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Foreword

The analysis of stress and deformation of structures and components is not an
end in itself. The aim is to predict the serviceability, reliability, and manu-
facturability of both existing structures and components and of proposed
designs. In order to make such assessments, the mode (or modes) of failure
need to be known and accounted for. The damage can take many forms, e.g.,
cracks, voids, chemical attack. In any case, the result is deterioration of the
structure or component. Predicting the implications of that deterioration for
mechanical integrity is the goal of damage mechanics.

The concept of damage and the realization of its importance for engineer-
ing are not new. What is relatively new (within the last 35 years or so) is
the development of the framework of Continuum Damage Mechanics. There
have been many contributors to this development, but the contributions of
the French school and particularly those of Jean Lemaitre stand out. The
field of damage mechanics has advanced to the point where it is an engineer-
ing tool, with wide applications in industry. In practice, needs arise at several
levels. In a preliminary design stage, the need is often for rapid methods of
analysis that exhibit trends. In a final design stage or in carrying out a safety
assessment the need can be for accurate quantitative predictions. This book
provides formulations that span such a range for a variety of technologically
important modes of failure, providing a perspective on the advantages and
disadvantages of various approaches – from uncoupled, post-processing anal-
yses to fully coupled damage analyses.

After introductory chapters on Continuum Damage Mechanics and nu-
merical analysis of damage, the remaining chapters focus on a mode of dam-
age – ductile failures; low-cycle fatigue; creep, creep-fatigue and dynamic
failures; high-cycle fatigue; and failure of brittle and quasi-brittle materials.
Each of these chapters appropriately begins with a section on engineering
considerations to set the stage and provides a guide to analysis methods and
tools. It is quite remarkable that such a wide range of behaviors are incor-
porated within a unified presentation. The damage mechanics “apple” has
blossomed into a tree with many branches!



VI Foreword

Since failure is a complex nonlinear process, the predicted behavior can
be sensitive to parameter values. Their appropriate identification is key for
reliable engineering predictions, as is understanding the sensitivity of predic-
tions to the particular choice of parameter values. The presentation here pays
attention to parameter sensitivity as well as to parameter identification.

This book provides a comprehensive guide to Engineering Damage Me-
chanics. It should appeal to all engineers and students of engineering con-
cerned with lifetime prediction and with the failure resistant design of struc-
tures, components, and processes.

Brown University, USA Alan Needleman



Introduction

The single apple has become a tree, an apple tree painted by Annie Lemaitre
from which two apples fell on the cover page! A decade after “A Course on
Damage Mechanics” the topic has grown up to reach the field of applications.
Aircraft engines and, more generally, aeronautics, nuclear power plants, metal
forming, civil engineering, and the automotive industry have already devel-
oped and benifited from damage-based methods to increase performance and
security. The time has come to propose simplified or more advanced methods,
structured in a unified framework to designers of any mechanical components
such as early design with fast calculation of structural failures by closed-form
solutions and final validation of solutions by numerical failures analysis. This
was the ambition for this book!

This is the reason for having many basic examples and insisting on prac-
tical methods such as the difficult problem of the material parameters identi-
fication for which a systematic sensitivity analysis is performed for each type
of application. Very accurate calculations are too often made with a very
poor accuracy of the material parameters! To help, probability concepts are
introduced either for random loadings or scatter due to microdefects in the
materials. This is done mainly for fatigue failure phenomena and brittle ma-
terials but may apply to other cases.

Damage mechanics applies to all materials, including metals and alloys,
polymers, elastomers, composites, and concrete, because even if the mecha-
nisms are different on a microscale, they have more or less the same qualita-
tive behaviors on meso- or macroscales. Nevertheless, due to data availability
most quantitative examples are related to metals.

• The first chapter reassembles the main concepts of Continuum Damage
Mechanics, that is the theoretical tools to apply to specific cases: dam-
age variable, isotropic and anisotropic description, thermodynamics which
yields methods of damage measurements, damage laws, coupling with
strain behavior, localization, and mesocrack initiation.

• The second chapter is a set of numerical tools for solving the nonlinear
problems related to damage evaluation in structures. Post-processing clas-



VIII Introduction

sical structure analysis, either by the time integration of a damage law,
solving a micromechanical two-scale damage model, or when damage is
not localized, by solving fully coupled strain-damage structural problems.

• The five following chapters are organized in the same way: four sections
from the simplest methods with closed-form solutions to more advanced
numerical analyses. The first sections “Engineering Considerations” give
the domain of application of the chapter. The second sections “Fast Cal-
culations of Structural Failures” describe some simplified methods to be
used in early design. They are applied in the third sections “Basic En-
gineering Examples” to damage failures of members having stress con-
centration zones, pressurized cylinders and beams in bending. The fourth
sections “Numerical Failure Analysis” describe, using examples, more ac-
curate methods for numerical calculations with computers.
– The third chapter is devoted to ductile failures involving large defor-

mations for applications in metal forming processes or effects of large
overloadings on structures in service.

– The fourth chapter deals with low-cycle fatigue involving important
coupling between damage and plasticity for applications on structures
heavily burdened by cyclic loadings.

– The fifth chapter introduces the effects of temperature-inducing creep
and its nonlinear interaction with damage for applications on struc-
tures loaded statically or cyclically at elevated temperature, or dy-
namically.

– The sixth chapter concerns high-cycle fatigue which uses a two-scale
damage model of an elasto-plastic damaged inclusion in an elastic
matrix with “elastic fatigue” applications from complex histories of
loading to three-dimensional and random loadings.

– The seventh chapter is devoted to brittle and quasi-brittle materials:
quasi-brittle when an irreversible process induces damage, brittle when
the fracture occurs without any measurable precursor. Statistical and
probabilistic methods are used to represent the large scatter generally
observed in the failure of these materials. Their applications concern
structures made of concrete, ceramics or composite materials.

How should you use the book? As you like it of course but be aware that
each chapter is more or less self-contained, with many referrals to the two
first chapters of basic concepts of damage mechanics and its numerical pro-
cessing. Furthermore, at the end of each chapter on applications, the section
“Hierachic Approach” is more or less a summary of the chapter with indica-
tions on the domain of validity of each model or method. To help engineers,
researchers, students, beginners or not, each section is categorized by the
number of apples:

means easy to read, easy to apply.
means a read with attention and an application with care.
means a more advanced theory needing a numerical analysis.
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Of course this classification is subjective but it has been checked by some
friends working mostly in industry: J. Besson from ENSMP Centre des ma-
tériaux (Chap. 1), E. Lorentz from Electricité de France (Chap. 2), F. Moussy
from Renault (Chap. 3), J.P. Sermage from E.D.F. SEPTEN (Chap. 4),
B. Dambrine from SNECMA (Chap. 5), A. Galtier from ARCELOR for
(Chap. 6), B. Bary from C.E.A. (Chap. 7), A. Benallal from C.N.R.S.-LMT
Cachan and M. Elgueta from Chili University (overall book), and A. Needle-
man from Brown University who wrote the foreword. Our thanks to all of
them for their expertise and advice. “Merci” also to our friends from “Lab-
oratoire de Mécanique et Technologie” at Cachan who participated in the
birth of many parts of this book and particularly to Catherine Génin.

Bon courage pour une lecture fructueuse

LMT Cachan, France Jean Lemaitre
Rodrigue Desmorat
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Notations

It was impossible to avoid using the same letter for different meanings!

Operators

x scalar
xi component of a vector �x
xij component of a second order tensor x
xijkl component of a fourth order tensor x
[M ] matrix
ẋ time derivative of x (ẋ = dx/dt)
xi,j gradient of �x also ∇x
xij,j divergence of x
xkk trace of x
xH

1
3 trace of x

xD
ij component of the deviatoric tensor xD, xD

ij = xij −xHδij

δij Kronecker delta, δij = 1 if i = j and δij = 0 if i �= j
|x| absolute value of the scalar x
|x|ij absolute value in terms of principal components of the

tensor x
[[x]] discontinuity of x
〈x〉 Macauley bracket, 〈x〉 = x if x ≥ 0 and 〈x〉 = 0 if x < 0
〈x〉+ or 〈x〉+ij positive part in terms of principal components of ten-

sor x
〈x〉− or 〈x〉−ij negative part in terms of principal components of ten-

sor x
x mean value of x
x standard deviation of the random variable x
∆x range of x (peak to peak amplitude) or time increment

xn+1 − xn

d, ∂, δ differential operators
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H Heaviside function
ln neperian logarithm
σij,j derivative ∂

∂xj
σij

det determinant operator
∇ gradient operator
∇2 laplacian operator

Symbols

a rate elasticity tensor
A damage threshold parameter
A crack area
Ak material parameter
AD Kachanov law damage parameter
A Almansi strain tensor

b, by isotropic hardening exponents
bS Sines criterion parameter

C, Cy kinematic hardening parameters
Cε heat capacity
Ch specific heat
CMC Manson–Coffin law parameter
CP Paris law parameter
C dilatation tensor

D scalar damage variable
Dij component of the second order damage tensor D
DT, DS transverse and shear damage variables
Dijkl component of the fourth order damage tensor
Dc critical damage parameter

ep
ij component of the effective plastic strain tensor ep

E Young modulus of elasticity
Eijkl component of the elasticity tensor E
E Green–Lagrange strain tensor

f yield function of plastic criterion
fv porosity
F force
F dissipative potential function
FX plastic potential of dissipation
FD damage potential of dissipation
F gradient of deformation transformation
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g plastic strain-stress function
G shear elasticity modulus
G strain energy release rate
Gc material toughness parameter

h, ha microdefect closure parameters
H hardness material parameter
H activation energy parameter
HN creep temperature exponent
Hij = (1− D)−1/2

ij component of the damage effective operator
H = (1 − D)−1/2

Iijkl component of the unit fourth order tensor I

[Jac] Jacobian matrix

k heat conductivity parameter
K elastic compressibility modulus
K stress intensity factor
Kc cyclic hardening law coefficient
KT elastic stress concentration coefficient
kNeuber Neuber stress concentration correction
Kp, K0

p, Ky
p , K f

p hardening material parameters
KN, K0

N Norton law parameters
K∞ viscous material parameter

L strain rate tensor
L fourth order tangent tensorial operator

m damage threshold exponent
mooni Mooney parameters
M , M0, My, Mf isotropic hardening exponents

Mc cyclic hardening law exponent
Mijkl component of the effective operator M

n viscous material parameter exponent
�n unit normal vector
N , n number of cycles
NR number of cycles to rupture
N , N0 Norton law viscous exponents
Nij shape functions
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p accumulated plastic strain
pD damage threshold accumulated plastic strain
pR rupture accumulated plastic strain
P pressure
P ponderation matrix

q1, q2 Gurson law parameters
q state variable of the reversible domain
Q stress increase of the reversibility domain
�q thermal flux vector

r isotropic hardening state variable
rh heat source
rD Kachanov law damage exponent
R isotropic hardening stress variable
R∞, Ry∞ saturated isotropic hardening parameters
Rν , Rνh triaxiality function

s specific entropy
s unified damage law exponent
S energetic damage law parameter
S surface
SD damage surface
Saf safety factor
S.
Ak

sensitivity coefficient
S second Piola–Kirchhoff stress tensor

t time
tR rupture time
T temperature
TX stress triaxiality, TX = σH/σeq

u displacement
�U displacement vector
{U} nodal displacement vector
{U e} elementary nodal displacement vector

v wave speed
V volume
V0 reference volume of Weibull law
Veff effective volume of Weibull law
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w energy density
wD damage threshold stored energy density
we elastic strain energy density
ws stored energy density
We elastic strain energy
W1, W2 hyperelatic energy densities

X uniaxial kinematic back stress
Xij component of the back stress deviatoric tensor X
X∞, Xy∞ saturated kinematic hardening material parameter

Y energy density release rate
Yij component of the energy density release rate tensor Y
Y effective elastic energy density

Z necking parameter in pure tension

α dilatation parameter coefficient
α kinematic hardening state variable

β Eshelby coefficient

γ, γy kinematic hardening material parameter
γMC Manson–Coffin law exponent
Γ(a) gamma function: Γ(a) =

∫∞
0

ta−1 exp (−t)dt
γ(a, x) incomplete gamma function:

γ(a, x) =
∫ x

0
ta−1 exp (−t)dt

δ0 size of the mesocrack initiated
δGTN Gurson law coalescence parameter
∆ hypoelastic strain rate tensor

ε, εij , ε uniaxial and tensorial total strains
εe, εeij , εe uniaxial and tensorial elastic strains
εp, εpij , εp uniaxial and tensorial plastic strains
εpD damage threshold plastic strain in pure tension
εpR, ε�

pR rupture plastic strains in pure tension
εpu plastic strain for ultimate stress in pure tension
εR rupture strain in pure tension
εpΣ signed equivalent plastic strain
επ irreversible strain

η hydrostatic sensitivity damage parameter
ηP Paris law exponent
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φD damage dissipated energy density
φp plastic dissipated energy density
φDp, φF fracture dissipated energy density

λ Lamé elastic parameter
λ elongation
λ̇ plastic multiplier

µ Lamé elastic parameter in shear
µ̇ internal sliding multiplier

ν Poisson ratio of elastic contraction
�ν unit reference vector
νij anisotropic contraction ratio

π cumulative internal sliding
πD damage threshold

θ numerical parameter of the θ-method

ρ mass density
ρ radius of curvature

σ, σij , σ uniaxial and tensorial Cauchy stresses
σ̃, σ̃ij , σ̃ uniaxial and tensorial effective stresses
σµ, σµ

ij , σµ stresses at microscale
σH hydrostatic stress, σH = 1

3σkk

σeq von Mises equivalent stress
σΣ signed von Mises stress
σ� damage equivalent stress, σ� = σeqR

1/2
ν

σn nominal stress
σv viscous stress
σR rupture stress
σu ultimate stress
σy yield stress
σy02 engineering yield stress for εp = 0.2 · 10−2

σf engineering fatigue limit at 106 or 107 cycles
σ∞

f asymptotic fatigue limit
σs reversibility threshold
Σij component of normalized stress tensor Σ

ψ Helmholtz specific free energy
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ψe elastic state potential
ψp plastic state potential
ψT thermal state potential
ψ� Gibbs specific free enthalpy
ψ�

e elastic specific free enthalpy



1

Background on Continuum Damage Mechanics

This chapter gives the reader the necessary and sufficient information to deal
with practical applications of Continuum Damage Mechanics (the term was
first introduced by J. Hult in 1972) to predict the crack initiation in struc-
tures subjected to heavy loadings. This ranges from the early definition of a
scalar damage variable by L.M. Kachanov in 1958 to the anisotropic tenso-
rial damage variable, from classical thermodynamics aspects to the effective
stress that take into account the closure of microdefects in compression-
like loadings, from simple measurement of local damage to fields of dam-
age, from a simple damage law to induced anisotropy and a generalization
to quasi-brittle materials, from elasto-(visco-)plasticity coupled with dam-
age to the phenomenon of localization, the ultimate stage before crack
initiation.

The basic concepts are written in a concise and sufficiently general way in
order to be applied to any material: metals and alloys, polymers, elastomers,
composites, concretes, ceramics . . . For more basic details please refer to
the book A Course on Damage Mechanics written by Jean Lemaitre and
published by Springer-Verlag in 1992 and 1996. Other (good!) references are
given at the end of the book.

1.1 Physics and Damage Variables

Damage, in its mechanical sense in solid materials is the creation and growth
of microvoids or microcracks which are discontinuities in a medium consid-
ered as continuous at a larger scale. In engineering, the mechanics of con-
tinuous media introduces a Representative Volume Element (RVE) on which
all properties are represented by homogenized variables. To give an order of
magnitude, its size can vary from about (0.1 mm)3 for metals and ceramics to
about (100 mm)3 for concrete. The damage discontinuities are “small” with
respect to the size of the RVE but of course large compared to the atomic
spacing (Fig. 1.1).
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From a physical point of view, damage is always related to plastic or
irreversible strains and more generally to a strain dissipation either on the
mesoscale, the scale of the RVE, or on the microscale, the scale of the dis-
continuities:

Fig. 1.1. Examples of damage in a metal (left, micro-cavities in copper from L. En-
gel and H. Klingele), in a composite (middle, microcracks in carbon-fiber/epoxy
resin laminate from O. Allix), and in a concrete (right, crack pattern in a ASTM I
cement, 4.8 and 9.5 mm aggregates, petrography from S.P. Shah)

• In the first case (mesolevel), the damage is called ductile damage if it is
nucleation and growth of cavities in a mesofield of plastic strains under
static loadings; it is called creep damage when it occurs at elevated tem-
perature and is represented by intergranular decohesions in metals; it is
called low cycle fatigue damage when it occurs under repeated high level
loadings, inducing mesoplasticity.

• In the second case (microlevel), it is called brittle failure, or quasi-brittle
damage, when the loading is monotonic; it is called high cycle fatigue
damage when the loading is a large number of repeated cycles. Ceramics,
concrete, and metals under repeated loads at low level below the yield
stress are subjected to quasi-brittle damage.

In all cases, these are volume defects such as microcavities, or surface defects
such as microcracks. This is the reason to have several definitions of a damage
variable:

• If only ductile damage is considered, it may be defined as the volume
density of microvoids,

Dv =
δVvoids

δVRVE
= fv . (1.1)

This is the starting point of the Gurson model described in Sect. 3.4.5.
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• For a larger generality where microcavities and microcracks may exist, the
damage variable is physically defined by the surface density of microcracks
and intersections of microvoids lying on a plane cutting the RVE of cross
section δS (Fig. 1.2). For the plane with normal �n where this density is
maximum, we have

D(�n) =
δSD

δS
. (1.2)

Fig. 1.2. Physical damage and mathematical continuous damage

1.1.1 Definition of a Scalar Damage Variable

If the damage is isotropic, the scalar variable D(�n) does not depend on the
normal. The intrinsic variable is a scalar (L.M. Kachanov 1958):

D =
δSD

δS
(1.3)

It can be used as such for one-dimensional problems. It can also be used as
an easy evaluation of the approximate damage in three-dimensional problems
(particularly in proportional loading).

1.1.2 Definition of Several Scalar Damage Variables

If several mechanisms of damage occur, simultaneously or not, each of them
may be represented by a scalar variable (Dk) with the same physical meaning
as above. This is the case in classical composites where delamination of fibers
and matrix cracking may occur. Two or three independent variables are used
(P. Ladevèze 1983), for instance:

• DF for quasi-brittle fibers breakage,
• DT for transverse matrix cracking, and
• DS acting on shear for splitting.
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1.1.3 Definition of a Tensorial Damage Variable

Damage is often non-isotropic due to microcracking more or less perpen-
dicular to the largest positive principal stress. Then, the surface density of
microdefects in a plane with normal �n acts through an operator which trans-
forms the surface δS and �n of Fig. 1.2 into a smaller but continuous area,
δS̃ = δS − δSD, and into another normal �̃n (S. Murakami 1981).

To keep the same physical meaning as above the damage acts through the
operator (1− D) and

(δij − Dij)njδS = ñiδS̃ , (1.4)

where δij is the Kronecker delta and D is a second order tensor. As there is no
distorsion of the surface δS, it induces the property of orthotropy consistent
with the fact that the damage is governed by the plastic strain represented
by the second order tensor εp.

Remark – In fact, the largest generality for a damage variable is a representation
by a fourth order tensor, as it can be shown in several ways (J.L. Chaboche 1978,
D. Krajcinovic 1981, F.A. Leckie and E.T. Onat 1981, C.L. Chow 1987). Such
a tensor is difficult to use and is not necessary for damage-induced by meso- or
microplasticity.

• As in the previous section, consider a damage plane area, δS, with normal
�n and a reference vector �ν such that the tensor νinjδS defines the geometri-
cal reference configuration. Continuum Damage Mechanics defines the effective
continuous configuration by a modified area δS̃ and a modified normal �̃n, as
shown in Fig. 1.3.
The damage D is the operator which transforms the second order tensor νinjδS
of the reference configuration into the tensor of the effective configuration
νiñjδS̃. This is a fourth order tensor, where

(Iijkl − Dijkl)νknlδS = νiñjδS̃ , (1.5)

with the following symmetries: Dijkl = Dijlk = Djikl = Dklij .

Fig. 1.3. Reference and effective configurations
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• Another way to define a fourth order tensor D is to consider the operator which
changes the initial elasticity tensor Eijkl into the actual elasticity tensor Ẽijkl

softened by damage:
(Iijrs − Dijrs)Erskl = Ẽijkl . (1.6)

From a purely theoretical point of view, this definition does not yield a real state
variable because it requires the knowledge of a particular behavior (elasticity
here).

1.1.4 Effective Stress Concept

The constitutive equations for strain and damage characterize the plain ma-
terial itself without the volume or the surface discontinuities. An interest-
ing concept to introduce next is the stress acting on the resisting area,
δS̃ = δS − δSD, as shown in Fig. 1.2 – the effective stress.

• In the uniaxial case of isotropic damage without the closure effect of
microcracks in compression, this mean value of the microstresses is simply
given by the force equilibrium (Y.N. Rabotnov 1968):

σ̃δS̃ = σδS with D =
δSD

δS
=

δS − δS̃

δS
(1.7)

or

σ̃ =
σ

1 − D
. (1.8)

• In the multiaxial case of isotropic damage, all the stress components act
on the same effective area. The effective stress tensor is simply

σ̃ij =
σij

1 − D
. (1.9)

• The case of anisotropic damage is much more complicated to en-
sure a good representation of the physics as well as compatibility with
thermodynamics. In fact, the effective stress with a second order damage
tensor representation is an approximation of the exact effective stress de-
duced from the general representation of the damage by the fourth order
tensor D, as defined in the remark in the previous section. This effective
stress is defined as previously, but, here, by the projection of the stress
vector on the reference vector �ν in Fig. 1.3:

νiσ̃ij ñjδS̃ = νiσijnjδS (1.10)

or
σ̃ij(Iijkl − Dijkl)νknlδS = σklνknlδS (1.11)

using the preceeding equation (1.5).
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With the symmetry properties of the damage tensor Dijkl given in
Sect. 1.1.3, the effective stress is the symmetric tensor,

σ̃ij = σkl (I − D)−1
klij , (1.12)

which may also be written as

σ̃ij = Mijklσkl , with Mijkl = (I − D)−1
klij . (1.13)

Back to a second order damage tensor, there are several possibilities to
write a restriction of the fourth order formulation but only one fulfills the
following conditions:
– Symmetry of the effective stress (note that σ̃ij = σik(1− D)−1

kj is not
symmetric!).

– An effective stress independent of the strain behavior and, in par-
ticular, independent from the Poisson ratio (σ̃ij = EijklẼ

−1
klrsσrs may

depend on the Poisson ratio).
– Compatibility with the thermodynamics framework: existence of strain

potentials and principle of strain equivalence. The symmetrization
σ̃ij = 1

2

[
σik(1− D)−1

kj + (1− D)−1
ik σkj

]
is not derived from a po-

tential (J.P. Cordebois and F. Sidoroff 1979).
– Different effect of the damage on the hydrostatic behavior represented

by the stress (σH) and on the deviatoric part (σD
ij) by means of a hy-

drostatic sensitivity parameter (η) that is easy to identify.
This restriction is represented by

σ̃ij = (HikσD
klHlj)D +

σH

1 − ηDH
δij , with Hij = (1− D)−1/2

ij , (1.14)

where DH = 1
3Dkk is the hydrostatic damage and H is the effective

damage tensor. The corresponding fourth order tensor Mijkl is

Mijkl = HikHlj − 1
3
[
H2

klδij + H2
ijδkl

]
+

1
9
H2

ppδijδkl +
1

3(1 − ηDH)
δijδkl .

(1.15)
For the uniaxial case, the effective von Mises stress (σ̃eq) differs from the
effective tensile stress (σ̃1) (assumed here in direction 1) as follows:

σ̃eq =
2
3

σ

1 − D1
+

1
3

σ

1 − D2

σ̃1 =
4
9

σ

1 − D1
+

2
9

σ

1 − D2
+

1
3

σ

1 − ηDH
,

(1.16)

where D3 = D2. The coefficient η does not depend very much on the
materials as most often η ≈ 3. The isotropic damage case corresponds to
Dij = Dδij and η = 1.

The effective stress taking into account the quasi-unilateral conditions of
microdefects closure is formulated in Sect. 1.2.4.
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1.1.5 Effects of Damage

Damage by the creation of free surfaces of discontinuities reduces the value
of many properties:

• It decreases the elasticity modulus
• It decreases the yield stress before or after hardening
• It decreases the hardness
• It increases the creep strain rate
• It decreases the ultrasonic waves velocity
• It decreases the density
• It increases the electrical resistance

Some of these effects are used to evaluate the damage by inverse methods
(see Sect. 1.3). Furthermore, the effects on mechanical strength and stiffness
are different in tension and in compression due to microcracks opening under
tension and their closure under compression.

1.2 Thermodynamics of Damage

The thermodynamics of irreversible processes allows for the modelling of
different materials’ behavior in three steps:

1. Definition of state variables, the actual value of each defining the present
state of the corresponding mechanism involved

2. Definition of a state potential from which derive the state laws such as
thermo-elasticity and the definition of the variables associated with the
internal state variables

3. Definition of a dissipation potential from which derive the laws of evolu-
tion of the state variables associated with the dissipative mechanisms

These three steps offer several choices for the definitions, each chosen in
accordance with experimental results and purpose of use. Then, the second
principle of the thermodynamics must be checked for any evolution.

The two potential functions introduce parameters which depend on the
material and the temperature. They must be identified from experiments in
each case.

1.2.1 General Framework

The state variables, observable and internal, are chosen in accordance with
the physical mechanisms of deformation and degradation of the material
(Table 1.1).

Taking small deformations into consideration, the total strain is split into
a thermo-elastic part εe and a plastic part εp:

εij = εeij + εpij . (1.17)
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Table 1.1. State and associated variables (J. Lemaitre 1978)

Mechanisms Type State variables Associated
Observable Internal variables

Thermoelasticity Tensor εij σij

Entropy Scalar T s

Plasticity Tensor εpij −σij

Isotropic hardening Scalar r R
Kinematic hardening Tensor αij Xij

Damage Scalar (isotropic) D −Y
Tensor (anisotropic) Dij −Yij

The Helmholtz specific free energy taken as the state potential of the
material is a function of all the state variables. Written as ψ(εeij , D or Dij , r,
αij , T ), some qualitative experimental results on the possibility of couplings
show that the state potential is the sum of thermo-elastic (ψe), plastic (ψp),
and purely thermal (ψT) contributions. Here, it is more convenient to con-
sider the potential as the Gibbs specific free enthalpy (ψ�) deduced from the
Helmholtz free energy by a partial Legendre transform on the strain:

ψ� = sup
ε

[
1
ρ
σijεij − ψ

]
(1.18)

or

ψ� = sup
εe

[
1
ρ
σijε

e
ij − ψe

]
+

1
ρ
σijε

p
ij − ψp − ψT , (1.19)

where ρ is the density and where ψp and ψT do not depend on the total
strain.

It is finally expressed as

ψ� = ψ�
e +

1
ρ
σijε

p
ij − ψp − ψT , (1.20)

where

• The elastic contribution ψ�
e is affected by damage to model the experimen-

tally-observed coupling between elasticity and damage through the effec-
tive stress concept σ̃ associated with the principle of strain equiva-
lence (J. Lemaitre 1971). It states that the strain constitutive equations
of a damaged material is derived from the same formalism as for a non-
damaged material except that the stress is replaced by the effective stress.

• The part ψp = 1
ρ

(∫ r

0 Rdr + 1
3Cαijαij

)
is the contribution due to plas-

tic hardening. When multiplied by ρ, it is the energy stored (ws) in
the RVE. The material parameter C accounts for the linear part of the
kinematic hardening.

• The extra contribution ψT is a function of the temperature only. It par-
tially defines the heat capacity of the material.
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First, the state laws are derived from the state potential. They are the laws
of thermoelasticity,

εij = ρ
∂ψ�

∂σij
= ρ

∂ψ�
e

∂σij
+ εpij −→ εeij = ρ

∂ψ�

∂σij

s =
∂ψ�

∂T
.

(1.21)

The other derivatives define the associated variables as follows:

R = −ρ
∂ψ�

∂r
,

Xij = −ρ
∂ψ�

∂αij
,

−Y = −ρ
∂ψ�

∂D
or − Yij = −ρ

∂ψ�

∂Dij
.

(1.22)

The second principle of thermodynamics, written as the Clausius–
Duhem inequality is satisfied when the damage rate is positive:

σij ε̇
p
ij − ẇs + YijḊij − qiT,i

T
≥ 0 (1.23)

This means the dissipation sum of the dissipation due to plastic power
(σij ε̇

p
ij), minus the stored energy density rate (ẇs = Rṙ + Xij α̇ij), plus

the dissipation due to damage (YijḊij), and plus the thermal energy (�q is
the thermal flux), is transformed into heat.

Finally, the kinetic laws governing the evolution of the internal variables
are derived from a dissipation potential (F ) which is a convex function of
the associated variables to ensure fulfillment of the second principle:

F = F (σ, R, Xij , Y or Yij ; D or Dij , T ) . (1.24)

The state variables representing the temperature and the damage may act,
but only as parameters. Introducing the plastic criterion function (f), the
nonlinear kinematic hardening term (FX) and the damage potential (FD),
according to qualitative experiments on the possibilities of coupling, F is the
sum F = f + FX + FD. The evolution laws are formally written as

ε̇pij = −λ̇
∂F

∂(−σij)
= λ̇

∂F

∂σij
,

ṙ = −λ̇
∂F

∂R
,

α̇ij = −λ̇
∂F

∂Xij
,

Ḋ = −λ̇
∂F

∂(−Y )
= λ̇

∂F

∂Y
or Ḋij = −λ̇

∂F

∂(−Yij)
= λ̇

∂F

∂Yij
.

(1.25)

This is the normality rule of generalized standard materials.
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For phenomena which do not depend explicitly on time, such as plasticity,
the potential F is not differentiable and λ̇ is the plastic multiplier, calculated
from the consistency condition, f = 0, ḟ = 0. The first condition, f = 0,
means that the state of stress is on the actual yield condition; the second,
ḟ = 0, means that an increase of the state of stress induces an increase of
the yield stress. Elastic unloading occurs when f < 0 or ḟ < 0, the internal
variables then keeping a constant value (ε̇pij = ṙ = α̇ij = Ḋij = 0). The com-
plete loading or unloading conditions are called the Kuhn–Tucker conditions:
λ̇ ≥ 0, f ≤ 0, λ̇f = 0.

For phenomena like visco-plasticity which depends explicitly upon time,
λ̇ is the viscosity function λ̇(f).

To complete the formal description of elasto-(visco-)plasticity coupled
with damage, the accumulated plastic strain rate (ṗ) is defined in ac-
cordance with the yield criterion considered. For the von Mises criterion it
is

ṗ =

√
2
3
ε̇pij ε̇

p
ij . (1.26)

In 1D (uniaxial tension-compression case), it simply means ṗ = |ε̇p|.

1.2.2 State Potential for Isotropic Damage

According to the principle of strain equivalence, the strain potential for linear
isotropic thermo-elasticity and isotropic damage (D) is

ρψ�
e =

1 + ν

2E

σijσij

1 − D
− ν

2E

σ2
kk

1 − D
+ α(T − Tref)σkk , (1.27)

where E is the Young’s modulus, ν the Poisson ratio, α the thermal expansion
coefficient, and Tref a reference temperature. The thermo-elasticity law is
derived from this potential as

εeij = ρ
∂ψ�

e

∂σij
=

1 + ν

E
σ̃ij − ν

E
σ̃kkδij + α(T − Tref)δij , (1.28)

where the effective stress is σ̃ij =
σij

1 − D
.

The energy density release rate (Y ), the associated variable with the
damage variable, is also derived from the state potential and may be written
as (J.L. Chaboche 1976)

Y = ρ
∂ψ�

∂D
=

σ̃2
eqRν

2E
, (1.29)
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introducing the triaxiality function

Rν =
2
3
(1 + ν) + 3(1 − 2ν)

(
σH

σeq

)2

(1.30)

where σH = σkk/3 is the hydrostatic stress, σeq =
√

3
2σD

ijσ
D
ij the von

Mises equivalent stress, and σD
ij = σij − σHδij the stress deviator. The

ratio σH/σeq is the stress triaxiality denoted by TX.
If we is the elastic strain energy density defined by dwe = σijdεeij , then

Y =
we

1 − D
and Y =

1
2

dwe

dD

∣∣∣∣ σ = const
T = const

. (1.31)

At this level, an interesting concept is the damage equivalent stress
(σ�) (J. Lemaitre 1981) defined as the uniaxial stress which gives the same
amount of elastic strain energy (we) as a multiaxial state of stress. For linear
isothermal isotropic elasticity, we = ρψ�

e or in terms of the stress deviator
(σD) for shear energy and the hydrostatic stress (σH) for the hydrostatic
energy,

ρψ�
e =

1 + ν

2E

σD
ijσ

D
ij

1 − D
+

3(1 − 2ν)
2E

σ2
H

1 − D
=

σ2
eqRν

2E(1 − D)
. (1.32)

Writing the equality between the uniaxial case, for which Rν = 1, and the
multiaxial case,

σ�2

2E(1 − D)
=

σ2
eqRν

2E(1 − D)
, (1.33)

yields

σ� = σeqR
1/2
ν . (1.34)

1.2.3 State Potential for Anisotropic Damage

In accordance with the principle of strain equivalence, with the definition
of the effective stress (1.14) of Sect. 1.1.4 and with P. Ladevèze’s (1983)
framework for the description of an anisotropic state of damage, the state
potential ρψ�

e represented by the tensor D is

ρψ�
e =

1 + ν

2E
Hijσ

D
jkHklσ

D
li +

3(1 − 2ν)
2E

σ2
H

1 − ηDH
+ α(T − Tref)σkk , (1.35)

where
Hij = (1− D)−1/2

ij (1.36)
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The law of elasticity is derived from the Gibbs potential and as expressed
in (1.28) still introduces the symmetric effective stress tensor defined in
Sect. 1.1.4:

σ̃ij = (HikσD
klHlj)D +

σH

1 − ηDH
δij . (1.37)

The associated variable with D is the energy density release rate tensor,
Y , which is also derived from the Gibbs energy, Yij = ρ∂ψ�/∂Dij. This
derivative needs some care due to possible variation of the damage principal
directions. Using HikḢkj + ḢikHkj = H2

ikḊklH
2
lj and

AijklḢkl = H2
ipḊpqH

2
qj , with Aijkl =

1
2
(Hikδjl+Hjlδik+Hilδjk+Hjkδil) ,

(1.38)
where the symmetrization is due to Hkl = Hlk, one gets:

Yij =
1 + ν

E
σD

kp Hpq σD
ql A−1

klmn H2
mi H2

jn +
η(1 − 2ν)

2E

σ2
H

(1 − ηDH)2
δij . (1.39)

It is possible to verify that the dissipation YijḊij is positive or zero at least
for practical cases.

By chance, the law of damage evolution in Sect. 1.4 will not be a function
of Y but it will be a function of the effective elastic energy density, the
scalar Y =

∫
σ̃ijdεeij , as in the isotropic case. Y can be written as a function

of the effective stress,

Y =
1
2
Eijklε

e
klε

e
ij =

1
2
σ̃ijε

e
ij =

σ̃2
eqR̃ν

2E
, (1.40)

with the effective triaxiality function

R̃ν =
2
3
(1 + ν) + 3(1 − 2ν)

(
σ̃H

σ̃eq

)2

, (1.41)

where

σ̃eq =
(
H σDH

)
eq

=
[
3
2
(
H σDH

)D
ij

(
H σDH

)D
ij

]1/2

σ̃H =
σH

1 − ηDH
.

(1.42)

1.2.4 Quasi-Unilateral Conditions of Microdefects Closure

For most materials under certain conditions of loading, the microdefects may
close during compression. This is more often the case for very brittle mate-
rials. The phenomenon of partial closure of microcracks increases the area
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which effectively carries the load in compression and the stiffness may then
be partially or fully recovered. For most materials, considering Ẽ+ and Ẽ−

as the effective elasticity modulus in tension and in compression, the ratio
(E − Ẽ−)/(E − Ẽ+) has a constant value close to 0.2 when the damage
models of Sects. 1.2.2 and 1.2.3 give a value equal to 1. This phenomenon
is referred to as quasi-unilateral conditions, the term “quasi” standing for
“initial elasticity partially recovered in compression.”

From a theoretical point of view, the damage state due to the presence of
microdefects is represented by the internal variable D or D. Being a thermo-
dynamical state, it is independent of both the intensity and the sign of the
loading at constant internal variables (metals, concretes, composites, poly-
mers . . . do not physically recover from their wounds!). This means that

• No extra damage variable has to be introduced to model the mi-
crodefects closure effect

• D or D act differently in tension and in compression

For unidimensional states of stress, a solution is to define an effective stress
such as

• σ

1 − D
in tension with D the relative reduction of the resisting area in

tension identified by D = 1 − Ẽ+/E and
• σ

1 − hD
in compression with hD, the relative reduction of the resisting

area in compression identified by hD = 1 − Ẽ−/E or h = (E − Ẽ−)/
(E − Ẽ+),

where h is a microdefects closure parameter that is material-dependent
(but most often h ≈ 0.2).

For 3D states of stress, the difficulty is to recognize what is compres-
sion and what is tension! The theoretical background needed to handle such
a problem mostly concerns the definition and use of positive and negative
parts of tensors built with their three principal values.

The positive part 〈s〉+, also written as 〈s〉+ij (with negative part 〈s〉− or
〈s〉−ij respectively), of a symmetric tensor s is built from its positive (negative)
eigenvalues sK and the corresponding normalized eigenvectors �qK , as in

〈s〉+ij =
3∑

K=1

〈sK〉qK
i qK

j and 〈s〉−ij = sij − 〈s〉+ij , (1.43)

where 〈·〉 stands for the positive part of a scalar: 〈x〉 =

{
x if x ≥ 0,

0 if x < 0.

Using the property 〈s〉+ij〈s〉−ij = 0, it is easy to demonstrate that

〈skk〉2 = 〈skk〉2 + 〈−skk〉2
sijsij = 〈s〉+ij〈s〉+ij + 〈s〉−ij〈s〉−ij .

(1.44)
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The products 〈skk〉2, 〈s〉+ij〈s〉+ij , and 〈s〉−ij〈s〉−ij may be continuously differen-
tiated as follows:

∂

∂sij

(
1
2
〈skk〉2

)
= 〈skk〉δij ,

∂

∂sij

(
1
2
〈s〉+rs〈s〉+rs

)
= 〈s〉+ij ,

∂

∂sij

(
1
2
〈s〉−rs〈s〉−rs

)
= 〈s〉−ij .

(1.45)

1.2.4.1 Quasi-Unilateral Conditions for Isotropic Damage
(P. Ladevèze and J. Lemaitre 1984)

The microdefects closure parameter h operates by (1−hD)−1 on the negative
part of the principal stresses and by (1 − D)−1 on the positive principal
stresses. For isotropic damage, the isothermal state potential ρψ�

e is

ρψ�
e =

1 + ν

2E

[
〈σ〉+ij〈σ〉+ij

1 − D
+

〈σ〉−ij〈σ〉−ij
1 − hD

]
− ν

2E

[ 〈σkk〉2
1 − D

+
〈−σkk〉2
1 − hD

]
. (1.46)

The elasticity law is still derived from εeij = ρ ∂ψ�
e/∂σij ,

εeij =
1 + ν

E

[
〈σ〉+ij
1 − D

+
〈σ〉−ij

1 − hD

]
− ν

E

[ 〈σkk〉
1 − D

− 〈−σkk〉
1 − hD

]
δij . (1.47)

It defines an effective stress as

σ̃ij =
〈σ〉+ij
1 − D

+
〈σ〉−ij

1 − hD

+
ν

1 − 2ν

(
δkl〈σ〉+kl − 〈σkk〉

1 − D
+

δkl〈σ〉−kl + 〈−σkk〉
1 − hD

)
δij .

(1.48)

The energy density release rate Y = ρ∂ψ�/∂D now strongly depends on h as

Y =
1 + ν

2E

[
〈σ〉+ij〈σ〉+ij
(1 − D)2

+ h
〈σ〉−ij〈σ〉−ij
(1 − hD)2

]
− ν

2E

[ 〈σkk〉2
(1 − D)2

+ h
〈−σkk〉2

(1 − hD)2

]
.

(1.49)

1.2.4.2 Quasi-Unilateral Conditions for Anisotropic Damage
(P. Ladevèze 1983, R. Desmorat 1999)

As for the isotropic case, the scalar parameter ha, different from h in general,
is introduced in order to model the different effects of D on tension and
compression. We define
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Hp
ij = (1− D)−1/2

ij , Hn
ij = (1− haD)−1/2

ij , (1.50)

where p stands for positive and n for negative, as it will be exhibited by their
use.

The isothermal state potential that can model quasi-unilateral anisotropic
damage is

ρψ�
e =

1 + ν

2E

(
Hp

ijσ
D
+jk

Hp
klσ

D
+li

+ Hn
ijσ

D
+jk

Hn
klσ

D
+li

)
+

3(1 − 2ν)
2E

( 〈σH〉2
1 − ηDH

+
〈−σH〉2

1 − haηDH

)
,

(1.51)

where σD
+ is built with the eigenvalues λK and the corresponding eigen-

vectors (�T K) of the non-symmetric matrix (HpσD) in such a way that
(HpσD

+HpσD
+) may be continuously differentiated. This means

d
(

1
2
Hp

ijσ
D
+jk

Hp
klσ

D
+li

)
= Hp

ijσ
D
+jk

Hp
kldσD

li + σD
+li

Hp
ijσ

D
+jk

dHp
kl , (1.52)

where �T K and λK are given by the eigenvalue problem

σD
ijTj = λ (Hp)−1

ij Tj (without summation) (1.53)

and the normalization T I
i (Hp)−1

ij T J
j = δIJ is made. Be careful: the scalar

product �T I · �T J �= δIJ as (HpσD) is non-symmetric. The eigenvalues λK are
real because σD is symmetric and (Hp)−1 is positive-defined and symmetric.
The deviatoric stress tensor may then be rewritten as

σD
ij =

3∑
K=1

λK

[
(Hp)−1

ik T K
k

] [
(Hp)−1

jl T K
l

]
(1.54)

and the special positive part σD
+ is therefore defined as

σD
+ij

=
3∑

K=1

〈λK〉 [(Hp)−1
ik T K

k

] [
(Hp)−1

jl T K
l

]
. (1.55)

The same procedure is followed for the negative part σD
− with Hn and

with the eigenvectors and the negative eigenvalues of (HnσD).
The elasticity law is derived from the state potential,

εeij = ρ
∂ψ�

e

∂σij

=
1 + ν

E

[
(Hp

ikσD
+kl

Hp
lj)

D + (Hn
ikσD

−kl
Hn

lj)
D
]

+
1 − 2ν

E

[ 〈σH〉
1 − ηDH

− 〈−σH〉
1 − ηhaDH

]
δij

εeij =
1 + ν

E
σ̃ij − ν

E
σ̃kkδij ,

(1.56)
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and defines the effective stress,

σ̃ij = (Hp
ikσD

+kl
Hp

lj)
D + (Hn

ikσD
−kl

Hn
lj)

D +
[ 〈σH〉
1 − ηDH

− 〈−σH〉
1 − ηhaDH

]
δij ,

(1.57)
which takes into account the quasi-unilateral effect. The effective energy den-
sity is also a function of the microdefects closure parameter. It is expressed
as

Y =
1 + ν

2E
tr
[(

HpσD
+Hp

)2
+ ha

(
HnσD

−Hn
)2]

+
3(1 − 2ν)

2E

[ 〈σH〉2
(1 − ηDH)2

+ ha
〈−σH〉2

(1 − ηhaDH)2

]
.

(1.58)

In order to keep the possibility to differentiate the state potential, the pos-
itive and negative parts are taken with respect to the deviatoric stress tensor.
This means that the parameter ha affects both tension and compression (σD

has positive and negative components in any uniaxial case), therefore the
model is quite complex even for the tensile test. Furthermore, the value of
the microdefects closure parameter depends on the model itself: for a given
material, h for the isotropic damage model is different from ha identified for
the anisotropic damage model. The good thing is that the common value
for many materials, h ≈ 0.2, for the isotropic damage model corresponds to
ha ≈ 0 for the anisotropic damage model.

Finally, the law of elasticity may be written as (ha = 0)

εeij =
1 + ν

E

[
(Hp

ikσD
+kl

Hp
lj)

D +
(〈σD〉−)D

ij

]
+

1 − 2ν

E

[ 〈σH〉
1 − ηDH

− 〈−σH〉
]

δij

(1.59)

and the effective energy density is

Y =
1 + ν

2E
tr
(
HpσD

+Hp
)2

+
3(1 − 2ν)

2E

〈σH〉2
(1 − ηDH)2

. (1.60)

1.3 Measurement of Damage

The direct measurement of damage as the surface density of microdefects is
difficult to perform and is used only in laboratories well equipped for microg-
raphy from both the human and microscopy points of view. It is easier to
take advantage of the coupling between damage and elasticity (or plasticity)
to evaluate the damage by inverse methods.
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1.3.1 Isotropic Elasticity Change

In the case of isotropic damage, the uniaxial law of elasticity in tension cou-
pled with damage reduces to

εe =
σ

E(1 − D)
=

σ

Ẽ
, (1.61)

where E is the Young’s modulus of undamaged elasticity and Ẽ is the actual
modulus of damaged elasticity. The damage is then expressed as the loss of
stiffness,

D = 1 − Ẽ

E
. (1.62)

To evaluate the damage as a function of the accumulated plastic strain, p =∫ t

0 |ε̇p|dt, it is advised to perform a very low cycle test at a constant strain
range on a tension-compression specimen (rupture for 10 to 100 cycles) and to
measure the elastic strain by means of small-strain gauges during unloadings
(Fig. 1.4, J. Dufailly 1976). If ∆εp is the plastic strain range over a cycle, the
accumulated plastic strain for N cycles is simply p ≈ 2∆εpN .

Fig. 1.4. Measurement of damage by means of elasticity change

The evaluation of the elasticity modulus needs much care because an
absolute accuracy of about 10−6 is needed on the measurement of the strain.
Furthermore the damage is almost always very localized on a small volume
and it looses its continuous signification as soon as a mesocrack appears.
In tension, this is before the whole fracture, when the elasticity modulus
decreases rapidly, an instant which corresponds to a quick change of the
curvature in the graph of D = 1 − Ẽ/E as a function of the accumulated
plastic strain p (Fig. 1.4).

1.3.2 Isotropic Elasticity Change by Ultrasonic Waves

A wave’s speed is related to the density ρ and to the elastic properties of the
considered medium. Considering the longitudinal waves in a linear, isotropic,
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elastic, long cylindrical specimen with Young’s modulus E and a Poisson
ratio ν, the wave speed is determined by

υ =

√
E

ρ

1 − ν

(1 + ν)(1 − 2ν)
. (1.63)

If the material is damaged mainly by microcracks, the density remains almost
unchanged and if they are randomly oriented to make the damage isotropic,
the Poisson ratio also remains constant. The wave speed becomes

υ̃ =

√
Ẽ

ρ

1 − ν

(1 + ν)(1 − 2ν)
, (1.64)

from which the damage may be determined as

D = 1 − Ẽ

E
−→ D = 1 − υ̃2

υ2
. (1.65)

This method requires the measurement of the propagation time of the
waves. The accuracy is higher when the distance covered by the waves is large.
Unfortunately, due to the localization of the damage, the distance available
for an uniform field of damage is always small, often too small for metals,
but the method works nicely for concrete with a frequency of 0.1 to 1 MHz
(Y. Berthaud 1988).

1.3.3 Anisotropic Elasticity Change

When anisotropic damage is considered, the damage tensor has six com-
ponents or three if the principal orthotropic frame is known, through, for
example, an independent measurement of the plastic strains. Considering the
case

D =

⎡
⎣D1 0 0

0 D2 0
0 0 D3

⎤
⎦ , H =

⎡
⎢⎢⎣

H1 = 1√
1−D1

0 0

0 H2 = 1√
1−D2

0

0 0 H3 = 1√
1−D3

⎤
⎥⎥⎦ ,

(1.66)
with elastic strains corresponding to an uniaxial tension σ1 in the direction 1
of a previously damaged material, the elasticity law (1.28) with the effective
stress (1.37) of Sect. 1.2.3 can be expanded as

[
εe1 0 0
0 εe2 0
0 0 εe3

]
=

1 + ν

E

⎛
⎝
[

H1 0 0
0 H2 0
0 0 H3

]⎡
⎣ 2σ1

3 0 0
0 −σ1

3 0
0 0 −σ1

3

⎤
⎦
[

H1 0 0
0 H2 0
0 0 H3

]⎞
⎠

D

+
1 − 2ν

3E

σ1

1 − ηDH

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

(1.67)
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The damaged elasticity modulus in the direction 1 and the associated con-
traction ratios also measured by strain gauges are defined by

Ẽ1 =
σ1

εe1
, ν̃12 = − εe2

εe1
, and ν̃13 = − εe3

εe1
. (1.68)

This leads to three expressions for the elastic properties as functions of the
damage:

E

Ẽ1

=
1 + ν

9

(
4

1 − D1
+

1
1 − D2

+
1

1 − D3

)
+

1 − 2ν

3(1 − ηDH)
, (1.69)

ν̃12
E

Ẽ1

=
1 + ν

9

(
2

1 − D1
+

2
1 − D2

− 1
1 − D3

)
− 1 − 2ν

3(1 − ηDH)
, (1.70)

ν̃13
E

Ẽ1

=
1 + ν

9

(
2

1 − D1
− 1

1 − D2
+

2
1 − D3

)
− 1 − 2ν

3(1 − ηDH)
. (1.71)

For a tensile loading in direction 2 (or 3), the equations remain the same with
subscripts 1 and 2 (or 1 and 3) inverted. Then uniaxial tensions applied in the
directions 2 and 3 give 6 additional equations to determine the 3 components
of the damage (D1, D2, D3), plus the coefficient η if it is unknown, with
a verification of the symmetries:

ν̃ij

Ẽi

=
ν̃ji

Ẽj

(no summation) . (1.72)

If a uniformly damaged cube is available to machine 3 tensile specimens in
the 3 principal directions, 3 elasticity tests (with measurement of the elastic-
ity modulus and contraction ratios) allow for the calculation of the damage
components,

D1 =1 − Ẽ1

E
(1 + ν)

[
2 + ν̃12 − Ẽ1

Ẽ2

]−1

,

D2 =1 − Ẽ2

E
(1 + ν)

[
2 − (1 − ν̃12)

Ẽ2

Ẽ1

]−1

,

D3 =1 − Ẽ3

E
(1 + ν)

[
2 + ν̃32 − Ẽ3

Ẽ2

]−1

,

and ηDH = 1 − Ẽ1

E

1 − 2ν

1 − 2ν̃12
,

(1.73)

with DH =
1
3

(D1 + D2 + D3).
Due to the required size of the specimens, this procedure is not possible

most of the time. Nevertheless, a cube smaller than the classical tension spec-
imens may be analyzed by ultrasonic waves in the three principal directions.
In this case, the transversal wave speed must be also measured.
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1.3.3.1 Damage Induced by Uniaxial Tension

From the previous general expressions, approximate formulae may be derived
for damage induced by uniaxial tension (in direction 1). Using experiments
of ductile damage with repeated unloadings for which only the elasticity
modulus (Ẽ1) and the contraction coefficient (ν̃12) are measured,

D1 ≈ 1 − Ẽ1

E
(1.74)

D2 = D3 ≈ 1 − Ẽ1

E

1 + ν

1 + 3ν̃12 − 2ν
. (1.75)

For the extremal values 1
2 ≤ ν̃

ν ≤ 1 and 3
4 ≤ Ẽ

E ≤ 1, this corresponds to
a maximal relative error of 15% when compared with the exact formulae.
The last expression of (1.73) for ηDH remains valid as only Ẽ1 and ν̃12 are
needed.

1.3.3.2 Damage in Thin Sheets

Practical applications often concern thin sheets in which it is possible to
machine small tension specimens in two perpendicular directions and in the
direction at 45 degrees, as shown in Fig. 1.5.

Careful measurements made on the small specimens give Ẽ1, Ẽ2, Ẽπ
4

and ν̃12, ν̃21, ν̃π
4
, from which D1 and D2 are determined. The parameter η

is obtained as the slope of
(
1 − Ẽ1

E
1−2ν

1−2ν̃12

)
as a function of the hydrostatic

Fig. 1.5. Uniaxial tension and plane tension in three specimens machined in
anisotropic damaged sheets
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damage DH = 1
3 (D1+D2+D3). A hypothesis concerning the damage created

in direction 3 has to be made for the calculation of DH. It is D2 = D3 for
damage induced by uniaxial tension loading; D2 = 0 and D3 = D1 for damage
induced by plane tension loading (large plates). Such choices have an influence
on the measurement of η only. They are consistent with the consideration of
the damage evolution law of Sect. 1.4.

The data at 45 degrees may be used as complementary data for the iden-
tification of the damage or to check the quality of the measurements,

Ẽπ
4

= 4
[

1
Ẽ1

+
1

Ẽ2

+
1

G̃12

− 2
ν̃12

Ẽ1

]−1

(1.76)

ν̃π
4

=
Ẽπ

4

4

[
2
ν̃12

Ẽ1

+
1

G̃12

− 1
Ẽ1

− 1
Ẽ2

]
, (1.77)

with the damaged shear modulus being

G̃12 = G
√

(1 − D1)(1 − D2) , and G =
E

2(1 + ν)
. (1.78)

Two examples are given for anisotropic ductile damage created in uniaxial
tension and plane tension in the direction 1 of thin sheets of ARCELOR steel
SOLDUR 355. The results are given in Fig. 1.6 for two values of the plastic
strain applied on the big samples in order to produce the damage. In both
cases, the ratio D2/D1 is close to the ratio |εp2 |/|εp1 | as D2/D1 ≈ 1/2 in the
case of uniaxial tension and D2/D1 ≈ 0 in the case of plane tension. The
value of η is in the range of many other experiments for which it has been
found: 2.1 ≤ η ≤ 3.5.

Fig. 1.6. Damage anisotropy in uniaxial tension and plane tension in polar coor-
dinates (M. Sauzay 2000)
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1.3.4 Hardness Change

Hardness or, better for damage evaluation, microhardness is influenced by
the softening effect of damage. The process of inserting a diamond indenter
in the material where the load (F ) and the projected indented area (S) are
measured defines the hardness as

H =
F

S
. (1.79)

The material around the mark is loaded in 3D, proportional plasticity which
avoids the consideration of a kinematic hardening (see Sect. 2.1.2). In the
case of isotropic damage with the same effect on tension and compression,
the plastic potential is written with the effective von Mises equivalent stress,
the isotropic hardening stress R, and the yield stress σy,

f =
σeq

1 − D
− R − σy = 0 , (1.80)

which means that the actual plastic yield stress corresponding to a plastic
strain in the material is

σs = (R + σy)(1 − D) . (1.81)

Theoretical analyses and many experiments have proved that this actual yield
stress is related to the hardness H linearly,

H = kσs . (1.82)

• If a microhardness test is performed on a virgin part of a piece of material
where there is no hardening (or only the small hardening due to the micro-
indentation),

H = kσy . (1.83)

• If a microhardness test is performed on a damaged part of the same
piece of material, as the damage occurs for quasi-saturated hardening
R + σy ≈ σu, one has

H̃ = kσu(1 − D) . (1.84)

with σu being the ultimate stress.

From the two last equations the damage is evaluated as

D = 1 − H̃

H

σy

σu
. (1.85)

This method gives about the same results as the elasticity changes but,
with some care, it allows for the measurement of surface damage fields with
in situ measurements (R. Billardon and J. Dufailly 1987). Nevertheless
the method does not take into consideration eventual internal stresses, which
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sometimes exist in zones subjected to high gradients of plastic strains and
which may artificially increase or decrease the hardness.

The damage here is measured in compression by use of the coupling be-
tween plasticity and damage. Good comparisons with damage measurements
in tension prove that the yield criterion does not depend much on the micro-
defects closure phenomenon. This non-dependency is due to the mechanism
of plasticity itself produced by slips in shear.

1.3.5 Elasticity Field Change
(D. Claise, F. Hild and S. Roux 2002)

The microhardness technique allows for the measurement of damage fields,
but in discrete values for each indentation. More powerful is the measurement,
by digital image correlation, of the displacement field of the damaged
structure loaded in its elastic range, associated with a finite element analysis
(FEA) in which the loading and the displacement fields are given and the local
elastic properties related to the damage field are unknown. This technique is
described for plane stress or plane strain problems but its extension to 3D
problems is possible.

Digital image correlation consists of correlating a small image of the sur-
face of a deformed body with the image of the same zone in its initial state,
by a translation that represents the displacement of its center. It needs:

• Some preparation (or not) of the surface in order to obtain a texture
heterogeneity that can be observed by a camera.

• A CDD camera which is the key point for the resolution of the method.
A 12-bit camera allows for a displacement resolution of 10−2 pixel or
5× 10−5 as the absolute value of the strain, but a 16-bit camera is likely
to allow for the measurement of strains with absolute values as low as
10−6, with a relative accuracy of 5% and a gauge length of 1024 pixels.

• A fast acquisition set up to record the amount of information defining the
images.

• A standard Personal Computer.
• Software for the image data processing by multiscale correlation (for ex-

ample, the software CORRELI developed by F. Hild at LMT-Cachan).
• A special finite element code giving directly the damage field whose prin-

ciple is explained below. This technique is applied to real damaged struc-
tures loaded in such a way that the strain in the most damaged zone
remains elastic, with the largest possible value.

1.3.5.1 Damage Field from Displacements Measurements

The equilibrium condition σij,j = 0 for elasticity coupled with damage con-
stitutive equation (λ and µ are Lamé elasticity parameters of the undamaged
material),
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σij = 2µ(1 − D)εeij + λ(1 − D)εekkδij , (1.86)

is (
2µεeij + λεekkδij

)
(1 − D),j +

(
2µεeij + λεekkδij

)
,j

(1 − D) = 0 (1.87)

or (
2µεeij + λεekkδij

) (1 − D),j

1 − D
+
(
2µεeij + λεekkδij

)
,j

= 0 , (1.88)

which is rewritten with
(1 − D),j

1 − D
= [ln(1 − D)],j :

(
2µεeij + λεekkδij

)
[ln(1 − D)],j +

(
2µεeij + λεekkδij

)
,j

= 0 . (1.89)

The continuity of the stress vector across interfaces or element boundaries
for finite element analyses leads to (with here a boundary oriented by a nor-
mal �ex) [[

(1 − D){λ(εexx + εeyy + εezz) + 2µεexx}
]]

= 0 ,[[
(1 − D)µεexy

]]
= 0 ,

[[(1 − D)µεexz]] = 0 ,

(1.90)

where [[�]] denotes the jump of a quantity �. Similar expressions are obtained
for normals �ey, �ez, or �n.

In equations (1.89) and (1.90), the displacement field �u(x) and therefore
the elastic strain field εe(x) are known (assumed equal to the strain ε(x)
determined by image correlation in the elastic range). These equations allow
for the determination of the field (1−D(x)) up to a multiplicative factor only
since no load measures are considered. If the critical damage Dc is known,
the observed crack initiation condition corresponds to (1 − D) = (1 − Dc)
and gives the multiplicative factor.

Based on the FEA, a weak formulation of the problem may be built,
assuming a spatial discretization by 2D quadratic elements and a damage
constant per element (D = D(p) for element p). The strain energy W

(p)
e of

an element p classically depends on the elastic properties and of the nodal
displacements {U e} (see Sect. 2.2). It is linear in (1 − D). In the absence
of applied load on each middle node k between two elements p and q, the
derivative of the strain energy W

(pq)
e = W

(p)
e + W

(q)
e of both elements with

respect to the displacement �uk of node k vanishes, so that

∂W
(pq)
e

∂uk
i

= 0 . (1.91)

Due to the linearity with respect to (1−D(p)) in element p and to (1−D(q))
in element q, one obtains two equations per middle node. These equations
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are written in the synthetic form

g
(p)
ik ({U (p)})(1 − D(p)) = g

(q)
ik ({U (q)})(1 − D(q)) , (1.92)

where the functions g
(p or q)
ik are generic and only depend on the nodal dis-

placements {U (p)}, {U (q)} of elements p and q.
Taking the logarithm of (1.92) yields

ln(1 − D(p)) − ln(1 − D(q)) = ln |g(p)
ik ({U (p)})| − ln |g(q)

ik ({U (q)})| (1.93)

and leads to the overdetermined linear system

[M ] {d} = {q} , (1.94)

where the vector {d} of components the logarithm of (1−D) over each element
is the unknown,

{d} =

⎡
⎢⎢⎢⎢⎢⎢⎣

ln(1 − D(1))
...

ln(1 − D(p))
...

ln(1 − D(N))

⎤
⎥⎥⎥⎥⎥⎥⎦

, (1.95)

and where the matrix [M ] is filled up with 0, 1 and −1 only. The second
member {q} is due to the terms ln |g(p)

ik | − ln |g(q)
ik | and is function of the

measured nodal displacements. The system is solved by the use of the least
square method:

([M ] {d} − {q})T [Wcor] ([M ] {d} − {q}) minimum gives {d} , (1.96)

where [Wcor] is a diagonal weight matrix. We specify one component of {d}
and define {δ} as the new unknown vector

{δ} = {d} − {d}0 where {d}0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

ln(1 − D)i0

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.97)

The damage field is finally obtained as the solution of

(
[M ]T[Wcor][M ]

) {δ} =
(
[M ]T[Wcor]

) {q} − ([M ]T[Wcor][M ]
) {d}0 .

(1.98)
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1.3.5.2 Example of a Cross-Shaped Specimen

As an example, Fig. 1.7 shows a cross-shaped specimen that is loaded bi-
axially in the triaxial testing machine ASTREE of LMT Cachan and also
the lens of the camera. The material is a vinylester-glass fibers composite
considered as isotropic since a random distribution of the fibers is observed
(Fig. 1.7). The size of the analyzed square is 36.5 × 36.5 mm and it is 2.5 mm
thick. The displacement measured just before failure by a mesocrack is also
shown in the figure and the corresponding damage field is given in the third
picture. Three highly damaged elements are visible on the top left corner and
correspond to the initiation of a mesocrack precursor of the final failure of
the specimen.

Fig. 1.7. Sample in the ASTREE machine with its microstructure (a), displace-
ment field (b), damage field of the central zone (c) (D. Claise, F. Hild and S. Roux
2002)

1.4 Kinetic Laws of Damage Evolution

According to the thermodynamics framework of Sect. 1.2.1, the evolution law
for damage derives from the potential of dissipation and particularly from
the function FD:

Ḋ = λ̇
∂FD

∂Y
or Ḋij = λ̇

∂FD

∂Yij
. (1.99)

There are many possible choices for the analytical form of the function FD,
depending on the knowledge of experimental results, the purpose of use and
the ability of the model maker! The best is the simplest with the domain
of validity required, where simplest means the smallest possible number of
material parameters.
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1.4.1 Damage Threshold and Mesocrack Initiation

All measurements of damage during plastic loadings, creep, or fatigue show
that no mechanical damage occurs before a certain irreversible or accumu-
lated plastic strain (pD) is reached, on a meso- or microscale. This threshold
pD depends on the material but also encounters strong variations with the
type of loading. This is because the damage initiation is in fact related to the
amount of energy needed for the incubation of defects, as the stored energy
threshold (wD) of the material.

According to the formalism of elasto-(visco-)plasticity with isotropic and
kinematic hardening of Sect. 1.2, the stored energy is

ws =
∫ t

0

(Rṙ + Xijα̇ij) dt . (1.100)

The ws vs p curve obtained is drawn in Fig. 1.8. It is also shown that the
isotropic hardening saturates at the value R = R∞ for large p and recall that
p = r as long as there is no damage. With the consideration of the state law
Xij = 2

3Cαij , one has then

ws = ρψp ≈ R∞p +
3

4C
XijXij as long as D = 0 . (1.101)

For nonlinear kinematic hardening, the contribution 3
4C XijXij reaches a sat-

uration value for monotonic loadings and becomes a positive periodic function
of time for cyclic loadings. This last expression then exhibits a linear depen-
dency in p for large values of the accumulated plastic strain and values for
ws much larger than what can be measured when the observed tendency is
to reach a constant value asymptotically.

Fig. 1.8. Stored energy and damage threshold in pure tension (exponential
isotropic hardening with b = 80)
.
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For the above purpose, the classical framework needs to be corrected
(A. Chrysochoos 1987). A new set of thermodynamics variables, (Q, q), is
considered to represent isotropic hardening which introduces the correction
function z(r) = A

mr(1−m)/m (A and m are material parameters), leading to
new expressions such as

ws =
∫ t

0

(Qq̇ + Xijα̇ij) dt =
∫ t

0

(R(r)z(r)ṙ + Xijα̇ij) dt . (1.102)

Within the thermodynamics framework, the change of variables is written as

Q(q) = R(r) and dq = z(r)dr (1.103)

so that ws increases much less with p, as shown in Fig. 1.8:

ws ≈ AR∞p1/m +
3

4C
XijXij as long as D = 0 . (1.104)

Nothing else in the constitutive equations is modified.
One considers then that damage is initiated when the corrected stored

energy reaches the threshold value and wD is considered as a material pa-
rameter. This allows us to represent the loading dependency of the damage
threshold in terms of accumulated plastic strain pD (Fig. 1.9).

Fig. 1.9. Stored energy defining the damage thresholds in monotonic and in cyclic
loadings

For practical applications, approximate expressions for pD may be derived.
In the monotonic case, the kinematic hardening may be considered as an
additional isotropic hardening (see Sect. 2.1.2) and with p = εp and r = p as
long as there is no damage. The threshold is defined by reference to the true
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limit of irreversibility taken as the asymptotic fatigue limit σ∞
f ,

wD =
∫ εpD

0

(σu − σ∞
f )

A

m
ε

1−m
m

p dεp or wD = A (σu − σ∞
f ) ε

1/m
pD , (1.105)

with σu as the ultimate stress and εpD as the damage threshold in pure
tension.

• For monotonic loadings,

pD = εpD . (1.106)

• For cyclic or fatigue loadings between σmin ≤ 0 and σmax > 0, the
stored energy due to kinematic hardening is small and may be neglected.
An approximation of perfect plasticity at the maximum stress in tension
and at the minimum stress in compression allows us to write

wD =
1
2

∫ pD

0

(σmax − σ∞
f )

A

m
p

1−m
m dp +

1
2

∫ pD

0

(|σmin| − σ∞
f )

A

m
p

1−m
m dp

= A

(
σmax + |σmin|

2
− σ∞

f

)
p
1/m
D ,

(1.107)

with a stress range, ∆σ = σmax−σmin = σmax+|σmin| > 2σ∞
f , correspond-

ing to a plastic strain range, ∆εp. Equation (1.107) gives the threshold pD

as a loading-dependent function of the threshold in pure tension (εpD):

pD = εpD

⎛
⎜⎝ σu − σ∞

f

σmax + |σmin|
2

− σ∞
f

⎞
⎟⎠

m

= εpD

⎛
⎜⎝ σu − σ∞

f

∆σ

2
− σ∞

f

⎞
⎟⎠

m

. (1.108)

For 3D cyclic loadings such as (∆σ)eq = σeq max + σeq min > 2σ∞
f , it can

be written as

pD = εpD

⎛
⎜⎝ σu − σ∞

f

(∆σ)eq
2

− σ∞
f

⎞
⎟⎠

m

. (1.109)

But the most accurate expression for any loading is of course to calculate
the stored energy ws and to write

maxws = wD at damage initiation . (1.110)

One needs then to identify the correction parameters A, m, and the stored
energy at damage initiation (wD). Two experiments with damage mea-
surements give the threshold of monotonic tension (εpD) and in fatigue
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(pD) for a known plastic strain range (∆εp). The stored energy in mono-
tonic tension is

ws =
A

m

∫ εpD

0

R(p)p(1−m)/mdp +
X2(εpD)

2C
= wD (1.111)

and is

ws =
A

m

∫ pD

0

R(p)p(1−m)/mdp +
X2

max

2C
= wD (1.112)

in fatigue with (see Sect. 1.5.1):
– for exponential isotropic hardening: R(p) = R∞(1 − exp (−bp))
– for linear kinematic hardening: X(εpD) = CεpD in monotonic loading,

Xmax = Cεp max = C∆εp/2 in alternate fatigue loading σmin = −σmax

– for nonlinear kinematic hardening: X(εpD) = X∞(1− exp (−γεpD)) in
monotonic loading, Xmax = X∞ tanh γ∆εp

2 in alternate fatigue loading
σmin = −σmax

where R∞, b, C, γ and X∞ = C/γ are the hardening parameters.
The exponent m is determined by (1.108) such that

m =
ln

pD

εpD

ln

⎛
⎜⎝ σu − σ∞

f

∆σ

2
− σ∞

f

⎞
⎟⎠

(1.113)

and A is identified by a comparison between (1.111) and (1.112).
For nonlinear kinematic hardening,

A =
mX∞
2γR∞

[1 − exp (−γεpD)]2 − tanh2 γ∆εp
2∫ pD

εpD

(1 − exp (−bp)) p
1
m−1dp

(1.114)

or, with the hypothesis of saturated hardening at damage initiation in
monotonic tension,

A ≈ X∞
2γR∞

1 − tanh2 γ∆εp
2

p
1/m
D − ε

1/m
pD

. (1.115)

If possible, take A as the average value given by different tests where
the plastic strain range ∆εp and the damage threshold pD are measured.
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Finally, still for nonlinear kinematic hardening,

wD =
AR∞

m

∫ εpD

0

(1 − exp (−bp)) p(1−m)/mdp

+
X2∞ [1 − exp (−γεpD)]2

2C
.

(1.116)

• For cyclic or fatigue loadings that are periodic by blocks, each
level or block i is a cyclic loading between σ

(i)
eq min and σ

(i)
eq max. Damage will

be initiated during the nB-th block when the stored energy density reaches
its threshold, i.e. as soon as ws = wD, or in an equivalent manner when
the accumulated plastic strain reaches the loading-dependent threshold
pD deduced from:

〈
σ

(nB)
eq min + σ

(nB)
eq max

2
− σ∞

f

〉[
p
1/m
D − (pnB−1)1/m

]

+
nB−1∑
i=1

〈
σ

(i)
eq min + σ

(i)
eq max

2
− σ∞

f

〉[
(pi)1/m − (pi−1)1/m

]

= (σu − σ∞
f )ε

1
m

pD

(1.117)

where pi is the value of the accumulated plastic strain reached at the end
of the i-th block. This equation generalizes equation (1.109) to multilevel
fatigue loadings. An example of application is given in Sect. 4.4.1.

At the other end of the damage evolution, a mesocrack is initiated when
the density of defects reaches the value for which the process of localiza-
tion and instability develops (see Sect. 1.6), that is D = Dc in the plane
where D(�n) is maximum. The critical damage Dc is a material parameter.
A way to evaluate Dc is to apply the concept of effective stress at fracture: in
a pure tensile test when damage develops at saturated hardening, the stress
decreases from the ultimate stress σu to the rupture stress σR in such a way
that for isotropic damage:

σ̃R = σu or
σR

1 − Dc
= σu (1.118)

from which

Dc = 1 − σR

σu
(1.119)

leading to values of the critical damage between 0.2 and 0.5 for many mate-
rials.

For anisotropic damage, σ̃eq = 2
3

σ1
1−D1

+ 1
3

σ1
1−D2

with D2 ≈ D1/2 in ten-
sion. Writing again σ̃eqR = σu and D1 = Dc gives values of the critical
damage of the same order of magnitude.
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1.4.2 Formulation of the Isotropic Unified Damage Law

The thermodynamics approach ensures that the main variable governing the
damage evolution or the damage rate (Ḋ) is its associate variable (Y ), the
energy density release rate. Then the dissipative damage potential func-
tion (FD) is primarily a function of Y . Many observations and experiments
show that the damage is also governed by the plastic strain which is intro-
duced through the plastic multiplier (λ̇) as

Ḋ = λ̇
∂FD

∂Y
if p > pD or max ws > wD , (1.120)

with λ̇ calculated from the constitutive equations of (visco-)plasticity coupled
with the damage deduced from the dissipative potential function (F ),

F = f + FX + FD . (1.121)

The (visco-)plasticity loading function f is determined by the von Mises
criterion (see also Sect. 1.5),

f =
(

σ

1 − D
− X

)
eq

− R − σy = σv , (1.122)

where

•
(

σ

1 − D
− X

)
eq

=
√

3
2

(
σD

ij

1−D − Xij

)(
σD

ij

1−D − Xij

)
• σv is the viscous stress for viscoplasticity, σv = 0 for plasticity

The normality rule,

ε̇pij = λ̇
∂F

∂σij
= λ̇

∂f

∂σij
=

3
2

σD
ij

1 − D
− Xij(

σ

1 − D
− X

)
eq

λ̇

1 − D
, (1.123)

coupled with the definition of the accumulated plastic strain rate, ṗ =√
2
3 ε̇pij ε̇

p
ij , and of the evolution law for the variable r,

ṙ = −λ̇
∂F

∂R
= −λ̇

∂f

∂R
= λ̇ , (1.124)

leads to

ṗ =
λ̇

1 − D
. (1.125)



1.4 Kinetic Laws of Damage Evolution 33

Many experimental results show also that FD must be a nonlinear function
of Y . Then a simple (good !) choice is

FD =
S

(s + 1)(1 − D)

(
Y

S

)s+1

, (1.126)

from which

Ḋ =
(

Y

S

)s
ṗ . (1.127)

S and s are two material parameters that are functions of the temperature.

The full damage constitutive equation is (J. Lemaitre 1987)

Ḋ =
(

Y

S

)s
ṗ if max ws > wD or p > pD ,

Ḋ = 0 if not ,

D = Dc → mesocrack initiation ,

(1.128)

where

•

⎧⎪⎪⎨
⎪⎪⎩

Y =
σ̃2

eqRν

2E

Rν = 2
3 (1 + ν) + 3(1 − 2ν)

(
σH

σeq

)2 in the simplest case

• Y =
1 + ν

2E

[
〈σ〉+ij〈σ〉+ij
(1 − D)2

+ h
〈σ〉−ij〈σ〉−ij
(1 − hD)2

]
− ν

2E

[ 〈σkk〉2
(1 − D)2

+ h
〈−σkk〉2

(1 − hD)2

]
if quasi-unilateral conditions are considered

• ws =
∫ t

0
(R(r)z(r)ṙ + Xijα̇ij) dt and wD is a material parameter (related

to εpD)

• pD = εpD for monotonic loading,

pD = εpD

⎛
⎜⎝ σu − σ∞

f
σeq max + σeq min

2
− σ∞

f

⎞
⎟⎠

m

for cyclic loading

• Dc is a material parameter

This law unifies many particular models:

• Ductile damage if ṗ is governed by plasticity (see Chap. 3)
• Creep damage if ṗ is given by a viscosity law such as Norton power law

(see Chap. 5)
• Fatigue damage if ṗ is calculated from cyclic plasticity (see Chaps. 4 and 6)
• Quasi-brittle damage if ṗ is at a microscopic level (see Chaps. 6 and 7)
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1.4.3 Formulation of the Anisotropic Damage Law
(J. Lemaitre, R. Desmorat and M. Sauzay 2000)

It is a “simple” extension of the isotropic case if the following damage dissi-
pation potential is considered:

FD =
(

Y (εe)
S

)s

Yij

∣∣∣∣dεp

dr

∣∣∣∣
ij

, (1.129)

where |.| applied to a tensor means the absolute value in terms of the principal
components. The term Y is the effective elastic energy density which can be
written as a function of the effective stress,

Y =
1
2
Eijklε

e
klε

e
ij =

1
2
σ̃ijε

e
ij =

σ̃2
eqR̃ν

2E
, (1.130)

introducing the effective stress triaxiality function,

R̃ν =
2
3
(1 + ν) + 3(1 − 2ν)

(
σ̃H

σ̃eq

)2

, (1.131)

where
σ̃eq = (H σDH)eq and σ̃H =

σH

1 − ηDH
. (1.132)

Then
Ḋij = λ̇

∂F

∂Yij
with λ̇ = ṙ (1.133)

Ḋij = ṙ

(
Y

S

)s ∣∣∣∣dεp

dr

∣∣∣∣
ij

. (1.134)

Or finally,

Ḋij =
(

Y

S

)s

|ε̇p|ij if maxws > wD or p > pD

Ḋij = 0 if not ,

(1.135)

an equation written in the principal frame of the plastic strain rate tensor ε̇p

which shows that the principal directions of the damage rate tensor
coincide with those of the plastic strain rate. As an example, the pure
tensile test reads

σ = σ

⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ , εp = εp

⎡
⎣ 1 0 0

0 − 1
2 0

0 0 − 1
2

⎤
⎦ , and D = D

⎡
⎣ 1 0 0

0 1
2 0

0 0 1
2

⎤
⎦ .

(1.136)
And as in the isotropic case,

Ḋij = 0 if ws < wD or p < pD . (1.137)

The condition of a mesocrack initiation is fulfilled when the intensity of the
damage in one plane reaches the critical value Dc. According to the physical
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definition of the damage, this occurs when the norm of the damage vec-
tor Dijnj or when the largest principal value of the damage DI reaches Dc:

maxDI = Dc → mesocrack initiation. (1.138)

�nI(max DI) gives the orientation of the plane on which lies the mesocrack.

1.4.4 Fast Identification of Damage Material Parameters

As already stated in Sect. 1.3, the best set of data on damage evolution comes
from very low cycle tests, at constant strain range on tension-compression
specimens, from which the damage is deduced using the elasticity modu-
lus change. Unfortunately, these tests are not commonly available. We will
describe here a method to obtain the values of the material parameters
for a specific material from usual properties listed in catalogues or hand-
books, or derivations using only a few usual tests as tensile and fatigue
data:

• The damage law itself needs E, ν, S, s

• The damage threshold needs εpD, σ∞
f , σu and m

• The condition of mesocrack initiation needs Dc

• The quasi-unilateral conditions need h for isotropic damage or ha for
anisotropic damage but most often h = 0.2 or ha = 0

• anisotropic damage needs η but a good candidate is η = 3

1.4.4.1 Partial Identification from a Simple Tensile Test

A simple uniaxial tension test, as shown in Fig. 1.10, gives:

• The Young modulus E and the Poisson ratio ν

• The yield stress σy, the conventional yield stress σy02 = σ(εp=0.2 10−2) and
the ultimate stress σu

• The rupture stress σR and the rupture plastic strain εpR

• The necking parameter Z =
S0 − SR

S0
with S0 the initial section of the

specimen and SR its rupture minimal section

Considering the uniaxial, isotropic, unified damage law in monotonic loading
with the hardening saturated at σu gives

Ḋ =
(

σ2
u

2ES

)s
ε̇p (1.139)

or, by integration with D = 0 if εp ≤ εpD,

D =
(

σ2
u

2ES

)s
(εp − εpD) . (1.140)
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The damage usually starts to grow when the plastic strain reaches the value
corresponding to the ultimate stress σu,

εpD ≈ εp(σ = σu) . (1.141)

As introduced in Sect. 1.4.1, the critical value of the damage is given by

Dc = 1 − σR

σu
(1.142)

and 0.2 ≤ Dc ≤ 0.5 in general.
Upon fracture, the local rupture strain in the necking region (ε�

pR) is again
estimated from the necking parameter Z = (S0 − SR)/S0 considering plastic
incompressibility (εpkk = 0):

ε�
pR = 2

(
1 −√

1 − Z
)

. (1.143)

Then,

Dc =
(

σ2
u

2ES

)s (
ε�
pR − εpD

)
. (1.144)

This relation allows us to determine the 3 remaining parameters: S, s, and
m. To go further, another type of test is needed.

Fig. 1.10. Material parameters from a tension test on ferritic steel at room tem-
perature

1.4.4.2 Final Identification from Fatigue Tests

Usually it is not too difficult to obtain some information about fatigue! That
is at least the case for the engineering fatigue limit (σf) corresponding to
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a number of cycles to rupture of 106 (or 107), or better, the asymptotic
fatigue limit (σ∞

f ) and some low fatigue tests results (Fig. 1.11).
The unified damage law can be easily applied to low cycle fatigue if we

make the assumption that the material is perfectly plastic for each level of
stress, i.e.,

Ḋ =
(

σ2
max

2ES(1 − D)2

)s
ṗ . (1.145)

As ṗ = |ε̇p|, the integration of (1.145) over one cycle N , neglecting the vari-
ation of D during the cycle, is simply

δD

δN
=
∫

1 cycle

Ḋdt =
(

σ2
max

2ES(1 − D)2

)s
2∆εp , (1.146)

where ∆εp is the plastic strain range corresponding to σmax or the stress
range ∆σ = 2σmax through the cyclic stress-strain behavior.

Using ND as the number of cycles corresponding to the damage threshold
and NR as the number of cycles corresponding to a mesocrack initiation when
D = Dc, a second integration of (1.145) over the whole fatigue process gives

∫ Dc

0

(1 − D)2sδD =
(

σ2
max

2ES

)s
2∆εp

∫ NR

ND

δN (1.147)

or

1
2s + 1

[
1 − (1 − Dc)2s+1

]
=
(

σ2
max

2ES

)s
2∆εp (NR − ND) , (1.148)

with ND given by

pD = 2∆εpND = εpD

(
σu − σ∞

f

σmax − σ∞
f

)m
. (1.149)

The number of cycles needed to initiate a mesocrack is finally expressed as

NR =
εpD

2∆εp

(
σu − σ∞

f

σmax − σ∞
f

)m
+

1 − (1 − Dc)2s+1

2(2s + 1)∆εp

(
2ES

σ2
max

)s
, (1.150)

with (2ES)s taken from (1.144) of the tensile test results

(2ES)s = σ2s
u

(
ε�
pR − εpD

Dc

)
(1.151)

so that

NR =
εpD

2∆εp

(
σu − σ∞

f

σmax − σ∞
f

)m
+

1 − (1 − Dc)2s+1

2(2s + 1)Dc∆εp

(
σu

σmax

)2s (
ε�
pR − εpD

)
.

(1.152)
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This equation written for two “good” results of low cycle fatigue tests,
NR1(σmax 1, ∆εp1) and NR2(σmax 2, ∆εp2) leads to two equations for the un-
knowns s and m which can be solved by substitution by any mathematical
software, for example.

If the threshold is written in terms of stored energy, we also need the
value of A to calculate wD according to (1.114) or (1.115) of Sect. 1.4.1:

A ≈ X∞
2γR∞

1 − tanh2 γ∆εp
2

p
1/m
D − ε

1/m
pD

and

wD =
AR∞

m

∫ εpD

0

(1 − exp (−bp)) p(1−m)/mdp +
X2∞ (1 − exp (−γεpD))2

2C
,

(1.153)

where R∞, C, γ, X∞ = C/γ are the hardening parameters (see Sect. 1.5.1).
The word “fast” in the title of this section means a procedure of a few

hours once one has the tensile curve and the Wöhler curve, but obtaining
these experimental results can take a few days or even months!

For anisotropic damage, the same procedure gives material parameters
close to those obtained for the isotropic law when using damage data with
D < 0.2.

Fig. 1.11. Material parameters from a Wöhler curve of ferritic steel at room tem-
perature
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1.4.4.3 Example of Identification for Ferritic Steel

The experimental tensile and Wöhler curves are shown in Figs. 1.10 and 1.11
but the identification is made only with the coordinates of the 6 points
marked by “•” on the figures, that is: σu(εpu), σR(εpR), σR(ε�

pR) and σ∞
f ,

NR1(σmax 1, ∆εp1) and NR2(σmax 2, ∆εp2).

1. From the tensile curve you can obtain the following:
– Elasticity modulus E = 200000 MPa.
– Poisson ratio measured ν = 0.3.
– Yield stress σy = 375 MPa.
– Conventional yield stress σy02 = 380 MPa.
– Ultimate stress: σu = 474 MPa.
– εp(σu) = 0.15, then εpD = 0.15.
– σR = 330 MPa then Dc = 0.3.
– Z = 0.5 then ε�

pR = 0.6.

2. The Wöhler curve yields
– Asymptotic fatigue limit σ∞

f = 180 MPa. If the asymptotic fa-
tigue limit cannot be estimated take the engineering fatigue limit σf

instead.
– Low cycle fatigue tests corresponding to NR ≈ 10 and NR ≈ 1000

cycles:
1. σM1 = 450 MPa, ∆εp1 = 0.027, mean value NR1 = 10 cy-

cles,
2. σM2 = 340 MPa, ∆εp2 = 0.0035, mean value NR2 = 984 cy-

cles,
from which s = 2.4, m = 6. The value of S can then be calculated
using (1.144):

S =
σ2

u

2E

(
ε�
pR − εpD

Dc

)1/s

= 0.665 MPa . (1.154)

3. Finally, take h = 0.2, ha = 0, and η = 3. If the two scale damage model

is applied (see Sect. 1.5.5), Cy =
σu − σy

εpu
= 660 MPa and be happy.

4. Last, but most important, is to check how close the above values return
the starting curves. The graphs given by the model are shown by the
dotted lines in Figs. 1.10 and 1.11:

– for the tensile curve with D ≈
(

σ2
u

2ES

)s
〈εp − εpD〉,

– for the Wöhler curve in the range of low cycle fatigue.
Considering the small number of input information, the comparison with
the experimental data is “not bad.” The range of high cycle fatigue is the
domain of application of the two-scale damage model of Sect. 1.5.5.
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1.4.4.4 Case of Anisotropic Damage

If now the same work is performed with the anisotropic formulae, the only
change is in the damage law where R̃ν is now different from unity, even in
the uniaxial case:

σ =

⎡
⎣σ 0 0

0 0 0
0 0 0

⎤
⎦ , D = D

⎡
⎣ 1 0 0

0 1
2 0

0 0 1
2

⎤
⎦ , (1.155)

and

R̃ν =
2
3
(1 + ν) + 3(1 − 2ν)

(
σ̃H

σ̃eq

)2

, (1.156)

with

σ̃H =
σH

1 − ηDH
=

σ

1 − 2η
3 D

σ̃eq =
[
3
2
(HσDH)D : (HσDH)D

]1/2

=
2
3

σ

1 − D
+

1
3

σ

1 − D

2

.
(1.157)

Then,

R̃ν =
2
3
(1 + ν) + 3(1 − 2ν)

[
(1 − 2η

3
D)

(
2

1 − D
+

1
1 − D

2

)]−2

(1.158)

in tension.
With ν = 0.3 and η = 3, the maximum value of R̃ν for D ≤ 0.2 is 1.12,

which is 12% more than the isotropic damage value Rν = 1. As the uniaxial
law turns into

Ḋ =

(
σ2

maxR̃ν

2ES

)s
ṗ , (1.159)

this changes the value of S and Dc by an amount which remains in the order
of magnitude of the experimental discrepancy or the hypothesis of perfect
plasticity. In practice, keep s as identified for the isotropic damage model
and update S and Dc on the monotonic tensile curve.

For more accurate predictions, the “fast identification” results may be
used as the starting values of an optimization process to fit all available
data that can be obtained on a specific material. This numerical optimiza-
tion process, the least square method, consists of finding the set of param-
eters to minimize the difference between experiments and predictions. Nu-
merical methods for precise identification are described in Sect. 2.4 with an
exampley.

The end of Sect. 1.5.5 offers a more precise identification of the asymptotic
fatigue limit.
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1.4.5 Generalization of the Unified Damage Law

For materials which do not exhibit meso-plasticity, it is not possible to con-
sider the damage as governed by the accumulated plastic strain rate. The
damage law Ḋ = (Y/S)sṗ is then useless. A damage law D = D(Y ) cannot
be considered either as it does not lead to damage growth in fatigue. For
such materials the idea is to relate the damage rate to the main dissipative
mechanism, often internal sliding and friction, and to consider damage
as governed by a cumulative measure of the internal sliding. This may ap-
ply to metals for which internal slips are mainly due to dislocations creation
and evolution, as well as many non-metallic materials such as elastomers
(Sect. 4.4.3), concretes, and composites.

We then use a framework that is similar to elasto-(visco-)plasticity cou-
pled with damage and define επ, α, q, and D as internal variables associated
with −σπ, X, Q, and −Y (see Table 1.2). The physical meaning of the ther-
modynamic variables depends on the type of material and of the physical dis-
sipative mechanisms. It will be discussed for the case of metals, elastomers,
and concrete later (Sect. 1.4.5.3). Nevertheless,

• επ is an internal inelastic strain which can be recovered
• X is a residual microstress of kinematic nature
• Q defines the size increase of the reversibility domain in the σπ stress

space
• D is the damage variable (D if induced anisotropy is considered)

Table 1.2. State and associated variables

Mechanisms Type State variables Associated
Observable Internal variables

Elasticity Tensor ε σ

Internal Tensor επ −σπ

sliding Tensor α X
Scalar q Q

Damage Scalar D −Y

Next we consider the small strain hypothesis with isotropy of the dis-
sipative mechanisms, including damage. For the finite strain framework see
Sect. 4.4.3.

The general form of the state potential can be expressed as

ρψ = (1 − D) [w1(ε) + w2(ε − επ)] + ws(q, α) , (1.160)

where w1 and w2 define the strain energy density and ws is the stored energy
density as a function of the scalar variable q and the tensorial variable α.
The state laws are
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σij = ρ
∂ψ

∂εij
= (1 − D)

∂(w1 + w2)
∂εij

,

σπ
ij = −ρ

∂ψ

∂επ
ij

= (1 − D)
∂w2

∂εij
,

Xij = ρ
∂ψ

∂αij
=

∂ws

∂αij
,

Q = ρ
∂ψ

∂q
=

∂ws

∂q
,

Y = −ρ
∂ψ

∂D
= w1 + w2 .

(1.161)

They naturally define the effective stresses (σ̃, σ̃π) such that the elasticity
law written in terms of strains and effective stresses does not depend on D
(strain equivalence principle):

σ̃ =
∂(w1 + w2)

∂ε
,

σ̃π =
∂w2

∂ε
.

(1.162)

The dissipation potential is defined as

F = f + FX + FD , (1.163)

where

• f = ‖ σπ

1 − D
− X‖ − Q − σs < 0 defines the reversibility domain, ‖.‖ is

a norm in the stresses space (not necessarily von Mises norm), and σs is
the reversibility limit

• the functions FX =
γ

2CX
XijXij and Q = Q(q) model the internal sliding

nonlinearity

• FD =
S

(s + 1)(1 − D)

(
Y

S

)s+1

is the damage potential

The evolutions laws can then be derived from the dissipation potential (nor-
mality rule)

ε̇π
ij = µ̇

∂F

∂σπ
ij

,

α̇ij = −µ̇
∂F

∂Xij
,

q̇ = −µ̇
∂F

∂Q
,

Ḋ = µ̇
∂F

∂Y
,

(1.164)
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where µ̇ is the internal sliding multiplier equal to a norm of the inelastic
strain rate:

µ̇

1 − D
=

ṙ

1 − D
= ‖ε̇π‖ . (1.165)

This defines the cumulative measure of the internal sliding as

π =
∫ t

0

‖ε̇π‖dt . (1.166)

The multiplier µ̇ is given by the consistency condition, f = 0 and ḟ = 0, for
non-viscous materials or by a viscosity law such as the generalized Norton
law, π̇ = 〈f/KN〉N = 〈σv/KN〉N , for viscous materials undergoing a viscous
stress σv.

The generalized damage evolution law is derived from (1.164), leading to

Ḋ =
(

Y

S

)s
π̇ if π > πD

D = Dc −→ mesocrack initiation,
(1.167)

which corresponds to the damage governed by the main dissipative mecha-
nisms through π̇ and where S and s are the damage material parameters and
πD is the damage threshold.

1.4.5.1 Positivity of the Intrinsic Dissipation

As in the previous thermodynamics framework, the generalized damage
model satisfies the positivity of the intrinsic dissipation, D = σij ε̇ij − ρψ̇,
as

D = σπ
ij ε̇

π
ij − Qq̇ − Xij α̇ij + Y Ḋ

=

(
σπ

ij

∂F

∂σπ
ij

+ Q
∂F

∂Q
+ Xij

∂F

∂Xij
+ Y

∂F

∂Y

)
λ̇ ≥ 0

(1.168)

at constant temperature when the dissipation potential F (σπ, Q, X, Y ; D)
is a non-negative convex function of its arguments σπ, R, X, and Y , where
F (0, 0,0, 0; D) = 0 and the damage D acts as a parameter. Using the evolu-
tion laws, the intrinsic dissipation may also be rewritten as

D =
(

σs + σv +
γ

CX
XijXij

)
(1 − D)‖ε̇π‖ + Y Ḋ ≥ 0 . (1.169)

This condition requires the damage rate to be positive or zero (Ḋ ≥ 0,
an eventual recovery of damage needs a new variable) and the stored energy
rate ẇs = Xijα̇ij + Qq̇ to remain smaller or equal to the inelastic strain
power (σπ

ij ε̇
π
ij).
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1.4.5.2 Extension to Induced Anisotropy

Note that the generalization of previous damage evolution extension to in-
duced damage anisotropy is also possible. It is

Ḋij =
(

Y

S

)s
|ε̇π|ij , (1.170)

with |.| as the absolute value of a tensorfor ductile materials such as metals
(with then επ = εp), or

Ḋij =
(

Y

S

)s
〈ε̇π〉+ij , (1.171)

with 〈.〉+ as the positive part of a tensor for quasi-brittle materials such as
concrete for (J. Mazars, Y. Berthaud and S. Ramtani 1990):

D =

⎡
⎣D 0 0

0 0 0
0 0 0

⎤
⎦ in tension

D =

⎡
⎣0 0 0

0 D 0
0 0 D

⎤
⎦ in compression

(1.172)

when the loading direction is �e1.

1.4.5.3 Application to Metals, Concrete and Elastomers

To conclude, this section (Sect. 1.4.5) can be considered a synthetic presen-
tation of constitutive models for metals, elastomers, concrete:

• For metals, w1 = 0, Q(q) = R(r) is the isotropic hardening, X is the
kinematic hardening, ‖.‖ is the von Mises norm (.)eq, επ is the plastic
strain εp, and the generalized damage law (1.167) recovers Ḋ = (Y/S)sṗ
where π equals the accumulated plastic strain p.

• For filled elastomers, and anticipating the choices made in Sect. 4.4.3 for
the model of hyperelasticity with internal friction coupled with damage,
w1 is an hyperelasticity density such as Mooney or Hart–Smith densities,
R = 0, and w2 and FX are quadratic functions. The variable X stands
for the residual microstresses due to internal sliding with friction of the
macromolecular chains on themselves and the black carbon filler parti-
cles. The internal inelastic strain επ represents the average displacements
incompatibilities due to friction on a microscale.

• For concrete, w1, w2, and FX are quadratic, Q and X model the growth
and the translation of the reversibility domain f < 0 in the σπ space,
and επ represents the average slip discontinuities of the cracked media on
a microscale.
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1.5 Elasto-(Visco-)Plasticity Coupled with Damage

The whole set of constitutive equations is derived from the dissipation po-
tential as explained in the general thermodynamics framework of Sect. 1.2.1.
The different models differ by the choice of analytic forms of the functions f ,
FX, and FD for the potential

F = f + FX + FD . (1.173)

1.5.1 Basic Equations without Damage Coupling

Both plasticity and visco-plasticity introduce a yield criterion (f) by defin-
ing the elastic domain of the material by f < 0, and the plastic and visco-
plastic states by

f = 0 , ḟ = 0 plasticity
f = σv > 0 , visco-plasticity

(1.174)

respectively. The term σv is the viscous stress given by the law of viscosity.
More often, the von Mises criterion is used with isotropic hardening,

f = σeq − R − σy , (1.175)

where σeq is the von Mises equivalent stress.
When isotropic and kinematic hardening are taken into consideration,

f = (σ − X)eq − R − σy , (1.176)

with (σ − X)eq =
√

3
2 (σD

ij − XD
ij )(σ

D
ij − XD

ij).
The isotropic hardening R is related to the density of dislocations or

flow arrests and it represents the growth in size of the yield surface. Expo-
nential isotropic hardening is considered to ensure a quasi-saturation of the
strain hardening when damage occurs, i.e.,

R = R(r) = R∞ [1 − exp (−br)] , (1.177)

with R∞ and b as temperature-dependent material parameters. The variable
r is equal to the accumulated plastic strain p as long as there is no damage.
A power law R = Kpr

1/M or a linear law (M = 1) may also be used.
The kinematic hardening governed by the back stress X is related to

the state of internal microstress concentration. It represents the translation
of the yield surface as X defines the center of the current elastic domain in
the stress space. Nonlinear kinematic hardening is modelled by the function
potential FX,

FX =
3γ

4C
XijXij , (1.178)
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with C and γ temperature-dependent material parameters. As long as there
is no damage, the classical evolution laws for the back stress are

Xij =
2
3
Cεpij for linear kinematic hardening

d
dt

(
Xij

C

)
=

2
3
ε̇pij −

γ

C
Xij ṗ for nonlinear kinematic hardening.

(1.179)

The last equation is the non-isothermal form of the Armstrong–Frederick law
which is often used with X∞ = C/γ for easier identification, as in monotonic
uniaxial loading X = X∞ [1 − exp(−γεp)]. The back stress X governed by
the plastic strain is a deviatoric tensor (Xkk = 0 and X = XD). For Prager
linear hardening, Xij = 2

3Cεpij can be recovered by setting γ = 0.
A strong effect of the temperature (T ) is observed as there is a transition

from visco-plastic time-dependent (viscous) behavior at high temperature,
such as creep, to plastic time-independent behavior at lower temperature.

The constitutive equations can be derived from (1.25) as follows:

ε̇pij = λ̇
∂F

∂σij
,

ṙ = −λ̇
∂F

∂R
,

α̇ij = −λ̇
∂F

∂Xij
,

Ḋ = λ̇
∂F

∂Y
, or Ḋij = λ̇

∂F

∂Yij
,

(1.180)

provided that

• For plasticity, the multiplier is determined by the consistency condition
f = 0, ḟ = 0,

λ̇ =

∂f

∂σij
σ̇ij +

2
3

dC

dT
αij

∂f

∂Xij
Ṫ

dR

dT

∂f

∂R

∂F

∂R
+

2
3
C

∂f

∂Xij

∂F

∂Xij
− ∂f

∂Dij

∂F

∂Dij

. (1.181)

• For viscoplasticity, the multiplier is a function of the accumulated plastic
strain rate (ṗ =

√
2
3 ε̇pij ε̇

p
ij) given by a viscosity law. Different choices are

possible:
− Norton power law

σv = KN ṗ
1
N or ṗ =

(
f

KN

)N

, (1.182)
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− Exponential law to ensure saturation at large plastic strain rate,

σv = K∞

[
1 − exp

(
− ṗ

n

)]
or ṗ = ln

(
1 − f

K∞

)−n

, (1.183)

where KN , K∞, N , and n are material parameters that depend on the
temperature.

There are many possibilities in modelling plasticity and viscosity, depend-
ing on whether or not the yield stress, kinematic hardening, and isotropic
hardening are equal to zero. The model must be chosen carefully because the
material parameters for a given material have values that are specific to each
model.

To be as clear as possible, the notations adopted in the book for the
(visco-)plasticity parameters have an extra “0” in superscript or lowerscript
when a zero yield stress is considered. They have an extra “y” in superscript
or lowerscript when (visco-)plasticity is modelled with a non-zero yield stress
but with one hardening only, either isotropic or kinematic. This is illustrated
in the uniaxial case as:

• Yield function in monotonic tension f = σ − X − R − σy

– If σy = 0 and X = 0, R = K0
pε

1/M0
p

– If σy �= 0 and X = 0, R = Ky
pε

1/My
p or R = Ry

∞ (1 − exp (−byεp))
– If σy �= 0 and R = 0, X = Cyεp or X = Xy∞ (1 − exp (−γyεp))
– If σy �= 0, X �= 0 and R �= 0,{

R = Kpε
1/M
p or R = R∞ (1 − exp (−bεp)) ,

X = Cεp or X = X∞ (1 − exp (−γεp)) ,

• Viscosity law

– If σy = 0, X = 0 and R = 0, ε̇p =
(

σ

K0
N

)N0

– If σy �= 0, X = 0 and R = 0, ε̇p =
(

σ − σy

Ky
N

)Ny

– If σy �= 0, X �= 0 and R �= 0, ε̇p =
(

σ − X − R − σy

KN

)N

or ε̇p = ln
(

1 − σ − X − R − σy

K∞

)−n

.

1.5.1.1 Fast Identification of (Visco-)Plasticity Material
Parameters

An accurate value of the (visco-)plasticity material parameters is necessary
for practical applications and may be obtained independently from the dam-
age parameters if p < pD. Altogether, there are 5 (+2) characteristic parame-
ters of (visco-)plasticity to determine for each material and each temperature:
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• Yield stress: σy.
• Isotropic hardening: R∞ and b (or Kp and M).
• Kinematic hardening: C (linear) or X∞ and γ (nonlinear).
• Viscosity: KN and N or K∞ and n.

1.5.1.1.1 Hardening parameters

For hardening, a direct and fast identification is possible from a tension test or
tension-compression low cycles tests that are strain controlled, at increasing
amplitude below the damage threshold, as R and X may be directly measured
on the graph σ(εp).

• From a monotonic tensile curve it is only possible to identify one harden-
ing which is either
– An isotropic hardening by

· A power law R = σ − σy = Ky
pε

1/My
p

· An exponential law R = σ − σy = Ry
∞ [1 − exp(−byεp)]

– Or a kinematic hardening by
· A linear law X = σ − σy = Cyεp
· An exponential law X = σ−σy = Xy

∞ [1 − exp(−γyεp)] with Xy
∞ =

Ry∞, γy = by.
From the example of Fig. 1.12 for an Inconel alloy at room temperature
with a yield stress depending upon the chosen hardening law:

Fig. 1.12. Tension curve for identification of either isotropic or kinematic hardening
parameters (Inconel alloy at room temperature, J. Dufailly 1987)
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σy = 920 MPa, Ky
p = 810 MPa, My = 4.5 for the power R law

σy = 1120 MPa, Cy = (σA − σy)/εpA = 3800 MPa for the linear X law

σy = 1040 MPa, Ry
∞ = Xy

∞ = 315 MPa, by = γy = 55 for the exp. laws

• From a tensile curve with repeated unloadings and compressions until the
yield stresses in compression are reached, we can identify both isotropic
and kinematic hardenings acting together as the back stress X is the
ordinate of the middle of the elasticity straight line. The test should be
performed at very low strain rate if the material exhibits viscosity.
From the example of Fig. 1.13 on the same material used for Fig. 1.12,
a curve fitting procedure gives the following for isotropic and kinematic
hardenings considered altogether:
a) Kp = 280 MPa, M = 5.5 for the isotropic hardening power law,

or R∞ = 165 MPa, b = 80 for the isotropic hardening exponential law
b) C = 7140 MPa and γ = 0 for linear kinematic hardening,

or X∞ = 450 MPa, γ = 60 (and C = γX∞ = 27000 MPa) for nonlin-
ear kinematic hardening

Fig. 1.13. Tension test with repeated unloadings up to a plastic strain offset of
10−5 for the identification of both isotropic and kinematic hardenings parameters
(Inconel alloy at room temperature, J. Dufailly 1987)

• From the stabilized cycles of tension-compression experiments performed
at different plastic strain ranges ∆εp, it is possible to identify the nonlinear
kinematic hardening parameters C, γ, X∞ = C/γ.
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The integration of the nonlinear law (1.179) over each half cycle leads to

∆σ

2
− k = X∞ tanh

(
γ

∆εp
2

)
, (1.184)

where ∆σ is the stress range of the considered cycle and 2k is the size
of the elastic domain measured on each cycle unloading for each strain
range (k = σy +R if there is no viscosity, k = σy +R +σv if there is). We
can identify X∞ as the asymptote of the curve ∆σ

2 − k vs ∆εp and then
determine γ using a curve fitting procedure.

1.5.1.1.2 Viscosity parameters

The more accurate way to determine viscosity parameters is to perform re-
laxation tests after saturating both isotropic and kinematic hardenings. The
saturation values R∞ and X∞ can be found from a very slow tensile test:

σ = σy + R∞ + X∞ + σv , (1.185)

where σv is the viscous stress.
At constant strain, ε = εe + εp, the strain rate ε̇ = 0, and

ε̇p = − σ̇

E
(1.186)

coupled with the viscosity law leads to a nonlinear differential equation whose
solution is the σ(t) curve. The graph of σv = σ−σy−R∞−X∞ as a function
of ε̇p = −σ̇/E allows then for the identification of either

Fig. 1.14. Relaxation test for identification of viscosity parameters of an Inconel
alloy at T = 627◦C (J. Dufailly 1987)
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• The Norton law ε̇p =
(

σv

KN

)N

• The exponential law σv = K∞

[
1 − exp

(
− ε̇p

n

)]

From the example of Fig. 1.14 with E = 160000 MPa, a curve fitting
procedure gives KN = 75000 MPa·s1/N , N = 2.4; K∞ = 107 MPa, and
n = 1.4 10−2s−1.

For better accuracy, the results of this fast identification may be taken as
the starting solution of a numerical procedure of optimization if other tests
are available (see Sect. 2.4).

1.5.1.2 Concerning the Choice of a Damage Model

Different possibilities arise corresponding to the physical effects really needed
for the application in mind, the quantitative information available in the
experimental data base and different levels of mathematical and numerical
complexity. The following advice may be considered as guidelines:

• For proportional loading and more generally when simplicity is the
most important issue, the isotropic damage models are preferred. When
analytical solutions are needed, this choice is necessary and compatible
with the consideration of the microdefects closure effect.

• For numerical computations, the use of the anisotropic damage models
is encouraged as they do not introduce additional material parameters,
except maybe the coefficient η which is equal to 3 in most cases. The
difficulty related to the consideration of induced anisotropy is mostly nu-
merical but Sect. 2.2 is devoted to the subject.

• For non-proportional loading (difficult to handle in closed form),
choose the anisotropic damage models as they reproduce in a more re-
alistic way the accumulation of the damages due to loadings applied in
different directions.

• For fatigue applications, we advise using the models that include the
microdefects closure effect as they lead to an evolution of the damage
different in tension than in compression and then to a mean stress effect.

Last, choose a proper damage threshold criterion (see Sect. 1.4.1):

• For monotonic applications use the criterion p = εpD,
• For fatigue applications use the criterion p = pD. It is possible to

consider pD = constant as long as no overloading occurs and then usually
pD � εpD. The preferred way to calculate pD for each loading amplitude
is using

pD = εpD

⎛
⎜⎝ σu − σ∞

f

σmax + |σmin|
2

− σ∞
f

⎞
⎟⎠

m

. (1.187)
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• For numerical analysis with a complex history of loading, use the stored
energy criterion maxws = wD. It is then necessary to consider both non-
linear isotropic and kinematic hardenings with the thermodynamics cor-
rection of Sect. 1.4.1. The material parameters for the damage initiation
are either wD, A, m or εpD, A, m, with A and wD given by (1.114)
and (1.116). If the fatigue limit σ∞

f and the plasticity parameters are
known, use the approximate formula (1.153) to calculate A.

1.5.2 Coupling with Isotropic Damage ,

The damage is represented by the scalar D. Its law of evolution is (see
Sect. 1.4)

Ḋ =
(

Y

S

)s
ṗ , if r > pD or max ws > wD , (1.188)

where the damage threshold is written in terms of stored energy or in an
equivalent manner of accumulated plastic strain (see Sect. 1.4.1).

The full sets of constitutive equations for elasto-(visco-)plasticity coupled
with isotropic damage with nonlinear isotropic and kinematic hardening are
given in the following tables, where the case of linear kinematic hardening is
recovered by setting γ = 0.

1.5.2.1 Isotropic Damage without Microdefects Closure
Effect (Table 1.3)

The coupling of damage with elasticity as well as plasticity is made through
the use of the effective stress σ̃ instead of σ in the elasticity law,

εeij =
1 + ν

E
σ̃ij − ν

E
σ̃kkδij , σ̃ij =

σij

1 − D
, (1.189)

and in the von Mises criterion,

f = (σ̃ − X)eq − R − σy . (1.190)

The plasticity remains incompressible and εp, X, and α are deviatoric
tensors.
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Table 1.3. Elasto-(visco-)plasticity coupled with isotropic damage

Strain partition εij = εeij + εpij

Thermo-elasticity εeij =
1 + ν

E
σ̃ij − ν

E
σ̃kkδij + α(T − Tref)δij

ε̇pij =
3

2

(σ̃D
ij − Xij)

(σ̃ − X)eq

ṙ

1 − D

(Visco-)plasticity ṗ =
ṙ

1 − D

R = R∞ (1 − exp (−br))

d

dt

(
Xij

γX∞

)
=

2

3
(1 − D)ε̇pij −

Xij

X∞
ṙ

Ḋ =

(
Y

S

)s
ṗ

if r > pD or max ws > wD

up to Dc

Damage Y =
1

2
Eijklε

e
ijε

e
kl =

σ̃2
eqRν

2E

Rν =
2

3
(1 + ν) + 3(1 − 2ν)

(
σH

σeq

)2

Plastic multiplier ṙ = λ̇ given by f = 0 and ḟ = 0

Visco-plastic multiplier

ṗ =

(
f

KN

)N

Norton law

ṗ = ln

(
1 − f

K∞

)−n

exponential law
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1.5.2.2 Isotropic Damage with Microdefects Closure
Effect (Table 1.4)

The coupling of damage with elasticity is made through the use of the effective
stress,

σ̃ij =
〈σ〉+ij
1 − D

+
〈σ〉−ij

1 − hD

+
ν

1 − 2ν

(
δkl〈σ〉+kl − 〈σkk〉

1 − D
+

δkl〈σ〉−kl + 〈−σkk〉
1 − hD

)
δij ,

(1.191)

defined in Sect. 1.2.4 in the elasticity law, but not in the von Mises criterion
in which σ/(1−D) is used. The justification is in the mechanism of plasticity
itself controlled by slips and produced by shear stresses in the same manner
regardless of their signs. Furthermore, as mentioned in Sect. 1.3.4, damage
measurements mainly in compression by microhardness give the same values
as those obtained by elasticity change in tension:

f =
(

σ

1 − D
− X

)
eq

− R − σy . (1.192)

The plasticity remains incompressible and εp, X, and α are deviatoric
tensors.
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Table 1.4. Elasto-(visco-)plasticity coupled with isotropic damage and with
microdefects closure effect

Strain partition εij = εeij + εpij

Thermo-elasticity εeij =
1 + ν

E
σ̃ij − ν

E
σ̃kkδij + α(T − Tref)δij

ε̇pij =
3

2

σD
ij

1 − D
− Xij(

σ

1 − D
− X

)
eq

ṙ

1 − D

(Visco-)plasticity ṗ =
ṙ

1 − D

R = R∞ (1 − exp (−br))

d

dt

(
Xij

γX∞

)
=

2

3
(1 − D)ε̇pij −

Xij

X∞
ṙ

Damage Ḋ =

(
Y

S

)s
ṗ

if r > pD or max ws > wD

up to Dc

Y =
1 + ν

2E

[
〈σ〉+ij〈σ〉+ij
(1 − D)2

+ h
〈σ〉−ij〈σ〉−ij
(1 − hD)2

]

− ν

2E

[ 〈σkk〉2
(1 − D)2

+ h
〈−σkk〉2

(1 − hD)2

]

Plastic multiplier ṙ = λ̇ given by f = 0 and ḟ = 0

Visco-plastic multiplier
ṗ =

(
f

KN

)N

Norton law

ṗ = ln

(
1 − f

K∞

)−n

exponential law
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1.5.3 Coupling with Anisotropic Damage ,

The damage is represented by the second order tensor D. Its evolution is
governed by the law (see Sect. 1.4)

Ḋij =
(

Y

S

)s
|ε̇p|ij if r > pD or maxws > wD , (1.193)

where the principal directions of the damage rate coincide with the absolute
value (in terms of principal values) of the plastic strain rate. The damage
threshold is written in terms of stored energy or in an equivalent manner of
accumulated plastic strain (see Sect. 1.4.1).

The full sets of constitutive equations for elasto-(visco-)plasticity coupled
with anisotropic damage with nonlinear isotropic and kinematic hardening
are given in the following tables, where the case of linear kinematic hardening
is recovered by setting γ = 0.

1.5.3.1 Anisotropic Damage without Microdefects Closure
Effect (Table 1.5)

The coupling of damage with elasticity is made through the use of the effective
stress,

σ̃ij = (HikσD
klHlj)D +

σH

1 − ηDH
δij , (1.194)

in the elasticity law as well as in the von Mises criterion,

f = (σ̃ − X)eq − R − σy . (1.195)

The plasticity remains incompressible and εp, X, and α are deviatoric ten-
sors.

Writing the following set of equations in terms of effective stress makes it
fully similar to the set obtained in the case of isotropic damage.
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Table 1.5. Elasto-(visco-)plasticity coupled with anisotropic damage

Strain partition εij = εeij + εpij

Thermo-elasticity εeij =
1 + ν

E
σ̃ij − ν

E
σ̃kkδij + α(T − Tref)δij

ε̇pij = [Hikėp
klHlj ]

D

(Visco-)plasticity with ėp
ij =

3

2

σ̃D
ij − Xij

(σ̃ − X)eq
ṙ

ṗ =

[
H(σ̃D − X)H

]
eq

(σ̃ − X)eq
ṙ

R = R∞ (1 − exp (−br))

d

dt

(
Xij

γX∞

)
=

2

3
ėp

ij −
Xij

X∞
ṙ

Ḋij =

(
Y

S

)s
|ε̇p|ij

if r > pD or max ws > wD

up to Dc

Damage Y =
1

2
Eijklε

e
ijε

e
kl =

σ̃2
eqR̃ν

2E

R̃ν =
2

3
(1 + ν) + 3(1 − 2ν)

(
σ̃H

σ̃eq

)2

σ̃eq =
(
HσDH

)
eq

, σ̃H =
σH

1 − ηDH

Plastic multiplier ṙ = λ̇ given by f = 0 and ḟ = 0

Visco-plastic multiplier
ṗ =

(
f

KN

)N

Norton law

ṗ = ln

(
1 − f

K∞

)−n

exponential law
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1.5.3.2 Anisotropic Damage with Microdefects Closure
Effect (Table 1.6)

The coupling of damage with elasticity is made through the use of the effective
stress,

σ̃ij = (Hp
ikσD

+kl
Hp

lj)
D + (Hn

ikσD
−kl

Hn
lj)

D +
[ 〈σH〉
1 − ηDH

− 〈−σH〉
1 − ηhaDH

]
δij ,

(1.196)
defined in Sect. 1.2.4 in the elasticity law, where

Hp
ij = (1− D)−1/2

ij and Hn
ij = (1 − haD)−1/2

ij . (1.197)

The full (HpσDHp)D is introduced in the yield criterion, not affected by
the closure effect,

f =
(
HpσDHp − X

)
eq

− R − σy . (1.198)

The plasticity remains incompressible and εp, X, and α are deviatoric
tensors.
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Table 1.6. Elasto-(visco-)plasticity coupled with anisotropic damage and with
microdefects closure effect

Strain partition εij = εeij + εpij

Thermo-elasticity εeij =
1 + ν

E
σ̃ij − ν

E
σ̃kkδij + α(T − Tref)δij

ε̇pij =
[
Hp

ikėp
klH

p
lj

]D

(Visco-)plasticity with ėp
ij =

3

2

(Hp
ikσD

klHlj)
D − Xij

(HpσDHp − X)eq
ṙ

ṗ =

[
Hp
(
(HpσDHp)D − X

)
Hp
]
eq

(HpσDHp − X)eq
ṙ

R = R∞ (1 − exp (−br))

d

dt

(
Xij

γX∞

)
=

2

3
ėp

ij −
Xij

X∞
ṙ

Ḋij =

(
Y

S

)s
|ε̇p|ij

if r > pD or max ws > wD

up to Dc

Damage

Y =
1 + ν

2E
tr

[(
HpσD

+Hp
)2

+ ha

(
HnσD

−Hn
)2
]

+
3(1 − 2ν)

2E

[ 〈σH〉2
(1 − ηDH)2

+ ha
〈−σH〉2

(1 − ηhaDH)2

]

Plastic multiplier ṙ = λ̇ given by f = 0 and ḟ = 0

Visco-plastic multiplier
ṗ =

(
f

KN

)N

Norton law

ṗ = ln

(
1 − f

K∞

)−n

exponential law
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1.5.4 Non-Isothermal Behavior

The constitutive equations in the preceding tables are written for anisother-
mal cases and all the material parameters are functions of the temperature.
If an incremental numerical procedure is used, the state laws must be prop-
erly differentiated with respect to the time. This is particularly important
for the law of thermo-elasticity, in which appears an extra term when the
temperature varies.

ε̇eij =
1 + ν

E
˙̃σij − ν

E
˙̃σkkδij + αṪ

+
[

d
dT

(
1 + ν

E

)
σ̃ij − d

dT

( ν

E

)
σ̃kkδij +

dα

dT
(T − Tref)δij

]
Ṫ .

(1.199)

There are no such temperature derivatives in the laws of (visco-)plasticity
and damage as they are derived from the dissipation potential that is written
in terms of powers.

Note that the evolution law for nonlinear kinematic hardening is simpler
for anisothermal loading if it is written in terms of α, as with the state law
Xij = 2

3Cαij . We can then obtain

α̇ij = (1 − D)ε̇pij − γαij ṙ or α̇ij = ėp
ij − γαij ṙ , (1.200)

with ėp
ij = ε̇pij and ṙ = ṗ as long as there is no damage. This avoids taking into

account the supplementary thermal term due to the derivative of C = γX∞
with respect to T in the Armstrong–Frederick law, as

d
dt

(
Xij

γX∞

)
=

2
3
ėp

ij −
Xij

X∞
ṙ (1.201)

becomes
Ẋij =

2
3
Cėp

ij − γXij ṙ +
Xij

C

dC

dT
Ṫ (1.202)

Note also that in plasticity, the expression (1.181) for the multiplier λ̇
introduces a Ṫ term.

1.5.5 Two-Scale Model for Damage at Microscale
(J. Lemaitre and I. Doghri 1988, R. Desmorat and J. Lemaitre 2000)

The damage threshold criterion max ws = wD or p = pD states that damage
occurs for a given amount of plasticity. In the same spirit, the damage evolu-
tion and its anisotropy are both governed by the plastic strains. The damage
model previously described applies then only when plastic strains are sensi-
ble on a mesoscale, i.e. mostly for ductile failure, low cycle fatigue, and creep
(Chaps. 3, 4, 5). For brittle failures with no permanent strains, other damage
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models are necessary (see Chap. 7). For quasi-brittle failures or high cycle
fatigue, for which the loading is below the conventional yield stress, plastic-
ity (or dissipation) and damage occur but at a scale much smaller than the
RVE scale. A multiscale approach is thus necessary (see also Sects. 6.2.3 and
7.2.4).

Two scales are defined in accordance with the growth of microscale dam-
age in a mesoscopic RVE:

• The mesoscale or the classical scale of continuum mechanics.
• The microscale or the scale of microdefects present inside the RVE but

whose effects on the mechanical properties are not measurable, except
for monotonic and fatigue supture properties. From the mechanical point
of view of the homogenization procedures, such defects are considered
altogether as a “weak” inclusion in a meso-RVE, the matrix (see Fig. 1.15).

Fig. 1.15. Microelement embedded in an elastic (plastic) RVE

1.5.5.1 Constitutive Equations

The overall elasto-(visco-)plasticity material behavior is the same on the two
different scales but as the inclusion is “weak,” it will be subjected to damage,
with the matrix remaining undamaged.

On a mesoscale, the full set of elasto-(visco-)plasticity constitutive equa-
tions with a yield stress of σy and with both isotropic and kinematic hard-
ening may be considered. For quasi-brittle failure or high cycle fatigue ap-
plications (with a state of stress under the yield stress) only elasticity is
considered.

On a microscale, the behavior is modeled by elasto-(visco-)plasticity cou-
pled with damage. The weakness of the inclusion is related to its yield stress
σµ

y taken equal to the asymptotic fatigue limit σ∞
f of the material, below

which no plasticity exists and then no damage can occur. The yield criterion
is written as

fµ =
(

σµ

1 − Dµ
− Xµ

)
eq

− σ∞
f , (1.203)
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where Xµ is the microscale back stress. To simplify, only linear kinematic
hardening is assumed on the microscale but with the same plastic modu-
lus Cy as the modulus measured on the mesoscale. The microscale damage
is assumed to be isotropic and its evolution law is written in terms of mi-
crostress, micro-energy density release rate, and micro-accumulated plastic
strain, i.e., Ḋµ = (Y µ/S)sṗµ. As the mean stress effect needs to be repre-
sented in fatigue, the micro-energy density rate Y µ takes into account the
different behaviors in tension and in compression through the parameter h.
Finally, the plastic multiplier, λ̇ = ṗµ(1 − Dµ), is calculated from

• The consistency condition fµ = 0 and ḟµ = 0 for micro-plasticity or

• The Norton law ṗµ =
(

fµ

KN

)N

for micro-viscoplasticity.

The full set of equations is given in Table 1.7. The variables in the inclu-
sion (stress tensor σµ, total strain tensor εµ, elastic strain tensor εµe and
plastic strain tensor εµp, damage Dµ . . . ) have a “µ”-superscript to denote
microscale when the variables at the mesoscale are simply represented by σ,
ε, εe, εp . . . with no superscripts. Note that damage being considered only on
the microscale, the “µ”-superscript is omitted by setting Dµ ≡ D.

1.5.5.2 Scale Transition

The scale transition for inner defects is made by use of the Eshelby–Kröner
localization law: the total and plastic strains at microscale level are related
to the strains at the mesolevel as in

εµ
ij = εij + β(εµp

ij − εpij) , (1.204)

where β is given by an Eshelby analysis of a spherical inclusion:

β =
2
15

4 − 5ν

1 − ν
. (1.205)

For surface defects, due to free edge conditions the localization law must be
changed (see Sect. 6.4.6).

1.5.5.3 Use of the Two-Scale Model

The mesostresses (σ(t)) and strains (ε(t), (εp(t))) are determined from a clas-
sical structure calculation (made in elasticity for quasi-brittle and high cycle
fatigue applications). Their history are the inputs for the post-processing cal-
culation of the strains, stresses, hardening, and damage at microscale. Their
values are obtained from the time integration of the constitutive equations at
microlevel coupled altogether with the Eshelby–Kröner law of localization.

When the damage (D) reaches the critical value (Dc) there is initiation
of a crack in the inclusion which corresponds to a mesocrack in the RVE if
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Table 1.7. Two-scale damage model equations

Mesoscale General case Elasto-(visco-)plasticity constitutive equations
σ

ε, εe, εp Quasi-brittle
failure

Elasticity εij =
1 + ν

E
σij − ν

E
σkkδij

X , R High cycle fatigue with σ∞
f < σeq < σy

Scale Eshelby–Kröner εµ
ij = εij + β(εµp

ij − εpij)
transition localization law

Microscale (Visco-)plasticity
coupled with
isotropic damage

εµe
ij =

1 + ν

E

σµ
ij

1 − D
− ν

E

σµ
kk

1 − D
δij

σµ fµ = (σ̃µ − Xµ)eq − σ∞
f with σ̃µ

ij =
σµ

ij

1 − D

εµ , εµe, εµp ε̇µp
ij =

3

2

σ̃µD
ij − Xµ

ij

(σ̃µ − Xµ)eq

λ̇

1 − D

Xµ Ẋµ
ij =

2

3
Cyε̇

µp
ij (1 − D)

D Ḋ =

(
Y µ

S

)s
ṗµ if pµ > pD

and up to Dc

with pD = εpD

⎡
⎢⎢⎣ σu − σ∞

f

σµ max
eq + σµ min

eq

2
− σ∞

f

⎤
⎥⎥⎦

m

Y µ =
1 + ν

2E

[
〈σµ〉+ij〈σµ〉+ij

(1 − D)2
+ h

〈σµ〉−ij〈σµ〉−ij
(1 − hD)2

]

− ν

2E

[ 〈σµ
kk〉2

(1 − D)2
+ h

〈−σµ
kk〉2

(1 − hD)2

]

its size is comparable to the value of the mesocrack initiated (δ0) calculated
using (1.252) in Sect. 1.6.3.

All the material parameters at the mesoscale are identified with large
plastic strain. Nevertheless, we advise adjusting s and m on a test where
fracture occurs in quasi-brittle conditions.
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The numerical procedure to solve the set of equations is described in
Sect. 2.3. Some approximations allow for closed-form solutions in particular
cases described in Chaps. 6 and 7.

1.5.5.4 More Precise Identification
of the Asymptotic Fatigue Limit
(S. Calloch and C. Doudard 2003)

In the two-scale damage model the asymptotic fatigue limit (σ∞
f ) plays an im-

portant role as the yield stress at the microlevel. A definition as the asymptote
of the Wöhler curve is mathematically appealing but difficult to practice be-
cause to reach points close to this limit, we may need experiments of months,
years, centuries and more duration! Fortunately, there is an other way by
evaluating the dissipation through an elevation of temperature in cyclic tests
(M.P. Luong 1998, A. Galtier 2002).

Damage (and fatigue in particular) is always related to plastic strain, at
microlevel for high cycle fatigue. In cyclic tests, the corresponding dissipation
σij ε̇

p
ij induces an elevation of temperature which can be measured if the tests

are performed at a frequency large enough to compensate the heat lost by
conduction. The ideal would be adiabatic tests. Then, if several successive
increasing levels of periodic stresses are applied on one specimen and the
stationary temperature T is recorded, σ∞

f corresponds to the level for which
an elevation of temperature is just detected. Of course this value depends
on the accuracy of the temperature measurement but, with thermocouples
and some elementary precautions, an offset of 0.05◦C may be detected, thus
providing a good accuracy for σ∞

f .

Fig. 1.16. Wöhler curve of a dual phase steel and asymptotic fatigue limit detected
by temperature elevation (S. Calloch and C. Doudard 2003)

In the following example of dual-phase steel, the successive stress levels
at 10 Hz are 25, 50, 75, 100, 105, 120, 125, 130, 135, 140, and 145 MPa for
about 1000 cycles each.
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The graph of the elevation of temperature T−T0 as a function of the stress
level in Fig. 1.16 allows us to consider the asymptotic fatigue limit σ∞

f = 105
MPa when the engineering fatigue limit is σf = 130 MPa at NR = 106 cycles.

1.6 Localization and Mesocrack Initiation

The aim of this section is to give an answer to difficult questions concerning
a mesocrack initiation: what is a crack initiation from a continuum mechanics
point of view? What is the size and the direction of the crack initiated?
A theoretical difficulty is encountered as continuum mechanics defines its
scale of application as the scale of the Representative Volume Element, in
which the mechanical fields are homogeneous and continuous, whereas the
free surface creation of a crack is a geometrical, non-homogeneous process.

1.6.1 Critical Damage Criterion

The simplest and most practical solution to model a crack initiation is to use
the critical damage criterion which states that a mesocrack is initiated when
the damage reaches a critical value Dc.

• For isotropic damage, this occurs when D = Dc (see Sect. 1.4.1).
• For anisotropic damage with principal damage components DI , I = 1, 2, 3,

this takes place when the maximum principal damage reaches Dc, i.e.,
when max DI = Dc as already stated in Sect. 1.4.3.

The term Dc is considered as a material constant, which is not so easy to
measure. For most materials, 0.2 ≤ Dc ≤ 0.5.

1.6.2 Strain Damage Localization Criterion

One may consider the mesocrack initiation as the ultimate state of the strain
localization process which occurs in softening materials. Due to severe load-
ing, localization bands occur in which strain and damage are strongly local-
ized and in which microcracks develop and then degenerate into a mesocrack
(R. Billardon, I. Doghri, A. Benallal and G. Geymonat 1989).

This is a realistic criterion for a mesocrack initiation in its physical defi-
nition but it has two main drawbacks:

1. Such a criterion needs tough calculations and is difficult to use in finite
element computations.

2. It is strongly dependent on the damage evolution law as well as the plastic
or visco-plastic behavior of the materials, such as anisotropy, ratcheting,
and non-proportional loading effects.
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Nevertheless, at least for the uniaxial tensile case, it allows for the theoret-
ical calculation of the value of the critical damage Dc without any need for
experiments.

Two main approaches are available for the study of the instabilities related
to the phenomenon of localization: the bifurcation approach which applies to
time-independent constitutive laws; the perturbation approach which applies
to both time-independent and time-dependent constitutive laws. The con-
sideration of viscosity effects makes the solution of the mechanical problem
unique in general but instabilities may still occur.

1.6.2.1 Bifurcation Approach of Localization
(R. Hill 1962, J.R. Rice 1973, J.R. Rice and J.W. Rudnicki 1975)

The bifurcation approach consists of the analysis of the loss of uniqueness
in the rate mechanical problem. It is is written in terms of velocity field �v,
strain rate ε̇ and stress rate σ̇. In the quasi-static case,

σ̇ij,j + ḟi = 0 in the structure,
ε̇ij = 1

2 (vi,j + vj,i) in the structure,
σ̇ijNj = Ḟ given

i on the given load boundary,
vi = U̇given

i on the given displacement boundary, and
σ̇ij = Lijkl ε̇ij in the structure,

(1.206)

with �f as the body force, �Ugiven as the applied displacements, �F given as the
applied loads, and �N as the outward normal of the boundary. The last equa-
tion is the rate form of the time-independent constitutive laws. Its introduces
the fourth order tensor tangent operator L which will be introduced later for
elasto-plasticity coupled with damage (1.216).

Let us consider a homogeneous infinite body with a known homogenous
solution �v(1) and let us assume that at a given loading time, a second possi-
ble solution of the rate problem �v(2) exists. Two bifurcation modes may be
exhibited:

1. A harmonic eigenmode (j is the pure imaginary number j =
√−1),

[vi] = v
(1)
i − v

(2)
i = gi exp (jξnkxk) (1.207)

which, if reported within the equilibrium, leads exactly to the loss of
ellipticity of the equilibrium equations,

ξ2 (�nL�n)ij gj = 0 and det (�nL�n) = 0 , (1.208)

where ξ is an arbitrary wave number of mode �g and (�nL�n) is the acous-
tic tensor related to the localization plane with a normal �n: (�nL�n)ij =
nkLikjlnl.

2. A bifurcation mode involving discontinuous velocity gradient. If the sub-
scripts (1) and (2) stand now for the fields in each side of the discontinuity
surface (or planar band) of normal �n, the continuity of the normal stress



1.6 Localization and Mesocrack Initiation 67

and Maxwell compatibility equations read

σ̇
(1)
ij nj = σ̇

(2)
ij nj and v

(1)
i,j − v

(2)
i,j = ginj , (1.209)

with σ̇
(1)
ij = L

(1)
ijklv

(1)
k,l and σ̇

(2)
ij = L

(2)
ijklv

(2)
k,l due to the usual symmetry

Lijkl = Lijlk. One ends up with(
�nL(1)�n

)
ij

gj + nj

(
L

(1)
ijkl − L

(2)
ijkl

)
v
(2)
k,l = 0 . (1.210)

The first case of continuous bifurcation corresponds to a material still plas-
tifying (and damaging) on both sides of the discontinuity surface: L

(1)
ijkl =

L
(2)
ijkl = Lijkl given by (1.216) and

det (�nL�n) = 0 . (1.211)

The vector �g is then the eigenvector associated with a vanishing eigenvalue
of the acoustic tensor. If �g is orthogonal to �n, one gets a shear band. If �g is
parallel to �n, an opening mode results instead.

The second case of discontinuous bifurcation corresponds to a body still
loaded with L

(1)
ijkl = Lijkl at one side of the planar band but unloaded

in elasticity at the other side (L(2)
ijkl = Ẽijkl). This leads to the condition

det (�nL�n) < 0.
The condition det (�nL�n) ≤ 0 is a necessary and sufficient condition for

strain localization to occur in homogeneous, non-viscous bodies.

1.6.2.2 Critical Damage from the Bifurcation Analysis

The tangent stiffness operators may be derived from the full sets of elasto-
plasticity coupled with the damage constitutive equations of Sect. 1.5. No
kinematic hardening and no unilateral effect are considered here in order
to keep the calculation simple! The constitutive equations are written in
a concise way, as in

ε̇pij = aij ṗ with aij =
3
2

(Hikσ̃D
klHlj)D

(H σ̃DH)eq
, (1.212)

ṙ = ṗ∆ with ∆ =
σ̃eq(

H σ̃DH
)
eq

, (1.213)

Ḋij = dij ṗ with dij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Y

S

)s
δij , isotropic damage,

(
Y

S

)s
|a|ij , anisotropic damage,

(1.214)
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and where Hij = (1−D)−1/2
ij for anisotropic damage and Hij = δij/

√
1 − D

for isotropic damage.
The accumulated plastic strain rate is determined by the consistency con-

dition ḟ = 0:

ṗ =
bij

˙̃σij

R′(r)∆
, with bij =

3
2

σ̃D
ij

σ̃eq
. (1.215)

For both isotropic and anisotropic damage models,

Lijkl = Ẽijkl − 2G

R′∆ + 2G amnbmn

[
Ẽijpqapqbkl + M−1

ijpq

∂σ̃pq

∂Drs
drsbkl

]
,

(1.216)
with Ẽijkl = M−1

ijpqEpqkl as the elastic effective tensor and Mijkl is given
by (1.15). Readers can refer to Sect. 2.2.4 for details concerning the calcula-
tion of the tangent operator.

For isotropic damage, the strain localization condition, det (�nL�n) = 0,
written for uniaxial tension leads to the expression of a critical damage which
depends on the normal of the planar localization band,

Dc(�n) ≈ 1 − κ(θ)
(

σ2
u

2ES

)s
σu

G
, (1.217)

with �n = [cos θ, sin θ, 0]T and

κ(θ) =
2 − 4ν + (5 − 4ν) sin2 θ cos2 θ

3 − 6 sin2 θ cos2 θ + (1 − 2ν)(2 sin2 θ − cos2 θ)
. (1.218)

This allows for the determination of the normal to the localization plane:
for ν = 0.3, θ = 42◦. In fact, the ratio of the ultimate stress to the shear
modulus (σu/G) remains very small for any material such that κ is of the
order of magnitude of unity and Dc in tension is found to be close to 1.

For anisotropic damage in pure tension, the result “a critical damage al-
most equal to 1” is also obtained but in terms of hydrostatic effective damage:
strain localization occurs when ηDHc ≈ 1 or DHc ≈ 1/η, i.e., in tension when

D1c = 2D2c = 2D3c ≈ 3
2η

. (1.219)

With η = 3, this gives D1c ≈ 0.5. This value is in accordance with the
critical damages often measured in experiments with poor accuracy due to
the difficulty in defining the initiation of a mesocrack in practice! The stress
at strain localization has a non-vanishing value,

σ =
3σu

2
1 − D1

+
1

1 − D2

, (1.220)

which is σR = σu/2 for η = 3. In the absence of any measurements, Dc = 0.5
is a good candidate for all applications.
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1.6.2.3 Perturbation Analysis – Stability
(A. Molinari 1985, A. Benallal 1988)

To check the possibility of bifurcation toward solutions that are different from
the homogeneous one, a way to proceed is to slightly perturb the reference
solution (�v 0). If the evolution of the perturbed solution (�v = �v 0+δ�v) remains
close to �v 0, one expects stability. If not, instability occurs.

From a mathematical point of view, this practical approach applied to
mechanical problems is fully similar to the study of the stability of a set of
first order differential equations written as

∂U

∂t
= G(U, µload) , (1.221)

where G is in general a nonlinear differential operator, µload is a parameter
(for example, representing the loading intensity), and U is the vector solution
(for example, made of the velocity and all the necessary variables to describe
the material behavior).

Different perturbation and stability analyses are possible:

• Study of the decay (or lack of decay) in the linearized perturbation δU :

∂

∂t
(U0 + δU) = G0(U, µload) +

∂G

∂U
(U0)δU (1.222)

or
∂

∂t
(δU) = AδU A =

∂G

∂U
(U0) . (1.223)

If one of the eigenvalues (λA) of the operator A has a positive real part,
the perturbation δU will grow.

• Study of the decay (or lack of decay) in a relative perturbation defined as

Z =
δU

‖U0‖ , (1.224)

and
∂Z

∂t
=
[
∂G

∂U
(U0) − 1

‖U0‖
∂

∂t
‖U0‖

]
Z , (1.225)

with 1 as the identity operator. This set of differential equations leads to
a different value for λA from that in the previous case. If the perturbations
are sought in the form δU = U� exp (λAt) and δZ = Z� exp (λrelt), λrel

compared to λA yields

λrel = λA − 1
‖U0‖

∂

∂t
‖U0‖ (1.226)

and the “relative” instability occurs when

Re(λA) ≥ 1
‖U0‖

∂

∂t
‖U0‖ (1.227)

instead of Re(λA) ≥ 0.
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The perturbation and stability analysis applies to rather complex problems
such as elasto-plasticity or elasto-visco-plasticity coupled (or not coupled)
with damage, quasi-static or dynamic loadings, temperature and heat con-
duction, or any other diffusive phenomenon.

1.6.2.4 General Thermo-Mechanical Case
(A. Benallal and V. Cano 1996)

Let us consider the general case of structures made of generalized standard
materials submitted to dynamic loadings. The thermodynamics description
of such material behaviors is given in Sect. 1.2. It introduces the Helmholtz
free energy potential, ρψ, written in terms of strains ε and internal variables
VK (the damage D or D is one of those), a yield criterion f , and a dissipation
potential F .

The equilibrium equations are represented by

σij,j + fi = ρ
∂2ui

∂t2
, (1.228)

with �u as the displacement, �f as the body force, and ρ as the density. The
compatibility equations are of the form

εij =
1
2

(ui,j + uj,i) . (1.229)

The energy conservation principle (first principle of thermodynamics) reads
as

−qi,i + ω = ρCεṪ − AK V̇K + T

[
∂AK

∂T
V̇K − ∂σij

∂T
ε̇ij

]
, (1.230)

with ω as the heat source, Cε = −T
∂2ψ

∂T 2

∣∣∣∣
ε

as the heat capacity, and AK as

the associated variables. The constitutive equations are the

elasticity law σij = ρ
∂ψ

∂εij
,

state laws AK = −ρ
∂ψ

∂VK
,

evolution laws V̇K = −λ̇
∂F

∂AK
,

conduction law qi = −k T,i ,

(1.231)

where k is the conductivity and λ̇ = ṙ is the Lagrange multiplier in addition
to the boundary and initial conditions.

In order to derive the differential operator G for the general thermo-
mechanical problem, let us set
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U =

⎡
⎢⎢⎢⎢⎣

ui

vi

T
σij

VK

⎤
⎥⎥⎥⎥⎦ with vi =

∂ui

∂t
, (1.232)

with a set of equations to be solved:

u̇i = vi

v̇i =
1
ρ
(σij,j + fi)

Ṫ =
k

ρCε
T,kk +

T

Cε

∂2ψ

∂εij∂T
vi,j − 1

Cε

[
∂ψ

∂VK
− T

∂2ψ

∂VK∂T

]
V̇K +

ω

ρCε

σ̇ij = ρ
∂2ψ

∂εij∂T
Ṫ + ρ

∂2ψ

∂εij∂εkl
vk,l + ρ

∂2ψ

∂εij∂VK
V̇K

V̇K = −ṙ
∂F

∂AK

(1.233)

For an infinite homogeneous body we take the Fourier transform of this
set of equations or, in an equivalent manner, seek the perturbed solution of
the form

U(x, t) = U0(t) + Û(t) exp (jξnkxk) and Û =

⎡
⎢⎢⎢⎢⎣

ûi

v̂i

T̂
σ̂ij

V̂K

⎤
⎥⎥⎥⎥⎦ , (1.234)

where ξ acts as a wave number. We then linearize the previous differential
equations, identify the differential operator A and solve for the solution as

Û = U� exp (λAt) , (1.235)

where λA is the stability parameter to be determined (Re(λA) < 0 implies
stability). We will then obtain a set of linear equations and after some sub-
stitutions, we can formally express them as

λAu�
p = v�

p ,

ρλ2
Au�

p = jξσpqnq ,

V �
K = jξCλ

Kpqnqu
�
p + Rλ

KT � ,

σ�
pq = jξLλ

pqrsnsu
�
r + Mλ

pqT
� ,(

ρCε +
kξ2

λA
+ ρCλ

VK

)
T � = jξPλ

pqnqu
�
p ,

(1.236)



72 1 Background on Continuum Damage Mechanics

where the 4 tensors Lλ
ijkl, Cλ

Kij , Mλ
ij , and Pλ

ij , the vector Rλ
K , and the scalar

ρCλ
VK

introduced depend on the stability parameter λA but not the wave
number ξ. They are temperature-dependent and are affected by viscosity
and inertia.

• The fourth order tensor Lλ
ijkl generalizes the expression for the tangent

operator Lijkl to viscous materials loaded in dynamics at constant tem-
perature as the rate law

σ̇pq = Lpqrsε̇rs = Lpqrsu̇r,s . (1.237)

Coupled with the consideration of the perturbed fields,

σpq = σ0
pq + σ�

pq exp (λAt) exp (jξnkxk) ,

ur = u0
r + u�

r exp (λAt) exp (jξnkxk)
(1.238)

lead to
σ�

pq = jξLpqrsnsu
�
r . (1.239)

Note that Lλ
ijkl is not a material property as it depends on λA.

• The tensor Mλ
ij stands for the thermal effect on stresses and Mλ

ijT
� rep-

resents the perturbation of the thermal stress,
• The tensor Cλ

Kij and Rλ
K represent the contributions in terms of internal

variables due to the mechanical and the thermal loadings, respectively.
• The heat capacity contribution (Cλ

VK
) is due to the consideration of in-

ternal variables to model the material behavior and Pλ
ij models the heat

source due to the material deformation.

Finally, we obtain a set of two equations of the two unknowns �u� and T �

[
ρλ�2

A δik + ξ2npL
λ
ipkqnq −jξMλ

ipnp

− jξ
ρ Pλ

kqnq 1 + kξ2

ρCελA
+

Cλ
VK

Cε

][
u�

k

T �

]
= 0 (1.240)

and the parameter λA is a solution of the polynomial equations,

det (�nL�n) = 0 , (1.241)

Lijkl = ρλ2
Aδikδjl + ξ2

[
Lλ

ijkl +
Mλ

ijP
λ
kl

ρCε + kξ2

λA
+ ρCλ

VK

]
. (1.242)

When Re(λA) ≥ 0 (or Re(λA) ≥ 1
‖U0‖

∂
∂t‖U0‖) the perturbation (or the

relative perturbation) starts to grow.
The adiabatic, isothermal, and static cases are limiting cases of this per-

turbation analysis. They are solved by mathematically setting:

• k = 0 for the adiabatic case
• ρCε → ∞ for the isothermal case
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• ρ = 0 for the quasi-static case except in the heat equation in which ρCε

is kept constant

For elasto-visco-plastic materials (without damage), the parameter λA is
bound and the question of when the localization process takes place has
not been clearly answered. For constitutive equations coupled with dam-
age, the strain damage localization criterion λA = λc = ∞ coincides with
det(�nẼ�n) = 0 (inertia effects neglected) and therefore with ηDH ≈ 1 as well.
One ends up with η = 3 to the 3D strain-damage localization criterion

tr D ≈ 1 (1.243)

which corresponds in tension to

D1c = 2D2c = 2D3c ≈ 1
2

. (1.244)

1.6.2.5 Effects of Viscosity, Temperature, and Inertia

Qualitatively,

• Viscosity has a regularizing effect.
• Heat conduction may have a destabilizing effect. The smaller the wave

number is, the larger is the destabilization.
• Dynamics has a stabilizing effect which is much more important for the

large wave numbers than for the lower ones. Inertia effect may usually be
neglected.

1.6.3 Size and Orientation of the Crack Initiated

Based on the principles of Continuum Damage Mechanics, the size of the
mesocrack is the size on which the constitutive equations operate, i.e., the size
of the Representative Volume Element: infinitely small for a mathematician
but something concrete for an engineer!

If the question asked is whether or not a crack is initiated, the answer is
given by information on the loading conditions for which the damage reaches
its critical value.

If the damage analysis must be followed by a fracture analysis based on
an existing initial finite crack, its size and orientation has to be determined.
One way is to consider that the mesocrack initiated by Continuum Dam-
age Mechanics involving a dissipated energy φDp can also be described
by a process of Fracture Mechanics involving the same amount of dissi-
pated energy φF = φDp (J. Mazars 1984). This bridges the gap between
damage mechanics and fracture mechanics at least in the sense of energy.
Since δ0 is the linear size of the mesocrack, also the size of the RVE for this
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purpose, the energy φDp involved in the process of initiation by damage of
a mesocrack is composed of two energies:

• The energy dissipated in the damage process itself, including isotropic
damage,

φD = δ3
0

∫ Dc

0

Y dD . (1.245)

Assuming saturated hardening and a triaxiality function of Rν = 1 as the
crack is often initiated at the surface where the state of stress is also often
uniaxial, we have

φD ≈ δ3
0

σ2
u

2E
Dc . (1.246)

• The energy dissipated in the associated plasticity process is

φp = δ3
0

∫ fracture

0

σijdεpij . (1.247)

Assuming either proportional loading or uniaxial loading leads to

φp = δ3
0

∫ pR

0

σeq(p)dp , (1.248)

where pR is the accumulated plastic strain at rupture (for which σeq ≈ σu

and pR = εpR in pure tension). Then

φDp = φD + φp ≈ δ3
0

(
σ2

u

2E
Dc + σuεpR

)
. (1.249)

The first term is preponderant for brittle materials as the second term is
dominant for ductile materials.

On the same RVE, the energy φF is evaluated through the concepts of classical
fracture mechanics dealing with a crack area A0 = δ2

0 and a strain energy
release rate G:

φF =
∫ A0

0

GdA . (1.250)

For simplicity, let us consider the upper bound on φF given by the maximum
value Gc of G, the material toughness. This approximation is close to reality
for brittle materials and is a step function of the R-curve for ductile materials.
Then,

φF ≈ Gcδ
2
0 . (1.251)

Writing the energy balance φDp = φF gives the length δ0 which matches
Continuum Damage Mechanics and fracture mechanics:

δ0 ≈ Gc

σ2
u

2E
Dc + σuεpR

. (1.252)
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This formula gives values generally obtained by metallurgy or physics con-
siderations, as shown below:

• δ0 ≈ 0.1 to 0.2 mm for light alloys
• δ0 ≈ 0.2 to 0.5 mm for steels
• δ0 ≈ 0.1 to 1 mm for ceramics
• δ0 ≈ 0.5 to 1 mm for polymers
• δ0 ≈ 10 to 100 mm for concretes

Concerning the orientation of the plane in which lies the initiated mesocrack,
its normal �n is the result of the localization analysis of Sect. 1.6.2,

det(�nL�n) = 0 . (1.253)

If no localization analysis has been performed, the anisotropic damage evo-
lution gives the orientation of the mesocrack as the plane with normal �n (in
which lies the maximum value of the damage vector D�n which corresponds
to the maximum principal value of the damage (see Sect. 1.4.3)):

�n = �n(maxDI) . (1.254)

If only an isotropic damage analysis has been performed, we use the orienta-
tion of the maximum principal stress,

�n = �n(max σI) . (1.255)

To conclude, Table 1.8 gives the possible choices in modelling the damage
threshold, critical damage, size, and orientation of the mesocrack initiated.



Table 1.8. Conditions for initiation of damage and mesocrack

Damage
threshold

Monotonic
p = εpD εpD = εp(σ = σu)

loading

Cyclic
p = pD pD = εpD

⎡
⎢⎢⎣ σu − σ∞

f

σmax
eq + σmin

eq

2
− σ∞

f

⎤
⎥⎥⎦

m

loading

Numerical
max ws = wD wD given by (1.116)

prediction

Critical
damage

Isotropic
D = Dc Dc = 1 − σR

σudamage

Anisotropic
max DI = Dc Dc = 0.5

damage

Numerical
det(�nL�n) = 0 ηDH ≈ 1

prediction

Direction
of the
crack plane

Isotropic
Max principal σ �n

damage

Anisotropic
Max principal D �n

damage

Numerical
Localization �n

prediction

Size of the
mesocrack

Checking
RVE A0 (mm)2 ≈

∣∣∣∣∣∣
(0.2)2 metals
(1)2 polymers
(100)2 concrete

initiation

Checking Equivalence with
A0 = G2

c(
σ2

u

2E
Dc + σuεpR

)2propagation Fracture Mechanics
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Numerical Analysis of Damage

Damage is essentially a nonlinear phenomenon often coupled with (visco-)
plasticity, also a nonlinear phenomenon. Therefore we can not expect sim-
ple closed-form solutions of mesocrack initiation problems except for rough
approximations of simple cases.

For early design of mechanical components, the coupling of the strain
behavior with the damage may be neglected and a post-processing of dam-
age evolution is possible after a classical structure analysis (D. Hayhurst
and F.A. Leckie 1974). This approach is the uncoupled analysis based on
a reference (visco-)plastic computation. For localized (visco-)plasticity and
damage, this reference computation can even be purely elastic with a local
energetic correction (such as the Neuber method) to estimate the plastic
strain. Fast!

For accurate engineering applications and when the coupling between
strains and damage is strong, (visco-)plasticity, damage, and possible cracks
distributed over the whole structure deem a fully coupled analysis nec-
essary. The constitutive equations need to be implemented within a finite
element computer code and the numerical analysis encounters the classi-
cal difficulties of convergence of linearized schemes. It needs special algo-
rithms, much care, and large computer times (A. Benallal, R. Billardon and
I. Doghri 1988).

When the damage is localized on the mesoscale, there is the possibility
to use the two-scale damage model of Chap. 1 in which damage occurs on
a microscale only (J. Lemaitre and I. Doghri 1992). This locally coupled
analysis mainly applies to high cycle fatigue (fatigue in the elastic range),
eventually with initial plastic strain and damage. The analysis can be per-
formed by post-processing an elastic computation for “elastic” fatigue or a
(visco-)plastic computation if the process of creation of non-trivial initial
conditions has been modelled.

Another area that requires numerical analysis is the precise identifica-
tion of the material parameters. Even if a fast, rough identification is
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possible using simple methods, an adjustment or updating of the parameters
from more complex tests or similar studies needs numerous iterations and
robust optimization techniques based on sensitivity analyses. A table at the
end of the chapter gives values of damage parameters for several materials.

In order to make the expressions simpler, intrinsic notations are used in
this chapter when describing the schemes for the numerical implementation
of the constitutive equations.

2.1 Uncoupled Analysis

Structure calculations performed with nonlinear material behavior become
very costly in time very quickly. Their use is therefore difficult to perform for
designs in which the geometry of the structure and the choice of the materials
are the results of an optimization process.

A fast way to evaluate the damage is by post-processing classical calcula-
tions of elasticity or elasto-(visco-)plasticity in order to perform a posteriori
time integration of the damage evolution law of Sect. 1.4 (see Fig. 2.1):

D =
∫ t

tD

(
Y (t)
S

)s
ṗ(t)dt or D =

∫ t

tD

(
Y (t)
S

)s
|ε̇p(t)|dt , (2.1)

where tD is the time taken for damage initiation, corresponding to the damage
threshold pD =

∫ tD
0

ṗ(t)dt (see Sect. 1.4.1).

Fig. 2.1. Uncoupled approach to structural damage analysis

The time histories of the plastic strain, the energy density release rate
Y for isotropic damage, and the effective strain energy Y for anisotropic
damage are the necessary inputs for the damage post-processing. They may
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come directly from an elasto-(visco-)plastic computation or indirectly from an
elastic computation followed by an initial post-processing of (visco-)plasticity.

Note that the material parameters depend on the temperature which may
vary during the loading. In that case, their time dependencies have to be taken
into account when integrating the damage law.

The procedure for the uncoupled analysis of damage is then:

• Perform a structure calculation to obtain the histories of Y or Y and εp

• Evaluate D or D by means of the time integration of Eq. (2.1)
• Estimate the time or the load corresponding to the critical damage Dc

• Define a safety margin on the most appropriate parameter: the plastic
strain p, the number of cycles N , the time t, or the damage equivalent
stress σ�, through a safety factor Saf (larger than unity) in order to
ensure

p ≤ pR

Saf
or N ≤ NR

Saf
or t ≤ tR

Saf
or σ� ≤ σ�

R

Saf
(2.2)

as a safe non-failure design criterion.

Most of the time, neglecting the coupling of the damage with the strain
behavior yields an upper bound on these parameters. The integration of the
damage rate equation (2.1) concerns any kind of loading: monotonic, cyclic,
multi-level, random . . . Examples are given in the next chapters.

2.1.1 Uniaxial Loading ,

Let us first consider the 1D case of tension or tension-compression with a state
of stress

σ =

⎡
⎣σ 0 0

0 0 0
0 0 0

⎤
⎦ , σ = σ(t) (2.3)

and a state of plastic strain

εp =

⎡
⎣ εp 0 0

0 − εp
2 0

0 0 − εp
2

⎤
⎦ , εp = εp(t) . (2.4)

The accumulated plastic strain is then

p = p(t) =
∫ t

0

|ε̇p(t)|dt , (2.5)

the von Mises stress is σeq = |σ|, and the stress triaxiality has the value 1/3.
The damage calculated by means of the isotropic model is

D =
∫ t

tD

(
Y (t)
S

)s
|ε̇p(t)|dt . (2.6)
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For the anisotropic model, the same expression is obtained on D1 (the com-
ponent in the loading direction) as for tension such that

D = D1

⎡
⎣ 1 0 0

0 1
2 0

0 0 1
2

⎤
⎦ (2.7)

and then

D1 =
∫ t

tD

(
Y (t)
S

)s
|ε̇p|dt . (2.8)

The expressions for the functions Y (t) or Y (t) depend on whether or
not we consider the microdefects closure effect (quasi-unilateral conditions)
through the value of the microdefects closure parameter h or ha of Sect. 1.2.4.

2.1.1.1 Damage without Microdefects Closure Effect

For both isotropic and anisotropic damage models, the effective energy den-
sity release rate functions have the same expression if written in terms of the
uniaxial elastic strain εe:

Y =
1
2
Eε2e(t) or Y =

1
2
Eε2e(t) . (2.9)

From a reference elasto-(visco-)plastic computation, the knowledge of the
time history of the elastic strain allows for the determination of Y (t) or Y (t)
and the damage, as follows:

D =
∫ t

tD

(
Eε2e(t)

2S

)s
|ε̇p(t)|dt or D1 =

∫ t

tD

(
Eε2e(t)

2S

)s
|ε̇p(t)|dt .

(2.10)
Due to the uncoupled analysis where the stress and the strain are calcu-

lated without the softening effect of damage, Y and Y written in terms of
stresses are preferred as they give an upper bound on D. In order to keep
the post-processing simple enough for design purposes, the preferable case of
isotropic damage is considered for which

Y =
σ2(t)

2E(1 − D)2
. (2.11)

If the stress and plastic strain histories are known, we have∫ D

0

(1 − D)2sdD =
∫ t

tD

(
σ2(t)
2ES

)s
|ε̇p(t)|dt (2.12)

or

D = 1 −
[
1 − (2s + 1)

∫ t

tD

(
σ2(t)
2ES

)s
|ε̇p(t)|dt

] 1
2s+1

. (2.13)
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The anisotropic case is similar, with an effective triaxiality function R̃ν

now that depends on the damage (Eq. (1.41) of Sect. 1.2.3). For uniaxial
tension, it is a function of D1 alone because D2 = D3 = D1/2 and DH =
2D1/3, leading to

R̃ν(D1) =
2
3
(1+ν)+3(1−2ν)

[
(1 − 2η

3
D1)

(
2

1 − D1
+

1
1 − D1

2

)]−2

(2.14)

and the evolution of the damage is obtained as an implicit function of D1,
which is easy to solve by use of mathematics software:

∫ D1

0

R̃−s
ν dD1 =

∫ t

tD

(
σ2(t)
2ES

)s
|ε̇p(t)|dt . (2.15)

2.1.1.2 Damage with Microdefects Closure Effect

Considering the quasi-unilateral conditions is important when dealing with
compressive loading and cyclic or fatigue applications as they lead to a dam-
age rate that is much smaller in compression than in tension. The represen-
tation of the mean stress effect in fatigue then follows.

Microdefects closure material parameters h or ha are introduced within
the expressions for the Y and Y functions. This makes the models more
difficult for closed-form solutions. We advise using the approximation
Y (σ, D, ha) ≈ Y (σ, D = 0, h = 0.2) if damage anisotropy needs to be taken
into account. For the resolution with the exact Y function for anisotropic
damage with microdefects closure effect, please refer to Sect. 2.1.2 on pro-
portional loading.

For the uniaxial tension-compression case, one has

Y =
1

2E

[ 〈σ〉2
(1 − D)2

+ h
〈−σ〉2

(1 − hD)2

]
, (2.16)

which may be written in terms of elastic strain

Y =
E

2
[〈εe〉2 + h〈−εe〉2

]
. (2.17)

Then,

D =
∫ t

tD

(
Y

S

)s
|ε̇p|dt with Y =

⎧⎪⎪⎨
⎪⎪⎩

Y + =
σ2(t)

2E(1 − D)2
in tension,

Y − = h
σ2(t)

2E(1 − hD)2
in compression.

(2.18)
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2.1.2 Proportional Loading ,

Uniaxial loading is a particular case of proportional loading for which the
stress tensor at a given point M of a structure remains proportional to a
time-independent tensor Σ such that

σij(M, t) = σΣ(t) Σij(M) . (2.19)

The main sufficient condition for a structure to be considered as proportion-
ally loaded is when there is only one applied load or when all the loads vary
proportionally to one parameter.

With the normalization Σeq =
√

3
2ΣD

ijΣ
D
ij = 1, the scalar σΣ is the signed

von Mises stress and |σΣ| = σeq. In tension-compression,

Σ =

⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ , ΣD =

⎡
⎣ 2

3 0 0
0 − 1

3 0
0 0 − 1

3

⎤
⎦ , and σΣ = σ . (2.20)

For elasto-(visco-)plasticity that is coupled (or not coupled) with isotropic
damage, the plastic strain tensor remains proportional to the deviatoric part
of Σ, as in

εpij(M, t) =
3
2
εpΣ(t) ΣD

ij(M) and ΣD
ij = Σij − 1

3
Σkkδij , (2.21)

introducing the scalar signed equivalent plastic strain εpΣ such as |εpΣ| =√
2
3εpijε

p
ij . Due to the 3/2 term in (2.21), the accumulated plastic strain has

the same expression as for the uniaxial tensile case:

ṗ = |ε̇pΣ| or p = p(t) =
∫ t

0

|ε̇pΣ|dt . (2.22)

The anisotropic damage case is more complex and the previous equation
εpij = 3

2εpΣΣD
ij of proportional loading in terms of plastic strains may be seen

as an approximation for the general anisotropic 3D case but it strictly applies
for tension-compression and for shear.

2.1.2.1 Kinematic Hardening as an Additional Isotropic
Hardening in Monotonic Proportional Loading

For elasto-(visco-)plasticity with isotropic and kinematic hardenings R and
X, one has σD

ij = σΣΣD
ij , εpij = 3

2εpΣΣD
ij and

Xij = X(t) ΣD
ij , Xeq =

√
3
2
XijXij = |X | . (2.23)
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The yield criterion is

f = (σD − X)eq − R − σy =
(
(σΣ − X)ΣD

)
eq

− R − σy , (2.24)

with

(
(σΣ − X)ΣD

)
eq

=

√
3
2

(σΣ − X)2 ΣD
ijΣ

D
ij = |σΣ − X | Σeq = |σΣ − X | .

(2.25)
In cases of increasing monotonic proportional loadings (σΣ > 0, X > 0,
X < σΣ) one ends up with

f = |σΣ − X | − R − σy = σeq − (Xeq + R) − σy , (2.26)

which shows that kinematic hardening may be considered in these cases as
an additional isotropic hardening. This remark is consistent with the
consideration of one hardening only (either kinematic or isotropic) for com-
putations of structures undergoing monotonic loadings.

2.1.2.2 Damage Post-processing Without Microdefects Closure
Effect

For both isotropic and anisotropic damage, the effective elastic energy density
functions have the same expression if written in terms of elastic strain εe:

Y =
1
2
Eijklε

e
ijε

e
kl or Y =

1
2
Eijklε

e
ijε

e
kl . (2.27)

As for the uniaxial case, information on the time history of the elastic strains
allows for the determination of Y (t) or Y (t) and the damage.

Expressions written in terms of stresses are preferred. For isotropic dam-
age,

Y =
σ2

eqRν

2E(1 − D)2
=

σ2
ΣRν

2E(1 − D)2
, (2.28)

where the triaxiality function Rν only depends on the tensor Σ and has
a constant value:

Rν =
2
3
(1 + ν) +

1
3
(1 − 2ν) (Σkk)2 = const . (2.29)

The possibilities for the time integration of the damage evolution law are

D =
∫ t

tD

(
Eijklε

e
ijε

e
kl

2S

)s
|ε̇pΣ|dt . (2.30)

If the elastic and plastic strains are known or (the most conservative choice),
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then

∫ D

0

(1 − D)2sdD = Rs
ν

∫ t

tD

(
σ2

eq

2ES

)s
|ε̇pΣ|dt

⇔ D = 1 −
[
1 − (2s + 1)Rs

ν

∫ t

tD

(
σ2

eq(t)
2ES

)s
|ε̇pΣ(t)|dt

] 1
2s+1

.

(2.31)

If the von Mises stress σeq = |σΣ|, the stress triaxiality TX =
σH

σeq
= ΣH =

1
3
Σkk and the accumulated plastic strain rate ṗ = |ε̇pΣ| are known, or

D = Rs
ν

∫ t

tD

(
σ2

eq

2ES

)s
|ε̇pΣ|dt (2.32)

as an approximation of the last formula.
The case of anisotropic damage is similar but is made more difficult for

closed-form solutions because of the dependency of the triaxiality function
on the damages D1, D2, and D3. Nevertheless, it may always be worked out
by using

Dij =
3
2
|ΣD|ij

∫ t

tD

(
Y

S

)s
|ε̇pΣ|dt , (2.33)

where Y =
1
2
Eijklε

e
ijε

e
kl and |ΣD| denotes the absolute value of the deviatoric

tensor ΣD in terms of principal components.

2.1.2.3 Damage Post-processing with Microdefects Closure
Effect

For the isotropic damage model, the only change in the damage law is the
expression of Y , which now introduces the microdefects closure parameter h
(1.49):

Y =
1 + ν

2E

[
〈σ〉+ij〈σ〉+ij
(1 − D)2

+ h
〈σ〉−ij〈σ〉−ij
(1 − hD)2

]
− ν

2E

[ 〈σkk〉2
(1 − D)2

+ h
〈−σkk〉2

(1 − hD)2

]
,

(2.34)
with h ≈ 0.2 for metals.

By considering the definition σij = σΣ Σij of proportional loading and by
neglecting the effects of the damage on Y , one gets

Y ≈ σ2
Σ(t)Rνh

2E
, (2.35)
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if σΣ > 0 , Rνh = R+
νh =(1 + ν)

[〈Σ〉+ij〈Σ〉+ij + h〈Σ〉−ij〈Σ〉−ij
]

− ν
[〈Σkk〉2 + h〈−Σkk〉2

]
= const ,

(2.36)

if σΣ < 0 , Rνh = R−
νh =(1 + ν)

[〈Σ〉−ij〈Σ〉−ij + h〈Σ〉+ij〈Σ〉+ij
]

− ν
[〈−Σkk〉2 + h〈Σkk〉2

]
= const .

(2.37)

For the anisotropic damage model the microdefects closure parameter ha

is introduced. It is different from h, with ha ≈ 0 in most cases (1.60). The
effective elastic energy density is then

Y =
1 + ν

2E
tr
(
HpσD

+Hp
)2

+
3(1 − 2ν)

2E

〈σH〉2
(1 − ηDH)2

(2.38)

so that

R+
νh = (1 + ν)〈ΣD〉+ij〈ΣD〉+ij +

1
3
(1 − 2ν)〈Σkk〉2 = const (2.39)

R−
νh = (1 + ν)〈ΣD〉−ij〈ΣD〉−ij +

1
3
(1 − 2ν)〈−Σkk〉2 = const . (2.40)

2.1.3 Post-processing a (Visco-)Plastic Computation

A classical elasto-(visco-)plastic computation without any damage gives the
time histories of the von Mises stress σeq, the hydrostatic stress σH, the
stress triaxiality TX = σH/σeq, the elastic energy density 1

2Eijklε
e
ijε

e
kl, the

accumulated plastic strain rate ṗ, and the stored energy density ws. These
quantities are used directly as inputs for the time integration of the damage
evolution law, providing an estimation of the damage as a function of the
time, the accumulated plastic strain, or the number of cycles for fatigue
applications.

To make the post-processing procedure fast, the time integration of the
damage law may be performed only at the most loaded point location where
the damage equivalent stress σ� = σeqR

1/2
ν has the largest value in the

whole structure. Such a criterion takes the stress triaxiality effect into ac-
count through the function Rν . In that case the hypothesis of a proportional
loading may often be made, allowing for the use of the analytical expressions
of Sects. 2.1.1 and 2.1.2.

The post-processing procedure may also be automatically applied at each
Gauss point of the structure. Then the most loaded point simply is the point
where the damage is the largest. The advantage is that one obtains maps of
the damage field, while the drawback is of course a longer computer time.

If the loading is periodic, it is only necessary to run the elasto-(visco-)
plastic computation up to the stabilized cycle (10 to 50) as the information
collected for the time integration of the damage law will be sufficient. For
large numbers of cycles, a “jump” in cycles procedure may be applied to
avoid the calculation of too many cycles (see Sect. 2.1.5).
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2.1.4 Post-processing an Elastic Computation

Often, the plasticity is localized so that the stresses and the strains of the
entire structure may be first calculated in elasticity. This has many advan-
tages including reduced computational time cost and the possibility to use
the main linearity property to obtain the stress and strain fields for many
other applied loadings. The results depend only on the Young’s modulus and
Poisson ratio.

The (visco-)plastic quantities p, ws and the quantities strongly dependent
on the (visco-)plastic behavior σeq, σH, Y , or Y need to be estimated from
an initial post-processing procedure as those quantities are required for the
time integration of the damage law. Examples of these caculations include
the Neuber method or the Strain Energy Density (SED) method fully de-
scribed in Sects. 3.2.4, 4.2.4 and 5.2.4. These methods are based on a local
energy equivalence at the stress concentration points between an elastic and
an elasto-plastic computation of the same structure with the same loading
history. Applied as post-processors of an elastic computation, the Neuber and
SED methods allow for the determination of the von Mises stress and the ac-
cumulated plastic strain where plasticity is localized (small scale yielding).

The damage post-processing is then carried out as described in Sects. 2.1.1
or 2.1.2, yielding closed-form expressions for the mesocrack initiation condi-
tions with an explicit dependence on plasticity and damage material param-
eters.

The knowledge of the stress triaxiality TX is of first importance as it partly
governs the damage growth through the triaxiality function:

Rν =
2
3
(1 + ν) + 3(1 − 2ν)T 2

X , where TX =
σH

σeq
. (2.41)

It is not given by the Neuber or SED methods. Nevertheless some analytical
results may be obtained for plane deformation problems:

• For a plane stress state, the points located along free edges are exposed
to pure tension (or compression). The value of the triaxiality ratio is
simply 1/3.

• For a plane strain state in elasticity, the triaxiality ratio evaluated at
points located along free edges only depends on Poisson ratio,

TX =
1 + ν

3
√

1 − ν + ν2
, (2.42)

where TX depends on neither the loading type nor its intensity. For ν = 0,
TX = 1/3 for some composite materials. For ν = 1/3, TX = 0.5. For
ν ≈ 0.5, TX = 1/

√
3 ≈ 0.58 for rubber-like materials.

• For a plane strain state in (visco-)plasticity, the closed-form expres-
sion of the stress triaxiality may be derived analytically for points located
along free edges.
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In plasticity with linear hardening the yield function is f = σeq−Cyp−σy,
where Cy is the plastic “tangent” modulus and Cy ≈ (σu − σy)/εpu. The
boundary conditions (free edges of normal �e1: σi1 = 0), the plane strain
condition εi3 = 0, and the elasto-plastic behavior considered altogether
lead to

ε̇33 =
σ̇33 − νσ̇22

E
+

(2σ33 − σ22)ṗ
2σeq

= 0 . (2.43)

With the notations,

χ =
Cy (1 − 2ν)
2(Cy + E)

, u0 =
1√

1 − ν + ν2
, W =

2
√

3χ

3 + 4χ2

(
1 − 2χ

1 − 2ν

)
,

and ω =
2χ

1 − 2ν
+

2χ2

3 + 4χ2

(
1 − 2χ

1 − 2ν

)
,

(2.44)

and without any assumption about the loading, the closed-form expression
for the TX(p) law is then governed by the parametric representation

TX(u) =
u

2
− 1

6

√
4 − 3u2 ,

p(u) =
σy

Cy

⎛
⎝
√

1 − 3u2
0

4 − χ · u0√
1 − 3u2

4 − χ · u

⎞
⎠
ω

· exp

{
W ·
[
arcsin

√
3u
2

]u

u0

}
− σy

Cy
,

(2.45)

which may be seen as a law TX = TX(p) or as TX = TX(σeq): the triaxiality
ratio on a free edge depends on the von Mises stress only.
For Poisson ratios larger than 0.3, there is a slight difference between TX

evaluated in elasticity and TX evaluated in plasticity: the triaxiality re-
mains between 0.5 and 0.58 but its variation shows that the plane strain
loadings are not truly proportional. As soon as elastic strains are negli-
gible, TX reaches a saturation value TXsat. Table 2.1 gives the values of
the triaxiality at saturation as a function of the ratio Cy/E for different
Poisson ratios. For metals, it is TXsat = 0.58.

Table 2.1. Triaxiality in plane strain condition

Cy/E 10−6 0.1 0.25 0.5

TXsat(ν = 0) 0.58 0.56 0.54 0.50
TXsat(ν = 0.3) 0.58 0.57 0.56 0.55
TXsat(ν = 0.5) 0.58 0.58 0.58 0.58

If the hardening law is not linear, one has to fit a linear law in the plas-
tic strain range under consideration and apply the parametric expres-
sion (2.45) as well.
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Consideration of the viscosity effects introduces the viscous stress σv func-
tion of the loading rate. For strain rates at which the viscosity effects are
important, the yield stress has to be replaced by σy+σv but the saturation
value is independent of the loading rate.
To conclude, TX = 0.58 at a free edge point is a good value to consider in
order to evaluate Rν and to achieve plane strain Neuber or SED method.

• For 3D cases, the hypothesis of a stress triaxiality in plasticity equal to
the (known) stress triaxiality in elasticity can be made. This may be seen
as a weak form of proportional loading.

2.1.5 Jump-in-Cycles Procedure in Fatigue
(R. Billardon and I. Doghri 1988)

For loadings that are periodic or periodic by blocks in fatigue, the step by step
computation in time becomes prohibitive when the number of cycles becomes
large (104, 106, 108, . . . ). Therefore a simplified method which allows the
program to “jump” full blocks of ∆N cycles is necessary. The time integration
is performed over one cycle once in a while and the computation time may
be reduced by a factor of almost ∆N .

This “jump”-in-cycles procedure is as follows:

1. Before any damage growth, i.e., up to ws = wD or p = pD, run the

computation until reaching a stabilized cycle Ns and let
δp

δN

∣∣∣∣
Ns

be the

accumulated plastic strain increment over this single cycle. Assume then
that during the next ∆N cycles, p remains linear versus the number of
cycles N and calculate the number of cycles to be advanced by ∆N cycles
as

∆N =
∆p

δp

δN

∣∣∣∣
Ns

, (2.46)

where ∆p is a given value which determines the accuracy of the procedure
and ∆p ≈ pD/50 is a good compromise between accuracy and time cost.
The accumulated plastic strain is updated as

p(Ns + ∆N) = p(Ns) + ∆p (2.47)

and is equal to r(Ns + ∆N) as long as there is no damage. The stored
energy density is updated as

ws(Ns + ∆N) = ws(Ns) +
∫ p(Ns+∆N)

p(Ns)

A

m
R(p)p

1
m−1dp . (2.48)

The stresses, strains, plastic strains, kinematic hardening at the end of
the cycle Ns, the accumulated plastic strain p(Ns + ∆N), and the stored
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energy density ws(Ns + ∆N) are then the initial values for the computa-
tion of the first time increment of the cycle (Ns + ∆N + 1).
Repeat the jumps until damage occurs.

2. Once damage occurs, first run the computation at constant damage until
a new stabilized cycle Ns is reached. Then

• Calculate the accumulated plastic strain increment
δp

δN

∣∣∣∣
Ns

.

• Calculate the damage increment
δD

δN

∣∣∣∣
Ns

or
δDH

δN

∣∣∣∣
Ns

over this cycle.

• Assume again that during the next ∆N cycles, p and D (or DH)
remain linear versus N and calculate the number of cycles to be ad-
vanced as

∆N = min

⎛
⎜⎜⎜⎝ ∆p

δp

δN

∣∣∣∣
Ns

,
∆D

δD

δN

∣∣∣∣
Ns

⎞
⎟⎟⎟⎠ , (2.49)

where ∆D is a given value which determines the accuracy on the
damage. Here again ∆D ≈ Dc/50 is a good compromise between

accuracy and time cost and take ∆p =
(

S
Ymax

)s
∆D with Ymax as the

maximum value of functions Y or Y over the cycle Ns.
The accumulated plastic strain and the damage are finally updated as

p(Ns + ∆N) = p(Ns) +
δp

δN

∣∣∣∣
Ns

∆N ,

r(Ns + ∆N) = r(Ns) +
δr

δN

∣∣∣∣
Ns

∆N ,

D(Ns + ∆N) = D(Ns) +
δD

δN

∣∣∣∣
Ns

∆N for isotropic damage, and

Dij(Ns + ∆N) = Dij(Ns)

[
1 +

1
DH(Ns)

δDH

δN

∣∣∣∣
Ns

∆N

]
for anisotropic
damage,

(2.50)

and the stored energy density as

ws(Ns + ∆N) = ws(Ns) +
∫ r(Ns+∆N)

r(Ns)

A

m
R(r)r

1
m−1dp . (2.51)

The stresses, strains, plastic strains, kinematic hardening at the end of the
cycle Ns, the accumulated plastic strain p(Ns + ∆N), the stored energy
density ws(Ns +∆N), and the damage D(Ns +∆N) or D(Ns +∆N) are
then the initial values for the computation of the first time increment of
the cycle (Ns + ∆N + 1).
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2.2 Fully-Coupled Analysis

For complex loadings, such as non-proportional or anisothermal, or for severe
loadings leading to large scale yielding, the stress and damage states cannot
be determined from an uncoupled analysis. Stress redistribution and stress
triaxiality changes enhanced by the damage may be a major accelerating
factor towards structural failure.

It is then necessary to solve the continuum mechanics equilibrium equa-
tions in a fully coupled manner with the elasto-(visco-)plasticity coupled with
damage laws (see Fig. 2.2). This is in general a difficult task as the problem
is strongly nonlinear and the computation of strain localization gives rise to
non-unique, mesh-dependent solutions.

Fig. 2.2. Fully coupled approach to structural damage analysis

Based on both time and space discretizations, the finite element anal-
ysis (FEA) is commonly used to solve complex engineering structure prob-
lems. The FEA is briefly described here for nonlinear material behavior. The
main part of this section concerns the description of the implicit numerical
schemes used for the implementation of the damage models of Chap. 1 as
subroutines of commercial finite element computer codes.

Temperature-dependent loadings and behaviors are considered. As the in-
fluence of the mechanical behavior on heat transfer remains small in many
situations (be careful with contact problems and high speed dynamic ef-
fects . . . ), one assumes that the history of the temperature field is deter-
mined from an initial thermal computation. It affects the mechanical prob-
lem through the temperature dependency of the material parameters and
the thermal strain εth = α(T − Tref)1. The schemes described remain the
same whether or not the viscosity effect is taken into account. They allow
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us to represent the continuous transition plasticity/visco-plasticity due to
temperature variation.

One considers here the quasistatic case. The acceleration quantities and
the inertia effect are not taken into account.

2.2.1 Nonlinear Material Behavior FEA
(J.J. Moreau 1974, Q.S. Nguyen 1977, J.C. Simo and R.L. Taylor 1986)

The finite element analysis uses a mesh of the considered structure in ac-
cordance with both the computation option (2D, axisymmetric, 3D) and
the degree of approximation for the elementary displacement field (linear
or quadratic shape functions in general).

The approximations for the displacement �u(M) on each element Ve have
the general expression

�u ≈ {u} = {u(M)} = [N ] {U e} , (2.52)

where shape functions Nij(M) are introduced. The vector {U e} represents
the nodal unknowns (displacements) of an element; it is part of the nodal
displacements vector {U} for the whole structure. For 2D problems with
n-node elements, {U e} has 2n components and [N ] is a 2 × (2n) matrix.
For 3D problems with n-node elements, {U e} has 3n components and [N ] is
a 3 × (3n) matrix.

The Voigt vectorial representation for the strain tensor {ε} and the stress
tensor {σ} may be considered:

{ε} =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33√
2ε23√
2ε31√
2ε12

⎤
⎥⎥⎥⎥⎥⎥⎦

, {σ} =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33√
2σ23√
2σ31√
2σ12

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.53)

The strains are calculated from information on the displacements by use
of classical differential operators [D] and [B], such that

{ε} = [D]{u} = [B] {U e} and [B] = [D] [N ] . (2.54)

The virtual work principle allows us to derive the global matricial form
for the equilibrium equations,

{RGE} ≡
∑

all elements

∫
Ve

[B]T {σ} dV − {F} = 0 , (2.55)

where the vector {F} accounts for the applied loading. This last equation
also defines the global FE residual {RGE} which vanishes for the equilibrated
solution.
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The local nonlinear constitutive equations are often linearized and solved
by use of iterative methods (Newton–Raphson or Quasi-Newton methods . . .
or others). The consistent tangent operator Lc and its matricial representa-
tion [Lc] are then defined as

Lc =
∂∆σ

∂∆ε
or [Lc] =

∂{∆ε}
∂{∆σ} , (2.56)

where {∆σ} is the stress increment obtained for the strain increment {∆ε}.
[Lc] will be used to build a FE tangent matrix (see next section), ensuring
good convergence of the iterative scheme for the resolution of the global
equilibrium (2.55).

To sum up, the full mechanical problem is made of a global equation
concerning the whole structure and two local equations:

• The global equilibrium {RGE} = 0,
• The compatibility equation {ε} = [B] {U e},
• The constitutive equations considered at each Gauss (or integration)

point.

Of course the boundary conditions and the initial conditions are included as
well.

Due to the nonlinearity in material behavior and the loading dependency
of the tangent operator, it is difficult to ensure both global equilibrium and
local behavior simultaneously. An iterative process takes place which con-
sists of each instant tn+1 in iterations made of a global equilibrium resolution,
followed by local integrations (see Fig. 2.3):

• The global FE resolution of the structure equilibrium is made with tan-
gent operators [Lc(M)]. The initial value for [Lc] is the effective elasticity
matrix [Ẽ]. The solution obtained called “elastic predictor” is a first
estimate {U1

n+1} for the nodal displacements vector at time tn+1 and
for the strains {ε1n+1}.

• The local time integrations of the nonlinear behavior equations called
“plastic corrector” are performed in order to satisfy the state and the
evolution laws (“local” means “performed at each Gauss point”). Practi-
cally, this integration is made through the use of subroutines
– whose inputs are the first estimate for the strains {ε1n+1} and the

values of the state and internal variables at time tn
and
– whose outputs are the updated estimates for the state and internal

variables at time tn+1, the updated value of the consistent tangent
operator (if possible), or any good approximation.

A global convergence criterion is checked at the end of the local time integra-
tion of the constitutive equations, such as the absolute convergence, written
in terms of residuals ‖{RGE}‖ < admitted error, or the relative convergence,
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Fig. 2.3. FEA algorithm for nonlinear constitutive equations
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written in terms of relative residuals ‖{∆RGE}‖
‖{F}‖ < admitted error. When sat-

isfied, the estimate for {U q
n+1}, for the state and internal variables, is kept

as the FE solution at time tn+1. If the convergence is not easily reached, the
time step is reduced and the whole process is restarted with a smaller tn+1.

The computation of the structure response at time tn+2 is made follow-
ing the same procedure. The relative criterion is usually preferred because
dimensionless but it is inapplicable when unloadings with ‖{F}‖ = 0 occur.

2.2.2 FE Resolution of the Global Equilibrium

The global equilibrium equations at time tn+1 are

RGE({Un+1}) = 0 , (2.57)

with {Un+1} as the FE solution (to be determined) of the mechanical problem
at time tn+1. If this nonlinear equation is solved iteratively by use of the
Newton method, solutions {U q+1

n+1} are calculated at each q-th global iteration
such as

RGE({U q
n+1}) + KT|qn+1 ·

(
{U q+1

n+1} − {U q
n+1}

)
= 0 . (2.58)

The previous equation introduces the tangent stiffness matrix KT built from
the knowledge at each point of the consistent tangent matrix [Lc]:

KT|qn+1 =
[
∂RGE

∂{U}
]q

n+1

=
∑

all elements

∫
Ve

[B]T[Lc]qn+1[B] dVe . (2.59)

Despite its expected rapid convergence, the Newton–Raphson process
solving the global equilibrium equations can be expensive and inconvenient
because its main disadvantage for non-associated plasticity coupled with dam-
age models is that [Lc] and KT are not symmetric, so specific solvers are
required.

In fact, any approximations for [Lc] and KT may be used as these matrices
only affect the convergence rate of the iterative process (Fig. 2.4). Modified
Newton methods use, for instance, the tangent matrix calculated at the first
iteration. It is even possible to use the elasticity matrix [E] or the effective
elasticity matrix [Ẽ] as a constant iterative matrix over a time increment.
Quasi-Newton methods use a secant approximation KS of KT.

Last, note that the arc-length methods (G.A. Wempner 1971, E. Riks
1972, 1979, M.A. Crisfield 1980) can converge when classical displacement
control methods fail. Nevertheless, the capture of instabilities such as se-
vere strain localization may demand specific enhanced arc-length algorithms
(M.A. Crisfield 1996).

In any case, most robust algorithms are available in the commercial FE
computer codes. Do not hesitate to switch from one method to another when
convergence difficulties are encountered!
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Fig. 2.4. Iterative process for nonlinear FEA

To initiate the process, the resolution starts with a (thermo-)elastic com-
putation (the elastic predictor) with [Lc]1t=tn+1

= [Ẽ]t=tn (the effective
elasticity matrix) locally and gives {U1

n+1} as the initial first estimate. The
corresponding first estimate for the strain at time tn+1 needed for the local
time integrations is

{ε1n+1} = {εn} + {∆ε} and {∆ε} = [B]
({U1

n+1} − {Un}
)

. (2.60)

After each q-th global resolution, a q-th local time integration (the plastic
corrector) gives the value of the tangent operator, [Lc]qn+1, a new first es-
timate for the FE solution, {Un+1} = {U q+1

n+1}, and {εn+1} = {εq+1
n+1} is set

with

{εq+1
n+1} = {εn} + {∆εq} and {∆εq} = [B]

(
{U q+1

n+1} − {Un}
)

. (2.61)

Remark on dynamics – Taking dynamic effects into consideration does not

change the numerical resolution of the mechanical problem by too much. From a the-

oretical point of view a matrix Kdyn (built with the acceleration terms of dynamics

equilibrium not explicited stated above) has to be added to the previous tangent

matrix KT. As for the damage models of Chap. 1, the density remains constant

and Kdyn does not depend on the damage behavior. From a practical point of view,

the expression for Kdyn depends on the numerical scheme chosen for the time dis-

cretization of the acceleration quantities and explicit algorithms may be needed for
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the local integration of the constitutive laws. Such a work needs much care and is

not described here.

2.2.3 Local Integration Subroutines

After each resolution of the global structure equilibrium, the value of the
stress {σn+1}, the thermodynamics internal variables, the accumulated plas-
tic strain, the stored energy, and the value of [Lc] are updated. This is
made by performing the local time integration of the constitutive laws of
Sect. 1.5 at the structure’s Gauss points for which f > 0 (a negative yield
criterion f < 0 corresponds to an elastic state and does not need any
correction).

The inputs for the local integration subroutine are the values at current
time tn+1 of the strain tensor εn+1 (represented by the previous {εn+1}), the
thermodynamics variables σn, εn, εe

n, εp
n, rn, Rn, αn, Xn, Dn, or Dn at time

tn, as well as the values of the accumulated plastic strain pn and the stored
energy wsn. The calculation of p is not strictly necessary as it is replaced
by the variable r, but is useful for comparisons with measures and fitting of
experimental data. Recall that, as long as there is no damage, the equality
r = p stands and the damage threshold p = pD is equivalent to r = pD.
The outputs are the same variables as above but calculated at time tn+1 and
the updated consistent tangent operator (previous matrix [Lc] or any good
approximation for [Lc]).

If the damage model does not exist in the chosen FE code, it has to be
implemented as a subroutine (such as ABAQUS UMAT FORTRAN subrou-
tines) written in the adequate language of programming. The corresponding
implicit algorithms are fully described in Sects. 2.2.4 and 2.2.5.

Due to the strong nonlinearity of the behavior and the possible occurrence
of instabilities, implicit schemes are preferred. During the same computation,
they allow switching between plasticity models at low temperature to visco-
plasticity models at higher temperature (and reciprocally) as the Norton
parameters vary with T .

For high-temperature, visco-plastic damage computations, explicit
schemes (very sensitive to the time step) may be used with shorter com-
putation times if the value of Dc is not too large (≤ 0.3). The algorithms
for the time integration of the constitutive equations are simpler: the values
at time tn+1 of the accumulated plastic strain and the state variables are
calculated from the explicit discretization of a nonlinear system of first or-
der differential equations (use of Runge–Kutta schemes, for example). This
makes the computation of structures undergoing visco-plasticity/plasticity
transition more difficult. Plasticity is then numerically recovered by setting
N → ∞ and the numerical convergence is difficult.

Finally, do not use explicit schemes for states of damage close to the
occurrence of strain localization as instabilities are expected.
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2.2.4 Single Implicit Algorithm for Damage Models
(R. Desmorat and J. Besson 2001)

The damage models of Tables 1.3 and 1.5, Sect. 1.5, use the effective stress
for damage coupling with both elasticity and plasticity. This feature allows
for the use of the existing schemes developed for elasto-(visco-) plasticity
(A. Benallal, R. Billardon and I. Doghri 1988).

The algorithm described here applies to anisothermal computations, the
temperature maps being determined for each time increment by a previ-
ous heat transfer computation. In order to make the presentation as well
as the programming synthetic, both isotropic and anisotropic damage vari-
ables are represented by the second order tensors D and H = (1 − D)−

1
2 .

Isotropy represents the limiting case where D = D 1, H = 1/
√

1 − D, and
η = 1.

The evolution laws for the internal variables are derived from the nor-
mality rule applied to the potential F = f + FX + FD, where f is the yield
criterion, FX stands for the nonlinearity of the kinematic hardening and FD

stands for the damage evolution. Remember that

f = (σ̃ − X)eq − R − σy, and FX =
3γ

4C
X : X , (2.62)

with (.)eq =
√

3
2 (.)D : (.)D the von Mises norm. We will define the normals

as

nX =
∂F

∂σ̃
= − ∂f

∂X
=

3
2

σ̃D − X

(σ̃D − X)eq
,

n =
∂F

∂σ
=
(
HnXH

)D
,

m = − ∂F

∂X
= nX − γα .

(2.63)

The evolution laws for the plastic strain and the kinematic hardening then
become

ε̇p = λ̇
∂F

∂σ
= ṙn and α̇ = −λ̇

∂F

∂X
= ṙm (2.64)

and the accumulated plastic strain rate is

ṗ =

√
2
3
n : n ṙ , (2.65)

which reads ṗ = ṙ/(1 − D) for isotropic damage.
With the state laws

σ̃ = E : [εe − α(T − Tref)1] and X =
2
3
Cα (2.66)
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and with the definition of H, the normals nX, n, and m may be expressed
at given T as functions of εe, α, and D only:

nX = nX(εe, α), n = n(εe, α, D), m = m(εe, α) . (2.67)

A set of 4 nonlinear equations of the 4 independent variables W =
{εe, α, r, D} then has to be solved in a coupled manner, as follows:

ε̇ − ε̇e − ṙn = 0 ,

α̇ − ṙm = 0 ,

f − σv = (σ̃ − X)eq − R − σy − σv = 0 ,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ḋ −
(

Y

S

)s
ṗ 1 = 0 isotropic damage,

Ḋ −
(

Y

S

)s
|n|ṙ = 0 anisotropic damage,

(2.68)

where |n| means the absolute value of n in terms of principal components
and where

• R = R(r)

• σv =

⎧⎪⎨
⎪⎩

KN ṗ
1
N = KN

(√
2
3n : n ṙ

) 1
N

Norton law

K∞
[
1 − exp

(
− 1

n

√
2
3n : n ṙ

)]
exponential law

• Y (εe) = Y (εe) =
1
2
E : εe : εe

For the sake of relative simplicity, the dilatancy terms are dropped out next.
Keeping them does not yield any particular difficulties.

2.2.4.1 Discretization by the θ-method

The previous set of nonlinear equations is discretized in time by considering
the resolution variables at the intermediate time, tn+θ = tn + θ∆t, with θ as
the numerical parameter of the so-called θ-method.

• The value 0 ≤ θ ≤ 1 is used for the 3 differential equations.
• In plasticity, it is of first importance to ensure the validity of the yield cri-

terion at each computation time tk. The value θ = 1 (Euler fully implicit
scheme) is set for the nonlinear equation fn+1 = 0 and the incremental
form of the plasticity loading/unloading conditions is ∆r ≥ 0, fn+1 ≤ 0,
and ∆rfn+1 = 0.
Any value 0 < θ ≤ 1 can be used in visco-plasticity.



2.2 Fully-Coupled Analysis 99

In plasticity coupled with damage, the local residual is then defined as

{Rloc} = {Rεe , Rα, Rr, , RD}T ,

{Rloc} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rεe = ∆εe − ∆ε + ∆r nn+θ ,

Rα = ∆α − ∆r mn+θ ,

Rr = fn+1 = (σ̃n+1 − Xn+1)eq − R(rn+1) − σy ,

RD =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∆D −
(

Y (εe
n+θ)
S

)s ∆r

1 − Dn+θ
1 , for isotropic damage,

∆D −
(

Y (εe
n+θ)
S

)s
|nn+θ| ∆r , for anisotropic damage,

(2.69)

where for any of the 4 variables εe, α, r, and D, the subscript n + θ means
“variable at time tn + θ∆t”: Wn+θ = Wn + θ∆W , i.e.,

εe
n+θ = εe

n + θ∆εe ,

αn+θ = αn + θ∆α , (2.70)
rn+θ = rn + θ∆r ,

Dn+θ = Dn + θ∆D ,

and for any function g of those variables,

gn+θ = g
(
εe

n+θ, αn+θ, rn+θ, Dn+θ

)
. (2.71)

In visco-plasticity coupled with damage, the residual Rr is changed to Rv
r ,

Rv
r = ∆r − ∆t√

2
3nn+θ : nn+θ

〈
fn+θ

KN

〉N
. (2.72)

Performing the time integration of the constitutive law consists of reaching
the local convergence ‖{Rloc}‖ < admitted error at a given strain {ε} =
{εn+1} or ε = εn+1 by correcting the variables εe, α, r and D. The Newton
iterative scheme may be used again and one has then to solve

{R q′
loc n+1} +

[
∂{Rloc}
∂∆W

]q′

n+1

·
(
Wq′+1

n+1 −Wq′
n+1

)
= 0 , (2.73)

where the expression for the jacobian matrix [∂{R}/∂∆W]q
′

n+1 (or any good
approximation) of the partial derivative of each discretized equation with re-
spect to each variable increment ∆W = {∆εe, ∆α, ∆r, ∆D} is needed for
convergence reasons. The convergence of the Newton scheme for the local



100 2 Numerical Analysis of Damage

integration is not guaranteed in general. For the damage models under con-
sideration, the convergence is enhanced by using Amarthe derivatives derived
in next subsection and 3D computations have proven the method efficient.

At convergence, ∆εe = ∆εeq′+1, ∆α = ∆αq′+1, ∆r = ∆rq′+1, and ∆D =
∆Dq′+1 is set and

εe
n+1 = εe

n + ∆εe ,

αn+1 = αn + ∆α ,

rn+1 = rn + ∆r ,

Dn+1 = Dn + ∆D .

(2.74)

2.2.4.2 Closed-form expression of the Jacobian matrix

The derivatives of {R} taken with respect to ∆W define the Jacobian matrix

as [Jac] =
∂{R}
∂∆W . For any function g one has

∂g

∂∆W =
∂g

∂W :
∂W

∂∆W = θ
∂g

∂W (2.75)

and all the necessary
∂

∂∆W terms are given thereafter.
First, let us consider εe, α, r, and D as independent variables such that

∂nX

∂σ̃
= −∂nX

∂X
=

1
(σ̃ − X)eq

[
3
2
I − 1

2
1 ⊗ 1− nX ⊗ nX

]
,

∂nX

∂r
= 0 , and

∂nX

∂D
= 0 ,

(2.76)

where (σ̃ − X)eq =
(

E : εe − 2
3
Cα

)
eq

.

To calculate the derivatives of n, a fourth order tensor Q is defined such
that n = (HnXH)D = Q : nX and

Q = H⊗H − 1
3
1⊗ H2 , (2.77)

where the special tensorial product H⊗H applied on the symmetric second
order tensor H stands for (H⊗H)ijkl = HikHjl, leading to

∂n

∂σ̃
= − ∂n

∂X
= Q :

∂nX

∂σ̃
∂n

∂r
= 0 .

(2.78)
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Table 2.2. Jacobian terms for isotropic and anisotropic damage models

Derivatives of Rεe with respect to ∆W

∂Rεe

∂∆εe
= I + θ∆r Q

n+θ
:

∂nX

∂σ̃

∣∣∣∣
n+θ

: E

∂Rεe

∂∆α
=

2

3
Cθ∆r Q

n+θ
:

∂nX

∂X

∣∣∣∣
n+θ

∂Rεe

∂∆r
= nn+θ

∂Rεe

∂∆D
= θ∆r

∂n

∂D

∣∣∣∣
n+θ

Derivatives of Rα with respect to ∆W

∂Rα

∂∆εe
= −θ∆r

∂nX

∂σ̃

∣∣∣∣
n+θ

: E

∂Rα

∂∆α
= (1 + γθ∆r) I

− 2

3
Cθ∆r

∂nX

∂X

∣∣∣∣
n+θ

∂Rα

∂∆r
= −mn+θ

∂Rα

∂∆D
= −θ∆r

∂nX

∂D

∣∣∣∣
n+θ

Derivatives of Rr with respect to ∆W (take θ = 1 for the plastic case)

∂Rr

∂∆εe
= θ nX

n+θ : E

∂Rr

∂∆α
= −2

3
Cθ nX

n+θ

∂Rr

∂∆r
= −θR′(rn+θ)

∂Rr

∂∆D
= 0

Derivatives of RD with respect to ∆W

Isotropic damage Anisotropic damage

∂RD

∂∆εe
= − sθY s−1

n+θ ∆r

Ss(1 − Dn+θ)
1 ⊗ E : εe

n+θ

∂RD

∂∆α
= 0

∂RD

∂∆r
= −

(
Yn+θ

S

)s
1

1 − Dn+θ
1

∂RD

∂∆D
= I −

(
Yn+θ

S

)s

× θ∆r

(1 − Dn+θ)2
1

3
1 ⊗ 1

∂RD

∂∆εe
≈ −sθY

s−1
n+θ∆r

Ss
|nn+θ| ⊗ E : εe

n+θ

∂RD

∂∆α
≈ 0

∂RD

∂∆r
= −

(
Y n+θ

S

)s
|nn+θ |

∂RD

∂∆D
≈ I
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The differentiation of the property H2(1− D) = (1− D)H2 = 1 allows for
the calculation of the derivatives of H2 and H with respect to D:

∂H2

∂D
= H2⊗H2 ,

∂H

∂D
= A−1 :

(
H2⊗H2

)
,

(2.79)

where A is the fourth order tensor A = H⊗1 + 1⊗H or its symmetric part
already introduced in Chap. 1 (Eq. (1.38) of Sect. 1.2.3). The expression for
∂n
∂D is finally derived from the knowledge of

∂(H nXH)
∂H

= 1⊗ (H nX
)

+
(
H nX

)⊗1 (2.80)

as
∂n

∂D
=

∂(H nXH)
∂H

:
∂H

∂D
− 1

3
1 ⊗ nX :

(
H2⊗H2

)
. (2.81)

Table 2.2 gives an abstract of all the Jacobian terms for plasticity coupled
with damage. When the viscosity effects are taken into account, one needs
the terms ∂Rv

r

∆W at time tn+θ. For ∆r, we consider the Norton law (2.72) here
so that

∂Rv
r

∂∆r
= 1 − N∆tfN−1

n+θ

KN
N

∂Rr

∂∆r
. (2.82)

For ∆Wi = ∆εe, ∆α, ∆D, we have

∂Rv
r

∂∆Wi
= − N∆tfN−1

n+θ

KN
N

√
2
3nn+θ : nn+θ

∂∆Rr

∂∆Wi

− ∆tfN
n+θ

KN
N

2
3θ nn+θ√

2
3nn+θ : nn+θ

:
∂n

∂Wi

∣∣∣∣
n+θ

.

(2.83)

2.2.4.3 Updating the Thermodynamics Variables

Once εe
n+1, αn+1, rn+1, and Dn+1 are known, the remaining thermodynamics

variables are updated explicitly:

• Effective stress tensor σ̃n+1 = E : εe
n+1

• Plastic strain tensor εp
n+1 = εn+1 − εe

n+1

• Strain hardening variables Rn+1 = R(rn+1), Xn+1 =
2
3
Cαn+1

• Accumulated plastic strain pn+1 = pn +
√

2
3nn+θ : nn+θ ∆r equivalent

to pn+1 = pn + ∆r/(1 − Dn+θ) for isotropic damage
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• Stored energy (Be careful for the integration: the correction term
z(r) = A

mr(1−m)/m of Sect. 1.4.1 is singular in r = 0)

ws n+1 = AR(rn+1)r
1/m
n+1 +

1
3
C αn+1 : αn+1 − ω̂n+1 ,

ω̂n+1 = ω̂n +
A

2

[
R′(rn)r1/m

n + R′(rn+1)r
1/m
n+1

]
∆r ,

with R′(r) = bR∞ exp(−br) for exponential isotropic hardening.

• Damage Hn+1 = (1− Dn+1)−
1
2 , Yn+1 = Y n+1 =

1
2
E : εe

n+1 : εe
n+1

• Stress tensor σn+1 = M−1
n+1 : σ̃n+1 = σD

n+1 + σ̃H n+11 (see Eq. (2.91)),
also written as⎧⎨
⎩σD

n+1 = H−1
n+1σ̃n+1H

−1
n+1 −

(1 − Dn+1) : σ̃n+1

3(1 − DH n+1)
(1 − Dn+1) ,

σH n+1 = (1 − ηDH n+1)σ̃H n+1 .

(2.84)
Note that for isotropic damage, the last equation simply recovers
σn+1 = (1 − Dn+1) σ̃n+1.

2.2.4.4 Consistent Tangent Operator
(J.C. Simo and R.L. Taylor 1985, J. Besson 1999)

One of the advantages of the implicit integration by Newton methods is
the direct calculation of the consistent tangent operator Lc or its matrix
representation [Lc].

Let us break down the residual {Rloc} into 2 parts,

{Rloc} = {Ri} − {Re} and {Re} =

⎡
⎢⎢⎣

∆ε
0
0
0

⎤
⎥⎥⎦ (2.85)

where {Ri} corresponds to the contribution due to the internal variables and
{Re} to the contribution due to the applied loading. Once the convergence is
reached, we perform a perturbation of (2.85), δ{Rloc} = δ{Ri}−δ{Re} = {0}.
With the definition of the Jacobian matrix, we have

δ{Ri} = [Jac] δ∆W . (2.86)

One has then ⎡
⎢⎢⎣

δ∆εe

δ∆α
δ∆r
δ∆D

⎤
⎥⎥⎦ = [Jac]−1

⎡
⎢⎢⎣

δ∆ε
0
0
0

⎤
⎥⎥⎦ , (2.87)



104 2 Numerical Analysis of Damage

which shows that the first column of the inverse of the Jacobian matrix at
convergence is the vector

⎡
⎢⎢⎢⎢⎣

[Jac]−1
εe,εe

[Jac]−1
α,εe

[Jac]−1
r,εe

[Jac]−1
D,εe

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂∆εe

∂∆ε
∂∆α

∂∆ε
∂∆r

∂∆ε
∂∆D

∂∆ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.88)

whose value at time tn+θ is calculated within Newton iterative resolution.
The tensorial definition of the effective stress σ̃ = M : σ with

M = H⊗H − 1
3
[
H2 ⊗ 1 + 1 ⊗ H2

]
+

1
9
(
trH2

)
1⊗ 1 +

1
3(1 − ηDH)

1 ⊗ 1

(2.89)
gives back

σ̃ =
(
HσDH

)D
+

σH

1 − ηDH
1 , (2.90)

and may be inverted in

σ = M−1 : σ̃ = H−1σ̃H−1− (1− D) : σ̃

3(1 − DH)
(1−D)+ (1− ηDH)σ̃H1 , (2.91)

with H−1 = (1 − D)1/2 and

M−1 = H−1⊗H−1 − (1 − D) ⊗ (1− D)
3(1 − DH)

+
1
3
(1 − ηDH)1⊗ 1 . (2.92)

Then,

δ∆σ = M−1 : δ∆σ̃ + σ̃ :
∂M−1

∂D
: δ∆D (2.93)

and finally with

δ∆σ̃ = E : δ∆εe = E : [Jac]−1
εe,εe : δ∆ε

δ∆D = [Jac]−1
D,εe : δ∆ε ,

(2.94)

the expression for the consistent tangent operator is:

Lc = M−1 : E : [Jac]−1
εe,εe + σ̃ :

∂M−1

∂D
: [Jac]−1

D,εe . (2.95)
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2.2.5 Damage Models with Microdefects Closure Effect
(R. Desmorat and J. Besson 2001)

For the damage models with the microdefects closure effect (consideration of
the material parameters h or ha of Chap. 1), the effective stress defined in
elasticity by σ̃ = E : [εe − α(T − Tref)1] is not used for the coupling with
plasticity.

For the isotropic damage model, σ̃ is given by Eq. (1.48) of Sect. 1.2.4
but now

f = (s − X)eq − R − σy with s =
σD

1 − D
�= σ̃D , (2.96)

where (.)eq =
√

3
2 (.)D : (.)D is the von Mises norm. For the anisotropic dam-

age model σ̃ is given by (1.57) and

f = (s−X)eq−R−σy with s = (1−D)−1/2σD(1−D)−1/2 �= σ̃D . (2.97)

Again, isotropic and anisotropic damage may be represented by the single
second order tensor D, with isotropy being the limiting case D = D1.

As the yield criterion remains unchanged, the normals nX, n and m
have the same expressions as for the case without the microdefects closure
effect:

nX =
3
2

sD − X

(s − X)eq
,

n =
[
(1− D)−1/2nX(1− D)−1/2

]D
,

m = nX − γα ,

(2.98)

and can be considered as functions of α, D and σ only.
A set of 5 nonlinear equations function of the 5 independent variables

{εe, α, r, D, σ} has to be solved in a coupled manner:

ε̇ − ε̇e − ṙn = 0 ,

α̇ − ṙm = 0 ,

f − σv = (s − X)eq − R − σy − σv = 0 ,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ḋ −
(

Y

S

)s
ṗ 1 = 0 for isotropic damage,

Ḋ −
(

Y

S

)s
|n|ṙ = 0 for anisotropic damage,

εe − E−1 : σ̃ − α(T − Tref)1 = 0 ,

(2.99)
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with

• σ̃ as the effective stress such as the elasticity law. For isotropic damage,

εe−1 + ν

E

[ 〈σ〉+
1 − D

+
〈σ〉−

1 − hD

]
+

ν

E

[ 〈tr σ〉
1 − D

− 〈−tr σ〉
1 − hD

]
1−α(T−Tref)1 = 0

(2.100)
and for anisotropic damage,

εe − 1 + ν

E

[
(HpσD

+Hp)D + (HnσD
−Hn)D

]
− 1 − 2ν

E

[ 〈σH〉
1 − ηDH

− 〈−σH〉
1 − ηhaDH

]
1− α(T − Tref)1 = 0 ,

(2.101)

with Hp = (1− D)−1/2 and Hn = (1 − haD)−1/2.

• X =
2
3
Cα, R = R(r) for hardening.

• σv = KN ṗ
1
N or σv = K∞

[
1 − exp

(
− ṗ

n

)]
for the viscosity law.

• Y = Y (D, σ), Y = Y (D, σ). For isotropic damage,

Y =
1 + ν

2E

[ 〈σ〉+ : 〈σ〉+
(1 − D)2

+ h
〈σ〉− : 〈σ〉−
(1 − hD)2

]

− ν

2E

[ 〈tr σ〉2
(1 − D)2

+ h
〈−tr σ〉2
(1 − hD)2

] (2.102)

and for anisotropic damage,

Y =
1 + ν

2E
tr
[(

HpσD
+Hp

)2
+ ha

(
HnσD

−Hn
)2]

+
3(1 − 2ν)

2E

[ 〈σH〉2
(1 − ηDH)2

+ ha
〈−σH〉2

(1 − ηhaDH)2

]
.

(2.103)

Still for the sake of relative simplicity, the dilatancy terms are dropped out
next.

2.2.5.1 Discretization by the θ-method

The previous set of nonlinear equations is discretized by use of the θ-method
(with θ = 1 for the yield criterion). This defines the local residual for plasticity
coupled with damage as
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{Rloc} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rεe = ∆εe − ∆ε + ∆r nn+θ ,

Rα = ∆α − ∆r mn+θ ,

Rr = fn+1 = (sn+1 − Xn+1)eq − R(rn+1) − σy ,

RD =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∆D −
(

Yn+θ

S

)s ∆r

1 − Dn+θ
1 for isotropic damage,

∆D −
(

Y n+θ

S

)s
|nn+θ| ∆r for anisotropic damage,

Rσ = εe
n+θ − E−1 : σ̃n+θ

(2.104)
and the incremental form of the plasticity loading/unloading conditions still
reads as ∆r ≥ 0, fn+1 ≤ 0, and ∆rfn+1 = 0.

The main difference with the case without the microdefects closure effect
is that the relationship σ(εe, D) is now implicit and given by the numerical
inverting of the elasticty law.

For visco-plasticity coupled with damage, we consider the Norton law for
the residual Rv

r defined by (2.72) instead of Rr.

2.2.5.2 Jacobian Matrix

The Newton iterative scheme is used again here and the derivatives of the
residuals with respect to the increments ∆εe, ∆α, ∆r, ∆D, and ∆σ are
needed.

First, we have

∂nX

∂s
= −∂nX

∂X
=

1
(s − X)eq

[
3
2
I − 1

2
1⊗ 1− nX ⊗ nX

]
,

∂nX

∂εe
= 0 ,

∂nX

∂r
= 0 ,

∂nX

∂α
=

2
3
C

∂nX

∂X
,

∂nX

∂D
=

∂nX

∂s
:

∂s

∂D
,

∂nX

∂σ
=

∂nX

∂s
:

∂s

∂σ
,

(2.105)

with

∂s

∂D
=

∂HpσDHp

∂Hp :
∂Hp

∂D
∂s

∂σ
= Hp⊗Hp − 1

3
Hp2 ⊗ 1 ,

(2.106)
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where ∂HpσDHp

∂Hp and ∂Hp

∂D are defined by (2.79) with H changed into Hp

and nX into σD.
Again, we set up n = (HpnXHp)D = Q : nX with Q and ∂(Hp nXHp)

∂Hp

obtained by replacing H by Hp in (2.77) and (2.79). Then, we obtain

∂n

∂s
= − ∂n

∂X
= Q :

∂nX

∂s
,

∂n

∂εe
= 0 ,

∂n

∂r
= 0 ,

∂n

∂α
=

2
3
C

∂n

∂X
= Q :

∂nX

∂α
,

∂n

∂D
= Q :

∂nX

∂D
+

∂(Hp nXHp)
∂Hp :

∂Hp

∂D
− 1

3
(
1⊗ nX

)
:
(
Hp2⊗Hp2

)
,

∂n

∂σ
= Q :

∂nX

∂σ
.

(2.107)

Finally, the derivatives of Y and Y are needed. For isotropic damage,
closed-form expressions are obtained:

∂Y

∂D
=

1 + ν

E

[〈σ〉+ : 〈σ〉+
(1 − D)3

+ h2 〈σ〉− : 〈σ〉−
(1 − hD)3

]
1

− ν

E

[ 〈tr σ〉2
(1 − D)3

+ h2 〈−tr σ〉2
(1 − hD)3

]
1

∂Y

∂σ
=

1 + ν

E

[ 〈σ〉+
(1 − D)2

+
h〈σ〉−

(1 − hD)2

]

− ν

E

[ 〈tr σ〉
(1 − D)2

− h〈−tr σ〉
(1 − hD)2

]
1 .

(2.108)

For anisotropic damage, only the hydrostatic terms (those responsible for
strain localization) can be obtained in a closed-form. For an estimation of
the last Jacobian terms, let us consider the approximation

Y ≈ 1 + ν

3E

σ2
eq

(1 − DH)2
+

3(1 − 2ν)
2E

[ 〈σH〉2
(1 − ηDH)2

+
ha〈−σH〉2

(1 − ηhaDH)2

]
, (2.109)

which leads to

∂Y

∂D
≈
{

2(1 + ν)
9E

σ2
eq

(1 − DH)3
+

η(1 − 2ν)
E

[ 〈σH〉2
(1 − ηDH)3

+
h2

a〈−σH〉2
(1 − ηhaDH)3

]}
1

∂Y

∂σ
≈1 + ν

E

σD

(1 − DH)2
+

1 − 2ν

E

[ 〈σH〉
(1 − ηDH)2

− ha〈−σH〉
(1 − ηhaDH)2

]
1

(2.110)
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Table 2.3 gives a summary of the Jacobian terms. For visco-plasticity, the
derivatives for ∂Rv

r

∂∆W are still given by (2.82) and (2.83) as in the case without
microdefects closure effects. Note that in last equation of Table 2.3, H is the
Heaviside function, H(x) = 1 for x ≥ 0, H(x) = 0 for x < 0.

Table 2.3. Jacobian terms for damage models with microdefects closure effect

Derivatives of Rεe

∂Rεe

∂∆εe
= I

∂Rεe

∂∆α
=

2

3
Cθ∆r Q

n+θ
:

∂nX

∂X

∣∣∣∣
n+θ

∂Rεe

∂∆σ
= θ∆r Q

n+θ
:

∂nX

∂σ

∣∣∣∣
n+θ

∂Rεe

∂∆r
= nn+θ

∂Rεe

∂∆D
= θ∆r

∂n

∂D

∣∣∣∣
n+θ

Derivatives of Rα

∂Rα

∂∆εe
= 0

∂Rα

∂∆α
= (1 + γθ∆r) I − 2

3
Cθ∆r

∂nX

∂X

∣∣∣∣
n+θ

∂Rα

∂∆σ
= −θ∆r

∂nX

∂σ

∣∣∣∣
n+θ

∂Rα

∂∆r
= −mn+θ

∂Rα

∂∆D
= 0

Derivatives of Rr (take θ = 1 for the plastic case)

∂Rr

∂∆εe
= 0

∂Rr

∂∆α
= −2

3
Cθ nX

n+θ

∂Rr

∂∆σ
= θ nn+θ

∂Rr

∂∆r
= −θ R′(rn+θ)

∂Rr

∂∆D
= θ nX

n+θ :
∂s

∂D

∣∣∣∣
n+θ

(continue next page)

2.2.5.3 Updating the Thermodynamics Variables

Once εe
n+1, αn+1, rn+1, Dn+1, and σn+1 are known, the remaining thermo-

dynamics variables are updated explicitly:

• Plastic strain tensor: εp
n+1 = εn+1 − εe

n+1
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Table 2.3. (continued)

Derivatives of RD

Isotropic damage Anisotropic damage

∂RD

∂∆εe
= 0

∂RD

∂∆α
= 0

∂RD

∂∆r
= −

(
Yn+θ

S

)s
1

1 − Dn+θ
1

∂RD

∂∆D
= I −

(
Yn+θ

S

)s

× θ∆r

(1 − Dn+θ)2
1

3
1 ⊗ 1

− sθY s−1
n+θ ∆r

Ss(1 − Dn+θ)
1 ⊗ ∂Y

∂D

∣∣∣∣
n+θ

∂RD

∂∆σ
≈ −sθY

s−1
n+θ∆r

Ss
|nn+θ| ⊗ ∂Y

∂σ

∣∣∣∣
n+θ

∂RD

∂∆εe
≈ −sθY

s−1
n+θ∆r

Ss
|nn+θ| ⊗ ∂Y

∂εe

∣∣∣∣
n+θ

∂RD

∂∆α
≈ 0

∂RD

∂∆r
= −

(
Y n+θ

S

)s
|nn+θ |

∂RD

∂∆D
≈ I

−sθY
s−1
n+θ∆r

Ss
|nn+θ| ⊗ ∂Y

∂D

∣∣∣∣
n+θ

∂RD

∂∆σ
≈ −sθY

s−1
n+θ∆r

Ss
|nn+θ| ⊗ ∂Y

∂σ

∣∣∣∣
n+θ

Derivatives of Rσ

∂Rσ

∂∆εe
= θ I

∂Rσ

∂∆r
= 0

∂Rσ

∂∆α
= 0

∂Rσ

∂∆D
≈ −θ(1 + ν)

E

[
I − 1

3
1 ⊗ 1

]
:

∂s

∂D

∣∣∣∣
n+θ

−ηθ(1 − 2ν)

3E

[ 〈σH n+θ〉
(1 − ηDH n+θ)2

− ha〈−σH n+θ〉
(1 − ηhaDH n+θ)2

]
1 ⊗ 1

∂Rσ

∂∆σ
≈ −θ(1 + ν)

E

[
I − 1

3
1 ⊗ 1

]
:

∂s

∂σ

∣∣∣∣
n+θ

−θ(1 − 2ν)

3E

[ H(σH n+θ)

1 − ηDH n+θ
+

H(−σH n+θ)

1 − ηhaDH n+θ

]
1 ⊗ 1

• Strain hardening variables: Rn+1 = R(rn+1), Xn+1 =
2
3
Cαn+1

• Accumulated plastic strain: pn+1 = pn +
√

2
3nn+θ : nn+θ ∆r

• Stored energy:
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ws n+1 = AR(rn+1)r
1/m
n+1 +

1
3
C αn+1 : αn+1 − ω̂n+1 ,

ω̂n+1 = ω̂n +
A

2

[
R′(rn)r1/m

n + R′(rn+1)r
1/m
n+1

]
∆r ,

with R′(r) = bR∞ exp(−br) for exponential isotropic hardening
• Damage:

Hp
n+1 = (1 − Dn+1)−

1
2 , Hn

n+1 = (1− haDn+1)−
1
2 and

Yn+1 = Y (Dn+1, σn+1) or Y n+1 = Y (Dn+1, σn+1) .

2.2.5.4 Consistent Tangent Operator

The variables {εe, α, r, D, σ} have been considered for the local integration
of the constitutive equations. The consistent tangent operator is then a block
of the Jacobian matrix at the convergence of the local Newton scheme as

∆σ = [Jac]−1
σ,εe∆ε =⇒ Lc = [Jac]−1

σ,εe . (2.111)

2.2.6 Performing FE Damage Computations

Once the damage models are available as part of the FE code material li-
brary, their use is identical to the use of elasto-(visco-)plasticity models. The
material parameters need to be supplied in an input data file with eventually
tables of the temperature dependency information.

Users prefer the anisotropic damage model because it demands the same
computation effort than the isotropic model but takes into account the in-
duced anisotropy and gives good results for the strain-damage localization
with a realistic mesh size. Recall that due to the strong nonlinearity encoun-
tered, the computations are costly in time. When a whole structure is under
consideration, we advise starting with a purely elasto-(visco-)plastic analysis
before running the fully coupled computation (set for example, the dam-
age threshold to a very large value) and performing an uncoupled analysis
of damage as detailed in Sect. 2.1.3. Systematic comparisons between both
uncoupled and coupled analysis are encouraged to build up the engineering
experience.

The outputs of a fully coupled damage analysis are the history of the
nodal displacements and, at each Gauss point, the stresses, strains, and state
and internal variables, particularly the damage field history. The damage
maps identifies the structure’s weak points. There is crack initiation when
the damage reaches the critical value Dc.

Different options are then possible

• To stop the computation when strain-damage localization takes place.
This is the most commonly used option as the FE solution is mesh-
independent up to this point.
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• To continue the continuum mechanics computation with a given mesh
size in the zone of intense damage. The strain-damage localization pat-
tern gives an idea of the further development of cracks. The FE solution
is mesh-dependent and should only be used to compare different design
solutions.

• To continue the computation with a given mesh size and releasing nodes
to model the crack initiation and propagation (see Table 1.8 of Sect. 1.6.3
for the orientation and the size of the initial mesocrack). This option
needs the difficult operation of release of the adequate nodes to create
a crack with the right size and orientation. The FE solution is still mesh-
dependent; it has no absolute value but has again a relative value for the
comparison of different design solutions.

• To initiate and propagate mesocracks with sizes and orientations inde-
pendent of the mesh nodes by use of enriched finite elements with em-
bedded displacements discontinuities. New classes of efficient methods
emerged recently: manifold method (G. Shi 1992) or more generally the
partition-of-unity method (J.M. Melenk and I. Babuska 1996, N. Moës,
J. Dolbow, and T. Belytschko 1999). But the extension to damage behav-
ior with softening, strain localization and mesh dependency is still under
study.

2.2.7 Localization Limiters

When performing the FE analysis of a structure made of damageable ma-
terials, the instabilities encountered are due to the numerical representation
of the physical occurrence of shear bands where the initial fracture mechan-
ics mesocrack will initiate. The good thing is that damage mechanics re-
produces such a phenomenon. As we just pointed out, the drawback is the
mesh dependency of the solution and the shear band thickness. This empha-
sizes that there is missing information in the formulation. For an arbitrary
small mesh size, the computed shear band may be much too thin, corre-
sponding to a non-physical, unlimited, strain localization. Localization lim-
iters are then necessary to introduce by a way or another a characteristic
length.

Initially proposed for the crack band model (S.T. Pietruszczak and
Z. Mroz 1981, Z.P. Bažant and B.H. Oh 1983), the simplest localization
limiter is to set the mesh size to a constant value. Some authors propose
considering the mesh size as a material parameter (and identifying it) in or-
der to compute the crack propagation within damage mechanics framework
(G. Rousselier 1987). The characteristic length introduced may be seen as the
size of the RVE. But the “correct” mesh size for a good quality computation
seems to be related to the shape, the size of the whole structure and to the
loading!
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As 21st century localization limiters, a material internal length is intro-
duced directly into the constitutive laws, the main idea being that plasticity
and/or damage evolution at a structure point x depend on the value of the
thermodynamics variables at the considered point as well as a small domain
around it. One speaks then of non-local constitutive models.

2.2.7.1 Strongly-Non-local Theories
(Z.P. Bažant and G. Pijaudier-Cabot 1987)

Each local thermodynamics variable V (or some of them) may be replaced
by an “average” Vnl of the variable around the considered point. The delo-
calization of V is described by

Vnl =
1
Vr

∫
V

W (x − s)V(s)dV and Vr =
∫

V

W (x − s)dV , (2.112)

where W (x − s) is a generalized weight function and V is the structure
volume. The non-local weight function is a new parameter of the model,
chosen as the Gauss distribution function for instance:

W (x) = W0 exp
(
−‖x‖2

2δ2
c

)
(2.113)

or the polynomial bell-shaped function with finite support (Z.P. Bažant and
J. Ožbolt 1990):

W (x) = W ′
0

〈
1 − ‖x‖2

δ′2c

〉2
, (2.114)

with W0 and W ′
0 as the normalization factors and δc, δ′c as “the” internal

lengths of the medium.
To perform the variables delocalization makes the numerical implemen-

tation of the constitutive equations difficult in classical FE computer codes.
The local integration subroutines now need the value of the thermodynamics
variables at many Gauss points, eventually located far outside the considered
element.

2.2.7.2 Gradient Theories
(E. Aifantis 1987)

An alternative way that is easier to implement is to consider gradient theories
for which plasticity and/or damage evolution at a structure point depend on
the value of the thermodynamics variables as well as their first, second, . . .
n-th gradients. Replace then each local variable V by the expansion

Vnl = V + c1 · ∇V + c2∇2V + . . . , (2.115)
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often with c2 as the only non-vanishing term (second gradient theories). It is
also possible to define Vnl as the implicit solution of

Vnl − c1 · ∇Vnl − c2∇2Vnl − . . . = V , (2.116)

where the “internal lengths” are introduced through the parameters ck.
Note that the gradients theories are recovered by introducing the Taylor

expansion

V(x + s) = V(x) + ∇V · s +
1
2!
∇(2)V · (s ⊗ s) + . . . (2.117)

in the average integrals of the non-local theories.
Many non-local or gradient models may be constructed, depending then

on the choice of the variables to be delocalized and the delocalization proce-
dure (T. Belytschko 1988, Z.P. Bažant and F.B. Lin 1988, R. de Borst and
H.B. Mulhaus 1991, S. Forest and E. Lorentz 2004). They all introduce an
internal length. We will present in the next section a simple way to make the
damage models of Chap. 1 non-local.

2.2.7.3 Simple Non-local Damage Model

One possible way to study damage models is to delocalize the damage variable
and use

Dnl =
1
Vr

∫
V

W (x − s)D(s)dV (2.118)

instead of D in the constitutive equations.
But from the remark of Sect. 1.6 that the strain localization is strongly

related to the value of the parameter η, which defines an hydrostatic damage
dH (fully acting when strain localization occurs) as

dH = ηDH where σ̃H =
σH

1 − dH
, (2.119)

the simplest is to make the previous relationship non-local and to calculate
dH as

dH =
1
Vr

∫
V

W (x − s)ηDH(s)dV , still with σ̃H =
σH

1 − dH
, (2.120)

or to consider the gradient form dH − cD∇2dH = ηDH, with cD as a material
parameter. The last equation written either in an integral or a gradient form
is the only change when compared to the local damage model.

2.3 Locally-Coupled Analysis

In quasi-brittle failure and high-cycle fatigue applications, the damage
is very localized in such a way that the damaged material occupies a small
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volume in comparison with the macroscale of the structural component and
even with the mesoscale of the RVE. This is due to the high sensitivity of dam-
age to stress concentrations at the mesoscale and defects at the microscale.
According to the hypothesis of a weak, damageable inclusion embedded in
a meso-RVE, such a state of localized damage is represented by the two-scale
damage model of Sect. 1.5.5 (see also Fig. 2.5).

Fig. 2.5. Locally-coupled approach to structural damage analysis

By considering damage on the microscale only, the two-scale model pre-
dicts crack initiation when the microdamage reaches the critical value Dc.
The crack initiation condition D = Dc on the microscale coincides with the
initiation of a mesocrack. The model is 3D and applies to complex loadings
under isothermal conditions. It needs robust algorithms of resolution and an
implicit scheme for its numerical implementation is described here.

2.3.1 Post-Processing a Reference Structure Calculation

The damage is determined by post-processing a reference structure calcu-
lation, performed in elasticity for quasi-brittle and high-cycle fatigue appli-
cations and in elasto-plasticity for more ductile conditions. The reference
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calculation provides information on the history of the stresses, strains, and
plastic strains with no damage at the mesolevel of classical continuum me-
chanics. Considered altogether with the Eshelby–Kröner localization law and
isotropic elasticity,

εµ = ε + β(εµp − εp) and β =
2
15

4 − 5ν

1 − ν
, (2.121)

are inputs for the time integration of elasto-(visco-)plasticity fully coupled
with damage constitutive equations on the microscale.

The numerical scheme used to solve those equations is the one described
in Sect. 2.2.4 for the local integration of the fully-coupled analysis with only
slight differences:

• For the fully-coupled damage analysis, the full calculation is performed
by iterations made of global FE resolutions followed by local integrations
at the structure Gauss points. Here, the time integration of the consti-
tutive equations is performed only one time as a post-processor of the
reference calculation. It may then be performed at the most loaded point
only.

• In nonlinear FE computations, the local time integrations are made at
constant strain. Here, the localization law has to be considered and the
calculation is made at constant (εµ − βεµp).

• The microscale constitutive equations are those of elasto-(visco-)plasticity
coupled with damage, but with linear kinematic hardening and isotropic
damage only. At points where fµ > 0, a set of 4 nonlinear differential
equations is solved in the same manner as in Sect. 2.2.4 (µ-superscripts
standing for “microscale” are added):

ε̇µe + (1 − β)ṙµnµ − ε̇ + βε̇p = 0 ,

α̇µ − ṙµmµ = 0 ,

fµ − σµ
v = (σ̃µ − Xµ)eq − σ∞

f − σµ
v = 0 ,

Ḋ −
(

Y µ

S

)s
ṗµ = 0 if pµ > pD ,

(2.122)

where σ̃µ = σµ/(1−D) is the microscale effective stress, the yield stress
σµ

y is equal to the fatigue limit σ∞
f , σµ

v , if needed, is given by a viscosity
law and where (isothermal case)

mµ =
3
2

σ̃µD − Xµ

(σ̃µD − Xµ)eq
,

nµ =
mµ

1 − D
,

σ̃µ =
σµ

1 − D
= E : εµe ,
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Xµ =
2
3
Cyα

µ ,

Y µ =
1 + ν

2E

[ 〈σµ〉+ : 〈σµ〉+
(1 − D)2

+ h
〈σµ〉− : 〈σµ〉−

(1 − hD)2

]

− ν

2E

[ 〈tr σµ〉2
(1 − D)2

+ h
〈−tr σµ〉2
(1 − hD)2

]
.

(2.123)

2.3.2 Implicit Scheme for the Two-Scale Model
(I. Doghri and R. Billardon 1988)

The reference computation gives the history of stresses, strains, and plastic
strains on the mesoscale as discrete values at every instant t = 0, . . . , tk, . . . tn,
tn+1, . . . With the microscale variables at time tn, the mesoscale variables at
times tn, and tn+1 being known, the microscale variables at time tn+1 are
determined following a two step procedure:

1. A local elastic prediction, which assumes an elastic behavior with
constant plastic strains εµp = εµp

n , constant kinematic hardening Xµ =
Xµ

n , and constant damage D = Dn, gives a first estimate of the strains,
elastic strains, and effective stresses on a microscale at time tn+1:

εµ = ε + β
(
εµp

n − εp
n+1

)
,

εµe = εµ − εµp
n ,

σ̃µ = E : εµe = σ − 2G(1 − β)
(
εµp

n − εp
n+1

)
.

(2.124)

2. A local plastic correction of the state and internal variables εµ, εµe,
and σ̃ made at constant εµ−βεµp = ε−βεp gives the strain εµ

n+1, elastic
strain εµe

n+1, plastic strain εµp
n+1, stress σn+1, kinematic hardening Xn+1,

and damage Dn+1 at time tn+1.

To detail the second step, consider that the elastic predictor has given σ̃µ,
εµ, and εµe as initial estimates of the stresses, strains and elastic strains. If
the yield condition fµ ≤ 0 is satisfied, then σ̃µ

n+1 = σ̃µ, εµ
n+1 = εµ, and

εµe
n+1 = εµe is set. If not, the Newton iterative process starts. For simplicity,

the damage is assumed to remain constant over a time increment (in fatigue
it may even be assumed constant over a whole cycle) and it is then the same
as to integrate a law of elasto-plasticity with linear kinematic hardening only.

The nonlinear equations to be solved in a coupled manner are (implicit
Euler scheme is used)⎧⎪⎨

⎪⎩
∆εµe + (1 − β)∆rµ nµ

n+1 − ∆ε + β∆εp = 0 ,

∆αµ − ∆rµ mµ
n+1 = 0 ,

fµ
n+1 =

(
σ̃µ

n+1 − Xµ
n+1

)
eq

− σ∞
f .

(2.125)
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They may be solved straightforwardly by use of the Newton iterative scheme
as in Sects. 2.2.4 and 2.2.5 for the fully-coupled analysis, but it is advan-
tageous here to write them first in terms of the plastic strain pµ and the
variable sµ = σ̃µ − Xµ as a set of two equations, as follows:{

Rs = sµ
n+1 + 2

3Gmµ
n+1∆pµ − E : ε + 2Gβεp + 2G(1 − β)εµp

n + Xµ
n = 0 ,

Rp = (sµ
n+1)eq − σ∞

f = 0 ,

(2.126)
where G = 3G(1 − β) + Cy(1 − Dn), mµ = 3

2
sµD

sµ
eq

, and the mesoscale strains
ε = εn+1 and εp = εp

n+1 are known from the initial FE analysis.
For each iteration q of the Newton scheme, the solution sµ(q+1) and

pµ(q+1), or in an equivalent manner, the “corrections” Cs = sµ(q+1) − sµ(q),
Cp = pµ(q+1) − pµ(q) to be applied at each step to the previous iterated sµ(q)

and pµ(q) are given by⎧⎪⎨
⎪⎩

Rs +
∂Rs

∂sµ
: Cs +

∂Rs

∂p
Cp = 0 ,

Rp +
∂Rp

∂sµ
: Cs = 0 ,

(2.127)

where Rs, Rp, and their partial derivatives are taken at time tn+1 and the
iteration q. The starting solution sµ(0) = σ̃µ−Xµ

n and pµ(0) = pµ
n corresponds

to the elastic predictor (2.124).
The set of equations (2.127) are then written as⎧⎨

⎩Rs +
[
I + 2

3G∆pµ ∂mµ

∂sµ

]
: Cs + 2

3GmµCp = 0 ,

Rp + mµ : Cs = 0 ,
(2.128)

where I is the fourth order identity tensor and

∂mµ

∂sµ
=

1
sµ
eq

[
3
2
I − 1

2
1⊗ 1− mµ ⊗ mµ

]
. (2.129)

Since mµ : mµ =
3
2

and mµ :
∂mµ

∂sµ
= 0, the system explicitly gives the

corrections for pµ and sµ as

Cp =
Rp − mµ : Rs

G
Cs =

2
3

(mµ : Rs − Rp)m − Rss
µ
eq + 2

3G∆pµ(mµ : Rs)mµ

sµ
eq + G∆pµ

.

(2.130)

For the solution to any system of equations, the procedure is then an implicit
scheme with the advantage of an explicit one: the unknowns are updated
explicitly by use of the closed-form formulae (2.130) for Cp and Cs.

Once the convergence is reached, pµ
n+1 = pµ(q+1) and sµ

n+1 = sµ(q+1) is
set and the remaining variables are updated as
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• Normal mµ: mµ =
3
2

sµD
n+1

σ∞
f

• Plastic strain: εµp
n+1 = εµp

n + mµ∆pµ

• Kinematic hardening: Xµ
n+1 =

2
3
Cy(1 − Dn)εµp

n+1

• Effective stress: σ̃µ
n+1 = sµ

n+1 + Xµ
n+1

• Elastic strain: εµe
n+1 = E−1 : σ̃µ

n+1

• Damage: Dn+1 = Dn +
(

Y µ
n+1

S

)s
∆pµ if p > pD, with

Y µ
n+1 =

1 + ν

2E

[
〈σ̃µ

n+1〉+ : 〈σ̃µ
n+1〉+ + h

(
1 − Dn

1 − hDn

)2
〈σ̃µ

n+1〉− : 〈σ̃µ
n+1〉−

]

− ν

2E

[
〈tr σ̃µ

n+1〉2 + h

(
1 − Dn

1 − hDn

)2
〈−tr σ̃µ

n+1〉2
]

(2.131)

• Stress tensor: σµ
n+1 = (1 − Dn+1)σ̃

µ
n+1

2.3.3 DAMAGE 2000 Post-processor

The locally-coupled analysis of damage is made as a post-processing compu-
tation of an initial elastic or elasto-(visco-)plastic analysis. For simple geome-
tries and/or loading types (such as uniaxial or proportional), the most loaded
point is simply determined as the point where the damage equivalent stress
σ� = σeqR

1/2
ν is maximum (see also Sect. 2.1.3). It is sufficient to perform

the post-processing at this single point to calculate the failure condition by
the mesocrack initiation condition D = Dc.

For complex geometries and/or loading types (such as non-proportional),
the most loaded point may vary from one time increment to another or from
one cycle (or block of cycles) to another. The calculation of the damage
accumulation at the possibly weak points of the structure must be han-
dled properly. This includes post-processing at all structure Gauss points
and drawing damage maps. The result of the locally-coupled analysis will
be the numerical prediction of a mesocrack initiation at the point where
D = Dc is reached for the corresponding time tR or number of cycles NR to
supture.

The computer code DAMAGE 2000 allows us to solve the two-scale model
constitutive equations on the basis of the numerical scheme of Sect. 2.3.2.
The input data are the material parameters and the history of the strain
components εij and εpij . The outputs are the evolutions of the damage D, the
accumulated plastic strain pµ, and the microscale stress components σµ

ij up
to crack initiation. DAMAGE 2000 can handle any kind of proportional (or
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non-proportional), monotonic or fatigue loading, fatigue periodic by block,
or random fatigue. For the fatigue loadings, the jump-in-cycles procedure of
Sect. 2.1.5 may be activated in order to save much computer time. Examples
are given in Sects. 6.4.1 and 6.4.2.

To finish, note that:

• The case β = 0 and σ∞
f = σy corresponds to the single-scale damage

post-processing with the uncoupled analysis of Sect. 2.1.
• The case β = 0 corresponds to the use of the Lin–Taylor localization

law (instead of the Elshelby–Kröner law). Coupled with the consideration
of Cy = 0, m = 1, and s = 1 it corresponds to the initial two-scale
damage model described in the book A course on Damage Mechanics
by J. Lemaitre, in which the FORTRAN 77 listing of the DAMAGE 90
post-processor is given.

• The effect of free edges and free surfaces on mesocrack initiation in fa-
tigue may be represented by considering an adequate localization law (see
Sect. 6.4.6) programmed as a possible option of DAMAGE 2000.

2.4 Precise Identification of Material Parameters

Contrary to linear elasticity for which the Young’s modulus and Poisson ra-
tio have almost the same value for each class of materials (steel, aluminum
alloys, concrete . . . ), nonlinear behaviors introduce parameters whose val-
ues strongly depend on the material. Due to the diversity of the engineer-
ing materials and the strong influence of the microstructure on the failure
properties, the material parameters need to be identified directly from spe-
cific experiments despite the existence of handbooks of parameters. The ta-
ble in Sect. 2.6 gives only the order of magnitude of parameters for some
materials.

This section deals with precise identification procedures. They require
computer tools which at least allow for the calculation of the material re-
sponse in uniaxial tension-compression under isothermal conditions. They
are

• Mathematical softwares that perform the time integration of the con-
stitutive laws.

• FE computer codes that may include numerical optimization proce-
dures.

• Specific identification by optimization softwares such as SIDOLO
(P. Pilvin 1983).

Three levels of tests are generally used:

• Qualitative tests to choose the proper state variables to measure, to
determine how they act, and to determine the couplings between the
phenomena represented.
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• Quantitative tests to identify the numerical values of the material pa-
rameters for each material at each temperature considered.

• Tests of validation to check the ability of the constitutive equations
to represent more complex situations than those used for the parameters
identification.

This section completes the fast procedures of Sect. 1.4.4 used to obtain
an approximate initial set of parameters to be improved. If anisothermal
constitutive equations are considered, the identification procedure consists of
identifying the material parameters at each temperature and considering by
interpolation all the parameters as functions of the temperature.

2.4.1 Formulation of an Identification Problem

Identifying the parameters of a model consists of finding the set of material
parameters which gives the best representation of a maximum volume of
experimental data and information on a given material. The data comes
from

• Simple laboratory tests as monotonic (with repeated unloadings) or cyclic
tension and compression experiments, monotonic or cyclic shear experi-
ments in torsion on tubes, as well as creep and relaxation experiments
performed after either a monotonic loading or a cyclic loading.

• More elaborate laboratory tests in the bending of beams, in bi-axial load-
ing on cross-shaped specimens or in tri-axial loading on pseudo-cubic spec-
imens. As the damage is not uniform over the whole geometry, such ex-
periments need structure computations to determine the history of stress
and strain on the RVE where the mesocrack is initiated.

• Any failure of a component, provided the structure calculation is available.
An inverse method is not advised at this level because the damage is
always localized and has an effect that is too small on control global
variables. It may be possible only if local and very accurate measurements
are performed.

• Any qualitative or quantitative information from the “state of the art” of
experienced engineers and technicians!

Note that as damage governs the mesocrack initiation, it is essential to run
all the laboratory tests up to the point of failure. Never interrupt a test which
runs too long. Increase the applied load or the applied strain range instead
in order to break the specimen more quickly. The corresponding data may
then be used to validate the identification.

The database is then a finite set of load-displacement or stress-strain
charts, or it could be a set of load, displacement, stress or strain versus time
charts. The first thing to do is to extract as much information as possible
from each test and to determine the history of all the state variables (plastic
strain, accumulated plastic strain, hardenings, damage . . . ) or at least some
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components of the internal variables. This operation defines for each exper-
iment an array, Zexp(t), of the collected history at discrete times, ti, of the
variables.

The identification problem consists of determining the material param-
eters denoted formally as A = {E, ν, σy . . .} which minimize the difference
between the observations Zexp(t) and the numerical simulation of the model
that is denoted as Z(t,A). From a classical mathematical point of view,
a functional L(A) is introduced to measure the accumulated error between
observations and simulations. The term L is the sum of functionals Lk for
each test k such that

L =
∑

k

Lk and Lk =
1

N exp
k

∑
i

‖Zexp
k (ti) −Zk(ti,A)‖2 , (2.132)

where N exp
k is the number of experimental points considered for the k-th

experiment.
At this stage, one would expect the precise identification to end (L ≈ 0)

because such a formulation may be handled automatically by use of numer-
ical minimization procedures such as the Simplex method (not described in
this book), the Newton or Quasi-Newton methods, the Levenberg–Marquardt
method, or the Sequential Quadratic Programming (SQP or Projected La-
gragian Method), using evolution or genetic algorithms or combinations of
different minimization procedures (e.g., the identification software SIDOLO
or FE computer code optimizers). In fact, the question concerning the choice
of the norm on the space of thermodynamics variables is somewhat subjective.
It depends on the relative accuracy the experimental results and the domains
of application in which a good accuracy is necessary. Note that a ponderation
(weight) matrix P needs to be defined in order to make ‖Zexp(t) −Z(t,A)‖
dimensionless (P. Pilvin 1988):

‖Zexp(t)−Z(t,A)‖2 = {Zexp(t)−Z(t,A)}TP {Zexp(t)−Z(t,A)} . (2.133)

One may refer to Sect 2.4.6 on “Sensitivity Analysis” of the following chapters
as an aid to avoid an arbitrary choice of the ponderation coefficients.

In order to avoid giving too much weight to the comparison times ti (for
non-regular time discretization, for instance), the expression

Lk =
1

T exp
k

∫
T exp

k

‖Zexp
k (t) −Zk(t,A)‖2dt (2.134)

may be used instead of (2.132) for some experiments or some part of ex-
periments (with T exp

k as the observation time of the k-th experiment). The
integral is numerically calculated, for example by use of trapezes method.

An example of precise identification is given in Sect. 2.4.3.
Some numerical minimization procedures for least squares nonlinear prob-

lems are described in next section. Due to the strong nonlinearity of the
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identification problem, local minima may be obtained and as in general, the
solution of the optimization problem is not unique. It is of first importance to
have a starting solution A0 that is “not too far” from “the” solution. When
the convergence fails or becomes slow, it is important to be able to switch
automatically from one method to another.

2.4.2 Minimization Algorithm for Least Squares Problems

The optimum set of material parameters Aopt minimizes the error L(A) that
is mathematically called the objective function. The term L may generally
be written as

L(A) =
1
2

∑
j

r2
j (A) =

1
2
‖�r(A)‖2 , (2.135)

where the residuals rj or their vector form �r are defined according to (2.132)
and (2.134). This is a least squares problem that is strongly nonlinear for the
nonlinear constitutive equations considered and is non-convex that is with
possibly several local minima.

The mathematical tools to handle such a problem exist and are well de-
scribed in the applied mathematics literature. For further details, readers
can refer, for instance, to the book Numerical optimization by J. Nocedal
and S.J. Wright (1999).

There are two classes of procedures:

• The unconstrained optimization procedures with no conditions (con-
straints) on the material parameters. From this class the Newton method,
Gauss–Newton method, BFGS method, and Levenberg–Marquardt
method are described below.

• The constrained optimization procedures with conditions (constraints) on
the material parameters to force them to remain bound by some “reason-
able” values: see for instance the SQP method described below.

For the identification problems, it is often efficient to disregard the constraints
and assume that they have no effect on the optimal solution, or to replace
them by additional penalization terms in the objective function (use loga-
rithmic penalization for inequality constraints). These terms have the effect
of discouraging constraints violation. One can then use the unconstrained
optimization procedures that are simpler to implement.

For all the methods (except for the genetic algorithms), the gradient of
the objective function is needed. For the least squares problem (2.135), we
need

∇L(A) = JT(A)�r(A) ; (2.136)

for some of them the Hessian is needed:

∇2L(A) = J(A)JT(A) +
∑

j

rj(A)∇2rj , (2.137)
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where the Jacobian of �r, J(A) =
[

∂rj

∂Ai

]
, is introduced. Note that knowing

the Jacobian allows us to compute the first part of the Hessian for free. Near
convergence, the second term in (2.137) may be neglected and the approxi-
mation

∇2L(A) ≈ J(A)JT(A) (2.138)
may be used.

2.4.2.1 Generalities on Iterative Minimization Procedures

The numerical minimization procedures for nonlinear problems are iterative.
The solution at the iteration k is calculated as

Ak+1 = Ak + ρkwk , (2.139)

where wk is the search direction and ρk the step length. The expressions for
the search direction depend on the method and wk is usually calculated first.
The step length is initially taken to be equal to unity but one may optimize
its value in order to get a substantial reduction, L(Ak) − L(Ak+1), of the
objective function. The idea is to minimize at low cost L(Ak + ρwk) with
respect to ρ and an iterative process may again take place.

An efficient possibility for convergence reasons is to choose ρk which sat-
isfy the Armijo–Wolfe condition{

L(Ak + ρkwk) ≤ L(Ak) + c1ρk∇LT
k wk ,

∇LT(Ak + ρkwk)wk ≥ c2∇LT
k wk ,

(2.140)

with 0 < c1 < c2 < 1 as constants of the method.
For the sake of simplicity the expression, ∇L(Ak) = ∇Lk, has been set

up and we shall also denote �rk = �r(Ak) and ∇2L(Ak) = ∇2Lk. With such
notations, equations (2.136) and (2.138) stand as

∇Lk = JT
k �rk and ∇2Lk ≈ JkJT

k . (2.141)

2.4.2.2 Newton Method

The search direction is the solution of

∇2LkwN
k = −JT

k �rk (2.142)

and ρN
k = 1.

2.4.2.3 Gauss–Newton Method

The search direction is the solution of

JkJT
k wGN

k = −JT
k �rk (2.143)

where the approximation (2.138) of the Hessian is used.
We then find a step length ρGN

k which satisfies the Armijo–Wolfe condition
(try ρGN

k = 1 first).
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2.4.2.4 Broyden–Fletcher–Golfarb–Shanno or BFGS Method

The search direction is
wBFGS

k = −HkJT
k �rk , (2.144)

with Hk the approximation of the inverse of the Hessian calculated iteratively,

Hk+1 =
(

I − skyT
k

yT
k sk

)
Hk

(
I − yksT

k

yT
k sk

)
+

sksT
k

yT
k sk

, (2.145)

where sk = Ak+1 − Ak, yk = ∇Lk+1 − ∇Lk, and I is the identity matrix.
Set the initial H0 to be equal or proportional to the identity matrix or set it
to the inverse of an approximate Hessian ∇2L−1 at A = A0 (calculated, for
example, by finite differences).

The step length ρBFGS
k is chosen to satisfy the Armijo–Wolfe condition.

2.4.2.5 Levenberg–Marquardt Method

The Levenberg–Marquardt method is a robust, first order method especially
meant for least squares optimization.

The search direction is the solution of(
JkJT

k + λkI
)
wLM

k = −JT
k �rk , (2.146)

which corrects the possible rank deficiency of the Jacobian. The scalar λk

may be interpreted as a Lagrange multiplier.
Take ρLM

k = 1. As long as L(Ak + wk) ≥ L(Ak), multiply the previous
try for λk by a factor of 10 (λk ← 10λk). When L(Ak + wk) < L(Ak), take
λk+1 = λk/10.

2.4.2.6 Sequential Quadratic Programming (SQP)

The SQP method explicitly handles equality and inequality constraints.

2.4.2.6.1 Equality Constraints Minimization

To set up the SQP framework, consider first the problem:

minL(A) subject to gi(A) = 0 where i = 1, . . .m , (2.147)

which allows us to define the Lagrangian as L(A, λ) = L− λTg.
The minimization problem at the k-th iteration is written as the mini-

mization of a quadratic problem under linear constraints:

min
w

1
2
wTWkw + ∇LT

k w subject to Akw + gk = 0 , (2.148)



126 2 Numerical Analysis of Damage

where Wk = ∇2
AAL(Ak, λk), gk = g(Ak), and ∇gi = ∇gi(Ak), Ak =

[∇g1, . . . ,∇gm]T. The term λk is the Lagrange multiplier vector of the k-th
iteration.

The solution set Ak+1 = Ak +wk and λk+1 = λk +wλ solves the Karush–
Kuhn–Tucker (KKT) system,[

Wk −AT
k

Ak 0

] [
wk

wλ

]
=
[−∇Lk + AT

k λk

−gk

]
, (2.149)

which may also be written as[
Wk −AT

k

Ak 0

] [
wk

λk+1

]
=
[−∇Lk

−gk

]
. (2.150)

2.4.2.6.2 Inequality Constraints Minimization

The nonlinear minimization problem,

minL(A) subject to gi(A) ≥ 0 where i = 1, . . .m , (2.151)

defines the linearized problem at the k-th iteration,

min
w

1
2
wTWkw + ∇LT

k w subject to Akw + gk ≥ 0 , (2.152)

which is solved iteratively. The method defines then the auxiliary equality
constraints sub-problem:

min
xw

1
2
xT

wWkxw + [Wkw(r) + ∇Lk]Txw subject to A
(r)
k xw = 0 , (2.153)

where xw = w − w(r) is set.

The SQP method proceeds as follows:
1. Set C0 as the subset of the active constraints at A = A(0) = Ak (if gi is

active gi(A) = 0).
2. In order to find xw, solve the auxiliary KKT problem associated with

(2.153) with the equality constraints ∇gT
i xw = 0 (i ∈ Cr) rewritten as

A
(r)
k xw = 0:[

Wk −A
(r)
k

T

A
(r)
k 0

] [
xw

λ

]
=
[−Wkw(r) −∇Lk

−g(r)

]
, (2.154)

with g(r) as a vector with components gi(Ak), i ∈ Cr.
3. a) If xw �= 0, compute the auxiliary step length as

ρr = min
[
1, min

(i/∈Cr,∇gT
i xw<0)

(
−∇gT

i w(r) + gi

∇gT
i xw

)]
(2.155)
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and try for the new search direction

w(r+1) = w(r) + ρrxw . (2.156)

Take then first Cr+1 = Cr. If there are blocking constraints (i.e., con-
straints i for which the minimum in (2.155) is achieved), update Cr+1

by adding one of these constraints to the subset of the active con-
straints Cr+1.

b) If xw = 0, the current value ŵ of w(r) minimizes the objective func-
tion over the current working set Ĉ = Cr. Compute the Lagrange
multipliers that satisfy∑

i∈Ĉ
∇giλ̂i = Wkŵ + ∇Lk . (2.157)

If all the λ̂i are positive, stop with the solution wk = ŵ. If some λ̂j are
strictly negative, subtract the constraint j corresponding to the larger
|λ̂j | from the subset of the active constraints (Ĉ = Cr+1 ← Cr \ {j}).

4. Take ρSQP = 1 and Ak+1 = Ak + wk.

Note that the calculation of Wk needs the calculation of the second deriva-
tives of L. The method is then similar to a Newton scheme. Again, approx-
imate expressions for ∇2L may be used, the most popular being the BFGS
approximation of the Hessian.

2.4.3 Procedure for Numerical Identification

Consider that the constitutive laws are available in a computer code which of-
fers optimization facilities. The identification is then performed automatically
by the minimization of the functional L(A) but some practical (convergence)
difficulties may be encountered.

As a guide to optimize the full identification process, a 5-step procedure
may then be followed:

1. Choose the plasticity, visco-plasticity and damage models, bearing in
mind the experimental data available and the considered application. For
example considering both isotropic and kinematic hardenings is useless
for a monotonic application, considering classical plasticity models (those
described in this book) gives a poor accuracy in modelling the ratcheting
effect.
And it is no secret that for low cycle fatigue applications, the best choice is
to perform the model identification on low-cycle fatigue tests. In general,
the identification is better as the identification tests are close to the cases
of the application!

2. Perform the fast identification procedure of Sect. 1.4.4 to determine an
initial set of material parameters.
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3. Estimate qualitatively and quantitatively the sensitivity of the simu-
lation to each parameter (see Sect. 2.4.6). This allows for a qualitative
understanding of the model and a way to find out in which experiment
or in which stage of the experiment each material parameter has a minor
or major effect.

4. Build a chart of the experimental values of all the possible variables
for discrete values of the time. The chart will compare the experimen-
tal values with the numerical simulation in order to calculate the error
‖Zexp

k (ti) −Zk(ti,A)‖2 or the integral
∫

T exp
k

‖Zexp
k (t) −Zk(t,A)‖2dt.

5. Use the set of initial parameters to perform the numerical minimiza-
tion of the functional L. Some FE codes propose this option. For better
convergence, proceed step by step and try to identify first the plastic-
ity parameters, second the viscosity parameters, and last the damage
parameters. In a last step, perform a numerical identification of all the
parameters at the same time.

Let us detail each point of this identification procedure on an example:

1. The whole set of operations is described here for the elasto-(visco-)
plasticity coupled with the damage model of Table 1.3 for which the
one-dimensional isothermal constitutive equations are recalled below for
the Norton viscosity law:

ε = εe + εp

εe =
σ

E(1 − D)

f =
∣∣∣∣ σ

1 − D
− X

∣∣∣∣− R − σy = σv

ε̇p = sgn(σ − X) ṗ = sgn(σ − X)
ṙ

1 − D

R = R∞ (1 − exp(−br))

Ẋ = C(1 − D)ε̇p − γXṙ with C = γX∞

Ḋ =
(

Y

S

)s
ṗ if p > pD ,

mesocrack initiation if D = Dc

Y =
σ2

2E(1 − D)2

ṗ =
〈

σv

KN

〉N
=
〈

f

KN

〉N

(2.158)

2. The initial set of material parameters is determined according to the fast
identification procedures of Sects. 1.4.4 and 1.5.1. The precise identifi-
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cation is performed for the steel alloy 2-1/4 CrMo at a temperature of
580◦C and from the following initial data:
• Fatigue limit σ∞

f = 60 MPa
• Yield stress σy02 = 95 MPa
• Ultimate stress (at ε̇ = 10−3 s−1) σu = 187 MPa for an ultimate

plastic strain εpu = 0.2
• Rupture stress (at ε̇ = 10−3 s−1) σR = 150 MPa for a rupture plastic

strain εpR = 0.3
• A few tension-compression tests at very low strain rate ε̇ = 10−6 s−1

give for the yield thresholds σ+
s in tension and σ−

s in compression:

εp = 0 , σ+
s = σy = 80 MPa , σ−

s = −80 MPa ,
εp = 0.1 10−2 , σ+

s = 87 MPa , σ−
s = −77 MPa ,

εp = 0.4 10−2 , σ+
s = 99 MPa , σ−

s = −69 MPa ,

εp = 1.4 10−2 , σ+
s = 105 MPa , σ−

s = −65 MPa .

(2.159)

They are used for the determination of both kinematic and isotropic
hardenings as the laws R = R∞[1 − exp(−bεp)] and X = X∞[1 −
exp(−γεp)] for monotonic tension fit the discrete values

X = X(εp) =
σ+

s + σ−
s

2
and R = R(εp) = σ+

s − σy − X . (2.160)

• A few creep tests at different constant values of stress give the sec-
ondary plastic strain rate:

σ = 110 MPa , ε̇p = 10−6 s−1 ,
σ = 120 MPa , ε̇p = 2 10−5 s−1 ,

σ = 150 MPa , ε̇p = 2 10−4 s−1 .
(2.161)

They are used to identify the Norton parameters KN and N (with
the hypothesis in of saturated hardenings) in

ε̇p =
(

σ − σy − R∞ − X∞
KN

)N

. (2.162)

As the linear regression

ln ε̇p = N ln(σ − σy − R∞ − X∞) − lnKN
N (2.163)

fits the experimental points in (2.161) in the ln ε̇p vs ln(σ−σy−R∞−
X∞) diagram.

• Furthermore, the thermo-elasticity parameters are known as
– Elasticity modulus E = 134000 MPa
– Poisson ratio ν = 0.3



130 2 Numerical Analysis of Damage

– Dilatation coefficient α = 1.3 · 10−5/◦C
Finally, the fast identification leads to the following set (A0) of material
parameters:
• Thermo-elasticity: E = 134000MPa, ν = 0.3, α = 1.3 · 10−5/◦C
• Yield stress: σy = 80 MPa
• Isotropic hardening: R∞ = 5 MPa, b = 300
• Kinematic hardening: X∞ = 20 MPa, γ = 270
• Damage: S = 0.113 MPa, s = 5, Dc = 0.2
• Damage threshold: εpD = 0.2, σu = 187 MPa at ε̇ = 10−3 s−1, σ∞

f =
60 MPa, m = 4

• Viscosity: KN = 1450 MPa s1/N , N = 2.4
3. For this didactic example we assume that all the parameters have the

same sensitivity. Each particular case is examined in the following chap-
ters.

4. The experiments used to improve the set of initial parameters are those
of Fig. 2.6: two low cycle fatigue tests up to rupture, a cyclic hardening
curve, and a relaxation test.

Fig. 2.6. Additional experiments for parameters identification of the 2-1/4 CrMo
steel at 580◦C (J.-P. Sermage 1998)
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The charts Zexp
k of the state variables needed to apply a numerical opti-

mization procedure are:
• One file for each fatigue test σmax(N) curve with the following

columns:
Col. 1: The time tN corresponding to the maximum of the N -th cy-

cle (T = 2∆ε/ε̇ is the period of the loading). For the practical
application, choose the points N = 100, 200, 300, 400, 500, 550,
and 600 cycles for the curve at strain range ∆ε = 1.2 10−2, and
N = 100, 200, 300, 350, 400, and 425 cycles for ∆ε = 2 10−2.

Col. 2: The accumulated plastic strain at t = tN and p ≈ 2N∆εp.
The plastic strain range ∆εp is known either from the experiment
or calculated as ∆εp(tN ) = ∆ε − 2σmax(N)/E(1 − D(N)).

Col. 3: The damage D(tN ) = D(N) calculated from the decrease of
the maximum stress, D(N) = 1 − σmax(N)/σmax(N = 100).

The corresponding charts (or arrays of data) are used for a point to
point comparison (application of eq. (2.132)).

• One file per strain range for the cyclic stress-strain curves of Fig. 2.6
at constant strain rate ε̇ = 10−3 s−1. Use enough points as these
files are used for the integral comparison (2.132) over each stabilized
cycle, the observation time for the cycle with strain range ∆εk where
T exp

k = 2∆εk/ε̇. Place in columns:
Col. 1: Time ti corresponding to the point i of the stress-strain sta-

bilized cycle,
Col. 2: Stress σ(ti),
Col. 3: Strain ε(ti),
Col. 4: Plastic strain (measured by fictitious unloadings) εp(ti),
Col. 5: Accumulated plastic strain p(ti) = pA + |εp(ti) − εA

p | during
plastic unloading, p(ti) = pB + εp(ti) − εB

p during plastic loading
with pA ≈ 2N∆εp and pB ≈ (2N + 1)∆εp after a number of
cycles N large enough to reach stabilization,

Col. 6: Isotropic hardening R(ti),
Col. 7: Kinematic hardening X(ti),
Col. 8: Damage D(ti).

• One two-column file σ(ti) for the relaxation test of Fig. 2.6.
The last but not the least practical point concerns the choice of the pon-
deration matrix P which allows us to make some experiments prepon-
derant over some others but also to make some parameters more sensible
than some other. Unfortunately, many choices are possible. As proposed
by P. Pilvin (1988) take the ponderation matrices for each variable as the
inverse of the square of the accuracy times identity, i.e.,

• For the stresses, Pσ =
1

(1 MPa)2
1

• For the strains or the plastic strains, Pε =
1

(10−5)2
1
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• For the accumulated plastic strain (fatigue applications),

Pp =
1

(10−4)2
1

• For the damage, P D =
1

(10−2)2
1

• For the hardening, P R = P X =
1

(2 MPa)2
1

5. The numerical optimization is finally performed with SIDOLO optimizer
by keeping unchanged the thermo-elasticity parameters E, ν, α, and the
damage threshold in pure tension εpD. The final set of parameters for the
2-1/4 CrMo steel at 580◦C is then:
• Thermo-elasticity: E = 134000 MPa, ν = 0.3, α = 1.3 · 10−5/◦C
• Fatigue limit: σ∞

f = 60 MPa
• Yield stress: σy = 85 MPa instead of 80
• Isotropic hardening: R∞ = 30 MPa instead of 5, b = 2 instead of 300
• Kinematic hardening: X∞ = 22 MPa instead of 20, γ = 250 instead

of 270
• Damage: S = 0.6 MPa instead of 0.113, s = 2 instead of 5, Dc = 0.2
• Damage threshold: εpD = 0.2, σu = 200 MPa (at ε̇ = 10−3 s−1)

instead of 187, σu = 137 MPa at ε̇ ≈ 0, m = 4,
• Viscosity: KN = 1220 MPa s1/N instead of 1450, N = 2.5 instead of

2.4,
• If necessary, the parameters A and wD for the damage threshold are

determined from the knowledge of the plastic strain range ∆εp and
the corresponding threshold pD by use of (1.114)–(1.116).

The example has been derived for isotropic damage. If the anisotropic
damage model is considered, apply the same procedure but change the
D-columns to D1-columns. The damage measurement on the maximum
stress for cyclic loading is:

σmax(N) =
3σmax(N = 100)

2
1 − D1

+
1

1 − D1

2

−→ D1(N) . (2.164)

2.4.4 Cross Identification of Damage Evolution Laws

For each application, different laws may model the damage evolution with
either a phenomenological, thermodynamical, or micromechanical basis. One
can consider:

• Damage as a function of the energy density release rate, i.e., D = D(Y )
• Damage as a function of the accumulated plastic strain, i.e., D = D(p)
• Damage as a function of the damage equivalent stress D = D(σ�), in

which the von Mises stress and triaxiality apply
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• Damage as a function of the accumulated plastic strain and the triaxiality

Note that the previous laws D(Y ) and D(σ�) do not apply to fatigue. The
law D(p) may apply, but with different values of the damage parameters than
for ductile failures!!

The initial difficulty for the numerical analysis of a structure is then the
choice of a damage law and its material parameters. Each set of parameters
is related to the damage law considered and even if the different models are
available in a FE code, it may not be a small task to switch from one to an
other. A solution may then be:

1. To build a new data base by numerical simulation with the law for
which the numerical values of the parameters are known

2. To apply the identification procedures of Sects. 1.4.4 and 2.4 on this new
database in order to find the values of the parameters related to the new
law used.

An example of such a cross identification is given in Sect. 3.4.5 where the
damage parameters εpD, S, s, and Dc are determined from the Gurson model
parameters by a fastened procedure.

2.4.5 Validation Procedure

Any (good!) model must be able to represent situations other than those used
for the identification of the material parameters. Furthermore, it is essential
to know its domains of validity for safety reasons. This is why it is important
to check the model against special tests designed for the validation. It can
be:

• 2D or 3D state of stress measurements to check the criteria used
• Non-proportional tests to check the validity of the anisotropy representa-

tion
• Complex history of stress to check the representation of the damage ac-

cumulation
• Non-isothermal tests to check the temperature dependence
• Tests with gradient of stress to check the stress redistribution due to the

coupling between damage and strain behaviors

As an example, the elasto-(visco-)plasticity coupled with the damage model
identified on the 2-1/4 CrMo steel at 580◦C in Sect. 2.4.3 has also been
identified at room temperature, 300, 400, and 500◦C. From the results, two
series of validation have been performed:

1. One-dimensional non-isothermal cyclic tests are described in Figs. 2.7
and 2.8. The history of strain (or stress) and temperature are given for
both tests. They are introduced as inputs for the calculation of the stress
(or strain) and damage for comparison with the experiments. The graphs
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correspond to the first cycle. The relative difference of about 25% on the
strain, stress or number of cycles to rupture is on the order of magnitude
expected in this kind of prediction.

Fig. 2.7. Thermal stress cyclic test on 2-1/4 Cr steel (J.-P. Sermage 1998). The
solid line represents the calculation and the dots represent experimental results

Fig. 2.8. Thermomechanical cyclic test on 2-1/4 Cr steel (J.-P. Sermage 1998). The
solid line represents the calculation and the dots represent experimental results
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2. Bidimensional non-isothermal cyclic tests up to crack initiation on Mal-
tese cross-shaped specimens for which the numerical simulation are de-
scribed in detail in Sect. 5.4.3 which is devoted to creep-fatigue damage.
The difference between the number of cycles predicted and obtained by
experiments is on the order of 25% to 100% depending on the method of
calculation used.

The final set of temperature-dependent material parameters is available in
the Table 5.1 in Sect. 5.4.3.

2.4.6 Sensitivity Analysis

The accuracy of a structure failure prediction depends very much on the
accuracy of the material parameters, but not all of the parameters have the
same effect on the model predictions concerning the strain-stress response
and the rupture of a Representative Volume Element.

The sensitivity of the calculated response to slight or main changes in
each variable and material parameter value is of first importance at different
stages of the mechanical analysis:

• At the stage of parameters identification, one has to minimize the
error (L(A)) between the numerical response of the model and the ex-
perimental database with respect to the set of material parameters (A).
The sensitivity of the functional L with respect to the material parame-
ters is in fact the gradient ( ∂L

∂A) or its numerical approximation ( ∆L
∆A). In

general, it is necessary to efficiently apply the minimization procedures
leading to the best set of parameters. The expression for ∂L

∂A is quite
complex and is numerically and automatically derived within the identi-
fication procedure. It is however a mathematical definition which has no
clear mechanical meaning.
It is difficult to properly handle the contribution to the functional L due
to damage. Following the work of G. Amar and J. Dufailly (1993), it
is thus preferable to define the sensitivity to the material parameters
as the relative sensitivity of the engineering variable considered for each
specific application to the relative changes of each material parameter
A = [A1,A2, . . .An] such as the plastic strain at failure pR, the stress to
failure σR, the number of cycles to failure NR, or more generally the time-
to-failure tR. A dimensionless sensitivity matrix may then be introduced,
such as ⎡

⎢⎢⎢⎢⎣

δpR
pR

δσR
σR

δNR
NR
δtR
tR

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

SpR
A1 SpR

A2 . . . SpR
An

SσR
A1 SσR

A2 . . . SσR
An

SNR
A1 SNR

A2 . . . SNR
An

StR
A1 StR

A2 . . . StR
An

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

δA1
A1
δA2
A2

. . .
δAn

An

⎤
⎥⎥⎥⎥⎦ . (2.165)

Each line of the sensitivity matrix corresponds to a given case: mono-
tonic loading for SpR

Ak or SσR
Ak terms, fatigue loading for SNR

Ak terms, more
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complex loading for StR
Ak terms. A few other lines may be added for ex-

periments performed at different strain rates or at different temperatures,
for example.

• At the early stage of design of mechanical components, the choice
of the materials may not be definitive. A sensitivity analysis made on the
failure properties may help for such a choice. Performed on the FE analysis
of the components with real loading conditions, it will tell if it is better
to
– Choose a material with better plasticity properties through the hard-

ening parameters σy, R∞, b, X∞, and γ
– Choose a material with better creep properties through the viscosity

parameters KN , N .
• At the stage of component manufacturing, the previous sensitivity

matrix may tell if a change of material supplier will have minor or ma-
jor consequences for the component design and if further complementary
studies are necessary to ensure the safety conditions.

Quantitative results of this method of sensitivity analysis are given for specific
applications in the following chapters (see Sects. 3.2.3, 4.2.3, 5.2.3, 6.2.4,
7.2.5).

Note finally that if the expressions of the material parameters are known
as (smooth) functions of the temperature (Ak = Ak(T )) or the microstructure
through a few parameters µ1, µ2 . . ., the knowledge of the sensitivity matrix
allows us to determine the sensitivity of the failure properties with respect
to a change in temperature as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂pR

∂T
=
∑

k

SpR
Ak

pR

Ak

dAk

dT
,

∂σR

∂T
=
∑

k

SσR
Ak

σR

Ak

dAk

dT
,

∂NR

∂T
=
∑

k

SNR
Ak

NR

Ak

dAk

dT
,

∂tR
∂T

=
∑

k

StR
Ak

tR
Ak

dAk

dT
,

(2.166)

or with respect to a change in microstructure as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂pR

∂µi
=
∑

k

SpR
Ak

pR

Ak

dAk

dµi
,

∂σR

∂µi
=
∑

k

SσR
Ak

σR

Ak

dAk

dµi
,

∂NR

∂µi
=
∑

k

SNR
Ak

NR

Ak

dAk

dµi
,

∂tR
∂µi

=
∑

k

StR
Ak

tR
Ak

dAk

dµi
.

(2.167)
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In anticipation of the sensitivity analyses made in the following chapters
for the accumulated plastic strain, stress, time, or number of cycles to rupture,
we can make the following general conclusions:

• The most important parameter is the loading for which a relative error
on the stress δσ

σ influences the relative error on the results by a factor S...
σ

of 5 to 10. If the loading is expressed in terms of strain, the factor S...
ε

may be reduced to 1.
• The material parameters which do not need a high degree of accuracy are

the damage threshold in tension εpD and the critical damage Dc because
their sensitivity factor S...

εpD
and S...

Dc
are only of the order of 0.5.

• Due to the nonlinearities, all the sensitivity factors for the other param-
eters are larger than 1 and of the order of 1 to 5.

• Finally, if all the parameters are known with a relative accuracy of a few
percent one may expect or fear (who knows?) an accuracy on the order of:
– ±20% on the accumulated plastic strain to rupture in ductile failures
– 0.5 to 2× on the number of cycles to rupture in low cycle fatigue failures
– 0.5 to 2× on the time-to-rupture in creep failures
– 0.2 to 5× on the number of cycles to rupture in creep-fatigue failures
– 0.1 to 10× on the number of cycles to rupture in high cycle fatigue fail-

ures
– ±5% on the stress to rupture in brittle failures
Large numbers indeed! This explains why the job of designers or engineers
is still, at least partially, an art!

2.5 Hierarchic Approach and Model Updating ,

“It is always easy to make things complicated,” tells a chinese proverb! This
is particularly true when modelling materials and structures with computers
which may give a multitude of useless output data.

To understand well what can happen on a structure in service, we strongly
advise beginning predictions with simple models and increasing the accuracy
with more sophisticated models progressively. This is the hierarchic approach
(D. Marquis 1990). It is developed at the end of each applications chapter
but some general conclusions are:

• σ� = σu is a good rupture criterion to begin with
• Isotropic hardening is sufficient for monotonic proportional loading
• Kinematic hardening is necessary to represent cyclic loading
• Linear kinematic hardening is often sufficient for damage purposes
• The energy density release rate Y = constant in the damage law is a good

approximation when the strain hardenings are large
• The damage threshold pD = constant is a good approximation in ductile

failures
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• But it is necessary to take into account the variation of pD with the stress
in low or high cycle fatigue

• An elastic calculation followed by the Neuber correction is a good approx-
imation in small scale yielding

Updating a model consists of changing the model or the value of the material
parameters each time new information is available. It can be

• More information concerning the material as the choices in early designs
progress

• More accurate values of the damage parameters as a test program progress
• New phenomena which may take place during validation tests on samples

or structures
• New in situ tests results on the structure itself to check if the real structure

is made of exactly the same material as the one used for the laboratory
identification tests

• Aging in service
• Injuries due to overloading or accident in service which may affect the

state of strain hardening and damage governing the residual strength

In order to be prepared for model updating of a structure in service, two
important points to remember are:

• Keep the initial calculations and the possibilities to change the inputs in
proper archives. Unfortunately, it is not so simple over several decades
with the change of computers and persons every few years!

• The possibility to practice in situ tests: the microhardness test and the
digital image correlation are good candidates!

2.6 Table of Material Damage Parameters

To end this chapter, let us give sets of the numerical values of damage pa-
rameters for some materials. You should take the numbers only as an order
of magnitude because the name of a material does not fully identify all the
properties. Be careful to always check the values using appropriate tests or
information in each particular case. Fortunately, you are clever and you know
that most often you only need qualitative results or relative values to compare
different design solutions for which approximate results are sufficient.
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3

Ductile Failures

With this chapter, we begin our discussion of the applications of damage
mechanics to specific structure failures classified by a phenomenon: here we
are focusing on ductile failures which may occur in structures due to over-
loading and also during metal forming. Ductile damage without any rup-
ture may also be produced by forming or mechanical processes and may
modify the mechanical properties which must be taken into account in the
constitutive equations used to evaluate the further strength of structures in
service.

From the physical point of view, ductile damage is essentially atomic de-
cohesions following dislocations piling in metals or growth and coalescence
of cavities induced by large deformations in the vicinity of inclusions in
both metals and polymers. From the micromechanical point of view, this
is the growth of a spheric or elliptic hole in a plastic medium subjected to
large strains and the problem can be solved analytically (F.A. Mac Clintoch
1968, J.R. Rice and D.M. Tracey 1969) or numerically (V. Tvergaard and
A. Needleman 1982). From the Continuum Damage Mechanics point of view,
this is a reduction of the resisting area in any plane of a Representative Vol-
ume Element that is governed by the elastic energy and the accumulated
plastic strain, as explained in Chap. 1.

All of the following chapters on applications have the same format: some
engineering considerations; description of “fast methods” which can be used
in early design where the hypothesis of proportional loading and small scale
yielding apply, with indications on the sensitivity analysis and possible safety
margin; closed-form solutions of simple problems currently found in en-
gineering such as structures with holes or notches, pressurized cylinders, and
forming limits and post-buckling behavior; specific cases treated by nu-
merical analysis, such as finite strains, porous materials, forming pro-
cesses such as deep drawing and extrusion and frames analysis using
Lumped Damage Mechanics. All applications are considered on materials at
room temperature and low strain rates (the domain of application of plastic-
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ity). A ductile damage model for elastomers which also applies in fatigue
is described in Chap. 4. Creep effects and also “dynamic plasticity” are
relevant to visco-plasticity and are treated in Chap. 5. Problems of elas-
tomers or polymers involving strain rate effects are approached at the end of
Chap. 5.

3.1 Engineering Considerations

Ductile failures are most often related to large deformations, plastic strains
in metals, and irreversible strains in polymers. These conditions can arise
locally in the vicinity of notches or severe bendings. They can also occur
on a large scale during forming processes but they are always associated
with instabilities and the phenomenon of localization of strains and damage.
Fortunately these phenomena occur at the latest stage of failures, allowing
us to only look into their initiation.

The “in service” security of pressure vessels or mechanical members with
holes or notches needs to be checked against ductile failures in case of over-
loads. The case of cyclic loadings is treated in Chap. 4 for low cycle fatigue
and in Chap. 5 for elevated temperatures.

Another area of applications is analyzing the forming processes in order to
choose the proper machine, to optimize the processes for economical energy
consumption, avoid trouble such as necking and cracks, and determine the
modifications of the constitutive equations after forming. Be careful when
reading values of material parameters in a metallurgy catalog because they
characterize materials in the state of the products sold (e.g., sheets) but
not the products after metal forming (e.g., deep drawing). The sequences of
machining like stamping may take advantage of non-proportional loadings to
increase the forming limits.

In post-buckling analysis of crash problems, the energy involved is much
dependent on the damage which reduces the strength and the energy ab-
sorbed. The dynamic case, which needs to take into account the strain rate
effect, is described in Sects. 5.3.1 and 5.4.4.

3.2 Fast Calculation of Structural Failures

Fast calculation means obtaining the desired result using closed-form solu-
tions or mathematical softwares on personal computers which do not need
large finite element computations on big computers. Often, taking time for
a clever qualitative analysis of the problem allows you to consider a simplified
geometry of the structure together with a simplified loading, which then al-
lows for a “fast calculation.” For such cases, we advise using isotropic damage
without the quasi-unilateral condition of microdefects closure.
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3.2.1 Uniaxial Behavior and Validation of the Damage Law

The basic uniaxial test is the “simple” tension test which is not so simple
in the range of large deformation where necking occurs. Figure 3.1 is an
example of the same test represented in the engineering stress-strain reference
of small strain theory and in the local “true” stress-“true” strain reference
(σtr = σ(1+ ε), εtr = ln(1+ ε)) of large strain theory. The difference in stress
may reach 50% for strains around 0.5.

Fig. 3.1. Engineering and true stress-strain curves of Cu/Al at room temperature
(J. Dufailly 1995)

Ductile properties of the material must take into consideration this big
difference. The easiest way is to use the simple tension test only up to the
strain corresponding to the ultimate stress (σ = σu) and to explore the
damage during a low cycle fatigue test for which no necking appears. The
ultimate stress (σu) is the true stress (Fu/S where S is the necking section)
if a large deformation theory is used; it is the engineering stress otherwise
(Fu/S0 where S0 is the initial section of the specimen). The method of iden-
tification of material parameters advised is the one discussed in Sect. 1.4.4
for a fast identification, improved with a numerical optimization if other tests
are available as described in Sect. 2.4. Due to large deformations which corre-
spond to saturated strain hardening at the ultimate stress σu, the plasticity
criterion for monotonic tension is

f =
σ

1 − D
− σu = 0 , (3.1)

the energy density release rate Y is almost constant:

Rν = 1 and Y ≈ σ2
u

2E
≈ const , (3.2)
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and the unified damage law reduces to

Ḋ =
(

Y

S

)s
ṗ =
(

σ2
u

2ES

)s
|ε̇p| if εp > εpD . (3.3)

A simple integration gives a relation between the critical value of the
damage Dc at mesocrack initiation and the plastic strain at rupture εpR:

Dc =
(

σ2
u

2ES

)s
(εpR − εpD) . (3.4)

This expression may be used to decrease the number of material parameters
in the damage law, as then

Ḋ =
Dc

εpR − εpD
|ε̇p| if εp > εpD , (3.5)

or by an obvious integration in monotonic loading:

D = Dc

〈
εp − εpD

εpR − εpD

〉
. (3.6)

The ductile damage is a linear function of the plastic strain. Checking this
property by experiments is a validation of the damage law to be added to the
procedures of identification of Sects. 1.4.4 and 2.4.

An approximate order of magnitude of the damage is obtained with Dc ≈
0.5, εpD ≈ εpR/2, yielding

D ≈
〈

εp
εpR

− 1
2

〉
(3.7)

(recall that 〈x〉 denotes the positive part of x).

3.2.2 Case of Proportional Loading

As defined in Sect. 2.1.2, the proportional loading condition for a structure
is when the loading induces principal directions of the stresses which are
constant in time but which are eventually different in each point of the struc-
ture,

σij(M, t) = σΣ(t)Σij(M) , (3.8)

with the von Mises norm for easy applications

3
2
ΣD

ijΣ
D
ij = 1 . (3.9)
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Let us recall that the main sufficient condition for a structure to be con-
sidered proportionally loaded is when there is only one applied load or when
all the loads vary proportionally to one parameter.

The simplification which arises is the possible a priori integration of the
damage law and the plastic constitutive equations as all the tensors are col-
inear:

σD
ij = σΣΣD

ij ⇒ σeq = |σΣ|
σH = σΣΣH ⇒ TX =

σH

σeq
= ΣH · sgn(σΣ) =

1
3
Σkk · sgn(σΣ) ≈ TXelas .

(3.10)

The value of the stress triaxiality in elasto-plasticity is usually close to the
value obtained in a pure elastic calculation.

Using the isotropic damage law together with a monotonic loading, we have

Ḋ =

(
σ2

eqRν

2ES(1 − D)2

)s
ṗ if p > pD , (3.11)

where

Rν =
2
3
(1 + ν) + 3(1 − 2ν)Σ2

H = const and σeq = σΣ . (3.12)

Considering natural initial conditions of no damage (D = 0 at the beginning
of the loading), we have

∫ D

0

(1 − D)2sdD =
(

Rν

2ES

)s ∫ t

tD

σ2s
Σ (t)ṗ(t)dt (3.13)

D = 1 −
[
1 − (2s + 1)

(
Rν

2ES

)s ∫ t

tD

σ2s
Σ (t)ṗ(t)dt

] 1
2s+1

, (3.14)

where tD is the time for which the accumulated plastic strain is equal to the
damage threshold p = pD, i.e., for monotonic loading pD = εpD.

This integration may be performed once the time histories σΣ(t) and
p(t) are determined, from an elasto-plastic computation or from the ini-
tial post-processing of an elastic computation using the Neuber method (see
Sects. 2.1.4 and 3.2.4, respectively.)

If a saturated hardening is considered it is possible to simply relate the
accumulated plastic strain at mesocrack initiation (pR) to the uniaxial
plastic strain to rupture (εpR):

Ḋ =
(

σ2
uRν

2ES

)s
ṗ if p > pD . (3.15)
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Integrating with the natural initial conditions and with pD = εpD in mono-
tonic loading leads to

Dc =
(

σ2
uRν

2ES

)s
(pR − εpD) (3.16)

and dividing by the same equation in the uniaxial case gives

pR − εpD

εpR − εpD
= R−s

ν and Rν =
2
3
(1 + ν) + 3(1 − 2ν)Σ2

H , (3.17)

with ΣH = TX (the triaxiality).

3.2.3 Sensitivity Analysis

Following the general method of Sect. 2.4.6, the sensitivity to loading condi-
tions and material parameters is determined here on the predicted plastic
strain to rupture using its closed-form expression in proportional loading
(3.16),

Dc =
(

σ2
uRν

2ES

)s
(pR − εpD) or pR = εpD +

(
σ2

uRν

2ES

)−s

Dc , (3.18)

with Rν = 2
3 (1 + ν) + 3(1 − 2ν)T 2

X.
The logarithmic derivative allows us to determine the relative error on all

the variables and parameters in order to build the scheme of the qualitative
importance of each of them:

ln(pR − εpD) = lnDc + s (ln 2 + lnE + lnS − 2 lnσu − lnRν) . (3.19)

With the notation δx = |dx| to ensure upper bounds on the errors (of un-
known signs),

δ(pR − εpD)
pR − εpD

=
δpR

pR

pR

pR − εpD
− δεpD

εpD

εpD

pR − εpD
(3.20)

and
δRν

Rν
=

δν

ν

|6T 2
X − 2

3 |ν
Rν

+
δTX

TX

6(1 − 2ν)T 2
X

Rν
, (3.21)

writing
δpR

pR
=
∑

k

SpR
Ak

δAk

Ak
where SpR

Ak are the coefficients of the sensitivity

matrix of Sect. 2.4.6, we obtain

SpR
TX

=
pR − εpD

pR

6s(1 − 2ν)T 2
X

Rν
,

SpR
σu

=
pR − εpD

pR
2s ,
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SpR
E =

pR − εpD

pR
s ,

SpR
ν =

pR − εpD

pR

|6T 2
X − 2

3 |νs

Rν
,

SpR
εpD

=
εpD

pR
,

SpR
S =

pR − εpD

pR
s ,

SpR
s =

pR − εpD

pR
s

∣∣∣∣ln 2ES

σ2
uRν

∣∣∣∣ ,
SpR

Dc
=

pR − εpD

pR
.

(3.22)

Finally, the scheme of Fig. 3.2 gives an example of the values of the sensi-
tivity parameters and shows the relative importance of each parameter given
by the height of the frames around each sensitivity coefficient. It has more
or less a general qualitative value for ductile failures as it has been obtained
for mean values of the parameters: TX = 1, Rν = 2.07, σu = 500 MPa,
E = 200000 MPa, ν = 0.3, εpR/εpD = 2, S = 2 MPa, and s = 5.

Fig. 3.2. Relative importance of each parameter in ductile failures

The loading is represented here by the triaxiality ratio TX and by the
stress through σu. Their influences are larger than those of the material pa-
rameters. The parameters which do not need a large accuracy are εpD and
Dc. Nevertheless, if all the parameters were known with an error as small
as 1%, the error on the accumulated plastic strain at failure could be of the
order of 10 to 20%. Fortunately, in practice some errors are positive and some
negative!

3.2.4 Stress Concentration and the Neuber Method

The case of small scale yielding allows us to avoid a whole elasto-plastic
calculation of the structure by setting up a plastic correction of an elastic
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structure analysis. Small scale yielding refers to the cases where plastic strain
is limited in energy and in geometrical space. To give a quantitative criterion,
it is in the domain where σeq > σy is below ≈ 1% of the volume of the
structure. This corresponds to the zones of stress concentrations as those
close to holes or notches.

To evaluate the risk of a failure the proposed procedure is as follows:

• First, perform an elastic structure calculation
• Second, do a Neuber local plastic analysis as a correction of the elastic

analysis. Other local energetic methods may be used. For instance, the
strain energy density (SED) method described in Chap. 4 applies better
at free edge points if the plasticity remains very localized. This is the
case for cyclic loadings. For monotonic loadings, the Neuber method is
generally preferred.

• Third, calculate the damage based on the results of the elastic and plastic
analysis. The time integration of the damage evolution law is performed
by using (3.6) or (3.14).

The Neuber method looks like an energy equivalence between the elastic and
the elasto-plastic calculations of the same geometry submitted to the same
loading but it is a heuristic.

For unidimensional states of stress, the product (stress × strain)
calculated in elasticity is assumed to be locally identical to the same product
calculated by means of an elasto-plastic analysis,

σε = (σε)elas at the stress concentration point, (3.23)

where (.)elas means “value determined from a strictly elastic computation,”
even if the stress is above the yield limit. The plastic state is then deter-
mined as the matching of the constitutive equation ε = σ/E + g(σ) with
the equation of the hyperbole (stress × strain = the constant determined
by the elastic calculation), where for monotonic loading isotropic harden-
ing R(εp) alone has to be considered (Fig. 3.3). The function g(σ) = p is

g(σ) =
(

σ−σy

Ky
p

)My

for the hardening power law.
One may introduce the stress concentration coefficient in elasticity,

KT =
σelas

σn
=

εelas
εn

, (3.24)

whose value may be found in handbooks (see bibliography) for common engi-
neering geometries. The nominal stress σn is the nominal uniform stress field
calculated from the external loading by the simple consideration of loads at
equilibrium (see Fig. 3.4), εelas = σelas/E, and εn = σn/E. This allows us to
write the Neuber heuristic as

σε = K2
Tσnεn =

K2
T

E
σ2

n . (3.25)
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Fig. 3.3. The Neuber method

Fig. 3.4. Nominal stress (σn) and elastic stress concentration coefficient (KT) for
an applied load (F )
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The result of the post-processing is the stress σ and the plastic strain εp
determined graphically (Fig. 3.3) or analytically: use, for instance, (3.36) for
linear hardening and solve (3.38) with Rν = 1 for nonlinear hardening. This
defines the ratio

kNeuber =
σ

σelas
(3.26)

and the stress concentration coefficient in plasticity as

σ

σn
= kNeuberKT . (3.27)

For three-dimensional states of stress, Neuber fundamental hypo-
thesis may be written as

σijεij = (σijεij)elas for monotonic loading, (3.28)

where the quantity (σijεij)elas may also be written in terms of von Mises
stress σelas

eq and stress triaxiality TXelas coming from the elastic reference
computation,

(σijεij)elas =
(σelas

eq )2Relas
ν

E
and Relas

ν =
2
3
(1+ν)+3(1−2ν)T 2

Xelas . (3.29)

The plastic behavior is described by an integrated Hencky–Mises law for
monotonic loading ,

σij = Eijklεkl − 3G
σD

ij

σeq
p and p = R−1(σeq − σy) , (3.30)

where G is the shear modulus and R(p) is the isotropic hardening law. For
the power law, we have

p =
(

σeq − σy

Ky
p

)My

. (3.31)

Again, the values of the stress triaxiality TX and the triaxiality function
Rν = 2

3 (1 + ν) + 3(1 − 2ν)T 2
X are needed in order to properly apply the

Neuber method. Use the proportional loading assumption TX ≈ TXelas for
general 3D cases. Use TX = 1/3 and Rν = 1 for stress concentration points
located on free edges in plane stress. Use TX ≈ 0.58 and Rν ≈ 1.27 for stress
concentration points located on free edges in plane strain (see Sect. 2.1.4).

3.2.4.1 Neuber Method with Linear Hardening, R = Cyp

Assume that an elastic computation gives the product (σijεij)elas as well as
the von Mises stress σelas

eq at a stress concentration point. The application of
the Neuber method (3.28) leads to
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σijεij =
σ2

eqRν

E
+

σeq 〈σeq − σy〉
Cy

= (σijεij)elas (3.32)

and then the evaluation of the von Mises stress in plasticity σeq if Rν is
known. The relationship σeq(σelas

eq ) is explicit:

σeq =

E

Cy
σy +

√(
E

Cy
σy

)2

+ 4E

(
Rν +

E

Cy

)
(σijεij)elas

2
(

Rν +
E

Cy

) , (3.33)

where we define

kNeuber =
σeq

σelas
eq

from the Neuber method (3.34)

and the accumulated plastic strain is

p =
σeq − σy

Cy
. (3.35)

This method has the main advantage of being fully explicit and giving
closed-form expressions for σeq and p. The hardening parameters σy and Cy

need to be identified from the tensile stress-strain curve within a range in
accordance with the value of the plastic strain finally estimated.

For the 1D case,

σ = σnKTkNeuber = σnKT

1 +

√√√√1 + 4

(
Cy

E
+

C2
y

E2

)
σ2

elas

σ2
y

2
(

Cy

E
+ 1
)

σelas

σy

, (3.36)

with σelas = KTσn.

3.2.4.2 Neuber Method with Nonlinear Hardening,
R = Ry

∞ (1 − exp (−byp))

The accumulated plastic strain is

p(σeq) = g(σeq) = − 1
by

ln
(

Ry
∞ + σy − σeq

Ry∞

)
(3.37)

and the Neuber method now reads (Rν known):

σijεij =
σ2

eqRν

E
+ σeqp(σeq) = (σijεij)elas , (3.38)

an equation which has to be solved numerically to estimate the von Mises
stress in plasticity σeq, and then the accumulated plastic strain p and the
auxiliary function kNeuber = σeq/σelas

eq .
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Considering a nonlinear hardening gives better results but a mathematical
software is needed to solve the nonlinear equation (3.38).

3.2.4.3 Neuber Method Coupled with Damage

When damage occurs, the Neuber method can still be used but with the
stress replaced by the effective stress, σ̃eq = σeq/(1 − D).

Equation (3.33) for linear hardening becomes

σ̃eq =

E

Cy
σy +

√(
E

Cy
σy

)2

+ 4E

(
Rν +

E

Cy

)
(σijεij)elas

2
(

Rν +
E

Cy

) (3.39)

and equation (3.38) for nonlinear hardening becomes

σ̃2
eqRν

E
+ σ̃eqp(σ̃eq) = (σijεij)elas , (3.40)

with the accumulated plastic strain

p = p(σ̃eq) = R−1(σ̃eq − σy) = g

(
σeq

1 − D
− σy

)
. (3.41)

The damage is equal to Dc at crack initiation.

3.2.5 Safety Margin and Crack Arrest

The main parameter which allows us to evaluate how far or close a loaded
structure is to a ductile mesocrack initiation is the maximum accumulated
plastic strain p resulting from a structure analysis.

The plastic strain corresponding to a mesocrack initiation is given by the
damage analysis:

pR = pD + Dc

(
σ2

uRν

2ES

)−s

= pD + (εpR − εpD)R−s
ν . (3.42)

If the number Saf ≥ 1 is the safety factor to take into consideration in
engineering, the safety margin is defined by

p <
pR

Saf
, (3.43)

with Saf = 5, 2, or 1.1 depending on the compromise adopted between secu-
rity and weight design.
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Once the mesocrack is initiated, it is often important to check its rate of
growth. As a finite crack exists, the simple Continuum Damage Mechanics is
not appropriate any more and the concepts of Fracture Mechanics by cracking
can be applied. The behavior of a ductile crack is approximately governed
by a resistant curve (or R-curve) that depends on each material: an energy
which depends on the area of the crack A,

Rc = Rc(A − A0) , (3.44)

where the function Rc(A − A0) is known from experiments (Fig. 3.5) and
where A0 is the area of the mesocrack initiated by damage (see Sect. 1.6.3),

A0 =
G2

c(
σ2

u

2E
Dc + σuεpR

)2 . (3.45)

The energy available for the crack growth is determined by the structure
strain energy release rate (G) that depends on the geometry of the structure
and the far field loading (σ∞),

G = G(A, σ∞) . (3.46)

It can be calculated from the Fracture Mechanics concepts and has the general
form of

G = κ
σ2∞πA1/2

E
, (3.47)

with κ a dimensionless shape parameter.

Fig. 3.5. Ductile crack growth governed by the R-curve
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The strain energy release rate G is compared to the resistant curve
(Fig. 3.5) as the fracture behavior is determined by

G(A, σ∞) = Rc(A − A0) . (3.48)

• If this equality is satisfied, the intersection I of the two curves exists,
there will be a crack arrest for the value of σ∞ considered and a stable
growth of the crack if σ∞ increases.

• If this equality is not satisfied, which means G > Rc, there will be a fast
crack propagation by instability as soon as the tangent point Ic is reached:

∂G

∂A
=

∂Rc

∂A
at Ic . (3.49)

If the R-curve for the considered material is not available, there is always the
possibility to compare the strain energy release rate for the value A0 of the
crack area with the toughness Gc: does κσ2

∞πA
1/2
0 /E remain much smaller

than Gc? If yes, be happy!

3.3 Basic Engineering Examples

Some basic geometries and loadings are very common in engineering. For
plates with holes or notches, for cylinders or for some plane stress prob-
lems there are approximate solutions which allow for fast calculations of the
mesocrack initiation conditions. Furthermore, some results can be expressed
in non dimensional form for use in large problem sets.

Here again, the damage is considered isotropic without the quasi-unilateral
condition of microdefects closure.

3.3.1 Plates or Members with Holes or Notches

These are all cases where the critical RVE is submitted to a stress concen-
tration, inducing a small scale local plasticity. Assume that the local elastic
stress, ignoring the plasticity, is known for a monotonic loading either from
a structure calculation or through the stress concentration coefficient (KT)
which may be found in handbooks (see bibliography):

σelas
eq = KTσn . (3.50)

with σn the nominal stress. When the load (σ∞) increases, small scale local
plasticity develops which decreases the stress concentration determined now
from the 1D Neuber correction (as the stress concentration lies on a free
surface, see Sect. 3.2.4). Then

σeq = kNeuberσ
elas
eq = kNeuberKTσn . (3.51)
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This stress is used to calculate the accumulated plastic strain p which ensures
the mesocrack initiation when it reaches εpR or ε�

pR given by the critical
damage condition of Sect. 3.2.1,

Dc =
(

σ2
uRν

2ES

)s
(εpR − εpD) or εpR = εpD + Dc

(
2ES

σ2
uRν

)s
(3.52)

with Rν = 1 for thin plates with the hypothesis of plane stresses and
Rν = 1.27 for thick plates with the hypothesis of plane strains (stress tri-
axiality TX = 0.58 from Sect. 2.1.4).

3.3.1.1 Linear Hardening

kNeuber =

E

Cy
σy +

√(
E

Cy
σy

)2

+ 4E

(
Rν +

E

Cy

)
(σijεij)elas

2
(

Rν +
E

Cy

)
σelas

eq

, (3.53)

with Cy the plastic modulus such that

p =

〈 σeq

1 − D
− σy

Cy

〉
. (3.54)

Writing the rupture condition as

εpR =

〈 σeq

1 − Dc
− σy

Cy

〉
= εpD + Dc

(
2ES

σ2
uRν

)s
, (3.55)

from which

σeq = (1 − Dc)
[
σy + Cy

(
εpD + Dc

(
2ES

σ2
uRν

)s)]
(3.56)

and the failure condition is

σn =
σ̃eq

kNeuberKT
, σ̃eq =

σeq

1 − Dc
. (3.57)

3.3.1.2 Exponential Hardening, R = Ry
∞ (1 − exp (−byp))

kNeuber = σ̃eq/σelas
eq is determined by the Neuber method (3.38), with

p = − 1
by

ln
(

Ry
∞ + σy − σ̃eq

Ry∞

)
. (3.58)
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Writing the rupture condition

p = − 1
by

ln

⎛
⎜⎝Ry

∞ + σy − σeq

1 − Dc

Ry∞

⎞
⎟⎠ = εpD + Dc

(
2ES

σ2
uRν

)s
, (3.59)

from which

σeq = (1 − Dc)
{

σy + Ry
∞

[
1 − exp

(
−by

(
εpD + Dc

(
2ES

σ2
uRν

)s))]}
,

(3.60)
the failure condition is

σn =
σ̃eq

kNeuberKT
, σ̃eq =

σeq

1 − Dc
. (3.61)

3.3.2 Pressurized Shallow Cylinders

A pressurized cylinder may explode if a crack is initiated through the phe-
nomenon of ductility. It may happen in pipes or during the process of hy-
droforming. If the cylinder is considered long enough, with a thin thickness
(tcyl) compared to the mean radius (Rcyl, Fig. 3.6), the state of stress derives
simply from overall equilibrium equations.

Fig. 3.6. Pressurized circular cylinder

In cylindrical coordinates (r, θ, z) with P as the internal pressure, we have

σ =

⎡
⎢⎢⎢⎣
≈ 0 0 0

0
PRcyl

tcyl
0

0 0
PRcyl

2tcyl

⎤
⎥⎥⎥⎦ , (3.62)

from which it is easy to determine
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• The von Mises equivalent stress σeq =
√

3
2

PRcyl

tcyl
,

• The hydrostatic stress σH =
PRcyl

2tcyl

• The triaxiality ratio TX =
σH

σeq
=

1√
3

• The triaxiality function

Rν =
2
3
(1 + ν) + 3(1 − 2ν)T 2

X =
5 − 4ν

3
(3.63)

or Rν = 1.27 for ν = 0.3

A rough approximation consists of writing the condition of brittle fracture
of Chap. 7 through the damage equivalent stress σ� derived in Sect. 1.2.2
(1.34), using

σ� = σu or σeqR
1/2
ν = σu , (3.64)

where σu is the ultimate stress in tension. The term Pc is the critical pressure
at mesocrack initiation, where

√
3

2
PcRcyl

tcyl

√
5 − 4ν

3
= σu (3.65)

gives

Pc =
2√

5 − 4ν
σu

tcyl

Rcyl
. (3.66)

The critical pressure is linear with the ultimate stress and the thickness-radius
ratio.

A better analysis consists of the resolution of the unified damage law
together with the plastic constitutive equations for which the hypothesis of
linear hardening is sufficient:

p =

〈 σeq

1 − D
− σy

Cy

〉
. (3.67)

Since the loading is proportional and monotonic, considering the saturated
strain hardening allows us to use the result of Sect. 3.2.5 (3.42):

pR = pD + Dc

(
σ2

uRν

2ES

)−s

= εpD + (εpR − εpD)R−s
ν . (3.68)

There will be a mesocrack initiation for the pressure corresponding to the
accumulated plastic strain value equal to pR, such that

√
3PcRcyl

2tcyl(1 − Dc)Cy
− σy

Cy
= εpD +

(
5 − 4ν

3

)−s

(εpR − εpD) (3.69)
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or

Pc =
2√
3

tcyl

Rcyl
(1 − Dc)

[
σy + Cy

(
εpD +

(
5 − 4ν

3

)−s

(εpR − εpD)

)]
.

(3.70)
The critical pressure is still linear with the ratio tcyl/Rcyl but depends on the
damage properties.

Example of a Pipe

For a pipe made of ferritic steel at room temperature:
E = 200000 MPa, ν = 0.3, σy = 375 MPa, σu = 474 MPa, εpu = 0.15,

Cy ≈ σu − σy

εpu
= 660 MPa, εpD = 0.15, εpR = 0.32, Dc = 0.3, s = 2.4.

Equation (3.70) gives Pc = 435 tcyl
Rcyl

(MPa). The condition of brittle frac-

ture (3.66) leads to Pc = 486 tcyl
Rcyl

(MPa) which overestimates the pressure by
a factor of 12%.

3.3.3 Post-Buckling in Bending

A situation which often occurs in accident evaluation is a post-buckling de-
formation following an instability due to buckling. The purpose here is to
evaluate the energy absorbed by plastic deformation, taking into account the
damage up to a mesocrack initiation for an elementary volume loaded in pure
bending at slow strain rate.

The problem reduces to the analysis of a beam element of length l, height
h and width b, loaded in circular bending of radius of curvature ρ up to
a maximum plastic strain εpR or ε�

pR (Fig. 3.7).
The elementary beam theory is used together with the Bernoulli hypothe-

sis applied on the plastic strain as the elastic strain can be neglected, yielding

εp = εpM
2y

h
, (3.71)

where εpM is the maximum uniaxial plastic strain reached in the cross sec-
tion and εpM = εpR at mesocrack initiation. The density of energy to create
a tension defined by a plastic strain εp is

w =
∫ εp

0

σdεp . (3.72)

For a material subjected to a power law hardening (with the yield stress
taken as σy = 0) and the unified damage law (3.6) of Sect. 3.2.1 (with the
damage threshold taken equal to εpD = 0), we have
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Fig. 3.7. Elementary bending of a rectangular beam

εp =
[

σ

(1 − D)K0
p

]M0

and D = Dc
εp
εpR

. (3.73)

Then,

w =
∫ εp

0

(
1 − Dc

εp
εpR

)
K0

pε1/M0
p dεp

=
M0

M0 + 1
K0

pε
M0+1

M0
p − DcK

0
p

εpR

M0

2M0 + 1
ε

2M0+1
M0

p .

(3.74)

At this stage it is interesting to compare the energy involved without any
damage at crack initiation (εp = εpR, w = wR):

w0 =
∫ εp

0

K0
pε1/M0

p dεp =
M0

M0 + 1
K0

pε
M0+1

M0
p (3.75)

and

wR = w0

(
1 − Dc

M0 + 1
2M0 + 1

)
. (3.76)

This shows that a calculation made without consideration of damage leads
to an overestimation of about w0Dc/2, a relative error of 10 to 25%.

Back to the bending problem, w has to be integrated in the whole volume
with the linear variation of εp in height εp = εpM

2y
h :
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W = 2bl

∫ h/2

0

∫ εp(y)

0

(
1 − Dc

εp
εpR

)
K0

pε1/M0
p dεpdy (3.77)

or

W = bhlK0
p

M0

2M0 + 1
ε

M0+1
M0

p

(
M0

M0 + 1
− Dc

M0

3M0 + 1
εpM

εpR

)
. (3.78)

If the damage is not taken into consideration, then

W0 = bhlK0
p

M2
0

(2M0 + 1)(M0 + 1)
ε

M0+1
M0

p (3.79)

and for the mesocrack initiation condition (εp = εpR, W = WR),

WR = W0

(
1 − Dc

M0 + 1
3M0 + 1

)
. (3.80)

When damage is not taken into account, the result is again an overestimation
of the energy. The relative difference is slightly smaller and of about Dc/3,
that is 7 to 17%.

For the practical applications of bar structures collapsing with nh identical
plastic hinges, we estimate the bending length as a full bending: l = πh/2
(see Fig. 3.7) and take the following as a rough estimation of the energy
absorbed:

WR(nh) = nhb
πh2

2
K0

p

M2
0

(2M0 + 1)(M0 + 1)
ε

M0+1
M0

pR

(
1 − Dc

M0 + 1
3M0 + 1

)
(3.81)

or with εpR =
[

σR

(1 − Dc)K0
p

]M0

≈
[

σu

K0
p

]M0

,

W (nh) = nhb
πh2

2
M2

0

(2M0 + 1)(M0 + 1)
σuεpR

(
1 − Dc

M0 + 1
3M0 + 1

)
, (3.82)

which only needs the knowledge of the geometry b, h, and the material pa-
rameters σu, εpR, M0, and Dc.

3.3.4 Damage Criteria in Proportional Loading

The case of proportional loading allows us to derive the mesocrack initiation
condition as a function of the state of stresses or strains with the need of only
a few material parameters. Equation (3.17) derived in Sect. 3.2.2 for saturated
hardening is used here but its application is limited to positive stresses as the
damage is considered isotropic, without any effect of microdefects closure in
compression:

pR − εpD

εpR − εpD
= R−s

ν . (3.83)
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3.3.4.1 Three-Dimensional Loading

The large effect of the triaxiality ratio TX = σH/σeq on the accumulated
plastic strain at mesocrack initiation pR is shown in Fig. 3.8. The value of pR

may be deduced from the graphs if the values of the damage threshold εpD,
the damage exponent s, the plastic strain to rupture in pure tension εpR, and
the triaxiality ratio from a structure calculation are known.

Fig. 3.8. Triaxiality makes materials more brittle!

3.3.4.2 Case of Plane Strains

The case of plain strains applies to thick sheets for which the strain within the
thickness ε3 is considered negligible in comparison to the in-plane principal
strains ε1 and ε2:

ε =

⎡
⎣ ε1 0 0

0 ε2 0
0 0 0

⎤
⎦ and σ =

⎡
⎣σ1 0 0

0 σ2 0
0 0 σ3

⎤
⎦ . (3.84)

Neglecting the elastic strains, the condition of plastic incompressibility gives

ε2 = −ε1 . (3.85)

The plastic constitutive equations integrated in case of proportional loading
gives back the Hencky–Mises law with p = g(σeq, D):
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ε3 =
3
2
g(σeq, D)

σD
33

σeq
, (3.86)

from which σD
33 = 0,

ε1 =
3
2
g(σeq, D)

σD
11

σeq
,

ε2 =
3
2
g(σeq, D)

σD
22

σeq
.

(3.87)

As ε2 = −ε1, σD
22 = −σD

11, it follows that

σ3 =
1
2

(σ1 + σ2) ,

σH =
1
2

(σ1 + σ2) ,

σeq =
√

3
2

|σ1 − σ2| .

(3.88)

The accumulated plastic strain is

p =

√
2
3
(ε21 + ε22) =

2√
3
|ε1| (3.89)

and the crack initiation criterion becomes

2√
3
|ε1| − εpD

εpR − εpD
= R−s

ν (3.90)

or

|ε1| = |ε2|

=
√

3
2

⎡
⎣εpD + (εpR − εpD)

[
2
3
(1 + ν) + (1 − 2ν)

(
σ1 + σ2

σ1 − σ2

)2
]−s
⎤
⎦ .

(3.91)
The case σ1 = σ2 corresponds to a pure hydrostatic state of stress σ1 = σ2 =
σ3 for which there is no plastic strain and no damage since it would need
infinite strains.

3.3.4.3 Case of Plane Stresses

The case of plane stresses applies to thin sheets for which the stress within
the thickness σ3 is considered as negligible in comparison to the in-plane
principal stresses σ1 and σ2.



3.3 Basic Engineering Examples 163

With the condition of incompressibility εkk = 0, and neglecting the elastic
strains,

σ =

⎡
⎣σ1 0 0

0 σ2 0
0 0 0

⎤
⎦ , ε =

⎡
⎣ ε1 0 0

0 ε2 0
0 0 −(ε1 + ε2)

⎤
⎦ (3.92)

To use the condition of mesocrack initiation (3.17)

pR − εpD

εpR − εpD
= R−s

ν (3.93)

one needs the accumulated plastic strain and the triaxiality function ex-
pressed either as functions of the strains or of the stresses.

3.3.4.3.1 Plane Stress Criterion as a Function of the Strains

p =

√
2
3
εDijε

D
ij =

2√
3

√
ε21 + ε22 + ε1ε2 (3.94)

The triaxiality ratio σH/σeq may be derived from the plastic constitutive
equations (3.87). Both σH and σeq may be expressed as a function of σ1 and
ε2/ε1. First of all

ε2
ε1

=
σD

22

σD
11

, (3.95)

with

σD
11 = σ1 − 1

3
(σ1 + σ2) and σD

22 = σ2 − 1
3
(σ1 + σ2) . (3.96)

It follows that

σ2 = σ1

2
ε2
ε1

+ 1

2 +
ε2
ε1

. (3.97)

Then,

σH =
1
3
(σ1 + σ2) =

σ1

3

⎛
⎜⎝1 +

2
ε2
ε1

+ 1

2 +
ε2
ε1

⎞
⎟⎠ , (3.98)

σeq =
1√
2

√
(σ1 − σ2)2 + σ2

1 + σ2
2 = σ1

√√√√√√
⎛
⎜⎝2

ε2
ε1

+ 1

2 +
ε2
ε1

⎞
⎟⎠

2

−

⎛
⎜⎝2

ε2
ε1

+ 1

2 +
ε2
ε1

⎞
⎟⎠+ 1 ,

(3.99)
and

TX =
σH

σeq
=

ε2
ε1

+ 1

√
3

√(
ε2
ε1

)2

+
ε2
ε1

+ 1

. (3.100)
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Finally at rupture, we have

2√
3

√
ε21 + ε22 + ε1ε2 − εpD

εpR − εpD
=

⎡
⎢⎢⎢⎣2

3
(1 + ν) + (1 − 2ν)

(
ε2
ε1

+ 1
)2

(
ε2
ε1

)2

+
ε2
ε1

+ 1

⎤
⎥⎥⎥⎦
−s

.

(3.101)
A resolution by any mathematics software with εpD = 0 gives the graphs

of Fig. 3.9 where the proportional loading is always a straight line in the plot
of ε2/εpR vs ε1/εpR. The admissible domain for the couple of strains ε1 and
ε2 is smaller and smaller as the damage exponent s increases.

Fig. 3.9. Strain limit curves in plane stresses (εpD = 0)

3.3.4.3.2 Plane Stress Criterion as a Function of Stresses

σH =
1
3
(σ1 + σ2)

σeq =
1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 =

√
σ2

1 + σ2
2 − σ1σ2

(3.102)

The plastic strain needs to be expressed as a function of the stresses. Using
again the integrated plastic constitutive equations again, but with a zero yield
stress, allows us to obtain a simple expression for the ratio pR/εpR.
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The hardening law reads:

p = g(σeq, D) =
[

σeq

(1 − D)K0
p

]M0

. (3.103)

Close to crack initiation the hardening is close to saturation, leading to

pR =
[

σeq

(1 − Dc)K0
p

]M0

and εpR =
[

σR

(1 − Dc)K0
p

]M0

≈
[

σu

K0
p

]M0

.

(3.104)
Then

pR

εpR
=
[

σeq

σu(1 − Dc)

]M0

, (3.105)

where
pR

εpR
= R−s

ν gives

√
σ2

1 + σ2
2 − σ1σ2

(1 − Dc)σu
=
[
2
3
(1 + ν) +

1
3
(1 − 2ν)

(σ1 + σ2)2

σ2
1 + σ2

2 − σ1σ2

]− s
M0

.

(3.106)

Fig. 3.10. Stress limit curves in plane stresses (εpD = 0)
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If the damage threshold is considered as εpD = 0, the stress condition
of mesocrack initiation depends only on the ultimate stress σu, the critical
damage Dc, and the ratio of the damage and plastic exponents s/M0, as
shown in Fig. 3.10.

In the same figure, the von Mises criterion is plotted to show which mis-
take may be made in using it as a rupture criterion when the triaxiality ratio
differs from ≈ 1/3. The damage equivalent stress criterion σ� = σeqR

1/2
ν = σR

corresponds to the curve s/M0 = 0.5.

3.4 Numerical Failure Analysis

For complex geometries and loadings, closed-form solutions for the stress,
strain, and damage fields usually do not exist and the loading is often non-
proportional at most Gauss points of finite element analyses. No simplifying
assumptions can be made, except the earlier hypothesis of localized plasticity
(small scale yielding) which gives the possibility to efficiently use the Neuber
method as described in Sect. 3.2.4. When plasticity takes place in a non-
negligible domain of the structure (one speaks then of large scale yielding),
stress redistribution occurs. It may have an accelerating effect on the failure
conditions as it enhances the phenomenon of strain and damage localiza-
tion.

We then use computer codes and perform FE analyses with the fully-
coupled damage constitutive equations of Chap. 1. For ductile failures we
use the damage initiation criterion written in terms of plastic strain where
pD = εpD (see Sect. 1.4.1). For monotonic loading, we use the single isotropic
hardening R with either the exponential law R = Ry

∞ (1 − exp (−byr)), the
power law R = Ky

pr1/My , or the linear law R = Cyr. When a numerical analy-
sis is performed, there is no more reason to consider the unified damage law
reduced to isotropy. We strongly advise using the anisotropic law to obtain
a better accuracy. It requires only one additional material parameter which
in practice may be taken as η = 3. The consideration of the quasi-unilateral
conditions of microdefects closure is not necessary as far as monotonic loading
is applied.

For more details see for instance Sect. 2.2.6 for the use of the fully-coupled
scheme and more generally Sect. 2.2 for its numerical implementation, as well
as Sects. 1.4.4 and 2.4 for the material parameters identification.

Other models concern ductile failures: an anisotropic plasticity model with
the Hill yield surface that is compatible with the effective stress concept is
described at the end of this chapter; the model extension to finite strains
is briefly exposed in next section; and the Gurson model specific to ductile
failure of porous materials is summarized in Sect. 3.4.5 and used for the
cross identification of the unified damage law. Frames may be analyzed by
limit analysis incorporing damage through Lumped Damage Mechanics of
Sect. 3.4.6.
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3.4.1 Finite Strains

When ductile failure occurs, the strains often become too large for the small
strain perturbation hypothesis to remain valid: for metals the plastic strain
at rupture is usually larger than 0.1 (and most of the time smaller than 1); for
polymers it may reach much larger values corresponding sometimes to a few
hundred percent. The large deformations framework has to be used and this
can be done only with the help of computer codes.

Different solutions exist to extend nonlinear small strain constitutive
equations to finite strains, mainly related to the material behavior description
in either the reference initial configuration C0 or in the deformed or actual
configuration C(t) at time t. The link between C0 and C(t) is the gradient of
the transformation F and F T is its transpose.

One may consider different strain tensors, such as the Green–Lagrange
tensor (E) in the reference configuration, the Euler–Almansi tensor (A)
in C(t),

E =
1
2

(
F TF − 1

)
and A =

1
2

(
1− F−TF−1

)
, (3.107)

and even different strain rate tensors such as the velocity gradient L or its
symmetric part: the strain rate tensor ∆,

L = ḞF−1 and ∆ =
1
2

(
L + LT

)
. (3.108)

But considering one definition instead of another does not provide an equiv-
alent description and leads to different theories. Their use is also related to
stress tensors definitions:

• The second Piola–Kirchhoff tensor S associated with E (defined in the
reference configuration C0),

• The Cauchy stress tensor σ associated with ∆ (defined in C(t)), and
• The first Piola–Kirchhoff stress tensor τ associated with F . The tensors

F and τ are not symmetric.

The following relations stand:

(detF ) σ = τF T = FSF T , (3.109)

and one has the energetic equivalence

1
ρ
σ : ∆ =

1
ρ0

τ : Ḟ =
1
ρ0

S : Ė , (3.110)

with ρ0 as the initial density in C0 and ρ = ρ0/ detF as the actual density
in C(t).

There are also theoretical difficulties concerning the objectivity and frame-
work independency of the time derivative of the stress tensor, the main ques-
tion being, “In which framework or configuration do we take the derivatives?”
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Different answers to this question lead to different definitions of the derivative
(called objective), the most “popular” being the Jaumann derivative,

dJ

dt
σ = σ̇ − Wσ + σW with W =

1
2

(
L − LT

)
. (3.111)

The Truesdell derivative is also considered; it corresponds to the reactu-
alized Lagrangian formulation,

dTr

dt
σ = σ̇ − Lσ − σLT + tr(L)σ , (3.112)

but other good (better?) definitions exist. We briefly present here three pos-
sible formulations and further details about objectivity or about plasticity
and thermodynamics within the large deformation framework given in the
books by G. Maugin (1992) and P. Ladevèze (1996). The thermodynamics
framework of Chap. 1 then applies strictly if the constitutive equations are
written in a “rotated” configuration.

In order to keep the presentation simple, only isotropic hardening (vari-
ables R, r) and isotropic damage (variables Y , D) are considered here.

3.4.1.1 Additive Split of the Strain Rate Tensor

The strain rates ε̇, ε̇e, and ε̇p of small deformation formulation are replaced
by ∆, ∆e, ∆p, and the stress rate by Jaumann objective derivative (3.111).
The strain rate partition reads

∆ = ∆e + ∆p . (3.113)

The elasticity law is written in the rate form

dJ

dt
σ = a : ∆e , (3.114)

with a an objective elasticity tensor.
The yield criterion is written in terms of the von Mises invariant of the

Cauchy stress,

f =
σeq

1 − D
− R − σy with R = R(r) (3.115)

and the normality rule

∆p = λ̇
∂f

∂σ
with

{
λ̇ = ṙ = ṗ(1 − D) ,

ṗ =
√

2
3∆

p : ∆p (3.116)

which ensures the plastic incompressibility.
The damage evolution remains the same as for the small strain formulation

of Chap. 1:

Ḋ =
(

Y

S

)s
ṗ if p > εpD . (3.117)
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3.4.1.2 Multiplicative Decomposition of F

The multiplicative decomposition

F = F eF p (3.118)

defines an intermediate relaxed configuration which in small strain plasticity
corresponds to the linearly-unloaded state. It defines an elastic strain tensor,

Ee =
1
2

(
F eTF e − 1

)
, (3.119)

associated with the stress tensor Se in order to derive the elasticity law as

Se =
ρi

ρ
F e-1σF e−1T

= ρi
∂ψ

∂Ee , (3.120)

with ρi the density for the relaxed configuration.
The yield criterion is written as

f =
Σeq

1 − D
− R(r) − σy with Σ =

1
ρi

F eTF eSe (3.121)

and the normality rule of standard generalized materials gives

Ḟ pF p−1 = λ̇
∂f

∂Σ
with

⎧⎨
⎩

λ̇ = ṙ = ṗ(1 − D)

ṗ =
√

2
3

(
Ḟ pF p−1

)
:
(
Ḟ pF p−1

)
,

Ḋ =
(

Y

S

)s
ṗ if p > εpD .

(3.122)

3.4.1.3 Reactualized Lagrangian Formulation

This formulation extends the rate formulation σ̇ = L : ε̇ of small strain
problems to large deformations

• By considering C(t) permanently as the reference configuration: take
F (t) = 1 at any time t (but Ḟ �= 0) and

• By still considering the rate formulation, but on the deformed structure.
It is then equivalent to Ṡ = L : Ė, with S and E defined with respect to
C(t).

From (3.109) and (3.110), one can see that S and E are in fact replaced by
σ and ∆ and after some calculations that Ṡ is replaced by the Truesdell
derivative of the Cauchy stress tensor dTr

dt σ.
For numerical finite element analysis, the extension to finite strains is in-

cremental and for the computation of the solution at time tn+1, the deformed
mesh C(t) = C(tn) is used.
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3.4.2 Deep Drawing Limits

During deep drawing or forming processes to induce large plastic deforma-
tion of thin sheets, there are limitations in strains due to instabilities at
small scale, instability of the phenomenon of strain localization, and crack
initiation.

The first limitation governs the appearance of the surfaces. The second
governs the local reduction of thickness; it appears sooner in the process of
hydro-forming than in classical deep drawing. The third limitation is the lo-
cal rupture of the sheet.

3.4.2.1 Forming Limits by Strain Localization

Knowing the loading path, the limit may be predicted by the strain damage
localization criterion of Sect. 1.6.2:

det(�nL�n) = 0 , (3.123)

where L is the fourth order tangent operator derived from the elasto-plastic
constitutive equations that may or may not be coupled with damage and �n
is the normal to the plane of localization.

Considering the problem of plane stress in proportional loading of
Sect. 3.3.4, but without any simplified hypothesis here, it is possible to find
at each increment the minimum of the criterion det(�nL�n) with respect to
any normal �n and to check when det(�nL�n) = 0 is satisfied.

Working with uniform fields of stresses and strains, we have

σ =

⎡
⎣σ1 0 0

0 σ2 0
0 0 0

⎤
⎦ , ε =

⎡
⎣ ε1 0 0

0 ε2 0
0 0 −(ε1 + ε2)

⎤
⎦ . (3.124)

and Fig. 3.11 gives an example for steel with the following parameters: E =
200000 MPa, ν = 0.3, σy = 200 MPa, Ky

p = 10000 MPa, My = 1.66, εpD = 0,
s = 1, and S = 0.5 MPa. Numerical simulations show that the shape of
the curve is very sensitive to the value of the plastic exponent My of the
hardening law R = Ky

pr1/My .

3.4.2.2 Forming Limits by Mesocrack Initiation

The problem of plane stress has already been solved in Sect. 3.3.4 but with
a set of simplifications to yield a closed-form solution: proportional load-
ing, elastic strain neglected, hardening saturated, and damage considered as
isotropic.

With numerical simulations it is possible to be closer to reality where
the forming processes are executed in several steps eventually on different
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Fig. 3.11. Strain localization limit curves of deep drawing (I. Doghri 1989)

machines which correspond to non-proportional loadings, inducing effects of
anisotropy. Furthermore, it can be interesting to beneficiate from particu-
lar loading paths to minimize the damage in order to increase the limit of
forming.

Let us consider again the case of a plane stress problem and look for
the strain forming limits in the plane (ε1, ε2). The limits are defined by the
anisotropic critical damage criterion

maxDI = Dc (3.125)

for different proportional and non-proportional loading paths represented in
Fig. 3.12 as thin lines finishing by the point of mesocrack initiation.

The material is ARCELOR steel SOLDUR 355. The constitutive equa-
tions are those of elasto-plasticity coupled with anisotropic damage and
microdefects closure effect of Table 1.6 (Sect. 1.5). A single isotropic harden-
ing is considered with an exponential law R = Ry

∞ (1 − exp (−byr)). Tensile
tests performed on small specimens cut inside large plates damaged either
in uniaxial tension or in plane tension, giving both the η-parameter and the
anisotropic damage evolution for different stress triaxialities (see Sect. 1.3.3).
The set of material parameters is: E = 230000 MPa, ν = 0.3, σy = 375
MPa, Ry

∞ = 120 MPa, by = 25, εpD = 2.5 · 10−2, ha = 0, S = 0.43 MPa,
s = 4, η = 2.8, and Dc = 0.5. Note that this corresponds to the same
stress-strain response in tension as with ha = 1 and S = 0.57 MPa for
the model without microdefects closure effect. The computations are per-
formed with the ZeBuLon FE code using the numerical implicit scheme of
Sect. 2.2.5.

The numerical results for many monotonic proportional loading paths
allow us to build the crack initiation limit curve of deep drawing (solid curve
of Fig. 3.12) in which are also reported the results for some non-proportional
paths (points •).
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Fig. 3.12. Computed crack initiation limit curve and points of deep drawing of
SOLDUR 355 (R. Desmorat and J. Besson 2004)

• It is seen that very large strains may be obtained for loadings close to pure
shear ε2 = −ε1. This is the case of hydroforming of tube-like structures
with axial compression added to pressure.

• The reality taking into account both localization and damage is a curve
below the crack initiation curve of Fig. 3.12, with a flatter part for ε1 > 0
due to easier strain localization conditions.

• Some computed non-proportional loading paths exhibit a crack initiation
below the proportional limit curve. Some specific non-proportional load-
ings increase the limit of forming as shown by F. Moussy and J.P. Corde-
bois (1990). This is mainly the case for the path ε2 = 2ε1 up to ε1 = 0.1,
followed by ε̇2 = −ε̇1/2 (parallel to the tensile path) up to ε2 = 0.29 which
is found to be very beneficial.

This kind of calculations offers the possibility to optimize loading paths to
reach a state of strain with a minimum value of the damage.

3.4.3 Damage in Cold Extrusion Process
(K. Saanouni 2002)

Another important difficulty concerning the forming processes is the exis-
tence and then the determination of possible local instabilities. The global
instabilities are well predicted from elasto-plastic structure computations.
The local instabilities leading to damage initiation and to microcrack growth
can only be studied by use of the damage mechanics constitutive equations.
They correspond to the reach of the critical damage Dc for the local damage
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as in the following example or to the strain damage localization det(�nL�n) = 0
as in the example of Sect. 3.4.4.

The forward cold extrusion process consists of obtaining a bar or a wire of
diameter d from a bigger bar of diameter d0 by pushing the material through
a die. The quality of the result depends on several parameters: the ratio of
the diameter d/d0, the angle of the die α, the lubrication, and of course the
ductility of the material. The optimization of the process consists of choosing
these parameters in order to obtain bars with adequate properties and to
avoid large damage leading to chevrons as in Fig. 3.13.

Fig. 3.13. Picture (M. Grange) and numerical simulations of damage and inside
chevrons cracking during forward cold extrusion

It is possible to catch this periodic phenomenon using the finite strains
framework and the constitutive equations of elasto-plasticity coupled with
damage of Sect. 1.5.2, Table 1.3, or something similar. The corresponding
finite element analysis does not ensure the convergence regarding the mesh
size but in the following example, the smallest mesh size was adjusted to
correctly fit a simple tensile test calculated by an axisymmetric FEA in the
softening range up to failure. For the extrusion of the circular bar of diam-
eter d0 = 35 mm reduced to a diameter d = 31 mm, the meshing consists
of 1312 triangular linear elements. The material is a ductile steel of yield
stress σy = 300 MPa, ultimate stress σu = 390 MPa, and rupture strain
εR = 0.7. It is represented by the damage law Ḋ = (Y/S)s1 ṗ/(1 − D)s2 ,
with S = 500 MPa, s1 = 2.5, and s2 = 7.5. The axisymmetric calcula-
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tion of the extrusion process corresponding to the picture of Fig. 3.13 was
performed with FORGE 2 code using the reactualized Lagrangian formula-
tion, the elements being removed when the damage reaches its critical value.
The result is given in Fig. 3.13, with a close similitude with the experi-
ment. The discrete appearance of the chevrons is due to the redistribution
of stresses, a consequence of the coupling of damage with elasticity – if this
coupling is neglected, the damaged zone is continuous all along the axis of
the specimen.

As far as the specimen goes in the die, there is a large gradient of damage
mainly governed by the stress triaxiality with a loss of rigidity. As the material
moves on, a chevron crack forms at an angle determined by the angle of the
die. At the same time the relaxation of stresses in the ligament behind the
chevron does not produce any more damage until the material has moved on
a certain distance to recover a damaging stress level. A new chevron crack
then initiates . . . and so on . . .

From this kind of analysis performed on many cases, the following quali-
tative observations can help to decrease the risk of such damage and obtain
a small damage state without any chevron:

• A small diameter reduction (e.g., 16%) needs a small die angle (≈ 4◦)
• A large diameter reduction (e.g., 30%) may be obtained in good conditions

with a large die angle (≈ 15◦) which decreases the contact surface
• A large ductility of the material is better, of course
• A large friction (e.g., a friction coefficient of 0.2) can prevent the formation

of chevrons but it increases the load to perform the process and damage
may occur at the surface of the material due to the heavy contact with
the die.

Nevertheless, these results may be helpful in the preparation of a precise
numerical procedure of optimization of any extrusion process.

3.4.4 Crack Initiation Direction
(R. Billardon and I. Doghri 1989)

The question of the direction in which a mesocrack initiates is of first im-
portance if a Fracture Mechanics analysis must be performed afterwards to
determine the conditions of crack growth (see Sect. 3.2.5). An example is
given below using the localization criterion of Sect. 1.6.2 for which the math-
ematical problem consists of determining the normal �n (and the tangent
operator L) which makes

det(�nL�n) = 0 . (3.126)

Consider the notched specimen of Fig. 3.14 with an out-of-axis hole of di-
ameter φ = 1mm, inducing a stress concentration area which may model an
initial macroscopic defect of non-negligible size at the scale of the structure.
The material is an aluminum alloy 2024 at room temperature.
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Fig. 3.14. Notched plate with a hole and iso-damage curves with the strain local-
ization directions (R. Billardon and I. Doghri 1989)

A monotonic displacement u(t) is applied. Before any crack initiates, the
small hole ovalizes strongly and the specimen bends (without any buckling).
The first crack initiates on the hole edge and propagates quickly toward
the notched edge. A second crack initiates also on the hole and propagates
through the whole specimen up to complete failure. The direction of the first
crack is not easily guessed as it does not coincide with the shortest distance
between the hole and the notch. Furthermore, the two possible directions for
the crack initiated are observed on each side of the specimen, with the crack
finally taking an intermediate direction.

The numerical simulation of this experiment has been performed in elasto-
plasticity coupled with isotropic damage with ABAQUS code. The mesh is
made of 8-node isoparametric elements with reduced integration. Plane stress
conditions apply. The material parameters of the 2024 aluminum alloy con-
sidered are:

• E = 72000 MPa, ν = 0.33 for elasticity
• σy = 273.5 MPa for the yield stress
• R∞ = 275 MPa, b = 1.86 for the exponential isotropic hardening law
• C = 4950 MPa, γ = 37.2 for the nonlinear kinematic hardening law
• pD = εpD = 0, S = 1.3 MPa, s = 1 for damage evolution

Figure (3.14) also gives the iso-damage curves around the hole at strain-
damage localization where det(�nL�n) = 0. In agreement with the experiments,
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two normals of localization (�n1 and �n2) are obtained showing the ability of
the criterion to predict the direction of the cracks initiated drawn in solid
lines on the figure.

3.4.5 Porous Materials – the Gurson Model
(A.L. Gurson 1977, V. Tvergaard and A. Needleman 1984)

Porous materials submitted to heavy loadings are subjected to volume or
density change. Furthermore, the cavities can grow due to a ductile damage
process. This is the case for geomaterials, powders, and also for certain steels
where cavities may nucleate at the neighborhood of defects, grow by plastic
deformation, and finally give a mesocrack by coalescence. The early Gurson
model mathematically describes mainly the second mechanism. The Gurson–
Tvergaard–Needleman (GTN) model describes the three mechanisms. This
model may be used in numerical structure simulations to predict flow local-
ization or final failure. It is restricted to proportional loading and applies
badly when the loading induces mainly shear.

The basic micromechanics cell of Gurson analysis contains a hollow sphere
and the damage variable is the volume fraction of cavities or the porosity fv.
At microlevel the material surrounding the cavities is considered elasto-plastic
with isotropic hardening R and a yield stress σs = σy + R. At mesolevel the
homogenized behavior is plasticity with volume change (i.e., εpkk �= 0).

The plastic potential FGurson is obtained for proportional loading by con-
sidering an appropriate velocity field in the matrix,

FGurson =
σ2

eq

σ2
s

+ 2q1f
�
v cosh

(
3
2
q2

σH

σs

)
− 1 − (q1f

�
v )2 , (3.127)

with q1 and q2 as the two material parameters added by V. Tvergaard and
A. Needleman to avoid an overestimation of the rupture strain which occurs
for fv = fR < 1. Introduced by the same authors, the effective porosity f�

v

models the fast coalescence of voids once a threshold fc is reached:

f�
v =

{
fv , if fv < fc ,

fc + δGTN · (fv − fc) if fv ≥ fc ,
(3.128)

where δGTN =
q−1
1 − fc

fR − fc
is also a material parameter.

When f�
v = fv = 0, the plastic potential (3.127) reduces to the von Mises

criterion σeq − (σy + R) = 0.

Remark – The Rousselier model (1981) uses the plastic potential coupled with
porosity damage fv:

FRousselier =
σeq

ρ
− R(p) − σy + dRfvσ1 exp

(
σH

ρσ1

)
= 0 , (3.129)
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with ρ = 1−f
1−f0

as the relative density and f0 as the initial porosity, and where dR

and σ1 are material parameters.

The normality rule applied on FGurson gives the plastic strain rate as

ε̇pij = λ̇

[
3σD

ij

σ2
s

+
q1q2f

�
v

σs
sinh
(

3
2
q2

σH

σs

)
δij

]
, (3.130)

where the plastic multiplier λ̇ is determined from the consistency condition
FGurson = 0 and ḞGurson = 0. The hardening law in the yield criterion is
a power or exponential law function R(p) of the equivalent plastic strain p
defined by the energetic equivalence

σij ε̇
p
ij = (1 − fv)σsṗ (3.131)

and p differs from the von Mises accumulated plastic strain
∫√

2
3
ε̇pij ε̇

p
ijdt.

Next, the porosity evolution law

ḟv = (1 − fv)ε̇
p
kk + ḟn (3.132)

states that the porosity rate is the sum of the void growth rate (1 − fv)ε̇
p
kk

determined by the plastic incompressibility of the material surrounding the
cavities and the voids nucleation rate ḟn. Phenomenological evolution laws
are used to model the nucleation phenomenon assumed either controlled

• by the stress,

ḟn = Aσσ̇s + Bσ
σ̇kk

3
, (3.133)

• or by the plastic strain,

ḟn = Anṗ , (3.134)

with Aσ, Bσ, and An as material constants to be identified or, better,
functions of the strains and of the stress triaxiality.

The second law (ḟn = Anṗ) is often used with the statistically-based expres-
sion

An =
fN

SN

√
2π

exp

(
−1

2

(
p − εN

SN

)2
)

(3.135)

proposed by C.C. Chu and V. Tvergaard in 1980. Three additional material
parameters are introduced:

• fN is the volume fraction of voids which may nucleate,

fN =
∫ ∞

−∞
An(p)dp ≈

∫ pR

0

An(p)dp � 1 (3.136)
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• εN is the mean strain at nucleation
• SN is the standard deviation of the rupture strain

Finally, the conditions of ductile failure are obtained through a numerical
analysis of elasto-plasticity coupled with porosity. It gives the condition of
localization of plastic strain together with the final rupture by coalescence
of cavities and initiation of a mesocrack for f�

v = 1/q1 that is for a poros-
ity:

fR = fc +
1

δGTN

(
1
q1

− fc

)
. (3.137)

3.4.5.1 Material Parameter Identification of the GTN Model

Each application with a specific material needs:

• The elasticity parameters E and ν.
• The yield stress σy and either the power hardening parameters Ky

p and
My or the exponential hardening parameters Ry∞ and by (see Sect. 1.5.1)
determined on specimens without any damage.

• The parameters q1 and q2 governing the voids’ growth are determined
from numerical micromechanics analysis. In most cases good results for
metals are obtained with q1 ≈ 1.5 and q2 ≈ 1.

• It is the same for the coalescence parameters fR and fc where estimations
from numerical simulations and experiments on metals are fR = 0.25 and
fc = 0.09 (δGTN = 3.6).

• The initial void volume fraction and the nucleation parameters fN, εN, and
SN can be estimated only from micrographs analysis at different states of
deformation. εN = 0.3 and SN = 0.1 are reasonable values for metals.

3.4.5.2 Cross Identification of the Unified Damage Law Ḋ(Y, ṗ)

It is the purpose here to determine the material parameters of the damage
law (Ḋ = (Y/S)sṗ) from the knowledge of the GTN parameters following the
method described in Sect. 2.4.4. It is also the purpose to estimate the damage
threshold in monotonic tension (εpD). Recall that for Continuum Damage
Mechanics, the isotropic damage (D) may either be evaluated on unloading
through the elasticity change or on the stress softening part of the stress-
strain curve. As for porosity damage, the GTN model neglects the coupling
of elasticity with damage, allowing us to use the stress softening effect to
make a link between both theories up to a fast identification procedure based
on the expressions of the yield surfaces of the damaged material.

For the GTN model, the plastic potential is rewritten as

FGurson =
σ2

eq

(σy + R)2
+ 2q1f

�
v cosh

(
3
2
q2TX

)
− 1 − (q1f

�
v )2 = 0 , (3.138)
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with TX as the stress triaxiality
1
3

σkk

σs
.

For the damage model of Chap. 1, the yield criterion is (isotropic damage)

f =
σeq

1 − D
− R − σy = 0 (3.139)

so that for saturated hardening σy+R = σu (the ultimate stress), the damage
D measured in tension is directly related to the void volume fraction fv by
simple substitution of (3.139) in (3.138),

D = 1 −
√

1 + (q1f�
v )2 − 2q1f�

v cosh
(

3
2
q2TX

)
. (3.140)

Next, we plot the damage D versus the accumulated plastic strain p calculated
from the GTN model.

As D =
(

σ2
uRν

2ES

)s
(p− εpD) for a monotonic tensile loading, a curve fitting

gives, for a given s, both the damage threshold εpD and the ratio σ2
u/2ES.

If no other information is available, take s = 1. If results for different stress
triaxiality are available, plot dD

dp vs ln Rν (with Rν = 2
3 (1+ν)+3(1−2ν)T 2

X).
As

ln
dD

dp
= ln

(
σ2

u

2ES

)s
+ s lnRν , (3.141)

s is the slope of the curve obtained.
To illustrate the procedure, consider here that f�

v = fv (acceleration factor
δGTN = 1) and the porosity remains small. With the additional assumption
of a constant stress triaxiality TX (equal to 1/3 in tension), a closed-form
expression may be derived from the GTN model for D vs p. The porosity
evolution law becomes then

ḟv ≈
[
3
2
q1q2fv sinh

(
3
2
q2TX

)
+ An(p)

]
ṗ , (3.142)

where ṗ is nearly the von Mises accumulated plastic strain rate. The solution
for fv is

fv = exp
[
3
2
q1q2 sinh

(
3
2
q2TX

)
p

]
·
∫ p

0

An(p) exp
[
−3

2
q1q2 sinh

(
3
2
q2TX

)
p

]
dp

(3.143)
and the damage D is calculated by use of (3.140). The D(p) curves obtained
for the nucleation law An(p) (3.135) are plotted in Fig. 3.15 for different values
of the parameter fN. Note that these curves could be plotted with a better
accuracy (and also for larger values of the acceleration factor δGTN) from
computations using Gurson or GTN model implemented in a finite element
code.
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Linear regressions of the D(p) curves correspond to the integrated unified
damage law

D =
(

σ2
uRν

2ES

)s
(p − εpD) . (3.144)

With Rν = 1 in tension, they give for each fN the damage threshold εpD

and the slope
(

σ2
uRν

2ES

)s
. The damage exponent is determined from the stress

triaxiality effect on damage growth ((3.141) with D given by (3.140)): the
derivative dD

dp is performed numerically and linear regression on ln dD
dp |p=pgiven

vs ln Rν gives s as the slope of the curve (a given accumulated plastic strain
p = pgiven is considered: pgiven = 0.25 for fN = 0.01, 0.05, 0.1, and 0.2).

The results are summarized in Table 3.1. An interesting point, a damage
threshold of 0.15 is found for metals: physical existence of porosity at very
small strains does not correspond to mechanical damage occurrence.
Knowing the ultimate stress and the Young’s modulus finally gives S.

Fig. 3.15. Cross identification of the unified damage law (εN = 0.3, SN = 0.1).
Damage D in thick line, porosity fv in thin line, damage law in dotted line
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Table 3.1. Results of cross identification for q1 = 1.5, q2 = 1, δGTN = 1, εN = 0.3,
and SN = 0.1

fN 0.01 0.05 0.1 0.2

εpD 0.15 0.15 0.15 0.15
s 2 2.5 2.5 2.5
σ2

u

2ES
0.25 0.62 0.83 1.13

Last, consider that the reach of the critical damage Dc in tension corre-
sponds to the rupture porosity f�

v = fR. With TX ≈ 1/3, the critical damage
is then

Dc = 1 −
√

1 + (q1fR)2 − 2q1fR cosh
q2

2
(3.145)

and ranges between 0.1 and 0.5 (nothing new!) as fR = 0.1 gives Dc = 0.17,
fR = 0.2 gives Dc = 0.36, and fR = 0.25 gives Dc = 0.46.

Example: for the values of the GTN parameters of Table 3.1 for fN = 0.1 and
fR = 0.2, the unified damage law reads:

Ḋ = (0.83 · Rν)2.5ṗ if pD > 0.15 ,

Dc = 0.36 −→ mesocrack initiation.
(3.146)

Now we have a law which can be adopted to obtain results for steel when
material data are ignored!

3.4.6 Frame Analysis by Lumped Damage Mechanics
(J. Flórez-López 1998)

The analysis of inelastic frames is an important subject in civil engineering
for metallic as well as concrete reinforced structures. The plastic hinge con-
cept and limit analysis are efficient tools to design metallic frames and the
conventional theory is based on perfect-plasticity. The extension to damage
is possible by concentrating the damage in the hinges and is called Lumped
Damage Mechanics. It applies to ductile monotonic failures as well as to cyclic
and dynamic (seismic) loadings.

The model of a frame member between nodes i and j is made of two in-
elastic hinges i and j and an elastic column whose shape and size depend on
the structure studied (but of elastic behavior Fig. 3.16). Generalized stresses
{M} = (Mi, Mj , N)T and deformations {Φ} = (φi, φj , δ)T are used to write
the frame behavior instead of stress and strain tensors in continuum mechan-
ics. For instance, elasticity reads

{Φ} = [S]{M} where [S] is the symmetric compliance matrix. (3.147)
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Fig. 3.16. Frame and lumped dissipation model of a frame member

We define the complementary energy for a damaged frame member as

W � =
1
2
{M}T[S̃]{M} and [S̃] =

⎡
⎢⎢⎢⎢⎢⎣

S11

1 − di
S12 0

S21
S22

1 − dj
0

0 0
S33

1 − dn

⎤
⎥⎥⎥⎥⎥⎦ (3.148)

where the components of {d} = {di, dj , dn}T are the lumped damage vari-
ables. Note that the form for W � is fully similar to the form for the complen-
tary strain energy for anisotropic composite layers (see Sect. 7.4.1).

Inelastic frame deformation {Φp} occurs due to plasticity and damage
in the hinges so that the generalized state laws for elasticity coupled with
damage are

{Φe} = {Φ − Φp} =
∂W �

∂{M} ,

{y} =
∂W �

∂{d}
(3.149)

or

φe
i = φi − φp

i = S11
Mi

1 − di
+ S12Mj ,

φe
j = φj − φp

j = S22
Mj

1 − dj
+ S21Mi ,

δe = δ − δp = S33
N

1 − dn
.

(3.150)

For the generalized strain energy release rates, the state laws are
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yi =
S11M

2
i

2(1 − di)2
,

yj =
S22M

2
j

2(1 − dj)2
,

yn =
S33N

2

2(1 − dn)2
.

(3.151)

To complete the model and write the generalized evolution laws, we will
neglect the inelastic axial effect (δ ≈ δe, dn ≈ 0). The yield function for the
damaged plastic hinge i is then simply written as

fi =
∣∣∣∣ Mi

1 − di
− xi

∣∣∣∣− my ≤ 0 , (3.152)

where my is the yield momentum and xi stands for linear kinematic hardening
(parameter c):

ẋi = c(1 − di)φ̇
p
i (no summation). (3.153)

Finally, the generalized damage evolution law is

ḋi =
(yi

S

)s
π̇i if πi > πD , (3.154)

where π =
∫ t

0
|φ̇p|dt is the generalized accumulated plastic deformation and

πD, S, and s are the frame member damage parameters.

Remark – For reinforced concrete frames, use the damage framework of Sect. 7.4.1,
and consider the following as damage law:

di = κ−1(yi max) and yi max = sup
τ∈[0,t]

yi(τ ) (3.155)

instead of (3.154). J. Flórez-López proposes modelling the crack-resistance-like phe-
nomenon by using

κ(di) = yi max and κ(d) = A + B
ln(1 − d)

1 − d
(3.156)

with A and B as frame member damage parameters.

The frame analysis is then performed by assembling the frame members (use
beam boundary conditions) and by computing the structure response to ap-
plied nodal loads or displacements in case of ductile failures or to inertia
forces in case of dynamic failures. There are not many nodal quantities for
a real structure and the method is usually of low cost (cheaper than the mul-
tifiber beam modelling of Sect. 7.4.3). Some difficulty may be encountered in
the identification of the frame members parameters: S11, S12 = S21, S22, and
S33 for elasticity; my and c for plasticity; πD, S, and s for damage (or A and
B for quasi-brittle damage). These parameters depend on the cross section
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of the member, which can have any shape, size, or reinforcement. The good
thing is that damage is localized at the ends of the member frames and no in-
stabilities are encountered, such as strain-damage localization in Continuum
Damage Mechanics.

As an illustration, Fig. 3.17 shows the kind of results expected on a frame
subjected to seismic loadings. The location and size of the dots represent
the damage field. A design criterion such as D < Dc or D < Dgiven tells us
when and where to repair the structure. Following conventional engineering
criteria, the damages encountered in frame (b) have very high values and the
frame should not be repaired.

Fig. 3.17. Damage distribution in a frame (M.E. Marante and J. Flórez-López
1998) (a) after a low intensity shake and (b) after a severe shake

3.4.7 Predeformed and Predamaged Initial Conditions
(R. Billardon 1988)

The initial state of a material is a question with several answers! Most of the
time, it is the state in which the material is received, but it can be before
a forming process in order to calculate the process or after the process to
determine the component’s strength in service. It can be also the state of
the material after an accident in service in order to determine the residual
strength.

In all cases of structure calculation, the initial state is the state corre-
sponding to the specimens used for the identification of the material pa-
rameters. A question arises immediately: how do we modify the constitutive
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equations to take into account a change without performing a completely new
identification procedure?

This is the power of the thermodynamics approach to work with differ-
ential evolution laws of state variables which may have initial values. If an
identification of a set of an elasto-(visco-)plastic coupled with damage consti-
tutive equations has been performed on a material in its origin state (plane
sheet for example), the initial conditions to use in a structure calculation after
a forming process (a deep drawing for example), or any rheological modifica-
tion, are the values of the internal variables at the end of the process:

• The accumulated plastic strain p0

• The corresponding isotropic hardening R0

• The corresponding kinematic hardening X0
ij

• The eventual damage D0 or, better, D0
ij

Introducing these initial values in a numerical analysis consists of adding to
the set of constitutive equations of Sect. 1.5 the fields of initial conditions:

R(t = 0, M) = R0(M) ,

Xij(t = 0, M) = X0
ij(M) ,

p(t = 0, M) = p0(M) in accordance with R0 and X0
ij ,

D(t = 0, M) = D0(M) or Dij(t = 0, M) = D0
ij(M) .

(3.157)

In a finite element analysis they must be considered at each Gauss point,
which is not a major problem. The main difficulty is to know that their values
are often perturbed by an other initial condition coming from a structural
effect: a field of residual self-equilibrated stresses, described by

σij(t = 0, M) = σ0
ij(M) . (3.158)

The only way to properly determine these fields of initial conditions is
to numerically simulate the process of their creation. Some experiments like
the in situ microhardness or an X-ray analysis or a digital image correlation
qmay give some indications but never enough information.

Concerning the ductile failure, the influence of non-zero initial conditions
in proportional loading are:

• A modification of the yield stress (an increase if the original damage was
zero or small),

σ0
y = (σy + R0 + X0

eq)(1 − D0) with X0
eq =

√
3
2
X0

ijX
0
ij (3.159)

• A decrease of the plastic strain to rupture pR:
Back to the unified damage law of

Ḋ =
(

σ2
uRν

2ES

)s
ṗ if εp > pD , (3.160)
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the integration with zero initial conditions gives

Dc =
(

σ2
uRν

2ES

)s
(pR − pD) . (3.161)

The integration with initial conditions D0 and p0 > pD gives

Dc − D0 =
(

σ2
uRν

2ES

)s
(pR − p0) (3.162)

from which the remaining plastic strain to rupture is

pR − p0 = (pR − pD)
Dc − D0

Dc
. (3.163)

• Therefore some anisotropy can also be observed.

As an example, we will describe here the method used for the determination
of the remaining strength of a pressurized gas pipe that has been damaged
by a shock from a digging machine (Fig. 3.18):

Fig. 3.18. Injured gas pipe and “equivalent” flat specimen

1. Careful measurement of the local geometry of the indented pipe in order
to make a flat specimen ready for microhardness tests (Fig. 3.18) from the
same material. Its notch is made as identical as possible to the accident
notch by an indentation process.
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2. Careful measurement of the microhardness all around the notch in order
to determine the damage field and the extra hardening field induced by
the indentation ((1.85) and (1.81) of Sect. 1.3.4):

D0 = 1 − H̃

H

σy

σu
and R0 =

σs

1 − D0
− σy . (3.164)

The accumulated plastic strain field is deduced from the plastic consti-
tutive equation:

p0 =
(

R0

Ky
p

)My

. (3.165)

3. These fields are given in Fig. 3.19 for the following notch geometry and
material parameters corresponding to a low carbon laminated steel:
• A notch with a depth of 2 mm made by an indenter with an angle

of 60◦

• Parameters of the low carbon laminated steel determined from the
initial virgin material: σy = 575 MPa, Ky

p = 552 MPa, and My = 2.04

Fig. 3.19. Fields of accumulated plastic strain and damage in the neighboring of
the notch (R. Billardon 1988)

4. Assuming these fields are representative of what happened in the gas pipe,
they are introduced as initial conditions by interpolation at each Gauss
point in a finite element analysis performed with the code ABAQUS
in elasto-plasticity coupled with damage. The analysis corresponds to
the in-service pressure increased up to crack initiation at the notch. In
comparison to the strength of the undamaged gas pipe, the result is
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a reduction of the pressure at crack initiation by an amount of about 50%.
Regarding the fatigue strength due to a cyclic variation of the pressure
the reduction is a factor of about 100 on the number of cycles to crack
initiation.

3.4.8 Hierarchic Approach up to Full Anisotropy ,

From the simplest analysis that require a low level of calculation and a small
number of material parameters to advanced numerical methods with the
highest degree of accuracy involving a large set of experimental data, the
possibility to prevent ductile failures are as follows:

• Knowing only the sate of stress, use the damage equivalent stress criterion

σ� < σu . (3.166)

• Knowing the state of the accumulated plastic strain, use the result ob-
tained in Sect. 3.2.2 in proportional loading with the triaxiality deduced
from an elastic calculation,

p < pR with pR = εpD + (εpR − εpD)R−s
ν . (3.167)

• For plane strain or plane stress problems use the damage criteria of
Sect. 3.3.4.

• For small scale yielding, use Neuber plastic correction of an elastic anal-
ysis in order to obtain the local stress and plastic strain. Then make an
integration of the unified damage law which can be either its simplest
form deduced from the Gurson model in Sect. 3.4.5,

Ḋ = (0.83 · Rν)2.5ṗ if p > 0.15, Dc = 0.36 , (3.168)

its expression with saturated hardening,

Ḋ =
(

σ2
uRν

2ES

)s
ṗ if p > εpD , (3.169)

or the original unified law,

Ḋ =

(
σ2

eqRν

2ES(1 − D)2

)s
ṗ if p > εpD . (3.170)

• For large scale yielding, we advise using an elasto-plastic coupled with
damage numerical analysis with the anisotropic unified damage law of
Sect. 1.4.3,

Ḋij =
(

Y

S

)s
|ε̇p|ij if p > εpD , (3.171)
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– without or with the effects of microdefects closure of Sect. 1.4.3,
– without or with initial conditions of plasticity and damage as discussed

in Sect. 3.4.7.
• Finally, the more advanced ductile analysis within the scope of Chaps. 1

and 2 is an elasto-plastic coupled with damage analysis, including aniso-
tropic damage, microdefects closure effects, non-natural initial conditions,
and plastic anisotropy by use of the Hill criterion whose coupling with
damage may be obtained as follows.
Damage anisotropy is modelled through the use of the second order dam-
age variable D, the associated tensor H = (1−D)−1/2, and the effective
stress

σ̃ =
(
HσDH

)D
+

σH

1 − ηDH
1 . (3.172)

For ductile failures, modelling the elastic anisotropy is not of main im-
portance as elasticity may often be neglected, but modelling the plastic
anisotropy can be necessary as in the case of rolling sheets, for example.
A possible approach simply consists of generalizing the use of the effective
stress concept:
– Keep the elasticity law unchanged:

εe =
1 + ν

E
σ̃ − ν

E
tr σ̃ 1 (3.173)

– Use the Hill anisotropic yield criterion:

f =
√

σ̃ : h : σ̃ − R − σy (3.174)

where h is the Hill fourth order tensor with minor and major symme-
tries, hijlk = hijkl = hjikl = hklij , and where the hardening R follows
the same anisotropy

– Keep the damage evolution law:

Ḋ =
(

Y

S

)s
|ε̇p| if p > εpD (3.175)

The only changes concerning the plasticity evolution laws are

ε̇p = λ̇
∂f

∂σ
= λ̇

∂f

∂σ̃
:

∂σ̃

∂σ
, (3.176)

which for incompressible plasticity (h such as h : σ = h : σD = (h : σ)D)
gives

ε̇p = λ̇
[H (h : σ̃) H ]D√

σ̃ : h : σ̃
, (3.177)

with the plastic multiplier λ̇ calculated by means of the consistency con-
dition f = 0, ḟ = 0 and where R = R(r) and r =

∫ t

0 ṙdt =
∫ t

0 λ̇dt.
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In non-proportional loading, plastic anisotropy may also result from the
distorsion of the yield surface which features a smooth corner with an opposite
flat end in the stresses space (Fig. 3.20). Such an “egg” effect may have an
influence in metal forming, as in spring back prediction in deep drawing.
Adequate (complex!) 3D models can be found in the literature (T. Kurtyka
and M. Zyczkowski 1985, N.K. Gupta and A. Meyers 1994, M. François 2000,
L. Vincent, S. Calloch and D. Marquis 2003 . . . ). To add the damage coupling,
simply replace in the expressions for f the stress by the effective stress; the
evolution law of the plastic strain coupled with damage is obtained by use
of (3.176).

Fig. 3.20. Yield surface of a 2024-T4 aluminum alloy for non-proportional loadings
(Lines: model after M. François (2000); small circles: experiments with an offset of
δεp = 10−5 (M. Rousset 1985))
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Low Cycle Fatigue

This second chapter on applications concerns the phenomenon of fatigue dam-
age which occurs when materials are subjected to cyclic loadings. The clas-
sical way to describe fatigue consists of splitting the domain of the numbers
of cycles to rupture into three parts corresponding to different strain behav-
iors and also different fields of applications: elasticity corresponds to relatively
small stress amplitudes which induce large numbers of cycles to failure (larger
than 105), this is “high cycle fatigue” treated in Chap. 6; elasto-plasticity
corresponds to stresses above the yield stress which induce lower numbers
of cycles to failure (smaller than 104), this is “low cycle fatigue;” elasto-
visco-plasticity also corresponds to small number of cycles to failure (smaller
than 104), but with time effects induced by creep, it is generally called “creep
fatigue interaction” and is treated in Chap. 5.

From a physical point of view, the repeated variations of stress induce
in metals alternate plastic strains which produce internal microstresses re-
sponsible of microdecohesions by slip band arrests. The microcracks initiated
grow either inside the crystals or along the grains boundaries, depending
on the materials and the loadings, up to coalescence corresponding to ini-
tiation of a mesocrack. Plastic strain and stress both participate in this
phenomenon. This is the reason the unified damage law is able to model the
low cycle fatigue and in 3D directly through the concepts of accumulated
plastic strain and elastic energy.

Nevertheless, the main variable is the plastic strain range as it was pointed
out independently in 1954 by S.S. Manson and L.F. Coffin in a famous empir-
ical law called now the Manson–Coffin law. Many improvements followed
(J.D. Morrow 1964, G.R. Halford 1975, A. Pineau 1980, D. Socie 1991) up
to Continuum Damage Mechanics for which the difficulty to define a cycle is
solved by a time integration of the damage law on the full time history of
the loading.

The specific items of this chapter are the cyclic elasto-plastic stress con-
centration analysis, the effects of loading history, and the application to
multiaxial fatigue and elastomers.
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4.1 Engineering Considerations

Low cycle fatigue failures may occur when structures are subjected to heavy
cyclic loadings which induce irreversible strains on small or large scale,
giving rise to damage up to crack initiation and propagation. To avoid this
phenomenon, a careful assessment of information on the development of dam-
age is needed in order to quantify a safety margin. What is called here a cycle
is most often the service time between the start and the stop of a plant
operation or the repetition of a heavy loading. The number of cycles to rup-
ture (NR), corresponding to states of stress which induces plastic strains, is
relatively small or “low”:

• It can be on the order of 10 to 100 for aerospace rockets where some tests
are necessary before launching or for metal forming by forging. The state
of stress lies between the ultimate stress and the yield stress, σu > σ > σy.

• It can be on the order of 100 to 1000 for nuclear or thermal power plants,
chemical plants, and many domestic apparatus as the butt hinges of poly-
meric boxes! The state of stress is somewhat higher than the yield stress,
σy.

• It can be on the order of 1000 to 10000 for aircraft engines or car engines
where, on some parts, the state of stress induces plastic strain on the
order of the elastic strain, εp ≈ σy/E.

• NR > 105 corresponds to high-cycle fatigue where the mesoscopic strains
may be considered elastic, but not the microscopic ones. It is described
in Chap. 6.

• For 104 < NR < 105, low- or high-cycle fatigue may be considered de-
pending on the case and, moreover, on the degree of accuracy needed.

Low cycle fatigue is mainly governed by the dissipative strain at mesolevel
and it is essentially encountered in metals, polymers, and elastomers.

4.2 Fast Calculation of Structural Failures

In low cycle fatigue, if the steady state of plastic strain is known at the
critical point of a structure that is loaded periodically, there is no need to
perform a complicated calculation to determine an approximative value of
the number of cycles leading to a mesocrack initiation. Furthermore, if the
plasticity is localized, there is a possibility to obtain the plastic strain range
from a purely elastic calculation and a correction which is an extension of the
Neuber method of Sect. 3.2.4. “Fast” also means “simple” here and the dam-
age is considered isotropic and equally produced in tension and compression.

4.2.1 Uniaxial Behavior and Validation of the Damage Law

The basic low cycle fatigue characteristic of a material is its Manson–Coffin
curve which gives the number of cycles to rupture of uniaxial specimens
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periodically loaded in tension-compression, at constant range of total strain
∆ε, and as a function of the range of plastic strain. An example is given in
Fig. 4.1.

Fig. 4.1. Manson–Coffin curve of UDIMET 700 alloy at room temperature
(J. Lemaitre and J.L. Chaboche 1985)

As in a log-log graph, the curve is close to a straight line. It can be
represented by the empirical law of Manson–Coffin,

NR =
(

CMC

∆εp

)γMC

, (4.1)

where CMC and γMC are material parameters: CMC depends on the temper-
ature but γMC is close to 2 regardless of the material and the temperature.

Furthermore, an extrapolation of the curve to NR = 1 corresponds to
a test for which the range of plastic strain is close to two times the rupture
plastic strain εpR in a monotonic tension test. Then

CMC ≈ 2εpR . (4.2)

When no fatigue tests are available for a given material, a rough estimation
for an early design purpose is

NR =
(

2εpR

∆εp

)2

. (4.3)

Let us recall that this Manson–Coffin curve, also called the “Wöhler curve
in the range of low cycle fatigue” in Sect. 1.4.4, is one of the main data source
for the identification of the unified damage law
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Ḋ =
(

Y

S

)s
ṗ if p > pD . (4.4)

In the following, we assume that the damage parameters S, s, εpD, m,
and Dc defined in Sect. 1.4 are known for each application. Nevertheless,
we strongly advise checking each time it is possible with new tests results or
informations that their values give good low cycle fatigue results (particularly
for s and m). For more details, you should read Sects. 1.4.4 and 2.4 again.
Both sections are devoted to the difficult problem of material parameters
identification.

4.2.1.1 Case of Periodic Loading

Consider an uniaxial periodic loading of strain range ∆ε at zero mean stress
(Fig. 4.2) for the applied stress ±σM.

Fig. 4.2. Schematic low cycle fatigue

Beyond the damage threshold, the increment of damage per cycle (δD
δN )

comes from a first integration of the uniaxial damage law, in which, for sim-
plicity, the damaged material is considered as perfectly plastic at σ

1−D ≈
σM = const:

Ḋ =
(

σ2

2ES(1 − D)2

)s
|ε̇p| if p > pD

=⇒ δD

δN
=
∫

1 cycle

Ḋdt =
(

σ2
M

2ES

)s
2∆εp .

(4.5)

A second integration gives the number of cycles to rupture (NR) correspond-
ing to the critical value of the damage Dc for the initial condition:

N = ND =
pD

2∆εp
→ D = 0 , (4.6)
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with (see Sect. 1.4.1):

pD = εpD

⎛
⎜⎝ σu − σy

σeq max + σeq min

2
− σy

⎞
⎟⎠

m

= εpD

(
σu − σy

σM − σy

)m

. (4.7)

Then,

NR = ND +
Dc

2∆εp

(
2ES

σ2
M

)s
. (4.8)

The number of cycles to rupture is a power function of the stress range
and is a linear function of the plastic strain range. Just to compare with the
Manson–Coffin law, consider σM as a power function of ∆εp given by the
cyclic tension-compression curve

∆σ = 2σM = Kc∆ε1/Mc
p . (4.9)

Then,

NR ≈ const +
(

const

∆εp

) 2s

Mc
+ 1

, (4.10)

which shows that the value of the exponent s is on the order of Mc/2, at least
for steels, to make 2s

Mc
+ 1 ≈ 2 as in the Manson–Coffin law.

Before using any of the unified damage law identified as explained in
Sects. 1.4.4 and 2.4, we advise checking if the values of the materials in the
formula (4.8) give the proper number of cycles to rupture in comparison
with some available test data and eventually adjusting the most sensitive
parameters (see Sect. 4.2.3).

4.2.1.2 Case of Non-Periodic Loading

When the range of stress varies as a function of the number of cycles, the
problem of accumulation of damage arises. The Palmgreen–Miner rule
(1924, 1945) consists of the simple summation of damages supposed to be
proportional to the number of cycles for a given constant range. If ni is the
number of cycles of an applied strain range ∆εi and NRi is the number of cy-
cles to rupture corresponding to this range constant all along the process, the
corresponding damage is supposed to be niDc/NRi. Then for many loadings,
the linear rule of summation is simply

∑ niDc

NRi
= Dc →

∑ ni

NRi
= 1 (4.11)

and
∑

ni = NR is the number of cycles to rupture corresponding to the entire
sequence of ∆εi.
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In fact, this rule is a property of any differential equation, linear or non-
linear, representing the damage evolution. But unfortunately, materials do
not wish to obey mathematics! The accumulation of damage is most often
nonlinear. Let us show it with the continuous damage law applied to two-level
fatigue loadings.

Fig. 4.3. Two level fatigue loading

Consider the loading represented in Fig. 4.3 and assume that the dam-
age initiates (at ND1 cycles) during the first level (n1 > ND1). Using (4.5)
together with σM1 = ∆σ1

2 and ∆ε1 = const, the damage D(n1) at the end of
the first level is

D(n1) = (n1 − ND1)
(

σ2
M1

2ES

)s
2∆εp1 , (4.12)

or together with eq. (4.8),

D(n1) = Dc
n1 − ND1

NR1 − ND1
. (4.13)

The damage at the end of the second level n2 is equal to the mesocrack
initiation condition Dc. With n1 + n2 = NR,

Dc(NR) = D(n1) + n2

(
σ2

M2

2ES

)s
2∆εp2 , (4.14)

or
Dc(NR) = Dc

n1 − ND1

NR1 − ND1
+ Dc

n2

NR2 − ND2
, (4.15)

or

n1

NR1
+

n2

NR2

1 − ND1

NR1

1 − ND2

NR2

= 1 . (4.16)

This shows that
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• n1

NR1
+

n2

NR2
< 1 if the high level is first

(
ND1
NR1

> ND2
NR2

)
• n1

NR1
+

n2

NR2
> 1 if the low level is first

(
ND1
NR1

< ND2
NR2

)
• The Miner rule

n1

NR1
+

n2

NR2
= 1 of linear accumulation is generally not

recovered as it corresponds to the particular case
ND1

NR1
=

ND2

NR2

Fig. 4.4. Bilinear damage accumulation in two-level fatigue loadings

In fact, the rule obtained is a bilinear rule in the diagram n2/NR2 vs
n1/NR1 because

(a) If n1 > ND1, the damage initiates during the first loading level. The
number of cycles to rupture, NR = n1 + n2 (with n1 known), is given by
(4.16).

(b) If n1 < ND1, the damage initiates during the second loading level. The
number of cycles to rupture, NR, is given by the damage equation,
NR−ND

NR2−ND2
= 1, where ND is determined by the stored energy balance:

wD = ND1∆ws1 = ND2∆ws2 = n1∆ws1 + (ND − n1)∆ws2 (4.17)
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or
ND = n1 + (ND1 − n1)

∆ws1

∆ws2
with

∆ws1

∆ws2
=

ND2

ND1
. (4.18)

As NR = n1 + n2 the final relationship is:

n1

NR1

ND2

ND1

NR1

NR2
+

n2

NR2
= 1 . (4.19)

An angular point corresponds to the case ND1 = n1 of damage initiating at
the exact time of the level transition. An example is given in Fig. 4.4 for
ND/NR = 0.225 and 0.58.

4.2.2 Case of Proportional Loading

The case of proportional loading is somewhat similar to the uniaxial case
as all the tensors are colinear due to the fixed principal directions of the
stress tensor (see Sect. 2.1.2). This is the case at all points of a structure if
the applied loads vary proportionately with one parameter. If the loading is
periodic, the number of cycles to rupture is obtained from two integrations
of the damage law:

Ḋ =

(
σ2

eqRν

2ES(1 − D)2

)s
ṗ if p > pD . (4.20)

• A first integration over one cycle: the material is again considered per-
fectly plastic for each maximum stress

σeq

1 − D
≈ σeq max = const; the

triaxiality function Rν is also constant due to the loading proportionality,

δD

δN
=

(
σ2

eq maxRν

2ES

)s
2∆p if p > pD , (4.21)

where ∆p is the accumulated plastic strain increment over half of
a cycle.

• A second integration over the whole process with the initial condition

N = ND =
pD

2∆p
→ D = 0 , (4.22)

with

pD = εpD

(
σu − σy

σeq max − σy

)m

. (4.23)

Then

NR = ND +
Dc

2∆p

(
2ES

σ2
eq maxRν

)s
. (4.24)
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It is interesting to compare this number of cycles to rupture to the uniaxial
case as

NR(σij) − ND(σij)
NR(σ) − ND(σ)

=
∆εp
∆p

(
σ2

M

σ2
eq maxRν

)s
. (4.25)

Using the damage equivalent stress σ� = σeqR
1/2
ν gives the possibility to

derive the number of cycles to rupture of a multiaxial state of stress defined
by σeq max, Rν and the accumulated plastic strain range ∆p from only one
experimental point NR(∆εp, σM) of the Manson–Coffin curve (knowing the
exponent s) if the approximation ND/NR = const is made:

NR(σij)
NR(σM)

=
∆εp
∆p

(
σ�

M

σM

)−2s

. (4.26)

4.2.3 Sensitivity Analysis

The general method is described in Sect. 2.4.6. It is applied here to the
number of cycles-to-crack-initiation (NR) found in Sect. 4.2.2 in order
to obtain the relative influence of the loading and of the material parameters
on NR:

NR = ND +
Dc

2∆p

(
2ES

σ2
eq maxRν

)s
,

ND =
εpD

2∆p

(
σu − σy

σeq max − σy

)m
,

(4.27)

with Rν =
2
3
(1 + ν) + 3(1 − 2ν)T 2

X.

The relative error δNR
NR

is determined by the logarithmic derivative of the
above equation in the same manner as for ductile failure of Sect. 3.2.3:

ln(NR − ND) = lnDc − ln 2 − ln ∆p

+ s (ln 2 + lnE + lnS − 2 lnσeq max − lnRν) .
(4.28)

Here we take the absolute value δx = |dx| as the sign of the error is not
known:

δ(NR − ND)
NR − ND

=
δNR

NR

NR

NR − ND
− δND

ND

ND

NR − ND
,

δND

ND
=

δεpD

εpD
+

δ∆p

∆p
+
∣∣∣∣ln
(

σu − σy

σeq max − σy

)∣∣∣∣mδm

m
+ m

δ(σu − σy)
σu − σy

+ m
δ(σeq max − σy)
σeq max − σy

,

δRν

Rν
=

δν

ν

|6T 2
X − 2

3 |ν
Rν

+
δTX

TX

6(1 − 2ν)T 2
X

Rν
.

(4.29)
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The coefficients SNR
Ak of the sensitivity matrix of Sect. 2.4.6 are defined by

δNR

NR
=
∑

k

SNR
Ak

δAk

Ak
, (4.30)

SNR
TX

=
NR − ND

NR

6s(1 − 2ν)T 2
X

Rν
,

SNR
σeq max

=
NR − ND

NR
2s +

ND

NR
m

σeq max

σeq max − σy
,

SNR
∆p =

NR − ND

NR
+

ND

NR
= 1 ,

SNR
E =

NR − ND

NR
s ,

SNR
ν =

NR − ND

NR

|6T 2
X − 2

3 |νs

Rν
,

SNR
σy

=
ND

NR
m

[
σy

σu − σy
+

σy

σeq max − σy

]
,

SNR
εpD

=
ND

NR
,

SNR
m =

ND

NR
m

∣∣∣∣ln
(

σu − σy

σeq max − σy

)∣∣∣∣ ,
SNR

σu
=

ND

NR

mσu

σu − σy
,

SNR
S =

NR − ND

NR
s ,

SNR
s =

NR − ND

NR
s

∣∣∣∣ln
(

2ES

σ2
eq maxRν

)∣∣∣∣ ,
SNR

Dc
=

NR − ND

NR
.

(4.31)

The value of those coefficients are the height of the boxes in Fig. 4.5 for
the following set of parameters representing an average of many materials:
TX = 1, Rν = 2.07, σeq max = 400 MPa, σeq max/σy = 1.5, E = 200000 MPa,
ν = 0.3, σu/σy = 2, S = 2 MPa, s = 5, m = 2, and NR/ND = 2.

The loading is represented by the triaxiality ratio, the stress, and the ac-
cumulated plastic strain. The influence of an error on the stress is the largest
(and is larger than for ductile failures) but the influence of the accumulated
plastic strain is small. The parameters which do not need a large accuracy are
m, εpD and Dc. Altogether, do not expect an accuracy better than a factor
2 on the number of cycles to rupture.
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Fig. 4.5. Relative importance of each parameter in low cycle fatigue

4.2.4 Cyclic Elasto-Plastic Stress Concentration

As for the Neuber method described in Sect. 3.2.4, it is possible to determine
the plastic strain range under the small scale yielding assumption from both

• A reference elastic calculation and
• The cyclic stress-strain curve of the material in tension-(compression).

In fact, as far as free edges are concerned and as long as plasticity remains
very localized (this is often the case in fatigue), the strain energy density
(SED) method gives better results in cyclic loading than the Neuber method.
An illustrative example is shown in Sect. 4.4.2. This is why the cyclic Neu-
ber method for unidimensional cases only is described here. Such a case is
encountered on free edges of thin structures for which the state of stress is
local tension-compression, with a stress triaxiality TX = 1/3 and a stress
triaxiality function Rν = 1.

4.2.4.1 Cyclic Neuber Method

The Neuber method in fatigue is written in terms of stress, strain, and plastic
strain ranges over a cycle and is based on the local equality

∆σ∆ε = (∆σ∆ε)elas at the stress concentration point, (4.32)
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which is also written as

∆σ∆ε =
K2

T

E
(∆σn)2 , (4.33)

with KT as the stress concentration coefficient in elasticity and σn as the
nominal stress (see Fig. 3.4).

A law of cyclic plasticity has to be considered in order to estimate the
ranges ∆σ, ∆ε, ∆εp, and ∆p = |∆εp| (the accumulated plastic strain incre-
ment over half a cycle). The cyclic power law (4.9),

∆εp =
(

∆σ

Kc

)Mc

, (4.34)

may be used but further explicit results will be obtained with the linear law

∆ε =
∆σ

E
+

∆σ − 2σy

Cy
, (4.35)

∆p = |∆εp| =
∆σ − 2σy

Cy
, (4.36)

which comes from the consideration of a linear kinematic hardening only
where X = Cyεp.

The equality (
∆σ

E
+

∆σ − 2σy

Cy

)
∆σ =

K2
T

E
(∆σn)2 (4.37)

gives the platic stress range ∆σ when KT∆σn > 2σy for cyclic plasticity to
occur. Equation (4.36) gives the accumulated plastic strain increment per
cycle as

δp

δN
= 2∆p = 2

∆σ − 2σy

Cy
. (4.38)

If the loading is symmetric, σmax = −σmin = ∆σ/2 gives the maximum
and minimum stresses reached locally at the most loaded point.

If the loading is non-symmetric, the maximum stress σmax has to be de-
termined first by use of the monotonic Neuber method (see Sect. 3.2.4).
Equation (4.37) gives ∆σ and the stress corresponding to the mimimun load
is

σmin = σmax − ∆σ . (4.39)

We will consider next the SED method. In order to deal with non-
symmetric loading we first need its expression for the monotonic case.
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4.2.4.2 Monotonic SED Method

The strain energy density (SED) method assumes that at the stress concen-
tration point, the strain energy density in confined plasticity is identical to
the strain energy density at the same point, but calculated in elasticity.

For 1D monotonic loadings,

∫ ε

0

σdε =
∫ εelas

0

σelasdεelas =
K2

T

2E
σ2

n . (4.40)

The local stress in plasticity, σ > σy, is estimated by solving this equation
coupled with the constitutive law ε = σ/E + R−1(σ − σy) = σ/E + g(σ),
where R(p) is the hardening rule.

For 3D monotonic loadings, the method solves

∫ εij

0

σijdεij =
∫ εelasij

0

σelas
ij dεelasij =

1
2

(σijεij)elas , (4.41)

locally written at the stress concentration point with the Hencky–Mises law
p = g(σeq) as a complementary equation. It may be rewritten as

σ2
eqRν

2E
+
∫ σeq

σy

σeqg
′(σeq)dσeq =

1
2

(σijεij)elas . (4.42)

The term (σijεij)elas comes from the elastic reference computation, it is equal
to σelas

eq
2
Relas

ν /E with σelas
eq and Relas

ν as the von Mises stress and the triaxiality
function calculated in elasticity, respectively.

The method gives σeq and p in plasticity. It needs the value of the triaxial-
ity function Rν . For general three-dimensional cases we use the proportional
loading assumption Rν = Relas

ν . We use Rν = 1 for points located on free
edges in plane stress. For points located on free edges in plane strain (see
Sect. 2.1.4 for details concerning the calculation of the stress triaxiality in
two-dimensional cases) we use Rν = 1.27.

Let us explicitly describe the three-dimensional method in two useful
cases:

(a) Monotonic SED method with linear isotropic hardening R = Cyp. The
von Mises stress in plasticity σeq is a solution of

σ2
eqRν

2E
+

〈
σ2

eq − σ2
y

〉
2Cy

=
1
2

(σijεij)elas , (4.43)

which leads to the closed-form expression



204 4 Low Cycle Fatigue

σeq =

√√√√√√√
E (σijεij)elas +

E

Cy
σ2

y

Rν +
E

Cy

(4.44)

and defines the auxiliary ratio

kSED =
σeq

σelas
eq

. (4.45)

The accumulated plastic strain is

p =
σeq − σy

Cy
. (4.46)

(b) Monotonic SED method with nonlinear isotropic hardening R = Ry
∞(1−

exp (−byp)). One has to solve the following equation numerically:

σ2
eqRν

E
+ (Ry

∞ + σy)g(σeq) − 1
by

〈σeq − σy〉 =
1
2

(σijεij)elas , (4.47)

where p = g(σeq) = −1
b

ln
(

R∞ + σy − σeq

R∞

)
.

The graphs of Fig. 4.6 show how the SED method differs from the Neuber
method.

Fig. 4.6. Cyclic Neuber and SED methods

4.2.4.3 Cyclic SED Method

For locally-cyclic 1D state of stress, to obtain a closed-form solution, the SED
method considers
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∫ ∆ε

0

∆σd∆ε =
∫ ∆εelas

0

∆σelasd∆εelas =
K2

T

2E
(∆σn)2 (4.48)

instead of (4.37) altogether with the cyclic constitutive law (4.34) or the
linear law (4.35).

For three-dimensional loadings, the SED method gives the equivalent
stress range (∆σ)eq as the solution of

∫ ∆εij

0

∆σijd∆εij =

(∫ ∆εij

0

∆σijd∆εij

)
elas

, (4.49)

which has to be considered coupled with a law of cyclic plasticity ∆εij =
∆εij(∆σij) and where ∆σij and ∆εij stand for the stress and strain ranges.

In case of linear kinematic hardening, X = 2
3Cyε

p, and with the hypoth-
esis of a proportional loading, the cyclic plasticity law is

∆εij =
1 + ν

E
∆σij − ν

E
∆σkkδij + ∆εpij ,

∆εpij =
3

2Cy

∆σD
ij

(∆σ)eq
〈(∆σ)eq − 2σy〉 ,

(4.50)

with the accumulated plastic strain increment over half a cycle equal to

∆p =
〈(∆σ)eq − 2σy〉

Cy
. (4.51)

The closed-form expression for the equivalent stress range is then

(∆σ)eq =

√√√√√√√
E (∆σij∆εij)elas +

E

Cy
4σ2

y

Rν +
E

Cy

. (4.52)

To finish, the method defines the auxiliary ratio

kcyclic
SED =

(∆σ)eq
(∆σ)elaseq

. (4.53)

Compared to the monotonic case, the three-dimensional cyclic method
for linear kinematic hardening is formally obtained by replacing σeq with
(∆σ)eq, σelas

eq with (∆σ)elaseq , (σijεij)elas with (∆σij∆εij)elas, and σy with 2σy.
Note that the same replacements within the Neuber monotonic expression for
linear isotropic hardening gives the closed-form solution for the Neuber cyclic
method with linear kinematic hardening.

4.2.4.4 Cyclic SED Method Applied to Fatigue Failures

Applying the cyclic method takes 3 steps:
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1. Perform the elastic reference computation
To simplify, consider the case of proportional loading for which all applied
loads or displacements have fixed directions and are proportional to the
scalar function of time α(t), periodical between αmin < 0 and αmax > 0.
Due to elasticity’s linearity, a single computation performed for the con-
stant reference value α = αref is needed. It gives the map of von Mises
stress σref

eq (M), the stress triaxiality T ref
X (M), and Rν = Rref

ν (M). Then,
in any point of the structure,

σelas
eq (M, t) =

|α(t)|
αref

σref
eq (M) ,

Rν(M, t) = Rref
ν (M) ,

σelas
eq min(M) = −αmin

αref
σref

eq (M) ,

σelas
eq max(M) =

αmax

αref
σref

eq (M) .

(4.54)

The equivalent stress range at any point of the elastic computation is
then

(∆σelas)eq = σelas
eq max + σelas

eq min (4.55)

and

(∆σij∆εij)elas =
(∆σelas)2eqR

ref
ν

E
= (αmax + |αmin|)2

σref
eq

2
Rref

ν

E
. (4.56)

2. Apply the cyclic SED method
Determine the most loaded point as the point where the damage equiv-
alent stress (σ� = σelas

eq R
1/2
ν ) is maximum. Use, for instance, Eq. (4.52)

to determine at this point the equivalent stress range (∆σ)eq in localized
plasticity. The accumulated plastic strain increment per cycle is (4.51):

δp

δN
=
∫

1 cycle

ṗdt = 2∆p . (4.57)

If the loading is non-symmetric, i.e., if αmin �= −αmax, use the monotonic
SED method (4.44) or (4.47) to determine the maximum von Mises stress
σeq max. The von Mises stress for α = αmin is then

σeq min = (∆σ)eq − σeq max . (4.58)

If the loading is symmetric, simply take σeq max = σeq min =
(∆σ)eq

2
.

3. Calculate the damage and the number of cycles to rupture
Once p = pD is reached, the damage D increases twice per cycle, each time
corresponding to yield in tension (plastic strain increment ∆p+, damage
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increment ∆D+) and compression (plastic strain increment ∆p−, damage
increment ∆D−).
For the fatigue loading between αmin and αmax to consider a linear kine-
matic hardening leads to a stabilized stress-strain cycle,

∆p+ = ∆p− = ∆p =
1
2

δp

δN
, (4.59)

and a damage increment per cycle

δD

δN
=
∫

1 cycle

Ḋdt = ∆D+ + ∆D− . (4.60)

With sufficient accuracy for fatigue applications, neglect the coupling of
the energy density release rate Y with damage and consider that it does
not vary much between the applied load inducing the reach of the yield
stress and the maximum load αmax inducing the maximum von Mises
stress σeq max, i.e.,

∆D+ =
(

Ymax

S

)s
∆p+ and Ymax ≈ σ2

eq maxRν

2E
. (4.61)

Close to the minimum load αmin inducing the minimum von Mises stress
σeq min,

∆D− =
(

Ymin

S

)s
∆p− and Ymin ≈ σ2

eq minRν

2E
. (4.62)

The damage increment over one cycle of loading is then

δD

δN
=

(σ2s
eq min + σ2s

eq max)R
s
ν

(2ES)s
∆p if

{
∆σeq > 2σy ,

p > pD

(4.63)

and
δD

δN
= 0 otherwise. Then the damage after N cycles is

D(N) =
(σ2s

eq min + σ2s
eq max)R

s
ν∆p

(2ES)s
(N − ND) , (4.64)

where ND =
pD

2∆p
is the number of cycles to reach p = pD.

Finally,

NR = ND +
(2ES)sDc

(σ2s
eq min + σ2s

eq max)Rs
ν∆p

(4.65)

is the number of cycles-to-mesocrack-initiation.

For a complex history of loading, a numerical integration of the damage
evolution law is necessary to obtain the mesocrack initiation condition of
D = Dc.
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4.2.5 Safety Margin and Crack Growth

In fatigue, the sensible parameter on which to evaluate the security is the
number of cycles. A safe design, for which the estimated number of cycles of
loading for the whole life of a component is Nservice, may be defined as

Nservice <
NR

Saf
, (4.66)

where NR is the number of cycles to rupture determined by a calculation tak-
ing into account the estimated history of loading and Saf is the safety factor.
Saf = 20, 10, or 5, depending on the “state of the art” of the application.

Once the mesocrack is initiated, the low cycle crack growth is generally
pretty fast due to the high level of loading. So, there is often no need of a crack
growth calculation. It is sufficient to check the condition of crack arrest or to
check the whole ductile rupture by instability using the “R-curve” method
described in Sect. 3.2.5.

4.3 Basic Engineering Examples

The same basic geometries and directions of loading as in Sect. 3.3 are ex-
amined here from the point of view of low cycle fatigue. The change is in the
cyclic calculation of the stress concentration and the life duration expressed
in terms of the number of cycles. Isotropic damage without the microdefects
closure effect allows for closed-form solutions.

4.3.1 Plate or Members with Holes or Notches

Consider, as in Sect. 3.3.1, any problem of a structure with a geometrical
weakness to which corresponds a uniaxial stress concentration coefficient KT,
but with a cyclic loading on the nominal stress σn here:

σelas = KTσn −→
{

σmax
elas = KTσmax

n ,

∆σelas = KT∆σn .
(4.67)

Values of coefficients KT for many cases are given in handbooks (see bibliog-
raphy).

Plasticity occurs at least in the neighborhood of the extremal values of
the stress and the cyclic SED uniaxial correction applies as the critical point
is assumed to be at a free surface,{

σmax = kSEDσelas

∆σ = kcyclic
SED ∆σelas

−→
{

σmax = kSEDKTσmax
n ,

σmin = KT

(
kSEDσmax

n − kcyclic
SED ∆σn

)
,

(4.68)
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with kSED and kcyclic
SED given by the monotonic and cyclic SED methods of

Sect. 4.2.4 (Eqs. (4.45) and (4.53)).

• If the loading is periodic at zero mean stress, equations of Sect. 4.2.1
apply: the number of cycles leading to a mesocrack initiation for a stress
range ∆σn = 2σM is

NR =
εpD

2∆εp

(
σu − σy

σM − σy

)m

+
Dc

2∆εp

(
2ES

σ2
M

)s
, (4.69)

with σM and ∆εp given by the cyclic SED (or the Neuber) method.
If 8 material parameters are too much, there is a possibility to derive
a much simpler formula if one low cycle fatigue experimental result is
known:
– Assume that a maximum stress σM0 and a plastic strain range ∆εp0

give a known number of cycles to rupture, NR0,
– As the number of cycles ND to reach the damage threshold is often

small in comparison to NR, it is neglected. Then

NR ≈ Dc

2∆εp

(
2ES

σ2
M

)s
. (4.70)

– As the material parameters verify,

NR0 ≈ Dc

2∆εp0

(
2ES

σ2
M0

)s
. (4.71)

Then, the number of cycles to failure reads:

NR ≈ NR0
∆εp0

∆εp

(
σM0

σM

)2s

. (4.72)

• If the loading is not periodic but if σM(N) and ∆εp(N) are known as func-
tions of the number of cycles by the SED correction, the first integration
of Sect. 4.2.1 applies:

δD

δN
=
(

σ2
M

2ES

)s
2∆εp , (4.73)

but the second integration is replaced by

Dc =
∫ NR

0

(
σ2

M(N)
2ES

)s
2∆εp(N)dN , (4.74)

where the number of cycles to reach the damage threshold is neglected.
This gives the number of cycles to mesocrack initiation as the implicit
solution of a nonlinear equation, usually solved by use of mathematical
software.
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4.3.2 Pressurized Shallow Cylinders

It is the same example as in Chap. 3 except that the pressure varies periodi-
cally between 0 and PM (Fig. 4.7)

Fig. 4.7. Cyclic pressurized cylindrical cylinder

Let us recall from the stress analysis of the pressurized cylinder of
Sect. 3.3.2 that

σeq =
√

3
2

PRcyl

tcyl
, TX =

σH

σeq
=

1√
3

, and Rν =
5 − 4ν

3
, (4.75)

with P as the internal pressure, Rcyl as the cylinder radius and tcyl as its
thickness.

The difference with the monotonic loading is in the plastic constitutive
equation which must take into account the effect of cyclic loading by the
kinematic hardening. There are two possibilities (Fig. 4.8):

Fig. 4.8. Elastic (left) and plastic (right) shakedown in cyclic loading



4.3 Basic Engineering Examples 211

1. The material has a small kinematic hardening for the stress considered;
there is adaptation or elastic shakedown after the very first cycle which
makes all the subsequent cycles elastic. The accumulated plastic strain
rate remains zero and there is no damage and no failure by low cycle fa-
tigue. There can be failure by high-cycle fatigue, in that case use the
two-scale damage model (applications in Chap. 6). This condition of
adaptation arises if

σeq max ≤ 2σy or Pmax ≤ 4√
3
σy

tcyl

Rcyl
. (4.76)

2. The material has a kinematic hardening high enough for the stress consid-
ered, σeq max > 2σy, so that hysteresis loops exist, leading to a stabilized
cycle of plastic shakedown. Then ṗ �= 0 and the phenomenon of low cycle
fatigue occurs.

In this case, the damage law,

Ḋ =

(
σ2

eqRν

2ES(1 − D)2

)s
ṗ if p > pD , (4.77)

has to be integrated once over a cycle to give δD
δN and once over the whole

process.
Considering linear kinematic hardening and neglecting the variation of

the damage over one cycle,

δD

δN
= 2
∫ σeq max

2σy

(
σ2

eqRν

2ES(1 − D)2

)s
dσeq

Cy(1 − D)
(4.78)

or

δD

δN
=

2
Cy(2s + 1)

(
Rν

2ES(1 − D)2

)s [σ2s+1
eq max − (2σy)2s+1

]
1 − D

. (4.79)

For the second integration,

∫ Dc

0

(1 − D)2s+1dD =
2

Cy(2s + 1)

(
Rν

2ES

)s [
σ2s+1

eq max − (2σy)2s+1
] ∫ NR

ND

dN

(4.80)
or

NR = ND +
2s + 1
2s + 2

1 − (1 − Dc)2s+2

2
Cy

(
Rν

2ES

)s [
σ2s+1

eq max − (2σy)2s+1
] , ND =

pD

2∆p
,

(4.81)
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with

pD = εpD

⎛
⎝ σu − σy

σeq Max

2
− σy

⎞
⎠

m

, ∆p =
σeq max − 2σy

Cy
,

σeq max =
√

3
2

PmaxRcyl

tcyl
, and Rν =

5 − 4ν

3
.

(4.82)

For design purposes, it is interesting to see that the ratio Rcyl/tcyl acts
on the number of cycles to rupture at the power (2s + 1).

4.3.3 Cyclic Bending of Beams

Cyclic bending is the fatigue process by which kids or older people break
a metallic wire with an increase of the temperature which may burn the
fingers! This is the same problem of a beam loaded in circular bending of
Sect. 3.3.3, but here the applied curvature 1/ρ is periodic with a mean value
equal to 0 (Fig. 4.9). Please refer to Sect. 5.3.4 for the consideration of the
coupling with temperature.

The critical point where the mesocrack will initiate is of course on the
upper or lower part of the beam where the plastic strain varies between
εp max and εp min = −εpmax, a value related to the radius of curvature ρ by
the simple Bernoulli theory of beams in which the elastic strain is neglected:

l

ρ
=

lεpmax

h

2

or εp max =
h

2ρ
. (4.83)

Then the problem reduces to a simple case of tension-compression plastic-
strain imposed between −h/2ρ and h/2ρ, where the redistribution of stress
due to plasticity and damage is neglected.

Fig. 4.9. Cyclic bending of a beam
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Back to Sect. 4.2.1 and neglecting also the number of cycles to reach the
damage threshold, we have

NR =
Dc

2∆εp

(
2ES

σ2
M

)s
, (4.84)

with ∆p = εp max − εpmin =
h

ρ
.

The term σM is the stress corresponding to εp max which may be deter-
mined from the cyclic stress-strain curve of the material. Taking

∆εp =
(

2σM

Kc

)Mc

, (4.85)

this shows that the number of cycles to a mesocrack initiation is proportional
to the radius of curvature at the power (1 + 2s

Mc
), which is on the order of 2

for steel (as s ≈ Mc/2), as follows:

NR =
Dc

2

(
8ES

K2
c

)s (ρ

h

)1+ 2s
Mc

. (4.86)

4.4 Numerical Failure Analysis

Practical applications concern structures made of different mechanical com-
ponents and different materials submitted to complex loadings, fatigue load-
ings here. The full computations of whole structures are difficult to perform
as a fully-coupled damage analysis is computer-time consuming and as, com-
pared to monotonic applications, the time increments are multiplied by a fac-
tor of 10 to 10000 cycles of fatigue.

The two ways to handle Continuum Damage Mechanics in low cycle fa-
tigue are:

• The fully coupled analysis which needs big computers and modern
computation methods such as sub-structuring and parallelism. It is of
course the best quality one can expect for structures computation. It
is also the easiest way for an FE code user to make the calculation and
analyze the results. The use of a large time increment method (P. Ladevèze
1989) eventually coupled with parallelism computing allows the user to
save time by calculating the stabilized cycle straightforwardly.
The damage maps may be drawn at any time increment. The most loaded
point is easily determined as the location of the maximum damage. The
time or number of cycles to rupture corresponds to the reach of the critical
damage Dc or the phenomenon of strain localization (see Sect. 1.6).
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• The post-processing analysis which needs a reference computation
performed either in elasticity or elasto-plasticity, and the application of
a post-processor solving the damage constitutive equations cycle by cycle,
with a time step integration for each cycle. This assumes of course no
damage coupling with the strain behavior and in most cases yields a lower
bound on the number of cycles to rupture that is a safe result regarding
the security. Furthermore, for periodic loadings there is a possibility to
apply the jump-in-cycles procedure of Sect. 2.1.5 to save computer time.

4.4.1 Effects of Loading History
(R. Desmorat and J. Besson 2003)

Due to the nonlinearities occurring in the damage growth, the accumulation
of the damages created by different amplitudes of loading is not simple. Their
order of occurrence has an effect that is sometimes beneficial, sometimes not.
Let us illustrate this using some examples. The material is the SOLDUR 355
steel of Sect. 3.4.2 but with kinematic hardening here. Anisotropic damage
and microdefects closure effect are considered together with (see Sect. 1.5.3):

• E = 230000 MPa, ν = 0.3 for elasticity
• σy = 375 MPa as yield stress
• Xy

∞ = 120 MPa, γy = 25, Cy = γyX
y
∞ = 3000 MPa for hardening

• εpD = 2.5 · 10−2, σu = 474 MPa, m = 2.5 for the damage threshold
• ha = 0, S = 0.43 MPa, s = 4, η = 2.8, Dc = 0.5 for damage

The calculations are performed with the ZeBuLon computer code using the
full elasto-plastic damage coupling with the implicit scheme of Sect. 2.2.5.
The damage threshold is determined by (1.117) of Sect. 1.4.1 for multilevel
fatigue applications. It is

pD = εpD

(
σu − σy

σM1 − σy

)m

(4.87)

when damage initiates during the first level of stress range σM1. It is

pD =
[
ε
1/m
pD

σu − σy

σM2 − σy
+ p

1/m
1

σM2 − σM1

σM2 − σy

]m
(4.88)

when damage initiates during the second level of stress range σM2 after n1

cycles, at the first level up to an accumulated plastic strain p(n1) = p1.
The mesh is quite simple: a single volume element! Each cycle is dis-

cretized with a minimum of 40 time steps automatically calculated for opti-
mized convergence.

Considering several levels of 1D loadings, it has been shown in Sect. 4.2.1
that the deviation from the linear accumulation rule of Palmgreen–Miner
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is due to the damage threshold. In fact, a numerical analysis avoiding any
approximation gives the same effect, but in a more complete manner. A set of
two-level loadings is considered here, made of n1 cycles of a first symmetric
cyclic loading at constant strain range ∆ε1, followed by n2 cycles of a second
symmetric loading at constant ∆ε2 up to mesocrack initiation in the range
of 10 to 104 cycles.

First, it is interesting to see the variation in the number of cycles leading
to the damage threshold ND as a function of the number of cycles to rupture
NR. Figure 4.10 shows that the ratio ND/NR increases largely with NR, as
shown by many experiments (A. Pineau 1980).

Fig. 4.10. Evolution of the number of cycles-to-damage-threshold in low cycle
fatigue

Second, after the damage threshold, the evolution of the damage is not
too far to be linear as a function of the number of cycles (Fig. 4.11). This
justifies some early fatigue theories where the damage was set as D = N/NR,
but here it should be D = 〈N − ND〉/(NR − ND).

Last, the accumulation diagram corresponding to the two-level fatigue
loading of Fig. 4.3 is computed for two different strain ranges. Figure 4.12
shows the deviation with respect to the Palmgreen–Miner linear rule repre-
sented here by the straight line [(1,0),(0,1)]. It is somewhat more precise than
the diagram of Fig. 4.4 drawn for the same values of ND/NR. Additional simu-
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Fig. 4.11. Evolution of the damage in low cycle fatigue for different strain ampli-
tudes
lations and experiments show that the deviation is more and more important
as the difference between the two loading amplitudes increases.

4.4.2 Multiaxial and Multilevel Fatigue Loadings

As an example, consider the biaxial testing steel specimen of Fig. 4.13 which
exhibits stress concentrations, localized plasticity, and damage at notches.
The sample is 120 mm long and 4.5 mm thick, which allows for the plane
stress assumption. A multilevel fatigue loading is applied and the failure
conditions are determined after a single elastic reference computation by use
of the cyclic SED method of Sect. 4.2.4, followed by the time integration of
the unified damage law. The edges are in pure tension with a stress triaxiality
ratio of 1/3 which corresponds to Rν = 1.

The experiment is performed on the triaxial testing machine of Fig. 4.14.
Two in-phase proportional loads F1(t) = F2(t) = F (t) are applied on the
lateral sides of the specimen. The total loading consists of thirteen blocks i of
cyclic F (i)(t) varying between a zero minimum load and a constant maximum
load F

(i)
max (Fig. 4.15). The first block is made of 38000 cycles at F

(1)
max = 35

kN, then the load is increased by 5 kN every 100 cycles up to F
(13)
max = 95 kN.

Failure, characterized by a mesoscopic crack of 0.5 mm in the edge, occurs at
this last level after N

(13)
Rexp = 3050 cycles. This corresponds to a total number

of cycles to rupture of 42150.
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The material is a 2-1/4 CrMo steel at room temperature. For strains
smaller than 4%, the monotonic plastic behavior is approximated by a linear
hardening R = Cyp; for cyclic loading with strains smaller than 4%, it is
approximated by a linear kinematic hardening X = 2

3Cyε
p. The full set of

material parameters defined in Sects. 1.4 and 1.5 is:

• E = 200000 MPa, ν = 0.3 for elasticity
• σy = 180 MPa as yield stress
• Cy = 6000 MPa for hardening
• σu = Ry∞ + σy = 450 MPa as ultimate stress
• εpD = 0.12, m = 2, σ∞

f = 140 MPa, S = 2.8 MPa, s = 2, Dc = 0.2 for
damage with a damage threshold in fatigue given by

pD = εpD

⎛
⎜⎝ σu − σ∞

f

∆σ

2
− σ∞

f

⎞
⎟⎠

m

. (4.89)

The procedure of the numerical prediction is as follows:

1. Perform the elastic reference computation for a load F1 = F2 =
Fref.
Define for each level αmin = Fmin/Fref = 0 and αmax = Fmax/Fref

(with αref = 1). The von Mises stress at the edge concentration point
is σref

eq = 129.2 MPa for Fref = 10 kN. At this point, Rν = 1 and

Fig. 4.12. Nonlinear damage accumulation in two-level fatigue loadings
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Fig. 4.13. Biaxial testing specimen (J.P. Sermage and J.M. Virely 1998)

E (σε)elas = E (∆σ∆ε)elas =
(
αmaxσ

ref
eq

)2
. (4.90)

Check that for each level (∆σ)elas > 2σy so that plasticity (at least) must
occur locally.

2. Apply the Strain Energy Density method for each level to take
into account the plasticity.
Calculate the maximum stress from the monotonic SED method:

σmax =

√√√√√√√
E (σε)elas +

E

Cy
σ2

y

1 +
E

Cy

. (4.91)
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Fig. 4.14. Triaxial testing machine ASTREE of LMT-Cachan

Fig. 4.15. Multilevel fatigue loading

Calculate the stress range ∆σ, the plastic strain range ∆εp, and the

plastic strain increment over one cycle of the considered level
δp

δN
:

∆σ =

√√√√√√√
E (∆σ∆ε)elas + 4

E

Cy
σ2

y

1 +
E

Cy

, (4.92)

δp

δN
= 2∆εp = 2

∆σ − 2σy

Cy
. (4.93)
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At the beginning of the last level, the accumulated plastic strain is

p = 38000
δp

δN

(1)

+ 100
δp

δN

(2)

+ . . . + 100
δp

δN

(12)

= 47.06 . (4.94)

3. Calculate the damage and the number of cycles to rupture.
(a) Determine the number of cycles at damage initiation (ND)

The damage threshold for the first level F
(1)
max = 35 kN is p

(1)
D = 6.7.

Then

ND =
p
(1)
D

2∆ε
(1)
p

= 6650 cycles . (4.95)

Check that ND < 38000 cycles so that the damage initiates at this
level.

(b) Calculate the damage increment for each level
According to (4.63),

δD

δN
=

(σ2s
eq min + σ2s

eq max)R
s
ν

2(2ES)s

δp

δN

=
σ2s

max + (∆σ − σmax)2s

2(2ES)s

δp

δN
.

(4.96)

(c) Determine the number of cycles to rupture (N (13)
R )

The damage increments over each block are summed up to D = Dc.
At the beginning of the last level,

D = (38000−ND)
δD

δN

(1)

+100
δD

δN

(2)

+. . .+100
δD

δN

(12)

= 0.042 (4.97)

and a number of cycles at crack initiation N
(13)
R is estimated as

N
(13)
R =

Dc − 0.042

δD

δN

(13)
= 3790 cycles , (4.98)

compared to N
(13)
Rexp = 3050 and which corresponds to a total number

of cycles NR = 39100 + 3790 = 42890 instead of the 42150 cycles
obtained experimentally. The accumulated plastic strain at failure is
then

pR = 47.06 + 3790
δp

δN

(13)

= 112.6 . (4.99)

From the first level to the last, the accumulated plastic strain per cycle ( δp
δN )

varies from 0.1 10−2 to 1.73 10−2 whereas the damage per cycle ( δD
δN ) varies

from 8.94 10−7 to 4.17 10−5.
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4.4.3 Damage and Fatigue of Elastomers
(S. Cantournet and R. Desmorat, 2002)

Elastomers, at least for fatigue purposes, may be modeled by hyperelas-
ticity with internal friction coupled with damage. No plasticity! A dis-
sipative phenomenon occurs, however, due to internal sliding of the macro-
molecular chains on themselves and the black carbon filler particles. Internal
viscosity is also an additional dissipative mechanism not taken into account
in this section.

The unified damage law governed by the accumulated plastic strain rate
used up to now is useless. Fortunately, its generalization to any dissipative
phenomenon described in Sect. 1.4.5 applies. It just needs to be formulated
within the finite strains framework (see Sect. 3.4.1), replacing ε with the
Green–Lagrange deformation E, σ with the second Piola–Kirchhoff stress
tensor S, and with internal variables:

• The internal inelastic strain Eπ (instead of επ). It is associated with the
opposite of a stress denoted by Sπ.

• The internal sliding variable α associated with the residual microstress
tensor X.

• The isotropic damage variable D, associated with the opposite of the
energy density release rate Y .

4.4.3.1 Hyperelasticity with Internal Friction Coupled with
Damage

The state potential is (for the isothermal case),

ρ0ψ = (1 − D) [w1(E) + w2(E − Eπ)] +
1
2
Cxα : α , (4.100)

with ρ0 as the density of the undeformed material and where

• w1 is a hyperelastic energy density such as the Mooney, Hart–Smith or
Lambert–Diani–Rey densities. For incompressible materials, J = det F =
1 and

w1 = moon1(I1 − 3) + moon2(I2 − 3) Mooney,

w1 = h1

∫
exp
(
h3(I1 − 3)2

)
dI1 + 3h2 ln

I2

3
Hart–Smith,

w1 = h1

∫
exp (h3(I1 − 3)a1) dI1 + 3h2

∫
dI2

Ia2
2

Lambert–Diani–Rey.

(4.101)

Here, I1 = tr C and I2 = 1
2

[
(tr C)2 − tr C2

]
are the first two invariants

of the dilatation tensor C = F TF ; and mooni and hi are the hyperelas-
ticity material parameters. For quasi-incompressible materials, the third
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invariant I3 = J2 does not remain strictly equal to unity. A compress-
ibility term that is a function of I3 is often introduced. For example,
the Mooney density for compressible or quasi-incompressible elastomers
is written as

w1 = moon1(I1 − I3 − 2)+moon2(I2 − 2I3 − 1)+
1
2
Kv(I3 − 1)2 , (4.102)

where Kv is the compressibility modulus.
• w2 is the second order term of the Mooney–Rivlin development with in-

elastic strain Eπ,

w2 = 4C20 [tr(E − Eπ)]2 = C20 (I1 − 2trEπ − 3)2 . (4.103)

For incompressible materials, the internal pressure P is calculated from the
boundary conditions using a pressure-displacement FE formulation. The state
laws then become

S = ρ0
∂ψ

∂E

∣∣∣∣
J=1

= (1 − D)
∂(w1 + w2)

∂E
− PC−1 ,

Sπ = −ρ0
∂ψ

∂Eπ = (1 − D)
∂w2

∂E
,

X = ρ0
∂ψ

∂α
= Cxα ,

Y = −ρ0
∂ψ

∂D
= w1 + w2 .

(4.104)

This defines the effective stresses S̃ =
S

1 − D
and S̃

π
=

Sπ

1 − D
.

For compressible or quasi-incompressible materials, the first law of (4.104)
is simply

S = ρ0
∂ψ

∂E
= (1 − D)

∂(w1 + w2)
∂E

. (4.105)

The reversibility criterion (such as f < 0 ⇒ hyperelasticity) is:

f = ‖ Sπ

1 − D
− X‖ − σs =

√(
S̃

π − X
)

:
(
S̃

π − X
)
− σs , (4.106)

with σs the reversibility limit in the Sπ stress plane.
The dissipation potential is

F = f +
γ

2Cx
X : X +

S

(s + 1)(1 − D)

(
Y

S

)s+1

, (4.107)

giving rise to the evolutions laws through the normality rule,

Ė
π

= µ̇
∂F

∂Sπ , α̇ = −µ̇
∂F

∂X
, and Ḋ = µ̇

∂F

∂Y
, (4.108)
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with µ̇ as the internal sliding multiplier determined from the consistency
condition f = 0, ḟ = 0. They lead to

Ė
π

=
µ̇

1 − D

S̃
π − X

‖S̃π − X‖ ,

Ẋ =
[
CxĖ

π − γXπ̇
]
(1 − D) ,

(4.109)

and the damage evolution law for elastomeric materials valid for monotonic
loading as well as fatigue loading:

Ḋ =
(

Y

S

)s

π̇ if π > πD

D = Dc −→ mesocrack initiation,
(4.110)

where π =
∫ t

0
(1 − D)µ̇dt =

∫ t

0

‖Ėπ‖dt is, as expected, the cumulative

measure of the internal sliding.
Compared to hyperelasticity, 8 additional material parameters are intro-

duced:

• The reversibility threshold σs

• C20, Cx, and γ for internal friction: the parameters C20 and Cx model the
hysteresis loops when the parameter γ models the stress softening

• πD, S, s, and Dc for damage evolution and mesocrack initiation

4.4.3.2 Hysteresis and Cyclic Softening of Filled Rubber

With neither damage nor viscosity, the model represents the hysteresis and
the stress softening of filled elastomers. Figure 4.16 shows the cyclic tensile
curves of styrene butadiene rubber (SBR) filled with silica particles.

Note that in terms of hyperelasticity, considering Hart–Smith density al-
lows for a good modelling of the up-turn at very large strains. For fatigue
applications, take the model which best represents the hysteresis loops in the
range of deformation under consideration.

4.4.3.3 Fatigue Curve of Filled Natural Rubber

The model of hyperelasticity with internal friction coupled with damage al-
lows us to compute the number of cycles to rupture in unidimensional fatigue.
The numerical procedure is detailed in the next section for structures but ap-
plies, of course, to cyclic tension.

Consider here a filled natural rubber (NR) tested both in cyclic tension
and fatigue. The material parameters are
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• moon1 = 1.848 MPa, moon2 = 0.264 MPa, Kv = 1188 MPa
• σs = 1 MPa, C20 = 1 MPa, Cx = 10 MPa, γ = 5
• πD = 0, S = 5.6 MPa, s = 5, Dc = 0.2

Fig. 4.16. Cyclic tensile curve of styrene butadiene rubber (SBR) with Hart–
Smith density. The dotted line represents experimental results from A. Lapra (2001)
(h1 = 1.6 MPa, h2 = 0.28 MPa, h3 = 5.29 10−4, σs = 1.16 MPa, C20 = 0.14 MPa,
Cx = 0.93 MPa, γ = 0.57, D = 0)

The fatigue curve of the maximum applied elongation λmax (larger prin-
cipal component of the transformation gradient F ) versus the number of
cycles to rupture NR is calculated and compared to experiments with suc-
cess in Fig. 4.17. The measured elongation to rupture in tension, λR = 7.2,
is also reported on the diagram which shows the ability of the single gen-
eralized damage law Ḋ = (Y/S)sπ̇ to model monotonic as well as fatigue
damages.

4.4.3.4 Fatigue of a Metal/Elastomer Joint

As an example, consider the case of the double lap joint of Fig. 4.18 submit-
ted to fatigue loading. Half of the joint is meshed in three dimensions with
27-node quadratic elements. The bottom ends are fixed and the same dis-
placement �U(t) = U(t)�e3 is applied cyclically on the top end between U = 0
and U = Umax = 45 mm at a loading rate of 100 mm/min. Considering the
damage pattern, the most damaged zones are the corners points of the rub-
ber parts where a crack initiates (after a number of cycles N exp

R = 30), with
a damage propagation mainly along the interfaces.

The metallic parts are made of steel (E = 200000 MPa, ν = 0.3) which
remain elastic during the test. The elastomer is made of filled natural rubber.
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Fig. 4.17. Experimental and calculated fatigue curves for filled natural rubber
(NR) (mean elongation λmean = 2.53)

Fig. 4.18. Metal/elastomer joint (dimensions in mm)
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The uncoupled procedure to estimate both the fatigue damage and the
number of cycles to rupture is the one described in Sect. 2.1. It is detailed
here for the damage law considered:

Step 1. Perform the nonlinear structure FEA with no damage up to
a stabilized cycle. This constitutes the reference computation. The
result of the analysis is the history of the stresses Sij(t) or S(t), the
strains Eij(t) or E(t), and the internal variables Sπ(t), Eπ(t), X(t),
and α(t). It is also the global hysteretic response of the structure
force F vs displacement U .

Step 2. Determine the most loaded point where Y = w1 +w2 is max-
imum in order to calculate the damage increment (step 3), the dam-
age history (step 4), and the number of cycles to rupture (step 5) at
this point. If damage maps are needed, perform the steps 3 to 5 at
the Gauss points of the damaged zone considered.

Step 3. Calculate the damage increment over one cycle. The calcu-
lation is made over the stabilized cycle as a post-processing of the
reference computation. This is usual in fatigue as it makes the anal-
ysis much faster with rather high accuracy,

δD

δN
=
∫

1 cycle

(
Y (t)
S

)s
π̇(t)dt

=
∫

1 cycle

(
w1(E(t)) + w2(E(t) − Eπ(t))

S

)s
‖Ėπ

(t)‖dt .

(4.111)

Step 4. Calculate the damage history at the considered point(s). The

derivative
δD

δN
is constant for a given maximum applied displacement

Umax. Then,

D(N) =
δD

δN
· (N − ND) , (4.112)

with ND as the number of cycles at damage initiation. Here, ND = 0
as πD = 0.
Damage maps may then be drawn. The computed damage pattern is
in accordance with the experiment: it exhibits a damage larger in the
rubber corner points and is localized along the interfaces (Fig. 4.19).

Step 5. Calculate the number of cycles to crack initiation corre-
sponding to D = Dc:

NR = ND +
Dc

δD

δN

at the most loaded point. (4.113)

These calculations have been made for the metal/elastomer joint. The number
of cycles at crack initiation corresponds to the reach of D = Dc at the
corner point A. The result is NR = 39 cycles, compared to N exp

R = 30 which
corresponds to an accuracy of about 30%.
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Fig. 4.19. Damage pattern at crack initiation in the metal/elastomer joint (mesh
of half of the joint)

4.4.4 Predeformed and Predamaged Initial Conditions

As in Sect. 3.4.7 for ductile failures, it is interesting to know how the number
of cycles to rupture can be modified in low cycle fatigue by changes in the
initial conditions of the main variables. Forming processes, accidents, or over
loadings may induce, for a “forming” or an “accident” stress σ0

eq, initial fields
of:

• The accumulated plastic strain p0

• The corresponding value of the strain hardening variables R0 and X0

• The stored energy w0
s ≈ A(σ0

eq − σ∞
f )p1/m

0 ,
• The damage D0 or D0

• The internal residual stresses

They have to be introduced as initial conditions in the structure calculation,
at each Gauss point if a finite element analysis is used, to determine the
stresses σeq(t) and σH(t), as well as the plastic strain p(t) or ∆p. They also
have to be introduced in the damage law.

• The initial plastic strain (p0) or the stored energy density (w0
s ) modi-

fies the number of cycles corresponding to the damage initiation (ND)
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through the change in damage threshold written in terms of accumulated
plastic strain. For a fatigue loading with a periodic, signed von Mises
stress between −σeq min and σeq max applied after the forming process or
the accident, the stored energy threshold reads

ws = A(σu − σ∞
f )ε1/m

pD

= A(σ0
eq − σ∞

f )p1/m
0 + A

(
σeq min + σeq max

2
− σ∞

f

)
(p1/m

D − p
1/m
0 )

(4.114)

and corresponds to the accumulated plastic strain threshold p = pnew
D ,

pnew
D =

[
ε
1/m
pD

σu − σ∞
f

1
2 (σeq min + σeq max) − σ∞

f

+ p
1/m
0

1
2 (σeq min + σeq max) − σ0

eq
1
2 (σeq min + σeq max) − σ∞

f

]m

,

(4.115)

becoming pnew
D = p0 if p0 ≥ p0

D = εpD

(
σu − σ∞

f

σ0
eq − σ∞

f

)1/m

.

• The initial damage corresponding to p0 ≥ pD acts in the integration of
the damage rate from D0 to Dc.

For example, in the case of periodic, proportional loading of Sect. 4.2.2, the
formula (4.24) is replaced by

NR =
pnew
D − p0

2∆p
+

Dc

2∆p

(
2ES

σ2
eq maxRν

)s
if p0 < p0

D

NR =
Dc − D0

2∆p

(
2ES

σ2
eq maxRν

)s
if p0 ≥ p0

D .

(4.116)

4.4.5 Hierarchic Approach up to Non-Proportional Effects ,

As for ductile failure predictions in Sect. 3.4.8, the different models of low cy-
cle fatigue may be classified in an increasing order of accuracy corresponding
(unfortunately) to an increasing order of difficulty.

• The Manson–Coffin law is certainly the first model to consider for an
early design with a periodical loading or if only the plastic strain range is
known. The number of cycles-to-crack initiation (NR) at the critical point
where the state of stress is one dimensional is simply

NR =
(

CMC

∆εp

)γMC

or NR ≈
(

2εpR

∆εp

)2

. (4.117)
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• If the loading is periodic by blocks, the linear Palmgreen–Miner rule may
give an order of magnitude of the result but without the possibility to
know the sign of the error:

∑ ni

NRi
= 1 , NR =

∑
ni . (4.118)

• When the local loading is 3D, the Manson–Coffin law does not apply but
if it is proportional and periodic the integrated unified damage law may
be used. For a symmetric periodic loading,

NR = ND +
Dc

2∆p

(
ES

σ2
eq maxRν

)s

,

with ND =
εpD

2∆p

(
σu − σ∞

f

σeq max − σ∞
f

)m

.

(4.119)

The equations require knowledge of the value of 5 material damage pa-
rameters plus E, ν, σ∞

f , and σu. They can be reduced to one by using the
equivalence between 1D and 3D through the damage equivalent stress σ�

if one point of the Manson–Coffin curve is known:

NR(σij)
NR(σM)

≈ ∆εp
∆p

(
σ�

M

σM

)2s

. (4.120)

• The last possibility is the integration in time of the unified damage law
if the loading is not periodic but is a complex function of time, either 1D
or 3D, either for isotropic or anisotropic damage, and either deterministic
or random by the Monte Carlo method:

Ḋ =
(

Y

S

)s
|ε̇p| if ws > wD . (4.121)

In case of periodic loadings, the stored energy damage initiation criterion
is equivalent to

Ḋ �= 0 if p > pD = εpD

⎛
⎜⎝ σu − σ∞

f

(∆σ)eq
2

− σ∞
f

⎞
⎟⎠

m

. (4.122)

Remark – Note that the extension of the Neuber and the Strain Energy Density

methods is a big help in determining ∆εp or ∆p from an elastic calculation.

In matters related to plasticity, classical isotropic and kinematic hardening
laws have been considered so far. The Armstrong–Frederick nonlinear law
Ẋ = 2

3Cε̇p − γXṗ represents the Baushinger effect of the apparent yield
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stress decrease in cyclic loadings and also the cyclic stress softening of non-
symmetric strain-controlled loadings. But it is not suitable for more com-
plex hardening mechanisms such as non-proportionality effects or ratcheting,
which is the continuous increase of the plastic strain at constant stress range
(even when no damage occurs). Other kinematic hardening laws must then
be considered. They are usually written for undamaged materials and need
to be coupled with damage by the effective stress concept.

• A better modelling of hardening (for a wider range of plastic strains or
for uniaxial ratcheting) is obtained by use of several kinematic hardening
variables Xi related to nonlinear laws (Z. Mroz 1967), coupled here with
either isotropic or anisotropic damage (no summation on subscripts i):

X =
∑

i

Xi ,

Ẋi =
2
3
Ciė

p − γiX iṙ ,

ε̇p = (HėpH)D with ėp = nXṙ =
3
2

σ̃D − X

(σ̃ − X)eq
ṙ ,

(4.123)

where ε̇p = nXṗ is the plastic strain rate in plasticity (D = 0) and
ėp = nXṙ is the effective plastic strain rate in plasticity coupled with
damage.

• Another way is to keep only one kinematic variable but to introduce in
its evolution law a term taking into account the rotation of the stress vec-
tor to model the ratcheting and non-proportional effects. Many nonlinear
laws have been proposed but are most often not coupled with damage
(H. Burlet and G. Cailletaud 1987, A. Benallal and D. Marquis 1988,
E. Tanaka 1994, N. Ohno and J.D. Wang 1994, T. Kurtyka 1996, S. Cal-
loch 1996, M. François 2000). For instance, the Burlet–Cailletaud model
states that

Ẋ =
2
3
Cε̇p − γ(X : nX) nXṗ (4.124)

and the Ohno–Wang model uses

Ẋ =
2
3
Cε̇p − γ(X : X)α〈X : ε̇p〉X . (4.125)

In order to introduce the damage coupling, one way is to define
a non-associated potential FX such as the nonlinear kinematic hardening
law derived from F = f + FX. Replacing the stress σ by the effective
stress σ̃ in F before taking the derivatives gives the nonlinear kinematic
hardening law fully coupled with damage. For instance, the potential

FX =
3γ

4C
(X : X)α1〈X : nX〉α2 and nX =

3
2

E : εeD − 2
3Cα

(E : εeD − 2
3Cα)eq

(4.126)
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gives

Ẋ =
2
3
Cėp − γα2(X : X)α1〈X : nX〉α2−1nX ṙ

− γα1(X : X)α1−1〈X : ėp〉α2X ,
(4.127)

with the first back stress term proportional to nX as in the Burlet–
Cailletaud law and the second one proportional to X as in the Ohno–
Wang law.

• Finally, the treatment for plastic anisotropy is similar to the one for the
ductile failure case (see Sect. 3.4.8). Use as yield function:

f =
√

(σ̃ − X) : h : (σ̃ − X) − R − σy where h is the Hill tensor
(4.128)

and take
F = f +

3
4

X : C−1 : Γ : X (4.129)

as the dissipation potential with the state law X = 2
3C : α and with

C and Γ as material-dependent fourth order tensors. The nonlinear
anisotropic kinematic hardening law with no damage (C−1 : Γ assumed
to be symmetric) becomes

Ẋ =
2
3
C : ε̇p − Γ : X ṗ . (4.130)

The coupling of the kinematic hardening evolution law with damage is
gained using the thermodynamics framework as

ε̇p = ṙ
∂F

∂σ
and α̇ = −ṙ

∂F

∂X
(4.131)

lead to
Ẋ =

2
3
C : ėp − Γ : X ṙ , (4.132)

where ėp = ṙ
h : (σ̃ − X)√

(σ̃ − X) : h : (σ̃ − X)
and ε̇p = (H ėp H)D.
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Creep, Creep-Fatigue, and Dynamic Failures

Generally, an elevation of temperature in most materials induces a decrease
of their strength and a sensitivity to the strain rate. Then, creep and creep-
fatigue failures are associated with temperature and time. They are as-
sociated with temperature because these phenomena are thermally activated
from mid to elevated temperatures that are above about one third of the
absolute melting temperature for metals. The time association arises because
the temperature induces viscous effects depending explicitely upon time.

From a physical point of view, creep damage in metals is essentially the
nucleation and growth of intergranular microcracks up to crystals triple
points where the coalescence of microcracks induce a mesocrack. Under fa-
tigue loading, a net of intragranular microcracks develops and interacts
with the creep microcracks net. From the mechanical point of view, this
interaction is nonlinear and so is the cumulation of damages resulting of dif-
ferent stress amplitudes. In polymers, damage occurs as a result of rupture
of molecular bonds in zones of defects or impurities that induce a strain
rate effect with temperature, particularly the transition state or rubber
state.

Modelling creep effects was done during the 20th century, beginning with
E.N. Andrade (1910) and F.H. Norton (1929). The introduction of a dam-
age variable was in fact first made for creep by L.M. Kachanov (1958),
Y.N. Rabotnov (1968), and used then by J. Lemaitre (1971), J. Hult (1972),
F.A. Leckie, and D. Hayhurst (1974). Its extension to creep-fatigue damage
was followed by J.L. Chaboche and J. Lemaitre (1974), M. Chranowski (1975)
to become an engineering tool to design mechanical components against creep
or creep-fatigue failures (J. Skrzypek and A. Ganczarski 2002).

This chapter has the same organization as others with a visco-plastic
stress concentration analysis, an expression of the yield stress for adia-
batic deformations strain rate and temperature-dependent, and examples of
creep-fatigue, dynamic analysis for crash problems and penetration of
projectiles.



234 5 Creep, Creep-Fatigue, and Dynamic Failures

5.1 Engineering Considerations

All engineering components submitted to loadings at elevated temperature
may be subjected to creep damage effects in quasi-static loadings and to
creep-fatigue damage effects in cyclic loadings. This is the case for all metallic
materials and polymers. These effects can be classified with respect to the
lifetime:

• Short range effects in rockets components where the lifetime is of a few
minutes or in the coating of the steel ladles in the metallurgy of steel elab-
oration where the lifetime is only on the order of 200 to 500 service hours.

• Middle range effects in gas turbines of airplanes or car engines where the
lifetime is on the order of 5000 to 10000 hours.

• Large range effects in the chemistry industry and thermal or nuclear power
plants where the lifetime is of the order on 10 to 50 years.

• Extremely large range duration as those considered in the conservation
of radioactive wastes – up to 100, 1000, or even 10000 years!

The analysis grows more difficult as the time range increases at least for
three reasons: as the time increases there are additional physical effects like
diffusion, corrosion, and aging which are not usually taken into account in
the mechanical constitutive equations; there is a time scale of some months
or years above which there is almost no possibility to perform tests and
ensure good identification of the material parameters; last but not least,
the probability of the occurrence of unpredicted events increases with time.
Furthermore, be careful at the two extrema of the plastic strain rates where
viscous effects must be taken into account even at room temperature:

• ε̇p > 1–104 s−1 is the range of rates occurring in shocks, crash, or loadings
by accident. It is usually called dynamic plasticity because it happens
at room temperature but it is formally labelled as visco-plasticity as
the strain rate modifies the material response, especially if the reference
identification has been performed at usual strain rates of about 10−4 s−1.
For example, the usual engineering yield stress may increase 10–50% at
high strain rates of about 104 s−1.

• ε̇p < 10−10 s−1 at the other extreme is the range which may exist in
steels at room temperature loaded at small stresses, below the engineering
yield stress. The resulting slow creep or relaxation may change the
stress concentrations, induce leakage in pressurized vessels, or decrease
the tension in the cables of pre-stressed oncrete by relaxation of the steel
cables associated with the creep of the concrete.

5.2 Fast Calculation of Structural Failures

Despite the fact that temperature and time add two more variables, it is
possible to perform approximate calculations of the damage to help in early
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design, considering of course isotropic damage without any effect of microde-
fects closure in compression. The difficulty is knowing with a good accuracy
from a structural analysis the state of local stresses or, better, the state of
local plastic strains which are the inputs of any damage evaluation.

5.2.1 Uniaxial Behavior and Validation of the Damage Law

5.2.1.1 Creep Damage

Pure creep is the time evolution of the plastic strain under constant stress.
Generally, the damage begins to grow at the minimum strain rate after the
primary creep and increases the strain rate up to rupture (Fig. 5.1).

Fig. 5.1. Damage during a pure creep test on superalloy IN 100 at 1000◦C
(J. Lemaitre and J.L. Chaboche 1985)

The first law proposed in 1958 to describe the creep damage is the unidi-
mensional Kachanov law without any threshold:

Ḋ =
[

σ

AD(1 − D)

]rD

, (5.1)

where AD and rD are material parameters depending upon the temperature.
The time-to-rupture tR at constant stress and constant temperature is the

solution of this differential equation for D = Dc, with the initial condition
t = 0 → D = 0,

tR =
1 − (1 − Dc)rD+1

rD + 1

(
σ

AD

)−rD

. (5.2)
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This helps us draw from experiments the isochronous curves which give the
time-to-rupture function of the constant stress applied (Fig. 5.2).

Fig. 5.2. Isochronous curves of superalloy IN 100 at different temperatures
(J. Lemaitre and J.L. Chaboche 1985)

This kind of tests may be helpful in the validation of the unified damage
law for creep damage if the plastic strain to rupture εpR and the plastic strain
at the inflexion point corresponding to the threshold εpD are recorded.

The integration of the differential law for σ = const is particularly easy:

Ḋ =
(

σ2

2ES(1 − D)2

)s
|ε̇p| if εp > εpD (5.3)

or ∫ Dc

0

(1 − D)2sdD =
(

σ2

2ES

)s ∫ εpR

εpD

dεp , (5.4)

leading to

εpR − εpD =
(

σ2

2ES

)−s 1
2s + 1

[
1 − (1 − Dc)2s+1

]−1
. (5.5)

The slope of the best straight line fitting the points log(εpR−εpD) vs log σ
for different creep tests “must” give −2s, close to the value identified by the
procedures of Sects. 1.4.4 and 2.4.
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5.2.1.2 Creep-Fatigue Damage

If the loading is a sequence of constant stresses with hold times and un-
loadings or if it is a cyclic loading, the phenomenon of fatigue occurs as
a superimposed effect. It is called creep-fatigue interaction because the
earliest models were a combination of two terms: one for creep, and one for
fatigue without or with couplings to obtain a model of nonlinear interaction.

The simple Taira rule of linear interaction (1952) applies to isothermal
uniaxial cyclic loading with 0 ≤ σ ≤ σmax and with a hold time of ∆t. If NR

is the number of cycles to rupture corresponding to a time tR ≈ ∆t · NR; if
NRF is the number of cycles to rupture in pure fatigue (∆t ≈ 0) for the same
stress range; and if tRC is the time-to-rupture in pure creep for the same
maximum stress σ = σmax for all t, the Taira rule reads:

tR
tRC

+
NR

NRF
= 1 . (5.6)

Easy to apply, it may give an order of magnitude of the time or of the number
of cycles to rupture if nothing else is available.

An interesting point, the unified damage law developed in Chap. 1,

Ḋ =
(

σ2

2ES(1 − D)2

)s
|ε̇p| if p > εpD , (5.7)

can represent both creep damage and fatigue damage as the damage rate
is governed by the plastic strain with no difference for creep and fatigue as,
from the point of view of strains, a fatigue loading is nothing more than cyclic
visco-plasticity.

Numerically, it is possible to show that the interaction between creep
damage and fatigue damage is nonlinear if a damage threshold and kinematic
hardening are taken into consideration (see Sect. 5.4.2). A small creep reduces
considerably the fatigue life, a physical property which is not contained in
the Taira rule.

5.2.2 Case of Proportional Loading

The case of proportional loading allows us to solve a 3D problem by ma-
nipulation of scalars only as all the tensors are colinear (see Sect. 2.1.2). As
already stated, many engineering problems involve one load or multiple loads
all varying proportionately to one parameter to ensure the local property of
proportional loading.

In monotonous creep, if the history of stress is known as a function
of time σ(t) at the critical point, one only has to calculate the von Mises
equivalent stress σeq(t) and the constant triaxiality ratio (σH/σeq). In the
unified damage law, the accumulated plastic strain rate is replaced by the
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pure viscous Norton law in which the yield stress and the hardening are
neglected here (but not the coupling with the damage),

ṗ =
[

σeq

K0
N (1 − D)

]N0

. (5.8)

One has to solve a differential equation fully similar to Kachanov law (5.1),

Ḋ =

[
σ2

eqRν

2ES(1 − D)2

]s [
σeq

K0
N(1 − D)

]N0

if p > pD (5.9)

or ∫ D

0

(1 − D)2s+N0dD =
∫ t

tD

[
σ2

eq(t)Rν

2ES

]s [
σeq(t)
K0

N

]N0

dt , (5.10)

where the time tD to reach the damage threshold pD is given by

pD =
∫ tD

0

[
σeq

K0
N

]N0

dt . (5.11)

Then,

D = 1 −
[
1 − (2s + N0 + 1)

∫ t

tD

σ2s+N0
eq(t) Rs

ν

(2ES)s (K0
N)N0

dt

] 1
2s+N0+1

(5.12)

and the time-to-rupture tR is given by

∫ tR

tD

σ2s+N0
eq(t) Rs

ν

(2ES)s (K0
N)N0

dt =
1 − (1 − Dc)2s+N0+1

2s + N0 + 1
. (5.13)

For example, for a constant state of stress pD = εpD and

tRC = tDC +
1 − (1 − Dc)2s+N0+1

2s + N0 + 1
(2ES)s

(
K0

N

)N0

σ2s+N0
eq Rs

ν

,

tDC = εpD

(
K0

N

σeq

)N0

.

(5.14)

The difference with an uniaxial case characterized by the same equivalent
stress σ = σeq lies only in the triaxiality function Rν and gives an easy way
to solve any 3D problem (in proportional loading!),

tRC(σij) − tDC(σij)
tRC(σ) − tDC(σ)

= R−s
ν , (5.15)

with tDC(σij) = tDC(σ) = εpD

(
σ

K0
N

)−N0

.
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The case of creep-fatigue (non-monotonous creep) is also treated by the
above equations ((5.12) and (5.13)) if the same assumptions apply.

The integral is only a bit more difficult to calculate. For example for the
periodic repeated loading of Fig. 5.3, the damage increment over one cycle
δD
δN =

∫
1 cycle Ḋdt (assume D is constant over one cycle in the calculation of

the integral) is given by the integral involving the stress rate during loadings
and unloadings where |σ̇eq| = σ̇f

eq considered constant,

Fig. 5.3. Creep-fatigue periodic loading

dD =

[
σ2

eq(t)Rν

2ES(1 − D)2

]s [
σeq(t)

K0
N (1 − D)

]N0

dt with dt =
dσeq

σ̇f
eq

, (5.16)

δD

δN
=
[

Rν

2ES(1 − D)2

]s [ 1
K0

N (1 − D)

]N0

×
[
2
∫ σeq max

0

σ2s+N0
eq

dσeq

σ̇f
eq

+
∫ ∆t

0

σ2s+N0
eq maxdt

]
.

(5.17)

A second integration over the number of cycles gives the condition to rupture,∫ Dc

0

(1 − D)2s+N0δD =
[

Rν

2ES

]s [ 1
K0

N

]N0

×
[

2
2s + N0 + 1

σ2s+N0+1
eq max

σ̇f
eq

+ σ2s+N0
eq max∆t

]
(NR − ND) ,

(5.18)

where ND is the number of cycles to reach the damage threshold (see
Sect. 1.4.1):

ND ≈ pD

∆t

(
K0

N

σeq max

)N0

with pD = εpD

(
2σu

σeq max

)m

, (5.19)

NR = ND+
1 − (1 − Dc)2s+N0+1

2s + N0 + 1
(2ES)s

(
K0

N

)N0

σ2s+N0
eq maxRs

ν

×
[

2
2s + N0 + 1

σeq max

σ̇f
eq

+ ∆t

]−1

.

(5.20)
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In the last brackets, the first term corresponds to fatigue damage and the sec-
ond to creep damage. The last equation involves temperature-dependent ma-
terial parameters which may become time-dependent in the integral through
the eventual history of temperature.

Here again, the number of cycles to rupture of a 3D problem is easily
deduced from the known number of cycles to rupture of an uniaxial case
characterized by the stress σ(t) which varies between 0 and σM = σeq max,

NR(σij) − ND(σij)
NR(σM) − ND(σM)

= R−s
ν . (5.21)

Equations (5.14) and (5.20) allow us to determine the 3D creep-fatigue
interaction diagram NR/NRF function of tR/tRC for a given stress triaxi-
ality where:

• NRF is the number of cycles to rupture in pure fatigue (hold time ∆t = 0),

NRF = NDF +

[
1 − (1 − Dc)2s+N0+1

]
(2ES)s

(
K0

N

)N0
σ̇f

eq

2σ2s+N0+1
eq max Rs

ν

(5.22)

• tRC is the time to rupture in pure creep,

tRC = tDC +
1 − (1 − Dc)2s+N0+1

2s + N0 + 1
(2ES)s

(
K0

N

)N0

σ2s+N0
eq maxRs

ν

(5.23)

• NR is the number of cycles to rupture in creep-fatigue
• tR = NR∆t is the time spent in creep

One has
(NRF − NDF)

2
2s + N0 + 1

σeq max

σ̇f
eq

= tRC − tDC (5.24)

and

(NR − ND)

[
2

2s + N0 + 1
σeq max

σ̇f
eq

+ ∆t

]
= tRC − tDC , (5.25)

which lead to

(NR − ND)
tRC − tDC

NRF − NDF
+ (NR − ND)∆t

tRC − tDC

tRC − tDC
= tRC − tDC (5.26)

and, therefore, the 3D nonlinear creep-fatigue interaction through the values
of the thresholds ND, NDF, tD, tDC:

NR − ND

NRF − NDF
+

tR − tD
tRC − tDC

= 1 , (5.27)
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where the stress triaxiality and the maximum von Mises stress σeq max are
the same for fatigue, creep and creep-fatigue. Note that a damage evolution
with no threshold (pD = 0) implies tDC = tD = 0 and NDF = ND = 0.
In that case, eq. (5.27) recovers the Taira rule (5.6) of linear creep-fatigue
interaction.

If the reference creep time to rupture tRC(σM) and fatigue number of
cycles to rupture NRF(σM) are known from an uniaxial loading (Rν = 1) at
the same σeq max = σM as the 3D loading, one can write the 3D creep-fatigue
interaction as

NR(σij) − ND(σij)
NRF(σM) − NDF(σM)

+
tR(σij) − tD(σij)

tRC(σM) − tDC(σM)
= R−s

ν . (5.28)

5.2.3 Sensitivity Analysis

As in Chap. 3 (Sect. 3.2.3) for the plastic strain to rupture and in Chap. 4
(Sect. 4.2.3) for the number of cycles to rupture, it is possible to perform
a sensitivity analysis for the time to rupture in creep in accordance with
the general method of Sect. 2.4.6. Start with the closed-form solution in
proportional loading (5.14), where

tR = tD +
1 − (1 − Dc)2s+N0+1

2s + N0 + 1

(
2ES

σ2
eqRν

)s (
K0

N

σeq

)N0

, (5.29)

with

tD = εpD

(
K0

N

σeq

)N0

(5.30)

and
Rν =

2
3
(1 + ν) + 3(1 − 2ν)T 2

X . (5.31)

Taking the logarithm gives

ln(tR − tD) = ln
(
1 − (1 − Dc)2s+N0+1

)− ln(2s + N0 + 1)

+ s ln
(

2ES

σ2
eqRν

)
+ N0 ln

(
K0

N

σeq

)
,

(5.32)

with

ln
(
1 − (1 − Dc)2s+N0+1

)
= ln (1 − exp [(2s + N0 + 1) ln(1 − Dc)]) (5.33)

and the derivative

d ln
(
1 − (1 − Dc)2s+N0+1

)
=

(2s + N0 + 1)(1 − Dc)2s+N0

1 − (1 − Dc)2s+N0+1
dDc

− (1 − Dc)2s+N0+1 ln(1 − Dc)
1 − (1 − Dc)2s+N0+1

dN0

− 2(1 − Dc)2s+N0+1 ln(1 − Dc)
1 − (1 − Dc)2s+N0+1

ds .

(5.34)
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Taking the derivative with the notation δx = |dx| to ensure upper bounds
on the errors gives

δ(tR − tD)
tR − tD

=
δtR
tR

tR
tR − tD

− δtD
tD

tD
tR − tD

,

δtD
tD

=
δεpD

εpD
+ N0

δK0
N

K0
N

+ N0
δσeq

σeq
+ N0

∣∣∣∣ln K0
N

σeq

∣∣∣∣ δN0

N0
,

δRν

Rν
=

|6T 2
X − 2

3 |ν
Rν

δν

ν
+

6(1 − 2ν)T 2
X

Rν

δTX

TX
.

(5.35)

The sensitivity on the rupture time is finally
δtR
tR

=
∑

k

StR
Ak

δAk

Ak
, where each

StR
Ak is the sensitivity coefficient of the parameters Ak with respect to the

time to rupture tR,

StR
TX

=
tR − tD

tR

6s(1 − 2ν)T 2
X

Rν
,

StR
σeq

= N0 +
tR − tD

tR
2s ,

StR
E =

tR − tD
tR

s ,

StR
ν =

tR − tD
tR

|6T 2
X − 2

3 |νs

Rν
,

StR
K0

N
= N0 ,

StR
N0

= N0

∣∣∣∣ln σeq

K0
N

+
tR − tD

tR

(
1

2s + N0 + 1
+

(1 − Dc)2s+N0+1 ln(1 − Dc)
1 − (1 − Dc)2s+N0+1

)∣∣∣∣ ,
StR

εpD
=

tD
tR

,

StR
S =

tR − tD
tR

s ,

StR
s =

tR − tD
tR

s

∣∣∣∣∣ln σ2
eqRν

2ES
+

2
2s + N0 + 1

+
2(1 − Dc)2s+N0+1 ln(1 − Dc)

1 − (1 − Dc)2s+N0+1

∣∣∣∣∣ ,

StR
Dc

=
tR − tD

tR

(2s + N0 + 1)(1 − Dc)2s+N0Dc

1 − (1 − Dc)2s+N0+1
.

To give relative values of these coefficients, an example of average values
of the parameters representative of many materials is visualized by the height
of the boxes in the scheme of Fig. 5.4. This is for σeq = 100 MPa, TX = 1,
Rν = 2.07, and tD/tR = 1/2 as quantities defining the loading and E =
140000 MPa, ν = 0.3, K0

N = 700 MPa·s1/N0 , N0 = 8, εpD = 0.2, S = 0.15
MPa, s = 2, and Dc = 0.2 as values of the material parameters at a mid-level
temperature.
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Fig. 5.4. Relative importance of each parameter in creep failures

Here again, the parameters which have the largest influence on the ac-
curacy of the time to failure are those defining the loading and particularly
the stress acting on both the plastic strain and the damage rates. Note the
extreme importance of the Norton exponent N0. The damage exponent s,
the damage threshold εpD and the critical damage Dc are found to be of less
importance.

For creep-fatigue, the calculation is very similar as only one logarithmic
function is added, giving rise to two more terms related to the loading: the
loading rate σ̇eq and the hold time ∆t, and to three sensitivity terms Sσeq max ,
Ss, and SN0 for δσeq max

σeq max
, δs

s , and δN0
N0

. The number of cycles to rupture is
given by (5.20) and the sensitivity to the hold time ∆t or the fatigue stress
rate σ̇f

eq are
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SNR
∆t =

NR − ND

NR

∆t
2

2s + N0 + 1
σeq max

σ̇f
eq

+ ∆t
+

ND

NR

SNR

σ̇f
eq

=
NR − ND

NR

2
2s + N0 + 1

σeq max

σ̇f
eq

2
2s + N0 + 1

σeq max

σ̇f
eq

+ ∆t
.

(5.36)

5.2.4 Elasto-Visco-Plastic Stress Concentration

Representing time-dependent viscosity effects such as creep and relaxation
by post-processing an elastic computation is a difficult task as the reference
calculation is time-independent.

In the case of localized visco-plasticity (small scale yielding), such
a reference computation coupled with the Neuber method allows us to deter-
mine the history of the von Mises stress and the accumulated plastic strain.

In case of fully (visco-)plastified mechanical components (large scale
yielding), a time-dependent reference computation is needed. In order to de-
rive a fast method, the idea is to perform an elasto-visco-plastic computation
only on a Representative Volume Element with the nominal strain εn(t) or
stress σn(t) as uniaxial loading, and to use the corresponding solution coupled
with the knowledge of the notch elastic stress concentration coefficient KT.

5.2.4.1 Small Scale Yielding – the Neuber Method

In the case of visco-plasticity confined in a small stress concentration area,
the main part of the structure remains elastic and is submitted to a relaxation
state on the yielding part. Apply the Neuber method coupled with Norton
law to yield

σ2
eqRν

E
+ σeqp = (σijεij)elas and ṗ =

〈
σeq − R − Xeq − σy

KN

〉N

. (5.37)

For a given triaxiality ratio, this gives a relationship between the von Mises
stress and the plastic strain

σeq =

√
E2p2 + 4ERν (σijεij)elas − Ep

2Rν
, (5.38)

and leads to the law p(t) and then σeq(t) at the stress concentration point as
the solution of the following first order differential equation:

ṗ =

〈
1

2Rν

(√
E2p2 + 4ERν (σijεij)elas − Ep

)− R(p) − Xeq(p) − σy

KN

〉N

.

(5.39)
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This leads to a decreasing von Mises stress over a long period of time and
corresponds to a relaxation deformation process.

5.2.4.2 Large Scale Yielding (M. Chaudonneret 1978, 1985)

For the case of a structure undergoing a full visco-plastic state of deformation,
the complete nonlinear computation is difficult to avoid! Nevertheless this can
be done for the engineering cases of notches by following an extended Neuber
procedure based on an uniaxial visco-plastic reference calculation made only
on a volume element, on which the nominal stress σn(t) or strain εn(t) is
applied. The loading may be creep, fatigue, or creep-fatigue.

The information concerning the geometry of the notch is introduced in
the rate form of the Neuber heuristic σε = σelasεelas of Chap. 3 through the
use of the elastic stress concentration coefficient KT (see Fig. 3.4):

σε̇ + σ̇ε = K2
T (σnε̇n + σ̇nεn) , (5.40)

where the couple (σ, ε) is determined from the stress-strain field at the most
loaded point of the notch and where σn and εn is the nominal stress and
strain, respectively. Coupled with the strain partition,

ε = εe + εp =
σ

E
+ εp and εn =

σn

E
+ εp

n , (5.41)

one gets:

σ̇ =
1

2σ + Eεp
{
K2

T [(2σn + Eεp
n)σ̇n + Eσn ε̇p

n] − Eσε̇p
}

. (5.42)

This expression associated with a viscosity law such as the Norton law,

ε̇p =
〈 |σ − X | − R − σy

KN

〉N

sgn(σ − X) and ṗ = |ε̇p| , (5.43)

coupled with the consideration of both nonlinear isotropic hardening R =
R(p) and kinematic hardening Ẋ = Cε̇p − γX |ε̇p| allows us to determine the
stress and strain histories, σ(t) and ε(t). This just needs the use of a step-by-
step differential scheme such as the Euler or better Runge–Kutta schemes.

If the reference computation is made in elasticity, the method gives back
the expression (5.37) for small scale yielding in which Rν = 1, σeq = σ, and
p = εp.

5.2.4.3 Mesocrack Initiation

Calculate the damage by performing the time integration of the unified dam-
age law,

Ḋ =
(

σ2

2ES

)s
|ε̇p| if εp > pD , (5.44)
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D(t) =
∫ t

tD

(
σ2(t)
2ES

)s
|ε̇p(t)|dt , (5.45)

with tD as the time at damage initiation given by

pD =
∫ tD

0

〈 |σ(t) − X(t)| − R(t) − σy

KN

〉N

dt . (5.46)

A mesocrack initiates when D = Dc for a time t = tR.

Remark – In the previous equations, σ(t) replaces the effective stress σ̃ of the fully
coupled analysis. This means that the Neuber method is in fact

σ̃ε = K2
Tσnεn (5.47)

and gives an estimation of the effective stress directly.

5.2.4.4 Large Scale Yielding – Approximate Method

When the material is largely visco-plastic, i.e., when elasticity is negligible,
a simpler, but 3D, form than the previous Neuber method may be derived.
The Neuber fundamental hypothesis becomes

σ̃εp = K2
Tσnεn for the uniaxial case, (5.48)

or
σ̃eqp = K2

Tσeq npn for the 3D case, (5.49)

where σ̃ and σ̃eq are the effective stress and effective von Mises stress, respec-
tively, at the most loaded point.

The Neuber heuristic (5.49) considered altogether with the pure viscous
Norton law,

ṗ =
(

σ̃eq

K0
N

)N0

and ṗn =
(

σeq

K0
N

)N0

, (5.50)

leads to
K0

N ṗ1/N0p = K2
TK0

N ṗ1/N0
n pn (5.51)

and

p = K
2N0

N0+1

T pn and ṗ = K
2N0

N0+1

T ṗn , (5.52)

where K
2N0

N0+1

T acts as a creep strain concentration coefficient.
The effective stress is then

σ̃eq = K0
N ṗ1/N0 = K

2
N0+1

T K0
N ṗ1/N0

n = K
2

N0+1

T σeq n . (5.53)



5.2 Fast Calculation of Structural Failures 247

The damage initiated at the stress concentration point after a service time
tD is a solution of

pD =
∫ tD

0

ṗ(t)dt = K
2N0

N0+1

T

∫ tD

0

ṗn(t)dt , (5.54)

i.e., when pn(tD) = K
− 2N0

N0+1

T pD.
Failure occurs when D(t = tR) reaches locally Dc with

D =
∫ t

tD

(
σ̃2

eqRν

2ES

)s(
σ̃eq

K0
N

)N0

dt =
K

4s+2N0
N0+1

T

(2ES)s (K0
N)N0

∫ t

tD

σ2s+N0
eq n (t)Rs

ν(t)dt

(5.55)

where K
4s+2N0

N0+1

T acts as a damage rate concentration coefficient.
An example is given in Sect. 5.3.2.

5.2.5 Safety Margin and Crack Growth

In creep, the security is governed by the duration without any accident so that
the essential parameter is the time t. A safe design of a component must prove
that the service time is below the time tR of a crack initiation somewhere in
the structure. Here, we introduce again a safety factor Saf which defines the
safety margin

tservice <
tR
Saf

. (5.56)

If creep fatigue is involved, the engineering parameter can be either the num-
ber of cycles N or the accumulated time t and the safety margins are defined
as

Nservice <
NR

Saf
or tservice <

tR
Saf

. (5.57)

When dealing with service durations larger than several years, much care
must be taken as the identification of the parameters is most often based on
short range tests. In situ control of components in service and updated cal-
culations are advised each time new information arrives. Anyway, the safety
factor must be large enough so that Saf = 5, 10, 20, or more depending on
the expected duration of the component. A more advanced concept consists
of evaluating the rupture probability while taking into account the scatter of
the material parameters and the uncertainties upon the loading.

There is no simple way to determine the crack growth rate but the nu-
merical simulation by a structure calculation with elements removal in elasto-
visco-plasticity coupled with damage is possible. The viscosity, playing a reg-
ularization role, ensures the convergence of the numerical algorithms (see
Sect. 1.6.2).
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5.3 Basic Engineering Examples

Here we describe some simple results that can help us quickly estimate creep
or creep-fatigue effects on failure of mechanical components. The accuracy
is poor as the temperature increases the nonlinearities regarding to stress-
strain and time relations. If an accuracy of a few percent may be expected
in predictions in elasticity, it increases to 10–20% in plasticity and up to 50–
100% in visco-plasticity. Only fatigue is worse: a factor of 10 (1000% !) may
happen in high cycle fatigue!

5.3.1 Strain Rate and Temperature-Dependent Yield Stress

What is called “dynamic plasticity” is in fact visco-plasticity as the high
strain rates play a role even at room temperature. Furthermore, the short
times involved induce almost adiabatic plasticity for which the effect of plas-
tic dissipation increases the temperature. Here we derive an approximate
formula to obtain the yield stress as well as function of the strain rate and
the temperature, from its value at room temperature or an other reference
temperature.

The effect of the temperature T is introduced by considering the visco-
plastic strain as a thermally-activated phenomenon governed by the Arrhe-
nius law which makes the unidimensional plastic strain rate dependent on
the temperature, as in

ε̇p ≈ gσ,εp(σ, εp) exp
(
−H

T

)
, (5.58)

where the parameter H is related to the energy of activation of the process.
We then introduce the pure viscous Norton law at a reference temperature

T0,

ε̇p =
(

σ

K0
N

)N0

gεp(εp) exp
(

H

T0
− H

T

)
. (5.59)

First, consider the engineering yield stress σy02(ε̇p0, T0) corresponding to
a plastic strain εp0 = 0.2 10−2, a reference plastic strain rate ε̇p0, and the
reference temperature T0:

σy02(ε̇p0, T0) = K0
N

(
ε̇p0

gεp(εp0)

)1/N0

. (5.60)

Second, consider the engineering yield stress σy02(ε̇p, T ) corresponding to
a larger plastic strain rate ε̇p and a larger temperature T ,

σy02(ε̇p, T ) = K0
N

[
ε̇p

gεp(εp0)
exp
{
−
(

H

T0
− H

T

)}]1/N0

. (5.61)



5.3 Basic Engineering Examples 249

Finally, for the 3D case, ε̇p becomes ṗ and the engineering yield stress
(both strain-rate- and temperature-dependent) is approximately given by

σy02(ṗ, T ) ≈ σy02(ε̇p0, T0)
(

ṗ

ε̇p0

)1/N0

exp
{
− H

N0

(
1
T0

− 1
T

)}
, (5.62)

an expression which needs the knowledge of:

• The Norton parameters K0
N and N0 at the reference temperature T0 not

too far from the temperature considered because, unfortunately, they are
not exactly constant with the temperature,

• The yield stress σy02 at a reference strain rate ε̇p0 and temperature T0,
and

• The parameter H “adjusted” on the yield stress at least at one other
temperature.

To finish, expression (5.62) can also be used at room temperature, particularly
in dynamics problems such as shocks, crash, or perforation, considering ε̇p0 ≈
ε̇0 so that

σy02(ṗ) = σy02(ε̇0)
(

ṗ

ε̇0

)1/N0

. (5.63)

At room temperature, the exponent N0 is large (N0 ≈ 20 to 100) and the
only possibility to identify its value for each material is to perform relaxation
tests at large values of initial strain rate. For steels, the plastic strain rate
may vary over several decades in a few hours (Fig. 5.5).

Fig. 5.5. Relaxation tests to identify pure viscous Norton parameters for 316 stain-
less steel at room temperature (J. Lemaitre and J.L. Chaboche 1985)
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5.3.2 Plates or Members with Holes or Notches

This is the same problem as in Sects. 3.3.1 and 4.3.1 where a hole or a notch
increases the nominal stress σn on its edge due to the elastic concentration
coefficient KT. Consider the case of a fully visco-plastic component where
the damage may initiate and reach the critical localized damage at the stress
concentration point.

Use the approximate Neuber method of Sect. 5.2.4 which states for a local
uniaxial state of stress σ and ε ≈ εp that

σ̃ε = K2
Tσnεpn , (5.64)

and consider the pure viscous Norton law:

ε̇p =
(

σ̃

K0
N

)N0

and ε̇pn =
(

σn

K0
N

)N0

, (5.65)

with σ̃ = σ/(1 − D) as the effective stress at the stress concentration point.
Determine then the history of the strain εp(t) and the effective stress σ̃(t).

The local damage is given by (5.55) and a mesocrack initiates at the time tR
when D reaches the critical value Dc.

5.3.2.1 Creep Mesocrack Initiation

Consider first the case of creep: a constant far field σ∞ leads to a constant
nominal stress σn (see Fig. 3.4). The full procedure takes 3 steps:

1. Perform the reference calculation
The solution εpn(t) for creep at σn = const is

εpn(t) =
(

σn

K0
N

)N0

t . (5.66)

2. Apply the approximate Neuber method
The Neuber heuristic and the Norton law lead to

εp(t) = K
2N0

N0+1

T εpn(t) (5.67)

and the effective stress is

σ̃ = K
2

N0+1

T K0
N ε̇1/N0

pn = K
2

N0+1

T σn = const . (5.68)

3. Calculate the damage evolution
The damage initiates at t = tD when the plastic strain reaches the damage
threshold εpD locally,

tD = K
− 2N0

N0+1

T εpD

(
K0

N

σn

)N0

. (5.69)
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For a stress concentration coefficient of KT = 3, this means that the
damage initiates at the stress concentration point for a time tD that is 3
to 9 times shorter that the time tDn of damage occurrence in the entire

cross section as tDn = εpD

(
K0

N

σn

)N0

. The damage history is

D(t) = K
4s+2N0

N0+1

T

σ2s+N0
n

(2ES)s (K0
N)N0

(t − tD) . (5.70)

Finally, failure occurs when D = Dc for a creep time tR represented by

tR = K
− 2N0

N0+1

T εpD

(
K0

N

σn

)N0

+ K
− 4s+2N0

N0+1

T

(2ES)s
(
K0

N

)N0
Dc

σ2s+N0
n

. (5.71)

The second term (tertiary creep) of the time to rupture varies as the inverse
of the stress to the power (2s + N0) which can be on the order of 5 to 20
that of a very large stress sensitivity. Then be careful when defining a safety
factor.

5.3.2.2 Creep-Fatigue

The far field σ∞(t) varies periodically between 0 and σ∞max, with a hold time
∆t at σ∞max. The nominal stress varies between 0 and σn max in the same
manner. This is creep-fatigue for which the resolution is similar to the one
detailed in Sect. 5.2.2. The approximate Neuber method allows us to again
calculate the history of the accumulated plastic strain p(t) and the damage
D(t) at the stress concentration point.

The three-step procedure is the same as for the creep case:

1. Perform the reference calculation
One has to calculate the plastic strain increment per cycle,

δpn

δN
=
∫

1 cycle

|ε̇pn|dt . (5.72)

During the monotonous part of the loading, consider an applied load
linear in time with σn = σ̇f

n t, where

ε̇pn =
(

σn

K0
N

)N0

=
(

σ̇f
n

K0
N

)N0

tN0

=⇒ ∆εpn =
1

(N0 + 1) (K0
N)N0

σN0+1
n max

σ̇f
n

.

(5.73)
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During the creep part,

∆εpn =
(

σn max

K0
N

)N0

∆t . (5.74)

Then,

δpn

δN
=
(

σn max

K0
N

)N0 [ 2
N0 + 1

σn max

σ̇f
n

+ ∆t

]
. (5.75)

2. Apply the approximate Neuber method
The Neuber heuristic σ̃eqp = K2

Tσnεn and the previous Norton law give
the local plastic strain as

p(t) = K
2N0

N0+1

T pn(t) , (5.76)

the local plastic increment per cycle as

δp

δN
= K

2N0
N0+1

T

δpn

δN
, (5.77)

and the effective stress at the stress concentration point as

σ̃(t) = K
2

N0+1

T K0
N ṗ1/N0

n (t) = K
2

N0+1

T σn(t) . (5.78)

3. Calculate the damage evolution

Damage initiates after a number of cycles N = ND when p =
δp

δN
N

reaches the damage threshold pD. The corresponding number of cycles is
then

ND =
pD

δp

δN

= K
− 2N0

N0+1

T

pD

δpn

δN

, (5.79)

with pD given by (5.19) of Sect. 5.2.2,

pD = εpD

(
2σu

σeq max

)m

= K
− 2m

N0+1

T εpD

(
2σu

σn max

)m

. (5.80)

The damage history is given by the time integration of the damage law,

Ḋ =
(

σ̃2

2ES

)s(
σ̃

K0
N

)N0

if p > pD , (5.81)

first over one cycle,
δD

δN
=
∫

1 cycle

Ḋdt, then over the whole loading. Dur-

ing the monotonous loading part with σ̇n = σ̇f
n = const, as in Sect. 5.2.2,
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Ḋ =
σ̃2s+N0

(2ES)s (K0
N)N0

= K
4s+2N0

N0+1

T

σ̇f 2s+N0
n

(2ES)s (K0
N )N0

t2s+N0 (5.82)

gives a damage growth of

∆D =
K

4s+2N0
N0+1

T

(2s + N0 + 1)(2ES)s (K0
N )N0

σ2s+N0+1
n max

σ̇f 2s+N0+1
n

. (5.83)

During the creep part of each cycle,

Ḋ =
K

4s+2N0
N0+1

T

(2ES)s (K0
N )N0

σ2s+N0
n max =⇒ ∆D =

K
4s+2N0

N0+1

T

(2ES)s (K0
N )N0

σ2s+N0
n max ∆t .

(5.84)
Then,

δD

δN
=

K
4s+2N0

N0+1

T

(2ES)s (K0
N )N0

σ2s+N0
n max

[
2

2s + N0 + 1
σn max

σ̇n
+ ∆t

]
(5.85)

and the number of creep-fatigue cycles to rupture corresponds finally to

D(NR) =
δD

δN
· (NR − ND) = Dc so that

NR = ND + K
− 4s+2N0

N0+1

T

(2ES)s
(
K0

N

)N0
Dc

σ2s+N0
n max

×
[

2
2s + N0 + 1

σn max

σ̇n
+ ∆t

]−1

with

ND = K
− 2(N0+m)

N0+1

T εpD

(2σu)m
(
K0

N

)N0

σN0+m
n max

[
2

N0 + 1
σn max

σ̇f
n

+ ∆t

]−1

.

(5.86)

Even for such a complex case, the number of cycles to rupture by mesocrack
initiation is fully determined from the knowledge of the nominal strain σn(t)
and the elastic stress concentration coefficient KT. Again, the sensitivity to
the stress is high and a small hold time has already a strong negative effect
on the component lifetime.

5.3.3 Pressurized Shallow Cylinder

From the analysis of the Sect. 3.3.2 (Fig. 3.6), the stresses are expressed as
a function of the applied pressure P , the radius Rcyl, and the thickness tcyl

of the cylinder as
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σeq(t) =
√

3
2

P (t)Rcyl

tcyl
, TX =

σH

σeq
=

1√
3

, and Rν =
5 − 4ν

3
. (5.87)

The problem is to determine the time of a mesocrack initiation, tR, when the
pressure is kept constant (creep) or when it varies periodically with periods
of hold time ∆t at P = Pmax (creep-fatigue). We neglect here the time-to-
damage initiation.

For creep, the integration of the damage law with a pure viscous Norton
law is straightforward:

Ḋ =

[
σ2

eqRν

2ES(1 − D)2

]s [
σeq

K0
N(1 − D)

]N0

(5.88)

or ∫ Dc

0

(1 − D)2s+N0dD =

[
σ2

eqRν

2ES

]s [
σeq

K0
N

]N0

tR , (5.89)

and finally:

tR =
1 − (1 − Dc)2s+N0+1

2s + N0 + 1
(2ES)sK0

N
N0

(
5 − 4ν

3

)s
(√

3
2

PmaxRcyl

tcyl

)2s+N0
. (5.90)

What is important is that tR varies as the pressure P to the power 2s + N0,
which can be on the order of 10 to 15 for metals. This means that an increase
of the pressure of 5% may reduce the time to an explosion by a factor of
about 2 or more!

For creep-fatigue induced by a pressure maintained constant at P =
Pmax for N periods of time ∆t, the integration of the damage law is
the one of Sect. 5.2.2 (Eqs. (5.16) to (5.20)), with of course the partic-
ular values (5.87) for the state of stress and stress triaxiality and a con-
stant pressure rate Ṗ or −Ṗ during the loading or unloading parts of the
cycle.

The number of cycles to rupture is

NR =
(1 − (1 − Dc)2s+N0+1)(2ES)sK0

N
N0

(2s + N0 + 1)
(

5 − 4ν

3

)s
(√

3
2

PmaxRcyl

tcyl

)2s+N0

×
[

2
2s + N0 + 1

Pmax

Ṗ
+ ∆t

]−1

.

(5.91)

In practical applications, the creep term is almost always much larger
than the fatigue term, i.e.,
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∆t � 2
2s + N0 + 1

Pmax

Ṗ
. (5.92)

Again, this means that the fatigue damage may sometimes be neglected, but
never the creep damage.

5.3.4 Adiabatic Dynamics Post-Buckling in Bending

This is the same problem as the plastic post-buckling of beams treated in
Sect. 3.3.3 except that it corresponds to a crash or a shock problem where
dynamic plasticity, that is visco-plasticity, occurs. Then two phenomena must
be considered:

• The strain rate effect which requires us to consider a visco-plastic consti-
tutive equation.

• The large increase in temperature due to a plastic dissipation in a short
time which necessitates the consideration of the thermomechanical cou-
pling.

The problem is made as simple as possible in order to obtain the energy
absorbed in the material in a closed-form useful for qualitative discussion
about the influence of each parameter.

• The geometrical description is in Fig. 3.7 of Chap. 3 where the Bernoulli
hypothesis allows us to write

ε = εM
2y

h
. (5.93)

• The energy absorbed by the full plastic hinge of the beam l = πh/2 is

W = 2bl

∫ h/2

0

∫ tM

0

ẇ dtdy , (5.94)

where tM is the time to achieve the process and ẇ is the plastic power
density

ẇ = σε̇p . (5.95)

• The visco-plastic constitutive equation is the pure viscous Norton law
ritten with the damage effective stress σ̃ = σ/(1−D), where the coupling
with the temperature is a power function approximation of the Arrhenius
term exp

(
H
T

)
:

ε̇p =
[

σ̃

K0
N

]N0
(

T

T0

)HN

, (5.96)

where T0 is the reference temperature at which the material parameters
K0

N and N0 are identified. HN is the temperature exponent on the order
of 5 to 10 for steels in the range of 100 to 500◦C.
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• The damage constitutive equation is the simplified expression (assuming
the strain hardening saturated) obtained in Sect. 3.2.1 with the damage
threshold εpD taken to be equal to zero. The coupling of the damage with
the temperature is neglected as at least part of it is already taken into
account through the plastic strain εp, so that

D = Dc
εp
εpR

. (5.97)

• The temperature derives from the adiabatic condition written as the heat
equation,

ρChṪ = ẇ , (5.98)

where ρ is the density, ρ = 7800 kg/m3 for steels, Ch is the specific heat,
and Ch ≈ 500 J/kg ◦C for steels. Then

Ṫ =
ẇ

ρCh
or T = T0 +

w

ρCh
. (5.99)

• Some other hypotheses can make the person in charge of the calculation
happy:
– Elastic strain neglected so that εp = ε
– Process at constant strain rate, ε̇ = const = ε̇� → ε = ε̇�t

The calculation is now easy:

ẇ = K0
N

(
1 − Dc

εp
εpR

)(
T

T0

)−HN
N0

ε̇
N0+1

N0
p , (5.100)

∫ w

0

(
1 +

w

ρChT0

)HN
N0

dw =
∫ t

0

K0
N

(
1 − Dc

ε̇�

εpR
t

)
ε̇�

N0+1
N0 dt , (5.101)
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�
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(5.102)
or

w = ρChT0

⎧⎨
⎩
[
1 +

(HN + N0)K0
N

ρChT0N0

(
1 − Dc

ε̇�

2εpR
t

)
ε̇�

N0+1
N0 t

] N0
HN+N0 − 1

⎫⎬
⎭ .

(5.103)
Taking the total time tM as the kinematic measure of the process,

ε̇� = ε̇�(y) =
2εM
tM

y

h
. (5.104)

The energy absorbed, W = 2bl

∫ h/2

0

w(y, tM)dy, is
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W = 2blhρChT0

⎧⎪⎨
⎪⎩
∫ 1

2

0

[
1+

(HN + N0)K0
N (2εM)

N0+1
N0

ρChT0N0t
1/N0
M

×
(

1 − Dc
εM
εpR

u

)
u

N0+1
N0

] N0
HN +N0

du − 1
2

⎫⎪⎬
⎪⎭ ,

(5.105)
with εM = πh−πh/2

πh/2 = 1 and l = πh/2 for a full bending.
Without any coupling nor damage,

ẇ0 = K0
N ε̇

N0+1
N0

p (5.106)

and

W0 = blh
N0K

0
N

2N0 + 1
ε
N0+1

N0
M t

−1/N0
M . (5.107)

In both cases, the energy absorbed increases as the process is faster but
the increase is weak as N0 is always large and tM is always short, thus keeping
the variations of the term t

−1/N0
M small.

Some applications show that the coupling with the damage is more impor-
tant than the coupling with the temperature. In (5.105), the damage coupling
is governed by the term DcεM/εpR while the temperature coupling is mainly
governed by the dimensionless ratio K0

N/ρChT0t
1/N0
M . Altogether they lead

to a ratio W/W0 on the order of 0.7 to 0.9 for metals.

5.4 Numerical Failure Analysis

At high temperatures, many materials become visco-plastic and the main
local loadings encountered in mechanical components are creep, creep-fatigue,
and relaxation. Viscosity enhances the stress redistribution, with a strong
effect on damage and failure.

A structure computation made in elasto-visco-plasticity coupled with
damage gives the damage map history and the crack initiation conditions.
If the damage constitutive equations are not available in an FE code, imple-
ment them by use of the numerical schemes of Chap. 2. For non-isothermal
loadings, it is important to have a complete set of material parameters for
the temperature range of the application in mind. Identify the parameters at
a few constant temperatures (see for instance Sects. 1.4.4, 1.5.1.1 and 2.4).
Use the least square method to fit the temperature dependency with non-
linear functions of T . Don’t be afraid to use nonlinear functions as smooth
functions are better than linear interpolation. For example, for a material
parameter A, a general possibility is

A = a1 + a2T + a3 exp (a4T ) . (5.108)
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The use of the anisotropic damage law is again advised as it needs only
one additional material parameter which in practice may be taken as η = 3.
The consideration of the quasi-unilateral conditions of microdefects closure
is not necessary if the loading remains positive as is often the case in creep
and creep-fatigue.

A fully-coupled analysis is very costly and for cyclic loading, one may use
an elasto-visco-plasticity computation followed by a damage post-processing
(uncoupled analysis). An example is given in Sect. 5.4.3.

One of the very first thing to do is to test the numerical implementation of
the constitutive laws on a simple reference calculation (and also the quality of
the mesh, the time increments, and the convergence of the computation). The
academic problem of the hollow sphere under external pressure is especially
designed for this purpose (see Sect. 5.4.1). It uses simple assumptions for
both viscosity and damage.

5.4.1 Hollow Sphere under External Pressure
(A. Benallal, R. Billardon and L. Moret–Bailly 1991)

This example has been designed to check the numerical procedures introduced
in an FE code. It is built on the possibility to exhibit a closed-form solution in
elasto-visco-plasticity fully coupled with damage when the material behavior
is modelled by the following constitutive equations of perfect visco-plasticity
(no hardening) with a linear Norton law:

ε = εe + εp ,

εe =
1 + ν

E(1 − D)
σ − ν

E(1 − D)
tr σ 1 ,

ε̇p =
3
2

σD

σeq
ṗ ,

with

ṗ =

〈 σeq

1 − D
− σy

Ky
N

〉Ny

with Ny = 1 .

(5.109)

The damage evolution law is written as

Ḋ =
Y s

S0
ṗ (5.110)

so that S0 = Ss recovers the unified damage law Ḋ = (Y/S)sṗ. With s = 0
and σy = 0, it corresponds to the simple law

Ḋ =
σeq

S0K0
N(1 − D)

(5.111)
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which does not take into account the triaxiality effect. But when considered
altogether with ν = 0.5, it allows for a closed-form solution of the hollow
sphere problem.

Consider an external pressure loading P (t) applied on the sphere of
Fig. 5.6. The solution at time t, at a radius point r, is of the form

D = 1 − g(t) +
f(t)

S0K0
Nr3

σeq = (1 − D)

{
σy (1 − exp (−µt)) +

ḟ(t)
r3

}
,

(5.112)

where µ = E/K0
N and

g(t) = 1 − σy

S0K0
N

[
t − 1

µ
+

1
µ

exp (−µt)
]

. (5.113)

• Up to mesocrack initiation (which occurs at the inner radius when
D(a) = 1),

f(t) =
1
α

[
−βg(t) +

√
β2g2(t) + 2α

(
Π(t) − S0K0

N(g2(t) − 1) ln
b

a

)]
,

(5.114)

where Π(t) =
∫ t

0

P (τ)dτ ,

α =

[
1
b6

− 1
a6

]
3S0K0

N

, and β =
2
3

[
1
a3

− 1
b3

]
. (5.115)
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Fig. 5.6. Hollow sphere under external pressure and FE meshing
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• Beyond mesocrack initiation, the time evolutions of the radius c(t) of the
spherical damaged zone and of the function f(t) satisfying the coupled
differential equations are

P (t) =2σyg(t) ln
b

c(t)
+
(

2σy

3S0K0
N

f(t) − 2
3
ḟ(t)g(t)

)[
1
b3

− 1
c3(t)

]

+
ḟ(t)f(t)
3S0K0

N

[
1
b6

− 1
c6(t)

]

ċ(t) =
σyc

4/3(t)
3f(t)

+
c(t)ḟ(t)
3f(t)

.

(5.116)

Fig. 5.7. a Loading history. b Damage vs time at Gauss points A, B and C. c von
Mises stress vs time at Gauss points A, B and C. d Damage initiation front c(t)
(FE solution: open circles; closed-form solution: solid line). e Damage vs radius for
different times. f von Mises stress vs radius for different times
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This problem is used to check an FE implementation in ABAQUS (the UMAT
VISCOENDO of LMT-Cachan). The mesh made of forty 8-node quadrilateral
elements is depicted in Fig. 5.6 where the boundary conditions are indicated.
Due to axial symmetry, one quarter of the sphere is modelled. The pressure
history is given in Fig. 5.7a.

5.4.1.1 Validation of the FE implementation

Figures 5.7b and 5.7c illustrate the evolutions with time of the damage
D(t) and von Mises stress σeq(t) at the three Gauss points A, B, and C
marked in Fig. 5.6. The agreement between the analytical solution (con-
tinuous line) and the FE analysis (open circles) validates the numerical
implementation.

The curves of Fig. 5.7d for times t4 to t7 give an idea of the propagation
of the damage initiation front radius c(t). The slight deviation between the
two solutions observed is due to the fact that in the closed form solution, Dc

is taken to be equal to 1 instead of 0.9 for FE computations, and hence leads
to a larger time for initiation.

Figure 5.7e shows the damage redistribution along the radius obtained
with ABAQUS or different times t1 to t7 (see Fig. 5.7a). Since the numerical
critical value for damage is taken as Dc = 0.9, t4 appears as the time to the
initiation of a mesocrack at an inner radius of a = 30 mm.

5.4.1.2 Interpretation of the Results

Figure 5.7f shows the role of the coupling of the damage model with elasto-
visco-plastic equations. Since the fully-coupled approach has been used in
this example, both the effect of the damage gradient within the structure
and the effect of the damage front advance (modelled by the removal of
completely broken elements) on the stress field can be observed: first, at
the beginning of the loading (between times t2 and t4), the redistribution
of the equivalent stress σeq is only due to the damage evolution (which
is quicker at the inner radius); second, beyond the time to mesocrack ini-
tiation t4, although the pressure load is constant, very large increases in
the von Mises stress correspond to the propagation of the front which be-
comes the effective inner radius. In other words there is a growth of the inner
cavity.

Besides, it can be noticed in Figs. 5.7c and 5.7f that the point B plays the
role of the “skeletal” point of the “Reference Stress Method” (D.L. Mariott
and F.A. Leckie 1970), where the equivalent stress remains constant during
the pure creep loading (for t greater than t2) despite the redistribution of the
stresses within the structure.
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5.4.2 Effect of Loading History: Creep-Fatigue

Let us study again creep-fatigue interaction but with now the full set of elasto-
visco-plasticity coupled with damage constitutive equations of Table 1.3. The
loading is described in Fig. 5.3. The material is a stainless alloy IN 100 at
827◦C and the material parameters are

• For elasticity: E = 170000 MPa
• For viscosity (Norton law): KN = 450 MPa·s1/N and N = 7.5
• For isotropic hardening modelling cyclic softening: R∞ = −15 MPa, b =

100 with an initial yield stress σy = 30 MPa
• For kinematic hardening: C = 138000 MPa, γ = 1200

(then X∞ = C/γ = 115 MPa)
• For damage: S = 0.2 MPa, s = 1, εpD = 0.005, and Dc = 0.3

The damage threshold pD is a constant equal to εpD.
A numerical resolution of the constitutive laws is necessary to plot the

creep-fatigue interaction diagram of NR/NRF vs tR/tRC for a given maximum
stress σM, a fatigue stress rate σ̇f , and different hold times ∆t (with NR as
the number of creep-fatigue cycles and tR = NR · ∆t as the time spent in
creep). The computation is performed here on a single element in ABAQUS
by using VISCOENDO UMAT.

Fig. 5.8. Computed creep-fatigue interaction diagram for the stainless alloy IN 100
at 827◦C (J.P. Sermage 1998)

Using the above, we obtain a strong nonlinear creep-fatigue interaction
(Fig. 5.8): the larger the maximum stress the stronger the nonlinearity, as
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observed experimentally for this material. The material response obtained is
very sensitive to creep as a small hold time reduces the lifetime substantially:
for a maximum stress of σM = 200 MPa (corresponding to NRF = 1720
cycles, tRC = 18 · 104s), 10% of creep decreases by half the lifetime.

Another important result is that this nonlinearity is mainly governed by
the kinematic hardening. Setting R = const = R∞ does not change the
results much.

5.4.3 Creep-Fatigue and Thermomechanical Loadings
(J.P. Sermage, J. Lemaitre and R. Desmorat 2000)

Both coupled and uncoupled analyses are compared here to experimental
results concerning the Maltese cross shape specimen of Fig. 4.13, loaded by
two forces in its plane, F1 and F2. The specimen is heated with a controlled
eddy current heating system which ensures a “uniform” temperature field at
±5◦C. The real temperature is measured by thermocouples and introduced
as a given temperature field in the structure calculation.

Fig. 5.9. Tests performed
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Six tests are performed with forces histories F1(t), F2(t), and temperature
histories given in Fig. 5.9. The first test performed at room temperature is
the multilevel fatigue test of Chap. 4. The tests 2 to 6 are:

• Two in-phase creep-fatigue interaction tests with F1 = F2 between
0 and Fmax = 28 kN at constant temperature T=580◦C (test 2) and
T=620◦C (test 3). The loads F1 max = F2 max = 28 kN have a hold time
of ∆t = 40 s. The period of the loading is ∆t + 2δt = 50 s.

• One multilevel out-of-phase non-proportional loading test at
T=580◦C (test 4). The maximum applied loads are F1max = F2 max =
28 kN for the first 1000 cycles, F1 max = F2max = 35 kN for the next 1000
cycles, and then F1 max = F2 max = 38 kN up to failure.

• One thermal fatigue test at constant loads F1 = F2 = Fmax = 32 kN
(after an initial load from 0 to Fmax in 50 s) and variable temperature
(test 5). The temperature varies between the maximum 580◦C and the
minimum 300◦C within a period of 600 s.

• One sequential non-proportional loading test (test 6). The specimen
is submitted to a non-proportional loading in sequences of 4 cycles of
periodic F1(t) between 0 and Fmax = 35 kN at F2 = 0 followed by 4
cycles of periodic F2(t) between 0 and Fmax = 35 kN at F1 = 0; the
duration of a loading-unloading is 20 s which corresponds to 160 s per full
cycle.

These histories of loading are the inputs:

• For a fully coupled FE analysis using ABAQUS and VISCOENDO
UMAT.

• For an uncoupled analysis using ABAQUS and VISCOENDO but with
no damage. The results are then the inputs of a post-processor damage
calculation in order to perform the “a posteriori” time integration of the
unified damage law.

The drawing of the specimen is given in Sect. 4.4.2. The material is a 2-1/4
CrMo steel. A first identification of the elasto-visco-plasticity and damage ma-
terial parameters has been made at different temperatures (20◦C, 100◦C, . . . ,
580◦C). The temperature dependency of the parameters is then modelled
through a fitting with nonlinear functions of the temperature given in Ta-
ble 5.1. In the range 580◦C–620◦C, the viscosity parameters are assumed to
remain constant (equal to those identified at 580◦C). A thermomechanical
validation is presented in Figs. 2.7 and 2.8.

Cases 2 to 6 are calculated first by the uncoupled method of a visco-
plasticity ABAQUS computation of a few cycles followed by a damage calcu-
lation (see Sect. 2.1.3). On HP 700 working stations, each FE computation
takes a few hours when about one minute is needed for the damage calculation
at the most loaded point. Each case is also computed using the fully-coupled
method VISCOENDO-ABAQUS but as all the cycles must be calculated with
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small time increments to ensure the convergence of the algorithm: each case
takes about 1 week (!!) of computation on an HP 700.

The final results of the number of cycles-to-crack-initiation, both from
experiments and from calculations, are summarized in Table 5.2 and in
Fig. 5.10. The accuracy of the fully-coupled analysis is good for such com-
plex loadings. The uncoupled analysis is of course less accurate (but so much
cheaper!). It loses its feature of being conservative when the loadings become
non-proportional.

Table 5.1. Material parameters for a 2-1/4 CrMo in the range 20◦C–580◦C

Poisson’s ratio ν ν = const ν = 0.3

Young’s
modulus E

E(T ) = e1 [1 − exp(e2T )] + e3

e1 = 31800 MPa
e2 = 1.88 10−3 ◦C−1

e3 = 199800 MPa

Yield
stress σy

σy(T ) = k1 [1 − exp(k2T )] + k3

k1 = 70 MPa
k2 = 1.58 10−3 ◦C−1

k3 = 191.5 MPa

Thermal
expansion α

α(T ) = α1 + α2T
α1 = 1.1 10−5 ◦C−1

α2 = 3.66 10−9 ◦C−2

Isotropic
hardening R

R∞ = r1 [1 + exp(r2T )] + r3

r1 = 0.78 MPa
r2 = 610−3 ◦C−1

r3 = 4.5 MPa
b = 2

Kinematic
hardening X

γ(T ) = γ1 [1 + exp(γ2T )] + γ3

X∞(T ) = x1 − x2T

x1 = 150 MPa
x2 = 0.216 ◦C−1

γ1 = 0.392
γ2 = 9.69 10−3 ◦C−1

γ3 = 140.5

Viscosity
parameters

K(T ) = k1 + k2T + k3 exp
(

T−k4
k5

)
)

N(T ) = n1 exp [−(n2T )n3 ] + n4

k1 = 190
k2 = 0.25 ◦C−1

k3 = 2.7
k4 = 372.7
k5 = 35.32
n1 = 10.315

n2 = 0.022 ◦C−1

n3 = 4.89
n4 = 2.41

Damage
D

εpD(T ) = p1T + p2

S(T ) = s1 [1 − exp(s2T )] + s3

s = 2
Dc = 0.2

p1 = −0.000285
p2 = 0.2657
s1 = 0.108
s2 = 0.0052
s3 = 2.81
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To finish, note that the results are very sensitive to temperature. The
same computation with a slight difference in the applied temperature gives
a very different number of cycles to failure: for test 2, a temperature of 590◦C
instead of 580◦C leads to a number of cycles-to-crack-initiation of 300 instead
of 420.

Table 5.2. Calculated and experimental numbers of cycles at mesocrack initia-
tion NR

Comparisons

Test performed Experiments
Fully-coupled Uncoupled

analysis analysis

Test 2 & 3 Creep-fatigue
NR (580◦C) = 331 NR = 420 NR = 266
NR (620◦C) = 100 NR = 115

Test 4 Out of phase
non-proportional loading

NR = 2356 NR = 2135 NR = 1130

Test 5 Thermal fatigue NR = 56 NR = 48 NR = 27

Test 6 Sequential
non-proportional loading

NR = 196 NR = 230 NR = 273

Fig. 5.10. Comparison between predicted numbers of cycles to mesocrack initiation
and experimental results
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5.4.4 Dynamic Analysis of Crash Problems
(F. Lauro, B. Bennani, S. Tison, P. Croix 2003)

Crash problems or dynamic failures on metallic or polymer structures gen-
erally involve a large range of plastic strain rates whose effects have to be
taken into account through visco-plasticity and, furthermore, through visco-
plasticity coupled with damage.

As an example, consider a notch extruded tube of rectangular cross section
impacted in bending as represented in Fig. 5.11.

Fig. 5.11. Dimensions and finite element model of impacted tube (half by sym-
metry)

The constitutive equations are those of Table 1.3: elasto-(visco-)plasticity
coupled with damage but associated to the Hill criterion due to the plastic
anisotropy induced by the process of extrusion.

The material is an aluminum alloy 6014 T7 with the following values
of the material parameter identified from tension-compression experiments
described in Sects. 1.4.4 and 1.5.1:



268 5 Creep, Creep-Fatigue, and Dynamic Failures

• Elasticity: E = 70000 MPa, ν = 0.33
• Plasticity:

– Hill criterion f =
(

3
2

σ

1 − D
: h :

σ

1 − D

)1/2

= σv with h as the Hill

fourth order tensor (see Sect. 3.4.8) with 6 independent material pa-
rameters,

– In the longitudinal direction for ε̇ ≈ 10−3 s−1: yield stress σy = 240.6
MPa, ultimate stress σu = 275 MPa, rupture strain εR ≈ 0.5

– The effect of the strain rate is assumed saturated in this crash applica-
tion so that the viscous law is simply modelled by a σv(p) law entered
point by point in the FE input file:

σv (MPa) 240.6 264.5 273 278.8 340.3 410

p 0 0.034 0.05 0.065 0.5 1

• Damage: εpD = 0.05, s = 2, S = 1.22 MPa, Dc = 0.36

Fig. 5.12. Experimental and numerical simulation of the crack path

The calculation is performed with PAMCRASH 2000 code with 15614
shell elements and 7 integration points in the thickness. The propagation of
the crack is simulated by element removal when the damage D reaches Dc

at all its integration points. The full calculation up to rupture in 5 ms in the
experiment takes 22 hr on an HP workstation.

The corresponding experiment is performed with an impactor reaching
the tube at 3 m/s. The comparison between the numerical simulation and
the experiment is shown in Fig. 5.12 for the failure path and in Fig. 5.13
for the load displacement curve. The agreement is satisfactory for the path
and the maximum load. For the energy absorbed, the numerical simulation
results are ≈ 20 % lower than the experiment.
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Fig. 5.13. Load-displacement curve

5.4.5 Ballistic Impact and Penetration of Projectiles
(T. Børvik, O.S. Hopperstad, T. Berstad and M. Langseth 2001)

The penetration of projectiles at high speed is a difficult problem as it involves
adiabatic shear localization, thermal plastic instabilities, and high gradients
of stresses, as shown in Fig. 5.14.

Fig. 5.14. Description of the mechanism of penetration
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Nevertheless, it is possible to use elasto-visco-plasticity coupled with dam-
age constitutive equations described in Sect. 1.5 and a finite element numeri-
cal procedure as long as the effects of temperature are represented by proper
functions. For the latter one may use either the expression of the yield stress
function of the strain rate and the temperature derived in Sect. 5.3.1,

σy(ṗ, T ) ≈ σy(ε̇p0, T0)
(

ṗ

ε̇p0

)1/N

exp
{
−H

N

(
1
T0

− 1
T

)}
, (5.117)

or the Johnson–Cook model (1983) modified by M. Ortiz (1997),

σeq =
(
σy0 + KJC p1/MJC

)(
1 +

ṗ

ε̇p0

)CJC [
1 −
(

T − T0

Tm − T0

)mJC]
, (5.118)

where σy0, KJC, MJC, CJC, ε̇p0, and mJC are material parameters, T0 is the
room temperature, and Tm is the melting temperature of the material.

In fact, the Johnson–Cook model is a particular case of the general frame-
work of Sect. 1.5, where the yield function without kinematic hardening and
damage reads

σeq = σy + R + σv (5.119)

if the following functions for the yield stress σy, the isotropic hardening R,
and the viscous stress σv are adopted together with:

T � =
T − T0

Tm − T0
,

σy(T ) = σy0 (1 − T � mJC) ,

R(p, T ) = KJC p1/MJC (1 − T � mJC) ,

σv(ṗ, p, T ) =

[(
1 +

ṗ

ε̇p0

)CJC

− 1

](
σy0 + KJC p1/MJC

)
(1 − T � mJC) .

(5.120)

Introducing the isotropic damage variable D with ṙ = ṗ(1 − D),

σeq = (1 − D)
(
σy0 + KJC r1/MJC

)(
1 +

ṙ

ε̇p0

)CJC

(1 − T � mJC) , (5.121)

which is the constitutive relation used for numerical simulation in the fol-
lowing example, the damage evolution law derived from (3.15) and (3.16)
considering ductile damage and proportional loading,

Ḋ =
Dc

pR − εpD
ṗ if p > εpD , (5.122)

we can rewrite pR as a modified version of the Johnson–Cook model:
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pR = [a1 + a2 exp(a3TX)]
[
1 +

ṙ

ε̇p0

]a4

[1 + a5T
�] . (5.123)

They are implemented for large strains in LS-DYNA Finite Element using
a fully vectorized backward-Euler integration algorithm for 3D, shell, and
2D analysis. The crack growth is simulated by an element killing procedure
which removes the element when the damage reaches its critical value Dc.
This makes the result dependent on mesh size.

All the material parameters may be identified from tension tests at dif-
ferent temperatures following the procedure described in Sect. 2.4. Their val-
ues characterizing elasto-visco-plasticity and damage for Weldox 460E steel
are: E(T0) = 200000 MPa, ν = 0.33, σy0 = 490 MPa, KJC = 807 MPa,
MJC = 1.37, ε̇p0 = 5 · 10−4s−1, CJC = 0.0114, T0 = 293◦K, Tm = 1800◦K,
mJC = 4, εpD = 0, s = 1, and Dc = 0.3.

The case we are taking into consideration is a blunt nose projectile with
a diameter of 20mm, a length of 80mm and a mass of 0.197kg, launched
by a compressed gas gun, at velocities V just below and above the ballistic
limit of non-penetration, against circular targets of thickness 12mm, diameter
500mm, and clamped in a rigid frame. Initial velocities 150 < V < 400m/s
and residual velocities are measured and a digital high-speed camera is used
for visualization and measurement of the penetration process, as shown in
Fig. 5.15.

Fig. 5.15. Numerical and experimental kinetic perforation of a 12-mm thick Wel-
dox 460E steel plate at initial velocity of 303.5 m/s
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Numerical simulations are carried out to determine the ballistic limit
curves and are compared with the experiments. The computations use 10280
4-node axisymmetric elements with one integration point. The mesh size in
the impacted region giving the best result compared to experiments is 0.25×
0.2 mm2, giving 60 elements over the largest thickness of the plate. The
projectile is modelled as an elasto-plastic material. The contact between the
projectile and the target is made without friction by a penalty formulation.
For the example of Fig. 5.15 the initial velocity of the projectile is 303.5
m/s, the residual velocity after perforation is 193 m/s, compared to 200 m/s
measured in experiments.

A comparison between the numerical simulations and experiments is also
given in Fig. 5.16 for the ballistic limit curve where a limit of 193 m/s is found
against 185 m/s in experiments. Note that 220 m/s is found with a coarse
meshing of 30 elements in the thickness instead of 60 for the fine mesh.

Fig. 5.16. Ballistic limit curve for a 12-mm thick target of Weldox 460E steel

5.4.6 Predeformed and Predamaged Initial Conditions

After the forming processes, accidents, or over loadings, the internal variables
may have non-zero initial values for a following structure analysis: accumu-
lated plastic strain p0, corresponding values of strain hardening R0 and X0,
stored energy w0

s , damage D0, and internal residual stresses σ0. Introduced
as initial values in the structure calculation and in the damage analysis, they
modify the resulting time or number of cycles to mesocrack initiation.
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• In pure 3D creep the integration of the unified damage law of Sect. 5.2.2
is modified as follows:

Ḋ =

[
σ2

eqRν

2ES(1 − D)2

]s [
σeq

KN0(1 − D)

]N0

. (5.124)

If σeq = const, an initial working time t = 0 such as D0 = D(t = 0) makes
p0 = p(t = 0) larger than the damage threshold pD, yielding

∫ D

D0

(1 − D)2s+N0dD =
∫ t

0

[
σ2

eqRν

2ES

]s [
σeq

KN0

]N0

dt (5.125)

D = 1 −
[
(1 − D0)2s+N0+1 − (2s + N0 + 1)

σ2s+N0
eq Rs

ν

(2ES)s (K0
N)N0

t

] 1
2s+N0+1

.

(5.126)
The time-to-mesocrack-initiation t0RC is reached for D = Dc in

t0RC =
(1 − D0)2s+N0+1 − (1 − Dc)2s+N0+1

2s + N0 + 1
(2ES)s

(
K0

N

)N0

σ2s+N0
eq Rs

ν

, (5.127)

which makes a decrease in the time to rupture in comparison to the time
tRC of mesocrack initiation without any predamaged initial condition:

tRC = tDC +
1 − (1 − Dc)2s+N0+1

2s + N0 + 1
(2ES)s

(
K0

N

)N0

σ2s+N0
eq Rs

ν

(5.128)

as

t0RC

tRC
=
(

1 − tDC

tRC

)
(1 − D0)2s+N0+1 − (1 − Dc)2s+N0+1

1 − (1 − Dc)2s+N0+1
< 1 . (5.129)

• In 3D creep-fatigue, with the same assumptions and notations as in
Sect. 5.2.2, the difference is again in the time integration of the dam-
age from D0 to Dc,

N0
R =

(1 − D0)2s+N0+1 − (1 − Dc)2s+N0+1

(2s + N0 + 1)

[
2

2s + N0 + 1
σeq max

σ̇f
eq

+ ∆t

] (2ES)s
(
K0

N

)N0

σ2s+N0
eq Rs

ν

,

(5.130)
which gives, in the same manner as for creep, a reduced number of cycles
to rupture:

N0
R

NR
=
(

1 − ND

NR

)
(1 − D0)2s+N0+1 − (1 − Dc)2s+N0+1

1 − (1 − Dc)2s+N0+1
< 1 . (5.131)
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5.4.7 Hierarchic Approach up to Viscous Elastomers ,

The accuracy of a prediction of the evolution of any system decreases as
the number of causes increases! Then, predictions for creep, creep-fatigue, or
dynamic failures involving temperature and time dependencies do not expect
the same accuracy as for ductile or low cycle fatigue failures. The simplest
models are nevertheless relevant in the comparison of different solutions in
early design.

• The early Kachanov model may be used for uniaxial constant states
of stress in order to draw a net or to interpolate some experimental
isochronous curves,

Ḋ =
[

σ

AD(1 − D)

]rD

. (5.132)

• Likewise, the linear Taira rule of creep-fatigue interaction is quite easy to
use for uniaxial periodic loadings with hold time,

tR
tRC

+
NR

NRF
= 1 . (5.133)

• For more complicated loadings such as 3D, time-varying loadings and/or
temperature-varying loadings, we advise using a numerical integration of
the unified damage law,

Ḋ =
(

Y

S

)s
|ε̇p| if ws > wD (5.134)

with the material parameters eventually functions of the temperature.
• In the case of proportional loading, closed-form solutions may be obtained

and, if the state of stress is constant, simple relations relate the time or
the number of cycles to rupture in 3D and 1D, provided the equality in
stresses σ = σeq and the equality of the hold times ∆t for creep-fatigue
hold:

tRC(σij) − tDC(σij) = [tRC(σ) − tDC(σ)] R−s
ν

NR(σij) − ND(σij) = [NR(σ) − ND(σ)] R−s
ν .

(5.135)

• For small scale yielding visco-plasticity, the complex numerical analysis
may be avoided by applying the extended Neuber method using the Nor-
ton law. For large scale yielding, an approximate method which needs the
full computation may also be used, but on a RVE only (see Sect. 5.2.4).

• In dynamic problems, if only the yield stress, function of the strain rate,
and the temperature are needed, use:

σy(ṗ, T ) = σy(ε̇p0, T0)
(

ṗ

ε̇p0

)1/N0

exp
{
− H

N0

(
1
T0

− 1
T

)}
(5.136)

or the Johnson–Cook model.
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• For complex problems, there is no way to escape from a numerical analysis
but often the fully coupled analysis may be avoided by the post-processing
of an elasto-visco-plastic calculation performed with D = 0.

The previous hierarchic approach applies to metals or polymers which can be
modelled by classical elasto-visco-plasticity as long as no damage occurs. For
specific materials and loadings such as polymers loaded at high strain rates,
the hardening, the viscosity laws, or even the whole model can be different
from the laws described in this book. Most often, the models found in the
literature for specific material behaviors do not consider damage. Sometimes
they are built for low strain rates such as time-independent plasticity-like
models. Model updating consists then in extending these models either to
damage or to viscosity effects.

Recall that a simple way to make an existing model coupled with damage
consists of using the effective stress concept: replace, for instance, the stress
σ in the elasticity law and in the yield criterion of the undamaged material by
the effective stress σ̃ for the damaged material. Examples for the hardening
laws are given in Sects. 3.4.8 and 4.4.5.

For plasticity-like models with a yield criterion defined in the stress space
as f = 0, a simple way to introduce the viscosity is to replace the consistency
condition f = 0 and ḟ = 0 by a viscosity law σv = σv(ṗ) such as f =
σv. This is how elasto-visco-plasticity can be build from the elasto-plasticity
framework. As a last example, consider the model of hyperelasticity with
internal sliding for elastomers of Sect. 4.4.3. With the notations of Sect. 4.4.3,
the reversibility domain of undamaged elastomers is

f = ‖S̃π − X‖ − σs < 0 (5.137)

and the internal sliding is gained from the condition f = 0 and ḟ = 0.
A possible modelling for viscous elastomers submitted to creep or creep-
fatigue is to consider a viscosity law σv = σv(π̇) and to determine the internal
sliding multiplier from f = σv. For the Norton law this means

σv = KN π̇1/N −→ π̇ =

〈
‖S̃π − X‖ − σs

KN

〉N

. (5.138)

Except for the consistency condition replaced by eq. (5.138), the whole set
of constitutive equations remains unchanged, provided the stresses S and Sπ

are replaced by the effective stresses S̃ and S̃π . The constitutive equations
for quasi-incompressible materials are

S̃ =
S

1 − D
=

∂(w1 + w2)
∂E

,

S̃
π

=
Sπ

1 − D
=

∂w2

∂E
,
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Ė
π

= π̇
S̃

π − X

‖S̃π − X‖ ,

Ẋ =
[
CxĖ

π − γXπ̇
]
(1 − D) ,

Y = w1 + w2 ,

Ḋ =
(

Y

S

)s

π̇ if π > πD ,

(5.139)

with f < 0 −→ hyperelasticity, π =
∫ t

0

‖Ėπ‖dt as the cumulative measure

of the internal sliding, and D = Dc as the mesocrack initiation condition.
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High Cycle Fatigue

High cycle fatigue is probably the most difficult phenomenon to handle within
solid mechanics and is, by consequence, the main cause of failures of mechan-
ical components in service. The difficulty comes from the early stage of dam-
age which initiates defects at a very small micro- or nanoscale under cyclic
stresses below the engineering yield stress. Even during the evolution of
the damage, there is no easy precursor to detect the danger of a failure! The
purpose here is not to be pessimistic but to caution readers when dealing
with the design of a component which can be subjected to cyclic stresses
during 105, 106, 107 cycles or more. Nothing to see! But something to do!

From the physical point of view, the repeated variations of elastic stresses
in metals induce micro-internal stresses above the local yield stress, with
dissipation of energy via microplastic strains which arrest certain slips due
to the increase of dislocations nodes. There is formation of permanent micro
slip bands and decohesions, often at the surface of the material, to produce
the mechanism of intrusion-extrusion. After this first stage located inside
the grains, where the microcracks follow the planes of maximum shear stress,
there is a second stage in which the microcracks cross the crystal boundaries
to grow more or less perpendicular to the direction of the maximum principal
stress up to coalescence to produce a mesocrack. For polymers or concrete, the
physical mechanisms are different but are also characterized by debondings
and microdecohesions which induce the same effects on the mesoscale.

The phenomenon of fatigue was recognized around 1830 by M. Albert
in Germany about mine chains but it was A. Wöhler who really gave the
starting point on research on fatigue by its “Wöhler curve” (1860). These
researches were mainly stimulated at first by the safe design of bridges and
railways: Fairbarn (1864) in England, Bauschinger (1886) in Germany, and
Lechatelier (1909) in France until the first book on fatigue by Cough in 1926.
After that came the need of more research in the aeronautics industry, then
nuclear power plants and off shore structures, concrete structures, and then
the automobile industry.
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The specific items of this chapter are the fatigue limit criteria, the
use of the two-scale damage model and stochastic approaches either
for random loadings or for random distributions of initial microdefects
in order to improve the knowledge of the remaining life of structures in
service.

6.1 Engineering Considerations

High-cycle fatigue is considered when the cyclic loadings induce stresses close
to but below the engineering yield stress so that the number of cycles to
initiate a mesocrack is “high,” that is larger than 105. The plastic strain is
usually not measurable on a mesoscale but dissipation exists on a microscale
to induce the phenomenon of damage.

The main cause of high cycle fatigue is vibrations of large amplitude at
a zero mean stress or at small amplitude with a large mean stress. Then
a major way to avoid high cycle fatigue failures is to try to avoid vibrations
or at least to reduce their levels.

The second cause of high cycle fatigue is the stress concentrations.
As the “meso” behavior of the materials is elastic, there is no possibility
of plastic shakedown to reduce the stress level and the stress concentration
coefficient is the one calculated by an elastic analysis (KT = 3 for a hole in
a large plate). Then the risk of high cycle fatigue failures is often decreased by
a careful design of notches that is as smooth as possible and a careful machin-
ing that is as polished as possible to minimize roughness in the corresponding
zones.

The corrosion is an external factor which increases the rate of fatigue
damage by the phenomenon of passivation-depassivation at the tips of the
microcracks. More generally, be careful each time a component is subjected to
fatigue in an aggressive atmosphere; there is no suitable models to precisely
quantify its effect.

The fatigue limit, that is the stress below which no damage fatigue
occurs, is another snare because the “true” or asymptotic fatigue limit
(σ∞

f ) for a given material historically decreases as the possibility to increase
the number of cycles in experiments goes on: 108, 1010, 1012 cycles with
ultrasonic loadings! This is the reason to fix an engineering fatigue limit
(σf) corresponding to the stress which yields a number of cycles to rupture
of 106 or 107. Note that 107 cycles correspond to a test of almost 4 days at
30 Hertz. A minimum of 10 tests for a good mean value takes a month and
a half!

Last, but not the least, is the scatter which is always large in high cy-
cle fatigue. A factor of 10 on the number of cycles to rupture of “simi-
lar” tests is not abnormal! A probability analysis is advised each time it
is possible.
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6.2 Fast Calculation of Structural Failures

As the state of mesostrain is elastic, the calculation of the stress is easy in
most cases and sometimes it may be found in handbooks of stress concentra-
tion coefficients from a nominal stress simply calculated on the basis of load
equilibrium equations. Nevertheless, many specific effects of the phenomenon
of fatigue must be taken into account in the damage evaluation which often
needs to consider the effect of microdefects closure in compression.

6.2.1 Characteristic Effects in High-Cycle Fatigue

Stress intensity effects are quite complex because they include amplitude,
mean value, and history. The effect of the stress amplitude ∆σ is represented
by the Wöhler curve which gives, from experiments in tension-compression
(or other load mode) at constant amplitude, ∆σ or σmax as a function of the
number of cycles to rupture NR (Fig. 6.1).

Fig. 6.1. Fatigue curve of a XC 10 steel drawn from a very large number of tests
(Doc. CETIM 1992)

In the range of small stresses, the curve has a quasi-asymptotic shape
which means that a small variation of stress corresponds to a large variation
in the number of cycles to rupture and explains the large scatter.

In fact, this curve depends on the mean stress σ̄ = (σmax + σmin)/2. The
range of stress corresponding to a fixed value of the number of cycles to
rupture decreases as the mean stress increases. This effect is represented by
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the Goodman diagram shown in Fig. 6.2. This diagram also shows the
big difference of the fatigue strength of materials in tension and compression.
While important in tension-compression, such effect of mean stress practically
does not exist in torsion or shear.

Fig. 6.2. Goodman diagram of 35 NCD 16 steel for NR ≈ 106 cycles (Doc. CETIM
1992)

When the loading is not periodic, there is an effect of the load history.
The accumulation of damage due to different sequences of loading depends
on the order of appearance of the sequences, as shown in Fig. 6.3 for a two-
level loading: this is a sequence of n1 cycles of range ∆σ1 corresponding on
the Wöhler curve to a number of cycles to rupture NR1 and a sequence of n2

cycles of range ∆σ2 corresponding to NR2 in such a way that n1 + n2 = NR

is the number of cycles to rupture of the two-level test.
This dependence of the order of the stress amplitudes applied is called

the nonlinear accumulation of fatigue damages. Nevertheless for many
sequences of different amplitudes or for random loading, this effect is much
less pronounced and the linear Palmgreen–Miner rule may apply at least
as a rough approximation so that

∑ ni

NRi
= 1 . (6.1)

This is the straight line [(1, 0), (0, 1)] in Fig. 6.3.
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Fig. 6.3. Accumulation diagram of Maraging steel for two levels of stress range
∆σ = 1655 MPa and 965 MPa (J.L. Chaboche 1985)

The fatigue behavior under multiaxial states of stress is even more compli-
cated. Unfortunately not many experimental results exist. Non-proportion-
al loadings seem to increase the fatigue strength in a way that is somewhat
similar to cross hardening in plasticity. The temperature also plays a role
but its softening effect is easier to model.

The state of the material itself also has an effect on the fatigue. The
defects are sources of microcrack initiations and the surfaces are usually
weaker than the plain material: within a uniform state of stress the first
fatigue crack always initiates on the surface. This is due to easy plastic slips
that glide close to the surface in the process of intrusion-extrusion. Initial
conditions such as a pre-hardening or a pre-damage, due to metal forming
for example, usually modify the fatigue life (see Sect. 6.4.5).

A scale effect is generally observed in such a way that the number of
cycles to rupture of a thin specimen is higher than for a thicker specimen
loaded by the same stress. This is due to the lower probability of having
a large defect in the thin specimen than in the thicker one.

It seems also that the gradient of the stresses plays a role. For example,
the number of cycles needed to initiate a mesocrack in pure bending is higher
than in pure tension for the same level of maximum stress (see Sect. 6.4.6).

6.2.2 Fatigue Limit Criteria

In quick design, a safe criterion is to manage to have a state of stress below
the fatigue limit where no damage may occur. This is easy to say! But it is
not so easy to practice for at least two reasons.
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The notion of fatigue limit is not rigorous as nobody has waited an infinite
number of cycles! As already mentioned earlier, only a conventional fatigue
limit in tension (σf) can be defined objectively, at least from a statistics point
of view, as the maximum stress which corresponds to 106 or 107 cycles. But
experiments on metals show that a rupture may occur for number of cycles
as high than 1010 or 1012 cycles (C. Bathias 2000). Then, another limit is
defined as the asymptotic fatigue limit σ∞

f corresponding to an “estimated”
asymptote of the Wöhler curve.

For multiaxial states of stress there is no definitively admitted scalar
function of the stress components, a fatigue norm, to compare with the fatigue
limit in tension. There is nothing like the von-Mises criterion in plasticity.
An equivalent would be the damage equivalent stress σ�

eq based on the total
elastic energy density (see Sects. 1.2.2 and 7.2.1) but it does not take into
account the effect of mean stress. Nevertheless, a fast estimation of fatigue
safety is

σ�
max < σf , (6.2)

with

σ� = σeqR
1/2
ν ,

σeq =

√
3
2
σD

ijσ
D
ij , σH =

1
3
σkk ,

Rν =
2
3
(1 + ν) + 3(1 − 2ν)

(
σH

σeq

)2

.

(6.3)

6.2.2.1 Sines Criterion

Based on phenomenological considerations, it is a function of the range
of octahedral shear AII defined in proportional loading (σ = σΣ Σ with
Σeq = 1) by

AII =
1
2

√
3
2
(σD

ij max − σD
ij min)(σD

ij max − σD
ij min) =

∆σΣ

2
(6.4)

and of the mean value of the hydrostatic stress σ̄H = 1
2 (σH max + σH min)

(Crossland criterion uses the maximum value σH max of σH). Then the safety
criterion is written as

AII

1 − 3bSσ̄H
< σf , (6.5)

where bS is a material-dependent parameter on the order of 10−3 to 10−2.

6.2.2.2 Dang Van Criterion

Based on micromechanics, it is related in metals to the first plastic slip band
which initiates in the weakest oriented crystal on which the elastic shakedown
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is assumed to happen. If σf is the fatigue limit in tension-compression and τf

the fatigue limit in shear or torsion, the criterion is written as a function of
the maximum value of the shear stress over a cycle in time and in direction
and of the hydrostatic stress σH. Using σI as the principal stresses, we have

max

∣∣∣∣∣∣∣∣∣∣∣∣∣
maxI,J (σI(t) − σJ (t))

2

⎡
⎣τf −

τf − σf

2
σf

3

σH(t)

⎤
⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣
< 1 . (6.6)

It is represented in the graph of shear τ and hydrostatic stresses σH by the
inner domain limited by two straight lines (Fig. 6.4).

Fig. 6.4. Dang Van diagram criterion

In order to check if a loading, proportional or not, is below the conven-
tional fatigue limit, verify that its path is fully in the inner domain.

6.2.3 Two-Scale Damage Model in Proportional Loading

For some precise but still quick evaluation of the safety for proportional and
periodic loadings, it is possible to check by the two-scale damage model of
Sect. 1.5.5 (see also Sect. 2.3) if the number of cycles to rupture will or will
not reach a given limit of 105, 106, 107 or more. Recall that this model has
the advantage to take into account the real history of the loading and can be
used for multilevel fatigue loading as in Sects. 4.2.1 and 4.4.2 for low cycle
fatigue or random fatigue.
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On the mesoscopic scale, a high cycle fatigue proportional loading is char-
acterised by

σ = σΣ(t) Σ , εp = 0 , and σΣ(t) between σmin and σmax , (6.7)

with the normalization Σeq =
√

3
2ΣD

ijΣ
D
ij = 1 (σΣ is the signed von Mises

stress). For the model, high cycle fatigue corresponds to a stress range lower
than twice the yield stress (∆σ = σmax − σmin < 2σy) but, due to kinematic
hardening, to a stress range larger than twice the asymptotic fatigue limit
(∆σ > 2σ∞

f ).
On the microscopic scale, considering the two-scale damage model leads

to a proportional loading only in terms of (micro) deviatoric stresses and
strains with then:

σµD = σµ
Σ(t)ΣD , εµp =

3
2
εµ
pΣ(t) ΣD , and Xµ = Xµ

Σ(t) ΣD . (6.8)

Due to the Eshelby–Kröner localization law

σ̃µ =
σµ

1 − D
= σ − 2G(1 − β)εµp , (6.9)

the hydrostatic stress at microscale becomes

σµ
H = (1 − D)σ̃µ

H = (1 − D)σH (6.10)

and is a function of the hydrostatic stress on the mesoscale (σH = σkk/3 =
σΣΣkk/3) and the microdamage (Dµ = D). The stress triaxiality at mi-
croscale is then

T µ
X =

σµ
H

σµ
eq

=
(1 − D)σH

σµ
eq

=
σH

σ̃µ
eq

. (6.11)

It is a function of the von Mises stress on the microscale. Then, in order to
perform the time integration of the unified damage law at microscale,

Ḋ =
(

Y µ

S

)s
ṗµ , (6.12)

with Y µ as the strain energy release rate (here without the microdefects
closure effect) such that

Y µ =
σµ2

eq Rµ
ν

2E(1 − D)2
and Rµ

ν =
2
3
(1 + ν) + 3(1 − 2ν)T µ

X
2
, (6.13)

one needs to determine the effective stress σ̃µ
Σ(t) and the plastic strain εpΣ(t)

on the microscale (see Fig. 6.5).
First, the localization law (6.9) considered within the yield criterion fµ =

(σ̃µ − Xµ)eq − σ∞
f = |σΣ − Xµ

Σ| − σ∞
f with linear kinematic hardening
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Fig. 6.5. Stress-strain cycles at mesoscale and at microscale

ẊΣ = Cy(1−D)ε̇pΣ leads to ˙̃σµ
Σ = Cy(1−D)ε̇pΣ and a plastic strain rate ε̇µ

pΣ

that is linearly dependent on the meso stress rate (with generally Cy � G):

ε̇µ
pΣ =

σ̇Σ

G and G = 3G(1 − β) + Cy(1 − D) ≈ 3G(1 − β) . (6.14)

The plastic strain increment over one cycle is then:⎧⎪⎨
⎪⎩

δpµ

δN
=

2(∆σ − 2σ∞
f )

G if ∆σ > 2σ∞
f ,

δpµ

δN
= 0 if ∆σ < 2σ∞

f ,
(6.15)

and vanishes (as already mentioned) for any stress range smaller than 2σ∞
f .

In that case the model predicts no failure, this is the endurance domain.
Second, the maximum and minimum signed von Mises stresses do not

vary much as⎧⎪⎨
⎪⎩

σ̃µ
Σ max ≈ σ∞

f +
Cy(1 − D)

G (σmax − σ∞
f ) ≈ σ∞

f

σ̃µ
Σ min ≈ −σ∞

f +
Cy(1 − D)

G (σmin + σ∞
f ) ≈ −σ∞

f .
(6.16)

Considering then σ̃µ
eq ≈ σ∞

f , the damage increment over one cycle is

δD

δN
= ∆D+ + ∆D− , (6.17)
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with

∆D+ =
∫ tb(σµ

b )

te(σ
µ
e )

Ḋdt ≈ σ∞ 2s
f

(2ES)sG
∫ σΣ(tb)

σΣ(te)

[
Rν�

(
ξ = Σkk

σ

σ∞
f

)]s
dσ ,

∆D− =
∫ tc(σ

µ
c )

td(σµ
d )

Ḋdt ≈ σ∞ 2s
f

(2ES)sG
∫ σΣ(tc)

σΣ(td)

[
Rν�

(
ξ = Σkk

σ

σ∞
f

)]s
dσ ,

(6.18)

and
Rν�(ξ) =

2
3
(1 + ν) +

1
3
(1 − 2ν)ξ2 . (6.19)

Define next the minimum and maximum normalized stresses as

ξmin = Σkk
σmin

σ∞
f

and ξmax = Σkk
σmax

σ∞
f

(6.20)

and introduce the dimensionless function ϕ�,

ϕ�(ξmin, ξmax) =
∫ ξmax

ξmin+2

Rs
ν�(ξ)dξ +

∫ ξmax−2

ξmin

Rs
ν�(ξ)dξ , (6.21)

which can be approximated by the following form that is conservative for the
number of cycles to rupture, better for small s,

ϕ�(ξmin, ξmax) ≈ 〈ξmax − ξmin − 2〉 [Rs
ν�(ξmin) + Rs

ν�(ξmax)] . (6.22)

This allows us to write the damage increment per cycle as

δD

δN
=
[
σ∞ 2

f (1 + ν)
3ES

]s 2(∆σ − 2σ∞
f )

G if Σkk = 0 (e.g. shear)

δD

δN
=

σ∞ 2s+1
f ϕ� (ξmin, ξmax)

Σkk(2ES)sG if Σkk �= 0 .

(6.23)

Damage will initiate after a number of cycles ND when the damage thresh-
old pD is reached on the microscale. According to (6.14), the plastic strain
increment for half a cycle is (for linear kinematic hardening and assuming
D = const over a cycle),

∆εµ
pΣ =

1
2

δpµ

δN
=

∆σ − 2σ∞
f

G =
∆σµ

Σ − 2σ∞
f

Cy(1 − D)
, (6.24)

with D = 0 as long as:

pµ ≤ pD = εpD

⎛
⎜⎝ σu − σ∞

f

∆σµ
Σ

2
− σ∞

f

⎞
⎟⎠

m

. (6.25)



6.2 Fast Calculation of Structural Failures 287

See Sect. 1.4.1 for the expression of the damage threshold in fatigue.
There is then no microdamage as long as N < ND. Considering a periodic

loading, we have

ND =
pD

2|∆εµ
pΣ|

and pD = εpD

( G
Cy

)m ⎡⎢⎣ σu − σ∞
f

∆σ

2
− σ∞

f

⎤
⎥⎦

m

(6.26)

or

ND =
1
4
εpD

Gm+1

Cm
y

(σu − σ∞
f )m(

∆σ

2
− σ∞

f

)m+1 . (6.27)

The formulae for the number of cycles at crack initiation are finally (often
with G ≈ 3G(1 − β)):

NR = ND +
[

3ES

σ∞ 2
f (1 + ν)

]s GDc

2(∆σ − 2σ∞
f )

if Σkk = 0

NR = ND +
Σkk(2ES)sGDc

σ∞ 2s+1
f ϕ�

(
σmin
σ∞
f

Σkk, σmax
σ∞
f

Σkk

) if Σkk �= 0 .

(6.28)

They show that there is a mean stress effect in tension-compression (of
course better described if the microdefects closure parameter h is intro-
duced, see next part), no mean stress effect in shear as experimentally ob-
served as for Σkk = 0, and the number of cycles to rupture depends only
on the stress range. The formulae for the approximation (6.22) are detailed
in Sects. 6.2.4 and 6.3.1. They show more explicitly that an increase of the
stress triaxiality lowers the fatigue asymptote and reduces then (compared
to tension-compression) the conventional fatigue limit of multiaxial loadings
with Σkk > 1.

The accumulation of damages due to two successive loadings with different
stress ranges ∆σ1 and ∆σ2 is obtained, as in Sect. 4.2.1. A bilinear damage
accumulation is obtained for a non-zero damage threshold and the Miner rule
is recovered if εpD = 0: if ni is the number of cycles spent at the stress range
∆σi, NR = n1 + n2 the total number of cycles to rupture corresponding to
a two-level fatigue case, then

n1

NR1
+

n2

NR2

1 − ND1

NR1

1 − ND2

NR2

= 1 if n1 ≤ ND1

n1

NR1

ND2

ND1

NR1

NR2
+

n2

NR2
= 1 if n1 > ND1 .

(6.29)
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Finally, for a symmetric fatigue loading with zero mean stress, i.e., with
σeq min = σeq max = σmax, one can compare the number of cycles to rupture
in 3D to the number of cycles in tension-compression (case Σkk �= 0),

NR(σij) − ND(σij)
NR(σmax) − ND(σmax)

= Σkk

ϕ�

(
−σmax

σ∞
f

,
σmax

σ∞
f

)

ϕ�

(
−Σkk

σmax

σ∞
f

, Σkk
σmax

σ∞
f

) . (6.30)

For 3D deviatoric states of stress, use the fatigue reference in shear with
σeq min = σeq max =

√
3τmax (case Σkk = 0) to obtain

NR(σD
ij) − ND(σD

ij)

NR(
√

3τmax) − ND(
√

3τmax)
= 1 . (6.31)

6.2.3.1 Case with Microdefects Closure Effect

If the mean stress effect is of first importance, it is of course better to use the
two-scale damage model with microcracks closure effect: introducing the pa-
rameter h < 1 leads to a damage growth larger in tension than in compression
as

Y µ =
1 + ν

2E

[
〈σµ

ij〉+〈σµ
ij〉+

(1 − D)2
+ h

〈σµ
ij〉−〈σµ

ij〉−
(1 − hD)2

]
− ν

2E

[ 〈σµ
kk〉2

(1 − D)2
+ h

〈−σµ
kk〉2

(1 − hD)2

]
.

(6.32)
For simplicity, consider here the case of a tension-compression loading

on a mesoscale ((6.8) with σΣ(t) = σ(t) and Σ = diag [1, 0, 0]) with σ̃µ
eq ≈ σ∞

f

and σ̃µ
H = σH = σ. Neglecting the damage within the expression for the strain

energy release rate gives

Y µ ≈ σ∞ 2
f

2E
Rνh� , (6.33)

with ((2.35)–(2.37) of Sect. 2.1.2)

Rνh� =
1 + ν

9

×
[〈

2 +
σ

σ∞
f

〉2
+ 2
〈
−1 +

σ

σ∞
f

〉2
+ h

〈
−2 − σ

σ∞
f

〉2
+ 2h

〈
1 − σ

σ∞
f

〉2]

− ν

〈
σ

σ∞
f

〉2
− νh

〈
− σ

σ∞
f

〉2
.

(6.34)

It also leads to the same expression as for the damage increment and the
number of cycles to rupture as previously but with Rν� replaced by Rνh�,
i.e., with ϕ� replaced by
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ϕh�(ξmin, ξmax) =
∫ ξmax

ξmin+2

Rs
νh�(ξ)dξ +

∫ ξmax−2

ξmin

Rs
νh�(ξ)dξ , (6.35)

where Rs
νh�(ξ) = Rs

νh�

(
σ

σ∞
f

= ξ

)
or

ϕh�(ξmin, ξmax) ≈ 〈ξmax − ξmin − 2〉 [Rs
νh�(ξmin) + Rs

νh�(ξmax)] . (6.36)

For tension compression (Σkk = 1, ND unchanged),

NR = ND +
(2ES)sGDc

σ∞ 2s+1
f ϕh�

(
σmin
σ∞
f

, σmax
σ∞
f

) . (6.37)

6.2.4 Sensitivity Analysis

For ductile damage, low cycle fatigue, and creep failures (see Sects. 3.2.3,
4.2.3, and 5.2.3) the relative influence of the loading and the material pa-
rameters is calculated as an application of the general method of Sect. 2.4.6.
Here this is the influence on the number of cycles to rupture in periodic
proportional loading obtained in Sect. 6.2.3: Eq. (6.28) with the approximate
formula (6.22) for ϕ�(ξmin, ξmax) gives

ND =
1
4

εpD

Cm
y

(
3E(1 − β)
2(1 + ν)

)m+1 (σu − σ∞
f )m(

∆σ

2
− σ∞

f

)m+1

NR = ND +
(2ES)s3E(1 − β)Dc

2(1 + ν)σ∞ 2s
f

[
σmax − σmin − 2σ∞

f
Σkk

]
[Rs

ν min + Rs
ν max]

,

(6.38)

where the proportional loading is written as

σ = σ Σ with Σeq = 1 and TX =
1
3
Σkk (6.39)

and where

∆σ = σmax − σmin ,

G ≈ 3G(1 − β) ,

Rν min = Rν�(ξmin) ,

Rν max = Rν�(ξmax) ,

(6.40)

with ξmin = Σkk
σmin
σ∞
f

, ξmax = Σkk
σmax
σ∞
f

.

Taking the logarithmic derivative gives
dND

ND
and

d(NR − ND)
NR − ND

.
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Taking δAk = |dAk| for each material parameter Ak, the sensitivity on

the number of cycles to rupture is
δNR

NR
=
∑

k

SNR
Ak

δAk

Ak
, where the coefficients

SNR
Ak are the sensitivity coefficients of the parameters Ak on the number of

cycles to rupture NR:

SNR
TX

= SNR
Σkk

=
NR − ND

NR

⎡
⎢⎢⎣

2σ∞
f

Σkk

∆σ − 2σ∞
f

Σkk

+
2s

3
(1 − 2ν)

ξ2
minRs−1

ν min + ξ2
maxRs−1

ν max

Rs
ν min + Rs

ν max

⎤
⎥⎥⎦ ,

SNR
σmin =

∣∣∣∣∣∣∣∣
−ND

NR

(m + 1)σmin

∆σ − 2σ∞
f

+
NR − ND

NR

⎡
⎢⎢⎣ −σmin

∆σ − 2σ∞
f

Σkk

+
2s

3

(1 − 2ν)ξ2
minRs−1

ν min

Rs
ν min + Rs

ν max

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
,

SNR
σmax =

∣∣∣∣∣∣∣∣
ND

NR

(m + 1)σmax

∆σ − 2σ∞
f

+
NR − ND

NR

⎡
⎢⎢⎣ σmax

∆σ − 2σ∞
f

Σkk

+
2s

3

(1 − 2ν)ξ2
maxRs−1

ν max

Rs
ν min + Rs

ν max

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
,

SNR
E =

ND

NR
(m + 1) +

NR − ND

NR
(s + 1) ,

SNR
ν =

∣∣∣∣∣
(
1 +

ND

NR
m

)
ν

1 + ν
+

NR − ND

NR

2sν

3

(1 − ξ2
min)Rs−1

ν min + (1 − ξ2
max)Rs−1

ν max

Rs
ν min + Rs

ν max

∣∣∣∣∣ ,
SNR

β =

(
1 +

ND

NR
m

)
β

1 − β
,

SNR
Cy

=
ND

NR
m ,

StR
εpD =

ND

NR
,

SNR
σ∞
f

=
ND

NR

⎡
⎢⎣ (m + 1)σ∞

f

∆σ

2
− σ∞

f

− mσ∞
f

σu − σ∞
f

⎤
⎥⎦ + 2

NR − ND

NR

×
[

(1 − 2ν)s

3

ξ2
minRs−1

ν min + ξ2
maxRs−1

ν max

Rs
ν min + Rs

ν max
− s +

σ∞
f

Σkk∆σ − 2σ∞
f

]
,

SNR
σu =

ND

NR

mσu

σu − σ∞
f

,

SNR
m =

ND

NR
m ln

⎛
⎜⎝ G

Cy

σu − σ∞
f

∆σ

2
− σ∞

f

⎞
⎟⎠ ,

SNR
S =

NR − ND

NR
s ,
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SNR
s =

NR − ND

NR
s

∣∣∣∣∣ln σ∞ 2
f

2ES
+

Rs
ν min ln Rν min + Rs

ν max ln Rν max

Rs
ν min + Rs

ν max

∣∣∣∣∣ ,

SNR
Dc

=
NR − ND

NR
.

As in the other chapters, the values of those coefficients are represented by
the height of the boxes in Fig. 6.6 for the following set of parameters chosen
as an average of many materials and identical for the mesoscopic param-
eters to those used for ductile and low cycle fatigue failures: σmax = 250
MPa, σmin = −250 MPa, TX = 3Σkk = 1, Rν max = Rν min = 2.75,
E = 200000 MPa, ν = 0.3, σ∞

f = 200 MPa, σu/σ∞
f = 2, Cy = E/100,

β = 2
15 (4 − 5ν)/(1 − ν), G ≈ 3G(1 − β) = 121000 MPa, ND/NR = 1/2,

m = 2, S = 2 MPa, and s = 5.
For ductile, low cycle fatigue, and creep failures, the quality of the result,

i.e., the number of cycles to rupture in this case, is mainly influenced by the
accuracy of the stress, here twice 5.8 mitliplied by its relative error. Using
the two-scale damage model gives more emphasis to the exponents m and s
and increases the uncertainties by a larger number of parameters involved.
Only εpD and Dc are of less importance as in the previous chapters.

Fig. 6.6. Relative importance of each parameter in high cycle fatigue

If the sensitivity in terms of stress range ∆σ = σmax − σmin and mean
stress σ = (σmax + σmin)/2 are preferred to the sensitivity in terms of σmin

and σmax, calculate, then

SNR
σ =

∣∣∣∣ σ

σmin
SNR

σmin
+

σ

σmax
SNR

σmax

∣∣∣∣
SNR

∆σ =
1
2

∣∣∣∣ ∆σ

σmax
SNR

σmax
− ∆σ

σmin
SNR

σmin

∣∣∣∣ .
(6.41)
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For the previous set of material parameters, SNR
σ = 0 as σ = 0 and SNR

∆σ =
11.6 here.

6.2.5 Safety Margin and Crack Growth

The proper parameter for the evaluation of the risk of fatigue failure is the
number of cycles, as already mentioned in Sect. 4.2.5 for low cycle fatigue.

• If the number of cycles of loading service Nservice is known, a safe design
is defined from the calculated number of cycles to rupture NR for the in
service history of loading, and a safety factor Saf given by rules or by the
state of the art of the domain of application Saf = 100, 10, 5, . . . :

Nservice <
NR

Saf
. (6.42)

• Due to a large scatter in high cycle fatigue, a better definition of the safety
margin uses the probability concept. It may include the uncertainties of
the loading and the material properties but it needs information on their
stochastic character. Instead of the previous equation, consider as safety
design criterion:

Prob (NR > Nservice) <
1

SafPr
, (6.43)

where 1
SafPr

must be very small (SafPr = 102, 103, . . . 105 or more). This
means a stochastic analysis is difficult to perform as the accuracy is al-
ways poor for the low values of the probability density (nevertheless see
Sect. 6.4.4).

Finally, if a mesocrack initiates, it is important to check if it is dangerous
regarding a possible fast propagation by instability or fatigue growth.

• The criterion for a fracture by instability is when the structure strain
energy release rate G reaches the toughness of the material Gc. G is
calculated from the fracture mechanics concepts as a function of the far
field loading σ∞ > 0 and the length of the mesocrack initiated δ0 stated
in Sect. 1.6.3.

δ0 =
Gc

σ2
u

2E
Dc + σuεpR

. (6.44)

Classically, G ≈ κ
σ2
∞πδ0

E
where κ is a shape factor, so one has to check

G < Gc or

κ
σ2
∞π

E

Gc

σ2
u

2E
Dc + σuεpR

< Gc . (6.45)



6.2 Fast Calculation of Structural Failures 293

The toughness Gc disappears and

σ∞ < σu

√
1

πκ

(
Dc

2
+

EεpR

σu

)
. (6.46)

Due to the numerical value of the material parameters, this criterion is
satisfied most of the time, at least for metals.

• But the crack may continue to grow under the same fatigue loading. The
simplest model to evaluate the fatigue crack growth rate is the general-
ized Paris law written for a crack of area A in a 3D medium:

δA

δN
=

G
ηP/2
max − G

ηP/2
min

C
ηP/2
P

, (6.47)

where Gmax ≈ κσ2∞max

πA1/2

E
, Gmin ≈ κσ2

∞min

πA1/2

E
, and where ηP and

CP are material-dependent parameters determined by experiments and
are different from the parameters of the Paris law written for the crack
length in 2D problems.
If the loading is periodic, σmax = const, σmin = const, and in order to
obtain the evolution of the crack surface A as a function of the number
of cycles N one has to solve (ηP �= 4)

δA

δN
= κηP/2 σηP∞max − σηP

∞min

C
ηP/2
P

( π

E

)ηP/2

AηP/4 , (6.48)

with the initial condition N = 0 → A = A0 ≈ δ2
0 ,∫ A

A0

A− ηP
4 δA = κηP/2 σηP∞max − σηP

∞min

C
ηP/2
P

( π

E

)ηP/2

N , (6.49)

A =

[
δ

4−ηP
2

0 +
(

4 − ηP

4

)
κηP/2 σηP∞max − σηP

∞min

C
ηP/2
P

( π

E

)ηP/2

N

] 4
4−ηP

.

(6.50)
One may also calculate the number of cycles N� to reach the complete
failure by instability:

Gmax = Gc or κ
σ2
∞maxπA� 1/2

E
= Gc . (6.51)

That is
A� =

(
EGc

κπσ2∞max

)2

, (6.52)

N� =
(

EGc

κπσ2∞max

)4−ηP
2 1

δ
4−ηP

2
0 +

(
4 − ηP

4

)
κηP/2

σηP∞max − σηP
∞min

C
ηP/2
P

( π

E

)ηP/2
.

(6.53)



294 6 High Cycle Fatigue

6.3 Basic Engineering Examples

High-cycle fatigue occurs for mesostresses below or close to the yield stress
so that they can be calculated in elasticity. At least something simple! For
many simple geometries, the stress concentration coefficient at the critical
points KT may be found in handbooks (see bibliography). In the following,
KT is supposed to be known.

6.3.1 Plates or Members with Holes or Notches

The weakness comes from a sharp variation of the geometry where the maxi-
mum stress is at the surface border, uniaxial, and related to the normal stress
σn by

σ = KTσn (6.54)

or for cyclic loading
∆σ = KT∆σn . (6.55)

• For periodic loading at zero mean stress, one may use the solution given
by the two-scale damage model in proportional loading with Σkk = 1
(eq. (6.28) with the approximate formula (6.22)),

NR = ND +
(2ES)sGDc

2σ∞ 2s
f (KT∆σ − 2σ∞

f )Rs
ν max

ND =
1
4
εpD

Gm+1

Cm
y

(σu − σ∞
f )m(

KT
∆σ

2
− σ∞

f

)m+1 ,
(6.56)

where G ≈ 3G(1 − β) and

Rν max = Rν�(ξmax) =
2
3
(1 + ν) +

1
3
(1 − 2ν)

[
KTσmax

σ∞
f

]2
. (6.57)

This is nothing more than directly using the experimental Wöhler curve
at zero mean stress for the stress range KT∆σ.

• But if the mean stress σ is not zero it helps to derive the number of cycles
to rupture NR(σ) from the Wöhler curve known at σ = 0:

NR(∆σ, σ) = ND(∆σ) +
(2ES)sGDc

σ∞ 2s
f (KT∆σ − 2σ∞

f ) (Rs
ν min + Rs

ν max)
,

(6.58)

with
(2ES)sGDc

σ∞ 2s
f (KT∆σ − 2σ∞

f )
= 2 [NR(∆σ, σ = 0) − ND(∆σ)] Rs

ν max.
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Note that the number of cycles to damage initiation ND does not depend
on the mean stress. Then,

NR(∆σ, σ) − ND(∆σ)
NR(∆σ, σ = 0) − ND(∆σ)

=
2Rs

ν max

Rs
ν min + Rs

ν max

. (6.59)

The ratio of the triaxiality functions represents the effect of mean stress
already described by the Goodman diagram. For a better description of
the mean stress effect, replace Rν� by Rν�h. Figure 6.7 gives Rν� and
Rν�h versus KTσ/σ∞

f (recall that Eq. (6.34) and therefore the curve for
Rν�h apply only to the tension-compression case). To help a bit more,
take ND = NR/2 as a rough approximation.

• If the cyclic loading is piecewise periodic with a number of cycles
ni(∆σi, σi) for the i-th sequence of loading of stress range ∆σi and
of mean stress σi,

∑
ni = NR, use a cumulation equation similar to

eq. (6.29).

Fig. 6.7. Effect of mean stress through the triaxiality function Rν� or Rν�h for
ν = 0.3 and h = 0.2

6.3.2 Pressurized Shallow Cylinders

This is the same problem as in Sect. 4.3.2, and Fig. 4.7, except the damage
equation (here damage acts on a microscale). The state of stress, function
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of the radius of the cylinder Rcyl, its thickness tcyl, and the internal relative
pressure P (t) varying between Pmin and Pmax is

σ =

⎡
⎢⎢⎢⎢⎣

0 0 0

0
PRcyl

tcyl
0

0 0
PRcyl

2tcyl

⎤
⎥⎥⎥⎥⎦ (6.60)

or σ =
√

3
2

PRcyl

tcyl
Σ with Σ =

⎡
⎣0 0 0

0 2√
3

0
0 0 1√

3

⎤
⎦ in order to have Σeq = 1.

Then Σkk = 3√
3

=
√

3.

Now it is the same problem as in the previous section (Sect. 6.3.1) as

well. For periodic loading, σmin =
√

3
2 Pmin

Rcyl

tcyl
, σmax =

√
3

2 Pmax
Rcyl

tcyl
, ∆σ =

√
3

2 (Pmax − Pmin)
Rcyl

tcyl
,

NR = ND +
(2ES)sGDc

σ∞ 2s
f

(
∆σ − 2σ∞

f

Σkk

)[
Rs

ν�

(
Σkk

σmin

σ∞
f

)
+ Rs

ν�

(
Σkk

σmax

σ∞
f

)] ,

ND =
1
4
εpD

Gm+1

Cm
y

(σu − σ∞
f )m(

∆σ

2
− σ∞

f

)m+1 .

(6.61)

The rupture condition can also be expressed as a function of the number
of cycles to rupture read on the Wöhler curve at zero mean stress using
Fig. 6.7:

NR(∆σ, σ) − ND(∆σ)
NR(∆σ, σ = 0) − ND(∆σ)

=

2Rs
ν�

(√
3∆σ

2σ∞
f

)

Rs
ν�

(√
3
σmin

σ∞
f

)
+ Rs

ν�

(√
3
σmax

σ∞
f

) . (6.62)

For two-level fatigue loading, apply eq. (6.29). For cyclic loading, stepwise
periodic, perform as in Sect. 4.4.2. If damage initiates during the first level,
then

D = (n1 −ND)
δD

δN

(1)

+n2
δD

δN

(2)

+ . . .+nk
δD

δN

(k)

= Dc → NR =
k∑

i=1

ni ,

(6.63)
with the damage increment per cycle on a microscale given by (6.23).
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6.3.3 Bending of Beams

This is the same problem as in Sect. 4.3.3 (Fig. 4.9) except that the beam
remains elastic, within domain of application of the two-scale damage model.

The simple Bernoulli hypothesis applied to pure circular bending of a part
of beam of height h, of inertia moment I gives the maximum elastic stress as
a function of the momentum applied M (I = bh3/12 for a rectangular cross
section of width b),

σmax =
Mmaxh

I
. (6.64)

Then for a periodic movement of the beam described by M = Mmax sin ωt,
the problem of fatigue reduces to a simple tension compression case between
σmax and σmin = −σmax at the two surfaces of the beam where the stress is
maximum. Equations (6.56) directly apply with KT = 1.

For a two-level piece wise periodic movement, the equations in (6.29) also
apply. For multilevel high cycle fatigue loading, use eq. (6.63).

6.3.4 Random Loadings

Sometimes the problem to solve is of a random nature known only by stochas-
tic properties. This is the case of the wheel suspensions of a car driven on
a rough road. This is the case of planes flying in turbulent clouds. This is
also the case of any mechanical component for which the in service loading
is not precisely known.

The only way to find statistics on the number of cycles to rupture by
the two-scale damage model in which the loading is a random variable is
to use the numerical method of Monte Carlo, as explained in Sect. 6.4.4.
Nevertheless some indications may be obtained in a closed-form if a very
simple damage model is used.

Consider here the very crude model restricted to loadings at zero mean
value,

δD

δN
=
〈

σ�
M − σ∞

f

σu − σ∞
f

〉c
and D = Dc → N = NR , (6.65)

where δD
δN is the damage increment per cycle of maximum damage equivalent

stress σ�
M = (σeqR

1/2
ν )max and of range ∆σ� = 2σ�

M, σ∞
f is the asymptotic

fatigue limit, σu is the ultimate stress, and c is also a material parameter.
The number of cycles to rupture NR for a periodic loading σ�

M = const is∫ Dc

0

δD =
〈

σ�
M − σ∞

f

σu − σ∞
f

〉c ∫ NR

0

δN (6.66)

NR =
〈

σ�
M − σ∞

f

σu − σ∞
f

〉−c

Dc and δD =
δN

NR
Dc . (6.67)
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Consider now a random proportional loading σ = σΣ(t) Σ (with Σeq = 1)
where the signed damage equivalent stress σ� = σΣ(t)R1/2

ν is a Gaussian
process given by its probability density P (σ�) which fits many applications
with large numbers of random loading parameters,

P (σ�) =
1

¯̄σ�
√

2π
exp− σ� 2

2¯̄σ� 2
, (6.68)

where ¯̄σ� is the standard deviation associated with σ� and σ� 2 = σ2
ΣRν . The

stress triaxiality function is constant equal to Rν = 2
3 (1+ν)+3(1−2ν)

(
Σkk

3

)2
.

For a narrow band process, the probability density of the maximum values
of the stress σ� is given by

P (σ�
M) = − 1

P (0)
∂P (σ�)

∂σ�
(σ� = σ�

M) , (6.69)

which is a Rayleigh’s law:

P (σ�
M) =

σ�
M

¯̄σ� 2
exp− σ� 2

M

2¯̄σ� 2
. (6.70)

It will give rise to rupture only if the standard deviation ¯̄σ� is large to ensure
enough stresses σ�

M above the asymptotic fatigue limit.
Within a set of N cycles the number of cycles dN for which σ�

M � σ�
M �

σ�
M + dσ�

M is dN = NP (σ�
M)dσ�

M or

dN = N
σ�

M

¯̄σ� 2
exp− σ� 2

M

2¯̄σ� 2
dσ�

M , (6.71)

but the mean damage D at the cycle N is

D =
∫ ∞

0

Dc
dN

NR
=
∫ ∞

0

〈
σ�

M − σ∞
f

σu − σ∞
f

〉c
dN (6.72)

or

D =
N

(σu − σ∞
f )c

∫ ∞

σ∞
f

(σ�
M − σ∞

f )c · σ�
M

¯̄σ� 2
exp− σ� 2

M

2¯̄σ� 2
dσ�

M , (6.73)

or with x =
¯̄σ�

σ�
M

and J =
∫ ¯̄σ�

σ∞
f

0

( ¯̄σ�

σ∞
f

1
x
− 1
)c 1

x3
exp− 1

2x2
dx:

D =
Nσ∞ c

f

(σu − σ∞
f )c

J . (6.74)

The integral J = J
(
c, ¯̄σ�

σ∞
f

)
can be numerically integrated by mathematical

software as a function of the Wöhler exponent c and the ratio ¯̄σ�/σ∞
f of the

standard deviation ¯̄σ� of the loading process to the fatigue limit σ∞
f .

Finally, the number of cycles NR which corresponds to the rupture for
the mean value of the damage D = Dc is
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NR =
(

σu − σ∞
f

σ∞
f

)c
Dc

J
. (6.75)

It is interesting to calculate the value of the maximum stress σ�
M equiv for

a constant amplitude process which would give the same number of cycles to
rupture, 〈

σ�
M equiv − σ∞

f

σu − σ∞
f

〉−c

Dc =
(

σu − σ∞
f

σ∞
f

)c
Dc

J
, (6.76)

σ�
M equiv = σ∞

f

{
1 +
[
J

( ¯̄σ�

σ∞
f

)]1/c
}

. (6.77)

Fig. 6.8. Factor of equivalence between a random and a periodic fatigue process

The graph of Fig. 6.8 gives the value of J1/c as a function of the ratio
¯̄σ�/σ∞

f for different c. The curves are obtained for a zero mean stress with
a maximum stress range directly related to the value of the standard deviation
¯̄σ�. When it is too low (¯̄σ�/σ∞

f <≈ 0.1 to 0.3), there is no rupture. It is
interesting to note that the scatter correction factor J1/c varies only from 0
to less than 1 in a large range of both the ratio ¯̄σ�/σ∞

f and the Wöhler curve
nonlinearity parameter c.
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Then, knowing the standard deviation ¯̄σ� of a Gaussian process for the
signed damage equivalent stress σ� = σΣR

1/2
ν , it is easy to calculate the max-

imum stress σ�
M equiv of an equivalent periodic process (the exponent c always

fits a Wöhler curve in the large number of cycles to rupture). Report this
equivalent stress directly on the Wöhler curve in order to obtain the number
of cycles to rupture corresponding to the random process. Nice, isn’t it?

Of course more accurate results may be obtained with a better fatigue
model but the price to pay is numerical calculations with the Monte Carlo
method.

6.4 Numerical Failure Analysis

As pointed out many times, high cycle fatigue occurs in the elastic range.
The nice thing is that the computations needed for design purposes are per-
formed in elasticity. For most materials, elasticity linearity allows for the
superposition of solutions: if the loading is proportional (see Sect. 2.1.2), i.e.,
if all applied loads and displacements are proportional to the same scalar
function of time α(t), perform only one computation for the reference load-
ing αref. Store the stress and strain fields obtained (σref(M) and εref(M))
and have in mind that there is no need for additional computation to get the
stress and strain fields at any time t as

σ(M, t) =
α(t)
αref

σref(M) and ε(M, t) =
α(t)
αref

εref(M) . (6.78)

If a few applied loads or displacements vary independently, compute the
reference elastic solutions for each load or displacement. The stress and strain
fields history are obtained by superposition, yielding

σ(M, t) =
∑

i

αi(t)
αref i

σref i(M) and ε(M, t) =
∑

i

αi(t)
αref i

εref i(M) . (6.79)

These elastic fields are then the inputs of a fatigue structure analysis, either
to check the safety by use of fatigue limit criteria or to estimate the number
of cycles to failure by a damage analysis.

The bad thing is that the straightforward use of the Wöhler curve to read
the number of cycles to rupture (or at least to mesocrack initiation) is not
always an easy task for real structures. The use of a damage post-processor
(such as DAMAGE 2000 described in Sect. 2.3.3) is often necessary. The
calculations are made at the most loaded point only or at the structure’s
Gauss points to draw damage maps.

6.4.1 Effects of Loading History
(J.P. Sermage 1999)

Most of the characteristic effects of high cycle fatigue described in Sect. 6.2.1
may be predicted by the unified damage law within the two-scale dam-
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age model of Sect. 6.2.3. Some numerical results obtained with the post-
processor DAMAGE 2000 are shown in the following for the values of the ma-
terial parameters characteristic of a steel at room temperature: E = 200000
MPa, ν = 0.3, σ∞

f = 200 MPa, Cy = 2000 MPa, σu = 600 MPa, εpD = 0.05,
m = 1, S = 0.3 MPa, s = 2, h = 0.2, Dc = 1.

6.4.1.1 Influence of the Mean Stress

The consideration of the microdefects closure parameter h in the model allows
us to obtain the influence of the mean stress in compression. This difference of
behavior between tension and compression leads to larger numbers of cycles to
rupture in the same range as that for the decreasing mean stress σ̄ (Fig. 6.9).

Fig. 6.9. Effect of mean stresses on the Wöhler curve

The same results are also plotted for tension-compression and shear load-
ings at a fixed number of cycles to rupture NR = 105 (Fig. 6.10). As already
pointed out, a remarkable result is that the shear mean stress τ̄ does not have
any effect in shear in the range considered, as observed experimentally.

Fig. 6.10. Computed effect of mean stress in tension-compression and shear
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6.4.1.2 Nonlinear Damage Accumulation

Another important feature of fatigue is the nonlinearity of the accumulation
of damages due to loadings of different stress amplitudes. Consider here a two-
level loading at zero mean stress as represented in Fig. 6.11: n1 cycles at
σmax = σ1 followed by n2 cycles at σmax = σ2 such as NR = n1 + n2. NR1

and NR2 are the numbers of cycles to rupture corresponding to constant
amplitude loadings ∆σ1 and ∆σ2. The results are compared with the linear
Palmgreen–Miner rule n1/NR1+n2/NR2 = 1 in the n2/NR2 vs n1/NR1 plot in
Fig. 6.11. The nonlinear damage accumulation is here obtained as a bilinear
accumulation rule.

n1

σ

n2

t

0 0.2 0.4 0.6 0.8 1

σM1

0

0.2

0.4

0.6

0.8

1

σM1 > σM2

σM1 < σM2

Palmgreen-Miner rule

 n1

NR1

 n2

NR2

σM2

Fig. 6.11. Damage accumulation diagram

6.4.1.3 Biaxial High-Cycle Fatigue

Consider next a plate under a biaxial fatigue loading. Plane stress conditions
and proportional loading are assumed and the in-plane stresses σ1 and σ2 vary
proportionally between (−σ1 max and +σ1 max) and (−σ2 max and +σ2 max).
Figure 6.12 shows the stress contours corresponding to numbers of cycles to
rupture NR = 104, 105, 106 cycles for in-phase cyclic loadings. The contour
corresponding to the damage equivalent stress criterion σ� = σeqR

1/2
ν = σf =

210 MPa is also drawn and fits well with the two-scale damage model for
NR = 106.
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Fig. 6.12. Biaxial high cycle fatigue

6.4.1.4 Effect of Non-Proportional Loading

The effect of a non-proportional loading is considered here for a num-
ber of cycles to rupture, NR = 105 cycles. First we consider an alternate
loading of stress range ∆σ1 = 2σ1 max until about NR/2 cycles in a first
direction (named 1) and then a second alternate loading of stress range
∆σ2 = 2σ2max in the orthogonal direction (named 2) corresponding to
NR.

Figure 6.13 shows that to obtain the same number of cycles (NR = 105) in
non-proportional loading (square points) as in proportional loading (contour
reproduced from Fig. 6.12), a higher state of stress is needed. This is an effect
similar to that in plasticity where non-proportional loading induces an over
strain-hardening or cross hardening.

6.4.2 Non-Proportional Loading of a Thinned Structure
(M. Sauzay and A. Carmet 2000)

As an example, consider a tube of total length L = 250 mm, external radius
Re = 28.7 mm, internal radius Ri = 27.5 mm, and thickness t = 1.2 mm.
The middle part of the tube has been thinned with a grindstone on one side,
leading to a gradually thinner zone of stress concentration, where the fatigue
cracks will initiate (see Fig. 6.14). The thickness of the thinner part varies
from 1.2 to 0.6 mm.
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Fig. 6.13. Effect of non-proportional loading

6.4.2.1 Elastic FE Analysis

The structure has been numerically analyzed and tested in tension, torsion,
and tension-torsion fatigue loadings. Elastic computations in tension and in
torsion give the meso stress fields σref1 and σref2 to be used as inputs for
DAMAGE 2000 post-processing analysis, with the tension-torsion treated as
a linear combination of σref1 and σref2.

The meshing comprises 5120 3 and 4 node Kirchhoff–Love shell elements
(full and reduce integrations here give the same results). For the structure
loaded in torsion, the local state of stress in the thinned zone is shear with an
overstress coefficient σzθ/σzθ n = 1.76 (where the nominal stress σzθ n is the
shear stress in the original tube of constant thickness t). For the structure
loaded in tension, the state of stress is uniaxial in the center of the thinned
zone with an over stress coefficient σzz/σzz n = 1.66 (again, “nominal” is
related to the tube of constant thickness). The axial stress is even larger
at the beginning of the transition zone with σzz/σzz n = 2.03 but also with
a hoop stress.
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Fig. 6.14. Picture (M. Grange) of the broken thinned shell

6.4.2.2 Proportional Fatigue Loadings

The numbers of cycles to mesocrack initiation, NR, are calculated by use of
DAMAGE 2000 post-processor. The material is a ductile steel with material
parameters: E = 200000 MPa, ν = 0.3, σy = 380 MPa, σu = 474 MPa,
Cy = 50000 MPa, σ∞

f = 180 MPa, εpD = 0.025, m = 3, S = 2.6 MPa, s = 2,
h = 0.2, Dc = 0.3.

The experiments have been performed at a 5 Hz frequency. The numerical
simulations compare well with the experimental results in Fig. 6.16 where the
two straight lines represent a relative error NR/N exp

R of 4 and 1/4. Be happy
with a factor of 4 in fatigue!

6.4.2.3 Non-Proportional Fatigue Loadings

Four tension-torsion high cycle fatigue tests have also been performed at
LEDEPP-ARCELOR at a frequency of 3 Hz. The non-proportional loading
paths for the axial force F and the torsion torque C are shown in Fig. 6.15.
The maximum applied force is Fmax = 14000 N and the maximum (or min-
imum) applied torque Cmax = 420 Nm (or Cmin = −Cmax). The results are
given in Table 6.1.
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Table 6.1. Tension-torsion of the thinned shell

Test
Fmin

Fmax
Type

Location of
Nexp

R Ncomp
Rcrack initiation

a −1 in phase transition zone 1.13 · 105 4 · 105

b 0.1 in phase thinner part 4.86 · 105 4.4 · 105

c 0.1 90◦ out of phase thinner part 3.72 · 105 6.9 · 105

d −1 90◦ out of phase thinner part 2.3 · 105 11.6 · 105

Fig. 6.15. Cyclic loading paths of tension-torsion

The model gives a correct estimation of the number of cycles to meso crack
initiation with a factor of at most 5 between computed and experimental
numbers of cycles, N comp

R and N exp
R , even for out-of-phase fatigue loadings.

The corresponding 4 points are also reported in Fig. 6.16. This shows the
ability of the model to predict high cycle fatigue failures in complex loadings.
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Fig. 6.16. Comparison between computations and experiments

6.4.3 Random Distribution of Initial Defects

The scatter in high cycle fatigue tests or in fatigue failures is always very
large. A factor of 10 (1000%!) on the numbers of cycles to rupture around
106 for “identical” tests may happen. Since W. Weibull’s studies (1939),
independent of the experimental conditions, we know that the main reason
is the initiation of the fatigue phenomenon on microdefects of different sizes.
The number of cycles to rupture is as high as the probability of existence of
a “big” defect is small. This is why small components have a larger lifetime
than bigger ones.

In the two-scale damage model, the only two material parameters intro-
duced on a microscale are the kinematic hardening coefficient (Cy) which is
taken identical to its value on a mesoscale and the yield stress which is the
asymptotic fatigue limit (σ∞

f ) on a mesoscale. The fatigue limit σ∞
f repre-

sents the local weakness due to hidden defects in the material, therefore it
is the natural candidate for the random parameter responsible for the high
cycle fatigue scatter.

Instead of guessing or measuring (but how?) the characteristics of micro-
internal defects to identify a random distribution of initial damage, it is much
easier to use or perform a series of fatigue tests loaded identically in tension-
compression to obtain numbers of cycles to rupture (NRi) around 106 cycles.
The distribution of NR for the stress considered as the engineering fatigue
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limit σf is thus recorded. To go further we have to find the distribution of
σ∞

f which would give the NRi recorded. This is a deterministic calculation if
σ∞

f is expressed as a function of NR.
Taking the result of the simplified two-scale damage model of Sect. 6.2.3,

it is not possible to invert the formula (6.28) (even with the simplifying
assumption of (6.22)) to derive σ∞

f in a closed-form as

ND =
1
4
εpD

Gm+1

Cm
y

(σu − σ∞
f )m

(σmax − σ∞
f )m+1

NR = ND +
(2ES)sGDc

2σ∞ 2s
f

[
σmax − σ∞

f

Σkk

]
[Rs

ν min + Rs
ν max]

,
(6.80)

where the numbers of cycles are calculated for the engineering fatigue limit

so that σmax = σf and Rν min = Rν max = Rν�

(
Σkk

σmax

σ∞
f

)
.

A numerical analysis similar to the Monte Carlo method is needed while
assuming a fixed NRi characterizing the scatter of the engineering fatigue
limit σf and corresponding to a number of specimens imax (imax = 20 in
Fig. 6.17 for the example of the ductile steel of of Sect. 6.4.2 ).

Fig. 6.17. Histogram of the number of cycles to rupture corresponding to σmax =
σf = 230 MPa at 106 cycles

First, the material parameters are determined by the procedure of
Sects. 1.4.4 and 2.4 applied on the experimental Wöhler curve drawn from
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the mean value of the number of cycles for each stress range. Then σ∞
f is

calculated for the 20 measured NRi from (6.80) using mathematical software.
The NRi distribution is represented by the histogram of Fig. 6.18. The abscis-
sas are discrete values σ∞

f p of σ∞
f and each ordinate is the number of values

σ∞
f in between each σ∞

f p and σ∞
f p+1. As the number of tests is most often

low (≤ 20) statistically, a difficulty arises in the choice of the number of σ∞
f p

that determine the shape of the probability curve. A number of intervals
pmax ≈ 2 +

√
imax is considered, a good compromise between exceedingly

low (flat distribution) and exceedingly large numbers of values (also a flat
distribution).

Fig. 6.18. Histogram of the asymptotic fatigue limit σ∞
f

Once fitted, this distribution is considered a characteristic of the
material and may be introduced as input together with the values of
the material parameters in any fatigue calculation by the Monte Carlo
method.

6.4.4 Stochastic Resolution by Monte Carlo Method

The Monte Carlo method is a numerical method to determine the stochastical
response of any nonlinear model to random inputs by solving a large number
of deterministic realizations of the inputs and by performing a statistical
analysis on the results. Let’s consider the histogram of the fatigue limit σ∞

f in
Fig. 6.18. It is an approximation of the statistical distribution of σ∞

f and the
first task is to regularize this discrete histogram by a known probability law or
by curve fitting. For example, the histogram of Fig. 6.19 is a regularization
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with 25 intervals of the histogram of Fig. 6.18 and the graph Pσf(σ
∞
f ) in

Fig. 6.19 is the corresponding probability density fitted by a truncated β–
function:

Pσf(σ
∞
f ) =

1
220

β

(
σ∞

f

220
, 30, 2.5

)
if σ∞

f ≥ 160 MPa (6.81)

Fig. 6.19. Regularized histograms of σ∞
f and corresponding probability density



6.4 Numerical Failure Analysis 311

and Pσf = 0 elsewhere, with

β(x, a, b) =
Γ(a + b)

Γ(a) · Γ(b)
xa−1(1 − x)b−1 and Γ(z) =

∫ ∞

0

tz−1 exp (−t) dt .

(6.82)
Then, the general procedure for a structural analysis is as follows:

1. An elastic structural analysis gives the state of the 3D stress history at
the critical point(s) (Gauss point(s) for a finite element analysis).

2. The damage parameters are supposed to be known, including the statis-
tics of the asymptotic fatigue limit σ∞

f such as its histogram or its prob-
ability density (Fig. 6.19).

3. Consider a number pmax of discrete possible values σ∞
f p of σ∞

f . In the
following example, it is 25 but a larger number (up to 100) is better.

4. Calculate the pmax values of the number of cycles to rupture NR p corre-
sponding to the stress history with a post-processor such as DAMAGE
2000 for the two-scale damage model. They represent the failure statis-
tics.

5. Draw the histogram of the results with the same ordinate np for NR p

and σ∞
f p.

6. Calculate for the considered structure the mean number of cycles to rup-
ture,

NR =
∑

npNR p∑
np

, (6.83)

its standard deviation,

NR =

√∑
ni(NRi − NR)2∑

np
, (6.84)

its histogram, or its probability law.

This procedure has been applied to many values of unidimensional cyclic
stresses corresponding to the Wöhler curve of ductile steel whose damage
parameters are those used in Sect. 6.4.3. The numbers of cycles to rupture are
calculated by means of the simplified two-scale damage model of Sect. 6.2.3
(also Eq. (6.80) of Sect. 6.4.3). Figure 6.20 shows the results:

• For the mean value NR of the number of cycles to rupture as a function
of the maximum stress σmax. The line fits the experimental Wöhler curve
drawn almost exactly, with only one test for each stress.

• For the histogram of NR corresponding to the three stresses.
• For the standard deviation NR where it is interesting to see how it in-

creases with the number of cycles to rupture as it is always found by
experiments.

This shows that it is not so complicated to take into account the scatter in
high cycle fatigue failures predictions!
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Fig. 6.20. Mean value and standard deviation of the number of cycles to rupture

6.4.5 Predeformed and Predamaged Initial Conditions

Other types of damage high cycle fatigue failures are influenced by the ini-
tial state of the materials (A. Galtier 1998). It is mainly an initial plastic
strain p0, an initial damage D0, and an initial residual stress σres induced
by the thermomechanical history of casting, metal forming, welding, and also
damages by accident.

Let’s assume that the initial or residual quantities p0, D0, and σres
ij exist

but that they have been obtained for states of stresses larger than the in-
service states of stresses that lead to high cycle fatigue (otherwise it would
be low cycle fatigue!). The reference structure analysis is still elastic and those
values are introduced in the two-scale damage model as initial values of the
differential scheme. The conditions D(t = 0) = D0, p(t = 0) = p0, εp(t =
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0) = εp
0 , and X(t = 0) = X0 satisfy the equilibrium equation div σres = 0

(or σres
ij,j = 0) for a static problem. For a plastic state, local tension leads to

εp
0 = p0

⎡
⎣ 1 0 0

0 − 1
2 0

0 0 − 1
2

⎤
⎦ and X0 = Cyp0

⎡
⎣1 0 0

0 − 1
2 0

0 0 − 1
2

⎤
⎦ . (6.85)

Figures 6.21 and 6.22 describe the effect of an initial plastic strain p0

that is smaller than the damage threshold pD and an initial damage D0

associated with the corresponding plastic strain, respectively, on steel at room
temperature. The Wöhler curves are calculated by the damage post-processor
DAMAGE 2000 with the following values of the material parameters: E =
200000 MPa, ν = 0.3, σ∞

f = 200 MPa, Cy = 2000 MPa, σu = 600 MPa,
εpD = 0.05, m = 1, S = 0.3 MPa, s = 2, h = 0.2, and Dc = 1. This influence
may be of a factor 10 on NR.

Fig. 6.21. Influence of an initial plastic strain on the Wöhler curve (J.-P. Sermage
1998)

Fig. 6.22. Influence of an initial damage D0 = Dc/5 = 0.2 on the Wöhler curve
(J.-P. Sermage 1998)
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If their values are known, residual stresses σres
ij can be added to the loading

stresses.

6.4.6 Hierarchic Approaches up to Surface and Gradient
Effects ,

For other types of failure, we advise beginning any prediction of high cycle
fatigue rupture using the simplest model, especially if only a few material
parameters are known.

• In early design it is often sufficient to check if the state of stress is below
the fatigue limit conditions. In 1D, the only effect to take into account is
the effect of mean stress and the simplest model is the Goodman diagram
shown in Fig. 6.2. An elementary geometric calculation gives the following
as non-failure conditions:

σmax < σf + σ̄

(
1 − σf

σu

)

or σmin > −σf + σ̄

(
1 +

σf

σu

)
.

(6.86)

• For 3D state of stress, use one of the fatigue limit criteria of Sect. 6.2.2:
the damage equivalent stress σ� or, better, the Sines or Dang Van criterion
for non-proportional loading.

• Again, in early design, the Palmgreen–Miner rule is not so bad in mod-
elling sequences of different levels of stress range. Together with the
Wöhler curve, it allows for the determination of the number of cycles
to rupture corresponding to a given history of unidimensional stress.

• For 3D proportional loadings use the two-scale damage model of Sect. 6.2.3
integrated either numerically or in a closed form for periodic loading.

• For random loading there is, at least for a first approach, a nice simple for-
mula in Sect. 6.3.4, eq. (6.77). Otherwise the Monte Carlo method applies
together with the two-scale damage model used as a post-processor.

• For complex loadings such as 3D, non-cyclic and/or non-proportional
loadings, the Wöhler curve can be used only to identify the two-scale
damage model. The number of cycles NR or the time tR to mesocrack
initiation is calculated by post-processing the elastic computation and by
performing the time integration of the two-scale damage model constitu-
tive equations (see Sect. 2.3). The most loaded point is where the damage
D is maximum. The number of cycles to rupture NR corresponds to the
reach of the critical damage Dc at this point, as described in Sect. 6.4.2.

• It is also possible to consider a random distribution of initial defects as
explained in Sect. 6.4.3, which allows for the possibility to express the
results in terms of probability modelling of the large scatter observed in
high cycle fatigue. Then, as in Sect. 6.4.4, the Monte Carlo method may
be applied to any kind of loading.
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• For more accurate predictions, one has to consider the fatigue weakness
on any surface as plastic slips occur more easily on the surface grains
that are well oriented with respect to the loading direction. Intrusion-
extrusion mechanism takes place; it leads to microplastic strains that are
larger on free surfaces than inside and then to lower numbers of cycles to
rupture.
This surface effect may be taken into account in the two-scale damage
model through the localization law. The microscale stress used in the
initial two-scale damage model (without meso plastic strain),

σµ
Eshelby = σ − 3G(1 − β)εµp , (6.87)

is calculated by means of the Eshelby–Kröner localization law for a spher-
ical inclusion fully embedded in an RVE. It has to be changed at the free
surface.

Fig. 6.23. Inclusions for the two-scale damage model

On the basis of the work of A. Cox (1989) and A. Deperrois & K. Dang
Van (1990) a surface localization law can be built and used to describe
the scale transition of the two-scale damage model (M. Sauzay 2000).
Following these authors, consider a hemispherical inclusion in an RVE
located along a free edge (Fig. 6.23) and for the sake of simplicity take
D = 0, σ̃µ = σµ, and εp = 0. If �x3 is the normal to the free surface
(denoted Γ), x the coordinates of a point in the RVE, the microscale
stresses taking into account the existence of the free edge (σ�x3 = 0 on Γ)
are not uniform anymore, i.e.,

σµ(x) = σµ
Eshelby −

3∑
r=1

∫
Γ

σµ
r3Eshelby(x

′)C(r)(x′,x)dΓ′ , (6.88)

with C(1)(x′,x) and C(2)(x′,x) as the Cerruti tensors and C(3)(x′,x) =
B(x′,x) as the Boussinesq tensor. Using the expression (6.87) for σµ

Eshelby

allows us to obtain the formal localization law on a free surface as

σµ(x) = σ + M(x) : εµp , (6.89)
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with M as a fourth order localization tensor that is non-symmetric (the
direction 3 plays a particular role) and dependent on the position of the
considered point inside the inclusion. Using indexical notation, we have

Mijkl =
(

Eijpq −
∫

Γ

C
(r)
ij (x′,x)Er3pqdΓ

)
(SEshelby − I)pqkl , (6.90)

with SEshelby as the Eshelby tensor. A dimensionless tensor m is also
defined, such as

Mijkl = −2G(1 − β)mijkl (6.91)

and M. Sauzay (2000) gives, for ν = 0.3, the average value of the inclusion
of coefficients mijkl :

m1111 = m2222 = 1.24 ,
m1122 = m2211 = −m3311 = −m3322 = 0.24 ,
m1212 = m1221 = m2112 = m2121 = 0.5 ,
m1313 = m1331 = m3113 = m3131 = 0.26 ,
m2323 = m2332 = m3223 = m3232 = 0.26 .

(6.92)

The other coefficients are equal to zero. For 0.2 ≤ ν ≤ 0.4, the value for
mijkl does not depend much on the Poisson ratio. The localization law to
be used at surfaces is finally

σµ
ij surf = σij − 2G(1 − β)mijklε

µp
kl , (6.93)

also written as

σµ
11 surf = σ11 − 2G(1 − β) (m1111ε

p
11 + m1122ε

p
22) ,

σµ
22 surf = σ22 − 2G(1 − β) (m1122ε

p
22 + m1111ε

p
22) ,

σµ
12 surf = σ12 − 4G(1 − β)m1212ε

p
12 ,

σµ
13 surf = −4G(1 − β)m1313ε

p
13 ,

σµ
23 surf = −4G(1 − β)m2323ε

p
23 ,

σµ
33 surf = −2G(1 − β)m3311 (εp11 + εp22) .

(6.94)

For FE computation of structures loaded in high cycle fatigue, one has
then different localization laws for surface elements and inside elements.
For a homogeneous mesoscopic stress field it leads to an increase of the
microscale plastic strain on free surfaces and, by consequence, a significant
decrease of the number of cycles to mesocrack initiation (of about 30%)
in surface than in plain material. From a mechanical point of view this
explains why the mesocrack initiation on free surfaces is always observed
in uniform stress field specimens.

• Another characteristic effect of high cycle fatigue is the sensitivity to the
gradient of the stress field. This gradient effect is illustrated here in
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cyclic bending where the most loaded points are on the upper and lower
edges of a beam: the number of cycles to mesocrack initiation is always
larger in cyclic bending than in the equivalent homogeneous tension com-
pression case (I. Findley 1956). This is nothing peculiar as the chance to
find a large defect in the upper or lower parts of the beam cross section is
lower than the chance to find the same defect in the whole cross section.
Such a gradient effect is observed in bending, but not in torsion (I.V. Pa-
padopoulos and V.P. Panoskaltsis 1996), and can be taken into account
within the two-scale damage model by considering the nonlocal localiza-
tion law,

σ̃µ = σ − c0||∇σH||1 + c1∇2σ − 2G(1 − β)εµp , (6.95)

instead of the Eshelby–Kröner law, where σH = σkk/3 is the mesoscale
hydrostatic stress, and ||∇σH|| is the norm of its gradient (vanishing in
shear). Two new material parameters are introduced:
– c0, homogeneous to a length, is a phenomenological parameter iden-

tified from experimental results (such as high cycle fatigue bending
tests).

– the parameter c1, homogeneous to a square length, is naturally intro-
duced from a homogenization procedure applied to non-uniform stress
fields. It comes from the second order term of Taylor development of
the stress tensor on the mesoscale. c1 is found to be equal to δ2

0/40
(E. Aifantis 1995) where δ0 is the size of the RVE (see Sect. 1.6.3).
The effect of c1 on the crack initiation conditions is not clear (it does
not act for linear fields) and c1 = 0 is probably a good choice to start
with.

Consider as reference the tension-compression loading between −σmax

and +σmax. The meso stress field is homogeneous with vanishing gradient
terms in the localization law (6.95). The number of cycles to rupture is
then given by the initial two-scale damage model (numerical computation
or analytical solutions of Sect. 6.2.3). For simplicity, consider the approx-
imate expression (6.38) for zero mean stress with no damage threshold
εpD = 0:

NR =
(2ES)sGDc

4σ∞ 2s
f

[
σmax − σ∞

f

Σkk

]
Rs

ν max

, (6.96)

where Σkk = 1 and Rν max = 2
3 (1 + ν) + 1

3 (1 − 2ν)
σ2

max

σ∞ 2
f

.

Consider then a circular bending test in the elastic range for which the
stress field is locally uniaxial, with the same maximum and minimum
applied stresses as for the tensile test:

σ =
M

I
y and σmax = −σmin =

M

I

d

2
, (6.97)
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with d either the diameter or the height of the beam, such as y = d/2
and y = −d/2, correspond to the upper and lower sides of the beam, and
with I as its bending inertia momentum. As the stress field is linear in y,
the stress gradient is

∇σ =

⎡
⎢⎣

0
2σmax

d
0

⎤
⎥⎦ where ||∇σ|| =

2σmax

d
. (6.98)

Apply the localization law with the gradient effect (6.95) at the most
loaded point y = ±d/2 (the second order terms vanish):

σ̃µ = σ∇ − 2G(1 − β)εµp and σ∇ = σ − c0||∇σH||1 , (6.99)

which is identical to the Eshelby–Kröner localization law but where the
gradient effect is taken into account through the new loading term σ∇.
Writing σ∇ = σ∇

Σ Σ (proportional loading) gives

σ∇
Σ = σmax , Σ =

⎡
⎢⎢⎢⎢⎣

1 − 2c0

d
0 0

0 −2c0

d
0

0 0 −2c0

d

⎤
⎥⎥⎥⎥⎦ , Σeq = 1 , (6.100)

and allows us to use (6.96) directly, but with Σkk = 1 − 6c0

d
instead of

Σkk = 1 to obtain the number of cycles to rupture in bending N∇
R .

Developing the expression for Rν max we end up with

N∇
R

NR
=

σmax

σ∞
f

− 1

σmax

σ∞
f

− 1

1 − 6c0

d

⎡
⎢⎢⎣

2
3
(1 + ν) +

1
3
(1 − 2ν)

σ2
max

σ∞ 2
f

2
3
(1 + ν) +

1
3
(1 − 2ν)

(
1 − 6c0

d

)
σ2

max

σ∞ 2
f

⎤
⎥⎥⎦
s

.

(6.101)
Then for the same maximum applied stress σmax in tension-compression,
we have

N∇
R > NR (6.102)

in bending, i.e., a number of cycles to rupture increased in bending com-
pared to the homogeneous tension-compression case. If the fatigue limits
are defined for a given number of cycles for which no failure is observed,
this corresponds to a fatigue limit in bending that is larger than the fa-
tigue limit in tension-compression, as observed experimentally.
The ratio N∇

R /NR is drawn in Fig. (6.24) as a function of the ratio
σmax/σ∞

f , with s as the damage exponent and c0/d as the material and
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geometry parameters. Knowing c0 and d, σmax, σ∞
f , and s, the Fig. 6.24

allows us to determine the factor with which to multiply the number
of cycles to rupture classically calculated to obtain a better accuracy in
bending. Inversely, from experiments made on specimens of height or di-
ameter d, the knowledge of the ratios N∇

R /NR, σmax/σ∞
f , and the damage

exponent s allows us to determine the material parameter c0.

Fig. 6.24. Gradient effect in bending function of σmax/σ∞
f

For more general cases of stress gradients, use the localization law (6.95)
within the two-scale damage model.
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Failure of Brittle and Quasi-Brittle Materials

A material is considered brittle when it brakes without any irreversible
strains and without any dissipation prior to cracking (e.g., glass and
some ceramics). It is considered quasi-brittle when a dissipation prior to
cracking exists with no or negligible permanent strains (e.g., concrete and
some ceramics).

The main mechanism is atomic decohesions to induce a fast propagation
of a crack by instability. Nevertheless, the quasi-brittle materials may have
some reversible slidings of nano- or microcracks considered as initial defects
to induce a loss of energy by friction. Both mechanisms are dangerous because
there is no precursor to wake up the attention of observers.

The first scientific study of brittle failure was carried out by A.A. Griffith
around 1920, introducing the concept of energy of decohesion used in frac-
ture mechanics by cracking through the strain energy release rate variable G.
But the study contained nothing about damage prior to crack initiation! In
1939 W. Weibull introduced the idea of statistical distribution of initial
defects, giving rise to a model of probability of failure written in terms of
stress and of the volume considered. Since then, many models of quasi-brittle
materials are based on initial microdefects (F. McClintock 1973, S.B. Bat-
dorf 1974, A.G. Evans 1978, A. Pineau 1983) or are damage models that
are deterministic (Z.P. Bažant 1984, J. Mazars 1985, G.Z. Voyiadjis 2002) or
stochastic (F. Hild 1990).

The specific topics of this chapter are the overall rupture criteria for brit-
tle materials, debonding, probabilistic approaches for brittle and quasi-
brittle materials, delamination of composites, and dynamic failures of
concrete and ceramic structures. Long term, time-dependent behavior related
to viscous effects of creep and relaxation is addressed in Chap. 5.

7.1 Engineering Considerations

The materials subjected to brittle or quasi-brittle failures are ceramics, con-
cretes, cements, glasses, rocks, brittle matrix composites, quenched steels . . .
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Their strain to rupture is small (εR < 2 · 10−2) and their toughness is at
most on the order of a few MPa

√
m. The design of structures made of brittle

materials is difficult because there is no place for plastic shakedown in case
of overloading, but reinforcements help.

For rough estimations meso stress criteria may be applied, but for pre-
cise estimations the statistical distribution of internal defects must be taken
into consideration. Unfortunately, they cannot be precisely evaluated by non-
destructive methods. A possible alternative is to deduce a probabilistic infor-
mation from the scatter of test results by an inverse method (see Sect. 6.4.3)
for high cycle fatigue (F. Hild 1994). To illustrate this point, let us determine
the probability density of the relative size of defects in a brittle material on
which many rupture tests have been performed.

The following simplified assumptions are made:

• 10 to 20 rupture tests are available in simple tension on the same geometry.
• For each specimen, the area density of the initial defects in the plane

normal to the stress where the failure will occur is D0. Then the rupture
stress σR is simply given (see Sect. 1.4.1) by the effective stress concept.
For brittle failures, σR is related to an initial damage,

σR = σu(1 − D0) or D0 = 1 − σR

σu
, (7.1)

where σu is the rupture stress of the material without any defect. On
a practical level, it is the maximum value of σR measured, assuming that
in the set of specimens, at least one has no defects (or only some very
small ones).

The damage D0 is now a random variable (as is σR) for which the probability
density resulting from the tests is P (σR). The probability for σR to have
values bounded by σa and σb is

P (σa < σR < σb) =
∫ σb

σa

P (σR)dσR . (7.2)

It is also the probability for the decreasing function D0(σR) = 1 − σu/σR to
have values bounded by D0(σb) = D0b and D0(σa) = D0a. Considering the
inverse function σR = σu(1 − D0), we then have

P (D0b < D0(σR) < D0a) =
∫ σu(1−D0a)

σu(1−D0b)

P (σR)dσR , (7.3)

or by the change of variable σR = σu(1 − D0),

P (D0b < D0(σR) < D0a) = −
∫ D0b

D0a

P (σu(1 − D0)) · (−σudD0) , (7.4)

which shows that the probability density of initial damage D0 is
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P (D0) = σuP (σu(1 − D0)) . (7.5)

For example, if σR obeys a Gaussian distribution,

P (σR) =
1

¯̄σR

√
2π

exp− (σR − σ̄R)2

2¯̄σ2
R

, (7.6)

where σ̄R is the mean value of the rupture stress and ¯̄σR its standard devia-
tion, the probability density of D0 is given by

P (D0) =
σu

¯̄σR

√
2π

exp− (σu(1 − D0) − σ̄R)2

2¯̄σ2
R

(7.7)

or

P (D0) =
1

¯̄σR

σu

√
2π

exp−

(
D0 − 1 +

σ̄R

σu

)2

2
¯̄σ2
R

σu

, (7.8)

also a Gaussian distribution for D0. The mean value of D0 is:

D0 = 1 − σ̄R

σu
(7.9)

and its standard deviation is

D0 =
¯̄σR

σu
. (7.10)

Fig. 7.1. Histogram of initial damage D0 deduced from the histogram of rupture
stress

There is an easy way to obtain a statistical input for stochastic analysis
of failure. Instead of using a continuous probability law (such as a Gaussian
law), a discrete numerical treatment is possible, as shown in Fig. 7.1, where
the histogram of initial damage is simply deduced from a set of stresses to
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rupture by D0i = 1 − σRi/σu. If imax is the number of tests (usually low,
here imax = 20), using pmax ≈ 2 +

√
imax (here pmax = 6) as the number

of intervals for the histograms is a good compromise between exceedingly
low (flat distribution) and exceedingly large numbers of values (also a flat
distribution).

7.2 Fast Calculations of Structural Failures

Structural calculations for brittle failures, fortunately, do not involve any
plastic strain. They may be performed in elasticity or simply taken in hand-
books of stress concentration coefficients. The bad news, as already men-
tioned, is the random character of brittle failures due to initial defects con-
sidered (or not considered) as initial damage. Nevertheless, some meso stress
criteria give orders of magnitude of the conditions of brittle failures and the
Weibull model is a first useful approach of the statistical characteristic of
brittle rupture.

7.2.1 Damage Equivalent Stress Criterion

The simplest criterion to be used for the rupture of brittle or quasi-brittle
materials is the damage equivalent stress σ� deduced from the thermodynam-
ics framework in Sect. 1.2.2. It is based on the total elastic energy whose
amount at rupture is supposed to be a characteristic value for each material
regardless of the state of stress:

σ� = σeqR
1/2
ν with Rν =

2
3
(1 + ν) + 3(1 − 2ν)

(
σH

σeq

)2

, (7.11)

where Rν is the triaxiality function, σH is the hydrostatic stress, σH = σkk/3,

σeq is the von Mises stress, σeq =
√

3
2 (σij − σHδij)(σij − σHδij).

If σu is the ultimate stress in pure tension, the rupture criterion is written
as

σ� = σu in three dimensions (7.12)

and simply σ = σu in the uniaxial case as Rν = 1. Here we assume the same
behavior in tension and compression.

Figure 7.2 shows the large difference due to the triaxiality between the
damage equivalent stress σ� and the von Mises (plastic) equivalent stress σeq,
often used by mistake as a rupture criterion.

An improvement consists of taking into consideration the quasi-unilateral
condition of microdefects closure. Back to Sect. 1.2.4 and eq. (1.46), the
complementary elastic energy is
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w�
e (σij) = ρψ�

e =
1 + ν

2E

[
〈σ〉+ij〈σ〉+ij

1 − D
+

〈σ〉−ij〈σ〉−ij
1 − hD

]

− ν

2E

[ 〈σkk〉2
1 − D

+
〈−σkk〉2
1 − hD

]
,

(7.13)

where 〈.〉 are the Macaulay brackets.

Fig. 7.2. Damage equivalent stress criterion function of the triaxiality ratio

For a tensile stress σ�,

w�
e (σ�) =

1
2E(1 − D)

[
(1 + ν)σ�2 − νσ�2

]
=

σ�2

2E(1 − D)
. (7.14)

This tensile stress is equivalent to the 3D case if

w�
e (σ�) = w�

e (σij) . (7.15)

In intrinsic notations, this is equivalent to

σ� =

√
(1 + ν)〈σ〉+:〈σ〉+− ν〈tr σ〉2 +

1 − D

1 − hD
[(1 + ν)〈σ〉−:〈σ〉−− ν〈−tr σ〉2] .

(7.16)

Remember that h is on the order of 0.2 and the rupture criterion is still

σ� = σu , (7.17)
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where D is here the relative surfacic fraction of microdefects at rupture Dc.
The stress at rupture in tension is still σ� = σ+

R = σu, but the stress at

rupture in pure compression is now |σ−
R | = σu

(
1−hDc
1−Dc

)1/2

, a small difference
indeed. For materials like concrete, a much larger difference is obtained in the
following definition of a damage equivalent strain ε� and also in Sect. 7.4.1.

Sometimes a simpler criterion is used for the fracture of concrete where
it is observed that the microcracks are often oriented in the direction normal
to the positive (tension) principal strains. As a consequence, the damage
equivalent strain ε� is defined by (J. Mazars, 1984):

ε� =
√
〈ε〉+ : 〈ε〉+ =

√
〈ε1〉2 + 〈ε2〉2 + 〈ε3〉2 , (7.18)

where ε1, ε2, and ε3 are the principal strains and where 〈εi〉 = εi if εi > 0,
〈εi〉 = 0 elsewhere.

Fig. 7.3. Damage criteria in a plane stress case: σeq, σ�(ν = 0.3, h = 0.2, Dc =
0.3), ε�

In tension, ε� = ε+. In compression, ε� =
√

2ν|ε−| (ν is the Poisson ratio).
The criterion normalized to the rupture stress in pure tension σ+

u or in pure
compression σ−

u is obtained as

ε� =
σ+

u

E
=

√
2 ν

|σ−
u |
E

, (7.19)

which gives σ+
u = 0.28 |σ−

u | for ν = 0.2. Figure 7.3 shows the difference
between the last two criteria compared to the von Mises criterion in plane
stress and proportional loading.
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7.2.2 Interface Debonding Criterion

Consider a composite or two rigid elements A and B bound together by a film
of glue I. It is represented by a 2D surface medium of “zero” thickness normal
to the direction �x3, as shown in Fig. 7.4.

Fig. 7.4. Interface at mesoscale

The continuity of the strain and stress vectors through the interface en-
sure a state of plane strains ε13 = ε23 = 0 and a state of antiplane stresses
σ11 = σ22 = σ12 = 0. The occurrence of two damage mechanisms, a normal
debonding in mode I due to the normal stress σ33 and a shear debonding
in mode II due to the shear stresses σ13 and σ23, allows us to consider the
thermodynamic potentials of Sects. 1.2 and 1.4 written as functions of the
following interface equivalent stress,

σI
eq =

〈
σ33|σ33| +

(
σI

R

τ I
R

)2
(σ2

13 + σ2
23)

〉1/2

, (7.20)

where 〈.〉 are the Macaulay brackets and |.| is the absolute value.
It takes into account the unilateral character of interfaces which do not ex-

hibit any damage in compression. The ratio of the ultimate tension stress σI
R

to the ultimate shear stress τ I
R represents the large difference in strength

which may exist between tension and shear of interfaces. In supermarkets,
you may buy glues with large σI

R or large τ I
R depending on their use!

The criterion of debonding of interfaces written σI
eq = σI

R −→ interface
crack initiation is 〈

σ33|σ33|
σI 2

R

+
σ2

13 + σ2
23

τ I 2
R

〉
= 1 . (7.21)

It gives:

• Rupture in pure tension for σI
eq = σ33 = σI

R

• No rupture in pure compression as σI
eq = 0

• Rupture in pure shear for σI
eq = σI

R
τ I
R
|σ13| = σI

R (or σI
R

τ I
R
|σ23|), i.e., |σ13| = τ I

R
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For mixed modes loading:

• A tension decreases the strength in shear
• A compression increases the strength in shear

This criterion requires the knowledge of two material parameters: the stresses
to rupture in pure tension σI

R and in pure shear τ I
R. It is represented in

Fig. 7.5.

Fig. 7.5. Interface criterion in the tension and shear stress plane

7.2.3 The Weibull Model

This model takes into consideration the volume effect for which the prob-
ability to find a large defect is greater in a large volume than in a small
one.

• The probability density of the defects considered as initial damages D0 is
supposed to be a power function where mw is the Weibull modulus,

P (D0) = mw(1 − D0)mw−1 . (7.22)

• The rupture criterion is related to the damage equivalent stress σ� =
σeqR

1/2
ν (it was the maximum principal stress in original Weibull model),

σ� = σw(1 − D0) or D0 = 1 − σ�

σw
, (7.23)
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where σw is the ultimate stress to rupture of a hypothetic sample without
any defect. It is also called Weibull stress.

• Then, the probability of rupture PF0 of any RVE loaded by a stress σ� is
the probability for which σ� > σw(1−D0) or D0 > 1−σ�/σw. Considering
the damage D0 bound by 1,

PF0 =
∫ 1

1− σ�

σw

P (D0)dD0 =
(

σ�

σw

)mw

. (7.24)

• The Weibull theory considers the weakest link hypothesis which states
that the rupture of the whole structure of volume V is achieved as soon
as the rupture of an elementary volume V0 is initiated.

• Considering the probability of rupture PF0 of the RVE on which σw is
defined as the probability of rupture of the volume V is expressed as
(W. Weibull 1939)

PF = 1 − exp
{
− V

V0
PF0

}
(7.25)

or

PF = 1 − exp
{
− V

V0

[
σ�

σw

]mw}
. (7.26)

• For structures subjected to non-uniform stress fields another effect that
arises is related to the probability that the largest defect exists precisely
where the stress concentration lies. To take into account this effect, it is
convenient to introduce the concept of an effective volume Veff related to
the elastic energy as it governs the phenomenon of rupture (F. Hild 1994).
If we = σ�2(M)/2E is the elastic energy density field and we max =
σ�2

max/2E, the elastic energy density at the stress concentration point of
the structure is

Veff =

∫
V σ�2(M)dV

σ�2
max

≤ V . (7.27)

• Finally, the Weibull formula to use is

PF = 1 − exp
{
−Veff

V0

[
σ�

σw

]mw}
. (7.28)

7.2.3.1 Use of the Weibull Model

To apply the model, one needs the value of the elasticity parameters as well
as of the Weibull parameters:

• An elastic analysis of a structure of volume V gives the stress field σ�(M)
and the maximum stress at the stress concentration point. It gives also
the energy density field we(M) and then Veff.
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• Use Weibull formula (7.28) where V0 is the volume of the uniform stress
part of the specimens tested to identify Weibull parameters σw and
mw.

• The identification of Weibull parameters needs imax = 10 to 20 experi-
ments on specimens of cross section S0, length L, volume Veff = V0 = S0L,
and corresponds to a failure probability PF = PFL. To complete the iden-
tification, proceed as follows:
1. Draw the cumulative histogram of the rupture stresses σR. Use pmax ≈

2 +
√

imax intervals and put in the ordinates the number of specimens
p = p(σR < σRp) broken under the maximum stress σRp of the pth

interval.
2. Use PFL ≈ p/(imax + 1) (or any other) as the probability estima-

tor to change the histogram into an experimental probability density
PFL(σR).

3. Identify σw = σwL and mw by curve fitting of the previous experimen-
tal PFL(σR) law,

PFL = 1 − exp
{
−
[
σR

σw

]mw}
. (7.29)

Do it by performing a linear regression in the ln[− ln(1−PFL)] vs ln σR

diagram. The slope of the curve is then the Weibull modulus mw and
the ordinate at lnσR = 0 is − lnσmw

w which yields σw.

7.2.3.2 From Brittle to Quasi-Brittle Failure (F. Hild 1994)

A structure made of “brittle” material components often exhibits a quasi-
brittle behavior (B. Coleman 1958, D. Krajcinovic 1981). To illustrate this
point, consider here as a “structure” a fiber bundle made of carbon or ceram-
ics fibers and modelled as a set of n fibers in parallel, loaded with the same
applied displacement u. The fibers of length L, cross section S0, and vol-
ume V behave elastically with a Young’s modulus E. The failure probability
of a fiber PFL is given by the Weibull law,

PFL = 1 − exp
{
−
[

σR

σwL

]mw}
, where σwL = σw

(
V

V0

)1/mw

. (7.30)

The loading is displacement-controlled. For large n, the number of broken
fibers is given by

nb ≈ PFLn , (7.31)

which corresponds to a number, n − nb ≈ (1 − PFL)n, of unbroken fibers.
The applied load is

F =
∑

i

σiS0 , (7.32)
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with σi = 0 for the broken fibers and σi = Eε for the remaining ones, i.e.,

F = (1 − PFL)nS0Eε (7.33)

or F

S
= E(1 − PFL)ε , (7.34)

with S = nS0 as the total cross section area. Setting D = PFL defines the
damage variable of Continuum Damage Mechanics as the failure probability
of fibers. The mean applied stress σ̄ = F/S is then

σ̄ = E(1 − D)ε (7.35)

and the bundle has quasi-brittle behavior.

Fig. 7.6. Quasi-brittle stress-strain response of a ceramic fiber bundle (E =
400000 MPa, σwL = 500 MPa)

The damage evolution is obtained by this analysis. For monotonic loading,

D = D(ε) = 1 − exp
{
−
[

Eε

σwL

]mw}
(7.36)

or if the strain energy release rate Y = 1
2Eε2 is introduced,

D = D(Y ) = 1 − exp

{
−
[
2EY

σ2
wL

]mw
2
}

. (7.37)
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The thermodynamics framework of such a damage model (called Marigo
model) is given in Sect. 7.4.1.

The stress-strain curve obtained for a large number of ceramics fibers
is given in Fig. 7.6 and the corresponding damage evolution in Fig. 7.7. If
Weibull parameters are unknown, the stress-strain curve can be used to iden-
tify them using simple (nonlinear) curve fitting. Note also that the unloadings
are elastic with no permanent strain: the Young’s modulus of the damaged
bundle is the effective modulus Ẽ = E(1 − D).

Fig. 7.7. Damage evolution of a ceramic fiber bundle (E = 400000 MPa, σwL =
500 MPa)

7.2.4 Two-Scale Damage Model for Quasi-Brittle Failures

It is possible to calculate quasi-brittle failure conditions by use of the two-
scale damage model of Sect. 1.5.5. Consider here the case of a proportional
monotonic loading with σ = σΣ(t)Σ, Σeq = 1, no plasticity on the mesoscale
(εp = 0), and no damage threshold (εpD = 0).

A scalar εµ
pΣ is defined to quantify the microplasticity, as follows:

εµp =
3
2
εµ
pΣΣD and σ̇µ

Σ = Cy ε̇
µ
pΣ ≈ Cyσ̇Σ

G . (7.38)

Here, Cy/G � 1 and G ≈ 3G(1− β). Once the yield stress on the microscale
(equal to the asymptotic fatigue limit σ∞

f ) is reached, we can assume σ̇µ ≈ 0
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and the von Mises stress on the microscale remains quasi equal to σ∞
f : σµ ≈

σ∞
f .

The time integration of the damage law (coupled with (7.38)) allows us
to calculate the damage D at a given mesostress σ and then the quasi-brittle
failure conditions when D reaches the critical damage Dc, such that

D ≈ σ∞ 2s
f

G(2ES)s

∫ σΣ

σ∞
f

Rs
ν�

(
Σkk

σΣ

σ∞
f

)
dσΣ , (7.39)

with Rν�(ξ) = 2
3 (1 + ν) + 1

3 (1 − 2ν)ξ2 as in Sect. 6.2.3.
The function Rν�(ξ) varies significantly over the integration interval and

an approximate formula for the stress to failure is derived for small values
of s:

σΣR ≈ σ∞
f +

3G(1 − β)(2ES)sDc

σ∞ 2s
f Rs

ν�(Σkk)
. (7.40)

For compression-like loading (σ < 0), considering the parameter h within the
damage law allows us to calculate the stress at failure in compression (σ−

R )
that is much larger than in tension (σ+

R ) and to show that

σ+
R − σ∞

f

|σ−
R | − σ∞

f

≈ hs . (7.41)

Coupled with the previous knowledge of the asymptotic fatigue limit σ∞
f and

the damage exponent s (from fatigue experiments), this result can be used
to identify the microdefects closure parameter h. For concrete, for example,
σ∞

f is neglected, s = 1, and σ−
R/σ+

R = 10 gives h ≈ 0.1.

7.2.5 Sensitivity Analysis

The sensitivity analysis of brittle failure is a special case as the rupture is
not defined by a number like the plastic strain, time, or number of cycles
in Sects. 3.2.3, 4.2.3, 5.2.3, and 6.2.4 of previous chapters but by the stress
itself, through the damage equivalent stress σ�. For example,

σ� = σu −→ rupture. (7.42)

In order to perform the calculation in the spirit of the general method de-
scribed in Sect. 2.4.6, let us consider the ratio σ�/σu and derive how much
it differs from 1. Furthermore, consider also the influence of initial defects in
writing σu(1−D0) as the previous ultimate stress. Rupture corresponds then
to Rupt = 1, with

Rupt =
σ�

σu(1 − D0)
, (7.43)

where σ� = σeqR
1/2
ν , Rν = 2

3 (1 + ν) + 3(1 − 2ν)T 2
X, and TX = σH

σeq
.
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Taking the logarithm and the derivative with absolute values of the rela-
tive errors gives

δRupt

Rupt
=

δσeq

σeq
+

(3T 2
X − 1

3 )ν
Rν

δν

ν
+

3(1 − 2ν)T 2
X

Rν

δTX

TX
+

δσu

σu
+

D0

1 − D0

δD0

D0
,

(7.44)
which defines SRupt

Ak as the coefficients of the sensitivity matrix of Sect. 2.4.6.
Therefore,

δRupt

Rupt
=
∑

k

SRupt
Ak

δAk

Ak
, (7.45)

with
SRupt

σeq
= 1 ,

SRupt
TX

=
3(1 − 2ν)T 2

X

Rν
,

SRupt
σu

= 1 ,

SRupt
ν =

|3T 2
X − 1

3 |ν
Rν

,

SRupt
D0

=
D0

1 − D0
.

(7.46)

As in the other chapters, the diagram in Fig. 7.8 shows the relative values
of the influence of all the parameters by the height of the boxes for a set of
parameters representing mean values for brittle materials: TX = 1 =⇒ Rν =
2.07, ν = 0.2, and D0 = 0.05.

Fig. 7.8. Relative importance of each parameter in brittle failures

In comparison to other failures, the sensitivity is much lower. But the
random value of the initial defects is not here taken into consideration: in
practice, this is this parameter that governs the uncertainties.

7.2.6 Safety Margin and Crack Propagation

Most of the time, brittle failures occur by a fast propagation of a crack
once the mesocrack is initiated. To avoid such an event, the state of stress
anywhere in the structure must have a value below the rupture stress with
a safety factor Saf. We advise checking to ensure that

σ�
max <

σu

Saf
. (7.47)
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Due to the statistical effect of initial defects, a probabilistic safety margin is
preferred each time it is possible:

Prob(σ�
max ≥ σu) <

1
SafPr

, (7.48)

where σu is a random variable and σ�
max may also be a random variable due

to the uncertainties of the loadings.
The statistically admissible risk defined by 1/SafPr depends on many fac-

tors: knowledge of the material, knowledge of the loading, the quality of the
mechanical analysis, the consequences of an eventual accident, and also sub-
jective human factors. Therefore, SafPr = 102, 103, . . . , 105 or more.

The safest design cannot have SafPr = ∞. It is, however, a design
which minimizes the consequences of a failure. In this spirit, the “fail-
safe” design consists of two or three parallel systems for one major resisting
function.

Once a mesocrack is initiated, it is difficult to avoid the complete failure.
Its size calculated in Sect. 1.6.3 does not contain the plastic term (1.252) as
the material is considered fully elastic, i.e.,

δ0 ≈ Gc

σ2
u

2E
Dc

. (7.49)

A fast crack propagation will be avoided if the strain energy release rate
G for this mesocrack is smaller than the toughness Gc:

G < Gc with G ≈ κ
σ2
∞πδ0

E
, (7.50)

where κ is a shape factor and σ∞ is the far field stress,

κ
σ2
∞πδ0

E
< Gc . (7.51)

The result does not depend on the toughness anymore but it depends on the
critical damage, as in

σ∞
σu

<

√
Dc

2πκ
, (7.52)

with 0.2 < Dc < 0.5 and 1 ≤ κ < 10 so that

0.06 <
σ∞
σu

< 0.28 . (7.53)

These are indeed small values due to the large crack length δ0 initiated
by damage in brittle materials. They are often exceeded in practice, which



336 7 Failure of Brittle and Quasi-Brittle Materials

is safe as long as no crack exists but not otherwise. Anyway, this explains
why it is so difficult to design crack arrests in structures made of brittle
materials!

7.3 Basic Engineering Examples

The same cases of stress concentrations in cylinders or beams as in the pre-
vious chapters are treated here, assuming the structures are made of brittle
materials. It is somewhat simpler as plasticity is ignored but any defect may
play an important role. The design of notches or geometry variations and
their machining or forming must be done with much care. Furthermore, any
scratch or surface damage in service must be controlled and examined from
the point of view of residual strength.

7.3.1 Plates or Members with Holes and Notches

The uniaxial local stress at the critical point of stress concentration is sup-
posed to be determined via a structural calculation or from the elastic stress
concentration coefficient KT and the nominal stress σn (see Fig. 3.4 and
handbooks),

σ = KTσn . (7.54)

The stress condition for a mesocrack initiation is simply

σR = KTσnR = σu . (7.55)

In case of a 3D state of stress, the damage equivalent stress with or without
the microdefects closure effect associated with an initial damage may be
used:

σ� = σu . (7.56)

For design purposes, it is interesting to express the admissible stress σ�
max

or the ratio σ�
max/σu corresponding to a given probability of failure derived

from the Weibull model of Sect. 7.2.3:

σ�
max

σu
=
[
− V0

Veff
ln(1 − PF)

] 1
mw

. (7.57)

Figure 7.9 shows how it varies with the probability PF, the ratio V0/Veff, and
mw as parameters.

This graph helps us choose the safety factor Saf of Sect. 7.2.6. For example,
in order to ensure a failure probability below 10−5 with mw = 7 and V0/Veff =
10−1, the safety factor Saf = σu/σ�

max must be larger than 7.2. It shows also
that the variation of Saf is on the order of 2 when the Weibull modulus mw

varies from 7 to 15 or when the volume fraction V0/Veff varies from 10−1

to 10−3.
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Fig. 7.9. Admissible damage equivalent stress for a given failure probability

7.3.2 Pressurized Shallow Cylinders

The structural analysis of Sect. 3.3.2 and Fig. 3.6 is again recalled for a long
circular cylinder of radius Rcyl and thickness tcyl that is submitted to an
increasing relative pressure P , yielding

σeq =
√

3
2

PRcyl

tcyl
,

σH =
PRcyl

2tcyl
,

TX =
σH

σeq
=

1√
3

,

Rν =
5 − 4ν

3
.

(7.58)

The condition of rupture is still σ� = σu except if some defect D0 must
be taken into consideration. In that case,

σ� = σeq

√
Rν = σu(1 − D0) , (7.59)
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and the pressure to bursting PR is

PR =
2√

5 − 4ν

tcyl

Rcyl
σu(1 − D0) . (7.60)

Using ν = 0.3, this gives a pressure that is ≈ 12% lower (even with
D0 = 0) than the von Mises stress criterion σeq = σu sometimes used!

7.3.3 Fracture of Beams in Bending

Sorry, this question is as simple as the first undergraduate course about
strength of materials!

Assume a portion of a rectangular beam of width b and height h loaded in
pure bending by a bending moment M (Fig. 3.7). According to the Bernoulli
hypothesis, the maximum stress at the upper and lower part of the height is

σmax =
M

I

h

2
, (7.61)

where I = bh3/12 is the inertia moment.
Writing the condition of crack initiation with an eventual defect D0,

σmax = σu(1 − D0) (7.62)

gives the value of the bending moment at crack initiation MR,

MR =
2I

h
σu(1 − D0) , (7.63)

or for the rectangular cross section,

MR =
bh2

6
σu(1 − D0) . (7.64)

For considering fixed value of the moment and D0 = 0,

σmax =
6MR

bh2
. (7.65)

Once the crack initiated reaches a length of δ0, a (very) rough estimation
of the maximum stress is

σ′
max =

6MR

b(h − δ0)2
. (7.66)

If σ′
max > σu (except if D0 is large and localized only on the edge), the crack

length increases, leading to a total fracture by instability.

Conclusion: If you try to initiate a small crack in a brittle component stress
controlled by bending, you will obtain two components! But it may work if
you try it by strain or controlled displacement.
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7.4 Numerical Failure Analysis

The high level of damage encountered in components or parts of struc-
tures made of quasi-brittle materials is usually made acceptable by the pres-
ence of reinforcements: laminate composites are multi-layered, concrete is
reinforced by bars or cables, and ceramic matrix composites (CMC) are
fiber-reinforced.

Modern design solutions need to live with this damage and the corre-
sponding computations are necessary for evaluations. By chance, reinforce-
ments often prevent the strain localization phenomenon and one can expect
nonlinear, but stable, damage computations.

As quasi-brittle materials behave quasi elastically, specific damage models
may be formulated.

7.4.1 Quasi-Brittle Damage Models ,

Quasi-brittle materials are usually modelled by elasticity coupled with dam-
age (no plasticity!) and with a damage law of the form D = D(Y ) or
D = D(ε), as justified in Sect. 7.2.3 from a Weibull analysis of a fiber bundle.
Such damage models mainly apply to ceramics and composites.

The quasi-brittle material of main interest in civil engineering is concrete
which exhibits very different behaviors in tension and in compression. An
engineering design assumption is allowing its tensile strength to be equal to
zero! This is of course not fully satisfactory and such an assumption is difficult
to introduce in numerical computations, with the classical question: what is
tension and what is compression for 3D states of stress? Fortunately, the use
of the mathematical tools of Sect. 1.2.4 allows us to build suitable damage
models for quasi-brittle materials and with a reduced number of material
parameters.

7.4.1.1 Marigo Model of Elasticity Coupled with Damage (1981)

The Marigo model is written in the thermodynamics framework with the
total strain ε associated with the stress σ and the damage D associated with
the opposite of the strain energy release rate Y as state variables.

The Helmholtz free energy has the simple expression

ρψ =
1
2
(1 − D)ε : E : ε , (7.67)

with E as the elasticity tensor.
The damage criterion (such as f < 0 ⇒ elasticity) is written as

f = Y − κ(D) , (7.68)
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where κ(D) is a function of the damage and κ(0) = YD is the damage thresh-
old in terms of elastic energy density. The term SM = dκ

dD is the consolida-
tion modulus and linear consolidation corresponds to κ(D) = SD +YD, with
SM = S = const.

The law of elasticity coupled with damage derives from the Helmholtz
potential as

σ = E(1 − D) : ε or ε =
1 + ν

E(1 − D)
σ − ν

E(1 − D)
tr σ 1 . (7.69)

The strain energy release rate is

Y =
1
2
ε : E : ε =

σ� 2

2E(1 − D)2
, (7.70)

where σ� = σeqR
1/2
ν is the damage equivalent stress.

The damage evolution law derives from the dissipative potential, taken
here as FD = f (associated model), through the normality law

Ḋ = µ̇
∂FD

∂Y
= µ̇ , (7.71)

with µ̇ as the damage multiplier calculated by means of the consistency con-
dition f = 0 and ḟ = 0. The damage evolution law is then

Ḋ =
Ẏ

SM
. (7.72)

For monotonic loading, D = 0 as long as Y ≤ YD. The integration of the
previous law gives, of course,

D = κ−1(Y ) if Y > YD , (7.73)

where κ−1(Y ) is the damage function. For complex loadings such as non-
monotonic and/or 3D loadings, considering the damage surface FD = f = 0
gives a damage simply related to the maximum value of the strain energy
release rate Ymax over the loading,

Ymax = sup
τ∈[0,t]

Y (τ) , (7.74)

and

D = κ−1(Ymax) = D(Ymax) such as Y < YD =⇒ D = 0 . (7.75)

A simple but general damage evolution law is:

D = κ−1(Ymax) =
〈

Ymax − YD

S

〉s
, (7.76)

with YD, S, and s as the damage parameters.
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A damage law adapted to concrete either in tension or compression is
(C. Laborderie 1991)

D = κ−1
Lab(Ymax) = 1 − 1

1 +
〈

Ymax − YD

S

〉s . (7.77)

A damage law adapted to composite materials is (P. Ladevèze and E. Le Dan-
tec 1992)

D = κ−1
Lad(Ymax) =

〈√
Ymax −

√
YD

S

〉
(7.78)

and the Weibull damage law of Sect. 7.2.3 may be written as

D = κ−1
w (Ymax) = 1 − exp

{
−
[
Ymax

Sw

]sw
}

, (7.79)

with S, s, or Sw, sw as material parameters.
Note that these models yield symmetric behavior in tension and in com-

pression.

7.4.1.2 Marigo Model with Microdefects Closure Effect

This section gives a simple extension of the Ladevèze–Lemaitre isotropic dam-
age framework of Sect. 1.2.4 to quasi-brittle materials. The model uses a single
damage variable D corresponding to a damage state that is either tension-like
or compression-like (or a mix).

Take as state potential the following:

ρψ� =
1 + ν

2E

[〈σ〉+ : 〈σ〉+
1 − D

+
〈σ〉− : 〈σ〉−

1 − hD

]
− ν

2E

[ 〈tr σ〉2
1 − D

+
〈−tr σ〉2
1 − hD

]
,

(7.80)
from which

ε =
1 + ν

E

[ 〈σ〉+
1 − D

+
〈σ〉−

1 − hD

]
− ν

E

[ 〈tr σ〉
1 − D

− 〈−tr σ〉
1 − hD

]
1 (7.81)

and

Y =
1 + ν

2E

[ 〈σ〉+ : 〈σ〉+
(1 − D)2

+ h
〈σ〉− : 〈σ〉−
(1 − hD)2

]
− ν

2E

[ 〈tr σ〉2
(1 − D)2

+ h
〈−tr σ〉2
(1 − hD)2

]
,

(7.82)

with the elasticity law and the strain energy release rate density as functions
of the microdefects closure parameter h.

Keeping the damage criterion unchanged f = Y − κ(D) still leads to

D = κ−1(Ymax) = D(Ymax) . (7.83)
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Due to the introduction of h < 1, the elasticity law is different in tension and
in compression:

σ = σ+ = E(1 − D)ε in tension

σ = σ− = E(1 − hD)ε in compression.
(7.84)

The damage growth is also different for tension and compression. For the
same loading intensity |ε|,

Y = Y + =
σ+ 2

(1 − D)2
=

1
2
Eε2 −→ D = κ−1

(
1
2
Eε2max

)
(tension)

Y = Y − = h
σ− 2

(1 − hD)2
=

h

2
Eε2 −→ D = κ−1

(
h

2
Eε2max

)
(compression)

(7.85)

with the damage induced by compression being smaller than the damage
induced by tension. An example of the model response is given in Fig. 7.10.

Fig. 7.10. Stress-stain curve for Marigo model with microdefects closure effect
(E = 30000 MPa, linear law D = Ymax/S, S = 5 · 10−4, h = 0.057)

The model applies to any state of stress. It is quite simple with material
parameters E and ν for elasticity, YD as the damage threshold (which may
be taken to be equal to zero for concrete), and S, s, and h as the damage
parameters. We recommend using the simple damage evolution law (7.76)



7.4 Numerical Failure Analysis 343

D = κ−1(Ymax) =
〈

Ymax − YD

S

〉s
. (7.86)

7.4.1.3 Anisotropic Damage Model for Concrete

For concrete, it is sufficient to consider damage anisotropy with a quasi-
unilateral effect acting on the hydrostatic stress only in the general thermo-
dynamics framework of Sects. 1.2 and 1.5.

First, the Gibbs specific free enthalpy is represented by

ρψ� =
1 + ν

2E
tr
(
HσDHσD

)
+

1 − 2ν

6E

[ 〈tr σ〉2
1 − tr D

+ 〈−tr σ〉2
]

, (7.87)

with H = (1 − D)−1/2 so that the elasticity law becomes

ε = ρ
∂ψ�

∂σ
=

1 + ν

E
σ̃ − ν

E
tr σ̃ 1 (7.88)

and defines the symmetric effective stress as

σ̃ = (HσDH)D +
1
3

[ 〈tr σ〉
1 − tr D

− 〈−tr σ〉
]
1 . (7.89)

The energy release rate tensor Y = ρ∂ψ�

∂D is the thermodynamics variable
associated with D (see Sect. 1.2.3).

Second, use the Mazars strain damage criterion (f < 0 −→ elasticity)
yielding

f = ε� − κ(tr D) and ε� =
√
〈ε〉+ : 〈ε〉+ , (7.90)

where κ(tr D) is chosen to ensure that at low cost (two damage parameters
only), the damage rate in compression is lower than that in tension:

κ(tr D) = a · tan
[
tr D

aA
+ arctan

(κ0

a

)]
, (7.91)

where κ0 is the damage threshold. The terms A and a are the dimensionless
damage parameters.

The anisotropic damage evolution law can be derived from the non-
associated damage potential F = F (Y ; ε) = Y : 〈ε〉2+,

Ḋ = µ̇
∂F

∂Y
= µ̇〈ε〉2+ . (7.92)

The damage multiplier µ̇ is determined from the consistency condition f = 0
and ḟ = 0. The damage law finally reads as
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Ḋ = κ−1′(ε�)
〈ε〉2+
ε�2

ε̇� (7.93)
or

Ḋ = A

[
1 +
(

ε�

a

)2]−1 〈ε〉2+
ε�2

ε̇� if ε� > κ

maxDI = Dc −→ mesocrack initiation.

(7.94)

It ensures a damage rate that is proportional to the square of the positive
part of the total strain tensor and in accordance with the damage anisotropy
observed in concrete in tension and compression (see Sect. 1.4.5).

Fig. 7.11. Stress-stain curve for the anisotropic damage model (E = 42000 MPa,
ν = 0.2, κ0 = 5 10−5, A = 5 103, a = 2.93 10−4, Dc = 0.92)

A nonlocal anisotropic damage model is simply obtained by replacing ε�

in the damage criterion with the nonlocal Mazars equivalent strain,

ε�
nl =

1
Vr

∫
V

W (x − s)ε�(s)dV , (7.95)

where W (x − s) is a nonlocal weight function (such as (2.113) or (2.114) of
Sect. 2.2.7) and where Vr =

∫
V

W (x − s)dV . Consider then f = ε�
nl−κ(tr D),

keeping F = Y : 〈ε〉2+ unchanged so that the nonlocal anisotropic damage
evolution law reads:

Ḋ = A

[
1 +
(

ε�
nl

a

)2]−1 〈ε〉2+
ε�2

ε̇�
nl if ε�

nl > κ

maxDI = Dc −→ mesocrack initiation.

(7.96)
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The local model has a total of 6 material parameters: E, ν for elasticity, κ0

as damage threshold, and A, a, and Dc as damage parameters. An example
of the concrete stress-strain curve is given in Fig. 7.11.

Finally, when permanent strains have a major effect, as in cyclic loading
or in dynamics, use the Laborderie model (see Sect. 7.4.3) or others, taking
into account the microdefects closure effect, damage anisotropy, and inelastic
strains (A. Dragon and D. Halm 1998, F. Ragueneau 1999).

7.4.1.4 Damage Model for Composite Laminates
Elementary Layers (P. Ladevèze 1986)

This model takes into account different damage mechanisms with different ef-
fects in tension and compression. Consider here laminates made of orthotropic
layers or plies (long fiber reinforcement). In such composite materials, damage
occurs at different levels:

• In the elementary plies with several degradation mechanisms, different
scalar damage variables such as DF for fiber breakage, DT for transverse
cracking, and DS for shear damage are considered.

• Damage at the interfaces leads to the phenomenon of delamination.

The simple 2D quasi-brittle mesomodel for elementary plies described here
is an extension of the Marigo model to orthotropy. The Gibbs energy is
represented by

ρψ� =
〈σ11〉2

2E1(1 − DF)
+

φ(〈−σ11〉)
2E1

− 1
2

(
ν21

E2
+

ν12

E1

)
σ11σ22

+
〈σ22〉2

2E2(1 − DT)
+

〈−σ22〉2
2E2

+
σ2

12

2G12(1 − DS)
,

(7.97)

with the usual symmetry ν21/E2 = ν12/E1, �e1 in the fiber direction and φ as
the microdefects closure function. The initial model considers φ = 〈−σ11〉2
(instantaneous modulus recovery in compression). A thermodynamically con-
sistent choice taking into account the nonlinear elastic response in compres-
sion is (B. Desmorat 2002)

φ = − 1
bD

ln
(
1 − bD〈−σ11〉2

)
, (7.98)

with bD as a material parameter. This leads to an effective Young’s modulus
Ẽ−

1 in compression that is different from the effective modulus in tension Ẽ+
1 :

Ẽ−
1 = E1 for the instantaneous recovery; E−

1 = E1(1 − bD〈−σ11〉2〉) for the
nonlinear response.

The elasticity law coupled with damage yields the following from the
thermodynamics potential
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ε11 =
〈σ11〉

E1(1 − DF)
− 〈−σ11〉

E−
1

− ν21

E2
σ22 ,

ε22 =
〈σ22〉

E2(1 − DT)
− 〈−σ22〉

E2
− ν12

E1
σ11 ,

ε12 =
σ12

2G12(1 − DS)
.

(7.99)

The energy release rate densities associated with the damage variables are

YF =
〈σ11〉2

2E1(1 − DF)2
,

YT =
〈σ22〉2

E2(1 − DT)2
,

YS =
σ2

12

2G12(1 − DS)2
.

(7.100)

Damage evolution laws such as (7.78) can be used for each damage variable
(up to a critical damage Dc equal to 1). An adequate choice for organic matrix
composites is to consider brittle fiber breakage, DF = 0 or 1 depending on
the fiber rupture stress σRF, and mixed evolution of damage for tranverse
cracking and shear damage (P. Ladevèze and E. Le Dantec 1992):

Ŷ = sup
[0,t]

{YS + bTYT} ,

DT =

〈√
Ŷ −√

YTD

ST

〉
,

DS =

〈√
Ŷ −√

YSD

SS

〉
,

(7.101)

with bT, ST, YTD, SS, and YTS as the damage parameters.
In tension, the stress-strain curves are similar to those obtained for the

Marigo model. Note that the model can be completed to take into account the
plastic-like behavior in the ±45◦ directions. See Sect. 7.4.4 for an application
mixing both layers degradation and interfacial delamination.

7.4.2 Failure of Pre-stressed Concrete 3D Structures
(F. Gatuingt and F. Ragueneau 2001, 2004)

Consider first concrete structures reinforced with passive bars and/or active
(pre-stressed) cables. Mesh the concrete parts with 2D or 3D finite elements
of size varying from 0.01 m (cement) or 0.1 m (concrete) to usually 0.3 m or
more for large structures or uniformly loaded zones. Use a law of elasticity
coupled with damage for the concrete elements. Model the bars and the cables



7.4 Numerical Failure Analysis 347

with 1D elements with interpolation functions of the same type as those for
the 2D or 3D connecting elements and use elasto-plasticity or elasto-plasticity
coupled with isotropic damage for the steel reinforcements (see Sect. 1.5.2).

It is usually not necessary to model damage in bars and cables as the
designed solutions tend to prevent it:

• For monotonic loading applications, the value of the uniaxial strain in
the steel parts must remain lower than the damage threshold εpD or the
rupture strain εpR.

• For cyclic or dynamic loadings, compute at least the accumulated plastic
strain p or the stored energy ws for comparison with the damage thresh-
old in terms of plastic strains pD or in terms of stored energy wD (see
Sect. 1.4.1).

Still, for the steels, use monotonic hardening only for monotonic applications;
use kinematic hardening (or both kinematic and isotropic hardening) for
cyclic and dynamics applications.

Finally, the numerical problem of the application of the pre-stresses in the
active cables is not so simple. A possible procedure for damage computations
with pre-stressed cables is as follows:

1. Estimate the cables tensile stress σ0 and enter it at the Gauss points of
the cables elements.

2. Use a finite element interpolation to transform it into elementary nodal
loads {Fe} (with the notations of Sect. 2.2.1) at the FE nodes of the
cables elements,

{Fe} =
∫

Ve

[B]T {σ} dV . (7.102)

They represent the loading applied by the concrete body on the cables.
3. Change the sign of previous nodal loads to obtain the loading applied, by

the cables on concrete. This defines the loading equivalent to the cables
action.

4. The computation of the structure submitted to previous equivalent load-
ing gives both initial deformation and damage states due to the applica-
tion of the pre-stress. Do not model the cables at this stage.

5. Consider finally the cables as passive elements in further structure com-
putations. To correctly model the cables plastification, do not forget to
decrease, in the FE input file, the cables yield stress to σy0 = σy − σ0

(σy is the yield stress of the material). Start the computation from the
previous initial deformation state.

The stress, strain, and damage fields numerically obtained take into account
the cables pre-stress.

As an example, consider the short term behavior of the concrete structure
in Fig. 7.12 is representative of a ring of a power plant containment vessel
reinforced by half circular steel bars and pre-stressed by metallic cables. The
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diameter of the ring is 46.8 m, its thickness is 0.9 m, and only a height of
0.4 m is meshed (see Fig. 7.13). A vertical compressive stress of 8.5 MPa is
applied to model the weight of the upper part of the structure (not meshed).
There are two symmetric anchoring parts and the steel reinforcement is made
of 88 rectangular stirrups (not considered in the computations), 4 circular
reinforcement bars and 2 pre-stressed half-circular cables. The finite element
analysis of the ring is made in 3D with the bars and the cables modelled
with 2-node bar elements and the concrete part with of 8-node bricks. The
C.E.A. CASTEM 2000 computer code is used.

Fig. 7.12. Concrete ring and its steel reinforcement

Both the passive steel bars and the active metallic cables are assumed to
be perfectly plastic. The concrete is modelled with the anisotropic damage
model of the previous section and the corresponding material parameters are

• E = 190000 MPa, ν = 0.3, and σy = 500 MPa for the steel bars of
diameter 25 mm

• E = 190000 MPa, ν = 0.3, and σy = 1814 MPa for the active cables with
cross sections of 5143 mm2
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• E = 42000 MPa, ν = 0.2, κ0 = 5 10−5, A = 5 103, and a = 2.93 10−4 for
concrete (with a rupture stress in compression σ−

u = 38 MPa and a peak
stress in tension σ+

u = 4 MPa)

The pre-stress is introduced using the above procedure to a tensile stress σ0 =
385 MPa along the cables so that when the cables are considered passive, their
yield stress is decreased from σy = 1814 MPa to σy0 = σy−σ0 = 1429 MPa in
the CASTEM input data file. Note that enforcing the pre-stress leads to an
initial cracking localized at the lower side of the anchoring parts (see Fig. 7.13
in which the displacements have an amplification factor of 724).

Fig. 7.13. Undeformed and pre-stressed structures

An internal pressure P (t) is then applied. The damage fields are computed
up to Pmax = 9 105 Pa for which the average damage intensity corresponds
to a structure that has already collapsed. Due to the steel reinforcement,
a non-uniformly deformed mesh is obtained (see Fig. 7.14 in which the dis-
placements have an amplification factor of 633).

Fig. 7.14. Undeformed structure and deformed structure at Pmax = 9 105 Pa

The evolution of the principal damages at point A and at the cross section
center point B (Fig. 7.13) are plotted in Fig. 7.15 as functions of the cables
pre-stressing tension and then as functions of the pressure intensity P .
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Fig. 7.15. Principal damages at points A and B during pre-stress application and
during pressure loading

This simple test shows the possibility of using 3D anisotropic damage
computations of reinforced concrete structures up to a very high damage
level and up to plastification of the reinforcement steels. It illustrates the
fact that initial cracking patterns often exist in such structures. The steel re-
inforcements prevent any localization modes and there is no need to introduce
strain localization limiters.

Coupled with the consideration of a safety criterion D < Dgiven, these
computations can be used to design civil engineering structures at their most
loaded parts.

7.4.3 Seismic Response of Reinforced Concrete Structures
(F. Ragueneau and J. Mazars 2001)

Dynamics and seismic FE analyses need efficient and robust modelling for
both space and time discretizations. Explicit schemes are often used (such as
the Newmark scheme) and some include numerical damping for computation
reasons. Seismic loading looks like a random fatigue loading, but quick, so
that it is given as the seism acceleration history (also called seism accelero-
gram).
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Geometric simplifications are welcome and are sometimes possible for civil
engineering buildings made of walls and flats naturally meshed by beams and
plates. For reinforced concrete parts, a homogeinized behavior must be con-
sidered. A possibility consists of the choice of a multilayered beam (or plate)
element which averages concrete and steel nonlinear constitutive equations
(see Fig. 7.16). Using beam or plate kinematics or multilayered beam mod-
elling conserves the steel reinforcement ratios as well as their location through
their effect on the beam inertia.

Fig. 7.16. Example of a frame frame discretized by multilayered beam elements

For seismic civil engineering applications, consider a damage model with
permanent strains for concrete and use elasto-plasticity for steels (up to dam-
age initiation, see Sect. 7.4.2) or elasto-plasticity coupled with isotropic dam-
age if computations up to a total collapse are performed. Note that the main
advantage of such multifiber type finite elements is the uniaxial implemen-
tation of each layer’s constitutive law, leading to efficient computations in
dynamics. As illustrated next, an accurate modelling of concrete behavior is
necessary, the major role of the dynamics force variation enhances the effect
of the microdefects closure modelling on the seismic response of the structure.

Table 7.1. Steel reinforcements of the walls

Sa, Sb (mm2) Sc (mm2)

Level 5 15.9 78.4
Level 4 28.3 78.4
Level 3 94.4 110.2
Level 2 188.9 138
Level 1 289.4 138

As an example, consider the 1/3rd mock-up of Fig. 7.17 on the “C.E.A.”
shaking table (“CAMUS” experiment) computed for the “Nice S1” accelero-
gram that is representative of earthquake far field and for the “San Francisco
1957” accelerogram representative of earthquake near field. It is composed of
2 parallel walls linked by 6 square slabs and is anchored on the shaking table
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by a highly reinforced footing. Table 7.1 lists the steel reinforcement cross
sections for each wall.

Fig. 7.17. CAMUS mock-up (P. Bish and A. Coin 1998)

The mock-up is loaded by a horizontal displacement parallel to the walls.
Steel bar bracing systems disposed perpendicularly to the loading direction
prevent torsional modes. The complete experimental sequence is an accelero-
gram made of Nice 0.24 g, followed by San Francisco 1.13 g, Nice 0.40 g,
and Nice 0.71 g (Fig. 7.18) modified in time with a ratio 1/

√
3 to take into

account the similarity rules.

7.4.3.1 FE Modelling and Eigenmode Adjustment

The choice of a multilayered beam modelling is made with all the constituents
restricted to beam kinematics, but with nonlinear material behavior.
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Fig. 7.18. Earthquake accelerograms

• The Laborderie model is used for concrete where only the uniaxial con-
stitutive equations are needed. They introduce 11 material parameters: E
and ν for elasticity; αt, αc, and σclos for the microdefects closure effect;
YtD and YcD as damage thresholds in tension and compression; and St,
st, Sc, and sc for damage.
Elasticity with permanent strains due to damage is represented by

ε =
〈σ〉

E(1 − D+)
− 〈−σ〉

E(1 − D−)
+

αtD
+

E(1 − D+)
g′(σ) +

αcD
−

E(1 − D−)
(7.103)

and the damage evolution laws are

D+ = 1 − 1

1 +
〈

Y +
max − YtD

St

〉st

D− = 1 − 1

1 +
〈

Y −
max − YcD

Sc

〉sc ,

(7.104)

where

Y + =
〈σ〉2

2E(1 − D+)2
+

αtg(σ)
E(1 − D+)2

Y − =
〈−σ〉2

2E(1 − D−)2
+

αcσ

E(1 − D−)2
,

(7.105)

and where the microcrack closure function g(σ) is defined as follows
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g(σ) = σ +
〈−σ〉2
2σclos

if σ > −σclos ,

g(σ) = −σclos

2
if σ ≤ −σclos .

(7.106)

The set of material parameters, here for a concrete with a maximum
compressive strength of 35 MPa and tensile strength of 3 MPa, are: E =
22 · 109 Pa, YtD = 127 Pa, YcD = 6 · 104 Pa, St = 1.11 · 10−4 Pa, st = 1.2,
Sc = 1.89 · 105 Pa, sc = 1.4, αt = 106 Pa, αc = −40 · 106 Pa, and
σclos = 1.3 · 106 Pa. The stress-strain response of the model in tension-
compression is given in Fig. 7.19.

Fig. 7.19. Stress-strain curve for the Laborderie model

• The steels are assumed to be elasto-plastic (no damage). They have
a Young’s modulus E = 200 109 Pa, a yield stress σy = 414 106 Pa,
and an ultimate stress σu = 480 106 Pa.

The LMT-Cachan computer code EFICOS (J.F. Dubé, C. Laborderie, J. Ma-
zars 1994) is used with the Newmark scheme for the time discretization.

Figure 7.17 shows the mock-up modelling as well as the finite element
mesh. The maximum element size is limited to 30 cm in the less loaded zones
with a total of 22 elements, each made of 20 layers. The additional mass and
the weight load of each floor are concentrated at each storey (black circles).
The stiffness of the springs below the shaking table is identified so as to fit
the first two eigenmodes measured on the non-damaged (virgin) structure.
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7.4.3.2 Seismic Structure Response

Figure 7.20 gives both the experimental and numerical responses of the struc-
ture. The computed horizontal mock-up top displacement compares well with
the measured one.

Shocks are induced as microcracks close when the vertical mode is acti-
vated. Experimental observations show a vertical acceleration of the shaking
table. The vertical force variations are computed (Fig. 7.21) and a compar-
ison with the experiment (summarized in Table 7.2) demonstrates that the
Laborderie model for concrete, representing permanent strains due to dam-
age and the strong difference of behavior in tension and in compression, is
relevant to seismic analyses.

Fig. 7.20. Horizontal top displacement

Fig. 7.21. Vertical force variations
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A small change in the microcrack closure function through the value of
σclos, responsible for the gradual stiffness recovery in compression, has a big
influence on the results on a structural level (it activates the second vibration
mode here). In conclusion, it is of first importance in dynamics to properly
model the microdefects closure effect for loaded concrete structures.

Table 7.2. Maximum dynamics forces (kN)

Model Experiments

Nice 0.24 g 119 138
San Francisco 1.13 g 160 198
Nice 0.40 g 132 146
Nice 0.71 g 190 248

7.4.4 Damage and Delamination in Composite Structures
(O. Allix and P. Ladevèze 1992–98)

Damage of composite laminates is complex, with different damage mecha-
nisms in each ply of the stacking structure but also with delamination and
crack propagation at the interfaces (Fig. 7.22). Based on the damage models
of Sect. 7.4.1 for the orthotropic layers, a mesomodel can be built, allowing
for the computation of damage and delamination in laminate structures.

Fig. 7.22. Damage mechanism in laminates (left). Laminate modelling (right)

For engineering applications, perform first the whole structural compu-
tation in elasticity using laminated plates theory (with no damage and with
perfect interfaces). Then reanalyze the most loaded zones by meshing every
layer and interface using damage models.

For 3D reanalyses, the Gibbs energy for a single layer (7.97) must be
completed with normal stresses terms:
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ρψ� =
〈σ11〉2

2E1(1 − DF)
+

φ(〈−σ11〉)
2E1

+
〈σ22〉2

2E2(1 − DT)
+

〈−σ22〉2
2E2

− ν12

E1
σ11σ22

+
〈σ33〉2

2E3(1 − DT)
+

〈−σ33〉2
2E2

− ν13

E3
σ11σ33 − ν23

E2
σ22σ33

+
σ2

12

2G12(1 − DS)
+

σ2
23

2G23(1 − DS)
+

σ2
13

2G13(1 − DS)
,

(7.107)

with φ as a nonlinear function such as (7.98) and where the subscripts 1, 2,
and 3 designate the fibers direction, the transverse direction inside the layer,
and the normal direction, respectively, and 〈.〉 stands for the positive part.
The elasticity coupled with damage laws is derived from the Gibbs potential.
A delay effect is introduced here for regularization purpose within the damage
evolution laws: for the damage variables DS and DT, one considers

ḊS or T = Ḋ∞
[
1 − exp

(
−a〈κ−1

Lad(Ŷ ) − DS or T〉
)]

, (7.108)

which recovers the laws DS or T = κ−1
Lad(Ŷ ) =

〈√
Ŷ −√

YD
SS or T

〉
of Sect. 7.4.1 for

low strain rates and which bounds the damage rates to Ḋ∞ at high strain
rates (with Ḋ∞ and a as material parameters). Note that the inelastic strains
in the layers (due to the microcracks sliding with friction) are taken into
account through the consideration of a plasticity-like yield function, such as
f < 0 corresponding to elasticity and f = 0 to internal sliding:

f =
√

σ̃2
12 + σ̃2

23 + σ̃2
13 + χ2(σ̃2

22 + σ̃2
33) − R − τy ≤ 0 , (7.109)

with R as the hardening function, τy as the yield stress and χ as a material
parameter. The effective stresses are then

σ̃11 = σ11 ,

σ̃22 =
〈σ22〉

1 − DT
− 〈−σ22〉 ,

σ̃33 =
〈σ33〉

1 − DT
− 〈−σ33〉 ,

σ̃ij =
σij

1 − DS
(i �= j) .

(7.110)

Next, mesh the imperfect interfaces by using interface elements (iso-
parametric elements here) with the interface damage model developed by
O. Allix and P. Ladevèze (1992). It considers an interface energy per unit area
function of the components σi3 of the normal stress vector (constant across
the interface) and 3 damage variables d1, d2, and d3 (anisotropic interface):

Ψ� =
〈σ33〉2

2k3(1 − d3)
+

〈−σ33〉2
2k3

+
σ2

13

2k1(1 − d1)
+

σ2
23

2k2(1 − d2)
, (7.111)
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where �n = �e3 is the interface normal (see also Fig. 7.4 of Sect. 7.2.2). The
interface stiffness terms ki are material parameters which depend on the
thickness estimated for the physical interface (1 µm here).

The variables associated with the stresses σi3 are the displacement dis-
continuities [[ui]] at the interface and the interface elasticity law coupled with
damage derived from the thermodynamics potential Ψ�:

[[u1]] =
∂Ψ�

∂σ13
=

σ13

k1(1 − d1)
,

[[u2]] =
∂Ψ�

∂σ23
=

σ23

k2(1 − d2)
,

[[u3]] =
∂Ψ�

∂σ33
=

〈σ33〉
k3(1 − d3)

− 〈−σ33〉
k3

,

(7.112)

as do the strain energy release rates,

Y1 =
∂Ψ�

∂d1
=

σ13

2k1(1 − d1)2
,

Y2 =
∂Ψ�

∂d2
=

σ23

2k2(1 − d2)2
,

Y3 =
∂Ψ�

∂d3
=

〈σ33〉
2k3(1 − d3)2

.

(7.113)

The interface damage evolution law is written here in a delayed form
bounding the damage rate (with SI, sI, δ̇∞ and aI the interface damage
parameters), as represented by

δ̇ = δ̇∞

(
1 − exp

{
−aI

[(
ŶI

SI

)sI

− δ

]})

ŶI = [Y γ0
3 + (γ1Y1)γ0 + (γ2Y2)γ0 ]1/γ0 ,

(7.114)

where d1 = d2 = d3 = δ here.
Perform then the damage post-processing of the zone of interest such as

around perforations, holes, or rivets. Use as boundary conditions the dis-
placement field along the multilayered plate medium plane computed in the
elastic reference calculation. Be careful to apply this field on a single medium
line along the border of the reanalyzed zone: imposing displacements all over
the thickness nodes would lead to edges effects and non-physical damaged
zones localized along this border.

As an example, consider the M55J/M18 high modulus carbon-fiber/epoxy-
resin laminate with stacking sequence [03/± 452/90]S and which is loaded in
tension (Fig. 7.23). The testing specimen is 50 mm in width, 150 mm in gauge
length, and has a 10 mm diameter hole. The ply thickness is 0.125 mm. The
tensile test is performed at a fixed displacement rate of 0.5 mm·min−1. Fig-
ure 7.24 shows the evolution of the X-ray revealed damage map near the hole
for an increasing applied load. Rupture is obtained for a load of 430 MPa.
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Fig. 7.23. Carbon-fiber/epoxy-resin M55J/M18 holed specimen

At 55% of the rupture load, both transverse cracking (in 90◦-plies near the
hole) and matrix cracking (in the 0◦-plies near the hole in the fiber direction,
phenomenon also called “splitting”) occur. Delamination initiates later, at
about 80% of the rupture load. The delaminated area develops and remains
located between the two splitting lines. At 97% of the rupture load, its length
is about the equivalent of two hole diameters.

Fig. 7.24. X-ray photographs of the M55J/M18 holed specimen (D. Levèque 1998)

The damage reanalysis of the circular zone around the hole is performed
by post-processing an initial elastic multilayered plate analysis. The DSDM
LMT-Cachan computer code is used with the following material parameters:

• Single ply in the orthotropy framework (�e1: fibers direction):
E1 = 311000 MPa, E2 = 6350 MPa, E3 = 20000 MPa, ν12 = ν13 = 0.35,
ν23 = 0.48, G12 = G13 = G23 = 4870 MPa, σRF = 1760 MPa, bT = 0,
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YSD = YTD = 0, SS = 2.55 MPa1/2, ST = 1.96 MPa1/2, Ḋ∞ = 500 s−1,
a = 1, χ = 1.3, τy = 17 MPa, R(p) = 1445 · p1/2 MPa.

• 0◦-0◦ interface: k1 = k2 = k3 = 4 · 105 N/mm−3, γ0 = 1.6, γ1 = γ2 = 0.4,
aI = 1, δ̇∞ = 1000 s−1, SI = 0.66 N/mm−1, sI = 0.2.

• ±θ interfaces: k1 = k2 = 3 ·104 N/mm−3, k3 = 4 ·104 N/mm−3, γ0 = 1.2,
γ1 = γ2 = 0.4, aI = 1, δ̇∞ = 1000 s−1, SI = 0.54 N/mm−1, sI = 0.5.

The damage maps computed in the layers and interfaces are given in Figs. 7.25
and 7.26. The delaminated areas (in black) correspond to the zones where
the damage d3 = 1. Note that when the 0◦-fibers break near the hole, the
local load is transferred by shear in the matrix in the adjacent fibers. The
shear damage DS is then the indicator for splitting.

Fig. 7.25. Computed damage maps at the interfaces (at rupture load)

Fig. 7.26. Computed damage maps in the layers (at rupture load)
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In conclusion, damage mechanics is an adequate tool to predict the dam-
age pattern in composite materials and structures but it needs an impor-
tant material database. It models interface cracking and delamination phe-
nomenon and can therefore be used to optimize the layers sequence. Finally,
note that in such quasi-static fracture the material constants Ḋ∞, a, δ̇∞, and
aI do not play an important role but they become of most importance in
dynamic cases such as chock problems.

7.4.5 Failure of CMC Structures
(F. Hild, P.-L. Larsson, F.A. Leckie 1994)

Due to long fiber reinforcement, ceramic matrix composites (CMC) are or-
thotropic and quasi-brittle. The strength of structures made of CMC can
be checked either by using the Weibull analysis of Sect. 7.2.3 or Continuum
Damage Mechanics. The aim of this section is to illustrate the second possibil-
ity with the orthotropic damage model for composite layers (see Sect. 7.4.1)
extended to transverse isotropy.

The 3D elasticity coupled with damage model is obtained by completing
the thermodynamics potential (7.97) with terms ensuring that the direc-
tions 2 and 3 play the same role. Perform then the damage computations
in a fully coupled FE analysis, bearing in mind that once strain localization
takes place, a mesocrack should be initiated and the FE solutions become
mesh-dependent.

As an example, consider a spinning disk and a spinning ring made of
CMC fiber reinforced in the hoop direction (Fig. 7.27). Both the disk and
the ring have an outer radius a = 0.3 m. The inner radius of the ring is
b = a/2 = 0.15 m. The two structures are thin enough for the plane stress
assumption to apply and the cylindrical coordinates system (r, ϕ) is chosen.
The loading is due to a rotation at the angular velocity ω and ρ denotes the
material density.

The constitutive model is elasticity coupled with damage and is locally
orthotropic (tangential to the fibers direction). The damage variable is defined
as the percentage of broken fibers and is given by the corresponding failure
probability (Eq. (7.37) with σϕϕ = Eϕ(1 − Dϕ)εϕϕ). Thus

Dϕ = 1 − exp

{
− L

L0

[
2EϕYϕ

φ2σ2
w

]mw
2
}

and Yϕ =
σ2

ϕϕ

2Eϕ(1 − Dϕ)2
(7.115)

if εϕϕ > 0 and ε̇ϕϕ > 0 and where the Weibull parameters mw and σw are
identified from tensile tests made on fibers of length L0 and φ is the fiber
volume fraction in the hoop direction.

Due to distributed pull-out in these spinning structures, the evolution of
fiber breakage is not dictated by the length of the fibers but by the strength
over which, once a fiber is broken, the tensile stress field recovers its original
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level. This length is a function of the fiber radius Rf and the interfacial shear
stress τI which is assumed to be constant along the interface cracks. For
weak interfaces (τI < 10 to 15 MPa here), a shear lag analysis using the
global load sharing assumption gives (R.B. Henstenburg and S.L. Phoenix
1989, W.A. Curtin 1989)

L =
Rf σϕϕ

φτI(1 − Dϕ)
(7.116)

and leads to a damage law representing the gradual fiber multifragmentation
which is less conservative than the initial Weibull law:

Dϕ = 1 − exp

{
−
[
2EϕYϕ

φ2σ2
c

]mw+1
2
}

and σc =
(

σmw
w L0τI

Rf

) 1
mw+1

.

(7.117)
Fully coupled computations are performed with the ABAQUS code under

a plane stress assumption. Satisfactory results are obtained with only 20
elements. The material parameters are:

• Eϕ = 140 109 Pa, Er = 20 109 Pa, Grϕ = 13 109 Pa, and νrϕ = 0.214 for
elasticity

• mw = 4, φσw = 1450 106 Pa, L0 = 12.6 10−3 m, and φσc = 1300 106 Pa
for damage

Fig. 7.27. Analyzed structures
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Figure 7.28 compares the stress field in the hoop direction of the ring obtained
for elasticity coupled with damage to the stress field obtained in pure elas-
ticity. There is a stress redistribution and the global stiffness of the damaged
structure softens as the applied load increases.
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The damage field computed in the disk is given in Fig. 7.29 where the
critical damage Dc = 0.18 corresponds to strain localization occurrence. Note
that the model predicts strain localization and therefore, mesocrack initiation
inside the structure. There is also a difference in the computed load levels
at localization ρω2

loc between the two structures studied: ρω2
loc = 1.87 · 1010

kg·m−2·s−2 for the disk and ρω2
loc = 2.26 ·1010 kg·m−2·s−2 for the ring. These

values are found to be 20 to 25% larger than the values obtained with the
initial Weibull law (7.115) which corresponds to a more conservative design,
i.e., heaviest mechanical components.

To conclude, FE damage analyses of quasi-brittle CMC structures can be
performed up to strain-damage localization (the failure criterion considered
here). They give the location of the fiber reinforcement weakness in the ring
and can be used to design non-uniformly reinforced disks and rings and to
optimize the fiber density distribution.

7.4.6 Single and Multifragmentation of Brittle Materials
(C. Denoual and F. Hild 1997)

Pure brittle materials may break either by single cracking or multifragmenta-
tion depending on the stress rate. This is the case for glass, concrete, ceramics,
and rocks when impacted by a projectile.

At low stress rate, failure occurs as a result of a single crack propagation
with a high degree of scatter. A classical analysis using the σ� criterion (see
Sect. 7.2.1) or Weibull analysis (see Sect. 7.2.3) gives the failure conditions. In
dynamics, fragmentation occurs with a more deterministic behavior and the
microcrack pattern can be computed using Continuum Damage Mechanics.
In order to make proper predictions, it is important to know a priori the
transition between the two mechanisms.

The Weibull model corresponds to the initiation and immediate growth of
a crack in a brittle material. In dynamics, the degradation mechanism is com-
plex because only a part of the unstable defects or flaws lead to microcrack
growth. This is due to a stress relaxation (or obscured) zone which develops
around each initiated microcrack during the propagation of the stress wave.
To illustrate this phenomenon, the microcrack initiation is represented on the
space-time graph of Fig. 7.30 where the first initiation occurs at time t1 at
the space location M1 for the stress σ�(t1). This produces an obscured zone
of volume Vobs as a function of t − t1 in which no flaws become unstable.

Assuming self similar relaxation (or interaction) zones of size governed by
a constant fraction kcL of the longitudinal stress wave velocity cL, we have

Vobs = Vobs(t − t1) = κ [kcL · (t − t1)]
3

, (7.118)

where κ is a shape parameter. The quantity kcL · (t − t1) is a representative
length of the relaxation zone around a microcrack. At time t2 corresponding
to σ�(t2) > σ�(t1), a second microcrack starts to propagate and produces its
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own obscured zone (Fig. 7.30). The third and fourth defects do not nucleate
here as they are obscured by the first two microcracks.

Fig. 7.30. Defects obscuration in a space-time graph

To model this dynamic process consider, as in a Weibull analysis, a flaw
distribution λtot described by a Poisson process of intensity,

λtot(σ�) = λ0

[
σ�

σ0

]mw

, (7.119)

with mw as the Weibull modulus and σ0 as the scale parameter relative to
a reference flaw density λ0. The quantity λtot represents the mean number
of flaws that may break in a unit volume for a local stress less than or equal
to σ�.

At the beginning of the loading, no interactions occur and the crack den-
sity (denoted by λcrack) is equal to the total density of the flaws able to break,
λtot. Due to the dynamic relaxation process, λcrack becomes smaller than λtot

following the law
dλcrack

dt
=

dλtot

dt
· [1 − Pobs] , (7.120)

with λcrack(t = 0) = 0 and where Pobs is the probability of defects obscuration
or relaxation which defines the damage variable,

D ≡ Pobs = 1 − exp
(
−
∫ t

0

dλtot

dτ
Vobs(t − τ)dτ

)
. (7.121)

Knowing the local stress history σ�(t) gives the flaw distribution history
λtot(t) (7.119), then the probability of defects obscuration (7.121), and finally
by time integration of (7.120) the crack density.
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7.4.6.1 Quasi-Static Weibull Model Recovered

The Weibull model corresponds to the case of failure due to a single defect
(weakest link hypothesis). Setting Vobs = const = Veff as the effective volume
(7.27), the probability of failure is equal to Pobs, i.e.,

PF = 1 − exp
(
−
∫ t

0

dλtot

dτ
Veffdτ

)
= 1 − exp (−λtotVeff) , (7.122)

which recovers Weibull failure probability (7.28), or

PF = 1 − exp
(
−Veff

V0

[
σ�

σw

]mw)
(7.123)

for the Poisson process (7.119).

7.4.6.2 Fragmentation to Multifragmentation Transition

A closed-form solution of previous set of equations (7.119)–(7.122) can be
derived in the case of the impact loading σ� = σ̇t with constant stress rate σ̇:

λtot = λ0

(
σ̇

σ0

)mw

tmw = λct̂
mw ,

λcrack = λc
mw

mw + 3

[
(mw + 3)!

6mw!

] mw
mw+3

γ

(
mw

mw + 3
,

6mw!
(mw + 3)!

t̂mw+3

)
,

D = Pobs = 1 − exp
(
− 6mw!

(mw + 3)!
t̂mw

)
.

(7.124)

The function of the dimensionless time t̂ = t/tc introduces the character-
istic time tc, stress rate σ̇c, and microcrack density λc. The term γ is the
incomplete gamma function, γ(a, x) =

∫ x

0
ta−1 exp (−t)dt, such that

tc =
(

σmw
0

κ(kcL)3λ0σ̇mw

) 1
mw+3

and λc =
1
Vc

=

⎛
⎝ λ

1
mw
0 σ̇

κ
1
3 kcLσ0

⎞
⎠

3mw
mw+3

.

(7.125)
The characteristic volume Vc contains, on average, one flaw that may break
at the characteristic time tc (λcVc = 1).

The applied stress denoted here, Σ, is related to the local or effective
stress via σ� = Σ/(1 − D) so that the stress-rate-dependent tensile strength
σu is given by dΣ/dσ = 0 or

σu = σc

(
(mw + 2)!
6e · mw!

) 1
mw+3

where σc =
(

σmw
0 σ̇3

κ(kcL)3λ0

) 1
mw+3

. (7.126)
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This is the dashed line (stress-rate-dependent) in the dimensionless tensile
strength versus dimensionless stress rate diagram (Fig. 7.31) in which the
solid circles (average) and bars (standard deviation) are given by Monte-
Carlo simulations (500 realizations for each point). Figure 7.31 also shows
the stress-rate-independent results for a classical Weibull analysis from which
the mean failure stress is (Γ is the Euler Γ-function)

σ =
σ0

(λ0Veff)
1

mw

Γ
(

1 +
1

mw

)
(7.127)

and the corresponding standard deviation is

σ =
σ0

(λ0Veff)
1

mw

√
Γ
(

1 +
1

mw

)
− Γ2

(
1 +

1
mw

)
. (7.128)

Fig. 7.31. Normalized tensile strength σu/σc vs normalized stress rate σ̇/σ̇t for
mw = 10 and Veff = 1/λ0 (C. Denoual and F. Hild 1997)

The stress-rate-independent regime σ̇ < σ̇t corresponds to single fragmen-
tation. It is obtained from the classical Weibull analysis when the weakest
link hypothesis is made. The regime σ̇ > σ̇t corresponds to multifragmen-
tation. It is dependent on the stress rate and is obtained from the dynamic
obscuration mechanism. The transition between both regimes occurs at the
stress rate σ̇ = σ̇t, defined as the intersection between “quasi-static” and
“dynamic” strengths,
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σu(σ̇ = σ̇t) = σ , (7.129)

giving

σ̇t = σ0kcL(λ0κ)
1
3 (λ0Veff)

mw+3
3mw

[
6e · mw!

(mw + 2)!
Γmw+3

(
1 +

1
mw

)] 1
3

.

(7.130)

Remark –When σ̇ > σ̇t, Continuum Damage Mechanics can be used to model the
multifragmented microcrack pattern. According to the definition of damage as the
probability of obscuration,

ln(1 − D) = −
∫ t

0

dλtot

dτ
Vobs(t − τ )dτ = −

∫ t

0

dλtot

dτ
κ [kcL · (t − τ )]3 dτ

and a damage evolution law for high stress rates (> σ̇t) is obtained by eliminating
the explicit dependency upon time:

− d3

dt3
ln(1 − D) = 6κ(kcL)3λtot (σ�) ,

with D(t = 0) = 0, Ḋ(t = 0) = 0, and D̈(t = 0) = 0 due to λtot(t = 0) = 0. Using
Y = σ� 2/2E, it can be written as a function of the strain energy release rate,

d2

dt2

(
1

1 − D

dD

dt

)
=

6κ(kcL)3

V0

[
2EY

σ2
w

]mw
2

.

To conclude, the damage law at low stress rate has to be of the form D = D(Y )

when a differential equation in time is needed at high stress rate.

7.4.7 Hierarchic Approach up to Homogenized Behavior ,

Failure of brittle or quasi-brittle components is mainly governed by initial
defects that are random in their size and space distribution. Therefore, the
accuracy of prediction is often poor for at least two reasons: high scatter of
basic tests results to identify the parameters and ignorance of the state of
initial defects. Nevertheless, speaking of probabilities gives a sense to these
uncertainties.

For brittle materials or interfaces:

• In absence of any information other than an ultimate stress, use the dam-
age equivalent stress criterion (and not the von Mises stress!),

σ� = σeqR
1/2
ν = σu with Rν =

2
3
(1+ν)+3(1−2ν)

(
σH

σeq

)1/2

. (7.131)

Introducing the microdefects closure is an improvement if some compres-
sion occurs.
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• The Mazars damage equivalent strain is better for concrete:

ε� =
√
〈ε〉+ : 〈ε〉+ =

σ+
u

E
= ν

√
2
σ−

u

E
. (7.132)

• For interfaces a debonding criterion which needs two material parameters
may be applied:〈

σ33|σ33| +
(

σI
R

τ I
R

)2
(σ2

13 + σ2
23)

〉1/2

= 1 . (7.133)

• The Weibull model should be used to characterize the probability of rup-
ture but the material parameters need 10 to 20 specimens for their iden-
tification:

PF = 1 − exp
{
−Veff

V0

[
σ�

σw

]mw}
. (7.134)

Using the two-scale damage model is a way to predict the rupture of quasi-
brittle materials that occurs when a dissipation prior to cracking exists (if
some fatigue results complete the identification database!) but several other
damage models have their specific applications:

• The Marigo model with or without microdefects closure effects is a general
model valid for most materials while the anisotropic damage model of
Sect. 7.4.1 is suitable for concrete

• The Laborderie model with permanent strains and microdefects closure
effects in dynamics (seismic effects on civil engineering structures)

• Mesomodels for composites where three damage variables are considered
• Probabilistic models for ceramics and fragmentation in dynamics

Finally, elasticity and damage models for reinforced concrete are of main im-
portance in civil engineering. Due to the size of the structures, it is interesting
in FE computations to avoid meshing the steel bars and the concrete body
separately. Homogenization procedures give the equivalent elastic properties
of heterogeneous materials. They apply to undamaged reinforced concrete
and uniaxial bar reinforcement, yielding orthotropic elasticity characteristics.
For example, if the steel spacing is the same in the two tranverse directions,
tranverse isotropy is obtained with longitudinal and transverse Young’s mod-
uli EL and ET, Poisson ratios νLT and νT and shear moduli GLT and GTT:

EL = EL(φ, Ec, Es, . . .) ,

ET = ET(φ, Ec, Es, . . .) ,

νLT = νLT(φ, Ec, Es, νc, νs) ,

νT = νT(φ, Ec, Es, νc, νs) ,

GLT = GLT(φ, Ec, Es, νc, νs) ,

GTT =
ET

2(1 + νT)
,

(7.135)

whose specific expressions depend on the homogenization procedure. They
are functions of steel volume fraction (φ), the elastic properties of concrete
(Ec, νc) and steel (Es, νs).
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The question of coupling with damage arises then and one needs to take
into account the microcrack closure effect in concrete. One of the simplest
possible models uses the anisotropic and damage framework of Sect. 7.4.1,
but extended to tranverse anisotropy,

ρψ� =
〈σ11〉2
2Ẽ+

L

+
〈−σ11〉2

2Ẽ−
L

+
〈σ22〉2 + 〈σ33〉2

2Ẽ+
T

+
〈−σ22〉2 + 〈−σ33〉2

2Ẽ−
T

− νLT

EL
(σ11σ22 + σ11σ33) − νTT

ET
σ22σ33 +

σ2
12 + σ2

13

2GLT
+

σ2
23

2GTT
,

(7.136)

where the coupling with damage is reduced to the minimum by making the
damage variable DL act on the longitudinal modulus, the damage variable
DT on the tranverse modulus, and by neglecting the coupling of the ratios
νij/Ej and the shear moduli with damage:

Ẽ+
L = EL(φ, Ec(1 − DL), Es, . . .) ,

Ẽ−
L = EL(φ, Ec(1 − hDL), Es, . . .) ,

Ẽ+
T = ET(φ, Ec(1 − DT), Es, . . .) ,

Ẽ−
T = ET(φ, Ec(1 − hDT), Es, . . .) ,

(7.137)

where h is the microdefects closure parameter.
The damage evolution laws are written as D = D(Y ) laws (such as

Eqs. (7.76) to (7.79))

DL = DL(YL max) and DT = DT(YT max) , (7.138)

with YL max and YT max as the maximum values reached during the loading
of the longitudinal and transverse strain energy release rates

YL = ρ
∂ψ�

∂DL
and YT = ρ

∂ψ�

∂DT
. (7.139)

Using the simple mixture laws

EL = φEs + (1 − φ)Ec and ET =
(

φ

Es
+

1 − φ

Ec

)−1

(7.140)

gives:

YL =
(1 − φ)Ec

2

[
〈σ11〉2
Ẽ+ 2

L

+ h
〈−σ11〉2
Ẽ− 2

L

]

YT ≈ 1 − φ

2Ec

[ 〈σ22〉2 + 〈σ33〉2
(1 − DT)2

+ h
〈−σ22〉2 + 〈−σ33〉2

(1 − hDT)2

] (7.141)
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which take into account (through h) the much lower damage growth for con-
crete in compression than in tension.

. . .
Congratulations to all readers who read up to this last page!

. . .
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Coffin, 191
Coin, 352
Coleman, 330
composites, 2, 13, 339, 346, 361
concrete, 13, 343, 346, 364
condition

consistency, 10, 43, 46, 340
Kuhn–Tucker, 10
quasi-unilateral, 12, 33

constitutive equations, 8, 45, 46
convergence, 99, 103, 111
Cordebois, 6, 172
CORRELI, 23
Cough, 277
Cox, 315
crack

arrest, 152, 208, 336
initiation, 27, 33, 65
orientation, 73

crash, 267
creep, 237

-damage, 33, 233, 240, 255
-fatigue, 237, 239, 251, 262

Crisfield, 94
criterion

damage ∼, 339
Dang Van, 282
Hill, 268
of debonding, 327
rupture, 324
Sines, 282
von Mises, 10, 45
yield, 45, 83

Croix, 267
cross identification, 132, 166, 178
Curtin, 362
curve

isochronous, 236
Manson–Coffin, 192, 193
R-∼, 153
Wöhler, 38, 64, 193

cyclic plasticity, 202

damage
accumulation, 196, 217, 287, 302
anisotropic, 5, 15, 18, 34, 40, 57, 59,

75, 80, 171, 343
criterion, 65, 171, 339, 344
critical, 31, 65

definition, 3
equivalent strain, 326
equivalent stress, 11, 79, 157, 166,

188, 324, 328
hydrostatic, 6
interface, 358
isotropic, 5, 10, 52, 53, 55, 75, 80
multiplier, 340
non-local ∼ model, 114, 344
parameters, 47, 78, 138, 340, 343
quasi-brittle, 33, 183, 339
tensorial, 4
threshold, 27, 43, 76, 130, 161, 300
two-scale ∼ model, 283, 332

DAMAGE 2000, 119, 305, 311
Dang Van, 315
de Borst, 114
deep drawing, 170
delamination, 345, 356
Denoual, 364, 367
Deperrois, 315
Desmorat B., 345
Desmorat R., 14, 34, 97, 105, 172, 214,

221, 263
digital image correlation, 23
dissipation, 43, 60, 70, 222
distribution, 26, 278, 309, 365

Gaussian, 113, 323
Doghri, 65, 77, 88, 97, 117, 174
Dolbow, 112
Doudard, 64
Dragon, 345
Dubé, 354
Dufailly, 17, 22, 48, 50, 135, 143
dynamic plasticity, 142, 234, 248, 255

earthquake, 351
effective volume, 329, 366
EFICOS, 354
elastic predictior, 117
elastic predictor, 95
elasticity change, 17, 54, 178
elasto-(visco-)plasticity, 27, 45, 53, 55,

57, 59, 78, 267
elastomers, 221, 274
elementary layer, 345
Elshelby, 120
energy density, 218

effective elastic ∼, 12, 34, 85
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release rate, 10, 12, 32, 80
strain ∼, 41

energy, stored, 8, 9, 27, 38, 41, 197
Engel, 2
Eshelby, 62, 116, 316
Eshelby–Kröner law, 62, 116, 284, 315
Evans, 321
exponential law, 98
extrusion, 172

Fairbarn, 277
fatigue

asymptotic ∼ limit, 29, 37, 61, 64,
278, 282

creep-∼, 237, 251, 262
engineering ∼ limit, 36, 278, 282
mean stress effect, 62, 81, 287, 295
multilevel, 216
non-proportional, 305

fiber bundle, 330
Findley, 317
finite strains, 167, 221
Flórez-López, 181
Fletcher, 125
Forest, 114
FORGE 2, 174
forming limits, 170
fragmentation, 366
frames, 181, 271, 351
François, 190, 230
friction, 221, 223
fully coupled analysis, 213
function

shape ∼, 91
triaxiality ∼, 11

Galtier, 64, 312
Ganczarski, 233
Gatuingt, 346
Gauss–Newton method, 124
Gaussian distribution, 113, 323
geomaterials, 176
Geymonat, 65
Gibbs

energy, 345, 356
potential, 8, 357
specific free enthalpy, 343

glass, 364
Golfarb, 125

Goodman diagram, 280
gradient effect, 316
Grange, 173, 305
Green–Lagrange, 167, 221
Griffith, 321
Gupta, 190
Gurson, 176

Halford, 191
Halm, 345
hardening

isotropic, 8, 45
kinematic, 8, 45, 82

Hart–Smith, 221
Hayhurst, 77, 233
heat capacity, 8, 70
Helmholtz potential, 8, 340
Hencky–Mises, 150, 161, 203
Henstenburg, 362
Hessian, 123, 125
Hild, 23, 321, 322, 329, 361, 364, 367
Hill, 66, 189, 268
homogenization, 61, 317, 369
Hopperstad, 269
Hult, 1, 233
hydrostatic sensitivity parameter, 6
hyperelasticity, 221, 275

identification, 47, 64, 120, 127, 135
cross ∼, 178, 181

image correlation, 23, 138, 185
impact, 269, 366
impact loading, 366
implicit scheme, 96, 117
IN 100 stainless alloy, 236, 262
Inconel alloy, 48
initial defect, 307, 322
interface damage, 358
internal

friction, 41
sliding, 41, 43, 223, 275

intrusion-extrusion, 281

Jacobian, 124
matrix, 100, 107
terms, 101

Jaumann, 168
Johnson–Cook, 270
jump procedure, 88
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Kachanov, 1, 3, 233, 235
Kirchhoff–Love, 304
Klingele, 2
Kröner, 62, 116, 120
Krajcinovic, 4, 330
Kuhn–Tucker condition, 10
Kurtyka, 190, 230

Laborderie, 341, 353, 354
Ladevèze, 3, 11, 14, 168, 213, 341, 345
Lambert–Diani, 221
laminates, 345, 356
Langseth, 269
Lapra, 224
large scale yielding, 166, 245
Larsson, 361
Lauro, 267
law

conduction, 70
elasticity, 10, 14, 70
evolution, 70
exponential, 51, 98
Hencky–Mises, 150, 161
Norton, 51, 98, 244, 245, 248, 254,

255, 258
Paris, 293
state, 9, 70
unified damage, 32, 37, 41

Lechatelier, 277
Leckie, 4, 77, 233, 261, 361
Le Dantec, 341, 346
Lemaitre, 1, 8, 11, 14, 33, 77, 120, 263
Levèque, 359
Levenberg–Marquardt method, 125
limit analysis, 166, 181
limit curve, 172

ballistic ∼, 272
localization ∼, 171
strain ∼, 164
stress ∼, 165

Lin, 114
Lin–Taylor, 120
localization

Eshelby–Kröner law, 62, 116, 284,
315

limiters, 112, 350
strain ∼, 175
strain ∼, 65, 114, 170
tensor, 316

Lorentz, 114
LS-DYNA, 271
Luong, 64

Mac Clintoch, 141
Manson, 191
Manson–Coffin curve, 192, 193
maraging steel, 281
Marigo, 339
Mariott, 261
Marquis, 137, 190, 230
matrix

ceramic ∼ composites, 361
Jacobian, 100, 107
sensitivity, 135, 146, 200, 242, 290,

334
Maugin, 168
Mazars, 44, 73, 321, 326, 350, 354
McClintock, 321
Melenk, 112
mesocrack initiation, 27, 31, 34, 65
method

θ-, 98, 106
BFGS, 125
Gauss–Newton, 124
Levenberg–Marquardt, 125
Monte Carlo, 309
Neuber, 147, 150, 152, 155, 201, 244
Newton, 94, 124
SQP, 123, 125
strain energy density ∼, 201, 203

Meyers, 190
microdefects closure, 12, 171, 288, 324

effect, 55, 59, 341
parameter, 13

microhardness, 22, 186
microstress, 41, 62, 221
Miner rule, 197
Mises

signed von ∼ stress, 82
von ∼ criterion, 10, 45
von ∼ equivalent stress, 11

Moës, 112
Molinari, 69
Monte Carlo method, 308
Mooney, 221
Moreau, 91
Moret–Bailly, 258
Morrow, 191
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Moussy, 172
Mroz, 112, 230
Mulhaus, 114
multifragmentation, 362, 364
Murakami, 4

Needleman, 141, 176
negative part, 13, 15
Neuber method, 147, 150, 152, 155,

201, 244
Newton–Raphson method, 94, 124
Nguyen Q.S., 91
Nocedal, 123
non-local damage model, 114, 344
nonlinear accumulation, 280
normality rule, 9, 177, 222
Norton law, 43, 98, 233, 244, 245, 248,

254, 255, 258

Ožbolt, 113
Oh, 112
Ohno, 230
Onat, 4
Ortiz, 270

Palmgreen–Miner rule, 195, 215, 229,
280, 302

PAMCRASH 2000, 268
Panoskaltsis, 317
Papadopoulos, 317
parameter

necking, 35
viscosity, 50, 128, 265

Paris law, 293
perturbation, 69, 103
Phoenix, 362
Pietruszczak, 112
Pijaudier-Cabot, 113
Pilvin, 122
Pineau, 191, 215, 321
Piola–Kirchhoff, 167, 221
plastic

corrector, 92, 96
hinges, 160, 181, 255

Poisson process, 365
polymers, 13, 75, 167, 275
porosity, 176
positive part, 13, 15
post-buckling, 158, 255

post-processing analysis, 78, 85, 115,
214

post-processor DAMAGE 2000, 119,
301, 305, 311

potential
Gibbs ∼, 8, 343, 357
Helmholtz ∼, 8, 70, 339
of dissipation, 9, 26, 42, 45, 222
state ∼, 8, 15, 41, 221

powders, 176
pre-stress, 234, 346
predamaged, 184, 227, 272, 312
predeformed, 184, 227, 272, 312
principle

of strain equivalence, 8, 10, 11, 42
second, 9

probabilistic safety margin, 335
proportional loading, 82, 160

quasi-brittle materials, 321, 339

R-curve, 153
Rabotnov, 5, 233
Ragueneau, 345, 346, 350
Ramtani, 44
random loading, 297, 314
Representative Volume Element, 75
Rey, 221
Rice, 66, 141
Riks, 94
rocks, 364
Rousselier, 112, 176
Rousset, 190
Roux, 23
rubber, 86, 223
Rudnicki, 66

Saanouni, 172
safety factor, 152, 208, 247, 292, 334
Sauzay, 21, 34, 303, 315
scale effect, 281
scatter, 247, 292, 299, 307
SED method, 203, 204, 216
seismic loading, 350
sensitivity, 135, 146, 200, 242, 290, 334
Sermage, 130, 134, 218, 262, 263, 300,

313
Shah, 2
shakedown, 210



380 Index
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shape function, 91
shear band, 67, 112
Shi, 112
SIDOLO, 120, 132
Sidoroff, 6
Simo, 91, 103
Sines fatigue criterion, 282
Skrzypek, 233
sliding, 41, 43, 223, 275
small scale yielding, 86, 148, 201
Socie, 191
SQP method, 123, 125
stabilized cycle, 49, 88, 131, 211, 226
steel, 21, 39, 64, 75, 171, 256

2-1/4 CrMo, 129, 132, 217, 265
316 stainless, 249
35 NCD 16, 280
dual phase, 64
ferritic, 36, 158
low carbon, 187
SOLDUR 355, 21, 214
Weldox 460E, 271

stirrups, 348
stochastic analysis, 292, 297, 309, 323
strain

accumulated plastic ∼ , 10
energy density, 11, 41, 218
energy release rate, 292
equivalence principle, 8
finite, 167

strains
finite, 221

stress
back, 45, 62, 231
concentration, 147, 201, 208, 244

coefficient, 148, 154
effective, 5, 8, 12, 13, 31, 34, 42, 104,

116, 119, 189, 322
hydrostatic, 11
interface equivalent ∼, 327
mean, 301
nominal, 148
Piola–Kirchhoff, 221
signed von Mises ∼, 82
ultimate, 36

viscous, 45
Weibull, 329
yield, 248

Taira rule, 237, 274
Tanaka, 230
tangent operator, 66, 72

consistent ∼, 92, 111
Taylor, 91, 103
thermodynamics, 7
Tison, 267
toughness, 74, 154, 292, 335
Tracey, 141
triaxiality, 11, 34, 145, 150

effective ∼ function, 81
function, 11, 86

Truesdell, 168
Tvergaard, 141, 176, 177

UDIMET 700 alloy, 193
ultrasonic waves, 17
unified damage law, 32, 37, 41

variables of state, 7
Vincent, 190
Virely, 218
virtual work principle, 91
VISCOENDO, 261, 262, 264
Voigt, 91
Voyiadjis, 321

Wöhler curve, 38, 64, 193, 279, 301, 313
Wang, 230
weakest link hypothesis, 329, 366
Weibull, 307, 321

model, 328, 366
modulus, 328, 361
stress, 329

Wempner, 94
Wright, 123

yield criterion, 45, 83
yield stress, 22, 248

ZeBuLon, 171, 214
Zyczkowski, 190
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