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PREFACE 

Fracture mechanics as a scientific discipline has been developed during the 
last decade. And many of its basic aspects have already been elucidated. A 
substantial contribution to this development was realised by Russian schol­
ars (N. A. Zlatin, A. G. Ivanov, B. V. Kostrov, E. M. Morozov, L. V. Nikitin, 
V. S. Nikiphorovski, V. Z. Parton, L.I. Slepjan, V. E. Fortov, G. P. Cherepa­
nov, E.I. Shemyakin and others) and by foreign ones (J. D. Achenbach, 
K. B. Broberg, J. W. Dally, L. B. Freund, A. Maue, J. F. Kalthoff, W. G. Kna­
uss, T. Kobayashi, G. C. Sih, D. A. Shockey and others). And, to a great 
extent, the progress in the field is due the achievements of the St. Peters­
burg- Leningrad Scientific School of Mechanics Continuum by G. V. Kolosov, 
V. V. Novozhilov and L. M. Kachanov Contributions of this institute include 
the establishment of the fundamental principles of fracture analysis as a pro­
cess, occurring at different scale levels of structure. 

However, despite such achievements in the development of the science of 
fracture, many important problems remain. One of the most notable of these 
is dynamic fracture. This is usually regarded as a rupture of material under 
a shock-wave loading which takes place in a relatively short time period and 
corresponds to the working time of the external shock pulse or shorter than 
it. 

Improvement of the existing measuring devices and the creation of new 
ones made it possible to study the process of fracture under high-speed load­
ing. Subsequently, vigorous growth occurred in both experimental and theo­
retical aspects of fracture mechanics. But even with this progress, solutions 
to the principal problems that remain are yielded slowly. This is because of 
the considerable technical difficulties in experimentation, requiring expensive 
precision instruments as well as the complexities of mathematical modeling 
and computation. Much more experimental data needs to be acquired and 
we are faced with an urgency to systematise the data already in hand. 

Thermoviscoelasticoplastic-medium modeling abounds in such defects as 
microvoids and microcracks. Also, discrepancies in experimental fast-fracture 
data obtained by traditional approaches have engendered various complicated 
schemes to compute dynamic effects. The complex numerical methods used 
and approaches taken to dynamic fracture analysis turn out to be substan­
tively accessible only to their authors. And with linear elasticity mechanics 
and brittle fracture these schemes are not perfect. Nevertheless, it is still pos­
sible to elaborate methods for high-speed fracture analysis based on simple 
mechanical engineering principles, so the definitive detour from traditional 
schemes of energetic balance and from power fracture mechanics in favor of 
complex rheology and fracture microphysics may be premature. The devel-
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opment of such procedures will permit more effectively an explanation of the 
many peculiarities of high-speed fracture. 

In this book we develop a new phenomenological approach to study brittle­
medium fracture initiation under shock pulses. This approach is based on 
defining invariant parameters which are not dependent on the mode and 
history of a fracture and permit an investigation of miscellaneous effects ob­
served during experiments with high-speed fracture. This approach provides 
an opportunity to estimate fracture of both 'intact' media and media having 
macrodefects such as cracks and sharp notches. A qualitative explanation 
is thus obtained for a number of principally important effects of high-speed 
dynamic fracture that can not be clarified within the framework of previous 
approaches. We show that it is possible to apply this new strategy to resolve 
applied problems of disintegration, erosion, and dynamic strength determi­
nation of structural steels, etc. By extending well-known classical principles 
of Linear Fracture Mechanics, the suggested approach conserves the intrinsic 
'industrial' character of the analysis and can be considered as a basis for new 
testing methods and for certification of dynamic strength characteristics of 
structural materials. 

Specialists can use the methods described in this book to determine critical 
characteristics of dynamic strength and optimal effective fracture conditions 
for rigid bodies. This book can also be used as a special educational course 
for guidance on the deformation of materials and constructions, and fracture 
dynamics. 

We, the authors, take the opportunity to pay tribute to the honor and 
memory of our teacher, academician V. V. Novozhilov, who approved of the 
structural-temporal approach described in this book, and to the academician 
N. S. Solomenko, who gave his support to these investigations. 

Numerous invaluable comments on the book were provided by Prof. 
R. V. Goldstein. It is our agreeable duty to thank him. 

We are also grateful to our colleagues and collaborators at the Mathe­
matical and Mechanics Research Institute (NIIMM) and the Mathematics 
and Mechanics Faculty of the St. Petersburg University. We also thank Dr. 
A. A. Utkin, who did numerous computations, and T. A. Ephimova for assis­
tance with the computer typesetting of this book. 
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CHAPTER 1 

PROBLEMS OF DYNAMIC LINEAR FRACTURE 
MECHANICS 

The behavior of materials and constructions under high-speed loading has 
a number of peculiarities, and its examination is far from complete. This is 
due to the deficiency of experimental research data on controlled loading in 
the micro- and nanosecond ranges and by unsuccessful attempts to elucidate 
the results of these experiments on the basis of traditional static mechanics 
concepts. 

§1. Problems of Stability and Fracture 
Under High-Speed Loading 

Many experimenters have noticed the fact that rapidly loaded models and 
constructions can resist, under static conditions, buckling loads which con­
siderably exceed the critical level, but still do not buckle. 

Studies on standard rectilinear rod compression ([16, 2, 41]) and others re­
vealed some peculiarities of its behavior in dynamics. It is commonly known 
that under static conditions, during any exceeding of the Eulerian load for a 
compressed rod, only the first mode of buckling is stable. It might be sup­
posed that such a state would remain even during dynamic loading. However, 
M. A. Lavrentiev and A. Y. Ishlinsky [16J have ascertained that for rod com­
pression, calculating the inertial forces acting according to Heaviside's law 
leads to a different result. 

Strength characteristics of materials and constructions under static and 
dynamic loading also differ. Numerous experiments demonstrate the failure 
of specimens through fracture under high-intensity pulse loading, when am­
plitudes of the external effects exceed those forces that would normally cause 
a fracture under static loading conditions. A thorough investigation of this 
problem was hindered for a long time by the absence of reliable loading-rate 
control, and the inability to choose and to measure fracture parameters which 
uniquely characterise the beginning of the process. 

Systematic study of such high-speed fracture peculiarities demands compli­
cated high-precision equipment and has become possible only quite recently. 
Important research by Russian and other scholars is devoted to this problem 
(e.g., [8-10, 53, 35, 75-77, 73, 82, 112, 113, 124, 66-68]). 

N. Morozov et al., Dynamics of Fracture
© Springer-Verlag Berlin Heidelberg 2000
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The experimental results affirm that the testing of dynamic strength char­
acteristics on the basis of quasistatic defining parameters is rather problem­
atic. 

Traditional parameters of strength and crack-growth resistance are con­
stants for a particular material under static conditions. However these same 
parameters are very complicated under dynamic loading and depend on phys­
ical and geometrical characteristics of the external action. At the same time, 
attempts to describe the dynamic fracture of materials with a set of func­
tional curves correcting for velocity, temporal and other dependent variables 
of traditional quasistatics have also been unsuccessful. Such work is compli­
cated not only by extremely serious difficulties in experimental tracing of such 
curves but also by the special nature of dynamic fracture. Dynamic fracture 
regularities are characterised by special features which make it impossible to 
apply directly the concepts used to describe material strength under static 
conditions. 

Experiments have revealed that new approaches are needed for develop­
ing models for high-speed fracture analysis. These approaches should reflect 
the structural and temporal peculiarities of the process. Producing such ap­
proaches is one of the highest priorities of deformable rigid-body mechanics. 

§2. Outline of Linear Fracture Mechanics 

The modern theory of material strength and fracture begins with the in­
vestigations of Galileo, who was the first to associate variations in strength 
with the existence of defects. Nevertheless, the engineering practices of the 
nineteenth and the beginning of the twentieth centuries are founded on the 
hypotheses of Ch. Coulomb, O. Mohr and E. Mariotte, who considered and 
studied media and constructions as 'defectless', and fracture as an instanta­
neous action by a local stress a of some critical value. 

A new stage of fracture mechanics development is associated with the 
names of A. Griffith and G. Irwin, who suggested an effective method of equi­
librium analysis for a cracked elastic domain. 

A. Griffith [72] introduced the specific energy of a fracture f, which rep­
resented the energy of new surfaces formed during fracture, and suggested 
using the energetic balance equation to define critical loads 

6.U + 6.f = 6.A, 

where U is the deformation energy; A is the work of external forces. 
G. Irwin [74], using Sneddon's formulas for stresses near the crack tip, 

suggested the following criterion of crack propagation in a form which was 
extremely convenient for applications 
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where KJ is the stress-intensity factor, and KJc is the static fracture tough­
ness. 

We notice that K is not a local but an integral characteristic, depending 
on the energetic state of the whole construction. * 

Thus, in the problems of static loading there are two fracture (strength) 
criteria: 0" S; O"C - 'for defectless' media and KJ S; KJc - for cracked domains. 
In both cases, we are dealing with certain power characteristics attaining the 
given critical value, whereupon, according to the theory, a fracture occurs 
instantaneously. 

The examined classical approach is reasonably well adjusted to the exper­
imental results for brittle fracture and is now universally recognised as an 
instrument of engineering practice (see, e.g., [40, 44]). 

As will be confirmed by examples further on, the situation is changed in 
the case of dynamic loading. 

§3. Theoretical Contradictions of Fracture Dynamics 

Let us study the problem of interaction between a longitudinal pulse stress 
wave with a crack (x S; 0, y = 0) in an unbounded elastic plane xy. On 
the crack faces we have the boundary conditions O"xy = 0, O"y = O. Let the 
components of the displacement vector u, v in the incident wave be expressed 
by the relations 

u = 0, 

Then the stress O"y in the wave has a rectangular temporal profile 

where P = (>. + 2f..l)vo, P is the amplitude of the incident stress wave and T 
is the pulse duration. 

Here and further Cl = J(>. + 2f..l)1 p, C2 = J f..ll P are the speeds of longi­
tudinal and transverse waves respectively, >., f..l are the Lame constants and 
H(t) is the Heaviside function. 

At the temporal value t = 0 the interaction between the incident wave and 
the crack happens, whereupon near the crack tip (r = 0) a singular stress 
field appears, characterised by asymptotic formulas 

r --+ O. 

*Using the stress-intensity factor to estimate limit efforts, applied to cracked elastic 
domains, was already suggested by K. Wieghardt [121J in 1907. 
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Here r, () are polar coordinates at the crack tip. 
Let T tend to zero, holding the complete power pulse of the external action 

U = PT constant. Then, as was proved by G. P. Cherepanov [60], 

(1.1 ) 

According to this formula there is always a temporal value when the cur­
rent value of the stress-intensity factor exceeds an arbitrarily large value. So, 
according to the classical approach, fracture occurs during any, including an 
indefinitely small, concentrated action pulse U, but this does not correspond 
to the real situation. 

An important singularity of dynamic fracture is the existence of specific 
links between the stress intensity and the energy flux entering the moving 
crack tip. 

Let us examine for example a crack of a longitudinal displacement (or so­
called antiplane deformation), extending in an infinite elastic medium with 
a constant speed v. For this case the energy flux entering the moving crack 
tip, T(v), can be described by the expression (see, e.g., [55]) 

(1.2) 

where KIll is the power-intensity factor at longitudinal displacement. So, 
according to the theory of cracks, the energy flux entering the crack tip 
increases infinitely with an increase of its speed and T( v) ---+ 00 when v ---+ C2. 

For classical fracture mechanics this situation is quite paradoxical: for any 
material of an arbitrary strength a certain velocity always exists when a 
fracture would be possible. Hence, any 'energetic barrier', established by the 
classical theory of Griffith-Irwin, can easily be overcome at specific velocities 
for any given intensity of external loading. 

It should be noted that opinions usually given to justify the aforesaid 
contradiction about the dependence of crack speed on the energy flux entering 
the crack tip (the speed increases with the flux increase) are incorrect. These 
are based on the supposed behavior of the solution to the inverse problem, 
which has not yet been obtained in final form. 

We also note that the real 'crack tip' speeds are considerably less than their 
theoretical values, even for very intense external actions, and this guarantees 
a high-power energy flux entering the tip. This contradiction is the subject 
of numerous studies, but a reasonably satisfactory explanation has not yet 
been found. 

Experiments show that dynamic fracture mechanics abounds in multitudi­
nous effects that can not be incorporated in classical ideas. Many of them 
will be analysed in the next chapters. But we would like to point out here an 
important circumstance; a whole series of effects characteristic of dynamics 
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can be explained, and even computed, with the help of a special generalisa­
tion of the principles of linear fracture mechanics based on the concept of the 
spatial-temporal structure of a fast-rupture process. 



CHAPTER 2 

EXPERIMENTAL METHODS OF DYNAMIC 
FRACTURE RESEARCH 

Among the experimental methods of research on dynamic crack-growth re­
sistance and fast fracture, the dynamic photo elastic and caustic methods 
are the most effective. These methods have been developed in the last two 
decades. The most important feature of these methods is the ability to di­
rectly track behavior possibilitis for quantitative characteristics of the mate­
rial stress state during fracture. This is attained by a combination of classical 
methods of optical image processing with high-speed photography techniques. 
In this chapter we will examine principles and peculiarities of both methods 
as they are applied to fast-start and crack-propagation problems in brittle 
solids. 

§1. The Dynamic Photoelastic Method 

The basis of the dynamic photoelastic method is the ability of many vitreous 
polymers to show photoelastic phenomenoen. The effect is stipulated by the 
fact that under the influence of mechanical stresses in clear materials an 
optical anisotropy appears. This leads to the appearance of birefringence; a 
linearly polarised light wave passing through a tensile plane decomposes into 
two orthogonally polarised rays, each of which propagates at its own speed. 

If after the passage we bring both rays together to a common polariza­
tion plane, we get an interference pattern. This pattern can be investigated 
according to well-known methods. The difference in optical distance (phase 
difference), by mechano-optical rheological laws, corresponds to the state of 
plate strain. This permits us to define quantitative characteristics of the in 
plane deflection mode at each point of the model. 

With this type of modeling, vitreous polymers with clearly expressed 
elastic-brittle and photoelastic properties are usually used. In particular, 
Homalite-lOO and modified epoxy KTE are such materials (see, e.g., [84]). 
Homalite-IOO is a transparent vitreous polymer with birefringence. Owing to 
its processability, it is intensively used in studies by the photoelastic method. 
It can be simply obtained as large sheets with optical-quality polished sur­
faces. An important quality of this material is its ability to preserve its prop­
erties under sustained loading. 

N. Morozov et al., Dynamics of Fracture
© Springer-Verlag Berlin Heidelberg 2000
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It was demonstrated by A. B. Clark and R. J. Sanford [65] that this mate­
rial's optical constant does not depend on the rate of loading. The study of 
Homalite-lOO dynamic behavior revealed ([85]) that this material is suitable 
for analyses of crack propagation through the photoelastic method. Nowa­
days it is widely used by American and west European researchers as one of 
the most brittle birefringent materials available. 

Other materials, also often used in photoelasticity experiments, are com­
pounds based on an epoxide resin. The epoxide KTE (see, e.g., [84]) is 
obtained by polymerisation of the resin Epon 828. The polymerisation is 
achieved with the help of a vulcanising ingredient, polyxypropylenamine. 

Plates, made from the epoxide KTE, have a strong birefringence and are 
effectively used in dynamic investigations using the photoelastic method. The 
epoxide compounds in comparison with Homalite-lOO are more viscous and 
at the same time more sensitive to the loading rate. 

Principal mechano-optical values of Homalite-l00 and epoxide KTE are 
given in Table 1 [84]. 

Table 1 

Parameter Homalite-l00 Epoxide KTE 

Cl (m/s) 2150 1970 
C2 (m/s) 1230 1130 

Ed (GPa) 4.82 3.86 
/-Ld (GPa) 1.84 1.47 

lid 0.31 0.34 
p(Ns2 /m4) 122 117 

KIc (MN/m3/ 2 ) 0.45 1.18 
Gad (MN/mm) 0.45 1.18 

Here Ed, /-Ld are the dynamic Young's modulus and the shear modulus 
respectively; lid is the Poisson coefficient; KIc is the static fracture toughness 
( crack-growth resistance); Gad is the material optical constant under dynamic 
loading; and p is the density. 

Elastic constants under dynamic loading are determined by measuring lon­
gitudinal Cl and transverse C2 stress-wave velocities. This measuring is carried 
out by observing, using the photoelastic method, the stress-wave propagation 
in a half-plane loaded dynamically, for example with a charge of explosive 
substance. 

The material optical constant Gad is a parameter linking the optical char­
acteristic isochromat sequential number N with the main stresses by means 
of the optical rheological law 

(2.1) 
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where T is the peak shear stress in the plate; al - a2 is the difference of 
principal stresses; and h is the thickness of the specimen. Measuring Cad 

under dynamic loading can be done on the basis of simultaneous measurement 
results of axial deformation and the number of fringes in the specimen, loaded 
by an uni-axial impact ([65]). 

A stress state in the crack-tip neighborhood is determined by means of 
temporal scanning of isochromats. The pattern is obtained with the help 
of high-speed photography. Different systems of high-speed photography are 
used. Examples of good cameras are the Kranz-Shardin multi-spark camera 
(33000- 850000 exposures / s) and a streak camera ofthe SPR-l(2) type (from 
1 to 2 million exposures / s) . Dimensions and forms of isochromats recorded 
on the photographs reflect fairly accurately the instantaneous value of the 
stress-intensity factor. Again, the ability to determine the crack-tip position 
during its propagation allows us to measure its length as a time function. A 
typical pattern of behavior of isochromats in the crack-tip vicinity is shown 
in Fig. 2.1. 

Fig. 2.1 

To determine the instantaneous values of the parameters of the stress­
intensity factor K(t) , the dimensions and forms of the isochromats are mea­
sured and characterised. The characteristics of the stress-field intensity are 
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acquired on the basis of analytical and experimental test results. Analytical 
calculations of isochromat forms are carried out with the help of the Vester­
gaard function of stresses 

Z(z) = v~z [1 + (3 (~)] + (t, 

where z = re iO . The expression K/V21TZ describes the singular part of the 
stress field near the tip of a crack with the length 2a, located in the center of 
a plane plate. Parameters (t and (3 permit us to take more precise account of 
the boundary influence and applied loads. Furthermore, the domain near the 
crack tip, where the described isochromat analysis is used, expands a little. 
The parameters K, (t and (3 determine the characteristic form of isochromat 
loop near this domain. Expressions for T and for the difference 0"1 - 0"2 from 
(2.1), calculated according to the Vestergaard function, make it possible to 
compute the stress-intensity factor from measured geometrical characteristics 
of isochromats near the crack tip. 

§2. The Method of Caustics 

Stress-intensity factors for stationary and expanding cracks can be experi­
mentally determined by schlieren optical methods. P. Manogg [90] has worked 
out a method of schlieren figures, which later became well known in fracture 
mechanics as the method of caustics ([117]). 

Let us consider the basic principles of the method of caustics (see, e.g., [79, 
108]). Let the notched specimen from the transparent material, illuminated 
by exterior forces, be lightened by a parallel optical beam. The cross-section 
of the specimen cut by a plane passing through the zone around the crack 
tip is shown in Fig. 2.3. 

An increase of the intensitiy of the stress in the zone closer to the crack 
tip leads to a decrease in the plate thickness, and changes the material, index 
of refraction. Hence, at a first approximation, the domain of the crack tip is 
acting as a divergent lens, deflecting the light from the axis of the beam. This 
causes the appearance of a schlieren figure, limited by an intense light edge 
(caustic), that can be observed on a screen beyond the specimen (Fig. 2.3). 

The boundary between light and shadow for the given figure is determined 
by the annular domain around the crack tip, the radius of which depends on 
the distance between the screen and the specimen. The appearance of one 
caustic is typical for isotropic materials, and of two caustics for anisotropic 
ones. For transparent materials this method can be used in transmitted light, 
and for non-transparent materials in reflected light. 

P. Manogg [90] computed the form of schlieren figures for a tensile crack 
supposing the stress distribution near the crack tip is described by Sneddon's 
formula. Following his course of reasoning: 



10 

p 

p p 

Fig. 2.2 

\ 
.8 
] 
" u 

Let Xl, x2 be the screen coordinates of a ray having been transmitted 
through a non-deformed plate and Xl, X 2 be the same coordinates after its 
deformation. Let us consider the deformed specimen surface in the crack tip 
('lens') given by the equation 

Regarding the distance from the specimen to the screen Zo as much greater 
than its thickness (zo » j), we have 

The caustic is the envelope of beams. Its equation is written by assigning 
the Jacobean coordinate transformation a value of zero, 

det [b",,{3 - 2zoi",,{3l = 0, a, (3 = 1,2, (2.2) 

where b",,{3 is the Kroneker symbol. 
For the opening mode of a tensile crack we have 

(2.3) 

where Kr is the stress-intensity factor for a crack of type I; E, lJ are constants 
of elasticity; h is the thickness; and r, e are polar coordinates at the crack 
tip. 
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Fig. 2.3 

A substitution of (2.3) in the transformation (2.2) gives rise to the equation 
of the caustic, shown on the screen, which turns out to be an epicycloid. The 
maximum diameter of the caustic is a function of the stress-intensity factor 
and can be described by the formula 

KI - 2J27r E D5 / 2 (2.4) 
- 3)..5/2 vhzo ' 

where D is the caustic diameter; ).. is a numerical coefficient, characterising 
the epicycloid form; and Zo is the distance between the specimen and the 
screen. 

Experimental realisation of the method is simple enough. A monoch­
romatic light beam, emitted by a laser, having passed through a system of 
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lenses, falls on a specimen. Reflected (or transmitted) rays are captured on a 
screen. The specimen is loaded, and the maximal dimensions of the schlieren 
figure are measured. Then, substituting the parameter values in (2.4), we 
calculate the stress intensity factor. 

During dynamic tests schlieren figures are registered with the help of high­
speed photography. The start is initiated by the crack itself. 

Materials studied by the caustic method include: polymethylmethacrylate 
(PMMA), Homalite-100, epoxide, Araldite-B, plexiglas and polycarbonate. 

§3. On an Asymptotic Representation of the Stress Field 

Near the Crack Tip 

A real stress field appearing in a thin plate is always three-dimensional. Ex­
periments on plates from Plexiglas and martensitic steel carried out with the 
caustic method have shown [86, 106) that the radius of the space-stress-state 
zone near the macro crack tip is not less than 0.5h, where h is the plate thick­
ness. Nevertheless, in practice there are many cases when a brittle-fracture 
analysis could be carried out with the help of a two-dimensional asymptotic 
description based on the stress-intensity factor. As was already noted, this 
can be determined by measuring the stresses in the crack-tip neighborhood 
according to well-known asymptotic formulas. 

Thereby dimensions and shapes of the action zone of a stress state with 
a two-dimensional asymptotic description acquire great significance. Let us 
examine this problem in terms of the opening mode of tensile crack behavior 
in static conditions [48). 

This problem has been solved by the photoelastic method using plane spec­
imens made from organic glass. Specimen 1 was made from organic glass with 
the optical constant C = -2.04 X 10-2 Pa-I , and specimen 2 from optically 
sensitive organic glass with the optical constant C = 40.5 X 10-2 Pa-I. 

Both specimens were plates with the dimensions 220 x 68 mm. The thick­
nesses of the plates 1 and 2 were 3.25 and 4 mm respectively. The crack 
location and its dimensions are denoted in Fig. 2.4. Specimen 1 crack length I 
was 25.2 mm, and 26.8 mm for specimen 2. Special holes near the crack faces 
provided the formation of an ideal crack end from the original notch when 
stretching forces p were applied. 

The specimen was subjected to remote uniaxial stretching in the direction 
perpendicular to the notch plane by a loading device, UP-8. Each speci­
men was investigated for two remote tensile stresses p equal to 0.91 and to 
2.23 MPa. The stretched specimen was placed in the field of a coordinate 
synchronous polarimeter, CSP-1O. With its help, using the Saint-Armond 
method, the optical phase difference 'ljJ and the parameter cp of optical iso­
cline in monochromatic light with the wavelength A = 546.1 nm were mea­
sured (see, e.g., [1)). The measurements were taken along the plane () = const 
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(() is the polar angle). The values of tangential stresses Txy and the differ­
ences of normal (Jx - (Jy stresses were calculated at these points according to 
measured optical values by the photoelastic method 

Txy = 2~h sin(2'Pxy) , (2.5) 

where 8 is the optical propagation difference, determined by the measured 
phase difference; C is the optical constant obtained from calibrating stretched 
specimens of the specimen material; and 'Pxy is the angle determining the 
direction of the largest principal stress (J1 relative to the axis Ox. Moreover, 
'Pxy = 'P for material with C > 0, and 'Pxy = 'P =F 90° for material with C < 0; 
h being the thickness of the examined model. 

It was supposed that the stress-field distribution near the crack tip was 
described by asymptotic (for r ---+ 0) ·Sneddon's formulas (see, e.g., [22]) 

(J = -- cos - 1- sm - sm - - p + 0(1) KI () ( . () . 3()) 
x -J21fr 2 2 2 ' 

KI () ( . () . 3()) (1) 
(J y = rn=::: cos - 1 + sm - sm - + 0 , 

v 21fr 2 2 2 
(2.6) 

KI () . () 3() 
(J = -- cos - sm - cos - + 0(1). 

xy -J21fr 2 2 2 

The relations (2.5) and (2.6) permit a linking between measured optical val­
ues and the stress-intensity factor K 1. The correctness of the asymptotic 
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description (2.6) in an area around the crack tip can be confirmed by the 
stability of values K r, having been calculated according to optical values in 
such an area. 

Point coordinates where optical values were measured have been deter­
mined by the polarimeter CSP-lO with an accuracy of 0.02 mm. The accu­
racy of values 'Ij; and cp did not exceed 0.50 • During the experiment the error 
of stress calculations for (Jx - (Jy and T xy , and consequently the error of the 
value K r, was established. 

Measuements of the optical values were carried out along B equal to ±135, 
±120, ±90, ±75, ±45 and ±30°. 

In the crack plane the value of 'Ij; is practically zero; therefore, in the line 
B = 00 it was not measured. In the corresponding line B = const, symmet­
ric relative to the ray B = 00, the values 'Ij; and cp were averaged, and the 
calculations of Kr were obtained from these averaged values. 

Kr, MPaVrn 

o 

r/h 

Fig. 2.5 

Fig. 2.5, a typical graph, shows the value modifications of Kr according to 
the coordinate T / h. It follows from the results obtained for each line B = const 
that an interval can be selected where the value of Kr is practically constant. 
The mid value of Kr in the given interval, when p = 2.23 MPa, turned out to 
be equal to 0.58 MPaVK. The deviations of mid values on different rays did 
not exceed 5% from the given value. 

As an example using the results of the specimen-l study, let us denote the 
near and the far boundaries of the asymptotic representation acting at the 
zone of stress near the crack tip by Tl and T2 respectively. It is clear that, 
for 0 :::; IBI :::; 900 , the near boundary is situated at the distance of Tl 2: 0.7h 
from the crack. When IBI 2: 900 , the value Tl increases to Ih, i.e. the distance 
from the crack tip to the near boundary is a bit larger. 

The far boundary of the indicated zone is T2 = 4h for I B I 2: 900 • When 
the angle B changes from 90 to 300 , the distance T2 is reduced from 4h to 
2.8h. The values Tl and T2 for B = 0 are obtained by extrapolation and are 
Tl = 0.7h, T2 = 2.6h respectively. 

The final form of validity zone of a two-dimensional stress state represen­
tation near the crack tip is shown in Fig. 2.6. 
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Fig. 2.6 

The elongation of this zone in the y direction to one and a half times its 
analogous value in the x direction is very important and quite an unexpected 
result. 

Thus, the studies carried out on two specimens of organic glass of different 
brands and thicknesses led us to the following results: 

(1) the near boundary of the validity zone for a two-dimensional asymp­
totic stress-state representation is greater than or equal to O.7h from 
the crack end. For r < O.7h an essential space-stress state is realised 
in the plate. The far boundary of this zone in the examined problem 
extends to a distance greater than or equal to O.5l from the crack tip; 

(2) the validity zone for a two-dimensional asymptotic stress representa­
tion has an unequal elongation in different directions from the tip and 
is more elongated in the direction perpendicular to the crack line. 

The aforementioned results are very important in order to optimise the 
experimental determination of stress-intensity factors in zones with cracks in 
statics as well as in dynamics. 



CHAPTER 3 

EFFECTS OF HIGH-RATE FRACTURE 
OF BRITTLE MATERIALS 

One of the main problems of testing the characteristics of resistant materials 
in dynamics is the dependence of dynamic strength on the way that the ex­
terior action is applied. This difficulty typically appears under conditions of 
high-rate loading. In this case, the strength can be interpreted as a critical 
value of the stress-intensity factor which corresponds to micro cracking near 
the crack tip. The strength can also be interpreted as a dynamic local stress 
leading to rupture continuum. Both are intensity limits of a local stress field 
and the fracture occurs when these limits are reached. The dependence of 
dynamic strength on the method of loading is manifested as critical values 
during variations of action duration, of amplitude, and of rate of rise of the 
exterior force. In the case of macro crack motion initiation, such values will 
be critical as regards the stress-intensity factor of growth of the macrocrack. 
During fracture of 'intact' solids (i. e., not containing the given macroscopic 
defects) the local cleavage stress is not determined by a material's character­
istics but as a complex function of loading history. 

§1. Fracture of 'Intact' Materials 

Experiments on fracture of 'intact' specimens demonstrate the dependence 
of dynamic strength upon the velocity and loading duration even in mate­
rials characterised by almost ideal elastic-brittle behavior. This situation is 
illustrated by the well-known diagram of the temporal dependence of the 
strength, having been investigated first for metals by N. A. Zlatin et al. [8,9]. 

Let us examine some of the principal results obtained from these experi­
ments in terms of mechanics. 

To create a controlled fracture during intensive pulse action with a dura­
tion of rv 10-6 f.L s, the cleavage phenomenon was applied. The methods, hav­
ing been worked out at the AN RAN Physical-Technical Institute A. F. Ioffe, 
made it possible to observe the history of a specimen's local loading in the 
place of the cleavage-surface formation up to the moment of fracture. 

The examined specimens were disk-shaped with a thickness of 25 mm. The 
ramp loading was provided by a pneumatic gun. The pulse was elicited by the 
impact of the bottom of an aluminum shell upon the central part of the disk 
at an impact speed of up to 1050 m/s. Stresses, acting at the cleavage sec­
tion, were determined according to interferometry measurements at the rear 
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surface of the specimen. These interferograms permitted a determination of 
the free-surface displacement speed in a reasonably continuous time interval 
following a number of sequential wave reflections in the cleavage plate. The 
stress time-dependence in the cleavage section was calculated according to 
the formula 

where V is the free-surface velocity function; Vs is the same function shifted 
in the argument on the interval, equal to the doubled time during which the 
longitudinal wave run through the cleavage-plate thickness; p is the density; 
and Cl is the velocity of longitudinal stress waves. 

The method of estimating stress failure according to the 'dropping' velocity 
of a free surface under a temporal dependence which has been used in many 
papers (see, e.g., [11, 19]), is suitable only for perfectly trapezoidal pulses 
with a vertical forefront. This method cannot be mechanically transferred for 
example to triangular-shaped pulses. The aforementioned approach allows 
the formation of a full history of stress-state development at the cleavage 
section and is more efficacious as it can also be applied to arbitrary pulse 
forms. 

Using this approach in experiments with aluminum and copper specimens 
(see [8, 9]), a dependence of the action time of tensile stress at the cleavage 
section on its amplitude value was found. These data were compared with 
the corresponding temporal strength dependencies obtained by quasistatic 
treatment. The results obtained from these two methods are quite different. 
Moreover the dynamic area of temporal strength dependence is practically 
independent of the static strength of the material. Experiments on aluminum 
and copper specimens revealed also that the location of the mentioned area 
remained invariable, even for a significant temperature variation. We note 
that in similar testing of the dynamic strength of a polymeric composite an 
opposite effect was obtained [4]. 

According to the data from dynamic tests, the cleavage fracture of mate­
rials at high rate by short-term threshold pulses occurs under stresses which 
exceed the static strength limit by many times. In this case, the time before 
a fracture is 'stabilised', meaning that the part of the dynamic diagram prior 
to the fracture is characterised by a weak time dependence on the amplitude 
of the threshold of the initial pulse. Similar tests with analogous results were 
carried out on a great number of specimens of different materials (see, e.g., 
[53, 19, 20]). 

It was experimentally ascertained ([9]) that the location of the studied 
part on the temporal strength dependence diagram is not dependent on the 
static material strength. The results of these experiments show that it is not 
possible to accept the dynamic specimen rupture stress as a testing strength 
characteristic, because it is determined by a very strong dependence upon 
the parameters of the exterior action. 
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One significant observation revealed from this and other experiments is 
that during a fracture delay a macrofracture can occur as the local stress 
decreases. The physical nature of this effect has been discussed in many 
theoretical works (see, e. g., [35, 36, 61, 10]). However, the reason for this 
observation is not yet clear. 

Altogether, we can conclude that the principal effects discovered during 
these cleavage experiments could not be explained by means of solid-medium 
mechanics, which are based on traditional notions about fracture. 

§2. Study of Dynamic Crack-Growth Resistance 
of a Brittle Medium 

Similar problems as described for 'intact bodies' arise with attempts to char­
acterise a material's resistance to dynamic crack growth. Experimental stud­
ies carried out at American research centers in the 1970s and 80s (see, e. g., 
[71, 74, 75, 78, 80, 82, 86, 115, 116, 118]) acquire a vital significance for a 
good understanding of fracture parameters under high-rate loading. 

K. Ravi-Chandar and W. G. Knauss [83, 102-104] accomplished many ex­
periments on impact loading of cracked specimens. There were a great num­
ber of effects accompanying crack initiation, fast growth, crack termination 
and branching. Thus, in these experiments they established rather amply the 
dependence of dynamic fracture durability on the loading history. 

Experiments were conducted using specimens prepared with the vitreous 
polymer Homalite-100. The proportional pressure was created on the crack 
faces. This pressure increased linearly to a certain point and then remained 
constant. Loading was accomplished with the help of a special electromag­
netic device which consisted of two copper strip-conductors with an electri­
cally insulated central part placed inside the crack. A strong current pulse (of 
the order of 5 x 104 MA), was elicited by a discharge in an L. C. circuit which 
was fed to the plates. As a result of the electromagnetic action, pressures ap­
peared which separated the plates and contracting stresses distributed along 
the crack surface. 

Their temporal dependencies were determined by the parameters of the 
L. C. circuit. In particular, trapezoidal pulses were used with the fixed 
stress-increase time to equal to 25 f1 s, lasting ",160 f1 s. Maximal pressure 
on the crack surface, equal to 62 MPa, was obtained at the loading rate 
2.5 x 106 MPa/s. 

The stress field around the crack tip was investigated by the method of 
caustics with the use of high-speed photography. The frequency of the camera 
reproductions used was equal to 2 x 105 exposures/s and the exposure time 
was 20 f1 s. By using high-speed photography, temporal dependencies were 
obtained for the stress-intensity factor and for geometrical crack character­
istics. The initiation stress-intensity factor was obtained by interpolation of 
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the data at the moment of initiation of crack growth as determined by the 
history of crack development. 

The dimensions of the specimens were chosen in such a way that reflected 
waves would not have time (of order of 150 J.L s) to interact with the crack tip, 
so this imitated an unbound medium. The thickness of the specimens was 
4.8 mm. The reliability of the method of caustics and the system's ability 
to produce similar loading pulses were investigated by experimenters ([102)) 
beforehand. 

The main advantage of the described experimental device is its simplic­
ity of synchronisation. The loading program is easily coordinated with the 
launching moment of the high-speed camera, and it becomes possible to reg­
ister on the film the crack behavior at launch. 

The main result of these experiments is that the critical value of the stress­
intensity factor Klq increases with increasing load rate and can significantly 
exceed the corresponding quasistatic value (Fig. 3.1). Moreover, it turned out 
that the influence of loading rate on the launching value of the aforementioned 
coefficient can be neglected, if the time before fracture is t* ~ 50 J.L S; it 
corresponds to the loading velocity -104 MPa/ s. With a loading rate increase, 
the corresponding time before specimen fracture decreases, and the critical 
value of the stress-intensity factor notably increases. 

The researchers note that if the time is about ~ 50 J.L s the fracture is 
determined by a quasistatic criterion of a critical stress-intensity factor, which 
is not dependent on time or velocity. 

For lesser times or for high-rate loading new approaches ought to be used 
for estimation of the possibility of a fracture. 

1.0 
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0.5 ~o----~o~-----I---
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Fig.a.l 

As a working hypothesis K. Ravi-Chandar and W. G. Knauss have sup­
posed that under the high rates of loading the dependence of the behavior of 
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the material itself becomes significantly strain-rate sensitive. In this case the 
material had to be characterised as non-linear and viscoelastic. Accordingly, 
it is stated that under smaller rates of loading an equilibrium behavior for a 
material is common, and under higher rates it is the 'viscous' reaction that 
dominates. Experimentally obtained data could be approximated by a power 
dependence 

C 
Krq = Krc +"2. 

t* 

If we suppose the necessity of attainment of the critical opening displacement 
at the crack tip, this must conform to the creep law in the form of D(t) = 
Dor, r = 2. Let us note that r = 2 is usually accepted for polymer creep 
under small deformations. 

Theoretical graphs of Kr(t) change for semi-infinite (a) and finite (b) cracks 
as shown in Fig. 3.2. The moment of fracture in the described experiments 
turns out to be on the escalating branch of the graph b. For example, in the 
theoretical analysis of this case we can use solutions for a semi-infinite crack. 

K] (t) 
(a) 

K] (t) 
(b) 

o o 

Fig. 3.2 

These experiments convincingly demonstrate that in dynamics the critical 
value of the stress-intensity factor is not a material parameter, and, therefore, 
attempts to measure dynamic strength using ordinary static methods are 
quite erroneous. The authors of the experiments under consideration note the 
impossibility of simulation of crack behavior at launching by the traditional 
methods of continuum mechanics. 

§3. Crack Behavior Under Threshold Loading 

Experiments published in a number of works by the Stanford Research Center 
International (SRC International) are of great importance for understanding 
high-rate fracture when the possibility of unstable macrocrack growth under 
threshold exterior loading was considered. J. F. Kalthoff and D. A. Shockey 
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[78] were the first to measure threshold amplitudes of short pulses for disk 
cracks. Then similar experiments were continued by other researchers ([73, 
112]). 

Let us consider the most salient features and conclusions from the afore­
mentioned works. 

Suppose a specimen having a crack of a length L is subjected to an impact 
action and the result is a short-term wave pulse of stress interacting with the 
crack. Let this pulse of a duration T and an amplitude P have a rectangular 
form. This should allow a determination of the dependence of the critical 
crack dimension on the applied pulse amplitude. 

An alternative for the same problem can be presented as a determination 
of the minimum destroying amplitude (threshold) of the applied effort with 
the given pulse duration and fixed geometrical parameters of the specimen. 
In statics, the examined problem can be solved by the classical Griffith­
Irwin method. There is a series of experimental methods corresponding to 
various situations allowing the study of quasistatic threshold characteristics 
of fracture (see, e.g., [59,44]). 

If we apply a short-term pulse of dynamic action to the specimen, the sit­
uation will be more complicated. From the data of dynamic tests it is known 
that high rates of loading change the fracture toughness: KId essentially dif­
fers from K Ic . Complicated diffraction interactions, appearing near the crack, 
lead to oscillations of the stress-intensity factor. Altogether, the analysis be­
comes extremely complicated by mathematical difficulties as well as by an 
absence of adequate fracture criteria. 

J. F. Kalthoff and D. A. Shockey [78] have carried out an experimental in­
vestigation of this problem with polycarbonate specimens. A plate, fixed on 
a cylinder shell, was accelerated with the help of a pneumatic gun and struck 
against a plate target. The time of the pulse growth in the target was 10-
100 nano s. Its duration was equal to several microseconds. The pulse ampli­
tude and its duration are simple functions of the striking velocity and of plate 
thickness. They are easy to control, to compute, or to measure directly. 

This experimental approach permits, firstly, the creation of a great num­
ber of cracks in the target and, secondly, a test of their stability to further 
impacts. It was shown that the criterion of unstable crack germination, so 
traditional in quasistatics, can not be used in dynamics. This is especially so 
if the time of loading is comparable to the time of the wave run at a distance 
equal to the crack length. In this case the stability threshold, calculated ac­
cording to the classical criterion of the stress-intensity factor, turns out to be 
significantly smaller than the value obtained by experimentation. The results 
of these studies are shown schematically in Fig. 3.3. 

H. Homma et al. [73] have experimentally investigated the same problem 
on specimens of different configurations, made from different materials. Tests 
were accomplished on specimens made from two kinds of steel (steel 4340 and 
steel 1018) and aluminum (aluminum 6061-T651). The fatigue macro crack 
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Fig. 3.3 

was cultivated from a form of wide strips with a boundary cut in them. 
Short pulses with a given duration and amplitude were created by cylinder 
shells and a special compressor device. The minimal amplitude, corresponding 
to fracture of all three specimens, was determined. Also fractures caused 
by large-amplitude stresses were investigated. The threshold amplitude was 
found by means of incrementally increasing the impact velocity to the point 
where initial crack propagation was launched. The fracture , fixed for the 
first time, advanced at a rate of 10- 50 fl m. The amplitude was increased 
by small increments. Its critical value was obtained as a median between 
the nearest destroying and non-destroying amplitude values. The influence 
of pulse duration upon the threshold amplitudes was also analysed. For this 
purpose cylinder shells of different lengths were used. As a result of these 
tests, the dependencies of critical amplitudes upon the initial crack length 
were constructed, and the relation between the length of the crack 'skip' and 
the overload, i. e. exceeding of the threshold amplitude, was investigated. 

Tests on specimens from many materials have confirmed the decrease of 
critical values of amplitudes P according to the increase of the crack length 
L and the threshold growth under the shortening of pulse duration. These 
results were compared with the static dependence, given by the formula 

P = KIc F (l:.-) 
VI W ' 

where W is the specimen relative width. For short cracks (long pulses) the 
form of curves under dynamic and static loading are alike, but for long cracks 
(short pulses) the values, measured during the tests, tend to a finite horizon­
tal, and are located essentially higher than the static curve (see Fig. 3.3) , 
tending toward zero. 

The form of the experimental threshold curve is qualitatively explained 
and forecasted with the help of the initial boundary value and an analysis 
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of the corresponding dependence of the stress-intensity factor upon time. 
For short cracks, the fracture happens as in statics. In this case the time of 
loading includes a great number of the mentioned coefficient-value oscillations 
with its exit to a static value. The destroying stress must decrease when L 
increases. The threshold amplitude for large cracks depends on the stress 
intensity factor variation with time. If the crack length exceeds some critical 
value, the dependence of threshold amplitudes upon L disappears. In this 
case there are no oscillations of the stress-intensity factor values, as the wave 
has no time to overcome the distance, corresponding to the crack length. 
The threshold amplitude on the graph P - L turns out to be constant (see 
Fig. 3.3). 

Nevertheless, the attempts undertaken to compute threshold fracture char­
acteristics have turned out to be unsuccessful. According to classical ap­
proaches ([114, 62]), a crack, loaded by a critical pulse, advances under the 
condition that the dynamic stress-intensity factor reaches its maximum. The 
corresponding limit relation, whence threshold amplitudes can be determined, 
is written as 

maxKr(t) = K rc . 
t 

(3.1) 

Analysis has shown that for short pulses (long cracks) experimental critical 
amplitude values significantly exceed values calculated theoretically accord­
ing to (3.1). 

The analysis of the experimental data and the computation of results for 
the indicated specimens has shown ([73, 112]) that the fracture around the 
crack tip can also happen on the falling curve line, corresponding to the stress­
intensity factor change (effect of fracture delay), that is also unexplainable if 
we use traditional fracture notions. 



CHAPTER 4 

SOME NON-CLASSICAL APPROACHES. 
NEW CRITERION OF BRITTLE FRACTURE 

Many modeling methods of dynamic fracture effects are associated with non­
elastic rheology and macro crack development. In many cases this association 
is an inevitable physical necessity. However, for practical aims it is very im­
portant to provide a direct mechanical approach, permitting the reduction 
of the dynamic fracture analysis to a simple 'industrial' procedure. That is 
why the rejection from the engineering mode of energy and power balance 
traditional schemes of fracture mechanics would be unjustified. Even in the 
framework of linear elasticity and brittle fracture these schemes are not com­
plete. Their development, as will be shown below, can give sufficiently simple 
explanations of many peculiarities of high rate-fracture [23, 25, 26, 30, 31, 
45,47,99]. 

Let us examine some nonclassical modeling methods of brittle-material 
fracture, especially efficient in situations where the classical approaches and 
the Griffith-Irwin criterion do not ensure success. 

§1. On the Neuber-Novozhilov Criterion 

Let us turn to static problems. We will consider an elastic plate with an angu­
lar notch. According to Griffith's classical scheme we compose an energetical 
balance equation. 

We have ~II '" c. An estimation for ~(A - U) is also known ([17]) 

~(A - U) '" c27r/ a . 

It is evident that we would not able to find critical efforts from the equality 

~(A - U) = ~II. 

Let us study two elastic plates, weakened by a rectilinear crack and a 
lune of small apex angle 0;. In the first case near the crack tip we have an 
asymptotic expression 

where >.1 = >.~; C1 , C2 are coefficients characterising the stress-state intensity; 
and r, (J are coordinates near the crack tip. 
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In the second case the roots are separated 
(1) (2) 

GII fII (B) GIl fII (B) (Tij = ----;;u ij(l) + ----;;u ij(2) + ... , 
r 1 r 2 

where >.{I < >.~I. 
According to Irwin's criterion, in the second case only the dominating 

term should be taken into account; this leads to a significant difference be­
tween the situations I and II that is difficult to interpret. H. Neuber [33] 
and V. V. Novozhilov [38, 39], at different times and on the basis of different 
approaches, have suggested the following fracture criterion 

d 

~ J (Tdr ~ (Tc· (4.1) 
o 

Here (T is the main tension stress near the crack tip (r = 0); (Tc is a stress 
limit of 'intact' material. 

The main peculiarity of (4.1) is an introduction of some structural dimen­
sion d in an explicit form. We note that a structural characteristic of the 
length dimension is already implicitly present in classical fracture mechanics, 
appearing in the form of dimensional combinations of the classical strength 
criterion parameters 

d '" fE d '" Kfc 
(T~ , (T~ , 

E being Young's modulus, f the specific surface energy and (Tc the critical 
stress. 

Scholars express various suppositions according to the physical nature of 
the parameter d (interatomic spacing for a medium with a regular atomic 
structure, grain size for a polycrystalline medium, a scale correspondence 
parameter of strength characteristics, etc.). We propose considering the pa­
rameter d as a linear dimension, characterising the fracture elementary cell 
on the given scale level (see, e.g., [5,6]). Without giving any details we choose 
d from the condition 

d _ 2Kfc 
- 7m~' 

(4.2) 

providing coincidence of (4.1) with the Griffith-Irwin criterion in 'simple' 
cases. 

Criterion (4.1), in combination with (4.2), permits efficacious fracture fore­
casting in many nonstandard situations, including the aforementioned cases 
of plate fractures with angular and lune notches ([22]). 

§2. The Shockey-Kalthoff Minimal-Time Criterion 

The testing of dynamic load pulse threshold characteristics, considered in the 
preceding chapter, has permitted the authors of those experiments to draw 
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a conclusion on the necessity of revision of traditional quasistatic fracture 
mechanics notions. 

J. F. Kalthoff and D. A. Shockey [78] have suggested a new fracture crite­
rion, which they call the minimum-time criterion. The main novelty of the 
new approach is an introduction of a structural parameter tine, having a time 
dimension and accounting for incubation processes preceding macrofracture. 
Incubation time tine is declared to be a constant, linked to material prop­
erties. According to this concept, fracture occurs on the condition that the 
stress-intensity factor current value KI(t) exceeds the fracture dynamic vis­
cosity KId during some minimal time needing for macrocrack development. 

In the case of threshold pulses an unstable crack development happens if 
KI(t) 2: KId during a time equal to tine. Here the fracture dynamic viscosity 
KId is determined according to a quasistatic formula, e.g. KId = 2PJa/rr 
for a disk crack, where a is the crack radius, and P is the amplitude of 
the corresponding dynamic stress pulse, under which the fracture occurs. 
Incubation-time values tine were determined for different materials [73, 112], 
in particular, for steels 4340 (7 J-ls), 1018 (l1J-ls) and aluminum alloy 6061-
T651 (9 J-ls). 

Notwithstanding some eclecticism and absence of a neat analytical setting, 
the minimal time criterion is a notable step forward, as it introduces the 
following principal directives in fracture analysis. 

Firstly, the existence of a certain structural parameter, having the time 
dimension and controlling the fracture process is considered. Let us remark 
that in quasistatics the fracture is associated with a certain parameter having 
a length dimension. Thus, during the passage from static loading to a dynamic 
one a new structural characteristic appears. 

Secondly, it is affirmed that the fracture is not stipulated by momentary 
states of the local stress field near the crack tip, but is an integral process, 
existing in time, and distributed at a structural-temporal interval. 

The minimal-time criterion admits the possibility of the existence of such 
a situation, which may be unusual from the traditional point of view, when 
fracture occurs at the temporal segment of a local stress-field intensity de­
crease. In fact, from the point of view of classical mechanics, if a fracture 
does not happen when the stress-intensity factor attains its maximal values, 
then it can not happen for smaller values of the stress-intensity factor. The 
minimal-time criterion, on the contrary, accepts well such a possibility. As 
was already noted, experiments on threshold pulses proved the existence of 
the given effect, that could be called an 'effect of fracture delay', by analogy 
with a similar effect for a cleavage. 

§3. The Nikiphorovski-Shemyakin Pulse Criterion 

An important principle of fracture modeling in dynamics was advanced by 
V. S. Nikiphorovski and E.!. Shemyakin [35]. It is direct accounting of the 
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local rupture stress history. This criterion corresponds to the attainment by 
the complete integral of the local tension stress taken over time, i. e. the 
complete local force pulse compared with a critical value, determined from 
experiments 

(4.3) 

This criterion was specially suggested for fracture analysis, provoked 
by short-term exterior pulses. It permits a qualitative explanation of the 
strength augmentation (critical rupture stress augmentation) of materials at 
elevated loading velocities. 

It is interesting that (4.3) itself could be interpreted from the phenomeno­
logical theory of defect accumulation ([12]). Let us suppose the following 
phenomenological law of defect development to be valid 

d\]l { A (_(J ) n, (J ~ 0, 
dt = f((J, \]I) = 1- \]I 

0, (J < 0. 

( 4.4) 

Integrating (4.4), provided that \]I :::; 1, we have 

which, for n = 1, gives (4.3). 

Despite possible interpretations, (4.3) is a postulate, determining macro­
rupture of an 'intact' solid medium. Its main deficiency is the impossibility of 
a transition to quasistatics. Thus, according to (4.3) any stress, even insignif­
icant, of the form of (J = (JoH(t), where H is the Heaviside function, leads to 
fracture. It makes the location of a dynamic branch on the strength/temporal 
dependence curve indeterminable, permitting the interpretation of some tem­
poral effects of dynamic fracture only in a qualitative way. 

The introduction of pulse criterion (4.3) was an important step forward, 
as it provided a possibility of direct consideration of loading history, through 
the fracture mechanism. Such an approach, in the framework of the elastic­
brittle model, gave an explanation of a few principal effects of fast dynamic 
rupture of solids ([35J). 



28 

§4. The Structural-Temporal Criterion of Brittle-Medium 
Fracture 

Analysis of experimental results shows that the main contradictions with 
data, obtained from traditional models, become apparent in the case when the 
fracture happens in rather short time intervals after the beginning of exterior 
pulse application, which correspond to high loading rates. The fracture itself 
is accompanied by high local deformation velocities, both during cleavage and 
the initiation and fast growth of cracks. The indicated contradictions may 
appear because the fracture modeling, used for analysis, remains essentially 
based on quasistatic principles. 

Thus, in the modeling of a fracture mechanism it is not taken into consid­
eration that during the high-rate rupture, together with elastic resistance of 
the material, it is also necessary to overcome the medium inertia. In the case 
of application of an energetic balance equation to the dynamic fracture the 
term, corresponding to the kinetic energy, is traditionally rejected, as being 
small compared with other terms ([42, 43, 69-71]). 

Evidently, this approach is incorrect for a high-rate deformation. The force 
criterion, corresponding to this approach, is formulated as a requirement of 
attainment of the stress-intensity factor, of a certain critical value, determined 
by material testing. 

The physical imperfection of this criterion is that, according to it, the 
material must be destroyed at a rather high instantaneous local force, acting 
at the crack tip. In fact, a high mobility of small but extremely fast medium 
particles determines the dependence not only on instantaneous components 
of the force field but also on the time of their action. 

One more direction of classical modeling development lies in the selec­
tion of fracture process structural characteristics. Nowadays, the necessity 
of structural parameter accounting is not brought in to question, as, prac­
tically, all the experimental results testify in its favor. The only question 
is what characteristics of microstructure physical processes have to be in­
troduced in the macromechanics of fracture. However, this selection is quite 
complicated and delicate, as it is very important not to go beyond the bounds 
of reasonable detail. In our opinion, the most natural would be a search of 
such parameters, as the Neuber-Novozhilov dimension in quasistatics, being 
universal and not limited by unequivocal physical interpretation, which could 
be different according to material peculiarities, scale level and problem class. 

Referring to the classical force approach of fracture mechanics, we notice 
that it has the sense of attaining a critical value, by an instantaneous lo­
cal force acting in the supposed place of rupture. However, in dynamics one 
should consider inertia, since the medium particles, adjacent to the rupture 
place, can move extremely fast. At the same time, in analogy with the struc­
tural dimension, known in statics, it is natural to consider the structural time 
in dynamics. So, in the simplest case, for structural dimension d and maxi-
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mal wave velocity e, the relation die is the characteristic time of interaction 
energy transmission between adjacent elements of the fracture structure. 

Thus, let us suppose we have a characteristic time interval T, corresponding 
to an incubation (latent) period of macrofracture development. Generally, 
the parameters d and T should be evaluated as independent, as T could be 
determined by complicated processes, occurring in the material structure. 

We introduce an elementary spatial-temporal fracture cell [0, dJ x [t - T, tJ 
(Fig. 4.1). In other words, we suppose that a certain structure, characterising 
peculiarities of the fracture process on the prescribed scale level, is set on the 
spatial- temporal scale. 

Assume that the fracture happens, if we have an equality in the following 
condition 

(4.5) 

where T is the fracture structural time; ac is the static strength of the mate­
rial; a(t, r) is the tension stress near the crack tip (r = 0); and d is a length 
scale parameter in correspondence with strength characteristics, determined 
according to data of static tests on specimens with macrocracks. In this case 
(4.5) coincides with the Neuber- Novozhilov criterion, uniquely connecting d 
with static characteristics of fracture viscosity and material strength (4.1). 

Fig. 4.1 

In accordance with (4.5), the maximal tension stress near the crack tip, 
averaged over the spatial- temporal interval [0, dJ x [t - T, t], must attain the 
strength of the material. By introducing new notations, we rewrite (4.5) in 
the form 

t d 

J(t) S; Jc, J(t) = J dt' J a(t',r) dr, Jc = acTd. 
t-T 0 

Thus, the introduced criterion relation has the physical meaning of a crit­
ical structural pulse. 
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The main problem of the dynamics is to determine the moment of fracture. 
In the considered case it is natural to consider the fracture time t* as a 
moment when the given pulse attains its critical value: J(t*) = Jc • 

While determining the loading parameters, corresponding to the minimal 
fracture charges, an important role is played by the threshold condition 

that can be considered as an optimality condition and a condition of unstable 
crack growth. 

According to this approach ac , Klc and T form a system of defining pa­
rameters (in the simplest case-of constants), reflecting strength properties 
of the material. 

Further, it will be shown that the spatial-temporal criterion gives an op­
portunity to avoid an a priori introduction (measurement) of 'material' func­
tions of dynamic strength the material and to consider, e. g., the dynamic 
fracture viscosity, dependent on rate, duration and other exterior loading 
characteristics, as an estimated problem performance. 

§5. On the Discrete Nature of Dynamic Fracture of Solids 

We will show that the principle of tension stress field critical intensity, tra­
ditional in continual mechanics, does not cohere with the law of variation of 
momentum. 

Let the material rupture in a one-dimensional cleavage problem ([35]) be 
caused by a triangular-profile stress pulse with duration T. Let us determine 
the threshold, i. e. the smallest force fracture pulse U = Uc(T) for the given 
T. Using the classical critical stress criterion a ::; ac , we obtain 

The corresponding threshold is presented in Fig. 4.2 (hatched line). It is ob­
vious that the fracture domain on the diagram corresponds to points lying 
above the threshold curve, adjoining the origin of coordinates. Hence, even in­
finitesimal pulses are capable, according to the accepted criterion, of causing 
fracture. 

We study the problem of a semi-infinite crack for an unbounded plane. 
Let a uniformly distributed shock stress of temporal rectangular profile act 
on the crack surfaces x ::; 0, y = ±O 
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Fig. 4.2 

where P and T are amplitude and pulse duration. Then on the crack plane 
we get 

Kr(t) 
u y = r.c= + 0(1), 

y27rr 

where Kr(t) is expressed by (1.1). Using the classical criterion of critical stress 
intensity factor Kr :::: Krc we have 

u _ KreVT 
e - <I>(Cl, C2) 

Therefore, for T --+ 0 the fracture threshold pulses become infinitesimal. 
The conclusion drawn contradicts common sense, and the well-known ex­

periments on high-rate fracture, as was shown beforehand, demonstrate var­
ious effects that could not be placed in the framework of traditional ap­
proaches. 

According to classical criteria, under dynamic rupture of a material the 
energy and the pulse, consumed for formation of new surfaces and domains 
of fracture, are spent incessantly. We will show that an elementary account of 
dynamic rupture process physical discreteness leads to a structural-temporal 
criterion of fracture. 

It has already been mentioned that the main parameter of crack mechanics 
is a linear dimension d, characterising an elementary fracture cell. Such a cell 
has no unambiguous physical interpretation for all practical cases and is, in 
fact, a universal fracture characteristic. It can be interpreted in different ways 
according to the class of studied problems. 

We introduce a pulse elementary portion ('quantum'), required to destroy 
one structure cell: Ul = UeT; here T is the incubation time, determined by 
the material properties and the class of problems. 

We suppose that under cleavage a threshold pulse of given shape, e. g. 
triangular or rectangular, with duration T is created in the medium, with 
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the result that there is a fracture of a certain number of structural elements. 
The fracture of m structural cells requires the pulses 

m = 1,2,3, ... 

Let us introduce the distribution 

Pm = C exp ( - ~~ ) , (4.6) 

where Pm is the probability of fracture of m structural cells; 0: is a parameter, 
depending on the shape of the temporal stress profile and obtained from the 
exit condition to quasistatic characteristics for sustained loading; and C is a 
normalising multiplier, determined by the relation 

(4.7) 
m 

The average threshold pulse can be found by the formula 

(4.8) 
m 

From (4.6)-(4.8) for a triangular pulse we have 

u= acT 
1-exp(-2T/T) 

The corresponding threshold is shown in Fig. 4.2 by a continuous line. Ev­
idently, threshold pulse finite values correspond now to short times. Under 
sustained loading (T «: T) the threshold characteristics can be computed 
according to the classical critical stress criterion 

1 
U = "2 acT. 

Let us determine a macrorupture as a fracture of at least one structural 
element ([38]). Then, the corresponding criterion can be written in the fol­
lowing form 

t J a(t') dt' :::; U1 == acT. (4.9) 

t-r 

Here T is the minimal time, necessary for a local threshold pulse with a 
duration that will cause a macrofracture. 

For media with sharp concentrators, such as cracks, the mean values of 
rupture stress on the structural interval are examined. Instead of (4.9) we 
have 

t d J dt' J a(t',r)dr:::; acTd, (4.10) 

t-r 0 
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coinciding with (4.5). In a particular case of quasistatic loading (4.10) coin­
cides with the force criterion of Neuber~Novozhilov. The received limit con­
dition practically coincides with the already introduced structural~temporal 
criterion. In this case (4.9), in the absence of sharp concentrators such as 
cracks, can be considered as a particular case of (4.5). 

Now, according to (4.9) and (4.10), the dynamic strength of a brittle 
medium can be evaluated as a calculated characteristic. Moreover, it is natu­
ral to expect that both the critical rupture stress of 'intact' continuum and the 
fracture viscosity of cracked domains will show a dependence on parameters 
of the exterior action, including the rate of loading. We have established that 
such a behavior is the principal singularity of dynamic fracture, stipulated 
by the 'quantum' nature of this process. 

Essentially, the analysed problem of dynamic strength under a high-rate 
loading is an analog to the problem of low-temperature heat capacity of 
solids for classical molecular physics ([13]). This problem was solved from 
the position of quantum mechanics. The postulates on the discrete substance 
structure (a solid is a combination of elementary oscillators), on the discrete 
nature of energy liberation and absorption (energy is liberated and absorbed 
by elementary portions~quanta) and correspondence principle (in the lim­
its of low load rate cases the quantum theory should not conflict with the 
classical one) were taken as a basis. The presented considerations permit us 
to overcome the classical theory difficulties and to explain the dependence of 
specific heat capacity of solids on temperature. In this case it turned out that 
for the lowest temperatures (close to absolute zero) the solid energy is finite 
and is determined by the elementary quantum energy, and the corresponding 
temperature dependence of heat capacity can be calculated fairly easily. 

The dependence of solid interior energy (E) on temperature e, being cal­
culated according to quantum (continuous line) and classical (dashed line) 
theories is shown in Fig. 4.3. 

Analogy between essential notions of quantum mechanics and basic prin-
ciples of V. V. Novozhilov's theory is evident: 

(1) all solids consist of spatial~structural elements of finite size; 
(2) an elementary act of fracture is a fracture of one structural element; 
(3) criterion parameters, including a structural element dimension, 

should be chosen in such a manner that in the limit of low load rates 
the obtained classical fracture theory results should be preserved. 

This analogy becomes even more apparent if we compare the dependence 
(E)~e, presented in Fig. 4.3, with the dependence of a threshold (minimal 
destroying) force pulse on its duration under cleavage (see Fig. 4.2). The 
similar dependencies for cleavage strength and dynamic crack stability will be 
obtained further on the basis of the structural~temporal criterion. Evidently, 
neither the strength for high velocities under low temperatures, nor the heat 
capacity under low temperatures, can be modeled on the basis of continuum 
notions. 
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As in the case of heat capacity, the concept of dynamic fracture 'quantum' 
nature and corresponding criteria (4.9) and (4.10) permit us to avoid an a 
priori introduction of 'material' functions, determining the material dynamic 
strength, and to examine them as additional characteristics of the problem. 

<E> 

o e 

Fig. 4.3 

Globally, the aforementioned analogy with the behavior of solid heat ca­
pacity at low temperatures has something in common with the well-known 
principle of temperature-temporal (or temperature-rapid) correspondence of 
deformable solid mechanics: both for low temperatures and high rates the 
discrete ('quantum') character of a process gets a decisive significance. 

The idea of fracture process discreteness has been discussed on repeated 
occasions in scientific works. Thus, ideas of substitution of a solid medium by 
discrete geometrical structures permit important conclusions to be drawn on 
the brittle equilibrium nature for limit values of static and dynamic efforts 
(see [38, 39, 119, 54, 22, 32, 92]). 

The general particularity of these ideas is the discreteness on the geomet­
ricallevel, i. e. a fracture analysis of some discrete construction (e. g. chain or 
lattice) on the basis of quasistatic determining characteristics. The rupture 
criteria, used for such an approach, remain the same, i. e. they are borrowed 
from the static continuous fracture mechanics. Attainment by the local ten­
sion stress of its critical value can be taken, e. g., as a natural criterion of 
lattice rupture. 

It has been established above that a direct transference of this principle to 
dynamic processes was incorrect. Analysis of fracture dynamics requires the 
following second step: a quantisation at physical level, i. e., an introduction 
of energy (pulse) consumption discreteness, necessary to support the fracture 
process. Such a juncture is typical for physics, and it can be repeatedly ob­
served under the transition of process load rates from moderate to extremal 
ones. 
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§6. On the Relaxation Nature of the Incubation Time 

We will show that the considered structural-temporal criterion is closely 
connected to the relaxation processes, accompanying rupture development in 
continuum. 

We suppose that a given point of the material is characterised by an in­
tensity of a stress field E(t), with the result of deformation and development 
of microdamages. Let the following deformational-based fracture criterion be 
valid under these conditions 

KX(t) ::; Ee , (4.11) 

where K and Ee are material constants, and X(t) is a relative volume modi­
fication, caused by deformation and microdamage in the given point. 

If the material is linear-elastic, then E(t) = KX(t), and from (4.11) we 
obtain an analogous critical stress criterion 

Now, let the material be subjected to the rheological law 

dX 
E(t) = KX(t) + JL dt ' (4.12) 

where JL is a viscosity factor. Let the temporal loading profile be given. Solving 
(4.12) with respect to X(t), we get 

t 

X(t) = ~ J exp [-~ (t-S)] E(s)ds. (4.13) 
-00 

The kernel of the integrand of (4.13) is the function exp[-(K/JL)t]. We 
replace it by a step function O(t) (Fig. 4.4) in such a manner that 

Then (4.13) is converted into the relation 

t 

KX(t) = JL;K J E(s)ds, 
t-I-'/K 
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whence, considering (4.11) and using the notation T = ILIK, it follows that 

t J ~(s) ds :::; ~cT. ( 4.14) 

t-T 

Condition (4.14) coincides completely, in form, with the structural-tem­
poral criterion (4.9) for 'intact' materials. 

Small values of a 'viscous' term in (4.12) correspond to small viscosity and 
long-time deformation 

IL dX 
Kdt«l. 

In this case the critical stress criterion is valid. The 'viscous' term should be 
taken into account for high-rate dynamic loading, and (4.14) must be used 
for fracture estimation. 

e(t) 

o 

Fig. 4.4 

The obtained temporal characteristic T = ILl K has the physical meaning 
of relaxation time. However, it should be kept in mind that the real relaxation 
is caused not only by (and even not as much as) viscous deformation, but is a 
result of microfracture, preceding a macrorupture of the material. L. Seaman 
et al. [109, 110] have shown that dynamic macrofracture and change of mi­
crovolumes of brittle materials, accompanying it, could be described by an 
equation of the form of (4.12), and the relaxation times of brittle steels and 
alloys, corresponding to this process, turn out to be larger by several orders 
to analogous characteristics of simple viscous deformation of these materials. 

Thus, the macrofracture analysis, being made on the basis of the structu­
ral-temporal criterion, underlines the cardinal importance of study of physics 
of relational processes, accompanying the irreversible deformation and for­
mation of micro defects ([123]), as well as the determination of corresponding 
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relaxation time. In particular, the presence of the relaxation time's spectra 
can be a premise to categorise structural fracture levels on a temporal scale. 

§7. On Choice of Parameters of the Structural-Temporal 
Criterion 

The choice of appropriate fracture criterion parameters has a basic influence 
on the possibilities to obtain quantitative characteristics for specific prob­
lems. On solving problems on a macrolevel, this choice is determined by the 
investigator's arbitrariness. Only experimental results can confirm its cor­
rectness. 

The structural-temporal fracture criterion, given supra, is based on a 
system of three determining parameters: (eTc, Krc, T), two of which-static 
strength and static viscosity of fracture (characterising the structural dimen­
sion d) -are well known. The third parameter, representing the structural 
(incubation) fracture time, could be interpreted in different ways on the mi­
crophysical level, but, in the end, it must be postulated by and specifically 
chosen. 

Let us consider two main possibilities of such a choice 

(1) the structural time T is determined with the help of the fracture 
structural dimension 

d dJP 
T=~=k· ( 4.15) 

Here c is the maximum wave velocity; p is the density; and k is a 
constant, depending on the deformation properties of the material. 
According to this determination, the fracture structural time has the 
physical meaning of average transmission time of energy interaction 
between adjacent elements of the fracture structure. 

Further, it will be shown that the structural-temporal criterion 
with parameter T, obtained according to (4.15), permits efficient cal­
culations of dynamic strength characteristics of 'intact' materials. The 
results of dynamic strength calculations on the basis of (4.15) are well 
justified by the data of cleavage experiments [8, 9, 19,20]; 

(2) the incubation time T does not directly depend on the fracture struc­
tural dimension and has to be obtained experimentally, e. g. un­
der fracture initiation near a tip of a macrocrack. The conceiving, 
growth and confluence of numerous microdefects in a certain (suffi­
ciently large) area in the neighborhood of the crack tip, preceding a 
macrorupture of a material, determine the characteristic scale level of 
macrorupture. The incubation time could be considered as some inte­
gral temporal characteristic of these processes. Further it will be es-
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tablished that under the formation of macrocracks the fracture struc­
tural time T can be interpreted as the incubation time T = tine from 
the known minimal-time criterion, as suggested in [73, 78, 112]. 

Evidently, the two considered ways of choosing T do not exhaust all the 
possibilities of this characteristic interpretation. Without contesting the in­
terpretation importance of introduced structural values d and T (which can 
change according to situation) on physical and microphysical levels and the 
possible correlation of the latter with real material structure, we will stress 
their independent (invariant) character as parameters, stipulating the spatial­
temporal structure of the solid's dynamic rupture process itself. Thus, the 
main physical meaning of the mentioned structural values is reduced to 
the postulate, that on the given scale level we accept them for determining 
macro parameters of quasibrittle fracture processes (in the sense of thermo­
dynamics). 

An analogous viewpoint on the interpretation of the fracture linear dimen­
sion was expressed in the works of R. V. Goldstein and N. M. Osipenko [5, 6]. 
An apparent formality of such an introduction of determining factors is the 
advantage of the quoted works, as it is not connected with a unique phys­
ical interpretation, and installs a 'bridge' between different interpretations 
of microphysical properties of the material (crystals, polycrystals, polymers, 
composites, rocks) and the macro mechanics of their fracture. Much more im­
portant is to choose the determining parameters as measurable, according 
to the basic principles of physics, i. e. directly or indirectly determined from 
experiments. It is clear from the aforesaid, and will be shown later, that this 
will be possible for d and T. 



CHAPTER 5 

'INTACT' FRACTURE 

We will consider materials without artificially made defects and concentra­
tors, like cracks or sharp notches, to be 'intact' materials. Let us examine the 
specific features of these materials' fracture and the possible methods of its 
modeling. In this chapter the works [30, 31, 45, 47, 94, 95, 98, 116] are used. 

§1. Cleavage Fracture in Solids: Dynamic Strength of Materials 

Historically the first attempts to analyse cleavage were associated with the 
application of the critical stress criterion 

(5.1) 

As the experiments have shown, this criterion could not describe many signifi­
cant streaks of cleavage fracture, expressed by strength/temporal dependence 
and fracture spatial distribution. We notice that in the case of fracture, caused 
by a short-term pulse of large amplitude, the critical stress criterion contra­
dicts the law of momentum variation. Thus, by accepting the fact that frac­
ture is initiated by rectangular profile waves with duration to, for a threshold 
force pulse, we obtain U* = acto, which according to the decrease of to could 
be made as small as desired. It follows that even infinitesimal force pulses, 
which are not able to change material particles' momentum significantly, can 
cause fracture. 

A number of phenomena, observed during the experiments, e. g. the phe­
nomenon of dynamic branch appearance and distant cavity zones, and the 
necessity of their treatment, has led to a temporal criterion ([34, 35]) 

t. 

J a(t) dt :s; Jc ' (5.2) 

a 

Integral fracture characteristic (5.2) allows a theoretical justification of 
many important cleavage effects. However, experiments and fracture graphi­
cal analysis indicate a considerable role of the structure in this process. It is 
clear that the account of fracture structural peculiarities permits us to obtain 
some new information about the temporal dependence of material strength, 

N. Morozov et al., Dynamics of Fracture
© Springer-Verlag Berlin Heidelberg 2000
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whose explanation and theoretical description were problems of current in­
terest hitherto. Many modern studies, undertaken in the field of dynamic 
deformation and fracture of materials, are oriented to this. At the same time, 
complicated physical fracture theories, taking account of structure processes, 
are not always effective during the analysis of practical engineering prob­
lems. That is why an elaboration of approaches, explaining and describing 
dynamic fracture peculiarities with the help of simple mechanical principles, 
is expedient. 

Let us examine the aforementioned structural-temporal criterion, with 
the help of stress-field pulse characteristics and structural peculiarities of the 
fracture process. During the analysis of 'intact' media fracture the criterion 
takes the following form 

t J a(t') dt' ::::; acT. (5.3) 

t-T 

For definiteness we assume T = d/c and consider the classical one-dimen­
sional cleavage problem (see, e. g., [35]). The condition (5.3) differs from the 
temporal criterion (5.2) in the existence of a structural fracture characteristic 
T. In order to determine what this approach will give us, we will examine the 
reflection of a triangular pulse of compression loading from the free end of 
a semi-infinite bar. Axis Ox is directed along the bar, which is located at 
x > O. The incident pulse is written as 

( et+x) a _ = -PI - -- [ H (et + x) - H (ct + x - cto) 1 . 
cta 

Here P is the pulse amplitude, to is its period, and H(t) is the Heaviside 
function. The increasing section is absent. The stress profile, reflected from 
the free end, will have the following form 

( ct-x) a + = + P 1 - -- [ H (et - x) - H (ct - x - cto) 1 . 
cto 

The combined stress is expressed as a = a _ + a +. For the first time the tensile 
stress maximum occurs at the point Xo = cto/2. By introducing dimensionless 
values T = ct/d, To = eto/d, we obtain 

alx=xo = F + G, (5.4) 

F = P ( ~ - ~) [ H ( T + ~o ) _ H (T _ ~o ) ] , 

G = P ( ~ - ~) [H ( T + ~o ) _ H (T _ 3~o ) ] . 



41 

The rupture amplitude P*, minimal for the given period to, will be found 
from the condition 

maxI = ac , 
t 

T 

1= J a(T')dT'. 
T-l 

(5.5) 

It follows from (5.4) that the maximum of I(T) attains in the integra­
tion interval (To/2, To/2 + 1). Moreover, maxt I(t) = PTo/2, if To :::; 1 and 
maxt I(T) = P(To - 1/2)/To, if To ~ 1. Due to (5.5), it follows that 

T* = { 1/ [4(1 - ac/ P*)] + 1, 

1 + ac/P*, 

1 :::; P*/ac :::; 2, 

P*/ac ~ 2, 
(5.6) 

where T* = d*/t is the normalised time before fracture, defined as the mo­
ment when the integral form attains its critical value (5.3). The appropriate 
curve is shown in Fig. 5.1. 

§2. Temporal Dependence of Strength 

The obtained correspondence between the fracture time t* and the thresh­
old amplitude P* is called the temporal strength dependence. It shows that 
the dynamic strength is not a material constant but depends on time before 
fracture ('life time' of the specimen). In terms of this dependence the critical 
stress criterion (5.1) and the temporal approach of Nikiphorovski-Shemyakin 
(5.2) are on 'different poles'. The critical stress criterion qualitatively de­
scribes a quasistatic fracture at long times caused by continuous wave pulses. 
Experiments have shown that in the case of short-term loading we can observe 
a weak dependence of fracture time on threshold amplitude with a certain 
asymptote. This effect is called the dynamic branch phenomenon of temporal 
strength dependence. 

The dynamic branch phenomenon defies definition both in traditional 
strength theory and in the temporal criterion (5.2). We notice that (5.2) 
gives a similar dependence under short term loading, but it does not cover 
the case of quasistatic loading. Dynamic branch location and its link-up 
with a quasistatic one remain unsolved. Thus, the critical stress criterion 
and the temporal criterion (5.2) describe only limit ends of the temporal 
strength dependence. As was stated above an introduction of a structural 
element allows construction of a unified curve of temporal strength depen­
dence (Fig. 5.1). Static and dynamic branches turn out to be connected by 
a smooth passage. The physical meaning of the horizontal asymptote is 
the following: in the accepted assumption (7 = die) it corresponds to the 
transmission time of interaction energy between structure elements. So, for 
aluminum alloy B95: (ac = 460 MPaj KIc = 37 MPaVmj e = 6500m/s): 
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Fig. 5.1 

d/ c = 2Kfc/ (7rCOD ~ 0.6 J.L s. It follows from the obtained formulas that the 
threshold amplitude of dynamic loading (cleavage strength) under modifica­
tion of the loading duration at a range from 2 to 0.5 J.L s increases from 600 to 
1400 MPa. This fact agrees perfectly with the data of experiments from [9, 
19]. The undertaken calculations have shown a satisfactory correspondence 
with the experiments, carried out for other materials. 

17(t) 

Fig. 5.2 

As follows from (5.3)-(5.5), the fracture in a cleavage section happens with 
a delay, after a passage of the peak of local rupture stress (Fig. 5.2). 

It is interesting to construct a fracture threshold, i. e. the dependence of 
minimal rupture pulse U = PTo/(2ao) on its duration. Such a threshold, 



43 

obtained according to the critical stress criterion, is shown in Fig. 5.3 as a 
sloping dashed line. This line passes through the origin of the coordinate 
system; hence, in this case the fracture area in the plane (To, U) adjoins 
the origin of coordinates. It denotes that even infinitesimal force pulses are 
able to cause fracture. This is absurd, because it is impossible to use the 
critical stress criterion for fracture analysis during short-term loading. The 
temporal criterion of Nikiphorovski-Shemyakin corrects this situation - the 
fracture threshold on the plane (To, U) is traced by a horizontal line. It gives 
a finite threshold value for small durations; however, it does not link up with 
quasistatics at long times. 

3 

2 

o 

Fig. 5.3 

The structural-temporal criterion (5.3) gives a unified threshold curve (full 
line in Fig. 5.3), suitable for the whole range of loading times. In our case the 
threshold curve is described by the following analytic formula 

{
I, 

U = TJ/(2To -1), 
To S; 1, 

To 2': 1. 
(5.7) 

In the limit of very long and very short pulses it corresponds respectively to 
the quasistatic and temporal criteria. 

§3. Fracture Zone Behavior Under Cleavage 

Fracture zone behavior under cleavage is an extremely interesting subject to 
study. Classical approaches can not provide an adequate description. Thus, 
according to the critical stress criterion, the fracture zone can have a form of 
sequentially alternating cleavage sections. According to the temporal criterion 
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fracture occurs continuously in the domain. This domain can have a finite 
extent, and is called a zone of continuous fractionation by V. S. Nikiphorovski 
and E. I. Shemyakin. The real fracture is characterised by both variants. In 
the K. B. Broberg work [63] the fracture domain has a form of fractionated 
parts, alternating with undisturbed bridges (Fig. 5.4 a). De facto, the zone of 
continuous subdivision is not continuous. It is also related to the destroyed 
domains in some other experiments (Fig. 5.4 b) (see, e. g., [113]). Moreover, 
as experiments show, the qualitative view of fracture domains depends on 
exterior pulse parameters, such as loading rate, amplitude and duration. 

(al 

(b) 

Fig. 5.4 

Traditional approaches to the fracture zone study do not permit us to 
describe the whole variety of its geometry, obtained from the experiments. 
Thus, the use of the critical stress criterion (5.1) makes it possible to 
get a sequence of cleavage sections (cracks). The temporal criterion of 
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Nikiphorovski- Shemyakin makes it possible to predict a zone of continuous 
fractionation (see, e.g., [35]). 

It is interesting that the structural- temporal criterion (4.8) permits mod­
eling a fracture zone dynamics in a more complete way. Let us examine a 
scheme of calculation of destroyed domain parameters under the conditions 
of cleavage. We notice that in a one-dimensional situation of cleavage the 
rupture stresses are constant in the 'plane' of fracture, i. e. perpendicular to 
wave propagation. We suppose that the domain is linear, homogeneous and 
consists of successive identical structural strata with the thickness b. For def­
initeness, as a particular case, we could take b = d. An element (stratum) 
will be destroyed if the structural- temporal criterion in its middle has the 
following condition 

t J a(t') dt' ? acT. 
t-T 

Let t* be the time when this condition is first fulfilled. Then, for t < t* 
the properties and the geometry are unchanged. At the temporal value t = 
t* the fracture of the whole structural stratum occurs. In this connection 
the whole part of the specimen, located between the face and the destroyed 
stratum, forms a cleavage plane. The destroyed stratum is an obstacle to the 
transmitted waves. Further reflection of the remaining waves, moving to the 
face and going from it, occurs from a new free surface. 

I ~ I. 
Fig. 5.5 

Calculations, undertaken according to the aforementioned scheme, have 
shown that variations of fracture zones, shown in Fig. 5.5, can be realised 
only under a single trapezoidal pulse. The character of these zones could be 
significantly changed under the variation of rate of rise, amplitude, duration 
and the velocity of exterior loading decrease, which agrees completely with 
the existing picture of experimental studies. 
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§4. On the Relationship of Quasistatic and 

Dynamic Mechanisms of Solid Fracture 

The undertaken analysis permits a conclusion about the interconnection and 
range of developing of quasistatic and dynamic fracture mechanisms under 
cleavage. The main peculiarity of cleavage strength can be traced by means 
of the obtained diagram of temporal strength dependence. According to this 
diagram, the dynamic branch values, which are determined by structural 
characteristic die, correspond to a dynamic fracture mechanism. Moreover, 
the dynamic branch location does not correlate with the static strength of the 
material ac , which is confirmed by experiments. A transition zone, extending 
for times of the order of several structural intervals, reflects the joint mani­
festation of dynamic and quasistatic fracture mechanisms. In the examined 
situation both the dynamic fracture parameter and the critical power char­
acteristic influence fracture threshold essentially. Significantly large fracture 
times, e. g. one order of magnitude larger than the time it takes for a wave to 
travel through the structure, can be examined as times corresponding to the 
action range of the quasistatic fracture mechanism. Such a fracture can be 
analysed with the help of the critical static stress criterion. Estimation and 
comparison with experience of fracture times for some materials (see, e.g., [9, 
19]) lead to the conclusion that the range of essential influence of structural­
temporal fracture singularities is determined by times of the order of several 
microseconds. 

As an example, we will cite some calculated results of dynamic strength of 
rail steels RS 700 and RS 1100. The input data for rail steels are well-known 
[91]: RS700: ac = 780 MPa, K Ic = 70MPaJill; RS1100: ac = 1160 MPa, 
KIc = 48 MPa Jill. 

Steel RS 1100 was subjected to thermoprocessing (oil tempering from the 
temperature 9200 and release at 5400 ) in order to create static rupture 
strength. The computed results of temporal strength dependence, for rail 
steels, are shown in Fig. 5.6. It is clear that steel RS 1100, in spite of a higher 
quasistatic rupture strength, has lesser strength under the conditions of high­
rate shock loading, which is stipulated by its lower crack resistance. 

The obtained conclusion is not trivial and demonstrates the necessity of a 
qualitative approach to constructional material selection with regard to cor­
responding velocity operating conditions. The structural-temporal approach 
allows the optimisation of this selection. 

Fracture structural-temporal and force characteristics modification leads 
to a displacement of diagram parts of temporal strength dependence. Thus, 
the decrease of stress-wave propagation velocity changes the location of the 
dynamic branch in such a way that the material cleavage-strength increases. 
Therefore, heating of polymer material up to the temperature of a high-elastic 
state can lead to the increase of its cleavage strength. This conclusion agrees 
with experimental studies of cleavage-strength dependence of polymer com-



P, 
MFa 

3000 

2000 

1000 

o 0.5 

47 

1.0 1.5 2.0 t*, J.l.s 

Fig. 5.6 

posites on temperature ([4]). The threshold diagram in Fig. 5.3 permits the 
conclusion that fracture intensity depends on initial static rupture strength 
and on stress wave velocities. The latter is determined with the help of the 
elastic modulus and material density. With regard to this, we can conclude 
that more rigid and less massive materials can not qualitatively resist high­
rate dynamic loading. 

§5. On Surface Erosion Under Hard Particle Impact 

The dependence of the threshold pulse on its duration (Fig. 5.3), obtained 
with the help of the structural-temporal criterion, shows that, if we know 
the threshold values of extremely short loading pulses, we can determine an 
incubation time of fracture, corresponding to the given material. The latter 
allows the association of dynamic fracture and surface erosion phenomena in 
gas flows, containing hard particles. On the basis of fractographical analysis 
we can conclude [120] that the factor controlling erosion fracture is the for­
mation of brittle annular cracks, produced by contact dynamic interaction 
of flying particles with the surface. Small particles with a radius of several 
dozens or hundreds of microns, used in the experiments on erosion fracture, 
produce extremely short rupture pulses during contact interaction with the 
surface. If we know their characteristics and the velocity value of threshold 
impact during which erosion fracture of a surface occurs, we can determine 
an elementary fracture 'quantum' and the corresponding incubation time. 

Now we will show how the given scheme can be realised in the simplest 
approximation. Let a spherical hard particle with the radius R fall on the 
surface of an elastic semi-space with velocity v. Following the classical Hertz 
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scheme (see, e.g., [14]) we suppose the equation of particle (indenter) move­
ment may be written as 

(5.8) 

where h is the impact speed, P is the contact force, and m is the particle 
mass. In the classical approximation it is supposed that the relation between 
contact force and impact speed remains the same as in statics. This relation 
can be given in the following form 

(5.9) 

where 
4 E 

k = "3 VIi (1 _ 1/2) (5.lO) 

At the initial moment dh/dt = v; then, by integrating (5.8), we have 

dh = IV 2 _ 4h5/2. 
dt \I 5m 

(5.11) 

The maximum approach ho is attained for dh/dt = 0; hence 

h = [5mv2] 2/5 
o 4k (5.12) 

To compute the impact duration we integrate (5.11) from the beginning of 
the interaction to the moment of maximum penetration 

ho 

J dh ~ 

}v2 - 4kh5 / 2 /(5m) = 2' 
o 

where to is the complete impact duration. Whence we have 

1 

to = 2ho J d'5/2 = 2.94 ho . 
v 1-, v 

o 

(5.13) 

Numerical integration permits the construction of the dependence of pene­
tration as a function of time, i. e. via h(t). This dependence is approximated 
with high precision by the expression ([14]) 

h(t) = ho sin(21T-jto). (5.14) 

The dependence of the maximum rupture stress on time at the surface, ad­
joining the contact platform, is computed according to the formula ([87]) 

1-21/ P(t) 
o-(v, R, t) = -- ----z-( )' 2 7ra t 

(5.15) 
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where the radius of the contact spot a(t) is determined as 

[ 
R ] 1/3 

a(t) = 3P(t)(1 - V 2 ) 4E ' (5.16) 

and the contact force P(t) is found with the help of (5.9)-(5.14). 
Let v be the threshold particle velocity, during which the material rupture 

happens. We introduce a function 

t 

f(v, R, T) = mF J a(v, R, s) ds - acT. 
t-T 

In accordance with the structural-temporal criterion we determine an incu­
bation time T as a positive root of the equation 

f(v, R, T) = 0, (5.17) 

for given values v and R. 
The obtained formulas can be used for calculation of the incubation time 

on the basis of experimental data on threshold velocity of surface erosion 
fracture. 

Let aluminum alloy B95 with mechanical characteristics E = 73 GPa, v = 
0.3, a = 456 MPa be subjected to erosion fracture with erodent characteristics 
R = 150JLm, p = 2400 kg (m = 37rprR3 /4). 

The dependence of incubation time T on the threshold velocity of erosion 
fracture, calculated for the given parameters, is shown in Fig. 5.7. It is obvious 
that for a very large range of velocities, observed for aluminum alloys [57, 
97], these methods produce adequate results. 

T, 
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o v, m/s 

Fig. 5.7 
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The effective threshold particle velocity, at which the process of erosion 
surface fracture of the given material begins, must be determined experimen­
tally and turns out to be equal to v = 33 m/ s ([97]). Calculations according 
to the aforementioned formulas give the following values of characteristics of 
impact interaction between particles and surface: to = 0.29 f.L s, ho = 3.46 f.L m. 
The study shows that function f (v, R, T) has only one positive root (Fig. 5.8). 
The material incubation time, computed for the obtained data, turns out to 
be equal to T = 0.5 f.L s. 

f(v,R,r) 

100 

o 

-100 

-200 

o 0.5 T, I.lS 

Fig.5.S 

The obtained value of incubation time permits us to construct a diagram 
of temporal dependence of strength for the indicated alloy. The correspond­
ing computed curve, including not only static, but also dynamic branches 
is represented in Fig. 5.9. Experimental points, taken from the experiments 
on cleavage fracture for a given material ([8, 9]), included in the same pic­
ture, show the efficiency of the indicated methods of structural time evalu­
ation on the basis of erosion data. It is noteworthy that approximately the 
same value for the structural time can be obtained by means of the sim­
plified formula (4.15); ac = 460 MPa; Klc = 37MPaVm; e = 6500m/s): 
d/e = 2Kfc/(Pca;) ~ 0.6f.Ls. 

On the other hand, if we know the material incubation time, e. g. from ex­
periments on cleavage fracture, we can determine the principal characteristics 
of the erosion process. The dependence of the erosion fracture threshold veloc­
ity of B95 alloy on the radius of erodent particles, calculated for T = 0.5 f.L s, 
is represented in Fig. 5.10 (curve 1). 

As these results show, the dependence is characterised by static and dy­
namic branches. The static part is characterised by a weak dependence of 
threshold velocity on the diameter of erodent particles. As opposed to that, 
the dynamic branch shows a rapid increase of threshold velocities with de­
creasing particle dimensions. Moreover, there is some characteristic length 
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scale, in our case of the order of a few hundreds of microns, corresponding 
to the quick transition from the quasistatic regime to the dynamic one. The 
constructed theoretical curve qualitatively corresponds to well-known experi­
mental observations ([51]). Notice that calculations, according to this scheme 
with the use of thetraditional critical stress criterion (Fig. 5.10, curve 2), can 
not explain the observed behavior of threshold velocities of erosion fracture. 



CHAPTER 6 

STRESS FIELDS IN PROBLEMS 
OF DYNAMIC FRACTURE MECHANICS 

In dynamics, the stress field behavior has a number of specific features. These 
important peculiarities obtain a principal character in the case of high-rate 
loading and fast rupture of solids [23, 24, 28, 29, 46, 50, 96]. In this chapter 
we will consider for fracture mechanics some of the simplest and traditional 
initial boundary value problems, present their solutions and notice some pe­
culiarities of stress field behavior in dynamics. 

§1. On a Stress State Asymptotic Description Near 
a Crack Tip Under Dynamic Loading 

Application of traditional methods of quasi brittle fracture mechanics to the 
problem of dynamic initiation of crack extension is rather problematic. One 
of the main difficulties is the fact that the limit value of the stress-intensity 
factor, under which a crack initiation happens, could not be supposed to be 
a material parameter as, e. g., Klc in statics. Instead it depends both on the 
application method of dynamic action to an elastic body and on its load­
ing history. This dependence is clearly stated in experiments on dynamic 
fracture initiation and is manifested in many ways, e. g. modification of the 
stress-intensity factor critical value under changes of amplitude, duration 
and velocity of the exterior action. Moreover, these effects occur most clearly 
in cases of the aforementioned rapid changes of conditions. Non-elasticity, 
non-linearity, temporal dependence of material properties and some other 
peculiarities of their behavior are often proposed as the main reasons causing 
these effects. In this case one often overlooks the fact that in an elastic prob­
lem the behavior of the dynamic stress field itself has a number of specific 
features, that could be reasons making the traditional description of fracture 
as a quasistatic one incorrect. 

An asymptotic representation of the stress state near the crack tip is one of 
the most widely used mathematical tools for dynamic fracture analysis. Let 
us analyse the main physical principles and considerations, used to construct 
solutions. 

We suppose that a plane elastic domain contains a crack (mathematical 
cut), and an impinging time-varying wave. Let us examine a spectral decom­
position of the diffracted field. It is well known that for each harmonic w the 
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following asymptotic representation is valid 

K(w) 
(J"ij(w,r,8)= tn=fij(8) +0(1), r-+O, 

y 271T 
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where (J"ij is the stress tensor; and r,8 are polar coordinates at the crack 
tip. If we integrate (see, e. g., [60]) the reduced asymptotic expression with 
respect to the frequency w, we obtain the initial non-stationary solution near 
the crack tip in the following form 

K(t) 
(J"ij(t, r, 8) = tn= fij(8) + 0(1), r -+ 0, 

y21Tr 

where t is the time; K(t), being the main characteristic of a quasibrittle 
fracture, is the stress-intensity factor. 

This simple statement, often used to resolve concrete problems, contains a 
quite essential peculiarity. Namely, nothing guarantees the uniformity of the 
obtained asymptotic evaluation with respect to the time t and to parameters 
characterising the geometry of the impinging wave. A detailed analysis per­
mits us to observe that, under certain conditions, the dominating term of the 
asymptotic expansion is not 'the principal member of the solution'. Hence, in 
these cases the use of the stress-intensity factor for strength estimation does 
not seem possible. 

The physical reason, generating this non-uniformity, is the presence of 
short waves in the spectral decomposition. Their integral ('batch') effect leads 
to a situation when the uniform convergence of the improper integral for times 
close to the moment of wave and crack interaction, 

00 

J (J"ij(W, r, 8)eiwt dw 

o 

vanishes. The use of the root asymptotically dominating term of solutions 
to the non-stationary problem for all temporal ranges is not justified under 
these conditions. Physically it is expressed, e. g., in the fact that the diffracted 
wave has on its front a feature, 'spoiling' the given asymptotic evaluation for 
small times. 

§2. Wave Stress Pulse Interaction with a Longitudinal 

Shear Crack 

As an example, illustrating the proposals of the previous section, we will 
consider a problem of normal incidence of an antiplane step displacement 
wave at a semi-infinite crack y = ±O, x ::; 0, whose faces are free from 
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exterior loads. At interior points of the plane, cut along y = ±O, x « 0, the 
stress field is described by the equations 

cPu cPu 1 cPu 
-+-----0 ox2 oy2 c2 ox2 - , 

ou 
a yz = J1 oy ' 

The absence of fractions on the cut is expressed by the relation 

ou = ° 
ox ' 

y = ±O, x:::; 0. 

(6.1) 

(6.2) 

At times preceding the interaction of the impinging wave and the crack, 
the wave field is described by the function 

ult<o = UH(ct + y), y > 0, (6.3) 

where H(x) is the Heaviside function; U is the impact loading intensity, 
which, in this case, we suppose constant. Physically, it corresponds to a short­
wave stress pulse, when the total force stress pulse is given by the expression 

(6.4) 

where 8(t) is the Dirac delta function. Let the condition 

u = const +0 (r,B) , 
(6.5) 

t ~ s > 0, f3 > 0, 

also be fulfilled for an arbitrary positive number s. 
This condition means that the crack end is not an energy source ([52]), 

and ensures an unambiguous definition of the solution. 
The solution of (6.1)-(6.5) can be found by S. L. Sobolev's method of func­

tionally invariant solutions. However, in fracture mechanics, where the main 
problem is the determination of the stress-intensity factor, the method based 
on integral transformations and on the solution of the corresponding fac­
torisation problem is more widely used. Using this method, we present the 
solution to (6.1)-(6.5) as a sum of impinging and reflected waves 

u = UH(ct + x) + W(t,x,y), W=O, t < 0. 
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The function W is determined as the following Fourier inversion 

+00 

W(t,x,y) = ~ J cp(w,x,y)e-iwctdw, 
27f 

-00 

(6.6) 

and cp(w, x, y) is obtained from the solution of a related diffraction prob­
lem on a semi-infinite cut. Its solution can be obtained by the Wiener-Hopf 
factorisation method ([37]) and has a form 

cp(w,x,y) = 

w > O. (6.7) 

The upper symbol corresponds to the points where y > 0, the lower to the 
points where y < 0; cuts in the Gaussian plane 'Yare taken along the real 
axis in 'Y < -1 and 'Y > 1, and radical branches are fixed by the conditions 

Imb2 - 1)1/2 < 0, 

b+1?/2>0, 

-1 < 'Y < 1, 

'Y> -1. 

The contour of integration passes through the points 'Y + Oi for 'Y < -1 and 
through the points 'Y - Oi for 'Y > -1. The function cp for w < 0 is determined 
by the relation cp(w) = cp( -w), the bar meaning complex conjugation. 

Taking (6.5) into consideration when we search the entire complex func­
tion while solving the problem by the factorisation method, provides the 
possibility to reveal the corresponding behavior of the sought functions, cor­
responding to the Fourier transformation at infinity. This behavior provides 
the asymptotic stress state near the crack tip 

K(t) . e 
U xz = - v27fr sm 2' 

K(t) e 
U yz = - v27fr cos 2' 

(6.8) 

r -+ 0, r « ct. 

Whence it is clear that the stress-intensity factor K(t) = V2U/(7fct)1/2 in­
creases infinitely for t -+ 0, and its expression can be obtained, as is commonly 
done by integration with respect to the stress-intensity factor frequency of 
the corresponding stationary problem. 

Formal use of the critical stress-intensity factor criterion K(t) :::; Klc leads 
to a paradoxical conclusion: there is always such a time, when the criterion 
condition is accomplished. Hence, a fracture occurs for a total force stress 
pulse II (6.4) in the impinging wave. Griffith's energetical balance scheme for 
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the solution of (6.8) gives the same result: energy flux, directed to the crack 
tip, tends to infinity for t ---+ 0, meaning that the given critical condition is 
satisfied for any value of II. 

Apart from the already mentioned physical reasons, the specified contra­
diction has also a pure-mathematical foundation. 

Let us examine the exact solution. After substitution of (6.7) in (6.6) the 
double integral can be calculated by means of contour integration methods. 
Omitting intermediate computations, we give the final expressions for stress 
and displacement functions in the plane of the cut line 

[ (ct)1/2 ] 
O"yz=f-lU O"(ct)+H(ct-x) ( )1/2' 7rct x-I 

y = 0, x> 0, 

O"xz=o, u=UH(t), y=O, x>O, 

f-lH(ct + x)U 
O"xz = =F 7r[-x(ct + x)]l/2' 

Y = ±o, x < 0, 

[ 
2 ( t + ) 1/2] 

U = U H(t) ± H(t) =F ;H(ct + x) arctan c -x x , 

y = ±o, x < 0. 

As follows from these expressions, for t :s: r / c the stress behavior near the 
cut tip has a more complicated character than in (6.8), and on the front of 
the diffracted wave we can observe a root peculiarity. This means that the 
use of the stress-intensity factor in order to calculate a fracture possibility for 
t ---+ ° could lead to erroneous conclusions. Thus, the traditional estimation, 
corresponding to asymptotics of square root singular stresses, is not uniform 
in dynamics. That is why, at times, close to the beginning of the interaction 
of an exterior pulse and a crack, the solution is not described by the principal 
member of the traditional asymptotic representation. Such a description is 
possible only after a certain time, necessary to establish the corresponding 
asymptotic 'regime'. 

§3. On the Stress State Near the Tip of a Rapidly Growing Crack 

Experimental data (see, e. g., [105]) and numerical calculation results [89] 
show that a high-rate crack propagation can not be adequately described by 
means of traditional asymptotic formulas. Let us study an analytical example, 
clarifying this situation. 
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We retrace the behavior of a growing semi-infinite crack of longitudinal 
shear y = 0, x ::; l(t), l(O) = o. On its faces there is a uniformly distributed 
stress when the unbounded medium state is described by (6.1) 

O'yz = -p(t), p(t) = PH(t), y = 0, x::; l(t). 

Let us suppose that for t < 0, all the points of the medium are in a 
quiescent state and at the cut tip the energy rate of change is finite. The 
solution of this problem is known (see, e.g., [15, 21]) 

O'YZI y=o 
x>l(t) 

let. ) 

1 J ( x - s) yll(t*) - x d p t- -- s 
rrylx-l(t*) c x-s ' 

x-ct 

where x-l(t*) = e(t-t*), i. e. t* has the meaning oftime, when a signal, being 
received at the point x at time t, propagates from the end of the growing cut. 
Whence, for the chosen loading, it follows that 

I 2P [ et - x + l(t*) 
O'yz y=o = - _ l() - arctan 

x>l(t) rr x t* 
(6.9) 

Computing the asymptotic stress expression, we suppose that the crack 
velocity v(t) = dljdt is continuous. Then 

l(t*) -l(t) = v(t)(t* - t) + o(t* - t), x -+ l(t) + O. (6.10) 

Inserting (6.10) in (6.9) and taking account of the equation for t*, we have 

- arctan 

t[e - v(t)] - x + l(t) 
x -l(t) 

t[e - v(t)] - x + l(t) 1 () 
x _ l(t) + 0 1 , x -+ l(t) + O. (6.11) 

Essentially, (6.11) appears to be an asymptotic stress representation near 
the crack tip. 

We suppose that 
x -l(t) «t[e - v(t)]. 

Then, it follows from (6.11) that 

O'YZI y=o 
x>l(t) 

t[e - v(t)] (1) 
x -l(t) + 0 , 

(6.12) 

x -+ l(t) + O. (6.13) 
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Thus, the transition from the exact solution to the principal member of 
root stress asymptotics (6.13) is correct only under the additional restriction 
(6.12), e. g. for sufficiently large times and velocities of crack growth, differing 
notably from the velocity of the shear wave. At the same time, an analysis 
based on the well-known fracture criteria and traditional root asymptotics can 
lead to mistakes when we deal with a high-rate material rupture. Thereby, 
some theoretical notions on the limit velocity of crack growth and on its 
behavior at close-to-limit energy flux velocity, found on the basis of tradi­
tional asymptotic formulas and the stress-intensity factor, require additional 
justification. 

§4. On the Influence of Regular Terms of the Stress-Field 

Asymptotic Representation 

The studied examples show that the knowledge of the stress-field represen­
tation near the crack tip, obtained with the help of the principal (singular) 
term of the asymptotic expansion around the crack tip, generally accepted 
for static analyses, can be insufficient for analysis of dynamic fracture effects. 
It is natural, that the question of the influence of second-order terms of the 
expansion on computed results arises. 

We will use a simple example to show that in many cases the concrete 
physical situation can be reflected more exactly with the help of a second 
term of the expanded asymptotic solution. 

Let us consider an unbounded elastic plane with a rectilinear, semi-infinite 
crack x S; 0, y = O. The corresponding system of equations is given by 

82 w 
(A + lL)graddivw + lL6.w = p 8t2 . 

Here A, IL are the Lame constants; w = (u, v), where u, v are components 
of the displacement vector. 

Let a trapezoidal temporal profile stress be applied to the crack faces 

iJy = -v [tH(t) - (t - to)H(t - to)], 

where to is the time of stress growth; V is the loading rate. The scheme to 
solve this problem by the factorisation method is well known (see, e. g., [60]). 
The asymptotic expression of maximum tensile stress at the crack extension 
is given by 

Kr(t) [ ] 
iJy = V27rx - V tH(t) - (t - to)H(t - to) + 0(1), x --+ 0, (6.14) 
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where 

(6.15) 

Cl, C2 are the velocities of longitudinal and transverse waves. An asymptotic 
expression (6.14) is the approximate expression for the desired stress. The 
second term of this expression has the physical meaning of stresses applied 
to the crack faces. 

Now we assume that under the previously given geometrical conditions 
fracture is initiated by a double-sided plane stress wave, incoming to the 
crack, 

ay = ~ [(t + ~) H (t + ~) - (t - to + ~) H (t - to + ~) 
+ (t - ~) H (t - ~) - (t - to - ~) H (t - to - ~)] . 

The crack faces remain free from fractions: a xy = 0, a y = O. Then, the 
asymptotic expression of the maximum tensile stress on the crack extension 
is given by 

Kr(t) 
a y = ~ +0(1), 

v27rx 
x -+ 0, 

where the stress-intensity factor is still determined by (6.15). In comparison 
with the previous case, in this situation there are larger stresses near the 
crack tip. This is stipulated by the existence of a transmitted wave. Thus, 
the current stress-intensity factor value is the same in both cases, and the 
difference in the mode of loading gives information on the second term of the 
asymptotic representation of the solution. 

This difference could be essential for tests under high-rate loading. As fol­
lows from experiments, the fracture is faster when the loading rate increases. 
The stress-intensity factor value increases rather slowly with the change of 
time, i. e. as t ex (0: > 0). Therefore, for small fracture times, the process of 
the material rupture is 'controlled' by both singular and regular members of 
the asymptotic expansion. 

Ignoring of the last circumstance leads to contradictions in interpreta­
tion of experimental data on fracture initiation. So, K. Ravi-Chandar and 
W. G. Knauss [104] got essentially higher values of the dynamic fracture vis­
cosity for Homalite-100, than J. W. Dally and D. B. Barker [67], who had been 
conducting tests by modeling the same temporal dependencies for current 
stress-intensity factor values. The first author were using a caustic method 
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to determine the named intensity factor, while the latter used the photo­
elasticity method in combination with strain-gage measurements. 

In the discussion of the accuracy and correctness of the methods used, 
which arose between the authors, the aforementioned difference in the modes 
of dynamic effect creation was not taken into account, they were just observed 
in two given sets of experiments: in the first case the stress was applied 
directly to the crack faces, in the second case the fracture was initiated by a 
double-sided plane tensile wave, incoming to the crack. 

Further on it will be shown that an account of this circumstance, by means 
of the structural-temporal criterion of incubation time, permits a theoretical 
interpretation of such 'controversial' situations. 



CHAPTER 7 

DYNAMIC FRACTURE NEAR THE CRACK TIP 

It is well known that when formulating the macrorupture criterion, comple­
menting the solid-medium mechanics equations, one has to take into account 
the most important peculiarity of dynamic fracture - the existence of not only 
a spatial but also a temporal structure of the process. This circumstance must 
be reflected while choosing criterion-determining parameters and test meth­
ods of dynamic strength properties of a material. Structural-temporal crite­
ria, already considered in the previous chapters, permit taking this dynamic 
fracture peculiarity into account and modeling the process of crack-growth 
initiation under the action of impact pulses. 

In this chapter we examine some principal peculiarities, and present cal­
culation methods and an interpretation of the well-known high-rate fracture 
effects of elastic bodies with cracks [23-29, 31, 49, 99]. 

§1. Threshold Pulses of Impact Loading 

An essential contribution to the solution of the problem of taking the tem­
poral structure of the dynamic fracture process into account comes with the 
introduction of the already mentioned incubation time concept, which was 
suggested and developed by J. F. Kalthoff and D. A. Shockey [78], H. Homma 
et al. [73] and D. A. Shockey et al. [112]. Experiments, described in these 
works, testify that in the case of macrocrack growth initiation with the help 
of intensive short pulses, threshold amplitude values, obtained experimen­
tally, turn out to be significantly greater than those stipulated by a tradi­
tional critical stress intensity factor criterion. That is why J. F. Kalthoff and 
D. A. Shockey [78] suggested that one should discard this criterion and accept 
the fact that fracture occurs when the current value of the dynamic stress­
intensity factor KI(t) exceeds the value of the dynamic fracture viscosity KId 

during some minimum time tinc. The incubation time tinc is considered to be 
a material constant, connected with structural processes. 

Experimental determination of the incubation time is accompanied by a 
very cumbersome procedure, requiring multiple specimen tests for different 
values of pulse action duration and complicated numerical calculations ([73, 
112]). A priori learning of the functional dependence of the dynamic fracture 
viscosity on the history of loading is also essential for the minimum-time 
criterion. 

N. Morozov et al., Dynamics of Fracture
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In Chap. 4 we have examined another approach for fracture analysis, based 
on the structural-temporal criterion: 

t d 

~ J dS~ J a(s,r)dr ~ ac , (7.1) 

t-r 0 

where T and d are the structural time of fracture and its structural dimension; 
ac is the material static strength; and a(t, r) is the maximum tensile stress 
near the crack tip (r = 0). 

Structural dimension d is determined according to data of quasistatic tests 
on cracked specimens. In the case of a generalised plane-strain conditionjt 
can be expressed by means of static fracture viscosity and strength by a 
simple formula [22] 

d = 2Kfc. 
7ra~ 

According to this approach, ac, KIc and T form a system of determining 
parameters, describing material strength properties. The structural fracture 
time T is responsible for dynamic peculiarities of brittle fracture and must be 
found experimentally for each material. 

We will show that in experiments, carried out by J. F. Kalthoff and 
D. A. Shockey [78], H. Homma et al. [73] and D. A. Shockey et al. [112], the 
structural time T may be interpreted as tinc. 

Let an infinite plate have a crack x ~ 0, y = 0, and an incident rectangular 
profile stress wave 

t < 0, (7.2) 

where H(t) is the Heaviside function. We will find, for the given duration T, 
the minimum amplitude of an external pulse that will initiate crack growth. 
The asymptotic expression of the maximum tensile stress, that corresponds 
to the impulse (7.2), on the crack extension for t > 0 has the following form 

KI(t) 
ay = to=. + 0(1), r -+ 0, 

y27rr 

() ( ) ( ) _4C2Jci-c~ (7.3) 
KIt =PrpCl,C2)f(t, rpCl,C2 - y'1TC1' 

Cl 7rCl 

f(t) = -It H(t) - v't - T H(t - T), 

where Cl, C2 are speeds of the longitudinal and the transverse waves. Accord­
ing to (7.1) and (7.3) the expression of minimum amplitude, that leads to 
fracture, obtains the following form 

(7.4) 
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At the same time, from the traditional critical stress-intensity factor criterion, 
it follows that the minimum stress amplitude is given by 

(7.5) 

Now, we note that 
t 

max..!:. J f(s) ds < maxf(t), 
t r t 

t-r 

whence it follows that P1 > P2 , whict is reflected in the abovementioned 
experiments of J. F. Kalthoff and D. A. Shockey [78], H. Homma et al. [73] 
and D. A. Shockey et al. [112]. They stated that for long cracks (short pulses) 
the values of the minimum breaking amplitude turn out to be greater than 
those obtained according to the traditional stress-intensity factor criterion. 

The temporal dependence of the stress-intensity factor criterion is repre­
sented in Fig. 7.1. 

J(t) 

o t 

Fig.r.1 

As calculations under (7.1) show, the initiation of crack growth happens 
with a delay, i. e. during the decrease stage of local stress-field intensity near 
the tip. At the fracture moment t* the integral fLr f(s) ds has its maximum 
value, hence f(t* - r) = f(t*). According to the monotonicity of the function 
f(t), we obtain, that in the analysed case r is the time during which the 
stress-intensity factor exceeds the value KId = KI(t*). 

We also notice that computed values of dynamic viscosity under the exam­
ined conditions turn out to be inferior to the corresponding quasistatic value 
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) () T KIc! (t*) 
KId = PI <p( CI, C2 1 t* = ---,-t.-'-"--''------'- < KIe, (7.6) 

J 1(s) ds 
t*-T 

as is observed in experiments [73, 78, 112]. 
This reasoning remains true for a reasonable arbitrary temporal profile of 

a single pulse, providing a monotonic increase followed by a decrease of stress 
intensities. 

So, the analysis of fracture caused by threshold pulses allows the observa­
tion that structural parameter T has all the formal properties of an incuba­
tion time from the minimum-time criterion, and the problem of initiation of 
macrocrack growth it can be taken that 

(7.7) 

Criterion (7.1) and (7.7) permit efficient calculation of the values of exter­
nalloading parameters. 

Let us take an average incubation time, found in experiments on fracture 
of metal plates with a macro crack: tine ~ 10 P, s. Calculating the threshold 
amplitude values in accordance with (7.4)-(7.7) we obtain values for the 
relative difference Q = [(PI - P2 )/ P2 ] x 100 % thoroughly in line with the data 
of experimental observations from [73, 112]. The corresponding dependence 
is presented in Fig. 7.2. 

Q,% 

50 

o 50 100 T/r 

Fig. 7.2 

Formulas (7.4) and (7.7) allow determination of the incubation time of a 
material fracture at the known threshold value of external pulse amplitude. 
Thus, for steel 4340 from [73] we have experimentally obtained a threshold 
amplitude value, within the region of 140-150 MPa, for T ~ 20 p, s. According 
to (7.4) (KIe = 47 MPaVm, CI = 6 mm/p,s) we get T ~ 7 p,s, coinciding with 
the incubation-time evaluation for this material from [73, 112]. 



65 

For steel 4340, used in the experiments of H. Homma et al. [73], we have 
CI = 6mm/p,s, II = 0,3, Klc = 47 MPaJill, CJe = 1490 MPa, tine = 7p,s. For 
T = 18 P, s we get the critical value of amplitude PI = 155 MPa from (7.4) 
and (7.7). This value is in line with the experimental data of H. Homma et 
al. [73], when a similar critical value of external pulse amplitude, causing a 
crack 'jump' at the distance was calculated: 

d 2Kfe = --2 ~0.6mm. 
7fCJe 

§2. On Loading-Rate Dependence of Dynamic Fracture Viscosity 

Now, we suppose that there is a two-sided plane trapezoidal stress wave, 
incoming to the crack 

CJ Y = ~ [( t + ~) H (t + ~) - (t - to + ~) H (t - to + ~) 

- (t - ~) H (t - ~) + (t - to - ~) H (t - to - ~)], CJxy = 0, 

where V = P/to; to is the given time of the applied stress increase up to 
the maximum value P. The corresponding asymptotic representation of the 
maximum normal stress for the crack extension is determined by (7.3), where 

2 [t3/2 H(t) - (t - to)3/2 H(t - to)] 
f(t) = 3to . (7.8) 

Let t* be the time before fracture, and to be fixed. Using (7.1), (7.3) and 
(7.8) one can find the breaking amplitude P*, appropriate for t*. Then by 
calculating the critical stress-intensity factor value 

we get 

K1q 5 f!./2 - (t* - to) 3/2 

KJe -"2 £:,/2 _ (t* _1)5/2 _ (t* _to)5/2 + (t* -to _1)5/2' 
(7.9) 

where L = t*/T; to = tofT, and all power functions, for negative values 
of their arguments, are considered to be equal to zero. The corresponding 
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Fig. 7.3 

graphical dependence is shown in Fig. 7.3. The same dependence was observed 
in many experiments (see, e. g., the survey [82]). 

From (7.9) it follows that the link between the critical stress-intensity 
factor value and the fracture time depends on the time to of the external 
loading increase. For bounded and semi-bounded domains this link depends 
also on geometric parameters of the problem. So, e. g., if L is the crack length 
and KI(t) = PG(t, L), then, according to (7.1), we get 

t. 
J G(s,L)ds 

t*-T 

Let us note that in (7.3), (7.8) and (7.9) the tension increasing ime can tend 
to zero, then. 

K Iq 3 l!/2 

KIc = 2 t;/2 _ (l* _ 1)3/2' 

which formally corresponds to an instantaneous application of constant stress. 
Thus, the qualitative link mode between K Iq and t* persists even under an 
'infinite' loading rate. 

We will show that the dynamic fracture viscosity can depend not only on 
the loading rate and the geometric parameters of the problem. Let us assume 
the fracture initiation caused by means of trapezoidal impact pulse action 
directly at the crack faces 
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Then, in the infinitesimal order, we have on the crack plane 

ay = ~~~~ - V [tH(t) - (t - to)H(t - to)] + 0(1), r ---t O. 

By the same reasoning as in the previous case, we get 

K1q 5 ~/2 - (i* _ iO)3/2 

KIc ="2 t!/2 _ (i* - 1)5/2 - (i* _ iO)5/2 + (i* - io _1)5/2 

{ TV* [<2 (- )2 (- -)2 (- - )2]} X 1 + 2ac t* - t* - 1 - t* - to + t. - to - 1 . (7.10) 

For relatively great fracture times the critical stress-intensity factor value 
tends to the quasistatic value, and also 

t* - ---t 00, 
T 

>. = const. 

Experiments, under conditions similar to the examined ones ([102]), have 
been carried out on specimens made from Homalite-100. A structural frac­
ture time estimation for the named material can be made on the basis of 
comparison of data, found according to the theoretical formula (7.10), with 
experimental ones. 

The estimated curve (to = 25 /-L s, Klc = 0.48 MPa vm, T = 8 /-L s) and 
the related experimental points, in logarithmic coordinates, are presented in 
Fig. 7.4. 

K. Ravi-Chandar and W. G. Knauss have suggested an empirical formula 

(7.11) 

permitting an analytical description of experimental data. As follows from the 
results given above (see Fig. 7.4), (7.11) can be considered as an approximate 
power approach of the exact formula (7.10). In this case 

Formula (7.10), just as (7.9), demonstrates an increasing effect of the 
stress-intensity factor critical value with decreasing time before fracture, i. e. 
with the increase of loading rate. However, in comparison with the previous 
case, there are smaller stresses near the crack tip. 

It should be noted that the current value of the stress-intensity factor in 
both cases is the same, and the difference in the way of loading manifests 
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itself in the value of the second term of the asymptotic representation of 
the solution. This is, ultimately, visualised via the experimentally obtained 
critical value of the stress-intensity factor of crack growth initiation. 

As follows from (7.10) and (7.9), the dynamic fracture viscosity under 
wave loading turns out to be smaller than under the corresponding ap­
plication of efforts directly to the crack faces. Value differences for Q = 
[(Kn - Kfq)/Kfq] x 100% for Homalite-100, where superscripts I and II 
correspond to the first and to the second cases respectively, are presented in 
Fig. 7.5. As computing results testify, the difference in the way of loading for 
longer times is hardly observable via the critical value the of stress-intensity 
factor. 

Q,';¥o 

10 

o 50 

Fig. 7.5 

At increasing loading rate, the fracture is faster but the dependence of 
dynamic fracture viscosity on the way of loading becomes more conspicu-
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ous. Evidently, the physical mechanism, causing such an effect, is an addi­
tional contribution of transmitted wave energy to the fracture, which is the 
more powerful the less the time is before fracture. It leads to a decrease 
of the stress-intensity factor critical value, which is necessary for creation 
of material rupture. This circumstance might be one of the reasons causing 
the apparent dispersion of results at experimental dynamic fracture viscosity 
determination. So, from the experiments on loading Homalite-100 with the 
help of high-intensive waves J. W. Dally and D. B. Barker [67] have obtained 
smaller critical values of the stress-intensity factor than K. Ravi-Chandar and 
W. G. Knauss [102]. This fact caused a discussion on the exactness of the ex­
perimental methods employed. The result, presented in Fig. 7.5, reflects the 
difference in dynamic fracture viscosity values, measured in the experiments 
mentioned. 

§3. Minimum and Maximum Pulses. 

Limit Characteristics of Material Dynamic Fracture 

Results of the analysis process, carried out with regard to structural-temporal 
characteristics, reveals that dynamic effects depend on geometrical param­
eters, method and history of loading, and that their interpretation can not 
be reduced only to a velocity dependence of the dynamic fracture viscosity. 
It can be one of the explanations of great dispersion and inconsistency of 
experimental data on dynamic fracture viscosity of brittle materials. 

Threshold pulses, studied in the beginning of the chapter, determine min­
imum, according to energy charges, loading conditions when crack initiation 
occurs. In this case the appearance of a fracture delay effect is essential: the 
criterion realisation takes place not at the initial stage of crack growth, but 
at the decrease of the current value of the stress intensity. This effect, that 
contradicts the classical mechanics of brittle fracture, is observed experimen­
tally both in tests on cleavage (see, e. g., [9, 10, 35]), and in tests on fracture 
of cracked specimens (see, e. g., [73, 78, 112]). Here, the calculated critical 
values of the stress-intensity factor (dynamic fracture viscosity) turn out to 
be inferior to the corresponding quasistatic value KIc for the given material. 
The latter is also a very important distinctive feature of the experiments 
mentioned. 

Together with the examined threshold pulses, another situation was in­
vestigated, i. e. when the applied stress on the crack faces is maintained 
up to the moment of fracture. This guarantees a monotonic increase of the 
stress-intensity factor values during the whole structural-temporal interval 
T. Consequently, fulfilment of the inequality K 1q > Klc is also observed in 
corresponding tests [75, 82, 102]. 

Thus, the use of the structural-temporal criterion (7.1) for analysis of fast 
rupture in the crack-tip neighbourhood permits us to calculate the dynamic 
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fracture viscosity of brittle materials. The results of the application of (7.1) 
to the problem of rectangular pulse action to the crack faces are presented in 
Fig. 7.6. 

1 ---.:-::::-:::::~:::::-:=-===-====~~ ~ 

o 5 10 T/r 

Fig. 7.6 

Curve 1 in Fig. 7.6 determines the stress-intensity factor values at the 
moment of fracture under threshold pulses of duration T. In this case the 
material rupture occurs with a delay, i. e. at the stage of stress-intensity 
decrease near the crack tip, and t* > T, where t* is the fracture time. 

Curve 2 in Fig. 7.6 matches the case when a suddenly applied constant 
stress operates up to the fracture moment, so that t* = T. 

Such dispersion of dynamic fracture viscosity values, observed in the ex­
periments, has become a reason for discussion on correctness and exactness 
of the experimental methods applied (see, e.g., [75, 85]). 

The analysis suggests that the behavior of the critical stress-intensity fac­
tor is the principal peculiarity of dynamic fracture, stipulated by the discrete, 
structural-temporal nature of this process. 

Let us analyse the behavior of fracture pulses under modification of their 
duration. Let the fracture near the crack tip be created by a rectangular­
profile stress pulse (7.2). U(T) = PT denotes the total force pulse of the 
external action. The computed dependence of the minimum fracture pulse 
U = U*(T) on its duration is presented in Fig. 7.7 (curve 1). 

Note that if the applied pulse is inferior to U*, but is of the same du­
ration (through the amplitude decrease), fracture will not occur. Hence, all 
the points of the domain UT, situated below curve 1 (see Fig. 7.7), do not 
correspond to fracture. An important result is that the threhold pulse tends 
to a finite value for T ~ o. If we use the classical criterion of the critical 
stress-intensity factor, we can see (Fig. 7.7, dashed line), that fracture could 
be caused by even infinitesimal pulses, they only have to be sufficiently short, 
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which for certain is erroneous. Thus, under the action of short pulses it is 
advisable to use the classical criterion. However, the comparison of the com­
puted threshold curves gives grounds to trust that for sufficiently great values 
of the duration T (~ lOT) it is possible to use successfully the classical cri­
terion in order to evaluate fracture. Hence, the threshold pulse calculation 
reveals a fracture delay, the existence of its lower boundary in the coordinate 
plane UT and the finiteness of fracture pulse values U. for short times of 
action. 

Now, we fix the action time T, and let U be the applied and U* the 
minimum rupture pulses. It is obvious that for U > U* fracture occurs, with 
the result that the fracture time exceeds the loading duration: t* > T. 

The question arises, how great the value of U could be for the fixed T. 
Computed data show that if the pulse exceeds the threshold value to some 
degree, a fracture occurs with a smaller delay. The absence of delay corre­
sponds to a coincidence of the fracture time with the pulse-action duration: 
t* = T. Such a situation can be treated as an applied stress action up to the 
moment of fracture. In this case this occurs just when the stress-intensity 
factor reaches its maximum. An attempt of further pulse increasing with the 
help of an amplitude increase leads to a decrease of the duration of the ap­
plied stress action time, i. e. the fracture condition is fulfilled at time smaller 
than T. 

Taking into consideration the aforesaid, we will name pulses, acting up 
to the moment of fracture, maximum rupture pulses and denote them by 
U*. The dependence of the maximum rupture pulse on the loading time 
U = U*(T) is presented in Fig. 7.7 (curve 2). 

Let us consider some peculiarities of fracture by means of maximum rup­
ture pulses. At the decrease of action time one observes the increase of U* in 
comparison with U*, and that U* --+ 00 for T --+ o. So, if it is necessary to 
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speed up the fracture the condition: 'the greater the applied pulse, the faster 
will fracture occur', is correct. And, lastly, to cause an instantaneous fracture 
an infinitely great pulse action is required. Evidently, the latter is connected 
with overcoming of medium inertia. For great T, i. e. when the medium 'man­
ages' to start moving, the values U* and U* practically coincide. 

As has already been noticed, the points of the plane UT, situated above 
curve 2, could not be reached: so, the fracture domain is under this curve, 
and at the same time, as has been stated during the study of the minimum 
rupture pulse, above curve 1. Thus, the 'probable' fracture on the plane UT 
is the domain located between the two curves 1 and 2. 

§4. On Testing Principles of Material 

Dynamic Strength Properties 

Let us classify some descriptive methods and construction material strength 
properties, and study their main possibilities ([93]) (Table 2). 

Table 2 

'NQ Method Material Criterion 
parameters 

1 Classical approach ae, KIe a ::; ae, 
of static fracture K ::; KIe 

mechanics 
2 Classical approach a~(v), Kfc(v) a(t) ::; a~, 

of dynamic fracture K(t) ::; Kfc 
mechanics 

3 Stanford a~(v), Kfc(v) a(t)::;a~, 
J. F. Kalthoff, tine Minimum-time 
D. A. Shockey criterion 

4 Structural-temporal ae, K Ie , T Structural-temporal 
approach criterion 

In Table 2 the parameters ae and K Ie are constants of the material, and 
a~ (v) and Kfc (v) are material functions, representing the dependence of crit­
ical characteristics on the loading rate v [93]. 

The classical approach of dynamic fracture, based on principles of qua­
sistatics and linear fracture mechanics, connects the material dynamic 
strength properties with two characteristics: a~ (v) and Kfc (v), which are 
to be considered as material functions. As has been noted, the direct tran­
sition of static boundary principles to dynamics problems turns out to be 
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ineffectual: aside from the great experimental determination complexity of 
functions (T~ (v) and K~J v) an investigator has to face a number of effects, 
that could not be explained by means of the given approach in principle. 
It occurs, e. g., that (T~(v) and K~(v) depend not only on loading rate, but 
on a whole number of other exterior action parameters. Such experimentally 
obtained values as (T~ (v) and K~ (v) are characterised by great dispersion, 
and, consequently, their behavior is poorly predictable. 

The minimum-time criterion, elaborated by the Stanford International Re­
search Center (California), includes a new material parameter tine, the incu­
bation time. In comparison with the classical approach it has a number of 
new possibilities, in particular it allows the explanation of the fracture de­
lay effect and the behavior of threshold pulses. An evident deficiency of this 
approach is its 'inheritance' of all the problems of the dynamic fracture clas­
sical approach: the analysis in compliance with the minimum-time criterion 
still requires a priori knowledge of velocity dependencies of material fracture 
strength and viscosity. 

Fracture analysis from the point of view of the structural-temporal ap­
proach combines the evident advantages of the static fracture classical method 
and the efficiency of Stanford's approach. The determining fracture param­
eters are three material constants: (Te, K Ie and T. The stress field dynamic 
intensity limit values, i. e. dynamic strength and fracture viscosity, can be 
considered as computed characteristics. According to the calculations their 
behavior is stipulated by a strong dependence on history and way of loading, 
which corresponds to the results of experiments. However, to determine the 
exterior loading parameter limit values we do not need an a priori knowledge 
of these dependencies. The established link between the fracture structural 
time T and the incubation time tine permits the use of well-known experimen­
tal methods [73, 78, 112J in order to obtain T in the case of macrocrackns. An 
important peculiarity of the structural-temporal approach is that it allows 
evaluation of fracture near a macrocrack tip and fracture of 'intact' materials 
from a single position. Naturally, the fracture structural time for an 'intact' 
medium does not already coincide with macrocrack incubation time, as in 
this case, the material rupture occurs on another structural level. As follows 
from the analysis carried out, the structural time for 'intact' media can be 
determined on the basis of cleavage fracture experiments [8, 9, 20, 35J. Lastly, 
we observe that the structural-temporal criterion could be used to construct 
dependencies of exterior action critical characteristics, unique for statics and 
dynamics, as functions of these three material constants ((Te, KIc and T). 



CHAPTER 8 

DETERMINATION OF FRACTURE DIRECTION 
UNDER ASYMMETRIC-IMPACT ACTION 

The problem, studied in this chapter, is connected wich the fracture 'mode 
change' effect. It was discovered experimentally by J. F. Kalthoff and S. Win­
kler [81], and then it was investigated by J. F. Kalthoff [76, 77], A. J. Rosakis 
et al. [107] and K. Ravi-Chandar [101]. 

§1. Experimental Scheme and Fracture 'Mode Change' Effect 

The scheme of the experiment is presented in Fig. 8.1. 
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A specimen with two parallel edge cracks is subjected to an impact of a 
cylinder shell, the diameter of which is equal to the distance between them. 
The shell initiates a compression wave, expanding in the domain between the 
mentioned cracks, creating, in its own turn, a specific asymmetric loading 
near its tip. It is supposed that in such a way the second mode of loading 
(dynamic transverse displacement) near the crack tip will be formed. 

Crack behavior under such a loading turns out to be very complicated and 
unexpected. It can be reduced to three basic propositions: 

N. Morozov et al., Dynamics of Fracture
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1. Fracture does not happen during low rates of loading. 
2. Fracture is observed when the velocity V reaches a critical value: the 

edge crack extends catastrophically fast at an angle of approximately 
70° to its initial direction (Fig. 8.2 a). This behavior is treated as a 
brittle fracture (tensile fracture failure mode), which can be explained 
from the classical brittle-fracture mechanics approaches, based on the 
principle of maximum tensile stress. 

(a) (b) 

.. 

• 

Fig. 8.2 

3. A further impact velocity increase leads to the appearance of a new 
effect. It turns out that when V reaches a certain critical value, a 
sharp change of fracture direction happens: the crack jumps a certain 
distance in the direction practically coinciding with the initial one 
(Fig. 8.2 b). At first sight, such a behavior is rather strange from the 
brittle-fracture mechanics point of view. Many investigators, includ­
ing the originators of the discovery of this effect, connect it with the 
formation of local lines of sliding motion near the tip and consider 
it as a transition to a new shear (plastic) mode of dynamic frac­
ture (shear band failure mode). The described effect was observed in 
experiments on a number of specimens of different materials (steel, 
vitreous polymers, polycarbonate, etc.). 

Authors of the aforementioned works notice an absence of any theory ex­
plaining why the observed fracture mechanism changes (failure mode transi­
tion effect) when the impact velocity increases. 

However, it is clear that the described situation must be analysed more 
thoroughly, first of all according to classical approaches. The problem is signif­
icantly complicated and has not been considered before as a classical fracture 
mechanics problem. 

In this chapter an analysis of this problem is carried out. On the basis of the 
structural-temporal fracture criterion an interpretation of the observed 'tran­
sition' from the classical concept position of the opening mode will be given. 
The results given below have been obtained in [95]. Calculations were car­
ried out for a hypothesised material, with properties similar to high-strength 
steel. 
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§2. Asymmetrical-Impact Problem 

Initial boundary-value problem analysis, modeling the described experimen­
tal conditions, has already been made by Y. J. Lee and L. B. Freund [88]. 
Supposing the material behavior to be linear elastic and the classical stress­
intensity factor criterion to be true, they have obtained a good correspon­
dence between theoretical and experimental results under low impact veloc­
ities. At the same time, it was established that the fracture mode transition 
effect could not be explained within the framework of the given model. 

Let us continue this problem analysis, however we will now take into con­
sideration both singular and regular parts of the solution. 

We examine an initial boundary-value problem (Fig. 8.3) 

[)'P [)'ljJ 
u y = [)y - [)x' 

[)2'P [)2'P 2 [)2'P [)2'ljJ [)2'ljJ 2 [)2 'ljJ 
[)x2 + [)y2 - a [)t2 = 0, [)x2 + [)y2 - b [)t2 = 0, 

a_ 1 _ ~ b_ 1 _ fl 
- Cl - V ,X + 21-" ' - C2 - V p,' 

ax( -l, y, t) = 0, axy ( -l, y, t) = 0, y < 0, 
t 

ux( -l, y, t) = J v(t') dt', axy ( -l, y, t) = 0, y > 0, 

o 
ax(x, ±O, t) = 0, axy(x, ±O, t) = 0, y < O. 

Here 'P, 'ljJ are longitudinal and transverse wave potentials; a, b are elastic 
wave reversal velocities respectively; ,x, I-" are The Lame constants; p is the 
density; and v(t) is the loading rate, determined as v(t) = V H(t), where H(t) 
is the Heaviside function. 

Boundary conditions are expressed per stress and displacement compo­
nents. 

The corresponding asymptotic solution for the stress component in the 
crack-tip neighborhood is given by the expression 

.. = KI(t) f(I)(()) + Kn(t) f(I)(()) 
a'J J27fr'J J27fr'J 

Here r, () are polar coordinates at the crack tip. 
The asymptotic solution, that we would like to use for analysis, consists of 

singular and regular parts. The fracture criterion, used in these cases, cannot 
only depend on the singular term. Therefore, we will use the structural­
temporal criterion (7.1) to evaluate the crack-extension direction. 
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Fig. 8.3 

The principal peculiarity of the dynamic fracture calculation according to 
this criterion is that it allows us to calculate the time before fracture. Anew 
and fairly simply, it permits determination of the fracture-extension direction 
in a cracked domain: 

- we find the time before fracture t* for every ray, outgoing from the crack 
tip at angle e (-71" /2 ~ e ~ 71"/2); 

- we suppose the crack to be expanding to the direction, where the time 
before fracture t* is minimum. 

The formulated aspects form the contents of the structural-temporal cri­
terion under asymmetric loading, whose application to the corresponding dy­
namic stress field makes it possible to determine the exterior action critical 
parameters and the fracture-development direction. 

§3. Stress-Intensity Factors 

The singular part of theasymptotic solution was studied by Y. J. Lee and 
L. B. Freund [88]. Let us analyse their results. Stress-intensity factors in the 
case of an impact pulse action v(t) = 8(t) are supposed to be represented by 
the following expressions 
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A' 
Kr(t) =~­

y'2;l 

)..' 
Kn(t) = --­

y'2;l 

h* 

~ J 2a2(2h2 ~ b2) P(h) dh 
'if (h + a)j(h ~ a)(h* - h) , 

a 

a < h* < b, 

S+(a)(c + a)Vh* + h 

affa 
b < h* < c, 

c < h* < 3a, 

h* 

~ J 4a2h..;;;=--h P(h) dh 
'if (h + a)j(h2 ~ a2)(h* - h) , 

a 

a < h < b*, 
b 

~ J 4a2 h..;;;=--h P(h) dh 
'if (h + a)j(h2 - a2)(h* - h) , 

a 

b < h < c*, 
b 

~ J 4a2 h..;;;=--h P(h) dh 
'if (h + a)j(h2 - a2)(h* - h) 

a 

2a2c 2c2 ~ b2 - 2j(c2 ~ a2)(c2 - b2) 
+ ----=--c---=--=-c- -------===::--:====c---'-

b2(C2 ~ a2) S_(C)v'c+/j Vh + h* 

c < h* < 3a. 

Here c = l/cR is a reverse velocity of the Rayleigh wave; h = t* It and 

(h + c)(2h2 ~ b2)S+(h) 
P(h) = [(2h2 ~ b2)4 + 16h4(h2 ~ a2)(b2 - h2)]; 

k = 2(b2 - a2 ); 

(8.2) 

(8.3) 

Stress-intensity factors for a loading velocity step function are obtained by 
the integration of (8.2) and (8.3). The corresponding temporal dependencies 
are presented in Fig. 8.4. 
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One of the most important conclusions resulting from the analysis of stress­
intensity factors is the fact that though the value Kr is always inferior to 
K Il , the first mode value is, nevertheless, essential. Thus, the mixed mode of 
loading is, as a matter of fact, realised at the crack tip. The fracture-extension 
direction, under the circumstances, is controlled by the parameter ([Ill]) 

Me = ~ arctan ( Kr ) . 
7r KIl 

The parameter Me's dependence on time in the particular case analysed is 
shown in Fig. 8.5. As follows from computing, its value changes inessentially 
within the temporal interval of special interest. 

Supposing the crack expanding in a direction where the stress (Te, com­
puted on the basis of the asymptotic solution singular term, is maximum, we 
get the equation 

3sin (~) - tan (~Me) sin (~) cos (~) -1 = O. (8.4) 

The angle 0*, which corresponds to the maximum tensile stress (Te and is 
determined with the help of the extremum condition (8.4), depends on the 
time. This dependence is illustrated in Fig. 8.6. From this figure it is clear 
that, in the interval in which we are interested, the value 0* changes in the 
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neighborhood of -78°. According to the classical approach ([88]) this value 
should be considered to be the fracture direction. 

The result, presented in Fig. 8.6, differs from the similar result, found 
by Y. J. Lee and L. B. Freund [88]. An error has been committed in their 
work [88]. The fracture direction ()* ~ -63°, found by these investigators, 
corresponds, in fact, to a point also satisfying the extremum condition (8.4), 
but being a local rJ(} stress minimum point. 

-8, 0 

79 

78 

77 L-____ ~ ______ ~ ____ ~~ ____ ~_ 

1.0 1.5 2.0 2.5 

Fig. 8.6 

We note that for a pure transverse displacement (mode II) the crack 
propagation direction, computed by means of a similar method, is equal to 
()* ~ -70°. Thus, the existence of an additional contractive mode I leads to 
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a deviation increase (and not to a decrease, as it was in [88]) of the crack­
extension direction from its initial orientation. 

The analysis, presented in this section, is based on the use of only the 
singular part of the asymptotic solution. The results found are in good corre­
spondence with experimental data under low impact velocities. At the same 
time, it does not seem possible to explain the effect of crack-extension direc­
tion sharp change under impact velocity increase on the basis of the theory 
employed. 

§4. Fracture-Direction Change 

We find the regular term (l~:) (r, (), t), entering (8.1), as a compensating addi­
tion to the principal term of the asymptotic solution. The numerical studies 
have shown that waves, induced by an impact, create a tensile load near the 
boundary x' > 0, y = O. Positive stresses, corresponding to these efforts, ap­
pear near the crack tip faster than a corresponding singular force field. Hence, 
during some temporal interval after a longitudinal wave arriving at the crack 
tip, an average tension, related to the solution regular part, exceeds, in ab­
solute magnitude, the average tension of a singular wave field. It changes in 
principle the crack behavior under high impact velocities in comparison with 
the forecasting by results of only the singular part analysis of the asymptotic 
solution. 

Vet) 

Fig. 8.7 

Sectors near the crack tip, where the tensile loads act during certain time 
intervals, are presented in Fig. 8.7. The existence of such domains is revealed 
by means of calculations on the basis of (8.1), i. e. of the sum of singular and 
regular asymptotic solution parts. Analysis shows that both stress-intensity 
factors increase at initial times according to a power law ('" t 1/ 2 ), while the 



82 

finite wave field, corresponding to the solution regular part, appears instantly. 
Hence, fracture, occurring at initial times close to the moment of the crack tip 
loading, is determined both by singular and regular parts of the asymptotic 
solution. Such a situation is created under high impact velocities. 

Computing the time before fracture t* for every direction (B = const) 
near the crack tip with the help of the structural-temporal criterion, we get 
dependencies, presented in Fig. 8.8. Computed data permit the statement 
that there are no directions where the time before fracture would be finite 
under low impact velocities. When the impact velocity reaches a certain value, 
finite times to fracture are obtained in a continuous interval of directions. The 
minimum time before fracture in this interval is in the direction B* ~ -78°. 

11 
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9 

8 ~-L __ ~ __ ~-L __ ~ __ ~~ __ ~ __ ~~ __ ___ 

-10 0 30 60 90 -g 

Fig. 8.8 

As one can see from Fig. 8.8, there is a certain direction interval in the 
neighborhood of B*, where the time before fracture hardly differs from the 
minimum one. It means that the real fracture direction in the neighborhood 
of B* ~ -78° could be characterised by a certain data scattering. Such a 
scatter was observed in the experiments accomplished by J. F. Kalthoff [76, 
77, 81] and K. Ravi-Chandar [101]. 

The further increase of the impact velocity leads to the appearance of 
a second direction interval, where the time before fracture is finite. This 
is a narrow interval located in the neighborhood of angle B* ~ 4°. If the 
impact velocity is sufficiently large, this value corresponds to the global time 
minimum before fracture for all ranges of directions. Thus, under high action 
velocities a crack 'jumps' in a direction almost equal to its initial orientation. 
This fracture duration should not be too long, because it is connected with 
wave fronts rapidly passing through the crack-tip neighborhood. The latter 
also characterises the experimentally observed 'fracture mode change'. 
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Thus, in both cases the fracture can be considered as elastic-brittle. The 
reason for particular crack behavior under an asymmetric-impact action is 
the forming of two possible extension zones (zones I and II) near the tip. 

Under low impact velocities at the critical moment the average extension in 
the zone I exceeds the average extension in the zone II. Such a situation could 
be analysed on the basis of the singular part of the asymptotic solution, and 
the crack-extension direction could be predicted with the help of the classical 
approach ([88]). 

Under high impact velocities the pattern changes: the tensile effort in 
zone II exceeds the tension in zone I. The transmitted wave possesses some 
rupture efforts in itself, which are impossible to neglect, and the crack­
extension direction is controlled not only by the singular but also by the 
regular term of the asymptotic solution. 

The structural-temporal fracture criterion permit an explanation of both 
cases from the brittle-fracture mechanics approach: the global time minimum 
before fracture can be located at different directions and depends on the 
intensity of the external impact action. 



CHAPTER 9 

ON MATERIALS YIELD MODELING 
UNDER HIGH-RATE LOADING 1 

In this chapter the incubation-time notion is used to construct criterion re­
lations, describing the dynamic yield of materials. A similar approach was 
proposed by J. R. Klepaczko [122]. 

§1. Experimental Studies of Material Yield 

Under High-Rate Loading 

Let us examine a uniaxial loading of a metal specimen (tension or compres­
sion). In the case of quasistatic loading it is usually supposed that the material 
extends a into plastic state, if the applied stress attains a certain value, called 
the material-yield point; this value is an experimentally determined material 
constant. Thus, the static yield criterion can be written in the form of 

(J = (Jo. (9.1) 

In the high-rate loading case (9.1) loses its validity, moreover the dynamic 
properties of the material display themselves in two different ways, depending 
on the experimental mode. The first-mode experiments include those where 
the applied stress increases at a constant rate, i. e. d(J / dt = const (see, e.g. 
[124]). The material becomes plastic when the applied stress attains values 
essentially exceeding (up to 2.5 times) the static yield point (see, e. g., [18]). 
The higher the loading rate is, the larger the values reached by the applied 
stress must be before yielding begins. By analogy with the static yield crite­
rion (9.1) the given value has been called the dynamic yield point. 

During the second-mode experiments the applied stress attains a certain 
value nearly instantaneously, and henceforth is retained constant up to the 
yield beginning. In spite of the fact that the applied stress exceeds this yield 
point significantly, there is a certain time before the yield begins; this time 
has been called the 'delay period', and the effect itself is called the 'yield 
delay'. The greater the applied stress is, the lesser the delay period ([56]). 

Apart from the described direct material test methods, some indirect dy­
namic test methods are also used to study yielding. Their essence is to observe 
the dynamic loading construction. Analytical dependencies between the pa­
rameters, characterising dynamic material properties (usually the dynamic 

IThis chapter is written in collaboration with A. A. Gruzdkov. 

N. Morozov et al., Dynamics of Fracture
© Springer-Verlag Berlin Heidelberg 2000
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yield point is chosen as such a parameter), and parameters that can be mea­
sured during the experiment, are established in terms of a simplified model 
process. 

The common defect of indirect methods is the complexity when evaluating 
the influence of all assumptions, admitted in the theoretical model to obtain 
analytical dependencies, on the net result. 

Among other approaches we also note dynamic ring dispensing ([64]), bar 
impact against a hard barrier, and transverse impact against a sheet ([3]). 

§2. Classical Description Methods of Material 

Dynamic Properties 

First-mode material experiment peculiarities and the dynamic yield point are 
taken as the classical approach basis. It lies in the construction of experimen­
tal diagrams, with the help of direct or indirect study methods, connecting 
the dynamic yield point with the strain velocity, i. e. with such dependencies 
as 

(J yield = (J yield (E). (9.2) 

An example of such an approach is a tabulation of dynamic factors corre­
sponding to different loading rates. Taking this approach into account, we 
note its main imperfections. 

Firstly, such a dependence as (9.2) does not account for loading-type in­
fluence, while in many problems the condition of loading-rate constancy is 
not realised even approximately. The stated approach is inapplicable, e. g., 
for material tests, where an impact loading is applied. Using the dynamic 
yield point, it is impossible to describe such effects as yield delay. 

Secondly, we note an extreme experimental determination complexity of 
functional dependencies, a necessity to carry out a great number of experi­
ments and a low reliability of the obtained diagrams. 

The necessity to compare material testing results, realised with the help 
of different methods, and to study real problems, where the loading type 
may be very complicated, require the introduction of a criterion, considering 
loading history, i. e. an integral criterion. The construction complexity of 
experimental diagrams as well as the inconvenience of their application for 
calculations, testify that it is more advisable to describe the material dynamic 
behavior by a set of constants, having a concrete physical sense. 

A criterion for mild steels, taking into account all the aforementioned 
requests, was suggested by J. D. Campbell [64]. The Campbell criterion can 
be set down as 

(9.3) 
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where ex and T are experimentally determined material constants. 
This dynamic criterion was further developed in works of different inves­

tigators, where it was established that the constant on the right-hand side 
has a temporal dimension, and the static yield point can be used as (To. It 
has been noted that, though (9.3) is justified physically only for mild steels, 
quantitatively it describes well the behavior of other materials, including 
materials having no physical yield point. On the basis of experimental data 
the constants ex and T were calculated for different materials. It turned out 
that ex changes in a range from 12 to 30, and T can take values from several 
microseconds to one second. 

Let us turn our attention to these constants in a physical sense. The yield 
dependence on loading rate is divided into two constituents. The constant T is 
the material characteristic time. It is linked to temporal behavior parameters 
of certain processes inside the material structure and sets a temporal scale, 
determining, hereby, its relative capacity to display dynamic properties. 

The numerical constant ex describes in its turn the material behavior's ab­
solute dependence on loading type. The greater is ex, the less are the displayed 
dynamic material properties. For materials with a large ex the yield delay is 
not sensibly observed, and the yielding itself depends on the applied stress 
amplitude. In truth, (9.3) can be rewritten as 

where ~ = tiT is non-dimensional time. The aforesaid becomes more clear if 
we take into account that 

(/
b r(t) dt) 1/<> ---t maxf(t). 

<>-++00 [a,b] 

The main imperfection of (9.3) is its coming into collision with the static 
yield criterion (9.1) for a long loading duration, because it confirms the fact 
that yielding can occur at an infinitesimally loading amplitude. The com­
parison of data, found according to (9.3), with the known experimental data 
(see, e.g., [64]) permits the observation that notable deviations appear in the 
case when the loading duration exceeds T. In this case, the yield stress still 
significantly exceeds the static yield point. 

§3. New Yield Criterion 

To summarise, according to the aforesaid, we are in the following situation: 
under a low rate loading, it is necessary to use the static yield criterion (9.1), 
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under a high rate loading, Campbell's criterion (9.3); the intermediate range 
is described neither by the first nor by the second criterion. Besides, the 
inconvenience of this situation is aggravated by the fact that the question 
whether the loading is of low rate or of high rate needs to be linked up with 
the material properties, i. e. the same loading could be of high rate for one 
material and of low rate for another. It makes the construction of a unified 
yielding criterion topical both for statics and for dynamics. 

Let us study another approach, based on the incubation-time concept. In 
this case we proceed from the following premises: 

1. There is a certain threshold stress value when the yielding can happen. 
If the applied stress does not attain this value, the material maintains its 
elastic state. According to the static yield criterion this threshold value is 
equal to the yield point ao. 

2. As follows from experiments, greater delay periods correspond to smaller 
applied stress values. 

3. From the two first premises, we can draw a conclusion about the exis­
tence of the greatest yield delay period as follows. 

4. Data, received according to Campbell's criterion, are in good correspon­
dence with experimental data for the loading duration not exceeding T. Using 
(9.3), we get the maximum possible delay period equal to T. 

The greatest delay period corresponds to the maximum (incubation) time, 
while the material can 'resist' its transition into the plastic state under load­
ing, capable, in principle, of causing yielding. On the basis of these premises 
we will accept a hypothesis, according to which a transition into a plastic 
state is influenced not by the whole loading history, but only by loading oc­
curring in the period immediately before to the yield beginning. The duration 
of such a period is T. 

Consequently, we come to the next yield criterion ([7]2 

1 
tyield J ( a;:) ) Q dt = 1. (9.4) 

T 
tyield -T 

We suppose a(t) = 0 for t < O. Criterion (9.4), for external pulses with 
durations not exceeding T, coincides with (9.3). The dependence of the yield 
stress, computed according to (9.4), on loading duration in the case of a = 
const is in good correspondence with experimental data. 

§4. Constant-Rate Loading 

The studied yield criterion is universal in the sense that it can be used for 
loadings of arbitrary form and duration. Let us analyse, as an example, a 

2A similar approach was also proposed in [122]. 
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constant-rate loading. The importance of this case is conditioned by two cir­
cumstances. Firstly, material tests under such loading are rather routine and 
can be used to compute constants, describing the dynamic material behavior 
(0' and T). Besides, in many applied problems the substitution of the real 
stress velocity &, changing in time, by some value &mean, averaged for all the 
process does not lead to a significant error. 

We suppose & = const, so that 

a = &tH(t), (9.5) 

where H(t) is the Heaviside function. We denote the yield beginning time 
tyield, and the yield stress O"yield' Then, from (9.5) we have O"yield = &tyield. 

We will construct the dependence of the yield stress on the loading rate. First, 
we consider the case of high-rate loading, i. e. the case tyield < T. Then, the 
structural-temporal criterion (9.4) is just the same as Campbell's criterion 
(9.3). 

Substituting (9.5) into (9.3), we obtain 

Excluding here tyield with the help of (9.5), we come to the formula 

<>+1 . <>( + 1) O"yield = Taao 0' . 

Multiplying and dividing the right-hand side of this equality by ao, we get 

( 
. ) 1/(<>+1) 

O"yield = 0"0(1 + 0')1/(<>+1) :0 ' (9.6) 

where &0 = aO/T. 
Changing the strain base velocity and taking into account that for a linear­

elastic material & = EE, where E is the Young modulus, (9.6) can be written 
in another form. Hence we obtain 

( 
. ) 1/(<>+1) 

ayield = ao :1 (9.7) 

Here E = c/T(O' + 1), and c = a/E. We note that (9.7) remains true for 
E » E1, though for strain velocities commensurable with E1 it gives low 
estimated values of the yield stress. Therefore, the velocity E1 has no certain 
physical sense, in contradiction to EO = &0/ E. 

At first sight (9.7) seems to resemble the dependence, used in many works 

(9.8) 
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However, we will establish their inherent difference. In (9.8) Est is the de­
formation velocity in quasistatic tests. Let us suppose (9.8) to be true for 
E > Est, and for smaller velocities the static yield stress value can be in­
troduced. Computing shows that Est is essentially inferior to EO and even to 

EI' 
While using (9.8), we ignore the existence of intermediate loading rates. 

High and intermediate rates are presented alike; naturally, this deteriorates 
the description exactness, particularly for very high loading rates. A similar 
opinion was also stated by J. D. Campbell [64J. 

We should note that (9.6) remains valid only for high loading rates a > 
ao. For a = ao the yield stress notably exceeds the static yield point, and, 
consequently, the static yield criterion is inapplicable. 

The dependence for intermediate rate loading, similar to (9.6), is found 
according to the common yield criterion (9.4). The dependence, common for 
the entire range of strain velocities between tyield and E, obtained with the 
help of (9.4), is written as 

(o:+l)ao 
(TEE)'" . 

(9.9) 

An analogous dependence, resulting from the structural~temporal criterion 
of brittle fracture for a specimen from an 'intact' material (5.3) is presented 
as 

(9.10) 

where tF is the brittle fracture time, and Tc is the structural fracture time. 
Comparing (9.9) and (9.10), one can obtain curious conclusions on the 

possible fracture mode change. 
We consider, as an example, a bar extension with the given strain velocity 

E. To describe the material behavior we use two models: the plastic yielding 
model and the fracture model. In first approximation it is natural to use 
a model, ignoring these two processes' interference, and to consider them as 
independent of each other. In this case to analyse the yielding and the fracture 
we use dynamic criteria (9.4) and (5.3), whence we get (9.9) and (9.10). 
Based on these equations we can calculate the resistance to plastic yielding 
(ayield = EEtyield) and to fracture (aF = EitF ) , corresponding to different 
strain velocities. The case when the yielding stress is smaller than the fracture 
stress corresponds to a viscous fracture, and if the yield stress appears to be 
superior to the fracture stress, it corresponds to a brittle fracture. Such an 
approach was used by J. B. Friedman [58J; it is thoroughly efficacious for a 
qualitative description of a limiting plastic strain behavior. 

An interesting point of the diagrams corresponds to the critical strain ve­
locity, when the fracture mode changes. A strain velocity increase contributes 
to the transition from a viscous fracture to a brittle one. 
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Fig. 9.1 

The dependencies are presented in Fig.9.1 for yield and fracture limit 
stresses, computed according to (9.9) and (9.4) for a hypothetical doped 
steel with characteristics ao = 400 NPa, a c = 700 MPa, Tc = 10-6 S, T = 0.1 s, 
a = 15. They confirm the fact of the fracture mode change with the strain­
velocity increase. Besides, the accepted model allows the observation that 
under very high loading rates there must be one more intersection point in 
the diagrams, and consequently, the brittle fracture must be replaced with 
the viscous fracture, if, of course, this model is still applicable for such high 
loading rates. It is to be noticed that there are experimental data confirming 
indirectly the existence of such a point. 
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