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Preface

Turbulence is a dangerous topic which is often at the origin of serious fights
in the scientific meetings devoted to it since it represents extremely different
points of view, all of which have in common their complexity, as well as an
inability to solve the problem. It is even difficult to agree on what exactly is
the problem to be solved.

Extremely schematically, two opposing points of view had been advoc-
ated during these last thirty years: the first one was “statistical”, and tried
to model the evolution of averaged quantities of the flow. This community,
which had followed the glorious trail of Taylor and Kolmogorov, believed in
the phenomenology of cascades, and strongly disputed the possibility of any
coherence or order associated to turbulence.

On the other bank of the river standed the “coherence among chaos”
community, which considered turbulence from a purely deterministic point of
view, by studying either the behaviour of dynamical systems, or the stability
of flows in various situations. To this community were also associated the
experimentalists and computer simulators who sought to identify coherent
vortices in flows.

Situation is more complex now, and the existence of these two camps is
less clear. In fact a third point of view pushed by people from the physics
community has emerged, with the concepts of renormalization group theory,
multifractality, mixing, and Lagrangian approaches.

My personal experience in turbulence was acquired in the first group since
I spent several years studying the stochastic models (or two-point closures)
applied to various situations such as helical turbulence, turbulent diffusion, or
two-dimensional turbulence. These techniques were certainly not the ultimate
solution to the problem, but they allowed me to get acquainted with various
disciplines such as aeronautics, astrophysics, hydraulics, meteorology, ocean-
ography, which were all, for different reasons, interested in turbulence. It is
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certainly true that I discovered the fascination of fluid dynamics through the
somewhat abstract studies of turbulence.

This monograph is in fact an attempt to reconcile the statistical point of
view and the basic concepts of fluid mechanics which determine the evolution
of flows arising in the various fields envisaged above. These basic principles,
accompanied by the instability-theory predictions and the results of numer-
ical simulations, give valuable information on the behaviour of turbulence and
of the structures which compose it. But a statistical analysis of these struc-
tures can, at the same time, supply information about strong nonlinear energy
transfers within the flow.

I have tried to present here a synthesis between two graduate courses
given in Grenoble during these last years, namely a “Turbulence” course and
a “Geophysical Fluid Dynamics” course. I would like to thank my colleagues
of the Ecole Nationale d’Hydraulique et Mécanique and Université Joseph
Fourier, who offered me the opportunity of giving these two courses. The stu-
dents who attended these classes were, through their questions and remarks,
of great help. I took advantage of a sabbatical year spent at the Aerospace-
Engineering Department of University of Southern California to write the first
draft of this monograph: this was rendered possible by the generous hospitality
of John Laufer and his collaborators. The second edition benefitted also from
a graduate course taught at Stanford University during a visit to the Center
for Turbulence Research. The support and extra time offered through my ap-
pointment to the “Institut Universitaire de France” made the third edition
possible. The fourth edition was written thanks to a CNRS delegation and a
sabbatical semester offered by Grenoble Institute of Technology (INPG).

The organization into 13 chapters of the third edition has been kept:
1. Introduction to turbulence in fluid mechanics; 2. Basic fluid dynamics;
3. Transition to turbulence; 4. Shear-flow turbulence; 5. Fourier analysis for
homogeneous turbulence; 6. Isotropic turbulence: phenomenology and sim-
ulations; 7. Analytical theories and stochastic models; 8. Two-dimensional
turbulence; 9. Beyond two-dimensional turbulence in geophysical fluid dy-
namics; 10. Statistical thermodynamics of turbulence; 11. Statistical predict-
ability theory; 12. Large-eddy simulations; 13. Towards real-world turbulence.

In Chapter 1, the book introduces clear definitions of turbulence in fluids
and of coherent vortices. It provides several industrial and environmental ex-
amples, with numerous illustrations. Chapter 2 develops at lenght equations
of fluid dynamics (velocity and energy) for flows of arbitrary density (incom-
pressible and compressible), including Boussinesq equations (with a study of
internal-gravity waves). It reviews the main theorems of vorticity dynamics
and scalar transport for non-rotating or rotating flows. It looks also in de-
tails at Barré de Saint-Venant equations for shallow layers. Chapter 3 studies
linear-instability theory of parallel shear flows (free and wall-bounded) in two
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and three dimensions (with effects of rotation), as well as thermal convection.
It provides an experimental and numerical review of transition in shear flows.
Chapter 4 is devoted to free or wall-bounded turbulent shear flows. They are
studied both statistically (we derive for instance the logarithmic boundary
layer profile) and deterministically, with emphasis put on coherent vortices and
coherent structures. Recent results illuminating the structure of round jets and
turbulent boundary layer without pressure gradient are given. Chapter 5 gives
mathematical details on Fourier analysis of turbulence, with informations on
rapid-distorsion theory. Chapter 6 is devoted to three-dimensional isotropic
turbulence, looked at phenomenologically and from a coherent-vortex point of
view. Passive-scalar diffusion, important for combustion studies, is included
in the chapter. It contains also new results concerning noise in turbulence,
associated with pressure spectrum. Chapter 7 contains the two-point clos-
ure approaches of three-dimensional isotropic turbulence, with applications to
passive scalars. The closure derivation of an helicity cascade superposed to the
Kolmogorov kinetic-energy cascade, and verified by numerical large-eddy sim-
ulations, is certainly an important result of the book. Helicity is important in
the generation of atmospheric tornadoes and of Earth magnetic field (dynamo
effect). The chapter underlines also the important role of spectral backscatter,
which is confirmed by numerical simulations. Chapter 8 is devoted to strictly
two-dimensional turbulence from a phenomenological, closure and numerical
viewpoint. It gives a clear theoretical exposition of the double enstrophy and
inverse-energy cascades, with experimental validations. It gives new numerical
results on energy and pressure spectra. Chapter 9 deals essentially with quasi
two-dimensional turbulence from an external-geophysical point of view. It con-
tains a very detailed presentation of difficult questions: quasi-geostrophic the-
ory, baroclinic instability, atmospheric storms, N-layer models, Rossby waves
(including topographic ones), Ekman layers. It discusses also of tornado gen-
eration, and finishes with Charney’s theory of quasi-geostrophic turbulence.
Chapter 10 presents the statistical thermodynanics of truncated Euler equa-
tions. In fact it turns out that such an approach is far from the reality of
turbulence. Chapter 11, on statistical unpredictability in three and two di-
mensions, is mostly unchanged with respect to former editions. The role of
spectral backscatter in the inverse error cascade is very important. Results
of this chapter show that a deterministic numerical simulation of a turbulent
flow is subject to important errors beyond the predictability time. Chapter 12
is an up to date review of large-eddy simulation techniques, which are be-
coming extremely powerful. It contains a detailed presentation of “classical
models” such as Smagorinsky’s or Kraichan’s, as well as new “dynamic” or
“selective” models allowing the eddy coefficients to adjust automatically to
the local turbulence. Finally, Chapter 13 presents turbulence in more prac-
tical situations. We consider successively the effects of stratification, rotation
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(universality of free- and wall-bounded shear flows in anticyclonic regions is
astonishing), separation and compressibility. Here again, our concern is both
statistical and structural.

This book is of great actuality on a topic of upmost importance for engin-
eering and environmental applications, and proposes a very detailed present-
ation of the field. The fourth edition incorporates new results coming from
research works which have been done since 1997, and revisits the older points
of view in the light of these results. Many come from direct and large-eddy
simulations methods, which have provided significant advances in most chal-
lenging problems of turbulence (isotropy, free-shear flows, boundary layers,
compressibility, rotation). The book proposes many aerodynamic, thermal-
hydraulics and environmental applications.

It is obvious that problems are evolving, and so do the applications: de-
veloping faster planes may be less crucial (except for defense problems) than
clean, economic and silent engines. Energy issues such as fusion will push the
numerical modellers towards much more complicated problems involving very
hot plasma. Alarming questions posed by climate evolution about a global
warming will oblige to develop full three-dimensional atmospheric and oceanic
codes based at least on Boussinesq equations. This will be eased by the con-
tinuous spectacular development of computers.

Particular thanks go to the staff and graduate students of the team MOST
(“Modélisation et Simulation de la Turbulence”) at the Laboratory for Geo-
physical and Industrial Flows (LEGI, sponsored by CNRS, INPG and UJF),
for their important contribution (visual in particular) to the book. Pierre
Comte and Olivier Métais provided their great expertise in the domains of
transition, coherent vortices, compressible, stratified or rotating turbulence,
and numerical methods. I am also indebted to all the sponsoring agencies and
companies who showed a continuous interest during all these years in the de-
velopment of fundamental and numerical research on Turbulence in Grenoble.

Rosanne Alessandrini, Patrick Bégou, Eric Lamballais and Akila Rachedi
were very helpful for handling figures, and Yves Gagne, Jack Herring, Sherwin
Maslowe and Jim Riley for editing part of the material (first three editions). I
am greatly indebted to Frances Métais who corrected the English style of the
first edition. I also hope that this monograph will help the diffusion of some
French contributions to turbulence research.

I am grateful to numerous friends around the world who encouraged me
to undertake this work.

The first three editions were written using the TEX system. This would
not have been possible without the help of Claude Goutorbe and Evelyne
Tournier, of Grenoble Applied Mathematics Institute.
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Finally I thank René Moreau and Springer for offering me the possibility
of presenting these ideas.

Grenoble, May 2007



Plates

Plate 1: Two-dimensional numerical simulation of Brown and Roshko’s experiment
shown in Fig. 1.4. Top: passive dye contours. Bottom: vorticity contours (courtesy
X. Normand).

Plate 2: Vorticity contours in the two-dimensional numerical simulations of the mix-
ing layer reported in Lesieur et al. [420] and Comte [134].



Xxiv Plates

Plate 3: Evolution with time of the vorticity field in a two-dimensional direct-
numerical simulation of the flow above a backward-facing step (courtesy A. Silveira,
C.E.N.G. and IL.M.G.).
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Plate 4: Visualization of a horizontal section of turbulence in a tank rotating fastly
about a vertical axis: the eddies shown are quasi-two-dimensional, due to the effect
of rotation (courtesy E.J. Hopfinger).

Plate 5: Satellite picture of the temperature field on the surface of the Atlantic ocean
close to the Gulf Stream (courtesy NASA and EDP-Springer [424]).
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Plate 6: Circulation on Jupiter (courtesy Jet Propulsion Laboratory, Pasadena, and
EDP-Springer [424]).
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Plate 7: Direct-numerical simulation of a two-dimensional temporal mixing layer:
left, vorticity field; right, passive scalar field; one can see the formation of the primary
vortices, and the subsequent pairings; (from Comte [134]).
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Plate 8: Same calculation as in Plate 7: end of the evolution.
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Plate 9: Large-eddy simulation of a temporal mixing layer forced quasi two-
dimensionally; interface at the end of the rollup, visualized with a numerical dye; in
red is shown the positive longitudinal vorticity. From Comte and Lesieur [136]).

Plate 12: Same calculation as in Plate 11: vertical (in the z,y plane) cross section
of the interface (courtesy P. Comte).
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Plate 10: Vorticity modulus in the LES of a temporal mixing layer; (a) quasi two-
dimensional random initial forcing; (b) 3D isotropic forcing (courtesy J. Silvestrini).
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Plate 11: Direct-numerical simulation of the periodic mixing layer forced by a small
random three-dimensional perturbation done by Comte et al. [137]; top view of: (a)
vortex structures; (b) vortex lines; (c¢) passive scalar at the interface. The resolution
is 128 Fourier wave vectors, and the Reynolds number U§; /v = 100.



xxxii Plates

I‘- pad

RN B @A

Plate 13: Vorticity field in a direct-numerical simulation of a two-dimensional tem-
poral Bickley jet: one can see the growth of the sinuous instability, and the formation
of a Karman street, with alternate eddies of positive (red) and negative (blue) vor-
ticity (from Comte et al. [133]).

Plate 14: Experimental wake behind a splitter plate in a hydrodynamic tunnel (cour-
tesy H. Werlé, ONERA).
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Plate 15: Vorticity components in the DNS a temporal wake, showing the formation
of hairpins between the Karman billows (courtesy M.A. Gonze).

Plate 16: Same simulation as in Plate 15, showing a passive-scalar field at a later
time, and the longitudinal stretching of hairpins.



Plates

XXX1V

“(TuL1980A[IS 1) £5911N02) *m(g/7) PIOYSAIY) ® J UMOYS SI SNNPOW A)IOT)I0A

o1} ‘{uorjeqanirod WOpURI [RUOISUSWIP-0M] Isenb © Aq wreeljsdn peol1o] 1oAe] SurXiur o[qIssoIdmwoour PIOSIAUT UR JO SHT AT 93e[d




XXXV

Turbulence in Fluids

‘(oo prmd 1
£591m00 ‘[08T] ‘Te 10 soIon( Wolj) Iefe] Arepunoq jua[nqginy Surdofessp-A[reryeds © Jo ST oY) Ul pejdale xojioa utdiref] QT 91e[d




XXXVI Plates

Plate 19: Cross section of the temperature distribution in the direct-numerical sim-
ulation of isotropic turbulence done by Métais and Lesieur [496]; the resolution is
1283 Fourier modes.
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Plate 20: FSF model based LES of a spatial boundary layer; isosurfaces of longitud-
inal vorticity (green +0.15Uc /d;, white —0.15U /d;, see text for details (courtesy

P. Comte).

Plate 21: Isopycnal surface in a finite-volume direct-numerical simulation of a
strongly-stratified flow above an obstacle (courtesy H. Laroche).




XxXxvili Plates

Plate 22: longitudinal (yellow and green) and spanwise (violet) vorticity components
in the LES of a backwards-facing step flow at an expansion ratio of 5. This transient
state will eventually degenerate into a helical-pairing configuration (courtesy A.
Silveira).
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Plate 23: Direct-numerical simulation of a two-dimensional spatially-growing com-
pressible mixing layer. The Mach numbers of the two streams are 2 and 1.2. The
vorticity, pressure, density and divergence fields are shown (courtesy Y. Fouillet et
X. Normand).
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Introduction to Turbulence in Fluid Mechanics

1.1 Is it possible to define turbulence?

Everyday life gives us an intuitive knowledge of turbulence in fluids: the smoke
of a cigarette or over a fire exhibits a disordered behaviour characteristic of
the motion of the air which transports it. The wind is subject to abrupt
changes in direction and velocity, which may have dramatic consequences for
the seafarer or the hang-glider. During air travel, one often hears the word
turbulence generally associated with the fastening of seat-belts. Turbulence is
also mentioned to describe the flow of a stream, and in a river it has important
consequences concerning the sediment transport and the motion of the bed.
The rapid flow of any fluid passing an obstacle or an airfoil creates turbulence
in the boundary layers and develops a turbulent wake which will generally
increase the drag exerted by the flow on the obstacle (and measured by the
famous C, coefficient): so turbulence has to be avoided in order to obtain bet-
ter aerodynamic performance for cars or planes. The majority of atmospheric
or oceanic currents cannot be predicted accurately and fall into the category
of turbulent flows, even in the large planetary scales. Small-scale turbulence
in the atmosphere can be an obstacle towards the accuracy of astronomic ob-
servations, and observatory locations have to be chosen in consequence. The
atmospheres of planets such as Jupiter and Saturn, the solar atmosphere or
the Earth’s outer core are turbulent. Galaxies look strikingly like the eddies
which are observed in turbulent flows such as the mixing layer between two
flows of different velocity, and are, in a manner of speaking, the eddies of a
turbulent universe. Turbulence is also produced in the Earth’s outer magneto-
sphere, due to the development of instabilities caused by the interaction of
the solar wind with the magnetosphere. Numerous other examples of turbu-
lent flows arise in aeronautics, hydraulics, nuclear and chemical engineering,
oceanography, meteorology, astrophysics and internal geophysics.
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It can be said that a turbulent flow is a flow which is disordered in time
and space. But this, of course, is not a precise mathematical definition. The
flows one calls “turbulent” may possess fairly different dynamics, may be
three-dimensional or sometimes quasi two-dimensional, may exhibit well or-
ganized structures or otherwise. A common property which is required of
them is that they should be able to mix transported quantities much more
rapidly than if only molecular diffusion processes were involved. It is this lat-
ter property which is certainly the more important for people interested in
turbulence because of its practical applications: the engineer, for instance, is
mainly concerned with the knowledge of turbulent heat diffusion coefficients,
or the turbulent drag (depending on turbulent momentum diffusion in the
flow). The following definition of turbulence can thus be tentatively proposed
and may contribute to avoiding the somewhat semantic discussions on this
matter:

e Firstly, a turbulent flow must be unpredictable, in the sense that a small
uncertainty as to its knowledge at a given initial time will amplify so as to
render impossible a precise deterministic prediction of its evolution (a).

e Secondly, it has to satisfy the increased mixing property defined above (b).
e Thirdly, it must involve a wide range of spatial wave lengths (c).

Such a definition allows in particular an application of the term “turbulent”
to some two-dimensional flows. It also implies that certain non-dimensional
parameters characteristic of the flow should be much greater than one: indeed,
let | be a characteristic length associated to the large energetic eddies of
turbulence, and v a characteristic fluctuating velocity; a very rough analogy
between the mixing processes due to turbulence and the incoherent random
walk allows one to define a turbulent diffusion coefficient proportional to I v.
As will be seen later on, [ is also called the integral scale. Thus, if v and k are
respectively the molecular diffusion coefficients! of momentum (called below
the kinematic molecular viscosity) and heat (the molecular conductivity), the
increased mixing property for these two transported quantities implies that
the two dimensionless parameters R; = lv/v and lv/k should be much greater
than one. The first of these parameters is called the Reynolds number, and
the second one the Peclet number. Notice finally that the existence of a large
Reynolds number implies, from the phenomenology developed in Chapter 6,
that the ratio of the largest to the smallest scale is of the order of R?/ Y In
this respect, the property b) stressed above implies c).

A turbulent flow is by nature unstable: a small perturbation will generally,
due to the nonlinearities of the equations of motion, amplify. The contrary

! These coefficients will be accurately defined in Chapter 2.
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Figure 1.1. Stokes flow of glycerin past a triangular obstacle (picture by S. Taneda,
Kyushu University; from Lesieur [416], courtesy S. Taneda and “La Recherche”).

occurs in a “laminar” flow, as can be seen in Figure 1.1, where the streamlines,
perturbed by the small obstacle, reform downstream. The Reynolds number
of this flow, defined as

Re = [fluid velocity] x [size of the obstacle ]/v (1.1)

is in this experiment equal to 2.26 1072. This Reynolds number is different
from the turbulent Reynolds number introduced above, but it will be shown
in Chapter 3 that they both characterize the relative importance of inertial
forces over viscous forces in the flow. Here the viscous forces are preponderant
and will damp any perturbation, preventing a turbulent wake from developing.

There is a lot of experimental or numerical evidence showing that turbu-
lent flows are rotational, that is, their vorticity & = V x 1 is non zero, at least
in certain regions of space. Therefore, it is interesting to ask oneself how turbu-
lence does in fact arise in a flow which is irrotational upstream.? It is obviously
due to the viscosity, since an immediate consequence of Helmholtz—Kelvin’s
theorem, demonstrated in Chapter 2, is that zero-vorticity is conserved fol-
lowing the motion in a perfect fluid:® the presence of boundaries or obstacles
imposes a zero-velocity condition which produces vorticity. Production of vor-
ticity will then be increased by various phenomena, in particular the vortex

2 For instance, a uniform flow.
3 The perfect fluid is an approximation of the flow where molecular viscous effects
are ignored.
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Figure 1.2. Turbulent jet (picture by J.L. Balint, M. Ayrault and J.P. Schon, Ecole
Centrale de Lyon; from Lesieur [416], courtesy J.P. Schon and “La Recherche”).

filaments stretching mechanism to be described later, to such a point that the
flow will generally become turbulent in the rotational regions.

In what is called grid turbulence for instance, which is produced in the
laboratory by letting a flow go through a fixed grid, the rotational vortex
streets behind the grid rods interact together and degenerate into turbulence.
Notice that the same effect would be obtained by pulling a grid through a fluid
initially at rest, due to the Galilean invariance of the laws of motion. In some
situations, the vorticity is created in the interior of the flow itself through
some external forcing or rotational initial conditions (as in the example of the
temporal mixing layer presented later on).

1.2 Examples of turbulent flows

To illustrate the preceding considerations, it may be useful to display some
flows which come under our definition of turbulence. Figure 1.2 shows a tur-
bulent air jet marked by incense smoke and visualized thanks to a technique of
laser illumination. Figure 1.3 shows a “grid turbulence” described above. Fig-
ure 1.4, taken from Brown and Roshko [88], shows a mixing layer between two
flows of different velocities (here helium and nitrogen), coming from the trail-
ing edge of a thin plate: they develop at their interface a Kelvin—Helmholtz
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Figure 1.3. Turbulence created in a wind tunnel behind a grid. Here turbulence fills
the whole apparatus, and a localized source of smoke has been placed on the grid
to visualize the development of turbulence (picture by J.L. Balint, M. Ayrault and
J.P. Schon, Ecole Centrale de Lyon; from Lesieur [416], courtesy “La Recherche”).

instability. This instability is eventually responsible for the generation of large
quasi two-dimensional vortices, which are referred to as coherent. When look-
ing at pictures taken at different times, it is obvious that the vortices pair
and amalgamate following the downstream motion. The pairing interaction
between same-sign vortices when they are close enough will be discussed in
Chapter 3. Upon these vortices are superposed three-dimensional turbulent
small scales which seem to be more active when the Reynolds number is

increased.

We will show in Chapters 3 and 4 that a contribution to three-
dimensionality comes from the longitudinal stretching of hairpin vortices
between the big coherent billows. Another factor of three-dimensionalization
may be the occurrence of spanwise dislocations affecting the big billows them-
selves. This is due to helical-pairing interactions, discussed also in Chapters 3
and 4.

Plate 1(a) (see the colour plates section at the beginning of the book)
shows a two-dimensional simulation of the diffusion of a passive dye by the
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Figure 1.4. Turbulence in a mixing layer (Brown and Roshko [88]). On the top,
the Reynolds number (based on the velocity difference and the width of the layer at
a given downstream position) is twice that of the bottom (courtesy A. Roshko and
J. Fluid Mech.).

large structures of the mixing layer presented in Figure 1.4, in a numerical res-
olution of the equations of the flow motion performed by Normand et al. [536]:
the faster fluid is shown in blue, while the slower fluid is in red. The same
coherent structures as in the experiment are present, which proves that the dy-
namics of these structures is essentially dominated by quasi two-dimensional
mechanisms. We will come back often to this discussion throughout the book.
An advantage of the calculation over the experiment is to provide also the
vorticity field very accurately. In fact, experimental vorticity measurements
are difficult to perform. However, modern particle image velocimetry tech-
niques (called PIV or DPIV) allow now to determine the projection of the
velocity fields on some planes from the displacement of particles, and hence
the vorticity component perpendicular to this plane. Informations on these
techniques may be found in the well-documented book of Bernard and Wal-
lace [57]. The question which is now posed concerns the precision of these
methods. On the other hand, probes using several hot wires may also provide
informations on the vorticity (Balint et al. [29,30], Vukoslavcevic et al. [708],
Tsinober et al. [694]).

Comparison between the vorticity and passive dye contours provided by
Plate 1(b) indicates that the coherent vortices consist here in spiral concentra-
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tions of vorticity around which the convected scalar winds up. Finally, Plate 2
(see colour plates section) shows the vorticity field in a two-dimensional nume-
rical simulation of a temporal mixing layer (that is, periodic in the mean flow
direction), where the upper and lower currents are driven with respective ve-
locities UZ and —UZ (see Lesieur et al. [420], and Comte [134]). As already
stressed, the resemblance of the pairing eddies to the spiral galaxies is striking.
This is in agreement with the fact that many galaxies are known to contain
black holes, which are huge vortices which will pair if they turn in the same
sense. Notice also that in Figure 1.2, in the upstream region of the jet, one can
see the formation of quasi axisymmetric vortex rings.* Further downstream,
the vortices seem to undergo some sort of pairing, as in the plane mixing layer.
Then the jet breaks down into small-scale turbulence. Numerical simulations
tend to indicate also the occurrence of alternate pairing of vortex rings, a
mechanism resembling helical pairing in mixing layers (see e.g. Fouillet [211],
and the discussion in Lesieur et al. [431]).

All these structures are called coherent because they can be found ex-
tremely far downstream, with approximately the same shape. It is possible
for these coherent vortices to become irregular and unpredictable, and thus
constitute a turbulent field, even if the flow is quasi two-dimensional. Evid-
ence for that is presented in Figure 1.5, showing the vorticity contours in a
two-dimensional calculation of a temporal mixing layer taken from Staquet
et al. [668]: the evolution of the flow after 30 characteristic dynamic initial
times is presented for four independent initial small random perturbations
superimposed upon the basic inflectional velocity shear. The vortices display
some important differences, since there are for instance four eddies in Fig-
ure 1.5-d and only three eddies in Figure 1.5-b. They therefore show some
kind of unpredictability. Let us stress that these temporal mixing layer simu-
lations followed the pioneering calculations of Riley and Metcalfe [599], who
showed how, in two dimensions, Kelvin—-Helmholtz vortices could emerge from
the instability of an inflectional velocity profile perturbed deterministically or
randomly.

Now we define a coherent vortex as a region of space:

e  Where vorticity w concentrates enough so that fluid trajectories can wind
around (a).%

4 They are the axisymmetric equivalent of Kelvin—Helmholtz vortices, and explain
for instance why a smoker can create smoke rings.

5 It is a very simple application of Stokes circulation theorem to show that the
vorticity concentration inside a coherent vortex will tend to entrain the low-
vorticity fluid surrounding it in a motion of rotation. This phenomenon will be
referred to as velocity induction, and exists even in the absence of viscosity.
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e  Which keeps (following the flow motion) a characteristic shape during a
life time T, longer enough in front of their local turnover time w="! (b).
e  Which is unpredictable (c).

In this respect, Kelvin—Helmholtz vortices in a mixing layer, or Karman vor-
tices in a wake, are coherent. Longitudinal hairpin vortices ejected in turbulent
boundary layers or channel flows are coherent as well. Still in the boundary
layers, let us consider the low- and high-speed streaks observed experiment-
ally close to the wall by Klebanoff et al. [334] during transition, and by Kline
et al. [337] in the turbulent stage. Numerical simulations were carried out by
Spalart [663], Robinson [609], and Ducros et al. [180] for the boundary layer,
as well as by Moin and Kim [513] and Kim et al. [330] for the turbulent chan-
nel. These simulations show that the streaks do not correspond to important
longitudinal and vertical vorticity concentrations, but the high-speed streaks
induce high spanwise vorticity fluctuations at the wall (see Chapter 4). How-
ever, the fluid parcels do not wind around the streaks, so that condition a)
is not satisfied, and they cannot be called a coherent vortex. The quasi sta-
tionary apex vortices attached to a Delta wing cannot as well, since they are
predictable.

A coherent structure will just be defined as a region of space which, at
a given time, has some kind of organization regarding any quantity related
to the flow (velocity, vorticity, pressure, density, temperature, etc.). This is
a much broader definition. In this sense, any coherent vortex is a coherent
structure, but the reverse is not always true, as shown by the examples of
streaks close to a wall and apex vortices.

When two coherent vortices of parallel axis and same sign are close enough,
they will tend to rotate about each other, due to the velocity-induction effect
just mentioned above, and will merge: this is the cause of the pairing already
encountered. As stressed in Lesieur et al. [431, p. 26]: during the process, they
form spiral arms reminiscent of galaxies owing to the differential rotation,
since the the angular velocities involved are proportional to =2 (where 7 is
the distance from the fluid to the vortex centre.

If the vortices are antiparallel, the two mutual induced velocities will be
of same sign, and the two vortices will move together forming a dipole. These
dipoles have been found in experiments and numerical simulations done by
Couder and Basdevant [150] (see also the compressible simulations of Fouillet
[211]). They are usually called Batchelor’s couples, from a dipole-like exact
solution of Euler equation discussed in Batchelor [50].

Generally, a coherent vortex corresponds to a low pressure field, since a
fluid parcel in the vortex is in approximate balance (in a frame moving with the
fluid) between the centrifugal force and the pressure gradient. This is no more
true if the fluid is submitted to a strong system rotation, such as large-scale
atmospheric motions: there, the balance, called geostrophic balance, involves
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Figure 1.5. Isovorticity lines, in a two-dimensional periodic mixing-layer calcula-
tion: with four initial velocity fields differing only slightly, a decorrelation develops.
This indicates that the coherent vortices are unpredictable (courtesy C. Staquet,
Institut de Mécanique de Grenoble).

Coriolis force and pressure gradients, in such a way that cyclonic vortices®
correspond to low pressure and anticyclonic vortices to high pressure.

The experimental and numerical visualizations shown in Figure 1.4 and
Plate 1 are a very good example of the revolution which has occurred in our

5 On a rotating sphere of angular rotation vector ﬁ, cyclonic eddies are defined in
order to have a relative vorticity & such that .2 > 0. Therefore, they rotate
anticlockwise in the Northern hemisphere and clockwise in the Southern hemi-
sphere.
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understanding of turbulence over the last 20 years: we are now able to see
the details of the vortices which form inside the flow. Before, we were like
blind people, clumsily trying to develop global theories from measurements
or calculations we could not really interpret. Now, the increasingly fast de-
velopment of visualization devices, both in Computational and Experimental
Fluid Dynamics, sheds a totally new light upon the dynamics of turbulence.
It does not mean that former statistical theories have become obsolete, but
they have to be re-interpreted with the aid of this new knowledge.

Let us stress that mixing-layer formation is extremely common in aero-
nautics, when for instance a boundary layer detaches, and more generally in
the separated flows. It is one of the simplest and richest prototypes of tur-
bulent free-shear flows. An example of separation is given in Plate 3, which
represents the vorticity field in the two-dimensional direct-numerical simula-
tion of the flow above a backward-facing step. The same coherent vortices as
in Plate 1 are shed and undergo successive pairing. They may also be trapped
in the recirculation zone behind the step, or bounce upon the boundaries,
which increases the degree of turbulence and unpredictability. More details
on this flow will be given in Chapter 13.

In the mixing-layer experiment of Figure 1.4, the turbulence in the very
small scales is called fully-developed turbulence. It has some characteristics of
three-dimensional isotropic turbulence (see below). This does not imply that
it has totally forgotten the mechanisms of generation of turbulence, i.e. the
basic inflectional shear, since the longitudinal velocity fluctuations are larger
than their transverse and spanwise counterparts. As far as the large structures
are concerned, they depend crucially on the basic shear, and the terminology
of “developed” cannot be used for them.

Returning to large-scale coherent vortices, they can be found in the turbu-
lence generated in a rapidly rotating tank by an oscillating grid located at the
bottom of the tank. Plate 4 shows a section of the tank perpendicular to the
axis of rotation. Here, the effect of rotation is to induce two-dimensionality in
the flow, and to create strongly-concentrated eddies with axes parallel to the
axis of rotation (Hopfinger et al. [296]). In fact, it will be shown in Chapter 13
that if the rotation rate” is not too high, this favours the formation of cyclonic
vortices, whereas anticyclonic vortices reform together with cyclonic ones at
low Rossby number.

As already mentioned earlier, atmospheric and oceanic flows are highly
unpredictable and fall into the category of turbulent flows. Their dynamics
in the large scales is strongly influenced by their shallowness (the ratio of
vertical scales to the horizontal extension of planetary scales is of the order of
1072 in the Earth’s atmosphere), by the Earth’s sphericity and rotation, by
differential heating between the equator and the poles, and by topography. As

" Measured in terms of a vorticity-based Rossby number |w]|/212.
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Figure 1.6. Image taken by METEOSAT II on 18th September 1983, and showing
a strong depression above the Atlantic, centered 58° north and 18° east (courtesy
METEO-FRANCE).

stressed above, the pressure highs or lows that can be observed every day on
the meteorological maps in the medium latitudes correspond to respectively
anticyclonic or cyclonic large-scale vortices in the atmosphere. They are ap-
proximately in geostrophic balance. Figure 1.6 shows for example an impress-
ive vortex associated to a depression above the Atlantic. To illustrate what has
been stressed above about the change of hemisphere on Earth, Figure 1.7 dis-
plays a meteorological map borrowed from an australian newspaper, showing
an anticyclonic perturbation rotating anti-clockwise around a pressure high
(H), and a cyclonic perturbation rotating clockwise around a pressure low (L).

Plate 5 shows also the eddy field which can be seen from the temperat-
ure measured by satellites on the surface of the Atlantic ocean close to the
Gulf Stream. One can observe similar vortices in the Alboran sea, west of the
Mediterranean. As for the synoptic atmospheric large scales just discussed
above, they result from baroclinic instability, due to the conjugate effects of
rotation and horizontal thermal gradients. It converts flow potential energy
into horizontal kinetic energy (see Chapter 9). Numerous oceanic eddies de-
velop in the Gulf Stream, and in the Kuroshio extension, east of Japan. They
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“TFONTE ]
FORECAST o
el oaliediian |

Figure 1.7. Weather map in an Australian newspaper.

are extremely important for the development and transport of phyto- and
zooplancton.

In the atmospheres or oceans of rotating planets, the concept of rapid ro-
tation can be measured by considering the smallness of a dimensionless para-
meter, the Rossby number, which is defined here as R, = U/|f|L, where U and
L are a typical horizontal velocity and length, respectively, and f = 2(2sin ¢
the Coriolis parameter (p is the local latitude). The simplified models of two-
dimensional or geostrophic turbulence will be considered in Chapter 9 as a
first step towards the understanding of these flows. We will show that the
precision of geostrophic approximation is of order R,. Estimations of this
number are given in Somméria [662] and Lesieur et al. [431]. For L corres-
ponding to large planetary scales (1000 km), U = 30 m/s and at midlatitudes
(f =107* rd/s), one finds 0.3 in Earth’s atmosphere. We have R, = 0.05 for
oceanic mesoscale vortices with (scale 100 km, velocity 5 cm/s). This explains
why geostrophic approximation applies better to the oceans than the atmo-
sphere. In fact, certain developing operational oceanic prediction numerical
codes are based on this approximation. However, the oceanic models have to
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be modified to account for the sinking of cold salty water in the conveyor belt
at the level of northern Atlantic ocean. This phenomenon is crucial, since the
puzzling melting of polar ice with production of fresh water in this region
might stop it. This would have dramatic consequences for the existence of the
Gulf Stream north branch which might disappear, with a severe cooling of
Northern Europe.

We can calculate also Jupiter Rossby number at midlatitude. Since the
planet rotates in 10 h, we have f ~ (24/10)10~%. With a velocity of 100 m/s
and a scale of 10 000 km (the width of the great red spot, see below), we
have R, = 0.04. This is very close to the ocean. On Jupiter the mean cir-
culation of the gaseous outer envelope is strikingly simple, since it consists of
zonal jets going eastwards or westwards. The most convincing interpretation
is based on anisotropic effects due to Rossby waves, arising in inverse en-
ergy cascades of geostrophic turbulence (see Rhines [593], Williams [717,718]
and Chapter 9). Others propose an interaction mechanism between internal
thermal convection and rotation (Busse [90]). Plate 6 shows the global circu-
lation of Jupiter. On can see in particular the great red spot. The origin of
the latter, which is anticyclonic and has been observed for many centuries,
is also quite mysterious, and not well understood yet. It might result from
a mixing-layer instability between the two neighbouring jets, the spot form-
ing after successive pairings of the vortices. But it is difficult to understand
why no other big eddy of this type is found. The width of the jets is of the
same order as the great red spot. Smaller vortices exist also. Notice that the
same kind of intense vortex as the great red spot has been discovered in 1989
on Neptune (great dark-blue spot) by NASA’s Voyager 2 probe. Notice also
that Jupiter’s gaseous atmosphere depth is of the order of 1.5% of its radius,
which might justify the use of shallow-water theories in this case. Laboratory
experiments on rotating tanks have been carried out by Sommeria et al. [661]
in order to identify mechanisms leading to the great red spot formation.

1.3 Fully-developed turbulence

The word “developed” has already been employed for the small-scale three-
dimensional turbulence which appears in the mixing-layer experiments. Fully-
developed turbulence is a turbulence which is free to develop without imposed
constraints. The possible constraints are boundaries, external forces, or vis-
cosity. One can easily observe that the structures of a flow of scale comparable
with the dimensions of the domain where the fluid evolves cannot deserve to
be categorized as “developed”.

The same remark holds for the structures directly created by the external
forcing, if any. So no real turbulent flow, even at a high Reynolds number, can
be “fully developed” in the large energetic scales. At smaller scales, however,
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turbulence will be fully developed if the viscosity does not play a direct role in
the dynamics of these scales.® This will be true if the Reynolds number is high
enough so that an “inertial-range” can develop.” In the preceding experimental
examples of the jet and the mixing layer, one actually obtains fully-developed
turbulence at scales smaller than the large energetic scales and larger than the
dissipative scales. On the contrary, in the majority of grid-turbulence exper-
iments, the Reynolds number is not high enough to enable an inertial range
to develop. The small three-dimensional turbulent scales of the Earth’s atmo-
sphere and oceans, or Jupiter and Saturn, are certainly fully developed. But
the planetary scales of these flows are not, because of constraints due to the
rotation, thermal stratification and finite size of planets. In this monograph,
the term “developed” will mainly be used for three-dimensional flows, though
it could be generalized to some high Reynolds number two-dimensional flows
constrained to two-dimensionality by some external mechanism which does
not affect the dynamics of the two-dimensional eddies once created.

An interesting issue about the structure of fully-developed turbulence con-
cerns the possibility of fractal or multi-fractal distributions. This problem has
been studied by Mandelbrot [469] and Frisch [229].

Finally, we stress that it is possible, for theoretical purposes, to assume
that turbulence is fully developed in the large scales also, when studying
a freely-evolving statistically homogeneous turbulence (without any mean
shear): there is in this case no external force or boundary action.

1.4 Fluid turbulence and “chaos”

The definition of turbulence we have given here is extremely broad, and there
does not seem to be a clear distinction between “turbulence” and “chaos”.
Nevertheless, the word chaos is now mainly used in mechanics to describe a
particular behaviour pertaining to dynamical systems with a limited number
of degrees of freedom: some of these systems, under particular conditions, ex-
hibit solutions which are chaotic in the sense that two points in the phase
space, initially very close, will separate exponentially. The characteristic rate
of evolution of the exponential is called a Liapounov exponent, and must
be positive in order to obtain a chaotic behaviour. In the case of dissipative
systems, this behaviour is generally associated with the existence of strange

8 It will be seen in Chapter 6 that the concept of local energy cascade in high
Reynolds number three-dimensional turbulence implies that inertial forces trans-
fer energy from large to small scales without any influence of viscosity, up to
the so called “dissipative scales” where the kinetic energy is finally dissipated by
viscous forces.

9 See Chapter 6.
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attractors around which the trajectory of the point representing the system
will wind up. One of the most famous examples of that is the Lorenz attractor,
a three-mode dynamical system derived from the equations of thermal convec-
tion (Lorenz [453]). Figure 1.8, taken from Lanford [373], shows for instance
a numerical simulation of the Lorenz attractor for values of the parameters
corresponding to the following dynamical system:

dx
=-10 10
dt z+ 10y
d
dg; =280 —y—az (1.2)
dz __8 4T
a - 3 MW

In fact, the first historical example of unpredictability was given by the math-
ematician Henri Poincaré [579] in 1889: he discovered a deterministic chaotic
behaviour in the frame of a three-body problem (e.g. Earth-Moon-Sun) in ce-
lestial mechanics. Poincaré applied also this concept to discuss the formation
of hurricanes, and why natural phenomena were apparently random. He pro-
posed that uncertainties in the observations of an initial state would forbid a
precise deterministic prediction.

Chaos has now become an entire discipline in itself, covering domains that
are sometimes extremely far from fluid dynamics. Its relations with the latter
are up to now limited to some aspects of the transition to turbulence, in the
thermal convection problem in particular, and it is not our intention to in-
clude this topic in the present monograph. The reader is referred to Bergé et
al. [55] for further details on this point of view. An attempt to apply it to the
wall-region in the developed turbulent boundary layer has been undertaken
by Lumley and colleagues (see Aubry et al. [21]), who use a Galerkin projec-
tion of the velocity field on a proper set of eigenmodes of the Reynolds tensor
(uju’;), where the u’ refer to the fluctuations of the velocity with respect to the
mean velocity (u): once having been properly truncated in order to retain only
longitudinal modes,'® the system exhibits a chaotic behaviour resembling the
occurrence of intermittent bursts in a turbulent boundary layer. More details
may be found in the very original book of Holmes et al. [293]. The difficulty
with this approach lies in the necessity of knowing in advance the eigenmodes,
which requires the knowledge of the Reynolds tensor, either from experiments
or numerical simulations: hence, the analysis is not predictive in the sense that

10 That is, independent of the flow direction. It is in fact an important issue to
know in which conditions these modes are dominant or not. This question will be
addressed at several occasions throughout the present book.
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it needs the problem to have already been investigated experimentally or nu-
merically. It necessitates also the modelling of small-scale turbulence, as in the
subgrid-scale modelling problem which will be discussed in Chapter 12. These
so-called proper orthogonal decompositions (POD) have also been applied to
the mixing layer by Delville et al. [166], and to the round jet by Glauser et
al. [259]. They show that the first mode in the expansion contains most of
the energy, and that the associated spectrum is not far from Kraichnan’s k=3
enstrophy cascade spectrum of two-dimensional turbulence (see Chapter 8).
As for the second mode (associated to small scales), its spectrum is close to
Kolmogorov’s k—%/3 energy cascade characteristic of three-dimensional turbu-
lence (see Chapter 6). More recent works based on this analysis concern the
plane mixing layer (Druault et al. [175]), and a mixing layer/wake interaction
(Braud et al. [79]).

An important outcome of POD is the fact that most of the informations
relative to a given complicated random signal can be kept in a small number
of modes, so that POD have become in signal processing a powerful and cheap
way of compressing the data. Another manner for doing that is the wavelet
approach, for which the reader is referred to the book of Meyer [502].

Another chaotic approach to turbulence introduces the concept of chaotic
advection (see Aref [12,13] for a review), where even a low number of point
vortices in a two-dimensional flow can stir passive tracers in a chaotic manner.
However, it is not clear, up to now, how these concepts can be applied to
developed turbulence.

We would like to stress, however, that there is a-priori no contradiction
between the “chaos philosophy” and the point of view which will be presented
here: while dynamical systems limit their space dependance to a small number
of degrees of freedom, and are only chaotic in time, a turbulent flow has
generally a large number of spatial degrees of freedom and exhibits a chaotic
behaviour in both time and space. As a matter of fact, fluid turbulence is
sometimes referred to as a “spatio-temporal chaos” (see Favre et al. [200-
202] for a discussion on this point). Like chaotic dynamical systems, fluid
turbulence also displays unpredictability, as already stressed: the degree of
unpredictability can be measured locally in space for a given spatial wave
length, and exchanges of predictability exist between the spatial scales (see
also Chapter 11).

1.5 “Deterministic” and statistical approaches

We will show in Chapter 2 how the fluid satisfies, for macroscopic scales
large in front of the microscopic molecular scales, partial-differential equa-
tions called the Navier—Stokes equations. There is ample evidence that these
equations describe properly turbulent flows, even in hypersonic flow situations
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X

Figure 1.8. Computer plot of the Lorenz attractor, from Lanford [373] (courtesy
Springer-Verlag).

up to a Mach number of the order of 15. The smallest macroscopic scale §1
is smaller than the Kolmogorov dissipative scale [4, characteristic of the dis-
sipative scales already introduced, and much larger than the mean-free path
of molecules. In fact, Navier—Stokes equations refer to quantities such as the
velocity, pressure, temperature, density, which are spatially averaged on ele-
mentary control volumes of size ~ dl. From a mathematical viewpoint, how-
ever, the spatial scales in these equations can be as low as necessary.

1.5.1 Mathematical and philosophical considerations

We begin with the postulate that fluid turbulence satisfies Laplace principle
of determinism (see Gayon [245]): if the initial positions and velocities were
known, for a given time ¢y, at all scales,!! then there exists only one possible
state for the flow at any time ¢ > to. Laplace [376] formulated this idea in
1814 in his Philosophical essay on probabilities. As recalled by Gayon, this is
a quotation of Laplace:

We must envisage the universe present state as the effect of its anterior
state, and as the cause of the following one. If an intelligence knew at
a given time all the forces which animate nature, and the respective
situations of beings which compose it, if it was vast enough to submit
these data to analysis, then it would embrace in the same formula

1 With a given set of boundary conditions and a proper external forcing.
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motions of the largest bodies of universe and those of the lightest
atom: nothing would be uncertain to it, and the future together with
the past would be present in front of its eyes.

Laplace thought also that man could never have all the required knowledge
in all details for that, which justified the use of probability theories.

Mathematically, Laplace principle is nothing more than an assumption of
existence and uniqueness for the solutions of the Navier-Stokes equations:!'?
such a result exists in two dimensions (Lions [450]), but holds only for finite
times in three dimensions (Leray [409], see Temam [682] for a review'?). Phys-
ically, it is nevertheless to be expected that the presence of molecular viscosity
in the Navier—Stokes equations will smooth the solutions sufficiently, in order
to prevent the appearance of any singularity and the bifurcation'* to another
solution.

1.5.2 Numerical simulations

We conclude from these considerations that fluid turbulence is a determin-
istic phenomenon, although it evolves with time in a very complicated way,
due to the nonlinear interactions. It seems of course impossible to consider
theoretically for arbitrary times the deterministic evolution of a given turbu-
lent flow, starting with a given field of initial conditions. Nevertheless such
an approach will be shown here as becoming promising from a numerical
viewpoint, due to the significant recent development of scientific calculators:
indeed, these last two decades have seen extraordinary progress in the speed
and capacity of computers, to such a degree that the numerical resolution of
the Navier—Stokes equations is now at hand in some turbulent situations: it is
based on a proper discretization of the space-time on a grid of mesh Ax, At.
The spatial and temporal partial-derivative operators are evaluated with the
aid of appropriate algorithms (spectral, or finite-difference, or finite-volume,
or finite-elements methods are used). Starting from a given initial state, and
with a given set of boundary conditions, one can thus calculate determinist-
ically the time evolution of the flow. If the spatial mesh size is taken small
enough to capture the finest scales (e.g. the Kolmogorov dissipative scale),
one will talk of a direct-numerical simulation (DNS). Such an approach is

2 Remark also that Laplace spoke of being able to predict the future and the past.

13 These solutions have to be understood in the weak sense: one just considers space
integrals of the solution multiplied by a regular test function, and allows to use
part-integration rules.

4 Here, we consider the evolution of a time-dependent system with fixed external
parameters. The theory of “bifurcations” concerns the exchange from one to an-
other stationary solution in a system when one of the external parameters is
varied (see Iooss and Joseph [310] for a review).
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generally limited to moderate Reynolds number flows, otherwise it becomes
too costly. Let us consider for instance a typical simulation of isotropic tur-
bulence carried out using pseudo-spectral methods at a resolution of 1283
collocation points. If five scalar fields need to be stored at two time steps ¢
and t — At, this represents about 20 Megawords to store in central memory,
each word corresponding to 64 bits in double precision. Such a resolution re-
quires about 3.6 billions of operations per time step. A complete evolution
involves several thousands of time-steps, and will therefore take several hours
on a 2 Gigaflops machine. This was done in 1995. Now (in 2006) it is possible
to run DNS of isotropic turbulence at a resolution of ~ 10003 on the japonese
machine “Earth Simulator”, which has a power of more than 30 Teraflops
(see Ishida et al. [311]). One sees that it takes about 10 years to multiply the
resolution by ten in each direction of space. This is very slow, and still too
low to expect to solve soon by DNS realistic flows at high Reynolds number
(see the discussion on that in Lesieur et al. [431]).

A promising approach at high Reynolds numbers is the large-eddy simu-
lation (LES), where the small scales are filtered out, and only the evolution
of the large scales is computed, with a proper modelling of the subgrid scales.
Decisive advances have been made with this tool these last years. Indeed,
LESs allow to determine the dynamics of coherent vortices and the statistical
quantities of turbulence for a large class of flows ranging from isotropic turbu-
lence to mixing layers, jets, separated flows, boundary layers, rotating flows,
both in the incompressible and compressible cases. LES is about [10 ~ 100]
times faster than the DNS when the latter is possible. The reader is referred
for that to the book of Lesieur et al. [431], whose formalism and techniques
are borrowed from the present book. Other useful references are the books of
Geurts [252], Sagaut [624] and Pope [583].

In fact LES contain some errors due to the inaccuracy of the numerical
schemes, to our current ignorance vis-a-vis the small scales, and to the lack of
detail concerning the initial and boundary conditions. These errors are gen-
erally amplified by the nonlinearities of the equations, and after a period of
time the predicted turbulent flow will differ significantly from the actual field.
It follows that, even for a deterministic system, unpredictability and random-
ness will be introduced. The large-eddy simulations are nevertheless extremely
useful, for they generally predict the shape (but not the phase — or exact po-
sition) of the large vortices existing in the flow. They also often contain the
statistical information needed by the engineer, which can be derived from a
single realization without any recourse to a costly ensemble averaging.

1.5.3 Stochastic tools

It is also very useful to employ stochastic tools and consider the various
fluctuating quantities as random functions. For fully-developed turbulence,
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these functions will be assumed to be statistically invariant under transla-
tions (homogeneity) and rotations (isotropy). This monograph will extens-
ively study the dynamics of isotropic turbulence, in particular the energy
transfers between the various scales of motion. Emphasis will be given to the
analytical statistical theories (also called stochastic models or two-point clos-
ures) developed in particular by Kraichnan and Orszag. More details on these
methods can also be found in Leslie [432] and Orszag [553].

To conclude this section, and at the risk of becoming repetitive, we stress
again that it might be erroneous to oppose the so-called deterministic and
statistical points of view of turbulence: the deterministic approach can be,
computationally speaking, extremely expensive, and a statistical theory or
modelling may prove to be very useful in the isotropic case. We discuss below
the use of statistical theories for inhomogeneous turbulence.

1.6 Why study isotropic turbulence?

One might argue that no real turbulent flow is isotropic or even homogen-
eous in the large scales. Isotropy and homogeneity can even be questionable
in the small scales. But these assumptions will allow us to employ easily the
analytical statistical theories mentioned above. Such theories are extremely
powerful in the sense that they permit one to deal with strong nonlinearities
when departures from Gaussianity are not too high. The point of view de-
veloped here is that these techniques describe satisfactorily the dynamics of
the small three-dimensional scales of a turbulent flow at the level of second-
order statistical moments, and also allow one to model their action on the
anisotropic large scales. The latter will generally require the numerical large-
eddy simulations mentioned above and which will be discussed in Chapter 12.
In those particular cases when the turbulence is constrained to quasi two-
dimensionality, such as in large-scale atmospheric or oceanic situations, the
two-point closures may also be a good tool to study the statistics of the large
scales and their degree of predictability: it is by using one of these closures!'®
that Lorenz [454] could show how, in two-dimensional isotropic turbulence,
the initial uncertainty in the small scales was transferred to the large scales in
a period of time which, converted into atmospheric parameters, gave a limit of
10 days to the predictability of the Earth’s atmosphere (see Chapter 11 for de-
tails). Such information about the spatial inverse cascade of error could never
have been obtained from the dynamical system approach followed earlier by
Lorenz [453].

15 The Quasi Normal approximation, see Chapter 7.
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1.7 One-point closure modelling

There is another approach of turbulence, mainly developed in order to model
inhomogeneous flows in practical applications, known as “one-point closure
modelling”: it starts with the exact Reynolds equations for the mean motion
(@), where the turbulent fluctuations are introduced through their second-
order moments at the same point in space (see Chapter 4). The latter need to
be modelled in terms of the mean flow, and the simplest way for doing that
is to use an eddy-viscosity assumption, where the eddy viscosity is calculated
with the aid of Prandtl’s mixing-length concept [587] (see Schlichting [635]
for details). This allows one to calculate the mean characteristics (velocity
profiles, spreading rates) of simple turbulent shear layers such as jets, wakes,
mixing layers, or boundary layers on flat plates, as is done in Chapter 4.
More refined modelling techniques involve supplementary evolution equations
allowing one to determine either the eddy viscosity, such as the K — € model
(see Launder and Spalding [388]), or the second-order moments themselves
(see Lumley [456] and Launder [389]). Recent developments can be found in
the books of Pope [583], as well as Durbin and Pettersson Reif Chichester
[182]. These techniques, which will not be discussed here, can be extremely
efficient for flows of engineering interest when numerous similar calculations
under various conditions have to be repeated, in order to find a quick optimal
solution to a problem such as the design of an airfoil or of a heat exchanger
in a nuclear plant. But they do not give one a detailed understanding of
the physical processes really involved, and pose problems for a large class of
flows (separated, heated, rotating, compressible, etc.). Informations or new
concepts derived from two-point closure approaches may be useful for one-
point closure modelling. This is true in particular for the decay laws of kinetic
energy and passive scalar variance, obtained in Chapter 7 with the aid of
stochastic models, and which are useful in the implementation of the K — ¢
method. It is certain that the development of DNSs and LESs is of upmost
importance to assess and improve the classical one-point closures, by allowing
a direct calculation of the various Reynolds stresses and pressure-velocity
correlations in some simplified test cases.

1.8 Outline of the following chapters

The present monograph is organized as follows: we give in Chapter 2 a review
of the basic equations of Fluid Dynamics, focusing on the various approxima-
tions relating both to compressible gases and to Geophysical-Fluid Dynamics
situations. We will put emphasis on the dynamics of vorticity and potential
vorticity, and the role of rotation and stratification. Internal and external
inertial or gravity waves will also be considered from a linear point of view.
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Chapter 3 will consider the problem of transition to turbulence: we will first
summarize some basic results of the linear hydrodynamic instability theory
in two or three dimensions, applied to parallel free or wall-bounded shear
flows. This will allow us to introduce a discussion on the various instabilities
participating in the process of transition to turbulence in shear flows, and
the associated vortex dynamics. Instabilities leading to aligned and staggered
patterns will be considered as well. The role of viscosity will be discussed. We
will consider also transition in thermal convection, mostly within the frame
of Rayleigh—Bénard instability.

Chapter 4 will deal with developed free-shear and wall-bounded turbu-
lence. It will be considered successively from the statistical (mixing-length
theory) and the coherent vortices point of views. We will look at spiral and
longitudinal vortices forming in mixing layers, jets and wakes, as well as pos-
sible occurrence of dislocations through helical pairing or alternate pairing. In
boundary layers, we will discuss the relation between streaks and longitudinal
vortices. We will also try to point out the analogies which may exist with the
transition stage. We will finally push further the discussion about the concepts
of coherence, order and chaos, and how they can apply to fluid turbulence.

Chapter 5 will introduce the mathematical tools of the spectral statist-
ical analysis of turbulence, which are needed in the remainder of the study.
One will introduce in particular Navier—Stokes equations in Fourier space, ho-
mogeneity, isotropy, axisymmetry, Craya decomposition,'® and helical-wave
decomposition. Chapter 6 will present isotropic turbulence, mainly from the
point of view of phenomenological theories (Kolmogorov-type theories) and
direct-numerical simulations. Turbulence diffusion and noise generated by tur-
bulence will also be considered in this chapter.

Chapter 7 will still deal with isotropic turbulence, and present statistical
models based on two-point closures, as well as related stochastic models. They
will again be applied to turbulent diffusion problems. A presentation of the
Renormalization Group Techniques will be given as well.

Two-dimensional turbulence corresponds to a lowest-order approximation
of the dynamics of atmospheres and oceans on a rapidly-rotating planet, and
applies also to M.H.D. turbulence and plasma physics. It will be extensi-
vely studied in Chapter 8, with presentation of new DNS and LES results.
The so-called “quasi geostrophic” (or simply “geostrophic”) approximation,
which takes into account some coupled effects of stratification and rotation
within a two-dimensional formalism, will be looked at in Chapter 9. In this
chapter, one- and multilevel shallow-water equations will be also studied. Fi-
nally, we will consider many aspects of baroclinic instability, leading to storms
in Earth atmosphere. We will study Ekman layers and Rossby waves propaga-
tion. Somme applications to Jupiter will be given.

16 Also called vortex-wave expansion.
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Chapter 10 will present the statistical thermodynanics of truncated Euler
equations, and discuss to what extent this study applies to real dissipative
systems, both in three and two dimensions. It is accompanied by Chapter 11,
which will consider the problem of turbulence from the point of view of stat-
istical unpredictability theory. This addresses the question of the meaning of
deterministic numerical simulations. Chapter 12 will present the techniques of
large-eddy simulations, which, as already stressed, open new tracks for under-
standing coherent-vortex dynamics and modelling industrial or environmental
flows, both in incompressible and compressible cases.

The last chapter will consider turbulence in four situations of great prac-
tical importance: stable stratification, solid-body rotation, separation, and
compressibility. The dynamics of these flows is not, up to now, complete-
ly understood, and they constitute challenging examples of application for
the numerical simulations. We will see in particular how the coherent vor-
tices and structures are modified. The first two examples relate mainly to
oceans-atmosphere dynamics,'” and the last two concern internal or external
aerodynamics. Understanding the effect of compressibility on shear layers is
of prior importance for the design of hypersonic or supersonic planes.

In summary, this unique textbook starts from basic principles of fluid dy-
namics for flows of arbitrary density (incompressible and compressible). It
reviews the main theorems of vorticity dynamics and scalar mixing for non-
rotating or rotating flows, as well as basis of linear-instability theory (including
thermal convection). It introduces clear definitions of turbulence in fluids and
of coherent vortices. Then it presents from a physical point of view based on
experiments and numerical simulations transition and developed turbulence in
shear flows (free or wall-bounded). The latter do show an astonishing univer-
sality when submitted to rotation. A substantial part is devoted to stochastic
spectral theories of isotropic turbulence called two-point closures, in which the
author is expert. The book shows how these closures help deriving advanced
models for the very important problem of large-eddy simulations, where the
small scales may be eliminated, implying major time savings in the compu-
tations. Applications given are of great interest for aeronautics and space,
combustion, chemical engineering, nuclear engineering, hydraulics, meteoro-
logy, oceanography and astrophysics. The latter applications are reinforced
by two chapters on two-dimensional and quasi geostrophic turbulence, very
important for large-scales atmosphere and ocean dynamics.

17 Although the effect of rotation may be important in turbomachinery.
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Basic Fluid Dynamics

As already stressed in Chapter 1, the validity of the Navier—Stokes equations
in describing the phenomenon of turbulence in fluids is no longer a topic for
serious debate. Further arguments are that very well-resolved direct-numerical
simulations of these equations applied to turbulent flows such as jets or chan-
nels give good results by comparison with experiments, as far as statistical
quantities such as mean and rms velocities or Reynolds stresses are concerned.

We will recall in this chapter the basic equations of fluid mechanics and
the dynamics of vorticity. One will look in particular to the possible influence
of a solid-body rotation of angular velocity ﬁ, due for instance to the rotation
of the Earth (when one considers the motion of the atmosphere, the oceans,
the outer core), a planet, a star, or a turbomachine. We will discuss the ap-
proximation of incompressibility for the velocity field, which will be often used
in this book: it will allow us to discard the acoustic waves, while taking into
consideration various heated or stable density-stratified flows. The Boussinesq
approximation, in particular, allows one to study the effects of buoyancy. The
reader is referred to numerous textbooks (see e.g. Batchelor [50] and Gill [258])
for the complete derivation of these equations.

2.1 Eulerian notation and Lagrangian derivatives

Let us consider an orthonormal reference frame which can be at rest (that is,
Galilean) or rotating with a solid-body rotation @ with respect to a “fixed”
frame. A “fluid particle”, of size large in comparison to the molecular scales
and small in comparison to the Kolmogorov dissipation scale introduced in
Chapter 1, and located in & at time ¢, will have a velocity @(Z,t) with re-
spect to the reference frame.! The components of the velocity will be u; (%, t).

! In fact, & should be considered as the gravity centre of the fluid particle.
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Let p(Z,t) be the density of the fluid element passing by & at time ¢. This
notation corresponds to the Eulerian formulation. Let A(Z, ¢) be any quantity
associated with the motion of the fluid. When the fluid particle considered
above moves, it produces a variation of A , and the derivative of A following
the fluid motion in the reference frame will be denoted D A/Dt. The operator
D/ Dt is the Lagrangian derivative (“Lagrangian” means here “following the
motion”, and is not to be confused with Lagrange variational approaches in
analytical mechanics). One can show very easily that
DA 0A  _ =
Dt = ot +u.VA. (2.1)
In a given Cartesian frame of coordinates z;, and if the velocity-vector com-
ponents are u;, we have
L= 0
UV = bt 81'1 + u28x2 8‘%3 '
Let us consider now a vector field @(Z,t) moving with the flow. One has in
the same way

+ us

Dad 0ad . oa
= + (w.V)ad =
Dt ot ( ) ot
where ® stands for a tensorial product, and Vi is a tensor whose components

are given by the matrix [0a;/0x;]. Let us consider in particular the velocity-

+Va®i,

gradient tensor Vii. The acceleration of the fluid is given by

Di 0u =, 00U =,
Dt = o + (@.V)u = ot +Vi®u. (2.2)

The velocity-gradient tensor may be split into its symmetric S and antisym-
metric w parts, such that

Vi=5+w
le, = le, =-u
S = 2[Vu+Vu| ], w= 2[Vu—Vu| ].
where ﬁmt is the transposed velocity gradient tensor. Introducing the vorti-
city vector J = V X u, one can show that
1

wR = 2cZ)'>< , (2.3)

where the tensorial product applies here to a vector.
Now let 6V be the volume of the small fluid particle. It can easily be

shown, for instance by the change of coordinates ¥ — Zp, where Z; is the

original position at some initial time ¢y of the fluid particle located in Z at
time ¢ > ¢ (see Lamb [365]), that the divergence of the velocity is given by

. 1 DV
V'U_JV Dt (2.4)
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2.2 The continuity equation

This equation is the mass conservation equation: let ym = p JV be the mass
of the fluid particle. It is conserved following the fluid motion, since average
exchanges of mass with the surrounding fluid, which are due to molecular
diffusion across the boundary 9(6V) of 6V, will be zero for macroscopic time
scales large in comparison to the molecular time scales. Hence, the logarithmic
Lagrangian derivative of dm will also be zero, and one obtains

1Dp 1DV _

=0 2.5
p Dt + oV Dt (25)
or equivalently, because of Eq. (2.4)
1Dp =
= 2.
» Dt +Vau=0 (2.6)

which is the continuity equation. The particular case of incompressibility (con-
servation of volumes following the fluid motion) reduces to

Dp

V.i=0
V.u , Or Dt

=0 (2.7)
Notice that, at this level, incompressibility does not imply a-prior: that the
density is uniform in space: a counter example is given in ocean dynamics,?
where the motion is approximately incompressible, but where there exists a
thermal stratification responsible for spatial density variations.

2.3 The conservation of momentum

The second law of motion is obtained by applying to the fluid particle the
fundamental principle of Newtonian mechanics, namely

—

dm ?;; = [body forces] + [surface forces] . (2.8)
The body forces applied to the fluid particle are gravity dm g , the Cori-
olis force (if any) —2 dm §2 x i@, and possible other external forces (like the
Lorentz force in the case of an electrically-conducting flow). We recall that 0
may be Earth (or another planet) angular rotation vector, or the rotation of
an experimental apparatus in the laboratory, and that we are working in a
relative reference frame rotating with this angular velocity . The gravity g

2 If salt budget is considered, salt exchanges across 9(6V) should be taken into
account in the mass budget of the fluid.



28 2 Basic Fluid Dynamics

is irrotational, and includes both the Newtonian gravity and the centrifugal
force implied by the frame rotation. Thus, § may have spatial variations while
being irrotational. The possible variation of @ with time has been neglected.
Notice that such an assumption might be questionable in the context of Earth
for studies related to climate or to magnetic-field generation, which may in-
volve periods of time of several thousand years or more. The reader is referred
to Munk and MacDonald [528] for a detailed discussion of the variation of £2.
As shown in Batchelor [50], the fact that the surface forces applied to the
fluid particle have to be proportional to §V in order to balance the two other
terms of Eq. (2.8) implies the existence of a stress tensor o = [0;;] such that
the force exerted by the fluid on one side of a small surface dX oriented by a
normal unit vector 7 (pointing towards the region of fluid considered) is

df =0 @ dY . (2.9)
This yields in Cartesian coordinates
dfl‘ =045 Ny dx . (210)

In a Newtonian fluid, the stress tensor is assumed to be linear with respect to

the deformation tensor
1 /0u; Ou;
Sij = J 2.11
i 2<axj+ax,»> (211)

and isotropic. Hence, it is found (see e.g. Batchelor [50]) that

0ij = —D (Sij +u l:(gz; + gZZ) - ;VU (Sij:| (2.12)
where §;; is the Kronecker tensor and g the dynamic viscosity. Following
Batchelor [50], we have defined the pressure p with the aid of the trace of the
stress tensor (p = —(1/3)0y;, with summation upon the ). Furthermore, we
will identify this pressure with the thermodynamic pressure (static pressure).
This permits to avoid the use of a second viscosity coefficient in Eq. (2.12).
The dynamic viscosity ¢ may vary with the physical properties of the fluid, as
in gases at high temperature, or Earth outer mantle, where cellular thermal
convective motions are responsible for the sea floor spreading and the existence
of dorsal and subduction zones (see e.g. Allegre [5]).

In fact, the notion of a viscous stress is in Newton’s principles, recalled in
Rouse and Ince [619], which state that

the resistance arising [...] in the parts of a fluid is [...] proportional
to the velocity with which the parts of the fluid are separated from
one another.
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Such a simple idea leads in particular to the significant result that, in the
case of a parallel flow along a material plane surface, the tangential force
exerted per unit surface area by the flow on the surface and which tends to
entrain it is proportional to p OU/9n, where 7 is the unit vector normal to
the surface (directed towards the flow) and U the velocity component normal
to 7. This result can be easily deduced from Eq. (2.12), to which it gives a
firm physical basis. In this case, the normal force exerted on the surface is
—p 71, in agreement with the physical role of the pressure. Notice also that,
in the general case, the force normal to dX is equal to —[p + (2/3)uV.1] 7,
and contains a small viscous contribution which is zero only when the fluid is
non-divergent.
Therefore Eq. (2.8) becomes, after integration of the surface forces over
the surface of the fluid particle
D’U,Z‘ = 1 80'7;]‘

= (§— 20 x i) +

it o (2.13)

Du; S 19p 1 0 Ou;  Ouy 25
= (§— 202 x 1), {(axj + 81‘1) 3V.u 5”} (2.14)

which is the momentum equation for a compressible fluid.

pOx;  pOx; a

2.3.1 Variable dynamic viscosity

In general, the viscosity u is a function of temperature. This is the case in
aerodynamics when the Mach number is close to one or higher, or when the
fluid is strongly heated by some source. In this case, we have to know the
function p(7T) in Eq. (2.14). For air, it is called Sutherland’s empirical law,
and writes (see e.g. Lesieur et al. [431])

1/2
T > 1+ 5/273.15 (2.15)

() = p(273.15) (273.15 14 8/T
with £(273.15) = 1.711 10~°PI

and S = 1104K
There is an extension to temperatures lower than 120K in the form
w(T) = u(120) T/120 VT < 120 . (2.16)

The viscosity p is then an increasing function of 7. For temperatures higher
than 120K, this yields in particular
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W) ( T )1/2 1.38

~ . 2.1
1(293) — \ 293 1+ 110/T (2.17)

293K is the temperature of air in a room at ambient temperature. Eq. (2.17)
shows that the relative molecular viscosity with respect to this state is 1.06
with 7' = 313 K (atmosphere close to the tropics, or during a heat wave), 1.20
with T = 373 K (temperature of steam in a pressure cooker jet), 1.42 with
T = 473 K (temperature of a cooking oven), and 3.42 with 7" = 2000 K (tem-
perature outside a space shuttle during reentry). Remark that some authors
take pu(T) oc TO7 (see e.g. Coleman et al. [130]).

For flows for which we may neglect spatial variations of temperature T,
Eq. (2.14) yields

Di . o~ . 1= o 1o
D _g—Zqu—pr+V[V u+3V(V.u)} , (2.18)
with Di 97
u [ -
= u.Viu 2.1
Dt 8t+uVu, (2.19)

where v = u/p is called the kinematic viscosity. It is this viscosity that has
already been introduced in Chapter 1 to define the Reynolds number. The
term proportional to v in the r.h.s. of Eq. (2.18) characterizes the diffusion
of momentum due to molecular exchanges between the fluid particle and the
fluid surrounding it. When the velocity is non-divergent, which will very often
be the case in the present monograph, the dissipative term reduces to vV>2.
Notice that if other driving forces exist, they have to be added to the r.h.s. of
Eq. (2.18).

2.3.2 Navier—Stokes and Euler equations

The system of equations (2.6) and (2.14) (or Eq. (2.18)), supplemented by
an energy equation (see next section) is called the Navier—Stokes equations.
The momentum equation Eq. (2.14) without the viscous terms is called the
Euler equation, and was derived by Leonhard Euler in the middle of the 18th
century. He did not consider the effect of rotation. Let us quote Lesieur [424,
p. 33]:

Leonhard Euler, a famous swiss mathematician, spent 15 years in Rus-
sia as physics and mathematics professor, thanks to Daniel Bernoulli
(see below) who had recommended him to Catherine the 1st. He left
Russia in 1741, to come back in 1766 upon invitation of Catherine the
great. The equation of fluids motion which brings his name is the first
historic example of partial-differential equations (... ). This equation,
proposed as soon as 1750, is only valid for a “perfect fluid”, that is to
say where viscous effects are neglected.
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History has been quite unfair to Euler, since the only role of Navier was,
70 years later, to model approximately the missing viscous term of the FEuler
equation, using physical ideas contained in Newton’s principles. As for Stokes,
the latter had no role in the establishment of the equations of motion, but
studied them in strongly viscous cases, where the quadratic term @.Vi in the
r.hs. of Eq. (2.19) is discarded. For more details on these historic aspects of
fluid dynamics, the reader is referred to the very interesting book by Rouse
and Ince [619].

2.3.3 Geopotential form

Eq. (2.18) can be written in an alternative way, by introducing the geopoten-
tial @, such that .
g=—-Vo (2.20)

and which contains both the effects of Newtonian gravity and of the centrifugal
force. Noticing that
- 2

(Vmeﬂzﬁﬁa—€2 (2.21)

Eq. (2.18) writes

o = J . 2 9, lo o
+W+20)xd=— Vp-V |P+ +v |Viu+  V(V.ad)|. (2.22)
ot p 2 3
We recall that & is the vorticity of the fluid (in the rotating frame):
G=Vxi (2.23)
One notices also in Eq. (2.22) the appearance of the absolute vorticity

Ga=&+2 03 (2.24)

which is the vorticity of the fluid in an “absolute” reference frame, and will
be seen to play an interesting role with respect to the relative flow @ in the
rotating reference frame.

With the mass conservation, we have two equations for three unknown
variables 4, p, p. The last equation will come from thermodynamic principles
developed in the following section.

2.3.4 First Bernoulli’s theorem

A last remark concerns the 1st Bernoulli’s theorem, due to Daniel Bernoulli
[58] in 1738, which is anterior to Euler’s equations, and was derived using the
kinetic-energy theorem. It has very important applications in fluid dynamics.
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Ug

Figure 2.1. Applications of Bernoulli’s theorem to a rotating object.

We are going to demonstrate it with the aid of Euler equations: assume that
the flow is inviscid (v = 0), incompressible according to Eq. (2.7), and time-
independent (9/0¢ = 0, which implies D/ Dt = @.V). Hence, taking the scalar
product of Eq. (2.22) by #, one obtains:

D 2
@ 0. 2.2
Dt (p+p +p2> 0 (2.25)

Therefore the quantity (p + p@ + pu?/2) is conserved following the motion.
The consequences of the theorem are numerous. We give here three examples.

e Balls lift:

We consider a rotating object (see Figure 2.1). In the frame fixed to its centre
(but not rotating), and taking into account viscous friction at the surface of
the object, the flow above (velocity Uy) will be slowed down, and the flow
underneath (velocity Us) will be accelerated. We write

1 1 1
P+ U =prt pUL =pat U3 .

Since Uy > Uj,p1 > p2, and the object will be submitted to a force from
top to bottom. When applied to a rotating cylinder, this is called Magnus
effect. Numerous applications exist in ball sports such as tennis, football,3
ping-pong, etc.

o Airfoil lift:

In aeronautics, if a flow separates around an assymmetric airfoil and reforms
behind, the velocity differences implied by the different paths followed by the

3 Mainly soccer, where it allows to mark directly during corner kicks. In American
football and rugby, the ball is rotated more to stabilize it as a rotating top.
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fluid particles on each side of the airfoil will generate pressure differences
between both sides, and hence lift (see Figure 2.2a).

e Atmospheric highs and lows:

In meteorology, let us consider two air masses initially very close (same pres-
sure and velocity), which are entrained into respectively a cyclonic and an
anticyclonic perturbation: the fluid particle trapped into the depression will
acquire a higher velocity than the one going into the pressure high. This is
one of the reasons why winds tend to be strong in the troughs and weak in
the highs* (Figure 2.2b).

(2) (v)

: +

Figure 2.2. Applications of Bernoulli’s theorem to (a) lift exerted on an airfoil;
(b) winds generated in pressure highs and troughs.

2.4 The thermodynamic equation

Let us first take the scalar product of Eq. (2.13) by pi, and integrate over
0V. After some manipulations, and provided the geopotential @ is time inde-
pendent, one obtains:

D (u2 ) ou;
+ & pdV = w05 dX — / (o2 dv (226)
Dt Jsv \ 2 aev)y v Ox;

with summation over the repeated indices. This is nothing more than the
kinetic-energy theorem for the fluid particle. Since the first term of the r.h.s.,
P = f8(5V) u;o35n; dX, represents the rate of work done by the surface

stresses per time unit, the second term

-Pi = —/ O’Z‘j(aui/al'j) dVv (227)
(2%

4 But the major reason of this is due to baroclinic instability, see Chapter 9.
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is the rate of work done by the forces internal to 6V. Using Eq. (2.12), this
term turns out to be equal to

- 1
P,' = / l:p Vi — 2M (SijSij - SSZZSJJ>:| dVv , (228)
oV

where S;; is defined in Eq. (2.11). P; is thus decomposed into an internal pres-
sure forces contribution, and a negative viscous contribution, corresponding
to an internal dissipation of kinetic energy due to viscous stresses inside V.

Now, let e; be the internal energy per unit mass of the fluid particle. The
first law of thermodynamics yields

D

2
Dt <u2 +o+ ei> pdV = dm @ — [molecular diffusion heat loss] + P.,
' (2.29)
where @) is the rate of heat per mass unit supplied to the system, e.g. by
radiative, chemical or nuclear processes. Let A be the thermal diffusivity, such
that the rate of heat transport across a small surface dX oriented by the unit
normal vector 7 is equal to, according to Fourier law:
oT -
—-A d¥X =-X\(VT). 7 dX , (2.30)
on
where T' is the temperature. The rate of heat loss of the fluid particle is then
given by —V.(AVT) 0V. Using Eq. (2.26), one obtains

Dei . 1= = Pi
= . T) — 2.31
=0+ g0 - T (2.31)
or, using Eq. (2.27):
D 1 = = 1
= Q + P V.(AVT) — i V. +2v (SijSZ‘j — 3Si¢5jj> . (2.32)
In Eq. (2.32), M(T') is also a function of T, as v = u(T')/p. We will neglect the

thermal forcing @ (which could nevertheless be introduced if necessary), and
introduce the enthalpy of the fluid

h=e +" . 2.33
p (2.33)

Thus one gets the exact enthalpy equation, valid even in the compressible
cases or with strong heating effects:

Dh 1Dp 1., - 1
= V.AVT) +2v (88 — _SuS;; ) - 2.34
Dt = o0t T, (AVT) + V<S]Sj 55 Sﬂ> (2.34)
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2.4.1 Second Bernoulli’s theorem

Notice also that, within the assumption of a time-independent perfect fluid,®
it may easily be shown from Eqgs. (2.22) and (2.34) that

D 1
h+ @2 +®) =0 2.35
Dt ( + a0 ) ; (2.35)
which is a generalized Bernoulli theorem. Let us mention finally that, for a
perfect barotropic fluid®, the momentum equation reduces to:

Dy

=V D) — 20 x il . 2.
Dt V(h+ ) X U (2.36)

Indeed, the internal energy e; is in general function of p and p, so that for a
barotropic fluid the enthalpy h depends also only of p. We denote by d/dp the
derivatives with respect to p. Then Eq. (2.34) yields

(dh 1 dp> Dp

2.
dp pdp) Dt (2.37)

which implies when the flow is compressible that dh/dp = (1/p)dp/dp, and
hence Vh = (1/p)Vp.
Now, we consider successively the case of a liquid and of an ideal gas.

2.4.2 Liquid
For a liquid, one has approximately
ei=C, T, (2.38)

where C), is the specific heat at constant pressure, which will be considered
as constant and 7" independent. Thus, Eq. (2.32) yields

DT 1 = = p = 2v 1

Dt = pCPV.()\VT) pCPV.u+ c, (S,]Sm SSZ,SM> . (2.39)
Finally, since liquids are very slightly compressible, the evaluation of the last
two terms of the r.h.s. of Eq. (2.39) shows that they are negligible in com-
parison to the first. We will also assume that A is T independent. To a very
good approximation, the thermodynamic equation needed for a liquid is (in
the absence of thermal forcing)

5 We will define a perfect fluid as an approximation of the motion where molecular
viscous and conductive effects are neglected, that is, v = 0 and A\ = 0.
5 Defined such as p is a function of p only.
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DT 9
= T 2.4
Dt kT, (2.40)
where
K= A (2.41)
p Cp .

is the molecular conductivity, already introduced in Chapter 1 to define the
Peclet number. Since in a liquid temperature and density are approximately
linearly related, this is equivalent to

Dp

=rV?p. 2.42
Dt =FVP (2.42)

Eq. (2.42) provides then the third equation which was needed to close the
system of equations of motion of the liquid. Notice finally in this case that
if the motion is adiabatic (k = 0), Eq. (2.42) reduces to Dp/Dt = 0, which
implies from the continuity equation that the velocity is non-divergent.

2.4.3 Ideal gas

For an ideal gas, things are somewhat more complicated because less terms
can be neglected, the gas being more compressible than a liquid. To a good
approximation, one now has

€, = CUT 5 (243)

where C, is the specific heat at constant volume, which will be assumed
constant and 7" independent. Let C), be the specific heat at constant pressure,
related to C, by

R=C,-C, (2.44)

with the state equation

P_Rrr. (2.45)

P
As Cy, C) will be assumed T independent. We also introduce the coefficient

Cp
= . 2.46

= (2.46)
Therefore, the enthalpy is here equal to:

h=C,T . (2.47)

The enthalpy equation (2.34), together with the continuity equation and the
momentum equation, close the problem, since h = [y/(v—1)](p/p) is a function
of p and p only. Notice that, for a barotropic ideal gas within the perfect flow
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approximation, it may be shown that p/p? is constant and uniform through-
out the fluid; the enthalpy is in this case ~ p?~!, and the motion is totally
described by the momentum equation Eq. (2.36) and the continuity equation,
which is then written

1 Dh

1) V.i=0. 2.4
th—&-(v YV.ii=0 (2.48)

Returning to the general case, one can also write the thermodynamic equation
in the form:

De (C] 1o = 1
= . T 2 i) — 505 s 2.4
Dt = o [pV(/\V )+ 20(Si; S — 5 SiiS5) (2.49)

where © is the potential temperature:

P (v=1)/v
e=T ( ;) (2.50)

which is the temperature of the gas if it was brought adiabatically to a ref-
erence level of pressure pg. © is conserved following the motion” for a perfect
fluid, and plays for the gas the role of the temperature in a liquid. The thermal
diffusivity A(T") in Eq. (2.49) is related to the molecular Prandtl number by
v _ Cpu(T)
Pr= =7 . 2.51
"T T OAD) (2:51)
where the molecular conductivity & is still equal to A/pC),. In the air at ambi-
ent temperature, the Prandtl number is equal to 0.7. The entropy is defined
(to an additive constant) by

e
s=s90+Cpln . (2.52)
6o
For subsonic or non-strongly heated flows, one can approximate Eq. (2.49) as

T DO

_ 2
o pp ="VT. (2.53)

where k is assumed constant.

" This is equivalent to the conservation of p/p” and of the entropy (see definition
below) following the motion.
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2.5 Compressible Navier—Stokes equations in flux form

We are in Cartesian coordinates x1, 2,23, and assume that gravity is anti-
parallel to &3, such that § = —g&'s. We give here a well-know conservative
“flux form” of compressible Navier—Stokes equations for an ideal gas:

ou o0F, O0F, OF:
L o0f OF2 08

= 2.54
6t 833‘1 6%‘2 6%‘3 G7 ( o )
with
U= T(p7 pulapUZapu37pe) ) (255)
G = 7(0,0,0,—pg,0) . (2.56)

In this matrix identity, the various terms are respectively relative to mass,
linear momentum, and energy balances. Total energy per unit mass is

e:C,,T—&-%(u%—&—u%—&—u%)—Fga:g, (2.57)

The fluxes are:
P
pPUUL — T41
pUU2 — T2

Fi= puUU3 — i3 ’ (2.58)
or

8xi

Quantities 0;;, and A have been defined above. We have

peu; — Ujo;; — A

pu;
puguy +p di1 — 21 Az
pusuz + p dio — 2uA

Fi= pusuz +p 03 — 2uA;3 ‘ (2.:59)

oT
(pe + p)u; — 2pnu;A;; — )\ami
where 119 5 )
Uj U
Aij = ’ b — )55 2.

is the deviator of the deformation tensor.

2.6 The incompressibility assumption

Let pg be a basic density in the fluid, p’ the characteristic value of the density
fluctuation about pg, and U and L a characteristic velocity and length. In



Turbulence in Fluids 39

the continuity equation Eq. (2.6), the term (1/p)(Dp/Dt) is of the order of
(U/L)(p'/po), and V.1 of the order of U/L. Hence, when

_r
(=" <1, (2.61)

Po
and to the lowest order with respect to this small parameter, the continuity

equation reduces to .
Vi=0. (2.62)

2.6.1 Liquid

The condition (2.61) is generally fulfilled in a liquid, unless it his submitted
to an intense heating by some combustion process.

2.6.2 Ideal gas

We assume that the flow “locally barotropic”, and expand locally in space
Egs. (2.36) and (2.34) to the first order in €, about a basic state defined by
ho, po and pg. Neglecting gravity, rotation and molecular diffusion, it is found
for the fluctuations h’, p’ and p’ = ¢?p’ (where ¢ = (dp/dp)'/? is the sound
velocity)
Di DK % Dy
Dt Dt pg Dt

This shows that h' ~ U?, and p’/py ~ p'/po ~ M?, where M = U/c is the
Mach number. Therefore, the incompressibility assumption (2.62) is accept-
able up to p’/pg <~ 0.1, that is up to a Mach number of the order of 0.3.
It fixes for gases the limit under which a gas and a liquid obey the same
equations of motion. An advantage of the incompressibility assumption is the
suppression of all the sound waves, which greatly reduces the computational
times in numerical simulations. Such a simplification does not prevent vari-
ation of the density through the thermodynamic equation: density variations
will in turn affect the velocity through the momentum equation. In that sense
density is not a passive scalar.

It should be stressed that more elaborate low-Mach number expansions of
the compressible gas motion equations in terms of yM? have been developed
(see Riley [601] for a review). They still give rise to a non-divergent velocity
field (so they discard acoustic waves), and are very efficient to treat at low
cost flows involving high density differences such as in combustion. They have
also been used successfully by Golanski et al. [260] to calculate by DNS the
flow in a two-dimensional periodic mixing layer with density differences. From
this solution, they compute satisfactorily the noise radiated away using the
so-called Lighthill analogy [438].

= —Vh'; (2.63)
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Remark that at a Mach number of the order of one or higher, barotropy
assumption does not hold anymore. However, one can write for a perfect ideal
gas: p' ~ c2p', po ~ poU?. Therefore, we now have

/ /
LR VT (2.64)
Po Po
This shows that, in supersonic flows, the relative pressure fluctuations are
small compared with the relative density fluctuations. Such an assumption is
one of the several Morkovin’s hypothesis, and is well verified experimentally.
This shows that the barotropy assumption does not hold anymore if compress-
ibility is high enough.
Returning to low Mach numbers and the related incompressibility approx-
imation, the equations of motion will reduce to:

Du 1= ~
Dif:—pr+§—2nxﬁ+uv2@, (2.65)
Vi=0, (2.66)
D
Di‘) = kV?p for a liquid , (2.67)
T DO 2
o Dt = kV<T for a gas. (2.68)

These equations are extremely general, and describe very well the motion of
neutral (not electrically-conducting) fluids at low Mach numbers in the ma-
jority of laboratory and environmental situations, even with heat exchange,
provided the temperature fluctuations are not too strong (the incompressib-
ility assumption is certainly not valid for combustion problems). We stress
again that the incompressibility assumption is not in contradiction with the
possibility of density or temperature variations offered by Egs. (2.67) and
(2.68). When density is close to a uniform value pg, these equations (to the
lowest order in p’/po) yield (for a liquid or a gas)

P=p+p?, (2.69)

D_' 1 = —
D? - _vaP —20 x @+ vV, (2.70)
V.i=0, (2.71)

where the modified pressure built with the geopotential @ is no longer propor-
tional to the stress tensor trace, and now includes gravitational and possible
centrifugal effects: it mainly acts to maintain the incompressibility of the ve-
locity field. The density and temperature satisfies
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Dp

— k2 2.72
o =RV (2.72)

which is in this case a passive-scalar equation, since density variations have
no effect on the dynamics.

A less drastic step of simplification than Eq. (2.70), still taking into ac-
count the effects of density stratification, is known as Boussinesq’s approx-
imation, and will be given later on. But beforehand it is of interest to study
the dynamics of vorticity within the general framework of the Navier—Stokes
equations.

2.7 The dynamics of vorticity

The results given in this section can be found in a more extensive form in
Batchelor [50] and Pedlosky [567]. We consider Eq. (2.22), which is valid even
for compressible fluids if temperature fluctuations are not too high. By taking
its curl and neglecting the possible spatial variations® of v, one obtains:

05 = 1 - -
a‘: FV X (@ x @) = o Vo Vp Avenl (2.73)
or equivalently, since 0, /0t = 0/ 0t:
b, o 1 - =
8“;“ Fx @ xi)= o Vpx Vp 4 iVa, (2.74)
D_‘ =d =d 1 — =
[;‘;a = 3,.Vi— (V.@) 3o + » Vp x Vp+ V33 . (2.75)

The term (1/p2)Vpx Vp is called the baroclinic vector. It is zero when density
is uniform or if the fluid is barotropic: in this case, the isopycnal surfaces
[p = constant] are also isobaric surfaces [p = constant)].

Multiplying Eq. (2.75) by p~! and using the compressible continuity equa-
tion yields:

D aja> Bawo 1 o = v,
= "Vi+ , VpxVp+ V. 2.76)
Dt(ﬁ p p? p (

Hence, for a perfect barotropic fluid, &,/p satisfies the equation of evolution
of a small vector 60 = MM’ when M and M’ follow the fluid motion: indeed

8 This assumption is not very constraining at this point, and allows in particular
the recovery (with v = 0) of the exact compressible Euler equation for a perfect
fluid.
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D

D MM’ =@(M') —@(M) = MM' Vi (2.77)
characterizes the passive vector equation, valid to the lowest order in M.
This is an argument for the stretching of vorticity by turbulence, in the same
way as a pair of Lagrangian tracers are dispersed. For Magneto-Hydrodynamic
turbulence (M.H.D.), it can be shown that the magnetic field satisfies an equa-
tion similar to Eq. (2.77) (see e.g. Moffatt [510] and Moreau [519]).

2.7.1 Helmholtz—Kelvin theorems

In fact Eq. (2.77) provides a straightforward derivation of the Helmholtz—
Kelvin theorems (without rotation). Indeed, considering a closed contour C
moving with the flow, we have:

D - D3l Di -
.0l = . N 2.78
Dt/cu /C“DtJrth (2.78)
The first term of the r.h.s. is zero because of the passive vector equation
which applies to 6l. The second term will be zero if Di/Dt is a gradient.
Considering a perfect fluid satisfying Euler equation, this is the case for p = pg

due to Eq. (2.70) (Helmholtz theorem), and for a barotropic flow because of
Eq. (2.36). Remark also that we have

/ m”z:// @it dx (2.79)
C P

where X is a surface closed by C' (with differential surface area dX oriented by
a unit vector 1) and moving with the fluid. This relates the velocity circulation
to the flux of vorticity. One consequence is that the vortex elements (lines
and surfaces)? are material in the low and move with the fluid particles they
contain. Indeed, a small surface dX oriented by 77 drawn at a given time on a
vortex surface will be such that &.7idY = 0. Since this quantity is an invariant
of motion, the vorticity will still be tangential to the material surface at later
times. This demonstrates that a vortex surface is material. Since a vortex line
is the intersection of two vortex surfaces, it is also material. Finally, a vortex
tube, which is a cylinder made of vortex lines, is still material.

With rotation, it is better to work in a fixed frame: then the above results
apply to the circulation of the absolute velocity w4, equal to [[, &q.7 dX. So,
in the same conditions (perfect flow, uniform density or barotropy), absolute

9 A vortex line (resp. vortex surface) is, at a given time, a line (resp. surface) whose
points have their vorticity vector tangential to it. A vortex tube is a vortex surface
composed of generating lines which are vortex lines.
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vortex elements (that is, tangential to the absolute vorticity) are material in
the flow. Indeed, we have now &J,.77dY = 0 on an absolute vortex surface.

One can give another derivation of these theorems, allowing to demonstrate
some useful results. Indeed, one can check (see e.g. Germain [246]) that if A
is a non-divergent vector field, then

D o
AndY =
Dt /E nd //2

If we calculate the flux of the L.h.s. of Eq. (2.74) across X' and apply Eq. (2.80),
we obtain

D 1 > -
Ba T dX = G mdy . 2.81
Dt//zw 7 d //E<p2Vp><Vp—|—VVw>nd (2.81)

Let us consider first the case with no entrainment rotation (&, = ). Eq. (2.81)
shows that the vorticity flux across X, which is the intensity of the vortex tube
on which C'is drawn), is a constant of motion in the absence of viscosity and if
the fluid is barotropic or of uniform density. We recover the Helmholtz—Kelvin
theorems.

%ﬁl +Vx (Axad)|.ids. (2.80)

e Vortex tube stretching:

The consequence is that if the vortex tube is stretched in such a way that its
cross section decreases, its mean vorticity across the section will increase. If
one then considers a thin vortex tube embedded in turbulence in a real (i.e.
slightly viscous) flow, it will be both stretched by turbulence, as would be a
material line of dye injected into the fluid, and diffused by molecular viscosity
due to the second term of the r.h.s. of Eq. (2.81). This point of view leads one
finally to consider the turbulence as a collection of thin vortex tubes stretched
by the induced velocity field. This vortex-tube stretching might lead to the
formation of regions of space characterized by a high vorticity (and therefore,
as will be seen later, by a high dissipation of kinetic energy), surrounded
by nearly irrotational fluid with low vorticity. Such a state of the fluid, i.e.
highly dissipative structures embedded into an irrotational flow, corresponds
to what is called internal intermittency. Conjectures have been made as to the
topology of these structures: Corrsin [145] proposed they would form elongated
sheets, while Tennekes [683] advocated a tube form. It was also suggested
by Mandelbrot [467,469] that turbulent structures at small scales could be
distributed on sets of fractal dimensions. Frisch [229] developed multi-fractal
models in the lines of Mandelbrot’s.

In fact, it is now clear from direct-numerical simulations that three-
dimensional isotropic turbulence is composed of an ensemble of thin tubes
of high vorticity (see Siggia [647], She et al. [643], Vincent and Meneguzzi
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[704-706], Métais and Lesieur [496], Jimenez and Wray [317]. It will be seen in
the rest of this book (see also Lesieur et al. [431]) that vortex tubes of various
size are present in all shear flows, free or wall-bounded. Vortex sheets may exist
upstream in free-shear and separated flows. They destabilize under the action
of Kelvin—Helmhotz instability, and are eventually three-dimensionalized into
big A-shaped vortices. The issue of fractality or multi-fractality is still posed
at small scales for very high Reynolds numbers. Of course, this phenomen-
ology of vortex stretching is totally invalid for two-dimensional flows, where
there is no stretching of vortex tubes since the vorticity is conserved following
the motion.

Let us conclude these considerations by mentioning that some numerical
methods based on vortex dynamics and using Biot and Savart law have been
developed in two (Zabusky and Deem [735], Chorin [122], and Ashurst [18])
and three dimensions (Leonard [407], Chorin [123,124], Meiburg [483]). The
reader will find in the book of Cottet and Koumoutsakos [148] advanced de-
velopments on these methods taking into account boundaries, for applications
in particular to the three-dimensional instabilities of wakes of real obstacles.

The effects of stratification and compressibility will be mainly examined
in Chapter 13. Some of them are nevertheless contained in the next section.

2.8 Potential vorticity and Rossby number

2.8.1 Absolute vortex elements

For a perfect barotropic rotating fluid, we stress here two consequences of
Helmholtz—Kelvin theorems, relating to the fact that absolute vortex lines
are material. In the case of a rapid rotation characterized by |w|/2§2 < 1
(this parameter has already been associated with the Rossby number in
Chapter 1), it is straightforward that the absolute vortex filaments are at
any time very close to a set of straight lines parallel to (2. It follows that ma-
terial lines (marked with a dye for instance) following initially absolute vortex
lines (and hence quasi two-dimensional), will evolve with time keeping their
quasi two-dimensional character. On the contrary, the same material lines
drawn in an initially identical non-rotating flow will lose very quickly their
two-dimensionality if the initial relative flow is turbulent. A more precise ar-
gument associating strong rotation to quasi two-dimensionality will be given
below, with the Proudman—Taylor theorem. We will see also in Chapters 3
and 13 the possible destabilizing effects of a moderate rotation on turbulence.
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2.8.2 Ertel’s theorem

Another consequence of Eq. (2.81), sometimes referred to as Ertel’s theorem
(see Pedlosky [567]), carries some important effects of rotation and stratifica-
tion.

This theorem states that if o(Z,t) is a scalar quantity conserved following
the relative fluid motion, if the fluid is perfect and if one of the two following
conditions is fulfilled:

i) the fluid is barotropic or of uniform density,

ii) o is a function of p and p only,
then the potential vorticity associated with o, defined as

Gae.Vo

P

1, (2.82)
is conserved following the flow motion. The derivation is straightforward: we
consider an iso-o surface Sy, corresponding to o = ¢ (see Figure 2.3). This
surface is material, since o is conserved following the motion. It may however
move and deform with time. One considers a small closed contour §C' drawn
on S,, and enclosing an area dX' oriented by 7. Eq. (2.81) implies that

Dt (Be-M dX)=0 (2.83)
since the mixed product (ﬁp, ﬁp, i), is zero in both cases i) and ii): indeed,
the condition o(p, p) implies that Vo = 8o /dpVp + do/dpVp, and hence
11, parallel to Vo, is normal to the baroclinic vector. Therefore, &,.71 dX is
conserved on Sy, , following the motion. Let us consider another iso-o surface
Soo—do, Where do is a small fixed increment of og. Let dn be the distance
between the two iso-surfaces in the neighbourhood of dX'. Let us consider at
a given time a small fluid cylinder of section dX, contained between the two
iso-surfaces (see Figure 2.3): since the latter are material, the conservation of
mass for the cylinder writes
D 1

y; = Y~ 2.84
pp (P d¥dn) =0, d pdn (2.84)

and hence

D (&, 7
= . 2.
Dt ( pdn ) 0 (2:85)

Multiplying this equation by do (which is fixed), gives the desired result

D Jia.ﬁa
= . 2.
Dt < ) ) 0 (2.86)
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Figure 2.3. Sketch of iso-o surfaces used in the derivation of Ertel’s theorem.

The consequences of this theorem are numerous for geophysical flows: they im-
ply in particular, for large-scale horizontal barotropic atmospheric and oceanic
motions, the conservation of &J,.7, where 71 is the unit vector defining the local
vertical on the Earth: indeed, one may take o as the potential temperature for
the atmosphere, and as the density for the ocean, and assume approximately
that Vo and i are parallel. Let f be the projection of the planetary vorticity
202 on i1, and equal to

f=20sinep, (2.87)

where ¢ is the local latitude which may vary with the motion. This parameter,
already mentioned in Chapter 1, is the Coriolis parameter. The potential vor-
ticity is proportional to f + &.7 , which is conserved following the horizontal
fluid motion. Ertel’s theorem thus implies vorticity is exchanged between the
relative motion and the horizontal planetary vorticity. These exchanges are
in particular responsible for the propagation of waves called Rossby waves
in the atmosphere and the oceans: indeed, the effective Coriolis force acting
on the horizontal motion is equal to —f7 X @, and varies with the latitude,
resulting in a restoring force causing a meridional oscillation of the fluid and
the propagation of waves. How these waves interact with horizontal turbulent
large-scale motions will be discussed in Chapter 9. Notice finally that f/2
is the frequency of rotation of the Foucault pendulum oscillation plane. As
mentioned by Holton [294], the conservation of f 4w (where w = &.7) implies
that uniform westerly zonal flows must remain zonal, otherwise they would
violate the potential vorticity conservation. On the other hand, easterly flows
may deviate either to the North or to the South while conserving their poten-
tial vorticity. Therefore, westerly zonal flows tend to be more stable than the
easterly ones.

Another application of Ertel’s theorem may be found in non-rotating shear
flows. One considers a perfect barotropic fluid convecting a passive scalar ©.
From the theorem, (3.V6)/p is an invariant of motion. It is assumed that at
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some initial instant ¢y the velocity is not far from a parallel flow @(y), and the
scalar from a distribution ©(y). Hence ©0.VOy = € is close to zero, in the sense
that the two vectors are quasi orthogonal. At later times, one has G.VO =
ep/po, and these vectors will remain quasi orthogonal as soon as p does not
depart too much from pg. This implies that iso-© surfaces (normal to 6@) are
quasi parallel to the vorticity, and are very close to vortex surfaces. Therefore,
if the initial departure from # is respomnsible for the formation of coherent
vortices of the spiral or hairpin type (see Chapters 3 and 4), a passive scalar
initially distributed close to © may serve to visualize the vortex surfaces. This
is however wrong as soon as molecular viscous and diffusive effects become
important. In practice, one may expect that, in a laboratory experiment, a
passive scalar may visualize the vortex surfaces during the transitional stage
to turbulence.

2.8.3 Molecular diffusion of potential vorticity

Let us consider now how Ertel’s theorem may be generalized in a viscous fluid.
We still define the potential vorticity with Eq. (2.82). Its conservation follow-
ing the fluid motion is no more exact, since the vorticity, as well as quantities
chosen for o, diffuse molecularly. The exact potential vorticity evolution equa-
tion including molecular-diffusion effects can be derived in the following way:
we suppose that ¢ is a function of p and p only, and diffuses as

Do

_ 2
Dy = e Voo, (2.88)

where k. is a molecular diffusion coefficient relative to o. As an exercise, the
reader can show that, for any scalar o,

D & it
Dt Vo = VDt - Vil'® Vo, (2.89)

where we recall that ﬁmt is the transposed velocity gradient tensor. Let us
rewrite Eq. (2.76) as

D u‘)a> - Wy 1 o= - Vo,

=Vi® ~+ ,VpxVp+ VG. (2.90)
Dt ( P p P P
After forming the scalar product of respectively this equation with Vo and
Eq. (2.89) with &,/p and adding, the potential vorticity satisfies

—

D &, Vo Wa

(o0 S (St
Dt p —(Vu@p).Va (Vi)' ® Vo)
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1 - = = - Jo =
+ ., (Vp,Vp, Vo) + " V25.¥0 + ¥ (k,V20)
p p p

where (.,.,.) is a mixed product between three vectors. As an exercise, one
can show that, for two arbitrary vector fields @ and b, we have

(Vi®ad).b— (Vi ©b).d=0.
Indeed, and using the deformation tensor S, such an expression is equal to

(S©a)i-(Soba+ 6,05+, @50 =(Seai-(Sohd.
This term is zero, the easiest way to check it being to project it in the principal
axis of deformation, in which the matrix of S is diagonal. In the conditions
of Ertel’s theorem, the mixed product (ﬁp7 ﬁp, 60) is zero, so that we have
finally

D Vo _ Vs G+ 90 F(k,V20) | (2.91)

Dt p p p
One recovers Ertel’s theorem in the absence of molecular-diffusive effects. This
result is valid even in the absence of rotation. It should be mentioned that mo-
lecular diffusion effects could be of significance in three-dimensional developed
turbulence, and lead to a production of potential vorticity, as remarked by
Staquet and Riley [670]. These diffusion effects may be much less important
however in quasi two-dimensional situations, for example geostrophic turbu-
lence, resulting from a strong rotation and stratification. Notice finally that for
an ideal gas, the potential temperature © does not diffuse exactly according
to Eq. (2.88), but to Eq. (2.49).

2.8.4 The Rossby number

One considers here a fluid of arbitrary depth, uniform density pg, in a rotating
frame of reference (angular-velocity vector ﬁ) The gravity § = —gZz and the
rotation 3 = (2% are constant and antiparallel. Let U be a characteristic
velocity of the fluid (with respect to the rotating frame) and D a length
characterizing the fluid motions. U/D is a characteristic frequency of these
motions. It is also characteristic of the vorticity of this “relative motion”,
while 262 is the vorticity of the solid-body rotation (entrainment vorticity).

The Rossby number
w/p)y _ U
= = 2. 2
Ko 202 202D (292)
measures the relative importance of inertial forces to the forces due to rotation

(Coriolis force). When R, > 1, rotation effects are negligible and the fluid
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will be fully turbulent if the Reynolds number is high. When R, < 1, rotation
effects will be dominant. We pose f = 242.

One takes U, D and D/U as units of velocity, length and time. We anti-
cipate that the gradient of the corrected pressure P = p + po® is pg =~ fU.
Therefore, we will take pg fU D as pressure unit. In non-dimensional variables,
Navier—Stokes equation writes

Ro%; = VP -Zxi+ ngzﬁ. (2.93)
R. =UD/v is the Reynolds number, assumed to be large enough in front of
the Rossby number in order to neglect the viscous term and work on the basis
of Euler equation
Du
Dt
We now focus on the case R, < 1, and assume that the velocity and pressure
can be expanded into series of the small parameter R,, in the form:

R, =-VP—-Zx1i. (2.94)

'L_I:(IE, Y, %, t) = ﬁ(O)(‘ra Y, %, t) + R, ﬁ(l)(‘ra Y, %, t) e (295)
P=P9 ¢+ R, PW 4+ RSP 4 ... . (2.96)

Substituting these expansions into Eq. (2.94), and identifying the terms corres-
ponding to the same power of the Rossby number, one obtains to the leading
order

VPO = —zx g® . (2.97)

Since the gravity is assumed vertical, it is found after projecting in the hori-
zontal and vertical directions

Vap® = -7 x @© | (2.98)
which expresses the geostrophic balance, and
ap g
= — 2.99
55 U (2.99)

which expresses hydrostatic balance in non-dimensional variables.'” Since the
horizontal pressure gradient balances Coriolis force, cyclonic and anticyclonic
vortices of axis parallel to the axis of rotation will correspond respectively to
pressure troughs and highs.!!

10 The equivalent relation in dimensional variables is

op® B
5, = P09 - (2.100)

' Contrary to non-rotating flows, where vortices always correspond to low pressure
(see below).
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2.8.5 Proudman—Taylor theorem

This theorem (see e.g. Pedlosky [567]) states that, in the limit of R, decreas-
ing to zero, a flow of uniform density tends to become two-dimensional, inde-
pendent of the direction parallel to the rotation vector. This may be shown
by taking the curl of Eq. (2.97), which yields

0 -

i =0. 2.101
P (2.101)
Another way of obtaining this result is to write the inviscid vorticity equation
corresponding to Eq. (2.94),

ou

5, (2.102)

R, (8“’ + a’.%) — R, &.Vii +
ot
and Eq. (2.101) is obtained at the lowest order of the expansion in powers of
R,. Then, the field @(® is two-dimensional, so that the actual flow is quasi
two-dimensional at high rotation rates. Let us consider the vertical vorticity
of the basic flow (component parallel to ﬁ), w©(z,y,t). To the first order,
one gets "
0 - owt
atw(o) + ﬂ'g?,.Vw(O) = 5,
where 17(2(3 is the projection of @(®)(z,y,t) onto the plane perpendicular to 02,
and w» the vertical component of @!). Let us assume that the vertical velo-
city w is zero on a horizontal plane (for instance the bottom of the tank, taken
as z = 0, in case of free-slip boundary conditions). Then the vertical com-
ponents of all the terms in the expansion (2.95) will be zero on this plane, in
particular w(® and w™). Due to Eq. (2.101), w(®) = 0 everywhere. Eq. (2.103)
implies that dw® /0z = A(x,y,t) is independent of z, and thus w) = Az. If
one further assumes the existence of an upper plane at z = H with the same
free-slip boundary conditions (rigid lid), then w) = 0 everywhere, since it is
a linear function of z which must be zero for two different values of z. Con-
sequently dw) /0z = 0 everywhere, and Eq. (2.103) implies that the vertical
vorticity of the basic flow satisfies a two-dimensional Navier—Stokes equation
in the (z,y) plane. To summarize, high rotation in a perfect fluid of uniform
density and arbitrary depth in a rotating tank implies geostrophic balance, hy-
drostatic balance, and quasi two-dimensionality. But the flow will satisfy the
two-dimensional Euler equation only with a rigid lid. For such solutions, the
rotation has no more effect on the motion and the “horizontal”(i.e. in planes
perpendicular to the rotation axis) motions may give rise to inertial effects
much larger than the molecular viscous effects, with a horizontal Reynolds
number far greater than one. In that sense, one can speak of two-dimensional
turbulence. Intense rotation has profoundly reorganized the structure of tur-
bulence, but has no more effect on it once it is two-dimensional.

: (2.103)
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2.8.6 Taylor column

If we go back to Eq. (2.101) without any particular upper and lower boundary
conditions, we can explain the phenomenon called Taylor column, displayed by
Taylor [680] in a laboratory experiment: if some body is displaced horizontally
within the flow, and if one assumes that, due to viscosity, the fluid in the
immediate neighbourhood of the obstacle will follow it, the whole column of
fluid above and below will move with the body. This is illustrated in Figure 2.4.

=

™

Figure 2.4. Sketch of the Taylor column created by a moving obstacle.

When applied to a shallow layer of stratified flow on a rotating sphere
(the Earth for instance),'? it is, as stressed above, the modulus of the Coriolis
parameter f and the horizontal characteristic length L and velocity U which
are generally employed to construct the local Rossby number U/|f|L. Thus
planetary-scale atmospheric or oceanic motions in medium or high latitudes
are characterized by a local Rossby number small with respect to one (see the
discussion in Chapter 1), and the geostrophic analysis (see Chapter 9) will
show that rotation reinforces the tendency to two-dimensionality!'® due to the
fact that these flows are in shallow layers. The combined effects of rotation
and stratification will be considered in Chapters 9 and 13.

2 Shallow, with respect to Earth radius, as already discussed in Chapter 1.
13 On a sphere.
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2.9 Boussinesq approximation

These equations are an abridgement of Navier—Stokes equations which enables
one to take into account variations of density when the pressure and the
density are not too far from a hydrostatic state. We start with Eqgs. (2.65) and
(2.66) and define p(Z) and p(#) as a basic hydrostatic pressure and density
distribution obtained by setting @ = 0 in the equation of motion and thus
satisfying

—

1=
_ﬁVp+§:0 ) (2.104)

Therefore, the gravity ¢ is normal to the isobaric surfaces of the basic state.
Notice also that, by taking the curl of Eq. (2.104), VP x ﬁ[) = 0 since §
is 1rrotat10nal Thus, the isobaric and isopycnal surfaces of the basic state
coincide'* and are normal to §; the vectors Vp7 Vp and ¢ are parallel.

The essence of the Boussinesq approximation is to assume that the actual
pressures, densities and potential temperatures (for a gas) are close to the
basic profiles:

p(Z,t) = p(Z) +p'(, 1)
p(@,t) = p(&) + p' (1) (2.105)
O(7,t) = O(F) + O'(Z,1)

with |p'| < p, |p/| < p and |©@’| < O. Let us define an “average level” in the
layer, of density pg, temperature Ty and pressure pg. For the gas, the reference
pressure which allows the definition of potential temperature in Eq. (2.50) will
be taken equal to the same pg, in such a way that the potential temperature
of this average level will be @y = Tj. Now, we perform a first order expansion
of Eq. (2.65) with respect to the small parameters p’/p and p’/p, and obtain
the momentum equation

bu_ —1_619/—&- Pg-20xi+uvvia (2.106)

Dt p p
to which one will associate the zero-divergence condition. Assuming that the
thickness D of the layer is small with respect to the total depth of the fluid

H (see Figure 2.5), p is close to pg). We have:
Du s ’ pl 2] 2

S + P G—20 x i+ vVii, 2.107

Dt Po Pog ( )

where we recall that p’ is the density fluctuation with respect to p (and not
po)- Notice that an equation equivalent to Eq. (2.107) is:

14 In other words, the hydrostatic basic state is barotropic.
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v

Figure 2.5. Schematic view of the vertical section of the fluid within Boussinesq
approximation.

Du 1= -
—— Up+ Pg-o2@xa+vvia, (2.108)
Dt Po Po
which may be useful for direct-numerical simulations and large-eddy simula-
tions where p may have important spatio-temporal variations.
The momentum equation Eq. (2.107) is valid both for a liquid and an ideal
gas.

2.9.1 Liquid

For a liquid, the thermodynamic equation will be Eq. (2.67), which can be
written as:

Dp
Dt

(we have neglected the contribution coming from p in the Laplacian, which is
usually very small, if not zero).

/
+i.Vp=rV? (2.109)

2.9.2 Ideal gas

For an ideal gas, the thermodynamic equation is given by Eq. (2.68). Here,
the relative dynamic pressure fluctuations (due to velocity differences) are,
from Section 2.6, of the order of M?2. This justifies the use of a non-divergent
velocity field. On the other hand, the relative pressure fluctuations due to
gravity are of the order of (p'/po)(D/H). Hence, at low Mach number, the
hydrostatic pressure dominates, and p’/po < p'/po since D/H < 1. It can
easily be checked in this case that
! / /
r_e __» (2.110)
T (C] p
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which implies @ = T’ (to the lowest order), since @y = Tp. Hence, the
thermodynamic equation Eq. (2.68) gives, if one neglects the V27 term in the
r.h.s., and to the lowest order:

!

Dt

It turns out that the Boussinesq approximation yields the same equations for
the liquid and the gas: indeed, setting p = p’/po, these equations are:

Du

+@.VO = (; (V2T = KV2O' . (2.111)

i = —Vp+pg—20xd+vVii

Vii=0

Dj .

dtp +@NVp, = KV (2.112)

r p

p=", Ppsx= for a liquid,
Po
e 2

=— for a gas.

Here the density is not a passive scalar, since it influences the velocity through
the buoyancy force.

When the buoyancy force is neglected in the Boussinesq approximation,
and the mean profile p, assumed to be uniform, one obtains the Navier—
Stokes equations with constant density in the momentum equation, and with
fluctuations of density (or temperature, or potential temperature) satisfying
the diffusion equation Eq. (2.42): density behaves as a passive scalar, and
is decoupled from the velocity which now satisfies Eqgs. (2.70). The latter
equations describe very well non-heated (or slightly-heated) flows. They are
independent of gravity including centrifugal effects, and the temperature is
only a passive quantity which marks the flow, as would a dye. An appreciable
part of this monograph will be devoted to such flows.

2.9.3 Vorticity dynamics within Boussinesq

One may wonder about the vorticity dynamics within the Boussinesq approx-

imation on the basis of Eq. (2.112): neglecting the molecular diffusion, the
analogue of the vorticity equation (2.74) is now

0y

ot

to which one has to associate the density!® transport equation

FV X (Be xT)=Vpx§ (2.113)

15 For a gas, “density” means here the opposite of the potential temperature.
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Dp.
=0 2.114
D (2.114)

with p. = p« + p. We first remark that
Vo X G=Vpxg. (2.115)

This is obvious for a liquid since, because of the remark following Eq. (2.104),
ﬁﬁ* x § = 0 . For an ideal gas, © is a function of p and p only, and hence
VO = (08/0p)Vp+(06/0p)Vp is parallel to Vi, Vj and §. It is then easy to
check that Ertel’s theorem derived above is no longer valid for any conserved
quantity o, except if o is taken equal to p,: indeed, in this latter case, the flux
of the r.h.s. of Eq. (2.113) across a small surface 62 drawn on an isopycnal
surface (surface of constant total density p,) is zero since ﬁp* X ¢ is tangential
to the isopycnal surface. Thus Ertel’s theorem is valid within the Boussinesq
equations only with a potential vorticity

(@ +202).Vp. , (2.116)

where we recall that p. = p/po for the liquid, and p, = —©/6, for the ideal
gas.

One can recover this result, writing the absolute vorticity and “density”
gradient equations as

-D_’a = — — -
N v ®dq + Vpe X 7, (2.117)
Dt
D g, - Vil' @ V (2.118)
pp VPe= Vi . :

the latter equation being just an application of Egs. (2.89) and (2.114). Taking
the scalar product of Eqgs. (2.117) and (2.118) by respectively Vp, and dq,
then adding, yields the invariance of &,.Vp, with the motion.

2.10 Internal-inertial gravity waves

Another interesting application of the Boussinesq approximation is the pos-
sibility of obtaining inertial-gravity waves after a linearization about a rest
state. These waves are internal in the sense that they propagate within the
fluid. Surface waves presenting analogies with the internal waves can be found
on the free surface of a rotating fluid. For the internal waves, one obtains to
the lowest order in #, & and p, neglecting molecular diffusion:

88‘: +Vx 23 x@)=Vpxg (2.119)
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op  dp.

w
ot + dz

We also assume that (2 is parallel to g, which defines the vertical coordinate
z

=0. (2.120)

=0z, (2.121)

This latter hypothesis does not apply a-priori to a flow on a rotating sphere
already considered above (and where gravity is normal to the sphere), nor to
a rotating flow in a laboratory experiment when centrifugal effects are signi-
ficant and produce a non-negligible spatial variation of the effective gravity
field. We will show later on that the following analysis can nevertheless be
approximately generalized to geophysical flows.

With the assumption Eq. (2.121), and using the zero velocity divergence
condition, Eq. (2.119) reduces to

%: — 20 gz +VixG. (2.122)

Notice that Eq. (2.122) shows in particular that, when (2 is zero, the vertical
component of dJ/0t is zero. The gravity waves, which will be shown below
to propagate, are vertically irrotational: indeed the time-independent vertical
component of the vorticity corresponds to a permanent motion which has no
direct influence on the propagation of the wave and can be eliminated. This
property that the gravity waves induce irrotational horizontal motions has to
be related to the wave-vortex decomposition of the flow, which will be derived
in Chapter 5.

Taking now the curl of Eq. (2.122), and noticing that, since @ is non-
divergent,

Vxd=-Va, (2.123)
one finally obtains
Ov2i o oV p
20 = 25) 7. 2.124
g T2 ,.=9 5, T(VA)G ( )

Differentiating Eq. (2.124) with respect to time, projecting it onto the z axis,
and making use of Eq. (2.122), one finds for the vertical velocity component
w (see Gill [258]):
0? 0%w o (0% 0°%p
Vi +402%7 ) =
v (M * ay?)

o2 02~ Yot (2.125)

Then, using Eq. (2.120), one finds finally

0*Viw 0w Pw 0w
gz T, TN (axQ + 8y2> =0 (2.126)
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with

dp«
I ar
Thus, for a liquid, we find N2 = —(g/po)(dp/dz), while for an ideal gas N? =
(9/60)(dO/dz).

N? = (2.127)

2.10.1 Internal gravity waves

Let us first consider the case of the non-rotating fluid: if N2 < 0, the solutions
of Eq. (2.126) amplify exponentially, and the system is unstable (unstable
stratification). This corresponds to the onset of thermal convection in the
absence of conductivity (that is the infinite Rayleigh number case, as will be
seen in the next chapter). Notice that a neutral atmosphere such that N? = 0
will be in adiabatic equilibrium (d©/dz = 0), which may easily be shown to
correspond to dT'/dz = —g/C,: this represents the dry adiabatic lapse rate of
the atmosphere (see e.g. Holton [294]). If N2 is positive (stable stratification),
N is called the Brunt—Vaisala frequency,'® and the system admits gravity
waves. When N is independent of z , the dispersion relation of these waves is,
from Eq. (2.126)
2 2
w=%N VA RS , (2.128)
Vi + k3 + k3

where w is the frequency and ki, k2, k3 the components of the wave-vector.
Let kg = /k? + k3 and k = \/k? + k3 + k? be respectively the horizontal
and total wavenumber. The phase velocity is w/k = Nkg/k?, and the group
velocity V& has for components (noticing that dw/dky = £N (k2/k3))

0w 0w Oky k3K
Oky ~ Ok Ok~ B3y (2.129)
Ow o Ow BkH o k% k2
Oky ~ Ok Ok — 0 K3y (2.130)
Oow k‘3k‘H
s = NS (2.131)

These waves are dispersive. An example corresponds to lee waves, which are a
particular internal gravity waves field in the wake of a mountain (see Wurtele
et al. [724] for a review). They can propagate vertically to high altitudes. For
instance, their break up into small-scale turbulence gives rise to the so-called
clear-air turbulence encountered by planes while flying at altitudes of 10,000 m
above mountains of height 3,000 m. The vertical propagation of these waves

16 Or the buoyancy frequency.
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Figure 2.6. Harmonic oscillator model in a stratified fluid.

may also be an important source of energy to the stratosphere. Lee waves
may be stationary with respect to the obstacle which created them, as shows
the very simple example of taking k3 = 0 and waves propagating upwind
with kg = N/U. In this case, they are usually marked by regularly spaced
stationary clouds, and may be of great help to the flight of gliders. It is also
possible that they interact with large-scale quasi horizontal motions.

e Exercise on internal stratification:

The second term of the r.h.s. of Eq. (2.107) can be interpreted as a buoy-
ancy force, difference between the weight of the fluid parcel and Archimedeus
thrust. It is possible to understand the role of this term by considering a
simple physical model of fictitious fluid parcel isolated by mind from the rest
of the fluid (see Figure 2.6). One assumes that the parcel is vertically displaced
along z from its equilibrium position zg to z = 2o + Z(t), corresponding to
a density difference Ap = p(z) — p(z) with the ambiant fluid. Newton’s first
principle of dynamics permits to write
d*z

PAV g2 =9 Ap AV |

that is

d*Z
S Ap ~ — g Ap .
dt? p Po

For a liquid, we assume incompressibility, so that the fluid parcel keeps its
density pg. We obtain to the first order

_ _ dp
Ap:p—p(2)=po—p(2):—d527
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that is,
d*Z
dt?
with the same definition for N? as above.
For a gas, we apply also Eq. (2.110), which yields

+N?*Z=0, (2.132)

Ap ~ AO

Po o)
If we suppose that © is now conserved during the motion, we have:

ro=6-6-6,-6=-"7
dz
and Eq. (2.132) is still valid.
If N2 > 0, the fluid parcel is an harmonic oscillator, corresponding to
stable-stratification. The so-called available potential energy of the parcel is
the potential energy of the oscillator:

E,,:lN?Z?,
2

proportional to Ap? for the liquid and AG? for the gas.

If N2 < 0, N is imaginary, and certain solutions will increase exponentially
in elVI*. For N = 0, we have a neutral situation (marginal stability).

In the ocean, the stability condition dp/dz < 0 corresponds to dT'/dz > 0:
heavy cold layers are at the bottom, and light hot ones at the top. Neutral
situation corresponds to uniform density and temperature along the vertical
(see Figure 2.7). In the atmosphere, neutral situation d©/dz = 0 corresponds,
as already stressed, to dT'/dz = —g/C,, yielding to a temperature decrease of
about 1°K per 100 m in mountains. Figure 2.7 precises the stability conditions
for a dry atmosphere. When dT'/dz > 0, there is a stable inversion situation,
where cold layers are at the bottom.!” The unstable situation d©/dz < 0 im-
plies dT/dz < 0 (hot layers at the bottom and cold ones at the top). But there
is an intermerdiate buffer zone (—g/C, < dT'/dz < 0), stable although the hot
layers are at the bottom. This is what happens in the lower atmosphere during
the transition from night inversion to day thermal convection after sunrise.
Let us stress also that basin situations within mountains favour atmospheric
inversion, and hence pollution for cities located there: indeed, inversion tends
to inhibate vertical motions, and the induced pollutant transport towards
superior layers, which reinforces clouds formation. The latter filter out the
incoming solar radiation, contributing to enhance inversion. Finally, the per-
manent stratospheric inversion allows a quasi two-dimensional diffusion on

17 It is what happens in general during the night in medium latitudes.
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Figure 2.7. Sketch presenting the stability of a stratified layer of liquid and gas in
a perfect fluid.

a sphere of pollutants, which can be transported up to the two poles: it is
in this manner that chemical reactants contributing to ozone destruction are
transported, and finally are at the origin of ozone holes.

2.10.2 Role of rotation

When {2 is non-zero, waves are inertial-gravity waves, and the dispersion re-
lation becomes 0o 5 -
2 N=(k3i 4+ k3) + 492°k3
k3 + k3 + k2
In the case of a uniform density fluid (N = 0), the waves are purely inertial.
The reader is referred to Lighthill [439], Holton [294] or Gill [258] for fur-
ther details on these waves, which play a particularly important role in the
dynamics of the meso-scale and middle atmosphere.
An important characteristic length in regard to the ocean or planetary
atmospheres dynamics is the internal Rossby radius of deformation, which
can be defined in the following way: let

(2.133)

H=2rks', L=2n(k?+k3"1/?, (2.134)

be respectively a characteristic vertical and horizontal length scale of the
motion. Thus, the relative importance of the “inertial” to the “gravity” con-
tribution in the r.h.s. of Eq. (2.133) is equal to (L/r;)? where the internal
Rossby radius of deformation ry is given by

NH
f

rr = (2.135)
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f being here equal to 242.

Eq. (2.135) can be generalized to Earth atmosphere or ocean dynamics
in the medium or high latitudes. One has to replace f by |f], f now being
given by Eq. (2.87): indeed, let u, v, w, be the components of the velocity in
a local frame of reference with axes directed respectively along a parallel, a
meridian and the local vertical defined with the gravity field, the latter taking
into account centrifugal effects.!® The Boussinesq approximation Eq. (2.112)
projected in this frame yields, if one neglects some sphericity corrections

Du op 2
= - — 20 3

Dt 8x+fv wcosy +vViu,

Dv op 9

=— - 2.136

D oy fu+vViu, ( )
D -
DZ} = —glz) — pg +20Qucosp +vViw ,

We consider a shallow layer of fluid of depth H much smaller than the hori-
zontal amplitude of motions L. Due to continuity, the vertical velocity w is
at most of the order of UH/L, where U is a characteristic horizontal velocity.
Thus, in medium or high latitudes, one can neglect the 2w cos ¢ term in the
Du/ Dt equation. Let us consider now in the Dw/Dt equation the ratio of the
vertical component of the Coriolis force over the buoyancy force, of the order

of

200 (10 Al

gp N2H N7
where F' = U/NH is the Froude number. If R, = U/|f|L is the Rossby num-
ber, this ratio is ~ (H/L)(F?/R,). Usually, in atmospheric large or meso-
scales, I’ and R, are of same order, and never exceed values of the order of
one. This permits us to replace Eq. (2.136) by

= —Vp+pj— fZxid+vVii (2.137)

where the actual solid-body vorticity 202 has been replaced by its projection
on the local vertical on the sphere. The analysis of the inertial-gravity waves
arising from Eq. (2.137) is the same as that done previously in this section,
provided the parameter 2(2 should be replaced by |2f2sin ¢|. Notice also that
the approximation which has led us to replace the Coriolis force by —fz x @

'8 Because of the centrifugal force due to its rotation, the Earth has evolved towards
an ellipsoidal shape such that the gravity field (gravitation + centrifugal effects)
is, in the mean, normal to the surface. In fact, the geoid presents deviations
from this shape due to the non-homogeneous distribution of masses, caused in
particular by the motions in Earth mantle.
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in Eq. (2.137) could also be done usefully on the Navier—Stokes equations
themselves.!?

As already stressed, the length r; characterizes the horizontal scales of
motion over which internal waves are mainly inertial, and under which they
are gravity dominated. It will be seen in Chapter 9 that this length is also
characteristic of the baroclinic instability due to the combined effects of rota-
tion and stratification. It is difficult to determine r; precisely, mainly because
the Brunt—Vaisala frequency N may vary appreciably with stratification pro-
files. Average values of r; are of 50 km in the oceans and 1000 km in Earth
atmosphere. In the latter case and at this scale, R, ~ 0.3. The reader is
warned that rotation may have an important effect on motions of wavelength
smaller than r; and which are not of the inertial-gravity wave type: in the
mesoscale atmosphere (scales of a few tenths of kilometers) for instance, the
Rossby numbers are larger than one, and we will see later on (Chapters 3
and 13) that there is in this case a strong assymmetry between cyclones and
anticyclones, the latter being prevented to grow by entrainment rotation.

The above considerations have shown that the Navier—Stokes equations
within the Boussinesq approximation are quite satisfactory to study rotat-
ing stably-stratified flows, in particular in situations related to geophysical
fluid dynamics. The Boussinesq approximation is simpler mathematically.
Its incompressibility character (suppressing the acoustic waves) greatly sim-
plifies the numerical simulations done using pseudo-spectral methods (see
Chapter 5), and also allows us to apply the stochastic models of turbulence
(see Chapter 7) in the stably-stratified case. The Boussinesq approximation is,
on the contrary, certainly not valid in situations with strong heat release such
as in combustion or reacting flows, and more generally, with sharp density
gradients. In these cases, the low-Mach number expansions presented above
(see Riley [601]) should be preferred if the Mach number is small.

2.11 Barré de Saint-Venant equations

2.11.1 Derivation of the equations

These equations are also known as the shallow-water equations. We consider
the Navier—Stokes equations locally on a sphere for a fluid of constant uniform
density po, with the same approximation as in Eq. (2.137) for the Coriolis
force, that is
Du 1=
=— Vp+g-— fZxi+vVii 2.138
D oo VP f (2.138)
19 However, this analysis is valid only for a shallow layer in medium or high latitudes.
For a fluid of arbitrary depth or close to the equator, the complete Coriolis force
—2{2 x 4 must be considered.
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Figure 2.8. Schematic vertical cross-section of the shallow layer: 7(z,y) is the height
of the topography, h(z,y,t) the depth of the fluid, H the average height of the free
surface, and 7n(z,y,t) the elevation of the free surface.

V.i=0, (2.139)

g and 2’ being parallel. The fluid is assumed to have a free surface of mean
elevation H and to lie above a topography of height 7(x,y). h(z,y,t) is the
depth of the fluid layer?® and n(x,y,t) the elevation of the free surface with
respect to H (see Figure 2.8). Hence we have

hz,y,t) +7(z,y) = H+nlz,y,t) . (2.140)

The pressure at the free surface is uniform and equal to pg. The assumption of
shallowness actually means that one assumes the pressure is hydrostatically
distributed along the vertical, that is,

p(x,y,2,t) =po+po g (h+7—2), (2.141)

and that the horizontal velocity field ¥y = (u,v,0) depends only on the
horizontal space variables x and y and on the time. The vertical velocity
w(z,y, z,t) still depends on the vertical coordinate, in order to allow vertical
variations of the free surface. With these assumptions, and integrating the
continuity equation (2.139) along the vertical, one obtains Barré de Saint-
Venant equations

20 This depth A is not to be confused with the enthalpy considered above, although
analogies exist, as stressed below.
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D d
Lftu = —gaz + fo+vViu (2.142)
D B}
l;v = _982 — fu+vVio (2.143)
Dyh -
gt — —h Vy.i (2.144)

where D 9 9 9
H
= 2.14
Dt 8t+u8x+1}8y (2.14)
is the derivative following the horizontal motion, and V% and (Vg.) stand

respectively for the horizontal Laplacian and divergence operators.

2.11.2 The potential vorticity

Now, let us write in this case an analogous potential vorticity conservation
result: let
W=wZ=V XUy (2.146)

be the vorticity of the horizontal velocity, with

ov  Ou
oxr Oy

w =

(2.147)
Paralleling Eq. (2.22), Barré de Saint-Venant equations may be written in the
form:

2

o - -
4 (f4w) Exidn = —gVan—Va qu +vViig. (2.148)

ot

Taking the three-dimensional curl of Eq. (2.148), one obtains, after projection
onto the z axis:

%: + uaax (wH+ f)+ vaay(w + )+ (w+f) Vagig =vViw, (2.149)
that is,
Dy - 9
Dt (wW+f)+w+f) Vygig=vViw. (2.150)
Finally, making use of the continuity equation (2.144), we obtain
Dy w+f v,
i = Ve (2.151)

As an exercise, let us give another derivation of this result: we take the mo-
mentum equations as
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ou ou ou  On 9
ot Tlor T oy T g, TIVH VY (@)
ov ov ov 0O 9
6t+u8x+vay— gay fu+vVyve (b)

and form 9(b)/0x) — 0(a)/dy). Using partial-derivatives commutativity, we
get
Ow Ow Ow

= = _ 8 a 2
Iy +uax+vay+wVH.uH— ax(fu) 8y(fv)+1/VHw

yielding

Ot by @ ) b @4 D)+ 4 )T i = T

0 or

which is Eq. (2.149).
When the viscous effects are neglected, we find that

dy

wtf  (@+20).2
ho h

is conserved following the horizontal motion @ . In fact, this is a result which
could also have been obtained directly from Ertel’s theorem, assuming a shal-
low fluid layer, and taking ¢ = p = pg on the free surface: assuming quasi
two-dimensionality, Eq. (2.83) leads to

(2.152)

Dy

D @+ 20).2dX] =0, (2.153)

and the mass conservation written for a fluid cylinder of depth A and section
dX yields

Du

Dt
which proves the result and justifies calling (w + f)/h the potential vorticity.
Such a result allows the recovery of the relative vorticity changes due to the
variation of f (differential rotation) and of h (by stretching or compression of
the relative vortex tubes). In this case, a “positive” topography (mountain)
will tend to create anticyclonic eddies which may lock on it, while cyclonic
vortices may be trapped in a trough.

(hdx)=0, (2.154)

2.11.3 Surface inertial-gravity waves

A surface-wave analysis, analogous to what has been done previously for the
case of internal waves, can be performed on the Barré de Saint-Venant equa-
tions. One assumes that f is a constant ( f-plane approximation), that there is
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no topography, and neglects viscosity. After linearizing about rest the vorticity
and continuity equations, we obtain

ow
ot +fA=0

with 18 18
T n
A=Vgyi= F ot ot (2.155)

Linearization of the momentum equation yields

Taking the divergence of this system, one gets

O

o = —gVin + fw

and finally

ot?

One seeks for solutions in the form of horizontally-propagating plane waves:

2
( 0 + f2> A=gH Vi) . (2.156)

AT, 1) = A eik-d—=t) (2.157)

where k is a real wave number, of components [k1, k2], w the pulsation, here
real, and A a constant complex amplitude. It yields the following dispersion
relation

w? = 24 (K} 4+ k2) gH . (2.158)

This allows definition of a horizontal scale rg, called the external Rossby
radius of deformation:

1
rg = f\/gH7 (2.159)
such that Eq. (2.158) writes

w? = AL+ k3 ry) . (2.160)
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o Gravity waves:

For motions of horizontal length scale L smaller than rg, surface gravity waves
are predominant, and Eq. (2.158) yields

w=k\/gH , (2.161)

an expression originally due to Lagrange, and which corresponds to non-
dispersive waves propagating at the constant phase velocity \/gH. This has
important applications in seas and oceans: if one takes H = 1000 m (assuming
a submarine earthquake underneath), we obtain ~ 100 m/s, which is of the
order of the velocity of a tsunami.

e Inertial waves:

For L much larger than rg, surface inertial waves of frequency f dominate.

Let us take for instance Earth atmosphere, and consider it as a ho-
mogeneous shallow layer with a free surface: taking H =~ 10,000 m and
f =10"*rd s~! (which corresponds to medium latitudes), the external Rossby
radius of deformation is of the order of 3000 km. The velocity of external grav-
ity waves (of wavelenght smaller than rg) is &~ 300 m/s. This is of the order
of the sound velocity in the air, and much higher than the typical values
~ 30 m/s for the synoptic perturbations.

Let us finally try to evaluate the ratio r;/rg in a thin layer where a stable
vertical stratification exists. It is found

2
(“) _NEE A (2.162)
TE gH P

where |Ap|/p is a typical vertical relative density (or potential temperature)
variation across the layer. This shows that the external radius of deformation
is larger than the internal one.

Analogy with a compressible gas

We recall at this point the barotropic equations of motion (2.36) for a
barotropic perfect fluid in the case of an ideal gas, for which we neglect the
entrainment rotation. If one considers a two-dimensional flow, the momentum
equation for w and v reduces to inviscid Barré de Saint-Venant momentum
equations (without topography), provided the enthalpy h. of the gas be re-
placed by gh(z,y,t) in the shallow-water equations. Since, as already stressed,
the enthalpy of the gas is proportional to p?~!, the gas continuity equation
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(2.48) reduces to Eq. (2.144) only if v = 2. Therefore, Barré-de Saint-Venant
equations may be considered as a special case of two-dimensional compress-
ible turbulence, but with a not very realistic value of v (equal to 1.4 in the
air). However, the analogy (called the shallow-water analogy) is interesting,
since the gravity-waves velocity /gH may be interpreted as the sound velo-
city \/ — 1) he for the associated barotropic gas (see below). Let us remark
also that for atmospherlc synoptic motions of length scale smaller than the
external Rossby radius of deformation considered above, the equivalent Mach
number is of the order of 0.1, and the equivalent gas motion may be con-
sidered as incompressible, with no effect of the waves upon the dynamics.
Thus, Barré de Saint-Venant equations reduce in this case to two-dimensional
Navier—Stokes equations in a layer of constant depth, and gravity waves have
no influence on the horizontal motion.

e Sound waves in a gas:

As an exercise, we consider an ideal barotropic gas (perfect fluid) of arbitrary
~v and space dimension. We are going to linearize the equations of motion
about rest, posing h. = hg + h'. We have

ou = on’

— _up! 1N\ 7 —
o = Vh', ot +ho(y—1)V.Zi=0
from which one can derive (9/0t)V.@ = —V2h/, and
o B —ho(y — 1)V =0 (2.163)
ot ’ ’ ’

This is an equation similar to Eq. (2.156)) without rotation. We find sound
waves propagating at a speed

cs = /(v =1) ho = /YRT = \/dp/dp . (2.164)

Kelvin waves

Another application of Barré de Saint-Venant equations concerns Kelvin
waves, which have important applications in tides.?! The flow is still in a
shallow layer as in Figure 2.8 with no topography, but it is now constrained
between two vertical parallel planes. The first plane is chosen to define the
frame xOz, and the second plane is located at a distance y = Ly > 0. We
still use the above surface inertial-gravity waves equations in the inviscid case,
which yields:

0 an
(8t2 +f ) =gH V% o1 (2.165)

21 The source of this exercise was communicated to me by O. Métais.
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Boundary conditions are v = 0 on the two vertical planes. This leads to
n L0y
Yot or

on the two vertical walls (y = 0 and y = L;). One looks for solutions which
are longitudinal waves in the z direction of amplitude A(y):

=0

n(z,y,t) = A(y) e'Fr==" (2.166)

where k is a positive real number. Posing cqg = +/gH, one can show that v is
zero everywhere and @w = +kcg. The final solution writes

n(z,y,t) =no e¥FY/0 cos[k(z F cot) + 9] , (2.167)

where @ is a phase, corresponding to two family of waves travelling at a phase
velocity cg, respectively in the directions x > 0 and x < 0. It is interesting to
note that A(y) decreases from its maximum (located on the plane which is to
the right of the wave propagation) to its minimum on the opposite plane, the
difference between the extrema being no(1 — e~/L1/¢0).

Let us apply this result to tides in the channel sea (“Manche” in French)
separating France from Britain. Here, the source of waves is the tides within
the Atlantic located to the west, so that we will consider only waves propagat-
ing in the direction x > 0. The tidal range (“marnage” in French) is then
Mg, = 21 in France and QnOe’f Li/eo ip Britain, so that the relative variation
of this tidal range with respect to France is

1 — e TLi/co — 1 _ g=Li/re ’

where g is the external Rossby radius of deformation already introduced.
Taking f = 107, H = 70 m and L; = 150 km, we have rz = 260 km and
(0Myr /May) = 0.44. This is very important: indeed, if one takes M,, = 10 m
in France, it is reduced of about 4 m in Britain. The velocity of the waves
is 26 m/s (93 km/h), to be compared with the velocity of a galloping horse
(60 km/h), as tidal waves are supposed to travel in the Mount Saint-Michel
bay in Normandy.

2.12 Gravity waves in a fluid of arbitrary depth

The calculation of surface-gravity waves can be made for a fluid of arbitrary
depth H (see e.g. Lighthill [439]). We ignore rotation, consider a perfect flow
and assume a uniform density py and a vertical constant gravity g. If pg is the
pressure at the free surface, we define a modified pressure

P =p+pogz —po , (2.168)
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choosing the rest state of the free surface as z = 0. P is the pressure fluctuation
with respect to the hydrostatic rest state. Eq. (2.70), after linearization with
respect to the velocity fluctuations, becomes

ou 1=~
= — P 2.1

and the linearized vorticity equation is

0

o =0 (2.170)

In fact, we will assume that initially the flow is irrotational, and hence it will
remain irrotational for any time. The velocity is such that «@ = V@, and is
non-divergent. Therefore the potential &(x, y, 2, t) satisfies a Laplace equation

Vi =0, (2.171)

to which the equation of motion reduces. From Eq. (2.169), & may be chosen
such that

~ 0P
P=- . 2.172
Po ot ( )
The boundary condition at the free surface for the linearized problem is
on 0P
= 2.1
o ww0), (2173)

where n(x,y,t) (defined as in Barré de Saint-Venant equations), is the eleva-
tion of the free suface with respect to its rest level. Furthermore, we assume
that the flow is hydrostatic close to the free surface, which yields

P(z,y,0,t) = po g n(z,y,1) . (2.174)

Hence, using Eq. (2.173), it is found that

oP
g 77(957?/’75) = ot (%Zhoat) )
which when differentiated with respect to t yields, with the aid of Eq. (2.173):
0%
ot?

Eq. (2.171) can then be solved with the boundary condition (2.175) using a
normal-mode approach: one looks for solutions of the type

(,9,0,0) 49 (2,9,0,0) =0 (2.175)

B(x,y, 2,t) = A(z) expi(k.Z — wt) , (2.176)
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where k is here a horizontal wave vector which corresponds to horizontally-
propagating waves. One obtains:

A'(2) = k*A(2) =0, (2.177)

—w? A(0) +g A'(0)=0. (2.178)

For a fluid of depth H with a zero vertical velocity 09/0z at the bottom
z = —H, the solution of Eq. (2.177) is

A(z) = Ag coshlk(z + H)] , (2.179)
and hence it is found, from Eq. (2.178):
w?® = gk tanh(kH) . (2.180)

The phase velocity ¢ = w/k is given by

an 1/2
c=/gH [t chH)} . (2.181)

In the limit kH — 0 (long-wave approximation), which corresponds to hori-
zontal wavelengths large in comparison to the depth of the layer, one recovers
the shallow-layer result v/gH. On the contrary, and in the limit kH — oo

(fluid of infinite depth),
g
= . 2.182
‘ \/k (2.182)

2.12.1 Supersonic shocks and wakes of floating bodies

Let us consider a small body moving three-dimensionally through a gas at a
constant velocity U. If the Mach number M is smaller than 1, the body will go
slower than its sound waves. If, on the other hand, M > 1, then it will go past
the waves. It is well known that in this case, a shock cone forms in front of the
body. It is the envelope of all the wave surfaces (which are spheres) emitted
by the body at anterior times. Its half-angle sine is M ~!. For a supersonic
plane, the bang due to the shock cone will be heard when the aircraft passes
over our heads.
Let me recall what is stressed by Lesieur [424, p. 165] on this topic:

We underline a very interesting analogy between the shock cone of a
supersonic plane and the wake of a boat on the sea or a duck travel-
ling on the surface of a pond: if ¢ is the speed of gravity waves at the
pond surface, the duck will at each instant (through his legs flapping)
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excite waves which will form circles whose radius increases propor-
tionally to time and the speed c. If the duck’s speed U is smaller than
¢ (“subsonic” duck), it will be caught up by the waves it has created,
and will bathe into them. If U is larger than ¢ (“supersonic” duck),
it will never be caught up by the various wave circles: the envelope of
these circles will no more be a cone (as for the supersonic plane sound
waves), but a diedre whose half angle is given by the same expression
as the supersonic plane. The pond surface is agitated by he duck waves
inside the diedre, where it therefore knows about the animal presence.
Outside of the diedre on the contrary, nothing indicates (from an hy-
drodynamical point of view) the presence of the poultry. If the duck
accelerates, one sees the diedre closing.?? It is certainly more relaxing,
in order to understand the planes supersonic bangs, to observe ducks,
swans or boats on water.

22 1f it accelerates furthermore, the wake will become turbulent, and the diedre will
transform into a parabole.



3

Transition to Turbulence

3.1 Introduction

As already stressed in Chapter 1, turbulence can only develop in rotational
flows: it is due to the existence of shear in a basic flow that small perturbations
will develop, through various instabilities, and eventually degenerate into tur-
bulence. Some of these instabilities, at least during the initial stage of their
development, may be understood within the framework of linear-instability
theory, the main results of which will be recalled in this chapter. The nonlin-
ear instability studies may prove to be useful in the future in understanding
transition to turbulence, but, to date, they are still in progress and have not
led to a unified theory of transition. Extremely useful tools to understand
the transition, and assess the various theories proposed to describe it, are
direct-numerical simulations of Navier—Stokes equations: numerous examples
of these calculations will be given here.

Among the basic shear flows which will be considered, we will make a dis-
tinction between the free-shear flows, such as mixing layers, jets or wakes on
the one hand, and wall-bounded flows such as boundary layers, pipe flows or
channel flows on the other hand. In free-shear flows, primary instabilities lead-
ing to the formation of coherent vortices are inviscid, in the sense that they
are not affected by molecular viscosity, if it is small enough. In wall-bounded
flows, on the contrary, the linear instabilities depend critically upon the vis-
cosity (viscous instabilities), and vanish in the Euler case. Inviscid instabilities
are much more vigorous than viscous ones. The present chapter will consider
transition to turbulence both from the point of view of linear-instability the-
ory of parallel flows, and experimental or numerical data. We will look also
at transition in rotating shear layers and thermal convection.

It has to be emphasized that the concept of transition to turbulence is not
very well defined: generally, what experimentalists call transition corresponds
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to the development of small-scale three-dimensional turbulence within the
fluid. Actually, we will see that the whole process of transition to turbulence
may involve several successive stages: in the plane mixing layer behind a
splitter plate for instance, these stages observed experimentally are:

(A) The growth of two-dimensional coherent vortices.
(B) The merging of these vortices together (pairing).
(C) A catastrophic breakdown into three-dimensional turbulence.

But, as already discussed in Chapter 1 and will be justified later on in
the book, the two-dimensional coherent vortices, which appear before the
transition to three-dimensional turbulence, may have some features of two-
dimensional turbulence.

3.2 The Reynolds number

The most famous experiment on the transition to turbulence is the Reynolds
experiment of a flow in a circular pipe (circular Poiseuille flow). Let U be
an average velocity of the flow across the tube section (bulk velocity), D the
diameter of the tube, and v the molecular viscosity. Reynolds [592] introduced
in 1883 the non -dimensional parameter

UD

R= y (3.1)
and showed experimentally that there was a critical value of R above which
the flow inside the tube became turbulent. This was done by varying inde-
pendently the velocity U, the diameter D of the pipe, or considering fluids of
various viscosities. The critical value R, found by Reynolds was of the order
of 2000. For R < R, , the flow remained regular (laminar), and for R > R, it
became turbulent. It is interesting to go back to Reynolds’s article concerning
one experiment where he introduced a fine line of dye upstream at the centre
of the pipe inlet (which has a trumpet shape):

The general results were as follows:

(1) When the velocities are sufficiently low, the streak of colour extended
in a beautiful straight line through the tube.

(2) If the water in the tank had not quite settled to rest, at sufficiently low
velocities, the streak would shift about the tube, but there was no appearance
of sinusoity.

(8) As the velocity was increased by small stages, at some point in the
tube, always at considerable distance from the trumpet or intake, the colour
band would all at once miz up with the surrounding water, and fill the rest of
the tube with a mass of coloured water {(...).
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Any increase in the velocity caused the point of break down to approach
the trumpet, but with no velocities that were tried did it reach this.

On viewing the tube by the light of an electric spark, the mass of colour
resolved itself into a mass of more ore less distinct curls, showing eddies (... ).

These observations are corroborated by the measurements of the mean'
skin-friction coefficient at the wall 2u(di/dy)/pU? , done later on. Below R.,
it decreases as R™!, as predicted theoretically with the laminar Poiseuille
parabolic profile. At R, it undergoes an abrupt jump. Above R, its decrease
is much more gentle than in the laminar case, and follows first a R~/* law,
as shown experimentally by Blasius [67]. Though, as we shall see, the notion
of a critical Reynolds number is extremely ambiguous, this parameter can
nevertheless be shown to characterize the relative importance of nonlinear
interactions developing in the fluid: indeed, let us consider a fluid particle of
transverse velocity v in a the pipe. The time which is necessary for crossing
is the “inertial” time

D
Tin =", (3.2)

provided the fluid particle is not prevented from moving by viscous effects:
the latter will act on the distance D in a time of the order of
D2

T,=" (33)

as can be seen by considering the simple diffusion equation

ov

ot =V Vi . (3.4)

Thus the particle will be able to cross the tube only if the ratio of the in-
ertial frequency over the viscous frequency is greater than 1. This condition
corresponds to:

T, wvD

Ti o v
If one assumes that the order of magnitude of v is small with respect to U,
it can be concluded that the velocity fluctuations will be able to develop in
the flow only if the Reynolds number UD/v based on the basic flow is much
greater than 1.

From this oversimplified phenomenological analysis, we retain the idea
that the Reynolds number characterizes the relative importance of nonlinear
effects over viscous effects in the Navier—Stokes equation.

The same experiment repeated in a plane Poiseuille flow (plane channel)
shows, as in Reynolds experiment, a transition to turbulence at a critical

>1. (3.5)

! In a sense defined later.
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Reynolds? number of the order of 2000. For a plane Couette flow, the critical
Reynolds number? is of the order of 1000. We will discuss below in detail the
case of the plane boundary layer.

It is, nevertheless, difficult to give a firm basis to this notion of critical
Reynolds number: in fact, experiments show that the transitional Reynolds
number to turbulence depends on the intensity of turbulence existing in the in-
coming flow (residual turbulence). Furthermore, no theory (including instabil-
ity analysis?) has, up to now, predicted satisfactorily the critical Reynolds
number for transition to turbulence in the above-quoted flows.

In spite of the limitations of this approach, it is of interest to go back
to the hydrodynamic instability theory, in order to understand some basic
mechanisms of the transition to turbulence in free-shear or wall-bounded flows.
This theory also permits us to understand the mechanisms of generation of
primary coherent vortices in some free-shear flows such as mixing layers, wakes
or jets.

To conclude this section, let us stress that, in order to accurately define
the Reynolds number, one has to choose a characteristic velocity and length.
According to these choices, various Reynolds numbers can be associated to
a given flow. Note also that the Reynolds number can evolve following the
motion of the fluid particle if the characteristic scale and velocity depend
upon space or time: in the spatially-growing mixing layer or boundary layer,
for instance, the Reynolds number based on the layer thickness increases with
this scale in the downstream direction. In the round jet on the other hand, the
Reynolds number is constant and fixed by its upstream value (see Chapter 4).

3.3 Linear-instability theory

We recall here some important results of linear-hydrodynamic instability the-
ory which are of interest in understanding the transition to turbulence. For a
more complete presentation of the theory, the reader is referred to Drazin and
Reid [173]. We consider a fluid of uniform density p, and work in a Cartesian
frame Ozyz. We will restrict our attention to the stability of a parallel flow
of components u(y),0,0 to which a small perturbation is superposed. Let us
write the velocity-field components and pressure as

u(m7y7 Zﬂt) :ﬂ(y) +ﬁ(x7y7 Z7t) ) ,U(x7y7 Z7t) :fl’}(x7y7 Z7t) )
w(x7y7z7t):’lb(x7y7z7t)7 p(x7y7z7t):ﬁ(x7y7z)+pl(x’y7z7t)'
2 Based on the width of the channel and the average velocity across its section.

3 Based on the relative velocity between the two plates and their distance.
4 Linear or nonlinear.
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We write Navier—Stokes equations as

ou

ot (@.V)i = —;ﬁp + vV

and linearize, assuming that the components @, 0, w of the perturbed velocity
@ are small (in modulus) in front of @, and that [p’| < p. It is obtained

1o 1= - -
pVﬁ— pv;3+uv2u+uv2u .

IS

ot 0

ot + (u.V)u + 9 N+ (a.V)u = —

IS0

+

IS
IS0

t

The basic flow is assumed to satisfy Navier—Stokes equations. One can check
that the parallel basic flow assumption implies p(z,y, z) = p(x), with a con-
stant longitudinal basic pressure gradient (which may be zero). This implies
respectively parabolic (plane Poiseuille) or linear (plane Couette) profiles for
4. In fact people chose 4(y) quite arbitrarily. This may be justified assum-
ing that the error due to the parallel-flow assumption is negligible within the
linear-instability approach. One can also assume the existence of a forcing
term in the equations of motion, whose role is to maintain the basic flow
stationary.
Since the basic flow satisfies Navier—Stokes equations, one gets

ou
ot

IS0

= 2 22\ = 1= =
+ (@.V)u+ (u.V)u = —pr' + vV, (3.6)
with the continuity equation V.% = 0. One can work also on the basis of the
vorticity equation, as will be done below in two dimensions.

Notice that a parallel flow is solution of Euler equation for any function
u(y) (with a uniform pressure).

3.3.1 Two-dimensional temporal analysis

It will be seen later that in many cases (free-shear flows at high Reynolds
number in particular), small three-dimensional perturbations amplify slower
than two-dimensional ones within the framework of linear-instability theory.
This is a reason to study first the two-dimensional problem.

We assume the reference frame is not rotating, and that the total velocity
field (basic flow 4 perturbation) is two-dimensional (no z-dependence) with
w = 0. Incompressibility permits to use a stream function v (z, y, t) such that

oY oY

uzay, V= (3.7)

The vorticity & = wz'is spanwise, of intensity
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w=0v/0x — Ou/dy = -V , (3.8)

with V% = 02/02% + §%/9y?. We introduce the perturbations such that

o=— ., @=-Viy. (3.9)

The vorticity equation in this two-dimensional case reduces, from Eq. (2.75),

to
Dy

Dt

since the flow is incompressible (V.7 = 0), and (2.V)Z = 0. In Eq. (3.10),
Dy /Dt = 0/t + ud/0x + v0 /0y stands for the derivative following the ho-
rizontal motion.

Notice that, when studying the stability of a two-dimensional geophysical
flow on a rotating sphere, one can make use of Barré de Saint-Venant equations
with constant depth, which yields

w=vViw, (3.10)

Dy

Dt (wH+ f) =vViw . (3.11)

This equation will be used later on in order to obtain the so-called Kuo equa-
tion, allowing one to study the influence of differential rotation upon the
stability of parallel flows.

The linearized vorticity equation writes
dw

ow 0w 9 -~
ot + u(y) O —H)dy =vVyo . (3.12)

This is a linear partial differential equation L(t)) = 0 for the unknown function
157 which is, up to now, real. Let us first show that the problem may be solved
as well by looking for complex solutions of real and imaginary parts zzr and
1@'. Indeed, ~ ~ ~ ~
Lty +itps) = 0= L(tpr) + iL(1ps)

implies both L(t,.) = 0 and L(¢;) = 0. In other words, two real solutions can
be associated to a complex solution. This leads to the so-called normal-mode
analysis, where the perturbed stream function is sought in the form

) =d(y) e’ (3.13)

where @(y) is complex. It corresponds to a “complex perturbed velocity field”
of components & = 9y/dy and v = —0¢/dz, i.e.,
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o= Zj et @) g = jad(y) et T = —jan) (3.14)
« is real; and is the spatial longitudinal wave number of the perturbation: this
is a temporal analysis (where we have periodicity in the basic flow direction),
as opposed to a spatial analysis where « is complex. In this temporal study,
¢ is complex, of real and imaginary parts ¢, and ¢;. The phase-speed of the
perturbation is ¢, while ac; is its temporal-growth rate.

3.3.2 The two-dimensional Orr—Sommerfeld equation

The following remark allows to simplify the calculation: if a function is of the
form f(y)e! *®=<Y) its horizontal Laplacian is D o f(y)e’ =) with

d? )
D(x,O = dy2 — .
We have
O = —Dg et @==ct) aatw = —iac @, aaxa; —ia.

Then Eq. (3.12) writes
- d?u .
o — )@ + ot U _ _yD? et let)
y )

Multiplying by e~* *(=¢t) gives
. . d*u
—ia(t — ¢)Dq o + w@(’?yQ =—vD P .

Assuming that a # 0, we have finally:

&2 & v [ & 2
[a(y) — ] (dy2 —a245> =y P =— N (dy2 —a2> D, (3.15)
which is the traditional form of the two-dimensional Orr—Sommerfeld equa-
tion. The boundary conditions at the two boundaries y = ya, y = yp (which
may also be rejected to infinity) are of the no-slip type for the perturbed
velocity (since we are working with a non-zero viscosity), and hence, from
Eq. (3.14): & = 0; d®/dy = 0. Orr—Sommergeld equation may be written in a
non-dimensional form: we take a characteristic length and velocity, and obtain
for the non-dimensional variables

2o, d*a i d? 2
a(y) — —a?P) - D=— —a?) @ 3.16
a-d (G2 —ae) -G Le—- " (g, -at) o @)
R being the Reynolds number built on the chosen units. Before studying the

stability of viscous flows using Eq. (3.15), we will look at what can be said
from the point of view of a perfect flow.
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3.3.3 The Rayleigh equation

When viscous effects have a negligible influence in the evolution of the per-
turbed flow described by v, the above Orr—Sommerfeld equation simplifies to
the Rayleigh equation:

245 2
d —a2¢>—d“¢:o, (3.17)

[ﬂ(y) - C] (dy2 dy2

with free-slip boundary counditions ® =0 at y = ya, ¥ = yB.

The problem to be solved is the following: for a given @, we have to de-
termine the values of « (real) and ¢ (complex) for which Eq. (3.17) admits
complex solutions, which will be noted ®,,.. A first and important remark
concerning the possible solutions is that, if @4, is a solution, then &7, . is
also a solution corresponding to « (real) and ¢* (here % denotes the complex
conjugate). In other words

Do =D -

This is easily derived by taking the complex conjugate of Eq. (3.17). Since
without loss of generality we may restrict ourselves to positive values of «,
it turns out that, for any damped solution (such that ac; < 0), one may
associate an amplified solution such that a(—c¢;) > 0. Therefore, the research
of unstable modes is reduced to the research of non-neutral modes (¢; #
0). This is of course not valid for the Orr-Sommerfeld equation. A second
remark concerns the critical points y (see e.g. Maslowe [474]), such that @(y) =
c. These points can exist only in the case of a neutral mode, since u(y) is
evidently real. Therefore, eigen solutions corresponding to amplified modes®
do satisfy Eq. (3.17) divided by [a(y) — ¢]:

u—=c

" ﬂl/ 2
' = +a?| @, (3.18)

where the suffix / stands for the operator d/dy. In order to look for necessary
conditions of instability, we assume hence that ¢; # 0, and multiply Eq. (3.18)
by @*. Integrating from y4 to yp, we obtain after an integration by parts and
making use of the boundary conditions ¢ = 0:

YyB YyB YyB
/ @H@*dy _ [Qyé*]g _ / @’@’*dy — _/ |¢/|2d3/
Y

A YA YA
and
YyB YB (5 ok
[T e ety ay= [Ter M a sy
YA YA Iu - Cl

5 If they exist.
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The imaginary part of the r.h.s. must be zero, which yields

YB ) al
® dy =0, 3.20
[ e (3.20)

since ¢; # 0. Taking into account the fact that |@| cannot be zero everywhere,
it implies that @’ must change sign at least once on the [y, yp| interval, or,
equivalently, that % admits at least one inflection point:® this necessary cri-
terion of instability, known as the Rayleigh inflection-point inviscid-instability
criterion, shows that basic velocity profiles such as the Blasius boundary-layer
velocity profile on a flat plane, or the parabolic plane Poiseuille flow in a chan-
nel, are unconditionally stable from an inviscid point of view. In fact, it will
be seen below that they are subject to viscous instabilities.

This criterion can be improved in the following manner: one still considers
an unstable solution (¢; # 0), and looks at the real part of Eq. (3.19), which
is written:

YB YB ﬂ// u — Cr
—/ (|9')? + o2|®|?) dy :/ |®|2 f ) dy . (3.21)
YA

YA Iu - Cl2

We notice that the constant ¢, arising in the r.h.s. may be replaced by any
other constant, due to Eq. (3.20). This is true in particular if this constant is
set equal to u(ys), where ys is any of the inflection points of @. The result is

that - I
/ 2 Wl g (3.22)
Y

ya |a —c|?

and @”'[u — u(ys)] must be negative somewhere, in order for the flow to be un-
stable. This is the Fjortoft criterion, which implies that |du/dy| , the absolute
value of the basic vorticity, must have a local maximum at y, (see Drazin and
Reid [173] for details).

We consider first a temporal mixing layer of basic profile given by

u(y) = U tanh J , (3.23)

do
(see Figure 3.1a).” It has an inflection point, and thus satisfies the Rayleigh
criterion. Since u.%” is negative everywhere, it satisfies also Fjortoft criterion.
It is therefore expected to be unstable from an inviscid point of view. It

5 The case @’ = 0 everywhere, corresponding to a plane Couette flow, leads from
Eq. (3.19) to @ = 0 on [ya,ys]. Therefore, there is in this case no amplified mode
within the Rayleigh analysis.

" Notice, however, that the laminar or mean turbulent velocity profile of the tem-
poral mixing layer is an error function. In fact, this is very close to a hyperbolic-
tangent velocity profile.
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Figure 3.1. Basic velocity profiles in (a) the temporal mixing layer; (b) the turbu-
lent plane Couette flow. For the latter, the dashed line indicates the linear laminar
profile.

is indeed violently unstable (Kelvin—Helmholtz instability). The same holds
for a plane jet or a wake. On the other hand, the basic velocity profile of
the turbulent plane Couette flow (shown in Figure 3.1b) satisfies Rayleigh
criterion (since it has an inflection point), but not Fjortoft (z.u” is positive).
Notice also that the two above criteria give only necessary conditions for the
instability. These conditions are not always sufficient: for instance, the basic
velocity profile siny is stable.

Kuo equation

Let us consider Eq. (3.11), describing the two-dimensional horizontal motion
of a flow on a rotating sphere. The Coriolis parameter f is given by Eq. (2.87).
Let us consider a reference parallel of latitude ¢y, serving as an origin for the
meridional coordinate y. The B-plane approximation consists in expanding f
about g as

f=rlo+By, (3.24)

B = df /dy being assumed to be constant. If we perform a linear-instability
analysis about a parallel flow u(y), the term ¥ diw/dy in Eq. (3.12) has to
be replaced by (8 + dw/dy), and the analogous Rayleigh equation for this
problem, the Kuo equation, is (see Howard and Drazin [299])

fay) — dl (‘Zf - a2¢> + (5 _ ZZZ) F=0. (3.25)
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It is easy to check that Eq. (3.19) is now transformed into

—/yB (182 + a?|9]?) dy = /yB g @ = AE=C) 596

ya ya |1_L - C|2

Therefore, the necessary criterion of instability is now that (@” — () must
change sign. For a hyperbolic-tangent velocity profile of the form Eq. (3.23),

this is not possible if
U U

4
> 33 82 0.7758 , (3.27)
which is a critical value above which the instability cannot exist.

A two-dimensional DNS of the temporal mixing-layer submitted to dif-
ferential rotation has been carried out by Laroche [381]. These calculations
show that no rollup occurs for 8 > 0.2, although, from Eq. (3.27), the linear
instability may develop.® For 0.05 < 8 < 0.2, the roll up occurs, but the
pairing is suppressed. As will be shown in Chapter 9, differential rotation is
responsible for the propagation of Rossby waves, which limit the meridional
extent of motions: the inhibition of the pairing is thus one of the aspects
of this limitation. This range might correspond to realistic values of § for
Earth atmosphere,” and also for Jupiter. This might explain why cyclonic
depressions above the northern Atlantic rarely pair (André [8]), and could
question the theories interpreting Jupiter’s great red spot as the result of
pairings of smaller-size eddies created in the shear between two neighbouring
jets (Somméria et al. [661]).

B

3.3.4 Three-dimensional temporal normal-mode analysis
Non-rotating case

We go back to the non-rotating flow with a parallel basic profile, with nota-
tions of Eq. (3.6). We recall that the perturbed velocity field has for compon-
ents (@, 0,w). Let p = p’/p. The linearized equations write

(8 +ua>a+au’=—ap+yv2a

ot ox or
g _90\. Op 9~
<8t+u8x>v_ 8y—|—qu
g _9\. 0Op 9 -
(8t+u8x> ——82+VVw

8 B is here non-dimensionalized with U/d3.
9 8o and U being properly chosen with respect to the coherent eddies.
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One carries out a normal-mode analysis, where the fluctuations take the form

(@, 0, @, p) = [a(y), 5(y), w(y), p(y)] €' === (3.28)

where [ (real) is the spanwise wave number of the perturbation, and w is
complex.'® When substituted into the linearized equations, one obtains

i(at — @)+ w0 = —iap +vDy gl (3.29)
i(at — )0 = —f' + vDa gb , (3.30)
i(at —w)w = —ifp + vDq g , (3.31)
with P2
Dy p= a2 (o +3%) .

The continuity equation yields
odl + pi = id . (3.32)
Multiplying Eq. (3.29) by « and Eq. (3.31) by § and adding permits, with the
use of Eq. (3.32), to express the pressure in terms of v:
—(@® 4+ BHp =i(at — w)d' — it — vDy g0 .
Substituting into Eq. (3.30) gives

7

A~ A~
o2 1 32 0,80 +vDq g0, (3.33)

i(au—w)b = [(ti—)d" —at’ ] —

v
D
O[2+,62

or equivalently

/IA}// ’LO& ” {)//
(ot — 0 — + v=vD D — ,
( @) [ a2 +ﬁ2} a? + (32 o,f a? + 32

which writes finally

N

(ati — @)Dq,3b — "t = —ivD2 50 . (3.34)

This is for 9(y) an equation having similarities with Eq. (3.15) multiplied
by «, where a? has been replaced by o+ 32, and ac by w@. In non-dimensional
variables, this three-dimensional Orr—Sommerfeld equation reads:

42 i [ d? 2
[dy2 St o
(3.35)
The boundary conditions are © = 0 and ' = 0 at y4 and yp in the no-slip
case, and © = 0 in the free-slip case.

) =] |0~ (a2 +8%0] —al g
yv-—w dy? dy? R

10 Remark that a possible contibution e in the exponential has been included in
the amplitudes 4, 0, W, p.
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Squire’s theorem

We consider first the case a # 0. We pose

abp=a’+ 3%, Ryp= R. (3.36)
a2D
Eq. (3.35) is identical to Eq. (3.16) with the following changes of variables.
Let us consider a solution of three-dimensional Orr—Sommerfeld equation
characterized by a # 0 (longitudinal wave number), 8 (spanwise wave num-
ber), w; (imaginary part of t, amplification rate), and R (Reynolds num-
ber). Then it is solution of two-dimensional Orr—Sommerfeld equation char-
acterized by a wave number asp, an amplification rate (aap/a)w;, and a
Reynolds number Rsp. If for instance the three-dimensional solution is un-
stable (z; > 0), then the dual two-dimensional solution will more amplified,
with smaller wavelength and Reynolds number. It turns out that if one looks
for critical Reynolds numbers of linear instability, a two-dimensional analysis
is sufficient: indeed, an unstable three-dimensional mode will correspond to
a two-dimensional unstable mode with a smaller Reynolds. If one considers
an inviscid instability at infinite Reynolds number, and vary the wavevector
(a, B) of the perturbation, the mode with the highest amplification rate (most
amplified mode) will be two-dimensional. But Squire’s theorem does not im-
ply that, for a given finite Reynolds number, the most amplified mode will be
two-dimensional. This was discussed by Casalis [101] for the Blasius boundary
layer.
In principle, Squire’s theorem does not apply directly to purely longitud-
inal modes (a = 0). Orr—Sommerfeld equation Eq. (3.35) yields in this case

2 2 2
(ddyQ — 62> b =sR (;;2 - 62> b (3.37)

with s = —iw. Here s has to be real, in order to have standing waves which
do not propagate in the spanwise direction. One can show that there are
no non-zero solutions for s > 0, which means stability (in the sense of the
normal-mode approach where a solution proportional to et is sought for).

Solid-body rotation

As an exercise, we perform now the three-dimensional linear-instability ana-
lysis of a basic parallel flow submitted to a solid-body rotation of entrainment
vorticity 200 = fZ. The parameter f may here be positive or negative, accord-
ing to the sense of rotation. The linearized equations are now

o _oN. _,, _Op 9.
<8t+uax>u+v(u—f)— ax+VVu,
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g  _0\._ 0p N 9~
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o,

0 . 0p 2~
(8t+u8x>w_ 6Z—|—VV w .
With a fluctuation of the form (3.28), we just look for longitudinal inviscid
modes (o = 0,v = 0). One gets (with s = —iw)

It yields

and finally

or equivalently

d? 2 £2
(dyz - 52) U= ﬁsf 1+ Ro(y)]o (3.38)
where »
Ro(y) = —1} (3.39)

is a local Rossby number. When it is positive, the flow is locally cyclonic
(vorticity of same sign as the entrainment rotation), while a negative sign
implies local anticyclonicity. Eq. (3.38) was studied by Pedley [566] (see also
Yanase et al. [730]). As stressed by Drazin and Reid [173, p. 78], it corresponds
to a classical eigenvalue problem of the Stiirm—Liouville type, and a necessary
and sufficient condition for instability is (with © = 0 on y4 and yg) that

Ro(y) < —1 (3.40)

somewhere in the flow.!'! The corresponding instability was called shear-
Coriolis instability by Yanase et al. We will see in Chapter 12 how to in-
terpret this result physically in terms of appearance of longitudinal vortices,
as far as absolute vorticity is concerned. We just mention that DNS starting
with the basic laminar profiles perturbed by weak random perturbations do
confirm the above instability condition in the case of periodic mixing layers

1 This condition was also derived by Bradshaw [78] from an analogy with stratified
flows.
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and wakes (Métais et al. [498]) and of a plane Poiseuille flow (Lamballais et
al. [366-369)]).

Remark that inviscid linear centrifugal instabilities are, for axisymmetric
modes, governed by an equation very close to Eq. (3.38):

d (d 1 o] . B
{dr (dr-i-?n)—ﬁ}v—sz@v , (3.41)

where r is the distance to the axis, and ®(r) = (1/r3)(d/dr)(r?$2)? is the
Rayleigh discriminant based on the local angular velocity £2(r). We recover the
famous Rayleigh criterion for centrifugal instability, stating that a necessary
and sufficient condition for instability is that @ < 0 somewhere in the flow.

3.3.5 Non-normal analysis
A linearized approach

We go back to the non-rotating case. We have seen with Eq. (3.37) that no
longitudinal mode is unstable with a perturbation proportional to e ~***. Here,
and still in the framework or a linear analysis, we are going to look for different
solutions. We consider the vorticity equation (2.75), and linearize it. We take
first a quite general basic flow @ap(x,y,t), two-dimensional in the z,y plane,
of zero spanwise component, and of vorticity Wop = wapz. We superimpose
a three-dimensional velocity ﬂ'(l)(x, Yy, z,t) of small amplitude with respect to
the basic flow,'? and of components @, ¥, @. Let

@'(1)(x,y, z,t) = \VAETI

be the perturbed vorticity, of components &g, @y, ©,. An expansion of the vor-
ticity equation with respect to the small parameters [u(") /usp| and [w) /wap|
(assumed to be of the same order) yields to the first order

D - 0 >
P50 = 0 Viyp + wap - @D — @M Vaap + V23V . (3.42)
Dt 0z
We suppose now that the basic flow is a parallel flow @(y). The linearized
vorticity equation yields then:

DQD ~ _7,817)

ot
— 25 = T D, — =
Dy Os vWo, =1 (wy 87:) PN (3.43)

2 The latter may not be parallel, and the following analysis may serve for secondary-
instability studies.
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Dop . . _,00

Dt O VW30, = _Ulaz , (3.44)
Dsp . _ 0w, .
thD o, —vV30, = -7/ s +a'v . (3.45)

This set of equations expresses the rate of change of the perturbed vorticity
following the basic flow. The first one shows that there cannot be produc-
tion of longitudinal vorticity in a longitudinal mode.!® On the other hand,
Eq. (3.44) shows that the vertical vorticity w, may increase approximately
linearly (if viscous effects are neglected and 00/0z is treated as a constant).
This provides in particular an amplified longitudinal solution, where longit-
udinal vorticity is conserved following the basic flow, while &, = 04/Jz will
grow linearly. In other words, weak vertical oscillations of the flow in planes
parallel to (z,y) (responsible for the creation of 9v/0z) will produce alternate
longitudinal velocity oscillations whose amplitude has a linear (and not ex-
ponential) growth. This is reminiscent of longitudinal velocity streaks (which
produce vorticity oriented in the y direction) found in developed turbulent
boundary layers. Algebraic instabilities of this type, which are not accounted
for within the linear normal-mode analysis, have been proposed by Landhal
(see e.g. Landhal and Mollo-Christensen [372, pp. 115-122]) to explain the
growth of low and high-speed streaks in these flows close to the wall. This is
also commented in the book of Schmidt and Henningson [637]. We will discuss
Eq. (3.45) in Chapter 4.

Recent results concerning these approaches may be found in the stimulat-
ing book of Schmidt and Henningson [637].

The velocity-sheets model

As an ezxercise, we propose an exact solution (without any linearization) of
Navier—Stokes equation in a constant shear within an infinite domain, having
some of the features of the amplified longitudinal solution we have just con-
sidered. We assume a basic parallel flow of constant shear A = @'(y), which
has to be obtained by some type of forcing. We look for a perturbed real
velocity (with respect to the basic flow) of the form

a=U(z) [X(t) Z+Y(t) 7], (3.46)

and assume a zero spanwise velocity w and a uniform pressure. The vorticity
of the perturbed field

13 This result is valid even in the fully nonlinear regime: indeed, in case of independ-
ance with respect to x, the spanwise and transverse velocity components satisfy
a two-dimensional Navier—Stokes equation, in which the vorticity &, cannot in-
crease (see Chapter 8).
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W= Yi+ Xy
& v)
is perpendicular to the perturbed velocity. Substituting into Navier—Stokes
equations, it is obtained

ay

a =V U"(2)Y . (3.47)

U(z) (dg +)\Y> =vU"(2)X , U(z)

This is possible only if U(2) and its second derivative are proportional, which
implies that U(z) is a sine function:

U(z) =sinpz

where (3 is the spanwise wave number of the perturbation. Therefore Navier—
Stokes is satisfied if

dY

_ 2
o~ VY

dXx
AY = -—uvp*X
o T vprx

whose solutions are
Y=Yy e "t X =(Xg—\Yot) e "t

which gives
2 2
@ = (ig — Apt)e VPt | & =ge Pt (3.48)

where the suffix ¢ stands for the initial instant. Thus, the vertical velocities and
longitudinal vorticities are damped with time. There is no vortex stretching in
the longitudinal direction within this model. To simplify, one supposes 4y = 0.
This provides a streaky pattern where:

— fluid sheets parallel to the x,y plane rise or sink (with a vertical velocity
damped with time),

— the rising sheets are of the low-speed type (@ < 0), while the sinking sheets
correspond to high speed (@ > 0).

The longitudinal velocity amplitude (and the vorticity wy) is proportional
to Ate~vA’t: it increases up to

1
=3

then decreases. For t < t,, one recovers an inviscid linear growth. The flow
is schematically shown in Figure 3.2: vertical oscillations (damped viscously)
produce longitudinal oscillations which grow first linearly with time and then
dissipate. The angle formed by the perturbed vorticity and the horizontal
plane is characterized by its tangent, equal to At. Thus, at large times, the

ty (3.49)
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Figure 3.2. Schematic view of velocity and vorticity fluctuations in the velocity-
sheets model.

1.14

perturbed vorticity tends to be vertical."* The maximum longitudinal fluctu-

ating velocity is (in modulus)

~ _ g ~
= = R g | (3.50)
where
A , (1)
(8) = ~ 10~ 51
w = e () 5

is a sort of Reynolds number characteristic of the efficiency of the streaking
mechanism. [, = 27/ is the spanwise wavelength of the instability, and

l, = (;)1/2 (3.52)

' As noticed by Métais et al. [497], the total local helicity of the flow is

1. 1_,.dU
J78 = uy) ) Y@,

which tends to zero at large times with Y.
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is a viscous length associated to the shear. If Rgﬁ ) is high enough, the longit-
udinal velocity attained will be much larger than the initial vertical velocity.
Egs. (3.51) and (3.52) show also that this instability will be all the more active
than the spanwise wavelength 27 /3 is large.

In the following, such a model will be called the “velocity-sheets model”.
We will discuss later to which extent it may represent the low and high-
speed streaks observed at the wall in turbulent-boundary layers. One defect is
that, due to the uniform-pressure assumption done, it is unable to reproduce
pressure troughs induced by A-shaped vortices which form in reality.

The influence of rotation upon this model will be looked upon in
Chapter 13.

3.4 Transition in free-shear flows

3.4.1 Mixing layers

We start by considering the temporal mixing layer, which is, periodic in the
z direction, of basic velocity profile given by Eq. (3.23). This velocity profile
is shown in Figure 3.1a. Let ; = 2dp be the initial vorticity thickness. This
is an approximation of the more realistic spatial mixing layer, where the two
parallel flows which mix have two different velocities U; > Us of same sign:
if one takes a reference frame moving with the average velocity (U; + Us)/2
and neglects locally the lateral spreading of the layer in the y direction, one
recovers a temporal mixing layer such that U; — Uy = 2U; therefore, the
distance x downstream of the splitter plate behind which the flows are in
contact in the spatial mixing layer will correspond to ¢t = 2z/(U; + Us) in the
temporal mixing layer.

Two-dimensional structure

The two-dimensional stability diagram of the temporal mixing layer, obtained
from a numerical solution of the Orr—Sommerfeld equation, is shown in Fig-
ure 3.3 (taken from Betchov and Szewczyk [61]). Here, Uy and L correspond
to U and dp in Eq. (3.23). On the figure, the neutral curve separates the region
with negative amplification rates ae; (stable) from the region with positive
ac; (unstable). In two dimensions and for a given Reynolds number, there
exists a range of unstable modes «. It may be shown that their amplification
rate ac; is maximum for a wave number «, called the most-amplified wave
number. It is this mode which is expected to be selected if a two-dimensional
initial perturbation, superposed upon the basic hyperbolic-tangent velocity
profile, contains an equal amount of energy in all the unstable modes: in-
deed, the perturbations grow exponentially with time, and the one with the



92 8 Transition to Turbulence

basic velocity profile U=U; tanh (y/L)
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Figure 3.3. Two-dimensional linear-stability diagram of the mixing-layer instability
in the (o, R) domain (non-stratified case). The different curves correspond to various
rates of amplification ac;. Under the neutral curve (¢; = 0), the flow is unstable (from
Betchov and Szewczyk [61], courtesy of The Physics of Fluids).

highest amplification rate will grow to finite amplitude before the other un-
stable modes will have time to develop. This has been verified for instance in
the case of a two-dimensional white-noise perturbation by Lesieur et al. [420].
When the Reynolds number exceeds values of the order of 30 ~ 40, the
amplification rates are no longer affected by viscosity, and the instability be-
comes inviscid, in the sense that it is well described by the Rayleigh equation.
The most amplified wave number, calculated by Michalke [503], is given by

g =0.44 651, (3.53)
corresponding to a spatial wave length
Ao =14 6 . (3.54)

The mechanism of instability may be described in the following manner (see
Batchelor [50] and Drazin and Reid [173]): let us consider a longitudinal stripe
of rotational fluid (approximately of width 2Jy) in the z,y plane, separating
the two irrotational regions corresponding to the uniform flows of respective
velocity U and —U (see Figure 3.4). Suppose that this rotational zone is per-
turbed and undulates in a sine wave about the line y = 0 with a longitudinal
wavelength )\, (Figure 3.4a). First, pressure differences between the two layers,
analogous to those induced on both sides of an airfoil, will be responsible for
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(a) (b)

Figure 3.4. Schematic illustration showing the formation of spiralling Kelvin—
Helmholtz vortices in a mixing layer.

the growth of the perturbation amplitude. Second, and since d*u/dy? ~ 0 in
the neighbourhood of the inflection point, the inviscid equation (3.12) implies
that the total vorticity is convected by the basic flow u(y). Hence, the crests of
disturbance (in the region y > 0) and the troughs of disturbance (y < 0) will
travel in opposite directions. This will steepen the vortex sheet (Figure 3.4b),
and velocity-induction will transform the sheet into a spiral (Figure 3.4c).
The vortices have initially a longitudinal wave length \,. This instability will
be called here the Kelvin—Helmholtz instability, the resulting vortices being
Kelvin-Helmholtz vortices. Vortex roll up may also be understood using the
so-called displaced fluid particle arguments: a fluid particle located initially
at y = 0 (where the vorticity is maximum) and moved towards the regions
y > 0 or y < 0 will keep its vorticity,!® and therefore will be surrounded by
fluid of weaker vorticity, which will induce the roll up by velocity induction.
Afterwards, the two-dimensional evolution of the layer can be investigated
by means of direct-numerical simulations: Plates 7 and 8, taken from Comte
[134], present the time evolution of a temporal mixing layer in a square domain
of size equal to 8 fundamental wave lengths: the vorticity (left) shows how the
fundamental eddies form, then undergo successive pairings. A passive scalar

5 We recall that, in two dimensions (without viscosity), vorticity is transported
following the velocity field.
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Figure 3.5. Initial stage of the two-dimensional subharmonic instability leading to
a pairing.

(right) plays the role of a numerical dye marking the two streams, and shows
how the coherent vortices mix the two flows. The first pairing occurring in
coherent vortex the row of primary vortices may be understood in terms of
a two-dimenional subharmonic instability of wave length 2),, as is shown in
Figure 3.5. Indeed, suppose that the phase of this subharmonic perturbation
is such that vortices are either lifted into the upper region (y > 0) or pushed
down in the region y < 0. If one remembers that, within linear-instability
analysis, the vorticity is transported by the basic flow, vortices in the upper
region will be pushed against vortices in the lower region. Then, velocity
induction mechanisms will act: each vortex will tend to entrain the other in
the irrotational motion it induces outside, so that the vortices will roll up
about each other. Since the irrotational motion induced a distant r apart
from each vortex centre has an angular velocity v/r o r~2, the outer part
of both vortices will turn slower than the inner part, and they will develop a
tail. Such tails are clear in Plate 2. During the pairing, the tails will mix into
spirals.

These pairings present striking similarities with van Gogh’s starry night
(see Figure 3.6), where one can see an astonishing representation of pairing
vortices, which are going to pair with a third vortex. From the title, the painter
seems to have reprensented ensemble of stars in galaxies. He did not know that
many galaxies are composed of black holes, which are huge vortices which may
pair also. In fact it is probable that van Gogh met in France japonese painters
of the famous Utagawa school, who painted vortices in currents similar to
those due to Hiroshige shown in Lesieur [424, p. 63]. It is also of interest to
remark that instabilities corresponding to roll up and pairing and referred to as
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o

Figure 3.6. Vincent van Gogh (1889): Starry night. Courtesy DIGITAL IMAGE
(©2007, The Museum of Modern Art/Scala, Florence.

“starry” by reference to van Gogh’s painting have been found by neurologists
to explain the cell structure in the brain.

Notice also that the features of the passive-scalar field in Plates 7 and 8 are
reminiscent of the experimental visualizations of a spatially-growing mixing
layer between two reacting flows carried out by Koochesfahani and Dimotakis
[342]. More generally, these types of mixing layers are very important for their
application to non-premixed combustion..

Temporal mixing-layer experiments are difficult to realize experimentally,
although they may be much more relevant to geophysical situations. However,
there is a less known aspect of Reynolds’ [592] historical paper on transition,
where he remarked that the pipe flow was difficult to destabilize. He then
performed a second experiment involving two fluids of different densities p;
and po in a slightly inclined tube (with the lighter fluid on the top), and
stressed that such a flow could be destabilized much more easily. Let us quote
him:
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A glass tube (...) having its ends slightly bent up (...) was half
filled with bisulphide of carbon, and then filled up with water and
both ends corked. The bisulphide was chosen as (...) little heavier
than water and completely insoluble, the surface between the two
liquids being clearly distinguishable (...). On one end of the tube
being slightly raised the water would flow to the upper end and the
bisulphide fall to the lower, causing opposite currents along the upper
and lower halves of the tube (...). When one end was raised quickly
(...), (and) at a certain definite inclination, waves (nearly stationary)
showed themselves, presenting all the appearance of wind waves (... ),
(and) of length being comparable to the diameter of the tube. (...)
When the rise was sufficient, the waves would curl and break, the one
fluid winding itself into the other in regular eddies.

This is obviously a very thorough description of Kelvin—Helmholtz vortices
forming in a temporal mixing layer. This experiment was redone later on in
greater details by Thorpe [688], who shows the formation of a row of Kelvin—
Helmholtz vortices very much resembling the passive-scalar distribution of the
calculation presented in Plate 7, when the primary vortices form. In such an
experiment, the density difference is essential to create the mixing layer and
hence the instability. On the other hand, it is well known (see Miles [505],
Howard [298], and Drazin and Reid [173]) that the instability saturates if
the density difference exceeds the value corresponding to a local Richardson
number of 0.25. This number is defined as
Ri = _gAﬁ* ;2 s

where Ap, is the difference between the upper and lower layer of p/pg (for
a liquid) and —©/60y (for a gas), while § is the local vorticity thickness.®
A schematic picture of this second Reynolds experiment in a tilted pipe is
shown in Figure 3.7. Rows of Kelvin—-Helmholtz vortices thus frozen by strat-
ification are often encountered in the atmosphere in the wake of mountains.
We have already presented in Plate 1 a two-dimensional numerical simula-
tion of a spatially-growing mixing layer, performed by Normand et al. [536].
This calculation is forced by a small random perturbation at the inflow, su-
perposed upon the incoming hyperbolic-tangent velocity profile. This is done
in order to model the turbulent fluctuations brought by the boundary lay-
ers developing along the splitter plate in the experiment. In this calculation,

16 With no shear, a negative value of the Richardson number (properly defined)
will correspond to thermal convection, provided the Rayleigh number (see below)
is high enough. For positive high values of the Richardson number, the strat-
ification is preponderant. For positive small values, on the other hand, inertial
forces dominate. In the stably-stratified case, one may introduce a Froude number
F =U/(N§), with N> = —gAp. /s, and equal to R; /%,
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Figure 3.7. Formation of Kelvin—Helmholtz billows and transition to turbulence in
Reynolds’ stratified tilted pipe.

Kelvin—-Helmholtz instability develops following the mean flow: as in the tem-
poral case, Kelvin—Helmholtz vortices form by roll up, pair, and are finally
carried away downstream, out of the computational domain. Analogous cal-
culations, where the inflow is forced at the fundamental with a random phase,
were made by Lowery and Reynolds [455].

Three-dimensional structure

Although, as already stressed in Chapter 1, the two-dimensional simulation
seems to represent quite well the large-scale coherent-vortex dynamics of the
experiments, it cannot of course simulate the transition to small-scale fully-
developed turbulence. Experiments (see e.g. the review by Ho and Huerre
[286]) do show that this transition occurs after the first pairing. Thin lon-
gitudinal vortex tubes of opposite sign interconnecting the Kelvin—Helmholtz
billows, (see e.g. Konrad [341], Breidenthal [80], Bernal and Roshko [56], Ji-
menez [314], Lasheras et al. [383], and Lasheras and Choi [384]) seem to play
a role in this transition: they are highly distorted during the pairing, and give
rise to small-scale three-dimensional turbulence. The topology of secondary
vortex filaments stretched between the primary vortices was recovered nu-
merically in temporal mixing layers by Meiburg [481] (see also Ashurst and
Meiburg [19]) using vortex-filament methods, and by Metcalfe et al. [501] (see
also Rogers and Moser [615]) with three-dimensional direct-numerical simula-
tions using pseudo-spectral methods.

The origin of these filaments is still subject to discussions: In Breidenthal’s
[80] experiment, this author notes a wiggle disturbance in the outer edge of
the billows, from which the longitudinal vortices originate, due to the global
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Figure 3.8. Plan view of Breidenthal’s [80] mixing-layer experiment, showing the
development of a sinuous spanwise instability of the Kelvin—Helmholtz billows. Sim-
ultaneously, longitudinal vortices form downstream (courtesy of Cambridge Univer-
sity Press).

strain field of the flow (sic). This is shown in Figure 3.8, taken from this refer-
ence. In this experiment, the spanwise wave length of the oscillation is 1.1 A,
where A is the longitudinal wave length of the local Kelvin—Helmholtz billows.
The topology of these hairpin vortices in the mixing layer downstream, when
small-scale turbulence has developed, has been experimentally reconstructed
by Bernal and Roshko [56], who propose a hairpin-shaped vortex filament,
which loops back and forth between adjacent primary vortices (sic, see Fig-
ure 3.9) with an average spanwise wave length of ~ (2/3)\. This spanwise
spacing scales downstream with A. A cross section view of these longitudinal
vortices in Bernal and Roshko’s experiment is shown in Figure 3.10. In fact,
Huang and Ho [302] showed in their experiment that the spanwise spacing of
the longitudinal vortices doubled at each pairing of the primary vortices.
Some people interpret these longitudinal filaments as a consequence of the
translative instability, discovered by Pierrehumbert and Widnall [573], on the
basis of a three-dimensional linear secondary-instability analysis (Floquet ana-
lysis) performed on a row of two-dimensional Stuart vortices: this instability
consists of a global sinuous spanwise oscillation of the primary billows. The
most-amplified spanwise wave length A\s of the instability is found to be

As A DA, (3.55)

where A is the longitudinal wavelength of the two-dimensional vortices. This
accords well with Bernal and Roshko’s [56] experiments. However experiments
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Figure 3.9. Topology of streamwise vortex lines in the mixing layer, as proposed by
Bernal and Roshko [56] from their experiments (courtesy of Cambridge University
Press).

Figure 3.10. Cross-section of the longitudinal vortices in the experiments of Bernal
and Roshko [56]; the flow direction is normal to the figure (courtesy of Cambridge
University Press).
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and numerical simulations show clearly that the hairpin vortices are much
thinner than the primary billows. It is therefore difficult to consider the hairpin
vortices as the eventual evolution of a sinuous oscillation of the billows.

There is another explanation of the hairpins, which may be found in Corcos
and Lin [144] (see also Neu [531]). It can be explained as follows. Weak vorti-
city existing initially in the stagnation region between the spiral vortices will
be stretched longitudinally in the following way: let us consider the vorticity
equation, written for a perfect fluid of uniform density as

Do
Dt

- 1
=Vies=S80+ Sxd=50d , (3.56)

where S is the deformation tensor introduced in Eq. (2.11). If one supposes
that the vorticity in the stagnation region between the vortices is weak (in
some sense) in front of the deformation, one can assume (at least initially) that
the deformation tensor will not vary while the vorticity is stretched. Since the
deformation tensor is real and symmetric, it admits eigenvectors (principal
axes of deformation) which are orthogonal and can form a basis. Let s1, s2, s3
be the three eigenvalues. Due to incompressibility, their sum is zero, so that
one is positive (called here s1) and another one at least is negative. Let so be
the smallest eigenvalue, always negative. Working in the orthonormal frame
formed by the eigenvectors respectively associated to si, so, s3, the vorticity
components w1, ws,ws satisfy the following equations

Duw, Duws Dws

= 51w = Sows , = S3w
Dt 1wl , Dt 2W2 Dt 3W3

and the vorticity will be stretched in the direction of the first principal axis,
and compressed in the direction of the second. It is not a bad approximation
to assume s3 ~ 0 in the stagnation region, so that there will be no vor-
tex stretching or compression along the third principal axis.!” There is here
no preferred spanwise wave length, but it could be imposed by the above-
described translative instability of the billows, and as proposed by Sandham
and Reynolds [629].

Comte and Lesieur [134] and Silvestrini et al. [651] found intense longitud-
inal hairpins stretched in the LES of a temporal mixing layer forced by a weak
random quasi two-dimensional perturbation. These LES are of the Euler type,
since carried out at zero molecular viscosity. The former of these calculations is
shown in Plate 9, presenting the passive-scalar interface of the layer, as well as
positive longitudinal vorticity in red. The longitudinal vorticity can here reach
values of the order of ~ 2w;, where w; is the maximum initial spanwise vor-
ticity modulus. An interesting feature of Plate 9 is to show that longitudinal

7 Which is approximately spanwise.
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Figure 3.11. Low-pressure field obtained in the inviscid LES of a temporal mixing
layer undergoing helical pairing (courtesy J. Silvestrini, Grenoble).

vorticity stretched between the primary Kelvin—Helmholtz vortices is rolled up
within the cores of the big vortices, thus producing intense longitudinal vorti-
city fluctuations in the cores themselves. Silvestrini et al.’s LES were carried
out with the same subgrid model (spectral eddy-viscosity, see Chapter 12), but
in a cubic box at a higher resolution (962 Fourier modes) and with four initial
fundamental wavelenghts. Plate 10a presents in this simulation an isosur-
face of the vorticity modulus corresponding to a threshold (2/3)w;. Here, the
maximum longitudinal vorticity stretched is of the order of 4w;, which might
be larger than the effective values reached experimentally. Actually, the effi-
ciency of the longitudinal stretching in reality depends also upon the amp-
litude of the initial perturbation and the Reynolds number. In fact Squire’s
theorem (at infinite Reynolds number) and the numerical resolution of the
three-dimensional Orr—Sommerfeld equation at large Reynolds show that the
most amplified mode in the three-dimensional temporal mixing layer is in-
deed two-dimensional. By a naive application of this result, one might have
believed that two-dimensional Kelvin—Helmholtz vortices would emerge from
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Figure 3.12. Schematic view of helical pairing, where vortex filaments oscillating
out of phase vertically (a) are stretched by the basic flow and reconnect (b).

a weak three-dimensional isotropic perturbation superposed upon the basic
shear. But this is not at all what happens. Instead, Comte et al. [137,138],
using DNS with pseudo-spectral methods at a resolution of 1283 Fourier wave
vectors and a Reynolds number Ud; /v = 100, displayed the evidence for helical
pairing. This is shown in Plate 11, which represents a top view of respectively
the vorticity components, vortex filaments and passive-scalar interface. The
same dislocated pattern was recovered by Silvestrini et al. [651] in inviscid
LES with the same forcing (see Plate 10b). Figure 3.11 presents the low-
pressure field obtained in the calculation of Plate 10b. It confirms that low
pressure and high vorticity modulus are well correlated in large structures,
indicating that low pressure is a good indicator of big or intense vortices. A
schematic view of the helical-pairing interaction is shown in Figure 3.12: one
assumes that the fundamental Kelvin—Helmholtz billows oscillate vertically
out of phase (three-dimensional subharmonic perturbation), and are in the
meanwhile transported by the basic flow. A staggered pattern will develop,
and the pairing will occur locally, yielding a vortex lattice.!® Remark also
in Plates 10b and 11 the existence of thinner longitudinal hairpin vortices

8 Let us mention also the kinematic model of three-dimensional vortex lattice pro-
posed by Chorin [123] in order to describe Kolmogorov’s inertial range of turbu-
lence.
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strained by the flow in the stagnation like zone between two local-pairing re-
gions. Notice that one leg of this hairpin is much stronger than the other one.
This will in fact be the case for most of hairpin vortices found in shear flows,
in particular in turbulent boundary layers (see Chapter 4). Plate 12 shows a
side view (in the  —y plane) of the passive-scalar interface. It indicates appar-
ently regular Kelvin—Helmholtz vortices. It is possible that some mixing-layer
experiments, showing coherent structures when visualizing cross sections of
the flow, could correspond to a high degree of three-dimensionalization.

The expression “helical pairing” was used in the secondary-instability ana-
lysis of Pierrehumbert and Widnall [573] to characterize a three-dimensional
subharmonic instability (staggered mode). As remarked by Comte [141], its
amplification rate in terms of this theory is of the same order as that of the
translative instability already mentioned. This shows that the use of instabil-
ity theories requires great care, since most experimentalists only retained from
Pierrehumbert and Widnall’s work the concept of translative instability. An-
other remark is that when looking at DNS or LES of helical-pairing, it turns
out that this is not exactly a “secondary instability”: one does not observe first
the roll up of primary billows followed by a staggered deformation. Instead,
oblique waves are seen to grow quickly, yielding directly the lattice struc-
ture of dislocated billows. In fact, the terminology helical pairing was first
proposed by Chandrsuda et al. [107] in a mixing layer experiment (behind
a backstep) where the coherent vortices were highly three-dimensional. Let
us finally mention that the helical-pairing configuration had been simulated,
previously to Comte et al. [137,138], by Meiburg [481], in a calculation using
vortex-filament methods, when the forcing consisted in an initial subharmonic
perturbation. Further details on helical pairing in spatial mixing layers will
be given in Chapter 4.

To summarize on this problem of structures geometry in plane mixing
layers (experimental and numerical), it seems that they may have two organ-
ization types:

(A) a quasi two-dimensional topology, where Kelvin—Helmholtz billows are
submitted to translative instability, and oscillate in phase. The preferred
mode of this spanwise oscillation imposes its wavelength to intense thin
longitudinal hairpins stretched in the stagnation regions between the big
billows.

(B) a vortex-lattice topology, consisting in a helical-pairing reconnection of
Kelvin—Helmholtz billows, with the stretching of thinner longitudinal vor-
tices.

As will be seen below, this is close to what we can obtain in round jets.
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3.4.2 Round jets

It is of interest, from a two-dimensional point of view, to consider also the
axisymmetric jets or wakes. They are an axisymmetric version of spatial mix-
ing layers, and the Orr—Sommerfeld and Rayleigh stability analysis can be
generalized in this case. The primary unstable modes will give rise to vortex
rings, which are the axisymmetric analogues of Kelvin—Helmholtz vortices.

Numerous experiments on round jets have been carried out (see e.g. Crow
and Champagne [154], Hussain and Zaman [309], and Van Dyke [698, pp. 34,
60]. Possibilities of pairing between vortex rings of same sign exist, as shown
by Yamada and Matsui [729] (quoted by Van Dyke [698, p. 46]): in the same
way as Kelvin—Helmholtz vortices rotate about each other before merging,
vortex rings leapfrog during the pairing. Such a pairing might also be vis-
ible in the round jet, shown in Figure 1.2 before its breakdown into three-
dimensional turbulence. As quoted by Winant and Browand [721], Laufer,
Kaplan and Chu [387] have made indirect observations of vortex-ring pairing
in an azisymmetric jet at Reynolds numbers of order 160,000 (...). It is,
in fact, proposed that pairing of the vortex rings is the primary mechanism
responsible for the production of jet noise.

In fact, Michalke and Hermann [504] have carried out analyses showing
the important role of various upstream parameters on the jet development
as far as instabilities are concerned. We mention also the pioneering work
of Widnall et al. [716] about the preferred mode obtained in the inviscid
secondary instability of the rings. In fact, the latter is subject to an azimuthal
instability and oscillates in a wavy manner.

Numerous experimental and numerical-simulation works carried out since
then have confirmed that the turbulent round jet topology is very close to the
two possible structures A) and B) just mentioned above for the plane mixing
layer. In case A, the stretching of longitudinal hairpin vortices gives rise to side
jets due to velocity induction by the primary rings. In case B, helical pairing
is replaced by alternate pairing: this interaction (see below in Chapter 4)
is a subharmonic oscillation of primary vortex rings. More details on the jets
dynamics and its numerical control by upstream velocity perturbations can be
found in the book of Lesieur et al. [431], as well as in da Silva and Métais [158]
and Balarac [27].

3.4.3 Plane jets and wakes

It is well known from the Prandtl viscous boundary-layer equations (see e.g.
Schlichting [635]) that a laminar plane jet issuing from point source will have,
at a certain distance downstream z, a longitudinal velocity given by

U

U= , 3.57
cosh?y /8, (3:57)
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Figure 3.13. Growth in a Bickley jet of (a) the sinuous mode, leading to the
formation of a Karman street; (b) the varicose mode.

where U(z) is the velocity at the centre of the jet, and do(z) a characteristic
width. The same expression holds approximately for a turbulent plane jet,
as can be demonstrated using Prandtl’s mixing-length theory [587] (see also
Chapter 4), and is well verified experimentally. This plane-jet velocity profile
is sometimes referred to as the Bickley jet.

The two-dimensional linear-instability analysis of the velocity profile given
by Eq. (3.57) has been investigated by Drazin and Howard [172] on the basis of
the Rayleigh equation. It was found that two classes of unstable solutions exist,
corresponding respectively to the even modes (called also sinuous modes),
where the amplitude @(y) in Eq. (3.13) is even, and the odd modes (called
varicose modes), where it is odd. The schematic evolution of the jet in both
cases is shown in Figure 3.13: in the sinuous mode, vorticity of alternatively
positive and negative signs is transported into the upper and lower irrotational
regions, tending, by velocity-induction effects, to form a Karman-like vortex
street. On the contrary, the varicose mode will form a pattern symmetric with
respect to the = axis. The stability analysis shows that the most-amplified
sinuous mode grows three times faster than the varicose one.

In the viscous case, and if the Reynolds number is high enough, it may be
shown that the instability is of the inviscid type (see Drazin and Reid [173]).
Therefore, it is natural that the two-dimensional direct-numerical simulations
of the Bickley jet, submitted initially to a random white-noise perturbation of
small amplitude, show the formation of only the sinuous mode, at the most-
amplified wave length predicted by the linear-stability theory, that is

Ao = 6.54 & . (3.58)

This is shown on Plate 13, taken from Comte et al. [133]. It represents the
vorticity during respectively the initial stage, the growth of the sinuous in-
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Figure 3.14. Direct-numerical simulations of a two-dimensional spatially growing
(a) Bickley jet; (b) Gaussian wake. Both are submitted to a white-noise upstream
forcing of small amplitude (courtesy P. Alexandre, I.M.G.).

stability, and the formation of the Karman street. The red colour corresponds
to positive vorticity, and blue colour to negative vorticity. This calculation
also shows the tendency for eddies of same sign to pair, thus increasing the
wave length of the coherent structures.

A plane wake is characterized by a Gaussian deficit velocity profile, both
in the viscous laminar and the turbulent cases. Its linear-stability analysis in
the temporal case has been carried out by Sato and Kuriki [632]. The results
are qualitatively similar to the Bickley jet case, with dominant sinuous modes
resulting in a Karman street. This is to be expected, since, within the temporal
approximation, a wake and a jet differ only in the form of respectively the
basic velocity and the basic deficit velocity.'®

How do these temporal calculations apply to spatially-growing situations:
for a wake of external velocity U., and whose deficit velocity is small com-
pared to U, a Galilean transformation of velocity U, allows one to associate a
temporal problem to the spatial evolution. On the contrary, there is no global
transport velocity in a jet, whose velocity on the axis decays downstream.
Two-dimensional spatially-growing calculations of both a Bickley jet and a
Gaussian wake, presented in Figure 3.14, confirm the experimental fact that
the jet is more unstable than the wake, but still displays pairing interactions
between eddies of same sign. In this calculation, the jet grows proportion-
ally to x, while the wake expands only like v/z, as predicted by both theory
(see Chapter 4) and experiments for the turbulent jet and wake. As a com-
parison, Plate 14, taken from Werlé [715], presents the experimental Karman

9 Indeed, the temporal approximation allows both a Galilean transformation and
the reversal of the velocity.
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street obtained in a wake behind a splitter plate. A last remark to be made is
that the formation of a Karman street behind an obstacle seems to be qual-
itatively independent of the shape of the obstacle: for instance, a cylinder, a
splitter plate or a wedge give rise to the same type of wake. This is easily
understandable if one interprets the Karman street as resulting from the de-
velopment of a sinuous instability upon the doubly-inflectional basic velocity
profile created downstream of the obstacle: the perturbations which trigger
this instability come from the shear layers existing in the close vicinity of
the obstacle. Behind a cylinder for instance, experiments show immediately
downstream a pair of symmetric (with respect to the x axis) small vortices
(see e.g. Kourta et al. [344]), before the appearance further downstream of
the Karman street. Let us mention also the two-dimensional DNS of a spatial
wake done by Maekawa et al. [463], where they study the influence of various
two-dimensional upstream perturbations.

Let us mention finally that there are numerous three-dimensional instabil-
ities associated with the transition of plane wakes or jets into developed tur-
bulence. For the plane wake for instance, experiments (see Breidenthal [80],
Lasheras and Meiburg [385], Williamson [720]) and calculations (see Meiburg
and Lasheras [482], Lasheras and Meiburg [385], Chen et al. [114], Gonze [261],
and Meiburg [483]) show the formation of longitudinal hairpins, which re-
semble those encountered in the mixing layer. They are visible on Plate 15,
taken from Gonze [261], which represents various vorticity components in
the DNS of a temporal plane wake, starting from a Gaussian basic velocity
profile destabilized by a quasi two-dimensional random perturbation of small
amplitude. In fact, the alternate longitudinal vortices are stretched between
Karman vortices of opposite sign, on which they reconnect to form closed
loops. Plate 16 presents the scalar field obtained eventually in the same cal-
culation as Plate 15. It still displays longitudinal vortices, whereas Karman
vortices have become much thinner, due to viscous effects. The evolution of
the same wake in an “inviscid” LES is displayed in Chapter 4. It has still
a quasi two-dimensional structure, with straight Karman vortices stretching
intense longitudinal vortices.

3.4.4 Convective and absolute instabilities

This approach, developed by Huerre and Monkewitz [303] (see also Chomaz
[121]), poses interesting questions about the character of the instabilities
arising in a spatially-developing flow with large-scale inhomogeneities. From
this analysis, a plane mixing layer of uniform density developing behind a split-
ter plate with a thin edge is convectively unstable, in the sense that it requires
perturbations close the upstream splitter plate to develop. The latter grow
following the average flow. If these upstream perturbations are cancelled, the
flow returns to laminarity. However, such a mixing layer will become absolutely
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unstable if the splitter plate has a blunt edge (see Huerre and Monkewitz [303],
Wallace and Redekopp [710]).

The absolute-instability character of a flow means that a perturbation
existing anywhere in the fluid domain (and not only upstream) is sufficient
for the development of instabilities. Recent three-dimensional DNS by Laizet
and Lamballais [364] of the mixing layer using the immersed boundary method
with compact schemes have confirmed the bifurcation from a convectively to
an absolutely unstable character when one goes from a thin edge to a blunt
edge. Monkewitz et al. [516] have studied the heated jet, and determined for
which density differences it could become absolutely unstable. Finally, there
are also arguments in favour of the absolute instability character of a uniform-
density wake. If this is true, one should reconsider the arguments developed
above analysing the spatial wake by looking at the development with the mean
flow of perturbations generated upstream.

3.5 Wall flows

3.5.1 The boundary layer

e Linear stability analysis

Let us start with the Blasius velocity profile, corresponding to a laminar
boundary layer without pressure gradient over a semi-infinite flat plate. We
define the displacement thickness as

1 [t
Sie) = [ W ey dy (3.59)
0
which is such that "
vx
§1(z) = 1.73 ( U) (3.60)

(see e.g. Schlichting [635]), « being the distance downstream of the leading
edge, and U the free-stream velocity. In the two-dimensional temporal case,
the Orr—Sommerfeld equation exhibits an unstable region in the [perturbation
wave number-Reynolds number] domain, and a critical Reynolds number be-
low which the flow is always linearly stable (see e.g. Drazin and Reid [173]).
The stability diagram of such a flow is shown schematically in Figure 3.15.
With the Reynolds number defined as Ud; /v, its critical value is equal to 520
(see Schlichting [635]). In the downstream direction, the laminar boundary-
layer thickness and the Reynolds number will grow like y/z: when

2
2
R = VT (5 0) — 90347 |

v — \1.73
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Figure 3.15. Schematic linear-stability diagram for the Blasius boundary-layer ve-
locity profile, in the [« (longitudinal wave number of the perturbation) — R (Reynolds
number of the basic flow)] domain. Inside the dashed area, the perturbations will
amplify exponentially. When R goes to infinity, the unstable region will collapse
onto the a = 0 axis.

the flow will become unstable to small perturbations, and unstable waves will
begin to grow. These waves are called Tollmien—Schlichting waves,?° from the
work of Tollmien and Schlichting,?! who solved in the early thirties the Orr—
Sommerfeld equation for the boundary layer. The waves give rise to periodic
oscillations in the boundary layer.

e Forced transition

The experimental existence of T.S. waves was subsequently established ex-
perimentally by Schubauer and Skramstad [638]. The experimental critical
Reynolds number for the growth of the waves is in good agreement with
the theoretical value given above. In practice, the transition to turbulence
above a semi-infinite flat plate proceeds as follows (see Klebanoff et al. [334],
Hinze [285], and Herbert [271]). In Klebanoff et al. [334] the boundary layer
is forced upstream with a thin metal ribbon parallel to the wall and stretched
in the spanwise direction, which vibrates two-dimensionally close to the wall;
further downstream, cellophane tape is fixed to the wall, regularly spaced in
the spanwise direction. Parameters are chosen in such a way that T.S. waves
begin growing. One observes downstream the development of a spanwise oscil-
lation in the wave, with formation of longitudinal streaks of respectively slow

20 Hereafter called T.S. waves.
2! See Schlichting [635] for a review.
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Figure 3.16. Schematic view of haipin vortices stretched in the forced-transition
experiment of Klebanoff et al. [334].

and fast fluid, as far as the longitudinal velocity is concerned. The low-speed
streaks are located downstream of the tape peaks, while the high-speed streaks
are downstream of the tape valleys. Klebanoff interpreted this system of low-
and high-speed streaks as the evidence for a hairpin-shaped vortex structure
stretched in the boundary layer. These hairpins correspond to spanwise vortex
filaments passing regularly with the T.S. wave upstream and deformed in the
spanwise direction by the tape, which are strained longitudinally downstream
by the ambient shear (see Figure 3.16). With this interpretation, the longit-
udinal legs of the hairpins will pump slow fluid up from the wall, and fast fluid
down to the wall. Experiments of Hama et al. [268], where vortex structures
are visualized by injection of hydrogen bubbles in the flow, do confirm the
existence of hairpins stretched by the flow. Experiments show also that the
longitudinal velocity profile (measured in terms of y) becomes inflectional in
the low-speed streaks, with a local formation of Kelvin—Helmholtz like vortices
(called spikes) which are shed and degenerate into three-dimensional turbu-
lence (see Hinze [285, pp. 600ff.], for a review). DNS in the temporal case
where a Blasius velocity profile is forced by a T.S. wave and a small span-
wise perturbation confirm the above experimental findings (see e.g. Kleiser
and Zang [336], and Normand and Lesieur [538]). The hairpin stretched are
inclined approximately 40° with respect to the horizontal. In the spatially-
developing case Ducros et al. [180] consider an upstream forcing consisting
in the superposition of a laminar velocity profile, T.S. waves and a three-
dimensional random noise (see Chapter 4). They show that, during the trans-
ition process, low-pressure regions resulting from T.S. waves propagation do
organize into big two-dimensional billows of higher vorticity, which distort
downstream in a hairpin manner.
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Most of the numerical simulations show also under the hairpins the form-
ation of a weaker secondary hairpin system close to the wall, which rotate in
the opposite direction. This is due to the adherence condition which implies
that a vortex approaching the wall will generate antivorticity at the wall.

More recent LES results of this type (with animations of vorticity, velocity
and pressure maps on a web site), based on the work of Briand [82], are
presented in Lesieur et al. [431].

e Natural transition and turbulent spots

Now we look at the case of natural transition, where there is no forcing in the
upstream flow except for residual turbulence. Experiments show that the layer
is first laminar, up to Réz) = Uz /v =~ 10°. As stressed above, this accords well
with the critical Reynolds number predicted by the linear-instability theory.
An interesting phenomenon which occurs in the range 10° < Réx) < 10% is
the formation of turbulent spots (Emmons and Bryson [187], Schubauer and
Klebanoff [639]) which are spatially localized in the form of large A’s, and
where turbulence has already developed. They are some sort of big packets
of breaking three-dimensional T.S. waves which travel downstream, and give
the transition an intermittent character. In fact, this collective behaviour of
the transitional boundary layer may be an aspect in physical space of some
backscatter effects considered later in this monograph for isotropic turbulence,
and where resonant interactions between energetic modes provide energy to
very large scales: in the boundary layer, resonance between two distorted T.S.
waves might thus be responsible of spots formation.

For R((f) > 10% the boundary layer has become turbulent everywhere. Up
to now, no theory has been able to predict this last Reynolds number charac-
terizing the transition to fully-developed turbulence in a boundary layer.

Secondary-instability analysis

As already stressed, transition in the boundary layer on a flat plate depends
upon the type of perturbations exerted upstream on the flow. In Klebanoff’s
afore-mentioned experiment, the three-dimensional forcing was harmonic in
the sense that the crests of the T.S. waves were oscillating in phase in the
spanwise direction. This corresponds to what is generally referred to as the
K-mode, where vortex filaments are aligned. On the other hand, if the perturb-
ation is subharmonic, the crests oscillate out of phase. This is called H-mode,
from Herbert [272], and corresponds to a staggered organization of vortex
filaments. For the temporal problem, Herbert [272] showed, with the aid of
a secondary-instability analysis where a perturbation is superposed upon a
two-dimensional T.S. wave of finite amplitude, that the staggered mode was
more amplified than the aligned mode. This should favour the emergence
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of H-mode during transition in natural situations (see, however, discussions
about that for Poiseuille flows). Let us mention also the work of Kachanov
and Levchenko [325] on these subjects.

Remark that in a lot of cases, where the level of perturbation is higher,
transition does not occur through these various routes, and the flow goes
directly to developed turbulence. This is called by-pass transition. Remark
finally that common life offers a lot of manifestations of T.S. waves: those
travelling in the air boundary layer above water will force the wavelength of
water waves. The ripples left in the sand after the tide are the footprints of
transition in the boundary layer within the water. As for the structure of
dunes in deserts, it might rather result of the presence of big haipin vortices
ejected from the ground in the turbulent atmospheric boundary-layer (see
next chapter).

3.5.2 Poiseuille flow

For the plane Poiseuille flow in a channel of width H = 2h, the situation is
even more frustrating than in a boundary layer upon a flat plate: the two-
dimensional Orr—Sommerfeld equation leads to a stability diagram which re-
sembles the boundary-layer one, with a critical Reynolds number (based on H
and the bulk velocity across the channel)?? of R = 7696. On the other hand,
experiments show a transition to fully-developed turbulence at a Reynolds
number of 2000, as already mentioned above. They show also waves, ana-
logous to T.S. waves, which propagate at lower Reynolds numbers (see e.g.
Nishioka et al. [535]). The instabilities developing below R are called sub-
critical instabilities. A two-dimensional nonlinear instability theory has been
developed by Orszag and Patera [554] for this case, predicting a lower critical
Reynolds number, but still not enough to agree with the experiments.

It is now possible to investigate with the aid of three-dimensional DNS the
transition in the channel flow. They show phenomena qualitatively analogous
to what has been observed in the boundary-layer (see e.g. the calculations of
Biringen [64], Zang and Krist [736] and Sandham and Kleiser [631]). There
is however an issue opened about the type of mode which emerges when a
small three-dimensional random perturbation is superposed upon a parabolic
laminar velocity profile, at a supercritical Reynolds number: if the perturba-
tion is isotropic, one should expect first the growth of two-dimensional T.S.
waves to finite amplitudes. Then, if one applies the secondary-instability ana-
lysis of Herbert, one should have emergence of the staggered H-mode, since
the white noise is supposed to bring as much energy in the subharmonic than
in the harmonic. In fact, numerical simulations of Kim and Moser [331] and

22 The critical Reynolds based on h and the maximal velocity is Unh/v = 7696 x
(3/4) = 5772.
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Figure 3.17. Vorticity modulus (threshold 1.5 U,,/h) obtained in the DNS (using
mixed spectral-compact methods) of a periodic channel forced by a small three-
dimensional isotropic white noise superposed to the parabolic Poiseuille profile; it
shows the formation of aligned hairpins at the wall (courtesy E. Lamballais, Gren-
oble).

Lamballais [366] show instead the emergence of the aligned K mode. Kim and
Moser [331] explain it as due to an initial growth of the longitudinal velocity
coming from the white noise, which can be justified if one drops the pres-
sure gradient out of the linearized equation for u. With the same reasoning,
v is going to have essentially a viscous decay. Thus, the initial white noise
will become strongly anisotropic and will pick up a longitudinal component
characterized by the wavevectors (o = 0, 3 # 0). At the same time, the two-
dimensional fundamental mode (g, 0) will grow. Kim and Moser [331] observe
eventually the growth of oblique harmonic modes (o, £3) which overwhelm
the subharmonic modes, yielding the aligned configuration. They interpret the
emergence of the three-dimensional harmonic mode as a nonlinear resonance
between the weak longitudinal mode (resulting from the white noise) and the
two-dimensional fundamental.?® Indeed, we anticipate from Chapter 5 that
nonlinear interactions proceed by triads of wavevectors whose sum is zero.
Figure 3.17, taken from Lamballais [366], shows the aligned hairpins resulting

23 One could also envisage a resonance between two subharmonics.
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from the same calculation where a Poiseuille flow at Reynolds U,,h/v = 8000
is forced by a small isotropic white-noise.

We finally mention the two-dimensional direct-numerical simulations of the
periodic channel flow done by Jimenez [315,316], which show the formation of
a street of eddies of opposite sign.2* These two-dimensional calculations give
valuable information on the growth of two-dimensional nonlinear instabilities.
In fact, it will be seen in Chapter 13 that such a solution does arise in the
case of a channel submitted to a rapid solid-body rotation of axis parallel to
the spanwise direction (see also Lamballais [366]).

For a circular Poiseuille flow (pipe flow), as well as for the plane Couette
flow, the classical linear-instability analysis leads to stability, whatever the
Reynolds number and the wavenumber of the perturbation. Experimentally,
one observes also turbulent spots?® in these flows.

3.6 Thermal convection

3.6.1 Rayleigh—Bénard convection

We will give here some very simple basic notions on the transition to turbu-
lence in a fluid heated from below and confined between two planes (Rayleigh—
Bénard convection). To analyze this problem, we come back to the Boussinesq
approximation derived in the previous chapter, even if their conditions of ap-
plicability (vertical scale of motions small compared with the height of the
apparatus) are not generally fulfilled in the experiment. One takes 2 =0 . It
has already been seen in the previous chapter that, in the stable case, gravity
produces waves characterized by a frequency N given by Eq. (2.127). Here we
consider the unstable case, but the previous analysis has shown that the char-
acteristic time of the exponential amplification of the perturbation is given

by
5.1

Ty = 3.61
= a7 (3.61)

with an associated frequency N; given by

dps g ,_

NE = ~ Aps 3.62
b=9 4 N g AP (3.62)

where Ap, corresponds to the variation of 5/pg for a liquid and -©/6, for a
gas on the height H. In this case the upward motion of the fluid particle, of

24 Each sign corresponding to one of the boundaries.
25 In the pipe, they were called “flashes” by Reynolds [592] and “slugs” by Tritton
[691].
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characteristic frequency IV, may be slowed down and possibly annihilated by
viscosity (whose characteristic frequency has been seen to be of the order of
v/H?) and thermal-diffusive effects (whose characteristic frequency may be
easily shown to be of the order of x/H?). Therefore, the Rayleigh number is
defined as

Ny
(v/H?)(r/H?)

and measures the relative importance of buoyant effects compared to vis-
cous and diffusive effects. A more quantitative study may be done using the
Boussinesq approximation in the form (2.112) without rotation, performing a
linearization with respect to the rest state. The vorticity equation becomes:

Ra = (3.63)

0 _ Vpx G+ V3 (3.64)
ot
with 93 &5
p Px 2~
ot +w & = KVp . (3.65)
Taking the curl of Eq. (3.64), one gets
Ov2i OV p o o
~ o =9 g5, ~ VR F-w(V)T (3.66)

Projecting this equation on the z axis, it is found that

) 2p 9%
5, Viw =g (8365 + 8y§> (V2w . (3.67)

Egs. (3.67) and (3.65) may be written as:

d [0 5 dp.
<8t - Z/VQ) Viw=—gVup; (815 - WZ) p=—w dpz , (3.68)
which yields
) B dp.
(815 - ”Vz) (at — W2> Viw=yg d’; Valw , (3.69)

since dp,/dz does not depend upon = and y. Taking H2/x and H as units of
time and space, Eqgs. (3.69) becomes

9 2 10 2\ o2, _ 2
(815 V)(PT ot V)Vw—RaVHw, (3.70)

where R, is the Rayleigh number and
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P. = (3.71)

the Prandtl number. Eq. (3.70) may be found in Busse [89)], or in Drazin and
Reid [173]. It is straightforward to show that p satisfies the same equation.
The problem can be solved by a normal-mode approach, where solutions of
the form B B

w = W(z) ei(lc.a?—wt)7 b= R(Z) ei(k.f—wt) (3.72)

are sought, k being here a real horizontal wave vector of modulus k, and @
an imaginary frequency.

The solution of the problem depends upon the boundary conditions, which
may be of the free-slip or no-slip type, with R, arising in Eq. (3.72), being
equal to zero at the boundaries in both cases. Thus, the above equations
impose at the boundaries the following conditions:

free-slip:
d*W d*w
W=0; 22 =0; g =0, (3.73)
no-slip:
aw d*w w d*w
W =0; & 0; dz4+<zPT k)dZQ 0, (3.74)

the equation to be solved inside the fluid being

& & &
(dzz = k2> (dzz g —H’w) <d22 — K2 +i§> W = —k*R,W . (3.75)

This problem was solved analytically in 1916 by Rayleigh (see Drazin and
Reid [173] for details) in the rather unrealistic case of two free-slip boundary
conditions. In this case, solutions of the form

W(z) =sin jrz (3.76)

may be sought for, j being an integer. Let s = —iw be the time-amplification
rate in Eq. (3.72). Eq. (3.75) reduces then to the following second-order equa-
tion for s:

(727 + k%) (727 + k2 + 5) (j27r2 . ) = k’R.,, (3.77)

P

which may be easily solved. It admits real roots, one of them being negative.
The second root (corresponding to an exponential growth of the perturbation,
and hence to instability) is positive if
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Figure 3.18. Schematic representation of Rayleigh-Bénard experiment of a fluid
heated from below.

(7.‘.2]'2 + k2)3

R,> 7 00

(3.78)
a condition which is independent of the Prandtl number. The minimum of
these Rayleigh numbers is obtained for j = 1 and k = 7/+/2, and is equal to

97
R = I = 657.5 . (3.79)

This is the critical Rayleigh number of the problem, under which no instability
can develop.?S Note also that the amplification rate will depend upon the
Prandt]l number. In the case of two no-slip boundaries, a numerical resolution
of Eq. (3.75) shows that the critical Rayleigh number is equal to

R =1708 , (3.80)

which agrees well with the experiments. For Ra < Ra(®), no motion can ex-
ist. For Ra > Ra(®, convective rolls appear in the case of large aspect-ratio
apparatus (see Figure 3.18). If the domain is not constrained horizontally,
convective cells will rather be of hexagonal shape, with warm fluid ascending
in the centre, and cold fluid descending along the edges. When the Rayleigh
number is increased, the system becomes turbulent via successive bifurcations.
But the instability is still present and creates coherent structures, as can be
seen for instance at the surface of the sun, where the Rayleigh number is huge
(=~ 10?Y), with the existence of solar granulation. It consists of hexagonal
cells (size ~ 1000 km), which are extremely unpredictable, since they have a
life-time of the order of ten minutes. This is an exemple of turbulent system
where an instability (here Rayleigh—Bénard convection) drives the creation of
coherent structures, which are unstable and blow-up due to nonlinear interac-
tions, and finally reform through the instability. We will encounter this cycle
of creation-destruction-recreation in many turbulent flows. Other aspects of

26 From a linear point of view.
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the transition to turbulence in the Rayleigh—Bénard convection can be found
in Busse [89] and Bergé et al. [55].

3.6.2 Other types of thermal convection
Bénard—Marangoni

We mention first Bénard—Marangoni convection, where the fluid is in a thin
layer with a free surface, the convection being here controlled by surface-
tension effects. It yields also the formation of hexagonal cells whose size is of
the order of the layer thickness (see e.g. Guyon et al. [267]).

Double-diffusive convection

Let us finally look at thermal convection (in a deep layer) in the presence of
a transported scalar of concentration ¢ whose molecular diffusivity is much
smaller than thermal conductivity. In this case, the direction of convection
may be reversed. Let us consider for instance a temperature distribution with
warm fluid of high ¢ above cold fluid of low ¢: a fluid particle diplaced towards
the top (for instance) will have time to adjust to the ambiant temperature
before its scalar concentration changes. Its mass will thus be lower than the
displaced fluid mass, and it will feel a positive buoyancy and keep on rising.
This is called a double-diffusive instability, yielding the formation of hexagonal
convective cells with cold fluid of low ¢ rising in the centre, and warm fluid
of high ¢ descending along the edges (see e.g. Tritton [691]). One can thus
explain thermohaline convection in an ocean strongly heated on its surface
by the sun, with as a result an increased evaporation and thus a higher salt
concentration: cold fresh water rises, and warm salty water sinks and forms
salt fingers.

Oceanic conveyor belt

This essential part of oceanic circulation in northern Atlantic has already been
mentioned in Chapter 1. Here, deep-water formation is due to ice formation
at the surface which increases the salinity (and hence density). This is a key
point in the presently observed worrying melting of ice and water warming in
this region.

3.7 Transition, coherent structures and Kolmogorov
spectra

It is not the aim of the present book to discuss at length all the stability
problems involved in the transition to turbulence. How in practice will a real
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flow of high Reynolds number degenerate into turbulence? It has already been
stressed that turbulence is due to diffusion and stretching of vorticity, which
could be created in the flow by various means, such as a boundary for in-
stance. In fact, the transition to turbulence greatly depends on the manner in
which this vorticity is created: if the basic velocity profile is inflectional, the
inflection-point instability (also called barotropic instability), which is “in-
viscid” (i.e. nearly unaffected by viscosity if small enough) and linear, will
give rise to the formation of large quasi two-dimensional vortices provided
the small perturbations present in the flow contain energy in the unstable
wave numbers range. Examples of such vortices have already been given for
the Kelvin—Helmholtz waves of the mixing layer. Other examples are given
by jets or wakes. These large vortices can be, as already pointed out, unpre-
dictable and we will not refuse to assign the denomination of turbulence to
them. Sometimes the large vortices can amalgamate and lead to the formation
of larger vortices. This is due to the vorticity conservation constraint charac-
teristic of two-dimensional turbulence (see Chapter 8). Simultaneously, these
vortices degenerate into smaller and smaller structures, through some success-
ive instabilities which are not always very clearly understood, but which seem
to agree very well in the small three-dimensional scales with the statistical
phenomenological predictions made by Kolmogorov in 1941 (see Chapter 6).
The reason for such good experimental correspondance with the theory cer-
tainly remains one of the great mysteries of modern fluid dynamics. These
small scales “cascade” down to a dissipative scale where they are damped and
die under the action of molecular viscosity. They are, as already emphasized
in Chapter 1, what can be called fully-developed turbulence. But it would
be erroneous to think that the large transitional vortices disappear at a suf-
ficiently high Reynolds number once small-scale turbulence has developed:
modern methods of investigation and visualization of turbulent flows have
contributed to a radical change in this former classical point of view, and it
is, for instance, now widely recognized that they reform intermittently in the
case of the mixing layer (Brown and Roshko [88]) and of the jet (Crow and
Champagne [154]). This is also true for the vortex streets in the wake of a
cylinder for instance. This will be widely discussed in the next chapter.

We will discuss in details in Chapter 4 what happens if the velocity profile
is not inflectional.



4
Shear Flow Turbulence

4.1 Introduction

We will consider here developed turbulence submitted to a shear, both from
a very simple statistical point of view (mixing-length theory) and from the
coherent-vortex point of view. Concerning the latter, one will recall how to
visualize vortices. We will be interested in flows such as free-shear flows (mix-
ing layers, jets and wakes) and wall flows. Notice that coherent vortices in iso-
tropic turbulence will be considered in three and two dimensions (Chapters 6
and 8, respectively).

4.1.1 Use of random functions

From a mathematical viewpoint, we use random functions. The averaging is
taken in the sense of an ensemble average, that is a statistical average upon a
large collection of independent realizations. The average of f will be denoted
as (f). By definition, this averaging operator is linear, in such a way that, if
« and (3 are two numbers (not random), we have

{of +Bg) = o{f) + B(g)-
We have also ((f)) = (f). Let f = (f)+ f' and g = (g) +¢'. It is easy to show

that (f’) =0 and
(fg) = (f)g) +{f'd) . (4.1)

4.2 Reynolds equations

When one is interested in predicting the ensemble-average quantities associ-
ated with a turbulent flow, the main difficulty comes from what is called the
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closure problem, which arises from the nonlinearity of Navier—Stokes equa-
tions: for instance, when averaging these equations, one obtains using Eq. (4.1)
for the averaged velocity field (in the case of uniform density) the so-called
Reynolds equations:

0 0 10
1)+ o () == 2 (o
19 O(ui) | Ouy) :
b 4.2
+p8xj |:M< ail'j + Bxi +0—” ( )
with
oi; = —plujuf), (4.3)

where the u} are the velocity fluctuations with respect to the mean velocity.
These equations are analogous to Navier—Stokes equations for the mean ve-
locity and pressure, but with the supplementary turbulent Reynolds stresses
Ufj. The latter are generally responsible for a loss of momentum in the mean
motion. Physically, these Reynolds stresses can be understood as fictitious
stresses which allow one to consider the mean motion as a real flow motion,
submitted to the mean pressure gradients, the mean molecular stresses and
the turbulent Reynolds stresses. But the Reynolds equation is not closed, in
the sense that the Reynolds stresses are unknown.

Now, and if one substracts Reynolds equations from Navier—Stokes, an
evolution equation for } is obtained. Writing the same for u;, multiplying re-
spectively by u; and u; and adding, yields after averaging an equation for the
Reynolds stresses. However, it involves third-order correlations. In the same
way, an evolution equation for these correlations will involve fourth-order cor-
relations, and so on: we are still in front of the closure problem, where a sys-
tem describing the coupled evolution of the statistical moments will always
contain one more unknown moment than equations. The statistical theories
of turbulence need therefore a closure hypothesis, which is a supplementary
equation between the moments, generally quite arbitrary. For inhomogeneous
turbulence, and when the average quantities involve only one point & of the
physical space, one talks of “one-point closure modelling”. “Two-point clos-
ure” models will be considered in Chapter 7.

4.2.1 The mixing-length theory

The simplest way of determining the Reynolds stresses for inhomogeneous
turbulence is to make an eddy-viscosity assumption, that is, assume that the
deviator of the corresponding tensor can be written as:

t Py s 8<uz> 6<uj>
Uij + 3<usus>6lj - /.Lt ( axj + 81’1‘ . (44)
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e is an eddy-viscosity, given by a mixing-length argument

e
= lnv, 4.5
) (4.5)

where the mixing length [,,, is a turbulent analogue of the mean free path of
molecules in the kinetic theory of gases, and the velocity v characterizes the
turbulent fluctuations. In turbulent free-shear flows for instance, it is assumed
that [ scales on the layer thickness §, and v on the typical mean-velocity differ-
ence across the layer U (Prandtl [587]). Another Prandtl hypothesis concerns
turbulent boundary layers: here one assumes that [ is proportional to the dis-
tance from the wall. This assumption is valid in the so-called logarithmic layer
(see below).

4.2.2 Application of mixing length to turbulent-shear flows
The plane jet

Let (u) and (v) be the components of the mean velocity (@(Z,t)) respectively
in the streamwise x and transverse y direction. The spanwise component (w)
is zero. Reynolds equations write for the first two components of the velocity

(u) ({981' (u) + <’U>88y<u> = —;aam (p) — aal. <u/2> _ aay<u/v/>
(W) g )+ ©) ) == D b= ey = ) ) (46)

where the 0/0z terms have been discarded, for we assume spanwise homogen-
eity.! Let ug(x) be the velocity at the centre of the jet, and 6(z) a properly
defined jet width: in the second equation of Eq. (4.6), and due to continu-
ity, the two terms of the Lh.s. are of same order u,7/0, ¥ being a typical
transverse mean velocity. Let v, (z) be a typical turbulent velocity such that
W) ~ |(Wv')] ~ () ~ v,2. Since the average parameters of the jet vary
much faster in the transverse than in the streamwise direction, the r.h.s. of
the (v) momentum equation reduces to —(1/p)(8/dy)(p + pv'>) , where the
pressure gradient dominates: indeed, the transverse pressure gradient term is
of the order of ug?/d, large in front of v,2/d, since v, will be assumed to be
of the form v.(x) = aug(x), where a < 1 is a constant. Finally, and since
T < ug, the (v) equation reduces to

! We neglect also the molecular viscous terms, which are small in front of their
eddy-viscous counterparts. However, this will not be valid for wall flows close to
the boundary.
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which shows that the mean pressure in the jet is uniform and equal to the
pressure pg at infinity. Finally, Reynolds equations for the plane jet yield:

(W) gy (w00 ) ) == ) (),

or equivalently (because of the incompressibility of the mean flow)

9 2 9 9 1.
=— . 4.7
g W07+ o )(0) = = (') (47)
This equation, integrated from y = —oo to y = +o0, yields (assuming the

Reynolds stresses are zero for y going to infinity)

d [T, .,
dy=0 4.8
| @ =o. (48)
which expresses the conservation downstream of the mean momentum flux
across the jet.? Following Prandtl [587] and Schlichting [635], we introduce an
eddy viscosity v(x) ~ lv, = bd(x)ug(x), where b < 1 is a constant and ! the
integral scale of turbulence. Since

0 0
o[> )]
the momentum equation is written:
0 0 0?
(W) o () + () () = wa(a) o () (49)
We look for self-similar solutions of the form
_ . _ 0y
() (.) = wo(a) ) = . (410)

Notice first that this implies, from Eq. (4.8),

d
dx

Since the mean flow is non-divergent, one may introduce a stream function
which is necessarily of the form

uo%5 = 0. (4.11)

2 Tt is well known that, due to the continuous turbulent entrainment of outer fluid by
the jet, the mass is not conserved across the jet downstream. Such a conservation
would correspond to the constancy with x of f:r:: (u)(x)dy.
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() (@,y) = uwodF(n), (4.12)
with f(n) = dF/dn = F'. Substituting into Eq. (4.9) yields finally:
2= (00 ppr 0 g (4.13)
ufd upd '

(where the prime refers to a derivative with respect to x or 1) with the bound-
ary conditions
<u>($7 0) = Uo(l‘), <u>($7 OO) = 07

0 0
oy (u)(x,0) =0, oy (u)(z, 00) =0,
which write:
F'(0) =1,F'(00) =0, F"(0) = 0, F"(00) = 0. (4.14)

For n = 0, it is found that ug/u(0 is a constant, which is negative since uj, < 0.
Using Eq. (4.11) in order to eliminate ¢, we finally obtain

d 1
d ( 2) = constant, (4.15)
X ()
which proves that
uo(x) oc x=Y2% §(x) ~ . (4.16)
This allows to write Eq. (4.13) as

F? 4+ FF" + vt F" =0, (4.17)
where ;" is a positive number, which will be chosen equal to 1/2. This fixes
the choice of §. Integrating twice leads finally to

F(g) :tanhg, (4.18)
and )
u)(x oz /? .
W) o™ (1.19)

which is the velocity profile of the turbulent Bickley jet. Notice also that the
(v) component is not zero for y — oo. Remark finally from Eq. (4.16) that
the local Reynolds number grows downstream like /.
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The round jet

With the same assumptions as above, the mean pressure is uniform, and the
(u) equation writes:

(W) g G+ (00 ) () + () ) ) =
a 1.7 a /1.7
- o) = )

Again, the momentum flux is an invariant:

d‘i / / (u)?dydz = 0. (4.20)

One assumes that the longitudinal velocity is of the form

(W(e,9,2) = wo@)f ) w= g5 T=Virest @2
Hence, Eq. (4.20) yields
d‘i (uod) =0, (4.22)

which shows that the eddy viscosity is now a constant v;. Finally, the mo-
mentum equation reduces to:

(W) g G+ (0 ) () + () ) )

_— ( 68;2 (u) + 86; (u)) . (4.23)

We now assume that the jet is statistically axisymmetric, and work using
cylindrical coordinates = and r. Let u(z,r) = (u) and v(z,r) = (v) be re-
spectively the longitudinal and radial mean velocity. We assume that the jet
is not swirling, and take the mean azimuthal velocity equal to zero. The mo-
mentum and continuity equations write:

ou ou 10 [ Ou oru  Orv
u8x+v8r ~or (r(‘?r)’ Oz + or =0 (424)

The complete calculation may be done by introducing a generalized stream
function ¥ (z,r) such that

10y _ 1oy

= v = .
r or’ r Oz
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Taking into account the boundary conditions, it is finally found that ug(x) o
x7 1 8(z) ~ x, and

Ll (8)]

The local Reynolds number is now constant downstream.

The plane wake
In the far region of the wake, one assumes that
<U(fE, y)> =U - 'Ll,d((E, y)v

where uq(z,y) is the deficit-velocity profile, assumed to be much smaller than
the velocity at infinity U. Estimates of the orders of magnitude in the Reynolds
equations allow one to show that (p) is uniform. The momentum equation
reduces to

Uaazd = é?ay (u'v'), (4.26)
whose integration across the wake yields
d [T
i [m ug(z,y)dy = 0. (4.27)

Assuming that the deficit velocity is of the form

wa(ay) = uo(@)f (). (4.28)
Eq. (4.27) yields
diuoa =0, (4.29)

which expresses the conservation of the mass in the wake. Again, we suppose
that vy = bugd, where b is a constant number. It is obtained

Bud 82ud
= 4.
U o vt a2 (4.30)
or equivalently,
Uo o' / ug "
— =0 4.31

with the boundary conditions

f0)=1, f(0)=0, f(oc)=0, [f(c0)=0. (4.32)
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For n = 0, the coefficient of f” in the r.h.s. of Eq. (4.31) must be x independ-
ent: this, together with Eq. (4.30), yields

up(x) oc ™% 5(x) o 22, (4.33)
and Eq. (4.31) leads, with a proper definition of J, to
fHnf + 1" =0,

which is also valid in the laminar-viscous case. It may easily be solved to give
f =exp—(n?/2), and the deficit velocity is:

2

ug(z,y) oc = 1/? exp—2ya2. (4.34)

As in the round jet, the local Reynolds number is constant.

The round wake

We will just summarize the results. In cylindrical coordinates, we take

r
(W) = U — up(z) f (5) (4.35)
the mass conservation now implies that
d
5% = 0. 4.36
P (4.36)

The Reynolds equation is written

8ud 82ud 1 8ud
= 4.
Uax Vt(arz—'_r@r ’ (4.37)
whose solution is:
2
uo(x) x x4 §(x) x a3 f=exp— 5 (4.38)

The local Reynolds number decreases like z~1/3.

The plane mixing layer

The analysis is more difficult here in the spatially-growing case, since no ana-
lytic solution is found: if U; and Us are the respective velocities of the two
streams (U; > Us), with
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_ Uy +Us Ui — Us
U= U=

2 2
one looks for self-similar solutions of the form

(w)(e,y) =U+UF' () n=", (4.39)

d(z) being a properly-defined thickness of the layer. The stream function of
the mean flow is

() (z,y) = USF(n) + Uy,

and the transverse mean velocity
(v)(z,y) = U (nF" - F).

The boundary conditions for F’ are F'(+o00) = 1,F/(—oc0) = —1. As for
the above flows, the mean pressure is found to be uniform. The Reynolds
equation for (u) is the same as for the plane jet, but the eddy-viscosity is now
ve(x) = bU6(x). One obtains:

bF/// +5/FI/ (F+ng> =0. (440)

This shows that §’ is a constant, and hence §(x) ~ z. A numerical solution
of this differential equation is shown in Schlichting [635]. It differs from the
hyperbolic-tangent velocity profile which, however, is not far from the exper-
imental results. In the case U/U < 1 (or in the temporally-growing case) the
equation reduces to

bF///+6/gnF// — O,

and admits for solution an error function, with

2V/C 8'U
F"(0) = ;o C= .
Notice that, if the layer thickness is defined as the mean vorticity thickness:
0 20
o0(x) =2U 0) =
(@) =20/ 5 W)(@.0)= pe

this yields F”(0) = 2, and implies
U
U(S’ = 27h.

Experiments where the Reynolds stresses can be measured and the eddy-
viscosity determined (see e.g. Wygnanski and Fiedler [725], Dziomba and
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Fiedler [183]), show that b~ 0.02. This leads to a non-dimensional vorticity
spreading rate of 0.126, to be compared with the more commonly accepted
experimental value of 0.17 for a natural mizing layer without external for-
cing.? This proves the inadequacy of the temporal approximation in this case.
Experimental bounds for the velocity components variances normalized by
U? in the central region of the incompressible turbulent spatial mixing layer
are: [0.11 ~ 0.14],]0.07 ~ 0.12],[0.09 ~ 0.11] respectively in the streamwise,
transverse and spanwise directions. Hence, typical velocity fluctuations are of
the order of 0.3U.

It has to be stressed finally that the statistical self-similarity found in
the turbulent shear layers do in no way contradict the existence of coherent
vortices or vortices in turbulence: the latter have a self-similar evolution which
is part of the global self-similarity of the flow.

As already stressed, the local Reynolds number of the plane mixing layer
increases like .

The boundary layer

In the turbulent boundary layer without pressure gradient above a flat plate,
we assume for simplicity a statistical invariance in the  and z directions, and
a parallel mean flow. The Reynolds equation writes now:

=14 ()

Thus the total (turbulent and viscous) stress
o=p — p{u'v") (4.41)

is independent of y (the distance to the boundary). The friction velocity v, is
thus defined by
o= pv2.

It satisfies the relation

pui = p {dgh_o (4.42)

since at the wall the velocity fluctuations and Reynolds stresses are zero.
In fact, v, characterizes the turbulent velocity fluctuations away from the
wall. Indeed, one can there neglect the molecular stresses in Eq. (4.41), which
reduces to

3 In fact, experiments give for (U/U)(dé/dx) values ranging from 0.15 (Browand
and Lattigo [85]) to 0.27 (Huang and Ho [302]).
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v? = —(u'v'). (4.43)

Sufficiently close to the wall, a linearization of the mean velocity with respect
to y yields, thanks to Eq. (4.42)

(uy = "y. (4.44)

Assuming such a form, one defines a distance §,, called the viscous thickness,
such that

(u)(00) = vx,
which gives
O0p = . (4.45)

Ux

In fact, it can be shown experimentally and by numerical simulations that
Eq. (4.44) holds up to y = 5d,. In this range, the mean velocity gradient is
thus constant and equal to v2/v.

Usually, one defines wall units (index “*”), where the velocities and lengths
are normalized by v, and J,. Eq. (4.41) writes

=14 W '), (4.46)
with close to the wall

(ut)y =yt (4.47)

Away from the wall, Eq. (4.43) is equivalent to neglecting the lh.s. of
Eq. (4.46). One assumes also that

vi(y) = Ayv., (4.48)

A being called the Karman constant. This yields

+
1+t +d<u >
- =A .
(u ") = Ay d+
Hence, the Reynolds equation reduces in this range to

d{u™) _ _
— A 1 —+ 1
dy+ (W),
which leads to the famous mean logarithmic mean velocity profile:

(w™y = A" Iny* + B. (4.49)

This has been very well verified experimentally for y* > 30, since the obser-
vations of Nikuradse [534]). The values found from the experiments for the
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constants are A =~ 0.4 and B =~ 5.5. The extent of the logarithmic layer in
the upper direction depends on the Reynolds number. Typical values of §, in
water and air will be calculated below.
Notice also that, for a turbulent boundary layer spatially developing above
a flat plate, arguments based on continuity imply for the boundary-layer thick-
ness (z)
o(x) Vs
~ ; 4.50
: " UL (4.50)
which is very close to a linear spreading rate if one assumes that v, /Uy is
not far from a constant (see below).

e Evaluation of wall units

It is easy to show as an exercise that the mean friction coefficient at the wall

satisfies )
2u [ d{u) Vs
Cr = =2 . 4.51
T puz, { dy L-o (Uoo> (#50)

In his book, Cousteix [151] proposes the following relation
Cy ~0.05R; '/, (4.52)

where Rs is the Reynolds number based on the velocity at infinity U, and the
99% boundary-layer thickness. We will take Rs = 2000, which is comparable to
values found in Spalart’s DNS [663]. With such a value, we have v, ~ 0.06Ux.

e Olympic swimmer in water
We have Uy, = 2m/s, v = 1075 m? /s, which gives d, = 0.83x 1075 ~ 107> m.
e Subsonic plane

For a plane in air (Uyx = 200 m/s, v = 1.4 x 107 m?/s), we have 6, =
1.16 x 107% ~ 1076 m.

Channel flow

We consider a plane channel of width 2h, the origin of the y axis corresponding
to the bottom plate. Statistical homogeneity is assumed in the streamwise and
spanwise directions. Due to the existence of a pressure gradient d(p)/dz in the
streamwise direction, the total stress is a function of y. Reynolds equations

yield in this case
d<u> PN 2 Yy
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where v, is defined by Eq. (4.42) with the aid of the mean velocity gradient
at one of the walls. So the same wall units as in the boundary layer, v, and
v /v, may be introduced. This yields

d{ut) +

dy+ o <u/+v/+> -1 Yy

. (4.54)

which differs from Eq. (4.46) by the last term of the right-hand side. The
logarithmic range may also be recovered if one assumes there is a region
where the Reynolds stress is approximately constant, and makes for the eddy-
viscosity the same assumptions as for the boundary layer. Although this de-
rivation is not very satisfactory, the logarithmic layer is indeed observed at
both sides of the channel, with approximately the same constants* as for
the boundary layer.® This is clear from Figure 4.1a, corresponding to a com-
parison of DNS carried out by Kuroda [362] using spectral methods at a
Reynolds ht = v.h/v = 150) and by Lamballais [366] using mixed spectral
and finite-difference methods at a Reynolds number based on the friction ve-
locity h* = 162). These DNS, which use precise numerical methods, turn out
to be in very good agreement with the experiments. We see that the logar-
ithmic range begins at y™ = 30. We show in Figure 4.1b the r.m.s. velocity-
fluctuations profile in terms of y. It is clear that there is a strong production
of u' at the wall, with a peak at y© = 12. This corresponds in fact to the
low- and high-speed streaks, discussed below. Figure 4.1e shows the Reynolds
stresses, whose peak is higher (at the bottom of the logarithmic layer), which
is the signature of bursting events (ejections). The same peak is observed for
the pressure fluctuations (Figure 4.1d), which is certainly due to low pres-
sure associated to high vorticity at the tip of the ejected hairpin (see below).
Finally Figure 4.1f shows the r.m.s. vorticity fluctuations (a quantity very
difficult to measure precisely experimentally). It indicates that the maximum
vorticity produced is spanwise and at the wall. The vorticity perpendicular
to the wall is about 40% higher than the longitudinal vorticity in the region
5 < yT < 30, which shows only a weak longitudinal vorticity stretching by
the ambient shear.

We mentioned already in Chapter 3 Blasius law of skin friction in a pipe
flow, which writes

2 (”U )2 ~ 0.054R: /4, (4.55)

where R, is built on the mean velocity U across the pipe and its diameter. An
analogous result exists for the plane channel, but with a different constant, as

4 The same is obtained in a pipe.

5 This logarithmic layer may also be obtained by dimensional arguments, assuming
just that the mean velocity gradient is function of v. and y only, which yields
diu/dy ~ v« /y (see e.g. Landau and Lifchitz [371, p. 201]).
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Figure 4.1. Statistical data obtained in DNS of a turbulent channel flow by Lam-
ballais (straight line) and Kuroda (symbols); from left to right and top to bottom,
(a) mean velocity, (b) r.m.s. velocity fluctuations (respectively from top to bottom,
longitudinal, spanwise, vertical), (c¢) kinetic energy, (d) r.m.s. pressure fluctuation,
(e) Reynolds stresses, (f) r.m.s. vorticity (from top to bottom, spanwise, vertical,
longitudinal).
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remarked by Dean [161], who proposes

v\? —1/4
2 (U) ~ 0.073R; V4, (4.56)
whith R. = 2Uh/v (still built on the mean velocity across the channel). It
yields

ht =0.095R7/8. (4.57)
This relation is a good test to assess the validity of DNS or LES carried out for

a channel. Remark finally that the above R /4 Jaw for the friction coefficient
is the same as for the boundary layer above a flat plate.

Plane Couette flow

In a plane Couette flow, where for instance the upper and lower plates (dis-
tance of 2h) are moved respectively at opposite velocities U and —U, laborat-
ory experiments show, when turbulence has developed, a mean velocity profile
of the type shown in Figure 3.1b (see e.g. Schlichting [635, chapter 19]). In
fact, the profile in not far from uniform in the central region of the channel,
and much steeper than the laminar profile close to the walls. As in the tur-
bulent boundary layer, the mean longitudinal pressure gradient is zero, and
the stress o is constant, so that the same analysis as for the boundary layer
applies. This provides a nice example allowing to understand why turbulence
steepens the velocity gradients at the wall, with respect to the laminar case.
Indeed, in the laminar case, the laminar velocity gradient is U/h, and the
longitudinal stress which has to be applied on the walls so that they move
at a velocity difference 2U is pU/h. In the turbulent case, the mean stress at
the wall is pd(u)/dy. In order to move the walls at the same velocity, and to
compensate for the increased viscous kinetic-energy dissipation due to turbu-

lence, the mean stress has to be larger than in the laminar regime. It implies
v, > (VU/R)V2,

4.3 Characterization of coherent vortices

We have already defined coherent vortices in Chapter 1. We recall that they
are regions which have a vorticity concentration strong enough to induce a
local roll-up of the flow, and keep a characteristic shape during a time T large
enough in front of the local turnover time. Now we are going to see how to
characterize them. We just summarize here the main conclusions of Lesieur
et al. [431].

A good manner to capture them is to look at iso-surfaces of high-vorticity
modulus, or vorticity components, or low pressure. A very efficient way is the
Q criterion, defined below.
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4.3.1 The Q criterion

We recall that S;; and (2;; are respectively the symmetric and antisymmet-
ric parts of the velocity-gradient tensor du,;/Ox;. Numerous analyses done
on various flows (isotropic turbulence, free-shear layers, separated flows, wall
flows, etc.) show that coherent vortices are very well characterized by positive
isosurfaces of

V2p

2 (4.58)

1 1.
Q= (292 = SiySiy) = (&% = 28,5 85) =
This criterion was introduced by Hunt et al. [306] for incompressible flows,

but it works also in compressible or heated cases (see the review of Lesieur et
al. [431]).

4.4 Coherent vortices in free-shear layers

4.4.1 Spatial mixing layer

In the spatial mixing layer, we have already mentioned that once small-scale
turbulence has developed, coherent vortices of the Kelvin—Helmholtz type are
still present and undergo various pairings (Brown and Roshko [88]). Their
average local longitudinal wavelength X is of the order of 3.5 times the local
vorticity thickness ¢ (as in the temporal mixing layer when fundamental vor-
tices have developed). We have also pointed out the appearance of secondary
coherent vortices in the form of strong longitudinal hairpins stretched between
the primary vortices (Bernal and Roshko [56]). As stressed in Chapter 3,
the spanwise spacing of these vortices doubles at each pairing (Huang and
Ho [302]). In the average, the spanwise wavelength is ~ (2/3)A. It is clear
that the primary Kelvin—Helmholtz vortices result from a Kelvin—Helmholtz
instability of the basic shear, to which are superposed 3D perturbations res-
ulting from the turbulent field. Indeed, if one takes a simple model where
the molecular viscosity in Navier—Stokes is replaced by an eddy-viscosity of
the order of 0.02U¢ (as determined above), the equivalent Reynolds number
Ud/(2v¢) will be of the order of 25, which is not far from the inviscid in-
stability regime. Then one should expect the emergence of either straight 2D
billows, or possibly the helical-pairing configuration. In the first case, the bil-
lows will stretch the secondary longitudinal vortices, by mechanisms already
looked at in Chapter 3 (Configuration A). This is the most-commonly ac-
cepted view of coherent-vortex topology in a spatially-growing mixing layer.
However, and as discussed in the previous chapter, helical pairing has been
obtained in DNS and LES of temporal mixing layers (Configuration B). It
was also clearly identified by Nygaard and Glezer [541] in experiments with a
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Figure 4.2. LES of an incompressible spatial mixing layer at infinite molecular
Reynolds number, forced upstream by a 3D white noise; low-pressure isosurfaces are
shown (courtesy G. Silvestrini, Grenoble).

subharmonic forcing at the splitter plate (see also Husain and Hussain [308]).
In unforced mixing layers, Browand and Troutt [86] and Nassef and Brow-
and [529] display evidence for dislocations of weak amplitude. They stress
that the spanwise longitudinal velocity correlation falls below 20% at span-
wise separations of 66 ~ 1.7\, which gives an order of magnitude for the
spanwise wavelength of the process. Silvestrini et al. [651] have also carried
out LES of spatially-growing mixing layers. With an upstream forcing con-
sisting in a quasi two-dimensional random perturbation, intense longitudinal
hairpins stretched between quasi two-dimensional Kelvin—Helmholtz vortices
are found again (Plate 17). When the forcing is a three-dimensional random
white noise, helical pairing occurs, as indicated by the low-pressure maps of
Figure 4.2. But none of these simulations has reached self-similarity, since
the kinetic-energy spectra in the downstream region are steeper than k—5/3,
and rms velocity fluctuations have a departure of about 20% with respect to
the experiments. Thus calculations in longer domains are necessary, in order
in particular to know in the helical-pairing case whether two-dimensionality
might not be restaured further downstream. Complementary numerical res-
ults may be found in Comte et al. [140] and Lesieur et al. [431]. Mixing-layer
experiments carried out in Poitiers by Bonnet and co-workers [175] display
also helical-pairing interactions.

As already proposed in Chapter 3 for turbulent thermal convection at high
Rayleigh numbers, one can envisage for coherent vortices in developed mix-
ing layers a cyclic evolution of creation-destruction-recreation. Creation comes
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from the linear instability of the mean vortex sheet. Afterwards the resulting
vortices will three-dimensionalize. This will occur in a first stage either by
stretching of longitudinal hairpins or through helical pairing.® Then nonlinear
interactions of all the modes thus produced may yield the explosive disruption
of the coherent vortex, with formation of an ultraviolet Kolmogorov cascade.
Recreation would again be due to the linear instability of the mean shear,
making the coherent vortices emerge from the smaller-scale turbulence. Such
a cyclic evolution had been proposed by Lesieur et al. [420].7 This corres-
ponds to the phenomenon of large-scale intermittency, well known by exper-
imentalists. It is also possible that some of the conclusions relating to the
three-dimensionality growth and the recreation of coherent vortices could be
applied to other large Reynolds number shear flows, even if the shear is not
inflexional (see Hamilton et al. [269] for a plane Couette flow).

4.4.2 Plane spatial wake

We have seen in Chapter 3 the emergence of quasi two-dimensional Karman
vortices as well as longitudinal vortices in a plane wake during the transition
to turbulence. This structure had in fact been discovered in experiments at
high Reynolds number (2 x 10°) done in cavitating wakes by Franc et al. [216].
A picture of the experiment is shown in Figure 4.3a. Here, vortices do cor-
respond to low pressure, and will be marked by cavitating bubbles. One sees
very clearly both the shedding of the Karman vortices and the stretching of
longitudinal hairpins reconnecting the latter. The pressure in the hairpins is
lower than in the Karman billows, as can be shown by increasing progressively
the pressure of the facility: Karman vortices will disappear before the longit-
udinal ones. Figures 4.3b and 4.3c show the LES (at zero molecular viscosity)
of an incompressible spatially-growing wake carried out by Gonze [261]. The
upstream velocity profile is close to a top hat (in order to simulate the near
wake), plus a small 3D isotropic white noise which is regenerated at each time
step. In the simulation (Figure 4.3b side view, Figure 4.3¢ perspective view)
is shown an isosurface of the vorticity modulus at a threshold equal to the
maximum upstream spanwise vorticity. Resemblance between the experiment
and the LES is striking.

As far as the helical pairing is concerned, Cimbala, Nagib and Roshko [127]
observe in a far wake a three-dimensional vortex structure resembling very
much the above-discussed one, and attribute it to a secondary instability in
the form of a parametric subharmonic resonance similar to that analysed by

6 Tt is in fact possible to have simultaneously longitudinal stretching of thin vortices
and helical pairing of the large ones.

" They use the analogy between three-dimensionality growth and two-dimensional
statistical unpredictability, which will be studied in Chapter 9.
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Figure 4.3. (a) Visualization of coherent vortices in a cavitating wake at very high
Reynolds number (courtesy J.P. Franc and J.M. Michel, Grenoble); (b) and (c) side
and perspective view of the vorticity modulus in the inviscid LES of a spatial wake
(courtesy M.A. Gonze, Grenoble).
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Pierrehumbert and Widnall [573] in free shear layers, and more extensively
for boundary layers and channel flows by Herbert [272]. This question was
revisited later on by Williamson and Prasad [719] (see also Williamson [720])
who explain such a dislocated pattern as due to a resonance between oblique
shedding in the near wake and 2D Karman modes in the far wake.

4.4.3 Round jets

We first recall the DNS of a weakly incompressible periodic (in the flow dir-
ection) round jet done by Fouillet [211]. The jet is initiated from a top-hat
profile characteristic of the potential cone immediately downstream of the
orifice. The initial Mach number based on the maximum velocity is 0.6, so
that, from a mixing-layer point of view (see Chapter 13), the convective Mach
number is approximately 0.3 and the flow is quasi-incompressible. A weak
3D random white-noise perturbation is superposed to the initial velocity. The
computational grid is a rectangular mesh of resolution 64 x 32 x 32. The initial
Reynolds number based on the maximum velocity at the centre U; and the
half-velocity radius R is of 2000.

The evolution of the simulation at various times is shown in Figure 4.4.
One sees iso-surfaces of density® (core of the vortex) and low-pressure. At ¢t =
15R /U7, the instability is still not visible on the isopycnic surface. The isobaric
surfaces are made of portions of tori of axis slightly inclined with respect to
the streamwise direction. They reveal the emergence of an axisymmetric mode
of vortex rings. This is compatible with the linear-instability theory which
predicts that the axisymmetric mode is the most amplified in the potential
cone (Michalke and Hermann [504]), in good agreement with experiments
(Tso and Hussain [695]). As time proceeds, the jet spreads out, and its shape
factor decreases, the velocity profile becoming quasi-Gaussian. Then the low-
pressure tori (or vortex rings) incline each other with respect to the axis in
an alternate way, corresponding to the growth of oblique (or helical) modes in
the linear-stability theory (Michalke and Hermann [504]). Afterwards the tori
reconnect (see Figure 4.4), giving rise to a structure of vortex rings undergoing
alternate pairing which has already been encountered in Chapter 3. This is
particularly the case at ¢ = 35R/U;. This is obviously the equivalent of helical
pairings observed in the plane mixing layer. Then the jet breaks down very
abruptly into turbulence, and one can check that the longitudinal kinetic-
energy spectrum is close to the k~%/3 Kolmogorov’s law. However, the double-
helix shaped coherent vortices persist. As in the mixing layer, this scenario
of transition is reminiscent of the Ruelle-Takens route to turbulence, with
emergence of a fundamental mode and growth of a subharmonic.

8 Here, density is not a passive scalar, since the flow is compressible.
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Figure 4.4. DNS of transition to turbulence in a weakly-compressible temporal
round jet; time evolution at 15, 20, 25, 30, 35, 40 and 45 initial characteristic times
R/Uy (courtesy Y. Fouillet, 1991).
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Figure 4.5. Alternate pairing of vortex rings in a round jet. (From Lesieur [424],
courtesy EDP-Springer).

Alternate pairing of vortex rings is also discussed in more details in Lesieur
et al. [431]. Figure 4.5, reproduced from Lesieur [424], displays a scheme of
this phenomenon.

Other DNS of the temporal round jet, where the white-noise perturba-
tion is replaced by a deterministic sine oscillation in the azimuthal direction,
show the formation of vortex rings, which stretch longitudinal hairpin vortex
filaments between them.® These filaments have been very nicely visualized
in laboratory experiments performed by Lasheras and Meiburg [386]. Let us
mention also the numerical simulations using vortex-filament methods done
by Martin and Meiburg [472,473], both in the case of azimuthal and helical
perturbations.

Three-dimensional LES of the incompressible spatially-growing round jet
have been carried out by Urbin [696]. The jet is forced upstream by a top-hat
profile to which is superposed a weak 3D white noise (“natural forcing”). The

9 As stressed in Chapter 3, this is exactly like in a plane mixing layer forced by a
quasi two-dimensional perturbation.
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Figure 4.6. LES of a spatially-developing round jet forced naturally; low-pressure
field (courtesy G. Urbin, Grenoble).

Reynolds number based on the upstream maximum velocity and diameter is
2000. Figure 4.6 presents a low-pressure wired isosurface. It indicates again
the development of the alternate-pairing organization of vortex rings. It seems
then that this is the preferred topology of the turbulent round jet forced “nat-
urally” upstream. Similar instabilities might occur in round wakes. As stressed
in Lesieur et al [431], numerical methods used by Urbin [696], which are of
finite-volume type on a structured mesh, are numerically diffusive. In [431] are
presented DNS and LES of the same type of jet at higher Reynolds (25000),
with less-diffusive numerical methods (combination of pseudo-spectral and
finite-differences of sixth order). One can see on animations of low-pressure
and @ the shedding of vortex rings undergoing intermittently alternate pair-
ing, and stretching also thin longitudinal vortices.

We present now a LES of a free'® spatial compressible round jet at Mach
0.7 and Reynolds number 36000 carried out by Maidi and Lesieur [464]. The
convective Mach number is = 0.35, so that compressibility effects are low. As

10 Initiated upstream by a close to top-hat velocity profile to which a weak white-
noise perturbation is superposed.
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Figure 4.7. LES of a compressible free round jet at Mach 0.7; positive @ isosurfaces
coloured by longitudinal vorticity (courtesy M. Maidi, Grenoble).

stressed in Lesieur et al. [431], the code uses MacCormack’s [460] predictor-
corrector scheme of fourth order in space for the nonlinear terms, modified by
Gottlieb and Turkel [262]. The code is second-order accurate in time. It uses
characteristic methods for the outflow boundary conditions (see Poinsot and
Lele [580]), and a sponge zone downstream. It has been carefully validated
against DNS and experiments. A view of Q isosurfaces coloured by longitud-
inal vorticity is presented in Figure 4.7. One can see very neatly upstream
the shedding of quasi axisymmetric vortex rings, which seem to undulate as
in Widnall’s instability [716]. It is clear that a pairing of the tori has taken
place at the level of the third ring. At this point, longitudinal hairpins are
stretched. It is well recognized that they bring three-dimensionality to the
jet development downstream. One can see also that large vortices take the
alternate-pairing organization.

More of these jet simulations in the free and forced cases may be found
in Lesieur et al. [431]. Here, the forcings consist in additional perturbations
to the upstream velocity. Of particular importance are the varicose (forcing
the axisymmetric vortex rings) and flapping (forcing the alternate-pairing
mode in these rings) excitations. Da Silva and Métais [158] have shown that
the combination of both forcings at respectively harmonic and subharmonic
frequencies have a dramatic effect upon the jet structure, with an important
spreading in the bifurcating plane. Maidi et al. [465] have considered the effect
of the same type of forcing upon a compressible jet (subsonic and supersonic).
They recover the incompressible results at Mach 0.7.

This enhanced jet spreading leads to a reduction of the aerodynamic jet
noise, as was shown by Maidi [466] using Lighthill’s analogy in the forced
Mach 0.7 jet case. Complete aeroacoustic applications of DNS and LES may
be found in the works of Freund [217,218], Bogey and Bailly [70], and Wang
et al. [711].



Turbulence in Fluids 145
4.4.4 Coaxial jets

We consider now coaxial jets in the same fluid, consisting in an interior round
jet of velocity Uy surrounded by an annular jet (axisymmetric layer of flow)
going at a different velocity Us. With a low external velocity, the system is
used to reduce the noise emitted by aircraft turbojets. With a high external
velocity, this is a configuration close to rocket engines.!! A complete review of
this problem can be found in Balarac [27]. The key parameter is the velocity
ratio v, = Ua/U;. For jets of different densities p1 and po, it was shown by
Favre-Marinet et al. [203,204] that r,, should be replaced by the momentum
flux ratio poUZ/p1UZ. With uniform densities, we have a double inflection
point in the upstream velocity profile, leading to the interaction of an inner
and outer mixing layer generating vortex rings which are going to interact.
We mention the experiments at high velocity ratio carried out by Rehab,
Villermaux et al. [591,702]. DNS in the same conditions have been done by
da Silva et al. [159] and Balarac et al. [26,27]. These computations show that
the outer vortex rings impose their frequency to the inner ones. An illustration
of a coaxial jet LES at Reynolds 30,000, taken from Balarac [27], is given on
the front page, presenting the vorticity norm coloured by tangential vorticity,
with four transverse sections of passive-scalar isolines allowing to characterize
mixing.

4.5 Coherent vortices in wall flows

As already stressed before, it is well known since the experiments of Kline et
al. [337] in the turbulent boundary layer, that streaks of respectively low and
high longitudinal velocity (with respect to the local mean velocity profile)
exist close to the wall, between approximately y™ = 5 and y*+ = 40 ~ 50.
The same low and high-speed streaks were found in the turbulent channel,
since the LES of Moin and Kim [513] (see also the DNS of Kim et al. [330]).
Figure 4.8 shows an illustration of these streaks, in a DNS done by Lamballais
and corresponding when turbulence has developed to the same simulation'?
as the transitional calculation of Figure 4.1. The streaks have a spanwise
wavelength of about 100 (in wall units), and an average length of ~ 500.
Numerical simulations have confirmed the experimental findings that vorticity
patches located just above the low-speed streaks may be ejected away from the
wall. This is associated with quasi-longitudinal vortices apparently stretched

1 But in this real case we have a two-phase flow.

12 Carried out with pseudo-spectral methods in the streamwise and spanwise direc-
tions, and using finite-differences of sixth-order (compact schemes) in the trans-
verse direction.
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Figure 4.8. Iso-contours of positive (dark) and negative (grey) longitudinal fluc-
tuating velocity in the DNS of a turbulent channel (ht = 162) close to one wall
(courtesy E. Lamballais, Grenoble).

by the ambient shear. It is by this ejection mechanism that vorticity at the
wall is transported into the boundary layer, making it turbulent.

In fact, Lesieur et al. [431] display animations of these longitudinal vortices
(seen with positive Q isosurfaces) in a periodic channel having a flat wall
and a wall equipped with two fine spanwise grooves. The two boundaries are
independent. The LES calculation is weakly compressible (Mach 0.3), and
uses the same numerical methods as described above for the compressible jet.
Let us quote Lesieur et al. [431]:

Animations of Q presented as well in Dubief and Delcayre [176] per-
mit to follow numerous semi-hairpins traveling downstream. Their
legs form quasi-longitudinal vortices close to the wall of approximate
length 300 wall units, and many of them have a self-induced, raised-
arch-form tip. The animation gives more detailed informations on Q
isosurfaces and w, isolines at the walls with perspective and top view
(...). We recall that for the spatial boundary layers previously presen-
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Figure 4.9. Quasi longitudinal vortices (seen by positive Q isosurfaces) traveling
close to a flat wall in a weakly-compressible channel (courtesy Y. Dubief, Grenoble).

ted, high values of w, at the wall (...) correspond to regions of high
friction and should be correlated with the high-speed streaks.

In Figure 4.9 we present a picture taken from the animation.

There are still a lot of controversies about the interpretation of the low- and
high-speed streaks, and how they relate to the generation of longitudinal vor-
tices. We will present first fundamental mechanisms involving streaks/vortices
interaction. Figure 4.10 is a schematic view of a cross-section of longitudinal
vortices and streaks in a plane perpendicular to the mean flow direction. This
figure may be interpreted with the aid of the linearized spanwise vorticity
equation (3.45) written as

9 Do ) 0w d(u)
(E)t + (u)) w, —vViw, =v dy? 9z dy (4.59)

where the “prime” refers now to fluctuations with respect to the mean flow.
Close to the wall (e.g. at y© < 5), d?(u)/dy? is zero, so that the growth
or decay of spanwise vorticity will be characterized by the second term in
the r.h.s. of Eq. (4.59). Under the high-speed regions, dw’/dz is positive,
and hence there is production'® of spanwise vorticity by vortex stretching.

13 We recall that the basic spanwise vorticity —d(u)/dy is negative.
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Figure 4.10. Behaviour of the fluid in the streaks close to the wall in the turbulent
boundary layer.

This can be interpreted also by saying that sinking fluid in the high-speed
streak will reduce locally the boundary-layer thickness and increase the ve-
locity gradient at the wall and the drag. Within this interpretation, and as
already stressed, increased drag comes from the friction of high-speed streaks
upon the wall. On the other hand, low-speed regions will correspond to a sink
of spanwise vorticity by vortex-tube compression. Above, the rising fluid will
render inflectional the longitudinal velocity profile: as already mentioned, a
local Kelvin—Helmholtz instability will develop, with spanwise vorticity shed
downstream (see Figure 4.11). The vortex lines thus formed will reconnect to
the wall via vortex filaments, and will form a coherent hairpin of low vorticity,
except at the wall.

Plate 18 shows a hairpin in the LES of a spatially-developing boundary
layer carried out by Ducros et al. [180]. As it is the case in most of shear
flows, and has been mentioned in the previous chapter, this hairpin is very
assymmetric, with a much larger concentration of vortex filaments in the right
leg than in the left one.

There are still a lot of controversies about the interpretation of the low-
and high-speed streaks, and how they relate to the generation of hairpins.



Turbulence in Fluids 149

y+

304

—

0]

Figure 4.11. Behaviour of the fluid in the streaks close to the wall in the turbulent
boundary layer.

The more classical explanation was to invoke a sort of aligned K mode where
hairpins generated by some instability of the basic flow would pump up low-
speed fluid from the wall, and down high speed fluid from the upper boundary
layer. But there is no clear linear or nonlinear theory for such an instability,
and one does not understand why it should create aligned hairpins having
enough coherence downstream to generate streaks so elongated. Furthermore,
the mechanism where spanwise vortex filaments close to the boundary, and
hence of spanwise vorticity ~ v2 /v, are stretched longitudinally by the basic
shear, should produce a longitudinal vorticity at least of the same order (even
though viscosity is active). In fact, numerical experiments indicate rather that
the rms longitudinal vorticity is upper bounded by 0.14v2/v for y* > 5 (see
the statistics of Figure 4.1).

We remark also that the longitudinal vortices were predicted by Townsend
[689] for turbulence submitted to a constant mean velocity gradient, using
rapid-distorsion theory. The latter consists in solving in spectral space the
linearized equation of motion (see an example of this technique in the next
chapter).!* The longitudinal vortices would pump between them low and high-
speed fluid, producing the streaks, as displayed in Figure 4.10.

4 Townsend’s conclusions are based on the sign and behaviour of various velocity
correlations. It is however difficult from this to extract a definite information
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Among the numerous authors having contributed to this difficult problem
of hen and chicken, we discuss some works: Blackwelder [65] proposed that
the longitudinal vortices, of approximate length 500 wall units, existed, by
analogy with Gortler vortices in curved boundary layers (which happen also
to be weak). But it is difficult to consider a flat wall as a limiting case of
curvature. In Smith and Walker [654], it is proposed that a hairpin travelling
downstream is going to pump the fluid it crosses, and induce a trailing low-
speed streak region.

Another explanation is to assume that everything is governed by the devel-
opment close to the wall of a longitudinal mode, as mentioned in Chapter 3.
This was first proposed by Landhal and Mollo-Christensen [372], and further
discussed by Schmidt and Henningson [637]. We stress that the mean velocity
gradient (expressed in wall units) goes from 1 at the wall to a very weak value
at y* = 40 (= 0.06, as given by the logarithmic law). This implies that the
shear has no direct effect above. The streaks might originate from a weak ver-
tical oscillation of the fluid layers in planes parallel to (z,y), yielding strong
longitudinal oscillations of the flow (high speed in the downward motion, low-
speed in the upward motion), according to Egs. (3.43) and (3.44), or to the
velocity-sheets model proposed in Chapter 3 (taking in account for the latter
case the fluctuations with respect to the mean velocity gradient v? /v at the
wall). Such a longitudinal mode corresponds in fact to writing that the fluid
parcel keeps its velocity with the motion, a sort of “Taylor hypothesis”, as
noted by Landhal and Mollo Christensen [372]. Within this interpretation, the
streaks are responsible for the production of vorticity w, (see Chapter 3). The
longitudinal vorticity is weaker, and cannot increase following the motion in
the longitudinal mode. This explanation does not suppose the existence of a
wall in order to produce the streaks. This point was confirmed by the DNS of
homogeneous turbulence submitted to a constant high shear rate carried out
by Lee et al. [395]. They introduce a shear-rate parameter S, = A\l /q, where
A is the mean velocity gradient, and [ and g = <u;u;>1/ 2 are respectively the
integral scale and characteristic velocity fluctuation of the initial isotropic
turbulence upon which the shear is exerted.'® Low and high-speed streaks
very similar to those of a turbulent boundary layer or channel are observed
for S, larger than ~ 30 (which corresponds to values obtained in a channel
at yT ~ 10). Longitudinal vorticity in this calculation is low. They show also
a very good agreement with rapid-distorsion theory, applied starting initially
with an instantaneous turbulent field taken from the DNS.

about the flow topology, and longitudinal streaks of finite extent without longit-
udinal vortices at the wall would certainly produce the same type of correlations.

15 S, is the ratio of the inertial time of turbulence /g divided by the shear charac-
teristic time S™'. High values of S. mean that the effects of the shear may take
place before nonlinear interactions of turbulence start acting.
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Let us comment the DNS of Hamilton et al. [269] in a plane Couette flow,
where they observe a quasi-cyclic process of regeneration of near-wall struc-
tures, composed of three stages: formation of streaks by streamwise vortices,
breakdown of the streaks, and regeneration of the streamwise vortices.

From an experimental point of view, the work of Christensen and Adrian
[126] displays nicely the small-scale vortex structure in a boundary layer.

4.5.1 Vortex control

Mathematical optimal-control strategies have been developed for the plane
channel (see e. g. Bewley et al. [62]). They yield interesting results on systems
with modified flow dynamics. But they have not lead to applications in real
boundary layers.

From a more practical viewpoint, Choi et al. [115] have shown with the
aid of DNS which role do the longitudinal vortices play in the presence of
longitudinal riblets. They studied a channel whose lower wall was equipped
with riblets, while the upper was flat. Two different calculations were carried
out, one with a spanwise spacing of riblets of 40 wall units, the second with
20. In the first case, the longitudinal structures (whose diameter is = 25) can
stay in the riblet valleys, and the drag is increased with respect to the non-
equipped wall. In the second case, the longitudinal vortices have no place to
stand in the valleys, and sit above the peaks, so that their contact surface with
the boundary is reduced. In this case the drag decreases of ~ 8%. The reader
will find in Lesieur et al. [431] new LES (with animations) of flows above
riblets in the compressible case. They are carried out in a channel (same type
of configuration as Choi et al. [115] with immersed-boundary techniques (see
Hauét [270]). In the latter work, a LES at low Mach is validated against [115].
LES in supersonic regimes (without changing the physical size of riblets) do
confirm the anterior experimental findings of Coustols and Cousteix [152] that
riblets efficiency is not affected by compressibility.

Notice that Nature has provided the skin of some fast sharks with riblets.
Let us mention also that the so-called shark-skin swimming costumes are
equipped with riblets. With the evaluation §, ~ 10~> m given above, they
should have a size of 2 x 10~4 m for the olympic swimmer. For the subsonic
aircraft, the size is 2 x 107° m.

4.6 Turbulence, order and chaos
This discussion, in fact, belongs more to Chapter 1 than the present chapter,

but since it requires some of the instability results which have just been presen-
ted, we have preferred to postpone it to the present chapter. This section
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will contain some historical and philosophical developments about turbulence,
which are not really needed for an understanding of the rest of the book, but
which could, nevertheless, be of some interest to the reader.

Actually, the concepts of “order”, “disorder” and “chaos” are ill-defined
when applied to fluid turbulence: in statistical thermodynamics for instance,
“disorder” can be associated to the entropy of the system, and it is generally
believed that the second principle of thermodynamics (that is the tendency
for an isolated system to increase its entropy) implies a maximization of the
disorder, and hence an evolution of the system from order to disorder. Valid
or not, this last statement at any rate has proven useless for fluid turbu-
lence, where no analogous entropy function has been defined.'® As for the
word “coherence”, it is, as already stressed, generally used for vortices or
structures having some kind of spatial organization, such as the mixing-layer
large eddies, the boundary layer streaks, or the “dissipative structures” of
the internal intermittency envisaged in Chapter 2 for instance. Some people
are puzzled by the existence of such structures in turbulent flows, and tend
either to reject their existence or to consider them separately from the rest
of the flow, denying then the appellation of turbulence to them. Actually, it
seems more reasonable to consider these vortices, when they exist, as part of
the turbulence itself: we have already seen that such structures are generally
unpredictable, though they have a spatial coherence. It is erroneous to as-
sociate the concept of unpredictability to a spatial disorganization where no
well-defined spatial structures would appear: in actual fact, when looking at
a particular realization of a turbulent flow, one sometimes sees mainly a set
of “coherent” vortices, which nevertheless are unpredictable in phase (that is
position in space), but which may conserve their geometrical shape for times
much longer than the characteristic time of loss of predictability. Even in
such situations a statistical analysis of turbulence using the statistical tools
presented below can be performed, as will be seen in the following chapters.

With that in mind, it is not difficult to understand the points of view which
associate “turbulence” to “order”, if we interpret this latter word as meaning
the existence of spatially organized “coherent” vortices. This interpretation of
turbulence was for instance contained in the Latin poet Lucretius’ ideas, which
were very aptly commented upon by Serres [642]: Lucretius interpreted the
universe as a “turbulent order” which had emerged from an initial “Brownian-
like chaos” through the development of what he called the “declination”,'”
and which is exactly the infinitesimal perturbation in the instability theory.

16 1t has to be stressed however that in the case of the truncated Euler equations
(Euler equations where only a finite number of modes has been retained), stat-
istical thermodynamics apply, and the entropy of the system can be defined (see
Chapter 10 and also Carnevale [98]).

7 From the Latin “clinamen”.
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This initial “chaos” was assimilated to what we call a “laminar state”, so that
the usual scheme
“laminar yields turbulence”

was thus transformed into the provocative statement
“order (i.e. turbulence) emerges from chaos” (4.60)

which could also be used to explain the appearance of life, the formation of
the universe, and even the evolution of human societies.

Actually, there is not such a great gap between Lucretius’ statement
Eq. (4.60) and the general ideas on transition to turbulence which have been
presented in section 1: Lucretius’ philosophy contains both the idea of the de-
velopment of a perturbation due to an instability, and perhaps also the idea
of intermittency, where an initial random state distributed homogeneously in
space would evolve towards spatially organized structures like the dissipative
structures of turbulence. The appearance of dissipative structures as the result
of the development of an instability was also emphasized by Prigogine [589].

In the reality of fluid dynamics, it seems nevertheless difficult to accept
blindly statements like Eq. (4.60) in order to explain turbulence. But perhaps
this concept of order emerging from chaos can be adapted in the following
way: let us start with the example of the mixing layer, where we superpose
upon an inflectional velocity profile a small white-noise random perturbation,
which possesses energy on all wave lengths and in particular in the unstable
modes (see Plate 7): these latter modes will then grow, and the most unstable
mode (that is with the highest amplification rate) will appear the first, cor-
responding to the coherent vortices which are initially observed on Plate 7.
In that sense, one can say that an “ordered structure” (the coherent eddy)
has emerged from the chaos represented by the random perturbation. But
the entire process was completely dependent on the existence of the linearly-
unstable basic inflectional velocity profile, which in particular imposes the
vorticity sign of all the large eddies which will successively appear. The same
kind of analysis can be made for wakes or jets. In fact, Eq. (4.60) could be
more correctly restated as

coherent vortices emerge from chaos,

under the action of an external constraint. (4.61)

In the preceding examples, the external constraint was the instability of the
inflectional basic velocity profile. In stratified turbulence, the constraint is
the buoyancy which creates convective structures in the unstable case, and
could tend to create quasi two-dimensional turbulence in the stable case (see
Chapter 13). In the experiment of rotating turbulence of Hopfinger et al. [296]
presented in Plate 4, the coherent structures are the high-vorticity eddies
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whose axes are parallel to the axis of rotation, the “chaos” consists of the three-
dimensional turbulence created at the bottom of the tank, and the external
constraint might be the shear-Coriolis instability described in Chapter 3.



5

Fourier Analysis of Homogeneous Turbulence

5.1 Introduction

When turbulence is homogeneous, i.e. statistically invariant under transla-
tions, it is extremely useful to work in Fourier space. In this chapter various
Fourier representations of a statistically homogeneous turbulent flow will be
presented, as well as Navier—Stokes or Boussinesq equations projected in that
space. We will discuss more the utilization of random functions for turbulence
study, and describe the properties of isotropic turbulence (statistically invari-
ant under rotations). Helical turbulence will be considered, with the helical-
wave decomposition of the velocity field. This corresponds to fully-developed
turbulence. We will look also briefly at axisymmetric turbulence. Finally, we
will see how rapid-distorsion theory applies to homogeneous turbulence sub-
mitted to a plane strain.

5.2 Fourier representation of a flow

5.2.1 Flow “within a box”

The simplest mathematical way of introducing the Fourier representation of
a homogeneous turbulent flow is to consider a fictitious ideal flow — the flow
within a box — defined in the following way: given a particular turbulent flow
(which may not even be homogeneous), we consider in the physical space a
cubic box of size L, chosen in such a way that it contains all the spatial features
of the flow one wants to study. It is also assumed that the boundary conditions
on the sides of the box are cyclic: this of course may pose some problems and
will make this ideal flow differ from the actual flow. Once the cyclic flow
within the box is constructed, we fill the whole space with an infinite number
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’ki-n-‘l

.

Figure 5.1. The discrete Fourier transform of a “flow within a box of size L” at the
mode k; is the average of the integral Fourier transform of the flow on an elementary
cube B; of side 27 /L surrounding k;.

of identical boxes, so that one obtains a periodic flow of period L in the three
directions of space. Thus this “flow within a box” is a periodic flow filling
the whole space and whose features for scales smaller than L are close to the
features of the real flow. Let @(Z,t) be the periodic velocity field. Since it is
periodic of period L, it can be expanded as an infinite series

3 400
w(@,t) = (22—) Z eZim/D)(mertnazatnaza)y o (n) ng ng,t), (5.1)

ni,n2,n3=—0o0

where ninong are positive or negative integers. The coefficient in front of the
r.h.s. of Eq. (5.1) has been chosen for reasons of normalization. Introducing

=

the wave-vector k of components

P 27 27 27
= LnlaLnQaLn37

Eq. (5.1) can be written as

+oo .
A(E ) =0k D e Tagkt), (5.2)
n1,n2,n3=—00
with dk = 27 /L.
The Fourier transform ig(k,t) of the periodic velocity @(Z,t) is only
defined for wave vectors whose components are multiples of the elementary

wave number dk. The next section will show how @ p(k, t) can be determined
in terms of @(Z,t).



Turbulence in Fluids 157
5.2.2 Integral Fourier representation

Let us now consider a flow (%, t) defined in the whole physical space R® and
not necessarily periodic. The integral Fourier transform of @(Z,t) is defined

alF, t) = ( 1 )3/ e REG(T 1)d, (5:3)

with df = dzidredrs = d3x. Generally, in homogeneous turbulence, (7, t)
does not decrease rapidly to infinity, and 4(k,t) has to be defined by referral
to the theory of distributions! (see Schwartz [641]). We use the inverse Fourier

transform relation
i(Z,t) = / et

In fact Egs. (5.3) and (5.4) hold also for a scalar function. Replacing in
Eq. (5.4) 4(k,t) by the three-dimensional Dirac function §(k), such that
[ 6(k)dk = 1 yields with the aid of Eq. (5.3):

(k) = (217T>3/e”’5~fdf= (;ﬂ)g/ei’?fdf. (5.5)

So a flow within a box possesses two different Fourier transforms, the integral
one and the discrete one, and it is of interest to determine a relation between
these Fourier transforms. The following calculation is not essential for the
understanding of the present chapter, but has been given here as an exercise
allowing the reader to become accustomed to these notions: using Egs. (5.2)
and (5.3), we obtain:

a(k,t) = (;ﬁ)g/ei’?f (2;)326“3’-”@3(12’,t)df. (5.6)

L

— —

a(k, t).dk (5.4)

81

In Eq. (5.6), k is not necessarily of components multiple of §k; E’, on the
contrary, must satisfy this condition. Then Eq. (5.6) is written, using Eq. (5.5)

3
a(k,t) = (QL”) > 6k — K )g(k 1), (5.7)
i

and 11(137 t) is a three-dimensional Dirac comb of “intensities”

(27 /L) ag (K, t).

1 Also called generalized functions.
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Let us consider now an average in Fourier space of 4(k,t) on a cubic box B; of

centre k; (where k; is one of the discrete wave vectors for which @ g is defined)
and of sides 27/L :

k)= /B@(E)dé. (5.8)

‘We have
3
a(k;) = Voll(Bi) /B (2;) > 6k — K yag (k')dk, (5.9)

)3 is the volume of box B;. In Eq. (5.9), k¥’ must belong
k') is always zero. Thus, using the identity

/ 5(F — Fy)dFi =

Ak, t) =t (ki t). % (5.10)

where Vol(B;) = (2
to B;, otherwise d(

/L

7r
k—

we finally obtain

Eq. (5.10) shows that the discrete Fourier transform of a flow within a box is
the integral Fourier transform of the flow averaged on the cubic box B;, that

: g (kiyt) = Vol(B )/ (%) dk:/ KEG(Z, 1) dT (5.11)

Therefore, Eq. (5.11) enables us to calculate iy (k,t) in terms of @(Z,t). In
this book, we will mainly use the integral Fourier representation of the flow,
but all the derivations could be given using the discrete representation. The
latter is employed in numerical simulations using pseudo-spectral methods.
Notice also that, in two dimensions, the factors (27/L)3 and (1/27)2 have to
be replaced by (27/L)? and (1/2m)2.

5.3 Navier—Stokes equations in Fourier space

This section will consider the case of a fluid of constant and uniform mean
density pg, without buoyancy or rotation {2, which satisfies, from Chapter 2:

. 1=
LAV = —  Vp+ VR,
ot Po

+ @V =rkVZ), (5.12)
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V.i = 0.

p' is the density (resp. temperature, potential temperature, or any passive
scalar) fluctuation.

Let us consider any function f(z1, x, 3, t), of Fourier transform f. Then
the Fourier transform of 0f/0x; is ikif(lcl, ko, ks, t), where k; is the i-
component of the wave vector k. This is easily obtained by taking the derivat-
ive of Eq. (5.4) with respect to x;. Thus, calling “F.T.” the Fourier transform
operator, one has:

f(#OF.T. f(k.t)

of o
o, T k()

VfFET. if(kt)k
B 0% f  O0%*f  0%f
Vi = ox? * 03 * 2%
V.7 F.T. ik.a(k,t)
V x @ F.T. ik x a(k,t)
F(@ 6)g(#,t) BT [f * g)(k, 1) (5.13)

where * is the convolution product fﬁ+§: F(7.1)9(g, t)dp. The incompressib-

— (K} + k3 +K3)f = —k*f

ility condition V.7 = 0 implies
k.a(k,t) =0, (5.14)
and the velocity ﬂ(E, t) is in a plane IT perpendicular to k.
Now let us write Navier—Stokes equations in Fourier space: since 4u(k,t) is
in the plane perpendicular to k, 8u(k t)/(‘?t and vk?4 also belong to that plane.

On the contrary the pressure gradient zpk is parallel to k. The consequence is
that the Fourier transform of

@i+ (1/po)Vp
is the projection on II of the Fourier transform of @.Vi. Let us introduce the
tensor

kik;
k2

which allows a vector @ to be projected on a plane perpendicular to k:

Py;(K) = 6,5 — (5.15)

Pij(E) = 4-component of the projection of @ upon IT (5.16)
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with the Einstein convention of summation upon repeated indices. Then, no-
ticing that, due to incompressibility

Ou; | O(uuz) ] . / B
F.T. [“Jaxj =F.T. [ oz, }—zkj ﬁ+q:Eu,(p,t)uj(q,t)dp, (5.17)

the i-component of TAVLT S (l/po)ﬁp in Fourier space is equal to

il Poy (F) / iy ()i (@, 1)

p+q=k

Finally the Navier—Stokes equation in Fourier space is written
0 - ‘ > s i
(875 + Vk2> U (k,t) = —zkaij(k)/ Ui (P, t)Um (G, t)dp. (5.18)
P+q=k

The pressure has thus been eliminated by projection on the “incompressibility
plane”. The evolution equation for the density fluctuation j'(k,t) is straight-
forward:

(g ) dEn =it [ wos@oa (1)
=k

One can already notice that the nonlinear interactions involve triad interac-
tions between wave vectors such that k = P+ ¢. A structure of wave length
27 /k will also often be associated with a wave number k.

In the pseudo-spectral methods used for direct-numerical simulations of
turbulence (Orszag and Patterson [552]), Navier-Stokes equation for an in-
compressible non-rotating fluid in Fourier space is, from Eq. (2.22), written

| Za(zz, t) = II(k) o F[F~*(a) x F~Y(@)] — vk?a(k,t), (5.20)

where IT (E)o stands for projection on the plane perpendicular to k. F is the
Fast Fourier transform operator. This procedure is much faster than a direct
evaluation in Fourier space of the generalized convolution product in the r.h.s.
of Eq. (5.18). With these notations, the passive scalar equation writes

Lft p(k,t) = —ik. F[F~ () \F~*(a)] — kk?p (k,t). (5.21)

5.4 Boussinesq equations in Fourier space
One can also write in Fourier space the Boussinesq equations in a rotating

frame of rotation 2. This will be useful when studying stably-stratified tur-
bulence in Chapter 13. We recall them in physical space (see Egs. (2.112)):
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g;‘ Y aNT = VP — pgf — 20 x @ + vV,
9 . N2
ai SAVETE K25, (5.22)
V.7 =0,

where, according to the discussion of Chapter 2, the vertical axis of coordinate
7 has been taken parallel to g and Q ﬁ being a vertical unit vector such that
g=— gb’ and 2 = .Qﬁ In the r.h.s. of the thermal equation, the contribution of
the mean stratification has been neglected. N is the Brunt—Vaisala frequency.
In Fourier space, the nonlinear (advection and pressure), gravity and Coriolis
terms have now to be projected on the plane IT (since incompressibility V. =
0 still holds). One obtains:

( 0 + z/k2> ik, t) = =ik Pij (F) / ()i (G, 1) dP,

ot pa=k
gﬁj ij (E) (E )_ 2QPZJ( )Gjabﬁaub(k t) (5.23)
2 —
<86t + /{k2> = —ik; / PL(q,t)dp + ]\; i3 (k,t), (5.24)

where €;5 is the antisymmetric tensor of order 3, not equal to zero only if 7, j
and [ are different, equal to 1 if the permutation 4, j,[ is even, and to —1 if
the permutation is odd.

5.5 Craya decomposition

The particular property that the velocity field is orthogonal to the wave vec-
tor k allows one to find other decompositions of the velocity field in Fourier
space: the most common, often called the Craya decomposition (Craya [153]),
involves associating to k an orthonormal frame constructed in the following
way: let & be an arbitrary (but fixed) unit vector, and let us consider the
reference frame

- - kExa - kExi k
i(R) = ="

7~
k o =
Ik > af

The velocity field @(k) is characterized by two components on? i(k) and j(k),
for which it is possible to write evolution equations. This representation has

2 The complex number i such that i = —1 has evidently no relation with the unit
vector 1.
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been extensively used to study homogeneous strained or sheared turbulence
(see Cambon et al. [94]). The same representation has also been called the
triad-interaction representation (Lee [393]).

Let us now project ﬁ(E, t) upon i and j:

— — —

a(k,t) = uy (K, t)i(k) + uw (k, t)j (k). (5.25)
Back to physical space, we have

where 4y (Z,t) and dw (Z, t) are respectively the inverse Fourier transforms of
wy (K, t)i(k) and uw (k, t)7(k). Let us choose the “vertical” axis of coordinate Z
oriented in the direction of &. @y (Z, ) is a horizontal (since it is perpendicular
to @) non-divergent (since its Fourier transform is normal to k) velocity field,

which can be put under the form:
iy (Z,t) = —a@ x V(i t), (5.27)

where 1 is an unknown function of # and ¢, Vy being the gradient taken
in the direction perpendicular to &@. Notice also that (V x @y ). is generally
non-zero, since its Fourier transform is ikuy (k, t)[j(k).@]. Therefore, @y (Z, t)
is vertically rotational, of stream function (for a given z) %. On the contrary,
iw (Z,t) is vertically irrotational, since the Fourier transform of V x @y (Z, t)
is —ikuy (k,t)i(k). Since k x i = kj , @w (%, t) is the curl of a vector whose

-, =

Fourier transform is parallel to (k). Hence, it may be put under the form:
dw (Z,t) = =V x [@ x Vg((Z,1)], (5.28)

where ¢ is another unknown function of ¥ and t. This decomposition was
proposed, in a slightly different form than Egs. (5.27) and (5.28), by Riley et
al. [600]. @y can also be written as

aw (T,t) = V() — (V4C)a, (5.29)

with ¢ = 9¢/0z.

The indices V and W stand respectively for vorter and wave component.
This terminology makes sense in the case of homogeneous stably-stratified
turbulence: indeed, taking @ equal to the vertical unit vector ﬁ , it was shown
by Riley et al. [600] that the field @y satisfies, for small amplitudes and
when 2 = 0, the equation of propagation of internal-gravity waves. The field
Wy may in certain conditions, and for a given z, satisfy a two-dimensional
Navier—Stokes equation in the limit of low Froude numbers: this accords with
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the ideas of collapse to quasi two-dimensional turbulence under stratification
which will be looked at in Chapter 13. Notice finally that the “vortex-wave”
decomposition still holds in the case of unstratified non-rotating fluid, but
with no physical significance attached to the words “wave” and “vortex”.

Such a decomposition is a-priori different from Helmholtz’s decomposi-
tion of a divergent field into a non-divergent part and an irrotational part.
Both decompositions coincide from a three-dimensional point of view when
the horizontal velocity field is two-dimensional (i.e. independent of z) and
horizontally divergent. This is in particular the case for the Barré de Saint-
Venant equations for a shallow fluid layer with a free surface introduced in
Chapter 2: when a solid-body rotation Qs present, the “vortex” field is then
essentially a horizontal two-dimensional turbulent field which interacts with
a surface inertial-gravity waves field (Farge and Sadourny [195]).

5.6 Complex helical-waves decomposition

Helicity in a flow is the scalar product of the velocity and the vorticity. It
will be considered physically in detail in the following sections. Here we will
introduce a particular decomposition of the velocity field that will be called
the complex helical-wave decomposition, proposed by Lesieur [411].

Flows we will call helical waves have been introduced by Moffatt [509]: let
k be a given vector, and i and ; two orthogonal unit vectors perpendicular to
k such that the frame formed by f,j and k should be direct. One considers in
physical space, within an infinite domain, the velocity field

Vit (k, ) = (cos k.Z)j + (sin k.Z)i (5.30)
which is such that L .
V x Vit =kV*. (5.31)

This flow is an eigenmode of the curl operator (Beltrami flow). Its vectorial
product with its curl is zero, thus satisfying the vorticity equation

%:—&—ﬁx(&xﬁ):O

associated with the Euler equation, in an infinite domain, with constant dens-
ity and no rotation. Its helicity V;".(V x V|) is positive and equal to k. In
the same way, one will consider the following flows

—

Vit (k, @) = (sink.Z)j — (cosk.Z)i (5.32)

—

Vi (k, @) = (cos k.Z)j — (sin k.Z)7 (5.33)
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Vs (k, @) = (k.2)] + (cos k.Z)i (5.34)
with

Vx Vst =kV,H,V x V7 = —kV,,V x Vy = —kV,,
and of respective helicity k, —k, —k. They too are Beltrami flows and solutions
of the Euler equation. We will now introduce (still in physical space) complex
helical waves

VE(E,T) = V(R T) + iV (k,7) = (7 — i)e™ (5.35)
V- (k) = V7 (k, @) +iVy (K, @) = (j + i)e’** (5.36)

which are still Beltrami flows and have a respective helicity £ and —k. They
are complex solutions of Euler equations in physical space.

Now, we assume that k is one of the wave vectors of the Fourier decompos-
ition of @(Z, ), and that i(k) and j(k) are the same as in Craya decomposition,
associated to k with the aid of the fixed arbitrary unit vector @. It is easy to
show that

; [a(zz, t) + ik 1;““’”] R F = ot (B, )V (K, T) (5.37)
; [a(fé, t) — it I]‘C(k’t)] eFE =y (B, )V~ (K, 7) (5.38)

where ut (k,t) and v~ (k,t) are two complex numbers. Eqs. (5.4), (5.37) and
(5.38) thus permit one to write the following decomposition of any non-
divergent field #(Z,t) into positive and negative complex helical waves:

- — —

(T, t) = / [wh(k, OV (k,Z) +u (k, )V~ (k,Z)|dk. (5.39)

The orthogonality relations existing between the V+ and V~ allow one to
invert Egs. (5.39), showing that the decomposition of @(Z,t) is unique once

the fixed vector @ determining the vectors i(k) and j(k) has been chosen. One
obtains

2ut(k,t) = (;ﬂ)g /ﬁ(f, ).V (k, &) dE (5.40)

3
. 1 L.
2u” (k,t) = <2 ) /ﬁ(:ﬁ',t).V*(kj')*df7 (5.41)
m
where the symbol “*” refers to the complex conjugate. We have there-
fore obtained an orthogonal decomposition of the velocity field along com-
plex helical waves, which could prove to be useful for the study of iso-
tropic helical or non-helical turbulence. Similar decompositions have been
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introduced by Moses [526] and Cambon [93]. Let us mention that Lesieur
was not aware of Moses’ work. One can also note that the coordinates
of V x @(Z,t) in this “helical space” are kut and —ku~, while those of
V2i(Z,t) are k2ut and —k2u~. Notice finally that the change of k into —k
in V*(k, @),V (k,Z),ut(k,t),u(k,t) is equivalent to taking their complex
conjugate.

Eq. (5.18) can also be projected in this helical space: if u, (lg, t) stands for
uT or u~ according to the value +1 or —1 of the parameter a, one obtains
(Lesieur [411]):

8 - 1 P — — —
(m + sz) ua(k,t) = — / _ Qabe(k, D, Q)up(p, t)uc(q, t)dp (5.42)
=k

q=

with
Quave(k, 7, @) = —bpli (k) + iai(k), §(§) — ibi(p), /() — ici(q)], (5.43)

where [.,.,.] holds for a mixed product of three vectors, and the “indices” b and
c take the values +1 or -1 , with summation upon the repeated indices. Further
studies upon these lines have been carried out by Waleffe [709], Melander and
Hussain [484] and Virk et al. [707].

Finally, it is easy to relate the latter complex helical decomposition to
Craya decomposition: with the aid of Eqgs. (5.25), (5.40) and (5.41), the fol-
lowing is obtained (Lesieur [411], Cambon [93]):

2t (k,t) = a(k,t).(j + ii) = uw (k, t) + iuy (k, t)

2u (k,t) = a(k,t).(F — ii) = uw (k, t) — iuy (K, ) (5.44)
or equivalently

wy (k,t) = ifu” (K, t) —ut(E,1)], uw(kt)=[u"(kt)+ut (kD). (5.45)

—

Notice finally that 7(—k) = —i(k) and j(—k) = j(k). Hence, using Egs. (5.25)
and the relation . .

a(—k,t) = a(k,t)", (5.46)
due to the fact that @(Z,t) is real, it is found:

wy (—k,t) = —uy (k, 1) uw(—Fk,t) = uw (K, t)*. (5.47)
We will see in Chapter 9 how Lilly [448] uses helical waves for a model of
tornado generation to perform a secondary linear-unstability analysis upon an
helical wave rotating along the vertical as the Ekman boundary-layer mean
velocity profile. A last remark about the complex helical waves decomposition:
it is an attractive projection of the turbulent velocity field, but was never
applied to simulations of real flows.
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10 sec.

Figure 5.2. Four independent samples of the longitudinal velocity fluctuations re-
corded in the turbulent channel of the Institut de Mécanique de Grenoble (courtesy
Y. Gagne).

5.7 Utilization of random functions

From a mathematical standpoint, and as already mentioned, the velocity field
(2, t) will be assumed to be a random function defined on a sample space
(see e.g. Papoulis [563]). One can imagine for instance that we record the
longitudinal air velocity at a given location in a wind tunnel: if the experiment
is repeated N times in the same conditions, one obtains N realizations of
the velocity evolution, each of them corresponding to a point in the sample
space. For instance Figure 5.2 represents four recordings of the u’ velocity
fluctuations obtained in such an experiment. In a statistical description of the
flow, we consider an “ensemble average”, i.e. a statistical average performed
on an infinite number of independent realizations, already noted as (.) in
Chapter 4: let for example in the above experiment u (%) (Z,t) be any component
of the velocity at location & and time ¢ measured during the experiment “i”
(“i"realization). The ensemble average of the product of n of these components
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at n locations ¥y, @5, ... T, and n times t1,ts,...,t, will be given by
| XN
(@1, t)u(T2 ta) . (T, tn)) = Jim ;
uD (Z1, t)uD (o, ta) ... uD (T, ty). (5.48)

This ensemble average operator is analogous to the one used in statistical
thermodynamics. It is not to be confused with temporal or spatial averages,
except in certain conditions which will be specified below.

In the following, the various functions characterizing the turbulent flow
will be considered as random functions: this will in particular be the case for
the velocity (&, t), the vorticity, the pressure, the temperature or the density
fluctuations, etc. Notice also that these random functions are defined on the
four-dimensional space (Z,t).

5.8 Moments of the velocity field, homogeneity and
stationarity

Definition: The “n”th order moment of the velocity field is the ensemble av-
erage of any tensorial product of n components of the velocity field: (@(Z,t))
is the mean velocity at time ¢.(u;(Z1,t1)u; (22, t2)) is the velocity correlation
tensor at points 1 and Zo and at times ¢; and t. In the same way it is
possible to define the moments of order 3,4, ..., n.

e Homogeneity

Turbulence is called homogeneous if all the mean quantities built with a set of
n points &1, T, ... &, (at times tq, to, .., t,,) are invariant under any translation
of the set (&1, &2,... &,). One has in particular

(U, (F1,11) - o+ Ua, (Znytn)) = (Ua, (1 + T, t1) ... Ua, (Zn + ¥, tn)). (5.49)
For instance the second order velocity correlation tensor writes
Uij(F,tl,tg) = <ui(fl,t1)Uj(fl —|—’F,t2)> (550)

Notice also that
Uij (=7, 1, t2) = Uyi(7, t2, t1). (5.51)

For homogeneous turbulence, the mean velocity field (#(Z,t)) is independent
of #. It must be stressed, however, that it is possible to consider a turbulence
homogeneous with respect to the fluctuations of velocity with a non-constant
mean velocity, provided the mean velocity gradients are constant (Craya [153],
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Townsend [689], Maréchal [471], Cambon et al. [92], Rogallo [611], Rogers and
Moin [613]). This question has already been addressed in Chapter 4. It will
be considered using rapid-distorsion theory at the end of this chapter. At
low shear rate, the DNS carried out by Rogers and Moin [613] show hairpin
vortices strained by the mean shear.

If there is no mean shear, the mean velocity is constant, and one will
generally work in a frame moving with the mean flow, so that () = 0. When
turbulence is homogeneous, an ergodic hypothesis allows one to calculate an
ensemble average as a spatial average: for instance

Uij(’IT7 t1, tg) = lim ‘i / ui(fl, tl)Uj (fl + 7 tg)dfl. (552)
oo v
No proof of the ergodic theorem is known for Navier—Stokes equations. There is
however some numerical evidence that it is valid for the truncated Euler equa-
tions (that is where only a finite number of degrees of freedom are retained)
both in two dimensions (Fox and Orszag [215], Basdevant and Sadourny [36])
and in three dimensions (Lee [394]).

e Stationarity

Turbulence is stationary if all the mean quantities involving n times t1ts ... ¢,
are invariant under any translation of (t1t2... t,). In particular

(o (T1,t1) - o+ Ugy, (Znytn)) = (Ua, (F1,t1 + 7). oo Uq, (Tnytn + 7). (5.53)

If one assumes a zero mean velocity, (1/2)U;; (67 t,t) is the mean kinetic energy
per unit mass. So in a stationary turbulence this quantity will be independent
of time. This implies that a stationary turbulence needs to be sustained by
external forces, otherwise the kinetic energy would decay with time, due to
viscous dissipation. For a stationary turbulence, an ergodic hypothesis allows
one to calculate an ensemble average as a time average. A large part of this
monograph will be devoted to homogeneous turbulence, but stationarity will
not necessarily be assumed: indeed the latter assumption requires, as just seen
above, the use of external forces which are generally only a mathematical trick
to sustain the turbulence and can strongly modify its structure, specially in
the scales where the energy is injected. On the contrary, the freely-evolving
turbulence (also called decaying turbulence), as can be obtained for instance
in a wind tunnel downstream of a grid, reorganizes according to its own dy-
namics, and might give more information about the nonlinear interactions
between the various scales of motion.
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- X; «—

Figure 5.3. The mean velocity of isotropic turbulence is zero, since a rotation of
angle 7 about an axis of origin & perpendicular to zZ; can change u; into —u;.

5.9 Isotropy

5.9.1 Definition

Homogeneous turbulence is statistically “isotropic” if all the mean quantities
concerning a set of n points Z1Zs ... T, (at times ¢1ts... t,) are invariant
under any simultaneous arbitrary rotation of the set of the n points and of
the axis of coordinates. The first immediate consequences are

(@(z,t)) =0 (5.54)

as can be seen in Figure 5.3: indeed, a rotation of angle m about an axis
perpendicular to xx; implies

and for any scalar quantity 9(Z, t):
(@, t)u(Z,t)) = 0. (5.56)

In fact, it will be shown later that the scalar-velocity correlation between
two distinct points & and ¢ is also zero. An important remark is that an
isotropic turbulence is homogeneous, since a translation can be decomposed
as the product of two rotations. In this respect, the expression homogeneous
isotropic turbulence (HIT) is irrelevant.

5.9.2 Longitudinal velocity correlation

We consider two points Z and ¢ separated by 7. Let u be the projection of
the velocity on 7 (see Figure 5.4). The longitudinal correlation is defined by
(Batchelor [47], Hinze [285])

F(r,t,t") = (u(Z,t)u(? + 7,t")). (5.57)

It is independent of the direction of 77 because of the isotropy assumption.
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Figure 5./4. Schematic representation of longitudinal, transverse and cross velocity
correlations.

5.9.3 Transverse velocity correlation

Let v be the projection of the velocity on an axis v normal to 7. The transverse
velocity correlation is defined as

G(r,t,t') = (v(Z, t)v(Z + 7, t')). (5.58)

Due to isotropy it is also independent of the direction of 7. Notice that a
correlation like (u(Z,t)v(Z + 7,t')) is always zero, as can be easily seen with
a rotation of angle 7w around the axis zu (see Figure 5.4).

5.9.4 Cross velocity correlation

Let w be the projection of the velocity on an axis @ normal to the (7, ¥) plane.
The cross velocity correlation is defined as:

H(r,t,t") = (v(Z, t)w(Z + 7,t')). (5.59)

One can notice in particular that H(0,¢,¢') = 0.

In the present monograph, isotropic turbulence has been defined as stat-
istically invariant under any rotation. Such a turbulence can possess or not
the property of also being statistically invariant under any plane symmetry
(“mirror symmetry”). If it is the case, the cross velocity correlation H (r,t,t')
is zero, and there is no preferred helical tendency in the flow. We will say
that the turbulence possesses no helicity. The reader is warned that our defin-
ition of isotropy is different from Batchelor’s [47], which includes the mirror
symmetry property in the isotropy definition.

5.9.5 Helicity

The quantity
H, = _{(u(Z,t).[V x u(Z,t)]), (5.60)
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is called the mean helicity of the flow.? It is evidently zero if the turbulence
possesses the mirror symmetry property. Like the mean kinetic energy and
passive-scalar variance, it is conserved by the nonlinear terms of statistically
homogeneous Navier—Stokes equations (see next chapter). Helicity seems to
play an important role in some magneto-hydrodynamic flows of electrically
conducting fluids (M.H.D flows): indeed it can be shown on some models
that helicity enhances the so-called “dynamo effect”, corresponding to the
generation of a magnetic field by a flow. A review of this problem can be
found in Moffatt [510] and Moreau [519]. Let us consider Earth turbulent outer
core, which is electrically-conducting and strongly heated from the interior. It
is well recognized (Cardin [97]) that it is composed of quasi two-dimensional
vortices of axis parallel to Earth axis of rotation. With velocities of 1073 m/s,
and scales of 1000 km, the Rossby number is ~ 10~°. This is very small, and
explains why the vortices are quasi geostrophic. Schaeffer and Cardin [633]
have shown by numerical simulations that quasi geostrophic MHD turbulence
may produce a dynamo effect. Le Mouél [406] stresses that helicity is present
here, even though the structures are quasi two-dimensional.

Let us mention new experimental results obtained in a strongly-turbulent
swirling flow of liquid sodium between two counter-rotating turbines by Mon-
chaux, Daviaud, Fauve, Pinton et al. [514]: above a magnetic Reynolds number
of approximately 30, an important mean magnetic field is obtained. There are
here a lot of big vortices in this experiment which produce mean helicity.
But this situation is highly three-dimensional, and it is not obvious that it
represents correctly Earth outer core.

5.9.6 Velocity correlation tensor in physical space

At this point we recall how in the case of isotropic turbulence (with or without
helicity), the second-order velocity correlation tensor written in the physical
space may be expressed only in terms of the quantities F(r,t,t"), G(r,t,t'),
and H(r,t,t'). The derivation is not simple? and can be partially found in
Batchelor [47]: let @ and b be two arbitrary fixed vectors. The contracted
tensorial product

a;Ui; (F’ t tl)bj

is a scalar, and consequently must be invariant under rotation of the three
vectors (7, d, b), without worrying about rotation of the axis of coordinates.
It can thus be shown (Robertson [608]) that this scalar is only a function of

3 The local instantaneous helicity at a given point is #.i3/2. In a longitudinal hairpin
shed in a shear flow for instance, the right leg of the hairpin will have positive
helicity, and the left leg a negative helicity.

4 A simpler derivation in Fourier space will be given below.
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F.F 7d mb @.a b.b a.b and 7.(@ x b), i.c. of the lengths, relative angles and
orientation of this set of three vectors. Furthermore, it is linear with respect
to the coordinates of @ and b. The only possible combination is then

-,

a;Uij (7, t, )by = A(r, t,")a@.b + B(r, t,t')(7.@)(7.b) + C(r, t,t'eijsaib;rs.
(5.61)

If we choose the vectors @ and b corresponding respectively to the unit vectors
of axis x; and x;, we obtain:

Uij(Fot, ') = A(r, t,8")0; + B(r, t,t))rir; + C(r, t,t )eijsrs. (5.62)

In fact, such an expression can be obtained much more easily, by projecting
the spectral tensor in the local Craya space (see below).

In a reference frame such that 7 has components (r,0,0), the velocity
correlation tensor is diagonal, of components

F(r,t,t") = A(r,t,t') + 72 B(r, t,t')
G(r,t,t') = A(r,t, 1)
H(r,t,t") =rC(r,t,t),
and U, (7, t,t') writes

[F(Ta t, tl) - G(Ta t, tl)]

U'Z‘j(f’7 t, t/) = G(ﬁ t, t’)dij + 2 riT;
+H(r,t, t’)eijsif (5.63)
The incompressibility condition
61,61‘
=0 5.64
oz, (5.64)

allows one to obtain a relationship between F(r,t,t') and G(r,t,t'). Writing
Eq. (5.64) as
0
87"1
and replacing U,;(7,t,t') by its expression Eq. (5.63), it can be shown after
some simple algebra (see Batchelor [47]) that

Uij(Ft,t') =0 (5.65)

r OF

n o /
G(r,t,t") = F(r, t,t") + 5 9"

(5.66)

Let us now, as an exercise, calculate the helicity of the flow in terms of these
correlations: the following calculation is not a simple one, but enables one
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to become familiar with these tensorial calculations. From the definition of
helicity, one has: =
2H, = lim (@(7,t).[V x (g, 1)])

g%
. . aul(?ja t)
=1 ij i at
tim e fus(,0) )
. aUzl(,Fa tv t)
-1 g
”LI%GZ]Z Brj
. 0 .
= l:n'% ((%“j) eileil(’I“,t,t)
and, using Eq. (5.63)
0 . 0 Ta
873 fileil(T;t7t) = —€ji€ial 873 {H(ﬁ t, t) }
rer; OH H H
= —Cijifial | 5 5. T Oja — 37l
OH H
ar r

When 7 goes to zero, 0H/Or is equivalent to H/r, since H(0) = 0, and the
mean helicity is equal to

H, = —-3lim

H(T;t’t) — —30(0,,1). (5.67)

5.9.7 Scalar-velocity correlation

Another interesting result is to show that the scalar-velocity correlation in
two different points £ and & + 7 is always zero in isotropic three-dimensional
turbulence (Hinze [285]): let

Si(7t, ) = (I(Z, t)ui (T + 7, 1)) (5.68)

be the correlation of any scalar ¢(for instance the pressure or the temperature)
with the velocity field. Let a; be an arbitrary vector. The scalar a;S; must be
invariant under any rotation. It must therefore depend upon r, a, and d.7; due
to the linearity with respect to a;, we must have

aiSi(F} t, t/) = S(T’,t7tl)7“iai (569)

which yields
Si(F,t,t') = S(r,t, t')r;. (5.70)
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The incompressibility condition 9.5;/9r; = 0 implies

3S(r,t,t') + raS =0. (5.71)
ar

Thus, S;(7,t,t') is proportional to 73r;. On the other hand it cannot di-
verge at 7 = 0 since 5; (0 t,t') is zero, as already seen above. Consequently,
Si(7,t,t') must be equal to zero for arbitrary 7. For instance, the pressure-
velocity correlation is always zero in isotropic turbulence. This is also true for
the temperature-velocity correlation, or the density-velocity correlation. An-
other consequence is that the scalar-vorticity correlation is also zero. As will
be seen later, this is not automatically ensured in two-dimensional isotropic
turbulence.

This zero scalar-velocity correlation property is valid only when the ve-
locity and the scalar satisfy the isotropy conditions: indeed it might hap-
pen that an inhomogeneous scalar field is diffused by homogeneous isotropic
turbulence, as for instance in a “thermal mixing layer” where two regions
of a grid turbulence are initially at a different temperature (La Rue and
Libby [382], Warhaft [713]). The particular case of scalar-velocity correlation
in two-dimensional isotropic turbulence will be considered later, as a special
case of three-dimensional axisymmetric turbulence.

5.9.8 Velocity spectral tensor of isotropic turbulence

The velocity spectral tensor of a homogeneous turbulence is the Fourier trans-
form of the second order velocity correlation tensor

3

” o 1 T

Uij(k,t,t') = (2 ) /e—““-’“Uij (7, t,t')dr. (5.72)
T

Here, the velocity spectral tensor decreases to infinity fast enough in general,

so that U;;(k,t,t") is an ordinary function. We also have a relation equivalent

to Eq. (5.4)

—

Uij(m,t’):/ RE (Rt 1) dE. (5.73)

The spectral tensor can also be viewed as the velocity correlation tensor in
Fourier space: indeed, let us calculate
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27
Then one obtains, using Eq. (5.5):

6
= ( ' ) / e~ HTe DT (7 1, 1) dFd.

. . 1\ . . -
<ai(k/,t)a]’(k,t/)> = (271') (5(]€+k/)/6_zk'TUij(’F,t,t/)d’F

which yields, with the aid of Eq. (5.46)

—

(s (K t)a (k1)) = Uy (k, t,t') 6(k + k). (5.74)

We notice also from Egs. (5.4) and (5.51) that the tensor ﬁij(E t,t) is Her-
mitian, that is o o
Uji(k,t,t) = U (k,t,t)

where the symbol * stands for the complex conjugate. Eq. (5.74) shows that,
for homogeneous turbulence, there is no correlation in Fourier space between
two wave vectors whose sum is different from zero. This result can be general-
ized to a set of N vectors, which must satisfy this zero-sum condition in order
to allow a non-zero velocity correlation between them. Eq. (5.51) shows also
that Uii(E t,t) is real and positive since it is “proportional” (modulo a Dirac
distribution) to (@} (k,t)i;(k,t)). In fact, it may be easier to consider these
quantities from the point of view of the turbulence within a box already intro-
duced, since the Dirac distributions disappear, and Uii(E, t,t) then becomes
exactly equal to (4} (k,t)ii;(k,t))(the symbol “B” has been omitted, and 6k
has been set equal to 1).

In the case of isotropic turbulence, with or without helicity, the spectral
tensor takes a simple form which can be obtained either by taking the Fourier
transform of Eq. (5.62) or by working directly in Fourier space: indeed the
isotropy hypothesis which leads to Eq. (5.62) is also valid in Fourier space,
and the isotropic spectral tensor can then be written as

Ul‘j (lg, t, tl) = A(l@ t, t’)dij + B(k, t, tl)kikj + é(k, t, tl)ﬁijlkl. (575)
Therefore, the incompressibility condition in Fourier space implies

k;Uij(k,t, ") =0

and .
A Ak, t,
B(k,t,t') = — (kz )
Usj(k,t, ') = Ak, t, )Py (k) + C(k, t,t)eijsks, (5.76)

-

where P;;(k) has been defined in Eq. (5.15). A simpler derivation of this result
will be given below, when working in the local Craya frame.



176 5 Fourier Analysis of Homogeneous Turbulence

5.10 Kinetic-energy, helicity, enstrophy and scalar
spectra

5.10.1 Kinetic energy spectrum
Considering the case t = t/, one obtains
Usi(k,t,t) = Uk, t) = 2A(k, t) (5.77)

where U (k, t) is the trace (real and positive) of the tensor U;; (k,t,t). Eq. (5.76)
can then be written as

—

N 1 - N ~
Uij(k, t, t) = 9 [U(k, t).PU (k) + ZU(/C, t)qjsks]. (578)
In two-dimensional isotropic turbulence, Eq. (5.78) has to be replaced by
Uy (K, t,t) = Uk, t) Py (k). (5.79)

(see Chapter 8). It will be shown later that U (k,t) is real. We first calculate
the mean kinetic energy per unit mass

Ui(0,1) =, /U(k,t)dE

+oo
= / 2rk*U(k, t)dk (in three dimensions)
0

+oo
= / wkU (k,t)dk (in two dimensions).
0

This determines the kinetic-energy spectrum, density of kinetic energy at wave
number k, and such that

E(k,t) = 27k>U(k,t) in three dimensions, (5.80)

E(k,t) = wkU(k,t) in two dimensions. (5.81)

E(k,t) corresponds to the kinetic-energy density in Fourier space integrated
on a sphere (or a circle in two dimensions) of radius k. It is always real and
positive.
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5.10.2 Helicity spectrum

It can be shown to be equal to

1 ] . - -
H, = 2<ﬁ~aj> = _éfijl/ijil(—k,Lt)dk

which yields, using Eq. (5.78)
+o0
H, :/0 2nk*U (k, t)dk. (5.82)
This determines the helicity spectrum,
H(k) = 2nk*U (k), (5.83)
density of helicity at wave number k. This quantity can only be defined in

three dimensions, since it is zero in two dimensions. Finally, the spectral tensor
Eq. (5.78) writes

P 1 [E(k,t) - . H(k,t)
Uij (k‘, t, t) = 9 o k? P; (]{J) + Z€ij3ks okt (584)
in three dimensions and
N E(k,t -
Uij(k,t,t) = (&, )Pij(k) (5.85)
wk
in two dimensions.
5.10.3 Enstrophy
It is the variance of the vorticity
1,
D(t) = 2(w ). (5.86)

One can show that for homogeneous turbulence the enstrophy is equal to

D(t) = — ; (i(%,1).V2i(7,1)). (5.87)

Indeed, let A(Z,t) and B(Z,t) be two vector fields depending on the velocity
field. Since, because of homogeneity,

O\ [ Oai b
Ai€55s ail'j = 8(Ej €ijs0s
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one has
(A(V x B)) = (B.(V x A)). (5.88)

Now we use the property of a non-divergent flow that
V x (V x @) = -V, (5.89)

which shows Eq. (5.87). This allows calculation of the enstrophy spectrum:
since the Fourier transform of V2%(%,t) is —k2da(k,t), we have

1 [ o . B
i) =, / dRdR e FHFY 26 (B s ()

+oo
= ;/kQUii(k,t)dk:/ k2 E(k, t)dk. (5.90)
0

It turns out that the enstrophy spectrum k2E(k,t) is completely determined
by the kinetic-energy spectrum. This is not the case for the helicity spectrum.

5.10.4 Scalar spectrum

Let ¥(&, t) be a scalar satisfying the isotropy conditions and 19(/5, t) its Fourier
transform. A calculation analogous to that leading to Eq. (5.74) gives now

(WK, 0)d(k,t))

6
= (» ) [ E D @, o o)diar

2
1\° o
= <27r> /eﬂk Te U KHRD-E1 (£, t ) dFdT
which gives
. - Eo(k,t)  ~ -
W, )0(k, b)) o(k, )5(k+k')7 (5.91)

where Eg(k,t)/2mk? is the Fourier transform of the spatial scalar correlation
Up = (9(Z,t)9(Z+7,t)). The scalar spectrum FEg(k, t) is in fact half the scalar
variance density, such that

1 oo
2@92(57 t)) = Eo(k,t)dk. (5.92)
0
Of particular interest will be the study of a passive-scalar spectrum in isotropic
turbulence, considered in Chapters 6 and 7. Relations equivalent to Egs. (5.91)
and (5.92) exist in two dimensions (see Chapter 8).
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5.11 Alternative expressions of the spectral tensor

For sake of simplicity, we work here from the point of view of turbulence
within a box. We will write the spectral expansion as

i@, 1) = eFTakt), (5.93)

where the extremity of k follows the nodes of a regular grid of mesh 6k = 27/ L.
Then the kinetic energy is

;w*.a» = LS nadk ). (5.94)

In computations by pseudo-spectral methods, one calculates the energy spec-
trum by summing up all the modal energies in shells of radius comprised
between k — 0k/2 and k + 0k/2. If 0k < k, and if turbulence is isotropic, the
number of points in a shell is of the order of

Then the energy of the shell is

k2 . .

(OR)E(R) = 27 o, (i" (R, £).(F, 1), (5.95)

Here, E(k) is such that

1

1 A
LT ) =, %:E(k)dk N/o E(k)dk.

In two dimensions, one has to sum over a ring, and the equivalent above
expressions are

2
57/;2 CZZ Ok = 2m 5kk’
(6K)E(k) =7 ;2 (0" (k. t).a(k, t)). (5.96)
The spectral tensor is now
U(k,t) = (0*(k,t) @ a(k,t)). (5.97)

When projected in the local Craya space associated to the wave vector k its
coordinates become
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= A(k,t)  C(k,t)

U(k,t) = = 5.98

o= ( e (5.99)

with

)UW
<U*W _,7 t)uV (E’ t)> = C*(E’ t)v
(uty (k, uw (k, 1)) = B(k, 1), (5.99)

where uy and uy are defined by Eq. (5.25) and where the functions A(E, t)
and B(k,t) are real.5 Such expressions are valid as soon as the turbulence is
homogeneous, and isotropy is not required. One can now calculate easily from
Eq. (5.99) the mean kinetic energy

; > (@t (k,t).a(k, 1)) = ; > Ak, t) + Bk, 1), (5.100)
z

E

the mean helicity

= kS[C(k, 1)), (5.101)
E
where $(C) stands for the imaginary part of C(k, t), and the mean enstrophy

; SOE x @k, D)L[F x a(k, £)])) = ; S KA+ B). (5.102)
E

k

>

The advantage of working in this local frame is that the isotropy consequences
can be implemented extremely easily, since any rotation acting simultaneously
on k and @ will rotate also the local frame (7,7, k/k). Let us for example
envisage a rotation of angle 7/2 about k, which leaves (k, t) unchanged, but
transforms 4 into j and j into —i. The coordinates of the spectral tensor in
the new local frame are

t))

)

® These functions 14(1_5, t), B(k,t) and C(k,t) have no evident relation with other
functions A, B, C introduced above.

( B(k,t) —C*(k
t

|

Q
—
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and isotropy immediately implies that A = B and C is imaginary. Since
any simultaneous rotation of k and @ leaves the coordinates of the tensor
unchanged, it follows that A, B, and C' depend on k and ¢ only.

We return to the integral Fourier representation, and express Eq. (5.88)

under the form ) 5.0 (k.1
E(k,t 1H(k,t)/k
drk? (—iH(lc,t) Ik Bk > : (5.103)

where, because of Egs. (5.100) and (5.101), E(k,t) and H(k,t) are exactly
the energy and helicity spectra already defined. Such an expression has been
proposed by Cambon [93]. It allows the recovery of Uy (k, t) given by Eq. (5.84)
with the proper change of coordinates: indeed the spectral tensor can, from
Eq. (5.103), be written three-dimensionally in the local frame as

0 1 0
-1 0 0],
0 0 0

E(k,t)
4mk?

H(k,t)

1

0
3

0 4rk

o = O

0
0+
0

where the first matrix, contracted with any three-dimensional vector, projects
it in the plane perpendicular to E while the second multiplies it vectorially by
k / k. In the original reference frame, the projection in the plane perpendicular
to k is represented by the tensor P;; (k) while the vectorial multiplication by
k/k is €ijsks/k. Such an expression, when transformed back into the physical
space, yields a velocity correlation tensor of the form Eq. (5.62).

As for the spectral tensor in the complex helical wave decomposition, it is
given by, using Egs. (5.44), (5.99) and (5.103)

(B )t (R, 1)) = E;(kkg Do+ i), (5.104)
(W (K, = (k1)) = (™ (K, tyu* (k1)) = 0, (5.105)
() = © _4;55; D5+ 1), (5.106)

with (Lesieur [411])
BV = {E(m) L (Z’t)] 7 (5.107)
B (k,t) = ; [E(k,t) - H(Zt)} . (5.108)

We remark that E¥+ and E~~ must by definition be positive, since they are
respectively proportional to (ut*(k,t)u™ (k,t)) and (u=*(k,t)u” (k,t)) (mod-
ulo a Dirac distribution). It implies the inequality
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I S’j’t)' < Bk 1), (5.109)

Finally the mean kinetic energy, helicity and enstrophy are given, using these
complex helical coordinates, by

;<a'2>= /0 B ) + B (B)]dk, (5.110)
1 - R
(@Y x @) = / KEHH (k) — B (k)] dk, (5.111)
2 0

| AP ——

2<w>—/0 B (k) + B (k)| dk. (5.112)

The scalar-velocity correlation in three-dimensional isotropic turbulence can
also be considered in spectral space: let 19(/2 t) be the Fourier transform of
the scalar any rotation of angle m about the vector k will change Z into —i
and J into —J, with for consequence the nullifying of (J(k, )iy (k,t)) and
(O(k, t)aw (k,t)), and hence of (J(k,t)a(k,t)). We recover the fact that the
scalar-velocity correlation is zero, as already shown in the physical space.

5.12 Axisymmetric turbulence

An important class of homogeneous non-isotropic turbulent flows possesses the
property of axisymmetry, that is statistical invariance under rotations about
one particular axis @. This type of turbulence may correspond for instance to
rotating or stratified turbulence. The same kind of analysis as in the isotropic
case can be performed, namely projecting the spectral tensor in the local Craya
frame (defined with the same &), in which it still has the form Eq. (5.98): A
and B are real, but C' is no more a pure imaginary. The three quantities
depend now on k and cos 8, as can be easily checked by writing the invariance
of the coordinates of the tensor under any rotation about @ ( 6 is the angle
between & and k ). The spectral tensor is thus of the form

e— 71 Z2+lh/k
(Zg—ih/k e+ ) (5.113)

already proposed in Cambon [93], where the real functions e, Z1, Zo and h
depend only on k, cosf and t. The mean kinetic energy and helicity are, from
Egs. (5.100) and (5.101), equal to [edk and [ hdk. In the complex helical
waves frame, the coordinates of the tensor are

(e;/; i_/?) : (5.114)
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where Z = Z1 4+ iZ5, e and e~ being related to e and h in the same way
as ETT and E~~ are related to E and H through Egs. (5.107) and (5.108).

As remarked by Cambon [93], the statistical invariance with respect to a
plane containing @ implies that h is zero and Z is real (Zo = 0). This axisym-
metric turbulence “without helicity” exists if initial and boundary conditions
contain no helicity. Z; characterizes thus the degree of anisotropy of the flow.
In the latter case, the spectral tensor is diagonal in the local Craya frame,
and is characterized by the two scalar functions

Dy (k,cos0,t) = e — Z1;Py(k,cos0,t) = e+ 7y

as was noticed by several authors (Chandrasekhar [106], Batchelor [47],
Herring [275,277] and Capéran [96]). We recall that $; characterizes the “vor-
tex” spectrum, and @, the “wave” spectrum, in the terminology of Riley et
al. [600]. In that case the spectral tensor can be written in this local frame as

1 0 0 1 0 0
P10 1 0]+ (@1 — 452) 0o 0 0],
0 0O 0 0O
or equivalently
Usj(k,t) = P2 Pyj (k) + (D1 — $2)Qy5 (k) (5.115)

in the original frame. Qij(E) is the tensor which projects on i, the first unit

-

vector of the local frame (the vortex mode): it is the equivalent of P;(k)
for isotropic two-dimensional turbulence. Eq. (5.115) might be useful for the
study of rotating homogeneous stably-stratified turbulence.

Finally, let us write the scalar velocity correlation of axisymmetric turbu-
lence, which we need for instance when considering the stratified turbulence
problem on the basis of Boussinesq equations. The same reasoning as above
shows that, if 9(k, t) is the Fourier transform of the scalar 9(Z,t)

—

WO tyuy (k1)) = Fi(k,cos0,8)5(k + k), (5.116)

WOE  tyuw (k, 1)) = Fa(k,cos b, t)d(k + k). (5.117)

F1 is zero if the turbulence has the mirror symmetry just mentioned above.
In the particular case of two-dimensional isotropic turbulence, where k lies
in a plane perpendicular to &, uW(l;7 t) is evidently zero. A rotation of m about
@ transforms Fy(k,t) into —F3 (k,t), and Fj is then a pure imaginary. If this
turbulence possesses the mirror symmetry property (with respect to planes
containing @), the scalar-velocity correlation will thus become zero. This res-
ult shows why isotropic two-dimensional turbulence may differ from isotropic
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three-dimensional turbulence, and has not automatically zero scalar-velocity
or zero scalar-vorticity correlations. As remarked in Lesieur and Herring [418],
the one-point scalar-vorticity correlation in two-dimensional turbulence, if not
zero, is conserved by the nonlinear terms of the equations.

5.13 Rapid-distorsion theory

As an exercise, we show how this theory can be developed for a homogeneous
shear flow (see Townsend [689]). Let U be the mean velocity, of constant
shear OU;/0x;. The linearized momentum equation for the perturbed flow

(u;, p) writes
8ui 8ui an 8}7
+ Uy

, - 2u;. 11
ot + Uj 8(Ej ij 8:51» + vV (5 8)

Here, we work with a wave vector E(t) varying in Fourier space.5 We still
consider for a given function f(Z,t) a Fourier expansion of the type

—

f(Z 1) = /eiE(t)-ff[E(t)}dk . (5.119)

This does not pose problems as far as the motion of E(t) is incompressible. It
yields

d coadf o o dk zopy = a0
a{ (Z,t) = / eth(t)-7 d{ (k)dk + i / z o e* T f (kY dE,

where d f /dt is the derivative of f following the motion of k. We notice also
that there exists some Galilean frame in which we have U; = z,0U,/0x;.

Hence
au,- au,- o il;:‘(t)‘i’ dﬂ, . dlﬂ 8U] “ -
ot +U]axj _/e g T g T oz ) " dk,

and the “moving Fourier expansion” makes sense only if

dki __, 0U;

0 I (5.120)

This shows that the motion of & is non-divergent, since

0 [(dk _ _8Ul _0
Ok, \ Ot o ox; o

5 This is equivalent to considering a system of coordinates moving with the mean
flow.
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Thus, the equation of motion in Fourier space is

dﬁi 81/“ A 2 A
+ = —ikgp — vk 121
it o U ikip — vk, (5.121)

To eliminate the pressure, we take the divergence of Eq. (5.113), and obtain
the following Poisson equation

oU, 0u;  OU; Oy BUZ ou;
R V2 4 j _ i
vp Ox; Oz * oxy Oz 8363 dz;’

which gives in Fourier space

ki 6Ul
=2 U 122
k2 Ox; i (5.122)
and finally
di; oU; . kik, oU; . 24
= — 2 — 12
i@t o) i + 2 8%mu vk, (5.123)
which is Eq. (3.2.7) of Townsend [689].
When applied to a plane shear U; = Ay, Us = Us = 0, we have
dk‘l dk‘g dk3
= = — = .124
at ~ % AR g =0 (5.124)
dii . ki X
dtl T+ uk?a, = A (2 k; - 1) T, (5.125)
d'U/Q 2 A kle )
dt + vk“lg = 2 g2 U2 (5.126)
diiz 9. kiks .
&t + vk*lg = 2\ p2 U2 (5.127)

This shows that k; and ks are constant, while ko = k2(0) — At goes to infinity,
indicating some sort of cascade to small scales in the transverse direction.
The general solution is given in Townsend [689, p. 83] in terms of a modified
time 3 = At. He can then evaluate the spectral tensor Uy [k(t)], and the
time-evolution of the velocity fluctuation variances and Reynolds stresses.
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Isotropic Turbulence: Phenomenology and
Simulations

6.1 Introduction

Here, we will consider fully-developed isotropic turbulence both from a phe-
nomenological point of view, using basically dimensional arguments (for in-
stance to derive Kolmogorov’s theory or Richardson’s law) or DNS and LES.
We will be interested in small-scale transfers of kinetic energy, and diffusion
of passive scalars. Numerical simulations will allow us to study the coher-
ent vortices of isotropic turbulence. We will give finally some informations on
small-scale intermittency.

6.2 Triad interactions and detailed conservation

When considering homogeneous turbulence, whith zero mean velocity,! our
interest lies in correlations between different points of the space: indeed these
quantities give access to energy transfers between different scales of motion.
Even in this case the closure problem arises, and the closures we will try
to develop are sometimes referred to as two-point closures. They involve in
particular the velocity correlations between two wave vectors in Fourier space,
namely the spectral tensor.

The simplest of these spectral theories are obtained via phenomenological
or dimensional arguments which will be presented in this chapter. Some of
them are based on conservation properties of Navier—Stokes equations, and
on particular behaviour due to the triadic character of the energy exchanges.

Let us first consider the exact evolution equation of the energy spectrum in
terms of the triple-velocity moments: for homogeneous isotropic turbulence, it

! Provided one works in a frame moving with the mean velocity (assumed to be
constant).
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is possible to obtain from Navier—Stokes equations an exact equation relating
the longitudinal second-order velocity correlation to the third-order velocity
correlations which result from the “advection” term u;0u;/dz; (we recall that
the pressure-velocity correlation, as already mentioned, is then zero). The res-
ulting equation is known as the Karman-Howarth equation, and its derivation
can be found (for instance) in Hinze [285]. An equivalent equation for the trace
of the spectral tensor of homogeneous turbulence (with constant uniform dens-
ity) can be found by working in Fourier-space (see Rose and Sulem [617]): one
writes the time evolution equations of ﬁ,-(l%" ,t) and ﬁj(E, t), multiplies respect-
ively by @; (lg, t) and m(lg',t)7 adds the two equations, averages, and obtains
the time derivative of (ﬂi(E’,t)ﬁj (k,t)). When integrating on &’ and taking
the trace of the tensor, one finally obtains after some algebra

(5 +2) Tulft) = =P () [ ST Bty i@ty (1)

with . . .

Pijm(k) = kmpij (k) + k le(k) (62)
and where & stands for the i 1mag1nary part. In the integrand of Eq. (6.1), the
(uuu) term is proportional to a 8(k + '+ ¢) Dirac function, so that only the

triads k + 7+ ¢ = 0 are involved in the integration. It allows one to show a
theorem of

e Detailed conservation of kinetic energy:
Let Eq. (6.1) be written under a symmetrized form

=

<§t+2yk2> Ual.t) = [ s p0(E+ 7+ Ddpiy (63

with

s(k s(k, q, ). (6.4)

Sy
&
Il

From Eq. (6.1) one obtains:

—

s(k, 5, Q0(k+ 7+ )
—S{((k.a(@) (@(k).a(p)) + ((k.a()(@k).i(@)))- (6.5)
In fact, using the incompressibility condition k.a(k) = 0, we remark that
((k.a() a(p))) + ((k.a(p) (a(k).
pa(k)) (@(p)-a(q))) + <(ﬁ5(q'7)(5(ﬁ)-5(13))>
N(@(q)-u(p)))

(k).

~—

a1
N
=
=
_|_
—~
—
2y
=)
—
a1
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is zero for k + p+ ¢ = 0. So the function

G(k, 7, ) = [s(k, 7, ) + s(5, @, k) + s(q, k, )6 (k + 7+ q)

is zero for such triads. Forming

yields . . .
s(k, 0, q) + s(P, 4, k) + s(q. k,p) = (6.6)

for triads such that k + p+q=0.

The interpretation of this result is that, if only three modes (such that
k+p+q= 0) were interacting, nonlinear exchanges of kinetic energy between
these modes would conserve the energy. Also, one can derive a mean kinetic
energy conservation result: by integrating Eq. (6.3) on wave vector E, one
obtains

1 0 2 o T o 1 L = > = 1
)/ ( 9 ok ) Oal,)df = [ 1s(F.5.0)+ (7.0 F

+5(q, k, ))o(k + §+ §)dkdpdq = 0. (6.7)
If turbulence is isotropic, Eq. (6.7) is equivalent to

d [t

+oo
it E(k,t)dk + 2u/ E*E(k,t)dk = 0. (6.8)
0

This result shows that the mean kinetic energy is conserved by nonlinear terms
of Navier—Stokes equations, and dissipated by molecular viscosity at a rate
2v eroo k*E(k,t)dk. Eq. (6.8) may of course be shown much more easily in
physical space, as will be seen below. But the detailed conservation property
gives significant information about the way nonlinear interactions redistribute
the energy between the modes.

This theorem of detailed conservation can actually be generalized to any
quadratic quantity conserved by nonlinear terms of Navier—Stokes equations,
i.e. the mean kinetic energy, the helicity (in three dimensions), the enstrophy
(in two dimensions) and the passive-scalar variance: Let Ue(k, t) be the dens-
ity of this conserved quantity at the wave vector IZ, satisfying the evolution
equation

0 P o o
( aﬁzmﬂ) O.(F.1) = / solE B QS+ 5+ dpdd  (6.9)
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with . .

Sc(k’ﬁaq_j = sc(kvq_;m (610)
where k. arising in the Lh.s. of Eq. (6.9) is the molecular diffusivity of the
quantity, which will be either the molecular viscosity or the conductivity. A
result from Kraichnan [356] states that sc(laﬁ, q) satisfies a detailed conser-
vation relation analogous to Eq. (6.6). This will have profound consequences
for the dynamics of two-dimensional isotropic turbulence, since the enstrophy
transfer density at wave vector k is k25(lg, P, q), thus implying both the de-
tailed energy and enstrophy conservation:

k2s(k, 7, Q) + p°s(7, . k) + ¢*s(q, k, p) = 0. (6.11)

6.2.1 Quadratic invariants in physical space

Let us write directly in physical space the evolution equations for homogeneous
turbulence of the following quadratic quantities: kinetic energy, helicity and
passive scalar variance.

e Kinetic energy:

We start with an incompressible Navier—Stokes equation (with constant dens-
ity) under the form

ou
ot

Ou; dp

__ 2 12
. oz, + vVeu,, (6.12)

)
+7.Lj

that we multiply by w;, for fixed . It yields

10 0
2=y 8fi + vu; V2u,, (6.13)

or equivalently, because of incompressibility:

10 o, 10 9 Op

u; U;U; = —U; v V2.
201" T g g, T Ty, TV
After summation upon the i, one obtains
10 10 Opu;
g ? = =T vt

2ot" T 201" T ou
Making use of the homogeneity property and averaging, one has:

a1, R

dt 2<u ) = v(i. V).
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Because of Eq. (5.87), the mean kinetic energy evolution equation is:

dl, 5

iy = —2vD 14
() = —2D(2), (6.14)
which allows to recover Eq. (6.8) when turbulence is isotropic.
e Helicity:

We consider both Eq. (6.12) as well as the corresponding vorticity equation:

8(4)1‘ aw,- 61,61 2
; =wj ; 6.15
ot +u]8mj w]al’j +Vv Wi ( )
multiply them respectively by w;/2 and u;/2, add and average. It is found
that
dH, n 1 » 0 (wing) ) = 1 » Op n 1 wu'aui
dt 2 jal'j . - 2 18‘%1‘ 2 J 'ij

—(B.(V x @),

where we recall that H. = (1/2)(@.&). Making use of the incompressibility and
homogeneity conditions, nonlinear terms vanish. With the aid of Eqs. (5.88)
and (5.89), the mean helicity evolution equation is

dH, v, _, e
i = 2((w.V2u> + (@.V23)).

Remarking that the operators V2 and V x commute, the latter term is equal
to

(T.(V x V210)) = (@3.V21D),
which gives

dH. L o2
= . . 1
U v(©. V=) (6.16)

In a similar way as was done for Eq. (5.90), we can write
(@.V23) = — / dRdR R+ 2 0 (7 (R 1))

We introduce the helical spectral tensor ﬁij(E, t), Fourier transform of the
correlation (w; (%, t)u;(Z + 7,t)). It is such that

(@K, )ik, 1) = Hii(k, )5 ( + k')

with, for isotropic turbulence
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1 [~ = = Hoo
H, = Q/H,-i(k,t)dk:/ H(k, t)dk.
0
The helicity dissipation rate is then
A — — +OO
V(E.V2) = —v / K2 (F )R = v / K2H (k, ),
0

and the final helicity dissipation equation is
d [+t

+o00
H(k,t)dk + 2u/ k*H (k,t)dk = 0.

e Passive scalar:
We consider a passive scalar 9(Z, t) satisfying the equation

oV a0
ot +uj8xj = rkV=0.

Multiplying by ¥ and averaging yields, for homogeneous turbulence

1d

o g (0°) = BOVE) = —k((V9)?),

since for a given i and due to homogeneity

B v 99\ 2 %9
Ox; <198x,-> =0= <<8x1> >+ <198x12>'

Again we can write, using Eq. (5.91)
(IV29) = — / dkdk I FR2 (' DI, L)

E - Foo
— [pBemn —2/ K2Eo (k. t)dk,
27T]€2 0

that is
d [T

+o00
Eo(k, t)dk + 2% / k2Eo (k, t)dk = 0.

(6.17)

(6.18)

(6.19)

(6.20)

Therefore, the above three quantities are conserved by nonlinear terms of
the equations. We will call them quadratic invariants of turbulence, although
they are not invariant, since the viscous dissipation will be seen to be of prior

importance in three-dimensional turbulence.
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Figure 6.1. Domain in the (p,q) plane such that (k,p,q) should be the sides of a
triangle, and allowing triad interactions with the wave number k.

6.3 Transfer and flux

For isotropic turbulence, and after multiplication of Eq. (6.3) by 27k? (or 7k
in two-dimensional turbulence), one obtains

(gt + 2uk2> E(k,t) = T(k,t) (6.21)

where T'(k, t) corresponds to the triple-velocity correlations coming from non-
linear interactions of Navier—Stokes equations:

)= [ amkstpadi= [[ dpdasthpa (022
k+p+q=0 A

with
S(k,p,q) = Ar*kpgs(k,p, q) (6.23)

s(k,p,q) being introduced in Egs. (6.2)—(6.4). We precise that the double
integral in Eq. (6.22) is performed on a domain Ay, of the plane (p, ¢) such that
the positive numbers p = |p] and ¢ = |¢] should be the sides of a triangle of a
third side k = |E| This domain is shown in Figure 6.1. S(k,p, ¢) is symmetric
in p and ¢, and possesses the detailed conservation property (6.6). When
considering forced turbulence, one needs to add a forcing term F, (k) to the
r.h.s. of Eq. (6.21). This forcing term is a mathematical expedient which allows
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the supplying of the viscous loss of kinetic energy and convergence towards a
stationary energy spectrum E(k). It has generally no physical reality, since the
forces acting on real flows induce anisotropy and inhomogeneity in the large
scales. T'(k,t) will be called the kinetic-energy transfer. The kinetic-energy
flux through wave number k is defined as

+o00
II(k,t) :/ T(K' t)dk' (6.24)
k
which is equivalent to
OIl (k,t)
T =— . 2
(k) =—""0 (6.25)

The kinetic energy dissipation result (6.8) implies that
+o00
/ Tk, t)dk = 0. (6.26)
0

This result can also be deduced from Eq. (6.22), given that S(k,p, q) satisfies
the detailed conservation property and that the domain of the [k, p, q] space,
such that (k,p, ¢) are the sides of a triangle, is invariant by circular permuta-
tion of (k,p, q). Thus, Eq. (6.26) is also valid for forced turbulence. One also
has

Ik, t) = — /0 ' (K, t)dk . (6.27)

A transfer function T'(k,t) calculated in a direct-numerical simulation of iso-
tropic turbulence is shown in Figure 6.2: it is negative in the large energy-
containing eddies, and positive at high wave numbers, indicating a tendency
for the energy to cascade from large to small scales. At higher Reynolds num-
bers, we will see later on that the transfer function presents a plateau at zero
value, indicating a constant flux of kinetic energy.

Kraichnan [354] has shown, using the symmetry and detailed conservation
properties of S(k,p,q), that the energy flux through a wave number k could
be written as

I (k,t) =" (k,t) — [T (k,t) (6.28)

oo k k
met) = [ [ [ S0 pa)dpda (6.29)
k 0 0

k oo oo
T (k,t) = / K’ / / S, p, q)dpdy. (6.30)
0 k k

This formalism will be useful when considering the notion of enstrophy cas-
cade in two-dimensional turbulence (see Chapter 8), and the eddy-viscosity
concept in spectral space for three-dimensional isotropic turbulence with a
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Figure 6.2. Transfer function of three-dimensional isotropic turbulence, computed
in a direct numerical simulation (courtesy O. Métais, Institut de Mécanique de
Grenoble).

separation of scales (turbulence with a “spectral gap”, see e.g. Pouquet et
al. [586]). In this last case, —IT~ is the flux of kinetic energy from the “large”
scales (low wave numbers) to the “small” scales (large wave numbers), and
the corresponding energy transfer 0IT~ /Ok can be approximated (via the
stochastic models discussed in the next chapter) as —21,k*E(k), 4 depending
on the kinetic energy in the small scales. Since the molecular viscous energy
transfer is —2vk2E(k), 14 can be interpreted as an eddy-viscosity.

Then an exact result can be obtained directly on Navier—Stokes equations
without any approximation: let us assume that there exists a forcing F, (k)
concentrated on a narrow spectral band in the vicinity of a wave number k;,
which will thus be characteristic of the “large energy-containing eddies”. We
assume also that the turbulence is stationary, so that the energy spectrum
and the transfer are independent of ¢ (see Figure 6.3). Eq. (6.21) with the
forcing term writes

wk?E(k) = T(k) + F,(k). (6.31)
For k # k;, it yields
T(k) = 2vk*E(k) (6.32)
and for k fixed
lir% T(k) =0. (6.33)

Now let oo
€ :/ F,(k)dk (6.34)
0
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Figure 6.3. Schematic stationary kinetic energy spectrum forced, within Navier—
Stokes equation in the limit of zero viscosity, by a narrow forcing spectrum Fj (k)
concentrated at k;. The kinetic energy flux I7(k) is, for k > k;, equal to the injection
rate e.
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be the rate of injection of kinetic energy. Integrating Eq. (6.31) from 0 to oo,
and using Eq. (6.26), leads to

“+o0o
€= QV/ k*E(k)dk, (6.35)
0

and the injection of kinetic energy is balanced by molecular viscous dissipa-
tion, which is quite obvious intuitively. If in Eq. (6.35) one lets v go to zero (e
being imposed by the stationary injection), the enstrophy will go to infinity.
Finally integration of Eq. (6.31) from 0 to k # k; yields

lim 77 (k) = 0,k < ki (6.36)
lim TT(k) = €.k > ki (6.37)

(for a fixed k). The conclusion of this very simple discussion is that there
exists a spectral range extending beyond the injection wave number k; where,
at vanishing viscosity, the kinetic energy transfer is identically zero, the energy
flux is constant and equal to the injection rate. We anticipate that these results
are the major ingredients of Kolmogorov’s 1941 theory, which will be looked
at in the next section.

6.4 Kolmogorov’s 1941 theory

This is certainly the most famous theory of isotropic turbulence. What people
call Kolmogorov’s 1941 theory corresponds in fact to dimensional predictions
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concerning either the second-order velocity structure-function (defined below)
done by Kolmogorov [338], or the kinetic-energy spectrum (Oboukhov [542,
543]). There is another important paper by Kolmogorov [339] the same year,
where he predicts the so-called —4/5 law, which will be discussed later. We
stress also that Kolmogorov [340] was led to revise his 1941 point of view, in
order to account for intermittency (see below). For all the historical aspects
related to these laws, the reader is referred to the book of Frisch [229].

6.4.1 Kolmogorov 1941 in spectral space

We have just seen that for stationary isotropic turbulence forced at a rate €
in a narrow spectral range around k;, and in the limit of an infinite Reynolds
number (or equivalently zero viscosity), the energy flux IT(k) is independent
of k and equal to € for kK > k;, e being also the viscous dissipation rate.
This shows that € is an extremely important parameter which controls the
energy flux from the large scales where it is injected to the small scales where
it will be dissipated by viscosity: this scheme of progressive energy cascade
from large to smaller-size eddies has been immortalized by Richardson [595]
with his parody of Jonathan Swift’s fleas sonnet,® and this infinite hierarchy
of eddies/fleas sucking the energy/blood of the bigger ones on which they
ride, while they are being sucked by smaller eddies/fleas riding on them. So
Kolmogorov’s 1941 theory assumes that the energy spectrum at wave numbers
greater than k; depends only on € and k. A dimensional analysis, based on
the Vaschy-Buckingham m-theorem, yields

E(k) = Cge?/ 3>/ (6.38)
where C'c is a universal constant called Kolmogorov constant.
e Exercise: show Eq. (6.38).

One seeks for an expansion of the spectrum of the form

E(k) =G(e.k) =) e kP’
o,

and looks for exponents o and 3 such that e*%k? has the dimension of a kinetic
energy spectrum. If [L] and [T'] are dimensions of space and time respectively,
we have:

k=[L]7% B(k) = [LP[T) 7% e = [LIP[T]°

2 Big whirls have little whirls, which feed on their velocity, and little whirls have
lesser wharls, and so on to viscosity.

3 A flea hath smaller fleas that on him prey; and these have smaller yet to bite’em,
and so proceed ad infinitum, quoted from Frisch and Orszag [228].
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(LPo=P(T) = = (L))
There is only one possible couple («, ), such that

5

2
a_gaﬁ__g'

Text
When the turbulence is freely decaying, Eq. (6.38) can be generalized taking

d [+
«W=—y | Bk,

the dissipation rate of kinetic energy, given by Eq. (6.8) and formally identical
to Eq. (6.35). k; is now a function of ¢, and will later on be seen to decrease
with time.

The Richardson-Kolmogorov cascade scheme is certainly questionable
since it does not correspond physically to well identified instabilities arising
in the fluid. But, and for whatever may be the reason, the law equation (6.38)
is remarkably well verified experimentally in the small scales of a flow when
the Reynolds number is sufficiently high: this is, for instance the case in the
ocean (Grant et al. [264], Gargett et al. [240]), the atmosphere (Champagne
et al. [105]), or in wind tunnels (Dumas [181], Gagne [239]),* mixing lay-
ers (Browand and Ho [87]), or jets (Gibson [255], Giger et al. [256]). As an
example, the spectrum measured in the ocean in a tidal channel in British
Columbia (the “Knight Inlet”, see Gargett et al. [240]) displays a Kolmogorov
law extending to nearly three decades. This spectrum is presented in Fig-
ure 6.4. The value of the universal Kolmogorov constant Ck, found experi-
mentally, is of the order of 1.5. It is, however, not certain that the constant is
the same in stationary-forced or decaying situations.

In fact, there are former experimental checkings of Kolmogorov’s —5/3 law:
Betchov [60] found it upon two decades in a box where 80 jets interacted.’®
He quotes also Laufer in a channel and a pipe, and Corrsin in a jet [145]).

Many recent numerical simulations (DNS and LES) of jets or coaxial round
jets display interesting k~°/3 laws on about one decade (see Balarac [27,28]).
This, together with the fact that these flows are close to isotropy in the small
scales, makes them much better candidates than grid turbulence to reach high
Reynolds numbers at low cost.

Kolmogorov’s law is not, of course, valid for any scale of motion: under k;,
the spectrum will be influenced by forcing (if any) and by long-range (non-
local) interactions which will be studied in the following chapter.

4 These two experiments were carried out in the Modane ONERA facility, where
the Reynolds numbers are huge.
5 This facility was called the “porcupine” by his students.
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Figure 6.4. Longitudinal kinetic energy spectrum measured in the three-
dimensional turbulence generated in a tidal channel in the ocean (Knight inlet,
British Columbia): turbulence is decaying with time, and the spectra at various
stages of the evolution are normalized by the Kolmogorov dissipative scale (see be-
low). They display the self-similar behaviour proposed in Eq. (6.70). The spectra
exhibit a three-decade Kolmogorov k~°/% inertial range (from Gargett et al. [240],
courtesy J. Fluid Mech.)

6.4.2 Kolmogorov wave number

Above a sufficiently high wave number kg, called the Kolmogorov wave num-
ber, the viscous dissipation will damp the velocity perturbations. The order
of magnitude of this wave number can for instance be obtained by taking a
schematic energy spectrum equal to zero for k < k; and k > k4 and given by
Eq. (6.38) in between, and by calculating e with the aid of Eq. (6.35). One
finds

kg = (;3)1/4. (6.39)

For k > kg, the energy spectrum will rapidly (possibly exponentially) drop to
negligible values. This range is called the dissipation range. The inverse of kg
is the Kolmogorov dissipative scale 1.

6.4.3 Integral scale

The inverse of k; is of the order of the integral scale [. This scale is exactly
defined as



200 6 Isotropic Turbulence: Phenomenology and Simulations

+oo
- /0 F(r)dr. (6.40)

Here,
F(rt,t)

2

fr) =

is the longitudinal velocity correlation coefficient, where F'(r,¢,t) is defined in
Eq. (5.57), and corresponds to the correlation of u, the velocity component in
the 7 direction, of rms u’. The associated Reynolds number is defined as

u

R= . (6.41)

One finds experimentally (see Tennekes and Lumley [684]) that
e = Au/I, (6.42)

with A ~ 1.

Notice that, in the forced case where € is imposed by the forcing spectrum,
kq goes to infinity and the enstrophy diverges as ké/ 3 when the molecular
viscosity goes to zero. In the decaying case, and if one assumes that half the
kinetic energy is contained in wave numbers k > k;, one finds with the aid of
Eq. (6.38)

€= (GCK)ig/Q'USki.

Here v is the r.m.s. velocity such that v? = (@?). This is close to Eq. (6.42).
Whatever the exact value of the constant, there is ample evidence that, at
high Reynolds number, the rate of dissipation € is finite and independent
of viscosity. This is, as stressed by Orszag [553], one of the main properties
characterizing three-dimensional isotropic turbulence, namely a finite viscous
dissipation of energy when the viscosity goes to zero. As already seen above,
one of the physical mechanisms is the vortex-filaments stretching by turbu-
lence, which dramatically increases the enstrophy, thus compensating the low
molecular viscosity in the energy-dissipation rate.

6.4.4 Oboukhov’s theory

In 1941, the k~5/3 law was proposed by Oboukhov [542] with the aid of the
following theory: one introduces a constant flux of kinetic energy e propor-
tional to the “available cascading kinetic energy” in the vicinity of k, divided
by a characteristic local time of the cascade 7(k), assumed to depend only on
k and E(k), and thus equal to

(k) = [K3E(k)] 712 (6.43)
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It will be seen in Chapter 7 that 7(k) is a nonlinear time characteristic of the
relaxation of triple-velocity correlations towards a quasi equilibrium state. The
available kinetic energy in the vicinity of k£ can be obtained by integration of
E(k) on a logarithmic spectral vicinity of k, and is of the order of kE (k). This
again yields Kolmogorov’s law equation (6.38). We recall that this law is valid
in the so-called “inertial-range”, when molecular-viscous and external-forcing
effects can be neglected.

6.4.5 Kolmogorov 1941 in physical space

In his first 1941 paper, Kolmogorov [338] makes in fact predictions relating to
Sp, the longitudinal velocity structure functions of order p. Let

S, = [@(&,t) — @@ +71)]. (6.44)

be the velocity difference between two points a distance 7 apart, projected
upon 7, and
Sp(r,t) = ((6vr)?) (6.45)

be the longitudinal velocity structure function of order p. If one carries out
the same dimensional analysis as the one done in order to obtain Eq. (6.38),
and supposes that S, is a function of € and r, one finds

Sy (r,t) = Cp(er)P/?, (6.46)

where (), is a “universal” constant depending only on p. In fact this can be
recovered more physically (see Landau and Lifchitz [371] and also Rose and
Sulem [617]), by considering an eddy (the word “eddy” is not associated here
with a particular structure of the flow) with typical rotational velocity év, and
radius r. The inertial time (or “local turnover time”) of this eddy is r/dv,.
If one assumes that this eddy loses an appreciable part of its energy during
a turnover time, the energy dissipation rate € is proportional to dv2/(r/dv,).
We obtain

dv, = (er)/3, (6.47)

which yields Eq. (6.46) if one assumes that S, ~ (dv,)P. Let us associate to r a
wave number k = r~!. At this point, v, has to be considered in some average
sense. The kinetic energy of eddies in a spectral vicinity of &k is proportional
e.g. to fkk/w E(p)dp, and therefore (as already stressed) to kE(k), if E(k)
decreases following a power law of k. Thus dv? has to be associated to kE(k),
and Eq. (6.47) is equivalent to the k—5/3 Kolmogorov spectrum.

Now, let us consider another second-order velocity structure function,
defined in the following way:
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Fy(r,t) = ([a(&,t) — a(Z + 7, 1)]%). (6.48)

Within the same approximation, it should still be proportional to dv? ~
(er)?/3 in the inertial range (for Iy < r < I). This can be checked directly
in the following manner, as shown by Orszag [553]: an exact expression of F
in terms of E(k) is (Batchelor [47]):

Fy(r,t) =2 / Usi(k,t)(1 — 57 dk

+oo .
—4 / E(k, ) (1 _sin ’”) dk, (6.49)
0 /ﬂ"

and the replacement of E(k) in Eq. (6.49) by an infinite inertial range extend-
ing from 0 to oo yields

Fy(r,t) = 4.82Ck (er)?/3. (6.50)

However, such an inertial range will exist in physical space only if the extension
of the Kolmogorov range in spectral space is wide enough. Otherwise, side
effects coming from both the dissipative range and the energy-containing range
will contaminate the law equation (6.50).

Notice also that, within this presentation of the Kolmogorov law in physical
space, one may build with Jv, and r a local Reynolds number

R()="""", (6.51)

which is proportional to €'/37%/3 /v when using Eq. (6.47). Hence, for

L3\ /4
T<ld:(6> ; (6.52)

this local Reynolds number falls under 1, and viscous effects become prepon-
derant. This allows us to understand why motions are damped by viscosity in
the dissipation range, under the Kolmogorov dissipative scale.

We go back to Eq. (6.46) with p = 3, which yields S3 = Cse r. In fact,
it turns out that this is an exact result, with C3 = —4/5. This law was pro-
posed by Kolmogorov in his second 1941 paper for decaying turbulence. It can
be demonstrated rigorously in the case of high Reynolds number stationary
turbulence forced around k;, using Eq. (6.37) (see Frisch [229]).

6.5 Richardson law

Let us now consider an ensemble of pairs of Lagrangian tracers which separ-
ate in isotropic turbulence. One assumes they are released initially from the
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same distance rg, the vector 7y being isotropically distributed. Let 7(¢) be the

separation vector at time ¢. It is clear that (#(¢)) = 0. We define R(t) as the

r.m.s. separation of the tracers (R?(t) = (%(t))), and assume that it lies in

the inertial range (I4,1). Now, we introduce a dispersion coeflicient, given by

dR dF
2 o =
Rt =R~ =),

1d

o= (6.53)

Furthermore, one will assume that dR/dt, the mean dispersion velocity, is
given by Eq. (6.47) with » = R(t). It yields

o = Cre'/3RY3, (6.54)

where Cg is a constant. This yields also

dR

= Cre'/BRY3, (6.55)

Thus a k~%/3 isotropic energy spectrum is equivalent to a R*? turbulent
dispersion coefficient. The latter law will be called here Richardson law, and
Cr the Richardson’s constant.

If one considers for instance isotropic turbulence forced in the large scales
in order to get a stationary kinetic-energy spectrum, and if the pairs diffuse
in the Kolmogorov range, then € in Eq. (6.54) is time-independent, and one
finds

2 2 ° 3
R*=(,Cr) e, (6.56)

(see also Oboukhov [543]). This diffusion law is sometimes called “anomalous”
with respect to the “coherent diffusion”, where R? o t2, or the “incoherent
diffusion” in a random walk (Brownian motion), where R? oc .

Let us look in more details what Richardson [596] did exactly in his original
1926 paper. He considers marked particles of concentration he calls v(z,t)
which diffuse along one space direction x in the atmosphere. He defines at
a given time the p.d.f. Q(I,t) that particles are separated of I, and ¢(I,t)
as the mean correlation coefficient between the concentrations v(z,t) and
v(z + [,t), the average being taken in the direction z. He does propose that
the r.m.s. separation of particles o, is proportional to t*/? (his Eq. (732-9).
It is interesting to quote Richardson’s conclusion (numbering of equations
corresponds to the present book):

If the movement of concentration v is described by Fick’s equation,

+u, =K (6.57)
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where t is time, z is distance, @ is mean velocity, and K is diffusivity.
Then it is proved that ,
00 _yp01
ot ol2
If, however, the diffusion is “non-Fickian”, as in the atmosphere, then
the former of these equations cannot be generalised, but the latter
can, taking the form

(6.58)

¢ _ 9 8q] . (6.59)

ot ol [F Ops

A discussion of existing observations shows that a rough average value
is F(I) = 0.61*/3 cm.?sec.™! for the atmosphere, when [ lies between
one metre and 10 km.

The only problem with Richardson’s 1926 analysis is that the dispersion coef-
ficient he introduces in his Eq. (733-10) is

0.2

K=" (6.60)

Then he can easily derive K U:ln/ 3, assuming o,,, o ¢3/2. But this applies only
to Brownian motion. In 1948 he reintroduces the correct dispersion coefficient
(1/2)do2,/dt (Richardson and Stommel [597], Hunt [307]).

As stressed above, Richardson considered the spatial correlation of tracers
and the p.d.f. that two tracers are separated by a distance [. We will discuss in
Chapter 7 the relation between both quantities. All these 1*/3 laws for diffusion
and dispersion coefficients proposed by Richardson in 1926 are certainly a first
step before Kolmogorov’s 1941 prediction concerning the second-order velocity
structure function [338], as mentioned by Leith [401].

A very interesting presentation of Richardson’s scientific papers can be
found in the compilation carried out by Drazin et al. [598]. Yaglom [727], a
close collaborator of Kolmogorov, mentions that Kolmogorov was not aware
of Richardson’s law, and aknowledged the anteriority of the latter when he
could read Richardson’s work.

There have been several attempts to determine Cr. Fung et al. [234] pro-
pose a value of 0.1 for the constant arising in Eq. (6.56), which yields Cr =~ 0.7.
They use a kinematic simulation, where a Gaussian velocity field following
Kolmogrov law on several decades is prescribed by some sort of Monte-Carlo
method, and in which the pair-dispersion equation is solved numerically. The
same type of calculation with a longer inertial range was done by Elliott and
Majda [186]. On the other hand, stochastic models of the E.D.Q.N.M. type
considered in Chapter 7 give C'r ~ 2.14. It is feasible that the E.D.Q.N.M.
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prediction is too high, due to the fact that such a model ignores coherent vor-
tices, which prevent the particles to disperse when they are trapped within a
vortex.

Let us mention the reviews of Falkovich et al. [192] on dispersion in laminar
and turbulent flows, and of Hunt [305] on various aspects of diffusion of heat
and matter applied to industrial situations. Remark finally that, within the
classical phenomenology of three-dimensional isotropic turbulence, Richard-
son law equation (6.54) will be shown to govern the evolution of the velocity
and temperature integral scales in various situations (stationary or freely-
decaying turbulence, different velocity and scalar integral scales). In the de-
caying case, Eq. (6.56) is of course no more valid.

6.6 Characteristic scales of turbulence

We have already introduced the integral scale and the dissipative scale,
between which the inertial-range eddies see their kinetic energy organize along
the Kolmogorov energy cascade. As shown above, the dissipative scale can be
understood with the aid of Eq. (6.47). This is also the case for the integral
scale, if one assumes that the second-order structure function at a separation
of [ is proportional to v? = 3u’2. This leads to | ~ u/3/e, as already seen
above. The value of the dissipative scale [; measured in the atmosphere is
about 1073m, while it is 10~*m in a laboratory grid turbulence in the air.
The reason being that, in the latter case, the Reynolds numbers are moderate,
and the viscous dissipative rates of energy are stronger than their asymptotic
value at high Reynolds numbers.

6.6.1 Degrees of freedom of turbulence

Preceeding relations allow one to write

Ik 4
- d~(“> : (6.61)

ld ki v

which shows that the extension of the inertial range in Fourier space goes
to infinity with the three-fourth power of the large-scale turbulent Reynolds
number R; = «'l/v. This result is extremely important, for it gives an upper
bound for the number of degrees of freedom which are needed to describe the
motion (from dissipative scales under which the motion is quickly damped
by viscosity, to large-scale energy-containing eddies) in each direction of the
space. Indeed, let us work for instance within the discreet Fourier representa-
tion of a periodic flow in a box of size [. As stressed in Chapter 5, The velocity
field may be expanded as an infinite series
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@@t oc Y ap(k.t) e, (6.62)

ni,n2,n3

where the components k; of k are

ky = 27Tn17/€2 _ 27Tn2,k3 _ 27
l l l
ni,ns and ng being relative integers. It is clear that this expansion may be
truncated for |k;| > Akg, where A is a constant of the order of unity. This
gives an upper bound for n; of the order of k4l = kq/k;. Hence, one expects
that the total number of degrees of freedom of the flow is a-priori of the order
of k4/k; in each direction of space. This yields a maximum total number for
the degrees of freedom equal to (kq/k;)? in three-dimensional turbulence, and
(kq/ki)? in two-dimensional turbulence.® This number has been interpreted
by Constantin et al. [143] as an upper bound on the dimension of the Navier—
Stokes attractor. It follows from Eq. (6.61) that the total number of degrees
of freedom is of the order of R?/ * in three dimensions. Notice that in two-
dimensional turbulence, the phenomenology of the enstrophy cascade (see
Chapter 8) leads to a total number of degrees of freedom equal to R;.

n3, (6.63)

Dimension of the attractor

Several experimental or numerical attempts, still based on the concept of di-
mension of the attractor, have been carried out in order to determine whether
the actual number of degrees of freedom of the flow could not be smaller than
the upper bounds presented above. These attempts have not, up to now, im-
proved significantly these bounds (see Sreenivasan and Strykowski [666], Atten
et al. [20], Lafon [363]). The question is still open to know whether, in flows
where spatially organized large structures exist (such as atmospheric planetary
scale motions, mixing layers, wakes, jets, boundary layers, thermal convect-
ive turbulence, rotating flows, etc), the dynamics of these large scales may be
modelled, with a proper parameterization of the exchanges with smaller scales,
by a dynamical system involving a relatively low number of degrees of free-
dom, and possibly displaying a chaotic behaviour and strange-attractor solu-
tions. Such an approach has been proposed by Lumley [456] and, as already
mentioned, applied to the boundary layer by Aubry et al. [21], assuming lon-
gitudinal vortices at the wall. This could be a way of bridging the chaos and
statistical fully-developed points of view of turbulence, the latter being used
to understand and model the energy exchanges between the small-scale tur-
bulence and the large organized scales analysed by the former. But a serious

5 In two-dimensional turbulence, it will be shown in Chapter 9 that the equivalent
Kolmogorov wave number kg characterizes the enstrophy dissipation.
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obstacle to such an analysis lies in the fact that, in developed turbulence,
there is no spectral separation of scales between the coherent vortices and
the rest of turbulence. We do not think that a terminology such as “incoher-
ent” turbulence helps to describe the latter motions, because of the perpetual
reorganisation of small scales by large scales.

To end this discussion, the Kolmogorov viewpoint of energy cascade from
large to small scales has often been opposed to the experimental evidence that
large scales could pair and amalgamate, leading to the formation of larger
structures. In fact, as already mentioned in this book, there does not seem to
be any contradiction at all between both mechanisms, which certainly occur
simultaneously: the large scales of the flows may be quasi two-dimensional
(in the free-shear layers for instance) and obey the two-dimensional vorti-
city conservation constraint which implies strong inverse transfers of energy.
On the other hand, they will simultaneously degenerate quite explosively,
through successive instabilities due to the three-dimensional perturbations
they are submitted to, towards small-scale Kolmogorov fully-developed three-
dimensional turbulence which will dissipate the kinetic energy of the large
scales or of the mean flow.

6.6.2 Taylor microscale

A third characteristic length scale is often used in turbulence, mainly by ex-
perimentalists. It is the Taylor microscale, characteristic of the mean spatial
extension of the velocity gradients, and defined by (see Tennekes and Lum-
ley [684], for details)

u/2

((Ou1/0z1)2)”
where wu; is the velocity component in any direction x;. We know already that

e = v{((V x @)2). One can also show in isotropic turbulence that ((V x @)2) =
15((Ou1 /0z1)?), so that Eqgs. (6.64) and (6.42) yield

M\ = (6.64)

uv ~ 15v1

2 _
=15t U= (6.65)
We define Ry = v'A/v, and Eq. (6.65) gives
15 l
Ry=1/") VR ~ ) (6.66)

In a typical grid turbulence laboratory experiment, the integral scale [ is of the
order of 4 cm (the grid mesh), the Kolmogorov scale is 0.1 mm, and the Taylor
microscale is 2 mm. The above law is very well verified experimentally, even
at moderate Reynolds numbers. The proportionality constant in Eq. (6.66)
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is such that Ry =~ 4Rl1 /2 (which shows that the constant A is very close to
one), and an experimental value of R; equal to 300 corresponds to Ry ~ 70
(see Hinze [285]). Let us mention also from Eqs. (6.61) and (6.66) that the
total number of degrees of freedom of turbulence is ~ Ri/ ®. This is a lot if
one remarks as Jimenez [318] that Ry = 3000 in a plane wing and 10.000 in
the atmospheric boundary layer.

6.6.3 Self-similar spectra

The integral and dissipative scales allow one to propose self-similar expressions
for the energy spectrum equivalent to Karman—Howarth [326] solutions for the
spatial velocity correlations in the physical space, i.e.

E(k,t) = ELF(KL), (6.67)

where E and L are respectively a typical kinetic energy and a typical scale,
and F'(z) is a dimensionless function of the dimensionless argument z. If E and
L are chosen as v? (twice the kinetic energy) and [, one obtains a self-similar
solution

E(k,t) = v*(t)I(t)F[kl(t)] (6.68)

which can be shown to be valid in describing the energy-containing and inertial
ranges. In particular, the assumption that F' is a power law of kl and E(k,t)
is independent of v leads to the Kolmogorov law. If £ and L are chosen to
characterize the dissipation range, the self-similar solution is

1/2

E(k,t) = G(klg) = P15 G(kly), (6.69)

la
where G is another dimensionless function. Eq. (6.69) effectively predicts the
behaviour of the energy spectrum in the inertial and dissipative ranges. The
assumption that G is a power law of klg and E(k,t) does not depend on
v yields again the Kolmogorov law. As remarked in particular in Lesieur et
al. [431], experiments (see the review of Coantic and Lasserre [129]) show that
the Kolmogorov compensated spectrum

e BEBE(k,t) = (klg)* 3G (klg) (6.70)

has a “Mammoth” shape, and renormalizes well the data at high k. In the
mammoth, the back (flat) is the k~%/3 plateau, the neck is a pre-dissipative
“bump”, and the trump the dissipative range. It will be shown in Chapter 7
that the E.D.Q.N.M. approximation gives rise to the same shape.
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6.7 Skewness factor and enstrophy divergence

6.7.1 Skewness factor

Let X (w) be a random variable of zero mean. Its skewness factor is defined
as (X?)/(X?)3/2, The skewness factor of isotropic turbulence will be defined
in the present monograph as the skewness factor of —0uy/9z1, u1 being any
component of the velocity:

- 8U1 3 8U1 2 80 6.71
This factor would is zero if the random function @ is Gaussian. Experimental
values of s found in grid turbulence (Batchelor and Townsend [43]) are of the
order of 0.4, and direct numerical simulations at moderate Reynolds numbers
done by Orszag and Patterson [552] give a value of 0.5. This shows that
turbulence cannot certainly be considered as Gaussian. Actually the skewness
characterizes the rate at which the enstrophy increases by vortex stretching:

indeed, one obtains from Eq. (6.15), after multiplication by w;, averaging, and
making use of the incompressibility condition:

d

Ouy; - 2~
dtD(t) = <wiwj ij> + v{(&.V4d),

where the enstrophy D(t) is given by Egs. (5.86) and (5.90). It writes

m‘) —wP(t), (6.72)

1

Pt) =,

(V x &)%) = —;@.v?@ = /;oo K*E(k, t)dk. (6.73)

e Exercise: show Eq. (6.73)
We notice, due to Eq. (5.88), that
(V x &)%) =(@.V x (VX&) = —(3.V?3)
= —(@.VA(V x &) = (@.(V?)2a).
Then, in the same way as in Eq. (5.90), we have

" See footnote 3 in Chapter 8.
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I . B
P =, / dRdR e FHF) TR G (7 s (R 1)

1 PO oo
- / KA (F, £ = / KBk, £)dk,
0
which demonstrates the result.

Text
It has been shown by Batchelor and Townsend [42] that, for isotropic three-
dimensional turbulence, the skewness factor s is equal to

s(t) = <19385> v <wiwj g;‘] > / D(t)*/2. (6.74)

Therefore Eq. (6.72) is written

1/2
th(t) = (19385> s(t)D3? — 2vP(t). (6.75)

As noticed by Orszag [550], who wrote this equation, a positive skewness
factor is needed in order to increase the enstrophy by vortex-filaments stretch-
ing. We notice also that the first term of the r.h.s. of Eq. (6.75) is, from
Eq. (6.21), equal to 0+°O k2T (k,t)dk: therefore, the skewness factor is also
equal to (Orszag [550])

1/2 +00
s(t):<19385> D(t)=3/? /0 E2T (k,t)dk. (6.76)

Hence it will certainly be positive, since the k2 factor will enhance the high
wave number positive contribution of T'(k,t). We recall that T'(k,t) satisfies
Eq. (6.26) in the Navier—Stokes case, and has, at least at moderate Reynolds
numbers, the shape shown in Figure 6.2. At high times, and if turbulence is
unforced and decays self-similarly, it has been noticed by Orszag [553] that
the term dD/dt in Eq. (6.75) is now much smaller than the two terms of the
r.h.s., so that we have approximately:

vP(t)

s(t) = 2'35D(t)3/2

(6.77)

Then the use of Eq. (6.69) to calculate P(t) and D(t), which are dominated
by viscous-range contributions, yields the constancy of s(t) with time.

e Exercise: show this result.
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p2 oo y2 [t
P(t) = / KV (kla)dk = / MV (N)dA

la Jo lg Jo

p2 e y2 [t
D(t) = / KV (klg)dk = / A2V (\)dX

+00 4
AV (N)dA
s(t) ~ 0 & = cte,

(o727 A2V (A)dN)3/2
provided the integrals converge.

Text

This property of constant skewness seems to be characteristic of decaying
three-dimensional isotropic turbulence, as well as the finiteness of the kinetic
energy dissipation.

Now we are going to consider the question of the enstrophy and skewness
factor time evolution, for an unforced initial-value problem, where we assume
an initial energy spectrum sharply peaked at k;(0), with a finite enstrophy
D(0) (hereafter called type S initial conditions). The problem will be looked
at both in the case of Euler and Navier—Stokes equations.

6.7.2 Does enstrophy blow up at a finite time in a perfect fluid?

We will display in Chapter 7 stochastic models of the Euler equations predict-
ing the blow up of the enstrophy at a finite time. As will be seen below, this
is an extremely controversial question which we are going to examine here on
the basis of the phenomenology. If one accepts the idea that a Kolmogorov
spectrum extending to infinity® will eventually form, yielding an infinite en-
strophy, the questions which arise are: “will the enstrophy-divergence time be
finite or not”? Or, “will it take a finite time to build up a Kolmogorov spectrum
extending to infinity”? To answer these questions, several phenomenological
models will be considered. We will use the Euler counterpart of Eq. (6.75)

1/2
th(t) - (19385) s(t)D/2, (6.78)

Constant skewness model

Let us suppose a skewness factor s = sy constant with time. The enstrophy

will thus be equal to
D(0)

[1—(t/t)]?

8 Since kp — oo when v — 0 if € is finite.

D(t) = (6.79)
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with 1
te = D(0)~'/2. 6.80
© 042550 © (6.80)
Therefore the enstrophy blows up at the critical time t. (equal to 5.9D(0)~ /2
for so = 0.4).

But the skewness factor certainly does not fulfill this assumption: direct-
numerical simulations of Euler equations carried out with Gaussian® type S
initial conditions'® show that the skewness factor grows initially from zero
to finite positive values!! (Wray [723]). In fact, one can show the following
results, which are valid for Euler equations as long as the enstrophy remains
finite:

Positiveness of the skewness

e Theorem 1: for solutions'? of Euler equations which are limits of Navier—
Stokes solutions when v — 0, the skewness factor is positive.

The derivation proceeds as follows: due to Eq. (6.14), the kinetic energy
of the Euler solutions we consider will be conserved with time as long as the
enstrophy remains finite. Therefore, the transfer T'(k,t) will satisfy Eq. (6.26).
The same argument as used above in the case of a viscous fluid shows then
that f0+oo k*T (k,t)dk will be positive if the transfer has the form displayed in
Figure 6.2, which all the numerical simulations show: the transfer is negative
in the vivinity of k; and positive in the vicinity of kg. Hence the skewness
factor will be, from Eq. (6.76), positive and the enstrophy will grow, due to
Eq. (6.78).

For instance, if the initial velocity is Gaussian, the skewness factor will
grow from zero, and either keep on growing, or reach a maximum and decay.
Then, another theorem can be shown:

9 See details on Gaussian functions in Chapter 7.

10 These simulations are valid as soon as the characteristic maximum wave number
kE(t) of the kinetic-energy spectrum does not exceed the computation cutoff wave
number k.

These calculations, using pseudo-spectral methods, were carried out with the
same initial velocity field, and a maximum cutoff wave number k,, respectively
equal to 32, 64 and 128. The skewness factor evolution consisted in two stages: a
growth up to a maximum corresponding to the time when the ultra-violet kinetic-
energy cascade starts being affected by the cutoff k,,, then a decay afterwards,
due to the build up of Gaussian absolute-equilibrium ensemble solutions whith
a kinetic-energy spectrum proportional to k* (see Chapter 10). The calculation
seems to indicate that the maximum of the skewness grows with k.

We work in Fourier space, and these solutions will be characterized by their kinetic
energy spectrum.

11

12
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Enstrophy blow up theorems

e Theorem 2: if the skewness s(¢) has a strictly positive lower bound s, the
enstrophy will blow up at a finite time
1

. D(0)"1/2, 6.81
< 0.425s (0) (6.81)

t

The derivation of this result is staighforward: one considers Eq. (6.75), which
writes

d
dt
In the same way, the function Dy, (t), solution of

d 98\ .,
i Poo® = (135) 50D,

D(t)™Y? = —0.425s(t). (6.82)

with Dy, (0) = D(0) satisfies
d

dt

Since s > s¢, Egs. (6.82) and (6.83) yield
d

d
Dg —1/2> D —1/2
D)7 > 8 D),

Dy, (t)™Y% = —0.425s5. (6.83)

and the function D, (t)~/2 — D(t)~'/2, initially zero, is increasing with time
and will remain positive. Hence D(t) > Dy, (t). Since D, (t) blows up at .
given by Eq. (6.80), this demonstrates the theorem.

In the above example where the velocity is initially Gaussian, for instance,
a continuous growth of the skewness (which might possibly be extrapolated
from Wray’s [723] calculations) implies the enstrophy blow up. Even a sub-
sequent decay of the skewness from a maximum to a strictly positive value
leads also to the enstrophy divergence at a finite time.!3

e Theorem 3: if the skewness s(t) evolves like t~%5 | with cvg < 1, the enstrophy
will blow up at a finite time.
This result may easily be shown by solving Eq. (6.82) under the form

D
D(t) = (0) . . (6.84)
[1—0.425D(0)1/2 [ s(7)dr]?
It yields a blow up at a finite time. The latter is proportional to
[(1— as)D(0) /2] mes),

13 Indeed, just take as initial time the time where the skewness is maximum.
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Oboukhov’s enstrophy blow up model

To finish with these inviscid enstrophy blow up models, we recall a calculation
done by Brissaud et al. [83] showing an exact result of enstrophy blow up in
the case of a modified time-dependent Oboukhov theory proposed by Panchev
[559]: this model is written in the inviscid case

b k 1 oo
o | Ewi == [ B (6.55)

with 7(k) = [fok p?>E(p,t)dp]~'/2. The time 7(k), which will also be used in the
next chapter, characterizes the shearing action of the “large scales” < k upon
the “small scales” > k. The Lh.s. of Eq. (6.85) is the loss of kinetic energy of
the large scales, equal to the “available” cascading kinetic energy fkoo E(p)dp
divided by the time 7(k). Starting with an initially rapidly decreasing spec-
trum with a finite initial enstrophy D(0), and by differentiation of Eq. (6.85)
with respect to k, multiplication by k2 and integration over k, one obtains

oo k 2 oo
d[()jit) :/0 K E (k)7 (k)dk [/O sz(p)dp—k2 /k E(p)dp],

By successive majorations and minorations of the integrals, described in Bris-
saud et al. [83] , one obtains the following inequality

dD(t) 1
D(t)3/?
g = 4P

showing that the enstrophy blows up before the time 8D(0)~1/2.

Discussion

Up to now, and since the pioneering work of Leray [409] on Navier—Stokes
equations,' only regularity results for finite times of the order of D(0)~1/2
have been rigorously demonstrated for Navier—Stokes or Euler equations (see
for a review Temam [682] and Lions [450,451]). Direct numerical simulations
of Euler equations, starting with the Taylor—Green [681] vortex

u(Z) = cosxy sin xg sin s
v(Z) = —sinz cos g sin x3

w(i) =0 (6.86)

4 Where solutions are meant in a “weak sense”.
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have been performed, using both the original perturbation expansion of Taylor
and Green in powers of time (Orszag [553], Morf et al. [522]), and a truncated
spectral method (Brachet et al. [74]). But the results concerning the appear-
ance of a possible singularity at a finite time are difficult to interpret: indeed
conclusions of Morf et al. [522] are at variance with those of Brachet et al. [74],
depending upon the numerical method chosen. The more recent opinions ex-
pressed by the majority of the authors of these references are that there is
no singularity. This statement concerns nevertheless only the inviscid Taylor—
Green vortex. About this singularity-related issue, we also mention the works
of Kerr [327], Boratav and Pelz [71], and Pelz [569] .

Let us stress finally that the existence or not of a singularity at a finite time
within unforced Euler equations may depend also upon the existence and the
nature of a perturbation of small amplitude superposed on the initial velocity
field. Let us consider for instance at some initial time ¢7 a two-dimensional
temporal mixing layer, in an infinite domain, consisting in a row of rolling up
Kelvin—Helmholtz vortices. If no perturbation is brought, the further evolu-
tion of the flow will certainly not lead to any enstrophy blow up, since the
vorticity cannot in two dimensions exceed its initial value. On the contrary, a
three-dimensional perturbation responsible for the stretching of hairpin vor-
tex filaments between the Kelvin—Helmholtz billows, or vortex rings in a jet,
might lead during the pairing (in the Euler case) to a vorticity blow up in
certain regions of the flow. Finite-time singularity in free shear flows might
be associated to the experimental observations of “mixing transition” done
by Dimotakis [168,169], where one observes above a certain Reynolds number
an abrupt breakup of turbulent structures into tiny three-dimensional scales
close to isotropy..

6.7.3 The viscous case

Eq. (6.78) is valid for a viscous flow, when the viscosity is small enough,
during the early period of the evolution when the kinetic-energy spectrum
E(k,t) decreases faster than k~° for k — 00.'® Meanwhile the kinetic energy,
which is dissipated at the rate 2vD(t), is conserved with time in the limit
of zero viscosity as long as the inviscid enstrophy remains finite, that is, for
t < t. if one accepts the above ideas that the inviscid enstrophy blows up at
a finite time.

For t > t., the dissipative term in Eq. (6.75) cannot be neglected anymore.
One now uses the fact that the kinetic energy is, due to viscous dissipation,
going to decay as
;<62> ot (6.87)
5 This assumption allows the palinstrophy P(t) to remain finite, so that the viscous

term vP(t) in Eq. (6.75) goes to zero with v.
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N|—

Figure 6.5. Schematic evolution with time of kinetic energy and enstrophy in a
freely-decaying three-dimensional isotropic turbulence when viscosity goes to zero.

ap being an exponent of the order of 1 ~ 1.5, as will be seen in Chapter 7.
Therefore, the enstrophy €/2v will decay as

tfaEfl
D(t) x . (6.88)
as indicated in Figure 6.5. Due to the finiteness of € in the limit of zero
viscosity, the enstrophy will thus be infinite in this limit for ¢t > ¢.. Statistical
models of Navier—Stokes equations displaying the same catastrophic behaviour
will be introduced in Chapter 7. We recall finally that, up to now, there is no
rigorous proof that enstrophy blows up at a finite time within Euler equations,
or Navier—Stokes in the limit of zero viscosity.

6.8 Coherent vortices in 3D isotropic turbulence

The first DNS of 3D isotropic turbulence were done by Orszag and Patter-
son [552] by pseudo-spectral methods, at an equivalent resolution of 323 col-
location points. In the seventies, people working in 3D isotropic turbulence
were mainly interested by statistical quantities. Nobody in this community
thought seriously of the possibility for vorticity to concentrate in coherent
vortices, such as those encountered in free-shear flows. In 1981, Siggia [647]
was the first to point out the existence of thin tubes of high vorticity, whose
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Figure 6.6. DNS of forced isotropic 3D turbulence. Evidence for coherent vor-
tices displayed by vorticity-modulus isosurfaces; (a) Siggia [647], (b) Vincent and
Meneguzzi [704] (courtesy J. Fluid Mech. and Kluwer).

existence was confirmed by numerous authors at higher resolution (see e.g. She
et al. [643], Vincent and Ménéguzzi [704,705], and Jimenez and Wray [317]).
These tubes have a diameter of a few Kolmogorov dissipative scales, and a
length of the order of the integral scale.'® We present in Figure 6.6 vorticity
isosurfaces obtained respectively in the simulations of Siggia [647] and Vincent
and Meneguzzi [704]. Brachet [77] showed for turbulence with symmetries de-
veloping from a Taylor—Green vortex (see above) that these vortex tubes did
correspond to pressure lows, with pressure probability distribution functions
(referred to as p.d.f.) exponential in the lows and Gaussian in the highs. The
same was found independently by Métais (see Métais and Lesieur [496]) for
decaying isotropic turbulence. We present on Figure 6.7 a close-up visualiza-
tion of the low-pressure tubes in this DNS, using pseudo-spectral methods at
a resolution of 1282 collocation points.

All DNS found also that the velocity gradients and vorticity components
p.d.f.’s have wings of exponential type, that is, proportional to e~1*! instead of
the Gaussian distribution e=X~. Remark that this was known experimentally
for a long time as far as the velocity gradients are concerned, but explained
more by a small-scale intermittency behaviour than by the formation of co-
herent vortices. Figure 6.8 shows such p.d.f. for one vorticity component and

16 This of course does not mean that vortex filaments are not connected: Siggia’s
“bananas” (as he calls them) correspond to portions of closed vortex tubes where
the vorticity is stronger.
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Figure 6.7. Low-pressure tubes in DNS of decaying isotropic turbulence (courtesy
O. Métais, Institut de Mécanique de Grenoble).

1
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Figure 6.8. P.d.f. of one vorticity component in the DNS of Vincent and Meneguzzi
[704]. The dashed line indicates a Gaussian distribution (courtesy Kluwer).

Figure 6.9a for the pressure. The fact that low pressure correlate with high
vorticity seem to indicate that a non-Gaussian behaviour of the high vorti-
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Figure 6.9. Pressure p.d.f.’s obtained in the DNS of Métais (a) and the experiment
of Fauve et al. (b) [197]. In (a), the dots correspond to a Gaussian distribution, and
the dashed line to a kinematic pressure computed from a fictitious Gaussian velocity
(courtesy J. Fluid Mech. and J. Physique).

cities will imply the same in the low pressures,'” as indicated by Figure 6.9a.
Laboratory experiments concerning turbulence between two counter-rotating
disks (Fauve et al. [197], Cadot et al. [91]) confirm that low pressures are
associated with the passage of vortices, and the existence of skewed pressure
p.d.f’s (see Figure 6.9b).18 In Vincent and Ménéguzzi’s [706] calculations, it
seems that these coherent vortices result from the roll up of vortex sheets
formed during the initial stage of the evolution, after a scenario proposed
by Moffatt [512]. However, recent LES discussed in Lesieur et al. [431] have
looked at the generation of isotropic-turbulence vortices with animations of
pressure, vorticity and @ isosurfaces. In these simulations, big structures of
low pressure first form, followed by the condensation of vorticity into thin
tubes, without vortex-sheet formation.

17 However, one can check that a pressure field derived kinematically (with the aid
of a Poisson equation) from a fictitious Gaussian velocity field, shows the same
assymmetry, although less marked (Métais, private communication).

18 Analogous results for the pressure p.d.f. have been obtained in the mixing-layer
DNS of Comte et al. [138], and also in round-jet experiments (Gagne, private
communication).
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6.9 Pressure spectrum

6.9.1 Noise in turbulence

The pressure spectrum in turbulence is a very important quantity, since it
allows to characterize the noise generated at a given point in terms of acoustic
intensity. Indeed, Mankbadi [470] recalls thata relevant quantity for that is
the sound pressure level (SPL, expressed in decibels) given by

SPL = 201og;o v/ (pa'2) + 94. (6.89)

Here, pl, is the acoustic pressure. In the case of the sound emitted by a turbojet
engine, one can show that away from the jet, p/, ~ p’ (see Bogey and Bailly
[70]), and the pressure spectrum allows to determine the noise thanks to the

relation
1 Foo

W)= [ Bk (6.90)
2 0

Within the jet, however, the acoustic pressure is much smaller than the total
pressure. But the latter is a signature of coherent vortices which are important
for noise production.

6.9.2 Ultraviolet pressure

We recall here a law proposed by Oboukhov [544] and Batchelor [45] for the
the pressure spectrum in isotropic turbulence at high wave numbers:

E,p(k) = Cpe*/3k7/3, (6.91)

where C'p is a non-dimensional constant. This law can be obtained from Pois-
son’s equation satisfied by the pressure (divided by density)

2 ok
Vip = _83:,-8xj Ui, (6.92)
which writes in Fourier space as
30 = =" [ a0, @0 - 5-gds. (699)

One can form now the second-order moment

- = kkkl/k//
A P2 AU At T
GEBE) ="
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/ ()i (@i ()i ()3 — 5 — DO — F — §)dpdqap g,

which involves fourth-order velocity correlations. If we express the latter in
terms of second-order velocity correlations using the quasi normal approxim-
ation, where the fourth-order cumulants are discarded (see next chapter for
details), it is obtained

(@i (Pt (@)t (')t (7)) = (i (P)it; (@) ()it (7))

(a3 (P (') (11 ()t (4')) + (b (B) e (§)) (@ () e (7))

As recalled in Lesieur et al. [427], an integration over &’ may be carried out.
Making use of isotropy and “localizing” the integrals yields

Epp(k) ~ k[B(k)]? (6.94)
From which one gets Eq. (6.91) assuming a k~°/3 kinetic-energy spectrum.?
The constant Cp was calculated by Monin and Yaglom [515]. They found

Cp ~ 1.33C%. (6.95)

One might argue about the validity of the quasi normal approximation. How-
ever, Larchevéque [380] has shown that it is equivalent to the eddy-damped
quasi normal Markovian approximations as far as pressure is concerned. Such
a spectrum is difficult to measure experimentally, and presently, the DNS or
LES have not a resolution high enough to conclude about this law. Therefore,
the nature of the ultraviolet pressure spectrum is still an open question in
three-dimensional isotropic incompressible turbulence. More on the pressure
infrared behaviour will be said later in Chapter 7.

6.10 Phenomenology of passive scalar diffusion

We have already seen that under certain approximations, the temperature
T(Z,t) satisfies a passive-scalar type diffusion equation

T -

+a.VT = kV2T (6.96)
ot
and is simply transported by the fluid particle (and diffused by molecular
effects) without any action on the flow dynamics. More generally, one can
consider any passive quantity which diffuses according to Eq. (6.96), such

9 The same result can be found by dimensional arguments, assuming that the pres-
sure spectrum is a function of € and k only.
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as a dye which marks the flow. The Schmidt number of the passive scalar
is v/k, where k is the molecular diffusivity of the scalar. It corresponds to
the Prandtl number when the passive scalar is the temperature. Since we
will consider only one diffusing quantity here, we will associate it with the
temperature, and speak of the Prandtl number of the passive scalar.

When a passive scalar diffuses in homogeneous turbulence, one is interested
mainly in two problems: the first concerns the small-scale statistics of the
scalar, and will be studied by assuming that the scalar fluctuations are also
homogeneous. This is, for instance, the case of a grid turbulence, where a
slight statistically homogeneous heating in the fluid close to the grid will
produce a random temperature fluctuation field whose intensity will decay
downstream of the grid, due to the molecular-conductive effects that will tend
to homogenize the temperature within the fluid. The second problem concerns
the dispersion of a localized scalar cloud (or a heated spot) by turbulence: this
is an inhomogeneous problem as far as the temperature is concerned, which
requires to look both at the absolute diffusion of the cloud gravity centre, and
the particle pair relative dispersion: the latter question gives information on
the spreading rate of the cloud, and can be studied within a homogeneous
formalism. It will be looked at in Chapter 7. The present section will deal
essentially with three-dimensional isotropic turbulence. Here, we will mainly
recall the phenomenology of the passive scalar turbulent diffusion problem, as
described for instance by Tennekes and Lumley [684] and Leslie [432].

Assuming that the temperature T'(Z,t) is statistically homogeneous and
isotropic, of zero mean, we first introduce the conductive wave number, in
a similar way we have earlier introduced the Kolmogorov dissipative wave
number: let 7. = k.1 be the scale at which the molecular diffusive effects in
Eq. (6.96) are of the same order as the convective term @. VT, that is such
that the local Peclet number

Pu(ry) = ") (6.97)
K
should be about one. Then two cases have to be considered: if r; ! lies in the
k—5/3 Kolmogorov energy inertial range, we have from Eq. (6.47):

Svr, ~ (ere)'/? (6.98)
which yields
€\ 1/4 N 3/4
ko ~ (ﬁg) ~ (K) ka. (6.99)

But Eq. (6.99) is only valid when the Prandtl number v/ is smaller than one,
since this analysis has been done assuming that ;! lies in the kinetic energy
inertial-range, or equivalently that k. < kq.
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If the Prandtl number is greater than one, k. is greater than k4 and is in
the dissipative range (otherwise the preceding analysis should still hold, and
Eq. (6.99) would yield k. > kg4, in contradiction with the hypothesis): one can
imagine that a small blob of temperature of diameter r. is submitted to a
velocity shear of characteristic scale and velocity k;l and dvg corresponding
to a local Reynolds number equal to one and such that

(bva)k; ' = v. (6.100)

This scalar blob will therefore be elongated in the direction of the shear, and
develop smaller transverse scales satisfying P.(r.) = 1, P.(r.) being defined
according to Eq. (6.97), with Jv,, equal to dvg . It yields in this case

ke ~ kg, (6.101)
K

Thus Egs. (6.99) and (6.101) allow us to determine the conductive wave num-
ber, according to the respective value of the Prandtl number compared to
one. When the Prandtl number goes to infinity, the scalar transported by
turbulence is thus expected to develop infinitely small structures.

6.10.1 Inertial-convective range

We recall that the temperature spectrum satisfies
1 oo
2<T(:a t)?) = Er(k,t)dk. (6.102)
0
Let
+oo
ep = 25/ E*Er(k,t)dk (6.103)
0

be the scalar dissipative rate. When the scalar is decaying, it is equal to

__bd e
er ==, 5y (L@ D), (6.104)

as shown in Eq. (6.20). This allows one to define the temperature enstrophy
“+oo
Da(t) = H(¥T)?) = / K2 Eq(k, ¢)dk, (6.105)
0

characteristic of the mean temperature gradients fluctuations. Let k; and kI
be the wave numbers characteristic of the peaks of respectively the energy
and the temperature spectra: these wave numbers could be imposed by an
external stationary forcing of kinetic energy and temperature at rates ¢ and
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er, or correspond to freely-evolving situations, where we will see that k;(t)
and k] (t) decrease with time. We assume that

sup(ki, k] ) < inf(kq, ke). (6.106)

Oboukhov [545] and Corrsin [145] have independently proposed that for k
lying in the range defined by Eq. (6.106), the temperature spectrum should be
proportional to (er/e)E(k). Such an hypothesis is due to the linear character
of the diffusion equation Eq. (6.96). It leads to

Er(k) = Cooere Y3k™5/3, (6.107)

where Cco is a universal constant (Corrsin-Oboukhov’s constant). Measure-
ments in the atmospheric boundary layer indicate Coo =~ 0.64 (Champagne
et al. [105]). In fact, the easiest way to obtain Eq. (6.107) is to apply an
Oboukhov-type theory, that is

er ~ (6.108)

where 7(k) is a nonlinear characteristic time, defined by either Eq. (6.43)
or (6.85), proportional to € 1/3k=2/3 when k lies in the Kolmogorov inertial
range. The linear-cascade assumption actually assumes that the rate at which
the scalar cascade proceeds is governed by the local velocity gradients at k. An
alternative way of obtaining this result is to write that a typical temperature
fluctuation 67, at a scale r ~ k~1 is such that

oT?
~ L 6.109
T r/dvy, ( )
Remembering that v, ~ (er)/3, this yields
ST m ([T(T + 7,t) — T(Z, 1)) ~ epe /3723 = T (¢r)2/3 (6.110)

€

which is the equivalent Kolmogorov law for the second-order structure func-
tion of the temperature. Egs. (6.107) and (6.110) characterize the inertial-
convective range, where the velocity is inertial (no influence of viscosity) and
the scalar is convective (that is, simply transported by the velocity field).
A very impressive experimental confirmation of the inertial-convective range
was provided by Gagne [239]. Eq. (6.109) provides also a generalization of
Eq. (6.46) under the form

(0@ + 7t - 1@ ) ~ (T (e (6.111)

€
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Figure 6.10. Schematic inertial-convective and inertial-conductive ranges of the
temperature spectrum in the Kolmogorov inertial range of the kinetic energy spec-
trum (low Prandtl number).

6.10.2 Inertial-conductive range

We assume that the Prandtl number is smaller than one, so that the conduct-
ive wave number k. is smaller than k4 and given by Eq. (6.99). For k < k., the
temperature spectrum displays an inertial-convective range described above.
For k. < k < kq, we are still in the Kolmogorov energy cascade (that is, “iner-
tial”), but the molecular-conductive effects are predominant for the scalar (see
Figure 6.10). This allows us in Eq. (6.96) to neglect the time-derivative term
OT/0t. Tt has been proposed by Batchelor et al. [49], that the Quasi-Normal
theory (see next chapter) should be valid in this case. This makes it easy
to calculate the temperature spectrum. This calculation, already developed
by Leslie [432], is recalled here: let T'(k,t) be the Fourier transform of the
temperature. Eq. 6.96 is then written for two wave vectors k and k':

kT (E.0) = i [ (5007 (@ 03(F — 5 - g
—kk Tk 1) = i / (', )T, )k —§ - §)dp'dq,
and hence, after multiplication of both equations and ensemble averaging

~ =

RI2K TR T (E, 1)) = / (@ PP @) a5,

—

§(k—p— sk — ¢ — q)dpdgdp dq . (6.112)
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The Quasi-Normal approximation gives
(; (@) T(DT (@) = (a; () )(T(@T(G)) (6.113)

since the two other terms are of the type (a1')(aT") are zero: indeed we recall
that in three-dimensional isotropic turbulence, and if the isotropy assumptions
are done both on the velocity and the scalar, the scalar-velocity correlations
are zero. Using the homogeneity and isotropy relations seen above yields for
Eq. (6.112), after integration on p" and ¢’

K22 (T ()T (k) = / Ui (p) ]‘Zfrf;é) ajq

8(k — 5 — q)8(k' + p+ q)dpdq.

Further integrations on p and k' lead to

Er(
Kk2k1 2Tk2 /U (k—q (z)qqudq (6.114)

As will be shown soon, the temperature spectrum decreases very rapidly to
infinity, and the essential part of the integral arising in Eq. (6.114) comes
from the triads such that ¢ < k. Once this non-local approximation has been
made, Eq. (6.114) reduces to

Er(k) Ep(
214 5T _ T 2
k“k o2 47Tk2/ . q sin® Bd8q

where ¢%sin? 8 stands for qqule(E), and the angle 3 is the interior angle
opposite to the side p in the triangle (k,p,q). The integration on ¢ is then
carried out using the polar coordinates 3,q, and ¢, where ¢ is the angle
defining the rotation about the vector k . One obtains

2,2 E(k) oo, T s
k°k“Er(k) = 2 q°Er(q)dq | sin® 8dg, (6.115)
4rk? o o
and finally
2 +oe
Er(t) = 3 [ @ Erla)dah B (6.116)
0

or, using Eq. (6.103) .
Er(k) = Bem—%—‘*E(k). (6.117)

Then the assumption of a k~5/3 kinetic energy spectrum yields

Er(k) ~ epr3eX/3E=17/3) (6.118)
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which is the inertial-conductive range predicted by Batchelor et al. [49].
Both kinetic energy and temperature spectra are schematically shown in Fig-
ure 6.10: the inertial-convective range extending up to k. is then followed by
the k~17/3 inertial-conductive range extending from k. to kq. Experimentally,
such a range could be expected to exist for turbulence in liquid metals, but
the —17/3 slope is too steep to allow such a verification. A numerical simula-
tion of a passive scalar convected by a frozen velocity field (that is, with an
infinite correlation time) done by Chasnov et al. [111] confirms the —17/3 ex-
ponent. We also anticipate that in two-dimensional turbulence the preceding
calculation leading to Eq. (6.117) is still valid, except for the factor 27 of the
integration on the angle ¢ (see Lesieur et al. [414]).

6.10.3 Viscous-convective range

We will now consider the case of a fluid with a Prandtl number larger than
one. The conductive wave number k. is given by Eq. (6.101). For kg < k < k.,
we have seen that the scalar is strained by a uniform shear of vorticity dvgkq.
This vorticity can easily be shown to be of the order of (e/v)'/2, that is the
square root of the enstrophy. Therefore, we assume that there is a scalar
cascade of constant rate er (recalling that the scalar is “convective” and not
affected by molecular diffusive effects) such that

1/2
er ~ kEp(k) (Z) (6.119)
which yields
1/2
Er(k) = Cper (:) kL. (6.120)

This is the k~! viscous-convective range proposed by Batchelor [48]. The
constant Cp is called Batchelor’s constant. Actually this range cannot, as
stressed in this reference (see also Leslie [432]), extend up to k.: indeed, if ky.
is the maximum wave number for which the k~! range is valid, we must have

from Eq. (6.120)
Eye v\ 1/2
€r ~ 2/@'/ €r ( ) kdk,
0 €

()" o2

to be compared with Eq. (6.101). Thus, this wave number k. is smaller than
k.. It has been shown by Batchelor [48] that the temperature spectrum de-
creases exponentially for k,. < k < k.. Figure 6.11 shows the kinetic energy
and temperature spectra in the case of the viscous-convective range.

which gives
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Kl

Figure 6.11. Schematic inertial-convective and viscous-convective ranges of the
temperature spectrum at high Prandtl number. Remark two errors in the expres-
sion of the kinetic-energy spectrum and the temperature spectrum in the inertial-
convective range.

6.11 Internal intermittency

We have already emphasized the intermittent character of the small scales
of isotropic turbulence, as a result of the process of stretching of vortex fil-
aments. This leads in particular to the formation of the long thin coherent
vortices which have been shown above to exist. Thus, in a homogeneous three-
dimensional isotropic turbulent flow, the intensity of the velocity fluctuations
is not distributed in a uniform manner in space, and presents what is called
“internal intermittency”. This intermittency is of a different nature from the
“external intermittency” which characterizes the large coherent vortices of
a turbulent flow at the frontier with the outer irrotational flow, in turbu-
lent boundary layers or jets for instance. The existence of internal intermit-
tency is not in contradiction with the assumption of homogeneity, which is
an average property of the flow. So the “local” kinetic-energy dissipation rate
e = v(V x @)? displays important fluctuations about its mean value2 (). A
consequence is Kolmogorov’s 1941 [338] theory, which does not involve these
fluctuations of €, must certainly be corrected in order to take into account
this intermittent character. This has been noticed by Kolmogorov himself,
who proposed a theory in 1962, based on a lognormality assumption, which
corrected his original theory (Kolmogorov [340]). The same ideas were sim-
ultaneously expressed by Oboukhov [546], and developed by Yaglom [726].

20 Tn the rest of the book, the notation e is generally used for the quantity called
(€) in this section only.
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A different class of models was proposed by Novikov and Stewart [540], and
worked out by Frisch et al. [223]. Mandelbrot [468] proposed a very interesting
unifying synthesis of these various theories, based on a weighted or absolute
“curdling” principle (see also Mandelbrot [467]).

In this section, we will summarize the main results of both Kolmogorov—
Oboukhov—Yaglom and Novikov—Stewart theories. A useful reference for this
purpose is Gagne [239)].

6.11.1 Kolmogorov—Oboukhov—Yaglom theory

This theory is developed in detail in Monin and Yaglom’s [515] textbook of
turbulence. It assumes that the local kinetic-energy dissipation € possesses a
log-normal distribution (i.e. that the random function Ine is Gaussian): as
shown by Yaglom [726], such a result comes from a model called “self-similar
breakdown of turbulent eddies”. More specifically, this theory introduces an-
other local kinetic energy dissipation rate, €.(,t), which is the average of €
on a sphere of center # and radius r/2. Within the model, the variance o2 of
Ine, is of the form

!
0?2 =Q(Z,t) +xIn (6.122)
T

where [ is the integral scale of turbulence, Q(&, t) a function depending on the
large scales, and x a universal constant. Eq. (6.122) is only valid for r < [.
From these assumptions it can be shown that the order ¢ moments of € are
given by

(e2) = ()aeata=Ner/2 (6.123)

which yields, using Eq. (6.122)

I xq(g—1)/2
y

@) = it ( (6.124)
where Dgy(Z,t) is a coefficient which depends on the large scales of the flow.
In the particular case ¢ = 2, and using the statistical homogeneity condition,

one has (see Monin and Yaglom [515])

@+ ry = (o ) be@on - pe? (1) @129

which shows that the parameter x characterizes the spatial correlation of
€. At this point the classical Kolmogorov 1941 theory can be shown again
locally, assuming that the crucial parameter is €,.. This yields for the local
second-order velocity structure function the proportionality to 63/ 512/3 After
an ensemble averaging and use of Eq. (6.124) for ¢ = 2/3, we obtain
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x/9
Sa(r, ) ~ (€)2/372/3 (T) (6.126)
l
which, translated in Fourier space, yields
E(k) ~ ()2 3k5/3 (k1) ™x/°, (6.127)

The same analysis for a structure function of order n would give with the aid
of Eq. (6.124) with ¢ = n/3

(6.128)

I xn(n—3)/18
)

S, ~ <677‘L/3>rn/3 ~ <€>n/3rn/3 (

to be compared with Eq. (6.46), as recalled in Anselmet et al. [9]. Egs. (6.126),
(6.127) and (6.128) show the departure from the Kolmogorov 1941 theory due
to the intermittency in the framework of the lognormal theory. In particular
Eq. (6.128) shows that the structure function of order 6 is proportional to
r2(1/r)X.

6.11.2 Novikov—Stewart (1964) model

This model, or a dynamical equivalent one known as the 8-model (Frisch et
al. [223]), assumes that during the cascade process only a fraction § of the
volume occupied by the cascading eddies will be filled by turbulence: more
specifically, let us consider an “eddy” of size [, and volume lg which gives rise
to N eddies of size l,/2: the fraction § of the volume occupied by turbulence
is
N

8= 93" (6.129)
N can be defined with the aid of the concept of fractal dimension of Hausdorff
(see Mandelbrot [467,468]): the turbulent structures are assumed to be self-
similar, and to lie on a fractal set of dimension D such as N = 2P, and

g =203 (6.130)

The essence of the theory is to assume that the standard Kolmogorov phe-
nomenology is valid only in the active regions: at step p of the cascade cor-
responding to eddies of size I, of typical velocity dv;,, the kinetic energy
dissipation rate will be equal to 51}}1/ I, in the active regions and to zero in
the “non-turbulent” regions: thus the mean kinetic energy dissipation rate (e)
on the whole volume will be

(e) ~ BPSv}, /1, (6.131)

since the eddies I, occupy a fraction 5” of the initial volume. Hence the as-
sumption of a constant mean kinetic energy flux along the cascade yields
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vy, ~ ({e)l,)'/337P/3. (6.132)

The kinetic energy spectrum associated to the wave number k = lgl is Jvlzp k1
in the active regions and zero elsewhere. Therefore the energy spectrum of the
mean kinetic energy is

E(k) ~ BPov] k™ ~ P13 (e)2/3 k%3 (6.133)
which, with the aid of Eq. (6.130), can be written as
E(k) ~ (k1)=G=D)/3()2/3=5/3 (6.134)

since kI = 1/l, = 2P. Eq. (6.134) shows the departure from the 1941
Kolmogorov law within the Novikov—Stewart theory.

The structure functions of order n of the velocity can then be evaluated in
the same way, assuming the velocity differences to be zero in the non-active
regions:

(Su) ~ B°((e)yr)"/2 g/ (6.135)

with (I/r) = 2°. This yields
[\ X(n-3)/3
(601) ~ (&) 33 <r> (6.136)
as has been recalled by Anselmet et al. [9]. In Eq. (6.136) the coefficient y is
now defined as
x=3-D. (6.137)

Finally the kinetic energy dissipation product between two points separated
by 7 is equal to 6v8/r? if r < I, and zero if r > l,. The spatial e-correlation is
thus . N
36 l
(€@ D@+ 7,1)) ~ PO <e>2< ) . (6.138)

r

6.11.3 Experimental and numerical results

Egs. (6.125), (6.128), (6.136) and (6.138) show that the coefficients x intro-
duced in both lognormal and B-model theories characterize the behaviour of
the e-correlation or of (6v%)/r?, which decay as (I/r)X when r goes to zero
(and in the limit of zero viscosity). This allows experimental determinations
of x, by measuring either the e-correlation (or equivalently their Fourier spec-
trum) or the sixth-order velocity structure function. Values of the order of 0.5,
using the e-correlation method in a wind tunnel (Gagne [238]), the e-spectrum
method in a jet (Friehe et al. [219]), or the structure function method in the
atmosphere (Van Atta and Chen [697], were thus determined. A numerical
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simulation done by Brachet [73] tends to confirm this value. It seems how-
ever, as shown by Anselmet et al. [9] in a turbulent jet, that a more reliable
value of x (determined with the aid of the sixth-order structure function) is
of 0.20. The same work shows that, with this value of x, the velocity struc-
ture functions up to the order 12 follow the quadratic dependence in n of
the lognormal theory displayed in Eq. (6.128), and not the linear dependence
of Eq. (6.126). So the lognormal theory seems to be valid for n < 12. For
12 < n < 18 however, departures from the lognormal distribution have been
observed by Anselmet et al. [9]. These departures could possibly be explained
by what is called a multifractal approach (see Schertzer and Lovejoy [634],
Argoul et al. [14]?! and Frisch [229]). Recent theoretical results on turbulence
multifractal analysis can be found in Frisch et al. [231,232].

Another point to mention is that, at the level of the kinetic-energy spec-
trum, the intermittency corrections which steepen the k~%/3 Kolmogorov law
are (with this value of x) respectively in both theories of x/9 ~ 0.02 (from
Eq. (6.127) and x/3 ~ 0.06 (from Egs. (6.134) and (6.137)). This is too small
to allow an experimental verification at that level. This could suggest that
the closure theories envisaged in the next chapter, and which concern en-
ergy spectra, could give satisfactory results, even if they cannot deal with the
spatial intermittency envisaged here. Notice also that the experimentaly ob-
served high-k departure from the k—%/3 spectrum corresponds to the already
mentioned bump. This diminishes the spectral exponent modulus, contrary
to internal intermittency.

The same experimental study as that carried out for the velocity by An-
selmet et al. [9], was done by Antonia et al. [10] for a passive temperat-
ure. In these two studies (see also Gagne [239]), the p.d.f. of respectively
the velocity and temperature difference between two points a given distance
apart were found to have an exponential tail. This is obviously related to the
velocity-gradient p.d.f.’s mentioned above, and indicates exponential-tail tem-
perature gradients. But the departure from Gaussianity is much more marked
for the temperature than for the velocity. On the other hand, Métais and
Lesieur [493,496] have found in DNS of decaying isotropic turbulence that
not only the temperature derivatives, but also the temperature itself, dis-
play an exponential distribution. On the contrary, the velocity is very close to
Gaussian. Measurements in grid turbulence done by Jayesh and Warhaft [313]
confirm the exponential temperature p.d.f. in the case of a non-zero mean
temperature gradient, but find a close to Gaussian behaviour without mean
gradient.

Figure 6.12 shows the decay of respectively the kinetic-energy and tem-
perature spectra in LES (using pseudo-spectral methods and a spectral eddy

2! This work analyzes the turbulent signal coming from Gagne’s [239] data with the
aid of the wavelet analysis technique.
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Figure 6.12. Time-evolution of the kinetic-energy spectrum (a) and the temper-
ature spectrum (b) in a pseudo-spectral large-eddy simulation done by Lesieur and
Rogallo [421], starting initially with k® spectra at low k. The resolution is 128°
modes (courtesy Physics of Fluids).
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viscosity, see Chapter 12 for details), done by Lesieur and Rogallo [421]. These
simulations, on which more details will be given in the following chapter, start
with identical energy and temperature spectra sharply peaked in the large
scales. They show first the establishment of a o k? backscatter spectrum in
the very large scales, which will be explained next chapter. In the small scales,
both spectra cascade towards high wave numbers. The kinetic energy follows
approximately a Kolmogorov law.?2 On the other hand, the temperature ex-
hibits in the large scales a long range of slope shallower than k~!. Such an
anomalous®® law has been explained by Lesieur and Rogallo [421] with the
same type of arguments as those leading to the viscous-convective range (but
here the molecular Prandtl number is assumed to be ~ 1): one assumes that,
due to the lack of pressure gradient in the scalar equation, the scalar is going
to react very quickly in a quasi linear manner to the large-scale shears, before
nonlinear effects start acting. We write:

kE7r(k,t)
~ 6.139
€r T(]{J[) ) ( )
where 7(ky) is the large-eddy turnover time at kj, which can be evaluated as
the decay time scale (@?)/e. It yields

P P (1 B

T(k‘,t) =Crn . k™. (6.140)
Lesieur and Rogallo [421] do collapse their temperature data of Figure 6.12b
on the law equation (6.140 in the large scales (with C7 = 0.1), and on the
inertial-convective law?* Eq. (6.107) in the small scales.

This scalar k~! range has been also found in DNS done by Métais and
Lesieur [493,496]. A visualization of the temperature distribution in a cross
section of such a calculation is shown on Plate 19. It confirms the strong
intermittency of the scalar, with a few “hot spots”. The latter are in fact loc-
ated on braids between the coherent longitudinal vortices. The scalar ~ k~!
spectrum resembles the inertial-convective range of two-dimensional turbu-
lence (see Lesieur and Herring [418] and Chapter 8), instead of the classical
k—5/3 Corrsin— Oboukhov’s inertial-convective range of three-dimensional tur-
bulence. This reorganization of the scalar distribution around the vortices ex-
plains also why, when the scalar is injected at scales much smaller than the
energy, it cascades rapidly back to larger scales.

22 It is in fact closer to k2 with the spectral eddy viscosity used in this LES.

23 With respect to the k~°/ inertial-convective range.

24 With a Corrsin—-Oboukhov constant Cco comprised between 0.8 and 1, value
which has to be compared with the experimental value of 0.64 mentioned above
found by Champagne et al. [105].
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Remark however that the law equation (6.140) poses a problem of random
Galilean invariance. Indeed, since Navier—Stokes equations are invariant under
any arbitrary translation of constant velocity (Galilean invariance), homogen-
eous turbulence (without mean shear) should be unchanged if for instance a
random velocity Uy of constant modulus and arbitrary orientation is added
to each realization of the flow. This is the concept of random Galilean trans-
formation, where the kinetic energy of the flow increases of UZ/2. The same
is true for the passive scalar. Therefore Eq. (6.140) is inconsistent with this
concept, since such a law is changed with the kinetic energy. One should find
a modification of the large-scale diffusing time involved in Eq. (6.140) which
is compatible with random Galilean invariance. One could for instance try to
define a “slow turbulence”, associated to the large-scale quasi two-dimensional
motions, which would fix the parameters of the scalar quasi two-dimensional
cascade.

Let us stress that a k~! passive scalar spectrum has been found in coaxial
jets experimentally by Villermaux et al. [702,703] and numerically (DNS and
LES) by Balarac et al. [27,28].

Métais and Lesieur [496] show that the scalar becomes Gaussian again and
looses its k~! spectrum when coupled with the velocity (through Boussinesq
approximation) in stably-stratified turbulence.2> This behaviour could be as-
sociated with the regimes of respectively hard and soft turbulence found for
the temperature by Castaing et al. [102] in an experiment involving a heated
boundary layer: in this work, hard turbulence corresponds to an exponential
temperature p.d.f., while soft turbulence refers to a Gaussian temperature.

Finally, it has to be stressed that the evolution towards an intermittent
state is a natural tendency for a turbulent flow. When applied to the universe,
assumed to be fluid, this concept allows one to understand how the initially
quasi homogeneous universe of the “big bang” has lost its homogeneity, and
has now developed such an intermittent distribution of galaxies. We mention
in this respect the simulations of Frisch [230] based on a multi-dimensional
Burgers equation. More generally, intermittency seems to characterize any
dissipative nonlinear system.

25 More about these calculations (in the isotropic or stratified cases) will be given
throughout the following chapters.
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Analytical Theories and Stochastic Models

7.1 Introduction

Our objective in this chapter is to provide the reader with a good understand-
ing of the analytical statistical theories and stochastic models of turbulence
sometimes referred to as two-point closures since, as will be seen, they deal
with correlations in two different points of the space (or two different wave
numbers k and k' such that k+ &' = 0 in Fourier space). A whole book would
not be sufficient to contain all the details of the algebra which is involved,
and the reader will be referred to the quoted references for further details: of
particular interest for that purpose are Orszag [550,553], Leslie! [432], and
Rose and Sulem [617]. Here, we will mainly focus on the so-called E.D.Q.N.M.
approximation (Eddy-Damped Quasi-Normal Markovian approximation), and
will situate it among other theories of the same type. These theories can gener-
ally be presented from two different points of view, the stochastic-model point
of view, and the closure point of view. Some of these theories, as will be seen,
do not exactly correspond to these points of view, but they lead to spectral
equations of the same family, which can be solved with the same methods.
We will not use too much energy deriving the “best” analytical theory, for
it seems that they all have qualitatively the same defects and qualities, and
differ essentially in the values of the inertial-range exponents. We will concen-
trate principally on the E.D.Q.N.M., because in the case of isotropy it can be
solved numerically at a much cheaper cost than the direct simulations, and al-
lows one to reach extremely high Reynolds numbers.?2 We will discuss to what
extent the results can be relied upon for “real” turbulence (that is turbulence
governed by Navier—Stokes equation). The confidence we can have in these

! Leslie’s work reviews in detail Kraichnan’s Direct-Interaction Approzimation, see
below.
2 With several-decade Kolmogorov inertial-range spectra.
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theories is based on some of the results of the numerical large-eddy simula-
tions of turbulence which will be discussed in Chapter 12. We will show also in
the same chapter how these theories apply to passive-scalar diffusion. Results
on diffusion in two-dimensional turbulence will be given in Chapter 8, and
those on the predictability problem in Chapter 11. These closures will also,
through the concept of non-local interactions (the equivalent of long-range
interactions in physics), allow us to propose statistical parameterizations of
the “subgrid-scales” useful for the large eddy simulations, as will be seen in
Chapter 12. Our feeling about these closures is that, notwithstanding their in-
ability to deal with spatial intermittency or situations with strong departures
from Gaussianity, they are a unique tool for the study of strong nonlinearities
in small-scale developed turbulence, and allow to handle situations inaccess-
ible to the nonlinear stability analysis or to the so-called Renormalization
Group techniques (see Forster et. al. [210], Fournier [212], Yakhot and Or-
szag [728] and Dannevik et al. [156]). Some details on these techniques will
be given in this chapter). Coupled with large-eddy-simulations to represent
the large anisotropic and inhomogeneous scales, the two-point closures have
contributed to a decisive advance of our understanding of “real-world” turbu-
lence. Finally, they give a good description of the inverse cascading tendency
of two-dimensional turbulence, and provide valuable qualitative information
on diffusion and dispersion of transported species in isotropic turbulence.
The closure problem inherent to a statistical description of turbulence has
already been discussed in Chapter 6. Here we reformulate it for homogeneous
turbulence in Fourier space: the following formal analysis can be found in a
lot of works, for instance in Sulem et al. [673] (see also Lesicur [412]): let a(k)
represent the velocity field, and let the Navier—Stokes equation be written
formally as
da(k)
ot
which states for Eq. (5.18), 44 representing the nonlinear convolution term.
Since (@) = 0, the averaging of Eq. (7.1) yields the trivial identity 0 = 0. To
obtain an evolution equation for the spectral tensor Uij (E, t), one has to write

= ai — vk?a(k), (7.1)

the evolution equation for a(k’),

= @i — vk a(k") (7.2)
multiply it tensorially by ﬁ(lg), multiply Eq. (7.1) by Q(E’), add the resulting
equations, and average. We obtain

0

o T vk’ + k)| (@(k)a(k)) = (aad) (7.3)
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which, after a further integration on &’ and because of Eq. (5.74), gives the
desired equation for U”(l;) This procedure is similar to the one followed
to obtain Eq. (6.3). The formal term (@44), which is a linear combination
of third-order moments of the velocity components, involves integrations on
triads of wave numbers, and corresponds to the nonlinear transfer between
various scales of motion. The problem is evidently not closed, since the triple-
velocity correlations are unknown. Then the use of a third evolution equation
for a(k") analogous to Egs. (7.1) and (7.2) allows us to write

O vk 19 + )| (ERaal) = (i) (7.4)
One could go to higher orders, and still have one more unknown moment than
equations. The hierarchy of the moments is for instance written in André [6]
and Tatsumi [677], but this hierarchy is not closed, and the only way of solving
the problem using this method is to introduce an arbitrary further relation
between the velocity moments, called a closure hypothesis. We notice how-
ever that here there is no closure needed at the level of the pressure (which
has been eliminated) or of the viscous dissipation, contrary to what happens
in the “one-point closure modelling”. In this monograph, we will focus on
closures which assume that turbulence is close to Gaussianity, which is not
totally unphysical if we consider turbulence as the result of a superposition
of independent Brownian-like chaotic motions to which the central limit the-
orem could apply. But we have already seen examples of strong departures
from Gaussianity in turbulence, for instance when considering the p.d.f.’s in
Chapter 6. However, kinetic-energy spectra and energy transfers do not seem
to be much affected by these departures.
This chapter will be divided into two parts: the method and the results.

PART A: THE METHOD

7.2 Quasi-Normal approximation

The most known of the closure hypotheses is the famous Quasi-Normal ap-
proximation (Q.N.), proposed by Millionshtchikov [507] and independently
by Chou [125], as emphasized in Tatsumi [677]. The resulting spectral equa-
tions for isotropic turbulence were obtained independently by Proudman and
Reid [590] and Tatsumi [675].

7.2.1 Gaussian random functions

Before developing this analysis, it is useful to recall the main results concerning
the Gaussian random functions (see e.g. Blanc-Lapierre and Picinbono [66]):
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Let X be a four-dimensional variable (three dimensions of space and one
of time), and let g(X) be a random function of X (g might also be a vector)
of zero mean. We recall that g(X) is a Gaussian random function if, given N
arbitrary numbers a; and N values X; of X, the linear combination »  «;g(X1)
is a Gaussian random variable. The consequences of this definition are in
particular that

— for any X, ¢g(X) is a random Gaussian variable
— the odd moments of g are zero
— the even moments can be expressed in terms of the second-order moments.

In particular, fourth-order moments in four points X; ... Xy satisfy
(9(X1)g(X2)g(X3)g(X4)) = (9(X1)g(X2)){9(X5)g(X4))

+(9(X1)9(X3)){(9(X2)g(X4))
+(9(X1)g(X4))(9(X2)g(X3)). (7.5)

Given any (non-Gaussian) random function whose second-order moments are
known, it is then possible to calculate the fictitious moments of order n that
this function would have if it were a Gaussian function: the difference between
the actual n-th order moment of the function and the corresponding Gaussian
value is called the n-th order cumulant. In particular the odd cumulants are
equal to the moments. For a Gaussian function, all the cumulants are zero by
definition.

7.2.2 Formalism of the Q.N. approximation

As already seen in the previous chapter, and although the velocity probability
densities measured experimentally in turbulence are not far from a normal
distribution, the velocity derivatives p.d.f.’s display an assymmetry about
the mean value which is more and more marked as the order is increased
(Gagne [238]). The non-zero value of the velocity-derivative skewness factor
introduced in Chapter 6 is a manifestation of this fact. Also, as already seen
in Chapter 6, the velocity derivatives p.d.f.’s are closer to an exponential than
to a Gaussian. It is therefore irrealistic to approximate the velocity field of
turbulence by a Gaussian random function, since such a turbulence would
have no energy transfer between wave numbers (we recall from Eq. (7.3) that
the transfer is proportional to third-order moments in Fourier space). The
idea of the Quasi-Normal approximation (Q.N.) is to simply assume that
the fourth-order cumulants are zero, without any assumption on the third-
order moments. This allows one to close the problem at the level of Eq. (7.4),
by replacing the fourth-order moment by the Gaussian value obtained from
Eq. (7.5). It leads to
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aat + vk +p* + @) | (ak)a@)a(@) =Y _(aa)(adi) (7.6)

where the sum > corresponds to three terms coming from Eq. (7.5), and to
the various terms included in the (Gaa) transfer of the r.h.s. of Eq. (7.3).
Again the terms (4a)(ua) are a complicated integral involving various wave
numbers and components of the velocity. Then integration of Eq. (7.3) upon

—

k' yields with the aid of Eq. (7.6) and because of homogeneity

t
(8 +2uk2> Uij(la t) :/ dT/ e~k +p*+4*) (t—7)
ot 0 p+a=k

> (i) (ai)dip (7.7)

with 7 as time argument in the products (4a)(ad). The calculation of these
products involves a lengthy algebra which will not be given in this book, but
is at hand for any reader who wants to use these theories. The exact set of
Egs. (7.3) and (7.6) can be found for instance in Tatsumi [677].

The calculation is simpler for isotropic turbulence without helicity: taking
the trace of Uij(E, t) in Eq. (7.7) and replacing the spectral tensors by their
isotropic values Eq. (5.84) leads to

t
(8 +2uk2> E(l@t):/ dT// dp dq
ot 0 A,

e*”(k2+p2+q2)(t77)5(k,p, q,T) (7.8)
where S has been defined in Eq. (6.23). We have

kS
S(k,p,q,7) = pqa(km, qQ)E(p,7)E(q,T)

1k
- 9 pqE(ka T) [p2b(k7pa q)E(qv T) + qu(kv qap)E(pv T)] (79)
The integration in Eq. (7.8) is done on the domain Ay, in the (p, ¢) plane such
that (k, p, ¢) should be the sides of a triangle, already defined in Chapter 6. The
geometrical coefficients a(k, p,q) and b(k,p, q) are evaluated in Leslie [432].
They are equal to, using Leslie’s and Kraichnan’s [345] notations

1 . .
a(k,p, Q) = 4/€2 Pijm(k)Pibc(k)ij(umc(‘j)

1
= 2(1 — xyz — 2y°2%) (7.10)
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1 -
b(kvpa q) = QkQchm(k)P]bc(@Pmb((j)

= Z(a:y+z3) (7.11)
with summation on the repeated indices, Pjjm, (E) having been defined pre-
viously in Eq. (6.2). x,y, and z are the cosines of the interior angles of the
triangle (k, p, q) facing respectively the sides k, p, ¢. Actually a(k,p, q) can be

obtained by symmetrization of b(k, p, q)

b(k,p,q) + b(k,q,p)

) (7.12)

a(k,p,q) =

and Eqgs. (7.8)—(7.9) can be simplified using the above symmetry properties

to
t
(6 +2Vk2) E(k‘,t) :/ dT/ dpdqe—y(k2+p2+q2)(t—7')
ot 0 Ay

fqb(kyp, DIFE®p, ) — Bk, 7)|E(q,7). (7.13)

7.2.3 Solution of the Q.N. approximation

It was only in the early sixties that the development of computers allowed a
numerical resolution of the isotropic Q.N. equation (7.8). This was done by
Ogura [548] who showed that this approximation eventually led to the ap-
pearance of negative energy spectra in the energy-containing eddies range,
and checked that this phenomenon was not a numerical artefact. Such a be-
haviour is of course unacceptable, since the energy spectrum, proportional to
<\ﬁ(E)|2>, is a positive quantity by nature. It shows that the Q.N. approxima-
tion is incompatible with the dynamics of Navier—Stokes. The same result was
independently obtained by O’Brien and Francis [547] who used the Q.N. ap-
proximation to study the evolution of a passive scalar in isotropic turbulence:
it was thus the passive scalar spectrum which developed negative values. The
reason for this anomalous behaviour of the Q.N. theory was identified by Or-
szag [551,553] who showed that the r.h.s. of Eq. (7.6) was responsible for the
build-up of too high third-order moments. These moments saturate in real-
ity, as is shown for instance experimentally by the not excessive values of the
skewness factor. Then the role of the fourth-order cumulants (discarded in
the Q.N. theory) is to provide a damping action leading to a saturation of the
third-order moments. This is the motivation of the E.D.Q.N. and E.D.Q.N.M.
theories:
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7.3 Eddy-Damped Quasi-Normal type theories

7.3.1 Eddy damping

Orszag [551,553] proposed then to approximate the fourth-order cumulants
neglected in Eq. (7.6) by a linear damping term, and to replace Eq. (7.6) by

0

o+ VR 5 )+ | (G0

= (i) (i) (7.14)

where pi5pq, which has the dimension of the inverse of a time, is a character-
istic “eddy-damping rate” of the third-order moments associated to the triad
(k,p,q). This parameter is arbitrary in the theory, and its choice is essen-
tial, at least if one wants to use the theory for quantitative predictions. For
isotropic turbulence, the following expression

Hkpg = Kk + Hp + 1 (7.15)

where
pi ~ [K*E (k)2 (7.16)

is the inverse of the local nonlinear time defined in Eq. (6.43), has been pro-
posed by Orszag [550]. The value of the numerical constant in front of the
r.h.s. of Eq. (7.16) can be shown to be proportional to C’f(/z, where C'i is the
Kolmogorov constant (we anticipate here that these Eddy-Damped theories
will lead to a Kolmogorov k~%/3 inertial-range spectrum for isotropic three-
dimensional turbulence). Actually the choice Eq. (7.16) is less satisfactory for
a rapidly decreasing spectrum at high & (in the initial stage of evolution of
decaying turbulence for instance), where py, given by Eq. (7.16), becomes a
decreasing function of k: this is fairly irrealistic, since py is a kind of charac-
teristic time-frequency of turbulence, and one might expect an increase of the
frequencies with k. It was thus proposed by Frisch [221] (see also Pouquet et
al. [584]) to modify py as:

1/2

k
e = a1 l/o p*E(p, t)dp] , (7.17)

which is growing with k in any situation, and represents the average deforma-
tion rate of eddies of size ~ k~! by larger eddies.? The choice of the numerical

3 We have already encountered this frequency in the previous chapter, for the time-
dependent Oboukhov theory.
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constant a; will be specified later on. As a matter of fact, both expressions
collapse in the inertial-range with a proper choice of the numerical constants
involved in the r.h.s. of Egs. (7.16) and (7.17).

The choice of py is more difficult in non-isotropic situations, for instance
for problems where waves (Rossby waves, inertial or gravity waves) interact
with turbulence (see Legras [396], Cambon et al. [94]), and this is still an open
question.

This approximation is known as the Eddy-Damped Quasi-Normal approx-
imation (E.D.Q.N.). It has to be stressed that the eddy-damping procedure
concerns the third-order moments, and that there is no eddy damping of the
energy in the theory, where the kinetic energy is still conserved by nonlin-
ear interactions. The resulting evolution equation for the spectral tensor is
formally identical to Eq. (7.7), provided the viscous damping term arising in
the exponential term of the r.h.s. be modified to take into account the eddy
damping. One obtains

t
(a +2Vk2> Uij(/g, t) :/ dT/ e—[Mkpq+u(k2+p2+q2)](t—7')
ot R
> (i) (i) (r)dp. (7.18)

7.3.2 Markovianization

This E.D.Q.N. approximation, though physically more acceptable, does not
nevertheless guarantee the realizability (positiveness of the energy spectrum)
in all the situations. As shown by Orszag [553], this can be ensured with
a minor modification, called the Markovianization: this consists in assuming
that the exponential term in the integrand of Eq. (7.18) varies with a char-
acteristic time [pgpq + V(K% + p* + ¢?)]7! much smaller than the character-
istic evolution time of Y (aa)(4a); the latter is of the order of the large-eddy
turnover time of the turbulence. This assumption is valid in the inertial and
dissipative range, but questionable in the energy-containing range where both
times are of the same order. Nevertheless the Markovianization allows a con-
siderable simplification of the resulting spectral equations, while ensuring the
realizability. Eq. (7.18) is therefore changed into

( gt +2uk2) Usj (k) = /,, +Hakpqz<aa><aa>(t)dﬁ (7.19)

with ;
Okpg = / e~ lkpatv (R 4"+ (0=7) g
0
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A last assumption consists in neglecting the time variation of pyy, in the above
determination of §. This yields for y,, an expression proposed by Leith [399]

1 — e lrpa+v(E*+p°+4°)]t

. 7.20
Hkpg + V(kQ +p2 + qZ) ( )

akpq =

One can also notice that when t goes to infinity, 6kpq is equivalent to 1/[prpq+
v(k* +p* + ¢*)].

This approximation is the Eddy-Damped Quasi-Normal Markovian ap-
proximation (E.D.Q.N.M). The time 6y,, is characteristic of the relaxation
(towards a quasi-equilibrium) by nonlinear transfers and molecular viscosity
of (a(k)a(7)i(7)). The final E.D.Q.N.M. equation for the spectral tensor is
for homogeneous turbulence without mean velocity (Lesieur [412])

(9 +2uk2> Oun (1) = / g (£) Pijm (F)
ot pa=k

[Prab ()T (5, ) Uma (@, t) = 2Prnat(9)Uja (@, 1)U (F, 1)]. (7.21)
Let us write for instance the spectral E.D.Q.N.M. equation in the case of
three-dimensional isotropic turbulence without helicity: taking the trace of
Eq. (7.21), using Egs. (5.84), (7.10) and (7.11), and noticing that

Pijom (K) Pyi (K) = Pyjm (K),

one obtains

0 2 _
(8t + 2wk >E(k7t) =

/ e ]fqbuc,p, OB O EQ.t) — pPE(k).  (71.22)

This is, as expected, the equation obtained from Eq. (7.13) after the eddy-
damping and Markovianization procedures. The realizability of Eq. (7.22) can
be easily obtained by noticing that the coefficient a(k,p,q) is positive (see
Orszag [553]).

7.4 Stochastic models

This is another point of view, due to Kraichnan [346] (see also Herring and
Kraichnan [273]), which consists in replacing the Navier—Stokes equation (for
which we cannot solve exactly the closure problem), by a set of modified equa-
tions having the same basic structural properties as Navier-Stokes (quadratic
nonlinearity, nonlinear quadratic invariants, existence of truncated inviscid
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equipartition solutions?), and for which the closure problem can be solved.
Thus, instead of considering Navier—Stokes equation, one replaces it by a set
of N equations coupling N fictitious random velocity fields 4% (E, t), in the
following way®

(6825 + Vk2> ad(k,t) = —];kaij(k)/ _q@aggaf(ﬁ tyay (¢,t)dp  (7.23)
P+a=k

where the @,3, are N3 Gaussian random functions of time, symmetric with
respect to the permutations of «, 3, o, of zero mean, having the same statistical
properties, and which may also depend on the wave numbers triad E, D, q- It
may be shown (Frisch et al. [220]) that in the limit N — oo, the various 4“
become independent and Gaussian, and that their energy spectrum satisfies
a closed integro-differential equation which depends on the choice of @,3,: if
D30 (t) is a white-noise Gaussian function of temporal correlation given by

(Papo () Paps(t) = 20kpg ()0(t — 1), (7.24)

one recovers the same spectral equation as Eq. (7.21). Thus, though the “clos-
ure” and the “stochastic model” philosophies are different, they finally corres-
pond to the same spectral evolution equations: the first method insists more
on the physics of the departures from Gaussianity, while the second permits
to keep the model along the same structural parapets as the Navier—Stokes
equation. Both philosophies are complementary, and allow an understand-
ing of which kind of performances can be expected (and which cannot) from
the theory. It is evident for instance that small-scale intermittency will cer-
tainly be badly treated by the spatial stirring due to the random phases @3,
and that the small-scale departures from the Kolmogorov law which can be
predicted with the aid of intermittency theories (see Chapter 6) escape to
the E.D.Q.N.M. On the other hand, this theory is able to make non-trivial
predictions when applied to the important mathematical questions (on the
existence of singularities for instance) or physical problems (helicity cascades,
turbulent diffusion, backscatter, unpredictability, two-dimensional turbulence
for instance) envisaged below.

When 0y, is taken equal to a constant 6y, the particular E.D.Q.N.M. equa-
tion obtained is called the Markovian Random Coupling Model (M.R.C.M.,
proposed by Frisch et al. [221] for it corresponds to a Markovian version of an
earlier model due to Kraichnan [346], the Random Coupling Model (R.C.M.),

4 See Chapter 10.

5 An alternative stochastic-model philosophy, based on a stochastic Langevin equa-
tion for the velocity, has also been introduced (see Leith [399] and Herring and
Kraichnan [273]). It yields the same final spectral equations than the theories
presented here.
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obtained by taking ®,s, constant (that is independent of time and wave num-
ber, but random) in the stochastic model Eq. (7.23). The R.C.M. gives the
same resulting equations as the Direct-Interaction Approximation (D.I.A., see
Kraichnan [345]), introduced earlier by Kraichnan through formal diagram-
matic expansions of the velocity field.® It is not a Markovian theory, and its
spectral equations have a “time-memory”, contrary to the E.D.Q.N.M. which
has forgotten the past and is unable to give information on two-times velocity
covariances. The R.C.M. (resp D.I.A.) introduces a Green’s function form-
alism, in the following way: assume that Navier—Stokes equation possesses a
forcing term f(E), and writes:

<§t + Vk2> a(k,t) = 1(a,a) + f(k, 1), (7.25)

where [ is a bilinear operator of 4. The Green’s function operator g represents

the linearized response d@ of 4 to a perturbation § f of the force f, and is
solution of the linearized equation:

(gt + uk2> g=1g,a)+1(a,g)+1, (7.26)

where [ is the identity operator, with

t
Sitg (1) = / gy (Bt 45 F, (R )t (7.27)

We will assume furthermore that the stirring force is a white noise in time.
Hence, for homogeneous turbulence, the correlation of the forcing writes:

(fi(B 6) f (k)Y = Fij(k, 0)8(k + K)o(t — t). (7.28)

Therefore the D.I.A. spectral equations involve two tensors, the two-time
spectral tensor and the average Green’s function. They write (see Lesieur
et al. [410], Leslie [432]):”

0 2 2 7 n o
(8t + vk >Um(k7t,t)—

1

s |8 [ P (B P B) ) ot D)0 58,710 (3.2, 7)
p+q=k
5 Leslie [432, p. 51] summarizes the various steps of the D.I.A.
" In these two references, the two-time velocity spectral tensor is defined in such a
way that it corresponds to the complex conjugate ﬁig(g,t,t’) = Ui (—k,t,t') of
the spectral tensor Uy;(k, t,t') used here.
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- / dj / A7 P (F) Pt (5) (91 (5, 1, 7) 0o (@ £, 7) O (R ,7)
Fra=k

—

Hgn) (k. ¢ ) Fu (k. ). (7.29)

(8815 * sz) (gin) (E,t, 1) =

[ a5 [ Py ) o g 1.7 ) o))
P+q=k

Uai(§,,7) + Pin(F)8(t — t). (7.30)

Now, the following operations are performed: (a) “Markovianize” the above
D.I.A. equations in the sense that the average Green’s function (g;y (k,t, ) is

-

replaced by 0Py, (k)o(t — 7); (b) remark that

0 - 0

. = Ak ! (—Fk Ner—t.
BtUm(k’ t,t) ot Win(k, t,t") + Uni(—=k, t,t")]r—¢

One recovers the M.R.C.M. spectral evolution equation Eq. (7.21) (with
Okpq = o), with a forcing term Pnl(/g)Fil(l;7 t).

As we will see below, the D.I.A. does not yield a Kolmogorov k~%/3 in-
ertial range, but a k~3/2 range instead. One of the reasons for that is the
non-invariance of the theory under random Galilean transformations. Kraich-
nan [347] proposed a heuristic Lagrangian modification of D.I.A., which re-
stores Galilean invariance, known as Lagrangian History Direct Interaction
Approximation (L.H.D.I.A.). These theories are not widely utilized presently,
and it is not certain that they improve other theories like the E.D.Q.N.M.
for instance. More details on that can be found in Leslie [432]. A last model
we will briefly present is Kraichnan’s Test-Field Model (T.F.M.), see Kraich-
nan [353]. It is a Markovian model of the E.D.Q.N.M. type, that is satisfying
Eq. (7.22), but with a relaxation time 6j,, determined in a more sophistic-
ated way than the simple relation Eq. (7.20): the T.F.M. evaluates 0xp, by
studying the triple correlations of an auxiliary velocity field, the “test-field”,
transported by the turbulence itself. Such an analysis poses difficulties due to
the loss of incompressibility of the test-field, which has to be separated into
a solenoidal and compressible component. After various “ad hoc” approxima-
tions, one finally obtains coupled equations for the evolution of 0. As shown
by Herring et al. [280], the TFM time reduces to the simple E.D.Q.N.M. time
Eq. (7.20) in the inertial range. Moderate Reynolds number direct-numerical
simulations of turbulence seem to indicate a very good agreement with the
T.F.M. calculations (Herring et al. [274]). It is nevertheless not evident that
the further “price” paid for the use of the T.F.M. instead of the E.D.Q.N.M.
is really worthwhile.
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Figure 7.1 is an attempt to draw a map of this complicated closure world
and of the routes which link the various theories: the double arrows indicate
an exact result, while the simple lines correspond to an approximation or a
modification. We will propose three possible trips starting from the Navier—
Stokes equation, trips employing circuits which will be shown to communicate:

e trip A

The hiker takes the “moments equations” way, and from there goes either to
the Q.N. approximation (by discarding the fourth-order cumulants (vuuu)..),
or to the E.D.Q.N. approximation (by setting these cumulants equal to
—p{uuu)). In any case he can commute easily from the Q.N. to the E.D.Q.N.,
by changing vk? into uy + vk?. With the aid of a “Markovianization”, he will
go from the E.D.Q.N. to the E.D.Q.N.M. The same operation would have led
him from the Q.N. to the Q.N.M. (Quasi-Normal Markovian approximation),
that he could also have reached from the E.D.Q.N.M., by simply setting
pur = 0. Notice that the Q.N.M. was extensively studied by Tatsumi and
colleagues [676,677]. We will discuss it by comparison with the E.D.Q.N.M.
later on. Notice also that attached to the E.D.Q.N.M. is the T.F.M., which
has a special status for the time 60jy,.

e trip B

The hiker takes the difficult path of the Feynman formal diagram-
matic expansions: then he has the choice between the already mentioned
Renormalization-Group Techniques (R.N.G.) (see below), or the D.I.LA. From
there he can go to the L.H.D.I.A., by restoring the random Galilean invariance.

e trip C
The hiker modifies the nonlinear terms of the Navier—Stokes equation with
the aid of Gaussian random phases ®,3,, and goes to the Stochastic Models.
Then he has several choices: taking the coupling phases satisfying Eq. (7.24)
enables him to go to the E.D.Q.N.M. (and then rejoin the trip A). Taking the
phases as random variables (and not functions) will permit him to go to the
R.C.M. which, as already stressed, is identical to the D.I.A. This indicates
a communication with the circuit B. A “Markovianization” of the R.C.M. at
the level of the Green’s function leads to the M.R.C.M., which could also
have been reached from the E.D.Q.N.M. by letting 6,y = 6p. This provides
a bridge to trip A. Finally, as already mentioned, the M.R.C.M. can also be
obtained from the stochastic models by letting the random phases be a white
noise with respect to time, but independent of the wave numbers.

It is of course difficult to give a definitive answer to the question of
what is the “best” analytical theory to use. From a personal experience of
these tools, which will be developed in the following sections and chapters, I
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would suggest that if the turbulence is isotropic (in three- or two-dimensions),
the E.D.Q.N.M. is certainly an excellent tool to predict the energy transfers
between various modes and the high Reynolds number behaviours, at low nu-
merical cost (compared with the numerical direct or large-eddy-simulations).
The M.R.C.M. will be its faithful ally, allowing qualitative analytical predic-
tions about the existence of inertial ranges, and the possible loss of regularity
for vanishing viscosity or diffusivity. Some problems where we need inform-
ation on two-point correlations will require the use of the D.ILA. (which is
not good at high Reynolds number). In non-isotropic situations such as the
collapse of stably-stratified turbulence, the anisotropic E.D.Q.N.M. with the
isotropic form of the time 6y, could also allow a first step towards the under-
standing of the problem. This is nevertheless not true for rotating turbulence,
where, as shown in Cambon et al. [94], the only effect of the rotation within
the E.D.Q.N.M. is to modify € in a non-trivial way. Such modifications re-
quire looking to higher-order moments in the hierarchy, following methods
developed e.g. by André [6] and Legras [396].

However, it seems now that the increased computing possibilities offered
by the present super-computers will render possible a direct calculation of
the large scales of the flows and of the inhomogeneities and anisotropies they
contain, the small isotropic scales being modelled with the aid of the closures,
for instance the E.D.Q.N.M. This corresponds to a certain type of LES which
will be presented below in the book. For these reasons there does not seem
to be an urgency to find a new closure of the type presented above, since
it would behave essentially in the same way as its predecessors. In the so-
called “shell models”, approximate isotropic spectral equations are written
involving a given mode k, and its neighbours, the coefficients being chosen
so as to conserve quadratic invariants. But these models are too rough with
respect to the rich possibilities offered by the E.D.Q.N.M., in particular as far
as scale separation and non-local effects are concerned.

The rest of this Chapter will be devoted to analytical and numerical res-
ults concerning the closure spectral equations in the case of isotropic three-
dimensional turbulence. Other situations will be envisaged in the following
chapters.

PART B: THE RESULTS

7.5 Closures phenomenology

It is possible to derive a simple phenomenological analysis allowing one to
predict the inertial-range exponents obtained in the frame of the closures.
These predictions will of course be checked numerically later on, but they
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Figure 7.1. Map of the analytical statistical theories and stochastic models land
(see text for comments).

constitute a first step towards an analytical understanding of these theories,
which in turn will enable us to understand more deeply the phenomenological
analysis of turbulence presented in Chapter 6 . We will concentrate on isotropic
turbulence without helicity. In this case, Eq. (7.22) permits to calculate the
E.D.Q.N.M. energy flux

1K) = /K "k / [ b a1

fqb(/ﬂ,p OE(q, O E(p,t) — p*E(k, 1)) (7.31)

We are looking for an inertial range, where viscous effects can be neglected,
and where IT(K) will be independent of K and equal to . It has been shown by
Kraichnan [354] (see also André and Lesieur [7]) that, within the E.D.Q.N.M.
or the T.F.M. theories, and in the Kolmogorov inertial range, wave numbers
in a spectral vicinity of one decade about K participate in more than 80% of
the energy flux across K. This allows us to assume that, to a first approx-
imation, the integral (7.31) is dominated by wave numbers k, p, ¢, of order K
(i.e. comprised for instance between K/10 and 10K). Assuming also that the
quantities under the integral vary as powers of k, p, ¢, and remembering a re-
mark already made in Chapter 6 that f}f((/lo E(k)dk is of the order of K E(K),
we finally obtain

II(k) ~ 0(k)E*E(k)? (7.32)
where 0(k) is the value taken by 0y, for & = p = ¢g. We notice also that
if k is smaller than the Kolmogorov dissipative wave number, and for large
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times, 0(k) is of the order of a; [k* F(k)]~'/2, where a; is defined in Eq. (7.17).
Inserting this value in Eq. (7.32) and looking for solutions such that IT(k) = ¢
yields

E(k) ~ (a1€)?/3k=5/3.

This shows that the E.D.Q.N.M. leads to a Kolmogorov k~%/3 energy cascade,®
and that the Kolmogorov constant is proportional to ai/ % More precisely, one

can show that
Ck ~ 2.76a3* (7.33)

(see e.g. Métais and Lesieur [496]). Taking a; = 0.36 yields Cx = 1.40.

In the case of the M.R.C.M., the time (k) is equal to 6y, and the above

analysis gives
1/2
E(k) ~ ( ¢ ) k2, (7.34)
to

It is not the Kolmogorov law, which is not surprising since 6, enters now as an
independent parameter. The —2 power is here equivalent to the actual —5/3
power of Kolmogorov’s theory. It will be seen later on that the M.R.C.M.
is nevertheless a very good tool which permits analytical calculations and
predicts the existence and direction of the cascades.

For the R.C.M. (resp. D.ILA.), and though Eq. (7.31) is not exact,
Eq. (7.32) can still be shown to be valid, (k) being now the relaxation time
of the Green’s function. In the inertial range, this time is of order 1/(vok),
where vy is the r.m.s. velocity (Kraichnan [345], Lesieur et al. [410]). This
is different from the E.D.Q.N.M. where the time 6(k) can also be written as
(1/kvg), vy, being the local velocity [kE(k)]'/2. Therefore the D.I.A. inertial
range is

E(k) ~ (evg)V/2k3/2, (7.35)

It has been shown by Kraichnan [348] that the existence of a D.I.A. inertial-
range exponent differing from —5/3 was related to the non-invariance of the
model by random Galilean transformations: indeed this non-invariance im-
plies that the large eddies have a direct action on the small eddies, which
is in contradiction with the locality assumption implicitly contained in the
Kolmogorov theory. So a necessary condition for obtaining the =5/ law is
to satisfy the random Galilean invariance principle. This is not a sufficient
condition, as shown by the example of the M.R.C.M., which is random Ga-
lilean invariant (at the level of the final spectral equation, not of the stochastic
model itself, cf. Lesieur [412]) but does not admit the —5/3 inertial range.
The case of the Q.N.M. is different: this theory seems to be quite far
from the actual physics of turbulence, since only molecular viscosity damps
the third-order moments. Nevertheless the Markovianization guarantees the

& Which was to be expected as soon as (k) is a function of k and E(k) only.
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realizability, though the skewness factor (calculated from Eq. (6.76)) reaches
values far superior to the experimental values (cf. Tatsumi et al. [676], Frisch
et al. [225]). Actually, the latter authors have shown that, in the limit of
zero viscosity (with the type S initial conditions defined in Chapter VI), the
skewness factor of the Q.N.M. blows up with the enstrophy, while for the
E.D.Q.N.M. it remains bounded. The other interesting particularity of the
Q.N.M. is to exhibit two inertial ranges: indeed the time 6;,, can then be
obtained from Eq. (7.20) by setting pxp, equal to zero. For a given time ¢, one
can therefore introduce a wave number

1
b= e (7.36)
which is such that
0. _ t, for k < ky
a =\ 1 vk 4 p? + ¢?), for k> ky
and Eq. (7.32) leads to
en1/2

(k) ~ K E(k)?; E(k) ~ (t) k=2(k < ky), (7.37)

1
(k) ~ VkQE(k:)z; E(k) ~ (en) 2k~ (k> ky). (7.38)

These two inertial ranges separated by k; are actually well recovered in the nu-
merical resolution of the Q.N.M. spectral equation done by Frisch et al. [225],
as is shown in Figure 7.2. The same inertial ranges exist in the Q.N. approx-
imation, as recalled in Tatsumi [677]. In this reference, are also presented high
Reynolds number Q.N.M. calculations (independent of the above quoted cal-
culations done by Frisch et al. [225]) which display without ambiguity both
k=2 and k~! ranges. Notice finally that the k* infrared (k — 0) behaviour of
the spectrum appearing in Figure 7.2 will be explained below.

7.6 Decaying isotropic non-helical turbulence

The closure equations of the Markovian type can be solved numerically in the
isotropic case, even at very high Reynolds numbers R = v /vk;(0) (vo and
k;(0) are the initial values of the r.m.s. velocity and of the wave number where
the energy spectrum peaks. The relative simplicity of the numerical resolution,
as compared to the direct simulations of the Navier- Stokes equation itself,
comes from the existence of one spatial variable (the wave number k), and
from the fact that the energy spectrum varies smoothly with k. This allows
us to take a logarithmic discretization for k
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E1¢)

Figure 7.2. Decaying energy spectra in (a) an E.D.Q.N.M. calculation (dashed
line); (b) a Q.N.M. calculation (straight line). In the latter case, the two k=2 and
k™! inertial ranges are clearly displayed (from Frisch et al. [225], courtesy J. Fluid
Mech.).

kp = ok2b/F (7.39)

where 0k is the minimum wave number, and F' the number of wave numbers
per octave. In the following results (due to André and Lesieur [7], and Lesieur
and Schertzer [413]), the third-order velocity correlations relaxation rate iy,
is chosen according to Eq. (7.17), with a; = 0.36, which corresponds to a
Kolmogorov constant of 1.4. These calculations take F' = 4, and a maximum
wave number k. related to k;(0) by

ke 3/4
ki (0) = 8R (7.40)

following the law equation (6.61). The numerical factor 8 has been adjusted
in the calculation, so as to take into account the dissipative range in the wave-
number span. For instance, a calculation with 65 points taking dk = 1/4 and
ki(0) = 1 has a maximum wave number k. = 2% and an initial Reynolds
number of 26000. The nonlinear transfer of Eq. (7.22) can be calculated with
a numerical scheme developed by Leith [399] which conserves exactly the
quadratic invariants (kinetic energy, helicity, enstrophy in two-dimensions)
when applied to the E.D.Q.N.M. spectral equations. The time-differencing in
Eq. (7.22) is approximated by a forward scheme, with a stability condition

2
vk max

5t < 1. (7.41)
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7.6.1 Non-local interactions

Due to the logarithmic discretization, a problem arises nevertheless when
evaluating the kinetic-energy transfer: indeed the “elongated” triads (k,p, q)
whose ratio of the minimum to the maximum wave number is lower than
21/F _ 1 or 1 — 27 are not taken into account in the discretization (except
for the isosceless interactions k¥ = p or k = ¢). This may be at the origin
of non-negligible errors, especially for two-dimensional turbulence where, as
will be seen in Chapter 8, the non-local interactions play a major role in
the enstrophy cascade. One possible way of getting rid of this difficulty is to
discard all the remaining non-local interactions in the transfer computed nu-
merically, calculate analytically the transfers corresponding to the non-local
interactions, and reintroduce them in the calculation. Details on this method
are given in Lesieur and Schertzer [413]. It applies also to two-dimensional tur-
bulence (Pouquet et al. [584], Basdevant et al. [37]). We will only give here the
general approach of the method: to simplify, we assume that the two numbers
2U/F _ 1 and 1 —27YF are equal (for F' = 4, they are respectively 0.19 and
0.16) to a, and that a is small compared with 1. Therefore, as shown in Lesieur
and Schertzer [413], the non-local transfers T, (k, t) due to triad-interactions
in Eq. (7.22) such that

inf(k, p,q)/sup(k,p,q) < a (7.42)
can be written as oI Lt
Tnp(k,t) = — ne(k?) (7.43)
ok
with
TN (k,t) = T3, (k,t) — Ty (K, t) (7.44)
ak k+q k
my =2 [ dg [ [ sWood @)
0 k k'—q
k e’} 4
Moty =2 [ aw | ap [ S(.p.q)dg. (7.46)
0 sup(k,k’ /a) p—k’

S(k,p, q) is the integrand in the r.h.s. of Eq. (7.22), symmetrized with respect
to p and g. The non-local flux H;{, 1. (k,t) corresponds to a “semi-local” flux
through k in the sense that the triads involved are such that ¢ < p ~ k < k'.
Then expansions with respect to the small parameters ¢/k’ in Eq. (7.45) and
k' /p in Eq. (7.46) can be performed (cf. Kraichnan [348, 354], Lesieur and
Schertzer [413], and Métais [490]). These expansions are somewhat tedious,
but can be appreciably simplified, using the two following results derived in
Lesieur and Schertzer [413] and concerning the calculation of 175, and Ty, :

— First result (¢ < k): if, for ¢ < k, (kq/p)S(k,p,q) is expanded in (q/k)
as S1[E(k), E(q)]g1(y), then
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ak 1 1
Ty (k1) = 2 / 4dgS: [E(k), E(q)] / d /(p a1 (v)dy

— Second result (k < p): if, for k < p, (kp/q)S(k,p, q) is expanded in (k/p)
as Sa[E(p), E(k)]g2(z), then

1

k oo
Ty, (kt) = 2 / i’ / SolE(p), E(K)|dp / ga(2)dz
0 sup(k,k’/a) 0

Actually, these results are valid also for the non-local fluxes of other quantities
such as the helicity or a passive scalar (see below). Notice also that generally
the time 0,4 is not expanded. In the three-dimensional isotropic case without
helicity for instance, we have®

Iy, (k,t) = 2 /aka 2E(q)d kE(k)—kQaE
NL\R ) = e . kkqd q)aq ok
+ 2 /aka 4d B2 (k) (7.47)
15 J, kkqq a4 L .
2 [* o E
0 =0 [Bwa [ o, [sBw)+ 5] |
15 0 sup(k,k’/a) ap
14 /’“ 4 oo E(p)?
+ K dk! / Opr dp 7.48)
15 0 sup(k,k’/a) r p2 (

The physics of these terms will be interpreted later. The non-local transfer is
then calculated from Egs. (7.47) and (7.48). Notice that with this “flux form”,
these non-local transfers are energy conservative provided 1y (0,t) = 0.

The non-local energy transfers derived from Eqs. (7.47) and (7.48) are
then!®

oE

2
Tni(k,t) = ok

4E (k) + 2k
15 (k) +

82E ak
+ k2 8k2}/0 Orkqed” E(q)dq

9 The non-local fluxes given below have been carefully checked by Métais [490], and
correspond to the notations of the present book for the energy spectrum (density
of (1/2)(@?)). The reader is warned that an error of a factor 2 is contained in one
of the terms of the analogous expressions given in Lesieur and Schertzer [413].
These non-local energy transfers can also be obtained directly from non-local
expansions of the transfer term T'(k,t) integrated on the domain satisfying the
condition Eq. (7.42). The calculation is equivalent, as noticed in Lesieur and
Schertzer [413], but is longer since a second-order expansion in a is then needed.
In fact, it has been verified by Métais [490] that the two methods give the same
result.

10
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4 OE] E(k) [
- [3E(k)+k } /€(2)/o Orkqq*dq

15 ok
_2 O k,aka’k° E(k)?
15 9 9
2 313 OF
—159k7k7aka k‘ E(ak) l:E(]{J) — ]43 8k]
2 o0 oF
. 9 E d
15 ( )/k/a kpp {5 (p)+p8p} p
14 > E(p)?
k4 6 dp. 7.49
+15 k/a kpp pg p ( )

7.6.2 Energy spectrum and skewness

The numerical resolution of Eq. (7.22) consists then in solving the equation
9 2
o T2k E(k,t) =Tnr(k,t) + Tr(k, ) (7.50)

where T}, (k, t) is the local transfer calculated numerically with Leith’s numer-
ical scheme mentioned above. In fact, calculations which neglect the non-local
transfers do not, for F' > 4, depart very much from the complete calculation.
The non-local expansions are anyhow extremely useful to understand the in-
frared dynamics, and also to provide subgrid-scale parameterizations, as will
be seen in Chapter 12.

Figure 7.3 (taken from André and Lesieur [7]) shows on a log-log plot
the time-evolving kinetic-energy spectra, initially peaked in the vicinity of
k = ki(0). The large-scale Reynolds number Ry, (o) (see definition below) is
40,000: one can clearly see the spreading of the spectrum towards large wave
numbers, due to nonlinear interactions; a k=53 spectrum establishes after a
time of about t. = 5/vok;(0). Since the initial energy spectrum is strongly
peaked at k;(0), the time ¢, is also of the order of 5D(0)~1/2 (it is actually of
5.6D(0)~1/2 in this calculation). For ¢ > t,, the spectrum decays self-similarly
following what can be checked to be the law equation (6.68). Figure 7.4 (also
taken from André and Lesieur [7]) shows the asymptotic tendency of the
kinetic-energy time evolution: when the Reynolds number exceeds a few thou-
sands, the kinetic energy reaches an asymptotic state where it is conserved
for ¢t < t. and then dissipated at a finite rate for ¢ > t.. Finally, Figure 7.5
shows, in the same calculation as that of Figure 7.4, the time-evolution of the
velocity-derivative skewness factor (calculated from Eq. (6.76)), which also
reaches at high Reynolds number an asymptotic evolution where it is con-
served for t > t,, as predicted in Chapter 6. The value of the skewness for



258 7 Analytical Theories and Stochastic Models

LogE(k.t)

Figure 7.3. Time evolution at initial large-scale Reynolds number 40,000 of a freely-
evolving three-dimensional kinetic energy spectrum, within the E.D.Q.N.M. theory
(from André and Lesieur [7], courtesy J. Fluid Mech.).

10

L4A(4)>

Figure 7.4. Time evolution of the kinetic energy at different initial Reynolds num-
bers, in decaying E.D.Q.N.M. calculations performed by André and Lesieur [7] (cour-
tesy J. Fluid Mech.).
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t > t, is equal to 0.5, close to the value found in previously-reported DNS, and
not far from the 0.4 value found experimentally. This is a further argument in
favor of the E.D.Q.N.M. theory which, once its adjustable constant a; arising
in Eq. (7.17) has been chosen to fit the Kolmogorov constant, predicts the
velocity-derivative skewness factor satisfactorily. It will be shown analytically
below that the E.D.Q.N.M. skewness remains finite for ¢ < ¢, when the vis-
cosity goes to zero. The abrupt decrease of the skewness for ¢ > ¢, may, from
Chapter 6, be explained in the following manner: before ¢,, still in the limit of
zero viscosity, one may assume that the skewness obeys Euler equation, with
a kinetic-energy spectrum decreasing rapidly at infinity. At ¢t = t,, the “Euler
skewness” would fall to 0, corresponding to the formation of a k~%/3 spectrum
extending to infinity. In fact, the skewness for ¢t > t. is now determined by the
viscous balance Eq. (6.77) and the shape of the spectrum in the dissipation
range, and has no reason to be equal to the Euler value just before t,. In
André and Lesieur’s [7] calculation, the skewness peak value is 0.75.
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Figure 7.5. Time evolution of the skewness factor at different Reynolds numbers
(same conditions as in Figure 7.4, from André and Lesieur [7], courtesy J. Fluid
Mech.).
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Figure 7.6. Decaying E.D.Q.N.M. calculation at very high Reynolds
number(Ry, o) ~ 1.70 x 10%).

More recent E.D.Q.N.M. calculations at higher Reynolds number carried
out by Lesieur and Ossia [428] (see also Lesieur et al. [431]) indicate a max-
imum skewness value of 1.132 followed by a plateau of 0.547. In these calcu-
lations (done with F' = 8 on a PC Linux machine) the coefficient 8 arising in
Eq. (7.40) has been replaced without problems by 1, which permits to increase
substancially the Reynolds number. The initial kinetic-energy spectrum is

E(k,0) = Ak® exp |:—; ki](f())2:| , (7.51)

A; being a normalization constant such that fokm‘“E(k, 0)dk = ;v = ). The
large-scale Reynolds number is Ry, ) = vo/vk;(0). Figure 7.6 shows on a
log-log plot the kinetic-energy spectrum evolution (25 curves) in one of these
simulations at Ry, ) ~ 1.70 x 10%. The initial infrared slope of the energy
spectrum is s = 8. One sees an infrared backscatter with a spectral slope
close to k* (see below). In the ultraviolet range, the spectrum develops a
slope which is close to —5/3 along about five decades. As remarked in Lesieur
and Ossia [428], the Taylor-microscale based Reynolds number at the end of
the run (100 initial turnover times [vok;(0)]~1) is 72600, which is huge! It is of
interest to look on a semi-log plot at the corresponding compensated energy
spectrum defined by Eq. (6.70) (Figure 7.7). In the figure, K. = kl4. Except for
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Figure 7.7. Same run as Figure 7.6: Kolmogorov compensated kinetic-energy spec-
trum evolution (in dissipative units).

the initial times (vertical lines), the curves do take a mammoth shape, whose
rear advances gradually. The plateau is equal to the Kolmogorov constant C .
At the end of the evolution, the exact k~%/3 inertial range extends on less than
two decades. On the other hand, there is a very well-marked pre-dissipative
bump. The high k part of the spectrum (composed of the inertial range, the
bump and the dissipative range) exhibits a very good self-similarity, with a
perfect superposition of the compensated spectra.

Let us mention that forced E.D.Q.N.M. calculations are presented in
Chapter 11 in the context of predictability studies.

7.6.3 Enstrophy divergence and energy catastrophe

All the numerical three-dimensional isotropic evolving E.D.Q.N.M. calcula-
tions show after the critical time t, a behaviour characterized by a finite
dissipation of energy and a constancy of the skewness factor, agreeing well
with the phenomenology of Chapter 6.

The last consequence which can be drawn from Figure 7.4 is that at van-
ishing viscosity the enstrophy blows up at ¢.: indeed, we recall from Eq. (6.8)
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that in freely-evolving turbulence (without external forces), the kinetic-energy
dissipation rate is equal to
1d

€= 2dt< 2y = 2uD(t) (7.52)
where D(t) is the enstrophy. So the fact that kinetic energy is conserved
at vanishing viscosity for ¢ < t,, and dissipated at a finite rate afterwards,
implies that the enstrophy diverges at ¢, in the limit of zero viscosity: this is
not surprising, since we have already seen that a Kolmogorov k—5/3 spectrum
appears at t = t,; for vanishing viscosity the Kolmogorov wave number kg
defined in Eq. (6.39) goes to infinity, and the total enstrophy diverges with
i M 11/3 4k, The divergence of the enstrophy at ¢, cannot be proved exactly
analytically in the frame of the E.D.Q.N.M., but an exact result can be derived
with the M.R.C.M., as demonstrated in Lesieur [412] and André and Lesieur
[7]: by multiplication of Eq. (7.22) by k?, integration over k from zero to
infinity, and the exchange of the (k,p) variables in the E(q)E(k) term, one
obtains

dD E ©
Y2y +2%)01pe E(p) E(q)dpdqdk—2v k*E(k)dk. (7.53)
0

We start initially with type S conditions (see Chapter 6) in the Euler case.
A symmetrization with respect to p and ¢, and the change of variable k —
x,dk = —(pq/k)dz, yields

1 “+o00 “+o00 - —+1 )
= 2/0 /0 P q"E(p)E(q) ) Okpq(1 — x7)dzdpdq

—{a term which would be zero if 8i,, were an even function of
x for p and ¢ fixed}. (7.54)
Thus, if Oxpq = 6o, Eq. (7.54) becomes

dD 2

= "fyD? .

i 500 (7.55)
whose solution is 5 1

D(t) = .

(*) 200 t, — t (7.56)
3

ty = . 7.57
D(0)6y ( )

This result shows analytically that whithin the M.R.C.M. the enstrophy also
diverges at a critical time ¢, (of course different from the critical time found
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numerically in the E.D.Q.N.M.). Note that the replacement of 0y,, by 6ooq
in Eq. (7.53) (which is extremely arbitrary here, but will be shown to be
physically plausible when studying the passive scalar diffusion) will give an
enstrophy evolution equation of the type

dD

~ D32 _2uP(t .
i vP(t) (7.58)

which, when v — 0, will blow up at a time t, proportional to D(0)~/2.
Notice also, as stressed by Orszag [553], that a calculation similar to the
analysis leading to Eq. (7.55) was performed by Proudman and Reid [590] in
the Quasi-Normal case. The resulting equation for the enstrophy is

D _ 2D27
dt? 3
as the reader may easily check using Eq. (7.13).

All these results go in favour of the same singular behaviour for the de-
caying Navier—Stokes equation in the limit of zero viscosity: this divergence
of the enstrophy, due to the stretching of vortex filaments by turbulence,
would be accompanied by the abrupt formation of the Kolmogorov k~5°/3
spectrum. The further evolution would be characterized by a finite dissipa-
tion of kinetic energy and a constancy of the skewness factor. The rigourous
derivation of these conjectures, if correct, would certainly constitute a major
breakthrough in the theory of isotropic turbulence. Notice finally that the
value of 5.6D(0)~'/2 predicted for t, by the E.D.Q.N.M. calculation of André
and Lesieur [7] is not far from the value predicted in Eq. (6.80) assuming a
constant skewness factor of 0.4.

A last remark concerning these enstrophy equations refers to the Q.IN.M.
approximation and is developed in Frisch et al. [225]: from Eq. (7.55), the
enstrophy equation of this latter theory is (when v — 0)

dD 2
o 3tD2 (7.59)

since the Q.N.M. 6,4 time is then equal to t (for a fixed ¢, the wave number
ki introduced in Eq. (7.36) goes to infinity at vanishing viscosity). There-
fore the enstrophy blows up at ¢, = [3/D(0)]'/2, as can be shown easily by
replacing in Eq. (7.59) the variable ¢ by #2. Since in the early stage of evolu-
tion (that is for t < t.) the skewness factor is, from Eq. (6.77), proportional
to D~3/2(dD/dt), it will grow like tD'/? and become infinite with the en-
strophy. In the E.D.Q.N.M. on the contrary, it can be shown (see André and
Lesieur [7]) that D=%/2(dD/dt) < 1.51: hence the skewness will be upper
bounded by 1.77 before t.. This is in agreement with the maximal value of
1.132 found by Lesieur and Ossia [428].
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7.7 Burgers-M.R.C.M. model

The Burgers equation

2

gtu(a:,t) + ugz = Vg;; (7.60)
has been widely studied as a unidimensional model of turbulence (see e.g.
Tatsumi [677]), Fournier and Frisch [213]). Actually it has been shown to
develop randomly distributed shocks (sawtooth profile) in the inviscid case and
starting with random initial conditions). These shocks correspond to a k=2
energy spectrum extending to infinity. When the viscosity is finite, but small,
the k2 inertial range is terminated at high wave numbers by a dissipation
range.

It is very easy to apply the M.R.C.M. procedure to Burgers equation. The
simplest way is to take the stochastic model point of view, and to work in
the @ physical space. The resulting equation, proposed in Lesieur [412] and
Brissaud et al. [83], is

2 2
;U(r, t) = —fo ;2 [U(r,t) — U(0,1)]* + 21/%:2] (7.61)
where U(r,t) = (u(z, t)u(z 4+ r,t)) is the spatial simultaneous velocity covari-
ance (homogeneity is assumed). U is an even function of the real variable r .
The kinetic-energy dissipation rate is

2
€= —; ;;U(OJ) v < (gg) > = 2uD(t) (7.62)

where the enstrophy is

1/ /0u\? 1/ 0%u 102
bt) =, <(8:c> > T2 <u8m2> = 92U tlr=o.

An equation very close to Eq. (7.61) (¢ replacing 6y) had been obtained be-
fore by Kraichnan [351] with the aid of L.H.D.I.A. techniques applied to Bur-
gers equation. When assuming an additional forcing spectrum in the r.h.s.
of Eq. (7.61), it can be shown analytically (Lesieur [412]) that stationary
solutions displaying a k=2 inertial range exist. They are limited by viscosity
at high wave numbers. In the r space, it corresponds to a U(r) o« |r| range,
smoothed by viscosity in the small scales. This k=2 range is exactly the equiv-
alent of the k=2 M.R.C.M. three-dimensional turbulence inertial range, as can
be checked by writing Eq. (7.62) in Fourier space and applying the analysis
leading to Eq. (7.34).
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In the freely-evolving case (no forcing) and for the inviscid problem, the
occurrence of enstrophy divergence at a finite time ¢, has been demonstrated
analytically by Brissaud et al. [83]: let us expand the velocity covariance U (r, t)
as

U(r,t) = 2E(t) — D(t)r? + O(r%) (7.63)

where E(t) is the kinetic energy, and substitute this expansion into the inviscid
Eq. (7.61). By identification of the r expansion coefficients, one obtains

d
dt

which expresses the conservation of kinetic energy during this initial period,
and

E(t)=0 (7.64)

dD(t)
dt
which is analogous to Eq. (7.63) and shows a divergence of the enstrophy at
a critical time t,. For ¢ > ¢,, a numerical resolution of the inviscid Eq. (7.61)
performed by Brissaud et al. [83]) shows the appearance of a U(r,t) o |r|
behaviour for r — 0 ( that is a k=2 spectrum for k — 00), and a finite
dissipation of kinetic energy: indeed, the following expansion

= 126,D? (7.65)

U(r,t) = 2E(t) — Alr| + O(r?) (7.66)
yields ®
dE(t

u = — A%, (7.67)

and the kinetic energy is dissipated at a finite rate if A # 0. Let us mention
finally that exact mathematical theorems for this problem have been derived
by Foias and Penel [208].

The Burgers M.R.C.M. model is therefore a very good model for three-
dimensional “M.R.C.M. isotropic turbulence”, since it displays an inviscid
dissipation of kinetic energy occurring after a critical time ¢,, where the en-
strophy has become infinite and a k2 inertial-range spectrum has appeared.
This k=2 spectrum does not seem to be related to any shocks statistics, as
in the actual Burgers turbulence. Therefore, and quite surprisingly, the “Bur-
gers M.R.C.M. turbulence” is closer to three-dimensional isotropic turbulence
than to the “Burgers turbulence”. As far as the latter problem is concerned,
let us mention the DNS work of Gurbatov et al. [266] in the decaying case.

7.8 Decaying isotropic helical turbulence

In this section we will study decaying isotropic turbulence with helicity, using
the E.D.Q.N.M. approximation equations (7.21) and the spectral tensor form
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Eq. (5.84). Separating the symmetrical and antisymmetrical parts of the r.h.s.
of Eq. (7.21) leads, after a lengthy calculation, to the following set of coupled
equations for the energy and helicity spectra (cf. Lesieur [412], André and

Lesieur [7])!
0
( P 21/k2> E(k,t) = / / dp dqOrp,
Ay

QMMp@mmmﬁEmw—ﬁEww1

= o U= @ O (.0) = p*H (k1) (7.68)

( 0 + 2uk2> H(k,t) = // dp dqOkpq
ot A,

;Mhnmm%mwﬂmﬂ—ﬁwal
—Zdrw%H@wwmw—Ewm. (7.69)

Here the time 60, has not been modified by the presence of helicity, and
this remains an open question. Again it can be checked that the nonlinear
terms of these equations conserve in a detailed fashion the kinetic energy
and the helicity, and that the kinetic-energy and helicity dissipation rates are
respectively given by

+oo
€= 2u/ E*E(k,t)dk
0

+oo
€g = 21// k*H (k, t)dk. (7.70)
0

We have mentioned in Chapter 5 the role of helicity for the generation of
magnetic fields in M.H.D. flows (see also Frisch et al. [222], and Pouquet
et al. [585]). As already stressed, helicity is not required in order to have a
dynamo effect, as shown by Léorat et al. [408], but it enhances it. The latter
have made an E.D.Q.N.M. study of isotropic M.H.D. turbulence, and shown
that the critical magnetic Reynolds number was considerably decreased with
helicity.

For neutral flows, helicity seems to be characterized by a strong inhibition
of energy transfers towards small scales. This point could have implications
in meteorology, where it has been suggested by Lilly [444,445] that tornadoes
remained coherent because of their helicity, and that helicity contained in

' Equivalent helical D.I.A. spectral evolution equations were obtained from
Eqgs.(7.29) and (7.30) by Lesieur et al. [410] (see also André and Lesieur [7]).
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Figure 7.8. E.D.Q.N.M. helical calculation showing the kinetic energy and helicity
time evolutions in the inviscid limit (straight lines). The dashed line shows the
kinetic energy in the non-helical case. This demonstrates the delay of the enstrophy
blow up, due to the presence of helicity (from André and Lesieur [7], courtesy J.
Fluid Mech.).

small-scale atmospheric motions could increase the large-scale atmospheric
predictability. Such an inhibition of the transfers can be justified in various
ways: a very simple argument on the basis of the vorticity equation

aaj FV X (3 X @) = VRS (7.71)

says that in the non-helical case, and since (J.@) = 0, the vorticity is per-
pendicular “in the mean” to the velocity, and therefore the vectorial product
(& x @) and the energy transfers are maximum.

This tendency can also be quantified with the aid of a freely-evolving
E.D.Q.N.M. calculation, starting with the same energy conditions as in Sec-
tion 7.6 (energy spectrum sharply peaked in the vicinity of k;), with the
maximum helicity

H(k,0) = kE(k,0) (7.72)

permitted by the inequality (5.109): these calculations, presented in André
and Lesieur [7], show without ambiguity the following results:

e (i) the critical time ¢, at which the enstrophy blows up (in the inviscid
limit) is increased by nearly a factor of 2, and is now of the order of 9/vok;(0).
The helicity enstrophy f0+°° k*H (k,t)dk blows up at the same time. The kin-
etic energy starts being dissipated at a finite rate at this time, and so does
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the helicity, as can be expected from Eq. (7.70). The energy and helicity dis-
sipation curves are shown in Figure 7.8. It must be noted that an analytical
calculation analogous to Eq. (7.55) and showing in the M.R.C.M. helical case
the enstrophy blow-up delay has not yet been done and seems to pose some
difficulties.

e (ii) at t, appear simultaneously k~5/3 inertial ranges for the energy
spectrum and the helicity spectrum. The helicity spectrum follows a “linear”
cascade

H(k) ~ ef E(k) = 2.25¢ e /3K 5/3 (7.73)
which can be easily obtained (except for the value of the constant) from
Eq. (7.69) by writing

e ~ 0(k)k*E(k)H (k) (7.74)

in analogy with Eq. (7.32). The numerical constant 2.25 was obtained with
the same 6, as in the non-helical calculation, adjusted in order to have a
Kolmogorov constant of 1.4 in the energy cascade. We have employed the
term “linear” for the cascade, because of the analogies with the passive scalar
inertial-convective range envisaged in the previous chapter. These energy and
helicity spectra are shown in Figure 7.9.

o (iii) the relative helicity H(k)/kE(k) is, in the inertial range, proportional
to k~!, and decreases rapidly with k. Thus the helicity has no real influence on
the energy flux, expressed in terms of the energy dissipation rate e. It follows
that the Kolmogorov constant in the energy cascade is not modified by the
presence of helicity.

In fact these double cascades had been conjectured dimensionally by Bris-
saud et al. [84], using phenomenological arguments. They propose also, by
analogy with two-dimensional turbulence (see Chapter 8), the possibility of
a pure helicity cascade towards large wave numbers, with a zero energy flux,
together with an inverse energy cascade towards low wave numbers, with no
helicity flux. The latter inverse cascade is such that

E(k) ~ 23753 H(k) ~ 2/3k72/3, (7.75)

These cascades did not appear in the calculations of André and Lesieur [7]
which, however, were unforced calculations. Nevertheless, it was checked in the
same reference that the E.D.Q.N.M. energy flux through stationary energy
and helicity spectra given by Eq. (7.75) was positive, which eliminates the
possibility of such inverse cascading spectra. This result was corroborated by
the study of the absolute equilibrium ensemble solutions of the truncated Euler
equations (see Chapter 10) with helicity, made by Kraichnan [355], which did
not show any inverse energy transfer tendency. So the possibility of strong
inverse energy transfers in the presence of maximal helicity seems to be ruled
out.
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Figure 7.9. Time evolution of the energy and helicity spectra (time unit is
1/v0ki(0)), in the same calculation as in Figure 7.8. Now the inertial ranges es-
tablish at about ¢, =9 (from André and Lesieur (7], courtesy J. Fluid Mech.).

We stress that the existence of the double cascade of kinetic energy and
helicity has been validated by Borue and Orszag [72] with the aid of LES This
is a remarkable proof of validity for the E.D.Q.N.M. theory.

Let us mention the conjectures of Tsinober and Levich [693] and Mof-
fatt [512], where there would exist in a flow with zero mean helicity local
regions (in the & space) with non-zero helicity (positive or negative) where
the kinetic energy dissipation would be less active than in the non-helical
regions, because of the preceding results concerning the inhibition of kinetic
energy dissipation by helicity. The flow would then evolve towards a set of
“coherent” helical structures separated by non-helical dissipative structures



270 7 Analytical Theories and Stochastic Models

(maybe fractal). The coherent structures of same sign could possibly pair.
Up to now this is nothing more than a conjecture. This tendency has been
found in DNS of the Taylor—Green vortex (Shtilman et al. [645]). However,
other simulations of isotropic or inhomogeneous turbulence done by Rogers
and Moin [614] do not exhibit a correlation between the local relative helicity
and the kinetic energy dissipation.

7.9 Decay of kinetic energy and backscatter

Section 7.6 has shown that after a critical time the kinetic energy of freely-
evolving three-dimensional isotropic turbulence would decay at a finite rate.
The asymptotic laws of decay pose an interesting question, and such inform-
ation can be very useful for the one-point closure modelling of turbulence for
instance. Experimentally these problems are studied in grid-turbulence facil-
ities, where turbulence observed at a distance x downstream of the grid has
decayed during a time ¢ = /U since it was formed behind the grid (U is the
mean velocity of the flow in the apparatus): for instance Comte-Bellot and
Corrsin [142] found a decay exponent of the kinetic energy equal to —1.26

L5 —-1.26
2<u Yot
while Warhaft and Lumley [712] found —1.34. The latter law was valid up to
about 60 initial large-eddy-turnover times. We will see in this section that the
E.D.Q.N.M. closures give valuable information about the possible decay laws,
according to the shape of the initial energy spectrum. It must also be stressed
that if it could be shown experimentally that this finite decay of kinetic energy
occurs at a finite time when the viscosity goes to zero, it would be a further
argument in favour of an inviscid enstrophy blow up at a finite time.

7.9.1 Eddy viscosity and spectral backscatter

Let us first return to the concept of non-local interactions introduced in Sec-
tion 7.6, and utilized here to calculate the energy transfer when k — 0[k < k;
and E(k) < E(k;)]: the “non-local parameter” a will be taken equal here to
k/k;. The predominant terms in Eq. (7.49) are the last two terms, which cor-
respond to non-local interactions k < p ~ ¢ =~ k;. We have to the lowest order
in k/kl

Tk 1) = k2 E(k) /k ~ oy {5E(p) +p8£ } dp

+ k4 / 90pp d + O[kE(K)]?/? (7.76)
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where the O[kE(k)]3/? term corresponds to the local interactions, which will
turn out to be negligible in this spectral region. The first term in the r.h.s. of
Eq. (7.76) is an “eddy-viscous” term of the form

—21/tk2E(k‘)

with . - OF
Vv = 15 /k Bopp {5E(p) +p 8p} dp (7.77)

which represents the damping action of the turbulence on the low frequency
modes. Throughout this book we will widely discuss this eddy-viscosity
concept in spectral space, introduced by Kraichnan [358]. The second term
is positive and injects a k* transfer in low wave numbers, through some kind
of resonant interaction between two modes ~ k;. We will call this transfer
spectral backscatter. It is this term which is responsible for the sudden ap-
pearance of a k* spectrum at k < k; when the initial energy spectrum is
sharply peaked at k; (or simply o k*® with s > 4). Eq. (7.76), derived from the
E.D.Q.N.M., is important, for it contains the two leading terms which govern
the dynamics of three-dimensional isotropic turbulence at low wave numbers:
if turbulence is stationary and sustained by a forcing spectrum concentrated
at k;(k; fixed), the balance between eddy-viscosity and backscatter yields a
k? energy spectrum for k — 0. It is called an energy equipartition spectrum,
for it corresponds to the same amount of energy at each wave vector k. Such
a behaviour will be verified in Chapter 11.

Infrared exponent in unforced turbulence

If turbulence is unforced and decays freely, the behaviour of the “infrared” en-
ergy spectrum (that is at low wave numbers) depends on the infrared spectral
exponent s of the initial conditions such that

E(k,0) oc k°. (7.78)
We reproduce a discussion from Lesieur et al. [431] about the choice of s:

The question of permissible values for s is a controversial one. There
are arguments in favour of s = 4 (see the review of Davidson [160]),
others in favour of s = 2 (Saffman [621]). Taking even values of s is
compulsory if certain regularity conditions for the velocity-correlation
tensor between two points when the distance goes to infinity are ful-
filled. Mathematically, one may take initially odd values of s (such as 1
or 3), and even non-integer ones, as was proposed by Eyink and Thom-
son [190]. The latter, working on the basis of an analogy with Bur-
gers turbulence studied by Gurbatov et al. [266] with direct-numerical
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simulations, propose the existence of a crossover dimension s ~ 3.45,
above which a k* backscatter should appear.

The first complete theoretical analysis (using the E.D.Q.N.M. theory) of re-
lations between the infrared spectral exponent and kinetic-energy decay was
carried out in Lesieur and Schertzer [413]. They considered integer values of
s. Here we present these results trying to get rid as much as possible of the
statistical closure used. The important phenomenon is due the k* backscatter.
We first assume that s is integer:

e 1 < s < 4: then the k* and eddy-viscous non-local transfers will modify
negligibly the initial spectrum, which will keep its original shape in the low
k, that is

E(k,t) = Csk® (7.79)

Cs being a constant.

FEzercise: Show Eq. (7.79).
One considers the spectral-evolution equation with the transfer given by
Eq. (7.76). Assuming that E(k,t) = Cs(t)k® at low k, we have

dC
dt

where A and v; vary weakly with time. One considers only integer values of
s. For 1 < s < 4, the backscatter dominates the two other terms in the r.h.s.,
and to the lowest order we have dCs/dt = 0. For s = 1, the local transfer
is of order k3, as the eddy-viscous transfer, so that the Lh.s. still dominates
with again dCs/dt = 0.

k* = Ak* — 2C, k52 + O[kPT1/2), (7.80)

Text
Eq. (7.79) is a situation of perfect “permanence of big eddies”.

e s > 4: now the above expansion Eq. (7.80) is inconsistent, so that the
spectrum will immediately pick up the k* backscatter component. We are
then lead to the s = 4 case, where we have

E(k,t) = Cy(t)k* (7.81)
with, from Eq. (7.76)

dcy 14 /D@ E(p)?

dt 15 Opp

5 2 dp. (7.82)

As mentioned in Lesieur and Schertzer [413], this expresses the non-invariance
with time of the Loitzianskii integral I(t) (see Orszag [553]). As recalled in
Lesieur et al. [431]:
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the multiplying coefficient (Cy) is equal to I(t)/24w?, were (...)
I(t) = [r?U;(r,t)dr, U;(r,t) being the trace of the second-order
velocity correlation tensor. This proves that the latter quantity is not
stricto-sensu a time-invariant, although it does not vary very much
in the late stages of the computation. Remark that time-invariance
of Loitzianskii’s integral (was) related by Landau and Lifchitz [371]
to angular-momentum conservation of the flow. In fact, such a prin-
ciple does not hold exactly due to viscous-dissipation and boundary-
conditions effects.

We will show later in this chapter recent E.D.Q.N.M. and LES simulations of
the infrared dynamics.

7.9.2 Decay laws

In order to now solve the kinetic-energy decay problem, it suffices to simply as-
sume a self-similar decaying energy spectrum already considered in Eq. (6.68)
v3 1 dv?

2
E(k,t) =viF(kl), 1= €T o g (7.83)
where F' is a dimensionless function. This form is not exact in the dissipative
range, but the error thus introduced in the kinetic-energy decay exponent is
very small; as the closures will show. Eq. (7.83) developed for £ — 0 allows
us to obtain
0215t = constant, s < 4, (7.84)

1 .dCy
7T Cydint
where dCy/dt is given by Eq. (7.82) if one trusts the closures. It is now very

easy to solve the problem (see Lesieur and Schertzer [413]). Assuming that
the kinetic energy and the integral scale follow time power laws such that

VT o 17, s = 4; (7.85)

v o tTE ot (7.86)
one finds +1
s+1—vy
=2 , 7.87
aE s+3 ( )
2+
= . 7.88
a s+3 ( )

Here ~ is zero for s < 4. For s = 4, E.D.Q.N.M. calculations of Lesieur and
Schertzer [413] give v = 0.16. We recall that s cannot exceed 4, in the sense
that if it is greater, it will very quickly become equal to 4.
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Exercise: Show the above decay laws.
Using Eq. (7.83), we have € oc t~(*2+1) and [ = v /e oc t't@2=(32E/2) which

yields
ap

a=1- 9 - (7.89)
Then Eq. (7.85) gives

—ag+ (s+ 1) =7. (7.90)

Solving this system gives the correct answer.

Text

For s = 2, the energy follows Saffman’s [622] t=%/° law. For s = 4, it follows a
t=1:38 law instead of the ¢~10/7 (i.e. t~143) Kolmogorov’s law [339] obtained
in this case when discarding ~. In any case v/l = ¢/v? decays as t~1, and
the integral scale grows as t2/° for s = 2 and 3! for s = 4. The large-
eddy turn-over time [/v grows like ¢, and the Reynolds number vl/v evolves
like ¢(27+1-5)/(s+3) Ty confirm the existence of self-similar evolving energy
spectra, at least in the frame of the E.D.Q.N.M. closure, Figure 7.10 (taken
from Lesieur and Schertzer [413]) shows the function F(kl) introduced in
Eq. (7.83) at various times of the evolution, for two different initial conditions
corresponding to s = 2 and s = 4: it indicates a perfect self-similarity in the
energy-containing and inertial ranges, and only a very slight departure from
self-similarity in the dissipation range. The law equations (7.87) and (7.88)
can also be derived, as in Comte-Bellot and Corrsin [142], by assuming a crude
energy spectrum model of the form

107

1072
4107

E (k)7 V2L
E(kl)/v2L

N M 28 " 2B
Figure 7.10. E.D.Q.N.M. calculation of the normalized kinetic energy spectra
E(kl)/v*l at times 125, 150, 175 and 200, for two initial conditions correspond-
ing to (a) s = 2 and (b) s = 4. The figure, where the spectra have been superposed,
shows that they evolve self-similarly, according to Eq. (7.83) (from Lesieur and
Schertzer [413], courtesy Journal de Mécanique).
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E(k,t) = Csk®, k< ki(t)

E(k,t) = Cxe?2k™3 k> ki(t)

with k;(t) ~ [(t)~!. In fact, the latter authors consider only the case s =
4. Notice finally that Eqs. (7.87) and (7.88) lead to a Richardson-type law
equation (6.55)

1d?
~ £1/374/3 1
o gt "€ 1%, (7.91)

Discussion of these results

For s < 4 (still integer), these decay results are not dependent on the closure
used, provided the latter gives a non-local transfer of the form Eq. (7.76) and
a self-similar evolving spectrum Eq. (7.83). For s = 4, the results obtained
by Tatsumi et al. [676] with the aid of the Q.N.M. theory are very close to
the E.D.Q.N.M. ones. It is more difficult to interpret the experimental grid
turbulence results: indeed, a grid of mesh M (distance between two bars) will
produce immediately downstream a turbulence of integral scale M, turbulence
due to the interaction of the wakes of neighbouring bars. Such a turbulence
will not have, at t = 0, much energy at wave numbers different from M 1.
Therefore one might conjecture an energy spectrum that adjusts quickly on
k* for k — 0. Hence the kinetic energy would decay as t—1-3%. This is close to
Warhaft and Lumley’s [712] =134 result, but at variance with Comte-Bellot
and Corrsin’s [142] 7126 measurements. The reason for the discrepancy is
not obvious, and since it does not seem possible to measure experimentally
the k — 0 part of the energy spectrum, we can only propose various possible
reasons such as the relatively low Reynolds number of the experiments, the
lack of isotropy in the large scales, the problem of the determination of the
origin of time, the insufficient length of the apparatus, etc.

Numerically, the unforced direct or large-eddy simulations having enough
resolution in the small £ and taking an initial kinetic-energy spectrum o k*
with s > 4 (s integer), do show the appearance of the spectral backscatter
corresponding to a k* energy spectrum (see Figure 6.12a, taken from Lesieur
and Rogallo [421] where s = 8 initially). These simulations (see also Lesieur
et al. [421]) give a kinetic-energy decay exponent of the order of 1.4, in not
too bad agreement with the above theory. It is however difficult in these
simulations to have reliable data on the infrared spectrum, due both to the
shift of k;(t) towards the lower modes, and to the lack of statistical reliability
of the spectra in these modes.'? In Métais and Lesieur [496], the peak k; is

2 In these isotropic calculations, the spectra are calculated by an average on a
sphere of radius k, and very few modes will contribute in the statistics at low k.



276 7 Analytical Theories and Stochastic Models

1 T j L UER G S T ST A | T L L T e 5 |
E el i
> _ _
S
S _
107% | |
-9
10 | | o1 0o v aal " PO T N W N |
1 10! 15
k

Figure 7.11. Kinetic-energy spectrum evolution in a 256° decaying LES starting
initially with an infrared k* infrared energy spectrum. The dashed line is the initial
spectrum (from Ossia and Lesieur [556]).

closer to kmin (which further diminishes the resolution), and the spectrum
evolves towards k2 at low k, with a ¢t~12 kinetic-energy decay law.

More recent E.D.Q.N.M. calculations are presented in Lesieur et al. [431]:
the case s = 1 is very interesting since it yields a ¢! kinetic-energy decay law
predicted by Batchelor [47], and a perfectly self-similar compensated kinetic-
energy spectrum at all wave numbers. A very complete exploration of s non-
integer values is also carried out, and no crossover slope, separating a regime
of permanence of big eddies from a k* backscatter, may be found.

The LES of Ossia and Lesieur [556] does confirm the permanence of large
eddies with s = 2, yielding ag = 1.22. With s = 4 one gets asymptotically
ap = 1.40 in a LES with 256 points using pseudo-spectral methods, whose
kinetic-energy spectra are presented in Figure 7.11. Here, the Loitzianskii in-
tegral I(t) still increases slightly at the end of the computation. It is worth
mentioning that the very high resolution DNS (1024 points, same pseudo-
spectral methods) done by Ishida et al. [311] starting with a k* infrared spec-
trum shows eventually the saturation of I(t) to a constant, with ag = —10/7.
But this is a DNS (hence of low Reynolds number, with just a dissipative
range), whereas our predictions on decay laws are based on self-similar argu-
ments of Eq. (7.83) which assume a high Reynolds number. This is why LES’
are more appropriate than DNS’ for such studies.
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7.9.3 Infrared pressure

New results on this topic are given in Lesieur et al. [427,431,556], and we
summarize them. A k? pressure spectrum was predicted by Batchelor [45] with
certain regularity assumptions on fourth-order velocity derivatives correlations
(see also Hill [284]). Concerning closures, we recall that Larchevéque [380]
has shown in three and two dimensions that the E.D.Q.N.M. and the Q.N.
approximations yield the same results for pressure. In Lesieur et al. [427],
non-local expansions of the closures yield

Eyy(k) = ( /0 = E2§q>dq> k2. (7.92)

15 q

In the LES of Ossia and Lesieur [556], this equation is recovered with a dif-
ferent constant 0.3 instead of 0.55 = 8/15, which is not bad. In fact there is
no pressure backscatter, since LES show that the coefficient in front of k2 in
the pressure spectrum decreases, due to the important time-decay of E(k;).
In the LES, the pressure-variance decays approximately as (p'?) oc t 2% law
found by Batchelor [45] using the Q.N. approximation. So the sound pressure
level of unforced three-dimensional isotropic turbulence (defined in Eq. (6.89))
decays rapidly.

7.10 Renormalization-Group techniques

The Renormalization-Group techniques (R.N.G.) were first developed with
great success in the Physics of critical phenomena, in for instance, studies
relating to nonlinear spin dynamics in ferromagnetic systems. These analysis
consider generally the dimension of space d as a variable parameter, and it
turns out that the problem can be solved for d = 4. The solutions for d = 4—e¢,
where € is a small parameter, are then expanded in powers of €, and € is taken
equal to 1 in order to recover the solution for d = 3.

Noticing certain similarities between these nonlinear spin dynamics and
Navier—Stokes equations with random forcing, Forster, Nelson and Stephen
[210] applied the R.N.G. to the latter equations. In this analysis, the dimen-
sion of space was still a variable parameter. The formalism has been adapted
by Fournier [212] to Navier—Stokes equations for a fixed dimension d, the
variable parameter becoming the exponent of the forcing spectrum in Fourier
space. It is this analysis (taken from Frisch and Fournier [223]), which will be
summarized now.
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7.10.1 R.N.G. algebra

One considers Navier—Stokes equation with a Gaussian random forcing of zero
mean, Fourier expanded both with respect to space and time.'? The velocity

field
. 1

Vilk,w) = /ﬁi(l; t)etdt

satisfies . .
(—iw + sz)V,-(k:,w) = fi(k,w)
7

P @) [ ey v, 10
p+q=Fk

A is a parameter equal to 1 for Navier—Stokes equations, but which will be
considered as small at certain stages of the R.N.G. theory.!* The forcing
spectrum, statistically stationary, is still defined by Eq. (7.28), hence

En e = () [ [EnnE )

. ; 1 P3¢ - 7
T drdr! = | B (R0 + )i + ). (7.94)
us

The following analysis will be carried out for three-dimensional isotropic tur-
bulence, where it is assumed that

F(k)

Fin (k) = 2D Py (k) P

(7.95)

(the forces have no helicity), with
F(k)=k™". (7.96)

D is a dimensional parameter which allows to vary the intensity of the forcing.
If A=0in Eq. (7.93), the solution of this Langevin equation is
V;(O) (E7 w) = GO (Ev w)fi(E7 w)
1
—iw +vk?
Eq. (7.93) (with A # 0) may be written as

Go = (7.97)

'3 Which requires that the velocity field should be statistically stationary. This is one
of the limitations of the theory, which cannot handle freely-decaying turbulence.

' Tn fact, the R.N.G. theory resembles the D.I.A. in this respect (see Leslie [432]),
and both theories can be considered in this sense as weakly nonlinear.
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Now, one looks for solutions where V' is expanded in series of the small para-
meter A:
V=vO 4 xv® L \2y@ 4. (7.99)

An easy way to generate this expansion is to substitute V given by Eq. (7.99)
into Eq. (7.98) itself. It is found

V = Gof + AGov(Gof. Gof) + 2X2Gov[v(Go f. Gof), Gof] + O(N?).

In fact, the solution may be written formally up to any order, using diagrams
built with the propagator Go(k,w) and the vertex Ay(V, V).

The above technique is used in the following way: one considers now
Eq. (7.93) on a wave-number span extending from 0 to A (Problem A). Let
Ae~! be a “cutoff wave number” (0 < I < 1), V< and V> the velocity corres-
ponding to the modes below and above the cutoff. Eq. (7.98) written for V=
and V< yield

V> = G3 7+ MGGy (VZ, V) + MGG (VS V)

+AGTA(VE, V), (7.100)
VS = G f + GGV, V) + 0G5y (V> V7)
+2AGEY(VS, V™), (7.101)

where the symbols < and > refer to modes (or interaction with modes) below
or above the cutoff. Afterwards, Eq. (7.100) is solved up to order 2 by the
same perturbation techniques as above for the Langevin equation, and the
result is substituted into Eq. (7.101) for V<. A last step is, in this equation,
to average on the terms f~, assuming that they vary on a much smaller time
scale than V< (which is in fact an assumption of separation of spatial scales
at the cutoff). The resulting equation for V< is

[—iw + v(DE)V,S (K, w) = fi(k,w) — ;Apijm(];)

/ A/dﬁdm/f(ﬁ, 2) Vs (pyw — 02), (7.102)
pa=k

with (340)
- 1 —e 0T}

D=v |1+ XH
v =v e Rmn ' T

A = ADY/2,=3/2 p=(r+3)/2 (7.103)
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1
6072
The forcing has not been modified, which may be shown to be valid for r >
—4. Notice that the non-dimensional parameter A (called by Fournier and
Frisch [214] reduced coupling constant) characterizes the relative importance
of nonlinear and viscous terms (equivalent Reynolds number).!® Thus, the
wave-number range [Ae~!, \] has been eliminated. This operation is called a
decimation. Notice that, in Eq. (7.102), terms called non-pertinent have been
discarded, not that they are negligible at this stage, but because they vanish
after an infinite number of decimations, when the cutoff wave number has
tended to 0. Hence, Eq. (7.102) is questionable for subgrid-scale modelling
purposes if the cutoff wave number Ae~! remains fixed.

Afterwards, expansions are done with respect to the small parameter € =
3+ r. Eq. (7.103) writes

H(r) 3—7).

dv <
a - VA“H, (7.104)
equivalent to
ov <. 0A
L= ANH e (7.105)

and showing the increase of viscosity on modes [0,4 — §A] due to modes
[A — 04, A]. Now, the following changes of variable are done in Eq. (7.102):

k=eko=eZw V(ko)=e XV(kw).

The wave-number span is again [0, A], and the coefficients v(l), D, \ are
changed into:
vn () = v()e? 2l An(l) = Ae™ 74,

DN(Z) _ D€3Z_2X+T+5l.

Supposing that vx (1) and Dy will remain unchanged (equal respectively to v
and D), it is found:

Z-24+NH=0;, 3Z-2X+r+5=0,

A1) = Xexp ;(r +3—-3H)\?).

5 Indeed, let Eq. (7.93) be written in physical space: the velocity will be evaluated
by assuming a balance between the forcing and the viscous damping, which yields
V ~ f/vA?. Therefore, the equivalent Reynolds number R = A\V/vA is equal to
\f/v2 A3 In order to evaluate f, one writes from Egs. (7.95) and (7.96): f? ~
DT, fOA k~"dk, where T, = 1/1//12 is the shortest time correlation time permitted
by the viscous forces. This yields R = .
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Hence we are back to the initial problem (Problem A), with the same v, D
and A but with a new parameter A(l) which satisfies

1dx  1dx 1 <
Ndl T g = olr T3 3HMN (7.106)

The process can now be iterated, letting k go to zero. Then, two cases have
to be considered: if € = r + 3 is negative,'® \(1) will tend to zero when [ — oo,
and the eventual solution for V< will be given by the Langevin equation
Eq. (7.97): the stationary spatial simultaneous spectral tensor may thus be
easily determined as

and the kinetic-energy spectrum will thus be equal to, from Eq. (7.95)
E(k) = 2DF(k)/2vk* < k=772, (7.107)

If € > 0, there will be a fixed point given by

- €
A = \/3H. (7.108)

At the fixed point, the kinetic energy spectrum E(k) o< k=™ does not vary
during one iteration. This allows us to show, taking into account the changes
of variable done, that

- 2
m:Z+r:2—)\*2H+r:1+ 3T.

In this case Eq. (7.93) may be easily integrated, yielding an exact expression
for the renormalized viscosity, as shown by Fournier and Frisch [214]:

v(A) = (3H)'/3DY3e1/3 p=¢/3, (7.109)

The corresponding asymptotic kinetic energy spectrum may be calculated by
perturbative methods from the above (A = 0) Langevin equation, since the
fixed-point value for A is O(¢), and we get (Fournier and Frisch [214]):

_ 2DF(k)

B(k) = w(k)k2

D?/3(3H) /3 /3p1=2e/3 (7.110)
Eq. (7.109) writes:

'6 The parameter ¢ employed here has of course nothing to do with the kinetic-
energy dissipation rate considered above.
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v(A) = (3H)1/26—1/2\/E51A) , (7.111)

which is independent of the forcing parameter D. This yields in particular
E(k) oc k=5/3 for F(k) o< k=1, although the convergence of the method may
be questioned, since ¢ = r + 3 = 4, which by no means may be a small
parameter. This last result has been used by Yakhot and Orszag [728] in order
to implement the R.N.G. techniques for subgrid-scale modelling purposes (see
Chapter 12). Egs. (7.110) and (7.111) yield in this case (with, from Eq. (7.103),
H =1/307?)):
E(k) = 7.336 D*/3~5/3

v(A) = 0.050\/E51A). (7.112)

Other details on R.N.G. applied to turbulence theory can be found in Frisch
[229].

7.10.2 Two-point closure and R.N.G. techniques
The k~5/3 range

We will introduce in Chapter 12 an E.D.Q.N.M. spectral eddy viscosity of the
form Eq. (7.112), but with a higher value of the numerical constant (0.267 in-
stead of 0.050). Here the small parameters remain smaller than 1, but there is
an adjustable constant a; which has to be tuned on the Kolmogorov constant.

In R.N.G. analysis as developed by Yakhot and Orszag [728] (see also
Dannevik et al. [156]), certain expansions about the fixed point show that the
kinetic energy spectrum must annul a transfer whose form is similar to the
E.D.Q.N.M. transfer given by Eqs. (7.22) and (7.20) (ur being set equal to
v(k) k2, where v(k) is the eddy-viscosity of the R.N.G. theory. This yields a
Kolmogorov spectrum, with

v(k) = 0.388\/E](€k) 7 (7.113)

result which is strongly at variance with the prediction of the original R.N.G.
theory given in Eq. (7.112). Therefore there seems to be some inconsistency
in using an E.D.Q.N.M.-type spectral equation within the R.N.G. formalism.
Afterwards, the parameter D characterizing the forcing is adjusted in such
a way that the energy flux is, for the Kolmogorov spectrum, constant and
equal to € This yields a constant value for D /€, and a Kolmogorov constant
equal to 1.617. It is however questionable to use D, fixing the intensity of
the forcing, as an adjustable parameter: indeed, D should satisfy, from the
original equations,
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A
€e=2D / k" dk,
0

where € is the kinetic-energy injection rate. When r > 1, a lower cutoff wave
number kpi, is required in order to prevent the divergence of €. For r =
1, €/ D = 21In(A/kmin) depends logarithmically on A and kpiy, and this is
certainly not a constant.

Infrared spectrum

Returning to the case of the infrared spectrum, it may be of interest to com-
pare the R.N.G. results obtained in the above case (turbulence forced up to a
cutoff A by a forcing k=" with » ~ —3, where the theory has good chances to
converge) with the two-point closure predictions. We use Eq. (7.76) to write
in the stationary case

2v + v)K2E(k) = Ak* + F(k) + O[kE(k)]? (7.114)

where A is the coefficient of the k% transfer in Eq. (7.76). As already no-
ticed, a k' infrared kinetic-energy spectrum gives a “crossover” exponent over
which non-local transfers dominate, and under which the local transfers are
preponderant. Contrary to the R.N.G., two-point closures may consider wide
variations of r. They yield:

o (i) for r < —4,E(k) = (A/v;)k?® (which justifies discarding the local
transfer), result already mentioned above.

e (ii) for —4 < r < —3, the non-local eddy-viscous term is still greater
than the local transfer, and is balanced by the forcing: one has E(k) oc k—"2.

e (iii) for » > —3, the local term balances the forcing, which yields E(k) o<
k—1=(2r/3) These two results are in agreement with the R.N.G. predictions.

It turns out that the R.N.G. method seems to handle correctly the isotropic
forced turbulence in the infrared limit & — 0, with a forcing exponent r >
—4. However, there are severe convergence problems if one wants to describe
the dynamics of the Kolmogorov inertial range. Furthermore, the method is
unable to capture both the infrared and ultraviolet dynamics, and cannot be
implemented if there is no forcing, unless an E.D.Q.N.M.-type equation is
associated to the theory. Remarking also that it seems difficult to apply it
to inhomogeneous problems, we will conclude that two-point closure are tools
which are much more controllable, and offer a much wider range of possibilities
than the R.N.G., even for subgrid-scale modelling purposes.
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7.11 E.D.Q.N.M. isotropic passive scalar

In this section we show how to apply the E.D.Q.N.M. closure to the statist-
ically homogeneous scalar, and will look on singular behaviour accompanying
the catastrophic stretching of vortex filaments described above.

The E.D.Q.N.M. approximation can easily be derived for the passive scalar
(Herring et al. [280], Larchevéque et al. [377], Larchevéque [378], Larchevéque
and Lesieur [379]). With the same symbolic notation as Section 7.1, one can
write:

oT'(k . P
ai ) _ Ta — kk*T (k);
0PI, 1) = (P7a) — sk + k)T 0T, 1):

o BT @) = (TTia)

~ k(K + p%) + v T ()T (P)(@),

and the same Quasi-Normal type approximations as for the velocity moments
hierarchy can be made. Since the calculation is simpler than for the kinetic
energy spectrum equation, we will derive it in detail: let us write the temper-
ature equation in Fourier space for two wave vectors k and &’

(gt + W) T(k,t) = —i/aj(ﬁ, g T(7,t)0(k — p— Q)dpdg, — (7.115)

(g 4o ) 200 = i [ 0T 08 ~f = F)aitar’. (r.110

Multiplying Eq. (7.115) by T'(k’,t) and Eq. (7.116) by T'(k,t), adding and
averaging yields

{gt + k(2 + k'Q)} (T(K )T (k,t)) =
~i [ T @) - 5~ dagig
—i/qZ<T(/5)T(ci')ﬂz(ﬁ)>5(E’ —p —q)dp'dq . (7.117)
We also need the time evolution equation for @(k, ) :

(gt + uk”z) G (K1) = —ikn" P (K"
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/ﬁn(ﬁ”, g (q", )0 — p" — §")dp"d". (7.118)

From Egs. (7.115), (7.116) and (7.118), one can form the equation for the
triple correlation (T'T'4) :

{gt + (k2 + K%) + vk | (D (R 0T, )i (B 1)) =

—z’ / o (LB YE (@) (7)o (F))(F — — §)djidy

—

m (KSR — ' = q')dp'dq

|
~.
R
&
—~
~
—~
ol
S—
~»
N
S—
>
o
—~
S
=

—~ikn" Pra (k") / (T(RYT (K it (7" Vita (@ )K" — p" — §")dp"dg".  (7.119)
We are now in a situation to apply the Quasi-Normal approximation. As

already emphasized, the temperature-velocity correlations are zero, and the
Quasi-Normal expression of Eq. (7.119) becomes

{ gt + Rk + K7) + vk | (T (R 0Tk, )i (K 1))

Er(k',t) ~ =

omk’?
. ET(kvt) 2 i A/
c cm , . 12
+ik o k2 Uen (K", t)0(k + K" + E") (7.120)

We solve Eq. (7.120) for the triple correlation (1'T'a), substitute in Eq. (7.117),
integrate on k', and obtain finally

t
( o, 2%2) B(k,t) = 2/ dﬁ/ drkyk;
ot pra=k  Jo

Ui (7.7)[B(5, 7) — Bk, 7)]e Ik +p7)+valt=r) (7.121)

where &(k,t) = Ep(k,t)/2mk? is the equivalent of the spectral tensor for the

temperature (cf. Eq. (5.91)). As seen in Chapter 5, (k, ) is the spatial Fourier
transform'” of the temperature spatial correlation.

&7, t) = (T(Z,6)T (X + 7, 1)).

17 Because of the isotropy assumption, qﬁ(i?, t) does not depend on the orientation
of k.
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If linear damping rates had been introduced to model the action of discarded
fourth-order cumulants, the E.D.Q.N. approximation for the temperature
equation would be obtained from Eq. (7.121) by replacing the exponential

term by
e*[K(k2+p2)+M'(k)+H'(P)+Vq2+M”(Q)] (lﬁ*"')7 (7.122)

where p/(k) and p”’(k) are two functions of same structure as the triple-
velocity correlation relaxation rate gy introduced in Eq. (7.17), but with
possibly different constants, that is

1/2

k
e = ay (/0 p*E(p, t)dp> (7.123)

. 1/2
1 (k) = az (/0 P*E(p, t)dp> (7.124)

. 1/2
p' (k) = a3 </0 sz(pvt)dp> : (7.125)

Then the Markovianization yields the E.D.Q.N.M. equation for @(k, t):

d - _
(at + 2%2) D(k,t) = 2[  dpkek;iOip
p+a=Fk

Ui (7, 1) [@(P, t) — (K, )], (7.126)

with

o7 1 — e [w(kR2+p?) 4’ (k) +1 (p)Fva® +1" ()]t

P (K2 p2) + pl (R) + 1 (p) + va? + 1 (q)
The choice of the new adjustable constants as and a3 in Eqgs. (7.124) and
(7.125) is not simple. We recall that a; =~ 0.218C§(/2. It has been shown by
Herring et al. [280] that a given value of the “Corrsin-Oboukhov constant”
arising in the r.h.s. of Eq. (6.107) (here taken equal to 0.67 from experimental
measurements of Champagne et al. [105]), imposes a certain one to one cor-
respondence between as and as. The last condition, allowing to determine
az and agz, comes from considerations on the “turbulent Prandtl number”,
defined in the following way: it will be shown soon that an eddy conductivity
k¢ of the same genre as the eddy viscosity vy defined in Eq. (7.77) can be
introduced. For kinetic-energy spectra following Kolmogorov’s law above k;,
the turbulent Prandtl number v;/k; is equal to (az + as)/6a1, as shown in
Larchevéque and Lesieur [379] (see also Herring et al. [280], Chollet [118], and
Section 7.12 of the present chapter). It is then possible to express this number

(7.127)
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in function of az/ag only, in such a way that the Corrsin-Oboukhov constant
should be fixed to the value given above. This leads to a turbulent Prandtl
number decreasing continuously from 0.6 to 0.325 for az/as going from zero
to infinity. Since the values of turbulent Prandtl numbers found experiment-
ally in the boundary layer are in the range 0.6 ~ 0.8 (see e.g. Fulachier and
Dumas [233]), this could lead to the choice az = 0 (and hence a3 = 1.3, from
Herring et al. [280]). One could object that the analogy between both theoret-
ical and experimental turbulent Prandtl numbers is not obvious. Nevertheless
the choice ag = 0 has the further advantage of allowing analytical resolutions
of the E.D.Q.N.M. temperature spectral equation. It has to be stressed that
the simpler choice as = ag = a; gives the same Corrsin—-Oboukhov constant
and a turbulent Prandtl number of 0.35. As shown by Herring et al. [280],
both choices support a very good comparison with atmospheric kinetic en-
ergy and temperature spectra reported in Champagne et al. [105]. Eq. (7.126)
can immediately be written for the temperature spectrum, if one remarks that

/dﬁ:/ dp dg2rP?
Ap k

and, from Eq. (5.84)

E(q,t)

koky Oy (3.0) = K21 =) )

This shows that the helicity has no direct influence on the scalar spectrum.
The resulting equation is

o Erttn) = [ dp dupl, * (1~ GO Er ) -1 Er (k)

—26k?Er (k,t). (7.128)

The generalization of this equation to a Test-Field Model study of the passive
scalar may be found in Newman and Herring [532].

7.11.1 A simplified E.D.Q.N.M. model

With the choice a; = 0,67 is equal to a function QQT, and Eq. (7.128) can be
easily written in physical space with the aid of an inverse Fourier transform
(Larchevéque and Lesieur [378]): indeed, the inverse Fourier transform of the

convolution
[ oo

is



288 7 Analytical Theories and Stochastic Models

[ o ts@eagem,
and the inverse Fourier transform of
[orow@aias= [ o7t @an)
is
/ 67 Uy (0)dqd ().

Then, by introducing the generalized turbulent diffusion tensor
Kij(7,t) = Q/QqTUij (7, t)(1 — T7)dqg, (7.129)

it is possible to write Eq. (7.126) as a diffusion equation for the spatial tem-
perature covariance @(r, t) :
0 &(r,t) = o (K (7, )@ (r, )] + 26V2B(r, t) (7.130)
ot or;or; -~ 77 ’ T '
This equation has close analogies with an equation obtained by Kraichnan
[349] using the Lagrangian History Direct Interation techniques, and widely
discussed by Leslie [432]. It is also of interest for the determination of the
p.d.f.’s in turbulent reacting flows (Eswaran and O’Brien [188]).

Then it is shown in Larchevéque and Lesieur [378], following Kraichnan
[349], that the isotropy and zero-divergence of K;;(,t) allow us to introduce
a scalar K, (r,t) such that Eq. (7.130) reduces to

0

_ =2
6t€15(r, t)y=r

0 O(r,t)| +26V2D(r,t). (7.131)
,

9| 2
" T K//(T’,t)a

0

The turbulent diffusion coefficient K,,(r,t), which is a function of 05 and
E(q,t), is equal to

K )(r,t) = 0.696a3 'C}/ /343 (7.132)

if one assumes that the wave number r~! lies in an extended k—%/3 kinetic
energy inertial range, with 05 = u"(g)~'. Without molecular conductivity,
this has dimensional analogies with Richardson’s equation Eq. (6.59), where
the spatial correlation of a marker was considered.

Egs. (7.131) and (7.132) can then be solved, using self-similarity argu-
ments, giving in particular information on the decay law of temperature vari-
ance. This will be looked at in Section 7.13 when considering the dispersion
of pairs of Lagrangian tracers.



Turbulence in Fluids 289
7.11.2 E.D.Q.N.M. scalar-enstrophy blow up

We end this section with a study paralleling the enstrophy divergence study
done above in this chapter, and showing how the E.D.Q.N.M. closure predicts
that this enstrophy divergence at a finite time ¢, (in the limit of zero viscosity)
will imply a blow up of the scalar enstrophy appearing in Eq. (6.20): from
Eq. (7.128), after multiplication by k% and integration from k = 0 to oo, one
obtains, using the same techniques as above

+oo  ptoo +1
Dr(t) = /0 /0 67 24> E(q) Er (p)dpdg / (1 - 22)da

-1

d
dt

+o00
—2K / k*Er(k, t)dk, (7.133)
0

where the time Qgpq

w”(g)~t. This yields

has again been approximated by 9:{, itself taken equal to

d

“+o00
*Dr(t) = iagDT(t)D(t)l/Q py / K Br (k, t)dk. (7.134)
0
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Figure 7.12. Time-evolution (at an initial Reynolds number of Ry, ) = 40,000
and a Prandtl number of one) of the velocity and temperature (called here ©)
enstrophies in an E.D.Q.N.M. initial-value problem where the initial temperature
and velocity fluctuations are confined in the same large scales; (b) time-evolution
of the velocity and temperature variances in the same calculation. (from Lesieur et
al. [419], courtesy Physics of Fluids).
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We assume first a perfect flow with no molecular diffusive effects (and
hence v = k = 0) and suppose that, initially, the energy spectrum and the
temperature spectrum decrease rapidly (for instance exponentially) for & >
ki =~ kI. Therefore the temperature enstrophy will diverge together with the
enstrophy and at the same time t.. The M.R.C.M. equation equivalent to
Eq. (7.134) is

d

dt
and gives qualitatively the same result. Physically, one can say that the cata-
strophic stretching of vortex filaments by turbulence will at the same time
steepen the temperature gradients in the fluid, leading to singularities which
occur at the same time t. at which the velocity gradients become singular.'®
More precisely, the M.R.C.M. enstrophies are, from Egs. (7.56) and (7.135):

Dr(t) = g&ODT(t)D(tL (7.135)

D(t) < (te — )™ Dp(t) o< (te —t) 72, (7.136)

which shows that the scalar enstrophy diverges at t. faster than the velocity
enstrophy. The same tendency may be obtained with the E.D.Q.N.M. (non-
diffusive) scalar equation 7.134, where the constant-skewness model prediction
Eq. (6.79) has been used for the velocity. It is easily found

Dr(t) o (te — t)~(8/Dastey/D(O) (7.137)

and the critical exponent of the divergence is of the order of 19 (with az = 1.3
and t, = 5.6D(0)~'/2), which is huge compared with the (. —t)~2 divergence
of the velocity enstrophy. Therefore, it is expected that the temperature will
cascade faster than the velocity towards small scales, due certainly to the fact
that there is no pressure term in the scalar equation, and hence the scalar
will directly react to the velocity gradients. The velocity, on the contrary will
have to satisfy the incompressibility condition, and hence redistribute among
its three components and throughout the fluid, with the aid of the pressure.
Remark that we have mentioned in Chapter 6 the same physical arguments
in order to explain the “anomalous” k~! range found for the scalar.

A numerical resolution of the E.D.Q.N.M. temperature spectral equation
(including viscous and conductive effects) is possible, using the same meth-
ods as for the kinetic-energy spectrum. Again the problem arises of the non-
local interactions modelling, which will be developed in the next section. Fig-
ure 7.12a, taken from Lesieur et al. [419], shows the evolution in time of both
enstrophies (velocity and temperature) for an unforced calculation done in
the same conditions as in Figures 7.3 and 7.4, for an initial Reynolds num-
ber Ry, ) = v(0)/vk;(0) = 40,000, a Prandtl number of 1, and az = 0. One

18 A similar result has been predicted by Falkovich and Shafarenko [191] in a study
of weakly-interacting acoustic waves.
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Figure 7.13. Time-evolution of the temperature spectra in the same calculation as
in Figure 7.12, showing the appearance of the inertial-convective range. Temperature
is called © (from Lesieur et al. [419)]).

can see the overshoot of both quantities at t. ~ 5/vok;(0), with a faster di-
vergence of the temperature enstrophy, in agreement with the above Euler
flow considerations. Since v and k are small but not zero, D and Dp will
saturate at values of the order of respectively e¢/v and er/k. The velocity
and temperature variance decay is shown in Figure 7.12b: the passive scalar
follows approximately the asymptotic tendency of the kinetic energy, that is
no dissipation before ¢, and a finite dissipation e after t,. We recall that
er = 2kDr(t), and hence the temperature enstrophy is finite (for kK — 0)
for t < t, and infinite for ¢t > t,, in good agreement with the analytical cal-
culations already made. Notice however that the temperature-variance starts
being dissipated appreciably sooner than the kinetic energy (4 instead of 5).
This is due to the fact that the temperature enstrophy diverges faster than
the velocity enstrophy at the critical time.

7.11.3 Inertial-convective and viscous-convective ranges

Figure 7.13 (from Lesieur et al. [419]) shows in this E.D.Q.N.M. calculation
the evolution with time of the temperature spectrum, which is initially oc k*
at low k. One observes the following stages:
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o for ¢t < t,, Ep(k,t) is rapidly decreasing at large k

e at t = t, a k~°/3 inertial-convective range establishes (in fact, the slope
is closer to k=3/2 than k=5/3).

e for ¢ > t,, the spectrum will decay self-similarly, as will be explained in
the next section.

In this calculation, the build up of the inertial-convective range is more
rapid than the Kolmogorov cascade for the kinetic energy, since the latter
establishes between 5 and 6 unit of time 1/vpk;(0) (compare Figures 7.13 and
7.3). This specifies how temperature cascades faster than the velocity to high
k. But, for a perfect fluid, this is not in contradiction with the possibility
of forming simultaneously at ¢, infinite ultra-violet k—%/3 kinetic-energy and
temperature spectra.

We remark that the scalar spectra of Figure 7.13 seem to display a bump
at high &k before the conductive range.

In fact, if the conductivity is increased with respect to the viscosity,
this phenomenon of faster scalar cascade may be inhibited, as shown in the
E.D.Q.N.M. calculation of Lesieur et al. [419] at a Prandtl number P, = 0.1,
where the velocity enstrophy now grows faster than the temperature en-
strophy. This calculation shows also the appearance of a scalar spectrum close
to the k~17/3 inertial-conductive range. In the same reference, a calculation
at P, = 10 shows unambiguously the formation of both the k~%/3 inertial-
convective range and the k~! viscous-convective range. The existence of the
latter can be derived analytically, as shown in the next section.

At this point, we go back to the already quoted LES of isotropic decaying
turbulence performed by Lesieur and Rogallo [421]. As stressed in Chapter
6, and when applied to the passive scalar, they show at Prandtl number one
the establishment in the energy-containing eddies range of a scalar spectrum
following approximately a k~' law. In this calculation, the enstrophy reaches
a maximum at about ¢ = 4/vgk;(0), corresponding to the appearance of
a Kolmogorov cascade at high wave numbers. Meanwhile, the temperature
enstrophy reaches its maximum at 2.4/vgk;(0), corresponding to a much faster
ultra-violet cascade of scalar. This is qualitatively in agreement with what was
observed above for the closures, except for the exponent of the scalar spectrum
(—1 instead of —1.5).

7.12 Decay of temperature fluctuations

Once the temperature variance is dissipated at a finite rate, one can wonder
about the existence of asymptotic (when v and k go to zero) temperature
decay laws, and look for an exponent ap such that

) (T(&,t)%) o t™OT. (7.138)
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7.12.1 Phenomenology

The problem depends in fact on the relative initial location of the temper-
ature and velocity integral scales, as was shown experimentally by Warhaft
and Lumley [712].1% An analytical study of this problem will be given here,
based both on the phenomenology and on the E.D.Q.N.M. theory. It will try
to explain some of the anomalous decay results found in the above quoted ex-
periments: we will carry out the study in two cases: we assume first that both
temperature and velocity scales are of the same order, and second, that the
temperature is initially injected in scales much smaller than the velocity. Such
a study has important practical applications, for its results are generally used
to fix some of the adjustable coefficients in the so-called “one-point closure”
modelling methods employed for engineering purposes.

Non-local interactions theory for the scalar

We first need to write down the non-local temperature fluxes and transfers,
in the same way as for the kinetic energy above: the nonlinear temperature
transfer term in the r.h.s. of Eq. (7.128) can be symmetrized with respect to
p and ¢, under the form ffAk dpdqSt(k,p,q), with Sr(k,p,q) = Sr(k,q,p).
Then we expand (kq/p)St(k,p,q) [or (kp/q)St(k,p,q)] with respect to the
small parameter ¢/k (or k/p). To the first order with respect to the small
parameter, we have without expanding 6:

(a) For ¢ < k:
p=k—qy; p*>=k*—2kqy;
OF OET

E(p)=E(k) —ay 5 5 Erp)=Er(k) —ay o
k 1
o S1hp. ) = 00, (1= 47?)
BET 2 q4
ko {2 K0T L B+ P Br@ B0 - 1 Er(9E®)] (139
and since
1 1 ) 1 1 1 ) 2
o [ a-wta= i [ [Ty yta=

the non-local temperature flux 7717\}2 writes

19 In these experiments, another important parameter is the grid heating intensity.
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oF
ikt = / Ghaad B(a)da |20 (h) ~ 1207

1
+ / 05 d° Er(q)dgE (k)

/ A0 22’@ (7.140)

q=p—kz ¢ =p®—2kpz;

OF OET
. Br(q) = Er(p) — :
T(q) = Er(p) — k2 op

kqpsTUmp,q) akppk2< 1~ AREW)Er(p) - PE@)Er(k)]  (7.141)

and since fol(l — 2%)dz = 2/3, the non-local temperature flux 7% is

4 k o0
7h(k,t) = — / K Er(k')dk' / 6%, E(p)dp
3 0 sup(k,k’ /a)
4 [k, > E(p
+5 / K dk / O (Q)ET(p)dp (7.142)
0 sup(k,k’/a) p

The first term in the r.h.s. of Eq. (7.140) corresponds to interactions respons-
ible for the k~! viscous-convective range, since the corresponding flux is con-
stant for such a spectrum. More precisely one may write in this range from this
equation (see also Kraichnan [352], Newman and Herring [532], and Herring
et al. [280]):

1 0 E(k)
15 0k k2

( )dgq

+oo
P 15/
\/fo dp+uq

calculated assuming ao = 0. This yields

er R — Py

with

Er(k) = Cper (Z)I/Q kL

to be compared with Eq. (6.120). Cp is the Batchelor constant

]_ € 1/2
Cp = 3P, (y) :
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which can be checked to be a constant by assuming a kinetic-energy spectrum
of the form Eq. (6.69).

Otherwise, the interesting non-local temperature transfers as far as the
infrared dynamics is concerned come from Eq. (7.142): when k < kI, and
taking a = k/kI’, it yields a non-local temperature transfer equal to (to the
lowest order)

4 o0
TEL(kvt) = _3k2ET(k) L agppE(p)dp
4.4 [, ED)
+3k o Oopp 2 Er(p)dp. (7.143)

This allows us to define an eddy diffusivity in spectral space, analogous to the
eddy viscosity Eq. (7.77), and equal to

2 oo

3 00, E()dp. (7.144)
KT

Ry =

If one takes k; = k;ﬁ and a schematic energy spectrum equal to zero for k < k;
and to k=53 for k > k;, with the asymptotic values (neglecting the time
exponential contribution) for 6 and 67, it is easy to check that the turbulent
Prandtl number v;/k; is equal to (as + as)/6a1, as mentioned above.

The second term of the r.h.s. of Eq. (7.143) is responsible for a positive k*
temperature transfer. It is a temperature backscatter, and the same remarks
as for the k* kinetic-energy backscatter can be applied: if in particular the
temperature spectrum is stationary, due to an external thermal forcing acting
at the fixed wave number k!, the temperature spectrum will be (for k < kI')
a k2 equipartition spectrum resulting from a balance between the temperature
backscatter and the eddy diffusivity.

Self-similar decay

The study of the temperature decay will be made assuming that the kinetic-
energy spectrum decays self-similarly according to the law equation (7.83),
the kinetic energy and the integral scale following power laws of time given
by Egs. (7.87) and (7.88). We remind relations (7.86) to (7.89).

Firstly the temperature integral scale Ir is evaluated as shown below: we
calculate the temperature dissipation rate e7 as the ratio of the temperature
variance (T?) divided by a characteristic dynamical time at scales of order
7. This local time at lp is {7 /v, where vy is a velocity characteristic of the
eddies of size 7, that is (el7)'/3. This yields>

20 This assumes however that Iz is in the kinetic energy spectrum k=3 inertial

range, which will not be valid if I > [. The latter case has been looked at in
Herring et al. [280].
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er = (T2>61/3l;2/3. (7.145)

In fact, Egs. (7.83) and (7.145) should express only a proportionality as far as
integral scales are concerned. We have chosen to consider them as equalities,
which defines precisely here the velocity and temperature integral scales [ and
I7. This scale is of the order of (kI')~!, wave number where the temperature
spectrum peaks. Eq. (7.145) will be valid even in the case where I < I . As
stressed above, it has no physical significance when | < lp: indeed, the local
dynamical time at I7 will be Ir/v, and Eq. (7.145) will have to be replaced
by

ep = (T%)e'/3172/3 ! . (7.146)
T

We also assume, however small I1/1, that Ep(k,t) is given by
Er(k,t) = Cooere Y3k/3 for k > kI'(t) (7.147)
Ep(k,t) = Co (K for k < kX (t). (7.148)

The justification of Eq. (7.147) comes from an inertial-convective range as-
sumption for the temperature spectrum.?! Matching Eqs. (7.147) and (7.148)
for k = kI ~ l;l yields, using Eq. (7.145)

Cu(t) = (TS T (7.149)

The same reasoning as above for kinetic energy leads to, using Eq. (7.143)

dCy (t
Co () =0 fors <4 (7.150)
dt
d s’ 4 e _ E
¢ ()N/ P’ E(p)] (p)ET(p)dp for s’ =4 (7.151)
dt kT p?
and hence,?? from Eq. (7.147)
dC;,t(t) ~erly for s’ =4. (7.152)

All these relations are general for any I/l < 1. A last interesting relation can
be easily derived (for s’ < 4), i.e. (Lesieur et al. [419])

d
T~ /3133 (7.153)

21 A similar analysis has been carried out by Métais and Lesieur [492] for the error
spectrum in the predictability problem; it will be presented in Chapter 11.

22 The constant of proportionality in Eq. (7.151) has not been expressed, but is not
needed for the present analysis.
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which shows that Ir satisfies a Richardson-type law analogous to Eq. (6.55),
but with possibly a different numerical constant.

Looking then for time power law solutions ¢t =7 and t“'r respectively for
the temperature variance and integral scale, Eq. (7.153) yields

29 5)

) (7.154)

alT =1-

which, from Eq. (7.89), indicates that a; and «y,. are equal. This, together
with Egs. (7.149), (7.150) and (7.152), gives

s +1

ar = (s +1)a —+' = ot 3 2+7)—7 (7.155)

with Cy (t) o< t7' (7' = 0 for s’ < 4), as predicted in Larchevéque et al. [377]

and Herring et al. [280]. When s = s’ = 4,4’ has been found numerically with

the aid of the E.D.Q.N.M. to be equal to 0.06 (Chollet [118]). Thus, in this

case, ar = 1.48, in good agreement with the value of 1.5 found in Larchevéque

et al. [377]. Chasnov [112] has reconsidered all these various laws using LES at

very large times. The latter suffer however from a lack of infrared resolution

due to backscatter effects.
In fact, these time power laws are not compatible with any value of the
ratio I7/l: indeed, let us write the equivalent expression of Eq. (7.145) for the

velocit
' e =v2et/31723 (7.156)

which has been used as a definition of [ as well. Eq. (7.156) shows that

ap = Qt; = 2te/3172/3,

In the same way Eq. (7.145) allows us to define an “instantaneous” temperat-
ure variance decay exponent o/, such that the temperature variance should

locally be tangent to a t—or law, with

o €T 1/3;—2/3
ofp =2t 2y = 2tel /31,77 (7.157)
Egs. (7.156) and (7.157) show that
2/3
o l
= = . 7.158
== () (7.158)

In Eq. (7.158), o/r/ag can also be interpreted as the velocity and scalar
time scales ratio. This expression is from Corrsin [146]. With the particular
definitions taken here for lp and I, Eq. (7.158) is always valid (for I > Ir)
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with a numerical constant equal to one, and even with a moderate Reynolds
number. One may wonder how this relationship is modified with the classical
definitions of the integral scales. It is claimed in Herring et al. [280], from
a high Reynolds number E.D.Q.N.M. calculation (I > Ir), that a numerical
constant of 1.63 has then to be introduced in front of the r.h.s. of Eq. (7.158).
The same work stresses that, at a moderate Reynolds number, r is equal to
[/lr (even in the case [ < lr), a law which can immediately be derived from
Eq. (7.146) in this latter case. This agrees well with the experiment carried
out by Sreenivasan et al. [665].

When the temperature follows an actual time power law, o/ is equal to ar,
and given by Eq. (7.155). This implies from Eq. (7.158) that one can have a
time power law dependence only when [/l1 has the particular value predicted
by Egs. (7.155) and (7.85). This value depends on s and s’, but in any case is
very close to one. This demonstrates the point that the temperature variance
decays as a power of time only if the temperature and velocity integral scales
are of the same order.

Anomalous temperature decay

If I7 is initially much smaller than I, Eq. (7.158) shows that the apparent
temperature time decay exponent o/, is much greater than o, which might
explain the anomalous temperature decay exponents found experimentally
in this case by Warhaft and Lumley [712]. It has been shown in Lesieur et
al. [419], using the above phenomenology, that the detailed time-evolution
of the temperature variance and integral scales can be obtained analytically
with these particular initial conditions. This analysis, which is an extension
to an arbitrary ks temperature spectrum (when k& — 0) of an analysis done
by Nelkin and Kerr [530] in the case s’ = 2, is based on the integration of the
Richardson equation (7.153). It is found

I (t) = (O‘E>3/2 () |1+ B <tt )20”/31 " 7 (7.159)

ar 0

where B is a negative constant, such that

o]

and initially &~ —1. Therefore {7/l increases with time. Hence {7 (¢) is going
to grow and asymptotically (for ¢ going to infinity) catch up with the time
power law solution described above. Following Eq. (7.158) the instantaneous
temperature decay exponent will decrease with time and eventually reach the

B=-1+

b
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asymptotic value ar given by Eq. (7.155). We again emphasize that these
asymptotic values are fixed by the spectral exponents s and s’ for k — 0, and
impose a particular ratio for I /lp. If [ /i1 is initially larger than this asymptotic
ratio, it will decrease to it, and so will the temperature decay exponent. The
temperature variance decays as (Lesieur et al. [419])

t QQI,)/s —SaT/Zal
(T?) x | B+ <t ) 1 . (7.160)
0
This is equivalent to
(T?) o 1727/, (7.161)

In the case s’ = 2 one recovers the above quoted results of Nelkin and Kerr
[530]. Notice finally that expansions of Egs. (7.160) and (7.161) for short times
(t - t()) yield

Ip(t) o (t — to)%/2.

Hence, the temperature integral scale will see its instantaneous growth expo-
nent increase from 3/2 at short times to a; at high times.?? If one accepts to
associate the mean thermal wake dp of a line source with I7 (see next sec-
tion), this may be compared with the experimental findings of Warhaft [713]
and Stapountzis et al. [667], who find a o7 o (t — tp) “turbulent-convective”
range, and at higher times dr oc (¢ — t9)?3* “turbulent-diffusive” range. To
illustrate these results, Figure 7.14 (taken from Lesieur et al. [419]) shows
the evolution of kinetic-energy and temperature spectra in a high Reynolds
number E.D.Q.N.M. calculation where the initial ratio [(0)/Ir(0) = 70. Here
s = s’ = 4. One sees the rapid increase of I which tends to catch up with [.
In this calculation the tangential temperature decay exponent goes from an
initial value of 20 to a value of 3.5, after which the calculation is no longer
significant since there remains a negligible amount of temperature variance. It
is nevertheless to be expected that a calculation performed with k~5/3 ranges
extending to infinity would eventually yield a value of o/ equal to ar. In this
calculation, as well as in Herring et al.’s [280] results, the temperature integral
scale does satisfy the Richardson law when I < [. One may also notice in the
calculation of Figure 7.14 that the temperature spectrum develops initially a
range close to k™!, as in Figure 6.12, and then eventually reorganizes towards
a k~°/3 inertial-convective range.

7.12.2 Experimental temperature decay data

The next results concern moderate Reynolds numbers: Figure 7.15, taken from
Warhaft and Lumley [712], shows the time evolution of the kinetic energy and

23 The same behaviour will be found for the “error-length” characterizing the de-
correlation front in the predictability problem (see Chapter 11).
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072

10

Figure 7.14. Same calculation as in Figure 7.12 for the kinetic-energy spectrum,
but with an initial temperature integral scale 70 times smaller than the velocity
integral scale. Temperature is called © (from Lesieur et al. [419]).
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Figure 7.15. (a) Kinetic-energy and (b) temperature spectra at three locations
dowstream of the grid in the experiment by Warhaft and Lumley [712], when Ip =~ [
initially. M is the grid mesh (courtesy J. Fluid Mech.).
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temperature spectra in a heated-grid turbulence experiment at a Reynolds
number vgl/v of the order of 150. Here, and since the grid is heated, the tem-
perature fluctuations are produced initially in the same scales as the velocity
fluctuations. It is not surprising therefore, from the point of view of the above
phenomenology, that the temperature decay exponent is found to be of same
order (ar = 1.41) as the kinetic energy exponent?? (ap = 1.34). At this
moderate Reynolds number, a scalar range of slope —3/2 appears, although
no inertial range is apparent for the corresponding kinetic energy spectrum.
This point had already been noted by Yeh and Van Atta [732] from heated-
grid turbulence experiments,?® and could be due to the direct shearing of the
scalar by the large-scale velocity gradients already mentioned in the theory
leading to Eq. (6.140).

When the temperature is injected at scales such that initially I/l = 1/2,
the experimental temperature decay exponent (averaged during the exper-
iment) is found to be 3.2, in good agreement with another experiment of
Sreenivasan et al. [665]. Figure 7.16, from Lesieur et al. [419], shows an
E.D.Q.N.M. calculation under conditions close to these experiments: the kin-
etic energy decreases as t~'32, and the temperature variance as t~34°. One
can also see the velocity enstrophy peak at the time when the kinetic energy
starts being dissipated. It is quite remarkable to see how well the E.D.Q.N.M.
theory fits the experiment in this “two-scale” (velocity and temperature) prob-
lem. It also seems that this moderate Reynolds number situation is widely
influenced by the high Reynolds number theoretical predictions. As checked
in the same reference, the spectra start building short £~5/3 inertial ranges.

7.12.3 Discussion of LES results

In Lesieur and Rogallo’s [421] LES starting with identical rapidly decreasing
velocity and temperature spectra, the ratio k! /k; of the respective peaks of
the temperature and kinetic energy spectra has shifted from 1 initially to
0.64 at the end of the run, with a temperature decay exponent ar = 3 of
the order of twice the velocity decay exponent ag. In the LES of Lesieur et
al. [422], done with different initial conditions, one gets at the end of the run
kZT/kZ = 0.56,ap = 1.37 and ar = 1.85. In these two cases however, where
the temperature spectra are close to k~! up to the cutoff wave number k., an
appreciable part of the temperature variance may have shifted to the subgrid
scales: hence, the calculated temperature variance decay rate (corresponding
to the explicit scales) may just be the signature of the fast scalar transfer

24 In a more recent experiment, Warhaft [713] shows some anisotropic effects in the
kinetic-energy decay: the longitudinal velocity energy decays as t~14°, and the
transverse velocity energy as 11382,

* With ar = 1.33.
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Figure 7.16. Time evolution of the kinetic energy, velocity enstrophy and temper-
ature variance in an E.D.Q.N.M. moderate Reynolds number calculation (R, o) =
140), where I7(0)/1(0) = 0.4 (from Lesieur et al. [419]).

towards subgrid scales, the total?® temperature variance decaying at rates
more comparable with the E.D.Q.N.M. and the experimental predictions.

How then can we reconcile the E.D.Q.N.M., L.E.S and experimental res-
ults? The faster temperature transfer towards small scales, due to the lack
of pressure term in the passive scalar equation, seems to be well observed
in both E.D.Q.N.M. and LES calculations, if the scalar is injected in the
energy-containing range or in the inertial range. This may produce tran-
sient scalar spectra determined by the larger-scale eddies deformation. As
already stressed, it is possible that these are transient effects, and that, at
high Reynolds and Peclet numbers, the temperature will eventually cascade
following the Corrsin—Oboukhov inertial-convective range.

7.12.4 Diffusion in stationary turbulence

Finally, it is of interest to look at the case where the kinetic energy spectrum
is maintained stationary by external forces, while the temperature is decaying.
We use the above phenomenological theory, where the Richardson law equa-
tion (7.153) is still valid, but things are simpler since € is now a constant. For
large times, I is proportional to (et3)'/2. Eq. (7.149) is also valid, with the
same distinction between the cases s’ < 4 (where dCy (t)/dt = 0) and s’ =4 .
So for s’ < 4 the temperature variance decays, for large times, proportionally

26 Calculated on the whole temperature spectrum from k = 0 to k = oo.
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to (et®)=36"+1)/2 1If for instance s’ = 2, the temperature decay exponent is
—9/2, as will be retrieved in the next section using another method.

7.13 Lagrangian particle pair dispersion

Up to now we have mainly examined the statistics of a homogeneous passive
scalar. But situations closer to reality are often the case when the scalar
is locally injected in the homogeneous turbulent field, and then spreads out
under the action of turbulent diffusion. It is, for instance, of interest to predict
the evolution in time of the average size of a cloud of chemical or radioactive
contaminant accidentally released in atmospheric turbulence.?”

The formalism of the Lagrangian tracers pair relative dispersion problem
allows us to give a first answer to these questions: let R(tg) be a properly
defined average diameter of the cloud at a given time ty, and consider an
ensemble of pairs of particles a distance R(ty) apart, randomly distributed
and oriented in space. It is reasonable to accept the idea that the subsequent
mean dispersion in time of the Lagrangian tracers pairs will give information
on the spreading of the cloud. More precisely, one arbitrarily associates the
pair separation variance R(t) to the diameter of the cloud. Such an analogy
does not take into account the influence of molecular diffusion, and will be
valid only for isotropic turbulence.

The homogeneous formulation of the pair dispersion problem has been
given by Batchelor [46], and the problem has been studied with the aid of
various statistical theories by Roberts [607] using D.I.A., Kraichnan [348]
using L.H.D.I.A., Larchevéque and Lesieur [379] using E.D.Q.N.M., and Lun-
dgren [459]. The p.d.f. P(¥,t) that the two Lagrangian tracers of a pair are
separated by the vector 7 can easily be shown to be equal to

P(7t) = (T(Z + 7, )T (Z, 1)) — 8(7), (7.162)

where T'(Z,t) is a homogeneous passive scalar field. It is easy to show that
P(7,t) satisfies the same equation as @(7, t), the spatial correlation of T'. The
normalization conditions satisfied by P(7,t) impose

/ P(Ft)dF = 1 (7.163)

and the pair separation variance is

2T When the pollutant has reached scales of several kilometers, atmospheric turbu-
lence is no longer isotropic, and such a study is beyond the present chapter. Other
practical applications of turbulent diffusion in complex flows may be found in
Hunt [305]. Diffusion in two-dimensional turbulence will be looked at in Chapter 8.
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R* = / r2 P(F, t)dr. (7.164)

The problem has thus been reduced to the isotropic study carried out above,
with the further condition (7.163), which corresponds to a passive scalar spec-
trum proportional to k? for k¥ — 0 (Larchevéque and Lesieur [379]). One
could then simply apply the results of Section 7.11 with s’ = 2, taking into
account the difficulty that the relationship between R(t) and Ir(f) is not
known.?® When R(t)~! corresponds to Kolmogorov inertial-range eddies, it is
possible to solve exactly Eqs. (7.131) and (7.132) for P(r,t) (Larchevéque and
Lesieur [379]), looking for self-similar solutions of the same genre as proposed
by Kraichnan [348]: one seeks a solution of the form

Prt) = FIROIS | |

(7.165)
and Egs. (7.163) and (7.164) imply
F(R)=R3,

with two normalization conditions for the non-dimensional function f(z). The
result is that R(¢) satisfies a Richardson law (with e function of time in a
decaying turbulence), and from Larchevéque and Lesieur [379],

P(r,t) ~ R3¢~ 13-4/ B)*°] (7.166)

One recovers in particular the result that, for stationary forced turbulence,
P(0,t) ~ R~ decays like t~%/2 as shown in Section 7.12. More generally, an
expansion of Eq. (7.166) for r < R yields

P(0,t) — P(r,t) ~ epe™/3p2/3 (7.167)
with 1 d iR
= — P t) ~ —4 ~ 1/3 _11/3. .]_
er=—, o PO,) ~ RO~ PR (7.168)

This is, in the particular case studied here, the derivation of the Corrsin—
Oboukhov law equation (6.110) for the second-order scalar structure function,
since, for any passive scalar

([T +7,t) = T(F,0)]?) = 2[B(7, 1) — B(0,¢)]-

28 They turn out to be proportional.
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7.14 Single-particle diffusion

7.14.1 Taylor’s diffusion law

Let us first recall the classical Taylor’s law [679] concerning the diffusion of
a single particle in homogeneous stationary turbulence: let X (@,t) be the
Lagrangian position of a tracer located in @ at ¢ = 0. Let 9(d,t) be the
Lagrangian velocity, such that

Do
DtX(a7t) = ¥(d, 1), (7.169)
which yields
t
X(@t) = X(@,0) + / 3@, 7)dr . (7.170)
0

Taking the average on an ensemble of velocity realizations (d@ is not random)
leads to, if the turbulence is homogeneous with zero mean velocity, (X (@, t)) =
a. Now, let us consider the Lagrangian diffusion coefficient

1D

K(t) = ((X(a,1) —a?*) = (X(a1).5(a,1)),

which writes
t t
K(t) = < {Ei—k/ v(d, T)d’T:| (a, t)> :/ (v(a@, r).v(a,t))dr.
0 0
Since turbulence is stationary,
(v(d, 7).0(d,t)) = Ry (t — 1),

where R;;(t) is the Lagrangian two-time velocity correlation tensor. Hence it
is found:

K(t) = /O Rislt — 7)dr = /0 Ris(7)dr | (7.171)

equation which is due to Taylor [679].

Now, we recall a result due to Batchelor [44]: assume that turbulence is
isotropic, and that X;(d,t) is, at a given ¢, a Gaussian random variable (the
X; are assumed to be independent). The p.d.f. P(x;,t) that X;(a,t) is equal
to x; at time ¢t is

P(z;,t) = L —@iman?20t
\/27r0i2
with ( )2
a Lz _ ot
of = {[Xu(@. ) —af) = (X@ 1) -aP) =7,



306 7 Analytical Theories and Stochastic Models

This allows to show that

0 1 Do? 0?P(x;,t)
P(z;,t) = ! B 7.172
aF @)= p a2 (7.172)
without summation upon the i. Now, let
Q(Z,t) = P(x1,t)P(xo,t)P(x3,t) (7.173)

be the p.d.f. that the tracer is, at time ¢, located at Z. It satisfies the diffusion
equation
0 K(t)
=4 —
an =",

We have already seen that the Gaussianity assumption is questionable, par-
ticularly for the scalar. However, a subsequent E.D.Q.N.M. analysis will be
shown to give a similar equation. Furthermore, Eq. (7.172) turns out to be
valid at short and large times (see Batchelor [44]).

At short times, when the diffusion distance is short compared with the
integral scale, it is obtained from Eq. (7.171):

V2Q(7,t). (7.174)

K(t) = vit,o(t) =~ vot, (7.175)
with
vg = (9(@,0)?).

The diffusion is coherent, in the sense that the r.m.s. displacement is propor-
tional to the time. At high times, it is found, still from Eq. (7.171):

_ 1 Dg? [T

K =
B=5 b o

Rii(T)dT = USTL,

relation which defines the Lagrangian correlation time 7. Therefore:
o(t)? = 202Tyt. (7.176)
The r.m.s. displacement is now proportional to ¢'/2, which characterizes an

incoherent diffusion, as in the Brownian motion or the random walk.

7.14.2 E.D.Q.N.M. approach to single-particle diffusion

Let

—

W(7,1) = 87 — X(@,1)]. (7.177)

This scalar quantity is obviously conserved following the motion. Let us calcu-
late now the mean value of ¥. By definition of the p.d.f. Q(&,t), it is obtained:
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+oo
W)= [ 8@ - DT = Q1) (7.178)

This allows to relate the preceding Lagrangian quantities to the Eulerian
formalism of passive-scalar diffusion. We are now interested in the diffusion
of an inhomogeneous scalar ¥ (Z,t) in homogeneous isotropic turbulence (but
we do not need to assume the stationarity here). We are going to write a
diffusion equation satisfied by @ = (¢), using E.D.Q.N.M.-type techniques.
By averaging Eq. (5.19) with x = 0, it is obtained

oy D) + ity [0, 00@ 0N (E - 5- Ddag—o.  (1.179)

This equation is not closed, since we need to determine the scalar-velocity
correlation. For this, we use again Eq. (5.19) written for a wave vector k and
Eq. (5.18) written for a wave vector &’: multiplying the former by ﬁi(E’, t) and
the latter by ¢ (k,¢) and adding yields, since (f)y =0:

( g L+ uk’2> (k)i (K)) + ik, / (i (p) s (K ()0 (k — ' — §)dpdq

ik P (R) / (i (7Y (@YD ENS(R — § — §)df'dg = 0. (7.180)

Egs. (7.179) and (7.180) are the two equations of the moments hierarchy with
which we are going to work. .

Let ¢’ be the fluctuation of 1) with respect to its mean value. One can
write

(W (k)i ()a; (2) = (' (k)i (7)1 (@) + (k) (@i (D) (@)

1[/ and @ are random fonctions of zero mean. If they were Gaussian, the triple
moment (¢’ (k)u;(p)t; (7)) = 0 would be zero, and hence

((R)ai (P)iy (D) = (& (k) (2 (Pt (@))- (7.181)

The corresponding “Quasi-Normal approximation” permits in Eq. (7.180) to
write:

(a; (P (K (@) = Ui (K8 (5 + k') (@)
(i (7 )it (7 Y9 (F)) = D@30 + @) (DR,
and the second nonlinear term in Eq. (7.180) is zero (since interactions im-

ply K = 6) Therefore, the following is obtained, within this quasi-normal
assumption:
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( 24 k) (DR (R + ik; Ui () (F + K1) =0,

or, after a time integration:

t
— ~ — . —v 2 —7) 7 — s

(@ 0a51) = ~ia [ D0 E GG+ D,
0

Finally, the quasi-normal diffusion equation writes:

o - -

k,t
o (1)

t
g [ [ e 00, GG+ .)drds = 0.
p+q=Fk JO
Noticing also, due to incompressibility, that
QU (. 7) = kUi (5, 7),

the quasi-normal diffusion equation writes finally
O ik LD (5 E )
SED) = —kiky [ e Ui (5, PO (F, 7)) dpdr.  (7.182)
p+q=k JO

Now, an “Eddy-Damped” procedure will consist in replacing vp? in Eq. (7.182)
by vp? + p1(p) + p2(q), so that the E.D.Q.N. diffusion equation is

t
O G(F 1)) = —kik; / / o= P10 (p) +12 (@) (=)
ot p+a=k Jo

Ui (5, 7) (4 (k, 7)) djpdr . (7.183)
Finally, a “Markovianization” will consist in replacing Eq. (7.183) by:
0 - - N
Btw(k’t» = _kikj[ ) q@z(fg“)U,-j(p,t)dpw(k,t)) (7.184)
P+q=k

with
1 — e~ P’ +ui(P)+uz(a)lt

[wvp? + pa(p) + pa(q)] (7.185)

t
oL — / o= 0D (D)2 (@](t—7) g
0
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The choice of p1 and ps will be made as for the E.D.Q.N.M. applied to the
velocity field, that is

i (p) = M [ / ’ y2E<y7t>dy] v

1/2

12(q) = Ao [/Oq yzE(y,t)dy} : (7.186)

where A\; and Ao are constants which have to be adjusted.
For diffusion times small in front of the turbulence large-eddy turn-over
time, it is straightforward that

u)
ol ~t.

Noticing then that

N NN O Juy
[ 005 = (s sz 0 = b
it is obtained: 5 _,2

GFE0) = k2T G ).

ot 3
Coming back to the physical space, one recovers the diffusion equation
Eq. (7.174) with the diffusion coefficient Eq. (7.175):

R (7o) N S
5 (QUT, 1)) =17, TVHQ(T,1)). (7.187)

For larger times, the knowledge of the two constants is required. By analogy
with the isotropic problem, we will consider a simplified case where Ay = 0,
which allows us to write Eq. (7.184) as

00 = ik | [ €410 7105 G R,

where @,(,1) is given from Eq. (7.185) with Ay = 0. Using the isotropic form of
the velocity spectral tensor, it is found:

kik; Pij(p) = k?sin®

where 7 is the angle formed by k and p. After an integration in spherical
coordinates, one gets:

R 2 +oo
kik; / oV T;; (b, t)dp = _ k* /O oM (t)E(p, t)dp,
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which, by inverse Fourier transform, may be written as:
9 = 2 (% oo 2y
50EN = [ W WEEpNdpVAQ(E,1). (7.188)
0

It is again a diffusion equation, to be compared with Eq. (7.174), and we will
associate to it the diffusion coefficient

K(t)=2 /O h OV (t)E(p, t)dp, (7.189)

which has the same structure as the eddy diffusivity equation (7.144).
We stress finally that many more aspects of turbulent diffusion with p.d.f.
approaches applied to inhomogeneous turbulence can be found in Pope [583].
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Two-Dimensional Turbulence

8.1 Introduction

Let us begin by considering a fluid of uniform density pg in a frame which
may be rotating with a constant rotation 3.1t obeys Eq. (2.70), where we
recall that the “modified pressure” P also contains the gravity and centrifugal
effects. This equation governs the motion of a rotating (or not) non-stratified
flow in a laboratory experiment. Let us assume that the Z axis of coordin-
ates is directed along (_j, and look for two-dimensional solutions @(x,y,t) and
P(x,y,t). Let u(x,y,t),v(z,y,t) and w(z,y, t) be respectively the “horizontal”
(that is perpendicular to ﬁ) and vertical components of the velocity. The con-
tinuity equation implies that the velocity field is horizontally non-divergent

ou Ov
= .1
O + ay 0 (8.1)

and hence there exists a stream function ¥ (z,y, t) such that

o
oy’ V= (8.2)

u =

The Coriolis force in the equation of motion is then equal to —29@@/}
and can also be included in the pressure term, modified as P'(z,y,t) =
P(z,y,t)+2pof2¢. The result is that the “horizontal” velocity field @y (z,y,t)
of components (u,v,0) satisfies a two-dimensional Navier-Stokes equation

ou ou ou 1 0P
tu, +v, =-—

ot Jr dy po Ox

ov ov  Ov 1 0P’ 9
8t+u8x+v8y__po oy +vViv (8.3)

+vVHu



312 8 Two-Dimensional Turbulence

with the incompressibility condition Eq. (8.1). In the following, the suffix H
refers to the horizontal coordinates: for instance V% = §%/9x? + 6%/9y? is
the horizontal Laplacian operator. The vertical coordinate w(z,y,t) obeys a
two-dimensional passive scalar equation!

Dygw  Ow ow ow
Z = ot +u8x _H}@y = vV4uw. (8.4)
This shows that the assumption of two-dimensionality does not imply a purely
horizontal motion: a fluid particle will conserve during the motion (modulo
the viscous dissipation) its initial vertical velocity. The components of the
vorticity V x @ are: Ow/dy, —Ow/dz, —V3. Tt can be easily checked, either
directly from Eq. (8.1) or from the general vorticity equation Eq. (2.75) which
is written

Dy

dt
_ Owou  Owou

_ayax_axdy

that the vertical vorticity —V% (which is also the vorticity of the horizontal
velocity #p) obeys the same equation as Eq. (8.4). However, the vertical
vorticity is no longer a passive scalar, since a perturbation brought to it would
affect 1 and hence @g. It has to be stressed that, although w is not a passive
scalar, any passive scalar which, in a two-dimensional flow, satisfies the same
initial and boundary conditions as w, will be identital to it (provided the scalar
molecular diffusivity is equal to v). In a spatial mixing layer for instance, a dye
injected in the vortical layer just behind the splitter plate will allow to visualize
the vorticity. This was done for instance by Winant and Browand [721] to
characterize the pairing mechanism.
The equation of motion for the stream function is

= (@ +2Q) Vi +vV4e

2 -
+vVyd,

L+ 00| i = VR (VE) (55)

where the Jacobian operator J(A, B) is defined by

9AOB  9AOB
TAB) = o e (8.6)

Consider for example a two-dimensional purely horizontal flow (w = 0): this

demonstrates that a constant rotation has no effect on the dynamics of such a

! “Passive”, in the sense that any external perturbation modifying w will have no
effect on the convective field @g.
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flow.? But we have already seen in Chapter 3, and new examples will be given
in the next chapter (see also Chapter 13), that a strong rotation prevents small
vertical velocity fluctuations from developing, and hence plays a stabilizing
role with respect to the two-dimensional solutions.

Is it then possible to speak of two-dimensional turbulence? Clearly, the
conservation of the vertical vorticity (modulo viscous diffusion) following the
motion of the fluid particle is a severe constraint which seems to prevent all the
vortex-stretching effects associated to the finite inviscid kinetic energy dissipa-
tion features of three-dimensional turbulence. However, a lot of weakly-viscous
two-dimensional flows share the mizing and unpredictability properties, pro-
posed in Chapter 1 as characteristic of turbulence. It will be seen below that
two-dimensional turbulence is characterized (for low but non-zero viscosity)
by a conservation of kinetic energy, a finite dissipation of enstrophy, and an
exponential increase of the palinstrophy,? already introduced in Chapter 6,
and here equal to

P(t) = (9 % (¥ x )] (87)

From a mathematical viewpoint, there is therefore no difficulty in studying
turbulent solutions of the two-dimensional Navier—Stokes equations considered
above. The problem lies in the physical possibility of realizing and maintain-
ing such flows: indeed, and if one accepts the well-known concept of “return
to three-dimensionality” (see e.g. Herring [275]), a two-dimensional turbulent
flow extending in an infinite domain and submitted to small 3D perturba-
tions will become three-dimensional if there is no external action tending to
maintain the two-dimensionality. The first possibility is thus to consider in a
laboratory a flow constrained between two planes of distance D: at scales
much larger than D, one may expect the flow to be horizontal and two-
dimensional. Nevertheless the boundary layers along the planes will develop,
interact, and be responsible for active three-dimensional turbulence at scales
smaller than D, which could rapidly dissipate the energy of the large two-
dimensional scales. It is therefore necessary to limit the development of these
boundary layers. This may be done with the aid of a rapid* rotation 0 (Colin
de Verdiere [132], Hopfinger et al. [296], Morize, Moisy and Rabaud [523,524])
or (in M.H.D.turbulence) by imposing a magnetic field B (Somméria [660],
Moreau [519], Messadek and Moreau [489]). In geophysical situations, the shal-
lowness of the atmosphere or of the oceans (with respect to horizontal plan-

2 If the boundary conditions concerning 1 are unchanged with respect to the non-
rotating case.

3 This word was introduced first in Pouquet et al. [584]. It is constructed with the
aid of Greek derivatives: strophy stands for rotation, and palin for again, so that
palinstrophy characterizes the curl of the curl (see Frisch [221]).

4 “Rapid”, that is with a low Rossby number.
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etary scales) and the rotation of the earth corresponds to an analogous situ-
ation. In fact, the concept of two-dimensional turbulence and unpredictability
was developed by meteorologists who could not predict the evolution of these
planetary motions for more than a few days (Thompson [685], Leith [398],
Lorenz [454]).

Let us mention also the experiments on two-dimensional turbulence and
two-dimensional shear flows done in liquid soap films by Couder [149] and
Gharib and Derango [253]. The latter authors show in particular impress-
ive visualizations of Kelvin—Helmholtz vortices in the flow over a backwards-
facing step, which resemble very much the two-dimensional direct-numerical
simulations of this flow done by Silveira-Neto [648] and presented on Plate 3.

We stress that a very interesting series of experiments done in the group
of Tabeling have confirmed most of the important theoretical predictions re-
garding forced two-dimensional turbulence. The experiments are done in two
layers of NaCl solutions excited with electromagnetic forces. The velocity field
is measured, allowing in particular the numerical determination of the fluid-
particle trajectories. These results will be precised later on.

Finally, Chapter 13 will discuss how the influence of a stable stratification
in an infinite fluid might lead in some cases to quasi two-dimensional flows or-
ganized in horizontal layers possessing some of the features of two-dimensional
turbulence, but with a strong vertical variability.

In the present chapter, we focus on the dynamics of strictly two-
dimensional turbulence. We will first look at it from a statistical point of
view, and show how the double inviscid conservation of energy and enstrophy
pushes these quantities to cascade respectively towards large and small scales.
We will study also coherent vortices, pressure distributions, diffusion of pass-
ive scalars, and pair dispersion. The E.D.Q.N.M. theory will be also con-
sidered. All this concerns isotropic two-dimensional turbulence. We will end
this chapter by examining the two-dimensional temporal mixing layer from a
two-dimensional turbulence point of view.

Let us mention an interesting review on two-dimensional and quasi two-
dimensional turbulence by Carnevale [100].

8.2 Spectral tools for two-dimensional isotropic
turbulence

We consider purely two-dimensional isotropic turbulence obeying Eq. (8.3)
(or equivalently Eq. (8.5)). The essential characteristics of the dynamics of
such a turbulence from a statistical viewpoint are described in Kraichnan and
Montgomery [359] and Lesieur [417]. As was the case in three dimensions, one
can introduce the two-dimensional spatial Fourier transform of the velocity
and stream function
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(k1) = < ! )2 / e~ FE5,(Z, t)dwdy (8.8)

DR t) = ( 217T>2 / IR E (&, 1) dady (8.9)

with k = (k1,ks) and Z = (z,y),i = (1,2). Let us define the function ¥ such
that

(B D) = (k13 + ). (8.10)
We recall from Chapter 5 that for isotropic two-dimensional turbulence:
- - E(k,t BN
(a;(K' t)a;(k,t)) = ST]; )Rj(k)é(k + k', (8.11)
and one chan check that
E(k,t) = nk*W (k, ). (8.12)

The kinetic energy and the enstrophy are still respectively
+oo +o00
/ E(k,t)dk  and / K2E (K, £)dk.
0 0

As in three-dimensional turbulence, the kinetic energy is conserved by the
nonlinear terms of the equations, and Eq. (8.3) yields in the unforced case

d +o0

+o00
E(k,t)dk = —21// k*E(k,t)dk. (8.13)
dt Jo 0

But since there is no vortex stretching, the enstrophy also obeys a conservation
equation
d
dt

This result will form the basis for all the phenomenological theories of two-
dimensional turbulence. It has to be stressed however that an infinite family
of “inviscid”® invariants can be constructed with the aid of the enstrophy:
indeed, Eq. (8.5) expresses the “inviscid” conservation of the vorticity w fol-
lowing the fluid motion, and hence of any functional f(w). Since the motion
is incompressible, the surface X of the horizontal sections of the fluid tubes
is also conserved, and the integral [ f(w)dX on the domain over which the

+oo +oo
/ E*E(k,t)dk = —21// E*E(k,t)dk. (8.14)
0 0

5 “Inviscid” means here without considering the viscous dissipation terms, which
however exist and may contribute to the dissipation of the quantities considered,
even at small viscosity.
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fluid extends is conserved with time.® This implies the invariance of (f(w))
with time, if one accepts identifying the ensemble and spatial averages. It
is therefore possible that the existence of these invariants could modify the
following dynamical conclusions, based on theories which generally preserve
only the kinetic energy and enstrophy invariance.

8.3 Fjortoft’s theorem

This theorem (which has no relation with Fjortoft’s inviscid instability cri-
terion demonstrated in Chapter 3) (Fjortoft [206]) serves as a basis for the two-
dimensional turbulence phenomenology: let us consider the two-dimensional
Euler equation in Fourier space, truncated in order to retain only three modes
k1, ko and k3. For simplification we assume ko = 2k; and k3 = 3k;. Let E(k;, t)
be the kinetic energy at the mode k; (integrated upon a ring of radius k;).
Conservation of kinetic energy and enstrophy implies that between two times
t; and to, the variation 0F; = E(k;, t2) — E(k;, t1) satisfies two constraints

6FE1+6FEs+6E3 =0 (815)
k%(SEl + k‘%(SEQ + kg(SEg =0 (816)
which yields
5E1 = —ZdEg; 5E3 = —:(5E2 (817)
K26 = — 0 K20Bs;  K20Es — — . k2SE (8.18)
1 1 32 2 2 3 3 32 2 2. .

Therefore, if the intermediate wave number ko loses kinetic energy (which im-
plies 0E5 < 0), more energy will go to k; than to k3, and more enstrophy will
go to ks than to k1. These conclusions must, of course, be reversed if §Fo > 0.
But, it is the first case which has more physical significance when freely de-
caying two-dimensional turbulence is considered: indeed let us envisage now
a continuous range of wave numbers, and an initial kinetic energy spectrum
peaked about a wave number k;(0). Due to nonlinear interactions, it is ex-
pected that the peak will spread out towards other modes, and consequently
the amount of kinetic energy in the vicinity of k;(0) will decrease; Fjortoft’s
result will then suggest that more kinetic energy (resp. less enstrophy) will go
towards modes k < k;(0) than towards modes k > k;(0). The same result is
obtained by considering the inviscid equations 8.13 and 8.14: a purely ultra-
violet transfer of energy would heavily increase the enstrophy, and the only

5 This is valid however only if the domain is compact, or if periodicity holds on the
boundaries: the latter condition is fulfilled for homogeneous turbulence (fluid in
a “square”).
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way of satisfying both kinetic-energy and enstrophy conservation is to have
an infrared energy transfer larger than the ultraviolet one. Actually, this is
what the direct numerical simulations show in this case. It has to be stressed
that Fjortoft’s result is not always true for individual triads of wave vectors
(1217 Eg, Eg) with an arbitrary relative orientation, as was shown by Merilees
and Warn [487].

8.4 Enstrophy cascade

8.4.1 Forced case

We work in the context of a turbulence forced at a fixed wave number k;
by a stationary kinetic-energy forcing F, (k) concentrated about k;. It injects
kinetic energy and enstrophy at respective rates € = 0+Oo F,(k)dk and 8 =
f0+oo k*F(k)dk = kZe. Let us write the evolution equation for the enstrophy

spectrum

(gt + 21/k2> E2E(k,t) = k*T(k,t) + k*F,(k), (8.19)
where T'(k,t) is the kinetic energy transfer. Let
Z(k) = / KT (k) dk (8.20)
k

be the enstrophy flux across k. We assume a stationary energy spectrum
except at modes k < k;, where it will be shown below that we do not have
stationarity. Neglecting this spectral range in the enstrophy budget, Eq. (8.19)
implies that

B =2v /O+Oo E*E(k)dk. (8.21)

Now we assume that the Reynolds number is high enough, so that there
exists a range of wave numbers k; < k < kg whose dynamics is not affected
by viscosity (kq is an enstrophy-dissipative wave number, discussed below).
Then a reasoning analogous to what was done for 3D isotropic turbulence
allows to show an exact result in this range:

Z(k) = B.

It has been proposed by Kraichnan [350] and Leith [398] that the kinetic-
energy spectrum in this range is a function of 8 and k only. Then standard
dimensional analysis yields the enstrophy cascade concept, where the kinetic
energy spectrum is given by

E(k) = C'3*3k—3. (8.22)
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8.4.2 Decaying case

The above reasoning assumes that turbulence is forced at k;. The same k3
enstrophy cascade was proposed by Batchelor [51] in the context of a freely-
decaying two-dimensional turbulence, where a self-similar evolving spectrum
of the form

E(k,t) = v3tF (kvt) (8.23)

was assumed: with such a spectrum (where the kinetic energy (1/2)v? is
supposed to be independent of time), the enstrophy is proportional to ¢~2
provided the integral [ > 22 F (x)dx converges; the enstrophy dissipation rate

dD(t)
8= gt (8.24)
is proportional to t—2, and the assumption of a range where F(z) oc 2® with
a coefficient independent of v leads to & = —3 and a spectrum E(k) ~ t~2k~3
corresponding to Eq. (8.22).

Physically, the enstrophy-cascade concept corresponds to the fact that a
fluid blob imbedded into a larger scale velocity strain will be elongated in the
flow direction, and compressed in the transverse direction, yielding a decrease
of its transverse characteristic dimension; since at the same time the vorticity
of each fluid point is conserved, the result will be a steepening of the transverse
vorticity gradients, with a flux of vorticity into the small scales. This may
be understood more quantitatively in the following manner. Let us consider
(in the Euler case) the vorticity gradient equation: since the vorticity w is
convected by the flow, its gradient satisfies an equation similar to Eq. (2.89),
yielding

D - . =
= — I M . 2
Dt Vw Vi)" : Vw (8.25)

The same equation is also satisfied by the gradient ﬁp of a passive scalar. Here,
we anticipate that coherent vortices of the Kelvin—Helmholtz or Karman type
are going to appear as the result of strong inverse energy transfers processes
(see below), producing large-scale intermittency. If we consider the stagnation
regions in the braids between the vortices, and assume that the vorticity is
much smaller than the deformation (as we did in Chapter 3 to understand the
formation of longitudinal vortices in quasi two-dimensional mixing layers),
one can replace in Eq. (8.25) the velocity gradient by the deformation tensor.
Assuming that the (small) vorticity has no effect upon the deformation tensor
elements, it implies that the vorticity gradient is increased in the direction
of the second principal axis of deformation (direction normal to the braids
reconnecting the vortices). This mechanism does not hold within the core of
the vortices, and it is feasible that the enstrophy cascade will not be efficient
there. This might be an explanation why kinetic-energy spectra observed in
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Figure 8.1. Time exponents characterizing enstrophy, energy and pressure in two
LES’ at resolutions 1024 x 1024 (full line) 256 x 256 (points). From Ossia and
Lesieur [557].

two-dimensional turbulence are slightly steeper than k3. For the same reason
(existence of coherent vortices), the t=2 decay law of enstrophy predicted by
Batchelor’s self-similar analysis is reduced significantly in the final stage of
decay of the vortices (see in particular Carnevale et al. [99], Bartello and
Warn [35], Chasnov [113], Ossia and Lesieur [557]). In the latter work, if
one assumes that the energy and enstrophy decay respectively as t~“F and
t—P, pseudo-spectral LES’ yield the result that ap tends to zero and ap
increases slightly above 1. This is shown in Figure 8.1, presenting respectively
Qpy = —ap,a. = —ap in runs at two different resolutions. The figure gives
also the pressure time exponent a, such that (p'?) o< t*». More on pressure
in two-dimensional turbulence will be said at the end of this chapter.

8.4.3 Enstrophy dissipation wave number

When molecular-viscous effects are taken into account, and if the local vorti-
city gradients are high enough, the molecular viscosity dissipates the vorticity.
Then an enstrophy dissipation wave number can be introduced, function of 3
and v only. It has a different form from Eq. (6.39) and is now equal to

kg = ( g )1/6. (8.26)

v3
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On the other hand, the assumption of a 32/3k~3 energy spectrum extending
from k; to kg permits to evaluate approximately the kinetic energy (1/2)v? and
the enstrophy D. Neglecting the logarithmic corrections, one finds k; ~ §/3 Jv
and

61/3 ~ D(t)l/Q.

Estimating roughly D as k?v?, one finally obtains

v kd 2
= ~Y .2
Re Uk, ( ke ) , (8.27)

which shows that the total number of degrees of freedom of two-dimensional
turbulence is of the order of Re, at variance from the Re%/* value which has
been determined for three-dimensional turbulence.

8.4.4 Discussion on the enstrophy cascade

DNS’ of the enstrophy cascade were carried out by Lilly using finite-difference
methods, both in the forced and freely-evolving cases [440-442]. He found a
spectrum very close to k~3 on about one decade.” He confirmed also, by
comparing the stream function and vorticity contours, the fact that vorticity
tends to cascade towards small scales while kinetic energy goes to larger and
larger scales, where it remains trapped if the fluid extends on a domain of
finite extent. We reproduce in Figure 8.2 a sketch of Lilly [442] due to O. Carel
during a summer school in 1971 in Lannion (France) organized by Morel [520]
which the author attended, and where these results where presented.

Higher-resolution calculations (with 1282 modes in a spectral-method cal-
culation) in the decaying case, using spectral methods or finite-differences
methods as well, were done by Herring et al. [275]. They found a k=% spec-
trum instead of the law equation (8.22), and stressed that the extent of the
spectral range was insufficient to describe properly the enstrophy cascade, due
to the low resolution. They remark also that, at these resolutions, the dynam-
ics of the large scales is Reynolds number independent. These calculations
display also in the vorticity contours evidence of the presence of what will be
called later on coherent vortices.

Other interpretations of the vorticity transfers towards small scales in two-
dimensional isotropic turbulence have been given, in particular by Saffman
[623], who proposes that the vorticity conservation following the motion will
produce vorticity shocks, and that the resulting enstrophy spectrum consists
of a random superposition of shocks, and is then proportional to k~2; hence
the energy spectrum should follow a k~% inertial range. As a matter of fact,
an inviscid numerical simulation done by Kida and Yamada [328], using time

” Numerical methods were however quite diffusive.
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Figure 8.2. Stream function in DNS of two-dimensional turbulence presented by
Lilly [442] in Lannion (courtesy O. Carel).

power series expansions, displays an energy spectrum proportional to k=46,
However, such a theory does not take into account the role of viscosity, which
will be seen to be needed if one wants to dissipate the enstrophy at a finite
rate.

A clear experimental checking of the enstrophy cascade in the forced case
has been given more recently by Paret, Jullien and Tabeling [565]. They find
a close to k2 range on about one decade, and determine in Eq. (8.22) the
constant as C' = 1.4. They find also in this range a close to Gaussian behaviour
for the vorticity exponents.
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Figure 8.3. Isovorticity lines in the isotropic two-dimensional direct numerical sim-
ulation of Brachet et al. [75], for a pseudo-spectral calculation with a resolution of
512% (courtesy M.E. Brachet).

8.5 Coherent vortices

As already pointed out, a very impressive feature of two-dimensional isotropic
turbulence is the formation of Kelvin—Helmholtz type coherent vortices. These
structures have been clearly identified in the numerical simulations of Fornberg
[209] and McWilliams [479] in decaying situations (see also Babiano et al. [24],
Brachet et al. [75,76], Farge and Sadourny [195]), and in some stationary
forced situations with a forcing spectrum at high wave numbers (Basdevant
et al. [38], Herring and McWilliams [282]). Paret et al. [565] find in their forced
experiment elongated vorticity contour in the enstrophy cascade.

These coherent vortices are visible in Figure 8.3, taken from Brachet et al.
[75]. They carry both signs of vorticity, since (due to the circulation theorem)
the integral of vorticity on a periodic square domain is zero. Vortices of same
sign may undergo a pairing,® as observed in the numerical simulations of
decaying two-dimensional isotropic turbulence done by Babiano et al. [24],

8 That is, merging of two eddies of same sign which rotate around one another.
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Figure 8.4. Vorticity distribution in a DNS of two-dimensional turbulence, showing
in particular a pairing and a dipole (courtesy M. Farge, Paris).

Brachet et al. [76] and Farge and Sadourny [195]. Vortices of opposite sign
may form dipoles. This is well illustrated by the DNS of Figure 8.4, due to
Farge [196]. The origin of these vortices is a matter of debate. If one considers
an initial-value problem with an initial field consisting of a weak random white
noise, one sees in the numerical simulations small coherent vortices emerging
from the initial “chaos”. McWilliams [479] explains this phenomenon by the
strong inverse energy transfers due to the double conservation of energy and
enstrophy. They imply a significant growth of the integral scale, and hence
some spatial organization. The formation of the initial vortices might also
be due either to the development of inflectional instabilities of the initial
velocity field. Afterwards, as already stressed, the scale of the structures grow,
due in particular to pairings. Two-dimensional turbulence provides in fact a
beautiful example of self-organization within a system which was initially
totally disorganized. It was shown in the above-quoted reference that the
large vortices survive much longer after the small-scale turbulence has been
dissipated by viscosity. Their influence on the two-dimensional kinetic-energy
spectrum may be multiple: firstly, they produce large-scale intermittency,”
and it has been argued by Basdevant et al. [38] and Basdevant and Sadourny

9 Indeed, if one considers the E.D.Q.N.M. model of two-dimensional turbulence (see
below), it is possible to give in that frame an analytical derivation of the k2 law
(with a logarithmic correction), which also shows that the enstrophy interactions



324 8 Two-Dimensional Turbulence

[40] that this intermittency could restore the transfers localness and yield
a kinetic energy spectrum steeper than the k=3 enstrophy cascade model
presented above. Secondly, and as already stressed, they create strong vorticity
gradients in the stagnation regions inbetween, as shown by Brachet et al.
[76]: in the latter spectral calculation, performed in the decaying case at a
resolution of 8002 modes, there are two distinct phases: during a first period
(when coherent eddies form), the energy spectrum is not submitted to viscosity
(which affects the small scales), and seems to be close to k=%, with formation
of intense sheets of palinstrophy strained between the large eddies. Once the
dissipative scales are excited!'® there is a transition towards a k~3 energy
spectrum, corresponding to a “packing” of these sheets. This is apparent in
Figure 8.3. A last theory of the kinetic-energy spectrum is to say that it results
from spiral vortex distributions within the coherent vortices: Moffatt [512] and
Gilbert [257] propose that a spiralling vortex should have a k—11/3 spectrum,
which is intermediate between k=3 and k=4,

Let us finish this section by saying a few words about what is called Weiss
criterion. On the basis of Eq. (8.25), Weiss [714] remarks that the eigenvalues
A of the operator V| are the square roots of (62 — w?)/4, where w is the
vorticity and o the strain defined by

2 1 61,61 8Uj 2
o _2.2 (8xj+axi) : (8.28)
3,j=1,2

Then he separates the space into elliptic and hyperbolic regions, where the
quantity o2 — w? is respectively negative and positive. Assuming that the ve-
locity gradients vary much slower than the vorticity gradients, he proposes
that in the elliptic regions the vorticity gradients will rotate (since the ei-
genvalues are pure imaginary), while in the hyperbolic regions they will be
stretched or compressed along the eigenvectors (since the eigenvalues are real
and of opposite sign because of incompressibility). On the basis of various
DNS of two-dimensional turbulence, Basdevant and Philipovitch [41] have
checked that elliptic regions did correspond to coherent vortices (with spiral
vorticity distributions), and satisfy Weiss criterion. On the other hand, hy-
perbolic regions do not. In fact this is a particular case in two dimensions of
the Q criterion mentioned in Chapter 4, as discussed in Lesieur et al. [431].

Studies going beyond Weiss criterion’s assumptions can be found in Lapeyre
et al. [374,375] and Klein et al. [335].

in the enstrophy cascade are not local, but semi-local in the sense that Z(k) is
dominated by triads (k’,p, q) such that ¢ < k' ~ k ~ p.
10 Time which corresponds to a maximum in the enstrophy-dissipation rate.
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Figure 8.5. Schematic double cascading spectrum of forced two-dimensional tur-
bulence (from Lesieur [417]).

8.6 Inverse energy transfers

8.6.1 Inverse energy cascade

This concept is from Kraichnan [350], and holds only when turbulence is forced
at a fixed wave number k;. Fjortoft’s theorem has shown that kinetic en-
ergy could be transferred more easily towards large scales than towards small
scales. In fact it will be shown below that, within the E.D.Q.N.M. model, the
kinetic-energy flux through the enstrophy cascade is zero. So the kinetic energy
injected at the rate e at k; can only cascade backwards towards small wave
numbers. Kraichnan’s argument is then the same as for the three-dimensional
Kolmogorov kinetic energy cascade, except for the sign of the kinetic energy
flux IT(k) which is now negative. In this range (k < k;) the kinetic energy
spectrum is

E(k) = Cle?/3k=5/3, (8.29)

Figure 8.5 shows schematically the kinetic energy spectrum obtained with
such a forcing.

We will call this range Kolmogorov inverse energy cascade. It is not sta-
tionary at low wave numbers, since kinetic energy is continuously supplied at
a rate e, without any dissipation. Writing that the kinetic energy contained
under the Kolmogorov spectrum is proportional to €t, it is then easy to show
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Figure 8.6. (a) Experimental kinetic energy spectrum obtained by Sommeria [660]
in a forced two-dimensional turbulence in mercury. The arrow figures the energy in-
jection wave number (courtesy J. Fluid Mech.). (b) Inverse energy cascade obtained
in the numerical simulation of Frisch and Sulem (1984). The calculation shows also
the k® infrared spectrum due to backscatter (courtesy Physics of Fluids).

that the wave number kg characteristic of the spectrum maximum will de-
crease like (Pouquet et al. [584])

kp(t) ~ e Y/273/2 (8.30)

a Richardson law for the associated scale (which here is the integral scale of the
turbulence, characteristic of the energetic eddies). For k < kg, the spectrum
is proportional to k3, due to resonant non-local interactions of two energetic
wave numbers ~ kg, as shown in Basdevant et al. [37]. This &® spectral
backscatter, which will be explained thanks to the E.D.Q.N.M. analysis, is the
equivalent of the k* backscatter found in three dimensions (see Chapter 7). It
exists also in decaying situations, as shown below.

Practically, there always exists in the numerical calculations or in the ex-
periments a minimum non-zero wave number corresponding to the maximum
extension of the domain: it has been shown in this case (forced turbulence)
that the kinetic energy cannot increase indefinitely, as it would do for a k—5/3
spectrum extending to k = 0, but will have an upper bound, due to the action
of viscosity which will eventually play a role in the large scales when the latter
will be extremely energetic (Pouquet et al. [584]). In order to prevent this ex-
cessive accumulation of energy on the lower wave number, it is possible to add
to the r.h.s. of the equation of motion (8.5) a damping term proportional to
—V?2,4, which will dissipate the inverse cascading kinetic energy and limit the
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Figure 8.7. (a) Freely-decaying kinetic-energy spectrum obtained numerically in
the LES of Staquet [668]. A self-similar k™% Batchelor spectrum establishes, with
an enstrophy cascade extending above k;(t), and no inverse kE~°/3 energy cascade.
(b) Comparison between the two-dimensional turbulence kinetic energy transfers
computed in a DNS (points), the D.I.A. approximation, and the Test-Field-Model
with two different values of an adjustable parameter (from Herring et al. [276],
courtesy J. Fluid Mech.).

infrared extent of the inverse energy cascade: this was done in particular in
the numerical simulations of Lilly [440,442]. Physically, such a damping may
be provided by the Ekman layer dissipation for a rapidly-rotating flow above a
flat plate (see next chapter), or by the Hartman layers in the two-dimensional
M.H.D turbulence between two planes studied by Somméria [660]. In this
case, where a stationary forcing is produced by two-dimensional Taylor—Green
vortices driven electrically, a k~%/3 inverse energy cascade has actually been
measured in a certain range of the parameters characterizing the dissipation,
and this seems to be the first experimental evidence of the inverse energy
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cascade of two-dimensional turbulence (see Figure 8.6a). In fact more recent
experiments by Paret and Tabeling [564] display a well-established inverse en-
ergy cascade with a constant C' = 6.5. They find also that two-dimensional
turbulence organizes within this range into large-scale coherent vortices.

Direct numerical calculations done by Lilly [442], Fyfe et al. [235], Frisch
and Sulem [226] and Herring and McWilliams [282] show some evidence of
the inverse cascade (Figure 8.6b).

8.6.2 Decaying case

No such inverse energy cascade exists in the freely-decaying case, but only a
stronger decrease (initially o t~1, compared with the t~9-3%0-5 law of three-
dimensional turbulence) of the wave number k;(t) where the spectrum peaks.
This situation, presented on the LES (using a bi-Laplacian dissipation oper-
ator as a subgrid model) of Figure 8.7a (from Staquet [669]), will be looked
at from a statistical point of view in more details below.

Physically, the strong inverse transfers of decaying two-dimensional iso-
tropic turbulence result undeniably from the pairing of large energetic eddies
of same vorticity sign and therefore correspond to two-dimensional subhar-
monic instabilities similar to those leading to coherent-vortex pairing in the
mixing layer. The latter were experimentally displayed by Winant and Brow-
and [721].11

Let us now present in Figures 8.8 and 8.9 DNS and LES (resolution 1024 x
1024) of Ossia and Lesieur [557] in the decaying case, taking initially for
k — 0 a k5 kinetic-energy spectrum. Both confirm very neatly during the
major part of the evolution the infrared k® spectral backscatter. The LES has
a short enstrophy cascade of slope —3.05. We show also in Figure 8.10 LES at
resolution 512 x 512 starting with a k equipartioned energy spectrum at low
wave numbers. First, the initial shape of the energy spectrum is preserved at
the smallest numerical wave numbers (k & k). But the violent temporal
growth of the integral scale is such that the energy spectrum rapidly steepens
at low k, although the & slope has not been reached yet. This behaviour is in
agreement with the two-dimensional test-field model calculations of Lesieur
and Herring [418].12

' However, things are less clear in the forced case where, as pointed out by Herring
and McWilliams [282], a strong random forcing may suppress the formation of
coherent vortices. It may also, in the case where these structures form, inhibit the
various pairings, which are dependent upon the phases of the various subharmonic
instabilities.

12 Tt contrasts with the three-dimensional case discussed in Chapter 7, where a
LES with sp = 2 yields an energy spectrum below k < kr(t) constant in time
[427,431,556].
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Figure 8.8. Temporal evolution of kinetic-energy spectra in DNS of decaying iso-
tropic two-dimensional turbulence starting initially with a o< k° energy spectrum at
low k (dashed line). Arrows denote the time direction (from Ossia and Lesieur [557]).
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[557]).
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8.7 The two-dimensional E.D.Q.N.M. model

The application of E.D.Q.N.M.-type techniques to two-dimensional isotropic
turbulence was made in particular in Kraichnan [354], Leith [399], Herring
et al. [276], Pouquet et al. [584], Holloway [289], Lesieur and Herring [418],
and Métais and Lesieur [492]. Using the spectral tensor expression (5.79) in
Eq. (7.21), one obtains the following expression for the kinetic-energy transfer
T(k,t)

2 k2
T(k,t) = - / N dp dq9kpqqu2(k,p, q)
[kE(p,t)E(q,t) — pE(g,t)E(k,1)] (8.31)

with the same notations as in Chapter 7, the coefficient by being given by

ba(k,p.q) = 2 (ay — 2 +22°)(1 - o?)
(k.Z _ qZ)(pQ _ q2) (1
k4

1

=2 — %)z, (8.32)

The relaxation time for triple correlations 6,, has the same expression, in
terms of the energy spectrum, as for three-dimensional turbulence. Only the
numerical constant a; arising in Eq. (7.17) should change. Lesieur and Herring
[418] take the value 0.40 (instead of 0.36 in Chapter 7) in order to recover
the same Kolmogorov constant in the k=53 inverse energy cascade, 6.69,
as determined analytically by Kraichnan [354] in a stationary solution given
by the Test-Field Model.!® This is not far from the experimental results of
Paret and Tabeling [564], and within the range of results given by the DNS of
Lilly [440], Frisch and Sulem [226] and Herring and McWilliams [282] (which
yield values comprised between 4 and 9). This relatively high value proves that
the two-dimensional Kolmogorov inverse energy cascade is far less efficient
than its three-dimensional direct counterpart.

The transfer given by Eq. (8.31) conserves kinetic energy and enstrophy,
and it may be checked that

—+o00 +oo
/ Tk, t)dk = 0; / k2T (k, £)dk = 0, (8.33)
0 0

Such a transfer, as indicated by Fjortoft’s theorem, is now positive in the
large scales, as can be checked in Figure 8.7b, which shows both a direct
and a closure calculation of the two-dimensional turbulence isotropic transfer
determined by Herring et al. [276]. This behaviour is completely different
from the three-dimensional transfer of Figure 6.2 which is negative in the

13 Which has no adjustable parameter, contrary to E.D.Q.N.M. theory.
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Figure 8.10. Kinetic-energy spectra in decaying LES starting initially with a oc k'
energy spectrum at low k (dashed line) (from Ossia and Lesieur [557]).

large scales, indicating thus the tendency for the kinetic energy to cascade up
to the small scales.

The same techniques as proposed in Chapter 7 allow one to calculate the
non-local flux of enstrophy (Kraichnan [354], Pouquet et al. [584], Basdevant
et al. [37], Lesieur and Herring [418], Métais and Lesieur [492]), which is equal
to

P
Ik t) = / o Ela)dah® | KE(K)

1 oo
+ / KB )k / Ormp  PE(p)dp
2 0 sup(k,k’/a 8]?

k 00 2
E
- / K dk! / Oemy TP ap (8.34)
0 sup(k,k’/a) p

where a is the non-localness parameter. The non-local kinetic energy flux
calculated in the same way is

7]
Mya (k1) = / Onvad* Elq)dak ;) KE(K)

/ K2 B(k')dk' / Ourpp aa PE(p)dp
sup(k,k’/a) p



332 8 Two-Dimensional Turbulence

k 00 2
E
- / K di! / Ok pp (p) dp. (8.35)
0 sup(k,k’/a) p

Let us first consider the infrared region & — 0: it can be checked (see
Basdevant et al. [37]) that Iy (k) reduces to the third term on the r.h.s. of
Eq. (8.35), and that the corresponding energy transfer —0ITy (k)/0k is itself

of the order of - B2
ks p

where k; is the wave number where the energy spectrum peaks (i.e. kg(t) in a
forced situation and k;(t) in a decaying situation). This term corresponds to
k3 two-dimensional backscatter, and provides an explanation for the infrared
k3 kinetic energy spectrum already mentioned on preceding figures.

In the enstrophy cascade, it turns out that the first term in the r.h.s. of
Eq. (8.34) gives the essential contribution to the enstrophy flux. As already
mentioned, it involves wave-number triads (k', p, ¢) such that ¢ < k¥’ = k =~ p,
the same that are responsible for the k£~ viscous-convective range of the three-
dimensional passive scalar at high Prandtl number, and which correspond to
the creation of smaller scales through the straining of a larger-scale velocity
shear. The enstrophy flux Z(k) can then be approximated by (Kraichnan
[354])

1/ 40 b
20 =, (¥ 5, 100 [ oworE@as (330
0
which itself can be modified as (Pouquet et al. [584], Basdevant et al. [37])
1,0 i
Z(k) =~k ok kE(k)Okko | ¢ E(q)dgq| . (8.37)
0

This is not very different from Eq. (8.36) in the enstrophy cascade, but offers
the further advantage of being both conservative of energy and enstrophy,
and therefore able to approximate the enstrophy flux whatever the value of k
(and not only in the enstrophy cascade). Eq. (8.37) can be solved analytically,
assuming a constant enstrophy flux 5. It leads to

k -1/3
E(k) ~ a2/?32/3) 3 (m k1> (8.38)

where the wave number k7 is unknown. The constant in the r.h.s. of Eq. (8.38)
can be determined analytically. An analogous logarithmic correction was ori-
ginally proposed by Kraichnan [354] as a Test-Field Model steady solution of
the kinetic-energy spectrum evolution equation. If one identifies both expres-
sions as was done by Pouquet et al. [584] and Métais and Lesieur [492], one
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finds a; = 0.53. This does not change much the level of E(k) in the inverse
energy cascade.

Let us now turn our attention to the kinetic energy flux in the enstrophy
cascade: from Eq. (8.35) it is approximately equal to

k
(k) = Zk(f) +2 / (VK2 E (R )dk! (8.39)
0
where
1 [ 0
vy = 4/k Bopp appE(p)dp. (8.40)

Indeed, the third term in the r.h.s. of Eq. (8.35) can be neglected. Contrary
to the three-dimensional turbulence case, this eddy viscosity, of the order
of —(1/4)kE(k)Okko, is negative for any spectrum decreasing faster than k1.
The total energy flux through the enstrophy cascade is composed of a positive
term Z(k)/k?* corresponding to the energy flux due to the semi-local inter-
actions responsible for the enstrophy cascade, minus negative eddy-viscosity
interactions which send back into the large scales the kinetic energy drained
towards the small scales by the enstrophy cascade. The result turns out to be
a zero kinetic energy flux for a k=2 kinetic energy spectrum. This implies for
high Reynolds number two-dimensional turbulence a very peculiar dynamics,
where the large scales (unaffected by molecular viscosity), conserve exactly
their kinetic energy, while their vorticity is dissipated at a finite rate towards
small scales through an enstrophy cascade. It is clear from that result that
any system of inviscid dynamical equations which do not dissipate enstrophy
cannot pretend to represent two-dimensional turbulence correctly.

Again one may wonder about the physical significance of this negative
eddy-viscosity: the simplest physical mechanism is to invoke the pairing of
small-scale eddies. It may also be due to other types of subharmonic instabil-
ities displayed by Sinai and co-workers in the case of the Kolmogorov flow.'#
More generally, one can widen the concept of negative eddy viscosity and in-
clude in it all the larger-scales formation effects arising in two-dimensional
turbulence and mainly due to the double constraint of energy and enstrophy
conservation. One must emphasize, however, that, in the context of two-
dimensional numerical LES for instance, the “negative eddy viscosity” effects
described above are not represented at all by a negative eddy-viscosity, since
the modelled scales need to conserve their kinetic energy, while dissipating
their enstrophy at a finite rate in the subgrid scales (see Chapter 12).

4 Which is a class of two-dimensional flows forced in the small scales by a periodic
field (see Meshalkin and Sinai [488], Sivashinsky and Yakhot [646]).
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8.7.1 Forced turbulence

It was this problem which was studied in the pioneering work of Pouquet,
Lesieur, André and Basdevant [584]. Turbulence is forced by a narrow for-
cing peaking at k;. The kinetic-energy and enstrophy injection rates are re-
spectively € and (. The parameter a; is adjusted in an infinite log-corrected
enstrophy cascade (see above). Figure 8.11 shows the time evolution of kinetic-
energy spectra once the k=2 enstrophy cascade has been built. One sees very
clearly the progression to the left of the inverse energy cascade of the wave
number kg (t) indicating the peak of the spectrum. The importance of this
work lies in the fact that it shows in a time-dependent calculation the con-
vergence towards stationary solutions consisting of the enstrophy cascade and
the inverse-energy cascade. It shows also without debate that enstrophy goes
to high wave numbers and kinetic energy to low wave numbers, in very good
agreement with the scheme of Figure 8.5. Let us quote a remark by Lesieur
and Herring [418]:

It must be stressed, however, that only meagre evidence — experi-
mental or theoretical — indicates this double cascade is really the dy-
namics of two-dimensional turbulence.

In fact, the numerous numerical and experimental works discussed above do
show the reality of double enstrophy-energy cascades in two-dimensional tur-
bulence.

8.7.2 Freely-decaying turbulence
Numerical results

We study now with the E.D.Q.N.M. model a freely-evolving two-dimensional
turbulence having a spectrum initially concentrated at a wave number k;(0)
(and a k? spectrum at low k). Let us first show in Figure 8.12 the analogous
of Figure 8.11 in the decaying case, taken from Pouquet et al. [584]. A long
enstrophy cascade establishes. However, the infrared behaviour is not clear
due to an excessive accumulation of energy close to the smallest mode. Other
decaying E.D.Q.N.M. calculations confirming the k3 energy spectrum at small
k will be presented in Chapter 11.

Analytical results

Here we will study the initial build-up period of the enstrophy cascade, and
then show how one can derive the law k;(t) ~ (vt)~! which underlies the
Batchelor law equation (8.23).
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Figure 8.11. Double cascading spectrum of forced E.D.Q.N.M. two-dimensional
calculations (from Pouquet et al. [584], courtesy A. Pouquet).

From Eq. (8.14) the enstrophy can only decay or remain constant, and is
thus upper bounded by its initial value D(0). Consequently, Eq. (8.13) implies
that the kinetic-energy dissipation rate will always tend to zero with the vis-
cosity: hence the kinetic energy of two-dimensional turbulence is conserved for
any time at vanishing viscosity, at variance with the result of finite dissipation
at finite time occurring in the case of the closures applied to three-dimensional
turbulence.

The question now arises of the time-evolution of the enstrophy, which,
because of Eq. (8.14), obliges one to look at the palinstrophy: from the ex-
pression (8.31) of the kinetic energy transfer, and the calculations of Pouquet
et al. [584], the E.D.Q.N.M. evolution equation for the palinstrophy is found,
with our notations, to be

dP(t) _

4 o0 o0
it / / P P E(p,t)E(q, t)0kpg A(p, q)dpdg
™ Jo 0

+o00
—21// kCE(k,t)dk (8.41)
0

with
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Figure 8.12. Decaying E.D.Q.N.M. two-dimensional calculations (from Pouquet et
al., [584], courtesy A. Pouquet).

_ J (@/2)[1 - (a/p)*]; ifg<p
Alp,q) = { (72)[1 — (¢/p)?](p/q)?, otherwise.

We may then symmetrize the nonlinear term of Eq. (8.41) with respect to p
and ¢, and obtain

dP(t Feo P
di ) 2/ dp/ (0" — ") E(p,t)E(q,t)0kpqdq
0 0

+o0
—2v / KCE(k, t)dk. (8.42)
0

Since Oypq is majored by (pux + pp + pg) ", itself majored by u;l, where py, is
given by Eq. (7.17) with a; = 0.4, the nonlinear term of the r.h.s. of Eq. (8.42)
is upper bounded by

+oo P
2/ dp/ P P E(p, )E(q, t)pg dg =
0 0

1
2 4 1

;1 /O+°° dpp*E(p, 1) {/Op E(q, t)dq} < alp(t)D(t)Q.

Finally Eq. (8.42) leads to the following inequality
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P 4 n Heo
P 4 piypyd — o / KSE(k, £)dk (8.43)
dt aq 0
which reduces to P () A
< T P()D(t)2 44
i < . PODO (8.44)

in the limit of a zero viscosity. The palinstrophy majoration corresponding to
Eq. (8.44) is

P(t) < P(0) exp (4

D(O)5t> (8.45)
and is better than the one obtained in Pouquet et al. [584] which involved an
exponential of 2. The conclusion is, as already stressed in this paper, that for
any fixed t the palinstrophy, even high, remains bounded when the viscosity
goes to zero. This implies from Eq. (8.14) that, in the same conditions, the
enstrophy dissipation rate goes to zero, and the enstrophy is conserved for any
time. There is therefore no finite inviscid enstrophy dissipation at a finite time,
similar to the finite kinetic energy dissipation of three-dimensional turbulence.
It would however be an error to think that, within the E.D.Q.N.M. frame,
two-dimensional turbulence does not dissipate enstrophy when the viscosity
is small but finite. This would contradict in particular the t~2 enstrophy
dissipation law derived from Eq. (8.23). Actually, the E.D.Q.N.M. or direct
calculations of freely-evolving two-dimensional turbulence all show that the
palinstrophy starts increasing, following approximately an exponential of the
type of Eq. (8.45) r.h.s., reaches a maximum, and then decreases under the
action of viscosity. The maximum corresponds to a time t. where the whole
span of the energy spectrum, from k;(0) to k4(¢t.) has been filled up. The
enstrophy dissipation wave number k4(t.) is defined from Eq. (8.26), with

B=t"
ka(te) = (vte) Y2 (8.46)

The palinstrophy P(t.) is thus approximately equal to

1 D(O)l/ztc)

ai

R

from the inviscid stage described by Eq. (8.45) (taken as an equality), and
to t-%kq(t.)? from the enstrophy cascade assumption. Noticing finally that
the total kinetic energy (1/2)v? is proportional to ¢, 2k;(t.) =2, and the initial
palinstrophy to k;(0)*v2, one obtains approximately

kq (tc)
ki (tc)

which indicates that the “critical” time t. is proportional to the logarithm of
the Reynolds number given by Eq. (8.27). It is only after ¢, that the enstrophy

te ~ D(0)"Y?1n (8.47)
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will be dissipated at a finite rate ~ ¢t 2. The existence of such a time was first
conjectured by Tatsumi and Yanase [678], and its correct determination o< In R
was given by Basdevant [38]: before t., the palinstrophy grows “inviscidly”
according to Eq. (8.45), and the enstrophy should decrease like

D(t) = A — vBexp[CD(0)Y?] (8.48)

where A, B, and C' are three constants. The enstrophy dissipation rate is thus
proportional to v exp[C'D(0)'/2t]. After ., the kinetic energy spectrum decays
self-similarly according to Eq. (8.23), and the enstrophy dissipation rate is
proportional to ¢t~3. The critical time t. goes to infinity with the Reynolds
number, that is when the viscosity goes to zero: in this case, one recovers the
above mentioned result of inviscid conservation of enstrophy for any time. Let
us mention finally that the inviscid exponential evolution of P(t) has been
verified in the direct numerical Euler calculations of Kida and Yamada [328].

Batchelor’s analysis (8.23) is based on a self-similar assumption of the type
(6.68), with an integral scale [ &~ k;(t)~! proportional to vt. It is possible to
justify such an assumption (Lesieur and Herring [418]) on the basis of two
hypotheses which have been derived from the closures, i.e. the existence of an
infrared k3 energy spectrum, and of a k~3 enstrophy cascade. As shown in
this paper, the k% spectrum for k — 0 will appear whatever the slope s of the
initial spectrum, due to the strong k3 backscatter in low k. One assumes then
that

E(k,t) = C(O)K®, k < k;i(t);

E(k) = Bk, k > ki(t). (8.49)

The enstrophy is negligibly contributed to by the k3 range, which yields 4%/ ~
D(t), and hence respectively a t =2 and ¢t 3 behaviour for D(¢) and 3. The total
kinetic energy is proportional to ¢t ~2k;(t)~2, which yields

ki(t) ~ (vt)~! (8.50)

and demonstrates Batchelor’s law. Finally, matching both spectral ranges at
Ek;(t) gives
C(t) ~ v°tt, (8.51)

The law equation (8.50) has been verified by Rhines [593] in a DNS, with a
wave number (k(t)) characteristic of the energy-containing eddies defined by
S kE(k, t)dk

(k(t)) = f0+oo Bk 0k (8.52)

This calculation led to
< > 30 ( )
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which shows that the “doubling time” of the “eddy” (k)~! (that is the time
necessary to form an eddy of size 2/(k)) is, in time units (v(k))~!, equal to
30. As stressed by Staquet [669] on the basis of a similar two-dimensional
isotropic calculation, this doubling time is 15 when evaluated with the aid of
the wave number k;(¢) where the kinetic energy spectrum peaks.

We have given above arguments based on the existence of large coher-
ent vortices showing that at high times enstrophy decays slower than the
self-similar ¢=2 law (see Figure 8.3). Therefore, closures of the E.D.Q.N.M.
type applied to decaying two-dimensional turbulence should be used more for
qualitative purposes

8.8 Diffusion of a passive scalar

The two-dimensional passive scalar diffusion is a significant problem when
one is interested in the large-scale diffusion of tracers or pollutants in the
atmosphere or the ocean, or by temperature fluctuations in two-dimensional
laboratory experiments. It also gives information about the way vorticity (or
potential vorticity in geostrophic turbulence) is transported by the flow. Since
the vorticity and the passive scalar both obey equation (8.4), they have close
analogies. However, the scalar, whose variance is an inviscid invariant, is not
constrained to the double energy-enstrophy conservation like the velocity field.
This will rule out the possibility of strong inverse scalar transfers, inverse
scalar cascades and negative eddy-diffusivities.

The phenomenology of two-dimensional passive-scalar diffusion has been
given in Lesieur et al. [414] and Lesieur and Herring [418]. Let T'(Z,t) be the
scalar, Ep(k,t) its spectrum such that

1 oo

2<T(:z')2> = Er(k, t)dk. (8.54)
0

er = 0+OO k?Er(k,t)dk is the scalar dissipation rate and & the scalar diffus-
ivity. The scalar dissipation wave number is now (Lesieur and Herring [418])

ep\1/6
ke = (Kg) . (8.55)
We start by considering the scalar in an enstrophy cascade. The correspond-
ing inertial-convective, inertial-conductive and viscous-convective ranges are
shown in Figure 8.13, taken from Lesieur and Herring [418]: if the scalar
is injected in the enstrophy cascade, and for k < inf(k., kq), an Oboukhov
type analysis, already employed in the three-dimensional case, shows that the
scalar spectrum is proportional to the cascading enstrophy spectrum and is
consequently of the form
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Figure 8.13. Schematic inertial-ranges of the kinetic energy and scalar spectra
in the enstrophy cascade. The enstrophy is injected at k; with a rate 3, and the
scalar at kI with a rate er. (a) Prandtl number > 1; (b) Prandtl number < 1.
Inertial diffusive stands for inertial conductive in the present book (from Lesieur
and Herring [418], courtesy J. Fluid Mech.).

Br(k,t) ~ EBT K2E(k,t) ~ ep3~ /31, (8.56)

The prediction of such a spectrum wa first done by Fasham [194]. It was also
proposed by Lesieur et al. [414] (see also Lesieur and Sadourny [414] and
Mirabel and Monin [508]). Here, the scalar spectrum is proportional to the
spectrum of the cascading quantity, the enstrophy. The physics of this cascade
is again provided by Eq. (8.25), valid also for the scalar gradient: the latter
will be intensified in the second principal axis of deformation direction, normal
to the weak vorticity braids reconnecting the large coherent vortices. Thus,
these braids will form local scalar “fronts” with high 9p/dn. The latter may
induce high scalar Laplacians ~ 0%p/0n?, and hence high scalar molecular
diffusion. In combustion problems where reacting species may be in contact
along this interface, this increased molecular mixing will favour the chemical
reactions. These mechanisms of scalar-front formation might be also at hand
in atmospheric frontogenenis (see next chapter).
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An interesting experimental verification of the k~! inertial-convective
range in forced two-dimensional turbulence at high Peclet number has been
carried out by Jullien et al. [323].

In the inertial-conductive range, it has already been mentioned in
Chapter 6 that Eq. (6.117) is still valid (with a different value of the con-
stant), that is

Er(k,t) ~ erk 3k~ B(k,t) ~ epr33%3k77, (8.57)

Such a k=7 scalar law was predicted by Lesieur et al. [414].
As for the viscous-convective range, it is still proportional to k~1.

8.8.1 E.D.Q.N.M. two-dimensional scalar analysis

This phenomenology is supported by an E.D.Q.N.M. analysis, whose spectral
equation is written (from Eq. (7.126) which is still valid)

(§t+2nk2>ETkt // dpdqakpq (1—2?)>
Ay

[kEr(p,t)E(q,t) — pE(q, t) Ex(k,1)]. (8.58)

Here we have taken the same triple-correlations relaxation time as for the
velocity, which is certainly not justified but does not greatly influence the
results. The use of a modified # time of the form 64, already considered in
the three-dimensional case, has the advantage of allowing a return to physical
space, yielding then Eq. (7.130) which is still valid (see Larchevéque and
Lesieur [378], Lesieur and Herring [418]).

Using the same non-local techniques already employed above and in
Chapter 7, one can calculate the non-local flux of scalar, equal to

o FE
I3 (k1) / OrkqaE(q)dg ks@k Tk( )
/ K Ep(K')dk / Orpp E(p)dp
sup(k,k’/a)
- / Kk / Oy TPVET ) (8.59)
0 sup(k,k’/a) p

This expansion shows again, as for the energy spectrum, the existence of a k3
scalar backscatter in the infrared region k — 0. The second term in the r.h.s.
of Eq. (8.59) corresponds to an eddy diffusivity

1 o

Ky = 5 OoppE(p)dp (8.60)
k/a
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which, contrary to the eddy viscosity, is always positive. The first term in the
r.h.s. of Eq. (8.59) is identical to the enstrophy flux in the enstrophy cascade
if Er(k) is replaced by k2E(k). This allows to show

Br(k,t) = eﬁT K2E(k,t) (8.61)

in the enstrophy cascade inertial-convective range (Lesieur and Herring [418]),
provided the local scalar transfer may, as for the enstrophy, be neglected.'?

When the scalar is forced into the k=5/3 inverse kinetic energy cascade,
it is going to cascade to higher wave numbers along a direct k—°/3 inertial-
convective range, as shown in Lesieur and Herring [418].

Curiously, and when compared with the DNS which have been done for
this passive-scalar problem, the conclusions of this statistical analysis for the
k=1 inertial-convective range seem to work quite well, though the enstrophy
spectra determined in these (low resolution) computations are steeper than
k=1 (Babiano et al. [24]). It has also been noticed by Holloway and Krist-
mannsson [291] that the scalar is more easily diffused by turbulence than is
the vorticity. It would be interesting to verify the discrepancy between the en-
strophy and scalar spectra on higher resolution computations. It might be that
such an effect results simply from the absence of pressure term in the scalar
equation,'® and that, as in the three-dimensional case, the k~! scalar spectra
observed in the numerical simulations are the result of a random shearing of
the scalar by the large eddies, corresponding to Eq. (6.140).

8.8.2 Particles-pair dispersion in 2D

To end this section, let us consider the diffusion problem from a Lagrangian
point of view, by looking for instance at the particles-pair dispersion problem
already studied in Chapters 6 and 7 for the three-dimensional case. As shown
in Larchevéque and Lesieur [378] and Lesieur and Herring [418] with the aid
of the E.D.Q.N.M. theory, the probability density P(r,t) that the pair should
be a distance 7 apart admits a similarity solution of the form

P(r,t) = R72f ( ’ ) (8.62)
R
where R is the r.m.s. pair separation.

e Inverse energy cascade:

15 This assumption should however be verified, either with the aid of the E.D.Q.N.M.
theory or DNS.

16 There is no pressure in the vorticity equation as well, but the deformation of
vorticity by the velocity reacts on the velocity field and may inhibit the vorticity
diffusion, compared with the scalar diffusion.
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R satisfies a Richardson law dR?/dt ~ ¢'/3R*/3, yielding R? = get®. This law
has been recovered experimentally by Jullien et al. [322] with g ~ 0.5.

e Enstrophy cascade:

we obain the dispersion law

2
- 3l/3p2

5 gt G°R (8.63)

which was proposed originally by Lin [449] on a phenomenological basis. Such

a law leads to an exponential dispersion for a stationary forced enstrophy

cascade. It has been recovered experimentally in an initial regime by Jullien

[324].

Eq. (8.63) implies also that dR/dt ~ /3 R. This gives the order of mag-
nitude §2/3r2 for the second-order velocity structure function. It is then
tempting to relate such a dispersion law (resp. structure function) to the
kinetic-energy spectrum, as was done for three-dimensional turbulence when
the Richardson law was equivalent to the Kolmogorov law for the kinetic-
energy spectrum. This poses however some problems, as stressed in Babiano
et al. [23,25], where it has been shown that a 72 structure function could
correspond to spectra decreasing faster than £~3. Thus, the determination of
diffusion or dispersion statistics in a two-dimensional turbulent flow, as was
for instance experimentally done for the EOLE experiment in the atmosphere
(see Morel and Larchevéque [521]), could not be sufficient to characterize the
flow dynamically.

Let us finally mention the work by Zouari and Babiano, [738] where DNS
are used in order to study pair dispersion. Separating the flow into elliptic and
hyperbolic regions, as was done above for Weiss criterion, they find that the
tracers disperse following Lin’s law within the hyperbolic zones, while they
remain trapped in the vortices (elliptic zones).

8.9 Pressure spectrum in two dimensions

We recall that such a spectrum allows to calculate the sound pressure level.
We will give here the predictions of the Q.N./E.D.Q.N.M. analyses, which, as
already stressed, are equivalent [380].

8.9.1 “Ultraviolet” case

Larchevéque [380] did not consider the pressure spectrum. noise The same
derivation as done above in the three-dimensional case yields again for the
latter (Lesieur et al. [427]) Epp(k) ~ k[E(k)]? which gives
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Figure 8.14. Temporal evolution of pressure spectra in the DNS of Figure 8.8. The
dashed line corresponds for the intial time (from Ossia and Lesieur [557]).

Epp(k) ~ /35773 (8.64)
in the inverse-energy cascade, and
Epp(k) ~ p*3k° (8.65)

in the enstrophy cascade. The latter law is feasible, since we recall that ex-
periments of Paret et al. [565] demonstrating the existence of a k=2 enstrophy
cascade indicate a close to Gaussian vorticity distribution in this range. Com-
pared to the k~7/3 ultraviolet pressure spectrum in three-dimensions, it im-
plies that the noise emitted in 2D is more determined by large scales and
coherent vortices than in 3D.

8.9.2 Infrared case

As for the three-dimensional case (see Chapter 7), a Q.N./E.D.Q.N.M. ana-
lysis yields now [427,557]

Bk, t) = g (/;oo E(qq’ t)qu> k. (8.66)

One may check the validity of this law in DNS’ and LES’, except for the
numerical constant (3/2). In the DNS’ however, there is a lot of kinetic-energy
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Figure 8.15. Pressure spectra in the LES of Figure 8.9 (from Ossia and Lesieur
[657]).

dissipation, and the k infrared pressure spectrum, once formed, will decay as
in in three dimensions. This is clear in Figure 8.14, which corresponds to the
DNS of Figure 8.8. The corresponding pressure variance will also decay with
time.

The pressure spectrum corresponding to the LES of Figure 8.9 is displayed
in Figure 8.15. Here, we have first a time decay of the infrared pressure spec-
trum, followed by an increase. The associated pressure-variance time exponent
a, such that (p'?) oc t% can be found in Figure 8.1. One can see that it is
first negative, corresponding to a decay of (p'?), then it become positive and
the turbulence noise will increase.

In [557], the pressure p.d.f.’s have been determined. They are not far from
analytic predictions made by Holzer and Siggia [295] on the basis of a shell
model.

It seems that two-dimensional turbulence is more noisy than three-
dimensional one, and breaking up two-dimensional vortices may constitute
a good way to reduce the aerodynamic noise in turbulence.
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8.10 Two-dimensional turbulence in a temporal mixing
layer

In reviewing the various physical mechanisms which may contribute to the en-
strophy cascade, let us mention the work of Staquet et al. [668,669], Lesieur
et al. [420], and Comte et al. [134], concerning the longitudinal spatial en-
ergy spectra in a two-dimensional temporal mixing layer, which could shed
some light on the build up of the enstrophy cascade. Figure 8.16, taken from
Lesieur et al. [420], shows the evolution of a two-dimensional temporal mixing
layer initiated by a hyperbolic-tangent velocity profile U tanh(2y/d;), upon
which is superposed a weak white noise in the rotational region. The lon-
gitudinal extent of the domain corresponds to 4),, where A\, = 7J; is the
most-amplified wavelength. Four primary vortices are therefore expected to
develop. The figure presents simultaneously vorticity contours and longitud-
inal spatial spectra. At ¢t = 200,;/U, the spectrum corresponds to a sharp
peak at the fundamental mode (k4 = 27/),), which is responsible for smaller
peaks at its harmonics 2k4 and 3k4. The background spectrum corresponds
to more complex interactions involving the first and second subharmonic k4 /2
and k4/4. At t = 404;/U, that is at the end of the first pairing, the two dis-
tinct parts of the spectrum collapse to form a continuous range of exponent
close to k~*. Then the flow can really be called “turbulent”, since it possesses
a broad-band spectrum. If one accepts the association of this range to an
enstrophy-cascading inertial range of two-dimensional turbulence, this indic-
ates clearly the importance of the pairing interactions for the establishment
of the enstrophy cascade. At time ¢ = 800;/U, at the end of the second pair-
ing, the second subharmonic k; = 7/2)\, has grown and rejoins the inertial
range. In this temporal calculation, a layer of size § will double its size in a
time of 105/U. These calculations also show that the first fundamental ed-
dies which appear have a vorticity thickness of 2§;, and are formed at a time
of 156;/U. Then the first pairing will occur approximately at 359;/U, and
the subsequent!” pairing at 755;/U. Another result of these temporal mixing
layer calculations (done with a larger number of vortices) is that the vorti-
city thickness stops growing when there remains approximately two eddies in
the computational square domain, due to the longitudinal periodicity.'® This
does not prevent the last pairing to occur, but it does so without any vorticity
thickness growth.

7 This reasoning is simply based on the assumption that the vorticity thickness will
have doubled after each pairing.

'8 And not to the parallel boundaries, as erroneously stressed in the first edition of
this monograph; this point has been verified in Lesieur et al. [420].
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We will present in Chapter 11 another two-dimensional turbulence be-
haviour in two-dimensional mixing layers: the chaotic character of two-
dimensional subharmonic instabilities in the two-dimensional pairing.



9

Beyond Two-Dimensional Turbulence in GFD

9.1 Introduction

The former chapter dealt with strictly two-dimensional turbulence, which
is a sort of zero-order approximation for the dynamics of large-scale flows
in Geophysical Fluid Dynamics (GFD). In fact these motions, although in
thin layers, are strongly influenced by stratification effects which are three-
dimensional. A first step in this study is the quasi geostrophic theory, allowing
one to write quasi two-dimensional evolution equations for the large scales of
a stably-stratified shallow flow on a rapidly-rotating sphere. We will see how
the two-dimensional dynamics is modified by quasi geostrophy. We will also
try to explain the main mechanisms of baroclinic instability, resulting from
the existence of horizontal thermal fronts, which is at the origin of storms
in the atmosphere. This will necessitate to look at non-geostrophic effects.
We will give a version of quasi geostrophic theory in a fluid with N layers of
different density which is currently used for ocean-circulation modelling. We
will study the interaction of geostrophic layers with Ekman layers close to
boundaries. At a smaller scale, we will provide a model of tornado generation
in the atmospheric boundary layer in the presence of localized thermal con-
vection. We will also present a description of waves such as Rossby waves. We
will discuss Jupiter external atmosphere made of alternate zonal jets. Finally
the statistical concept of geostrophic turbulence will be discussed.

More details on the topics presented here may be found in Holton [294],
Pedlosky [567] and McWilliams [480]. Some other aspects of geophysical tur-
bulence are developed in Chapter 13.
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Figure 9.1. Local frame on the rotating sphere.

9.2 Geostrophic approximation

The mathematical details of this theory, proposed by Charney [109], are given
in [567]. Here we will give the main physical ingredients of the approximation.
Consider a rotating sphere (of angular rotation vector Q) of radius a. A given
point of the flow M is defined by its vertical projection O on the sphere,
and by its “altitude” z. To O is associated the local frame (%, Z), & being
directed along a parallel of latitude ¢ and y along a meridian of longitude
A (see Figure 9.1). The components of the velocity field @ in the local frame
are (u,v,w). The point O will be assumed to be close to a reference point
Oq of longitude and latitude Ag and ¢, in order to neglect the sphericity
corrections. The “horizontal” coordinates of M are defined by

x = a(A — Ag) cos @q

y = a(p — o) (9.1)

Let D be the average depth of the fluid, L and U characteristic horizontal
lengths and velocities, W a characteristic vertical velocity. We introduce the
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local Rossby number R, = U/ fyL, and the Froude number F = U/(ND) =
U/\/g+D (where g, = N2D is a reduced gravity). The scope of the present
study is to write an approximate evolution equation for the quasi horizontal
large-scale velocity field, using expansions with respect to the small paramet-
ers D/L, R,, and F'. The theory will consist of two major ingredients: the first
one is called the geostrophic approximation, and the second is the application
of Ertel’s potential vorticity conservation in the special case of the geostrophic
approximation.

In order to treat both a liquid and a gas, we utilize the Boussinesq ap-

proximation on a rotating sphere, within the same approximation as done in
Eq. (2.137), that is:

Du  0p 9
dt 8x+fv+1/eVu
Dv op 9
_ 9 _ . 2
i@t ay fu+ vV (9.2)
Dw  9dp . 9
& os pg + veVow.

In fact, the velocity field in Egs. (9.2) represents a filtered velocity field, av-
eraged over a horizontal box of size L, which is the smallest characteristic
scale for which the following geostrophic approximation will be valid. There-
fore, v, represents an eddy viscosity corresponding to momentum exchanges
with the “sub-geostrophic scales” smaller than dL. This is a very rough way
of modelling the effect of these small scales, but v, will not play any role in
the following geostrophic approximation. However, this coefficient will be es-
sential for the understanding of the Ekman layer (see below). The continuity
equation is approximated as

ou Ov Ow
-

oot oyt 9: =0 (9.3)

9.2.1 Hydrostatic balance

The smallness of D/L justifies an assumption of hydrostatic balance along
the vertical, as was done in Chapter 2. This leads to

10p
p=— . 9.4
P=" 0. (9.4)
This corresponds to
10p'
p=- (9.5)

g 0z’
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for the density and pressure fluctuations about the basic hydrostatic profile
p(z),p(2). This implies that the instantaneous density p = p+ p’ and pressure
p = p+p are also hydrostatically related:

~ 1op
= 0. (9.6)

9.2.2 Geostrophic balance

In the horizontal velocity equations, the Coriolis force is of the order of fyU,
the nonlinear terms Qi /dt of the order of U?/L, and the dissipative term of
the order of v, U/L?, where fy the value of the Coriolis parameter (defined by
Eq. (2.87) at ¢o). From the Ekman layer study done below, v, ~ fyd%, where
0p < D characterizes the vertical thickness of the Ekman layers between
which the fluid evolves (see below). Hence the dissipative term is ~ foUd%/L?.
The ratio of the nonlinear to the Coriolis term is of the order of the Rossby
number U/ foL, and that of the dissipative to the Coriolis term of the order of
(6p/L)? < 1. Then, as soon as the Rossby number U/ fyL is small compared
with one, and if O is close to Op, the momentum equation in the rotating
shallow layer on the sphere reduces to

—Vup = foZ X ily. (9.7)
Since p is a function of z only, Eq. (9.7) is equivalent® to

L Gup= foF x i, (9.8)
Po

where pg is the average value of the density across the fluid layer. Eq. (9.8)
corresponds to the geostrophic balance between the pressure gradient and
the Coriolis force. It shows that the horizontal flow follows the isobaric lines
in a horizontal plane, in the cyclonic direction (that is the positive rotation
imposed by ﬁ) in the vicinity of a pressure trough, and in the anticyclonic
direction around a pressure peak. Eq. (9.8) implies also that

iy = —Zx Vy(z,y, 2, t) (9.9)

1
T, 7Z7t = - Z, 7Z7t
V(g 2t) == @y 2 t)

where 1) acts like a stream function for the horizontal motion, but depends
on the vertical coordinate z. Let us remark also, from Eq. (9.6), that

! These relations might also have been obtained using the Navier-Stokes equations
directly.
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)
- p(’gfo 87’2’. (9.10)

We will define the geostrophic velocity iig by Eq. (9.9). Introducing a fluctu-
ating stream function

1
V'(x,y,2,t) = —  pl(x,y,21), (9.11)
pofo
with 1
= — n(z —+ I’
(0 2 fop( )+
the above relations write
g = —Zx V' (z,y,z,1t) (9.12)
__ foouw
P g 0z

Hence, 1)’ may also play the role of a stream function for the geostrophic field.

9.2.3 Generalized Proudman-Taylor theorem

We remark also that the geostrophic velocity is horizontally non-divergent.
This has important consequences for the vertical velocity of the actual flow:
indeed, let us write the real (dimensional) velocity field as

U
foL

where @1 has a modulus of the order of U. Since i is horizontal, the vertical
characteristic velocity W is of the order of R,W ), where W) is a typical
vertical component of #(!). Since the three-dimensional incompressibility con-
dition (9.3) is valid at any order of the expansion, it implies

ow o g
0z _( or T Ay )7

U _,(1

@(Z,t) = dg(Z,t) + . . @
@0 = 6@ 0+ . |

)(Z,t) + [ rO(ﬁ’), (9.13)

which yields

o] el () e

These results show that a rapid rotation diminishes the ratio W/U from the
value D/L (imposed by the shallowness of the layer and the continuity equa-
tion) to (U/foL)(D/L). This is a generalization of the Proudman—Taylor the-
orem to a shallow flow on a rotating sphere, and goes in favour of the limitation
of the vertical fluctuations of the flow under the action of a rapid rotation, as
seen in Chapter 2 for a flow of uniform density in a layer of arbitrary depth.
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9.2.4 Atmosphere versus oceans

The local Rossby number is infinite at the equator, and so the geostrophic
balance holds only in the medium and high latitudes. More specifically, and
as already discussed in Chapter 1, the Rossby number is of the order of 0.3
in Earth atmosphere in medium latitudes (f = 10~% rd/s) for tropospheric
jets of velocity 30 m/s and length scales 1000 km. Since the geostrophic bal-
ance theory is valid at the lowest order with respect to the Rossby number,
the latter fixes the precision of the determination of the actual velocity field
using the geostrophic velocity inferred from the pressure field. In the ocean,
a velocity of 5 cm/s and a length scale of 100 km yields a Rossby number of
5.1072 at the same latitude. So the ocean is much more geostrophic than the
atmosphere. This explains why quasi geostrophic models are used much more
in the oceans than in the atmosphere.

9.2.5 Thermal wind equation

By differentiating Eq. (9.9) with respect to z, and using Eq. (9.6), one obtains
the so-called thermal wind equation

dum g
0z pofo

This shows a tendency for the horizontal density gradients to induce, un-
der the action of a rapid rotation, zonal currents with a vertical gradient: in
Earth atmosphere, for instance, the meridional density gradients are direc-
ted towards the poles, and the thermal-wind equation is therefore in good
agreement with the zonal westerly jet streams in medium latitudes and the
circumpolar vortices. Notice also that Eq. (9.15) is equivalent to

Zx Vp. (9.15)

ou S
uH——QZXVHpZ—

g . =
= - Nl
Py fo ZxVygp (9.16)

fo

9.3 Quasi geostrophic potential vorticity equation

The geostrophic approximation is a “diagnostic” equation, allowing one to ap-
proximate the velocity by a horizontal field, the geostrophic velocity, and to
calculate it from the pressure field, using Eq. (9.9). With the aid of the hydro-
static approximation, the velocity and the temperature can thus be completely
determined from the pressure, with a precision of the order of the Rossby num-
ber. Therefore we need a “prognostic” equation allowing one to predict the
evolution in time of the pressure field, or the vertical geostrophic vorticity
wg = —VZ%1. Such an equation may be derived with the aid of systematic
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expansions with respect to the small parameters (Rossby number R,, Froude
number and D/L), as was done by Charney [109], see also Pedlosky [567]).
Here, we will derive this equation using the potential-vorticity conservation
principle, expanding the potential-vorticity equation.

One still works within the Boussinesq approximation, neglecting molecular
diffusion. As shown in Chapter 2, the potential vorticity

¢=(3+202).Vp. (9.17)

is conserved following the three-dimensional motion. We will expand this equa-
tion to the first order with respect to the above-mentioned small parameters.
Therefore, the vorticity & in Eq. (9.17) may be replaced by the geostrophic
vorticity Wg, since it is of order R, with respect to 203. Writing

—

VP* g+ ﬁprm

= p*
0z
the potential vorticity is:

e . o=
<:4wG+f)5;+mwG+29vam. (9.18)

Let us consider the orders of magnitude of the second term in the r.h.s. of
Eq. (9.18), which is, due to the thermal-wind equation (9.16), of the order of
or smaller than (fZ/g) 0@ /0z| ~ (f3U/gD). The first term in Eq. (9.18) is
minored (in modulus) by ~ (U/L)|dp./dz|. Hence, the ratio of the second to
the first term is of the order of (fo/N)?(L/D), where N is the Brunt-Waisala
frequency. The magnitude of this parameter can be specified by noticing that

fo FD
N RyL

f\°L (F\°D
(V) 5= () &

will be small if the Froude number is of the order of or smaller than the Rossby
number. In this case, the potential vorticity Eq. (9.18) writes

Hence

(= (wc+f)%[:‘. (9.19)

We have
pe = pu(2) +p, f = fo+ f

and assume that
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are small parameters of the order of or smaller than R,. To the first order, it
is obtained

_ L dp. ndpe | L 0p
¢=fo,, tlatf)  +fo, . (9.20)
Dividing by dp./dz, and using Egs. (2.127), (9.12), and (9.20) writes:
N fo)* 0%
=4 |7VEYHS (N 0.2 |- (9.21)

The conservation of potential vorticity is thus expressed as

D . Dy )

DiS= ppltwy =0, (9.22)

where w is the vertical velocity. In Eq. (9.22), the magnitude of wd(/dz
relative to Dy /Dt is, from Eq. (9.14), equal to the Rossby number. Then it
is easy to check that, to the lowest order, Eq. (9.22) reduces to

d?p,

b =0 (9.23)

Dy
w
Dt ¢+ fo
We assume for simplicity that N? is a constant. Hence the potential vorticity

equation writes:

=0, (9.24)
with

fo\* 0%
. 2

N /) 022 (9:25)

At this point, and since 1) — 1) is a function of z only, the quasi geostrophic

potential vorticity equation may be replaced by:

w} = _v%ﬁlwl(wvyazat) + f - (

D
Dy or =0
2
82
wp = —V4ib(x,y, z,t) + f — ({3) a;ﬁ. (9.26)

More details may be found in Pedlosky [567].2

The three terms of the r.h.s. of Eq. (9.26) correspond to three different
physical processes: wpr = —V%4%, the barotropic potential vorticity, will give
rise to the two-dimensional turbulence introduced in the previous chapter;
the variations of f with the latitude will generate Rossby waves (see below);

2 The reader is warned that our stream function has an opposite sign compared to
Pedlosky’s.
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finally the baroclinic potential vorticity wpe = —(fo/N)20%¢ /022, which,
from Eq. (9.10), is proportional to —9p/dz, will be responsible for the so-
called “baroclinic instability”, due to the simultaneous action of a rotation
and a density gradient.

There ought to be a sub-geostrophic diffusion term in the r.h.s. of
Eq. (9.26a), due both to the small-scale turbulent diffusion of momentum and
temperature. The simplest form for such an operator could be an eddy-viscous
dissipation v, V%4w¢ (which however ignores the temperature diffusion). Actu-
ally, oceanographers prefer to utilize a biharmonic diffusion operator propor-
tional to —(V%)2ws (Holland [287,288]). Higher-order Laplacian operators
have been proposed by Basdevant and Sadourny [40]. In the numerical LES of
quasi geostrophic turbulence, these higher-order turbulent dissipation operat-
ors cause the dissipative effects to shift towards the smallest resolved scales,
leaving the large scales unaffected by viscosity (see Chapter 12).

9.4 Baroclinic instability

It is an instability due to the conjugation of rotation and temperature gradi-
ents (horizontal and vertical) in thermal fronts which is at the origin of storms
in the atmosphere, and the development of vortices in the ocean. Here we as-
sume f = fo. There are several interpretations of this instability.

9.4.1 Eady model

We consider a flow in a rotating stably-stratified channel of width L and
depth H. It is differentially heated in the y direction with a constant non-
dimensionalized “density” gradient 0p./0y. Geostrophy is also assumed, as
well as thermal-wind balance. We find as solution of Boussinesq equations a
basic zonal flow of uniform vertical gradient A, where A is a constant related
to Op./0y. If one takes a zero velocity at the ground, we have u(y, z) = Az.
This is the simplest model of atmospheric jet stream, represented by the lid
moving at velocity AH.

Afterwards one performs a linear-stability analysis of the equations about
this state. One recovers the same equation as when linearizing Eqs. (9.24) and
(9.25) about the same state: neglecting differential rotation, it is obtained

d d fo\* 0%/
(at * Azax> >

N/ 022
equivalent to Eq. (45-28) of the Eady model given in Drazin and Reid [173].
The latter provide a solution of this equation by normal modes, with free-
slip boundary conditions on the lateral boundaries, the bottom and the lid,

VHY (2,9, 2,t) + < ] =0, (9.27)
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Figure 9.2. Schematic view of quasi horizontal thermal convection in baroclinic
instability (p stands here for p. introduced in Boussinesq approximation).

and periodicity in the longitudinal direction. It is found that unstable modes
appear when the Burger number

HN\®  (R,\?> /r1\2
B, = = ° = ( ) 2
(zn) - () = (2 029
is smaller than 0.58, equivalent to L > 1.31r, which shows that the baroclinic
instability develops at horizontal wavelengths larger than r;y.

9.4.2 Displaced fluid particle

Let us now recall a displaced fluid-particle argument in order to understand
more physically baroclinic instability (see e.g. Holton [294]). We consider a
fluid particle located on some isopycnic surface, which is not horizontal, but
raised to the North due to the thermal front® (see Figure 9.2). We remember
that the flow motion is quasi horizontal because of Eq. (9.14). If a fluid parcel
is displaced to the North following a quasi horizontal path slightly rising (trip
1 in the figure), it will feel a positive buoyancy, since it has been brought into
a denser fluid. Hence it will tend to rise and keep on this motion, which will
further increase the positive buoyancy. The same reasoning may be applied
to a fluid parcel descending towards the South slightly under the horizontal
(trip 2 in the figure). Thus, baroclinic instability is a sort of quasi horizontal
thermal convection, rendered possible because the isopycnals are raised in the
front.

3 Resulting for instance from the differential heating between the poles and the
equator.
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9.4.3 Hyperbolic-tangent front

The above reasoning does not give informations about the sign of the vertical
vorticity. Let us consider now the following hyperbolic-tangent front studied
by Peltier, Polavarapu et al. [568,581,582], Garnier et al. [241-243] and Lesieur
et al. [429]. They consider an ideal gas and take as basic potential temperature
the following distributions: linear and positive along the vertical, hyperbolic-
tangent profile of width ¢ along the horizontal (see Figure 9.3):

- A 2
0 =0(z)— o tanh 7. (9.29)
2 )
Posing
gH AE©
2V = , 9.30
fob ©o (9:50)
the thermal-wind balance writes
812'( 2) = 2V z
0z H cosh?(2y/8)""
which yields
2V
U 9 = + L 9
g, 2) H cosh?(2y/0) ‘ )

NORTH
N
A\
Z
H
Y X

SOUTH

Figure 9.3. Initial velocity and potential temperature distributions in the baroclinic
jet configuration studied by Garnier [241] and corresponding to Eq. (9.31) (courtesy
E. Garnier).
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Figure 9.4. Possible lateral motions of the upper and lower flow in a front.

where L(y) is a function we will choose such that u(y, H) = —u(y,0), giving
L(y) = —V/ cosh?(2y/). The final baroclinic-jet velocity profile is

_ |4 2z
a(y,z) = cosh?(2y/6) [H - 1} . (9.31)

It is a double Bickley jet linearly varying with the vertical, from —V on the
ground to +V on the top (y = 0). The same initial state had been taken
by Peltier, Polavarapu et al. [568,581,582] for the numerical resolution of
Navier—Stokes with differential rotation within anelastic dynamics.

In fact one may take also L(y) = 0 in the above integration, to give

2V
T R (9.32)
H cosh”(2y/0)
which is a single Bickley jet with zero velocity at the ground and 2V on the

top (y = 0).
The Rossby and Froude numbers are respectively V/f6 and V/NH.

9.4.4 Dynamic evolution of the baroclinic jets

Garnier et al. [243] have shown by DNS that the flow given by Eq. (9.31)
is linearly unstable for R,/F < 1.5. We assume now that this basic flow is
perturbed, and write the evolution equation for the vertical relative vorticity
Wz

D L o= ow
thz =wy.Vygw+ (fO +Wz) 92

Suppose that baroclinic instability develops. Let M be a fluid parcel loc-
ated initially close to the upper surface (see Figure 9.4a). Assuming the fluid

(9.33)
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cannot cross the wall, it can descend to the South, due to the baroclinic-
instability mechanism of Figure 9.2. It will thus acquire a positive dw/dz,
since w = 0 on the upper lid and is negative lower. DNS and LES due to
Garnier et al. and reported in [243] and Lesieur et al. [429,431] have shown
that the term @g.V gw of Eq. (9.33) is in fact negligible, so that the equation

reduces to
D ~ (f )aw
thz G 0z

In this equation, the r.h.s. is positive. Hence, the fluid parcel M will see its
vorticity increase by vertical stretching. This shows that in the upper jet
cyclonic vorticity will increase, and anticyclonic decrease in modulus. In the
same way, a fluid parcel M’ close to the ground will rise to the North, with
again respectively increase and diminishing of the cyclonic and anticyclonic
vorticity modulus.

In fact, we have to consider also a motion corresponding to reversal of
velocity in Figure 9.4a. It is shown in Figure 9.4b, where the fluid parcel N
rises to the North up to the lid, which implies a negative dw/dz and decrease of
the vertical vorticity, that is to say creation of anticyclonic vorticity modulus.
The same occurs for N’. This anticyclonic production is less intense than the
cyclonic one, due to the fy + w, term in Eq. (9.34). The ratio of anticyclonic
to cyclonic production is in fact initially of the order of (1 — R,)/(1 + R,),
and will diminish with the growth of anticyclonic vorticity.

Numerical solutions of Boussinesq equations starting initially with the
above barolinic jets corresponding to Eq. (9.31) have been performed by
Garnier et al. [243] (DNS and LES). The simulations of Garnier are carried
out at initial Rossby and Froude numbers of respectively 0.1 and 0.2. An an-
imation of the DNS* is presented in Lesieur et al. [431]. It shows that the jets
oscillate horizontally at the most-unstable mode predicted by a linear baro-
clinic instability analysis. In fact, both jets become a sort of Karman street
as in a regular Bickley jet,> with an out of phase oscillation of the top and
bottom jets. In the upper jet cyclonic vorticity grows and rolls up in the north-
ern part, and anticyclonic vorticity in the southern part. The intensity of the
latter is lower than the cyclonic one, in agreement with the above reasoning
of Figure 9.4. In the lower jet, cyclonic vorticity grows in the southern part,
and anticyclonic vorticity in the northern part. Then the upper and lower
cyclones move towards each other and align vertically to form a nearly two-
dimensional vortex. This is certainly due to the intense entrainment rotation
which favours cyclonic vorticity (see Chapter 13). On the contrary, the up-
per and lower anticyclones are vertically decorrelated. Simultaneously, intense

(9.34)

4 With R, = F = 0.1, but phenomena are the same.
% The difference with a Bickley jet is that, in two-dimensions, the vorticity modulus
of the latter cannot grow.
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Figure 9.5. Strong cyclonic depressions resulting from three-dimensional DNS of
the baroclinic jet; white (resp. black) corresponds to positive (resp. negative) vertical
relative vorticity (courtesy E. Garnier).

cyclonic vorticity keeps on growing in the “braids” reconnecting the cyclones
on the lower and upper boundaries. The resulting state is shown in Figure 9.5.
It displays isosurfaces of vertical vorticity (cyclonic in white, anticyclonic in
black), at a threshold 6V/4. One does observe the two-dimensional cyclonic
vortices, which are about 8 times stronger than the initial maximal cyclonic
vorticity. As for the braids, they are 30 times stronger, which corresponds to
intense local horizontal mixing layers along the front. Anticyclonic vortices
exist only at the top and the bottom of the domain. They are more diffused
than the cyclonic ones, and weaker (6 times the initial value). This figure
resembles strikingly cyclonic disturbances which form currently at medium
latitudes in the atmosphere.

The intense production of vertical vorticity in the braids inbetween the
cyclones may again be explained with the aid of Eq. (9.34). Indeed, the cyc-
lonic vortex close to the ground will pump from the South fluid which will
be warmer than fluid coming from the North. We will have a thin cold front
formation to the South, where one may expect that the southern warm flow
will rise above the northern cold one within some local thermal convection. We
have Qw/dz > 0. Since the Rossby number is low, we are sure that fo+w, > 0
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whatever the sign of w,. Then w, will grow: if it is positive, cyclonic vorticity
will be intensified, while if it is negative, anticyclonic vorticity modulus will
decay. The same reasoning may be carried out on the lid, where the cyclonic
vortex will pump from the North fluid which will be colder than fluid coming
from the South with formation of a thin warm front to the North. The north-
ern cold flow will sink under the southern warm one, and we will still have
ow/0z > 0.

LES of Garnier et al. [243], less dissipative than the DNS, show secondary
instabilities developing on the braids, with production of two secondary cyc-
lonic vortices in two days as one can see in Figure 9.6. The latter represents
an evolution with time of the potential temperature at the ground. These
vortices have a vorticity of 2 to 3 times that of primary vortices. It is clear
that the same vortices should form on the lid. One of these vortices had been
found at the ground by Polavarapu and Peltier [581,582] in their anelastic
simulations with (-effect. So the work of Garnier et al. [243] indicates that
these small-scale cyclones are not due to differential rotation.

It is interesting to note that these simulations, published in 1998, have
strong analogies with the two devastating storms which struck FEurope on
December 26th and 28th 1999 (see Lesieur et al. [429,431]). Indeed, satel-
lite meteorological observations on the 25th show a big cyclonic perturbation
hitting Scandinavia after having crossed Great-Britain. The winds are of the
order of 120 km/h (33 m/s). This is typical of regular storms above northern
Atlantic. A cold front forms in France at the level of Brittany. It is there that
the first intense storm developed on 26th morning, in the form of a vortex
of diameter 400 km which was observed to travel eastward at a velocity of
100 km/h. Since winds of =200 km/h were reported, the only explanation is
that the vortex had an external rotational velocity of 100 km/h, which gives
a total velocity of 200 km/h to its south, and 0 to its north.

A second vortex of the same type, although less intense, appeared two
days after.

To finish with storms, a few words on the one which crossed northern
Europe on January 18th 2007, and where winds of 160 km/h were recorded in
London, and 200 in Germany. Maps and animations published on the internet
site “www.wunderground.com”, and coming from the ANV model results,
show a strong negative temperature gradient oriented South-West/North-East
along the line Spain-France-Scandinavia. The jet stream (data at the level
corresponding to 300 hpa) evolution is shown from the 16th to the 19th. It
oscillates quasi hozizontally, and hits on the 19th values of about 360 km/h.
We recall that 4 days before the storm of December 26th 1999, the jet stream
had a velocity of 400 km/h (see Lesieur et al. [429]). In the above model of
single baroclinic jet, the maximal jet stream velocity is from Egs. (9.30) and
(9.32)
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Figure 9.6. Time evolution (corresponding to letters) of the potential temperature
at the ground in LES of the baroclinic jets (courtesy E. Garnier).

_ gH | 0p.

foloy |’
where Jp, /0y is taken at y = 0. It is on this velocity that the winds velocity
will scale when the storm will have developed.® It is feasible in real Earth
atmosphere that fast jet streams due to high horizontal temperature gradients
will lead to severe storms, if the parameter R,/F is in the unstable range. But
the amplitude of V' is unimportant in the stability criterion from which V is
eliminated.

2V (9.35)

9.4.5 Baroclinic instability in the ocean

We present now an example of baroclinic instability coming from a three-
dimensional numerical solution of Boussinesq equations applied by Chanut et

5 This is at least what happens in the present model.
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POTENTIAL TEMPERATURE at 186 m
01/22/1956
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Figure 9.7. Temperature field at a depth of 186 m in the Labrador sea in a numer-
ical simulation carried out by Chanut et al. [108] (see text for details, courtesy B.
Barnier).

al. [108] to Labrador sea in the framework of the initialization of an ocean-
modelling code forced by a wind.” The horizontal resolution is 4 km. A tem-
perature field at a depth of 186 m is presented in Figure 9.7. It corresponds
to a hypothetic day January 22nd 1956, with a a cold wind of —30°C blowing
from the North-West. This wind cools the surface of the sea, which dives by
thermal convection.® The central dark part of the sea (deep blue in reality)
corresponds to a temperature of 3°C. The grey part (including the coastal
current, red in reality) has a temperature of 4.5°C. The right part (deep red

" See below in the Ekman-layer section for details on these forcings.
& This happens for instance in the Golfe du Lion (Mediterranean sea) when the
north wind (mistral) blows.
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in reality) is warmer. One sees very neatly the formation in thermal fronts of
vortices, in particular along the Greenland western coast. These vortices have
both signs. They are due to baroclinic instability and to thermal convection.
The latter has been studied with LES by Padilla-Barbosa and Métais [558].

9.5 The N-layer quasi geostrophic model

The quasi geostrophic potential-vorticity equation derived in Section 9.3 can
be generalized to a variable dp/dz, the Brunt-Vaisala frequency being function
of z (see Pedlosky [567]). However, it is valid within the interior of the geo-
strophic fluid, and requires knowledge of boundary conditions at the bottom
and the top of the fluid layer. In the Earth atmosphere, the bottom boundary
conditions are due to the orography, and to the existence of a turbulent Ek-
man layer? (see below). In the Ocean, there is also an upper Ekman layer due
to wind stress. In order to understand the role of these boundary conditions,
it may be useful to consider the particular case of a flow composed of N quasi
horizontal layers of fluids of uniform densities p1, ..., pn. We stress that N is
in this section an integer which has nothing to do with the Brunt-Vaisala fre-
quency. This model will be used more for the ocean than the atmosphere for
two reasons: density vertical distribution of in the ocean may vary by steps,
and ocean has a much lower Rossby number. More details on the following
derivation can be found in Pedlosky [567]. The fluid is assumed to be per-
fect (no viscosity), and a superposition of homogeneous layers of density p,
(increasing with n), instantaneous thickness h,(z, y,t), and average thickness
H,, (see Figure 9.8). The Coriolis parameter f may vary.

The hydrostatic approximation is done on the vertical, permitting to cal-
culate the instantaneous pressure at an altitude z as:

p(xvya Zat) =DpA + g(plhl + p2h2 + -+ Pn—lhn—l)

+ong (1 + Hy + Hyg1 + - — 2), (9.36)

where p4 is the pressure at a free surface, if any, and 7,, the denivellation of
the upper surface of the layer n. Using the following relations

Zh (@, y,t) +7(x,y) —m = ZH H

7
b =1 + g1 = Hy,
p(z) =pa+g(prHy + poHa + -+ pp_1Hn1)

9 Where an appreciable part of the geostrophic kinetic energy is dissipated.
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Figure 9.8. Schematic vertical section of a N-layer geostrophic flow: 7, and 7,41
are the deviations of the interface of the layer n with respectively the layers (n — 1)
and (n +1).

+png(Hn +Hpp1 4+ = Z),

where 7(z,y) is the bottom topography, and p(z) the hydrostatic pressure
(without any motion), it is obtained for the fluctuating'® pressure p/, (z,vy,1)
in the layer n:

(@, y,t) = glpim + (p2 — p1)m2 + -+ + (Pn — Pr=1)"n- (9.37)

We remark that this pressure fluctuation in each layer does not depend upon z.
This allows to simplify the motion equations within layer n. More specifically,
and as we did for Barré de Saint-Venant equation, we will look for solutions
where the horizontal velocity field is z independent. We have

Dy’ on

Dt U= 9o, + fo (9.38)
(n)

Dy~ 9

Dt U= g@y fu (9.39)

where 4, (of components v and v) is the horizontal velocity components in
layer n, DgL) /Dt the derivative following the horizontal motion ,,, and

10 With respect to p(z).
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n=""/9pn
Integrating the continuity equation along the vertical in this layer, we have
hnﬁHﬁn + wp — Wpy1 =0,

where w,, and w, 1 are the vertical velocities at the top and bottom of the
layer. This yields

H = —
hy = —h, N g,
Dt Vi

As for a single layer, one can easily show the conservation of potential vorticity
(wn + f)/hy, following the horizontal motion, where w, is the vorticity of .

Afterwards we consider Egs. (9.38) and (9.39) (Euler equations for the
layer of density p,), and assume a geostrophic balance. This enables to asso-
ciate to the layer a stream function of the horizontal velocity field i, (z,y,t)
equal to:
 pu(@,y,t)

pnfo

Therefore, the conservation of potential vorticity reduces here to the con-
servation of (=V%, + f)/h, following the horizontal motion ,. Let the
constant H, be the mean thickness of the layer n. The potential vorticity can
be approximated by

Un(x,y,1) =

1

o+ T )

Hy

Note that the quasi geostrophic equation for the nth layer can also be written
as

D 2 fo
Dt [_VH¢n(x7ya t) + f] = H, (wn - wn+1)
In order to calculate 7, one writes v,, and 1,1 using Eq. (9.37), which
gives
Jo
Tin xayvt = Pn—1¢n—1 - pn¢n . 9.40
( ) 9(pn — pn—l)( ) (940)

In the upper layer, 71 = — fotn/g.

9.5.1 One layer

Let us consider first a one-layer fluid over a topography 7(z,y). The quasi
geostrophic potential vorticity equation is thus

Dy

eyt 4 f 4 )| =0,
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that is
Dy fo
Dt H

This very simple case allows one to understand the role of the bottom to-
pography, which can be included in the potential vorticity of the bottom.
Another remark concerns the topographic Rossby waves, which will be gen-
erated by the variations of 7 with y in the same way as Rossby waves are
generated by the variations of f (see below). Notice also that the contribution
to the potential vorticity due to the free surface is proportional to 1/r2,, where
rg is the external Rossby radius of deformation: if the horizontal wavelength
L is much smaller than rg, this term is negligible in front of V%1, which
constitutes the rigid-lid approximation.

2
Vi (@, y ) + f+ T+ ;;Iz/) =0. (9.41)

9.5.2 Two layers

For a two-layer fluid above a topography 7 (with a free surface of denivellation
n) we get

o

P1; M2 = Jo
g

m=
gop

(P11 — paib2); M2 —m = o p2(P1 — 2),
gop

where dp = pa — p; is the density difference (positive, since we are in a stable

situation and the heaviest fluid is at the bottom). Because of Eq. (9.10),

11 — 1)y is characteristic of the temperature difference between the two layers.

The two potential vorticity equations are (within the rigid lid approximation)

(1)

Dy 2 Y1 —P2|

Dt [ Vg (z,y,t) + f+ R? =0
Dy — V2 t)+f+¢2_w1+f T1=0 (9.42)
Dt HY2\T, Y, R% 0H2 — Y, .

where Ry = N1H1/ fo and Re = NoHs/ f are two internal radii of deformation
analogous to Eq. (9.12), the local Brunt-Vaisala frequencies being defined by

99 N2_99p
p2 Hi' > o Hy

This two-layer model was first introduced by Phillips [570-572]. In fact the
latter was present in Lannion 1971 summer school already mentioned in
Chapter 8 (Morel [520]), and it is interesting to reproduce in Figure 9.9 an-
other picture by O. Carel of N. Philips’ lectures in Lannion, showing the
audience, composed partly of former Paris Ecole Polytechnique students, sink-
ing with swords drawn and cocked hats in the sea of large-scale atmospheric
equations.

NE = (9.43)
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Figure 9.9. Lecture of N. Phillips in Lannion (courtesy O. Carel).

The model can be interpreted in a different way displaying the interaction
between a mean horizontal field (the “barotropic” mode)

_|_
dpr =" ) Ve (9.44)
and the “baroclinic” mode
YBc = V1 ;% (9.45)

which has been seen to characterize the temperature. To simplify matters,
let us assume that there is no topography, and that both internal radii of

deformation are equal
1 1w
= =" (9.46)
R} R: 2
A good exercise is to check that these modes satisfy the two following equa-
tions (where V2 stands for the operator V%, and J(.,.) for the Jacobian)

gt V3pr + J(V*pr, ¥ar) + J (VU5 ¥50) + 581§BT =0

0

ot (V2 — 1) pe] + J[(V? = 1) pe,Yer) + J(V29p7, ¥BC)
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pe
=0 9.47
#8700 (947
where the “g-plane approximation”
f=fo+By (9.48)

has been made (8 is assumed to be constant, this is the same as Eq. (3.24)).
We recall the value of 3

2
5: " COS p; ézatangoo.

At a latitude of 45°, we have f ~107% rd s™! and B~ 1.6 x 107!t m~!s~ 1

9.5.3 Spectral vertical expansion

An alternative way of obtaining these N-layer equations is to perform a spec-
tral vertical expansion of the original quasi geostrophic equation (9.26) (with
a constant Brunt-Vaisala frequency), which involves a three-dimensional fluid
with a continuous density profile: for a vertical two-mode truncation of a layer

of thickness H extending from z = —H/2 to z = H/2 for instance, one can
look for solutions of the form (cf. Hoyer and Sadourny [300])
. T2
¢($a Y, =, t) = wBT(l'v Y, t) + \/21/130(1'7 Y, t) Sin H (949)

where the barotropic mode corresponds to a horizontal two-dimensional basic
flow, and the baroclinic mode is the amplitude of a vertical sine perturbation
describing the departure from two-dimensionality. The potential vorticity in
Eq. (9.26) is thus equal to

. Tz
wp = —V4pr + f+V2(=V% + p*)pe sin 7;[ (9.50)

with
_ b

NH
(N is again the Brunt-Vaisala frequency). The spectral expansion can then
be performed in the following way: one integrates the potential vorticity con-
servation equation successively from z = —H/2 to +H/2, then from z = 0 to
H/2: one obtains exactly for ¢pr and ¥ pc the same equations as Eq. (9.47).
It is remarkable to see here how a two-mode vertical spectral expansion of
a fluid with a continuous density can be identified with a flow involving two
homogeneous fluids of different densities.

The physical interpretation of this two-layer (or two-mode) model in terms
of quasi geostrophic turbulence will be given below.

Now, we will look at the interaction of a quasi geostrophic flow with an
Ekman layer, and also study some barotropic and baroclinic quasi geostrophic
waves.

"
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9.6 Ekman layer

When a quasi geostrophic flow ug is close to a boundary, the latter will tend
to diminish the velocity (which must be zero on the boundary), in such a way
that the geostrophic balance will be lost. The consequence will be a rotation
of the horizontal velocity in the boundary layer (the so-called Ekman spiral),
and a vertical fluid flux at the top of the boundary layer, due to the loss of
horizontal non-divergence. To study this important problem which controls
the dissipation of a geostrophic flow in the presence of a boundary and the
forcing of oceans by the wind, the simplest model to consider is that of a fluid
of constant density py rotating with a constant angular velocity fy/2 about a
vertical axis (see Figure 9.10)

D 1 0P
qu = _po O + fov + v.VZu (9.51)
D 1 0P
DZ = _p oy — fou + vV (9.52)
D 1 9P
D‘: P Y ve V2w (9.53)

where the gravity and centrifugal force have been included in the pressure.
The velocity field is a filtered velocity defined as in Eq. (9.2). This permits
one to assume that the fluid is geostrophic and equal to ig of components ug
and v at the top or the bottom of the layer. Furthermore, the hydrostatic
approximation is made in Eq. (9.53), showing that the pressure P is a function
of x and y only, and is then equal to its geostrophic value such that

10P 10P

fova oo O’ G = oy (9.54)

It justifies the above argument that the geostrophic balance will be lost in
the boundary layer if the velocity modulus decreases. Thus the equations of
motion become

D
DQ; = fov —vg) + veVu
D
D;) = —fo(u —ug) + v V. (9.55)

In the outer geostrophic region, the inertial and viscous terms were neglected,
so that the equation reduced to v = vg and u = ug. In the Ekman layer
on the contrary, dissipation is significant and cannot be neglected, while the
inertial terms D/ Dt are still discarded, since it is still assumed that the Rossby
number is small. Let @ = @y — iig of components % and v, and the complex
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velocity fields Z = u+1iv, Zg = ug + ivg. We have, when taking into account
only the z-dependence

- d?a
0= fo0 +ve dz2
. d?v
0= —f0u+ued22
which leads to 27 i
. Jo
= Z. 9.56
dz? lue ( )
We pose
2V,
5p =) e (9.57)
fo

It is a scale which will be characteristic of the Ekman layer thickness. Re-
marking that the square roots of ify/v. are £(1 +i)/dg, solutions are

(14+4)z (1+41i)z

+ Bexp — ,

7 = Aexp 5
E

where A and B are two complex constants to be determined in terms of
boundary conditions.

9.6.1 Geostrophic flow above an Ekman layer

It is the case envisaged in Figure 9.10: the boundary conditions are Z(0) =
—Z¢ (no-slip condition on the lower boundary) and Z(co) = 0 (geostrophic
flow on the top), and the solution of Eq. (9.56) is

Z=—Zc|exp—" ) [exp— " ). (9.58)
5 5

This shows both the exponential decrease of the horizontal velocity modulus,
as well as the clockwise rotation (with increasing altitude) of the velocity
direction in the Ekman layer. Assuming that vg = 0, it is obtained

u=ug [1 — (e7*/%8) cos(z/dE)] (9.59)

v = ug(e”*°8)sin(z/6k). (9.60)

which leads to the famous Ekman spiral for the horizontal velocity profile.
More details can be found in, e.g., Greenspan [265] and Pedlosky [567].
The Ekman layer thickness is defined by

DE:W(SEW (961)
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and corresponds to a velocity equal to 1.04% of the geostrophic velocity.*! In
practice, the Ekman layer thickness can be determined experimentally, and
allows one to calculate the eddy-viscosity v.. Dg is about 1 km in Earth
atmosphere,'? and a few tenths of a meter in the ocean. One can then define
the Ekman number for a fluid layer of width D

2
ve _ Ok (9.62)

E =
Y7 fD2  2D2’

which characterizes the relative importance of the viscous to the Coriolis forces
in Egs. (9.51) and (9.52). If E;, < 1, one is back to the case of the above
geostrophic analysis.

This analysis did not take into account the horizontal variation of the
geostrophic velocity: let us consider at the top of the layer a closed isobaric
contour C, to which the geostrophic velocity is tangential, and let X' be a
cylinder of section C' and of generating lines parallel to Z' (see Figure 9.10).
The fluid flux through X' per unit length of C' is equal, from Eq. (9.60), to

+o00 6E
¢ = v(z)dz =ug _ .
O 2

Thus the total fluid flux through X is

&, = °F 7{ g5 = OF // B.7dS, (9.63)
2 C 2 S

where Jg is the geostrophic vorticity, and S the surface enclosed by C. If
the variations of Jg on S are ignored, the horizontal flux across X' is equal
to (0g/2)S times the vorticity of the geostrophic motion at the top of the
Ekman layer. Since, for the sake of continuity, this horizontal flux has to be
balanced by a vertical flux of velocity ws, at the top of the layer, we obtain
the important relation

—

)
Woo = QEwG (9.64)

which fixes for the geostrophic flow the vertical velocity coming from the inter-
action with the Ekman layer. One can also notice that a cyclonic geostrophic
motion will imply a positive ws, (Ekman pumping), while an anticyclonic mo-
tion will bring outer fluid into the Ekman layer. Hence, there is a secondary
circulation within the geostrophic flow, which is induced by the Ekman layer.

1 Tt looks odd to find a velocity higher than the velocity at infinity, but this is one
of the effects of rotation.

12 An intense turbulence accompanied with clouds is often felt at this elevation while
landing in a plane.
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(1/2)
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Figure 9.10. Schematic view of the bottom Ekman layer.

One can for instance write the quasi geostrophic potential-vorticity equa-
tion for one layer above an Ekman layer extending over a topography 7.
Potential vorticity conservation is then written

Dy _fo
Dt H
where ws and w; are the vertical velocities respectively at the top and bottom
of the layer. It has been shown by Pedlosky [567] that the effects of topography

and free surface could be decoupled from the Ekman layer effects, in such a
way that, from Eq. (9.64):

[~Vav(,y,t) + f] = ) (ws — w;) (9.65)

Dyt 6
wi="10 =) Vi) (9.66)
° Dt '’

where n(z,y,t) is the elevation of the free surface, equal to —(fo/g)1. It is

found
Dy 13 _ Jodm
Dt gH 2H

The new term introduced by comparison to Eq. (9.41) is the Ekman layer
damping term, which dissipates the vorticity linearly, and hence in the large
eddies.'?

13 There ought to be also in the r.h.s. of Eq. (9.67) a turbulent damping due to
sub-geostrophic scales, as discussed above: it will dissipate in the small scales the
vorticity carried there along the enstrophy cascade (see below).

it 4 g Ty V. (0.67)
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9.6.2 The upper Ekman layer

When a geostrophic ocean is driven by a wind exerting a strain ¢ on the
surface, this strain is transmitted to the geostrophic circulation through an
upper Ekman layer, to which the above calculation applies with appropriate
boundary conditions. The Ekman layer is still described by Eq. (9.56), with
boundary conditions which are now Z = U — Z on the top z =0 ((7 =U%
is the ocean surface velocity driven by the wind), and Z = 0 on the bottom

z — —o00. It is found
Z = (U~ Zg)e*/*me=/0m.

If one assume Ug < U, it is easily found that

z
u=Ucos _ e ,
¥ P ¥

.z z
v =Usin . exp 55

Let us now look at the effect of an upper wind above the ocean surface. Let 7
be a vector normal to the surface and directed to the air. The stress exerted
by the wind upon the ocean is ¢ = o0, ® 71, where o, is the stress tensor in
air. The stress exerted by the ocean upon the air is 0., ® (=), where oy, is
the stress tensor in water. Writing the mechanical balance of a portion of the
surface,'® one finds that both stress tensors are equal at the surface. We have

C=0,Q1M

whose components are

ou Ow ou
01 = He + ~ e 92

0z Oz
oy ov . ow N ov
27 He 9z oy ) fe 0z
which writes it U
. i B L
FH =~ ple (62')2_0 =poves (@ +7), (9.68)

which shows that, due to Coriolis force, the water at the ocean surface is
deviated 45° right (in the northern hemisphere) of the wind stress.

On the other hand, the vertical integration of v and v show (see Pedlosky
[567]) that the horizontal flux across the Ekman layer is:

. U5E(_, . Xz
My = T —1) = )
2 pofo

1 Without considering any surface-tension effect.
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Hence, a vertical integration of the three-dimensional continuity equation
yields, for the vertical velocity w_., at the bottom of the Ekman layer:

1

7V x &. 9.69
foPo ( )

W_no = VHJ_T},E =

When applied to a quasi geostrophic layer of an ocean forced by the wind, the
complete potential vorticity equation is:

Dy 2 fOT f(?
Dt vHV’Z’JFHH +9H¢
1l e L fodEoo
= pon.v X G+ Vi (9.70)

When a multi-layer model is considered (within the rigid-lid approximation),
the forcing terms are introduced in the upper layer, and the orographic and
Ekman dissipation terms in the bottom layer.

9.6.3 Oceanic upwellings

Let us mention finally that Eq. (9.68) permits an understanding of the phe-
nomenon called upwelling: when a wind blows along a coast — with the water
to the right in the northern hemisphere (and left in the southern hemisphere)
— the warm ocean surface layer will be entrained offshore, and, by continuity,
deep cold water will upwell to the surface. The result is a cold coastal current
going in the same direction as the wind. Famous examples are the Californian
current in the northern hemisphere, which goes southward, and the Humboldt
current in the southern hemisphere, which goes northwards: they are initiated
by the anticyclonic winds west of the American Pacific coast. Due to the hori-
zontal thermal gradients thus created in water, the current may be subject to
a baroclinic instability, which might explain the eddies observed in the Cali-
fornian current.!®> LES of this region using Boussinesq equations have been
carried out by Tseng and Ferziger [692]. A very famous (but not yet really
understood) anomaly of the Humboldt current corresponds to the so-called El
Nino phenomenon, where this current chaotically reverses its direction every
2 or 3 years, transforming into a southward current of warm water. This cata-
strophic!® event is accompanied with climatic anomalies such as the reversal
of trade winds, and might involve extremely complicated nonlinear couplings
between the atmosphere and the oceans.

5 However, eddies found in the ocean may have other causes, such as horizontal
shear instabilities or topographic trapping for instance.
16 For the local fish industries.
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9.7 Tornadoes

As stressed in Lesieur [424], tornadoes are an evil which strikes in particular
farmers in the US Middle West. They develop generally in summer!” within
the atmospheric boundary layer during intense stormy episodes,'® above plains
over-heated by the sun. In fact, at the initiation of the tornado, their are two
vertical eddy branches, one cyclonic and one anticyclonic. But afterwards, the
latter disappears in 90% of the cases.

9.7.1 Lilly’s model

We present here Lilly’s helical model for tornadoes generation. Lilly [448]
explains the growth of positive vertical vorticity in tornadoes and storms as
the interaction of thermal convection with a helical wave of vertical axis (see
Chapter 4) in the atmospheric boundary layer. More specifically, let p(z) and
up(z) be respectively basic density and velocity profiles. The latter has the
following components

(z) = —Ucos Az, ©(z)=Usindz, w=0. (9.71)

Its vorticity is dp = Aip. One can easily check that it is a stationary solution
of Boussinesq equations in a perfect fluid without entrainment rotation (use
Eq. (2.113)). With X positive, the basic velocity vector rotates clockwise with
height, as in the atmospheric Ekman layer.' Now we consider departures
from the basic state. The exact perturbed vertical vorticity equation writes

- 6 + w
w, =dg.Vyw +w ,
th H-VH zaz

where w is the vertical velocity. A linearization to the lowest order yields

D - —
thz =dp.Vygw = Mip.Vyw, (9.72)

D/ Dt standing for the derivative following the basic flow. Suppose that we
travel with the wind at a given altitude z, and encounter a thermal updraft

7 Notice however that, on February 3rd 2007, a tornado in Florida killed 20 people
and was at the origin of considerable damages. It was initiated by heavy storms
coming from Mexico gulf, which hit the land where the tornado was created. The
latter progressed from West to East at a velocity of 80 km/h. In fact tornadoes
had already struck Florida in February 1998, killing 42 people.

18 On July 6th 2001, the fall of a tree due to a tornado killed 13 people in a park in
Strasbourg.

19 However, no variation of the velocity modulus is considered.
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due to thermal convection: then the r.h.s. of Eq. (9.72) will be positive, and
cyclonic vorticity will be generated on the thermal front.

Remark that this model might apply also to thermal convection in the
upper Ekman layer in the ocean, when the water surface is cooled by the wind.
This question has already been discussed above. Now, the Ekman velocity
profile rotates anticlockwise when approaching the surface, so that one has to
take A(0. Eq. (9.72) is still valid, and a sinking of cold surface waters will give
rise to a negative U 5.V gw, and hence cyclonic vorticity again.

9.7.2 A hairpin-vortex based model

Lesieur [424] presents the following model (with different numbers): let us
consider a developed turbulent boundary layer (without rotation). A quasi
longitudinal hairpin will travel following the motion as seen in Chapter 4.
Suppose that it encounters a very hot area: the head of the hairpin will tend
to rise vertically due to thermal convection. Let us evaluate the Rossby number
at this stage, before the development of the tornado: taking a low fluctuat-
ing velocity of 5 m/s and a vortex of diameter 1000 m at medium latitude
(f ~ 107%) yields a Rossby of 50. It is then possible that rotation destroys
anticyclonic vortices and stabilizes the cyclonic ones (see Chapter 13). The
latter will be stretched vertically by thermal convection, which will increase
the velocity. In a developed tornado of velocity 60 m/s, the Rossby number
will be = 600.

Once the tornado has formed in the atmosphere, its vorticity is approxim-
ately vertical, and thermal convection induces a vertical transport within it.
So its helicity is important. As noticed by Lilly [444,445] and already stressed
in Chapter 7, this might explain the strong coherence of these phenomena,
due to a time delay in the kinetic-energy dissipation.

Returning to the last Florida case already mentioned, the existence of
storms above the ocean indicates that the temperature of the latter was high.
Thermal convection was obviously present within the storms. But temperature
was higher above the land than on the ocean. So the amplification of thermal
convection above Earth may have intensified catastrophically vortex stretching
to the point of creating the tornado.

9.8 Barotropic and baroclinic waves

9.8.1 Planetary Rossby waves

Up to now, we have mentioned the propagation of many waves due to gravity,
constant rotation, compressibility. Here we focus our interest on Rossby waves,
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which are obtained within the geostrophic approximation applied to a shallow
fluid on a rotating sphere, and are due to the variation in the latitude of the
“effective” Coriolis force — 2’ x @y. These waves are extremely significant in
Earth atmosphere and oceans. The simplest model to study them is Eq. (9.41)
with no topography, using the rigid-lid approximation, and with the -plane
approximation (9.48), that is

d o
atv% + J(V, ) + B, =0 (9.73)

A linearization about a basic state at rest yields the famous Rossby equation
[618]

0 o o
= 0. . 4
6tvw+ﬁax 0 (9.74)
We look for wave solutions of the form
Y(x,y,t) = o expi(E.f — wt), (9.75)

1o being complex, with k= (k1,k2,0) (real) and & = (z,y,0). In fact, the
solutions ¥ sought in the form of Eq. (9.75) have to be complex, since ¥
is a stream function. Otherwise, velocity components would not be real. As
already stressed, this is not a problem because we are in front of a real linear
partial-differential equation: a complex solution 1 yields two real solutions,
its real and imaginary parts.

One finds the following dispersion relation

Bk

_ . 9.76
K4 I3 (6.76)

w =

Since § > 0, and assuming that @ > 0, we have k; < 0. The phase velocity
in direction x is
w B

Tk K24 kY
which shows that waves travel to the West.q
The components of the group velocity Vg are
0w _ Bki—ki_ B
= = 320
Ok K2K2+ k2 k2O
Jdw I

ok = 12 sin 26
2

where 6 is the angle Z, k. In fact one can build the group velocity from he
circle w(ky, k2) = wp, which writes
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2 2

B o B

ki1 + + k5 = .

( ! 2@0 2 4w(2)

The centre of this circle is the point O of coordinates (—/3/2wy, 0). If we plot

on this circle the vector k as a bipoint of origine the axes and extremity M,
the group-velocity is a vector parallel to M MO and of modulus Bk

9.8.2 Reflection of Rossby waves

We consider a fluid initially at rest, and a Rossby waves packet travelling
towards a vertical western boundary (see Figure 9.11). We suppose that the
waves are going to be reflected on this boundary. Here we will write the waves
as

P = A; COS(EZ‘.I_" — w;t + ¢z)
for the incident one, and
v, = A, cos(lgr.f — wpt + ¢r)

after reflection. The fact that the incident wave packet goes to the West implies
that VG has a negative zonal component. Writing the free-slip boundary
conditions on the western boundary (taken as x = 0) yields d¢/dy = 0, with
¢ = v; + ¢y, that is

Ak, sin(k;,y — wit + ¢;) + Arky, sin(k,,y —wrt + @) =0
Since this must be satisfied for arbitrary y and ¢, it implies
kig = k'rngi = wr;¢i = ¢7’ 7A7,' = _Ar'

In Figure 9. 11, the circle is the one envisaged above for the pulsation w;.
Vectors k“ kr, VG 7VG are as indicated in the figure. Let

ki:|Ei|akT:|ETI7VGi = T_|‘7GT|-

We have
B = kg, = k*Vg,. (9.77)

Since k; < k., Vo, > V... The group velocity is reduced by the reflection. Let
us consider now the kinetic energy (per unit mass) of the fluid where a wave

¥ = Acos(k.T — wt + ¢)

propagates. We have
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L 4
3]

Figure 9.11. Schematic representation of Rossby-waves packet reflection on a west-
ern boundary.

1 /ow\>  [op\?]| 1 o7
E. = ) [((;ﬁ) 4 <8§f) ] = 2A2k251n2(k.m—wt+¢).

Remarking that
2sin? (k.7 — wt + ¢) = 1 — cos 2(k.Z — wt + ¢),

is a function of temporal period 7/w, the average kinetic energy on a period
T =2r/wis

1
T

T 27.2
E.= 1A2k2 / sin?(k.Z — wt + ¢)dt = Ak .

2 0 4
If we pose A; = A, the incident average kinetic energy is E; = A%k?/4, and
the reflected one E, = A%k2/4. The latter is increased by reflection.

In fact Eq. (9.77) expresses that the average energy flux E.Vg is conserved
during the reflection. So a western frontier in an oceanic basin will intensify
the variability of the currents. This applies in particular to the Gulf Stream
and Kuroshio.

9.8.3 Topographic Rossby waves

Let us go back to the quasi geostrophic potential vorticity equation (9.41),
assuming a rigid lid with f = fy constant. It writes

Dy

o2 fo |
Dt VHz/)(x,y,t)+HT =0.

We suppose that we are in a channel whose bottom is raised in the y direction
(see Figure 9.12). We pose
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Figure 9.12. Rotating channel with an inclined bottom, where topographic Rossby
waves propagate (From Lesieur [424], courtesy EDP-Springer).

fo

7@ y) =By

and are back to the former case. If the flow has a velocity ﬁ, and working in
a frame moving with it, the waves will travel in the direction opposite to U.
They are called “topographic Rossby waves”, and can be easily obtained in
rapidly rotating fluid experiments in a laboratory (Colin de Verdiere, [131]).

9.8.4 Baroclinic Rossby waves

It is interesting to perform the analogous wave analysis on a two-layer geo-
strophic fluid, with the linearized equations (9.47):

9 dYpr

2
Btv Ypr + 5 O

=0 (9.78)
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172 — 2wl + 575
The linearized equation for the barotropic mode is the classical Rossby
equation. We look for solutions where ¥pr and 1pc are proportional to
expi(lg.:? — wt). For the barotropic mode, there is no change with respect
to the one-layer model. The dispersion relation for the baroclinic equation is

L
k2 + k% + p2’

=0. (9.79)

WRBC = (9.80)

For wave lengths much larger than the internal radius of deformation ~ 1!,
these “baroclinic Rossby waves” will have a frequency much smaller than
the barotropic frequency given by Eq. (9.76). Consequently the characteristic
times will be much larger: this is particularly true in the oceans, where the
typical velocity spin-up times are of 100 to 200 days, while the thermal spin-up
time (corresponding to the baroclinic mode) is of several years.

9.8.5 Other quasi geostrophic waves

Let us briefly summarize an analysis, taken from Pedlosky [567], showing
how the baroclinic instability can be understood in the frame of the two-layer
model: we take a basic flow corresponding to a constant westerly zonal velocity
Uy, that is

Ypr = Uoy (9.81)

and a temperature ¥pc decreasing (with a constant gradient) towards the
North, that is
’(/JBC = Uly. (982)

Then, after linearization of Eqgs. (9.47), one obtains for the fluctuations Upr
and Y pc about the basic state:

o - - -
tvszT + J(V*Ypr, Usy) + J(V*pe, Ury) =0

0
0 ~ . -
ot (V? = 1® e + J[(V? = 1), Usyl + J(V? — 1) Ury, ¥pr
+J(V¥)pr, Ury) + J(V2Uoy, Ppc) = 0.
It writes
av% + U, av% +U 0 Vpe =0
8t BT 0833 BT 1833‘ BC —

9 B
x(Vz + 1) = 0.

0 - 0 ~
(V2 = 1*)pe + Ug m(Vz — 1) pe + U P

ot o

One looks for solutions of the form
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Ypr = Aexpi(k.Z — wt)

Ypc = Bexpi(k.Z — wt)
which gives
A(w — kon)ikQ — BUlik‘lk‘2 =0
[w(k2 + MZ) — kon(]{JQ + /Lz)]iB — iklUl(]{JQ — /LZ)A =0.

It yields the homogeneous system
(w - kon)A - k1U1B =0

—klUl(]{JQ — /JJ2)A + (w — k‘on)(k‘2 + /JJ2)B =0.

It has non-zero solutions only if
(K = 1) (kaU1)? = (@ — k1Up)* (K + p®) = 0,

which leads to the dispersion relation

K2 — 2 1/2
w:k1 U0:|:|U1| l:k2—|—1u,2:| 5 (983)

where k is the modulus of the horizontal wave vector k of components k1 and
ko. This shows that for wave numbers k& > p (hence wave lengths inferior
to 2mu~ !, of the order of the internal radius of deformation), w is real and
waves can propagate. For larger scales, w has a non-zero imaginary part and
the perturbations can amplify exponentially. This is an aspect of baroclinic
instability in the frame of this model.

Let us notice also that

2_ k2+u2

k- 2|

A
B

Since Ypr is in complex form, the stream function of the associated real
velocity field is (1/2)(¥pr + ¥57)- The horizontal velocity components are

i ~ ~ i ~ ~
u = 2k2(¢BT —Ypr),v= —2k1(¢BT —¥Br)
and the kinetic energy
k- T \2 k- T )2 2
Epr = — 8 (YBr —Ypr)” = — 8 [Wpr + (Wpr)” —2|A7].

The average kinetic energy on a period 27 /w is
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_ k2
Epr =", |A|2.

We have seen in Chapter 2 that the available potential energy is proportional
to the squared density fluctuations. Here we will define the baroclinic energy
by

1 - . 1.- .
Epc = 8(¢Bc +Ppe) = 3 [Whe + (Whe)® +2|BJ?.

So the average baroclinic energy on a period 27 /w is

_ 1
Epc = 4|B|2.
We have B 2 )
Epr 9 K"+
_ =k . 9.84
Epc k2 — 12| (6.84)

It is thus for £ — p~ that the instability is the more efficient, with a sort
of resonance. It confirms that forcing due to baroclinic instability involves
horizontal scales of the order of the internal radius of deformation.

9.9 Quasi geostrophic turbulence

This is a turbulence obeying the quasi geostrophic theory. The main effects
which can cause the dynamics of such a turbulence to differ from the two-
dimensional turbulence looked upon in the previous chapter are the density
stratification (responsible for baroclinic effects), the (-effect (responsible for
Rossby waves propagation), the bottom topography, the dissipation by an
Ekman layer, and possibly the existence of a finite external Rossby radius of
deformation.?® It is, of course, difficult to study the influence of these physical
effects all together, and preferable to consider separately the influence of each
on two-dimensional turbulence:

9.9.1 Turbulence and topography

The influence of topography in geostrophic flows has been studied extensively,
and a review can be found in Verron and Le Provost [699]: in order to conserve
its potential vorticity (w + f)/h, a flow of initially zero relative vorticity will
react to the decrease of h due to a topography of positive height by creating
negative relative vorticity. This explains the trapping of anticyclonic vortices
by a topography, and hence the existence of fair weather associated to an-
ticyclones in the atmosphere close to mountains. The same reasoning would
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Figure 9.13. Generation of anticyclonic (resp. cyclonic) vortices above a topo-
graphy (resp. a trough) in a rotating flow. (From Lesieur [424], courtesy EDP-
Springer).

lead to the formation of cyclonic vortices over a trough. This is illustrated in
Figure 9.13, taken from Lesieur [424].

When the topography is complex and chaotic-like, numerical simulations of
decaying geostrophic turbulence show that its spatial features eventually lock
on the topography (see Holloway [292]). We recall also the analogy between
Rossby waves caused by topography and differential rotation.

The dissipation by a bottom Ekman layer has been seen to damp linearly
the vorticity. This large-scale dissipation can limit or even prevent the forma-
tion of the inverse energy cascade, as occurs for instance in Earth atmosphere.

9.9.2 Turbulence and Rossby waves

The interaction of Rossby waves with two-dimensional turbulence has been
studied by Rhines [593,594] with the aid of DNS, and by Holloway and Hende-
rshott [290], Legras [397] and Bartello and Holloway [33] using stochastic
closures. An important length, introduced by Rhines [593], corresponds in
the potential vorticity equation to a balance between the relative vorticity
w = 0v/dx — Ju/Oy and the By term due to differential rotation. If U is a
characteristic scale of turbulence, let us consider a sort of circular eddy of
radius Lgr and velocity U at the exterior. If the vorticity is assumed to be
uniform (relative solid-body rotation), it is equal to w = 2U/Lg. Writing that
w =~ BLg, it is found

20 The effect of the latter is weak, and will not be considered here.
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In = (Zg>l/2. (9.85)

At scales smaller than Rhines length [z, one has Sy < w, and turbulence is
not affected by Rossby waves: if one imagines for instance a kinetic energy
forcing at scales much smaller than [, the inverse energy cascade is going
to build isotropic eddies up to the scale = [r, where the Rossby waves start
propagating. As shown by Rhines [593] on the basis of DNS, the wave propaga-
tion will induce a strong anisotropy by blocking the growth of the structures
in the meridional direction, and hence producing elongated structures in the
zonal direction.?! This has been proposed as a possible explanation for the
zonal jets observed on Jupiter’s outer surface (Williams [717,718]) and per-
haps Saturn. Indeed the width of these jets one can see on Plate 6 is about
10,000 km on Jupiter, of the same order as the Rhines’s length which can be
approximately measured (see below). Such an explanation supposes however
that there exists an energy forcing at smaller scales: this forcing is certainly
not of baroclinic origin, since measurements have shown there is no meridional
temperature gradient on Jupiter, but could be due to agitation from below
arising from the turbulent thermal convection caused by the intense heating
in the interior of the planet.

Another theory of Jupiter’s zonal structure, put forward by Busse [90], pro-
poses that it is a surface manifestation of internal thermal convection columns
parallel to the axis of rotation and turning in the same sense (see Figure 9.14).
This poses however some problems, since the existence of such columns would
imply meridional transports at the surface which are not apparent on Plate 6.
In fact these vortices might exist under the surface, and contribute to the
external-layers forcing. The same type of vortices might be present within
Earth outer core, and contribute to the dynamo effect.

In Earth atmosphere and oceans in medium latitudes, Rhines’s length is
of 2000 km and 100 km respectively. This is not far from the internal radius of
deformation where kinetic energy is provided by baroclinic instability. In the
atmosphere, where this forcing can be considered as approximately stationary,
this could be one of the reasons for the non-existence of a k~%/3 inverse energy
cascade in the planetary scales.??

As an exercise, let us determine Rhines’s length [p in Earth atmosphere
and oceans, and Jupiter. We will assume we are on the 45th parallel (close to
Grenoble for instance). So f = a3, where a is the planet radius.

2! This may be associated with the inhibition of the pairing in a mixing layer sub-
mitted to a differential rotation, when 3 exceeds a critical value, mentioned in
Chapter 3: thus, Eq. (9.85) is a statistical analogue of Eq. (3.27) if the latter is
replaced by an equality.

22 Another one being the Ekman dissipation in the atmospheric boundary layer.
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Figure 9.14. Convective columns obtained in a rapidly rotating spherical atmo-
sphere such as Jupiter, and the associated surface zonal flows, from Busse [90]
(courtesy Geophys. Astrophys. Fluid Dyn.).

o Earth atmosphere: we take a =~ 6400 km. With f = 107%, we find 8 =
1.56 x 10711 m~1s71. With a velocity of 30 m/s, [g = 1960 km.

e Earth oceans: § has the same value. Taking a velocity of 0.1 m/s, one finds
lp =113 km.

e Jupiter: we have seen in Chapter 1 that f = 10~% x 24/10. Taking a radius
of 64,000 km, we have 8 = 3.75 x 10~'2. With a velocity of 100 m/s, Ip =
7300 km. This is close to the scale of 10,000 km charasteristic of Jupiter zonal
jets width.

9.9.3 Charney’s theory

A theory of geostrophic turbulence including baroclinic effects has been pro-
posed by Charney [110], with the concept of potential enstrophy cascade gen-
eralizing the two-dimensional enstrophy cascade: one considers the potential
vorticity conservation equation (9.26), and rescales x and y by the internal
radius of deformation, z by the vertical height of the layer, and ¢ using the
horizontal scale and velocity. Forgetting about the differential rotation term
By, one obtains

Dy (6% o 6%) 1
R

Dt \oz2 T a2 T o2 ) T Vi (Virg), (9.86)
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where Re is a horizontal turbulent Reynolds number representing the “sub-
geostrophic diffusion” of potential vorticity already discussed above. The res-
caled stream function ¢ (z, y, 2, t) characterizes the horizontal velocity through
its horizontal derivatives 9v¢/Jy and —0vy/0x, and the density through d¢/0z.
One can consider a random homogeneous three-dimensionally isotropic stream
function, whose three-dimensional spatial Fourier transform is Qﬁ(kl, ko, k3, t).
The potential enstrophy is defined by

1[0 9% 9Pp\?
D, =, <(8x2 o2 T az2> > (9.87)

and is conserved with time?® (modulo the horizontal turbulent diffusion). The

other quadratic invariant is the total energy

n G G)) e

sum of the mean horizontal kinetic energy

(G ()

(barotropic energy) and of the mean “available potential energy”

L((5)

(baroclinic energy). Let W(k,t) such as
(K )k, t)) = @ (k, )6 (k + k) (9.89)
E(k,t) = 27k (k. t). (9.90)

Thus one can check that the total energy is f0+oo E(k,t)dk, and the potential

enstrophy f0+oo k2E(k,t)dk. This can also be verified from the point of view
of the “turbulence in a box” considered in Chapter 5. We expand now % in

Fourier series: —
W@, t) =Y e (E, ). (9.91)
k

We have

23 The conservation holds also for the squared potential vorticity spatially averaged
on any horizontal plane.
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<<?‘;§>> - <(Z¢) (Z¢)> = %)k%<|¢|2>,

1 271,712
E =, Zk (191, (9.92)
E
Py Py 9% k2120 (1
ou2 T oy + 5,0 ——XE:e k24 (k, t),
1 40,002
Dy =, S (P). (0.93)
k
Within this formalism, the energy spectrum is such that
okt -
E(k) = 2 94
(k) = 1 (912), (9.9
and we do have
+o00 +oo
E; = E(k)dk, D, :/ E*E(k)dk.
0 0

As for two-dimensional turbulence, both quantities are conserved by the non-
linear terms of the equations, the difference being here that E(k,t) is a three-
dimensional spectrum. Nevertheless, the conclusions are the same. The double
conservation of energy and potential enstrophy will force the energy to go to
large scales, and potential enstrophy to cascade to small scales. If potential
enstrophy is injected at a given wave number k; at a rate (3, it will cascade
towards large wave numbers along a (32/3k~3 potential enstrophy cascade.
Since isotropy is assumed, this cascade will correspond to a simultaneous k3
cascade of the enstrophy of the horizontal motion (barotropic enstrophy) and
of the density 9v/0z (baroclinic enstrophy). The injection wave number cor-
responding to the alimentation of this potential enstrophy cascade will have
non-dimensional components of the order of one, since r; turns out to be the
scale where the horizontal kinetic energy is, through the baroclinic instability,
fed into the system from the available potential energy. Let us mention also
the work of Herring [279].

Charney did not consider scales larger than r;. They have been studied
by Salmon [628] and Hoyer and Sadourny [300] with a two-layer geostrophic
model to which the E.D.Q.N.M. theory was applied. They provide a stochastic
version of the baroclinic instability: the latter show for instance that if the
energy is fed into the system under a baroclinic form at a scale?* larger than

24 This scale, determined by the differential heating between the equator and the
pole, is about 3000 km for Earth atmosphere, while one recalls that the internal
radius of deformation is about 1000 km.
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r1, it will cascade down a k=53 spectrum?® up to the internal radius of de-
formation, where a part of it will be transformed into barotropic energy: the
potential enstrophy will cascade to higher wave numbers under a double baro-
tropic and baroclinic form, according to Charney’s theory; the barotropic en-
ergy produced at r;l will cascade back to smaller wave numbers along a k—5/3
inverse energy cascade, in the opposite direction of the baroclinic energy. The
situation for the k~°/3 inverse horizontal kinetic energy cascade is thus the
same as for the two-dimensional turbulence, where we have shown that the
temperature flux is positive in the inverse energy cascade. Therefore, the hori-
zontal kinetic energy of geostrophic turbulence can be approximated by that
of a two-dimensional turbulence which would be alimented in energy at the
internal radius of deformation, at a rate corresponding to the conversion of
baroclinic into barotropic energy.

Multi-layer numerical simulations of geostrophic turbulence with a high
vertical resolution (up to 7 layers) (Hua and Haidvogel [301]) have confirmed
Charney’s isotropy assumption, and shown also that a large part of the geo-
strophic dynamics is captured by two-layer models. Geostrophic turbulence,
especially with a small number of vertical modes, is a very useful model to-
wards understanding the physics of rapidly-rotating stably-stratified flows.
Nevertheless, the approximation discards a lot of important physical effects,
such as thermal convection or the interaction of turbulence with the internal
gravity waves considered in Chapter 2. It is clear that a deeper understand-
ing of the atmospheric and oceanic dynamics requires the recourse to three-
dimensional equations such as Boussinesq or full Navier-Stokes equations.26
This is rendered easier with the continuous strong development of scientific
calculation facilities.

25 k is here a horizontal wave number.

26 The use of the so-called “primitive equations”, which are not geostrophic but
where the hydrostatic approximation is done along the vertical, may not be suf-
ficient, since they filter out internal-gravity waves.
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Statistical Thermodynamics of Turbulence

In this chapter, we will present a theoretical approach of turbulence close
to statistical thermodynamics, which has interesting applications for two-
dimensional turbulence.

10.1 Truncated Euler equations

We go back to the flow within a box, that is to say which can be expanded
into an infinite serie of discrete wave vectors k,, with velocity amplitudes
ﬁ(lgn,t), as introduced earlier. Let us first consider Navier—Stokes equations
in Fourier space, relating this infinite set of modes. The equation is truncated
by retaining the modes lower than a cutoff wave number ky,,x, and properly
normalized:

( 24 k:) 44, 1) = =) P (F) S s (5, )i (7,2, (10.1)

where the sum Y only keeps modes such that k= P+ ¢ and whose modulus
is smaller than K ax-

10.1.1 Application to three-dimensional turbulence

Let us consider the three-dimensional case. If kp,ax is superior or equal to the
Kolmogorov wave number, it is expected that the truncated equations will
correctly represent turbulence. This is precisely what is done in the DNS. If
this condition is not fulfilled, and if we start initially with an energy spectrum
sharply peaked at an initial energetic wave number ko (in a freely decaying
turbulence), Eq. (10.1) will properly describe the evolution of turbulence in
the early stage, when the cascade has not yet reached kp.x. But as soon as
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Figure 10.1. Schematic comparison in three dimenions of the evolution of a kinetic-
energy spectrum obeying Navier—Stokes equations (straight line) and truncated
Navier—Stokes equations (dashed line).

the Kolmogorov energy cascade forms (that is, from Chapter 7, at a time of
about 5 initial large-eddy turnover times), energy will tend to go beyond kyax
in the dissipative scales, which is not permitted by the truncated equation
(10.1). Instead, energy will then accumulate at kpmax, which may be a source
of numerical instability, and in any case does not give an acceptable description
of turbulence (cf. Figure 10.1). The question posed to LES is to model kinetic-
energy fluxes towards subgrid scales k > kpax. This problem will be looked at
in Chapter 12.
In the present chapter, we consider the equation

aat ;ij(’g) > (. t)am(d 1) (10.2)

with the same conditions k,p,q < kmax. This system does not provide an
accurate description of Euler equations, since the latter require an infinite
set of wave numbers, except in the early stage of the evolution described in
Figure 1. It will however be seen that the study of equilibrium statistical
mechanics of such a system will provide useful information for turbulence,
especially in two-dimensions. Further details on this analysis can be found for
instance in Rose and Sulem [617] and Orszag [550, 551, 553].

Now we are going Liouville theorem in phase space. To each mode a(En, t)
one associates two real vectors, the real and imaginary part, which are both

ﬁi(];a t) =
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in the plane perpendicular to k, and can therefore be represented each by
their two real components in that plane; let

Yny (t)a Yno (t)a Yns (t)a Yny (t)

be these real components. One can remark that

Q(Emt)*'a(]znat) = Zym (t)z' (10.3)

=1

Then if N wave vectors are retained in the truncation, the system can be
represented by a point of m = 4N coordinates y,,(t) (i from 1 to 4) in a
phase space determined by y,(t) (a from 1 to 4N). In a similar way to what
has been done in Chapter 6, it is easy to show that Eq. (10.2) conserves the
kinetic energy

s S ) i) = > walt)? (10.4)

kn

and then that the system evolves in phase space on a sphere of radius de-
termined by the initial kinetic energy. From Eq. (10.2) a system describing
the evolution of the y4(t) can be written

el = Auetn(1)pelt), (10.5)
b,c=1

where the Ag,. are complicated coupling coefficients which do not need to
be written here: indeed, the kinetic energy conservation Eq. (10.5) implies, if
only three “modes” (a, b, ¢) are considered, a detailed conservation property

Aabc + Abca + Acab =0. (106)

As mentioned in Rose and Sulem [617], it can be shown also that Agpc is
zero as soon as two of the indices (a, b, ¢) are equal. This allows to write an
“incompressibility” condition for the generalized velocity field of components
dy,(t)/dt in phase space:
0 dya(t)
0y, dt
The following analysis can be made either by considering the microcanonical

ensemble (systems all lying on a given energy sphere)! or the canonical en-
semble (systems of arbitrary energy). Here we adopt the latter point of view,

—0. (10.7)

! Such an analysis has been carried out by Basdevant and Sadourny [36] in the case
of two-dimensional turbulence.
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considering in the phase space a collection of systems of density p(y1, . - - Ym, t).
Since the total number of systems is obviously preserved in the motion, and
the volumes are preserved as well, a generalized continuity equation can be
written

Dp 0p  ~dya 9p
Dt ot azzl dt Oy, =0 (10.8)

which is Liouville theorem for the problem considered.

We now look for equilibrium solutions of Eq. (10.7), that is solutions
P(y1,...Ym) which do not depend explicitly on ¢. This is the case for any
function of a conserved quantity. Since kinetic energy (1/2) Y, 42 is con-
served with the motion, and by analogy with statistical thermodynamics at
the equilibrium, one will consider the particular Boltzmann—Gibbs equilibrium
distribution

1 1 &
Plyi,...Ym) = Zexp—Qaz:yg7 (10.9)
a=1

where Z is the partition function of the system

1 m
Z://../exp—20az:lygdy1dy2...dy41v (10.10)

and o a positive constant.? Eq. (10.9) can be interpreted as a Gaussian probab-
ility distribution of the systems in phase space. One then assumes that the en-
semble average (p(y1, - .. Ym, t)) of an ensemble of given systems p(y1, - - . Ym, t)
obeying Eqs. (10.5) and (10.8) will eventually relax towards the distribution
(10.9). Such a behaviour has been numerically checked by Lee [394]. This
allows us to calculate the “mean energy” of the mode “a”:

4N
walt?) = 5 [ [ [ oRlexo—30 > ubldyr . dy, (10.11)
b=1

which turns out to be independent of a. There is then equipartition of energy
between the modes a = 1,...,4N, and also between the wave vectors k,,. The
kinetic-energy spectrum, proportional to

ok (a(k, t)* a(k,t)),

2 In statistical thermodynamics, o is related to the temperature by the Boltzmann
relation o = 1/KT,T being the temperature and K the Boltzmann constant. So
in our problem, o characterizes the inverse of the “temperature” of the inviscid
truncated system. It has of course no relation with the physical temperature of
turbulence.
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Figure 10.2. Equipartition kinetic energy spectrum of truncated three-dimensional

Euler equations.

is then proportional to k2, and we obtain a spectrum of equipartition of kinetic
energy among the modes. This result is from Lee [392], and expresses in some
way for the energy spectrum an accumulation of energy at the maximum wave
number, characteristic of the ultraviolet energy transfers of three-dimensional
turbulence (Figure 10.2).

One might object to this analysis the fact that kinetic energy is not the only
invariant, and that the conservation of helicity might alter the equipartition k2
spectrum: such a study has been made by Kraichnan [355], but the qualitative
conclusions (ultraviolet energy transfer) are not fundamentally modified. As
stressed in Rose and Sulem [617], this is no longer true for three-dimensional
strong M.H.D. helical turbulence, where a study of equilibrium-ensemble solu-
tions done by Frisch et al. [222] led to the conjecture of an inverse cascade of
magnetic helicity.? This was later on verified in the frame of the E.D.Q.N.M.
closure by Pouquet et al. [585].

10.1.2 Application to two-dimensional turbulence

The best way to build the phase space is to use the stream function zﬁ(lg, t), Ya
being now its real or imaginary parts. One has here two invariants to consider,
the kinetic energy

3 Scalar product of the potential vector with the magnetic field.
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Zk2|¢ knat Zkaya (1012)
and the enstrophy

Zk‘*w Fp, )2 Zkaya (10.13)

which implies that the system moves on the intersection of the kinetic-energy
sphere and the enstrophy ellipsoid. The invariant to consider is a linear com-
bination of the kinetic energy and enstrophy, and the equilibrium distribution
(10.9) has now to be replaced by (Kraichnan [350,357])

1 1 &
P(ys,...ym) = , exp— o > ki(o + pk)y; (10.14)
a=1

Z

where o and p are two constants. Again the validity of such a distribution has
been verified by Fox and Orszag [215] and Basdevant and Sadourny [36]. The

LL 2

“mean” stream function variance at mode is now

1 1 &
Z//--/yieXp—2Zk§(0+uk§)y§dy1...dym
b=1

which reduces to

+oo 1
W) =y [ en— ko +ukdity (1019
with
+o00
1 2 2y, 2
Y = exp —Qka(a + pk)y“dy. (10.16)
—o0

With the change of variable
Y = ka(o + uk2)1/2

Egs. (10.15) and (10.16) can easily be calculated, to yield

(Ya(t)?) = [k3(o + pk2)] (10.17)
and hence )
([P(k)%) = (o 4 k) (10.18)
k

E(k) = nk¥(|d(k)?) ~ (10.19)

o+ pk?’
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The constants o and p can be determined from Eq. (10.19) in terms of the
mean kinetic energy and enstrophy. If ¢ and p are both positive, the wave
number (¢/4)'/? may easily be shown to be of the order of

o (T B 12
T\ ER)dk

characteristic of an average wave number of the spectrum (Basdevant and
Sadourny [36]). Then if kpax is much larger than k;, the energy spectrum
will be a k~! enstrophy equipartioning® spectrum for k > k; and a k energy
equipartition spectrum for & — 0. The possibility of a negative o (with a
positive ) is permitted if there exists a lower wave number bound ki, such

that
o\ /2
Kmin > ( > .
I

Therefore, and if kp,iy is very close to (—o/ 1)*/2, one can obtain an arbitrarily

high kinetic energy spectrum in the vicinity of kpin. This is what Kraichnan
called negative temperature states”, since the “temperature” of the system is
characterized by o, which is here negative. Such a behaviour could of course
be considered as an indication of the inverse energy cascade in the viscous
problem.

Let us now consider the two-dimensional passive scalar: since it possesses
only one quadratic invariant (the scalar variance), the same analysis will lead
to equipartition of scalar variance among the wave vectors E, and thus to a
scalar spectrum proportional to k. If o > 0, scalar and kinetic-energy spectra
will be both proportional to k at low wave numbers, while the enstrophy
spectrum will be o k3. Consequently, there will be more scalar than enstrophy
in this infrared spectral range: such a behaviour was verified by Holloway and
Kristmannsson [291] with an inviscid truncated direct numerical simulation,
and shows the dynamical difference of the scalar and the enstrophy in this
range.

10.2 Two-dimensional turbulence over topography
One must first stress that the existence of a differential rotation (3-effect) does
not modify the results of Section 3, since the conservation of kinetic energy

and enstrophy is not changed. It yields then isotropy, in contradiction with the
anisotropic effects of differential rotation displayed in the viscous calculations

* Indeed the equipartition of enstrophy yields k?E(k) o< k.
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of Rhines [593] and Bartello and Holloway [33]:® this is an example where the
predictions of inviscid truncated systems are strongly at variance with the
real viscous flows dynamics.

An interesting problem, the solution of which is given in Holloway [292], is
that of a geostrophic turbulence over a random topography: from Eq. (9.41),
the potential vorticity (within the rigid-lid approximation) is — V2t +h, where
h(z,y) is the topography, properly normalized. Let E(E) be the spatial Fourier
transform of h(Z), and let h, be the real and imaginary parts of the various
E(En) With the same notations as in Section 10.1.2, the quadratic invariants
are the kinetic energy Eq. (10.12) and the potential enstrophy

m

1 Sy
o 2 Ent +h? = Y (kgya + ha)*. (10.20)

kn a=1

The probability distribution corresponding to a linear combination of kinetic
energy and potential enstrophy is then

1 1
P(y1,--ym) = ,exp—) > ki(o + pki)y; +2ukihaya + phi.

a=1

This permits to calculate (y2), equal to

2 L[ 5 Lo 2y, 2 2 2

(va(t)) = 3, yoexp—, [kq (0 + pka)y” + 2ukahay + pholdy  (10.21)
— 00
with
e 1
Y = / exp—, (k2 (0 + pk2)y® + 2uk2hay + ph?)dy. (10.22)

Expressing
k2 (0 + uk2)y® + 2ukzhay + ph?

under the form

ha \° h2
(y+“o+u%>'+”%ao+uﬁﬁl

and with the change of variable

k(o + pk?)

a

!
VSRR e

® More precisely, it was shown by Shepherd [644] that the ergodic property was lost
if B is high.
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Eq. (10.21) can be written as

1 [t 1
Walt?) = [ s k2o + ukPdy

h2
2 a
10.23
T o+ h2y? (10.23)
where Y is still given by Eq. (10.16). Then, if one considers the topography
as random, the modal vorticity variance at wave vector k is

: o
G-Ra@) = k(DR =2 © i PR

2
o+ k2 T (o4 pk2)?

which shows that the resulting flow is the superposition of the classical two-
dimensional turbulence equilibrium solution found in the preceding section,
and of a contribution due to the topography. This topographic component can
be clearly understood when looking at the vorticity topography correlation
(@(—k)h(K)) which turns out to be equal to 2(h.y,) for an arbitrary a. The
same changes of variable as above yield

he [T ha 1, 9\ o
(haya) =y, T e exp —, kq (0 + pka)y~dy

ha
=y g (10.24)
and hence 12
(W(=k)h(k)) = —(h(=k)h(k)) o+ k2 (10.25)

The topographic component of the vorticity is then locked on to the topo-
graphy, with a sign corresponding to the potential vorticity conservation phe-
nomenology, that is in the anticyclonic direction above a positive topography
(compression of relative vortex tubes), and in the cyclonic direction above a
trough (stretching of relative vortex tubes).

This is a quite remarkable result, which has been observed also in the vis-
cous DNS of Holloway [292]. It seems therefore one might oppose a mazimum
entropy principle (leading to the Boltzmann—Gibbs equilibrium distribution),
which yields in this case® the formation of organized eddies locked to the topo-
graphy, to the minimum enstrophy principle of Bretherton and Haidvogel [81]
(see also Leith [402]) which assumes that the flow is going to evolve under
the action of viscosity towards a state of minimal enstrophy. Though the ex-
ample of inviscid truncated solutions for two-dimensional turbulence above

5 Here one recalls that the system is non-dissipative.
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topography is quite impressive, it has to be remembered that turbulence is
an essentially dissipative phenomenon (of enstrophy in two dimensions), and
that results closer to reality will certainly be obtained with theories allowing
dissipation to act. But absolute equilibrium ensembles are a useful qualitat-
ive tool to explore the direction of the transfers among the various scales of
motion.

10.3 Inviscid statistical mechanics of two-dimensional
point vortices

Up to now we have considered inviscid systems of a finite number of wave
vectors. Another point of view (in two dimensions) is to consider a large
number of individual point vortices located at 7;(t) and of circulation ¢;, so
that the vorticity field is given by

w(7 t) = Z 8[F — 7(t)). (10.26)

A review of this approach can be found in Chorin [123,124], Frisch [229],
and Cottet and Koumoutsakos [148].” Such a problem permits a Hamiltonian
formulation. In a pioneering study, Onsager [549] showed the possibility of
negative temperature states (in the statistical thermodynamics sense), with
clustering of same-sign vortices. Later on, various works (see e.g. Joyce and
Montgomery [321], Montgomery and Joyce [517], Kraichnan and Montgomery
[359]) could relate the average vorticity —V?2% of the solution to the stream
function ¥. Let us quote for instance the sinh-Poisson equation of Joyce and
Montgomery [321] (see also Montgomery et al. [518]). Robert and Somméria
[605, 606, 662] (see also Miller et al. [506]) have performed an analysis based
on mutually exclusive patches of vorticity, instead of delta-functions points
and find a different equation. Yin et al. [733] has carried out DNS of decaying
Navier—Stokes equations in a periodic square, and stress that the dipole-like
eventual state confirms the sinh-Poisson solution.

" The latter study also the three-dimensional case with vortex filaments, and in-
clude viscosity effects.
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Statistical Predictability Theory

11.1 Introduction

The concepts of predictability and unpredictability have been widely used
throughout the preceding chapters, and are one of the major ingredients in
our definition of turbulence. When turbulence is examined from the point of
view of “chaos” in dynamical systems, predictability is studied by looking at
the sign of the Liapounov exponent I, with d(t) o e'*, where d(t) is an ap-
propriate measure of the distance between two points representing the system
and initially very close in phase space: a positive exponent means then an
exponential separation, and implies loss of predictability.

When developed (and hence dissipative) turbulence is envisaged, the
concept of predictability is a priori more vague, since no evident phase space
exists. It took about 15 years for this concept to find a satisfactorily mathem-
atical formulation, through the works of Thompson, Novikov, Lorenz, Char-
ney, Leith and Kraichnan for instance. The reader is referred to the paper
of Thompson [686] for a historical overview of the subject: the problem was
pointed out by meteorologists concerned with the amplification in the forecast
models, as time was going on, of the errors contained in the initial conditions.
The latter are due to the inaccuracy of the measurements and interpolation
of the observing net data. Let us quote Thompson [686]:

Suppose that the prediction model were perfect, and that the model
equations could be integrated without error. Then there would still
be a practical limitation on the accuracy of prediction, owing to the
fact that the initial analysis is subject to (...) errors (...). The work-
ing hypothesis was (...) that the growth of error was a distinctively
nonlinear phenomenon and that (...) the (...) prediction model (.. .)
would amplify errors.
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As recalled in Chapter 1, the unpredictability concept pioneers are certainly
Poincaré [579] and Laplace [376].

At the beginning of unpredictability studies applied to fluid mechanics, the
problem was posed more as a stability problem, where one looks at the evol-
ution of a “perturbation” (actually the initial departure from the real flow)
superposed to the flow one desires to forecast. Then a statistical formalism
was proposed by Novikov [539], and used in Fourier space by Lorenz [454],
Leith [399] and Leith and Kraichnan [400]: instead of considering one given
realization of the flow @(®(Z,t) where a stands for the particular realiza-
tion of the random field studied, perturbed by 6@(®(Z,t), one considers two
ensembles of flows defined by the random functions

i (2,t) = {@'(Z,t)} (11.1)
o (T, t) = {a@(Z,t) + 6a'™ (Z,1)}. (11.2)

The statistical formalism restricts the study to random functions #; and s
having the same statistical properties. This implies in particular that (6) is
zero, and that the two random flows have the same spectrum. The statistical
predictability will study the statistical properties of 64 = u; —us. Of particular
interest will be the relative energy of the error

(@ — 12)?)
2(uz)

r(t) = (11.3)

also called the error rate: when the two fields are initially very close, |§@(®)| <
()| in each of the realizations a considered, and r(0) is consequently much
smaller than 1. The two fields are then almost completely correlated. On the
contrary, if the error between the two fields grows in such a way that they
become decorrelated (and hence that (@;.d2) = 0), one will have r = 1.

Let us consider isotropic turbulence and work in Fourier space. One con-
siders the kinetic-energy spectrum E(k,t) of @; and s, such that

1 +oo
(@2(Z,t)) = E(k,t)dk (11.4)
2 0
E(k,t) = (D — 1)7kP~ U (k, t) (11.5)

where U(k‘, t) is the trace of the spectral tensor, spatial Fourier transform of
(uy, (@, t)uy, ( + 7, 1))

(or of the spectral tensor built with @2). D is the dimension of space (2 or 3).
In the same way one can introduce the correlated energy spectrum

Ew (k,t) = (D — 1)akP =YW (k, t) (11.6)
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where W(k‘, t) is the trace of the tensor Fourier transformed of
<u11‘, (57 t)uzj (j + Fv t)),

and such that N
1 oo
2(171(9?, t).ux(Z,t)) = Ew (k,t)dk. (11.7)
0

It is very easy to check that

+oo
@ =) = [ 2Ba(k. )k
with
Ea(k,t) = E(k,t) — Bw(k,t). (11.8)

Ea(k,t) is called the decorrelated energy spectrum, or error spectrum. The
error rate defined in Eq. (11.3) is thus equal to
7 Ea(k, t)dk

rw:(ngmw%'

(11.9)

Due to a Schwarz inequality, |Ew (k,t)| < E(k,t), and Ea(k,t) is positive
and majored by 2E(k,t). The case Ea(k) = E(k) corresponds to a complete
decorrelation between the two fields. Although it is not mathematically ruled
out, the situations with Ea(k) > E(k) are physically irrealistic, since they
would correspond to a correlation of the field #; with —us.

Because of their meteorological motivations, the people who initiated these
studies were mainly concerned with two-dimensional or quasi geostrophic tur-
bulence. But the predictability problem may be posed for three-dimensional
turbulence as well, and has important implications concerning the relevance
of the large-eddy simulations of these flows (see next chapter). Thus we will
consider here both cases of three and two dimensions. On the other hand,
the numerical prediction frame in which the predictability problem is posed
usually leads one to assume that the error between the two flows 47 and s
is confined to the small scales corresponding to the inaccuracy of the initial
state or the smallest resolved scale in the numerical model: this will imply
an initial error spectrum equal to zero for k < k.(0), and comprised between
0 and E(k,0) for k > k.(0). The corresponding correlated energy spectrum
is equal to E(k,0) for k < k.(0), and comprised between E(k,0) and 0 for
k > k¢(0). An example of an initial situation is shown in Figure 11.1. The
questions which are posed concern the time evolution of the wave number
k.(t) characterizing the “front” of the error spectrum, and of r(t). A decrease
of k.(t) as well as an increse of r(t) will mean loss of predictability. Notice that
in some of the situations envisaged below, the wave number k. (¢) may be hard
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— E(k,0)
—-—£,(k.0)
— — Ew(klo)

ke(0)

Figure 11.1. Initial kinetic, correlated and decorrelated energy spectra in a typical
statistical predictability study where complete uncertainty (corresponding to the
shaded area) is assumed at wave numbers k > ke(0). kc(0) characterizes the initial
front of the error.

to define, and thus r(t) seems to give the best measure of the error. Notice also
that, even if it has been less investigated, the statistical predictability problem
could also be envisaged with an initial error affecting the energy-containing
eddies. We will return to that point later. Notice finally that the statistical
predictability problem has nothing to do with the problem where the kinetic-
energy spectrum of turbulence is perturbed by an energy supply: in the case
where for instance a small-scale kinetic energy peak is superposed at a wave
number kp upon the three-dimensional Kolmogorov inertial range, it is easy
to show with the aid of dimensional arguments or via two-point closures that
the peak will spread out through the whole spectrum in a few turnover times
(k3 E(kp)]~1/? of the turbulence at the wave number kp. In the predictability
problem on the contrary, the kinetic energy spectrum FE(k,t) is the same for
the two velocity fields considered.

In this chapter we will mainly be concerned with the closure results, par-
ticularly closures of the E.D.Q.N.M. family, and will summarize the results
obtained by Leith [399], Leith and Kraichnan [400], Métais [490] and Métais
and Lesieur [492] for three and two-dimensional isotropic turbulence. Let us
also mention the two-dimensional Quasi-Normal study of Lorenz [454] which
concluded to an upper limit of 8 days for the deterministic forecast of Earth
atmosphere. We must point out the pioneering study of Lilly [442], who looked
at statistical predictability with the aid of two-dimensional DNS.

The chapter is organized as follows: Section 2 will give the E.D.Q.N.M.
statistical predictability equations. Sections 3 and 4 will present respectively
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the three-dimensional turbulence and two-dimensional isotropic turbulence
results. Section 5 will consider unpredictability in a two-dimensional temporal
mixing layer.

11.2 E.D.Q.N.M. predictability equations

At the present point of progress of this book, the reader might not welcome
new lengthy calculations giving the E.D.Q.N.M. spectral equations for E(k,t)
and Ey (k,t). We will therefore skip such a derivation, which is at hand for any
reader having mastered the E.D.Q.N.M. techniques described in Chapter 7.
The essence of the calculation is to write the Navier—Stokes equations in Four-
ier space simultancously for @, (k,t) and 4, (k, t)*, in order to obtain for the
correlated spectral tensor an evolution equation which can be written formally
as

(gt + 21/k:2) (it (K, £). 0 (K, £)*) = (G101 G0) + (fptindy) (11.10)

where the r.h.s. of Eq. (11.10) involves triple moments of the two fields. First,
the Quasi-Normal procedure is applied at the level of the equation for the
triple moments (see Lorenz [454]). A new problem which arises with the eddy
damping is the choice of the triple-correlations relaxation time, which might
differ from the time 6y,, introduced in Chapter 7, since it now involves two
distinct velocity fields. In fact all the studies quoted above have chosen the
same time. With this choice, the resulting equations for E(k,t) and Ea(k,t)
read (see Métais and Lesieur [492])

(8815 +2uk2> E(k,t) = //Ak dp dqSe(k,p,q) + F(k) (11.11)

( 24 2uk2) Bwkt) = [[ dodaSwikpg)+ PR (1112)
Ay
Se(k,p.q) = Ap(k,p, q)0kpea(k, p, ) k" E(p)E(q)
1 1
—, bk p, Qp” 'E(qQE(k) — 5
SW(kvpa q) = AD(kvpa q)akpqa(kvpa q)kD_lEW(p)EW(q)

— bl 0P T @) B (0) = bl 0, p)aP T B)Bw () (11.14)

b(k,q.p)g” " E(p)E(k) (11.13)

k 2 k2
As(k,p,q) = As(k,p,q) = . 11.15
3(k,p,q) 0 2(k,p,q) - ( )
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In these equations, D is still the space dimension (3 or 2). The coefficient
b(k, p,q) has already been introduced in Chapters 7 (three dimensions) and
8 (two dimensions), and a(k,p,q) is in both cases given by Eq. (7.12). The
kinetic-energy transfers corresponding to Eq. (11.13) are of course the same as
those arising in Eqs. (7.22) (three dimensions) and (8.31) (two dimensions),
but put under a slightly different form closer to the expression of the cor-
related energy transfer Eq. (11.14). F(k) comes from a possible forcing term
f (E, t) in the r.h.s. of the Navier-Stokes equations written in Fourier space:
the modelling of this forcing through the closure has been already envisaged
in Chapter 7, and we recall the main result: when a spectral tensor trace evol-
ution equation of the form Eq. (6.1) is written, a force-velocity correlation
(f(k,t).a(k,t)*) appears. If the random function f(Z,t) is a Gaussian white
noise with respect to the time, such that

(FE 6).f(k, b)) = F(k) §(k + K)o(t —t) (11.16)

and statistically independent of the initial velocity field, then it may be shown
(Lesieur et al. [410])! that the forcing term in the r.h.s. of Eq. (11.11) is

F(k) = 2xk*F(k)(D = 3); F(k) = nkF(k)(D = 2). (11.17)

This analysis is also valid for the correlations (fus) and (fu;) if the same
forcing functions are taken for the two fields ¢y and ws. This is what we will
call correlated forcing, which yields the same forcing term F'(k) in the r.h.s.
of Egs. (11.11) and (11.12). As in the above chapters, emphasis will be given
to the decaying cases where F(k) is zero.

The above equations can be solved numerically with the same techniques
that are described in Chapter 7. This was done in Leith [399] and Leith
and Kraichnan [400] assuming a stationary kinetic energy spectrum, and in
Métais and Lesieur [492] in a decaying turbulence: most of the results quoted
in the next two sections come from these references. Let us also mention the
E.D.Q.N.M. predictability study performed for a quasi geostrophic two-layer
model by Herring [281].

11.3 Predictability of three-dimensional turbulence

Let us assume that the Reynolds number of the turbulence is high enough so
that a k~°/3 Kolmogorov inertial range exists. Let k.(t) be a wave number
over which most of the error is confined, and such that complete uncertainty
exists for k > ke(t)(Ea(k) = E(k)). A non-local analysis of the equation for

! The model used in this reference was the R.C.M., but the analysis can be gener-
alized to Markovian models.
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Ea(k) derived from Egs. (11.11) and (11.12) leads, for k < k.(t) to (Leith
and Kraichnan [399], Métais and Lesieur [492]:

0 14 e E2(p,t)
Ealk,t) = _k* / 9 d 11.18
ot alk,t) 15 bet) kpp 2 p ( )
which reduces, due to the inertial range expression of the energy spectrum, to

0

atEA(k:, t) ~ ek (t)k™. (11.19)

This shows the existence of a strong error backscatter, responsible for a k*
error spectrum for k < k.. It is then possible to develop an analysis resembling
the one we did in Chapter 7 for the passive scalar when it was injected in the
small scales of turbulence: assuming that

Ea(k,t) = Ca(t)k*; k—0 (11.20)

and matching the error and energy spectra at k. yields

Ca(t) ~ 3k 1T/3 (11.21)
while Eq. (11.19) writes
dC;t(t) ~ ek P, (11.22)

For a stationary kinetic energy spectrum where € is a constant, it is then easy
to show that the scale k. follows an a la Richardson law

oA Ld kZ2(t) ~ /3743 (11.23)

T oate
which leads to
k23 (E) ~ P4 R (),

where % is the time at which the error has been injected in the small scales
of the inertial range. This shows that k. is going to decrease following a
(t — to)~3/2 law, as soon as k() will be sufficiently small compared with
kc(0). The initial location of this wave number can then be forgotten, and
the necessary time for the error, starting from very high wave numbers, to
reach a given wave number k, is proportional to e /3k~2/3, that is the local
turnover time of turbulence at k. In an infinite Reynolds number turbulence,
it would therefore take a finite time for the error, injected at infinitely large
wave numbers, to reach a given mode k.

Figures 11.2a, b and 11.3c, taken from Métais and Lesieur [492], show an
E.D.Q.N.M. calculation of the inverse error cascade for three cases: a station-
ary turbulence forced at a mode k;(0) (and thus developing a k? equipartition
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Figure 11.2. Inverse cascade of the error spectrum in isotropic turbulence for: (a) a
stationary three-dimensional turbulence; (b) a decaying three-dimensional turbu-
lence with E(k) oc k2, k — 0.
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Figure 11.3. Inverse cascade of the error spectrum for: (c) a decaying three-
dimensional turbulence with E(k) « k* k — 0; (d) a decaying two-dimensional
turbulence (from Métais and Lesieur [492], courtesy J. Atmos. Sci.).
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energy spectrum at low k), and a decaying energy spectrum in both situations
of a k? or a k% infrared energy spectrum. The initial (at ¢ = to) energy spec-
trum in the decaying situation (case b) is identical to the stationary energy
spectrum of case a). In the three cases the initial error spectrum is the same,
and corresponds to the typical situation described in Figure 11.1. One clearly
sees the inverse cascade of error which gradually contaminates larger and lar-
ger scales. The time evolution of the error rate r(t) can be understood from
the approximate relation

r(t) =~

>0 2/
T B (1) 120

[ B(kydk — \ ks

Thus, in the stationary turbulence case, and because of the analogous Richard-
son law satisfied by k.(t), r(t) o ¢. In decaying turbulence, analytical expres-
sions for k. (and hence for r(t)) can be found in Métais and Lesieur [492]: in
this case, ke (t)/k;(t) is initially (for ¢ close to t) equivalent to (t — to)~3/2
and r(t) also starts growing like ¢ — to, then slows down when k. reaches the
vicinity of k;. The predictability time, defined such that r(t) = 1/2, is equal
respectively to
Tr—1/2 = 1719; case a

T,—1/2 = 3370; cases b and c, (11.25)

where 79 is the large-eddy turnover time ((@2)*/2k;)~! of the initial (in cases
b and c) energy spectrum. This predictability time is, as already stressed, in-
dependent of the initial position of k.(0) if far enough in the inertial range.
This result has important implications for the LES of three-dimensional tur-
bulence, since it shows in principle that no deterministic numerical simulation
is then possible at times greater than 20 ~ 307y. We will come back to that
in the next chapter on large-eddy simulations. Let us also mention that the
statistical predictability of three-dimensional turbulence has been studied by
Chollet and Métais [120] using LES with a spectral eddy-viscosity (see next
chapter). The calculations confirm that k. (t) decreases and r(t) increases with
time, but the resolution of the calculation (32%) modes is too low to confirm
the above theoretical predictions. In the same paper, the authors look also at
the predictability of a passive scalar.

We stress finally that Sandham and Kleiser [631] have carried out predict-
ability studies of a turbulent channel with the aid of DNS’.

11.4 Predictability of two-dimensional turbulence

Since Chapter 8, we are used to the fact that the dynamics of two-dimensional
turbulence may be as intricate as in three dimensions, and this will also be
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the case for the predictability problem. In particular, even though some of
the analytical derivations of Section 3 can be applied in the inverse energy
cascade, they have no validity at all in the enstrophy cascade because of the
strong non-localness of the transfers. Let us first suppose, on a dimensional
ground, that in the enstrophy cascade dk./dt is function of 3 (the enstrophy
dissipation rate) and k. only. This yields

d 1

gy ke ~ 59 (11.26)
and k. would then decrease exponentially. The error rate, approximated by
(ke/ki)~2 in a k=3 energy spectrum, would increase exponentially as

(11.27)

where the large-eddy turnover time 7y is of the order of 3~1/3 and A is a con-

stant. Since 7(tg) & [ke(to)/ki(to)] 2, the predictability time tends to infinity
with k. (to) in an infinite k=3 enstrophy cascade inertial range.

In fact, E.D.Q.N.M. calculations made in Métais and Lesieur [492] have
shown that, due to the strong non-local error transfers, the exponential de-
crease of k. is only valid for the early stages of the evolution, where the error
is very quickly transferred from high wave numbers to the energy containing
eddies. This is shown in Figure 11.3d: in about 5 turbulence turnover times,
the error spreads out through the whole spectrum, and the situation is as if
the error had been injected directly in the energy containing eddies. Then
the error rate grows exponentially, still following approximately the law equa-
tion (11.27) (though Eq. (11.26) is no more valid).? Notice also in Figure 11.3d
the existence of a k® backscatter both in the energy and error spectra. The
value of the constant A is equal to 2.6 for a stationary kinetic energy spectrum,
and to 4.8 in the decaying turbulence case. The predictability time T;._; 5 is
now given by

Tr—1/2 = Ao In[1/2r(to)]. (11.28)

As shown in Métais and Lesieur [492], this can be used to estimate the pre-
dictability times in the atmosphere and the ocean.

11.4.1 Predictability time in the atmosphere

If this model of two-dimensional turbulence is applied to Earth’s atmosphere,
one may take 79 ~ 1 day. We have

2 The same behaviour for the error spectrum has been found qualitatively by Lilly
[442] in the two-dimensional isotropic DNS already quoted above, and in the DNS
of the temporal mixing layer done by Lesieur et al. [420].
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ke(to) 100 km™!

ki(to) 1000 km~'

-2
r(ty) = (Ze> ~107%

then the predictability time would be of 10 or 18 days whether we consider
the atmosphere as a stationary turbulence or as a decaying turbulence. These
values are in good agreement with predictions based on other predictability
theories. In fact the atmospheric circulation is forced by thermal heating, in
such a way that 10 days is a better estimate. So, within this model, no precise
numerical forecast of the atmosphere is possible beyond this limit.

This poses some questions about the validity of climate models, which
solve approximately during periods of years coupled Navier—Stokes and en-
ergy equations for the atmosphere and the ocean.? The atmospheric model
in these works is not two-dimensional nor even quasi geostrophic. However,
it is obvious that it keeps this character of total unpredictability for forecast
periods of more than 20 days. This is crucial, since it is from these model
predictions that Earth’s temperature should increase in an alarming fashion
in the following tenths of years.

11.4.2 Predictability time in the ocean

In the ocean, where the large-eddy turnover time is about 20 days, the pre-
dictability times are then 20 times greater. Notice that the propagation of
Rossby waves in the case of turbulence on a [-plane or on a sphere seems
to slightly increase the predictability of the flow, as shown by Basdevant et
al. [38].

11.4.3 Unpredictability and coherence

To finish this chapter, it is of interest to discuss the signification of these
predictability times, based on statistical estimations, with respect to the dy-
namics of the flow itself when only one realization is considered. It could be
an error to consider that, for times greater than the predictability time, the
flow is going to look different, and in particular will lose any kind of spatial
organization in the case where it would possess some well identified coherent
vortices. In fact, the predictability time could in some occasions (for two-
dimensional turbulence for instance) be much shorter than the life time of the
organized eddies: this is in no way a contradiction, but simply means that the
two flows 4; and s studied in the predictability problem both possess the

3 These difficult studies include clouds, greenhouse effect gases and ice.
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same sort of spatially-organized structures, whose spatial location (“phase”)
could differ appreciably from one flow to the other. Similar situations occur in
meteorology at planetary scales, where one often encounters the same “mush-
room” shaped [cyclonic-anticyclonic] dipole structures, whose exact location
cannot be predicted accurately, in such a manner that one will never know
in advance whether we will fall inside the anticyclonic part (which means
fair weather) or the cyclonic one (and then bad weather). Another question
which is still widely brought up concerns the role for predictability played by
the actual external forces applied to a real flow, and by the boundaries. It is
obvious of course that the models of isotropic three and two-dimensional ho-
mogeneous turbulence are so idealized that they cannot pretend to represent
the whole reality. Nevertheless these models show that the nonlinearities of
Navier—Stokes equations may be a source of unpredictability for high Reynolds
number flows, and this mechanism has to be included (among others) in the
physical principles and processes gear we use to try to understand turbulence
in fluid dynamics.

11.5 Two-dimensional mixing-layer unpredictability

Such a study has been performed numerically in the case of the temporal mix-
ing layer by Lesieur et al. [420]. Two velocity fields @ (x, y, t) and @2 (x, y, t) are
considered: they are supposed to be two solutions of the Navier—Stokes equa-
tions in the same domain Dy, with the boundary conditions of the temporal
mixing layer. The error rate r(t) is defined as a properly spatially averaged (in
a test domain) kinetic energy of the difference between the two flows, divided
by the average kinetic energy of one of the flows. The two fields are pre-
pared in such a way that they initially (at time 0) differ only by a white-noise
perturbation, superposed in both cases to the same basic hyperbolic-tangent
velocity shear to which a small deterministic longitudinal sine perturbation
at the fundamental wave length has been added: at the time ¢y of the rollup,
the difference existing between i and iy will therefore have lost the artifi-
cial character it had initially due to the white noise, and the two fields thus
generated at tg will be mainly composed of coherent vortices extremely close
from one field to the other. The simultaneous numerical calculation of the
evolution of 41 and s allows one to determine r(t), which has roughly an ex-
ponential growth of characteristic time 155¢/U. The error saturates together
with the vorticity thickness, due to the longitudinal periodicity constraints
already mentioned above. Hence, it can be concluded that the error grows as
long as the vorticity thickness grows. In fact, one of the main reasons for such
unpredictability growth is here the initial subharmonic perturbation. If its
phase is chosen properly, it will be responsible for an important decorrelation
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Figure 11.4. Growth of unpredictability in a two-dimensional mixing layer; (a) ini-
tial fields @1(z,y,0) and @2(z,y,0), modulated by two subharmonic perturbations
in phase opposition; (b) the fields after the pairing.

between the two fields at the time of the first pairing. Indeed, let us consider
for u; and s two rows of vortices, each of them being modulated by out
of phase subharmonic perturbations (of wave length 2),) (see Figure 11.4a).
From what we have seen in Chapter 3 concerning the pairing, the resulting
fields after the pairing will consist in two rows of Kelvin—-Helmholtz vortices
of wave length 2\, in phase opposition (Figure 11.4b), which corresponds to
a high decorrelation rate between the two fields.

11.5.1 Two-dimensional unpredictability and three-dimensional
growth

As an exercise, we will develop here a two-mode? nonlinear approach allowing
one to relate the above two-dimensional predictability study to the three-

4 One mode is the two-dimensional flow, and the second is obtained through a
one-mode spectral spanwise truncation of the flow.
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dimensionalization of the layer. This analysis is taken from Lesieur et al.
[420], and has some analogies with the linear studies of Pierrehumbert and
Widnall [573], Corcos and Lin [144] and Herbert [272] mentioned previously in
this monograph: let us consider a quasi two-dimensional flow, whose velocity
and pressure fields 4(Z, t) and p(Z,t) are expanded as

i(z,y, 2,t) = dap(z,y,t) + V2isp(z,y,t) sin Bz (11.29)

p(ﬂf, Y, th) = pZD(xa y7t) + \/2p3D(x7ya t) s1nﬁz (1130)

where @ap and dsp are two horizontal (in the = — y direction) non-divergent
velocity fields, and § the wave-number of the spanwise perturbation. The
flow is non-divergent, since the spanwise velocity is zero. @sp corresponds
more or less to a basic Kelvin—Helmholtz billow, while u3p is the amplitude
of a spanwise oscillation of the billow, initially small. The following decom-
position is analogous to the two-mode spectral vertical decomposition of the
quasi geostrophic potential-vorticity equation presented in Chapter 9. Projec-
tion of Navier—Stokes equation (with constant density) on these two modes
may be performed either as was done in Chapter 9, or in the following man-
ner: one substitutes the particular expansions (11.29) and (11.30) into three-
dimensional Navier-Stokes equations (without rotation). One obtains

Otap
ot

+ ﬁgD.ﬁ'L_L’QD + 2811’12 5Zﬁ3D~§7-_[3D+
. o L o=l L o=l 1>
V/2sin 3z ( 8?1)5[) + top.Visp + ugp.Vu2D> = —przD
1~
—V2 sinﬁszpsp + v[V2iap + V2sin B2(V2isp — Bisp)].  (11.31)

Since 2sin? Bz = 1 — cos 26z, and eliminating the cos 23z term (which corres-
ponds to the truncation), we obtain after identification of the sin 3z terms

ot L e L e ls L

635[) + 1yp.Vigp + tizp.Vigp = —pVPQD + VV2U2D (11.32)
disp . = L el ls 2o

ot +UQD.VU3D+U3D.VU2D = —pr3D+VV Uusp- (1133)

Notice that, in Eq. (11.33), the ~ v(3%ii3p term arising in Eq. (11.31) has
been neglected in the dissipation term; we think this term would have only a
negligible influence on the following results. Now let

Ul(x,y,t) ZﬁQD—FUgD,ﬁQ(l‘,y,t) = lap — U3D (11.34)
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and similarly for p; and ps. It can be easily checked from Egs. (11.32) and
(11.33) that «; and 4y both satisfy independent two-dimensional Navier—
Stokes equations, with the same boundary conditions as (x,y, z,t) for y =
+o00. Therefore, and since initially u; and us are very close, the growth of this
particular three-dimensional perturbation can be expressed in terms of the
predictability problem studied above: the study of %(61 — 1iy) = Usp in the
predictability problem will give access to the three-dimensional perturbation
amplitude, the error rate being identified with the kinetic energy of the three-
dimensional perturbation, averaged over a wave length 27/ in the spanwise
direction (see Lesieur et al. [420]).

Such an analysis is of course subject to criticism, since there is no spanwise
velocity in the velocity field. The discarding of the cos2(8z term eliminates
the harmonic spanwise wave length 7/ which contains certainly some im-
portant three-dimensional characteristics of the flow, such as the existence of
secondary streamwise vortices mentioned in Chapter 3, or small-scale three-
dimensional turbulence. However, this analysis could take into account certain
three-dimensional characteristics of the large coherent eddies, such as helical-
pairing for instance.



12

Large-Eddy Simulations

12.1 DNS of turbulence

As already stressed in previous chapters, there is a priori no difficulty in
envisaging a numerical solution of unstationary Navier—Stokes equations for
rotational flows: the various operators are represented by discrete systems
relating the values taken by velocity or vorticity components, pressure, density,
temperature, etc., on a space-time grid. This grid may be spatially regular
or irregular, with finite-difference, finite-volume or finite-element methods.!
Often an orthogonal decomposition of the flow allows a spectral method to be
used (see e.g. Canuto et al. [95]). For incompressible two-dimensional flows,
the use of the stream function permits the elimination of the pressure. It is not
the aim of the present monograph to describe the various numerical methods
used in the so-called Computational Fluid Dynamics. We will insist rather on
the physical limitations which arise when such a simulation is performed on
a turbulent flow.

We recall that a DNS of turbulence has to take into account explicitly all
scales of motion, from the largest (imposed by the existence of boundaries
or the periodicities) to the smallest (the Kolmogorov dissipation scale for
instance).

We have already seen that the total number of degrees of freedom ne-
cessary to represent a turbulent flow through this whole span of scales is of
the order of R?/ 2~ Ri/ % in three dimensions, and Rl2 in two dimensions,
where R; is the turbulent Reynolds number based on the integral scale. As
stressed in Chapter 1, one can in three-dimensional computations multiply
by ten every ten years the number of computational points in each space dir-
ection. Thus, the improvement is very slow, and Reynolds numbers attained
are still several orders of magnitude lower than the huge Reynolds numbers

1 On the latter method applied to fluid dynamics, see Pironneau [578].
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encountered in natural situations: there is no hope in the near future, even
with the present unprecedented computer revolution, to envisage for instance
a direct-numerical simulation of Earth atmosphere from the planetary scales
(several thousands of kilometers horizontally) to the dissipation scale (1 mm),
since it would require about 10%° degrees of freedom to put on the computer,
all these modes interacting nonlinearly. Things get even worse on Jupiter, or
in a star like the sun. Even in a wind tunnel, whith an integral scale of 5 cm
and a Kolmogorov scale of 0.1 mm, about 10® degrees of freedom are needed
(5 x 102 in each direction). As already stressed above, this is at hand now.
The situation is improving with the development of parallel computers us-
ing a large number of processors simultaneously. We must also mention again
that the simulation of the Kolmogorov cascade in the limit of zero viscosity
requires an infinite number of degrees of freedom, and is out of reach of any
DNS.

The conclusion we draw is that, for a high-Reynolds number turbulent
flow, it is not possible in the near future (and perhaps not in the distant
future either) to simulate explicitly all the scales of motion from the smallest
to the largest. Generally, scientists or engineers are more interested in the
description of the large scales of the flow, which often contain the desired
information about turbulent transfers of momentum or heat for example: it
is these large scales which will be simulated on the computer. The problem is
no longer that of a DNS of turbulence, but of a LES. The latter, as will be
seen, need the representation in some way (at least statistically) of the energy
exchanges with the small scales which are not explicitly simulated.?

12.2 LES formalism in physical space

12.2.1 Large and subgrid scales

We present here the formalism for constant-density flows, and will give below
some indications of the way compressibility may be handled.

Let us first look at the LES philosophy in physical space: suppose for sake
of simplification that the numerical method chosen involves a discretization
of the fields on a regular cubic array of points, Az being the grid mesh. To
the fields defined in the continuous space Z, one will associate filtered fields
(large-scale fields), through the convolution with a filter G'a,. The filtered
velocity and temperature are thus given by

a(@.t) = [ @706 - i (12.1)

2 Tt should be stressed that in combusting or reacting flows, some important phe-
nomena or reactions take place at the molecular-diffusion scales level. This is a
further difficulty for the LES of these flows.
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1.6 = [ 17,0627 - 7 (12.2)

In fact, one has, for any quantity f (scalar or vectorial)
f@.0) = [ 10.0Ga:(E - 7 = [ 117 - 5.0G 2.0y

The filter has to be chosen in the best way to eliminate the small spatial
scales. If one sees the motion as a superposition of sort of sine waves, then
the sharp cutoff low-pass filter in Fourier space will be preferable (see below).

One can easily check that such a filter commutes with temporal and spatial
derivatives, so that the continuity equation for the filtered field holds.? Let
4 and T' be the fluctuations of the actual fields with respect to the filtered
fields (density is taken constant and equal to pg)

di=u+u; T=T+T (12.3)

and more generally f = f + f’. The fields “prime” concern fluctuations at
scales smaller than Az (the “grid scale”), and will then be referred to as
subgrid-scale fields.

One now considers Navier—Stokes equations in the form:

Ou; 0 1 9p 9 ou; O
ot + Ox; (uiug) = po O + 0z {V (8@ + 83:,-)}' (12.4)
After applying the filter, one gets
Oy o, . 1 0p 0 ou;  ou; }
ot + 0x;j Uity) = po Oxi O, {V (8@ + 83:,-) +T1J}, (12.5)

where the subgrid-scale tensor T;; is given by
Tij = UjUj — UsUy. (126)

The filtered fields do not need to be resolved at scales smaller than Az, since
they have been constructed in a way to eliminate all the fluctuations under
this scale. Therefore, they can be properly represented by the computer.*
But a new problem arises, since the averaging procedure has produced in the

3 Notice that this commutation property will not be any more true when employing
a variable mesh Az, which implies a variable width for the filter. Errors will thus
be introduced, superposing to other errors done in the LES modelling.

4 At this level, the filtered fields are still defined upon continuous space-time vari-
ables. It is only later that they will be discretized by proper numerical schemes.
Thus, new errors will be introduced at this level.
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equations of motion new terms. Indeed, let us write the subgrid-scale tensor
as
rfij = UjUj; — UsUj — (ﬁ,u; + a]u;) — u;ug (12.7)

The r.h.s. of Eq. (12.7) can be split in three terms: 4;u; — @,;4; is the Le-
onard term, —(u;u} + u;ui) is “cross term”, and —uju; the “Reynolds-stress
like term”, following the terminology given by Clark et al. [128]. The latter
reference is an attempt to evaluate these respective terms by a comparison
between a coarse mesh and a fine mesh calculation.

Here we prefer to model the subgrid scales as a whole. Leonard’s tensor
is an explicit term which can be computed in terms of the filtered field, but
the other terms are unknown. The equations of motion for the filtered field
have analogies with Reynolds equations for the mean flow in non-homogeneous

turbulence, but other terms than —u;u; arise in the LES, due to fact that the

operator “bar” is not idempotent, that is to say f # f. Another difference
between LES and Reynolds equations is that LES deal usually with rapidly-
fluctuating fields in space and time if Az is small enough, while the solutions
of Reynolds equations vary very smoothly with space, and generally not with
time. The reader will find in Lesieur et al. [431] (Chapter 1) a discussion on
unstationary RANS with respect to LES.

In the LES, we have to solve Navier—Stokes equations for the filtered field
(large scales) modified by supplementary subgrid-scale terms which we do not
know. Reviews of the LES methods may be found for instance in Rogallo and
Moin [612], Lesieur and Métais [426], and Lesieur et al. [431].

12.2.2 LES of a transported scalar

Let us now consider a scalar T' (called temperature) convected by the flow,
being the molecular diffusivity. It satisfies

oT 0 0 oT
ot + oz (Tu;) = oz {”6% } (12.8)
If the filter G A, is applied to this equation, one finds
oT 0 - 0 or -
ot + 6l‘j (TUJ) = axj {/iaxj +T7.Lj — TUj} . (129)

Here again, is posed the question of modelling the subgrid temperature fluxes.
The problem of the subgrid-scale modelling® is then to express the subgrid-
scale terms as functions of the large-scale field. This is in no way an academic

5 Also called parameterization of subgrid scales.
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problem: indeed, at least for three-dimensional developed turbulence, we ab-
solutely need in the equations some terms allowing the kinetic energy in the
large scales to be transferred towards the subgrid scales where it will eventu-
ally be dissipated by molecular viscosity. In the absence of any subgrid-scale
transfer, the energy of the large scales would tend to equipartition, from the
results of Chapter 10.

This kind of problem (subgrid-scale modelling) is sometimes referred to,
in mathematics, as a problem of homogenization, where the laws governing
a medium are known at a microscopic level, and one seeks evolution laws at
a macroscopic level. Here in turbulence, the “microscopic” level corresponds
to the individual fluid particle for which we were able to write Navier—Stokes
equations (see Chapter 2). The “macroscopic” level corresponds to the filtered
field (large scales, or supergrid scales). Let us mention that homogenization
methods applied to turbulence have been developed (see Begue et al. [54],
Dubrulle and Frisch [177,229], Laval and Dubrulle [390]). They give a more
rigorous basis to the concept of eddy viscosity and diffusivity when there exists
a separation of scales between the large and subgrid scales. But they are not,
up to now, exactly applicable to a turbulence having a continuous distribution
of energy from the large to the small scales.

12.2.3 LES and the predictability problem

Mathematically, the subgrid-scale modelling problem is not a well-posed prob-
lem, due to propagation to the large scales of the uncertainty contained ini-
tially in the subgrid-scales: we suppose that at the initial time ¢ of the large-
eddy simulation, the flow possesses fluctuations in the subgrid scales.® The
large-scale fields initializing this computation ignore totally these small-scale
fluctuations, and we are then in a situation of complete uncertainty at wave
numbers greater than ~ (Az)~!. Let us now consider two possible realizations
of the flow, identical in the large scales > Ax, and completely decorrelated
in the subgrid scales < Ax. If one accepts the results on the propagation of
unpredictability given in Chapter 11, the difference between the two fields
will contaminate the large scales by error backscatter, and the two flows will
in reality separate in these scales. Now let us assume that we have been able
to solve the subgrid-scale modelling problem, and dispose of “closed” large-
scale equations where everything is expressed in terms of these scales. Then
the LES performed on the two fields will be unable to propagate any kind of
difference between them. This implies that a turbulence LES, however good
the subgrid-scale modelling may be, will not describe exactly the large-scale

5 This is not the case if one considers initial energy spectra sharply peaked at a
given mode k; corresponding to the large scales.
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evolution from a deterministic viewpoint, at last for times greater than the
predictability time. This point was noted in particular by Herring [278].

Does that mean that LES are useless at large times? Certainly not: one
might interpret then the calculated flow as a different realization of the actual
flow, and hope that it could possess at least the same statistical properties (in
space or time), and may be the same spatially-organized structures, though at
a different location from the reality: this last point is of course very frustrating
in meteorology, as mentioned already in Chapter 11, since it is certainly of
some interest for the populations to know whether a cyclonic or anticyclonic
perturbation will come. It might not be too crucial in a lot of engineering
flows, as soon as the statistics resulting from the computed flow” are correct.
Remark however that certain industrial applications require to kow the po-
sition of vortices and the deterministic amplitude of the perturbations (for
thermal fatigue or corrosion of a material in contact with the flow in nuclear
engineering or hypersonic aerodynamics for instance).

From these remarks we could try to propose criteria of what one could call
a “good” LES of turbulence, according to the specifications we require:

e low-grade definition: the simulation must predict correctly the statist-
ical properties of turbulence (spectral distributions, turbulent exchange
coefficients, etc.)

e high-grade definition: moreover, the simulation must be able to predict
the shape and topology (but not the phase) of coherent vortices existing
in the flow at the scales of the simulation.®

There could have been a third definition proposed, namely the objective of
predicting exactly the actual flow (in the supergrid scales). This is certainly
not possible at large times, due to the inverse cascade of unpredictability
mentioned above. Another remark is that the notion of actual flow is highly
questionable for a turbulent flow in a laboratory or in a wide range of en-
gineering situations, where no repeatable (from a deterministic viewpoint)
realization can be obtained.

12.2.4 Eddy-viscosity assumption

In the rest of the chapter, we will prefer not to split the subgrid-scale tensor
T;; into parts, and rather model it as a whole.® Most operational (in terms of

" These statistics will generally be evaluated in the computation with the aid of a
spatial averaging.

8 In fact, it often occurs that LES can predict qualitatively the topology of the
vortices, but make substantial errors on the statistics.

9 This has the further advantage of accounting for non-regular grids, where we
recall that Egs. (12.6) and (12.9) are no more valid.
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practical applications) subgrid-scale models make an eddy-viscosity assump-
tion (Boussinesq’s hypothesis) in order to model the subgrid-scale tensor:

~ 1
T;; = 2Vt5¢j + 3Tll(5ij R (12.10)

- 1 /0u; Ou,
S. . = v J
iy (axj * em)
is the deformation tensor of the filtered field. The LES momentum equation
becomes

where

ou,; o0u; 1 9P 0 -
U, =— 2 Siit- 12.11
Bt +u]ail'j Lo 8:51» + ij {(V+Vt) J} ( )
Here, we have introduced a modified pressure!’ P = p — (1/3)pT}; which will
be determined with the help of the filtered continuity equation, by taking the
divergence of Eq. (12.11). This allows in particular to take into account in the
resulting Poisson equation for the pressure spatial variations of v;.

12.2.5 Eddy-diffusivity assumption

For the temperature (or another transported scalar), one introduces an eddy
diffusivity k¢ such that

Tiuj —Tuj = ky g;’; (12.12)
which yields ~ ~ ~
8;; +Ujg£ = aij {(f@'—!—f@'t)gz;}. (12.13)
The eddy diffusivity is related to the eddy viscosity by the relation
Po=",
Kt

where Pr(t)) is a turbulent Prandtl number which has to be specified (see
below).

12.2.6 LES of Boussinesq equations

Egs. (12.11) and (12.13) may be generalized to Navier-Stokes equations in a
rotating frame within the Boussinesq approximation for a density-stratified
fluid in the following way. One starts with Eq. (2.108), which is equivalent to
Eq. (12.4) plus Coriolis acceleration, with an added gravity term (p/pg)g on

10 Called macropressure in Lesieur et al. [431].
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its r.h.s., p being the static pressure, and p the total density. After applying
the filter G to this equations, and introducing an eddy viscosity, one obtains
the generalized LES Boussinesq equations, with a term (p/pg)g on the r.h.s.
of Eq. (12.11), as well as Coriolis acceleration relative to the filtered velocity.
For a liquid, p satisfies Eq. (12.8) where T' has been replaced by p. Ap-
plying the filter G to this equation, and using an eddy diffusivity, the filtered
total density p still satisfies Eq. (12.13). Remark that p has here nothing
to do with the basic density profile considered when establishing Boussinesq
approximation. The case of an ideal gaz is discussed in Lesieur et al. [431].

12.2.7 Compressible turbulence

For compressible turbulence (see applications in the next chapter), one will
assume that the subgrid-scales are not far from incompressibility. This point
has been discussed at length in Lesieur et al. [431]. Here, it is preferable to
work using Favre filters, which are weighted by density. In fact, Favre [198,199]
considers Favre averages, which are Reynolds averages weighted by density.
In compressible turbulence LES, Lesieur et al. [431] introduce a macro-
temperature related to the macropressure (see also Ducros et al. [178]). The
filtered fields obey compressible Navier—Stokes equations with variable dens-
ity, where the molecular viscosity p = pv is replaced by p+ pry (except in the
energy equation). The molecular conductivity pCpr = CpuP1 is replaced by

Cp(uPt + ﬁl/tPr(t))7 where P, is the molecular Prandtl number.

The question is now to determine the eddy viscosity v:(Z,t). It is well
known (see e.g. the discussion in Lesieur et al. [431]) that this eddy-viscosity
assumption, in the framework of which we are going to work here, is rather
questionable. One expects, however, that the information derived using this
concept may help to improve it. For instance this is the philosophy of the
dynamic model, discussed below.

12.2.8 Smagorinsky model

The most widely used eddy-viscosity model was proposed by Smagorinsky
[653]. The latter was simulating a two-layer quasi-geostrophic model, in order
to represent large (synoptic) scale atmospheric motions. He introduced an
eddy viscosity which was supposed to model three-dimensional turbulence that
follows approximately a three-dimensional Kolmogorov k~%/3 cascade in the
subgrid scales. In fact, Smagorinsky model turned out to be too dissipative for
quasi two-dimensional turbulence. On the other hand, it is still very popular
for engineering applications (with wall laws), starting with the pioneering
work of Deardorff [162] for the channel flow.
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In Smagorinsky model, a sort of mixing-length assumption is made, in
which the eddy viscosity is assumed to be proportional to the subgrid-scale
characteristic length scale Az, and to a characteristic turbulent velocity va, =
Az|S|. Here |S| = 1/25;S;; is a typical velocity gradient at Az, determined
with the aid of the filtered-field deformation tensor S;; defined in Eq. (12.10).
The model is

v = (CsAx)?|S]|. (12.14)

If one assumes that ko = 7/Az, the cutoff wavenumber in Fourier space, lies
within a k~%/3 Kolmogorov cascade, one can adjust the constant Cg so that
the ensemble averaged subgrid kinetic-energy dissipation is identical to e. It
is found (Lilly [446], see also Lesieur et al. [431]):

—3/4
Oy ! (3CK> . (12.15)
T 2

This yields Cs ~ 0.18 for a Kolmogorov constant Cx = 1.4. Most people
prefer C's = 0.1 (which represents a reduction by nearly a factor of 4 of the
eddy viscosity), a value for which Smagorinsky’s model behaves reasonably
well for isotropic turbulence, free-shear flows, and channel flow (Moin and
Kim [513]) with a damping function at the wall. In the latter case, it gives
qualitatively good results in terms of coherent hairpins and streaks at the wall.
But quantitative experimental agreement cannot be reached without DNS
such as those of Kim et al. [330]. More recently, Rodi et al. [610] recommend
Smagorinsky model with a wall law for LES of turbulence around obstacles.

In fact, it is well known that plain Smagorinsky model is too dissipative
close to a wall. This can be shown through expansions of the velocity com-
ponents in powers of the wall distance y (see for a review Lesieur et al. [431]).
So the model does not work for transition in a boundary layer on a flat plate,
starting with a laminar profile to which a small perturbation is added: the flow
remains laminar, due to an excessive eddy viscosity coming from the mean
shear.!!

More elaborate subgrid-scale models, adopting the second-order one-point
closure modelling point of view (with evolution equations for the subgrid-scale
stresses), have been developed by Deardorft [163] (see also Somméria [659],
Schumann [640], and Schmidt and Schumann [636]).

A nice alternative to Smagorinsky model is its dynamic version (see below).

' Tt works however for by-pass transition, with a high level of upstream perturbation
(Yang and Voke [731]).
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12.3 LES in spectral space

In this section, we present a point of view based on the concepts of spectral
eddy viscosity and spectral eddy diffusivity introduced in Chapter 7. Related
to the two definitions given in Section 12.2.3, we will try to propose a subgrid-
scale procedure for the kinetic energy and temperature fluctuations predicting
at least correct spectra and decay laws.

12.3.1 Sharp filter in Fourier space

We will work in Fourier space, introduce a cutoff'? wave number ko ~ Az~!
and define the filtered field in Fourier space as

0, otherwise.
and the same relation for the temperature 7. This is a sharp filter in Fourier
13
space.

12.3.2 Spectral eddy viscosity and diffusivity

Details on the following results can be found in Chollet and Lesieur [116,117],
Pouquet et al. [586], and Métais and Lesieur [493]. They use E.D.Q.N.M. as
a tool to model the subgrid-scale transfers.

Let us first look back at the kinetic-energy and temperature transfers given
by the E.D.Q.N.M. theory in Chapter 7.

Case k small in front of kc

One assumes first k¥ < k¢ (both modes being larger than ;). Then one can
write the spectral evolution equations for the supergrid scale spectra £ (k,t)
and Ep(k,t) as

<§t n 2yk2) E(k,t) = Tepe (k) + Tsy (k. t) (12.17)

B _
<8t + 2/€k‘2> Ep(k,t) =TZ, (k. t) + Tk (k,1), (12.18)

12 This wave number should not be confused with the conductive wave number k.
of the passive scalar problem.

3 The effects of such a filter on the definition of the eddy viscosity in physical space
have been studied by Leslie and Quarini [433].
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with
Tsg(k,t) = —20°k*E(k, t) (12.19)
L[~ 9E(p,1)
o _ E 12.2
Vi 15/kc Oopp {5 (p,t)+p op dp (12.20)
T (k,t) = —26°k*Ep (k. t) (12.21)
2 o0
K = 3/ 06pp B (p, t)dp. (12.22)
kc

The supergrid-scale transfers T« (k,t) and TZ, (k,t) correspond to triad
interactions whose wave numbers lie in the supergrid range, and hence do
not need any modelling, since they can be calculated exactly in the LES.
Here, non-local transfers from the supergrid to the subgrid scales have been
evaluated with the aid of Eqs. (7.76) (for the kinetic energy) and (7.143) (for
the temperature), with a small parameter a = k/kc. At this point, the O(k*)
backscatter term has been discarder. Indeed, its relative importance in terms
of transfers is, according to E.D.Q.N.M. theory, (k/kc)?[E(kc)/E(k)], which
is very small since E(kc) < E(k). This is true in particular if k¢ lies in the
Kolmogorov cascade. More details can be found in Lesieur et al. [431].

Notice that if ko is in the energy-containing range, the k* backscatter
plays an important role in the subgrid exchanges, and further investigations
are needed in this direction. The problem is that, in practice, these scales are
not isotropic nor even homogeneous. Leith [403] proposes that, in a mixing
layer, turbulence confined in small scales can, by backscatter, inject energy
into the larger scales, where it may grow via Kelvin-Helmholtz instability. This
could apply to other types of instabilities as well, such as Rayleigh-Taylor for
instance.

The asymptotic eddy viscosity Eq. (12.20) and eddy diffusivity Eq. (12.22)
may be calculated analytically if the kinetic-energy spectrum is given for k >
kc. Assuming for instance a k~%/3 inertial range at wave numbers greater
than k¢, we obtain:

E(k 1/2
Ve =0.441CK %2 { I(C C)} (12.23)
C
[e.e]
Ky = ;t(ty (12.24)

where the turbulent Prandtl number Pr(t) has been determined in Chapter 7. If
one assumes for instance a Kolmogorov constant of 1.4 in the energy cascade,
the constant in front of Eq. (12.23) will be 0.267. As already stressed, the
highest possible value of Pr(t) permitted by the E.D.Q.N.M. is 0.6.
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If one considers a kinetic-energy spectrum o< k=™ for k > k¢, the eddy
viscosity given by Eq. (12.20) is now

_ 1 5—m
o 15a1 m+1

o0

v (12.25)

iom [qu”{

ko

for m < 3. The constant 1/(15a;) in front of Eq. (12.25), coming from the
E.D.Q.N.M. (see Chapter 7), is equal to 0.31Cx %2, This expression was
shown by Métais and Lesieur [496]. It was used by Lamballais [366] for channel-
flow LES (see below). The associated eddy diffusivity is
1/2
oo — V3 —m {E(kc)} , (12.26)
3a3 m+1 ko

and the turbulent Prandtl number

P(t):5_ma/3
" 20 al'

Remembering that the constants a; and as are such that one recovers Pr(t) =
0.6 for m = 5/3, it is finally found

P = 0.18(5 — m). (12.27)

For m > 3, the eddy viscosity scales as [E(kc)/kc], and becomes negative for
m > 5. This might explain the results of Domaradzki et al. [170], who evaluate
this asymptotic eddy viscosity in a DNS,'* and find (small) negative values:

indeed, the kinetic energy spectrum in such a simulation is much steeper than
k=573,

Case k close k¢

When k is close to k¢, the above concept of spectral eddy coefficients can
be generalized for a k~%/3 inertial range at wave numbers greater than kc.
Following Kraichnan’s theory of eddy viscosity in spectral space [358], it is
possible, with the aid of the E.D.Q.N.M. approximation, to calculate the
subgrid-scale transfers, corresponding to triadic interactions where at least
one of the wave numbers p and ¢ is greater than kc. This allows us to define
two functions v¢(k|kc) and k¢ (k|kc), respectively the eddy viscosity in spec-
tral space (Kraichnan [358]) and the eddy diffusivity in spectral space (Chollet
and Lesieur [117]) given by

4 This is done by defining a fictitious cutoff k¢, and evaluating the transfers across
kc.



Turbulence in Fluids 431

Tsg(k,t) = —2v,(klkc)k*E(k,t) (12.28)
TE(k,t) = —2k(klkc)K*E(k, ). (12.29)
The functions v;(k|kc) and &y (k|kc) are such that
vi(klke) = K (k/ke)v® (12.30)
ke (klke) = C(k/ke) k32, (12.31)

where v{° and £§° are the asymptotic values Eq. (12.23) and Eq. (12.24). The
functions K (z) and C(x) (displayed in Lesieur et al. [431]) are approximately
constant and equal to 1, except in the vicinity of k/kc = 1 where they display
a strong overshoot (called the cusp-behaviour), due to the predominance of
semi-local transfers across kc. In fact, the function K (x) can be put under
the form

K(z) =1+v}2®, (12.32)

with 2n = 3.7 (Chollet [118]). Métais [499] has proposed to determine v by
considering the energy balance between explicit and subgrid-scale transfers.
This yields:

ko
/ 2w k2 E(k, t)dk = e,
0

which, in an infinite Kolmogorov inertial range, leads to
1 . 2
1

- . 12.
T G2 T 3% 0441 (12.33)

Developments of this type of model in physical space in terms of hypervis-
cosities have been proposed by Lesieur and Métais [426] (see also Lesieur et
al. [431]).

As for the turbulent Prandtl number v;(k|kc)/ki(k|kc), it depends upon
the choice of the two E.D.Q.N.M. scalar adjustable constants: in the a la
L.H.D.I.A. case, it remains approximately equal to 0.6, even in the vicinity
of kc; in the ¢ la D.I.A. case, it has a plateau value of 1/3, and a cusp close
to k¢ where it rises to 0.6. We mention finally that the use of subgrid-scale
transfers given by Eqgs. (12.28) and (12.29) allows one to solve numerically
E.D.Q.N.M. kinetic-energy and passive-scalar Egs. (7.22) and (7.128) at zero
molecular viscosity and conductivity in the self-similar decaying regime (for
k < k¢), as shown by Chollet and Lesieur [116,117].

12.3.3 LES of isotropic turbulence

Let us now come back to the evolution equations (in spectral space) of the
filtered field (for |k| < kc¢)
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(gt + Vk2> Qi(kyt) = tepe (K t) + tog (K, 1) (12.34)
O k) T t) = T, (F.t) + 1T (k. t) (12.35)
ot +K (A <kc( ) + sg\"v» .

with the usual distinction between the explicit supergrid transfers, still calcu-
lated by a truncation for k, p, ¢ < k¢ of the r.h.s. of Egs. (5.18) and (5.19), and
the unknown subgrid-scale transfers. We propose to model the latter with the
aid of i (klkc) and ki(klke) introduced in Egs. (12.30) and (12.31), namely

tog (K, t) = —vi(klke )k, (K, t) (12.36)
tT (k,t) = —re(klko) KT (K, ). (12.37)

The only justification of this subgrid-scale modelling is that, when one writes

the exact evolution equations for the spectra of @ and 71" as they arise from
Egs. (12.34) and (12.35), one obtains the E.D.Q.N.M. subgrid-scale transfers
calculated in Eqgs. (12.28) and (12.29). It is then natural, if we trust the
spectral predictions of the E.D.Q.N.M. theory, to use these eddy-viscosity
and eddy-diffusivity coefficients in spectral space for subgrid-scale modelling
purposes. The main criticisms which may be brought to this modelling concern
the fact that the same results, as far as the energetics are concerned, could be
obtained by multiplying the velocity in Fourier space by any complex number
of modulus 1. Indeed, the interactions with the subgrid scales may affect the
phase of the velocity vector ﬁ(lg, t). However, when k < k¢, and due to the
separation of space and time scales, it is difficult (in isotropic turbulence) to
believe that the subgrid scales will instantaneously affect the phase of the
velocity field at k: this would require a finite time, comparable to the time
taken by an error in the small scales to contaminate the large scales in the
predictability problem. On the contrary, the validity of this spectral eddy
viscosity is questionable if k lies in the vicinity of kc. But this is shared with
other theories such as the Renormalization Group (Yakhot and Orszag [728],
Mc Comb [476]) or homogenization (Bégue et al. [54], Frisch [229]) techniques.

As already stressed in Chapter 7, the R.N.G. analysis!® developed by Yak-
hot and Orszag [728] yields a kc-dependent eddy viscosity, also proportional
to [E(kc)/kc]Y/? as in Eq. (12.23), and without any cusp. As mentioned in
Chapter 7, the constant vy in front of [E(kc)/kc]'/? is equal to 0.388, and
the Kolmogorov constant found in the theory is 1.617.

Now, let us consider the E.D.Q.N.M. eddy viscosity with no cusp, and
adjust the constant v as proposed by Leslie and Quarini [433], by balancing
(in the inertial range) the subgrid-scale flux with the kinetic-energy flux e

15 There was an earlier attempt made by Rose [616] for the passive scalar problem.
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Figure 12.1. Decaying kinetic-energy (a) and temperature spectra (b) in a LES of
three-dimensional isotropic turbulence using a spectral eddy viscosity and diffusivity.
The resolution is 32% in a spectral code (from Chollet and Lesieur [117] courtesy “La
Météorologie”).

in the energy spectrum evolution equation, as was done in order to obtain
Eq. (12.33). This yields

2 s [BE(ke)]M?
ut(kc):?)c,j”[ ](CCC)} , (12.38)

where C is the Kolmogorov constant. A Kolmogorov constant of 1.4 leads
to vy = 0.402.

The results of the E.D.Q.N.M. spectral plateau-peak eddy viscosity ap-
plied to three-dimensional isotropic turbulence LES are satisfactory when it
is implemented on a spectral code directly in Fourier space and at a low
resolution: Figure 12.1, taken from Chollet and Lesieur [117], shows the evol-
ution of the kinetic-energy and temperature spectra in a 323 modes spectral
calculation, starting from initial conditions corresponding to sharply peaked
spectra. Kolmogorov and Corrsin-Oboukhov k~%/3 cascades establish in times
comparable with the critical times estimated in Chapter 7. Then the spectra
decay self-similarly, with k£—5/3 slopes extending up to kc. Notice that during
the early stage of the calculation, the ~ [E(k¢)/kc]'/? expression of the eddy
coeflicients automatically sets their value to zero as long as the ultraviolet cas-
cade has not reached k¢ and that E(k¢) is negligible. This is an advantage
compared to other eddy-viscosity methods which dissipate the energy more
uniformly, since it permits a simulation of the inviscid stage preceding the es-
tablishment of the Kolmogorov energy cascade. The same calculations allow
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Figure 12.2. Three-dimensional isotropic decaying turbulence, resolution 1283;
spectral eddy viscosity and diffusivity, calculated from the LES of Métais and
Lesieur [496].

one to compute the kinetic-energy and temperature-variance decay, extrapol-
ating the total energy and temperature from the supergrid scales values by
assuming that infinite &5/ spectra extend beyond k¢. This yields

1 ko _ 3
2<172>= E(k,t)dk + ko E(ke, t)
0

and the same expression for the temperature. It is found that both kinetic en-
ergy and temperature variance decay as ¢t ~!2, according to the Saffman law'6
derived in Chapter 7 This might be due to the coarse resolution of the large-
eddy simulation in the low wave numbers, which could yield equipartition of
energy in these modes, and hence a k2 infrared spectrum.

However, we have already mentioned in Chapter 6 results concerning the
same E.D.Q.N.M. subgrid-scale modelling,!” but with a higher resolution
(1283, see Lesieur and Rogallo [421], and Lesieur et al. [422]. In these cal-
culations, the kinetic-energy spectrum at the cutoff is closer to k=2 than to

16 The result is the same for the “supergrid” kinetic energy and temperature vari-
ance, corresponding only to modes < kc¢.
17 That is, a plateau at 0.267 followed by a cusp.
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Figure 12.3. Kinetic energy and temperature spectra corresponding to the calcu-
lation of Figure 12.2.

k=5/3. We will present below a local generalization of this spectral eddy vis-
cosity to physical space (structure-function model), which gives better results
for isotropic turbulence. But beforehand we will look at some anomalous as-
pects of the spectral eddy diffusivity, related to the large-scale intermittent
character of the passive temperature already mentioned in Chapters 6 and 7.

12.3.4 The anomalous spectral eddy diffusivity

Figure 6.12b (from Lesieur and Rogallo [421]) is the passive-scalar LES coun-
terpart of Figure 6.12a, at a turbulent Prandtl number of 0.6. It shows an
anomalous large-scale passive scalar range close to k!, which might be due
to the direct shearing of the temperature fluctuations by the large-scale velo-
city gradients (see Chapter 6). In these simulations, the spectral eddy viscosity
and diffusivity may be evaluated in the following manner: one defines a ficti-
tious cutoff wave number k¢, (for instance ki, = k¢ /2). The transfers between
k < k¢ and the range [k(,, kc] are evaluated directly in the simulation, while
the transfers between k and the range [kc,+o0] are calculated analytically
using the E.D.Q.N.M. approximation. This is in fact the philosophy followed
by the dynamic model in physical space (see below).

Figure 12.2, taken from Métais and Lesieur [496], shows the spectral eddy
viscosity and diffusivity normalized by [E(k(;)/k]'/?, in a 1283 spectral LES
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Figure 12.4. Three-dimensional isotropic decaying turbulence, resolution 128%; kin-
etic energy and scalar spectra, calculated from the DNS of Métais and Lesieur [496].

of decaying isotropic turbulence.'® The eddy viscosity displays a plateau at
a value which, once corrected in order to take into account the transfers
across kc (see Métais and Lesieur [496]) is very close to the 0.267 theor-
etical E.D.Q.N.M. value. The cusp is somewhat eroded, due to the proximity
of k; with respect to kc. Notice that this result is at variance with the so-
called multiscale formulation of Hughes et al. [304], where a zero-plateau eddy
viscosity is assumed.

The eddy diffusivity, on the contrary, has no plateau and decreases log-
arithmically with k. The same behaviour had been found in the calculations
of Lesieur and Rogallo [421]. Figure 12.3 shows the kinetic energy and scalar
spectra corresponding to Figure 12.2. Figure 12.4 shows a DNS done by Métais
and Lesieur [496] in the same conditions: the k=1 scalar spectral range is still
visible, since the shearing due to the large-scale velocity gradients may still
act. Figure 12.5 shows the spectral eddy viscosity and diffusivity correspond-
ing to Figure 12.4: the plateau of the eddy viscosity is now zero (and even
slightly negative as in Domaradzki et al. [170], but the eddy diffusivity is
non-zero with the same logarithmic behaviour.

18 ko =60, ki = 20, ki = 30, same parameters as for Figure 6.12. Only the explicit
transfers are shown here. The molecular viscosity and conductivity are set equal
to zero.
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Figure 12.5. Same calculation as Figure 12.4; spectral eddy viscosity and diffusivity.

More recent LES of isotropic turbulence with animations of various fields
can be found in Lesieur et al. [431].

12.3.5 Alternative approaches

Let us stress first that this eddy-viscosity subgrid-scale model is com-
pletely compatible with the energy-conservation constraints arising in the
E.D.Q.N.M. equations, since it represents the whole transfers across k¢c. These
transfers reduce finally to an energy flux from the large eddies to the subgrid
scales, which is quite expected in three-dimensional isotropic turbulence, and,
as already stressed, necessary to simulate the dissipation of the energy by
molecular viscosity in the dissipative scales.

Most of the above subgrid-scale modelling methods (with or without a
“cusp”) assume that an inertial range at modes greater than k¢ exists. How-
ever, this imposes a quite high ko, and therefore costly calculations. When
ke lies in the energy containing eddies range, the method is certainly no more
valid. Other more sophisticated methods, still based on an E.D.Q.N.M. cal-
culation of the transfers, have been developed (see Aupoix and Cousteix [22]
and Chollet [119]): it is a coupled method which solves simultaneously Navier—
Stokes equations in the large scales, and the E.D.Q.N.M. evolution equation
for E(k,t). This enables to recalculate at each step a spectral eddy viscosity
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based on the actual flow spectrum, instead of assuming a fictitious Kolmogorov
spectrum. The method is nevertheless quite heavy to implement, and it is
perhaps not a safe horse to bet on, since it assumes also isotropy in the large
scales.

An alternative formalism to derive a subgrid-scale modelling in spectral
space exists, utilizing the stochastic Langevin model point of view (see e.g.
Herring and Kraichnan [273]). This has been done by Bertoglio [59] who re-
trieves the same results as Chollet [119] in the isotropic case, and shows in the
case of a homogeneous turbulence submitted to a constant shear (and thus
anisotropic) the appearance of a new class of interactions sending back energy
from the subgrid to the supergrid scales.'® This could then render the use of
the isotropic spectral eddy viscosity questionable in non-isotropic situations.
Further comparisons between both methods have to be made in order to reach
a decision. Let us mention finally the work of Yoshizawa [734], based on D.I.A.
approximation, which allows also an extension of the isotropic eddy viscosity
to anisotropic situations.

These LES’s allow predictability studies in the isotropic case, in the fol-
lowing manner: Chollet [119] and Chollet and Métais [120] have considered
LES of two flows 17 and s, differing either by the resolution of the calculation
(163 and 322) or by a perturbation involving modes close to k¢c. Bertoglio [59]
was able, with the Langevin model method, to let the error come from the
subgrid scales to the large scales. Both studies show an inverse cascade of er-
ror qualitatively analogue to the closure predictions of Chapter 11, with a k%
infrared (kK — 0) error spectrum. This result is very encouraging, displaying
both the performances of LES and the validity of closures.

12.3.6 Spectral LES for inhomogeneous flows

The spectral eddy viscosity may be used also for inhomogeneous turbulence
when pseudo-spectral methods can be employed. This was the case for the
temporal mixing layers shown on Plates 9 and 10 and Figure 3.11 (see also
Silvestrini [652]), with the classical plateau-cusp eddy viscosity given by
Eq. (12.28). It confirms that such LES can handle the stretching of longit-
udinal hairpins between the big vortices. Even for the channel flow, Lambal-
lais [367] could develop a spectral dynamic model: the code, already mentioned
in Chapters 3 and 4, uses pseudo-spectral methods in the horizontal directions
(streamwise and spanwise), and compact schemes (Padé approximants) of
sixth order in the vertical direction. The eddy viscosity was calculated in each
plane parallel to the walls, with the aid of Eq. (12.25), multipled by the non-
dimensional plateau-cusp eddy viscosity K (z) of the isotropic Kolmogorov

!9 This might be a manifestation in Fourier space of the streak growth seen in
Chapter 4.
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Figure 12.6. Turbulent channel flow, comparaison of Lamballais’ spectral-dynamic
LES (straight lines, h* = 389) with the DNS of Antonia et al. (symbols, h* = 395);
(a) mean velocity, (b) r.m.s. velocity components, (c) r.m.s. vorticity components
(courtesy E. Lamballais).

case (see Eq. (12.30)). This allows to take into account spectra decreasing
faster than Kolmogorov, which is always the case close to the wall. At low
Reynolds numbers (subcritical with respect to the linear-stability analysis),
the results agree very well with experiments and DNS, both from a statist-
ical and topological point of view (see Lesieur et al. [431]). Concerning the
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Figure 12.7. Same LES as in Figure 12.6; isosurface of the vorticity modulus; the
flow goes from left to right (courtesy E. Lamballais).

supercritical case, Figure 12.6 (a and b) shows a comparison of the LES (at
h* = 389) with a DNS (h™ = 395) published in Antonia et al. [11]. The
agreement is very good, and the LES allows to reduce the computational
cost by a factor of the order of 100. Figure 12.6¢ displays the r.m.s. vorticity
components in Lamballais’ LES, with the usual behaviour already discussed
above in this monograph. Remark also that LES at these Reynolds numbers
display much more vortical activity in the small scales than the simulations at
lower Reynolds, as Figure 12.7 shows. The small-scale activity thus predicted
is susceptible of enhancing mixing or chemical reactions in LES of turbulent
transport or combustion for instance.

More informations on this spectral-dynamic model may be found in Lesieur
et al. [431].

12.4 New physical-space models

12.4.1 Structure-function model

This model is due to Métais and Lesieur [496]. In most practical situations,
the geometry of the computational domain is too complex to permit the use
of pseudo-spectral or spectral methods. One is obliged to work in physical
space.

Let us consider how the spectral eddy viscosity (without cusp) can be em-
ployed in physical space. The inconvenient of an eddy viscosity of the type
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(12.38) is that it is uniform in space when used in physical space. Obviously,
the eddy viscosity should take into account the intermittency and inhomogen-
eity of turbulence: there is no need for any subgrid-scale modelling in regions
of space where the flow is calm or transitional. On the other hand, it is es-
sential to dissipate in the subgrid scales local bursts of turbulence if they
become too intense. Considering also that turbulence in small scales may not
be too far from isotropy, we propose to come back to the classical formulation
(12.10) in physical space, the eddy viscosity being determined with the aid
of Eq. (12.38), where E(k¢c,Z) is now a local kinetic energy spectrum: this
spectrum corresponds to a fictitious homogeneous turbulence which would be
obtained by filling the whole space periodically with small boxes containing
the flow in the neighbourhood of Z. The local spectrum at k¢ is calculated in
terms of the local second-order velocity structure function of the filtered field

Fy(Z, Az) = (||a(z,t) — a(Z + 7, t)]|*) (12.39)

7l=Az
as if turbulence is three-dimensionally isotropic, with Batchelor’s formula [47]

ke ;
sin(kAz)
(2, Ax) =4 Ek)(1- dk. 12.40
w(aan =1 [ p (1- ) (1240
In the original Batchelor relation (6.49), the k integral was carried out from 0
to 0o, but, here, one works with a filtered field @ whose spectrum is zero above

kc. This yields, for a Kolmogorov spectrum (see Mtais and Lesieur [496], and
Ducros [178])

vEF(Z, Ax) = 0.105C 2 Az Fy(Z, Ax))'/>. (12.41)

I35 is calculated with a local statistical average of square velocity differences
between & and the six closest points surrounding & on the computational
grid. In some cases, the average may be taken over four points parallel to a
given plane; in a channel, for instance, the plane is parallel to the boundaries.
When a scalar transported by turbulence is considered, an eddy diffusivity
corresponding to a Prandtl number of 0.6 is chosen.

The structure-function model (SF) works well for isotropic turbulence,
where it yields a fairly good Kolmogorov spectrum, as attested by Fig-
ure 12.8 (Métais and Lesieur [496]). It shows the compensated spectrum
e 2353 E(k,t) in the decaying case (resolution 96%). It is approximately con-
stant between k = 10 and k = 40, with Cx = 1.4. However the spectrum rises
too much at k. This is certainly due to the absence of a cusp in the eddy
viscosity. The kinetic-energy spectrum obtained with Smagorinsky’s model
(Cs = 0.2) is steeper than the SF spectrum and close to a k2 slope. The SF
pressure spectrum F,, is also reported in Figure 12.8. It is compensated ac-
cording to Batchelor’s k~7/3 law equation (6.91). The constant Cp is given by
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Wavenumber k

Figure 12.8. Structure-function model based LES of decaying isotropic turbulence;
compensated spectra of velocity (straight line) and pressure (dashed line); Smagor-
insky’s (C's = 0.2) velocity spectrum is also reported (courtesy O. Métais).

Eq. (6.95). In the figure, there is a tiny plateau of the compensated pressure
spectrum at the right value C'p corresponding to Cx = 1.4. LES (or DNS) at
higher resolution should be performed to elucidate the nature of the pressure
spectrum in the inertial range.

The SF model gives also good qualitative results for free-shear flows: in
the incompressible spatially-growing wake calculations of Gonze [261], a Kar-
man street stretching intense longitudinal vortices was formed (see Figure 4.3
in Chapter 4). We will show in the next chapter other applications of the
SF model to separated or rotating flows, and supersonic temporal boundary
layers.

As with Smagorinsky’s model, however, the SF model is too dissipative for
transition in a boundary layer at low Mach number. This is still true within
the four-point formulation in planes parallel to the wall, which eliminates
the effect of the mean shear at the wall on the eddy viscosity. In fact, the
spectrum Ez(kc) determined by the isotropic formula (12.40) is too sensitive
to the inhomogeneous low-frequency oscillations caused by the TS waves.

To overcome the difficulty with transition, two improved versions of the
SF model have been developed: the selective structure-function model (SSF),
and the filtered structure-function model (FSF). The dynamic procedure is
another way of adapting the eddy viscosity to the local conditions of the flow.
We will review the three types of models in the following subsections.
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We show first how the SF model may account for the effect of non-uniform
(but orthogonal) grids: let Ac = (Azx;AzyAx3)'/3 be a (geometric) mean
mesh in the three spatial directions. Remembering Kolmogorov’s 1941 law in
physical space, which states that the second-order velocity structure-function
scales like (er)?/3, one can in Eq. (12.41) replace Az by Ac, with (in the
six-point formulation)

B 1 3 ” Ac 2/3
Fy(#, Ac) = > R, M , (12.42)
i=1 v

with
FyY = [|Ji(@) — (@ + Awi)||? + || i(@) — (7 — Azié)|],

where €; is the unit vector in direction z;.

One can also look at the relation of Smagorinsky’s and the structure-
function models when the differences in the structure-function are replaced
(within a first-order approximation!) by spatial derivatives. It is found for the
six-point formulation (see Comte [139]), in the limit of Az — 0:

VST & 0.777(Cs Aw)* 253,54 + i, (12.43)

where & is the vorticity of the filtered field, whereas Cg is Smagorinsky’s
constant defined by Eqgs. (12.14) and (12.15). As stressed in Lesieur et al. [431],
it shows that within stagnation regions between vortices, the SF model is
about 20% less dissipative that Smagorinsky, which may favour the stretching
of hairpin vortices.

12.4.2 Selective structure-function model

The selective structure-function model (SSF) was developed by David [157].
The idea is to switch off the eddy viscosity when the flow is not three-
dimensional enough. The three-dimensionalization criterion is the following:
one measures the angle between the vorticity at a given grid point and the
average vorticity at the six closest neighbouring points (or the four closest
points in the four-point formulation). If this angle exceeds 20°, the most prob-
able value according to simulations of isotropic turbulence at a resolution of
323 ~ 643, the eddy viscosity is turned on. Otherwise, only the molecular dis-
sipation is active. The constant arising in Eq. (12.41) is changed, and determ-
ined with the aid of LES of freely-decaying isotropic turbulence: one requires
that the eddy viscosity averaged over the computational domain should be
the same in a selective structure-function model and a SF model simulation.
It is found that the constant in Eq. (12.41) has to be multiplied by 1.56. A
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discussion on this choice can be found in Ackerman and Métais [1] and Lesieur
et al. [431]. However, it seems in practice that the original version should be
preferred, as stressed by Miinch et al. [527] in LES of heated channels.

The SSF model works very well for isotropic turbulence, free-shear flows,
and wall flows (without or with thermal transfers). The reader is referred to
Lesieur et al. [431] for more details. Examples of application to a backward-
facing step and a compression ramp at Mach 2.5 will be given in Chapter 13.

The SSF model depends however upon the most probable angle of the next
neighbours average vorticity, chosen above equal to 20°. In fact, this angle is
a function of the resolution of the simulation, since it should go to zero with
Ax, and may be with the type of flow considered. Progresses in this model
should be made by adjustment of this angle to the local grid.

12.4.3 Filtered structure-function model

This FSF model was developed by Ducros [178] and applied to transition in
a spatially-developing boundary layer on an adiabatic flat plate at Mach 0.5.
Here, the filtered field u; is submitted to a high-pass filter in order to get
rid of low-frequency oscillations which affect Ez(k¢) in Eq. (12.41). The high-
pass filter is a Laplacian discretized by second-order centered finite differences
and iterated three times. It was shown by Ducros [178] that, for some three-
dimensional random or turbulent isotropic test fields, the spectrum of the
high-pass filtered field is

Ek) 5 k\°
E(k)~403(kc> . (12.44)

This is different from the (k*)3 law one should expect from an iterated Lapla-
cian, the loss being due to the finite-difference scheme.?? On the other hand,
the second-order velocity structure function of the filtered field satisfies an
equation analogous to Eq. (12.40):

o B ko sin(kAx)
Fy (%, Az) = 4 ; E(k) <1 = Az )dk. (12.45)

Substituting Eq. (12.44) into Eq. (12.45), and replacing E(k) by a Kolmogorov
spectrum, one can determine Fy(Z, Ax) in terms of a spectrum E(k¢c) which
is no more sensitive to the low wavenumber fluctuations, which yields

vESE (&, Az) = 0.0014C> 2 Az Fy (%, Ax)] /2. (12.46)

20 This shows that finite-difference methods up to the fourth order (the latter being
used by Ducros [178]) cannot deal with high-order Laplacian operators.
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Figure 12.9. FSF structure-function based LES of a weakly-compressible spatially-
developing boundary layer; isosurfaces of pressure (p = 0.999po, grey) and longit-
udinal vorticity (w1 = £0.1Ux0;, dark) are shown (courtesy F. Ducros).

This works well for both isotropic turbulence and transition in a spatially-
developing boundary layer. This simulation (see Ducros et al. [180]) was done
in a weakly-compressible case at M., = 0.5, for an adiabatic plate. The up-
stream boundary conditions consist in the superposition of a Blasius velocity
profile and T'S waves plus a three-dimensional white noise of same amplitude
as the waves. The Reynolds number based upon the upstream displacement
thickness Reynolds is 1000. The numerical methods are the fourth-order Mac
Cormack scheme (see Normand and Lesieur [538] for details). The resolution
is 650 x 32 x 20 in the streamwise, transverse and spanwise directions. A top
view of the low pressure and longitudinal vorticity in the transitional region is
shown in Figure 12.9: just before the transition, T'S waves give rise to straight
lower pressure quasi two-dimensional rolls. During the transition, these rolls
evolve into a staggered pattern which breaks down into turbulence. Mean-
while the longitudinal velocity organizes into the low- and high-speed streaks
already discussed in Chapter 4 (see Figure 12.10).

We have seen in Chapter 4 (Plate 18) examples of hairpin vortices ejected
away from the wall in this simulation. Plate 20 presents an enlarged view of
the turbulence structure just after transition, with (weak) longitudinal hai-
pins above the wall. A longitudinal vertical cross section shows the spanwise
vorticity distribution. An animations in Lesieur et al. [431] proves that these
vortices travel downstream with the flow.

We recall that Kleiser and Zang [336] have been able to carry out a DNS
in order to simulate the early stages of transition above a flat plate, but af-
terwards the simulation blows up due to insufficient resolution. As already
stated, the flow remains laminar with the classical Smagorinsky or SF mod-
els. The FSF model is however not “perfect” for the prediction of average
quantities. In Ducros et al. [180], the calculation overestimates of about 15%
the mean velocity in the logarithmic profile.?! The same happens when it is

21 An analogous calculation at Mach 0.3 with a finer resolution at the wall was done
by Briand [82]. Details are given in Lesieur et al. [431].
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Figure 12.10. Same calculation as Figure 12.9; isosurfaces of longitudinal velocity
fluctuations (uj = 0.024U, grey).

applied to the incompressible channel (see Lesieur et al. [431]). In the latter
case, the spectral dynamic model presented above works better.

We have shown in Plate 17 and Figure 4.2 examples of applications of the
FSF model to a spatially-developing incompressible mixing layer, with at the
inflow a hyperbolic-tangent velocity profile plus a weak quasi two-dimensional
(Plate 17) or three-dimensional (Figure 4.2) random perturbation. Here the
molecular Reynolds number is infinite. We come back now to the simulation of
Plate 17, and compare it to a SF simulation done in the same conditions. The
comparison is shown in Figure 12.11, presenting isosurfaces of the vorticity
modulus (threshold: two-thirds of the maximum initial spanwise vorticity).
Kelvin-Helmholtz vortices are produced, and stretch intense longitudinal hair-
pins. However, in the FSF case, the upstream vortex sheet is about half as
long as for the SF, pairing occurs much faster, and there are more longitud-
inal vortices in the spanwise direction. Other comparisons of this type can be
found in Lesieur et al. [431].

12.4.4 Scale-similarity and mixed models

The eddy-viscosity closures assume a one to one correlation between the
subgrid-scale stress and the large-scale deformation tensors. The analysis
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Figure 12.11. (a) SF simulation vs (b) FSF simulation of a spatially-developing
mixing layer (courtesy J. Silvestrini).

of fields obtained from DNS has, however, displayed very little correlation
between the two tensors (see e.g. Clark et al. [128], McMillan and Ferzi-
ger [477]). This has led Bardina et al. [32] to propose an alternative subgrid-
scale model called the scale-similarity model. This is based upon a double
filtering approach and on the idea that the important interactions between
the resolved and unresolved scales involve the smallest eddies of the former
and the largest eddies of the latter. They suggest to evaluate the subgrid
tensor as:

Ti; = ai’ljj — Uy (1247)

DNS and experiments (Bardina et al. [32], Liu et al. [452]) show that the
modelled subgrid-scale stress deduced from Eq. (12.47) is well correlated with
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the real stress. However, it is only weakly dissipative as far as the kinetic
energy is concerned. It was thus combined with an eddy-viscosity type model
such as Smagorinsky’s model to produce the mixed model. In the line of
Bardina’s model, new formulations have been proposed to correct this lack
of dissipation. Goutorbe et al. [263] and Liu et al. [452] have proposed the
following models:

Ty; = Cp (Wit — i) (12.48)

where C, is a dimensionless coefficient. The models differ through the operator
~which consists either in a space average (Goutorbe et al. [263]) or in a second
filter of different width (Liu et al. [452]). This concept of double filtering is
not far from the dynamic models presented below.

12.4.5 Dynamic model

We have already noted for Kraichnan’s spectral eddy viscosity that the para-
meters defining it could be computed from a LES with a cutoff k¢, by defining
a fictitious cutoff ki, = k¢ /2, and explicitly calculating the transfers across
k¢ (Lesieur and Rogallo [421]). This is the underlying philosophy of the dy-
namic model (Germano et al. [247], see also Germano [248]), when transposed
in physical space. The method relies on a LES using a “base” subgrid-scale
model such as Smagorinsky’s model,?? with a grid mesh Az. The computed
fields f are filtered by a “test filter” ~ of larger width aAz (for instance a = 2),
to yield the field f. If one applies the double filter to Navier-Stokes equations
(with constant density), the subgrid-scale tensor of the field w is readily ob-
tained from Eq. (12.6) with the replacement of the filter “bar” by the double
filter “bar-tilde”, that is:

%j = UjUj — U;Uj - (12.49)

We consider now the following resolved turbulent stress corresponding to the
test-filter applied to the field u:

,Cij = ﬁvﬂfj — Uiy (1250)

Finally we apply the filter “tilde” to Eq. (12.6), to yield

T;j = iy — uiu;. (12.51)
Adding Eqgs. (12.50) and (12.51) gives, using Eq. (12.49)
Lij =Ty — Ty, (12.52)

22 However it may be used with other subgrid models such as the SF model (see
Lesieur et al. [431] for details).
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called Germano’s identity. In this expression, 7;; and f}vj have to be mod-
elled, while £;; can be explicitly calculated by applying the test filter to the
base LES results. Using Smagorinsky’s model, we have from Eqgs. (12.10) and
(12.14)

1~ o
Tij — 5 Tudiy = 2A;C, (12.53)
whith C = C% and o
Aij = (Az)*|5|Sy;. (12.54)
Still using Smagorinsky, we have
1
Tij — 377l5ij = 2B;;C, (12.55)
whith _
Bij = o*(Ax)*|5|Sy;. (12.56)

|§ | and S ;; are the quantities analogous to |S| and S;; built with the doubly-
filtered field . Substracting Eq. (12.53) from Eq. (12.55) yields with the aid
of Eq. (12.52)

1 _—
Li; — 3£”(51j =2B;;C — QA,']'C. (12.57)

In order to obtain C, many people remove it from the filtering as if it were
constant, leading to

1
Lij = gLudiy = 20My, (12.58)

with .
M;; = Bij — Aij. (12.59)

Now, all the terms of Eq. (12.58) can be determined with the aid of @. There
are however five independent equations for only one variable C', and the prob-
lem is overdetermined.

Two alternatives have been proposed to deal with this undeterminacy. A
first solution (Germano [247]) is to contract Eq. (12.58) by S;; to obtain

_1Li;Si

c=, T

(12.60)

since, due to incompressibility, S;; is traceless. This permits in principle to
“dynamically” determine the “constant” C as a function of space and time,
to be used in the LES of the base field 4. In tests using channel flow data ob-
tained from direct numerical simulations, it was however shown by Germano
et al. (1991) that the denominator in Eq. (12.60) could locally vanish or be-
come sufficiently small to yield computational instabilities. To get rid of this
problem, Lilly [447] chose to determine the value of C' which “best satisfies”
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the system (12.58) by minimizing the error using a least squares approach. It
yields
_ 1 LM

C_Q M3

(12.61)

This removes the undeterminacy of Eq. (12.58). Under this form, the dynamic
model has been used by Piomelli [574] and Sreedhar and Ragab [664].

The analysis of DNS (Lund et al. [457]) and experimental (Liu et al. [452])
data revealed, however, that the C field predicted by the models (12.60) and
(12.61) varies strongly in space and contains a significant fraction of negative
values, with a variance which may be ten times higher than the square mean.
So, the removal of C' from the filtering operation is not really justified and the
model exhibits some mathematical inconsistencies (see Ghosal et al. [254]).
The possibility of negative C' is an advantage of the model since it allows a
sort of backscatter in physical space, but very large negative values of the
eddy viscosity is a destabilizing process in a numerical simulation, and a non-
physical growth of the resolved scale energy has been often observed (Lund
et al. [457]). The cure which is often adopted to avoid excessively large values
of C counsists in averaging the numerators and denominators of Egs. (12.60)
and (12.61) over space and/or time, thereby losing some of the conceptual
advantages of the “dynamic” local formulation. Averaging over direction of
flow homogeneity has been a popular choice, and good results have been ob-
tained by Germano et al. [247] and Piomelli [574], who took averages in planes
parallel to the walls in their channel flow simulation.??> They showed that the
dynamic model gives a zero subgrid-scale stress at the wall, where L;; van-
ishes, which is a great advantage with respect to the original Smagorinsky
model; it gives also the proper asymptotic behavior near the wall. Comparis-
ons with DNS at Reynolds number 3300 (based upon the centerline velocity
and the channel half-width) and with experiments at high Reynolds number
are very good. Notice again that the use of Smagorinsky’s model as a base for
the dynamic procedure is not compulsory, and any of the models described
in the present paper can be a candidate. As examples, Zang et al. [737] have
applied the dynamic procedure to the “mixed” model (see above). El-Hady
and Zang [185] have done it for the structure-function model applied to a
compressible boundary layer above a long cylinder.

As stressed in Lesieur et al. [431],

Meneveau et al. [485,486] adopted a Lagrangian viewpoint, and ob-
tained good results in a dynamic Smagorinsky approach where the
constants C' was averaged following the flow motion (see also Piomelli

23 Remark that the same thing has been done, with success, when averaging the
spectral eddy viscosity (see the above-mentioned work of Lamballais [366]).
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et al. [576,577]). This is in fact more physical as far as coherent vor-
tices are concerned.

12.4.6 Other approaches

Some details on hyperviscosities (plain and generalized) may be found in
Lesieur et al. [431]. For other developments using in particular de-filtering
approaches, the reader is referred to Geurts [251,252].

A very important application of numerical simulations concerns combus-
tion. For the non-premixed case, interesting reviews can be found in Vervisch
and Poinsot (DNS) [700] and Riley (LES) [604]. Veynante and Vervisch [701]
have also carried out a complete review of turbulent combustion modeling,
including RANS and LES approaches.

The three-dimensional numerical simulations modelling the interaction of
vortex filaments via Biot and Savart laws and already mentioned in Chapter 2
(Leonard [407], Chorin [123], Meiburg [483]) need also some sort of subgrid-
scale modelling, necessary when a vortex tube is too much distorted and
develops oscillations of length scale smaller than the spatial resolution of the
calculation: these small scales are removed by a smoothing, whose dynamical
significance in terms of subgrid-scale parameterization is not completely clear.
Developments in this direction have been done by Cottet and Koumoutsakos
[148], with applications to wake control.

We mention also the cellular automata methods, which are based on the
statistical mechanics of a lattice gas (see e.g. Frisch et al. [227,229], ’Humiéres
et al. [167]): instead of discretizing the real continuous flow equations on a
grid, as was done in the classical techniques of direct or large-eddy simu-
lations, the method calculates explicitly the motions of the particles of a
fictitious gas, these particles being allowed to travel on a regular grid from
one point to one of its neighbours with the same velocity modulus V. Some-
times they may also remain stationary on the same site. The above quoted
two-dimensional calculations are made with a triangular array of points. The
collision laws between the particles are chosen in such a way that a “mac-
roscopic velocity” u, calculated as an average on all the particles lying at a
given time inside a “ macroscopic site” including a given number of individual
grid points, should follow Navier—Stokes equations.?* When programmed on
classical vectorial computers, these methods allow one to reproduce Karman
vortex streets in times of the order (larger, however) of the finite-differences

24 This result supposes however certain validity conditions, as the assumption of a
“Mach number” of the theory @/V small compared with one, which are not ful-
filled in the numerical applications. Then, and since the “macroscopic velocities”
do not in practice follow exactly Navier—Stokes equations, the philosophy of the
lattice-gas method could be closer to the LES one than to the DNS.
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or spectral-methods computational times. Three-dimensional calculations of
this type are now at hand, and are used in car industry.

12.5 LES of two-dimensional turbulence

Since meteorologists played a great role in the development of computational
fluid dynamics in quasi two-dimensional situations, it is in this context that
the subgrid-scale modelling problem was posed, by Smagorinsky [653] for in-
stance. The problem is far from being solved, but empirical recipes have been
developed, which seem to work quite well (if the cutoff is in the enstrophy
cascade) in comparison with the other physical processes to be parameterized
in the global atmospheric prediction models.

Let us consider a flow which, for some reason, is quasi two-dimensional in
the large scales and three-dimensional in the small scales, and assume that
the cutoff wave number k¢ in the LES corresponds to quasi two-dimensional
scales. Then the subgrid-scale modelling to be developed has to take into ac-
count the two-dimensional dynamics of the large scales (conservation of kinetic
energy and enstrophy) on the one hand, and also possible interactions with
small-scale three-dimensional turbulence on the other hand. It is then difficult
at this level to know whether the subgrid-scale modelling to use has to con-
sider the small-scale three-dimensional point of view (and then employ meth-
ods presented above), or the two-dimensional point of view. Smagorinsky’s
example illustrates this point, and it has been remarked by Herring [278] that

N.A. Phillips [571], in one of the first numerical experiments treating
the general circulation of the atmosphere, introduced an eddy viscosity
A whose value was chosen in accordance with Richardson’s empirical
law A = 0.2(Az)*/3.

This law concerns three-dimensional turbulence, and it is clear that such a
subgrid-scale model was not much concerned with the still unknown enstrophy
cascade dynamics.

Let us take now the point of view of strictly two-dimensional turbulence in
the context of two-dimensional Navier—Stokes equations: if k¢ lies in the en-
strophy cascade, the parameterization of the small scales needs to ensure both
a constant enstrophy flux and a zero kinetic energy flux through k¢c. The two
constraints are very difficult to satisfy: a method calculating the fluxes with
the aid of the E.D.Q.N.M. approximation, and paralleling the one developed
above in three dimensions, was proposed by Basdevant et al. [37]. The resulting
LES gave “satisfactory” spectral results,2® but appeared to strongly affect the

25 Qatisfactory, for those who believe in the enstrophy-cascade concept.
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shape of the spatially-organized eddies characteristic of two-dimensional tur-
bulence (Basdevant and Sadourny [40]). More empirical techniques were then
developed, generalizing the biharmonic dissipation operator —v;(V?)%w used
by the oceanographers in the r.h.s. of the vorticity equation (Holland [287]).
Thus Basdevant and Sadourny [40] performed a systematic study of LES with
a subgrid-scale diffusion operator (in the vorticity equation) proportional to
—(=V?)%w, and came to the conclusion that the “optimal value” of o was
of the order of 4 ~ 8 (the value of 2 already giving much better results than
the “viscous” value @ = 1). An application to the simulation of a mixing
layer has been presented in Chapter 8. The consequence of these modified
dissipativities is, with an adjustment of the numerical constant, to push the
effects of dissipation in the neighbourhood of k¢, as can be understood easily
when looking at the expression ~ —k%*Q of the dissipative term in Fourier
space. It seems difficult for numerical reasons at these quite low resolution
calculations to increase the value of o above 8. Let us mention also another
method, called the anticipated potential vorticity method (Sadourny and Bas-
devant [620]), which may be useful in quasi-geostrophic turbulence when the
mesh size Az is larger than the internal Rossby radius of deformation.

To conclude this section, it seems that the development of computers allows
DNS of two-dimensional flows at high Reynolds numbers. But we have also
shown in the chapter devoted to two-dimensional turbulence that LES using
hyperviscosities may be very helpful as well.



13
Towards “Real World Turbulence”

13.1 Introduction

Up to now, the analytical statistical theories we have considered concerned
mainly! what one could call ideal turbulence, in the sense that isotropy was
nearly always assumed, either in three or in two dimensions. We have, however,
also discussed in Chapter 3, 4 and 12 the dynamics of more realistic flows, in
the context of transition and coherent vortices in particular. We have chosen
in this last chapter to consider four examples of turbulent flows which have
a great practical importance, and which may be considered as prototypes for
the applications of certain concepts, analysis and techniques developed in the
preceding chapters.

The first problem envisaged here will be that of a three-dimensional ho-
mogeneous turbulence submitted to a stable stratification. This is no longer
an isotropic turbulence, and we will mainly focus on what happens if an iso-
tropic turbulence is created in a stably-stratified fluid, through some external
device which afterwards will be suddenly turned off. This problem has import-
ant applications in meteorology and oceanography. The study of this question
will permit the use of some of the isotropic phenomenological results derived
above, and also enable us to see how three-dimensional isotropic dynamics is
modified by buoyant forces. In particular we will show how the spectral eddy
viscosity and eddy diffusivity derived in Chapter 12 can be used during the
initial stage of decay.

The second problem will be the effect of a solid-body rotation upon tur-
bulence. The effects of rotation on flows have been already looked upon at
several occasions in the book. Here we will consider both homogeneous or

! Except for the mixing-length theory of turbulent shear flows considered in
Chapter 6.
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sheared turbulence. This has applications in geophysical flows as well as in
engineering (turbomachinery).

The third problem will deal with separated flows, such as the backward-
facing step, extremely frequent in aerodynamics. Large-eddy simulation tech-
niques are now able to handle these flows both statistically and from the
coherent-vortex point of view.

Finally we will look at the effects of compressibility and density differ-
ences upon turbulence, with some applications to subsonic and supersonic
aerodynamics.

We will also provide a tentative conclusion of this monograph.

13.2 Stably-stratified turbulence

13.2.1 The so-called “collapse” problem

The problem of the evolution of an initially three-dimensional isotropic turbu-
lence submitted to the action of a stable stratification is of essential concern
for the mesoscale atmosphere,> and the ocean, where it governs the vertical
fluxes of temperature for instance.

To illustrate this point, let us consider the experiment where a grid is pulled
horizontally with a velocity U through a channel initially containing a stably-
stratified fluid with a constant Brunt-Vaisala frequency, or equivalently when
the stratified fluid flows through a fixed grid with the velocity U (Stillinger
et al. [672]). The phenomenological theory of what happens first has been
given by Riley et al. [600]. The grid produces in its close neighbourhood a
three-dimensional turbulence of typical velocity and scale Uy and D1, and one
can assume that this turbulence is negligibly affected by stratification. This
corresponds to an initial Froude number® Fy = U; /N D; which is large with
respect to 1. Further from the grid, the turbulent velocity will decay with time
t, due to the dissipative action of turbulence. The characteristic scale D will
increase. It was shown in Chapter 6 that the ratio U/D decays like t~! for
isotropic three-dimensional turbulence at high Reynolds number. Therefore
the instantaneous Froude number U/N D will be proportional to (Nt)~!, as
far as tubulence is not significantly affected by stratification. It will reach

2 That is, the atmospheric motions between one km to a few hundred kilometers.

3 In a flow of dimension D and velocity U, the Froude number F = U/(ND),
already introduced at numerous occasions before, measures the relative import-
ance of inertial effects (characterized by a frequency U/D) over stratification
effects (characterized by the Brunt-Vaisala frequency of gravity waves N). Thus,
high Froude numbers correspond to a negligible influence of stratification, while
the latter is preponderant at low Froude.
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values of order unity in a time of the order of N~!. Stratification effects will
then appear, with the propagation of internal-gravity waves.

The characteristic scales of the problem are the integral scale | = v3 /e,
and a characteristic scale of stratification [g. The latter is obtained by de-
fining a turbulent velocity (elz)'/? such that the associated Froude number
(elg)'/?/Nlp = 1. This yields

Iy = (];3)1/2. (13.1)

This scale is generally referred to as the Osmidov scale (Osmidov [555]), and
corresponds to a balance between inertial and buoyant effects. Since the local
Froude number of turbulence F = v/NI is equal to €¢'/3/NI?/3, one obtains

the important relation
s 2/3
F= ( l ) (13.2)

which shows that stratification has a negligible effect on turbulence if | < Ig,
and becomes dynamically important when the eddies are of the order of or
greater than the Osmidov scale. During this evolution, the integral scale of
turbulence will grow, according to the laws derived in Chapter 7 (%3 ~ 05,
and Osmidov scale will decay like €!/2. Both scales will collapse when the
Froude number is one. Further evolution is difficult to predict by phenomen-
ology.

At low Froude number, stratification becomes preponderant. It is under-
standable that it will limit the amplitude of vertical fluctuations at a value
~ lp. On the other hand, stratification has no effect on quasi two-dimensional
motions which develop horizontally. One may then expect at high Reynolds
numbers important horizontal nonlinear transfers. Riley et al. [600] carried
out an expansion of Boussinesq equations with respect to the Froude number.
If the latter is sufficiently small, this procedure may lead, in certain condi-
tions, to two-dimensional Navier—Stokes equations for a given horizontal level.
One is then led to the concept of “gravitational collapse of turbulence” into
horizontal “pancake-shaped eddies” (Maxworthy [475]) of thickness [p. This
turbulence is not, properly speaking, a two-dimensional turbulence as was
defined in Chapter 8, since it is not independent of z. Here, the correct term
should be horizontal turbulence, since these horizontal layers are more or less
vertically decorrelated, and hence depend upon the z direction. Some authors
call this quasi two-dimensional turbulence.

Thus, in the atmosphere, small-scale three-dimensional turbulence, pro-
duced e.g. by the breaking of lee waves behind the mountains or by convective
storms, may find itself afterwards imbedded in a stably-stratified density field
and collapse into quasi two-dimensional turbulence. This idea has been used by
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Gage [236] and Lilly [443] to envisage the existence of a small-scale (a few kilo-
meters) quasi two-dimensional forcing in the atmosphere, which would feed an
inverse horizontal k~%/3 energy cascade responsible for the atmospheric meso-
scale energy spectrum and extending up to several hundred kilometers. Such
a spectrum has been measured experimentally by Gage and Nastrom [237],
on the basis of velocity records statistics provided by commercial aircrafts.
This is at variance with the EOLE* experiment conclusions of a k=3 spec-
trum extending from 1000 to 100 km (Morel and Larchevéque [521]). This
question of atmospheric mesoscale turbulence structure is extremely open:
vertical soundings of the atmosphere seem to confirm the fact that turbulence
is concentrated into multiple extremely thin horizontal layers, which could
be an argument favouring the inverse cascade theory. Notice however that
such a structure is sometimes interpreted by the physicists of the “middle
atmosphere” as due to the vertical propagation of gravity waves.

In the ocean, the interaction of gravity waves with three-dimensional tur-
bulence involves various complex phenomena which contribute to the forma-
tion of the mixed layer and are responsible for vertical exchanges arising in
this layer and at the level of the thermocline. Among these mechanisms are
again the breaking of internal waves into small-scale turbulence, and the re-
organization of this turbulence into waves and possibly horizontal motions.
Notice that in the experiment of Gargett et al. [240], already quoted as an
evidence of a small-scale Kolmogorov energy spectrum in the ocean, turbu-
lence was actually due to the breaking of internal waves. The evolution of this
turbulence under stratification was then examined, in such a way that these
measurements are an oceanic counterpart of the grid-stratified turbulence ex-
periments done by Stillinger et al. [672], Itsweire et al. [312], Lienhard and
Van Atta [437] and Thoroddsen and Van Atta [687].

Many other laboratory experiments have been carried out on this problem
(see e.g. Hopfinger [297], for a review). A particularly impressive result was
obtained by Pao [561], who showed that the wake of a spherical obstacle in
a stably-stratified flow, initially three-dimensional behind the obstacle, would
suddenly collapse into a thin horizontal Karman-like vortex street.

In LES (using hyper-viscosity and conductivity) of Boussinesq equations
(see details below) forced quasi two-dimensionally (no z dependence except
for a small three-dimensional white noise), Herring and Métais [283] showed a
quasi two-dimensional behaviour of the flow with the development of pancake-
like horizontal layers characterized by strong vertical gradients of horizontal
velocity. This is shown in Figure 13.1, which presents isosurfaces of horizontal

4 In this experiment, 500 constant-level 200 mb balloons were released in the south-
ern hemisphere, and tracked with the aid of the EOLE satellite: statistics on their
relative dispersion then allowed approximate measurements of the energy spec-
trum.
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Figure 13.1. Horizontal vorticity isosurfaces in LES of stratified turbulence forced
quasi two-dimensionally (courtesy O. Métais).

vorticity obtained in such a simulation at a Froude number 0.1. The vertical
mixing layers thus created cause a strong vertical dissipation which inhibits
any important inverse energy cascade within the horizontal layers, as can be
checked in the simulations.® A similar structure of quasi horizontal vortex
sheets was found in experiments by Fincham et al. [205], where a rake of ver-
tical rods was towed through a horizontal stratified tank. In this experiment,
the vorticity was determined with the aid of DPIV techniques.® More recent
experiments of the same type in a stratified flow by Praud et al. [588] carried
out in Grenoble large Coriolis rotating platform facility” confirm the pan-
cake structure. Notice the strong resemblance between the horizontal vorticity
layers of Figure 13.1 and the cirrus clouds which form in a stably-stratified
atmosphere.

It was also shown by Métais et al. [500], still with LES, that the combin-
ation of solid-body rotation and stratification imposed upon a forced three-
dimensional isotropic turbulence (at Rossby and Froude 0.1) led to a very
strong k~%/3 inverse kinetic energy cascade. This cascade is highly three-
dimensional, and has all the characteristics of Charney’s quasi geostrophic
turbulence discussed in Chapter 9. Vertical-vorticity measurements of Praud
et al. [588] in the rotating case show how the rake wake, formed initially of

® Remark that an analogous non-stratified simulation with the same initial state
leads to an inverse cascade of two-dimensional turbulence.

S Digital particle image velocimetry.

" In the non-rotating case.
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vertical vortices of both signs, evolves into large three-dimensional vortices. At
low Rossby number, they find a k&, 3 kinetic-energy spectrum for the horizontal
wave number.

13.2.2 Numerical approach to the collapse

We consider a fluid satisfying Boussinesq equations in their simplest form.
Let § = —gZz be the gravity. We suppose that p, is only function of z, with a
constant Brunt-Vaisala frequency IV, and neglect rotation. It is easy to check
from Eq. (2.112) that the fluid satisfies

Du o - 2
Dt = —Vp+9Z+ vV
V.i=0 (13.3)
Dy

2 2
Dt + N°w = V49,
where ¥ = —pg. The assumption that N is a constant is certainly not fulfilled
in the atmospheric or oceanic situations mentioned above, but is a very useful
step in order to understand the physics of these complex interactions between
turbulence and waves.

Now statistical homogeneity is assumed. The potential energy is

1
E, = 2N 2(9?)

and it is very easy to check from Egs. (13.3) that the total energy

1

o (@) + Ep

is conserved by nonlinear terms of the equations. But, as in three-dimensional
isotropic turbulence, these quantities might be dissipated at a finite rate by
viscosity and conductivity. Notice in particular that when the Froude number
is large and that buoyancy may be neglected, the potential energy is propor-
tional to the variance of the passive scalar ¢}, and decays according to the laws
derived in Chapter 7.

This problem has first been studied, at a Prandtl number v/k of one, with
the aid of DNS by Riley et al. [600], using a spectral code of 323 modes, and
starting initially with an isotropic velocity field. The Reynolds number was
of course much smaller than in laboratory experiments. It turned out that
kinetic energy kept on being dissipated, as in isotropic turbulence, for times
greater than N~!, without any marked transition (or “collapse”) at N 1.
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More specifically, the kinetic energy decay curve exhibited a wavy tendency,
which could be attributed to the appearance of waves.

The same calculation was performed by Métais [491] within a LES in
spectral space using the plateau-cusp eddy viscosity and diffusivity defined
in Chapter 12, and starting initially from a turbulent Froude number of 3,
close to the experimental value of Itsweire et al. [312]. The use of such an
isotropic subgrid-scale parameterization can be justified in the early stage of
the evolution,® since then subgrid-scale turbulence is negligibly affected by
stratifiction. The results thus obtained have been interpreted in terms of the
vortex-wave decomposition (or Craya decomposition) presented in Chapter 5,
and in particular the “vortex kinetic energy” and the “wave kinetic energy”,
respectively

By (t) = /(e  Z0)dR Bo(t) = /(e+zl)d12,

introduced after Eq. (5.113) for axisymmetric turbulence.” We recall that
the total kinetic energy is equal to @;(t) + ®2(t). Figure 13.2 shows in this
calculation the evolution of these normalized energies and of the potential
energy (92) both in an isotropic calculation (no stratification) and in the
stratified case: in the isotropic case, the various kinetic energies (horizontal
kinetic (@%)/2, vertical kinetic (w?)/2, vortex kinetic, wave kinetic) properly
normalized are all equal, and decay within the LES like ¢t~ as stressed
in Chapter 12. This is also true for the temperature variance!? (192), which
represents an analogous “potential” energy. All these isotropic energies — plus
the total (kinetic + potential) energy — are represented by curve A. In the
stratified case, the vortex kinetic energy (curve B) differs negligibly from the
isotropic case. The wave kinetic energy (C) presents oscillations of period
~ w/N. The potential energy (D), initially weak, starts building up, then
decays with oscillations of the same period, in phase opposition with the
wave kinetic energy. It has been checked that the total energy (kinetic plus
potential) presents no oscillations and decays following the t~12 law, exactly
as in the non-stratified case. In this particular calculation, it seems that the
vortex and wave kinetic energies are very close to respectively the horizontal
and vertical kinetic energies.

The wavy behaviour of the “wave kinetic” and “potential” components of
the energy in the stratified case is the same as found by Riley et al. [600], even
if the initial Froude number is now higher. The period 7/N found numerically
seems to characterize the horizontal propagation of gravity waves: indeed, a
wave of energy

8 When the integral scale is smaller than Osmidov scale.

9 Since the initial conditions are axisymmetric, this condition will be preserved with
time.

10 At this low resolution of 323.
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Figure 13.2. Time evolution of the normalized energies in a non-stratified and strat-
ified spectral LES (resolution 32%). A: kinetic or potential energy (isotropic case). B:
“vortex” kinetic energy (stratified case). C: “wave” kinetic energy (stratified case).
D: potential energy (stratified case) (from Métais [491]).

|p|? o sin(2Nt + )

corresponds to a fluctuation ¢ o sin(Nt + ) (« and  are arbitrary phases),
and hence a pulsation @ = N in Eq. (2.128). This implies k3 = 0. These waves
affect the large scales of the flow, as shown by the spectra of these various
energies (averaged on a sphere of radius k = |l;|) presented in Figure 13.3:
the vortex spectrum in the stratified case (B) does not differ very much from
the isotropic one (A); the waves are clearly displayed on the spectra C' and
D for modes k <~ k;, the small scales k > k; behaving in the same way as
in A and B with a k=%/3 spectrum extending up to the cutoff kc. It is not
clear whether these waves are physically realistic, or are due to the artificial
periodic boundary conditions!! of the turbulence within a box which has been
considered. But even if these waves are strongly amplified by the numerical
model, they do not seem to significantly affect the dynamics of the “vortex
component”, nor to reduce the total energy dissipation rate.

' Which indeed put in phase the fluctuations at the boundaries, thus forcing waves
at the scale of the computing box.
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Figure 13.3. Time evolution of energy spectra in the same conditions as in Fig-
ure 13.2 (from Métais [491]).

These calculations show also that the integral scale and Osmidov scale
cross at about ¢ = N~!, as predicted by the phenomenology. At that time,
the turbulent Froude number has decreased from its initial value of 3 to 1. Af-
terwards it continues to decrease and is about 0.15 after 5N !, This is quite a
low value, but there is not yet any two-dimensional turbulence inverse-cascade
tendency when considering the kinetic energy spectra. DNS at a higher res-
olution (64%) and for longer times (50N ~!) were made by Métais and Her-
ring [494]. Their results are qualitatively similar to those of Riley et al. [600]
and Métais [491] for t < 5N L. However, they find a clear slowdown in the
decay of the vortex kinetic energy at t ~ 6 N1, while the other energies (wave
and potential) continue to decay at the same rate. Before this time,'? the vor-
tex and wave spectra are identical in the small scales. Afterwards, the wave

12 The existence of this collapse time was confirmed simultaneously in a spectral
LES (at a resolution of 32%) carried out for longer times done by Métais and
Chollet [495]. This calculation shows also that the vertical diffusion of a thin
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Figure 13.4. Spectral LES of the vertical diffusion of passive scalar done by Métais
and Chollet [495]. A vertical section is shown: initially (a); at t = 12.85N ! in the
stratified case (b); at the same time in the isotropic case (c).

energy cascades faster to high £ than the vortex energy, and it seems that
there is a tendency for the vortex energy to be trapped in the large scales. It
is found that the “collapse time” 6N~ is such that Osmidov and Kolmogorov
scales are equal, which implies that all the scales of motion are influenced by
buoyancy, including the smallest ones. But the vortex kinetic energy dissip-
ation rate is still important, even though it has decreased, and the situation
is in no way that of a two-dimensional turbulence, although Métais and Her-
ring [494] find that the isopycnal surfaces become quasi two-dimensional after
the collapse.

Still in the decaying case, other initial situations can be considered: for
instance a completely horizontal field where all the energy is under its vortex
form, with a strong vertical decorrelation (Métais and Herring [494]). Such
a state implies important vertical gradients of the horizontal velocity. In this
case, two possibilities exist: if the stratification is sufficiently high, the local
Richardson number will be everywhere greater than its local critical value
0.25, and no instability will develop: the flow remains in horizontal layers,

initially horizontal layer of passive scalar is strongly inhibitted by stratification
after the collapse, as shown in Figure 13.4.
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Figure 13.5. Vortex kinetic energy spectrum @1 (k), wave kinetic energy spectrum
&5 (k) and potential energy spectrum P(k) at t = 1.48N ! in the stratified LES of
Métais and Lesieur [496].

and is not affected by gravity waves which propagate; but again the vortex
kinetic energy dissipation is important, due to the strong vertical gradients
of the horizontal velocity. Otherwise, internal Kelvin—Helmholtz waves will
emerge, and possibly break up into small-scale three dimensional turbulence.
This is a mechanism which converts vortex energy into wave energy.'3

Returning to the above-considered problem of the collapse of initially iso-
tropic turbulence under stratification, we mention finally the more recent spec-
tral LES performed by Métais and Lesieur [496] at a resolution of 128% and
up to t = 7.5N~!: it confirms the existence of the collapse time at 6N !, by
considering the instantaneous time-decay exponent ay of the vortex kinetic
energy (o< t~*v), which is appreciably reduced after the collapse. The expo-
nent ay corresponding to the potential and wave energy seems, after some
adjustment time, to become of the same order as ay, which shows a strong
difference with the anomalous behaviour of the passive temperature found in
Chapter 12 for the same calculation. Here, in the stratified case, the potential
energy spectrum loses the k! large-scale range displayed in the non-stratified
case of Figure 12.3. This is shown in Figure 13.5, presenting respectively the
vortex, wave and potential energy spectra at t = 1.48N 1,

13 Though there does not seem to be any doubt about the fact that the “vortex”
energy is a good indicator of horizontal kinetic energy, it is on the contrary more
difficult to distinguish, in the “wave” kinetic energy, the gravity wave contribution
from the small-scale three-dimensional turbulence contribution.
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Figure 13.6. Spectral vortex and wave eddy viscosity, and eddy diffusivity, corres-
ponding to the calculation of Figure 13.5.

Figure 13.6, to be compared with Figure 12.2 in the isotropic case, shows
that, now, the eddy diffusivity has also lost its logarithmic k& dependency,
and is approximately constant, with an eddy-Prandtl number of the order
of 0.45. At the same time, the p.d.f. of the temperature is now Gaussian,
as was the velocity in the isotropic case (see Chapter 6). Hence, the coup-
ling between temperature and velocity due to buoyancy seems to have sup-
pressed the large-scale intermittency of the temperature which we had men-
tioned in isotropic turbulence. This is confirmed by Figure 13.7, taken from
Métais and Lesieur [496], which shows the temperature p.d.f. in spectral LES
and DNS,'* determined respectively in the isotropic and stratified case. The
strong temperature intermittency in the isotropic case is illustrated in Plate
19. At the later times of the stratified LES and DNS calculation of Métais and
Lesieur [496], various spectra confirm that the vortex kinetic energy tends to
be trapped in the large scales.

More recent DNS of this problem at Froude numbers of the order of one
have been carried out by Riley and De Bruyn Kops [603].

13.2.3 Other configurations

Let us mention also that stratified-shear flow three-dimensional DNS have
been performed by Gerz et al. [250] in the case of a constant shear, and by

1 See also Métais and Lesieur [493].
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Figure 13.7. Temperature p.d.f. determined at ¢t = 1.48N ! in the DNS (continu-
ous line) or LES by Métais and Lesieur [496]; (a) isotropic calculation; (b) stratified
calculation. The dashed line indicates a Gaussian distribution.

Staquet and Riley [670,671] for a mixing layer. In the latter case, stratification
produces a sort of horizontal collapse of the Kelvin—Helmholtz billows, at the
origin of vertical vorticity. Experiments (see e.g. Koop and Browand [343])
show this collapse of the mixing layer under stratification.

A very complete numerical and experimental review may be found in Riley
and Lelong [602] (see also Riley and De Bruyn Kops [603]).

Finally, Plate 21 presents a gravity wave developing in a strongly-stratified
flow behind an obstacle, in a three-dimensional finite-volume calculation.

13.3 Rotating turbulence

We will look here at the action of a solid-body rotation of constant instant-
aneous rotation vector 2 = (f/2)Z = 27 upon a flow of uniform density
(f > 0). Two cases will be considered: first, a shear flow of basic (or mean,
if turbulence has developed) parallel velocity @(y)Z, and second, an initially
isotropic turbulence (quasi two-dimensional or three-dimensional).

13.3.1 From low to high Rossby number

As already stressed, the influence of rotation is measured by the Rossby num-
ber, which may have a wide range of variation. We recall that in geophysical
and astrophysical phenomena, typical values are by increasing order:

(a) 1075 for Earth outer core (velocity 1073 m/s, length 1000 km);

(b) 0.04 for Jupiter great red spot;

(c) 0.05 for mesoscale oceanic eddies;
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(d) 0.3 for large synoptic atmospheric perturbations;
(e) 3 for the atmospheric wake of a small island in mid-latitudes (15 m/s, 50
km);

(f) 5 for a developed hurricane in the tropics (60 m/s, 200 km);

(g) 600 for a tornado in mid-latitudes (60 m/s, 1 km).

We anticipate from the following results that rotation will have a two-
dimensionalizing effect in the 4 first cases. For case (e), rotation will stabilize
cyclonic vortices and disrupt anticyclonic ones. In case (g), and if one considers
the hairpin-based model discussed in Chapter 9, rotation may disrupt the
anticyclonic branch of the tornado during its development.

Rotating turbulence finds also numerous industrial applications in tur-
bomachinery. As quoted in Lesieur et al. [425]:

The turbulent characteristics of the flow in blade passages of radial
pumps and compressor impellers determine the efficiency of these
devices. Turbulence is also of great importance for the cooling by the
fluid inside the blades. Depending upon the magnitude of the radial
velocity, the Rossby number within rotating machines can range from
values close to unity to very small ones (= 0.05).

13.3.2 Linear instability

Let us introduce
1 du

fdy
as the local Rossby number, which may be positive or negative depending upon
the sign of du/dy. A positive (resp. negative) Rossby number will correspond
to a cyclonic (resp. anticyclonic) region. We have already shown in Chapter 3
that in the inviscid case exist unstable longitudinal modes (in the sense of

normal-mode analysis) if and only if R,(y) is smaller than —1 somewhere in
the flow (see Pedley [566]).

Ro(y) = (13.4)

13.3.3 Mixing layers and wakes
Instability

A three-dimensional viscous linear-stability study was carried out for the
mixing layer and the wake by Yanase et al. [730]. We present here some
of the results obtained for the mixing layer at Reynolds 150. Figure 13.8
shows the contours of constant amplification rate o in the kg, k, plane.'®

5 These longitudinal and spanwise wave numbers were called o and 3 in Chapter 3.
These quantities are here respectively normalized by U/do and dy L
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Figure 13.8. Iso-amplification rates in the three-dimensional linear-stability ana-
lysis of a rotating mixing layer carried out by Yanase et al. [730], at Reynolds 150;

(a) no rotation, (b) R =1, (c) R = —20, (d) RY =2 (courtesy Phys. Fluids).

Case (a) corresponds to no rotation: the most-amplified mode is purely span-
wise (k; = 0.433,k, = 0,0 = 0.180), and is very close to the inviscid Michalke
mode (k, = 27/14 = 0.449). Case (b) corresponds to RY) =1, where RY’
is the minimum initial Rossby number defined by Eq. (13.4), and is associ-
ated with the inflection point. It is a cyclonic situation, and the migration
of the iso—o curves towards the & axis shows a two-dimensionalization due
to cyclonic rotation. The spanwise most-amplified mode is unchanged, as one
can show easily since Orr—Sommerfeld equation is not affected by rotation
in two dimensions. Case (c) (Rél) = —20), is anticyclonic. A new window of
instability is now opened, corresponding to longitudinal modes. But Michalke
mode is still the most amplified. At RS = —2 (d), the most-amplified mode
is now purely longitudinal (k, = 0,k, = 2.5,0 = 0.332). This shear-Coriolis
instability, as it was named by Yanase et al. [730] is of course related to the
inviscid longitudinal modes mentioned in Chapter 3, and resembles centrifu-
gal instabilities such as Couette—Taylor or Gortler. It can be checked that the
maximal rate of longitudinal amplification is for RE,Z) ~ —2.5. At Reynolds
150, the shear-Coriolis instability dominates Kelvin—Helmholtz’ in the range



470 13 Towards “Real World Turbulence”

~ —10 < R((f) < —1. The lower bound is pushed to ~ —20 at Reynolds
800. These calculations show also that shear-Coriolis instability disappears
for R((f) > —1, which proves in particular that the flow is two-dimensionalized
at high rotation rates |R((f)| < 1, in good agreement with Proudman—Taylor
theorem.

In the case of the wake, the relevant initial Rossby number is the modulus
of the Rossby number at the inflection points. It was shown by Yanase et
al. [730] that at \Rg,i)| = 20 and for Reynolds 150, the same diagram as
Figure 13.8c is obtained, with occurrence of longitudinal modes. They become
more amplified than the Karman mode for 1 < |R£i)| <=~ 7. The shear-
Coriolis instability is here also maximum at |R£,i)| = 2.5. At Reynolds 800,
the instability dominates for 1 < |Réi)| <~ 12.

Real flows

For free-shear flows, the drastically different effects of solid-body rotation
on the eddies, depending on their cyclonic or anticyclonic nature, have been
investigated in several laboratory experiments. The rotating mixing-layer ex-
periment (rotation axis oriented along the span) by Bidokhti and Tritton [63]
(see also Tritton and Davies [690]) have confirmed the stabilization of cyclonic
eddies. Conversely, Kelvin—Helmoltz vortices seem to be completely disrup-
ted, even by a weak anticyclonic rotation. Destabilization and stabilization
can be simultaneously observed in flows like rotating wakes or jets. Witt and
Joubert [722] found that the wake of a cylinder whose axis is parallel to 0
exhibits asymmetry for the mean flow as well as for the turbulent quantit-
ies. This is confirmed by Chabert d’Hieres et al. [103]: they show that, at
moderate rotation rates, the cyclonic vortices of the wake are reinforced while
the anticyclonic ones are destroyed. Conversely, the wake reorganizes into a
very regular two-dimensional Karman street of alternate vortices at high rota-
tion rates.'% Satellite observations of atmospheric wakes displayed by clouds
exhibit also strong asymmetrical eddy structures (Etling [189]).

We will here give some details on three-dimensional rotating free-shear
layer simulations, both for mixing layers and wakes.

We start with mixing-layer DNS presented in Lesieur et al. [423]. They use
pseudo-spectral methods (with lateral boundaries to infinity treated using a
coordinate mapping) at a resolution of 48 x 48 x 24 (two longitudinal funda-
mental modes) starting initially with a three-dimensional random perturba-
tion superposed on the basic flow U tanh 2y/d;. Figure 13.9 shows the growth
of spanwise kinetic energy!” for values of the Rossby number modulus ranging

16 Although the Karman street becomes highly three-dimensional in the non-
rotating case.
7 Which is a good indicator of three-dimensionality.
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Figure 13.9. Growth of the three-dimensional kinetic energy in the rotating mixing
layer; (a) cyclonic case; (b) anticyclonic case (from Lesieur et al. [423], courtesy S.
Yanase).

from infinity (no rotation) to 0.25. In the cyclonic case (where the solid-body
vorticity is of same sign as the primary coherent vortices), rotation is always
stabilizing with respect to the non-rotating case: an interesting feature may
be noticed, that is, the initial decay of the three-dimensional perturbation,
followed by a growth which is delayed as the rotation increases. In the anti-
cyclonic case, and at t = 256, /U (slightly before the pairing in the non-rotating
case), the highest three-dimensional energy is for R( —4 ~ —5. The ageo-
strophic component of the pressure at ¢ = 25 is displayed in Figure 13.10.
For R((f) = oo (no rotation, Figure 13.10a), the flow possesses strong quasi
two-dimensional billows. At R((f) = 11 (cyclonic, Figure 13.10b), the vortices
are strongly two dimensionalized. The Rgi) = —11 anticyclonic case indic-
ates that the billows are three-dimensionally distorted, but remain coherent
(Figure 13.10c). On the other hand, the R(Z) = —b case shows extremely elong-
ated hairpins, without any Kelvin—-Helmholtz roller (Flgure 13.10d). Still in
the anticyclonic cabe rotatlon is stabilizing again for RO ) > > —1, as attested by
Figure 13.10e (at RO = —0.25), where very straight two-dimensional vortices
are obtained, in good agreement with Proudman—Taylor theorem.

New DNS of rotating temporal mixing layers and wakes have been car-
ried out by Métais et al. [498] (see also Flores [207]) using pseudo-spectral
methods at a resolution of 64 collocation points. The initial velocity con-
sists respectively in a hyperbolic-tangent and a Gaussian profile, to which is
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Figure 13.10. Pressure plots in DNS of a rotating mixing layer at ¢ = 25, for
(a) R = o0, (b) R =11, (¢) R = —11, (d) R{” = =5, and (e) RS = —0.25
(from Lesieur et al. [423], courtesy S. Yanase).

superposed a low-amplitude random perturbation. The simulations confirm
the global trends observed in the experiments, some of which were predicted
by the linear-stability analysis: the Kelvin—Helmoltz and Karman vortices are
two-dimensionalized by the rotation when they are cyclonic, whatever the
Rossby number; this is also true for all vortices (cyclonic or anticyclonic) in
the case of rapid rotation (in the sense of the linear-stability analysis, that is,
|Rgi)| < 1). Conversely, a moderate anticyclonic rotation (1 < |R((f)| <= 10)
in mixing layers disrupts the primary vortices. The latter are stretched into
intense longitudinal absolute-vorticity hairpins,'® ?i shown in Figure 13.11. It
K3

=

concerns an anticyclonic mixing layer at initial R —b, forced initially by

18 That is to say coherent structures where absolute vorticity is condensed.
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Figure 13.11. Absolute vortex filaments in the DNS of a rotating mixing layer at
RY) = —5 carried out by Métais et al. [498]; (a) initial linear stage, (b) nonlinear
stretching of absolute vorticity hairpins (courtesy J. Fluid Mech.).

a three-dimensional isotropic perturbation. The absolute vortex filaments!'?
are shown, and undergo two distinct stages in their evolution. Figure 13.11a
corresponds to the linear stage (¢t = 189;/V'), where the filaments oscillate in
phase and grow according to the longitudinal mode predicted by the linear
theory. Their local Rossby (based upon the spanwise relative vorticity aver-
aged in the spanwise direction) is ~ —2.5, that is to say the most-amplified
initial Rossby of the linear theory. They form with the horizontal an angle
of & 45°, not far from the predictions of the velocity-sheets model (see be-
low). Figure 13.11b is at ¢ = 22.5. The absolute-vortex filaments are now very

19 Chosen as passing through points where the longitudinal vorticity is maximum.
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Figure 13.12. Same calculation as in Figure 13.11; time evolution of the mean
longitudinal velocity profile (courtesy J. Fluid Mech.).

elongated, and have condensed into a hairpin shape.?’ They are raised of 20°
with respect to the horizontal, and their spanwise wavelength corresponds to
the fastest-growing mode of the linear-instability theory. Since the spanwise
component of the absolute vorticity is approximately zero for these hairpins,
they are in a zone where the local Rossby number is ~ —1, which corresponds
to a spanwise-averaged longitudinal velocity gradient equal to f:

du

= (13.5)

This is obvious in Figure 13.12, presenting the time-evolution of this average
velocity profile @(y) in terms of y/d;. One can see how it evolves from the
initial hyperbolic-tangent profile to a constant-shear profile. It was checked in
Métais et al. [498] (see also Lesieur et al. [431]) that at ¢t = 35.7, we do have
a local Rossby number close to —1 on the interval [—2,42].

Let us mention also the experimental measurements done by Tarbouriech
and Renouard [674] in a rotating turbulent wake, using DPIV techniques.
They find a local Rossby number of the order of —1 within the anticyclonic
side. Such a result is verified in the DNS of a temporal wake (see Lesieur et
al. [431]).

20 The same results are obtained for a wake. At initial Rossby corresponding to
the dominance of shear-Coriolis instability, the structure is made of longitudinal
absolute-vorticity hairpins on the anticyclonic side, and quasi two-dimensional
Karman vortices on the cyclonic side.
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This stresses the importance of both the linear-stability analysis (existence
of an unstable longitudinal mode) and the longitudinal stretching of absolute
vorticity. These results show also that, in mixing layers or separated flows,
an anticyclonic solid-body rotation of spanwise axis may be a very efficient
mechanism to destroy the primary coherent vortices,?’ as already noticed
experimentally. We have finally predicted the existence of longitudinal coher-
ent vortices in anticyclonic mixing layers.?? These vortices have not yet been
observed in the experiments, but have analogies with longitudinal vortices
observed in centrifugal instabilities.

This provides a mechanism of cyclonic preference for atmospheric or
oceanic vortices in wakes and jets, at Rossby numbers moduli between unity
and ~ 10. It might apply in particular to the generation of cyclonic subtrop-
ical perturbations in the atmosphere on the western coasts of the continents.
These perturbations travel to the west across the oceanic basins. Some of
them will, by conversion of latent evaporation heat in kinetic energy, trans-
form into hurricanes when passing above a water of temperature superior to
26°C. These hurricanes cause huge damages when they hit the eastern coasts
of continents. The most impressive in the last decades is certaily Katrina,
which hit the city of New Orleans end of August 2005. About 80% of the city
was flooded because several levees protecting the city from Mississippi river
and Lake Pontachartrain were destroyed. In fact the water of the latter was
pumped up by the very low pressure induced by the hurricane.

Returning to the problem of rotating shear flows, we have observed above
that anticyclonic mixing layers of moderate Rossby number modulus organize
into regions were the mean absolute spanwise vorticity is zero. In fact, this
remarkable result, discovered by Métais et al. [498], had already been found
experimentally in a channel by Jonhston et al. [319]. So there is a universality
of rotating shear flows.

We will first present a review of the channel case, then try to explain
this longitudinal alignment of absolute vorticity in anticyclonic regions by the
so-called weak absolute vorticity stretching principle.

13.3.4 Channels

The flow configuration is given in Figure 13.13. The vorticity vector associated
with the basic velocity profile & = (0,0, —du/dy) is parallel to 2 near the
upper wall and antiparallel near the lower wall: we refer to the two particular
walls as cyclonic and anticyclonic. Various other terms are currently used,
such as “suction and pressure sides”, or “trailing and leading sides”.

21 Conversely, cyclonic rotation may be used to stabilize the two-dimensional vor-
tices.
22 And the anticyclonic sides of wakes.



476 13 Towards “Real World Turbulence”

= =

Figure 13.13. Rotating channel (courtesy E. Lamballais).

Let us take in Figure 13.13 the origin y = 0 at the channel centerplane. If @
is parabolic (at the initial instant), the basic Rossby number R,(y, 0) is linear
in y and antisymmetric. The minimum value R((f) = R,(—h,0) is negative.
The flow is anticyclonic in its bottom part, and cyclonic in its upper part.

Instability

As recalled in Lesieur et al. [431], Lezius and Johnston [436] have shown that

this flow is inviscidly unstable if R((f)

Pedley’s result.

is lower than —1. This is analogous to

Real flows

Laboratory experiments (Johnston et al. [319]) have shown that the cyclonic
side is stabilized: as compared to the non-rotating case, the turbulence energy
production decreases with increasing rotation rate and fast rotation can lead
to the total suppression of turbulent transition. Conversely, the anticyclonic
side is destabilized for moderate rotation rates (moderate means here a Rossby
number modulus high enough, see below), and develops an instability in the
form of large periodic longitudinal rolls.

DNS of rotating channel flows have been carried out (see e.g. Kim [329],
Kristoffersen and Andersson [361], Lamballais [366]). Other references are
given in Lesieur et al. [431]. LES have been done with the aid of the dy-
namic model by Piomelli and Liu [575], and the spectral-dynamic model by
Lamballais et al. [366,369]. These simulations have complemented the exper-
imental investigations by studying in particular the influence of rotation on
the three-dimensional coherent structures.

The above-quoted DNS of Lamballais allow to recover on the anticyclonic
side the presence of a constant-shear profile, as attested by Figure 13.14.
It shows in a DNS at a moderate Reynolds number of 5000 (based on 2h
and the bulk velocity across the channel, which is set constant with time

in these simulations), the mean-velocity profile as a function of |Rgi)|7 the
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Figure 13.1/4. Mean longitudinal velocity profiles as a function of the initial Rossby
number modulus in DNS of a rotating channel (courtesy E. Lamballais).

initial Rossby number.?? Whatever the initial Rossby, the linear-velocity range
does correspond to a local Rossby R,(y) =~ —1, as checked in Lesieur et
al. [431]. The latter reference shows also the same result in LES of Lamballais
et al. [369]. In both cases, it is at RY) = —5 that this range is the more
extended. Figure 13.15 shows in the same calculation as Figure 13.14 iso-
surfaces of the vorticity modulus. It is clear that the flow is quasi laminar

23 All these simulations are initiated by a Poiseuille velocity profile, slighly per-
turbed, and Rgf) is based upon the vorticity at the wall of this profile.
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Figure 13.15. Same calculation as Figure 13.14; iso-surfaces of relative vorticity
modulus (courtesy E. Lamballais).

on the cyclonic side, while hairpins on the anticyclonic side are more and
more inclined with respect to the wall as rotation is increased. It was also
checked that longitudinal velocity fluctuations on this side are reduced when
the Rossby number is increased, and that the corresponding streaks have

disappeared at R((,i) = -2
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The replacement of the famous logarithmic velocity profile by a linear pro-
file due to anticyclonic spanwise rotation is certainly an extremely important
result for turbulent boundary layers. The fact that the linear profile exists
also in anticyclonic free-shear flows adds further importance to it.

To our knowledge, no experimental data seem to be available for high-
rotation rates in the anticyclonic case. It was shown by Lamballais [366] that
at Rossby —0.1, and for a bulk Reynolds number of 10,666, the flow is two-
dimensionalized, in agreement with Proudman—Taylor theorem, and evolves
into alternate large rolls of spanwise axis, as obtained by Jimenez [315, 316]
in two-dimensional channel DNS.

It should be stressed that most people who work on this rotating channel
problem use a parameter called rotation number, equal to 3 times the inverse
of |[R$).

A study having analogies with the rotating channel is the rotating plane
Couette flow, investigated with DNS by Bech and Andersson [52].

13.3.5 Some theoretical considerations
Rotating velocity-sheets model

As an exercise, we come back to the “velocity-sheets model” in a constant
shear A\ = @'(y) within an infinite domain, already looked at in Chapter 3.
Here we assume also a spanwise rotation. The perturbed velocity (with respect
to the basic flow) is still assumed of the form

u="U(2)[X )7+ Y ()],

with a zero spanwise velocity w. A basic pressure gradient balances the Coriolis
force corresponding to the basic flow, and the perturbed pressure is assumed
uniform. Eq. (3.47) writes now

U(z) (dX + AY) = fYU(2)+vU"(2)X

dt
ay "
U(z) i —fXU(z)+vU"(2)Y (13.6)
Taking U(z) = sin ksz, we have
Y X
‘gt + fX = —vk3Y, dat + A= f)Y = —vk3iX. (13.7)

This system was solved in Métais et al. [496] without viscosity. The Rossby
number is here —\/f. In the anticyclonic case, it was found for R, < —1 that
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the fluctuating vorticity vector projected in the (z,y) plane was stretched ex-
ponentially with time,?* and made eventually with the horizontal an angle
of tangent \/ —(1+ R,). The highest amplification rate was obtained for
R, = —2, which corresponds to an angle of 45°. At R, = —1, the system
Eq. (13.7) is equivalent to a non-rotating problem, with the exchange of X
and Y. Thus, the velocity sheets oscillate now weakly along & with a velocity
u exponentially-damped by viscous dissipation, while the oscillations along
7 become very strong, the velocity ¥ scaling (in modulus) like ftexp —vk3t.
The absolute vorticity becomes purely longitudinal. This is an algebraic mode,
stable from the point of view of normal-mode analysis. The former longitud-
inal high and low-speed streaks of the non-rotating case have now become
intense alternate vertical currents. However, and as for the non-rotating case,
the uniform perturbed pressure assumption is a severe drawback of the model.

Weak absolute-vorticity stretching principle

The following analysis was proposed in Lesieur et al. [423], as well as in the
second edition of this book in 1990, before the linear-stability study of Yanase
et al. [730] was performed. We call it the weak absolute-vorticity stretching
principle. It predicts that, in the anticyclonic case at moderate rotation rates,
absolute vorticity will condense into coherent longitudinal hairpin structures.
We first reproduce it mainly as it was stated, then will discuss it in the light
of the stability and numerical results.

We assume that at some instant the relative vorticity writes locally
& = wapZ + &V, with the norm of & much smaller than |wap|. We re-
call that Helmholtz theorem applies to the absolute vorticity, here equal to
(wap + f)Z + M. Absolute vortex filaments are (neglecting viscosity) ma-
terial, with respect to the flow. We will assume that the stretching of the
absolute vortex filaments is mainly due to the basic two-dimensional flow
characterized by wep. It is only by a longitudinal straining of the initial ab-
solute vortex filament that longitudinal relative vorticity (corresponding to
three-dimensionalization) may be produced. It is therefore essential to look at
the initial distribution of the absolute vorticity. We assume wsp < 0. In the
subsection only we suppose that {2 may have both signs (see Figure 13.16).
The following situations may be envisaged:

(a) cyclonic rotation (£2 < 0): the absolute vortex filament corresponding
to the relative vorticity distribution wopz’ + &M will be less inclined with
respect to the z axis than the associated relative vortex filament. Therefore,
the straining (if any) of the absolute vortex will be delayed, and a cyclonic
rotation will have a stabilizing effect (compared with the non-rotating case).

24 The spanwise fluctuating vorticity component is here conserved.
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Figure 13.16. Distribution of relative and absolute vorticity in a quasi two-
dimensional shear flow submitted to a solid-body rotation.

(b) anticyclonic rotation (£2 > 0): when {2 increases by positive values
starting from 0, the initial absolute vortex filament is more perturbed three-
dimensionally than the relative one. Hence, rotation is destabilizing with re-
spect to the non-rotating case. An intense three-dimensionalization of the
layer occurs when wop + 2(2 =~ 0, that is when the local Rossby number is
of the order of —1: indeed, the initial absolute vortex filament corresponds
approximately to the vorticity distribution associated with &(*), and is highly
three-dimensional if &) corresponds to a three-dimensionally turbulent per-
turbation. Hence, it is going to be immediately stretched by the basic shear,
and intense longitudinal vorticity will be produced everywhere throughout the
layer, as a highly distorted filament of dye would be mixed within the shear
layer. Then, it is feasible that the longitudinal vorticity thus created by mix-
ing of the absolute vorticity will strongly affect the basic flow, which will very
quickly lose its two-dimensionality. This explosive mechanism is certainly ex-
tremely efficient to disrupt the coherent vortices. When wop +262 > ||, the
initial absolute vortex filament will see its orientation reversed with respect
to the relative one. For
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wop + 282 > —wsp, (13.8)

that is R, > —0.5, the absolute vortex is again less three-dimensional than its
relative counterpart, and the anticyclonic rotation becomes stabilizing again.

The weak absolute-vorticity stretching principle is certainly not valid in the
context of linear-stability analysis starting with infinitesimal perturbations,
since we have seen already that the flow is stable at R, = —1. But it is
of interest from a nonlinear point of view, considering the above numerical
simulations.

The reader will find in Lesieur et al. [431] a theoretical explanation based
on nonlinear reorientation of absolute vorticity in an z-independent flow,
which confirms the tendency of absolute vorticity to realign in the flow direc-
tion.

13.3.6 Initially three-dimensional turbulence

Let us look now at the effect of solid-body rotation upon a decaying three-
dimensional turbulence, with an initial isotropic state. A review may be found
in Bartello et al. [34]. In fact, DNS pose certain problems, specially at low
Rossby numbers. Indeed, it may take many initial turnover times for turbu-
lence to reorganize under the action of rotation, and DNS dissipate most of
the energy before rotation effects become dominant. This is why it is prefer-
able to use LES for this study, since they dissipate kinetic energy much slower
than DNS. Bartello et al. [34] used the structure-function or hyperviscosity
models. The main results were obtained with pseudo-spectral methods at a
resolution of 643 in a cubic box. The rotation axis is parallel to the vertical.
The Rossby number is here defined as wg/262, where wy is the initial r.m.s.
of the vertical vorticity ({2 is taken positive). Two calculations were carried
out, respectively with quasi two-dimensional and three-dimensional isotropic
initial states.

In the quasi two-dimensional case, the initial state consists in developed
two-dimensional turbulence with formed coherent vortices, to which is super-
posed a weak three-dimensional random perturbation. At an initial Rossby
number RE,Z) = 0.1, the perturbation rapidly dies out, and the flow remains
two-dimensional with both cyclonic and anticyclonic vortices. At R =1
on the contrary, cyclonic vortices are stabilized, while anticyclonic vortex fil-
aments are stretched into transverse hairpin vortices, exactly as described
above, and afterwards are dispersed all over the flow. The eventual coherent
state is made of quasi two-dimensional cyclonic vortices, in such a way that
the initial symmetry cyclones/anticyclones has been broken by rotation.

In the three-dimensional case, the initial state consists in isotropic three-
dimensional turbulence which has developed a Kolmogorov cascade (without
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rotation). Then rotation is applied. At RE,Z) = 1, quasi two-dimensional cyc-
lonic vortices appear, without any well-formed anticyclonic vortex. This is
confirmed by the consideration of the vertical vorticity p.d.f. P(w,): initially,
it is symmetric, with quasi exponential wings both for positive and negative
values of w,. At the end, it is highly skewed towards positive values (that is,
cyclonic), while the anticyclonic side becomes Gaussian. The vertical vorticity
skewness reaches important values. The physical explanation might be that
rotation has stabilized the initial cyclonic vortex filaments (of direction close

to the axis of rotation), and disrupted the anticyclonic ones. At RE,Z) = 0.1,
anticyclonic vortices reform, although they are weaker than the cyclonic ones.

Analogous results were found experimentally by Morize et al. [523], and
Morize and Moisy [524].

An interesting numerical study resembling Bartello’s [34] but with a sta-
tionary three-dimensional forcing by inertial waves has been carried out by
Smith and Waleffe [655]. They display very neatly the formation of two-
dimensional cyclonic vortices.

13.4 Separated flows

As already stressed, separated flows are very common in external aerodynam-
ics of cars, trains, planes, ships or submarines. They are also encountered in
hydraulics, thermohydraulics of nuclear reactors, or internal aerodynamics of
combustors (rocket solid-propergol boosters for instance).

The flow behind a two-dimensional backward-facing step is a prototype of
separated flow. The simplest example is given by a uniform flow of velocity
Up in a domain whithout upper boundary, passing above a step of infinite
height. This is very close to a spatial mixing layer between two currents of
velocity Uy and 0. This configuration was for instance studied experimentally
at high Reynolds number by Wygnanski and Fiedler [725], who performed an
extensive study of large-scale intermittency. This work did show by statistical
means the existence of large-scale fluctuations, which correspond in fact to
the shedding of coherent vortices visualized by Brown and Roshko [88] a few
years later. It is also in such a step configuration that Chandrsuda et al. [107]
proposed the possibility for helical pairing in a mixing layer (see Chapter 3).

Let us now assume a step of finite height H, with an upstream velocity field
corresponding to a boundary layer (turbulent or possibly laminar) developing
upstream of the step. The phenomenology of what happens is described in
Figure 13.17. Kelvin-Helmholtz type vortices are shed in the mixing layer
behind the step. They grow by pairing and are three-dimensionalized in a
way which will be discussed below. These vortices have already been shown in
the two-dimensional simulation of Plate 3. The shear layer bends towards the
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H < -
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Figure 13.17. Schematic view of a backward-facing step flow.

wall and impinges it. Let X be a mean reattachment length, which may be
defined as a line where the longitudinal velocity has an equal probability of
being positive or negative. A recirculation zone forms upstream of X g, where
vortices may be trapped and reinjected in the upstream mixing layer. Other
vortices are shed from the reattachment region and carried away downstream
by the mean flow.

We do not intend here to make a complete review of the topic. Most of
the following informations come from:

(a) Experiments by Eaton and Johnston [184], Driver et al. [174], Kiya et
al. [332,333], Bandyopadhyay [31], and Jovic and Driver [320].

(b) LES of Silveira-Neto et al. [648-650], Arnal and Friedrich [17], Ak-
selvoll and Moin [4], Danet and Aider [3,155]. The latter work in a weakly-
compressible situation, with an upper free boundary (see Lesieur et al. [431]
for more details on this work with animations).

(c) DNS of Le et al. [391]. They use a free-slip upper boundary condition,
with an expansion ratio of 1.2. It simulates the experiment of Jovic and Driver
[320] in a double-expansion channel at a Reynolds number R, = UpH/v =
5100.

Let us mention that a recent review on the backward-facing step can be
found in Lesieur et al. [431].

13.4.1 Mean reattachment length

A very rough estimate of the mean reattachment length may be obtained in
the following way. We remind (see Chapter 4) that the growth rate of an
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incompressible turbulent mixing layer between two flows of velocities U; and
U, (and same densities) is given by the law

U1+U2d6_

= 13.
Ul—UQd(E (39)

where § is the vorticity thickness and A a non-dimensional coefficient of the
order of 0.20. In the case of the mixing layer just behind the step, we take
Uy = Uy and Uz = 0, which yields dé/dx ~ 0.2. If one assumes that Xg is the
downstream distance such that §(Xg) = H, it is obtained

Xp = 5H.

In fact, it was found by Armaly et al. [15] that X increases with the Reynolds
number for R, < 1200, then decreases up to R. = 6600, then remains con-
stant above. The reattachment length increases also with the expansion ratio.
Typical values at high Reynolds range from 5H to 8H. For low expansion
ratios, numerical simulations may have difficulties to get a correct Xp if the
velocity just upstream of the step consists for instance in a mean turbulent
boundary layer profile to which a random fluctuation is superposed.??

It was shown by Le et al. [391] and Akselvoll and Moin [4] that realistic
deterministic turbulent boundary-layer fields using a “precursor calculation”
(see Lund et al. [458]), as well as grid refinement in the shear layer behind
the step and at the lower wall are needed in order to get the right X . In the
precusor calculation, a time-dependent flow having the same scalings as the
outer and inner boundary layer is computed.

13.4.2 Coherent vortices

In his visualizations of the flow in a blunt plate separation bubble, Kiya [333]
could identify quasi two-dimensional Kelvin—-Helmholtz (KH) vortices shed
behind the leading edge of the plate, and then stretched longitudinally into
A-structures. Silveira-Neto et al. [648-650] were the first to study the topo-
logy of coherent vortices in a backstep flow with the aid of LES. They found
evidence for helical pairing of the KH vortices at an expansion ratio of 1.67 cor-
responding to the experiment of Eaton and Johnston [184], but a more quasi
two-dimensional structure (with longitudinal hairpins stretched between the
KH billows, see Plate 22) at an expansion ratio of 5. However, this was only a
transient state, as found by Fallon et al. [193], who recovered for longer times
the helical-pairing configuration in the latter case.

25 But average quantities such as the velocity profile, r.m.s. velocity fluctuations or
Reynolds stresses are well predicted, provided the downstream distance from the
step is renormalized by Xg (Fallon et al. [193]).
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Figure 13.18. LES showing a close up of the vorticity field corresponding to reat-
taching A-vortices behind a backward-facing step (courtesy F. Delcayre, Grenoble).

Figure 13.18 shows the behaviour of coherent vortices in a LES done by
Delcayre [165] in the same configuration as Le et al. [391]: uniform dens-
ity, Reynolds number 5100, free-slip upper boundary, grid refinement at the
wall and in the shear layer downstream of the step. Delcayre uses, together
with finite-volume methods (which are numerically diffusive), the selective
structure-function model (see Chapter 9), without any wall law, and with a
very short inlet channel of length H where the experimental mean velocity
profile of Jovic and Driver’s [320] experiment is assumed. As already stressed,
this does not give a good mean reattachment length, since the computed Xpg
is 7.5H (instead of 6.1H in the experiment). But there is no reason why the
dynamics of the coherent vortices should not be properly represented. The
figure shows a big A vortex which impinges the lower wall and is carried away
downstream, while transforming into an arch-like vortex resembling the hair-
pins ejected in a turbulent boundary layer (see Plate 18). In fact, examination
of the pressure plots in the simulation just behind the step indicates that hel-
ical pairing is at hand. It seems then that a good scenario for coherent vortex
dynamics is here:

(a) quasi two-dimensional KH coherent vortices are shed behind the step;
(b) they undergo helical-pairing interactions;

(c) a staggered pattern of big A-vortices forms;

(d) they impinge the wall;
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(e) they are either carried away downstream and transform into archs, or
trapped into the recirculation bubble.

Let us quote Lesieur et al. [431], who mention the weakly-compressible
LES of Danet and Aider [3,155], and provide animations of these flows:

In a more recent LES study of the (...) step at Mach 0.3, Lesieur et
al. [430] compare flows resulting from two sets of upstream conditions:
(A) a mean velocity profile corresponding to Spalart’s boundary-layer
DNS [663] perturbed by a weak three-dimensional white noise.

(B) a more realistic time-dependent velocity field (precursor calcula-
tion) generated through an extension to the compressible case of the
method developed by Lund et al. [458].

In case B, the upstream boundary layer contains quasi longitudinal
vortices propagating before the step. The first grid point in the direc-
tion nomal to the wall is at a distance of 1.3 in wall units relative to
the upstream turbulent boundary layer. Periodicity is assumed in the
spanwise direction, and the boundary condition at the top and the exit
of the domain is non-reflective. This makes a difference with respect
to the DNS of Le et al. [391] where free-slip conditions are taken. (...)
Q isosurfaces (threshold 0.6U2/H?) for the two classes of upstream
conditions are presented. For case A, one sees the regular shedding
of straight quasi two-dimensional Kelvin—Helmholtz vortices, which
appear at a distance of 1.5 ~ 2H downstream of the step. They un-
dergo helical pairing, and transform into big A vortices (arch vortices)
which impinge the lower wall and are carried away from the step. (For
case B, one sees) qualitatively the same events, but vortices appear
very close to the step, and the flow is much more three-dimensional.
Helical pairing seems to be triggered by the passage of upstream lon-
gitudinal vortices passing above the step. The side views of figures
(...) confirm that the flow reattaches sooner in this case than in the
noised case. This is confirmed by the determination of the reattach-
ment length, which is of 5.80H for (A) and 5.29H for (B). The latter
value is different from the value of ~ 6.1H found by Le et al. [391] with
equivalent upstream conditions. This discrepancy may be attributed
to the differences in the boundary conditions above and downstream
of the computational domain.

13.4.3 Instantaneous reattachment length

In fact, one can define in this problem an instantaneous reattachment line,
for instance by considering the instantaneous streamlines in the neighbour-
hood of the lower wall. It will oscillate in the spanwise direction, due to the
three-dimensional structure of the vortices which impinge the wall. It will also
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oscillate in the flow direction, with a frequency determined by the velocity and
spacing of vortices originating from the upstream mixing layer which pass in
the reattachment region. This frequency is measured as fxp =~ 2Uy/Xg.
In their experiment (where Xp = 7.8H), Eaton and Johnston [184] show
also evidence for an oscillation of the reattachment length at a “flapping fre-
quency” fr =~ 0.07Uy/H = 0.55Uy/XR. A three-dimensional high-resolution
LES of Silveira-Neto et al. [650] recovers a peak at the same frequency in
the kinetic-energy spectra, for two downstream positions 10H and 12H. It
was checked by these authors that this low-frequency oscillation of the back-
step flow may be recovered also in two-dimensional DNS. What is observed
in these two-dimensional DNS is the following: KH vortices generated behind
the step are caught in the recirculation region which, from time to time, sheds
bigger vortices downstream at the frequency fr. As a result, the recirculation
region shortens abruptly as soon as a big eddy detaches, then slowly increases
until the next eddy separates. Notice that in Silveira-Neto’s two-dimensional
simulations of Eaton and Johnston’s experiment, the upper boundary (with a
no-slip condition) was shown to play an important role, since the associated
boundary layer detaches and sheds downstream a row of vortices of opposite
sign with respect to the step vortices. The latter organise themselves in phase
opposition with respect to the former, as in a two-dimensional jet. Remark
finally that the flapping frequency was also found in the three-dimensional
DNS of Le et al. [391], whith a free-slip upper boundary condition and hence
no possibility for such an upper boundary-layer detachment. In fact, this flap-
ping phenomenon is general to most of recirculation bubbles, as stressed by
Kiya [333].

13.4.4 Rotating backstep

This exercise is an interesting combination of rotation and separation.

Deep flow

Let us assume that the flow in Figure 13.17 is submitted to a rotation of
spanwise axis, and that the fluid is very deep in this direction.

Tt is clear from the upper results that if rotation is cyclonic (same sense as
detached vortices), the latter will be strongly two-dimensionalized whatever
the Rossby number upstream of the reattachment region. Downstream, it is
probable they will keep their coherence, and travel as straight two-dimensional
billows above the wall.

If rotation is anticyclonic, and if the Rossby number modulus is not too
low, the vortices detached behind the step should give rise to purely longitud-
inal alternate vortices of same type as those encountered in rotating anticyc-
lonic mixing layers. They will impinge the lower wall and keep on travelling
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in the turbulent boundary layer above the wall. Before reattachment, one
should have a linear mean velocity profile, corresponding to regions of zero
absolute spanwise vorticity. If Rossby number modulus is low enough, one
should observe a two-dimensional flow structure similar to the cyclonic case.

Shallow flow in the Mediterranean

A geophysical example of backstep in a shallow flow is given by the vortices
shed in the Algerian current, which detach periodically from the recirculation
region induced by surface Atlantic water passing through Gibraltar straight
to the Mediterranean. Here, rotation is anticyclonic, but the very low Rossby
numbers of oceanic vortices (= 0.05) imply a two-dimensionalization by rota-
tion.

In fact the Algerian current is made of water fresher and colder than the
bottom current coming from the Mediterranean to the Atlantic and which
will give rise to the so-called meddies. Here, warm salty water is heavier than
cold freshier water. It is also well known that water exchanges between the
Atlantic and the Mediterranean are positive, since water lost by evaporation
in the Mediterranean is not compensated by the supply due to rivers.

13.5 Compressible flows

The development of hypersonic planes and bodies has boosted research on free-
shear or wall turbulent flows in supersonic or hypersonic conditions. Some of
these studies might be easier numerically than experimentally. Since one-point
closure models have some difficulties to capture the effects of Mach number
on turbulence,?® works using DNS or LES are of interest.

We review here some particular aspects of compressible turbulent shear
flows. Other topics related to compressible turbulence may be found in Lele
[405], Smits and Dussauge [656], as well as Krishnan and Sandham [360].

13.5.1 Compressible mixing layer

In compressible mixing layers between two flows of parallel velocities U; and
U, in unbounded domains, the relevant Mach numbers are the convective
Mach numbers Mél) and M§2)7 built with the velocity difference of each layer
with respect to U,, the velocity of the large vortices (Bogdanoff [69]), and
respectively ¢; and co, the sound velocities in the two external flows. It can
be shown by assuming a uniform pressure that

26 See however Gerolymos and Vallet [249)].
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where 2U is the velocity difference, and ¢ an average speed of sound between
the two layers. Note that Eq. (13.10) writes also as

A R CLCVETEY (13.12)

14+ /p2/p1

This expression allows to recover the value U, = (U1+Uz)/2 in the incompress-
ible uniform-density case. It may also be useful in an incompressible mixing
layer with density differences, since it takes into account density effects which
are not of gravitational type.

Returning to compressible mixing layers, laboratory experiments
(Papamoschou and Roshko [562]) show that this hypothesis (identity of the
two convective Mach numbers) is valid up to M, = 0.6. Experiments show also
a dramatic decrease of the spreading rate of the mixing layer, with respect to
the incompressible value, between M, ~ 0.5 and M, ~ 1 (what we call M, is
now the highest of the two convective Mach numbers). Above, it saturates at
about 40% of the incompressible case (see Figure 13.19).

The inviscid linear-stability analysis of the compressible mixing layer in the
temporal case was performed by Lessen et al. [434,435] and Blumen [68]. The
stability diagram found by the latter (for v = 1.4) shows that the maximum-
amplification rate is a decreasing function of the initial Mach number Méi) =
U/é¢, with a drastic change in the slope at MC(Z) = 0.6.

Two-dimensional DNS of Normand [537] show an inhibition of Kelvin—
Helmholtz instability for MC(Z) > 0.6: there is hardly any roll-up of the vor-
tices, which remain extremely flat and merge “longitudinally”, without turn-
ing around each other. On the contrary, for MC(Z) < 0.6, the roll-up and pair-
ing occur qualitatively in the same fashion as in the incompressible case, al-
though they are delayed by factors corresponding exactly to the amplification
rates predicted by Blumen [68]. Another interesting characteristic feature in
two dimensions is the occurrence of shocklets on the edge of the vortices at
Mél) ~ 0.7 ~ 0.8. Figure 13.20 presents the vorticity and pressure fields in
the two-dimensional DNS of Normand [537] at a convective Mach number of
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Figure 13.19. Experimental growth rate of the compressible mixing layer (normal-
ized by the incompressible value) in terms of the largest convective Mach number
(from Papamoschou and Roshko [562], courtesy J. Fluid Mech.).

0.8. They are visible as discontinuities in the pressure field, and leave weak
traces on the vorticity. They are exactly analogous to shocks arising on a
transsonic wing, and due to the fact that the flow is accelerated on the side
of the vortex and becomes locally supersonic. Similar results were found by
Soetrisno et al. [657,658] and Lele [404]. This occurs both in the temporally
and spatially-growing cases. It was however checked by Fouillet (1992) that
at higher convective Mach number (still in two-dimension), these shocklets
disappear, due to the very elongated character of the vortices.

A three-dimensional linear-stability analysis of the compressible temporal
mixing layer was carried out by Sandham and Reynolds [629,630]. It turned
out that oblique waves are more amplified than two-dimensional waves when
M exceeds 0.6. Another result shown with the aid of DNS by Fouillet [211]
is that the helical pairing found in the incompressible case (with a three-
dimensional random forcing superposed to the hyperbolic-tangent profile) is
inhibitted above Mc(z) = 0.6 =~ 0.7. The vortex structure of the mixing layer is
then made of staggered A vortices, as shown in Figure 13.21a, where the basic
flow in the upper layer goes from left to right.2” The corresponding pressure is
displayed in Figure 13.21b. It indicates a longitudinal reconnexion of pressure

27 The same structure was also found in the DNS of Sandham and Reynolds [630]
with a quasi two-dimensional initial forcing.
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Figure 13.20. Vorticity (a) and pressure (b) maps obtained in the DNS of a com-
pressible temporal mixing layer at M{” = 0.8 (courtesy X. Normand).

Figure 13.21. Top view of vortex lines (left) and pressure (right) in the DNS of
a compressible temporal mixing layer at convective Mach number 1 (from Fouillet
[211)).

into tubes following the legs of the A’s. This is an example where low pressure
ceases to follow the coherent vortices.
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E : Expansion (V.u > 0)
C : Compression (V.u < 0)

Figure 13.22. Compression and expansion of fluid particles in the stagnation region
of mixing layers.

As stressed in Lesieur et al. [431], these large structures do not persist for
higher resolution simulations of the temporal mixing layer at higher Reynolds
number (see Pantano and Sarkar [560] and Beer [53]).

Spatially-growing DNS of compressible mixing layers were also performed
by Fouillet [211]. Helical pairings was observed when the compressibility is low
(upstream M. = 0.3), as in the incompressible simulations of Chapter 4. At
upstream M. = 0.7 on the contrary, a pattern of very elongated staggered A
vortices is obtained. The same pattern was found by Gathmann et al. [244] in
a supersonic mixing layer confined between parallel planes. More recent LES
of compressible spatial mixing layers are due to Doris [171]. Let us mention
also the experiments of De Bisschop et al. [164] and Chambres [104].

Recent results concerning spatially-growing compressible free and forced
round jets can be found in Lesieur et al. [431].

The saturation of spreading rates observed experimentally when M, ex-
ceeds 0.6 might be due to two causes. The first one is the reflexion of Mach
waves on the walls of the facility. The second is the inhibition of Kelvin—
Helmholtz instability at this cross-over convective Mach number 0.6. Such
an inhibition may be physically explained as follows (see Figure 13.22). We
first consider an incompressible mixing-layer, where the vortex cores corres-
pond to pressure troughs, while pressure highs are located in the stagnation
regions. We assume now that compressibility is present, but is not too high
so that the same type of pressure distribution is preserved. We suppose also
that the fluid is a barotropic ideal gas, where p/p” is conserved with the mo-
tion. Therefore, fluid parcels travelling from low to high pressures (region C
in Figure 13.22) will see their density increase when arriving at the stagnation
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points (which means convergence, that is, Dp/Dt > 0 and V. < 0). After-
wards they will expand (region E on the figure, Dp/Dt < 0 and V.7 > 0).
Let us now consider the vorticity equation (2.76), which reduces, in this com-
pressible two-dimensional case, to

gt‘; - plg(Vp X Vp).Z + Zv%. (13.13)
Lele [404] and Fouillet [211] have verified in their numerical simulations that
the baroclinic and the viscous terms are negligible, so that the vorticity dy-
namics reduces to the conservation of the “potential vorticity” w/p. Thus,
the convergence and divergence zones will be respectively a source and a sink
of vorticity. This will work against Kelvin—Helmholtz instability, which tends
to diminish the vorticity at the stagnation points, and to increase it in the
low-pressure regions. As an illustration, Plate 23 presents a two-dimensional
DNS of an initially isothermal supersonic spatially-developing mixing layer:
the Mach numbers of the two streams are respectively 2 and 1.2. Hence, the
convective Mach number is 0.4, still under the critical value of 0.6, but the
divergence field already behaves as indicated by Figure 13.22. Note on Plate
23 an error concerning the montage of the divergence-field picture, since the
“quadrupole structures” should be centered on the stagnation regions.

13.5.2 Baroclinic effects in free-shear flows

On the basis of Eq. (2.76), various interesting baroclinic vorticity produc-
tion effects may be considered, even at low Mach. We take first a mixing
layer between two flows of densities and velocities p1, p2, U, Us. Suppose for
instance p; > pa (see Figure 13.23). The braids between the vortices corres-
pond to a density interface, and the vector ﬁp will be normal to the braid all
along it. Since vortices are low-pressure regions, the pressure gradient ﬁp will
be oriented as indicated on the figure. Therefore, the baroclinic torque will be
a source (resp. a sink) of vorticity in the lower (resp. the upper) part of the
braid. If p; < p2, the reverse occurs between the lower and upper braids.

In fact, this is valid only when p is conserved, that is, for a liquid. For an
ideal gas, the potential temperature @ is conserved, and the baroclinic torque
in Eq. (2.76) is equal to (1/p20)(Vp x VO). Thus the above reasoning still
holds when replacing p by —@. This yields “comma-shape vortices”, where
the part of the braid on the warm side is intensified, while the other one dis-
appears. This phenomenon is obvious in the gas mixing layers DNS presented
in Figures 13.23a and 13.23b (taken from Fouillet [211]), at a temperature
ratio of 2.

Such phenomena might be at hand in an axisymmetric round jet strongly
heated, in a flame for instance. The upper results indicate that vorticity in the
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Figure 13.24. Two-dimensional DNS of a gas mixing layer at convective Mach
number M = 0.375, with Uy > Usz; a) To = 2Ty, b) T4 = 2T» (courtesy Y.
Fouillet, Grenoble).

external part of the jet is reduced, while it is increased in the inner part. This
is a situation favourable for a good combustion, since one may expect reduc-
tion of instabilities on the surface of the flame, and enhanced turbulent mixing
(favouring chemical reactions) inside the jet. The same problem was looked
at with three-dimensional DNS of a temporal mixing layer by McMurtry et
al. [478] (see also Riley [601]), taking into account in the flow dynamics heat
release due to the chemical reaction. They obtain slower roll-up and less en-
trainment of unmixed fluid, due in particular to the baroclinic torque. All
these arguments contribute to explain why turbulent jets in a gas combustor
are more steady than a non-heated jet (Mariasine, private communication).
Remark finally that such effects are absent from Boussinesq equations,
where in the configuration of Figure 13.3 the baroclinic torque is proportional
to ﬁp x g, and constant along the braid. In the stable case (p2 > p1), it gives
rise to a vorticity intensification on the braid which may be at the origin of a
secondary Kelvin—Helmholtz instability. The latter was identified by Staquet



496 13 Towards “Real World Turbulence”

and Riley [670] (see also Staquet [671]) in the case of a mixing layer, and by
Fallon et al. [193] for a stratified backstep flow.

13.5.3 Compressible wake

We have seen that compressibility inhibits the development of inflectional
instabilities. This is true in particular for a wake. DNS of a three-dimensional
compressible temporal plane wake, developing from a Gaussian deficit-velocity
profile, were carried out by Chen et al. [114]. They show that, at a relative
Mach number?® of 0.462, the growth rate of the wake is reduced by a factor
of 60% compared with an incompressible calculation. As time evolves and the
deficit velocity decays, the wake becomes less and less compressible.

For a spatial wake developing behind a real object, things are extremely
different in the supersonic case: visualizations (see e.g. Van Dyke [698]) show
that, behind the front shock, the turbulent wake has become very narrow, with
small-scale three-dimensional turbulence and without any large-scale vortex
street.

13.5.4 Boundary layer upon a heated plate

We show now LES done by David [157] of transition to turbulence for an
ideal gas without gravity effects in a heated boundary layer inclined 10° with
respect to the incoming flow. The wall is isothermal, at a temperature three
times larger than the temperature at infinity: the flow is uniform upstream
(Mo = 0.5), with a small three-dimensional random white-noise perturba-
tion superposed upon it. A curvilinear system of coordinates is used, at a
resolution 237 x 30 x 32 grid points respectively in the streamwise, trans-
verse and spanwise directions. Here, the heating accelerates the transition,
due to the generalized inflection-point criterion.?® Staggered A vortices are
visible in Figure 13.25, showing the vorticity modulus. In this calculation, it
is the selective-structure function model (see Chapter 9) which is used. As for
the transition on a flat plate, this calculation is not possible either within a
DNS at reasonable cost or utilizing subgrid models like Smagorinsky’s or the
standart structure-function model.

It must be stressed also that the structure of this particular boundary layer
has analogies with that of an incompressible boundary layer once turbulence
has developed.

28 Based on half the initial deficit velocity at the centre.

29 This necessary condition for linear stability in a compressible parallel flow stresses
that pda/dy should have at least one extremum in the layer. If the wall is suf-
ficiently heated, pdu/dy may increase with y, then decrease to zero at infinity,
in such a way that it will have a maximum. These instabilities resemble Kelvin—
Helmbholtz instability.
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Figure 13.25. Vorticity modulus in the LES of a boundary layer at low Mach
number upon a heated inclined plate (courtesy E. David).

Let us mention finally that important LES of heated channels (straight
and curved) with applications to rocket engines (Ariane V in particular) are
reported in Lesieur et al. [431]. This concerns the work of Salinas-Vazquez
and Métais [625-627], and Miinch et al. [527].

13.5.5 Compression ramp

We present here LES related to studies concerning the rear flap during the
atmospheric reentry of HERMES, the former European space shuttle project.
Indeed, there was some concern that coherent vortices (e.g. Gortler vortices)
created in this region would produce temperature fluctuations overheating
the flap, and possibly damaging the material. A three-dimensional LES of
HERMES’ rear flap, in conditions corresponding to a laboratory experiment
carried out at the ONERA (with in particular a Mach number of 2.5), has been
performed by David [157] with the same code as for the boundary layer upon
a heated plate shown above. The calculation predicts both the A shock char-
acteristic of compression ramps and the presence of quasi stationary counter-
rotating longitudinal Gortler type vortices. They are visible in Figure 13.26,
which shows a spanwise section of the vorticity and the temperature field, with
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Figure 13.26. LES of HERMES’ rear flap; spanwise section of the longitudinal
vorticity (a) and temperature (b) (courtesy E. David, Grenoble).

characteristic mushroom shaped structures. More detailed on this calculation
can be found in Lesieur et al. [431].

In fact, the longitudinal vortices induce a heat transfer at the wall which
is five times larger than the average values. As stressed in Lesieur et al. [431],
of particular importance is the notion of

adiabatic temperature Ty (... ), defined as the temperature reached at
the wall (where the velocity is zero) by a fluid parcel travelling adiabat-
ically from the exterior of the boundary layer (for a time-independent
perfect fluid), and given by

1
T, = Too (1 +7 5 ;) . (13.14)

So T, is greater than To.: longitudinal vortices take very hot external fluid at
a temperature T, and bring it close to the wall at a lower velocity and higher
temperature. For a real hypersonic shuttle, we have T, =~ 3000°K, and the
temperature at the wall may be increased. This is susceptible of destroying
any material.

This is an example of the interest of LES with respect to modelling meth-
ods, which might never predict this type of fluctuations. These calculations
were still in progress when HERMES’ project was cancelled, which is a pity
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since we will never know about the potential dangers of these vortices. How-
ever, the unfortunate crash of US shuttle Columbia in 2003 might be due to
a problem of this type.

13.5.6 Compressible boundary layer

A review of the stability studies concerning a compressible boundary layer
above an adiabatic wall may be found in Mack [461] and Arnal [16]. Here, we
summarize the results of the linear-stability calculations done by Arnal [16]
for two-dimensional waves: the stability diagram resembles the incompressible
one, up to a first critical Mach number of 1.3. The waves which propagate are
analogous to the incompressible T.S. waves, and driven by a viscous instability.
However, their amplification rates are smaller. For 1.3 < M < 2.2, a new class
of unstable modes appear at high Reynolds numbers, corresponding to an
inviscid instability. For instance, at M = 2.2, these modes dominate for R =
U, /v > 7000, while the viscous T.S. modes are dominant for R < 7000. This
critical Reynolds number separating the viscous from the inviscid instability
diminishes when the Mach number is increased, up to M = 3, where the
viscous instabilities disappear. Another important characteristic is that the
stability diagram splits for M > 2.2, with the appearance of a second class
of instabilities of higher amplification rates and much higher wave numbers,
compared with the unstable modes described previously. This Mack’s second
mode sees however its characteristic wave number decrease when M is further
increased, up to M = 4.8 where the two unstable regions collapse. There is
only one unstable region at higher Mach number.

As in the mixing layer, three-dimensional oblique waves appear, which, for
0.9 < M < 2.2, grow faster than the two-dimensional ones (Arnal [16]). In the
range of Mach numbers where the stability diagram opens out (2.2 < M <
4.8), it seems that the oblique waves corresponding to the lower unstable
region of the stability diagram are more amplified than the corresponding
two-dimensional waves (Arnal [16]).

The problem is of course extremely intricate, but nothing indicates that
any inhibition of the instabilities will occur when the Mach number is in-
creased. On the contrary, and because the structure of a boundary layer is
highly three-dimensional, it is possible that turbulent boundary layers may
exist even at very high Mach numbers, of the order of 15 (Morkovin [525]).

LES of temporal boundary layer at Mach 4.5

We finish by presenting numerical results concerning the transition to turbu-
lence in a a temporal boundary layer developing upon an adiabatic flat plate at
a Mach number M = 4.5 and a Reynolds number 10.000. A three-dimensional
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Figure 13.27. Two-dimensional DNS of a temporal boundary layer at Mach 4.5;
vorticity field corresponding to rope-like vortices developing from the second mode
(courtesy F. Ducros, Grenoble).

linear-stability analysis of the laminar boundary profile shows that the most-
unstable mode is the two-dimensional second mode, due to the generalized
inflection-point instability. Three-dimensional DNS of such a boundary layer
were carried out by Ng and Erlebacher [533]. They first generate a basic two-
dimensional state, starting with the laminar profile to which a perturbation
consisting of the eigenmode corresponding to the second mode is added. The
resulting evolved basic state is made of the so-called “rope-like vortices”, sort
of very flat Kelvin—Helmholtz vortices developing close to the exterior of the
boundary layer. Let (2,0) be the components of the corresponding Fourier
wavevector in the (a, 8) space. Afterwards, they add a three-dimensional per-
turbation as a pair of oblique subharmonic waves,3’ which puts energy on
the wavevector (1, 1), which is a staggered mode. The DNS shows the growth
of energy in this mode, but blows up before the development of turbulence.
Ducros et al. [179] have redone these DNS in a slightly different manner: they
first generate the rope-like vortices through two-dimensional DNS starting
with the laminar profile to which a two-dimensional white noise is super-
posed. This basic state is displayed in Figure 13.27. Then a three-dimensional
white noise is added. As for Ng and Erlebacher [533], the DNS blows up be-
fore the end of transition. Figure 13.28a shows the evolution with time of
the kinetic energies of the various modes (integrated on the height of the
layer) in Ducros et al.’s [179] DNS: it confirms the growth of the subhar-
monic (1, 1), but also of a purely longitudinal mode (0, 2). In the same paper,
a LES using the structure-function model within the four-point formulation
in planes parallel to the wall is carried out. The initial conditions are the
same as for the DNS. The agreement between DNS and LES is good, as far

30 Which are the most-amplified within a secondary-instability analysis of the second
mode.
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Figure 13.28. Growth of modal energies in three-dimensional DNS (a) and LES
(b) of a temporal boundary layer at Mach 4.5 (courtesy F. Ducros, Grenoble).

as the modal energies are concerned (see Figure 13.28b). However, the LES
allows to go beyond the transition to developed turbulence. One sees that,
during transition, the mode (0,2) has initially a very slow growth (may be
linear, as in the models looked at in Chapter 3), then shoots up and eventu-
ally overwhelms the other modes. Up to ¢ ~ 3500, /Us, the rope-like vortices
undergo an out-of-phase spanwise deformation, corresponding to the subhar-
monic mode (1,1). This is close to the topology of the compressible mixing
layer, and of the inclined heated boundary layer of Figure 13.25. Meanwhile,
the longitudinal mode is physically associated to weak low- and high-speed
streaks of longitudinal velocity located close to the wall. They are also visible
when looking at the vertical vorticity w,. But the streaky pattern does not
persist after ¢t = 4004;/U, in the final stage of transition. Such a structure
has also been observed by Adams and Kleiser [2] with better-resolved DNS
permitting to go beyond transition. More details on the flow evolution may
be found in Adams and Kleiser [2]. They also find an important growth of the
(0,2) mode, and attribute it to a strongly nonlinear interaction between the
dominant modes. Indeed, a nonlinear resonant interaction between two (1,1)
modes may, if longitudinal periodicity is assumed, amplify the (0,2) mode.

Other configurations

Let us mention also the work of Maeder et al. [462], which is a “parabolized”
DNS of a spatially-growing boundary layer without pressure gradient above
an isothermal flat plate, at Mach M, ranging from 3 to 6. It gives an interest-
ing review on numerical and experimental aspects of compressible boundary
layers.
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13.6 Book’s conclusions

The world of turbulence is very wide, and it was not our aim to cover all its
aspects, some of which are already presented in excellent textbooks or reviews.
Therefore we have chosen to present only a limited number of issues.

In Chapter 1, we give a broad presentation of turbulence in fluids, with
experimental and numerical illustrations. We provide numerous engineering,
geophysical or astrophysical applications. We propose a new definition of tur-
bulence based upon the properties of unpredictability, mizing, and the ex-
istence of a wide band of scales. Such a definition does not require three-
dimensionality nor vortex stretching in the flow, and allows us to accept the
concept of two-dimensional turbulence. We propose also definitions for coher-
ent vortices and coherent structures. The concept of fully-developed turbulence
and the isotropy assumption are discussed. We introduce both deterministic
approaches such as direct-numerical simulations (DNS), and stochastic tools
such as one-point or two-point closure models. In this respect, large-eddy sim-
ulations (LES) are a very promising compromise, allowing to provide informa-
tions regarding both the deterministic structure and the statistical properties
of turbulence.

Chapter 2 presents basic dynamics and thermodynamics of fluids, with
Euler and Navier—Stokes equations for liquids and gases. Gravity, ensemble
rotation and compressibility are taken into account in a very complete fash-
ion. We look at vorticity dynamics, and present both Helmholtz and Kelvin’s
theorems. We derive also FErtel’s theorem for potential vorticity, with applic-
ations to atmospheric and oceanic dynamics. We derive Proudman—Taylor
theorem for rapidly-rotating non-stratified flows. Density stratification effects
are looked at with the aid of Boussinesq equations, with a formulation valid
both for liquids and gases. This allows us to study internal inertial-gravity
waves in geophysical flows. External inertial-gravity effects in shallow layers
are considered with the aid of Barré de Saint-Venant equations. We develop in
particular the shallow-water analogy between gravity waves at the surface of
a liquid and sound waves in a barotropic gas. We look also at the interesting
problem of Kelvin waves and tides. Finally we consider surface gravity waves
in a fluid of arbitrary depth.

In Chapter 3 we study transition to turbulence. We first introduce the
Reynolds number, then present the linear-instability theory for a parallel ba-
sic flow, both in two and three dimensions. We demonstrate Orr—Sommerfeld
equation for a viscous fluid, and Rayleigh equation for a perfect flow. Squires’
theorem permits to relate the three- and two-dimensional approaches. The
effect of a solid-body rotation is looked at, with the presentation of shear-
Coriolis instability, and how it relates to centrifugal instabilities. In the non-
rotating case, we present very simple non-normal models having some analo-
gies with low- and high-speed streaks observed in turbulent boundary layers.
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Afterwards we discuss transition in free-shear flows, using both laboratory
experiments and numerical simulations. We present physically the roll up and
pairing of Kelvin—Helmholtz vortices, as well as the formation of longitud-
inal hairpin vortices. We show also the possibility for helical pairing interac-
tions, yielding dislocations of the coherent vortices. We describe transition in
wall flows, with Klebanoff’s harmonic mode and Herbert’s staggered mode. Fi-
nally, thermal convection is discussed, mainly from the viewpoint of Rayleigh—
Bénard convection.

Chapter 4 is devoted to free or wall-bounded turbulent shear flows, both
from a statistical and coherent-structure point of view. We first present
Reynolds equations, as well as the mizing-length theory. The latter allows to
calculate the mean velocity profiles of plane and round jets or wakes, and of
mixing layers. For wall flows, we introduce wall units and derive the mean
logarithmic velocity profile for turbulent boundary layers, plane Poiseuille
and Couette flows. We discuss Blasius law of skin friction, and Dean ana-
logy. We show how coherent vortices may be characterized by the Q cri-
terion. Then we discuss the topology of vortices in turbulent mixing layers, jets
and wakes, with primary vortices, secondary longitudinal vortices stretched
between the latter, or helical reconnections. For round jets, the equivalent of
helical pairing is alternate pairing of vortex rings. We finally review the co-
herent topology of turbulent wall flows, with longitudinal low- and high-speed
streaks close to the wall, and propagation of hairpins above the low-speed
streaks. The latter dynamics is supported by animations of LES given in
Lesieur et al. [431].

In Chapter 5, we introduce spectral tools which are very useful for the
study of statistically homogeneous turbulence. We present two Fourier trans-
forms of a flow: the discrete and integral representations, for respectively
periodic and non-periodic flows. Afterwards, we write Navier—Stokes and
Boussinesq equations in Fourier space, and introduce Craya decomposition,
which is shown to be equivalent to Riley’s vortex-wave decomposition. We
present also the complex helical wave decomposition. We discuss how random
functions may be applied to turbulence. A particular emphasis is put on spec-
tral tensors. In the case of isotropic turbulence, we introduce the spectra of
kinetic energy, enstrophy, helicity and passive scalar. We study also azisym-
metric turbulence. Finally, we present the basic lines of rapid-distorsion theory,
which applies to homogeneous turbulence submitted to a mean constant shear.

Chapter 6 is devoted to three-dimensional isotropic turbulence. We first
look at triad interactions in Fourier space, and quadratic invariants in physical
space. Afterwards we present the so-called Kolmogorov’s 1941 theory, both in
Fourier space (Oboukhov’s theory) and in physical space. Structure functions
of arbitrary order are considered. We discuss also Richardson’s law concern-
ing the relative dispersion of particles pairs. Afterwards, the question of the
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dimension of the attractor of turbulence is looked at. A discussion relating the
skewness factor to a possible enstrophy divergence is carried out. The second
part of the chapter deals with coherent vortices in three-dimensional isotropic
turbulence. One looks also at the vorticity and pressure p.d.f.’s, and derive
Batchelor’s law for the pressure spectrum. We indicate how to calculate the
turbulence noise from this spectrum. Afterwards, we present the phenomeno-
logy of passive-scalar diffusion, very important for combustion modelling. The
chapter ends with a discussion on internal intermittency, and some anomalous
data found for the passive scalar in the large scales.

Chapter 7 is concerned with two-point closures of isotropic turbulence. It
presents first the Quasi-Normal approzimation, then the Eddy-Damped Quasi-
Normal Markovian approzimation (E.D.Q.N.M.). Equivalent stochastic mod-
els are proposed. These tools are extremely effective to understand the energy
transfers between different scales of motion. They are applied to kinetic energy,
helicity, pressure and diffusion of passive scalars. For the helicity spectrum,
they allow to predict a k~5/3 cascade which superposes to the k~5/3 kinetic-
energy cascade, and delays it. This helicity cascade has been recovered by
LES, which shows the quality of E.D.Q.N.M. type statistical closures. The
non-local interaction theory is derived, and interpreted in terms of spectral
backscatter (recovered also by DNS and LES) and kinetic-energy decay. We
present also the formalism of Renormalization-Group techniques (R.N.G.),
with a discussion on their validity.

Most of Chapter 8 deals with two-dimensional isotropic turbulence, which
has applications to large-scale atmospheric and mesoscale oceanic dynam-
ics, as well as to MHD turbulence, plasma physics and fusion-produced en-
ergy. We start with Fjortoft’s theorem, then explain the concepts of enstrophy
cascade and inverse energy cascade. We provide experimental validations of
these cascades, and discuss their relation with coherent vortices. We present
Weiss criterion (see also Herring [277]), which turns out to be a particular
case in two dimensions of the Q criterion, and is anterior. The E.D.Q.N.M.
model is also applied to kinetic energy, passive scalar and pressure. It allows
to recover the upper phenomenology. New DNS and LES of kinetic-energy
and pressure spectra are shown. Finally, we look at some two-dimensional
mixing-layer simulations from the point of view of two-dimensional tur-
bulence.

Chapter 9 is devoted to some aspects of Geophysical turbulence. It presents
the geostrophic approximation for the large-scale motions, and associated
discrete-layer models. Baroclinic instability developing from thermal fronts
is looked at using both theoretical considerations and DNS-LES based upon
Boussinesq equations. One shows in particular how cyclonic vorticity is fa-
voured throughout the process, specially in braids reconnecting the vortices.
We present Rossby waves (environmental and topographic). We discuss also
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the Ekman layer separating the geostrophic flows from a solid boundary or
(for the ocean) the upper wind. We present Lilly’s model of tornado gener-
ation, as well as a model based on thermal convection of a hairpin. Finally,
Charney’s theory of geostrophic turbulence is studied.

Chapter 10 is related to statistical thermodynamics of inviscid truncated
systems. In fact the use of these tools for real turbulent flows is limited.

Chapter 11 presents unpredictability growth from a two-point closure point
of view, both in three and two dimensions. We show how inverse cascades of
unpredictability from small to large scales may occur. We have related this
phenomenon to an error backscatter. There are important applications of this
problem in meteorology, since it is found that one cannot predict weather
numerically for periods overtaking 10 =~ 15 days. It turns out that climate
numerical models of the atmosphere which make predictions for much longer
periods are subject to errors.

Chapter 12 presents modern basis of large-eddy simulations (LES). We first
introduce the formalism of LES in physical space, with Smagorinsky’s model.
We derive Kraichnan’s spectral eddy viscosity and eddy diffusivity from the
E.D.Q.N.M. approach, using the non-local interaction theory. This model is
extended to spectra decreasing faster than Kolmogorov at the cutoff (spectral
dynamic model). We present also the structure-function model, as an attempt
to extend the spectral eddy coefficients to physical space. Filtered or selective
versions of this model are developed, in order to get rid of the influence of
large-scale velocity gradients in the evaluation of the eddy viscosity. We discuss
Smagorinsky’s dynamic model. Various applications are provided concerning
isotropic turbulence, free-shear flows and wall flows.

Chapter 13 concerns four important practical applications of turbulence,
dealing with the effects of stratification, rotation, separation and compressibil-
ity. They are studied with the aid of experiments, DNS and LES. We show in
particular how stratified turbulence may collapse into pankake-shaped struc-
tures. Rotating turbulence concerns first shear flows, where DNS and LES,
show in certain anticyclonic regions the formation of longitudinal hairpins
where absolute vorticity condenses. This is associated with a local Rossby
number equal to —1. We discuss also LES of initially isotropic turbulence
submitted to rotation. Afterwards, separated flows behind a backward-facing
step are looked at, both from a statistical and topological viewpoint. Finally,
compressibility effects in free-shear flows and boundary layers are considered,
with aerospace applications.

It is of course not possible to give a definitive conclusion to this monograph,
which poses certainly more questions than it provides answers. Therefore we
will leave the reader to draw his own conclusions, hoping that we have been
able to propose some new trails to his imagination.
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A continuous preoccupation throughout the book concerned the question
of the existence of coherent wvortices as a part of the turbulence itself, and
how they interact with smaller scales in the flow. It is an appealing prospect
than trying develop a Mechanics of elementary vortices, involving modes such
as spirals, pairings, dipoles, dislocations, alternate pairings, hairpins, streaks,
etc.

What will be the near future of Fluid Mechanics? It seems that, taking
into account the huge increase of computer ressources, a period has come in
which three-dimensional DNS and LES of flows of reasonable complexity?®! are
not only at hand, but are even less expensive than laboratory experiments.32
These numerical simulations (in case of LES) need an efficient subgrid-scale
modelling in order to take into account the small-scale turbulence. They need
also to be devised in such a way as to reproduce perfectly the results of
the linear-instability theory.?® The numerical codes have to be validated on
simpler cases such as isotropic turbulence, on experiments if possible, and
must be consistent with the physical principles which have emerged from the
theory, like the existence of inertial cascades, the correct decay laws or the
unpredictability. It is then important in this context to maintain and develop
the stochastic modelling tools, and make them as simple as possible to handle.

The LES will serve as an invaluable tool to assess the classical methods of
turbulence modelling in the industry. They will also permit a dynamic control
of turbulence, for instance in aerodynamics, acoustics or combustion. Let us
mention that right now, methods for coupling one-point closure modelling
in the large scales with LES in the small scales are rapidly developing for
industrial applications.

Such a trend in Fluid Dynamics research will in no way exclude the re-
course to theory. Laboratory experiments will of course be necessary, either
for a better understanding of fundamental physics, or in complex situations
where developing a calculation is not realistic. As already stressed, they are
also needed in order to validate the numerical codes.

Of course, all these ambitious projects will be rendered possible only with
a proper development of the computing, data processing and visualization
facilities. Parallel calculations performed simultaneously on a large number of
processors will play an important role in this development.

31 “Reasonable”, in the sense of the large eddies around a wing or within a com-
bustor, or the planetary scales of atmospheres and oceans, or the convective cells
in a heated flow. But certain extremely complex industrial flows (like within the
core of a fast-breeder reactor for instance) do not fall into this category.

32 In some situations such as in very high speed or high temperature flows, the
experiment (or measurements) may even be impossible (or too dangerous).

33 This point is extremely important in the context of the study of large coherent
vortices.
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It might finally happen that this would be only a necessary transition stage
towards the definition of new fluid dynamical concepts which would render ob-
solete and useless the complicated analytical and numerical techniques which
helped create them.
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Prigogine, 153

primitive equations, 392

proper orthogonal decompositions, 16

Proudman, 239, 263

Proudman—Taylor theorem, 50

Proudman—Taylor theorem (general-
ized), 353

pseudo-spectral methods, 102, 160

Q criterion, 135, 324

Quarini, 428

quasi geostrophic theory, 349

quasi two-dimensional topology, 103

Quasi-Normal approximation (Q.N.),
239, 240

R.N.G., 432

Rabaud, 313

Ragab, 450

Random Coupling Model (R.C.M.), 247

random function, 19, 121, 165

random Galilean transformation, 248

random walk, 203, 306

rapid-distorsion theory, 149, 155, 167,
184

Rayleigh, 116

Rayleigh criterion for centrifugal
instability, 87

Rayleigh discriminant, 87

Rayleigh equation, 105



Turbulence in Fluids

Rayleigh equation (2D), 80

Rayleigh inflection-point criterion, 81

Rayleigh number, 96, 115, 117

Rayleigh—Bénard convection, 114, 117
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Rossby equation, 380

Rossby number, 12, 48

555

Rossby number (local), 86, 351
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round wake (turbulent), 128

Rouse, 28

Ruelle, 140

Sadourny, 162, 168, 322, 340, 357, 371,
391, 395, 398, 452

Saffman, 274, 320

Sagaut, 19

Salmon, 391

salt fingers, 118

Sandham, 100, 112, 412, 489, 491

Sato, 106

Saturn, 1, 14, 388

sawtooth profile, 264

scalar backscatter, 341

scalar spectrum, 178

scalar-velocity correlation, 173
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Stokes, 31
Stommel, 204
strange attractor, 15
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