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Preface

Non-Newtonian flow and rheology are subjects which are essentially inter-
disciplinary in their nature and which are also wide in their areas of appli-
cation. Indeed non-Newtonian fluid behaviour is encountered in almost all
the chemical and allied processing industries. The factors which determine
the rheological characteristics of a material are highly complex, and their full
understanding necessitates a contribution from physicists, chemists and applied
mathematicians, amongst others, few of whom may have regarded the subject
as central to their disciplines. Furthermore, the areas of application are also
extremely broad and diverse, and require an important input from engineers
with a wide range of backgrounds, though chemical and process engineers, by
virtue of their role in the handling and processing of complex materials (such
as foams, slurries, emulsions, polymer melts and solutions, etc.), have a domi-
nant interest. Furthermore, the subject is of interest both to highly theoretical
mathematicians and scientists and to practicing engineers with very different
cultural backgrounds.

Owing to this inter-disciplinary nature of the subject, communication across
subject boundaries has been poor and continues to pose difficulties, and
therefore, much of the literature, including books, is directed to a relatively
narrow readership with the result that the engineer faced with the problem of
processing such rheological complex fluids, or of designing a material with
rheological properties appropriate to its end use, is not well served by the
available literature. Nor does he have access to information presented in a
form which is readily intelligible to the non-specialist. This book is intended
to bridge this gap but, at the same time, is written in such a way as to provide
an entee to the specialist literature for the benefit of scientists and engineers
with a wide range of backgrounds. Non-Newtonian flow and rheology is an
area with many pitfalls for the unwary, and it is hoped that this book will not
only forewarn readers but will also equip them to avoid some of the hazards.

Coverage of topics is extensive and this book offers an unique selection of
material. There are eight chapters in all.

The introductory materialChapter 1 introduces the reader to the range
of non-Newtonian characteristics displayed by materials encountered in every
day life as well as in technology. A selection of simple fluid models which
are used extensively in process design calculations is included here.
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Chapter 2deals with the characterization of materials and the measurement
of their rheological properties using a range of commercially available instru-
ments. The importance of adequate rheological characterization of a material
under conditions as close as possible to that in the envisaged application
cannot be overemphasized here. Stress is laid on the dangers of extrapolation
beyond the range of variables covered in the experimental characterization.
Dr. P.R. Williams (Reader, Department of Chemical Biological Process Engi-
neering, Swansea, University of Wales, U.K.) who has contributed this chapter
is in the forefront of the development of novel instrumentations in the field.

The flow of non-Newtonian fluids in circular and non-circular ducts encom-
passing both laminar and turbulent regimes is presenté&hapter 3 Issues
relating to the transition from laminar to turbulent flow, minor losses in fittings
and flow in pumps, as well as metering of flow, are also discussed in this
chapter.

Chapter 4 deals with the highly complex but industrially important topic
of multiphase systems — gas/non-Newtonian liquid and solid/non-Newtonian
liquids — in pipes.

A thorough treatment of particulate systems ranging from the behaviour
of particles and drops in non-Newtonian liquids to the flow in packed and
fluidised beds is presented @hapter 5

The heating or cooling of process streams is frequently requbdpter 6
discusses the fundamentals of convective heat transfer to non-Newtonian
fluids in circular and non-circular tubes under a range of boundary and
flow conditions. Limited information on heat transfer from variously shaped
objects — plates, cylinders and spheres — immersed in non-Newtonian fluids is
also included here.

The basics of the boundary layer flow are introduce@lvapter 7 Heat and
mass transfer in boundary layers, and practical correlations for the estimation
of transfer coefficients are included.

The final Chapter 8 deals with the mixing of highly viscous and/or non-
Newtonian substances, with particular emphasis on the estimation of power
consumption and mixing time, and on equipment selection.

A each stage, considerable effort has been made to present the most reliable
and generally accepted methods for calculations, as the contemporary literature
is inundated with conflicting information. This applies especially in regard to
the estimation of pressure gradients for turbulent flow in pipes. In addition, a
list of specialist and/or advanced sources of information has been provided in
each chapter as “Further Reading”.

In each chapter a number of worked examples has been presented, which,
we believe, are essential to a proper understanding of the methods of treatment
given in the text. It is desirable for both a student and a practicing engineer to
understand an appropriate illustrative example before tackling fresh practical
problems himself. Engineering problems require a numerical answer and it is
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problems himself. Engineering problems require a numerical answer and it is
thus essential for the reader to become familiar with the various techniques
so that the most appropriate answer can be obtained by systematic methods
rather than by intuition. Further exercises which the reader may wish to tackle
are given at the end of the book.

Incompressibility of the fluid has generally been assumed throughout the
book, albeit this is not always stated explicitly. This is a satisfactory approxi-
mation for most non-Newtonian substances, notable exceptions being the cases
of foams and froths. Likewise, the assumption of isotropy is also reasonable
in most cases except perhaps for liquid crystals and for fibre filled polymer
matrices. Finally, although the slip effects are known to be important in some
multiphase systems (suspensions, emulsions, etc.) and in narrow channels, the
usual no-slip boundary condition is regarded as a good approximation in the
type of engineering flow situations dealt with in this book.

In part, the writing of this book was inspired by the work of W.L. Wilkinson:
Non-Newtonian Fluidspublished by Pergamon Press in 1960 and J.M. Smith’s
contribution to early editions o€hemical EngineeringVolume 3. Both of
these works are now long out-of-print, and it is hoped that readers will find
this present book to be a welcome successor.

R.P. Chhabra
J.F. Richardson
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Chapter 1
Non-Newtonian fluid behaviour

1.1 Introduction

One may classify fluids in two different ways; either according to their response
to the externally applied pressure or according to the effects produced under the
action of a shear stress. The first scheme of classification leads to the so called
‘compressible’ and ‘incompressible’ fluids, depending upon whether or not the
volume of an element of fluid is dependent on its pressure. While compress-
ibility influences the flow characteristics of gases, liquids can normally be
regarded as incompressible and it is their response to shearing which is of
greater importance. In this chapter, the flow characteristics of single phase
liquids, solutions and pseudo-homogeneous mixtures (such as slurries, emul-
sions, gas-liquid dispersions) which may be treated as a continuum if they
are stable in the absence of turbulent eddies are considered depending upon
their response to externally imposed shearing action.

1.2 Classification of fluid behaviour
1.2.1 Definition of a Newtonian fluid

Consider a thin layer of a fluid contained between two parallel planes a distance
dy apart, as shown in Figure 1.1. Now, if under steady state conditions, the
fluid is subjected to a shear by the application of a fdrcas shown, this will

be balanced by an equal and opposite internal frictional force in the fluid. For
an incompressible Newtonian fluid in laminar flow, the resulting shear stress
is equal to the product of the shear rate and the viscosity of the fluid medium.
In this simple case, the shear rate may be expressed as the velocity gradient
in the direction perpendicular to that of the shear force, i.e.

F dv, .
Z = ‘ny =u (— dy = Myyx (11)
Note that the first subscript on bothand y indicates the direction normal

to that of shearing force, while the second subscript refers to the direction of
the force and the flow. By considering the equilibrium of a fluid layer, it can
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Surface area A

Figure 1.1 Schematic representation of unidirectional shearing flow

readily be seen that at any shear plane there are two equal and opposite shear
stresses—a positive one on the slower moving fluid and a negative one on the
faster moving fluid layer. The negative sign on the right hand side of equation
(1.1) indicates that,, is a measure of the resistance to motion. One can also
view the situation from a different standpoint as: for an incompressible fluid

of density p, equation (1.1) can be written as:

w d
= ———(pV, 12
Ty, pdy(p ) (1.2)

The quantity pV,’ is the momentum in the-direction per unit volume of the
fluid and hencer,, represents the momentum flux in thedirection and the
negative sign indicates that the momentum transfer occurs in the direction of
decreasing velocity which is also in line with the Fourier’s law of heat transfer
and Fick’s law of diffusive mass transfer.

The constant of proportionality (or the ratio of the shear stress to the rate
of shear) which is called the Newtonian viscosity is, by definition, indepen-
dent of shear ratey(,) or shear stress{,) and depends only on the material
and its temperature and pressure. The plot of shear strgsafainst shear
rate () for a Newtonian fluid, the so-called ‘flow curve’ or ‘rheogram’, is
therefore a straight line of slopg, and passing through the origin; the single
constantyu, thus completely characterises the flow behaviour of a Newtonian
fluid at a fixed temperature and pressure. Gases, simple organic liquids, solu-
tions of low molecular weight inorganic salts, molten metals and salts are
all Newtonian fluids. The shear stress—shear rate data shown in Figure 1.2
demonstrate the Newtonian fluid behaviour of a cooking oil and a corn syrup;
the values of the viscosity for some substances encountered in everyday life
are given in Table 1.1.

Figure 1.1 and equation (1.1) represent the simplest case wherein the
velocity vector which has only one component, in thdirection varies only in
the y-direction. Such a flow configuration is known as simple shear flow. For
the more complex case of three dimensional flow, it is necessary to set up the
appropriate partial differential equations. For instance, the more general case
of an incompressible Newtonian fluid may be expressed — far{hlane — as
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follows [Bird etal., 1960,1987]:

5 Vv, n 2
Ty = — =
XX 19 E 3M
1% 1%
T"yz_’“‘(ay“ra—;
v, VvV,
Ty = — —
¢ H 0z 0x

WV,

v,
dy 0z

(1.3)

(1.4)

(1.5)

Similar setsof equationscanbe drawnup for the forcesactingon the y- and
z-planes;in eachcase,there are two (in-plane) shearingcomponentsand a

3
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Table 1.1 Typical viscosity values at room

temperature
Substance n
(mPas)

Air 102
Benzene 0.65
Water 1
Molten sodium chloride (1173 K) 1.01
Ethyl alcohol 1.20
Mercury (293 K) 1.55
Molten lead (673 K) 2.33
Ethylene glycol 20
Olive oil 100
Castor oil 600
100% Glycerine (293 K) 1500
Honey 1d
Corn syrup 16
Bitumen 16*
Molten glass 16

y

' Py}/

e

:ry

| >~p,, — Flow

Txz
P,/ | Tzx
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Figure 1.3 Stresscomponentén three dimensionaflow

normalcomponentFigure 1.3 showsthe nine strescomponentschematically
in anelemenbf fluid. By consideringhe equilibrium of afluid elementjt can
easily be shownthat 7, = 1,,; 7., = 7, andr,, = r;,. The normal stresses
canbe visualisedasbeingmadeup of two componentsisotropicpressureand
a contributiondueto flow, i.e.
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Po=—p+tu (1.6a)
Py =—-p+r1y (1.6b)
Py=-p+r1, (1.6¢0)

wheret,, 1y, T, contributions arising from flow, are known as deviatoric
normal stresses for Newtonian fluids and as extra stresses for non-Newtonian
fluids. For an incompressible Newtonian fluid, the isotropic pressure is given by

p=—3Pu+Py+P) (1.7)
From equations (1.6) and (1.7), it follows that
T+ Ty +7,=0 (1.8)

For a Newtonian fluid in simple shearing motion, the deviatoric normal stress
components are identically zero, i.e.

T =Ty =T,=0 (1.9

Thus, the complete definition of a Newtonian fluid is that it not only possesses
a constant viscosity but it also satisfies the condition of equation (1.9),
or simply that it satisfies the complete Navier—Stokes equations. Thus, for
instance, the so-called constant viscosity Boger fluids [Boger, 1976; Prilutski
et al, 1983] which display constant shear viscosity but do not conform to

equation (1.9) must be classed as non-Newtonian fluids.

1.2.2 Non-Newtonian fluid behaviour

A non-Newtonian fluid is one whose flow curve (shear stress versus shear
rate) is non-linear or does not pass through the origin, i.e. where the apparent
viscosity, shear stress divided by shear rate, is not constant at a given temper-
ature and pressure but is dependent on flow conditions such as flow geometry,
shear rate, etc. and sometimes even on the kinematic history of the fluid

element under consideration. Such materials may be conveniently grouped
into three general classes:

(1) fluids for which the rate of shear at any point is determined only by
the value of the shear stress at that point at that instant; these fluids are
variously known as ‘time independent’, ‘purely viscous’, ‘inelastic’ or
‘generalised Newtonian fluids’, (GNF);

(2) more complex fluids for which the relation between shear stress and shear
rate depends, in addition, upon the duration of shearing and their kinematic
history; they are called ‘time-dependent fluids’, and finally,
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(3) substances exhibiting characteristics of both ideal fluids and elastic solids
and showing partial elastic recovery, after deformation; these are cate-
gorised as ‘visco-elastic fluids’.

This classification scheme is arbitrary in that most real materials often exhibit

a combination of two or even all three types of non-Newtonian features.
Generally, it is, however, possible to identify the dominant non-Newtonian
characteristic and to take this as the basis for the subsequent process calcu-
lations. Also, as mentioned earlier, it is convenient to define an apparent
viscosity of these materials as the ratio of shear stress to shear rate, though
the latter ratio is a function of the shear stress or shear rate and/or of time. Each
type of non-Newtonian fluid behaviour will now be dealt with in some detail.

1.3 Time-independent fluid behaviour

In simple shear, the flow behaviour of this class of materials may be described
by a constitutive relation of the form,

)'/yx = f(‘cyx) (110)
or its inverse form,
Ty = fl(j/yx) (1.11)

This equation implies that the value ¢f, at any point within the sheared
fluid is determined only by the current value of shear stress at that point or
vice versa. Depending upon the form of the function in equation (1.10) or
(1.12), these fluids may be further subdivided into three types:

(a) shear-thinning or pseudoplastic
(b) viscoplastic
(c) shear-thickening or dilatant

Qualitative flow curves on linear scales for these three types of fluid behaviour
are shown in Figure 1.4; the linear relation typical of Newtonian fluids is also
included.

1.3.1 Shear-thinning or pseudoplastic fluids

The most common type of time-independent non-Newtonian fluid behaviour
observed is pseudoplasticity or shear-thinning, characterised by an apparent
viscosity which decreases with increasing shear rate. Both at very low and at
very high shear rates, most shear-thinning polymer solutions and melts exhibit
Newtonian behaviour, i.e. shear stress—shear rate plots become straight lines,
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Figure 1.5 Schematiacepresentatiorof shear-thinningoehaviour

asshownschematicallyin Figure 1.5, andon a linear scalewill passthrough
origin. The resulting valuesof the apparentviscosity at very low and high
shearratesare known as the zero shearviscosity, 1o, andthe infinite shear
viscosity, u~, respectively.Thus, the apparentviscosity of a shear-thinning
fluid decreasefrom g to 1o With increasingshearrate. Dataencompassing
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Figure 1.6 Demonstratiorof zeio shearand infinite shearviscositiesfor a
shear-thinningpolymersolution[Boger, 1977]

a sufficiently wide rangeof shearratesto illustrate this completespectrumof
pseudoplastibehaviouraredifficult to obtain,andarescarceA singleinstru-
mentwill nothaveboththe sensitivityrequiredin thelow shearateregionand
therobustnessthigh shearates,sothatseverainstrumentsareoftenrequired
to achievethis objective.Figure 1.6 showsthe apparentviscosity-shearrate
behaviourof an aqueougolyacrylamidesolutionat 293K over almostseven
decadesof shearrate. The apparentviscosity of this solution drops from
1400mPas to 4.2mPas, and so it would hardly be justifiable to assigna
single averagevalue of viscosity for sucha fluid! The valuesof shearrates
marking the onsetof the upperand lower limiting viscositiesare dependent
uponseverafactors,suchasthetype andconcentratiorof polymer,its molec-
ular weight distribution andthe natureof solvent,etc. Hence,it is difficult to
suggesvwalid generalisationsut many materialsexhibit their limiting viscosi-
ties at shearratesbelow 10-2s~! andabovel(® s~ respectively.Generally,
the rangeof shearrate over which the apparentviscosity is constant(in the
zero-shearegion) increasesas molecularweight of the polymerfalls, asits
molecularweight distribution becomesarrower,and as polymer concentra-
tion (in solution) drops. Similarly, the rate of decreasef apparentviscosity
with shearrate also variesfrom one materialto another,as can be seenin
Figure 1.7 for threeaqueoussolutionsof chemicallydifferentpolymers.
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Figure 1.7 Repesentativeshearstressand appaentviscosityplots for
three pseudoplastipolymersolutions

Mathematical models for shear-thinning fluid behaviour

Many mathematicakexpressionof varying complexity and form have been
proposedn theliteratureto modelshear-thinningharacteristicssomeof these
arestraightforwardattemptsat curvefitting, giving empiricalrelationshipgor

the shearstress(or apparentviscosity)}-shearrate curvesfor example,while

othershave sometheoreticalbasisin statisticalmechanics- as an extension
of the applicationof the kinetic theoryto the liquid stateor the theoryof rate
processesgtc. Only a selectionof the more widely usedviscosity modelsis

given here;more completedescriptionsof suchmodelsareavailablein many
books[Bird etal., 1987; Carreauetal., 1997] and in a review paper[Bird,

1976].

(i) The power-law or Ostwald de Waele model

The relationshipbetweenshearstressand shearrate (plotted on doubleloga-
rithmic coordinates¥or a shear-thinningluid can often be approximatedoy
a straightlineover a limited rangeof shearrate (or stress) For this part of the
flow curve,an expressiorof the following form is applicable:

Tyy = m(j’yx )n (112)
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so the apparent viscosity for the so-called power-law (or Ostwald de Waele)
fluid is thus given by:

M= Tyx/)./yx = m()'/yx)n_l (1.13)

Forn < 1, the fluid exhibits shear-thinnering properties
n =1, the fluid shows Newtonian behaviour
n > 1, the fluid shows shear-thickening behaviour

In these equationsy and n are two empirical curve-fitting parameters and
are known as the fluid consistency coefficient and the flow behaviour index
respectively. For a shear-thinning fluid, the index may have any value between
0 and 1. The smaller the value ©f the greater is the degree of shear-thinning.
For a shear-thickening fluid, the index will be greater than unity. When

n =1, equations (1.12) and (1.13) reduce to equation (1.1) which describes
Newtonian fluid behaviour.

Although the power-law model offers the simplest representation of shear-
thinning behaviour, it does have a number of shortcomings. Generally, it
applies over only a limited range of shear rates and therefore the fitted values
of m andn will depend on the range of shear rates considered. Furthermore,
it does not predict the zero and infinite shear viscosities, as shown by dotted
lines in Figure 1.5. Finally, it should be noted that the dimensions of the flow
consistency coefficieniz, depend on the numerical value ofand therefore
the m values must not be compared when theralues differ. On the other
hand, the value ofz can be viewed as the value of apparent viscosity at the
shear rate of unity and will therefore depend on the time unit (e.minute
or hour) employed. Despite these limitations, this is perhaps the most widely
used model in the literature dealing with process engineering applications.

(i) The Carreau viscosity equation

When there are significant deviations from the power-law model at very high
and very low shear rates as shown in Figure 1.6, it is necessary to use a model
which takes account of the limiting values of viscositigsand jt.

Based on the molecular network considerations, Carreau [1972] put forward
the following viscosity model which incorporates both limiting viscosities
and oo

M — Koo

e Ay 2}/ (1.14)

wheren(<1) andx are two curve-fitting parameters. This model can describe
shear-thinning behaviour over wide ranges of shear rates but only at the
expense of the added complexity of four parameters. This model predicts
Newtonian fluid behavioup. = g when eithem =1 or A = 0 or both.
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(i) The Ellis fluid model

When the deviations from the power-law model are significant only at low
shear rates, it is perhaps more appropriate to use the Ellis model.

The two viscosity equations presented so far are examples of the form of
equation (1.11). The three-constant Ellis model is an illustration of the inverse
form, namely, equation (1.10). In simple shear, the apparent viscosity of an
Ellis model fluid is given by:

Ho

= 1.15
1+ (Tyx/fl/Z)a_l ( )

n

In this equationy is the zero shear viscosity and the remaining two constants
a(>1) andry; are adjustable parameters. While the indeis a measure of

the degree of shear-thinning behaviour (the greater the value gfeater

is the extent of shear-thinningyy» represents the value of shear stress at
which the apparent viscosity has dropped to half its zero shear value. Equation
(1.15) predicts Newtonian fluid behaviour in the limit@f, — oo. This form

of equation has advantages in permitting easy calculation of velocity profiles
from a known stress distribution, but renders the reverse operation tedious and
cumbersome.

1.3.2 Viscoplastic fluid behaviour

This type of fluid behaviour is characterised by the existence of a yield
stress {p) which must be exceeded before the fluid will deform or flow.
Conversely, such a material will deform elastically (or flew massdike a
rigid body) when the externally applied stress is smaller than the yield stress.
Once the magnitude of the external stress has exceeded the value of the yield
stress, the flow curve may be linear or non-linear but will not pass through
origin (Figure 1.4). Hence, in the absence of surface tension effects, such a
material will not level out under gravity to form an absolutely flat free surface.
One can, however, explain this kind of fluid behaviour by postulating that the
substance at rest consists of three dimensional structures of sufficient rigidity
to resist any external stress less thagn For stress levels greater thap,
however, the structure breaks down and the substance behaves like a viscous
material.

A fluid with a linear flow curve foriz,| > |1o| is called a Bingham plastic
fluid and is characterised by a constant plastic viscosity (the slope of the
shear stress versus shear rate curve) and a yield stress. On the other hand,
a substance possessing a yield stress as well as a non-linear flow curve on
linear coordinates (fojr,.| > |to|), is called a 'yield-pseudoplastic’ material.
Figure 1.8 illustrates viscoplastic behaviour as observed in a meat extract and
in a polymer solution.
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Figure 1.8 Representative shear stress—shear rate data showing viscoplastic
behaviour in a meat extract (Bingham Plastic) and in an aqueous carbopol
polymer solution (yield-pseudoplastic)

It is interesting to note that a viscoplastic material also displays an apparent
viscosity which decreases with increasing shear rate. At very low shear rates,
the apparent viscosity is effectively infinite at the instant immediately before
the substance yields and begins to flow. It is thus possible to regard these
materials as possessing a particular class of shear-thinning behaviour.

Strictly speaking, it is virtually impossible to ascertain whether any real
material has a true yield stress or not, but nevertheless the concept of a yield
stress has proved to be convenient in practice because some materials closely
approximate to this type of flow behaviour, e.g. see [Barnes and Walters,
1985; Astarita, 1990; Schurz, 1990 and Evans, 1992]. The answer to the
guestion whether a fluid has a yield stress or not seems to be related to
the choice of a time scale of observation. Common examples of viscoplastic
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fluid behaviour include particulate suspensions, emulsions, foodstuffs, blood
and drilling muds, etc. [Barnes, 1999]
Mathematical models for viscoplastic behaviour

Over the years, many empirical expressions have been proposed as a result
of straightforward curve fitting exercises. A model based on sound theory is
yet to emerge. Three commonly used models for viscoplastic fluids are briefly
described here.

(i) The Bingham plastic model

This is the simplest equation describing the flow behaviour of a fluid with a
yield stress and, in steady one dimensional shear, it is written as:

Ty = 5 + Up(y)  fOr |7y] > || (1.16)
V=0 for |zy,| < ||

Often, the two model parametersf and up, are treated as curve fitting
constants irrespective of whether or not the fluid possesses a true yield stress.
(i) The Herschel-Bulkley fluid model

A simple generalisation of the Bingham plastic model to embrace the non-
linear flow curve (forty,| > |z8]) is the three constant Herschel—-Bulkley fluid
model. In one dimensional steady shearing motion, it is written as:

Ty = Ty +mPy)" for [ty > |7f| (1.17)
Y =0 for ITy| < |T51|

Note that here too, the dimensionsmfdepend upon the value af With the
use of the third parameter, this model provides a somewhat better fit to some
experimental data.

(iii) The Casson fluid model

Many foodstuffs and biological materials, especially blood, are well described
by this two constant model as:

(T2 = (DY + (el DM? - fOr [Tyl > |7 (1.18)
V=0 for [Tyl < |76

This model has often been used for describing the steady shear stress—shear
rate behaviour of blood, yoghurt, tomato p&remolten chocolate, etc. The

flow behaviour of some particulate suspensions also closely approximates to
this type of behaviour.
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The comparative performance of these three as well as several other models
for viscoplastic behaviour has been thoroughly evaluated in an extensive
review paper by Bircet al. [1983].

1.3.3 Shear-thickening or dilatant fluid behaviour

Dilatant fluids are similar to pseudoplastic systems in that they show no yield
stress but their apparent viscosity increases with increasing shear rate; thus
these fluids are also called shear-thickening. This type of fluid behaviour was
originally observed in concentrated suspensions and a possible explanation for
their dilatant behaviour is as follows: At rest, the voidage is minimum and the
liquid present is sufficient to fill the void space. At low shear rates, the liquid
lubricates the motion of each particle past others and the resulting stresses
are consequently small. At high shear rates, on the other hand, the material
expands or dilates slightly (as also observed in the transport of sand dunes)
so that there is no longer sufficient liquid to fill the increased void space
and prevent direct solid—solid contacts which result in increased friction and
higher shear stresses. This mechanism causes the apparent viscosity to rise
rapidly with increasing rate of shear.

The term dilatant has also been used for all other fluids which exhibit
increasing apparent viscosity with increasing rate of shear. Many of these, such
as starch pastes, are not true suspensions and show no dilation on shearing. The
above explanation therefore is not applicable but nevertheless such materials
are still commonly referred to as dilatant fluids.

Of the time-independent fluids, this sub-class has received very little atten-
tion; consequently very few reliable data are available. Until recently, dilatant
fluid behaviour was considered to be much less widespread in the chemical
and processing industries. However, with the recent growing interest in the
handling and processing of systems with high solids loadings, it is no longer so,
as is evidenced by the number of recent review articles on this subject [Barnes
et al, 1987; Barnes, 1989; Boersmsaal.,, 1990; Goddard and Bashir, 1990].
Typical examples of materials exhibiting dilatant behaviour include concen-
trated suspensions of china clay, titanium dioxide [Metzner and Whitlock,
1958] and of corn flour in water. Figure 1.9 shows the dilatant behaviour of
dispersions of polyvinylchloride in dioctylphthalate [Boersetaal., 1990].

The limited information reported so far suggests that the apparent
viscosity—shear rate data often result in linear plots on double logarithmic
coordinates over a limited shear rate range and the flow behaviour may be
represented by the power-law model, equation (1.13), with the flow behaviour
index, n, greater than one, i.e.

= m() (113)
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Figure 1.9 Shearstress-shearrate behaviourof polyvinylchloride(PVC)in
dioctylphthalate(DOP) dispersionsat 298K showingregionsof
shear-thinningand shear-thickeningBoersmaet al., 1990]

One can readily see that for n > 1, equation (1.13) predicts increasing
viscosity with increasingshearrate. The dilatantbehaviourmay be observed
in moderatelyconcentrateduspensionat high shearates,andyet, the same
suspensiomay exhibit pseudoplastibehaviourat lower shearates,asshown
in Figurel1.9; it is not yet possibleto ascertainvhetherthesematerialsalso
displaylimiting apparentiscosities.

1.4 Time-dependent fluid behaviour

The flow behaviour of many industrially important materials cannot be
describedby a simple rheologicalequationlike (1.12) or (1.13).In practice,
apparentviscositiesmay dependnot only on the rate of shearbut also on
the time for which the fluid has beensubjectedto shearing.For instance,
when materials such as bentonite-watersuspensionsred mud suspensions
(waste streamfrom aluminium industry), crude oils and certain foodstufs
are shearedat a constantrate following a long period of rest, their apparent
viscositiesgraduallybecomelessasthe ‘internal’ structureof the materialis
progressivelybrokendown. As the numberof structurallinkages’ capableof
being brokendown decreaseghe rate of changeof apparentviscosity with
time drops progressivelyto zero. Conversely,as the structurebreaksdown,
the rate at which linkagescanre-formincreasesso that eventuallya stateof
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dynamic equilibrium is reached when the rates of build-up and of break-down
are balanced.

Time-dependent fluid behaviour may be further sub-divided into two cate-
gories: thixotropy and rheopexy or negative thixotropy.

1.4.1 Thixotropy

A material is said to exhibit thixotropy if, when it is sheared at a constant
rate, its apparent viscosity (or the corresponding shear stress) decreases with
the time of shearing, as can be seen in Figure 1.10 for a red mud suspension
[Nguyen and Uhlherr, 1983]. If the flow curve is measured in a single experi-
ment in which the shear rate is steadily increased at a constant rate from zero
to some maximum value and then decreased at the same rate to zero again, a
hysteresis loop of the form shown in Figure 1.11 is obtained; the height, shape
and enclosed area of the hysteresis loop depend on the duration of shearing,
the rate of increase/decrease of shear rate and the past kinematic history of
the sample. No hysteresis loop is observed for time-independent fluids, that
is, the enclosed area of the loop is zero.

The term ‘false body’ has been introduced to describe the thixotropic
behaviour of viscoplastic materials. Although the thixotropy is associated
with the build-up of structure at rest and breakdown of structure under shear,
viscoplastic materials do not lose their solid-like properties completely and can
still exhibit a yield stress, though this is usually less than the original value
of the virgin sample which is regained (if at all) only after a long recovery
period.

Shear
% rate (s71)

Shear stress (Pa)

59% wt solids red mud

1 1 1 1 1
0 500 1000 1500 2000 2500

Time (s)

Figure 1.10 Representative data showing thixotropy in a 59% (by weight)
red mud suspension



Non-Newtonian fluid behaviour 17

Thixotropic fluid
[9]
(%]
g
I
]
Q
<
n
Rheopectic fluid
| | | | |
Shear rate

Figure 1.11 Schematishearstress-shearrate behaviourfor time-dependent
fluid behaviour

Other examplesof materialsexhibiting thixotropic behaviourinclude con-
centrated suspensionsgmulsions, protein solutions and food stuffs, etc.
[Barnes,1997].

1.4.2 Rheopexy or negative thixotropy

Therelativelyfew fluids for which the apparenviscosity (or the corresponding
shearstress)increaseswith time of shearingare saidto display rheopexyor

negativethixotropy. Again, hysteresisffectsare observedn the flow curve,

but in this caseit is inverted,ascomparedwith a thixotropic material,ascan

be seenin Figure1.11.

In a rheopecticfluid the structurebuilds up by shearand breaksdown
whenthe materialis at rest.For instance Freundlichand Juliusbeger [1935],
usinga 42% aqueougyypsumpaste foundthat, after shaking,this materialre-
solidifiedin 40min if atrest,butin only 20sif the containemwasgentlyrolled
in the palms of hands.This indicatesthat gentle shearingmotion (rolling)
facilitatesstructurebuildupbut moreintensemotiondestroyst. Thus,thereis a
critical amountof shearbeyondwhich re-formationof structureis notinduced
but breakdownoccurs.It is not uncommonfor the samedispersionto display
both thixotropy as well as rheopexydependingupon the shearrate and/or
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the concentration of solids. Figure 1.12 shows the gradual onset of rheopexy
for a saturated polyester at & [Steg and Katz, 1965]. Similar behaviour is
reported to occur with suspensions of ammonium oleate, colloidal suspensions
of a vanadium pentoxide at moderate shear rates [Tanner, 1988], coal-water
slurries [Keller and Keller Jr, 1990] and protein solutions [Pradipasena and
Rha, 1977].
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Figure 1.12 Onsetof rheopexyin a saturatedpolyesteffStegand Katz,
1965]

It is not possibleto put forward simple mathematicabquationsof general
validity to describeime-dependerfuid behaviourandit is usuallynecessary
to makemeasurementsver the rangeof conditionsof interest.The conven-
tional shearstress-shearrate curvesare of limited utility unlessthey relate
to the particularhistory of interestin the application.For examplewhenthe
material entersa pipe slowly and with a minimum of shearing,as from a
storagetank directly into the pipe, the shearstress-shearrate-time curve
shouldbe basedon testsperformedon samplesvhich havebeenstoredunder
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identical conditions and have not been subjected to shearing by transference
to another vessel for example. At the other extreme, when the material under-
goes vigorous agitation and shearing, as in passage through a pump, the shear
stress—shear rate curve should be obtained using highly sheared pre-mixed
material. Assuming then that reliable flow property data are available, the
zero shear and infinite shear flow curves can be used to form the bounds for
the design of a flow system. For a fixed pressure drop, the zero shear limit
(maximum apparent viscosity) will provide a lower bound and the infinite
shear conditions (minimum apparent viscosity) will provide the upper bound
on the flowrate. Conversely, for a fixed flowrate, the zero and infinite shear
data can be used to establish the maximum and minimum pressure drops or
pumping power.

For many industries (notably foodstuffs) the way in which the rheology of
the materials affects their processing is much less significant than the effects
that the process has on their rheology. Implicit here is the recognition of
the importance of the time-dependent properties of materials which can be
profoundly influenced by mechanical working on the one hand or by an aging
process during a prolonged shelf life on the other.

The above brief discussion of time-dependent fluid behaviour provides an
introduction to the topic, but Mewis [1979] and Barnes [1997] have given
detailed accounts of recent developments in the field. Govier and Aziz [1982],
moreover, have focused on the practical aspects of the flow of time-dependent
fluids in pipes.

1.5 Visco-elastic fluid behaviour

In the classical theory of elasticity, the stress in a sheared body is directly
proportional to the strain. For tension, Hooke’s law applies and the coefficient
of proportionality is known as Young’'s modulus,:

Ty = _G;ﬁ = G(yyx) (1.19
y
where d is the shear displacement of two elements separated by a distance
dy. When a perfect solid is deformed elastically, it regains its original form on
removal of the stress. However, if the applied stress exceeds the characteristic
yield stress of the material, complete recovery will not occur and ‘creep’ will
take place—that is, the ‘solid’ will have flowed.

At the other extreme, in the Newtonian fluid the shearing stress is propor-
tional to the rate of shear, equation (1.1). Many materials show both elastic
and viscous effects under appropriate circumstances. In the absence of the
time-dependent behaviour mentioned in the preceding section, the material is
said to be visco-elastic. Perfectly elastic deformation and perfectly viscous
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flow are, in effect, limiting cases of visco-elastic behaviour. For some mate-
rials, it is only these limiting conditions that are observed in practice. The
elasticity of water and the viscosity of ice may generally pass unnoticed! The
response of a material depends not only its structure but also on the conditions
(kinematic) to which it has been subjected; thus the distinction between ‘solid’
and ‘fluid’ and between ‘elastic’ and ‘viscous’ is to some extent arbitrary and
subjective.

Many materials of practical interest (such as polymer melts, polymer and
soap solutions, synovial fluid) exhibit visco-elastic behaviour; they have
some ability to store and recover shear energy, as shown schematically in
Figure 1.13. Perhaps the most easily observed experiment is the ‘soup bowl’
effect. If a liquid in a dish is made to rotate by means of gentle stirring with a
spoon, on removing the energy source (i.e. the spoon), the inertial circulation
will die out as a result of the action of viscous forces. If the liquid is visco-
elastic (as some of the proprietary soups are), the liquid will be seen to slow to
a stop and then to unwind a little. This type of behaviour is closely linked to the
tendency for a gel structure to form within the fluid; such an element of rigidity
makes simple shear less likely to occur—the shearing forces tending to act as
couples to produce rotation of the fluid elements as well as pure slip. Such
incipient rotation produces a stress perpendicular to the direction of shear.
Numerous other unusual phenomena often ascribed to fluid visco-elasticity
include die swell, rod climbing (Weissenberg effect), tubeless siphon, and the
development of secondary flows at low Reynolds numbers. Most of these have
been illustrated photographically in a recent book [Boger and Walters, 1992].
A detailed treatment of visco-elastic fluid behaviour is beyond the scope of this
book and interested readers are referred to several excellent books available
on this subject, e.g. see [Schowalter, 1978; Bitdal., 1987; Carreatet al.,

1997; Tanner and Walters, 1998]. Here we shall describe the ‘primary’ and
‘secondary’ normal stress differences observed in steady shearing flows which
are used both to classify a material as visco-elastic or viscoinelastic as well as
to quantify the importance of visco-elastic effects in an envisaged application.

[ dx |
F
A Viscous liquid—energy
dissipated as heat
dx |
F
/ A / Elastic solid—energy
- recoverable

Figure 1.13 Qualitative differencesbetweera viscousfluid and an elastic
solid



Non-Newtonian fluid behaviour 21

Normal stresses in steady shear flows

Let us consider the one-dimensional shearing motion of a fluid; the stresses
developed by the shearing of an infinitesimal element of fluid between two
planes are shown in Figure 1.14. By nature of the steady shear flow, the
components of velocity in the- and z-directions are zero while that in the
x-direction is a function ofy only. Note that in addition to the shear stress,
7y, there are three normal stresses denotedPRy P,, and P,, within the
sheared fluid which are given by equation (1.6). Weissenberg [1947] was the
first to observe that the shearing motion of a visco-elastic fluid gives rise to
unequal normal stresses. Since the pressure in a non-Newtonian fluid cannot be
defined by equation (1.7) the differenc®s, — P,, = N1 andP,, — P, = N>,

are more readily measured than the individual stresses, and it is therefore
customary to expres¥; and N, together withz,, as functions of the shear

rate y,, to describe the rheological behaviour of a visco-elastic material in a
simple shear flow. Sometimes, the first and second normal stress differences
N1 andN, are expressed in terms of two coefficienfs, andy, defined as
follows:

Ny

V1= (1.20)
Vyx

and Y, = N—22 (1.21)
Vyx

F— T,

2 o V= V,=0
A—— Py V= Vi)

7/ 4/

Figure 1.14 Non-zero components of stress in one dimensional steady
shearing motion of a visco-elastic fluid

A typical dependence of the first normal stress difference on shear rate is
shown in Figure 1.15 for a series of polystyrene-in-toluene solutions. Usually,
the rate of decrease @f; with shear rate is greater than that of the apparent
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Figure 1.15 Repesentativdirst normal stressdifferencedata for
polystyene-in-toluenesolutionsat 298K [Kulicke and Wallabaum,1985]

viscosity. At very low shearrates,the first normal stressdifference,N4, is
expectedo be proportionalto the squareof shearrate— thatis, 1 tendsto a
constantvalue yr; this limiting behaviouris seento be approachedy someof
the experimentatlatashownin Figure 1.15.1t is commonthatthefirst normal
stresdifferenceN; is higherthanthe shearstresse atthe samevalueof shear
rate.Theratio of N, to 7 is oftentakenasa measuref how elastica liquid is;
specifically (NV1/27) is usedandis calledthe recoverableshear.Recoverable
shearsgreaterthan 0.5 are not uncommonin polymer solutionsand melts.
They indicate a highly elasticbehaviourof the fluid. Thereis, however,no
evidenceof i, approachinga limiting value at high shearrates.lIt is fair to
mentionherethatthefirst normalstresdifferencehasbeeninvestigatednuch
lessextensivelythanthe shearstress.

Even less attentionhas beengiven to the study and measuremenof the
secondnormal stressdifference.The mostimportantpointsto note aboutnN,
arethatit is anorderof magnitudesmallerthanN, andthatit is negative Until
recently,it wasthoughtthat N, = 0; this so-calledWeissenbeg hypothesids
no longer believedto be correct. Somedatain the literature even seemto
suggestthat N, may changesign. Typical forms of the dependencef N,
on shearrate are shown in Figure 1.16 for the samesolutionsas usedin
Figure1.15.
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Figure 1.16 Repesentativesecondnormal stressdifferencedata for
polystyene-in-toluenesolutionsat 298K [Kulicke and Wallabaum,1985]

The two normal stressdifferencesdefinedin this way are characteristiof
a material,and as suchare usedto categorisea fluid eitheraspurely viscous
(N1 ~ 0) or asvisco-elasticandthe magnitudeof N in comparisorwith z,,,
is often usedasa measureof visco-elasticity.

Aside from the simple shearing motion, the responseof visco-elastic
materialsin a variety of otherwell-definedflow configurationsncluding the
cessation/initiationof flow, creep,small amplitude sinusoidalshearing,etc.
alsolies in betweenthat of a perfectly viscousfluid and a perfectly elastic
solid. Conversely,thesetestsmay be usedto infer a variety of rheological
informationabouta material. Detaileddiscussion®f the subjectareavailable
in a numberof books,e.g.seeWalters[1975] and Makowsko[1994].

Elongational flow

Flows which resultin fluids being subjectedto stretchingin one or more
dimensionoccurin manyprocessedijbre spinningandpolymerfilm blowing
being only two of the most common examples.Again, when two bubbles
coalescea very similar stretchingof theliquid film betweenthemtakesplace
until rupture occurs.Anotherimportantexampleof the occurrenceof exten-
sionaleffectsis the flow of polymersolutionsin porousmedia,asencountered
in the enhancedil recoveryprocess,n which the fluid is stretchedas the
extentand shapeof the flow passageghange.There are three main forms
of elongationalflow: uniaxial, biaxial and planar,as shownschematicallyin
Figure1.17.
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Figure 1.17 Schematicepresentatiorof uniaxial (a), biaxial (b) and planar
(c) extension

Fibrespinningis anexampleof uniaxialelongationbutthestretchratevaries
from point to point alongthe lengthof the fibre). Tubularfilm blowing which
involvesextrudingof polymerthroughaslit die andpulling theemeping sheet
forwardandsidewayss anexampleof biaxial extensionhere the stretchrates
in thetwo directionscannormallybespecifiedandcontrolled Anotherexample
is themanufacturef plastictubeswhich maybemadeeitherby extrusionor by
injectionmoulding,followed by heatingandsubjectionto high pressureair for
blowing to the desiredsize.Due to symmetry,the blowing stepin anexample
of biaxial extensiorwith equalratesof stretchingn two directionsIrrespective
of the type of extensionthe sum of the volumetric ratesof extensionin the
threedirectionsmustalwaysbe zerofor anincompressibldluid.

Naturally, the mode of extensionaffectsthe way in which the fluid resists
deformationand, althoughthis resistancecan be referredto loosely as being
quantifiedin termsof an elongationalor extensionaliscosity (which further
dependsiponthetype of elongationaflow, i.e. uniaxial, biaxial or planar) this
parameteiis, in general,not necessarilyconstant.For the sakeof simplicity,
consideratiomaybegivento the behaviourof anincompressibléluid element
which is being elongatedat a constantrate ¢ in the x-direction, as shownin
Figure1.18. For an incompressiblefluid, the volume of the elementmust
remainconstantandthereforeit mustcontractin both the y- andz-directions
attherateof (&/2), if the systemis symetricalin thosedirections.The normal
stressP,, andP_, will thenbeequal.Undertheseconditions,the threecompo-
nentsof the velocity vectorV aregiven by:

Ve=éx, V,= —% y, andV, = —%z (1.22)
andclearly, the rate of elongationin the x-directionis given by:
aV,
&= (1.23)
ox

In uniaxial extension the elongationaliscosity ug is thendefinedas:
P — Py _ o — Ty 1.24)
& &

or P,, andr,, canbereplacedby P., andr. respectively.

ME =
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Figure 1.18 Uniaxial extensionaflow

The earliestdeterminationsof elongationalviscosity were made for the
simplestcaseof uniaxial extension,the stretchingof a fibre or filament of
liquid. Trouton[1906] and many later investigatorsfound that, at low strain
(or elongation)rates,the elongationaliscosity g wasthreetimesthe shear
viscosity u [Barnesetal., 1989]. Theratio ug/u is referredto asthe Trouton
ratio, 7, andthus:

_ HE
1%

T, (1.25)

Thevalueof 3 for Troutonratio for anincompressibldNewtonianfluid applies
to valuesof sheamndelongatiorrates By analogy onemaydefinethe Trouton
ratio for a non-Newtoniarfluid:

T, — ,U«E(.é)
n(y)
The definition of the Trouton ratio given by equation(1.26) is somewhat
ambiguous,since it dependson both ¢ and y, and some conventionmust
therefore be adoptedto relate the strain ratesin extensionand shear.To
removethis ambiguityandat the sametimeo providea conveniengestimateof

behaviourin extensionJoneset al. [1987] proposedhe following definition
of the Troutonratio:

(1.26)

_u®
SEHVEDS)

1.27)

i.e., in the denominatorthe shearviscosity is evaluatedat y = +/3¢. They
also suggestedhat for inelastic isotropic fluids, the Trouton ratio is equal
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to 3 for all values ofé¢ and y, and any departure from the value of 3 can
be ascribed unambiguously to visco-elasticity. In other words, equation (1.27)
implies that for an inelastic shear-thinning fluid, the extensional viscosity must
also decrease with increasing rate of extension (so-called “tension-thinning”).
Obviously, a shear-thinning visco-elastic fluid (for which the Trouton ratio
will be greater than 3) will thus have an extensional viscosity which increases
with the rate of extension; this property is also called “strain-hardening”.
Many materials including polymer melts and solutions thus exhibit shear-
thinning in simple shear and strain-hardening in uniaxial extension. Except in
the limit of vanishingly small rates of deformation, there does not appear to
be any simple relationship between the elongational viscosity and the other
rheological properties of the fluid and, to date, its determination rests entirely
on experiments which themselves are aften constrained by the difficulty of
establishing and maintaining an elongational flow field for long enough for
the steady state to be reached [Gupta and Sridhar, 1988; James and Walters,
1994]. Measurements made on the same fluid using different methods seldom
show quantitative agreement, especially for low to medium viscosity fluids
[Tirtaatmadja and Sridhar, 1993]. The Trouton ratios for biaxial and planar
extensions at low strain rates have values of 6 and 9 respectively for all
inelastic fluids and for Newtonian fluids under all conditions.

Mathematical models for visco-elastic behaviour

Though the results of experiments in steady and transient shear or in an elon-
gational flow field may be used to calculate viscous and elastic properties for
a fluid, in general the mathematical equations need to be quite complex in
order to describe a real fluid adequately. Certainly, the most striking feature
connected with the deformation of a visco-elastic substance is its simulta-
neous display of ‘fluid-like’ and ‘solid-like’ characteristics. It is thus not
at all surprising that early attempts at the quantitative description of visco-
elastic behaviour hinged on the notion of a linear combination of elastic and
viscous properties by using mechanical analogues involving springs (elastic
component) and dash pots (viscous action). The Maxwell model represents the
corner-stone of the so-called linear visco-elastic models; though it is crude,
nevertheless it does capture the salient features of visco-elastic behaviour.

A mechanical analogue of this model is obtained by series combinations of
a spring and a dashpot (a vessel whose outlet contains a flow constriction over
which the pressure drop is proportional to flow rate), as shown schematically
in Figure 1.19. If the individual strain rates of the spring and the dashpot
respectively arg, andy,, then the total strain ratg is given by the sum of
these two components:

dyr | dy2

s, W dr 128
y=nt+w dt+dt (1.28)
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Figure 1.19 Schematic representation of the Maxwell model

Combining equation (1.28) with the Hooke’s law of elasticity and Newton’s
law of viscosity, one can obtain:

TH+AT=puy (1.29)

wheret is the time derivative ofr; u is the viscosity of the dashpot fluid;
and L(= u/G), the relaxation time, which is a characteristic of the fluid. It
can easily be seen from equation (1.29) that if a Maxwell model fluid is
strained to a fixed point and held there, the stress will decay a&—exp).

An important feature of the Maxwell model is its predominantly fluid-like
response. A more solid-like behaviour is obtained by considering the so-called
Voigt model which is represented by the parallel arrangement of a spring and
a dashpot, as shown in Figure 1.20.

Figure 1.20 Schematiagepresentatiorof the Voigt model

In this case,the strainin the two componentss equal and the equation
describingthe stress-strain behaviourof this systemis:
=Gy +uy (1.30)

If the stressis constantat zp andthe initial strainis zero,uponthe removal
of the stressthe straindecaysexponentiallywith a time constanti (= u/G).
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The more solid-like response of this model is clear from the fact that it does
not exhibit unlimited non-recoverable viscous flow and it will come to rest
when the spring has taken up the load.

One of the main virtues of such linear models is that they can be
conveniently superimposed by introducing a spectrum of relaxation times, as
exhibited in practice, by polymeric systems or by including higher derivatives.
Alternatively, using the idea of superposition, one can assume the stress to be
due to the summation of a number of small partial stresses, each pertaining
to a partial strain, and each stress relaxing according to some relaxation
law. This approach yields the so-called ‘integral’ models. In addition, many
other ideas have been employed to develop elementary models for visco-
elastic behaviour including the dumbbell, bead-spring representations, network
and kinetic theories. Invariably, all such attempts entail varying degrees of
idealisation and empiricism; their most notable limitation is the restriction to
small strain and strain rates.

The next generation of visco-elastic fluid models has attempted to relax
the restriction of small deformation and deformation rates, thereby leading
to the so-called non-linear models. Excellent critical appraisals of the devel-
opments in the field, together with the merits and de-merits of a selection
of models, as well as some guidelines for selecting an appropriate equation
for an envisaged process application, are available in the literature, e.g. see
references [Bircet al., 1987; Tanner, 1988; Larson, 1988; Baretsl., 1989;
Macosko, 1994; Bird and Wiest, 1995].

1.6 Dimensional considerations for visco-elastic fluids

It has been a common practice to describe visco-elastic fluid behaviour in
steady shear in terms of a shear stregg @nd the first normal stress difference
(N1); both of which are functions of shear rate. Generally, a fluid relaxation
or characteristic time.;, (or a spectrum) is defined to quantify the visco-
elastic behaviour. There are several ways of defining a characteristic time by
combining shear stress and the first normal stress difference, e.g. the so-called
Maxwellian relaxation time is given by:

N1

Ar = 1.31
/ 2Tyx J./yx ( )

Since, in the limit ofy,, — 0, bothy1(= Nl/)'/yxz) andu(= ty./¥y) approach
constant values) ; also approaches a constant value. Though equation (1.31)
defines a fluid characteristic time as a function of shear rate, its practical utility
is severely limited by the fact that in most applications, the kinematics (or shear
rate) is not known a priori. Many authors [Leider and Bird, 1972; Grimm,
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1978] have obviated this difficulty by introducing the following alternative
definition of A :
mp Y (p1—n)
A= —2 1.32
f om (132

This definition is based on the assumption that kéthandz,, can be approx-
imated as power-law functions of shear rate in the range of conditions of
interest, that is,

Ny = ml()./yx)pl (1.33)
and Ty = m(j’yx)n (112)

By re-defininga ¢ in this manner, it is not necessary to extend the rheological
measurements to the zero-shear region. Note that in the limjt,0f> O,
p1 — 2,n — 1 and thus equation (1.32) coincides with equation (1.31).

For Newtonian fluids, the state of flow can be described by two dimension-
less groups, usually the Reynolds number, Re, (inertial forces/viscous forces)
and Froude number, Fr, (inertial/gravity forces). For a visco-elastic fluid, at
least one additional group involving elastic forces is required.

The Reynolds number represents the ratio of inertial to viscous forces, and it
might be reasonable to expect that such a ratio would provide a useful param-
eter. Unfortunately, attempts to achieve meaningful correlations have not been
very successful, perhaps being defeated most frequently by the complexity of
natural situations and real materials. One simple parameter that may prove
of value is the ratio of a characteristic time of deformation to a natural time
constant for the fluid. The precise definition of these times is a matter for
argument, but it is evident that for processes that involve very slow deforma-
tion of the fluid elements it is possible for the elastic forces to be released by
the normal processes of relaxation as they build up. As examples of the flow
of rigid (apparently infinitely viscous) materials over long periods of time,
even the thickening of the lower parts of medieval glass windows is insignif-
icant compared with the plastic flow and deformation that lead to the folded
strata of geological structures. In operations that are carried out rapidly the
extent of viscous flow will be minimal and the deformation will be followed
by recovery when the stress is removed. To get some idea of the possible
regions in which such an analysis can provide guidance, consider the flow
of a 1% aqueous polyacrylamide solution. Typically, this solution might have
a relaxation time of the order of 10 ms. If the fluid were flowing through a
packed bed, it would be subjected to alternating acceleration and decelera-
tion as it flowed through the interstices of the bed. With a particle size of
25mm, say, and a superficial velocity of 0.25 m/s, the deformation or process
time will be of the order of 25« 1073/0.25 = 0.1 s which is greater than the
fluid relaxation time. Thus, the fluid elements can adjust to the changing flow
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area and one would therefore not expect the elastic properties to influence
the flow significantly. However, in a free jet discharge with a velocity of
30m/s through a nozzle of 3mm diameter, the deformation or process time
of (3 x 1073)/30 = 0.1 ms which is 100 times smaller than the fluid response
time and the fluid elements will not have sufficient time to re-adjust; it might
therefore be reasonable to expect some evidence of elastic behaviour near the
point of discharge from the nozzle. A parameter which might be expected
to be important is the Deborah number, De, is defined as [Metehat,

1966]:

Fluid response time

e= — (1.34)
Process characteristic time

In the examples above, for the packed bed,=P@.1 and for the free jet,

De = 100. The greater the value of De, the more likely the elasticity to be of
practical significance. The same material might well exhibit strongly elastic
response under certain conditions of deformation and essentially an inelastic
response under other conditions.

Unfortunately, this group depends on the assignment of a single charac-
teristic time to the fluid (a relaxation time?). While this is better than no
description at all, it appears to be inadequate for many visco-elastic materials
which show different relaxation behaviour under differing conditions.

From the preceding discussion in this chapter, it is abundantly clear that
each non-Newtonian fluid is unigue in its characteristics, and the only real
information about the rheology of a material comes from the experimental
points or flow curves that are obtained using some form of rheometers, as
discussed in Chapter 2. Provided that there are sufficient experimental points,
interpolation can usually be satisfactory; extrapolation should, however, be
avoided as it can frequently lead to erroneous results. Certainly, the fitting of
an empirical viscosity model to limited data should not be used as a justi-
fication for extrapolating the results beyond the experimental range of shear
rates or shear stresses. Similarly, it is usually possible to fit a number of
different equations (e.g. the power-law and the Bingham plastic model) to a
given set of data equally well, and the choice is largely based on convenience
or individual preference. Frequently, it is not possible to decide whether a
true yield stress exists or not. Therefore, some workers prefer to refer to an
‘apparent yield stress’ which is an operational parameter and its evaluation
involves extrapolation of data to zero shear rate, often the value depending
upon the range of data being used to evaluate it. For instance, it is there-
fore likely that the values of the apparent yield stress fitted in the Bingham,
Herschel-Bulkley and Casson models may be quite different for the same
fluid. Thus, extreme caution must be exercised in analysing, interpreting and
using rheological data.
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Example 1.1

The following shear stress—shear rate data were obtained for an aqueous polymer
solution at 291 K.

]./yx (Sﬁl) Tyx (Pa) ]./yx (Sﬁl) Tyx (Pa)

0.14 0.12 4.43 3.08
0.176 0.14 5.57 3.79
0.222 0.17 7.02 4.68
0.28 0.21 8.83 5.41
0.352 0.28 11.12 6.53
0.443 0.35 14 8.11
0.557 0.446 17.62 9.46
0.702 0.563 22.2 11.50
0.883 0.69 27.9 13.5
111 0.85 35.2 16.22
14 1.08 443 18.92
1.76 131 556.7 22.10
2.22 1.63 70.2 26.13
2.8 2.01 88.3 30
3.52 2.53 111.2 34.8

(a) Plot the flow curve on log-log coordinates

(b) Can the power-law model fit this data over the entire range? What are the values
of m andn?

(c) Can the Ellis fluid model (eq. 1.15) fit this data better than the power law model?
Evaluate the values qio, 71>, anda?

Solution

Figure 1.21 shows the flow curve for this polymer solution.

The plot is not linear on log-log coordinates and therefore the power-law model
cannot fit the data over the whole range; however, it is possible to divide the plot in
two parts, each of which can be represented by power-law model as:

1=0757%% fory <~5s1
and t=1.087%"" 5<j <100s?

Note that aty = 5s%, both equations yield nearly equal values of the shear stress
and the boundary between the two zones has been taken simply as the inter-section
of the two equations. Note that if the extrapolation is based on the second equation, it
will over-estimate the value of shear stress at shear rates belotwihereas the first
equation will also over-predict shear stress at shear rates above 5s

The fitting of the data to the Ellis model, equation (1.15), however, needs a non-
linear regression approach to minimise the sum of squares. The best values are
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100

£=1.08 p0.76

Ellis model
fit

Shear stress (Pa)

0.1 1 10 100

Shear rate (s71)

Figure 1.21 Flow curve for example 1.1

found to be
uo=0.79Pas 11, =2155Pa and « =2.03

The predications of this model are also plotted in Figure 1.21 where a satisfactory fit
can be seen to exist.

This chapter is concluded by providing a list of materials displaying a
spectrum of non-Newtonian flow characteristics in diverse applications to give
an idea of the ubiquitous nature of such flow behaviour (Table 1.2).

Similarly, since much has been written about the importance of the measure-
ment of rheological data in the same range of shear or deformation rates as
those likely to be encountered in the envisaged application, Table 1.3 gives
typical orders of magnitudes for various processing operations in which non-
Newtonian fluid behaviour is likely to be significant.
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Table 1.2 Some common non-Newtonian characteristics

Practical fluid

Characteristics

Consequence of
non-Newtonian behaviour

Toothpaste

Drilling muds

Non-drip paints
Wallpaper paste
Egg White
Molten polymers

‘Bouncing Putty’

Wet cement
aggregates

Printing inks

Bingham Plastic

Bingham Plastic

Thixotropic
Pseudoplastic
and
Visco-elastic
Visco-elastic
Visco-elastic
Visco-elastic

Dilatant

Pseudoplastic

Stays on brush and behaves
more liquid like while
brushing
Good lubrication properties
and ability to convey
derbris
Thick in the tin, thin on the
brush
Good spreadability and
adhesive properties

Easy air dispersion
(whipping)
Thread-forming properties
Will flow if stretched slowly,
but will bounce (or shatter)
if hit sharply
Permit tamping operations in
which small impulses
produce almost complete
settlement
Spread easily in high speed
machines yet do not run
excessively at low speeds.

Table 1.3 Shear rates typical of some familiar materials and processes

[Barnes et al., 1989]

Situation

Typical range of
shear rates (s?)

Application

Sedimentation of
fine powders in a
suspending liquid

1P-104

Medicines, paints

continued overleaf
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Table 1.3 (continued)

Levelling due to
surface tension 16-101 Paints, printing inks
Situation Typical range of Application
shear rates (st)

Draining under Painting and coating,
gravity 101-10¢ Toilet bleaches

Extruders 186-1¢ Polymers

Chewing and
swallowing 16-1¢° Foods

Dip coating 16-10¢° Paints, confectionary

Pouring 16-10¢ Pharmaceutical formulations

Mixing and stirring 16-10° Manufacturing liquids

Pipe flow 16-10¢° Pumping, Blood flow

Spraying and Spray drying, painting, fuel
brushing 16-10* atomisation, spraying of

aerosols

Spreading and 103-10* Application of nail polish and
coating lipsticks

Rubbing 16-10 Application of creams and

lotions to the skin
Milling pigments

in fluid bases 19-10° Paints, printing inks
High speed coating o1 Paper coating
Lubrication 16-10 Gasoline engines
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1.9 Nomenclature

p1

Tg

\%

X, 02

Greek letters

> mRR R

o

R R

N

Dimensions
inM, L, T

area (M) L2
Deborah number (=) MOLOTO
force (N) MLT —2
Young's modulus (Pa) ML ~1T-2
power-law consistency coefficient (84 ML —1T7-2
power-law consistency coefficient for first normal stress

difference (Pa"1) ML ~1Tr1-2
first normal stress difference (Pa) ML —1T1-2
second normal stress difference (Pa) ML ~1T-2
power-law index (=) MOLOTO
pressure (Pa) ML ~1T-2
total normal stress (Pa) ML —1T-2
power law index for first normal stress difference (-) MOLOTO
Trouton ratio (-) MOLOTO
velocity (m/s) LT -1
coordinate system (m) L

fluid parameter in Ellis fluid model (-) MOLOTO

strain (-) MOLOTO

shear rate (1/s) T-1

rate of extension (3% MOLOT-1

fluid parameter in Carreau viscosity equation or characteristic

time in Maxwell model (s) T

Newtonian or apparent viscosity (BR ML —1T-1

fluid density (kg/n{) ML 3

component of stress tensor (Pa) ML —1T-2

volume fraction (-) MOLOTO

first normal stress difference coefficient (% ML 1

second normal stress difference coefficient-§Pa ML 1

Subscripts/superscripts

oxmAaw

XX, Yy, 22
Xy, ¥z, 2X,
VX, 2y, X2

o0

pertaining to Bingham fluid model
relating to Casson fluid model
extensional

relating to Herschel—Bulkley fluid model
zero shear

normal stress components

shear stress components
infinite shear



Chapter 2
Rheometry for non-Newtonian fluids'

2.1 Introduction

The rheological characterisation of non-Newtonian fluids is widely acknow-
ledged to be far from straightforward. In some non-Newtonian systems, such
as concentrated suspensions, rheological measurements may be complicated
by non-linear, dispersive, dissipative and thixotropic mechanical properties;
and the rheometrical challenges posed by these features may be compounded
by an apparent yield stress.

For non-Newtonian fluids, even the apparently simple determination of a
shear rate versus shear stress relationship is problematical as the shear rate
can only be determined directly if it is constant (or nearly so) throughout the
measuring system employed. While very narrow shearing gap coaxial cylinder
and cone-and-plate measuring geometries provide good approximations to this
requirement, such systems are often of limited utility in the characterisation
of non-Newtonian products such as suspensions, whose particulate/aggregate
constitutents preclude the use of narrow gaps. As most measuring geometries
do not approximate to constant shear rate, various measurement strategies have
been devised to overcome this limitation. The basic features of these rheomet-
rical approaches, and of the main instrument types for their implementation,
are considered below.

2.2 Capillary viscometers

Capillary viscometers are the most commonly used instruments for the measure-
ment of viscosity due, in part, to their relative simplicity, low cost and (in
the case of long capillaries) accuracy. However, when pressure drives a fluid
through a pipe, the velocity is a maximum at the centre: the velocity gradient or
shear ratey are a maximum at the wall and zero in the centre of the flow. The
flow is therefore non-homogeneous and capillary viscometers are restricted to
measuringsteadyshear functions, i.e. steady shear stress—shear rate behaviour
for time independent fluids [Macosko 1994]. Due to their inherent similarity to

*This chapter has been written by Dr. P.R. Williams, Reader, Department of Chemical and
Biological Process Engineering, University of Wales Swansea.
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many process flows, which typically involve pipes, capillary viscometers are
widely employed in process engineering applications and are often converted
or adapted (with relative ease) to produce slit or annular flows.

2.2.1 Analysis of data and treatment of results

It is convenient to consider the case of an ideal capillary viscometer involving
a fluid flowing slowly (laminar) and steadily through a long tube of radius

at a constant temperature, and with a pressure @rapp), between its ends
[Whorlow, 1992]. Then, for fully developed flow, the following relationship
may be derived relating the shear stress at the wall of the tyheo the
volume of liquid flowing per second through any cross-secti®nand the
shear stress (see equation (2.1)):

1 Ty
% =3 ?f(7)dr (2.1)

Heret, = (R/2)(—Ap/L) where(—Ap/L) is the magnitude of the pressure
drop per unit length of tube (the pressure gradient) and the shear stedss
any radiusr is (r/2)(—Ap/L). A graph ofQ/nR® vs. t,, gives a unique line,
for a given material, for all values @t and(—Ap/L).

For a Newtonian fluid, withy = f(t) = t/uy, equation (2.1) yields the
Poiseuille equation,

—A
7R* <_p
L
Bun
from which the viscosityuy can be calculated using a value @fobtained
for a single value of —A p/L), and the shear rate at the tube wall 8/4R>
or (8V/D).
Turning to the most commonly-used model approximations to non-

Newtonian flow behaviour, the following relationships are obtained for the
power-law model (in the formu = my"~1), written atr = R:

0= (2.2)

R /—A 3 1 8v)”
2 L 4n D
and, for the Bingham model (in the forim= f(t) = (v — rg)/,ug)ofwe obtain,
3
4 B 1 B
<8_V L T (2.4)
D UB 4 3 4 Ty

whereup is the ‘plastic viscosity'.
For flow curves ofunknownform, equation (2.1) yields (after some mani-
pulation, see Section 3.2.5):
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8V 3 d(log 8V /D)
o= (2 {(2 + Yoy

D 4 4d(logT,,) (25)

Various forms of this equation are used, a common form (often termed the
Weissenberg—Rabinowitsch or Rabinowitsch—Mooney equation) being,

3n' +1
4n’

7./W = )./WN ( (26)
wheren’ = d(logt,,)/d(log y,.v), 7 IS the shear rate at the wall anigy =
(8V/D) is a nominal shear rate obtained by using the formula appropriate to
the Newtonian fluid.

For shear-thinning fluids, the apparent shear rate at the wall is less than the
true shear rate, with the converse applying near the centre of the tube [Laun,
1983]. Thus at some radius?R, the true shear rate of a fluid of apparent
viscosity u equals that of &ewtonianfluid of the same viscosity. The stress
at this radiusy*t,,, is independent of fluid properties and thus the true viscosity
at this radius equals the apparent viscosity at the wall and the viscosity calcu-
lated from the Poiseuille equation (equation (2.2)) is the true viscosity at a
stressc*t,,. Laun [1983] reports that this ‘single point’ method for correcting
viscosity is as accurate as the Weissenberg—Rabinowitsch method.

Serious errors may be incurred due to wall slip, e.g. in the case of concen-
trated dispersions where the layer of particles may be more dilute near the wall
than in the bulk flow: the thin, dilute layer near the wall has a much lower
viscosity, resulting in an apparent slippage of the bulk fluid along the wall.

The occurrence of this phenomenon may be tested by comparing the viscosity
functions obtained using capillaries of similar length-to-radius rafigR, but
of different radii. Any apparent wall slip may then be corrected for and the true
viscosity of the fluid determined by extrpolating the results obtained to infinite
pipe diameter. In the relation developed by Mooney [1931], apparent wall shear
rates obtained for constant length-to-radius ratio are plotted agaif®y. (

Departures from ideal flow near either end of the pipe (end effects) may
be eliminated by considering the total pressure d¢ep\ p);, between two
points beyond opposite ends of a uniform bore tube in terms-afp/L), the
pressure gradient in the central part of the tube of ledigdmd an end correc-
tion, . The latter may be very large for non-Newtonian fluids. Using tubes of
different length, a plot of— A p), versusL yields the value of—Ap/L) if the
upper part of the plot is linear, arsdmay be found by extrapolation to zeto
Note that in applying this procedure to polymer systems it is conventional to
plot pressure again&/R to construct the so-called Bagley plot [Bagley 1957].

As the construction of the Bagley plot requires considerable experimental
effort, in practice a single longL/R > 60) capillary is usually deemed to
provide accurate results on the assumption that all corrections may be safely
ignored. This assumption is not always warranted and the reader is referred to
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other texts (see ‘Further Reading’) for details concerning additional sources of
error, which may require consideration of kinetic energy corrections, pressure
dependence of viscosity, thixotropy, viscous heating, compressibility and, in

the case of melts, sample fracture. A typical arrangement of a pressurised
capillary viscometer is shown in Figure 2.1.

From gas
Pressure i cylinder
gauge @ 4

[1

|

l

1@_@

Figure 2.1

A pressurised capillary viscometer

Example 2.1

The following capillary viscometer data on a high pressure polyethylene melt &£190
have been reported in the literature [A.P. Metzger and R.S. Brodkéyppl. Polymer

Sci., 7 (1963) 399]. Obtain the true shear stress—shear rate data for this polymer.
Assume the end effects to be negligible.

v
(5 ) neea
10 22.4
20 31
50 43.5
100 57.7
200 75
400 97.3
600 111
1000 135.2
2000 164
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Solution

From equation (2.5):

. 3n"+1 8V
f(Tw) =Y = { an’' : 6}

R [(—A
and'l.'w = E (Tp

wherert, is the true shear stress at the wall irrespective of the type of fluid behaviour,
whereag8V /D) is the corresponding shear rate at the wall only for Newtonian fluids.
The factor ((2’ + 1)/4n’) corrects the nominal wall shear rateV(&) for the non-
Newtonian fluid behaviour.

dlogz,
where n/ = 9%
dlog(8V/D)
108
o] =
£ 102 ,
S
10
10 102 102 5 x 108

8V) <1
&)=
Figure 2.2 Rheological data of Example 2.1

Thus, the given data is first plotted on log-log coordinates as shown in Figure 2.2
and the value of’ is evaluated at each point (value oV 8D), as summarised in
Table 2.1.
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Table 2.1 Summary of Calculations

8v ) , _ dlogz, . (3n'+1 [8V )
o (kPa) (D ) "= Flog@v,D) W‘( an’ (D &)
22.4 10 0.50 125
31 20 0.47 25.6
435 50 0.43 66.6
57.7 100 0.42 135
75 200 0.40 275
97.3 400 0.36 578
111 600 0.34 891
135.2 1000 031 1556
164 2000 0.31 3113

As can be seen, the value of the correction fa¢Bar' + 1)/(4n’) varies from 25%
to 55.6%. Thus, the values of,(, y,) represent the true shear stress—shear rate data
for this polymer melt which displays shear-thinning behaviour as can be seen from the
values ofn’ < 1.

2.3 Rotational viscometers

Due to their relative importance as tools for the rheological characterisation of
non-Newtonian fluid behaviour, we concentrate on this class of rheometers by
considering the two main types, namely; the controlled shear rate instruments
(also known as controlledate devices) and controlledtress instruments.

Both types are usually supplied with the same range of measuring geometries,
principally the concentric cylinder, cone-and-plate and parallel plate systems.
The relative merits, potential drawbacks, working equations and other formulae
associated with these designs have been described in great detail elsewhere
(e.g., see Walters, 1975; Whorlow, 1992; Macosko, 1994) and so only their
most basic aspects are covered here.

2.3.1 The concentric cylinder geometry

It is appropriate to begin by considering this geometry as it was the basis of the
first practical rotational rheometer. Ideally the sample is containedhari@w
gap between two concentric cylinders (as shown in Figure 2.3). Typically the
outer ‘cup’ rotates and the torque on the inner cylinder, which is usually
suspended from a torsion wire or bar, is measured.

Working equations relating the measured torque to the requisite shear stress,
and angular velocity (of the cup) to the requisite shear rate, are widely available
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Pointer

Retaining spring

Rotating outer
cylinder

Stationary inner
cylinder

Figure 2.3 Partial sectionof a concentric-cylindeviscometer

alongwith their derivations(seethe list of referencesbove).lt is noteworthy
that the working formulae quotedin many instancesgnore the curvatureof
the surfacef the measuringgeometry.The determinatiorof the shearstress
andshearratewithin the shearinggapis thusvalid only for very narrowgaps
whereing, the ratio of innerto outercylinder radii, is >0.99.

Severaldesignshavebeendescribedvhich overcomeend-efectsdueto the
shearflow at the bottom of the concentriccylinder geometry.Theseinclude
the recessedottom systemwhich usually entails trapping a bubble of air
(or alow viscosity liquid suchasmercury)beneaththe inner cylinder of the
geometry Alternatively the ‘Mooney-Ewart’ design,which featuresa conical
bottom may, with suitablechoice of cone angle,causethe shearrate in the
bottom to matchthat in the narrow gap betweenthe sidesof the cylinders,
seeFigure2.4.

In this examplethe sampletemperaturés controlledby circulationof liquid
throughthe outercylinder housing(flow markedin andoutin Figure 2.4) and
h denotesthe sampleheightwithin the shearinggap. The shearrate may be
calculatedfrom

_ RQ
r= Ry — Ry
whereR, andR; arethe outerandinner cylinder radii respectivelyand 2 is
the angularvelocity. For k > 0.99, the shearstressis given by:

(2.78)

T =T/2nR%h (2.70)
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1
h
—
In
- out
Ry
)

Figure 2.4 TheMooney-Ewargeometry

To minimise end-efectsthe lower end of the inner cylinder is a truncated
cone.Theshearatein this regionis equalto thatbetweerthe cylindersif the
coneangle,«, is relatedto the cylinder radii by:

o =tan?t Re — Ry (2.8)

2

The main sourcesof errorin the concentriccylinder type measuringgeo-
metryarisefrom endeffects(seeabove)wall slip, inertiaandsecondarylows,
viscousheatingeffectsandeccentricitiedueto misalignmenibf the geometry
[Macosko,1994].

Secondarylows areof particularconcernn thecontrolledstressnstruments
which usually employ a rotating inner cylinder, in which caseinertial forces
causea smallaxisymmetriccellular secondarynotion (‘Taylor’ vortices).The
dissipationof enegy by thesevorticesleadsto overestimatiorof the torque.
The stability criterion for a Newtonianfluid in a narrowgapis

Ta = p?Q?%(Ry — R1)°R1/n? < 3400 (2.9

whereTa is the ‘Taylor’ number.

In the caseof non-Newtonianpolymer solutions (and narrow gaps) the
stability limit increasedn situationswherethe outercylinderis rotating,stable
Couetteflow may be maintaineduntil the onsetof turbulenceat a Reynolds
number,Re, of ca. 50000 whereRe = pQR,(R; — R1)/u [Van Wazeretal.,
1963].

2.3.2 The wide-gap rotational viscometer: determination of the flow
curve for a non-Newtonian fluid

An importantrestrictionon the useof the concentriccylinder measuringgeo-
metryfor the determinatiorof the shearateversusshearstresselationshipfor
a non-Newtoniarfluid is the requirementnotedabove,for a narrowshearing
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gap between the cylinders. As indicated in the introduction to this chapter,
direct measurements of shear rates can only be made if the shear rate is
constant (or very nearly so) throughout the shearing gap but many coaxial
measuring systems do not fulfill this requirement. In addition, many (if not
most) non-Newtonian fluid systems, particularly those of industrial or commer-
cial interest such as pastes, suspensions or foods, may contain relatively large
particles, or aggregates of particles. Thus the requisite shearing gap size to
ensure that adequate bulk measurements are made, i.e., a gap size approxi-
mately 10—100 times the size of the largest ‘particle’ size [Van Waraet.,

1963], may conflict with the gap size required to ensure near constant shear
rate, within the gap.

Procedures for extracting valid shear stress versus shear rate data from
measurements involving wide gap coaxial cylinder systems (the Brookfield
viscometer being an extreme example of wide gap devices) are therefore
of considerable interest in making quantitative measurements of the flow
properties of non-Newtonian process products. Most of these data-treatment
procedures necessarily involve some assumption regarding the functional form
of the flow curve of the material. One example is that made in the deriva-
tion of data from the Brookfield-type instrument, which assumes that the
speed of rotation of the cylinder or spindle is proportional to the shear rate
experienced by the fluid. This assumption implies that the flow curve is
adequately described by a simple power-law (which for many shear-thinning
non-Newtonian fluids may be acceptable), but this assumption is widely taken
to excludeall fluids which display an apparent yield stress and/or non-power
law type behaviour.

The starting point lies in considering the basic equation for the coaxial
rotational viscometer, which has been solved by Krieger and co-workers for
various sets of boundary conditions [Krieger and Maron, 1952]:

Q=>4 (2.10)

where Q is the angular velocity of the spindle with respect to the cujs
the shear stress in the fluid at any point in the systgiir) = y is the rate
of shear at the same point and the subscpasidc refer to the bob and the
cup, respectively.

The particular solution to equation (2.10) for a finite cylindrical bob rotating
in an infinite cup can provide valuable quantitative rheological data for
systems whose particulate constituents, and practical limitations on the size
of the measuring geometry in terms of cylinder radius, preclude the use of
conventional narrow gap geometries. The infinite cup boundary condition
may be closely approximated by using a narrow cylindrispindle (such
as are supplied with instruments of the Brookfield type) in place of the more
commonly used bob.
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Assuming the infinite-cup boundary conditiap,(shear stress on the cup) in
equation (2.10) becomes equal to zero and the expression may be differentiated
with respect tor, giving:

W= f(t,) = —2dQ/dInt, = —21,dQ/dr, (2.11)

and thus the rate of shear may be obtained by evaluating (graphically) either
of the derivatives on the right-hand side of equation (2.11).

The derivation of equation (2.11) assumes that a cup of infinite radius is
filled with fluid. Implicitly this would exclude all systems which display a
yield stress, as such systems would not behave as a fluid for values of stress
below the yield value.

As many non-Newtonian systems are sufficiently ‘structured’ to display
an apparent yield stress, this requirement would appear to severely restrict
the application of what would otherwise appear to be a very useful tech-
nigue. However, on closer inspection, it has been shown that for a fluid which
displays a yield stress, a more general derivation than that reported by Krieger
and Maron [1952] may be obtained, and that the restriction of infinite outer
boundary (i.e. cup) radius may in fact be eliminated [Jacobsen, 1974].

In a system which displays yield stress behaviour, the integral in the general
expression for the rate of shear need not be evaluated from the bob all the
way to the cup. This is due to the fact that, for such a system, no shearing
takes place where is less than the yield valueg. Thus the integral need
only be evaluated from the bob to the critical radiRg;;, the radius at which
T = 10. This gives

Rerit
Q=1/2 f(@dt/t (2.12)

Ry

where the ‘critical’ radiusRc, is given as:
Rerit = Ry (t,/10)"/? (2.13)

This derivation relies on the fact that the condition of differentiability is not
that one limit of the integral be zero (as is the case in the infinite cup solution)
but that one limit beconstant Thus, for systems which may be described in
terms of a constant value of yield stress, equation (2.12) may be differentiated,

giving:
j/b = f(‘l,'b) =2 dQ/d In Tp = —21.'b dQ/d‘L’b (214)

i.e. exactly the same result is obtained as that derived for the case of the
infinite cup, equation (2.11).

In practice, shear stress data are plotted ag&inaghd the slopesd2/dz;)
are taken at each point. Given that the graphical solution may be some-
what tedious, and that a rapid evaluation of the general form of the flow
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curve is often all that is required (e.g. in a product ‘quality control’ context),
the form of theQ versust, plots is sometimes taken as giving the general
form of the correspondingr versusrt, curve (although, of course, the curves
will differ quantitatively). In the absence of an apparent yield stress (over
the experimental time-scale) the general character ofythersusz, curves
may sometimes be correctly inferred by this procedure: the situation is quite
different when the system exhibits an apparent yield stress and this situation
poses a trap for the unwary.

An examination of equation (2.14) shows that for any fluid with a finite
yield point, theQ2 versust, curve approaches thg axis at zero slope, due
to the requirement for such a system that the shear rate must become zero
at finite 7,. This may lead to apparent shear-thinning characteristics being
ascribed to systemgyrespective of the actual form of their flow curves above
the yield point i.e., whether Bingham plastic, shear-thickening (with a yield
stress), or shear-thinning (with a yield stress).

An instrument called the ‘rotating disk indexesi¢.) is also widely used
in quality control applications and involves a rotating disc in a ‘sea’ of fluid.
Williams [1979] has described a numerical method for obtaining frue y
data with this device.

2.3.3 The cone-and-plate geometry

In the cone-and-plate geometry, the test sample is contained between an upper
rotating cone and a stationary flat plate (see Figure 2.5, upper). In the example
shown, the cone is 40 mm in diameter, with a cone angle’ &9 relative to

the plate, and a truncation of ffin.

Solvent trap \

Figure 2.5 Cone-and-plate (upper) and parallel plate (lower) geometries
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The small cone angle{4”) ensures that the shear rate is constant throughout
the shearing gap, this being of particular advantage when investigating time-
dependent systems because all elements of the sample experience the same
shear history, but the small angle can lead to serious errors arising from
eccentricities and misalignment.

The small gap size dictates the practical constraints for the geometry: a
gap-to-maximum particle (or aggregate) size ratio>df00 is desirable to
ensure the adequate measurement of bulk material properties. This geometry
is, therefore, limited to systems containing small particles or aggregates, and
the strain sensitivity is fixed. Normal stress differences may be determined
from pressure and thrust measurements on the plate.

The form factors for the cone-and-plate geometry are as follows:

Shear stress:

3r
Shear rate:
Q

whereR is the radius of the cone (m);, the torque (Nm)S2, the angular
velocity (rad/s) andy, the cone angle (rad).

The influence of geometry misalignment and other factors, such as flow
instabilities arising from fluid elasticity, have been extensively studied in the
case of this geometry [Macosko, 1994]. Unlike the concentric cylinder geom-
etry, where fluid inertia causes a depression around the inner cylinder rather
than the well-known ‘rod-climbing’ effect due to visco-elastic normal stresses,
in the cone-and-plate geometry the effect of inertia is to draw the plates
together, rather than push them apart [Walters, 1975].

Many experimentalists employ a ‘sea’ of liquid around the cone (often
referred to as a ‘drowned edge’), partly in an attempt to satisfy the requirement
that the velocity field be maintained to the edge of the geometry.

2.3.4 The parallel plate geometry

In this measuring geometry the sample is contained between an upper
rotating or oscillating flat stainless steel plate and a lower stationary plate
(see Figure 2.5, lower). The upper plate in the example shown is 40 mm
in diameter. In contrast to the cone-and-plate geometry, the shear strain is
proportional to the gap height, and may be varied to adjust the sensitivity
of shear rate, a feature which readily facilitates testing for wall (slip) effects
[Yoshimura and Prud’homme, 1988].

The large gap sizes available can be used to overcome the limitations
encountered using the cone-and-plate geometry, such as its sensitivity to
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eccentricities and misalignment. However, it should be borne in mind that,
as in the case of the wide-gap Couette devices, shear rate is not constant.
Usually the strain reported is that measured at the outer rim, which provides
a maximum value of the spatially varying strain within the gap.

Loading and unloading of samples can often prove easier than in the cone-
and-plate or concentric cylinder geometries, particularly in the case of highly
viscous liquids or ‘soft solids’ such as foods, gels etc. The parallel plate
geometry is particularly useful for obtaining apparent viscosity and normal
stress data at high shear rates, the latter being increased either by increasing
Q or by decreasing the shearing gapsize. An additional benefit of the latter
approach is that errors due to secondary flows, edge effects and shear heating
may all be reduced.

Form factors for the parallel plate geometry, in terms of the apparent or
Newtonian shear stress and the shear rate=aik are given below:

Shear stress:

2T
Shear rate:
QR

whereh is the plate separation (m}?2, is the angular velocity (rad/s), and
R, is the plate radius (m). A full derivation of the working equations may be
found elsewhere [e.g. Macosko, 1994].

2.3.5 Moisture loss prevention - the vapour hood

When dealing with high concentration samples of low volume, even low
moisture loss can have a critical effect on measured rheological properties
[Barneset al., 1989]. During prolonged experiments, moisture loss may be
minimised by employing a vapour hood incorporating a solvent trap, as shown
in Figure 2.6.

As noted above, edge effects can be encountered with each of the geometries
considered here. They become of particular importance when dealing with
samples which form a surface ‘skin’ in contact with the atmosphere, due
mainly to evaporation. Conditions at the outer edge of the parallel plate
and cone-and-plate geometries strongly influence the measured torque value.
Stresses in this region act on a larger area and are operating at the greatest
radius. To ensure homogeneous bulk sample conditions, the evaporation
process at the sample surface may be minimised by employing a vapour hood,
as shown in Figure 2.6 for the parallel plate system.
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Figure 2.6 Vapourhoodemployedwith a parallel plate geometry

2.4 The controlled stress rheometer

Sincethe mid 1980sandthe adventof reliable‘secondgenerationcontrolled-
stressheometerghecontrolled-strestechniquénasbecomavidely established.
The facility which most of this type of instrumentoffers, i.e. of performing
threedifferenttypesof test(steadyshear,oscillation and creep),makesthem
particularlycosteffective.

The instrumentreferredto herefor illustration is a TA InstrumentsCSL
100 controlled-stressheometerTA InstrumentsUK). The rheometer(typi-
cally operatedunderthe control of a microcomputerandancillary equipment
requiredfor its operation,consistof the following main components(see
Figure2.7).

An electronically-controllednduction motor incorporatesan air bearing,
which supportsaandcentresarotatinghollow spindle.The spindleincorporates
a threadeddraw rod, onto which the componentf the requiredmeasuring
geometnyis securedandtheair bearingpreventsany contactbetweerfixed and
moving parts.A digital encoderconsistingof a light sourceand a photocell
is arrangeckitherside of a transparentlisc attachedo the spindle.Finelines
(similar to diffraction grating lines) are photographicallyetchedaroundthe
disc edgeand, throughthe useof a stationarydiffraction grating betweenthe
light sourceandthedisc,diffraction patternsaresetup asthe discmovesunder
an appliedtorque. Theseare directly relatedto the angulardisplacemenbf
the measuringsystem.

The non-rotatinglower platen of the measuringassemblyis fixed to a
height-adjustabl@neumaticram which may be raisedto provide the desired
gap setting, with micrometer-fineadjustment.A temperaturecontrol unit is
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Spindle

measurement devices

|
{ Motor, torque and amplitude
|
|

Geometry (cone, or plate, etc.)

Sample

«— Lower platen

‘ <«—— Micrometer

Figure 2.7 Schematic of a TA Instruments CSL100/€8antrolled-stress
rheometer

incorporated within the lower plate. This is usually of the peltier type, using
a thermoelectric effect enabling it to function as a heat pump with no moving
parts. Control of the magnitude and direction of the electrical current allows
the desired temperature adjustment within the lower platen (control t€)).1
and thus within the sample, for cone-and-plate and parallel plate geometries.
For the concentric cylinder geometry a temperature-controlled recirculating
water bath is generally used.

Due in part to its ability to produce extremely low shear rates, the controlled
stress technique has been found to be highly suited to the determination of
apparent yield stress, and in this respect the controlled-stress instrument is
widely claimed to be more successful than its controlled-shear rate-counterparts.
This is usually attributed to the fact that, for suitably low stresses, the structure
of the material may be preserved under the conditions of test. Indeed, the intro-
duction of the ‘second generation’ of controlled-stress instruments can be said
to have provoked considerable interest in, and debate surrounding, the field of
yield stress determination, with some early advocates of the controlled-stress
technique advancing the controversial notion of the ‘yield stress myth’ [Barnes
and Walters, 1985].

Apart from the range of instruments described in the preceding sections,
several of the inexpensive viscometers used for quality control in industry give
rise to complicated flow and stress fields (which may be neither known nor
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uniform), but they have the great advantage that their operation is simple. In the
case of Newtonian fluids, the use of such methods does not pose any problem,
since the instruments can be calibrated against a standard Newtonian liquid of
known viscosity. However, for non-Newtonian fluids, the analysis and interpre-
tation of results obtained by using such devices is not simple and straightforward.
Such devices can be broadly classified into two types. The first have what might
loosely be called “flow constrictions”, as exemplified by the Ford cup arrange-
ment, in which the time taken for a fixed volume of liquid to drain through
the constriction is measured. Such a device can cope with different ranges of
viscosities by changing the size of the constriction. This robust and convenient
instrument is used widely in the petroleum and oil industries. The second class
of instruments involves the flow around an obstruction as in the falling ball and
rolling ball methods [van Wazet al., 1963] where the time taken for the sphere

to settle or roll through a known distance is measured. Although such “shop-
floor” viscometers can perhaps be used for qualitative comparative purposes
for purely inelastic fluids, great care needs to be exercised when attempting
to characterise visco-elastic and time-dependent non-Newtonian materials even
gualitatively [Barnet al., 1989; Chhabra, 1993].

2.5 Yield stress measurements

Notwithstanding the continuing debate over the very existence of a ‘true’ yield
stress, the concept of apparentyield stress has been found to be an extremely
useful empiricism in many areas of science and engineering [Hartnett and Hu,
1989] (see also Chapter 1). A recent comprehensive review [Barnes, 1999] has
critically assessed the various issues raised in the definition, measurement and
application of apparent yield stress behaviour.

Any operational definition of apparent yield stress should take into account
both the inevitable rheometrical limitations in its determination, and the charac-
teristic time of the process to which it pertains. Sucloparational definition
has been proposed for a true yield stress in the context of the classical stress
relaxation experiment [Spaans and Williams, 1995].

Notwithstanding the inherent advantages of the controlled-stress technique
in yield studies, it should be borne in mind that an interpretation of the results
of creep-compliance measurements in terms of a ‘real’ yield stress (i.e. a stress
below which the sample exhibits Hookean elastic behaviour) is subject to the
usual experimental limitations of machine resolution (i.e. of angular displace-
ment) and the role of time-scale in the sample’s response to applied stress.

Numerous workers have described the role of wall-slip effects on
measurements made with conventional smooth-walled geometries [Barnes,
1995]. Slip can occur in suspensions at high 60%) solids volume fraction,
and can involve fluctuating torque in a rotational viscometer under steady
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rotation [Cheng and Richmond, 1978; Cheng, 1986]. Given that conventional
smooth walled rotational devices tend to slip when in contact with many
systems which display an apparent yield stress, several workers have adopted
the vane measuring geometry [Nguyen and Boger, 1985].

Typically, the vane geometry consists of a small number (usually 4) of thin
blades arranged around a cylindrical shaft of small diameter. When the material
in which the vane is immersed undergoes yielding, it does so within the body
of the material, not at a solid boundary, thereby overcoming wall slip. An
additional advantage of the vane is that on its insertion into a material there is
minimal disturbance of the sample structure compared with that experienced
within the narrow shearing gaps of conventional measuring geometries. This
feature is important for mechanically weak structured systems, such as gels
and colloidal dispersions.

Vane rheometry provides a direct measurement of the shear stress at which
flow is evident under the conditions of test (i.e. within the time scale of the
measurement). In a constant rate (CR) experiment the material is sheared at
a low but constant rate according to the speed of rotation of the viscometer’s
spindle, and the corresponding torque response with time is recorded. With
constant stress (CS) experiments it is the infedefbrmationthat is recorded
as a function of time, under the application of a series of controlled and
constant shear stresses.

The vane technique has its origins as a methodirfaitu measurements
of the shear strength of soils and an important assumption in the method is
that the yielding surface that results from the vane’s rotation is cylindrical,
and of the same diameter as the vane (corrections can be made at a later
stage if this is proven otherwise but they are difficult to assess for opaque
materials). This assumption dictates that the material between the blades acts
as a solid cylinder of dimensions equal to those of the vane, and the issue
of the yield surface of visco-elastic and plastic fluids in a vane-viscometer
has been addressed in several studies (e.g. see Yan and James, 1997; Keentok
et al., 1985).

The maximum torsional momenif,,) coincides with the material yielding
along this cylindrical surface; thus, a torque balance at the point of yielding
provides the following equation:-

Total torque= torque from the vane cylindrical shearing surface
+ torque from both vane end shearing surfaces

If . is the shear stress on the cylindrical shearing surfacir each of the
vane end surfaces, the torque balance can be written as:

DJ2

D
Tm = (7TDH) <§ ‘T + 2 27Tfer2 dr (219)
0
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whereD is the diameter of the cylinder prescribed by the rotating vane (m);
H is the vane height (m); andis the radial distance at the vane ends (m).

To estimate the stress at the vane end surfaces it can be assumed that the
stress distribution across the vane ends may either increase uniformly towards
the edges or may follow a power-law expression:

(a) for a uniformly increasing stress distribution,

2
T, = (Br T (2.20)

(b) for a power-law stress distribution,

2 N
T, = (B’ - (2.21)

The constants, is referred to as the power-law exponent agds the yield
stress.

At the point of yielding, the value for stress at the cylindrical shearing
surface istg. Therefore, equation (2.19) can be solved for the two cases given
by equations (2.20) and (2.21):

(a) for a uniformly increasing stress distribution,

2T, D?
=" _D’H+ — (2.22)
T 4

(b) for a power-law stress distribution,

2T D3
—" — D’H 2.23
T + (s+3) ( )

For H > D the contributions of stress from the vane ends becomes negligible.
A height-to-diameter ratiok /D, in excess of 3 is desirable, and it should be
as large as is practical.

Construction of the vane with a very small shearing diameter would seem
the ideal way of achieving a higH : D ratio, but caution needs to be taken
with small diameter vanes as it is likely that torque contributions from the
resistance to rotation at the exposed shaft surfaces, above the vane, may then
become important.

The vane has been used in conjunction with controlled-stress rheometers to
determine apparent yield stresses in cohesive clay suspensions [Boahes
1987]; a similar technique has been reported for time-independent materials
[Yoshimuraet al., 1987]. It is important in this type of test that the material
attains an equilibrium microstructural state prior to test. The timeequired
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to achieve this may be assessed using information obtained from separate,
small strain-experiments [Jamestal.,, 1987].

In a typical controlled-stress vane measurement, the sample is allowed to
equilibrate mechanically for a periad> r, following insertion of the vane.

Subsequently a (constant) stress is applied and maintained for a period, then
suddenly removed (see Figure 2.8).

Increasing Applied Shear Stress

<, T=T, <1,
Vit
(@ () (©
\\
)
! It —
Time
Stress Stress
Applied Removed

Figure 2.8 Schematic®f a creep-typaestfor a yield stressmaterial

The resultingtime-dependenteformationresponses recordedin termsof
theresultingangulardisplacemenbf the vane)both underappliedstressand
following its removal. The materialis then allowed to recoverfor a period
t > t, andthe processds repeatedat a slightly highervalue of appliedstress.
By repeatingthis sequencepsing gradually increasedlevels of stress,the
elasticandviscouscomponent®f the deformationof a materialmaybestudied
from a stateof virtually undisturbedstructure to the onsetof anapparenyield
behaviour(seeFigure 2.8c).

The latter procedures an adaptationof that usually employedto generate
creepcompliancedata: a ‘creep’ yield stressis determinedby extrapolating
creep-ratedatato zero rate, with the correspondingvalue of applied stress
being taken as the yield stress[Lohnesetal., 1972]. In addition to its use
in yield stressmeasurementhe vane hasfound applicationas the basis of



56  Non-Newtonian Flow in the Process Industries

a viscometer for systems where severe cases of wall slip may be anticipated
[Barnes and Carnali, 1990].

2.6 Normal stress measurements

Whorlow [1992] notes that, of the many methods which have been proposed
for the measurement of various combinations of the first and second normal
stress differencesy; and N, respectively, few can give reliable estimates

of No,. Combined pressure gradient and total force measurements in the
cone-and-plate geometry, or combined cone-and-plate and plate-plate force
measurements, appear to give reliable values [Walters, 1975]; and satisfactory
results may also be obtained from techniques based on the measurement of
the elevation of the surface of a liquid as it flows down an inclined open duct
[Kuo and Tanner, 1974].

During rotational flow of liquids which display normal stresses, the tension
along the circular streamlines is always greater than that in other directions
so that streamlines tend to contract unless prevented from doing so by an
appropriate pressure distribution. Determination of the pressure distribution
(say, over the area of the plate in a cone-and-plate system) therefore provides
a means of determining the total force exerted on the plate. Alternatively, and
in practice more generally, the total force is measured directly. As the pressure
distribution and total force measured in a (parallel) plate-plate system depend
in a different manner on the normal stress differences, both cone-and-plate
systems and plate-plate systems have been used to obtain values for both
N1 andN,. Numerous modifications to instruments (such as the Weissenberg
Rheogoniometer) to permit more accurate normal force measurements have
been described, some involving the use of piezoelectric crystals as very stiff
load cells [Higman, 1973].

In the work reported by Jackson and Kaye [1966] the spadinbetween
a cone and a plate was varied and the normal force measured as a function
of gap size. The same method was used by Marsh and Pearson [1968] who
showed that,

N(')—h+R9N(') 2F+hdF
2\VYR) = A 1(VR 7'[R2 7'[R2 dh

(2.24)
where the shear rate at the rig, is given byQR/(h + RO); 6 is the cone
angle. As the value of zero gap spacing is used tofindequation (2.24) can

only be used for non-zero values bf and the geometry (being intermediate
between that of the conventional cone-and-plate and parallel-plate systems)
may not give as good estimates ®p as those obtained by other methods
[Walters, 1975].
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The direct determination oV, by measuring the total force on the cone
in a cone-and-plate system is limited to low shear rates. Binding and Walters
[1976] have described tarsion balance rheometexhich can provide normal
force and viscosity data on low-viscosity fluids at very high shear rates. This
instrument is particularly useful on systems which display an apparent yield
stress [Bindinget al., 1976]. Encouraging agreement has been reported by
between the results of measurements made in a rheogoniometer, a torsion
balance rheometer and a ‘Stressmeter’ [Lodgel., 1987], the latter instru-
ment (which can provide data at extremely high shear rates) exploiting the
‘hole pressure effect’ identified by Broadbesttal. [1968].

For a detailed and systematic treatment of the various approaches to normal
stress measurements, the reader is referred to the text by Walters [1975].

2.7 Oscillatory shear measurements

Of the techniques used to characterise the linear visco-elastic behaviour dis-
played by many non-Newtonian fluids, the oscillatory shear technique which
involves either an applied stress or shear rate which varies harmonically with
time, is perhaps the most convenient and widely used.

The definition of linear visco-elasticity may be expressed in the following
form: the ratio of the applied stress to strain for any shear history is a function
of time alone, and independent of stress magnitude: each stress applied to a
material produces a strain which is independent of that produced by any other
stresses. However, the total strain experienced by a material is equal to the
sum of all the changes induced in the material by the applied stress throughout
its history.

The foregoing is an expression of the Boltzmasuperposition principle
[Bird et al, 1977] which may also be expressed in the following terms:

t
() = G —Hy@)d (2.25)
—0o0
where Gr) is the stress relaxation modulus and the integration is performed
over all past times up to the current time. In visco-elastic liquids, the function
G(s), wheres =t — ¢/, approaches zero asapproaches infinity, giving rise
to the following alternative expression, in terms of strain history rather than
rate of strain:
t
(t) = m(t — £ )y(t, ') dt’ (2.26)
—00
where the ‘memory function’, i), is given by—dG(z)/dt.
These ‘constitutive’ equations, involving(B, describe the response of linear
visco-elastic materials to various time-dependent patterns of stress and strain in
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simple shear [Ferry, 1980]. In many cases it is more convenient, in terms of
experimental technique, to consider the complex shear modatysyhich is
measured usingscillatory shear.

Within the region of linear visco-elastic behaviour, an imposed stress of
angular frequencyw, results in a harmonic strain of amplitude proportional
to the stress amplitude, and with phase éaelative to the stress, which is
independent of the applied stress amplitude [Ferry, 1980].

Figure 2.9 represents a controlled harmonic shear stress applied to a linear
visco-elastic system, which results in a harmonic strain response waveform
involving a phase lagj on the applied stress. This harmonic shear stress, and
the resultant strain, may be conveniently expressed as complex quantities, where
Y =y €, v = 1,6 @+ andy,, andr, are the peak strain and peak stress,
amplitudes respectively.

Amplitude —

Figure 2.9 Oscillatory shear strain (---) out of phase with stress (—) by a
phase anglé

The complex shear modulu€*, is then defined as:
* - ei(a)t+8) - )
G=l = Z __Img (2.27)
Y' ¥Ym € Yim

whereG* = G' +iG”".

Hence
G = coss (2.28)
Ym
and G = " sins (2.29)

Vim
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whereG’ is the dynamic rigidity, defined as the stress in phase with the strain
divided by the strain in a sinusoidal deformation: it is a measure of energy
stored and recovered per cycle of deformatiGfiis the loss modulus, defined

as the stress in quadrature {98ut of phase) with the strain, divided by the
strain: it is a measure of energy dissipated per cycle. By definition:

G
s=tan'= or tans= —
G G

Phase relationships may also be expressed in terms of the complex visgdsity,
W= +in” (2.30)

where the dynamic viscosityy’, is defined as the stress in phase with the rate
of strain divided by the rate of strain in a sinusoidal deformation, @has

the stress in quadrature to the rate of strain in a sinusoidal deformation. These
are related ta5* as follows:

G* = oy’ +ion (2.31)
hence
G/ G//
wW'=— and yu =— (2.32
w w

Controlled strain (or, more properly, controlled displacement) oscillatory shear
instruments, exemplified by the Weissenberg Rheogoniometer [Macsporran and
Spiers, 1982] readily facilitate tests in which independent measurements of both
changing length scales and time scales of applied deformation can be performed.
In this way it is, in principle, possible to separate effects due to strain and
strain rates as the frequency of oscillation may be held constant while the
maximum (cyclic) shear strain amplitude is varied. Alternatively, the frequency
of deformation can be varied at constant maximum shear strain amplitude.

Rheometers capable of performing oscillatory shear are widely available as
commercial instruments, in addition to more specialised devices [Te Nijen-
huis and van Donselaar, 1985]. An example of the latter is an oscillating
plate rheometer [Eggers and Richmann, 1995] which requires a very small
liquid sample volume €0.3 ml) and has a (potentially) great frequency range
(2Hz to 1kHz). This latter feature is unusual as it spans the gap between
specialised devices and commercially available oscillatory shear instruments,
whose frequency range is typically 0Hz to ca. 107 Hz.

Usually, the deformation of a sample undergoing oscillatory shear is
monitored by measuring the sinusoidally-varying motion of a transducer-
controlled driving surface in contact with the sample. However, in turning to
the subsequent calculation of shear strain amplitude in dynamic measurements,
it must be recognized that conversion of experimentally determined forces
and displacements to the corresponding stresses and strains experienced by a
sample can involve consideration of the role of sample inertia.
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Sample inertial forces will be small if the sample density,is small
compared withG’/h?f? or (G”/h?>f?) where h is the shearing gap thick-
ness andf is the frequency of oscillation (in Hz). Under these conditions, the
states of stress or strain may be considered uniform throughout the shearing
gap and to experience no periodic spatial variation. This represents the ‘gap
loading’ condition [Ferry, 1980].

Under ‘surface loading’ conditions, shear waves propagate within the
medium, decaying in amplitude from the driving surface to the opposite side
of the shearing gap. Thus, under ‘surface loading’ condition, sample inertia
effects are dominant. However, it should be borne in mind that the gap loading
condition is not one in which wave propagation is unimportant, and for high
precision measurements the shear wavelengtshould be at least 40-times
as large as the shearing gap siz€a ratio of»/h of ca. 10 may be tolerable
[Schrag, 1977].

Fluid inertia effects have been found to be very small for the cone-and-plate
geometries typically supplied with these instruments. While inertial corrections
are found to be unimportant for the parallel plate geometries, for shearing gaps
of the order of 2mm or less (except possibly for very ‘thin’ fluids), they must
be taken into account in the concentric cylinder geometry (especially for high-
density, mobile fluids). Evaluation methods are availablefoin the case of
cylindrical and plane Couette flow, taking into account fluid inertia [Aschoff
and Schummer, 1993].

2.7.1 Fourier transform mechanical spectroscopy (FTMS)

The evolution of visco-elastic properties in non-Newtonian fluids exhibiting
time-dependent rheological changes is a matter of wide scientific interest,
particularly so in systems undergoing gelation. The gel-point, where a three-
dimensional network structure is established, may be identified rheologically
by the establishment of a characteristic frequency dependence of the dynamic
moduli, and an associated frequency independent loss tangent [Winter and
Chambon, 1986].

This criterion for gel-point detection, and the non-equilibrium nature of
systems undergoing gelation, requires that data be obtained rapidly over a
wide range of frequency, prompting the development of a frequency multi-
plexing techniqgue known as Fourier Transform Mechanical Spectroscopy,
FTMS, which allows the measurement@f at several frequenciesmultane-
ously, rather than consecutively, as in a conventional test [Hetlgl., 1988].

The technique, initially developed to measure visco-elastic properties in the
curing of polymers [Malkinet al, 1984], has been applied to gels (In and
Prud’homme, 1993) and model visco-elastic fluids [Davies and Jones, 1994].
In a variation of the technique, dynamic mechanical properties are determined
using the Fourier transform of pulsed deformations [Vratsanos and Farris, 1988].
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Experimental times for determining dynamic properties depend on a mate-
rial’s inherent time-dependent behaviour and single-point measurements must
span a time period equal to that over which the sample can respond to the
imposed stress or strain. This definesiaimummeasurement time, over which
a sample must be ‘quasi-stable’ for meaningful rheological measurement and a
‘mutation number’ has been proposed which expresses the relative evolution of
the measured property during the experimental time [Mours and Winter, 1994].

In FTMS experiments a sample is subjected to an imposed oscillatory
stress or strain. In controlled-stress FTMS, the applied stress is conveniently
expressed as an applied torque (the raw experimental parameter from which
stress is obtained) as:

np

Ct)=C, Y coskot (2.33)

k=1,3,5...

[Davies and Jones, 1994] whete=2xf (f in Hz) is the fundamental
frequency of oscillation(, is the fundamental torque amplitude, amgl is
the highest harmonic in the series.

The individual components of an applied oscillatory torque of constant
amplitude are illustrated in Figure 2.10, and the resulting complex torque
signal, obtained from the superposition of these, is shown in Figure 2.11.
This non-sinusoidal waveform for the applied torque results in an angular
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Figure 2.10 Computer generated sinusoidal torque (or stress) signals of
frequencies, 4 radian/s(curve 1), 8 radian/s(curve 2), 64 radian/s(curve 3),
corresponding to integer multipliers of 1, 2 and 16, on the basis of a
fundamental frequency of 4 radian/s
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Amplitude (arbitrary units)

Time —>t

Figure 2.11 Complextorque (stress)signal(---) obtainedby superposition
of the threewaveformsshownin Figure 2.10and a computergenerated
‘typical’ strain responsef)

displacementvaveformto which a Fourier analysiscan be applied, thereby
allowing the determinatiorof the complexvisco-elasticparametersy* or G*
andtheir componentdor eachharmonicfrequency.Basic aspectsof Fourier
analysisandthe FastFourier Transform(FFT) canbe found in varioustexts
[Brigham, 1988].

The procedurefor performing FTMS measurementsising a controlled-
stressinstrumentdiffers only slightly from conventionaltest proceduresThe
testis configuredin the samemannerasin a ‘time sweep’but in this case
the selectedrequencyactsasthe fundamentafrom which further harmonics
are selectedwith eachharmonicfrequencybeing an integer multiple of the
fundamentafrequency.

An importantfactor in the constructionof the compositewaveformis the
setting of the maximum strain and torque ratio for each harmonic of the
fundamental As the strainappliedto the sampleis the sumof the individual
strainsassociatedvith eachharmonic,care must be takennot to exceedthe
linearvisco-elastidimit. For strainsensitivesystemghis canseverelyrestrict
the numberof frequenciesused.

As the value of the harmonicfrequencyincreasesthe correspondingtress
amplitudedecreaseggesulting,eventually,in aninadequatelyesolvedwave-
form. To overcomethis, a torquemultiplying factoris introducedwhich scales
thefundamentatorqueamplitudeto anadequatelyesolvabldevel. Usuallyan
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instrument’s control software allowsmaaximumstrain level to be designated,
which should not be exceeded by any of the harmonic strain amplitudes.

2.8 High frequency techniques

In many cases, a comprehensive characterization of the rheological properties of
systems, such as concentrated colloidal dispersions, can require measurements
of dynamic mechanical behaviour at frequencies outside the range of conven-
tional, commercially available, rheometers (typically"36iz to 1F Hz). In
particular, consideration of the relative time scales of particle—fluid displace-
ment and interfacial polarization mechanisms in such systems reveals the need
for enhanced high frequency ranges (aboael(? Hz).

High frequency rheometry, which usually involves wave propagation, offers
some advantages over conventional techniques due to its inherent rapidity,
and the (generally) small strains which are invoked. These are particularly
useful features in the context of attempts to characterize the rheology of
systems undergoing gelation whose non-equilibrium properties may involve
pronounced mechanical weakness and strain sensitivity.

Notwithstanding the rheometrical advantages associated with these features,
attempts to exploit wave propagation in monitoring processes, such as polymer
curing, have achieved only partial success, due principally to the very high
frequencies employed (typically 1 MHz to 10 MHz). In studies of end-linking
in polydimethylsiloxane (PDMS) curing using 10 MHz shear waves, no drastic
variation inG* has been observed in the vicinity of the gel-point [Gandelsman
et al, 1992]. However, a study of the same PDMS curing system using
10 MHz longitudinal waves has shown that the wave velocity increases during
crosslinking, with a ‘step-like’ increase being recorded in the vicinity of the
gel-point [Sheferet al., 1990].

These findings illustrate an important principle in relation to the application
of high-frequency techniques: the greater success of longitudinal waves over
shear waves in the studies mentioned above derives from the relative length
scales of the structures (e.g. particle size or dimension of polymer molecule)
and the wavelengths involved in measurements. At any frequency, the wave-
length of longitudinal waves considerably exceeds that of shear waves, and
the former may therefore be more appropriate for probing the development of
long range structural details. Alternatively, lower frequency shear waves may
be used [Hodgson and Amis, 1990]. In addition to techniques which exploit
bulk longitudinal and transverse wavesyfacewaves have been used to study
the sol—gel transition in gelatin [Takahashi and Choi, 1996].

Inevitably, the conjunction of frequency-dependent visco-elastic properties
and wave propagation leads to consideration of visco-elastic wave dispersion
and its influence on conventional wave-based measurements, such as those
involving resonance phenomena and pulse propagation techniques.
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2.8.1 Resonance-based techniques

Resonance phenomena provide a simple method of characterizing visco-elastic
properties which does not require absolute determination of force, or precise
setting of shearing gaps. Many high frequency devices based on resonance
have been reported [Watermaat,al, 1979; Hausleet al,, 1996; Stoimenova

et al, 1996].

Basic aspects of the resonance technique may be illustrated by considering a
linear visco-elastic medium between two parallel plates, one undergoing forced
harmonic displacement, amplitude(= a, coswt), the other being fixed. As
w 1S varied, resonances occur and a resonance bandwidth analysis yields the
loss tangent, tah[Whorlow, 1992; Ingard 1988].

The extent to which the resonance bandwidth analysis is susceptible to
dispersion-induced errors has been considered and it has been established that
serious errors may be incurred 1% in §) under conditions where waves are
damped exponentially in one wavelength [Williams and Williams, 1994].

2.8.2 Pulse propagation techniques

Recourse to pulse propagation measurements is often prompted by their
apparent simplicity, involving measurements of the ‘time-of-flight' of a
disturbance propagating through a visco-elastic material [Joseah 1986].

In plane-harmonic shear-wave propagation in a linear medium of demsity
G’ andG” are given by,

2 2
/ 1%¢ (1 -r )
=B (2.343)
2
-2
o 2 (2.34b)
A+r)

[Ferry, 1980] wherew is the angular frequency in radis= 1/(2rx,) where

A is the shear wave length, is the exponential damping length ands the

shear wave phase velocity. For knownand p, G’ andG” may be obtained
from equation 2.34 by measurementwoéndx,,.

Such simple measurements belie the complicating effects of visco-elastic
wave dispersion, which may render their analysis unreliable. The tendency
of pulse frequency components to travel at different velocities in dispersive
media distorts the pulse, thereby influencing measurements of damping to a
degree dependent on the medium and the spectral content of the pulse. The
latter, in turn, depend on pulse shape. This visco-elastic wave dispersion, asso-
ciated with dissipative stresses, can severely restrict the application of pulse
propagation techniques in which the measured velagjtynay correspond to
agroup velocity, U, not the requisitghasevelocity, v. As U andv may differ
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significantly in visco-elastic media (in whicll > v), serious over-estimates
of elasticity may result.

In some instruments the phase velocity, is measuredirectly (using
continuous shear waves), as in the ‘virtual gap’ rheometer, VGR, a multiple
path shear wave interferometer which operates in the frequency range 100 Hz
to ca 2kHz [Williams and Williams, 1992].

2.9 The relaxation time spectrum

The determination of the relaxation spectrum of a visco-elastic fluid from
various dynamic shear measurements has been discussed by many workers
(e.g. see, Orbey and Dealy, 1991; Baumgaertel and Winter, 1989; Sullivan
et al, 1994) and, in the case of a visco-elastic fluid, the problem of deter-
mining the relaxation spectrum from oscillatory shear measurements involves
the inversion of the following pair of integral equations:

G =G, + ﬁ din  and (2.353)
—00 w
, o WA

whereH (1) denotes theontinuousrelaxation spectrum.

This is an ‘ill-posed’ problem and small perturbations in (measu€&d))
or G” (w) can produce large perturbationsAt(A). In addition toH (1), various
techniques have been described to determinedikerete relaxation spec-
trum, in terms of a set of modulus-relaxation time-pairs, using the generalised
Maxwell model [Ferry, 1980]. However, infinitely many parameter sets may be
derived, all of which are adequate for the purpose of representing experimental
data.

Methods of overcoming this problem to obtain a physically meaningful
relaxation spectrum have been discussed at length in the literature: these
include linear regression [Honerkamp and Weese, 1989] and non-linear regres-
sion technigues [Baumgaertel and Winter, 1989]. A commercial version of the
latter is available as the software progralRI'S’ which has been used to model
the relaxation behaviour of high molecular weight polydimethylsiloxanes. The
relaxation modulusG(z), can also be obtained by direct conversion from the
frequency domain (to the time domain) using the Fourier transform [Kamath
and Mackley, 1989].

Recently, the issue of sampling localisation in determining the relaxation
spectrum has been considered [Davies and Anderssen, 1997]. It is usually
assumed that’ andG” measured over the frequency ranggn, < © < ®Wmax
yield information about the relaxation spectrum over the range of relaxation
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times(wmax) t < A < (wmin)"* i.€. over thaeciprocal frequency range bui’
andG” are (necessarily) measured over a limited range of discrete frequencies,
and these measurements unavoidably involve errors. The oft-used assumption
that measurements @’ and G” over a frequency range@min < @ < ®Wmax

yield information (in terms of the relaxation spectrum) over the reciprocal
frequency range is misleading. In fact, the relaxation spectrum is determined
on a shorter interval of relaxation times théma) ™t < A < (wmin) . The
correct frequency interval on which the relaxation frequency is determined
is €20 L, < A < e7/2w L and thus the determination of the spectrum at a
single relaxation time) requires measurements Gf andG” in the frequency
range €7/°17! < w < /2171 [Davies and Anderssen, 1997].

Simple moving-average formulae which can be applied to oscillatory shear
data to recover estimates of the relaxation spectrum have been reported [Davies
and Anderssen, 1998]. These formulae represent an improvement over previous
commercial software in that they take into account the limits imposed by
sampling localization and yield accurate spectra very rapidly on a PC.

2.10 Extensional flow measurements

Extensional flows may be generated within a flow field that experiences a
sudden change in geometry, such as contractions, or orifice plates. The need
for appropriate rheological data pertaining to such flows represents a major
obstacle to the development of improved process simulation, monitoring and
control for non-Newtonian fluids, and requires, not only a knowledge of fluid
shear viscosity, but also appropriate measure of itextensionalviscosity,

ue. The problematical effects of extensional viscosity in process engineering
become evident when one considers thatmay be severabrders of magni-

tude higher than the corresponding shear viscosity in some non-Newtonian
liquids.

In marked contrast to measurements of shear rheological properties, such as
apparent viscosity in steady shear, or of complex viscosity in small amplitude
oscillatory shear, extensional viscosity measurements are far from straight-
forward. This is particularly so in the case of mobile elastic liquids whose
rheology can mitigate against the generation of well-defined extensional flow
fields.

Techniques for measuring the extensional properties of fluids can be
divided (broadly) into those of the ‘flow-through’ and ‘stagnation-point’ types
[Hermansky and Boger, 1995]. The former usually involve ‘spinnable’ fluids,
a feature exploited in instruments such as the Carri-Med (now TA Instruments)
EV rheometer [Ferguson and Hudson, 1990].

In spin-line experiments, fluid is delivered through a nozzle and subse-
guently stretched by an applied force. Procedures are available for obtaining
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useful semi-quantitative estimates of from spin-line experiments, and the
technique is able to distinguish between fluids that are tension-thinning and
tension-thickening [Jonest al., 1987]. Despite being limited to low rates

of strain, and generally suitable for highly viscous or elastic fluids, perhaps
the most successful device of this type, is the filament-stretching technique
[Sridharet al,, 1991] which is described below in Section 2.10.2.

Where a fluid is not ‘spinnable’ the various orifice flow techniques, which
involve pressure drop measurements across a contraction [Binding, 1988,
1993], can provide a means of estimating the extensional-viscosity behaviour
of shear-thinningpolymer solutions.

For low viscosity fluids such as dilute polymer solutions, the various
stagnation-point devices can prove useful. In this category is the commercially
available Rheometrics RFX opposing jet device, a development of earlier
instruments [Cathey and Fuller, 1988], which has the potential to produce a
wide range of strain rates, and which has been used to study fluids with a
viscosity approaching that of water [Hermansky and Boger, 1995].

2.10.1 Lubricated planar stagnation die-flows

Lubricated dies have been proposed as a means of generating extensional flows
in which the lubricant protects the sample of interest from the shear effects
of the die walls, and serves to transmit forces to the walls where they can be
measured. A theoretical analysis of steady, two-dimensional flow through a
lubricated planar-stagnation die has shown that pure planar extension through
the die is prevented by the interaction of the die shape with the normal viscous
stresses at the free interface between the lubricant and the test fluid [Secor
et al, 1987]. Interestingly, two regions of the flow (near the inlet and oulet
of the die) are nearly extensional, and are capable of being represented by
an approximate expression which, in addition to being independent of the
constitutive relation of the fluid, provides a simple relationship between wall
pressure measurements and extensional viscosity.

In practice the technique is beset by experimental difficulties, such as the need
to measure extremely small pressures. In addition, the difficulty of maintaining
adequately lubricated flows requires the provision of large sample volumes. The
application of converging flows for determining the extensional flow behaviour
of polymer melts has been reviewed [Rides and Chakravorty, 1997].

2.10.2 Filament-stretching techniques

In this method, the sample is held between two discs, the lower of which is
attached to a shaft whose movement is controlled by a computer capable of
generating an exponentially varying voltage, the shaft velocity being propor-
tional to the applied voltage. The upper disc is attached to a load measuring
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device and an optical system is used to measure filament diameter [Sridhar
et al,, 1991].

A reverse-flow near the plates causes a delay in the development of the
uniform cylindrical column, and a difference between the local and imposed
extension rates at early times [Shipmanhal, 1991]. Problems may also
be encountered due to adhesion of the fluid to the plates [Spiegelberg and
McKinley, 1996] but this may be compensated for [Tirtaatmadja and Sridhar,
1993]. Notwithstanding these difficulties, the technique can provide mean-
ingful extensional viscosity data for polymer solutions, as the deformation is
uniform and independently imposed, and the total strain is measurable.

2.10.3 Other ‘simple’ methods

When a pendant drop forms slowly at the lower end of a capillary tube it
ultimately falls and stretches the filament (which remains attached to the drop).
For a Newtonian fluid the filament quickly thins and breaks but long filaments
can be formed from visco-elastic liquids [Joretsal., 1990]. The forces acting

on the falling drop are determined using a force balance, and the extensional
stress determined as a function of time [Jones and Rees, 1982]. The falling
pendent drop technique is simple to set up and analyse, and provides consistent
values of an apparent elongational viscosity.

Another simple technique involves a liquid which is slowly extruded verti-
cally downward through a capillary into another immiscible fluid of lower
density (thesubmergedpendant drop technique). The heavier ejected fluid
forms a sphere at the nozzle tip, and grows until the drop is no longer
supported by surface tension. The drop then falls and stretches the ligament
which connects the drop to the nozzle [Matta, 1984].

It is important to note that the Trouton ratifg, defined as the ratio of the
extensional viscosity to the shear viscosity, involves the shear viscosity evalu-
ated at the same magnitude of the second invariant of the rate of deformation
tensor where is the rate of extension, i.e.:

Tg = pe/n (2.36)

where g is a function ofé and  is a function ofy, and these values are
evaluated using th¢ = £+/3 equivalence.
The ‘fibre-windup’ technique [Padmanabhetral., 1996] can provide transient
extensional-viscosity data using modified rotational shear rheometers. One
end of the sample is clamped while the other end is wound around a drum
at a constant rotational speed to achieve a given extension rate, with the
rheometer’s torque transducers being used to obtain the extensional viscosity.
The technique is claimed to provide valuable extensional viscosity data for
high viscosity liquids.

Another simple filament-stretching technique which has the advantage that
it does not require measurements of forces acting on the filament, involves
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the elongation of radial filaments of a fluid on a rotating drum [Jagtes.,
1986]. Using a high-speed camera, photographs are taken of the fluid in its
initial undeformed state, and as it stretches into a filament as the drum rotates.

A technigue which involves a so-called ‘open-siphon’ is attractive in so far
as the flow history of the fluid is apparently simple and readily calculated.
Fluid is drawn up out of a beaker through an orifice into a low pressure
chamber, and forces in the open siphon column are estimated from the orifice
pressure drop, with corrections being made for inertia and gravity contributions
[Binding et al.,, 1990]. Although the technique is very simple, the motion in
the siphon may not be entirely shear free [Matthys, 1988].
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2.13 Nomenclature

Dimensions
inM, L, T
D capillary or tube diameter (m) L
F axial force (N) MLT —2
G dynamic rigidity or storage modulus (Pa) ML 112
G’ loss modulus (Pa) ML —1T-2
G* complex shear modulus (Pa) ML ~11-2
h gap in parallel plate system (m) L
L length of capillary (m) L
m power law consistency coefficient (8%) ML 112"
N1 first normal stress difference (Pa) ML 172
N> second normal stress difference (Pa) ML 112

n power law flow behaviour index (-) MOLOTO
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—Ap pressure drop (Pa)
(—=A/v), overall pressure drop &P

%‘p pressure gradient (Pa/m)
0 volumetric flow rate (ri/s)
R radius of capillary or of plate (m)
Ry inner radius in co-axial cylinder viscometer (m)
Ry outer radius in co-axial cylinder viscometer (m)
r radial coordinate (m)
Re Reynolds number (=)
T torque (N.m)
Ta Taylor number (=)
Tr Trouton radio (=)
average velocity in capillary (m/s)
v shear wave phase velocity (m/s)
Greek Symbols
y Shear strain
7 shear rate (3')
8 phase shift in oscillatory test (-)
¢ rate of extension (3}
0 Cone angle of cone and plate visconsities
A relaxation time (s)
m viscosity (Pas)
P fluid density (kg/nd)
T shear stress (Pa)
1) frequency (Hz)
Q angular velocity (rad/s)
Subscripts
crit location at whichr = 1,
E extensional
m maximum value
N Newtonian
p plastic
R atr =R
w at wall
0 yield point
Superscripts
* complex

! in phase component
" out of phase component

ML 112
ML —1T-2
Dimensions
inM, L, T

ML —2T-2
L3T71

L

L

L

L

M OL OTO
ML 2T -2
M OL OTO
M OL OTO
[
LTt



Chapter 3
Flow in pipes and in conduits of
non-circular cross-sections

3.1 Introduction

In the chemical and process industries, it is often required to pump fluids
over long distances from storage to various processing units and/or from one
plant site to another. There may be a substantial frictional pressure loss in
both the pipe line and in the individual units themselves. It is thus often
necessary to consider the problems of calculating the power requirements for
pumping through a given pipe network, the selection of optimum pipe dia-
meter, measurement and control of flow rate, etc. A knowledge of these factors
also facilitates the optimal design and layout of flow networks which may
represent a significant part of the total plant cost. Aside from circular pipes,
one also encounters conduits of other cross-sections and may be concerned
with axial flow in an annulus (as in a double pipe heat exchanger), rectan-
gular, triangular and elliptic conduits as employed in nuclear reactors and
for extrusion through dies. Furthermore, the velocity profile established in a
given flow situation strongly influences the heat and mass transfer processes.
For instance, the analysis and interpretation of data obtained in a standard
falling-film absorber used for the determination of diffusion coefficients relies
on the knowledge of flow kinematics. This chapter deals with engineering
relationships describing flow in a variety of geometries. The treatment here is,
however, restricted to the so-called purely viscous or time-independent type
of fluids, for which the viscosity model describing the flow curve is already
known. However, subsequently a generalised treatment for the laminar flow
of time-independent fluids in circular tubes is presented. Notwithstanding the
existence of time-dependent and visco-elastic fluid behaviour, experience has
shown that the shear rate dependence of the viscosity is the most signifi-
cant factor in most engineering applications which invariably operate under
steady state conditions. Visco-elastic behaviour does not significantly influence
laminar flow through circular tubes. Visco-elastic effects begin to manifest
themselves for flow in non-circular conduits and/or in pipe fittings. Even in
these circumstances, it is often possible to develop predictive expressions
purely in terms of steady-shear viscous properties.

Many of the formulae to be developed here will relate the frictional pressure
drop (—A p) to the volumetric flow rat€Q). The major application of such
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relationships is in the mechanical energy balance which is written to calculate
the total head loss in a pipe network which in turn allows the estimation of the
required power to be delivered by a pump. The total loss term, representing
the conversion of the mechanical energy into thermal energy as a result of fluid
friction, consists of two components: one due to the frictional pressure drop
associated with fully developed flow through the conduit and the other due to
the frictional losses associated with entrance effects, pipe fittings, etc. Because
of their generally high viscosities, laminar flow is more commonly encountered
in practice for non-Newtonian fluids, as opposed to Newtonian fluids.

3.2 Laminar flow in circular tubes

Consider the laminar, steady, incompressible fully-developed flow of a time-
independent fluid in a circular tube of radius,as shown in Figure 3.1. Since
there is no angular velocity, the force balance on a fluid element situated at
distancer, can be written as:

[)(JTVZ) —(p+ Ap)ﬂr2 =1, - 21rL 3.1
. —Ap r
e T.=— = 3.2
| Tr < I > (3.2)

Figure 3.1 Flow through a horizontal pipe

This shows the familiar linear shear stress distribution across the pipe cross-
section, the shear stress being zero at the axis of the tube, as shown in
Figure 3.2. Note that equation (3.2) is applicable to both laminar and turbulent

flow of any fluid since it is based on a simple force balance and no assumption

has been made so far concerning the type of flow or fluid behaviour.

3.2.1 Power-law fluids

For a power-law fluid in a pipe, the shear stress is related to the shear rate by
[Coulson and Richardson, 1999]:
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Figure 3.2 Schematiacepresentatiorof shearstressand velocity
distributionin fully developedaminar flow in a pipe

dv, "
T, =m (— < 3.3)
dr

whereV, is the velocity in the axial direction at radiusr. Now combining
equationq3.2) and(3.3) followed by integrationyields the following expres-
sion for the velocity distribution:

n —Ap 1)
V.= — — (n+D/n 4 constant
: (n +1 { ( L Zm} d +

At the walls of the pipe (i.e. when r = R), the velocity V, mustbe zeroin
order to satisfy the no-slip condition. Substitutingthe value vV, = 0, when
r=R:

—Ap 1M
constant= < . {( P _} ROn+D)/n
n+1

L 2m
andtherefore:
—Ap R " (n+1)/n
v,= (-2 il AR 5§ P 3.4)
n+1 mL 2 R

The velocity profile may be expressedn termsof the averagevelocity, V,
which is given by:

Y 1
V:wzﬁ 0 ZJTrVZdr (35)

75
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where is the volumetric flow rate of the liquid. On substitution fidr from
equation (3.4), and integration yields,

2 —A R Yn R (n+1)/n
v="" < " (—p C— R r {l _ L } dr
0

aR2 \n +1 L 2m R
. 5 1/n R R i 1 i (n+1)/n d i
n+ 1 2m o R R R
R R 1 n
n+1 2m 2 3n+1
and therefore:
n Ap-R Yn
= — R 3.6
<3n +1 ( 2mL (36)
Equation (3.4) can now be re-written as:
vV 3 1 (n+1)/n
_z=< n+ {1_ r } (372
Vv n+1 R

The velocity profiles calculated from equation (3.7a) are shown in Figure 3.3,
for various values ofi. Compared with the parabolic distribution for a Newto-
nian fluid (n = 1), the profile is flatter for a shear-thinning fluid and sharper
for a shear-thickening fluid. The velocity is seen to be a maximum when
r =0, i.e. at the pipe axis. Thus the maximum velocitymax, at the pipe
axis, is given by equation (3.7a) when= 0 and:

3n+1
Vzmax= <

n+1
\% 3 1

Hence: —<ma _ (=n+ (3.7b)
\% n+1

Thus, it can be readily seen from equation (3.7b) that the value of the centre-
line velocity drops from B3V to 1.18V as the value of the power-law index
n decreases from 2 to 0.1.

Re-writing Equation (3.6) in terms of the volumetric flow rate and the
pressure gradient:

—A 1/n
Q=nR’V=nm (3 ’:_ 1 (—sz RG+D/n (3.8)
)

For a given power-law fluid and fixed pipe radiusAp « Q", i.e. for a
shear-thinning fluid(n < 1), the pressure gradient is less sensitive than for
a Newtonian fluid to changes in flow rate. The flow rate, on the other hand,
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Figure 3.3 Velocity distribution for power-law fluids in laminar flow in
pipes

does show a rather stronger dependence on the radius. For instances for
Q0 « R* whereas fom = 0.5, Q « R®.

It is useful to re-write equation (3.8) in dimensionless form by introducing a
friction factor defined ag’ = (r,,/(1/2)pV?) wherer,, = (—A p/L)(D/4) and
defining a suitable Reynolds number which will yield the same relationship
as that for Newtonian fluids, that ig, = (16/Re). Thus substitution forf in
terms of the pressure gradieqt A p/L) in equation (3.8) gives:

16
— (3.8a)
f Repr
where the new Reynolds number /Rés defined by:
VZ—VLDVL
Rep, = — ; (3.80)
a1 <3n +1
8" " "m
4n

It will be seen later (equations (3.28a) and (3.30b)) that this definition of the
Reynolds number coincides with that of Metzner and Reed [1959], and hence
hereafter it will be written as Rg;, that is, Re; = Reyz.
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Example 3.1

A polymer solution(density= 1075 kg/m) is being pumped at a rate of 2500 kg/h
through a 25 mm inside diameter pipe. The flow is known to be laminar and the power-
law constants for the solution ane= 3 Pas’ andn = 0.5. Estimate the pressure drop
over a 10m length of straight pipe and the centre-line velocity for these conditions.
How does the value of pressure drop change if a pipe of 37 mm diameter is used?

Solution

2500 1
—— =6.46x 10*m’/s

\ol tric fl t = —
olumetric flow rate,Q 3600 < 1075

25
pipe radiusR = - X 1072 =0.0125m

Substitution in equation (3.8) and solving for pressure drop gives:
—Ap=110kPa

Q 646x10*
7R? ~ 7(0.01252
=1.32m/s

Average velocity in pipey =

The centre-line velocity is obtained by putting= 0 in equation (3.7a),

3 1 3x05+1
Vz|r:O:Vzmax:V< ot =132x i
n

+1 05+1
=22mls

For the pipe diameter of 37 mm, for the same value of the flow rate, equation (3.8)
suggests that

—Ap x R—(3n+l)
Hence, the pressure drop for the new pipe diameter can be estimated:

—(3n+1
RHEW ( " )
Row

— A Prew = —A poid (

37/2 %%
_110( 372 — 41.3kPa
25/2

Note that if the fluid were Newtoniatm = 1) of a viscosity of 3 P&, the new value
of the pressure drop would be 23 kPa, about half of that for the polymer solution.

3.2.2 Bingham plastic and yield-pseudoplastic fluids

A fluid with a yield stress will flow only if the applied stress (proportional
to pressure gradient) exceeds the yield stress. There will be a solid plug-like
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core flowing in the middle of the pipe whefe,| is less than the yield stress,
as shown schematically in Figure 3.4. Its radiftg, will depend upon the
magnitude of the yield stress and on the wall shear stress. From equation (3.2),

B
T R
0 _p 3.9
Ty R
wherer, is the shear stress at the wall of the pipe.
Velocity distribution Shear stress distribution
% v A
N
\ |
|
Y I
Flow \ | :
A
\ | |
\ 1 |
l |
) = I
=] 1 |
‘ I=Rp 23 a I ,;T I
25> P
a8 |y
z 7,,=0
Centre line

Figure 3.4 Schematiwelocitydistributionfor laminar flow of a Bingham
plasticfluid in a pipe

In the annularareaR, < r < R, the velocity will graduallydecreasdrom
the constantplug velocity to zero at the pipe wall. The expressionfor this
velocity distributionwill now be derived.

FortheregionR, < r < R, thevalueof shearstresswill be greatertthanthe
yield stressof the fluid, andthe Binghamfluid modelfor pipe flow is given
by (equation(1.16)in Chapterl):

dv,
dr

Now combiningequationg3.2) and(3.10) followed by integrationyields the
following expressiorfor the velocity distribution

T, =16 + s (— (3.10)

1 2

V. — —Ap B
,=—— |(—— = —r§ + constant
U L 2
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At the walls of the pipe (i.e. when = R), the velocity V, must be zero to
satisfy the condition of no-slip. Substituting the valde= 0, whenr = R:

1 —Ap R? 5
constane — (—— — —Rrtg
s L 2
and, therefore:
—A R2 2 ‘L’B
vz=<_1’ Mo gy L (3.11)
L 4up R uB R

Clearly, equation (3.11) is applicable only when,| > 5 andr > R,,.
The corresponding velocityy,,, in the plug region0 < r < R,,) is obtained
by substitutingr = R, in equation (3.11) to give:

—Ap R? R, 2
Vp=— —(1--2 O0<r<R 3.12
=( G (F o=r=m G
The corresponding expression for the volumetric flow réteis obtained by
evaluating the integral

R R R

0= 2nrV, dr = ’ 2nrV., dr 4+ 27rV, dr
0 0 R,

Substitution from equations (3.11) and (3.12), and integration yieldg@for

nR* [ —Ap 4 1
=—(—% (1-—=¢p+ =¢* 3.13
815 ( ( 3¢+ 3</> (313

L
where ¢ =15 /7,,.

It is useful to re-write equation (3.13) in a dimensionless form as:

f

16 1H 1 He*
(1 ¢ ¢ (3.13a)

" Re 6Re 3 f°Ré,

where f is the usual friction factor defined as-Ap/2ou®- D/L); Res is
the Reynolds numbef= pVD/ug) and He is the Hedstdim number defined
as (oD?t8/u2) [Hedstom, 1952]. It should be noted that equation (3.13) is
implicit in pressure gradient (becausg and hence, is a function of pressure
gradient) and therefore, for a specified flow rate, an iterative method is needed
to evaluate the pressure drop.

This analysis can readily be extended to the laminar flow of Herschel-
Bulkley model fluids (equation 1.17), and the resulting final expressions for
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the point velocity and volumetric flow rate are [Skelland, 1967; Govier and
Aziz, 1982; Birdet al.,, 1983, 1987]:

nR T, 1/n r (n+1)/n
V.= - 1—g)ntdim - — } 3.14
S orD m {( ?) r® (3.149

and

1—¢)? 2p(1—¢) ¢
n+1 2n+1 n+1

(3.14b)

0 = nR%n v 1/n (1 — )+ D/m
m

where ¢ is now the ratio(z}! /z,,). These expressions are also implicit in
pressure gradient.

Example 3.2

The rheological properties of a china clay suspension can be approximated by either a
power-law or a Bingham plastic model over the shear rate range 10 to 100 the
yield stress is 15 Pa and the plastic viscosity is 150-s\Rehat will be the approximate
values of the power-law consistency coefficient and flow behaviour index?

Estimate the pressure drop when this suspension is flowing under laminar conditions
in a pipe of 40 mm diameter and 200 m long, when the centre-line velocity is 0.6 m/s,
according to the Bingham plastic model? Calculate the centre-line velocity for this
pressure drop for the power-law model.

Solution

Using the Bingham plastic model,
T, = 10 + pup(—dV_/dr)
when —dvV./dr=10s? 1, =154 150x 103 x 10= 165Pa
—dV,/dr =100s?, 7, = 15+ 150% 103 x 100= 30 Pa

Now using the power-law model,

( d‘/Z n
T, =m

) Cdr
Substituting the values af, and (—dV,/dr):
16.5=m(10)", and
30 = m(100)"
Solving form andn gives:

n =026, m=9.08Pas’
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For a Bingham plastic fluid, equation (3.12) gives:

Vimax = Vzp =06= (

—Ap [ (20x 10732 R, ?
L 4% 015 R

Substitution for(R,/R) from equation (3.9) and writing the wall shear stress in terms
of pressure gradient gives:

0.6 (—Ap (20 x 107%)? 15
T\ L 4x0.15 20x10°% /—Ap
2 L

A trial and error procedure leads to
—A
Tp = 3200 Pa/m

and therefore the total pressure drop over the pipe lengthp = 3200x 200=
640 kPa

The centre-line velocity according to the power-law model is given by equation
(3.4) withr =0, i.e.

y _ n Ap R Ln R
2T A\ n+1 mL 2

1/0.26
x 20 x 1073

0.26+1 9.08x 2
=0.52m/s

a ( 0.26 <3zoox 20x 10°°

One can easily see that the plug like motion occurs across a substantial portion of the
cross-section aR, = 0.47R.

Before concluding this section, it is appropriate to mention here that one
can establish similap — A p relations for the other commonly used viscosity
models in an identical manner. A summary of such relations can be found in
standard textbooks [Skelland, 1967; Govier and Aziz, 1982].

3.2.3 Average kinetic energy of fluid

In order to obtain the kinetic energy correction factey for insertion in the
mechanical energy balance, it is necessary to evaluate the average kinetic
energy per unit mass in terms of the average velocity of flow. The calcula-
tion procedure is exactly similar to that used for Newtonian fluids, (e.g. see
[Coulson and Richardson, 1999]).
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Average kinetic energy/unit mass

R
% Vf drir . %V?Zn’rvz pdr
— — = B (3.159
drin 27trV , pdr
0

V2
= (3.15b)

2o

wherew is a kinetic energy correction factor to take account of the non-uniform
velocity over the cross-section. For power-law fluids, substitutiorVfofrom
equation (3.7a) into equation (3.15a) and integration gives

oy 2n+1)5n +3)
T 3Bn+1)7?

(3.16)

The corresponding expression for a Bingham plastic is cumbersome. However,
Metzner [1956] gives a simple expression far which is accurate to
within 2.5%:

1
o= 5= p 317
Again, both equations (3.16) and (3.17) reduce te 1/2 for Newtonian fluid
behaviour. Note that as the degree of shear-thinning increases, i.e. the value of
n decreases, the kinetic energy correction factor approaches umity-4t as
would be expected, as all the fluid is flowing at the same velocity (Figure 3.3).
For shear-thickening fluids, on the other hand, it attains a limiting value of
0.37 for the infinite degree of shear-thickening behavieue o).

3.2.4 Generalised approach for laminar flow of time-independent
fluids

Approach used in section 3.2 for power-law and Bingham plastic model fluids
can be extended to other fluid models. Even if the relationship between shear
stress and shear rate is not known exactly, it is possible to use the following
approach to the problem. It depends upon the fact that the shear stress distri-
bution over the pipe cross-section is not a function of the fluid rheology and
is given simply by equation (3.2), which can be re-written in terms of the wall
shear stress, i.e.

Trz

r
— 3.18
o (319
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The volumetric flow rate is given by

R
0= 2rrV, dr (319

0
Integration by parts leads to:

R R dv
Q=mr?V, + r? <——Z dr
0 0 dr

For the no-slip boundary condition at the wall, the first term on the right hand
side is identically zero and therefore:

R d
0= i 7r? (— O‘;Z dr (3.20)

V,=0 at r=R
Now changing the variable of integration fromto t,, using equation (3.18):

dz,,

r=R <3 . dr=R
Ty Ty
Whenr =0, 7, =0 and at the walls of the pipe when=R, 7,, = 1,,.
Substitution in equation (3.20) gives:

R3 Ty
0="5 ). (3.21)
0

w

The velocity gradient (or the shear rate) tefrdV,/dr) has been replaced by

a function of the corresponding shear stress via equation (1.10). The form of
the function will therefore depend on the viscosity model chosen to describe
the rheology of the fluid. Equation (3.21) can be used in two ways:

(i) to determine general non-Newtonian characteristics of a time-independent
fluid, as demonstrated in Chapter 2 and in Section 3.2.5, or
(i) to be integrated directly for a specific fluid model to obtain volumetric
flow rate-pressure drop relationship. This is demonstrated for the flow of
a power-law fluid, for which the shear rate is given by equation (3.3):
av, v Wn
el (3.22)
dr m
Substitution of equation (3.22) into equation (3.21) followed by integration
and re-arrangement gives:
0o

V= —< " L (3.23)
T aR? \Bn+1 m )
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Substituting forzr,, = (R/2)(—Ap/L) in equation (3.23) gives:

n (—Ap)R V"
V= R 3.23
<3n +1 < 2mL ( 3

which is identical to equation (3.6).

A similar analysis for a Bingham plastic fluid will lead to the same expres-
sion for Q as equation (3.13). Thus, these are alternative methods of obtaining
flow rate-pressure gradient relation for any specific model to describe the fluid
rheology. The scheme given above provides a quicker method of obtaining
the relation between pressure gradient and flow rate, but has the disadvantage
that it does not provide a means of obtaining the velocity profile.

Example 3.3

The shear-dependent viscosity of a commercial grade of polypropylene at 403K can
satisfactorily be described using the three constant Ellis fluid model (equation 1.15),
with the values of the constantgy = 1.25 x 10* Pas, 712 = 6900 Pa andr = 2.80.
Estimate the pressure drop required to maintain a volumetric flow rate of/4cm
through a 50 mm diameter and 20 m long pipe. Assume the flow to be laminar.

Solution

Since we need th@ — (—A p) relation to solve this problem, such a relationship will
be first derived using the generalised approach outlined in Section 3.2.4. For laminar
flow in circular pipes, the Ellis fluid model is given as:

po(—dV_/dr)

o= T (115)
1+ (frz/fl/z) !
dv, 1 ol
or -— - = f(frz) =— T+ Zril (324)
dr o T

Substituting equation (3.24) into equation (3.21) followed by integration and re-
arrangement gives:

Q _ 7TR3fW 1+ ( 4 ( Tw ot
T Adug a+3 T2
Note that in the limit ofr;,» — oo, i.e. for Newtonian fluid behaviour, this equation

reduces to the Hagen—Poiseuille equation.
Now substituting the numerical values:

4%x10° =

3.14 x (0.025°, ( 4 ( 7, 2871
4x125x 10 2.8+3 \ 6900

or 407437 =r1,(1+ 8.4 x 10°%¢-8)
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A trial and error procedure gives, = 3412 Pa

4t 4x3412x 20

=546 x 10°P
D 0.05 5.46 x 10° Pa

0 —Ap

i.e. the pressure drop across the pipe will be 5.46 MPa.

3.2.5 Generalised Reynolds number for the flow of
time-independent fluids

It is useful to define an appropriate Reynolds number which will result in a
unique friction factor-Reynolds number curve for all time-independent fluids in
laminar flow in circular pipes. Metzner and Reed [1955] outlined a generalised
approach obviating this difficulty. The starting point is equation 3.21:

7R® W
Q=" . ©2f(1,,) dr,, (3.21)

w

Equation (3.21) embodies a definite integral, the value of which depends only
on the values of the integral function at the limits, and not on the nature of
the continuous function that is integrated. For this reason it is necessary to
evaluate only the wall shear stregs and the associated velocity gradient
at the wall (—dV,/dr) at r = R or f(z,,). This is accomplished by the use
of the Leibnitz rule which allows a differential of an integral of the form

N

(d/ds"){ 0'/ s%f(s) ds} to be written as(s’)?f(s') wheres is a dummy variable
of integration ¢,, here) ands’ is identified asr,,. First multiplying both sides
of equation (3.21) by3 and then differentiating with respect tg gives:

d {1'3 ( Q } = i trzzf(rrz)dt,Z
0

dz,, 7R® dz,,

Applying the Leibnitz rule to the integral on the right-hand side gives:

32 (g + 2 d (Q = t5f(n)

7R3 WH 7R3

Introducing a factor of 4 on both sides and further rearrangement of the terms
on the left-hand side gives:

d(4Q/7R%)
_(_dv: _ 40 3.1 4g/nR%)
f(tw)—< & = AR it dr, (3.25a)

Tw
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or in terms of average velocity and pipe diameteb,

( dv, _8V{3 }dlog(SV/D)}

dr wall B D

4 4 dlogr, (3.25b)

Here, (8V/D) is the wall shear rate for a Newtonian fluid and is referred
to as the nominal shear rate for a non-Newtonian fluid which is identical to
equation (2.5) in Chapter 2. Alternatively, writing it in terms of the slope of
logt,, — log(8V /D) plot’s,

dv. 8V /3 +1
S = (— o <— <L (3.25¢)
dr wall D 4n

wheren’ = (dlogz, /dlog(8V /D)) which is not necessarily constant at all
shear rates. Equation (3.25c¢) is identical to equation (2.6) in Chapter 2.

Thus, the index:’ is the slope of the log—log plots of the wall shear stress
7, versus(8V /D) in the laminar region (the limiting condition for laminar
flow is discussed in Section 3.3). Plotsgf versus(8V /D) thus describe the
flow behaviour of time-independent non-Newtonian fluids and may be used
directly for scale-up or process design calculations.

Over the range of shear rates over whichis approximately constant, one
may write a power-law type equation for this segment as

D [—Ap /8v "
N o 3.26
- 4<L m(D (3.26)

Substituting forz,, in terms of the friction factor,f, (= t1,/(1/2)pV?),
equation (3.26) becomes:

2 gy "
L 3.2
f pvzm (D (3.27)

Now a Reynolds number may be defined so that in the laminar flow regime,
it is related tof in the same way as is for Newtonian fluids, i.e.

16
= Rer (3.283)
from which
szn/D}’l’
Reyr = /)8'1/_71}?1/ (3.28b)

Since Metzner and Reed [1955] seemingly were the first to propose this defi-
nition of the generalised Reynolds number, and hence the subsadiisin
Reyr.
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It should be realised that by defining the Reynolds number in this way, the
same friction factor chart can be used for Newtonian and time-independent
non-Newtonian fluids in the laminar region. In effect, we are writing,

(3.29)

Thus, the flow curve provides the value of the effective viscogity where
weit = m'(8V/D)" 1. It should be noted that the terms apparent and effective
viscosity have been used to relate the behaviour of a non-Newtonian fluid to an
equivalent property of a hypothetical Newtonian fluid. The apparent viscosity
is the point value of the ratio of the shear stress to the shear rate. The effective
viscosity is linked to the macroscopic behavio@r- (—A p)) characteristics,
for instance) and is equal to the Newtonian viscosity which would give the
same relationship. It will be seen in Chapter 8 that this approach has also been
quite successful in providing a reasonable basis for correlating much of the
literature data on power consumption for the mixing of time-independent non-
Newtonian fluids. The utility of this approach for reconciling the friction factor
data for all time-independent fluids including shear-thinning and viscoplastic
fluids, has been demonstrated by Metzner and Reed [1955] and subsequently
by numerous other workers. Indeed, by writing a force balance on an element
of fluid flowing in a circular pipe it can readily be shown that equation (3.28a)
is also applicable for visco-elastic fluids. Figure 3.5 confirms this expecta-
tion for the flow of highly shear-thinning inelastic and visco-elastic polymer
solutions in the range.P8 < n’ < 0.92. [Chhabreet al., 1984]. Griskey and
Green [1971] have shown that the same approach may be adopted for the flow
of shear-thickening materials, in the rangd8< n’ < 2.50. Experimental
evidence suggests that stable laminar flow prevails for time-independent non-
Newtonian fluids for Rgg up to about 2000—2500; the transition from laminar
to turbulent flow as well as the friction factor — Reynolds number character-
istics beyond the laminar region are discussed in detail in the next section.
Before concluding this section, it is useful to link the apparent power-law
indexn’ and consistency coefficient’ (equation 3.26) to the true power-law
constants: andm, and to the Bingham plastic model constar§tsand.z. This
is accomplished by noting that, = (D/4)(—Ap/L) always gives the wall
shear stress and the corresponding value of the wall sheay,ratedV . /dr),,
can be evaluated using the expressions for velocity distribution in a pipe
presented in Sections 3.2.1 and 3.2.2.
For the laminar flow of a power-law fluid in a pipe, the velocity distribution
over the pipe cross-section is given by equation (3.7a):

\% 3 1 (n+1)/n
_z:< " {1— L } (3.7a)
Vv n+1 R
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Figure 3.5 Typical friction factor data for laminar flow of polymer
solutions [Chhabra et al., 1984]

Differentiating with respect ta and substituting- = R gives the expression
for the velocity gradient (or shear rate) at the wall as:

v, 3n+1 r tnV

dr n R R
e (Ve _ . _(3m+1 V(341 (8
' dr r:R_V N n R 4n D

The corresponding value of the shear stress at the wyatbr a power-law
fluid is obtained by substituting this value @f in equation (3.3):
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< dv, "
=, =m

- dr r=R
{ (3n +1 (8V }”
=m R
4n D
which is identical to equation (2.3) presented in Chapter 2. Now comparing

this equation with equation (3.26) for a power-law fluid gives:

3n4+1 "
4n

n=n m=m ( (3.30a)

In this case therefore’ andm’ are both constant and independent of shear
rate. Similarly, it can be shown that the Bingham model parametgi@nd

up are related ton’ andn’ as [Skelland, 1967]:

4 4
1—§¢+§
= (3.30b)
and
m =1, i (3.300)
1 4¢+ ¢4
w|l-—2 -
3 3

where¢ = (<§ /7).
It should be noted that in this case, andn’ are not constant and depend
on the value of the wall shear stress

3.3 Criteria for transition from laminar to turbulent flow

For all fluids, the nature of the flow is governed by the relative importance of
the viscous and the inertial forces. For Newtonian fluids, the balance between
these forces is characterised by the value of the Reynolds number. The gener-
ally accepted value of the Reynolds number above which stable laminar flow
no longer occurs is 2100 for Newtonian fluids. For time-independent fluids, the
critical value of the Reynolds number depends upon the type and the degree
of non-Newtonian behaviour. For power-law fluigs = n’), the criterion of

Ryan and Johnson [1959] can be used,

6464

E;—TF—l)—z(ern)<2+">/<1+"> (3.30)
n

Gur =
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While for Newtonian fluids equation (3.31) predicts the critical Reynolds
number of 2100, the corresponding limiting values increase with decreasing
values of the power-law index, reaching a maximum of about 24@0-a0.4
and then dropping to 1600 at= 0.1. The latter behaviour is not in line with
the experimental results of Dodge and Metzner [1959] who observed laminar
flow conditions up to Rgr ~ 3100 for a fluid withrn’ = 0.38. Despite the
complex dependence of the limiting Reynolds number on the flow behaviour
index embodied in equation (3.31) and the conflicting experimental evidence,
it is probably an acceptable approximation to assume that the laminar flow
conditions cease to prevail at Reynolds numbers above ca. 2000—-2500 and, for
the purposes of process calculations, the widely accepted figure of 2100 can be
used for time-independent fluids characterised in terms.at is appropriate
to add here that though the friction factor for visco-elastic fluids in the laminar
regime is given by equation (3.28a), the limited experimental results available
suggest much higher values for the critical Reynolds number. For instance,
Metzner and Park [1964] reported that their friction factor data for visco-
elastic polymer solutions were consistent with equation (3.28a) up to about
Reyr = 10000. However, it is not yet possible to put forward a quantitative
criterion for calculating the limiting value of Rg for visco-elastic fluids.
Several other criteria, depending upon the use of a specific fluid model, are
also available in the literature [Hanks, 1963; Govier and Aziz, 1982; Wilson,
1996; Malin, 1997]. For instance, Hanks [1963] proposed the following crite-
rion for Bingham plastic fluids:

¢4

1— ¢ +
VD e
pYY _ 3 3 He (3.32a)

MUB 8¢c

where the ratiop. = (5 /7.,), is given by:

¢ He

= 3.32b
(1-¢.)° 16800 (3.32D)
The Hedstdm numberHe, is defined as:
D2 B
He=""70 — Re, x Bi (3.33)
Hp

where Bi= (Dt§/upV) is the Bingham number. For a given pipe sid®)

and Bingham plastic fluid behavioup, w3, zg), the Hedstdm number will

be known and the value @f. can be obtained from equation (3.32b) which, in
turn, facilitates the calculation qReg). using equation (3.32a), as illustrated
in example 3.4. More recent numerical calculations [Malin, 1997] lend further
support to the validity of equations (3.32a,b).
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Both Wilson [1996] and Slatter [1996] have also re-evaluated the available
criteria for the laminar—turbulent transition, with particular reference to the
flow of pseudoplastic and yield-pseudoplastic mineral slurries in circular pipes.
Wilson [1996] has argued that the larger dissipative micro-eddies present in
the wall region result in thicker viscous sub-layers in non-Newtonian fluids
which, in turn, produce greater mean velocity, giving a friction factor lower
than that for Newtonian fluids, for the same value of the pressure drop across
the pipe. For power-law fluids, he was able to link the non-Newtonian apparent
viscosity to the viscosity of a hypothetical Newtonian fluid simply through a
function of n, the power-law flow behaviour index, such that the saine
(—Ap) relationship applies to both fluids. This, in turn, yields the criterion
for laminar—turbulent transition in terms of the critical value of the friction
factor as a function ofi (power-law index) alone. Note that in this approach,
the estimated value of the effective viscosity will naturally depend upon the
type of fluid and pipe diameteR. Similarly, Slatter [1996] has put forward a
criterion in terms of a new Reynolds number for the flow of Herschel—Bulkley
model fluids (equation (1.17)) to delineate the laminar—turbulent transition
condition. His argument hinges on the fact that the inertial and viscous forces
in the fluid are determined solely by that part of the fluid which is undergoing
deformation (shearing), and hence he excluded that part of the volumetric flow
rate attributable to the unsheared plug of material present in the middle of the
pipe. These considerations lead to the following definition of the modified
Reynolds number:

80V
Rénog = ; T (3.39)
5 +m| ——
Dshear
Q - Qplug

Where Vann == ansthearz 2(R - RP)

m(R* —R%)’

Laminar flow conditions cease to exist at,Rge= 2100. The calculation of

the critical velocity corresponding to Rgy = 2100 requires an iterative proce-
dure. For known rheologyo( m, n, t§) and pipe diametefD), a value of the

wall shear stress is assumed which, in turn, allows the calculati&y,dfom
equation (3.9), an@ andQ, from equations (3.14b) and (3.14a) respectively.
Thus, all quanties are then known and the value afJgean be calculated.
The procedure is terminated when the value,ohas been found which makes
Renog = 2100, as illustrated in example 3.4 for the special caseefl, i.e.,

for the Bingham plastic model, and in example 3.5 for a Herschel—Bulkley
fluid. Detailed comparisons between the predictions of equation (3.34) and
experimental data reveal an improvement in the predictions, though the values
of the critical velocity obtained using the criterion jge= 2100 are only
20-25% lower than those predicted by equation (3.34). Furthermore, the two
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criteria coincide for power-law model fluids. Subsequently, it has also been
shown that while the laminar—turbulent transition in small diameter tubes is
virtually unaffected by the value of the yield stress, both the flow behaviour
index (n) and the yield stress play increasingly greater roles in determining
the transition point with increasing pipe diameter. Finally, the scant results
obtained with a kaolin slurry and a CMC solution seem to suggest that the
laminar—turbulent transition is not influenced by the pipe roughness [Slatter,
1996, 1997].

Example 3.4

The rheological behaviour of a coal slurry (1160kéyncan be approximated by

the Bingham plastic model with§ = 0.5Pa anduz = 14 mPas. It is to be pumped
through a 400 mm diameter pipe at the rate of 188kg/s. Ascertain the nature of the
flow by calculating the maximum permissible velocity for laminar flow conditions.
Contrast the predictions of equations (3.33) and (3.34).

Solution

pthg
2
Hp

_ 1160x 0.4° x 0.5
T (14x 10737
i.e. He = 4.73 x 10° which when substituted in equation (3.32b) yields,

. . 473x 10 _ 2815
(1—¢0) 16800

Here, the Hedstrm number, He=

A ftrial and error procedure giveg. = 0.707. Now substituting for He ang, in
equation (3.32a):

4
1-— g x 0.707+ (0'73?7)

Re), = 473 x 10°

(Res). 8x 0707 XA rox
pV.D

or (Reg). = =11760
B

and the maximum permissible velocity, therefore is,

~ 11760x 14x 10°°

.= = 0.354m/
‘ 1160x 0.4 mis
The actual velocity in the pipe is
188 4
— |———— =1.29m/
(1160 (7‘[ x 0.4 mes

Thus, the flow in the pipe is not streamline.
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Alternatively, one can use equation (3.34) to estimate the maximum permissible
velocity for streamline flow in the pipe. In this example= 1, m = 0.014 Pa and
7 = 0.5Pa. As mentioned previously the use of equation (3.34) requires an iterative
procedure, and to initiate this method let us assume a valug €f0.6 Pa.

H 05 R
O¢=-2L=-—""=-L je.R,=0166m and
¢ , 06 R !

¢ = 0.833. Now using equation (3.14b) far= 1:

0.6
0=7x02x1 (m (1—0.83372

(1—0.833° 2x0.8331—0.833 0833
4 + 3 2

= 0.0134n¥/s

The plug velocity,V,, is calculated from equation (3.14a) by settinf® = R,/R =
¢ =0.833, i.e.

_1x02 ( 0.6
"7 (141 \0.014
Q, = V,7R% = 0.1195x 7 x 0.166" = 0.01035 ni/s

O  Qam=Q—Q,=0.0134—0.01035= 0.00305 ni/s

Qann _ 0.00305
m(R* —R%)  m(0.2° — 0.166")

Dspear= 2(R — R),) = 2(0.2 - 0.166) = 0.068 m

(1—0.8332 =0.1195m/s

Vann =

=0.078m/s

0 Repg— 80V __ 8x1160x0078
B 8Vam " 8x 0078
¢ —_—am 05+0014( — =%
1:0 o ( shear + 0.068

which is too small for the flow to be turbulent. Thus, this procedure must be repeated
for other values of,, to make Rgoq = 2100. A summary of calculations is presented
in the table below.

7w (Pa) 0 (m%s) 0, (m°/s) Rénod

0.6 0.0134 0.01035 90
0.70 0.0436 0.0268 890
0.73 0.0524 0.0305 1263
0.80 0.0781 0.0395 2700
0.77 0.0666 0.0358 1994
0.78 0.0706 0.0370 2233

0.775 0.0688 0.0365 2124
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The last entry is sufficiently close to Rg = 2100, and laminar flow will cease to
exist atr,, > 0.775 Pa. Also, note that the use of equations (3.14a) and (3.14b) beyond
this value of wall shear stress is incorrect.

0.0688
~(0.4)?
4( )

[0 maximum permissible velocity = 0.55m/s

This value is some 40% higher than the previously calculated value of 0.35m/s.
However, even on this count, the flow will be turbulent at the given velocity of
1.29m/s.

Example 3.5

Determine the critical velocity for the upper limit of laminar flow for a slurry with the
following properties, flowing in a 150 mm diameter pipe.

p=1150kg/ni; < =6Pa; m=03Pas’ and n =04
Solution

As in example 3.4, one needs to assume a value,foand then to calculate all other
quantities using equations (3.14a) and (3.14b) which in turn allow the calculation of
Renog USing equation (3.34). A summary of the calculations is presented here in a
tabular form.

T, (Pa) 0 (m?/s) 0, (m3/s) Reénod
6.4 472 x 10°° 427 x 10°° 6.5 x 103
7.4 3097 x 1073 2.216x 1073 26.6

8.4 0.01723 0.01 778

9.3 0.046 0.0224 5257
8.82 0.0287 0.0153 2100

Thus, the laminar—turbulent transition for this slurry in a 150 mm diameter pipe occurs
when the wall shear stress is 8.82 Pa and the volumetric flowrate is 0.5287 m
0 0.0287

[1 mean velocity at this point 5 = > =162m/s
(/4D (r/4)(0.15)

Hence, streamline flow will occur for this slurry in a 150 mm diameter pipe at velocities
up to a value of 1.62m/s.

3.4 Friction factors for transitional and turbulent
conditions

Though turbulent flow conditions are encountered less frequently with
polymeric non-Newtonian substances, sewage sludges, coal and china clay
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suspensions are usually all transported in the turbulent flow regime in large
diameter pipes. Therefore, considerable research efforts have been directed at
developing a generalised approach for the prediction of the frictional pressure
drop for turbulent flow in pipes, especially for purely viscous (power-law,
Bingham plastic and Herschel-Bulkley models) fluids. Analogous studies for
the flow of visco-elastic and the so-called drag-reducing fluids are somewhat
inconclusive. Furthermore, the results obtained with drag-reducing polymer
solutions also tend to be strongly dependent on the type and molecular weight
of the polymers, the nature of the solvent and on the type of experimental set
up used, and it is thus not yet possible to put forward generalised equations for
the turbulent flow of such fluids. Therefore, the ensuing discussion is restricted
primarily to the turbulent flow of time-independent fluids. However, excellent
survey articles on the turbulent flow of visco-elastic and drag-reducing systems
are available in the literature [Govier and Aziz, 1982; Cho and Hartnett, 1982;
Sellinet al., 1982].

In the same way as there are many equations for predicting friction factor for
turbulent Newtonian flow, there are numerous equations for time-independent
non-Newtonian fluids; most of these are based on dimensional considerations
combined with experimental observations [Govier and Aziz, 1982; Heywood
and Cheng, 1984]. There is a preponderance of correlations based on the
power-law fluid behaviour and additionally some expressions are available for
Bingham plastic fluids [Tomita, 1959; Wilson and Thomas, 1985]. Here only
a selection of widely used and proven methods is presented.

3.4.1 Power-law fluids

In a comprehensive study, Dodge and Metzner [1959] carried out a semi-
empirical analysis of the fully developed turbulent flow of power-law fluids

in smooth pipes. They used the same dimensional considerations for such
fluids, as Millikan [1939] for incompressible Newtonian fluids, and obtained
an expression which can be re-arranged in terms of the apparent power law
index, n’, (equation 3.26) as follows:

i? = A(n")log[Reyr f @3 + C(n") (3.35)

whereA(n’) andC(n’) are two unknown functions of’. Based on extensive
experimental results in the range 298(Re,x < 36000; 036 < n’ < 1 for
polymer solutions and particulate suspensions, Dodge and Metzner [1959]
obtained,

A(n') = 4(n')~07® (3.36a)
C(n') = —0.4(n")~1? (3.36b)
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Incorporating these values in equation (3.35),

1 4 , 0.4
—— = — 7 log[Reyr f*"/7] — (3.37)
0.75 12
@) (n")
and this relation is shown graphically in Figure 3.6.
\\ | I+ f=16/Reyr
\<\
N
5 \ n
g 0.01 | /]
— N\ / — ~
S N / /] ———
= ™~
2 5 N T ~10
2 “ \‘% T~ T~ —— bié\‘
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Figure 3.6 Friction factor — Reynolds number behaviour for
time-independent fluids [Dodge and Metzner, 1959]

A more detailed derivation of equation (3.37) is available in their orig-
inal paper and elsewhere [Skelland, 1967]. For Newtonian flgids= 1),
equation (3.37) reduces to the well-known Nikuradse equation. Dodge and
Metzner [1959] also demonstrated that their data for clay suspensions which
did not conform to power-law behaviour, were consistent with equation (3.37)
provided that the slope of log, —log(8V /D) plots was evaluated at the
appropriate value of the wall shear stress. It is also important to point out
here that equation (3.37) necessitates the values @ind m’ be evaluated
from volumetric flow rate — pressure drop data for laminar flow conditions.
Often, this requirement poses significant experimental difficulties. Finally,
needless to say, this correlation is implicit in friction factgr (like the
equation for Newtonian fluids) and hence an iterative technique is needed for
its solution. The recent method of Irvine [1988] obviates this difficulty. Based
on the Blasius expression for velocity profile for turbulent flow (discussed
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subsequently) together with modifications based on experimental results, Irvine
[1988] proposed the following Blasius like expression for power-law fluids:

f = {D(n)/Reyg} @+ (3.38)
2n+4 an 3n?
here S
W Dn) = =7 <3n 1

Note that this cumbersome expression does reduce to the familiar Blasius
expression forn = 1 and is explicit in friction factor,f. Equation (3.38) was
stated to predict the values of friction factor with an average errat&%o in

the range of conditions:.85 < n < 0.89 and 2000< Rey,z < 50000. Though

this approach has been quite successful in correlating most of the literature
data, significant deviations from it have also been observed [Harris, 1968;
Quader and Wilkinson, 1980; Heywood and Cheng, 1984]; though the reasons
for such deviations are not immediately obvious but possible visco-elastic
effects and erroneous values of the rheological parametersn{eand m’)
cannot be ruled out. Example 3.6 illustrates the application of these methods.

Example 3.6

A non-Newtonian polymer solution (density 1000 kd)nis in steady flow through a
smooth 300 mm inside diameter 50 m long pipe at the mass flow rate of 300 kg/s. The
following data have been obtained for the rheological behaviour of the solution using

a tube viscometer. Two tubes, 4 mm and 6.35 mm in inside diameter and 2m and 3.2m
long respectively were used to encompass a wide range of shear stress and shear rate.

Mass flow rate Pressure drop Mass flow rate Pressure drop

(kg/h) (kPa) (kg/h) (kPa)
D=4mm,L=2m D =6.35mm,L =32m
33.9 49 18.1 27
56.5 57.6 45.4 36
95 68.4 90.7 44
136 76.8 181 54
153.5 79.5 272 61

Determine the pump power required for this pipeline. How will the power requirement
change if the flow rate is increased by 20%?

Solution

First, the tube viscometer data will be converted to give the wall shear stjesmd
nominal shear ratg8V /D):

_ —3
D( Ap =4><10 49X1000=24.5Pa

=2 \L a2 T 2
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8V 8 339 4
—_— = X X
D~ 4x10°% " 1000x 3600 n(4 x 10732

and = 1499s*

Similarly the other mass flow rate—pressure drop data can be converted,into
(8V/D) form as are shown in the table.

7w (Pa) (8V/D)(s™) v (Pa) 8V/D) (s

D =4mm D =6.35mm
245 1499 13.4 200
28.8 2500 17.86 502
34.2 4200 21.83 1002
38.4 6000 26.8 2000
39.8 6800 30.26 3005

Note that sincd./D for both tubes is 500, entrance effects are expected to be negligible.
Figure 3.7 shows the, — (8V /D) data on log-log coordinates. Obviously, is not
constant, though there seem to be two distinct power-law regions with parameters:

n=03 m =274Pas’ (z, <~30Pa
n =035 m =182Pas’ (t, > ~30Pa

102 n'=035

7, (Pa)
T

o D=6.35mm
e D=4 mm

n' =0.30
10 ! Lol ! Lol ! |

100 1000 10000
8VID (s}

Figure 3.7 Wall shearstress-appaentwall shearrate plot for datain
example3.6

Also, the overlapin dataobtainedusingtubesof two differentdiametersconfirmsthe

time-independenibehaviourof the solution.
In the large pipe, the meanvelocity of flow, V = 300 X 4
e PIpE, y '~ 1000 ° 7(0.37

or V=41m/s



100 Non-Newtonian Flow in the Process Industries

Let us calculate the critical velocity,., for the end of the streamline flow by setting
Reyr = 2100, i.e.

Substituting values,

1000x VZ703 x (0.3)%3
831 x 274

= 2100

Solving, V. = 1.47 m/s which is lower than the actual velocity of 4.1 m/s and hence,
the flow in the 300 mm pipe is likely to be turbulent.

Initially, let us assume that the wall shear stress in the large pipe woud3bda,
i.,e.n’ =0.3 andm’ = 2.74 Pas' can be used for calculating the value of the,Re
equation (3.28b),

pVZ "' D" 1000x 4.12°3 x (0.3)°3
8" tm' 8% x 274
= 12230

Reyr =

Now for n’ = 0.3 and Rgr = 12230, from Figure 3.6/ ~ 0.0033 (equation (3.38)
gives f = 0.0036). The frictional pressure gradief A p/L), is calculated next:

= 364 Pa/m

—Ap _ 2fpV®  2x0.0033x 1000x 4.1%
L D 0.3

The value oft, = (D/4)(—Ap/L) = (0.3 x 364)/4 = 27.7 Pa is within the range of
the first power-law region and hence no further iteration is needed. The pump power
is Q- Ap, i.e.(300/1000 x 364 x 50= 5460 W.

For the case when the flow rate has been increased by 20%, i.e. the new mass flow
rate in the large pipe is 360kg/s.

360 4

St _492mis
1000 " 7(0.32

mean velocity of flow,V =

Based on the previous calculation, it is reasonable to assume that the new value of the
wall shear stress would be greater than 30 Pa and therefore, one should=u6e35
andm’ = 1.82 Pas”.

1000x 4.9227935 % (0.3)0%5

The Reynolds number, =
y R 80351« 1.82

= 19410

Forn’ = 0.35 and Rgr = 19410, from Figure 3.6f ~ 0.0032 (while equation (3.38)
also yields the same value). The frictional pressure gradiettp/L) is:

—Ap _ 2fpV? 2x0.0032x 1000x 4.92°
L D (0.3)

= 511Pa/m
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~Ap  03x511

= =39Pa
L 4

D
Checking:t,, = —
ecking:t 4(

This value is just within the range of laminar flow data.

360
pump power= 1000 x 511x 50=9200W

3.4.2 Viscoplastic fluids

Despite the fact that equation (3.37) is applicable to all kinds of time-
independent fluids, numerous workers have presented expressions for turbulent
flow friction factors for specific fluid models. For instance, Tomita [1959]
applied the concept of the Prandtl mixing length and put forward modified
definitions of the friction factor and Reynolds number for the turbulent flow
of Bingham Plastic fluids in smooth pipes so that the Nikuradse equation, i.e.
equation (3.37) withh’ = 1, could be used. Though he tested the applicability
of his method using his own data in the range 280Be;(1 — ¢)?(3 — ¢) <
10°, the validity of this approach has not been established using independent
experimental data.

In contrast, the semi-empirical equations due to Dagbgl. (1992) obviate
these difficulties due to their explicit form which is as follows:

f=l+ Y (3.39)

where f; is the solution of equation (3.13) anfl; is a function of the
Reynolds number and Hedstrom number expressed as:

fr=10"Rg;*** (3.40)
where ag = —1.47[1+ 0.146 exg—2.9 x 10 °He)]

40000
and b=174+ ———
Reg

This method has been shown to yield satisfactory values of pressure drop

under turbulent conditions foP < 335mm, Rg < 3.4 x 10° and 1000<
He < 6.6 x 10’. Example 3.7 illustrates the application of this method.

Example 3.7

A 18% iron oxide slurry (density 1170 kgAnbehaves as a Bingham plastic fluid with
78 = 0.78 Pa andu; = 4.5mPas. Estimate the wall shear stress as a function of the
nominal wall shear raté8V /D) in the range & < V < 1.75m/s for flow in a 79 mm
diameter pipeline.
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Over the range of the wall shear stress encountered, the slurry can also be modelled
as a power-law fluid withn = 0.16 Pas® andn = 0.48. Contrast the predictions of
the two rheological models.

Solution
(@) Bingham model

Here 1,8 =0.78Pa; uz =4.5mPas
p =1170kg/m and D=79x 103m
The value of Hedstirm number is calculated first:

_ pD*ry  1170x 0.07% x 0.78

= =281x 10°
wg’ (4.5 x 107%)? x

He

From equation (3.40):
ao = —147[1+ 0.146 exgf—2.9 x 107° x 2.81 x 10°)] = —1.47

A sample calculation is shown fdr = 0.4 m/s.

8x 04
0.079

The Reynolds number of flow, Rés:
pVD  1170x 0.4 x 0.079

\4
Apparent shear rate at wa% = =405s1

Re; = = = 8216
%= 45x 108
O the indexb in equation (3.39) is given by:
40000 40000
b=17+ —— =174+ —— =657
+ Reg + 8216

The value off, i.e. the friction factor in streamline flow, is calculated using equation
(3.13a) which can be re-cast in dimensionless form as:

16 1 He 1 He
fr=re 1 s \Re ~\3 7ra
Reg 6 \Re 3 fiRe

For Rg; = 8216, and He= 2.81 x 1P, this equation is solved to get;, = 0.0131
The value offr is calculated using equation (3.40):

fr=10"1%(8216~°1% = 0.00595
Finally, the actual friction factor is estimated from equation (3.39):
f = (0.0131%57 1 0.0059%57)1/657 — 0.0131

and the wall shear stress, = 5 fpV? = ; x 0.0131x 1170x 0.4%,i.e.7, = 1.22Pa.
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This procedure is repeated for the other values of the average velocity, and a
summary of results is shown in a tabular form here.

14 (8V/D) Reg b fr S f Tw

(m/s) sh (=) (=) =) (=) (=) (Pa)

0.4 40.5 8216 6.57 0.00595 0.0131 0.0131 1.22
0.6 60.8 123x 10" 495 0.0055 0.00625  0.0068 1.44
0.8 81 164 x 10  4.14 0.00521  0.00377 0.00551 2.62
1.0 101.3 205x10* 3.65 0.00499 0.00257 0.00510 2.99
1.25 126.6 B57x 100 3.26 0.00477 0.00176 0.00483  4.42
1.50 152 0P8x 100 3.00 0.00461 0.00131 0.00465 6.12

1.75 177.2 ¥ x 10 2.81 0.00447 0.00102 0.0045 8.06

(b) Power-law model

Likewise, one sample calculation is shown here Woe 0.4 m/s.
The Metzner—Reed Reynolds number,Rés given by equation (3.28b):
pv27nDn
3n+1 "

8n71

" < 4n

1170x 0.4%7948 x 0.079*8
- x x — 1407 < 2100

3x048+1 %48
80.4&1 016 o= r -
R Ta X048

0 the flow is streamline ang = 16/Reyx,
f=001136 and 7, = }fpV? =1 x 0.01136x 1170x 0.4°
or 7, =106Pa

Reyr =

For V > 0.6 m/s, the value of Rg; ranges from 2607 fol’ = 0.6 m/s to 133 x 10*

for V.= 1.75m/s. Therefore, one must use either equation (3.37) or (3.38) under these
condition; the latter is used here owing to its explicit form. A summary of calculations
is tabulated below:

4 (8V/D) RQVIR f Ty
(m/s) sh (=) (=) (Pa)
0.4 40.5 1407 0.0114 1.06
0.6 60.8 2607 0.00911 1.92
0.8 81 4037 0.00761 2.85
1.0 101.3 5667 0.00662 3.87
1.25 126.6 7956 0.00577 5.27
1.50 152 105 x 10 0.00515 6.77
1.75 177.2 13 x 10* 0.00468 8.37

The predicted values of, according to power-law and Bingham plastic models are
plotted in Figure 3.8 together with the experimental values. While the maximum
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Figure 3.8 1, — (8V/D) plot for example 3.7

discrepancy between the two predictions is of the order of 20%, in this particular
example the actual values are seen to be closer to the predictions of the power-law
model than that of the Bingham model.

3.4.3 Bowen’s general scale-up method

Bowen [1961], on the other hand, proposed that for turbulent flowpzréc-
ular fluid (exhibiting time independent behaviour), the wall shear strgss,
could be expressed as:

T, =A— (3.41)

whereA, b andc are constants for the fluid and may be determined from exper-
imental measurements in small diameter tubes. For laminar flow, wall shear
stress(t,,) — apparent wall shear stre$8V /D) data for different diameter
tubes, coincide. However, for turbulent conditions, as shown schematically
in Figure 3.9, diameter appears to be an additional independent parameter.
Because of the inclusion of a diameter effect explicitly, this method is to
be preferred for scaling up the results of small scale pipe experiments to
predict frictional pressure drops for the same fluid in large diameter pipes.
Note that this method does not offer a generalised scheme of calculating
pressure drop in contrast to the method of Metzner and Reed [1955] and
Dodge and Metzner [1959].
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Figure 3.9 Schematicef r,, — (8V /D) behaviourfor differentdiameter
tubesin laminar and turbulentregions

The threeturbulentbrancheshownin Figure 3.9, which all havethe same
slope,correspondo threedifferentpipe diameterswhilst a singleline suffices
for all diametersfor laminar flow in the absenceof wall-slip effects. The
Reynoldsnumberat the transitioncanbe calculatedrom the valueof (8V /D)
at which the turbulent branch deviatesfrom the laminar line. In practice,
however,the laminarturbulenttransition occursover a rangeof conditions
ratherthanabruptly as shownin Figure 3.9. Strictly speaking,only turbulent
flow datafor small scalepipe shouldbe usedto scaleup to turbulentflow in
largerpipes.However thisis likely to poseproblemsbecaus@f the extremely
high velocities and pressuredrops which would frequently be requiredto
achieveturbulencen smalldiametemipes.But neverthelesmeasurements
the streamlineandtransitionalregimesfacilitate the delineationof the critical
Reynoldsnumber.Due to the fluctuatingnatureof flow, the operationof pipe
linesin thetransitionregionshouldbe avoidedasfar aspossible Finally, this
methodcanbe summarisedsfollows:

(i) Obtaint, — (8V/D) datausingat leasttwo pipe sizesunderbothlaminar
andturbulentflow conditionsif possible Plotthesedataon log-log coor-
dinatesas shown schematicallyin Figure3.9. The laminar flow data
should collapseon to one line and there should be one branchingfor
turbulentflow line for eachpipe diameter.

(i) Theindex of the velocity term, b, in equation(3.41) is the slopeof the
turbulentbranch.Ideally, all brancheswould have identical slopesbut
in practiceb should be evaluatedfor eachvalue of D and the mean
valueused.
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(iii)y Next, plot LV?/(—A p) againstD on log-log coordinates for each turbu-
lent flow data point; the slope of this line will b@d + ¢) and hence
can be evaluated.

(iv) The remaining constant, is evaluated by calculating its value for each
turbulent flow data point as,D/V? and again the mean value df
should be used.

Equation (3.41) can now be used directly to give the pressure drop for any
pipe diameter if the flow is turbulent. Alternatively, this approach can be used
to construct a wall shear streg@s,)—apparent wall shear rat8V /D) turbulent
flow line for any pipe diameter. This method is particularly suitable when
either the basic rheological measurements for laminar flow are not available
or it is not possible to obtain a satisfactory fit of such data. The application
of this method is illustrated in example 3.8.

Example 3.8

The following flow rate — pressure drop data for a 0.2% aqueous carbopol solution
(density 1000kg/i) have been reported for two capillary tubes and three pipes of

different diameters. (Data from D.W. Dodge, Ph D Thesis, University of Delaware,

Newark, 1958).

Capillary Data Pipeline Data

D =0.84mm D = 0.614mm D=127mm D = 254mm D = 50.8mm
L =1555mm L =2038mm

( 8V < 8v ( 8V ( 8V < 8v
N Tw N Tw N Tw N Tw N Tw
D D D D D
(sH (Pa) (sH (Pa) | (sH (Pa) (s (Pa) (sY) (Pa)

213.2 4.73 820.5 12.8% 4725 7.76 205 453 74 2.19
397.1 7.59 1456 1950 753.2 10.93 301 6.16 114 2.90
762.8 12.16 2584 29.61 1121 14.94 418 7.88 151 3.87
1472 19.67 4691 46.24 1518 19.68 504 9.42 177 4.86
1837 23.27 8293 69.71 1715 26.45 562 11.83 194 5.64
2822 31.39 14420 104.50 1849 34.45 602 14.24 212 7.61
4000 41.90 25140 157 1989 40.12 691 19.93 236.8 9.33
5237 49.08 43310 231.7| 2250 49.41 825 27.03 264 11.40
9520 77.33 76280 343.4| 2642 64.11 1004 37.21 303 14.14
10300 81.1 111900 496 3043 81.11 1188 49.08 348 17.61
19010 125.35 - - 3485 101 1473 69.76 395 21.62
22400 142.54 - - 4047 128.6 1727 90.30 453 27
35490 191 - - 4610 160.6 2071 120.40 517 33.52
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Capillary Data Pipeline Data
D = 0.84mm D =127mm D = 25.4mm D = 50.8mm
L = 1555mm

8v 8v 8v 8v

N Tw N Tw N Tw N Tw

D D D D

s (Pa) s (Pa) sh (Pa) sh (Pa)
50400 246 5192 196 2482 162.1 582 40.64
59170 272 6106 260.5 2990 222.7 671 51.33
94260 365 6899 320 3482 286.3 776 64.78
95600 358 7853 399 4261 407 907 82.64

Using the methods of Bowen [1961] and of Dodge and Metzner [1959], construct
the wall shear stress-apparent shear rate plots for turbulent flow of this material in
101.6 mm and 203.2 mm diameter pipes. Also, calculate the velocity marking the end
of the streamline flow.

Solution

(a) Bowen’s method

Figure 3.10 shows the flow behaviour data tabulated. As expected, all the laminar flow
data are independent of tube diameter and collapse on to one lineniwitt0.726
andm’ = 0.0981 Pas". Also, the same value of is seen to cover the entire range of
measurements.

On the other hand, three turbulent branches are obtained with, each corresponding
to a particular pipe diameter. The slopes of these lines are remarkably similar at 1.66,
1.66 and 1.65 for the 12.7 mm, 25.4 mm and 50.8 mm diameter pipes respectively.

0 b=166

Note that the first few data points in each case seem to lie in laminar and transitional
range as can be seen in Figure 3.10. These are also indicated in the tabulated data by
an asterisk.

Now using this value ob, the quantity(LV?/—A p) is evaluated for each turbulent
data point, and the resulting mean values @V?”)/(—Ap) are 0.000535, 0.001183
and 0.002713 for the 12.7mm, 25.4mm and 50.8 mm diameter pipes respectively.
These values are plotted against pipe diameter in Figure 3.11. Again, as expected, a
straightline results with a slope of 1.18.

Ul+c¢=118 ie.c=018

Finally, the value ofA is calculated by evaluating the quantity,D¢/V?) for each
turbulent flow data point.
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Figure 3.10 Turbulent flow behaviour of 0.2% carbopol solution (example
3.8)

For 127 mm diameter pipe, .87 < (7,,D/V’) < 2.8
25.4mm diameter pipe,.25 < (t,,D°/V?) < 2.86
50.8 mm diameter pipe,.25 < (t,,D¢/V’) < 2.86

The resulting mean value dfis 2.78. Therefore, for this carbopol solution in turbulent
flow, the wall shear stress is given as:

V1.66

Ty = 2.78@

where all quantities are in S.I. units. Now, the predicted value®fer 1016 mm and
203.2 mm pipes are shown in the following tables, and are also included in Figure 3.10
as broken lines.

Since the values of’ andm’ remain constant over the entire range of wall shear
stress, one can readily apply the method of Metzner and Reed [1955] to calculate
the wall shear stress in large diameter pipes here. For instancé; foi.27 m/s,

D =1016mm
pVZ D" 1000x 1.27%°%7% x 0.1016"7%
8" tm 807261 » 0.0981

= 4645
From Figure 3.6,/ ~ 0.0077.

Reyr =



0.003

0.002

(S.I. units)

0.001
o 0.0009

" 0.0008
0.0007

LVb
A

0.0006

0.0005

0.0004

0.01
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c+1=1.18

0.02

0.03 0.04 0.05 0.06 0.07 0.08 0.10

Pipe Diameter, D (m)

Figure 3.11 Plot of (LV?/A p) versuspipe diameterfor evaluatingc

Predictedvaluesof z, — (8V/D) using the methodsof Bowenand of Metznerand

co-workers
v (Pa)
\%
V (m/s) — S Reyr f Bowen Metzner
method et al.
D =1016mm
1.27 100 4645 0.0077 6.2 6.21
2.54 200 11234 6.012x 1073 19.65 19.39
3.81 300 18831 5.348x 1073 38.51 38.82
5.08 400 27168 4.695x 1073 62 60.58
6.35 500 36100 45x 1073 90 90.73
D =2032mm
1.27 50 7684 0.00668 55 5.39
254 100 18582 0.00513 17.34 16.55
5.08 200 44937 0.0043 54.8 555
7.62 300 75325 0.0037 107.5 1074
10.16 400 108670 0.0035 173 1806
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Alternatively equation (3.38) may be used with=n" = 0.726

2t 4x 0726 3x0726
Then: _ - voostes
B 77x0.726 <3 0726+ 1
0.001164 Y/@x0726tD
U=\ "aeas ~ 0.00837
4645
The two values differ by about 8%. Using the valuefof= 0.0077:

T, = f-1/2pV% = 0.0077x @) x 1.272 = 6.21Pa
Similarly, one can calculate the values of the wall shear stress for the other values of
the average velocity. These results are also summarised in the above Table where a
satisfactory correspondence is seen to exist between the two predicted values of the
wall shear stress.

Finally, the critical values of the velocity marking the limit of streamline flow in
101.6 mm and 203.2 mm diameter pipes are calculated by settipg R&100. These
values are found to b& = 0.68 m/s in the 101.6 mm diameter pipe a¥id= 0.37 m/s
for the other pipe. These values are also shown in Figure 3.10.

Many other correlations for power-law, Bingham plastic and yield-pseudo-
plastic fluid models are available in the literature [Govier and Aziz, 1982;
Hanks, 1986; Thomas and Wilson, 1987; Darby, 1988] but unfortunately their
validity has been established only for a limited range of data and hence they
are too tentative to be included here. In an exhaustive comparative study,
Heywood and Cheng [1984] evaluated the relative performance of seven such
correlations. They noted that the predictions differed widely and that the uncer-
tainty was further compounded by the inherent difficulty in unambiguously
evaluating the rheological properties to be used under turbulent flow condi-
tions. Indeed in some cases, the estimated values of friction factor varied by
up to £50%, which is in stark contrast to Newtonian turbulent flow where
most predictive expressions yield values of the friction factor withi%
of each other. Thus, they recommended that as many predictive methods as
possible should be used to calculate the valuef pfo that an engineering
judgement can be made taking into account the upper and lower bounds on the
value of f for the particular application. However, in more recent as well as
more extensive evaluations of turbulent and transitional flow data [Garcia and
Steffe, 1987; Hartnett and Kostic, 1990], it is recommended that the method
of Metzner and Reed [1955] be used to calculate frictional losses in straight
sections of smooth pipes, i.e. Figure 3.6 or equations (3.37) or (3.38). The
method of Bowen [1961] is recommended for scaling up small-scale turbu-
lent flow data to turbulent flow in large diameter pipes. However, it should
be re-iterated here that the method of Metzner and Reed [1955] necessitates
using the values aoft’ andn’ evaluated at the prevailing wall shear stress; this
usually means relying on, — (8V /D) data obtained in laminar region. For a
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true power law fluidx’ = n and there is no difficulty provided this value of

n is applicable all the way up to the wall shear stress levels under turbulent
flow conditions. However, since the pressure drop (hence wall shear stress)
is usually unknown, a trial and error solution is required, except for the case
when the pressure loss drop is known and the flow rate is to be calculated.
Thus, first a value of—A p/L) is assumed and based on this,andn’ are
evaluated from the plot of,, versus(8V /D) obtained for laminar conditions.
From these parameters, the value of/Rés calculated and is found either

from Figure 3.6 or equation (3.37) or (3.38). If the value(efA p/L) calcu-

lated using this value of is appreciably different from that obtained using
the assumed value af-A p/L), other iterations are carried out till the two
values are fairly close to each other. The calculation usually converges quickly.
However, there does not appear to be a simple way of determaiogpori

the shear stress range which must be covered in the laminar flow rheological
tests to ensure that these will include the values,dikely to be encountered
under turbulent flow conditions. However it is usually recommended that the
approximate(8V /D) range over which the pipeline is to operate be used as
a guide for performing laminar flow tests. On the other hand, the method of
Bowen [1961], while free from all these complications, relies on the use of
the same fluid in turbulent flow in both small and large scale pipes.

3.4.4 Effect of pipe roughness

Considerable confusion exists regarding the effect of the pipe wall rough-
ness on the value of friction factor in the turbulent flow region, though the
effect is qualitatively similar to that for Newtonian fluids [Slatter, 1997]. Thus,
Torrance [1963] and Szilast al. [1981] have incorporated a small correction
to account for pipe roughness in their expressions for the turbulent flow of
power-law and Bingham plastic fluids; under fully turbulent conditions, it is
assumed that the value of the friction factor is determined only by pipe rough-
ness and rheological properties, and is independent of the Reynolds number.
However, in view of the fact that laminar sub-layers tend to be somewhat
thicker for non-Newtonian fluids than that for Newtonian liquids, the effect
of pipe roughness is likely to be smaller for time-independent fluids [Bowen,
1961; Wojs, 1993]. Despite this, Govier and Aziz [1982] recommend the use
of the same function of relative roughness for time-independent fluids as for
Newtonian systems. In any case, this will yield conservative estimates.

3.4.5 Velocity profiles in turbulent flow of power-law fluids

No exact mathematical analysis of turbulent flow has yet been developed for
power-law fluids, though a number of semi-theoretical modifications of the
expressions for the shear stress in Newtonian fluids at the walls of a pipe have
been proposed.
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The shear stresses within the fluid are responsible for the frictional force
at the walls and the velocity distribution over the cross-section of the pipe.
A given assumption for the shear stress at the walls therefore implies some
particular velocity distribution. In line with the traditional concepts that have
proved of value for Newtonian fluids, the turbulent flow of power-law fluids
in smooth pipes can be considered by dividing the flow into three zones, as
shown schematically in Figure 3.12.

Tube axis
i
Turbulent core
R
y
Transition zone Yr
i — r
— — = SublayeF: =
Tube wall

Figure 3.12 Schematic representation of three zone model of turbulent flow

() Laminar sub-layer

This represents a thin layab < y < y;) next to the pipe wall in which

the effects of turbulence are assumed to be negligible. Assuming the no-slip
boundary condition at the wally = 0, the fluid in contact with the surface

is at rest. Furthermore, all the fluid close to the surface is moving at a very
low velocity and therefore any changes in its momentum as it flows iy the
direction must be extremely small. Consequently, the net shear force acting
on any element of fluid in this zone must be negligible, the retarding force
at its lower boundary being balanced by the accelerating force at its upper
boundary. Thus, the shear stress in the fluid near the surface must approach
a constant value which implies that the shear rate in this layer must also be
constant or conversely, the velocity variation must be linear in the laminar
sub-layer.

(i) Transition Zone

This region separates the so-called viscous or laminar sub-layer and the fully
turbulent core prevailing in the middle portion of the pipe, and it extends over
yL <y < yr, and finally

(iii) Turbulent Core (yt <y <R)

A fully turbulent region comprising the bulk of the fluid stream where
momentum transfer is attributable virtually entirely to random eddies and the
effects of viscosity are negligible.
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A brief derivation of the turbulent velocity profile for Newtonian fluids in
smooth pipes will first be presented and then extended to power-law fluids.
The shear stress at any point in the fluid, at a distanftem the wall, is made
up of ‘viscous’ and ‘turbulent’ contributions, the magnitudes of which vary
with distance from the wall. Expressing shear stress in terms of a dynamic
viscosity and an eddy momentum diffusivity (or eddy kinematic viscosiy),

d
Ty = (ﬁ YE —(pV.) (3.42)
P dy
Prandtl postulated that could be expressed as
d
E=r 2 (3.43)
dy

where the so-called ‘mixing’ length (analogous to the mean free path of
the molecules) is assumed to be directly proportional to the distance from the
wall, i.e.l = ky. Thus, equation (3.42) can be re-written as:

R—y n 2 2de} d
(=2 =E —(pV, 44
T < R {p+ky dy dy(,OV) (3.44)

In the laminar sub-layer (small values of, E ~ 0 and:

d
T~ S (V) (3.45)
p dy

which upon integration with/, =0 at y =0 to V, at y yields the expected
linear velocity profile (discussed earlier):

V.= (3.46)
m

It is customary to introduce the friction velocity* = /t,,/p and to express
equation (3.46) in dimensionless form:

vt =yt (3.47)
where
V*
vty v =22 P (3.48)
"

In the turbulent core, but yet close to the wallR <« 1, (u/p) is small
compared withE. In addition, (dV,/dy) will be positive close to the wall and
therefore the modulus signs can be omitted in equation (3.43) and equation
(3.44) becomes:
dv, 2
Ty pk2y2 <—Z

dy (3.49)
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Substitution forV* = /(z,,/p) and integration leads to:

*

14
Ve=—-Iny+B (3.50)

Now introducing the non-dimensional velocity and distari¢g,and y™,
Vvt =Alny* +B (3.51)

where all constants have been absorbed andB. It might be expected that
since equation (3.51) has been based on the approximationtRak 1, it
should be valid only near the wall. In fact, it has been found in pipe flow to
correlate experimental data well over most of the turbulent core, except close
to the centre of the pipe. Experimental valuesAof 2.5 andB = 5.5 have
been obtained from a very wide range of experimental data.a function of
the relative roughness for rough pipes anghich is independent of roughness
is readily seen to be equal tgA

No such simple analysis is possible in the transition zone nor is it possible
to delineate the transition boundaries for the three regions of flow. Based on
experimental results, it is now generally believed that the laminar sub-layer
extends up to™ ~ 5 and the turbulent core beginsat ~ 30. The following
empirical correlation provides an adequately approximate velocity distribution
in the transition layek5 < y* < 30) in smooth pipes:

vt =5Iny" —3.05 (352)

Equation (3.52) is a straight line on semi-logarithmic coordinates joining the
laminar sub-layer values at™ = 5 and equation (3.51) for the turbulent core
at y* = 30. Finally, it should be noted that equation (3.51) does not predict
the expected zero velocity gradient at the centre of the pipe but this deficiency
has little influence on the volumetric flow rate — pressure drop relationship.
Numerous attempts [Dodge and Metzner, 1959; Bogue and Metzner, 1963;
Wilson and Thomas, 1985; Shenoy and Talathi, 1985; Shenoy, 1988] have
been made at developing analogous expressions for velocity profiles for the
steady state turbulent flow of power-law fluids in smooth pipes; most workers
have modified the definitions oft and V*, but Brodkeyet al. [1961] used
a polynomial approximation for the velocity profile. Figure 3.13 shows the
velocity profiles derived on this basis for power-law fluids; the transition
region, shown as dotted lines, is least understood.
The velocity distribution within the laminar sub-layer can be derived by the
same reasoning as for a Newtonian fluid that the velocity varies linearly with
distance from the wall (equation 3.46),

av, ©, V,

dy n

(3.53)
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Figure 3.13 Typical velocity profilesin the threezonerepresentatiorof
turbulentflow
For a power-lawfluid, the shearstressin this layer canbe written as,
y av, "
T, 1—= =m
R dy
dv, "
or Ty m| — (3.54)
dy

which upon integrationwith the no-slip condition at the wall (V, = 0 when
y = 0) gives:

T, ln

m

Introducingthe friction velocity, V*, andre-arrangemerieadsto

Vi=(hHt" (3.56)
*\2—n n
where y© = 'O(V# (357

It should be noted that for n = 1, equations(3.56) and (3.57) reduceto

equationg3.47) and (3.48) respectively.
Fortheturbulentcore,DodgeandMetzner[1959] useda similar approacho

that given abovefor Newtonianfluids and proposedhe following expression
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for power-law fluids:

_ 566

log v+ 0.566 3.475
= 075

v -t~
gy W12 (n)075

(3.58)

341
x {1.96+ 0.8151 — 1.628n log ( ot }
n

It should be noted that in the limit of = 1, equation (3.58) also reduces

to equation (3.51) witlA = 2.47 andB = 5.7; the slight discrepancy in the
values of the constants arises from the fact that experimghtal(—A p)

data have been used to obtain the values of the constants rather than velocity
measurements. The detailed derivation of equation (3.58) has been given by
Skelland [1967]. Subsequently, Bogue and Metzner [1963] used point velocity
measurements to modify equation (3.58) to give:

557
vt = — logy* + C(y*, f)+1(n, Reyg) (359

> —(y* —0.8)?
where C(y*, f) =0~05§ eXp %

The friction factor,f, is calculated using equation (3.37) and the typical values
of I(n, Reyg) are presented in Table 3.1. Bogue and Metzner [1963] also noted
that the velocity distributions for Newtonian and power-law fluids were virtu-
ally indistinguishable from each other if plotted in termg®f/V) versusy/R
instead ofV* — y* coordinates, as illustrated in Figure 3.14. Finally, atten-
tion is drawn to the fact that both Dodge and Metzner [1959] and Bogue and
Metzner [1963] have implicitly neglected the transition layer. Clapp [1961],
on the other hand, has combined the Prandtl and von Karman approaches to
put forward the following expressions for velocity distribution in the transition
and turbulent zones:

5
vVt ="Inyt —-3.05 B <yt <yH) (3.603
n
2.78 3.8
Vi=""Iny" 4+ == Ot >yh) (3.60b)
n n

where y; is evaluated as the intersection point of equations (3.60a) and
(3.60b). The laminar sub-layer region, equation (3.56), extends up to a value
of 5". The numerical constants in these equations were evaluated using
point velocity measurements in the rang& & n < 0.81. Forn = 1, these
equations yield); = 22 which is somewhat lower than the generally accepted
figure of 30 for Newtonian fluids. Finally, all the above-mentioned velocity
distributions fail to predictdV,/dy) =0 aty = R.
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Table 3.1 Values ofl (n, Rey) in equation (3.59)

n Reyr — 5000 10000 50000 fo
A2
1 5.57 5.57 5.57 5.57
0.8 6.01 5.92 5.69 5.58
0.6 6.78 5.51 5.89 5.60
0.4 8.39 7.70 6.27 5.60
2.0
1.6
1.2 ; ’bEZE A
> Turbulent (Newtonian)
0.8
n Reyr
® 0.80-0.895 24,960 - 107,500
04—
+ 06-0.8 6100 - 85000
A 0.45-0.53 7880 - 19500
. | |
0 0.2 0.4 0.6 0.8 1.0

yIR —— =

Figure 3.14 Measured velocity profiles in circular pipes for turbulent flow
of power-law fluids (data from Bogue and Metzner [1963])

Extensive experimental work indicates that the form of the turbulent velocity
profiles established for non-elastic fluids without yield stress is very similar to
that found for Newtonian fluids. This supports the contention, implicit in the
discussion on friction factors, that it is the properties of the fluid in the wall
region which are most important. This is particularly so with shear-thinning
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materials, for which the apparent viscosity in this region is lower than that in
the bulk.

A potential and interesting application of this idea is to use pulsating flow
in pipelines transporting shear-thinning materials. The super-imposition of a
small oscillating component on the bulk velocity has the effect of raising
the average shear rate, thereby lowering the apparent viscosity. It appears
advantageous to use some of the pumping energy in this way enabling the use
of smaller pumps than would otherwise be required [Edwatdd., 1972].

Before concluding this section, it is appropriate to mention briefly that
some work is available on velocity distributions in turbulently flowing visco-
elastic and drag-reducing polymer solutions in circular pipes. Qualitatively
similar velocity distributions have been recorded for such systems as those
mentioned in the preceding section for Newtonian and power-law fluids.
However, the resulting equations tend to be more complex owing to the addi-
tional effects arising from visco-elasticity. Most of these studies have been
critically reviewed by Shenoy and Talathi [1985] and Tatral. [1992].

Aside from the foregoing discussion for the fully established flow, the prob-
lems involving transient flows of non-Newtonian fluids is circular pipes have
also been investigated [Edwarés al, 1972; Brown and Heywood, 1991].
Similarly, some guidelines for handling time-dependent thixotropic materials
are also available in the literature [Govier and Aziz, 1982; Wardhaugh and
Boger, 1987, 1991; Brown and Heywood, 1991].

3.5 Laminar flow between two infinite parallel plates

The steady flow of an incompressible power-law fluid between two parallel
plates extending to infinity in- andz-directions, as shown schematically in
Figure 3.15 will now be considered. The mid-plane between the plates will be
taken as the origin with the flow domain extending frogm= —b to y = +b.

The force balance on the fluid element ABCD situated at distancdérom

the mid-plane, can be set up in a similar manner to that for flow through pipes.

p-2Wy —(p+Ap)2Wy =1, - 2Wdz. (3.61)
. —A
ie. T, = (Tp y (3.62)

The shear stress is thus seen to vary linearly, from zero at the mid-plane to a
maximum value at the plate surface, as in the case of pipe flow. The system
is symmetrical about the mid-plarig = 0) and equation (3.62) needs to be
solved only for O< y < b. Because H,/dy is negative in this region, the
shear stress for a power-law fluid is given by:

dv n
T, =m <— dyz (3.63)
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Figure 3.15 Laminarflow betweerparallel plates

Now combiningequationg3.62)and(3.63)followed by integrationyields for
the velocity distribution:

n 1 —Ap 1/n
V.= — (== n+D/n 4 constant
: (n +1 {m ( L } Y +

At the walls of the channel(i.e. wheny = +b), the velocity V, mustbe zero
to satisfythe conditionof no-slip. SubstitutingthevalueV, = 0, wheny = b:

1/—ap V"
constant= [ — = (Z2P pr+D/n
n+1 m L

andtherefore:

1/-A Yn (n+1)/n
V. = < " {_ <—p } pn+D/n {1— Y } (3.64)
n+1 m L b

The velocity distribution is seento be parabolicfor a Newtonianfluid and
becomegprogressivelyblunter as the value of n decreaseselow unity, and
sharpeffor shear-thickenindjuids. Themaximumvelocity occursatthecentre-
planeandits valueis obtainedby putting y = 0 in equation(3.64):

) ) 1 —A 1/n
Maximum velocity = Vmax = (L ptb/n {— (—p } (3.65)
n+1 m L

The total rate of flow of fluid betweenthe platesis obtainedby calculating
theflow throughtwo laminaeof thicknessdy andlocatedat a distancey from
the centre-planeandthenintegrating.Flow throughlaminae:

do =2wdyV,

n n n
= 2W <L b(11+1)/11 {i <_AP } {1 _ X (n+1)/ }dy
n+1 m L b

119
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Then, on integrating between the limits pffrom 0 to b:

n 1/—-Ap \Y"
= 2bW — | —== pnbi/n 3.66
Q <2n +1 {m < L } ( )
The average velocity of the fluid:
0
V=_—
2bW
n 1/-Ap V"
= —(—= plntbin 3.6
<2n +1 {m ( L } (367

A similar procedure can, in principle, be used for other rheological models
by inserting an appropriate expression for shear stress in equation (3.62). The
analogous result for the laminar flow of Bingham plastic fluids in this geometry
is given here:

2Wb? [ —Ap 3 1
= —— b {1-Z¢+=¢° 3.68
0] 305 ( I { 2¢+2¢} (3.68)
—A
where ¢ =15 (pr =5/,

Example 3.9

Calculate the volumetric flow rate per unit width at which a 0.5% polyacrylamide
solution will flow down a wide inclined surface (3@rom horizontal) as a 3 mm thick

film. The shear stress—shear rate behaviour of this polymer solution may be approx-
imated by the Ellis fluid model, with the following values of the model parameters:
o = 9Pas; 11, = 1.32Pa;a = 3.22 and the solution has a density of 1000 k§/m
Assume the flow to be laminar.

Solution

A general equation will be derived first for the flow configuration shown in Figure 3.16
by writing a force balance on a differential element of the fluid.

In a liquid flowing down a surface, a velocity distribution will be established with
the velocity increasing from zero at the surface itgglt= 0) to a maximum at the
free surface(y = H). For viscoplastic fluids, it can be expected that plug-like motion
may occur near the free surface. The velocity distribution in the film can be obtained
in a manner similar to that used previously for pipe flow, bearing in mind that the
driving force here is that due to gravity rather than a pressure gradient; which is absent
everywhere in the film.

In an element of fluid of lengthzd the gravitational force acting on that part of the
liquid which is at a distance greater tharfrom the surface is given by:

(H — y)W dzpgsing
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Velocity Profile

Figure 3.16 Schematics of flow on an inclined plate

If the drag force at the free surface is negligible, the retarding force for flow will be
attributable to the shear stress prevailing in the liquid at the distafreen the surface
and this will be given by:

T, - Wdz
At equilibrium therefore:
T, - Wdz = (H — y)W dzpg sin
or 7, = pg(H — y)sing (3.69)

The shear stress is seen to vary linearly from a maximum at the solid surface to zero
at the free surface.
Since d/_/dy is positive here, the shear stress for an Ellis model fluid is given by:

<de
Mo |
_ dy
Tye = ﬁ
1+ (#
T1/2
dV, ] a—1

or Mod—“ =1, 1+ (i (3.70)

y T1/2
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Substitution of equation (3.69) into equation (3.70), followed by integration and using
the no-slip boundary condition at the solid surfage= 0) yields:

sin 2 sing)*He+! a+l
y, = PESINB (o ¥ +%{1_ 1Y } 371
Mo 2 Hol(a + 1)71/2 H

The volumetric flow rate of liquid down the surface can now be calculated:
H

0=W V,dy (3.72)
0

Substituting equation (3.71) in equation (3.72) and integrating:

_ pgH®Wsing = W(pgsinp)*H**?

¢ 310 pola + 2)(ty2)**

(3.73)

For a Newtonian fluidz,» — oo, and both equations (3.71) and (3.73) reduce to the
corresponding Newtonian expressions.

The maximum velocity occurs at the free surface, and its value is obtained by
putting y = H in equation (3.71):

pgSINBH?  (pgsinp)*H ™"

Maximum velocity= Vax =
e 2u0 to(er + 1)(Ty/2)*

(3.74)

For a vertical surface, sifi= 1.
For the numerical examplgg = 30°; H = 3mm and substituting the other values
in equation (3.73):

Q _ 1000x 9.81x (3x 10°%3°(3)

w 3x9

(1000x 9.81 x 3)™ (3 x 1073%)>?
9(3.22 + 2)(1.32)3%2°1

=491x 10°+595x 10°*

)3.22

= 6 x 10~*m>/s per metre width.

3.6 Laminar flow in a concentric annulus

The flow of non-Newtonian fluids through concentric and eccentric annuli
represents an idealisation of several industrially important processes. One
important example is in oil well drilling where a heavy driling mud is
circulated through the annular space around the drill pipe in order to carry the
drilling debris to the surface. These drilling muds are typically either Bingham
plastic or power-law type fluids. Other examples include the extrusion
of plastic tubes and pipes in which the molten polymer is forced through
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an annular die, and the flow in double-pipe heat exchangers. In all these
applications, it is often required to predict the frictional pressure gradient to
sustain a fixed flow rate or vice versa. In this section, the isothermal, steady and
fully-developed flow of power-law and Bingham plastic fluids in concentric
annulus is analysed and appropriate expressions and/or charts are presented
which permit the calculation of pressure gradient for a given application.

l——————
\7° Ak

T

~p+Ap

L

Figure 3.17 Flow in a concentricannulus

The calculation of the velocity distribution and the mean velocity of a
fluid flowing through an annulusof outer radius R and inner radius oR is
more complex than that for flow in a pipe or betweentwo parallel planes
(Figure 3.17), thoughthe force balanceon an elementof fluid canbe written
in a mannersimilar to thatusedin previoussectionsIf the pressurechanges
by an amount Ap as a consequencef friction in a length L of annulus,
the resulting force can be equatedto the shearingforce acting on the fluid.
Considerthe flow of the fluid situatedat a distancenot greaterthan r from
the centrelineof the pipe. The shearforce acting on this fluid comprisesgwo
parts:oneis the dragon its outer surface(r = R) which canbe expressedn
termsof the shearstressin the fluid at thatlocation;the othercontributionis
the dragoccurringat the inner (solid) boundaryof the annulus,.e. atr = oR.
This componentcannotbe estimatedat presenthowever.Alternatively, this
difficulty canbe obviatedby consideringhe equilibrium of a thin ring of fluid
of radiusr andthicknessdr (Figure3.17). The pressurdorce actingon this
fluid elementis:

2nrdr{p — (p + Ap)}

The only other force acting on the fluid elementin the z-direction is that
arisingfrom the shearingon both surface<f the element.Note that, not only
will the shearstresschangefrom r to r 4+ dr but the surfaceareaover which
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shearing occurs will also depend upon the value.oThe net force can be
written as:

2nrL -ty 4 —27rLT,

At equilibrium therefore:

—A
2nrdr <Tp L=2xL rt, adr — 1T

<r

or

e g =TT, (=Ap
dr L

Now taking limits as d — O, it becomes

d . —Ap
a(rfrz) - r( L (375)

The shear stress distribution across the gap is obtained by integration:

”<—_AP e

Tz = 5
L r

5 (3.76)

Because of the no-slip boundary condition at both solid walls, i.e.=aibR

andr = R, the velocity must be maximum at some intermediate point, say at
r = AR. Then, for a fluid without a yield stress, the shear stress must be zero
at this position and for a viscoplastic fluid, there will be a plug movang
masse Equation (3.76) can therefore be re-written:

_(-Ap R 22
Ty = (T > <§ ~F (3.77)

where& = r/R, the dimensionless radial coordinate.

3.6.1 Power-law fluids

For this flow, the power-law fluid can be written as:

Tz = —M

dv, "1 (dvz 378

dr dr

It is important to write the equation in this form whenever the sign of the
velocity gradient changes within the flow field. In this caseV (dlr) is
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positive foro < & < A and negative foih < & < 1. Now equation (3.78) can
be substituted in equation (3.77) and integrated to obtain

1/n
—A R Yn & (52
vz,=R<Tp.% <——x e (3.79a)
s X
oc<&E<A
1/n
—Ap R Yr 1 A2
V, =R —= . — - 3.79b
3 (L T (3.79b)
r<é&<1

where subscripts”and ‘o’ denote the innerd < & < A)andouterf < & < 1)
regions respectively and is a dummy variable of integration. The no-slip
boundary conditions & = ¢ and& = 1 have been incorporated in equation
(3.79). Clearly, the value of is evaluated by settinyf, = V., até = 2, i.e.

1/n 1/n
A AZ 1 AZ
(— —X dx = ( - — dx (3.80)
o X A X

The volumetric flow rate of the fluidQ, is obtained as:

R 1
Q=27 rV.dr=2nR*> &V.d&
oR o
~Ap R Yo%

— 27R®
”(L 2m .

1
EV.dE+ &V, dk (3.81)
A

Clearly, equations (3.80) and (3.81) must be solved and integrated simul-
taneously to eliminata and to evaluate the volumetric rate of flow of liquid,
Q. Analytical solutions are possible only for integral values ofx(l i.e.
for n =1, 0.5,0.33, 0.25, etc. Thus, Fredrickson and Bird [1958] evaluated
the integral in equation (3.81) for such values ofand, by interpolating

the results for the intermediate values of power law index, they presented a

chart relating non-dimensional flowrate, pressure dwm@nd n. However,

the accuracy of their results deteriorates rapidly with decreasing values of

n and/or (1 —-0) « 1, i.e. with narrowing annular region. Subsequently,

however, Hanks and Larsen [1979] were able to evaluate the volumetric flow

rate,Q, analytically and their final expression is:

— LR3 (__Ap . i b {(1- )LZ)(n+l)/n _ U(iz—l)/n(AZ . 0.2)(n+1)/n}

Bn+1) L 2m

(3.82)
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Table 3.2 Values ofa computed from equation (3.80) [Hanks and Larson,

1979]

o

n

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.3442
0.3682
0.3884
0.4052
0.4193
0.4312
0.4412
0.4498
0.4572
0.4637

0.4687
0.4856
0.4991
0.5100
0.5189
0.5262
0.5324
0.5377
0.5422
0.5461

0.5632
0.5749
0.5840
0.5912
0.5970
0.6018
0.6059
0.6093
0.6122
0.6147

0.6431
0.6509
0.6570
0.6617
0.6655
0.6686
0.6713
0.6735
0.6754
0.6770

0.7140
0.7191
0.7229
0.7259
0.7283
0.7303
0.7319
0.7333
0.7345
0.7355

0.7788
0.7818
0.7840
0.7858
0.7872
0.7884
0.7893
0.7902
0.7909
0.7915

0.8389
0.8404
0.8416
0.8426
0.8433
0.8439
0.8444
0.8449
0.8452
0.8455

0.8954
0.8960
0.8965
0.8969
0.8972
0.8975
0.8977
0.8979
0.8980
0.8981

0.9489
0.9491
0.9492
0.9493
0.9493
0.9494
0.9495
0.9495
0.9495
0.9496

The only unknown now remaining is, which locates the position where the
velocity is maximum. Table 3.2 presents the value& &dr a range of values
of o andn.

Example 3.10

A polymer solution exhibits power-law behaviour with= 0.5 andm = 3.2 Pas>®,
Estimate the pressure gradient required to maintain a steady flow of@r8mof this
polymer solution through the annulus between a 10 mm and a 20 mm diameter tube.

Solution
20
Here, R = - X 10°%=0.01m
10
oR = 5 X 102 =0.005m
or o =05

From Table 3.2, foo = 0.5 andn = 0.5, A = 0.728
Substituting these values in equation (3.82)

03  (05)(314(0.01)° (—Ap */ 001 °*?
(% T (3x05+1) (L (2><3.2

% {(l _ 0.7282)(0.51»1)/045 _ 0.5(0571)/0.5(0.7282 _ 0.52)(054»1)/0.5}

—A
and soIving:Tp = 169 kPa/m
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3.6.2 Bingham plastic fluids

The laminar axial flow of Bingham plastic fluids through a concentric annulus
has generated even more interest than that for the power-law fluids, e.g. see
refs. [Laird, 1957; Fredrickson and Bird, 1958; Bied al, 1983; Fordham

et al, 1991]. The main feature which distinguishes the flow of a Bingham
plastic fluid from that of a power-law fluid is the existence of a plug region

in which the shear stress is less than the yield stress. Figure 3.18 shows qua-
litatively the salient features of the velocity distribution in an annulus; the
corresponding profile for a fluid without the yield stress (e.g. power-law fluid)

is also shown for the sake of comparison.

Shear stress

It Q?

—
|r~ § axis

z

( Bingham plastic Fluid without a yield stress

Figure 3.18 Schematics of velocity profiles for Bingham plastic and
power-law fluids in an concentric annulus

In principle, the velocity distribution and the mean velocity of a Bingham
plastic fluid flowing through an annulus can be deduced by substituting for
the shear stress in equation (3.76) in terms of the Bingham plastic model,
equation (3.10). However, the signs of the shear stress (considered positive in
the same sense as the flow) and the velocity gradients in the two flow regions
need to be treated with special care. With reference to the sketch shown in
Figure 3.18, the shearing force on the fluid is positiw® € r < A_R) where
the velocity gradient is also positive. Thus, in this region:

dv,
dr

On the otherhand, in the regian R < r < R, the velocity gradient is negative
and the shearing force is also in the negativdirection and hence
dv,
dr

nﬁ=£+ug< (3.83)

—mzﬁﬂmG (3.84)
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Equations (3.83) and (3.84) can now be substituted in equation (3.76) and
integrated to deduce the velocity distributions. The constants of integration
can be evaluated by using the no-slip boundary condition at bethvR

and r = R. However, the boundaries of the plug existing in the middle
of the annulus are not yet known; nor is the plug velocity known. These
unknowns are evaluated by applying the following three conditions, namely,
the continuity of velocity atr = A_R andr = AR, the velocity gradient is
also zero at these boundaries and finally, the force balance on the plug of fluid:

27ROy + A )T = <_TAP (A 4R)?> — (A_R)?) (3.85)

Unfortunately, the algebraic steps required to carry out the necessary
integrations and the evaluation of the constants are quite involved and
tedious. Thus, these are not presented here and readers are referred to the
original papers [Laird, 1957] or to the book by Skelland [1967] for detailed
derivations. Instead consideration is given here to the practical problem of

1.0 0.20
Og@j%e // 0.18
0.8 7 /%// 7, 0.16
&,&%// 0.14

0.6 %%g \-%_O'O 012 ¥

2z

< NN 0.10 g

0.4 K \ \ \ o 0.08 §
K \ \\ \3\ E\ SNGe=00 0.06
0.2 \\ >\OX\ ' \ 0.04
NANANN G
oo NI,

0.0 0.2 0.4 0.6 0.8 1.0

Aspect ratio, o

Figure 3.19 Dimensionlesplug velocityand plug sizefor laminar Bingham
plastic flow in an annulus
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estimating the necessary pressure gradient to maintain a fixed flow rate of a
Bingham plastic fluid or vice versa. Fredrickson and Bird [1958] organised
their numerical solutions of the equations presented above in terms of the
following dimensionless parameters:

: : _ 2upV
dimensionless velocityV! = __“HB¥.
z N —AP
R -
L
. . . 278
dimensionless yield stresgy = —
R <—p
L
dimensionless flowrate2 = 2
N

10
0.9
0.8
o\
92 0.6 \
AN
% os \\
:_g 0.4 \\\ / Value of ¢,
} \\ \\\\
0.3 \ N 020.10
BN RN
AN
. 0.6 >
B N
I -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Aspect ratio, o

Figure 3.20 Dimensionlesslowratefor Binghamplastic fluidsin laminar
flow throughan annulus
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whereQy is the flow rate of a Newtonian liquid of viscosity,. Thus,

R* <—Ap

QN:SM—B 7

Fredrickson and Bird [1958] presented three charts (Figures 3.19-3.21)
showing relationships betwedrt, ¢o, 2, o anda,.

For given values of the rheological constanis;,(z5), pressure gradient
(=Ap/L) and the dimensions of the annulus, R), the values ofA, and
the plug velocityV?;, can be read from Figure 3.19 and the valuetofrom
Figure 3.20 from which the volumetric rate of flow, can be estimated.
For the reverse calculation, the grou@ /o) is independent of the pressure
gradient and one must use Figure 3.21 to obtain the valugyadnd thus
evaluate the required pressure gradieat\(p/L).
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Figure 3.21 Chartfor the estimationof pressue gradientfor laminar flow
of Binghamplastic fluidsin an annulus

Example 3.11

A molten chocolate(density= 1500kg/n?) flows through a concentricannulusof
innerandouterradii 10mm and20mm, respectively at 30°C at the constantlow rate
of 0.03m*/min. The steady-sheabehaviourof the chocolatecan be approximatedy
a Binghamplasticmodelwith t§ = 35Paand .z = 1Pas.
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(a) Estimate the required pressure gradient to maintain the flow, and determine the
velocity and the size of the plug.

(b) Owing to a pump malfunction, the available pressure gradient drops by 25% of
the value calculated in (a), what will be the new flow rate?

Solution

Part (a):
In this case, tf = 35Paup = 1Pas

. 0.03
0 =0.03 n¥/min = Em3/s
1
o = 2—8 =05 R=20x103m

Since the pressure gradienrt A p/L) is unknown, one must use Figure 3.21.

Q 40 4x1x(0.03/60)

2 = =228
po  7R3TE  3.14x (20x 10°%)?°* x 35

Q
For %o = 2.28 ando = 0.5, Figure 3.21 gives:
0

¢o = ~0.048
0 ( —Ap Z_rg _ 2x35
L Reo 20x 10°% x 0.048
= 73000 Pa/m
= 73 kPa/m

Now from Figure 3.19¢¢ = 0.048 ando = 0.5,

Vi, =~ 005

A, =0.76

From the definition oft’%, we have

2ugV,
V;kp — MB zp
L
0.05 2x1xVy,

~ (20 x 10°%)%(73000
d Vv, =073m/s

i.e. the plug in the central region has a velocity of 0.73 m/s (compared with the mean
velocity of Q/mR?(1 — ?), i.e. 0.53 m/s).
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From equation (3.85):

R (—Ap
(A =20)5 (T =1
Substitution of values gives_ = 0.71. Thus the plug region extends fromR to
AR, ie. from 14.2 to 15.2 mm. These calculations assume the flow to be laminar. As
a first approximation, one can define the corresponding Reynolds number based on the
hydraulic diameterD,.

_ 4xFlowarea  47R*(1—o?)

" wetted perimeter  27R(1 + o)

=2x20x 1031 —0.5)=0.02m
pVD,  1500x 0.53x 0.02

Reynolds number, Re =
M“B 1

h =2R(1—-o0)

16

The flow is thus likely to be streamline.
Part (b): In this case, the available pressure gradient is only 75% of the value
calculated above,

_TAP — 73x 0.75 = 5475 kPa/m

We can now evaluateg:

278 2
o= ——0 = 2x35 — 0.064
R (—Ap 20 x 1072 x 54.75 x 1000
L

From Figure 3.20, fopo = 0.064 ands = 0.5,

=2 —~o01
Ov
TR* [ —Ap
0g=o01 =01x—(—+
0 X On X 81tz ( I
~ 01x314x (20x 10°%*

x 54.75 x 1000 n?/s

8x1
= 0.000344 ni/s or Q0206 nt/min

Two observations can be made here. The 25% reduction in the available pressure
gradient has lowered the flow rate by 31%. Secondly, in this case the flow rate is only
one tenth of that of a Newtonian fluid of the same viscosity as the plastic viscosity of
the molten chocolate!

This section is concluded by noting that analogous treatments for the
concentric and eccentric annular flow of Herschel—Bulkley and other viscosity
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models are also available in the literature [Hanks, 1979; Uetkal,
1988; Walton and Bittleston, 1991; Fordhaetal., 1991; Qicllyener and
Mehmeteoglu, 1992].

3.7 Laminar flow of inelastic fluids in non-circular ducts

Analytical solutions for the laminar flow of time-independent fluids in non-
axisymmetric conduits are not possible. Numerous workers have obtained
approximate numerical solutions for specific flow geometries including
rectangular and triangular pipes [Schechter, 1961; Wheeler and Wissler, 1965;
Miller, 1972; Mitsuishi and Aoyagi, 1973]. On the other hand, semi-empirical
attempts have also been made to develop methods for predicting pressure drop
for time-independent fluids in ducts of non-circular cross-section. Perhaps the
most systematic and successful friction factor analysis is that provided by
Kozicki et al. [1966, 1967]. By noting the similarity between the form of the
Rabinowitsch—Mooney equation for the flow of time-independent fluids in
circular pipes (equation 3.25) and that in between two plates, they suggested
that it could be extended to ducts having a constant cross-section of arbitrary
shape as follows:

q (8V
av.  _ _"\Dp, 8v
<_W = f(Ty) = aty, a7, +b <Dh (3.86)

wherea andb are two geometric parameters characterising the cross-section of
the duct,D,, is the hydraulic diametee 4 times flow area/wetted perimeter),
and 7, is the mean value of shear stress at the wall, and is related to the
pressure gradient as:
_ Dy, (—-Ap
Ty =—|—
4 L
For constant values af andb, equation (3.86) can be integrated to obtain:

w

(3.87)

1 Ty
(8—V ==@)"* YO (mdr (3.88)
Dy, a 0

It should be noted that for a circular pipe of diamef&rD, = D; a = 1/4
andb = 3/4; equation (3.88) then reduces to equation (3.21). For the flow of
a power-law fluid,f (t) = (r/m)Y" and integration of (3.88) yields:

8V "
?Wzm{— b+ = } (3.89)
Dh n
which can be re-written in terms of the friction factgf,= 27,,/pV? as:
16
f= (3.90

Re
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Table 3.3 Values of a and b to be used in equations (3.90) and
(3.91)

1. Concentric annuli

o =R;/R, a b
0.00 0.2500 0.7500
0.01 0.3768 0.8751
0.03 0.4056 0.9085
0.05 0.4217 0.9263
0.07 0.4331 0.9383
0.10 0.4455 0.9510
0.20 0.4693 0.9737
0.30 0.4817 0.9847 F
0.40 04890  0.9911 |/
0.50 0.4935 0.9946
0.60 0.4965 0.9972
0.70 0.4983 0.9987
0.80 0.4992 0.9994
0.90 0.4997 1.0000
1.00 0.5000 1.0000
2. Elliptical ducts
B="b/d a b
0.00 0.3084 0.9253
0.10 0.3018 0.9053
0.20 0.2907 0.8720
0.30 0.2796 0.8389
0.40 0.2702 0.8107 b a
0.50 0.2629 0.7886
0.60 0.2575 0.7725
0.70 0.2538 0.7614
0.80 0.2515 0.7546
0.90 0.2504 0.7510
1.00 0.2500 0.7500
3. Rectangular ducts
E=H/W a b
0.00 0.5000 1.0000
0.25 0.3212 0.8182 1_
0.50 0.2440 0.7276 _L
0.75 0.2178 0.6866

1.00 0.2121 0.6766 F—w—
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Table 3.3 (continued)

4. Isosceles triangular ducts

2 a b

10 0.1547 0.6278
200 0.1693 0.6332
40° 0.1840 0.6422
60° 0.1875 0.6462
80° 0.1849 0.6438
o0 0.1830 0.6395

5. Regular polygonal ducts
N a b

4 0.2121 0.6771
5 0.2245 0.6966
6
8

0.2316 0.7092
0.2391 0.7241

wherethe generalisedRkeynoldsnumber,

2—npyn
Re, = ”V—Dha”. (3.909)
8 Im b+ =
n
The main virtue of this approachlies in its simplicity and the fact that the
geometrigparametera andb canbe deducedrom thebehaviourof Newtonian
fluids in the sameflow geometry.Table 3.3 lists valuesof ¢ andb for arange
of flow geometriescommonlyencounteredn processapplications A typical
comparisorbetweenpredictedand experimentalaluesof friction factor for
rectangulaductsis shownin Figure 3.22.Similar agreemenhasbeenreported
by, among others, Mitsuishi etal. [1972] and, more recently, by Xie and
Hartnett [1992] for visco-elasticfluids in rectangularducts. Kozicki etal.
[1966] argued that equation(3.37) can be generalisedo include turbulent
flow in non-circularductsby re-castingt in the form:

1
i

Note that since for a circular tube, a = 1/4 and b = 3/4, equation(3.91)
is consistentwith that for circular pipes, equation(3.37). The limited data
availableon turbulentflow in triangular [Irvine, Jr., 1988] and rectangular
ducts[Kostic andHartnett,1984] conformsto equation(3.91).In the absence

4 _ 0.4 4(a + bn)
— (2—n)/2 0.25
- n0‘75 IoglO(Regf / ) - F + 4n |Og m (391)
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Friction factor, f
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Figure 3.22 Experimental friction factor values for power-law fluids in
laminar regime in rectangular channels, Wheeler and Wissler (1965);
Hartnett et al. (1986)t, Hartnett and Kostic (1985)

of any definite information, Kozicki and Tiu [1988] suggested that the
Dodge—Metzner criterion, Bg, < 2100, can be used for predicting the limit
of laminar flow in non-circular ducts.

Scant analytical and experimental results suggest that visco-elasticity in
a fluid may induce secondary motion in non-circular conduits, even under
laminar conditions. However, measurements reported to date indicate that
the friction factor — Reynolds number behaviour is little influenced by such
secondary flows [Hartnett and Kostic, 1989].

Example 3.12

A power-law fluid ¢z = 0.3 Pas’ andn = 0.72) of density 1000 kg/fhis flowing in
a series of ducts of the same flow area but different cross-sections as listed below:
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(i) concentric annulus witlR = 37 mm ando = 0.40
(i) circular pipe
(iii) rectangular,(H/W) = 0.5
(iv) elliptical »'/a’ = 0.5
(v) isosceles triangular with half-apex angle= 20°.

Estimate the pressure gradient required to maintain an average velocity of
1.25m/s in each of these channels. Use the geometric parameter method. Also,
calculate the value of the generalised Reynolds number as a guide to the nature
of the flow.

Solution

(i) For a concentric annulus, fer = 0.4, and from Table 3.3:

a=0.489; b»=0.991

The hydraulic diameteD, = 2R(1 — o)
=2x37x10°%x (1—-0.4)

=0.044m
V27nDn
Reynolds numbeRe, = p—,,an (3.909)
8 tm b+ =
n
_1000x 1.25°7%7% x 0.044"
N 0.489 07
8°71 x 0.3 x (0.991+ ——
el 072
=579
Thus, the flow is laminar.
16
O = _— =0.0276
Y 579
—A 2fpV? 2% 0.0276x 1000x 1.25°
and 2P _ 2PV _ 2x x X = 1963 Pa/m
L Dy, 0.044

For the sake of comparison, equation (3.82) yields a value of 1928 Pa/m which
is remarkably close.

(ii) For a circular tube, the area of flow
= 7R?(1 — 0?) = 3.14 x 0.037(1 — 0.4°) = 0.003613 M

which corresponds to the pipe radius of 0.0339 m or diameter of 0.0678 m.
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(iii)

(iv)
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For a circular pipeg = 0.25,b = 0.75, D, = D = 0.0678 m.

0 Re, = pVZ'Dy  (1000/(1.25)* °7%(0.0678°72
B ar - 072

8 'm b+ — 0.72-1 .25

n 8 0.3) (0.75—|— 07

= 1070

Thus, the flow is laminar ang = 16/1070= 0.01495 and pressure gradient,

—Ap _2fpV?  2x0.01495x 1000x 1.25°
L = D, 0.0678

=689 Pa/m

For a rectangular duct wittH /W = 0.5, H = 0.0425m and W = 0.085m (for
the same area of flow), and from Table 3.3:
a=0.244,b = 0.728

4 x Flow area

The hydraulic diameteD, = ———
y e wetted perimeter

_ 4xA  4x0003613
2(H + W)~ 2(0.0425+ 0.085)
=0.0567m
0 Re, = pVZ "D} o (1000 x (1.25)>7°72(0.0567)° "2
g m b+ 89721 5 0.3 x (0.728+ 0244 2%
n 0.72
=960

Again, the flow is laminar ang’ = 16/960= 0.0167

_—A 2fpV?
The pressure gradlent—p = e
L D/1
_ 2x0.0167x 1000x 1.25"

=919Pa/m

0.0567

The cross-sectional area of an elliptic pipe with semi-axemnd?d’ is wa'b’, while
a =0.2629 andb = 0.7886 from Table 3.3 corresponding &ya’ = 0.5

O nd'b’ = 0.003613

Solving with »'/a’ = 0.5, ¢’ =0.04795m andd’ = 0.024m. The hydraulic
diameterD,, is calculated next as:

4 x Flow area

"~ Wetted perimeter
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No analytical expression is available for the perimeter of an ellipse; however, it
can be approximated byr2(a’? + b'?)/2)Y/?

4 % 0.003613

O D, = 17z = 0.0607m
<0.0479§ +0.024
o [ ——
2
1000x 1.25%8 x 0.0607-72
R& = - - 0.2629 °7
8928+ 0.3x (0.78864+ ——
el t 072
and f = 16/Re, = 16/953= 0.0168
—A 2fpV? 2% 0.0168x 1000x 1.257
0 p_2/PV _2x x x — 864 Pa/m

L D, 0.0607

(v) For the pipe of triangular cross-section, with =20° « =0.184 and
b = 0.6422

Let the base of the triangle be ‘

X

O height of the triangle= 2tana _ 2tan 20

=137
_1 _
OO0 Area for flow= 5 xx x 1.37x = 0.003613 £ 70 70\
orx=0.0725m X

The hydraulicdiameteris calculatednext:

4 x 0.003613 4 x 0.003613
h = =
1
2 =
X+ 2sina 0.0725(1+ Sin20
= 0.0508m

The Reynoldsnumberof flow,

1000x 1.25%%8 x 0.0508"7

Re, =
0.184 °72
802 %« 0.3x (0.6422+ —
Sl 072
= 1006
16
O =_—_ =0.016
! 484
and —Ap _2fpV? 2x0.016x 1000x 1.25"
L ~ D, 0.0508

= 980Pa/m
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This example clearly shows that the pressure drop is a minimum in the case of

circular pipes, followed by the elliptic, rectangular and triangular cross-sections, and

the concentric annulus for flow. On the other hand, if one were to maintain the same

hydraulic diameter in each case, the corresponding pressure gradients range from
2500 Pa/m to 4000 Pa/m.

3.8 Miscellaneous frictional losses

In the analysis of pipe networks, one is usually concerned either with how
much power is required to deliver a set flow rate through an existing flow
system or with the optimum pipe diameter for a given pump and duty. All such
calculations involve determining the frictional pressure losses in the systems,
both in the region of fully established flow (as has been assumed so far), and in
the associated sudden changes in cross-section (expansions and contractions)
and other fittings such as bends, elbows, valves, etc. It is also necessary to
establish whether the flow is laminar or turbulent. For Newtonian flow, the
magnitudes of these losses are well known, and, although the theory is far
from complete, the established design procedures are usually quite satisfactory.
The analogous results for non-Newtonian (mainly time-independent type) are
presented here, although the experimental results are scant in this field.

3.8.1 Sudden enlargement

When the cross-section of a pipe enlarges gradually, the streamlines follow
closely the contours of the duct and virtually no extra frictional losses are
incurred. On the other hand, whenever the change is sudden, additional
losses arise due to the eddies formed as the fluid enters the enlarged cross-
section. The resulting head loss for laminar flow can be evaluated by applying
the mechanical energy balance in conjunction with the integral momentum
balance. Consider the flow configuration shown in Figure 3.23 in which the
section ‘2’ is located immediately after the end of the smaller pipe. By suitable
choice of plane ‘1’, the frictional pressure loss may be assumed to be negligible
between planes ‘1’ and ‘2’ and henge ~ p,; the latter acts over the whole
cross-sectioniR3). Also, immediately following the expansion at section ‘2’,
the streamlines will be nearly parallel to the axis and the velocity profile at
section ‘2" will be similar to the fully developed profile at section ‘1'. If
section ‘3’ is sufficiently far down-stream, the velocity profile again be fully
established. On applying the integral momentum balance over the control
volume as shown in Figure 3.23:

R1 R,
XF. = (p2 — p3)nR5 = — . 2rrpV2dr + . 2rrpV2 dr (3.92)
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Figure 3.23 Schematics of laminar flow through a sudden expansion in a
tube

The integration in equation (3.92) can be carried out after insertion of the
velocity profiles for the appropriate viscosity model to obtain the pressure
loss (p2 — p3). For power-law fluids, this procedure leads to:

P2-P3_<3n+1 0 (A1 2 A

= (= — 3.93
p 2n+1 A7 \A Az (399

where A; = 7R? and A, = 7R3. Applying the mechanical energy balance
equation between points ‘1’ and ‘3"

V2 %5
P o =B 23 et S
P 2o 0 2x
p1— D3 vi-v3
or YFexp= +(z1 —z3)g + o (3.94)

For a horizontal systeny; = z3, putting p1 = p, and substituting forr from
equation (3.16), equations (3.93) and (3.94) yield the following expression for
the head losge:

_ SFep 1[0 ?(3n+1
g g \A 2n+1

n+3) (A1 % (A1 3@n+1)
261 + 3) (A_z - (A_2 G+ 3)

he

(3.95)

If n were equal to zero, the velocity would be uniform across the pipe cross-
section & = 1) and equation (3.95) would reduce to

V2 Ay 2
he = 2—81 ( - A—; (3.96)
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This agrees with the expression for turbulent Newtonian flow when the velocity
profile is assumed to be approximately flat.

3.8.2 Entrance effects for flow in tubes

The previous discussion on flow in pipes has been restricted to fully-developed
flow where the velocity at any position in the cross-section is independent of
distance along the pipe. In the entrance and exit sections of the pipe this will
no longer be true. Since exit effects are much less significant than entrance
effects, only the latter are dealt with in detail here.

For all fluids entering a small pipe from either a very much larger one or
from a reservoir, the initial velocity profile will be approximately flat, and will
then undergo a progressive change until fully developed flow is established,
as shown schematically in Figure 3.24.

Entrance velocity is V /-Tube

[~
~
-

) N
R
“H=——_ .
-_——
t—t-—t-— - — = — ) —¢
-
= >/
.
—’——
- 1 /[

Entrance Edgeof / Boundary / Fully-developed /
boundary layer velocity profile
layer thickness

f Le i

Figure 3.24 Developmenbf the boundarylayer and velocity profile for
laminar flow in the entranceregionof a pipe

The thicknessof the boundarylayer is theoretically zero at the entrance
andincreasegprogressivelyalongthe tube. The retardationof the fluid in the
wall regionmustbe accompaniedby a concomitantacceleratiorin the central
regionin orderto maintaincontinuity. Whenthe velocity profile hasreached
its final shape the flow is fully developedand the boundarylayersmay be
consideredo haveconvegedat the centreline. It is customaryto definean
entrylength, L., asthe distancefrom the inlet at which the centrelinevelocity
is 99% of thatfor the fully-developedflow. The pressuregradientin this entry
regionis differentfrom thatfor fully developedilow andis a function of the
initial velocity profile. Therearetwo factorsinfluencingthe pressuregradient
in the entry region: firstly, some pressureenegy is convertedinto kinetic
enepgy asthe fluid in the central core acceleratesand secondly,the higher
velocity gradientsin the wall region resultin greaterfrictional losses.It is
importantto estimateboth the pressuredrop occurringin the region before
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flow has been fully developed and the extent of this entrance length. This
situation is amenable to analysis by repeated use of the mechanical energy
balance equation. Consider the schematics of the flow shown in Figure 3.25.
The stations ‘1’ and ‘3’ are well removed from the tube entrance, ‘2’ is in
the plane of entrance while ‘3’ is situated in the fully developed region. The
frictional pressure loss between points ‘1’ and ‘3’ can be expressed as:

PEF = Apraa-2)+ Apra@-3) + APexa-2) + APex2-3) (3.97)
! L I -~ Tube
i\\\\ ——Flow |
- = —E=e—— - -t
|- |= |
' I
1

i \
Edge of

Entrance
boundary layer

Figure 3.25 Schematicgor calculationof entranceeffects

wherethe subscripts fd’ and‘ex’ respectivelydenotethe pressuralropsover

the regionsof fully-developedflow and the additional pressuredrop due to

the acceleratiorof the fluid. BecauseV; <« V3, the fully developedpressure
lossbetweenpoints‘l’ and‘2’ is assumedo be negligible andthat between
2" and‘3’ canbe expressedn termsof the wall shearstressin the smaller
tubeas:

L
Aprie-3 = 21, (— (3.98)

R
where L is the length of the pipe between‘2’ and ‘3’. Thus, the extra
frictional lossbetween1l’ and‘3’ arisingfrom thefactthatflow is developing,
A pentrance Canbe written as:

L
A pentrance= (P1 — P3) — APra-3 = P1— P3— 27, <E (3.99
Applying the mechanicalenegy balancebetweenpoints ‘1’ and‘3’, noting
71 = zz and V; « V3, and substitutingfor pXF from equations(3.97) and
(3.98):

pV3
20[3

2

pV
(pL—ps) = 52 + pEF =
o3

L
+2‘L—w - +A ex(1— +A ex(2—
2 <R Pex(1-3) Pex(2-3)
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or

L ,on
A Pentrance= P1 — P3 — 2Ty (_ =3

R 2063 + Apex(l—Z) + Ape)c(2—3)

(3.100

Noting (1/2)pV§ =1,/ f and thatf = 16/Reyr in laminar region, it is custo-
mary to re-arrange equation (3.100) as:

A Ppent Reyr
— NGk 101
20, Ci(n) 32 + Co(n) (3.101)
1 Ape)c(273)
where Ci(n) = [ = + 2Pe@=d 3.10
1(n) (Ols 1/2)p?2 ( 2
and cmF% (3.103)
Tw

For laminar flow of power-law fluids, it has been found that b6thand C,

(also known as Couette correction) are functionsrofalone. Obviously,

C, representing the loss between points ‘1’ and ‘2’ would be strongly
dependent on the geometrical details of the system, more gradual or smooth
the entrance, smaller will be the value 6%. However, to date, its values
have been computed only for an abrupt change. Table 3.4 summarises the
predicted values ofC; and C, for a range of values of:.. It should be
noted thatCi(n) decreases with the increasing degree of shear-thinning
behaviour whileC,(n) shows the exactly opposite type of dependence on
n. That is, the contribution of the excess pressure drop between points ‘1’
and ‘2’ increases with decreasing valuenofBased on extensive comparisons

Table 3.4 Values ofCy(n) and
C»(n) [Boger, 1987]

n Ci(n) Ca(n)
1 2.33 0.58
0.9 2.25 0.64
0.8 2.17 0.70
0.7 2.08 0.79
0.6 1.97 0.89
0.5 1.85 0.99
0.4 1.70 1.15

0.3 1.53 1.33
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0.4
—— Predictions of Collins and Schowalter [1968]
®  Data of Rama Murthy and Boger [1971]
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Figure 3.26 Entrancelengthfor power-lawfluids

betweerpredictionsandexperimentatiata,this approacthasbeenfoundto be
reliable for estimatingthe value of A p,,, for linear contractionratios greater
than 2 and downstreamReynoldsnumber(pV2"D" /m) > 5 [Boger, 1987].

Figure 3.26 showsthe entry length L., requiredto attainfully developedlow

in tubes;excellentagreementis seento exist betweenpredictionsandlimited

experimentaldata. From a practical standpoint,the currently availablebody
of information suggestdhat the entrancelength, L., is of the order of forty

pipe diameterdor inelasticfluids andabout110D for visco-elastidluids [Cho

andHartnett,1982]in streamlineflow. The literatureon this subjecthasbeen
critically reviewedby Boger[1987].

Thereis little information on either the entrancelength or the additional
pressuredrop for fully developedurbulentflow. Dodgeand Metzner[1959]
indicatedthat both the entrancdengthandthe extrapressurdossfor inelastic
fluids were similar to thosefor Newtonianfluids.

3.8.3 Minor losses in fittings

Little reliableinformationis availableonthe pressuralropfor the flow of non-
Newtonianfluids through pipe fittings. The limited work carried out on the
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laminar flow of inelastic polymer solutions and of suspensions [Urey, 1966;
Steffe et al., 1984; Edward<t al., 1985; Banerjeest al, 1994] and on the
turbulent flow of magnesia and titania slurries [Weltmann and Keller, 1957;
Cheng, 1970] through a range of fittings including elbows, tees, bends and
valves suggests that the shear-dependence of viscosity exerts little influence
on such minor losses and therefore values for Newtonian fluids can be used.
However, more recent work [Slatter, 1997] on the flow of a kaolin slurry
and a polymer solution through sudden contractions and expansions and 90
elbows suggests that pressure drops are much larger than for Newtonian fluids.
Therefore, great care must be exercised in estimating such losses, though it is
always preferable to carry out some tests with the fluid under consideration.
The corresponding losses for visco-elastic fluids are likely to be greater if
their extensional viscosities are high. Additional uncertainties arise because
the critical Reynolds number for the laminar—turbulent transition is not well
defined and is strongly influenced by the design of the particular fitting. Thus,
Edwardset al. [1985] reported the critical value of g as 900 for an elbow
and 12 for globe valves! Overall there appears to be little definitive information
for the minor losses in various fittings.

Some guidelines for the design and selection of valves for pseudoplastic
materials have been developed by De Haven [1959] and Beasley [1992].

3.8.4 Flow measurement

Little information is available on suitable flow measurement devices. It has
already been shown that pressure drop across a straight length of pipe is
relatively insensitive to flow rate in laminar region of highly shear-thinning
materials and therefore it is an unsuitable parameter for flow measurement.
In principle, the devices which depend upon the conversion of pressure into
kinetic energy (e.g. orifice and venturi meters, rotameters) can be used but
they need calibration for each fluid. The problem is compounded in practice
because the fluid may not have a constant rheology and/or may display
visco-elastic or time-dependent behaviour. Though many investigators have
studied the flow of polymer solutions through orifices, most of this work
has not been directed towards flow measurement but has related either to
the measurement of extensional viscosity or to extrusion behaviour. Both
Harris and Magnall [1972] and Edwards al. [1985] have examined the
suitability of orifice and venturi meters for measuring the flow rates of
inelastic polymer solutions and kaolin suspensions. While Edwatdsd.
[1985] were unable to bring together data for different aspect ratios, Harris and
Magnall [1972] reported satisfactory correlation for the discharge coefficient
in the turbulent regime. Despite all these difficulties, the measurement of
the flow of shear-thinning oil-water emulsions using orifice and venturi
meters has been the subject of a recent study [Pal, 1993]. The discharge
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coefficients were successfully correlated with the generalised Reynolds number
(Reyr). However, extrapolation to other types of non-Newtonian materials,
e.g. polymer solutions, slurries, etc., must be treated with reserve. In view
of these difficulties, indirect methods of flow measurement are generally
preferred, the electromagnetic flow meter being the most common choice
[Dodge and Metzner, 1959; Quader and Wilkinson, 1980; Chhabul,

1984] covering a wide variety of materials including polymer solutions,
kaolin, anthracite and titania slurries. This method is, however, limited to
substances possessing some degree of electrical conductivity. In addition, both
Skelland [1967] and Liptak [1967] have suggested rotary type volumetric
displacement flow meters for non-Newtonian viscous fluids but have given
virtually no practical information on their performance. Ginesi [1991] has
found magnetic and coriolis type flow meters to be reliable for slurries and
viscous fluids. Brown and Heywood (1992) have discussed instrumentation
for the measurement of both flow rate and density for non-Newtonian
slurries.

Example 3.13

A kaolin slurry (density= 1200 kg/ni; n = 0.2 andm = 25 Pas") flows under gravity
from reservoir A to B both of which are of large diameter, as shown in Figure 3.27.
Estimate the flow rate of slurry through the 50 mm diameter connecting pipe of total
length of 75m.

Solution

The mechanical energy balance can be applied between points ‘1’ and ‘2’ shown in
Figure 3.27.

Vi P1 V% P2
+ =4 = + " +z2+Zh
2008 pg 1 2mg | 3¢ -

Here p1 = p, = pam. Because the two reservoirs are of large diaméterandV, are
both approximately zero. With these simplifications, the equation simplifies to:

Shy =71 —2=40—-5=35m

The friction losses are associated with the flow in a 75m length of 50 mm pipe
including one gate valve, one globe valve, two short curvature elbows, a contraction
(at A) and an expansion at B. At this stage, neglecting the contraction and expansion
losses, one can express the loss term in terms of the unknown velocity V as:
2fLV? V2 V2 v?
/ +K—+K—+ 2K— =35m
gD 2 2 2
(gate (globe (elbows)
valve) valve)

Xhy, =
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Globe valve 40 m
@) Elbows (Fully open)
.
Z=5m g‘q
Gate valve
(Fully open)

Figure 3.27 Schematics of flow for example 3.13

Edwardset al. [1985] have published the following values of K for various fittings:

. 273
For a 2 inch (50 mm) fully-open gate valv€ = Reyr < 120
R
. 384
For a 2 inch (50 mm) fully-open globe valyg = o Reyr < 15
R
K =254 Resr > 15
. 842
For a 2 inch (50 mm) short-curvature elbokv = o Reyr < 900
R

K =09 Resr > 900

Assuming the flow to be laminar and Re> 15. The total head loss is then:

=35m

v? ( 64L N 273 L 254 42 842
= | == -— X X
2g D Reyr Reyr Reyr

(straight pipe (1 gate (1 globe (2 elbows)
length) valve) valve)

V2—nDn
AN S (3.8b)
gL (Sn +1
4n

where Regpr =

Here, p = 1200 kg/mt; D =50x 103m; m = 25Pas’ L = 75m;n = 0.2

1200V* *#(50 x 10°%)°?
0 Reyy = 20OV OO0 15143y

3x02+4+1 ©2
80‘2_1 25
( )(25) ( 4x0.2
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Substituting for Rgx and other values:

2{ 64 x 75 N 273 L2544 2 x 842 }
50x 1073 x 12113v® * 12113v8 © 12113V
=35%x981x2

or 80869V°2 4 254V2 = 6867

A trial and error method givesy = 0.43m/s. Check: the value of Rg=
12113 x 0.43'8 = 26.52 which is in laminar range and is also larger than the value
of 15 assumed above.

3.9 Selection of pumps

Non-Newtonian characteristics, notably shear-dependent viscosity and yield
stress, strongly influence the choice of a suitable pump and its performance.
While no definite quantitative information is available on this subject, general
features of a range of pumps commonly used in industry are briefly described
here. In particular, consideration is given to positive-displacement, centrifugal,
and screw pumps.

3.9.1 Positive displacement pumps

Reciprocating pumps

Difficulties experienced in initiating the flow of pseudoplastic materials (owing

to their high apparent viscosities and/or the yield stress effects) are frequently
countered by the use of one of the various types of positive-displacement
pumps, see e.g. Coulson and Richardson [1999]. Non-Newtonian fluids which
are sensitive to breakdown, particularly agglomerates in suspensions, are best
handled with pumps which subject the liquid to a minimum of shearing.
Diaphragm pumps are then frequently used, but care must be taken that the safe
working pressure for the pump and associated pipe network is not exceeded.
The use of a hydraulic drive and a pressure-limiting relief valve fitted to the
pump ensures that the system is protected from damage. Such an arrangement
is shown schematically in Figure 3.28, which depicts general features of all
systems using positive displacement pumps.

Rotary pumps

The selection of a suitable rotary positive-displacement pump for a viscoplastic
material has been discussed by Steffe and Morgan [1986].

Such pumps operate on the principle of using mechanical means to transfer
small elements or “packages” of fluid from the low pressure (inlet) side to
the high pressure (delivery) side. There is a wide range of designs available
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Hydraulic reservoir

Relief Delivery

Variable throw
eccentric

Figure 3.28 A hydraulicdrive to protecta positivedisplacemenpump

for achievingthis end. The generalcharacteristic®f the pumpsare similar to

thoseof reciprocatingpiston pumpsbut the delivery is more evenbecausef

the fluid streamis brokendown into much smallerelementsThe pumpsare
capableof deliveringto a high pressureandthe pumpingrateis approximately
proportionalto the speedof the pump and is not greatly influencedby the

pressureagainstwhich it is delivering. Again, it is necessaryto provide
a pressurerelief systemto ensurethat the safe operating pressureis not

exceeded.

Oneof the commonestorms of the pumpis the gearpumpin which oneof
the gearwheelsis drivenandthe otherturnsasthe teethengagetwo versions
are illustrated in Figures3.29 and 3.30. The liquid is carriedround in the
spacedetweenconsecutivggearteethandthe outer casingof the pump,and
the sealbetweenthe high and low pressuresidesof the pumpis formed as
the gearscomeinto meshand the elementsof fluid are squeezedut. Gear
pumpsareextensivelyusedfor both high-visosityNewtonianliquids andnon-
Newtonianfluids. The lobe-pump(Figure 3.31) is similar, but the gearteeth
are replacedby two or threelobesand both axlesare driven; it is therefore
possibleto maintaina small clearancéetweerthe lobes,andwearis reduced.
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Figure 3.29 Gear pump

Figure 3.30 Internal gearpump
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Figure 3.31 Lobepump
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Figure 3.32 Themodeof operationof a Mono pump

Another form of positive-actingrotary pump is the single-screwextruder
pump typified by the Mono-pump,illustratedin Figures3.32 and 3.33. A
specially shapedmetal helical-rotor revolves eccentricallywithin a resilient
rubberor plasticdouble-helix thuscreatinga continuousorming cavity which
progressesowardsthe dischage of the pump. A continuoussealis created
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Figure 3.33 Sectionof Mono pump

and, the higher the delivery pressurethe greateris the requirednumber of

turns,andhencethe longerthe statorandrotor. This type of pumpis suitable
for pumping slurries and pastes,whether Newtonian or non-Newtonianin

character.

3.9.2 Centrifugal pumps

The most common type of pump used in the chemical industry is the
centrifugalpump, thoughits performanceleterioratesapidly with increasing
viscosity of fluids evenwith Newtonianfluids. The underlying principle is
the conversionof kinetic enegy into a static pressurehead.For a pump of
this type, the distribution of shearwithin the pumpwill vary with throughput.
ConsideringFigure 3.34 where the dischage is completely closed off, the

Figure 3.34 Zonesof differing shearin a centrifugalpump
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Figure 3.35 Circulationwithin a centrifugalpumpimpeller

highestdegreeof shearingis in the gap betweenthe rotor and shell, i.e. at
point B. Within thevanesof therotor (region A) therewill be somecirculation
as sketchedin Figure3.35, but in the dischage line C, the fluid will be
essentiallystatic. If the fluid is moving through the pump, there will still
be differencesbetweentheseshearratesbut they will be less extreme.For
a pseudoplastianaterial, the effective viscosity will vary in thesedifferent
regions,being lessat B thanat A and C, while a shear-thickeningnaterial
will exhibit the opposite behaviour.Under steady conditions, the pressure
developedn the rotor producesa uniform flow throughthe pump.However,
theremay be problemson starting,whenthe very high effective viscositiesof
the fluid asthe systemstartsfrom restmight resultin the overloadingof the
motor. At this time too, the apparentiscosityof theliquid in the deliveryline
is at its maximum value, and the pump may take an inordinatelylong time
to establishthe requiredflow. Many pseudoplastianaterials(such as food
stuffs, pharmaceuticalormulations)are damagedand degradeddy prolonged
shearingand sucha pumpwould be unsuitable.

As mentionedpreviously, it is generallyacceptedhat the performanceof
a centrifugalpump deterioratesncreasinglyas the extentof non-Newtonian
characteristicencreasesBoth headand particullarly efficiency, are adversely
affected,andthe performancef smallpumpsis impairedto the greatesextent.
Severeerosionof the impellerandpumpcasingis alsoencountereespecially
with particulatesuspensionsSomeguidelinesfor usingchartsbasedon water
for non-Newtonianmaterialsby selectinga suitable value of the effective
viscosityare,however,available[Duckham,1971; Walkerand Goulas,1984].
CarterandLambert[1972], on the otherhand,havefound helical gearpumps
more suitablefor viscousNewtonianand non-Newtoniarfluids.



Flow in pipes and in conduits of non-circular cross-sections 155

3.9.3 Screw pumps

Screw extruders, as used in the polymer processing and food industries, form
a most important class of pumps for handling highly viscous non-Newtonian
materials. Extruders are used for forming simple and complex sections (rods,
tubes, etc). The shape of section produced for a given material is dependent
only on the profile of the dies through which the fluid is forced just before it
cools and solidifies, though additional complications may arise due to die-swell
whereby the diameter of the extrudate may be larger than that of the die.

The basic function of the screw pump or extruder is to shear the fluid in the
channel between the screw and the wall of the barrel, as shown schematically
in Figure 3.36. The mechanism that generates the pressure can be visualised
in terms of a model consisting of an open channel covered by a moving plane
surface (Figure 3.37).

Screw
rotating

Stationary
barrel

Figure 3.36 Sectionof a screw pump

space between
surfaces

Figure 3.37 Planar modelof part of a screw pump

This planarsimplification of a stationaryscrewwith rotating barrelis not
unreasonablegrovidedthat the depthof the screwchannelis small compared
with the barreldiameter.The distributionof centrifugalforceswill, of course,
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be different according to whether the rotating member is the wall or the
screw; this distinction must be drawn before a detailed force balance can
be undertaken, but in any event the centrifugal (inertial) forces are generally
far smaller than the viscous forces.

If the upper plate is moved along in the direction of the channel then
a velocity profile is established, giving an approximately linear velocity
distribution between two walls which are moving parallel to each other. If
it moves at right angles to the channel axis, however, a circulation pattern is
developed in the gap, as shown in Figure 3.38. In fact, the relative movement
is somewhere between these two extremes and is determined by the pitch of

the screw.
_—

Figure 3.38 Fluid displacement resulting from movement of plane surface

The fluid path in a screw pump is therefore of a complex helical form
within the channel section. The velocity components along the channel depend
on the pressure generated and the resistance at the discharge end. If there is
no resistance, the velocity profile in the direction of the channel will be of the
Couette type, as depicted in Figure 3.39a. With a totally closed discharge end,
the net flow would be zero, but the velocity components at the walls would
not be affected. As a result, the flow field necessarily would be of the form
shown in Figure 3.39b.

= e 7

(@) (b) (©

Figure 3.39 \elocity profile producedbetweerscrew pumpsurfaceswith
(a) noresistancenn fluid flow (b) no netflow (c) partially restricteddischage

Viscousforceswithin the fluid will alwayspreventa completelyunhindered
dischage, butin extrusion-practicéhe die-headorovidesadditionalresistance
which generatedack-flowandmixing, thuscreatinga more uniform product.
Under these conditions, the flow profile along the channelis of some
intermediateform suchasthat shownin Figure 3.39c.
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It must be stressed here that flow in a screw pump is produced as a result
of viscous forces and hence the pressures achieved at the outlet with low
viscosity materials are small. The screw pump is thus not a modification of
the Archimedes screw used in antiquity to raise water—that was essentially a
positive-displacement device using a deep cut helix, not running full, mounted
at an angle to the horizontal. In any detailed analysis of the flow in a screw
pump, it is also necessary to consider the small leakage flow that will occur
between the flight and the wall. With the large pressures generated in a polymer
extruder (~100 bar), the flow through this gap (typically 2 per cent of the
barrel internal diameter) can be significant because the pressure drop over
a single pitch length may be of the order of 10 bar. Once in this region,
the viscous fluid is subject to a high rate of shear (the rotational speed of
about 2Hz) and an appreciable part of the fine-scale mixing and viscous
heat generation occurs in this part of the extruder. It is thus important to
bear in mind that with the very high viscosity materials generally involved,
heat generation can be very large and so the temperature of the fluid (and
hence its rheological properties) may be a strong function of the power input
to the extruder. One must thus solve the coupled momentum and energy
equations, including the viscous dissipation term. General descriptions of
extrusion technology are available in several books, e.g. McKelvey [1962],
Tadmor and Gogos [1979].

3.10 Further reading
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3.12 Nomenclature

Dimensions
inM, L, T
a,b geometric parameters for non-circular ducts (-) MOLOTO
b half gap between two parallel plates (m) L
. Dif .
Bi = 0 Bingham number (-) MOLOTO
V up

D pipe diameter (m) L
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Dy, hydraulic equivalent diameter (m) L
Dimensions
inM, L, T
E eddy diffusivity (m/s) L21-t
f friction factor (=) MOLOTO
g acceleration due to gravity (s LT 2
H film thickness in flow over inclined surface (m) L
2B

He = 'O[;;O Hedstdm number (=) MOLOTO
hy ? frictional loss in head (m) L
L pipe length (m) L
/ Prandtl mixing length (m) L
m power law consistency coefficient (Psl') ML —1T7-2
m’ apparent power law consistency coefficient (B4) ML —177' -2
n power-law flow behaviour index (-) MOLOTO
n apparent power-law flow behaviour index (=) MOLOTO
P pressure (Pa) ML ~1T7-2
—Ap pressure drop (Pa) ML —1T-2
0 volumetric flow rate (ri/s) L31-1
r radial coordinate (m) L
R pipe radius/annulus outer radius (m) L
R, radius of plug in centre of pipe (m) L
Reg Reynolds number based on Bingham plastic viscosity (=) ~ M°LOTO
Reyr Metzner—Reed definition of Reynolds number (-) MOLOTO
Re, generalised Reynolds number for non-circular conduits,

eq. 3.90 (-). MOLOTO
Rer modified Reynolds number, equation 3.39 (=) MOLOTO
14 mean velocity of flow (m/s) LTt
V, point velocity of flow inz-direction (m/s) LTt
v non-dimensional point velocity (-) MOLOTO
V* = .\/t,/p friction velocity (m/s) LT -1
vt non-dimensional velocity, equation 3.47. (=) MOLOTO
w width (m) L
y distance from wall (m) L
yt non-dimensional distance from wall, equation 3.47 (-). MOLOTO
z axial coordinate in the flow direction (m). L

Greek letters

o parameter in Ellis fluid model or kinetic energy correction

factor (-) MOLOTO
A radial coordinate corresponding to zero shear stress in

annulus (=) MOLOTO
Agy Ao boundaries of plug of Bingham plastic fluid in annular flow

=) MOLOTO
w apparent viscosity (Pas) ML 111
"o zero shear viscosity (Pa) ML —1T-1
up Bingham plastic viscosity (Pas) ML 111

£=r/R non-dimensional radial coordinate () MOLOTO
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Dimensions
inM, L, T
) density (kg/n?) ML —3
o non-dimensional inner radius of annulus (-) MOLOTO
Ty shear stress in fluid (Pa) ML ~17-2
T shear stress at pipe wall (Pa) ML ~11-2
T2 parameter in Ellis fluid model (Pa) ML —1T-2
71 yield stress in Bingham plastic model (Pa) ML 112
=15/t non-dimensional ratio (—) MOLOTO

Q non-dimensional flow rate (-). MOLOTO



Chapter 4
Flow of multi-phase mixtures in pipes

4.1 Introduction

The flow problems considered in the previous chapter have concerned either
single phases or pseudo-homogeneous fluids such as emulsions and suspen-
sions of fine particles in which little or no separation occurs. Attention will
now be focussed on the far more complex problem of the flow of multi-phase
systems in which the composition of the mixture may show spatial variation
over the cross-section of the pipe or channel. Furthermore, the two compo-
nents may have different in-situ velocities as a result of which there is ‘slip’
between the two phases and in-situ holdups which are different from those in
the feed or exit stream. Furthermore, the residence times of the two phases
will be different.

Multiphase flow is encountered in many chemical and process engineering
applications, and the behaviour of the material is influenced by the properties
of the components, such as their Newtonian or non-Newtonian characteris-
tics or the size, shape and concentration of particulates, the flowrate of the
two components and the geometry of the system. In general, the flow is so
complex that theoretical treatments, which tend to apply to highly idealised
situations, have proved to be of little practical utility. Consequently, design
methods rely very much on analyses of the behaviour of such systems in
practice. While the term ‘multiphase flows’ embraces the complete spec-
trum of gas/liquid, liquid/liquid, gas/solid, liquid/solid gas/liquid/solid and
gas/liquid/liquid systems, the main concern here is to illustrate the role of
non-Newtonian rheology of the liquid phase on the nature of the flow. Atten-
tion is concentrated on the simultaneous co-current flow of a gas and a
non-Newtonian liquid and the transport of coarse solids in non-Newtonian
liquids.

Multi-phase mixtures may be transported horizontally, vertically, or at an
inclination to the horizontal in pipes and, in the case of liquid—solid mixtures,
in open channels. Although there is some degree of similarity between the
hydrodynamic behaviour of the various types of multi-phase flows, the range of
physical properties is so wide that each system must be considered separately
even when the liquids are Newtonian. Liquids may have densities up to three
orders of magnitude greater than gases, but they are virtually incompressible.



Flow of multi-phase mixtures in pipes 163

The liquids themselves may range from simple Newtonian fluids, such as
water, to highly viscous non-Newtonian liquids, such as polymer solutions,
fine particle slurries. Indeed, because of the large differences in density and
viscosity, the flow of gas—liquid mixtures and liquid—solid (coarse) mixtures
must, in practice, be considered separately. For all multi-phase flow systems,
it is, however, essential to understand the nature of the interactions between
the phases and how these affect the flow patterns, including the way in which
the two phases are distributed over the cross-section of the pipe or channel.
Notwithstanding the importance of the detailed kinematics of flow, the ensuing
discussion is mainly concerned with the overall hydrodynamic behaviour, with
particular reference to the following features: flow patterns, average holdup
of the individual phases, and the frictional pressure gradient. Flow patterns
are strongly influenced by the difference in density between the two phases.
In gas-liquid systems, it is always the gas which is the lighter phase and in
solid—liquid systems, it is more often than not the liquid. The orientation of
the pipe may also play a role. In vertical upward flow, for instance, it will
be the lighter phase which will tend to rise more quickly. For liquid—solid
mixtures, the slip velocity is of the same order as the terminal settling velocity
of the patrticles but, in a gas—liquid system, it depends upon the flow pattern
in a complex manner.

Unlike vertical flow, horizontal flow does not exhibit axial symmetry and
the flow pattern is more complex because the gravitational force acts normally
to the direction of flow, causing asymmetrical distribution over the pipe cross-
section.

In practice, many other considerations affect the design of an installation.
For example, wherever particulates are involved, pipe blockage may occur
with consequences that can be as serious that it is always necessary to operate
under conditions which minimize the probability of its occurring. Abrasive
solids may give rise to the undue wear, and high velocities may need to be
avoided.

Though the main emphasis in this chapter is on the effects of the non-
Newtonian rheology, it is useful to draw analogies with the simpler cases of
Newtonian liquids, details of which are much more readily available.

4.2 Two-phase gas—non-Newtonian liquid flow

4.2.1 Introduction

This section deals with the most important characteristics of the flow of
a mixture of a gas or vapour and a Newtonian or non-Newtonian liquids

in a round pipe. Despite large differences in rheology, two-phase flow of
gas—liquid mixtures exhibits many common features whether the liquid is
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Newtonian or shows inelastic pseudoplastic behaviour. Applications in the
chemical, food and processing industries range from the flow of mixtures of
crude oil (which may exhibit non-Newtonian characteristics) and gas from oil
well heads to that of vapour—liquid mixtures in boilers and evaporators.

The nature of the flow of gas—liquid mixtures is complex, and the lack
of knowledge concerning local velocities of the individual phases makes it
difficult to develop any method of predicting the velocity distribution. In many
instances, the gas (or vapour) phase may be flowing considerably faster than
the liquid and continually accelerating as a result of its expansion, as the
pressure falls. Either phase may be in laminar or in turbulent flow, albeit that
laminar flow, (especially for a gas) does not have such a clear cut meaning as
in the flow of single fluids. In practice, Newtonian liquids will most often be
in turbulent flow, whereas the flow of non-Newtonian liquids is more often
streamline because of their high apparent viscosities.

Additional complications arise if there is heat transfer from one phase to
another such as that encountered in the tubes of a condenser or boiler. Under
these conditions, the mass flowrate of each phase is progressively changing
as a result of the vapour condensing or the liquid vaporising. However, this
phenomenon is of little relevance to the flow of gas and non-Newtonian liquid
mixtures.

Consideration will now be given in turn to three particular aspects of
gas—liquid flow which are of practical importance (i) flow patterns or regimes
(i) holdup, and (iii) frictional pressure gradient.

4.2.2 Flow patterns

For two-phase cocurrent gas—liquid flow, there is the wide variety of possible
flow patterns which are governed principally by the physical properties

(density, surface tension, viscosity of gas, rheology of liquid), input fluxes

of the two phases and the size and the orientation of the pipe. Since the
mechanisms responsible for holdup and momentum transfer (or frictional
pressure drop) vary from one flow pattern to another, it is essential to have
a method of predicting the conditions under which each flow pattern may

occur. Before developing suitable methods for the prediction of flow pattern,

it is important briefly to define the flow patterns generally encountered in

gas—liquid flows. Horizontal and vertical flows will be discussed separately

as there are inherent differences in the two cases.

Horizontal flow

The classification proposed by Alves [1954] encompasses all the major and
easily recognisable flow patterns encountered in horizontal pipes. These are
sketched in Figure 4.1 and are described below.
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Figure 4.1 Flow patterns in horizontal and vertical two phase flow

(i) Bubble flow

This type of flow, sometimes referred to as dispersed bubble flow, is characterised
by a train of discrete gas bubbles moving mainly close to the upper wall of the
pipe, at almost the same velocity as the liquid. As the liquid flowrate is increased,
the bubbles become more evenly distributed over the cross-section of the pipe.

(i) Plug flow
At increased gas throughput, bubbles interact and coalesce to give rise to large

bullet shaped plugs occupying most of the pipe cross-section, except for a thin
liquid film at the wall of the pipe which is thicker towards the bottom of the pipe.

(iij) Stratified flow

In this mode of flow, the gravitational forces dominate and the gas phase
flows in the upper part of the pipe. At relatively low flowrates, the gas—liquid
interface is smooth, but becomes ripply or wavy at higher gas rates thereby
giving rise to the so-called ‘wavy flow'. As the distinction between the smooth
and wavy interface is often ill-defined, it is usual to refer to both flow patterns
as stratified-wavy flow.

(iv) Slug flow

In this type of flow, frothy slugs of liquid phase carrying entrained gas bubbles
alternate with gas slugs surrounded by thin liquid films. Although plug and
slug flow are both well defined, as shown in Figure 4.1, in practice it is often
not easy to distinguish between them.
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(v) Annular flow

In this type of flow, most of the liquid is carried along the inner wall of the
pipe as a thin film, while the gas forms a central core occupying a substantial
portion of the pipe cross-section. Some liquid is usually entrained as fine
droplets within the gas core. Sometimes the term ‘film flow’ is also used to
describe this flow pattern.

(vi) Mist flow

Mist flow is said to occur when a significant amount of liquid becomes trans-
ferred from the annular film to the gas core; at high gas flowrates nearly all
of the liquid is entrained in the gas. Thus, some workers regard mist flow to
be an extreme case of annular flow.

The above classification of flow patterns is useful in developing models
for the flow, but it is important to note that the distinction between any two
flow patterns is far from clear cut, especially in the case of bubble, plug and
slug flow patterns. Consequently, these latter three flow patterns are often
combined and described as ‘intermittent flow’. On this basis, the chief flow
patterns adopted in this work are dispersed, intermittent, stratified, wavy and
annular—mist flow. Detailed descriptions of flow patterns and of the experi-
mental methods for their determination are available in the literature, e.g. see
[Hewitt, 1978, 1982; Ferguson and Spedding, 1995]. Although most of the
information on flow patterns has been gathered from experiments on gas and
Newtonian liquids in co-current flow, the limited experimental work reported
to date with inelastic shear-thinning materials suggests that they give rise
to qualitatively similar flow patterns [Chhabra and Richardson, 1984] and
therefore the same nomenclature will be adopted here.

4.2.3 Prediction of flow patterns

For the flow of gas—Newtonian liquid mixtures, several, mostly empirical,
attempts have been made to formulate flow pattern maps [Govier and Aziz,
1982; Hetsroni, 1982; Chisholm, 1983]. The regions over which the different
types of flow patterns can occur are conveniently shown as a ‘flow pattern map’
in which a function of the liquid flowrate is plotted against a function of the gas
flowrate and boundary lines are drawn to delineate the various regions. Not only
is the distinction between any two flow patterns poorly defined, but the transition
from one flow pattern to another may occur over a range of conditions rather than
abruptly as suggested in all flow pattern maps. Furthermore, because the flow
patterns are usually identified by visual observations of the flow, there is a large
element of subjectivity in the assessment of the boundaries.

Most of the data used for constructing such maps have been obtained with the
air—water system at or near atmospheric conditions. Although, intuitively, one
might expect the physical properties of the two phases to play important roles in
determining the transition from one flow pattern to another, it is now generally
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recognised that they indeed have very little effect [Mandhenal., 1974;
Weismanet al., 1979; Chhabra and Richardson, 1984]. Even shear-thinning
behaviour seems to play virtually no role in governing the transition from one
flow pattern to another [Chhabra and Richardson, 1984]. Based on these consid-
erations and taking into account the extensive experimental study of Weisman
et al. [1979], Chhabra and Richardson [1984] modified the widely used flow
pattern map of Mandhanet al. [1974] as shown in Figure 4.2. On the basis

of a critical evaluation of the literature on the flow of mixtures of gas and
shear-thinning fluids (aqueous polymer solutions, particulate suspensions of
china clay, coal and limestone), this scheme was shown to reproduce about
3700 data points on flow patterns with 70% certainty. The range of experi-
mental conditions which have been used in the compilation of this flow pattern
mapare:M21<V; <6.1m/s;001 < Vs <55m/s;635 < D < 207 mmand

0.1 < n’ < 1. For the systems considered in the preparation of the flow pattern
map (Figure 4.2), apparent viscosities of the non-Newtonian liquids at a shear
rate of 1s? varied from 102 Pas (water) to 50 Pa. Such few experimental
results as are available for visco-elastic polymer solutions are correlated well by
this flow pattern map [Chhabra and Richardson, 1984].

Vertical upward flow

In vertical flow, gravity acts in the axial direction giving symmetry across the
pipe cross-section. Flow patterns tend to be somewhat more stable, but with
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Figure 4.2 Modified flow pattern map [Chhabra and Richardson, 1984]
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slug flow, oscillations in the flow can occur as a result of sudden changes in
pressure as liquid slugs are discharged from the end of the pipe. This effect
is also present in horizontal flow.

The flow patterns observed in vertical upward flow of a gas and Newtonian
liquid are similar to those shown in Figure 4.1 and are described in detail
elsewhere [Barnea and Taitel, 1986]. Taigtlal. [1980] have carried out a
semi-theoretical study of the fundamental mechanisms responsible for each
flow pattern, and have derived quantitative expressions for the transition from
one regime to another. This analysis shows a strong dependence on the phys-
ical properties of the two phases and on the pipe diameter. Figure 4.3 shows
their map for the flow of air—water mixtures in a 38 mm diameter pipe.
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Figure 4.3 Experimenta[Khatib and Richaidson,1984] and predicted
[Taitel et al., 1980] flow patternsfor upwaid flow of air and chinaclay
suspensiongD = 38 mm)



Flow of multi-phase mixtures in pipes 169

The only study dealing with the vertical two-phase flow in which the liquid

is shear-thinning is that of Khatib and Richardson [1984] who worked with
suspensions of china clay. Their results compare closely with the predictions of
Taitel et al. [1980] for air—water mixtures and this suggests that the transition
boundaries between the various flow pattern are largely unaffected by the
rheology of the liquid and that Figure 4.3 can be used when the liquid, is
shear-thinning. However, no such information is available for visco-elastic
liquids.

4.2.4 Holdup

Because of the considerable differences in the physical properties (particularly
viscosity and density) of gases and liquids, the gas always tends to flow at a
higher average velocity than the liquid. Sometimes, this can also occur if the
liquid preferentially wets the surface of the pipe and therefore experiences a
greater drag. In both cases, the volume fraction (holdup) of liquid at any point
in a pipe will be greater than that in the mixture entering or leaving the pipe.
Furthermore, if the pressure falls significantly along the pipeline, the holdup
of liquid will progressively decrease as a result of the expansion of the gas.
If «; andag are the holdups for liquid and gas respectively, it follows that:

o +ag =1 4.0
Similarly for the input volume fractions:
A t+Ag=1 (4.2)

AL andig may be expressed in terms of the flow rafgsandQg, at a given
point in the pipe, as:

AL = O = Vi (4.3)
OL+0c Vi+Vg
rG % _ Ve (4.4)

0L+ 06 Vi+Veg

whereV, andV are the superficial velocities of the two phases. Only under
the limiting conditions of no-slip between the two phases and of no significant
pressure drop along the pipe will and A be equal. Liquid (or gas) holdup
along the length of the pipe must be known for the calculation of two-phase
pressure drop.

Experimental determination

The experimental techniques available for measuring holdup fall into two
categories, namely, direct and indirect methods. The direct method of
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measurement involves suddenly isolating a section of the pipe by means
of quick-acting valves and then determining the quantity of liquid trapped.
Good reproducibility may be obtained, as shown by widespread use of this
technique for both Newtonian and non-Newtonian liquids [Hewittal.,

1963; Oliver and Young-Hoon, 1968; Mahalingam and Valle, 1972; Chen
and Spedding, 1983]. It yields a volume average value of holdup. Although
the method is, in principle, simple, it has two main drawbacks. Firstly, the
valves cannot operate either instantaneously or exactly simultaneously. This
must lead to inaccuracies and, after each measurement, ample time must be
allowed for the flow to reach a steady state. Secondly, it is not practicable
to use this method for high temperature and pressure situations and/or when
either the gas or the liquid or both is of hazardous nature.

The indirect non-intrusive methods have the advantage of not disturbing
the flow. The underlying principle is to measure a physical or electrical
property that is strongly dependent upon the composition of the gas—Iliquid
mixture. Typical examples include the measurement-ody or X-ray attenu-
ation [Petrick and Swanson, 1958; Pikeal, 1965; Shook and Liebe, 1976],
or of change in impendence [Gregory and Mattar, 1973; 8hal., 1982]
or of change in conductivity [Fossa, 1998]. Such methods, however, require
calibration and yield values (averaged over the cross-section) at a given posi-
tion in the pipeline. The/-ray attenuation method has been used extensively
to measure liquid holdup for two-phase flow of mixtures of air and non-
Newtonian liquids such as polymer solutions and particulate suspensions in
horizontal and vertical pipelines [Heywood and Richardson, 1979; Farooqi
and Richardson, 1982; Chhaletal., 1984; Khatib and Richardson, 1984].

Predictive methods for horizontal flow

Methods available for the prediction of the average value of liquid holdup fall
into two categories: those methods which are based on models which utilise
information implicit in the flow pattern and those which are entirely empirical.
Taitel and Dukler [1980] have developed a semi-theoretical expression for the
average liquid holdup and the two-phase pressure gradient for the stratified
flow of mixtures of air and Newtonian liquids. Although such analyses attempt
to give some physical insight into the flow mechanism, they inevitably entalil
gross simplifications and empiricism. For instance, Taitel and Dukler [1980]
assumed the interface to be smooth and the interfacial friction factor to be
the same as that for the gas, but this model tends to underestimate the two-
phase pressure drop. This methodology has subsequently been extended to the
stratified flow of a gas and power-law liquids [Heywood and Charles, 1979].
Similar idealised models are available for the annular flow of gas and power-
law liquids in horizontal pipes [Eissenberg and Weinberger, 1979] but most
of them assume the liquid to be in streamline flow and the gas turbulent.
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The second category of methods includes purely empirical correlations
which disregard the flow patterns and are applicable over stated ranges of the
variables. Although such an approach contributes little to our understanding,
it does provide the designer with the vital information of a known degree
of accuracy and reliability. Numerous empirical expressions are available
in the literature for the prediction of the liquid holdup when the liquid is
Newtonian and these have been critically evaluated [Mandieaiaé, 1975;
Govier and Aziz, 1982; Chen and Spedding, 1986]. The simplest and perhaps
most widely used correlation is that of Lockhart and Martinelli [1949] which
utilises the pressure drop values for single phase flow to define a so-called
Lockhart—Martinelli parametery which is:

_ (—ApL/L "
—Apg/L

where(—Ap. /L) and(—Apg/L) are, respectively, the pressure gradients for
the flow of liquid and gas alone at the same volumetric flowrates as in the two-
phase flow. Although it is based on experimental data for the flow of air—water
mixtures in small diameter tubes-25 mm) at near atmospheric pressure and
temperature, this correlation has proved to be quite successful when applied to
other fluids and for tubes of larger diameters. The original correlation, shown
in Figure 4.4, consistently over-estimates the value of the liquid holdup

in horizontal flow of two-phase gas-Newtonian liquid mixtures. This can be

(4.5)
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Figure 4.4 Lockhart—Martinelli correlation for liquid holdup and
representative experimental results
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seen in Figure 4.4 which shows the comprehensive data [Chen and Spedding,
1983] for air-water mixtures, of Farooqi [1981] and of Faroogi and Richardson
[1982] for the flow of air with aqueous glycerol solutions of various compo-
sitions. Taken together, the experimental results shown in Figure 4.4 cover
a range of four orders of magnitude of the Lockhart—Martinelli parameter,
x, and average liquid holdups from 0.5% t@100%. These data cover all

the major flow patterns and flow regimes, e.g. nominal streamline and turbu-
lent flow of both gas and liquid. The available experimental results are well
represented by the following empirical expressions, as shown in Figure 4.4:

arp =0.24y°8  0.01<x <05 (4.63)
o, =0.175¢°%2% 05<y<5 (4.6b)
ap = 0.143(°*% 5< y <50 (4.60)
1
097+ —
X

Furthermore, these equations predict values,;ofo within £1% at the values
of x marking the changeover point between equations. The overall average
error is of the order of 7% and the maximum error is about 15%.

Gas-non-Newtonian systems

Because of the widely different types of behaviour exhibited by non-Newtonian
fluids, it is convenient to deal with each flow regime separately, depending
upon whether the liquid flowing on its own at the same flow rate would be in
streamline or turbulent flow. While it is readily conceded that streamline flow
does not have as straightforward a meaning in two phase flows as in the flow
of single fluids, for the purposes of correlating experimental results, the same
criterion is used to delineate the type of flow for non-Newtonian fluids as
discussed in Chapter 3 (Section 3.3), and it will be assumed here that the flow
will be streamline for Rgr < 2000, prior to the introduction of gas.

Streamline flow of liquid

The predictions from equation (4.6) will be compared first with the exper-
imental values of average liquid holdup for cocurrent two-phase flow of a
gas and shear-thinning liquids. For a liquid of given rheologyafdn), the
pressure gradiert—A p;/L) may be calculated using the methods presented
in Chapter 3 but only the power-law model will be used here.

Figure 4.5 shows representative experimental results for average values of
liquid holdupe; , as a function of the parametgytogether with the predictions
of equation (4.6). The curves refer to a series of aqueous china clay suspensions
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Figure 4.6 Effectof superficialliquid velocityan averageliquid holdup

in co-currentflow with air in a 42mm diameterhorizontalpipe. In addition,
Figure 4.6 clearlyshowstheinfluenceof theliquid superficialvelocity (V) on
the averagevaluesof liquid holdup.Theresultsin Figures4.5and4.6 showa
similar functionalrelationshipbetweenx; and x to thatpredictedby equation
(4.6), but it is seenthat this equationover-estimateshe value of the average
liquid holdup,anddistinctcurvesareobtainedfor eachvalueof the power-law
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index (n) and the superficial velocity of the liquid. A detailed examination
of the voluminous experimental results reported by different investigators
[Oliver and Young-Hoon, 1968; Faroogi and Richardson, 1982; Chhabra and
Richardson, 1984] reveals the following features:

(i) For a given value of the power-law indéx), the lower the value of the
liquid superficial velocity(V,), the lower is the average liquid holdup
(see Figure 4.6).

(i) The average liquid holdup decreases as the liquid becomes more
shear-thinning (i.e. lower value of), and the deviation from the
Newtonian curve becomes progressively greater.

This suggests that any correction factor which will cause the holdup data
for shear-thinning fluids to collapse onto the Newtonian curve, must become
progressively smaller as the liquid velocity increases and the flow behaviour
index, n, decreases. Based on such intuitive and heuristic considerations,
Farooqi and Richardson [1982] proposed a correction fagtag be applied

to the Lockhart—Martinelli parametey, so that a modified parametggoq is
defined as:

Xmod = J X 4.7)
VL 1-n
Vi,

and the average liquid holdup is now given simply by replacingith xmod
in equation (4.6), viz.:

where J = < (4.8)

ar = 0.24(xmod)®®  0.01 < Xmoa < 0.5 (4.99)
ar = 0.17% Xmod)>*?* 0.5 < Xmod < 5 (4.9b)
ar = 0.143Xmod)>*? 5 < Xmod < 50 (4.9¢)
1
o = —19 50 < Xmod = 500 (49d)
0.97+
Xmod

V1, is the critical velocity for the transition from laminar to turbulent flow. For a
given power-law liquid (i.e. knowm andr), density and pipe diametdb, V;,_
may be estimated simply by setting the Reynolds number (equation 3.8b) equal
to 2000, i.e.
IOVIZA,_nDn
Reyr = : = = 2000 (4.10)
v <3n +1
8" "m
4n

For both,V, = V,_and/orn = 1, the correction factay = 1.
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In Figure4.7, the experimentally determinedvalues of averageliquid
holdup, «;, are plotted againstthe modified parameterymoq for suspensions
of kaolin in aqueouglycerol (samedataas shownin Figure4.5) andit will
be seenthat they are now well correlatedby equation(4.9).

Equally good correlationsare obtainedfor the experimentaldatafor two-
phaseflow of air and nitrogenwith aqueousand non-aqueoususpensionsf
coal [Farooqi etal., 1980] and china clay particles and aqueoussolutions
of a wide variety of chemically different polymers [Chhabraetal., 1984].
A wide range has been covered (0.14<n <1; 0.1 < xmod < ~200) but
most datahavebeenobtainedin relatively small diameter(3mm to 50mm)
pipes[Chhabraand Richardson1986].

Little is known aboutthe influenceof visco-elasticpropertiesof the liquid
phaseon liquid holdup [Chhabraand Richardson,1986]. However,Chhabra
etal. [1984] usedaqueoussolutionsof polyacrylamide(SeparanAP-30) as
modelvisco-elastidiquids anda preliminaryanalysisof theseresultsindicated
that equation (4.9) consistentlyunderestimatedhe value of liquid holdup.
Infact the experimentalresults for visco-elasticliquid and air lie between
those predictedby equation(4.9) and equation(4.6). It is thus necessaryo
introducean additionalparameteto accountfor visco-elasticeffects.For this
purposea Deborahnumberwas definedas:

AV
))

De (4.11)
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where s, the fluid characteristic time, is deduced from the measurement of
the primary normal stress differendg. Like viscosity, it is generally possible

to approximate the variation &f; with the shear rate over a limited range by
a powerm; law, eg. equation (1.27) i.e.

N1 =m(y)™ (4.12)

which, in turn, allows the fluid characteristic timg to be defined by equation
(1.26):
my  1/(p1—n)
Ar= — 4.13
f om (4.13

Although the use of the no-slip mixture velocity,,, in equation (4.11) is quite
arbitrary, it does account for the enhanced shearing of the liquid brought about
by the introduction of gas into the pipeline. Over the range of conditio8s<0
De < 200 and 2< xmog < 160), the following simple expression provides a
reasonably satisfactory correlation of the available dataxfer, the average
value of liquid holdup for visco-elastic liquids:

0.05

ary = ar (1 10562 4.14)
Xmod

oy is the value of holdup from equation (4.9) in the absence of visco-elastic

effects. Although, equation (4.14) does reduce to the limivgf = o, as

De — 0, extrapolation outside the range quoted above must be carried out

with caution.

Transitional and turbulent flow of liquids (Reyr > 2000)

When the non-Newtonian liquid is no longer in streamline flow (prior to the
addition of gas), i.e. Rgr > 2000, the experimental results for average liquid
holdup agree well with those predicted by equation (4.6) and the original
Lockhart—Martinelli parametey may therefore be used. This is confirmed by
the data shown in Figure 4.8 for a variety of shear-thinning liquids including
polymer solutions, chalk—water slurries, china clay and coal suspensions [Raut
and Rao, 1975; Farooeit al, 1980; Faroogi and Richardson, 1982; Chhabra
et al,, 1984]. Scant results available in the literature suggest that equation (4.6)
underpredicts the value of holdup for visco-elastic liquids in turbulent flow
[Rao, 1997].

Predictive methods for upward vertical flow

The previous discussion on holdup related only to horizontal flow of
gas — non-Newtonian liquid mixtures. Very few experimental results are
available for holdup in vertical upward flow with shear-thinning liquids
[Khatib and Richardson, 1984]. These authors useday attenuation method
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Figure 4.8 Experimental and predicted (equation 4.6) values of liquid
holdup under turbulent conditions for liquid

to measure the average as well as instantaneous values of liquid holdup for
shear-thinning suspensions of china clay and air flowing upwards in a 38 mm
diameter pipe. The average values of liquid holdup in streamline flow are in

line with the predictions from equation (4.9).

Thus, in summary, average liquid holdup can be estimated using equation
(4.6) for Newtonian liquids under all flow conditions, and for non-Newtonian
liquids in transitional and turbulent regiméRey,; > 2000).

For the streamline flow of shear-thinning fluitRe,z < 2000), it is neces-
sary to use equation (4.9). A further correction must be introduced (equation
4.14) for visco-elastic liquids. Though most of the correlations are based on
horizontal flow, preliminary results indicate that they can also be applied to
the vertical upward flow of mixtures of gas and non-Newtonian liquids.

4.2.5 Frictional pressure drop

Generally, methods for determining the frictional pressure drop begin by using
a physical model of the two-phase system, and then applying an approach
similar to that for single phase flow. Thus, in the so-called separated flow
model, the two phases are first considered to be flowing separately and
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allowance is then made for the effect of interfacial interactions. Irrespective
of the type of flow and the rheology of the liquid phase, the total pressure
gradient(—A prp/L) in horizontal flow consists of two components which
represent the frictional and acceleration contribution respectively, i.e.

Aprp Apy Apqy
_ _(_2rs _APa 415
( “ ( 2y (B (4.15)

Both a momentum balance and an energy balance for two-phase flow through
a horizontal pipe may be written as expanded forms of those for single phase
flow. The difficulty of proceeding in this manner is that local values of impor-
tant variables such as in-situ velocities and holdups of the individual phases are
not known and cannot readily be predicted. Some simplification is possible if it
is assumed that each phase flows separately in the channel and occupies a fixed
fraction of the pipe, but there are additional complications stemming from the
difficulty of specifying interfacial conditions and the effect of gas expansion
along the pipe length. As in the case of single phase flow of a compressible
medium, the shear stress is no longer simply linked to the pressure gradient
because the expansion of the gas results in the acceleration of the liquid phase.
However, as a first approximation, it may be assumed that the total pressure
drop can be expressed simply as the sum of a frictional and acceleration
components:

(=Aprp) = (=Apy)+ (=Apa) (4.16)

For upward flow of gas—liquid mixtures, an additional ter(aAp,)
attributable to the hydrostatic pressure, must be included on the right hand
side of equation (4.16), and this depends on the liquid holdup which therefore
must be estimated.

Thus, complete analytical solutions for the equations of motion are not
possible (even for Newtonian liquids) because of the difficulty of defining the
flow pattern and of quantifying the precise nature of the interactions between
the phases. Furthermore, rapid fluctuations in flow frequently occur and these
cannot be readily incorporated into analysis. Consequently, most developments
in this field are based on dimensional considerations aided by data obtained
from experimental measurements. Great care must be exercised, however,
when using these methods outside the limits of the experimental work.

Good accounts of idealised theoretical developments in this field are
available for mixtures of gas and Newtonian liquids [Govier and Aziz, 1982;
Hetsroni, 1982; Chisholm, 1983] and the limited literature on mixtures of gas
and non-Newtonian liquids has also been reviewed elsewhere [Mahalingam,
1980; Chhabra and Richardson, 1986; Bishop and Deshpande, 1986].
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Practical methods for estimating pressure loss

Over the years, several empirical correlations have been developed for the
estimation of the two-phase pressure drop for the flow of gas—liquid mixtures,
with and without heat transfer. Most of these, however, relate to Newtonian
liquids, though some have been extended to include shear-thinning liquid
behaviour. As the pertinent literature for Newtonian fluids and for non-
Newtonian fluids has been reviewed extensively [see references above],
attention here will be confined to the methods which have proved to be most
reliable and have therefore gained wide acceptance.

Gas—Newtonian liquid systems

The most widely used method for estimating the pressure drop due to fric-
tion is that proposed by Lockhart and Martinelli [1949] and subsequently
improved by Chisholm [1967]. It is based on a physical model of separated
flow in which each phase is considered separately and then the interaction
effect is introduced. In this method, the two phase pressure drop due to fric-
tion (—Aprp), is expressed in terms of dimensionless drag raggsor ¢2
defined by the following equations:

2 _ _APTP/L

ér “ApL/L (4.17)
2 _ —Aprp/L
%= ZApo/L (4.18)

These equations, in turn, are expressed as functions of the Lockhart—Martinelli
parametery, defined earlier in equation (4.5). Obviously, the drag ratios are
inter-related sinc@? = x2¢?. Furthermore, Lockhart and Martinelli [1949]
used a flow classification scheme depending upon whether the gas/liquid
flow is nominally in the laminar—laminar, the laminar—turbulent, the turbu-
lent—laminar or the turbulent—turbulent regime. Notwithstanding the inher-
ently fluctuating nature of two-phase flows and the dubious validity of such
a flow classification, the regime is ascertained by calculating the value of the
Reynolds number (based on superficial velocity) for each phase. The flow is
said to be laminar if this Reynolds number is smaller than 1000 and turbu-
lent if it is greater than 2000, with mixed type of flow in the intermediate
zone. Figure 4.9 shows the original correlation of Lockhart and Martinelli
[1949] who suggested that thlg, — x curve should be used for > 1 and

the ¢ — x curve fory < 1. Even though this correlation is based on data for
the air—water system in relatively small diameter pipes, it has proved to be
of value for the flow of other gas—Iliquid systems in pipes of diameters up
to 600 mm. The predictions are well withia30%, but in some cases, errors
upto 100% have also been reported. It is paradoxical that this method has been
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foundto performpoorly for the simplestgeometricsystem,namely,stratified
flow! The mainvirtue of this methodlies, however,n its simplicity andin the
fact thatno prior knowledgeof the flow patternis neededThis is in contrast
to the theoreticalmodelswhich invariably tendto be flow-patterndependent.

Chisholm[1967] has developedan algebraicform of relation betweeng?
and x:

Co 1
=1+ 4 (4.19)
X X

where,for air-watermixtures,the valuesof Cq areasfollows:

Gas Liquid Co
Laminar Laminar 5
Laminar Turbulent 10
Turbulent Laminar 12

Turbulent Turbulent 20

Furthercorrectionis neededf thedensitieof thetwo phasesireappreciably
differentfrom thoseof air andwater[Chisholm,1967]. Extensivecomparisons
betweerthepredictionof equation(4.19)andexperimentabaluesembracingll
thefour regimesshowsatisfactoryagreemenfChhabraandRichardson1986].
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Gas—non-Newtonian liquid systems

As remarked earlier, analytical treatments of two-phase flow are of limited
value and this applies equally for non-Newtonian liquids. The relatively
simple flow patterns, of annular and stratified flow, for power-law liquids
have received some attention in the literature. For annular flow, some workers
have assumed that the thin liquid film at the wall behaves like a laminar
film flowing between two parallel plates [Mahalingam and Valle, 1972] while
others [Oliver and Young Hoon, 1968; Eissenberg and Weinberger, 1979] have
approximated the flow area to be an annulus, with no inner wall. Likewise,
Heywood and Charles [1979] and Bishop and Deshpande [1986] have modified
the Taitel and Dukler’s [1980] idealised model for stratified flow to include
power-law fluids. In most cases, the interface is assumed to be smooth (free
from ripples) and the interfacial friction factor has been approximated by that
for a gas flowing over a solid surface. These and other simplifications account
for the fact that values of pressure drop may deviate from the experimental
data by a factor of up to four. On the other hand, experimental work in this
field has yielded results which can be used to predict pressure drops over a
wide range of conditions. The results obtained with the liquid in laminar flow
(Reyr < 2000 or in turbulent flow(Reyr > 2000 prior to the introduction

of gas will now be treated separately. Shear-thinning fluids are found to
exhibit completely different behaviour from Newtonian liquids in streamline
conditions whereas in turbulent flow, the non-Newtonian properties appear to
be of little consequence.

Laminar conditions

When a gas is introduced into a shear-thinning fluid in laminar flow, the
frictional pressure drop may, in some circumstances, actually be reduced below
the value for the liquid flowing alone at the same volumetric rate. As the
gas flowrate is increased, the two-phase pressure drop decreases, then passes
through a minimum (maximum drag reduction) and finally increases again and
eventually exceeds for the flow of liquid alone. This effect which has been
observed with flocculated suspensions of fine kaolin and anthracite coal and
with shear-thinning polymer solutions occurs only where the flow of liquid
on its own would be laminar. A typical plot of drag rati¢?) as a function

of superficial air velocity is shown in Figure 4.10, for a range of values of
the liquid superficial velocity, and the corresponding values of its Reynolds
number Rgr are given. The liquid is a 24.4% (by volume) kaolin suspension

in water which exhibits power-law rheology. An analysis of a large number
of experimental results identifies the following salient features:

(i) For a liquid with known values ofz, n, p, the value of the minimum
drag ratio(cpf)mm decreases as the liquid velocity is lowered.
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Figure 4.10 Drag ratio data for a 24.4% kaolin-in-water suspension in a
42 mm diameter pipe

(ii) The superficial gas (air) velocity needed to achieve maximum drag reduc-
tion increases as the liquid velocity decreases.

(iii) The higher the degree of shear-thinning behaviour (i.e. the smaller the
value ofn), the greater is the extent of the drag reduction obtainable.

If, for a given liquid (i.e. fixed values of andn for a power-law fluid), the
drag ratio is plotted against the no-slip mixture veloclty,;(= V, + V), as
opposed to the superficial gas velocity, it is found that the minimaZirll
occur at approximately the same mixture velocity, irrespective of the liquid
flowrate (see Figure 4.11). Furthermore, this minimum always occurs when
Reyr (based orVy, rather thanV,) is approximately 2000, corresponding to
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Figure 4.11 Drag ratio datafor a 24.4%(by volume)kaolin-in-water
suspensioras a functionof mixture velocity

the upperlimit of streamlineflow. This suggestshatthe valueof ¢? continues
to fall progressivelyuntil the liquid is no longerin streamlineflow. Thus, at
low flowratesof liquid, moreair canbe injectedbeforethis point is reached.

At first sight, it seemsratheranomaloughat on increasingthe total volu-
metric throughputby injection of air, the frictional pressuredrop canactually
be lower than that for the flow of liquid alone.Also, the magnitudeof the
effect canbe very large, with valuesof ¢? aslow as0.2 (obtainedwith highly
shear-thinningchina clay suspensions),e. the two-phasepressuredrop can
be reducedby a factor of 5 by air injection. The mechanisnby which this
canoccurmay be illustratedusing a highly idealisedmodel. Supposehat the
gasandliquid form a seriesof separateplugs, as depictedschematicallyin
Figure4.12.
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Figure 4.12 Idealisedplug flow model

For the two-phaseflow, the total pressuradropwill be approximatelyequal
to the sumof the pressuralropsacrosghe individual liquid slugs,the pressure
drop acrossthe gas slugs being negligible in comparisonwith that for the
liquid, slugs.For a power-lawfluid in laminar flow at a velocity of V, in
a pipe of length L, the pressuredrop (—Ap;.) is given by (equation3.6,
Chapter3):

—Ap, =ALV! (4.20)

whereA; is a constantfor a given pipe (D) andfluid (m andn).

The additionof gashastwo effects:the lengthof pipein contactwith liquid
is reducedandthe velocity of the liquid plug is increasedIf A; (definedby
equation4.3) is the input volume fraction of liquid, thenin the absenceof
slip, the wettedlengthof pipeis reducedo LA; andthe velocity of the liquid
plug is increasedo V. /A;. Thetwo phasepressuredropis:

—Aprp =A1(LA)(Vi/AL)" (4.21)
The dragratio, ¢f, is obtainedas

—Aprp

= ()" 4.22
“Ap (Ar) (4.22)

¢ =
For a shear-thinningluid n < 1 and A, < 1, the dragratio ¢? mustbe less
than unity, and hencea reductionin pressuredrop occursas a result of the
presenceof the air. The lower the value of n andthe larger the value of A,
the greaterwill the effects be, and this situationis qualitatively consistent
with experimentabbservationslt shouldbe notedthatany effectsdueto the
expansiorof the gasin the pipeline havenot beenconsiderechere.
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This simple model is likely to under-estimate the magnitude€-eA prp)
and ¢? because the liquid and gas will not form idealised plugs and there
will be some slip between the two phases. It has been found experimentally
that equation (4.22) does apply at low air velocities1 m/s), but at higher
gas flowrates the model holds progressively less well. In the limiting case of
a Newtonian liquid(n = 1), equation (4.22) yield$? = 1, for all values of
Az and the two phase pressure drop would be unaffected by air injection. In
practice, because gas will always disturb the flow, there will be additional
pressure losses, and the two-phase pressure drop will always increase, with
the introduction of a gas.

Drag reduction can also occur with a fluid exhibiting an apparent yield
stress [Farooggét al., 1980].

Maximum drag reduction (MDR)

As noted earlier, for a given liquid and pipe, the minimum valuegdf
occurs at a constant value of the no-slip mixture velocity which corresponds
approximately to Rgg ~ 1000—2000. This implies thaf attains a minimum
value(qsf)min when the flow in the liquid plug no longer remains streamline.
Values of (¢§)min have been correlated against the correction fadter
(V./V)¥" introduced earlier in connection with the prediction of liquid
holdup. Thus:

(@7 dmin = J*2% 06<J<1 (4.233)
(¢7)min = 1 - 0.03157 2% 035<J <06 (4.23b)
(¢2)min = 1.97 0.05<J <0.35 (4.230)

Figure 4.13 compares the predictions from equation (4.23) with representa-
tive experimental results for both aqueous polymer solutions and particulate
suspensions in pipes of diameters up to 200 mm. It will be noted that equation
(4.23) is particularly useful in estimating, a priori, the minimum achievable
drag ratio as it requires a knowledge only of the properties of ligpijdz, n)

and the operating condition®, V;); the corresponding gas velocity is calcu-
lated as(V,, — V).

General method for estimation of two phase pressure loss

The discussion so far has related to the drag reduction occurring when a
gas is introduced into a shear-thinning fluid initially in streamline flow.
A more general method is required for the estimation of the two phase
pressure drop for mixtures of gas and non-Newtonian liquids. The well-known
Lockhart—Martinelli [1949] method will nhow be extended to encompass
shear-thinning liquids, first by using the modified Lockhart—Martinelli
parameter,ymog (€quation 4.8). Figure 4.14 shows a comparison between



98T

SaLISNpU| SS8201d Y] Ul MO| UBIUOIMSN-UON

1
| n m(Pa.s™) kaolin o W
+ 6 .32 ] suspensions W
8= X 5 67 |in A
O 4 21 65% by wit
T glycerol
m .35 6.7 _|
6 W 3% 134 |
A 3 208 |45% by wit ~ Faroogi and Richardson [1982]
glycerol
5— A 27 7.62
y 257 16.2 | AQA x
E4r W 267 51 o %,
S O 175 423 |water A *
) *
T3-@® .16 10.95 &F
2 § A
£ o 14 28.6 x
g € aqueous anthracite suspensions 7S
£ reference .......... [Farooqi °
£ etal., 1980]
= 2l X bentonite paste e/ v
reference ........ [Carleton -
etal., 1973] / Slope=1
 aqueous kaolin * L equation (4.23)
suspensions - 207 mm dia
pipeline reference .......... [Chhabral /
etal., 1983]
A polymer solutions [Chhabra /
etal., 1984] /
1 | | |

'0.02 01
Dimensionless factor, J = [VL/VLC]l_"

Figure 4.13 Correlation for minimum drag ratio



Flow of multi-phase mixtures in pipes 187

10
9
3 ‘
7
6 —
5 Lockhart —Martinelli
correlation
4 N
. L N NV
D\N AN
o N
N
2 CLN A >
. N TR~
~ N I~~~
© \ \\\{D\D‘\ [~
- s S e
2 N =
E 1 ™ A P, N
g 9 o T
5 8 7‘7\,-\_(\ Ot
7
6
5
4
3
2
oV, =0244ms1 AV, =0.488mst
oV,=0732ms? + V,=0976ms?
01 I N
1 2 3 4 56 78910 2 3 4 5 6 789100

Modified Lockhart—Martinelli parameter, xpqq

Figure 4.14 Drag ratio versusmodifiedLockhart-Martinelli parameterfor
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the Lockhart-Martinelli correlationandtypical experimentameasurementsf
two phasepressuredrop for air anda chinaclay suspensiorfm = 0.67Pas”,
n = 0.50) flowing cocurrentlyin a 42mm diameter horizontal pipe. The
conditionsare suchthat the gaswould be in turbulentflow and the kaolin
suspensiorin streamlineflow if eachphasewere flowing on its own. The
value of J rangesfrom 0.16 to 0.65 for theseconditions.Evidently, as the
liquid velocity increasesthe experimentalvalues of the drag ratio move
towardsthe correlationof Lockhartand Martinelli [1949], approximatechere
by equation(4.19) with x replacedby xmog. INdeed,whena large amountof
dataculled from varioussourcesn the literatureis analysedn this fashion,
the deviationsfrom the predictionsof equation(4.19) rangefrom +60% to
—800%, the experimentalvalues being generally overestimatedBasedon
theseobservationsPziubinski and Chhabra[1989] empirically modified the
dragratio to give

(62)mod = ¢2/J (4.24)
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Theresultsshownin Figure 4.14arere-plottedin Figure 4.15usingthe modi-
fieddragratio, (¢>§)mod andthe modifiedLockhart-Martinelli parameterymog;
datapoints are now seento straddlethe original correlationof Lockhartand
Martinelli [1949], i.e. equation(4.19).Indeed this approachreconcilesnearly
1500datapointsrelatingto thestreamlindlow of liquid with anerrorof £40%
which is comparablewith the uncertaintyassociateavith the original correla-
tion for Newtonianliquids. The validity of this approachthasbeentestedover
the following rangesof conditionsas:0.10 < n < 0.96; 2.9 < D < 207mm;
017<V;, <2m/s;011< Vg < 23m/s.

It is emphasisedhowever thatbecausdhe adaptatiorof the correlationfor
non-Newtoniarfluids is entirely empiricalandthatthe samefactorJ appears
in both abscissaand ordinate,greatcaution must be exercisedin using this
methodoutsidethe limits of the variablesemployedin its formulation.

Turbulent flow

For both Newtonianandnon-Newtoniariquids in turbulentflow, the addition
of gasalwaysresultsin anincreasein the pressuredrop and gives valuesof
drag ratio, ¢, in excessof unity. Using x, both the graphical correlation
of Lockhart and Martinelli in Figure4.9 and equation(4.19) satisfactorily
representhe data,asillustratedin Figure4.16for turbulentflow of both gas
andliquid, asalsoarguedrecentlyby Rao[1997].

In a recent study, Dziubinski [1995] has put forward an alternative
formulation for the predictionof the two-phasepressuredrop for a gasand
shear-thinnindiquid mixturein the intermittentflow regime.By analogywith
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the flow of single phasefluids, he introduceda loss coeficient A definedas:

7,,pD?
12
For power-lawfluids in streamlineflow, Dziubinski’'s expressiorfor the drag
ratio is:
o — 1+1.036x 10 *Rerp)t2° | |
L 141.036x 104(Re )10
where A, is the input liquid fraction, equation(4.3), and the two Reynolds
numbersin equation(4.26) are definedas:

pVIZVI—n Dn

3n+1 "
811—1
m < 4n

A= (4.25)

(4.26)

Reyp = (4.27)
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and Re is based on the superficial velocity of the liquid. Similarly, for the
turbulent flow of gas/pseudoplastic liquid mixturd®erp > 2000) his expres-
sion in terms of the loss coefficietrp is:

Arp = 0.0131, A™° exp(1.745A — 0.6341,)(RE,)M°  (4.28)

3 1
where A= "t , and
4n
R€;, = A’Rerp

Attention is drawn to the fact that the valuesmfandn for use in turbulent
region are deduced from the data in the laminar range at the valy8¥ ofD)

which is only thenominal shear rate at the tube wall for streamline flow,
and thus this aspect of the procedure is completely empirical. Dziubinski
[1995] stated that equation (4.26) reproduced the same experimental data as
those referred to earlier with an average errof-d5%, while equation (4.28)
correlated the turbulent flow data with an error#25%. Notwithstanding the
marginal improvement over the method of Dziubinski and Chhabra [1989],
it is reiterated here that both methods are of an entirely empirical nature and
therefore the extrapolation beyond the range of experimental conditions must
be treated with reserve.

More recently, based on the notion of the fractional pipe surface in contact
with the liquid, Kaminsky [1998] has developed a new method for the predic-
tion of the two-phase pressure drop for the flow of a mixture of gas and a
power-law fluid. This method is implicit in pressure gradient (and therefore
requires an interative solution) and also necessitates additional information
about the fraction of the pipe surface in contact with liquid which is not
always available.

Vertical (upward) flow

The interpretation of results for vertical flow is more complicated since they are
strongly dependent on the in-situ liquid holdup which , in turn, determines the
hydrostatic component of the pressure gradient. Khatib and Richardson [1984]
reported measured values of the two-phase pressure drop and liquid holdup for
the vertical upward co-current flow of air and aqueous china clay suspensions
in a 38 mm diameter pipe. Representative results are shown in Figures 4.17 and
4.18 for air—water and air—china clay suspensions, respectively. In all cases,
as the air flow rate is increased, the total pressure gradient decreases, passes
through a minimum and then rises again. Although the minimum pressure
gradient occurs at about the same value of the no-slip mixture velocity as in
horizontal flow, it has no connection with the laminar—turbulent transition.
There is a minimum in the curve because, as the gas flow rate is increased,
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Figure 4.17 Total pressure gradient for the upward flow of air—water
mixtures in a 38 mm diameter pipe

the holdup of liquid decreases, but the frictional pressure gradient increases
due to the higher liquid velocities.

The frictional pressure drop may be estimated by subtracting the hydrostatic
component (calculated from the holdup) from the total pressure gradient, as
shown in Figure 4.19. It will be seen that under certain conditions, particularly
at low liquid flow rates, the frictional component appears to approach zero. For
the flow of air—water mixtures, ‘negative friction losses’ are well documented
in the literature. This anomaly arises because not all of the liquid present in the
pipe contributes to the hydrostatic pressure, because some liquid may form a
film at the pipe wall. This liquid is sometimes flowing downwards and most of
its weight is supported by an upward shear force at the wall. The drag exerted
by the gas on the liquid complements the frictional force at the pipe wall.
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It is, in principle, possibleto split the liquid holdup, measuredat a given
position,into two componentspneassociategredominantlywith liquid slugs
and the other with liquid films at the walls which do not contributeto the
hydrostaticpressure.Then, using the effective hydrostaticpressurea more
realistic value for the frictional pressuredrop can be obtained.Becauseit
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is not possibleto make sufficiently accuratemeasurementsf the separate
componentf the liquid holdup, therewill be large errorsin the amended
friction termscalculatedin this fashion.

4.2.6 Practical applications and optimum gas flowrate for maximum
power saving

Dragreductionoffersthe possibility of loweringboththe pressuralropandthe
powerrequirementsn slurry pipelines.Air injection canbe used,in practice,
in two ways:

(i) To reducethe pressuredrop, and hencethe upstreampressurein a
pipeline,for a given flow rate of shear-thinnindiquid.
(i) To increasethe throughputof liquid for a given value of pressuredrop.
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Air injection can also be beneficial because it may be easier to re-start pumping
after a shutdown as the pipe will not be completely full of slurry. On the other
hand, if the pipeline follows an undulating topography, difficulties can arise
from air collecting at the high points.

Air injection may sometimes be an alternative to deflocculation before
pumping. In general, less power is required to pump deflocculated slurries
but highly consolidated sediments may form on shutdown and these may be
difficult to resuspend when pumping is resumed. Furthermore, deflocculating
agents are expensive and may be undesirable contaminants of the product.

However, additional energy will be required to compress the air to a pres-
sure in excess of the upstream pressure. Thus, the circumstances under which
there will be a net saving of power for pumping will be strongly dependent
on the relative efficiences of the slurry pump and the gas compressor, and on
the specific plant layout. Dziubinski and Richardson [1985] have addressed
this problem and the salient features of their study are summarised here. They
introduced a power saving coefficient, defined as

y = ML= Nre = No (4.29)

Np
where N; is the power needed for pumping the slurry on its ouyp
is the power for pumping the two-phase mixture avig is the power for
compressing the gas prior to injection into the liquid.

It can be readily seen that the power saving coefficient can be expressed
as a function of the efficiences of the pump and the compressor, the super-
ficial velocities of the gas and the slurry and the two-phase pressure drop.
Furthermore, Dziubinski and Richardson [1985] noted that the conditions for
the maximum drag reduction coincide approximately with the range of condi-
tions over which the simple plug model applies. Thus, they expressed the
two phase pressure drop and theAp;) term appearing in the expression
for ¢ in terms of V; and V. Finally, for a given slurry 4, m, n), pump
and compressor efficiences, pipe dimensiabs ) and the slurry flow rate
(V1), they obtained the optimum value ¥f; by setting dy/dV = 0. Based
on extensive computations, they concluded that, unless the efficiency of the
compressor exceeds that of the pump, there will be no net power saving. Also,
the liquid flow rate must be well into laminar regime and it must be moderately
shear-thinning(n < ~0.5). Finally, the maximum power saving occurs at a
much lower gas velocity than that needed for the maximum drag reduction.
Reference must be made to their original paper for a detailed treatment of this
aspect of two-phase flow.

Example 4.1

Air is injected into a 50 m long horizontal pipeline (of 42 mm diameter) carrying a
china clay slurry of density 1452 kghxiThe rheological behaviour of the slurry follows
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the power-law model, witlm = 5.55 Pas' andn = 0.35. The volumetric flowrates of

air and liquid are 7.48 fith and 1.75 rivh respectively. The air is introduced into the
pipeline at 20C and at a pressure of 1.2 bar. Ascertain the flow pattern occurring in
the pipeline. Estimate (a) the average liquid holdup at the midpoint (b) the pressure
gradient for the two-phase flow (c) the maximum achievable drag reduction and the
air velocity to accomplish it.

Solution
Cross-sectional area of pipe %Dz

- %(42 x 10°3)2 = 1.38 x 103 m?

Superficial liquid velocityV, = 175 X ! —
3600 1.38x 10
=0.35m/s
Superficial gas velocity; = 748 X 1 —
3600 1.38x 10
=15m/s

From Figure 4.2, it can be seen that the flow pattern is likely to be of the intermittent
type under these conditions.
For liquid flowing on its own, the power-law Reynolds number,

pV12‘7nDn

— L2 (eq.(38b)
o (3n +1 a

Reyr =

4n
_1452x (0.35*7°%(42 x 1072)°%

3x035+1 %%
803571 555 <4
( ) 4 x 0.35

=516

] the flow is streamline and the Fanning friction factor is given by equation (3.8a),

16 16

= - — —-031
7= Ren ~ 516
2 2
_Apu_ 2fpVi _ 2x031x1452x 0357 _ 0o
L D 0.042

For air alone, one can follow the same method to estingat& ps/L). The viscosity
of air at 20C is 18 x 10-5Pas and the density is estimated by assuming it to be an
ideal gas, at mean pressure of 1.1 bar:

_pM _ 11x1.013x 10’ x 29
T RT 8314x 293

G = 1.33kg/n?
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pcVeD  133x15x42x10°°
UG 1.8 x 10°°
= 4460

[J Reynolds numbeRe; =

and the friction factor is calculated using the Blasius formula
f = 0.079Rg® = 0.0794460 % = 0.0096

0 _Ape _ 2fpVs _ 2x0.0096x 133 x 1.5°
L D 0.042

The Lockhart—Martinelli parametey;, is evaluated as:

= 1.35Pa/m

—Ap /L 2630
—Apg/L 135

Since the liquid is in laminar flow, the correction factbrmust be calculated. The
critical liquid velocity corresponding to Rg = 2000 is estimated from the relation
p(VLC )Z—nDn

o (Sn +1
4n

Reyr = = 2000

Substituting forp, D, m andn, solving forV,,

3x03541 %% 1/(2-0.35)
2000(8)%351(5.55 (7
Vie = R W Y X
Le = 1452 x (0_042)0.35
=321m/s
035 1035
S =T = (3_21 =0.237

U Xmod = xJ = 44.2 x 0.237= 1046
The average liquid holdup is given by equation (4.9c):
o = 0.143%%2 = 0.143 x 10.46°%2 = 0.38

mod —

i.e. on average 38% of the pipe cross-section is filled with liquid. This fraction will,
however, continually change along the pipe length as the pressure falls.

The two-phase pressure gradient is estimated using equation (4.19) in tegms of
and ¢Emod. Since the liquid is in streamline flow and the gas is in turbulent regime,
C =12 and
12 1 12 1

t g =lt et =216
Xmod  (Xmod)? 1046 ' (10.46)2

or ¢} =Jgf ,=0237x216=051

¢Em0d = 1 +

Hence,—Aprp/L =051 x (—Ap;/L) = 0.51 x 2630= 1340 Pa/m.
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[] Total pressure drop over 50 m pipe lengtfl340x 50 = 67 kPa.
It is also of interest to contrast this value with the prediction of equation (4.26).
Here,Vy =V, + Vs =0.35+1.50= 1.85m/s.

1452x 1.85%7035  0.042°%5

O Rep = =805
g 0351 sop, (3X035+1 °%F
’ 4 % 0.35
1% 0.35
and AL = L — =0.189
Ve+V, 154035
From equation (4.26),

1+1.036x 10~* x 805-2%

o= XD x (0.189°% = 0.47

1+ 1.036x 107 x (51.6)12%°

O (—Aprp)/L = 0.47 x 2630= 1230 Pa/m which is about 10% lower than the value
calculated above. However, both these values of 1340 Pa/m and 1230 Pa/m compare
well with the corresponding experimental value of 1470 Pa/m.

The maximum achievable drag reduction is calculated by using equation (4.23c):

¢, =197 =19x0237=045

The corresponding air velocity is obtained simply by subtracting the valiwg dfom
V5., i.e.321—0.35=2.86m/s.

However, for the relative efficiences of the slurry pump and the compressor in the
ratio of 1 to 2, the approach of Dziubinski and Richardson [1985] yields the optimum
gas velocity to be 0.2m/s, which is much smallar than the value of 2.86 m/s for
maximum drag reduction.

4.3 Two-phase liquid-solid flow (hydraulic transport)

Hydraulic transport is the conveyance of particulate matter in liquids. Although
most of the earlier applications of the technique used water as the carrier
medium (and hence the term hydraulic), there are now many industrial plants,
particularly in the minerals, mining and power generation industries, where
particles are transported in a variety of liquids which may exhibit either
Newtonian or non-Newtonian flow behaviour. Transport may be in vertical
or horizontal or inclined pipes, but in the case of long pipelines, it may follow
the undulations of the land over which the pipeline is installed. The diameter
and length of the pipeline and its inclination, the properties of the solids (size,
shape and density) and of the liquid (density, viscosity, Newtonian or non-
Newtonian), and the flow rates all influence the nature of the flow and the
pressure gradient. Design methods are, in general, not very reliable, especially
for the transportation of coarse particles; Therefore, the estimated values of
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Table 4.1 Important variables in slurry pipelines

Component Parameters

Solids: shape, size and size distribution, density,
strength, abrasiveness

Liquid: type of liquid (Newtonian, pseudoplastic,
viscoplastic), corrosive nature, density,
rheological properties and their
temperature dependence, stability

Pipeline: diameter and length, its orientation,
fittings, valves, material of construction

Operating conditions: flow rates of liquid and solids,
concentration, type of pump, etc.

the pressure drop and power should be treated with caution. In practice, it is

more desirable and important to ensure that the system operates reliably, and
without the risk of blockage and without excessive erosion, than to achieve

optimal operating conditions in relation to power requirements.

Table 4.1 lists the most important variables which must be considered in
designing the facility and in estimating pressure drop and power consumption.

Itis customary to divide suspensions into two broad categories — fine particle
suspensions in which the particles are reasonably uniformly distributed in the
liquid with little separation; and coarse suspensions in which particles, if denser
than the liquid, tend to separate out and to travel predominantly in the lower
part of a horizontal pipe (at a lower velocity than the liquid); in a vertical pipe
the solids may have an appreciably lower velocity than the liquid. Although,
this is obviously not a very clear cut classification and is influenced by the flow
rate and concentration of solids, it does nonetheless provide a convenient initial
basis for classifying the flow behaviour of liquid—solid mixtures.

Fine particles usually form fairly homogeneous suspensions which do not
separate to any significant extent during flow. In high concentration suspen-
sions, settling velocities of the particles are small in comparison with the liquid
velocities (under normal operating conditions) and in turbulent flow, the eddies
in the liquid phase keep particles suspended. In practice, turbulent conditions
will prevail, except when the liquid has a very high viscosity (such as in
coal—oil slurries) or exhibits non-Newtonian behaviour. In addition, concen-
trated flocculated suspensions are frequently conveyed in streamline flow when
they behave essentially as single phase shear-thinning liquids (e.g. flocculated
kaolin and coal suspensions).
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Depending upon its state, the suspension may exhibit Newtonian or
non-Newtonian behaviour. It is often a good approximation to treat it as
a pseudo-homogeneous single phase systems by ascribing to it an effective
density and viscosity. Thus, one can use the methods outlined in Chapter 3
to estimate the pressure gradient in terms of the flow rate. Attention will
now be focussed on the transportation of coarse particles in non-Newtonian
carrier media which offer two advantages when the flow is streamline: firstly,
the effective or apparent viscosity of a shear-thinning fluid is a maximum
at the centre of the pipe and this facilitates the suspension of the particles
(though some of this effect may be offset by the propensity for migration across
streamlines and the enhanced settling velocities in sheared fluids); secondly,
the apparent viscosity will be minimum at the pipe wall, as a result of which
the frictional pressure gradient will be low and will increase only relatively
slowly as the liquid velocity is raised. Furthermore, if the fluid exhibits a yield
stress, suspension of coarse particles in the central part of the pipeline will be
further assisted. In practice with the transport of particulate matter of wide size
distribution (e.g. coal dust to large lumps), the fine colloidal particles tend to
form a pseudo-homogeneous shear-thinning medium of enhanced apparent
viscosity and density in which the coarse particles are conveyed. On the
other hand, the heavy medium may consist of fine particles of a different
solid, particularly one of higher density such as in the transport of cuttings
in drilling muds in drilling applications. In such a case, it is necessary to
separate and re-cycle the heavy medium. The use of heavy carrier media
can be advantageous when the coarse particles are transported in suspension
rather than as a sliding bed and may enable operation to be carried out under
streamline flow conditions.

In spite of these potential benefits, only a few studies dealing with the
transport of coarse particles in heavy media have been reported. Charles and
Charles [1971] investigated the feasibility of transporting @h6sand parti-
cles in highly shear-thinning clay suspensioiis24 < rn < 0.35) and they
concluded that energy requirements could be reduced by a factor of six when
using heavy media as opposed to water. Similarly, Ghosh and Shook [1990]
reported slight reduction in head loss for the transport of 80&and particles
in a 52 mm diameter pipe in a moderately shear-thinning carboxymethyl cellu-
lose solution; however, no reduction in head loss was observed for 2.7 mm
pea gravel particles, presumably because these large particles were conveyed
in the form of a sliding bed. Indeed Duckwor#t al. [1983, 1986] success-
fully conveyed coal particles (up to 19 mm) in a pipe of 250 mm diameter in a
slurry of fine coal which behaved as an ideal Bingham plastic fluid. However,
in none of these studies has an attempt been made to develop a general method
for the prediction of pressure gradient in such applications.

In an extensive experimental study, Chhabra and Richardson [1985]
transported coarse gravel particles (3.5, 5.7, 8.1mm) in a 42mm diameter
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horizontal pipe in a variety of carrier fluids, including Newtonian liquids of
high viscosity, pseudoplastic china clay suspensions and polymer solutions.
However, a majority of the coarse particles were seen to be transported in
the form of a sliding bed along the bottom of the pipe while the liquid flow
could be either streamline or turbulent. In this mode of hydraulic transport, the
resistance to motion of bed of particles due to friction between the solids and
the pipe wall is balanced by the force due to the hydraulic pressure gradient
and, following the procedure of Newit al. [1955], a force balance gives:

k1yCQ(ps — pr)g = isOpLg (4.30)

wherey is the friction coefficient between solids and pipe walljs the total
volume of suspension of concentratiorin the control volumek; is a system
constant ands is the hydraulic gradient attributable to the presence of solids.
Upon rearrangement,

s — PL

is = kyyC (p — kyC(s — 1) (4.31)

PL

wheres = (ps/pr) and  is =i —iy (4.32)

wherei andi, are the hydraulic pressure gradients, respectively for the flow
of mixture (total) and of liquid (heavy medium) alone at the same volumetric
rate. Substituting; = 2f,V?/gD and eliminatingis, yields:

i—ip  kiyC(s—1)
ir  2fLV?/gD

| — i DC(s —1
or f, (i . ir) =k2g (s2 )
155 \%

whereD is the pipe diameter and is the volume fraction of coarse solids,
andk; is a constant to be determined from experimental results. Although, in
equation (4.30)C should be the in-situ concentration but in view of the fact
that such measurements are generally not available it is customary to replace
it with the concentration of solids in the discharged mixture.

From equation (4.33), it would be expected that in the moving bed regime,
S —ip)/ip would vary linearly with the concentratio@ in the discharged
mixture. Chhabra and Richardson [1985] found that the following modified
correlation represented their own data and those of Kenchington [1978] (who
transported 75(0m sand particles in 13 and 25 mm pipes in a kaolin suspen-
sion) somewhat better than equation (4.33) as seen in Figure 4.20:

(4.33)

i—ip gD(s — 1)
=055 >~ 434
< ClL fL V2 ( )

There are insufficient reliable results in the literature for expressions to be
given for the pressure gradients in other flow regimes.
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Figure 4.20 Overall representation of results for transport in heavy media
Example 4.2

A china clay slurry 2 = 9.06 Pas; n = 0.19, p, = 1210kg/ni) is used to transport
5mm gravel particles (nearly spherical) of density 2700 Kgah a mean mixture
velocity of 1.25m/s in a horizontal pipe of 50 mm diameter. If transport is in the sliding-
bed regime and the discharged mixture contains 22% (by volume) gravel particles.
Estimate the pressure gradient for the mixture flow.

Solution

First, the value of the friction factof , for the flow of liquid alone at the same average
velocity is estimated. The Reynolds number is given by eg. (3.8b):

oLV D! _ 1210x (125 %950 x 107%)*1°
1 n 0.19
w4m<%*' 3x019+1
4n 4%0.19

=532

Reyr =

(8°1%-1)(9.06) (
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As the flow of the china clay slurry is laminar,

16 16
= = -003

! Reyr 532

. 2fLV?  2x0.03x 1.2%

7 = =

LT eD 9.81x 50x 103

= 0.192m of china clay slurry per m of pipe

Substituting values in equation (4.34),

Cir oD(s—1) 125
=i+ o.55% %
L
0.55x 0.22 x 0.192

0.03

2700 125
9.81x 50x 1073 (— -1

=0.192+

1210
X

1.25

= 0.192+ 0.236= 0.428 m of china clay slurry/m

A
or (_Tp —ix p x g=0.428x 1210x 9.81 = 5080 Pa/m

Note that about (0.236/0.428), i.e. 55% of the total pressure drop is attributable to the
presence of coarse gravel particles which in this flow regime is independent of the
gravel size.
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4.6 Nomenclature

Dimensions
inM, L, T
C Volumetric concentration of solids in discharged mixture () MOLOTO
C, Constant, equation (4.19) (-) MOLOTO
C, Volume fraction of solid in suspension (=) MOLOTO
D Pipe diameter (m) L
De Deborah number (-) MOLOTO
f Fanning friction factor (-) MOLOTO
g acceleration due to gravity (nf)s LT 2
i pressure gradient (m of liquid/m of pipe length) MOLOTO
J correction factor (=) MOLOTO
L length of pipe (m) L
m power-law consistency coefficient (B3 ML 1772
my power-law coefficient for first normal stress difference (P9.s ML —1T#'-2
! apparent power-law consistency coefficient (F‘z)t.s ML —1T#'-2
n power-law flow behaviour index (-) MOLOTO
n' apparent power-law index (=) MOLOTO
N power (W) ML 2T-3
N1 first normal stress difference (Pa) ML 172
1 index in first normal stress difference, equation (4.12) (-) MOLOTO
—Ap/L pressure gradient (Pa/m) ML —2T-2
0 volumetric flow rate (ri/s) L3171
Reyr Metzner—Reed Reynolds number (=) MOLOTO
s specific gravity of solids (=) MOLOTO
1% superficial velocity (m/s) LTt
Greek letters
o average holdup (-) MOLOTO
y coefficient of friction (=) MOLOTO
7 shear rate(s!) T-1
A input fraction (=) MOLOTO
Af fluid characteristic time, equation (4.13) (s) T
A loss coefficient (—) MOLOTO
p density (kg/m) ML —3
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Dimensions
inM, L, T
m viscosity (Pas) ML —iT-1
@2 drag ratio (-) MOLOTO
% Lockhart—Martinelli parameter (-) MOLOTO
¥ coefficient, equation (4.29) (-) MOLOTO
Ty wall shear stress (Pa) ML —1T-2

Subscripts

a accelerational contribution
f frictional contribution

G gas

g gravitational

L liquid

L. corresponding to liquid Reynolds number of 2000
Lv visco-elastic liquid

M mixture

MDR maximum drag reduction
min minimum

mod modified

s Solid

TP two-phase



Chapter 5
Particulate systems

5.1 Introduction

In many practical applications, we need to know the force required to move
a solid object through a surrounding fluid, or conversely, the force that a
moving fluid exerts on a solid as the fluid flows past it. Many processes for
the separations of particles of various sizes, shapes and materials depend on
their behaviour when subjected to the action of a moving fluid. Frequently,
the liquid phase may exhibit complex non-Newtonian behaviour whose char-
acteristics may be measured using falling-ball viscometry. Furthermore, it is
often necessary to calculate the fluid dynamic drag on solid particles in process
equipment, for example for slurry pipelines, fixed and fluidised beds. Similarly,
in the degassing of polymer melts prior to processing, bubbles rise through
a still mass of molten polymer. Likewise, the movement of oil droplets and
polymer solutions in narrow pores (albeit strongly influenced by capillary
forces) occurs in enhanced oil recovery operations. The settling behaviour of
a particle is also strongly influenced by the presence of other neighbouring
particles as in concentrated suspensions. Furthermore, it is often desirable to
keep the active component uniformly suspended, as in many pharmaceutical
products, paints, detergents, agro-chemicals, emulsions and foams.
Frequently, the particles are in the form of clusters (such as in fixed and
some fluidised beds) and ensembles as in foams, dispersions and emulsions.
However, experience with Newtonian fluids has shown that the hydrodynamics
of systems consisting of single particles, drops and bubbles serves as a useful
starting point for understanding the mechanics of the more complex multi-
particle systems which are not amenable to rigorous analysis. This chapter
aims to provide an overview of the developments in the field of non-Newtonian
fluid—particle systems. In particular, consideration is given to the drag force,
wall effects and settling velocity of single spherical and non-spherical particles,
bubbles and drops in various types of non-Newtonian fluids (particularly based
on power-law and Bingham plastic models). Flow in packed and fluidized beds
and hindered settling are then considered. Detailed accounts and extensive
bibliographies on this subject are available elsewhere [Chhabra, 1986, 1993a,b;
Ghoshet al.,, 1994].
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Unlike the flows considered in Chapter 3 which were essentially
unidirectional, the fluid flows in particulate systems are either two- or three-
dimensional and hence are inherently more difficult to analyse theoretically,
even in the creeping (small Reynolds number) flow regime. Secondly, the
results are often dependent on the rheological model appropriate to the
fluid and a more generalised treatment is not possible. For instance, there
is no ‘standard non-Newtonian drag curve’ for spheres, and the relevant
dimensionless groups depend on the fluid model which is used. Most of the
information in this chapter relates to time-independent fluids, with occasional
reference to visco-elastic fluids.

5.2 Drag force on a sphere

All bodies immersed in a fluid are subject to a buoyancy force. In a flowing
fluid (or in the situation of relative velocity between the fluid and the object),
there is an additional force which is made up of two components: the skin
friction (or viscous drag) and the form drag (due to the pressure distribution)
as shown schematically in Figure 5.1. At low velocities, no separation of the
boundary layer takes place, but as the velocity is increased, separation occurs
and the skin friction forms a gradually decreasing proportion of the total fluid
dynamic drag on the immersed object. The conditions of flow over a spherical
particle are characterised by the Reynolds number; the exact form of the latter
depends upon the rheological model of the fluid.

The total drag force is obtained by integrating the components of the forces
attributable to skin friction and form drag in the direction of fluid motion
(z-coordinate) that act on an elemental area of the surface of the sphere, i.e.

Fp = F, + F, (5.1)
(total drag (skin friction (form drag
force) force) force)

The total drag forceFp = F, + F,, is often expressed using a dimensionless
drag coefficientCp as

Fp

Co= (Lpv?) (xR?)

(5.2)

The shear stress and pressure distributions necessary for the evaluation of the
integrals implicit in equation (5.1) can, in principle, be obtained by solving the
continuity and momentum equations. In practice, however, numerical solutions
are often necessary even at low Reynolds numbers. Since detailed discussions
of this subject are available elsewhere, [Chhabra, 1993a] only the significant
results are presented here for power-law and viscoplastic fluid models.
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Figure 5.1 Schematic representation of flow around a sphere
5.2.1 Drag on a sphere in a power-law fluid

A simple dimensional analysis (see example 5.1) of this flow situation shows
that the drag coefficient can be expressed in terms of the Reynolds number
and the power-law index, i.e.

Cp =f(Ren) (5.3)

Often for the creeping flow regiofRe « 1), the numerical results may be
expressed as a deviation factor2X(in the relation between drag coefficient
and Reynolds number obtained from Stokes law

24
Cp = g X(n) (5.4)
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where Re= pV?"d" /m, d being the sphere diameter. The numerical values
of X(n) for both shear-thinning and shear-thickening fluid behaviour are listed
in Table 5.1 [Gu and Tanner, 1985; Tripattial, 1994; Tripathi and Chhabra,
1995]. Evidently, shear-thinning causes drag incrgXse 1), and drag reduc-
tion (X < 1) occurs in shear-thickenin@g: > 1) fluids.

Table 5.1 Values of Xg)
for a sphere

n X(n)
1.8 0.261
1.6 0.390
14 0.569
1.2 0.827
1.0 1.002
0.9 1.14
0.8 1.24
0.7 1.32
0.6 1.382
0.5 1.42
0.4 1.442
0.3 1.458
0.2 1.413
0.1 1.354

Based on detailed analysis of experimental results and numerical simulations,
the creeping flow occurs in shear-thinning fluids up to about-Re even
though a visible wake appears only when Re for the sphere reaches the value
of 20 [Tripathiet al., 1994].

In the case of creeping sphere motion in Newtonian fluids, the skin and
form friction contributions are in the proportion of 2 to 1. This ratio continu-
ally decreases with increasing degree of pseudoplasticity, the two components
becoming nearly equal at ~ 0.4; these relative proportions, on the other
hand, increase with increasing degree of shear-thickening behaviour.

Numerical predictions of drag on a sphere moving in a power-law fluid
are available for the sphere Reynolds number up to 130 [Tripeitfil,

1994; Graham and Jones, 1995] and the values of drag coefficient are best
represented by the following expressions with a maximum error of 10% for
shear-thinning fluids [Graham and Jones, 1995]:

_352(2)" {1 20.9(2)"
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37(2)"
Cp= % +0.2540.36n 24(2)" < Re< 100(2)" (5.5b)

Experimental results for the drag on spheres are now available for Reynolds
numbers up to about 1000 and for the power-law index in the rar@g<0

n < 1[Chhabra, 1990]. Extensive comparisons between numerical simulations
and experimental data show rather poor agreement in the creeping flow regime
(Re < 1) but this improves somewhat as the Reynolds number increases.
While the exact reasons for these discrepancies are not known, they have
often been attributed to possible visco-elastic behaviour and the choice of
inappropriate values of the power-law constants. On the other hand, the stan-
dard drag curve for Newtonian fluids correlates the drag results in power-law
liquids in the region 1< Re< 1000 within £30%, as seen in Figure 5.2;
this is comparable with the agreement between predictions and data in the
range 1< Re < 100, and confirms that the effect of non-Newtonian viscosity
generally diminishes with increasing Reynolds number.

100 T T T T T T T T

O Chhabra e Dallon Y Le wm Prakash

50 - V Reynolds & Jones o Machac et.al. X Lalietal. —

20

=
[&)] o

Drag coefficient, Cp

N

——— Newtonian curve ~ J ]
R +30% bands = \,
0.2 | | | | | | | |
1 2 5 10 20 50 100 200 500 1000

Reynolds number (Re)

Figure 5.2 Drag coefficientfor spheesin power-lawliquids (seeChhabra
[1990] for original sourcesof data)



Particulate systems 211

Example 5.1

A sphere of diameted moving at a constant velocity through a power-law fluid
(densityp, flow index,n and consistency coefficients) experiences a drag forcgp.
Obtain the pertinent dimensionless groups of variables.

Solution

There are six variables and three fundamental dimensighd ( T ), and therefore
there will be three dimensionless groups. Thus, one can write

Fp="1(p,d,m,n, V)

Writing dimensions of each of these variables:
Fp=MLT 2 m=ML ‘T2

p =ML n = MOLOTO
d=L V=LT"1!

Choosingp, d, V as the recurring set, the fundamental dimensidn& andT can be
expressed as:

L=d; M=pd® T=d/v
and the threer-groups can be formed as:
Fp/(pd®)(@)(V/d), ie. Fp/pVd?

pv27ndn

m

m/(pd®)d d/VY' P ie.

andn. Therefore,

Fp pV27n d"
pV2d? -

, n
m

By inspection,(Fp/pV?d?) « Cp
O Cp = f(Re n) which is the same relationship as given by equation (5.3).

5.2.2 Drag on a sphere in viscoplastic fluids

By virtue of its yield stress, a viscoplastic material in an unsheared state
will support an immersed particle for an indefinite period of time. In recent
years, this property has been successfully exploited in the design of slurry
pipelines, as briefly discussed in section 4.3. Before undertaking an examina-
tion of the drag force on a spherical particle in a viscoplastic medium, the
guestion of static equilibrium will be discussed and a criterion will be devel-
oped to delineate the conditions under which a sphere will either settle or be
held stationary in a liquid exhibiting a yield stress.
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(i) Static equilibrium

The question of whether or not a sphere will settle in an unsheared viscoplastic
material has received considerable attention in the literature [Chhabra and
Uhlherr, 1988; Chhabra, 1993a]. For the usual case where the sphere is acted
upon by gravity, it is convenient to introduce a dimensionless grsuphich
denotes the ratio of the forces due to the yield stress and due to gravity.
Neglecting numerical constants, the simplest definitiory 6§

y—_ %

gd(ps — p)

Thus, small values of will favour motion of a sphere. The critical values of
Y reported by various investigators [Chhabra and Uhlherr, 1988] fall in two
categories. One group, with the valuelfin the range @6+ 0.02, includes
the numerical predictions [Berist al. 1985], observations on the motion/no
motion of spheres under free fall conditions [Ansley and Smith, 1967] and
the residual force upon the cessation of flow [Brookes and Whitmore, 1968].
The second group, witli ~ 0.2, relies on the intuitive consideration that the
buoyant weight of the sphere is supported by the vertical component of the
force due to the yield stress, and on measurements on a fixed sphere held
in an unsheared viscoplastic material [Uhlherr, 1986]. The large discrepancy
between the two sets of values suggests that there is a fundamental difference
in the underlying mechanisms inherent in these two approaches. Additional
complications arise from the fact that the values of yield sttegsobtained
using different methods differ widely [Nguyen and Boger, 1992]. Thus, it is
perhaps best to establish the upper and lower bounds on the size and/or density
of a sphere that will settle in particular circumstances.

(5.6)

(i) Flow field

As in the case of the solid plug-like motion of viscoplastic materials in
pipes and slits (discussed in Chapter 3), there again exists a bounded zone of
flow associated with a sphere moving in a viscoplastic medium, and beyond
this zone, the fluid experiences elastic deformation, similar to that in elastic
solids [Wolarovich and Gutkin, 1953; Tyabin, 1953]. Indeed the difficulty in
delineating the interface between the flow and no flow zones has been the
main impediment to obtaining numerical solutions to this problem. Further-
more, even within the cavity of shear deformation, there is unsheared material
adhering to parts of the sphere surface and this suggests that the yield stress
may not act over the entire surface. The existence of such unsheared material
attached to a moving sphere has been observed experimentally, but it is rather
difficult to estimate its exact shape and size [Valentik and Whitmore, 1965;
Atapattuet al., 1995].

Using the laser speckle photographic method, Atapaitwal [1995]
measured point velocities in the fluid near a sphere moving at a constant speed
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rIR

Bi=3.14, d/D=0.10
Bi=5.53, dD<0.22
Bi=5.53, d/D=0.33

Figure 5.3 Size of sheared cavity around a sphere moving in a viscoplastic
(aqueous carbopol) solution

on the axis of a cylindrical tube containing viscoplastic carbopol solutions.
Notwithstanding the additional effects arising from the walls of the tube,
Figure 5.3 shows the typical size and shape of deformation cavity for a range
of values of the sphere to tube diameter ratio and the Bingham number,
Bi (= t8d/V up). The slight difference between the size of cavity in the radial
and axial directions should be noted, especially for large values of sphere
to tube diameter ratiqd/D), but the deformation envelope rarely extends
beyond 4-5 sphere radii. Nor has it been possible to identify small caps of
solid regions near the front and rear stagnation points.

Example 5.2

A china clay suspension has a density of 1050 Kgand a yield stress of 13 Pa.
Determine the diameter of the smallest steel ball (density 775CkgAhich will
settle under its own weight in this suspension.

Solution

Here p=1050kg/m; p, = 7750kg/ni
To = 13 Pa

From equation (5.6), the sphere will settle onlyrif< ~0.04— 0.05
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70 _ 13 <
gd(ps — p)  9.81xd x (7750— 1050 —
or d=49mm

Substituting values, 0.04

For a less conservative estimatiah= 0.212 may be used. The use of this criterion
givesd = 0.93mm. Thus, a 5mm sphere will definitely settle in this suspension, but
there is an element of uncertainty about the 1 mm steel ball.

(iii) Drag force

The main difficulty in making theoretical estimates of the drag force on a
sphere moving in a viscoplastic medium has been the lack of quantitative
information about the shape of the sheared cavity. Both Bara. [1985]

and Blackery and Mitsoulis [1997] have used the finite element method to
evaluate the total drag on a sphere moving slowly (creeping regime) in a
Bingham plastic medium and have reported their predictions in terms of the
correction factorX, (= CpRez/24) which now becomes a function of the
Bingham number, Bi= t§d/Vup) as:

X = 1+ a(Bi)’ (5.7)

While Beriset al. [1985] evaluated the drag in the absence of walls{i/® =

0), Blackery and Mitsoulis [1997] have numerically computed the valug of
for a range of diameter ratios€©d/D < 0.5 and up to Bi= 1000. For the
case of(d/D) = 0 (i.e. no wall effects)a = 2.93 andb = 0.83. In the range

0 < (d/D) < 0.5, the values ofz and b vary monotonically in the ranges
1.63<a <293 and 083 < b < 0.95, respectively. As the Bingham number
progressively becomes smalléf,would be expected to approach unity. The
higher drag(X > 1) in a viscoplastic medium is attributable to the additive
effects of viscosity and yield stress.

In addition, many workers have reported experimental correlations of their
drag data for spheres falling freely or being towed in viscoplastic media
[Chhabra and Uhlherr, 1988; Chhabra, 1993a; Atapettal, 1995]; most
correlations are based on the use of the Bingham model, though some have
found the three parameter Herschel—-Bulkley fluid model (equation 1.17) to
correlate their data somewhat better [Sen, 1984; Atadtal, 1995; Beaulne
and Mitsoulis, 1997]. At the outset, it is important to establish the criterion
for creeping flow in viscoplastic fluids. For a sphere falling in a Newtonian
fluid (z9 = 0), the creeping flow is assumed to occur up to about-Re
One of the characteristics of creeping flow in a Newtonian fluid is the recip-
rocal relationship between the Reynolds number and drag coefficient, i.e.
CpRe= 24. For Bingham plastic fluids, intuitively this product must be a
function of the Bingham number, as can be seen in equation (5.7). Applying
this criterion to the available data, the maximum value of the Reynolds number,
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Re (= pVd/ug), for creeping flow is given as [Chhabra and Uhlherr, 1988]:
Rémax ~ 100 B (5.8)

Thus, the greater the Bingham number, the higher is the Reynolds number up
to which the creeping flow conditions apply for spheres moving in Bingham
plastic fluids.

As mentioned previously, the three parameter Herschel—Bulkley fluid model
gives a somewhat better fit of the fluid rheology than the Bingham model.
Atapattu et al. [1995] put forward the following semi-empirical correlation
for drag on spheres in Herschel—-Bulkley model liquids:

24 .

Cp= Re(1 + Bi) (5.9)
where the Reynolds number, RepV?"d"/m and the modified Bingham
number, Bt = i /m(V /d)". Equation (5.9) covers the ranges:20< Re <
0.36; 025<Bi* <280; and M3 <n <0.84; and it also correlates the
scant literature data available in the creeping flow region [Sen, 1984;
Hariharaputhiraret al., 1998]. These results are also in line with the numerical
predictions for Herschel—Bulkley fluids [Beaulne and Mitsoulis, 1997].

In the intermediate Reynolds number region, though some predictive expres-
sions have been developed, e.g. see Chhabra [1993a] but most of these data
are equally well in line with the standard drag curve for Newtonian liquids
[Machacet al., 1995].

Thus, in summary, the non-Newtonian characteristics seem to be much more
important at low Reynolds numbers and their role progressively diminishes as
the inertial effects become significant with the increasing Reynolds number.
Therefore, in creeping flow region, equations (5.4), (5.7) and (5.9), respec-
tively, should be used to estimate drag forces on spheres moving in power-law
and Bingham model or Herschel—-Bulkley fluids. On the other hand, at high
Reynolds number, the application of the standard drag curve for Newtonian
fluids yields values of drag on spheres which are about as accurate as the
empirical correlations available in the literature. The Reynolds number defined
aspV?"d" /m for power-law fluids, apVd/up for Bingham plastics and as
(pVZ"d" /m)/(1 + Bi*) for Herschel—Bulkley model fluids must be used in
the standard Newtonian drag curve.

5.2.3 Drag in visco-elastic fluids

From a theoretical standpoint, the creeping-flow steady translation motion of
a sphere in a visco-elastic medium has been selected as one of the benchmark
problems for the validation of procedures for numerical solutions [Walters
and Tanner, 1992; Chhabra, 1993a]. Unfortunately, the picture which emerges
is not only incoherent but also inconclusive. Most simulation studies are
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based on the creeping flow assumption (zero Reynolds number) and take
into account the influence of fluid visco-elasticity on the drag of a sphere
in the absence of shear-thinning behaviour. Early studies suggested a slight
reduction (+5-10%) in drag below the Stokes value, with the amount of drag
reduction showing a weak dependence on Deborah or Weissenberg number
(defined as\ Vv /d). However, more recent simulations [Degand and Walters,
1995] suggest that after an initial period of reduction, the drag on a sphere
in a visco-elastic medium can exceed that in a Newtonian medium at high
values of Deborah number; the latter enhancement is attributed to extensional
effects of the fluid. Both drag reduction (up to 25%) and enhancements (up to
200%) compared with the Newtonian value have been observed experimentally
[Chhabra, 1993a]. However there is very little quantitative agreement among
various workers between the results of numerical simulations and experimental
studies. The former seem to be strongly dependent on the details of the numer-
ical procedure, mesh size, etc, while the experimental results appear to be very
sensitive to the chemical nature, water purity, etc. of the polymer solutions
used. It is not yet possible to interpret and/or correlate experimental results
of drag in visco-elastic fluids in terms of measureable rheological properties.
Aside from these uncertainties, other time-dependent effects have also been
observed. For instance, unlike the monotonic approach to the terminal velocity
in Newtonian and power-law type fluids [Bagchi and Chhabra, 1991; Chhabra
et al.,, 1998], a sphere released in a visco-elastic liquid could attain a transitory
velocity almost twice that of its ultimate falling velocity [Walters and Tanner,
1992].

On the other hand, the effects of shear-thinning viscosity completely over-
shadow those of visco-elasticity, at least in the creeping flow region. Indeed,
a correlation based on a viscosity model, with zero shear viscosity and/or a
characteristic time constant, provides satisfactory representation of drag data
when the liquid exhibits both shear-thinning properties and visco-elasticity
[Chhabra, 1993a].

5.2.4 Terminal falling velocities

In many process design calculations, it is necessary to know the terminal
velocity of a sphere settling in a fluid under the influence of the gravitational
field. When a spherical particle at rest is introduced into a liquid, it acceler-
ates until the buoyant weight is exactly balanced by the fluid dynamic drag.
Although the so-called terminal velocity is approached asymptotically, the
effective transition period is generally of short duration for Newtonian and
power-law fluids [Chhabrat al, 1998]. For instance, in the creeping flow
regime, the terminal velocity is attained after the particle has traversed a path
of length equal to only a few diameters.
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For gravity settling of a sphere at its terminal velocity the drag force on it,
Fp, is equal to the buoyant weight, i.e.

3

wd
Fp= ?(ps - 0)g (5.10

Combining equations (5.4) and (5.10), the terminal velocity of a sphere in a
power-law fluid(Re < 1):

A/n)
gd" ™ (o5 — p)
V= ) (5.11)

In shear-thinning power-law fluids, therefore, the terminal falling velocity
shows a stronger dependence on sphere diameter and density difference than
in a Newtonian fluid.

This method of calculation is satisfactory provided it is known a priori
that the Reynolds number is sma# ). As the unknown velocity appears in
both the Reynolds number and the drag coefficient, it is more satisfactory to
work in terms of a new dimensionless group, Ar, the so-called Archimedes
number defined by:

4
Ar — CDReZ/(Z—n) — égd(2+,1)/(2_,l)(ps _ p)pn/(Z—n)mZ/(n—Z) (512)

For any given sphere and power-law liquid combination, the value of the
Archimedes number can be evaluated using equation (5.12). The sphere
Reynolds number can then be expressed in terms of Amaasl follows:

Re= aAr® (5.13)
.51
a=01 exp(o—5 —0.73n (5.19)
n
.954
b= 0.954 0.16 (5.15)

n

The values calculated from equations (5.13) to (5.15) represent about 400 data
points in visco-inelastic fluids (8 < n < 1; 1 < Re < 1000; 10< Ar < 1(f)

with an average error of 14% and a maximum error of 21%. Finally, in
view of the fact that non-Newtonian characteristics exert little influence on
the drag, the use of predictive correlations for terminal falling velocities in
Newtonian media yields only marginally larger errors for power-law fluids.
Finally, attention is drawn to the fact that the estimation of terminal velocity in
viscoplastic liquids requires an iterative solution, as illustrated in example 5.4.
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Example 5.3

For spheres of equal terminal falling velocities, obtain the relationship between diam-
eter and density difference between particle and fluid for creeping flow in power law
fluids.

Solution

From equation (5.11), the terminal settling velocity of a sphere increases with both its
density and size. For two spheres of different diametgrsiz and densitiespg, and
psg, settling in the same fluid, the factdris a function ofn only (see Table 5.1) and

, am
Va _ di™(psa = p)

Ve dy™(oss — p)

Thus for pseudoplastic fluidg: < 1), the terminal velocity is more sensitive to both
sphere diameter and density difference than in a Newtonian fluid and it should, in
principle, be easier to separate closely sized particles. For equal settling velocities,

dp _ (pSA —p YotD
dy pPsB — P

For n = 1, this expression reduces to its Newtonian counterpart.
Example 5.4

Estimate the terminal settling velocity of a 3.18 mm steel sphetensity=
7780kg/n) is a viscoplastic polymer solution of density 1000 kd/fihe flow curve

for the polymer solution is approximated by the three parameter Herschel—Bulkley
model as:

7 = 3.3+ 3.69()°%
The settling may be assumed to occur in creeping flow region.
Solution

In the creeping flow region, the drag coefficient is given by equation (5.9), i.e.

24
Cp=—(1+Bi* 5.9
D Re( + BI*) (5.9
The other dimensionless groups are:
dgd (ps—p
Cp=-">
P BW( o
V27ndn
Re= )0—
m
Bi* ‘o

= m(vjdy
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Trial and error solution is needed as the unknown velocity appears in all of these
groups. The other values (in S.I. units) are:

! =33Pa; m=369Pas’? n =053 d=318x10°m

ps = 7780kg/m; p =1000kg/mi; g=9.81m/¢

Substituting these values:

0.2813 0.2813
D — 2 or V=
1% Cp
1000)(3.18 x 10°%)%%%y2703
Re— (1000318 10°7) — 1286V14
3.69
. 174 ~ 33x(318x 1073)0%3 _ 0.0424y-053
- n 0.53 -
m(V/d) 3.69x V

Assume a value of = 15mm/s= 15 x 103 m/s.
O Bi* = 0.393; Re= 1286 x (15 x 10°%)47 = 0.0268

Now from equation (5.9), the value dfp:

24 24
=—1A+Bi"Y= ——@1 .
Cp = Re 1+ B = 50268 + 0399
= 1248
0.2813 0.2813
0 the velocity,V = = = 0.015m/s= 15mm/s
Cp 1248

which matches with the assumed value. Also, in view of the small value of the
Reynolds number (Rgx ~ 70, from equation 5.8), the assumption of the creeping
flow is justified.

5.2.5 Effect of container boundaries

The problem discussed so far relates to the motion of a single spherical
particle in an unbounded, or effectively infinite, expanse of fluid. If other
particles are present in the neighbourhood of the sphere, its settling velocity
will be influenced and the effect will become progressively more marked as
the concentration of particles increases. There are three contributory factors.
First, as the particles settle, the displaced liquid flows upwards. Secondly, the
particle experiences increased buoyancy force owing to the higher density of
the suspension. Finally, the flow pattern of the liquid relative to the particles
will be altered thereby affecting the velocity gradients. The sedimentation of
concentrated suspensions in non-Newtonian fluids is discussed in section 5.2.6
while the effect of the vessel walls is discussed here.
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The walls of the vessel containing the liquid exert an extra retarding effect
on the terminal falling velocity of the particle. The upward flow of the
displaced liquid, not only influences the relative velocity, but also sets up
a velocity profile in the confined geometry of the tube. This effect may be
guantified by introducing a wall factoy;, which is defined as the ratio of the
terminal falling velocity of a sphere in a tub¥,,, to that in an unconfined
liquid, V, viz.,

Vin
f= v (5.16)
The experimental determination of the setling velocity in an infinite medium
requires the terminal falling velocity of a sphere to be measured in tubes of
different diameters and then extrapolating these resulig/tb) = 0, as shown
in Figure 5.4 for a series of plastic spheres falling in a 0.5% Methocel solution.
When the settling occurs in the creeping flow regi®e < 1), the measured
falling velocity shows a linear dependence on the diameter ratio and can readily
be extrapolated t@//D) = 0. The available experimental results in Newtonian
and power-law liquids indicate that the wall factgft, is independent of the
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Figure 5.4 Dependence of terminal falling velocity of spheres in a 0.5%
aqueous hydroxyethyl cellulose solutigRe,, > 1) ¢ PVC sphereq\ Perspex
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sphere Reynolds number (based on the measured vel®Gj)yboth at small
(<~1) and large £~1000) values of the Reynolds number [Chhabra and
Uhlherr, 1980; Uhlherr and Chhabra, 1995; Chhadiral., 1996]. Based on an
extensive experimental study in the range of conditios<0n < 1; 0.01 <

Re, < 1000 and(d/D) < 0.5, the wall factor can be empirically correlated
with the diameter ratio and the sphere Reynolds number as [Chhabra and
Uhlherr, 1980]:

A/f) =1/ f)
1/fo) — 1/ f)

where fo and f », the values of the wall factor in the low and high Reynolds
number regions respectively are given by:

=[1+13Re] Y3 (5.17)

d
fo=1- 1.61—) (5.18)
and
4 35
foo=1-3 (5 (5.19

While it is readily recognised that the creeping flow occurs up to about
Re, ~ 1, the critical value of the Reynolds number corresponding to the upper
asymptotic valuef ., is strongly dependent upon the value (@f/D), e.g.
ranging from Rg ~ 30-40 for(d/D) = 0.1 to Re, ~ 1000 for(d/D) = 0.5.
Qualitatively, the additional retardation caused by the walls of the vessel is
less severe is power-law fluids than that in Newtonian fluids under otherwise
identical conditions; the effect becoming progressively less important with the
increasing Reynolds number and/or decreasing diameter ratio. The wall effect
is even smaller in visco-elastic liquids [Chhabra, 1993a].

Sedimenting particles are also subject to an additional retardation as they
approach the bottom of the containing vessel because of the influence of the
lower boundary on the flow pattern. No results are available on this effect
for non-Newtonian fluids and therefore the corresponding expressions for
Newtonian fluids offer the best guide [Cliét al.,, 1978], at least for inelastic
shear-thinning fluids. For instance, in the creeping flow regimedgfid< 0.1,
the effect is usually expressed as

Vi 1

V T 1+165d/L) (520

whereL is the distance from the bottom of the vessel.

5.2.6 Hindered settling

As mentioned earlier, the terminal falling velocity of a sphere is also influenced
by the presence of neighbouring particles.
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In concentrated suspensions, the settling velocity of a sphere is less than
the terminal falling velocity of a single particle. For coarse (non-colloidal)
particles in mildly shear-thinning liquidd. > » > 0.8) [Chhabreet al., 1992],
the expression proposed by Richardson and Zaki [1954] for Newtonian fluids
applies at values of Re: pV2"d" /m) up to about 2:

\%

01—y (5.21)

1%

where Vj is the hindered settling velocity of a suspension of uniform size

spheres at a volume fractiof; V is the terminal falling velocity of a

single sphere in the same liquid, is a constant which is a function of the

Archimedes number andd/D) and is given as [Coulson and Richardson,

1991]:
48—-7
Z-24

where for power-law liquids, the Archimedes number, Ar, is defined by
equation (5.12).

In visco-elastic fluids, some internal clusters of particles form during
hindered settling and the interface tends to be diffuse [Allen and Uhlherr,
1989, Bobbroff and Phillips, 1998]. For 100—-20@ glass spheres in visco-
elastic polyacrylamide solutions, significant deviations from equation (5.22)
have been observed.

= 0.0365 AP%[1 — 2.4(d /D)% (5.22)

Example 5.5

Estimate the hindered settling velocity of a 25% (by volume) suspension girga00
glass beads in an inelastic carboxymethyl cellulose solutior= 0.8 and m =
25Pas") in a 25 mm diameter tube. The density of glass beads and of the polymer
solution are 2500 kg/fand 1020 kg/r respectively.

Solution

The velocity of a single glass bead is calculated first. In view of the small size and
rather high consistency coefficient of the solution, the particle Reynolds number will
be low, equation (5.11) can be used. From Table 5.;,)>% 1.24 corresponding to
n =0.8.

Substituting values in equation (5.11):

n (A/n)
gd" ™ (ps — p)

18mX

V =

9.81 x (200x 10°°)°8+1(2500— 1020 *°

18x 25x 1.24

= 4.97 x 10%m/s or 497pum/s.
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Check the value of Reynolds number, Re:

pVZd"  1020x (4.97 x 10762728200 x 107%)%8
T m 2.5
=193x10" « 1

Re

Therefore, the settling occurs in the creeping flow region and the equation
(5.11) is valid.
The Archimedes number is given by equation (5.12) as:

Ar = ggd(Z—Fn)/(Z—n)(ps _ p)pn/(Z—n)mZ/(n—Z)

= (f x 9.81 x (200x 10 6)@+08)/(2-08)
3

x (2500— 1020)(1020*®/-09) (2 5)2/(08-2)

= 0.000996 4
The value ofZ is evaluated from equation (5.22):
0.27
48-7 200x 1076
= 0.0365x (0.0009964°% 124 ("""
Z—24 25x 10
= 0.000 247
and Z~48
Vo 5
0 —=@1-C
v ( )
or Vo=497x10%x (1—0.25%*8 =1.25x 10 %m/s

This velocity is about a quarter of the value for a single particle.

5.3 Effect of particle shape on terminal falling velocity
and drag force

A spherical particle is unique in that it presents the same projected area to
the oncoming fluid irrespective of its orientation. For non-spherical particles,
on the other hand, the orientation must be specified before the drag force can
be calculated. The drag force on spheroidal (oblates and prolates) particles
moving in shear-thinning and shear-thickening power-law flyidld < n <

1.8) have been evaluated for Reynolds numbers up to 100 [6, 7]. The values of
drag coefficient are given in the original papers [Tripahal, 1994; Tripathi

and Chhabra, 1995] and the main trends are summarised here. For pseudo-
plastic fluids(n < 1), creeping flow occurs for Re up to about 1 (based on
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equal volume sphere diameter) and for dilatant flujds> 1) up to about
0.2-0.5. For a given Reynolds number and aspect ratio (minor/major axis),
the drag on oblates is less than that on a sphere of equal volume whereas for
prolate particles, it is higher. The drag force in the creeping flow region is
higher for shear-thinning fluids than for Newtonian fluids; this is consistent
with the behaviour observed for a sphere. The influence of power-law index,
however, diminishes with increasing particle Reynolds number. The opposite
effect is observed with shear-thickening fluids, i.e. the drag is lower than that
in a Newtonian fluid.

Many workers have measured drag coefficients for particles, including cylin-
ders, rectangular prisms, discs, cones settling at their terminal velocities in
power-law fluids. Work in this area has recently been reviewed [Chhabra,
1996], but no generalised correlation has yet been proposed. A simple equation
which reconciles the bulk of the results for drag on cones, cubes, paral-
lelpipeds, and cylinders (falling axially) settling at terminal condition in power-
law fluids (Re< 150; Q77<n <1; 0.35< ¢ < 0.7) is [Venu Madhav and
Chhabra, 1994]:

325
Cp= %(1 + 2.5R&?) (5.23)

where bothCp and Re| W
of the same volume; corrections were made for wall effects. The predictions
deteriorate progressively as the particle departs from spherical shape, i.e. as
sphericity,vr, decreases.

The scant experimental and theoretical results available for viscoplastic and
visco-elastic fluids have been reviewed elsewhere [Chhabra, 1996].

are based on the diameter of the sphere

5.4 Motion of bubbles and drops

The drag force acting on a gas bubble or liquid droplet will not, in general,
be the same as that acting on a rigid particle of the same shape and size
because circulating patterns are set up inside bubbles and drops. While the
radial velocity at the interface is zero, the angular velocity, shear, and normal
stresses are continuous across the interface for fluid particles and the velocity
gradient in the continuous phase (hence shear stress and drag force) is therefore
less than that for a rigid particle. In the absence of surface tension and inertial
effects (Reynolds numbeg 1), the terminal velocity of a fluid sphere falling

in an incompressible Newtonian fluid, as calculated from the Stokes’ law
(equation 5.11 witmm = 1, X = 1) is increased by a fact@; which accounts

for the internal circulation:

3/ 1436

Q=3 <1 + 155 (5.24)
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where § is the ratio of the viscosity of the fluid in the sphere to that of
the ambient liquid. Clearly, in the limit o8 — oo, i.e. for a solid sphere,

01 =1and ass — 0, i.e. for a bubbleQ; — 3/2. In the intermediate range

of viscosity ratios, the internal circulation effects generally decrease with
increasing value of. With very small droplets, the surface tension forces
nullify the tendency for circulation and the droplet falls at a velocity close
to that of a solid sphere of the same size. Likewise, even small amounts of
surface active agents tend to immobilise the free surface of small fluid parti-
cles, thereby inhibiting internal circulation, and these particles again fall at
velocities similar to those of solid spheres.

Drops and bubbles, in addition, undergo deformation because of the differ-
ences in the pressures acting on various parts of the surface. Thus, when a
drop is falling in a quiescent medium, both the hydrostatic and impact pres-
sures will be greater on the forward than on the rear face; this will tend to
flatten the drop. Conversely, the viscous drag will tend to elongate it.

The deformation of the drop is resisted by surface tension forces and very
small drops (large surface area) therefore remain spherical, whereas large
drops (small surface tension forces) are appreciably deformed and the drag
is increased. For droplets above a certain size, the deformation is so great
that the drag force increases in almost direct proportion to volume and the
terminal velocity is almost independent of size. The literature on the motion
of fluid particles in Newtonian fluids has been thoroughly reviewed by Clift
et al. [1978], the corresponding developments in non-Newtonian fluids are
briefly summarised here.

The drag coefficient for freely falling spherical droplets (or rising gas
bubbles) of Newtonian fluids in power-law liquids at low Reynolds number has
been approximately evaluated and, in the absence of surface tension effects,
it is given by equation (5.4), i.e.

24

CD_-ReXOLS) (5.4)
where the Reynolds number is defined @%2%"d" /m., and the correction
factor X(n, §) now depends on both the power-law index and the ratio of the
viscosities of the dispersed and continuous phases. However, in the case of
gas bubblegs = 0), the correction factoX is a function of the power-law
index alone [Hirose and Moo-Young, 1969]:

13+ 4n — 8n?
X =on3n=3/2 ~~1 7 = 5.25
@2n+1D(n+2) ( )

This equation is valid for only mildly shear-thinning behaviour> 0.6 or
s0). For a Newtonian fluidn = 1), equation (5.25) giveX = 1/01 = 2/3.
This simple expression does not, however, account for either surface tension
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effects or for the shape and changing size (due to expansion) of a freely
rising bubble in a stationary power-law medium. The agreement between the
predictions of equation (5.25) and the scant data for approximately spherical
gas bubblegl > n > 0.5) is reasonable, as seen in Figure 5.5.

11

Drag correction factor, x
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Power-law index, n

Figure 5.5 Drag on spherical gas bubbles in power-law fluids in creeping
flow region

No such simple relation exists between the value of the correction f&ctor
and the values ot ands for droplets, and reference must be made to original
or review papers [Nakano and Tien, 1970; DeKee and Chhabra, 1992; Chhabra,
1993a; DeKeeet al., 1996]. Droplets are subject to greater drag in power-law
fluids than in a Newtonian fluid in the creeping flow region and the effect of
shear-thinning becomes progressively less marked with increasing Reynolds
number [Nakano and Tien, 1970].

The usefulness of these studies is severely limited by the various simplifying
assumptions which have been made concerning shape and surface tension
effects. Indeed, a variety of shapes of drops and bubbles has been observed
under free fall conditions in non-Newtonian fluids and these differ significantly
from those in Newtonian fluids [Clifet al, 1978; Chhabra, 1993a].

In addition, many workers have reported experimental data on various
aspects (such as shapes, coalescence, terminal falling velocity) of bubble and
drop motion in a non-Newtonian continuous phase.
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The bulk of the data on drag on freely falling drops relate to conditions
where the viscosity ratio parametérrarely exceeds 0.001, thereby suggesting
that behaviour is really tantamount to that of gaseous spheres. In spite of these
difficulties, many correlating expressions for drag on droplets and bubbles in
non-Newtonian liquids are available in the literature, but these are too tentative
and restrictive to be included here. Thus, as a first approximation, the terminal
velocity (or drag) for a droplet may be bounded by treating it first as a rigid
sphere and then as a gas bubble of the same size and density as the liquid
droplet.

A striking feature is the way the so-called discontinuity in the free rise
velocity of a bubble varies with its size. Indeed, Astarita and Appuzzo [1965]
noted a six to ten fold increase in the rise velocity at a critical bubble size,
as seen in Figure 5.6 for air bubbles in two polymer solutions. Subsequently,
similar, though less dramatic results, summarised in a recent review [DeKee
et al,, 1996], have been reported. The critical bubble radius appears to hover
around 2.6 mm, irrespective of the type or the degree of non-Newtonian prop-
erties of the continuous phase, and this value is well predicted by the following
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Figure 5.6 Freerise velocity-bubblevolumedata showingan abrupt
increasein velocity
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equation due to Bond and Newton [1928]:

= — 2 (5.26)
g(,Ol - pg)

whereo is the surface tension of the liquid. Indeed, the critical bubble sizes
observed experimentally in a variety of inelastic and visco-elastic liquids,
and those calculated using equation (5.26) seldom differ by more than 5%.
As mentioned earlier, small gas bubbles behave like rigid spheres (no-slip
boundary condition at the interface) whereas large ones display a shear-free
surface, and this changeover in the type of particle behaviour gives rise to a
jump of 50% in terminal velocity for Newtonian fluids. For creeping bubble
motion in power-law fluids, the ratio of the terminal falling velocity of a bubble

to that of a rigid sphere of the same size and density may be expressed as:

vy X, (1/n)
— = — 52
Vs (Xb ( 7)

where the subscript®”* and ‘s’ refer to the bubble and sphere respectively.
The values ofX; are listed in Table 5.1 and for gas bubbles, they can be
estimated from equation (5.25). Fer= 1, equation (5.27) gives the expected
result, namelyV, = 1.5V;. For a power-law liquid withh = 0.6, X, = 1.42
(Table 5.1) anX, = 0.93, andV, ~ 2V,. Thus, this mechanism does explain
the effect qualitatively, but it does not predict as large an increase in rise
velocity as that observed experimentally. Furthermore, visco-elasticity possibly
contributes to the abrupt jump in rise velocity. In view of this, equation (5.25)
may be applied only when the bubbles display a shear-free interface, tenta-
tively when they are larger than 2.5 mm.

Little is known about the effect of visco-elasticity on the motion of bubbles
and drops in non-Newtonian fluids, though a preliminary study suggests that
spherical bubbles are subject to a larger drag in a visco-elastic than in an
inelastic liquid. Recent surveys clearly reveal the paucity of reliable exper-
imental data on the behaviour of fluid particles in non-Newtonian liquids
[Chhabra, 1993a; DeKeet al., 1996].

5.5 Flow of a liquid through beds of particles

The problems discussed so far relate to the motion of single particles and
assemblies of particles in stationary non-Newtonian media. Consideration will
now be given to the flow of non-Newtonian liquids through a bed of parti-
cles, as encountered in a variety of processing applications. For instance, the
filtration of polymer melts, slurries and sewage sludges using packed beds, or
the leaching of uranium from a dilute slurry of ore in a fluidised bed. Further
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examples are found in enhanced oil recovery by polymer flooding in which
non-Newtonian polymer solutions are forced to flow through a porous rock.
It is important therefore to be able to predict pressure drop across such beds.

With downward flow of a liquid, no relative movement occurs between
the particles except for that arising from their unstable initial packing. In the
streamline region, the pressure drop across the bed is directly proportional to
the rate of flow for Newtonian liquids and to the rate of flow raised to a lower
(less than unity) exponent for a shear-thinning and to a high&) éxponent
for a shear-thickening fluid. At rates of flow high enough for turbulence to
develop in some of the flow channels, the pressure drop will rise more steeply
(O(Q1'872).

For upward flow through a bed which is not constrained at the top, the fric-
tional pressure drop will be the same as for the downward flow as long as the
structure of the bed is not disturbed by the flow. When the upward flow rate has
been increased to the point where the frictional drag on the particles becomes
equal to their buoyant weight, rearrangement will occur within the bed which
then expands in order to offer less resistance to flow. Once the packing of
the bed has reached its loosest stable form, any further increase in flow rate
causes the individual particles to separate from one another and become freely
supported in the liquid stream and the bed is then said to be fluidised. With
further increase in flow rate, the particles move further apart and the bed
voidage increases while the pressure difference remains approximately equal
to the buoyant weight per unit area of the bed, as shown in Figure 5.7. Up to
this stage, the system behaves in a similar manner whether the fluid is a gas
or a liquid. Liquid fluidised beds continue to expand in a uniform manner,
with the degree of agitation of particles increasing progressively. Fluidisation
is then said to be particulate. A qualitatively similar fluidisation behaviour is

Fixed bed Fluidised bed

Velocity

increasing A Fluidising point

log (-AP)

7
//\Velocity decreasing
(bed of maximum porosity)

”
= |/ Ving
log (Vo)

Figure 5.7 Qualitative pressue drop—flow rate behaviourin fixedand
fluidisedbeds
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obtained with non-Newtonian liquids. Since the main thrust here is on the role
of liquid rheology, the behaviour of gas fluidised beds (aggregative type) is
not covered in this chapter, but attention is drawn to several excellent books
on this subject [Davidsoet al.,, 1985; Coulson and Richardson, 1991].

The estimation of the pressure gradient for the flow of a non-Newtonian
liquid through a fixed (or packed) bed is addressed in the next section, fluidised
beds are considered in section 5.7.

5.6 Flow through packed beds of particles (porous
media)

The flow of non-Newtonian liquids through beds of particles is treated in an
analogous way to that adopted in Chapter 3 for the flow through ducts of
regular cross-section. No complete analytical solution is, however, possible
and a degree of empiricism complemented by the use of experimental results
is often necessary. Firstly, however, the basic nature and structure of porous
media (or beds of particles) will be briefly discussed.

5.6.1 Porous media

The simplest way of regarding a porous medium is as a solid structure with
passages through which fluids can flow. Most naturally occurring minerals
(sand, limestones) are consolidated having been subjected to compressive
forces for long times. Packed beds of glass beads, catalyst particles, Raschig
rings, berl saddles, etc. as used in process equipment are unconsolidated.
Unconsolidated media generally have a higher permeability and offer less
resistance to flow. Packing may be ordered or random according to whether
or not there is a discernable degree of order of the particles, though completely
random packing hardly ever occurs as ‘order’ tends to become apparent as the
domain of examination is progressively reduced in size. Cakes and breads are
good examples of random media!

Porous media may be characterized at two distinct levels: microscopic and
macroscopic. At the microscopic level, the structure is expressed in terms of a
statistical description of the pore size distribution, degree of inter-connection
and orientation of the pores, fraction of dead pores, etc. In the macroscopic
approach, bulk parameters are employed which have been averaged over scales
much larger than the size of pores. These two approaches are complementary
and are used extensively depending upon the objective. Clearly, the microscopic
description is necessary for understanding surface phenomena such as adsorp-
tion of macromolecules from polymer solutions and the blockage of pores,
etc., whereas the macroscopic approach is often quite adequate for process
design where fluid flow, heat and mass transfer are of greatest interest, and the
molecular dimensions are much smaller than the pore size. Detailed accounts
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of micro- and macro-level characterization methods frequently used for porous
media are available in the literature [Greenkorn, 1983; Dullien, 1992].

Of the numerous macroscopic parameters used to quantify porous media,
those gaining widest acceptance in the literature for describing the flow of
single phase fluids are voidage, specific surface, permeability and tortuosity.
Their values can often be inferred from experiments on the streamline flow of
single phase Newtonian fluids.

(i) Voidage

\Voidage,e, is defined as the fraction of the total volume which is free space
available for the flow of fluids, and thus the fractional volume of the bed
occupied by solid material il — ¢). Depending upon the nature of the porous
medium, the voidage may range from near zero to almost unity. For instance,
certain rocks, sandstones etc. have values of the order of 0.15-0.20 whereas
fibrous beds and ring packings may have high values of voidage up to 0.95.
Obviously, the higher the value of voidage, the lower is the resistance to flow
of a fluid.

(i) Specific surface

In addition, the specific surfac&g, of the bed affects both its general structure
and the resistance it offers to flow. It is defined as the surface area per unit
volume of the bed, i.em?/m®. Hence,Sz can be expressed in terms of the
voidagee and the specific are@ of the particles

Sp=8S1—¢) (5.28)
whereS is the specific area per unit volume of a particle. Thus for a sphere
of diameterd,

_ nd? 6

C nd®/6 d
For a given shape§ is inversely proportional to the particle size. Highly
porous fibre glasses have specific surface areas in the range 5¢m?/m3

while compact limestone& ~ 0.04—Q10) have specific surface areas in the
range~0.2—2 x 10° m?/m?3,

(5.29)

(iii) Permeability

The permeability of a porous medium may be defined by means of the well-
known Darcy’s law for streamline flow of an incompressible Newtonian fluid

9 _y _ (E (_ﬂ (5.30)
A nw L

whereQ is the volume rate of flow of a fluid of viscosity,, through a porous
medium of area A (normal to flow) under the influence of the pressure gradient
(—Ap/L), andk is called the permeability of the porous medium.
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A porous material is said to have a permeability of 1 darcy if a pressure
gradient of 1 atm/cm results in a flow of 1 éfs of a fluid having viscosity of
1 cP through an area of 1 é&min S.I. units, it is expressed as’rand 1 darcy
~10-12m?. Evidently, the lower the permeability, the greater is the resistance
to flow. Typical values of permeability range from & m? for fibre glass to
10~ m? for silica powder and limestone.

(iv) Tortuosity

Tortuosity is a measure of the extent to which the path traversed by fluid
elements deviates from a straight-line in the direction of overall flow and
may be defined as the ratio of the average length of the flow paths to the
distance travelled in the direction of flow. Though the tortuosity depends
on voidage and approaches unity as the voidage approaches unity, it is also
affected by patrticle size, shape and orientation in relation to the direction of
flow. For instance, for plate like particles, the tortuosity is greater when they
are oriented normal to the flow than when they are packed parallel to flow.
However, the tortuosity factor is not an intrinsic characteristics of a porous
medium and must be related to whatever one-dimensional flow model is used
to characterise the flow.

5.6.2 Prediction of pressure gradient for flow through packed beds

Many attempts have been made to obtain general relations between pressure
drop and mean velocity of flow through porous media or packings, in terms
of the bed voidage which is either known or can easily be measured. The
following discussion is limited primarily to the so-called capillary tube bundle
approach while the other approaches of treating the flow of both Newtonian
and non-Newtonian fluids are described in the literature [Happel and Brenner,
1965; Greenkorn, 1983; Dullien, 1992; Chhabra, 1993a].

(i) Streamline flow

The interstitial void space in a porous matrix or bed of particles may be envis-
aged as consisting of tortuous conduits of complex cross-section but having a
constant average area for flow. Thus, flow in a porous medium is equivalent to
that in a non-circular conduit offering the same resistance to flow. However,
the flow passages in a bed of particles will be oriented and inter-connected
in an irregular fashion and the elementary capillary models do not account
for these complexities. Despite these difficulties, the analogy between flow
through a circular tube and through the channels in a bed of particles, shown
schematically in Figure 5.8, provides a useful basis for deriving a general flow
rate — pressure drop expression. As seen in Chapter 3, such expressions vary
according to the flow model chosen for the fluid. Following Kemblovegidl.
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Figure 5.8 Schematic representation of flow through a bed of uniform
spheres (a) and the capillary model idealization (b)

[1987], we begin by re-writing the well-known Hagen—Poiseuille equation,
for the streamline flow of an incompressible Newtonian fluid through circular
tubes, as follows:

D?> [(—Ap
V=—[—£X 5.31
32 ( i3 (5.31)
Then, for flow through a non-circular duct, this may be re-arranged as
D? [—A
= _h (_p (5.32)
16KQ,LL L

where D), is the hydraulic mean diametéd x Pore volume/surface area of
particles) andKy is a constant which depends only on the shape of the cross-
section. For a circular tube of diametbr for instanceD;, = D andKy = 2.
Likewise, for flow in between two plates separated by a dista¢eDR =

4b and Ko = 3. Kemblowskiet al. [1987] have further re-arranged equation
(5.32) as:

D, (—Ap  [4KoV
4 L Dy,

(5.33)

For an incompressible Newtonian fluid),/4) _TAP is the average shear
stress at the wall of the flow passage ad& oV /D;), the shear rate at the
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wall, which may be regarded as the nominal shear rate for time-independent
non-Newtonian fluids. Thus,

_Dw(-Ap
(tw) = 4( 7 (5.34)
and

. 4KV

(Vw)n = D, (5.35)

where() denotes the values averaged over the perimeter of the conduit.
Equations (5.34) and (5.35) can be used to obtain expressions for streamline
flow of time-independent fluids through beds of particles, in which das®ist
be replaced by the mean velocity in the pores or intersticesyj.and the
length L is replaced by the average length of the tortuous pathtraversed
by the fluid elements.
For a bed whose structure is independent of its depth, thesmd L will
be linearly related, i.e.

L, =TL (5.36)

whereT is the tortuosity factor.

The interstitial velocity,V;, is related to the superficial velocityy by the
Dupuit relation which is based on the following considerations.

In a cube of side/, the volume of the voids is/® and the mean cross-
sectional area is the free volume divided by the heightgiZ.The volumetric
flow rate through the cube is given bB¥pl/?, so that the average interstitial
velocity V; is given by

=T ©30
Although equation (5.37) is a good approximation for random packings, it
does not apply to all regular packings. For instance, for a bed of uniform
spheres arranged in cubic packing= 0.476, but the fractional area varies
continuously from 0.215 in a plane across the diameters to unity between
successive layers. Furthermore, equation (5.37) implicitly assumes that an
element of fluid moving at a velocity; covers a distancgin the same time

as a fluid element of superficial velociyy in an empty tube. This implies
that the actual interstitial velocity is likely to be somewhat greater than the
value given by equation (5.37). Because an element of fluid in a bed actually
travels a distance greater thanin the Kozeny—Carman capillary model, a
correction is made for this effect as:

V
=07
&

v, (5.38)
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Finally, the hydraulic mean diametér, must be expressed in terms of the
packing characteristics. Thus, for a bed of uniform spheres of diardeter
the hydraulic mean diametér, can be estimated as follows:

_ 4 x Flowarea 4 x volume of flow channels
~ Wetted perimeter  surface area of packing

h

\olume of flow channels

8 volume of bed _ ﬁ (5.39)
surface area of packing ~— s, )

volume of bed
Substitution from equations (5.28) and (5.29) gives:

2 de
D, = (5 o (5.40)

Note that the wetted surface of the column walls has been neglected, which
is justified under most conditions of interest.

Although the early versions of capillary models, namely, the Blake and the
Blake—Kozeny models, are based on the us& o0& Vy/e andL, = LT, it
is now generally accepted [Dullien, 1992] that the Kozeny—Carman model,
usingV; = VT /e provides a more satisfactory representation of flow in beds
of particles. Using equations (5.36), (5.38) and (5.40), the average shear stress
and the nominal shear rate at the wall of the flow passage (equations 5.34 and
5.35) may now be expressed as:

_ de —Ap
<W%_&1—QT< 7 (5.41)
and
. . 1—-¢ VQ
<Vw)n = 6KoT ( 82 7 (542)

For generalised non-Newtonian fluids, Kemblowskial. [1987] postulated
that the shear stress at the wall of a pore or ‘capillary’ is related to the
corresponding nominal shear rate at the wall by a power-law type relation:

(T) = m ()" (5.43)

wherem’ andn’ are the apparent consistency coefficient and flow behaviour
index, respectively, inferred from pressure drop/flow rate data obtained in a
packed bed. By analogy with the generalised procedure for streamline flow in
circular tubes outlined in Chapter 3, equation (3.3@d)and»’ can be linked

to the actual rheological parameters. For a truly power-law fluid, for instance;

n=n (5.4449)

341 "
M=m<”+ (5.44b)
4n
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It should be, however, noted that the Rabinowitsch—Mooney factor of
((3n + 1)/4n)" is strictly applicable only to cylindrical tubes but the limited
results available for non-circular ducts suggest that it is nearly independent of
the shape of the conduit cross-section [Miller, 1972; Tiu, 1985]. For instance,
the values of this factor are within 2—3% of each other for circular tubes and
parallel plates over the rangelO< n < 1.

The cross-section of the channels formed in a bed of spheres would be
expected to lie between that of a circular tube and of a plane slit and
Kemblowski et al. [1987] therefore suggested the use of a mean value of
2.5 for K. Considerable confusion also exists in the literature about the value
of the tortuosity factor,I. Thus, Carman [1956] proposed a value 32
based on the assumption that the capillaries deviate on average€ lisodb
the mean direction of flowcos 45= 1/+/2). On the other hand, if a fluid
element follows the surface round the diameter of a spherical particle, the
tortuosity factor should equat/2. Indeed, the values ranging froml to
1.65 have been used in the literature for Newtonian fluids [Agarwal and
O’Neill, 1988]. BecauseT is a function of the geometry of the bed, it
has the same value whatever the liquid rheology, provided that it is time-
independent, although there is some evidence Thiat weakly dependent on
flow rate [Dharamadhikari and Kale, 1985]. This is not surprising because
macromolecules have a tendency to adsorb on the walls of the pores and, if
the flow rate is high enough, the shearing forces may overcome the surface
forces; thus polymer molecules become detached thereby making more space
available for flow. Thus, flow passages blocked at low flow rates may open
up to flow again at high flow rates. Such unusual effects observed with non-
Newtonian fluids in porous media are briefly discussed in a later section in
this chapter.

A dimensionless friction factor may be defined as:

—A d &3

f= <Tp = ( (5.45)

pVO 1—¢

Noting Ko = 2.5 andT = +/2, combining equations (5.41) to (5.45):
180
= — 5.46
f Re (5.46)
1-n
chz)_"d” 4n " (1572
h Ré = 54

where ml—¢)" \3n+1 &2 (547

For a Newtonian fluidn = 1, both equations (5.46) and (5.47) reduce to
the well known Kozeny—Carman equation. Equation (5.47) correlates most
of the literature data on the flow of power-law fluids through beds of spherical
particles up to about Re~ 1, though most work to date has been carried out
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in beds having voidages in the range8®< ¢ < 0.41 [Kemblowski et al.,
1987; Chhabra, 1993a].

Bingham plastic fluids

The flow of viscoplastic fluids through beds of particles has not been studied
as extensively as that of power-law fluids. However, since the expressions for
the average shear stress and the nominal shear rate at the wall, equations (5.41)
and (5.42), are independent of fluid model, they may be used in conjunction
with any time-independent behaviour fluid model, as illustrated here for the
streamline flow of Bingham plastic fluids. The mean velocity for a Bingham
plastic fluid in a circular tube is given by equation (3.13):

_D? <—Ap
T 32up \ L

where¢ = t§/7,. This equation can be re-arranged in terms of the nominal
shear rate and shear stress at the wall of the pore as:

4 1,
1% <1— 30+ 3% (3.13)

8V Ty 4 1
o = — = — (1— ¢+ =¢* 5.48
whn = MB( 3%t 39 (5.49)
As seen in Chapter 3, the quanti®V /D) is the nominal shear rate at the wall
(also see equation 5.35, for a circular tubg,= D, Ko = 2). Substituting for
the nominal shear rate and wall shear stress from equations (5.41) and (5.42)
in equation (5.48), slight re-arrangement gives:

180
= 5.49
f Re;F(¢) (5.49
where

Re, = 2Vo¢ (5.50)

“B

L 48

F@)=1-30+7 (5.51)

‘L'B
and o= 0 (5.52)

(tw)

It should be noted thal' = /2 and Ko = 2.5 have been used in deriving
equation (5.49). Again for the special case of Newtonian fluiffs= 0 or

¢ = 0, H¢) = 1 and equation (5.49) reduces to the Kozeny—Carman equation.
The scant experimental data available on pressure drop for the streamline flow
for Bingham plastic fluidgRe; ~ 1) is consistent with equation (5.49).
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This section is concluded by noting that similar expressions for the friction
factor have been derived for a range of purely inelastic fluid models and these
have been critically reviewed elsewhere [Chhabra, 1993a,b].

(i) Transitional and turbulent flow

Because the apparent viscosity of non-Newtonian systems is usually high,
flow conditions rarely extend beyond the streamline flow regime. There is no
clear cut value of the Reynolds number marking the end of streamline flow.
An examination of the available data indicates that the lower the value of the
power-law index, the higher the Reynolds number up to which streamline flow
occurs. An important factor is that with a range of pore sizes, some can be
in laminar flow and others turbulent. Despite these uncertainities, the value of
Re* ~ 5-10 is a good approximation for engineering design calculations.
The capillary bundle approach has also been extended for correlating data
on pressure drop in packed beds of spherical particles in the transitional and
turbulent regions. Both Mishrat al. [1975] and Breaet al. [1976] proposed
the following empirical method for estimating the ‘effective viscosityes:

12V —e)) "t
This is then incorporated in the modified Reynolds numbef, Regive
,OV()d
R = ———— 5.54
Mefi(1 — &) ( )

They assumed the ‘viscous’ and ‘inertial’ components of the pressure drop
to be additive, and proposed the following relationship between the friction
factor and the modified Reynolds number:

_ 9
f=Re

Based on their experimental data for the flow of power-law fluids in packed
and fluidised beds of spheres.{6<n < 1; 0.01 < R€ < 1000; 037 <¢ <
0.95), Mishraet al. [1975] obtainedr = 150 andg = 1.75. With these values,
equation (5.55) coincides with the well-known Ergun equation for Newto-
nian fluids [Ergun, 1952]. On the other hand, the data of Bxeal [1976]
encompass somewhat wider ranges of the power-law infek< n’ < 1)

and Reynolds numbe(0.01 < R€ < 1700 but a limited range of voidage
(0.36 < ¢ < 0.40) and they proposed = 160 ands = 1.75. A close scrutiny

of equation (5.53) shows that it is tantamount to uskiyg= 2 (corresponding

to a circular cross-section) arfdd= (25/12), and thus the lower value &

is compensated for by the higher value of the tortuosity fadtorAlthough

the original papers give mean deviations of 15-16% between the predictions

+8 (5.55)
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of equation (5.55) and experimental data, careful inspection of the pertinent
graphs reveal maximum deviations of up to 100%.

Based on the re-appraisal of the literature data and new data, the following
simplified expression provides a somewhat better representation of the data in
packed beds, at least fer< 0.41 and R& < 100 [Chhabra, 1993a]:

150
f=gg T175 (5.56)

Thus, it is suggested that for the flow of shear-thinning fluids in packed
beds, equation (5.56) should be used for Rel00, and fore > 0.41 and
Re* > 100 equation (5.55) is preferable, with= 150 andg = 1.75.

Example 5.6

Estimate the frictional pressure gradient for the flow of a polymer solution=(
3.7Pas’, n = 0.5, density= 1008 kg/ni) at the rate of 0.001 s through a 50 mm
diameter column packed with 1.5mm leadshots. The average voidage of the packing
is 0.39.

Solution

Superficial velocity of flow,Vy = (0.001/((7r/4)(50 x 107%)?)) = 0.51 m/s
The Reynolds number of flow:

Re" =

m(l—e)" \3n+1 &

pVEd" ( 4o (1&/5 o

_ (1008(0512°5(L5 x 10°%)° < 4x05 % (15/2 °°
N 3.7(1 — 0.39)%° 3x05+1 0.39

=52
0 the flow is in the transitional regime. Equation (5.55) or (5.56) may be used. For
equation (5.56),

150 150
_ 19 7510 75— 463
f=Rre ™ 52 "

The pressure gradient,_TAp , across the bed is calculated using this valug of
equation (5.45),

—Ap [V} <1 —&  (4.63)(1008(0.51)°(1 —0.39)
L~ d & (1.5 x 107%)(0.39)°
=8300000Pa/m or .8MPa/m
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For the sake of comparison, the value OT% using equation (5.55) will also be
calculated here. For a power law fluid,

3 1 n
m':m(n+ and n’=n=05
4n
3x05+1 ©°
O =37 ——r— = 4.14 Pas’
" ( 4x05
12V —e))" 7t
O et =m T

12 x 0.51 x (1 — 0.39)
(1.5 x 107%)(0.39)?

0.5-1
= 4,14{ } = 0.0324 Pas

The modified Reynolds number, Rés evaluated using equation (5.54):

Re — _ PVod _ (1008(0.51)(15 x 10°%)

= = =391
Herr(1 —€) 0.03241 - 0.39)

This value also suggests that flow is in the transition regime. The corresponding friction
factor is:

150 150
_ 10 752 10 75550
f=Re ™ 391 "

Again using equation (5.45),_TAP = 9.6 MPa/m.
This value is only about 15% higher than that calculated previously.

The above discussion is limited to the flow of inelastic fluids in uncon-
solidated beds of particles where the pore size is substantially larger than
the characteristic dimensions of the polymer molecules. Interaction effects
between the walls of the pore and the polymer molecules are then small.
Thus, measuring the relationship between pressure drop and flow rate in a
packed bed and in a tube would therefore lead to the prediction of the same
rheological properties of the fluid. Visco-elastic effects and other phenomena
including blockage of pores, polymer adsorption/retention, etc. observed in
beds of low permeability or in consolidated systems will be briefly discussed
in Section 5.6.7.

5.6.3 Wall effects

In practice, the influence of the confining walls on the fluid flow will be

significant only when the ratio of the particle to container diameters is less
than about 30 [Cohen and Metzner, 1981]. Particles will pack less closely
near the wall, so that the resistance to flow in a bed of smaller diameter may
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be less than that in a large container at the same superficial velocity. One
would expect the effect to be a characteristic of the packing and the column
size and information on wall effects for Newtonian fluids can also be used for
non-Newtonian fluids, at least for inelastic fluids. Thus, in streamline flow,
Coulson [1949] found that, for the given pressure gradient, the superficial
velocity of a Newtonian liquid increases by a factgr,, defined as:

18, ?
fio= <1+ 55 (5.57)

wheresS. is the surface of the vessel per unit volume of the bed. Thus, for a
cylindrical tube of diameteD packed with spheres of diametéy equation
(5.57) becomes:

d 2
w=|1+— 5.58
(14 55
clearly as(D/d) increases, the correction factor approaches unity.

In contrast to this simple approach, Cohen and Metzner [1981] have made
use of the detailed voidage profiles in the radial direction and have treated
wall effects in a rigorous manner for both Newtonian and power-law fluids in
streamline flow. From a practical standpoint, this analysis suggests the effect
to be negligible in beds witliD/d) > 30 for inelastic fluids.

5.6.4 Effect of particle shape

The voidage of a bed of particles is strongly influenced by the particle shape,
orientation and size distribution. However, voidage correlates quite well with
sphericity, as shown in Figure 5.9; values of sphericity for different shape
particles have been compiled by Brovet al. [1950] and German [1989]
amongst others.

For beds of spheres of mixed sizes, the voidage can be significantly less
if the smaller size spheres can fill the voids between the larger ones. In general,
the voidage of a bed of mixed particles is a function of the volume fractifons
of each particle size and the ratio of the sizes. Hence, for a binary-size particle
system, the mean voidage of the bed will be a functiod9t/, and £, f>,
and the curves of versus(di/d>) and f1/ f» will pass through minima. Some
predictive expressions for voidage of beds of binary and ternary spherical and
non-spherical particle systems are available in the literatureefYai. 1993;

Yu and Standish; 1993].

For the flow of Newtonian fluids in packed beds of mixed size spheres,
Leva [1957] suggested the use of the volume-mean diameter, whereas the
subsequent limited work with Newtonian and power-law fluids [Jacks and
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Figure 5.9 Variation of mean bed voidage with sphericity

Merrill, 1971; Rao and Chhabra, 1993] shows that it is more satisfactory to
use volume/surface mean size:

Zn,dlz

wheren; is the number of spheres of size

For the flow of power-law fluids through packed beds of cubes, cylinders
and gravel chips [Machac and Dolejs, 1981; Chhabra and Srinivas, 1991,
Sharma and Chhabra, 1992; Sabiri and Comiti, 1995; €Tial., 1997], the
few available data for streamline flow correlate well with equation (5.56) if
the equal volume sphere diameigy, multiplied by sphericityyr, is employed
as the effective diametede; = d; in the definitions of the Reynolds number
and friction factor.

d (5.59)

5.6.5 Dispersion in packed beds

Dispersion is the general term which denotes the various types of self-induced
mixing processes which can arise during the flow of a fluid. The effects of
dispersion are important in packed beds, though they are also present in the
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simple flow conditions existing in a straight tube. There are two important
mechanisms of dispersion — molecular diffusion and mixing arising from the
flow pattern within the fluid. An important consequence of dispersion in a
packed bed or porous medium is that true plug-flow never occurs (except
possibly for viscoplastic materials). Consequently, the performance of oil
displacement processes using non-Newtonian polymer solutions, and of packed
bed reactors for effecting polymerisation reactions, are adversely affected. For
laminar flow in a tube, dispersion arises from random molecular motion and
is governed by Fick's law according to which the flux of a component is
proportional to the product of its concentration gradient and the molecular
diffusivity. Furthermore, the velocity profile for a Newtonian fluid is parabolic
with the ratio of the centre-line velocity to the mean velocity equal to 2. For
a power-law fluid, this ratio i§3n 4+ 1)/(n + 1) (equation 3.7). Dispersion
occurs since elements of fluid take different times to traverse the length of the
pipe, depending upon their radial positions and at the exit, elements with a
range of residence times mix together. Thus, if a plug of tracer is injected into
the entering liquid, it will first appear in the exit stream after the interval of
time taken by the fastest moving fluid element at the axis to travel the length
of the pipe. Then tracer will appear later in the liquid issuing at progres-
sively greater distances from the axis of the pipe. Because the fluid velocity
approaches zero at the wall, some tracer will still appear after a long period.

In turbulent flow, molecular diffusion is augmented by the presence of
turbulent eddies and mixing is more intensive though, due to the flatter velocity
profiles in tubes, the role of velocity gradient in dispersion diminishes.

In a bed of particles, the effects of dispersion will generally be greater
than in a straight tube, partly because of the successive contractions and expan-
sions in the flow passages. Radial mixing readily occurs in the flow passages
or cells because a liquid element enters them with high kinetic energy, much
of which is converted into rotational motion within the cells. Also, the contin-
ually changing velocity promotes dispersion in a bed of particles. Wall effects
can be significant because of channelling through the region of high voidage
near the wall.

At low flow rates, molecular diffusion dominates and cell mixing
(attributable to the development of rotational motion) contributes relatively
little to the overall dispersion. At high flow rates, however, mixing in a
packed bed may be modelled by considering it to consist of a series of mixing
cells, each being of the same size as the packing itself. Irrespective of the
actual mechanism, dispersion processes may be characterised by a dispersion
coefficient. In packed beds, dispersion is generally anisotropic, except at very
low velocities; that is, the dispersion coefficiesls in the axial (longitudinal)
and Dy, in the radial directions will generally be different. The process may
normally be considered to be linear in so far as the rate of dispersion is
proportional to the concentration gradient multiplied by the corresponding
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dispersion coefficient. However, unlike the molecular diffusion coefficient,
D; and Dy are strongly dependent on the flow regime and the bed geometry.
In fact, the dispersion coefficient is analogous to the eddy kinematic viscosity
which has been discussed in connection with momentum transfer in turbulent
flow (section 3.6.4 in Chapter 3).

[andr Vo (c+%Ce)
+(-) 27§r drOD;
0C, 0 Cdf]

(ae oz

< ar

—2nrdr0Dg %

=2m (r+dn)

dr0Dg (0_C+ o’c dr)
ar or

’ ;////}ifzzwz/
éQZQZZZ M

Figure 5.10 Contmol volumefor the derivationof the differential equation
for dispersion

271 dr VoC + (=) 2zrdr 0 D, %

The differentialequationfor dispersiorin a cylindrical bedof voidages can
bereadilyderivedby consideringhematerialbalanceoveradifferentialannular
control volume of lengthd! andof thicknessdr, asshownin Figure5.10.0n
the basisof a dispersionmodel, it is seenthatthe concentrationC of a tracer
will dependuponthe axial position/, radial positionr andtime, r. A material
balanceoverthis elemenigives[CoulsonandRichardson1991]:

ac+voac D82C+1D a(ac
_ _ = [ — J— r—
a | e al Loz 7 Rar Uar

Longitudinal dispersioncoeficients canbe evaluatedby injecting a flat pulse
of tracerinto thebedsothataC/ar = 0. Thevaluesof D, canbe estimatedhy

(5.60)
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matching the predicted (equation 5.60) and the actual (measured) changes in
shape of a pulse of tracer as it passes between two locations (axial direction)
in the bed. The results are often expressed in terms of dimensionless groups,
namely, Peclet number, Pe, Reynolds number, Re and Schmidt number, Sc.
Wen and Yim [1971] reported a few results on axial dispersion coeffi-
cients(D,) for the flow of two weakly shear-thinning polymer (PEO) solutions
(n = 0.81 and 0.9) through a bed packed with glass sphefes 4.76 and
14.3mm) of voidages 0.4 and 0.5. Over the rarige< Re; < 800), their
results did not deviate substantially from the correlation developed by these
authors previously for Newtonian fluids:

Pe= 0.2+ 0.011(Re;)**8 (5.61)
'Ov(zj—i‘ldﬂ

where Pe=Vyd/D; and Rg=

Subsequent experimental work [Payne and Parker, 1973] was carried out
with aqueous polyethylene oxide solutions having values ah the range
0.53<n < 1, flowing in a packed bed of 3%0n glass beadss = 0.365).
The Reynolds number was of the order of 3@hereby rendering the second
term on the right hand side of equation (5.61) negligible. However, under
these conditions, the Peclet number showed weak dependence on the power-
law index, decreasing from Re 0.2 for n =1 to Pe~ 0.1 for n = 0.53,
thereby suggesting that dispersion was greater in shear-thinning fluids.

In the only reported study of radial mixing of non-Newtonian rubber solu-
tions in packed beds [Hassell and Bondi, 1965], the quality of mixing was
found to deteriorate rapidly with the increasing viscosity.

5.6.6 Mass transfer in packed beds

Little work has been reported on mass transfer between non-Newtonian fluids
and particles in a fixed bed. Kumar and Upadhyay [1981] measured the rate
of dissolution of benzoic acid spheres and cylindrical pellets in an aqueous
carboxymethyl cellulose solutiogr = 0.85) and, using the plug flow model,
proposed the following correlation for mass transfer in terms ofjthéctor:

0.765 0.365

(Ré)OBZ + (Ré)0.39 (562)

8jm =

wheree is the voidage of the bed; Ris the modified Reynolds number defined
by equations (5.53) and (5.54); and tjg factor is:

ke
jm = —S&/3 (5.63)
Vo
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Figure 5.11 Correlation of liqguid—solid mass transfer for power-law fluids
in packed beds

where k. is the mass transfer coefficient and the Schmidt numbers= Sc
wefi/ pPDap With the effective viscosityie, as defined in equation (5.53). This
correlation was found to represent the experimental data with a mean error
of £10% for the range of conditions:D< R€ < 40 and 800< Sc < 72000,

but for a single value ofi = 0.85. For cylindrical pellets, the characteristic
linear dimension was taken as the diameter of the sphere of equal volume
multiplied by the sphericity. The validity of equation (5.62) has subsequently
been confirmed independently [Wronski and Szembek-Stoeger, 1988] but it
does over-predict thg, factor at low Reynolds numberR€ < 0.1), as

can be seen in Figure 5.11. The following correlation due to Wronski and
Szembek—Stoeger [1988] takes account of most of the data in the literature
and offers some improvement over equation (5.62), especially in the low
Reynolds number region:

gjm = [0.097(R€)*° + 0.75(Re)%61) 1 (5.64)

No analogous heat transfer studies have been reported with hon-Newtonian
fluids.

5.6.7 Visco-elastic and surface effects in packed beds

So far the flow of inelastic non-Newtonian fluids through unconsolidated
beds of particles has been considered. The pore size has been substantially
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larger than the characteristic dimensions of the polymer molecules or of the
flocs. In such cases, there is negligible or no interaction between the walls of
the pore and the polymer molecules or flocs, and the rheological properties
(values ofm andn, for instance) may be inferred from pressure drop—flow
rate data obtained in packed beds and tubes. Visco-elastic effects and other
phenomena such as blockage of pores, polymer adsorption, and apparent slip
effects, observed in low permeability and consolidated systems will now be
briefly discussed.

(i) Visco-elastic effects

Visco-elastic effects may be quantified in terms of a Deborah or Weissenberg
number(De). For flow in packed beds, De is simply defined as:

_AVo Ay

De =
d d/Vo)

(5.65)

whereA is a characteristic time of the fluid and/V) is a measure of the
time-scale of the flow. The characteristic timg, is determined from rheolog-
ical measurements but the time-scale of the process clearly depends upon the
kinematic conditions, principally, flow rate and packing size. At low velocities,
the time-scale of flowd/Vy) is large as compared with, and De is there-
fore small. Thus, a fluid element is able continually to adjust to its changing
flow geometry and area, and no effects arise from visco-elasticity. In other-
words, the pressure loss through a bed of particles is determined essentially
by the effective viscosity of the fluid at low flow rates and Deborah numbers.
With gradual increase in flow raté&d/Vy) decreases progressively (hence the
value of De increases) and the fluid elements are no longer able to re-adjust
themselves to the rapidly changing flow conditions. The energy expended in
squeezing (extensional flow) through ‘throats’ or ‘narrow passages’ in the bed
is dissipated, as the fluid element has insufficient time> (d/Vo)) to relax
or recover its original state; this, in turn, may result in a substantially increased
pressure drop. If the loss coefficient(= fRe€") is plotted against Deborah
number, or simplyVo/d), if A is constant for a fluidA remains constant (at
150 or 180) at low values ofVy/d) and, beyond a critical value @V y/d),
it begins to rise gradually, as seen in Figure 5.12 which refers to the flow of
aqueous solutions of hydroxy propyl guar (a polymer used as a cracking fluid
in drilling and enhanced oil recovery operations) through a packed bed of 200
to 900um glass beads [Vorwerk and Brunn, 1994]. As polymer concentration
is increased, visco-elastic behaviour becomes more marked, and values of
(A/180) begin to deviate from unity at progressively lower valueg\o§/d),
as shown in Figure 5.12.

The occurrence of very high pressure drops is well documented in the
literature for a range of chemically different polymer melts and solutions
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Figure 5.12 \isco-elasticeffectsin packedbeds

[Chhabra,1993a],but thereis little evidenceconcerningthe critical value of
Deborahnumberat which visco-elasticeffects are significantor the extent
to which A is increasedas a result of visco-elasticity. The nature of the
polymer solution and the geometryof the bedinteractin a complexmanner.
For instance Marshall and Metzner[1967] observedvisco-elasticeffects at
De ~ 0.05 — 0.06 whereasMichele [1977] reportedthe critical value of De
to be as large as 3! The main difficulty stemsfrom the fact that thereis
no simple methodof calculatingthe valueof A in an unambiguousnanner,
someworkershaveinferredits valuefrom steadysheardata(first normalstress
differenceand/orshearviscosity) while othershaveusedtransientrheological
teststo deducethe valueof A ;. However,polymersolutionscertainlyundego
substantialextensionaldeformation,in addition to shearing,in the narrow
capillariesin bedsof particlesandin other porousmatricessuchas screens,
matsand denserocks. No satisfactorycorrelationsfor the frictional pressure
gradientfor visco-elasticfluids in packedbedsare thereforeavailable.

(i) Anomalous surface effects

As mentionedpreviously,additionalcomplicationsarisewhenthe size of the
poresor flow capillariesin the porous matrix in only slightly larger than
the polymer moleculesthemselvesPolymermoleculesmay then be retained
by bothadsorptioron to the walls of the poresandby mechanicakntrapment,
therebyleadingto partial or evencompleteblockageof poresandincreased
pressuralrops.The exactcauseof the sharprisein pressurgradientasshown
in Figure 5.12is thereforedifficult to pinpoint. The existenceof a slip velocity
at the wall of the pore may explain many of the observationsHowever, at
presentthereis no way of assessin@ priori whetherslip effects would be



Particulate systems 249

important or not in any new situation. Extensive reviews of the developments
in this field are available in the literature [Cohen, 1988; Agaretadl., 1994].

5.7 Liquid-solid fluidisation
5.7.1 Effect of liquid velocity on pressure gradient

As shown schematically in Figure 5.7 for the upward flow of a liquid through

a bed of particles, a linear relation is obtained between the pressure gradient
and the superficial velocity (on logarithmic coordinates) up to the point where
the bed is fluidised and where expansion of the bed starts to @ggubout the

slope of the curve then gradually diminishes as the bed expands. As the liquid
velocity is gradually increased, the pressure drop passes through a maximum
value(B) and then falls slightly and eventually attains a nearly constant value,
independent of liquid velocityCD). If the velocity of flow is reduced again,

the bed contracts until it reaches the condition where the particles are just
resting in contact with one anoth@r); it then has the maximum stable voidage

for a fixed bed of the particles in question. No further change in the voidage of
the bed occurs as the velocity is reduced, provided it is not shaken or vibrated.
The pressure droEF) in this re-formed packed bed may then be less than
that in the original bed at the same velocity. If the liquid velocity were now
to be increased again, the new cui¥&F') would normally be re-traced and

the slope will suddenly drop to zero at the fluidising pdihtthis condition is
difficult to produce, however, because the bed tends to become consolidated
again as a result of stray vibrations and disturbances.

In an ideal fluidised bed, the pressure drop corresponding to ECD in
Figure 5.7 is equal to the buoyant weight of the bed per unit area. In practice,
however, deviations from this value may be observed due to channelling and
interlocking of particles. PoinB is situated abov& D because the frictional
forces between the particles must be overcome before the rearrangement of
particles can occur.

Figure 5.13 shows representative experimental results ¢-lag) versus
log(Vo) for the flow of an aqueous carboxymethyl cellulose solutipn=
0.9) through a bed of 3.57 mm glass spheres in a 100 mm diameter column
[Srinivas and Chhabra, 1991]. In spite of the scatter of the data at the onset of
fluidisation, the regions up ta (fixed bed) and”D (fluidised) can be clearly
seen in this case.

The velocity corresponding to the incipient fluidising point can also be
calculated from the relation presented in Section 5.6, by equating the pressure
drop across the bed to its buoyant weight per unit area. The voidage at the
onset of fluidisation should correspond to the maximum value attainable in the
fixed bed. Hence, in a fluidised bed, the total frictional force on the particles
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Figure 5.13 Experimentalpressue drop—superficialvelocity curveand
determinationof minimumfluidisationvelocity

must be equalto the buoyantweight of the bed. Thus, in a bed of height L
andvoidages:

—Ap = (o — )L —e)Lg (5.66)

whereg is the acceleratiordueto gravity.

There may be some discrepancybetweenthe observedand calculated
minimum fluidisation velocities. This differenceis attributableto channelling
or wall effects, or to the agglomerationof small particles. Equation (5.66)
appliesfrom the initial expansionof the bed up to high values(ca. 0.95) of
voidage.

For streamlineflow of a power-lawfluid througha fixed bed of spherical
particles,the relationshipbetweeniquid velocity V, bedvoidages andpres-
suredrop (—Ap) is given by equation(5.46). Substitutingfor (—A p) from
equation(5.66), equation(5.46) becomes:

Vo=

5.6
180m(1—¢)" \3n+1 &2 (5.67)

3 1-n @/
(ps — p)ge3d"t < pn " <15\/§

For n =1, equation (5.67) reducesto the well-known Kozeny-Carman
equation;

. 352
Vo = 0.00555 P —P8ed” (5.68)
u(ld—e)

where i is the Newtonianfluid viscosity.
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5.7.2 Minimum fluidising velocity

At the point of incipient fluidisation, the bed voidags, s, depends on the
shape and size range of the particles, but is approximately equal to 0.4 for
isometric particles. The minimum fluidising velocity,, for a power-law

fluid in streamline flow is then obtained by substituting= ¢,,, in equation
(5.67). Although this equation applies only at low values of the bed Reynolds
numbers &1), this is not usually a limitation at the high apparent viscosities
of most non-Newtonian materials.

At high velocities, the flow may no longer be streamline, and a more general
equation must be used for the pressure gradient in the bed, such as equation
(5.56). Substituting: = ¢, andVq = V,,¢, this equation becomes:

150

fmp == +175 (5.69
Replacement of ,,; by the Galileo number eliminates the unknown velocity
Vs Which appears in Rg.. Multiplying both sides of equation (5.69) by

(Re;, )7 @)
Gamf = ]_5(_'XRe::1f)n/(2—n) + 1-75(R‘§;f)2/(2_”) (5.70)
where  Gas = fus(Re, )@

(s — p)gdey, s »
=—— 7 R, (5.71)
p mf
For a given liquid (knownmn, n, p) and particle f,, d, ,s) combination,
equation (5.70) can be solved for‘Rewhich in turn enables the value of the
minimum fluidising velocity to be calculated, as illustrated in example 5.7.

Example 5.7

A bed consists of uniform glass spheres of size 3.57mm diamglensity=
2500 kg/m). What will be the minimum fluidising velocity in a polymer solution of
density, 1000 kg/fh with power-law constants: = 0.6 andm = 0.25 Pas'? Assume
the bed voidage to be 0.4 at the point of incipient fluidisation.

Solution

First calculate the value of the Galielo number using equation (5.71) which after
substitution for Rg, from equation (5.47) becomes:

2/(2—n)

Ganf =

1-n
(s — p)gde] pd" ( 4 " (152
0 md—eu)" \3n+1

2
Em f
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Substituting the numerical values:

_ (2500— 1000)(9.81)(3.57 x 10°°)(0.4)°

Ga,
Bnf 1000

1-06 2/(2-06)

1000357 x 1073)%6 ( 4x06 ©°° 15v/2
« [ 222
0.25(1 — 0.4)°¢ 3x0.6+1 (0.4)?

=832
Substituting this value in equation (5.70):
150Re; )©®/>00 4 1 75Re;, )09 = 832
or 15QRe, )*** + 1.75(Re, )+ = 8322

By trial and error procedure, Re = 0.25. Thus,

=0.25

pVErd"  an " (15v2
m(1 — e,p)" (3n +1 s,znf
On substituting numerical values and solving, the unknown velocity,; =
0.00236 m/s= 2.36 mm/s.

This value compares well with the experimental value of 2.16 mm/s for this system
[Srinivas and Chhabra, 1991].

5.7.3 Bed expansion characteristics

Liquid—solid fluidised systems are generally characterised by the regular
expansion of the bed which takes place as the liquid velocity increases
from the minimum fluidisation velocity to a value approaching the terminal
falling velocity of the particles. The general form of relation between velocity
and bed voidage is found to be similar for both Newtonian and inelastic
power-law liquids. For fluidisation of uniform spheres by Newtonian liquids,
equation (5.21), introduced earlier to represent hindered settling data, is equally
applicable:

Yo _ 1-C)Y =¢* (5.21)

v
whereVg is now the superficial velocity of the liquid in the fluidised bed and
V is the terminal settling velocity of a single sphere in the same liqit a
constant related to the particle Archimedes number and to the particle-to-vessel
diameter ratio by equation (5.22).

Figure 5.14 shows a typical bed expansion behaviour for 3.57 mm glass
spheres fluidised by aqueous carboxymethyl cellulose solutioas@.84 and
n =0.9), and the behaviour is seen to conform to the form of equation
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Figure 5.14 Typical bed expansion data for 3.57 mm glass spheres fluidised
by shear-thinning polymer solutions [Srinivas and Chhabra, 1991]

(5.21). Qualitatively similar results have been reported by many workers,
and in a recent review [Chhabra, 1993a,b] it has been shown that equation
(5.22) correlates most of the data available for inelastic power-law fluids
(06 <n <1; (d/D)<0.16). Values calculated from equation (5.22) and
experimental values of differ by less than 10%. This suggests that the
modified Archimedes number (equation 5.12) takes account of power-law
shear-thinning behaviour. On the other hand, much larger valué&s rafve

been reported for fluidisation with visco-elastic polymer solutions [Briend
et al, 1984; Srinivas and Chhabra, 1991], but no systematic study has been
made to predict the value &f for visco-elastic liquids.

5.7.4 Effect of particle shape

Little is known about the influence of particle shape on the minimum flui-
dising velocity and bed expansion of liquid fluidised beds even for Newto-
nian liquids [Couderc, 1985; Flemmet al., 1993]. The available scant data
suggests that, if the diameter of a sphere of equal volume is used together
with its sphericity factor, satisfactory predictions of the minimum fluidising
velocity are obtainable from the expressions for spherical particles. Only one
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experimental study has been identified [Sharma and Chhabra, 1992] which is
of relevance, and in that gravel chips (of sphericity of 0.6) were fluidised by
aqueous carboxymethyl cellulose solutiqfs’8 < n < 0.91). If an effective
particle size (diameter of a sphere of equal volume multiplied by its sphericity)
is used in lieu of sphere diameter in equation (5.70), the valugs,gfare
predicted with a mean error of 18%. Similarly, the valuesZofvere within
+10% of the predictions of equation (5.22), although the latter correlation
consistently underpredicted the valuezfor gravel chips.

5.7.5 Dispersion in fluidised beds

The material presented earlier on dispersion in packed beds (Section 5.6.5)
is also relevant to fluidised beds. However, in the only experimental study
reported [Wen and Fan, 1973], longitudinal dispersion coefficientwas
measured by introducing a fluorescein dye into beds of glass and of aluminium
spheres fluidised by mildly shear-thinning carboxymethyl cellulose solutions
(n =0.86 andn = 0.89). The limited results are well correlated by the
following modified form of equation (5.61):

Pex = 0.2+ 0.011R§*® (5.72)

wherey = 1 for packed beds and= (Vo/V s )2~ for fluidised systems; the
Reynolds number is based on the superficial velocity.

5.7.6 Liquid-solid mass transfer in fluidised beds

Kumar and Upadhyay [1980, 1981] have measured the rates of dissolution
of spheres and cylindrical pellets of benzoic acid in a bed fluidised by an
aqueous carboxymethyl cellulose solution= 0.85). Mass transfer coeffi-
cients were calculated on the basis of a plug-flow model from the measured rate
of weight loss of the particles, and using the log mean value of concentration
driving force at the inlet and outlet of the bed. Their data were satisfactorily
correlated using equation (5.62) (as can be seen in Figure 5.15), though the
results are over-predicted at low values of the Reynolds number. Subsequently,
Hwang et al. [1993] have measured concentrations within a fluidised bed
of cylindrical pellets of benzoic acid for a number of aqueous solutions of
carboxymethyl cellulosg0.63 < n < 0.92). The longitudinal concentration
profile was adequately represented by a model combining plug-flow with axial
dispersion. Using equation (5.72) to calculd@g, together with the experi-
mentally determined concentration profiles, mass transfer coefficients were
evaluated in terms of the particle Reynolds numi@01 < Re€ < 600) and

the Schmidt number. They proposed the following correlation forjthfactor
defined by equation (5.63):

log(e ) = 0.169— 0.455 log Ré— 0.0661(log R€)? (5.73)
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Figure 5.15 Correlationsfor liquid—solid masstransferin bedsfluidisedby
power-lawliquids

The effective viscosity usedin the definitions of the Reynoldsand Schimdt
numbersis estimatedfrom equation (5.53). Figure5.15 also includes the
predictionsof equation(5.73)alongwith the dataof Hwangetal. [1993]. The
scatteris suchthat, althoughboth equations(5.62) and (5.73) give similar
predictionsat Reynoldsnumbersgreaterthanaboutl, equation(5.73) seems
betterin the low Reynoldsnumberregion.
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5.10 Nomenclature

Ar
Bi
Bi*

Cpn

area of flow (nf)

Archimedes number (=)

Bingham number (=)

modified Bingham number (-)

volume fraction of solids in a suspension or in a fluidised
bed (-)

drag coefficient (=)

drag coefficient in a Newtonian fluid (=)

tube or vessel diameter (m)

hydraulic mean diameter for a packed bed (m)

Deborah number (=)

longitudinal dispersion coefficient (fs)

radial dispersion coefficient (#s)

sphere diameter (m)

total drag force on a particle (N)

normal component of drag force due to pressure (N)

tangential component of drag force due to shear stress (N)

friction factor for flow in packed beds (-) or wall correc-
tion factor for particle settling in a tube (-)

value of wall correction factor in streamline region (-)

value of wall correction factor in the high Reynolds
number region (-)

wall correction factor for packed beds (-)

acceleration due to gravity (nfls

Galileo number (=)

Hedstém number (=)

j factor for mass transfer (-)

constant dependent on shape of cross-section (-)

permeability of porous medium @

mass transfer coefficient (m/s)

height of bed (m)

effective path length traversed by a fluid element (m)

power law consistency coefficient (88

apparent power law consistency coefficient
(Pas"), equation (5.48)

flow behaviour index (=)

apparent flow behaviour index (-)

pressure (Pa)

pressure gradient (Pa/m)

Peclet number (-)

volumetric flow rate (ri/s)

sphere radius (m)

particle Reynolds number (-)

particle Reynolds number based on Bingham plastic
viscosity (-)

modified Reynolds number for packed beds (-), equations
(5.59) and (5.53)

Dimensions
inM, L, T

L2

MOLOTO
MOLOTO
MOLOTO

MOLOTO
MOLOTO
MOLOTO
L

L
MOLOTO
L2r-1
Lar-1
L

MLT —2
MLT —2
MLT —2

MOLOTO
MOLOTO

MOLOTO
MOLOTO
LT 2
MOLOTO
MOLOTO
MOLOTO
MOLOTO
L2
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modified Reynolds number, equation (5.61b) (-)

coordinate (m)

specific surface of a particle ()

specific surface of a bed of particles ()

tortuosity factor (-)

terminal falling velocity of a sphere (m/s)

interstitial or pore velocity (m/s)

terminal falling velocity of a sphere in a bounded fluid medium
(m/s)

superficial velocity (m/s)

drag correction factor (-)

yield parameter (-)

fluidisation/hindered settling index (=)

Greek letters

Yw
8

T

wall shear rate (3!)

ratio of viscosity of the fluid sphere and that of the continuous
medium (=)

voidage (-)

coordinate (=)

fluid relaxation time (s)

viscosity (Pas)

density (kg/ni)

yield stress, (Pa)

r§-component of stress, (Pa)

tg/fw

Subscripts/superscripts

b
S
B
eff

bubble

solid

Bingham model parameter
effective.

Dimensions
inM, L, T

MOLOTO



Chapter 6
Heat transfer characteristics of
non-Newtonian fluids in pipes

6.1 Introduction

In many chemical and processing applications, fluids need to be heated or
cooled and a wide range of equipment may be utilized. Examples include
double pipe and shell and tube heat exchangers, and stirred vessels fitted
with cooling coils or jackets. Sometimes, heat is generated in the process,
as in extrusion which is extensively carried out in the polymer and food
industry. It may also be necessary to reduce the rate at which heat is lost
from a vessel or to ensure that heat is removed at a sufficient rate in
equipment such as screw conveyors. In most applications, it is the rate of heat
transfer within process equipment which is of principal interest. However,
with thermally sensitive materials (such as foodstuffs, fermentation froths,
pharmaceutical formulations), the temperature profiles must be known and
maximum permissible temperatures must not be exceeded.

Because of their high consistencies, non-Newtonian materials are most
frequently processed under conditions of laminar flow. Furthermore, shear
stresses are generally so high that viscous generation of heat can rarely be
neglected, and the temperature dependence of the rheological properties adds
to the complexity of the mass, momentum and energy balance equations.
Numerical techniques are often needed to obtain solutions, even for highly
idealized conditions of flow.

Much of the research activity in this area has related to heat transfer to
inelastic non-Newtonian fluids in laminar flow in circular and non-circular
ducts. In recent years, some consideration has also been given to heat transfer
to/from non-Newtonian fluids in vessels fitted with coils and jackets, but little
information is available on the operation of heat exchange equipment with non-
Newtonian fluids. Consequently, this chapter is concerned mainly with the
prediction of heat transfer rates for flow in circular tubes. Heat transfer
in external (boundary layer) flows is discussed in Chapter 7, whereas the
cooling/heating of non-Newtonian fluids in stirred vessels is dealt with
in Chapter 8. First of all, however, the thermo-physical properties of the
commonly used non-Newtonian materials will be described.
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6.2 Thermo-physical properties

The most important thermo-physical properties of non-Newtonian fluids are
thermal conductivity, density, specific heat, surface tension and coefficient of
thermal expansion. While the first three characteristics enter into virtually all
heat transfer calculations, surface tension often exerts a strong influence on
boiling heat transfer and bubble dynamics in non-Newtonian fluids, as seen in
Chapter 5. Likewise, the coefficient of thermal expansion is important in heat
transfer by free convection.

Only a very limited range of measurements of physical properties has
been made, and for dilute and moderately concentrated aqueous solutions
of commonly used polymers including carboxymethyl cellulose, polyethylene
oxide, carbopol, polyacrylamide, density, specific heat, thermal conductivity,
coefficient of thermal expansion and surface tension differ from the values
for water by no more than 5-10% [Porter, 1971; Cho and Hartnett, 1982;
Irvine, Jr.et al,, 1987]. Thermal conductivity might be expected to be shear
rate dependent, because both apparent viscosity and thermal conductivity are
dependent on structure. Although limited measurements [Loed@l, 1992]
on carbopol solutions confirm this, the effect is small. For engineering design
calculations, there will be little error in assuming that all the above physical
properties of agueous polymer solutions, except apparent viscosity, are equal
to the values for water.

Some values of these properties of polymer melts are also available
[Brandrup and Immergut, 1989; Domininghaus, 1993]. Unfortunately though,
no simple predictive expressions are available for their estimation. Besides,
values seem to be strongly dependent on the method of preparation of the
polymer, the molecular weight distribution, etc., and therefore extrapolation
from one system to another, even under nominally identical conditions,
can lead to significant errors. For industrially important slurries and pastes
exhibiting strong non-Newtonian behaviour, the thermo-physical properties
(density, specific heat and thermal conductivity) can deviate significantly from
those of its constituents. Early measurements [Orr and Dallavale, 1954] on
aqueous suspensions of powdered copper, graphite, aluminium and glass beads
suggest that both the density and the specific heat can be approximated by the
weighted average of the individual constituents, i.e.

psus= ¢ps + (1 —@)p, (6.1)
CPsus = ¢CP: + (1 - ¢)CpL (62)

whereg¢ is the volume fraction of the solids, and the subscripgd L refer
to the values for the solid and the liquid medium respectively.

The thermal conductivity of these systems, on the other hand, seems gener-
ally to be well correlated by the following expression [Tareef, 1940; Orr and
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Dallavale, 1954; Skelland, 1967]:

1+ 0.5(ks/kr) — (1 — ks /kr)
ksus= ki 1 (6-3)
+ 0.5(ks/kr) + 0.5¢(1 — ks /kr.)
Thermal conductivities of suspensions up to 60% (by weight) in water and
other suspending media are well represented by equation (6.3). It can readily
be seen that even for a suspension of highly conducting particigs, — 0),
the thermal conductivity of a suspension can be increased by several folds.
Furthermore, the resulting increase in apparent viscosity from such addition
would more than offset the effects of increase in thermal conductivity on the
rate of heat transfer.
For suspensions of mixed particle size, the following expression due to
Bruggemann [1935] is found to be satisfactory:

(ksus/ks) =1 (keus V3
o e ©

kL
The scant experimental data [Rajaiathal., 1992] for suspensiong < 0.3)
of alumina (0.5—-0.8m) particles in a paraffin hydrocarbon are in line with the
predictions of equation (6.4). An exhaustive review of the thermal conductivity
of structured media including polymer solutions, filled and unfilled polymer
melts, suspensions and foodstuffs has been published by Dutta and Mashelkar
[1987]. Figure 6.1 shows the predictions of equations (6.3) and (6.4) for a
range of values ofk; /k,); the two predictions are fairly close, except for the
limiting value ofk; /k, = 0.

Example 6.1

Estimate the value of thermal conductivity at°@0of 25% (by vol) for agueous
suspensions of (a) aluminag, = 30 W/mK (b) thorium oxide, k;, = 14.2 W/mK
(c) glass beads;, = 1.20 W/mK.

Solution

Here ¢ = 0.25; thermal conductivity of watek; = 0.60 W/mK.
The values of the thermal conductivity of various suspensions are calculated using
equations (6.3) and (6.4) for the purposes of comparison.

Suspension Value dfsys W/mK
equation (6.3) equation (6.4)

alumina 1.92 2.2
thorium oxide 1.85 2.06
glass beads 1.29 1.20
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Figure 6.1 Effect of concentration on thermal conductivity of suspensions

The values obtained by the two methods are seen to be close and the difference,
being 10%, is well within the limits of experimental error in such measurements.

Of all the physico-chemical properties, it is the rheology which shows
the strongest temperature dependence. For instance, the decrease in apparent
viscosity at a fixed shear rate is well represented by the Arrhenius-type
exponential expression; the pre-exponential factor and the activation energy are
then both functions of shear rate. It is thus customary to denote the temperature
dependence using rheological constants such as the power-law consistency
coefficient and flow behaviour index. It is now reasonably well established
that the flow behaviour index,, of suspensions, polymer melts and solutions
is nearly independent of temperature, at least over a range of 4Q+-50
whereas the consistency coefficient exhibits an exponential dependence on
temperature, i.e.

m = mgeXE/RT) (6.5)
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where the coefficientng and E, the activation energy of viscous flow, are
evaluated using experimental results for the temperature range of interest.
Similarly, in the case of Bingham plastic model, both the plastic viscosity
and the yield stress decrease with temperature in a similar fashion, but each
with different values of the pre-exponential factors and the activation energies.
Temperature dependencies of the other rheological characteristics such as the
primary and the secondary normal stress differences, extensional viscosity,
etc. have been discussed in detail by Ferry [1980].

6.3 Laminar flow in circular tubes

Heat transfer through a liquid in streamline flow takes place by conduction. As
mentioned earlier, the consistency of most non-Newtonian materials is high
so that turbulent conditions do not usually occur and free convection also is
seldom significant.

When a shear-thinning power-law fluid enters a pipe heated on the outside,
the fluid near the wall will be both at a higher temperature and subject to
higher shear rates than that at the centre, and therefore its viscosity will be
lower. It thus follows that for a given volumetric flow rate the velocity of
the fluid near the wall will be greater, and that near the centre correspond-
ingly less, as compared with an unheated fluid (Figure 6.2). Thus the velocity
profile is flattened when the fluid is heated and, conversely, sharpened when
it is cooled. If the fluid has a high apparent viscosity, frictional heating may
be sufficient to modify the temperature and velocity profiles and the analysis
of the flow problem then becomes very complex (Section 6.8).

As in the case of Newtonian flow, it is necessary to differentiate between the
conditions in the entry region and in the region of fully (thermally) developed
flow.

|- Cooling

Isothermal —

—Heating

Figure 6.2 Effectof heattransferon velocitydistribution
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Since the power-law and the Bingham plastic fluid models are usually
adequate for modelling the shear dependence of viscosity in most engineering
design calculations, the following discussion will therefore be restricted to
cover just these two models; where appropriate, reference, however, will also
be made to the applications of other rheological models. Theoretical and exper-
imental results will be presented separately. For more detailed accounts of
work on heat transfer in non-Newtonian fluids in both circular and non-circular
ducts, reference should be made to one of the detailed surveys [Cho and Hart-
nett, 1982; Irvine, Jr. and Karni, 1987; Shah and Joshi, 1987; Hartnett and
Kostic, 1989; Hartnett and Cho, 1998].

6.4 Fully-developed heat transfer to power-law fluids in
laminar flow

The heating of a viscous fluid in laminar flow in a tube of radtugliameterD)

will now be considered. Prior to the entry plae< 0), the fluid temperature

is uniform atT'y; for z > 0, the temperature of the fluid will vary in both radial
and axial directions as a result of heat transfer at the tube wall. A thermal
energy balance will first be made on a differential fluid element to derive the
basic governing equation for heat transfer. The solution of this equation for the
power-law and the Bingham plastic models will then be presented.

Consider the differential control volume shown in Figure 6.3. The velocity
profile is assumed to be fully developed in the direction of flow, V.&(r).
Furthermore, all physical properties includingandr for a power-law fluid
and plastic viscosity and yield stress for a Bingham plastic fluid, are assumed
to be independent of temperature.

f ydr
v A ; 7277277777277 ; 22
Conduction r Conduction
+ convection
=0 77777777227727727777777 —>
z T! t -,-+3_T.dr T—T+ﬂ-.dz
. or ~ oz

dz

Figure 6.3 Schematic$or heatbalancein a tube

At steadystate,the temperatureof the fluid, 7, apparentviscosity will be
a function of both r and z, and the rate of transferof heatinto the control
volumeis:
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(2rrdz- gl + (2rrdrg)l. +  arV pCp(T — T1)dr); (6.4)
(conduction in  (conduction in (convection in
r-direction) z-direction) z-direction)

Similarly, the rate of transfer of heat out of the control volume is given by:

(27 (r + dr)dzg, )| (r4dr) + (27 drg;)| 1a0)
+ @rrV,pC (T — T1)Ar)| (o+dr) 63

whereg, and g, respectively are the heat fluxes due to conduction inrthe
andz-directions.

Under steady state conditions, expressions 6.4 and 6.5 must be equal and
slight re-arrangement yields:
T  9q,

10
+ -+ —(g)=0 (6.6)
r or

Cc,V
PEp Z(r)az 0z

Since heat transfer in-direction is solely by conduction,

oT
qr = —k— (6.7)
or
Similarly, the conduction heat flux ig-direction
oT
q, = —k— (6.8)
0z

Combining equations (6.6) to (6.8),

oT PT ko [ oT
( (6.9)

CV.N\—=k—5+-——|(r—
PEp Z(r)az 972 ror rar

It is implicit in equation (6.9) that thermal conductivities are isotropic. This is
satisfactory for homogeneous systems (e.g. polymer solutions), but not always
so for filled polymer melts [Dutta and Mashelkar, 1987].

Generally, conduction in the-direction is negligible in comparison with
the convection, and the tera?7/dz? in equation (6.9) may thus be dropped
to give:

(6.10)

oT k o oT
pCsz(r) - (

- F—
0z ror or

Two important wall conditions will now be considered: (1) constant wall
temperature (e.g. when steam is condensing on the outside of the tube), and
(2) constant heat flux (e.g. when an electrical heating coil surrounds the pipe).
The solutions for these two conditions are quite different, and the two cases
will therefore be dealt with separately.
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6.5 Isothermal tube wall
6.5.1 Theoretical analysis

Let the tube wall be at a uniform temperatdig(z > 0) and the entry temper-
ature of the fluid b&'; atz = 0. The solution of equation (6.10) is simplified
by using a dimensionless temperatwedefined by:

T-T
0= 0 (6.11)
T1—To
On substitution in equation (6.10):
¥ ol a0
Vo) — = —— [ r—~ 6.12
(1) dz ror <r or 6.12)

wherea = k/pC, is the thermal diffusivity of the fluid. This basic equation
for temperaturef(r, z), must be solved subject to the following boundary
conditions:

At the tube wall, r=R, =0 for all values ofz > 0 (6.139
00

At the centre of tube, r =0, o = 0 for all values ofz (6.13b)
r

and at the tube inlet, z=0, 6 =1, for all values ofr (6.13¢)

The solution depends on the form of the velocity distribution. Unfortunately,
the closed form solutions are only possible for the following three forms
of V_(r):

(i) Piston or plug flow

This type of flow is characterised by the uniform velocity across the cross-
section of the tube, i.6/,(r) = Vo, the constant value. This condition applies
near the tube entrance, and is also the limiting conditiom of 0 with power-

law model, i.e. infinite pseudoplasticity. In view of its limited practical utility,
though this case is not discussed here, but detailed solutions are given in
several books, e.g. see Skelland [1967]. However, Metehat [1957] put
forward the following expression for Nusselt number under these conditions
(for Gz > 100):

hwD 4
Nu==—=—-@+ GZ/?) (6.14)
v
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whereh,, is the heat transfer coefficient averaged over the ledigthf the
tube, and Gz is the Graetz number defined by:

Gz mC,
kL

(6.15)
wherer is the mass flow rate of the fluid.

(i) Fully developed power-law fluid flow

As seen in Chapter 3, the fully developed laminar velocity profile for power
law fluids in a tube is given by

3n+1 T (n+1)/n

V.=V — 3.7
2(r) (n 1 R 3.7)
which, upon substitution in equation (6.12), yields:
3n+1 (+D/n 30 a [ 90
y(2+r: L T_27 (% (6.16)
n+1 R dz ror \  or

whereV is the mean velocity of flow.
This differential equation can be solved by tkeparation of variables
method by letting

0 =R(NZ() ®.17

where R is a function of only and Z is a function of only. Equation (6.16)
then reduces to:

V<3n+1 1dz 1 d<dR 6.18)
_ | — =— = — | r— .
a\n+1l Zdz rR{1-(@/R)"P/"}dr\ dr
Both sides of equation (6.18) must be equal to a constant,—ség, i.e.

ldz < n+l «

Zdz n+1 Vv
which can be integrated to obtain the Z component ak

an+1) 2 }
Z=expd————- 6.19
Xp{ vanrn P* ©19

The variation of9 in the radial direction is given by the right-hand side of
equation (6.18), with slight rearrangement as:

r (+Ll)/n

R=0 6.20
r dr R ( )
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This equation is of the Sturm — Liouville type, and its complete solution for

n =1, 1/2 and 1/3 and for small values of the Graetz number is available
[Lyche and Bird, 1956]. Detailed tabulations of the eigen values of equation
(6.20) are given in the original paper, and a representative temperature profile
for Gz= 5.24 is shown in Figure 6.4, for a range of values of the power-law
flow behaviour index. The temperature profile is seen to become progressively
flatter as the flow index: is reduced (increasing degree of shear-thinning
behaviour). However, difficulties in evaluating the series expansions at high
Graetz numbers limited their predictions to the randge&/k Gz < 31.4.

.6 0.8 1.0

0.20 ‘
n=1
0.15 p=1/2 Gz=5.24
My
ko"'\o 0.10 =18 \\
1 — :
| \\
I
n=0 \
0.05 —
\k
A4 0
I
R

Figure 6.4 Temperature distribution for power-law fluids in a tube [Bird
et al., 1987]

The resulting values of the mean Nusselt number,,Nunder thermally
fully-developed conditions are 3.66, 3.95 and 4.18 respectively: foalues
of 1, 1/2 and 1/3 [Birdet al., 1987].

In addition, the so-called Leveque approximation [Leveque, 1928] has also
been extended and applied to power-law fluids. The key assumption in this
approach is that the temperature boundary layer is confined to a thin layer of
the fluid adjacent to tube wall. This is a reasonable assumption for high flow
rates and for short tubes, i.e. large values of Gz. A linear velocity gradient
can then be assumed to exist within this thin layer:

V.(r)=—B,(R—r) (6.21)

wherep, is the velocity gradient close to the tube wall. For power-law fluids,
it can be evaluated using the velocity distribution given by equation (3.7) as:

gy~ dv.,(r) \% <3n+1

dar R

(6.22)

n
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and the velocity profile near the wall is therefore given approximately by:

V /(3n+1
Vz(r)=E<

(R—r) (6.23)

When substituted in equation (6.10), this yields:

R

V /(3n+1 2 3 [ %
( nt “—( (6.24)

R—r)— = — —
( r) 0z ror r8r
Furthermore, since the heat transfer is confined to a thin layer near the wall,
the effects of curvature can be neglected. Denoting the distance from the wall
asy, i.e. y=R —r, the right-hand side of equation (6.24) can be further
simplified to give:

3n+1 00 0

where & = y/R; ¢ =az/VR? = n(z/L)(1/Gz). The boundary conditions
(6.13a) and (6.13b) may be re-written 8s=0, 6 =0 and& — o0, 6 =1

respectively. Under these conditions, equation (6.25) can be solved by a
combination of variablesnethod as

6 = 6(x) (6.26)
with x = § 73 (6.27)
n
9
d <3n +1
When substituted in equation (6.25), this gives:

d0 do
— +3x*—=0 6.28
02 X dy (6.28)

The first integration gives:

do
— = Aoe*X3
dx

where A is a constant of integration. This equation can be again integrated:
0 =Ag E_Xad)( + By

The two constants fand B, are evaluated by applying the boundary condi-
tions for dimensionless temperat@eNheny = 0,6 = 0 andy — oo, 6 = 1.
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Thus, substituting the value 6f= 0, wheny = 0, it givesBy = 0. Similarly,
substitutingy — oo andf = 1:

1

Ag= —— T
e X dy
0

The definite integral in the denominator is identified to be a gamma function,
I'(4/3). Therefore, the dimensionless temperattiis obtained as:
The dimensionless temperatutaés obtained as:

9 1 "o (6.29)
= (4 N
T(4/3) o X

The local value of the Nusselt number, in turn, is deduced by writing the rate
of transfer of heat at the tube wall as:

oT
W(Ty —To) = —k — (6.30)
ar r=R

which can be re-arranged in terms of dimensionless variables:

h,D 0
Nu, = — = 28—
k ¥ o
do a
=2 (—X (6.31)
dX x=0 aé
Substitution from equations (6.27) and (6.29) in equation (6.31) gives:
No = 2 w1 vRe
T T4/3) n 9%z
3 1 1/3
- 1.167( ”4+ G2/ (6.32)
" :

where Gz relates to an arbitrary axial distangénstead of the tube length.
The average value of the Nusselt number is obtained as:

1 L
Nu= — Nu, dz
L o

which when evaluated yields
Nu = 1.75AY3GZY3 (6.33)

3n+1
4n

where A= < (6.34)



272  Non-Newtonian Flow in the Process Industries

Whenn is put equal to unity, equation (6.34) correctly reduces to its Newto-
nian form, Nu= 1.75 G2/,

Hirai [1959] and Schechter and Wissler [1960] have extended this approach
to include Bingham plastic fluids; the factar is then given by:

A= 3
 B-¢—¢*—¢%

where¢ = 1§/, the ratio of the yield stress to the wall shear stress. Indeed,
Pigford [1955] has asserted that equation (6.33) is applicable to any type of
time-independent fluid provided that the apparent flow behaviour index
replaces: in equation (6.33). For power-law shear-thinning fluids, equations
(6.32) and (6.33) seem to be valid for Gz100.

(6.35)

6.5.2 Experimental results and correlations

The experimental studies on heat transfer to/from purely viscous fluids in
laminar flow in circular tubes have been critically reviewed in many publica-
tions [Porter, 1971; Cho and Hartnett, 1982; Irvine, Jr. and Karni, 1987; Shah
and Joshi, 1987; Hartnett and Kostic, 1989]. Metzatal [1957] found it
necessary to modify equation (6.33) to account for the temperature dependence
of the consistency index as:

;014

Nu = 1.75AY3GZY/3 <@

w

(6.36)

where m;, and m;,, respectively, are the apparent consistency coefficients
{(= m((3n’ + 1)/4n")"} at the bulk temperature of the fluid and at the wall
temperature. They asserted that this equation applies to all types of time-
independent fluids provided that the local valuenofis used in evaluating

A and in the viscosity correction term. Extensive comparisons between the
predictions of equation (6.36) and experimental results suggest that it is
satisfactory for 1> n’ > 0.1 and Gz> 20. Subsequently [Metzner and Gluck,
1960], equation (6.36) has been modified to take into account free-convection
effects:

04 1/3 . 014
Nu=1.75AY3 Gz+ 12.6{(PrGr)w <Z } (—,b (6.37)
mW
ATD®p?
where Gr= ﬂing (6.373)
Heett
C
pr— —pkeft (6.37b)

k
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The thermo-physical properties including the effective viscosity are evaluated
at the wall conditions of shear rate and temperature. For a power-
law fluid therefore the effective viscosity is evaluated at the shear rate
of {(3n +1)/4n}(8V /D). However, Oliver and Jenson [1964] found that
equation (6.37) underpredicted their results on heat transfer to carbopol
solutions in 37 mm diameter tubes and that there was no effect of_ji®) (
ratio. They correlated their results €824 < n’ < 0.87):

;014
Nu = 1.75[Gz+ 0.0083Pr Gn27] /3 (ﬂ
m

w

(6.38)

where the effective viscosity used in evaluating the Prandtl and Grashof
numbers is evaluated at the wall conditions.

The limited data on heat transfer to Bingham plastic suspensions of thoria
[Thomas, 1960] in laminar flow seem to be well correlated by equations (6.33)
and (6.35), except that a slightly different numerical constant must be used.
Skelland [1967] has put it in a more convenient form as:

h, L 014 13 B
ju = <ﬁ PR3 (“— <B AY? = 1.86Rg;° (6.39)
oL p b

where the Reynolds number is based on the mean plastic viscosity of the
suspension. The density and heat capacity were taken as weighted averages,
and the thermal conductivity was estimated using equation (6.1).

Example 6.2

A 0.2% aqueous carbopol solution at’@5is flowing at a mass flow rate of 200 kg/h
through a 30 mm diameter copper tube prior to entering a 2 m long heated section. The
initial unheated section is sufficiently long for the velocity profile to be fully estab-
lished. The heated section is surrounded by a jacket in which steam condenses at a
pressure of 70 kPa (saturation temperaturecyOEstimate the mean heat transfer coef-
ficient and the bulk temperature of the fluid leaving the heating section. Compare the
predicted values given by the various equations/correlations presented in the preceding
section.

Physical properties of carbopol solution:

Density and specific heat as for water, 1000 kjand 42 kd/kg K respectively.

Thermal conductivity= 0.56 W/mK

Power-law indexp = 0.26, applies in the range 15 T < 85°C; power-law consis-
tency coefficientmn, (Pas') = 26 — 0.05667 (288 < T < 363 K) whereT is in K.
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Solution

The Graetz number for the given conditions will be calculated first.

mC,  (200/3600 x 4.2 x 1000

Gz=1 056 x 2

= 208

Since this value is greater than 100, and it is not necessary to take account of the
temperature dependence of viscosity, equation (6.33) may be used:

Nu = 1.75AY3GZ/3

3x026+1 3
_ /3
= 1.75( 15076 208"

= 1240

and the heat transfer coefficient= 12.40 x g

_ 1240x 0.56
- 003

The arithmetic mean of the temperature difference between the wall and the fluid may,
as a first approximation, be used to calculate the rate of heat transfer:

= 232 W/ntK

Atinlet, AT, =T, —T; = 90-25=65C

At exit, AT, =T, —T,=90—-T>
AT AT 65+90—-T 1
U AT mean= 1—; 2 = + > 2 = 775 — éTz

Neglecting the resistance of the film on the steam side and of the copper tube wall
(high thermal conductivity), the overall heat transfer coefficiéhts h = 232 W/ntK
From a heat balance on the fluid:

mC, (T, — 25 =U-A- AT
Substituting values:

200 1
3600 x 4200x (Ty — 25) = 232x 3.14 x 0.03 x 2 x (77.5 - ETZ

Solving: T, = 36.1°C

The temperature of the fluid leaving the heating section is thereforé(36.1

It is important next to establish the influence of temperature dependence of the
consistency index. Equation (6.36) will be used since the values of bathd the
Graetz number lie within its range of validity. In this example, since the valueisf
constant,

/
(M
m m,,

w
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Strictly speaking, as the outlet temperature of the fluid is not known, a trial and error
solution is required. Assuming the outlet fluid temperature to be’@6.ds calculated
above, the mean fluid temperature(5+ 36.1)/2, i.e. 30.55C and the value ofn

is calculated as:

my, = 26 — 0.0566I' = 26 — 0.0566273+ 30.55)
= 8.82Pas".

Similarly, m,, = 26 — 0.0566273+ 90)
= 5.45Pas’

Substituting the values in equation (6.36):

3x026+1 3
4% 0.26

and h = 248WintK.

Under these conditions, the viscosity correction is small (only about 7%). The outlet
temperature of the fluid in this case is found to be 36.&hich is sufficiently close
to the assumed value of 36C for a second iteration not to be needed.

Finally, the contribution of free convection may be evaluated using equations (6.37)
and (6.38).

The wall shear rate for a power-law fluid is:

. (3n +1 (8V
Ywall = -

Nu = 1.75(

4n D
4y 4x2
The mean velocity of flowy = m2 = x 200/3600 33
pnD 1000x 3.14 x (30 x 107°)
=0.0785m/s

= 3585t

0 _ (3x026+1 (800785
Ywall =\~ 45026 30x 103

The effective viscosity at the wall shear rate and temperature is:
Hett = m(wan)" "
The value ofm at wall temperature, (9C) is 5.45 P&
O Ueit = 5.45(35.8)°26-1 = 0.386 Pas
gBATD®p?
Méff
The coefficient of thermal expansion of the carbopol solution is assumed to be same

as that for water, and the mean value in this temperature range is 0.000302 K
Substituting values:

o 0.000302x 9.81 x (90— 25) x (30 x 1073)® x 100¢
N 0.386

Grashof number, G

=317
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C 4200x 0.386
and Prandtl number, pe —2Hef _ x
k 0.56

= 2890

Now substituting the above values in equation (6.37):

1/3
Nu— 175 (226x3+1
4% 026
3 73 0.14
1 82 ©
x 2084126 2890x 317 x 20X 10 <%
2 5.45
—17

0 h= 272995 _ 317 wWintk

30 x 10

The resulting outlet temperature of the polymer solution in this case iSG%8ich
is significantly different from the assumed value of 3&€1lused in evaluating the
viscosity correction term. However, the latter has an exponent of 0.14 which gives rise
to a change in the value @f of less than 0.2%.

Similarly, equation (6.38) gives:

Nu= 1385 and h = 258 W/n?K

The outlet fluid temperature is then about 3€2
Using the minimum value of the consistency coefficient, which will apply in the
wall region where the temperature is°@0

VD"
g1 (371 +1 " N
4n
_ 1000x 0.07858 %% x (30 x 10°2)%26

= g026-1 (0,26 x3+1 0.26

Reyr =

4% 026 x 545

= 3.57« 2100

The flow is thus laminar.

Equations (6.33), (6.36) and (6.38) all give comparable results while equation (6.37)
yields a much higher value df. From design view point, it is desirable to establish
upper and lower bounds on the value of the heat transfer coefficient and hence on the
required heat transfer area. There does not appear to be much information available
as to when natural convection effects become significant. Using the criterion that it
should be so for GiRE,, > 1, as for Newtonian fluids, natural convection effects will
be important.
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6.6 Constant heat flux at tube wall
6.6.1 Theoretical treatments

In this case, the energy balance given by equation (6.10) is still applicable;
however, the boundary conditions are amended as follows:

aT
At the tube wall, r =R, —ka— = ¢, (constant (for z > 0)
r
(6.40a)
aT
At the centre of the tube, r =0, o= 0 (forz>0) (6.40Db)
r

and the inlet condition, z=0, T=7T,, for all values ofr <R.
(6.400)

The use of the Leveque approximation in this instance leads to the following
expression for the mean Nusselt number over the entry length [Bird, 1959]:

Nu = 2.11AY3GZA/3 (6.41)

Similarly, the Nusselt number under fully developed thermal conditions is
given by [Bird, 1959]:

_8@Bn+1)(5n+1)
 @Wm?+ 12+ 1)

On the other hand, Grigull [1956] estimated the value of Nay modifying
the value for Newtonian fluids by applying a factor &t/3:

NUs (6.42)

i.e. Nu, = 4.36AY3 (6.43)

where A = [(3n + 1)/4n]

For n = 1, both equations (6.42) and (6.43) reduce to the correct value
Nu, = 48/11 = 4.36. Forn = 0.1, the two predictions differ by about 6.5%.
Interestingly enough, the correction is smaller for shear-thickening fluids, e.g.
for n — oo, AY3 =0.908.

Similar results for square and triangular ducts are also available in the
literature [Irvine, Jr. and Karni, 1987].

6.6.2 Experimental results and correlations

For the constant heat flux condition at the tube wall, most investigators
have expressed the local values of the Nusselt number as a function of the
corresponding Graetz number. Cho and Hartnett [1982] concluded that for
small values of temperature difference between the liquid and the tube wall,
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the radial variation in apparent viscosity is not significant, and most available
experimental results are well correlated by the approximate isothermal solu-
tion, equation (6.41), due to Bird [1959]. Indeed, even the data obtained with
weakly visco-elastic solutions of polyacrylamide and polyethylene oxide are in
line with equation (6.41). However, when an appreciable temperature differ-
ence exists, the temperature dependence of the viscosity and natural convection
effects can no longer be neglected. For these conditions, Cho and Hartnett
[1982] have recommended using the following equation due to Mahalingam
et al. [1975]:
0.14

Nu, = 1.46AY3[Gz + 0.0083Gr Pp2%)/3 <ﬂ (6.44)
where the subscripts, b, w refer respectively to an arbitrary valuepflength
in the direction of flow), bulk and wall conditions; the Grashof and Prandtl
numbers are defined using the apparent viscosity at the shear rat®of 8
in equations (6.37a) and (6.37b). Equation (6.44) covers the following ranges
of conditions: 24 <n <1; 25<¢g9g <40 kW/n?; 200< Gz < 10000 and
750 < Gr < 4000. Furthermore, Mahalingaet al. [1975] have suggested that
natural convection effects are negligible f@r/Reyz) < 1.

Example 6.3

The polymer solution referred to in Example 6.2 is to be heated frot€ 16 25C

in a 25mm diameter 1800 mm long steel tube at the rate of 100kg/h. The steel tube
is wrapped with a electrical heating wire so that a constant heat flux is maintained on
the tube wall. Estimate the rate of heat transfer to the solution, the heat flux at the
wall and the temperature of the tube wall at the exit end of the tube. The physical
properties are given in Example 6.2.

Solution

Initially, the temperature dependence of the fluid consistency coeffigientll be
neglected so that equation (6.41) can be used. For this case,

_(100/3600 x 4200

Gz 056 1.8

= 1157

Forn = 0.26 (applicable forT # 85°C),
A=GBn+1)/(4n)=(3x0.26+1)/(4x 0.26) =171

OV Y YV Y Y VY Y Y VY VYV YV
T=15C —» — T=25°C
m =100 kg/h A A A AR R KA AR A AR R KRR A A A

-~ [=18Mm —m—
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Using equation (6.41),

hD
Nu = - = 2.11AY3GZ/3
13 13 0.56
or h=211x1717° x 1157° x = 271 W/nmtK.
25x 10
From a heat balance,
0= mcp(TOUl —Tin)
100
= —— x 4200x (25— 15) = 1167W
3600~ 4200% ( )

Also, ¢, -mDL=Q

1167
0 g, = ;:76655;7E§::8253VWn?or&25kVWnF
=h(Ty —Ty)
ForT, = 25°C,
8253
T, = ——— +25=555C. eq. (i
71 T (eq. ()

The role of natural convection can now be ascertained by using equation
(6.44). Initially, the above estimate of the wall temperature will be used to
evaluate the power-law consistency coefficient. For the wall temperature diC55.5

m = 26— 0.0566273+ 55.5) = 7.41 Pas' and for the bulk temperature of 25,

m = 9.13 Pas’.
. _ 3n+1 8V
Ywall = n D
100 4
where V= = 0.057m/s
3600x 1000 7 x 0.025
O ; B 3n+1 8V
Ywall = an D
3x026+1 /8x0.057
= =1592s?
( 4% 0.26 (25x1cr3 S

O Meff wall = m()'/wa")"*l = 741(1592)02&1 = 0.96 Pas

At the wall conditions,

c 4200x 0.96
pr— —rtefl _ X290 _ 7170
k 0.56
_ BgATD?p?

2
Mett

Gr
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_0.000302x 9.81 x (555 — 25) x (25 x 10" °)*100C°
B 0.96°

=153

Note that this value is outside the range of the validity of equation (6.44), so its use
here is only tentative.

D 1 0.14
Nu = h? = 1.46(1.71)"/°[115.7 + 0.00837170x 1.53)°7%]%/3 (2—4?
=9
9 x 0.56
0 h= 2 — 201 Win?K
25x 10

At the end of the tube,
qw = T, —Tp) = 201(Tw - 25)

For g, = 8.25kW/n¥; T,, = 66°C
This value is substantially different from the assumed value of E5ffom equation
(D] Another iteration is carried out by assumifig = 64°C, at whichm = 6.93 Pas'
Again, atja = 15.92s!

Ueit = M(Pwan)" "t = 6.93(15.92)%%6-1 = 0.894 Pas
The new values of the Prandtl and Grashof numbers are
Pr= 6705 Gr= 225

Using equation (6.44), N 9.12

One 9.12 x 0.56
0.025

At the tube exitg,, = W(T,, — T})
Substituting valuesg,, = 8250 W/n¥; h = 204 W/ntK and T, = 25°C,

= 204 W/ntK

T, = 65.4°C

Though this value is fairly close to the assumed value 6€64 second iteration yields

T, = 65°C. Thus, if the natural convection effects are ignored, the wall temperature
at the end is found to be 55 [see equation (i)] which is some 1D lower than the
value of 65C. In a sense, this discrepancy also reflects the inherent inaccuracy of the
predictive equations in this field. The value of)Re(using the apparent viscosity near
the wall) is calculated and this confirms that the flow is streamline:

Re. _ _ PV'D" _1000x 0.057 %% x 0.025"%°
s <3n 1T T T E I 171 % 6.93
4n

=153
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6.7 Effect of temperature-dependent physical
properties on heat transfer

The theoretical treatments considered so far have been based on the assumption
that the thermo-physical properties are constant (i.e. independent of tempe-
rature and therefore the velocity profiles do not change over the heat transfer
section of the tube. Christiansen and Craig [1962] investigated the effect of
temperature-dependent power-law viscosity on the mean values of Nusselt
number for streamline flow in tubes with constant wall temperature. They
postulated that the flow behaviour indexywas constant and that the variation

of the consistency coefficientz, with temperature could be represented by
equation (6.45) giving:

dv E "
T, = Mo (_d—rz exp(ﬁ (6.45)

wheremg and E are the pre-exponential factor and the activation energy of
viscous flow; their values can be estimated by making rheological measure-
ments at different temperatures covering the range of application. All other
physical properties were assumed to be temperature independent. Figure 6.5
shows representative results for the mean values of Nusselt number, Nu, as a
function of the Graetz number for = 1/3.

The sign and magnitude of the dimensionless parameter,
Y = (E/R)(1/T1—1/Tp) depends upon the direction of heat transfer and

108 T T T T

102 -

101 -

Nusselt Number, Nu

109 | | | |
100 10! 102 108 104 10°

Graetz Number, Gz

Figure 6.5 Computed Nusselt number versus Graetz numbei ferl /3
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the sensitivity ofm to temperature. For a cold fluid entering the tulge,
would be positive. This analysis predicts an enhancement in the rate of heat
transfer which is qualitatively consistent with the limited data presented by
Christiansen and Craig [1962]. The thermal conductivity must be evaluated at
the mean film temperature, i.é[To + %(Tl + T,)] whereTy, T1, T, are the
temperatures of the tube wall and of the fluid at inlet and outlet respectively.
Finally, the effect of the flow behaviour index is found to be small.

On the other hand, Forrest and Wilkinson [1973, 1974] modelled the tempe-
rature-dependence of the power-law consistancy coefficient as:

m = mo{l+ B (T — T1)}™" (6.46)

where 8,, is the temperature coefficient of viscosity. For the heating and
cooling of power-law fluids in streamline flow in tubes with walls at a constant
temperature, representative results from their study are shown in Figure 6.6,
for a range of valueg, and¢ = (To/T1), which are qualitatively similar to
those shown in Figure 6.5.

The enhancement of heat transfer at a isothermal tube wall due to tempe-
rature-dependent viscosity has been correlated by Kwearl [1973] as
follows:

Nuyp

T 1+ 0.271In¢g + 0.023(n ¢$)? (6.47)
10° I
n=0.5
By=10,¢9=1.2
Nu

10t —

By=10,¢ = 0.91

1 I

1 10? 108 10°
Graetz number (Gz)

Figure 6.6 NusseltnumberversusGraetznumberfor heatingand cooling
of power-lawfluids (n = 0.5)
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where Nyp and Nu are, respectively, the Nusselt numbers for the cases where
consistencies are temperature dependent and independent respectively. Physi-
cal properties are evaluated at the mean film temperature.

To summarise, the heat transfer rate is enhanced as a result of the temper-
ature dependence of the power-law consistency coefficient during heating
(¢ > 1 ory > 0) while it is reduced during cooling of the fluigh(< 1, ¢ < 0).

This effect is much more pronounced for the case of constant wall temper-
ature than that for the constant wall heat flux condition. The work of other
investigators on the role of temperature-dependent viscosity has recently been
reviewed by Lawal and Mujumdar [1987].

6.8 Effect of viscous energy dissipation

In the flow of all fluids, mechanical energy is degraded into heat and this
process is called viscous dissipation. The effect may be incorporated into the
thermal energy balance by adding a source tetm{per unit volume of fluid)

to the right hand side of equation (6.10). Its magnitude depends upon the local
velocity gradient and the apparent viscosity of the fluid. Although, in general,
the viscous dissipation includes contributions from both shearing and normal
stresses, but under most conditions the contribution of shearing components
outweighs that of normal stress components. Thus, it can readily be seen that
the viscous dissipation terns,,, is equal to the product of the shear stress
and the shear rate. Thus, for example, in the streamline flow of a power-law
fluid in a circular tube, it is of the form:

dv, dv, "+l
Sy =1, <— O =m <— O (6.48)

For fully developed isothermal flow, the velocity gradient is obtained by differ-
entiating the expression for velocity (equation 3.7) to give:

av V /3 1 1/n
_ z:_<”+ r (6.49)
dr R n R
and thus the source terrfly, becomes:
V (3n+1 " (n+1)/n
szm{—< ot } L (6.50)
R n R

whereV is the mean velocity of flow.

Evidently, for the limiting case of a shear-thinning fluid (Newtonian fluid
n = 1), the velocity gradient is a maximum and hence, the viscous heat genera-
tion is also maximum. The effect of this process on the developing temperature
profile can be illustrated by considering the situation depicted in Figure 6.7.
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Here, a Newtonian fluid initially at a uniform temperatu®, enters a tube
whose walls are also maintained at the same temperdigirds the fluid
proceeds down the tube, heat is produced within the fluid at the rate given by
equation (6.50). Near the entrance of the tube, the maximum temperature is
obtained closed to the wall. Due to the conduction of heat in the radial direction
(towards the centre), the temperature profile evolves progressively, eventually
the maximum temperature being reached at the centre of the tube (Figure 6.7).
Obviously, viscous dissipation effects will be significant for the flow of high
consistency materials (such as polymer melts) and/or where velocity gradients
are high (such as in lubrication and rolling processes).

Vz (f) T= TO //
y7a (

77
|
—>1
|
—1

> ED DD

V7
7”7

Figure 6.7 \elocity (left) and temperatue (right) profilesfor the flow of a
Newtonianfluid in a tube

Viscousdissipationcan be quantifiedin termsof the so-calledBrinkman
number,Br, which is definedas the ratio of the heatgeneratedy viscous
actionto thatdissipatedoy conduction.Thusfor streamlineflow in a circular
tube (on the basisof per unit volume of fluid):

heatgeneratedy viscousaction~ m(V/R)"**
andthe heatconductedn radial direction~ (kAT)/(R?)

In this case the Brinkmannumber,Br is:

VRI‘I+1
5 _ M(V/R)

CAT IR (6.51)

Clearly, the viscous dissipation effects will be significant wheneverthe
Brinkmannumberis much greaterthanunity.

While the rigorous solutions of the thermal enegy equation are quite
complex, some useful insights can be gained by qualitative considerations
of the resultsof ForrestandWilkinson [1973,1974] andDinh and Armstrong
[1982] amongstothersor from the review papers[Winter, 1977; Lawal and
Mujumdar, 1987].
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6.9 Heat transfer in transitional and turbulent flow
in pipes

Although turbulent flow gives higher values of the heat transfer coefficient,

it frequently cannot be achieved in practice with non-Newtonian polymer
solutions and particulate suspensions. However, the turbulent flow of the so-
called drag reducing solutions has been the subject of several studies and
Cho and Hartnett [1982] have reviewed the literature on heat transfer to these
dilute solutions. They have clearly shown that the results reported by different
workers often do not agree and may differ by more than an order of magni-
tude under nominally identical conditions of flow. The rheological and heat
transfer characteristics of these fluids are known to be extremely sensitive to
the method of preparation, chemistry of solvent, etc. Furthermore these solu-
tions show appreciable shear degradation and few reliable data are available
on their heat transfer coefficients [Cho and Hartnett 1982]. Yoo [1974] has
collated most of the available data on heat transfer to purely viscous fluids in
turbulent region and has proposed the following correlation:

St=

= = 0.0152Rey ) 2 pr2/3 (6.52)
pVC,

where the effective viscosity used in the Reynolds and Prandtl numbers is eval-
uated at the wall shear rate @B + 1)/4n](8V /D) for a power-law fluid.

Equation (6.52) correlates the data over wide ran@24 < n < 0.9 and
3000< Reyg < 90000) with an average error a@f3%. On the other hand,
the heat transfer data for particulate suspensi@¥2 < n < 0.89) seems to
be well represented by

0.14

PR3 (“— — 0.027Rg°? (6.53)
b

_ h
- pVC,

JH

where Rg = pVD/up.

Other similar correlations are available in the literature [Quadeer
and Wilkinson], none of which, however, has been validated using
independent data.

Thus, it is concluded that although adequate information is available on
laminar heat transfer to purely viscous fluids in circular tubes, further work is
needed in turbulent regime, particularly with visco-elastic fluids.

6.10 Further reading

Carreau, P.J., Dekee, D. and Chhabra, REheology of Polymeric Systems: Principles and
Applications Hanser, Munich (1997).

Chhabra, R.P., irAdvances in the Rheology and Flow of Non-Newtonian Fl{g&tlited by
Siginer, D., Dekee, D. and Chhabra, R.P. Elsevier, Amsterdam) (1999) in press.



286  Non-Newtonian Flow in the Process Industries

Cho, Y.l. and Hartnett, J.PAdv. Heat Transf15 (1982) 59.

Hartnett, J.P. and Kostic, MAdv. Heat Transf19 (1989) 247.

Kakac, S., Shah, R.K. and Aung, W., (eddgndbook of Single Phase Convective Heat Transfer
Wiley, New York (1987).

Lawal, A. and Mujumdar, A.S Adv. Transport Proces$ (1987) 352.

Rohsenow, W.M., Hartnett, J.P. and Cho, Y.l. (eddandbook of Heat Transfer3rd edn.,
McGraw-Hill, New York (1998).

6.11 References

Bird, R.B., Chem. Ing. Tech31 (1959) 569.

Bird, R.B., Armstrong, R.C. and Hassager, @ynamics of Polymeric Liquidsvol. 1 Fluid
Dynamics 2nd edn. Wiley, New York (1987).

Brandrup, J. and Immergut, E.H., (editor§)plymer Handbook 3rd edn. Wiley, New York
(1989).

Bruggemann, D.A.G.Ann. Phys(Leipzig) 24 (1935) 636.

Cho, Y.l. and Hartnett, J.PAdv. Heat Transfl5 (1982) 59.

Christiansen, E.B. and Craig, S.RAIChEJ 8 (1962) 154.

Dinh, S.M. and Armstrong, R.CAIChEJ 28 (1982) 294.

Domininghans, H.,Plastics for Engineers: Materials, Properties and Applicatiortdanser,
Munich (1993).

Dutta, A. and Mashelkar, R.AAdv. Heat Transf18 (1987) 161.

Ferry, J.D.,Visco-elastic Properties of Polymer3rd edn. Wiley, New York (1980).

Forrest, G. and Wilkinson, W.LTrans. Inst. Chem. Endxl (1973) 331.

Forrest, G. and Wilkinson, W.LTrans. Inst. Chem. Ené2 (1974) 10.

Grigull, U., Chem. Ing. Tech28 (1956) 553 & 655.

Hartnett, J.P. and Cho, Y.l., inlandbook of Heat Transfeedited by Rohsenow, W.M., Hart-
nett, J.P. and Cho, Y.l., 3rd edn., McGraw Hill, New York (1998).

Hartnett, J.P. and Kostic, MAdv. Heat Transf19 (1989) 247.

Hirai, E., AIChEJ 5 (1959) 130.

Irvine, T.F. Jr., and Karni, J., ilandbook of Single Phase Convective Heat Tran&dited by
Kakac, S. Shah, R.K. and Aung, W., Wiley, New York) (1987) Chapter 5.

Irvine, T.F. Jr., Kim, I., Cho, K. and Gori, FExp. Heat Transfl (1987) 155.

Kwant, P.B., Zwaneveld, A. and Dijkstra, F.CChem. Eng. Sci28 (1973) 1303.

Lawal, A. and Mujumdar, A.S Adv. Transport Proces$ (1987) 352.

Leveque, J.Ann. Mines.13 (1928) 201, 305, 381.

Loulou, T., Peerhossaini, H. and Bardon, JIRt, J. Heat Mass TransB35 (1992) 2557.

Lyche, B.C. and Bird, R.B.Chem. Eng. Sci6 (1956) 34.

Mahalingam, R., Tilton, L.O. and Coulson, J.NChem. Eng. Sci30 (1975) 921.

Metzner, A.B. and Gluck, D.FChem. Eng. Scil2 (1960) 185.

Metzner, A.B., Vaughn, R.D. and Houghton, G.AIChEJ. 3(1957) 92.

Oliver, D.R. and Jenson, V.GChem. Eng. Scil9 (1964) 115.

Orr, C. and Dallavalle, J.MChem. Eng. Prog. Sym. S&0 #9 (1954) 29.

Pigford, R.L.,Chem. Eng. Prog. Sym. Sé&l #17 (1955) 79.

Porter, J.E.Trans. Inst. Chem. Engr49 (1971) 1.

Quader, A.K.M.A. and Wilkinson, W.L.Int. J. Multiphase Flow7 (1981) 545.

Rajaiah, J., Andrews, G., Ruckenstein, E. and Gupta, REKem. Eng. Sci47 (1992) 3863.

Schechter, R.S. and Wissler, E.IAIChEJ.6 (1960) 170.

Shah, R.K. and Joshi, S.D., iHandbook of Single Phase Convective Heat Trangéeiited by
Kakac, S., Shah, R.K. and Aung, W. Wiley, New York) (1987) Chapter 5.

Skelland, A.H.P.Non-Newtonian Flow and Heat Transfeiiley, New York (1967).



Heat transfer characteristics of non-Newtonian fluids in pipes

Tareef, B.M.,Colloid, J., (U.S.S.R.p (1940) 545.
Thomas, D.G.AIChEJ 6 (1960) 632.

Yoo, S.S.,PhD Thesis, University of lllinois at Chicago CircléL (1974).

Winter, H.H., Adv. Heat Transf13 (1977) 205.

6.12 Nomenclature

=

~

=

I IDTEITROOmMOCAOD
N

3§O§

a\

Z
c

Pr

V:(r)

T1
To

Brinkman number, equation (6.51) (=)
specific heat (J/kg K)

pipe diameter (m)

activation energy (J/mole)

Grashof number, equation (6.37a) (-)
Graetz number, equation (6.15) (-)
acceleration due to gravity (nf)s

heat transfer coefficient (WAK)

heat transfer factor, equation (6.39) (-)
thermal conductivity (W/mK)

length (m)

power-law consistency coefficient (188
apparent power-law consistency coefficient-65
pre-exponential factor, equation (6.45) ($a
mass flow rate (kg/s)

power law flow behaviour index (-)
apparent power law flow behaviour index (=)
Nusselt number=£ hD/k) (-)

Prandtl number, equation (6.37b) (=)

heat flux (W/nf)

pipe radius (m)

universal gas constant (J/kmol.K)

radial coordinate (m)

Reynolds numbet= pVD/ug) (=)

Metzner-Reed Reynolds numbes pV2—"D" /m(A)"8"~1) (=)

Stanton number, equation (6.52) (-)

Dimensions
in M,L,T @

MOLOTO
L2T 2672
L

ML 2T -2
MOLOTO
MOLOTO

LT -2

MT 3 671
MOLOTO
MLT -3 g1
L

ML 71Tn72
ML 71Tn/72
ML 71Tn72
MT -1
MOLOTO
MOLOTO
MOLOTO
MOLOTO
MT 3

L

ML2T-2 g71
L

MOLOTO
MOLOTO
MOLOTO

energy produced by viscous dissipation per unit volume of fluidML ~1T—2

(I/mP)
local velocity inz-direction (m/s)
average velocity of flow (m/s)
temperature (K)
fluid temperature at inlet (K)
constant temperature of tube wall (K)
axial coordinate (m)

Greek letters

o
B
A

thermal diffusivity (nf/s)
coefficient of expansion (K1)
correction factor £ (3n + 1)/4n) (=)

LTt
LTt
6

0
0
L

L2T—l
671
MOLOTO
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0 dimensionless temperature (-) MOLOTO
w viscosity (Pas) ML 111
) density (kg/ni) ML —3

¢ volume fraction (-) o= T1/To (-) MOLOTO
¥ dimensionless factorf (E/R)(1/T1 — 1/To)] (<) MOLOTO
Subscripts

A apparent

b bulk condition

L liquid

m mean

0 outside film

K solid

sus suspension

vp variable property

z arbitrary z value

w wall condition



Chapter 7
Momentum, heat and mass transfer in
boundary layers

7.1 Introduction

When an incompressible liquid flows steadily over a solid surface, the liquid
close to the surface experiences a significant retardation. The liquid velocity
is zero at the surface (provided that the no-slip boundary condition holds)
and gradually increases with distance from the surface, and a velocity profile
is established. The velocity gradient is steepest adjacent to the surface and
becomes progressively less with distance from it. Although theoretically, the
velocity gradient is a continuous function becoming zero only at infinite
distance from the surface, the flow may conveniently be divided into two
regions.

(1) A boundary layer close to the surface where the fluid is retarded and a
velocity gradient exists, and in which shear stresses are significant.

(2) The region outside the boundary layer where the liquid is all flowing at
the free stream velocity.

It is thus evident that the definition of the boundary layer thickness is somewhat
arbitrary. It is often defined as the distance (normal to flow) from the surface at
which the fluid velocity reaches some proportion (e.g. 90%, 99% or 99.9% etc)
of the free stream velocity; 99% is the most commonly used figure. As will be
seen later, difficulties arise in comparing differently defined boundary layer
thicknesses, because as the free stream velocity is approached, the velocity
gradient becomes very low and a small difference in the velocity criterion will
correspond to a very large difference in the resulting value of the boundary
layer thickness. A thorough understanding of the flow in the boundary layer is
of considerable importance in a range of chemical and processing applications
because the nature of flow influences, not only the drag at a surface or on an
immersed object, but also the rates of heat and mass transfer when temperature
or concentration gradients exist.

At the outset, it is convenient to consider an incompressible fluid flowing
at a constant free stream velocity over a thin plate oriented parallel to the
flow, Figure 7.1.

Although this is a simplified case, it facilitates the discussion of more
complex two and three dimensional boundary layers. The plate is assumed
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Figure 7.1 Schematic development of boundary layer

to be sufficiently wide in the-direction for the flow conditions to be uniform
across any width of the plate. In addition, the extent of the fluid
direction is assumed to be sufficiently large for the velocity of the fluid remote
from the plate to be unaffected, and to remain constant at the vali®.of
From Bernoulli’'s equation, the consequence of this is that the pressure gradient
is zero in the direction of flow.

Although there is conflicting evidence in the literature concerning the
validity of the no slip boundary condition for non-Newtonian materials, it
will be assumed that it is satisfied, so that the fluid in contact with the
surface § = 0) can be considered to be at rest. At a distancieom the
leading edge, the-direction velocityV, will increase from zero at the surface
and approach the free stream velocityy asymptotically. At the leading
edge £ =0, y=0), the liquid will have been subjected to the retarding
force exerted by the surface for only an infinitesimal time and the effective
boundary layer thickness will therefore be zero. The liquid will then experience
retardation for progressively longer periods of time as it flows over the surface.
The retarding effects will affect fluid at greater depths, and the boundary layer
thickness,8, will therefore increase. The velocity gradientV/(ddy) at the
surface § = 0) decreases as the boundary layer thickens. Near the leading
edge, the boundary layer thickness is small, the flow is laminar and the
shear stresses arise solely from viscous shearing effects. However, when the
boundary layer thickness exceeds a critical value, the flow becomes turbulent.
However, the transition from laminar to turbulent flow is not as sharply defined
as in a conduit and is strongly influenced by small protuberances at the leading
edge and by surface roughness and irregularities which may possibly give rise
to an early transition. The flow parameter describing the nature of the flow
is a Reynolds number, defined for power-law quids,aﬁ%Vé‘”/m(z Re).

Since the boundary layer thicknes3 is a function ofx, it is more convenient
to define the local Reynolds number, Ras:

_px" Ve

Re, (7.1

m
The relation between Reand Re will be developed later.
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The transition for Newtonian fluids occurs at,Re 10° [Schlichting, 1968].

Even when the flow in the body of the boundary layer is turbulent, flow
remains laminar in the thin layer close to the solid surface, the so-called
laminar sub-layer. Indeed, the bulk of the resistance to momentum, heat and
mass transfer lies in this thin film and therefore interphase heat and mass
transfer rates may be increased by decreasing its thickness. As in pipe flow,
the laminar sub-layer and the turbulent region are separated by a buffer layer
in which viscous and inertial effects are of comparable magnitudes, as shown
schematically in Figure 7.1.

The frictional drag force on a submerged object will depend on the flow
conditions in the boundary layer. The analysis of boundary layer flow of non-
Newtonian materials will now be based on a direct extension of that applicable
to Newtonian fluids. Detailed accounts are given in the literature [Schlichting,
1968], but the salient features of this approach, which is based on Prandtl’'s
analysis, will be re-capitulated. If the flow can be regarded as uni-directional
(x-direction), it implies that the effects of velocity components normal to
the surface may be neglected, except at very low Reynolds number where the
boundary layer thickens rapidly. A further simplifying assumption is to neglect
the existence of the buffer layer and to assume that there is a sharp interface
between the laminar sub-layer and the turbulent region. If there is a negligible
pressure gradient in the direction of flow, i@p/dox) — 0, it follows from
the application of Bernoulli equation to the free stream outside the boundary
layer that its velocity must be constant. The pressure gradient may in practice
be either positive or negative. F@p/dx) > 0, the so-called adverse pressure
gradient will tend to retard the flow and cause the boundary layer to thicken
rapidly with the result thaseparationmay occur. Conversely, the effect of a
negative pressure gradient is to reduce the boundary layer thickness.

An integral form of the general momentum balance will be obtained by
applying Newton’s second law of motion to a control volume of fluid. The
evaluation of the resulting integral necessitates a knowledge of the velocity
profile and appropriate assumptions of its form must be made for both laminar
and turbulent flow conditions.

7.2 Integral momentum equation

Schilichting [1968] points out that the differential equations for flow in
boundary layers require numerical solutions even when the flow is laminar
and fluid behaviour Newtonian. However, reasonably good estimates of drag
on a plane surface can be obtained by using the integral momentum balance
approach due to von Karman, as illustrated in this section.

Consider the steady flow of an incompressible liquid of dengityver an
immersed plane surface. Remote from the surface, the free stream velocity
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Figure 7.2 Control volume for momentum balance on the fluid in boundary
layer flow

of liquid is Vo. A boundary layer of thickness develops near the surface,
as shown schematically in Figure 7.1. Now consider the equilibrium of the
control volume bounded by the planes AB and CD, as shown in Figure 7.2.
The velocity component normal to the surface is assumed to be negligible
(Vy < Vy). The rate at which the fluid is entering the control volume through
the boundary AB is given by

1A = OH pV W dy (7.2)
Similarly, the total rate of momentum transfer through plane AB
H
=W . pVidy (7.3)
In passing from plane AB to CD, the mass flow changes by:
d H
Wa . pV,dy dx (7.4)
and the momentum flux changes by:
d 7
W i pV2dy dx (7.5)

A mass flow of fluid equal to the difference between the flows at planes C-D
and A-B must therefore occur through plane B—-D. Since plane B-D lies
outside the boundary layer, this entering fluid must have a veldgjtin the
x-direction. Because the fluid in the boundary layer is being retarded, there
will be a smaller flow at plane C-D than at A—B, and hence the amount of
fluid entering through plane B—D is negative; that is to say fluid leaves the
control volume through the plane B—D.
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Thus, the rate of transfer of momentum through plane BD into the control
volume

d H
=WVo— oV.dy dx (7.6)
de o

The net rate of change of momentum in thelirection associated with the
fluid in the control volume must be equal to the rate of addition of momentum
from outside (through plane B—D) together with the net force acting on the
control volume. With zero pressure gradient, there are no pressure forces and
the only external force is that due to the shear strggsacting on the surface
(y = 0). As this is a retarding force,,, is negative.

Thus, the net force acting on the control volume,,, W dx. Hence, the
momentum balance on the control volume:

H H

d d
w— V2dy dx = WVo— V,.dy dx+ 7, W dx
& o pVidy 04y . oVydy +7T

Since Vg does not vary with;

8
% p(Vo = V)Vydy = —7,,dx (7.7)
0
Note that the upper limit of integration has been changed because the
integrand is zero in the range< y < H.

This expression, (equation (7.7)), known as the integral momentum
equation, is valid for both laminar and turbulent flow, and no assumption
has also been made about the nature of the fluid or its behaviour. In order to
integrate equation (7.7), the relation betwéénand y must be known.

Laminar flow will now be considered for both power-law and Bingham
plastic model fluids, followed by a short discussion for turbulent flow.

7.3 Laminar boundary layer flow of power-law liquids
over a plate

For the laminar flow of a power-law fluid, the only forces acting within the
fluid are pure shearing forces, and no momentum transfer occurs by eddy
motion. A third degree polynomial approximation may be used for the velocity
distribution:

Ve=a+by+cy’ +dy? (7.8)

The constantsz to 4 are evaluated by applying the following boundary
conditions:



294  Non-Newtonian Flow in the Process Industries

At y=0, V,=0 (no slip) (7.99)

shear stress> constant,

n
ie. (—x — constant

dy
9V,
-~ =0 (7.9b)
dy
Aty=38, V,=Vq (7.90)
We _ 0 (7.9d)
ay

Condition (7.9d) is necessary to ensure the continuity of the velocity=ab.
Condition (7.9b) can be explained by the following physical reasoning. The
shearing stress in the fluid increases towards the plate, where the velocity is
zero. Thus, the change in the momentum of the fluid inxtitérection must
be very small near the plate and the shear stress in the fluid therefore must
approach a constant value so that equation (7.9b) is applicable.

Evaluating the constants and incorporating them into equation (7.8):

3

(7.10)

Vi 3y
Vo 2 &

NI =
> |

as for Newtonian fluids.
Thus, the shearing stress acting at any position on the plate can now be
evaluated by substituting from equation (7.10) into equation (7.7):

d ?¢ 3 vy 1 y31(3 vy 1 y3
N V¢ D R A ) (A A
¢ podxo{28 23}{25 za}y

(7.11)
After integration and simplification, equation (7.11) gives:
39 ds
Ty = —— pV2— 7.12
o= 280" dr (7.12)
For a power-law liquid,
<de "
Ty = —M
)y dy
dv, "
and T, = Tyxly=0 = —m (7.13)
dy y:O
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From the velocity distribution given by equation (7.10),
dv, _ 3Vo

= — 7.14
dy y=0 25 ( )
Now combining equations (7.13) to (7.14) and eliminating:
39 ,ds 3Vo "
Vi = 7.15
280" 0dy ~ m( 25 (7.15

which upon further integration with respect i9 and noting thatt = 0 at
x =0, gives:

1)
- = F(n)Reg Y/ (7.16)
X
2 3 n 1/(i‘l+1)
where Hn) = —(n +1) ( (7.17)
V2—n n
and RQ — M
m

Puttingn = 1 andm = u for a Newtonian fluid, equation (7.16) reduces to
the well known result:

)
- =4.64RgY? (7.18)
X
The rate of thickening of the boundary layer for power-law fluids is given by:

ds 1
- (——_ F R Tl/(n—t—l)
dx <n +1 ()R,

ds
or o x~(n/@+D) (7.19)

which suggests that, for a pseudoplastic fluid<( 1), the boundary layer
thickens more rapidly with distance along the surface as compared with a
Newtonian liquid, and conversely for a shear-thickening fluid>(1).

7.3.1 Shear stress and frictional drag on the plane immersed
surface

As seen above, the shear stress in the fluid at the surfaeed) is given by:

| dVX n
Tyxly=0 = —m
yxly=0 dy o
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3V, "
(Vo 7.2
" < 25 (7.20)

Substitution fors from equation (7.17) and with slight re-arrangement:

n

3
wlog=—z=— pVERe YD 7.21
T |y:0 <2F(l’l) Vo QC ( a)

The shear stress acting on the plate will be equal and opposite to the shear
stress in the fluid at the surface, i®, = —1y|y=0.

n

Thus, pVERe Y +D (7.21b)

_ 3

Equation (7.21b) gives the local value of the shearing stress on the plate which
can be averaged over the length of the plate to obtain a mean value,

0
Ve { 3 } Lo
= Re L/(+D) gy
, R&

3 " _ymn
= pV2 (- RegYrH 7.22
1Y o(”+ )<2F(n) L ( )

where Re = pV3™"L"/m.

The total frictional drag forcé”, on one side of the plate of length and
width W is then obtained as:

n

Fy=1, (LW)= (T(n) (n +1pV3Re " PwL (7.23)

Introducing a dimensionless drag coeffici€ry defined as:

Fq

Cp= o
"7 (Zov3) (WL

Equation (7.23) becomes:

3
CD:Z(n—i_l)(T(n) ReLl/( +1)

= C(n)Reg "tV (7.24)
where QGn) = 2(n + 1)(3/2Fn))" (7.243
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For the special case of Newtonian fluids=£ 1), equation (7.24) reduces to
the well known result oCp = 1.292 R({l/z.

The values of the laminar boundary layer thickness and of the frictional
drag are not very sensitive to the form of approximations used for the velocity
distribution, as illustrated by Skelland [1967] for various choices of velocity
profiles. The resulting values of &) are compared in Table 7.1 with the more
refined values obtained by Acrivax al. [1960] who solved the differential
momentum and mass balance equations numerically; the two values agree
within 10% of each other. Schowalter [1978] has discussed the extension of
the laminar boundary layer analysis for power-law fluids to the more complex
geometries of two- and three-dimensional flows.

Table 7.1 Values ofC(n) in equation (7.24a)

n Value ofC(n)
Numerical Equation (7.24a)

0.1 2.132 1.892
0.2 2.094 1.794
0.3 1.905 1.703
0.5 1.727 1.554
1.0 1.328 1.292
15 1.095 1.128
2 0.967 1.014
3 0.776 0.872
4 0.678 0.79
5 0.613 0.732

7.4 Laminar boundary layer flow of Bingham plastic
fluids over a plate

Outside the boundary layer region, the velocity gradient is zero, and thus the
shearing forces must also be zero in the case of Newtonian and power-law
fluids, as seen in the preceding section. In contrast, in the case of Bingham
plastic fluids, the shear stress approaches the yield stress of the fluid at the
outer edge of the boundary layer which must eventually decay to zero over

a relatively short distance and thus, once again, there is no shearing force
present in the bulk of the fluid outside the boundary layer. It should be noted

that in this case the position of the boundary layer is defined precisely, as a
point where the shear stress in the fluid equals the yield stress of the fluid.
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However, to take account of the yield stress acting at the edge of the boundary
layer, the integral momentum balance equation (7.7) must be modified as:

8

P& o (Vo= V)Vidy = —(1 — 15) (7.25)

Assuming that equation (7.11) still provides a satisfactory representation of

the laminar boundary layer flow in the region<Oy < §, substituting equation
(7.11) into (7.25) yields:

39,0
280" Odx

For a Bingham plastic, the fluid the shear stress at the surface, thapis; t
is given by:

(wa - 'Cg) (wa > Tg) (726)

dv,

d—y (7.27)

B
Tyx|y:0 =T + up
y=0

The velocity gradient at the surface,

v, 3V
dy y=0 - 25

(equation 715)

Substituting in equation (7.27):

3 usVo
2 6

Tyx|y:0 = —Tyx = — <‘C + = (7286)

3 MVo
24
Combining equations (7.26) and (7.28):

sds— (120 rs
13 pVo

or — (Tyx — ‘L'O) = (7.28b)

Integration with the initial condition that at= 0, § = 0, yields:

8 4.64
o0 (7.29)
X Re,

where Rg is now defined a®Vox/up.

It is interesting to note that equation (7.29) is identical to that for a Newto-
nian fluid (see equation 7.17 with = 1). In spite of this similarity with
Newtonian fluids, the frictional drag on a plate submerged in a Bingham
plastic fluid deviates from that in a Newtonian fluid owing to the existence of
the fluid yield stress in equation (7.28), as will be seen in the next section.
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7.4.1 Shear stress and drag force on an immersed plate

The shear stress in the fluid adjacent to the plate=(Q) is given by
equation (7.28a), i.e.

3ugV
Tyelyo = — <zg 4 SHBYO (7.283)
2 3
Substitution foré from equation (7.29):
0.323 —
Tyelymo = — <tg + , Vous Re (7.30)

The shear stress acting on the plate will be equal and opposite of this value,
I.e. Ty = —Tyly=0, thus

0.323 —
Tyx = <‘L’g + TVO/,LB Re, (731)
The average shear stress acting over the entire plate may be calculated as:
1 L 1 L
=T made= T (40328l Y2 dy
L o L ¢

or

pV3

VRe,

Introducing a drag coefficienfp, as defined earlier, equation (7.32) can be
re-written as:

1.292
Cp =Bi+ — 7.33
D JRe (7.33)

where Bi, the Bingham number is defined ag 2oV3.
Again, for Newtonian fluids, B&= 0 and equation (7.33) reduces to the
expected form.

T, =18 + O.646< (7.32

Example 7.1

A polymer solution (of density 1000 kgfhis flowing parallel to a plate (300 mm

300 mm); the free stream velocity is 2 m/s. In the narrow shear rate range, the rheology
of the polymer solution can be adequately approximated by both the power-law
(m = 0.3Pas’ andn = 0.5) and the Bingham plastic modeh(= 2.28 Pas andup =

7.22 mPas). Using each of these models, estimate and compare the values of the shear
stress and the boundary layer thickness 150 mm away from the leading edge, and the
total frictional force on each side of the plate.
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Solution

(a) Power-law model calculations
First, check the value of the Reynolds number at L = 0.3 m,

B ,ng_nLn

m

Re,
B (100@(2)2705(03)05
B 0.3

The flow is likely to be streamline over the whole plate length (see Section 7.5).
The value of the local shear stress at 0.15 m can be calculated using equation (7.21):

= 5164

n

_ _ 2 o1/ (141)
Tuxlco15m = ~Txlyc0.c015m = <2F(n) PV Re

280 3 n 1/(n+1)
where Kn) = E(n +1) <§
280 1/15
Forn = 0.5, Fn) = E(1.5)(3/2)05 = 5.58

Substitution int,,|,—0.15m Yields:

- -1/15
3 0.5  1000x 22 (1000(2)2 05(0.15)05
2 x 558 0.3

fwx|x=0.15m = (

= 8.75Pa

The boundary layer thicknegsat x = 0.15m is calculated using equation (7.17):
S F(n)Re YD)
X X

-1/15

(1000(2)>7°5(0.15)°°
0.3

or 8ly—015m = (0.15)(5.58)

=353x10°m or 353mm
Finally, the frictional drag force on the plate is calculated using equation (7.24):

Cp = C(n)Re, /"
where Gn)=2n+1) 8 '
n=an 2F(n)

0.5
— - =1554
2 x 558
O Cp = 1.554(5164 Y15 = 0.0052

For n=05 Cn)=2x15x (
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Drag force on one side of platg, = CD%,oV% - WL

Fp =0.0052x % x 1000x 2° x 0.3 x 0.3=0.94N

(b) Bingham plastic model calculations

The maximum value of the Reynolds number occurs at the trailing edge of the plate,
ie.

_ pVoL 1000x 2x 0.3

- = 83100
ip 7.22x 1073

Re,

Using the same transition criterion as for Newtonian fluids, namely, Re-10°, the
flow in the whole of the boundary layer is likely to be laminar.
The value of the local shear stresscat 0.15m is calculated using equation (7.31):

, 0323 _
th|)c:0415m =T + P Vousg Re,
0.323 1000x 2 x 0.15 /2
=228+ " 5(2)(7.22x 10°%)  ———— "=
+ 015 D122 )( 722x10°
= 8.62Pa

Note that, although about a quarter of the shear stress stems from the yield stress, the
total value is comparable with that based on the use of the power-law model, as seen
in Part (a) above.

The boundary layer thicknegsis calculated using equation (7.29):

1000x 2 x 0.15 ~2

8 =4.64xRe Y% = 464 x 0.15( 527 107
. X

=341x103m or 341mm

This value also closely corresponds with that calculated in part (a).
Finally, the drag coefficient is evaluated using equation (7.33):

1292 278 1292

Cp=Bi+ —="1C4
? JRe, V2 JRe
2 x 228 1.292

= 0.00562

= 100022 " (831002
and drag force on one side of the plate,
Fp=Cp-3pViWL = 0.00562x % x 1000x 2° x 0.3 x 0.3
=1.015N

This value is slightly higher than that obtained in part (a) above.
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7.5 Transition criterion and turbulent boundary layer
flow

7.5.1 Transition criterion

As mentioned in Section 7.1, the nature of the flow in the boundary layer
is influenced by several variables including the degree of turbulence in the
free stream, the roughness of the immersed surface and the value of the
Reynolds number, defined by equation (7.1). While no experimental data are
available on the limiting values of the Reynolds number for the flow of non-
Newtonian materials in boundary layers, Skelland [1967] has suggested that
the limiting value of the Reynolds number decreases with increasing shear-
thinning behaviour. Based on heuristic considerations, he defined an effective
viscosity for a power-law fluid in such a manner that the shear stress at the
surface equals that in Newtonian fluids at the transition point, i.e. atRE®P.

Thus, equating the values of the shear stress at the surface for a Newto-
nian fluid of hypothetical viscosity to that for the power-law fluid (equation
7.21), Skelland [1967] obtained the following transition criterion for power
law fluids:

<0.323 2
B(n)

where Bn) = (1.5/F(n))", F@x) is given by equation (7.17a) and
Re. = pvgf”x{}/m wherex, is the distance (from the leading edge) at which
the flow ceases to be streamline. For Newtonian flgids- 1), B(n) = 0.323
and Re = 10° which is the value at the transition point. For a liquid of
flow behaviour index; = 0.5, the limiting value of the Reynolds number
is 1.14 x 10* which is an order of magnitude smaller than the value for a
Newtonian fluid.

Re?/" D < 10° (7.34)

7.5.2 Turbulent boundary layer flow

As mentioned previously, even when the flow becomes turbulent in the
boundary layer, there exists a thin sub-layer close to the surface in which
the flow is laminar. This layer and the fully turbulent regions are separated by a
buffer layer, as shown schematically in Figure 7.1. In the simplified treatments
of flow within the turbulent boundary layer, however, the existence of the
buffer layer is neglected. In the laminar sub-layer, momentum transfer occurs
by molecular means, whereas in the turbulent region eddy transport dominates.
In principle, the methods of calculating the local values of the boundary
layer thickness and shear stress acting on an immersed surface are similar
to those used above for laminar flow. However, the main difficulty stems
from the fact that the viscosity models, such as equations (7.13) or (7.27),
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are applicable only for laminar flow and thus appropriate expressions for the
shear stress at the surface must be known if they are to be inserted in equation
(7.12). For Newtonian fluids, Blasius [1913] circumvented this difficulty by
inferring the values of the shear stress at the wall from the turbulent friction
factor—Reynolds number relationship for flow in circular tubes. Curvature
effects are likely to be negligible because the laminar sub-layer thickness
is generally much smaller than the diameter of the pipe. Schlichting [1968]
and Coulson and Richardson [1999] have discussed turbulent boundary layer
flow in depth. Skelland [1967] has extended this approach to power-law
liquids by replacing the Blasius equation by a modified form, equation
(3.38). Furthermore, because non-Newtonian materials generally have high
apparent viscosities, turbulent conditions are not often encountered in flow
over immersed surfaces. Therefore, this topic will not be pursued further here
because the turbulent flow of non-Newtonian fluids is not at all well understood
and there are no well-established and validated equations for shear stress, even
for flow in pipes.

7.6 Heat transfer in boundary layers

When the fluid and the immersed surface are at different temperatures, heat
transfer will take place. If the heat transfer rate is small in relation to the
thermal capacity of the flowing stream, its temperature will remain substan-
tially constant. The surface may be maintained at a constant temperature, or
the heat flux at the surface may be maintained constant; or surface condi-
tions may be intermediate between these two limits. Because the temperature
gradient will be highest in the vicinity of the surface and the temperature of
the fluid stream will be approached asymptotically, a thermal boundary layer
may therefore be postulated which covers the region close to the surface and
in which the whole of the temperature gradient is assumed to lie.

Thus a momentum and a thermal boundary layer will develop
simultaneously whenever the fluid stream and the immersed surface are at
different temperatures (Figure 7.3). The momentum and energy equations are
coupled, because the physical properties of non-Newtonian fluids are normally
temperature-dependent. The resulting governing equations for momentum and
heat transfer require numerical solutions. However, if the physical properties
of the fluid do not vary significantly over the relevant temperature interval,
there is little interaction between the two boundary layers and they may both
be assumed to develop independently of one another. As seen in Chapter 6,
the physical properties other than apparent viscosity may be taken as constant
for commonly encountered non-Newtonian fluids.

In general, the thermal and momentum boundary layers will not correspond.
In the ensuing treatment, the simplest non-interacting case will be considered
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X

Figure 7.3 Schematic representation of momentum and thermal boundary
layers

with physical properties taken as being temperature-independent. The tempera-
ture of the bulk fluid will be taken to b&j (constant) and that of the immersed
plate to beT (also constant). For convenience, the temperature scale will be
chosen so that the surface temperature is zero, giving the boundary condition
T = 0, corresponding to zero velocity in the momentum balance equation.

An integral procedure similar to that adopted previously for momentum
boundary layers will be used here to obtain the expression for the rate of heat
exchange between the fluid and the plane surface. A heat balance will be made
over a control volume (Figure 7.4) which extends beyond the limits of both
the momentum and thermal boundary layers.

X A C
X X +dx

Figure 7.4 Control volumefor heatbalance

At steadystateand with no sourceor sink presentin the control volume,
the heatbalancefor the control volume ABCD canbe statedas follows:
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The sum of heat convected in through planes AB and BD and
that added by conduction at wall AC must be equal to the heat
convected out at plane CD (7.35)
The rate at which heat enters the control volume at plane AB is:
H

w pVC,Tdy (7.363
0

Similarly, the rate of transfer of heat at the plane CD:

H H

w pV.C,Tdy+ W% pV.C,Tdy dx (7.36b)
0 0

It has already been seen that the mass rate of transfer of fluid across the plane
BD is given by equation (7.4):

d H
W— V.dy dx 7.4
o ( , PV (7.4)
The enthalpy of this stream is:
d H
C,ToW— ( oV.dy dx (7.37)
de \ o

Substituting for the terms in equation (7.35):

H d H
pwC, V.T dy—l—pCpWToa < V.dy dx+q,Wdx
0 0
H d H
= pWC, V.Tdy+ ,oWCpa < V.Tdy dx (7.38)
0 0

whereg, is the heat flux at the wall and is equal 46 (d7'/dy)|,—0 which
upon substitution in equation (7.38) gives:
d 8

T dr
— V(To—T)dy = a— 7.39
& o VTo-Ddy=ag (7.39)

wherea is the thermal diffusivity £ k/pC ) of the fluid. Since both/, and
V, are zero at the surface, the only mechanism of heat transfer which is
relevant is conduction. Also, the upper limit of the integration in equation
(7.39) has been changedag, the thermal boundary layer thickness, because
for y > 87, T = Ty and the integrand is identically zero.

The relation betweel, and y has already been obtained for laminar flow
in the boundary layer. A similar relation between the temperature of the fluid,
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T, andy for laminar flow of power-law fluids in the boundary layer will now
be derived.

7.6.1 Heat transfer in laminar flow of a power-law fluid over an
isothermal plane surface

Consideration is now given to the flow of an incompressible power-law liquid
of temperaturely over a plane surface maintained at a higher temperature
T,. At any given distance from the leading edge, the temperature of the fluid
progressively decreases with distancérom the surface reachingg at the
extremity of the thermal boundary layer= 7. The temperature at a distance

y from the surface can be approximated by a polynomial of the form:

T=a+by+cy*+dy° (7.40)
The boundary conditions for the temperature field are:

At y=0,T=T, (7413

T
y=067,T=Tg and — =0 (7.41b)
y
The fourth boundary condition for temperature can be deduced as follows: the
rate of heat transfer per unit area of the surface is given by:
dr

Glyeo = —k—— (7.410)
? dy y=0

If the temperature of the fluid element adhering to the wall is to remain
constant afl’ = T, the rate of heat transfer into and out of the element must
be the same, i.e. the temperature gradient must be constant and therefore:
d (dr T

— | — o — =0 (7.41d
dy dy y=0 dy y=0

The four unknown constants in the assumed temperature profile, equation (7.40),
can now be evaluated by using equation (7.41a) to (7.41d) to give:

3 (To—T;
a=T,; bz—( o—-T.
2 St
To—Ts
c=0, a=-To=T) (7.42)
257
Substitution of these values into equation (7.40) yields
0 T-—T, 3/y 1/y 3
— = =-|l= —=(= 7.43
o To—Ts, 2 <5T 2 <5T (749



Momentum, heat and mass transfer in boundary layers 307

It should be noted that equation (7.10) for velocity distribution and equation
(7.43) for temperature distribution in the laminar boundary layer are identical
in form, because basically the same forms of equation and boundary conditions
have been used for the velocity and temperature profiles.

It will now be assumed that the thermal boundary layer is everywhere the
thinner,i.ed; < 8. The conditions underwhich this approximationis justified are
examined later. Now substituting in equation (7.39)Wgfrom equation (7.11),

T and(dT'/dy)|,=o from equation (7.43):
3
y
<5T o

y 3 3(y
z [
S5
(7.44)

> |
|

NI =

NI -

d ¥ (3
Vofo— >
Ode 0 {2

_3 %

= 2%,

Integration with respect tg between the limitsy = 0 to y = §7 yields:

d 3 3 3aty
OoVo— <8 [ =% — —¢* 7.45
0 de{ (208 280° } 25 (7.45)

wheree = (87/8) < 1. Neglecting thes* term in equation (7.45) leads to

which may be expressed as:

de ds
(2 2525 + 8¢ 3dx =a (7.47)

Vo
10

Now introducing a new variable = ¢3 and substituting fos and &/dx from
equations (7.17) and (7.19) respectively:

dz 3 150 Re?/"+D
& B FD T Vo 2EmP (749

where Re = (oVZ"x")/m.
The solution of the differential equation (7.48) is given by:

=3 = - . . 1 g 3/@0n+D)
8 (F(n))2V, x en+1 Ot

3 (5T 3 150 Re/™™D 2(n + 1)

(7.49)
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Substituting fors from equation (7.16):

15aF(n) _
3 _ 2 1/(n+1)
=—~° 2 Dx“R
T Yoan 4 o T ORE
+ Cl(F(n))3x3(2n+1)/2(n+1) R T3/(n+1) (750)

For the general case where the heating of the plate begins=aty, the
constantC; is evaluated using the conditioty = 0 at x = xp yielding the
expression fobr as:

Rex—S(n+l) 1
xVo X

sr 30(n+1) - 3 g W3 L xo @+Dy2m+1) 3
x  (2n+1

(7.51a
For the special case where the whole plate being heatee €0, the thermal
boundary layer thicknes%- is given by:

s 30m+l_ Mo W oy
— = — — Re: 7.51b
X (2n+1) ) xVo 4 ( )
A heat transfer coefficient;, may be defined such that:
T
hWT, —To) = —kd— (7.52)
dy y=0

The temperature gradient is found by differentiating the temperature profile,
equation (7.43):
dr _3(To—Ty)

— (7.53)
dy y=0 28]‘

and the heat transfer coefficient is obtained by combining equations (7.52) and
(7.53):

3 [k
h= (E (E (7.54)

Substitution foréy from equation (7.51) into (7.54) leads to
_hx 3 30FRn)(n+1) ~H?
k2 (2n+1)
where the Prandtl number, Riis defined as:
1%4 n—1
pr.= S2m (_0 (7.56)
k X

The Prandtl number for a power-law fluid is not simply a combination of
physical properties of the fluid but also depends on the point value of an

Nuy PrY/3 Rel+2)/(30r+1) (7.55)
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apparent viscosityn(Vo/x)"~1 which is a function of bothx and y. The
choice of linear dimension in this definition is somewhat arbitrary and no
single definition may necessarily be appropriate for all applications. However,
for n = 1, equation (7.55) reduces to the corresponding Newtonian expression,
ie.

Nu, = 0.328 P{/*Réel/? (7.57)

It is seen that the local value of the heat transfer coefficient varies with distance
from the leading edge according to the relation:

h oc x~(r+2/Bn+1) (7.58)

The heat transfer coefficienthas a (theoretical) infinite value at the leading
edge where the thickness of the thermal boundary layer is zero and decreases
progressively as the boundary layer thickens. The mean value of the heat
transfer coefficient over the plate length can be obtained by integrating it
fromx=0tox =L as:

1 L
hy = — hdx
L o
L pfl/3 Rdn+2)/Bn+1)
_ ), "PRRe d (7.59)
L 0 X
3 30Fn)(n+1) ~3
h - =
where o(n) 5 2D

The evaluation of the integral in equation (7.59) followed by some simplifi-
cation and re-arrangement finally yields:

AL 9n+1) 30Fm)(n+1) Y15 i2/@Em)
Nu, = — = Pr'®Re 7.60
kK~ 2@2n+1) 2n +1) Lt (7.60)

where Kn), a function ofn, is given by equation (7.17) and ;Pand Re
respectively are defined as:

C V i‘l—l
P = (TO (7.61)
and
pV27nLn
Rg = 20 — (7.62)
m

More rigorous numerical solutions for the laminar boundary layers of power-
law and other time-independent fluids flowing over plane surfaces and objects
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of two dimensional axisymmetric shapes are given in the literature [Acrivos
et al, 1960] and these predictions are in good agreement with the approxi-
mate result given by equation (7.60). Most of the theoretical developments
in the field of thermal boundary layers of time-independent fluids have been
critically reviewed in references [Shenoy and Mashelkar, 1982; Nakayama,
1988; Chhabra, 1993a,b, 1999]. The limited experimental results and empirical
correlations are presented in a later section in this chapter.

Example 7.2

A dilute polymer solution at 2% flows at 2m/s over a 300 m 300 mm square
plate which is maintained at a uniform temperature 6fCG35The average values of the
power-law constants (over this temperature interval) may be takem as0.3 Pas’

andn = 0.5. Estimate the thickness of the boundary layer 150 mm from the leading
edge and the rate of heat transfer from one side of the plate only. The density, thermal
conductivity and heat capacity of the polymer solution may be approximated as those
of water at the same temperature.

Solution

As seen in Example 7.1, the flow conditions in the boundary layer appear to be laminar
over the entire length of the plate under the given operating conditions. Therefore, the
thickness of the thermal boundary layer can be estimated using equation (7.51). The
value of Re is:

Rgzp%ﬂﬂzlmmdﬂwxawﬁ
m 0.3

= 3650

For water at 2%C, the values of the thermo-physical properties are:
p = 1000 kg/ni; k = 0.615W/mK; C, = 3800 J/kgK

0.615

O thermal diffusivityo = — = —————
Y@= "¢, ~ 1000x 3800

=162x 107" m?/s

We have already calculated in example 7.{n F= 5.58 whenn = 0.5.
Substituting these values in equation (7.51):

1/3
3650 /4

T =

30x 1.62x 1077 x 558 x 0.15° (15
Y s
2

=90.88x 10“*m

or about 1 mm which is less than a third of the corresponding momentum boundary
layer thickness.
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The Prandtl number witlh, as characteristic linear dimension is evaluated:

n—1 05-1
Pr, — Cym (Vo _ 3800x 0.3 (2. _ 718
k L 0.615 0.3
2—n L" 1 2270.5 ) 0.5
and Re = PVo _ 1000x X037 _ 5164
m 0.3
Substituting these values in equation (7.60):
h,-L 9x15 30x558x15 13
Nu, = —— = 718)Y/3(5164)25/45
b= T T 2x2 2 (718775164
= 6975
6975 x 0.615
O hy = + = 1430 W/n?K

The rate of heat loss from the plate is

Q=h,-A-AT =1430x (0.3 x 0.3) x (35— 25) = 1287W.

7.7 Mass transfer in laminar boundary layer flow of
power-law fluids

The basic equation for mass transfer by molecular diffusion is Fick's law
which may be expressed as:
dC,

Ny = —Dag——
A Ade

where N, is the mass transfer rate per unit a&enol/n?s)
C4 is the molar concentration of the diffusing component, and
Dyp is the molecular diffusity.

This equation is analogous to Fourier’'s law for heat transfer by conduction:

a7 k_d(pC,T) _ __d(eC,T)

=7y T T, Ay dy

(assumingo andC, to be constant).
It will be seen that there is a synergy between the two equatiaiisT the
heat content per unit volume being equivalenttp the molar concentration
of the diffusing component.
The boundary layer equation for mass transfer may therefore be written by
analogy with equaiton (7.39) as:
H dC,

. (Ca, = CA)Vidy = Dpp—— (7.63)

a dy y=0
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whereC,4, and C, are respectively the concentration of the sol4tén the
free stream (outside the boundary layer) at a distarftem the leading edge
and at a distance from the surfaceH is the thickness of the control volume
normal to the surface as shown in Figure 7.4; it is chosen to be greater than
the thickness of both the momentum and concentration boundary layers.
Again the form of concentration profile in the diffusion boundary layer
depends on the boundary conditions at the surface and in the fluid stream. For
the conditions analogous to those used in consideration of thermal boundary
layer, (constant concentrations both in the free stream outside the boundary
layer and at the submerged surface) the concentration profile will be of similar
form to that given by equation (7.43);

Cy—C 3 1 3
AT A 2 <l _z <l (7.64)
Ca,—Ca, 2\8n  2\6,
1 dcy, 3 1 ?
and ——— == — _ - 7.64
Cag—=Ca, dy 2 8u & (roda

where Cy4, is the solute concentration at the surfage<(0) andé,, is the
thickness of the concentration boundary layer.

Substituting in equation (7.63) for the veloci¥y from equation (7.10), and
for the concentratio, and concentration gradient (dy/dy) from equations
(7.64) and (7.64a):

d §2 1 Dyp
Vo s[m_ =40 4B
Odx (10 140°" 5,

(7.65)
wheree,, = (6,,/8) < 1. It should be noted that it has been implicitly assumed
that the diffusion boundary layer is everywhere thinner than the momentum
boundary layer. With this assumption, the fourth order term,jrin equation
(7.65) can be neglected without incurring significant error. The resulting
approximate solution is identical in form to equation (7.47) for heat transfer,
except that the diffusivityD,p replaces the thermal diffiusivitg, and thus

its solution for a power-law liquid, with the conditiofy, = 0 atx = 0, is by
analogy with equation (7.51b):

S 30(n + 1) Y3 pug 3
—= T Fn)
X (2n+1) xV,

Rex—l/S(n+l) (7.66)

One can now define a mass transfer coefficieptby the relation:

aC 3 D
hp(Cy, — Ca,) = —Dyp—2 =—2-(Cy, — CA(,)ﬁ (7.67)
3y y=0 2 5m
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Substituting fors,, from equation (7.66) and re-arranging:

hpx 3 30(n + DF(n) ~V°

Sh = — = S /3 R n+2)/(3(n+1)) 7.68
n Dsp 2 2n+1) ¢°Re, (7.68)
. m Vo n-1
where the Schmidt number,Se D - (7.69)
AB

Here, S¢ is analogous to Rrfor heat transfer (equation 7.56). Finally, the
average value of the transfer coefficient over the plate lehg#mn be obtained
in the same way as for heat transfer (equation 7.59) by integration:

sh, = L _ S+ D {30<n + DF(n) }1/3 S Relr 2/ )

Dap 2(2n +1) (2n +1)

(7.70)

Both Mishraet al. [1976] and Ghoslet al. [1986] measured the rates of mass
transfer from glass plates coated with benzoic acid to non-Newtonian solutions
of carboxymethyl cellulose (88 < n < 1; 5 < Rg < ~200), and they found
a satisfactory £25%) agreement between their data and the predictions of
equation (7.70). In this narrow range ofvalues, there is a little difference
between the predictions far= 1 andn = 0.88, however. Thus, the predictive
equations developed for Newtonian fluids can be applied without incurring
appreciable errors.

For both heat and mass transfer in laminar boundary layers, it has been
assumed that the momentum boundary layer is everywhere thicker than the
thermal and diffusion boundary layers. For Newtonian fluids=(1), it can
readily be seen that varies as Pr/? and ¢,, o« Sc¥/3. Most Newtonian
liquids (other than molten metals) have the values of Prandtl numfeand
therefore the assumption ef< 1 is justified. Likewise, one can justify this
assumption for mass transfer provided-S€.6. Most non-Newtonian polymer
solutions used in heat and mass transfer studies to date seem to have large
values of Prandtl and Schmidt numbers [Gheslal., 1994], and therefore the
assumptions of « 1 andeg,, < 1 are valid.

7.8 Boundary layers for visco-elastic fluids

For flow over a bluff body, the fluid elements are subjected to a rapid change in
deformations near the frontal face; hence elastic effects are likely to be impor-
tant in this region and the simple boundary layer approximations should not
be applied to visco-elastic materials in this region. However, if elastic effects
are negligibly small, the previous approach is reasonably satisfactory for visco-
elastic fluids. For instance, the normal stresses developed in visco-elastic fluids
will give rise to additional terms in the-component of the momentum balance,
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equation (7.7) [Harris, 1977; Schowalter, 1978]. This leads to the boundary
layer having a finite thickness at the leading edge-(0) which is a function of

the Deborah number. The effect of fluid visco-elasticity on the boundary layer
appears to persist at considerable distances from the leading edge, resulting in
thickening at all points [Harris, 1977; Ruckenstein, 1994]. Although various
treatments of visco-elastic boundary layers differ in detail, in all cases it is
assumed that the fluid elasticity is small and the Deborah number is low
in the flow regions of interest [Beard and Walters, 1964; Denn, 1967; Serth,
1973]. Unfortunately, there is a lack of experimental results for boundary layer
flows of visco-elastic fluids. However, Hermes and Fredrickson [1967], in a
study of the flow of a series of carboxymethyl cellulose solutions over a flat
plate, do show that the visco-elasticity has a significant effect on the velocity
profile in the boundary layer. More quantitative comparisons between experi-
ments and predictions are not possible, as some of the rheological parameters
inherent in the theoretical treatments are not capable of evaluation from simple
rheological measurements. More recently, Ruckenstein [1994] has used dimen-
sional considerations to infer that the effect of fluid elasticity is to reduce the
dependence of heat and mass transfer coefficients on the free stream velocity.
This conclusion is qualitatively consistent with the only limited heat transfer
experimental results which are available [James and Acosta 1970; James and
Gupta, 1971]. It is thus not yet possible at present to suggest simple expres-
sions for the thickness of visco-elastic boundary layers analogous to those
developed for inelastic power-law fluids. Good accounts of development in
the field have been presented by Schowalter [1978] and others [Shenoy and
Mashelkar, 1982].

7.9 Practical correlations for heat and mass transfer

In addition to the theoretical treatments just described, many workers have
measured heat and mass transfer by forced convection from bodies such as
plates, spheres and cylinders. The bulk of the literature in the field has been
reviewed recently [Shenoy and Mashelkar, 1982; Irvine, Jr. and Karni, 1987,
Nakayama, 1988; Chhabra, 1993a, b, 1999; Ghetshl., 1994], but only a
selection of reliable correlations for spheres and cylinders is presented in this
section which is based primarily on the reviews of Irvine and Karni [1987]
and of Ghostlet al. [1994].

7.9.1 Spheres

For particle—liquid heat and mass transfer in non-Newtonian polymer solutions
flowing over spheres fixed in tubes.28 < d/D, < 0.5), Ghoshet al. [1992,
1994] invoked the usual heat and mass transfer analogy, that is,N8hand
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Sc= Pr to correlate most of the literature data as follows:
Y =1428Re/°® Re, <4 (7.71a)
Y =Re/*> Re, >4 (7.71b)
where Y = (Nu — 2)(m,/m;)"/ @ +PPr /3 for heat transfer
and Y = (Sh—2)Sc,"/ for mass transfer.

The predicted results are shown in Figure 7.5 for both heat and mass transfer
over the range of conditions .32 < n < 0.93; Re, < 200; 29000< Sc, <

4.9 x 10° and 9500< Pr, < 1.9 x 1(P. The effective viscosity used in the
Reynolds, Prandtl and Schmidt numbers (denoted by suffix ta)¥&/d)"*
where V is the mean velocity of flow in the tube. The average deviation
between predictions and data is 17%.

102
Heat transfer data
10t O, e Mass transfer data
100
- F
107 (Nuy=2)(mg/my "™ or (Shy~2) = 0.997 Rel/?
- 2 (Pryor Sc) Y2 for Re,, > 4
10—2 -
E ° (Nuy=2)(mg/my)**"**or (Shy-2) = 1.428 Ré},? (Pr, or Sc,)"°
E for Re,<4
10-3 ool ol cvimmd ol vl vl ool ol 1

107 10% 10° 10* 10°% 102 10! 10° 100 102 10°
Reynolds number (Re)

Figure 7.5 Overall correlation for heat and mass transfer from a single
sphere immersed in power law fluids

7.9.2 Cylinders in cross-flow

The limited work on heat and mass transfer between power-law fluids and
cylinders with their axis normal to the flow has been summarised recently by
Ghoshet al. [1994] who proposed the following correlation for heat and mass
transfer:

For heat transfer:

hd
Nu = - = 1.18Re/°Pr/®  for Re, < 10 (7.728)
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=0.76Re/?Pr/®>  for Re, > 10 (7.72b)

For mass transfer:
hpd
sh= """ =118R¢*Sc/®  for Re, <10 (7.733)
=0.76 Re/’Sc/®  for Re, > 10 (7.73b)

where the effective viscosity is evaluated, as for spheres, with the diameter of
the cylinder as the characteristic length. The overall correlations for heat and
mass transfer are given in Figure 7.6.

Nu(or Sh) =0.76 Reglz(Pr or Sc)ll3

102

=
o
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All other data is for mass transfer
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Figure 7.6 Overall correlation for heat and mass transfer from cylinders in
cross flow

Example 7.3

A polymer solution at 25C flows at 1.8 m/s over a heated hollow copper sphere of
diameter of 30 mm, maintained at a constant temperature°@f &% steam condensing
inside the sphere). Estimate the rate of heat loss from the sphere. The thermophysical
properties of the polymer solution may be approximated by those of water, the power-
law constants in the temperature interval 29" < 55°C are given belown = 0.26

andm = 26— 0.0566 T whereT is in K. What will be the rate of heat loss from a
cylinder 30 mm in diameter and 60 mm long, oriented normal to flow?
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Solution

At the mean film temperature @25+ 55)/2 = 40°C, the values of, C, andk for
water:

p = 991kg/nt; C, = 4180J/kgC; k = 0.634 W/mK
The consistency index;:
m = 26— 0.0566273+ 40) = 8.28 Pas’

The effective viscosity,

Vv n—1
Meff = m (E

0.26-1
=8.28 (L = 0.4 Pas

30x 1072
1x 1. 103
0 Re,,:dezgg x 1.8 x30x 10~ 134> 4
et 0.4

Therefore, equation (7.71b) applies in this case.

m 1/(3n+1)
(Nu—2) (J — Re}/zPr}f'
myp,
At T, = 328K :m; = 7.44 Pas’

T, = 313K :m, = 8.28 Pas’
C,u _ 4180x 0.4

Pr, = = = 2637
=% 0.634
hd 1/(3n+1)
0 Nu= — = 2+ Re/2Pit/3 <@
k P r my
Substituting values,
hd 8.28 Y178
— =24 13442263773 | Z—
k + 7.44
=172
172 x 0.634
0 h= =222 3631 WK
30x 10~

U Rate of heat lossy = hA(T, — T¢)
= 3631x 7 x (30 x 10°%)? x (55— 25)
= 308W

For a cylinder, the Reynolds number of the flow is still the same and therefore equation
(7.72b) applies.
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hd 2 /3
0 Nu= -~ =0.76Rg/*Pr/

= 0.76 x (134Y?(2637Y° = 1215
Ohe 1215 x 0.6334
30x 10°
U Rate of heat lossy = hA(T, — T¢)
= 2570x 7 x 30x 1073 x 60 x 1073 x (55— 25)

= 436W

= 2570 W/nfK

Note that the drop in the value of the heat transfer coefficient in this case has been
compensated by the increase in surface area resulting in higher rate of heat loss. Also,
the heat loss from the flat ends has been neglected.

7.10 Heat and mass transfer by free convection

In free convection, there is a new complexity in that fluid motion arises from
buoyancy forces due to the density differences, and the momentum, heat and
mass balance equations are therefore coupled. The published analytical results
for heat transfer from plates, cylinders and spheres involve significant appro-
ximations. This work has been reviewed by Shenoy and Mashelkar [1982] and
Irvine and Karni [1987]; the simple expressions (which are also considered to
be reliable) for heat transfer coefficients are given in the following sections.

7.10.1 Vertical plates

For a plate maintained at a constant temperature in a power-law fluid, the
mean value of the Nusselt number based on the height of the plats,
given as:

L
Nu = h? — Co(n) Grl/(Z(n+l))Prn/(3n+1) (774a)
27 n+2 2—n
L AT
where the Grashof number, Gr p (gf )
m
and the Prandtl number, (7.74b)

2/(n+1)
Pr= PCp m L("—l)/(z(n+l))(glgAT)(3(n—l))/(2(il+1))
k \p

All physical properties are evaluated at the mean film temperature, except the
coefficient of expansions, which is evaluated at the bulk fluid temperature.

The constant g{n) has values of 0.60, 0.68 and 0.72 forvalues of 0.5,
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1 and 1.5 respectively; a mean value of 0.66 may be used for most design
calculations. The available scant data on heat transfer are in line with the
predictions of equation (7.74).

For constant heat flux at the plate surface, the point values of the Nusselt
number at a distance, from the base of the plate has been correlated empiri-
cally by:

=

Nux — ?x =C Gr(3n+2)/(n+4)Prn B (7756)
2.4 2—n
where Gr= % (gﬂqw
" ¢ (7.75b)
5/(n+4 3(n—1))/(n+4 :
Pr= ’O_CP <T o )X(Z(n—l))/(;1+4) <8,3QW Sl an
ko \p k

The recommended values [Irvine and Karni, 1987](bfand B are 0.6 and
0.21 respectively.

7.10.2 Isothermal spheres

Experimental results for heat transfer [Liew and Adelman, 1975; Amato and
Tien, 1976], mass transfer [Lee and Donatelli, 1989] and the approximate
analytical results [Acrivos, 1960; Stewart, 1971] are well represented by the
following simple relationship:

Nu = % — 2 GrY/@r+D)pp/Gntl) 0.682 7769
for GrY/@n+1)  pp/Gi+D _ 10
and . Nu= % = Gr/EnDipp/Eh® (7.76b)

for 10 < Grt/@rn+pp/Grth < 40

where the Grashof and Prandtl numbers are given by equation (7.74b) with
the height of the platd,, replaced by the sphere radius, For mass transfer,

the Nusselt and Prandtl numbers are replaced by the corresponding Sherwood
and Schmidt numbers respectively.

7.10.3 Horizontal cylinders

Gentry and Wollersheim [1974] and Kim and Wollersheim [1976] have measured
the rates of heat transfer between isothermal horizontal cylinders and power-law
polymer solutions. For pseudoplastic fluids, they correlated their results by the
following expression:
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hd
Nu= -~ = 119Gr Pn°2° (7.77)

where the Grashof and Prandtl numbers are given by equation (7.75bJ. with
replaced by the diameter of the cylinder.

Example 7.4

The heat flux at the surface of an electrically heated vertical plate (256860 mm)
immersed in a polymer solution at ZD is constant at 250 W/fn Estimate the heat
transfer coefficient and the average temperature of the plate. The physical properties
of the polymer solution may be approximated by those of water, and the power-
law constants may be taken as:= 0.5 andm = 20— 0.057 (Pa.$) in the range
288-360K.

Solution

Since the temperature of the plate is not known, the physical properties of the polymer
solution cannot immediately be evaluated. Assuming the average temperature of the
plate to be 48, the mean film temperaturd,; = (454 20)/2 = 325°C and the
physical properties (of water) are:

p = 993 kg/n? k = 0.625W/mK
C, = 4180J/kgK B (at 20C) = 3206 x 10°%(1/K)
m = 4.73 Pas’ n=05
0 Gr= Pt (gﬂqw
m? k

2-0.5

_99%F xx*  (9.81x 3206 x 10°° x 250
T (4737 0.625

= 621894

wherex is in metres.

5/(n+4) B1-1)/(n+4)
Pr— pCp (ﬂ (CO=1)/(n+4) (gﬁq"’

k 0 k
_ 993x 4180 (4.73 Y49
T 0625 993

~1/3

_as [ 9:81x 3206 x 10°° x 250
« :
g 0.625

= 16178 /4%
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Nu, = hx — 0.6 Gr¥+2/rapp 021
X k .

—06 (62 189:4)3'5/4'5(16 17&71/4.5)0.5 0.21
or h, =6.2% %%

The average value of heat transfer coefficiént,

_ 1t 1 E
h==  hdc==  62% % dx
L o L o
_ 6.29 250x 1073)063
or = o AT 6 7 winek
(250 x 107°%) 0.63

From heat balance,

ho(Ts — T ) = 250

250 .

ur,= 16.7+20_35C
Therefore, the assumed value of @5s too high and another iteration must be carried
out. With the surface temperature of 3%5 the mean film temperature {85.5+
20)/2 = 27.75°C, at whichm = 4.96 Pas" and g = 300x 10°°K~! and the other
properties are substantially unaltered. The new values Yield16.4 W/n?K. The
plate temperature is then 35 which is sufficiently close to the assumed value
of 35.5C.

7.11 Further reading

Schlichting, H.,Boundary layer TheoryMcGraw Hill, 6th edn. New York (1968).
Schowalter, W.R.Mechanics of non-Newtonian FluidBergamon, Oxford (1978).
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7.13 Nomenclature

Dimensions
inM,N,L, T, 0
a,b,c,d unknown constants in equation (7.8) MOLOTO
Bi Bingham number (=) MOLOTO
o solute concentration (kmol/f N-3
Ca, solute concentration at the solid surface (kmd)ym N-3
Cay, solute concentration in the free stream (kmdim N-3
Cp drag coefficient (-) MOLOTO
C, heat capacity (J/kgK) L2 T2
d sphere or cylinder diameter (m) L
D tube diameter (m) L
Dag molecular diffusion coefficient (Afs) L2t-1
Fy drag force (N) MLT —2
F(n) function of n, equation (7.17a) (=) MOLOTO
g acceleration due to gravity (nf)s LT 2
Gr Grashof number, equation (7.74b) (=) MOLOTO
h heat transfer coefficient (WAK) MT —36-1
A average value of heat transfer coefficient (i MT —3¢-1
hp mass transfer coefficient (m/s) LT 1
H height of the control volume iry-direction (m) L
k thermal conductivity (W/mK) MLT —3¢-1
L length or height of plate (m) L
m power-law consistency coefficient (88 ML 1772
n power-law flow behaviour index (-) MOLOTO
P pressure (Pa) ML 172
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Prandtl number (=)

heat flux (W/nf)

heat flux at wall or surface (W/f)
sphere radius (m)

Reynolds number (=)

Schmidt number (=)

Sherwood number (-)
temperature (K)

free stream fluid temperature (K)
temperature of surface (K)

free stream fluid velocity (m/s)
velocity in x-direction (m/s)

width of plate (m)

coordinate in the direction of flow (m)
coordinate in the direction normal to flow (m)

Greek Letters

o

B coefficient of expansion (1/K)

8 momentum boundary layer thickness (m)
8,  diffusion boundary layer thickness (m)
87 thermal boundary layer thickness (m)
e ratio of 57 to § (-)

Em ratio of §,, to & (=)

0 temperature difference T — T (K)

0o  temperature difference To — T (K)

up  Bingham plastic viscosity (Ps)

p  fluid density (kg/ni)

8 Bingham vyield stress (Pa)

7,  wall shear stress (Pa)
Subscripts

k  value using effective viscosity(V /d)"~1
m  mean value

x  value at an arbitrary point

thermal diffusivity (nf/s)

Dimensions
inM,N, L, T, 0

MOLOTO
MT —3
MT 3

L
MOLOTO
MOLOTO
MOLOTO



Chapter 8
Liquid mixing

8.1 Introduction

Mixing is one of the most common operations in the chemical, biochemical,
polymer processing, and allied industries. Almost all manufacturing processes
entail some sort of mixing, and the operation may constitute a considerable
proportion of the total processing time. The term ‘mixing’ is applied to the
processes used to reduce the degree of non-uniformity or gradient of a property
such as concentration, viscosity, temperature, colour and so on. Mixing can
be achieved by moving material from one region to another. It may be of
interest simply as means of reaching a desired degree of homogeneity but it
may also be used to promote heat and mass transfer, often where a system is
undergoing a chemical reaction.

At the outset, it is useful to consider some common examples of problems
encountered in industrial mixing operations, since this will not only reveal the
ubiquitous nature of the process, but will also provide an appreciation of some
of the associated difficulties. One can classify mixing problems in many ways,
such as the flowability of the final product in the mixing of powders, but it
is probably most satisfactory to base this classification on the phases present;
liquid—liquid, liguid—solid, gas—liquid, etc. This permits a unified approach
to the mixing problems in a range of industries.

8.1.1 Single-phase liquid mixing

In many instances, two or more miscible liquids must be mixed to give a
product of a desired specification, as for example, in the blending of petroleum
fractions of different viscosities. This is the simplest type of mixing as it does
not involve either heat or mass transfer, or indeed a chemical reaction. Even
such simple operations can, however, pose problems when the two liquids
have vastly different viscosities, or if density differences are sufficient to
lead to stratification. Another example is the use of mechanical agitation to
enhance the rates of heat and mass transfer between a liquid and the wall of a
vessel, or a coil. Additional complications arise in the case of highly viscous
Newtonian and non-Newtonian materials.
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8.1.2 Mixing of immiscible liquids

When two immiscible liquids are stirred together, one liquid becomes dispersed
as droplets in the second liquid which forms a continuous phase. Liquid—liquid
extraction, a process using successive mixing and settling stages, is one impor-
tant example of this type of mixing. The two liquids are brought into contact
with a solvent that selectively dissolves one of the components present in the
mixture. Agitation causes one phase to disperse in the other and, if the droplet
size is small, a high interfacial area is created for interphase mass transfer.
When the agitation is stopped, phase separation may occur, but care must
be taken to ensure that the droplets are not so small that a diffuse layer is
formed instead of a well-defined interface; this can remain in a semi-stable
state over a long period of time and prevent the completion of effective sepa-
ration. The production of stable emulsions such as those encountered in food,
brewing, and pharmaceutical applications provides another important example
of dispersion of two immiscible liquids. In these systems, the droplets are very
small and are often stabilised by surface active agents, so that the resulting
emulsion is usually stable for considerable lengths of time.

8.1.3 Gas-liquid dispersion and mixing

Numerous processing operations involving chemical reactions, such as aerobic
fermentation, wastewater treatment, oxidation or chlorination of hydrocarbons,
and so on, require good contact between a gas and a liquid. The purpose of
mixing here is to produce a large interfacial area by dispersing bubbles of the
gas into the liquid. Generally, gas—liquid mixtures or dispersions are unstable
and separate rapidly if agitation is stopped, provided that a foam is not formed.
In some cases, a stable foam is needed; this can be formed by injecting gas
into a liquid using intense agitation, and stability can be increased by the
addition of a surface-active agent.

8.1.4 Liquid-solid mixing

Mechanical agitation may be used to suspend patrticles in a liquid in order to
promote mass transfer or a chemical reaction. The liquids involved in such
applications are usually of low viscosity, and the particles will settle out when
agitation ceases. There is also an occasional requirement to achieve a relatively
homogeneous suspension in a mixing vessel, particularly when this is being
used to prepare materials for subsequent processes.

At the other extreme, in the formation of composite materials, especially
filled polymers, fine particles must be dispersed into a highly viscous Newto-
nian or non-Newtonian liquid. The incorporation of carbon black powder into
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rubber is one such operation. Because of the large surface areas involved,
surface phenomena play an important role in these applications.

8.1.5 Gas-liquid-solid mixing

In some applications such as catalytic hydrogenation of vegetable oils, slurry
reactors, three-phase fluidised beds, froth flotation, fermentation, and so on,
the success and efficiency of the process is directly influenced by the extent of
mixing between the three phases. Despite its great industrial importance, this
topic has received only scant attention and the mechanisms and consequences
of interactions between the phases are almost unexplored.

8.1.6 Solid-solid mixing

Mixing together of particulate solids, sometimes referred to as blending, is a
very complex process in that it is very dependent, not only on the character
of the particles — density, size, size distribution, shape and surface proper-
ties — but also on the differences between these properties of the components.
Mixing of sand, cement and aggregate to form concrete, and of the ingredients
in gun powder preparation, are longstanding examples of the mixing of solids.

Other industrial sectors employing solids mixing include food, drugs and
the glass industries, for example. All these applications involve only physical
contacting, although in recent years, there has been a recognition of the indus-
trial importance of solid—solid reactions, and solid—solid heat exchangers.
Unlike liquid mixing, fundamental research on solids mixing has been limited
until recently. The phenomena involved are very different from those when
a liquid phase is present, so solid—solid mixing will not be discussed further
here. However, most of the literature on solid—solid mixing has recently been
reviewed [Lindlay, 1991; Harnbgt al., 1992; van den Bergh, 1994].

8.1.7 Miscellaneous mixing applications

Mixing equipment may be designed not only to achieve a predetermined level
of homogenity but also to improve heat transfer. For example, if the rotational
speed of an impeller in a mixing vessel is selected so as to achieve a required rate
of heat transfer, the agitation may then be more than sufficient for the mixing
duty. Excessive or overmixing should be avoided. For example, in biological
applications, excessively high impeller speeds or power input are believed by
many to give rise to shear rates which may damage micro-organismes. In a similar
way, where the desirable rheological properties of some polymer solutions may
be attributable to structured long-chain molecules, excessive impeller speeds
or agitation over prolonged periods, may damage the structure particularly of
molecular aggregates, thereby altering their properties. It is therefore important
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to appreciate that ‘over-mixing’ may often be undesirable because it may result
in both excessive energy consumption and impaired product quality. Equally,
under-mixing also is obviously undesireable.

From the examples given here, it is abundantly clear that mixing cuts across
the boundaries between industries, and there may be a need to mix virtually
anything with anything — be it a gas or a solid or a liquid; it is clearly not
possible to consider the whole range of mixing problems here. Instead atten-
tion will be given primarily to batch liquid mixing of viscous Newtonian
and non-Newtonian materials, followed by short discussions of gas-liquid
systems, and heat transfer in mechanically agitated systems. To a large extent,
the rheology of the liquids concerned determines the equipment and proce-
dures to be used in a mixing operation. However, when non-Newtonian fluids
are involved, the process itself can have profound effects on the rheological
properties of the product.

8.2 Liquid mixing

A considerable body of information is now available on batch liquid mixing
and this forms the basis for the design and selection of mixing equipment. It
also affords some physical insight into the nature of the mixing process itself.
In mixing, there are two types of problems to be considered — how to design
and select mixing equipment for a given duty, and how to assess whether
an available mixer is suitable for a particular application. In both cases, the
following aspects of the mixing process must be understood:

(i) Mechanisms of mixing

(i) Scale-up or similarity criteria
(iii) Power consumption
(iv) Rate of mixing and mixing time

Each of these factors is now considered in detail.

8.2.1 Mixing mechanisms

If mixing is to be carried out in order to produce a uniform product, it is neces-
sary to understand how mixtures of liquids move and approach uniformity
of composition. For liquid mixing devices, it is necessary that two require-
ments are fulfilled: Firstly, there must be bulk or convective flow so that
there are no dead or stagnant zones. Secondly, there must be a zone of inten-
sive or high-shear mixing in which the inhomogeneities are broken down.
Both these processes are energy-consuming and ultimately the mechanical
energy is dissipated as heat; the proportion of energy attributable to each
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varies from one application to another. Depending upon the fluid properties,
primarily viscosity, the flow in mixing vessels may be laminar or turbulent,
with a substantial transition zone in between and frequently both types of flow
occur simultaneously in different parts of the vessel. Laminar and turbulent
flows arise from different mechanisms, and it is convenient to consider them
separately.

(i) Laminar mixing

Large-scale laminar flow is usually associated with high viscosity liquids
(>~10Pas) which may exhibit either Newtonian or non-Newtonian char-
acteristics. Inertial forces therefore tend to die out quickly, and the impeller
must sweep through a significant proportion of the cross-section of the vessel
to impart sufficient bulk motion. Because the velocity gradients close to a
moving impeller are high, the fluid elements in that region deform and stretch.
They repeatedly elongate and become thinner each time they pass through the
high shear rate zone. Figure 8.1 shows such a shearing sequence.
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Figure 8.1 Schematic representation of the thinning of fluid elements due to
laminar shear flow

In addition, extensional or elongational flow usually occurs simultaneously.
As shown in Figure 8.2, this can be result of convergence of the stream-
lines and consequential increase of velocity in the direction of flow. Since
for incompressible fluids the volume remains constant, there must be a thin-
ning or flattening of the fluid elements, as shown in Figure 8.2. Both of these
mechanisms (shear and elongation) give rise to stresses in the liquid which
then effect a reduction in droplet size and an increase in interfacial area, by
which means the desired degree of homogeneity is obtained.

In addition, molecular diffusion always acts in such a way as to reduce
inhomogeneities, but its effect is not significant until the fluid elements have
been sufficiently reduced in size for their specific areas to become large. It must
be recognised, however, that the ultimate homogenisation of miscible liquids
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Figure 8.2 Schematiaepresentatiorof the thinning of fluid elementdueto
extensionaflow

can be broughtaboutonly by moleculardiffusion. In the caseof liquids of
high viscosity, this is a slow process.

In laminar flow, a similar mixing processoccurswhena liquid is sheared
betweentwo rotating cylinders. During eachrevolution, the thicknessof an
initially radial fluid elementis reduced,and moleculardiffusion takesover
when the fluid elementsare sufficiently thin. This type of mixing is shown
schematicallyin Figure 8.3 in which thetraceris picturedasbeingintroduced
perpendiculato the directionof motion. It will be realizedthat, if anannular
fluid elementhad beenchosento beginwith, thenno obviousmixing would
haveoccurred.This emphasisethe importanceof the orientationof the fluid
elementgelativeto the direction of shearproducedby the mixer.

line of minor “ tracer
component
@
initial orientation after 3 rotations no mixing

Figure 8.3 Laminarshearmixingin a coaxial cylinderarrangement

Finally, mixing canbe inducedby physicallydividing the fluid into succes-
sively smallerunits and then re-distributingthem. In-line mixers for laminar
flows rely primarily on this mechanismasshownschematicallyin Figure 8.4.

Thus, mixing in liquids is achievedby severalmechanismswhich grad-
ually reducethe size or scale of the fluid elementsand then re-distribute
them.If, for examplethereareinitial differencesn concentratiorof a soluble
material, uniformity is graduallyachieved,and moleculardiffusion becomes
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Figure 8.4 Schematiagepresentatiorof mixing by cutting and folding of
fluid elements

progressivelymore important as the elementsize is reduced.Ottino [1989]
hasillustratedthe variousstagesn mixing by meansof colour photographs.

(i) Turbulent mixing

In low viscosityliquids (<~10m Pas), the flows generatedn mixing vessels
with rotatingimpellersareusuallyturbulent. The inertiaimpartedto the liquid
by the impeller is sufficient to causethe liquid to circulate throughoutthe
vesselandreturnto the impeller. Turbulencemay occurthroughoutthe vessel
but will be greatestnear the impeller. Mixing by eddy diffusion is much
fasterthanmixing by moleculardiffusion and,consequentlyturbulentmixing
occursmuch more rapidly than laminar mixing. Ultimately, homogenisation
at the molecularlevel dependon moleculardiffusion, which in generatakes
placemorerapidly in low viscosityliquids. Mixing is fastestneartheimpeller
becauseof the high shearratesand associatedReynoldsstressesn vortices
formed at the tips of the impeller blades;furthermore,a high proportion of
the enegy is dissipatechere.

Turbulentflow is inherently complex, and calculation of the flow fields
prevailingin a mixing vessels notamenablédo rigoroustheoreticakreatment.
If the Reynoldsnumberof the main flow is sufiiciently high, someinsight
into the mixing processcan be gainedby using the theory of local isotropic
turbulenceTurbulentflow maybe consideredo containa spectrunof velocity
fluctuationsin which eddiesof differentsizesare superimpose@n an overall
time-averagednean flow. In a mixing vessel,it is reasonableto suppose
that the large primary eddies,of a size correspondingapproximatelyto the
impeller diameter,would give rise to large velocity fluctuationsbut would
havealow frequency Sucheddiesareanisotropicandaccountfor muchof the
kinetic enegy presenin the system.nteractionbetweertheseprimary eddies
andslow moving streamsproducessmallereddiesof higherfrequencywhich
undego further disintegrationuntil, finally, viscousforces causedissipation
of their enegy asheat.
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The description given here is a gross over-simplification, but it does give a
gualitative representation of the salient features of turbulent mixing. This whole
process is similar to that of the turbulent flow of a fluid close to a boundary
surface. Although some quantitative results for the scale size of eddies have been
obtained and some workers [van der Molen and van Maanen, 1978; Tatterson,
1991] have reported experimental measurements on the structure of turbulence
in mixing vessels, these studies have little relevance to the mixing of non-
Newtonian substances which are usually processed under laminar conditions.

8.2.2 Scale-up of stirred vessels

One of the problems confronting the designers of mixing equipment is that of
deducing the most satisfactory arrangement for a large unit from experiments
carried out with small units. An even more common problem is the specifi-
cation of small scale experiments to optimise the use of existing large scale
equipment for new applications. In order to achieve similar flow patterns in two
units, geometrical, kinematic and dynamic similarity and identical boundary
conditions must be maintained. This problem of scale-up has been discussed
in a number of books [Oldshue, 1983; Tatterson, 1991, 1994; Haehhy,

1992; Coulson and Richardson, 1999] and therefore only the salient features
are re-capitulated here. It has been found convenient to relate the power used
by the agitator to the geometrical and mechanical arrangement of the mixer,
and thus to obtain a direct indication of the change in power arising from
alteration of any of the factors relating to the mixer. A typical mixer arrange-
ment is shown in Figure 8.5. The criteria for similarity between two systems
is expressed in terms of dimensionless ratios of geometric dimensions and
of forces occurring in the fluid in the mixing vessel. In the absence of heat
and mass transfer and for geometrically similar systems, the resulting dimen-
sionless groups are the Reynolds, Froude and Weber numbers for Newtonian
fluids, defined respectively as:

D’N
Reynolds number: Re- p (8.1)
nw
DN?
Froude number: F= —— (8.2
8
D3N?
Weber number: We-= p (8.3)
o

whereD is the impeller diameter.

For heat and mass transfer in stirred vessels, additional dimensionless
groups which are important include the Nusselt, Sherwood, Prandtl, Schmidt
and Grashof numbers. Likewise, in the case of non-Newtonian fluids, an



332 Non-Newtonian Flow in the Process Industries

o

nl N D Diameter of agitator
wy (AN D Diameter of tank
Height of agitator from base of tank
Depth of liquid
No. of baffles
Width of baffles
Speed of agitator
Pitch of agitator
Width of blades of agitator or paddle

O H
<5

ST ITO

c B

£E° =

Figure 8.5 Typical configuration and dimensions of an agitated vessel

appropriate value of the apparent viscosity must be identified for use
in equation (8.1). Furthermore, it may also be necessary to introduce
dimensionless parameters indicative of non-Newtonian effects including a
Bingham number (Bi) for viscoplastic materials and a Weissenberg number
(We) for visco-elastic fluids. It is thus imperative that in order to ensure
complete similarity between two systems, all the pertinent dimensionless
numbers must be equal. In practice, however, this is not usually possible,
owing to conflicting requirements. In general, it is necessary to specify the one
or two key features that must be matched. Obviously, in the case of substances
not exhibiting a yield stress, the Bingham number is redundant, as is the
Weissenberg number for inelastic fluids. Similarly, the Froude number is
usually important only when significant vortex formation occurs; this effect is
almost non-existent for viscous materials.

Aside from these theoretical considerations, further difficulties can arise
depending upon the choice of scale-up criteria, and these are strongly depen-
dent on the type of mixing (e.g. gas-liquid or liquid—liquid) and on the
ultimate goal of the mixing process. Thus, for geometrically similar systems,
the size of the equipment is determined by the scale-up factor. For power
consumption, one commonly used criterion is that the power input per unit
volume of liquid should be the same in two systems. In most practical situa-
tions, the equality of the Reynolds numbers ensures complete similarity of flow
between two geometrically identical systems. Similarly, processes involving
heat transfer in stirred vessels are often scaled up, either on the basis of equal
heat transfer per unit volume of liquid, or by maintaining the same value of
the heat transfer coefficient. Other commonly used criteria are equal mixing
times, the same specific interfacial area in gas—liquid systems or the same
value of mass transfer coefficient.

8.2.3 Power consumption in stirred vessels

From a practical point of view, power consumption is perhaps the most impor-
tant parameter in the design of stirred vessels. Because of the very different
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flow patterns and mixing mechanisms involved, it is convenient to consider
power consumption in low and high viscosity systems separately.

(i) Low Viscosity Systems

Typical equipment for low viscosity liquids consists of a baffled vertical cylin-
drical tank, with a height to diameter ratio of 1.5 to 2, fitted with an agitator.
For low viscosity liquids, high speed impellers of diameter between one third
and one half that of the vessel are suitable, running with tip speeds of around
1-3m/s. Although work on single phase mixing of low viscosity liquids is
of limited relevance to industrial applications involving non-Newtonian mate-
rials, it does, however, serve as a useful starting point for the subsequent
treatment of high viscosity liquids.

For a stirred vessel of diametBy in which a Newtonian liquid of viscosity
wu, and density is agitated by an impeller of diametBrrotating at a speed of
N revolutions per unit time; (the other dimensions are as shown in Figure 8.5)
the power inputP to the liquid depends on the independent variables
D, D7, N, g, other geometric dimensions) and may be expressed as:

P =f(u, p, D, Dr, N, g, geometric dimensions (8.4)

In equation (8.4)P is the impeller power, that is, the energy per unit time
dissipated within the liquid. Clearly, the electrical power required to drive the
motor will be greater tha® on account of transmission losses in the gear
box, motor, bearings and so on.

It is readily acknowledged that the functional relationship in equation (8.4)
cannot be established from first principles. However, by using dimensional
analysis, the number of variables can be reduced to give:

P (,ONDz N?D o
— = , ——, geometric ratios (8.5)

pPN"D I g

where the dimensionless group on the left hand side is called the Power
number, Po;(pND?/ui) is the Reynolds number, Re an@/?D/g) is the
Froude number, Fr. The geometric ratios relate to the specific impeller/vessel
configuration. For geometrically similar systems, these ratios must be constant
and the functional relationship between the Power number and the other groups
reduces to:

Po=f(Re Fr) (8.6)

In equation (8.6), the Froude number is generally important only when vortex
formation occurs, and in single phase mixing can be neglected if the value
of the Reynolds number is less than about 300. In view of the detrimental
effect of vortex formation on the quality of mixing, tanks are usually fitted
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Figure 8.6 PowernumberReynoldsiumbercorrelationin Newtonian
fluids for variousturbine impeller designs(Redrawnfrom Bateset al., 1963)

with baffles and hencein mostsituationsinvolving low viscosity Newtonian
fluids, the Power numberis a function of the Reynoldsnumberand geom-
etry only. Likewise, asthe liquid viscosityincreasesthe tendencyfor vortex
formation decreaseandthus so doesthe needof installing baffles in mixing
tanks (u > ~5Pas). Figure 8.6 showsthe functional relationshipgiven by
equation(8.6) for a rangeof impellersusedto mix/agitateNewtonianliquids
of relativelylow viscosity[Bateset al., 1963].For afixed geometricabrrange-
mentanda single phasdiquid, the datacanberepresentethy a uniquepower
curve.Threedistinctzonescanbediscernedn the powercurve:atsmallvalues
of the Reynoldsnumber(<~10), laminar flow occursand the slope of the
powercurveon log—log coordinatess —1. This region,whichis characterised
by slow mixing, is wherethe majority of highly viscous(Newtonianandnon-
Newtonian)liquids are processedThe limited experimentaatasuggesthat
the smallerthe value of power-lawindex (<1), the larger is the value of the
Reynoldsnumberup to which the laminarflow conditionspersist.

At very high valuesof the Reynoldsnumber (>~10%), the flow is fully
turbulentandinertia dominatedresultingin rapid mixing. In this region, the
Powernumberis virtually constantand independenbf Reynoldsnumber,as
shownin Figure 8.6 for Newtonianfluids anddemonstratedecentlyfor shear-
thinning polymer solutions[Nouri and Hockey, 1998]; however,it depends
upon the impeller — vesselconfiguration.Often gas-liquid, liquid—solid and
liquid—liquid contactingoperationsare carriedout in this region. Thoughthe
mixing itself is quiterapid,the overallprocessnaybe masdransfercontrolled.
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In between the laminar and turbulent zones, there exists a transition zone
in which the viscous and inertial forces are of comparable magnitudes. No
simple mathematical relationship exists between Po and Re in this flow region
and, at a given value of Re, the value of Po must be read off the appropriate
power curve. Though it is generally accepted that laminar flow occurs for
Re < ~10, the transition from transitional to the fully turbulent flow is strongly
dependent on the impeller — vessel geometry. Grengilld. [1995] correlated
the critical Reynolds number for Newtonian fluids at the boundary between
the transitional and turbulent regime as follows:

Rey = 6370 Po 3 (8.7)

where Pgis the value of the Power number in fully turbulent conditions.

Power curves for many different impeller geometries, baffle arrangements,
and so on are available in the literature [Skelland, 1983; Hasilal, 1992;
Tatterson, 1992, 1994; Ibrahim and Nienow, 1995], but it must always be
remembered that though the power curve approach is applicable to any single
phase Newtonian liquid, at any impeller speed, the curve will be valid for
only one system geometry. Adequate information on low viscosity systems is
now available for the estimation of power requirements for a given duty under
most conditions of practical interest.

Example 8.1

On the assumption that the power required for mixing in a stirred tank is a function
of the variables given in equation (8.4), obtain the dimensionless groups which are
important in calculating power requirements for geometrically similar arrangements.

Solution

The variables in this problem, together with their dimensions, are as follows:

P :ML2T-3 o ML LTt

p ML-2 N:T1
g LT—? D:L
Dy L

There are seven variables and with three fundamental umitd ( T), there will be
7 — 3 = 4 dimensionless groups.

Choosing as the recurring spt N and D which themselves cannot be grouped
together to form a dimensionless groly, L and T can now be expressed in terms
of combinations ofo, N andD. Thus:

L=D T=N1! M=pD®
Dimensionless group £ PM 1L 72T3 = P(pD*)1(D)2(N1)®
= P/pD°N®
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Dimensionless group 2 uM LT = u(pD*) YD)V )
= u/pD’N

Dimensionless group 3 gL ~1T2 = g(D)"1(N1)?
= g/N?D

Dimensionless group & D;L =t = D;/D

Hence,

)

w g D

5 e e

P pD?N N?D Dy
pN3D® =f D

which corresponds with equation (8.5).

As discussed above, the Froude number exerts little influence on power
requirement under most conditions of practical interest, and hence for
geometrically similar systems:

Po=f(Re)

At low Reynolds numbers, Pa (1/Re) and therefore power varies BSN?/u

and it is independent of the fluid density. On the other hand, power varies as
pD°N? under fully turbulent conditions when the fluid viscosity is of little
importance.

(i) High viscosity Newtonian and inelastic non-Newtonian systems

As noted previously, mixing in highly viscous liquids is slow both at the
molecular scale, on account of the low values of molecular diffusivity, as
well as at the macroscopic scale, due to low levels of bulk flow. Whereas in
low viscosity liquids momentum can be transferred from a rotating impeller
through a relatively large body of fluid, in highly viscous liquids only the fluid
in the immediate vicinity of the impeller is influenced by the agitator and the
flow is normally laminar.

For the mixing of highly viscous and non-Newtonian fluids, it is usually
necessary to use specially designed impellers with close clearances at the
vessel walls (as discussed in a later section). High-speed stirring with small
impellers merely wastefully dissipates energy at the central portion of the
vessel, particularly when the liquid is highly shear-thinning. The power-curve
approach is usually applicable. Although highly viscous Newtonian fluids
include sugar syrups, glycerol and many lubricating oils, most of the highly
viscous fluids of interest in the chemical and processing industries exhibit
non-Newtonian flow characteristics.

A simple relationship has been shown to exist, however, between the power
consumption for time-independent non-Newtonian liquids and for Newtonian
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liquids in the laminar region. This link, which was first established by Metzner
and Otto [1957] for pseudoplastic fluids, depends on the fact that there appears
to be a characteristic average shear gatg for a mixer which characterises
power consumption, and which is directly proportional to the rotational speed
of impeller:

)"avg = kN (8-8)

wherek; is a function of the type of impeller and the vessel configuration. If
the apparent viscosity corresponding to the average shear rate defined above is
used in the equation for a Newtonian liquid, the power consumption for laminar
conditions is satisfactorily predicted for most inelastic non-Newtonian fluids.

The validity of the linear relationship given in equation (8.8) was subse-
guently confirmed by Metzner and Taylor [1960]. The experimental evaluation
of k,; for a given geometry proceeds as follows:

(i) The Power number (Po) is determined for a particular valug' of

(i) The corresponding value of Re is obtained from the appropriate power
curve for a Newtonian liquid.

(iii) The ‘equivalent’ apparent viscosity is computed from the value of Re.

(iv) The value of the corresponding shear rate is obtained, either directly from
a flow curve obtained by independent viscometric experiment, or by use
of an appropriate fluid model such as the power-law model.

(v) The value ofk, is calculated for a particular impeller configuration using
equation (8.8).

This procedure can be repeated for different valuesvodnd an average
value of k, estimated. A compilation of the experimental valueskpffor
a variety of impellers, turbines, propeller, paddle, anchor, and so on, has
been given by Skelland [1983], and an examination of Table 8.1 suggests
that for pseudoplastic fluids;, lies approximately in the range 10-13 for
most configurations of practical interest, while slightly larger values 25-30
have been reported for anchors and helical ribbons [Bakker and Gates, 1995].
Skelland [1983] has also given a correlation for most of the data on the
agitation of inelastic non-Newtonian fluids and this is shown in Figure 8.7.
The prediction of power consumption for agitation of a given time-
independent non-Newtonian fluid in a particular mixer, at a desired impeller
speed, may be evaluated by the following procedure:

(i) The average shear rate is estimated from equation (8.8).
(i) The corresponding apparent viscosity is evaluated, either from a flow
curve, or by means of the appropriate viscosity model.
(i) The value of the Reynolds number is calculated(a&D?/) and then
the value of the Power number, and hencePofis obtained from the
appropriate curve in Figure 8.7.



Table 8.1 Values ofk, for Various Types of Impellers and key to Figure 8.7

Curve Impeller Baffles D (m) Dr/D N (Hz) ks(n <1)

A-A  Single turbine with 6 flat blades 4¥ /D7 = 0.1 0.051-0.20 1.3 -55 0.05-15 5% 15

A-A; Single turbine with 6 flat blades  None. 0.051-0.20 1.3-55 0.18-0.58H114

B-B  Two turbines, each with 6 flat 4, Wg/Dy = 0.1 - 3.5 0.14-0.72 15+ 14
blades and);/2 apart

B-B:1 Two turbines, each with 6 flat 4, Wg/Dy = 0.1 or none - 1.02-1.18 0.14-0.72 A% 14

blades and>r/2 apart
C-C Fan turbine with 6 blades at45 4, Wg/Dr = 0.1 or none 0.10-0.20 1.33-3.0 0.21-0.26 #3
C-C; Fan turbine with 6 blades at 45 4, Wg/Dr = 0.1 or none 0.10-0.30 1.33-3.0 1.0-142 H2
D-D Square-pitch marine propellers None, (i) shaft vertical at 0.13 22-48 0.16-0.40 1D0.9
with 3 blades (downthrusting)  vessel axis, (ii) shaft IO
from vertical, displaced
r/3 from centre
D-D; Same as for D-D but upthrusting None, (i) shaft vertical at 0.13 22-48 0.16-0.40 1b0.9
vessel axis, (ii) shaft 0
from vertical, displaced
r/3 from centre

D-D, Same as for D-D None, position (ii) 0.30 1.9-2.0 0.16-0.40 +1M9
D-D; Same as for D-D None, position (i) 0.30 1.9-2.0 0.16-0.40 +109
E-E  Square-pitch marine propeller 4, Wp/Dr =0.1 0.15 1.67 0.16-0.60 10

with 3 blades

8€e

SBLISNPU| SS8201d 81 Ul MO[H URILUOIMBN-UON



Double-pitch marine propeller
with 3 blades (downthrusting)

Double-pitch marine propeller
with 3 blades (downthrusting)

Square-pitch marine propeller
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Figure 8.7 Power curve for pseudoplastic liquids agitated by different types
of impeller [from Skelland, 1983]

Although this approach of Metzner and Otto [1957] has gained wide
acceptance [Doraiswanst al., 1994], it has come under some criticism. For
instance, Skelland [1967] and Mitsuishi and Hirai [1969] argued that this
approach does not always yield a unique power curve for a wide range of
the flow behaviour indexz. Despite this deficiency, it is safe to conclude
that this method predicts power consumption with an accuracy of 25—-30%.
Furthermore, Godfrey [1992] has asserted that the congtastindependent

of equipment size, and thus there are no scale-up problems.

It is not yet established, however, how strongly the valué;afepends on
the rheology, and on the geometrical arrangement of the system. For example,
both Calderbank and Moo—Young [1959] and Beckner and Smith [1966] have
relatedk; to the impeller/vessel configuration and the power-law inaexhe
dependence om, however is quite weak.

Data for power consumption in Bingham plastic and dilatant fluids have
been reported and correlated in this manner [Metatal, 1961; Nagata,
1975; Johma and Edwards, 1990], whereas Edwetrd$ [1976] have studied
the mixing of time-dependent thixotropic materials.

This approach has also been used in the reverse sense, using impeller power
data as a means of characterising fluid rheology. Because of the indeterminate
nature of the flow field produced by an impeller, the method is in principle
suspect, though it can provide useful guidance in some circumstances, e.g.
when working with suspensions. Even in these cases, it is imperative to
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limit agitation conditions to ensure laminar flow in the vessel, say, keeping
Re < 10.

As the viscosity of the liquid increases, the performance of both high speed
agitators and the close-clearance gate or anchor impellers deteriorates rapidly
and therefore impellers with high pumping capacity are then preferred. Two
such devices which have gained wide acceptance are the helical screw and
helical ribbon impellers (see Figures 8.24 and 8.26). The approach of Metzner
and Otto [1957] also provides a satisfactory correlation of power-consumption
data with such impellers [e.g. see Ulbrecht and Carreau, 1985; Catraay
1993; Bakker and Gates, 1995]; the valuekgfhowever, is sensitive to the
geometry of the impeller.

In conclusion, it is possible to estimate the power requirements for the
agitation of single phase Newtonian and inelastic non-Newtonian fluids with
reasonable accuracy under most conditions of interest. Many useful review
articles on recent developments in this area are available in the literature
[Chavan and Mashelkar, 1980; Harnbyal., 1992].

(iij) Effects of visco-elasticity

Little is known about the effect of fluid visco-elasticity on power consumption,
but early studies [Kelkaet al., 1972; Chavaret al, 1975; Yapet al.,, 1976]
seem to suggest that it is negligible under laminar flow conditions. Others
have argued that the fluid visco-elasticity may increase and/or decrease the
power consumption for turbine impellers as compared with that in Newtonian
and inelastic non-Newtonian fluids under similar flow conditions [Nienow
et al., 1983; Duclaet al,, 1983]. Since, most polymer solutions often show
pseudoplastic as well as visco-elastic behaviour, it is not possible to distin-
guish the separate contributions of these non-Newtonian characteristics on
power consumption. However, the development of synthetic test fluids having
a constant apparent viscosity but a range of high degrees of visco-elasticity
(measured in terms of first normal stress difference) has helped resolve this
difficulty. The experimental results to date suggest that the extent of visco-
elastic effects is strongly dependent on the impeller geometry and operating
conditions (Reynolds and Deborah numbers, etc.). For instance, for Rushton-
type turbine impellers, the power consumption may be either greater or less
than that for Newtonian fluids depending upon the values of the Reynolds
and Deborah numbers [Olivet al., 1984; Prud’homme and Shaqgfeh, 1984;
Collias and Prud’homme, 1985]. Recent work with helical ribbons and hydro-
foil impellers suggests that visco-elasticity increases the power requirement for
single phase agitation both in the laminar and transitional regimes [Carreau
et al,, 1993;0zcan-Taskin and Nienow, 1995]. Thus caution must be used in
applying results obtained from any one geometry to another. No satisfactory
correlations are thus available enabling the estimation of power consumption
in visco-elastic fluids.
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Finally, before concluding this section on power consumption, it should be
noted that the calculation of the power requirement requires a knowledge of
the impeller speed which is necessary to blend the contents of a tank in a given
time, or of the impeller speed needed to achieve a given mass transfer rate in
a gas-liquid system. Since a full understanding of the mass transfer/mixing
mechanism is not yet available, the selection of the optimum operating speed
therefore remains primarily a matter of experience.

Some guidelines for choosing an appropriate rotational speed for disc turbine
blades are available for Newtonian fluids. Hicgsal [1976] introduced a
scale of agitationS,, which ranges from 1 to 10 with 1 beingildly mixed
and 10 beingintensely mixedThe scale of agitation is defined as [Fasano
et al,, 1994; Bakker and Gates, 1995]:

N,ND?

Sy =328—94"—"
(70/4Dr, )?

(8.9

whereN, is the pumping numbef= Q/ND?), Q being the bulk flow induced
by the impeller andr,, is the effective tank diameter evaluated4g; /7)Y/3;
V, is the volume of liquid batch. Most chemical and processing applications
are characterised by scales of agitation in the range 3-6, while values
of 7-10 are typical of applications requiring high fluid velocities such as
in chemical reactors, fermentors and in mixing of highly viscous systems.
Some guidelines for choosing a suitable valueSgffor specific applications
employing turbine agitators are also available in the literature [Gettas,
1976]. Typical values of the pumping numbe¥,, as a function of the
Reynolds number and geometrical arrangement, are often provided by the
manufacturers of mixing equipment.

Typical power consumptions (kWAnare shown in Table 8.2.

Table 8.2 Typical power consumptions

Duty Power
(kw/m?3)

Low power

Suspending light solids, blending of low viscosity liquids 0.2
Moderate power

Gas dispersion, liquid—liquid contacting, heat transfer, etc. 0.6
High power

Suspending heavy solids, emulsification, gas dispersion, etc. 2
Very high power

Blending pastes, doughs 4
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Example 8.2

A thickened lubricating oil exhibiting power-law behaviour is to be agitated using
the configuration shown in Figure 8.5. Using dimensional analysis, obtain the relevant
dimensionless parameters for calculating power consumption in geometrically similar
equipment.

Solution

The variables in this problem, together with their dimensions, are as follows:

P :ML?T3 m: ML T2

n :MOLOTO N:T?
g :LT—? D:L
Dr:L p:ML-3

By Buckingham’sz theorem, there will be 8 3 =5 dimensionless groups. Since
n is already a dimensionless parameter, there will be four megeoups.

Choosingp, N andD as the recurring set as in example 8.1; then expresding
andT in terms of these variables

L=D; M=pD® and T=N"1

m = PMIL72T3 = P(oD®) YD) 2(V1)®
= P/pD°N?®

72 = mMTILT 2" = m(pD®) " H(D)(N~1?™"
— m/,oDZNZ"’

my = gL 'T? = g(D) (N "1)? = g/DN?

74 =DsL~  =Dy/D

Thus, the functional relationship is given:

T 5+/3 ) M
pD°N?® m g D

P D?N?™" N?D D
o= ([,7 N°D Dr
where pD?N?~" /m is the Reynolds number which can be further re-arranged as:

DN
Re = pi_l
m(N)"

On comparing this expression with the corresponding definition for Newtonian fluids,
the effective viscosity of a power-law fluid is given by:

Meft = m(N)nil
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This, in turn, suggests that the average shear jajgfor a mixing tank can be defined
as being proportional t&/, which is consistent with equation (8.8).

Example 8.3

In a polymerisation reactor, a monomer/polymer solution is to be agitated in a baffled
mixing vessel using a double turbine (6 flat blades) impeller, with the configuration
B-B in Table 8.1, at a rotational speed of 2Hz. The solution exhibits power-law
behaviour withn = 0.6 andm = 12 Pas’®. Estimate the power required for a 300 mm
diameter impeller. The density of the solution is 950 k§/m

Solution

Since the mixing tank is fitted with baffles, one can assume that no vortex formation
will occur and the Power number is a function only of the Reynolds number.
From Table 8.1 for configuration A-A,

k, =115 and jaq=kN =23s*
[ the corresponding effective viscosity of the solution.
et = M(Vayg)" - = 12 x (23)°¢°! = 3.42 Pas

D?N  950x (300x 10732 x 2
The Reynolds number, Re - x (300x )" X

Meff 3.42
=50
From Figure 8.7 at Re- 50
Po=~74
and P = Po- pN°D®

=7.4x950x 2% x (300x 10°%)°

=137W

Example 8.4

It is desired to scale-up a mixing tank for the agitation of a power-law liquid. The
same fluid is used in both model and large-scale equipment. Deduce the functional
dependence of power consumption per unit volume of fluid on the size of the impeller
and the speed of rotation.
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Solution

For geometrically similar systems and in the absence of vortex formation,
Po=f(Re)

Regardless of the nature of the function, f, in order to ensure similarity between the
two systems Reand Re in the model and large-scale equipment respectively must
be equal, and Romust equal P9 The equality of the two Reynolds numbers yields:

piN1D; — paNoDj

Meffl Meff2

For a power-law fluidtes = m(k,N)*~. Thus,
tefir = my(kN1)"* ™ and  prefrz = ma(kyN2)"? ™

Since the same fluid is to be used in the two cases (and assuming that the power-
law constants are independent of the shear rate over the ranges encounigred),

mp; =m; np =np =n and p; = p, = p, therefore the equality of Reynolds number
gives:

N1D? N,D3

(Nt (Nt

which can be further simplified as:
N, (Dz 2/(2—n)
N D1
From the equality of the Power numbers:

PL P
pINIDY — paN3D3

Nothing thatP, = P, the ratio of the powers per unit volume is given by:

(&/Di)_(& 3(@ ?
(P2/D3)  \Nz2 \D:

- Ni.
Substituting form.

(P1/D3) _ (& n—2
(P2/D3)  \D;

Similarly, expressing the final result in terms of the rotational speed:

(P1/D) <N1 3(N1 "z (Nl i
(P2/D3) N, N> N>
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Thus, power per unit voluméxP/D?) increases less rapidly with both stirrer speed
and impeller diameter for a shear-thinning fluid than for a Newtonian fluid (as would
be expected). The converse applies to a shear thickening(fiuid 1).

Other scale-up criteria such as equal mixing times, or equality of interfacial areas
per unit volume, etc., would in general yield different relations between variables.
Most significantly, complete similarity is not achievable as it would lead to conflicting
requirements. In such cases, it is necessary to decide the most important similarity
feature for the particular problem and then to equate the appropriate dimensionless
groups. Furthermore, almost without exception, scale-up of small-scale data gives non-
standard agitator speeds and power requirements for the large-scale equipment, and
thus one must choose the unit nearest to that calculated from scale-up considerations.

8.2.4 Flow patterns in stirred tanks

A qualitative picture of the flow field created by an impeller in a mixing vessel in
a single phase liquid is useful in establishing whether there are stagnant or dead
regions in the vessel, and whether or not particles are likely to be maintained in
suspension. In addition, the efficiency of mixing equipment, as well as product
quality, are influenced by the flow patterns in the mixing vessel.

Flow patterns produced in a mixing vessel are very much dependent upon
the geometry of the impeller. It is thus convenient to classify the agitators
used in non-Newtonian applications into three types:

(i) those which operate at relatively high speeds, producing high shear rates
in the vicinity of the impeller as well as giving good momentum transport
rates throughout the whole of the liquid; typical examples include turbine
impellers and propellers,

(i) The second type is characterised by close clearance impellers (such as
gates and anchors) which extend over the whole diameter of the vessel
and rely on shearing the fluid in the small gaps at the walls,

(i) Finally, there are slowly rotating impellers which do not produce high
shear rates but rely on their effective pumping action to ensure that
an adequate velocity is imparted to the fluid in all parts of the vessel;
typical examples include helical screw and helical ribbon impellers (see
Figures 8.24 and 8.26).

(i) Class | impellers

The flow patterns for single phase Newtonian and non-Newtonian fluids in
tanks agitated by class 1 impellers have been reported in the literature by,
amongst others, Metzner and Taylor [1960], Norwood and Metzner [1960],
Godleski and Smith [1962] and Wichterle and Wein [1981]. The experi-
mental methods used have included the introduction of tracer liquids, neutrally
buoyant particles or hydrogen bubbles; and measurement of local velocities by
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Figure 8.8 (a) Flow pattern from propeller mixer. (b) Radial flow pattern
for disc turbine

means of pitot tubes, laser doppler velocimeters and so on. The salient features
of the flow patterns produced by propellers and disc turbines are shown in
Figures 8.8a and b respectively. Essentially, the propeller creates an axial
flow through the impeller, which may be upwards or downwards depending
upon its direction of rotation. Though the flow field is three-dimensional and
unsteady, circulation patterns such as those shown in Figure 8.8a are useful in
avoiding the formation of dead regions. If the propeller is mounted centrally
and there are no baffles in the tank, there is a tendency for the lighter liquid
to be drawn in to form a vortex, and for the degree of mixing to be reduced.
These difficulties are usually circumvented by fitting baffles to the walls of the
tank. The power requirement is then increased, but an improved flow pattern
is obtained as seen in Figure 8.9a. Another way of minimising vortex forma-
tion is to mount the agitator off-centre to give a flow pattern similar to that
depicted in Figure 8.9b.

The flat-bladed turbine impeller produces a strong radial flow outwards from
the impeller (Figure 8.8b), thereby creating circulation zones in the top and
bottom of the tank. The flow pattern can be altered by changing the impeller
geometry and, for example, if the turbine blades are angled to the vertical, a
stronger axial flow component is produced. This can be useful in applications
where it is necessary to suspend solids. Furthermore, as the Reynolds number
decreases (by lowering the speed of rotation and/or due to the increase in the
liquid viscosity), the flow is mainly in the radial direction. The liquid velocities
are very weak further away from the impeller and the quality of mixing dete-
riorates. A flat paddle produces a flow field with large tangential components
of velocity, and this does not promote good mixing. Propellers, turbines and
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paddlesarethe principal typesof impellersusedfor low viscosity Newtonian
andpseudoplastitiquids operatingn thetransitionalandturbulentregimes.

Generally shearratesarehighestin the regionof the impeller andtaperoff
towardsthe walls of the vessel.Thus, for a pseudoplastidluid, the apparent
viscosityis lowestin theimpellerregionandthe fluid motion decreasemuch
more rapidly for a pseudoplastidhan for a Newtonian fluid as the walls
are approachedDilatant fluids display exactly the oppositebehaviour.Using
squarecross-sectiorvessels,Wichterle and Wein [1981] marked out zones
with motion and thosewith no motion for pseudoplastidluids agitatedby
turbine and by propellerimpellers. Typical results showing stagnantzones
are illustrated in Figure8.10 in which it is clearly seenthat the diameter
(D.) of the well-mixed region correspondwith the diameterof impeller D
atlow Reynoldshumbersbut coversanincreasingvolume of the liquid with
increasingReynoldsnumberor rotational speed.The authorspresentedhe
following expressiondor D.:

©

1
—~=1 Re< = 8.10
5 <2 (8109
D, 1
— =agvRe Re> — (8.10b)
D ag
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Figure 8.10 Shapeof the mixing cavityin a shear-thinningsuspension.
(Wichterle and Wein, 1981)

The constantag was found to be 0.3 for propellers,0.6 for turbinesand
~0.375(Pg )2 for othertypeswherePq is the constantvalue of the Power
numberunderfully turbulentconditions.The Reynoldsnumberhereis defined
by assumingk, = 1, i.e. pN>"D" /m.

A direct link betweenthe flow pattern and the correspondingpower
consumptionis well illustrated by the study of Nagataetal. [1970] which
relatesto the agitationof viscoplasticmedia.Theseworkersreporteda cyclic
increaseand decreasein power consumptionwhich can be explained as
follows: Initially, the power consumptionis high due to the high viscosity
of the solid-like structure;however,once the yield stressis exceededand
the materialbeginsto behavelike a fluid, the power consumptiondecreases.
The structurethen becomesre-establishedand the solid-like zonesreform
leading to an increasein the power consumption;then the cycle repeats.
Therewas a tendencyfor a vortex to form at the liquid surfaceduring this
cyclic behaviour.This tendencywaseitherconsiderablyreducedor eliminated
with class |l impellers. More quantitativeinformation on flow patternsin
viscoplastic materialsagitatedby Rushtondisc turbine impellers has been
obtainedusing X-rays andhot wire anemometnfSolomonetal., 1981;Elson
etal., 1986]. When the stresslevels inducedby the impeller rotation drop
below the yield stress relative motion within the fluid ceasesn viscoplastic
fluids. Solomonet al. [1981] attemptedto predictthe size of the well-mixed
cavern,shownin Figure 8.10. They suggestedhe following relationfor D,

5= - | =5 (8.11)

1/3
D, (4Po oN2p? Y
s 70
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Equation (8.11) was stated to be applicable in the ranges of conditions as:
(oN?D?/1oP) < 4/7°Po < (pN?D?/1o8)(D/T)3, i.e. whenD < D. < Dy/Dr.

In contrast, the influence of fluid visco-elasticity is both more striking and
difficult to assess. Photographs of rotating turbine and propeller-type impellers
in visco-elastic fluids suggest two distinct flow patterns [Giesekus, 1965]. In
a small region near the impeller the flow is outwards, whereas elsewhere
the liquid is flowing inwards towards the impeller in the equatorial plane
and outwards from the rotating impeller along the axis of rotation. The two
regions are separated by a streamline and thus there is no convective trans-
port between them. A more quantitative study made by Ketkal [1973]
suggests that, irrespective of the nature of the secondary flow pattern, the
primary flow pattern (i.e. tangential velocity) around a rotating body is virtu-
ally unaffected by the visco-elasticity of the fluid. Indeed, various types of
flow patterns may be observed depending upon the relative magnitudes of the
elastic, inertial and viscous forces, i.e. the values of the Reynolds and Deborah
numbers.

100
75

50

Shear rate (s™1)
o
T

wall

Re =143.4 ——A

-100 L
0 75 150

Radial distance (mm)

Figure 8.11 Shearrate profilesfor an anchorimpellerrotatingin a
visco-elastidiquid. [Petersand Smith,1967]
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(i) Class Il impellers

While anchors and gate-type impellers are known to produce poor axial circu-
lation of the liquid in a vessel, in one study [Peters and Smith, 1967] it seems
that the fluid visco-elasticity promotes axial flow. For instance, axial flow is
reported to be almost 15 times greater in a visco-elastic solution as compared
with a Newtonian medium. The shear rate profiles reported by these authors
shown in Figure 8.11 clearly indicate that the liquid in the tank is virtually
unaffected by the blade passage.

Broadly speaking, both gate and anchor agitators promote fluid motion close
to the wall but leave the region near the shaft relatively stagnant, as can be
seen in the typical pattern of streamlines in Figure 8.12. Furthermore, due
to the only modest top to bottom turnover, vertical concentration gradients
usually exist, but these may be minimised by using a helical ribbon or a
screw twisted in the opposite sense, pumping the fluid downward near the
shaft. Typical flow patterns for an anchor impeller are shown schematically
in Figure 8.13. In such systems, the flow pattern changes with the impeller
speed and the average shear rate cannot be described adequately by a linear
equation such as equation (8.8). Furthermore, any rotational motion induced
within the tank will produce a secondary flow in the vertical direction; the

Figure 8.12 Streamlines for a visco-elastic liquid in a tank with a gate
agitator, drawn relative to the arm of the stirrer
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Figure 8.13 Secondaryirculationin an anchoragitatedtank. [Petersand
Smith,1967]

Primary

)/cwculatlon

e *\
N
\ !
\ 7
Secondary ST
circulation -
7
4 [\
I \\
\\ I
AN /
SN2~

Figure 8.14 Schematiaouble-celledsecondaryflow pattern

liquid in contactwith the tank bottom is essentiallystationarywhile that at

higherlevelsis rotatingandwill experiencecentrifugalforces.Consequently,
the prevailing unbalancedorceswithin the fluid leadto the formation of a

toroidal vortex. Dependinguponthe viscosityandtype of fluid, the secondary
flow patternmay be single-celledasin Figure 8.13or double-celledasshown

schematicallyin Figure 8.14.Indeed theseschematidlow patternshavebeen

substantiatedby a recentexperimentabnd numericalstudy for pseudoplastic
fluids [Abid etal., 1992].
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(iii) Class Ill impellers

Apart from the qualitative results for a composite impeller (anchor fitted with

a ribbon or screw) referred to in the preceding section, little is known about
the flow patterns induced by helical ribbon and screw impellers. The salient
features of the flow pattern produced by a helical ribbon impeller are shown
in Figure 8.15 [Nagatat al., 1956]. The primary top-to-bottom circulation,
mainly responsible for mixing, is due only to the axial pumping action of the
ribbons. The shear produced by the helical ribbon is localised in the regions
inside and outside the blade, whereas the shear between the wall and the
bulk liquid is cyclic in nature. Notwithstanding the considerable scatter of
results of Bourne and Butler [1969], the velocity data shown in Figure 8.16
seem to be independent of the scale of equipment, and the nature of fluid e.g.
pseudoplastic or visco-elastic. There was virtually no radial flow except in the
top and bottom regions of the tank, and the vertical velocity inside the ribbon
helix varied from 4 to 18% of the ribbon speed.

In addition to the primary flow pattern referred to above, secondary flow
cells develop with increasing impeller speed and these are similar to those
observed by Peters and Smith [1967] for class Il agitators as can be seen in
Figure 8.13. Carreaet al. [1976] have also recorded flow patterns for a helical
ribbon impeller. Visco-elasticity seems to cause a considerable reduction in the

Figure 8.15 Flow patternproducedby a helical ribbon impeller.[Nagata
etal. 1956]



354  Non-Newtonian Flow in the Process Industries

axial circulation, as can be seen in Figure 8.17 where the dimensionless axial
velocity is plotted for an inelastic (2% carboxymethyl cellulose and a visco-
elastic (1% Separan) solutions. The axial velocities in the inelastic solution
were found to be of the same order as in a Newtonian fluid.

/ Axis of rotation
0.21 T T T T T T T T T
X+
0.18— —
X
0.15— X + —

0.12

Blade

0.09

0.06

Ratio of axial to tangential velocity, VITN

0.03

D 0.2 0.4 0.6 0.8 1.0

Radial distance/
inside radius of impeller

Figure 8.16 \ariation of axial fluid velocityin the core regionof helical
ribbon impellerspumpingdownwadsin 27 and 730itre tanks.Thecurves
indicatethe upperandlower bounds of data [Bourne and Butler, 1969]

+ D/Dr = 0.889
x D/D7 = 0.952small tank)
O D/Dy = 0.954large tank)
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Figure 8.17 Axial velocitydistributionin a vessehgitatedby a helical
ribbon impeller[Carreauetal., 1976]

Ontheotherhand thetangentialvelocitiesweresoincreasedn visco-elastic
fluids that the whole contentsof the vessel,exceptfor a thin layer adhering
to the wall, rotatedas a solid body with an angularvelocity equalto that of
theimpeller.More definitive conclusiongegardingthe role of non-Newtonian
rheology,especiallyvisco-elasticity mustawait additionalwork in this area.

Virtually nothingis knownabouttheflow patterngoroduceddy helicalscrew
impellers. In a preliminary study, Chapmanand Holland [1965] presented
picturesof dyeflow patterndor anoff-centrehelical screwimpeller,pumping
upwardswith no draft tube. Thereseemsto exist a dispersiveflow between
the flights of the screw, the dispersionbeing completedat the top of the
screw. The flow into the screw impeller was from the other side of the
tank, whereasthe fluid in the remaining parts of the tank appearedo be
virtually stagnant.Limited numerical predictionsbasedon the assumption
of three-dimensionaflow inducedby a helical ribbon-screwimpeller show
goodagreementith experimentablatafor powerconsumptionin Newtonian
fluids [Tanguyetal., 1992].

The limited resultsavailableon the flow patternsencounteredn mixing
devicesusedfor thick pasteswith complexrheologyhavebeendiscussedy
Hall and Godfrey [1968] and Kappel [1979]. One commongeometryused
in mixing thick pastesis that of the sigma-blademixer (Figure 8.24). Such
deviceshavethick S- or Z-shapedbladeswhich look like high-pitch helical
ribbon impellers. Generally, two units are placed horizontally in separate
troughsinside a mixing chamberand the bladesrotatein oppositedirections
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at different speeds. Preliminary results obtained using a positive displacement
mixer suggest it has advantages over helical ribbon and sigma mixers for thick
pastes and extremely viscous materials [Chengl., 1974].

Thus, the flow patterns established in a mixing tank depend critically on
the vessel — impeller configuration, the rheology of the liquid batch and the
operating conditions. In selecting the appropriate combination of equipment,
care must be taken to ensure that the resulting flow pattern is suitable for the
required application.

8.2.5 Rate and time of mixing

Before considering the question of the rate and time of mixing, it is necessary
to have some means of assessing the quality of the product mixture. The
wide scope and spectrum of mixing problems make it impossible to develop a
single criterion for all applications. One intuitive and convenient, but perhaps
unscientific, criterion is whether or not the mixture meets the required specifi-
cation. Whatever the criteria used, mixing time is defined as the time needed
to produce a mixture or a product of pre-determined quality, and the rate of
mixing is the rate at which the mixing progresses towards the final state. When
a tracer is added to a single-phase liquid in a stirred tank, the mixing time is
measured as the interval between the introduction of tracer and the time when
the contents of the vessel have reached the required degree of uniformity or
mixedness. If the tracer is completely miscible and has the same viscosity and
density as the liquid in the tank, the tracer concentration may be measured as
a function of time at any point in the vessel by means of a suitable detector,
such as a colour meter, or by electrical conductivity. For a given amount of
tracer, the equilibrium concentratian,, may be calculated; this value will be
approached asymptotically at any point as shown in Figure 8.18.

Co

Tracer concentration

A L .
l€«——— Mixing time ———>|

Addition of Time
tracer

Figure 8.18 Mixing-time measurement curve
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In practice, the mixing time will be that required for the mixture composition
to come within a specified (95 or 99%) deviation from the equilibrium value
C, and this will be dependent upon the way in which the tracer is added and
the location of the detector. It may therefore be desireable to record the tracer
concentration at several locations, and to define the variance of concentration
o2 about the equilibrium value as:

1 X
0?=—"23 (Ci—Cx) (8.12)
r-1i=

where(C; is the tracer concentration at timeecorded by théth detector. A
typical variance curve is shown in Figure 8.19.

Mixing
time

Concentration variance, o2

cut-off
/

Time

Figure 8.19 Reductionn varianceof concentrationof tracer with time

Severalexperimentaltechniquesmay be used,such as acid/baseitration,
electricalconductivityor temperatureneasuremenimeasuremertf refractive
index, light absorptionandso on. In eachcase,it is necessaryo specifythe
manner of tracer addition, the position and number of recording points,
the sample volume of the detection system, and the criterion used in
locatingthe end point (suchas a predetermineaut-off point). Eachof these
factorswill influencethe measuredralue of mixing time, andtherefore,care
mustbe exercisedn comparingresultsfrom differentinvestigationgdManna,
1997]. Irrespectiveof the techniqueusedto measurethe mixing time, the
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response curve may show periodic behaviour. This may most probably be due
to the repeated passage of a fluid element with a locally high concentration of
tracer. The time interval between any two successive peaks is known as the
circulation time.

For a given experiment and configuration, the mixing time will depend upon
the process and operating variables as follows:

tm =T (p, u, N, D, g, geometrical dimensions of the system (8.13)
Using dimensional analysis, the functional relationship may be re-arranged as:
Nt,, = 6,, = f (Re Fr, geometrical ratios (8.14)

For geometrically similar systems and assuming that the Froude number,
Fr (= DN?/g) is not important,

On = f(Re) (8.15)

Broadly speaking, the dimensionless mixing times in both the laminar and
fully turbulent regions are independent of the Reynolds number; a substantial
transition zone exists between these two asymptotic values. Undoubtedly, the
functional relationship betweet, and Re is strongly dependent on the mixer
geometry and the flow patterns produced.

For class | impellers, the limited available work [Norwood and Metzner,
1960] confirms this dependence &f on Re for turbine impellers in baffled
tanks, albeit these results are believed to be rather unreliable. Nonetheless,
Norwood and Metzner [1960] suggested that the correlations developed for
Newtonian liquids can also be used for purely inelastic shear-thinning fluids,
simply by using a generalised Reynolds number based on the effective
viscosity evaluated at the average shear rate given by equation (8.8). Although,
it is widely reported tha#,, is quite sensitive to impeller—vessel geometry for
low viscosity liquids, there have been few studies of the effect of physical
properties orp,,. Early work of Bourne and Butler [1969] suggests that the
rates of mixing, and hence the mixing times, are not very sensitive to the fluid
rheology for both Newtonian and inelastic non-Newtonian materials. On the
other hand, Godleski and Smith [1962] reported mixing times for pseudoplastic
fluids (agitated by turbines) up to 50 times greater than those expected from
the corresponding results for materials exhibiting Newtonian behaviour. This
emphasises the care which must be exercised in applying any generalised
conclusions to a particular system. Intuitively, one might expect a similar
deterioration in mixing for visco-elastic liquids, especially when phenomena
such as secondary flow and flow reversal occur.

The only study relating to the use of class Il impellers for non-Newtonian
media is that of Peters and Smith [1967] who reported a reduction in mixing
and circulation times for visco-elastic polymer solutions agitated by an anchor
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impeller. The decrease in mixing time can be ascribed to the enhanced axial
circulation.

In contrast to this, class Ill impellers have generated much more interest.
Circulation times with helical impellers are known not to be affected by shear-
thinning behaviour [Chavan and Ulbrecht, 1972, 1973; Cargdaal, 1976].
Thus, the circulation time is constant in the laminar regifRe < ~10); it
decreases in the transition zone both with increasing Reynolds number and
with increasingly shear-thinning behaviour. A subsequent more detailed study
[Guerinet al., 1984] shows that, even though the average circulation times are
not influenced significantly by shear-thinning characteristics, their distribution
becomes progressively narrower.

Mixing times in inelastic systems follow a similar pattern; namedly,
is independent of Reynolds number in the laminar regi®e < ~10).

For helical screw impellers in the intermediate zai® < Re < 1000), 6,,
decreases with Reynolds number. With shear-thinning behaviour, the apparent
viscosity should be evaluated #f,4 estimated using equation (8.8). On the
other hand, Carreaet al. [1976] have reported that non-Newtonian fluids
required considerably longer mixing times as compared with Newtonian fluids
at comparable circulation rates.

The results of the scant work with visco-elastic fluids are conflicting but
suggest that relationship between mixing and circulation times is strongly
dependent on the geometrical arrangement and that it is not yet possible to
account quantitatively for the effects of visco-elasticity. Visco-elastic fluids
appear to be much more difficult to mix than inelastic fluids. Reference should
be made to a review paper for further details of studies in this area [Takahashi,
1988].

8.3 Gas-liquid mixing

Many gas—liquid reactions of industrial significance are carried out in agitated
tank reactors, and the design requirements vary from one application to
another. For instance, in effluent aeration and in some fermentation reactions,
the systems are dilute and reactions are slow so that mass transfer is not
likely to be a limiting factor. Energy efficiency is then the most important
consideration, and large tanks giving long hold-up times are used. Chlorination
and sulphonation reactions, on the other hand, are fast and the gases have
high solubilities; and it is then desirable to have high rates of heat and mass
transfer and short contact times. In the food industry, the non-Newtonian
properties of batters and creams are of dominant importance and the flow field
and temperature must be closely controlled. Irrespective of the application, a
rational understanding of the fluid mechanical aspects of gas dispersion into
liquids is a necessary precursor to the modelling of heat and mass transfer,
and reactions in such systems.
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Gas dispersion in agitated tanks may be described in terms of bubble size,
gas hold-up, interfacial area and mass transfer coefficient. While gas dispersion
in low viscosity systems [Smith, 1985; Tatterson, 1991; Harebgl., 1992]
has been extensively studied, little is known about the analogous process in
highly viscous Newtonian and non-Newtonian media, such as those encoun-
tered in polymer processing, pulp and paper manufacturing and fermentation
applications.

Good dispersion of a gas into a liquid can only be achieved by using high
speed (class |) agitators which unfortunately are not very effective for mixing
high viscosity liquids. Hence, for gas dispersion into highly viscous media,
there are two inherently conflicting requirements which may be met in prac-
tice by using a combination of two impellers mounted on a single shaft. For
instance, the Rushton disc turbine with & #iched blade impeller combines
the advantages of the low flow and high shear of a disc turbine with the high
flow and low shear produced by the second component of the assembly. Such
composite agitators provide a good compromise between those agitators which
cause mixing as a result of local turbulence generated by their shape, and those
which give large-scale convective flows. Figure 8.20a shows a system which
combines turbulence generation at the blade tips with an induced large-scale
flow from the angled blade arms; two or more agitators can be mounted on
the same shaft at 9Qo each other. If suitably designed, such assemblies can
be rotated at moderately high speeds without excessive power consumption.
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Figure 8.20 Compositampellersusedfor gas-liquid dispersions;(Left)
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In some applications, two independent agitators are employed. One is of the
positive displacement type and rotates slowly to give good mixing, whereas
the other operates at a high rotational speed to facilitate gas dispersion. Another
more widely used impeller for dispersing gases into liquids is the so-called
scaba SRGT impeller (shown in Figure 8.20b) in which half-cut pipes are used
instead of plane blades in a four- or six-bladed Rushton turbine. The gas is
invariably introduced through a sparger placed beneath the impeller.

Basically, the process of gas dispersion involves two competing processes:
breakdown of the gas into bubbles which occurs predominantly in the high
shear region near the impeller, and coalescence which takes place in quiescent
regions away from the impeller. Depending upon the impeller speed and the
physical properties of the liquid phase (mainly viscosity and surface tension),
the gas bubbles may either re-circulate through the impeller region or escape
from the system through the free surface, or they may coalesce. In addition, the
dispersion of gases into highly viscous liquids differs from that in low viscosity
systems because the gas bubbles have a greater tendency to follow the liquid
motion when the viscosity is high. Admittedly, the exact mechanism of gas
dispersion is not fully understood even for the extensively studied low viscosity
systems; however, the mechanisms of dispersion in highly viscous Newtonian
and non-Newtonian systems appear to be qualitatively similar. Essentially,
the sparged gas gets sucked into the low pressure regions (‘cavities’) behind
the impeller. The shape and stability of these cavities are strongly influenced
by the liquid rheology, and the Froude and the Reynolds numbers for the
agitator. There is, however, a minimum impeller speed required for these cavi-
ties to form. For instance, Van't Reit [1975] suggested that the Froude number
should be greater than 0.1 in liquids agitated by a disc turbine. As remarked
earlier, high speed agitators are, however, not effective in dispersing a gas
in highly viscous liquids(Re < ~10) [Nienow et al., 1983]. For Re> 1000,
the minimum impeller speed required for gas dispersion rises slowly with
increasing liquid viscosity, e.g. a 50% increase in impeller speed is required
for a 10-fold increase in viscosity. In the intermediate zone<1Re < 1000,
the formation and stability of cavities is determined by complex interactions
between Reynolds and Froude numbers, and the gas flow rate. Preliminary
results seem to suggest that the effects of shear-thinning viscosity are negli-
gible. Yield stress also does not appear to play any role in this process except
that some gas may be entrapped in cavities, even after the impeller has been
stopped [Nienowet al., 1983]. On the other hand, cavities which are much
bigger and of different shapes have been observed in visco-elastic liquids
[Solomonet al., 1981]. Furthermore, dispersion of a gas in visco-elastic media
is more difficult because the gas entrapped in a cavity does not disperse until
the gas flow is stopped. The effect of visco-elasticity is even more pronounced
with the composite Intermig impeller (Figure 8.20a). In this case, the gas-
filled cavities may extend behind the outer twin-split blades, almost all the
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way back to the following blade. Qualitatively, these differences in behaviour
have been attributed to large extensional viscosities of highly visco-elastic
media [Nienow and Ulbrecht, 1985].

8.3.1 Power consumption

The limited work on Rushton turbines suggests that at low Reynolds numbers
(<10), the Power number is almost unaltered by the introduction of gas,
possibly due to the fact that no gas-filled cavities are formed at such low
impeller speeds. In the intermediate regit® < Re < 1000), gas cavities
begin to form, and the Power number decreases with increasing Reynolds
number, goes through a minimum valge. Re~ 300-500 and begins to
increase again, as shown in Figure 8.21 for a range of polymer solutions.
However, the gas flow rate does not seem to influence the value of the
power number at a fixed impeller speed. The decrease in Power number arises
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Figure 8.21 Power number with gas-filled cavities on impeller versus
Reynolds number @bz = 0.5 and 1 vvm (volumetric gas flow rate per
minute per unit volume of liquid): 16 Re < 1100 6, 1.4% CMC;a, 4.3%
Xanthan gumsa, 2% Xanthan gums, 0.17% Carbopol)
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from the combined effect of streamlining, the reduced pumping capacity of

the impeller and the increased pressure in the gas-filled cavities. When the
Power number is a minimum, the cavities are of maximum size and the
impeller rotates in a pocket of gas without causing any dispersion. Undoubt-
edly, the reduction in power consumption, as well as its minimum value,

are manifestations of the complex interplay between the size and structure
of the cavities, the rheological characteristics of the liquid and the kinematic
conditions, but the nature of these interactions is far from clear [Nienow and

Ulbrecht, 1985; Tatterson, 1991; Harnbyal., 1992].

Subsequent work with a helical ribbon impeller [Carreaal, 1992; Cheng
and Carreau, 1994] suggests that the power consumption in the presence of a
gas may either increase or decrease, depending upon the non-Newtonian flow
properties of the liquid. For instance, Carreatual. [1992] report reduced
levels of power consumption in highly pseudoplastic liquids when gas is
present (presumably due to the enhanced levels of shearing) whereas, in
aerated visco-elastic liquids, the power always increases. The currently avail-
able correlations for the estimation of power under aerated conditions are too
tentative to be included here [Cheng and Carreau, 1994].

Some information is also available on the performance of more widely used
composite or modified impellers, for instance, Intermig and 6 bladed Scaba
SRGT impellers shown in Figure 8.20 [Galindo and Nienow, 1993]. When a
gas is present, the power is reduced considerably in non-Newtonian liquids
agitated by a Scaba impeller. Furthermore, a point is reached where the Power
number becomes independent of the gas flow rate for a fixed impeller speed.
As far as scale-up is concerned, a preliminary study suggests that the power
requirements for complete mixing decrease rapidly with increasing size of
impeller irrespective of whether or not gas is present [Soloeioal., 1981].

8.3.2 Bubble size and hold-up

Bubble size (distribution) and hold-up, together with the specific interfacial
area and volumetric mass transfer coefficients, may be used to characterise
the effectiveness of gas dispersion into liquids. It is important to emphasise
that these parameters, and bubble coalescence, are extremely sensitive to the
presence of surface-active agents. Although all these variables show spatial
variation, only globally averaged values are usually reported and these are
frequently found to be adequate for the engineering design calculations. For a
given liquid, the mean bubble size does not show a strong dependence on the
level of agitation. Ranade and Ulbrecht [1978] studied the influence of polymer
addition on hold-up and gas-liquid mass transfer in agitated vessels. Even
small amounts of dissolved polymer were shown to give rise to substantial
reductions in both hold-up and mass transfer, albeit the degree of reduction
showing strong dependence on the type and concentration of the polymer.
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Qualitatively similar results have been reported for markedly shear-thinning
fluids [Machonet al., 1980]. This reduction has been generally ascribed to the
formation of large bubbles which have a shorter residence time. The average
gas hold-up was found to vary with powBg and gas flow rateQ,, as:

¢ o PY2QY7 (8.16)

or with power consumption per unit mags,and the superficial gas velocity,
V,, as:

¢ o e23VY7 (8.17)

For a fixed rate of feed of gas, both hold-up and power consumption decrease
with increasing polymer concentration, i.e. with increasing apparent viscosity.
In these systems, bubbles have generally been found to be predominantly of
two sizes, with a large population of small bubbles and a very few large
bubbles. Figure 8.22 shows typical results for gas hold-up in highly viscous
shear-thinning polymer solutions, obtained with a single disc turbine and a
composite impeller (45downward pumping impeller and disc turbine) for a
range of(D/Dr) ratios. Finally, the point of minimum power consumption
(largest amount of gas present in cavities), as expected, corresponds to the
point of maximum gas holdup [Hickman, 1988].
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8.3.3 Mass transfer coefficient

In view of what hasbeensaid so far regardingthe mixing of highly viscous
Newtonianandnon-Newtoniarsystemsa reductionin the masstransfercoef-
ficient, k,a is inevitable. This is indeedborne out well by the few studies
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available on this subject [Perez and Sandall, 1974; Yagi and Yoshida, 1975;
Ranade and Ulbrecht, 1978; Nishikawgal., 1981].

Dimensionless empirical correlations relatikg: to the system geometry,
and kinematic and physical variables are available in the literature [Tatterson,
1991]. For example, the following correlation due to Kawase and Moo—Young
[1988] is one which embraces a very wide range of power-law parameters:

_ 0,675'006(p/‘/)(9+4n)/(10(1+n))DO5 (& 05 (ﬂ -025
(m/p)0-5(l+n)00.6 L\, .

kra (8.18)
Equation (8.18) is not dimensionally consistent and all quantities must be
expressed in S.I. units; that i&;a, the volumetric mass transfer coefficient
(s™b); p, the density of liquid (kg/r®); (P/V), the power input per unit volume
of dispersion (W/r); o, the interfacial tension (N/m)y,, the superficial
velocity of gas (m/s)V,, the terminal velocity of a single bubble in a quiescent
medium (m/s), (Kawase and Moo—Young recommended a constant value of
0.25m/s); uefr, the effective viscosity estimated using equation (8.8)gPa
Wy, the viscosity of water (Rs); D;, the diffusivity of gas into liquid (rf/s)
andm is the power-law consistency coefficient (fa Equation (8.18) applies
over the following ranges of conditions:39 < n < 0.95; 00036< m < 10.8
Pas® and 015 < Dy < 0.6 m.

A comprehensive discussion of other contemporary work in this field is
available elsewhere [Nienow and Ulbrecht, 1985; Harabwgl., 1992; Herbst
et al, 1992].

8.4 Heat transfer

The rate of heat transfer to process materials may be enhanced by externally
applied motion both within the bulk of the material and in the proximity of
heat transfer surfaces. In most applications, fluid motion is promoted either
by pumping through tubes (Chapter 6) or by mechanical agitation in stirred
vessels. A simple jacketed vessel is very commonly used in chemical, food,
biotechnological and pharmaceutical processing applications to carry out a
range of operations. In many cases, heat has to be added or removed from
the contents of vessel, either to control the rate of reaction, or to bring it
to completion. The removal/addition of heat is customarily accomplished by
using water or steam in a jacket fitted on the outside of the vessel or in an
immersed cooling coil in the tank contents. In either case, an agitator is used
both to achieve uniform temperature distribution in the vessel and to improve
the heat transfer rate. As is the case with power requirement and mixing
time, the rate of heat transfer in stirred vessels is strongly dependent on the
tank — impeller configuration, type and number of baffles, the liquid rheology,
the rotational speed and the type of heat transfer surface, for example jacket or
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coil. In the following sections, two methods (jacket and coil) of heat removal
or addition for non-Newtonian materials are discussed separately.

8.4.1 Helical cooling coils

A vessel fitted with a cooling coil and an agitator is shown schematically in
Figure 8.23. In this case the thermal resistances to heat transfer arise from
the fluid film on the inside of the cooling coil, the wall of the tube (usually
negligible), the fluid film on the outside of the coil, and the scale that may
form on either surface. The overall heat transfer coefficiehtcan thus be
expressed as:

1 1 1 R, R
— = g + 24+ (8.19)
UA ~ hA;  kehy  hA, A, A

where the subscripts’; ‘o’ and ‘w’ refer to the inside, outside and the tube
wall conditions respectively, anll is the scale resistance.
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Figure 8.23 Schematics of a vessel fitted with a cooling coil and an agitator
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(i) Inside film coefficients

The inside film coefficienti;, may be estimated using the correlations avail-
able in the literature such as the well known Dittus—Boelter equation for low
viscosity coolants, as recommended in the literature [Coulson and Richardson,
1999]:

= 0.023(— <— (8.20)
% k

Nu =

For more viscous liquids such as concentrated brine solutions, the Sieder—Tate
equation is preferable:

hid

0.14
— 0.027R&8pP33 <ﬂ (8.21)
o

where the subscript$* and ‘w’ relate to the bulk and wall conditions respec-
tively. Both of these equations were based on data for straight tubes and it is
necessary to apply a small correction factor for the coil configuration [Jeschke,
1925] as:

h;(coil) = h;(tube) 1+ 3.5di (8.22)
whered is the inside diameter of the tube add that of the helix, as shown
in Figure 8.23.

For steam condensing inside the tube, the heat transfer coefficient is usually
sufficiently high for its contribution to the overall heat transfer coefficient to
be neglected.

(i) Outside film coefficients

The value ofh, is much more difficult to determine, particularly in view of
the strong interplay between the non-Newtonian rheology of the liquid and the
geometry of the tank — impeller combination. Other internal fixtures such as
baffles affect the flow pattern and heat transfer, as well as power consumption
and mass transfer. It is thus dangerous to make detailed cross-comparisons
between different studies unless the two systems are completely similar.

The results of heat transfer studies are usually expressed in terms of the
relevant dimensionless groups as [Edwards and Wilkinson, 1972; Poggermann
et al., 1980]:

Nu = f (Re Pr, Gr, geometric ratios (8.23)

The effect of geometric ratios on the Nusselt number is difficult to quantify,
although some investigators have incorporated the principal length parameters
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as ratios in their heat transfer correlations. This factor alone precludes the
possibility comparisons of the results of some workers!
For geometrically similar systems, equation (8.23) simplifies to:

Nu=f (Re Gr, Pr) (8.24)

The Grashof number, Ge= gBATL3p?/11?), is indicative of free convection
effects which are generally significant in low viscosity liquids, but become
increasingly less important with rising viscosity and increasing impeller speed
[Carreauet al., 1994]. For a power-law fluid, the apparent viscosity estimated
using the average shear rate given by equation (8.8) is used in evaluating the
Grashof number.

Owing to the inherently different flow fields produced by each class of
agitators, it is convenient to consider separately the application of equation
(8.24) to equipment of particular forms. Since most of the work related to
heat transfer to pseudoplastic materials has been critically reviewed elsewhere
[Gluz and Pavlushenko, 1966; Edwards and Wilkinson, 1972; Poggermann
et al., 1980; Desplanchest al., 1980], only a selection of widely used corre-
lations is given here.

(@) Class | impellers

As mentioned earlier, these impellers operate at relatively high speeds and
are effective only in low to medium viscosity liquids. In most cases, the
main flow in the vessel tends to be transitional and/or turbulent. For shear-
thinning polymer solutions and particulate suspensions agitated by paddle,
turbine and propeller type impellers, many correlations of varying complexity
and form are available for the estimation of the outside film coefficient. One
such correlation, based on wide ranges of conditions @®e < 10°; 4 <
Pr<1900; 065 < ue < 283 mPas), is due to Edney and Edwards [1976]:

0.64
Nu = hod, — 0.036 (,ONDZ (Cp,ueff 035 (Meﬁ,b 02 ( d. —0375

k Meff,w DT

(8.25)
whered, is the outside (coil) tube diametef, is the coil helix andDy is
the vessel diameter respectively. The effective viscosity is evaluated using
equation (8.8) withk, = 11.6.

(b) Class Il impellers

These impellers, including gates and anchors, reach the far corners of the
vessels directly instead of relying on momentum transport by bulk motion.
Among others, Pollard and Kantyka [1969] carried out an extensive study on
heat transfer from a coil to aqueous chalk slur@8 < n < 1) in vessels up
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to 1.1 m in diameter fitted with anchor agitators; they proposed the following
equation for Nusselt number:

0.14 0.48 0.27
Nu="PT _ 0.077R&5pP1Y? <—”e“”’ (DT (ﬁ
k

— (8.26)
Meff,w dC

d()

Equation (8.26) applies over the range 20®Re < 6 x 10° and the effective
viscosity is estimated using equation (8.8) and the valug given by:

9 3n41 MO
< nt (8.27)

ks=1(9.5

< 1z (D/Dr)? 4n
The indeterminate form of equation (8.27) should be notea fer1, but then
ks is redundant for Newtonian fluids.

(c) Class Ill impellers

This class of impellers has generated much more interest than the gates and
anchors. Consequently, numerous workers [Calal, 1970; Nagataet al.,

1972; Heim, 1980; Kuriyamat al., 1983; Ayazi Shamlou and Edwards, 1986;
Kai and Shengyao, 1989; Carreatial., 1994] have investigated the rates of
heat transfer to viscous non-Newtonian materials in vessels fitted with helical
ribbons and screw-type impellers. For instance, Caregal [1994] studied

heat transfer between a coil (acting as a draft tube) and viscous Newtonian,
inelastic shear-thinning and visco-elastic polymer solutions agitated by a screw
impeller. The rate of heat transfer was measured for both cooling and heating
of solutions. The flow rate of water inside the coil was sufficiently high for the
inside film resistance to be negligible (i.e. large valueg:pf The effective
viscosity of shear-thinning and visco-elastic polymer solutions was evaluated
using equation (8.8) withk, = 16, the value deduced from their results on
power consumption. These workers proposed a single correlation for Newto-
nian, inelastic power-law and visco-elastic fluids as:

hod,
k

Nu =

do 0.594
= 0.39R&5p/3 (5 (8.28)

All physical properties are evaluated at the mean film temperaturé7i,e+
T5)/2, and equation (8.28) encompasses the range of conditioRRE<
1300 and 500< Pr < 30000.

8.4.2 Jacketed vessels

In many applications, it is not practicable to install cooling coils inside a tank,
and heating of the contents of the vessel is achieved using condensing steam
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or coolant in a jacket. Indeed, this is a preferred arrangement for moderately
viscous systems. The numerous studies of heat transfer to non-Newtonian
fluids agitated by a range of impellers have been reviewed by Edwards and
Wilkinson [1972], and more recently by Dream [1999]; most of the work
to date has been carried out in relatively small vessel650 mm diam-
eter). Furthermore, investigators have used diverse methods of estimating the
apparent viscosity which should be used in the evaluation of the Reynolds
and Prandtl numbers and it is therefore not possible to discriminate between
predictive expressions. In the following sections, a selection of the more reli-
able correlations is presented for each class of agitators.

For a steam jacketed tank (360 mm in diameter) fitted with baffles, Hage-
dorn and Salamone [1967] measured the rates of heat transfer to water, gly-
cerol and aqueous carbopol solutions over wide ranges of conditid3& €0
n <1;35<Re< 6.8 x 10; Pr< 2.4 x 10%). They measured temperatures at
various locations in the vessel and suggested the following general form of
heat transfer correlation:

hD /Dy T /w & |
Nu= 2 _ ¢ Re/((+D+b) pd (ﬂ <_T (_ 0 (8.29)
k m,, D D

where the apparent viscosity is evaluated at the shearyate; 11 N. The

values of the constants in equation (8.29) for various impellers are listed in
Table 8.3.

Table 8.3 Values of constants in equation (8.29)

D
Type of a b C d e f g i il
Impeller D
Anchor 143 0 0.56 0.30 0.34 - - 054 1.56
Paddle 0.96 0.15 251 0.26 0.31-0.46 0.46 056 1.75-3.5
Propeller 1.28 0 0.55 0.30 0.32-0.40 - 132 2.33-341

Turbine 1.25 0 3.57 0.24 0.30 0 0 0.78 2-3.50

Hagedorn and Salamone [1967] reported the mean error resulting from the
use of equation (8.29) to be 14% for moderately shear-thinning materials
(n > 0.69) increasing to 20% for highly shear-thinning fluigs < 0.69); both
are well within the limits of experimental errors generally associated with this
type of work. Similarly, Sandall and Patel [1970] and Martone and Sandall
[1971] have developed correlations for the heating of pseudoplastic (carbopol
solutions) and Bingham plastic slurries (chalk in water) in a steam-jacketed
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vessel fitted with a turbine impeller and baffles or with an anchor agitator. In
their study which was limited to only one size of vessel, they were able to
correlate their results in the following simple form:

(8.30)

a
hD7 ()ONDZ ( C])/’Lef‘f b ( Meff,b
k

Nu=—=°C
Heff k Meff,w

where the apparent viscosity was evaluategat= k,N andk; is given by
equation (8.27). Based on their data3®< n < 1; 80< Re< 1(° and 2<

Pr < 700), they proposed = 2/3 b = 1/3 (the values also applicable for
Newtonian liquids) and/ = 0.12. The remaining constarf showed some
dependence on the type of the impeller, having values of 0.482 for turbines
and 0.315 for anchors.

In conclusion, it should be emphasised that most of the currently avail-
able information on heat transfer to non-Newtonian fluids in stirred vessels
relates to specific geometrical arrangements. Few experimental data are avail-
able for the independent verification of the individual correlations presented
here which, therefore, must be regarded somewhat tentative. Reference should
also be made to the extensive compilations [Edwards and Wilkinson, 1972;
Poggermanret al., 1980; Dream, 1999] of other correlations available in
the literature. Although the methods used for the estimation of the apparent
viscosity vary from one correlation to another, especially in terms of the value
of k,, this appears to exert only a moderate influence on the valugatfleast
for shear-thinning fluids. For instance, for= 0.3 (typical of suspensions and
polymer solutions), a two-fold variation in the value kaf will give rise to
a 40% reduction in viscosity, and the effects on the heat transfer coefficient
will be further diminished because MNu p3:33 © 7. Thus, an error of 100%
in the estimation ofues Will result in an error of only 25-60% in the value
of h which is a reasonable engineering estimate.

Example 8.5

A polymer solution is to be heated from *IBto 27C before use as a thinner in a
wall paint. The heating is to be carried out in a stainless steel vessel (1 m diameter)
fitted with an anchor agitator of diameter equal to 0.9 m which is rotated at 100 RPM.
The tank which is filled up to 0.8 m depth is fitted with a helical coil (helix diameter
0.8 m) made of 25 mm od and 22 mm id copper tube (total external heat transfer area
of 2n?). Hot water at a mean temperature of@5(assumed to be approximately
constant) is fed to the coil at a rate of 30 kg/min.

The thermal conductivity, heat capacity and density of the polymer solution can be
taken as the same as for water. The values of the power-law constants-=ai@36
andm = 26 — 0.05667 (Pa - s") in the range 288& T < 323 K. Estimate the overall
heat transfer coefficient and the time needed to heat one batch of liquid.
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Solution

The inside film coefficient will be evaluated first using equations (8.20) and (8.22):
For water,k = 0.59 W/mK; u = 0.85mPas; C, = 4180 J/kgK.

3 4
60 x 1000 " 7(0.022?

Vd  1000x 1.315x 0.022
O the Reynolds numbeRe= 2% — X X

=1.315m/s

mean velocity of waterV =

wo 0.85x 1073
= 34035
C 4180x 0.85x 1073
Prandtl numberPr = pH x x =6
k 0.59

From equation (8.20),

Nu = 0.023R&28P* = 0.023(34 035°8(6)°*

Nu = 200
200x 0.59
orh= o0z = 5360 W/nfK

This value is for straight tubes and the corresponding value for the coil is given by
equation (8.22):

0.022

080 - 5876 W/nfK. (based on the inside tube area)

h = 5360(1+ 3.5x
or 5170 WniK (based on the outer area).

Now, the outside coefficienty, will be evaluated using equation (8.26).
For D = 0.9m andD; = 1 m, the value ok, from equation (8.27):

9 3 036 1 0.36/(0.36—1)
ko= 95+ I e ihs =462
1 (0.9 4 x 0.36

1

O the effective shear ratgyes = k,N = 46.2 x (100)/(60) = 77s*
The mean temperature of the liquid (&8 + 27)/2 = 22.5°C.
Thereforen = 26 — 0.0566273+ 22.5) = 9.27 Pas’

O perrp = 9.27(77)°%61 = 0.575 Pas

100
2 1000x — x 0.9
Re= PNd" _ 60 — 2346
Meft 0.575
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This value is within the range of applicability of equation (8.26).

41 .57
Pr— C et _ 80x 0.575 _ 4074
k 0.59

Neglecting the thermal resistance of the coil, the outside coil surface would be at a
mean temperature of 46, at which

m = 26 — 0.0566273+ 45) = 8 Pas”
O et = 8(77)%%%1 = 0.5 Pas

Now substituting values in equation (8.26):

hyx1 23 13 (0575 O
Nu = —=o = 0.077(23467°(4074) G
1 0.48 1 0.27
w (= =
(0.25 <O.8
or h, = 816 W/ntK.

Neglecting the thermal resistance of the coil wall, the overall heat transfer coefficient
based on the external area of the célljs given by:

_ 816x 5170
~ 816+ 5170

L nD%
The mass of liquid in the tank P4 -L

= 705 W/ntK.

_ 1000x 7 x 1* x 0.8

=628k
4 g9

Let the temperature of the solution Bg at any timer, a heat balance on the solution
gives:

dr
mc,,d—lf = UA(T, - T;)

where T, is the mean surface temperature of the coil, assumed here to e 45
Substituting values and integrating fo = 18C to T, = 27°C:

mC, T,—18 628x 4180n45—18
UA T,—27  705x2 45— 27
= 755s i.e. 1B minutes

=

Heat losses to the surroundings have been neglected.
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8.5 Mixing equipment and its selection

The wide range of mixing equipment available commercially reflects the enor-
mous variety of mixing duties encountered in the processing industries. It is
reasonable to expect therefore that no single item of mixing equipment will be
suitable for carrying out such a range of duties. Few manufacturers have taken
into account non-Newtonian characteristics of the fluid, but in general those
mixers which are suitable for high viscosity Newtonian fluids are also likely to
be appropriate for shear-thinning fluids. This normally means the mixer should
have small clearances between the moving and fixed parts, and be designed to
operate at low speeds. This has led to the development of a number of distinct
types of mixers over the years. Very little has been done, however, by way of
standardisation of equipment, and no design codes are available. The choice
of a mixer type and its design is therefore primarily governed by experience.
In the following sections, the main mechanical features of commonly used
types of equipment, together with their range of applications, are described
briefly. Detailed descriptions of design and selection of various types of mixers
have been presented by Oldshue [1983], Harabgl [1992] and Tatterson
[1994]. Most equipment manufacturers also provide performance charts of
their products and offer some guidelines for the selection of most appropriate
configuration for a specific application.

8.5.1 Mechanical agitation

This is perhaps the most commonly used method of mixing liquids, and essen-
tially there are three elements in such devices.

(i) Vessels

These are often vertically-mounted cylindrical tanks, up to 10 m in diameter,
and height to diameter ratios of at least 1.5, and typically filled to a depth equal
to about one diameter. In some gas—liquid applications, tall vessels are used
and the liquid depth is then up to three tank diameters; multiple impellers fitted
on a single shaft are frequently used, e.g. see Kuboi and Nienow [1982]. The
base of the tanks may be flat, dished, conical, or specially contoured, depending
upon factors such as ease of emptying, or the need to suspend solids, etc.

For the batch mixing of thick pastes and doughs using ribbon impellers and
Z- or sigma blade mixers, the tanks may be mounted horizontally. In such
units, the working volume of pastes and doughs is often relatively small, and
the mixing blades are massive in construction.

(ii) Baffles

To prevent gross vortexing, which is detrimental to mixing, particularly in
low viscosity systems, baffles are often fitted to the walls of the vessel. These
take the form of thin strips about one-tenth of the tank diameter in width
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and typically four equi-spaced baffles may be used. In some cases, the baffles
are mounted flush with the wall, although more usually a small clearance
is left between the wall and the baffle to facilitate fluid motion in the wall
region. Baffles are, however, generally not required for high viscosity fluids
(>~5Pas) because the viscous stresses are sufficiently large to damp out
the rotary motion. Some times, the problem of vortexing is circumvented by
mounting impellers off-centre or horizontally.

(iii) Impellers

Figure 8.24 shows some of the impellers which are frequently used. Propellers,
turbines, paddles, anchors, helical ribbons and screws are usually mounted on a

4 L

plan view
(b) Six-bladed disc turbine
@ -[)?;T)Z]ltg?ded (Rushton turbine)
(c) Simple paddle (d) Anchor impeller (e) Helical ribbon

< e draft
> tube

(f) Helical screw (9) Z-blade mixer (h) Banbury mixer
with draft tube

Figure 8.24 Commonly used impellers
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central vertical shaft in a cylindrical tank, and they are selected for a particular
duty, largely on the basis of liquid viscosity. It is generally necessary to move
from a propeller to a turbine and then, in order, to a paddle, to an anchor or
a gate, and then to a helical ribbon, and finally to a screw, as the viscosity
of the liquid increases. The speed of rotation or agitation is reduced as the
viscosity increases.

Propellers, turbines and paddles are generally used with relatively
low viscosity liquids and operate at high rotational speeds (in the
transitional—turbulent region). A typical velocity for the tip of the blades of a
turbine is of the order of 3 m/s, with a propeller being a little faster and a paddle
little slower. These are classed as remote-clearance impellers having diameters
in the range 13 to 67% of the tank diameter. For instance, Figure 8.24b shows
a standard six flat-bladed Rushton turbine, and possible variations are shown
elsewhere in Figure 8.25. Thus, it is possible to have retreating blades, angled-
blades, four- to twenty-bladed, hollow bladed turbines, wide blade hydro-foils

(a) Flat blade (b) Disc flat blade (c) Pitched vane
‘ | or
(d) Curved blade (e) Tilted blade (f) Shrouded

O~
—ol—J 1 © [
] 7@.)/ *

—\— ==

(g) Pitched blade (h) Pitched (i) Arrowhead
curved blade

Figure 8.25 Variation in turbine impeller designs
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HT Turbine Agitator
with HE-3 Impelier

CD-6 Impeller Helix Impeller Maxflo “T" Impeller

Figure 8.26 Specially designed impellers (a) HE-3 (b) CD-6 (c) Maxflo ‘T’
impeller (courtesy Chemineer, Inc, Dayton, Ohio)

(see Figure 8.26) and so on. For dispersion of gases in liquids, turbines and
modified turbines are usually employed (Figure 8.20). Commonly two or more
disc turbine impellersl¥; /2 distance apart) are mounted on the same shatft to
ensure mixing over the whole depth of the tank.
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Anchors, helical ribbons and screws, are generally used for high viscosity
and non-Newtonian liquids. The anchor and ribbon types are arranged with a
close clearance at the vessel wall, whereas the helical screw has a smaller
diameter and is often used inside a draft tube to promote liquid motion
through out the vessel. Helical ribbons or interrupted ribbons are often used
in horizontally-mounted cylindrical vessels. A variation of the simple helix
mixer is the helicone (Figure 8.27), which has the additional advantage that

Figure 8.27 A double helicone impeller
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the clearance between the blade and the vessel wall is easily adjusted by a small
axial shift of the impeller. For some applications involving anchor-stirrers the
shear stresses generated are not adequate for the breakup and dispersion of
agglomerated patrticles. In such cases, it may be necessary to use an anchor to

Figure 8.28 Mastermix HVS/TS high-speed/low-speed impeller combination
(Courtesy, Mastermix)
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promote general flow in the vessel in conjunction with a high shear mixing
device mounted on a separate eccentric shaft and operating at high speed.
A similar arrangement involving a modified paddle and a small high speed
dispenser is shown in Figure 8.28.

Kneaders, Z- and sigma-blade (Figure 8.29), and Banbury mixers (sketched
in Figure 8.24) are generally used for the mixing of high viscosity liquids,
pastes, rubbers, doughs and so on, many of which have non-Newtonian flow
characteristics. The tanks are usually mounted horizontally and two impellers
are often used. The impellers are massive and the clearances between blades, as
well as between the wall and the blade, are very small thereby ensuring that the
entire mass of liquid is sheared. While mixing heavy pastes and doughs using a
sigma blade mixer, it is usual for the two blades to rotate at different speeds—a
ratio of 3 : 2 is common. Various blade profiles of different helical pitch are
used. The blade design differs from that of the helical ribbons considered
above in that the much higher effective viscosities (of the order 6fPds)
require a more solid construction; the blades consequently tend to sweep a
greater quantity of fluid in front of them, and the main small-scale mixing
process takes place by extrusion between the blade and the wall. Partly for

Figure 8.29 A sigmablade mixer
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this reason, mixers of this type are usually operated only partially full, though
the Banbury mixer (Fig. 8.24) used in the rubber industry is filled completely
and pressurised as well. The pitch of the blades produces the necessary motion
along the channel, and this gives the larger scale blending that is required in
order to limit batch blending times to reasonable periods.

The motion of the material in the sigma blade mixer can be considered in
three stages, as illustrated in Fig. 8.30. Material builds up in front of the blade
in region A where it will undergo deformation and flow—the relative extent
of these processes depending on the material properties. Materials will tend
to be rolled and deformed until some is trapped in the gap B.

Blade motion

Blade motion
“AN
A
Web (\v \
breakaway ,Z \p{all
B ! m\ B

@ (b)

Figure 8.30 Fluid motion in a sigma blade mixer (a) non-wetting paste
(b) surface-wetting fluid

The difference between the solid and liquid behaviour will be evident in the
regions where the shear stresses are least, i.e. less than the yield stress. Whether
or not there is a radially inward flow in front of the blade will depend on the
magnitude of this yield stress. Unfortunately, the dynamics of this region are
so complex that it is not possible to quantify this generalisation.

Once the material has entered region B it will be subject to an unsteady-state
developing-flow situation; in the full-developed form the velocity gradient is
linear, changing uniformly from the blade velocity at the blade surface to zero
at the vessel wall.

The general situation is the same as that existing between moving planes;
normally the radius of the vessel is large and the shear stress is sensibly
uniform throughout the gap. Under these circumstances full developed flow
will be established providing that thehannellength (i.e. the thickness of the
edge of the blade facing the wall) is of the order of two or three times the
clearance between the blade and the wall. For this situation the mean velocity
of the material in the gap is just half the velocity of the blade relative to the
wall. A solid material may well not achieve this condition, however, since the
rate at which it is drawn into the gap is largely controlled by the deformation
in zone A.
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On discharge from the gap the material will either break away from the
wall (as ina) or remain adhering to it (as ih). In the former case, a web
may be formed which will eventually break off to be incorporated with the
material coming in front of the blade on its next revolution. If the extruded
material remains adhering to the wall, the amount of material left on the wall
is determined from mass balance considerations, at a thickness equal to about
half the clearance.

8.5.2 Rolling operations

Several blending operations involving highly viscous or non-Newtonian fluids
have to be carried out in a flow regime which is essentially laminar. Although
mixing is less efficient in a laminar flow system than under turbulent condi-
tions, the natural extension of elements of fluid in a shear field reduces the
effective path length over which the final dispersive stage of diffusion has
to take place. With materials possessing effective viscosities of the order
of 100 NsnT?, one of the more usual ways of imposing a suitable velocity
gradient for a significant period is to feed the material through the gap between
two counter-rotating rollers. This operation is often terneadendering In
principle, the rolls need not be rotating at the same speed, nor even need they
be the same diameter. The simplest case to consider, however, is that where
the diameters and speeds are the same. The difficulties in the analysis lie in
the fact that it is not possible to solve unambiguously for the position at which
the breakaway from the roll surface will occur.

Figure 8.31 shows the situation in the “nip” region between two rolls.

Reservoir [

of fluid

% / Breakaway point

Figure 8.31 Flow betweerrolls
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Rolling machinesarecommonlyusedfor batchblendingvery viscousmate-
rials, and the method of operationis shownin Fig. 8.32. The preferential
adherenceof the extrudedfilm to one of the rollers can be obtainedwith a
small speeddifferential. The viscosity of the fluid is high enoughto prevent
centrifugal forces throwing it clear of the roller, andit returnsto the feed
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Figure 8.32 Mixing with a rolling machine

side of the machinewhereit is accumulatedn the highly shearectirculating
fillet of excesgmaterial.This flow is, of course simply circumferentialaround
the roller and throughthe gap, andit is necessaryo ensureadequatdateral
mixing along the length of the machineby separatemechanicalor manual
meansfrom time to time.

In addition to the basic impeller designs shown in Figures8.24 and
8.25, many speciality impellers developedby the manufacturersof mixing
equipmentare also availablewhich supposedlygive betterperformancehan
the basic configurations.For instance,the so called HE-3 high efficiency
impellershownin Figure 8.26requiresamuchsmallermotorthanthe standard
turbine to achievecomparablefluid velocitiesin the vessel.Similarly, the
concavebladedisk impeller (CD-6), also shownin Figure 8.26, resultsin up
to 100%larger valuesof liquid-phasemasstransfercoeficientsin gas-liquid
systemsthan those obtainedwith the six flat bladedturbine impeller. Both
these designs have been developedand/or marketedby Chemineer,Inc,
Dayton,Ohio. Obviously,it is notpossibleto providea completdist of designs
offered by different manufacturersut it is always desirableto be aware
of suchdevelopmentgrior to selectingequipmentfor a given application.
Some guidelinesfor equipmentdesign and selectionare also available in
literature[Bakker et al., 1994].

8.5.2 Portable mixers

For a wide rangeof applications,a portablemixer which canbe clampedon
the top or side of the vesselis often used.This is commonlyfitted with two
propellerbladesso thatthe bottomrotor forcesthe liquid upwardsandthetop
rotor forcesthe liquid downwards.The power suppliedis up to about2 kW,
thoughthe size of the motor becomegoo greatat higher powers.To avoid
excessivestrain on the armature,someform of flexible coupling should be
fitted betweenthe motor and the main propellershaft. Units of this kind are
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usually driven at a fairly high speed (15Hz) and, for use with high viscosity
and non-Newtonian materials, a reduction gear can be fairly easily fitted to
the unit for low speed operation, although this increases the mass of the unit.

8.6 Mixing in continuous systems

The mixing problems considered so far have related to batch systems in which
two or more materials are mixed together and uniformity is maintained by
continued operation of the agitator. Consideration will now be given to some
of the equipment used for continuous mixing duties.

8.6.1 Extruders

Mixing duties in the plastics industry (and to a lesser extent in food industry)
are often carried out in either single or twin screw extruders. The feed to such
units usually contains the base polymer in either granular or powder form,
together with additives such as stabilisers, pigments, plasticisers, fire retar-
dants, and so on. During processing in the extruder, the polymer is melted and
the additives thoroughly mixed. The extrudate is delivered at high pressure
and at a controlled rate from the extruder for shaping by means of either a die
or a mould. Considerable progress has been made in the design of extruders
in recent years, particularly by the application of finite-element methods. One
of the problems is that an enormous amount of heat is generated (by viscous
action), and the fluid properties may change by several orders of magnitude
as a result of temperature changes. It is therefore always essential to solve the
coupled equations of flow and heat transfer.

In the typical single-screw shown in Figure 8.33, the shearing which occurs
in the helical channel between the barrel and the screw is not intense, and
therefore this equipment does not give good mixing. Twin-screw extruders,
shown in Figure 8.34, may be co- or counter-rotating and, as there are regions
where the rotors are in close proximity, extremely high shear stresses may
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Figure 8.33 Single-scew extruder
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Figure 8.34 Counter-potating twin-sciew extruder

be generatedClearly, twin-screwunits canyield a productof bettermixture
quality than a single-screwunit. Detailedaccountsof the designand perfor-
manceof extrudersare availablein the literature[Schenkel,1966; Janssen,
1978; Rauendaal1992].

8.6.2 Static mixers

All' the mixers so far describedhave beenof the dynamictype in the sense
that moving bladesare usedto impart motion to the fluid and producethe

mixing effect.In staticmixers,sometimegalled‘'motionless’or in-line mixers,
the materialsto be mixed are pumpedthrougha pipe containinga seriesof

speciallyshapedstationaryblades.Static mixerscanbe usedwith liquids of a

wide rangeof viscositiesin eitherthe laminar or turbulentregimes,but their

featuresare perhapdestappreciatedn relationto laminar-flowmixing which

is the normal conditionfor high-viscosityand non-Newtoniarfluids.

Figure 8.35 showsa particular type of static mixer in which a seriesof
stationaryhelical bladesmountedin a circular pipe is usedto divide, split,
and twist the flowing streams(Figure 8.36). In streamlineflow, the material
divides at the leadingedgeof eachof theseelementsand follows the chan-
nels of complexshapecreatedby the element.At eachsucceedingelement,
the two channelsare further divided, and mixing proceedsby a distributive
processsimilar to the cutting andfolding mechanisnmshownschematicallyin
Figure 8.4. In principle, if eachelementdivided the streamsneatlyinto two,
feedingtwo dissimilar streamgo the mixer would give a striatedmaterialin
which the thicknessof eachstriation would be of the order D, /2" where D,
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Figure 8.35 Twisted-blade type of static mixer elements

(@ rﬁ?‘fx.{‘wi
-. "

L 3
\ 'L.r 3

Number of striations

(b) Clockwise rotation Counter clockwise rotation
Left-hand element Interface Right-hand element

Figure 8.36 Twisted-blade type of static mixer operating in the laminar
flow regime: (a) Distributive mixing mechanism showing, in principle, the
reduction in striation thickness produced. (b) Radial mixing contribution from
laminar shear mechanism

is the diameter of the tube andis the number of elements. However, the
helical elements shown in Figure 8.35 also induce further mixing by a laminar
shear mechanism (illustrated in Figures 8.1 and 8.2). This, combined with the
twisting action of the element, helps to promote radial mixing which is impor-
tant in eliminating any radial gradients of composition, velocity and possibly
temperature that might exist in the material. Figure 8.37 shows how these
mixing mechanisms together produce after only 10—12 elements, a well-mixed
material.

Figure 8.38 shows a Sulzer type SMX static mixer where the mixing
element consists of a lattice of intermeshing and interconnecting bars contained
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Figure 8.37 Static mixer in laminar flow: reduction in relative standard
deviation of samples indicating improvement in mixture quality with
increasing number of elements traversed

e,

Figure 8.38 Static mixer for viscous Newtonian and non-Newtonian
materials

in a 80mm diameter pipe. It is recommended for viscous Newtonian and
non-Newtonian materials in laminar flow. The mixer shown is used in food
processing, for example for mixing fresh cheese with whipped cream, and in
polymer processing, as in dispersing Fil@to polymer melts for de-lustering.
Quantitatively, a variety of methods [Heywoaoest al., 1984] has been
proposed to describe the degree or quality of mixing produced in a static
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mixer. One such measure of mixing quality is the relative standard deviation
s/so, Wheres is the standard deviation in composition of a set of samples taken
at a certain stage of the mixing operation, agds the standard deviation for a
similar set of samples taken at the mixer inlet. Figure 8.37 shows schematically
how the relative standard deviation decreases as the number of elements,
through which the material has passed increases, a perfectly mixed product
having a zero relative standard deviation. One of the problems in using relative
standard deviation or a similar index as a measure of mixing is that this
depends on sample size which therefore must be taken into account in any
assessment.

One of the most important considerations in comparing or selecting static
mixers is the power consumed by the mixer to achieve a desired mixture
qguality. The pressure-drop characteristics of a mixer are most conveniently
described by the ratio of mixer pressure drop to empty tube pressure drop
for the same flow rate and diameter. Thus, different static mixers designs can
be compared on a basis of mixing quality, pressure-drop ratio, initial cost
and convenience of installation. It should be noted that pressure-drop ratio
may be dependent on the rheology of the material, which may well change
significantly during the course of its passage through the static mixer. Great
care should therefore be taken to ensure that the material used to determine
the pressure-drop criterion has a rheology which closely matches that of the
material to be used in the static mixer.

Static mixers are widely used for highly viscous and non-Newtonian fluids in
processes in which polymers, fibres and plastics of all kinds are manufactured,
and where the material is often hot and at high pressures. However, static
mixers have also achieved widespread use for mixing and blending of low
viscosity liquids, liquid-liquid dispersions, and even gas-liquid dispersions.
In some cases, the designs used for high viscosity liquids have also proved
effective in the turbulent mixing regime for low viscosity fluids. In other cases,
equipment manufacturers have developed special designs for turbulent mixing,
and a wide variety of static mixer devices in now available.

8.7 Further reading
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8.9 Nomenclature

Dimensions in

M,N, L, T, 6
A area for heat transfer @n L2
B; Bingham number
C; tracer concentration recorded kth detector (kmol/rf) NL—3
Coo equilibrium concentration of tracer (kmolfn NL-3
C, heat capacity (J/kg K) L2129
D impeller diameter (m) L
D, size of cavity in a shear-thinning fluid, eq. (8.10) (m) L
Dy, molecular diffusivity (nf/s) L21-1
Dr tank diameter (m) L
d, mean helix diameter (m) L
do coil tube diameter (m) L
Fr Froude number -
Gr Grashof number -
g acceleration due to gravity (nf)s LT 2
h heat transfer coefficient (WAK) MT —36-1
k thermal conductivity (W/m K) MLT —3¢—1
kg constant, equation (8.8) -
power-law consistency coefficient (83) ML ~1T7-2

pumping number -

m
N speed of rotation of agitation (3) T-1
N
N Nusselt number -

c
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power-law index

power (W)

power number

Prandtl number

volumetric flow rate of gas (Afs)

radial distance from centre of tank (m)
thermal resistance due to scale formatior?Kiw)
Reynolds number

scale of agitation

residence time (s)

temperature (K)

effective diameter of vessel ¥4/7)Y/3 (m)
temperature difference (K)

mixing time (s)

overall heat transfer coefficient (W)
volume of gas—liquid dispersion in the vessefjm
gas superficial velocity (m/s)

volume of the liquid batch ()

terminal rise velocity of a gas bubble (m/s)
width of baffle (m)

Weber number

wall thickness (m)

Greek letters

thermal diffusivity (nf/s)

o

B coefficient of thermal expansion (R)
Yavg average shear rate, equation (8.8} s
m Newtonian viscosity (Pa)

Meff effective shear viscosity evaluatedjat= yavg (Pas)
¢ gas hold-up

O dimensionless mixing time

o liquid density (kg/n3)

o surface tension (N/m)

5 Bingham yield stress (Pa)
Subscripts

b bulk

T - Q ~o0o

critical (to indicate laminar — turbulent transition)
with gas present in vessel

inside

outside

fully turbulent

wall

Dimensions in
M,N,L, T, 6
ML 2T-3

L3T71

L2T71

ML ~17-1



Problems

The level of difficulty of problems has been graded: (a): straightfor-

ward, (b): somewhat more complex, and (c): most difficult. In any

given Chapter the readers are recommended to tackle problems in
increasing order of difficulty.

LEVEL

1.1 The following rheological data have been obtained for a liquid at (a)

295.5K.
Shear rate Shear stress Shear rate Shear stress
(sh (Pa) (sh (Pa)
2.22 1.32 35.16 20.92
4.43 2.63 44.26 26.33
7.02 417 70.15 41.74
8.83 5.25 88.31 52.54
11.12 6.62 111.17 66.15
14 8.33 139.96 83.27
17.62 10.48 176.2 104.84
22.18 13.20 221.82 132.0
27.93 16.62 279.25 166.15

By plotting these data on linear and logarithmic scales, ascertain the
type of fluid behaviour, e.g. Newtonian, or shear-thinning, or shear-
thickening, etc. Also, if the liquid is taken to have power-law rheology,

calculate the consistency and flow-behaviour indices respectively for

this liquid.

1.2 The following rheological data have been reported for a 0.6% (by(a)
weight) carbopol solution in a 1.5% (by weight) NaOH aqueous solu-

tion at 292 K.

y(sh t(Pa) ys™h T (Pa)
0.356 1.43 7.12 4.86
0.449 1.54 8.96 5.40
0.564 1.65 11.25 6.03
0.712 1.79 14.17 6.62
0.896 1.97 17.82 7.45
1.13 2.17 22.47 8.40
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v = (Pa) v (Pa)

1.42 2.44 28.30 9.46
1.78 2.61 35.57 10.41
2.25 2.84 44.89 12.06
2.83 3.27 56.43 13.60
3.56 3.60 71.15 15.14
4.49 3.98 89.55 17.03
5.64 4.38 112.5 19.16

Plot these data in the form af— 7 and u — y on logarithmic coor-
dinates. Evaluate the power-law parameters for this fluid. Does the
use of the Ellis fluid (equation 1.15) or of the truncated Carreau fluid
(equation 1.14) model offer any improvement over the power-law
model in representing these data? What are the mean and maximum
% deviations from the data for these three models?

1.3 The following data for shear stres$ &nd first normal stress difference (a)
(N1) have been reported for a 2% (by weight) Separan AP-30 solution
in water measured at 289.5 K using a cone and plate rheometer.

v t(Pa) Ni(Pa) y(sH  t(Pa) Ni(Pa)

0.004 49 0.26 - 4.49 19.85 57.8
0.00564 0.33 - 7.12 22.96 72.3
0.00712 0.42 - 11.25 26.13 90.6
0.008 96 0.53 - 17.83 29.93 125.30
0.0113 0.66 - 28.30 34.44 154.20
0.0142 0.75 - 44.9 40.38 221.70
0.0178 0.96 - 71.2 46.32 318.60
0.0225 1.14 - 112.5 53.44 424.10
0.0356 1.65 - 89.6 49.88 366.30
0.0283 1.39 - 56.4 43.00 269.90
0.0449 1.99 - 35.6 375 192.8
0.0564 2.30 - 225 321 163.8
0.0712 2.85 - 14.2 28 120.5
0.0896 3.33 - 8.96 25.2 96.4
0.113 3.83 4.82 5.64 211 84.8
0.178 5.50 7.23 3.56 18.2 62.7
0.283 6.94 11.60 2.25 15.6 43.4
0.449 8.37 19.80 1.42 13.3 38.6
0.712 10.16 22.20 0.896 11 251
1.13 12.32 27.95 0.564 9.09 20.3
1.78 14.60 34.70 0.356 7.41 10.6

(i) Plot these shear stress, apparent viscosity and first normal stress
difference data against shear rate on log-log scales. Does the
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shear stress data extend to the lower Newtonian region? What is
the value of the zero-shear viscosity for this solution?
(i) Suggest and fit suitable viscosity models covering the entire
range. What is their maximum deviation?
(iii) Calculate and plot the Maxwellian relaxation time (equation 1.25)
as a function of shear rate for this polymer solution.

(iv)

Is it possible to characterize the visco-elastic behaviour of this

solution using a single characteristic time (using equation 1.26) in
the higher shear rate region? At what shear rate does it coincide
with the Maxwellian relaxation time calculated in part (iii)?

The following rheological data for milk chocolate at 313K are (a)
available. Determine the Bingham plastic (equation 1.16) and Casson
model (equation 1.18) parameters for this material. What are the mean

and maximum deviations for both these models?

G ©(Pa) y(s™) ©(Pa)
0.099 28.6 6.4 123.8
0.14 35.7 7.9 133.3
0.20 42.8 11.5 164.2
0.39 52.4 13.1 178.5
0.79 61.9 15.9 201.1
1.60 71.4 17.9 221.3
2.40 80.9 19.9 236
3.9 100

It is likely that the model parameters are strongly dependent on the
shear rate range covered by the rheological data. Compare the values
of the model parameters by considering the following shear rate inter-
vals:

The following shear stress—shear rate data demonstrate the effect ¢lb)
temperature on the power-law constants for a ¢ ncentrated orange
juice containing 5.7% fruit pulp.

T = 2543K 267.7K 2826K 3023K
yshH tPa) yhH (Pa) yshH t(Pa) y(sh 1(Pa)
0.5 14.4 0.6 4.3 11 2.6 8 3.6
1 24.3 1 6.5 8 103 20 7.6
10 142 10 384 15 17 40 131
20 2404 20 654 30 295 60 175
30 327 30 89 60 50.3 120 31.2

395
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T = 2543K 267.7K 2826K 3023K
yshH tPa) yhH (Pa) yshH t(Pa) y(sh 7(Pa)

40 408 40 111 20 69 240 54.5

50 484 50 132 150 103 480 94.4

60 556 60 152 250 154 800 142

70 635 70 1713 350 200 1000 170

80 693 80  189.4 450 243 1100 183
150 1120 150 309

300 527

How do the values of the power-law flow behaviour and consistency
indices depend upon temperature? Estimate the activation energy of
viscous flow(E) from these data by fitting them to the equation=
moexp(E/RT) wheremg and E are constants anR is the universal

gas constant.

1.6 The following shear stress—shear rate data are available for an aqueo(s)

carbopol solution at 293 K.

1.7

y(s™h t(Pa)  y(shH (Pa)
0.171 53.14 1.382 78.18
0.316 57.86 1.92 84.37
0.421 61.59 2.63 90.23
0.603 66 3.67 98.26
0.812 70 5.07 106.76
1.124 75.47

By plotting these data on linear and logarithmic scales, ascertain the
type of fluid behaviour exhibited by this solution. Suggest a suit-
able viscosity model and evaluate the parameters for this solution.
Does the fluid appear to have a yield stress? Using the vane method
(Q.D. Nguyen and D.V. Boger, Annu. Rev. Fluid Mech., 24 (1992)
47), the yield stress was found to be 46.5Pa. How does this value
compare with that obtained by the extrapolation of data te 0, and

that obtained by fitting Bingham, Casson and Herschel—Bulkley fluid
models?

The following rheological data have been reported for a 100 ppm(b)
polyacrylamide solution in 96% (by weight) aqueous wheat syrup
solution at 294 K.

y(s t(Pa) Ni(Pa) y(s') t(Pa) Ni(Pa)
0.025  0.70 - 0315 879 181
0.0315  0.89 - 0.396 11.01  27.7
0.0396  1.12 - 0.500 13.87 420
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yshH t(Pa) Ni(Pa) y(s) t(Pa) Ni(Pa)

0.050 1.42 0.0892 0.628 17.46 65.4
0.0628 1.78 0.158 0.790 21.80 97.5
0.0791 2.25 0.890 0.995 27.16 1410
0.0995 2.83 1.26 1.25 33.75 196.0
0.125 3.56 2.47 1.58 42.34  283.0
0.158 4.49 3.64 1.99 53.53 440.0
0.199 5.65 6.71 2.50 67.03 661.0
0.250 7.08 11.60 3.15 84.11 863.0

(i) Is this solution shear-thinning?
(ii) Can this solution be treated as a Newtonian fluid? If not, why?
(iii) Is it a visco-elastic fluid? Estimate the value of the Maxwellian

relaxation time for this solution.

1.8 The following shear stress—shear rate values have been obtained fdb)
aqueous silica (bulk density 800 kg/n¥) suspensions to elucidate the
effect of concentration on the rheological behaviour of suspensions:

880 kgnt? 905 kgnt?® 937 kgnt® 965 kgnt? 995 kgnt?
12 T v T Y T 12 T 4 T
sH (Pa) (s (Pa) (s ((Pa) (sH (Pa) (s (Pa)
3.9 3.46 1.9 3.79 1.1 5.20 1.9 6.25 0.9 7.55
5.3 3.54 26 3.90 21 5.40 3.4 6.46 1.8 8.01
5.9 3.61 3.8 4.02 3.3 5.62 4.7 6.67 2.8 8.33
7.0 3.68 49 412 56 5.90 7.2 6.92 4.9 8.75
8.2 3.74 59 4.19 79 6.12 9.1 7.16 8.0 9.25
9.2 3.80 70 430 108 6.32 10.7 7.27 9.9 9.43
10.3 3.86 80 438 124 6.48 120 7.38 11.6 9.64
11.3 3.91 9.0 444 139 658 13.1 748 13.0 9.88
12.2 396 122 464 152 6.68 14.2 755 14.3 9.95
14.9 4.10 135 4.70 16.4 6.78 15.1 7.70 15.5 10.10
16.2 4.17 14.9 4.79 17.6 6.88 15.9 7.74 16.6 10.27
19.3 430 182 500 231 734 17.7 798 194 10.53
22.5 4.43 21.4 5.15 25.7 7.41 19.4 8.10 22.0 10.80
25.5 4.48 24.7 5.30 28.3 7.59 24.2 8.47 245 11.10
28.6 470 280 540 332 791 270 8.62 26.9 11.25
34.6 498 344 582 30.0 8.87 31.8 11.60
40.5 5.15 40.7 5.97 37.1 9.30 36.5 11.91

(i) Plot these data on linear and logarithmic scales and fit the
Herschel—Bulkley viscosity model to represent the behaviour of
these suspensions.

(i) How do the model parameters depend upon the concentration?
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1.9 The following rheological data have been obtained for a 0.244% Poly-(b)
isobutylene/92.78% Hyvis Polybutene/6.98% kerosene (by weight)
solution at 293 K.

y(sh t(Pa) Ni(Pa) y(s t(Pa) Ni(Pa)

0.05 0.165 - 0.792 2.55 -

0.0629 0.202 - 0.998 3.18 0.30
0.0792 0.260 - 1.26 3.98 0.57
0.0998 0.330 - 1.58 4.58 1.20
0.126 0.413 - 1.99 6.24 221
0.158 0.518 - 251 7.72 3.29
0.199 0.663 - 3.15 9.61 5.09
0.251 0.823 - 3.97 12 8.10
0.315 1.03 - 5.00 15 12.10
0.397 1.29 - 6.29 18.6 18.20
0.50 1.61 - 7.92 23.2 28.00
0.629 2.03 - 9.97 29.2 46.90

(i) Does this fluid exhibit Newtonian, or shear-thinning fluid beha-
viour?

(i) Is the liquid visco-elastic? Show the variation of the Maxwellian
relaxation time with shear rate.

2.1 The following volumetric flow rate — pressure gradient data have been(c)
obtained using a capillary viscometé? & 10 mm and. = 0.5m) for
a viscous material. Obtain the true shear stress—shear rate data for this
substance and suggest a suitable viscosity fluid model.

o(mmd/s) 1.3 15 140 1450 14500 Bx 10° 1.4 x 10°
—Ap(Pa) 05 15 5 15 50 160 500

2.2 A polymer solution was tested in a cone-and-plate viscometer (conéb)
angle 0.1 rad and cone radius 25mm) at various rotational speeds.
Use the following torque — speed data to infer shear stress—shear rate
behaviour and suggest an appropriate fluid model to describe the fluid
behaviour.

Q(rad/s) 104 10° 001 01 1 10 100
T(Nm) 0003 0033 026 1 22 33 66

2.3 The following data has been obtained with a capillary viscometer for(c)
an aqueous polymer solution, density 1000 kgah293 K.

Capillary data Ap (kPa) mass flow rate (kg/s)

L =200mm 224.3 15x 1073

D =211mm 431 207 x 1073
596.3 275x 1073

720.3 388 x 1072
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Capillary data Ap (kPa) mass flow rate (kg/s)

L =50mm 87.5 101x 1073

D =211mm 148.1 71x 1073
361.7 429 x 1073
609.8 669 x 1073

L =502mm 43.40 P5x 1073

D = 4.14mm 79.22 88 x 1073
117.12 1092 x 1072
160.53 148 x 1072

3.1 A low molecular weight polymer melt, which can be modelled as a (a)
power-law fluid withm = 5kPas® andn = 0.25, is pumped through
a 13 mm inside diameter tube over a distance of 10m under laminar
flow conditions. Another pipe is needed to pump the same mate-
rial over a distance of 20m at the same flow rate and with the
same frictional pressure loss. Calculate the required diameter of the
new pipe.

3.2 The flow behaviour of a tomato sauce follows the power-law model, (b)
with n = 0.50 andm = 12 Pas". Calculate the pressure drop per
metre length of pipe if it is pumped at the rate of 1000 kg/h through
a 25 mm diameter pipe. The sauce has a density of 113Gké#mn a
pump efficiency of 50%, estimate the required power for a 50 m long
pipe.

How will the pressure gradient change if

(a) the flow rate is increased by 50%,

(b) the flow behaviour consistency coefficient increases to 14..85 Pa
without altering the value of, due to changes in the composition
of the sauce,

(c) the pipe diameter is doubled,

(d) the pipe diameter is halved.

Is the flow still streamline in this pipe?

3.3 A vertical tube whose lower end is sealed by a movable plate is filled(b)
with a viscoplastic material having a yield stress of 20 Pa and density
1100 kg/ni. Estimate the minimum tube diameter for this material to
flow under its own weight when the plate is removed. Does the depth
of the material in the tube have any influence on the initiation of flow?

3.4 A power-law fluid f2 = 5Pas’ andn = 0.5) of density 1200 kg/th (b)
flows down an inclined plane at 3@ the horizontal. Calculate the
volumetric flow rate per unit width if the fluid film is 6 mm thick.
Assume laminar flow conditions.
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3.5 A Bingham plastic material is flowing under streamline conditions (c)

3.6

3.7

in a circular pipe. What are the conditions for one third of the total
flow to be within the central plug region across which the velocity
profile is flat? The shear stress acting within the fluidaries with
the velocity gradient |, /dr according to the relation:

. dv
v=1 s (g

wheret§ and pp are respectively the Bingham yield stress and the
plastic viscosity of the material.

Tomato puge of density 1100kg/fnis pumped through a 50mm  (c)
diameter pipeline at a flow rate of fhr. It is suggested that, in
order to double production,

(a) a similar line with pump should be put in parallel with the existing
one, or

(b) a larger pump should be used to force the material through the
present line, or

(c) the cross-sectional area of the pipe should be doubled.

The flow behaviour of the tomato puwecan be described by the
Casson equation (1.18), i.e.,

dV~ 1/2
dr

(+7:)7 = (+15)72 + (uc (—

wheret§, the Casson yield stress, is equal to 20 Paandhe Casson
plastic viscosity has a value of 5B8a

Evaluate the pressure gradient for the three cases. Also, evaluate
the viscosity of a hypothetical Newtonian fluid for which the pres-
sure gradient would be the same. Assume streamline flow under all
conditions.

A polymer solution is to be pumped at a rate of 11 kg/min through (b)
a 25mm inside diameter pipe. The solution behaves as a power-law
fluid with n = 0.5 and an apparent viscosity of 63 m&at a shear

rate of 10s?t, and a density of 950 kg/in

(&) What is the pressure gradient in the pipe line?

(b) Estimate the shear rate and the apparent viscosity of the solution
at the pipe wall?

(c) If the fluid were Newtonian, with a viscosity equal to the apparent
viscosity at the wall as calculated in (b) above, what would be the
pressure gradient?

(d) Calculate the Reynolds numbers for the polymer solution and for
the hypothetical Newtonian fluid
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3.8 A concentrated coal slurry (density 1043ké)nis to be pumped (b)

through a 25mm inside diameter pipe over a distance of 50m.
The flow characteristics of this slurry are not fully known, but the
following preliminary information is available on its flow through

a smaller tube, 4mm in diameter and 1 m long. At a flow rate of
0.0018 ni/h, the pressure drop across the tube is 6.9 kPa, and at a flow
rate of 0.018 h it is 10.35kPa. Evaluate the power-law constants
from the data for the small diameter tube. Estimate the pressure drop
in the 25 mm diameter pipe for a flow rate of 0.48m

3.9 A straight vertical tube of diametd» and lengthL is attached to  (c)

the bottom of a large cylindrical vessel of diamefgr(>>D). Derive

an expression for the time required for the liquid height in the large
vessel to decrease from its initial value Hf(«L) to H(«L) as
shown in the following sketch.

Pressure = p
€«<— D ——>

-

\/

Neglect the entrance and exit effects in the tube as well as the changes
in kinetic energy. Assume laminar flow in the tube and (i) power-law
behaviour, and (ii) Bingham plastic behaviour.

3.10 Estimate the time needed to empty a cylindrical ves#gl = (c)
101 mm), open to the atmosphere, filled with a power-law liquid<
4 Pas’ andn = 0.6, density= 1010 kg/nf). A 6 mm ID capillary tube
1.5m long is fitted to the base of the vessel as shown in the diagram for

401



402 Non-Newtonian Flow in the Process Industries

problem 3.9. The initial height of liquid in the vess#lg = 230 mm.
Estimate the viscosity of a hypothetical Newtonian fluid of same
density which would empty in the same time.

3.11 Using the same equipment as in problem 3.10, the following(b)
height—time data have been obtained for a coal slurry of density
1135 kg/ni. Evaluate the power-law model parameters for this slurry
(Assume streamline flow under all conditions)

1(s) 0 380 808
H (m) 0.25 0.20 0.15

3.12 A pharmaceutical formulation having a consistency coefficient of (a)
2.5Pas’ and a flow behaviour index of 0.65 must be pumped through
a stainless steel pipe of 40 mm inside diameter. If the shear rate at the
pipe wall must not exceed 140%or fall below 50s?, estimate the
minimum and maximum acceptable volumetric flow rates.

3.13 Two storage tanks, A and B, containing a coal slurry=(2.7 Pas’; (c)

n = 0.5; density= 1040kg/r{) discharge through pipes each 0.3m

in diameter and 1.5km long to a junction at D. From D, the slurry
flows through a 0.5 m diameter pipe to a third storage tank C, 0.75km
away as shown in the following sketch. The free surface of slurry in
tank A is 10 m above that in tank C, and the free surface in tank B is

6 m higher than that in tank A. Calculate the initial rates of discharge

of slurry into tank C. Because the pipes are long, the minor losses (in
fittings) and the kinetic energy of the liquid can be neglected. Assume
streamline flow conditions in all pipes.

B 6m
\ 0.3 m Dia. A
o \7.‘54,_% 0.3m Dia/
s
/D//X‘B
0.5 m Dia. 63\‘“6\ 10m
L
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3.14 An engineer having carefully calculated the optimum internal diam-(c)
eter required of a proposed long pipeline for transporting china clay
slurries (approximating to power-law behaviour) at a given flow rate,
discovers that a full range of pipe sizes is not available at the remote
location. The diameters that are closest are 25% too large and 15% too
small. Not wanting to over design, and fearing to exceed the available
pressure gradient, the engineer decided to use a composite pipeline
made up of the two available sizes in series. If the cost per unit length
of pipe is proportional to its inside diameter, what would be the %
saving as a function of (0.2 to 1.2) in using the composite line
instead of a uniform line of the larger diameter when the flow in all
pipes is (i) laminar, and (ii) turbulent in which case the friction factor
is given by f « Re,# ®"™P. Assume that in the range of conditions
encountered, the values of the power-law constantar{d») do not
vary appreciably.

3.15 A power-law liquid is flowing under streamline conditions through (a)
a horizontal tube of 8 mm diameter. If the mean velocity of flow is
1m/s and the maximum velocity at the centre is 1.2 m/s, what is the
value of the flow behaviour index?

For a Newtonian, organic liquid of viscosity 0.8 mBaflowing
through the tube at the same mean velocity, the pressure drop is 10 kPa
compared with 100 kPa for the power-law liquid. What is the power-
law consistency coefficienty, of the non-Newtonian liquid?

3.16 The rheology of a polymer solution can be approximated reasonablyb)
well by either a power-law or a Casson model over the shear rate
range of 20—100%. If the power law consistency coefficient, is
10Pas' and the flow behaviour index;, is 0.2, what will be the
approximate values of the yield stress and the plastic viscosity in the
Casson model?

Calculate the pressure drop using the power-law model when this
polymer solution is in laminar flow in a pipe 200 m long and 40 mm
inside diameter for a centreline velocity of 1 m/s. What will be the
calculated centreline velocity at this pressure drop if the Casson model
is used?

3.17 Using dimensional analysis, show that the frictional pressure dropa)
for the fully developed flow of a Bingham fluid in circular tubes is
given by:

f = ¢(Re He)

wheref and Re are the usual fanning friction factor and pipe Reynolds
number pVD/ug) respectively; He, the Hed$im number, is defined
as He= prgDz/ug.
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Use these dimensionless groups to re-arrange equation (3.13) as:

16 1 1(He 1 He

/ 6\Re 379

“Re T8

Give typical plots off vs Re for a range of values of the Hedstrom
number.

A carbopol solution 4 = 1000 kg/n¥), with Bingham plastic rheology

(5 = 8Pa and plastic viscosity of 50 mBj is flowing through a
25mm diameter pipeline. Estimate the pressure drop per metre of
pipe when the mean velocity is 1 m/s. Also, estimate the radius of the
unsheared plug in the core region.

During maintenance, it is necessary to use a standby pump and
the maximum attainable pressure gradient is 30% less than that
necessary to maintain the original flowrate. By what percentage
will the flowrate fall? Assume streamline flow conditions in the

pipe.

A viscous plastic fluid of density 1400kgimand containing 60%  (b)
(by weight) of a pigment is to be pumped in streamline flow through
75mm, 100 mm and 125 mm diameter pipes within the plant area. The
corresponding flow rates of the liquid in these pipes are 183,

0.011 and 0.017 s, respectively. The following data were obtained

on an extrusion rheometer using two different size capillaries:

Gas pressure Time to collect
in reservoir,—Ap 5¢ liquid from
(kPa) the tube, (s)
Tube A Tube B
66.2 913 112
132.4 303 39
323.7 91 11.6
827.4 31 3.9

Tube A: Diameter= 1.588 mm; length= 153 mm

Tube B: Diameter= 3.175 mm; length= 305 mm

Estimate the pressure gradient in each of the pipes to be used to carry
this liquid.

It is necessary to pump a non-Newtonian slurry (density 100Ckg/m (a)
over a distance of 100 m through a 200 mm diameter smooth-walled
pipe. What is the maximum possible flow rate at which the flow will
be laminar and what then is the pressure drop across the pipe?

The following laboratory results are available for laminar flow of
this slurry in small diameter tubes.
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(8Vv/ID),st 35 104 284 677 896 1750 4300 8000 10900 23100 51500
7, Pa 47 93 172 29 379 514 903 153 160 201 429

Can these data be scaled up directly, without assuming a rheolog-
ical model? Compare the values of the pressure gradient obtained by
such a method with that obtained by assuming the power-law model
behaviour. Assume streamline flow conditions in all cases.

3.20 A coal-in-oil slurry (density 1640 kgAncontaining 35% (by weight)  (b)
of coal (particle size smaller than &@n) is pumped at a rate of
3.5nv/h from a storage tank, through a 50m long 12.5 mm diameter
pipe to a boiler where it is burnt to raise steam. The pressure in the gas
space in the tank is atmospheric and the fuel slurry must be delivered
to the burner at an absolute pressure of 240 kPa.

(a) Estimate the pumping power required to deliver the slurry to the
boiler if the slurry is assumed to be a Newtonian fluid having a
viscosity of 200 mPs.

(b) Subsequently, preliminary rheological tests suggest the slurry to
exhibit Bingham-plastic behaviour with a yield stress of 80 Pa and
a plastic viscosity of 200 mPsa How will this knowledge affect
the predicted value of the pressure drop.

Comment on the difference between the two values of the pump
power.

3.21 In a horizontal pipe network, a 150 mm diameter 100 m long pipe (a)
branches out into two pipes, one 100 mm diameter and 20 m long and
the other 75mm diameter and 12m long; the branches re-join into
a 175mm diameter 50m long pipe. The volumetric flow rate of a
liquid (density 1020 kg/rf) is 3.4 n¥/min and the pressure at the inlet
to 150 mm diameter is 265 kPa. Calculate the flow rate in each of the
two smaller diameter branches and the pressure at the beginning and
end of the 175 mm diameter pipe for:

(a) a liquid exhibiting power-law behaviout,= 0.4; m = 1.4 Pas'.
(b) a liquid exhibiting Bingham plastic behaviour, (yield stress 4.3 Pa
and plastic viscosity 43 m P3).

Due to process modifications, the flow rate must be increased by 20%;
Calculate the pressure now required at the inlet to the pipe network.

20m

150 mm dia. o D=100mm . 175 mm dia.
100 m N 12 m yd 50m

D=75mm
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3.22 The fluid whose rheological data are given in Problem 3.19 is to beb)
pumped at 0.34 fts through a 380 mm diameter pipe over a distance
of 175m. What will be the required inlet pressure, and what pump
power will be needed?

3.23 The same fluid as that used in Problem 3.19 is to be pumped througtb)
a 400 mm diameter pipe over a distance of 500m and the pressure
drop must not exceed 53 kPa. Estimate the maximum possible flow
rate achievable in the pipe. (Hint: By analogy with the method used

for Newtonian fluids, prepare a chart ofRe versus/ fRe/Z™ to

avoid trial and error procedure).

3.24 Determine the diameter of a pipe, 175m long, required to carry theb)
liquid whose rheology is given in Problem 3.19 at 0 3swith a pres-
sure drop of 50 kPa. (Hint: Prepare a plot@Re versus{fRefl/,(f’e‘"))
to avoid the necessity of using a trial and error procedure; express

average velocity in terms of the volumetric flow rate).

3.25 The following data have been obtained for the flow of the slurry (a)
specified in Problem 3.19 in small tubes of three different diameters:

D (m) L(m) —Ap (kPa) V (m/s)
0.016 4.27 136 5.76
173 6.39
205 7.14
236 7.94
284 9.01
341 10.1
395 11
438 11.8
500 12.8
575 14
0.027 4.34 52.2 4.6
64 5.26
79.6 6.0
98.7 6.91
122 7.91
152 9.03
184 10.3
235 11.7
281 13.1
352 15
0.053 2.64 8.41 3.33
9.6 3.61
114 4.03
13.6 4.54

17.6 5.37
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Using these data, evaluate b, ¢ in Bowen'’s relation and calculate
the frictional pressure drop for a flow rate of 0.3%min a 380 mm
diameter pipe of length of 175m. How does this value compare with
that obtained in Problem 3.227?

3.26 Wilhelmet al. (Ind. Eng. Chem.Vol. 3, p. 622, 1939) presented the (b)
following pressure drop—flow rate data for a 54.3% (by weight) rock
slurry flowing through tubes of two different diameters.

D (m) L (m) —Ap(kPa) V (m/s)

0.019 30.5 338 3.48
305 3.23
257 2.97
165 2.26
107 181
62 1.38
48.4 1.20
43 0.89
38.6 0.44
334 0.36

0.038 30.5 78.3 2.41
50.3 1.86
34.6 1.52
19.1 1.09
15.2 0.698
17.3 0.512
17.7 0.375

Using Bowen's method, develop a general scale-up procedure for
predicting the pressure gradients in turbulent flow of this rock slurry.

Estimate the pump power required for a flow rate of 0.46nin a

400 mm diameter pipe, 500 m long. The pump has an efficiency of
60%. Take the density of slurry 1250 kgfm

3.27 What is the maximum film thickness of an emulsion paint that can(a)
be applied to an inclined surface (1fsom vertical) without the paint
running off? The paint has an yield stress of 12 Pa and a density of
1040 kg/nd.

3.28 When a non-Newtonian liquid flows through a 7.5 mm diameter and(a)
300 mm long straight tube at 0.25th, the pressure drop is 1 kPa.

(i) Calculate the viscosity of a Newtonian fluid for which the pres-
sure drop would be the same at that flow rate?
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(i) For the same non-Newtonian liquid, flowing at the rate of 0.36
mé/h through a 200 mm long tube of 7.5 mm in diameter, the pres-
sure drop is 0.8 kPa. If the liquid exhibits power-law behaviour,
calculate its flow behaviour index and consistency coefficient.

(i) What would be the wall shear rates in the tube at flow rates of
0.18 n¥/h and 0.36 rivh.

Assume streamline flow.

3.29 Two liquids of equal densities, the one Newtonian and the other(c)
a power-law liquid, flow at equal volumetric rates down two wide
inclined surfaces (30from horizontal) of the same widths. At a shear
rate of 0.01s?, the non-Newtonian fluid, with a power-law index of
0.5, has the same apparent viscosity as the Newtonian fluid. What is
the ratio of the film thicknesses if the surface velocities of the two
liquids are equal?

3.30 For the laminar flow of a time-independent fluid between two parallel (c)
plates (Figure 3.15), derive a Rabinowitsch—Mooney type relation

giving:

dv. 0 ( b(-Ap)  d[Q/2Wh?]
— -4 = 2( =
( & ( 27T abapa)

Wb?

where 2 is the separation between two plates of widlti>2b).
What is the corresponding shear rate at the wall for a Newtonian fluid?

3.31 A drilling fluid consisting of a china clay suspension of density (a)
1090kg/ni flows at 0.001r¥s through the annular cross-section
between two concentric cylinders of radii 50 mm and 25 mm, respec-
tively. Estimate the pressure gradient if the suspension behaves as:

(i) a power-law liquid:n = 0.3 andm = 9.6 Pas".
(i) a Bingham plastic fluiduz = 0.212 Pas andtf = 17 Pa.

Use the rigorous methods described in Section 3.6 as well as the
approximate method presented in Section 3.7. Assume streamline flow.
Due to pump malfunctioning, the available pressure gradient is only
75% of that calculated above. What will be the corresponding flow
rates on the basis of the power-law and Bingham plastic models?

3.32 A power-law fluid (density 1000 kgAnwhose rheological parameters (a)
are m = 0.4Pas' and n = 0.68 is flowing at a mean velocity of
1.2m/s in ducts of several different cross-sections:

(i) a circular pipe
(i) a square pipe
(iif) a concentric annulus with outer and inner radii of 26.3 mm and
10.7 mm respectively
(iv) a rectangular pipe with aspect ratio of 0.5.
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(v) an elliptic pipe with minor-to-major axis ratio of 0.5.
(vi) an isosceles triangular with apex angle of 40

Using the geometric parameter method, estimate the pressure gradient
required to sustain the flow in each of these conduits, all of which
have the same hydraulic radius as the concentric annulus referred to
in (iii). Also, calculate the Reynolds number for each case to test
whether the flow is streamline.

How will the pressure gradient in each pipe change if they were all
to have same flow area, as opposed to the same hydraulic diameter,
as the annulus?

The relation between cost per unit lengthof a pipeline installation (c)
and its diameteD is given by

C=a+bD

wherea andb are constants and are independent of pipe size. Annual

charges are a fractigh of the capital cosC. Obtain an expression for

the optimum pipe diameter on a minimum cost basis for a power-law

fluid of density,p, flowing at a mass flow raté. Assume the flow to

be (i) streamline (ii) turbulent with friction factof « Re, ¥ ™.
Discuss the nature of the dependence of the optimum pipe diameter

on the flow behaviour index.

For streamline flow conditions, calculate the power needed to pump #b)
power-law fluid through a circular tube when the flow rate is subject
to sinusoidal variation of the form:

0 = 0, sinwt

whereQ,, is the maximum flow rate at= 7/2w.

By what factor will the power requirement increase due to the
sinusoidal variation in flowrate as compared with flow with uniform
velocity?

Repeat this calculation for turbulent flow using the friction factor given
by equation (3.38).

An aqueous bentonite suspension of density 1300%gdsed to (®)
model an oil drilling mud, is to be pumped through the annular
passage between the two concentric cylinders of radii 101.6 mm and
152.4 mm, respectively. The suspension, which behaves as a Bingham
plastic fluid withup = 20mPas andtf = 7.2 Pa, is to be pumped at
the rate of 0.13 /is over a distance of 300 m. Estimate the pressure
drop. Over what fraction of the area of the annulus, the material is in
plug flow?

Plot the velocity distribution in the annular region and compare it
with that for a Newtonian liquid having a viscosity of 20 m&®ander
otherwise similar conditions.
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3.36 The following data (P. Slatter, PhD thesis, University of Cape Town, (a)
Cape Town, 1994) have been obtained for the turbulent flow of
a kaolin-in-water suspension (of density 1071 k&/nmn pipes of
different sizes:

D =207mm

V(m/s) 293 267 246 227 204 171 155 135 1.15

,(Pa) 19.2 17.11 13 116 787 6.14 51 416 2.89

D = 1405mm

V(m/s) 6.34 574 539 493 413 349 3 256 2 1.4

,(Pa) 71.8 573 534 434 324 233 176 1337 83 41

D =79mm

V(m/s) 648 544 45 363 269 192 262 21 171 1.18

,(Pa) 835 59.1 4123 295 16.9 123 10.7 894 7.31 3.93

D =216mm

V(m/s) 7.09 6.80 6.48 6.08 562 51 477 453 41 3.7 291 147 1.3
7, (Pa) 123 114.3 105.6 9358 82.1 69.3 62.1 554 46.2 39 25 76 59
D =132mm

V(m/s) 684 6.41 582 54 476 41 377 346 318 2.7 241 191 149
7, (Pa) 136 120.8 102 89 72 55 475 40.6 35 26 21.2 13.74 7.45
D =5.6mm

V(m/s) 455 3.89 350 322 3.08 284 265 208 222 17 151 161
,(Pa) 64.6 585 485 405 335 274 229 206 186 14 13 10.7

(i) Use Bowen's method in conjunction with the second three sets of
data for small diameter tubes to predict the pressure gradient in
the remaining three large diameter pipes and compare them with
the experimental values. Why does the discrepancy increase as
the mean velocity of flow is decreased?

(ii) Slatter also fitted rheological data to the power-law and Bingham-
plastic models and the best values of the parameters were:
m = 0.56 Pas’ andn = 0.31; 15 = 2.04 Pa andiz = 3.56 mPas.
Compare the experimental and the calculated values of pressure
gradient for all sizes of pipes.

3.37 Measurements are made of the yield stress of two carbopol solufb)
tions (density 1000 kg/@ and of a 52.9% (by weight) silica-in-water
suspension (density 1491 kgijrby observing their behaviour in an
inclined tray which can be tilted to the horizontal. The values of the
angle of inclination to the horizonta, at which flow commences for
a range of liquid depthg{, are given below. Determine the value of
yield stress for each of these liquids.
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0.08% carbopol 0.09% carbopol 52.9% silica-in-
solution solution water suspension
H (mm) 6 (degrees) H (mm) 6 (degrees) H (mm) 6 (degrees)
2.0 6.8 6.4 5.5 13.7 3.55
2.6 6.1 7.0 4.6 17.3 2.85
3.2 4.9 12.0 2.8 22.5 2.20
3.9 3.8 12.1 2.6 24.1 1.90
5.2 3.0 15.3 21
8.4 2.0 19.9 1.55
14.0 1.0 24.1 1.35
30.0 1.10
32.8 0.95

3.38 Viscometric measurements suggest that an aqueous carbopol solutigh)
behaves as a Bingham plastic fluid with yield stress of 1.96 Pa and
plastic viscosity 3.80 Pa. The liquid flows down a plate inclined at an
angled to the horizontal. Derive an expression for the volumetric flow
rate per unit width of the plate as a function of the system variables.
Then, show that the following experimental results fo= 5° are
consistent with the theoretical predictions.

Q (mn?/s) H (mm) Free surface velocity (mm/s)
4.8 7.19 0.8
10.8 8.62 1.54
18.0 9.70 2.20
26.2 10.51 3.14
35.9 11.50 3.94

4.1 A 19.5% (by volume) kaolin-in-water suspension is flowing under (a)
laminar conditions through a horizontal pipe, 42 mm diameter and
200m long, at a volumetric flow rate of 1.25. The suspension
behaves as a power-law liquid with= 0.16 andm = 9.6 Pas’, and
has a density of 1320 kgAnEstimate the pressure drop across the pipe.

Air at 298K is now introduced at a upstream point at the rate of
5me/h (measured at the pressure at the mid-point of the pipe length).
What will be the two-phase pressure drop over the pipe according to:

(i) the simple plug flow model
(ii) the generalised method of Dziubinski and Chhabra, equations
(4.19) and (4.24).
(iii) the method of Dziubinski, equation (4.26).

The experimental value ofAp is 105kPa. Suggest the possible
reasons for the discrepancy between the calculated and actual values
of —Ap.

Calculate the average liquid holdup in the pipe.
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A 25% aqueous suspension of kaolin is to be pumped under laminagb)
conditions through a 50 mm diameter and 50 m long pipe at the rate of
2me/h. The suspension behaves as a power-law fluid with 0.14,

m = 28.6 Pas® and has a density of 1400 kginCalculate the power
needed for this duty when using a pump of 50% efficiency.

It is proposed to reduce the two-phase pressure drop by 50% by
introducing air into the pipeline at an upstream point. Calculate the
superficial velocity of air required to achieve this if the air at 293K
enters the pipeline at a pressure of 0.35MPa. Assume isothermal
expansion of gas. Use all three methods mentioned in problem 4.1 to
obtain the superficial velocity of the air. Using an appropriate model,
determine the maximum reduction in two-phase pressure drop achiev-
able for this slurry. What is the air velocity under these conditions?
What proportion of the volume of the pipe is filled with liquid and
what flow pattern is likely to occur in the pipe under these flow condi-
tions? Neglect the effect of air expansion.

A 50.4% (by weight) coal-in-water suspension of density 1070%g/m (a)
is to be transported at the flow rate of 5.5%/hr through a
pipeline 75mm diameter and 30m long. The suspension behaves
as a Bingham-plastic fluid with a yield stress of 51.4Pa and plastic
viscosity of 48.3 mPa. It is decided to introduce air at pressure of
0.35MPa and at 293 K into the pipeline to lower the pressure drop by
25%, whilst maintaining the same flow rate of suspension. Assuming
that the plug model is applicable, calculate the required superficial
velocity of air.

It is required to transport gravel particles (8 mm size, density (a)
2650kg/n?) as a suspension in a pseudoplastic polymer solution
(m = 0.25Pas", n = 0.65, density 1000kg/f) in a 42mm diam-

eter pipe over a distance of 1km. The volumetric flow rate of the
mixture is 7.5 m/h when the volumetric concentration of gravel in the
discharged mixture is 22% (by volume). If the particles are conveyed

in the form of a moving bed in the lower portion of the pipe, estimate
the pressure drop over this pipeline and the pumping power if the
pump efficiency is 45%. What is the rate of conveyance of gravel in
kag/h?

A 13% (by volume) phosphate slurryn & 3.7 Pas’, n = 0.18, (b)
density 1230 kg/rf) is to be pumped through a 50 mm diameter hori-
zontal pipe at mean slurry velocities ranging from 0.2 to 2m/s. It is
proposed to pump this slurry in the form of a two-phase air-slurry
mixture. The following data have been obtained:
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Superficial Superficial

slurry velocity gas velocity —Aprr/L
(mis) (mis) —ap/k
0.24 0.2 0.68
0.5 0.48
1 0.395
2 0.40
3 0.41
4 0.44
5 0.52
0.98 0.2 0.92
0.5 0.90
1.0 0.96
14 1.08
2 1.20
3 1.44
4 1.62
5 1.85
15 0.5 1.22
1.0 1.38
1.5 1.50
2 1.72
24 1.86
1.95 0.4 1.38
0.8 1.53
1.0 1.60
15 1.70

Are these data consistent with the predictions of the simple plug flow
model? Compare these values of the two-phase pressure drop with
those calculated using equations (4.22), (4.24) and (4.26).

5.1 Calculate the free falling velocity of a plastic sphefe<(3.18 mm, (a)
density 1050kg/i) in a polymer solution which conforms to the
power-law model withn = 0.082 Pas’, n = 0.88 and has density of
1000 kg/mi. Also, calculate the viscosity of a hypothetical Newtonian
fluid of the same density in which this sphere would have the same
falling velocity. To what shear rate does this viscosity correspond for?

5.2 The following data for terminal velocities have been obtained for the (a)
settling rate of spherical particles of different densities in a power-law
type polymer solution/# = 0.49 Pas’, n = 0.83, p = 1000 kg/n{).

Sphere diameter Sphere density Settling velocity
(mm) (kg/n?) (mm/s)
1.59 4010 6.6
2.00 4010 10.0
3.175 4010 30
2.38 7790 45
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Estimate the mean value of the drag correction factor for this
power-law fluid. How does this value compare with that listed in
Table 5.1?

For the sedimentation of a sphere in a power-law fluid in the Stokes’(a)
law regime, what error in sphere diameter will lead to an error of 1%

in the terminal falling velocity? Does the permissible error in diameter
depend upon the value of the power-law index? If yes, calculate its
value over the range £ n > 0.1. What is the corresponding value

for a Newtonian liquid?

Estimate the terminal falling velocity of a 5mm steel ball (density (b)
7790kg/n?) in a power-law fluid 2 = 0.3 Pas’, n = 0.6 and density
1010 kg/md).

The rheological behaviour of a china clay suspension of density(b)
1200kg/ni is well approximated by the Herschel—Bulkley fluid
model with consistency coefficient of 11.7-B'a flow behaviour index

of 0.4 and yield stress of 4.6 Pa. Estimate the terminal falling velocity

of a steel ball, 5mm diameter and density 7800 Ky/What is the
smallest steel ball which will just settle under its own weight in this
suspension?

A 7.5mm diameter PVC ball (density 1400kg)nis settling in (b)
a power-law fluid f2 = 3Pas’, n = 0.6, density 1000kg/®) in a

30 mm diameter cylindrical tube. Estimate the terminal falling velocity

of the ball.

Estimate the hindered settling velocity of a 30% (by volume) defloccu- (a)
lated suspension of 50m (equivalent spherical diameter) china clay
particles in a polymer solution following the power-law fluid model
with n = 0.7 andm = 3 Pas’, in a 30 mm diameter tube. The densi-

ties of china clay particles and the polymer solution are 2400 and
1000 kg/ni respectively.

In a laboratory size treatment plant, it is required to pump the sewagda)
sludge through a bed of porcelain spheres packed in a 50 mm diameter
tube. The rheological behaviour of the sludge (density 1008Rg/m

can be approximated by a power-law model with= 3.8 Pas’ and

n = 0.4. Calculate the diameter of the spherical packing (voidage 0.4)
which will be required to obtain a pressure gradient of 8 MPa/m at a
flow rate of 3.6 ni/h. What will be the flow rates for the same pressure
gradient if the nearest available packing sizes are 25% too large and
25% too small? Assume the voidage remains at the same level.

Estimate the size of the largest steel ball (density 7800%g4mich (b)
would remain embedded without settling in a viscoplastic suspension
with a density of 1040 kg/fhand yield stress of 20 Pa?
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5.10 A polymeric melt exhibiting power-law behaviour: & 10* Pas’, (b)
n = 0.32, density 960 kg/) is to be filtered by using a sand-pack
composed of 5Qm sand patrticles; the bed voidage is 37%. The pres-
sure drop across a 100 mm deep bed must be in the range 540 MPa
to 1130 MPa. Estimate the range of volumetric flow rates which can
be processed in a column of 50 mm diameter.

Over the relevant range of shear rates, the flow behaviour of this
melt can also be well approximated by the Bingham plastic model.
What would be the appropriate values of the plastic viscosity and the
yield stress?

5.11 Estimate the minimum fluidising velocity for a bed consisting of (a)
3.57mm glass spheres (density 2500kd/im a 101 mm diameter
column using a power-law polymer solution & 0.35 Pas’, n = 0.6
and density 1000 kg/) if the bed voidage at the incipient fluidised
condition is 37.5%. If the value of the fixed bed voidage is in error
by 10%, what will be the corresponding uncertainty in the value of
the minimum fluidising velocity?

6.1 Calculate the thermal conductivity of 35% (by volume) non- (a)
Newtonian suspensions of alumina (thermal conductisity
30W/mK) and thorium oxide (thermal conductivity 14.2 W/mK)
in water and in carbon tetra chloride at 293 K.

6.2 A power-law non-Newtonian solution of a polymer is to be heated (b)
from 288K to 303K in a concentric-tube heat exchanger. The solu-
tion will flow at a mass flow rate of 210 kg/h through the inner copper
tube of 31.75mm inside diameter. Saturated steam at a pressure of
0.46 bar and a temperature of 353K is to be condensed in the annulus.
If the heater is preceded by a sufficiently long unheated section for
the velocity profile to be fully established prior to entering the heater,
determine the required length of the heat exchanger. Physical proper-
ties of the solution at the mean temperature of 295.5K are:

density= 850 kg/n¥; heat capacity= 2100 J/kg K; thermal conducti-
vity = 0.69 W/mK; flow behaviour index: = 0.6

temperature (K) 288 303 318 333 353 368
consistency coefficient(F#) 10 8.1 6.3 42 23 13

Initially assume a constant value of the consistency index and subse-
quently account for its temperature-dependence using equation (6.36).
Also, ascertain the importance of free convection effects in this case,
using equations (6.37) and (6.38). The coefficient of thermal expan-
sion, B is 3x 104K,
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A coal-in-oil slurry which behaves as a power-law fluid is to be heated(c)
in a double-pipe heat exchanger with steam condensing on the annulus
side. The inlet and outlet bulk temperatures of the slurry are 291K
and 308K respectively. The heating section (inner copper tube of
40 mm inside diameter) is 3m long and is preceded by a section
sufficiently long for the velocity profile to be fully established. The
flow rate of the slurry is 400kg/h and its thermo-physical proper-
ties are as follows: densite 900 kg/n?; heat capacity= 2800 J/kg K;
thermal conductivity= 0.75 W/mK. In the temperature interval 283

T < 368K, the flow behaviour index is nearly constant and is equal
to 0.52.

temperature (K) 2995 318 333 353 368
consistency coefficient (P#)  8.54 63 42 23 13

Calculate the temperature at which the steam condenses on the tube
wall. Neglect the thermal resistance of the inner copper tube wall. Do
not neglect the effects of free convection.

A power-law solution of a polymer is being heated in a (c)
1.8m long tube heater from 291K to 303K at the rate

of 125kg/h. The tube is wrapped with an electrical heating
coil to maintain a constant wall flux of 5kWAn Determine

the required diameter of the tube. The physical properties of
the solution are: density 1000 kg/ni; heat capacity= 4180 J/kg K;
thermal conductivity= 0.56 W/mK; flow behaviour index = 0.33,

and consistency coefficient = (26 — 0.0756 T)Pa- ", in the range

288< T < 342K.

Also, evaluate the mean heat transfer coefficient if a mean value of
the consistency coefficient is used. How significant is free convection
in this case? Also, determine the temperature of the tube wall at its
halfway-point and at the exit.

A power-law solution of a polymer (density 1000 k§)jnis flowing (b)
through a 3m long 25mm inside diameter tube at a mean velocity
of 1 m/s. Saturated steam at a pressure of 0.46 bar and a temperature
of 353K is to be condensed in the annulus. If the polymer solution
enters the heater at 318K, at what temperature will it leave? Neglect
the heat loss to the surroundings. The thermo-physical properties of
the solution are: heat capacity 4180 J/kg K; thermal conductivity
0.59W/mK; flow behaviour index: = 0.3.

temperature (K) 303 313 323 333
consistency coefficient (F) 0.45 0.27 0.103 0.081

How many such tubes in parallel would be needed to heat up
17 tonne/h of this solution? What will be the exit fluid temperature
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when the flow rate is 20% above, and 20% below, the value considered
above?

6.6 A power-law fluid is heated by passing it under conditions of laminar (c)
flow through a long tube whose wall temperature varies in the direc-
tion of flow. For constant thermophysical properties, show that the
Nusselt number in the region of fully-developed (hydrodynamical and
thermal) flow is given by:

Nu—hd— 6 <n+1

Tk o) \3n+1
21 5n . 9n 4n
20 3n+1 5n+1 6n+1

whered (n) = (

Assume that the temperature difference between the fluid and the
tube wall is given by a third degree polynomial:

0=T—T, =daoy + boy* + coy’

wherey is the radial distance from the pipe wall ang b, co are
constant coefficients to be evaluated by applying suitable boundary
conditions.

6.7 A power-law fluid p = 1040kg/n¥; C, = 2090J/kgK; k = 1.21 (b)
W/mK) is being heated in a 0.0254 m diameter, 1.52m long heated
tube at the rate of 0.075kg/s. The tube wall temperature is main-
tained at 93.3C by condensing steam on the outside. Estimate the
fluid outlet temperature for the feed temperature of 3Z.8hile the
power-law index is approximately constant at 0.35 in the temperature
interval 378 < T < 93.3°C, the consistency coefficient, of the fluid
varies as

m=1275x 10* exp(—0.01452T + 273))

wherem is in Pas’.
Is free convection significant in this example?

7.1 For the laminar boundary layer flows of incompressible Newtonian (b)
fluids over a wide plate, Schlichting (Boundary Layer Theory, 6th
edn., Mc Graw Hill, New York, 1965) showed that the following two
equations for the velocity distributions give values of the shear stress
and friction factor which are comparable with those obtained using
equation (7.10):

LV y y y 4
)y —=2 =2 —2 = =
® Vo P P + S
.V LTy
) — =SsIih— -
()Vo 2 5
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Sketch these velocity profiles and compare them with the predictions
of equation (7.10). Do velocity profiles (i) and (ii) above satisfy the
required boundary conditions?

Obtain expressions for the local and mean values of the wall shear
stress and friction factor (or drag coefficient) for the laminar boundary
layer flow of an incompressible power-law fluid over a flat plate?
Compare these results with the predictions presented in Table 7.1 for
different values of the power-law index.

A polymer solution (density 1000 kg#nis flowing on both sides  (b)
of a plate 250 mm wide and 500 mm long; the free stream velocity
is 1.75m/s. Over the narrow range of shear rates encountered,
the rheology of the polymer solution can be adequately approxi-
mated by both the power-lawn(= 0.33 Pas® andn = 0.6) and the
Bingham plastic model (yield stress1.75 Pa and plastic viscosity
10 mPas). Using each of these models, evaluate and compare the
values of the shear stress and the boundary layer thickness 100 mm
downstream from the leading edge, and the total frictional force
exerted on the two sides of the plate.

At what distance from the leading edge will the boundary layer
thickness be half of the value calculated above?

A dilute polymer solution at 293K flows over a plane surface (b)
(250 mm widex 500 mm long maintained at 301K. The thermo-
physical properties (density, heat capacity and thermal conductivity)
of the polymer solution are close to those of water at the same temper-
ature. The rheological behaviour of this solution can be approximated
by a power-law model withn = 0.43 andm = 0.3 — 0.00033T,
wherem is in Pas’ andT is in K.

Evaluate:

(i) the momentum and thermal boundary layer thicknesses at
distances of 50,100 and 200 mm from the leading edge, when
the free stream velocity is 1.6 m/s.

(ii) the rate of heat transfer from one side of the plate.

(iii) the frictional drag experienced by the plate.

(iv) the fluid velocity required to increase the rate of heat transfer by
25% while maintaining the fluid and the surface temperatures at
the same values.

A polymer solution at 298K flows at 1.1 m/s over a hollow copper (b)
sphere of 25mm diameter, maintained at a constant temperature
of 318K (by steam condensing inside the sphere). Estimate the
rate of heat loss from the sphere. The thermo-physical proper-
ties of the polymer solution are approximately those of water; the
power-law constants in the temperature interval 298 < 328K

are given below: flow behaviour index, = 0.40 and consistency,

m = 30— 0.05T (Pas') whereT is in K.
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What would be the rate of heat loss from a cylinder 25mm in
diameter and 100 mm long oriented with its axis normal to flow?

Also, estimate the rate of heat loss by free convection from the
sphere and the cylinder to a stagnant polymer solution under otherwise
identical conditions.

7.5 A 250mm square plate heated to a uniform temperature of 323 K(b)

is immersed vertically in a quiescent slurry of 20% (volume) JIiO
in water at 293 K. Estimate the rate of heat loss by free convection
from the plate when the rheology of the slurry can be adequately
described by the power-law model:= 0.28; m = 10— 0.2(T — 20)
(Pas') whereT is in °C.

The physical properties of TiOpowder are: density: 4260 kg/ni;
heat capacity= 943 J/kg K; thermal conductivity: 5.54 W/mK. The
coefficient of thermal expansion of the slurg= 2 x 104K™1.

7.6 A polymer solution (density 1022 kg#inflows over the surface of a  (a)
flat plate at a free stream velocity of 2.25m/s. Estimate the laminar
boundary layer thickness and surface shear stress at a point 300 mm
downstream from the leading edge of the plate. Determine the total
drag force on the plate from the leading edge to this point. What is
the effect of doubling the free stream velocity?

The rheological behaviour of the polymer solution is well approxi-
mated by the power-law fluid model with= 0.5 andm = 1.6 Pas".

7.7 A china clay suspension (density 1200k§/mu = 0.42, m = €)
2.3Pas") flows over a plane surface at a mean velocity of 2.75m/s.
The plate is 600 mm wide normal to the direction of flow. What is the
mass flow rate within the boundary layer at a distance of 1 m from
the leading edge of the plate?

Also, calculate the frictional drag on the plate up to 1 m from the
leading edge. What is the limiting distance from its leading edge at
which the flow will be laminar within the boundary layer?

8.1 A standard Rushton turbine at a operating speed of 1Hz is used tda)
agitate a power-law liquid in a cylindrical mixing vessel. Using a
similar agitator rotating at 0.25Hz in a geometrically similar vessel,
with all the linear dimensions larger by a factor of 2, what will be the
ratio of the power inputs per unit volume of fluid in the two cases?
Assume the mixing to occur in the laminar region. What will be the
ratio of total power inputs in two cases? Plot these ratios as a function
of the flow behaviour index;.

8.2 How would the results in problem 8.1 differ if the main flow in the (a)
vessel were fully turbulent? Does the flow behaviour index have an
influence on these values?
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A fermentation broth (density 890 kgiybehaves as a power-law fluid  (a)
with n = 0.35 andm = 7.8 Pas’. It must be stirred in a cylindrical
vessel by an agitator 150 mm in diameter of geometrical arrangement
corresponding to configuration A-A in Table 8.1. The rotational speed
of the impeller is to be in the range 0.5 to 5Hz. Plot both the power
input per unit volume of liquid and the total power input as functions
of the rotational speed in the range of interest.

Due to fluctuations in the process conditions and the composition
of feed, the flow behaviour index remains constant, at approximately
0.35, but the consistency index varies #125%. What will be the
corresponding variations in the power input?

The initial cost of a mixer including its impeller, gear box and motor (b)
is closely related to the torque, T, requirement rather than its power.
Deduce the relationship between torque and size of the impeller for
the same mixing time as a function of geometrical scale, for turbulent
conditions in the vessel. Does your answer depend upon whether the
fluid is Newtonian or inelastic shear-thinning in behaviour? What will

be the ratio of torques for a scale-up factor of 2?

A viscous material (power-law rheology) is to be processed in a(a)
mixing vessel under laminar conditions. A sample of the material
is tested using a laboratory scale mixer. If the mixing time is to be
the same in the small and large-scale equipments, estimate the torque
ratio for a scale-up factor of 5 for the range>1n > 0.2.

Additionally, deduce the ratio of mixing times if it is desired to
keep the torque/unit volume of material the same on both scales.

Tests on a small-scale tank 0.3m in diameter (impeller diameter of(b)
0.1 m, rotational speed 250 rpm) have shown that the blending of two
miscible liquids (aqueous solutions, density and viscosity approxi-
mately the same as for water at 293 K) is completed after 60s. The
process is to be scaled up to a tank of 2.5m diameter using the
criterion of constant (impeller) tip speed.

(i) What should be the rotational speed of the larger impeller?
(i) What power would be required on the large scale?
(i) What will be the mixing time in the large tank?

For this impeller—tank geometry, the Power number levels off to a
value of 6 for Re> 5 x 10%

An agitated tank, 3m in diameter, is filled to a depth of 3m with (c)
an aqueous solution whose physical properties correspond to those of
water at 293 K. A 1 m diameter impeller is used to disperse gas and,
for fully turbulent conditions, a power input of 800 Wiris required.

(i) What power will be required by the impeller?
(i) What should be the rotational speed of the impeller?
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(iii) If a 1/10 size small pilot scale tank is to be constructed to test
the process, what should be the impeller speed to maintain the
same level of power consumption, i.e., 800 V§?m

Assume that at the low gas used, Power number—Reynolds number
relationship will not be affected and that under fully turbulent
conditions, the Power number is equal to 6.

A power-law fluid is to be warmed from 293K to 301K in a vessel (b)
(2m in diameter) fitted with an anchor agitator of 1.9m diameter
rotating at 60 rpm. The tank, which is filled to a 1.75 m depth, is fitted
with a helical copper coil of diameter 1.3m (25mm od and 22 mm id
copper tubing) giving a total heat transfer area of 3?8Tine heating
medium, water flowing at a rate of 40kg/min, enters at 323K and
leaves at 313 K. The thermal conductivity, heat capacity and density
of the fluid can be taken as the same as for water. The values of the
power-law constants are:= 0.45 andm = 25— 0.05T7(Pas") in the
range 293K< T < 323K.

Estimate the overall heat transfer coefficient and the time needed
to heat a single batch of liquid.
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