient A1 we integrate (u - iv) around the contour of the body: 

Performing the multiplication of the right- hand side integrand of Eq. (6.94) leads to:

The first integral on the right-hand side is the circulation defined in Eq. (6.65). The
second term is the closed integral of derivative of the stream function :
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(6.96)

(6.97)

(6.98)

(6.99)

(6.100)

(6.101)

(6.102)

since  is constant along the contour, its derivative d  vanishes. As a result, with the
definition of the circulation Eq. (6.65), we have:

According to the residue theorem of complex analysis, if C is a closed curve, and if
 is analytic within and on C except at a finite number of singular points in the

interior of C, then

Since the Laurent series has only one essential singularity (z = 0), then from Eq.
(6.97) we have 

Implementing the results from Eq. (6.99) into Eq. (6.97), we find the coefficient A1
from:

To calculate the force vector acting on the body, we utilize the Laurent series, Eq.
(6.90), that describes the velocity as an analytic function and construct the following
equation:

Taking the contour integral of Eq. (6.101), 

The first term in Eq. (6.102) is a contour integral over the constant taken
from Eq. (6.93). Its contour integral vanishes. The contour integral of the second term
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(6.103)

(6.104)

(6.105)

(6.106)

(6.107)

is  because of Eq. (6.99) for n = 1. The contour integral of the third and all higher
order terms vanishes due to Eq. (6.99) for n  2. As a result we get:

With Eq. (6.93) and (6.100), Eq.(6.103) becomes: 

and then from (6.89), we find the Kutta-Joukowski lift equation.

Equation (6.105) shows that the lift force is proportional to the flow velocity, the
circulation and the density, regardless of the shape of the body. The result of Eq.
(6.83) suggests that the lift force R is perpendicular to the velocity vector. To prove
this statement, we re-write Eq. (6.105) using the following relations from complex
analysis:

the force vector equation is modified as:

where exponential expression determines the direction of the force vector. Is the
direction of the conjugate velocity vector , so is the direction of the force vector 

, meaning that the force vector and the conjugate velocity vector are
perpendicular to each other. Figure 6.17 shows the effect of a circulation sign. As
seen, the sign of the circulation determines if the force vector points up- or
downward. Figure 6.17(a) shows a clockwise (negative) circulation that generated an
upward lift, whereas, the counterclockwise (positive) circulation created a downward
lift force.
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Γ = -2π a V∞ = (clockwise)
(a)

Γ = +2π a V∞ = (counter-clockwise)(b)

Fig. 6.17: Circulation sign and lift direction, (a) negative
circulation (clockwise) causes a positive lift, (b) positive
circulation (counter clockwise) causes a negative lift. 
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Fig. 6.18: Conformal transformation from z-plane onto -plane.

(6.108)

6.6 Conformal Transformation

The method of conformal transformation was used extensively in the pre-CFD era to
reduce a more complicated flow configuration to a simpler one amenable to
mathematical treatment. We already learned to compose a more complicated flow by
using the superposition principle. In section 6.3.5, we treated the flow past a rotating
circular cylinder. With conformal transformation treated in this section, it is possible
to transform the flow past a circular cylinder to a flow pasta cylinder of arbitrary
contour such as an airfoil. As long as no separation of the boundary layer occurs in
the real flow, potential theory describes the actual flow behavior reasonably well. For
this reason the potential flow pasta circular cylinder still has some technical
importance. Conformal transformation is a major subject of many complex analysis
textbooks and advanced engineering mathematics, among others, [4], [7] and [8]. In
explaining the basics of conformal transformation, the following introductory section
is presented. 

6.6.1 Conformal Transformation, Basic Principles
Consider two planes, one is the z-plane, in which the point  is located and
the other is the -plane in which the point is to be plotted. Let there be a
function  that facilitates the transformation of point z in z-plane into the -
plane. The function , thus, defines a mapping or transformation of z-plane
onto -plane.

Figure 6.18 is a simple example of transformation of points that constitute the straight
lines in z-plane onto corresponding points in -plane. Consider the transformation
function
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(6.109)

(6.110)

(6.111)

(6.112)

(6.113)

Comparing the real and imaginary parts, it follows that 

As seen in Fig. 6.18, constant lines x = Cx in the z- plane are mapped onto parabolas
open to the left. Furthermore, Fig. 6.18 suggests that the magnitudes of angles
between the x = const and y = const in z -plane are preserved, when transforming into
-plane. Eliminating y from Eqs. (6.109) leads to

For Cx = 0 (y axis) the parabolae coincide with the negative  axis. Lines y = Cy are
mapped onto parabolae open to the right: 

where for Cy = 0 (x axis) the parabolas lie along the positive  axis. Before getting
into transformation details, it is important to know  when the transformation equation
can be solved for x and y as single-valued functions of  and , that is, when the
transformation has a single-valued inverse. As we saw in Chapter 3, Eq. 3.15, the 
condition for this is that the Jacobian determinant of the transformation 

does not vanish. Since  is assumed to be analytic,  and  must satisfy the
Chauchy-Riemann equations. Substituting them into the Jacobian determinant, we
have

A transformation which has the following properties, is called conformal: 

(a) If the function  has a single-valued inverse in the neighborhood of any
point where the derivative of the transformation function is non-zero,

(b) If in the mapping the lengths of infintesimal segments, regardless of their
direction, are altered by a factor  which depend only on the point from
which the segments are drawn,



6   Inviscid Potential Flows 169

x

y

(a)

η

ξ

ζz-plane -plane

α
β γ

α
β γ

P

P

P

P'

P'

P'2

1

3

2

1

3

= f(z)ζ

z ζP2 P'2

(b)

Fig. 6.19: Transformation of straight segments and angles from z-plane
into -plane.

(c) If the angles are preserved in magnitude and sense; the case where the vertex of
the angle is an n-fold zero of  is the only exception,

(d) If the velocity potential  is the solution of the Laplace equation and
when  is transformed into , then the transformation will satisfy
the Laplace equation also.

A transformation function  with the properties defined above, is analytic.
Conversely, it can be shown that if the mapping is
conformal, and if their first partial derivatives are continuous, then  is
an analytic function.

From (c), it follows that at the origin in Fig. 6.18, as a singular point of the
transformation, the derivative f = d /dz has a simple zero, and the mapping is no
longer conformal at this point. At a simple zero, the angle between two line elements,
such as the x and y axes ( /2), is doubled in the  plane ( ). In general we have: At a
zero of order n of f (z), the angle is altered by a factor (n + 1) (branch point of
order n).

The graphical representation of the conformal transformation principle is shown
in Fig. 6.19. The sides of the triangle in the z-plane shown in Fig. 6.19 are
transformed onto curves in the -plane. As seen, straight segments in the z-plane
transformed into curved segments in the -plane, while the angles between
intersecting segments remain the same.

6.6.2 Kutta-Joukowsky Transformation
Before treating the Kutta-Joukowsky transformation, a brief description of the
transformation process is given below. We consider the mapping of a circular
cylinder from the z- plane onto the  plane. Using a mapping function, the region
outside the cylinder in the z- plane is mapped onto the region outside another cylinder
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(6.114)

(6.115)

(6.116)

(6.117)

(6.118)

in the  plane. Let P and Q be the corresponding points in the z- and - planes
respectively. The potential at the point P is 

The point Q has the same potential, and we obtain it by insertion of the mapping
function

Taking the first derivative of Eq. (6.115) with respect to , we obtain the complex
conjugate velocity  in the  plane from

Considering z to be a parameter, we calculate the value of the potential at the point
z. Using the transformation function  = f(z) we determine the value of  which
corresponds to z. At this point , the potential then has the same value as at the point
z. To determine the velocity in the  plane, we form 

after introducing Eq. (6.116) into (6.117) and considering , Eq. (6.117)
is rearranged as

Equation (6.118) expresses the relationship between the velocity in -plane and the
one in z-plane. Thus, to compute the velocity at a point in the  plane we divide the
velocity at the corresponding point in the z plane by d /dz. The derivative dF/d  exists
at all points where d /dz  0. At singular points with d /dz = 0, the complex conjugate
velocity in the  plane becomes infinite, if it is not equal to zero at the
corresponding point in the z plane. 

6.6.3 Joukowsky Transformation
The conformal transformation method introduced by Joukowski allows mapping an 
unknown flow past a cylindrical airfoil to a known flow past a circular cylinder.
Using the method of conformal transformation, we can obtain the direct solution of
the flow past a cylinder of an arbitrary cross section. Although numerical methods of
solution of the direct problem have now superseded the method of conformal
mapping, it has still retained its fundamental importance, [5]. In what follows, we
shall examine several flow cases using the Joukowsky transformation function.
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(6.119)

(6.120)

(6.121)

(6.122)

(6.123)
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Fig. 6.20: Transformation of a circle onto a slit (straight line section).

6.6.3.1 Circle-Flat Plate Transformation

Decomposing Eq. (6.119) into its real and imaginary parts, we obtain:

The function f(z) maps a circle with radius r = a in the z plane onto a “slit” in the 
plane. Equation (6.120) delivers the coordinates: 

with  as a real independent variable in the -plane. As the point P with the angle 
moves in z-plane from 0 to 2 , (Fig. 6.20), its image p’ moves from +2a to -2a in the
 -plane. With the complex potential Eq.(6.53)

and setting R = a, the Joukowski transformation function directly provides the
potential in the  plane as
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(6.124)

(6.125)

(6.126)
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Fig. 6.21: Conformal transformation of a circle to an ellipse.

(6.127)

6.6.3.2 Circle-Ellipse Transformation

For this transformation, the circle center is still at the origin of the z-plane. Now if we
map a circle with radius b which is smaller or larger than the mapping constant a, we
obtain an ellipse. Replacing r by b (b a), Eq. (6.120) becomes

Eliminating  from Eq. (6.124), we find:

and with , we obtain the equation of ellipse as: 

Equation (6.126) describes an ellipse, plotted in Fig. 6.21, with the major and minor
axes which are given as the denominators in Eq. (6.126). In Fig. 6.21, b > a, however
any ellipse may be constructed by varying the ratio b/a.

6.6.3.3 Circle-Symmetric Airfoil Transformation

A set of symmetrical airfoils can be constructed by shifting the center of the circle
with the radius b by x along the x-axis on the z-plane as shown in Fig. 6.22.An
eccentricity  with  is defined that determines the thickness of the
airfoil. The radius of the circle is determined by: 

Thus, the magnitude of the eccentricity defines the slenderness of the airfoil. For  =
0, the circle is mapped into a slit, as seen in Fig. 6.20. Due to zero flow deflection, the
symmetrical airfoils at zero-angle of attack do not generate circulation and, therefore,
no lift. Similar profiles are used in turbomachinery design practices such as base
profiles to be superimposed on camberlines.
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Fig. 6.22: Transformation of a circle into a symmetric airfoil.
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Fig. 6.23: construction of cambered
airfoils.

6.6.3.4 Circle-Cambered Airfoil Transformation

To generate airfoils that produce circulation and, therefore, lift, the profile must be
cambered. In this case, the circle with the radius b is displaced horizontally as well
as vertically relative to the origin of the circle with the radius a. To generate a
systematic set of profiles, we need to know how the circle b is to be displaced relative
to the origin of circle a. Only three parameters define the shape of the cambered
profiles. These are: (a) Eccentricity e, angle , and the intersection angle . With
these three parameters, the displacements in x- and y -directions as well as the radius
of the circle b to be mapped onto the -plane are calculated using the following
relations from Fig.6.23. 
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Fig. 6.24: Cambered airfoils constructed by conformal
transformation.

Figure 6.24 shows a family of profiles generated by varying the above parameters.
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Fig. 6.25: Inviscid flow past a circular cylinder, Kutta-condition 

(6.128)

Starting with a small eccentricity of  = 10%, we set  and vary the angle 
from -10o to 30o. This configuration indicates that the two circles have tangents at the
angle . At this small eccentricity, slender profiles are generated that resemble low
subsonic compressor blade profiles. Increasing the magnitude of  results in an
increase of the profile cambers. If the angle is different from zero, then the two
circles intersect each other, as shown in Fig. 6.23. This is also shown in Fig. 6.24 with

,  and  varied from -10o to -30o. The resulting profiles resemble the
turbine profiles.

6.6.3.5 Circulation, Lift, Kutta Condition

The conformal transformation we discussed previously allows, among others, the
generation of asymmetric airfoils with prescribed cambers. These airfoils resemble
profiles that are utilized as aircrafts wings, compressors and turbine blade profiles.
The significance of the cambered profiles is to generate the necessary force to lift the
aircraft, to generate higher total pressure (compressors), and to produce power
(turbine). Generation of lift, however, requires the existence of circulation as we
briefly discussed in Section 6.4. In the context of the potential flow analysis, certain
conditions must be fulfilled to bring about a circulation which is a prerequisite for lift
generation. Figure 6.25 exhibits the potential flow around one of those cambered
airfoils we designed in the previous section.

The corresponding configuration in the z-plane is the flow around a circle with the
circulation  and an angle of attack , Fig. 6.25(a). The complex potential of this
configuration is almost the same as in Eq. (6.62) with the exception being that the
axis of the dipole flow is turned by the angle . Performing a simple coordinate
transformation by substituting in the dipole part of Eq. (6.62)  by 
results in:
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(6.129)

(6.130)

(6.131)

(6.132)

(6.133)

(6.134)

Assuming a circulation in the clockwise direction, Fig. 6.25(a), two stagnation points
S1 and S2 are present in the z-plane. In the -plane, the transformation of the front
stagnation point S1 may be located on the pressure surface (concave side) of the blade,
while the rear S2 may be located on the suction side (convex side), Fig. 6.25 (b).
Considering the flow situation at the sharp trailing edge, the fluid particles move from
the pressure surface (concave side) of the blade to the suction surface (convex side)
with an infinitely large velocity. Increasing the circulation causes both stagnation
points to move. For a particular , the Kutta-circulation, the rear stagnation
point S2 coincides with the trailing edge. At this point the velocity is zero. Known as
the Kutta condition, it specifies that for an airfoil under inviscid flow conditions, to
generate enough circulation, the rear stagnation point must coincide with the trailing
edge. To satisfy this condition we resort to the complex potential Eq.(6.10) with

 with the derivative

Using the Joukowsky transformation function, we find for

For z , the expression in the parentheses approaches unity resulting in

As a consequence, we will have

For the rear stagnation point to satisfy the Kutta-condition, both components must
identically disappear leading to 

Among an infinite number of circulation values that generate an infinite number of
stagnation points distributed all over the profile surfaces, there is only one circulation
that places the rear stagnation point at the trailing edge. To find this particular
circulation we differentiate Eq. (6.128) with respect to z

Substituting , we find
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(6.135)

(6.136)

(6.137)

(6.138)

(6.139)

(6.140)

(6.141)

(6.142)

or

Now we replace the exponential expressions by the trigonometric one to get 

and with  we obtain 

From Eq. (6.131), we conclude that the velocity in both z- and -plane must vanish.
As a consequence, the magnitude of the velocity vector included in parentheses of Eq.
(6.138) must disappear 

Now se set in Eq. (6.139)  and find

Which gives the circulation that satisfies the Kutta-condition 

meaning that the image of the rear stagnation point S2 in -plane lies at the trailing
edge. The value of kutta depends on the parameters R, , the angle of attack , and on
the undisturbed velocity V . In calculating the Kutta-circulation, we used the value
of the circulation around the circular cylinder in z-plane. The circulation around the
profile in -plane is calculated from:

As seen from Eq. (6.142), the circulation in the -plane is exactly the same as in the
z-plane.
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(6.143)

(6.144)

(6.145)

C
Fig. 6.26: Airfoil with chord length C.

(6.146)

2

1.5

1.5

0.5

0.0

0.5
-20 -10 0.0 10 20

α (       )

C L

Theory (inviscid)

Experiment (viscous)

degree

i

α 

(a)

(b)

V

V

Fig. 6.27: Theoretical and experimental lift coefficient.

The force vector per unit depth on the airfoil is calculated from the Kutta-
Joukowski theorem Eq. (6.105), where we note that the conjugate velocity  is now
to be replaced by . Inserting Eq. (6.141) into Eq. (6.105), we obtain 

where we replaced . The magnitude of the force is therefore 

We introduce the dimensionless lift coefficient by dividing Eq. (6.144) by the
convective force per unit dept:

where c is the chord length of the airfoil (Fig. 6.26) which can be calculated from the
mapping function. 

For  = 0 and R = a the circle in the z- plane again is transformed onto a flat plate of
length c = 4a. Its lift coefficient is
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(6.147)

Figure 6.27 qualitatively reflects the differences between the lift coefficient as a
function of the angle of attack  obtained from inviscid flow theory and the one from
experiments without specifying any particular airfoil geometry. 

While the inviscid flow theory does not account for boundary layer development
and separation (solid line, no symbols), the experimental results show the pre- and
post- stall differences. Differences in pre-stall CL , is due to the boundary layer
momentum deficiency caused by the wall shear stress as a result of the viscosity that
has caused drag forces, Fig. 6.27(a). At the point of maximum CL, the boundary layer
is still attached but is close to separation ( ). The separation point
depends on profile geometry, angle of attack  (or more specific: angle of incidence
i) and the flow condition (Reynolds, and Mach number). Once the incidence angle
exceeds the separation limit, partial or full stall will follow, Fig. 6.27(b). The inviscid
flow theory does not account for any of the effects mentioned above. The Kutta-
condition which had to be satisfied for an inviscid flow to generate circulation and,
therefore, lift, has no relevance in a real viscous environment. The boundary layer
development on suction and pressure surfaces that mix at the trailing edge plane puts
the rear stagnation point where it belongs regardless of what the Kutta-condition
dictates. This statement is also valid for the case that some minor separation may
occur. In this case, the trailing edge is somehow submerged into a wake region and
the profile generates a higher drag and a lower lift based on the severity of the
separation.

6.7 Vortex Theorems

The previous section discussed the role of circulation and its significance for lift
generation. The following sections deal with different aspects of circulation that are
integral parts of inviscid flow analysis. We briefly present the two related theorems
by Thomson and Helmholz.

6.7.1 Thomson Theorem
The circulation defined in Eq. (6.65) as the line integral of the velocity V along the
closed curve C shown in Fig. 6.28 can be converted into a surface integral by means
of the Stoke’s theorem. The proof of this theorem is an integral part of engineering
mathematics textbooks. It is also found in great detail in Vavra [9]. 

The Stoke’s theorem gives the relationship between the circulation which is a
closed integral and the surface integral of the rotation vector . It is summarized
in the following equation:

with n as the unit vector normal to the differential surface element dS. In an unsteady
flow, the circulation along a fixed curve is a function of time. The stoke’s theorem is
valid for a curve that bounds a simply connected surface, as exhibited in Fig. 6.28(a).
If the surface is doubly-connected as shown in Fig. 28(b), infinitely thin cuts such as
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Fig. 6.28: Relationship between the circulation closed integral and the
rotation surface integral using Stoke’s theorem.

(6.148)

(6.149)

(6.150)

AA and BB can be placed such that a simply connected surface is established and the 
Stoke’s equation can be applied. 

Since the line integrals along AA and BB cancel each other out, Eq. (6.147) can be
written as: 

or

Equation (6.149) is valid only if the curve Ci encloses all discontinuities and
singularities that lie inside Co. Equation (6.147) and its modified version (6.148)
describe the circulation at the time t. As the fluid particles move at time t+dt, another
curve is formed and correspondingly the circulation undergoes a temporal change. 

The substantial derivative of the circulation determines the rate of change of 

with  as the local change of the circulation and  as the convective
change. Introducing the circulation  into the local term in Eq. (6.150), we find
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(6.151)

(6.152)
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Fig. 6.29: Geometric interpretation of the relationship between the
differential circulation and the surface integral of rotation.

Since the infinitesimal curve element dx will not change by unsteady velocity change, 
we may write 

Since the integrand  in Eq. (6.152) is an exact differential, hence not a path
function, its integral along a closed curve vanishes. The last term in Eq. (6.152) is
determined by applying Stoke’s theorem to the surface S between curves C1 and C2
sketched in Fig. 6.29. 

The cuts AA’ and BB’ convert the surface S into a simply connected surface bound by
a closed curve. The counter clockwise direction is indicated by (+) whereas the
clockwise direction is (-), thus, the integration along C2 is -( +d  ). The line
integrals along AA’ and BB’ cancel each other out. We now obtain the convective
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(6.153)

(6.154)

(6.155)

(6.156)

(6.157)

(6.158)

(6.159)

change d  by implementing the Stokes theorem and integrating over the surface S that
leads to

From Fig. 6.29  is expressed in terms of

With Eq.(6.154), Eq. (6.153) is modified as

Re-arranging the right-hand side of Eq. (6.155) using the triple scalar product, we
arrive at 

The negative sign in Eq. (6.156) stems from re-arranging the sequence of vector
multiplication. Introducing Eq. (6.156) into (6.152), we find 

or

As seen in Eq. (6.158), the surface integral in Eq. (6.157) is replaced by a curve
integral. This is admissible because the changes of V and  x V between the C1 and
C2 are so small that the surface integral reduces to an integration along the curve C.
The expression within the parentheses in Eq. (6.158) can be replaced by Eq. (4.55)
resulting in: 

With H as the total enthalpy . Introducing  and
into Eq. (6.159), we arrive at:
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(6.160)

(6.161)

(6.162)

(6.163)

(6.164)

(6.165)

(6.166)

The integrand of the first integral represents an exact differential, whose integral
around a closed curve C vanishes reducing Eq. (6.160) to:

If we take into consideration the frictional force per unit mass given in Eq. (4.43)
caused by the viscosity, then Eq.(6.159) is enhanced as 

with f as the friction force that is defined for a flow with constant viscosity as:

Assuming incompressible flow and the following vector identity

Equation (6.163) reduces to

Thus, for an inviscid flow, the substantial change of the circulation reduces to

Equation (6.166) states that for an inviscid irrotational, flow the substantial change
of the circulation is zero, meaning that the circulation remains constant. This is the
Kelvin’s theorem (see Thompson [10]). This theorem was first discovered and proved
by Helmholtz [11]. It implies that the line integral along a closed curve in a
homogeneous non-viscous fluid is constant for all times if the flow is under the
influence of an irrotational field force. The use of material derivatives emphasizes the
circulation around a closed material curve. 

In deriving the Kelvin’s theorem, we used Eq. (4.55), which incorporates the total
enthalpy. Equally, we can use Eq. (4.53) which includes the pressure-density term

. If we assume that the density is a function of pressure only (the fluid
is called barotropic, a perfect gas is such a fluid with ), then we may
set  with , thus, , whose curve integral vanishes.
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Fig. 6.30: Circulation, free vortex F, bound vortex B.

6.7.2 Generation of Circulation

In the preceding sections we derived the relationship for lift as a function of
circulation (Eqs. (6.105) and (6.143)) assuming that a circulation is superposed on the
translational flow past the body, without explaining how this circulation has been
brought about. The question that needs to be answered is: how can the existence of
such a circulation flow be explained? To answer this question we revert to the flow
visualization experiments by Prandtl [6] taken from an airfoil subjected to different
flow modes. Figures 6.30 reflect the physical contents of images presented in [6]. 

We assume that at first the fluid is at rest, Fig. 6.30 (a), so that the line integral of the
velocity along a curve completely surrounding the airfoil is zero, because all
velocities are zero. This would correspond to a potential flow situation without
circulation immediately after starting Fig. 6.30(b). According to Thomson’s theorem,
Eq. (6.166), the circulation in a frictionless fluid must remain constant (in this case
equal to zero) at all times including the moment when the fluid is suddenly put into
a uniform translatory motion with respect to the airfoil. This is apparently in
contradiction to the experimental fact that there is a circulation around the airfoil.
Considering the infinitely large velocity around the sharp trailing edge in Fig. 6.30
(b) of the airfoil (see also Section 6.6.3.5), one could suggest that the flow, at the first 
moment after starting, might be a potential flow without circulation. The presence of
the viscosity in the boundary layer, however, causes this large velocity to develop into
a surface of discontinuity, Fig. 6.30(c). At the sharp trailing edge, the viscosity of the
real fluid causes an equalization of the velocity jump, leading to a layer of finite
thickness which is occupied by vortices, Fig. 6.30(d). This vortical layer, then, is
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(6.167)

rolled up to a vortex, the so-called starting vortex , Figs. 6.30 (e and f). This vortex,
according to the theorems of Helmholtz (treated in the following section), is always
associated with the same particles of fluid, is washed away with the fluid, and is
convected downstream as a free vortex. Since this free vortex has a non-zero
magnitude, its existence clearly contradicts the Thomson’s theorem. Assuming the
validity of the Thomson’s theorem, the process of starting must have generated
another vortex with the same magnitude but in the opposite direction so that the sum
of their strengths vanishes. In fact, the existence of the free vortex is always
associated with the existence of another vortex called bound vortex, Fig.6.30 (g).
Calculating the circulation around the closed curve ,  and

, we find  from

which we conclude that .This result is confirmed experimentally verifying
the validity of the Thomson’s vortex theorem. The most important feature essential
for upholding the Thompson’s theorem is the viscosity effect, without which no
vortices can be produced. 

In generating the vortex images presented in [6] that we summarized in Fig. 6.30,
Prandtl first kept the airfoil in a fixed position that was exposed to a moving fluid. 
In a second set of experiments, he moved the airfoil relative to undisturbed fluid. The
same phenomenon was observed in both cases.

6.7.3 Helmholtz Theorems
Research on vortex flow has been initiated by the fundamental paper [11] of H.L.F.
Helmholtz (1821-1894), a physicist and a professor of physiology and anatomy at the
University of Königsberg, Bonn, Heidelberg and Berlin. In his paper, Helmholtz
established his three theorems of vortex motion. Assuming incompressible frictionless
fluids subjected to flow forces defined by a potential, Helmholtz [11] published a
paper about the vortex motions in which he stated his vortex theorems. These
theorems are translated from German and appear in an excellent textbook by Prandtl
and Tietiens [6]. They reflect the quintessence of the vortex flow motion treated in
Helmholtz original work. Before starting with the discussion of Helmholtz theorems,
it is helpful to become familiar with the nomenclature sketched in Fig. 6.31. 

A vortex line, Fig. 6.31(a) is a line tangent to the rotation vector . The vortex
lines may form a vortex tube, Fig. 6.31(b). Reducing the cross sections of a vortex
tube to an infinitely small size, we obtain a vortex filament. Thus, a vortex filament
is essentially a vortex tube with an infinitely small cross section but a finite value of
circulation. This particular configuration allows one to apply the Stoke’s theorem Eq.
(6.147) without integrating the rotation vector

Since the unit vector n is parallel to the rotation vector , we may re-arrange
Eq.(6.167)
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(6.168)
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Fig. 6.31: Illustration of different vortex types.

Since ds is, per definition, infinitely small and  has a finite value, the rotation vector 
 must be infinitely large, indicating that the vortex filaments represent a

singularity. This and many other types of singularities are used for dealing with more
complicated issues particularly in aerodynamics. 

Ignoring the friction forces and assuming that there exists a potential acting on fluid
particles, Helmholtz formulated in his original paper [11], three theorems:  The first
theorem states that no fluid particle can have a rotation if it did not originally rotate.
This theorem reflects the physical content of the differential part of Eq. (6.166). The
second theorem states that the fluid particles, which at any time are part of a vortex
line, always belong to that same vortex line. This theorem is the  consequence of the
integral part of Eq. (6.166), stating that the circulation remains constant. The third
theorem states that the product of the cross section area and angular velocity of an
infinitely thin vortex filament remains constant over the whole length of the filament
and keeps the same value even when the vortex moves. It further states that the vortex
filament must, therefore, be either closed curves or end on the boundaries of the fluid. 
In what follows, the mathematical structure of the Helmholtz theorems is presented.
It should be pointed out that, all three theorems deal with kinematic conditions. The
Helmholtz theorems are also treated by Prandtl and Titiens [6], Spurk [5], Vavra [9]
and Kotschin, et al. [12]. 

Figure 6.32 may help better understand the physical content of the following
derivation. At time t, a differential element of a vortex filament with a cross section
ds and the height dx contains a certain number of fluid particles with the density .
The mass of this element is then . The vorticity vector 
(section 4.2.3) is parallel to the vector and perpendicular to the cross section ds.
Using the Stoke’s theorem, the circulation of the vortex element is:
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(6.169)
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Fig. 6.32: Explaining the Helmholtz vortex theorems.

(6.170)

(6.171)

(6.172)

The element moves through the space, where its new kinematic conditions at the time 
t + dt is marked by an asterisk.

The second theorem requires that the fluid particles contained in the differential
volume element  at the time t must be the same that are contained the
differential volume element at the time t+dt which means that

From the third theorem, we infer that

As a consequence of the third theorem and integrating Eq. (6.171), it follows that for
a vortex tube with varying cross sections, the product of  remains
constant, leading to
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(6.173)

(6.174)

(6.175)

(6.176)

(6.177)

(6.178)

(6.179)

(6.180)

From Eq. (6.172) we conclude that, decreasing the cross section of the cortex tube
leads to an increase of vorticity vectors (angular velocity). Dividing Eq. (6.170) by
(6.171), we obtain

The second theorem also implies that the directions of  must be the same
as the directions of the vectors  respectively, or 

With Eqs. (6.173) and (6.174) we find 

Considering the kinematics in Fig. 6.32, when the element moves from point P to P*
or Q to Q*, respectively, the vector dx experiences the following change 

Considering Eq. (6.174), we find

The vorticity vector, as well as the density, experiences the following material
changes

Introducing Eqs. (6.178) and (6.177) into (6.175) and neglecting higher order terms,
we obtain 

The combination of the substantial change of density given by Eq. (4.10) and the
equation of continuity (4.4) gives 

Equation (6.180) with  inserted into (6.17) results in
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(6.181)

(6.182)

(6.183)

(6.184)

(6.185)

Equation (6.181) is called Helmholtz derivative of the vorticity vector . It
satisfies all three theorems of Helmholtz. It clearly indicates that if the flow is
irrotational along the path of its particles, the material change of  is zero. Thus,
if the flow was initially irrotational, it must remain irrotational in the entire flow field.
Using the following vector identity:

and replacing the vector U with the vector , the second and third term in Eq.
(6.181) becomes

which allows rewriting Eq. (6.181) as

Replacing the substantial differential by the sum of its local and convective parts, we
arrive at

Expanding the last term in Eq. (6.183) shows that it is zero. Furthermore, since the 
operator  is a time independent spatial operator, it can be moved out of the
differential, causing Eq. (6.183) to further reduce to

Equation (6.184) is the result of the three Helmholtz theorems, which are purely
kinematic conditions, without applying the conservation law of motion. It is valid for
inviscid fluids where the forces can be expressed in terms of gradient of a potential.
The expression in the brackets is obtained if we rearrange the equation of motion
(4.55) by considering an isentropic flow  with constant total enthalpy

:

As seen, taking the rotation (curl) of Eq. (6.185) leads to Eq. (6.184). It should be
pointed out that, applying rotation does not generate another independent
conservation law. It has, rather, produced another version of the same physical
principle, which in this case, confirms the three theorems of Helmholtz.
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Fig. 6.33: Velocity field induced by an isolated vortex filament.

6.7.4 Vortex Induced Velocity Field, Law of Bio-Savart
We consider now an isolated vortex filament with the strength  imbedded in an
inviscid irrotational flow environment, as shown in Fig. 6.33.

In a distance r from the point A, a differential element d  of the vortex filament at
the point B, induces a differential velocity vector field dV. The velocity vector is
perpendicular to the plane spanned by the normal unit vector n and the unit vector e
ir the r-direction . The unit vector n is perpendicular to the infinitesimal cross section
dS, whereas the unit vector e points from the center point of the element A to the
position B, where the velocity dV is being induced. The relationship describing the
velocity field is analogous to the one discovered by Bio and Savart through
electrodynamic experiments. It describes the magnetic field induced by a current
through a conducting wire. In an aerodynamic context, the conducting wire
corresponds to the vortex filament, its current corresponds to the vortex strength 
and the induced magnetic field corresponds to the induced velocity field.

To present the derivation, first we provide the mathematical tool essential to arriving
at the Bio-Savart law. Let us decompose an arbitrary vector point function V into an
irrotational part that can be expressed in terms of the gradient of a potential and a
rotational or solenoidal part
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(6.186)

(6.187)

(6.188)

(6.189)

(6.190)

(6.191)

(6.192)

(6.193)

with  as a scalar potential and  as the solenoidal part of Eq. (6.186). Taking the 
curl of Eq. (6.186) gives

The first term on the right-hand side of Eq. (6.187) is the curl of the gradient of the
scalar field  that identically vanishes. The divergence of Eq. (6.186) delivers

with  and . Equation (6.188) is an inhomogeneous partial
differential equation called Poisson’s equation. What makes the Poisson’s equation
(6.188) a special case where , is the Laplace equation we treated in the
preceding sections. Using the vector identity for ,  Eq.
(6.187) reads

It can be shown that, it is possible to set  without loss of generality. This
step reduces Eq. (6.189) to 

After this preparation, we turn our attention to Eq. (6.188) with the solution 

The integral boundary ( ) indicates that the integration has to be carried out over the
entire space (volume integral). Similarly, the solution for differential equation (6.190)
is

Introducing in Eq. (6.186)  from (6.191) and U from (6.192) gives 

Equation (6.193) indicates that the irrotational part of a decomposed velocity field is
determined by the divergence of the vector field, whereas the solenoidal (rotational)
part is obtained if the rotation (curl) of the vector field is known. For an
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(6.194)

(6.195)

(6.196)

(6.197)

(6.198)

(6.199)

incompressible flow, the condition  must be satisfied, causing Eq. (6.193)
to reduce to

The flow field with the velocity described by Eq. (6.194) is irrotational everywhere
except in the space occupied by the isolated vortex filament with the known constant
strength . To evaluate the integral, first we set for the differential volume element 
with dS as the vortex cross section and d  a differential length element, shown in Fig.
6.32. Further, we replace the curl vector in Eq. (6.194) by  from Eq.
(6.168). Since the entire flow field is irrotational with the exception of the space
occupied by the isolated vortex filament, the integration of Eq. (6.194) needs to be
carried out over the length of the filament only. Hence, Eq. (6.194) is reduced to

Since the vortex strength of the filament  is constant, it can be moved out of the
integral sign leading to

Of particular interest is the velocity induced by the differential element d of the
filament at a given fixed point B

To evaluate the curl of the ratio n/r, we apply the spatial differential operator to the
argument in parentheses, perform chain differentiation accounting for the direction
of  the vector r which is e, and obtain 

which we then insert into Eq. (6.198). As a result, we find

Integrating Eq. (6.199) leads to
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(6.203)

(6.200)

(6.201)
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Fig. 6.34: Induced velocity by a straight vortex filament with infinite
length and strength .

(6.202)

Equation (6.199) is the Bio-Savart law for inviscid flow. As seen from the preceding
derivation, only kinematic conditions were applied leading to arrival at the Bio-Savart
law, which is a kinematic law. It was originally discovered by calculating the induced
electromagnetic field strength dB at point B by a differential element d  of a wire
with the current i that moves in direction of d  . The version used in electrodynamics
is

with  as the permeability of the medium surrounding the wire and I the electric
current. Applying Eq. (6.200) to a straight vortex filament of infinite length and the
strength , Fig. 6.33, the magnitude of the induced velocity is 

From Fig. 6.34, we find the following relationships are obtained

Introducing Eq. (6.203) into (6.202) results in 
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(6.204)
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(6.205)

(6.206)

To calculate the velocity induced by a vortex filament of finite length L, the integra-
tion boundaries of Eq. (6.204) need to be replaced by 1 and 2, shown in Fig. 6.35. 

The integration results in:

Setting  and , for a semi-infinite vortex filament, we obtain the
induced velocity

The experimental findings by Prandtl, and the subsequent discussion in Section 6.7.2
relative to the circulation generation around a two-dimensional airfoil, has led to the
assumption that a two-dimensional airfoil of an infinite span with a bound vortex can
simply be represented by a vortex filament of infinite length and the same vortex
strength. In this case, the lift force acting on a wing was determined by the Kutta-
Joukowsky equation (6.72) with  as a constant circulation. A constant circulation
assumption does not hold for wings of finite length because the circulation around a
finite wing changes from the center of the wing to both ends. However, it can be used
as a useful tool for estimating the lift force.
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Fig. 6.36: Inception of secondary flow on tips of a wing.

6.7.5 Induced Drag Force 
So far, we have been dealing with two-dimensional airfoils of infinite span with a
bound vortex of constant strength. The superposition of a circulation with a parallel
flow generated a lift force, which is the result of the pressure difference between the
suction surface (convex surface) and the pressure surface (concave surface). In the
case of an airfoil with a finite span, the pressure difference at both tips of the airfoil
causes a secondary flow motion.

Figure 6.36(a) shows the inception of the secondary flow on both tips of a wing. This
secondary flow creates tip vortices which induce downward velocities that change the
flow pattern of a two-dimensional flow to a three-dimensional one. At the tips, the
pressure difference and, thus, the circulation, disappears leading to a circulation
distribution that varies from the mid-section of the wing towards both tips, Fig.
6.36(b). Immediately behind the trailing edge, a surface separates the flow which has
passed over the suction surface from that which passed over the pressure surface. A
surface of discontinuity is formed which is occupied by free vortices, Fig. 6.36(c and
d), as detailed in Section 6.7.2. This vortical layer is unstable and rolls itself up to
form two discrete vortices with opposite circulation directions, Fig. 6.36(e and f).
These vortices are responsible for inducing a downward velocity  which is
superposed on the undisturbed velocity , changing the effective angle of attack
from  to  and the resultant velocity to , as shown in Fig. 6.37.
According to the Kutta-Joukowsky theorem, in an inviscid flow field, the lift force
is perpendicular to the plane spanned by the velocity and the circulation vectors. 
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(6.207)

(6.208)

(6.209)

(6.210)

Considering an infinitesimal lift force brought about by an infinitesimal wing span dy
as , the infinitesimal induced drag is calculated from with
 as the induced angle. Since , we may approximate , which leads

to

Integrating Eq. (6.207) gives 

As Eq. (6.208) indicates, the main parameter determining the induced drag is the
circulation function  and its distribution. Thus, the induced drag can be calculated
if the -distribution is known. 

For an elliptic distribution of  and s = b/2, Eq. (6.208) can be
integrated analytically as given below

with the lift force , the induced drag  and the
induced velocity . The induced drag coefficient is found by dividing
Eq. (6.209) by 
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The total drag force acting on a wing of finite span with an arbitrary geometry is the
sum of the viscous drag force and the induced drag force. To overcome the induced
drag, additional mechanical energy must be provided externally. In contrast to the
drag force caused by boundary layer momentum deficit along the surface of the wing,
the induced (inviscid) drag arises from a change of the flow direction due to the
downward velocity field.

The problematic of calculation of lift, drag, and other aerodynamic quantities is
treated comprehensively in the book by Schlichting and Truckenbrodt [13]. 

Problems

Problem 6.1: Superimposing a point source and a parallel flow results in a flow
around an infinitely long body.

a) Find the velocity potential of the flow.
b) By expanding the velocity components, show that the flow in the neighborhood

of the stagnation point corresponds to a stagnation point flow with z as the
symmetry axis.

c) Write computer program to calculate the streamlines and the potential lines.
d) Plot the stagnation flow    

Problem 6.2: In an incompressible, plane potential flow with the potential F1 (z), a
circular cylinder with the radius a is inserted at the origin. As a result, the resulting

complex potential F2(z) of the new flow is where  is the

conjugate complex potential.

a) Calculate the complex potential of a circular cylinder (radius a) at z = 0 in a source
flow (strength m, source at z = b).

b) Show here that the circle z = aei  is a streamline.
c) Plot the streamlines.
d) Calculate the velocity potential. Where is the stagnation point located?
e) Calculate the force on the cylinder with Blasius’ theorem.

Problem 6.3: Using Kutta-Joukowsky transformation function:

a) Map a flow parallel to the x-axis around a circle with a radius a in z-plane onto the
surface of an ellipse in -plane, decompose the transformation function into its real
and imaginary parts and plot the ellipse and the circle. 

b) Plots on the ellipse the streamlines and potential lines 
c) Find the velocity components in -plane
d) Plot the cp-distribution
e) Consider the velocity vector V  with an of attack  impinging on the circular

cylinder in z-plane and repeat case (a) to (d). Hint: You may start with this version
and make some angle variation with  =0 as one of the cases.
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Problem 6.4: Using Kutta-Joukowsky transformation function:

a) Map a flow parallel to the x-axis around a circle with a radius a in z-plane onto the
surface of an airfoil in -plane, decompose the transformation function into its real
and imaginary parts and plot the ellipse and the circle. 

b) Plots on the ellipse the streamlines and potential lines 
c) Find the velocity components in -plane
d) Plot the cp-distribution
e) Consider the velocity vector V  with an of attack  impinging on the circular

cylinder in z-plane and repeat case (a) to (d). Hint: You may start with this version
and make some angle variation with  =0 as one of the cases.

Problem 6.5:  A circular cylinder with a radius a is located in a plane, inviscid,
potential flow. The angle of attack of the undisturbed, translational flow is .

a) Find the complex potential of the flow.
b) Calculate the position of the stagnation points, plot the streamlines.
c) Which body contour do we obtain, ir we map the circular cylinder by the mapping

function  onto the -plane?
d) Find the position of the stagnation points in the -plane.
e) What type of flow do we get for ?
f) Calculate the pressure distribution along the body contour in the z-plane.

Given: a, , U , , p
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7 Viscous Laminar Flow 

As briefly discussed in Chapter  4, the motion of Newtonian fluids is described by the
Navier-Stokes equations. Due to the non-linear nature of these equations and the
general complexity of the flow geometry, analytical solutions of Navier-Stoke’s
equations has been exhibiting a major problem in fluid mechanics. The continuous
development in the area of computer technology and the introduction of powerful
numerical methods in the last two decades have brought a breakthrough in the area
of Computational Fluid mechanics (CFD). Using CFD-methods, viscous flow
problems within arbitrary channel geometries can be solved numerically regardless
the complexity of the geometry. This requires significant computational efforts. An
adequate treatment of CFD-methods is beyond the scope of this book.  However, in
the context of this course, in Chapter 9,  we present the essential features of the
computational fluid mechanics that are necessary for the basic understanding of the
physics behind CFD. This includes a rather detailed introduction into turbulence and
its modeling. 

In this chapter, we introduce a class of exact solutions of the Navier-Stokes
equations for the two-dimensional laminar flow, a special case of viscus flows, where
the velocity does not exhibit a random characteristic. Exact analytical solutions are
found only for few cases, where the flow can be assumed unidirectional. This implies
that the velocity vector has a component in longitudinal direction only that may
change in lateral direction. A general overview of a class of exact solutions for
viscous laminar flows through two-dimensional channels is found in Schlichting [1].
In a few curved channels, where the velocity vector of a two-dimensional flow has
generally two components, the coordinate system can be transformed such that the
velocity vector has only one direction in a curvilinear coordinate system. In the
following sections, several cases are presented that are of fundamental significance
for understanding the motion of viscous flows.

7.1 Steady Viscous Flow through a Curved Channel

Solving the Navier-Stokes equation, we investigate the influence of curvature and
pressure gradient on the flow temperature and velocity distribution. The flows within
curved channels under adverse, zero, and favorable pressure gradients are
encountered in numerous practical devices such as compressor and turbine blades,
diffusers and nozzles.  Within these devices the distribution of flow quantities such
as the temperature and velocity and consequently the flow behavior are affected
primarily by the curvature and pressure gradient. To calculate the above quantities,
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(7.1)

(7.2)

conservation laws of fluid mechanics and thermodynamics are applied.  For an
incompressible Newtonian fluid, the Navier-Stokes equation describes the flow
motion completely.  This equation has exact solutions for only a few special cases. 
For the major part of practical problems encountered in applied fluid mechanics,
however, it is hardly possible to find any exact solutions.  This deficiency is in part
due to the complexity of the individual flow field and its geometry under
consideration.  Despite this fact, the existence of exact solutions of fluid mechanics
problems including the velocity and temperature distribution within viscous flows are
of particular interest to the computational fluid dynamics (CFD) community dealing
with development of CFD-codes.  A comprehensive code assessment and validation
requires both the experimental verification and theoretical confirmation.  For the latter
case, a comparison with existing exact solutions exhibits an appropriate procedure to
demonstrate the code capability. For symmetric flows through channels with positive
and negative pressure gradients exact solutions are found by Jeffery [2] and Hammel
[3]. For asymmetric curved channels with convex and concave walls, exact solutions
of the Navier-Stokes equation are found by Schobeiri [4] and [5], where the influence
of the wall curvature on the velocity distribution is discussed. Furthermore, a class of 
approximate solutions of  Navier-Stokes is presented in [6]. This section treats the
influence of curvature and pressure gradient on temperature and velocity distributions
by solving the energy and momentum equations. Under the assumption that the flow
is two dimensional, steady, incompressible, and has constant viscosity, the con-
servation laws of fluid mechanics and thermodynamics are transformed into a curvi-
linear coordinate system. The system describes the two-dimensional, asymmetrically
curved channels with convex and concave walls.  As a result, exact solutions for the
equation of energy as well as the Navier-Stokes equation are found. 

7.1.1 Conservation Laws
To determine the influence of curvature and pressure gradient on temperature
distribution, the velocity distribution must be known.  This requires the solution of
continuity and the Navier-Stokes equations.  As the first conservation law, the
continuity equation in coordinate invariant form is:

For a curvilinear coordinate system, Eq.(7.1) can be written as (see Eq. 4.7 and A-36):

with V as the velocity vector that is decomposed in its contravariant components  Vi

in i-direction.  For a two-dimensional flow, we prescribe that the velocity component
normal to the flow direction must vanish. As a result, the integration of Eq. (7.2) must
fulfil both the continuity and the Navier-Stokes equations.  This is possible only if the
Christoffel symbols  are not functions of the coordinates themselves. The
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(7.4)

(7.5)

(7.6)
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(7.8)

corresponding channel with the curvilinear coordinate is then obtained from the
transformation:

with i as the orthogonal curvilinear coordinate system.  

with a and b as real constants that define the configuration of the channel and 1 and
 2 as the orthogonal curvilinear coordinates.  The corresponding metric coefficients

and Christoffel symbols are:

With Eqs. (7.6) and (7.5) and the requirement that the velocity component in 2 must
vanish, the integration of the continuity Eq. (7.2) leads to:

where V 1 is the contravariant component of the velocity in the 1-direction, v is the
kinematic viscosity, and F = F( 2) is a function to be determined.  Thus, the only
physical component of the velocity vector is the one in the 1-direction, for which we
may omit the superscript 1 and set:

Equation (7.8) must strictly satisfy the Navier-Stokes equation in order to be an exact
solution. As discussed in Chapter 4, the conservation law of motion for the steady
Newtonian fluids is represented by the Navier-Stokes Eq. (4.37) that describes the
flow motion completely.  Neglecting the body forces, its coordinate invariant form
for incompressible flow with constant viscosity reads:
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(7.9)

(7.10)
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(7.15)

with  as the density. The Navier-Stokes Eq. (7.9) decomposed in its contravariant
components is written as (see A-73)

For the two-dimensional flow with V 3 = 0, Eq. (7.10) leads in 1-direction to:

and in the 2-direction:

Introducing the integration results of the continuity Eq. (7.7) into the system of
differential Eqs.(7.11)  and (7.12) and eliminating the pressure terms, the result of the
first integration is:

with K1 as the integration constant.  Dividing Eq. (7.13) by its maximum value ,
the dimensionless velocity function is obtained from:

where

The significant parameter affecting the flow within the curved channel is the
Reynolds number, which is defined as:
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(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

where s  and Um  are the distance and the maximum velocity in the 1-direction.  The
latter is obtained by setting in Eq. (7.8), the coordinate 2 equal to 2 = 2max:

With the distance  s:

the Reynolds number is:

Introducing Eq. (7.19) into (7.14)) leads to:

7.1.2 Solution of the Navier-Stokes Equation
Equation (7.20)  describes the motion of viscous flows through curved channels
pertaining to the coordinate transformation discussed in section 7.1.1.  It includes
both the Navier-Stokes and continuity equations that are reduced to a single, ordinary,
nonlinear, second-order differential equation.  The solutions of Eq. (7.20) ,  = ( 2)
are functions of the coordinate 2  and incorporate the Reynolds number as parameter. 
Special cases of Eq. (7.20) are the purely radial flow, where  a =  -2  and  b = 0, and
the flow through concentric cylinders with  a = 0 and b = 1. For those cases analytical
and numerical solutions were found in [2], [3].  Based on Jeffery-Hammel’s solutions,
Milsaps and Pohlhausen [7] calculated the temperature distribution within the straight
wall diffuser and nozzle. Extensive discussions by Schlichting [1] underscore the
importance of those flows from a general theoretical point of view. To show the effect
of the curvature and pressure gradient on the temperature and velocity distribution,
an asymmetrically curved channel with convex and concave walls is generated by
choosing a =  -1 and b = 1, Schobeiri [4, 5].

For the solution of Eq. (7.20), a numerical integration procedure is applied.
Starting from the initial conditions specified below and the determination of constant
C1, an iteration method is developed that reduces the boundary-value problem to an
initial one.  The solution of differential Eq. (7.20) must fulfil the governing initial and
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(7.21)

(7.22)

(7.23)

(7.24)

(7.25)
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(7.27)

boundary conditions. The boundary conditions are given by the non-slip conditions
at the channel walls:

where the indices B1 and B2 refer to the convex and concave channel walls.  The
initial condition is described by the maximum value of the velocity distribution and
its position 2 = 2max, which is unknown for the time being:

The positive sign of   indicates an increase of the cross-section area in direction of
decreasing 1, which is associated with the positive pressure gradient. The negative
sign characterizes the accelerated flow in direction of increasing 1, where negative
pressure gradient prevails. The constant C1 in Eq. (7.20)  specifies the solution of Eq.
(7.20) and significantly affects the convergence speed.  It must be determined so that
the above boundary and initial conditions are identically fulfilled. The following
iteration method enables precise calculation of C1. Starting from Eq. (7.20), 

where

Integration of Eq. (7.24) between 2max and 2B1 leads to:

where C1(I) is the constant calculated at the i-th iteration step that can result in
boundary value B1(I)  0.  Similarly, we obtain a relation for the constant C1(I + 1) that
corresponds to B1(I+1) = 0:

By subtracting Eq. (7.25) from (7.26) and introducing:

where  1, the constant C1 is calculated from the following iteration function:
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(7.29)

(7.30)

(7.31)

For Reynolds number range Re < 3500, the precise value of the constant C1 is
obtained within a few iteration steps by setting   = 1.  For higher Reynolds numbers
the factor   0.5 has proved to be effective.  To start the iteration process, the
constant C1(1) should have the same order of magnitude as the Reynolds number.  The
initial value for 2 max(1) can be estimated from:

With  2max(I) , the constant C1 from Eq. (7.28), and the initial and boundary conditions
from Eqs. (7.21) and (7.22), the zero at  2B2(I)  is found by Newton’s iteration method. 
The improved zero is obtained from:

The new value from Eq. (7.30) leads to improved  2B2(I+1).   If the absolute difference 
2B2(i+1) 2B2(i)  =  10-6, the required accuracy has been obtained; otherwise the

iteration procedure is repeated until   is reached.

7.1.3 Curved Channel, Negative Pressure Gradient
Once the solution of Eq. (7.20) is found, the dimensionless velocity distribution is
obtained from Eq. (7.17):

As seen earlier, the solution   = ( 2)   is a function of the coordinate 2 only and
incorporates the Reynolds number as a parameter.  Thus, the velocity distributions
represented by Eq. (7.31)) exhibit similar solutions. An asymmetrically curved
channel with convex and concave walls is generated by choosing  a =  -1 and b = 1.
As shown in Fig.7.1, the negative pressure gradient is established by an
asymmetrically convergent channel with convex and concave walls. For Reynolds
number Re = 500 the velocity distributions at the coordinate 1 = 3.8 exhibit an almost
parabolic shape with the maximum close to  2 =  0.3.  For the similarity reasons
explained above, similar velocity distribution is found and plotted at u = 0.38 for the
same Reynolds number. Increasing the Reynolds number to Re = 750, 1000
respectively  results in steeper velocity slopes at both walls (Fig. 7.1). As a
consequence, the velocity profile tends to become fuller, particularly for higher
Reynolds numbers. As shown, the viscosity effect is restricted predominantly to the 
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Fig. 7.1: Accelerated laminar flow through a two-dimensional curved
Channel at different Reynolds numbers.

wall regions and continuously reduces by increasing the Reynolds number.  This
behavior again justifies the Prandtl assumption for higher Reynolds number to divide
the flow field into a viscous and an inviscid flow zone.  For Reynolds numbers up to
Re = 5000, velocity distributions can be calculated without convergence problems. 
Thus for an accelerated flow, the stability of the laminar flow and the transition from
laminar into turbulent flow are apparently extended to higher Reynolds numbers as
expected.

7.1.4 Curved Channel, Positive Pressure Gradient
The positive pressure gradient within the asymmetrically curved channel discussed
above is created by reversing the flow direction.  Figure 7.2 shows the flow  at
different Reynolds numbers. As shown in Fig. 7.2, for Re = 500, the velocity
distribution on the concave wall is fully attached. The fluid particles moving in
streamwise direction are exposed to three different type of forces: (1) the wall shear
stress force acting in opposite direction decelerates the fluid particle. (2) the
decelerating effect of the wall shear stress is intensified by the pressure forces which
also act in opposite direction causing the flow to further decelerate. (3) the centrifugal
force caused by the channel curvature pushes the fluid particle away from the convex
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Fig. 7.2: Decelerated laminar flow through a two-dimensional channel
at different Reynolds number.

(7.32)

wall towards the concave one increasing the susceptibility of flow to separation. The
interaction of these three forces increase the tendency for separating along the convex
wall. Increasing the Reynolds number to Re = 1500 causes the flow separation on the
convex channel wall. In this case the laminar low along the convex surface is, while
the non-separated portion appears as a laminar jet attaching to the concave wall.

7.1.5 Radial Flow,  Positive Pressure Gradient
As shown in Fig. 7.2, the combination of the channel curvature and the positive
pressure gradient has caused a flow separation on the convex wall, whereas no
separation occurred on the concave wall. From fluid mechanical point of view, we are 
interested in determining the effect of pressure gradient on the velocity distribution
in the absence of curvature.  To investigate this, we generate a channel with straight
wall geometry by setting  a  = 2, and b = 0. With these new constants, Eq. (7.20)
reduces to: 

This special case constitutes a purely radial laminar flow through a channel with
straight walls and is known as the Hamel-flow, [3]. The results are shown in Fig. 7.3,
where the velocity distributions are plotted for three different Reynolds numbers.
Close to the wall at Re = 500, the flow exhibits a tendency for separation on both
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(7.33)

(7.34)

(7.35)

walls. Increasing the Reynolds number to Re = 750 and 1500 respectively causes the
flow separation on both walls. A comparison with the results in Fig. 7.2 clearly
indicates that the difference in velocity distributions is attributed to the nature of wall
curvature.

7.2 Temperature Distribution 
To determine the temperature distribution within the curved channel  we combine the
mechanical and thermal energy balances as we discussed in Sections 4.4.1 and 4.4.2: 

with  U  as the internal energy,   the heat flux vector and T  the shear stress tensor. 
Considering the thermodynamic relationship, for the steady incompressible flow, Eq.
(7.33) reduces to:

where cv  is the specific heat capacity at constant volume and  T  is the temperature
of the working medium. Using the identity for the velocity gradient, the Fourier
equation of conduction, and the Stokes relation:

with    as the thermal conductivity,  the absolute viscosity, and D and  as second-
order tensors of the deformation and rotation, respectively (see Chapter 4). 
Introducing Eq. (7.35) into (7.34) and considering the identity D:  = 0 the result of
this operation leads to the differential equation of the energy in terms of temperature:
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(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

The above differential equation is invariant with respect to coordinate system
transformation.  We first write Eq.  (7.36) in contravariant form: 

and insert  from Eq. (7.5) into Eq. (7.37) and considering the assumptions made
at the beginning,  Eq. (7.37) is reduced to:

7.2.1 Solution of Energy Equation
Equation (7.38) is a second order, nonlinear, partial differential equation, in which the
temperature T = T ( 1, 2).  It can be reduced to an ordinary differential equation by
making the following ansatz:

with G = G( 2) and Tw as the wall temperature assumed to be constant.  Incorporating
Eqs. (7.39) and (7.7) into Eq. (7.38) results in:

Dividing Eq. (7.40) by  and introducing the Reynolds number from Eq.(7.19) 
leads to:

In Eq. (7.41) the function  is defined as  = cvG/v2 Re, with Pr = vcp/ , as the
Prandtl number. For gases the Prandtl number is around 0.7 and for water around 7. 
Detailed distributions of the values for the absolute viscosity , the thermal
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Fig. 7.4: Absolute viscosity, thermal conductivity and Pr-number as a
function of temperature for dry air at p = 1 bar.

(7.42)

(7.43)

(7.44)

conductivity  and the Prandtl number for dry air can be taken from Fig. 7.4. These
values change slightly if the humidity ratio  = mwater/mair increases from 0% to 10%. 

The terms   and   are given as the solution of Eq. (7.14). The solution of the
ordinary, nonlinear, second-order differential Eq. (7.41) must satisfy the following
boundary conditions:

To find the solution of Eq. (7.41) it must first be combined with the equation of
motion (7.14).  For the solution of the resulting system of two nonlinear, second-order
differential equations, a numerical procedure based on the Predictor-Corrector method
is applied. Starting from 2 = 2B1, and already known B1 from section 7.1.2,  B1
is first estimated that may lead to  B2  0.  The correct value can be obtained quickly
with the iteration function:

The iteration process is repeated until the accuracy   is reached:
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7.2.2 Curved Channel, Negative Pressure Gradient
The effect of the different wall curvatures on temperature distributions is shown in
Fig. 7.5 by asymmetrical temperature slopes at the convex and concave walls. For the
accelerated flow with Re = 500, Fig. 7.5 shows the dimensionless temperature
distribution for different Prandtl numbers as parameter.  As a consequence of energy
dissipation, the temperature distribution near the channel walls experiences a steep
gradient, with the maxima located close to the concave wall.  

By approaching the channel middle, the temperature gradient gradually decreases for
small Prandtl numbers and sharply for large ones.  Increasing the Reynolds number
to Re = 3500 causes pronounced temperature boundary layers, particularly for higher
Prandtl numbers. Moving towards the channel middle, the temperature distribution
exhibits almost a constant value slightly above the wall temperature.

7.2.3 Curved Channel, Positive Pressure Gradient
For a positive pressure gradient and Re = 500, temperature distributions are shown
in Fig. 7.6  with Prandtl number as the parameter.  As with the accelerated flow, high
energy dissipation occurs near the channel walls.  When approaching the middle of
the channel, the temperature gradient changes sign. This effect might contribute to the
instability of the flow field under a positive pressure gradient.
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(7.45)

For a positive pressure gradient and Re = 500, temperature distributions are shown
in Fig. 7.6  with Prandtl number as the parameter.  As with the accelerated flow, high
energy dissipation occurs near the channel walls.  When approaching the middle of
the channel, the temperature gradient changes sign. This effect might contribute to the
instability of the flow field under a positive pressure gradient.

7.2.4 Radial Flow, Positive Pressure Gradient 
The effect of the different wall curvatures on temperature distributions in Fig. 7.7 is
illustrated  by asymmetric temperature slopes at the convex and concave walls.  As
we discussed in Section 7.1.5, the pressure gradient and the wall curvature were
responsible for flow separation. In this section we investigate the effect of pressure
gradient in the absence of wall curvature. Similar to the case I in Section 7.1.5 we
construct a straight walled channel by setting a = 2, and  b = 0. With these new
constants, Eq. (7.41) reduces to:
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(7.46)

(7.47)

To obtain the temperature distribution, Eq. (7.45) must be combined with Eq. (7.32),
which is the exact solution of the Navier-Stokes equation. The solution is presented
in Fig. 7.7. 

As expected, the corresponding temperature distributions have symmetric profiles.
A comparison with the results in Fig. 7.6 clearly indicates that the difference in
temperature distributions is attributed to the wall curvature. As we saw, pronounced
temperature boundary layer characteristics are exhibited for accelerated flow with
higher Prandtl numbers.  The separation tendency in the case of decelerated flow is
apparent in the temperature distribution.

Another interesting case, namely the flow through  concentric cylinders can be
constructed by setting a = 0 and b = 1. In this case the Navier-Stokes and energy
equation are:

As seen from the above equation, all terms with Re- number disappeared leading to
the results that  the temperature and velocity distribution do not dependent on Re-
number. 



7   Viscous Laminar Flows216

x

x
V = V (x  )

Stationary Wall

Moving upper plate: Velocity U

Viscous Fluid

Couette Flow Poiseuille Flow

(a) (b)

y 2b

1

2

1 1 2

V = 01

V = U1

V = V (x  )1 21

Fig. 7.8: Velocity distributions in Couette flow (a) and Poiseulle parallel flow.

(7.48)

(7.49)

(7.50)

7.3 Steady Parallel Flows

As we saw in Section 7.1, the velocity distribution within the curved channel has in
coordinate system only one physical component  (in direction).  In

Cartesian coordinate system, however the velocity component  has
effectively two components, one in x1-and x2-direction. In this section we present
exact solutions of the Navier-Stokes equations for parallel flows with only one
component in a Cartesian coordinate system.  These type of flows constitute a simple
class of viscous fluid motions. Couette flow, Couette-Poiseuille flow, and Hagen
Poiseuille flow are the classical examples of these flows.

7.3.1 Couette Flow between Two Parallel Walls
A flow between two parallel flat plates, from which one is moving with the
translational velocity U and the other is at rest as shown as shown in Fig. 7.8a is
called Couette flow.

Since , the continuity equation (4.11) is reduced to:

Similarly, the x1- component of the Navier-Stokes equations reads

Implementing the above assumption into the second component of Navier-Stokes
equation leads to: 
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(7.51)

(7.52)

(7.53)

 (7.54)

(7.55)

(7.56)

On the one hand Eq. (7.50) states that pressure may change in x1-direction. On the
other hand, the second term on the right hand side of Eq. (7.49) requires that be
either a constant or a function of x2 . Since Eq. (7.50) excludes the latter, it follows
that  must be a constant that may assume positive, zero, and negative values.
For further analysis, we set in Eq. (7.49)  and obtain the solution of the
resulting ordinary second order differential equation:

Integrating Eq.(7.51) twice leads us to the general solution

Among many solutions of Eq. (7.51) we seek a specific solution that satisfies the
following boundary conditions:

As a result we find:

Thus the solution of the boundary value problem (7.51) is

For K = 0  we find the simple shearing Couette flow solution

For K  0 we find the Couette-Poiseuille flow (Fig.7.9), which is a superposition of
Couette flow and Poiseuille flow expressed in terms of Eq. (7.55) The application of
the superposition principle is permissible to this and similar cases, where the
nonlinear convective terms disappear leading to linear differential equations such as
Eq. (7.55).

The above Couette flow bounded by two parallel walls may be thought of as a
flow through the gap between two concentric cylinders with radii approaching
infinity. In case that radii are finite, the Navier-Stoke’s equation can be substantially
simplified by using cylindrical coordinate system.  



7   Viscous Laminar Flows218

u/U

x 2
/h

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1
U

K = -3 -2 -1 0 1 2 3

Negative pressure gradient: K > 0

Stationary wall

Positive pressure gradient: K < 0

Moving plate

Fig. 7.9: Velocity distribution in Couette flow with pressure gradient.

(7.57)

(7.58)

(7.59)

7.3.2 Couette Flow between Two Concentric Cylinders
Exact solution of Navier-Stoke’s equations can also be found for this case. In contrast
to the parallel flat walls discussed above, we use two concentric cylinders as the
bounding walls that may rotate with different rotational velocities. In this case it is
most convenient to use the cylindrical coordinate system for decomposing the Navier
Stoke’s equation into its components. We assume that the flow moves in 
circumferential direction only meaning that the components in radial and axial
components are zero everywhere. Furthermore, we assume that the flow is
axisymmetric which implies that the pressure in circumferential direction is constant. 
Implementing these assumptions into the Navier-Stoke’s equations (A.74-A.76), the
radial component is simplified to

and the circumferential component simplifies as    

Since the velocity is in circumferential direction and changes in radial  direction only,
we set and replace the partial derivatives by ordinary ones. As a result we
find
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(7.60)

(7.61)

(7.62)

(7.63)

(7.64)

(7.65)

and

The solution of Eqs. (7.59) and (7.60) must satisfy the following boundary conditions
at the inner and outer cylinder

where the angular velocity of the outer cylinder may assume negative, zero, or
positive values. Using the above boundary conditions, the solution of Eq. (7.60) is

Introducing dimensionless parameters  ,   and  Eq
(7.62) is re-arranged as

For the outer cylinder at rest, , Eq. (7.63) is reduced to

In a similar approach utilizing Eq. (7.62), a dimensionless expression can be derived
that relates  to the surface velocity of the rotating outer cylinder . Assuming
the inner cylinder is at rest, while outer cylinder is rotating, we find

Figure 7.10 represents the dimensionless velocity distribution in radial direction with 
 as a parameter for (a) inner cylinder rotating and outer cylinder at rest

and (b) inner cylinder at rest and outer cylinder rotating. As the figures  show, when 
approaches unity the velocity distributions look very similar to flat wall Couette flow 
for zero pressure gradient-curve plotted in Fig. 7.9. Equations (7.64) and (7.65) allow
calculating the wall shear stress on the inner and outer cylinder walls using the shear
stress relation with  as the velocity slope at the
wall for this particular case. The resulting shear stress force and the moment of
momentum acting on the surface per unit cylinder depth  is calculated from
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(7.66)

(7.67)

(7.68)

(7.69)

Equation (7.67) may be used to experimentally determine the viscosity of the working
fluid. With the measured moment of momentum, the angular velocity and the given
geometry, the viscosity can be obtained.   

7.3.3 Hagen-Poiseuille Flow
Axisymmetric laminar flow through a straight circular pipe called Hagen-Poiseuille
flow is shown in Fig. 7.11. The velociy distribution in radial direction is obtained as
an exact solution of the Navier-Stoke’s equations.   Similar to the case discussed
preciously, we use the cylindrical coordinate system to decompose the Navier-Stoke’s
equations in circumferential, radial and axial directions. The no-slip condition at the
wall requires that . We assume that  everywhere and
require that the flow be axisymmetric  ( /  = 0).  The continuity equation in
cylindrical coordinates (see appendix A)  gives

Because of the above assumptions, the  r - component of the Navier-Stokes equations
is reduced to
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Fig. 7.11: Parabolic velocity distribution in a channel with circular
cross section. 

(7.70)

(7.71)

(7.72)

(7.73)

Likewise, all terms of the Navier-Stokes equation in the  direction vanish identically
leaving the z- component as the only non-zero component.

Since the expression in the bracket of Eq. (7.70) is only a function of r and
considering the axisymmetric assumption, , and Eq. (7.69), the pressure
gradient   must be a constant implying that the pressure  p  is a linear
function of z.  As before we set dp/dz = -K and re-arrange Eq. (7.70) 

which, integrated twice, gives

With the maximum velocity located r = 0 and the no-slip condition at r = R, the 
solution of (7.72) is found as
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(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

The pressure gradient can be expressed in terms of the maximum velocity by setting
in Eq. (7.73) r = 0 which results in . Thus, the dimensionless velocity
distribution is

As Eq. (7.73) indicates, the pressure gradient dp/dz = -K is a parameter determining
the velocity distribution. Since the pressure drop in a pipe may be set proportional to
the averaged dynamic pressure  with obtained from continuity equation:

The pressure gradient can be approximated as:

with  as the pressure drop across the pipe length l. Introducing a dimensionless
pressure loss coefficient ,

considering  Eqs. (7.76) and (7.75), we find:

with  and the friction coefficient .

7.4 Unsteady Laminar Flows

So far, we have treated steady laminar flows through channels with curved  walls,
straight walls and pipes, for which exact solutions were found. There are also few
unsteady flow cases for which exact solutions of Navier-stoke’s equations still exist.
To describe the solution procedure, in the following two different cases will be
presented. More examples are found in Schlichting [1].
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(7.79)

(7.80)

(7.81)

(7.82)

(7.83)

(7.84)

(7.85)

7.4.1 Flow Near Oscillating Flat Plate, Stokes-Rayleigh Problem
We consider laminar flow between two plane infinitely extending plates with a
distance h from each other, where the lower plate oscillates in its plane. A very 
detailed discussion of this case is found in an excellent textbook by Spurk [8] which
is reflected here. Similar to the cases presented previously, the unsteady flow under
investigation is unidirectional, where the corresponding assumptions are applicable.
This implies that there exist only non-zero velocity component, which we set

 and simply as . The wall oscillation
velocity is given by

Using complex notation the wall velocity reads

where only the real part   (eiwt) has physical meaning. Utilizing the velocity
distribution

the u-component of the Navier-Stokes equations is written as:

Since the flow motion is caused by oscillation of the lower wall with the no-slip
condition, pressure changes in x-direction can be excluded leading to  p/ x = 0, thus
the boundary conditions at the lower and upper wall are given as:

Since we are interested in the oscillation state after the initial transients have died
away, we do not need to include time t in boundary conditions. Considering the
boundary conditions (7.83),we may set

where the f(y), which is to be determined, has to satisfy the boundary conditions83.

Inserting Eq. (7.84) into (7.82), the partial differential Eq. (7.82) is reduced to an
ordinary differential equation with constant (complex) coefficients
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(7.86)

(7.87)

(7.88)

(7.89)

(7.90)

(7.91)

(7.92)

(7.93)

(7.94)

where f  = d2f/dy2. From the solution f(y) = e y we obtain the characteristic
polynomial

with the roots

With (7.88), the general solution of (7.86) can be written in the form

from which, using the boundary conditions (7.83), we find the special solution

which inserted into Eq. (7.84) gives the velocity distribution

In Eq. (7.91) the dimensionless argument h2/v represents a time scale for diffusion of
oscillating motion across the channel height. The following two limiting cases  
discussed in [8] are presented in this section:

In the first case this time is much smaller than the typical oscillation time 1/ , i.e. the
diffusion process adjusts at every instant the velocity field to the steady shearing flow
with the instantaneous wall velocity uw(t). This is what is called quasi-steady flow.
Using the first term of the expansion of the hyperbolic sine function for small
arguments we have
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Fig. 7.12: Unsteady velocity distribution caused by oscillating the
bottom wall. 

and deduce that

Equation (7.95) corresponds to the simple Couette flow (7.56) where the upper plate
represents the moving wall.  We also obtain this limiting case if the kinematic
viscosity  v  tends to infinity. In the limit   we use the asymptotic form of
the hyperbolic sine function and write Eq. (7.91) in the form

or

The distance h  no longer appears in Eq. (7.97).  Measured in units   the
upper wall is at infinity.  Relative to the variable  y  the solutions also have a wave
form; we call these shearing waves of wavelength  . To obtain the velocity at the
wall, we set in  Eq. (7.97) y = 0 and arrive at: 

The velocity distribution described by Eq. (7.97) is plotted in Fig. 7.12 for different
k-values in the parameter .
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(7.99)

(7.100)

(7.101)

(7.102)

(7.103)

7.4.2 Influence of Viscosity on Vortex Decay 
Reconsider the case of two concentric rotating cylinders we treated in Section 7.3.2
with the velocity distribution described by Eq.(7.62). Setting 2 = 0 and assuming
that the outer radius goes to infinity, while the inner radius approaches an
infinitesimally small size similar to the one of a vortex filament (see Section 6.7.2), 
Eq. (7.62) reduces to:

with R as the radius of the inner cylinder (filament) and its angular velocity.
Equation (7.99), (7.100) describes the velocity around a vortex filament with the
strength  (see Section 6.7.2). For a constant circulation within
an inviscid flow field the velocity at an arbitrary radius r is

Equation (7.100) implies that the flow velocity at the center of the vortex r = 0
becomes infinity indicating a discontinuity at the center of the vortex. We now
suppose that cylinder which is rotating with an angular velocity and is embedded
in a viscous environment suddenly stops rotating at time t = 0.  This triggers a
transient event,  where the flow velocity continuously decreases as a result of viscous
diffusion.  This transient event is described by the Navier-Stokes equations (4.47).
From Eqs.(7.99), (7.100) and  (7.100) it follows that the streamlines are concentric
circles (see also Section 6.2.1.3). Thus, the flow may be assumed to be unidirectional
in circumferential direction with , implying that .  This
requires that the pressure gradient in circumferential direction must vanish. As a
consequence,  Eq. (4.47) reduces to: 

The solution of Eq. (7.101) must satisfy the following boundary conditions:

To find the solution for Eq. (7.101), we introduce a dimensionless parameter
such that Eq. (7.101) is transformed into an ordinary differential equation

in terms of with as an the independent variable leading to:

with the solution;
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Fig. 7.13: Velocity distribution caused by a decaying vortex, (a)
dimensionless velocity in radial direction with dimensionless time as
parameter, temporal change of dimensionless velocity with dimensionless
radius as parameter.  

that results in the solution for the circumferential velocity:

Setting in (7.105) t = 0, we obtain the reference velocity:

which represents the velocity of the vortex in an inviscid flow field.  Using Eq.
(7.106), the nondimensionalized version of Eq. (7.105) is 

Equation (7.107) represents an exact solution of the Navier-Stokes equation that
describes  the distribution of the circumferential velocity component of a decaying
vortex as a function of radial distance and time. It was derived by Oseen [9]. The
velocity distributions described by Eq. (7.107) are plotted in Figures 7.13(a and b). 

Figure 7.13(a) shows the velocity distribution in radial direction with dimensionless
time as a parameter. The dashed curve with represents the irrotational

solution with the origin as the singularity. For the damping effect of the
viscosity is clearly visible. However, at r/r0 = 1 all viscous (rotational) solutions
approach the inviscid (irrotational) solution. Figure 7.13(b) exhibits the velocity
decay for each  r/r0-ratio. The rotational behavior of the unsteady vortex decay
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(7.108)

(7.109)

Fig. P7.1

Fig. P7.2

described by Eq. (7.105) can be shown explicitly by calculating the vorticity
 which has, in this particulare case,  only one non-zero component:  

Substituting in (7.108)  by (7.105), we find:

Equation (7.109) shows that for t = 0, the solution is irrotational, while for t >0 it
becomes rotational. 

Problems

Problem 7.1: A Newtonian  fluid with constant density and
viscosity flows steadily through a two dimensional vertically
positioned channel with the width 2h shown in Fig. P7.1. The
motion of the fluid is described by the Navier Stokes
equations. The flow is subjected to the gravitational
acceleration and a constant pressure gradient in flow 
direction . Assume that

a) Determine the solution of the Navier-Stokes equations.
b) Write a computer program, show the velocity distributions

for the following  cases: (a) For K = 0, (b) K >0, and
(c) K <0.

c) For which K there is no flow? 

Problem 7.2: Newtonian  fluid with constant density
and viscosity flows steadily through a two
dimensional channel positioned at an angle   shown
in Fig. P7.2 with the width 2h. The motion of the fluid
is described by the Navier Stokes equations. The flow
is subjected to the gravitational acceleration

and a constant pressure gradient in
flow  direction . Assume that  

a) Determine the solution of the Navier-Stokes
b) Equations.  write a computer program and plot the

velocity distributions for: (a) For K = 0, (b) K >0,
and (c) K <0.

c) For which K there is no flow? 
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Problem 7.3: River water considered a
Newtonian fluid with constant viscosity and
density steadily flows down an inclined river bed
at a constant height h as shown in the Fig. P7.3.
The motion of the fluid is described by the
Navier-Stokes equation. Along the sloped river
bed, the flow is driven by the gravitational
acceleration  and its free surface is subjected to
the constant atmospheric pressure patm. The air
viscosity at the free surface is negligible
compared to the water viscosity. Furthermore, we
assume that the flow is  unidirectional in x1
direction.
a) Decompose the Navier-Stokes equation into its components.  
b) Show that the    
c) Solve the Navier-Stokes equations and find the velocity distribution in x2-

direction.
d) Determine the velocity ratio 
e) Determine the river mass flow . 

Problem 7.4: Incompressible Newtonian fluid
with constant density and viscosity flows
between two parallel plates with infinite
width. Body forces are neglected. Given are
the plate height h, the components of the
pressure gradient,

and the velocity field between the plates is given by:

a) Show that the given velocity field satisfies the continuity and the Navier-Stokes
equation.

b) Determine the components of the stress tensor.
c) Calculate the dissipation function .
d) Find the energy per unit depth, length, and time dissipated in heat within the gap.
e) Calculate the principal stresses and their directions.
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Fig. P7.5

Problem 7.5: Reconsider the flow calculated
in Problem 7.4 and assume a calorically
perfect fluid with a constant heat conductivity
. Further assume a constant temperature at

the top wall T0  and a full heat insulation at the
bottom wall
a) Determine the temperature distribution

T(x2 )in the gap.
b) Find the temperature at the bottom wall.
c) Determine the heat flux per unit area through the top wall.
d) Calculate the entropy increase Ds/Dt of the fluid inside the gap.

Problem 7.6: Newtonian fluid flows through the channel shown in Fig. P7.4 with
infinite extensions in x1- and x3- direction and the height h. The plane flow is steady,
the density  and the viscosity  are assumed to be constant, and body forces are
neglected. The top and bottom wall are porous such that a constant normal velocity
component V2W can be established at the walls. The pressure gradient in x1- direction
is constant ( p/ x1 = -K). Because of the infinite extension of the channel, the
velocity distribution does not depend upon x1.
a) Using the continuity equation calculate the distribution of the velocity component

in x2- direction V2(x2).
b) Simplify the x1- component of the Navier-Stokes equation for this problem.
c) Give the boundary condition for the velocity component u1.
d) Calculate the velocity distribution V1(x2).Hint: After solving the homogeneous

differential equation, the particular solution of the inhomogeneous differential
equation can be found setting  .

Given: , , K, h, VW

Problem 7.7: Newtonian fluid ( ,  =const) flows steadily through the channel, Fig.
7.5, (height 2h). In the middle of the channel, an infinitely thin splitter plate is
mounted. The channel walls move with a constant velocity U in positive x1-direction.
The two fluid streams separated by the plate are mixed at the end of the plate. At
station [2], a new velocity profile u1 = u1(x2) is developed that does not change
anymore with x1. The body forces can be neglected. 

a) Using the equation of motion, show that the pressure gradient p/ x1 downstream
of [2] does not change.

b) Calculate the volume flux per unit depth  at station [1]
c) Obtain the velocity profile u1 = u1 (x2) at station [2] using the no-slip condition at

x2 = ± h and the requirement that the volume flux at stations [2] must be the same
as at [1]. Show that the pressure gradient must be different from zero, resulting in
a pressure driven Couette flow.

d) Calculate the pressure gradient.

Given: h, U, ,
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Problem 7.8: A curved channel is described by the following orthogonal curvilinear
coordinate system:   

a) Find the base vectors, metric coefficients, and Christoffel symbols; 
b) Generate a grid for 1 from 3.0 to 5.0 and 2 from 0.1 to 0.5.
c) Transform the continuity and Navier-Stokes equation into this curvilinear

coordinate system
d) Solve the Navier Stokes equations and plot the velocity distribution for the    

logarithmic spiral with a = -1 and b =1. 
e) Find the Navier-Stokes solutions for purely radial flow by setting a = -2 and

b = 0 and the flow through concentric cylinders with  a = 0 and b =1.

Problem 7.9: A two-dimensional symmetric curved channel is described by the
following orthogonal curvilinear coordinate system:

a) Find the base vectors, metric coefficients, and Christoffel symbols; 
b) Generate a grid for 1 from 10 to 15 and 2 from 0 to ± 0.8.
c) Transform the continuity and Navier-Stokes equation into this curvilinear

coordinate system.
d) Assume that the velocity component in 2-direction compared to the component

in 1-direction can be neglected. Give an approximate solution of the Navier
Stokes equations and plot the velocity distribution.

Problem 7.10: A curved channel is described by the following orthogonal curvilinear
coordinate system:   

a) Find the base vectors, metric coefficients, and Christoffel symbols;  Generate a  
grid for 1 from 0.2 to 0.1 and 2 from 0 to ± 0.008.

b) Transform the continuity and Navier-Stokes equation into this curvilinear
coordinate system.

c) Assume that the velocity component in 2-direction compared to the component
in 1-direction can be neglected. Solve the Navier Stokes equations and plot the
velocity distribution.
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8 Laminar-Turbulent Transition

8.1 Stability of Laminar Flow 

This Chapter is devoted to the complex problematic of laminar flow stability,
intermittency, steady and unsteady boundary transition. The phenomena of stability
of laminar flows, transition, and turbulence were systematically studied first by O.
Reynolds [1] in the eighties of the eighteenth century. H. Schlichting [2], [3] and in
his classical textbook Boundary Layer Theory [4] gives an excellent treatment of
these complex flow phenomena and critically reviews the contributions up to 1979,
where the seventh and last edition of his book appeared. In this chapter, we first treat
the fundamental issues pertaining to the subject matter followed by original
contributions recently made in the area of steady and unsteady boundary layer
transition.

In Chapter 7, we have presented several exacts solutions of the Navier-Stokes
equations, where at given Reynolds numbers, the effect of curvature and pressure
gradient on the velocity and temperature distributions were discussed. To perform the
integration process without encountering numerical instabilities, we have utilized
Reynolds numbers ranging from 500 to 5000. For the particular geometry pertaining
to the positive pressure gradient (decelerated flow), the  highest Reynolds number we
could apply without numerical instability was about . For a negative
pressure gradient (accelerated flow) and the same geometry, but with reversed flow
direction, a Reynolds number as high as  could be used. For higher
Reynolds numbers, numerical instabilities occurred, indicating the sensitivity of the
laminar flow at positive pressure gradient with respect to higher Reynolds numbers.
In fact, for a given geometry, there is always a definite Reynolds number, the critical
Reynolds number, , above which the flow pattern changes drastically. The
numerical value of this critical Reynolds number, however, depends, strongly, among
other things, on pressure gradient, inlet flow conditions, and surface roughness. For
a steady flow through a pipe with very smooth surface and no inlet disturbance, the
critical Reynolds number is approximately    

Keeping the working medium and the geometry the same, a change in the flow
velocity results in a change of the Reynolds number. For the above flow, the laminar
flow pattern is sustained as long as .  At this Reynolds number, the flow
exhibits a well orderly pattern and the fluid particles travel along neighboring layers.
Approaching the and eventually increasing it beyond the critical one 
causes the flow pattern to change drastically. The orderly pattern ceases to exist. This 

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 233–269. 
© Springer Berlin Heidelberg 2010
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Fig. 8.1: On the stability of laminar flow, historic dye filament
experiment by Reynolds (1883); (a) laminar flow for Re<Re crit; (b)
turbulent flow for Re>Recrit.

drastic change of the flow pattern is demonstrated by the classic dye filament
experiment conducted by O. Reynolds (1883) and reconstructed in Fig. (8.1). At a
low Reynolds number , the filament remained laminar with sharply
defined boundaries in th center of the stream that spread slowly due to molecular
diffusion,  Fig.(8.1a). Increasing the Reynolds number above the critical one changed
the flow pattern completely leading to a strong mixing of the dye filament particles
with the main flow. At a Reynolds number  the particles of the dye
filament were subjected not only to a longitudinal motion but also to a lateral motion
with a high frequency random fluctuation superimposed on the main (longitudinal)
motion. This high frequency random fluctuation which is inherently three
dimensional characterizes the new flow pattern that is termed turbulence. As soon as
the flow becomes turbulent the filament diffuses into the stream and the fluid
becomes uniformly colored in a short distance downstream of the dye injector as seen
in Fig.(8.1b).

8.2 Laminar-Turbulent Transition
Increasing the Reynolds number from a subcritical to a supercritical range, the flow
undergoes a laminar- turbulent  transition process. This transition process relates the
stable, subcritical laminar state to the stable, supercritical turbulent state and is of
fundamental importance for the entire engineering fluid mechanics. As indicated
above, the complex process of transition is affected by several parameters, the most
significant ones are the Reynolds number, pressure gradient, surface roughness, and
the external disturbance (turbulence intensity ) in the free stream. To
understand the fundamentals of the laminar turbulent transition, we try first to reduce
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Fig. 8.2: Transition process along a flat plate at zero-pressure gradient
sketched by Schubauer and Klebanoff [6].

the number of parameters affecting the transition process. This is done effectively by
investigating the transition within the boundary layer along a flat plate with a smooth
surface at zero pressure gradient. This is particularly important for the development
of boundary layer and its onset which is primarily responsible for the inception and
magnitude of the drag forces that exert on any surface exposed to a flow field. Figure
(8.2) schematically explains the transition process that takes place within the
boundary layer along a flat plate at zero pressure gradient. 

Starting from the leading edge, the viscous flow along the plate generates two
distinctly different flow regimes. Close to the wall, where the viscosity effect is
predominant, a thin boundary layer is developed, within which the velocity grows
from zero at the wall (no-slip condition) to a definite magnitude at the edge of the
boundary layer (the boundary layer and its theory is extensively discussed in Chapter
11). Inside this thin viscous layer the flow initially constitutes a stable laminar
boundary layer flow that starts from the leading edge and extends over a certain range

. By further passing over the plate surface, the first indications of the laminar flow
instability appear in form of infinitesimal unstable two-dimensional disturbance
waves that are referred to as Tollmien-Schlichting waves  . Further downstream,
discrete turbulent spots with highly vortical core appear intermittently and randomly

. Inside these wedge-like spots the flow is predominantly turbulent with ,
whereas outside the spots it is laminar. According to the experiments by Schubauer
and Klebanoff [5], the leading edge of a turbulent spot moves with a velocity of

, whereas its trailing edge moves with a lower velocity of .
As a consequence, the spot continuously undergoing deformation decomposes and
builds new sets of turbulence spots with increasingly random fluctuations
characteristic of a turbulent flow. Schubauer and Klebanoff [6] also noted the
existence of a calmed region trails behind the turbulent spot. This region was named
calmed because the flow is not receptive to disturbances.

Analytical investigations by McCormick [6]indicate that artificially created
turbulent spot does not persist if the Reynolds number satisfies the condition

 which results from linear stability theory. Schlichting [4] summarized
the transition process as follows:
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Fig. 8.3: Sketch of transition process in the boundary layer along a flat
plate at zero pressure gradient, a composite picture of features in [6]
after White [7].

A stable laminar flow is established that starts from the leading edge and extends
to the point of inception of the unstable two-dimensional Tollmien-Schlichting
waves.
Onset of the unstable two-dimensional Tollmien-Schlichting waves. 
Development of unstable,  three-dimensional waves and the formation of vortex
cascades.
Bursts of turbulence in places with high vorticity.
Intermittent formation of turbulent spots with high vortical core at intense
fluctuation.
Coalescence of turbulent spots into a fully developed turbulent boundary layer.

White [7] presented the a simplifying sketch, Fig. (8.3), of transition process of a
disturbance free flow along a smooth flat plate at zero pressure gradient by assem-
bling the essential elements of transition measured by Schubauer and Klebanoff  [5]. 

The process of flow transition from laminar to turbulent in the sequence discussed
above takes place at low level of freestream turbulence intensity of 0.1% or less. In
this case, the presence of Tollmien-Schlichting waves are clearly present leading to
a process of natural transition. In many engineering applications, particularly in
turbomachinery flows, where the main stream is periodic unsteady associated with
highly turbulent fluctuations. The boundary layer transition mainly occurs bypassing
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(8.4)

(8.2)

(8.3)

the amplification of Tollmien-Schlichting waves. This type of transition is called
bypass transition, [8]

8.3 Stability of Laminar Flows

The transition process described briefly above have been the subject of ongoing
theoretical and experimental investigations for more than half of a century.  A-priori
predicting the transition process flows is based on the assumption that laminar flow
stability is affected by small external disturbances. In case of internal flows though
pipes, nozzles, diffusers, turbine or compressor blades channels, these disturbances
may originate, for example, in the inlet, whereas in the case of a boundary layer on
a solid body that is exposed to a flow  may be due to wall roughness or disturbance
in the external flow. In this connection, we exclude  external disturbances that
accelerate the transition start. We also exclude the effect of pressure gradient on the
transition process, assuming a flow at zero-pressure gradient. Thus, we restrict our
self to investigating the effect of  small  disturbances on the stability of laminar flows.
A stable laminar flow continues to remain stable as long as the small disturbances die
out with time. On the other hand the laminar flow becomes unstable if the
disturbances increase with time and there is possibility of transition into turbulent. 

8.3.1 Stability of Small Disturbances
We consider a statistically steady flow motion, on which a small disturbance is
superimposed. This particular flow is characterized by a constant mean velocity
vector field  and its corresponding pressure . We assume that the small
disturbances we superimpose on the main flow is inherently unsteady, three-
dimensional and is described by its vector filed and its pressure disturbance

. In contrast to the random fluctuations which characterize  turbulent flows, the
disturbance field is of deterministic nature that is why we denote the disturbances
with a tilde (~) as opposed to a prime ( ), which we use for random fluctuations. 
Thus, the resulting motion has the velocity vector field:  

and the pressure field: 

Assuming that  and , we introduce  Eqs. (8.2) and
(8.3) into the Navier Stokes equation (4.43): 

Performing the differentiation and multiplication, we arrive at: 
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(8.5)

(8.6)

(8.7)

(8.8)

The small disturbance leading to linear stability theory requires that the nonlinear
disturbance terms be neglected. This results in 

Equation (8.6) is the composition of the main motion flow superimposed by a
disturbance.  The velocity vector constitutes the Navier-Stokes solution of the
main laminar flow. Since the solution of the main laminar flow satisfies the Navier-
Stokes equation (8.6) must also fulfill the Navier-Stokes equation. As a consequence,
we have:

Equation (8.7) in Cartesian index notation is written as

Equation (8.8) describes the motion of a three-dimensional disturbance field
superimposed on a three-dimensional laminar main flow field. In order to find an
analytic solution that determines the stability of the main flow, we have to make two
further simplifying assumptions. The first assumption implies that the main flow is 
unidirectional in the sense defined in Chapter 7. Thus, the main flow is assumed to
be two-dimensional, where the velocity vector in streamwise direction changes only
in lateral direction. The second assumption concerns the disturbance field. In this
case, we also assume the disturbance field to be two-dimensional too. The first
assumption is considered less controversial, since the experimental verification shows
that in an unidirectional flow, the lateral component can be neglected compared with
the longitudinal one. As an example, the boundary layer flow along a flat plate at zero
pressure gradient can be regarded as a good approximation. The second assumption
concerning the spatial two dimensionality of the disturbance flow is not quite obvious
and may raise objections that the disturbances need not be two dimensional at all.
Squire [9] performed a stability analysis using disturbances which were periodic also
in z-direction and found that a two dimensional laminar flow becomes unstable at
higher Reynolds number if the disturbance is assumed to be three-dimensional than
when it is supposed to be two-dimensional. This means that a two-dimensional
disturbance causes an earlier instability leading to lower critical Reynolds numbers. 
Furthermore, the use of two-dimensional disturbance leads faster to the linear stability
equation, which may also be achieved using a three-dimensional disturbance assump-
tion. With these assumption, the decomposition of Eq.(8.8) in its components yields:
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(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

The continuity equation for incompressible flow (4.11) yields:

with , Eq. (8.10) decomposed as

With Eqs. (8.9) and (8.11) we have three-equations to solve three unknowns,
namely  and . The solution is presented in the following section.

8.3.2 The Orr-Sommerfeld Stability Equation 
Before proceeding with the stability analysis, for the sake of simplicity, we set in Eq.
(8.9)  and find 

For the disturbance field superimposed on the main laminar flow we introduce the
following complex stream function:   

In Eq. (8.13)  is the complex function of disturbance amplitude which is assumed
to be a function of y only. The stream function can be decomposed into a real and an
imaginary part:
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(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

from which only the real part 

has a physical meaning. Similarly the complex amplitude is decomposed into a real
and an imaginary part:

While  is a real quantity and is related to the wavelength , the quantity 
is complex and consists of a real and an imaginary part  

with  as the oscillation frequency of the perturbation field and  as the
amplification/damping factor of the disturbance.  For , disturbances are
damped and stable laminar flow persists. On the other hand, disturbances are
amplified if . In this case instability may drastically change the flow pattern
from laminar to turbulent. We now introduce the following ratio:

with  as the wave propagation velocity and the damping factor. The components
of the perturbation velocity are obtained from the stream function as:

Introducing Eq.(8.19) into (8.12) and eliminating the pressure terms by differentiating
the first component of the Navier-Stokes equation with respect to  and the second
with respect to respectively and subtracting the results from each other, we obtain 

Equation (8.20) referred to as the Orr-Sommerfeld -equation was derived by Orr [10] 
and independently Sommerfeld [11]. It constitutes the fundamental differential
equation for stability of laminar flows in dimensionless form.  The velocities are
divided by their maximum values and the lengths have been divided by a suitable
reference length such as d for pipe diameter, b channel length or  for boundary layer
thickness. The Reynolds number is characterized by the mean flow         
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(8.21)

(8.22)

(8.23)

(8.24)

8.3.3 Orr-Sommerfeld Eigenvalue Problem 
The Orr-Sommerfeld equation is a fourth order linear homogeneous ordinary
differential equation.  With this equation the linear stability problem has been reduced
to an eigenvalue problem with the following boundary conditions at the wall and in
the freestream: 

Equation (8.20) contains the main flow velocity distribution which is specified
for the particular flow motion under investigation, the Reynolds number, and the
parameters , cr, and ci .

Before we proceed with the discussion of Orr-Sommerfeld equation, we consider
the shear stress at the wall that generally can be written as: 

If the flow is subjected to an adverse pressure gradient, the slope may
approach zero and  the wall shear stress disappears. This requires the velocity profile
to have a pint of inflection as shown in Fig. (8.4). In this particular case the flow close
to the wall behaves like an  inviscid flow with the Reynolds number  approaching
infinity ( ). For this spacial case the Orr-Sommerfeld stability equation
reduces to the following Rayleigh equation:

Equation (8.23) is a second order linear differential equation and need to satisfy only
two boundary conditions:

The Orr-Sommerfeld equation (8.20) is an eigenvalue problem with the boundary
conditions (8.21). To solve this differential equation, first of all the velocity
distribution  must be specified. As an example, the velocity distribution for
plane Poisseule flow can be prescribed. In addition, Eq. (8.21) contains four more
parameters, namely and . We assume that Reynolds number and the
wavelength are given. For each pair of given  and Re Eq. (8.20) with the
boundary conditions (8.21) provide one eigenfunction  and one complex
eigenvalue with  
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(8.25)
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a

Fig. 8.4: Neutral stability curves for two-dimensional boundary layer with two-
dimensional disturbances, (a) frictionless Rayleigh stability for velocity profile with
inflection point Re , (b) viscous instability for velocity profile without inflection
point.

as the phase velocity of the prescribed disturbance. For a given value of 
disturbances are damped  if  and stable laminar flow persists, whereas
indicates a disturbance amplification leading to instability of the laminar flow. The
neutral stability is characterized by . For a prescribed laminar flow with a
given U(y) the results of a stability analysis is presented schematically in an , R
diagram Fig. (8.4), where every point of the diagram corresponds to a pair of 
and . 

The curve of the neutral stability separates the region of stable laminar flow from that
of unstable disturbances. The vertical line that tangents the stability curve constitutes
the critical Reynolds number, below which all disturbances die out. Inside the
stability curve the flow is unstable, whereas outside fully stable. The figure also show
schematically the effect of velocity profile on the stability. A flow with the velocity
profile described by (a) with a point of inflection is more sensitive to disturbances,
whereas the one with the profile (b) has a smaller range of instability. These two
profiles represents two different flow conditions. The profile (a) represents a
boundary layer flow at positive pressure gradient, which is close to separation. In
contrast, profile (b) may represent a boundary layer flow at negative pressure
gradient. This explains why an accelerated laminar flow is more stable compared to
a decelerated laminar flow we described in Chapter 7.          
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(8.26)

(8.27)

(8.28)

(8.29)

(8.30)

8.3.4 Solution of Orr-Sommerfeld Equation
As an example, we solve the Orr-Sommerfeld stability equation for the case of a plain
Poiseuille flow between two parallel plates. The method used herein is based on the
study by Orszag [12] who expanded the assumed solution and the boundary
conditions in terms of linear combinations of Chebyshev orthogonal function of the
first kind Tn(y). For the particular case of a pure Poiseuille flow between parallel
plates, we rearrange Eq.(8.20) and arrive at the following dimensionless result:

The boundary conditions are: 

and the plane Poiseuille flow is given by the dimensionless profile:  

In Eq. (8.28) the independent dimensionless variable y represents the ratio of the
physical coordinate in lateral direction and the half-width with the value of unity
between the plates. Likewise, U(y) is the ratio of the undisturbed velocity distribution
and the maximum velocity in the middle of the plates, and Re is based on the half-
width between plates and is . As reported in the open literature, there is no
exact solution known for this set of equations. Therefore, we use  numerical methods
in order to solve the problem. One of the possible method, which is a very common
practice is to expand the assumed solution in terms of a series of some type of
functions such as Taylor, Fourier, Chebyshev, Legendre, etc. For this particular
problem, it was decided to expand the assumed solution in terms of Chebyshev
orthogonal polynomials of the first kind Tn(y). Chebyshev polynomial of the first kind
is defined by:

for all non-negative integer n. Examples of these functions are:

A plot of the first six polynomials is shown in Fig.(8.5). It can be seen that this set of
polynomials is composed of both even and odd functions. 
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Fig. 8.5: The first six Chebyshev polynomials. 

(8.31)

(8.32)

(8.33)

(8.34)

Another interesting characteristic is that all polynomials are orthogonal and non-
singular in the interval [-1,1], i.e the inner product of two polynomials is given by:

with Ti as the Chebyshev polynomials, Cj a constant (C0 = 2 and Cn =1 for n>0), and
w(y) is the weighting function defined as:

The orthogonality condition makes the Chebyshev polynomials particularly
appropriate  for solving the Orr-Sommerfeld problem. To solve the Orr-Sommerfeld
differential equation we assume that the solution can be expressed in terms of
Chebyshev polynomials Tn(y), as shown:

where the coefficient an can be determined from the inner product as (orthogonal
property):

 from Eq. (8.33) is then introduced into the differential equation (8.26) and in the
boundary conditions (8.27).  It must be noted however, for this particular case, that
the presence of only even derivatives in the differential equation and the symmetry
of the boundary conditions reduce our solution to the combination of even
polynomials only. The number of equations is then reduced to k/2+1 (one from each
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inner product), where k is the maximum degree used in the expansion. Since the
boundary conditions must be satisfied, the last set of equations obtained from the
inner product (related to the high frequency terms), are substituted by the boundary
condition equations. At this point, the nontrivial solution to our set of unknowns is
obtained finding the values of the complex number c that nulls the determinant of the
matrix associated with the system of equations. In other words, we must solve an
eigenvalue problem.

The problem of solving the Orr-Sommerfeld differential equation, which was in
the past the subject of several dissertations can now be assigned as a routine 
homework problem. Using the symbolic capabilities and the library of built-in
functions from several software (Maple, Mathematica, Matlab) it is possible to
produce highly accurate expressions of the characteristic polynomial by increasing
the order of Chebyshev polynomials. However, increasing the order  requires larger
memory and computational time that are associated with the inner product
(integration) between  and the Chebyshev polynomials Ti(y). The analysis showed
that the results from the inner products were related. 

Table 8.1: Example of a Chebyshev matrix used. 

Two aspects are worth noting: First, the polynomial matrix  shown in Table 8.1, is
always lower triangular. This means that almost half of the internal product between
functions is already known without the need to perform the integration. Secondly but
more important, each term of the table can be generated as a linear combination of the
other terms. The constants for the combination are identical to the coefficients of the
Chebyshev polynomials of the same degree as the column where the term of interest
is located. Using these two simple properties, it is possible to generate the results of
all internal products needed to form the set of equations.
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Fig. 8.6: Effect of degree of Chebychev polynomial on the numerical solution.

8.3.5 Numerical Results
The accuracy of the results improves by using higher order Chebyshev polynomials
in the expansion of the solution. However, a practical limit must be found since the
computer resources (time, memory, etc.) required to solve the problem also increases. 
Figure (8.6) shows the effect of the use of five different Chebyshev Polynomials over
the accuracy of the neutral stability curve. It can be seen that the location of the
critical Reynolds number as well as the lower branch of the stability curve is not
much affected if the order of the polynomials is greater than 30. On the other hand,
the upper branch shows a great dependence on the degree selected.  However within
low ranges of Reynolds numbers, a low order polynomial may be used with a certain
degree of confidence. Figure (8.7) contains the plots corresponding to the stability
maps for the plane Poiseuille flow between parallel plates. The figure exhibits the
frequency of the disturbance wave as a function of Reynolds number with   as the
parameter. The tangent to the neutral stability curve with  predicts a Reynolds
number of 5670 within 0.1% accuracy.  Figure (8.7) contains three stability curves
with . The neutral stability curve characterized by the zero
damping separates the stable outer region from the unstable inner region.

The linearized stability theory presented above mathematically describes the basic
physics of the change of flow state from laminar to turbulent. The theory is applicable
to simple steady flows at low turbulence intensity levels. As the study by Morkovin
[13] shows, the linearized Orr-Sommerfeld equation is not applicable to flows with
high free-stream turbulence intensity (more than 10%), where the Tollmien-
Schlichting waves we discussed above are completely bypassed.
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8.4 Physics of an Intermittent Flow, Transition

As discussed in the preceding sections, the amplification/damping factor of the
disturbance  determines the flow pattern.  For , disturbances are damped and
stable laminar flow persists. On the other hand, disturbances are amplified if .
In this case instability may drastically change the flow pattern from laminar to
turbulent. This change, however, does not occur suddenly. The instability triggers a
transition process, which is characterized by its intermittently laminar-turbulent
nature.

To better understand the physics of an intermittently laminar-turbulent flow, we
consider a flat plate, Fig. 8.8, with a smooth surface placed within a wind tunnel with
statistically steady flow velocity  and a low turbulence fluctuation velocity .1  It
should be noted that, in contrast to the theoretical assumption we made for a fully
laminar flow, the real flow using in wind tunnel tests always contains certain degree
of turbulence fluctuations superimposed on the main flow velocity . This is
expressed in terms of turbulence intensity defined as . Thus, from a
practical point of view, it is more appropriate to use the term non-turbulent flow
rather than laminar one. 

1 The superscript “ ” pertains to stochastic fluctuations in contrast to “~” used in
Section 8.3 that stands for deterministic disturbance.  
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Fig. 8.8: Measurement of an intermittently laminar-turbulent flow, (a)
positioning a hot wire sensor with the transitional portion of the boundary
layer, (b) high frequency velocity signals acquired at point P.

Downstream of the laminar region, we place a miniature hot wire sensor at an
arbitrary point P within the boundary layer to measure the velocity ( see Chapter 11
for detailed flow measurement). 

The position of the sensor  relative to the plate such that the axis of the sensing
wire coincides with x3-axis which is perpendicular to the x1-x2-plane, Figure 8.8(a).
The wire and the associated anemometer electronics  provide a virtually instantaneous
response to any high frequency incoming flow. Figure 8.8(b) schematically reflects
the time dependent velocity of an otherwise statistically steady flow. As seen, the
anemometer provides a sequence of signals that can be categorized as non-turbulent
characterized by a time independent, non-turbulent pattern followed by a sequence
of time dependent highly random signals that reflect turbulent flow. Since in a
transitional flow regime, sequences of non-turbulent signals are followed by turbulent
ones, we need to establish certain criteria that must be fulfilled before a sequence of
signals can be called non-turbulent or turbulent. This is issue is treated in the
following Section. 
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Fig. 8.9: Identification of non-turbulent (I = 0) and non-turbulent flow
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(8.37)

(8.36)

8.4.1 Identification of Intermittent Behavior of Statistically Steady Flows 

To identify the laminar and turbulent states, Kovasznay, et al. [18] introduced the
intermittency function . The value of I is unity for a turbulent flow regime and
zero otherwise:

Figure 8.9  schematically exhibits an intermittently laminar-turbulent velocity with
the corresponding intermittency function  for a statistically steady flow at a
given position vector x and an arbitrary time t.

Following Kovasznay, et al. [18], the time-averaged value of I(x,t) is the
intermittency factor , which gives the fraction of the time that a highly sensitive
probe spends in turbulent flow in a sufficiently long period of time T:

which is equivalent to
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Experimentally, the intermittency factor is determined from a set of N experimental
data. This requires that the integral in Eq. (8.37) be replaced by Eq. (8.38):

The hatched areas in Fig. 8.9 labeled with indicate the portion of the velocity with
random fluctuations, whereas, the blank areas point to signals lacking random
fluctuations.

8.4.2 Turbulent/Non-turbulent Decisions
To make an instantaneous decision about the non-turbulent/turbulent nature of a flow 
it is possible to use a simple probe, such as a hot-wire, for measuring the velocity
fluctuations and to identify the fine-scale structure in the turbulent fluid, as shown in
Fig.8.10.

Since the velocity fluctuation is not sufficient for making instantaneous decisions for
or against the presence of turbulence, the velocity signals need to be sensitized to
increase discriminatory capabilities. The commonly used method of sensitizing is to
differentiate the signals. The sensitizing process generates some zeros inside the fully
turbulent fluid. These zeros influence the decision process for the presence of
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turbulence or non-turbulence. The process of eliminating these zeros is to integrate
the signal over a short period of time T, which produces a criterion function S(t).
After short term integration, a threshold level C is applied to the criterion function to
distinguish between the true turbulence and the signal noise. Applying the threshold
level results in an indicator function consisting of zeros and 1's satisfying:

The resulting random square wave, I(x,t), along with the original signal is used to
condition the appropriate averages using the equations above. 

Performing the averaging process using Eqs. (8.37) or Eq. (8.38) for the
statistically steady flow shown in Fig. 8.10, we find an intermittency factor

. For the case this means that flow is transitional. For a
statistically steady flow, the time averaged intermittency at any point along the
surface in streamwise direction can be obtained that reflects the intermittent behavior 
of the flow under investigation. As an example,  Fig. 8.11 exhibits the intermittency
distribution along the concave surface of a curved plate at zero longitudinal pressure
gradient.

Using an entire set of velocity distributions along the concave surface of a curved
plate at zero longitudinal pressure gradient, a detailed picture of the intermittency
behavior of the boundary is presented in Fig. 8.11. It exhibits the intermittency
contour within the boundary layer along the concave side of a curved plate under
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statistically steady flow condition at zero pressure gradient.  Close to the surface, the
intermittency starts from zero and gradually approaches its maximum value. The dark
area with encloses locations with the maximum turbulent fluctuations.
Moving from the surface toward the edge of the boundary layer, the intermittency
factor decreases  approaching the non-turbulent freestream. 

Figure 8.12 presents a more quantitative picture of the intemittency distribution with
normal distance y as a parameter. Substantial changes of  occur within a range of
y = 0.0 to 1.3 mm with the maximum intermittency  which means that the
velocity has not reached a fully turbulent state. In fact in many engineering
applications, for instance, turbomchinery aerodynamics, the flow is neither fully
laminar nor fully turbulent . It is transitional with  . 
The change of in normal direction reflects the distribution of spots cross section 
in y- direction that decreases toward the edge of the boundary layer. The knowledge
of -distribution is crucial in assessing the computational results of CFD-code,
understanding the development of spot structure and the flow situation within a
transitional boundary layer. For calculating the transition boundary layer
characteristics, the values close to the surface are used.

Figure 8.13 exhibits the -distribution along the concave side of the curved plate
mentioned above at y = 0.1 mm above the surface as a function of  Re-number in
streamwise direction s, . Up to , the boundary layer is fully
non-turbulent with  = 0. This  point marks the start of the transition ReS. Similarly,
the end of the transition is marked with . The locations of transition
start and end depend strongly on pressure gradient in streamwise direction and the
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(8.40)

(8.41)

inlet flow condition. The latter includes the free-stream turbulence intensity for steady
inlet flow condition. For a periodic unsteady flow condition as is present in many
engineering applications such as in turbomachinery fluid mechanics, periodic
disturbances with specific characteristics play a key  role in determining the start and
end of the transition.

8.4.3 Intermittency  Modeling for Steady Flow at Zero Pressure Gradient
The transition process was first explained by Emmons [14] through the turbulent spot
production hypothesis. Adopting a sequence of assumptions, Emmon arrived at the
following intermittency relation: 

with  as the turbulent spot propagation parameter, g the spot production parameter,
x the streamwise distance and U the mean stream velocity. While the Emmon’s spot
production hypothesis is found to be correct,  Eq. (8.40) does not provide  a solution
compatible with the experimental results. As an alternative, Schubauer and Klebanoff
[15] used the Gaussian integral curve to fit the -distribution measured along a flat
plate. Synthesizing the Emmon’s hypothesis with the Gaussian integral, Dhawan and
Narasimha [16]  proposed the following empirical intermittency factor for natural
transition:

with ,  and  as the streamwise location of
the transition start and A as constant. The solution of Eq. (8.41) requires the
knowledge of  which contains two unknowns and the location of transition start . 
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In [17] the constant A was set equal to 0.412. Thus, we are dealing with three
unknowns, namely , and the two streamwise positions at which the intermittency
factor assumes values of 0.75 and 0.25. While the transition start can be estimated,
the two streamwise positions  and  are still unknown. Further more,
the quantity A which was set equal to 0.412, may be itself a function of several
parameters such as the pressure gradient and the free-stream turbulence intensity. As
we discuss in the following section, a time dependent universal unsteady transition
model was presented in [17] for curved plate channel under periodic unsteady flow
condition and generalized in [18] for turbomchinery aerodynamics application. The
intermittency model for steady state turned out to be a special case of the unsteady
model presented in [18] and [19], it reads:

with C1 = 0.95, C2 = 1.81. With the known intermittency factor, the averaged velocity
distribution in a transitional region is determined from:

with and as the solutions of laminar and turbulent flow, respectively. As an
example,  we take the Blasius solution for the laminar and the Prandtl-Schlichting
solution for the turbulent portion of a transitional flow (for details see Chapter 11)
along a flat long plate at zero streamwise pressure gradient and construct the
transitional velocity distribution using Eq. (8.43). The results are plotted in Fig.8.14,
where the non-dimensional velocity v/V is plotted versus the non-dimensional
variable y/  with  as the boundary layer thickness. Two distinctively different curves
mark the start and end of the transition denoted by and  . As seen, within
the two -values the velocity profile changes significantly resulting in  boundary
layer parameters and particularly and skin friction that are different from those
pertaining to laminar or turbulent flow (see Chapter 11). 
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8.4.4 Identification of Intermittent Behavior of Periodic Unsteady Flows
The flow through a significant number of engineering devices is of periodic unsteady
nature. Steam and gas turbine power plants, jet engines, turbines, compressors and
pumps are a few examples. Within these devices unsteady interaction between
individual components takes place. Figure 8.15 schematically represents the unsteady
flow interaction between the stationary and  rotating frame of a turbine stage. 
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(b) Periodic unsteady inlet velocity
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Fig. 8.16: Periodic unsteady flow velocity with the corresponding
distribution of I(x,t) at a particular position x.
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Fig. 8.17: Periodic unsteady flow velocity with the corresponding
distribution of I(x,t) at a particular position x.

(8.44)

A stationary probe traversing  downstream of the stator at station (2) records  a
spatially periodic velocity distribution. Another probe  placed on the rotor blade
leading edge that rotates with the same frequency as the rotor shaft, registers the
incoming velocity signals as a temporally periodic. The effect of this periodic
unsteady inlet flow on the blade boundary layer is qualitatively and quantitatively
different from those we discussed in the preceding Section. The difference is shown
in a simplified sketch  presented in Fig. 8.16.

While the boundary layer thickness  in case (a) is temporally independent, the
one in case (b) experiences a temporal change. To predict the transition process under
unsteady inlet flow condition using the intermittency approach, we first consider
Fig. 8.17. 

It includes three sets of unsteady velocity data taken at three different times but 
during the same time interval t ( corresponding to the sequence  i = 0 to i =N). Each
of these sets is termed an ensemble. Considering the velocity distribution at an
arbitrary position vector x and at an ensemble j such as , we use the same
procedure we applied to the statistically steady flow discussed above to identify the
nature of the periodic unsteady boundary layer flow. The corresponding intermittency
function  at a given position vector x is shown in Fig.8.17. For a particular
instant of time identified by the subscript i for all ensembles, the ensemble average
of  over N number of ensembles results in an ensemble averaged intermittency
function . This is defined as:

In Eq. (8.44), M refers to the total number of ensembles and ti the time at which the
corresponding signal was acquired. In contrast to the intermittency factor , the
ensemble averaged intermittency function  is a time dependent quantity. 
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Fig. 8.18: Processing of instantaneous velocity signals to calculate
ensemble averaged intermittency function for a periodic unsteady flow
at y = 0.1 mm, S/S0 = 0.5235 and a reduced frequency  = 3.443.

Figure 8.18 shows the steps necessary to process the instantaneous velocity data to
obtain the ensemble averaged intermittency. The periodic unsteady velocity u(t) is
produced by moving a set of cylindrical rods with the diameter of 2 mm in front of
a curved plate placed in the mid height of a curved channel (for details see [18] and
[19]).  For each ensemble, the velocity derivatives are obtained leading to a time
dependent intermittency function . Taking the ensemble average of  as
defined by Eq. (8.44) results in an ensemble averaged , shown in Fig. 8.18. 
Repeating the same procedure  for all velocity signals taken at y = 0.1 mm along the
concave surface of the curved plate from leading to trailing edge, Fig. 8.19 shows a
contour plot that reflects the intermittent behavior of the boundary layer under
unsteady inlet flow condition. The contour variable  is plotted for two unsteady wake
passing periods. Figure 8.19 also includes the transition start for steady state case.

The areas with lower intermittency mark the non-turbulent flow within the wake
external region, whereas dark areas indicate the regions with higher turbulent
fluctuations.  Upstream of the steady state transition start at S/S0 0.5 there exists a
stable laminar boundary layer region. This region is periodically disturbed  by the
wake strips that impinge on the surface. The wake strips are bound by two lines L1
and L2 that mark the leading and trailing edge with velocities and

, respectively. As seen, whenever the wake impinges on the surface,
the  boundary layer becomes turbulent (  1). It returns to its previous stable laminar
state, as soon as the wake strip has passed leaving behind a calmed region.
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Fig. 8.19: Contour plot of intermittency function along the normalized
streamwise distance s/s0 for a reduced frequency  = 1.75, dashed vertical
line denotes the start of steady state case with (  = 0.0), the ensemble
averaged free stream velocity is denoted by <V0>.

(8.45)

The calmed region bound by L3 with a velocity approximately .
The calm region denoted by a triangle ABCA is characterized by . A
comparison of Figs. 8.19 and 8.11 shows that the existence of the wakes has caused
the non-turbulent region becomes larger, thus for this particular case, delaying the
transition process. This is true as long as the wakes are not mixed with each other.
Increasing the reduced frequency of incoming wakes, causes mixing of the wakes
associated with higher averaged turbulence intensity and a shift of transition toward
the leading edge. The phenomenon of calming behind turbulent spots first mentioned
by Schubauer and  Klebanoff [6] was quantitatively determined by Herbst [19] and
Pfeil et. al [20],  Schobeiri and Radke [21] and Halstead et. al  [22]. 

8.4.5 Intermittency  Modeling for Periodic Unsteady Flow
The effect of periodic unsteady wake flow on boundary layer transition is discussed
more in detail in Chapter 11, section 11.8.2. The specific problematic of the
transition, however, are discussed in this section. To establish an intermittency based
transition model that accounts for the periodic unsteady inlet flow impinging on a flat
plate, a curved plate, a compressor or turbine blade, we first introduce a
dimensionless parameter that characterizes periodic nature of the incoming flow:
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(8.46)
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Fig. 8.20: Ensemble averaged Intermittency,  (a) marks the maximum values of
the intermittency inside the wake and the minimum range outside the wake, (b)
shows the relative intermittency and its description by a Gaussian function.

(8.47)

Equation (8.45) relates the passing time t of a periodic flow that impinges on the 
surface with the passing velocity in lateral direction Uw and the intermittency width
b. The latter is directly related to the wake width introduced by Schobeiri et al. [23]. 
We define the relative intermittency function  (in (8.45) as:

In Eq. (8.46),  is the time dependent ensemble-averaged intermittency
function which determines the transitional nature of an unsteady boundary layer. The
maximum intermittency , shown in Fig. 20(a), exhibits the time dependent
ensemble averaged intermittency value inside the wake vortical core. Finally, the
minimum intermittency , represents the ensemble averaged intermittency
values outside the wake vortical core. 

Experimental results presented in Fig. 20(b) show that the relative intermittency
function  closely follows a Gaussian distribution, which is given by:

Here,  is the non-dimensionalized lateral length scale. The validity of Eq. (8.47) has
been verified for different cases [18], [24] and [25], suggesting it is a universal
unsteady intermittency function. Using this function as a universally valid
intermittency relationship for zero and non-zero pressure gradient cases [24], the
intermittency function < i(ti)> is completely determined if additional information
about the minimum and maximum intermittency functions < i(ti)>min and < i(ti)>max
are available. The distribution of < i(ti)>min and < i(ti)>max in the streamwise direction
are plotted in Fig. 8.21(a). The steady case shown in Fig. 8.21(b) serves as the basis
of comparison for these maximum and minimum values. In the steady case, the



8   Laminar Turbulent Transition260

0.0E+00 2.0E+05 4.0E+05
0.0

0.2

0.4

0.6

0.8

1.0

<γmin>

γ

γav

0.0E5 4.0E5 ReS

<γmax>

2.0E5

(a)

0

0.2

0.4

0.6

0.8

1

gγ

ReS

ReS=1.76X105

ReE=4.0X105

1.0E5 2.0E5 3.0E5 4.0E5 5.0E5

(b)

Fig. 8.21: (a) maximum, minimum and averaged intemittency distribution along a
curved plate under periodic unsteady flow condition compared to the intermittency
at steady inlet floe condition (b).

intermittency starts to rise from zero at a streamwise Reynolds number Rex,s = 2x105,
and gradually approaches the unity corresponding to the fully turbulent state. This is
typical of natural transition and follows the intermittency function (8.42). The 
distributions of maximum and minimum turbulence intermittencies < i(ti)>min and
< i(ti)>max in the streamwise direction are shown in Fig. 8.21(a). For each particular
streamwise location on the plate surface with a streamwise Reynolds number, for
example Rex,s = 1x105, two corresponding, distinctively different intermittency states
are periodically present. At this location, < i(ti)>max corresponds to the condition
where the wake with the high turbulence intensity core impinges on the plate surface
at a particular instant of time. Once the wake has passed over the surface, the same
streamwise location is exposed to a low turbulence intensity flow regime with an
intermittency state of < i(ti)>min, where no wake is present. As seen, < i(ti)>min has the
tendency to follow the course of the steady (no-wake) intermittency distribution
exhibited in Fig. 8.21(b), with a gradual increase from an initial non-turbulent state
with a value of zero approaching a final state of 0.8. This was expected as < i(ti)>min
is calculated outside the wake region where the turbulence intensity is relatively
small. On the other hand, < i(ti)>max reveals a fundamentally different behavior that
needs to be discussed further. As Fig. 8.21(a) shows, the wake flow with an
intermittency close to 1 (see also Fig. 8.19) impinges on the blade surface. By
convecting downstream, its turbulent fluctuations undergo a strong damping by the
wall shear stress forces (stable laminar flow). The process of damping continues until
< i(ti)>max reaches a minimum. At this point, the wall shear forces are not able to
further suppress the turbulent fluctuations. As a consequence, the intermittency again
increases to approach the unity, showing the combined effect of wake induced and
natural transition due to an increased turbulence intensity level. The damping process
of the high turbulence intensity wake flow discussed above explains the phenomena
of the becalming effect of a wake induced transition observed by several researchers
including [9], [10], [11]. Figure 8.21(a) also shows the average intermittency, which
is a result of the integral effect of periodic wakes with respect to time. The maximum
and minimum intermittency functions are described by:
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(8.48)

(8.49)

(8.50)

fi Reduced Frequency

1.033 1.725 3.443 5.166

f1 0.57 0.22 0.50 0.35

f2 0.80 0.85 0.86 0.88

f3 1.00 0.82 0.80 0.80

f4 0.85 0.92 0.92 0.94

and

where the constants f1 and f2 may depend, among others, on the freestream turbulence
intensity Tu, the wake parameter  and surface roughness. The time averaged
intermittency is described by:

The combined effect of < i(ti)>max and < i(ti)>min can be seen in the expression for 
through the constants f3 and f4. These constants are directly related to the constants
f1 and f2.  For the given -values, the fi-values are given in Table 8.2. 

Table 8.2: fi-values for different -values.

8.5 Implementation of Intermittency into Navier Stokes Equations

8.5.1 Reynolds-Averaged Equations for Fully Turbulent Flow
In most engineering applications, the flow quantities such as velocity, pressure,
temperature, and density are generally associated with certain time dependent
fluctuations. These fluctuations may be of deterministic or stochastic nature.
Turbulent flow is characterized by random fluctuations in velocity, pressure,
temperature, and density.  Figure 8.22 shows the time dependent turbulent velocity
vector as a function of time for statistically steady, statistically unsteady, and periodic
unsteady flows. It exhibits three representative cases encountered in engineering
application. Case (a) represents a statistically steady flow through a duct (pipe,
nozzle, diffuser etc.). Case (b) reveals the statistically unsteady velocity at the exit of
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Fig. 8.22: Schematic representation of (a) statistically steady turbulent
flow with a time independent mean, (b) statistically unsteady turbulent
flow with a time dependent mean, and (c) periodic unsteady turbulent
flow with a time dependent periodic mean.    

(8.51)

(8.52)

(8.53)

(8.54)

(8.55)

(8.56)

a storage facility during a depressurizing process. Case (c) depicts a periodic unsteady
turbulent flow (almost sinusoidal ) with a time dependent mean that is encountered
in combustion engines. Periodic unsteady flows are also found in all sorts of turbines
and compressors. 

Any turbulent quantity can be decomposed in a mean and fluctuation part, where the
mean may be time dependent itself as we saw in the ensemble averaging process.  For
a statistically steady flow, the velocity vector is decomposed in a mean and
fluctuation term:

The velocity components are obtained from Eq. (8.51) as:

For a statistically unsteady flow, the flow velocity 

with  as the ensemble averaged velocity according to Eq.(8.54). 

where the flow is realized M times and each time the velocity is determined
at the same position x and the same instant of time t. The velocity components are
obtained from Eq. (8.51):

For a statistically steady flow, we define the time averaged quantity of a turbulent
flow as:
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(8.57)

(8.58)

(8.59)

(8.60)

(8.61)

(8.62)

with T as a time interval, over which the quantity is averaged. For a statistically
steady and highly turbulent flow, the averaged quantity  is time independent.
However, if the turbulent flow is periodically unsteady with  as the period, the
averaging duration T must be an order of magnitude smaller than the period of the
mean unsteady flow which means . From Eq. (8.56), it immediately follows
that:

The quantity Q may be a zeroth order tensor such as the temperature, pressure, density
or a first order tensor such as the velocity. The spatial differentiation of the quantity
is obtained from: 

For a velocity measured at an arbitrary position vector x, the mean is expressed as:

For further consideration and for the sake of simplicity, we may abandon the
ensemble averaged parenthesis pair and instead use the over bar

. However, we will resort to the parenthesis whenever there
is a reason for confusion. We start from the Navier-Stokes equation for
incompressible flow in an absolute frame of reference:

and assume that the flow quantities are associated with certain fluctuations. We
replace the velocity vector by , the pressure with , 
as the ensemble averaged velocity vector, ensemble averaged pressure and  ,  the
fluctuation velocity vector and pressure which are inherently time dependent. A
simple order of magnitude estimation shows that the density fluctuations may be
neglected. Taking the average of Eq. (8.60) gives:

Further treatment of Eq. (8.61) in conjunction with the averaging rules Eqs. (8.56), 
(8.57), and (8.58) results in

This equation is referred to as the Reynolds averaged Navier-Stokes (RANS) equation
of motion for incompressible flow with constant viscosity. For the statistically steady
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(8.63)

(8.64)

(8.65)

(8.66)

state, , accordingly for statistically unsteady flow, we have the time

derivative , because . The term  is the Reynolds

stress tensor and its divergence  is the “eddy force” acting on the fluid
particle due to the turbulent fluctuations. It should be pointed out that the
decomposition steps performed above were in order to find approximate solutions for
the Navier-Stokes equation, whose direct numerical solution until very recently,
appeared to be out of reach. Since the Reynolds stress tensor can not be expressed
uniquely in terms of mean flow quantities, it must be modeled. This, however, is the
subject of turbulence modeling. Before starting with implementation of intermittency
function into the Reynolds equations, we rearrange Eq. (8.62) as follows:

In Eq. (8.63) we assumed that the kinematic viscosity is constant throughout the flow
field. In Cartesian coordinate systems the index notation of Eq. (8.63) is:

and is decomposed in x1-direction:

in  x2-direction:

and finally in x3-direction, we have:
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(8.67)

(8.68)

(8.69)

(8.70)

(8.71)

(8.72)

(8.73)

The Reynolds averaged Navier-Stokes (RANS) equation (8.63), its index notation
(8.64), and the component decomposition (8.65), (8.66) and  (8.67) are derived for a
fully turbulent flow, which inherently includes the Reynolds stress tensor that has 9
components whose divergence is shown in Eq. (8.64). This equation cannot be
applied to a transitional flow, which is intermittently laminar and turbulent as is
common in many engineering applications. To account for the intermittent nature of
a transitional flow, RANS-equations require a conditioning as detailed below.

8.5.2 Intermittency Implementation in RANS
Following Eq.(8.51), we first re-arrange the velocity vector:

For a non-turbulent flow, the left-hand side of Eq. (8.66) becomes zero:

and for a fully turbulent flow, we have

Thus, Eqs. (8.69) and (8.70) can be summarized as:

with I = 1 for fully turbulent flow and I = 0 otherwise. To arrive at a conditioned
Navier-Stokes equation for implementation of intermittency function, it is easier to
modify first the Navier-Stokes equations by adding the continuity equation for
incompressible flow. This results in

Inserting the velocity from Eq. (8.71) into the (8.72), we receive:

Performing the multiplication, Eq. (8.73) is prepared for ensemble averaging:
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(8.74)

(8.75)

(8.76)

(8.77)

(8.78)

(8.79)

Carrying out the procedure of ensemble averaging, the following terms identically
disappear:

Utilizing the , we arrive at the Reynolds stress tensor:

With Eqs. (8.76) and the ensemble averaged (8.74), we obtain the conditioned
Reynolds equations for incompressible flow that describe non-turbulent, transitional,
and fully turbulent flows as well:

Rearranging Eq. (8.77) leads to: 

The turbulent shear stress associated with the intermittency function, , plays
a crucial role in affecting the solution of the Navier-Stokes equations. This is
particularly significant for calculating the wall friction and the heat transfer
coefficient distribution. Two quantities have to be accurately modeled. One is the
intermittency function , and the other is the Reynolds stress tensor with its
nine components. Inaccurate modeling of these two quantities leads to a
multiplicative error of their product . This error particularly affects the
accuracy of the total pressure losses, efficiencies, and heat transfer coefficient
calculations. Equation (8.78) is coordinate invariant and can be transformed to any
curvilinear coordinate system within an absolute frame of reference. Its component
in x1-direction is:

in x2-direction,



 8   Laminar Turbulent Transition 267

(8.80)

(8.81)

in x3-direction

The conditioning procedure discussed above and the subsequent decomposition lead
to a turbulent shear stress expression that contains turbulent and  non-turbulent terms.
Detailed flow measurements by Chavary and Tutu [25], however, clearly show that
the shear stress is carried completely by the turbulent region. In the case of the
conditioning process we derived above, the non-turbulent term is embedded in the
ensemble averaged terms, implying that the intermittent shear stress term  in
Eq.(8.76) is carried completely by the turbulent region. This exhibits a substantial
improvement in terms of formulating the RANS-equations for unsteady intermittent
flows.

Problems

Problem 8.1: Derive the Orr-Sommerfeld differential equation (8.20). Using the
boundary conditions (8.27), solve the Orr-Sommerfeld equation for a plane Poiseuille
flow.

Problem 8.2: Write a computer program for calculating the Blasius equation (laminar
flow). Add a subroutine for calculating the fully turbulent velocity profile using the
Prandtl 1/7th law (see Chapter 11). Add a subroutine for transition model and
compute the flow velocity profiles from laminar state to turbulent state.

Problem 8.3: (1) Using Matlab or Maple random data generator tool, generate a set
of random fluctuation over a period of 1 second with a frequency of 1kHz. The
fluctuation amplitude should be around 3 m/s. The two consecutive data points should
fluctuate around zero (positive, negative), so the mean of the entire fluctuating data 
is always zero. (2) Generate 50 events (or observation) of above data, arrange the data
randomly. (3) Using a sinusoidal velocity distribution generate a periodic velocity
distribution with a mean of 30 m/s, an amplitude of 10 m/s and a period of 1second. 
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9 Turbulent Flow, Modeling

9.1 Fundamentals of Turbulent Flows 

The preceding Chapter dealt with stability of laminar flows, their perturbation and
transition to the turbulent state. In discussing the transition process, we prepared the
essentials for better understanding the basic  physics of the more complex turbulent
flow, which is still an unresolved and extremely challenging problem in fluid
mechanics.

Using the intermittency function as a parameter to describe the flow state under
consideration, two distinct flow regimes were distinguished in Chapter 8: (a) laminar
flow regime characterized by the absence of irregular or random fluctuations with 
 = 0 and, (b) turbulent flow state characterized by  = 1 with irregularities expressed

in terms of random variations in time and space. While the randomness is an inherent
quality of a turbulent flow, it does not completely define the turbulent flow. In many
engineering applications, however, turbulent flow can be described statistically by
determining averaged values for flow quantities. Descriptions of averaged velocity,
kinetic energy, and Reynolds stress tensor (see Chapter 8) distributions of wakes, free
jets and jet boundaries are a few examples from free turbulent flow where the effect
of molecular viscosity compared to the turbulence viscosity is neglected. For all
engineering flow applications such as flows through pipes, turbines and compressors,
blade channels or flow around aircraft wings, averaged quantities are described
utilizing different turbulence models that relate the Reynolds stress tensor to the mean
flow quantities. In these cases, we deal with the wall turbulence which is generated
by the presence of a solid wall. In contrast to the free turbulence, the wall turbulence
is subjected to both molecular and turbulence viscosity associated with energy
dissipation.

Taking into consideration the complexity of turbulent flows encountered in
engineering and a multitude of definitions found in literature, among others, by G.I.
Taylor [1], von Kármán [2], Hinze [3] and Rotta [4], we term a flow regime turbulent
that has the following characteristics:

1. Turbulent flows are generally irregular and their properties continuously undergo 
stochastic spatial and temporal changes. As a result,  no reproducible turbulence
data with stochastic distribution can be obtained.

2. Despite its stochastic nature, using statistical tools, time or ensemble averaged 
values can be constructed that are perfectly reproducible.

3. Turbulent flows are rotational motions (vorticity ) with a wide variety
of vortices with different sizes and vorticities.

4. Turbulent flows are generally unsteady and three-dimensional.

The above characteristics are implicitly indicative of the following features that are
inherent in turbulence:

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 271–326. 
© Springer Berlin Heidelberg 2010
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Fig. 9.1: Schematics of an instantaneous energy cascade in
turbulent boundary layer. The arrows indicate energy
extraction, transfer and dissipation.

a) There is no analytical exact solution for any type of turbulent flows, even for the
simplest one. In the case of free turbulent flows, as we will see in the following,
only approximate solutions that are based on an inductive approach are found. 

b) The inherent three-dimensional unsteady nature of turbulence associated with the
velocity fluctuations is responsible for an intense mixing of fluid particles causing
an enhanced momentum, and energy transfer between the fluid particles. This
process is called diffusion. The enhanced diffusivity is due to the existence of
Reynolds stress which is, in general, several order of magnitudes larger than the
viscous stresses. Exceptions are flows very close to the wall, where the viscosity
has a predominant effect.

c) The high level of spatial and temporal fluctuations of velocity, pressure, and
temperature causes fluctuating vortices, also called eddies, of different sizes. The
eddies convect, rotate, stretch, decompose in smaller eddies, overlap and coalesce.
as Fig. 9.1 schematically shows. Figure 9.1 schematically summarizes the energy
cascade process taking place within a turbulent boundary layer. 

As seen, a flat plate is exposed to a constant, steady, non-turbulent flow 
that is separated from the rotational boundary layer ( ) by a sharp
interface. The averaged boundary layer thickness is shown as a dashed curve.
Large eddies with a size l continuously extract energy from the main flow and
transfers it to smaller eddies. The process of energy cascade leads to the smallest
eddies whose energy dissipates as heat. The specific issues dealing with
Kolmogorov’s hypothesis, energy cascade, eddy structure, length, and time scale,
are treated in more detail in the following sections.

d) During the cascade process, the size of these eddies change from large to small.
In a boundary layer flow, as shown in Fig. 9.1, the size of the largest eddy has the
same order of magnitude as the local boundary layer thickness . It receives its
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energy from the mean flow. The larger eddies continuously transfer their kinetic
energy to the smaller eddies. Once the eddy size is reduced to a minimum, its
kinetic energy is dissipated by the viscous diffusion. A state of universal
equilibrium is reached when the rate of energy received from larger eddies is
nearly equal to the rate of energy of when the smallest eddies dissipate into heat.
The process of transferring energy from the largest eddy to the smallest is called
energy cascade process, introduced by Richardson [5]. While the statistics1 of
larger eddies change, Kolmogorov [6] introduced a hypothesis that enables
quantifying the scale of the smallest eddy on the basis of isotropy of those eddies.

e) Turbulent flow occurs at high Reynolds numbers. For engineering applications
where a solid wall is present (boundary layer, wall turbulence), the order of
magnitude for the Re-number to become fully turbulent depends on the pressure
gradient along the surface, as well as the perturbation of the boundary layer by any
incoming periodic unsteady disturbances such as wake impingements.

Note that in the course of the above introduction we utilized the rather vague term
“eddy”, which is used in the literature in context of turbulence research. In contrast
to the precisely defined term “vortex” with a descriptive circulation  and its direct
relation to the vorticity vector , the term eddy lacks a precise definition and is
loosely used for any individual turbulent structure with some length-scale.

9.1.1 Type of Turbulence
A turbulent flow is called homogeneous, if its statistical quantities (or short: statistics)
are independent of the spatial position vector . This requires that the mean velocity 
field described by Eq.(8.51), , must also be independent of . If we assume
a constant pressure flow field ( ) and neglect the contribution of the body
forces (gravitational, electromagnetic, electrostatic), the Reynolds equation (8.63) will
reduce to  because all spatial derivatives disappear. As a consequence, the
resulting velocity field will be independent of time , meaning that the
velocity   and the flow is statistically stationary.

A turbulent flow is called isotropic if there is no preference for any specific
direction, i.e. . In reality, these averages exhibit
certain directional dependency, making the isotropy a hypothetical case. Despite this
fact, the isotropic turbulence is significant for fundamental study of turbulent flow.
From experimental point of view, flow regions can be found, where the fine structure
of actual nonisotropic turbulent flows can be approximated as isotropic. This
approximation associated with the major simplifications makes the complex turbulent
flow more amenable to fundamental theoretical treatment than any other type of
turbulent flow.

1 The averages of a random quantity are called statistics. This includes mean and the rms
(root-mean-square) of that quantity.   
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Fig. 9.2: Single- and two-point correlations.

(9.1)

(9.2)

9.1.2 Correlations, Length and Time Scales
As we saw in Chapter 8, the Reynolds-averaging procedure has created an apparent
stress tensor with nine components from which, for symmetric
reasons, six are distinct. Thus, the creation of this tensor has added six more 
unknowns to Navier-Stokes equations. In order to find additional equations to close
the equation set that consists of continuity, momentum, and energy balances, we need
to construct additional equations. This is done by multiplying the ith component  of
the Navier-Stokes equation with the jth one. Thereby we expect to find turbulence
models that establish relations between the new equations and the set of equations
mentioned above. It should be pointed out that this purely mathematical manipulation
does not represent any new conservation law with a physical background. However,
it helps in providing additional tools that are necessary for turbulence modeling. In
this context, correlations are indispensable tools for providing additional insight into
turbulence. As we know from Navier-Stokes equations, the second order tensor
is the mean product of the fluctuation components at a single point in space; it is
called a single point correlation . It does not give any further information about the
turbulence structure, such as the length and time scale of eddies. We obtain this
information from a two-point correlation. It is a second order tensor of the mean
product of fluctuation components at two different points in space and time, namely 
and . For a purely spatial correlation with  = 0, the same fluctuating
quantity is measured at two different spatial positions x and x + r. Figure 9.2 shows
the position of the fluctuation components for (a) single point correlation and several
two-point correlations. For a general two-point correlation, we construct the second
order tensor 

with  and  as the spatial and temporal distance between the two points. For
r  or , the fluctuation components  and are independent from each

other, leading to .  For a stationary or homogeneous process, the correlation
tensor is symmetric and we may write:
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(9.3)

(9.4)

(9.5)

(9.6)

(9.7)

(9.8)

(9.9)

(9.10)

Normalizing the correlation Eq. (9.1), we obtain the dimensionless correlation, also
called correlation coefficient as:

For a stationary or homogeneous field, the tensor is independent of t and
x. We can construct an auto-correlation when the fluctuation components are
measured at the same position but at different times and have the same direction (i =
j).  It is defined as 

Note that by setting i = j, we do not sum over the indices i and j. As an example, the
auto-correlation for the fluctuation component , is written as

with the fluctuation at the same spatial position but at two different times t and t+ .
On the  other hand, the spatial correlation is obtained by setting in Eq. (9.1) 
 = 0.

The corresponding correlation coefficient is

For the component in x1-direction, Eq. (9.6) is simplified as

In Eq.(9.8), the reference position vector x1 can be set , resulting in

The right-hand side of (9.9) is called the covariance of the -component. The
correlation coefficient then is obtained by setting in Eq.(9.7) i = j
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Fig. 9.3: Correlation coefficients with their osculating parabolas.

(9.14)

In most turbulence related literature, the term  is replaced by , thus, the

modified coefficient is:

In a similar manner, the coefficients in r2 and r3 may be constructed

The correlation functions are used to determine the length and time scales. The
general definition of the integral length scale is

Likewise, the time scale is defined as 

For the special cases discussed above, the length scale is schematically plotted in Fig.
9.3 for longitudinal , as well as lateral correlation
coefficients. In both cases, the length scale is simply the area underneath the
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Fig. 9.4: Explaining Taylor “frozen” turbulence

coefficient curves. Using the hot wire anemometry for measuring the velocity
fluctuation, it is necessary to use two parallel wires separated either by r1 in a
longitudinal or by r2 in a lateral direction. In the longitudinal case, Fig. 9.3(a), the
second wire is in velocity and thermal wakes of the first wire located upstream of the
second wire. This configuration leads to an erroneous longitudinal length scale. The
lateral length scale can be measured more accurately using the two hot wire probes
as arranged in Fig. 9.3(b).  Re-arranging equation (9.13), we find the longitudinal
length scale

and the lateral length scale

Although measuring the lateral length scale delivers a more accurate result than the
measured longitudinal one, from an experimental point of view, both are not practical.
This following hypothesis offers a practical alternative.

Taylor Hypothesis: An alternative method to estimate the length scale is the
utilization of a frozen turbulence hypothesis proposed by G.I. Taylor [1]. Considering
a large scale eddy with sufficiently high energy content, Taylor proposed an
hypothesis that the energy transport contribution of small size eddies that are carried
by a large scale eddy, as shown in Fig. 9.4, compared with the one produced by a
larger eddy, is negligibly small. In such a situation, the transport of a turbulence field
past a fixed point is due to the larger energy containing eddies. It states that “in
certain circumstances, turbulence can be considered as “frozen” as it passes by a
sensor”.

This statement is illustrated in Fig. 9.4. It shows a large eddy moving with an
averaged constant velocity of  in the x1-direction, carrying a number of smaller
eddies with fluctuating velocity . The hypothesis is considered valid only if the
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(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

condition   holds. Despite this constraint, the Taylor hypothesis delivers a
reasonable approximation for the variations of fluctuating eddies that are carried
along by larger scale eddies. Taylor established his hypothesis using a spatial
(Eulerian) description rather than a material (Lagranian) one (see Chapter 3). The
hypothesis relates the spatial variation to the temporal variation measured at a single
point.  From an experimental point of view, this approach exhibits a substantial
reduction in efforts to determine the turbulence length and time scales.
Mathematically speaking, the Taylor hypothesis implies that the substantial change
of the velocity must vanish. Utilizing the Taylor’s assumption of
constant mean velocity, we have

Equation (9.17) is the mathematical formulation of the Taylor hypothesis. The -
component of (9.17) reads

Approximating the differentials by differences leads to:

Equation (9.19) implies that the spatial separation shown in Fig. 9.3(a) can be
expressed in terms of a temporal separation. As seen, Eq. (9.17) is the left-hand side
of the Navier-Stokes equation, with the right side .
This hypothesis is only valid if we assume that . As a
consequence of this assumption, the pressure fluctuation , which has the order of 
 , can be neglected. With  in Eq. (9.19), we obtain

Thus, the auto-correlation coefficient (9.11) becomes

and the corresponding integral time scale follows from
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(9.22)

(9.23)

(9.24)

(9.25)

(9.26)

(9.27)

thus, the length scale results from

Shifting the time origin results in , meaning that Eq. (9.21) is an even
function. Furthermore, Eq.(9.22) has the property that at  and 

 for .
 An alternative method  to determine the time scale of small dissipating eddies

uses Eq. (9.21). For this purpose we first expand the corresponding correlation
coefficient (9.21) about  with respect to time, and truncate beyond the quadratic
term; as a result, we arrive at

This crude approximation allows constructing an osculating parabola with the same
vertex value and the derivative at  as the exact -curve. The parabola is
described by

The intersection of this parabola with the -axis delivers the Taylor time scale ,
from which the Taylor micro length scale can be inferred. Equating (9.25) and (9.24)
gives the Taylor micro time scale

and the Taylor micro length scale 

The two scales are shown in Fig. 9.5 with the correlation coefficients for (a) spatial
and (b) temporal separations. It also includes the osculating parabola with the length
scale and time scale intersects.  The Taylor micro length scale can be found directly
by using a similar procedure that leads to Eq. (9.26). In this case, we expand the
correlation coefficient (9.11) about  and truncate beyond the quadratic term. 
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(9.30)

We may then approximate the result by the following parabola

and arrive directly at the Taylor length scale

It should be pointed out that the Taylor micro length scale is only an approximate
length scale. It does not represent the length scale of large energy containing eddies
or the smallest dissipating eddies. However, for a homogeneous isotropic turbulence,
 provides a useful tool to estimate the turbulence dissipation (Section 9.2.1.4, Eq. 

(9.71) For this purpose, we first use the following length scale definition 

and then expand the dissipation equation defined in Section 9.2.1, Eq. (9.71) for
isotropic turbulence and introduce (9.30). As a result, we find a relationship between
the dissipation and the length scale2

2 Detailed derivations of (9.31) is found in Hinze [3], p.179 and Rotta [4], p. 80. 
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(9.31)

(9.32)

(9.33)

Using dimensional analysis, Taylor established the following relationship for 
dissipation

Another important aspect is that length, time, and velocity scales describe the
dissipative character of Kolmogorov’s eddies as a result of energy cascading, as
shown in Fig. 9.1. Using dimensional analysis, Kolmogorov arrived at his length
scale ( ), time scale ( ) and the velocity scale ( ) scales:

which we will discuss in some details in the following section. 

9.1.3 Spectral Representation of Turbulent Flows
As Fig. 9.1 shows, the scales of turbulence eddies distributed over a range of scales 
extend from the largest scales which interact with the mean flow, from which they
extract their energy, to the smallest scales where their energy dissipates as heat.
Utilizing a transformation from  physical space into a wavenumber space, the energy
of eddies can be expressed in terms of a spectral distribution represented by the
function , which is the energy of eddies from k to k+dk with k as the
wavenumber. Since the wavenumber is expressed in terms of the wave length

, the dimension of wavenumber is, L-1 in M, L, t dimension systems. If we 
assume that the eddy’s length scale l is proportional to the wave length , then the
wavenumber can be thought of as proportional to the inverse of an eddy's length l,
i.e . Figure 9.6 exhibits the energy spectral distribution E(k) as a function of
the wavenumber k. This energy spectrum corresponds to the formation and the scales
of eddies within a boundary layer shown in Fig. 9.1. Kolmogorov introduced three
distinct length scale/wavenumber regions that are marked in Fig. 9.6. 

The first region is occupied by large eddies that contain most of the energy. These
eddies interact with the mean flow from which they extract their energy (downward
arrow) and transfer it to smaller scale eddies. The large eddies affected by the flow
boundary conditions are anisotropic. According to Kolmogorov, they loose their
directional preference in the energy cascade process by which energy is transferred
to successively smaller and smaller eddies.  The second region is the inertial
subrange (Kolmogorov). 



9   Turbulent Flow, Modeling282

E(k)

k

Energy contating
large eddies

l

k  = 1/ l

Inertial 
subrange

Viscous dissipation

l

l

η

Production

Transfer

Dissipation

E(k) = cons. ε κ2/3 -5/3

k = 1/de
Fig. 9.6: Schematic of Kolmogorov energy spectrum as a
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(9.34)

In this region, a transport of energy takes place from the large eddies to the eddies
that are in dissipation range (horizontal arrow). Since in this subrange, the energy
transfer is accomplished by inertial forces, it is called the inertial subrange.  As shown
in Fig. 9.6, the existence of this region requires that the Reynolds number must be
high to establish a fully turbulent flow. The third region is the dissipation range where
the eddies are small and isotropic and their kinetic energy dissipates as heat. The
scales of the eddies are described by the Kolmogorov scales, Eq. (9.33). 

Kolmogorov Hypotheses: Utilizing the above scale decomposition, Kolmogorov
established his universal equilibrium theory based on two similarity hypotheses for
turbulent flows. The first hypothesis states that for a high Reynolds number turbulent
flow, the small-scale turbulent motions are isotropic and independent of the detailed
structure of large scale eddies. Furthermore, there is a range of high wavenumbers
where the turbulence is statistically in equilibrium and uniquely determined by the
energy dissipation  and the kinematic viscosity .With this
hypothesis and in conjunction with dimensional reasoning, Kolmogorov arrived at
length ( ), time ( ) and the velocity ( ) scales which have already been presented in
Eq. (9.33). Considering the Kolmogorov’s length and velocity scales, the
corresponding Kolmogorov’s equilibrium Reynolds number is

To define the range of the equilibrium, we first introduce a dissipation wavenumber
to emphasize the strong effects of viscosity 
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(9.35)

(9.36)

(9.37)

(9.38)

(9.39)

(9.40)

and the wavenumber of energy containing eddies with the length scale l that may be
interpreted as the average size of the energy containing eddies

The equilibrium range contains wavenumbers for which k >> ke with ke << kd. Thus, 
the equilibrium wavenumber must satisfy the condition

The range defined by the above condition is exactly the Kolmogorov inertial subrange
within which the turbulence is independent of the energy containing eddies and of the
range of strong dissipation. Utilizing the dimensional analysis, we find for the energy
spectrum the following relationship

with the function  to be determined.
The second hypothesis states that when the Reynolds number is large enough for

the energy containing eddies, there exists a subrange of wavenumbers in which the
condition (9.37) is satisfied, then the energy spectrum is independent of  and is 
determined by dissipation parameter  only. In this hypothesis, within the inertial
subrange and by virtue of dimensional analysis, where the Function  becomes 

with from (9.33), Kolmogorov found the final equation for energy

spectrum  within the inertial subrange as

with  as the universal Kolmogorov’s constant shown in Fig. 9.6. Using
tidal waves for measuring the spectrum, Grant et al. [7] found the values for

 and . Equation (9.40) is called the Kolmogorov
spectrum, which is based on Kolmogorov’s second hypothesis. Onsager [8] and
Weizsäcker [9] arrived at the same equation independent of Kolmogorov and each
other.
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(9.41)

(9.42)

(9.43)

(9.44)

(9.45)

(9.46)

9.1.4 Spectral Tensor, Energy Spectral Function
As the energy spectrum schematically plotted in Fig. 9.6 reveals, in an energy 
cascade process, eddies with different length, time, and velocity scales interact with
each other. Energy is continuously transferred from larger eddies to smaller and
smaller ones reaching the dissipation as the final stage of the cascade process. To
account for different scales in a more quantitative way, the Fourier analysis, as an
appropriate tool, is utilized. To directly apply the Fourier analysis to the issues we
discussed in the preceding section, we consider the two-point velocity correlation Eq.
(9.1). To start with the simplest case, we assume that (a) the velocity field is spatially
homogeneous, meaning that the two-point correlation is independent of the position
vector  and, (b) there is no temporal separation between the two points
measurement, then Eq. (9.1) reduces to

We can now construct a second order velocity spectral tensor in
terms of wavenumber spectrum as the Fourier transform of the two point correlation
(9.41)

The inverse Transform is found 

with

where  is the wavenumber vector which is related to the wave length by
. Since we transformed the physical space into the wavenumber space, 

the integral boundaries in (9.42) and (9.43) constitute the volume in the wavenumber
space. Furthermore, since the correlation tensor is real, the velocity spectrum
tensor  is, in general, of a complex nature. It also has the symmetry property 

and satisfies the orthogonality condition
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(9.48)
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(9.49)

(9.50)

One-Dimensional Spectral Function: Of practical interest is the one-dimensional
version of Eq. (9.42), where the physical component in r1 and the wavenumber
component in k1 are considered; the one-dimensional case of Eq. (9.42) reads  

The same result is obtained by integrating Eq. (9.42) over the other two wavenumber
components

Of particular practical interest is a spectral function which depends only on the
magnitude of the wavenumber . It can be calculated as a surface integral over
the surface of a sphere with the radius k in the wavenumber space as shown in
Fig. 9.7. 

with  as an infinitesimal solid angle. Equation (9.49) allows one to compute the
energy spectral function as the half trace of (9.49)
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(9.51)

(9.52)

(9.53)

(9.54)

with  as the specific kinetic energy of all wavenumbers with the magnitude

. For isotropic turbulence, ,
Equation (9.50) is integrated and reduced to

with  as a scalar quantity. Without presenting the mathematical proof, the
spectral tensor  can be reconstructed using Eq. (9.51) 

with  as the unit tensor and  as the second order
wavenumber tensor. Thus, Eq. (9.52) can be rewritten as

The integration of the energy spectral function  over the entire wavenumber
space leads to the total turbulent kinetic energy

9.2 Averaging Fundamental Equations of Turbulent Flow

In this section, we present the fundamental equations that describe turbulent flows.
For the sake of completeness, we also re-present some of those equations that were
already presented in the  preceding Chapter.

Turbulent flow is characterized by random fluctuations in velocity, pressure,
temperature, density, and etc. Any turbulent quantity can be decomposed in a mean
and fluctuating part. Experimental observations revealed that average values with
respect to time and space exist because distinct flow patterns are repeated regularly
in time and space. In Chapter 8, an averaging procedure applied to a single quantity
leading to Eqs. (8.57) and (8.58) was given. Before preceding further, we apply the
averaging formalism to two arbitrary quantities Q1 and Q2 with  and

. If we deal with a statistically steady flow, re-applying the averaging
procedure results in:
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(9.55)

(9.56)

(9.57)

(9.58)

9.2.1 Averaging Conservation Equations
In this section, we apply the averaging procedure (9.55) to the conservation equations
of continuity, motion, mechanical energy, and thermal energy presented in Chapter 4.

9.2.1.1 Averaging the Continuity Equation

Averaging the continuity equation reads:

with the index notation

9.2.1.2 Averaging the Navier-Stokes Equation

First, we decompose the velocity vector in the Navier-Stokes equation and find:
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(9.59)

(9.60)

(9.61)

(9.62)

(9.63)

then we apply the averaging rules (9.55) to Eq. (9.58) and arrive at the Reynolds
averaged Navier Stokes equation (8.63):

The index notation gives:

9.2.1.3 Averaging the Mechanical Energy Equation

The mechanical energy equation for a turbulent flow is obtained using Eq. (4.71),
which includes the compressibility term ( ). Dividing the involved flow 
quantities into the mean and the fluctuating parts and applying the averaging
procedure outlined in Section 9.2, results in a complex equation. To reduce the degree
of complexity, we consider an incompressible flow with the mechanical energy
equation given by Eq. (4.72) and also below:

Using the identity  for an incompressible flow and its index

notation  , we find the index notation of Eq. (9.61):

We introduce the following decompositions:

and substitute the quantities in Eq. (9.61) by (9.63) and average the results, we find:
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(9.64)

(9.65)

(9.66)

Equation (9.64)  is the mechanical energy equation for turbulent flow, where the
energy of the Reynolds stress tensor appears on the right-hand side. In deriving Eq. 
(9.64), we considered the gravitation force as the only field force with the component
in the x3-direction. If other field forces such as electromagnetic or electrostatic  forces
are present, they are added to Eq.(9.64) in the same way as the above gravitational
work.

9.2.1.4 Averaging the Thermal Energy Equation

A thermal energy equation can be expressed in terms of specific internal energy u or
specific static enthalpy h. In both cases, the specific internal energy and specific static
enthalpy can be expressed in terms of temperature  and . Both
forms are fully equivalent and one can be converted into the other by ,
which is the defining equation for the specific static enthalpy. For averaging the
thermal energy equation in terms of specific static enthalpy which we replace by the
static temperature, we resort to Eq. (4.94)

with the friction stress tensor T from Eq. (4.36):

Decomposing, in Eq. (9.65), the temperature and pressure  T and p as well as the
friction and deformation tensors T and D while neglecting the density fluctuation, we
find:
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(9.67)

(9.68)

(9.69)

(9.70)

(9.71)

(9.72)

Averaging the entire Eq. (9.67) and considering the rule for averaging the spatial and
substantial derivatives of tensor valued functions listed in Eq. (9.55),we arrive at:

Further expansion of Eq. (9.68) and considering (9.66) leads to:

Following Eqs. (4.72)-(4.74), the viscous dissipation of the mean flow is: 

Correspondingly, the turbulent dissipation reads 

Thus, the total dissipation reads 

In Eqs. (9.70), (9.71) and (9.72) and are the specific dissipations (dissipation per
unit of mass)  of the mean flow and the turbulent flow, respectively. The latter is also
called the turbulent dissipation. Following Eq. (4.74), the index notation of Eq. (9.71)
reads:
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(9.73)

(9.74)

(9.75)

(9.76)

(9.77)

(9.78)

and its expansion is: 

Generally, the total dissipation expresses the conversion of mechanical energy into
heat and causes the system to heat up. Comparing the specific dissipation of the mean
flow  with the turbulent flow  shows that the order of magnitude of  by far
surmounts the one of . The reason is that, in spite of the fact that , the
changes of the fluctuating velocity is much larger than changes of the mean

flow velocity . This circumstance is an inherent characteristic
of all turbulent flows and allows the mean flow dissipation to drop in all turbulence
equations. Thus, with Eq. (9.69) and (9.70), Eq. (9.68) becomes:

9.2.1.5 Averaging the Total Enthalpy Equation

The quantities in total enthalpy Eq. (4.95), also given below,

with T as the temperature and  as the friction stress tensor.
Before further treating the total enthalpy equation, we re-arrange the term  as:

Since the friction tensor T is symmetric and the rotation tensor  is antisymmetric,
their double dot product identically disappears leading to
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(9.79)

(9.80)

(9.81)

(9.82)

(9.83)

The friction tensor T in Eqs (9.76), (9.77) and (9.78) includes  , which is nonzero
for compressible flows. In the context of turbulent flow treatment, its contribution is
insignificant and brings only additional complexity to a topic which is complex
anyway. Setting reduces Eq. (9.78)  to

Implementing Eq.(9.79) into  (9.76) , we find:

Thus, Eq. (9.80) is identical with 

Decomposing the quantities in Eq. (9.81) gives:

Comparing the order of magnitude of the fluctuation kinetic energy with the one of
the mean flow shows that  . This is true even for flow situations with 
relatively high turbulence intensities of 10% and above.  This order of magnitude
comparison can directly be related to the square of turbulence intensity defined as

. For a large turbulence intensity of , we obtain a ratio of 
. This comparison allows neglecting the fluctuation kinetic energy.

After averaging Eq. (9.82), we find:

For steady case and neglecting the gravitational work, we obtain:
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(9.84)

(9.85)

(9.86)

(9.87)

(9.88)

In Eq. (9.84) we replace the averaged static temperature with static enthalpy, add and
subtract the kinetic energy to introduce the total enthalpy, and introduce the Prandtl
number  . Furthermore, for the sake of practicability, we modify the third
term in Eq. (9.84) by adding a zero :

as a result, we find:

Equation (9.86) written in Cartesian index notation is: 

Combining the second and the sixth term on the right hand side of Eq. (9.87) results
in a more compact version:
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(9.89)

(9.90)

(9.91)

To apply Eq.(9.88) to boundary layer problems discussed in Chapter 11, it is more
appropriate to deal with the correlation   rather than . This
requires a modification of (9.88) by introducing the following identity for
incompressible flows 

With (9.89), Eq.(9.88) becomes 

Equation (9.88) (or (9.90)) is the complete equation of the total enthalpy  for steady
incompressible three-dimensional flows. Summing over the range of indices, Eq.
(9.88) can easily be expanded. The expanded version contains several terms that are
insignificant for a two-dimensional flow and may be deleted altogether as shown in
Chapter 11, when dealing with the boundary layer theory. 

9.2.1.6 Quantities Resulting from Averaging to be Modeled

In addition to the viscous and turbulent dissipation terms, Eq. (9.86) includes a new

correlation  and a transport term  as a result of  averaging  the

enthalpy equation. As a result of the averaging procedure, the Reynolds stress tensor 
was created in Eq. (9.59) with nine components from which six are distinct:
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(9.92)

(9.93)

with  and . Considering the molecular friction tensor Eq.
(4.73) for an incompressible fluid, the total friction tensor of a turbulent flow 

consists of the molecular friction stress tensor  and the turbulent stress tensor :

Experimental results show that close to a solid wall, the order of magnitude of the
Reynolds stress is comparable with the molecular stress. In free turbulent flow cases
such as wake flow, jet flow and jet boundary, where the flow is not affected  by a
solid wall, the order of magnitude of  can be much higher than  such that the
latter can be neglected.

The elements of the tensor in Eqs. (9.59) or (9.60) have added six more
unknowns to the Navier-Stokes equation (8.62). With three velocity components, the
pressure and six Reynolds stress terms, we have totally ten unknowns with only four
differential equations resulting from Eq. (9.59) together with the continuity equation. 
Additional unknowns such as and static temperature , are added to
the system of differential equations for solving the energy equation. In order to find
a solution, one has to provide additional equations that relate the Reynolds stress
tensor (9.60) with the quantities of the main flow. Likewise, empirical correlations
need to be found that relate and  to the quantities of the main flow.
Such correlations can be constructed by mathematically manipulating the equations
of motion and by establishing empirical models.

These additional equations are called closure equations. To obtain these equations,
in the following we perform certain time consuming, yet mathematically simple
operations to drive new equations from the already existing ones. As we will see,
these new equations contain additional unknowns that need to be determined. It
should be pointed out that these new equations do not have any new physical
background and are just simple mathematical manipulations. The purpose of these 
manipulations is to find some empirical correlations to close our new system of
equations. To easily follow the sequence of operations that generates the new
equation, we introduce a new operator , which we call the Navier-Stokes
operator, where the velocity is assumed to be a function of time and space. This
assumption is valid for statistically stationary/non-stationary, with a constant time
dependent mean and stochastic fluctuations. Resorting to Eq. (4.43), we  define

With N as the operator and V the tensor valued argument, upon which the operator
acts and builds the Navier-Stokes equation. The argument may be a vector such as  

 or a component of a vector such as Vi. If the argument is the component
Vi, then  describes the ith component of the Navier-Stokes equation. In case the
vector is decomposed into a mean and a fluctuation part, then the argument of the
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(9.94)

(9.95)

(9.96)

(9.97)

operator is replaced by  leading to . If the entire Navier-
Stokes equation is averaged, we replace the operator argument by . Before
discussing different turbulence models, we  present equations of turbulent kinetic
energy and its dissipation as the two major closure equations. Similarly, we may write
Eq. (9.93) in index form

Equation (9.94) describes the ith component of the Navier-stokes equation. We may
also obtain and . In the course of the following derivations,
we encounter cases where second order tensors such as, , the jth

derivative of the i th component such as, , or a second order tensor

product such as, , are necessary to close the equation system.

9.2.2 Equation of Turbulence Kinetic Energy
To arrive at the equation of turbulence kinetic energy for an incompressible turbulent
flow, we first subtract Eq.(9.59) from Eq. (9.58):

and scalarly multiply Eq. (9.95) with :

and rearrange the Reynolds stress tensor   in Eq. (9.96) by subtracting the
continuity equation:

Inserting Eq.(9.97) into (9.96) results in:
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(9.98)

(9.99)

(9.100)

(9.101)

(9.102)

(9.103)

(9.104)

(9.105)

Now we average Eq. (9.98) by considering the following identities for the second
term on the left-hand-side:

Using the index notation, it can be shown that the third term on the left-hand-side of
Eq. (9.98) is:

Since the gradient of the mean velocity  is the sum of the deformation and rotation
tensor , Eq. (9.100) can be modified as:

Since the product , Eq. (9.101) can be modified as:

Now we define the turbulent kinetic energy as:

and insert into Eq. (9.98) and average:

The forth term on the left-hand-side can be written as
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(9.106)

(9.107)

(9.108)

(9.109)

(9.110)

(9.111)

Considering Eq. (9.105), the equation of turbulence kinetic energy (9.104) becomes:

A simple rearrangement of Eq. (9.106) yields:

We add to the argument in the parenthesis on the right-hand -side of Eq. (9.107) the
following  zeros: 

and obtain:

Rearranging the terms in the parentheses on the right-hand-side of Eq. (9.107) results
in the final equation of turbulence kinetic energy for incompressible flow in a
coordinate invariant form:

The Cartesian index notation is:

Equation (9.110) with its index notation (9.111) is the balance equation of the
turbulence kinetic energy per unit of mass. Before interpreting the individual terms
in Eq. (9.111), we first modify the last term on the right-hand side. The modification
is aimed at providing a detailed mathematical explanation that describes the
dissipative nature of this term. We use the following identity         
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(9.112)

(9.113)

(9.114)

(9.115)

(9.116)

with  as the deformation tensor of the turbulence fluctuation and its components

. The first term on the right-hand side of Eq. (9.112) written

in index notation:

with in Eq. (9.113) as a consequence of the 

incompressibility requirement. The second  term on the right-hand side of Eq. (9.112)
written in index notation is:

with the velocity gradient in that can be set as  and since ,
Eq. (9.114) is rearranged as:

Equation (9.115) exhibits the complete turbulence dissipation as found, among others,
in Hinze [3] and Rotta [4]. The above definition of dissipation differs from the
definition of the dissipation we will use in conjunction with the modeling, which is
defined as
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(9.117)

(9.118)

(9.119)

(9.120)

(9.121)

Thus, Eq. (9.116) is expressed in terms of Eq. (9.115) through 

Bradshaw and Pitt [10] have shown that for cases with strong velocity gradients such
as shock waves, the maximum difference is about 2% and is for other flow
situations negligibly small.  Returning to Eq.(9.112), the sum of (9.113) and (9.114)
yields:

Expressing the left-hand side of (9.118) in index notation, we get

We replace in Eq. (9.110) the last term on the right-hand side by Eq. (9.112) and
obtain:

The index notation of Eq. (9.120) is: 

Equation (9.121) expresses the same physical content as Eq. (9.111), thus, it does not
represent a new physical relationship that can be used to reduce the number of
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(9.122)

(9.123)

(9.124)

unknowns. Using some mathematical  manipulations, we merely decomposed the last
term of Eq. (9.111) to explicitly introduce the dissipation process into the turbulence
kinetic energy balance.

Interpretation of Individual Terms in Eq. (9.121): The two terms on the left-hand
side of Eq. (9.120) and (9.121) describe the substantial change of the turbulence
kinetic energy per unit of mass consisting of the local and convective changes of the
kinetic energy . The first term on the right-hand side is the energy transferred from
the mean flow through the turbulent shear stress. This term is also called the
production of turbulence energy. This is explicitly expressed in terms of the double
scalar product of the mean flow deformation tensor  and the second order Reynolds
stress tensor . The second term is the spatial change of the work by the total
pressure of the fluctuating  motion. It exhibits the convective diffusion by  turbulence 
of the total turbulence energy. The third term on the right-hand side is the spatial
change of the specific work (work per unit mass) by the viscous shear stress of the
turbulent motion. The last term expresses the viscous dissipation by the turbulent
motion.

Introducing the Dissipation: There are a variety of alternative forms for turbulence
kinetic energy. The following alternative form is used for the purpose of turbulence
modeling. We further re-arrange the first term on the right-hand side of  Eq. (9.119):

The second term within the first parentheses of Eq. (9.122) is the spatial change of the
kinetic energy

We differentiate the expression in the first parentheses of Eq. (9.123) with respect to
xi and obtain:
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(9.125)

(9.126)

(9.127)

(9.128)

Because of the continuity requirement for an incompressible flow, the second term
in the first parenthesis of (9.124) identically vanishes. Moreover, the first terms
within the first parenthesis and the second parenthesis cancel each other out  reducing
Eq. (9.124) to:

With Eqs. (9.125) and (9.116), Eq. (9.111)  reads:

Equation (9.126) establishes a relationship between the substantial change of the
turbulence kinetic energy and its dissipation. In Eq. (9.126),  can be replaced by the
complete dissipation , leading to:

9.2.3 Equation of Dissipation of Kinetic Energy
As we will see later in turbulence modeling, besides the equations of continuity,
motion, and energy, the equation of dissipation is also used. To arrive at this equation,
we write Eq. (9.95) in index notation 

We differentiate Eq. (9.128) with respect to  and scalarly multiply the result with

. After averaging, we arrive at the following exact dissipation equation by

Launder et al. [11] 
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(9.129)

(9.130)

Equation (9.129) exhibits an exact derivation of the dissipation equation and is more
complicated than Eq. (9.126) for the turbulence kinetic energy. For modeling
purposes, an empirical relation proposed by Launder and Spalding[12] is used as the
standard model equation, which we present in the following section.  

9.3 Turbulence Modeling

Equation (9.59) indicates that in order to obtain solutions for the Reynolds averaged
Navier-Stokes equations (RANS), it is necessary to provide further information about
the Reynolds stress Tensor which has generally 9 components from
which six are distinct. Many studies investigated the possibilities to establish a
relationship between  and the mean velocity field. This approach is
called turbulence modeling. Tremendous amount of papers published in the last three
decades show that none of the existing turbulence models can be universally applied
to arbitrary types of turbulent flows. Very recent direct Navier-Stokes simulations
(DNS) performed successfully for different flow situations exhibit a major
breakthrough, making the turbulence modeling and its use superfluous.  However, the
computational effort to perform DNS makes it, at least for the time being, not
attractive. This situation certainly will change in the near future. Until then, one has
to work with several turbulence models, each of which is appropriate for certain types
of flows. In the context of this Chapter, we intend to make students familiar with the
most representative models that are being used. In the following, we discuss models
that are based on turbulent-viscosity models. Analogous to the Stokes material
equation, this model is based on the assumption that the Reynolds stress tensor might
be correlated with the mean velocity gradient. Boussinesq [13] was the first to set a
relationship between the Reynold stress tensor and the mean velocity gradient such
as , with A as the mixing coefficient.  For a three-dimensional flow,
the Boussinesq relationship reads:
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(9.131)

(9.132)
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Fig. 9.8: Explaining the mechanism of Prandtl mixing length theory.

with t as the unknown turbulence viscosity, also called eddy viscosity, that needs to
be determined. As seen, the Boussinesq relation is an analogon to the viscous stress
relation. With Eq. (9.130), the problem of determining the unknown Reynolds stress
is shifted to the problem of finding the unknown eddy viscosity.  It can be argued that
the Boussinesq formulation (9.130) is not compatible with the material objectivity
principal that requires frame indifference. Since the only part of  that fulfills the
objectivity principle is the mean deformation tensor , it is obvious to set the
Reynolds stress tensor in relation with the deformation tensor of the mean flow   

The turbulence viscosity  also called eddy viscosity can be set as

with lt and Vt as the turbulence length and velocity scales.

9.3.1 Algebraic Model: Prandtl Mixing Length Hypothesis
Prandtl [14] was the first to present a working algebraic turbulence model that is
applied to wakes,  jets and boundary layer flows. The model is based on mixing length
hypothesis deduced from experiments and is analogous, to some extent, to the mean
free path in kinetic gas theory. For better understanding the basic physics of the
mixing length hypothesis, we utilize the Prandtl approximation that uses the simplest
case of a parallel flow, where the flow velocity has only one component that changes
in normal direction with , as shown in Fig.9.8.

Consider the boundary layer flow along a flat plate  in -direction. The fluid
particle A with the mass dm located at the position and has the longitudinal

velocity component  is fluctuating and moving downward with the lateral

velocity  and the fluctuation momentum . It arrives at the layer

which has a lower velocity . According to the Prandtl hypothesis, this
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(9.133)

(9.134)

(9.135)

(9.136)

(9.137)

macroscopic momentum exchange most likely gives rise to a positive fluctuation
. This results in a negative non-zero correlation . Inversely, the fluid

particle B moving upward with the velocity  from the layer , where 

a lower longitudinal velocity  prevails, causes a negative fluctuation 

. In both cases, the particles experience a velocity difference which can be 
approximated as:

by using the Taylor expansion and neglecting all higher order terms. The distance
between the two layers lm is called mixing length. Since  has the same order of

magnitude as , we may replace in (9.133) by and arrive at:

Note that the mixing length lm is still an unknown quantity. Since, by virtue of the 
Prandtl hypothesis, the longitudinal fluctuation component  was brought about by

the impact of the lateral component , it seems reasonable to assume that

 such that with Eq. (9.134), we may find for the lateral fluctuation

component with C1 as a constant. Thus, the  component of

the Reynolds stress tensor becomes:

Since the constant C1 as well as the mixing length lm are unknown, the constant  C1
may be included in the mixing length such that we may write

Considering Eqs. (9.91) and (9.130), the shear stress component becomes: 
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(9.138)

(9.139)

(9.140)

(9.141)

Equation (9.137) does not take into account that the sign of the shear stress
component 12 changes with . To correct this, we may write 

with  as the eddy viscosity. This is the Prandtl mixing length hypothesis. From Eq.
(9.138) we deduce that the eddy kinematic viscosity  can be expressed as:

To find an algebraic expression for the mixing length lm, several empirical
correlations were suggested that are discussed by Schlichting [15] and summarized
by Wilcox [16]. The mixing length lm does not have a universally valid character and
changes from case to case, therefore it is not appropriate for three-dimensional flow
applications. However, it is successfully applied to boundary layer flow (for details
see Chapter 11) and particularly to free turbulent flows. Utilizing the two-dimensional
boundary layer approximation by Prandtl, and for the sake of simplicity, we use the
boundary layer nomenclature with the mean-flow component,  as the
significant velocity in -direction, the distance from the wall , the
dimensionless velocity  and the dimensionless distance from the wall

. The wall friction velocity  is related to the wall shear stress  by the

relation . Figure 9.9 exhibits the non-dimensionalized flow velocity
distribution  of a fully turbulent boundary layer as a function of the non-
dimensionalized normal wall distance . The plot with the log-scale for  reveals
three distinct layers: the viscous sublayer ranging from  to 5, followed by a
buffer layer that is tangent to the logarithmic layer at about . The buffer
layer extends from  to 200. The viscous sublayer is approximated by  the
linear wall function:

followed by the logarithmic layer which is approximated by

For a fully developed turbulent flow, the constants in Eq. (9.141) are experimentally
found to be  and 0, Fig. 9.9, Curve 2.  
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Fig. 9.9: Approximation of velocity distribution for a fully turbulent flow
by its decomposition into a laminar sublayer curve (1), a logarithmic layer
(2) and the buffer layer (3) extending from y+ = 5 to 200.

(9.142)

(9.143)

(9.144)

(9.145)

For transitional boundary layer flows, these constants change significantly, as
detailed in a study by Müller [17]. A third layer, the outer layer, tangents the
logarithmic layer described by a so-called wake function, is discussed in Chapter 10.
Outside the viscous sublayer marked as the logarithmic layer, the mixing length is
approximated by a simple linear function

Accounting for viscous damping, the mixing length for the viscous sublayer is
modeled by introducing a damping function D into Eq. (9.142). As a result, we obtain

with the damping function D proposed by van Driest [18] as 

with the constant for a boundary layer at zero-pressure gradient. As we will
discuss in Chapter 11, based on experimental evaluation of a large number of velocity
profiles, Kays and Moffat [19] developed an empirical correlation for that
accounts for different pressure gradients and boundary layer suction/blowing. For
zero suction/blowing this correlation reduces to:
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(9.146)
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Fig. 9.10: Van Driest Damping function with p+ as a parameter.

with . The dimensionless
pressure gradient P+in Eq. (9.145) is defined in as 

Introducing  Eq. (9.145) into Eq. (9.144), the Van Driest damping function is plotted
in Fig. 9.10. 

Figure 9.10 exhibits the damping function D as a function of y+ with the pressure
gradient P+ as a parameter. The implementation of the damping function into the
mixing length accounts for the non-linear distribution of the mixing length in the
lateral direction as shown in Fig. 9.11. For comparison purposes, the linear
distribution is also plotted as a dashed line. For  and  the
curves pertaining to asymptotically approach the linear distribution. Inside
the viscous sublayer significant differences are clearly visible, as shown in  Fig. 9.12
which is a partial enlargement of Fig. 9.11. It exhibits the mixing length distribution
very close to the wall. For comparison purposes, the linear distribution is
also plotted.
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Considering these differences and the asymptotic approach mentioned above, it seems
that Eq. (9.143) is suitable for describing the mixing length within a boundary layer
for which the von Kármán constant k assumes the value k = 0.41. This value, as
previously mentioned, is valid only for fully turbulent flows at zero-pressure gradient.
It is not valid for transitional boundary layers, where  changes significantly.
Moreover, Eq. (9.139) implies that whenever , the eddy kinematic
viscosity approaches zero, which contradicts the experimental data.  In addition, the 
mixing length concept does not apply to boundary layer flow cases where a flow
separation occurs. Furthermore, it is not suitable for three-dimensional flow
calculation as mentioned before. Concluding the discussion about the mixing length
approach, it can be stated that the turbulence model based on the Prandtl mixing
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(9.147)

(9.148)

(9.149)

(9.150)

length theory, despite its shortcomings, is still used for boundary layer calculation and
delivers satisfactory results, as seen in Chapter 11. 

For the sake of completeness, in what follows, we present a system of equations
that includes the algebraic model. The system can be used to solve steady
incompressible free turbulent flow, as well as boundary layer problems, where no
separation occurs. Utilizing the two-dimensional boundary layer flow assumption by
Prandtl, for the sake of compatibility with his convention, we use the Prandtl
nomenclature with , ,  and  as the mean flow
velocities and the fluctuation components in  and -direction, thus the
continuity and momentum equations are reduced to

According to the Prandtl boundary layer assumptions (see for details Chapter 11), the
pressure gradient outside the boundary layer may be approximated by the Bernoulli
equation, where the flow is assumed isentropic

with a known velocity distribution  outside the boundary layer. The turbulent
shear stress in Eq.(9.148) becomes

with m, from Eq. (9.143) in conjunction with Eqs. (9.147), (9.148) and (9.149), a
solution can be obtained for the main-velocity field in terms of  and .

9.3.2 Algebraic Model: Cebeci-Smith Model
Another algebraic model is the Cebeci-Smith [20] which has been used primarily in
external high speed aerodynamics with attached thin boundary layer. It is a two-layer
algebraic zero-equation  model which gives the eddy viscosity by separate
expressions in each layer, as a function of the local boundary layer velocity profile.
The model is not suitable for cases with large separated regions and significant
curvature/rotation effects. The turbulent kinematic viscosity for the inner layer is
calculated from 
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(9.151)

(9.152)

(9.153)

(9.154)

(9.155)

(9.156)

For the outer layer kinematic viscosity is  

with

,  the velocity at the edge of the boundary layer, the boundary layer
displacement thickness and  as the Klebanoff intermittency function [21]. The
mixing length in Eq. (9.151) is determined by combining Eqs. (9.143) and (9.144)

with  and .

9.3.3 Baldwin-Lomax Algebraic Model
The third algebraic model is the Baldwin-Lomax model [22]. The basic structure of
this model is essentially the same as the Cebeci-Smith model with the exception of
a few minor changes. Similar to Cebeci-Smith, this model is a two-layer algebraic
zero-equation model which gives the eddy kinematic viscosity t as a function of the
local boundary layer velocity profile. The model is suitable for high-speed flows with
thin attached boundary-layers, typically present in aerospace and turbomachinery
applications. While this model is quite robust and provides quick results, it is not
capable of capturing details of the flow field. Since this model is not suitable for
calculating flow situations with separation, its applicability is limited. We briefly
summarize the structure of this model as follows. The kinematic viscosity for the
inner layer is 

with

and  as the rotation tensor. The outer layer is described by 
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(9.157)

(9.158)

(9.159)

(9.160)

(9.161)

(9.162)

with the wake function Fwake

and Fmax and ymax as the maximum of the function 

The velocity difference  is defined as the difference of the velocity at ymax and ymin:

with the closure coefficients listed in the Table 9.1 

Table 9.1: Closure Coefficients of Eqs.(9.157) through (9.159)

k A+ Ccp CKleb Cw

0.4 0.0168 26 1.6 0.3 1

The above zero-equation models are applied to cases of free turbulent flow such as
wake flow, jet flow, and jet boundaries.

9.3.4 One-Equation Model by Prandtl
A one-equation model is an enhanced version of the algebraic models we discussed
in previous sections. This model utilizes one turbulent transport equation originally
developed by Prandtl. Based on purely dimensional arguments,  Prandtl proposed a
relationship between the dissipation and the kinetic energy that reads

where the turbulence length scale t is set proportional  to the mixing length, m, the
boundary layer thickness  or a wake or a jet width.  The velocity scale in Eq. (9.132)
is set proportional to the turbulent kinetic energy  as suggested  independently
by Kolmogorov [23] and Prandtl [24]. Thus, the expression for the turbulent viscosity
becomes:  
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(9.163)

(9.164)

with the constant C  to be determined from the experiment. The turbulent kinetic
energy, k, as a transport equation is taken from Section 9.2.2 in the form of Eq.
(9.111) or (9.126) where the dissipation is implemented. For simple two-dimensional
flows where no separation occurs, with the mean-flow component  as the
significant velocity in -direction, and the distance from the wall ,the
following approximation by Launder and Spalding [25] may be used

where k = 1 and CD = 0.08 are coefficients determined from experiments utilizing
simple flow configurations. The one-equation model provides a better assumption for
the velocity scale Vt than . Similar to the algebraic model, the one-
equation one is not applicable to the general three-dimensional flow cases since a
general expression for the mixing length does not exist. Therefore the use of a one-
equation model does not offer any improvement compared with the algebraic one.
The one-equation models discussed above are based on kinetic energy equations.
There are a variety of one-equation models that are based on Prandtl’s concept and
discussed in [14].

9.3.5 Two-Equation Models
Among the many two-equation models, three are the most established ones: (1) the
standard k -  model, first introduced by Chou [26] and enhanced to its current form
by Jones and Launder [27], (2) k -  model first developed by Kolmogorov and
enhanced to its current version by Wilcox [14] and (3) the shear stress transport (SST)
model developed by Menter [28], who combined  and  models by
introducing a  blending function with the objective to get the best out of these two
models. All three models are built-in models of commercial codes that are used
widely. In the following, we present these models and discuss their applicability.    

9.3.5.1 Two-Equation k-  Model

The two equations utilized by this model are the transport equations of kinetic energy 
k and the transport equation for dissipation . These equations are used to determine
the turbulent kinematic viscosity . For fully developed high Reynolds number
turbulence, the exact transport equations for k (9.126) can be used. The transport
equation for  (9.129) includes triple correlations that are almost impossible to
measure. Therefore, relative to , we have to replace it with a relationship that
approximately resembles the terms in (9.129).To establish such a purely empirical
relationship, dimensional analysis is heavily used. Launder and Spalding [26] used
the following  equations for kinetic energy
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(9.165)

(9.166)

(9.167)

(9.168)

and for dissipation

and the turbulent viscosity, , can be expressed as

The constants k, , C 1, C 2 and C  listed in the following table are calibration
coefficients that are obtained from simple flow configurations such as grid turbulence.
The models are applied to such flows and the coefficients are determined to make the
model simulate the experimental behavior. The values of the above constants
recommended by Launder and Spalding [11] are  given in the following Table 9.2

Table 9.2: Closure Coefficients of Eq. (9.165).

C k C 1 C 2

0.09 1 1.3 1.44 1.92

As seen, the simplified Eqs. (9.165) and (9.166) do not contain the molecular
viscosity. They may be applied to free turbulence cases where the molecular viscosity
is negligibly small compared to the turbulence viscosity. However, one cannot expect
to obtain reasonable results by simulation of the wall turbulence using these
equations. This deficiency is corrected by introducing the standard k-  model. This
model uses the wall functions where the velocity at the wall is related to the wall
shear stress by the logarithmic law of the wall. Jones and Launder [26] extended
the original k-  model to the low Reynolds number form, which allows calculations
right up to a solid wall. In the recent three decades, there have been many two-
equation models, some of which Wilcox has listed in his book [14]. In general, the
modified k- and -equations, setting v = / and vt = t / , are expressed as

The closure coefficients are listed in Table 9.2. The Reynolds stress, , can
be expressed as
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(9.169)

(9.170)

(9.171)

(9.172)

where is the eddy length scale.
Using the k -  model, successful simulations of a large variety of flow situations

have been reported in a number of papers that deal with internal and external
aerodynamics, where no or minor separation occurs. However, no satisfactory results
are achieved whenever major separation is involved, indicating the lack of sensitivity
to adverse pressure gradient. The model tends to significantly overpredict the
shear-stress levels and thereby delays (or completely prevents) separation. This
exhibits a major shortcoming, which Rodi [29] attributes to  the overprediction of the
turbulent length-scale in the near wall region. Menter [30] pointed to another
shortcoming of the k -  model which is associated with the numerical stiffness of the
equations when integrated through the viscous sublayer. 

9.3.5.2 Two-Equation k- -Model

This model replaces the -equation with the -transport equation, first introduced by
Kolmogorov. It combines the physical reasoning with dimensional analysis.
Following the Kolmogorov hypotheses, two quantities, namely   and , seem to play
a central role in his turbulence research. Therefore, it seemed appropriate to establish
a transport equation in terms of a variable that is associated with the smallest eddy
and includes  and . This might be a ratio such as  or . Kolmogorov
postulated the following transport equation

with  and  as the two new closure coefficients. As seen, unlike the k-equation, the
right-hand-side of Eq. (9.170) does not include the production term. This equation has
undergone several changes where different researchers tried to add additional terms.
The most current form developed by Wilcox [31], reads

with  as the specific Reynolds stress tensor. Wilcox also modified the k-
equation as 

He also introduced the kinematic turbulent viscosity
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(9.173)

(9.174)

(9.175)

With  as the matrix of the mean  deformation tensor. Wilcox

defined the following closure coefficients and auxiliary relations

Furthermore, 

The k-  model performs significantly better under adverse pressure gradient
conditions than the k -  model.  Another strong point of the model is the simplicity
of its formulation in the viscous sublayer. The model does not employ damping
functions, and has straightforward Dirichlet boundary conditions. This leads to
significant advantages in numerical stability, Menter [28]. A major shortcoming of
the k -  model is its strong dependency on freestream values. Menter  investigated
this problem in detail, and showed that the magnitude of the eddy-viscosity can be
changed by more than 100% just by using different values for .

9.3.5.3 Two-Equation k- -SST-Model

Considering the strength and the shortcomings of  and  models briefly
discussed in the previous two sections, Menter [32], [33] and [34] introduced a
blending function that combines the best of the two models. He modified the Wilcox
k-  model to account for the transport effects of the principal turbulent shear-stress.
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(9.178)

(9.179)

(9.180)

The resulting SST-model (Sear Stress Transport model) uses a  formulation in
the inner parts of the boundary layer down to the wall through the viscous sublayer.
Thus,  the SST- k-  model can be used as a low-Re turbulence model without any
extra damping functions. The SST formulation also switches to a k-  mode in the
free-stream and thereby avoids the common k-  problem that the model is too
sensitive to the turbulence free-stream boundary conditions and inlet free-stream
turbulence properties. For the sake of completeness, we present the Menter’s SST-
model in terms of -equation with the blending function F1

and the turbulence Kinetic Energy 

The term  in Eq. (9.176) and (9.177) is a production limiter and is defined in Eq.
(9.183). The blending function F1 is determined from

with the argument arg1

and F1 is equal to zero away from the surface (k-model), and switches over to one
inside the boundary layer (k-model). The turbulent eddy viscosity is defined as
follows:

(9.176)

(9.177)

(9.181)
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(9.184)

with   and F2 as a second blending function defined by:

A production limiter in Eq. (9.183) is used in the SST model to prevent the build-up
of turbulence in stagnation regions. It is defined as

with

All constants are computed by a blend from the corresponding constants of the k- 
and the k-  model via , etc. The constants for this model are   

According to [35], the above version of the k-  and k-  equations, including
constants listed above, is the most updated version.

9.3.5.4 Two Examples of Two-Equation Models

Internal Flow, Sudden Expansion: The following representative examples should
illustrate the substantial differences between the two-equation models we presented
above. The flow through a sudden expansion is appropriate for comparison purposes
for two reasons: (1) It has a flow separation associated with a circulation zone and (2)
it is very easy to obtain experimental data from this channel. 

Standard  k-  vs k- : Figures 9.13 and 9.14 show flow simulations through a
channel with a sudden expansion ratio of 2/1 using  k-  and standard k-  models. The
purpose was to simulate the flow separation. The k-  simulation, Fig. 9.13, delivers
a single large corner vortex. However, experiments show that for this type of flow
generally a system of two or more vortices, are present, Fig. 9.14.

(9.182)

(9.183)



 9   Turbulent Flow, Modeling 319

Fig. 9.14: (a) Simulation with k-
model.

Fig. 9.15: Flow simulation through a turbine cascade, TPFL-Design.   

Fig. 9.13: Simulation with k- -model

Internal Flow, Turbine Cascade: Flow simulation with CFD has a wide application
in aerodynamic design of turbines, compressors, gas turbine inlet nozzles and exit
diffusers.  As an example, Fig.15 shows contour plots of velocity and pressure
distributions in a high efficiency turbine blade using SST-turbulence model. On the
convex surface (suction surface), the flow is initially  accelerated at a slower rate
from the leading edge and exits the channel at a higher velocity close to the trailing
edge. The acceleration process is reflected in pressure contour.

External Flow, Lift-Drag Polar Diagram: This example presents two test cases to
predict the lift-drag polar diagram of an aircraft without and with engine integration, 
Figs. 9.16. 

Figure 9.17 shows the predicted lift-drag polar diagram for the geometries
presented in Figs. 16. The computation was performed using the SST-turbulence
model and the results compared with the experiments. The lift and drag coefficients
plotted in Fig. 9.17 are integral quantities that represents the lift and drag forces
acting on the entire aircraft. Thus, they represent the lift and drag distribution 
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Fig. 9.17: Lift-Drag polar diagram for an aircraft model without engine
(WB) and with engines (WVBN), from [31] 

Fig. 9.16: Geometry with engine integration for
predicting the polar diagram, from [32] 

integrated over the entire surface. The polar diagram is obtained by varying the angle
of attack and measuring or computing the lift and drag forces. These forces are then
non-dimensionalized with respect to a constant reference  force, which is a product
of a constant dynamic pressure and a characteristic area of the aircraft. Once a
complete set of data  for a given range of angle of attack is generated, then for each
angle the lift coefficient is plotted against the drag coefficient as shown in Fig. 9.17. 
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 Table 9.3: Turbulence Grids: Geometry, turbulence intensity and length scale

Turbulence
Grid

Grid
Opening

GO

Rod
Thickness
RT (mm)

Turbulence
Intensity Tu 

Length
Scale
(mm)

No Grid  100% 0 1.9% 41.3

TG1  77% 6.35 3.0% 32.5

TG2 55% 9.52  8.0% 30.1

TG3 18% 12.7 13.0% 23. 4

Closing Remarks: The multitude of the closure constants in the above discussed
turbulence models have been calibrated using different experimental data. Since the
geometry, Re-number, Mach number, pressure gradient, boundary layer transition and
many more flow parameters differ from case to case, the constants may require new
calibrations. The question that arises is this: can any of the models discussed above
a priori predict an arbitrary flow situation? The answer is a clear no. Because all
turbulence models are of purely empirical nature with closure constants that are not
universal and require adjustments whenever one deals with a completely new case.
As we saw, in implementing the exact equations for k and  that constitute the basis
for k-  as well as k-  model, major modifications had to be performed. Actually, in
the case of  -equations, the exact equation is surgically modified beyond recognition.
Under this circumstance, none of the existing turbulence models can be regarded as
universal. Considering this situation, however, satisfactory results can be obtained if
the closure constants are calibrated for certain groups of flow situations. Following
this procedure, numerous papers show quantitatively excellent results for groups of
flow cases that have certain commonalities. Examples are flow cases at moderate
pressure gradients and simple geometries. More complicated cases where the sign of
the pressure gradient changes, flow separation and re-attachment occur and boundary
layer transition plays a significant role still not adequately predicted.

The models  presented above are just a few among many models published in the
past three decades and summarized in [14]. In selecting these models, efforts have
been made to present those that have been improved over the last three decades and
have a longer lasting prospect of survival before the full implementation of DNS that
makes the use of turbulence models unnecessary.

9.4 Grid Turbulence

Calibration of closure coefficients and a proper model assessment require accurate
definition of boundary conditions for experiments as well as computation. These
include, among other things, information about inlet turbulence such as the turbulence 
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RT = Rod thickness, GO = Grid Opening ratio 

Turbulence generator grid with quadratic rod cross section

RT

Fig. 9.18: Turbulence grid.

intensity, length, and time scales. This information can be provided by using
turbulence grids, Fig. 9.19. 

The grids may consist of an array of bars with cylindrical or quadratic cross
sections. The thickness of the grid bars and the grid openings determine the
turbulence intensity, length, and time scale of the flow downstream of the grid.
Immediately downstream of the grid, a system of discrete wakes with vortex streets
are generated that interact with each other. Their turbulence energy undergoes a
continuous decay process leading to an almost homogeneous turbulence. The grid is
positioned at a certain distance upstream of the test section in such a way that it
generates homogeneous turbulence. The examples show how to achieve a defined
inlet turbulence condition. Table 9.2 shows the data of three different turbulence grids
for producing inlet turbulence intensities Tu = 3.0%, 8.0%, and 13.0%. The grids
consist of square shaped aluminum rods with the thickness RT and opening GO. The
turbulence quantities were measured at the test section inlet with a distance of 130
mm from the grid. Figure 9.20(a) shows the power spectral density of the velocity
signals from a hot wire sensor as a function of signal frequency. The length scale is
calculated from  [mm], Fig. 9.20 (b).



 9   Turbulent Flow, Modeling 323

Frequency

P
S

D

102 103 104

10-6

10-5

10-4

10-3

10-2

TG2: Tu = 8%

TG1: Tu = 3%

TG3: Tu = 13%

(a)

Tu%

Λ
(c

m
)

0 5 10 15 200

2

4

6

8

10

Grid: TG2

No grid
Grid: TG1

Grid: TG3

Grid specifications are listed in Table 2

(b)

Fig. 9.19: (a) Power spectral distribution PSD as a function of frequency for
three different grids described in Table 9.2. The results from (a) is used to
generate the turbulence length scales as a function of turbulence intensity (b).

Problems and Projects

Problem 9.1: Given a second order tensor  with  9 components, 
show that of these nine components only six are distinct. Also given is a third order
tensor that has 27 components, show that of these 27
components only 10 are distinct.

Problem 9.2: Using the dissipation Eq. (9.31) for a fully isotropic turbulence flow

field verify that .
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Problem 9.3: For a fully isotropic turbulence field the dissipation is given by Eq.

(9.31) , the Kolmogorov time scale by Eq. (9.33)  and the

Taylor micro time scale by Eq. (9.2) show that these time scales are a
related by the turbulence intensity. 

Problem 9.4: Using the product  derive the exact solution for 

given in Eq. (9.129).

Problem 9.5: Correlations: Generate random velocities as a function of time with
different frequencies and amplitudes. Using the correlation tensor Eq. (9.6) , set the
reference position vector, . Find (1) , (b) the
correlation coefficient , (c) the osculating parabolas, (d)
length and time scales. 

Problem 9.6: Expand the total enthalpy equation (9.87) and simplify the result for a
two-dimensional boundary layer application.

Problem 9.7: For the thermal energy Eq. (9.75), Give (a) the index notation and (b)
expand Eq. (9.75) in Cartesian coordinate system. 

Problem 9.8: For the coordinate invariant averaged Navier-Stokes equation (9.59)
give (a) the index notation for a general orthogonal coordinate system, (b) decompose
it into three component and (c) use the corresponding relationships for metric
coefficients and Christoffel symbols and express the three components in a cylindrical
coordinate system.   

Project 9.1: Using the index notation from Problem 9.8 and applying the results to
the  two dimensional orthogonal curvilinear coordinate given by Eq. (7.3) in
Chapter 7:

assume a uni-directional flow and substitute the Reynolds stress by the Prandtl
mixing length. Formulate an appropriate velocity distribution at the inlet and
numerically calculate the flow velocity distribution within (a) curved nozzle and (b)
curved diffuser.

Project 9.2: For a free jet flow (for details see Chapter 10) using Prandtl mixing
length model, determine the velocity and the turbulent shear stress distribution. 
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Fig. 10.1: Four different turbulent flows; the mixing range characterized
by the width b=b(x) separates the disturbed flow zone from the
undisturbed flow regime.

10 Free Turbulent Flow

10.1 Types of Free Turbulent Flows 

In Chapter 9 we primarily discussed the type of turbulent flow which is termed wall
turbulence emphasizing the effect of wall shear stress on the turbulence, its
production and dissipation. This chapter deals with the type of turbulence which is
not confined by solid walls. We distinguish three different free turbulent flows: free
jets, free wakes and jet boundaries shown in  Fig. 10.1. 

Free jets, Fig. 10.1(a), are encountered in a variety of engineering applications. Hot
gas jet exiting from the thrust nozzle of a jet engine, water jet exiting from a diffuser
of a hydraulic turbine and the fluid discharged from an orifice are a few examples of 
how a fluid forms free jets. As Fig. 10.1(a) shows, the velocity profile of a free jet
changes in longitudinal direction. The jet width b increases in lateral direction, while
its velocity decreases. Furthermore, at the jet boundary, there is an exchange of mass,
momentum and energy with the surrounding fluid at rest, which causes a partial
mixing of the jet with the surrounding fluid. As we will discuss in more detail in the
following, downstream of the nozzle, at some x/d-ratio, the non-dimensionalized
velocity and turbulence quantities exhibit a similarity pattern. 

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 327–356. 
© Springer Berlin Heidelberg 2010
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(10.1)

Free wakes are generated behind any solid body that is exposed to a fluid flow.
Figure 10.1(b) shows a two-dimensional free wake downstream of a cylindrical rod.
Two quantities define the free wake development and decay in terms of wake velocity
defect and wake width. The wake structure consists of a wake vortical core, within
which there are intensive longitudinal and lateral fluctuations and the wake external
region, where no major turbulence activities take place.  Jet boundaries are formed
between two streams that move parallel to each others with different velocities. They
may be separated by a thin surface discontinuity as Fig. 10.1(c) shows or discharged
into a an environment, where the flow is at rest, Fig. 10.1(d). In all four cases
illustrated in Fig. 10, the width changes in streamwise direction within a mixing zone.
While free jets, free wakes and jet boundaries are frequently encountered in external
aerodynamics, wake flow development within channels has a particular significance
in internal aerodynamics such as the wake flow through a turbine or compressor blade
channels. Unlike the free wakes that are subjected to zero streamwise pressure
gradient, the channel wakes may experience positive, zero or negative pressure
gradients in longitudinal as well as lateral directions. Most importantly, the channel
wakes play a significant role in affecting the turbulence structure and  the boundary
layer development along a surface that is impinged by the incoming wakes.   

10.2 Fundamental Equations of Free Turbulent Flows

The free turbulent flows briefly introduced above share the same flow characteristics,
namely that their turbulent shear stress compared to the molecular shear stress is
much larger. Further more, the surroundings in which they develop has a constant
pressure (zero pressure gradient). As a result, at some downstream distance, where
fully developed turbulent flow is established,  molecular shear stress can be
completely neglected and the pressure gradient term can be set equal to zero.
Furthermore, we assume a two-dimensional flow and replace the velocity components

 by ,  with  and

 as the fluctuation components. Building the longitudinal, the lateral and the
mixed velocity momenta, after averaging we obtain

with . In Eq. (10.1), the terms  and are referred
to as the partial and total velocity momenta, respectively.  With the above
assumptions for free turbulent flows, the Reynolds equations (Eq. 8.65) can be
substantially simplified leading to:
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(10.3)

(10.4)

The relation between the velocity component is given by the continuity equation: 

For a fully developed free turbulent flow at some distance downstream of the
turbulence origin, the pressure fluctuations compared to the constant static pressure
outside the  mixing zone are so small that they can be neglected. As the experimental
results show, the longitudinal fluctuation velocity  is much smaller than the mean
velocity . The lateral fluctuation velocity , however, has the same order of
magnitude as the mean lateral velocity , while it is negligible compared with .
This comparison leads to the conclusion that the contributions of the fluctuation
velocity momenta are negligibly small compared to the contribution of the
longitudinal mean velocity momentum . 

10.3 Free Turbulent Flows at Zero-Pressure Gradient
As presented in Chapter 9, the Prandtl mixing length model was based on the his
mixing length hypothesis. Likewise, Kolmogorov based his original - -model on his
hypotheses. Each turbulence model presented has its own shortcomings implying that
none of them can be considered as universal. The type of approach that is based on
hypotheses is called deductive approach. In treating the free turbulence, we use the
inductive approach introduced by Reichardt [1]. This approach uses detailed
experimental results, from which general conclusions are derived. The inductive
approach which is distinctively different from the deductive one is very effective in
predicting free turbulent flow cases we categorized above. This approach will be used
in this chapter. 

A free turbulent flow is established at some distance downstream of the turbulence
origin and is characterized by the similarity of its velocity and momentum profiles.
In order to solve Eqs. (10.1) and (10.2), we assume that from a definite distance x/d 
downstream of the wake origin, the velocity and the momentum defect profiles are
similar. This distance will have to be experimentally verified, as is discussed in the
following. The similarity assumption implies that for arbitrary points on the
longitudinal coordinate x, there is a width  b = b(x) as the corresponding length scale
on the lateral coordinate y within which the mixing process takes place, for which we
define a dimensionless variable:

(10.2)
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(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

Furthermore, we define a velocity defect as the difference between the undisturbed
potential velocity which would exist outside the mixing zone and the actual

velocity . Thus, the actual velocity can be expressed as:

Correspondingly, we define a momentum defect , which exhibits the difference
between the  momentum of the potential velocity  and the momentum of the actual
velocity . Thus, the velocity momentum can be written as:

In Eq. (10.5), and  represent the time-averaged velocity and momentum defects
within the mixing range. We also define the following dimensionless  velocity, as
well as the momentum defect functions:

Here,  and represent the maximum values of velocity and momentum defects
within the mixing range. The above defined dimensionless variables and the value of
Up will be implemented into Eqs. (10.1) and(10.2) (13) to obtain general expressions
to solve the above free turbulent flows.

The lateral velocity component is obtained by implementing Eq. (10.4) into Eq.
(10.2) as follows

 with we obtain

Since depends only on x and with  we may write 

Inserting Eq. (10.9) into (10.8), we obtain
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(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

The mixing width b, the maximum velocity defect and therefore their

product  are either a function of x or a constant. Assuming a constant static
pressure downstream of the turbulence origin and replacing in x-component of Eq.
(10.2)  with as the constant pressure outside the mixing range, the
x-component of  Eq. (10.2) is simplified as

For a fully developed free turbulent flow in accord with Eq. (10.7) we replace the
differential argument in Eq. (10.12)  by and integrate Eq. (10.12) to
arrive at the mixed velocity momentum:

With Eqs.  (10.11) and (10.13) we are now able to find the solutions for the partial
momentum , the mixing momentum  and the turbulent shear stress 
provided that detailed experimental information about the mixing width b, the
similarity functions , and are available. Furthermore, appropriate
reference velocity and reference velocity momentum must be found such that the
resulting dimensionless partial momentum , total  momentum  and the shear
stress momentum  are functions of  only. Resorting to the idea of Prandtl [2] that
the velocity fluctuations are  proportional to the local mean velocity, implying that the
ratios

are dependent upon  only, Reichardt argued that since and are of the
same order of magnitude as , the ratios 

must be functions of  for free turbulent flows with similar flow conditions. The
unctions and contain all free stream quantities that change in flow direction

and have the same dimensions as  and . For   or we may set:
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Characteristic Quantities of Free Turbulent Flows

Plane Free Jet Plane Free Wake Plane Free Jet Boundary

The task of the inductive approach is to provide detailed experimental information
necessary to find the necessary relationship for calculating the momenta  and

. Based on detailed free turbulence measurements, boundary conditions and
similarity assumptions, Reichardt [1] derived a set of equations that accurately
represent the free turbulent flows. To find a set of unifying equations that describe the
free turbulent flows, Eifler [3] simplified the exact equations derived by Reichardt 
and arrived at a unifying set of equations presented in Table 1. As shown, all
equations describing the dimensionless partial momentum, total momentum and the
shear stress are related to the Gaussian function, its integrals or differentials. 

Table 10.1: Characteristics of free turbulent flows

Table 10.1 contains the characteristics of plane free jets, free wakes and the jet
boundaries. The same equations are valid for axisymmetric free turbulent cases,
however, the continuity equation as well as equation of motion must be written in
polar coordinates.
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Fig. 10.2: Plane free jet quantities as a function of dimensionless 
coordinate, profiles of the total momentum, partial momentum ans
shear stress.

10.3.1 Plane Free Jet Flows
The characteristics of the plane free jet flow are listed in Table 10.1 They contain the
expressions for the velocity defect , the total momentum , the partial

momentum  and the turbulent shear stress .  One of the important
characteristics of all free turbulent flows is the product of the local mixing width  and
the local maximum velocity defect .  For free jet flows, the experiments by
Reichardt show that this product is dependent upon the streamwise direction x, that
means   

Figure 10.2 shows the above quantities made dimensionelss with  as the
denominator with . Extensive experiments by Reichardt shows that the
velocity defect exactly follows the Gaussian distribution. He also

measured the ratio  and found that it also follows the Gaussian

distribution. As seen from Fig. 10.2, the total velocity momentum  is the sum of
the partial momentum and the shear stress momentum . As expected, the shear
stress is zero at the jet boundaries and changes its sign from negative to positive at the 
jet center. 

10.3.2 Straight Wake at Zero Pressure Gradient
Before proceeding with the straight wake flow as an important free turbulent flow that
is encountered in external and internal aerodynamics, we need to know how the wake 
width develops in streamwise direction. In order to eliminate the secondary effects
of entrainment of ambient fluid particles into the wake, cylindrical rods of different
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(10.17)
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Fig. 10.3: Wake development downstream of a cylinder, the
top and bottom walls slightly diverge to maintain p = 0.

(10.18)

(10.19)

(10.20)

diameters can be inserted into a two-dimensional channel, where the relative position
x/d of the probe that  measures the wake turbulence quantities is varied, Fig. 10.3. The 
zero-pressure gradient environment is established by slightly opening the side walls.
This compensates for the cross section blockage caused by the boundary layer
displacement thickness. Straight wake studies by Reichardt [1] and Eifler [3] have
shown that the wake development in the longitudinal direction primarily depends
upon the ratio x/d regardless of the separate variation of the parameters involved in
the ratio. To define the wake width developed within a straight channel with the
height 2h and the width of unity, we integrate the area under -distribution

with h as the half height of the side walls shown in Fig. 10.3. 

To relate the integral in Eq. (10.17) to the corresponding integral with infinity as the
boundary, we find

Introducing in Eq. (10.18)  results in

Thus, with Eq. (10.19) the two widths are interrelated as
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(10.22)

(10.23)
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Fig. 10.4: Relative drag coefficient as a function of dimensionless
distance x/d. 

with .  We insert Eq. (10.20)  into (10.18) and find

Rearranging Eq. (10.21) results in the wake with that can be determined as

The wake width b is easily found by numerically integrating Eq. (10.22) and using
the distribution of given by experiments. To find simple algebraic relationships for
the wake width as a function of x/d, the local drag coefficient CD is calculated using
the experimental data. For the determination of CD, a control volume CV is placed
inside the channel, Fig. 10.3, that includes the undisturbed inlet velocity U0 and the
velocity profile at the position x/d. Applying the continuity and linear momentum
equation as presented in Chapter 5, we find the relationship for the drag coefficient
CD as:

Eifler [3] introduced a ratio  with and as the constant
undisturbed  inlet velocity. This ratio  allows collapsing the experimental data on two
straight lines that represents the near wake  region, the transition region

 and the far wake region as shown in Fig. 10.4. 
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While the far wake region is characterized by a constant product , the
near wake region influenced by the von Kárman vortex street shows a dependency of

upon x/d. Figure 10.5 shows the implementation of the results in Fig. 10.4 for
calculating the wake width distribution. Figure 10.6 shows, the velocity defect 

 as a function of dimensionless  for different x/d ratios. As shown, the 

experimental results follow the Gaussian distribution, .

Figure 10.6 exhibits the measured and the predicted turbulent shear stresses. At the
wake center, the velocity in the longitudinal direction has a maximum, while in the
lateral direction as well as the wake boundaries it diminishes. This is reflected in Fig.
7, where the shear stress values at the wake center and the boundaries approach zero. 
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Fig. 10.8:  Plane free wake quantities as a function of dimensionless 
coordinate , profiles of the total momentum, partial momentum ans
shear stress.

Figure 10.8 summarizes the wake characteristics in terms of velocity defect
, the total momentum , the partial momentum  and the turbulent

shear stress . These quantities made dimensionless with  as the denominator

with . As seen, the total velocity momentum  is the sum of the partial
momentum and the shear stress momentum .  The shear stress is zero at the
wake boundaries and changes its sign from negative to positive at the wake center.
Free wake flow exhibits similar free turbulence characteristics as  free jets.  For far
wake region, the experiments in [1] and [3] show that the product is
independent from the streamwise direction x. Comparing Figs. 10.8 and 10.2 reveals
a striking similarity. While in free jet flow, the dimensionless velocity  is
described by the Gaussian function, it is the velocity defect in free wake flow that is
described by the Gaussian function. Furthermore, the other turbulence quantities in
both cases behave similarly. 
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(10.26)

10.3.3 Free Jet Boundary
The treatment of the free jet boundary is very similar to the two cases we discussed
in previous sections using the inductive approach. For the dimensionless quantity

Reichardt [1] found the following relation:

with . Equation (10.24) can be
approximated as 

Equations (10.24) and (10.25)  are plotted in Fig. 10.9 as solid lines that  coincide
with each other. 

The symbols in Fig. 10.9 representing the experimental data by Reichardt [1] seem
to compare very well with the both functions. This is also true for the momentum
equation:
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Fig. 10.10: Free jet boundary quantities as functions of dimensionless 
coordinate , profiles of the dimensionless total momentum, partial
momentum ans shear stress.

For the free jet boundary the velocity  is constant. As a
result, the second integral in Eq.(10.11) disappears leading to 

The partial velocity momentum is obtained by multiplying Eq. (10.27) with 
 that leads to:

The turbulent shear stress results as the difference between the total velocity
momentum, Eq. (10.13) and the partial momentum Eq. (10.27) leading to:

The characteristic quantities of this flow are also listed in Table 10.1 from which the
dimensionless total momentum, partial momentum and the shear stress are plotted in
Fig. 10.10. 
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10.4 Wake Flow at Non-zero Lateral Pressure Gradient

The wake flow at non-zero pressure gradient constitutes a special case of free
turbulent flows with a broad range of general engineering applications. In the field
of internal aerodynamics, the wake development under the influence of curvature and
pressure gradient is a common feature found in several components of an aircraft gas
turbine engines, power generation gas turbines and steam turbines in steady and
periodic unsteady forms. The wake flow caused by the turbomachinery blades is
associated with inherent unsteadiness. The periodic unsteady wake flow is induced
by mutual interaction between the stator and rotor blades of a turbomachine and
influences the boundary layer transition behavior and heat transfer characteristics of
the turbine or  compressor blades positioned downstream of the wake. Because of the
significant impact of the wakes in internal aerodynamics, particularly in the area of
turbomachinery flow, efforts have been made to describe the fundamental physics of
wake development and decay at non-zero pressure gradient environment very similar
to the one encountered in turbomachinery internal aerodynamics. The following
treatment deals with the fundamental physics of wake development and decay in a
curved channel at non-zero lateral pressure gradient. More detailed theoretical and
experimental investigations  by Schobeiri and his co-researchers at TPFL [5-7]  study
the phenomena of steady and periodic unsteady wake development and decay within
curved channel at zero, positive and negative longitudinal pressure gradient as well
as non-zero lateral pressure gradients.

10.4.1 Wake Flow in Engineering, Applications, General Remarks
Turbomachines are devices without which no modern society can perform its daily
activities. Within turbomachines conversion of total energy of a working medium into
mechanical energy and vice versa takes place. Turbomachines are generally divided
into two main categories. The first category is used primarily to produce power. It
includes, among others, steam turbines, gas turbines, and hydraulic turbines. The
main function of the second category is to increase the total pressure of the working
fluid by consuming power. The conversion of total energy into shaft work or vice
versa is based on exchange of momentum between the blading and the working fluid.
This category includes compressors, pumps, and fans. Figure 10.11 shows the rotor
of a heavy duty gas turbine engine. 

The a multi-stage compressor (left: 21 stage) raises the total pressure of air from
inlet pressure to a required exit pressure of about 16 bar. Fuel is added in the
combustion chamber, where the total temperature raises. Hot combustion gas enters
a multis-stage turbine (right: 5 stages) that drives the compressor and the generator.
Turbine and compressor stages consist of  a stator and rotor rows. The function of the
stator row is to provide the necessary velocity and incidence angle for the following
turbine rotor. A detailed treatment of turbomchinery theory, design and nonlinear
dynamic performance is found in the recent textbook by Schobeiri [4].  
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Fig. 10.11: Rotor unit of a heavy duty gas turbine with multi-stage
compressor and turbine, compressor pressure ratio 15:1, (BBC-GT13E2)
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Fig. 10.12: Schematic of moving wakes from rotating rotor blades that
impinge on stationary stator blades.

Figure 10.12 shows the wake development originating from a turbine stator blade row
that impinges on the subsequent rotating rotor blades. Similarly, the wakes generated
by the rotor blades impinge on the succeeding stator blades. The interaction of the
wake with the succeeding blades is always between a stationary and a rotating frame,
regardless of their sequential position.

The turbulence structure of a wake is defined in terms of  the velocity defect, the
turbulence characteristics and the drag coefficient CD. The drag coefficient can be 
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Fig. 10.13: Simulation of wakes by a set of moving cylindrical rods.

used as a similarity parameter for comparing the wakes that originate from turbine or
compressor blades with those that originate form a set of cylindrical rods.  Thus, if 
wakes generated by a given set of  blades or by a set of cylindric rods have the same
drag coefficient CD, they have approximately the same turbulence structure. 

Figure 10.13 shows a cascade of cylindrical bars moving with the translational
velocity vector . The bars are subjected to a relative inlet flow with the velocity
vector  which constitutes the difference between the absolute velocity vector 
and the translational vector is vector .  

Measuring the wake structure essential for understanding the basic physics of
wake development under the turbomchinery condition is extremely difficult in a
rotating turbomachine. However, producing wakes downstream of a cylindrical rods
through a curved channel at positive, zero or negative pressure gradient yield
information very similar to the wakes through a turbine or compressor blade channels.
Prerequisite for the similarity is that the diameter of the cylindrical rod  has the same
drag coefficient CD as the blade. Figure 10.14 schematically shows the wake
development through curved channels under negative, zero, and positive longitudinal
pressure gradients. In all three cases, there exist a lateral pressure gradient that stems
from the channel curvature. Figure 10.15 shows the experimental setup for
investigating the wake development within a curved channel that consists of constant
curvature inner and outer walls as well as two side walls. It has a wake generator that
can generate steady as well as periodic unsteady wakes. More details on steady and
unsteady wake development and decay are found in [5] and [6]. 

In the following  the theoretical framework for predicting the wake development
under the effect of curvature and zero longitudinal pressure gradient is presented.
More details are found in [5]. The theoretical framework is also extended to negative
and positive pressure gradient which is detailed in [7].
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(10.30)

(10.31)

(10.32)

10.4.2 Theoretical Concept, an Inductive Approach
This section deals with deriving expressions for  wake characteristics that describe
the steady wake development under the influence of pressure gradient and curvature.
The  wake characteristics include dimensionless mean velocity defect, mean
longitudinal and lateral velocities, and total and partial momenta that lead to an
expression for Reynolds shear stress. The first step in the development of the theory
is to transform the coordinate invariant equations of motion and continuity into
curvilinear coordinate systems. For the present theoretical considerations, an
incompressible turbulent flow through a two-dimensional curved channels is
assumed. Further, it has been assumed that the velocity vector has a temporal and
spatial dependency and can be decomposed into a time-independent mean and a time-
dependent turbulent fluctuation vector. Based on the experimental observations, the
flow regime under investigation can be divided into three distinct zones: (1) a highly
vortical wake core characterized by the mean velocity components  that are
asymmetric about the wake centerline. (2) The wake external zone where the velocity
distribution approximately corresponds to that of a potential flow. In this connection,
it should be noted that the wake region is highly rotational where  a potential flow
assumption does not apply. (3) The third zone is the boundary layer at the convex and
concave channel walls, where the viscosity effect causes a boundary layer
displacement and thus a slight flow acceleration. To compensate for blockage, the exit
cross section is slightly increased to ensure a constant longitudinal pressure
distribution as detailed in [5]. 

Conservation laws are first presented in a coordinate invariant form and then
transformed into an orthogonal curvilinear coordinate system ( i). In this coordinate
system, 1 is the direction along a streamline near the wake center and 2 is the
direction normal to it. Starting with the conservation law of mass, the equation of
continuity in coordinate invariant form is:

Following the argument presented in 10.1 that in a free turbulent flow the  turbulent
shear stress compared to the molecular shear stress is much larger, we assume that the
viscosity effects can be neglected. Under this assumption the equation of motion in
a coordinate invariant form is:

Hereafter, Eq. (10.31) is referred to as the version 1 of the equation of motion.
Combining Eqs. (10.30) and (10.31)  results in a modified, more appropriate version
(referred to as version 2) of the equation of motion as:

Equation (10.32) is particularly useful for comparing the order of magnitude of
individual terms and their contributions. For further treatment of conservation laws,
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(10.33)

(10.34)

(10.35)

(10.36)

(10.37)

the velocity vector is decomposed into a time-averaged mean and a time-dependent
fluctuation as:

In Eq. (10.33) we introduced tilde (~) instead of  since the latter would interfere
with the contra variant superscripts that we use in the following orthogonal 
curvilinear components.  Introducing Eq. (10.33) into (10.32) and time averaging the
entire expression, we arrive at:

To keep the above introduced nomenclature, the time averaged second order tensor 
in Eq. (10.34) is called the total velocity momentum, the expression  is termed the

partial velocity momentum and the expression is the Reynolds stress tensor. As
seen from Eq. (10.34), the Reynolds stress tensor is the difference between the total
and the partial velocity momenta. In a three-dimensional flow, the above tensors have
generally nine components, from which, due to the symmetry, only six are distinct.
For the two-dimensional flow assumption of this study, the number of distinct
components reduces to three. For analytical treatment, it is appropriate to transform
Eqs. (10.31) and (10.32) into the wake orthogonal curvilinear coordinate system 1
and 2 shown in Fig. 10.11. Transforming Eqs.(10.30) to (10.32) into the wake
curvilinear coordinate system and using (10.33) and (10.34), the corresponding index
notation for continuity equation reads:

the version 1 of equation of motion is

and the version  2 index notation reads 

In Eqs. (10.36) and (10.37) the comma before the subscripts indicates the partial
differentiation with respect to the subscript that follows the comma. The metric
coefficients and Christoffel symbols for the current curvilinear coordinate system are:
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(10.38)

(10.39)

(10.40)

(10.41)

(10.42)

In Eqs. (10.38) , R represents the radius of curvature of the wake centerline at 2 = 0,
taken to be positive if convex in the positive 2 direction.  For further treatment, the
co- and contra-variant components in Eqs. (10.35), (10.36) and (10.37) must be 
replaced by the physical components. Introducing  and  for the time-averaged
physical velocity components and , ,  for the  three distinct time-averaged
physical components of the Reynolds stress tensor into the Eqs. (10.35), (10.36) and
(10.37), the time-averaged version of continuity equation (10.35), in the wake
curvilinear coordinates is:

The subscripts “,1” and “,2” refer to the derivatives in 1 and 2 directions,
respectively. The version 1 equation of motion, Eq. (10.36), decomposed into
longitudinal direction 1 is:

and lateral direction 2 is:

Similarly, version 2 of the equation of motion (10.37)  decomposed into 1, 2
components is:



 10   Free Turbulent Flow 347

(10.43)

(10.44)

(10.45)

(10.46)

Equations (10.42) and (10.43) are of practical interest for estimating the order of
magnitude of each individual term compared with the others. As the experimental
results show, the longitudinal fluctuation velocity  is much smaller than the mean
velocity . The lateral fluctuation velocity , however, has the same order of
magnitude as the mean lateral velocity , while it is negligible compared with .
This comparison leads to the conclusion that the contributions of the fluctuation
velocity momenta are negligibly small compared to the contribution of the
longitudinal mean velocity momentum .  Equations (10.42) and (10.43) describe
the wake development through a curved channel under the influence of pressure
gradients. The next step is to introduce non-dimensional parameters aimed at
verifying the dynamic similarity assumptions by properly defining the local length
and velocity scales.

10.4.3 Nondimensional Parameters
In order to solve Eqs. (10.39) - (10.43), we assume that from a definite distance 1/d
downstream of the wake origin, the velocity and the momentum defect profiles are
similar. This distance will have to be experimentally verified, as is discussed in the
following.  Similar to Eq. (10.4) we introduce a dimensionless parameter  

with the lateral coordinate 2, and the wake width b = b( 1). Furthermore, similar to
(10.5) we define a wake velocity defect as the difference between the hypothetical

potential velocity which would exist without the cylinder and the actual velocity 
as shown in Fig.10.16. Similar to the straight wake, the actual wake velocity can be
expressed as:

Correspondingly, the wake momentum defect  is the difference between the 

momentum of the potential velocity  and the momentum of the actual velocity .
Thus, the wake velocity momentum can be written as:
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,  and  with as the hypothetical potential flow velocity. 

(10.47)

(10.48)

(10.49)

In Eqs. (10.45) and (10.46), Up represents the hypothetical velocity distribution that
is an extension of the undisturbed wake-external velocity into the wake. The
hypothetical potential velocity  in Fig. 10.16 can easily be determined by
neglecting in Eq. (10.40) all turbulence quantities. Since this section deals with the
channel wake at zero-longitudinal pressure gradient, we set in Eq. (10.40)

.  As a result we have:

Since   the first term in Eq. (10.47) can be neglected leading to:

Integrating Eq. (10.48) and determining the integration constant by setting

 , we find . 
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(10.50)

(10.51)

(10.52)

(10.53)

(10.54)

Expanding the expression in the parenthesis as a Taylor series and neglecting the
higher order terms, the final expression for Up as a linear function of 2 is:

Here, Up0 is the hypothetical potential velocity at wake center, 2 = 0, Fig. 10.13.
Thus, the potential velocity Up outside the wake is a function of 2 only. Similar to the
straight wakes, the similarity assumption requires the following dimensionless wake
velocity, as well as the momentum defect functions:

with and  as the time-averaged velocity and momentum defects and
their maximum values within the wake region.  

10.4.4 Near Wake, Far Wake Regions
To estimate the influence region of the wake generating cylinder, also referred to as
“near and far wake regions,” we use the nondimensional momentum defect ratio or
the drag coefficient CD = 2 2/d and the wake shape factor H12 = 1/ 2 , where the
velocity defect function 1 is introduced:

Figure 10.17 shows the CD-distribution for the zero longitudinal pressure gradient
cases for a wide range of 1/d locations.  The Cw-distribution does not exhibit any
major changes, however, considering the wake shape factor H12, shown in Fig. 10.17,
as an alternative indicator, a transition zone  may be defined, for which
the nondimensional wake velocity defect 1 indicates a certain dependency upon 1/d.
This dependency diminishes for .
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(10.55)

(10.56)

(10.57)

10.4.5 Utilizing the Wake Characteristics
Introducing the wake velocity defect, Eq. (10.45) in connection with Eq. (10.49), into
the continuity equation (10.39)  and integrating the resulting equation, we obtain an
expression for mean lateral velocity  as:

After some further rearrangements of terms in Eq. (10.55) we obtain:

Equation (10.56) and shows that the mean lateral velocity is determined by the
turbulent mixing and decay process in longitudinal direction characterized by the
longitudinal changes of the velocity-width product, , and by the longitudinal
changes of potential velocity at wake center . Note that the longitudinal changes
of Up0 are closely related to the pressure gradient. Since the lateral velocity
component  is zero at the wake center, the integration constant c in Eq. (10.56) must
identically vanish. Thus, the general expression for  after evaluating the integrals
is:
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Fig. 10.18: Nondimensional mean velocity defect as a function of dimensionless
lateral distance from Schobeiri et al. [5].  

In Eq. (10.57), erf( ) stands for error function, which is the integral of Gaussian
distribution. With Eq. (10.57), the distribution of the mean lateral velocity component
can be found provided the wake velocity defect function 1, the distribution of the
wake width b = b( 1), as well as longitudinal distributions of   and  are

known. The information regarding the distributions of b, , and  are obtained 
from the experiment. Similar to the straight wake, a length and a velocity scale are
chosen such that the nondimensional wake velocity defect 1 is a function of 2/b, i.e.,

Similar solution for is found by using Eq. (10.40) in conjunction with the
order of magnitude analysis of Eq. (10.42). This procedure delivers an ordinary
second order differential equation that can be solved numerically. The numerical
solution of the resulting ordinary differential equation follows the Gaussian
distribution

Experimental results presented in Fig. 10.18 (symbols) over a wide range of 1/d show
that for far wake all experimental results collapse to a single curve (solid line) that is
described by Eq. (10.59).

As seen, the mean nondimensional velocity defect profiles are symmetric and
identical to profiles obtained for  straight wakes. Comparing the straight wake results
presented in Fig. 10.6 and those of curved wakes, Fig. 10.18, leads to the conclusion
that after transforming the governing equations into an appropriate wake coordinate
system, the assumption of similarity in wake velocity defect profiles is valid. This
statement is also valid for positive and negative pressure gradient cases as shown
in [7].
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Fig. 10.19: Mean longitudinal velocity distribution in lateral direction,  solid lines,
Eq. (10.60), experiments form Schobeiri et al. [5].

(10.61)

(10.62)

Using Eq. (10.50) and considering (10.59) in conjunction with the experimentally
verified  assumption of , the longitudinal velocity component is
obtained from:

Figure 10.19 shows the distribution of the experimental (symbols) and the theoretical 
(Eq. (10.60)) mean longitudinal velocity component plotted for different longitudinal
locations as a function of the lateral distance from the wake center.   

As shown in Fig. 10.19, the velocity distributions are strongly asymmetric with higher
velocities at the positive side of 2 that corresponds to the location closer to the
convex wall  with 2 = 0 as the geometric location of the wake center. Setting in
(10.57)  and , , the lateral velocity component is
approximated by:

It should be noted that, the lateral velocity component is very small compared to the
longitudinal one and the accuracy of its measurement falls into the accuracy range of
the cross wire probe, with which the velocity components are measured, [5].     

The partial momentum is the product of Eqs. (10.60) and (10.61) which in
conjunction with Eq. (10.50) gives 

Since the mean longitudinal turbulent fluctuation in comparison with the mean flow
can be neglected,  and also the variation of the potential velocity at the wake
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(10.63)

(10.65)

(10.66)

(10.67)

center in 1-direction is very small for the case of zero longitudinal pressure gradient,
Eq. (10.42) in connection with Eqs. (10.45) an (10.46) can be simplified as:

A further comparison of order of magnitude shows that

(10.64)

with Eq.(10.64), a further rearrangement and the subsequent integration of the results,
the total momentum yields

In the second integral of Eq. (10.65)  is replaced by the product  and 

 by . The approximate equality of dimensionless wake
velocity and momentum defects, i.e., 2

1, has been experimentally verified for
different locations downstream of the wake generating body. Using this
approximation, a further rearrangement of the individual terms in Eq. (10.65) results
in:

From a physical point of view, its is of interest to determine the order of magnitude
of the individual terms involved in Eq. (10.66). The computation of  individual terms
showed that:

Equation (10.67) shows that the second term in the bracket as well as the second term
on the right-hand -side of Eq. (10.67) can be neglected. Despite this fact, these terms
were  not neglected, when computing Eq. (10.66) to avoid oversimplification. The
constant c in Eq. (10.66) is evaluated from experimental results at  = 0. For near
wake its value is zero, however, for  > 100 it changes slightly in 1-direction but
still remains close to zero.  

Now the expression for the turbulent shear stress can be obtained from the
difference of total and partial momenta, i.e. Eq. (10.66) and (10.62)
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Fig. 10.20: Dimensionless Reynolds shear stress as a function of dimen-
sionless lateral distance with longitudinal distance  as a parameter, curves are
calculation results, symbols are experiments from Schobeiri et al. [5].  

The results of calculating Eq. (10.68) are plotted in Fig. 10.20. 

Figure 10.20 shows the dimensionless Reynolds shear stress distribution at five
longitudinal locations. As shown, the shear stress is non-zero at the wake center
because of the curvature effect that causes a pressure gradient in the lateral direction,
resulting in a highly asymmetric distribution of shear stress profiles. It is interesting
to note that at the wake center, where , the shear stress is not necessarily
zero. This is in accord with the findings by Raj and Lakshminarayana [8]. They also
observed a non-zero value of Reynolds shear stress at the wake center. They also
concluded that the mixing length hypothesis is not valid for predicting the mean and
turbulent quantities in such a region. The Reynolds shear stress in the hypothetical
potential flow outside the wake is not exactly equal to zero due to the turbulence
existing in that region. Also the  outside the wake has a higher absolute value near
the concave side of the wall ( 2 < 0). Measurements at selected longitudinal locations
without the wake showed a lateral gradient of  with a negative value near the
concave wall and a positive value near the convex wall. The radial position where

was located between the convex wall and mean radius of the channel. A similar
distribution of Reynolds shear stress has been observed in turbulent flows in curved
channels, as reported by Wattendorf  [9] and Eskinazi and Yeh [10].

As shown in Fig. 10.20, the shear stress distribution is strongly asymmetric, which
can be attributed to the asymmetry of the mean longitudinal velocity component.
Generally, in a curved shear flow, the positive velocity gradient in a positive radial
direction suppresses turbulence (stabilizing effect) while a negative velocity gradient
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in a positive radial direction promotes turbulence (destabilizing effect). From the
mean longitudinal velocity distributions it is apparent that the velocity gradient is
negative in the positive radial direction on the inner half of the wake (the concave
side of the trajectory of the wake centerline). Thus, higher values of Reynolds shear
stress are expected on the inner half of the wake. The opposite trend is true for outer
half of the wake, which results in lower values of Reynolds shear stress. It appears
that the Reynolds shear stress in the outer half of the wake is more closer to self-
preservation than the inner half of the wake.

The experimentally determined shear stress distributions (symbols) shown in Fig.
10.20, are compared with the developed inductive theory (lines). As shown, the  shear
stress was calculated as the difference between the total and partial momenta

 by integrating the conservation equations. The integration constants
in the corresponding expressions were evaluated from experimental measurements
corresponding to the values at the wake center.. 

Wake Flow, Concluding Remarks: The inductive approached developed for
predicting the wake decay and development in straight and curved channels at zero-
longitudinal pressure gradient presented in this chapter was further extended to cases
with negative and positive pressure gradients, [7]. It also was extended to periodic
unsteady wakes [6]. This approach is an alternative for predicting the free wakes as
well as channel wakes characteristics based on experimental findings. Simple
relationships for wake velocity distribution were found to derive the longitudinal and
lateral velocity distributions as well as the turbulent shear stress. It is of course 
possible to use the turbulence models discussed in Chapter 9 to predict the wake
characteristics. This task is presented as Problems at the end of this Chapter. 

Computational Projects

Project 1: Air exits through a subsonic two-dimensional nozzle into the atmospheric
environment. The nozzle has the width of 200.00mm and a height of 50.00mm. Using
the inductive approach discussed in Section 10.2.1, write (1) a computer code to
calculate free jet turbulence quantities. (2) Utilize an existing CFD-platform for
calculating the same quantities using (a) the mixing length model, (b) k-  model, (c)
k-  model and (d) SST-model. critically analyze the results.

Project 2: Given is a straight duct with the width of 1000.00mm, the height of
500.00mm and a length of 1000mm. Establish a zero pressure gradient in longitudinal
direction by  slightly opening the top and bottom channel walls. At x = 100.00mm
insert a cylindrical rod of 2 mm diameter. Assume an inlet velocity of 10 m/s and an
static pressure at the inlet which is equal to the difference of atmospheric total
pressure and the inlet dynamic pressure. Write a computer program for calculating the
wake velocity defect, longitudinal and lateral velocity components and the Reynolds
shear stress. Use (1)the inductive approach discussed in this chapter. (2) Utilize an
existing CFD-platform for calculating the same quantities using (a) the mixing length
model, (b) k-  model, (c) k-  model and (d) SST-model. critically analyze the results.
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11 Boundary Layer Theory

In Chapter 9 we have shown that using the computational fluid dynamics (CFD), flow
details  in and around complex geometries can be predicted accuracy. The flow field
calculation includes details very close to the wall, where the viscosity plays a
significant role. In the absence of random fluctuations the (laminar) flow can be
calculated with high accuracy. For predicting turbulent flows, however, turbulence
models were required to be implemented into the Navier-Stokes equations to account
for turbulence fluctuations. One of the more important tasks in engineering fluid
mechanics is to predict the drag forces acting on the surfaces of components, among
others, pipes, diffusers, nozzles, turbines, compressors, or wings of aircrafts. As seen
in Chapter 5, the drag forces are produced by the fluid viscosity which causes the
shear stress acting on the surface. The question that arises is how far from the surface
the viscosity dominates the flow field. Prandtl [1] was the first to answer this
question. Combining his physical intuition with experiments, he developed the
concept of the boundary layer theory. In what follows the concept of the boundary
layer theory for two dimensional flow is presented. Utilizing the two-dimensional
boundary layer approximation by Prandtl, and for the sake of simplicity, we use the
boundary layer nomenclature with the mean-flow component, ,  as
the significant velocities in  , and -direction.

Based on his experimental observations, Prandtl found that effect of the viscosity
is confined to a thin viscous layer that he called, the boundary layer. Prandtl
estimated that at any longitudinal position x the boundary layer thickness 
compared to the position x is small, meaning  that  . For the flat plate under zero
pressure gradient shown in Fig. 11.1 with the length L, we have . If we
assume that and , then we may estimate the changes in longitudinal
direction compared to the normal one. Furthermore, based on Prandtl’s experimental
findings, following order of magnitude comparison holds:

The above order of magnitude estimation enables a substantial simplification of the
Navier-Stokes equations that can be solved relatively easily. Furthermore, the concept
of the boundary layer theory allows the separation of a flow field into the boundary
layer region where the viscous forces play a dominant role and a region outside the 
boundary layer, where the convective forces  dominate the flow field. 

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 357–421. 
© Springer Berlin Heidelberg 2010
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Fig. 11.1: Development of boundary layer along a flat plate.

(11.2)

(11.3)

Thus, it is admissible to treat the region outside the boundary layer as a quasi-inviscid
flow field that is described by the Euler equation of motion. Thus, the approximate
solution of the flow field is composed of the viscous solutions, described by the
boundary layer theory and the non-viscous Euler solution. To combine these two
solutions, the boundary layer solution has to satisfy the no-slip condition at the wall
and at the edge of the boundary layer, where the two solutions tangent each others
they must share the same values and the same slopes. The combination of the viscous-
inviscid solutions can exhibit a very fast alternative for providing information about
the distribution of the drag forces. The major shortcoming of the boundary layer
theory is that it is not capable of handling the flow separation. It also does not account
for the boundary layer transition. 

11.1 Boundary Layer Approximations

The theoretical structure of boundary layer theory is based on the Navier-Stokes
equations for incompressible steady and two dimensional flows.  Assuming a flow
with a large Reynolds number and the order of magnitude comparison in Eq. (11.1)
for the velocity component in x-direction and a dimensionless boundary layer
thickness with L =1 the following order of magnitude estimations hold:

To estimate the order of magnitude of all terms involved in a two-dimensional
incompressible Navier-Stokes equations, we first introduce the following
dimensionless quantities:



 11   Boundary Layer Theory 359

(11.4)

(11.5)

(11.6)

(11.7)

(11.8)

(11.9)

Introducing the dimensionless quantities (11.3) into the Navier-Stokes equations, we 
encounter the Re-number defined in Eq.(11.3), for which we need to find the order
of magnitude. This is done by establishing a ratio between the convective forces that
dominate the flow outside the boundary layer and the viscous forces inside the
boundary layer. We assume that within the boundary layer  the viscous forces have
the same order of magnitude as the convective forces. This assumption leads to:

Equation (11.4) can be used to estimate the order of magnitude of the boundary layer
thickness  and to relate it to the Re-number. Using U  as the undisturbed velocity
and the L as the reference length scale in x-direction, we find the order of magnitude
for the numerator of (11.4):

The length scale in the y direction is the boundary layer thickness , so that the
following relationship holds

Using (11.5) and (11.6) we estimate the order of magnitude of:

Inserting  into (11.7) we obtain 

Implementing Eqs. (11.4)  through (11.6) into the Navier-Stokes equations, we obtain
its dimensionless version: 

Decomposing Eq. (11.9), the x- component with its order of magnitude estimation
yields:
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(11.10)

(11.11)

(11.12)

(11.13)

(11.14)

(11.15)

similarly for the y-component we have 

with the dimensionless boundary layer thickness . Since all terms
with the order of magnitude of  can be neglected compared to those with the
magnitude of 1. 

Going back to the dimensional Navier-Stokes equations and assuming a steady
flow, the  consequence of the order of magnitude estimation  in Eq. (11.10) is that the
only term that can be omitted is the shear stress term . Thus, the x
component of the Navier-Stokes equations reduces to

with u and v as the velocity components in x and y-directions. On the other hand, the
only term in the y-component that survives is 

With the continuity equation 

the system of three differential equations is complete that allows to calculate the
boundary layer. The y-component, Eq. (11.13), indicates that at any arbitrary x-
position the pressure inside the boundary layer including the boundary layer edge at

remains constant, meaning that p=p(x). This implies that pressure inside the
boundary layer p(x) has the same value as outside it. This value is known from the
inviscid solution, where it can be obtained by differentiating the Bernoulli equation:
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Fig. 11.2: Velocity distributions outside the boundary layer for accelerated
flows through a turbine cascade and a nozzle, decelerated flow through a
compressor cascade and a diffuser.

with the velocity U outside the boundary layer. The solution of differential equations
(11.12) to (11.15) require boundary conditions that must be formulated from case to
case as we will discuss in the following sections. For certain cases of laminar
boundary layer problems, the system of partial differential equations can be
transformed into a system of ordinary differential equations  that can be solved using
either finite difference or Runge-Kutta integration method. In the following sections
we distinguish between laminar and turbulent boundary layers that we treat
separately.

11.2 Exact Solutions of Laminar Boundary Layer Equations

Exact solutions for a class of laminar boundary problems are presented in this section.
In the context of boundary layer theory, a solution is considered exact when it is a
complete solution of the boundary layer equation, irrespective of wether it is obtained
analytically or numerically. However, it should be noted that even for the simplest
turbulent boundary layer problem, no analytical solution has been found. For a certain
class of  boundary layer cases, the streamwise pressure distribution outside the
boundary layer can be explained as simple power functions. Figure 11.2 shows two
representative cases of accelerated flow through a turbine cascade and a nozzle and
decelerated flow through a compressor cascade and a diffuser. 

In these cases, the velocity distributions outside the boundary layer can be
approximated by simple power laws allowing the partial differential equations (11.12)
to (11.15) reduce to ordinary differential equations that can be solved using initial and
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(11.16)

(11.17)

(11.18)

(11.19)

(11.20)

(11.21)

(11.22)

boundary conditions. Considering cases, where the velocity distributions can be
described by a simple power law

where the exponent m represents different flow types. As an example m = 0 represents
the boundary layer flow along a flat plate at zero pressure gradient. For stagnation
point flow the exponent is m=1.  Flow past a wedge with different angles that are
directly related to the exponent m is another interesting example.

11.2.1 Laminar Boundary Layer, Flat Plate
The laminar flow along a flat plate at zero pressure gradient with a constant velocity
outside the boundary layer  U =U  = const. exhibits the first application of Prandtl
boundary layer theory. Staring from the Prandtl boundary layer Eq. (11.12) we set

 that leads to:

To find an exact solution for  the velocity distribution, Blasius [2] introduced the
following dimensionless coordinates within the laminar boundary layer along the flat
plate:

with L as the plate length and as the boundary layer thickness.  From Eq.
(11.8) we may set and introduce a stream function

with and the velocity component as defined in Eq. (6.17) 

Thus we obtain for u and v the following relationships:

and

Further differentiation leads to
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(11.23)

(11.24)

(11.25)

(11.26)

(11.27)

(11.28)

(11.29)

with . Using the same differentiation procedure as in Eq. (11.20) and
(11.23) we arrive at the velocity derivative in x and y-directions:

and in y-direction 

Inserting these terms into Eq. (11.17) we arrive at a nonlinear third order ordinary
differential equation 

Equation (11.26) developed by Blasius has to satisfy the no-slip condition at the wall,
namely:

and at some far distance from the boundary layer 

Actually, the Blasius equation with the above boundary conditions exhibits a 
boundary value problem. However, using an iterative method, similar to the one
discussed in Chapter 7, it can be treated as an initial value problem. Assuming a
certain  initial value for ƒ (  = 0), Eq. (11.26) can be solved using Runge-Kutta or 
Predictor- Corrector method to calculate, among others, . Figure 11.3 exhibits
a plot of the Blasius profiles for and the velocity slope   .  As shown, the
velocity asymptotically approaches the unity, while the velocity gradient 
approaches zero. The velocity slope at the wall indicates the order of magnitude of
the wall shear stress which can be calculated from
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(11.30)

(11.31)

(11.32)

For a flat plate with a length L, the friction force per unit of depth is calculated by
integrating Eq.(11.29) 

Inserting Eq. (11.29) into (11.30), we find

with b as the depth of the plate. The drag coefficient is calculated from 

with as shown in Fig. 11.3. 

11.2.2 Wedge Flows
As discussed in the preceding section, to arrive at the Blasius solution for a flat plate
at zero pressure gradient, we assumed a constant velocity  U =U  = const. outside the
boundary layer. This assumption in conjunction with Eq. (11.15) has lead to

 and the subsequent elimination of the pressure gradient,   from
the Navier-Stokes equations. Introducing a dimensionless coordinate and a stream
function , the  partial differential equations of motion were reduced to an
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(11.33)

(11.34)

(11.35)

ordinary differential equation, which we solved as an initial value problem by
iteratively obtaining  as shown in Fig. 11.3.The solution that we
obtained satisfied the similarity requirement namely that the velocities at any two
locations are “similar”, meaning that all velocity profiles became identical when 

is plotted against .  In this section, we treat a flow past a wedge with an angle
of 2  as shown in Fig. 11.4. Varying the wedge angle causes the pressure distribution
outside the boundary layer to change. A positive wedge angle is associated with a
positive value of m in Eq. (11.16)  implying that the flow outside of the boundary
layer is accelerated.

We assume a non-zero-pressure gradient outside the boundary layer and require that
the solutions must satisfy the similarity condition: 

with . Now we consider a set of differential equations consisting of
continuity and Navier-Stokes equations with a non-zero pressure gradient term in the
x-component:

Introducing a stream function   with 
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(11.36)

(11.37)

(11.38)

(11.39)

(11.40)

(11.41)

the equation of motion in x-direction becomes

which has to satisfy the boundary conditions and for 
and at . Furthermore, we require that the velocity distribution

outside the boundary layer follows a simple power function  

Introducing the same relationship for the stream function as in Eq. (11.19), namely

with the same dimensionless similarity coordinate as in the preceding section
, Eq. (11.37) is transformed into an ordinary differential equation

This is the so-called Falkner-Skan equation [3] which describes a laminar flow past
a wedge as shown in Fig. 11.4. The solution of this equation was provided by Hartree
[4] and is presented in Fig. 11.5. As discussed by Schlichting [5] and Spurk [6], the
velocity exponent m is related to the wedge angle by the following equation:

The special case of m = 0 delivers the Blasius equation discussed in the preceding
section. Equation (11.40) is a nonlinear ordinary differential equation that can be
reduced to an initial value problem by iteratively determining the derivative 
such that  the boundary condition  is satisfied. The solution
of Falkner-Skan equation is plotted in Fig. 11.5, where the dimensionless velocity

is plotted against the dimensionless coordinate  with  as a parameter.
The special case of represents the laminar flow along a flat plate with m = 0.
Increasing the  wedge angle  cause the flow outside the boundary layer to accelerate.
The cases with negative  that correspond to negative are taught of flows past
a convex corner.
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Fig. 11.6: Flow along a convex corner (  < 0).

Once the potential flow passes over a convex corner, the streamlines  diverge causing
a flow deceleration that is associated with a pressure increase in flow direction as
sketched in Fig. 11.6. In this case the two forces, namely the viscous force and the
pressure force co-act against the movement of the fluid particle. Thus, very close to
the wall, the slope of the velocity profile becomes zero showing a typical inflection
pattern. This  is indicative of the beginning of a flow separation as shown in Fig. 11.6. 
Given the inherent susceptibility of the laminar boundary layer to even very small
positive pressure gradients, the results for   do not seem to be plausible.    
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(11.42)

(11.43)

(11.44)

(11.45)

(11.46)

11.2.3 Polhausen Approximate Solution 
Considering the exact solutions of Blasius and Falkner-Skan flows, one may conclude
that for these type of flows approximate solutions can be obtained by using simple
polynomial equations. In case of a laminar flow with pressure gradient as a parameter,
Pohlhausen [7] assumed a forth order polynomial for the dimensionless velocity 
distribution as a function of  with the pressure gradient    

as the parameter. To obtain an approximate solution, Polhausen set:

with  as free constants that have to satisfy the continuity and the Navier-Stokes
boundary conditions for exact solutions:

The above boundary conditions are sufficient to find the coefficients . 
There is no need to define explicitly the no-slip condition at the wall, since Eq.

(11.43) inherently satisfies this requirement. Using the boundary conditions (11.44),
following expressions are obtained for the coefficients in Eq. (11.43)

and hence the velocity profile can be expressed in terms of 

The velocity profiles and their slopes are plotted in Fig. 11.7(a,b).  Figure 11.7(a)
exhibits the velocity profiles as a function of  with the dimensionless pressure
gradient  as a parameter. Accelerated flows are denoted by , while
decelerated flows are characterized by . The slope of the velocities are plotted
in Fig. 11.7(b). Of particular interest are the slopes at the wall since they determine
the curvature of the velocity profiles near the wall. The curves with with
zer-slope at the wall, Figs. 11.7 (a,b) indicate the point of inflection at the wall. The
curves with pertaining to separated flow situations are also plotted.
However, they are not compatible with the concept of the boundary layer theory,
which excludes flow separation.



 11   Boundary Layer Theory 369

Λ = 0

Λ = 3 0

Λ = -1 2

1 5

-30
-1 5

(b )

η = y /δ

d(
u/

U
)d

η

0 0 .2 0 .4 0 .6 0 .8 1
-5 0 .0

-2 5 .0

0 .0

2 5 .0

5 0 .0

λ=
0

Λ
= -3 0

15

-1
5

30
15

(a )

η = y /δ

u/
U

0 0 .2 0 .4 0 .6 0 .8 1
-0 .2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

Fig. 11.7: Pohlhausen profiles: (a) velocity profiles, (b) slope of the
velocity profiles with as parameter.

11.3 Boundary Layer Theory Integral Method

As we saw in the preceding sections, in order to solve laminar boundary layer
problems, Navier-Stokes equations were drastically simplified. Detailed velocity
distribution within the boundary layer were presented that allowed the calculation of 
the friction forces caused by the wall shear stress acting on the surface under
investigation. Accurate calculation of the wall shear stress is of primary importance
for calculation of the total pressure loss and thus the efficiency of any engineering
device, within which a fluid dynamic, heat transfer or energy conversion takes place. 
The integral method presented in this section offers an alternative to determine the
wall shear stress. It is based on continuity, momentum and energy equations in
integral form as treated in Chapter 5. Applying the integral balances to a boundary
layer problem, we find the boundary layer thicknesses that are part of the boundary
layer integral equation derived in the following. 

11.3.1 Boundary Layer Thicknesses
Figure 11.8 shows the different nature of the boundary layer developed along a flat
plate at zero streamwise pressure gradient as we discussed in more details in 
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Fig. 11.8: Boundary layer development along a flat plate at zero pressure
gradient.

(11.47)

Chapter 8. The application of integral balances to the control volume shown in Fig.
11.8 delivers the boundary layer displacement thickness , the boundary layer
momentum deficiency thickness and the energy deficiency thickness  .

Figure 11.8 shows the boundary layer development along a flat plate. To calculate
the above thicknesses, different control volumes may be placed on the flat plate.
Regardless of the choice, they must include the inlet velocity and the velocity
distribution at any arbitrary position in x-direction. The two control volumes delivers
the same results. While the control surface BC in Fig. 11.8(a) is parallel to the plate,
the BC-surface in Fig. 11.8(b) is a streamline that goes through the edge of the
boundary layer at point C and intersects with the surface AB at the inlet. Applying the
integral balances of continuity, momentum and energy to Fig. 11.8(a) requires the
mass flow calculations along BC, which is immediately found by subtracting the mass
flow through CD from the one at AB. Using Fig.11.8(b), the mass flow balance needs
to apply to the inlet surface AB and the exit surface CD. The stream surface BC act
as a solid surface, where no mass flow can cross. Furthermore Fig. 11.8(b) shows, the 
displacement  of the streamline from the height h at the inlet to the height .
Application of the continuity balance Eq. (5.4) to Fig. 11.8(b) results in:

Assuming incompressible flow and considering the continuity balance per unit of
depth,  Eq. (11.47) reduces to 
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(11.48)

(11.49)

(11.50)

(11.51)

(11.52)

(11.53)

Replacing in Eq. (11.48)  by , we find immediately the boundary layer
displacement thickness:

Applying the linear momentum Eq. (5.25) to the same control volume while
neglecting the shear stress integrals, we find the drag force per unit of depth:

Non-dimensionalizing the drag force with a reference force per unit of depth 
gives:

With L as the plate length an as the momentum deficiency thickness or short
momentum thickness. In an analogous way we find the energy deficiency
thickness : 

In case of compressible flow, density must be included in the thicknesses we derived
above.
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(11.54)

(11.55)

(11.56)

(11.57)

(11.58)

with  as the reference density. We also define the form parameter  and :

The above thicknesses and parameters are the characteristics of boundary layer and
will be implemented into the integral equations of the boundary layer in the following
section.

11.3.2 Boundary Layer Integral Equation
The complexity of solving the boundary layer equations and the lack of high
performance computational device of any sort motivated Prandtl and his co-
researchers to find a solution for the boundary layer problem that could be handled
with the tools available in the early twenties, namely slide rules (straight, circular and
cylindrical). Using the boundary layer differential equations (11.12) , (11.14) and
considering (11.15), we integrate Eq. (11.12) in lateral direction from y = 0 at the
wall to y = h at the edge of the boundary layer:

The integration of the right hand side is:

In Eq. (11.56), in accord with the boundary layer concept, the shear stress at the edge
of the boundary layer was set  and represents the wall shear stress.
Thus, Eq. (11.55) is re-arranged as: 

Equation (11.57) is valid for both laminar and turbulent flows provided that the
velocity components are time averaged. For further treatment, we replace the v-

component in (11.57) by the integration of the continuity equation  :
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(11.59)

(11.60)

(11.61)

(11.62)

(11.63)

(11.64)

The partial integration of the second tem within the parenthesis gives:

Inserting Eq. (11.59) into (11.58) results in

which can be modified as:

Now we introduce the displacement thickness and the momentum thickness
from (11.53) into Eq. (11.61) and obtain the final integral equation of boundary layer:

Equation (11.62) is the momentum integral equation of boundary layer theory
developed by von Kármán [8]. Expanding the first term and dividing the results by 
reads:

Further re-arrangement can be performed by expressing  

With Eq. (11.64), we reduced the combined partial differential equations (11.12),
(11.14) to an ordinary an ordinary one. In order to solve this differential equation for

, besides the initial condition, the pressure distribution outside the boundary layer
in terms of velocity distribution , the form parameter , and the skin
friction coefficient  must be known. The accurate determination of the skin friction,
however, has been the subject  of many research works of purely empirical nature.
For turbulent boundary layers, Ludwieg and Tillman [9] presented an empirical
correlation with an acceptable accuracy. It reads: 
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Fig. 11.9: Skin friction coefficient Cf as function of momentum thickness
Reynolds number with the H12 as a parameter.

with  and . Coles [10] modified Eq. (11.65) And arrived
at

Figure 11.9 shows the  Ludwieg-Tillman and Coles -distribution as a function of
with  a parameter. 

As seen the two correlations are almost identical with the exception of the range
, where the relative difference  is about . The

question arises, which of these two formulas is more appropriate for implementation
into the von Kármán integral Eq. (11.64)? White [11]argues  that the accuracy of the
Ludwieg-Tillman formula is only about , while the Coles formula is accurate
to about .Investigations by Lehman [12] show much higher relative differences
with respect to both Ludwieg-Tillman and Coles correlations. However at lower

they are closer to Ludwieg-Tillmans results. This suggests, that none of the
above correlations covers the entire range of appropriately, therefore the
selection should be made based on the range of the above parameters. 

Prescribing , Equation (11.64) in conjunction with (11.65) can be solved
iteratively. Once the difference between the left and the right hand side of Eq. (11.64)
is small enough, the iteration process cab be stopped.  It should be pointed out that



 11   Boundary Layer Theory 375

(11.67)

(11.68)

(11.69)

(11.70)

(11.71)

(a) Eq. (11.64) follows the concept of boundary layer theory, which is only valid for
cases without flow separation and (b) the outcome of the integration which is the
boundary layer momentum thickness is an approximate solution associated certain
degree of accuracy (±10% and above). More elaborate calculation procedures
introduced, among others, by Rotta [13], Truckenbrodt [14] and Pfeil and his co-
researchers  [15] and [16]. These authors use the velocity distribution including the
wake-function (see following section) as the point of departure.

11.4 Turbulent Boundary Layers
As already discussed in Chapter 8, once the transition process has been completed,
and the intermittency factor has reached its asymptotic value of , the boundary
layer becomes fully turbulent. Its motion is described by the Reynolds averaged
Navier-Stokes equations (8.76),  where the Reynolds  stress tensor is replaced
by . The index notation also given as Eq. (9.60) is:

Assuming a two dimensional statistically steady boundary layer flow and neglecting
the gravitational force, the component  of  Eq. (11.67) in x1-direction is

and in x2-direction reads

Following the boundary layer concept and the order of magnitude estimates in (11.1),
(11.10), and (11.11) for the mean velocity components and their changes, Eq. (11.68)
in  -direction is:   

and in -direction reads:
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(11.72)

(11.73)

(11.74)

(11.75)

As seen from Eqs. (11.10), and (11.11), estimating the order of magnitudes has led
to a drastic reduction of mean velocity components and their derivatives in Eqs.
(11.70) and (11.71). Similar order of magnitude estimation must be applied to the
turbulence quantities. For this purpose we first extend the list of dimensionless
parameters in (11.3) bei introducing a dimensionless fluctuation velocity vector

and the turbulence intensity Tu.

These dimensionless parameters inserted into Eq. (9.59) results in 

Decomposing Eq. (11.73) into the x-component reads

and in y-component we have:

In Eqs. (11.74) and (11.75) all terms with the order of magnitude can be neglected
as shown in  (11.11) and (11.12). The terms with the order of magnitude Tu2 may be
neglected also. This is admissible because in engineering applications, the turbulence
intensity ranges from 2% (0.02) to 15% (0.15) or above. This means, the order of
magnitude of Tu2 may range from 0.0004 to 0.0225. On the other hand, the terms with
the order of magnitude of may or may not be neglected. Since

, the order of magnitude of can be approximates as 
.  As a consequence, Eqs. (11.70) and (11.71) are further

reduced to:
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(11.79)
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Fig. 11.10: Molecular and turbulence shear stress distribution in
a channel flow with the height h.

and in -direction reads:

In solving turbulent boundary layer problems in differential form it is a common
practice to set . This implies that the pressure changes only in x-
direction. With this additional simplification, we have only one component of
momentum equation to deal with, which is. 

with as the laminar shear stress and 
as the shear stress component of the Reynolds stress tensor. Thus we can define a
total shear stress component as: 

which is the sum of the molecular and the turbulence shear stress. While the molecu-
lar shear stress occupies a small region very close to the wall, the  turbulence shear
stress dominates the rest of the channel. This is quite clearly shown in Fig. 11.10.
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(11.80)

(11.81)

(11.82)

(11.83)

(11.84)

Expressing the Reynolds stress tensor in terms of  Eq. (9.129), , its
shear components reads:

with  as the kinematic turbulence viscosity. Implementing Eqs. (11.79) and (11.80)
into (11.78), we have the defining equation fo motion for turbulent boundary layer as: 

The continuity equation provides a relation between the longitudinal and lateral
velocity components:

Equations (11.81) and (11.82) are the basis for implementation of different turbulence
models as we presented in Chapter 9. One of the significant parameter that is involved
in the models we discussed is the wall shear stress, which is extracted from wall
function that we discuss in the following section.

11.4.1 Universal Wall Functions 
In the context of turbulence modeling discussed in Chapter 9, we tried to find a
relationship between the mixing length and the distance from the wall. We introduced
a linear function to describe the  linear sublayer: 

followed by the  logarithmic layer which is described as a logarithmic function:   

with the dimensionless velocity  and the dimensionless distance from the
wall . The wall friction velocity is related to the wall shear stress by

the relation .  Equations (11.83) and (11.84) introduced by Prandtl [17] and
[18] are universal laws of the wall and are found on dimensional basis. Figure 11.11
gives an overview of a typical turbulent velocity profile, which is described by
several functions. The linear relationship for the sublayer accounts for the laminar
friction within the range of  . In the logarithmic layer the influence of the
turbulent friction outweighs the laminar one. The overlap region is characterized by
the interaction between the  molecular and turbulent viscosity.
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The inner layer includes the laminar sublayer, the logarithmic layer and the overlap.
Moving towards the edge of the boundary layer, the viscosity effect diminishes. At
the same time the effects of parameters such as the pressure gradient, the curvature,
the freestream turbulence intensity and the unsteadiness determine the outer layer.

Figure (11.12) shows the equations that define the laminar sublayer with its influence
range of  from 0 to 5 and the range of start of logarithmic layer is estimated at

. The accurate location of this point depends on how the overlap
region is defined. For the case of zero pressure gradient showed in Fig. 11.12, the
location is .  For a fully developed turbulent flow in smooth pipes Nikuradse
[19] experimentally determined the constants in Eq. (11.84) to be  and

0. As seen in Fig. 11.12, Eqs. (11.83) and (11.84) describe only two portions
of a turbulent velocity profile. A major portion of the velocity profile, the overlap
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layer, that connects the viscous sub layer with the logarithmic layer is missing.
Likewise the  outer layer which merges the boundary layer with the mainstream is not
described. For zero-pressure gradient turbulent flow, Spalding [20] introduced an
implicit function that provides a single relation that covers  the sublayer, the overlap
layer  and the logarithmic layer. It reads:

Equation (11.85) labeled as  is also plotted in Fig. 11.12. Though
this equation adequately describes the velocity profile of a turbulent flow at  zero
pressure gradient, due to its implicit nature its practical applications is limited. Pfeil
and Sticksel [15] developed an explicit equation that describes the velocity profiles
of a turbulent flow at zero pressure gradient. The equation is based on Reichard’s 
proposal [21] that the shear stress in the immediate vicinity of the wall must be at
least proportional to y3. The equation is: 

The coefficients depend on the pressure gradient . For a flat plate at
, the coefficients listed in [15] are: 

Equations  (11.85) an d (11.86) are plotted in Fig. 11.13, which also
includes the laminar sublayer. 

Figure 11.13 compares Eq. (11.85) and (11.86) with the experimental data  by
Laufer [22], Anderson et al. [23] and Wieghardt [24]. Both equations show a
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(11.88)

(11.89)

(11.90)

(11.91)

(11.92)

satisfactory agreement with the measurements. However, with the exception of the
wake region, the experimental match Eq. (11.86)almost entirely. Also, systematic
measurements by Sticksel [25] performed at different pressure gradients show that
Eq. (11.86) satisfactorily covers the overlap region which is in general shorter than
the one described by Eq. (11.85). These measurements are useful complements to
those documented by Coles and Hirst [26]. 

11.4.2 Velocity Defect Function
Equations (11.83) and (11.84) cover major portions of the velocity that are under
influence of the laminar and turbulent wall sear stresses. Moving towards the edge of
the boundary layer, the influence of these stresses diminishes while the influence of
the main stream becomes more important in shaping the velocity pattern. This
suggests that in the outer layer, the wall turbulence may be replaced by the free
turbulence (Chapter 10). One of the major parameters that shape the outer portion of
the velocity profile is the pressure gradient. This parameter can be take into
consideration by adding another term to the existing wall functions.  
It may have the following form:

Utilizing Eq. (11.84), Eq.  (11.88) gives:

with  as the wake parameter that represents the pressure gradient. The additional
term  W (y/ )is called wake function W (y/ ) introduced by Coles [27] in numerical
format. It has the typical pattern of a jet boundary or half of a wake (see Chapter 10).
Experimental data taken at non-zero pressure gradient pertaining to the outer layer
show that they are well approximated by the function

which satisfies the normalization requirement 

Equation (11.90) is a purely curve fit and unlike Eqs. (11.83) and (11.84) it is not
based on dimensional reasoning. To determine the parameter , we set in Eq.
(11.89)  and with Eq. (11.90) we find:
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(11.93)

(11.94)

(11.95)

(11.96)

(11.97)

(11.98)

Equation (11.92) is a direct relationship between the wall shear stress and wake
parameter . Subtracting Eq. (11.88) from (11.92), we arrive at a relationship for
the wake velocity defect:

Equation (11.93) includes the dimensionless wall distance, the pressure gradient and
the wall velocity. It can be written as:

The last equation is called the velocity defect law. Clauser [28] replaced the boundary
layer thickness by the displacement thickness  and introduced the Clauser
equilibrium parameter:

Clauser argued that for a boundary layer with variable pressure gradient but constant 
 all properties can be scaled with a single parameter. This type of boundary layer is

called equilibrium boundary layer. Introducing the local friction coefficient and
inserting  into Eq. (11.95), Spurk [29] introduced the following
relationship between the pressure parameter and the local friction coefficient: 

Ignoring the effect of the viscous sublayer in integrating and using the definition of
the displacement thickness 1 from (11.88) Spurk obtained the following relations for
the displacement thickness

and  for the  momentum thickness

In Eq. (11.98) the unknowns are and .  With the integral momentum

equation (11.64) and the following empirical relation by Mellor and Gibson [30] 
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(11.99)

(11.100)

(11.101)

(11.102)

(11.103)

(11.104)

(11.105)

we have five equations available for the five unknowns. For a flat plate at zero
pressure gradient, Eq. (11.99) the wake parameter value is . However, in
the literature different values are suggested (Coles [10]: , White [11]

). The equilibrium parameter can be re-arranged in terms of velocity gradient
outside the boundary layer as

With the given five equations for the five unknowns and the prescribed initial values,
the turbulent boundary layer can be calculated by numerical methods. For a flat plate
at zero-pressure gradient with and   0.55 we obtain from  the momentum Eq.
(11.64)

Expressing  and x in terms of the corresponding Re-number  and

, Eq. (11.101) is re-written as 

White [11] fitted the numerical values that he gained from the computation of law of
the wake the following relationship between the friction coefficient and : 

Inserting Eq. (11.103) into (11.102) and integrating the result with the assumption
that at White [11] arrived at 

To find the friction coefficient   in (11.103) as a function of , the Reynolds 
number  is replaced by (11.104) resulting in 

White also computed a flat plate case, where the wake was neglected, and arrived at
a similar relation but with different multiplication factor:
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(11.109)

In this context it is informative to compare Eq. (11.105) with the other correlations
that are used in boundary layer calculation. Earlier correlation by Prandtl and
Schlichting [31] reads:

Falkner [32] suggested the following relation:

Figure 11.14 compares Eqs. (11.105) through (11.109). 

As seen, correlations by Prandtl-Schlichting (11.107) and Falkner (11.108) are very
close. Differences of about 17% are seen, when comparing White’s correlation
(11.105) with the other correlations. White argued that neglecting the wake effect
increases the multiplication factor from 0.025 to 0.027 causing an 8% higher cf .
Plotting Eq. (11.106), however shows that  for the no-wake case, there is a substantial
difference between the results of Eq. (11.106), the Falkner’s and Prandtl-Schlichting’s
correlations. If we assume that the difference of wake-no wake of

correctly reflects the wake effect on the
multiplication factor, then we arrive at a modified Falkner equation: 

Equation (11.109) is also plotted in Fig. 11.14. These equations are valid for a fully
turbulent flow with a -range of .
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(11.110)

(11.111)

(11.112)

(11.113)

(11.114)

(11.115)

(11.116)

For a few special cases of fully developed turbulent flows such as the flow through
a pipe with a smooth surface or a fully turbulent boundary layer flow along a flat
plate, the velocity distribution can be approximated by power laws.  Based on Blasius
[33] work ,  for a pipe with a radius R,  Prandtl [18] introduced a power law to
approximate the velocity ratio  within a pipe. Blasius [31] established the
following empirical coefficient of resistance  for smooth pipes:

with as the averaged velocity that satisfies the continuity requirement. The Blasius
Equation is valid for . The coefficient  is related to the pressure loss
coefficient of the pipe defined as:

with L as the length of the pipe,  and as the relative surface
roughness. Setting the reaction force caused by the wall shear stress equal to the force
by pressure drop, we obtain:

Inserting in Eq. (11.112) from Eq. (11.111), we find 

Substituting in Eq.(11.113)  by Eq.(11.110) yields 

From Eq. (11.114) immediately follows that

This is the 1/7-th power law for the velocity distribution within a smooth pipe.
Nikuradse [20] showed that the velocity distribution of a fully turbulent pipe flow can
be described by
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Fig. 11.15: Overlap section of power law with the logarithmic layer.

With  as the as the maximum velocity at the pipe center and y the distance from
the pipe wall. Comparing the velocity measurement of a fully turbulent flow along a
smooth plate, Prandtl [18] argued that for the flat plate the following approximation
can be made 

with as the velocity at the edge of the boundary layer. The 1/7th power law can also
be used to approximate a portion of the velocity profile that is described by the
logarithmic law. It reads:   

As Fig. 11.15 shows, Eq. (11.117) tangents the logarithmic layer and delivers almost
identical values from to  It is interesting to note that Eq. (11.117)
captures a portion of the outer region that is described by the wake function.

11.5 Boundary Layer, Differential Treatment

This section treats the boundary layer problem from a differential point of view. In
contrast to the integral method, the differential method provides the distribution of
flow quantities in a two dimensional coordinate system. It includes the equations of
continuity and motion. Furthermore for implementation of heat transfer aspects of
boundary layer, the energy equation is included. For the sake of completeness, we
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(11.119)

(11.120)

(11.121)

(11.122)

present these equations, which we encountered previously. Using the nomenclature
introduced for two-dimensional boundary layer, the time averaged continuity equation
is given by

and time averaged momentum equation in the x-direction reads:   

For applying the energy equation to a two-dimensional boundary layer problem, we
first invoke Eq.(9.90), expand its terms for a two-dimensional boundary layer flow:

Re-arranging Eq. (11.121) and performing the routine boundary layer simplification,
we get: 

Now we introduce the turbulence kinematic viscosity, also called eddy kinematic
viscosity ,  eddy diffusivity of heat  and turbulent Prandtl number  
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(11.123)

(11.124)

(11.125)

(11.126)

Considering (11.123), Eq. (11.122) can be rewritten in a more compact form

Equation (11.124) displays the total energy equation for a two-dimensional
incompressible boundary layer. If one completely neglects the dissipation term ,
there are still two terms that need to be modeled,  namely the eddy viscosity
(turbulent viscosity)  and the eddy diffusivity . For the eddy viscosity, the Prandtl
mixing length, Eq. (9.137) in conjunction with Eqs. (9.141), (9.142), (9.43) and
(11.86) given bellow can be used

The dimensionless velocity gradient in (11.125), is obtained by
differentiating Eq. (11.86). The eddy diffusivity is approximated using the turbulent
Prandtl number . Crawford and Kays [34] presented an empirical correlation
for  for gases in terms of turbulent Peclet  number . Expressing

this correlation in terms of  and , it reads: 

with , , and  as the turbulent Prandtl number. 
Figure 11.16 exhibits the turbulent Prandtl number for different working media as

a function of y+. Cebeci and Bradshaw [35] also developed an empirical relation in
the form of a power series in log Pr. 

Utilizing  Eq. (11.126) or the empirical relation in [32], the calculation of Prt  at the
wall yields Prandtl numbers that are  different from those of the molecular
Prandtl numbers. However, since at  all turbulence activities cease to exist,
the eddy diffusivity must disappear at the wall. As a result, the calculated Prt-number
at  must correspond to the molecular Pr-number. This is apparently not the
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case as Fig. 11.16 shows. This discrepancy is rectified by introducing  the effective
Prandtl number [36]:

with
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(11.129)

(11.130)

(11.131)

As Fig. 11.17 shows, the effective Prandtl number Preff has the same asymptote  as 
Prt. However, Preff satisfies the boundary condition, namely that at the wall

, consequently . As a result Preff is equal
to the molecular Prandtl number . Using Eq. (11.127) in conjunction with
the total enthalpy equation (11.124) is simplified as:    

As Eq. 390 indicates, the dissipation term has been neglected. An order of magnitude
estimate shows that resulting error is of the same order as the numerous boundary
layer approximations already made.    

11.5.1 Solution of Boundary Layer Equations
To solve the equation system consisting of Eqs. (11.119), (11.120) and (11.129),  the
turbulent shear stress and the turbulent heat flux have to be modeled. Since the latter
is related to the turbulent shear stress through the turbulent Peclet number and the
subsequent Prandtl number (11.126), it is sufficient to model the turbulent shear stress
only. For this purpose any of the turbulence models discussed in Chapter 9 may be
utilized. However, for two-dimensional boundary layer problems, where a flow
separation is not present, the Prandtl mixing length model has shown to deliver
reasonable results for calculation of velocity, heat transfer and friction coefficient as
shown by Schobeiri et al. [37], [38] and [39]. Since at high Reynolds numbers, the
boundary layer development undergoes a transition, the mixing length model must
include the intermittency function as we discussed in more detail in Chapter 8.
Following Eq. (8.76), we have

with the intermittency Eq.(8.42) reproduced below:

with , 
Including Eq. (11.131) into (11.130), the system of differential equations (11.119),

(11.120) and (11.129) is integrated numerically for two-dimensional boundary layer
cases. Sufficiently accurate results can be obtained by using the mixing length model,
as long as a flow separation does not occur.
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11.6 Measurement of Boundary Flow, Basic Techniques 

The foregoing sections are dedicated to the boundary layer theory, its integral and
differential treatments. Generally, in science and engineering any hypothesis,
modeling or calculation method must undergo a critical experimental verification to
substantiate its validity. At this juncture it is necessary to provide the basics essential
to understand the boundary layer development, transition, separation and re-
attachment from an experimental point of view. 

11.6.1 Experimental Techniques
The experimental techniques used for boundary layer measurement are, among other
things, Laser Doppler anemometry (LDA),  Particle Image Velocimetry (PIV) and hot
wire anemometry (HWA). For boundary layer measurement, where the extraction of
flow details close to the wall is of primary interest, optical methods like LDA and PIV
have severe problems. Larger required measuring volume, noncontinuous signals and
bias due to nonuniform distribution of seeding particles in the measuring volume
close to the wall make LDA and PIV less appropriate for boundary layer
measurement compared to HWA. Another major advantage is that the HWA is
cheaper, it is relatively simple to use and easier to maintain than its LDA-or PIV
competitors. Furthermore it delivers quite accurate results without excessive
experimental efforts. 

11.6.1.1 HWA Operation Modes, Calibration

Hot wire anemometers may operate in constant-temperature (CT) mode for measuring
high frequency flow velocities or in constant current (CC) mode for temperature
measurements. Single-wire, cross-wire and three-wire probes are used to measure 1-,
2-, and 3-dimensional flows.  For capturing the statistics within the boundary layer,
the cross wire or three-wire probes cannot be used, because of the wire configuration
and their tip geometry which may be much larger than the boundary layer thickness
itself. As a result, the single wire probe is the appropriate sensor for boundary layer
measurement. Figure 11.28 schematically shows a flat plate inserted in a test section,
where the boundary layer flow is measured using a single hot wire sensor.  

The sensing wire materials are tungsten, platinum, platinum-rhodium or platinum
iridium alloys. In the CTA-operating mode, the anemometer system  provides the
sensing wire with a current such that the wire resistance remains almost constant. The
heated sensing element connected to a Wheatstone bridge is subjected to the 
incoming flow that removes the heat from the sensor wire in a convective heat
transfer process. The change in flow condition causes a change in the bridge voltages
and thus in the wire resistance.  These voltages form the input to an amplifier
generating an output current, which is inversely proportional to the resistance change
of the sensing wire. This current is fed back to the bridge restoring the sensor
resistance.

Special boundary layer applications may require custom designed probes.  In this
case, attention must be paid to the position of the wire relative to the tips of the two
prongs, on which the wire is soldered. The wire must be attached to the tips of the 
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Fig. 11.18: Measurement of boundary layer flow using single hot wire.

prongs and not in between. Also one has to make sure that the wire is perfectly
parallel to the surface. The boundary layer probes mostly custom designed may be
inserted with the probe holder shaft in x2-direction Fig. 11.18 (top, flat plate) or in x3
direction (bottom, turbine blade). The probe must be calibrated first; this can be done
in-situ or in a special calibration channel, where the flow velocity can be accurately
varied in small increments. 

Exposing the probe to a pre-defined velocity range, for example 
with an increment of , the anemometer responds with a certain voltage
for each velocity. Using calibration equation, a set of voltage-velocity table is
produced that can be spline fitted. The calibration equation is then  implemented into
a data acquisition and analysis system for further analysis. Details of calibration of
single and x-wire probes are found in many publications listed by the hot wire system
manufacturer (TSI, Dantec, etc.). John and Schobeiri [40] presented a simple method
for calibrating the x-wire probes. 

Another important issue that needs to be addressed is the wall influence on the
results, when taking data close to the wall. The heat conductivity of the wall material
has a significant influence on the results and must be taken into consideration. There
are a number of empirical correlations that can be used, among others, by Durst et
al. [41].
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11.6.1.2 HWA Averaging, Sampling  Data

Steady and unsteady data are averaged using the methods explained in Chapter 8. For
statistical analysis of periodic unsteady flow, data must be ensemble averaged. (see
Chapter 8). The larger the number of ensembles, the better is the smoothing of the
ensemble averaged data. However, from case to case, there is a limit for the ensemble
number, beyond which, there is no noticeable improvement. In many cases including
the ones discussed in the following, an ensemble number of 100 seems to be 
sufficient.

Data Sampling Rate: Another important parameter that affects the quality of the
results and particularly the resolution of the details of flow statistics is the sampling
rate. Consider a time interval T within which N samples are taken, Fig. 11.19. 

The sampling frequency  is defined as the ratio of the number of the samples
divided by the total sample time T:

As shown in Fig. 11.19, dividing the sample time T by the number of samples N
results in the time interval t between the samples. Consequently, we have .
Thus, in Eq, (11.132) T can be replaced by  that leads to 

Now, given a total sample time of T- seconds, the question that arises is: what is the
appropriate sample frequency? The answer is: the selected sample frequency must
exceed twice the analog signal highest frequency to avoid the aliasing effect. This
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frequency is called Nyquist-frequency, or folding frequency.  Conversely, if one has
chosen the sample frequency that satisfies the Nyquist-criterion and the number of the
samples, the total sample time follows immediately. The analog signals in form of
output voltage measured by an anemometer passes through a low pass filter that  is
used for removing high frequency electrical noise. The filtered voltage signal enters
a signal conditioner that conditions the output signal to match the analog/digital
converter input ranging from 0 to 10V. The digitized signals then enter the data
acquisition computer, where a regularly updated calibration curve converts the
voltage signals into velocity information. A detailed description of hot wire-
anemometry that has compiled a broad range of  knowledge and experience of many
researchers using hot wire anemometry  is found in an excellent book by Brunn [42]. 

11.7 Examples: Calculations, Experiments 

11.7.1 Steady State Velocity Calculations
As a representative example, the boundary layer development along a curved plate
at zero longitudinal pressure gradient and a radius of curvature  is
chosen, Fig. 11.20. 
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Fig. 11.21: Boundary layer development along the curved plate, Fig.
11.20,  at zero-longitudinal pressure gradient, s/s0 is the relative arc length
with s0 = 690 mm.

Unlike the flat plate boundary layer at zero -pressure gradient, the curved plate
boundary layer is subjected to a lateral pressure gradient, which is brought about by
the plate curvature. The boundary layer development along this curved plate
resembles the one along a turbine or compressor blade. Based on the position of the
plate within the test section, negative, zero or positive pressure gradients can be
established by varying the plate leading edge angle relative to the incoming flow. A
single wire custom designed probe attached to a traversing system measures the
boundary layer region from leading edge to trailing edge.

The squirrel cage type wake generator shown in Fig. 11.20 is used to generate
periodic unsteady flow condition present at the inlet of the test section.  It consists of
two parallel rotating circular disks at which rods can be circumferentially attached.
For the steady state experiment, rods of the wake generator are removed allowing a
disturbance free inlet condition. The results of the boundary layer velocity
calculations for this plate are shown in Fig. 11.21. It shows the development of the
boundary layer from laminar ( ) to transitional  and finally to
turbulent state ( ). It should be pointed out that using any turbulence model
without considering the boundary layer transition process delivers results that are
applicable to the turbulent portion of a boundary layer only. In numerous engineering
applications, however, the boundary layer is mostly transitional. 

Figure 11.21 shows the velocity distribution starting from , which is
very close to the leading edge. Laminar boundary layer extends from the leading edge
to a local relative position of .  As seen, the major portions of the laminar

profiles can be approximated by the wall function , which is equivalent to 

.  This linear behavior is clearly reflected in Fig. 11.21.
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Fig. 11.22: Boundary layer velocity distribution at three different
longitudinal position along the curved plate. Computation (solid lines),
Experiments (Symbols), Chakka and Schobeiri [38].     

The boundary layer transition starts at about and is completed at about
. The transitional profiles reveal a very small portion of the logarithmic

layer. The fully turbulent profile at has all the features we discussed in
Section 11.5.1

11.7.1.1 Experimental Verification

The calculation method presented above in conjunction with the transition model
required an experimental verification which is presented in Fig. 11.22. The figure
shows the results of boundary layer measurement performed at three different longi-
tudinal locations shows that the flow is laminar at at , transitional at

 and turbulent at (solid lines). Satisfactory agreement with
the experiment (symbols) shows that the mixing length model along with the trans-
ition model Eq.(8.42) is capable of capturing the details within the boundary layer. 

The laminar-turbulent transition process that takes place along the curved wall is most
suitably displayed in a intermittency contour plot as shown in Fig.11.23. This figure
exhibits details of the intermittency distribution inside and outside the boundary layer.
Figure 11.23 displays two distinguished flow regions: (a) a transitional zone
with  that starts at  and extends up to the plate trailing edge and (b)
a low turbulence flow region with that occupies the rest of the flow domain.

The intermittency picture revealed in Fig. 11.23 describes the transitional behavior
of the boundary layer, which was shown in Figs. 11.21 and 11.22.



 11   Boundary Layer Theory 397

trs at s/s0 =0.5

0.25 0.5 0.75 1

5

10

15

20

25

30
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

γ

s/s0

y
(m

m
)

_

γ (s/so) for steady inlet flow condition Ω=0 (no rod)

Fig. 11.23: Contour plot of intermittency function for steady inlet flow
condition.

(11.134)

(11.135)

(11.136)

11.7.1.2 Heat Transfer Calculation, Experiment

Temperature distribution within the boundary layer and on the solid surface can be
calculated by coupling the energy equation (11.129) with the equations of continuity
and momentum (11.119), (11.120). In dealing with heat transfer problems it is
necessary to define a heat transfer coefficient h. In general, the local heat transfer
coefficient is defined as: 

with  as the heat transfer rate per unit of area,   the surface temperature and 
the free stream temperature. The nondimensional form of the heat transfer coefficient
is Nusselt number:

with k as the thermal conductivity. Another nondimensional parameter that is used in
heat transfer is the Stanton number

In engineering applications and heat transfer research, surface temperature is
measured using arrays of calibrated thermocouples, liquid crystals, temperature
sensitive paints or infrared thermography. For low temperature measurements liquid
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Fig. 11.24: Stanton number as a function of local Reynolds number for a
curved plate instrumented with liquid crystal, symbol : experiment, solid
line: prediction, steady flow.

crystal thermography offers a simple yet accurate means of measuring surface
temperature as reported by Hippensteele et al. [43] and Wright and Schobeiri [44].  

The liquid crystal thermography  has the advantage of not affecting the turbulence
structure at the surface, as thermocouples or surface mounted hot wire/film probes do. 
However, its slow response does not allow extracting high frequency unsteady details.
As a result, in steady and unsteady cases, only time-averaged response can be
acquired. Using this technique, for comparison purposes, the steady state case  = 0
(no-rod)  is presented in Fig. 11.24, where the mixing length model in conjunction
with the transition model are applied. Good agreement between calculation and
experiment is shown in Fig.1.24 for a wide range of ReX from leading edge via
transition portion to trailing edge.

11.7.2 Periodic Unsteady Inlet Flow Condition
The unsteady flow produced by the wake generator is characterized by an unsteady
parameter . In the literature it is custom to use the Strouhal number to characterize
a  periodic unsteady flow. The Strouhal number is defines as  with n as
the frequency, D a characteristic diameter and V the inlet flow velocity. The
dimensionless frequency  defined as  = /  where  is the ratio of the arc
length of the plate so and the spacing between the rods sR. The flow coefficient 

 is the ratio of the inlet velocity Uin and the circumferential velocity of
the wake generator Uw. The dimensionless frequency  as defined above is an
extension of the Strouhal number in the sense that it incorporates the rod spacing sR
and the plate length S0, in addition to the inlet velocity and wake generator speed.

For the experimental examples presented in this section, at each boundary layer
position, samples are taken at a rate of 20 kHz for each of 100 revolutions of the wake
generator. The data are  ensemble averaged with respect to the rotational period of the
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Fig. 11.25: Ensemble-averaged velocity and fluctuation-rms distribution
as a function of non-dimensional time at different y-locations at s/s0 = 0.26
for 3-rods.

wake generator. Figure 11.25 shows a representative set of ensemble averaged
velocity (a) and fluctuation distributions (b) inside the boundary layer along the
curved plate of Fig. 11.20 (Schobeiri [45]). Both figures are parts of the same set of
unsteady flow measurement. Figure 11.25(a) shows the velocity distribution as a
function of dimensionless time t/  for three time periods  taken at different y-
positions normal to the surface of the plate. Outside the boundary layer at about y =
10 mm, a wide portion of the velocity has a pronounced undisturbed region which we
call external region. This region is characterized by a low level of random rms
fluctuation of , Fig 11.25(b). Considering the velocity inside the
external region, , we find a turbulence intensity of about 1.3%.

As the hot wire probe moves toward the plate surface, the velocity continuously
reduces because of the increasing viscosity effect but maintains its pattern. A change
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spatial domain at y = 0.1mm, wake passing frequency  = 1.033 (3 rods).

of pattern is observed, when the probe is at a position y < 1mm. While the external
region reduces drastically, the fluctuation within the vortical core increases leading
to a much higher turbulence intensity. Figure 11.25(b) shows the ensemble averaged
velocity fluctuation rms with a highly vortical wake core region which is occupied by
small vortices.  For a  y-range between 0.1-10 mm, the velocity fluctuations within
the vortical core have maximums that appear periodically. Very close to the wall at
y = 0.1 mm the maximum fluctuation rms is about 1.8m/s that corresponds to a
turbulence intensity of about 52%. The increase in turbulence intensity caused by the
impingement of the unsteady wake flow on the boundary layer is one of the
mechanisms that suppresses the flow separation under unsteady wake flow condition
as seen in the next section.

The periodic unsteady turbulence activities along the curved plate at y = 0.1 mm at
different instant of time is shown in a time space diagram, Fig. 11.26. A set of
ensemble-averaged data is utilized to generate the ensemble-averaged turbulence
intensity contour plot for two a lateral positions y = 0.1 mm presented in Fig. 11.26. 
As shown, for  = 1.033, (3 rods), the boundary layer is periodically disturbed by the
high turbulence intensity wake strips. These strips are contained between the wake
leading edge and the wake trailing edge that move with two different velocities
namely 0.88<V0> and 0.5 <U0> as marked in the figure. Outside the wake strips
undisturbed low turbulence regions are observed with significantly lower intensity
levels indicating the absence of any visible wake interaction. As seen, whenever the
wake strip with high turbulence intensity passes over the plate, the boundary layer
becomes turbulent.  However, the flow state changes from turbulent to laminar one
as soon as the wake strip passes by. Thus, the flow state changes intermittently from
laminar to turbulence  and vice versa. 
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The intermittent character of the boundary layer flow subjected to a periodic unsteady
wake flow condition is shown in a time-space intermittency contour plot as shown in
Fig.11.27. The frequency as well as the y-locations along the plate correspond to
those shown in Fig. 11.26.  Figure 11.27 exhibits three distinguished flow zones: (a)
a periodic laminar flow zone with  the intermittency close to zero, (b) a periodic
turbulent zone occupied by the wake vortical core denoted by  and  (c) an
extended becalmed region marked with a dashed triangle. To highlight the effect of
the unsteady wake flow impingement on the transition behavior, the vertical dashed
line marks the position of the transition start of the boundary layer under steady inlet
flow condition shown in Fig. 11.23. As Fig. 11.27 shows, the wake passing has
caused  a delay in transition start resulting in a becalmed region mentioned above.  

11.7.2.1 Experimental Verification

To compare the unsteady velocity distribution with the results from boundary
calculation, the periodic unsteady velocities are time averaged. Considering a case
with  = 1.725 (5 rod), the results are presented in Fig. 11.28. Solid lines represent
the calculation results using the differential method described in section 11.5 with the
mixing length turbulence model and the time-averaged intermittency function as
detailed in Chapter 8. The symbols represent the velocity distribution experimentally
obtained at longitudinal positions , and that
correspond to laminar, transitional and turbulent states, respectively. Details of the
transition process that corresponds to the Fig. 11.28 is shown in time-space contour
plot Fig. 11.29. Compared to Fig. 11.27 with   = 1.033, (3 rods), the wake strips
occupied by wake vortices and high intermittency values have moved closer together.
As a consequence, the time averaged turbulence intensity has increased causing the
transition start to move towards the leading edge.          
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Given the fact that the method described in section 11.5 is a steady state calculation
method, the time averaged experimental results plotted in Fig. 11.28 are in
satisfactory agreement with the calculation. They allow predicting the  boundary layer
parameters and thus the skin friction coefficient.

Fig. 11.28: Boundary layer velocity distribution in lateral direction at
three longitudinal locations  for = 1.725 (5-rods). Computation (solid
lines), Experiments (Symbols), Chakka and Schobeiri [38].
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11.7.2.2 Heat Transfer Calculation, Experiment

For unsteady flow cases with a dimensionless frequency value of = 5.166 (15 rods),
calculated Stanton numbers are compared with the experimental results and shown
in Fig. 11.30, where the experimental results are represented by symbols. 
Furthermore, three curves are plotted in each diagram representing the calculation
results. The upper dashed curve represents the streamwise Stanton number
distribution when the plate is subjected to an inlet flow  intermittency state of
< (t)>max .  On the other hand, if the plate is subjected to < (t)>min (See Chapter 8,
section 8.4.4), the lower dashed-dot curve depicts its Stanton number distribution. 
However, because of the periodic character of the inlet flow associated with unsteady
wakes, the plate would experience a periodic change of heat transfer represented by
upper and lower Stanton number curves (dashed line and dashed-dot line) as an
envelope. The liquid crystal responds to this periodic event with time averaged
signals.  This time-averaged result is reflected by the solid  line, which gives a
corresponding time averaged intermittency. 

As the experimental results show, the increased dimensionless frequency of   =
5.166 (15 rods) compared to the steady case, has caused the transition point to shift
towards the leading edge. The shift is a result of a combined effect of wake mixing
and the increased impinging frequency of the wake strips that introduce an excessive
turbulent kinetic energy transport to the boundary layer that causes a shift of
transition start toward the leading edge. Figure 11.30 exhibits a reasonably good
agreement between the theory and experiment in the transition and turbulent regions
with Rex > 1.2x105. In the laminar region, however, the theory slightly over predicts
the heat transfer resulting in marginally higher Stanton numbers.  In this region, better
agreement can be reached by utilizing the minimum intermittency < (t)>min.
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11.7.3 Application of -  Model to Boundary Layer
As we saw in the preceding sections, using the Prandtl-mixing length model in
conjunction with the transition model presented in Chapter 8 delivers satisfactory
results for two-dimensional boundary layers. It can also be used for moderate adverse
pressure gradient as the study by Schobeiri and Chakka [46] shows. 

The Prandtl mixing length model may be replaced by any of the models described
in Chapter 9. As an example, a channel flow case computed using -  -model by
Wilcox [47] shows a good agreement between the computation and the experiment
in sublayer and logarithmic layer. 

11.8 Parameters Affecting Boundary Layer 

In this section, the effects of major parameters on boundary layer development,
separation and re-attachment will be discussed. The discussions are based on
experimental findings rather than computational simulation. The parameters are:
Unsteady inlet flow condition, pressure gradient, Reynolds number and the inlet
turbulence intensity. There are certainly other parameters that my affect the boundary
layer development and heat transfer, however, their effects are of secondary relevance
compared to the parameters mentioned above. 

One of the areas of engineering applications, where the above parameters interact
with each other is the turbomachinery aerodynamics. Figure 11.32 displays an aircraft
gas turbine engine with the components listed in the caption. Within these
components, particularly in the low pressure (LP) turbine, the pressure gradient,  the
unsteady wake interaction, Re-number and turbulence intensity determine the
development of the boundary layer, its separation and re-attachment on the blade
surfaces. In an engine like the one shown in Fig. 11.32, its is very difficult, almost
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Fig. 11.32: An aircraft gas turbine engine with the fan stage, low pressure
(LP) and  high pressure (HP) compressor stages, HP- and LP-turbine
stages.

impossible to investigate the effect of these parameters individually. First, there are
a number of parasitic effects that negatively influence the extraction of individual
data. Furthermore, the high operating temperature and the limited accessibility to the
engine inner structure do not allow a systematic measurements of the desired flow
parameters. This circumstance compels aerodynamicists to design research facilities
for extracting detail information about the particular parameters they wish to
investigate.

As an example, Figure 11.33 shows a multi-purpose, large-scale, subsonic research
facility designed to investigate the effect of the parameters mentioned above on
boundary layer and heat transfer. Since the facility is described in detail in [48], [49]
and [50], only the parameter variation capability of this facility is discussed. 

A two-dimensional periodic unsteady inlet flow is simulated by the translational
motion of an unsteady wake generator (see Figure 11.33) with a series of cylindrical
rods attached to two parallel operating timing belts driven by an electric motor. 

11.8.1 Parameter Variations,  General Remarks
Variation of Unsteady Wake Frequency: To investigate the effect of periodic
unsteady inlet flow condition on the boundary layer behavior, rods with a constant
diameter of 2 mm are attached to the belts, as shown in Fig. 11.34. To simulate
different frequency, the rods may be then subsequently attached to the belts at
spacings of SR = 160 mm, SR = 80 and SR = 40. The spacing  SR =  (no rod)
represents the steady state case.  Figure 11.23 exhibits the time dependent velocities
for SR = 80 mm, SR = 160 mm and SR = . As seen, the steady state case is
characterized by a constant velocity. The frequency of the unsteady case with SR =
80 mm is twice as high as with SR = 160 mm. 
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Fig. 11.33: The TPFL-Turbine cascade research facility with the components and the
adjustable test section.

S 1 = :

S 2 = 1 6 0  m m

S 3 =  8 0  m m

Fig. 11.34: Wake Generator with two timing belts with rods attached, velocity
distributions generated with three different dimensionless frequencies  = 0 (steady),
1.59, and 3.18. Location of the data measured: 30 mm upstream of the leading edge.
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Fig. 11.35: Turbine cascade test section with the blade geometry and flow
angles, SS= Suction Surface (convex), PS=Pressure Surface (concave),
two blade instrumented with static pressure taps.

To accurately account for the unsteadiness caused by the frequency of the individual
wakes and their spacings, the flow velocity, and the cascade parameters, a
dimensionless frequency is defined that includes the cascade solidity , the flow
coefficient , the blade spacing SB, and the rod spacing SR.

Te dimensionless frequency  defined in Eq. (11.137) incorporates the rod spacing
SR and the blade spacing SB, in addition to the inlet velocity and wake generator
speed. For the rod spacings of SR = 80 mm, SR = 160 mm and SR =  (no rod, steady
case), the corresponding dimensionless frequencies are =3.18, 1.59 and 0.0.  Figure
11.35 exhibits the cascade with the blade geometry and position relative to the wake
generator geometry.

Variation of Turbulence Intensity, Length Scale: A characteristic quantity that
describes the intensity of the random fluctuations of incoming flow velocity is the
turbulence intensity Tu. In engineering applications, turbulence intensity may assume
values from low 1% to high 15%. To simulate certain level of Tu, turbulence grids
can be used as detailed in Chapter 9, Section 9.3. For the purpose of investigating the
Tu-effects, three different turbulence grids are used for producing inlet turbulence
intensities of Tu = 3.0%, 8.0%, and 13.0%. Similar to Section 9.3, the grids consist
of square shaped aluminum rods with the thickness GT and opening GO, given in
Table 9.3. The grids were subsequently installed upstream of the wake generator and
the resulting turbulence intensity measured with the distance form cascade leading
edge GLE defined in Table 9.3.
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Fig. 11.36: Pressure distribution along the LP-turbine blade, SS=
Suction Surface, PS=Pressure Surface.

Variation of Pressure Gradient: By choosing a low pressure turbine as a repre-
sentative example, an aerodynamic system is introduced that inherently generates a
continuous  distribution of negative, zero and positive pressure gradients. In steady
operation mode the rods are removed thus the velocity at the cascade inlet is fully
uniform. At the inlet, the velocity vector is tangent to the camberline of the blade such
that an incidence free inlet flow condition is established. The Reynolds number

is built with the suction surface length S0 and the exit velocity. Figure
11.36 displays the dimensionless pressure distribution  along
the suction and pressure surfaces of the LP-turbine blade with pressure p1 as the static
pressure of the first tap.

As Fig. 11.36 shows, the suction surface (convex), exhibits a strong negative pressure
gradient. The flow accelerates at a relatively steep rate and reaches its maximum
surface velocity that corresponds to the minimum  at . Passing
through the minimum pressure, the fluid particles within the boundary layer encounter
a positive pressure gradient  that causes  a deceleration until  has been
reached. This point signifies the beginning of the laminar boundary layer separation
and the onset of a separation zone. As seen in the subsequent boundary layer
discussion, the part of the separation zone characterized by a constant cp-plateau
extends up to . 

Passing the over the plateau, the flow first experiences a second sharp deceleration
indicative of a process of re-attachment followed by a further deceleration at a
moderate rate. On the pressure surface, the flow accelerates at a very slow rate,
reaches a minimum pressure coefficient at  and continues to decelerate
until the trailing edge has been reached. Unlike the suction surface, the pressure
surface boundary layer does not encounter any adverse positive pressure gradient that
triggers separation. The process of flow acceleration, separation and re-attachment
is shown in Fig. 11.37, where the measured velocity distribution normal to the 
surface  is plotted along the suction surface.
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Fig. 11.37: Boundary layer development along the LP-turbine blade.  

11.8.2 Effect of Periodic Unsteady Flow
Generally, in engineering applications, the flow velocity is associated with certain
fluctuations, whose degree can be expressed in terms of turbulence intensity Tu. This
is true for statistically steady as well as unsteady flow situations. The fluctuations
have usually high frequencies that require highly sensitive probes to capture them.
For low temperature applications, hot wire anemometry is used, whose data
acquisition frequency can be adjusted. For statistically steady flow, the time
dependent velocity is measured, from which time averaged and the  fluctuation
components can be extracted.

Boundary Layer Development, Separation, Re-attachment: To identify the
streamwise and normal extent as well as the temporal deformation of the separation
bubble on the suction surface of the LP-turbine blade under unsteady wake flow
condition, detailed boundary layer measurements in  normal as well as in streamwise
directions are required. The steady state case serves as the reference configuration.
The experimental program includes the boundary layer information that covers 11
streamwise locations on the suction surface upstream, within and downstream of the
separation bubble. Aerodynamics measurements are performed for the Reynolds
number of 110,000, for four different turbulent intensity Tu of 1.9%, 3.0%, 8.0% and
13.0%, and three different dimensionless frequency values of   = 0.0 (SR = 8), 
= 1.59 (SR =160 mm) and  =3.18 (SR = 89 mm). For each case, ensemble and time
averaged velocity and turbulence fluctuation, turbulence intensity, and unsteady
boundary layer parameters are generated. The discussion of the results are centered
on the combined effects of the unsteady wakes and the freestream turbulence intensity
and their mutual interaction. Thus, only those results are presented that are essential
for understanding the basic physics describing the combined effects mentioned above.
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Fig. 11.38: Distribution of time-Averaged velocity (a) and turbulence fluctuation rms
(b) along the suction surface for steady case =0 (SR= ) and unsteady cases =1.59
(SR=160 mm) and =3.18 (SR=80 mm) at Re=110,000 and free-stream turbulence
intensity of 1.9% (without grid).

Time Averaged Velocity and Fluctuation Distributions: The distribution of time
averaged velocity and turbulence fluctuations are presented for the above Tu-levels.
Figure 11.38 (a,b)  display the velocity and fluctuation distributions at one streamwise
position upstream, three  positions within and two positions downstream of the
separation bubble using single hot-wire probes. The diagrams include one  steady
state data for reference purposes,  = 0.0 (SR = ) and two sets of  unsteady data for 

 = 1.59 (SR = 160 mm) and  = 3.18 (SR = 80 mm).

Effect of Unsteady Wake Frequency:  As Figures 11.38(a) and (b) indicate, in the
upstream region of the separation bubble at  s/so= 0.49, the flow is fully attached. The
velocity distributions inside and outside the boundary layer experience slight
decreases with increasing the dimensionless frequency, Fig. 11.38(a). At the same
positions, however, the time averaged fluctuations shown in 11.38(b) exhibits
substantial changes within the boundary layer as well as outside it. The introduction
of the periodic unsteady wakes with highly turbulent vortical cores and subsequent
mixing has systematically increased the free stream turbulence intensity level from
1.9% in steady case, to almost 3% for  = 3.18 (SR = 80 mm). This intensity level
is obtained by dividing the fluctuation velocity at the edge of the boundary layer, Fig.
11.38(b) by the velocity at the same normal position Fig. 11.38(a). Comparing the
unsteady cases  = 1.59 and 3.18, with the steady reference case  = 0.0, indicates
that, with increasing , the lateral position of the maximum fluctuation shifts away
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from the wall. This is due to the periodic disturbance of the stable laminar boundary
layer upstream of the separation bubble. 

Convecting downstream, the initially stable laminar boundary layer flow
experiences a change in pressure gradient from strongly negative to moderately
positive causing the boundary layer to separate. The inflectional pattern of the
velocity distribution at s/so= 0.57 signifies the beginning of a separation bubble that
extends up to s/so= 0.85, resulting in a large sized closed separation bubble. As
opposed to open separation zones that are encountered in compressor blades and
diffuser boundary layers, the closed separation bubbles are characterized by a low
velocity flow circulation within the bubble as shown in Fig. 11.38(a). Measurement
of  boundary layer also with single wire probes along the suction surface of the same
blade is reported, among others, in [51] and [52] reveal exactly the same pattern as
shown in Fig. 11.38. In contrast, the single wire measurement in an open separation
zone exhibits a pronounced kink at the lateral position, where the reversed flow
profile has its zero value. Despite the fact that a single wire probe does not recognize
the flow direction, the appearance of a kink in a separated flow is interpreted as the
point of reversal with a negative velocity.

The effect of unsteady wake frequency on boundary layer separation is distinctly
illustrated in Fig. 11.38(a) at  s/so= 0.61, 0.73, and  0.77. While the steady flow case
(no rod,  = 0.0) is fully separated, the impingement of wakes with    = 1.59 on the
bubble has the tendency to reverse the separation causing a reduction of the
separation height. This is due to the exchange of mass, momentum and energy
between the highly turbulent vortical cores of the wakes and the low energetic fluid
within the bubble as shown in Fig. 11.38(b). Increasing the frequency to   = 3.18 has
moved the velocity distribution further away from the separation, as seen in Fig.
11.38(a) at  s/so= 0.77. Passing through the separation regime, the reattached flow
still shows the unsteady wake effects on the velocity and fluctuation profiles. The
fluctuation profile, Fig. 11.38(b) at s/so=  0.85, depicts a decrease of turbulence
fluctuation activities caused by unsteady wakes (  = 1.59 and 3.18) compared to the
steady case (  = 0, no rod). This decrease is due to the calming phenomenon 
extensively discussed by several researchers ([53], [54],[55] and [56]).

Combined Effects of Unsteady Wakes and Turbulence Intensity: Increasing the
turbulence level from 1.9 % to 3% that is produced by the turbulence grid TG1(Table
9.3), shows that the time-averaged velocity, Fig. 11.39(a), as well as the fluctuation
distribution Fig. 11.39(b), hardly experience any noticeable changes with increasing
the dimensionless frequency from  = 0.0 to 3.18. This is the first indication that the
higher turbulence intensity of 3% generated by TG1 is about to dictate the boundary
layer development from leading edge to trailing edge. While the  high frequency
stochastic fluctuations of the incoming turbulence seem to overshadow the periodic
unsteady wakes and the lateral extent of the separation bubble, they are not capable
of completely suppressing the separation. 

A similar situation is encountered at higher turbulence intensity levels of 8%
produced by grid TG2, Fig. 11.40(a,b). 
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Fig.11.40: Distribution of time-averaged velocity (a) and turbulence fluctuation rms
(b) along the suction surface for steady case =0 (SR= ) and unsteady cases =1.59
(SR=160 mm) and =3.18 (SR=80 mm) at Re=110,000 and Tu=8%.
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Fig. 11.39: Distribution of time-averaged velocity (a) and turbulence fluctuation rms
(b)along the suction surface for steady case =0 (SR= ) and unsteady cases =1.59
(SR=160 mm) and =3.18 (SR=80 mm) at Re=110,000 and Tu=3% .

The time averaged velocity as well as fluctuation rms do not exhibit effects of
unsteady wake impingement on the suction surface throughout. In contrast to the
above 3% case, the 8% turbulence intensity case, Fig. 11.40(a), seems to substantially
reduce the separation bubble, where an inflection velocity profile at s/s0 = 0.61 is still
visible. An almost complete suppression is accomplished by utilizing the turbulence
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Fig. 11.41: Ensemble-averaged velocity contours along the suction surface
for different s/s0 with time t/  as parameter for =1.59 (SR=160 mm) at
Re=110,000 and free-stream turbulence of 1.9% (without grid). White area
identifies the separation bubble SB location and size.

intensity of 13% that is produced by turbulence grid TG3.. In both turbulence cases
of 8% and 13%, the periodic unsteady wakes along with their high turbulence
intensity vortical cores seem to be completely submerged in the stochastic high
frequency free-stream turbulence.

Combined Effects of Wake and Turbulence Intensity on Bubble Kinematics
For better understanding the physics, the ensemble averaged velocity contours are
presented for Tu = 1.9 and 8.0, respectively. Thus, the contour plots pertaining to Tu
= 3.0% and 13% that are very similar to the ones with Tu = 8% will not be discussed.
The combined effects of the periodic unsteady wakes and high turbulence intensity
on the onset and extent of the separation bubble are shown in Fig. 11.41 and 11.42
for the Reynolds number of 110,000. These figures display the full extent of the
separation bubble and its dynamic behavior under a periodic unsteady wake flow
impingement at different t/ . For each particular point s/so on the surface, the unsteady
velocity field inside and outside of the boundary layer is traversed in normal direction
and ensemble-averaged at 100 revolution with respect to the rotational period of the
wake generator. To obtain a contour plot for a particular t/ , the entire unsteady
ensemble-averaged data traversed from leading to trailing edge are stored in a large
size file (of several giga bites) and sorted for the particular t/  under investigation. 

Variation of  Tu at  = 1.59: Figure 11.41 with a cascade Tu = 1.9% exhibits the
reference configuration for  = 1.59 (SR = 160 mm), where the bubble undergoes
periodic contraction and expansion as extensively discussed in [57] and [58].

During a rod passing period, the wake flow and the separation bubble undergo a
sequence of flow states which are not noticeably different when the unsteady data are
time-averaged. Starting with Re = 110,000 and   = 1.59,  Fig. 11.41 (a) exhibits the
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Fig. 11.42: Ensemble-averaged velocity contours along the suction surface
for different s/s0 with time t/  as parameter for =1.59 (SR=160 mm) at
Re=110,000 and Tu=8% (with grid).

separation bubble in its full size at t/ =0.25. At this instant of time, the incoming
wakes have not reached the separation bubble. The kinematic of the bubble is
completely governed by the wake external flow which is distinguished by red patches 
traveling above the bubble. At t/  = 0.5, the wake with its highly turbulent vortical
core passes over the blade and generates high turbulence kinetic energy. At this point,
the wake turbulence penetrates into the bubble causing a strong mass, momentum and
energy exchange between the wake flow and the fluid contained within the bubble.
This exchange causes a dynamic suppression and a subsequent contraction of the
bubble. As the wake travels over the bubble, the size of the bubble continues to
contract at t/  =  0.75 and reaches its minimum size at, t/  = 1.0. At t/  = 1, the full
effect of the wake on the boundary layer can be seen before another wake appears and
the bubble moves back to the original position. 

Increasing the turbulence level to 3%, 8%, and 13% by successively attaching the
turbulence grid TG1, TG2, and TG3 (detail specifications are listed in Table 9.3) and
keeping the same dimensionless frequency of  = 1.59, has significantly reduced the
lateral extent of the bubble. The case with Tu = 8%, Fig. 11.42, is an appropriate
representative of dynamic changes among the turbulence levels mentioned above. As
shown in Fig. 11.42, the instance of the wake traveling over the separation bubble,
which is clearly visible in Fig. 11.41, has diminished almost entirely. Increasing the
turbulence intensity to 8%, Fig. 11.42(a to d), and 13% respectively, has caused the
bubble height to further reduce (the corresponding figure for 13% is very similar to
the one with 8%). Although the higher turbulence level has, to a great extent,
suppressed the separation bubble as Fig.11.42 clearly shows, it was not able to
completely eliminate it. There is still a small core of separation bubble remaining. Its
existence is attributed to the stability of the separation bubble at the present Re-
number level of 110,000. 
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Fig. 11.43: Ensemble-averaged velocity contours along the suction surface
for different s/s0 with time t/  as parameter for =3.18 (SR=80 mm) at
Re=110,000 and free-stream turbulence of 1.9% (without grid).
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Fig. 11.44: Ensemble-averaged velocity contours along the suction surface
for different s/s0 with time t/  as parameter for =3.18 (SR=80 mm) at
Re=110,000 and free-stream turbulence of 8.0% (with grid TG2)

Variation of Tu at Higher Wake Frequency: Figures 11.43 and 11.44 represent the
dynamic behavior of the separation bubble at Tu = 1.9%, but at a higher dimen-
sionless frequency of  = 3.18. 

Similar to Fig. 11.41, the case with the Tu = 1.9% presented in Fig.11.43 exhibits the
reference configuration for  = 3.18 (SR = 80 mm) where the bubble undergoes
periodic contraction and expansion. The temporal sequence of events is identical with
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the case discussed in Fig. 11.41, making a detailed discussion unnecessary. In con-
trast to the events described in Fig. 11.41, the increased wake frequency in the
reference configuration, Fig. 11.43, is associated with higher mixing and, thus, higher
turbulence intensity that causes a more pronounced contraction and expansion of the
bubble.

As in case with  = 1.59, applying turbulence levels of  3%, 8%, and 13% by
successively utilizing the turbulence grids TG1, TG2, and TG3 and keeping the same
dimensionless frequency of  = 3.18, has significantly reduced the lateral extent of
the bubble. Again, as a representative example, the case with Tu = 8% is presented
in Fig. 11.44 (a to d), which reveals similar behavior as discussed in Fig. 11.42.
Further increasing the turbulence intensity to 13% has caused the bubble height to
further reduce. Although the higher turbulence level has, to a great extent, suppressed
the separation bubble, it was not able to completely eliminate it. There is still a small
core of separation bubble remaining. As in Fig. 11.42, its existence is attributed to the
stability of the separation bubble at the present Re-number level of 110,000. 

Quantifying the Combined Effects on Aerodynamics: Figures 11.41 to 11.44 show
the combined effects of turbulence intensity and unsteady wakes on the onset and
extent of the separation bubble. Detailed information relative to propagation of the
wake and the turbulence into the separation bubble is provided by Fig. 11.45(a,b, c,
and d), where the time dependent ensemble averaged velocities and fluctuations are
plotted for Re = 110,000 at a constant location s/s0 = 3.36 mm inside the bubble for
different intensities ranging from 1.9% to 13%. As Fig. 11.45(a) depicts, the wake has
penetrated into the separation bubble, where its high turbulence vortical core and its
external region is clearly visible. 

Lowest turbulence fluctuations occur outside the vortical core, whereas the highest
is found within the wake velocity defect. Increasing Tu to 3%, Fig. 11.45 (b), reduces
the velocity amplitude of the periodic inlet flow and its turbulence fluctuations.
Despite a significant decay in amplitude, the periodic nature of the impinging wake
flow is unmistakably visible. Further increase of Tu to 8%, Fig. 11.45(c), shows that
the footprint of a periodic unsteady inlet flow is still visible, however the
deterministic periodicity of the wake flow is being subject to the stochastic nature
caused by the high turbulence intensity. Further increase of turbulence to Tu  =13%
causes a degradation of the deterministic wake ensemble averaged pattern to a fully
stochastic one. Comparing Figs. 11.45(a) and 11.45(c) leads to the following
conclusion: The periodic unsteady wake flow definitely determines the separation
dynamics as long as the level of the time averaged turbulence fluctuations is below
the maximum level of the wake fluctuation vmax, shown in Figure 11.45(a). In this 
case, this apparently takes place at a turbulence level between 3% and 8%. Increasing
the inlet turbulence level above vmax causes the wake periodicity to partially or totally
submerge in the free-stream turbulence, thus, downgrading into stochastic fluctuation,
as shown in Figs. 11.45(c) and (d). In this case, the dynamic behavior of the
separation bubble is governed  by the flow turbulence that is responsible for the
suppression of the separation bubble. One of the striking features this study reveals
is, that the separation bubble has not disappeared completely despite the high
turbulence intensity and the significant reduction of its size which is reduced to a tiny
bubble. At this point, the role of the stability of the laminar boundary layer becomes
apparent which is determined by the Reynolds number.
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Fig. 11.45: (a, b, c, and d): Time dependent ensemble averaged velocities
and fluctuations for Re= 110,000 at a constant location s/s0 = 0.65 mm
inside the bubble for different inlet turbulence intensities ranging from
1.9% to 13%.

Problems and Projects

Problem 1: Given an inclined flat plat at a non-zero pressure gradient with a
uniformly porous surface, where mass flow with a constant velocity vW in y-direction
is injected into the boundary layer. Derive boundary layer the integral equation.

Project 1:  Using a flat plate at zero pressure gradient: (1) Implement the Prandt-
mixing length into the Navier-Stokes -equation. (2) Use the method discussed in this
Chapter for determining the mixing length. (3) Generate a finite-difference scheme
and solve the fully turbulent boundary layer flow. Hint: Using an implicit method
avoids possible  convergence problems.    

Project 2: Using the flat plate at zero pressure gradient from project 1: (1) Implement
the intermittency function into the Navier-Stokes -equation (2) Solve the equation
system for laminar, transitional and turbulent boundary layer flow distribution. (3)
Plot the distributions of boundary layer displacement and momentum thicknesses as
well as the skin friction  in x-direction.

Project 3: Compare the results from project 2: (1) Find the wall shear stress
distribution. (2) Find u+, y+ for laminar, transitional and turbulent boundary layer
regions and compare them with the implicit and explicit results shown in Fig. 10.13.
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(12.2)

12 Compressible Flow

12.1 Steady Compressible Flow

As we discussed in section 4.1.1, for an unsteady compressible flow, the density may
generally vary as a function of space and time . The necessary and
sufficient condition for a flow to be characterized as compressible is that the
substantial change of the density must not vanish. This statement is expressed by the
relation:

Steady compressible flow constitutes a special case where the density may vary
throughout the flow field without changing with time at any spatial position. Thus,
Eq.(12.1) reduces to:

In order to estimate the spatial changes of the density given by Eq. (12.2), we first
establish the relationship between the change of the density with respect to pressure.
This relationship is closely related to the speed of sound which enables us to define
the flow Mach number as , with c as the speed of sound. Using the basic
conservation principles, we then derive a relationship between the density changes,
the other thermodynamic properties, and the flow Mach number. To better understand
the underlying physics, we assume an isentropic one dimensional flow, where we set 

.

12.1.1 Speed of Sound, Mach Number
To calculate the speed of sound in a fluid which is contained in an open end channel
with constant cross section, we generate an infinitesimal disturbance proceeding
along the channel by moving a disturbance generator, Fig. 12.1. This weak
disturbance causes a pressure wave which is then propagated with the speed of sound
c. Upstream of the wave front, the fluid experiences an infinitesimal velocity dV at
the pressure and the density . Downstream of the wave front, the fluid
is at rest with density  and pressure p. To obtain the speed of sound using the steady
conservation laws, we simply change the frame of reference by placing an observer
directly on the wave front, thus, moving with velocity c. Assuming an isentropic flow,
we apply the conservation equations of mass, momentum, and energy to the control
volume sketched in Fig. 12.1. 

(12.1)
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(12.3)

(12.4)

(12.5)

(12.6)

(12.7)

The continuity balance for steady flow, Eq. (5.16), applied to stations 1 and 2 results
in:

Substituting the velocities in Eq. (12.3) by those from Fig.12.1, we have

Neglecting the second order terms, Eq. (12.4) reduces to:

Now we apply the linear momentum balance for steady flow, Eq. (5.47), to the
control volume in Fig.12.1. Because of the isentropic flow assumption, the shear
stress terms identically vanish resulting in zero reaction force, thus, the momentum
balance reduces to:

Substituting the velocities in Eq. (12.6) by those from Fig.12.1, we have:
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(12.8)

(12.9)

(12.10)

(12.11)

(12.12)

(12.13)

(12.14)

With the mass flow , we arrive at:

Equating (12.5) and (12.8) results in:

We derived Eq. (12.9) under the assumption of isentropic flow. To underscore this
assumption, we replace the ordinary derivative by partial derivative at constant
entropy:

For an isentropic process we have:

With  as the isentropic exponent that can be set constant for a perfect gas. Taking
the derivative

Using the equation of state for perfect gas , we arrive at  

Thus, the speed of sound is directly related to the thermodynamic properties of the
fluid:

Equation (12.14) states that the speed of sound is a function of the substance
properties. As mentioned above, the density change within a flow field is directly
related to the Mach number. This statement will be explained more in detail in the
following sections.

12.1.2 Fluid Density, Mach Number, Critical State
As we indicated earlier, the density and the flow Mach numbers are related to each
other. To derive this relationship, we apply the energy equation for an adiabatic
system to a large container, Fig. 12.2. The container is connected to a convergent
nozzle with the exit diameter d that is negligibly small compared to the container
diameter D.
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Fig. 12.2: Adiabatic system at a given total pressure and temperature.

(12.20)

(12.15)

(12.16)

(12.17)

The total enthalpy balance is written as

Since in this chapter we are dealing with one dimensional flow, the velocity
subscripts refer to the stations and not to the velocity components as we had before.
Thus, the subscript refers to the stagnation point where the velocity is assumed to be
zero. Assuming a perfect gas, for enthalpy we introduce the temperature and divide
the result by the static temperature. Thus, the dimensionless version of Eq.(12.15) in
terms of total temperature reads: 

The specific heats at constant pressure and volume are related by the specific gas
constant:

Using the above relations, the total temperature ratio is expressed in terms of the
Mach number:

To obtain a similar relationship for the density ratio, we assume an isentropic process
described by:

that we combine with the equation of state for ideal gases

(12.19)

(12.18)
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(12.21)

(12.22)

(12.23)
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Fig. 12.3: Density, pressure and temperature changes as a function of
flow Mach number.

Thus, eliminating the specific volume results in: 

Introducing Eq. (12.21) into (12.18) results in:

Likewise, we obtain the density ratio as:

Equation (12.23) expresses the ratio of a stagnation point density relative to the
density at any arbitrary point in the container including the exit area. Assuming air
as a perfect gas with  at a temperature of , the ratios

, , and  from Eqs.
(12.18), (12.22) and (12.23) are plotted in Fig. 12.3. We find that for very small Mach
numbers ( ), the density change  is small and the flow is considered
incompressible. Increasing the Mach number, however, results in a significant change
of the density ratio. In practical applications, flows with  are still considered
incompressible. Increasing the Mach number above results in higher density
changes that cannot be neglected, as Fig. 12.3 shows. 
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(12.25)

(12.27)

(12.28)

(12.29)

Thus, the flow is considered as compressible with noticeable change of density. If the
velocity approaches the speed of sound, i.e. V = c and M = 1, it is called the critical
velocity and the flow state is called critical. In this case, the properties in Eq. (12.18),
(12.22) and (12.23) are calculated by setting M = 1. To distinguish this particular
flow state, quantities are labeled with the superscript *. The critical temperature
ratio is:

The critical pressure ratio reads: 

and finally the critical density ratio is obtained from: 

From Eq. (12.25), it is obvious that in order to achieve the sonic flow (M = 1), the
critical pressure ratio must be established first. In a system like the one in Fig: 12.2
with a convergent exit nozzle and air as the working medium with  = 1.4, the critical
pressure ratio is . At this pressure ratio, the mass flow per unit area has
a maximum, and the flow velocity at the exit nozzle equals to the speed of sound. Any
increase in the pressure ratio above the critical one results in a choking state of the
exit nozzle. In this case, the convergent nozzle produces its own exit pressure such
that the critical pressure ratio is maintained. To calculate the mass flow of a
calorically perfect gas through a convergent nozzle in terms of pressure ratios, we
first replace the enthalpy in energy equation (12.15) by:

Thus, the energy equation for a calorically perfect gas is:

To eliminate the density at the exit, we now apply the isentropic relation to the right-
hand side of (12.28) and arrive at:

(12.26)

(12.24)
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(12.30)
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Fig. 12.4: Mass flow function  for different -values.

We assume that inside the container, because of , the velocity  is negligibly
small compared to the velocity at the nozzle exit . In this case, the static pressure
p0 would represent the total pressure at the same position . We now set

 and call it the nozzle exit or back pressure. If the actual pressure ratio is less
than the critical one, , and the mass flow exits into the atmosphere,
then the nozzle exit pressure is identical with the ambient pressure and the  nozzle is
not choked. On the other hand, if , the convergent nozzle is choked
indicating that it has established a back pressure which corresponds to the critical
pressure. With the above assumption, the mass flow through a convergent channel is
calculated by

where the mass flow function  is defined as

thus, the mass flow through the nozzle is calculated by

Figure 12.4 shows  as a function of the pressure ratio for different .

The maximum value of  is obtained from:

(12.33)

(12.31)

(12.32)
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(12.34)

(12.35)

(12.36)

(12.37)

(12.38)

(12.39)

(12.40)

Figure 12.4 shows that increasing the pressure ratio results in an increase of the mass
flow function until max has been reached. Further increase in pressure ratio results
in a choking state where the flow function remains constant. 

12.1.3 Effect of Cross-Section Change on Mach Number
As seen in the previous section, once the speed of sound has been reached at the exit
of a convergent channel, the nozzle exit velocity can not exceed the speed of sound 
which corresponds to . In order to establish an exit Mach number of , the
nozzle geometry has to change. This is achieved by using the conservation of mass:

Differentiating Eq. (12.34) with respect  to x-direction and dividing the result by Eq.
(12.34), we obtain the expression

Introducing the speed of sound, (12.10) into Eq. (12.35), we find:

Applying the Euler equation of motion for one-dimensional flow, we obtain:

Introducing Eq. (12.37) into (12.36), we have 

with the definition of Mach number, Eq. (12.38) reduces to:

Introducing Eq. (12.37) into (12.39) results in: 

With Eqs. (12.39) and (12.40) we have established two relationships between the
cross section change, the velocity change, the pressure change and the Mach number.
For a subsonic inlet flow condition  M < 1, a  decrease in cross-sectional area leads
to an increase in velocity and consequently a decrease in pressure Fig. 12.5.

On the other hand, increasing the cross-section area (dA > 0) leads to decreasing
the velocity (dV < 0) that is associated with an increase in pressure, Fig. 12.5(b). For 
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Fig. 12.5: Subsonic nozzle with dA <0, dV > 0, dp < 0, (b): Subsonic
diffuser with dA > 0, dV < 0, dp > 0
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Fig. 12.6: Fig. 12.6 (b) Supersonic nozzle with dA >0, dV > 0, dp < 0,
(c) Supersonic diffuser with dA > 0, dV < 0, dp > 0.

M = 1 we obtain dA/dx = 0. For a supersonic inlet flow condition M > 1, Eqs. (12.39)
and (12.40) show that if the cross-sectional area increases (dA/dx > 0), the velocity
must also increase (dV/dx > 0), or if the cross-section decreases, so does the velocity.
As a result, we obtain the geometries for supersonic nozzles and diffusers as shown
in Fig. 12.6.

As shown in Figs. 12.5 and 12.6, the cross-section undergoes negative and positive
changes to establish subsonic and supersonic flow regimes. The transition from a
positive to a negative change requires that dA/dx = 0. This, however, means that the
product, , on the right-hand side of (12.39), must vanish. Since 
has for both nozzle and diffuser flow cases a non-zero value, only the expression

 has to vanish, which results in M =1. As a consequence, Mach number M
=1 can be reached only at the position where the cross-section has a minimum. The
above conditions provide a guideline to construct a Laval nozzle which is a
convergent-divergent channel for accelerating the flow from subsonic to supersonic
(Laval nozzle) Mach range.  The condition for a  supersonic flow to be established is
that the pressure ratio along the nozzle from the inlet to the exit must correspond to
the nozzle design pressure ratio which is far above the critical pressure ratio. In this
case, the flow is accelerated in the convergent part, reaches the mach number M = 1
in the throat and is further accelerated in the divergent portion of the nozzle. 
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Fig. 12.8: Schematic of a supersonic diffuser.

Figure 12.7 shows the schematic of a Laval nozzle which is used in the first stage of
power generation steam turbines, thrust nozzle of rocket engines, and in the
afterburner of supersonic aircraft engines. If the channel pressure ratio is less than the
critical pressure ratio, the flow in the convergent part is accelerated to a certain Mach
number M<1 and then decelerates in the divergent part.

A supersonic diffuser is characterized by a convergent divergent channel,
however, its inlet Mach number is supersonic (M >1). Figure 12.8 shows a schematic
of a supersonic diffuser. The incoming supersonic flow is decelerated from M > 1 to
M = 1 at the throat where the sonic velocity has been reached. Further deceleration
occurs at the divergent part of the supersonic diffuser. 

This principle of supersonic flow deceleration is applied to the inlet of a super-
sonic aircraft, schematically shown in Fig. 12.9. The incoming supersonic inlet flow
hits an oblique shock system that originates from the tip of the inlet cone and touches
the cone casing. After passing though the oblique shock front, the flow is deflected
and its velocity reduced. Passing through the convergent part of the supersonic
diffuser, the velocity continuously decreases, and reaches the throat where a normal
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Fig. 12.9: Schematic of an inlet diffuser of a supersonic aircraft.

0 1 2 3 4 5
M

0

0.2

0.4

0.6

0.8

1

A*/A

ρ/ρt

p/pt T/Tt

Fig. 12.10: Area ratio and the thermodynamic property ratios as a function
of Mach number for  = 1.4.

shock reduces the supersonic flow to a sonic one. Further deceleration occurs in the
divergent part of the diffuser where the flow is exiting into a multi-stage compressor. 

Equation (12.39) and its subsequent integration, along with the flow quantities
listed in Table 12.1, indicate the direct relation between the area ratio and the Mach
number. These relations can be utilized as useful tools for estimating the distribution
of the cross-sectional area of a Laval nozzle, a supersonic stator blade channel, or a
supersonic diffuser. If, for example, the Mach number distribution in the streamwise
direction is given, , the distribution of the cross-sectional area 

 is directly calculated from Table 12.1. If, on the other hand, the cross-
section distribution in the streamwise direction is prescribed, then the Mach number
distribution, and thus, all other flow quantities can be calculated using an inverse
function. Since we assumed the isentropic flow with calorically perfect gases as the
working media, important features, such as flow separation, as a consequence of the
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boundary layer development under adverse pressure gradient, will not be present.
Therefore, in both cases, the resulting channel geometry or flow quantities are just 
rough estimations, no more, no less. Appropriate design of such channels, particularly
transonic turbine or compressor blades, require a detailed calculation where the fluid
viscosity is fully considered.

Table 12.1: Summary of the gas dynamic functions 

Ratios for two arbitrary sections Ratios relative to the throat
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Fig. 12.11: Operational behavior of a generic Laval nozzle, (a) Expansion to
the design exit pressure, (b) Overexpansion.

In order to represent the thermodynamic variables as functions of a Mach number, we
use the continuity and energy equations in conjunction with the isentropic relation 
and the equation of state for the thermally perfect gases with p = RT. The isentropic
flow parameters as a function of a Mach number are summarized in Table 12.1 which
contains two columns. The first column gives the individual parameter ratios at
arbitrary sections, whereas, the second one gives the ratios relative to the critical
state. The gas dynamics relations presented in Table 12.1 are depicted in Fig. 12.10.

Laval nozzles were first used in steam turbines, but many other applications for these
nozzles have been found, for example, in rocket engines, supersonic steam turbines,
and supersonic air craft engines. In the following, we briefly discuss the operational
behavior of a generic Laval nozzle which is strongly determined by the pressure ratio.
Detailed discussion of this topic can be found in excellent books by Spurk [1], Prandtl
et al. [2], and  Shapiro [3]. Starting with the design operating point where the exit
pressure is set equal to the ambient pressure, curve  in Fig. 12.11 corresponds to the
design pressure ratio. In this case, the Mach number continuously increases from the
subsonic at the inlet to the supersonic at the exit, Fig. 12.11(a). An increase in the
ambient pressure results in an overexpanded jet depicted in Fig. 12.12, indicating that
the flow in the nozzle expands above a pressure that does not correspond to its design
pressure point  with pe < pa. At this particular pressure condition, the flow pattern
inside the nozzle does not change as curve  indicates. However, outside the nozzle,
the flow undergoes a system of oblique shocks (in the following section, shocks are
treated in a detailed manner). The shocks originate at the nozzle exit rim, raising the
nozzle exit pressure to the ambient pressure. Based on the magnitude of the ambient
pressure, the transition from the nozzle design pressure pe to the ambient pressure pa
is accomplished either by a system of oblique shock waves and their reflection on the 
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Fig. 12.13: Nozzle operating at overexpanded mode, formation of a
system of normal shocks downstream of the nozzle exit. 

jet boundary, as depicted in Fig. 12.12, or by a combination of oblique and normal
shocks, as shown in Fig. 12.13.

Further increase of the ambient pressure causes the shocks to move into the nozzle,
forming a normal shock. The formation of the normal shock is associated with a
discontinuous increase in pressure, shown in  Fig. 12.11, curves . As seen in Fig.
12.11, upstream of the shock, the pressure follows the nozzle design pressure, curve 

, with a supersonic velocity, while downstream of the shock, the flow is subsonic.
If the ambient pressure is increased in such a way that the shock reaches the nozzle
throat, curve , then the nozzle is not capable of producing a supersonic flow in its
entire length. Any further increase in ambient pressure that corresponds to a nozzle
pressure ratio below the critical one, causes the flow to accelerate within the
convergent section to reach a maximum subsonic velocity in the throat and to
decelerate within the divergent part of the nozzle.

A different flow pattern emerges when the ambient pressure pa drops below the
exit design pressure pe. This occurs when a rocket engine ascends through the
atmosphere. The lower ambient pressure causes the generation of a system of
expansion and compression waves outside the nozzle, causing a pressure balance
between the jet and the environment, as shown in Fig. 12.14. A similar picture is
observed at the exit of a convergent nozzle that operates at a supercritical pressure
ratio. The transition from higher exit pressure to a lower ambient pressure is achieved
by a system of expansion waves and their reflection on the jet boundary as
compression waves, Fig. 12.15. 
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Fig. 12.15: Convergent nozzle with an after-expanding jet.

12.1.3.1 Flow through Channels with Constant Area 

This type of flow is encountered in several engineering applications such as pipes,
labyrinth seals of turbines and compressors, and to a certain degree of simplicity, in
aircraft combustion. In the case of pipes and labyrinth seals, we are dealing with an
adiabatic flow process where the total enthalpy remains constant. However, entropy
increases are present due to the internal friction, shocks, or throttling. Combustion
chamber flow can be approximated by a constant cross-section pipe with heat
addition. The characteristic features of these devices are that the entropy changes are
caused by heat addition such that the friction contribution to the entropy increase can
be neglected. This assumption leads to a major simplification that we may add heat
to a constant cross-section pipe and assume that the linear momentum remains
constant. The constant total enthalpy is described by the Fanno process, whereas the
constant linear momentum case is determined by the Rayleigh process.

Starting with the Rayleigh process, we will specifically consider the flow in a
duct with a constant cross-section without surface or internal friction, but with heat
transfer through the wall. In the absence of the shaft power, Eq. 5.73 is reduced to:
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(12.41)

(12.42)

(12.43)

(12.44)

(12.46)

(12.47)

(12.48)

In applying the momentum balance, we assume here that the contribution of the
friction forces to the total entropy increase compared to the entropy increase by
external heat addition, is negligibly small, thus, the resultant force in Eq. 5.26 may
be set Fr = 0. This results in:

To find the flow quantities for the Rayleigh process, we present the calculation of a
pressure ratio. The other quantities such as velocity ratio, temperature ratio, density
ratios, and etc., are obtained using a similar procedure. We start with the calculation
of the pressure ratio by utilizing the following steps.

Step 1: We combine the differential form of the momentum equation,

with the differential form of a continuity equation for a constant cross-section,

and obtain the modified momentum equation. This equation can immediately be
found from the 1-D Euler equation.

We rearrange the modified momentum Eq. (12.45) and introduce the Mach number 

Step 2: We combine the differential form of the continuity equation (12.44) with the
differential form of the equation of state for ideal gases. With this step, we eliminate
the density from Eq. (12.44), and we have

To eliminate the velocity ratio in Eqs. (12.46) and (12.47), we use the definition of
the Mach number. Its differentiation yields

Step 3: Inserting the velocity ratio (12.48) into the momentum equation (12.46) and
the equation of continuity (12.44), we obtain for the pressure ratio,

(12.45)
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(12.50)

(12.51)

(12.53)

(12.54)

(12.55)

(12.56)

We also replace in Eq. (12.47) the velocity ratio with Eq. (12.48) and find a second
equation for temperature ratio,

Step 4: Equating (12.49) and (12.50), we find

Equation (12.51) can be integrated between any two positions, including the one
where  M = 1:

and for the critical state

In a similar manner, the temperature ratio calculated as,

Considering the initial assumption of calorically perfect gas, the integration gives,

and relative to critical state, we have

(12.52)

(12.49)
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Table 12.2: Summary of gas dynamic equations for constructing the Rayleigh and
Fanno curves.

Constant Momentum, Rayleigh Process Constant Total Energy ,Fanno Process

Similarly, we find the pressure, temperature, velocity, and density ratios for the Fanno
process as functions of a Mach number. These quantities are listed in Table 12.2.
With these ratios as functions of Mach number, the entropy change is determined by
using any of the two following equations, (12.57) or (12.58). 
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(12.57)

(12.58)

(12.59)
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Fig. 12.16:  Dimensionless h-s diagram for Rayleigh process for dry air assumed
as a perfect gas with  = 1.4, upper (subsonic acceleration) branch  indicates the
heat addition (ds > 0) to reach sonic speed (M = 1) followed by the lower branch
(supersonic acceleration) caused by the heat rejection (ds < 0 ).

In terms of critical state:

Replacing the temperature and pressure ratios by the corresponding functions listed
in Table 12.2, we find,

The above properties can be determined by varying the Mach number. As mentioned
previously, a Rayleigh curve is the locus of all constant momentum processes. It can
be easily constructed by varying the Mach number and finding the corresponding,
enthalpy, pressure, or entropy ratios. 

Figure. 12.16 shows the Rayleigh curve in terms of enthalpy ratio as a function of
dimensionless entropy difference for dry air as a calorically perfect gas. As seen, it
has a subsonic upper branch with  M <1, a supersonic lower branch, with M > 1
joined by the sonic point with M = 1. Moving along the subsonic upper branch, the
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M < 1

q > 0 q < 0 q < 0q > 0

M = 1 M > 1 M > 1 M = 1 M < 1

(a) Subsonic inlet flow (b) Supersonic inlet flow

Fig. 12.18: Fig. 12.18: A fictive channel for realization of Rayleigh
process, (a) subsonic acceleration with heat addition and rejection, (b)
supersonic deceleration with heat addition and rejection.

addition of heat causes the specific volume and, consequently, the velocity and the
Mach number to increase until the speed of sound (M = 1) has been reached. Further
increase of the Mach number requires cooling the mass flow. 

If the inlet mach number is supersonic (lower branch), a continuous addition of
heat will cause a flow deceleration up to M = 1. Further deceleration required a
continuous heat rejection along the subsonic upper branch.

Figure 12.17 shows the enthalpy (or temperature) distribution as a function of a Mach
number. The flow acceleration and deceleration as a result of heat addition/rejection
is illustrated in a fictive channel shown in Fig. 12.18.

To emulate the Rayleigh process, we think of a channel that consists of two parts
having the same type of heat conductive material and the same cross section. The 
parts are joined together by a thin, perfect heat insulating joint such that no heat can
flow through it from either side. We assume that the streamwise location of the joint
coincides with the streamwise location of the point with M = 1. Starting with a
subsonic inlet Mach number, Fig. 12.18(a), an amount of heat is added such that the
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(12.63)

increase in specific volume causes the velocity to increase, Fig. 12.16 (upper branch),
and Fig. 12.17. To go beyond the speed of sound, heat needs to be rejected, Fig. 12.16
(lower branch), and 12.17. In the absence of the heat rejection, an increase of velocity
is not possible. The channel will choke. Figure 12.18(b) shows the Rayleigh process
that starts with a supersonic inlet. To decelerate the flow, heat is added such that the
speed of sound is reached. Further deceleration requires a reduction of specific
volume which is established by rejecting the heat. As seen, the preceding Rayleigh
process was characterized by reversibly adding and rejecting heat at a constant
momentum that resulted in flow acceleration or deceleration. We consider now an
adiabatic process through a channel with a constant cross sectional where internal and
wall frictions are present. It is called the Fanno process and is characterized by
constant total enthalpy.

As a result, the static enthalpy experiences a continuous decrease, while the velo-
city increases. To construct the Fanno curve, first the flow quantities are expressed
in terms of Mach number in a manner similar to the Rayleigh process presented
above. The corresponding relations are summarized in Table 12.2. 

Applying the energy, continuity, and impulse to an adiabatic constant cross-section
duct flow, we find the pressure ratio from:

The other thermodynamic properties are calculated from:

Finally, the velocity ratio is given by

Taking the pressure and temperature ratios from Eqs. (12.60) and (12.61), we obtain
the entropy difference from,

or in terms of Mach number, we obtain

the Fanno curve in an h-s diagram plotted in Fig. 12.19. 

(12.64)

(12.62)

(12.61)

(12.60)
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Fig. 12.19: Fig. 12.19: Dimensionless h-s diagram for Fanno process
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Fig. 12.20: Flow through a labyrinth seal of a turbomachine (a), Fanno
process  (b).

This curve is valid for a duct flow without heating, independent of the wall and
internal friction. The upper part of the curve is the subsonic, while the lower is the
supersonic. Considering a flow through a long pipe, because of the entropy increase,
the static enthalpy, the static pressure, and the density decreases. As a consequence,
the velocity increases until the speed of sound with Mach number M = 1 has been
reached. A further increase of the velocity pass the speed of sound resulting in M >
1, requires a decrease in entropy which violates the second law. Once the speed of
sound has been reached, a normal shock will occur that reduces the velocity to
subsonic. Therefore, the velocity cannot exceed the speed of sound.

A typical application of the Fanno process is shown in Fig. 12.20. The high
pressure side of a steam turbine shaft is sealed against the atmospheric pressure. To
reduce the mass flow that escapes from the process through the radial gap between
the shaft and the casing, labyrinth seals are installed on the shaft and in the casing,
Fig. 12.20(a). 
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Fig. 12.21: Normal shock in a divergent part of a Laval nozzle.

High pressure steam enters the gap and expands through the clearance C where its
potential energy is converted into kinetic energy. By entering the cavity, the kinetic
energy is dissipated causing a noticeable pressure drop. The process of expansion and
dissipation repeats in the following cavities resulting in a relatively small mass flow
that leaves the turbine. The end points of all expansions through the clearances are
located on a Fanno line, which corresponds to a constant total enthalpy. 

In Table 2.2, the equations are summarized and steps are marked that are necessary
for constructing the Rayleigh and Fanno lines using the following steps. In step  the
Mach number is varied and the corresponding thermodynamic properties are
calculated from steps  to . With the temperature and pressure ratios calculated in
steps  and , the entropy can be calculated. These steps were performed to plot
Figs.12.19. Once the thermodynamic properties are calculated, different versions of
Fanno and Rayleigh curves can be constructed easily.

12.1.3.2 The Normal Shock Wave Relations

The normal shock occurs when a supersonic flow encounters a strong perturbation.
If a supersonic flow impinges on a blunt body, it will generate a normal shock in front
of the body. Behind the shock, the flow velocity becomes subsonic causing the
pressure, density and temperature to rise. The transition from supersonic to subsonic
velocity occurs within a thin surface with a thickness that has an order of magnitude
of the mean free path of the fluid. Thus, in gas dynamics it is approximated as a
surface discontinuity with an infinitesimally small thickness.  

Given the quantities in front of the shock, the quantities behind the shock can be
determined using the conservation laws presented in Chapter 5. We assume that
changes in flow quantities up- and downstream of the actual shock compared to the
changes within the shock itself is negligibly small. Furthermore, we assume a steady 
adiabatic flow and, considering the infinitesimal thickness of the shock, we neglect
the volume integrals. In addition, we assume that the inlet and exit control surfaces
are approximately equal ( ) and the wall surface  is very small.  
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(12.65)

(12.66)

(12.67)

(12.68)

(12.69)

(12.70)

(12.71)

(12.72)

(12.73)

Using the control volume in Fig. 12.21 where position 1 and 2 refer to locations up
and downstream of the shock, we apply the continuity equation, 

the balance of momentum,

and the balance of energy,

To close the systems of equations, we introduce the equation of state either in general
p-v-T form     

or in particular for a perfect gas

With Eqs. (12.65) through (12.69) and known quantities in front of the shock, the
unknown quantities behind the shock are determined. Inserting the continuity
equation (12.65) into the balances of momentum (12.66) and of energy (12.67), we
obtain:

and

Eliminating the velocity V1 from Eqs. (12.70) and (12.71), we obtain a relation
between the thermodynamic quantities, the so-called Hugoniot relation:

Replacing the enthalpy in Eq. (12.72) by the pressure from Eq. (12.69), we find for
a perfect gas the following relation 
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Fig. 12.22: Shock and isentropic compression.

(12.75)

(12.76)

between the pressure and the density ratios. The maximum density ratio is obtained
by setting in Eq. (12.73) : 

Figure 12.22 shows the pressure ratio for the normal shock as well as for the
isentropic process. 

As seen, the Hugoniot curve approaches an asymptotic value of 
for diatomic with  = cp/cv = 7/5. In contrast, the isentropic change of state results for 
in an infinitely large density ratio 2/ 1.

Considering the upstream Mach number as the determining parameter for
calculating the state downstream of the shock, the following relations are presented
that directly relate the flow states up- and downstream of the shock as a function of
the upstream Mach number. From Eq. (12.70), the velocity can be obtained as:

Introducing the speed of sound c2 = p/  for calorically perfect gases, Eq.(12.75) can
be modified as:
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(12.77)

(12.80)

(12.81)

(12.82)

from which we can eliminate 1/ 2. Using the Hugoniot relation (12.73), we obtain
an equation for the pressure ratio

Equation (12.77) is a product of two expressions that results in two solutions: 
p2/p1 = 1 and the following solution

Equation (12.78) is an explicit relation between the pressure ratio across the shock
and the upstream Mach number M1. The density ratio is found by replacing p2/p1 in
Eq. (12.78), the Hugoniot relation (12.73)

The temperature jump is obtained by using Eq. (12.78) and (12.79):

To find the Mach number behind the shock, we use the continuity equation and the
speed of sound to get

Introducing Eqs. (12.78)  and (12.79) into(12.81), we finally find:

We infer from this equation that in a normal shock wave, because M1 > 1, the Mach
number behind the shock is always lower than 1. In the case of a very strong shock 
M2 takes on the limiting value

The shock relations are shown in Fig12.23.

(12.83)

(12.79)

(12.78)
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(12.87)

(12.84)

(12.85)

As seen, the curves for density ratio  and downstream Mach number 
approach their asymptotes at 6.0 and 0.378. The change of the state from supersonic
to subsonic due to the normal shock is associated with an entropy increase through
the shock. This is explicitly expressed  by the second law for perfect gases:

Replacing the pressure and density ration in Eq. (12.84) by (12.78) and (12.79), we
obtain the entropy equation as a function of Mach number M1.

Eliminating the density ratio using the Hugoniot relation we find:

For a strong shock , the entropy difference tends to infinity. However, for
a weak shock with a pressure ratio in the order of p2/p1 = 1 +  and small , the right-
hand side of Eq.(12.85) is expanded resulting in:

(12.86)
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Defining the shock strength , Eq.(12.87) shows that for weak shocks
(small ) the entropy increase is of the third order with respect to . Therefore, the
entropy increase may be neglected and the isentropic relation may be used for
calculating the states on both sides of the shock. Figure 12.23 also shows the
dimensionless entropy difference . Up to , no noticeable change
of entropy can be seen, which confirms the above statement.  

12.1.4 Supersonic Flow
In section 12.3, the transition from subsonic to supersonic flow regime was described
by means of a convergent-divergent channel, the Laval nozzle, as an example of
internal aerodynamics. The shock waves with the special case of normal shocks we
treated, were generated by pressure disturbances across the shock. A similar situation
occurs in external aerodynamics. Consider a stationary sound source that emits
pressure disturbances in a fluid at rest. It generates sound waves with concentric
spherical fronts. Now we suppose that the sound source, for instance a subsonic
aircraft, moves with a subsonic speed ( u < c) as shown in Fig. 12.24(a). After a
period of time t, the source  moved from point P1 to point P4 which is equivalent to
the distance . After the same period of time, the pressure disturbance
propagated spherically with the speed of sound c. The spherical wave front has the
radius . Figure 12.24(a) also shows the locations of the source at distances

,  and r4 = 0. As seen, because of u < c, the disturbance source
always remains within the respective spherical wave front. 

A different wave pattern arises, however, if the source of disturbance, for example a
supersonic aircraft,  moves with a supersonic speed  ( u > c) as Fig. 12.24(b) reveals.
Similar to the previous case, after the period of time t, the spherical front of the
pressure disturbance has reached a radius of , while the source of the
disturbance arrived at P4 leaving the distance of  behind. The sound
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Fig. 12.25: A qualitative picture of two different shock patterns based
on the same Mach number but different wedge angles.

source moving with supersonic speed forms a conical envelop, the Mach cone, whose
angle is calculated from

Figure 12.24  shows that the sound waves reaches the observer within the  Mach cone
described by the Mach angle . An observer positioned outside the Mach cone
registers first the arrival of the supersonic aircraft and then its sound waves once the
aircraft has passed overhead. 

12.1.4.1 The Oblique Shock Wave Relations

In the previous section we treated the normal shock wave, a special type of shock,
whose front is perpendicular to the flow direction. The more prevalent shocks
encountered in engineering such as in transonic turbine or compressor blade channels,
as well as supersonic aircrafts, are the oblique shocks. The basic mechanism of the
oblique shock is shown in Fig. 12.25. 

Supersonic flow with uniform velocity  approaches a wedge with a sharp angle 2 .
A surface discontinuity characterized by an oblique shock wave is formed that builds
an angle  with the flow direction. This particular shock is called the attached shock.
Following a streamline by passing through the shock front, the streamline is deflected
by an angle which corresponds to the half wedge angle a. A different shock pattern
is observed when the same supersonic flow approaches another wedge with (2 )b >
(2 )a, as shown in Fig. 12.25(b). Again, following an arbitrary streamline upstream
of the leading edge, a strong shock is formed which is detached. Figures 12.25( a) and
(b) suggest that, depending on the magnitude of the incoming Mach number and the
wedge angle or, generally body bluntness, attached or detached shocks may occur. To
establish the corresponding relationships between the Mach number, the wedge angle,
and the angle of the oblique shock, we use the same procedure that we applied to the
normal shock waves. To do this, we decompose the velocity vector  in front of the
shock into a component normal to the shock front , and a component tangential
to the shock front , as shown in Fig. 12.26. 
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(12.89)

(12.90)

(12.91)

(12.92)

(12.93)

(12.94)

(12.95)

The tangential component is

and the normal component follows from   

Introducing the normal Mach number built with the normal component, we arrive at:

The normal shock Eqs. (12.78), (12.79) , and (12.80) can then be carried over to the
oblique shock wave by replacing M1, with M1n, from (12.91):

Obtaining the normal component of the velocity behind the shock V2n = V2 sin(  - ),
the corresponding normal Mach number is
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Fig. 12.27(a,b): Shock angle (a) and Mach number (b) as functions
of wedge angle with incoming Mach number as parameter.

(12.97)

Relative to the shock front, the normal component M1n, which might be supersonic,
experiences a drastic deceleration resulting in a subsonic normal component M2n
behind the shock. The Mach number M2, however, can be supersonic. If we again
replace M1  and M2 with M1n  and M2n in Eq. (12.82) from normal shock relations, we
find:

Introducing the continuity equation (12.81), we find a relationship between the shock 
angle  and the wedge angle  (Fig. 12.26):
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Since the incoming Mach number M1 and the wedge angle  are supposed to be
known, we have with Eqs. (12.96) and (12.97) two equations and two unknowns
namely  and M2..

Figures 12.27(a) shows the shock angle  as a function of the wedge angle  with
M1 as parameter. For each Mach number, there is a maximum max, beyond which the
shock is detached. This maximum wedge angle is associated with a maximum shock
angle max. The curve with the full circles is the locus of all max and  separates the
upper - branch from the lower one. As shown in Fig. 12.27(a,b), for each given ,
two solutions, a strong shock and a weak shock, can be found based on the magnitude
of the incoming M1.  A shock is called a strong shock if the shock angle  for a given
Mach number M1 is larger than the angle max (dashed curve in Fig 12.27a,b)
associated with the maximum deflection max. A strong shock has distinguishing
characteristics that the Mach number behind the shock, M2, is always subsonic.

In contrast, the velocity downstream of a weak shock can lie in either the subsonic
or the supersonic range.  If the deflection angle  is smaller than max, there are then
two possible solutions for the shock angle . Which solution actually arises depends
on the boundary conditions far behind the shock. Figure 12.27(b) displays the Mach
number after the shock. Here again, strong shock leads to a subsonic mach number
after the shock, whereas a week shock may maintain the supersonic character of the
flow.

12.1.4.2 Detached Shock Wave

Referring to Fig.12.28, the wedge angle   > max causes a strong detached shock. The
stagnation streamline passes through a normal shock, where its initial supersonic 
Mach number is reduced to a subsonic one. Moving from the intersection of the
stagnation streamline, the shock is deflected and its strength is reduced. Far
downstream, the shock deteriorates into a Mach wave. 

Detached shocks are frequently encountered in transonic and supersonic
compressors  operating at off-design conditions. To keep the shock losses at a mini-
mum, the compressor blades are generally designed with a sharp leading edge, such
that the shocks are always attached at the design operating point. Figure 12.29(a,b)
show two profile families with the attached shocks. For transonic compressor stages
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with an inlet Mach number of , double-circular arc (DCA) profiles
are used. Supersonic compressor stages require multi-circular arc (MCA) profiles.
The profile shown in Fig.12.29(a) belongs to the DCA family where the convex
(suction side) and the concave (pressure side) surfaces are circular arcs of different
diameters. In contrast, the suction side of the profiles illustrated in Fig. 12.29(b)
consists of two or more arcs. 

The off-design operation affects the position of the shocks and may causing it to
detach from the blade leading edge, [4].

Fig. 12.30 illustrates the impact of the variation of the back pressure on shock
position. Beginning with a design point speed line, Fig. 12.30(a), the operating point
(a) is given by the inlet Mach number M1 with a uniquely allocated inlet flow angle

1. Increasing the back pressure from the design point back pressure to a higher level
(b) causes the passage shock to move toward the cascade entrance. 
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Fig. 12.31: Prandtl-Meyer Expansion around a convex corner.

By further increasing the back pressure from (b) to (c), a normal shock is established,
which is still attached. The corresponding shock angle  can be set equal to .
Decreasing the mass flow beyond this point causes the shock to detach from the leading
edge, as shown in Fig. 12.30(c). Reducing the rotational speed changes the incidence
and may further move the shock from the leading edge as shown in Fig.12.30(d).
These operating points are plotted schematically in a compressor performance map,
shown in Fig. 12.30(right), with a surge limit and an attached normal shock line. 

During startup, shutdown and dynamic load change of a gas turbine engine, the
compressor undergoes a change of rotational speed (rpm). One of these off-design
speed lines is given in Fig. 12.30 (e). The changes of the rpm causes a change in the
velocity diagram resulting in the detachment of the shock. Calculating the kinematics
of the detached shock was a major research subject of NACA. The subject was treated
among others by [5]. With today’s computational capabilities attached and detached
shockwaves are calculated with a reasonable accuracy.

12.1.4.3 Prandtl-Meyer Expansion

Unlike the supersonic flow along a concave surface, Fig.12.26,  which was associated
with an oblique shock leading to a Mach number M2 < M1, a supersonic flow along
a convex surface, Fig. 12.31, experiences an expansion process, Fig. 12.31(a). 

The parallel streamlines with the uniform Mach number M1 pass through a system of
expansion or Mach waves, thereby moving apart from each other and accelerate to
a new Mach number M2 > M1 . The expansion is associated with a deflection of the
incoming supersonic flow with the Mach angle 1 to 2. To calculate the new Mach
number, we first consider a supersonic flow around a corner of an infinitesimal
deflection, dA, as shown in Fig. 12.31(b), and apply the continuity equation (12.38):

The velocity ratio is expressed in terms of Mach number by utilizing the energy
equation

(12.98)
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(12.100)

(12.101)

(12.102)

(12.103)

(12.104)

Inserting Eq. (12.99) into (12.98), we obtain:

The geometric relation from Fig.12.31 reads: 

In Eq. (12.101), we assumed  as infinitesimally small allowing to set
and . With this approximation, Eq. (12.101) becomes:

with  as the Mach angle that can be expressed as . Equating (12.102)
and (12.100) leads to: 

and its subsequent integration gives:

This deflection angle  as well as the Mach angle  equation are plotted in Fig. 12.32.
As shown, each arbitrary supersonic Mach number is uniquely associated with a
deflection angle . As an example, we assume that in Fig.12.32 the flow has the Mach
number M1 = 1.5 and turns around a corner with an angle  = 40o. For this Mach
number, the corresponding deflection angle 1 = 12.2 is found. After turning around
the corner, the deflection is 2 = 1 +  = 52.2, which results in a Mach number of 
M2 = 3.13.

The Prandtl-Meyer expansion theory is widely used for design and loss calculation
of transonic and supersonic compressor blades. Although this topic is treated in the
corresponding chapter, in the context of this section, it is useful to point to a few
interesting features from a turbomachinery design point of view. Figure 12.33 shows
a supersonic compressor cascade with an inlet Mach number M  > 1. The incoming
supersonic flow impinges on the sharp leading edge and forms a weak oblique shock
followed by an expansion fan. Passing through the shock front, the Mach number,
although smaller, remains supersonic. Expansion waves are formed along the suction
surface (convex side) of the blade from the leading edge L to the point e, where the
subsequent Mach wave at point e intersects the adjacent blade leading edge. 
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Fig. 12.33: A supersonic compressor cascade with supersonic inlet flow.

Since the angle  is known, the Mach number Me at position e can easily be
calculated from Prandtl-Meyer relation.

12.2 Unsteady Compressible Flow
The following sections  deal with the basic physics of unsteady compressible flow that
is essential to predict unsteady flow and transient behavior of different engineering
components. The flow in all engineering applications where mass, momentum, and
energy transfer occurs within a stationary frame followed by a rotating one and vice
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versa, is periodic unsteady. Flows through turbines, compressors, internal combustion
engines, and pumps are examples where  periodic records of unsteady flow quantities
characterize the flow situations. In contrast, a non-periodic unsteady flow situation
is characterized by sets of non-periodic data records. The process of depressurizing
a container under high pressure, non-periodic events within a shock tube, and
pressurizing an air-storage cavern, are examples of non-periodic unsteady flow
situations.

In the following sections, a system of nonlinear differential equations is presented
that describes the basic physics of unsteady flow. A brief explanation of the numerical
method for solution is followed by a detailed dynamic simulation of a shock tube.

12.2.1 One-dimensional Approximation
The thermo-fluid dynamic processes that take place within engineering systems and
components are mostly of the unsteady nature. The steady state, a special case, always
originates from an unsteady condition during which the temporal changes in the
process parameters have largely come to a standstill. For the purpose of the unsteady
dynamic simulation of an engineering component, conservation laws presented and
discussed in Chapter 4 are rearranged such that temporal changes of thermo-fluid
dynamic quantities are expressed in terms of spatial changes. A summary of relevant
equations is presented in Table 12.3. They constitute the theoretical basis describing
the dynamic process that takes place within an engineering component. In the context
of the one-dimensional flow approximation, a one-dimensional time dependent
calculation procedure provides a sufficiently accurate picture of a non-linear dynamic
behavior of an engineering component. In the following, the conservation equations
are presented in index notation. For the one-dimensional time dependent treatment,
the basic equations are prepared first by setting the index . Thus, in the
continuity equation of the Cartesian coordinate system the continuity reads:

Equation (12.105) after setting  becomes:

with  as the length in streamwise direction and  the cross-sectional
area of the component under investigation. Equation (12.106) expresses the fact that
the temporal change of the density is determined from the spatial change of the
specific mass flow within a component. The partial differential Eq. (12.106) can be
approximated as an ordinary differential equation by means of conversion into a
difference equation. The ordinary differential equation can then be solved numerically
with the prescribed initial and boundary conditions. For this purpose, the flow field
is equidistantly divided into a number of discrete zones with prescribed length, ,
inlet and exit cross sections  and  as Fig. 12.34 shows.

(12.106)

(12.105)
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Conservation equations in terms of local derivatives  

Equation of continuity

Equation of motion, stress tensor decomposed 

Equation of mechanical energy including 

Equation of thermal energy in terms of u for ideal gas

Equation of thermal energy in terms of h for ideal gas

Equation of thermal energy in terms of cv and T 

Equation of thermal energy in terms of  h for ideal gases

Energy equation in terms of total pressure

Energy equation in terms of total enthalpy

Table 12.3: Summary of thermo-fluid dynamic equations 



12   Compressible Flow 461

1 2 3 i k i+1 n-1 n

S
Δ x

i Si+1

x
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(12.107)

(12.108)

(12.110)

Using the nomenclature in Fig. 12.34, Eq.(12.106) is approximated as: 

with  and  as the mass flows at stations  and  with the corresponding
cross-sections. For a constant cross-section, Eq.(12.107) reduces to:

with  as the volume of the element k enclosed between the surfaces i and
i+1. The index k refers to the position at , Fig. 12. 34. The time dependent
equation of motion in index notation of the momentum equation is:

In Eq.(12.109) ,  represents the shear force acting on the surface of
the component. For a one-dimensional flow, the only non-zero term is . It can
be related to the wall shear stress  which is a function of the friction coefficient cf.

(12.109)
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(12.111)

(12.113)

(12.114)

(12.115)

(12.116)

In the near of the wall, the change of the shear stress can be approximated as the
difference between the wall shear stress  and the shear stress at the edge of the
boundary layer, which can be set as 

The distance in  can be replaced by a characteristic length such as the hydraulic
diameter . Expressing the wall shear stress in Eq. (12.111) by the skin friction
coefficient

and inserting Eq. (12.112) into the one-dimensional version of Eq. (12.109), we
obtain

Equation (12.113) relates the temporal change of the mass flow to the spatial change
of the velocity, pressure and shear stress momentum. As we will see in the following
sections, mass flow transients can be accurately determined using Eq. (12.113). Using
the nomenclature from Fig. 12.34, we approximate Eq. (12.113) as: 

For a constant cross-section, Eq. (12.114) is modified as:

The energy equation in terms of total enthalpy, is written in index notation 

(12.112)
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(12.117)

(12.122)

(12.118)

(12.119)

(12.120)

(12.121)

with K as the specific kinetic energy. Expressing the total enthalpy, Eqs. (12.116), in
terms of total temperature results in: 

For calculating the total pressure, the equation of total energy is written in terms of
total pressure which is presented for the Cartesian coordinate system as: 

Before treating the energy equation, the shear stress work (12.118) needs to be
evaluated:

For a two-dimensional flow, Eq. (12.119) gives

Assuming a one-dimensional flow with , the contribution of the shear stress
work Eq. (12.120) is reduced to

The differences in  at the inlet and exit of the component under simulation stem
from velocity deformation at the inlet and exit. Its contribution, however, compared
to the enthalpy terms in the energy equation, is negligibly small. Thus, the one-
dimensional approximation of total energy equation in terms of total enthalpy reads:
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(12.123)

(12.124)

(12.125)

(12.126)

(12.127)

(12.128)

(12.129)

(12.130)

For a steady state case, without changes of specific mass , Eq. (12.122) leads to: 

For a given constant cross-section and constant mass flow, Eq. (12.123) gives 

Integrating Eq. (12.124) in streamwise direction results in:

For Eq. (12.125) to be compatible with the energy equation discussed in Chapter 5,
Eq. (5.75) is presented:

Equating (12.126) and (12.125) in the absence of a specific shaft power, the following
relation between the heat flux vector and the heat added or rejected from the element
must hold: 

From (12.127) it immediately follows that 

where  (kJ/s) is the thermal energy flow added to or rejected from the component.
In the presence of shaft power, the specific heat in Eq.  (12.128) may
be replaced by the sum of the specific heat and specific shaft power:

with as the shaft power. Equation (12.129) in differential form in

terms of  and L is 

With Eq. (12.122), we find: 
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(12.131)

(12.132)

(12.133)

(12.134)

Using the nomenclature in Fig. 12.34, Eq. (12.131) is written as: 

In terms of total temperature, Eq. (12.132) is rearranged as:

In terms of total pressure, the energy equation reads: 

which is approximated as:
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(12.135)

(12.136)

(12.137)

(12.138)

with:

12.3  Numerical Treatment
The above partial differential equations can be reduced to a system of ordinary
differential equations by a one-dimensional approximation. The simulation of a
complete aero-thermodynamics system is accomplished by combining individual
components that have been modeled mathematically. The result is a system of
ordinary differential equations that can be dealt with numerically. For weak
transients, Runge-Kutta or Predictor-Corrector procedures may be used for the
solution. When strong transient processes are simulated, the time constants of the
differential equation system can differ significantly so that difficulties must be
expected with stability and convergence with the integration methods.  An implicit
method avoids this problem.  The system of ordinary differential equations generated
in a mathematical simulation can be represented by:

with X as the state vector sought. If the state vector X is known at the time t, it can
be approximated as follows for the time t+dt by the trapezoidal rule:

Because the vector X and the function G are known at the time t, i.e., Xt and Gt are
known, Eq. (12.137) can be expressed as:
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(12.139)

L /2 L /2

p = 100 bar p = 50 bar

1 2 3 4 5 6 7 8 9 101 2 3 11 12 13 14 15 16 17 18 19 20 4

unraptured

raptured

t = 0

Membrane

Fig. 12.35: Simulation schematic of a shock tube with a membrane
separating the two pressure regions.

As a rule, the function F is non-linear. It can be used to determine Xt+dt by iteration
when Xt is known. The iteration process is concluded for the time t+dt if the
convergence criterion

is fulfilled. If the maximum number of iterations, k = kmax, is reached without
fulfilling the convergence criterion, the time interval t is halved, and the process of
iteration is repeated until the criterion of convergence is met. This integration process,
based on the implicit one-step method described by Liniger and Willoughby [6] is
reliable for the solution of stiff differential equations. The computer time required
depends, first, on the number of components in the system and, second, on the nature
of the transient processes. If the transients are very strong, the computer time can be
10 times greater than the real time because of the halving of the time interval. For
weak transients, this ratio is less than 1.

12.3.1 Unsteady Compressible Flow: Example: Shock Tube
Dynamic Behavior of a shock tube exhibits a representative example of a
compressible unsteady flow situation. The shock tube, Fig. 12.25, under investigation
has a length of L=1m and a constant diameter D = 0.5m . The tube is divided into two
equal length compartments separated by thin a membrane. The left compartment has
a pressure of  , while the right one has a pressure of . Both
compartments are under the same temperature of . 

The working medium is dry air, whose thermodynamic properties, specific heat
capacities, absolute viscosity, and other substance quantities change during the process
and are calculated using a gas table integrated into the computer code. The pressure
ratio of 2 to 1 is greater than the critical pressure ratio and allows a shock propagation
with the speed of sound. As shown in Fig. 12.35, each half of the tube is subdivided
into 10 equal pieces. The corresponding coupling  plena 1, 2, and thus, the left half,
of the tube are under pressure of 100 bar, while the right half with the plena 3 and 4
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Fig. 12.36: Pressure transients within the shock tube. Right section
includes all tube sections initially under high pressure of 50 bar, while
the left  section includes those initially at 100 bar.

are under the pressure of 50 bar. The membrane is modeled by a throttle system with
a ramp that indicates the cross-sectional area shown underneath the throttle. The
sudden rupture of the membrane is modeled by a sudden jump of the ramp.

12.3.2 Shock Tube Dynamic Behavior 
12.3.2.1 Pressure Transients

The process of expansion and compression is initiated by suddenly rupturing the
membrane. At time t = 0, the membrane is ruptured which causes strong pressure,
temperatures, and thus, mass flow transients. Since the dynamic process is primarily
determined by pressure, temperature, and mass flow transients, only a few
representative results are discussed, as shown in Figs. 12.36 through 12.41. 
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Fig. 12.37: Pressure transients within the shock tube. Left
section includes all tube sections initially under high pressure of
100 bar, while the right section include those initially at 50 bar.
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Fig. 12.38: Temperature transients within the left sections of the  tube.
Left and right sections includes all tube sections initially under
temperature of 400 K.

Figure 12.36 shows the pressure transients within the left sections 1 to 9. As curve 9
shows, the section of the tube that is close to the membrane reacts with a steep
expansion wave. On the other hand, the pressure within the pipe section ahead of the
shock, Fig. 12.37, curve 11, increases as the shock passes through the section.
Oscillatory behavior is noted as the shock strength diminishes. The pipe sections that
are farther away from the membrane, represented by curves 7, 5, 3, and 1 on the left and
curves 13, 15, 17, and 19 on the right section, follow the pressure transient with certain
time lags. Once the wave fronts have reached the end wall of the tube, they are reflected
as compression waves. The aperiodic compression-expansion process is associated with
a propagation speed which corresponds to the speed of sound. The expansion and
compression waves cause the air, which was initially at rest, to perform an aperiodic
oscillatory motion. Since the viscosity and the surface roughness effects are accounted
for by introducing a friction coefficient, the transient process is of dissipative nature. 

12.3.2.2 Temperature  Transients
Figure 12.38 shows the temperature transients within the left sections 1 to 9. As curve
9 shows, the section of the tube that is close to the membrane reacts with a steep
temperature decrease. The pipe sections that are farther away from the membrane,
represented by curves 7, 5, 3, and 1 on the left and curves 13, 15, 17, and 19 on the
right section, follow the temperature transient with certain time lags. Once the shock
waves have reached the end wall of the tube, they are reflected as compression waves
where the temperature experiences a continuous increase. 

Slightly different temperature transient behavior of the right sections are revealed in
Fig. 12.39. Compared to the temperature transients of the left sections, the right sections
temperature transients seem to be inconsistent. However, a closer look at the pressure
transients explains the physics underlying the temperature transients. For this purpose we
consider the pressure transient curve 11, in Fig. 12.39. The location of this pressure



12   Compressible Flow470

9

7

5

3

1

t(s)0 0.002 0.004 0.006 0.008
-300

-150

0

150

300

• m
(k

g/
s)

Fig. 12.40: Mass flow transients within left section of shock tube. The
part includes all tube sections initially under high pressure of 100 bar,
while the right part includes those initially at 50 bar. 

transient is in the vicinity of the membrane’s right side with the pressure of 50 bar.
Sudden rapture of the membrane simulated by a sudden ramp (Fig. 12.35) has caused a
steep pressure rise from 50 bar to slightly above 80 bar. This pressure rise is followed by
a damped oscillating wave that hits the opposite wall and reflects back with an initially
increased pressure followed by a damped oscillation. This behavior is in temperature
distribution where the pressure rise causes a temperature increase and vice versa. The
temperature transients at downstream locations 12 to 20 follow the same trend.

12.3.2.3 Mass Flow Transients
Figures 12.40 show the mass flow transients within the left section of the tube.
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Fig. 12.39:  Temperature transients within the right sections of the tube.
Left and right sections includes all tube sections initially under
temperature of 400 K.
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Fig. 12.41: Mass flow transients within the shock tube. The right
section include all tube sections initially under pressure of 50 bar, while
the left  section include those initially at 100 bar.

Fig. P12.1

The steep negative pressure gradient causes the mass contained within the tube to
perform aperiodic oscillatory motions. During the expansion process, curve 1, mass
flows in the positive x-direction. It continues to stay positive as long as the pressure
in individual sections are above their minimum. This means that the shock front has
not reached the right wall yet. Once the shock front hits the right wall, it is reflected
initiating a compression process that causes the mass to flow in the negative
x-direction.

Figures 12.36 through 12.41 clearly show the dissipative nature of the compression and
expansion process that results in diminishing the wave amplitudes and damping the
frequency. The degree of damping depends on the magnitude of the friction coefficient
cf that includes the Re-number and surface roughness effects. For a sufficiently long
computational time, the oscillations of pressure, temperature, and mass flow will
decay. For cf = 0, the a-periodic oscillating motion persists with no decay. 

Problems and Projects
Problem 12.1: A wedge with a thin plate in front of it, Fig. P12.1, has an angle of
16  and is subjected to a plane supersonic air flow. The inlet incoming flow is parallel
to the plate such that the plate’s leading edge causes only a small perturbation.

a) The angle between the thin plate upper surface and the Mach wave is 45 .
Determine the flow Mach number M1.

b) Find the shock angle , the Mach number
M2 downstream of the first oblique shock,
the pressure ratio p2 /p1, and the temperature
ratio T2 /T1.

c) Sketch the streamlines.
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Fig. P12.2

Fig. P12.3

Fig. P12.4

Problem 12.2: The supersonic flow at the inlet of a plane channel, Fig. P12.2,
generates two crossing oblique shocks of equal strengths as shown below. The shocks
are not reflected at the corners of the convergent part of the inlet (deflection angle 
= 10 ). The undisturbed Mach number is M1 = 3, the undisturbed pressure p1 = 1 bar.
The working medium is air considered as an ideal gas with  = 1.4, R = 287 J/(kgK)).

a) Determine the shock angle 1 of the weak
shocks before crossing and the Mach num-
ber M2 in the region between the shocks.

b) Find the shock angle 2 of the weak shocks
after crossing and the Mach number M3
downstream of the shocks.

c) Find the pressure at station [3] behind the shocks.
d) Calculate the entropy increase.
e) Find the ratio L/H such that the sketched flow pattern can be established.

Problem 12.3: The lower wall of a plane channel turns at [A] and [B] reducing the
channel height from h1 to h3 (see also Problem 10.4-13 for incompressible channel
flow). The working medium is an ideal gas (  = 1,4) with the Mach number M1 = 5.0.

a) For a given h1 determine the distance l
between the points [A] and [B] such that the
downstream flow at point [3] is parallel and
uniform. Find the channel height h3.

b) Find the value of the downstream Mach
number M3.

Problem 12.4: Air as an ideal gas (  = 1.4,    
R = 287 J/kgK) flows through a plane channel, whose upper contour is shaped like
a streamline of a Prandtl-Meyer flow. The flow is deflected from a given state [1] 
(M1 = 1.6, p1 = 0.4 bar, T1 = 250 K) by a centered wave with a deflection angle of 
 = 30 . The channel height upstream of the deflection is h1 = 0.3 m.

a) Determine the flow velocity u1 and the mass
flux  (per unit of depth) through the
channel.

b) Give the coordinates of point [B] at which
the curvature of the upper channel contour
starts.

c) Determine M2, p2, T2, 2 and u2.
d) Give the equation of the upper channel

contour. Which end height h2 has the
channel? Examine the results using the continuity equation.

Project 12.5: A shock tube with the configuration shown in  Fig. P12.5 has two
separate compartments with the pressure and temperature of the left compartment
greater than those of the right compartment. The pressure ratio is above the critical
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Fig. P12.5: Subdividing each compartment into 10 pipes with the corresponding
plena volume.

one. Using dry air as the working medium, for which the ideal gas equation holds,
write a source code with pipe length, pipe diameter, pipe friction coefficient, pressure
and temperature ratios as input parameter. Investigate (a) the effect of friction factor
on the shock oscillation, (b) the effect of temperature ratio on the mixing process after
the shock. As in Fig. P12.5, assume a sudden ramp for the membrane rapture.
Furthermore, each compartment can be subdivided into 10 subsections that are joined
together via plena 1 to 11 and 12 to 21. The volume of each plenum consists of half
of the volume of each pipe attached to the plenum. Hint: The resulting set of
differential equations is of stiff nature. Thus, the Runge-Kutta or Predictor-Corrector
solvers may create numerical stability problems.  

References



(A.1)

(A.2)

(A.3)

A  Tensor Operations in Orthogonal Curvilinear
Coordinate Systems

A.1 Change of Coordinate System

The vector and tensor operations we have discussed in the foregoing chapters were
performed solely in rectangular coordinate system.  It should be pointed out that we
were dealing with quantities such as velocity, acceleration, and pressure gradient that
are independent of any coordinate system within a certain frame of reference.  In this
connection it is necessary to distinguish between a coordinate system and a frame of
reference.  The following example should clarify this distinction.  In an absolute
frame of reference, the flow velocity vector may be described by the rectangular
Cartesian coordinate xi:

It may also be described by a cylindrical coordinate system, which is a non-Cartesian
coordinate system:

or generally by any other non-Cartesian or curvilinear coordinate  i  that describes
the flow  channel geometry:

By changing the coordinate system, the flow velocity vector will not change. It
remains invariant under any transformation of coordinates.  This is true for any other
quantities such as acceleration, force,  pressure or temperature gradient.  The concept
of invariance, however, is generally no longer valid if we change the frame of
reference.  For example, if the flow particles leave the absolute frame of reference and
enter the relative frame of reference, for example a moving or rotating frame, its
velocity will experience a change. In this Chapter, we will pursue the concept of
quantity invariance and discuss the fundamentals that are needed for coordinate
transformation.

A.2  Co- and Contravariant Base Vectors, Metric Coefficients

As we saw in the previous chapter, a vector quantity is described in Cartesian
coordinate system xi by its components:

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 475–487. 
© Springer Berlin Heidelberg 2010
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Fig. A.1: Base vectors in a Cartesian (left ) and in a generalized orthogonal
curvilinear coordinate system (right)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

with  ei as orthonormal unit vectors (Fig. A.1 left).  The same vector transformed into
the curvilinear coordinate system k (Fig. A.1 right) is represented by:

where gk  are the base vectors and Vk the components of V with respect to the base
gk in a curvilinear coordinate system.  For curvilinear coordinate system, we place the
indices diagonally for summing convenience. Unlike the Cartesian base vectors  ei,
that are orthonormal vectors (of unit length and mutually orthogonal), the base vectors
gk do not have unit lengths.  The base vectors gk represent the rate of change of the
position vector x with respect to the curvilinear coordinates i.

Since in a Cartesian coordinate system the unit vectors e i, are not functions of the
coordinates xi, Eq. (A.6) can be written as:

Similarly, the reciprocal base vector gk defined as:
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Fig. A.2: Co- and contravariant base vectors

(A.9)

(A.10)

(A.11)

(A.12)

As shown in Fig. A.2, the covariant base vectors g2, g2, and g3 are tangent vectors to
the mutually orthogonal curvilinear coordinates 1, 2, and 3. The reciprocal base
vectors ga1, g2, g3, however, are orthogonal to the planes described by g2 and g3, g3
and g1, and g1 and g2, respectively. These base vectors are interrelated by:

where gk  and gj  are referred to as the covariant and contravariant base vectors,
respectively.  The new Kronecker delta k

 j  from Eq. (A.9) has the values:

The vector V written relative to its  contravariant base is:

Similarly, the components Vk and V k are called the covariant and contravariant
components,  respectively.  The scalar product of covariant respectively contravariant
base vectors results in the covariant and covariant metric coefficients:

The mixed metric coefficient is defined as

The covariant base vectors can be expressed in terms of the contravariant base
vectors.  First we assume that:
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(A.13)

(A.14)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

Generally the contravariant base vector can be written as

To find a direct relation between the base vectors, first the coefficient matrix Aij must
be determined.  To do so, we multiply Eq. (A.14) with gk scalarly:

This leads to . The right hand side is different from zero only if  j  =  k.
That means:

Introducing Eq. (A.16) into (A.14) results in a relation that expresses the
contravariant base vectors in terms of covariant base vectors:

The covariant base vector can also be expressed in terms of contravariant base vectors
in a similar way: 

Multiply Eq. (A.l8) with (A.17) establishes a relationship between the covariant and
contravariant metric coefficients:

Applying the Kronecker delta on the right hand side results in:

A.3  Physical Components of a Vector 

As mentioned previously, the base vectors gi  or  gj  are not unit vectors.
Consequently the co- and contravariant vector components Vj  or V1 do not reflect the
physical components of vector V. To obtain the physical components, first the
corresponding unit vectors must be found.  They can be obtained from:
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(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28a)

Similarly, the contravariant unit vectors are:

where gi
* , represents the unit base vector, gi   the absolute value of the base vector. 

The expression (ii) denotes that no summing is carried out, whenever the indices are
enclosed within parentheses.  The vector can now be expressed in terms of its unit
base vectors and the corresponding physical components:

Thus the covariant and contravariant physical components can be easily obtained
from:

A.4  Derivatives of the Base Vectors, Christoffel Symbols 

In a curvilinear coordinate system, the base vectors are generally functions of the
coordinates itself.  This fact must be considered while differentiating the base vectors. 
Consider the derivative:

Similar to Eq. (A.7), the unit vector ek can be written:

Introducing Eq. (A.26) into (A.25) yields:

with ijn, and i j
n  as the Christoffel symbol of first and second kind, respectively

with the definition:
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(A.30a)

(A.30b)

(A.31)

(A.32)

From (A.28a) follows that the Christoffel symbols of the second kind is related the
first kind by:

Since the Christoffel symbols convertible by using the metric coefficients, for the
sake of simplicity, in what follows, we use the second kind. The derivative of
contravariant base vector is:

The Christoffel symbols are then obtained by expanding Eq. (A.28a):

In Eq. (A.30a), the Christoffel symbols are symmetric in their lower indices.
Furthermore, the fact that the only non-zero elements of the metric coefficients are
the diagonal elements allowed the modification of the first equation in (A.30a) to
arrive at t(A.30b). Again, note that a repeated index in parentheses in an expression
such as g(kk) does not subject to summation. 

A.5  Spatial Derivatives in Curvilinear Coordinate System

The differential operator , Nabla, is in curvilinear coordinate system defined as:

A.5.1  Application of  to Tensor Functions 
In this chapter, the operator  will be applied to different arguments such as zeroth,
first and second order tensors.  If the argument is a zeroth order tensor which is a
scalar quantity such as pressure or temperature, the results of the operation is the
gradient of the scalar field which is a vector quantity:

The abbreviation “,i ” refers to the derivative of the argument, in this case p, with
respect to the coordinate i . If the argument is a first order tensor such as a velocity
vector, the order of the resulting tensor depends on the operation character between
the operator  and the argument.  For divergence and curl of a vector using the chain
rule, the differentiations are:

(A.29)

(A.28b)
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(A.33a)

(A.33b)

(A.34a)

(A.34b)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

Implementing the Christoffel symbol, the results of the above operations are the
divergence and the curl of the vector V. It should be noticed that a scalar operation
leads to a contraction of the order of tensor on which the operator is acting. The scalar
operation in (A.33a) leads to:

The vector operation yields the rotation or curl of a vector field as: 

with as the permutation symbol that functions similar to the one for Cartesian
coordinate system and .

The gradient of a first order tensor such as the velocity vector V is a second order
tensor. Its index notation in a curvilinear coordinate system is:

A scalar operation that involves   and a second order tensor, such as the stress tensor
 or deformation tensor D, results in a first order tensor which is a vector:

The right hand side of (A.36) is reduced to:

By calculating the shear forces using the Navier-Stokes equation, the second
derivative, the Laplace operator , is needed:

This operator applied to the velocity vector yields:
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(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

A.6  Application Example 1: Inviscid Incompressible Flow Motion

As the first application example, the equation of motion for an inviscid
incompressible and steady low is transformed into a cylindrical coordinate system,
where it is decomposed in its three components r, , z. The coordinate invariant
version of the equation is written as:

The transformation and decomposition procedure is shown in the following steps.

A.6.1  Equation of Motion in Curvilinear Coordinate Systems
The second order tensor on the left hand side can be obtained using Eq. (A.35):

The scalar multiplication with the velocity vector V leads to:

Introducing the mixed Kronecker delta:

For an orthogonal curvilinear coordinate system the mixed Kronecker delta is:

Taking this into account, Eq. (A.43) yields:

Rearranging the indices

The pressure gradient on the right hand side of Eq. (A.40) is calculated form Eq. 
(A.32):
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(A.48)

(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

Replacing the contravariant base vector with the covariant one using Eq. (A.47) leads
to:

Incorporating Eqs. (A.46) and (A.48) into Eq. (A.40) yields:

In i-direction, the equation of motion is:

A.6.2  Special Case: Cylindrical Coordinate System
To transfer Eq. (A.40) in any arbitrary curvilinear coordinate system, first the
coordinate system must be specified.  The cylinder coordinate system is related to the
Cartesian coordinate system is given by:

The curvilinear coordinate system is represented by:

A.6.3  Base Vectors, Metric Coefficients
The base vectors are calculated from Eq.  (A.7).

Equation (A.53) decomposed in its components yields:

(A.54)
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(A.55)

(A.59)

(A.56)

(A.57a)

(A.57b)

(A.58)

The differentiation of the Cartesian coordinates yields:

The co- and contravariant metric coefficients are:

The contravariant base vectors are obtained from:

Since the mixed metric coefficient are zero, (A.57a) reduces to:

A.6.4 Christoffel Symbols
The Christoffel symbols are calculated from Eq. (A.30)

To follow the calculation procedure, one zero- element and one non-zero element are
calculated:

All other elements are calculated similarly.  They are shown in the following
matrices:
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(A.60)

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)

(A.66)

(A.67)

Introducing the non-zero Christoffel symbols into Eq.  (A.50), the components in gl,
g2, and g 3 directions are:

A.6.5 Introduction of Physical Components

The physical components can be calculated from Eqs. (A.21) and (A.24):

The Vi  -components expressed in terms of V*i  are:

Introducing Eqs.(A.65) into (A.61), (A.62), and (A.63) results in:

(A.68)
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(A.69)

(A.73)

(A.70)

(A.71)

According to the definition:

the physical components of the velocity vectors are:

and insert these relations into Eqs. (A.66) to (A.68), the resulting components in r, ,
and z directions are:

A.7 Application Example 2: Viscous Flow Motion

As the second application example, the Navier-Stokes equation of motion for a
viscous incompressible flow is transferred into a cylindrical coordinate system, where
it is decomposed in its three components r, , z. The coordinate invariant version of
the equation is written as:

The second term on the right hand side of Eq. (A.72) exhibits the shear stress force. 
It was treated in section A.5, Eq. (A.39) and is the only term that has been added to
the equation of motion for inviscid flow, Eq. (A.40).

A.7.1 Equation of Motion in Curvilinear Coordinate Systems
The transformation and decomposition procedure is similar to the example in  section
A. 6. Therefore, a step by step derivation is not necessary.

(A.72)
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(A.74)

(A.75)

A.7.2 Special Case: Cylindrical Coordinate System
Using the Christoffel symbols from section A.6.4 and the physical components from
A.6.5, and inserting the corresponding relations these relations into Eqs. (A.73), the
resulting components in r, , and z  directions are:
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B   Physical Properties of Dry Air

Table B.1

Enthalpy h, specific heat at constant pressure cp, entropy s, viscosity  and thermal
conductivity  as a function of temperature T pressure p = 1 bar.

T
[C]

h
[kJ/kg]

Cp
[kJ/kg K]

s
[kJ/kg K] [kg/ms]106 [J/msK]103

 0.000
10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000

100.000
110.000
120.000
130.000
140.000
150.000
160.000
170.000
180.000
190.000
200.000
210.000
220.000
230.000
240.000
250.000
260.000
270.000
280.000
290.000
300.000

0.010
10.043
20.080
30.121
40.167
50.219
60.277
70.343
80.417
90.500

100.593
110.697
120.812
130.940
141.080
151.235
161.404
171.588
181.788
192.004
202.238
212.489
222.759
233.047
243.355
253.683
264.032
274.401
284.791
295.203
305.637

1.003
1.003
1.004
1.004
1.005
1.005
1.006
1.007
1.008
1.009
1.010
1.011
1.012
1.013
1.015
1.016
1.018
1.019
1.021
1.022
1.024
1.026
1.028
1.030
1.032
1.034
1.036
1.038
1.040
1.042
1.044

6.774
6.811
6.845
6.879
6.912
6.943
6.974
7.004
7.033
7.061
7.088
7.115
7.141
7.166
7.191
7.216
7.239
7.263
7.285
7.308
7.329
7.351
7.372
7.393
7.413
7.433
7.452
7.472
7.491
7.509
7.528

17.294
17.744
18.190
18.632
19.069
19.503
19.933
20.359
20.781
21.199
21.613
22.024
22.431
22.834
23.234
23.630
24.023
24.412
24.798
25.180
25.559
25.935
26.308
26.677
27.043
27.407
27.767
28.124
28.478
28.829
29.177

24.210
24.893
25.571
26.243
26.910
27.572
28.229
28.880
29.527
30.169
30.806
31.439
32.067
32.690
33.309
33.924
34.534
35.140
35.742
36.340
36.934
37.524
38.110
38.692
39.271
39.846
40.417
40.985
41.549
42.110
42.667

M.T. Schobeiri: Fluid Mechanics for Engineers, pp. 489–497. 
© Springer Berlin Heidelberg 2010
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T
[C]

h
[kJ/kg]

Cp
[kJ/kg K]

s
[kJ/kg K] [kg/ms]106 [J/msK]103

300.000
310.000
320.000
330.000
340.000
350.000
360.000
370.000
380.000
390.000
400.000
410.000
420.000
430.000
440.000
450.000
460.000
470.000
480.000
490.000
500.000
510.000
520.000
530.000
540.000
550.000
560.000
570.000
580.000
590.000
600.000
610.000
620.000
630.000
640.000
650.000
660.000
670.000
680.000
690.000
700.000

305.637
316.093
326.572
337.074
347.598
358.146
368.718
379.313
389.932
400.575
411.242
421.933
432.648
443.388
454.151
464.939
475.751
486.587
497.448
508.332
519.240
530.172
541.128
552.107
563.110
574.135
585.184
596.256
607.351
618.468
629.607
640.769
651.952
663.157
674.384
685.631
696.900
708.190
719.500
730.830
742.180

1.044
1.047
1.049
1.051
1.054
1.056
1.058
1.061
1.063
1.065
1.068
1.070
1.073
1.075
1.078
1.080
1.082
1.085
1.087
1.090
1.092
1.094
1.097
1.099
1.101
1.104
1.106
1.108
1.111
1.113
1.115
1.117
1.119
1.122
1.124
1.126
1.128
1.130
1.132
1.134
1.136

7.528
7.546
7.564
7.581
7.598
7.615
7.632
7.649
7.665
7.681
7.697
7.713
7.729
7.744
7.759
7.774
7.789
7.804
7.818
7.833
7.847
7.861
7.875
7.889
7.902
7.916
7.929
7.942
7.955
7.968
7.981
7.994
8.006
8.019
8.031
8.044
8.056
8.068
8.080
8.091
8.103

29.177
29.523
29.865
30.205
30.542
30.877
31.209
31.538
31.864
32.188
32.510
32.829
33.145
33.459
33.771
34.081
34.388
34.693
34.995
35.296
35.594
35.890
36.184
36.476
36.766
37.054
37.340
37.624
37.907
38.187
38.465
38.742
39.017
39.290
39.561
39.831
40.099
40.365
40.630
40.893
41.155

42.667
43.221
43.772
44.320
44.865
45.406
45.945
46.481
47.013
47.543
48.070
48.595
49.116
49.635
50.151
50.665
51.177
51.685
52.192
52.696
53.197
53.697
54.194
54.688
55.181
55.671
56.160
56.646
57.130
57.612
58.092
58.570
59.046
59.521
59.993
60.464
60.932
61.399
61.864
62.327
62.789
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T
[C]

h
[kJ/kg]

Cp
[kJ/kg K]

s
[kJ/kg K] [kg/ms]106 [J/msK]103

710.000
720.000
730.000
740.000
750.000
760.000
770.000
780.000
790.000
800.000
810.000
820.000
830.000
840.000
850.000
860.000
870.000
880.000
890.000
900.000
910.000
920.000
930.000
940.000
950.000
960.000
970.000
980.000
990.000

1.000.000
1.010.000
1.020.000
1.030.000
1.040.000
1.050.000
1.060.000
1.070.000
1.080.000
1.090.000
1.100.000

753.550
764.940
776.349
787.777
799.223
810.689
822.172
833.674
845.193
856.730
868.284
879.855
891.443
903.047
914.669
926.306
937.959
949.627
961.311
973.011
984.725
996.454

1.008.198
1.019.956
1.031.728
1.043.515
1.055.315
1.067.129
1.078.956
1.090.796
1.102.650
1.114.516
1.126.395
1.138.287
1.150.191
1.162.108
1.174.036
1.185.977
1.197.929
1.209.893

1.138
1.140
1.142
1.144
1.146
1.147
1.149
1.151
1.153
1.155
1.156
1.158
1.160
1.161
1.163
1.165
1.166
1.168
1.169
1.171
1.172
1.174
1.175
1.177
1.178
1.179
1.181
1.182
1.183
1.185
1.186
1.187
1.189
1.190
1.191
1.192
1.193
1.195
1.196
1.197

8.115
8.126
8.138
8.149
8.160
8.172
8.183
8.194
8.204
8.215
8.226
8.237
8.247
8.258
8.268
8.278
8.289
8.299
8.309
8.319
8.329
8.339
8.348
8.358
8.368
8.377
8.387
8.396
8.406
8.415
8.424
8.434
8.443
8.452
8.461
8.470
8.479
8.488
8.496
8.505

41.415
41.673
41.930
42.186
42.440
42.692
42.944
43.193
43.442
43.689
43.935
44.180
44.423
44.665
44.906
45.146
45.384
45.621
45.857
46.093
46.326
46.559
46.791
47.022
47.251
47.480
47.708
47.934
48.160
48.385
48.609
48.832
49.054
49.275
49.495
49.714
49.932
50.150
50.367
50.583

63.249
63.707
64.163
64.618
65.071
65.522
65.972
66.420
66.866
67.311
67.754
68.196
68.636
69.075
69.511
69.947
70.381
70.813
71.243
71.672
72.100
72.526
72.950
73.373
73.794
74.213
74.631
75.047
75.462
75.875
76.286
76.696
77.104
77.511
77.915
78.318
78.719
79.119
79.516
79.912
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Enthalpy h , specific heat at constant pressure cp, entropy s, viscosity  and thermal
conductivity  as a function of temperature T pressure p = 5.0 bar. 

T
[C]

h
[kJ/kg]

Cp
[kJ/kg K]

s
[kJ/kg K] [kg/ms]106 [J/msK]103

  0.000
10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000

100.000
110.000
120.000
130.000
140.000
150.000
160.000
170.000
180.000
190.000
200.000
210.000
220.000
230.000
240.000
250.000
260.000
270.000
280.000
290.000
300.000

0.0100
10.043
20.080
30.121
40.167
50.219
60.277
70.343
80.417
90.500

100.593
110.697
120.812
130.940
141.080
151.235
161.404
171.588
181.788
192.004
202.238
212.489
222.759
233.048
243.356
253.684
264.032
274.401
284.791
295.203
305.637

1,003
1.003
1.004
1.004
1.005
1.005
1.006
1.007
1.008
1.009
1.010
1.011
1.012
1.013
1.015
1.016
1.018
1.019
1.021
1.022
1.024
1.026
1.028
1.030
1.032
1.034
1.036
1.038
1.040
1.042
1.044

6.12
6.349
6.383
6.417
6.450
6.481
6.512
6.542
6.571
6.599
6.626
6.653
6.679
6.704
6.729
6.754
6.777
6.801
6.823
6.846
6.868
6.889
6.910
6.931
6.951
6.971
6.990
7.010
7.029
7.047
7.066

17.294
17.744
18.190
18.632
19.069
19.503
19.933
20.359
20.781
21.199
21.613
22.024
22.431
22.834
23.234
23.630
24.023
24.412
24.798
25.180
25.559
25.935
26.308
26.677
27.043
27.407
27.767
28.124
28.478
28.829
29.177

24.210
24.893
25.571
26.243
26.910
27.572
28.229
28.880
29.527
30.169
30.806
31.439
32.067
32.690
33.309
33.924
34.534
35.140
35.742
36.340
36.934
37.524
38.110
38.692
39.271
39.846
40.417
40.985
41.549
42.110
42.667
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T
[C]

h
[kJ/kg]

Cp
[kJ/kg K]

s
[kJ/kg K] [kg/ms]106 [J/msK]103

310.000
320.000
330.000
340.000
350.000
360.000
370.000
380.000
390.000
400.000
410.000
420.000
430.000
440.000
450.000
460.000
470.000
480.000
490.000
500.000
510.000
520.000
530.000
540.000
550.000
560.000
570.000
580.000
590.000
600.000
610.000
620.000
630.000
640.000
650.000
660.000
670.000
680.000
690.000
700.000

316.093
326.572
337.074
347.598
358.146
368.718
379.313
389.932
400.575
411.242
421.933
432.648
443.388
454.151
464.939
475.751
486.587
497.448
508.332
519.240
530.172
541.128
552.107
563.110
574.135
585.184
596.256
607.351
618.468
629.607
640.769
651.952
663.157
674.384
685.631
696.900
708.190
719.500
730.830
742.180

1.047
1.049
1.051
1.054
1.056
1.058
1.061
1.063
1.065
1.068
1.070
1.073
1.075
1.078
1.080
1.082
1.085
1.087
1.090
1.092
1.094
1.097
1.099
1.101
1.104
1.106
1.108
1.111
1.113
1.115
1.117
1.119
1.122
1.124
1.126
1.128
1.130
1.132
1.134
1.136

7.084
7.102
7.119
7.136
7.154
7.170
7.187
7.203
7.220
7.235
7.251
7.267
7.282
7.297
7.312
7.327
7.342
7.356
7.371
7.385
7.399
7.413
7.427
7.440
7.454
7.467
7.480
7.493
7.506
7.519
7.532
7.545
7.557
7.569
7.582
7.594
7.606
7.618
7.630
7.641

29.523
29.865
30.205
30.542
30.877
31.209
31.538
31.864
32.188
32.510
32.829
33.145
33.459
33.771
34.081
34.388
34.693
34.995
35.296
35.594
35.890
36.184
36.476
36.766
37.054
37.340
37.624
37.907
38.187
38.465
38.742
39.017
39.290
39.561
39.831
40.099
40.365
40.630
40.893
41.155

43.221
43.772
44.320
44.865
45.406
45.945
46.481
47.013
47.543
48.070
48.595
49.116
49.635
50.151
50.665
51.177
51.685
52.192
52.696
53.197
53.697
54.194
54.688
55.181
55.671
56.160
56.646
57.130
57.612
58.092
58.570
59.046
59.521
59.993
60.464
60.932
61.399
61.864
62.327
62.789
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T
[C]

h
[kJ/kg]

Cp
[kJ/kg K]

s
[kJ/kg K] [kg/ms]106 [J/msK]103

710.000
720.000
730.000
740.000
750.000
760.000
770.000
780.000
790.000
800.000
810.000
820.000
830.000
840.000
850.000
860.000
870.000
880.000
890.000
900.000
910.000
920.000
930.000
940.000
950.000
960.000
970.000
980.000
990.000

1.000.000
1.010.000
1.020.000
1.030.000
1.040.000
1.050.000
1.060.000
1.070.000
1.080.000
1.090.000
1.100.000

753.550
764.940
776.349
787.777
799.223
810.689
822.172
833.674
845.193
856.730
868.284
879.855
891.443
903.047
914.669
926.306
937.959
949.627
961.311
973.011
984.725
996.454

1.008.198
1.019.956
1.031.728
1.043.515
1.055.315
1.067.129
1.078.956
1.090.796
1.102.650
1.114.516
1.126.395
1.138.287
1.150.191
1.162.108
1.174.036
1.185.977
1.197.929
1.209.893

1.138
1.140
1.142
1.144
1.146
1.147
1.149
1.151
1.153
1.155
1.156
1.158
1.160
1.161
1.163
1.165
1.166
1.168
1.169
1.171
1.172
1.174
1.175
1.177
1.178
1.179
1.181
1.182
1.183
1.185
1.186
1.187
1.189
1.190
1.191
1.192
1.193
1.195
1.196
1.197

7.653
7.664
7.676
7.687
7.698
7.710
7.721
7.732
7.743
7.753
7.764
7.775
7.785
7.796
7.806
7.816
7.827
7.837
7.847
7.857
7.867
7.877
7.887
7.896
7.906
7.916
7.925
7.934
7.944
7.953
7.963
7.972
7.981
7.990
7.999
8.008
8.017
8.026
8.035
8.043

41.415
41.673
41.930
42.186
42.440
42.692
42.944
43.193
43.442
43.689
43.935
44.180
44.423
44.665
44.906
45.146
45.384
45.621
45.857
46.093
46.326
46.559
46.791
47.022
47.251
47.480
47.708
47.934
48.160
48.385
48.609
48.832
49.054
49.275
49.495
49.714
49.932
50.150
50.367
50.583

63.249
63.707
64.163
64.618
65.071
65.522
65.972
66.420
66.866
67.311
67.754
68.196
68.636
69.075
69.511
69.947
70.381
70.813
71.243
71.672
72.100
72.526
72.950
73.373
73.794
74.213
74.631
75.047
75.462
75.875
76.286
76.696
77.104
77.511
77.915
78.318
78.719
79.119
79.516
79.912
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Enthalpy h , specific heat at constant pressure cp, entropy s, viscosity  and thermal
conductivity  as a function of temperature T pressure p = 10 bar. 

T
[C]

h
[kJ/kg]

Cp
[kJ/kg K]

s
[kJ/kg K] [kg/ms]106 [J/msK]103

0.000
10.000
20.000
30.000
40.000
50.000
60.000
70.000
80.000
90.000

100.000
110.000
120.000
130.000
140.000
150.000
160.000
170.000
180.000
190.000
200.000
210.000
220.000
230.000
240.000
250.000
260.000
270.000
280.000
290.000
300.000

0.010
10.043
20.080
30.121
40.167
50.219
60.277
70.343
80.417
90.500

100.593
110.697
120.812
130.940
141.080
151.235
161.404
171.588
181.788
192.004
202.238
212.489
222.759
233.047
243.355
253.683
264.032
274.401
284.791
295.203
305.637

1.003
1.003
1.004
1.004
1.005
1.005
1.006
1.007
1.008
1.009
1.010
1.011
1.012
1.013
1.015
1.016
1.018
1.019
1.021
1.022
1.024
1.026
1.028
1.030
1.032
1.034
1.036
1.038
1.040
1.042
1.044

6.114
6.150
6.184
6.218
6.251
6.282
6.313
6.343
6.372
6.400
6.427
6.454
6.480
6.506
6.530
6.555
6.578
6.602
6.624
6.647
6.669
6.690
6.711
6.732
6.752
6.772
6.792
6.811
6.830
6.848
6.867

17.294
17.744
18.190
18.632
19.069
19.503
19.933
20.359
20.781
21.199
21.613
22.024
22.431
22.834
23.234
23.630
24.023
24.412
24.798
25.180
25.559
25.935
26.308
26.677
27.043
27.407
27.767
28.124
28.478
28.829
29.177

24.210
24.893
25.571
26.243
26.910
27.572
28.229
28.880
29.527
30.169
30.806
31.439
32.067
32.690
33.309
33.924
34.534
35.140
35.742
36.340
36.934
37.524
38.110
38.692
39.271
39.846
40.417
40.985
41.549
42.110
42.667
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T
[C]

h
[kJ/kg]

Cp
[kJ/kg K]

s
[kJ/kg K] [kg/ms]106 [J/msK]103

310.000
320.000
330.000
340.000
350.000
360.000
370.000
380.000
390.000
400.000
410.000
420.000
430.000
440.000
450.000
460.000
470.000
480.000
490.000
500.000
510.000
520.000
530.000
540.000
550.000
560.000
570.000
580.000
590.000
600.000
610.000
620.000
630.000
640.000
650.000
660.000
670.000
680.000
690.000
700.000

316.093
326.572
337.074
347.598
358.146
368.718
379.313
389.932
400.575
411.242
421.933
432.648
443.388
454.151
464.939
475.751
486.587
497.448
508.332
519.240
530.172
541.128
552.107
563.109
574.135
585.184
596.256
607.350
618.468
629.607
640.768
651.952
663.157
674.383
685.631
696.900
708.190
719.500
730.830
742.180

1.047
1.049
1.051
1.054
1.056
1.058
1.061
1.063
1.065
1.068
1.070
1.073
1.075
1.078
1.080
1.082
1.085
1.087
1.090
1.092
1.094
1.097
1.099
1.101
1.104
1.106
1.108
1.111
1.113
1.115
1.117
1.119
1.122
1.124
1.126
1.128
1.130
1.132
1.134
1.136

6.885
6.903
6.920
6.938
6.955
6.971
6.988
7.004
7.021
7.037
7.052
7.068
7.083
7.098
7.113
7.128
7.143
7.158
7.172
7.186
7.200
7.214
7.228
7.241
7.255
7.268
7.281
7.295
7.307
7.320
7.333
7.346
7.358
7.370
7.383
7.395
7.407
7.419
7.431
7.442

29.523
29.865
30.205
30.542
30.877
31.209
31.538
31.864
32.188
32.510
32.829
33.145
33.459
33.771
34.081
34.388
34.693
34.995
35.296
35.594
35.890
36.184
36.476
36.766
37.054
37.340
37.624
37.907
38.187
38.465
38.742
39.017
39.290
39.561
39.831
40.099
40.365
40.630
40.893
41.155

43.221
43.772
44.320
44.865
45.406
45.945
46.481
47.013
47.543
48.070
48.595
49.116
49.635
50.151
50.665
51.177
51.685
52.192
52.696
53.197
53.697
54.194
54.688
55.181
55.671
56.160
56.646
57.130
57.612
58.092
58.570
59.046
59.521
59.993
60.464
60.932
61.399
61.864
62.327
62.789
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T
[C]

h
[kJ/kg]

Cp
[kJ/kg K]

s
[kJ/kg K] [kg/ms]106 [J/msK]103

710.000
720.000
730.000
740.000
750.000
760.000
770.000
780.000
790.000
800.000
810.000
820.000
830.000
840.000
850.000
860.000
870.000
880.000
890.000
900.000
910.000
920.000
930.000
940.000
950.000
960.000
970.000
980.000
990.000

1000.000
1010.000
1020.000
1030.000
1040.000
1050.000
1060.000
1070.000
1080.000
1090.000
1100.000

1.110.000

753.550
764.940
776.349
787.776
799.223
810.688
822.172
833.673
845.193
856.730
868.284
879.855
891.443
903.047
914.668
926.305
937.958
949.627
961.311
973.010
984.725
996.454

1008.198
1019.956
1031.728
1043.514
1055.315
1067.128
1078.955
1090.796
1102.650
1114.516
1126.396
1138.287
1150.191
1162.108
1174.037
1185.977
1197.929
1209.893

1.221.869

1.138
1.140
1.142
1.144
1.146
1.147
1.149
1.151
1.153
1.155
1.156
1.158
1.160
1.161
1.163
1.165
1.166
1.168
1.169
1.171
1.172
1.174
1.175
1.177
1.178
1.179
1.181
1.182
1.183
1.185
1.186
1.187
1.189
1.190
1.191
1.192
1.193
1.195
1.196
1.197
1.198

7.454
7.465
7.477
7.488
7.499
7.511
7.522
7.533
7.544
7.554
7.565
7.576
7.586
7.597
7.607
7.617
7.628
7.638
7.648
7.658
7.668
7.678
7.688
7.697
7.707
7.717
7.726
7.736
7.745
7.754
7.764
7.773
7.782
7.791
7.800
7.809
7.818
7.827
7.836
7.844
7.853

41.415
41.673
41.930
42.186
42.440
42.692
42.944
43.193
43.442
43.689
43.935
44.180
44.423
44.665
44.906
45.146
45.384
45.621
45.857
46.093
46.326
46.559
46.791
47.022
47.251
47.480
47.708
47.934
48.160
48.385
48.609
48.832
49.054
49.275
49.495
49.714
49.932
50.150
50.367
50.583
50.798

63.249
63.707
64.163
64.618
65.071
65.522
65.972
66.420
66.866
67.311
67.754
68.196
68.636
69.075
69.511
69.947
70.381
70.813
71.243
71.672
72.100
72.526
72.950
73.373
73.794
74.213
74.631
75.047
75.462
75.875
76.286
76.696
77.104
77.510
77.915
78.318
78.719
79.119
79.516
79.912
80.306
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Acceleration  36
Algebraic model  311

Baldwin-Lomax  311
Cebeci-Smith  310
Prandtl mixing length  304

Anemometer  248
Averaging  286

conservation equations  287
continuity equation  287
mechanical energy equation  288
Navier-Stokes equation  287
total enthalpy equation  291

Axial moment  91
Axial vector  41

Bernoulli equation  61, 310
Bingham fluids  10
Bio-Savart law, 193
Blade forces  130

drag  130
inviscid flow field  124
viscous flow  129

Blasius equation of laminar flow  363
Blending function  316
Buffer layer  201, 306
Boundary layer  369

displacement thickness,
displacement  370

energy deficiency thickness  370
integral equation  373
length scale  407
logarithmic layer  306
momentum thickness  371
outer layer  307
re-attachment  404, 405, 407, 408
separation  404
viscous sublayer  306

similarity requirement  365
transitional flow  307
von Karman constant  309
Wake function  307
Wall influence  392

Boundary layer theory.  357
Blasius  362, 363
concept of  357
laminar  361
viscous layer  357

Boussinesq relationship  303

Calmed region  258
Cascade process  272
Cauchy-Poisson law  57
Cauchy-Riemann equations, 143
Chebyshev polynomial  243
Christoffel symbols  202, 479
Circulation, 147, 226
Combustion chamber  102
Complex amplitude  240
Conformal transformation, 143, 167

basic principles, 167
Continuum hypothesis  1
Contravariant components  202, 475
Convergent divergent  432
Convergent exit nozzle  428
Cooled turbine  104
Correlations  275

autocorrelation  275
coefficients  274
osculating parabola  279
single point  274
tensor  274
two-point correlation  274

Covariance  275
Critical Reynolds number  6, 233
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Critical State  425
density  428
pressure  428
pressure ratio  428

Cross-Section change  430
Curved channel  201

negative pressure gradient  207
positive pressure gradient  208,

213
Curvilinear coordinate system  53

continuity balance in  53
Navier-Stokes equation in  59

Deformation  25, 38
Deformation tensor  3, 38, 56
Deformed state  35
Degree of reaction  119, 121

effect of  121
Derivatives

material  16
substantial  16
temporal  16

Descriptions
Euler, spatial  37
Lagrangian  32
material  31

Detached shock  454
Deterministic  237
Diabatic systems  100
Differential operator   15, 16
Diffusion  301
Diffusivity  272
Direct Navier-Stokes Simulations  303
Dissipation function  65
Dissipation  290, 301, 302, 303

energy  271
equation  280
exact derivation of  303
kinetic energy  302
parameter  283
range  282
turbulence  280, 290
viscous  290

Eddy viscosity  304
Einstein summation convention  59

Einstein's summation  12
Energy cascade process  272, 273
Energy spectrum  281

dissipation range  282
large eddies  281

Energy spectral function  284
Energy extraction, consumption  102
Energy balance in stationary frame  64

dissipation function  65
mechanical energy  64
thermal energy  67

Entropy balance  71
Entropy increase  106
Equation of motion  344
Equation  296

turbulence kinetic energy  296
Euler turbine equation  114
Euler equation of motion  60

Falkner-Skan equation  366
Fanno process  437
Fluctuation kinetic energy  292
Fluids  1, 9

Bingham  10
Newtonian fluids  9
pseudoplastic  10

Frame indifference  56
Frame indifferent quantity  56
Frame of reference  51
Free turbulent flow  271, 327

characteristic quantities  332
free jet  327
free wakes  327
Gaussian function  332
momentum defects  330
velocity defect and wake width 

327
velocity defect  329

Friction stress tensor  57

Gaussian distribution  259

Heat transfer
Nusselt number  397
Stanton number  397
thermography  397
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Helmholtz
first theorem, 186
second theorem, 186
third theorem, 186

Holomorphic  143
Homogeneous  1

gases  1
liquids  1
saturated  1
superheated vapors  1
unsaturated  1

Hot wire anemometry  391
aliasing effect  393
analog/digital converter  394
constant current mode  391
constant-temperature mode  391
cross-wire  391
folding frequency  394
Nyquist-frequency  394
sample frequency  393
sampling rate  393
signal conditioner  394
single, cross and three-wire

probes  391
single wire  391
three-wire  391

Hugoniot relation  446
Hypothesis

frozen turbulence  277
G.I. Taylor  277
Kolmogorov  272
mixing length hypothesis  306

Incompressible  8, 202, 203, 210, 229
Incompressibility condition  53
Index notation  12
Induced drag  195
Induced velocity  190
Integral balances

balance of energy  94
balance of linear momentum  83
balance of moment of momentum 

88
mass flow balance  81

Intermittency factor  6
Intermittency function  390

Intermittency  6, 258
averaged  259
ensemble-averaged  259
function  390
maximum  259
minimum  259

Inviscid  4, 208, 226, 227
Inviscid flows, 139
Irreversibility  106
Irrotational flow  161, 140
Irrotational  227, 228
Isotropic turbulence  286
Isotropy  273

Jacobian
functional determinant  35
transformation  32, 95

Joukowski
airfoil  172
base profiles  172
lift equation  163, 165
transformation  169-171
theorem 157

Kinetic energy  282, 285, 286, 292
Kolmogorov  272

eddies  272
first hypothesis  282
hypothesis  272
inertial subrange  281, 282
length scale  281
scales  281
second hypothesis  283
time scale  281
universal equilibrium  272
velocity scale  281

Kronecker tensor  57
Kutta condition, 175
Kutta-Joukowski

lift equation  163, 165
transformation  169-171
base profiles  172
theorem  157

Laminar flow  4, 201
Laminar flow stability  233
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Laminar boundary layer  362
Blasius equation  363
Faulkner-Skan equation  366
Hartree  366
Polhausen approximate  367

Laminar-turbulent transition  234
Laplace equation  144
Laurent series  163
Laval nozzle  431
Lift coefficient  128
Linear wall function  306

Mach number  423, 425
Magnus effect  159
Mass flow function  429
Material acceleration  18
Material derivative  32
Mean free path  1
Metric coefficients  203
Mixing length hypothesis  304
Momentum balance frame  53

Natural transition  236
Navier-Stokes  295

equation  273, 274, 278, 287,
  295, 296
operator  295

Navier-Stokes equation  205
for compressible fluids  58
solution of  205
Direct Navier Stokes DNS  303

Neutral stability  242
Newtonian fluids  9, 57
Normal shock  445
Nusselt number  397

Oblique shock  432, 451
Orr-Sommerfeld 

eigenvalue problem  241
stability equation  239

Oscillation frequency  240
Osculating parabola  279

Pathline, streamline, streakline  44
Peclet  number  388

effective  389
turbulent  388

Physical component  203
Pohlhausen  368

profiles  369
slope of the velocity profiles  369
velocity profiles  369

Potential function  160
Potential flows  139, 140
Power law  385
Prandtl boundary layer 

experimental observations  357
mixing length  388
mixing length hypothesis  306
mixing length model  390
power law  385
theory  357, 362

Prandtl number  387, 388
effective Prandtl number  390
molecular Prandtl number  388,

390
turbulent Prandtl number  388

Principle of material objectivity  56

Radial flow  209
Radial equilibrium  117
Rayleigh process  437
Reaction force  87
Residue theorem  164
Reynolds number  234

critical  234
subcritical  234
supercritical  234

Reynolds transport theorem  42, 89
Richardson energy cascade  273
Riemann mapping theorem, 143
Rotating frame  74, 

continuity equation in  74
energy equation in  77
equation of motion in  75

Rotation  25, 38
Rotation tensor  56
Rotational flow  218, 227, 228
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Scalar product of   19
Scales of turbulence  273

length of the smallest eddy  273
time scale  272, 273, 274

Separation  208, 209, 214, 215
Shaft power  97
Shear stress momenta  90
Shear viscosity  58
Similarity condition  365
Small disturbance  237
solution  364
Spatial differential  16
Spatial change  16
Spatially periodic velocity distribution 

255
Specific total energy  95
Specific lift force  159
Spectral tensor  284
Speed of sound  423
Stable laminar flow  242
Stage load coefficient  121
Stagnation point  426
Stanton number  397
Stationary frame  51
Statistically steady flow  237
Steady flow  9
Stream function  154
Stress tensor  56

apparent  273
Structure  1
Substantial change  16
Superposition principle  217
Superposition of potential flows  150

complex potential  150
Dipole  151
Dipole and a vortex  154
translational flow  151
uniform flow, source, and sink

159
Supersonic diffuser  432
Supersonic flow  450

Taylor  279
eddies  277
frozen turbulence  277
hypothesis  277

micro length scale  279
time scale  279

Temporal change  16
Tensor  11, 294

contraction  11, 15
deformation  299
eigenvalue  25
eigenvector  25 
first order  11
friction stress  289
product  13, 14
Reynolds stress  294
rotation  311
second order  11
zeroth-order  11

Tensor product of  and V  21, 29
Thermal turbomachinery stages  110
Tollmien-Schlichting waves.  6, 236
Total  momentum  331
Total pressure loss  106
Transformation vector function  33
Transition  260

bypass transition  237
natural  260
wake induced  260

Transitional region  6
Translation  38
Turbine  104

cooled  104
uncooled  103

Turbo-shafts  102
Turbochargers  110
Turbomachinery stages

dimensionless parameters  115
energy transfer in  110
flow deflection  114
flow forces  124

Turbulence  273
anisotropic  281
convective diffusion  301
correlations  274
diffusion  272
free turbulence  271
homogeneous  273
isotropic  273, 282
isotropy  273
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kinetic energy  297
length and time scales  273, 304
production  301
type of  271, 273
viscous dissipation  301
viscous diffusion  272
wall turbulence  271

Turbulence model  271, 304
algebraic model  304
Baldwin-Lomax model  311
Cebeci-Smith model  310
One-Equation model  312
Prandtl mixing length  304
standard  k-  vs. k-   318
two-equation k-  model  313
two-equation k- -model  315
two-equation SST-model  316

Turbulent kinetic energy  297
Turbulent flow, fully developed  307
Types of free turbulent flows  327

Uncooled turbine  103
Universal equilibrium  272
Unsteady flow  9

ensemble averaging  9
Unsteady boundary layer  409

Strouhal number  398
wake generator  398

Unsteady compressible flow  458

Variation of 
length scale  407
pressure gradient  408

Vector product  21

Vector  11
cross product  13
scalar product  13
tensor product  14

Velocity  2, 36
Velocity diagram  104
Velocity gradient  38
Velocity fluctuations  331
Velocity momenta  86
Velocity potential, 141
Velocity scales  304
Velocity spectrum  284
Viscous sublayer  306
Viscous diffusion  272
Viscous  201, 202, 205, 208, 216, 226,

227
Von Kármán constant  309
Von Kármán  373

integral equation  373
Vortex line  185
Vortex filament  185
Vortex  225-227, 273
Vortex theorems

Helmholtz theorems  185
Thomson  179

Vorticity  21
Vorticity vector   40

Wake  327
free wakes  328
velocity defect  327
width  327

Wavenumber space  284, 285
Wavenumber vector  284
Wavenumber  285
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