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Preface

This book has evolved from lectures on fracture mechanics and micromechanics
which we held for students of engineering and natural sciences over the years. It is
primarily meant as an aid for students learning the foundations of these subjects.
At the same time this book may also serve as an introduction into these fields for
researchers and practitioners in industry and to provide the theoretical background
for solving respective problems.

The book covers the most important areas of fracture mechanics and gives an
introduction into micromechanics. Our major concern was the presentation of prin-
cipal concepts and methods in a clear and sound manner as a basis for a deeper entry
into the matter. The presentation mainly focuses on the mechanical description of
fracture processes; yet, material specific aspects are also discussed. To keep the text
self-contained, continuum mechanical and phenomenological foundations are reca-
pitulated first. They are followed by a brief survey of classical fracture and failure
hypotheses. A major part of the book is devoted to linear fracture mechanics and
elastic-plastic fracture mechanics. Further chapters deal with creep fracture and dy-
namic fracture mechanics. An extensive chapter treats foundations of micromechan-
ics and homogenization. Finally, elements of damage mechanics and probabilistic
fracture mechanics are presented. Suggestions for further reading are listed at the
end of each chapter.

The first edition was well accepted by the readers making a new edition neces-
sary. We have used this chance to incorporate a number of extensions which partly
are influenced by new developments in the field of fracture mechanics. Discussed
are, among others, the crack initiation at notches, cohesive zone models, the peel
test, fragmentation, and strain localization due to damage and material softening.
Furthermore, following suggestions from many students, supplementary examples
have been added as problems at the end of some chapters.

The authors are indebted to all who have contributed to this book. This par-
ticularly includes those from whom we have learned or, as Roda Roda has put it
ironically: “Copying from four books yields a fifth profound book”. Special thanks
go to Mrs. Dipl.-Ing. H. Herbst who has prepared most of the figures. Finally, the
pleasant cooperation with the publisher is gratefully acknowledged.

Darmstadt and Karlsruhe in June 2011, Dietmar Gross
Thomas Seelig
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Introduction

Fracture in science and technology is understood as the total or partial separation
of an originally intact body or structure. The characterization of corresponding me-
chanical phenomena is the subject of fracture mechanics. From an engineering point
of view, in many cases a macroscopic approach is sufficient. But also microscopic
aspects became of increasing interest during the past years. For both, the macro-
scopic and microscopic approach, continuum mechanics has proven to be an effec-
tive tool. Using this well-developed instrument, fracture criteria and concepts may
be established, which allow a prediction of the fracture behavior.

In general, separation of a body occurs by propagation of one or several cracks
through the material. Therefore, fracture mechanics deals to a large extent with the
behavior of cracks. In a real structure or material, cracks or other defects of different
size which possibly evolve to cracks, are virtually always present. One of the main
questions which fracture mechanics shall answer is as follows: under what circum-
stances does a crack in a body start to propagate and subsequently lead to fracture?
Other topics are the conditions for crack nucleation, crack path prediction, or the
velocity of a propagating crack.

In continuum mechanics, usually stresses and strains are used to describe the
mechanical behavior of a solid. These quantities, likewise very important in fracture
mechanics, can not always be directly applied for the characterization of fracture
processes. One reason for this is that stresses or strains might become infinitely
large at a crack tip. Another one follows from the simple fact that two cracks of
different lengths behave differently when loaded by the same external stress. Under
increasing load the longer crack will start to propagate at a lower stress than the
shorter one. For these reasons additional quantities like stress intensity factors or
the energy release rate have been introduced in fracture mechanics. They are able
to characterize the local state at a crack tip and the global behavior of the crack
during propagation, respectively.

For the understanding of fracture processes, at least a partial insight into the un-
derlying micromechanisms is useful. For example, from observing the changes in
the microstructure it becomes understandable how a material defect may increase
until it can be regarded as a microscopic or a macroscopic crack. The relevance of

1
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micromechanisms also explains the important role that material science has played
in the past and still plays in the evolution of fracture mechanics. Increasingly, micro-
scopic processes are mechanically modeled nowadays and incorporated into contin-
uum theories. Special fields like damage mechanics or micromechanics have been
developed from these efforts and have become important tools in fracture mechan-
ics. In particular, micromechanics offers a theoretical framework for a systematic
treatment of defects and their influence on different length scales.

Fracture mechanics may be classified from different points of view. Usually it
is divided into linear elastic fracture mechanics and nonlinear fracture mechanics.
The first describes fracture processes by using linear elasticity. Since this is appro-
priate particularly for brittle fracture, linear fracture mechanics also is understood
as brittle fracture mechanics. In contrast, nonlinear fracture mechanics characterizes
fracture processes which are dominated by inelastic material behavior. Depending
on whether the material is elastic-plastic or considerable viscous effects are present,
a further partition into elastic-plastic fracture mechanics and creep fracture mechan-
ics is common practice. Another classification is rather material oriented. Accord-
ingly, fracture mechanics sometimes is divided into fracture mechanics of metals, of
polymers, or of composites. If, in contrast to a deterministic approach, probabilis-
tic methods are used to characterize fracture processes, we call this probabilistic
fracture mechanics.

The roots of fracture mechanics reach back to the beginnings of modern mechan-
ics. Already GALILEO GALILEI (1564-1642) in 1638 reflected about the fracture of
beams, which led him to the conclusion that the bending moment is the crucial load-
ing measure. In parallel with the evolution of continuum mechanics in the 19th cen-
tury, a number of different strength hypotheses had been proposed which partly are
still in use as fracture or failure criteria. They directly employ stresses or strains to
characterize the loading of the material. Corresponding efforts took place at the be-
ginning of the last century in conjunction with the development of plasticity theory.
But only in 1920 the first cornerstone of a fracture theory of cracks was set through
A.A. GRIFFITH (1893–1963) by introducing the necessary energy for crack growth
in the energy balance and by formulating an energetic fracture concept. A further
milestone was the statistical theory of fracture formulated in 1939 by W. WEIBULL

(1887-1979). But the actual breakthrough was achieved in 1951 by G.R. IRWIN

(1907-1998) who was the first to characterize the state at a crack tip by stress in-
tensity factors. The so-called K–concept of linear fracture mechanics rapidly found
entrance into practical applications and is meanwhile firmly established. In the early
60s the first concepts for an elastic-plastic fracture mechanics were proposed and a
rapid development set in. First steps towards an integration of damage mechanics
and micromechanics into fracture mechanics have been attempted in the 80s. De-
spite substantial progress, fracture mechanics is by no means an already completed
field but still a subject of intensive research.

The development of fracture mechanics is driven to a large extent by the ambition
to prevent failure of technical constructions and components. Therefore, fracture
mechanics is used as a design tool in all fields where fracture and an accompanying
failure of a component with serious, or in the worst case, catastrophic consequences
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must be prevented. Typical fields of application can be found in aerospace engineer-
ing, microsystems technology, nuclear power techniques, pressure vessel construc-
tion, automotive engineering, or in steel and solid construction. Moreover, fracture
mechanics is used in many other fields for the solution of problems where separa-
tion processes play a dominant role. Some examples are comminution technology,
earthquake research, and materials science.





Chapter 1
Elements of solid mechanics

This chapter summarizes basic concepts and equations of solid mechanics. It is self-
evident that this outline cannot be complete but is limited to a necessary minimum.
For more detailed descriptions the reader is referred to the literature, and selected
textbooks are listed at the end of the chapter (Section 1.6). The reader with some
knowledge of elasticity and plasticity may skip this part and jump directly to the
next chapter.

As the term already suggests, it is the aim of solid mechanics to make the be-
havior of solids accessible to a mechanical analysis. Solid mechanics is based on
the idealization of the real discontinuous material by a continuum. Doing so, the
material properties and the appearing mechanical quantities in general may be rep-
resented by continuous functions. It is understood that a theory on this basis has
its limits when the real material’s discontinuous character plays an important role.
Concepts like macroscopic stresses or strains are physically meaningful only when
applied to sufficiently large regions compared with existing inhomogeneities. For
example, in case of structural components made of polycrystalline materials, the
region under consideration has to be large compared with the grain size. This al-
ways should be considered when applying conventional continuum mechanics to
microscopic domains.

The representation in this chapter primarily uses cartesian coordinates and the
index notation. In parallel also the symbolic notation is applied which often makes
the interrelation of quantities easier to read and to understand. Accordingly, vectors
and tensors are represented either through their components or by their symbols. Fi-
nally, this outline is restricted mostly to isotropic materials and small (infinitesimal)
deformations.

1.1 Stress

1.1.1 Stress vector

If a body is loaded by external forces (volume forces f , surface forces t), distributed
internal forces - the stresses - will be caused. For their definition we intersect the
body in its actual deformed state by a fictitious cut (Fig. 1.1a). Both parts then
interact through area forces of equal magnitude and opposite direction. Let ΔF be

:
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6 1 Elements of solid mechanics

the total force acting on an area element ΔA of the cross section, then ΔF /ΔA is
the average surface traction on this element. The limit

t = lim
ΔA→0

ΔF

ΔA
=

dF

dA
(1.1)

is called the stress vector in a point of the cross section. Its component σ = t · n in
the direction of the unit normal vector n, i.e., perpendicular to the area element dA,
is the normal stress; the component τ =

√
t2 − σ2 acting perpendicular to n and

tangential to the element dA is called shear stress (Fig. 1.1b).

a) b)

dA

t

σ

τ

t

ndA

c)

t2

n

σ13

σ33

σ22

σ32

σ21

σ23

σ11
σ12

σ31

x2

x1

x3

Fig. 1.1 Stress vector

The stress vector t at a point depends on the orientation of the cross section, i.e.,
on the unit normal vector: t = t(n). We now consider the three stress vectors t1, t2,
t3, which are assigned to the three specific sections perpendicular to the coordinate
axes x1, x2, x3 (Fig. 1.1c). Their cartesian components are denoted by σij where
the indices i, j attain the values 1, 2, 3. The first subscript indicates the orientation of
the section, i.e., the direction of its normal n, while the second subscript expresses
the direction of the stress component itself. Accordingly, σ11, σ22, σ33 are normal
stresses and σ12, σ23 etc. are shear stresses. It should be mentioned that sometimes
another notation will be preferred. With reference to the coordinates x,y,z the nor-
mal stresses often are denoted by σx, σy , σz, while the shear stresses are designated
by τxy , τyz etc.

The sign of the stresses is given by the following sign convention: components at
an area element whose normal vector points into the positive (negative) coordinate
direction are defined as positive if they act in the positive (negative) direction.

For example, the stress vector t2 may be expressed by the components as t2 =
σ21e1 + σ22e2 + σ23e3 = σ2iei . Analogous, t1 = σ1iei holds and consequently
in general

tj = σji ei . (1.2)

Here e1, e2,e3 are the unit vectors in coordinate directions x1, x2, x3. In addition,
the summation convention has been adopted. According to this rule a repeated sub-
script indicates a summation where this subscript in turn attains the values 1, 2, 3.
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1.1.2 Stress tensor

The nine scalar quantities σij form the cartesian components of Cauchy’s stress
tensor σ (A.L. CAUCHY, 1789-1857). It can be represented by the matrix

σ =

⎛
⎝
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎞
⎠ . (1.3)

The stress tensor characterizes the stress state at a point of the body, i.e., it uniquely
determines the stress vector for an arbitrary section through the material. This can
be shown by considering the infinitesimal tetrahedron in Fig. 1.2a. The orientation
of the area dA is given by its normal n or by its componentsni, respectively. Taking
into account that possible body forces are of higher order small, equilibrium requires
t dA = t1dA1 + t2dA2 + t3dA3. Introducing t = ti ei, dAj = dAnj and (1.2)
yields in index notation and in symbolic notation, respectively

ti = σijnj or t = σ · n (1.4)

where the dot in the symbolic notation indicates a summation over one subscript (in
this case the subscript j). Thus, the stress tensor σ determines the stress vector t for
each direction n. It should be mentioned that (1.4) represents a linear mapping of
two vectors by which σ is characterized as a second rank tensor.

t1

t2

dA2

dA1

dA
dA3

t
n

t3
a)

x1

x2

x3

x3

x1

x2

x′
2

x′
3

b)

x′
1

Fig. 1.2 Stress state

On account of the equilibrium condition of moments (which we will not discuss
here), the stress tensor is symmetric:

σij = σji . (1.5)

As a consequence, the shear stresses in two perpendicular cuts are pairwise equal to
each other.
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Sometimes it is necessary or useful to represent the components of the stress
tensor in a coordinate system x′1, x

′
2, x

′
3 which is rotated with respect to the original

system x1, x2, x3 (Fig. 1.2b). The relationship between the components with respect
to the first and the second system is given by the transformation relation

σ′kl = akialj σij . (1.6)

Herein aki denotes the cosine of the angle between the x′k- and the xi-axis: aki =
cos(x′k , xi) = e′k·ei.

A particular coordinate system is given by the principal axes. They are character-
ized by the special feature that solely normal stresses and no shear stresses appear
in sections perpendicular to these axes. In this case, the stress vector ti and the ac-
companying normal vector ni have the same direction: ti = σni = σδijnj . Here σ
is the normal stress in the section and δij the so-called Kronecker-symbol which is
defined as δij = 1 for i = j and δij = 0 for i �= j. Introducing this into (1.4) we get
the homogeneous linear system of equations

(σij − σ δij)nj = 0 or (σ − σ I) · n = 0 (1.7)

where I is the unit tensor with the components δij . The system of equations (1.7) has
a nontrivial solution for the unknown nj only if its determinant vanishes: det(σij −
σ δij) = 0. This leads to the cubic equation

σ3 − Iσ σ2 − IIσ σ − IIIσ = 0 (1.8)

where the quantities Iσ , IIσ , IIIσ are independent of the chosen coordinate system.
They are the invariants of the stress tensor and given by

Iσ = σii = σ11 + σ22 + σ33 ,

IIσ = (σijσij − σiiσjj)/2
= −(σ11σ22 + σ22σ33 + σ33σ11) + σ

2
12 + σ

2
23 + σ

2
31 , (1.9)

IIIσ = det(σij) =

∣∣∣∣∣∣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

∣∣∣∣∣∣
.

The three solutions σ1, σ2, σ3 of (1.8) are all real and called the principal stresses.
Each principal stress corresponds to a principal direction (normal vector nj directed
along the principal axis) which may be determined from (1.7). It can be shown that
the principal directions are perpendicular to each other and that the principal stresses
are stationary (extreme) values of normal stresses at a point of the body. With respect
to the principal axes the stress tensor can be represented by

σ =

⎛
⎝
σ1 0 0
0 σ2 0
0 0 σ3

⎞
⎠ . (1.10)
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In sections whose normal is perpendicular to one principal axis and forms angles
of 45◦ with the remaining two axes, extreme shear stresses appear. For example,
in such a section with the normal perpendicular to the σ3-direction a shear stress
τ3 = ±(σ1 − σ2)/2 acts. In general, the three extreme shear stresses are given by

τ1 = ±σ2 − σ3
2

, τ2 = ±σ3 − σ1
2

, τ3 = ±σ1 − σ2
2

. (1.11)

Thus, if σ1 is the maximum and σ3 the minimum principal stress, the maximum
shear stress results as

τmax =
σ1 − σ3

2
. (1.12)

Of practical relevance are also the octahedral stresses. They are defined as nor-
mal and shear stress in cross sections whose normal forms the same angle with all
three principal axes:

σoct =
σ1 + σ2 + σ3

3
=
σii
3

=
Iσ
3
,

τoct =
1

3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 .

(1.13)

The stress component σoct can be interpreted as the average normal stress: σm =
σkk/3 = σoct.

In many cases it is useful to decompose the stress tensor additively:

σij =
σkk
3
δij + sij or σ = σm I + s . (1.14)

Therein 1
3σkkδij characterizes a loading by an all-side equal stress σm. Because of

the analogy with a static stress state in a fluid, this part is referred to as a hydro-
static stress state. The tensor s is called deviatoric stress state. By this part and its
invariants

Is= 0 ,

IIs=
1

2
sijsij =

1

6
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]

=
1

6
[(σ11− σ22)2 + (σ22− σ33)2 + (σ33− σ11)2] + σ212 + σ223 + σ231 ,

IIIs=
1

3
sijsjkski

(1.15)
the deviation of the stress state from a hydrostatic state is characterized. Comparison
with (1.13) yields: IIs = 3

2
τ2oct.

A graphical visualization of the stress state is possible by the so-called Mohr’s
circles (O. MOHR, 1835-1918). This is a representation of normal stresses σ and
corresponding shear stresses τ as points in a σ-τ -diagram for all possible cross
sections and directions, respectively. With respect to principal axes, we get from
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equation (1.4)
σ2 + τ2 = titi = σ

2
1n

2
1 + σ

2
2n

2
2 + σ

2
3n

2
3 ,

σ = tini = σ1n
2
1 + σ2n

2
2 + σ3n

2
3 .

Inserting this into the identity

(σ − σ2 + σ3
2

)2 + τ2 = −σ(σ2 + σ3) + (
σ2 + σ3

2
)2 + (σ2 + τ2)

and taking into account nini = 1, it may be written as

(σ − σ2 + σ3
2

)2 + τ2 = n21(σ1 − σ2)(σ1 − σ3) + (
σ2 − σ3

2
)2 . (1.16)

This equation formally may be interpreted as the equation of a circle” with its
center at σ = (σ2 + σ3)/2, τ = 0 and a radius depending on n1. Because of
0 ≤ n21 ≤ 1 the minimum stress distance from the center is (σ2 − σ3)/2 = τ1 (for
n1 = 0), while the maximum distance is σ1+(σ2−σ3)/2 (for n1 = ±1). Analogous
considerations can be performed for two further equations which follow from (1.16)
by a cyclic permutation of subscripts. Arranging the principal stresses according to
their magnitude (σ1 ≥ σ2 ≥ σ3), we finally get the condensed representation of
Fig. 1.3. Accordingly, stress points (σ, τ ) are possible only in the shaded region and
on the circles of radii τi. The circles themselves correspond to cross sections with a
normal perpendicular to one of the three principal axes.

τmax

τ

σ

τ1

τ3

σ, τ

σ1σ2σ3

Fig. 1.3 Mohr’s circles

1.1.3 Equilibrium conditions

An arbitrary material region is in general loaded by body forces fi which are dis-
tributed over the volume V and surface forces (stress vector) ti acting along the

“
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surface ∂V . Force equilibrium is ensured if the resultant of these forces vanishes:
∫

∂V

ti dA+

∫

V

fi dV = 0 . (1.17)

Using ti = σijnj , see (1.7), and applying the divergence theorem
∫
∂V
σijnj dA =∫

V
σij,j dV this equation can be rewritten as

∫

V

(σij,j + fi) dV = 0 . (1.18)

Here we have assumed that the stresses and their derivatives are continuous. The
latter are indicated by a subscript after a comma: σij,j = ∂σij/∂xj . Since the vol-
ume V is arbitrary, it follows from (1.18) that for each point of the body the local
equilibrium conditions

σij,j + fi = 0 or ∇ · σ + f = 0 (1.19)

must be fulfilled. Within the symbolic notation, we have used the vector operator
∇ = (∂/∂xj)ej .

From (1.19) the equations of motion directly can be derived if the motion-induced
inertia forces −ρüi are considered as additional volume forces:

σij,j + fi = ρ üi . (1.20)

Here ρ is the mass density and dots above a quantity denote derivatives with respect
to time.

We will not discuss the equilibrium of moments. It only should be noted that this
condition leads to the already mentioned symmetry of the stress tensor (1.5).

1.2 Deformation and strain

1.2.1 Strain tensor

The kinematics of a deformable body usually is described in terms of the displace-
ment vector and a strain tensor. These quantities can be introduced by considering
an arbitrary material point P whose position in the undeformed state (e.g., at time
t = 0) is given by the coordinates (position vector) Xi, see Fig. 1.4. A point Q at
a distance dS adjacent to P has the coordinates Xi + dXi. On account of a load-
induced deformation, P is displaced to P ′ and Q to Q′, respectively. Their current
position (at time t) is given by the space coordinates xi and xi + dxi, respectively.
The displacement from P to P ′ is expressed by the displacement vector
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x1

x3

x2

Q
Q′

P ′
P

xi

dXi

dxi

Xi
ui

Fig. 1.4 Deformation

ui = xi −Xi . (1.21)

Assuming a uniquely invertible mapping between xi and Xi, the displacement
vector ui and the position vector xi can be regarded as functions of the material
coordinatesXi:

ui = ui(Xj , t) , xi = xi(Xj , t) . (1.22)

In order to derive a suitable deformation measure we compare the distances of
adjacent points in the deformed and undeformed state. It is convenient to consider
for this purpose the squared distances

ds2 = dxkdxk =
∂xk
∂Xi

∂xk
∂Xj

dXidXj ,

dS2 = dXkdXk = dXidXj δij .

Using (1.21) and (1.22) one obtains

ds2 − dS2 = 2Eij dXidXj (1.23)

where

Eij =
1

2
(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

) (1.24)

is a symmetric second rank tensor which is called Green’s strain tensor (G. GREEN,
1793-1841).

It can be shown that for sufficiently small (infinitesimal) displacement gradi-
ents (∂ui/∂Xj � 1) the derivatives with respect to material coordinates Xj can
be replaced by derivatives with respect to space coordinates xj , i.e., ∂ui/∂Xj →
∂ui/∂xj = ui,j . Taking into account that in this case the product of the displace-
ment gradients inEij vanishes (being small of higher order), we get from (1.24) the
infinitesimal strain tensor

εij =
1

2
(ui,j + uj,i) . (1.25)

It may be represented as the matrix
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ε =

⎛
⎝
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎞
⎠ (1.26)

which is symmetric because of εij = εji, see (1.25).
Geometrically, the normal strains ε11, ε22, ε33 can be interpreted as relative

length changes and the shear strains ε12, ε23, ε31 as angle changes. In this con-
text also the engineering notation should be mentioned. With reference to x, y, z-
coordinates often the notation εx, εy , εz for normal strains and γxy/2, γyz/2, γzx/2
for shear strains is used.

The properties of the strain tensor can be transferred from the stress tensor. There
exists a system of principal axes where shear strains vanish and solely principal
strains ε1, ε2, ε3 appear. Furthermore, the strain tensor has the three invariants
Iε, IIε, IIIε. The first invariant characterizes the volumetric strain, i.e., the relative
volume change:

Iε = εV = εkk = ε1 + ε2 + ε3 . (1.27)

If the strain tensor is decomposed according to

εij =
εkk
3
δij + eij or ε =

εV
3

I + e (1.28)

then the first part describes the volume change while the second part, the strain de-
viator e, expresses a distorsion, i.e., a deformation at constant volume. Of particular
importance is the second invariant of the deviator which in analogy to (1.15) reads

IIe =
1

2
eijeij =

1

6
[(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2] . (1.29)

For given strain components (1.25) forms a system of six equations for the three
displacement components. Thus, the strain components cannot be independent of
each other if the displacement field in a simply connected domain shall be unique
(apart from a rigid body motion). They have to satisfy the compatibility conditions
which can be derived from (1.25) by eliminating the displacements:

εij,kl + εkl,ij − εik,jl − εjl,ik = 0 . (1.30)

1.2.2 Strain rate

The strain tensor is not always suitable to describe the deformation and motion of a
deformable body. In some cases, as for example in plasticity, it is more appropriate
to use strain changes and strain rates, respectively. To introduce these quantities we
start from the velocity field vi(xj , t) (Fig. 1.5). The relative velocity of two particles,
located at time t at adjacent points P ′ undQ′ in space is expressed by
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x1

x3

x2

dxi

vi+dvi

vi

Q′

P ′
xi

Fig. 1.5 Strain rate

dvi =
∂vi
∂xj

dxj = vi,j dxj . (1.31)

Through this equation, the velocity gradient vi,j is defined as a second rank tensor
which can be decomposed as follows:

vi,j =
1

2
(vi,j + vj,i) +

1

2
(vi,j − vj,i) = Dij +Wij . (1.32)

The symmetric part

Dij =
1

2
(vi,j + vj,i) (1.33)

is known as the strain rate tensor. It characterizes the temporal strain change of the
current configuration. Multiplying it with the time increment yields the so-called
natural strain increment:

dεij = Dij dt . (1.34)

If the strains remain small during the whole deformation history, then Dij and dεij
can be replaced by the time derivative of the strain tensor ε̇ij and by the strain incre-
ment dεij , respectively. In the following, we will mostly employ this assumption. It
also should be mentioned that all properties of the stress tensor analogously can be
transferred to Dij and dεij . In addition, the compatibility conditions (1.30) can be
applied by replacing εij byDij and dεij , respectively.

The skew-symmetric part Wij in (1.32) characterizes the current rotation (spin)
which will not be further discussed here.

1.3 Constitutive laws

In the following we will assume small (infinitesimal) strains which is appropriate
for a wide range of problems. This assumption also considerably simplifies the for-
mulation of constitutive laws by which the deformation behavior of the material is
characterized.
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1.3.1 Elasticity

1.3.1.1 Linear elastic behavior

Generalizing the uniaxial Hooke’s law σ = E ε (R. HOOKE, 1635-1703) for a
linear elastic material, stresses and strains in the three-dimensional case are related
as

σ = C : ε or σij = Cijkl εkl . (1.35a)

Here the two dots in the symbolic notation indicate a summation over two in-
dex pairs (in this case k, l). The elasticity tensor C is a fourth rank tensor which
characterizes through its components Cijkl , i.e., through the elasticity constants,
the elastic properties of the material. It can be shown that C in the most gen-
eral anisotropic case consists of 21 independent constants and that the symmetries
Cijkl = Cjikl = Cijlk = Cklij hold. Inverting (1.35a), the elasticity law alterna-
tively can be written as

ε = M : σ or εij =Mijkl σkl (1.35b)

where M = C−1 is the compliance tensor. Its components Mijkl have identical
symmetry properties as Cijkl.

An isotropic material shows the same behavior in all directions. In this case, C
is an isotropic tensor which is determined by solely two independent constants:

Cijkl = λ δijδkl + μ (δikδjl + δilδjk) . (1.36)

Inserting this representation into (1.35a) the elasticity law reads

σij = λ εkk δij + 2μ εij (1.37)

where λ and μ are the so-called Lamé constants (G. LAMÉ, 1795-1870). Their rela-
tion with Young’s modulusE (T. YOUNG, 1773-1829), shear modulusG, Poisson’s
ratio ν (S.D. POISSON, 1781-1840) and the bulk modulusK is given in Table 1.1.

Inverting (1.37) according to (1.35b) and using the relations in Table 1.2, the
elasticity law can be rewritten as

εij = − ν
E
σkk δij +

1 + ν

E
σij . (1.38)

Another possibility of representation is the decomposition of the isotropic elasticity
law into its hydrostatic (volumetric) and deviatoric part. Using (1.14), (1.28) and the
relations of Table 1.1 yields

σkk = 3K εkk , sij = 2μ eij . (1.39)

An anisotropic material is characterized by its different behavior in different di-
rections. In the following we restrict our attention to two specific cases. An or-
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basic pair
λ, μ μ, K E, G E, ν

λ λ K − 2
3
μ

G(E − 2G)
3G− E

Eν
(1 + ν)(1− 2ν)

μ μ μ G E
2(1 + ν)

K λ+ 2
3
G K GE

3(3G − E)
E

3(1− 2ν)

E
μ(3λ + 2μ)

λ+ μ
9K μ

3K + μ E E

ν λ
2(λ+ μ)

3K − 2μ
2(3K + μ)

E
2G − 1 ν

Table 1.1 Relations between elastic constants

thotropic material has three principal material directions which are perpendicular to
each other. If they coincide with the chosen coordinate axes, the elasticity law can
be expressed in matrix notation as

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
2 ε23
2 ε31
2 ε12

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

h11 h12 h13 0 0 0
h12 h22 h23 0 0 0
h13 h23 h33 0 0 0
0 0 0 h44 0 0
0 0 0 0 h55 0
0 0 0 0 0 h66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ23
σ31
σ12

⎤
⎥⎥⎥⎥⎥⎥⎦
. (1.40)

The nine independent compliances hij are related to the tensor components Mijkl

and the engineering elasticity constants Ei (Young’s moduli), νij (Poisson’s ratios),
μij (shear moduli) as follows:

h11=M1111=
1

E1
, h12=M1122=−ν12

E1
=−ν21

E2
, h44=M2323=

1

μ23
,

h22=M2222=
1

E2
, h23=M2233=−ν23

E2
=−ν32

E3
, h55=M3131=

1

μ31
,

h33=M3333=
1

E3
, h13=M1133=−ν13

E1
=−ν31

E3
, h66=M1212=

1

μ12
.

(1.41)

If the material constants of an orthotropic material are not changed when the
material is rotated with respect to one of its principal directions (e.g., the x3-axis),
it is called transversely isotropic. Since the compliances in this case are interrelated
by

h11 = h22 , h13 = h23 , h44 = h55 , h66 = 2(h11 − h12) , (1.42)

such a material is characterized by only five independent elasticity constants.
When a stress-free material is heated, thermal strains εth appear. They are, at a

good approximation, proportional to the temperature changeΔT :
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εth = kΔT or εthij = kij ΔT . (1.43)

Here k denotes a tensor given by thermal expansion coefficients. For a thermally
isotropic material it is determined by only a single parameter: kij = k δij . Defining
total strains ε as the sum of elastic and thermal strains, the elasticity law attains
the form of the so-called Duhamel-Neumann law (J.M. DUHAMEL, 1797-1872, F.
NEUMANN, 1798-1895)

σ = C : (ε− εth) . (1.44)

1.3.1.2 Strain energy density

The work per unit volume, done during deformation of an elastic material

U =

εkl∫

0

σij dεij (1.45)

is independent of the deformation path. In this case the integrand dU = σijdεij is
a total differential, i.e., dU = ∂U

∂εij
dεij , and

σij =
∂U

∂εij
(1.46)

holds. The function U = U(εij) is called strain energy density.
In addition to U(εij), the complementary energy density Ũ(σij) may be intro-

duced. It is defined as

Ũ = σijεij − U =

σkl∫

0

εij dσij . (1.47)

Analogous to (1.46), the relation

εij =
∂Ũ

∂σij
(1.48)

is valid.
Specifically for a linear elastic material, by introducing (1.35a) and (1.35b) into

(1.45) and (1.47), the strain energy density and complementary energy density can
be determined as

U = Ũ =
1

2
σijεij =

1

2
ε : C : ε =

1

2
σ : M : σ . (1.49)

Using (1.14), (1.28), and (1.39) the strain energy density can be decomposed into
two parts:
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U =
1

2
K ε2kk + μ eijeij = UV + UD . (1.50)

Here UV = 1
2
Kε2kk = 1

2
KI2ε is the pure volumetric strain energy density ( = por-

tion of energy on account of a volumetric strain) while UD = μ eijeij = 2μ IIe is
the distortional energy density ( = portion of energy on account of purely deviatoric
strains).

1.3.1.3 Nonlinear elastic material behavior

The strain energy density U of an isotropic material depends solely on the invariants
Iε, IIε, IIIε of the strain tensor. Since IIε and IIIε can be expressed by the invariants
IIe, IIIe of the deviator and by Iε, the functional dependence can be written as
U = U(Iε, IIe, IIIe). Consequently, using (1.46) and Iε = εij δij , IIe = 1

2
eijeij ,

IIIe =
1
3eijejkeki, a general nonlinear elasticity law may be represented as

σij =
∂U

∂Iε
δij +

∂U

∂IIe
eij +

∂U

∂IIIe
eikekj . (1.51)

For many materials it may be assumed that the strain energy density, analogous to
the linear elastic case, is additively composed of a volumetric part and a distortional
part: U = U1(Iε) + U2(IIe). In this case (1.51) reduces to

σij =
dU1

dIε
δij +

dU2

dIIe
eij . (1.52)

Splitting the stresses into the hydrostatic and deviatoric parts we obtain the relations

σkk = 3
dU1

dIε
= f(εkk) , sij =

dU2

dIIe
eij = g(IIe) eij . (1.53)

If the material additionally can be regarded as incompressible, i.e., εkk = 0,
the first equation in (1.53) can be omitted. In this case the function g(IIe) can be
simply expressed by the material’s uniaxial stress-strain curve σ(ε). For this purpose
we first define a uniaxial equivalent stress or effective stress σe as follows: with
respect to the material response, a three-dimensional stress state σ (respectively s)
is equivalent to a uniaxial stress state σe, if the second invariants IIs of the deviator
are equal in both stress states. This leads with (1.15) and σ1 = σe, σ2 = σ3 = 0 to

σ2e =
3

2
sijsij =

3

2
s : s . (1.54a)

In case of an incompressible material, analogously, a three-dimensional strain
state ε (respectively e) is considered equivalent to a uniaxial strain state εe if the
second invariants IIe are equal in both strain states. Inserting this in conjunction
with ε1= εe, ε2= ε3= −ε1/2 into (1.29) results in the following definition of a
uniaxial equivalent strain or effective strain
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ε2e =
2

3
eijeij =

2

3
e : e . (1.54b)

If we now consider the product sijsij and introduce (1.53), (1.54a), (1.54b) we
obtain g = 2

3
σe/εe and the material law reads

sij =
2

3

σe

εe
eij . (1.55)

As an example we consider a uniaxial stress-strain curve, represented by the
power law

ε = B σn or σ = b εN (1.56)

where n = 1/N andB = 1/bn are material constants. Assuming incompressibility,
its three-dimensional generalization is given by

eij =
3

2
B σn−1

e sij or sij =
2

3
b εN−1

e eij . (1.57)

The strain energy density and complementary energy density in this case are

U =
n

n+ 1
sijeij , Ũ =

1

n+ 1
sijeij . (1.58)

1.3.2 Viscoelasticity

Viscoelastic materials combine elastic and viscous behavior. They are characterized
by a time-dependent response and by a dependence of stresses and strains on the
load or deformation history, respectively. Typical viscoelastic effects are creep and
relaxation phenomena as they appear for example in polymers. But creep effects are
also relevant in metals such as steel in the high temperature regime.

1.3.2.1 Linear viscoelastic material behavior

The uniaxial linear viscoelastic material behavior can be described by the constitu-
tive law

ε(t) =

t∫

−∞
J(t− τ) dσ

dτ
dτ or σ(t) =

t∫

−∞
E(t− τ) dε

dτ
dτ . (1.59)

Here J(t) and E(t) are material functions, representing the response to an instanta-
neously applied constant stress σ0 or constant strain ε0, respectively. The function
J(t) = ε(t)/σ0 is called creep function or creep compliance while E(t) = σ(t)/ε0
is referred to as relaxation function (Fig. 1.6). They are interrelated through
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t

E

b)
t

J

a)

Jg

Je

Eg

Ee

Fig. 1.6 a) Creep function, b) relaxation function

d
dt

t∫

0

J(t− τ)E(τ) dτ = 1 . (1.60)

The lower limit of the integrals in (1.59) indicates that the material behavior at time
t depends on the entire preceding stress and strain history, respectively.

In case of an isotropic material, a three-dimensional generalization of (1.59) can
be obtained by separating the hydrostatic (volumetric) and deviatoric (distortional)
parts. In addition, for many viscoelastic materials it may be assumed that the re-
sponse to volumetric strains is purely elastic: σkk = 3Kεkk. In this case, the con-
stitutive law for the remaining deviatoric part is given by

e′ij =
1

2

t∫

−∞
Jd(t− τ) dsij

dτ
dτ , sij = 2

t∫

−∞
G(t− τ) deij

dτ
dτ . (1.61)

The creep function Jd(t) and relaxation function G(t) again are related as in the
uniaxial case, see (1.60).

Integrals of the type (1.59), (1.61) are known as convolution integrals. They are
treated conveniently by Laplace transform. The Laplace transformed function f̄(p)
of a function f(t) is defined as

f̄(p) =

∞∫

0

f(t) e−pt dt . (1.62)

For instance, applying this transformation to the second equation of (1.61) and as-
suming that the strain history starts at time τ = 0 we obtain

s̄ij = 2 p Ḡ(p) ēij . (1.63)

Comparing this result with (1.39) we observe that, apart from the material constant,
the transformed viscoelastic law and the elastic law are of the same form. This
is valid also for all further relevant equations such as equilibrium conditions and
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kinematic relations. This property is known as elastic–viscoelastic analogy which
is the basis of the so-called correspondence principle. According to this principle
the Laplace-transformed solution of a viscoelastic problem can be obtained from
the corresponding elastic solution by replacing the elastic constants appropriately
by the Laplace-transformed creep and relaxation functions, respectively (e.g.,G→
p Ḡ(p)). The final solution of the viscoelastic problem then follows by the inverse
transformation.

1.3.2.2 Nonlinear viscoelastic material response, creep

Nonlinear viscoelastic behavior is often described by pragmatic approaches which
are applicable only to specific materials or in a restricted loading regime. One of
these is Leaderman’s approach for polymers (H. LEADERMAN, 1943)

ε(t) =

t∫

−∞
J(t− τ) d(σf)

dτ
dτ (1.64)

where f(σ) is an additional material function. It characterizes the dependence of
creep strains on an applied constant stress σ0 in the form ε(t) = σ0f(σ0)J(t). A
generalization of (1.64) to the three-dimensional case may be accomplished analo-
gously to the linear case.

Because of its practical relevance, creep of metallic materials under constant
stress shall briefly be discussed. Usually the three stages of primary, secondary,
and tertiary creep are distinguished, where secondary creep often is the dominant
stage. This stage is characterized by an approximately constant strain rate (creep
rate) ε̇ under a fixed uniaxial stress σ. The strain rate only depends on the stress
level: ε̇ = ε̇(σ). For the characterization of such a stationary creep deformation dif-
ferent approaches are in use such as, for example, Norton-Bailey’s creep law (F.H.
NORTON, R.W. BAILEY, 1929)

ε̇ = B σn , (1.65)

Prandtl’s approach (L. PRANDTL, 1875-1953)

ε̇

ε̇�
= [sinh(

σ

σ�
)]n (1.66)

or modified approaches of the type

ε̇

ε̇�
= C

d

dt
(
σ

σ�
)m + (

σ

σ�
)n (1.67)

where B, C, n,m, σ�, and ε̇� are material parameters.
The constitutive laws for viscous flow and elastic response often have a simi-

lar structure. For instance, (1.65) can formally be obtained from (1.56) by simply
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replacing strains by strain rates. If one assumes that the quantities (work rates)

D̃ =

σkl∫

0

ε̇ij dσij , D =

ε̇kl∫

0

σij dε̇ij = σij ε̇ij − D̃ (1.68)

are independent of the integration path, then the relations

ε̇ij =
∂D̃

∂σij
, σij =

∂D

∂ε̇ij
(1.69)

hold which are analogous to (1.48) and (1.46). The function D̃(σij) is known as flow
potential, D(ε̇ij) is the strain energy rate density and σij ε̇ij is called dissipation
rate.

Assuming an incompressible material (ε̇kk = 0) and a dependence of the flow
potential solely on IIs, equation (1.69) yields

ėij =
dD̃

dIIs
sij =

3

2

ε̇e

σe
sij (1.70)

where σe = (32 sijsij)
1/2 and ε̇e = (23 ėij ėij)

1/2. For example, Norton’s creep law
for the three-dimensional case then attains the form

ėij =
3

2
B σn−1

e sij . (1.71)

The corresponding strain energy rate density and the flow potential read

D =
n

n+ 1
sij ėij , D̃ =

1

n+ 1
sij ėij . (1.72)

These equations are fully analogous to equations (1.57), (1.58) for a nonlinear elas-
tic power law. Both sets of equations can be transformed into each other by replacing
strains by strain rates and vice versa. Consequently, also the solutions of correspond-
ing boundary value problems are analogous. According to this analogy, the solution
of a nonlinear elastic problem can be transferred to the corresponding creep problem
by replacing strains by strain rates.

1.3.3 Plasticity

If stresses or strains exceed a certain limit, plastic yielding may be observed espe-
cially in metallic materials. In this case, in contrast to viscoelasticity, a load change
mostly leads to an immediate (time independent) deformation change. One effect of
plastic yielding are remaining plastic deformations after unloading.
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For the characterization of an elastic-plastic material in conventional plasticity
theory one usually assumes that the strains and strain increments are additively com-
posed of an elastic and a plastic part:

ε = εe + εp , dε = dεe + dεp . (1.73a)

By relating the strain increments to a corresponding time increment dt the additive
split also can be expressed as

ε̇ = ε̇e + ε̇p . (1.73b)

For the elastic part a linear stress-strain relationship, as given e.g. by (1.35a), may
be assumed. In conjunction with (1.73a) the elasticity law then attains the form

σ = C : εe = C : (ε − εp) . (1.74)

As a constitutive law for the plastic part, formulations in terms of plastic strain
increments as well as in terms of total plastic strains are in use. The correspond-
ing representations are known as incremental plasticity and deformation plasticity
(total strain theory), respectively. Both approaches usually assume plastic incom-

pressibility, i.e., vanishing plastic volumetric strains: εpkk = 0. As a consequence
εp = ep holds.

1.3.3.1 Yield criterion

It is feasible to assume that yielding occurs only if a certain state prevails which is
determined by the stresses σij . Such a yield criterion can be expressed by

F (σ) = 0 (1.75a)

which may be interpreted as a surface ( = yield surface) in the nine-dimensional
space of stresses σij . A stress state on the yield surface (F = 0) then characterizes
yielding while stress states within the yield surface (F < 0) correspond to an elastic
response. Accordingly, the extended yield criterion

F (σ) ≤ 0 (1.75b)

defines the set of all possible (admissible) stress states.
The yield surface may change its location and its shape during plastic deforma-

tion. Special cases are the self similar growth of the yield surface, known as isotropic
hardening, and a pure translation, known as kinematic hardening. If the yield sur-
face remains unchanged, the material response is called perfectly plastic. As we will
discuss later in conjunction with the principle of maximum plastic work, the yield
surface is convex.

For an isotropic material, the yield criterion can only depend on the invariants Iσ ,
IIσ , IIIσ which is equivalent to a dependence only on Iσ , IIs, IIIs. When loaded
by a hydrostatic stress state many materials, especially metals, show a purely elastic
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response by volumetric strains, i.e., Iσ does not influence yielding. Thus, the yield
criterion (1.75a) reduces to

F (IIs, IIIs) = 0 . (1.76)

Equation (1.76) offers a multitude of possible criteria from which only two well-
established and widely-used yield criteria shall be mentioned here. The VON MISES

yield criterion (R. VON MISES, 1883–1953) is given by

F = IIs − k2 = 0 or F =
1

2
sijsij − k2 = 0 . (1.77a)

In conjunction with (1.15) it can also be written as

F =
1

6
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] − k2 = 0 . (1.77b)

Accordingly, the material yields if IIs attains the critical value k2. Equivalent are
the statements that yielding requires a certain octahedral shear stress τoct or that
the linear elastic response is limited by a critical distortional strain energy den-
sity UG. Equation (1.77b) defines a cylindrical surface of radius

√
2k around the

“hydrostatic” axis σ1 = σ2 = σ3 in the three-dimensional space of principal
stresses (Fig. 1.7a). For a perfectly plastic material k is constant. Introducing the
yield stress σY for uniaxial tension (σ1 = σY , σ2 = σ3 = 0) and τY for pure
shear (σ1 = −σ3 = τY , σ2 = 0), the relation k = σY /

√
3 = τY holds. In case of

isotropic hardening, k depends on the plastic deformation. The constant σY then has
to be replaced by the actual yield stress: k = σ/

√
3. By comparison with (1.77a) we

obtain the already known uniaxial equivalent stress σe = ( 3
2
sijsij)

1/2, see (1.54a),
which is also known as the von Mises stress.

Tresca

b)

σY

Tresca

v.Mises

−σY

σY

σ2

σ1

v.Mises

σ3

σ2

σ1

σY

σY

a)

hydrostatic
axis

−σY

Fig. 1.7 Yield criteria according to von Mises and Tresca

For the special case of plane stress (σ3 = 0) we obtain from (1.77b) the yield
condition

σ21 + σ22 − σ1σ2 = σ2Y . (1.78)
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The associated yield curve is an ellipse, see Fig. 1.7b.
The yield condition according to H.E. TRESCA (1868) is based on the assump-

tion that plastic flow occurs if the maximum shear stress reaches a certain critical
value: F = τmax − k = 0. Introducing the extreme shear stresses according to
(1.11), one of the conditions

σ1 − σ3 ± 2k = 0 , σ2 − σ1 ± 2k = 0 , σ3 − σ2 ± 2k = 0 (1.79)

must be fulfilled. The associated yield surface in principal stress space is a hexag-
onal prism whose middle axis coincides with the hydrostatic axis (Fig. 1.7). For a
perfectly plastic material, the relation between k and the flow stresses σY (uniaxial
tension) and τY (pure shear) is given by k = σY /2 = τY .

1.3.3.2 Incremental theory

In the following we assume that the material satisfies the principle of maximum
plastic work:

(σij − σ0ij) dεpij ≥ 0 . (1.80)

Here, σij is the actual stress state on the yield surface, while σ0ij represents an initial
state within or on the yield surface. This principle can be interpreted such that among
all stress states σ̃ij which fulfill the yield condition, the actual stresses σij render
the plastic work σ̃ijdε

p
ij an extremum. This extremum statement can be formulated

as
∂

∂σ̃ij
[σ̃ijdε

p
ij − dλF (σ̃ij)] = 0 for σ̃ij = σij (1.81)

where dλ ≥ 0 is a free Lagrange multiplier. From this follows the flow rule

dεpij = dλ
∂F

∂σij
(1.82a)

which alternatively can be written as

ε̇pij = λ̇
∂F

∂σij
or ε̇p = λ̇

∂F

∂σ
. (1.82b)

Without going into details it should be mentioned that from the principle of max-
imum plastic work some consequences arise. One of them is the already mentioned
convexity of the yield surface. Another consequence is the normality rule which
states that the plastic strain increment points outward of the yield surface in normal
direction, cf. (1.82a,b).

If we take von Mises yield condition (1.77a,b) as the basis, then (1.82a,b)
yields dεp = dλ s. In this case, the principal axes of dεp coincide with those
of the stress deviator s and consequently also with those of σ. The multiplier dλ
can be determined by introducing the equivalent stress σe = (3

2
sijsij)

1/2 and
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– taking into account plastic incompressibility – the equivalent strain increment
dεpe = (2

3
dεpijdε

p
ij)

1/2. From dεpijdε
p
ij = (dλ)2sijsij we then get dλ = 3

2
dεpe/σe

and finally

dεpij =
3

2

dεpe
σe
sij or ε̇p =

3

2

ε̇pe
σe

s . (1.83a)

For a perfectly plastic material, the equivalent stress is constant: σe = σY . This is
not the case for strain hardening materials and it is then appropriate to introduce
into (1.83a) the plastic tangent modulus g = dσe/dε

p
e = σ̇e/ε̇

p
e and to write the

flow rule as follows

dεpij =
3

2

sij
g σe

dσe or ε̇p =
3

2

σ̇e

g σe
s . (1.83b)

Combining the elastic and plastic strain increments according to (1.73a,b) we obtain
as the constitutive law during yielding (F = 0, dσe > 0) the so-called Prandtl-
Reuss law

ε̇kk =
1

3K
σ̇kk , ė =

1

2μ
ṡ+

3

2

σ̇e

g σe
s . (1.83c)

In contrast, if Tresca’s yield condition in the form F = σ1 − σ3 − k = 0 with
σ1 ≥ σ2 ≥ σ3 is employed the plastic increments in principal directions follow
from flow rule (1.82a) as

dεp1 = dλ , dεp2 = 0 , dεp3 = −dλ . (1.84)

As before, they satisfy the condition of plastic incompressibility.

1.3.3.3 Deformation theory

In deformation theory (also referred to as total strain theory) it is assumed that be-
tween plastic strains and deviatoric stresses the relation

εp = λ s (1.85)

holds where the multiplier λ depends on the stress state and plastic deformation.
On the basis of von Mises’ yield condition in conjunction with the equivalent stress
σe = (3

2
sijsij)

1/2 and the equivalent plastic strain εpe = ( 2
3
εpijε

p
ij)

1/2 it is deter-
mined as λ = 3εpe/2σe. Combining elastic and plastic strains according to (1.73a)
we obtain the finite Hencky-Ilyushin law

εkk =
1

3K
σkk , e =

[
1

2 μ
+

3

2

εpe
σe

]
s . (1.86)

Comparing (1.86) with (1.55) it can be recognized that deformation theory de-
scribes the plastic material behavior like a nonlinear elastic behavior. Consequently,
deformation theory is not able to adequately model unloading processes. Therefore,
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to be physically meaningful, it is only applicable in a monotonic loading regime.
Under such circumstances this theory is especially appropriate if proportional load-
ing is present, i.e., if the condition

s = P s0 (1.87)

is fulfilled. Here, s0 is a reference stress state (e.g., for the final load) and P is
a scalar load parameter. It can be shown that in this case deformation theory and
incremental theory are equivalent.

As a sufficiently good approximation of the real material behavior, the general
relation (1.85) often is specified by the power laws (1.56) and (1.57), respectively.
This leads always to proportional loading according to (1.87) as long as the external
load of the body or a sub-body is prescribed by solely one load parameter P (e.g.,
by a single force). In this case, the strains and displacements are given by

εp = Pn εp 0 , u = Pn u0 . (1.88)

Here εp 0 and u0 are the plastic strains and displacements associated with the ref-
erence stress state s0. As a consequence, if the stresses and strains are known for a
certain load, they are known for all other loading stages.

It should be mentioned that these properties arising from the power law can anal-
ogously be transferred from deformation theory of plasticity to creep processes. Due
to the analogy of constitutive laws for nonlinear elastic behavior and for creep (see
Sect. 1.3.2.2), only strains must be replaced by strain rates and displacements by
velocities. Then the following relations apply:

s = P s0 , ε̇p = Pn ε̇p 0 , u̇ = Pn u̇0 . (1.89)

1.4 Energy principles

In the following some classical energy principles for deformable bodies are shortly
discussed. Here we assume that during state changes the material surface of a body
remains unchanged. This means that any crack growth is precluded. For brevity we
further assume that the body is externally loaded solely by surface tractions and no
volume forces are present. The latter can easily be taken into account if necessary.

1.4.1 Energy balance

The energy balance or first law of thermodynamics, applied to continuum mechan-
ics, states that the change of total energy (internal energy + kinetic energy) of a
body is equal to the energy flux into the body. This can be expressed through the
equations
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Ė + K̇ = P +Q , (E +K)2 − (E +K)1 =

t2∫

t1

(P +Q) dt . (1.90)

Here E, K, and P are the internal energy, the kinetic energy, and the power of
external forces, respectively. They are given by

E =

∫

V

ρ e dV , K =
1

2

∫

V

ρ u̇ · u̇dV , P =

∫

∂V

t · u̇ dA (1.91)

where e is the specific internal energy. The quantityQ describes an energy transport
into the body which is not covered by P, as e.g., heat flux. We will not further specify
this term.

For an elastic material ρ e can be identified as the strain energy density U . In the
special case of quasi-static loading (K = 0) and forQ = 0 the energy balance reads

Π int
2 −Πint

1 =W ext
12 . (1.92)

Here the terms

Π int =

∫

V

U dV , W ext
12 =

∫

∂V

[

u2∫

u1

t · du] dA (1.93)

for the body’s strain energy and for the work done by external forces between the
states 1 and 2 have been introduced. The termΠint is also called elastic potential.

1.4.2 Principle of virtual work

We consider a body in equilibrium with prescribed tractions t̂ and displacements û
on the partial surfaces ∂Vt and ∂Vu. The static and kinematic basic equations for
this case read

σij,j = 0 in V , σijnj = t̂i on ∂Vt ,

εij =
1
2 (ui,j + uj,i) in V , ui = ûi on ∂Vu .

(1.94)

A statically admissible stress field σ(1) satisfies the equilibrium conditions and
boundary conditions on ∂Vt. Analogously, a kinematically admissible displacement
field u(2) and strain field ε(2) satisfy the kinematic relations and boundary condi-
tions on ∂Vu. By multiplying the equilibrium conditions for σ(1) by the displace-
ments u(2) and subsequent integration over the volume V in conjunction with the
divergence theorem, from (1.94) the general work theorem
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∫

V

σ(1) : ε(2) dV =

∫

∂Vt

t̂
(1) · u(2) dA+

∫

∂Vu

t(1) · û(2) dA (1.95)

is obtained.
From (1.95) various specific theorems can be derived. If we use as force quan-

tities (e.g., stresses) the actual quantities associated with an equilibrium state and
as kinematic quantities the so-called virtual displacements δu and virtual strains
δε relative to the equilibrium configuration, we obtain the principle of virtual work
(principle of virtual displacements)

δW int = δW ext (1.96)

where

δW int =

∫

V

σ : δεdV , δW ext =

∫

∂Vt

t̂ · δudA . (1.97)

Here, the virtual displacements are understood as infinitesimal and kinematically
admissible. According to this principle the work δW int done by internal forces and
δW ext done by external forces during a virtual displacement must be equal for a
body in equilibrium.

For an elastic material the work of internal forces is equivalent to the change
of the elastic potential. This is valid since according to (1.45) σ : δε = δU
from which in conjunction with (1.97) and (1.93) the relation δW int = δΠint fol-
lows. If additionally the external forces can be derived from a potential, the relation
δW ext = −δΠext holds and we obtain from (1.96)

δΠ = δ(Πint +Πext) = 0 . (1.98)

Thus, in an equilibrium state the total potentialΠ is stationary. It can be shown that
the corresponding value is a minimum if the potential is convex:

Π = Πint +Πext = minimum . (1.99)

This is the principle of minimum potential energy. It can be phrased as follows:
among all admissible deformations (compatible with kinematic boundary condi-
tions) the actual deformations render the total potentialΠ stationary (minimum). It
should be mentioned that the potential for a linear elastic material and fixed traction
or displacement boundary conditions is in fact convex, i.e., it attains an absolute
minimum in an equilibrium state.

From (1.95) also the principle of virtual complementary work (principle of vir-
tual forces) can be obtained. In this case, the kinematic quantities are chosen to be
the actual displacements and strains while virtual changes from the equilibrium state
are taken as statically admissible force quantities. This yields

δW̃ int = δW̃ ext (1.100)
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where

δW̃ int =

∫

V

ε : δσ dV , δW̃ ext =

∫

∂Vu

û · δtdA (1.101)

are the complementary work of internal and external forces, respectively. Analogous
to the previous principle the internal complementary potential

Π̃int =

∫

V

Ũ dV (1.102)

can be introduced for elastic materials. In addition, if an external complementary
potential exists where Π̃ext = −W̃ ext we obtain from (1.100)

δΠ̃ = δ(Π̃int + Π̃ext) = 0 . (1.103)

Hence, in an equilibrium state also the complementary potential attains a stationary
value. It is a minimum if Π̃ is convex, which in fact holds for linear elastic systems:

Π̃ = Π̃int + Π̃ext = minimum . (1.104)

This is the principle of stationary (minimum) complementary potential. Accord-
ingly, among all admissible stress fields (compatible with the static boundary con-
ditions) the actual stresses render the complementary potential Π̃ stationary (mini-
mum).

1.4.3 Theorems of Clapeyron and Betti

As the static and kinematic quantities in (1.95) we now introduce the actual (true)
quantities. Provided that the external forces are dead loads (t = t(x)), the right-
hand side of (1.95) represents the work W ext of those forces done from the unde-
formed to the current deformed state. Since dead loads have a potential, W ext =
−Πext holds. Furthermore, for a linear elastic material, the left-hand side of (1.95)
in conjunction with σ : ε = 2U and (1.93) becomes 2Πint. As a consequence we
obtain Clapeyron’s theorem (B.P.E. CLAPEYRON, 1799-1864)

2Π int +Πext = 0 . (1.105)

In contrast, for the special case of an incompressible nonlinear elastic material
which is described by the power law (1.56), (1.57) we first obtain for the left-hand
side of (1.95) n+1

n
Πint and finally

n+ 1

n
Πint +Πext = 0 . (1.106)
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We now consider again the case of a linear elastic material which is described by
the elasticity law σij = Cijklεkl, see (1.35a). On account of the symmetry of the

elasticity tensor (Cijkl = Cjikl = Cijlk = Cklij ) the general relation σ(1)ij ε
(2)
ij =

σ
(2)
ij ε

(1)
ij holds. Integration over the volume in conjunction with the general work

theorem (1.95) yields Betti’s theorem (E. BETTI, 1823-1892)
∫

∂V

t(1) · u(2) dA =

∫

∂V

t(2) · u(1) dA (1.107)

which is also called reciprocity relation. Accordingly, for two different load config-
urations (1), (2) of the same body, the work done by the first force system on the
displacements of the second system is equal to the work done by the second force
system on the displacements of the first system.

1.5 Plane problems

1.5.1 Plane stress, plane strain, longitudinal shear

Problems of solid mechanics may often be approximated as plane (two-dimensional)
problems. Particularly important for applications are the plane strain and the plane
stress state. Besides, the longitudinal (anti-plane) stress state has a somewhat minor
importance. For their representation we use in the following the engineering nota-
tion with coordinates x, y, z, displacements u, v, w, strains εx, γxy, . . . and stresses
σx, τxy, . . . .

A plane strain state is characterized by constrained strains and displacements in
one direction (e.g., in z-direction). In this case w, εz , γxz, γyz , τxz, τyz are zero and
all other quantities depend solely on x and y. The equilibrium conditions (without
volume forces), kinematic relations and compatibility conditions then reduce to

∂σx
∂x

+
∂τxy
∂y

= 0 ,
∂τxy
∂x

+
∂σy
∂y

= 0 , (1.108)

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
, (1.109)

∂2εx
∂y2

+
∂2εy
∂x2

=
∂2γxy
∂x∂y

. (1.110)

Also the constitutive law becomes more simple. For example, from (1.38) we obtain
for an isotropic linear elastic material

εx =
1−ν2
E

(σx− ν

1−ν σy) , εy =
1−ν2
E

(σy− ν

1−ν σx) , γxy =
τxy
G

(1.111)
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and σz = ν(σx + σy).
In a plane stress situation it is assumed that σz , τxz, τyz , γxz, γyz vanish and

that the remaining stresses and strains are independent of z. A corresponding state
appears approximately (not exact) in plates whose thickness is small compared with
their in-plane dimensions and which are loaded solely by forces parallel to the plate.
The equilibrium conditions, kinematic relations, and compatibility conditions are
identical with equations (1.108 – 1.110) for plane strain. In contrast to the latter
state, the displacements u, v, w now may be dependent on z in general. The consti-
tutive law for a linear elastic isotropic material reduce to

εx =
1

E
(σx − νσy) , εy =

1

E
(σy − νσx) , γxy =

τxy
G

(1.112)

andEεz = −ν(σx+σy). Equations (1.112) differ from (1.111) only through some-
what different elastic constants. Therefore, solutions of plane strain boundary value
problems can simply be transferred to plane stress by changing the elastic constants,
and vice versa.

Often it is necessary to describe the stresses in a coordinate system ξ, η which is
rotated with respect to the x, y-system by an angle ϕ, see Fig. 1.8. The respective
transformation relations can be obtained from (1.6) as

σξ =
1

2
(σx + σy) +

1

2
(σx − σy) cos 2ϕ+ τxy sin 2ϕ ,

ση =
1

2
(σx + σy)− 1

2
(σx − σy) cos 2ϕ− τxy sin 2ϕ , (1.113)

τξη = −1

2
(σx − σy) sin 2ϕ+ τxy cos 2ϕ .

They can be visualized by Mohr’s circle in Fig. 1.8.

τmax

τ

σ2

τξη

ση σy

2ϕ

2ϕ∗

−τmax

τxy

x
ϕ

η y
ξ σx σξ σ1 σ

Fig. 1.8 Mohr’s circle

One principal direction in plane strain as well as in plane stress is given by the
z-direction. The other two are in the x, y-plane. The associated principal stresses
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and principal directions are given by

σ1,2 =
σx + σy

2
±
√
(
σx − σy

2
)2 + τ2xy , tan 2ϕ∗ =

2τxy
σx − σy . (1.114)

In sections under ϕ∗∗ = ϕ∗ ± π/4 the principal shear stress

τ3 =
σ1 − σ2

2
=

√
(
σx − σy

2
)2 + τ2xy (1.115)

appears. For σ1 ≥ σz ≥ σ2 it is the maximum shear stress τmax.
The here specified formulas for the stresses can analogously be transferred to the

strains, the strain increments, and the strain rates.
In anti-plane strain or longitudinal shear, the only non-vanishing field quanti-

ties are w, γxz, γyz , τxz , τyz , which are again independent of z. In this case, the
equilibrium condition, kinematic relations, and compatibility condition reduce to

∂τxz
∂x

+
∂τyz
∂y

= 0 , γxz =
∂w

∂x
, γyz =

∂w

∂y
,

∂γxz
∂y

=
∂γyz
∂x

.

(1.116)
For a linear elastic behavior, the constitutive law is given by

γxz = τxz/G , γyz = τyz/G . (1.117)

Because of its simplicity, longitudinal shear is often used as a model case.
In plasticity and viscoelasticity, deformations usually are not directly described

through total displacements and strains but through their increments and velocities,
respectively. In this case the kinematic quantities in the forgoing equations must be
replaced adequately.

1.5.2 Linear elasticity, complex method

For the analytical solution of plane problems of linear elasticity a number of meth-
ods are available. The probably most powerful and elegant tool is the complex vari-
able method which shortly shall be introduced.

In this method, the stresses and displacements are considered as functions of
the complex variable z = x + iy = reiϕ and the conjugate complex variable
z = x − iy = re−iϕ, respectively. It can then be shown that solutions of the ba-
sic equations of plane strain and plane stress can be constructed from solely two
complex functions Φ(z) and Ψ(z). Their relation with the cartesian components of
stresses and displacements is given by Kolosov’s formulas (J.V. KOLOSOV, 1867-
1936)
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σx + σy = 2[Φ′(z) + Φ′(z)] ,

σy − σx + 2iτxy = 2[zΦ′′(z) + Ψ ′(z)] ,

2μ (u+ iv) = κΦ(z)− zΦ′(z)− Ψ(z) ,
(1.118a)

where

κ =

{
3− 4ν plane strain ,

(3− ν)/(1 + ν) plane stress .
(1.118b)

Frequently it is appropriate to use polar coordinates r, ϕ instead of cartesian coordi-
nates (Fig. 1.9). Then Kolosov’s formulas attain the form

σr + σϕ = 2[Φ′(z) + Φ′(z)] ,

σϕ − σr + 2iτrϕ = 2[zΦ′′(z) + Ψ ′(z)z/z] ,

2μ (ur + iuϕ) = [κΦ(z)− zΦ′(z)− Ψ(z)]e−iϕ .

(1.119)

In order to formulate the boundary conditions, often the relations between Φ, Ψ
and the resultant force componentsX,Y along the curve AB and their momentM
with respect to the origin are needed (Fig. 1.9):

X + iY =

B∫

A

(tx + ity)ds = −i
[
Φ(z) + Ψ(z) + zΦ′(z)

]B
A
,

M =

B∫

A

(x ty − y tx)ds = −Re [zzΦ′(z) + zΨ(z)−
∫
Ψ(z)dz]BA .

(1.120)

ϕ
x

y r

z

A

ds

s

tx

ttyB

Fig. 1.9 Body in complex plane

In particular, solutions for longitudinal shear (anti-plane shear) can easily be rep-
resented. The stresses and the displacement in this case can be derived from solely
one complex function Ω(z):
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τxz − iτyz = (τrz − iτϕz)e
−iϕ = Ω′(z) ,

μw = Re Ω(z) .
(1.121)

A certain class of plane problems, including straight cracks located on the x-
axis, can be treated more simple by using Westergaard’s single stress function Z(z)
(H.M. WESTERGAARD, 1939). If the displacement field is symmetric with respect
to the x-axis, i.e. u(x,−y) = u(x, y), v(x,−y) = −v(x, y), and τxy = 0 along
y = 0, the stresses and displacements are given by

σx = ReZ − y ImZ ′, σy = ReZ + y ImZ ′, τxy = −yReZ ′,

4μu = (κ− 1)ReZ̄ − 2y ImZ , 4μ v = (κ+ 1)ImZ̄ − 2yReZ
(1.122)

where Z̄ =
∫
Zdz. Such fields appear e.g. at mode I cracks, see Sections 4.1 and

4.2. Similarly, if the displacement field is antisymmetric with respect to the x-axis,
i.e. u(x,−y) = −u(x, y), v(x,−y) = v(x, y), and σy = 0 along y = 0, the stresses
and displacements are given by

σx = 2 ImZ + yReZ ′, σy = −yReZ ′, τxy = ReZ − y ImZ ′,

4μu = (κ+ 1)ImZ̄ + 2yReZ , 4μ v = −(κ− 1)ReZ̄ − 2y ImZ
(1.123)

where again Z̄ =
∫
Zdz. Such fields characterize, among others, mode-II cracks.

1.5.3 Perfectly plastic material, slip-line fields

In plasticity the solution of boundary value problems is in most cases only possible
by using numerical methods such as the finite element method. One of the few
methods allowing for an analytical treatment of such problems is the slip line theory.
It enables the investigation of stresses and deformations in case of plane strain,
presuming a rigid perfectly plastic material for which we will employ the von Mises
yield condition.

From the condition dεpz = 0 in conjunction with dεpij = dεij and (1.83a) we first
obtain for the stress sz = 0 and σz = σ3 = (σx + σy)/2 = σm, respectively. The
yield condition (1.77b) then reduces to

(σx − σy)2 + 4τ2xy = 4k2 . (1.124)

From this we obtain for the principal stresses σ1 = σm+ k, σ2 = σm− k and for
the maximum shear stress τmax = k. The yield condition in combination with the
equilibrium conditions (1.108) form a hyperbolic system of three equations for the
three unknowns σx, σy , and τxy .

It is now appropriate to introduce an orthogonal mesh of α- and β-lines, whose
directions in each point coincide with the direction of maximum shear stress
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x

y
β-line

yβ

φ

k
σm

α-line

xα σm
φ

Fig. 1.10 Slip lines

(Fig. 1.10). Since the latter coincides with the direction of maximum shear strain
increment or rate, i.e., maximum slip (see e.g., (1.83a)) they are called slip lines. It
should be mentioned that these lines are the characteristics of the hyperbolic system
of equations. Denoting the angle between the x-axis and the tangent of the α-line (=
direction of maximum shear stress) as φ, from (1.114) the relations

σx = σm − k sin 2φ , σy = σm + k sin 2φ , τxy = k cos 2φ (1.125)

are obtained. They identically fulfill the yield condition. Inserting them into the
equilibrium conditions (1.108) yields

∂σm
∂x

− 2 k cos 2φ
∂φ

∂x
− 2 k sin 2φ

∂φ

∂y
= 0 ,

∂σm
∂y

− 2 k sin 2φ
∂φ

∂x
+ 2 k cos 2φ

∂φ

∂y
= 0 .

Since the choice of the coordinate system x, y is arbitrary, we can also use the local
system xα, yβ whose axes coincide with the tangents of theα- and β-line (Fig. 1.10).
Setting φ = 0 in the equations above reduces them to ordinary differential equations
along the slip lines:

d

dxα
(σm − 2 k φ) = 0 ,

d

dyβ
(σm + 2 k φ) = 0 .

Integration yields Hencky’s equations (H. HENCKY, 1885-1952)

σm − 2 k φ = Cα = const along α-lines ,

σm + 2 k φ = Cβ = const elong β-lines .
(1.126)

They allow to determine Cα, Cβ for prescribed traction boundary conditions and
subsequently the entire slip line field and stress field. For kinematic boundary con-
ditions, equations (1.126) are not sufficient. In this case the kinematic relations have
to be taken into account which is not further discussed here.
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Without derivation two geometric properties of the slip line field shall be men-
tioned. According to Hencky’s first theorem the angle between two slip lines of one
family (e.g. α-lines) is constant in the region of intersection with slip lines of the
other family (β). That means that if one family contains a straight line then the
whole family consists of straight lines (e.g., parallel lines, fan). Hencky’s second
theorem states the following: if one moves along a slip line of one family the cur-
vature radius of the other family changes proportional to the covered arc length. It
also should be mentioned that a slip line can be a discontinuity line for the normal
stress component in tangential direction and for the tangential velocity.

The anti-plane shear stress state can be treated analogous to plane strain. In this
case the yield criterion and the equilibrium condition are given by

τ2xz + τ
2
yz = k

2 = τ2Y ,
∂τxz
∂x

+
∂τyz
∂y

= 0 . (1.127)

Again we introduce α-lines whose direction φ is given by the direction in which the
yield stress τY occurs. β-lines are not needed in this case. The equilibrium condition
in conjunction with

τxz = −τY sinφ , τyz = τY cosφ (1.128)

attains the form
dφ

dxα
= 0 . (1.129)

Thus, the α-lines are straight.
The flow rule dεij = dεpij = dλ sij (see Section 1.3.3.2), taking into account

2 ε13 = γxz =
∂w

∂x
, 2 ε23 = γyz =

∂w

∂y
, (1.130)

in this case can be written as

d

(
∂w

∂x

)
=
∂(dw)

∂x
= 2dλ τxz , d

(
∂w

∂y

)
=
∂(dw)

∂y
= 2dλ τyz . (1.131)

Replacing the x, y-coordinates by the more appropriate xα, yβ-system, and subse-
quently introducing (1.128) and φ = 0, it attains the form

∂(dw)

∂xα
= 0 ,

∂(dw)

∂yβ
= 2dλ τY . (1.132)

Accordingly, along the α-line the displacement increments dw are constant. As a
consequence, if the initial state is undeformed, all material points along an α-line
experience the same displacement w.
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Chapter 2
Classical fracture and failure hypotheses

In this chapter, a brief outline on classical fracture and failure hypotheses for ma-
terials under static loading will be given. The word classical this context means in
that most of these so-called strength hypotheses are already quite old. Partially they
date back to considerations made at the end of the 19th or the beginning of the 20th
century and they are inseparably associated with the development of solid mechan-
ics at that time. Through modern fracture mechanics they have been pushed into the
background, as far as research is regarded. However, because of their wide spread-
ing which, last but not least, is due to their simplicity, they are still of remarkable
importance.

2.1 Basic concepts

Strength hypotheses are intended to make a statement about the circumstances un-
der which a material fails. Their basis are experiments conducted under specific,
mostly simple, loading conditions. As an example, two typical stress-strain curves
for materials under uniaxial tension are schematically shown in Fig. 2.1. Up to a

a)

σ

Yielding

Fracture

b)

σ

σF

ε ε

σF

σY

Fracture

Fig. 2.1 Material behavior: a) ductile, b) brittle
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certain limit the response of many materials is essentially elastic. Ductile behavior
is characterized through plastic deformations which occur when the stress exceeds
the yield strength σY . In this case, the ultimate stress at fracture will be attained only
after sufficiently large inelastic deformations. In contrast, brittle material behavior
is characterized by the fact that no significant inelastic deformations occur prior to
fracture.

Depending on the problem at hand, the strength of a material is often charac-
terized by either the yield stress or the ultimate stress at fracture. The associated
material parameters are the yield strength and the ultimate tensile strength. A com-
mon feature of both is that the material behavior changes drastically at these limits.
In this context it should be emphasized that ductile or brittle behavior is not a pure
material property. The stress state also has an essential influence onto the material
behavior. To illustrate this fact it should be mentioned that in general, a hydrostatic
stress state does not lead to inelastic deformations of most materials which usually
are considered as plastically deformable. Thus, under certain loading conditions,
such a material can behave as absolutely brittle.

We now assume that for uniaxial loading as well as for any complex loading the
actual state of the material which determines its behavior inclusive its failure limit
can be characterized simply by the current stress or strain state. Then the failure
condition can be expressed as

F (σij) = 0 or G(εij) = 0 . (2.1)

Just like the yield condition which is described by an analogous equation, the failure
condition F (σij) = 0 can be interpreted as a failure surface in the six-dimensional
stress space or alternatively in the three-dimensional space of principal stresses.
Accordingly, a stress state σij on the surface F = 0 characterizes failure as a result
of yielding or fracture.

A failure condition of the type (2.1) implies that the material state at failure is
independent of the deformation history. With sufficient accuracy this applies to the
onset of plastic yielding in ductile materials or to the fracture of brittle materials.
Furthermore, such a failure condition is acceptable only if until failure the material
can be considered as a continuum without macroscopic defects. This means in par-
ticular that macroscopic cracks must not appear and influence the behavior of the
material through their presence.

The deformation process of plastically deformable materials such as metals (also
concrete or geological materials often are considered as plastically deformable) af-
ter reaching the yield strength can be described by a flow rule. Such a flow rule
however, by no means characterizes the kinematics of brittle fracture. In general,
simple kinematic statements for fracture processes are possible only for specific
stress states.
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2.2 Failure hypotheses

Formally it is possible to establish infinitely many failure hypotheses of the type
(2.1). In what follows, some common hypotheses are presented, part of which can
be applied with sufficient accuracy (from an engineer’s point of view) to certain
classes of materials. Some of them, however, are only of historical relevance. In this
context we will not again discuss the VON MISES and TRESCA yield condition since
this has already been done in Section 1.3.3.1.

2.2.1 Principal stress hypothesis

This hypothesis dates back to W.J.M. RANKINE (1820–1872), G. LAMÉ (1795–
1870), and C.L. NAVIER (1785–1836). According to this hypothesis, the material
behavior is characterized by two characteristic values, the tensile strength σt and
the compressive strength σp. Failure is expected to take place when the maximum
principal stress reaches σt or when the minimum principal stress reaches −σp, i.e.,
when one of the following conditions is fulfilled:

σ1 =

{
σt

−σp σ2 =

{
σt

−σp σ3 =

{
σt

−σp . (2.2)

The associated failure surface in principal stress space is represented by a cube
(Fig. 2.2a). The corresponding failure curve for a plane stress state (σ3 = 0) is a
square (Fig. 2.2b).
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Fig. 2.2 Principal stress hypothesis

The principal stress hypothesis predominantly serves to describe brittle failure
of materials. For tensile loading we generally associate with it the process of de-
cohesion along cross sections perpendicular to the largest principal stress. The hy-
pothesis neglects the influence of the two other principal stresses onto failure, its
applicability hence is quite limited.
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2.2.2 Principal strain hypothesis

According to the hypothesis suggested by DE SAINT-VENANT (1797–1886) and C.
BACH (1889), failure occurs when the maximum principle strain reaches the critical
value εt. If we assume linear elastic behavior until failure and introduce the critical
tensile stress σt = Eεt, we get the following failure conditions:

σ1− ν(σ2+σ3) = σt , σ2− ν(σ3+σ1) = σt , σ3− ν(σ1+σ2) = σt . (2.3)

In this case, the failure surface is represented by a pyramid with three planes cen-
tered around the hydrostatic axis with its apex at σ1 = σ2 = σ3 = σt/(1 − 2ν)
(Fig. 2.3a). The failure curve for plane stress is shown in Fig. 2.3b.
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Fig. 2.3 Principal strain hypothesis

According to this hypothesis, failure under uniaxial compression should occur at
σp = σt/ν. This contradicts experimental experiences for most materials.

2.2.3 Strain energy hypothesis

The hypothesis by E. BELTRAMI (1835-1900) postulates failure when the strain en-
ergy density U reaches a material-specific critical value Uc, i.e., at U = Uc. Usually
this assumption implies that the material behaves linearly elastic until failure. If we
introduce with Uc = σ2c/2E a uniaxial failure stress σc and express U = UV + UG
through the principal stresses by using (1.50), we obtain the following representa-
tion of the hypothesis:

(1+ν)[(σ1−σ2)2+(σ2−σ3)2+(σ3−σ1)2]+(1−2ν)(σ1+σ2+σ3)
2 = 3σ2c . (2.4)

The corresponding failure surface is an ellipsoid around the hydrostatic axis with
the apex at σ1 = σ2 = σ3 = ±σc/

√
3(1− 2ν).
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According to this hypothesis, a sufficiently high hydrostatic pressure always
leads to failure; this is in contradiction with experimental results. If the volumet-
ric part UV of the strain energy density U is omitted, Beltrami’s hypothesis reduces
to the von Mises yield condition.

In conjunction with modern fracture mechanics, the strain energy hypothesis in
a somewhat modified form has been suggested for application as a crack initiation
and propagation criterion, see S-criterion in Sect. 4.9.

2.2.4 Coulomb-Mohr hypothesis

This hypothesis predominantly serves to describe failure due to slip of geological
and granular materials, such as sand, rock, or soils. These materials can carry only
relatively small or, in the limit, no tensile stresses.

For a physical explanation we consider an arbitrary cross section which is loaded
by the normal stress −σ (pressure) and the shear stress τ . Coulomb’s friction law,
applied to the stresses, postulates sliding when τ attains a critical value proportional
to the pressure−σ: | τ |= −σ tan ρ. Here ρ is the material-dependent friction angle.
For −σ → 0 it follows that | τ |→ 0; tensile stresses are not possible in this case.
In many cases however, even for σ = 0, onset of sliding requires a nonzero, finite
shear stress. In addition, materials frequently are able to carry tensile stresses to a
certain extent. Therefore it is reasonable to modify the sliding condition as follows:

| τ |= −σ tan ρ+ c . (2.5)

This relation is known as the Coulomb-Mohr hypothesis (C.A. COULOMB (1736–
1806); O. MOHR (1835–1918)). The parameter c is called cohesion.
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Fig. 2.4 Coulomb-Mohr hypothesis

In the σ-τ diagram, equation (2.5) is represented by two straight lines which form
the envelop of admissible Mohr’s circles (Fig. 2.4a). Sliding occurs for those stress
states for which the largest of the three Mohr’s circles just touches the envelope. In
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terms of principal stresses this leads to the condition

| σ1 − σ3 |
2

=

[
c

tan ρ
− σ1 + σ3

2

]
sin ρ . (2.6)

If we introduce into this equation for instance σ1 = σt and σ3 = 0, we obtain for
the uniaxial tensile strength σt = 2c cosρ/(1 + sin ρ). Analogously, with σ1 = 0
and σ3 = −σp the compressive strength follows to σp = 2c cosρ/(1 − sin ρ). It
should also be mentioned that (2.6) includes as a special case for ρ → 0 Tresca’s
yield condition (cf. Sect. 1.3.3.1).

Sometimes it is appropriate to use the characteristic material parameters σp and
κ = σp/σt instead of the parameters ρ and c. In this case it follows from (2.6) that
for the onset of sliding, one of the following conditions must be fulfilled:

κσ1 − σ3
−σ1 + κσ3

}
= σp ,

κσ2 − σ1
−σ2 + κσ1

}
= σp ,

κσ3 − σ2
−σ3 + κσ1

}
= σp . (2.7)

Here, the principal stresses are not a priori ordered according to their magnitude.
The associated failure surface is a pyramid formed by six planes around the hydro-
static axis (Fig. 2.4b). Its apex is located at σ1 = σ2 = σ3 = σp/(κ−1). The failure
curve for a plane stress state is shown as the hexagon in Fig. 2.4c.

As already mentioned, sliding is supposed to take place in cross sections where
relation (2.5) is fulfilled. They are characterized by the corresponding points A and
A′ in Fig. 2.4a. Accordingly, the normal of the slip plane lies in the plane given
by the maximum principal stress σ1 and the minimum principal stress σ3. The unit
normal vector and the direction of σ1 form an angle of

Θ1,2 = ±(45◦ − ρ/2) . (2.8)

According to this hypothesis, the intermediate principle stress σ2 has no effect on
the onset of failure and the failure angle. It finally should be noted that failure along
the cross section determined by relation (2.8) occurs only when it is kinematically
possible.

The result (2.8) for the orientation of the failure cross section is used among
others in geology to explain different types of faults of the earth’s crust. Here it is

c)b)a)
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θ

σ3 σ1 σ2

σ3

θ

Fig. 2.5 Faults
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assumed that all principal stresses are compressive stresses (|σ3| ≥ |σ2| ≥ |σ1|)
and act in vertical (perpendicular to the earth’ surface) and in horizontal direction,
respectively. A normal fault then is explained with a situation where the vertical
principal stress if larger than the principal stresses acting in horizontal direction
(Fig. 2.5a). In contrast, for a reverse fault it is supposed that the value of the vertical
pressure is the smallest one (Fig. 2.5b). Finally, a strike-slip fault is associated with a
vertical pressure σ2 whose magnitude lies between the maximum and the minimum
values of the principal stresses (Fig. 2.5c).
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Fig. 2.6 Tension cut-off

Experiments show that the Coulomb-Mohr hypothesis describes the behavior of
different materials sufficiently well in the compression regime but worse in the ten-
sion regime. Responsible for this is in most cases a change of the failure mechanism.
This holds particularly when failure in the tension regime occurs not due to the slid-
ing but is rather associated with a decohesion of the cross sections perpendicular to
the maximum principal stress. A possibility to improve the failure condition con-
sists, for instance, in a modification of the failure surface through so-called tension
cut-offs (Fig. 2.6).

The hypothesis (2.5) assumes a linear relation between τ and σ. A generalization
of the form

τ=h(σ)

σ3 σ1σ2

τ

σ

Fig. 2.7 Mohr’s failure hypothesis
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| τ |= h(σ) (2.9)

where the function h(σ) must be determined experimentally was proposed by O.
MOHR (1900). In the σ-τ diagram it represents the envelope of admissible Mohr’s
circles (Fig. 2.7). As in hypothesis (2.5), the intermediate principal stress σ2 has no
effect on failure. In this respect, both hypotheses may be considered as special (not
general) cases of a failure condition F (σ1, σ3) = 0.

2.2.5 Drucker-Prager hypothesis

According to the hypothesis by D.C. DRUCKER (1918-2001) and W. PRAGER

(1903-1980), a material fails when the condition

F (Iσ , IIs) = α Iσ +
√
IIs − k = 0 (2.10a)

is fulfilled. Here, Iσ , IIs are the invariants of the stress tensor and of its deviator,
respectively, and α and k are material parameters. If we introduce σm = σoct =
Iσ/3 and τoct =

√
2 IIs/3 the condition (2.10a) can be interpreted similar to the

Mohr-Coulomb hypothesis. Accordingly, failure occurs when the octahedral shear
stress τoct reaches a value which is linearly dependent on the normal stress σm (cf.
(2.5)):

τoct = −
√
6 ασm +

√
2/3 k . (2.10b)
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Fig. 2.8 Drucker-Prager hypothesis

The failure surface defined by (2.10a,b) in principal stress space forms a cone
around the hydrostatic axis with the apex at σ1 = σ2 = σ3 = k/3α (Fig. 2.8a). The
associated failure curve for plane stress (σ3 = 0) is an ellipse (Fig. 2.8b). As the
Coulomb-Mohr hypothesis, the Drucker-Prager criterion is used as a yield or as a
fracture condition, predominantly for granular and geological materials. For α = 0
it reduces to the von Mises yield condition.
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Experiments show that in some cases a description of the failure condition by
means of only two material parameters is not sufficient. It then must be suitably
modified. A frequently used extension of the Drucker-Prager hypothesis is given by

F (Iσ , IIs) = α Iσ +
√
IIs + β I2σ − k = 0 . (2.11)

Here, β is an additional material parameter.

2.2.6 Johnson-Cook criterion

While the failure hypotheses discussed so far are primarily intented to describe brit-
tle failure or the onset of plastic flow, the criterion by JOHNSON and COOK (1985)
addresses ductile failure after pronounced plastic deformation. Ultimate failure in
many ductile materials proceeds by the formation and coalescence of microscopic
voids (as discussed in more detail in Sections 3.1.3 and 9.4) which is essentially
driven by hydrostatic stress. Correspondingly, the plastic strain at failure in these
materials is assumed to be a decreasing function of the ratio of hydrostatic to devi-
atoric stress as sketched in Fig. 2.9 and approximated by the relation:

εfail = D1 +D2 exp

(
D3

σm
σe

)
. (2.12)

Here, εfail is the value of the equivalent plastic strain εpe =
√

2
3
εpijε

p
ij at failure,

σm = 1
3
σkk is the hydrostatic stress, σe =

√
3
2
sijsij the equivalent (von Mises)

stress, andD1, D2, D3 are material constants.

σm/σe

εfail

Fig. 2.9 Johnson-Cook criterion

It should be mentioned that the direct relation between the accumulated plastic
strain at failure and the stress state in the failure criterion (2.12) is meaningful only
if proportional loading prevails throughout the entire deformation history, i.e. when
the ratio σm/σe is constant (see also Section 1.3.3.3). The model can be extended to
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account for non-proportional loading by supplementing it with a damage evolution
law. More elaborate models for ductile failure, however, are discussed in Sect. 9.4.

2.3 Deformation behavior during failure

On the basis of the failure criterion alone no direct conclusion can be drawn for the
deformation behavior or the kinematics during failure. Respective statements are
only possible when a specified kinematic idea is a priori associated with the failure
hypothesis or when a physically meaningful assumption is introduced.

During failure due to fracture, a body is separated into two or more parts. This
process is accompanied with the creation of new surfaces, i.e., with the formation
of fracture surfaces. The associated kinematics can not be described in a simple
manner. Only for sufficiently uniform stress states statements are possible which
are guided by experimental results. They show two basic patterns for the formation
of fracture surfaces. For a normal stress dominated fracture, the fracture plane coin-
cides with the cross section normal to the maximum principal stress which necessar-
ily must be tension (Fig. 2.10a). If the fracture surface is formed by cross sections
in which a certain shear stress (e.g., τmax, τoct, etc.) reaches a critical value, this is
called shear dominated fracture (Fig. 2.10b). Dependent on the stress state and the
material behavior, both types occur also in various mixed forms.

σ1

σ1

τ

σ1

σ

b)a)

Fig. 2.10 Fracture surfaces

If “failure” denotes the onset of yielding, the failure criterion is equivalent to
a yield criterion. Within the framework of incremental plasticity, deformations
appearing during yielding can be described by means of the flow rule dεpij =
dλ∂F/∂σij (cf. Sect. 1.3.3.2). The respective equations for the von Mises and
Tresca yield conditions are assembled in (1.83a) and (1.84). As a further exam-
ple, the incremental stress-strain relations for the Drucker-Prager model shall be
specified here. We assume that the yield surface is independent of the deformation
history (perfectly plastic material). In this case, the flow rule in conjunction with
(2.10a,b) and Iσ = σkk = σijδij and IIs = 1

2sijsij yields
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dεpij = dλ

(
α δij +

sij

2
√
IIs

)
. (2.13)

The determination of dλ is not further discussed here. It should be noted that accord-
ing to (2.12) volume changes generally occur; the corresponding increment is given
by dεpkk = 3α dλ. However, experiments suggest that the associated flow rule is not
valid for granular materials. Thus, yielding then takes place not perpendicular to the
yield surface. Therefore, equation (2.13) should not be used for such materials.

2.4 Problems

Problem 2.1 a) Determine the stress distribution in a linear elastic thick-walled
cylinder (radii a and b) subjected to an internal
pressure p by using the complex potentials

Φ(z) = Az , Ψ(z) =
B

z
.

b) Find the potential failure loci according to
the maximum principal stress criterion and the
maximum shear stress criterion.

a

p

b

Fig. 2.11

Solution
a)
σϕ = p

(b/r)2 + 1

(b/a)2 − 1
= σ1 > 0 , σr = p

(b/r)2 − 1

(b/a)2 − 1
= σ2 < 0 , τrϕ = 0 .

b) Maximum principal stress criterion: Since σϕ = σ1 is the maximum principal
stress, failure should occur perpendicular to the hoop stress, i.e. in radial sections.

Maximum shear stress criterion: On account of τrϕ = 0, the maximum shear di-
rection is everywhere inclined by 45◦ with respect to the radial direction. This
can be expressed by the differential relation dr = r dϕ which has the solution
ϕ(r) = ϕ0 + ln(r/a); i.e. failure takes place along logarithmic spirals.

2.5 Further reading

Gould, P.L. Introduction to Linear Elasticity. Springer, New York, 1993

Paul, B. Macroscopic Criteria for Plastic Flow and Brittle Fracture. In Fracture –
A Treatise, Vol. 2, ed. H. Liebowitz, pp. 315-496, Academic Press, London, 1968
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Nadai, A. Theory of Flow and Fracture of Solids, Vol. 1. McGraw-Hill, New
York, 1963



Chapter 3
Micro and macro phenomena of fracture

Origins and phenomena of fracture are manifold. The reason for this can be found
in the fact that the phenomena are predominantly determined by the microscopic
properties of a material which in turn vary extensively from material to material.
In this book, emphasis is placed on a continuum-mechanical description of macro-
scopic fracture behavior. Nevertheless, it is beneficial to have a certain understand-
ing of microscopic events. Therefore, both microscopic and macroscopic aspects
are briefly discussed in this chapter. The former have only exemplary character and
focus on phenomena in crystalline or polycrystalline materials which includes the
large class of metals.

3.1 Microscopic aspects

3.1.1 Surface energy, theoretical strength

Fracture is the separation of a body into two or more parts. During this process the
bonds between the components of the material are broken. At the microscopic level,
these are for instance bonds between atoms, ions, molecules, etc. The bonding force
between two of those elements can be expressed by means of the relation

F = − a

rm
+
b

rn
(3.1)

(Fig. 3.1a). Here, the first term represents attractive forces, while the second term
describes repulsive ones. The parameters a, b, m, and n (m < n) are constants
which depend on the bond type. For small displacements from the equilibrium con-
figuration d0, the bonding force F (r) can be approximated by a linear function. This
is equivalent to a material behavior which macroscopically is described by Hooke’s
law.
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During the release of bonds, i.e., the separation of elements, a negative material-
specific workWB is done by the bonding force. As a consequence of separation, for
instance in a perfect crystal, the lattice geometry changes in the immediate neighbor-
hood of the newly created surface. This change is confined to a few lattice spacings
into the bulk. If dissipative processes are neglected and the material is, from the
macroscopic point of view, considered as a continuum, the work of bonding forces
is transferred into surface energy of the body (i.e., the energy stored at the body’s
surface). It is defined as

Γ 0 = γ0A (3.2)

where A is the newly created surface and γ0 is the surface energy density.
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Fig. 3.1 Theoretical strength

In what follows, we consider in a somewhat simplified manner the separation
process of two atomic lattice planes of a crystal. For the separation stress σ(x)
we assume a dependence on the separation displacement x similar to the bond-
ing force (Fig. 3.1b). In the tensile regime it can be approximated by the relation
σc sin (πx/a). For small displacements x this leads to σ ≈ σcπx/a. Equating the
latter with Hooke’s law σ = Eε = Ex/d0 yields for the so-called theoretical
strength, i.e., the cohesive stress that has to be overcome during separation

σc ≈ E a

πd0
. (3.3)

If we further assume that the bonds are completely broken for a ≈ d0 we obtain the
rough estimate

σc ≈ E

π
. (3.4)

From the work of stresses in conjunction with the foregoing assumptions the
surface energy γ0 can be determined. Taking into account that two new surfaces are
created during separation we get

2γ0 =

∞∫

0

σ(x)dx ≈
a∫

0

σc sin
πx

a
dx = σc

2a

π
. (3.5)
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With a ≈ d0 and (3.4) it follows herefrom that

γ0 ≈ Ed0
π2

. (3.6)

If the relations (3.4) and (3.6) are applied to iron or steel, using the dataE = 2.1 ·
105MPa and d0 = 2.5 · 10−10m, we obtain σc ≈ 0.7 · 105 MPa and γ0 ≈ 5 J/m2.
However, corresponding values can only be reached for defect-free single crystals
(whiskers). For real polycrystalline materials, the fracture strength is 2-3 orders of
magnitude less. In parallel, the energy necessary for the creation of new fracture
surfaces exceeds the value in (3.6) by several orders of magnitude. The reasons for
this can be found in the inhomogeneous structure of the material and, first of all, in
its defect structure.

As a side note it should be mentioned that the bonding force (3.1) can be derived
from an interaction potential Φ(r) as F = −∂Φ/∂r. A typical standard potential for
interatomic interaction is the Lennard-Jones potential (J. LENNARD-JONES, 1894-
1954)

Φ
LJ

(r) = −A
r6

+
B

r12
. (3.7)

Its first term describes the attractive van der Waals forces while the second term
is responsible for the short-range repulsive forces. This potential is widely used for
fundamental investigations and molecular dynamic simulations including separation
processes on the microscale.

3.1.2 Microstructure and defects

A polycrystalline material consists of crystals (grains) which are joined with one
another along grain boundaries. The individual grains have anisotropic properties
and the orientation of their crystallographic planes and axes differ from grain to
grain. Furthermore, e.g., due to segregation, the properties of grain boundaries differ
substantially from those of the grains.

In addition to these irregularities of the material’s structure, a real material con-
tains from the beginning on a number of defects of different size. Defects with
the characteristic length of one or several grains, e.g., induced by the manufactur-
ing process, are for instance inclusions with strongly different material properties,
cavities, or microcracks. From the physical point of view, they are mostly viewed
as defects on the mesoscale. In addition, there are faults on the microscale which
are understood as defects in the crystal lattice. Usually they are classified accord-
ing to their dimension as point imperfections (e.g., vacancies, interstitials, impu-
rity atoms), line imperfections (dislocations), and area imperfections (e.g., stacking
faults, phase boundaries, twin boundaries).

A particular role regarding the mechanical behavior is played by dislocations.
The geometry of these lattice imperfections is shown in Fig. 3.2a for an edge dislo-
cation and in Fig. 3.2b for a screw dislocation. A dislocation can be characterized by
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the Burgers vector b (J.M. BURGERS, 1895-1981) as follows: b is perpendicular to
the dislocation line for an edge dislocation while b is parallel to the dislocation line
for the screw dislocation (Fig. 3.2a, b). It should be noted that a dislocation induces
an eigenstress field which is accompanied by an elastic energy (cf. Section 8.2.1).
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Fig. 3.2 Dislocations

Under the action of sufficiently high shear stresses the atoms in the vicinity of
the dislocation line rearrange their bonds which leads to a displacement of the dislo-
cation (Fig. 3.2c). The work done during this process is mainly dissipated as heat (=
lattice vibration). The dislocation movement results in a relative “slip” of the lattice
planes and may lead to the formation of a new surface (Fig. 3.2d). This microscopic
mechanism is the origin of macroscopic plastic material behavior. The dislocation
movement within a crystal is often not uniformly distributed but rather localized
in slip bands. In general, dislocations can not move unlimited. At obstacles such as
grain boundaries or inclusions they may stop and accumulate. Macroscopically such
a dislocation pile-up is observed as strain hardening.

In contrast to crystalline materials, the molecules and atoms are completely dis-
ordered in amorphous solids such as glasses or many polymers. While in these mate-
rials no disturbances of a regular lattice, e.g. by dislocations or grain boundaries can
be identified, the defects are essentially given by foreign particles and microvoids.
The characteristic feature of polymeric materials (plastics) is their composition of
long molecular chains which, in case of an amorphous microstructure, are randomly
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entangled. Two kinds of forces and bonds, respectively, can be distinguished in such
a material: a) the intramolecular forces between neighboring atoms within a poly-
mer chain due to covalent chemical bonds and b) the considerably weaker inter-
molecular van der Waals forces between atoms of different chains. On account of
local entanglements and/or chemical bonds, the molecular chains form a complex
three-dimensional network. Under external tensile loading, the microscopic defor-
mations initially comprise rotations and stretching of single chain segments. Sub-
sequently, debonding of intermolecular cross-links and straining as well as rupture
of chains may occur. This microscopic damage mechanism preferably takes place
at heterogeneities of the molecular network and at foreign particles (e.g. dust parti-
cles). Similar to the situation in crystalline materials, this process is accompanied by
the formation of microvoids. With increasing deformation, void formation localizes
in thin zones perpendicular to the macroscopic loading direction. In these zones,
the polymer material between the voids is stretched into fibrils, i.e. oriented bundles
of molecular chains (Fig. 3.3). This damage mechanism on the mesoscale is called
crazing. It is in most cases the precursor of microcracks in polymeric materials
where the cracks develop from crazes due to rupture of the fibrils.

Fig. 3.3 Craze zone in a thermoplastic polymer

In two-phase or multi-phase materials like fiber or particle-reinforced compos-
ites but also concrete and asphalt, the fracture mechanical relevant microstructure
is characterized by the specific heterogeneous composition. The dominant micro-
scopic damage mechanisms that may lead to crack formation are local fracture of
the usually brittle reinforcement particles, fiber pull-out and breakage, and failure
of the interface to the surrounding matrix. The coalescence of these microscopic
defects to a macroscopic crack generally takes place in a significantly larger region
than in unreinforced plastics or in polycrystalline materials.
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3.1.3 Crack formation

In initially crack-free polycrystalline materials there are different mechanisms of
microcrack formation. A separation of atomic planes without any accompanying
dislocation movement hardly occurs. The formation of microcracks and their sub-
sequent propagation practically always is combined with more or less pronounced
microplastic processes.

A rather important mechanism of microcrack formation is the dislocation pile-up
at obstacles. It causes high stress concentrations which can lead to bond breaking
along preferred lattice planes and as a consequence to cleavage. If such a crack runs
through several grains, the orientation of the separation surface changes according
to the local lattice planes and axes (Fig. 3.4a). Such a type of fracture is called
transcrystalline cleavage.

a) b)

Fig. 3.4 a) Transcrystalline crack, b) intercrystalline crack

If the grain boundaries are sufficiently weak, the separation on account of dis-
location pile-up and (or) grain boundary sliding will take place along these bound-
aries. This is called intercrystalline fracture (Fig. 3.4b). Both fracture processes are
macroscopically brittle. They are accompanied by none or very small macroscopi-
cally inelastic deformations and they need very low energy.

A dislocation pile-up causes not only stress concentrations. It also can be the
responsible source for the formation of microscopic voids and cavities. This mech-
anism is schematically shown in Fig. 3.5: the coalescence (concentration) of dislo-
cations leads to the formation and growth of microcavities.

Fig. 3.5 Formation and growth of voids

Crystalline materials often contain a large number of second phase particles em-
bedded at the grain boundaries or in the crystals. In their vicinity, presuming a suf-
ficiently high mobility of dislocations, micro-plastic deformations occur prior to
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Fig. 3.6 Fracture due to formation and coalescence of voids

the formation of microcracks. The accompanying dislocation pile-up subsequently
leads to the formation and growth of cavities around the particles and as a conse-
quence to a loss of their bonds with the matrix. With increasing macroscopic defor-
mation the voids grow due to micro-plastic yielding, they coalesce, and finally lead
to separation (Fig. 3.6). Corresponding fracture surfaces show a typical structure of
honeycombs or dimples which are separated by micro-plastically highly deformed
zones. The energy needed for such a type of fracture is a multiple higher than that
for cleavage.

Localization of slip processes in slip bands can also be the origin of crack for-
mation. For instance, a sufficiently high cyclic load can lead to extrusions and in-
trusions at the body’s free surface or at inhomogeneities (Fig. 3.7). A result of the
increasing “surface roughness” is the formation of a fatigue crack.

Fig. 3.7 Formation of a fatigue crack

3.1.4 Percolation

Defects in most real materials are distributed in an irregular spatial pattern (Fig. 3.8a).
As a consequence, with increasing fraction f of defects (e.g. void volume fraction or
microcrack density) local defect agglomerations, so-called clusters, will inevitably
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Fig. 3.8 Increasing defect fraction f in an irregular microstructure: a) isolated defects: f1 � fc ,
b) isolated clusters: f2 < fc, c) percolation threshold f = fc

be formed (Fig. 3.8b, see also Fig. 3.6). In such a cluster, several defects are physi-
cally interconnected (e.g. nearly or already coalesced microcracks or voids) so that
they act as a single larger defect. As long as clusters are still isolated in the sur-
rounding matrix, their influence on the macroscopic behavior of the heterogeneous
material is limited. However, at a critical defect fraction fc, the so-called percola-
tion threshold or percolation limit, the situation occurs that a single cluster extends
throughout the entire microstructure (Fig. 3.8c). Depending on the defect type, this
is accompanied by a drastic change of the macroscopic physical properties of a ma-
terial. For example, in case of microvoids or microcracks, the macroscopic perme-
ability of a solid to fluid flow may jump from zero to a finite value at the percolation
threshold f = fc and further increase for f > fc. Analogously, the macroscopic
elastic stiffness continuously decreases with increasing f as long as f < fc but
vanishes for f > fc.

Dimension Defect type fc

3D Spheres 0.289
Cubes, parallel faces 0.277
Cubes, random orientation 0.217
Ellipsoids of revolution, aspect ratio 5 0.163
Ellipsoids of revolution, aspect ratio 1/5 0.176

2D Discs 0.676
Squares, parallel edges 0.667
Squares, random orientation 0.625
Ellipses, aspect ratio 5 0.455
Ellipses, aspect ratio 20 0.178

Table 3.1 Percolation threshold

The percolation threshold strongly depends on the defect geometry but also on
the spatial dimension, i.e. whether the defect distribution is considered as plane
(two-dimensional) or spatial (three-dimensional). Because of its manifold physical
importance, the percolation phenomenon is studied in many investigations experi-
mentally as well as theoretically by means of statistical methods, and also numeri-
cally with massive computer simulations. Table 3.1 shows a collection of percolation
threshold values that have been found by these methods. Aspects of the percolation
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limit in conjunction with analytical micromechanical models will also be discussed
in Section 8.3.

3.2 Macroscopic aspects

3.2.1 Crack growth

In what follows the material is macroscopically considered as a continuum which a
priori contains cracks. This can be either an actually existing macroscopic crack of a
given geometric configuration or a supposed, hypothetical crack of eventually very
small size. The latter serves as a model for macroscopically invisible but always ex-
isting defects and microcracks in a real material. The question of crack formation in
an initially undamaged material is not considered in this approach. It cannot be an-
swered in the framework of classical continuum mechanics. A description of crack
formation is possible only by means of continuum damage mechanics which takes
into account the microscopic defect structure and its evolution (cf. Chapter 9).

A fracture process is always connected with crack growth. Both, fracture and
crack growth, can be classified from different phenomenological viewpoints. The
typical stages in the behavior of a loaded crack are characterized as follows. As
long as the crack does not change its length, the crack is called stationary. At a
specific critical load or deformation, respectively, crack initiation takes place, i.e.,
the crack starts to propagate and becomes non-stationary.

One can distinguish different types of crack propagation. Crack growth is called
stable if an increase of crack length requires an increase of external load. In contrast,
crack growth is unstable if the crack, starting from a specific configuration, advances
spontaneously without any increase of the external load. It should be noted here that
stable or unstable crack growth is governed not solely by material properties. In
fact, the geometry and the type of loading have a significant influence on the crack
behavior.

Very slow crack propagation under constant loading in a creeping manner (e.g.,
at a velocity of 1 mm/s or less) is called subcritical. Under cyclic loading the crack
can propagate in small “steps” (e.g., of about 10−6 mm per cycle). This type of crack
propagation is called fatigue crack growth. If the crack propagates with a velocity
which approaches the order of the speed of sound in the solid material (e.g., 600 m/s
or more), the crack is called fast. If such a fast crack comes to rest, we call this crack
arrest. As a further classification, we distinguish between quasistatic and dynamic
crack propagation. While inertia forces play no role in the former they cannot be
neglected in the latter.
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3.2.2 Types of fracture

The fracture process is finished when crack growth comes to an end or, what occurs
more often, a complete break-through of the body into two or more parts has taken
place. According to typical phenomena, the entire event of fracture is classified by
different types. Ductile fracture is characterized by large plastic deformations which
occur before and (or) during the fracture process. Here, the inelastic deformations
of uncracked metal specimen under uniaxial tension may reach more than 10%. In
cracked bodies, these strains often are not only concentrated in the immediate vicin-
ity of the crack tip or the fracture surface. The related microscopic failure mecha-
nism in metals is plastic flow accompanied by void nucleation and coalescence.

A fracture event is called brittle if macroscopically only a small amount of in-
elastic deformations occur or if they vanish at all. In this case, plastic strains in un-
cracked specimen under tension immediately prior to fracture are less than 2...10%.
Inelastic strains in cracked components are confined to the immediate vicinity of the
crack tip or the fracture surface. Here, the microscopic failure mechanism in metals
is either confined plastic flow combined with void growth or cleavage.

Fracture resulting from crack growth due to cyclic loading is called fatigue frac-
ture. Fracture due to creep crack growth is known as creep fracture.

An additional distinguishing feature is the orientation of the fracture surface
(cf. Section 2.3). Fracture is called normal stress dominated if the fracture surface is
oriented perpendicular to the largest principal stress (tension). In contrast, fracture is
shear dominated if the fracture surface coincides with a cross section of high shear
stress. Both types can also occur in a mixed form. A typical example is the normal
stress dominated fracture with shear lips at the specimen edges (Fig. 3.9).

Fig. 3.9 Fracture with shear lips

The actual fracture behavior is highly dependent on various factors such as tem-
perature, stress state, or loading rate. For instance, the behavior of many materials
is brittle at sufficiently low temperatures and ductile above a transition tempera-
ture. Furthermore, depending on the stress state, plastic flow can be more or less
constrained. Accordingly, fracture will tend more to a brittle or more to a ductile
behavior. This also affects the orientation of the fracture surface. For instance, the
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occurrence of the above-mentioned shear lips is a result of the stress state in the
boundary area (close to plane stress) where plastic flow is less constrained.

A characteristic fracture quantity is the work done by the bonding forces during
creation of a fracture surface. This applies especially when all processes of bond
release related to fracture (e.g., void nucleation and growth with large micro-plastic
deformations) are confined to the immediate vicinity of the macroscopic fracture
surface. Due to microscopic irregularities, this macroscopic surface is smaller than
the true fracture surface. Analogous to the surface energy, it is then reasonable to
introduce an effective fracture surface energy Γ :

Γ = γA . (3.8)

Here, γ is the fracture surface energy density and A is the macroscopic fracture
surface.
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Chapter 4
Linear fracture mechanics

4.1 General remarks

We now turn to the description of the crack behavior. From a macroscopic, con-
tinuum mechanical viewpoint, we consider a crack as a cut in a body. Its opposite
boundaries are the crack surfaces which are also called crack faces or crack flanks
(Fig. 4.1). In general they are traction-free. The crack ends at the crack front or crack
tip.

Crack front
Crack faces

Fig. 4.1 Cracked body

Concerning the deformation of a crack, there exist three types of crack open-
ing which are shown in Fig. 4.2. Mode I denotes a symmetric crack opening with
respect to the x, z-plane. Mode II is characterized by an antisymmetric separation
of the crack surfaces due to relative displacements in x-direction (normal to the
crack front). Finally, mode III describes a separation due to relative displacements
in z-direction (tangential to the crack front). The symmetries associated with the

Mode I Mode II Mode III

y y y

z zz

x x x

Fig. 4.2 Crack opening modes

:
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different types of crack opening are only locally defined, i.e., for the region close to
the crack tip. In special cases, however, they may hold for the entire body.

An important role for the continuum mechanical description is played by the size
of the process zone. The latter denotes the region close to a crack front (crack tip)
in which microscopically quite complex processes of bond breaking occur that gen-
erally cannot be described in terms of classical continuum mechanics. If continuum
mechanics shall be applicable to the whole cracked body, it must be assumed that
the extension of the process zone is negligibly small compared to all characteristic
macroscopic dimensions of the body. Such a localization of the fracture process ex-
ists in many cases. For instance, this feature is typical for metals and for the majority
of brittle materials. However, the process zone in concrete or in granular materials
may have a considerable size and under some circumstances include the entire body.

In linear fracture mechanics, a cracked body is regarded as linear elastic in the
whole region. Possible inelastic processes within or outside the process zone around
the crack tip must be restricted to a small region which can be neglected from a
macroscopic point of view. Accordingly, linear fracture mechanics is predominantly
applicable for the description of brittle fracture (cf. Section 3.2.2).

Of fundamental importance is the crack-tip field, i.e., the stresses and strains
close to a crack tip. Although this field, as already mentioned, does not directly
describe the state within the process zone, it indirectly controls the processes taking
place there. In what follows, the crack-tip field for the case of an isotropic, linearly
elastic material under static loading will be investigated.

4.2 Crack-tip field

4.2.1 Two-dimensional crack-tip fields

We consider the two-dimensional problem of a body which contains a straight crack.
Here, we focus only on the field within a small region of radius R around one of
the crack tips (Fig. 4.3). For this purpose it is appropriate to introduce the depicted
coordinate system with its origin at the crack tip.

Longitudinal shear, mode III

The simplest two-dimensional problem is the longitudinal shear stress state (anti-
plane shear). In this case, the only non-vanishing displacement component w is
perpendicular to the x, y-plane which leads to a mode-III crack opening. The corre-
sponding crack-tip field can be determined using a complex functionΩ(z) (cf. Sec-
tion 1.5.2). As an appropriate function for the solution we choose

Ω(z) = Azλ (4.1)
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r
ϕ

R

y

x

Fig. 4.3 Vicinity of the crack tip

whereA is a free, in general complex constant. The likewise unknown exponentλ is
assumed to be real. In order to render the displacements at the crack tip nonsingular,
λ > 0 is assumed. As a consequence, the strain energy will also be finite. The special
case λ = 0 will be excluded at this stage. According to (1.121), it corresponds to a
stress-free rigid body displacement.

From (4.1), using (1.121) and z = reiϕ, we get

2iτyz = Ω′(z)−Ω′(z) = Aλrλ−1e−i(λ−1)ϕ −Aλrλ−1ei(λ−1)ϕ .

The boundary conditions require that the crack faces (ϕ = ±π) are traction-free,
i.e., τyz(±π) = 0. This leads to the homogeneous system of equations

Ae−iλπ −Aeiλπ = 0 ,

Aeiλπ −Ae−iλπ = 0 .
(4.2)

A non-trivial solution exists if the determinant of the system vanishes. Hence, the
“eigenvalues” λ are determined as follows:

sin 2λπ = 0 → λ = n/2 n = 1, 2, 3, . . . . (4.3)

Substitution of this result into one of the equations (4.2) finally yields: A =
(−1)nA.

To each λ of the infinite set of eigenvalues corresponds an eigenfunction of the
type (4.1) which fulfills the boundary conditions. The eigenfunctions can be arbi-
trarily superimposed:

Ω = A1z
1/2 + A2z + A3z

3/2 + . . . . (4.4)

Accordingly, the stresses ταz , α = x, y and the displacement w can be represented
in the following form:

ταz = r−1/2τ̂
(1)
αz (ϕ) + τ̂

(2)
αz (ϕ) + r1/2τ̂

(3)
αz (ϕ) + . . . ,

w − w0 = r1/2ŵ(1)(ϕ) + rŵ(2)(ϕ) + r3/2ŵ(3)(ϕ) + . . . .
(4.5)
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Here, τ̂ (1)αz (ϕ), ŵ(1)(ϕ), . . . are functions of the angle ϕ which are each determined
up to a factor. A possible rigid body displacement is described by w0.

If the crack tip is approached (i.e., r → 0), the field can solely be described by
the dominant first term in (4.4) or (4.5), respectively. It corresponds to the smallest
eigenvalue λ = 1/2. The associated stresses and displacements are given by the
expressions
{
τxz

τyz

}
=
KIII√
2πr

{− sin (ϕ/2)

cos (ϕ/2)

}
, w =

2KIII
G

√
r

2π
sin (ϕ/2) . (4.6)

Thus, the stresses at the crack tip have a singularity of the type r−1/2.
The singular crack-tip field is determined by means of (4.6) up to a factorKIII .

This factor is called stress intensity factor or, shorter,K-factor where the subscript
indicates the mode III crack opening. The stress intensity factorKIII can be regarded
as a measure for the “strength” of the crack-tip field. The latter is fully characterized
once the stress intensity factor is known. Vice versa, KIII can be determined from
(4.6) if the stresses or displacements close to the crack tip are known. For example,
it follows from (4.6) that

KIII = lim
r→0

√
2πr τyz(ϕ = 0) . (4.7)

Like the stresses and displacements, the magnitude of the K-factor depends on the
geometry of the body and its loading.

The second term in (4.5) corresponds to the eigenvalue λ = 1. It leads to the
nonsingular stresses and displacements

{
τxz

τyz

}(2)

=

{
τT

0

}
, w(2) =

τT
G
r cosϕ =

τT
G
x (4.8)

where τT is a yet undetermined constant shear stress. This contribution to the com-
plete field is of minor importance immediately at the crack tip but it becomes rele-
vant at some distance from the tip.

Plane strain and plane stress, mode I and mode II

For plane strain and plane stress, the crack-tip field can be determined by using two
complex functions Φ(z) and Ψ(z) (cf. Section 1.5.2). The approach is analogous
to that in the foregoing section for longitudinal shear. For the solution we use the
functions

Φ(z) = Azλ , Ψ(z) = Bzλ (4.9)

where the exponent λ again is assumed to be real and positive. From (4.9) and
according to (1.119) we obtain in a first step
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σϕ + iτrϕ = Φ′(z) + Φ′(z) + zΦ′′(z) + Ψ ′(z)z/z

= Aλrλ−1ei(λ−1)ϕ +Aλrλ−1e−i(λ−1)ϕ (4.10)

+Aλ(λ− 1)rλ−1ei(λ−1)ϕ +Bλrλ−1ei(λ+1)ϕ .

Along the crack faces ϕ = ±π, the boundary conditions σϕ + iτrϕ = 0 must be
fulfilled. From them, taking into account e−iπ = eiπ = −1, the following homoge-
neous system of equations is obtained:

Aλe−iλπ +Aeiλπ +Be−iλπ = 0 ,

Aλeiλπ +Ae−iλπ +Beiλπ = 0 ,

Ae−iλπ +Aλeiλπ +Beiλπ = 0 ,

Aeiλπ +Aλe−iλπ +Be−iλπ = 0 .

(4.11)

Here, the last two equations are the complex conjugate of the first two equations. The
condition that the system’s determinant must be zero, leads to the same eigenvalues
as for longitudinal shear:

cos 4λπ = 1 → λ = n/2 n = 1, 2, 3, . . . . (4.12)

Substitution into one of the equations (4.11) yields B = −nA/2− (−1)nA.
The stresses σij and displacements ui, where i, j = x, y, can be represented as

the sum of the eigenfunctions which correspond to the above eigenvalues:

σij = r
−1/2σ̂

(1)
ij (ϕ) + σ̂

(2)
ij (ϕ) + r1/2σ̂

(3)
ij (ϕ) + . . . ,

ui − ui0 = r1/2û
(1)
i (ϕ) + rû

(2)
i (ϕ) + r3/2û

(3)
i (ϕ) + . . . .

(4.13)

Here, ui0 describes a possible rigid body displacement. For r → 0, the first term
dominates which is singular in the stresses. It is appropriate to split the associated
field into a symmetric and an antisymmetric part with respect to the x-axis. The
symmetric singular field corresponds to a mode-I crack opening while the antisym-
metric field leads to a mode-II crack opening. Accordingly, the crack-tip field (near
field) can be written as follows:

Mode I:
⎧⎪⎪⎨
⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎬
⎪⎪⎭
=
KI√
2πr

cos (ϕ/2)

⎧⎪⎪⎨
⎪⎪⎩

1− sin (ϕ/2) sin (3ϕ/2)

1 + sin (ϕ/2) sin (3ϕ/2)

sin (ϕ/2) cos (3ϕ/2)

⎫⎪⎪⎬
⎪⎪⎭
,

{
u

v

}
=
KI
2G

√
r

2π
(κ− cosϕ)

{
cos (ϕ/2)

sin (ϕ/2)

}
,

(4.14)
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Mode II:
⎧⎪⎪⎨
⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎬
⎪⎪⎭
=
KII√
2πr

⎧⎪⎪⎨
⎪⎪⎩

− sin (ϕ/2)[2 + cos (ϕ/2) cos (3ϕ/2)]

sin (ϕ/2) cos (ϕ/2) cos (3ϕ/2)

cos (ϕ/2)[1− sin (ϕ/2) sin (3ϕ/2)]

⎫⎪⎪⎬
⎪⎪⎭
,

{
u

v

}
=
KII
2G

√
r

2π

{
sin (ϕ/2)[κ+ 2 + cosϕ]

cos (ϕ/2)[κ− 2 + cosϕ]

}
,

(4.15)

where
plane strain: κ = 3− 4ν , σz = ν(σx + σy) ,

plane stress: κ = (3− ν)/(1 + ν) , σz = 0 .
(4.16)

According to these representations, the distribution of stresses and deformations
close to the crack tip is uniquely determined. It will be exemplarily discussed in
Section 4.2.2 for mode I. The “strength” (amplitude) of the crack-tip field is char-
acterized by the stress-intensity factors KI and KII . They depend on the geometry
of the body (including the crack) and its loading. TheK-factors can be determined
from the stresses and deformations provided these are known. For example, the fol-
lowing relations result from (4.14) and (4.15):

KI = lim
r→0

√
2πr σy(ϕ = 0) , KII = lim

r→0

√
2πr τxy(ϕ = 0) . (4.17)

For larger distances r from the crack tip the second term in (4.13) has to be taken
into account which belongs to the eigenvalue λ = 1. The corresponding nonsingular
stresses and displacements are given by

⎧⎪⎪⎨
⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎬
⎪⎪⎭

(2)

=

⎧⎪⎪⎨
⎪⎪⎩

σT

0

0

⎫⎪⎪⎬
⎪⎪⎭
,

{
u

v

}(2)

=
σT
8G

{
(κ + 1)x

(κ− 3) y

}
, (4.18)

where σT is a constant stress which commonly is called T-stress (transversal stress).
It can be seen that this part of the field is symmetric with respect to the x-axis and
contributes solely to the mode-I crack opening. The T-stress becomes important
especially when KI is zero or sufficiently small. It then represents the dominant
part of the mode-I field.

The field in the vicinity of the tip of a straight crack with traction-free crack faces
is, according to (4.5) and (4.13), composed as a sum of the eigenfunctions. Among
them, the first term (i.e., the crack-tip field) dominates if the crack tip is approached
(r → 0). But it should be emphasized that for larger distances r, the higher-order
terms can not be neglected. Furthermore, it can be shown that the crack-tip field has
exactly the same form as (4.6) or (4.14) and (4.15), respectively, if the crack faces
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Fig. 4.4 a) Loaded crack faces, b) curved crack

are loaded (Fig. 4.4a) or if volume forces are present. This also applies to a crack
which is curved in the region close to the crack tip (Fig. 4.4b).

The singularity of the order r−1/2 is typical for a crack tip. Singular stresses of
eventually a different type of singularity can also appear in many other problems
of linear elasticity. As an example, a “crack-similar” V-notch is considered whose
edges form an angle 2α (Fig. 4.5a). The functions (4.9) in conjunction with (4.10)
and the boundary conditions (σϕ + iτrϕ)ϕ=±α = 0 again lead to a homogeneous
system of equations. It differs from (4.11) only in that now the angle α appears
instead of π. Setting the determinant of the system to zero, we obtain the equation
for the eigenvalues

sin 2λα = ±λ sin 2α . (4.19)

The smallest eigenvalueλ0 resulting from (4.19) is shown in Fig. 4.5b (higher eigen-
values and eigenfunctions shall not be considered). For 2α ≤ π we get λ0 = 1. In
this case no stress singularity follows from (4.9). For notch angles π < 2α < 2π,
the eigenvalue λ0 lies in the range 1/2 < λ < 1 and the already known result
λ0 = 1/2 is obtained in the limit case 2α = 2π, i.e., for a crack. The corresponding
stress singularities are of the type σij ∼ rλ−1 which can be seen, e.g., from (4.9).
For instance, in case of a mode-I loading the stress σy ahead of the notch tip can be
represented as

σy =
K∗
I√
2π
xλ−1 (y = 0, x > 0) (4.20)

whereK∗
I is a generalized mode I stress intensity factor.

a) b)

1/2

1
y r

ϕ
α

α

x

ππ/2 α

λ0

Fig. 4.5 a) V-notch, b) smallest eigenvalue
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At blunt notches with a finite notch radius, also very high stresses can occur.
However, in contrast to a crack or a sharp V-notch, the stresses at the notch root
then remain finite and do not tend to infinity (see Section 4.4.5).

4.2.2 Mode-I crack-tip field

The mode-I crack-tip field can be described by the relations (4.14). Thus, the stresses
σij and, according to Hooke’s law, the strains εij have singularities of the type
r−1/2, i.e., they increase infinitely as r → 0. As an example, the distribution of σy
ahead of the crack tip (ϕ = 0) is schematically depicted in Fig. 4.6a. In contrast,
the displacements show a behavior of the type r1/2. For a positive KI this leads to
a parabola-shaped crack opening along the crack faces ϕ = ±π (Fig. 4.6a):

v± = v(±π) = ±KI
2G

√
r

2π
(κ + 1) . (4.21)

IfKI is negative, the crack faces formally “overlap” or penetrate each other, respec-
tively, which is physically impossible. Actually, the crack faces are in contact during
crack closure and contact forces act along the contact zone.

1

1/2

r

π/2 π

σij

σϕ(0)

ϕ
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x, r
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τrϕσϕ

ϕ
σr

τrϕ

σϕ

v+

v−
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Fig. 4.6 Mode-I crack-tip field

It is sometimes appropriate to describe the crack-tip field not by its cartesian
components (4.14) but by equivalent quantities. For example, the stress components
in polar coordinates can be found by applying the transformation (1.113):

⎧⎪⎪⎨
⎪⎪⎩

σr

σϕ

τrϕ

⎫⎪⎪⎬
⎪⎪⎭

=
KI

4
√
2πr

⎧⎪⎪⎨
⎪⎪⎩

5 cos (ϕ/2)− cos (3ϕ/2)

3 cos (ϕ/2) + cos (3ϕ/2)

sin (ϕ/2) + sin (3ϕ/2)

⎫⎪⎪⎬
⎪⎪⎭
. (4.22)

Their dependence on the angle ϕ is shown in Fig. 4.6b.
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The principal stresses in the x, y-plane and the principal directions, here charac-
terized by the angle α, can be determined from (1.114) as follows
{
σ1

σ2

}
=

KI√
2πr

cos (ϕ/2)

{
1 + sin (ϕ/2)

1− sin (ϕ/2)

}
, α = ±π

4
+

3

4
ϕ . (4.23)

The third principal stress is given by σz . According to (4.16), it is different for plane
strain and plane stress:

σ3 = 2ν
KI√
2πr

cos (ϕ/2) (plane strain) , σ3 = 0 (plane stress) . (4.24)

Thus, σ1 is the largest principal stress, the smallest one can be σ3 or σ2, depending
on the stress state and the angle ϕ.

From the principal stresses the maximum shear stress can directly be determined.
Using τmax = (σmax − σmin)/2 we obtain

plane stress: τmax = σ1/2

plane strain: τmax =

{
(σ1 − σ2)/2 for sin (ϕ/2) ≥ 1− 2ν ,

(σ1 − σ3)/2 for sin (ϕ/2) ≤ 1− 2ν .

(4.25)

4.2.3 Three-dimensional crack-tip field

In various cases the three-dimensional character of a crack problem must be taken
into account. This is generally the case if the crack front is curved. Examples of
such problems are the penny-shaped internal crack or a half-elliptical surface crack
(Fig. 4.7a). But also the problem of a crack with the straight crack front in a flat
plate of finite thickness is, strictly speaking, a three-dimensional problem. Here, the
stress state varies near the crack front along the thickness of the plate.

a)

P

b)

y

ϕ
x

z

crack front

A

s r

Fig. 4.7 Three-dimensional crack field

It can be shown that the crack-tip field in a three-dimensional case locally is of
the same type as in a two-dimensional problem. In general, it is composed of the
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fields corresponding to the three crack opening modes. Regarding the mode-I and
mode-II deformations, the plane strain case has to be considered. If an arbitrary point
P on the crack front is chosen as origin of a local coordinate system (Fig. 4.7b), the
stresses for r → 0 are given by

σij =
1√
2πr

[KI σ̃
I
ij(ϕ) +KII σ̃

II
ij (ϕ) +KIII σ̃

III
ij (ϕ)] (4.26)

where σ̃Iij(ϕ), . . . are known functions of the angle ϕ which are determined by
(4.14), (4.15), and (4.6). Thus, the field close to the crack front is fully charac-
terized by the stress-intensity factors KI , KII , and KIII . The latter can vary with
the arc length s along the crack front, i.e.,KI = KI(s), . . ..

The representation (4.26) is valid along the crack front except some special (sin-
gular) points. Such a singular point is, for example, a kink of the crack front or a
point where the crack front intersects a free surface (point A in Fig. 4.7a). In these
points stress singularities occur which are not of the type r−1/2.

4.3 K-concept

In the following we restrict our attention to the case of a pure mode-I crack opening
which is the most important case for practical applications. As already mentioned,
the corresponding crack-tip field is fully characterized by the stress intensity factor
KI . This KI -determined field dominates in an outwards limited region around the
crack tip. It is schematically characterized in Fig. 4.8 by a circle of radius R. Out-
side R the higher-order terms can not be neglected.

rp

R

r
plastic zone

KI–determined field

ρ

Fig. 4.8 K-concept

The validity of the KI-determined field is limited also inwards because linear
elasticity does not provide a realistic description of the actual stress and deformation
state below a certain limit of r. One reason for this is that no real material can sustain
infinite stresses. In addition, the infinitely high strains appearing there contradict
the assumptions of linear elasticity (small deformations). For most real materials,
plastic flow or, more generally, inelastic deformations appear at the crack tip on
account of the strongly increasing stresses. In addition, there is always a small but
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finite process zone at the crack tip where debonding takes place. Its characteristic
dimension is denoted by ρ in Fig. 4.8, that of the plastic zone is described by rp.

We now suppose that theKI -dominated region is large compared to the enclosed
domain which is not described by the crack-tip field (ρ, rp � R) and thus may
be regarded as a ‘black box’. Under these circumstances it can be assumed that
the processes in this ‘black box’ are controlled by the surroundingKI -determined
field. This hypothesis is the basis of theK-concept: the state within the process zone
or at the crack tip, respectively, can indirectly be characterized by KI . The stress-
intensity factor, similar to the stresses themselves, is considered as a state variable
or a ‘loading parameter’ of the region close to the crack tip.

By introducing the stress intensity factor we now are able to formulate a fracture
criterion. Accordingly, crack propagation (fracture) starts when the stress intensity
factorKI reaches a material-specific critical valueKIc:

KI = KIc . (4.27)

Under these circumstances, a critical state exists in the process zone which leads to
material separation. We have tacitly assumed here that the state in the process zone
is determined by the actual value ofKI and does not depend on the loading history
of the crack tip.

The quantity KIc on the right-hand side of (4.27) is called fracture tough-
ness. It is a material parameter which is determined by appropriate experiments
(cf. Section 4.5). From (4.22) it can be seen that the K-factor has the dimension
[stress]·[length]1/2. It is specified as a multiple of the unit Nmm−3/2 or MPa mm1/2,
respectively. The use of stress-intensity factors in a fracture criterion dates back to
G.R. IRWIN (1951).

In the fracture criterion (4.27) for pure mode I, the crack-tip loading is character-
ized by the single parameterKI . Corresponding one-parameter fracture criteria can
also be formulated for pure mode II or pure mode III, respectively:

KII = KIIc (mode II) , KIII = KIIIc (mode III) . (4.28)

The case of a mixed crack-tip loading byKI ,KII , andKIII is more involved. Then
a generalized fracture criterion

f(KI ,KII ,KIII) = 0 (4.29)

must be formulated (see Section 4.9).

4.4 K-factors

There exist many methods to determine K-factors. Since these are directly tied to
the field quantities, generally all techniques of linear elasticity applicable for the de-
termination of stresses and deformations can be utilized. But sometimes it is neces-
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sary to tailor them according to the specific characteristics of crack problems (stress
singularities).

Analytical methods are mainly used when closed form solutions are of interest
or needed. They can be obtained only for relatively simple boundary value prob-
lems. The analysis of more complex problems usually relies on numerical methods.
Here, in most cases the finite element method or the boundary element method are
applied, but also finite difference method or other schemes are in use. Moreover,
also experimental methods such as strain measurements in the crack-tip region or
photoelasticity can be applied.

A discussion of all methods would go beyond the scope of this book. In this
respect, the reader is referred to the special literature. In what follows, only a few
analytical solutions for selected crack configurations and loadings are discussed.
Subsequently, we will shortly introduce an integral equation formulation of crack
problems, the method of weight functions, and finally a procedure for the investiga-
tion of interacting cracks.

4.4.1 Examples

As the simplest example, we first consider a straight crack Γ of length 2a in an
infinite plate under uniaxial remote stress σ (Fig. 4.9a). It is convenient for this and
many other problems to represent the solution as a superposition of two partial so-
lutions. Partial problem (1) considers the elastic plate without a crack under the pre-
scribed load σ. Here, along the line Γ the stress σ(1)y |Γ = σ appears. Partial problem

a)

b)

σy = σx

c)−σ

σ σ

σσ

= +
ΓΓ

+a−a

σ

−a +a

−a +a x

x x

y y
(1) (2) y

σ

x

y

v

A
x

+a−a

A′

u

Fig. 4.9 Single crack under remote stress σ
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(2) is concerned with the elastic plate, now containing a crack which is loaded along
the crack faces by exactly the same stress but with the opposite sign: σ(2)y |Γ = −σ.
The boundary condition of the original problem (i.e., traction-free crack faces) is
fulfilled by superposition of the two partial solutions: σy|Γ = σ

(1)
y |Γ + σ

(2)
y |Γ = 0.

In partial problem (1) there is no crack and since no stress singularity appears, no
stress intensity factor is present. As a consequence, the K-factor of the original
problem is given by that of the partial problem (2).

Using the complex method, the solutions of the partial problems and the original
problem can be represented as follows:

Φ = Φ(1) + Φ(2) , Φ(1)(z) = 1
4
σz , Φ(2)(z) = 1

2
σ[
√
z2 − a2 − z] ,

Ψ = Ψ (1) + Ψ (2) , Ψ (1)(z) = 1
2σz , Ψ

(2)(z) = − 1
2σa

2/
√
z2 − a2 .

(4.30)

For the partial problem (2) we get for the stresses along the x-axis (Fig. 4.9b)

τ (2)xy = 0 , σ(2)y = σ(2)x = σ

⎧⎪⎨
⎪⎩

−1 |x| < a
x√

x2 − a2 − 1 |x| > a . (4.31)

The displacements of the upper (+) and the lower (−) crack surfaces (|x| ≤ a) are
given by (Fig. 4.9c)

4Gu± = −(1 + κ)σx , 4Gv± = ±(1 + κ)σ
√
a2 − x2 . (4.32)

The stress-intensity factor may be determined directly from the complex poten-
tial Φ. To show this we consider a crack tip which is located at an arbitrary point
z0. From Kolosov’s formulas in conjunction with (4.14), (4.15) we get for r → 0 or
z → z0, respectively,

2Φ′(z) + 2Φ′(z) = σx + σy

= 2(2πr)−1/2[KI cos (ϕ/2)−KII sin (ϕ/2)]
= (2πr)−1/2[(KI − iKII)e

−iϕ/2 + (KI − iKII)e−iϕ/2] .

This leads with reiϕ = z − z0 to the representation

2Φ′(z) = (KI − iKII)[2π(z − z0)]−1/2 (z → z0)

and finally to
KI − iKII = 2

√
2π lim

z→z0

√
z − z0 Φ′(z) . (4.33)

For our specific example, due to the symmetry, only a mode-I loading appears
(KII = 0) which is equal at both crack tips. Inserting (4.30) into (4.33) we get the
stress intensity factor

KI = σ
√
πa . (4.34)
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In the next example, the same crack now will be loaded by a pair of opposite
single forces at the crack faces as shown in Fig. 4.10a. If only P (Q = 0) acts, the
complex potentials are

Φ′(z) =
P

2π(z − b)

√
a2 − b2
z2 − a2 , Ψ ′(z) = −zΦ′′(z) . (4.35)

They fulfill all boundary conditions. The correspondingKI-factors (KII is zero on
account of the symmetry) at the right (+) and the left (−) crack tip are obtained
from (4.33) as

K±
I =

P√
πa

√
a± b
a∓ b . (4.36)

Analogous, for a crack face loading solely by Q (pure mode II), we obtain

K±
I = 0 , K±

II =
Q√
πa

√
a± b
a∓ b . (4.37)

The solutions (4.36) and (4.37) can be used as fundamental solutions from which
further solutions can be constructed. For instance, for a crack loading as depicted in
Fig. 4.10b it follows by superposition

KI =
P√
πa

[√
a+ b

a− b +
√
a− b
a+ b

]
=

P√
πa

2a√
a2 − b2 . (4.38)

Using this result, we get for the loading according to Fig. 4.10c

KI = 2σ

√
a

π

a∫

c

dx√
a2 − x2 = 2σ

√
a

π

[π
2
− arcsin

c

a

]
. (4.39)

For the special case c = 0 this leads to the already known result (4.34). In a sim-
ilar way, using (4.36), the solution for a crack under an arbitrary load p(x), see
Fig. 4.10d, is obtained:

K±
I =

1√
πa

+a∫

−a
p(x)

√
a± x
a∓ x dx . (4.40)

In the same manner, shear loaded cracks can be treated. For example, using (4.37)
we obtain for a crack under a pure shear load (mode II) as depicted in Fig. 4.10e

KII = τ
√
πa . (4.41)

TheKII -factors here and for the case in Fig. 4.10f are the same.
Figure 4.11a shows a periodic configuration of collinear cracks of equal length

2a in an infinite domain under remote tension σ. The solution for this case in terms
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Fig. 4.10 Crack under different types of loading

of complex potential is given by

Φ′(z) =
σ

2

1√
1−
[
sin (πa/2b)
sin (πz/2b)

]2 , Ψ ′(z) = −zΦ′′(z) . (4.42)

From Φ′ in conjunction with (4.33) the stress intensity factorKI is determined as

KI = σ
√
πa

√
2b

πa
tan

πa

2b
. (4.43)

Accordingly,KI strongly increases if the crack tips approach each other. The reason
for this behavior is the interaction of the cracks (cf. Section 4.4.4). If the distance
between the crack tips gets very small (a → b), equation (4.43) with the notation

σ

σ

σ

σ

a) b)

y

2a

2b

2a
x

2b

Fig. 4.11 a) Collinear cracks, b) center crack in a strip
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Table 4.1 K-factors

σσ

2a

Q
P

Q
P

b

a

σ

σ

2b 2a

P

b P

τ

τ

2a

2b

σ

τ

σ

τ 2a

σ

Q

Q

σ

1

{
KI
KII

}
=

{
σ
τ

}√
πa

2

{
K±
I

K±
II

}
=

{
P
Q

}
1√
πa

√
a± b
a∓ b

3

{
KI
KII

}
=

{
σ
τ

}√
2b tan

πa

2b

4

{
KI
KII

}
=

{
P
Q

}
2√
2πb

5 KI = 1.1215 σ
√
πa

6

KI = σ
√
πa FI (a/b)

FI =
1− 0.025(a/b)2 + 0.06(a/b)4√

cos (πa/2b)
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Table 4.1 K-factors (continued)

σ

σ

a

σσ

σ σ

σ σ

σ

σ
θ

σ

a

b
a

2a2b

a

P

MT

P

MT

b

σ

b a

7

KI = σ
√
πa
√

2b
πa tanπa

2b
GI (a/b)

GI =
0.752+2.02a

b
+0.37(1−sinπa

2b
)3

cosπa
2b

8

KI = σ
√
πa
√

2b
πa tanπa2b GI (a/b)

GI =
0.923 + 0.199(1− sinπa

2b
)4

cosπa
2b

9 KI =
2

π
σ
√
πa

10 KI =
2

π
σ
√
πa
[
1−
√

1− (b/a)2
]

11

KI =
P
πa2

√
πa
√

1− a/b GI(a/b)
KIII =

2MT

πa3
√
πa
√

1− a/b GIII(a/b)
GI=

1
2(1+

ε
2+

3
8ε

2− 0.363ε3+0.731ε4)

GIII =
3
8(1+

ε
2+

3
8ε

2+ 5
16ε

3+ 35
128ε

4

+0.208ε5) , ε = a/b

12

KI(θ) = σ
√
πa FI(θ)

FI =
2
π (1.211− 0.186

√
sin θ )

10◦ < θ < 170◦
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c = b− a leads to

KI = σ

√
4b

π

√
b

c
for c� b . (4.44)

The result (4.43) can also be used as an approximation for the configuration in
Fig. 4.11b as long as the boundaries are sufficiently far away from the crack tips.

In Table 4.1, the stress intensity factors for various configurations are shown.
Solutions for many other cases can be found in the relevant handbooks of stress-
intensity factors listed at the end of this chapter.

4.4.2 Integral equation formulation

A possible starting point for the solution of crack problems is their formulation
through integral equations. Of the various existing and different formulations only
one shall be discussed here. Its basic idea is the representation of a crack by a con-
tinuous distribution of dislocations.

As a preparation of the formulation, we first consider the displacements and
stresses obtained from the complex potentials

Φ(z) = A ln z , Ψ(z) = A ln z (4.45)

where A here is specifically replaced by the real parameterA = −Gby/π(κ+1):

{
u

v

}
=

−by
2π(κ+ 1)

{
(κ− 1) ln r − cos 2ϕ

(κ+ 1)ϕ− sin 2ϕ

}
,

⎧⎪⎪⎨
⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎬
⎪⎪⎭

=
−byG

π(κ+ 1) r

⎧⎪⎪⎨
⎪⎪⎩

cosϕ+ cos 3ϕ

3 cosϕ− cos 3ϕ

− sinϕ+ sin 3ϕ

⎫⎪⎪⎬
⎪⎪⎭
.

(4.46)

While the displacement u does not experience any change along a full circle en-
closing the origin from ϕ = 0 to ϕ = 2π, the displacement v exhibits a displace-

ϕ

y

x

r
by

Fig. 4.12 Displacement jump due to an edge dislocation
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ment jump (discontinuity) of the magnitude v(0) − v(2π) = v+ − v− = by . Thus,
the potentials (4.45) describe an edge dislocation with a displacement jump in y-
direction (Fig. 4.12, cf. Section 3.1.2). This dislocation is accompanied with stresses
σy = σx = −2Gby/π(κ + 1)x and τxy = 0 acting along the x-axis. If a general
displacement jump by in y-direction and bx in x-direction shall be described, the
constant A in (4.45) must be replaced by A = G(by − ibx)/π(κ+ 1).

As a specific problem, we again consider in the following the already investigated
crack under constant crack-face loading σ (pressure) (Fig. 4.13a). The crack now is
represented as a continuous distribution of dislocations which are located in the
interval −a ≤ t ≤ +a on the x-axis (Fig. 4.13b). After renaming by → dby = μdt,
x→ x− t, z → z − t, we obtain from (4.45) and (4.46) for the stress σy along the
x-axis and for the potential Φ′ the representations

σy(x, 0) = − 2G

π(κ+ 1)

+a∫

−a

μ(t)dt

x− t , (4.47)

Φ′(z) = − G

π(κ+ 1)

+a∫

−a

μ(t)dt

z − t . (4.48)

In our case, the left-hand side of (4.47), i.e., the stress σy along the crack, is
known: σy = −σ. Accordingly, (4.47) is a singular integral equation for the un-
known distribution μ. Its solution is given by

μ(x) =
σ(κ + 1)

2G

x√
a2 − x2 . (4.49)

Knowing μ(x) the problem is practically solved because the potentials Φ and Ψ can
be found from μ(x) by integration. For example, from (4.48) we obtain

Φ′(z) = − σ

2π

+a∫

−a

xdx

(z − x)√a2 − x2 =
σ

2

[
z√

z2 − a2 − 1

]
, (4.50)

from which the stress intensity factor can be determined.

b)a)

t−a +a

x

y dby

−a

σ

+a

y

x

σ

Fig. 4.13 Crack represented as distribution of dislocations
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If only the stress intensity factor is of interest, this quantity can directly be deter-
mined from μ. Along the crack, μ = dby/dx = d(v+−v−)/dx is valid. Combining
this with the crack-tip field formulas (4.14), the following relation for the right crack
tip yields:

KI = lim
x→a

2G

κ+ 1

√
2π

√
a− x μ(x) . (4.51)

When introducing the distribution (4.49), we get the already known result KI =
σ
√
πa.
The integral equation formulation is applicable not only for straight cracks. It can

easily be extended to curved cracks, bounded domains, and arbitrary loadings. In ad-
dition, it can be used as a starting point for numerical methods, tailored specifically
for the solution of crack problems.

4.4.3 Method of weight functions

For many geometrical configurations, the K-factors are known for particular load-
ings, for example, from handbooks. How they can be used to obtain K-factors for
the same geometry but for other loadings will be shown in the following. For sim-
plicity we restrict the discussion to plane mode-I problems.

Starting point is Betti’s theorem (cf. Section 1.4.3)
∫

A

t
(1)
i u

(2)
i dA =

∫

A

t
(2)
i u

(1)
i dA (4.52)

with ti = σijnj which we apply to the two configurations in Fig. 4.14. Except
for the loading, they differ from each other only by slightly different crack lengths:
the crack in configuration (2) is by a small amount ε longer than that in config-
uration (1). Since relation (4.52) can be applied only to configurations with iden-
tical geometry, we assume that in configuration (1) a cut of the length ε is made
in front of the crack along the x-axis. The stresses acting there are given by the
crack-tip field formulas (4.14): σ(1)y (ξ) = K

(1)
I (a)/

√
2πξ. Analogous, the crack

face displacement v in the traction-free region 0 ≤ ξ ≤ ε of configuration (2) is

a ε

(1)

a)

σ
(1)
y

ξ
ε

(2)

a

b)

σ
(2)
y

ξ

x x

Fig. 4.14 Application of Betti’s theorem
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v(2)(ξ) = κ+ 1
2G K

(2)
I (a+ε)

√
(ε− ξ)/2π. Adopting the notation from Fig. 4.14 and

taking into account the symmetry, it follows from (4.52) that

a∫

0

σ(1)y (x) v(2)(x,a+ε)dx+

ε∫

0

K
(1)
I (a)√
2πξ

κ+ 1

2G
K

(2)
I (a+ε)

√
ε − ξ
2π

dξ

=

a∫

0

σ(2)y (x) v(1)(x) dx .

With the expansions

v(2)(x, a+ε) = v(2)(x, a)+
∂v(2)

∂a
ε+. . . , K

(2)
I (a+ε) = K

(2)
I (a) +

dK
(2)
I

da
ε+ . . .

and under consideration of

a∫

0

σ(1)y v(2)(x, a) dx =

a∫

0

σ(2)y v(1)(x, a) dx ,

ε∫

0

√
ε− ξ
ξ

dξ =
πε

2

we get, after taking the limit ε→ 0, the result

a∫

0

σ(1)y

∂v(2)

∂a
dx+

κ+ 1

8G
K

(1)
I (a)K

(2)
I (a) = 0 . (4.53)

We now consider configuration (2) as the known reference configuration while the
stress intensity factor for configuration (1) is unknown. Renaming the known and
unknown quantities as

K
(2)
I , v(2) → Kr

I , v
r , K

(1)
I , σ(1)y → KI , σy

equation (4.53) yields

KI = − 8G

κ+ 1

1

Kr
I

a∫

0

σy
∂vr

∂a
dx . (4.54)

Here, the term [8G/(κ + 1)Kr
I ]∂v

r/∂a is called weight function. It “weights” the
prescribed crack load σy during integration to determine the related stress intensity
factor. Formula (4.54) here is valid for a crack with one crack tip. When applied to a
crack with two crack tips the integration has to be performed along the whole crack
length and the derivative ∂vr/∂a has to be taken with respect to the crack tip where
the stress intensity factor shall be determined (i.e., the other crack tip then has to
be held fixed). For a symmetrically loaded crack with K+

I = K−
I , formula (4.54)

reduces to an integration along the half-length of the crack.
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As an example, we will determine KI for the crack in Fig. 4.15a with a crack-
face loading σy = −σ0

√
1− x2/a2. As the reference case, we use the crack with a

constant traction σry = −σ (cf. Section 4.4.1). For the latter the expressionsKr
I =

σ
√
πa and 4Gvr = (1 + κ)σ

√
a2 − x2 apply. Substitution into (4.54), with the

symmetry taken into account, leads to

KI =
8G

κ+ 1

1

σ
√
πa

a∫

0

σ0

√
1− x2

a2
1 + κ

4G

σa√
a2 − x2 dx =

2

π
σ0

√
πa . (4.55)
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Fig. 4.15 Weight function method: examples

Often the situation is met that the stress intensity factor Kr
I for a reference load

σry is known but the reference displacement vr is unknown. In such cases it is pos-
sible to obtain an approximate solution for KI by using a displacement approach.
In order to show this we assume for simplicity that the reference load is constant
along the crack: σry = −σ = const. For the reference displacement we employ the
two-terms approach (Petroski & Achenbach, 1995)

vr =
1 + κ

8
√
2

σ

G

[
4f(a)

√
a (a− x)1/2 + h(a)(a − x)

3/2

√
a

]
(4.56)

with
Kr
I = σ

√
πa f (a) (4.57)

which is motivated by the crack-tip field solution. The function h(a) is determined
from the condition of self-consistency which requiresKI = Kr

I for σy = σry . Thus,
from (4.54) it follows that

(Kr
I )

2 =
8G

1 + κ
σ

a∫

0

∂vr

∂a
dx or

a∫

0

(Kr
I )

2 da =
8G

1 + κ
σ

a∫

0

vrdx

and finally

h(a) =
5
√
2π

2a2

a∫

0

af2(a) da − 20

3
f(a) . (4.58)
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As an example, we consider an edge crack with a linear crack face loading (see
Fig. 4.15b). For the reference case under constant load distribution, the stress inten-
sity factor is Kr

I = 1.1215 σ
√
πa , i.e., f = 1.1215 = const (cf. Table 4.1, No.

5). Introducing (4.56) and the crack loading σy = −p(1− x/a) into (4.54) finally
gives as an approximation for the K-factor

KI � 0.435 p
√
πa . (4.59)

The exact value is Kex
I = 0.439 p

√
πa . If only the first term of (4.56) is taken into

account (h = 0), the coarser approximationKI � 0.480 p
√
πa is obtained.

4.4.4 Crack interaction

Often one has to deal not only with a single crack but with a certain number of
cracks, e.g., two or three, or even with a system consisting of many cracks. If the
distances between the cracks are large compared to their length, they affect each
other only a little. In a first approximation each crack then can be treated as if the
others were absent. But if the cracks are close the interaction between them can
lead, depending on the geometrical configuration, to an increase or to a reduction
of the crack-tip loading, i.e., of the K-factors. This is known as an amplification
or shielding effect. Exact solutions for such problems are possible only in specific
cases. But also numerical methods are in some sort limited. Generally, they are
practicable only if the number of the cracks is sufficiently small. One example, for
which an exact solution exists, is the row of collinear cracks in Fig. 4.11a or in Table
4.1, No 3, respectively. If the adjacent crack tips in this case approach each other
(a→ b), theK-factors grow infinitely (amplification).

In what follows, we will discuss the principle of a method which goes back to
M. KACHANOV (1983) and which allows the construction of rather good approxi-
mate solutions for complex crack systems. As a preparation, we consider a crack 1
(see Fig. 4.16) the crack faces of which are loaded by a constant unit traction. The
solution of this problem is known (cf. Section 4.4.1) and we can determine the
stresses in each point or along an arbitrary line. For example, according to (4.31),
along the line 2 (x-axis) the normal stress is given by (the shear stress is zero)

“1”

−a +a b c

x
©2

©1

y

Fig. 4.16 Definition of the transmission factor
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σy(x) = f12(x) =
x√

x2 − a2 − 1 . (4.60)

We denote its mean value in the interval (b, c) as the transmission factor:

Λ12 = 〈f12〉 = 1

c− b

c∫

b

f12(x)dx =

√
c2 − a2 −√

b2 − a2
c− b − 1 . (4.61)

It describes the average loading of line 2 due to a unit load of crack 1 and it is
determined solely by the geometrical configuration.

The explanation of Kachanov’s method is restricted here, for simplicity, to
two collinear cracks under a pure mode-I loading due to the remote tension σ0
(Fig. 4.17). Because we are interested only in the stress intensity factors, it is suf-
ficient to investigate the system with the crack face loadings p∞1 = p∞2 = σ0. The
solution of this problem can formally be obtained from the superposition of two
partial problems. The first one refers to a situation where only crack 1 is loaded by
an unknown crack face traction p1(x) = p∞1 + p̃1(x). Here, p̃1(x) describes the
deviation of the crack 1 loading due to existence of crack 2. Along its line, the stress
σ2(x) appears on account of the loading p1(x). We now replace σ2 approximately
by the stress 〈p1〉f12(x) which appears as a result of a constant crack loading by the
mean value 〈p1〉. Thus, regarding the effect onto crack 2, we take into account only
the mean (average) loading of crack 1. The second partial problem is treated in the

σ0 σ0

= +

= +

= +

p∞1 =σ0 p∞2 =σ0

p∞2p∞1

©1 ©2

p2(x)=p∞2 + p̃2(x)

p1(x)

p1(x)=p∞1 + p̃1(x)

〈p1〉

σ1(x) ≈ 〈p2〉f21(x)σ2(x) ≈ 〈p1〉f12(x)

Fig. 4.17 Kachanov’s method
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same manner. After superposition, the boundary conditions for both cracks

p1(x) − 〈p2〉 f21(x) = p∞1 , p2(x)− 〈p1〉 f12(x) = p∞2
lead to the representations

p1(x) = p
∞
1 + 〈p2〉 f21(x) , p2(x) = p

∞
2 + 〈p1〉 f12(x) . (4.62)

The unknown mean values 〈p1〉 and 〈p2〉 are determined from the condition that
equations (4.62) must be self-consistent, i.e., they must be applicable also for the
determination of the mean values:

〈p1〉 = p∞1 + 〈p2〉 〈f21〉 , 〈p2〉 = p∞2 + 〈p1〉 〈f12〉 .

These self-consistency equations represent a linear system of equations for 〈p1〉,
〈p2〉 which, using the transmission factors according to (4.61), can be written as

〈p1〉 − Λ21 〈p2〉 = p∞1 ,

−Λ12 〈p1〉 + 〈p2〉 = p∞2 .
(4.63)

After its solution, the crack loadings p1(x) and p2(x) according to (4.62) are known
and the stress intensity factors K±

I for each crack can be determined by means of
(4.40).

If the system consists not only of two but of n cracks under a mode-I loading,
generalizing equations (4.63), the following system of equations is obtained

(δji − Λji) 〈pj〉 = p∞i , i = 1, . . . , n (4.64)

where Λij = 0 for i = j. If the cracks experience also a mode-II loading, this must
be taken into account for the transmission factors and boundary conditions. In this
case, a configuration of n cracks leads to a system of 2n equations for nmean values
of the normal tractions and n mean values for the shear tractions, respectively.

As an example, we consider two collinear cracks of the same length as shown in
Fig. 4.18a. For this case, taking into account that Λ12 = Λ21 = Λ, 〈p1〉 = 〈p2〉 =
〈p〉 (symmetry!), we obtain from (4.63)

〈p〉 − Λ 〈p〉 = p∞ or 〈p〉 = p∞

1− Λ
where

Λ =

√
2(1 + κ)

1 +
√
κ

− 1 .

According to (4.62) and (4.60), the crack loading, e.g. of the right crack, is deter-
mined as

p(x) = p∞ + 〈p〉
[

2x+ 1 + κ

2
√

(x+ κ)(x+ 1)
− 1

]
.
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a) b)

σ

σ

2a

2l

2a

2a

2a

yp∞=σ0

x

p∞=σ0

κl

ϕ
d

Fig. 4.18 Two interacting cracks of equal length

Substitution into (4.40) finally yields the approximate solution for the K-factors

K±
I = K0

I

{
1+

1

1−Λ
1

2π(1−κ) [±4E(α)∓ 2κ(κ+1)K(α)− π(1−κ)]
}
. (4.65)

Here, K0
I = σ0

√
πa is the K-factor for a single (undisturbed) crack and K(α) and

E(α) are the complete elliptic integrals of the first and the second kind, respectively,
with the argument α =

√
1− κ2. Table 4.2 shows a comparison of some results

of the approximate solution with the exact values. As can be seen, the error is very
small even for the case when the distances between the cracks are quite small.

κ K+
I /K0

I K+
I /K0

I K−
I /K0

I K−
I /K0

I

(approx.) (exact) (approx.) (exact)

0.2 1.052 1.052 1.112 1.112
0.05 1.118 1.120 1.452 1.473
0.01 1.175 1.184 2.134 2.372

Table 4.2 Comparison of approximate solutions with exact values

For this specific example, we now will consider the case when the distance d =
2(κl+a) between the midpoints of the cracks is large compared to the crack lengths:
d � a. Then, from (4.60) by series expansion for x � a we obtain along the x-
axis the stress f12 = σy ≈ 1

2(a/x)
2. With x ≈ d, this stress can be considered as

constant in the region of the crack line 2: f12 = Λ12 = σy ≈ 1
2 (a/d)

2. Herewith, it
follows p ≈ p∞[1 + 1

2(a/d)
2], and we obtain for the K-factors

KI ≈ K0
I

[
1 +

1

2

(a
d

)2]
. (4.66)

In this first approximation, they are equal at the left and at the right crack tip.
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In the same manner we can determine the K-factors for the generalized crack
configuration depicted in Fig. 4.18b:

KI ≈ K0
I

[
1 +

a2

2d2
(2 cos 2ϕ− cos 4ϕ)

]
,

KII ≈ K0
I

a2

2d2
(− sin 2ϕ+ sin 4ϕ) .

(4.67)

It can be recognized that the interaction of the cracks decreases rapidly with in-
creasing distance d. For collinear cracks (ϕ = 0) with a distance d = 10a only a
small increase of KI of 1/200 can be observed. For stacked cracks (ϕ = π/2), a
smallKI-decrease of 3/200 occurs. The reason for this phenomenon lies in the de-
cay behavior of the stresses around a crack which is loaded according to Fig. 4.16.
For r � a, this decay is in the plane (2D) case of the type (a/r)2. In contrast, in
the equivalent three-dimensional case of a circular crack, the stress decay for larger
distances (r � a) is of the type (a/r)3, i.e., disturbances decay faster than in the
2D case. Accordingly, for the same distances between the cracks, the interaction in
the three-dimensional case is weaker than in the plane problem.

When interacting cracks propagate, interesting and partly unexpected phenom-
ena may occur. One of them shall briefly be discussed. For this purpose we con-
sider a plate under uniaxial tension containing two nearly collinear straight cracks
(Fig. 4.19). Experiments show that these cracks, when propagating, in a first phase
approach each other, as expected. But as the distance becomes shorter, the crack tips
in a second phase deviate slightly and do not coalesce along the shortest path. Due
to their interaction, both crack tips run around each other in a certain distance until,
at some later instant, each of them merges with the other crack. Figure 4.19 shows
the results of a numerical simulation which provides a realistic impression of this
process.

Fig. 4.19 Interaction between two cracks propagating towards each other

Even though such curved crack paths can be determined only numerically, the
observed phenomenon can qualitatively be explained from the results (4.67) for the
crack configuration in Fig. 4.18b. As will be discussed in Section 4.9, the angle
at which a propagating crack is deviated from a straight path, is mainly controlled
by the KII -factor. The latter changes, according to (4.67), with the angle ϕ, i.e.,
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with the relative position of the crack tips and experiences a sign change. For small
angles ϕ, the KII -factor is positive which causes initially a downward deviation of
the left crack in Fig. 4.19 and an upward deviation of the right crack, i.e., the crack
tips repel each other. For larger angles ϕ, theKII -factor becomes negative and both
cracks are directed towards each other.

4.4.5 Stress intensity factors and stress concentration factors

Similar as in the vicinity of crack tips, very high stresses prevail at notches with a
sufficiently small notch radius. However, in contrast to the crack tip, the stresses at
the root of a blunt notch are always finite, or in other words, they are non-singular.
The increase of stresses at notches commonly is called stress concentration and the
stress amplification due to the notch in relation to the nominal stress is described by
a so-called stress concentration factor. A more detailed analysis shows that there
are close relationships between the stress fields near a crack tip and near a notch
root which in the following shall be briefly discussed.

As a typical example we first consider an elliptical cavity with semiaxes a and b
in an infinite domain under uniaxial tension σ perpendicular to the semimajor axis
a (Fig. 4.20a). Without going into the derivation, it can be shown that the maximum
boundary stress occurs at the apexes x = ±a of the ellipse and is given by

σmax = σ
(
1 + 2

a

b

)
= σ

(
1 + 2

√
a

ρ

)
. (4.68)

Here, ρ = b2/a is the radius of curvature at the apex, see Fig. 4.20b. It can be seen
that the stress amplification increases with decreasing ratio b/a of the semiaxes or
ρ/a, respectively. For very narrow ellipses, i.e. b� a or ρ� a, (4.68) reduces to

σmax = 2σ

√
a

ρ
. (4.69)

b)

σ

a) σ

a

x

y
b

y

a
xρ

Fig. 4.20 Elliptic cavity under uniaxial tension
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In the limit case b→ 0 or ρ→ 0, the elliptic cavity degenerates to a crack of length
2a and the maximum stress tends to infinity.

In order to show the relationship between the crack tip field and the stress field
at a blunt notch, we now take a closer look at the direct surrounding of the apex,
see Fig. 4.21a. Here, the boundary of the ellipse coincides with that of a deep notch
of parabolic shape. If the origin of coordinates is put into the focal point of the
parabola, it can alternatively be described by

x =
ρ

2
+
y2

2ρ
or z =

ρ

2
(1− i η)2, −∞ < η <∞ (4.70)

where z = x+ iy = r eiϕ. The corresponding mode I notch stress-field is obtained
by the superposition of two fields. The first one is the crack tip field of a crack tip
at the origin which is given by (4.15). This field generates boundary tractions along
the contour of the parabola which are compensated to zero by a second field with
the complex potentials

Φ′(z) = 0 , Ψ ′(z) =
ρKI

2z
√
2πz

, (4.71)

i.e. the boundary of the parabolic notch then is traction-free. Hence, the stress field
near the notch root is given by the sum of (4.15) and the stresses from (4.71):

⎧⎪⎪⎨
⎪⎪⎩

σx

σy

τxy

⎫⎪⎪⎬
⎪⎪⎭

=
KI√
2πr

⎡
⎢⎢⎢⎣cos

ϕ

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− sin
ϕ
2 sin

3ϕ
2

1 + sin
ϕ
2 sin

3ϕ
2

sin
ϕ
2 cos

3ϕ
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

− ρ

2r

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos
3ϕ
2

− cos
3ϕ
2

sin
3ϕ
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦ . (4.72)

Consequently, the intensity of the stress field near the notch root is uniquely given by
the stress intensity factor KI of a corresponding crack. In particular, the maximum
boundary stress σmax = σy at the notch root (r = ρ/2, ϕ = 0) can be written as

σmax =
2KI√
πρ
. (4.73)

b)a)

y

x

r

ρ

ρ/2 ρ/2

y

x

ρ r

π − α

(1− π/2α)ρ

Fig. 4.21 a) Parabolic notch, b) V-notch



92 4 Linear fracture mechanics

From this generally valid relationship, the maximum stress at a deep notch of pre-
scribed notch radius can be determined for a given load from the mode I stress
intensity factor. In reverse, from

KI = lim
ρ→0

1

2

√
πρ σmax (4.74)

the stress intensity factor can be obtained if σmax(ρ) is known. Analogous relation-
ships are valid in pure mode II and mode III, respectively:

KII = lim
ρ→0

1

2

√
πρ σmax , KIII = lim

ρ→0

1

2

√
πρ τmax . (4.75)

A similar relationship exists between the generalized stress intensity factor K∗

for a sharp V-notch as shown in Fig. 4.5 (see also (4.20)) and the maximum bound-
ary stress σmax at the root of a blunt V-shaped notch with a notch radius ρ according
to Fig. 4.21b:

σmax =
K∗
I√
2π
f(α) ρλ−1 . (4.76)

Here, f(α) and λ depend on the notch opening angle. For α = π (crack), f = 2
√
2

and λ = 1/2 hold.

4.5 Fracture toughness KIc

The determination of the fracture toughnessKIc of a material usually is performed
in standardized tests (e.g., ASTM–Standard E399-90) the details of which will not
be discussed here. In such tests different specimen types are in use. Two of them are
shown in Fig. 4.22. The test specimen must have a starter crack which is produced in
metals by loading the initially notched specimen by a suitable oscillating load. From
the measured loading at which the crack starts to propagate, the fracture toughness
can be determined by means of the relation between the stress intensity factor, the
loading and the crack length.

a) b)

F

F/2
F/2

W

a

F
B B

F

a W

Fig. 4.22 Test specimens: a) compact tension (CT), b) 3-point bending (3PB)
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a) b)

Kc

B

KIc

T

KIc

Fig. 4.23 a) Influence of sample thickness, b) influence of temperature

In order to extract from measurements fracture toughness values that can in fact
be regarded as geometry-independent material parameters, the samples must satisfy
the requirements of linear fracture mechanics. Accordingly, the plastic zone must
be small compared to all relevant length parameters including the size of the KI-
determined region (cf. Sections 4.3 and 4.7). This is provided by the size condition

a, W − a, B ≥ 2.5

(
KIc
σY

)2

(4.77)

where σY is the yield strength. Under these circumstances, it is ensured that pre-
dominantly a plane strain state prevails in the region close to the crack front. How a
decrease of the sample thickness affects the critical stress intensity factor is shown
in Fig. 4.23a. The essential reason for the increase of Kc is the decrease of yield
constraint which is associated with the change of the stress state (cf. Section 4.7.2).

material KIc [MPa
√
m] Rp0,2 [MPa]

high-strength steel 25. . . 95 1600. . . 2000
30CrNiMo8 (20o) 115 1100
30CrNiMo8 (−20o) 65
construction steel 30. . . 125 <500
Ti alloys 40. . . 95 800. . . 1200
Ti6Al4V 90 900
Al alloys 20. . . 65 200. . . 600
AlCuMg 30 450
AlZnMgCu1,5 30 500
Al2O3 ceramics 3. . . 9
marble 1.2. . . 2
glass 0.6. . . 1.3
concrete 0.15. . . 1.4
PMMA 0.7. . . 1.6
Douglas fir (TL, RL) 0.32, 0.36

Table 4.3 Fracture toughness of some materials
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The fracture toughness of a material strongly depends on a number of influence
parameters. Among them are the characteristics of the microstructure (e.g., the grain
size), the loading history, the heat treatment, or the environment (e.g., air or water).
Figure 4.23b schematically shows the significant influence of the temperature ob-
served for many materials. In Table 4.3 reference data for the fracture toughness of
some materials are given. However, reliable data for structural applications in any
case have to be measured directly at the particular material that is used.

4.6 Energy balance

4.6.1 Energy release during crack propagation

We consider an elastic body containing a crack with the boundary ∂Vt subjected to
external tractions and where along the boundary ∂Vu displacements are prescribed
(Fig. 4.24). The external tractions are assumed to have a potential Πext which ap-
plies, for example, to dead loading or spring forces.

���
���
���
���

������
������
������
������

∂Vt

∂Vu

ΔA

Δa
a

Fig. 4.24 Crack growth and energy release

Let us suppose that due to crack advance by an areaΔA (or the lengthΔa in the
two-dimensional case, respectively), the system passes from the initial equilibrium
state 1 in a new equilibrium state 2. This transition is imagined to be realized as fol-
lows: we assume that the body in state 1 is cut alongΔA and the stresses acting there
are understood as external forces. They subsequently are released quasi-statically to
zero such that state 2 is reached at the end. The workΔWσ done by these forces dur-
ing this process is negative (or utmost zero) since forces and displacements are op-
posite directed. Simultaneously, the external forces along ∂Vt accomplish the work
W ext

12 during the transition from state 1 to state 2. It can be expressed by the dif-
ference of the potential: W ext

12 = −ΔΠext = −(Πext
2 −Πext

1 ). Thus, the energy
balance (cf. Section 1.4.1) yields

ΔΠint = Πint
2 −Πint

1 = W ext
12 +ΔWσ = −Πext

2 +Πext
1 +ΔWσ ,
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and withΠ = Πint +Πext we get

ΔΠ = ΔWσ ≤ 0 . (4.78)

Therefore, the mechanical energyΠ of the system decreases during crack advance.
The released energy is available for the fracture process. It should be emphasized
that ΔWσ must not be confused with the work ΔWB of the bonding forces dur-
ing crack propagation. The latter is done during the separation process between
the components (atoms, molecules, etc.) of the material, i.e., ΔWB is a material-
specific quantity (cf. Sections 3.1.1 and 3.2.2).

We will briefly consider two special cases. If the displacements along the whole
boundary ∂V are kept constant, then ΔΠext = 0 and ΔΠint = ΔWσ . In con-
trast, if the external load is a dead loading and the material is linear elastic, from
Clapeyron’s theorem (2Πint + Πext = 0) the result −ΔΠi = ΔΠa/2 = ΔWσ

follows.
As an example, we will determine the energy change of the system when a crack

of the length 2a is created in an initially crack-free infinite plate under remote ten-
sion σ (Fig. 4.25). Using the displacement v = (1+κ)σ

√
a2 − x2/4G of the upper

crack face, first the work ΔWσ during crack formation is calculated as (the same
work is done at the upper and lower crack faces):

ΔWσ = −2

a∫

−a

1

2
σvdx = −σ2a2π 1 + κ

8G
. (4.79)

From this, in case of constant loading at infinity (dead loading), we obtain

ΔΠ = −ΔΠint = ΔΠext/2 = −σ2a2π(1 + κ)/8G . (4.80)

If, in contrast, the displacements at infinity are kept constant, we get

ΔΠ = ΔΠint = −σ2a2π(1 + κ)/8G . (4.81)

σσ

σ σ

2a

y
x

Fig. 4.25 Energy release during crack formation
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Indeed,ΔΠ in both cases is the same. However,ΔΠint differs by the sign. It should
be noted here that without any restriction, the system’s potential for the initial state
(plate without a crack) can be chosen to be zero. Then, (4.80) or (4.81), respectively,
describes the potential Π of the plate with a crack. It also should be mentioned
that (4.79)–(4.81) describe the work and energy changes per unit thickness (plane
problem).

4.6.2 Energy release rate

The released energy −dΠ during an infinitesimally small crack advance dA, related
to dA, is called energy release rate:

G = −dΠ

dA
. (4.82a)

For a plane problem, dΠ is related to the unit thickness and thus we define

G = −dΠ

da
, (4.82b)

where da is an infinitesimally small crack extension. The energy release rate has the
dimension of a force (per unit thickness). Therefore it is also denoted as the crack
extension force.

In the linear elastic case, the energy release rate can be expressed in terms of
stress intensity factors. We show this for the situation of pure mode I. Again, a
crack extension of the small lengthΔa is thought to be generated by the quasi-static
reduction of stresses acting along the cut Δa (Fig. 4.26). Before crack extension,
there acts, according to (4.14), the normal stress σy(x) = KI(a)/

√
2πx (higher

order terms can be omitted because subsequently we will let Δa → 0). According
to (4.21), the displacement of the upper and lower crack face along Δa after crack
extension is v±(x) = ±κ+ 1

2G KI(a+Δa)
√
(Δa− x)/2π. Thus, the energy release

results as

a

F

y

a

F

y
KI(a)

Δa Δa

x x

KI(a+Δa)

Fig. 4.26 Energy release rate for mode I
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ΔWσ = ΔΠ = −1

2

Δa∫

0

σy (v
+ − v−) dx (4.83)

= −
Δa∫

0

KI(a)√
2πx

κ+ 1

2G
KI(a+Δa)

√
Δa − x

2π
dx

= −κ+ 1

8G
KI(a)KI(a+Δa)Δa .

Taking the limitΔa→ 0, we obtain

G = −dΠ

da
=
κ + 1

8G
K2
I =

{
K2
I /E for plane stress,

(1− ν2)K2
I /E for plane strain.

(4.84)

In the same manner, the energy release rates for pure mode-II and pure
mode-III loading can be determined:

G =
κ+ 1

8G
K2
II (mode II) , G =

1

2G
K2
III (mode III) . (4.85)

In case of a general crack loading, when all three modes are present, we obtain for
the energy release rate per unit length of the crack front

G =
1

E′ (K
2
I +K

2
II) +

1

2G
K2
III . (4.86)

Here, E′ = E/(1 − ν2) for plane strain and for the three-dimensional case while
E′ = E for plane stress.

In the pure mode-I case, according to (4.74), there is a unique relation between
KI and G. This applies also for the pure mode-II and the pure mode-III case. Thus,
within the framework of linear fracture mechanics, theK-concept and the criterion

G = Gc (4.87)

are equivalent for pure modes. Here, Gc is a material parameter which is called crack
resistance or crack resistance force. Because of the direct relation Gc = K2

Ic/E
′ it

is, like KIc, frequently also called fracture toughness. The condition (4.87) can
be interpreted as follows: fracture is initiated if the energy release during crack
growth is equal to the required energy. This energy criterion was proposed by A.A.
GRIFFITH (1921) in a slightly different form. We will come back to it again in Sec-
tion 4.6.4. In another perspective of (4.87) the interpretation of G as a (generalized)
force is emphasized. Accordingly, at crack initiation the crack extension force must
be equal to the crack resistance force.

As examples we will determine the energy release rates for two crack configu-
rations which are of relevance for different applications. The configuration shown
in Fig. 4.27a can be regarded as a model of two adhesively bonded or welded thin
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layers (strips) under tension F . At sufficiently large distances from the crack tips,
for h � 2b, the stress states outside and within the bonded region do not vary with
x. A crack advance da of the left or the right crack tip leads to a length decrease of
the bonded region of exactly the same amount as the length increase of the outside
region. Presuming the load F as a dead load and applying the relations of beam
theory (which are exact in this case), with the bending momentM = Fh/2 and the
moment of inertia I = Bh3/12, we obtain in a first step

dΠ int =

[(
F 2

2E′(B h)
+
M2

2E′I

)
− F 2

2E′(2B h)

]
da =

7F 2

4E′B h
da .

Here, B is the width of the layer in the third direction. Because of dΠ = −dΠi =
dΠa/2 and dA = B da, equation (4.82a) yields for plane strain

G =
7 (1− ν2)F 2

4EB2 h
or G =

7 (1− ν2)σ2 h
4E

(4.88)

where σ = F/Bh is the mean stress in a layer. It should be mentioned that in this
case, contrary to a first impression, no pure mode-II loading occurs. Thus, the stress
intensity factors cannot be determined from G. Without going into the details of the
calculation, theK-factors areKI ≈ −KII ≈

√
7/9 σ

√
h.

FF

b)a)

h

x

2b

h

h da
x

ε0

(1)

(2)

Fig. 4.27 Energy release rate: two examples

Figure 4.27b shows a crack in the interface (bonding plane) between a thin layer
(1) and a base material or substrate (2). We suppose that the substrate (2) experiences
a constant strain εx = ε0 which is imposed to the layer (1). This leads for |x| � h,
plane strain presumed, far ahead of the crack tip to the constant stress σ = Eε0/(1−
ν2) while the left-hand side of the layer is stress-free. If the crack advances by da,
the layer region with the constant stress decreases by the same amount and the state
in the substrate remains unchanged. As a consequence,

dΠint = −1

2
σ ε0B hda = −σ

2(1− ν2)B h
2E

da .

Since no external forces are present, dΠ = dΠint holds and (4.82a) in conjunction
with dA = Bda yields

G =
(1− ν2)σ2 h

2E
. (4.89)



4.6 Energy balance 99

As in the forgoing example, no pure mode-II is present. Thus, the stress intensity
factors cannot be determined from G. It also should be noted that this configuration
frequently is used to model the delamination of a thin layer (film) from a substrate.
Cracks in the interface between two different materials will more thoroughly be
considered in Section 4.11.

4.6.3 Compliance, energy release rate, and K-factors

In the linear elastic case, the energy release rate is related to the compliance of a
body or its overall stiffness, respectively. We will show this for the example of a
plane mode-I problem of a body which is loaded by a prescribed force F (dead
load) (Fig. 4.28a). With Πext = −FuF and Πint = FuF /2, the total potential in
this case is

Π = Πint +Πext = −1

2
F uF .

Between the displacement uF and the load F , the linear relationship

uF = C F

holds where C is the compliance (i.e., the inverse stiffness) of the body. If the crack
advances, C and uF change (Fig. 4.28b): C = C(a), uF = uF (a). Therefore, the
potential can be written as Π = −F 2C(a)/2 and the energy release rate takes the
form

G = − dΠ

B da
=
F 2

2B

dC

da
(4.90)

where B is the thickness of the body. It can be shown that this result is independent
of the loading type. For instance, it applies also if the force acts to the body via a
spring or if instead of the force the displacement uF is held constant.

F

uF

a

F
uF

b)

a+daa

-dΠ

a)

Fig. 4.28 Change of compliance on account of crack advance

In pure mode-I, from (4.90) in conjunction with (4.84) we obtain for the stress
intensity factor
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K2
I =

F 2E′

2B

dC

da
(4.91)

whereE′ = E in plane stress andE′ = E/(1−ν2) in plane strain. This relation, for
example, can be used to determine stress intensity factors experimentally. For this
purpose, the compliances of a body are determined for crack lengths which differ
by a small amountΔa.

F

h

a

uF

B

Fig. 4.29 DCB specimen

The relation (4.90) can also be used for the derivation of approximate analytical
solutions for K-factors in certain cases. As an example of such a formula we con-
sider a DCB specimen (double cantilever beam specimen) which is used in fracture
experiments (Fig. 4.29). If both arms are considered as cantilever beams of length
a, from beam theory (without taking shear into account) we get uF = 2Fa3/3EI .
With I = Bh3/12 this leads to the complianceC = uF/F = 8a3/EBh3. Inserting
this into (4.91) and assuming plane stress yields

KI = 2
√
3

F a

B h3/2
. (4.92)

4.6.4 Energy balance, Griffith’s fracture criterion

A fracture event in a body is accompanied by irreversible processes of bond-
breaking. It is appropriate to represent all energies which are exclusively associated
with the fracture process by a separate term in the energy balance (1.90). Among
these are the surface energy, the energy needed for the large microplastic defor-
mations in the process zone, and possible chemical and electromagnetic energies
(cf. Chapter 3). Without specifying them in detail, they are summarized as the frac-
ture energy Γ . The energy balance then can be written in the general form

Ė + K̇ + Γ̇ = P +Q . (4.93)

It must be satisfied at initiation and during the fracture process. Due to the irre-
versibility of the process, Γ̇ ≥ 0 holds.
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The fracture process takes place in the process zone whose volume in many
cases can be considered as negligibly small compared to the volume of the body
(Fig. 4.30). It is then obvious to split the energy balance (4.93) into one part for the
process zone and another part for the rest of the body:

process zone: Γ̇ = −P ∗ ,

body: Ė + K̇ = P +Q+ P ∗ .
(4.94)

Here, −P ∗ describes the energy transport into the process zone. If we restrict our-
selves to solely mechanical energy terms, it is given by

P ∗ =

∫

AP

ti u̇i dA . (4.95)

dA
tidA+

dA−

Ap

Fig. 4.30 Fracture process and energy balance

A fracture process is associated with the creation of a new surface. Between
two adjacent states 1 and 2 at times t and t + dt, the material is separated along
the fracture surface dA. During this time, the process zone moves and all material
points of dA pass through an “unloading history” from state 1 to the state 2 where
the bonding forces are fully released (ti=0). The work done by the bonding forces
(i.e., the energy flow into the process zone) can be expressed by

dWσ = P ∗dt =
∫

dA±

[

(2)∫

(1)

ti dui] dA . (4.96)

Here, dA± indicates that the work of the bonding forces on both opposite surfaces
has to be taken into account. Simultaneously, during creation of dA, the fracture
energy is changed by an amount dΓ which is proportional to dA: dΓ ∝ dA. If
dΓ is thought to be distributed in state 2 (after full separation) as fracture surface
energy along the surface dA±, it can be written as (cf. Section 3.2.2)

dΓ = Γ̇ dt = 2 γ dA . (4.97)
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The specific fracture surface energy γ is often considered to be constant. But in
general, it can also be a function of the fracture history, i.e., for example, a function
of the crack extensionΔa: γ = γ(Δa).

Again, the different physical meaning of Γ̇ and P ∗ shall be emphasized. During
the motion of the process zone by dA (i.e., crack extension), the energy dΓ on
account of the creation of new fracture surfaces is transformed into energy terms
like heat and surface energy. This takes place within the process zone. In contrast,
P ∗ describes the energy flux into the process zone or, in other words, the effect of
the surrounding continuum onto the process zone.

We now come back to the special case of an elastic body where a “slow”, quasi-
static fracture process is taking place. Here, we identify the process zone with the
plastic zone, i.e., with the entire small area around the crack tip where inelastic pro-
cesses occur. Accordingly,Γ now contains the energy needed both for the separation
process and for the inelastic deformation process in the plastic zone. The kinetic en-
ergyK and the non-mechanical energy transport Q do not play a role. The internal
energy E can be replaced by the strain energy Πint. Additionally, it is presumed
that the external forces have a potential Πext. With Π̇intdt = dΠint, Γ̇dt = dΓ
and Pdt = −dΠext, the energy balance (4.93) reads

dΠ int + dΠext + dΓ = 0 or
dΠ

dA
+

dΓ

dA
= 0 . (4.98)

Thus, during the fracture process, the change of the sum of the potentialΠ of exter-
nal and internal forces and of the fracture energy Γ is zero. If, according to (4.82a),
the energy release rate is introduced, equation (4.98) with (4.97) and the notation
Gc = 2γ attains the form of (4.87), i.e.

G = Gc . (4.99)

In other words, at initiation and during the subsequent progression of quasi-static
crack advance, the released energy must be equal to the energy needed for the frac-
ture process. The energy relation (4.98) was first applied as a fracture condition
by A.A. GRIFFITH, why it is called Griffith’s fracture criterion. However, Griffith
regarded Γ not as the fracture surface energy (incorporating all inelastic terms asso-
ciated with fracture) but as the pure surface energy. Formally, he treated the fracture
process as reversible. Furthermore, he applied the energy balance (4.98) only to
initiation of crack growth and not to its subsequent evolution.

In Section 4.6.2 it has been already mentioned that theK-concept and the energy
criterion are fully equivalent in linear fracture mechanics. However, in most appli-
cations, theK-concept is preferred. An essential reason for that is its simpler appli-
cability. For instance, K-factors are available in handbooks for many geometrical
configurations and loading cases. Another reason is the transferability of the funda-
mental idea of dominant, singular crack-tip fields to nonlinear fracture mechanics,
i.e., to inelastic, nonlinear material behavior. Nevertheless, there are a number of
cases in linear fracture mechanics in which the energy criterion is preferred. One
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example are interface cracks as they appear frequently in composite materials or
laminates (cf. Section 4.12).

For an illustration of Griffith’s fracture criterion (4.98), again a straight crack
in an infinite plate under remote uniaxial tension σ is considered, see Fig. 4.31a.
According to (4.80) and (4.97) the energy terms per unit thickness are

Π = −σ2a2π 1 + κ

8G
, Γ = 4aγ

where γ is assumed to be constant (Fig. 4.31b). Introducing them into (4.98) yields
the fracture condition

d(Π + Γ )

da
= 0 � 4γ = 2σ2πa

1 + κ

8G
. (4.100)

If the actual crack length is prescribed, it determines the critical stress needed for
the fracture process:

σc =

√
16Gγ

π(1 + κ)a
. (4.101a)

Contrary, if the stress σ is given, from (4.100) the critical crack length ac at which
the crack starts to grow can be obtained (Fig. 4.31b):

ac =
16Gγ

π(1 + κ)σ2
. (4.101b)

It is self-evident that identical results are obtained by using theK-concept.

a)

Γ

a

Π

Π + Γ

b)

σ

σ

Γ
Π

ac2a

Fig. 4.31 Griffith’s fracture criterion

In another example, we will address the question under which circumstances a
so-called channel crack is formed in a thin layer (film) (1) of thickness h which
is bonded on a substrate (2), see Fig. 4.32. We suppose that before failure, the un-
cracked layer is loaded by a constant tension σ and that the bond between layer and
substrate remains intact during crack formation. In a good approximation, the layer
then can be treated as a shear-compliant beam in plane strain whose axis remains
straight. Without going into details of the derivation, the change of strain energy or
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total potential, respectively, as well as the fracture energy during complete forma-
tion of the channel crack are determined as

Π ≈
√
2

16

σ2 h2 (1− ν2)
E

, Γ = 2 γ h = Gc h . (4.102)

Then, if stress and fracture toughness are known, Griffith’s energy criterion (4.98)
leads to the critical layer thickness

hc ≈ 4
√
2

GcE
σ2(1− ν2) . (4.103)

Thus, if channeling of a thin layer under tension shall be prevented (i.e., dΠ+dΓ <
0), its thickness h must be below the critical value hc: h < hc. In this context it
should be noted that tensile stresses due to the fabrication process or as a result of
thermal effects in many cases cannot be avoided.

σ σ σ σ

(1)

x(2)

h (1)

(2)

Fig. 4.32 Channeling in a thin layer

As a final example of an application of the energy criterion, the so-called Peel-
Test is investigated. This test is frequently used to experimentally evaluate adhesive
bonds or to determine the specific fracture surface energy of a thin film (layer) on a
substrate. For this purpose, an elastic film of thickness h and width B (cross section
A = Bh) is considered which is peeled-off from a rigid substrate, see Fig. 4.33a.
We assume that the separation process takes place under steady state conditions, i.e.
the force F (dead load) and the peel angle ϕ are constant.

When the film is peeled-off by a distance Δa, the point of application of F is
displaced in the direction of the force byΔu = Δa(1−cosϕ+ε). Here, ε = F/EA
is the constant strain in the already debonded part of the film. Hence, the work done
by F , i.e. the change of the external potential, is given byΔW = −ΔΠa = FΔu,
while the change of stored elastic energy (internal potential) is ΔU = ΔΠi =
F 2/(2EA)Δa. With the fracture surface energyΔΓ = γBΔa, the energy balance
(cf. (4.98))

ΔU −ΔW +ΔΓ = 0

yields

F 2

2EA
− F (1− cosϕ+

F

EA
) + γB = 0 . (4.104)



4.6 Energy balance 105

��������������������������������

b)

ϕ

Δa

Δu
h

F

a)

F

Bγ

ϕ 9060300

15

10

5

0

20

hE

γ
= 1, 10, 100, 1000

Fig. 4.33 Peel Test

This equation can be resolved for γ to determine the fracture surface energy. Vice
versa, F is obtained as

F = EA

(√
2γ

Eh
+ (1− cosϕ)2 − (1 − cosϕ)

)
. (4.105)

In the special case of an infinitely stiff film (E → ∞), (4.104) leads to F =
γB/(1− cosϕ). Fig. 4.33b shows in dimensionless form the peel force F/Bγ as a
function of the peel angle ϕ for different values of dimensionless parameter hE/γ.
Accordingly, the necessary force increases with the film stiffness EA and decreases
with angle ϕ.

It should be mentioned that there exists a different interpretation of the energy
criterion which is based upon the generalized force concept. Here, G is understood as
a force which acts to drive the crack (= crack extension force). Crack propagation is
counteracted by the material resistance Gc (= crack resistance force). A quasi-static
crack growth can only take place if the “equilibrium condition” (4.99) is fulfilled.
The latter can also be reformulated in terms of the (generalized) principle of vir-
tual displacements. For this purpose, a virtual (i.e., only thought and infinitesimal)
crack advance δA is considered. Then the crack extension force does the virtual
work G δA = −δΠ and the crack resistance force the work GcδA = 2γδA = δΓ ,
respectively. Thus equation (4.99) leads to

δ(Π + Γ ) = 0 . (4.106)

Finally, a simple model (analogy) of crack propagation shall be discussed. It
consists of Coulomb’s dry friction of a body on a rough support (Fig. 4.34) where
movement of the body is identified with crack propagation. The body remains at
rest as long as the acting driving force is less than the limiting adhesive force (=̂ no

��������
��������
��������
��������

F
rough

Fig. 4.34 Coulomb’s friction as a model of crack propagation
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crack propagation for G < Gc). If the driving force is equal to the limiting adhesive
or frictional force, respectively, movement is initiated and further movement under
equilibrium conditions takes place (=̂ crack initiation and propagation for G = Gc).

The energy balance (4.93) is also valid when large inelastic regions are present.
In this case, however, the entire plastic region cannot be regarded as the process
zone. It is then necessary to separate clearly the energy needed for the fracture pro-
cess (Γ̇ ) and that consumed by inelastic deformations outside the process zone. This
can be done, for example, within the framework of a cohesive zone model (see Sec-
tion 5.3). In such a model, the volume of the process zone is neglected and the latter
is regarded as a ’process surface’ AP . Outside of the process zoneAP , the material
behaves inelastic (e.g., elastic-plastic). The fracture process (separation) takes place
along the surface AP where a material-specific separation law governs the cohesive
stresses. According to this separation law, the cohesive stresses accomplish a certain
fracture work.

4.6.5 J−integral

With the K-factors and the energy release rate G, we have already introduced pa-
rameters which can be used to describe the fracture behavior. Another very useful
quantity is the J-integral. Although this parameter in linear fracture mechanics is
equivalent to K or G, respectively, it is of outstanding importance. One reason for
this is that J in contrast to K and G, can be applied also to inelastic materials
(cf. Chapter 5, elastic-plastic fracture mechanics).

4.6.5.1 Conservation integrals of J type

We consider a homogeneous, elastic body with strain energy density U (εij) and
suppose that no volume forces act onto the body (fi = 0). The material can be
arbitrarily nonlinear and anisotropic. For simplicity, we further assume small defor-
mations (infinitesimal strains). Then, the J-integral vector is defined as

Jk =

∫

∂V

bkj nj dA =

∫

∂V

(U δjk − σij ui,k)nj dA (4.107)

where ∂V is a closed surface with the outward unit normal vector nj (Fig. 4.35a).
The quantity

bkj = U δjk − σij ui,k (4.108)

is called configurational stress tensor or ESHELBY’S stress tensor, sometimes also
energy-momentum tensor of elastostatics. It has the remarkable property that its
divergence vanishes under the presumed circumstances. This can be shown by dif-
ferentiating it with respect to xj and incorporating (1.46), (1.19), (1.25):



4.6 Energy balance 107

x3

x1
x2

x2

x1

b)

C

dc

a)

nj
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Fig. 4.35 J-Integral

bkj,j =
∂U

∂εmn

∂εmn
∂xj

δjk − σij,j ui,k − σij ui,kj

= σmn um,nk − σij ui,kj = 0 .

(4.109)

Hence, according to the divergence theorem

Jk = 0 (4.110)

for an arbitrary closed surface ∂V containing a defect-free material without singu-
larities or discontinuities of bkj . If the material is inhomogeneous or if V contains
discontinuities or singularities as, for example, a crack or point defect, then Jk in
general is not zero. Equation (4.110) can be regarded as a special conservation law
of elastostatics which advantageously can be applied in various situations.

If we apply (4.110), as an example of elementary strength of materials, to a beam
which is solely loaded at its supports A and B by bending moments M and shear
forces V , we obtain

−M
2
A

2EI
+
M2
B

2EI
+ VAw

′
A + VBw

′
B = 0 .

Here, EI is the bending stiffness and w′ is the derivative of the beam deflection.
There exist two further surface integrals with similar properties as Jk:

Lk =

∫

∂V

εklm(xl bmj + ul σmj)nj dA ,

M =

∫

∂V

[
bij xi +

1

2
σij (2− α)ui

]
nj dA .

(4.111)

Here, Lk is a vector and M is a scalar quantity, εklm is the permutation tensor and
α = 3 in the three-dimensional and α = 2 in the two-dimensional case. Analogous
to (4.110), the divergence theorem yields

Lk = 0 (4.112)
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for an arbitrary closed surface ∂V including a defect-free, isotropic, homogeneous
material. It can be shown that Jk = 0 and Lk = 0 apply also for finite deformations.
Contrary, the conservation law

M = 0 (4.113)

is valid only in the special case of a linear elastic material and infinitesimal strains.
For plane problems, the field quantities depend only on x1 and x2. In this

case, the surface integrals degenerate to contour integrals along a closed curve C
(Fig. 4.35b). The J-integral vector is then given by

Jα =

∫

C

(U δαβ − σiβ ui,α)nβ dc (4.114)

where Greek subscripts attain the values 1, 2.

4.6.5.2 Generalized forces

We will now discuss the mechanical meaning of the J-integral (4.107) when a dis-
continuity surface AD is embedded within V (Fig. 4.36a). Such a discontinuity is
present if bkj or one of the terms U , σij , or ui,k, respectively, experiences a jump
across the surface AD. That is the case when, for instance, AD is the boundary of
an elastic body which is loaded by the boundary tractions ti = σijnj , i.e., there
is no material on the left-hand side of AD in Fig. 4.36a. We now assume that the
boundary AD is shifted by a constant increment dsk (translation of AD) while the
external load ti remains unchanged. Such a displacement can be visualized by ma-
terial being “taken away” or “added”. On account of dsk, the total energy of the
system changes by dΠ . The latter consists of the strain energy

dΠ int =

∫

AD

U dsk nk dA

stored in the layer of thickness dsknk and of the difference of the potentials of
external forces

ti

A2

AD

a)

A1

∂V

dsk

c)

dsk

dsk

Jk

Jk

∂V

∂V

b)

dA
ti

dsk

xk+dsk

nkdsk

xk

nj

Fig. 4.36 Generalized forces
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dΠext = −
∫

AD

ti ui(xk + dsk) dA+

∫

AD

ti ui(xk) dA = −
∫

AD

σij ui,k dsk nj dA

where ui(xk + dsk) = ui(xk) + ui,k dsk (Fig. 4.36b). Thus, we obtain

dΠ = dΠint + dΠext = dsk

∫

AD

(U δjk − σij ui,k)nj dA .

According to (4.110), the corresponding integral over the closed surface A1 + AD
is equal to zero:

∫
A1
. . . +

∫
AD
. . . = 0. Consequently, since ∂V = A1 + A2 with∫

A2
. . . = 0, the energy change can be written as

dΠ = −dsk

∫

A1

(Uδjk−σijui,k)njdA = −dsk

∫

∂V

(Uδjk−σijui,k)njdA (4.115)

or
dΠ = −Jkdsk . (4.116)

The result (4.116) applies not only for this specific example but it can be gen-
eralized to arbitrary discontinuity surfaces (surface defects) and singularities such
as dislocations (line defects) and point defects (Fig. 4.35c). In other words, the en-
ergy change of an elastic system due to a translation of a discontinuity or singularity
(surface, line, or point defect) can be described by means of the “path-independent”
integral Jk where the integration domain (surface ∂V ) must contain the defect but
otherwise is arbitrary. In this energetic sense, Jk can be interpreted as a force acting
on the defect. It is referred to as a generalized force, material force, or as configura-
tional force.

Analogous to Jk, the path-independent integral Lk can be interpreted as a gener-
alized moment or configurational moment acting on the defect. It leads to the energy
change of the system when the defect experiences a rotation. Finally, theM -integral
characterizes the system’s energy change due to a self-similar growth of the defect
(e.g., the radial increase of a spherical cavity).

As a simple example, we consider a bi-material bar of constant cross section
A under tension (see Fig. 4.37) with Young’s modulus undergoing a jump at the
interface AD. The configurational force acting at AD can be determined by using
the dashed integration contour. With the strain energy densityU = σ2/2E, the force
N = σA and Hooke’s law u1,1 = σ/E we obtain

J1 =

(
N2

2EA
− σAu1,1

)
©2 −

(
N2

2EA
− σAu1,1

)
©1

=
N2

2A

[
1

E1
− 1

E2

]
,

J2 = J3 = 0

(4.117)
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σ σ

ds©1 ©2

AD

x1

J1 E2E1
x2

Fig. 4.37 Bi-material bar under tension

where only surfaces perpendicular to x1 provide a nonzero contribution. Thus, when
the interface AD is shifted by ds, the system undergoes the energy change

dΠ = −J1ds = N 2

2A

[
1

E2
− 1

E1

]
ds . (4.118)

This example can be regarded as a simplified model of a phase transformation in a
single crystal. In this case, the interface between two phases (phase boundary) with
different elastic properties is displaced.

4.6.5.3 J–integral as a crack-tip loading parameter

In what follows, we apply the J-integral vector to the plane problem of a crack with
traction-free crack faces (Fig. 4.38a). For this purpose we choose an arbitrary open
contour C which starts and ends at the opposite crack faces and encloses the crack
tip. Then, according to (4.115) and (4.116), J1 and J2, respectively, characterize the
energy change (energy release) of the system when the crack faces (= discontinuity
line) enclosed by the contour together with the crack tip (= singularity) are shifted in
x1- and x2-direction, respectively. While a displacement in x2-direction is only vir-
tually realizable, a displacement da in x1-direction corresponds to a kinematically
possible crack advance. The respective contour integral

J = J1 =

∫

C

(U δ1β − σiβ ui,1)nβ dc =
∫

C

(U dy − ti ui,x dc) (4.119)

is denoted as J-integral where the subscript 1 usually is omitted.

a) b) c)

x1

x2

da
C C1

y

x C2

C+

C−

C

y

xρ

Fig. 4.38 J -integral

In its energetic interpretation, J corresponds the energy release rate during crack
growth in an elastic body:
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J = G = −dΠ

da
. (4.120)

Due to this relation, J can be applied as a fracture parameter. A fracture criterion

J = Jc (4.121)

is fully equivalent to the energy criterion (4.99). In case of a linear elastic material,
(4.120) with (4.86) yields

J =
1

E′ (K
2
I +K

2
II) +

1

2G
K2
III (4.122)

whereE′ = E/(1−ν2) for plane strain andE′ = E for plane stress. Hence, (4.121)
is equivalent also to the K-concept provided that a pure mode-I or a pure mode-II
or a pure mode-III prevails.

The relevance of J as a fracture parameter can be substantiated without utiliz-
ing the energy interpretation. For this purpose, we choose two different contours
C1 and C2 for the determination of J , see Fig. 4.38b. Then, according to (4.110),
for the closed contour C1 + C+ + C2 + C−, taking the contour directions into
account,

∫
C1
. . .+

∫
C+ . . .−

∫
C2
. . .+

∫
C− . . . =0 holds. The integrals

∫
C+ . . . and∫

C− . . . vanish under the made assumptions (straight traction-free crack faces) since∫
Udy = 0 and ti = 0. It finally remains

∫
C1
. . . =

∫
C2
. . .. Thus, the J-integral is

path independent. It is a characteristic parameter for the state in the vicinity of the
crack tip, no matter whether the contour runs through this area or not. It applies in
the linear as well as in the nonlinear elastic case.

The path independence of J can advantageously be utilized for the calculation
of the crack-tip loading for specific configurations. For instance, it is advisable to
choose for numerical calculations with finite elements or boundary elements inte-
gration paths sufficiently far away from the crack tip. A cumbersome and precise
computation of the field in the crack-tip region then is not necessary. In this manner,
the numerical determination of K-factors in many cases is accomplished by use of
the relation

J = G =
1

E′K
2
I (4.123)

via the calculation of the J-integral.
The path independence of the J-integral is ensured only under the mentioned

circumstances. If the crack faces are loaded or the crack is curved, J is in general
path dependent. Incidentally, this applies to J2 already for the traction-free straight
crack. A “path independent” crack-tip parameter, which characterizes the crack-tip
state, is obtained under such circumstances only when the contour is shrunk directly
to the crack tip (Fig. 4.38c):

J = J1 = lim
ρ→0

∫

C

(Udy − tiui,xdc) . (4.124)
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Then, equation (4.122) in the linear elastic case still is valid as before. This can be
proofed by choosing a circle as the contour in (4.124) and introducing the crack-tip
field solution according to Section 4.2.1. In the same manner, the y-component of
the generalized force at the crack tip can be determined:

J2 = − 1

E′KIKII . (4.125)

The J-integral can also be applied to three-dimensional problems where the
crack loading varies along the crack front. As an example, we consider the case
of a plane crack with a straight crack front as shown in Fig. 4.39. The general-
ized force component in x1-direction, acting on an element Δl of the crack front,
is determined appropriately by integrating (4.107) over the whole surface (includ-
ing the lateral surfaces) of the disc-shaped body, generated by the contour C in the
x1, x2-plane. In the limit case Δl → 0, the integrals over the opposite lateral sur-
faces cancel each other and only the contour integral (4.119) remains. However, it
is now dependent on the position along the crack front: J = J(x3). With the same
arguments as in the plane case, the path independence of J also can be shown here.

C

Δl
x2

x1

x2

x3 x1

Fig. 4.39 J for three-dimensional crack problem

A necessary prerequisite for the applicability of the J-integral as a crack-tip pa-
rameter is an open contour which encloses solely the corresponding crack tip. Con-
trary, if a closed contour around the whole crack is chosen, then Jk, according to
Section 4.6.5.2, describes the energy change of the system on account of a trans-
lation of the entire crack. Analogous statements apply to Lk and M for a rotation
and a self-similar crack growth, respectively. Such crack “movements”, apart from
some exceptions, are kinematically impossible. Therefore these integrals are of mi-
nor importance in fracture mechanics.
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4.7 Small-scale yielding

4.7.1 Plastic zone size, Irwin’s crack length correction

In linear elastic fracture mechanics it is assumed that the plastic zone is small com-
pared to the K-dominated region (see Section 4.3). This condition is known as
small-scale yielding. Here, the plastic zone covers the whole region where the ma-
terial response deviates from a linear elastic behavior. The determination of the size
and shape of this zone in case of a “nonlinear” material is, in general, not an easy
task. Therefore, in a first step, we will provide only an estimate on the basis of the
elastic crack-tip field solution for mode-I with the material behavior in the plastic
zone assumed to be perfectly plastic.

A simple approximation for the extension of the plastic zone ahead of a crack tip
goes back to G. IRWIN. It can be obtained by replacing the elastic stress distribution
ahead of the crack by the elastic-plastic stress distribution, as depicted in Fig. 4.40a.
The latter is assumed to be constant within the plastic zone. In the elastic domain,
the stress is represented by the elastic crack-tip field solution which is shifted to the
right. We now require that Tresca’s yield condition σ1 − σ3 = σ

Y
is fulfilled at the

boundary between the elastic and plastic domain. With σ1 = σy = KI/
√
2πx and

σ3 = 2 ν σ1 for plane strain and σ3 = 0 for plane stress, respectively, this conditions
yields

σy = ασ
Y
, 1/α =

{
1− 2ν (plane strain)

1 (plane stress)

and after substitution

x1 =
1

2π

(
KI
ασ

Y

)2

.

The distance x2 can be found from the condition that the forces resulting from the
purely elastic stress distribution and from the elastic-plastic stress distribution must
be equal:

x2

σy

ασ
Y

2rp

x1

a) b)

x

σ

σ

x1

2a

Fig. 4.40 Estimation of plastic zone size
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∞∫

0

KI√
2πx

dx = ασ
Y
(x1 + x2) +

∞∫

x1+x2

KI√
2π(x− x2)

dx .

From this condition it follows that x2 = x1. Thus, the length 2rp = x1 + x2 of the
plastic zone is given by

2rp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

3π

(
KI
σ

Y

)2

(plane strain) ,

1

π

(
KI
σY

)2

(plane stress)

(4.126)

Here, for plane strain the value α =
√
3, i.e., ν = 0.21 has been chosen. According

to (4.126), for the same crack loading (i.e., sameKI) the plastic zone in plane strain
is significantly smaller than in plane stress. This is confirmed also experimentally.

Equation (4.126) provides the opportunity to rewrite the size condition (4.77),
which must be fulfilled for the determination of a valid fracture toughnessKIc, in a
different form. Assuming a plane strain state, we obtain for the critical case at crack
initiation (KI = KIc) by substituting (4.126):

rpc <̃ 0.02 {a, W−a, B} . (4.127)

This relation provides an impression of the admissible size of the plastic zone within
the framework of linear fracture mechanics. Thereby, the right-hand side can be
extended by possibly appearing further geometric parameters.

The length x2 = rp characterizes the translation of the elastic crack-tip field
due to plastic deformation. Exactly the same crack-tip field occurs in the purely
elastic case if the crack is fictitiously extended by rp. Having this in mind, G. IRWIN

suggested to account for yielding in the fracture criterion by using an effective crack
length which is corrected by rp:

aeff = a + rp . (4.128)

This approach is called Irwin’s crack length correction. For example, when (4.128)
is applied to the crack shown in Fig. 4.40b, we obtain withKI = σ

√
πa and (4.126)

for a plane stress state

aeff = a +
1

2π

(
KI
σY

)2

= a

[
1 +

1

2

(
σ

σY

)2
]
. (4.129)

Introducing this result into theK-criterion, the critical stress follows as

σc =
KIc√
πaeff

=
KIc√

π[a+ (1/2π)(KIc/σY
)2]
. (4.130)
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4.7.2 Qualitative remarks on the plastic zone

Precise statements on the shape of the plastic zone as well as on the stresses and de-
formations appearing in it can be made only after the solution of the corresponding
elastic-plastic boundary value problem. Such a solution, even for simple material
models (e.g., elastic - perfectly plastic) and plane strain (or plane stress) problems,
is possible only by using numerical methods.

A rough impression of the shape of the plastic zone can be obtained when the
boundary of this zone is identified with the contour along which the stresses of
the elastic crack-tip field just fulfill the yield condition. In this manner, taking for
instance the von Mises yield condition (1.77b)

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = 6k2 = 2σ2Y ,

and the principal stresses (4.23), (4.24) for mode I, the contour is determined as

rp(ϕ) =
K2
I

2πσ2Y
cos2

ϕ

2

⎧⎪⎨
⎪⎩

[3 sin2
ϕ
2 + (1− 2ν)2] plane strain

[3 sin2 ϕ2 + 1] plane stress .
(4.131)

For comparison, the contours resulting from von Mises’ and from Tresca’s yield
condition are displayed in Fig. 4.41a where Poisson’s ratio ν = 1/4 has been chosen
for plane strain. Both hypotheses show a distinct difference in size between plane
strain and plane stress.

a)

rp

b)

x3

B
ϕ

plane strain Tresca

v.Mises

plane stress

Fig. 4.41 Plastic zone

The result (4.131) forms the basis of the dog bone model for the shape of the
plastic zone in “thick” plates (B � rp) which is depicted in Fig. 4.41b. Here, it is
assumed that in the surrounding of the crack front, approximately a plane strain state
dominates in the interior (ε33 ≈ 0), whereas the state at the surface approaches the
plane stress state (σ3i ≈ 0). But three-dimensional numerical investigations show
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that the size of the plastic zone at the surface generally is overestimated by this
model.

In plane strain, according to (4.25), the maximum shear stresses occur predomi-
nantly in cross sections with the normal vector perpendicular to x3. This suggests a
slip mechanism for plastic deformation as shown in Fig. 4.42a. Corresponding slip
processes lead to a blunting of an originally sharp crack tip and as a consequence
to a “crack opening”. Contrary to plane strain, τmax in plane stress occurs in cross
sections under 45◦ to the x1, x2-plane. Accordingly, the slip mechanism as shown
in Fig. 4.42b will take place in “thin” plates (rp � B). This mechanism restricts
the extension of the plastic zone in x2-direction to the size of the plate thickness
and promotes its strip-like evolution in x1-direction (Fig. 4.42c). This mechanism
is also responsible for the necking ahead of the crack tip which can be observed in
this case.

2rp

a)

x1

x2

b) c)

≈B

B

Fig. 4.42 Slip mechanism: a) plane strain, b) and c) plane stress

As has been discussed in Section 4.6, the fracture toughnessKIc is directly con-
nected with the energy needed for the fracture process: K2

Ic ∼ Gc. The latter in-
cludes the entire energy needed for the deformation process within the plastic zone.
Herewith, the dependency of the fracture toughness on the thickness B, as shown
in Fig. 4.23a, qualitatively can be explained. For B � rp (thick samples), approxi-
mately plane strain dominates along the crack front which allows only a constrained
plastic deformation. This corresponds to a low energy dissipation and consequently
to a low KIc. In contrast, for B � rp (thin samples), plane stress dominates with
a larger plastic zone and lower deformation constraint. As a consequence, a higher
plastic energy dissipation and therefore also a higherKIc-value occurs.

4.8 Stable crack growth

We consider a straight crack under pure mode-I conditions. At crack initiation and
subsequent crack growth the fracture criterion must be fulfilled which, according to
(4.99), may be expressed as G = Gc. The crack resistance Gc is rarely constant, but
in most cases, as shown in Fig. 4.43a, a monotonously increasing function of the
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crack advanceΔa = a− a0:
Gc = R(Δa) . (4.132)

The function R(Δa) is known as the crack-resistance curve or the so-called R-
curve. For instance, the crack resistance of a metal, starting from the initiation value
Gci at initial crack length a0, may increase up to a multiple of Gci during crack
growth of one or two millimeters. One of the reasons for this is the “motion” of
the plastic zone in the course of crack advance. During this process, the material
particles experience quite complex stress histories (loading, unloading) and the size
and shape of the plastic zone change. A detailed description of this process can be
omitted when determining the R(Δa)-curve from experiments. The R-curve then
is regarded as a material-specific function which uniquely characterizes quasi-static
crack growth.

a) b)
Δa

Δa a∗a0

R(Δa)

Gc R,G

G∗

Gci Gci

a

G(F, a)

R(Δa)
Fc

F1

F2

Fig. 4.43 Stable crack growth

Due to the rise of R, it is possible to increase the crack load beyond its initiation
value. As a consequence, the crack growth is determined through the equilibrium
condition

G(F, a) = R(Δa) (4.133)

between crack extension force and crack resistance force (Fig. 4.43b). Here, the
parameter F denotes the dependence of the crack extension force on the external
load. The equilibrium state is stable under fixed loading condition, provided that the
crack resistance increases more rapidly with increasing crack length than the crack
extension force:

∂G
∂a

∣∣∣∣
F=const

<
dR

da
. (4.134)

Under these circumstances, the external load must be increased to drive the crack
forward. This is indicated in Fig. 4.43b by the family of G-curves for different ex-
ternal loads (F1 < F2 < . . .). The limit of stable crack growth is reached when the
critical condition

∂G
∂a

∣∣∣∣
F=const

=
dR

da
(4.135)
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is met. When the load is further increased, the equilibrium condition (4.133) is no
longer fulfilled and the crack starts to propagate dynamically. The critical load Fc
and the corresponding value G∗ depend on the crack geometry and the loading type
as well as on the R-curve.

The statements made above, can also be derived in a more formal manner. For this
purpose we assume that the system’s “total energy”Π∗ consist of the total potential
Π and the fracture surface energyΓ , i.e.,Π∗(a) = Π(a)+Γ (a) (cf. Section 4.6.4).
The equilibrium state of the system is characterized by the condition dΠ∗/da = 0.
With G = −dΠ/da andR = dΓ/da this corresponds to equation (4.133). Informa-
tion about the stability is provided by the second derivative. The equilibrium state
of the system is stable for d2Π∗/da2 > 0 while at d2Π∗/da2 = 0 the transition to
instability occurs. These are exactly the statements (4.134) and (4.135).

Stable crack growth can not only be investigated on the basis of the energy con-
cept. Because of the equivalence ofK , G, and J in linear fracture mechanics, it can
be done on the basis of any of these parameters.

In what follows, we will determine dG/da for the body depicted in Fig. 4.44
which contains a crack and is loaded via a spring by a given displacement uF .
With the compliances C(a) and CF of the body and spring, the following relations
between the acting force and the displacements hold:

F =
uF

C(a) + CF
, uP = CF =

C

C + CF
uF . (4.136)

Therefore, the potential is

Π =
1

2
FuP +

1

2
F (uF − uP ) = 1

2

u2F
C(a) + CF

,

and by differentiation we obtain

G = −dΠ

da
=
u2F
2

C′

(C + CF )2
, (4.137a)

uP

F

CF

P

uF

a
C(a)

Fig. 4.44 Stability of crack growth
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dG
da

= −d2Π

da2
=
u2F
2

C′′(C + CF )− 2C′2

(C + CF )3
=
F 2

2

[
C′′ − 2C′2

C + CF

]
, (4.137b)

where C′ = dC/da. Thus, not solely the properties of the body but also the type of
the loading (CF ) enter the quantity dG/dawhich essentially determines the stability
of crack growth.

From (4.137b), we can derive results for the special cases CF = 0 andCF → ∞.
According to (4.136), the former corresponds to a loading by a displacement uF
prescribed in point P while the latter is related to a load which is independent of
C(a) (i.e., dead loading). We obtain

dG
da

=
F 2

2

⎧⎪⎪⎨
⎪⎪⎩

C′′ − 2C′2

C
for CF = 0 ,

C′′ for CF → ∞ .

(4.138)

Thus, for an increasing dead load of the body in point P (i.e., CF → ∞), the insta-
bility point is always reached earlier than for a loading by a prescribed displacement
(i.e., CF = 0).

As an example, the DCB specimen shown in Fig. 4.29 shall be considered. In-
troducing the compliance C(a) = 8a3/EBh3 (cf. Section 4.6.3), from (4.138) we
obtain

dG
da

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−48F 2a

EBh3
for CF = 0 ,

+
24F 2a

EBh3
for CF → ∞ .

(4.139)

Hence, for loading by prescribed displacements (CF = 0), crack growth is always
stable.

4.9 Mixed-mode loading

Until now, essentially fracture criteria and crack problems for pure mode-I loading
have been considered. In such a case, we could assume that crack advance occurs
in tangential direction at the crack tip, i.e., a straight crack propagates in its longi-
tudinal direction. Now we want to discuss fracture criteria for mixed-mode loading
where mode-I and mode-II are superimposed while mode III should not be present.
Under such circumstances the critical state (onset of crack growth) is determined by
the influence of both modes and crack propagation starts under a certain angle to the
tangent at the crack tip (Fig. 4.45). For brittle materials, in most cases a propagation
direction is observed where the new crack faces open as under pure mode-I loading.

If mode-I and mode-II prevail, the state at the crack tip can, within the scope
of linear fracture mechanics, be characterized by the stress intensity factors KI
and KII . A mixed-mode fracture criterion then can generally be expressed as (cf.
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−ϕ0

Fig. 4.45 Crack growth under mixed-mode loading

(4.29)):
f(KI ,KII) = 0 . (4.140)

Similar to the failure hypotheses in Chapter 2, it is possible to formulate arbitrarily
many fracture criteria of the type (4.140). In fact, there exist a number of hypothe-
ses which, depending on the material class and the dominating micro-mechanism,
respectively, are more or less in good agreement with experimental results. In what
follows, some frequently used fracture criteria are discussed which also make state-
ments about the crack growth direction.

Energy criterion

According to (4.87) or (4.99), crack growth is initiated at

G = Gc (4.141)

where G = (K2
I +K2

II)/E
′. If we introduce the fracture toughness for mode I by

means of Gc = K2
Ic/E

′, equation (4.141) can be written as

K2
I +K

2
II = K

2
Ic . (4.142)

This criterion is based on the assumption that crack propagation in any case occurs
in tangential direction, independently of the magnitude of mode-II. For an isotropic
material this is acceptable with sufficient accuracy only for KII � KI or if the
crack growth direction is prescribed by a “weakened zone” as for instance an inter-
face. Thus, the criterion (4.142) is restricted to very special applications.

Criterion of maximum circumferential stress

This criterion dates back to F. ERDOGAN and G.C. SIH (1963) and is based on two
assumptions: (a) the crack propagates in radial direction ϕ0, perpendicular to the
maximum circumferential stress σϕmax and (b) crack advance is initiated when the
near field stress σϕmax = σϕ(ϕ0) at a distance rc in front of the crack tip reaches
the same critical value as in pure mode I. As a consequence, for the circumferential
stress (see Section 4.2.1 and 4.2.2)
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σϕ =
1

4
√
2πrc

[
KI

(
3 cos

ϕ

2
+ cos

3ϕ

2

)
−KII

(
3 sin

ϕ

2
+ 3 sin

3ϕ

2

)]
,

the following conditions apply:

∂σϕ
∂ϕ

∣∣∣∣
ϕ0

= 0 , σϕ(ϕ0) =
KIc√
2πrc

.

They lead to the equations

KI sinϕ0 +KII (3 cosϕ0 − 1) = 0 ,

KI

(
3 cos

ϕ0

2
+ cos

3ϕ0

2

)
−KII

(
3 sin

ϕ0

2
+ 3 sin

3ϕ0

2

)
= 4KIc .

(4.143)

From the first one the deflexion angle ϕ0 is obtained. Introducing this, the second
equation determines when failure occurs. The corresponding results forKI ,KII ≥
0 are shown in Fig. 4.46a,b. For example, the deflexion angle for pure mode II (KI =
0) results as cosϕ0 = 1/3 , i.e., ϕ0 = −70.6◦ and the critical load is given by
KII =

√
3/4 KIc = 0.866 KIc.

a) b)
1

(4.146) ν=1/3

(4.147)

(4.143)

ν=1/3
KII

KIc

1

1

(4.147)
(4.143)

(4.142)

30◦

60◦

90◦

−ϕ0

KII/(KI +KII)KI/KIc

(4.146)

Fig. 4.46 Mixed-mode loading: a) fracture criteria, b) crack deflexion angle

S–criterion

The strain energy density in the vicinity of the crack tip for plane strain can be
expressed with the crack-tip field solution (4.14) and (4.15) as

U =
1

4G

[
(1− ν)(σ2x + σ2y) − 2νσxσy + 2τ2xy

]

=
1

r

(
a11K

2
I + 2a12KIKII + a22K

2
II

)
=
S

r

(4.144)
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where

16πGa11 = (3− 4ν − cosϕ)(1 + cosϕ) ,

16πGa12 = 2 sinϕ (cosϕ− 1 + 2ν) ,

16πGa22 = 4(1− ν)(1 − cosϕ) + (1 + cosϕ)(3 cosϕ− 1) .

(4.145)

G.C. SIH (1973) assumed that (a) the crack grows into that radial direction ϕ0

where the strength S of the singular strain energy density has a minimum and (b) the
crack starts growing when S(ϕ0) reaches a material specific critical value Sc. The
latter can be replaced by the fracture toughnessKIc of pure mode I (then ϕ0 = 0):
Sc = a11(ϕ0=0)K2

Ic. Hence, the directional criterion and the fracture criterion read

dS

dϕ

∣∣∣∣
ϕ0

= 0 with
d2S

dϕ2

∣∣∣∣
ϕ0

> 0 ,

[
a11K

2
I + 2a12KIKII + a22K

2
II

]
ϕ0

=
1− 2ν

4πG
K2
Ic .

(4.146)

The deflexion angle and the failure curve are depicted in Fig. 4.46. If we choose
ν = 1/3, from this hypothesis for pure mode II the deflexion angle cosϕ0 = 1/9 ,
i.e., ϕ0 = −83.62◦ results, and the critical loading is KII =

√
9/11 KIc =

0.905 KIc.
The S-criterion can be modified in various ways. For instance, it might be appro-

priate to start not from the strain energy density U but from the volumetric strain
energy density UV or from the distortional energy density UG. But we will not go
into this in more detail.

Kink model

This model starts from the assumption that the crack tip under mixed mode load-
ing in the initial phase forms a small kink within the KI ,KII -dominated region
(Fig. 4.47). In the second phase, when the kink becomes critical under a certain
load, crack propagation starts in tangential direction from the kink tip. Physically,
the kink can be regarded as a simplified model for possible radial micro cracks in the
vicinity of the macroscopic crack tip. At the tip of the kink the field is again singular
and it can be characterized by the stress intensity factors kI , kII . M.A. HUSSAIN,
S.L. PU, and I. UNDERWOOD (1972) assumed that (a) the kink is formed at an an-
gle ϕ0 for which the respective energy release rate G = (k2I + k

2
II)/E

′ is maximum
and (b) the crack starts to grow when this energy release rate reaches a critical value
Gc. Thus, the directional condition and the failure condition read

dG
dϕ

∣∣∣∣
ϕ0

= 0 , G(ϕ0) = Gc (4.147)
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KI , KII− field

ϕ

kI , kII

Fig. 4.47 Kink model

where Gc = K2
Ic/E

′. The solution of these equations requires the determination
of kI (ϕ), kII(ϕ) from the solution of the corresponding boundary value problem.
This is possible only with numerical methods. Figure 4.46 shows the results for the
deflexion angle and the failure curve. An approximate solution for kI(ϕ), kII(ϕ)
can be written as

kI � C11KI + C12KII +D1σT
√
πε , kII � C21KI + C22KII +D2σT

√
πε

(4.148a)
where ε denotes the length of the kink and

C11 =
1

4
(3 cos

ϕ

2
+ cos

3ϕ

2
) , C12 = −3 cos2

ϕ

2
sin
ϕ

2
,

C22 =
1

4
(cos

ϕ

2
+ 3 cos

3ϕ

2
) , C21 = sin

ϕ

2
cos2

ϕ

2
,

D1 = sin2 ϕ , D2 = − sinϕ cosϕ .

(4.148b)

The terms in (4.148a) which represent the contribution of the T-stress σT in many
cases can be neglected. But they play a role in situations where the terms related to
KI ,KII more or less cancel each other.

The fracture criteria discussed above do not account for the microscopic failure
mechanisms. These microscopic mechanisms can be quite different, depending on
whether mode I or mode II dominates, which in turn may significantly affect the
macroscopic fracture behavior. Therefore, the applicability of these criteria is re-
stricted and they may not be overstrained regarding their physical interpretation.
For instance, the mentioned criteria often fail for a pure mode-II loading. Due to the
missing crack opening, the microscopic asperities of the opposite crack surfaces get
in contact, which changes the state at the crack-tip. The actual crack-tip loading is
then smaller than that expressed by KII which is determined under the assumption
of traction-free crack faces. In order to ensure traction-free crack surfaces, a certain
minimum crack opening hence should always exist (KI > 0). That means that all
mentioned fracture criteria basically are physically meaningful only forKI ≥ 0. If
crack closure occurs, a mode-I crack-tip field no longer exists and a pure mode-II
crack-tip loading (KI = 0) then is present. A typical example for this are cracks
under a combined pressure and shear loading (i.e., shear cracks). Due to the men-
tioned friction effects, the fracture criteria are hardly applicable but the directional
criteria for the crack deflexion angle under pure mode-II still remain valid.
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Because the agreement of the various hypotheses with experimental results may
be quite different for different materials, it has been proposed not to insist on a
physically motivated fracture hypothesis, but to simply adopt a formal approach.
One possibility for this is the following representation of the fracture criterion:

(
KI

KIc

)μ
+

(
KII
KIIc

)ν
= 1 (4.149)

where the four parameters KIc, KIIc, μ, and ν must be determined from experi-
ments.

It should be noted that the different hypotheses differ only slightly from one
another as long as the mode-II part is small (KII � KI). This applies especially for
the deflexion angle ϕ0. The criteria (4.143), (4.146), and (4.147) then all lead to the
same result:

ϕ0 ≈ −2
KII
KI

. (4.150)

As a simple example of a mixed mode loading, we consider an inclined crack
under uniaxial tension (Fig. 4.48a). In this case the stress intensity factors are

KI = σ
√
πa cos2 γ , KII = σ

√
πa sin γ cos γ . (4.151)

If the criterion of maximum circumferential stress according to (4.143) is applied
one obtains for the deflexion angle ϕ0 and the critical stress σc the results shown in
Fig. 4.48b,c. It is remarkable that σc varies only a little for sufficiently small γ.
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Fig. 4.48 Inclined crack under uniaxial tension

4.10 Crack initiation at cavities and notches

At stress concentrators like cavities, notches or corners, generally high stresses oc-
cur that frequently lead to the formation of a crack. When the maximum stresses
are finite, as e.g. at an elliptic cavity (cf. Section 4.4.5) or at a blunt notch with fi-
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nite notch radius, i.e. when no stress singularities are present, it seems reasonable to
treat crack initiation by applying a classical failure hypothesis, see Chapter 2. How-
ever, the applicability of classical failure hypotheses turns out to be limited since
they cannot describe the size effect which experimentally can be observed. Here,
under size effect the dependence of the failure stress on the absolute size of the
stress concentrator is understood. For example, it is well known that the maximum
stress σmax at the boundary of a circular cavity in an infinite plate under uniaxial
tension σ is three times the applied stress: σmax = 3σ. According to the maximum
stress hypothesis (2.2) failure should occur, independent on the size of the cavity,
if the condition σmax = σt is fulfilled, i.e. for an applied stress σ = σt/3, where
σt is the tensile strength of the material. In a good approximation this is in fact the
case for sufficiently large cavities. But when the cavity gets smaller and smaller, the
tensile stress σ necessary for failure increases more and more until it reaches in the
limit case of a microscopic cavity exactly the tensile strength σt. The reason for this
apparently paradox is found in the microstructure of the material which generates
local fluctuations of the stress state on the microscale, see also Chapter 8. When
the characteristic size of the stress concentrators gets smaller and finally attains the
characteristic size of the microstructure, the stress concentrator itself becomes an el-
ement of the microstructure. Then, from a macroscopic point of view, the difference
gets lost between the stress fluctuations due to the microstructure and the distur-
bance of the stress state on account of the stress concentrator. In other words, the
stress concentration at the microscopic cavity disappears in the microscopic noise”
of the stress state - the microscopic cavity is macroscopically no longer visible. This
analogously applies for blunt notches whose absolute size is self-similarly reduced.

At V-shaped sharp notches or sharp corners, in any case stress singularities are
present whose strength is characterized by a generalized stress intensity factor, i.e.
for example in mode I by a K∗

I factor, see Section 4.2.1. Here, the direct applica-
tion of classical failure hypotheses is not practical. They predict, on account of the
stress singularity, failure even for the smallest external loading which contradicts
experimental evidence. For this reason, in analogy to crack initiation, the usage of
failure criteria of the type K∗

I = K∗
Ic have been proposed. It is a considerable dis-

advantage of such an approach that the fracture toughness K∗
Ic, when generalized

in this manner, depends on the opening angle of the notch and therefore represents
no intrinsic material parameter. An additional disadvantage is, that in contrast to a
crack, no relation between such a generalized K∗-concept and an energy criterion
exists. In fact, it can be shown that the energy release rate G at crack initiation van-
ishes for a sharp as well as for a blunt notch. For this purpose we assume, similar to
Section 4.6.2, that a small crack of lengthΔa evolves from the notch. We can deter-
mine the induced energy change from (4.83) simply by replacing the stresses ahead
of a crack by the corresponding stresses ahead of the sharp notch (i.e. in mode I by
(4.20)) or the blunt notch. ForΔa→ 0 this leads in any case (except for a crack) to
G = 0.

A crack initiation criterion, that does not show the mentioned disadvantages,
was proposed by D. LEGUILLON. It starts from the assumption that at initiation
a crack of finite length Δac spontaneous develops. This happens if two necessary

“
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conditions are fulfilled. First, a stress criterion F (σij) ≥ 0 must be satisfied over
the entire length Δac for which usually the maximum stress criterion (2.2) in form
of

σ1 ≥ σt (4.152a)

is taken. Additionally, the energy criterion

G∗ = Gc (4.152b)

must be fulfilled where

G∗ = −ΔΠ
Δac

(4.153)

and Gc are the incremental energy release rate and the crack resistance, respectively.
The so-called hybrid criterion (4.152a,b) correctly describes failure in the two

limit cases of a crack and of a homogeneous stress state. In case of a crack the
stress criterion (4.152a) is always satisfied and crack initiation is controlled by the
energy criterion (4.152b). In the other limit case of a homogeneous stress state in a
sufficiently large body, failure is controlled solely by the stress criterion (4.152a).
An advantage of LEGUILLON’S criterion is, that only the two well-known material
parameters σt and Gc are involved. It also has been shown that the criterion can de-
scribe size effects in a satisfying manner. However, the practical application is not as
simple as it looks at first glance and in most cases is only possible by using numer-
ical methods like the FEM. The reason is that the initially unknown magnitude and
direction of Δac as well as the critical external load must be iteratively determined
for a certain notch configuration.

On account of the two involved material parameters, LEGUILLON’S criterion
belongs to the class of two-parameter criteria. Furthermore, because it assumes a
finite crack advance at initiation, the term finite fracture mechanics is sometimes
used. There exist a number of other two-parameter criteria. Also the cohesive zone
models can be regarded as two-parameter models if the cohesive law is characterized
by solely two parameters. This model will be discussed in more detail in Section 5.3.

4.11 Fatigue crack growth

When a component containing a crack is loaded statically, no crack growth takes
place as long as the crack length or the loading, respectively, remains below a criti-
cal value. In contrast, when the loading is oscillating, crack growth in “small steps”
can be observed already for loading amplitudes far below the critical static load
(cf. Section 3.2.1). Such a crack growth is called fatigue crack growth. Usually, fa-
tigue crack growth is characterized by the crack growth rate da/dN whereN is the
number of load cycles. The physical reasons for fatigue crack growth are the com-
plex inelastic processes occurring during periodic loading inside the process zone
(plastic zone). In metals, a material particle in this zone experiences cyclic plastic
deformation under tension and compression (plastic hysteresis). With the deforma-



4.11 Fatigue crack growth 127

tion also the eigenstress fields vary and the damage of the material increases, e.g.,
by void formation and growth, until total separation takes place.

In what follows, we restrict the attention to a cyclic mode-I loading. If the condi-
tions of linear fracture mechanics are fulfilled (small-scale yielding), fatigue crack
growth can be described by use of the K-concept. A periodic loading then is char-
acterized by a periodically varying stress intensity factor with the difference ΔK
between maximum and minimumK-factor (Fig. 4.49a) denoted as the cyclic stress
intensity factor. Measurements of the crack growth rate for a material in dependence
ofΔK lead to results as qualitatively shown in Fig. 4.49b. Below a threshold value
ΔK0, the crack does not propagate. This value usually is smaller thanKIc/10. The
middle part of the curve between ΔK0 and KIc, in a logarithmic representation,
can be approximated by a straight line with slope m. Accordingly, crack growth is
empirically described by the equation

da

dN
= C (ΔK)m (4.154)

which after P.C. PARIS (1963) is called Paris’ law. The constants C andm depend
on the material and various influence factors such as temperature, environmental
medium, or the mean stress intensity factor. For metals, exponents within the range
m ≈ 2 . . . 4 are typical.
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Kmax
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ΔK
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ΔK0 KIc ΔK

(4.154)

[
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Fig. 4.49 Fatigue crack growth

There are many different approaches which allow to fit experimental data better
than (4.154). Among others, R.G. FOREMAN’s representation (1967)

da

dN
=

C (ΔK)m

(1−R)KIc −ΔK (4.155)

sometimes is applied whereR = Kmin/Kmax. Furthermore, there exist a number of
models for a simplified description of the fatigue crack propagation process which in
detail is very complex. One of these models, for example, starts from the assumption
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that the crack advance during each cycle is proportional to the size of the plastic
zone. Since rp ∝ K2

I (see (4.126)), this leads to da/dN ∝ (ΔK)2, i.e., to an
exponent ofm = 2.

Knowledge of the crack growth rate da/dN allows to predict the life time of a
component containing a crack. For this purpose, the number Nc of cycles is deter-
mined until the crack reaches its critical length ac. As an example of the procedure,
we consider a component which is periodically loaded by a constant cyclic stress
Δσ. This leads to a cyclic stress intensity factor ΔK = Δσ

√
πaF (a) where F (a)

depends on the geometry of the component including the actual crack configuration
(cf. Section 4.4.1, Table 4.1). If Paris’ law (4.154) is used, we obtain by integration
the number of cycles necessary for a crack growth from the initial length ai to the
length a:

N(a) =
1

C (Δσ)m

a∫

ai

da[√
πa F (a)

]m . (4.156)

The critical number of cycles Nc finally follows by introducing the critical crack
length ac.

4.12 Interface cracks

Up to now, we have considered only cracks in homogeneous materials. But also
cracks in the interface between two materials with different elastic constants are of
considerable practical interest. They are called interface cracks or bimaterial cracks.
Typical examples are cracks in material compounds, in adhesive joints or cracks in
the interfaces of composite materials (laminates, fiber-matrix materials, etc.). The
K-concept cannot be directly applied to such cracks because the crack-tip field in
this case has not the same form as for a homogeneous material. Furthermore, it is
not a priori clear to what extent parameters such as G or J can be used in fracture
criteria for such cracks.

To begin with, we consider the field at the tip of a bimaterial crack which lies
in the interface between two materials with the elastic constants E1, ν1 and E2, ν2

E1, ν1

x

E2, ν2

y
ϕ

r

Fig. 4.50 Tip of a bimaterial crack
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(Fig. 4.50). Here, we can restrict our attention to plane strain since a plane stress
state can hardly be realized in the vicinity of the tip of an interface crack. In order to
determine the crack-tip field, we use again the complex method (cf. Section 4.2.1)
which now must be applied separately for the upper (1) and the lower (2) half planes.
For the solution we use the functions

Φ1(z) = A1z
λ, Ψ1(z) = B1z

λ, Φ2(z) = A2z
λ, Ψ2(z) = B2z

λ (4.157)

where in contrast to the homogeneous material (see Section 4.2.1) the exponent λ
can now be complex. Since the displacements at the crack tip must be non-singular
and the strain energy shall be limited, we consider Reλ > 0. The boundary and
transition conditions

(σϕ + i τrϕ)
(1)
ϕ=π = 0 , (σϕ + i τrϕ)

(1)
ϕ=0 = (σϕ + i τrϕ)

(2)
ϕ=0 ,

(σϕ + i τrϕ)
(2)
ϕ=−π = 0 , (u+ i v)

(1)
ϕ=0 = (u+ i v)

(2)
ϕ=0

lead to a homogeneous system of equations for the four complex constantsA1 . . . B2

(four real and four imaginary parts). From the condition that the 8× 8 determinant
of the coefficients must be zero, one obtains the equation for the eigenvalues which
has the solution

λ =

{
1/2 + n+ i ε

n
n = 0, 1, 2, . . . (4.158)

where

ε =
1

2π
ln
μ2κ1 + μ1
μ1κ2 + μ2

(4.159)

with μi = Ei/2(1+ νi) and κi = 3− 4νi. The constant ε is known as the so-called
bimaterial constant. At the crack tip r → 0, the field dominates which corresponds
to the eigenvalue with the lowest real part, i.e.

λ = 1/2 + i ε . (4.160)

Hence, according to Kolosov’s formulae (1.118a) or (1.119) and taking into account
ri ε = ei ε ln r, the stresses and the displacements show a behavior of the type

σij ∼ r−1/2 cos(ε ln r) , ui ∼ r1/2 cos(ε ln r) (4.161)

where the cosine may be also replaced by the sine. Thus, the typical 1/
√
r-type

singular behavior of the stresses and the
√
r-behavior of the displacements is present

also at the bimaterial crack tip. But now these quantities oscillate increasingly when
approaching the crack tip (oscillating singularity).

We will not derive the complete crack-tip field but restrict the analysis to the
stresses in the interface and to the crack opening:
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(σy + i τxy)ϕ=0 =
K (r/2a)i ε√

2πr
,

(v+ − v−) + i (u+ − u−) = c1 + c2
2 coshπε

K (r/2a)i ε

1 + 2 i ε

√
r

2π
.

(4.162a)

Here, 2a is an arbitrary reference length (e.g., the crack length),

K = K1 + iK2 (4.162b)

is the complex stress intensity factor and

c1 = (1 + κ1)/μ1 , c2 = (1 + κ2)/μ2 . (4.162c)

Accordingly, the crack-tip field is uniquely characterized by the modified complex
stress intensity factorK = K (2a)−i ε. If we introduce through

|K| =
√
K2

1 +K2
2 , tanψ = K2/K1 (4.163)

its absolute value |K | and phase angle ψ, it can also be written as

K = |K | eiψ (2a)−i ε . (4.164)

In addition to the stress intensity factors K1 and K2, also the reference length 2a
occurs which is weighted by the bimaterial constant ε. For this reason, a decompo-
sition into pure mode I and mode II is impossible. Consequently, the stress intensity
factors K1 and K2 also cannot simply be related to these modes. This can clearly
be recognized when representing the stresses in the interface according to (4.162a)
in real form:

{
σy

τxy

}
=

1√
2πr

{
K1 cos[ε ln (r/2a)]−K2 sin[ε ln (r/2a)]

K1 sin[ε ln (r/2a)] +K2 cos[ε ln (r/2a)]

}
. (4.165)

The stress intensity factor K1 is not only associated with the normal stresses in the
interface but also with the shear stresses. In the same manner, both the shear and
normal stresses are associated withK2. Thus, at a bimaterial crack tip, both modes
are (strictly speaking) inseparably connected to each other. Only in the limit case of
the homogeneous material (c1 = c2, ε = 0), K1 andK2 reduce to KI andKII and
both modes then are separable.

From (4.162a) it can be seen that the crack opening oscillates increasingly when
approaching the crack tip. Since a penetration of the crack faces is physically im-
possible, they must get into contact behind the crack tip. As a consequence, the
presented solution is meaningful to describe the crack-tip field only outside the con-
tact region.

We now will determine the energy release rate G = −dΠ/da during crack
growth in the interface (see also Section 4.6.2, equation (4.83)). It can be obtained
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from

dΠ

da
= − lim

Δa→0

1

2Δa

Δa∫

0

[σy (v
+ − v−) + τxy (u+ − u−)] dx

in conjunction with (4.162a) and (4.162c). We get

G =
(c1 + c2) (K

2
1 +K2

2 )

16 cosh2 (πε)
. (4.166)

Thus, G is uniquely determined by both stress intensity factors. Hence, only the
“absolute value” (K2

1 + K2
2 )

1/2 and not the separate components K1 and K2 can
be determined from G.

It can be show that the energy release rate of a bimaterial crack can be determined
from the J-integral

J = G =

∫

C

(U dy − tiui,xdc) (4.167)

as it is valid for a crack in a homogeneous material. The integral is path independent
as long as the crack is straight, has traction-free crack faces, and the elastic constants
do not vary in x-direction.

As a simple example of an interface crack for which a closed form solution can
be found, we consider a crack in an infinite domain under internal pressure, see
Fig. 4.51a. Since the complex potentials are rather involved, only Φ′

1 is exemplarily
given here:

Φ′
1 =

σ

1 + e2πε

[(
z + a

z − a
)i ε

z − 2 i ε a√
z2 − a2 − 1

]
.

The stress intensity factors at the right crack tip are

K = (1 + 2 i ε) σ
√
πa or

{
K1 = σ

√
π a ,

K2 = 2 ε σ
√
π a .

(4.168)

If homogeneous fields in both materials are superimposed, with tension σ in y-
direction and appropriate constant stresses σ1, σ2 in x-direction, the loading case
shown in Fig. 4.51b is obtained. Here, the same stress intensity factors (4.168) ap-
ply as for internal pressure. If the shear stress τ acts at infinity instead of tension
(Fig. 4.51c), one obtains

K1 = −2 ε τ
√
πa , K2 = τ

√
π a . (4.169)

It should be noted that in this case, because of K1 < 0 and K2 > 0 and according
to (4.165), pressure prevails in the interface. Therefore the crack tip will be closed.
Finally, for the configuration shown in Fig. 4.51d, the stress intensity factors are
(see also Table 4.1, No. 4)
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Fig. 4.51 Interface cracks

K1 =
P√
π a

coshπε , K2 =
Q√
π a

coshπε . (4.170)

By means of the examples in Fig. 4.51a,b, we can estimate the length of the con-
tact zone at the crack tip. For this purpose, we identify the contact length with the
maximum distance rc where the crack opening δ = v+ − v− due to the oscillation
becomes zero for the first time. This leads, according to (4.162a), to the condi-
tion Re [K (rc/2a)

i ε/(1 + 2i ε)] = 0. Introducing (4.168) gives Re [rc/2a]
i ε =

cos[ε ln(rc/2a)] = 0 and from that we obtain

rc/2a = exp (−π/2 ε) . (4.171)

An extreme value which ε attains for μ2 → ∞ and ν1 = 0, is εmax = 0.175.
But in most cases of practical interest, the bimaterial constant is far lower: ε � 1.
For example, ε = 0.039 for the material combination Ti/Al2O3, ε = 0.028 for the
combination Cu/Al2O3 and ε = 0.004 for Au/MgO. If we insert ε = 0.05 into
(4.171), we obtain rc/2a ≈ 2 · 10−14, i.e., the contact zone is negligibly small.
As already mentioned, this is not the case for a pure shear loading. But if a small
amount of tension is superimposed which leads to crack opening, the contact zone
becomes small again.

The crack-tip field of a bimaterial crack is uniquely determined by the modified
complexK-factor (4.164) or by its real and imaginary parts, respectively. Therefore
it seems obvious to formulate a fracture criterion formally as: K = Kc. However,
in doing so some difficulties arise. For instance, the transfer of K-factors is not an
easy task. This can be recognized when two cracks with different lengths 2a∗ and
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2a but with the same ε are considered. The crack-tip fields, and by this the crack-tip
loadings, of both cracks are equal only if the conditions

|K∗| eiψ∗
(2a∗)−i ε = |K | eiψ (2a)−i ε (4.172a)

or
|K |∗ = |K| , ψ∗ = ψ − ε ln a/a∗ (4.172b)

are fulfilled. Consequently, the phase angles (i.e., K2/K1) for both configurations
must be different. Further difficulties consist in the transferability of experimentally
determinedKc-values to situations which differ from the experimental one as well
as in their ε-dependent dimension.

On account of the mentioned reasons, frequently a pragmatic approach is adopted.
In many cases of practical relevance, because of ε � 1, it is admissible to assume
K ≈ K or K1 ≈ KI and K2 ≈ KII , respectively. The crack-tip state, in a good
approximation, is described by the usual mode-I and mode-II stress intensity factors
as for a homogeneous material. Equivalent to this is a characterization of the crack
tip loading byK2

I +K
2
II andKII/KI or by the energy release rate G and the phase

angle ψ, respectively. The fracture criterion then can be expressed as

G(ψ) = G(i)
c (ψ) with tanψ =

KII
KI

. (4.173)

Here, the interface fracture toughness G(i)
c generally shows a strong dependence

on ψ. If we apply this fracture criterion to the examples in Fig. 4.51a,b, it leads
in conjunction with (4.166) and (4.168) for a given loading σ to the critical crack
length

ac =
18 cosh2(πε)G(i)

c (0)

π(1 + 4ε2)(c1 + c2)σ2
. (4.174)

With ε� 1, it can be simplified to ac ≈ 18G(i)
c (0)/π(c1 + c2)σ

2.

As a typical example, relevant in applications, we consider the delamination of
two layers (1) and (2) which is accompanied by the propagation of an interface
crack (Fig. 4.52a). A similar problem has already been considered in Section 4.6.2.
As a generalization, now a finite thickness h2 of layer (2) is assumed which, as
h1, shall be small compared with all other length parameters: h1, h2 � a. Due
to an eigenstrain ε0 of layer (2), e.g., on account of heating, eigenstresses occur
in the system. They can be characterized by the forces N and moments M1 and
M2 = M1 + (h1 + h2)N/2 resulting in both layers. Here, the eigenstrain ε0 de-
scribes the strain difference of both layers if each of them can deform freely and un-
constrained. The energy release rate G can be determined exactly by using elemen-
tary beam theory. From this, the following expressions are obtained for x� h1, h2
in a first step
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Fig. 4.52 Delamination

N = f
E′

1 h1 ε0
B

, f =

[
1 + eH + 3

(1 +H)2 eH

1 + eH3

]−1

,

M1 = − (1 +H)eH3

2(1 + eH3)
h2N , M2 =

(1 +H)

2(1 + eH3)
h2N ,

(4.175)

where B is the width of the layers and the abbreviations e = E1/E2 and
H = h1/h2 have been used. With

dΠ = dΠi = −1

2

[
12

M2
1

E′
1 h

3
1

+ 12
M2

2

E′
2 h

3
2

+
N2

E′
1 h1

+
N2

E2 h2

]
B da ,

and the reference stress σ = E′
1 ε0, one finally obtains

G = f
(1− ν21) σ2 h1

2E1
. (4.176)

In the limit case h1/h2 → 0 this result reflects with f → 1 just the result (4.89)
of Section 4.6.2 while the limit case of two equal layers (e = 1, H = 1) leads to
f = 0.2.

The stress intensity factors cannot be determined in such a simple manner. For
this purpose, in fact the solution of the elastic boundary value problem in the sur-
rounding of the crack tip is necessary. In general, the solution can be represented
as

KI = FI N
√
h1 , KII = FII N

√
h1 (4.177)

where FI and FII are dependent on H = h1/h2 and the elastic constants. For the
special case of a thin layer on a thick substrate (h1/h2 → 0) and ν1 = ν2, the
functions FI and FII are shown in Fig. 4.52b.

Due to the different material properties, a mixed-mode loading through KI and
KII is present at a bimaterial crack even if the geometric configuration and exter-
nal loading is symmetric. This might lead to the effect that a possible crack growth
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does not take place in the interface but that instead the crack deflects into one of the
two materials. The particular behavior of the crack depends on the phase angle ψ
as well as on the different fracture toughnesses of the interface and the individual
materials. By means of the example in Fig. 4.53a, this briefly shall be discussed
using qualitative considerations. For this purpose we assume μ1 < μ2 and ν1 = ν2,
i.e., that material (1) is “softer” than material (2). Under these circumstances, exter-
nal tension causes shear stresses in the interface which lead to a negative KII and
consequently to a negative phase angle ψ at the right crack tip (Fig. 4.53b). If we
now assume that as a result of a disturbance, the crack has slightly grown into mate-
rial (1), we can apply the crack deflection hypotheses from Section 4.9. All of them
predict a positive deflexion angle ϕ0 for the corresponding situation, i.e., a crack
propagation away from the interface into the softer material (1) (cf. (4.150)). If we
apply the same consideration to a hypothetic small crack advance into material (2),
we again obtain a positive deflection angle ϕ0 which drives the crack back to the in-
terface. All in all, the crack tends to deflect out of the interface and to propagate into
the softer material (Fig. 4.53c). However, this occurs only if the fracture toughness
of the soft material is not higher than that of the interface: G(1)

c ≤ G(i)
c .

b)

σy

a)

e) f)d)

c)σ
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σ

σ σ
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τxy
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x

(2)

(1)

(2)

(1)

(2)

(1)

(2)

τxy(x)

(1)τxy

σy

Fig. 4.53 Crack deflection

A different behavior can be observed for the bimaterial crack shown in
Fig. 4.53d where the same material properties are assumed as before. In this case
the external tension causes a shear stress distribution in the interface which leads to
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a positive KII (Fig. 4.53e). Accordingly, the crack will tend to propagate into the
“stiffer” material as long as the fracture toughness there is not higher than in the
interface (Fig. 4.53f).

4.13 Piezoelectric materials

4.13.1 Basic principles

Piezoelectric materials are characterized by the property that deformations occur not
only as a result of mechanical forces but also due to applied electric fields. This phe-
nomenon is called electrostriction . Conversely, deformations induce electric fields
in such materials which is denoted the piezoelectric effect . Due to their wide ap-
plication as actuating elements or sensors, especially ferroelectric ceramics are of
significant technical importance. In ferroelectric materials a macroscopic piezoelec-
tric effect occurs only after a polarization through a sufficiently high electric field.
Therefore, they then behave transversely isotropic, i.e., there exists a principal direc-
tion which coincides with the direction of polarization. Without going into details,
the fundamental equations shall briefly be discussed which are necessary for the
solution of fracture mechanics problems. We will restrict our attention to the small
signal range which in good approximation can be characterized by a linear material
behavior with a constant polarization. In this case, all relevant relations are fully
analogous to those we have already discussed for usual, purely elastic materials.
However, auxiliary terms now appear due to the coupling of the mechanical and the
electrical problem. Moreover, the anisotropic material behavior leads to a certain
inflation of the equations.

The linear coupled electromechanical behavior of the piezoelectric materials can
be described by the constitutive equations (cf. (1.35a))

σij = Cijkl εkl − ekij Ek , Di = eikl εkl + εik Ek . (4.178)

Here, Di is the dielectric displacement, Ek is the electrical field strength, and ekij
and εij are the tensors of the piezoelectric and dielectric material constants (one
should not mix up the strains εij with the material constants εik and eijk with the
permutation symbol!). In case of transversely isotropic ferroelectrics whose polar-
ization direction coincides with the x3-direction, the material law can also be written
in the matrix form

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ23
σ31
σ12

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
2 ε23
2 ε31
2 ε12

⎤
⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
E1

E2

E3

⎤
⎦ (4.179a)



4.13 Piezoelectric materials 137

⎡
⎣
D1

D2

D3

⎤
⎦=
⎡
⎣

0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
2 ε23
2 ε31
2 ε12

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎣
ε11 0 0
0 ε11 0
0 0 ε33

⎤
⎦
⎡
⎣
E1

E2

E3

⎤
⎦ (4.179b)

where c66 = (c11 − c12)/2.
According to (1.25) the strains εij are related to the mechanical displacements.

Furthermore, the electrical field strength can be derived from the electric potential
φ. The respective equations are

εij =
1

2
(ui,j + uj,i) , Ei = −φ,i . (4.180)

In addition, the field equations

σij,j = 0 , Di,i = 0 (4.181)

hold where we have assumed that no volume forces and distributed charges are
present. Finally, the mechanical and electrical boundary conditions complete the
description of a boundary value problem. The electrical boundary conditions in-
volve a statement on the potential φ or the normal componentDn of the dielectric
displacement at the boundary.

As a generalization of the strain energy density (cf. Section 1.3.1.2), the specific
electro-mechanical potential (electric enthalpy density)

W =
1

2
Cijkl εijεkl − ekij Ek εij − 1

2
εij EiEj (4.182)

can be introduced. Then there exists the surface integral

Jk =

∫

∂V

(Wδjk − σijui,k +DjEk)njdA (4.183)

with basically the same properties as the J-integral vector (4.107). If ∂V contains
a defect, Jk characterizes the configurational force acting on the defect. It causes a
change of the total energyΠ of the piezoelectric system when the defect is displaced
by dsk: dΠ = −Jk dsk.

The basic equations of transversely isotropic piezoelectricity can be simplified in
various cases. A plane strain state is present for a polarization in x3-direction when
the mechanical and electrical fields are independent, e.g., of x2. With u2 = 0, ε22 =
ε32 = ε12 = 0, E2 = 0, the constitutive law (4.179a,b) then reduces to
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⎡
⎢⎢⎢⎢⎣

σ11
σ33
σ31
D1

D3

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

c11 c13 0 0 −e31
c13 c33 0 0 −e33
0 0 c44 −e15 0
0 0 e15 ε11 0
e31 e33 0 0 ε33

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ε11
ε33
2 ε31
E1

E3

⎤
⎥⎥⎥⎥⎦

(4.184)

and the field equations can be summarized as follows:

c11u1,11 + (c13 + c44)u3,13 + c44u1,33 + (e31 + e15)φ,13 = 0 ,

c44u3,11 + (c13 + c44)u1,31 + c33u3,33 + e15φ,11 + e33φ,33 = 0 ,

e15u3,11 + (e15 + e31)u1,13 + e33u3,33 − ε11φ,11 − ε33φ,33 = 0 .

(4.185)

In particular, the longitudinal (out of plane) shear stress state, where u1 = u3 =
0, E3 = 0 applies, proves to be relatively simple. Assuming again a polarization in
x3-direction, the constitutive law simplifies to

⎡
⎢⎢⎣
σ23
σ12
D1

D2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
c44 0 0 −e15
0 c44 −e15 0
0 e15 ε11 0
e15 0 0 ε11

⎤
⎥⎥⎦

⎡
⎢⎢⎣
2ε23
2 ε12
E1

E2

⎤
⎥⎥⎦ (4.186)

and the field equations reduce to

c44Δu3 + e15Δφ = 0 , e15Δu3 − ε11Δφ = 0 (4.187)

whereΔ(.) = ∂2(.)/∂x21 + ∂
2(.)/∂x23

4.13.2 The crack in a ferroelectric material

In the following we consider a crack in a ferroelectric material, initially with an ar-
bitrary polarization direction (Fig. 4.54). Without going into the analysis, under the
assumption that the dielectric displacement along the crack faces vanishes (imper-
meable boundaries:D−

2 = D+
2 = 0), the crack-tip field (r → 0) displays a behavior

r

x1

polarization

ϕ

x2

x3 crack front

Fig. 4.54 Crack in a ferroelectric material
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of the same type as for the purely elastic material:

σij ∼ r−1/2 , ui ∼ r1/2 , Di ∼ r−1/2 , φ ∼ r1/2 . (4.188)

Accordingly, at the crack front (crack tip), the dielectric displacement, exactly as
the stresses, has a singularity of the type r−1/2. The field can be fully described
by means of the henceforth four “stress intensity factors” KI , KII , KIII , and KD.
For simplicity, only field quantities in front of the crack tip (ϕ = 0) are given here,
where reference is made to the coordinate system shown in Fig. 4.54:

σ22 =
KI√
2πr

, σ12 =
KII√
2πr

, σ13 =
KIII√
2πr

, D2 =
KD√
2πr

.

(4.189)
It can be recognized that KD describes the strength of the singular dielectric

displacement. With the K-factors, the energy release rate (crack extension force)
for straight crack propagation, can be represented as

G = J = −dΠ

da
= CMNKMKN (M,N = I, II, III,D) (4.190)

where the summation has to be taken over M and N . Here, J = J1 is the x1-
component of the configurational force Jk according to (4.183) and CMN are ma-
terial constants which depend on the polarization.

A technically important special case is a polarization perpendicular to the crack
faces as shown in Fig. 4.55a. It should be noted that contrary to the previous sections,
the x3-axis now is perpendicular to the crack face. In case of plane strain, when the
fields are independent on x2 and, moreover, the configuration is symmetric with
respect to the x1-axis,KII andKIII vanish. Then a mode-I crack opening is present
and the following quantities behind the crack tip (ϕ = ±π) can be obtained for
r → 0:

u±3 = ±4

√
r

2π

(
KI
cT

+
KD
e

)
, φ± = ±4

√
r

2π

(
−KD
ε

+
KI
e

)
. (4.191)
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Fig. 4.55 Electromechanical crack loading
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Here, cT , ε, and e denote combined elastic, dielectric, and piezoelectric material
properties which can be expressed by means of the material constants (4.184). The
energy release rate herewith results as

G = Gm + Ge =
[
KI

(
KI
cT

+
KD
e

)]
+

[
KD

(
−KD
ε

+
KI
e

)]

=
K2
I

cT
− K2

D

ε
+ 2

KIKD
e

.

(4.192)

The two parts Gm and Ge can be interpreted as mechanical and electrical parts of the
energy release rate.

Due to the electromechanical coupling, in general both stress intensity factors
KI and KD occur under a purely mechanical or purely electrical loading. Specific
loading conditions in a few special cases can involve only one K-factor. One ex-
ample is an impermeable finite crack in an infinite domain (see Fig. 4.55b). Due
to a loading solely by σ0 or solely by D0, the following stress intensity factors are
obtained:

KI = σ0
√
πa , KIV = D0

√
πa . (4.193)

The state at the crack tip which is loaded symmetrically, is uniquely characterized
by KI andKD. Therefore, a fracture criterion for this case can formally be written
as

f(KI ,KIV ) = 0. (4.194)

Among others, the following criteria have been proposed:

(A) G = Gc ,
(B) Gm = Gmc ,
(C) KI = KIc

(4.195)

where criterion (A) often is preferred. But independently of the chosen criterion, the
determination of both sides of (4.195), i.e., the acting crack-tip load and the critical
values are afflicted with uncertainties. One reason for this is the electric boundary
condition which often is not known sufficiently accurate along crack faces in real
materials.

4.14 Problems

Problem 4.1 A crack tip field is given by the complex functions

Φ(z) = A
√
z , Ψ(z) = −(

1

2
A− A)√z , A purely imaginary.

a) Determine the stresses σx, σy , τxy .
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b) Which type of opening mode is present and how isA related to the stress intensity
factor?

Solution: Pure mode II with KI = 0 andKII = −√
2π ImA.

Problem 4.2 A crack in an infinite region is loaded by a remote linearly vary-
ing stress σ∞y = σ0(b/a− x/a).
a) Determine theK-factors by using the basic
solution for a crack subjected to point forces.

b) What is the condition forK+
I = 0, and what

does this mean?

Solution:

a) K±
I = σ0

√
πa

(
b

a
∓ 1

2

)

b) K+
I = 0 for b = a/2. Under this loading

condition there exists no stress singularity at
the right crack tip.

σ∞
y

σ∞
y

y

x−a a
b

Fig. 4.56

Problem 4.3 A crack grows along the interface in a bi-material bar of width B
under tension.

a) Determine the energy release rate by
using simple bar theory.

b) CalculateKII for the caseE1 = E2

under the assumption that pure mode II
and plane stress is present.

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

E2, A2

E1, A1

F
b

a

Fig. 4.57

Solution: a) G =
F 2A2E2

2BA1E1(A1E1 +A2E2)
, b) KII =

√
F 2A2

2BA1(A1 + A2)

Problem 4.4 Calculate for both configurations, shown in Fig. 4.58, the energy
release rates and theKI -factors. In case a) use beam theory and assume plane stress,
in case b) assume h� a and plane strain.

Solution: a) G =
3 uEh3

4 a4
, KI =

√
3 uEh3/2

2 a2

b) G =
2 u2E

b(1− ν2) , KI = uE

√
2h

b(b− h)(1 − ν2)
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Eh E, ν
h

u

u

h

a) b)a
u

bu

a

Fig. 4.58

Problem 4.5 The configuration shown in Fig. 4.59 contains an interface crack
between the thin elastic layer and the sub-
strate (coefficients of thermal expansion kl
and ks). The initially stress-free system ex-
periences a temperature changeΔT .

Determine the energy release rate under the
assumptions that the thin layer is in a plane
strain state and does not influence the ther-
mal strains of the substrate.

kl, E, ν

ks

t

Fig. 4.59

Solution: G =
E t

2(1− ν) (ks − kl)
2ΔT 2 .

Problem 4.6 Calculate the crack deflection angle ϕ for the two configurations
shown in Fig. 4.60. Use the criterion of maximum circumferential stress and assume
τ0 = σ0/2.

b)

τ0

τ0

τ0

τ0 σ0

a)

σ0

ϕ

2a

ϕ

2a

Fig. 4.60
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Solution: a) ϕ = 40.2◦ b) ϕ = −70.6◦ .
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Chapter 5
Elastic-plastic fracture mechanics

5.1 Introduction

When a test specimen or a structural component consisting of a ductile material and
containing a crack is loaded, plastic flow starts in the vicinity of the crack tip. As a
consequence, the crack tip becomes increasingly blunted with increasing load and
the crack opens. At the same time the plastic zone grows and may, depending on
the material and geometry, extend over large regions or the entire specimen until
at some critical load crack initiation takes place. In such a situation of large-scale
yielding linear elastic fracture mechanics can no longer be applied and parameters
and fracture concepts such as theK–concept based on linear elastic material behav-
ior become meaningless. Fracture parameters and concepts then are needed which
account for plastic flow of the material in larger regions outside the process zone.

Two alternative parameters characterizing the state at a crack tip are well estab-
lished in elastic-plastic fracture mechanics. The first one is the J–integral proposed
by J.R. RICE (1968) which in the present context represents the intensity of stress
or strain rather than the energy release rate. The second one is the crack-tip open-
ing displacement (CTOD) δt as a measure of the state of deformation at a crack
tip, which dates back to A.H. COTTRELL and A.A. WELLS (1963). While J is
essentially based on the deformation theory of plasticity (total strain theory, Sec-
tion 1.3.3.3), the use of δt is experimentally motivated. It will, however, be shown
that both quantities are directly related to each other.

In order to investigate problems of elastic-plastic fracture mechanics we will con-
sider simple material models of rate-independent plasticity such as perfect plasticity
or total strain theory. Furthermore, monotonic loading is assumed which means that
global unloading or cyclic loading is precluded. Only under these restrictions do a
few special cases of simple geometry allow for analytical solutions which form the
basis for the above-mentioned fracture concepts. More involved material models or
the analysis of real structures instead require the application of numerical methods.
Analogous to linear elastic fracture mechanics we will focus here mainly on plane
problems with straight cracks subjected to mode-I loading.

:
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5.2 Dugdale model

Plastic zones ahead of a crack tip in thin plates of a ductile material typically dis-
play an elongated shape (Fig. 5.1a). Such a plastic zone results from through-the-
thickness slip in planes inclined at 45◦ to the plane of the plate which leads to an
extension of the zone in y-direction of the order of the plate thickness (see Sec-
tion 4.7.2).

δ

a

y

x

y

x

plastic zone

a)

δt
σ
Y

d

C

b)

Fig. 5.1 Dugdale model

A simple model for the respective mode-I problem has been proposed by D.S. DUG-
DALE (1960). It is based on the assumptions that the material behavior inside the
plastic zone is perfectly plastic and that the extension of the plastic zone in y-
direction is small compared to its length d. The plastic zone then may be idealized as
a line (strip) along which under plane stress conditions and according to the Tresca
yield criterion the yield stress σ

Y
prevails. The problem thus is reduced to that of an

elastic medium containing a crack with its length fictitiously increased by the dis-
tance d along which the crack faces are subjected to the stress σ

Y
(Fig. 5.1b). The

unknown length d is determined from the condition that the stress must not exceed
the yield stress σY . Hence the stress singularity (K–factor) at the tip of the fictitious
crack, i.e., at the tip of the plastic zone, must vanish. It has to be emphasized that
the length of the plastic zone in this model is not restricted; it may be of the order
of the crack length or any other characteristic length of the problem.

The relative displacement of the crack faces (i.e., the crack opening displace-
ment) along the fictitious extension of the crack is denoted δ = v+ − v−. It attains
a value δt at the physical crack tip and vanishes at the tip of the plastic zone. If δ
is interpreted to result from plastic deformations, δt may be taken as a measure of
the state of deformation at the crack tip. An elastic-plastic criterion for the onset of
crack growth then can be postulated in the form

δt = δtc (5.1)

where the critical crack opening displacement δtc is a material parameter.
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To determine the value of the J–integral a contour C along the lower and upper
faces of the yield strip is considered (Fig. 5.1b). Employing (4.119) with dy = 0
and τxy = 0 we get

J = − σ
Y

a+d∫

a

∂

∂x

[
v+ − v−] dx = −σ

Y
[ δ ]

a+d
a

from which, using δ(a+d) = 0 and δ(a) = δt, the simple expression

J = σ
Y
δt (5.2)

is obtained. Within the framework of the Dugdale model therefore a fracture crite-
rion

J = Jc (5.3)

is equivalent to the δt–criterion (5.1). Here, Jc = σ
Y
δtc is a material parameter

characterizing the onset of crack growth.

σ

σ

σ

σ

(2)
σ
Y

(1)

2a
d d

y σ
Y

x = +
2b=2(a+ d)

Fig. 5.2 Dugdale model of a crack subjected to uniaxial tension

Figure 5.2 illustrates the application of the Dugdale model to the situation of a
crack of length 2a in an infinite domain subjected to uniaxial tension. The solution
can be constructed by superposition of the two loading cases (1) “uniaxial tension”
and (2) “crack face loading”. According to the notation in Fig. 5.2 the respective
stress intensity factors are (see Section 4.4.1)

K
(1)
I = σ

√
πb , K

(2)
I = − 2

π
σ
Y

√
πb arccos

a

b

and the displacements in y-direction at the physical crack tip (x = a) can be written
as

v(1)(a) =
2σ

E′
√
b2 − a2 ,

v(2)(a) =
4σY
πE′

[
−
√
b2 − a2 arccos

a

b
+ a ln

b

a

]
.
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From the conditionK(1)
I +K

(2)
I = 0 the length of the plastic zone is determined as

d = b− a = a
[(

cos
πσ

2σ
Y

)−1

− 1

]
. (5.4)

Using this result one obtains the following expression for the crack-tip opening
displacement (note that v− = −v+ due to symmetry):

δt = 2
[
v(1)(a) + v(2)(a)

]
=

8 σF
πE′ a ln

(
cos

πσ

2 σ
Y

)−1

. (5.5)

Correspondingly, the J–integral reads

J = σ
Y
δt =

8 σ2
Y

πE′ a ln
(
cos

πσ

2 σ
Y

)−1

. (5.6)

The size of the plastic zone according to (5.4) which is in good agreement with
experimental findings for σ<̃0.9 σ

Y
is depicted in Fig. 5.3a. The limit σ → σ

Y
cor-

responds to d→ ∞ which means a plastification of the entire ligament. At this limit
load failure takes place by plastic collapse.
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Fig. 5.3 a) plastic zone size, b) failure load, c) failure assessment curve

For sufficiently low loading (σ � σ
Y

) the plastic zone remains small. Then
small-scale yielding conditions prevail and linear elastic fracture mechanics is valid.
In this case

(
cos

πσ

2σ
Y

)−1

≈ 1 +
1

2

(
πσ

2 σ
Y

)2

with σ
√
πa = KI

and from (5.4) the size of the plastic zone follows as

d = 2rDp =
a

2

(
πσ

2σ
Y

)2

=
π

8

(
KI
σ
Y

)2

. (5.7)
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The letter D here indicates its derivation from the Dugdale model. Analogously, δt
and J reduce to

δt =
K2
I

E′σ
Y

, J =
K2
I

E′ . (5.8)

That means that in case of small-scale yielding the fracture criteria (5.1) and (5.3)
of elastic-plastic fracture mechanics reduce to the fracture criteria of linear elastic
fracture mechanics (K-concept). The size of the plastic zone according to (5.7) then
is of the same order of magnitude as Irwin’s approximation (4.126) for plane stress.

In the general case of arbitrarily large plastic zones insertion of (5.6) into the
fracture criterion (5.3) yields

8

π
ln

(
cos

πσ

2 σ
Y

)−1

=
JcE

σ2
Y

1

a
. (5.9)

For the special case of linear elastic fracture mechanics (σ � σ
Y

) this reduces to

π

(
σlin
σ
Y

)2

=
JcE

σ2
Y

1

a
. (5.10)

For given material parameters Jc, E, σY these relations describe the dependence of
the failure load σ on the crack length a in the general elastic-plastic case and the
linear elastic case, respectively. Figure 5.3b shows that for small a ductile failure
prevails; the failure load is close to the plastic limit load. In case of large a, on the
other hand, failure takes place in a brittle manner according to linear elastic fracture
mechanics.

A representation of the failure condition which is independent of the crack length
is obtained by inserting (5.9) into (5.10). Using the notation σ/σlin = KI/KIc =
KR and σ/σ

Y
= SR the failure assessment curve (Fig 5.3c) is given by

KR = SR

[
8

π2
ln
(
cos

π

2
SR

)−1
]−1/2

. (5.11)

It may be interpreted as a failure criterion in the elastic-plastic range between the
two limit cases of brittle fracture (KR = 1) and plastic collapse (SR = 1). By
virtue of the proportionality ofKI and σ a loading process corresponds to the radial
outward motion of a point in the diagram of Fig. 5.3c. The distance between the
point and the limit curve then is a measure of the safety against failure.

Although, strictly speaking, being valid only for the example of Fig. 5.2, the
relation (5.11), because of its simplicity, is frequently applied also to other crack
configurations and technical components. Thereby σ and σ

Y
are replaced by some

load P and the plastic limit load PL, respectively, and (5.11) is assumed to be uni-
versally valid.

Despite its simplicity the Dugdale model is capable of describing the essential
phenomena of elastic-plastic fracture. Although originally developed for the situa-
tion of thin plates in plane stress, it is frequently applied also to plane strain or, in
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modified form, to three-dimensional problems (e.g., penny-shaped cracks) where it
yields practically reasonable results. The basic idea of modeling a plastic zone by
a yield strip is suitable for various modifications. One may, for instance, consider
multiple yield strips inclined against each other or take into account a hardening
material behavior by a nonuniform stress distribution along the yield strip.

5.3 Cohesive zone models

In the Dugdale model, the plastic zone is reduced to a strip in which the opposite
crack faces act on each other via the constant stress σ

Y
. The basic idea of an in-

teraction of the crack faces by distributed forces can be generalized to many other
fracture processes where the debonding process is localized in a narrow band, the
so-called cohesive zone. The corresponding models are known as cohesive zone
models. Over the past years they have found wide acceptance because they allow an
appropriate description of many fracture processes that have a strip-shaped process
zone. Examples of their fields of application are ductile metals, fiber reinforced ma-
terials, ceramics, concrete and fracture processes along the interface between two
materials.

The first cohesive model was proposed in 1959 by G.I. BARENBLATT for the
description of perfect brittle fracture of a linear elastic body. Even though the model
offers no advantages compared with theK-concept, it shall be briefly discussed here
because it exemplifies the general approach. In Barenblatt’s model, the process zone
ahead of the physical crack tip is regarded as a cohesive zone of length d where
the separation of the material, i.e. of the crack faces extended by d, takes place
(Fig. 5.4a). Along the distance d intermolecular cohesive stresses σcoh are acting
which depend of the separation δ and whose distribution is qualitatively depicted
in Fig. 5.4b (see also Fig. 3.1). Now the following three assumptions are made:
1. the cohesive zone is small compared with all other dimensions, i.e. d � a, 2.
the distribution of separation δ and cohesive stress σcoh in the cohesive zone is
for a given material always the same and independent of the external load, 3. the

δ

a

y

x
δt

d

C

a) b)

δδt

σcoh(δ)

σcoh

Fig. 5.4 Barenblatt model
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opposite crack faces smoothly join each other at the end of the cohesive zone. The
last condition is equivalent to the requirement of a vanishing stress intensity factor
at the fictitious crack tip, i.e. the stresses remain finite everywhere. This can be
expressed as KI + K

coh
I = 0 where KI and Kcoh

I are the K-factors due to the
external load and due to the cohesive stresses, respectively. Using load case 4 of
Table 4.1,Kcoh

I can be written as

Kcoh
I = −

√
2√
π
T with T =

∫ a+d

a

σcoh(x)√
x

dx , (5.12)

where T is the cohesive modulus, introduced by Barenblatt. It can be regarded as
a measure of the state of the process zone. Since d � a, the K-factors KI(a) and
KI(a + d) due to the external load are equal, which leads with KI +K

coh
I = 0 to

the simple relation

T =

√
2√
π
KI . (5.13)

Therefore, the failure concept based on Barenblatt’s cohesive modulus (T = Tc)
and the K-concept (KI = KIc) are fully equivalent. The equivalence to Griffith’s
energy release rate concept also can be easily shown. For this purpose it is practical
to determine the J-Integral where, as in the Dugdale model, the contourC is chosen
along the crack faces of the cohesive zone. As a result we obtain from (4.119)

J = −
a+d∫

a

σcoh(x)
d

dx
[v+ − v−]dx = −

a+d∫

a

σcoh(x)
dδ

dx
dx =

δt∫

0

σcoh(δ)dδ .

(5.14)
Because of J = G, the energy release rate is uniquely given by the area below the
σcoh(δ)-curve.

In contrast to Barenblatt’s model for brittle fracture, the length of the cohesive
process zone is not small in many other fracture processes. Furthermore, the ma-
terial not necessarily needs to be elastic, but, for instance, can be elastic-plastic or
viscoelastic. Figure 5.5 schematically shows the process zone for different materi-
als. This zone generally is characterized by bridges between the crack faces which
transfer the cohesive forces. Their dependence on the separation δ is expressed by
a material specific cohesive law t(δ) where the cohesive stress here is denoted by
t (Fig. 5.5f). The cohesive law t(δ) describes the local constitutive behavior inside
the cohesive zone in terms of a traction-separation relation. On account of the mi-
croscopic fracture processes, this constitutive law differs considerably from that of
the surrounding material. Through the cohesive law, the specific work of separation

Gc =
∫ δc

0

t(δ) dδ (5.15)

is uniquely determined (see Fig. 5.5f). It represents the energy release rate and the
J-integral if the surrounding material behaves elastic (see also (5.14)).
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δ

a

δc

d

C

t(δ)

σc
y

x

a) b)

c) d)

e) f)

composite; c) heterogeneous ceramics, concrete; d) ductile material with void formation; e) brittle
material with microcracks; f) cohesive zone model

Depending on the material and the characteristic fracture process, different ap-
proximations for the cohesive law are used. For example, for brittle metals or
particle-matrix composites an exponential law of the type

t = e σc
δ

δ0
e−δ/δ0 with e ≈ 2.72 (5.16)

has been proposed (Fig. 5.6a). It mimics the debonding process of atomic layers
according to Fig. 3.1. Here, σc is the ultimate stress and δ0 the associated separation.
For this approach, the specific fracture-surface work according to (5.15) is given by
Gc = e σc δ0. It is a disadvantage of the exponential law that, strictly speaking,
the cohesive stress vanishes only for δ → ∞. Other cohesive laws are given, for
example, by the trapezoidal shaped or the bilinear function as shown in Figs. 5.6b-
d. They have been proposed for crack growth modeling in elastic-plastic materials
or in the interface of adhesive joints (Fig. 5.6b), for the delamination of layered
materials (Fig. 5.6c) and for the failure of concrete or cementitious materials (Fig.
5.6d).

The cohesive law is uniquely determined by a small number of parameters,
which, in best case (e.g. exponential law (5.16)), can be reduced to two. In the latter
case they can be experimentally determined relatively simple from two characteris-

Fig. 5.5 Cohesive zones (schematic): a) metal-particle reinforced ceramics; b) fiber-matrix
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Fig. 5.6 Cohesive laws

tic material parameters: a) the ultimate stress (strength) σc and b) the specific work
of separation Gc.

In a general loading situation, not only a mode-I separation δn normal to the
separation plane takes place. The material points opposite to each other also experi-
ence a relative displacement δt tangential to the separation plane as in mode II and
mode III. In such a case it is expedient to formulate the cohesive law in vectorial
form: t=f (δ) where t= tnen + ttet and δ= δnen + δtet. Yet, this shall not be
further discussed here.

Cohesive zone models are very well suited for the numerical treatment of frac-
ture processes within the framework of the finite element method. Here, the cohesive
zone is discretized by using so-called cohesive elements. These elements are char-
acterized by a vanishing initial thickness and their behavior is given by the material
specific traction-separation law.

Finally it shall be mentioned that cohesive laws may be derived from microme-
chanical damage models which are exemplarily discussed in Sections 9.3 and 9.4.

5.4 Crack-tip field

Similar to linear elastic fracture mechanics, the field in the vicinity of a crack tip
plays a key role also in elastic-plastic fracture mechanics. Crack-tip fields for dif-
ferent material models are investigated in the following. For simplicity we partly
restrict our attention to the simplest case of mode III.

5.4.1 Perfectly plastic material

5.4.1.1 Antiplane shear, mode III

A state of antiplane shear is characterized by the displacement w and stresses
τxz, τyz being the only nonvanishing components. For a perfectly plastic material
the stresses have to fulfill the yield condition

τ2xz + τ
2
yz = τ

2
Y

with τ
Y
= const. (5.17)
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According to Section 1.5.3 the curves along which τ
Y

is attained (= α-lines) are
always straight lines while in sections normal to these curves the shear stress van-
ishes. Therefore, a slip-line field as shown in Fig. 5.7 in the vicinity of a crack tip
satisfies the boundary conditions of traction-free crack faces. In polar coordinates
r, ϕ (note: ϕ coincides with the angle φ in Section 1.5.3) the stresses inside the fan
(|ϕ| ≤ π/2) are

τϕz = τY , τrz = 0 . (5.18)

Along an α-line the displacement increment dw is constant which means that inside
the fan dw = dw(ϕ) holds and hence dγrz = ∂(dw)/∂r = 0. The strain increment
dγϕz = ∂(dw)/r∂ϕ can be determined if we consider dγϕz(R) to be known along
the boundary R(ϕ) of the plastic zone:

dγϕz(r, ϕ) =
R(ϕ)

r
dγϕz(R) . (5.19)

Assuming an undeformed initial state and setting w(ϕ = 0) = 0 one obtains by
integration

γϕz =
1

r

∂w

∂ϕ
=
R(ϕ)

r
γϕz(R) , w =

ϕ∫

0

R(ϕ)γϕz [R(ϕ)]dϕ . (5.20)

The relations (5.17) through (5.20) are generally valid inside the fan, i.e., they apply
also for arbitrarily large plastic zones. They indicate that the stresses are bounded
by the yield stress whereas the strains display an 1/r– singularity at the crack tip.

R boundary of plastic zoner
ϕ

Fig. 5.7 α-lines in mode III

The stresses (5.18) may also be represented in a somewhat different way. In carte-
sian coordinates they are τxz = −τ

Y
sinϕ and τyz = τ

Y
cosϕ, and along a circle

with its center M located at a distance r∗ ahead of the crack tip (Fig. 5.8) the fol-
lowing representation in terms of the angle ϕ∗ holds

τxz = −τ
Y
sin
ϕ∗

2
, τyz = τY cos

ϕ∗

2
. (5.21)

Up to a factor these are exactly the stresses which according to the elastic crack-tip
solution (4.6) prevail along a circle around a crack tip at M if in (4.6) the distance
r and the angle ϕ are replaced by the quantities r∗ and ϕ∗. This correlation can
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be employed to construct an exact solution for the case of small-scale yielding.
The plastic zone then is embedded in an elastic domain inside which the elastic
near-field solution holds. Along the boundary between the two domains the stresses
from the elastic and plastic solution must coincide. This can be accomplished by
setting (5.21) equal to (4.6) and taking into account the different notations: τ

Y
=

KIII/
√
2πr∗. Hence the plastic zone is a circular domain ahead of the crack tip

with the radius

rp = r
∗ =

1

2π

(
KIII
τ
Y

)2

. (5.22)

Note that the same result for rp is obtained by estimating the size of the plastic zone
from the elastic near-field solution according to Irwin (see Section 4.7.1).

R
r∗=rp

plastic elastic
KIII–dominated field

ϕ

M
ϕ∗=2ϕ

Fig. 5.8 Plastic zone inside elastic near tip field

Using (5.22) the boundary R(ϕ) of the plastic zone and the strain γϕz(R) pre-
vailing along it are

R(ϕ) = 2rp cosϕ =
1

π

(
KIII
τY

)2

cosϕ , γϕz(R) =
τ
Y

G
. (5.23)

From (5.19) and (5.20) it thus follows that

γϕz =
1

r

K2
III

πGτ
Y

cosϕ , w =
K2
III

πGτ
Y

sinϕ (5.24)

holds inside the plastic zone. The crack-tip opening displacement δt is given by the
relative displacement of the two crack faces at the crack tip:

δt = w(
π

2
)− w(−π

2
) =

2

π

K2
III

GτY
. (5.25)

5.4.1.2 Plane strain, mode I

The plastic crack-tip field under plane strain conditions can likewise be obtained
from slip line theory according to Section 1.5.3. Due to symmetry only the upper
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half plane (y ≥ 0) needs to be considered (Fig. 5.9a). Along the traction-free crack
faces as well as along the x-axis ahead of the crack tip (mode-I symmetry) the
boundary condition τxy = 0 holds. Hence the slip lines there terminate at an angle
of 45◦. The connection between the resulting regions A and C is established by the
fan B (quarter circle). After L. PRANDTL (1875-1953), who presented this solution
for the first time, the corresponding slip line field is called a Prandtl–field. Using
(1.125) and the notation given in Fig. 5.9a the “starting” (boundary) value σm = k
is obtained at the crack face (φ = 3π/4 , σy = 0 , τxy = 0 ). Along a β-line passing
through A, B, and C (φA=3π/4, φB=ϕ, φC =π/4) Hencky’s equations (1.126)
yield

σAm = k , σBm = k(1 + 3π/2− 2ϕ) , σCm = k(1 + π) . (5.26)

From (1.125) therefore the stresses in the various regions are

region A region B region C
⎛
⎜⎜⎝
σx

σy

τxy

⎞
⎟⎟⎠ =

σ
Y√
3

⎛
⎜⎜⎝

2 1 + 3π/2− 2ϕ− sin 2ϕ π

0 1 + 3π/2− 2ϕ+ sin 2ϕ 2 + π

0 cos 2ϕ 0

⎞
⎟⎟⎠ , (5.27)

where k = σ
Y
/
√
3 has been inserted. The angular variations of the components in

polar coordinates are depicted in Fig. 5.9b.
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σ
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Fig. 5.9 Crack tip field in perfectly plastic material
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Because of σz = σm the crack-tip stress field is completely determined by (5.27)
and (5.26). Mohr’s circles corresponding to the three regions are shown in Fig. 5.9c.
Obviously, a high hydrostatic stress component prevails in the region C ahead of
the crack tip. This can be taken as an indication that microscopic void growth is
promoted there.

Along slip lines the variations of shear strain are maximum while length changes
of material elements in the direction of the slip lines vanish. It can be shown that
this behavior gives rise to a representation of the strain field inside the fan B of the
form

εij =
1

r
ε̃ij(ϕ) . (5.28)

Like in the corresponding mode-III case it contains an 1/r–singularity. The complete
determination of εij in the entire plastic zone and of the crack-opening displacement
requires the knowledge of εij along one boundary (for instance, along the boundary
between the elastic and plastic region). This has not yet been found by analytical
methods.

The crack tip field (5.27) shall primarily describe the situation at a crack tip under
mode-I tensile loading. But the solution remains unaltered if in addition a possible
T-stress is taken into account. In such a case only the dimension of the region where
this solution dominates may change. This can qualitatively be understood when for
a fixed mode-I tensile load the stress state at a material point in the elastic region
at some distance ahead of the crack tip is considered along with the plastic zone
directly surrounding the crack tip. If now an increasing negative T-stress (pressure)
is superposed, the maximum shear stress at this point increases until plastic flow sets
in. This means that the size of the plastic zone increases when a negative T-stress is
present while a positive T-stress leads to a smaller plastic zone size.

The solution (5.27) allows to directly compute the plastic limit load PL for the
crack configuration depicted in Fig. 5.10. Corresponding to the shown slip line field
which is valid for b � a the stress σy = σ

Y
(2 + π)/

√
3 prevails between the two

crack tips. Therefore the limit load is

PL = σy2aB =
2(2 + π)√

3
aBσY . (5.29)

2b

2a

B

PL

PL

Fig. 5.10 Plastic limit load
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It appears pertinent here to briefly discuss another important solution for a crack-
tip field in perfectly plastic material. The effect mentioned before that the high
hydrostatic stresses ahead of a crack tip cause void growth in a ductile material
becomes even more pronounced when the somewhat more realistic situation of a
blunted crack tip is considered (Fig. 5.11). The stress distribution in this case can
likewise be computed from slip-line theory and is in cartesian coordinates for y = 0
given by

σy =
2σ

Y√
3

[
1 + ln

(
1 +

x

r

)]
, σx =

2σ
Y√
3
ln
(
1 +

x

r

)
. (5.30)

The slip-lines now are logarithmic spirals which terminate from the traction-free
boundary at angles of 45◦. In contrast to the corresponding purely elastic solution,
the vertical stress σy increases with increasing distance from the crack tip and the
maximum hydrostatic stress in the plastic region (bounded from outside by the elas-
tic field) is attained at some distance ahead of the crack tip. That means that void
growth can be expected to occur inside the material somewhere ahead of the crack
tip. The extension of the plastic region and the precise location of the peak hy-
drostatic stress can not be determined from slip-line theory (rigid-plastic material)
alone; therefore an elastic-plastic analysis is required.

σy

x

r

σx

σ

σ
Y

Fig. 5.11 Blunted crack tip in a perfectly plastic material

The approximation of the material behavior as a perfectly plastic one is not fully
satisfactory. Though the analysis yields some information about the singular char-
acter of the strain field at the crack tip it does not provide a parameter to be used in
a fracture criterion. Furthermore, a hardening behavior as observed for many mate-
rials can not be described. A material model which overcomes these deficiencies is
discussed in the following Section.
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5.4.2 Total strain theory, HRR−field

In the framework of total strain theory (see Section 1.3.3.3) we consider a harden-
ing material with the uniaxial stress-strain behavior approximated by the Ramberg–
Osgood law (Fig. 5.12a)

ε

ε0
=
σ

σ0
+ α

(
σ

σ0

)n
. (5.31)

For sufficiently small α the parameters ε0 and σ0 can be understood as the strain and
stress at the onset of yield while n is the hardening exponent. The limit case n = 1
corresponds to a fully linear behavior, whereas an elastic perfectly plastic material
is obtained for n → ∞. The two terms on the right-hand side can be interpreted as
the elastic and plastic parts of strain: εe/ε0 = σ/σ0 , εp/ε0 = α(σ/σ0)

n.
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σ/σ
Y

n → ∞

ε/ε
Y

Fig. 5.12 Power law

In the vicinity of a crack tip the material is in the plastic range (ε/ε0 � 1). Be-
cause of the strain singularity expected to prevail at the crack tip, the elastic strains
there can be neglected compared to the plastic strains, i.e., εij = ε

p
ij . Hence (5.31)

reduces to
ε

ε0
= α

(
σ

σ0

)n
(5.32)

and the general constitutive law of total strain theory (1.86) can be written as

εkk = 0 , eij =
3

2

εe

σe
sij . (5.33)

Using (5.32) as the relation between εe and σe in (5.33) yields

εij = eij =
3

2
αε0

(
σe

σ0

)n
sij
σe

(5.34)

where the uniaxial equivalent strain and stress are defined as εe = ( 2
3
εijεij)

1/2

and σe = (3
2
sijsij)

1/2, respectively.
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The constitutive law (5.34) may also be obtained from the stress-strain relation
(see Fig. 5.12b)

ε

ε
Y

=

{
σ/σ

Y
for σ ≤ σ

Y

(σ/σ
Y
)n for σ ≥ σ

Y

(5.35)

where the power law ε/εY = (σ/σY )
n holds in the plastic range. For the three-

dimensional generalization (5.34) one has to assume an incompressible material
behavior and set ε

Y
/σn

Y
= αε0/σ

n
0 .

In the framework of total strain theory a plastic material behavior is described like
a nonlinear elastic material which in the present case is in addition incompressible.
This can be verified by comparing (5.31–5.34) with (1.55 ff). Correspondingly, all
relations from nonlinear elasticity are also valid for total strain theory. For instance,
from (1.58) the strain energy density in the vicinity of a crack tip is

U =
n

n+ 1
sijeij =

n

n+ 1

σ0
(αε0)1/n

(
2

3
εijεij

)1+n
2n

=
n

n+ 1
αε0σ0

(
σe

σ0

)1+n

.

(5.36)

An important consequence of the equivalence of total strain theory and elasticity
theory is the path-independence of the J–integral (4.119) evaluated for a crack tip
with straight and traction-free crack faces (see Section 4.6.5.3). This property allows
to determine in a simple manner the asymptotic behavior of field quantities when
approaching the crack tip. Therefore we consider a circular integration contour C
close to the crack tip (r → 0) as depicted in Fig. 5.13. With dc = rdϕ the J–integral
can be written as

J =

+π∫

−π
[Un1 − σiβui,1nβ ] rdϕ . (5.37)

Path-independence, i.e., independence from r requires that the term in brackets be-
haves like 1/r for r → 0. Since both terms in brackets are of the type σijεij the
following relations must hold:

σijεij ∼ f̂(ϕ)

r
=
J

r
f̃(ϕ) , U ∼ Û(ϕ)

r
=
J

r
Ũ(ϕ) .

r ϕ

C

Fig. 5.13 Integration contour for J–integral
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From (5.34) and (5.36) one obtains for the stresses

σij = C

(
J

r

) 1
n+1

σ̃ij(ϕ) (5.38)

where C is some constant. It is practical to replace C by a new dimensionless con-
stant I chosen in such a way that σ̃ij(ϕ) as well as the J/r term become dimen-
sionless: C = σ0/(Iαε0σ0)

1/(n+1). For r → 0 the field quantities then may be
represented as

σij = σ0

(
J

Iαε0σ0r

) 1
n+1

σ̃ij(ϕ) ,

εij = αε0

(
J

Iαε0σ0r

) n
n+1

ε̃ij(ϕ) ,

ui − ui0 = αε0r

(
J

Iαε0σ0r

) n
n+1

ũi(ϕ) ,

(5.39)

where ui0 is some rigid body motion. Using σ̃ = (3
2
σ̃ij σ̃ij)

1/2 and inserting into
(5.37) yields the relation

I =

+π∫

−π

{[
n

n+ 1
σ̃1+n − 1

1 + n
(σ̃rũr + τ̃rϕũϕ + τ̃rzũz)

]
cosϕ

+
[
σ̃r(ũ

′
r − ũϕ) + τ̃rϕ(ũ′ϕ + ũr) + τ̃rzũ

′
z

]
sinϕ

}
dϕ .

(5.40)

The primes here denote derivatives with respect to ϕ.
The dominating field at a crack tip (5.39) displays stress and strain singulari-

ties which depend on the hardening exponent n. For n = 1 the already known
1/

√
r–singularity of linear elastic fracture mechanics occurs while n→ ∞ leads to

nonsingular stresses and a strain singularity of the type 1/r. The angular variations
σ̃ij , ε̃ij , ũi in (5.39) can not be determined from these simple considerations. Sim-
ilar to linear elastic fracture mechanics they have to be computed from a boundary
value problem. In the present nonlinear case, however, this requires a numerical so-
lution (see below). The dominating crack-tip field then is fixed up to the parameter
J which characterizes the magnitude or “intensity” of the field. Using the initials of
J.W. HUTCHINSON, J.R. RICE, and G.F. ROSENGREN who investigated this field
for the first time it is called the HRR–field.

It has to be emphasized that although the derivation of the HRR-field (5.39) is
based on total strain theory it is also valid in the framework of the incremental theory
of plasticity. This follows from the fact that the crack-tip field is solely determined
by the single parameter J so that the power law (5.32) leads to proportional load-
ing. In this case the total strain theory and the incremental theory are equivalent
(Section 1.3.3.3).
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Figure 5.14a shows the r–dependence of the stresses for various values of n. It
can be seen that the domain of high stress, i.e., the domain inside which the HRR-
field actually dominates, becomes smaller with increasing n. The deformation of
the crack tip is likewise dependent on the hardening parameter (Fig. 5.14b); with
increasing n the crack-opening profile becomes more and more blunted.
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Fig. 5.14 HRR–field: a) stress distribution, b) crack-opening profile

In the following it is briefly outlined for the case of plane strain how the complete
near tip solution can be obtained. For this purpose the problem is formulated in terms
of the stresses by elimination of the strains. Inserting the constitutive law (5.34) into
the compatibility condition

1

r

∂2

∂r2
(rεϕ) +

1

r2
∂2εr
∂ϕ2

− 1

r

∂εr
∂r

− 2

r2
∂

∂r

(
r
∂εrϕ
∂ϕ

)
= 0 (5.41)

yields

−1

r

∂2

∂r2
[
rσn−1(σr − σϕ)

]
+

1

r2
∂2

∂ϕ2

[
σn−1(σr − σϕ)

]

−1

r

∂

∂r

[
σn−1(σr − σϕ)

]− 4

r2
∂

∂r

[
r
∂

∂ϕ
(σn−1τrϕ)

]
= 0

(5.42)

where

σ =

[
3

4
(σr − σϕ)2 + 3τ2rϕ

]1/2
. (5.43)

It is appropriate to introduce the Airy stress function φ(r, ϕ) from which the stresses
are derived according to

σr =
1

r

∂φ

∂r
+

1

r2
∂2φ

∂ϕ2
, σϕ =

∂2φ

∂r2
, τrϕ = − ∂

∂r

(
1

r

∂φ

∂ϕ

)
. (5.44)
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Equations (5.44) identically satisfy the equilibrium conditions. Now a separation
ansatz is chosen for φ of the type

φ = Arsφ̃(ϕ) where s =
2n+ 1

n+ 1
(5.45)

such that the asymptotic character of the crack-tip field (5.39) is accounted for. Then
(5.42) leads to the following nonlinear ordinary differential equation for the function
φ̃

n(n+ 2)

(n+ 1)2
σ̃n−1

[
2n+ 1

(n+ 1)2
φ̃+ φ̃′′

]
+

{
σ̃n−1

[
2n+ 1

(n+ 1)2
φ̃+ φ̃′′

]}′′

+
4n

(n+ 1)2

[
σ̃n−1φ̃′

]′
= 0

(5.46)

where

σ̃ =

{
3

4

[
2n+ 1

(n+ 1)2
φ̃+ φ̃′′

]2
+ 3

[
n

n+ 1
φ̃′
]2}1/2

. (5.47)

The mode-I crack-tip field is symmetric with respect to ϕ = 0, i.e.: τrϕ(0) = 0,
∂σϕ/∂ϕ|ϕ=0 = 0, ∂σr/∂ϕ|ϕ=0 = 0. Furthermore, the crack faces are assumed
to be traction-free: σϕ(π) = 0, τrϕ(π) = 0. For φ̃ this leads to the boundary
conditions

φ̃′(0) = 0 , φ̃′′′(0) = 0 , φ̃(π) = 0 , φ̃′(π) = 0 . (5.48)

A solution of (5.46)–(5.48) in closed form is not known, yet it may be obtained
with high accuracy by numerical integration. In Fig. 5.15 the angular variation of
the stresses is depicted for two different values of n. Comparison with Fig. 4.6b and
Fig. 5.9b shows that for n = 2 it is still close to that of a linear elastic material while
for n = 10 a strong similarity to that of a perfectly material can be seen. From the
now known functions σ̃ij , ũi the factor I finally can be computed from (5.40); some
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Fig. 5.15 HRR–field: angular variation of stresses
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values are given in Table 5.1. It has to be mentioned that analogous analyses can be
performed for mode-II loading as well as for plane stress.

n 2 3 5 10 ∞
I 5.94 5.51 5.02 4.54 3.72

D 1.72 1.33 1.08 0.93 0.79

Table 5.1 Values of I(n) and D(n) for plane strain

5.5 Fracture criterion

In order to formulate a fracture criterion of elastic-plastic fracture mechanics the
same fundamental ideas can be adopted as in case of the K–concept (Section 4.3).
According to (5.39) the parameter J describes the intensity of the otherwise com-
pletely determined crack-tip field. The latter dominates inside a domain with an
outer boundary schematically by denotedR in Fig. 5.16a. From inside the crack-tip
region the validity of the field (5.39) is limited by a domain of radius rN which can
not be described by total strain theory. For instance, large deformations and local
unloading may occur inside this region. It furthermore contains the process zone
(radius ρ) where the fracture process with its material specific micromechanisms
(e.g., void growth) takes place. Figure 5.16b schematically shows the correspon-
dence of the different regions with respective ranges of the σ-ε-diagram. Now, if the
J–determined domain II is large compared to the enclosed region III (R� rN , ρ)
then the state inside the process zone is controlled by the surrounding field, i.e.,
by J . Therefore J can be regarded as a measure of the “loading” of the crack-tip
region. Crack propagation initiates once this loading attains a material-dependent
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I σ

σ0

ε0

III

II IIII

Fig. 5.16 Different crack-tip regions and deformation regimes
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critical value Jc:
J = Jc . (5.49)

Basis of the fracture criterion (5.49) are the total strain theory of plasticity as
well as the assumption of existence of a dominating crack-tip field. This has im-
portant consequences to be emphasized here. The total strain theory is equivalent to
the incremental theory of plasticity only in case of monotonically increasing load-
ing (Section 1.3.3.3); it can not properly describe unloading processes. Numerical
simulations have confirmed that the respective situation is in fact found with good
approximation in the vicinity of a stationary crack tip. Crack propagation, in con-
trast, always gives rise to unloading processes. Therefore, the condition (5.49) is
first of all valid only for crack initiation. Circumstances under which it may also be
applied to crack propagation are discussed in Section 5.8.

The dominance of the crack-tip field (5.39) is guaranteed only if the material dis-
plays sufficient hardening (see Fig. 5.14a). With decreasing hardening the domain
of dominance becomes smaller and it vanishes for a perfectly plastic material. Then
J can no longer be regarded as a parameter which controls the crack-tip state.

The use of J as a fracture parameter is not directly tied to the HRR–field since
elastic-plastic material behavior in the framework of total strain theory may also be
approximated by a bilinear stress-strain dependence instead of a power law. This
results in a dominating singular crack-tip field which is different from the HRR–
field, yet with an intensity again determined by J .

As already mentioned the crack-opening displacement δt is, besides J , occasion-
ally used as a fracture parameter. This approach is based on the idea that δt is a
measure of plastic strain at the crack tip which in turn controls the fracture pro-
cess. Accordingly, crack propagation initiates once the crack-opening displacement
attains a critical value δtc:

δt = δtc . (5.50)

If one assumes that the state of deformation at the crack tip may be sufficiently
well described by the HRR–field then δt and J are equivalent parameters and can
transformed into each other. This can be seen from equations (5.39) where the
strains and displacements are directly connected to J . Ignoring the rigid body mo-
tion, the displacement of some point P on the upper crack face is (Fig. 5.17)

vP = αε0rP

(
J

Iαε0σ0rP

) n
n+1

ṽ(π) , uP = αε0rP

(
J

Iαε0σ0rP

) n
n+1

ũ(π) .

If one defines δt by the intersection of two straight lines inclined by 45◦ to the
x–axis with the crack-opening profile it follows that

vP =
δt
2

= rP − uP .

From these three equations one obtains by elimination of rP the relation
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Fig. 5.17 Crack-opening displacement δt

δt = (αε0)
1/n D

J

σ0
(5.51)

where

D =
2

I
[ṽ(π) + ũ(π)]1/n ṽ(π) . (5.52)

Some values of D are given in Table 5.1. For a perfectly plastic material (n→ ∞)
this yields δt = 0.79 J/σ0 which is quite close to equation (5.2) based on the
Dugdale model. One has, however, to note that this equation has been derived for
plane stress. Furthermore, in this case (5.51) is strictly speaking no longer valid
since it assumes the dominance of the HRR–field at least for r < rP or r <̃ δt. For
a perfectly plastic material this dominance is not given.

Though J and δt are equivalent parameters the use of J and hence the fracture
criterion (5.49) offer several advantages. Firstly, the crack-tip loading J is easier to
compute than δt. Secondly, the experimental determination of the material parame-
ter δtc is, in contrast to Jc, connected with difficulties. Another disadvantage of the
crack-tip opening displacement is that its definition suffers from some arbitrariness.
In the following we will therefore focus only on J .

5.6 Determination of J

The computation of J for a technical component that contains a crack and large
plastic zones generally requires numerical methods. Especially the Finite Element
Method (FEM) and to some extend also the Boundary Element Method (BEM) are
employed for the solution of respective elastic-plastic boundary value problems. In
doing so, several properties of J are exploited (see Section 4.6.5.3). For instance,
J can be computed from a path-independent integral if the integration contour lies
inside a region where the material behaves either purely elastic or according to the
total strain theory of plasticity (i.e., no local unloding). Then it is often advantageous
to choose a contour far away from the crack tip, possibly in a purely elastic region.
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This circumvents the costly determination of field quantities in the vicinity of the
crack tip with high accuracy which would require a rather fine discretization.

Another possibility is based on the meaning of J as an energy release rate. The
latter can be determined from simulating crack advance by the release of a finite
element node and computing the work done by the nodal force. Of course, the ma-
terial then has to be described as nonlinear elastic. For further details the reader is
referred to the extensive literature.

Besides the purely numerical calculation of J it is in some cases possible to de-
rive approximate analytical solutions or to determine J by experimental methods.
The latter approach is discussed in the following section. Approximate solutions
may be found especially in the Ductile Fracture Handbook (see literature list, Sec-
tion 5.11).

5.7 Determination of Jc

The determination of Jc is performed in standardized experiments. For this purpose
specimens containing a crack of definite length a (e.g., CT-specimens, Fig. 4.22)
are loaded until crack initiation (or often beyond) and the load-displacement curve
is measured (Fig. 5.18a). The area below the curve F (uF , a) then is the work W a

done by the force F where the parameter a indicates that F depends on the chosen
crack length a. The work W a is equal to the strain energy Πi if one assumes that
under monotonic loading (i.e., no local unloading) the elastic-plastic material can
be described as a nonlinear elastic one:

Πi(uF , a) =W
a =

uF∫

0

F (ūF , a) dūF . (5.53)

Then J can be defined as J = −dΠ/da where Π = Πi +Πa. If the crack length
is changed by da for fixed displacement uF = const. one has dΠa = 0 and dΠ =
dΠ i such that

−dΠ i=dΠ̃ i
∂uF
∂a

∂F

∂a

b)

F

uF

a

a+da
da

daa

F
uF

a)
uF

F

W a=Π i

W̃ a=Π̃ i

Fig. 5.18 Definition and determination of J
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J = − dΠi

da

∣∣∣∣
uF

= −∂Π
i

∂a
= −

uF∫

0

∂F

∂a

∣∣∣∣
ūF

dūF . (5.54)

The subscript here emphasizes which quantity is kept constant during differentia-
tion. As illustrated in Fig. 5.18b J can formally be determined according to (5.54)
from the load-displacement curves for two specimens differing by the crack lengths
a and a + da.

A method for the determination of Jc which is based on the above result has been
proposed by J.A. BEGLEY and J.D. LANDES (1972). Thereby, load-displacement
curvesF (uF , ai) are measured for a series of specimens with different crack lengths
a1, a2, a3, . . . (Fig. 5.19a). From these curves stepwise approximations for
Πi(a, uF ) and for J(uF , aj) ≈ −ΔΠi/Δa can be obtained (Fig. 5.19b,c). From
the known crack initiation value uFc for a particular crack length (e.g., for a2) then
Jc is found. The disadvantage of this so-called multi-specimen technique is its large
experimental expense and the lack of accuracy.
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Fig. 5.19 Determination of Jc from the multi-specimen technique

An alternative method which requires testing only of a single specimen dates
back to J.R. RICE. For its derivation we start from the complementary energy (see
Section 1.4 and Fig. 5.18a)

Π̃i(F, a) = W̃ a =

F∫

0

uF (F̄ , a) dF̄ where Πi + Π̃i = uFF . (5.55)

Differentiating
Πi(uF , a) = uFF − Π̃i(F, a)

and using (∂Π̃i/∂F )a = uF and F = F (uF , a) yields

∂Πi

∂a

∣∣∣∣
uF

= uF
∂F

∂a

∣∣∣∣
uF

− ∂Π̃i

∂F

∣∣∣∣∣
a

· ∂F
∂a

∣∣∣∣
uF

− ∂Π̃i

∂a

∣∣∣∣∣
F

= −∂Π̃
i

∂a

∣∣∣∣∣
F

(5.56)

such that from (5.54) the representation
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J = +
∂Π̃i

∂a

∣∣∣∣∣
F

= +

F∫

0

∂uF
∂a

∣∣∣∣
F̄

dF̄ (5.57)

is obtained. This relation can be illustrated also from the area increment in Fig. 5.18b.
It is, of course, not only valid for loading of a specimen or component by a single
force but holds in corresponding form also for loading by some bending moment.

In the following we consider a specimen as depicted in Fig. 5.20a with its ends
subjected to a bending moment and experiencing a relative rotation by an angle θ.
In this case (5.57) reads

J =

M∫

0

∂θ

∂a

∣∣∣∣
M̄

dM̄ . (5.58)

The rotation angle θ generally depends on the loadingM , the geometric parameters
a, b, l and the material behavior. If, by neglecting the linear elastic range, the latter
is characterized solely by σ

Y
and a hardening parameter n (see Fig. 5.12) normal-

ization of all quantities yields

θ = θ

(
M

M0
, n,

a

b
,
l

b

)
where M0 =

σ
Y
b2

4
. (5.59)

Here, the reference momentM0 is the limit moment for a perfectly plastic material.
For a � b and l � b and if by n � 1 the hardening is not very pronounced, θ is
within a first approximation independent of the latter three parameters:

θ ≈ θ
(
M

M0

)
. (5.60)

With a = W − b and da = −db one obtains
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Fig. 5.20 Determination of Jc with a single specimen
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and after elimination of dθ/d( M
M0

)

∂θ

∂a

∣∣∣∣
M

=
2M

b
· ∂θ
∂M

∣∣∣∣
a

.

Insertion into (5.58) finally yields

J =
2

b

θ∫

0

M(θ̄)dθ̄ =
2

b
W a . (5.61)

That means that up to a factor of 2/b the current loading J of the crack is given
by the work W a done by the moment. If bending of a specimen of thickness B is
instead of a momentM produced by some force F (see Fig. 5.20b) it follows from
(5.61) that

J =
2

B(W − a)

uF∫

0

F (ūF )dūF (5.62)

where it has to be noted that in (5.61) J was given per unit specimen thickness.
From the known initiation value uFc, therefore Jc can easily be determined from
the area below the load-displacement curve.

As already mentioned, the approximation (5.62) is only valid for deeply cracked
specimens (a � b) subjected to bending loading. The negligence of the elastic
range of the material behavior furthermore requires that over the major part of the
remaining specimen cross section the plastic strains are large compared to the elastic
strains. Hence the remaining cross section has to be sufficiently plastified prior to
the onset of crack growth.

In order to obtain geometry-independent Jc-values from measurements certain
size requirements have to be fulfilled, similar to linear elastic fracture mechanics.
For CT-specimens and 3-point-bending specimens the following conditions have to
be satisfied:

W − a, B > 25
Jc
σ
Y

. (5.63)

Because of the direct proportionality of Jc/σY and δtc (see (5.2), (5.51)) that means
that all relevant dimensions need to be large compared to the crack-tip opening
displacement at the instant of crack initiation. In addition to (5.63) the material must
display a sufficient hardening to assure the dominance of a J-controlled crack-tip
field (see Section 5.5).
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5.8 Crack propagation

5.8.1 J–controlled crack growth

The loading of a crack in ductile metals under large-scale yielding conditions can
be increased to a multitude of the initiation value and this increase is accompanied
by a crack advance of a few millimeters (see also Section 4.8). Due to this crack
advance unloading processes take place, especially in parts of the plastic zone be-
hind the crack tip, which can not be properly described by the deformation theory
of plasticity. Hence also the requirements for the application of J are not fulfilled.
For small amounts of crack advance, however, J can, under certain conditions, nev-
ertheless represent a meaningful measure of the crack-tip loading state. In such a
case the fracture criterion

J = JR(Δa) (5.64)

holds also in the course of crack growth. Here, JR is the crack resistance (subscript
R) which depends on the amount of crack advance Δa. JR(Δa) is called the J–
resistance curve of a material and its typical shape is schematically depicted in
Fig. 5.21a. The steep initial increase for J < Jc is solely due to blunting of the
crack tip by plastic deformations; it is called the blunting line. If we assume that
the crack extension caused by blunting is approximately half the crack-tip opening
displacement (Δa ≈ δt/2), the use of J = σY δt (see (5.2) and (5.51)) yields the
coarse estimate for the blunting line
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da
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Δa

r

l

r
ϕ
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da

J–controlled region
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unloading zone

Fig. 5.21 J–controlled crack growth
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J ≈ 2σ
Y
Δa . (5.65)

For J ≥ Jc the blunting line is followed by the actual JR–curve where crack exten-
sion takes place by material separation.

Figure 5.21b illustrates the situation at the crack tip for a crack extension byΔa.
A J–controlled state can obviously prevail if the essential character of the crack-tip
field found at a stationary crack is only slightly disturbed by the crack advance. For
this to hold it is necessary that the characteristic size of the unloading zone, i.e.,
the crack extension itself, is small compared to the dimension of the J–controlled
region: Δa � R. More specific results concerning the requirement of nearly pro-
portional loading can be obtained if the change of the crack-tip field is estimated
from the HRR–field. Therefore we assume that the stress field (5.38)

σij(J, r, ϕ) = C

(
J

r

) 1
n+1

σ̃ij(ϕ)

moves with the propagating crack tip (Fig. 5.21c). Due to an increase of the load-
ing by dJ and a crack-tip translation by da a material point experiences the stress
change

dσij =
∂σij
∂J

dJ − ∂σij
∂x

da .

Using
∂

∂x
= cosϕ

∂

∂r
− sinϕ

∂

r∂ϕ

this can be written in the from

dσij = C

(
J

r

) 1
n+1
{
dJ

J

[
σ̃ij(ϕ)

n+ 1

]
+

da

r

[
σ̃ij(ϕ)

n+ 1
cosϕ+

∂σ̃ij
∂ϕ

sinϕ

]}
. (5.66)

The first term in the braces characterizes a stress increase proportional to the load
increment dJ , i.e., proportional loading. This does not apply for the second term
which is caused by crack growth. If we note that the two terms are of the same order
of magnitude the second term can be neglected for those values of r for which the
condition

da

r
� dJ

J
(5.67)

holds. Then (5.66) describes nearly proportion loading. By J/l = dJ/da we in-
troduce a loading-dependent length l which for sufficiently steep increase dJ/da
is of the same order of magnitude as the crack advance (Fig. 5.21a). Therefore, J–
dominance and proportional loading hold inside the annular region given by (see
Fig. 5.21b)

l� r < R . (5.68)

Hence J–controlled crack growth can be expected as long as l � R. Since the
spatial extension R of the dominant crack-tip field has to be small compared to any
relevant geometric dimension b of a specimen (e.g., the remaining cross section in
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Fig. 5.20) and (5.64) must hold during crack propagation the above condition may
also be expressed by

l� b or
b

JR

dJR
da

� 1 . (5.69)

5.8.2 Stable crack growth

Considerations concerning the stability of J–controlled crack growth are analogous
to those in Section 4.8. According to (5.64) the amount of crack advance is deter-
mined from the “equilibrium condition”

J(F, a) = JR(Δa) .

The equilibrium state is stable if the condition

∂J

∂a
<

dJR
da

(5.70)

holds. Then the increase of crack resistance with increasing crack length exceeds
the change of the crack driving force caused by crack propagation. To maintain
crack growth in such a case it is necessary to increase J (Fig. 5.22a). Typically this
requires an increase of the external load F . With prescribed load the limit for stable
crack growth is reached at

dJ

da

∣∣∣∣
F

=
dJR
da

. (5.71)

If the dimensionless tearing modulus

T =
E

σ2
Y

dJ

da
(5.72)

according to P.C. PARIS is introduced, the stability condition (5.70) can be written
in the form

T < TR . (5.73)

Now we want to derive dJ/da for the configuration given in Fig. 5.22b where
loading of the cracked body takes place via a linear spring with prescribed end
displacement uF . In contrast to the respective example in Section 4.8 here the body
can not be assumed to be linear elastic. It is appropriate to start from (5.57) and with

uF (F, a) = CFF + uP (F, a) and
∂uF
∂a

=
∂uP
∂a

we get
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Fig. 5.22 Stable crack growth

J(F, a) =

F∫

0

∂uP
∂a

∣∣∣∣
F̄

dF̄ . (5.74)

Differentiation yields
dJ

da
=
∂J

∂F

dF

da
+
∂J

∂a
. (5.75)

If the condition (fixed displacement uF )

duF
da

=
∂uF
∂F

dF

da
+
∂uF
∂a

= 0 �
dF

da
= − ∂uF/∂a

∂uF/∂F
= − ∂uP/∂a

CF + ∂uP /∂F

and the relation following from (5.74)

∂J

∂F
=
∂uP
∂a

are inserted into (5.75) this finally leads to

dJ

da

∣∣∣∣
uF

=
∂J

∂a

∣∣∣∣
F

−
(
∂uP
∂a

)2

CF + ∂uP
∂F

. (5.76)

For the special cases of a prescribed displacement uF in P (CF =0) or dead loading
(CF → ∞) one obtains

dJ

da
=

⎧⎪⎪⎨
⎪⎪⎩

∂J
∂a

∣∣∣
F
− ∂uP/∂a
∂uP /∂F

for CF = 0 ,

∂J
∂a

∣∣∣
F

for CF → ∞ .

(5.77)

The actual determination of dJ/da for particular geometries is in general pos-
sible only with numerical methods. In case of the deeply cracked 3-point-bending
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specimen, as shown in Fig. 5.20b, subjected to prescribed displacement uF , how-
ever, a simple relation can be found. Starting point is the approximation (5.62)

J(uF , a) =
2

W − a

uF∫

0

F (ūF , a)dūF ,

where J is taken per unit specimen thickness. Using (5.54) it follows that

dJ

da

∣∣∣∣
uF

=
2

(W − a)2
uF∫

0

F (ūF , a)dūF +
2

W − a

uF∫

0

∂F

∂a
dūF = − J

W − a .

(5.78)
Because of dJ/da < 0 crack growth under these circumstances is always stable.

5.8.3 Steady-state crack growth

5.8.3.1 Crack opening angle

The extension of a crack with large plastic zones is often possible far beyond the lim-
its of J-controlled growth. Even steady-state conditions may develop in the vicinity
of the crack tip after a sufficient amount of crack advance. Neither during the tran-
sition between J-controlled and steady-state crack growth nor in the steady-state
regime can the crack-tip loading be characterized by J . Other control parameters
of the crack-tip state then have to be used which are supposed to remain constant
for steady-state crack growth. Based on experimental results it has been proposed to
employ the crack opening angle. This measure of deformation can be introduced in
two different ways:

1) The crack-tip opening angle CTOA is the current opening angle between
the crack faces in the vicinity of the crack tip (Fig. 5.23a). This definition bears
the advantage that CTOA and J are equivalent as long as a J–controlled state
prevails because then the displacement and correspondingly the angle are uniquely
determined by J . A disadvantage ofCTOA, however, is that this quantity is difficult
to measure.

CTOA δ

δ+Δδ

Δa
a) b)

Fig. 5.23 Crack opening angle
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2) The crack opening angle COA according to Fig. 5.23b is the change Δδ of
the crack opening displacement at the original crack tip related to the crack advance
Δa:

COA =
Δδ

Δa
. (5.79)

This parameter is easy to measure but its physical significance is questionable.

5.8.3.2 Crack-tip field

So far it has not been accomplished to a satisfactory extent to describe the entire
evolution of the elastic-plastic crack-tip field, starting from the situation at a sta-
tionary crack tip via the transition regime until steady-state crack propagation. For
the steady-state case, however, solutions can be found which are based on simple
material models.

As an example we consider a crack which propagates at constant speed ȧ in a
perfectly plastic material. For simplicity we restrict the analysis to the mode-III
case. Furthermore, we assume that the crack-tip motion is slow enough (quasistatic)
for inertia forces to be neglected. The basic equations with respect to a fixed x, y–
coordinate system are given in Section 1.5.3. It is appropriate to transform these
equations to a x′, y′–coordinate system which moves together with the crack tip
(Fig. 5.24).

a(t)

ϕ

ry

x

y′

x′

Fig. 5.24 Crack growth: moving coordinate system

The relation between moving and fixed coordinates is given by

x′ = x− a(t) , y′ = y (5.80)

where a(t) is the crack length which depends on time t. For some arbitrary field
quantity F (x, y, t) = F (x′[x, a(t)], y′[y], t) it follows that

∂F

∂x
=
∂F

∂x′
,

∂F

∂y
=
∂F

∂y′
, Ḟ =

∂F

∂t

∣∣∣∣
x,y

=
∂F

∂t

∣∣∣∣
x′,y′

− ȧ ∂F
∂x′

. (5.81)

If we assume steady-state conditions the time derivative in the moving system van-
ishes and

Ḟ = −ȧ ∂F
∂x′

. (5.82)
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Since from (5.81) the spatial derivatives are equal in both systems the yield condi-
tion and the equilibrium condition (1.127) maintain their form in the moving system.
Only x and y have to be replaced by x′ and y′, respectively. As a consequence, the
slip lines and the stress distribution can be adopted unaltered from the respective
boundary value problem for a stationary crack in Section 5.4.1.1. Therefore, also
for the moving crack

τϕz = τY , τrz = 0 (5.83)

hold inside the fan (see Fig. 5.7). The corresponding strain increments (see (5.19))
can also be adopted; here they are related to the time increment dt:

γ̇ϕz(ϕ, r) =
dγϕz
dt

=
R(ϕ)

r
γ̇ϕz(R) , γ̇rz = 0 . (5.84)

Therein γ̇ϕz(R) is regarded to be known along R(ϕ), e.g., from the outer elastic
field. For the integration of (5.84) use is made of (5.82). To simplify the analysis
we assume R(ϕ) = R0 and γ̇ϕz(R0) = Cȧ/R0. The cartesian components of the
strain rate then are

γ̇xz = −Cȧ
r

sinϕ , γ̇yz = +
Cȧ

r
cosϕ .

With
sinϕ = y′/r , cosϕ = x′/r , r2 = x′2 + y′2

and (5.82) it follows that

∂γxz
∂x′

=
Cy′

x′2 + y′2
,

∂γyz
∂x′

= − Cx′

x′2 + y′2

and after integration

γxz = C(π/2− ϕ) + f1(y′) , γyz = −C ln
r

r0
+ f2(y

′) , (5.85)

where f1, f2, r0 remain undetermined. If we consider only the logarithmic term in
γyz which dominates for r → 0 the near tip strains can be represented as

γrz = −C ln r sinϕ , γϕz = −C ln r cosϕ . (5.86)

At a moving crack tip they display a logarithmic singularity which is weaker than
the 1/r–singularity at a stationary crack.

The respective analysis for a moving mode I crack is much more compli-
cated. Analogous to mode-III it yields a logarithmic strain singularity and bounded
stresses. It turns out, however, that the Prandtl–field according to Section 5.4.1.2
is not valid in the entire crack-tip region. In contrast to the stationary crack here
a wedge–shaped unloading region occurs in which the material behaves elastically
(Fig. 5.25). Similar unloading regions are obtained if the material is described by a
modified Ramberg-Osgood law with elastic unloading. Then not only the strains but
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elastic unloading

y′

x′
ȧ

Fig. 5.25 Mode-I crack propagation in perfectly plastic material

also the stresses display a logarithmic crack-tip singularity which depends on the
hardening exponent.

5.8.3.3 Energy flux and J–integral

If inertia forces are neglected and only mechanical energy terms are considered,
then from (4.94) - (4.96) the energy flux −P ∗ across the boundary AP into the
process zone is

−P ∗ = −dWσ

dt
= P − Ė where P =

∫

∂V

ti u̇i dA , E =

∫

V

U∗dV. (5.87)

Here, ∂V denotes the total surface of the material volume V except the surface AP
which is the boundary of the process zone. The specific work of deformation is
described by

U∗ =

εkl∫

0

σij dεij =

t∫

0

σij
∂εij
∂τ

dτ =

t∫

0

σij u̇i,j dτ . (5.88)

Only for an elastic material it is independent of the deformation path and equal to
the strain energy density U (see Section 1.3.1.2).

In the following we consider the plane mode-I problem of a propagating straight
crack with traction-free crack faces and a process zone represented by a point at
the crack tip (Fig. 5.26). If the energy flux rate G∗ is introduced via dWσ/dt =
ȧ dWσ/da = −ȧG∗ and if the notation is changed according to AP → CP , A →
C + C+ + C−, V → A then one obtains from (5.87) for the energy flux across the
boundaryCP

ȧG∗ =

∫

C

ti u̇i dc− d

dt

∫

A

U∗dA . (5.89)

Here it has already been taken into account that the crack faces C± are traction-free.
The contour CP with radius ρ is in the limit taken to be vanishingly small (ρ→ 0).
The star at the energy flux rate G∗ indicates that in contrast to the energy release rate
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G the energy flux is not necessarily connected with a change of the potential energy
of an elastic system because here the material behavior is arbitrary, e.g., inelastic.

a(t)

x2

x1 x′
1

CP

C

dc

nβ

x′
2

C+

C−

A

Fig. 5.26 Integration contours for energy flux into crack tip

Since the contour CP moves with the crack tip (whereas C is fixed) the area A
changes with time. In the temporal derivative of the work of deformation therefore
the flux across CP has to be accounted for (Reynold’s transport theorem):

d

dt

∫

A

U∗dA =

∫

A

dU∗

dt
dA+ ȧ

∫

CP

U∗n1 dc . (5.90)

Using dU∗/dt = σij u̇i,j = (σij u̇i),j−σij,j u̇i, the equilibrium conditionσij,j = 0
and the divergence theorem (where the crack faces C± yield no contribution since
ti = 0) this can be written as follows:

d

dt

∫

A

U∗dA =

∫

A

(σij u̇i),j dA+ ȧ

∫

CP

U∗n1 dc

=

∫

C

σij u̇i nj dc+

∫

CP

σij u̇i nj dc+ ȧ

∫

CP

U∗n1 dc .

Insertion into (5.89) yields

ȧG∗ = −
∫

CP

(ȧ U∗n1 + ti u̇i) dc . (5.91)

In order to obtain a more appropriate representation we employ a transformation
to the moving x′1, x

′
2–coordinate system and consider from now on the contour C

and the areaA likewise to move with the crack tip. The velocity u̇i in (5.91) then has
to be computed according to (5.81). Thereby we may assume that the displacement
ui(r, ϕ, t) is regular (bounded) at the crack tip (r → 0) while its spatial derivatives
(strains) are singular. Hence the second “convective” term (see right-hand side of
(5.81)) locally always dominates and u̇i = −ȧ ui,1 like in the stationary case (“local
stationarity”). The energy flux rate thus reads
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G∗ = −
∫

CP

(U∗n1 − ti ui,1) dc . (5.92)

If we now apply the divergence theorem to the area A with boundary C + CP +
C+ + C− (C± again yields no contribution) and if we introduce by

J∗ =

∫

C

(U∗n1 − ti ui,1) dc =
∫

C

(U∗δ1β − σiβ ui,1)nβ dc (5.93)

the modified J–integral, it follows that

G∗ = J∗ −
∫

A

(U∗
,1 − σij ui,j1) dA . (5.94)

According to (5.94) the energy flux rate can in general not be represented by a
path-independent contour integral J∗; an additional area integral rather has to be
considered. If, however, the contour C is shrunk to the crack tip the area integral
vanishes and

G∗ = lim
ρ→0

∫

C

(U∗n1 − ti ui,1) dc . (5.95)

This coincides with (5.92); the difference in sign is due to the different orientation
of the integration paths.

In the special case of stationary conditions the area integral in (5.94) always
vanishes. This is so because from (5.82) and (5.88) it follows that U∗

,1 = −U̇∗/ȧ =
−σij u̇i,j/ȧ = σij ui,j1 and hence we get

G∗ = J∗ . (5.96)

Irrespective of the material behavior the energy flux rate can then be expressed by
the J∗–integral (5.93) where the contour C is arbitrary (path-independence). This
integral differs from the J–integral (4.119) in that J∗ contains the specific work of
deformation U∗ instead of the strain energy density U .

As an example we consider crack propagation in a perfectly plastic material. In
this case the stresses in the vicinity of the crack tip (r → 0) are bounded while
the strains display a logarithmic singularity: σiβ ∼ σ

Y
, ui,1 ∼ ln r (see Sec-

tion 5.8.3.2). If the contour C is chosen according to Fig. 5.27 one obtains the fol-
lowing result from (5.95)

G∗ ∼ lim
ε→0

2σ
Y

+ε∫

−ε
ln |x′|dx′ = lim

ε→0
2σ

Y
[x′(ln x′ − 1)]

+ε
−ε = 0 . (5.97)

That means that in a perfectly plastic material no energy flux takes place into the
crack tip. Hence no energy is available for some dissipative process of material
separation in the process zone. The source of this “paradox” obviously is the too
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y′

C

−ε +ε x′

Fig. 5.27 Determination of G∗

strong simplification of the process zone being only a point in conjunction with a
perfectly plastic material behavior.

5.9 Essential work of fracture

Under large scale yielding conditions, size requirements such as (5.69) for the char-
acterization of a material’s fracture resistance in terms of Jc are often difficult to
fulfill. This is especially so when tests (for practical reasons) are performed on thin
sheets and when the material is very ductile and displays not much hardening. The
definition and measurement of the crack tip opening displacement (Section 5.5)
or the crack (tip) opening angle (Section 5.8.3.1), on the other hand, suffer from
some arbitrariness. In contrast to these local quantities, the essential work of fracture
(EWF) concept is based on global energetic considerations and tackles the problem
of fracture toughness characterization not from initiation (and some period beyond)
but from the other extreme of a completely fractured specimen. It has been devel-
oped by K.B. BROBERG, B. COTTERELL, J.K. REDDELL and Y.-W. MAI and is
mainly used as a pragmatic approach of obtaining fracture toughness data for thin
ductile metal sheets or ductile polymers.

The work expended during complete fracture of a specimen, i.e., the total frac-
ture work Wf , is given by the area under the recorded load displacement curves
in Fig. 5.28a. It depends on the specimen geometry (e.g., the ligament length l)
and hence cannot be taken as a measure of the material’s fracture toughness. The
key assumption underlying the essential work of fracture concept is that Wf can
be partitioned into two parts which scale differently with the ligament length l. A
prerequisite for this is that prior to fracture the whole ligament has yielded and that
the plastic zone (bright grey in Fig. 5.28b) fully comprises the fracture process zone
(dark grey in Fig. 5.28b). The total work of fracture for a specimen of thickness B
then can be written as

Wf = weB l + β wpB l
2 (5.98)

where the first term on the right hand side is the work dissipated in the fracture
process zone (Bl = area of fracture surface) and the second term is the work not
directly associated with fracture but dissipated in the surrounding plastic zone. The
size of the latter in the specimen plane is proportional to l2, and β is a shape factor.
In (5.98) wp is the specific (per volume) plastic work while we is called the specific
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u

F

l

Wf =

∫
F du

F, u

we

l

wp

F, u

Fig. 5.28 a) Self-similar load displacement curves for ductile fracture, b) plastic zone and fracture
ligament in double-edge notch tension (DENT) specimen

(per area) essential work of fracture since it is consumed per unit fracture area in
the immediate fracture process (Fig. 5.28b).

In thin specimens of ductile materials yielding and fracture take place approx-
imately under plane stress conditions and the situation sketched in Fig. 5.28b is
typically met. The in-plane width of the fracture process zone then is of the order of
the specimen thickness B since the fracture process involves through-thickness-slip
and necking down of the ligament (see also Fig. 4.42b). That means thatwe depends
on the specimen thickness. For a given thickness, however, it is approximately con-
stant and independent of the specimen geometry. In order to determine we a series
of geometrically similar specimens of different size, i.e. different ligament lengths,
but fixed thickness have to be tested which leads to self-similar load displacement
curves as sketched in Fig. 5.28a. If the resulting values of the total fracture work
Wf are divided by the fracture area Bl and are plotted against the ligament length l

l

we

β wp

Wf

B l

Fig. 5.29 Determination of essential work of fracture we from measured data (◦)
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(see Fig. 5.29) an approximately linear relation is obtained according to

Wf

B l
= we + β wp l . (5.99)

The specific essential work of fracture we hence is found as the ordinate intercept
for l→ 0.

5.10 Problems

Problem 5.1 The stresses for the depicted Dugdale crack can be derived from
Westergaard’s stress function

Z(z) =
2τY
π

tan−1

√
(c/a)2 − 1

1− (c/z)2
.

Determine the stresses along the x-axis and show
that there are no stress singularities at x = ±c.

y

x2a
2c

τ

τ

τ

τ
τ
Y

τ
Y

Fig. 5.30

Solution: τxy(x, 0) =
2τ

Y

π
tan−1

√
(c/a)2 − 1

1− (c/x)2

Problem 5.2 Evaluate the Dugdale model (yield stress σ
Y

) for the semi-infinite
crack shown in Figure 5.31a under an external load given by the applied stress in-
tensity factorKapp

I .

Determine a) the length d of the yield strip,
b) the crack tip opening (CTOD) δt,
c) the J-integral.

y

x

d
σ

b)

σ

d

Kapp
I

a)

Fig. 5.31
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Remark: Use Westergaard’s stress function for a semi-infinite crack under a constant
strip load according to Figure 5.31b:

Z(z) =
2σ

π

[√
d

z
− tan−1

√
d

z

]
, Z̄ =

2σ

π
d

[√
z

d
− (1 + z/d) tan−1

√
d

z

]
.

Solution: d =
π

8

(
Kapp
I

σF

)2

, δt =
(Kapp

I )
2

E′σ
Y

, J =
(Kapp

I )
2

E′ .
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Chapter 6
Creep fracture

6.1 Introduction

Various materials display a time-dependent behavior which is the source of phe-
nomena such as creep or relaxation. These processes typically take place quasistat-
ically, i.e., so slow that inertia forces do not play any role. If a component made of
such a material contains a crack and is loaded, time-dependent deformations occur
especially in the vicinity of the crack tip due to the locally high stresses. This may
cause a delay of crack initiation until some critical crack-tip deformation is attained.
Creep of the material at the crack tip, however, may also lead directly to creep crack
growth.

Typical examples for materials showing such a behavior are polymers at room
temperature or steels above approximately 30% of their melting temperature. De-
spite similar macroscopic phenomena the micromechanisms underlying fracture of
these materials are distinctly different. Thermally induced creep of metals is con-
nected with void growth at grain boundaries. In the vicinity of a macroscopic crack
tip this leads to the formation of microcracks and ultimate fracture takes plays by
their coalescence. Fracture of glassy polymers (e.g., PMMA) in contrast, is preceded
by the formation of an elongated craze zone ahead of the crack tip. This thin and
porous layer of about a micron thickness and up to several millimeters length consist
of fibrils of highly stretched macromolecules in the direction of maximum princi-
pal stress (perpendicular to the craze zone). Fracture then takes place by scission of
the macromolecules or their pull-out from the bulk material. While the macroscopic
behavior of polymers outside the process zone can usually be described as linear
viscoelastic the adequate modeling of the creep of metals generally requires nonlin-
ear constitutive laws. As in case of plasticity, we will keep the description as simple
as possible (see Section 1.3.2.1).

As already mentioned, creep is especially pronounced at a crack tip. In certain
cases the time-dependent inelastic behavior is restricted even to the immediate vicin-
ity of the crack tip, whereas the material can otherwise be regarded as linear elas-
tic. Small-scale creep conditions prevail if the creep zone is sufficiently small; the
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crack-tip state then can be characterized by parameters of linear elastic fracture me-
chanics such as KI . These parameters, however, may now be time-dependent. Pa-
rameters of linear elastic fracture mechanics can also be employed in case of creep
in larger regions (e.g., creep of a whole component) provided that the material can
be described as linear viscoelastic. In case of nonlinear material behavior parameters
based on integral quantities are useful and frequently applied, for instance the C–
or C∗–integral, which are closely related to the J–integral of elastic-plastic fracture
mechanics.

6.2 Fracture of linear viscoelastic materials

6.2.1 Crack-tip field, elastic-viscoelastic analogy

To begin with, in the present section we focus our attention on stationary cracks
in linear viscoelastic media. Solutions of respective boundary value problems can
often be directly derived from the solution of the corresponding elastic problem.
The Laplace-transformed solution of a viscoelastic boundary value problems is ob-
tained when in the elastic solution the elastic constants are replaced by Laplace-
transformed creep or relaxation functions (see Section 1.3.2.1). If the solution of
the elastic problem does not contain any elastic constants then the viscoelastic so-
lution likewise does not depend on creep or relaxation functions, hence it entirely
coincides with the elastic solution.

This holds, for instance, for the stress field at the tip of a stationary crack. The
respective equations in (4.6), (4.14), and (4.15) from linear elastic fracture mechan-
ics are also valid in the viscolelastic case where the stress intensity factors may now
depend on time according to the external loading. The displacements at the crack
tip, however, which in the elastic solution depend on elastic constants can not be
directly transferred to the viscoelastic case. Another example are bodies subjected
to prescribed tractions along their entire boundary. Also in this case the viscoelas-
tic and elastic stress distributions are equal. For multiply connected domains (e.g.,
containing internal cracks) one has to ensure in addition that the loading on inte-
rior boundaries is in equilibrium. K–factors for cracked viscoelastic bodies under
prescribed loading hence can be directly adopted from the elastic case.

The determination of viscoelastic stresses and deformations is strongly facilitated
if one assumes that Poisson’s ratio ν is constant (like in elasticity) which approxi-
mately applies to many polymers. Two important situations then are distinguished:

1.) If a body is subjected to prescribed forces of the type Fi = F̂i f(t) where
the temporal variation is the same for all forces, then the viscoelastic and elastic
stresses are equal: σij = σ̂ij f(t). This also holds for the stress intensity factors.
The viscoelastic deformations are obtained from the elastic ones by replacing the
shear modulus according to:
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1

G
→

t∫

−∞
Jd(t− τ)df(τ)

dτ
dτ . (6.1)

(Note, that in this section Jd(t) and J(t) denote creep functions and are not to be
confused with the J-integral!)

2.) If a body is subjected to prescribed displacements of the type uRi = ûRi u(t)
along part of its boundary while the remaining part of the boundary is traction-
free then the viscoelastic and elastic deformations are equal: ui = ûi u(t). The
viscoelastic stresses and stress intensity factors follow from the respective elastic
quantities by replacing the shear modulus according to:

G→
t∫

−∞
G(t− τ)du(τ)

dτ
dτ . (6.2)

If (6.1) is applied to the crack-tip field (see (4.6), (4.14), (4.15)) it turns out that
the viscoelastic and elastic displacements differ only by their temporal variation; the
spatial distribution remains the same.

In the special case where the loading (forces or displacements) is applied at time
t = 0 and kept constant afterwards it follows from (6.1) or (6.2), respectively, that

1/G→ Jd(t) , G→ G(t) . (6.3)

The relaxation functionG(t) then varies between the instantaneous modulusG(0) =
Gg and the equilibrium modulusG(∞) = Ge (see Fig. 1.6). The same holds for the
creep function Jd(t). Hence the upper and lower limits of the stresses and deforma-
tions are readily obtained.

As an example, we consider the configuration depicted in Fig. 6.1a (see also
DCB–specimen, Section 4.6.3) with the viscoelastic behavior approximated by the
linear standard material. The latter can be illustrated by the rheological (“spring-
dashpot“) model in Fig. 6.1b. If we assume Je = 3Jg and Ge = Gg/3 with Jg =
1/Gg the creep and relaxation functions are

J(t) = Jg(3− 2e−t/τJ ) , G(t) =
Gg
3

(1 + 2e−t/τG) . (6.4)

Here, τG and τJ = τGGg/Ge = 3τG denote the relaxation time and the retardation
time of the material. The elastic solution of the problem in plane stress yields for the
stress intensity factorK and the crack opening displacement (CTOD) δ = v+−v−
the results

KI = 2
√
3

Fa

Bh3/2
=

√
3

2

uFG(1 + ν)h
3/2

a2
, δ =

4KI
G(1 + ν)

√
r

2π
. (6.5)

If the viscoelastic body is loaded by a constant force F at time t = 0 the K–factor
is constant as well. The temporal variation of the CTOD is obtained from (6.5) by
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Fig. 6.1 a) DCB-specimen, b) standard material, c) F = const, d) uF = const

replacing 1/G by J(t):

KI = 2
√
3
Fa

Bh3/2
,

δ(t)

δ(0)
=
J(t)

J(0)
= 3− 2e−t/τJ . (6.6)

Accordingly, δ increases with time and tends for t → ∞ to three times its instanta-
neous value (Fig. 6.1c).

In contrast, if loading takes place by a constant displacement uF at t = 0 the
CTOD remains constant and changes with time. Its variation follows from (6.5)
after replacingG by G(t):

δ = 2
√
3
uFh

3/2

a2

√
r

2π
,

K(t)

K(0)
=
G(t)

G(0)
= 1 + 2e−t/τG . (6.7)

In this case the K–factor decreases and tends for t → ∞ to one third of its instan-
taneous value (Fig. 6.1d).

6.2.2 Fracture concept

The spatial structure of the stress and displacement field at a crack tip in a vis-
coelastic material is the same as in the elastic case but their temporal variation is
generally different. While the stresses are determined by K(t) the displacements
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are controlled by δ(t). In the example of the preceding section the displacements
and thus δ(t) were increasing at constant stress (K=const). Conversely, the stresses
andK(t) decreased with time at fixed displacements (δ =const). Hence the crack tip
and the actual loading of the crack tip are not solely governed by the stress intensity
factor but by the current values ofK and δ.

Moreover, because of the time-dependent material behavior it can not be ex-
pected that the state in the process zone is determined only by the current crack-tip
field. It rather depends on the history of the crack-tip loading as confirmed by ex-
perimental investigations. The latter show, for instance, a clear dependence of the
fracture load on the loading rate for many viscoelastic materials. The loading rate is
regarded to be high if the time T of load increase until failure is small compared to
the characteristic relaxation time: T � τG. In that case creep and relaxation effects
do not play any role and the material behaves according to instantaneous elasticity.
Damage mechanisms such as void growth at the crack tip hardly occur and fracture
takes place in a brittle manner. If, however, the loading rate is low (T � τG) the
material in the process zone relaxes or creeps and the damage process at the crack
tip can take place as if it were temporally unrestricted.

Whether and when a critical state in the process zone is reached thus depends
on the temporal variation of the crack-tip loading. The fracture criterion then may
formally be written as

F [K(t), δ(t)] = 0 (6.8)

where the symbol F denotes the dependence on the loading history. Because of the
lack of experimental data this dependence is often ignored. It is then replaced by
the simplifying assumption that the state in the process zone is solely characterized
by the current crack tip deformation, i.e., by δ. This hypothesis is supported by the
observation that deformation is often also a suitable measure of the damage state in
a viscoelastic material. Instead of δ which depends on the distance r from the crack
tip (see (6.5)) it is more appropriate to use a well-defined crack-tip opening displace-
ment δt (e.g., by 45◦ intersections with the crack opening profile, see Fig. 5.17. The
simplified fracture criterion then reads

δt = δtc . (6.9)

It states that crack initiation takes place when δt(t) attains a material-dependent
critical value δtc.

From the fracture criterion (6.9) the initiation time ti (time of failure) can be
determined at which crack propagation starts after the instant of loading. As an ex-
ample, we consider again the DCB–specimen subjected to constant load and with
the constitutive law of a linear standard material (Fig. 6.1a,c). The temporal varia-
tion of δt is given by (6.6). Insertion into (6.9) yields the initiation time

ti = −τJ ln 3δt(0)− δtc
2δt(0)

. (6.10)
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The use of the parameters δt(t) or K(t) in the fracture concept requires that the
size condition holds. That means that the region where the crack-tip field determined
by these parameters dominates must be large compared to the process zone (see
Section 4.3). Frequently the process zone is simply regarded as a plastic zone where
yielding takes place and the stresses are bounded. The term small-scale yielding
from linear elastic fracture mechanics then is also used in the viscoelastic case.

6.2.3 Crack propagation

Crack initiation in viscoelastic materials need not directly lead to failure of a com-
ponent. The reason is that the crack initially grows very slowly, i.e., it creeps. In
a component under fixed loading the crack growth rate subsequently increases and
only at some critical crack length the crack becomes “unstable” (unlimited crack
speed).

This process is investigated here for a crack in plane stress where similar to the
Dugdale model the process zone is modelled by a strip with yield stress σ0 (Fig. 6.2).
Under the assumption of small-scale yielding the strip length d has to be small com-
pared to all other dimensions, i.e., the crack length can be regarded to be infinitely
large compared to d. In case of an elastic material the following relations hold for
the strip length d, the crack opening δ inside the strip, and the crack-tip opening
displacement δt (see (5.7), (5.8))

d =
π

8

(
KI

σ0

)2

, (6.11)

δ(r) =
4σ0d

π(1 + ν)G

[√
r

d
+
(
1− r

d

)
artanh

√
r

d

]
, (6.12)

δt = δ(d) =
K2
I

2(1 + ν)Gσ0
. (6.13)

With the crack-tip loading prescibed by KI these quantities are uniquely deter-
mined.

δ

y

x δt
σ0

d

r

Fig. 6.2 Crack tip under small-scale yielding
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The corresponding viscoelastic solution for a stationary (i.e., noncreeping) crack
subjected at time t = 0 to some load KI which is afterwards kept constant can
directly be derived from (6.11) through (6.13). According to (6.3) therefore only
1/G has to be replaced by the creep function Jd(t). This does not affect the strip
length d, whereas the crack opening displacement inside the strip and at the crack
tip now is time-dependent:

δ(r, t) =
4σ0d

π(1 + ν)
Jd(t)

[√
r

d
+
(
1− r

d

)
artanh

√
r

d

]
, (6.14)

δt(t) =
K2
I

2(1 + ν)σ0
Jd(t) . (6.15)

Crack initiation takes place when δt attains the critical value δtc after the initiation
time ti.

In the following we consider the quasistatically growing crack according to
Fig. 6.3 where during the time t1 the whole yield strip moves through some point x.
Since small-scale yielding is assumed the strip length d and the crack growth rate ȧ
can be taken constant during this time interval such that d = ȧ t1. The crack opening
displacement δ(x, t) inside the strip is computed using (6.14) and by modelling the
motion of the strip in the time interval 0 ≤ τ ≤ t by a succession of infinitesimally
neighboring configurations:

δ(x, t) =
4σ0d

π(1 + ν)

t∫

0

Jd(t−τ) ∂
∂τ

[√
ȧ τ

d
+

(
1− ȧ τ

d

)
artanh

√
ȧ τ

d

]
dτ .

(6.16)
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Fig. 6.3 Crack propagation



192 6 Creep fracture

With δt = δ(x, t1) and the new variable ξ = 1 − ȧ τ/d the crack-tip opening
displacement is given by the representation

δt =
4σ0d

π(1 + ν)

1∫

0

Jd

(
ξd

ȧ

)[
1√
1− ξ − artanh

√
1− ξ

]
dξ . (6.17)

From this relation in conjunction with the fracture criterion (6.9) which must hold
during crack propagation the crack growth rate ȧ can be calculated. In many cases
it is sufficient to approximate the creep function by the power law

Jd(t) = Jg + Jnt
n (6.18)

where Jg is the instantaneous compliance and Jn and n are constants. Insertion into
(6.17) together with (6.9) yields

πδtc(1 + ν)

4σ0d
= Jg + JnPn

(
d

ȧ

)n
, (6.19)

where

Pn =

1∫

0

ξn
[

1√
1− ξ − artanh

√
1− ξ

]
dξ (6.20)

is a constant. By solving (6.19) for ȧ with (6.11) and

K2
Ig =

2(1 + ν)

Jg
δtcσ0 (6.21)

one finally obtains

ȧ =
π

8

(
JnPn
Jg

)1/n K2
Ig

σ20

[
KI
KIg

]2(n+1)/n

[
1−
(
KI
KIg

)2
]1/n . (6.22)

For some given loading KI of the crack and known material parameters thereby
the crack growth rate ȧ is determined. According to (6.22) it increases without limit
(ȧ → ∞) when KI tends to KIg. The limit value KIg may be interpreted as the
“instantaneous fracture toughness”; according to (6.21) it depends only on the in-
stantaneous compliance Jg and not on the whole creep function (6.18). Figure 6.4
shows ȧ as a function ofKI for n = 1/2.

Equation (6.22) allows to compute the creep time tc needed by a crack to grow
from its initial length a0 to the critical length ag at which ȧ tends to infinity. This
is illustrated from the simple example of an infinite plate with a crack under tensile
loading σ depicted in Fig. 6.5. In this caseKI = σ

√
πa andKIg = σ

√
πag. Hence
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ȧ

π

8

(
JnPn

Jg

)1/n
KIg

σ0

KI

KIg

Fig. 6.4 Crack growth rate (n = 1/2)

the critical crack length is

ag =
K2
Ig

πσ2
(6.23)

and (6.22) yields

ȧ =
π

8

(
JnPn
Jg

)1/n K2
Ig

σ20

[a/ag]
(n+1)/n

[1− a/ag]1/n
. (6.24)

Separation of variables and integration from the initial crack length a0 to the critical
crack length ag leads to

tc =
8

π2

(
Jg
JnPn

)1/n (σ0
σ

)2 1∫

a0/ag

[1− a/ag]1/n
[a/ag]

(n+1)/n
d(a/ag) . (6.25)

According to (6.25) the creep time tc decreases with increasing loading σ and initial
crack length a0; the result is shown in Fig. 6.5 for n = 1/2.

It has to be noted that creep crack growth here has been regarded to take place
quasistatically because of the low crack speed. However, for ȧ→ ∞ the assumption
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)1/n(σ0

σ

)2
4

a0
ag

Fig. 6.5 Creep time (n=1/2)
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of creep crack growth and the above results are no longer valid. One then has to
consider fast crack growth where inertia forces can not be neglected (see Chapter 7).

6.3 Creep fracture of nonlinear materials

6.3.1 Secondary creep, constitutive law

Creep of metals under constant load is divided into three stages (see Section 1.3.2.2).
Immediately upon loading primary creep sets in which is characterized by a de-
creasing strain rate. This regime is followed by secondary creep where steady-state
conditions prevail and the creep rate is constant. During tertiary creep the creep rate
then increases due to progressive damage of the material until ultimate failure.

Investigations in the present section focus on the initiation and growth of cracks
in bodies undergoing secondary creep. Depending on the situation the creep region
can be restricted to the vicinity of the crack tip (= small-scale creep) or it may
encompass the entire body.

The material behavior is approximated by a nonlinear Maxwell model with the
uniaxial constitutive law given by

ε̇ =
σ̇

E
+Bσn . (6.26)

According to the spring-dashpot model shown in Fig. 6.6a the strain rate is addi-
tively composed by the elastic part ε̇e = σ̇/E and the nonlinear viscous part (creep
rate) ε̇v = Bσn where B and n > 1 are constant material parameters. The creep
curve corresponding to a constant stress σ applied at time t = 0 is depicted in
Fig. 6.6b. In this case stationary conditions prevail with σ̇ = 0 and ε̇e = 0 and
(6.26) reduces to Norton’s creep law

ε̇ = ε̇v = Bσn (6.27)

(see (1.65)). The instantaneous behavior (t → 0) is purely elastic. Subsequently
the creep strain increases linearly with t and at time t = 1/(EBσn−1) the creep

b)a)

σ σ

B, nE εv=Bσnt

εe=σ/E

ε

t

Fig. 6.6 Material behavior at secondary creep



6.3 Creep fracture of nonlinear materials 195

strain equals the elastic strain (εv = εe). After a sufficient amount of time we
have εv � εe and the elastic strain can be neglected; for larger stress σ this state
is reached earlier. The constitutive law (6.26) reduces to (6.27) even in case of a
temporally varying stress provided that Bσn � σ̇/E. This holds when σ is very
large (e.g., at a crack tip) and does not change too fast.

Using (1.38) and (1.71) the three-dimensional generalization of (6.26) reads

ε̇ij = ε̇
e
ij + ε̇

v
ij = − ν

E
σ̇kkδij +

1 + ν

E
σ̇ij +

3

2
B σn−1

e sij (6.28)

where sij = σij − 1
3
δijσkk and σe = (3

2
sijsij)

1/2. Here it has been assumed
that the creep strain can be derived from a flow potential and that creep takes place
incompressibly (ε̇vkk = 0). If the elastic strains are negligible (6.28) reduces to

ε̇ij =
3

2
B σn−1

e sij . (6.29)

In this case the analogy between nonlinear elastic behavior and creep according
to Section 1.3.2.2 holds. That means that all relations and solutions obtained for a
nonlinear elastic material with (1.57) or (5.34), respectively, can be transferred to
creep processes with the constitutive law (6.29) simply by replacing the strains by
strain rates.

It should be mentioned here that a nonlinear material behavior of the type (6.26)
or (6.28) is in the literature often referred to as a viscoplastic behavior.

6.3.2 Stationary crack, crack-tip field, loading parameters

We consider a stationary crack in a component with the material behavior accord-
ing to (6.28). The loading is arbitrary, i.e., it may be time-dependent or constant.
The stress field at the crack tip (r → 0) is expected to be singular of the type
σij(r, ϕ, t) = rλσ̃ij(ϕ, t) where the exponent λ < 0 is unknown. By insertion
into (6.28) one realizes that the elastic strain is negligible compared to the creep
strain. Hence the material behavior in the vicinity of the crack tip can be described
by (6.29) and the solution for the crack-tip field is analogous to the corresponding
elastic solution. The latter is given by the HRR-field discussed in Section 5.4.2. By
changing the notation αε0σn0 → B, εij → ε̇ij , ui → u̇i, J → C(t) one thus obtains
from (5.39):

σij =

(
C(t)

IBr

) 1
n+1

σ̃ij(ϕ) ,

ε̇ij = B

(
C(t)

IBr

) n
n+1

ε̃ij(ϕ) ,

(6.30a)
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u̇i − u̇i0 = Br

(
C(t)

IBr

) n
n+1

ũi(ϕ) . (6.30b)

The parameter I(n) and the angular functions σ̃ij(ϕ) are given by the respective
quantities in Section 5.4.2 and the structure of the field (6.30a,b) corresponds exactly
to the HRR-field. Here, the time-dependent loading parameter is C(t); in analogy
to (5.37) it can be expressed by the contour integral

C(t) = lim
r→0

+π∫

−π
[Dn1 − σiβ u̇i,1 nβ ] rdϕ (6.31)

(see Fig. 5.13) where the specific strain energy rate D is given by (1.72). The in-
tegration contour has to lie entirely inside the crack-tip field since only there the
constitutive law (6.29) is valid. Hence the C(t)-integral is in general not path-
independent. The determination of C(t) for a particular crack configuration and
given loading requires the solution of the time-dependent boundary value problem
for the complete component with the constitutive law (6.28). Generally, this is pos-
sible only by numerical methods. The field quantities in the vicinity of the crack tip
then allow the computation of the crack-tip loading parameter from (6.31).

In the following we assume that the loading of the component is constant in
time. As a consequence, a state of stationary creep develops in the component after
sufficiently long time (σ̇ij = 0 for t → ∞) and the elastic strains can be neglected.
Then (6.29) and the analogy with the elastic case hold not only at the crack tip but
throughout the entire body. Hence the crack-tip field is again given by (6.30a,b)
where the loading parameter is now time-dependent:

C∗ = C(t→ ∞) . (6.32)

It can be computed from the contour integral

C∗ =

∫

C

[Dn1 − σiβ u̇i,1 nβ] dc (6.33)

which in contrast to (6.31) is path-independent like the J-integral. Some further
relation can be transferred from the elastic problem. For instance, from the repre-
sentation (5.54) for J the analogous representation for C∗

C∗ = −dΠ̇i

da

∣∣∣∣∣
u̇F

(6.34)

is obtained where

Π̇i =

u̇F∫

0

Fdu̇F . (6.35)
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Moreover, all solutions for specific crack problems can of course be adopted (see
Section 5.7).

Now the evolution of the crack-tip field in a component subjected to some con-
stant load at time t = 0 is investigated. The instantaneous behavior is purely elastic
and at the crack tip hence a K-controlled field initially prevails with a region of
dominance characterized by RK in Fig. 6.7a. Inside this elastic crack-tip field a
creep zone develops for t > 0 with a characteristic radius ρ and a C(t)-controlled
field with a radius of dominanceRC (Fig. 6.7b). Both ρ andRC increase with time.
Outside the creep zone the creep strains are so small that they can be neglected com-
pared to the elastic strains. Small-scale creep conditions prevail as long as ρ� RK ,
for instance, up to some time t1. During this short period the crack-tip loading can
be characterized by the constantK-factor. For t > t1 and an increasing creep zone
the situation turns into large-scale creep and the crack-tip state is controlled by the
field governed by C(t); see Fig. 6.7c. For t → ∞ a state of stationary creep de-
velops throughout the whole component and the crack-tip loading is given by C∗

(Fig. 6.7d).

t < t ≤ t1t = 0

r r

K–controlled fieldK–controlled field

t→∞t > t1

rr

C∗–controlled fieldC(t)–controlled field

RK

RC

RK

ρ
RC

RC∗

d)

b)

c)

a)

creep zone

C(t)–controlled field

Fig. 6.7 Temporal evolution of the crack-tip field

The evolution of the creep zone during the short period of small-scale creep can
easily be estimated. We assume for this purpose that the boundary ρ of the creep
zone is approximately determined from the condition εve = εee for the equivalent



198 6 Creep fracture

strain on the ligament and that outside the creep zone the temporally constant stress
distribution of the K-controlled field prevails. From the constitutive law (see Sec-
tion 6.3.1) then the characteristic time

t =
1

EB σn−1
e

. (6.36)

follows. At this time the creep zone reaches some point where the so far constant
equivalent stress σe is given by the K-field. In the following we neglect the tran-
sition region in Fig. 6.7b between the K-controlled and the C-controlled field by
setting RC = ρ. The stresses then are given by (4.22) outside the creep zone and by
(6.30a) inside the creep zone:

σe(r) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K√
r

r ≥ ρ

(
C(t)

Br

) 1
n+1

r ≤ ρ .
(6.37)

At the boundary r = ρ between the two regions they must be of the same order of
magnitude:

K√
ρ
∼
(
C(t)

Bρ

) 1
n+1

. (6.38)

Using (6.36) and (6.37) this leads to the following time dependencies of the size
ρ(t) of the creep zone and of C(t)

ρ(t) = α1K
2(EBt)

2
n−1 , C(t) = α2

K2

Et
(6.39)

where αi are dimensionless constants of order unity. A rough estimate of the time
t1 until which small-scale creep prevails may be obtained by setting C(t1) ≈ C∗:

t1 = α2
K2

EC∗ . (6.40)

Finally, we briefly investigate the onset of crack growth. Therefore, we make use
of the simple fracture criterion (6.9) δt = δtc where δt denotes the crack opening
displacement at some distance rc from the crack tip. For sufficiently high loading
crack initiation takes place already in the initial stage of small-scale creep. From
(6.30a,b) and (6.39) then

δ̇t = 2Brcũ2(π)

(
α2K

2

EIBrct

) n
n+1

. (6.41)

Time integration and insertion into the fracture criterion yields the initiation time
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ti =

(
δtc

2Brcũ2(π)

)n+1(
EIBrc
α2K2

)n
(6.42)

which is inversely proportional to K2n. For sufficiently low loading, in contrast,
crack initiation takes place when a state of stationary creep has developed in the
component and the crack-tip loading parameter is C∗. Equation (630b) then yields

δ̇t = 2Brcũ2(π)

(
C∗

IBrc

) n
n+1

, (6.43)

and time integration in conjunction with the fracture criterion leads to the initiation
time

ti =
δtc

2Brcũ2(π)

(
IBrc
C∗

) n
n+1

. (6.44)

In this case it is inversely proportional to C∗ n
n+1 .

6.3.3 Creep crack growth

6.3.3.1 Hui-Riedel field

After initiation crack propagation proceeds by creep. In order to describe this pro-
cess we first analyze the crack-tip field. Steady-state conditions and a plane stress
state are assumed. For the derivation which is similar to that of the HRR-field (see
Section 5.4.2) it is appropriate to employ a coordinate system moving with the crack
as depicted in Fig. 5.24. If the constitutive law (6.28) is inserted into the compati-
bility condition (5.41) and use is made of (5.81) one obtains
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{
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∂

∂r

[
r
∂

∂ϕ
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(6.45)

where
σ =

(
σ2r + σ

2
ϕ − σrσϕ + τ2rϕ

)1/2
(6.46)

and
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∂
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r∂ϕ
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∂2
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1

r2
∂2

∂ϕ2
+

1

r

∂

∂r
. (6.47)
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The Airy stress functionφ(r, ϕ) with the definitions (5.44) is introduced which iden-
tically satisfies the equilibrium conditions. With the representation

φ = Ars φ̃(ϕ) (6.48)

for the crack-tip field it then follows from (6.45) that

ȧ

E
rs−3D1(φ̃) +BA

n−1rn(s−2)D2(φ̃) = 0 (6.49)

where

D1 = [(s− 4) cosϕ− sinϕ ∂
∂ϕ

]
[
(s− 2)2(s2φ̃+ φ̃′′) + (s2φ̃+ φ̃′′)′′

]
,

D2 =
{
n(s − 2)[1 + n(s− 2)]σ̃n−1[s(2s− 3)φ̃− φ̃′′]

+[σ̃n−1(s(1− s)φ̃+ 2φ̃′′)]′′ − n(s − 2)σ̃n−1[s(1− s)φ̃+ 2φ̃′′]

+3[1 + n(s− 2)](s − 1)(σ̃n−1φ̃′)′
}
,

σ̃ =
[
s2(3− 3s+ s2)φ̃2 + s(3− s)φ̃φ̃′ + φ̃′′2 + (s − 1)2φ̃′2

]1/2
.

(6.50)
The first term on the left-hand side of (6.49) describes the elastic part and the

second one represents the creep part of the crack-tip field. In order to determine the
unknown exponent s we proceed from the hypothesis that the first term, i.e., the
elastic strain, is negligible. This leads to exactly the same relations as in case of a
stationary (non-propagating) crack. According to (6.30) the corresponding crack-
tip field then is of the HRR-type with σij ∼ r−1/(n+1) and φ ∼ r(2n+1)/(n+1); the
exponent s in this case is s = 2n+1

n+1
. This is inserted into (6.49) in order to verify the

above hypothesis. The first term then is of the type r−(n+2)/(n+1) and the second
one is of the type r−n/(n+1). For r → 0 the first term dominates which contradicts
the assumption. In contrast to the situation of a stationary crack hence the elastic
strains can not be neglected in case of a propagating crack.

Conversely, we now assume that the creep part in (6.49) can be neglected com-
pared to the elastic part. This leads to an elastic crack-tip field with σij ∼ r−1/2,
φ ∼ r3/2 and s = 3/2. If this again is inserted into (6.49) to check the hypothesis
it turns out that the first term is of the type r−3/2 while the second one is of the
type r−n/2. For n < 3 the first term indeed dominates at the crack tip (r → 0) in
agreement with the assumption. In this case hence the elastic crack-tip field prevails
which is given by (4.14) for mode I (see Section 4.2.2). However, n ≥ 3 leads to
a contradiction to the assumption since then both terms are of the same order of
magnitude (n = 3) or, respectively, the second term dominates (n > 3).

From the preceding considerations it can be concluded that for n > 3 both terms
in (6.49) must have the same asymptotic behavior for r → 0. Therefore, it follows
that s − 3 = n(s − 2) or s = 2n−3

n−1
. The amplitude A may now without loss of

generality be fixed by A = (ȧ/EB)1/(n−1). Thereby (6.49) reduces to the fifth
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order ordinary differential equation

D1(φ̃) +D2(φ̃) = 0 (6.51)

for the unknown function φ̃(ϕ). Four boundary conditions are for mode I given by
(5.48); a further condition is the regularity of the solution at ϕ = 0. The solution
of (6.51) subject to these boundary conditions can be obtained by numerical inte-
gration. Then the stress function and hence the stresses and strains in the crack-tip
region (r→ 0) are uniquely determined. They are of the general form

σij =

(
ȧ

EB r

) 1
n−1

σ̃ij(ϕ) ,

εij =
1

E

(
ȧ

EB r

) 1
n−1

ε̃ij(ϕ) .

(6.52)

Named after C.Y. HUI and H. RIEDEL who intensively studied creep crack growth
this field is called Hui-Riedel field. In contrast to the situation of a stationary crack
(HRR-field) the stresses and strains of the Hui-Riedel field display the same asymp-
totic behavior.

In Fig. 6.8 the angular distribution of the stresses and strains is depicted for the
case n = 5. It should be noted that the quantities σ̃, ε̃, ε̃ϕ are unbounded when
approaching the crack faces (ϕ → ±π). This has to be understood to result from
the strain history a material point close to the x-axis experiences during the passage
of the crack tip. Another important feature of the field (6.52) is that its amplitude is
determined solely by the crack-tip speed ȧ and the material parameter EB. In con-
trast to the HRR-field here the amplitude does not explicitly depend on the external
loading or the geometry of the body.
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ε̃rϕε̃ϕ
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Fig. 6.8 Hui-Riedel field, angular distribution of field quantities (plane stress, n = 5)

In deriving the crack-tip field we have assumed steady-state conditions, i.e., ȧ =
const. This is not strictly necessary; rather the results are valid also in the transient
case (ȧ �= const). This can be seen from the time derivative of (6.48) which is ac-
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cording to (5.81) in the general (transient) case given by φ̇ = (∂φ/∂t)−ȧ(∂φ/∂x′1).
Using (6.47) the first term is of the type rs while the second one is of the type rs−1.
Correspondingly, the asymptotic behavior of φ̇ for r → 0 is in the transient case as
well as under steady-state conditions solely governed by the second term, i.e., by
the relation (5.81) used above.

Analogous considerations can of course be performed for plane strain and for
mode II. The structure of the crack-tip field (6.52) then remains the same.

6.3.3.2 Small-scale creep

In the following we consider crack propagation under the condition of small-scale
creep. Furthermore, we assume n > 3 and, as in the preceding section, a plane stress
state. The situation which then prevails in the vicinity of a crack tip is schematically
sketched in Fig. 6.9. The creep zone with a characteristic radius ρ is embedded in
the K-controlled field with a radius of dominance RK � ρ. Inside the creep zone,
close to the crack tip, the Hui-Riedel field is found with a radius of dominanceRHR.

r

Hui-Riedel field

creep zone

RHR

ρ

ȧ

K-controlled field

RK

Fig. 6.9 Crack propagation in case of small-scale creep, n > 3

The exact determination of the field in the transition region between the K-
controlled field and the Hui-Riedel field is only possible by numerical methods.
Here we are satisfied with an approximate solution which nevertheless allows to
study all essential features. We proceed in a similar way as in case of small-scale
creep at a stationary crack (see Section 6.3.2). In order to compute the size ρ of the
creep region we first assume that this boundary is approximately determined from
the condition εve = εee for the equivalent strain on the ligament and that outside this
boundary the stress distribution of theK-controlled field is valid.

From the latter the equivalent stress on the ligament is in plane stress given by
σe = K/

√
2πr. Using (6.26) and noting that (.)· = −ȧ ∂(.)/∂r (on the ligament

x1 = r) then leads to
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εee =
σe

E
=

K

E
√
2πr

,

−ȧ ∂εe
v

∂r
= B σne =

BKn

(2πr)n/2
→ εve =

2BKn

(2π)n/2(n− 2)ȧr(n−2)/2
.

(6.53)

The integration of εve here is performed in the limits from RK → ∞ to r. Equating
the two equivalent strains at r = ρ yields

ρ =

[
2

(2π)(n−1)/2(n− 2)

EBKn−1

ȧ

] 2
n−3

(6.54)

and

εve(ρ) = ε
e
e(ρ) =

1

E

[
π(n− 2)

ȧ

EBK2

] 1
n−3

. (6.55)

In the following we again neglect the transition region between the K-controlled
field and the Hui-Riedel field by setting ρ = RHR. From (6.53) and (6.52) the creep
strain then is given by

εve(r) = ε
v
e(ρ)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ρ
r

)n−2
2

r ≥ ρ
(ρ
r

) 1
n−1

r ≤ ρ .
(6.56)

In order to describe crack propagation a fracture criterion has to be employed.
We assume therefor that crack advance proceeds in such a way that the creep strain
εve at some distance rc ahead of the crack tip attains a critical value: εve(rc) = εc. It
should be noted that in this criterion only the creep strain appears and not the total
strain. Physically this can be motivated from the creep strain being a measure of
the accumulated void volume which in turn characterizes the state of damage of the
material. By inserting (6.56) together with (6.54), (6.55) in this fracture criterion
one obtains

1

K̄
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ρ

rc

)n−3
2

rc ≥ ρ

(
ρ

rc

)− n−3
2(n−1)

rc ≤ ρ

(6.57)

or

˙̄a =

{
K̄n rc ≥ ρ
1 rc ≤ ρ ,

(6.58)

where
˙̄a =

n− 2

2

ȧ

EnB rc ε
n−1
c

, K̄ =
K

Eεc
√
2πrc

(6.59)
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denote the dimensionless crack-tip speed and stress intensity factor, respectively.

10

100

˙̄a

n = 5

n = 4

˙̄amin=1

K̄4 6K̄min=1 2 3 5

Fig. 6.10 Crack-tip speed

Two solutions for the crack-tip speed are given by (6.59); they are depicted by
the solid and dashed lines in Fig. 6.10. In addition it can be seen from (6.57) that
the conditions rc ≥ ρ or rc ≤ ρ in any case yield K̄ ≥ 1. The minimum K-factor
for which crack propagation is possible hence is K̄ = 1 or

Kmin = Eεc
√
2πrc; . (6.60)

It corresponds to a minimum crack-tip speed ˙̄a = 1 or

ȧmin =
2

n− 2
EnB rc ε

n−1
c . (6.61)

We now consider the solution ˙̄a = 1 and assume that at constant K the crack-tip
speed ȧ is slightly increased by some perturbation. According to (6.54) the creep
zone becomes smaller which may lead to rc > ρ. But then the second solution for
˙̄a is valid and the crack-tip speed “jumps” to the corresponding higher value. In this
sense the lower branch ( ˙̄a = 1) of the solution is unstable. The physically relevant
solution hence is given by the upper branch ˙̄a = K̄n, i.e., by the relation

ȧ =
2

n− 2

B rc
εc

(
K√
2πrc

)n
. (6.62)

Thus, the crack-tip speed increases according toKn.
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Chapter 7
Dynamic fracture mechanics

7.1 Introduction

So far, our investigations of crack initiation and propagation have always been based
on the assumption of quasistatic conditions. This is no longer justified when inertia
forces or high strain rates significantly affect the fracture behavior. It is, for instance,
well known that a material is more likely to fail under impulsive dynamic loading
than in case of a slowly applied load. One reason for this is the different material
behavior: plastic or viscous flow is increasingly suppressed at higher loading rates
and a material often behaves more brittle in the dynamic case than in the static case.
This and possibly different failure mechanisms in the process zone may lead to a
change of the fracture toughness. Another reason is due to the fact that the inertia
forces in case of dynamic loading can cause higher stresses in the vicinity of a crack
tip than in the corresponding quasistatic case.

If a crack propagates through a material it often reaches a very high speed
(e.g. more than 1000m/s) after a short acceleration phase. In case of such a fast
crack advance the inertia forces and high strain rates play an important role and
strongly influence the fracture behavior. Various aspects of this behavior are well
known from the failure of technical components as well as from laboratory exper-
iments. For instance, a fast running crack typically does not exceed a certain limit
speed. Depending on the actual conditions it may branch, once or several times, or
it may become unstable with respect to the propagation direction. The latter means
that even under fully symmetric conditions the crack tends to deviate from a straight
path. Another (often desired) dynamic effect is the crack arrest, i.e., the crack may
slow down until it finally stops growing.

The understanding of the above-mentioned phenomena and their appropriate
quantitative description is only possible in the framework of a dynamic fracture the-
ory. Some foundations are presented in the following sections. In the spirit of linear
elastic fracture mechanics we thereby restrict the considerations to fracture of brit-
tle materials which can be described by linear elasticity theory. The investigations
focus on two typical problems: a) the stationary (i.e., nonpropagating) crack under

:
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dynamic loading and b) the fast running crack. With regard to the fracture concept
(criterion) we will employ already established quantities such as the K-factors or
the energy release rate.

7.2 Some foundations of elastodynamics

The basic equations of linear elastodynamics are given by the balance of momentum
(1.20), the kinematic relations (1.25), and the elasticity law (1.37). Inserting these
into each other yields in case of vanishing body forces (fi = 0) the Navier-Lamé
equations

(λ+ μ)uj,ji + μui,jj = ρüi . (7.1)

The introduction of a scalar potential φ and a vector potential ψk with

u1 = φ,1+ψ3,2−ψ2,3 , u2 = φ,2+ψ1,3−ψ3,1 , u3 = φ,3+ψ2,1−ψ1,2 , (7.2)

leads to the Helmholtz wave equations

c21 φ,ii = φ̈ , c22 ψk,ii = ψ̈k (7.3)

where

c21 =
λ+ 2μ

ρ
, c22 =

μ

ρ
. (7.4)

The scalar potential φ describes the volume change (dilatation) and the vector po-
tential ψk characterizes pure distortions at constant volume. Correspondingly, c1 is
the speed of dilatational (longitudinal) waves and c2 that of distortional (shear,
transversal) waves. Typical values for some materials are given in Table 7.1. By
these wave speeds signals (dilatations or distortions) propagate through a solid body
unless they impinge on some boundary.

Material c1 [m/s] c2 [m/s] cR [m/s]

steel 6000 3200 2940

aluminum 6300 3100 2850

glass 5800 3300 3033

PMMA 2400 1000 920

Table 7.1 Typical wave speeds

The representation simplifies in case of plane problems. For plane strain with
u3 = 0 and ψ1 = ψ2 = 0 and the notation ψ = ψ3 equation (7.3) reduces to the
two wave equations

c21 φ,ii = φ̈ , c22 ψ,ii = ψ̈ . (7.5)
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The case of plane stress is governed by the same relations; only the elastic constants
in the wave speeds need to be changed (see Section 1.5.1).

Besides the transversal and longitudinal waves so-called Rayleigh waves or sur-
face waves play an important role in dynamic fracture. These are waves which prop-
agate along a free surface of a body and rapidly (exponentially) decay towards its
interior. In a body in plane strain that occupies the upper half plane with the bound-
ary x2 = 0 they can be represented by

φ = A exp−αx2 cos k(x1 − cRt) , ψ = B exp−βx2 cos k(x1 − cRt) . (7.6)

Here, cR denotes the unknown speed of the Rayleigh waves and k is the wave num-
ber. Inserting (7.6) into (7.5) yields the values of α and β. From the boundary con-
ditions σ22(x1, 0) = 0, σ12(x1, 0) = 0 then the ratio A/B of the amplitudes is
obtained as well as the governing relation for cR:

R(cR) = 4

√
1−
(
cR
c1

)2
√

1−
(
cR
c2

)2

−
[
2−
(
cR
c2

)2
]2

= 0 . (7.7)

R(cR) is called the Rayleigh function. Equation (7.7) may also be written in the
form (

cR
c2

)6

− 8

(
cR
c2

)4

+
8(2− ν)
1− ν

(
cR
c2

)2

− 8

1− ν = 0 . (7.8)

Like c1 and c2 the Rayleigh wave speed cR depends only on material constants and
not on the wave number or wave length. For Poisson’s ratio in the range 0 ≤ ν ≤ 0.5
it follows that 0.864 ≤ cR/c2 ≤ 0.955. The data given in Table 7.1 are based on the
value ν = 0.25 for which cR = 0.919 c2.

Particularly simple is the situation of antiplane shear where one may start directly
from (7.1). With u1 = u2 = 0 and setting w = u3 one obtains

c22w,ii = ẅ . (7.9)

Hence the motion of the continuum is described by a single equation with the char-
acteristic wave speed c2; Rayleigh waves do not occur in this case.

7.3 Dynamic loading of a stationary crack

7.3.1 Crack-tip field, K-concept

The crack-tip field of a dynamically loaded stationary crack does not differ from that
in case of static loading. This can be shown directly from the field equations (7.1).
For this purpose we assume that the stresses are singular at the crack tip (r → 0)
while the displacements are nonsingular and can be represented by ui = rλũi(ϕ, t)
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where 0 < λ < 1. Because of the second spatial derivatives the terms on the left
hand side of (7.1) then are of the type rλ−2 whereas the right-hand side is of the
type rλ. Hence the inertia forces can be neglected for r → 0 and the crack-tip
field is in the dynamic case governed by the same equations as in the static case.
It therefore coincides with the static crack-tip field discussed in Section 4.2. As the
only difference the stress intensity factors now depend on time:KI = KI(t) etc. In
general, they cannot be adopted from the static case but have to be computed from
the solution of the dynamic (initial) boundary value problem where inertia forces
are taken into account.

Since the crack-tip field is uniquely determined by theK-factors it is appropriate
to employ the K-concept also in case of dynamic loading of a crack. Accordingly,
mode-I crack initiation takes place when the condition

KI(t) = KIc (7.10)

is met. The application of this criterion, however, is complicated by two facts. As
already mentioned the fracture toughnessKIc depends on the loading rate K̇I or, re-
spectively, on some characteristic loading time τ :KIc = KIc(τ). Its determination,
especially in case of impulsive loading, requires an enormous experimental effort
which is possible only in a few well-equipped laboratories. Hence only a rather lim-
ited amount of reliable material data is available up to now. On the other hand, (7.10)
is only valid if the dominance region of the K-field is sufficiently large compared
to all other characteristic dimensions. In the dynamic case this region of dominance
depends on time and it can be smaller than in the static case. Due to the finite wave
speed it takes some time after an impulsive loading of a crack until a sufficiently
large dominating crack-tip field has built up.

7.3.2 Energy release rate, energetic fracture criterion

The energy release rate is defined as the decrease of the total energy of a body due
to crack advance. Since in the dynamic case the kinetic energy K has to be taken
into account it reads

G = −d(Π +K)

da
. (7.11)

In the present situation of a stationary crack (ȧ = 0) the crack advance is considered
to take place “quasistatically” (i.e., virtually).

Because of the kinetic energy which additionally appears in (7.11) the relations
for G cannot be adopted from the static case (Sections 4.6.2 – 4.6.5) in a straightfor-
ward manner. Instead of giving a detailed derivation here, we make use of the result
for the more general situation of a running crack presented in Section 7.4.3. Accord-
ingly, the relation (7.34) for the energy release rate reduces in the plane problem of
a straight stationary crack (ȧ = 0) with traction-free crack faces to
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G =

∫

C

(Uδ1β − σiβ ui,1)nβ dc+
∫

A

σij,j ui,1 dA . (7.12)

Here, A is the area enclosed by some arbitrary contour C which encompasses the
crack tip from one crack face to the other (Fig. 7.1a). In contrast to the static case
the energy release rate (7.12) is no longer given solely by the path-independent J-
integral but also contains an additional integral over the enclosed area A (see also
Section 4.6.5.3). The latter vanishes only if the contour is shrunk to the crack tip
(Fig. 7.1b):

G = lim
C→0

∫

C

(Uδ1β − σiβ ui,1)nβ dc . (7.13)

b)a)

C

ρ → 0

x2

x1x1

x2

C

A

Fig. 7.1 Contours around stationary crack tip related to the energy release rate

The above relations are also valid in the general nonlinear elastic case since no
particular elasticity law is employed. If linear elastic material behavior is assumed
the crack-tip fields for a stationary crack are equal in the static and the dynamic
case, as discussed above. From (7.13) it then follows immediately that the relation
known from statics

G =
1

E′ (K
2
I +K

2
II) +

1

2G
K2
III (7.14)

is valid also in the dynamic case. Correspondingly, for pure mode I with G = K2
I /E

′

theK-concept and the energetic criterion

G = Gc (7.15)

are equivalent, like in statics. Here, Gc(τ) is the energy required for crack propa-
gation; it can depend on the loading rate or on the characteristic loading time τ ,
respectively. It should be mentioned that (7.12) in conjunction with (7.14) are well
suited for the determination of dynamic K-factors by means of experimental me-
thods.

7.3.3 Examples

Various methods can be utilized for the determination of dynamic stress intensity
factors. Experimental and numerical techniques are of primary importance while



212 7 Dynamic fracture mechanics

analytical methods are applicable only in a few special cases. Experimental meth-
ods allow for the determination of the temporal variation KI(t) of the crack-tip
loading as well as the initiation valueKIc(τ), and the so-called method of caustics
has proven to be particularly useful for this. The crack-tip loading KI(t) can be
computed with numerical methods where the boundary element method (BEM), the
finite element method (FEM), and the finite difference method (FDM) are success-
fully employed. Results for three examples are discussed in the following which
have been obtained with these methods.

As a first example we consider the rotational-symmetric problem of a circular
(penny-shaped) crack in an unbounded domain which is loaded by a stress wave.
The latter impinges perpendicularly on the crack and is characterized by the load-
ing time τ and the amplitude σ0 (Fig. 7.2). After arrival of the wave at time t = 0
the stress intensity factorKI(t) first increases monotonically until it attains a max-
imum and then tends to the corresponding static value Kstat

I = 2σ0
√
πa/π in an

oscillating manner. The decay can be explained from the fact that due to the re-
flection and scattering of waves energy is radiated into the unbounded domain (i.e.,
towards infinity). These waves do no longer contribute to the loading of the crack.
For τ = 0 the peak value of KI(t) is about 25 % higher than Kstat

I . It is attained
approximately at time tR = 2a/cR which is needed by Rayleigh waves to travel
across the diameter 2a of the crack. With increasing loading time τ the maximum
KI value becomes smaller. A noticable “dynamic overshoot” only occurs for load-
ing times in the range τc2/a <̃ 1. For instance, in a steel plate which contains a
crack of length 2a = 20mm this takes place for τ ≈ 6 ·10−6 s. Such a short loading
time is observed only in rare situations.

c1

wave front

a

2 4 6

KI(t)
Kstat

I

1
3.4

1.7

c2t/a

σ0

c2τ/a=0

t

σ(t)

τ

Fig. 7.2 Impulsive loading of a circular (penny-shaped) crack in an infinite domain

In the second example (Fig. 7.3) a straight crack is located in a rectangular plate
which is subjected to an ideal impact σ0H(t) on the two opposite boundaries par-
allel to the crack. Here, H(t) denotes the Heaviside function. In the present case
the profile of the wave impinging on the crack is influenced also by the boundaries
of the plate. Furthermore, in contrast to the preceding example energy radiation to-
wards infinity here does not take place by virtue of the bounded domain. TheKI(t)
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Fig. 7.3 Impact loading of a crack in a rectangular plate (plane stress, ν = 0.25; a : b : c =
9.5 : 100 : 60)

variation is qualitatively an oscillation with a period which is essentially determined
by the travel time of a wave over the distance 2c. Local peaks superimposed on this
oscillation can also be explained from travel times of waves propagating at differ-
ent speeds (c1, c2, cR). Since there is no damping (e.g., due to energy radiation) the
oscillation ofKI(t) does not decay.

As a final example we consider an impact-loaded 3-point-bending specimen as
it is used for the determination of KIc values (Fig. 7.4). For a prescribed value of
the impact velocity the variation F (t) of the loading has been measured; the latter
gives rise to the depictedKI(t) variation (Fig. 7.4). It can be seen that the temporal
variations F (t) and KI(t) are completely different, especially in the initial phase.
Hence the current value of KI cannot be determined from the current value of F .
Also, it should be noted that for such a type of loading a repeated loss of contact
between the specimen and the impactor as well as between the specimen and the
support takes place due to the motion of the specimen.
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Fig. 7.4 Impact loading of 3-point-bending specimen
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7.4 Crack propagation

7.4.1 Crack-tip field

Now we consider a crack which propagates at some speed ȧ and acceleration ä
(Fig. 7.5). The dynamic crack-tip field is investigated first for pure mode III (an-
tiplane shear) as the simplest case. The respective problem is described by the equa-
tion of motion (7.9) which for the present purpose is transformed to the coordinate
system x′, y′ that moves with the crack tip (cf. Section 5.8.3.2). Using x′ = x−a(t),
y′ = y one obtains for an arbitrary field quantity (here the displacement w)

∂2w

∂x2
=
∂2w

∂x′2
,

∂2w

∂y2
=
∂2w

∂y′2
, ẅ =

∂2w

∂t2
−2ȧ

∂2w

∂x′∂t
−ä ∂w
∂x′

+ȧ2
∂2w

∂x′2
. (7.16)

At the crack tip (r → 0) a nonsingular displacement field of the type w(r, ϕ, t) =
rλw̃(ϕ, t) with 0 ≤ λ < 1 and a singular stress field is expected. Because of

∂

∂x′
= cosϕ

∂

∂r
− sinϕ

∂

r∂ϕ
,

∂

∂y′
= sinϕ

∂

∂r
+ cosϕ

∂

r∂ϕ

the last term in ẅ dominates for r → 0 compared to the first three terms and we get
ẅ = ȧ2∂2w/∂x′2. Thus the equation of motion governing the crack-tip field reads

∂2w

∂x′2
+

1

α2
2

∂2w

∂y′2
= 0 where α2

2 = 1− ȧ2

c22
. (7.17)

By introducing of the new coordinates (contraction of the y-coordinate)

x2 = r2 cosϕ2 = x′ = r cosϕ , y2 = r2 sinϕ2 = α2y
′ = α2r sinϕ , (7.18)

equation (7.17) can be transformed into Laplace’s equation

∂2w

∂x22
+
∂2w

∂y22
= 0 . (7.19)

The easiest way for its solution is the use of complex variables (see Sections 1.5.2
and 4.2.1) which leads to

a(t)
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x

y′

x′

ȧ, ä

Fig. 7.5 Running crack
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Gw = Re Ω(z2) ,

τxz − i
τyz
α2

= Ω′(z2)
(7.20)

where z2 = x2 + i y2 = r2e
iϕ2 . The subsequent steps are analogous to the static

case. The dominating part of the solution which satisfies the boundary conditions is
described by Ω = Az

1/2
2 . If the stress intensity factor is defined (as in statics) by

KIII = lim
r→0

√
2πr τyz(ϕ = 0) (7.21)

one finally obtains the crack-tip field

⎧⎨
⎩
τxz

τyz

⎫⎬
⎭ =

KIII√
2πr2

⎧⎨
⎩

− 1
α2

sin
ϕ2
2

cos
ϕ2
2

⎫⎬
⎭ , w =

2KIII
Gα2

√
r2
2π

sin
ϕ2

2
. (7.22)

Its general structure is similar to the static case with a stress singularity of the type
r−1/2. The angular distribution of the field quantities, however, depends on α2, i.e.,
on the crack-tip speed ȧ. In the limit case of a stationary crack (ȧ = 0) with α2 = 1
and r2 = r, ϕ2 = ϕ the static crack-tip field (cf. Eq. (4.6)) is recovered.

For mode I the procedure is fully analogous to the just described mode III case.
The transformation of (7.5) to the moving coordinate system yields for r → 0

∂2φ

∂x′2
+

1

α2
1

∂2φ

∂y′2
= 0 ,

∂2ψ

∂x′2
+

1

α2
2

∂2ψ

∂y′2
= 0 where α2

i = 1− ȧ2

c2i
. (7.23)

If in the first equation the coordinates

x1 = r1 cosϕ1 = x′ = r cosϕ , y1 = r1 sinϕ1 = α1y
′ = α1r sinϕ (7.24)

are introduced and in the second one the coordinates (7.18) the two Laplace equa-
tions

∂2φ

∂x21
+
∂2φ

∂y21
= 0 ,

∂2ψ

∂x22
+
∂2ψ

∂y22
= 0 (7.25)

are obtained. Their solution for the symmetric (mode I) crack-tip field can be written
in the form φ = A Re z

3/2
1 , ψ = B Im z

3/2
2 where z1 = x1 + iy1 = r1e

iϕ1 ,
z2 = x2 + iy2 = r2e

iϕ2 and the real constants A,B are determined from the
boundary conditions (traction-free crack faces). Introducing the definition of the
stress intensity factor

KI = lim
r→0

√
2πr σy(ϕ = 0) (7.26)

leads to
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where

f =
1 + α2

2

R(ȧ)
=

1 + α2
2

4α1α2 − (1 + α2
2)

2
. (7.28)

Here, R(ȧ) denotes the Rayleigh function defined in (7.7). The stresses and dis-
placements display the same dependence on r as in the static case. Their magnitude
and angular distribution, however, depend on the crack-tip speed ȧ; the acceleration
ä has no influence. Hence the crack-tip field is uniquely determined once the K-
factor and the crack-tip speed are known. This can also be seen from the results for
the stress σy ahead of the crack tip (ϕ = 0) and the crack opening displacement
δ = v(π)− v(−π):

σy =
KI√
2πr

, δ =
KI

G

√
r

2π

4α1(1− α22)
R(ȧ)

. (7.29)

While σy is solely determined by KI , the crack opening displacement δ at fixedK
increases with increasing crack speed and tends to infinity for ȧ→ cR. One should,
however, note that for a specific crack configuration the dynamic stress intensity fac-
tor is itself a decreasing function of the crack speed. This issue is further discussed
at the end of Section 7.4.2.

From the crack-tip field several conclusions can be drawn with regard to the be-
havior of a fast running crack. Figure 7.6a indicates that the stress ratio σy/σx ahead
of the crack tip (ϕ = 0) decreases with increasing crack speed. Correspondingly, the
propensity for material separation in planes perpendicular to the crack propagation
direction increases. When the crack speed approaches the Rayleigh wave speed the
stress ratio tends to zero and crack propagation in the direction ϕ = 0 becomes im-
possible. Therefore, the Rayleigh wave speed can be considered as an upper bound
for the crack-tip speed.

For various values of the crack-tip speed the angular distribution of the circumfer-
ential stress σϕ at the crack tip is depicted in Fig. 7.6b. While for a sufficiently low
crack speed the maximum stress prevails at ϕ = 0 this maximum shifts to ϕ>̃π/3
for ȧ>̃0.6 c2. If one assumes that crack advance proceeds in the direction of maxi-
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Fig. 7.6 Influence of the crack speed on the crack-tip stress field (ν = 1/4)

mum circumferential stress this can be taken as an indication that for ȧ>̃0.6 c2 the
crack becomes unstable with regard to its original propagation direction. This stabil-
ity threshold, first emphasized by E.H. YOFFE (1951), can be regarded as another
upper bound for the crack-tip speed.

Finally, in the same manner as for mode I, the mode II crack-tip field can be
determined. It reads
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7.4.2 Energy release rate

The energy release rate G for the problem of a straight running crack with traction-
free crack faces shall be investigated now. We proceed exactly as in Section 5.8.3.3
except that here the kinetic energy has to be accounted for and the material is as-
sumed elastic. The energy flux −P ∗ into the process zone at the crack tip then is
generally given by
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−P ∗ = P − Ė − K̇ (7.31)

whereE is the strain energy andK the kinetic energy. When applied to the situation
sketched in Fig. 7.7 the energy flux −P ∗ = ȧG across the contour CP reads (cf.
(5.89))

ȧG =

∫

C

tiu̇idc− d

dt

∫

A

UdA− d

dt

∫

A

1

2
ρu̇iu̇idA . (7.32)

Here, U is the strain energy density and ρu̇iu̇i/2 is the specific kinetic energy; the
contourCP is taken to be vanishingly small (CP → 0). Analogous to the procedure
in Section 5.8.3.3, applying Reynold’s transport theorem, the relation dU/dt =
σij u̇i,j = (σij u̇i),j−σij,j u̇i, the equation of motion σij,j = ρüi and the divergence
theorem after some steps leads to

ȧG = −
∫

CP

[
ȧ
(
U +

1

2
ρu̇iu̇i

)
n1 + tiu̇i

]
dc . (7.33)
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Fig. 7.7 Moving crack tip and contours considered in energy release rate calculation

Now we perform the transition to the moving coordinate system x′1, x
′
2 and con-

sider A and C to be as well moving with the crack tip. Since it can be assumed that
ui is regular at the crack tip while ui,1 is singular (cf. (7.27b)) it follows from (5.81)
that at the crack tip u̇i = −ȧui,1. Inserting this into (7.32) leads to

G = −
∫

CP

[(
U +

1

2
ȧ2ρ ui,1ui,1

)
n1 − tiui,1

]
dc . (7.34)

By applying the divergence theorem to the areaAwith boundaryC+CP+C++C−

(C+, C− yield no contribution) together with ti = σijnj one finally obtains for the
energy release rate

G =

∫

C

[
(U +

1

2
ȧ2ρui,1ui,1)n1 − tiui,1

]
dc+

∫

A

(σij,jui,1 − ȧ2ρui,11ui,1)dA . (7.35)
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The relation (7.35) simplifies in various special cases. For a crack which prop-
agates at constant speed ȧ under steady-state conditions the area integral vanishes
because of σij,j = ρüi and üi = ȧ2ui,11 (see also (7.16)) and we get

G =

∫

C

[(
U +

1

2
ȧ2ρui,1ui,1

)
n1 − tiui,1

]
dc . (7.36)

In the special case ȧ = 0 (7.35) reduces to (7.12). If, in addition, static conditions
prevail (σij,j = 0) the J-integral (4.119) is recovered from G.

The contour C in (7.35) can be chosen arbitrarily. If it is contracted to the crack
tip the area integral vanishes and we obtain

G = lim
C→0

∫

C

[(
U +

1

2
ȧ2ρui,1ui,1

)
n1 − tiui,1

]
dc . (7.37)

From this the interrelation between G and KI for mode I can be established by
inserting (7.27a,b) and (7.28):

G =
α1(1− α2

2)

2GR(ȧ)
K2
I =

α1(1− α2
2)

4α1α2 − (1 + α2
2)

2

K2
I

2G
. (7.38)

Hence the energy release rate is uniquely determined by the stress intensity fac-
tor and the crack-tip speed . According to (7.7) the function R(ȧ) vanishes for the
Rayleigh wave speed. That means that forKI �= 0 the energy release rate G appar-
ently tends to infinity when the crack speed approaches the Rayleigh wave speed.
Conversely, at finite G the stress intensity factor tends to zero for ȧ→ cR.

However, the dynamic stress intensity factor KI is itself a function of the crack
speed. If one compares for a given crack configuration, i.e. for the same geometry
and loading, the stress intensity factor at a stationary crack tip with that at a running
crack tip (ȧ > 0), one obtains

Kdyn
I = k(ȧ)Kstat

I . (7.39)

Here,

k(ȧ) ≈ 1− ȧ/cR√
1− ȧ/c1

(7.40)

is a universal function which is equal to 1 for ȧ = 0 and tends to zero for ȧ → cR.
Inserting (7.39) with (7.40) into (7.38) leads to the expression

Gdyn = g(ȧ)Gstat (7.41)

for the energy release rate where g(ȧ) decreases monotonically from g(ȧ = 0) = 1
to g(ȧ = cR) = 0. That means that the energy release rate (and hence the energy flux
into the crack tip) decreases with increasing crack speed and vanishes for ȧ → cR.
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The Rayleigh wave speed cR therefore represents an upper bound for dynamic crack
propagation under mode I conditions.

In case of a running crack under mixed-mode loading byKI ,KII , andKIII the
general relation

G =
1

2G

[
(1− α2

2)(α1K
2
I + α2K

2
II)

4α1α2 − (1 + α2
2)

2
+
K2
III

α2

]
. (7.42)

holds which for ȧ = 0 reduces to (7.14).

7.4.3 Fracture concept, crack-tip speed, crack branching, crack
arrest

In the framework of linear fracture mechanics theK-concept can be applied also to
fast crack propagation. Accordingly, at any instant of crack advance under mode-I
conditions the fracture criterion

KI(t) = KId (7.43)

must be fulfilled. Here, KId denotes the dynamic fracture toughness which is as-
sumed to be a material parameter that, in a first approximation, depends only on
the crack-tip speed: KId = KId(ȧ). This dependence is qualitatively depicted in
Fig. 7.8. Starting from the initiation valueKIc the fracture toughness in most cases
first shows only a weak dependence on the crack-tip speed while it rapidly increases
at higher values of ȧ. One possible explanation for this behavior could be a change
in the micromechanisms of material separation in the process zone. This is sup-
ported by the well-known observation that the roughness of the fracture surface
strongly increases with increasing crack speed. Another reason lies in the fact that
(different from the static case) the crack-tip field or the state in the process zone,
respectively, is not uniquely characterized by the stress intensity factor; according

1 2 3 KId/KIc

ȧ/c2

0,1

0,2

ȧmax

Fig. 7.8 Typical dependence of fracture toughness on crack-tip speed
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to Section 7.4.1 the stresses and deformations depend also on the crack-tip speed.
During crack advance also the energetic fracture condition

G(t) = Gd(ȧ) (7.44)

must be satisfied where Gd(ȧ) is the material specific fracture resistance which de-
pends on the crack-tip speed. Due to the relation (7.38) between G and KI the
fracture conditions (7.43) and (7.44) are equivalent.

From measurements it is known that the crack-tip speed under mode I condi-
tions even in very brittle materials does not exceed a maximum value of about
ȧmax ≈ 0.5 c2. An exception are fracture experiments where via special devices
such as a laser beam, energy is directly supplied to the crack tip. Despite various
possible explanations the issue of this limit crack-tip speed is not yet fully under-
stood. One reason, for instance, could be the instability of the straight crack advance
at crack speeds above ȧ >̃ 0.6c2 (see Section 7.4.1). This is supported by the increas-
ing roughness (or waviness) of the fracture surface with increasing crack-tip speed
as well as by an enhanced tendency for the formation of secondary cracks. The latter
are microcracks which form in the neighborhood of the main crack or depart (branch
off) from it. The increasing roughness of the fracture surface and the formation of
secondary cracks also provide an explanation for the enhanced dynamic fracture
toughness since especially the formation of microcracks is a mechanism which may
strongly contribute to energy dissipation. An objection to the “instability hypothe-
sis”, however, arises from the fact that the measured maximum crack speeds are sig-
nificantly lower than the theoretical instability threshold. Another, more qualitative
attempt of explanation is based on the discrete nature of bond breaking. According
to this, a crack advances by “jumps” along discrete material elements of a character-
istic length lM . In order to transfer the entire information about the preceding jump
to the next element (maximum distance 2lM ) a characteristic time τ ≈ 2lM/c2 of
wave propagation is required (one may also insert cR instead of c2). If one assumes
that after this time the next jump takes place one obtains, irrespective of the precise
value of the microstructural length lM , an average (approximate) speed of crack
propagation of ȧ ≈ lM/τ ≈ c2/2.

A phenomenon frequently observed in conjunction with dynamic fracture is
crack branching (Fig. 7.9a). It is most likely to occur at a crack-tip speed close to
the limit speed ȧmax, but it may (depending on the material) take place also at lower
values of ȧ. Crack branching is typically preceded by an increasing roughness of the
fracture surface and by the formation of secondary cracks which may be interpreted
as “branching attempts”. Likewise the issue of a limiting crack speed, a generally
accepted explanation for crack branching and a reliable branching criterion are still
lacking. Theoretical reasoning is mostly based on the analysis of the crack-tip field
of a single fast running crack or of a crack that has just branched. Crack branch-
ing has, for instance, also been related to the directional instability which occurs at
ȧ ≈ 0.6 c2. Yet, this is not suitable to explain branching at lower crack speeds and
the observed significantly smaller branching angle of about α ≈ 28◦. The latter,
however, can be explained from the plausible hypothesis that upon branching both
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Fig. 7.9 Crack branching

crack tips propagate under pure mode-I conditions. Even for a quasistatic analysis
this hypothesis yields results which agree well with experimental observations.

A prerequisite for crack branching is a sufficient energy flux into the process
zone, i.e., a sufficiently large energy release rate G, which enables the formation
and subsequent propagation of two cracks. The determination of G typically is cum-
bersome since this quantity generally depends on the geometry of the specimen, on
time, on the current crack length, and the crack speed. A simple and coarse approx-
imation for G can be obtained from the corresponding static problem by neglecting
the inertia forces. For instance, in case of an edge-crack subjected to uniaxial load-
ing (see Table 4.1, No. 5) this leads to G ≈ Gstat = (Kstat

I )2/E′ = 1.26 πσ2a.
If, in addition, one assumes that branching of the crack takes place when G attains
integer multiples of the value Gc required for crack initiation the result depicted in
Fig. 7.9b is obtained. This result, however, is only of qualitative nature.

Of great practical importance – since desired in technical components – is the
crack arrest. This takes place when in the course of crack propagation the stress
intensity factor decreases to such an extent that the fracture condition (7.43) is no
longer fulfilled; the crack then stops growing. The condition for arrest can be written
in the form

KI(t) = KIa (7.45)

where KIa = min[KId(ȧ)] is called the crack arrest toughness. Since crack arrest
in a component is a dynamic process its treatment generally requires the complete
dynamic analysis of the structure (including inertia forces and wave phenomena).
It has, however, turned out that in many practical cases a quasistatic analysis yields
sufficiently accurate results.

As outlined at the end of Section 7.4.2, mode-I cracks cannot grow faster than the
Rayleigh wave speed for energetic reasons since the energy release rate vanishes for
ȧ > cR. This is not the case for mode-II shear cracks. While in this case the energy
release rate likewise goes to zero for ȧ → cR, it again attains a positive value for
ȧ =

√
2c2. In the range cR < ȧ <

√
2c2 the crack tip singularity depends on

the crack speed and is weaker than r−1/2 so that the energy release rate is zero.
That means that mode II shear cracks may propagate at a so-called intersonic speed,
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i.e. above cR and c2 and below c1. Recent experimental results and observations
from shallow crustal earthquakes provide evidence of intersonic crack propagation.

7.4.4 Examples

The investigation of fast crack propagation is generally quite laborious, irrespective
of whether experimental, numerical, or analytical methods are utilized. A significant
simplification, however, results when it can be assumed that the crack advance takes
place at constant speed ȧ and under steady-state conditions. The transformation of
the wave equations (7.5) for plane strain to the coordinate system x′, y′ that moves
at the speed ȧ = const then leads with ∂(·)/∂t = 0 and ä = 0 to exactly the
Laplace equations (7.25) discussed in Section 7.4.1. Their solution can generally be
written in the form φ = Re Φ(z1), ψ = Re Ψ(z2).

As an example the classical Yoffe problem (E.H. YOFFE, 1951) is considered
first. It consists of a straight crack of constant length which moves at constant speed
in an unbounded domain subjected to uniaxial tension σ (Fig. 7.10a). The crack
hence opens at the leading tip and (physical unrealistically) closes again at its end.
The corresponding static problem has been studied in Section 4.4.1. For Φ and Ψ
the representations

Φ′(z1) = A1

√
z21 − a2 +A2z1 , Ψ ′(z2) = iB1

√
z22 − a2 + iB2z2 , (7.46)

are chosen from which the displacements and stresses can be computed using (7.2)
and the elasticity law. The boundary conditions σy = 0, τxy = 0 for |x′| < a
(traction-free crack faces) and σy = σ, σx = 0 for zi → ∞ yield the constants
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σ

G

1 + α2
2

R(ȧ)
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σ

G

[
2(α2
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2

2α1
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2
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(α2
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2
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α2R(ȧ)
− 1

2α2

]
.

(7.47)

The symmetry conditions v = 0, τxy = 0 for |x′| > a are automatically fulfilled.
Thus the stresses and displacements in the entire domain are uniquely determined.
In particular, the stress σy ahead of the crack tip and the displacements v of the
upper and lower crack faces are obtained as

σy = σ
x′√

x′2 − a2 , v± = ± σ
G

α1(1− α2
2)

R(ȧ)

√
a2 − x′2 . (7.48)

While σy is independent of ȧ (i.e., it shows the same behavior as in the static case)
the crack opening increases with increasing crack speed and tends to infinity for
ȧ → cR. Correspondingly, the K-factor is given by the static value KI = σ

√
πa
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Fig. 7.10 Yoffe’s problem

whereas the energy release rate according to (7.38) shows an unlimited growth with
the crack speed (Fig. 7.10b).

As a second example the steady-state propagation of a semi-infinite crack in an
infinitely long strip as sketched in Fig. 7.11a is investigated. Loading is specified by
a prescribed constant relative displacement 2δ of the horizontal boundaries of the
strip. In this case the energy release rate can easily be computed from (7.36). For
this purpose a contour C is chosen with its vertical parts located far away from the
crack tip in the undisturbed regions to the right and left, respectively (Fig. 7.11a).
There the stress and deformation states in plane strain are given by

x′1 � h : ε22 =
δ

h
, σ22 =

2Gδ(1− ν)
h(1− 2ν)

, ui,1 = 0

x′1 � −h : ε22 = σ22 = ui,1 = 0 .

With U = 1
2σ22 ε22 only the vertical part of C ahead of the crack tip yields a

contribution to G (the contributions from the horizontal parts ofC cancel each other)
and one obtains
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Fig. 7.11 Steady-state crack propagation in an infinite strip
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G = 2hU |x′
1�h =

2(1− ν)
1− 2ν

Gδ2

h
. (7.49)

Accordingly, the energy release rate is independent of the crack speed and the result
(7.49) hence is also valid for the stationary crack (ȧ = 0). The stress intensity factor
follows from (7.38) and reads

KI(ȧ) = 2Gδ

√
(1− ν)R(ȧ)

h(1− 2ν)(1− α2
2)α1

. (7.50)

It decreases with increasing crack speed and tends to zero for ȧ→ cR (Fig. 7.11b).
It should be noted that from similar considerations the energy release rate for fast
running cracks in long pipes can be computed which is an application of great prac-
tical importance.

The following example is concerned with the nonstationary growth of an edge-
crack in a rectangular plate loaded by an idealized impact σH(t). Figure 7.12 shows
results from numerical analyses in plane stress for three different fracture criteria.
In case (a) theK-criterion (7.43) has been employed where KId(ȧ) is given by the
relation

K
(a)
Id = KIc

[
1 + 2.5(ȧ/c2)

2 + 3.9 · 104(ȧ/c2)10
]

(7.51)

with KIc = 0.69MPa
√
m. This relation is an approximation to experimental data

for Araldite (a brittle amorphous material). Case (b) is also based on theK-criterion
where now, for simplicity, the fracture toughness is taken independent of the crack
speed: K(b)

Id = KIc. Finally, in case (c) the energetic fracture criterion (7.44) has

been used where Gd is assumed to be independent of the crack speed: G(c)
d = Gc =

K2
Ic/E. Using (7.38) the energetic criterion can be transformed into theK-criterion;

the fracture toughness is in this case given by

σH(t)

σH(t)

15075 225

1.0
(c)

t [μs]

(a)

0

a(t)
bb=60

120

0.5

(b)

a(t)

Fig. 7.12 Dynamic propagation of an edge-crack; a(0)=29.5 mm
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K
(c)
Id = KIc

√
R(ȧ)

(1− ν)α1(1− α2
2)
. (7.52)

Hence the three cases differ only by theKId(ȧ)-dependence and in the entire range

of the crack speed we have K(c)
Id ≤ K

(b)
Id ≤ K

(a)
Id . Accordingly, crack propagation

through the plate is fastest for (c) and slowest for (a). The attained maximum crack
speeds are ȧ(c) ≈ ȧ(b) = 0.74 c2 and ȧ(a) = 0.37 c2. The first two are unrealistically
high while the last one is in the range of experimental observations. It should be
noted that the crack speed in the most realistic case (a) is almost constant despite
the strongly varying stress field.

It has already been mentioned that upon impact loading of a component which
contains a crack, stress waves may repeatedly interact with the crack tip due to their
multiple reflections. This leads to complex temporal variations of the stress inten-
sity factors (cf. Fig. 7.3) and a mixed-mode loading state according to Section 4.9
generally prevails at the crack tip. The crack path then typically displays a curvi-
linear trajectory which is determined by the characteristic details of the dynamic
loading which affect the crack-tip loading state at each current position of the crack
tip. This is illustrated here by means of a numerical example where crack advance
(including the direction) proceeds “freely”, i.e., only controlled by a fracture cri-
terion according to Section 4.9. We consider a rectangular plate (Fig. 7.13) with
the symmetry slightly disturbed by the location of the initial (edge-) crack. Loading
is specified by an ideal impact σH(t) on the vertical boundaries and by different
temporal variations σa(t) or σb(t), respectively, on the horizontal boundaries. Fig-
ure 7.13 shows the crack trajectories determined from numerical simulations for
two different loading rates ( σ̇a(t) � σ̇b(t) ). The incremental computation of the
crack path is based on the fracture criterion of maximum circumferential stress (Sec-
tion 4.9) and the relation (7.51) for the fracture toughness. Instead of the relations
(4.143) which are valid only in the static case, the evaluation of the fracture crite-
rion in the present situation of a fast running crack has to account for the dynamic
crack-tip field σϕ(KI , KII , ȧ, ϕ) according to (7.27).

b)a)

σb(t)

σb(t)

σH(t)σH(t)σH(t)σH(t)

σa(t)

σa(t)

Fig. 7.13 Crack paths resulting from repeated stress wave loading; σ̇a � σ̇b
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The two entirely different crack paths in Fig. 7.13 can be explained from the
superposition of stress waves emanating from the boundaries of the plate. These
superpositions cause sudden changes of the crack-tip stress field at distinct times.
Which stress state exactly results and to which crack propagation direction this leads
hence depends in a complicated manner on the type of the boundary loading (σa(t)
or σb(t)) that determines the wave profile.

7.5 Fragmentation

In the absence of a macroscopic initial crack, a sufficiently high dynamic loading
often causes breaking of a solid body into a multitude of pieces (fragments). This
process, which takes place in very short time, is called fragmentation. It can qualita-
tively be explained by the conversion of kinetic energy into fracture surface energy.
In such a fracture process, the average size and number of resulting fragments are
sometimes an important issue. Its thorough analysis requires to take statistical as-
pects into account, such as the distribution of initial defects (e.g. microcracks) in the
material. Nevertheless, already a purely deterministic approach based on energetic
considerations (GRADY, 1982) provides some interesting insight. This is illustrated
in the following by means of a simple example.

We consider the axisymmetric problem of a thin-walled ring (or cylinder) which
is loaded by a sufficiently high internal pressure so that the material moves outward
in radial direction with velocity v0 (Fig. 7.14). At a current radius r the strain rate
in circumferential direction is ε̇0 = v0/r. We assume that the ring breaks into n
equal pieces of length l with nl = 2πr. Moreover, it can be assumed (supported
by experimental observations) that at the instant of fragmentation the kinetic energy
of the ring is significantly larger than the stored elastic energy and that the radial
velocity v0 does not change much. The kinetic energy of the material’s motion in
tangential direction in each fragment relative to its center of mass is considered
as the source to supply the fracture energy. With the circumferential strain rate ε̇0
and the (circumferential) coordinate s measured from the fragment’s center of mass
(see Fig. 7.14) the respective relative velocity can be written as vrel = ε̇0s. The
corresponding portion T ∗ of kinetic energy per fragment hence reads

p

v0
vrel

v0

s
vrel

Fig. 7.14 Fragmentation of a ring subjected to internal pressure
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T ∗ =
1

2
�Aε̇20

l/2∫

−l/2

s2 ds =
1

24
�Aε̇20l

3 (7.53)

where � is the mass density and A the cross section of the ring. With the specific
fracture surface energy γ of the material, the fracture energy per fragment is Γ =
γA. Setting this equal to the kinetic energy portion T ∗ yields the following relation
for the length l of a fragment as a function of specific fracture energy, mass density
and circumferential strain rate:

l =

(
24γ

�ε̇20

)1/3

. (7.54)

According to this, the fragment size l is directly proportional to γ1/3 and inversely
proportional to ε̇2/30 . Despite the simplifying assumptions this scaling law for the
fragment size agrees quite well with experimental findings. Similar considerations
can be worked out for other geometrical configurations.
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Chapter 8
Micromechanics and homogenization

8.1 Introduction

On close inspection, e.g., through a microscope, all real materials show a multitude
of heterogeneities even if they macroscopically appear to be homogeneous. These
deviations from homogeneity may exist in form of cracks, voids, particles, or regions
of a foreign material, layers or fibers in a laminate, grain boundaries, or irregularities
in a crystal lattice. Here they shall be referred to as defects in a generalized sense.
Subject of micromechanical investigations is the behavior of these heterogeneities or
defects as well as their effect on the overall properties and performance of a material.
For instance, heterogeneities of any kind can locally act as stress concentrators and
thereby lead to the formation and coalescence of microcracks or voids as a source
of progressive material damage (see Section 3.1.2 and Chapter 9).

Defects occur on different length scales which are characteristic for a certain
material and for the respective type of defect (Fig. 8.1). An important task of mi-
cromechanics hence is to link mechanical relations on different length scales. Start-
ing from a macroscopic level, defects and their spatial distribution prevailing on
a smaller length scale – the microscale – are regarded as the microstructure of a
material. What is meant by the macroscopic level and the microscopic level in a
certain case depends on the problem at hand and is an issue of modelling. As illus-
trated in Fig. 8.1, a microstructure in form of many cracks on the millimeter scale
may, for instance, be identified in a technical component. The apparently homo-
geneous material between the individual cracks, however, can itself be regarded as
the macroscopic level with respect to an even finer polycrystalline microstructure
with a characteristic length scale (grain size) in the range of microns. And a single
grain, on the other hand, can represent the macroscopic level when focusing on the
microstructure of the crystal lattice with numerous discrete dislocations. Such an
approach bears the advantage that a complex material behavior which is difficult
to describe in a purely phenomenological manner is traced back to elementary pro-
cesses on the microscale. Micromechanical problems can be treated in the frame-
work of continuum mechanics. Via the additional consideration of a finer length

© Springer-Verlag Berlin Heidelberg 2011
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Fig. 8.1 Macroscopic and microscopic levels, characteristic length scales

scale (the microscopic level) a spatial distribution of defects (the microstructure)
then is related to a material point on the macroscopic level.

The investigation of defects may be subdivided according to two essential prob-
lems. Point of interest can be the behavior of a defect on its own length scale which
also comprises the interaction with further defects (see, e.g., Section 4.4.4). On the
other hand, one may examine the influence of many defects on the macroscopic
material behavior on a larger length scale. In this latter case the entire behavior
of the microstructure is interpreted as the mechanical state of a material point on
the macroscopic level which thereby is ascribed effective material properties. Such
a micro-to-macro transition formally proceeds by appropriate averaging processes
and is called homogenization. Microstructural changes then lead to changes of the
overall (effective) properties of the material. A microstructural evolution such as the
growth of microcracks or microvoids which gives rise to a reduction of macroscopic
stiffness or strength is referred to as damage and is, because of its importance for
fracture mechanics and failure, separately treated in Chapter 9.

The present chapter serves to introduce fundamental concepts and methods of
micromechanics. Besides the characterization of typical defects and their local ac-
tion the issue of the transition from the microscopic to the macroscopic level and
the derivation of effective material properties from a given microstructure is investi-
gated. We will mainly focus on linear elastic material behavior, yet a brief introduc-
tion into the treatment of elastic-plastic and thermoelastic materials is also given.

Early theoretical studies of the performance of materials with microstructure date
back to J.C. MAXWELL (1831-1879), LORD RAYLEIGH, (1842-1919) and A. EIN-
STEIN (1879-1955). While the former two were concerned with the determination of
the overall electric conductivity of a heterogeneous material the latter investigated
the effective viscosity of a fluid which contains a suspension of solid spherical par-
ticles. In solid mechanics emphasis was orginally placed on the determination of the
elastic constants of a polycrystal from those of a single crystal with first theoreti-
cal considerations by W. VOIGT (1850-1919) and A. REUSS (1900-1968). Impor-
tant contributions were supplied, among others, by E. KRÖNER (1919-2000) and
R. HILL (1921-2011) in the second half of the last century. Their theoretical con-
cepts and analytical approximations, which also apply to modern composite materi-
als, were later on extended and generalized to inelastic material behavior. Moreover,
they serve as foundations for the treatment of the “inverse problem”, i.e., the design
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of new composite materials having an optimized microstructure with regard to the
overall performance.

8.2 Selected defects and fundamental solutions

Defects in an elastic material inevitably give rise to inhomogeneous stress and strain
fields by which the defects can be characterized. One may distinguish between de-
fects which are themselves the source of a so-called eigenstrain or eigenstress field
(e.g., dislocations, inclusions) and those which only under the action of some ex-
ternal load induce a perturbation of the uniform (i.e., spatially constant) field such
as particles of a foreign material, voids, or cracks. In the latter case of material in-
homogeneities it is possible and practical to decompose the total strain and stress
field into two parts: (1) a uniform field as it would prevail in a defect-free material,
and (2) the deviation induced by the defects. The second part then is referred to as
the equivalent eigenstrain or eigenstress, respectively. This decomposition allows to
establish a formal equivalence between an inhomogeneous material and some homo-
geneous material with a certain eigenstrain or eigenstress distribution, irrespective
of its physical origin.

In the following we will discuss some typical defects by means of fundamental
solutions in an unbounded linear elastic medium and start by analysing the effect of
eigenstrains in a homogeneous material.

8.2.1 Eigenstrain

8.2.1.1 Center of dilatation

A center of dilatation is the idealization of an “infinitely” small (point-like) region
which undergoes an “infinitely” strong radial expansion (eigenstrain). It gives rise
to a singular strain and stress field which in an isotropic medium is spherically
symmetric with tension in circumferential and pressure in radial direction. A center
of dilatation may also be interpreted as a spherical region of radius a inside which a
pressure p prevails (Fig. 8.2). The displacement and stress field in the surrounding
material can be represented in spherical coordinates (r, ϕ, ϑ) as

ur = p
a3

4μr2
, uϕ = uϑ = 0 ,

σrr = −p a
3

r3
, σϕϕ = σϑϑ = p

a3

2r3
, σrϕ = σrϑ = σϕϑ = 0 .

(8.1)

A center of dilatation may, for instance, be taken as a simple model for the effect
of an interstitial atom (point defect) on the surrounding elastic crystal lattice.
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x1
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x3

a

r

p

Fig. 8.2 Center of dilatation

8.2.1.2 Straight edge and screw dislocation

Dislocations are line defects in crystalline solids (see Section 3.1.2). In continuum
mechanics they can be characterized by a constant jump b, referred to as the Burgers
vector, which the displacement field undergoes along some contour encircling the
dislocation line (x3-axis in Fig. 8.3; see also Fig. 3.2).

r

x3

a)

x1

b)

b x1

ϕ
r

x3

b

ϕ

x2 x2

Fig. 8.3 a) Straight edge dislocation, b) straight screw dislocation

In case of a straight edge dislocation according to Fig. 8.3a with a Burgers vec-
tor of magnitude b the displacement and stress field in an isotropic, linear elastic
medium can be written as

u1 =
D

2μ

(
2(1− ν)ϕ +

x1x2
r2

)
, u2 =

D

2μ

(
−(1− 2ν) ln r +

x22
r2

)
,

σ11 = −Dx2 3x
2
1 + x

2
2

r4
, σ12 = Dx1

x21 − x22
r4

, σ22 = Dx2
x21 − x22
r4

(8.2)
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where D = bμ/2π(1 − ν) and r2 = x21 + x22 . The respective fields induced by a
straight screw dislocation (Fig. 8.3b) are given by the simpler representation

u3 =
b

2π
ϕ , σ13 = − bμ

2π

x2
r2
, σ23 =

bμ

2π

x1
r2
. (8.3)

8.2.1.3 Inclusion

In contrast to the foregoing examples of point or line defects now we consider the
situation of a spatial distribution of eigenstrain εtij(x). Those strains may, for in-
stance, result from phase transformations in solids where atomic rearrangements
change the geometry of the lattice. Since they are not caused by stress, eigenstrains
are also referred to as stress-free transformation strains (superscript t). Formally, all
kinds of strain which may prevail in a material in the absence of stress can be in-
terpreted as eigenstrains; typical examples are thermal or plastic strains (see (1.44)
and Section 1.3.3). In the framework of infinitesimal deformations the total strains
εij are the sum of elastic strains εeij = C

−1
ijkl σkl and the eigenstrains: εij = εeij+ε

t
ij .

Then the stresses are given by

σij = Cijkl (εkl − εtkl) . (8.4)

If nonvanishing eigenstrains prevail only in some bounded subregion Ω of the
homogeneous material this region is called an inclusion and the surrounding mate-
rial the matrix (Fig. 8.4). It has to be emphasized that the elastic properties of an
inclusion and the matrix are the same; otherwise the region Ω is called an inhomo-
geneity (Section 8.2.2).

inclusion

matrix
Ω

εtkl=0

εtkl �= 0

Fig. 8.4 Inclusion in matrix

In the general case of an arbitrary inclusion geometry Ω and an arbitrary eigen-
strain field εtkl(x) it is not possible to represent the stress distribution and the total
strain and displacement field in closed form. Some special cases are discussed in the
following section.
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8.2.1.4 Eshelby’s result

The probably most important analytical solution of micromechanics has been found
by J.D. ESHELBY (1916-1981). It is valid for an unbounded domain which contains
an ellipsoidal inclusion Ω with principal axes ai (Fig. 8.5):

(x1/a1)
2 + (x2/a2)

2 + (x3/a3)
2 ≤ 1 .

If the eigenstrains in the inclusion are constant, εtkl = const, then the remarkable
result holds that the total strains εkl inside the inclusionΩ are constant as well. Via
the fourth-order Eshelby tensor Sijkl they depend linearly on the eigenstrains:

εij = Sijkl ε
t
kl = const in Ω . (8.5)

Using (8.4) the stresses insideΩ which then are likewise constant can be represented
as

σij = Cijmn (Smnkl − Imnkl) εtkl = const in Ω (8.6)

where

Imnkl =
1

2
(δmkδnl + δmlδnk) (8.7)

is the symmetric fourth-order unit tensor. The Eshelby tensor is symmetric in the
first and second pair of indices, but in general it is not symmetric with regard to an
exchange of these pairs:

Sijkl = Sjikl = Sijlk , Sijkl �= Sklij . (8.8)

In case of an isotropic material its components depend only on Poisson’s ratio ν,
the ratios of the principal axes ai, and their orientation with respect to some carte-
sian coordinate system. Because of the length of the respective expressions they

Ω
x1

a2

a1

x3

a3

x2

Fig. 8.5 Ellipsoidal inclusion Ω in an unbounded domain
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are not given here and the reader is referred to the literature (e.g., MURA, 1982;
KACHANOV et al., 2003) for their representation.

Outside the inclusion Ω the stresses and strains are not constant; with in-
creasing distance r from the inclusion they asymptotically decay according to
εij , σij ∼ r−3 for r → ∞ , as in case of a center of dilatation. The result
(8.5) by ESHELBY (1957) holds for an arbitrary anisotropic material. Yet, only in
case of an isotropic material is a closed-form representation of the tensor Sijkl and
the fields outside Ω possible. The Eshelby solution for ellipsoidal inclusions is of
fundamental importance for analytical homogenization techniques; it will by inten-
sively employed in later sections.

Starting from the general ellipsoid various special cases can be derived. For in-
stance, the two-dimensional solution for an infinitely long cylinder of elliptic cross
section in plane strain is obtained from the limit process a3 → ∞ (Fig. 8.6). The ex-
terior strain and stress fields in the x1, x2-plane then display an asymptotic behavior
of εij , σij ∼ r−2 for r → ∞ . The nonvanishing components of the Eshelby
tensor in case of an isotropic material are for the orientation of the principal axes of
Ω according to Fig. 8.6 given by

S1111 =
1

2(1− ν)
{
a22 + 2a1a2
(a1 + a2)2

+ (1− 2ν)
a2

a1 + a2

}
,

S2222 =
1

2(1− ν)
{
a21 + 2a1a2
(a1 + a2)2

+ (1− 2ν)
a1

a1 + a2

}
,

S1122 =
1

2(1− ν)
{

a22
(a1 + a2)2

− (1− 2ν)
a2

a1 + a2

}
,

S2211 =
1

2(1− ν)
{

a21
(a1 + a2)2

− (1− 2ν)
a1

a1 + a2

}
, (8.9)

S1212 =
1

2(1− ν)
{

a21 + a
2
2

2(a1 + a2)2
+

1− 2ν

2

}
,

S1133 =
ν

2(1− ν)
2a2

a1 + a2
, S2233 =

ν

2(1− ν)
2a1

a1 + a2
,

S1313 =
a2

2(a1 + a2)
, S2323 =

a1
2(a1 + a2)

.

For a spherical inclusion (ai = a) in an isotropic material the dependence on the
principal axes and their orientation vanishes (geometric isotropy) and the Eshelby
tensor reduces to

Sijkl = α
1

3
δijδkl + β ( Iijkl − 1

3
δijδkl ) (8.10)

where
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Fig. 8.6 Elliptic cylinder

α =
1 + ν

3(1− ν) =
3K

3K + 4μ
, β =

2(4− 5ν)

15(1− ν) =
6(K + 2μ)

5(3K + 4μ)
(8.11)

are scalar parameters. The entire (i.e., elastic and geometric) isotropy of the problem
then allows the decomposition into volumetric and deviatoric strains which high-
lights the meaning of the parameters α and β:

εkk = α εtkk , eij = β e
t
ij in Ω . (8.12)

As a simple example we consider the thermal expansion due to a constant tem-
perature increaseΔT in some spherical region of radius a. This can be described by
the eigenstrains

εtij =

{
kΔT δij , r ≤ a

0 , r > a
(8.13)

where k is the coefficient of thermal expansion. According to (8.12) the strains in-
side the inclusion (r ≤ a) are εkk = 3αkΔT , eij = 0 or in spherical coordinates
(r, ϕ, ϑ)

εr = εϕ = εϑ =
1 + ν

3(1− ν) kΔT . (8.14)

Outside the inclusion (r > a) the solution is

εr = −2
1 + ν

3(1− ν)
(a
r

)3
kΔT , εϕ = εϑ =

1 + ν

3(1− ν)
(a
r

)3
kΔT . (8.15)
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8.2.1.5 Defect energies

Due to the stress and strain fields caused by defects on the microscopic level of
a material the overall energy content of the material is affected. The evolution of
defects (e.g., translation or growth) hence gives rise to energy changes which in
turn can be related to the action of so-called generalized (material) forces (see
Section 4.6.5.2). Of special importance in this context are those parts of the energy
which express the interaction of external (imposed) fields with the fields induced by
the defects.

In the following we consider an arbitrary inclusion Ω in some finite volume V
with boundary ∂V on which the load t0i is prescribed (Fig. 8.7); volume forces are
neglected here. Because of the linearity of the problem all fields can additively be
decomposed into a part due to the external load (indicated by the superscript 0) and
a part (without superscript) caused by the eigenstrain εtij(x) of the inclusion. The
total potential hence reads

Π =
1

2

∫

V

(σ0ij + σij)(ε
0
ij + εij − εtij︸ ︷︷ ︸

εeij

) dV −
∫

∂V

t0i (u
0
i + ui) dA

=
1

2

∫

V

σ0ijε
0
ij dV −

∫

∂V

t0i u
0
i dA

︸ ︷︷ ︸
Π0

+
1

2

∫

V

σij(εij − εtij) dV
︸ ︷︷ ︸

Πt

(8.16)

+
1

2

∫

V

(σ0ij(εij − εtij) + σijε0ij) dV
︸ ︷︷ ︸

= 0 (∗)

−
∫

∂V

t0iui dA

︸ ︷︷ ︸
Πi

.

That the term (∗) vanishes can be shown as follows. First, by inserting the elasticity
law, the terms below the integral can be combined. Application of the divergence
theorem then yields a surface integral and a volume integral, the integrands of which

εtkl=0

εtkl �= 0

t0i

Ω
V

∂V

Fig. 8.7 Inclusion Ω in bounded domain under external load
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both vanish since eigenstrains alone do not cause tractions on ∂V (i.e., ti|∂V
= 0)

and because of the equilibrium condition σij,j = 0:

(∗) = 1

2

∫

V

[ε0kl Cijkl(εij − εtij)︸ ︷︷ ︸
σkl

+ σijε
0
ij ] dV =

∫

V

σijε
0
ij dV

=

∫

∂V

tiu
0
i dA −

∫

V

σij,ju
0
i dV = 0 .

The term Π0 in the total potential (8.17) denotes the energy solely due to the
external load and is irrelevant in the present context. The energy Πt which results
solely from the eigenstrain is called the self energy of the defect; it can be further
transformed according to

Πt =
1

2

∫

V

σij(εij−εtij) dV =
1

2

∫

V

σijεij dV

︸ ︷︷ ︸
= 0, cf. (∗)

−1

2

∫

V

σijε
t
ij dV = −1

2

∫

Ω

σijε
t
ij dV .

(8.17)
In the special case of an ellipsoidal inclusion in an unbounded domain and a constant
eigenstrain the stress σij inside Ω is also constant. Using (8.6) the term Πt then
reduces to

Π t = −1

2
σijε

t
ijVΩ = −1

2
Cijmn(Smnkl − Imnkl)εtijεtklVΩ (8.18)

where VΩ denotes the volume of the inclusion.
The interaction energy Πi of the inclusion is defined as Πi = Π −Π0 −Πt

and hence is equal to the remaining term in (8.17). It expresses the work done by the
displacements induced by the eigenstrain on the external load and can be written as
follows

Πi =−
∫

∂V

t0iui dA = −
∫

V

σ0ijεij dV = −
∫

V

ε0ijCijkl (ε
e
kl + ε

t
kl)︸ ︷︷ ︸

εkl

dV

=−
∫

V

ε0ijσij dV

︸ ︷︷ ︸
= 0, cf. (∗)

−
∫

V

σ0ijε
t
ij dV = −

∫

Ω

σ0ijε
t
ij dV . (8.19)

using similar steps as above. In case of a constant eigenstrain and a uniform external
load (σ0ij = const) it simplifies to

Πi = −σ0ijεtijVΩ . (8.20)
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The relation between the energy due to the presence of a defect and the general-
ized force acting on the defect is exemplified here by means of a center of dilatation
(Section 8.2.1.1) in an unbounded domain subjected to a constant far-field loading
σ0ij . When located at point x = ξ the eigenstrain of a center of dilatation can be
written using Dirac’s delta function δ(.) as

εtij(x) = q δ(x − ξ) δij (8.21)

where q denotes its intensity. Insertion into (8.19) yields the dependence of the in-
teraction energy on the location of the defect:

Πi(ξ) = −
∫

V

σ0ij(x)ε
t
ij(x) dV = −q

∫

V

σ0jj(x)δ(x− ξ) dV = −q σ0jj(ξ) .(8.22)

In case of a center of dilatation it depends only on the hydrostatic part σ0jj of the
stress field induced by the external load. Analogous to Section 4.6.5.2 the gener-
alized force F acting on the center of dilatation is determined from the energy
dΠ = −Fkdξk released by a translation dξ of the defect. In the present case only
the interaction energy changes with a translation of the defect and we get

Fk = − ∂Π
i

∂ξk
= q

∂σ0jj(ξ)

∂ξk
. (8.23)

The generalized force on the center of dilatation hence is proportional to the gradient
of the hydrostatic part of the external stress field (Fig. 8.8).

F

σ0
jj

Fig. 8.8 Generalized force on a center of dilatation

The above example can be taken as a simple model for the stress-assisted dif-
fusion of an interstitial atom in a crystal lattice. According to this, the generalized
force causes a preferential migration of the interstitial atom towards regions sub-
jected to a higher hydrostatic stress, i.e., with larger distances between the lattice
atoms.
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8.2.2 Inhomogeneities

8.2.2.1 Concept of equivalent eigenstrain

Now we focus on the second class of defects which instead of eigenstrains in a
homogeneous material are characterized by inhomogeneous, i.e., spatially varying,
material properties. We proceed in that we first describe these defects by an equiva-
lent eigenstrain in some homogeneous comparison material in order to then apply
again Eshelby’s result. Therefore, we consider a domain V with the inhomogeneous
material behavior described by the spatially dependent elasticity tensor Cijkl(x)
and with displacements ûi prescribed on the boundary ∂V (Fig. 8.9a). If volume
forces are neglected this boundary value problem is governed by the equations

σij,j = 0 , σij = Cijkl(x) εkl , ui|∂V
= ûi . (8.24)

In addition we consider the geometrically identical domain V subjected to the same
boundary conditions, yet consisting of a homogeneous comparison material with
the constant material properties C0

ijkl (Fig. 8.9b). The fields in this problem are
indicated by the superscript 0:

σ0ij,j = 0 , σ0ij = C
0
ijkl ε

0
kl , u0i |∂V

= ûi . (8.25)

If the difference fields

ũi = ui − u0i , ε̃ij = εij − ε0ij , (8.26)

are formed, it follows for the stress difference that

σ̃ij = σij − σ0ij = Cijkl(x) εkl − C0
ijkl

(
εkl − ε̃kl︸ ︷︷ ︸
ε0ij

)

= C0
ijkl

[
ε̃kl + C

0−1
klmn[Cmnpq(x)− C0

mnpq ] εpq︸ ︷︷ ︸
−ε∗kl

]
.

(8.27)

The difference fields hence are governed by the equations

σ̃ij,j = 0 , σ̃ij = C
0
ijkl

(
ε̃kl − ε∗kl

)
, ũi|∂V

= 0 (8.28)

which describe a boundary value problem in a homogeneous material C0
ijkl with

eigenstrain ε∗kl(x) and vanishing displacements on the boundary ∂V (Fig. 8.9c).
Here,

ε∗ij = −C0−1
ijkl

[
Cklmn(x)− C0

klmn

]
εmn (8.29)

denotes the equivalent eigenstrain, i.e., equivalent to the heterogeneity of the mate-
rial. Using an arbitrary homogeneous comparison material, the originally complex
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+ 

b)a)

∂V
ε∗ij

V

c)

V

d)

V
ûi

V

ε∗ij

= =C0
ijkl=const C0

ijkl=constC0
ijkl=const

ûi ûi

Cijkl(x)

Fig. 8.9 a) Heterogeneous material, b) homogeneous comparison material, c) equivalent eigen-
strain, d) homogenized original problem

problem of Fig. 8.9a thus has been transformed into the simpler problem of Fig. 8.9d
with a homogeneous material and distributed eigenstrains. The latter still depend on
the strain field of the original problem, but this dependence is only via the devia-
tion Cijkl(x) − C0

ijkl in the elastic properties. Such an approach which may also
be understood as a kind of filtering is advantageous in several regards. For instance,
we already know fundamental solutions for eigenstrain problems in a homogeneous
material such as Eshelby’s result which now can be formally applied to material
inhomogeneities. Also, the differenceCijkl(x)−C0

ijkl in (8.29) means that with an
appropriately chosen C0

ijkl an error in the approximation of εij(x) in the solution
of the boundary value problem (8.28) may have a smaller effect than in the original
problem (8.24). The quantity

τij(x) =
[
Cijkl(x)− C0

ijkl

]
εkl(x) (8.30)

in (8.29) which is called stress polarization emphasizes this connection. It describes
the deviation of the “true” stress σij = Cijkl εkl from the stress which would re-
sult from the “true” strain εkl in the homogeneous comparison material. The stress
polarization τij plays an important role in the framework of a variational formula-
tion in Section 8.3.3.2.

The method of subtraction of a boundary value problem for a homogeneous (i.e.,
defect-free) material was basically already applied in Section 4.4.1 in the decompo-
sition into two subproblems (Fig. 4.9). The fictitious crack loading introduced there
in the subproblem (2) may also be interpreted as an eigenstress and the displacement
jump, as will become more clear later on, as an eigenstrain.

If in addition to the material inhomogeneityCijkl(x) a “true” eigenstrain εtij(x)
according to Section 8.2.1.3 prevails, the above procedure leads to an equivalent
eigenstrain in the homogeneous comparison material of

ε∗ij = −C0−1
ijkl

[ (
Cklmn(x)− C0

klmn

)
εmn − Cklmn(x) εtmn

]
. (8.31a)

In view of the frequently occurring tensorial expressions we will in the follow-
ing besides the index notation for clarity also make use of the symbolic notation:
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σij , εij , Cijkl → σ, ε, C (see Chapter 1). In this notation, for instance equation
(8.31a) attains the form:

ε∗ = −C0−1 :
[ (

C(x)−C0
)
: ε−C(x) : εt

]
. (8.31b)

To distinguish it from the second-order unit tensor I the fourth-order unit tensor
(8.7) is represented by the symbol 1. The interchange of the first and second pair
of indices of a fourth-order tensor is indicated by a superscript T (transposition):
Amnij Bmnkl = (AT : B)ijkl .

8.2.2.2 Ellipsoidal inhomogeneities

As an important special case which allows to apply Eshelby’s result we consider
an ellipsoidal material inhomogeneityΩ in an unbounded matrix (Fig. 8.10a). Now
the elastic properties are piecewise constant and given by the elasticity tensors C

I

inside Ω (inhomogeneity) and CM in the surrounding matrix. At infinity the ho-
mogeneous strain field ε0 = const is prescribed and the matrix material is chosen
as the homogeneous comparison material: C0 = C

M
. Using (8.26) and (8.29) the

equivalent eigenstrain in Ω then is

ε∗(x) = −C−1
M

:
(
C

I
−C

M

)
:
(
ε̃(x) + ε0

)
. (8.32)

Since outside Ω we have ε∗ = 0 the difference strain ε̃(x) in (8.28) can be deter-
mined from Eshelby’s result

ε̃ = S : ε∗ = const . (8.33)

That the prerequisite for its application of a constant eigenstrain indeed holds is
confirmed by insertion of (8.33) into (8.32). Solving for ε∗ then yields the equivalent

=

b)a)

ε0

C
M

C
M

ε∗=0

C
I

ε0 ε0

ε∗ �=0

ε0

Fig. 8.10 a) Ellipsoidal inhomogeneity, b) homogeneous material with eigenstrain
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eigenstrain due to a constant strain ε0 imposed at infinity at (Fig. 8.10b):

ε∗ = − [S + (C
I
−C

M
)−1 : C

M

]−1
: ε0 in Ω . (8.34)

Using (8.33) and (8.34) the total strain ε = ε0 + ε̃ inside the inhomogeneityΩ as a
function of the external load ε0 reads

ε =
[
1+ S : C−1

M
: (C

I
−C

M
)
]−1

︸ ︷︷ ︸
A

∞
I

: ε0 = const . (8.35a)

The fourth-order tensor A
∞
I

which describes the relation between the strain ε inside
the inhomogeneity and the external load ε0 is called influence tensor. Using (8.35a)
the stress σ = C

I
: ε inside Ω which is also constant can now be expressed, for

instance, as a function of the stress σ0 = C
M
: ε0 applied at infinity:

σ = C
I
: A

∞
I

: C−1
M

: σ0 . (8.35b)

As an example we computeσ for a spherical isotropic inhomogeneity embedded
in an isotropic matrix and, for simplicity, consider only the hydrostatic part. Using
(8.35b) we need only replace S in A

∞
I

by α(ν
M
) from (8.11) and C

I
and C

M
by

the bulk moduli 3K
I

and 3K
M

, respectively:

σii = 3K
I

[
1 + α

3K
I
− 3K

M

3K
M

]−1
σ0ii
3K

M

in Ω . (8.36)

According to (8.11) the parameter representing the Eshelby tensor attains a value of
α = 2/3 for ν

M
= 1/3. For a “stiff” inhomogeneity withK

I
� K

M
it then follows

from (8.36) that the hydrostatic stress inside Ω is σii ≈ 1.5 σ0ii. In case of a “soft”
inhomogeneity (K

I
� K

M
), in contrast, we get σii � σ0ii.

Outside the ellipsoidal inhomogeneity the stresses and strains are not constant
and the difference fields σ̃, ε̃, ũ in the equivalent eigenstrain problem (8.28) display
the same asymptotic behavior as the solution of the inclusion problem discussed in
Section 8.2.1.4.

8.2.2.3 Cavities and cracks

A special case of material inhomogeneities are cavities (voids) and cracks in an oth-
erwise homogeneous medium. Formally, one may consider these defects to consist
of a material of vanishing stiffness and set C

I
= 0 in the relations obtained above

for general inhomogeneities in order to derive respective results for ellipsoidal cav-
ities and (in the limit of one vanishing principal axis) for cracks. Only the strains
inside the defects have to be interpreted in a proper way (see Section 8.3.1.2). It
seems, however, more illustrative to directly treat the boundary value problem for
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these defects in a homogeneous material subjected to a constant far field loading.
One then has to consider boundary conditions on the void surface or crack and in the
following we assume these boundaries to be traction-free. With regard to quantities
needed later on, it suffices here to know only the displacements on the respective
defect surfaces. In the sequel they are given for three important cases. If required,
the complete stress and strain fields may be found in the literature (e.g., MURA,
1982; KACHANOV et al., 2003).

a) Circular hole (2D)
In case of an unbounded isotropic plate in plane stress with a circular hole of radius
a subjected to uniform far field loading σ0ij (Fig. 8.11a) the displacements along the
hole (r = a) are in polar coordinates given by

ur(a, ϕ) =
a

E

[
σ011(3 cos

2 ϕ− sin2 ϕ) + σ022(3 sin
2 ϕ− cos2 ϕ) + 8σ012 sinϕ cosϕ

]

uϕ(a, ϕ) =
4a

E

[
− σ011 sinϕ cosϕ+ σ022 sinϕ cosϕ+ σ012(cos

2 ϕ− sin2 ϕ)
]
.

(8.37)

b) Straight crack (2D)
Along a straight crack of length 2a in an unbounded isotropic plate in plane stress
subjected to a constant load σ0ij at infinity (Fig. 8.11b) the displacement field under-
goes a jump Δu. In a cartesian x1, x2-coordinate system it can be represented as
follows (see Section 4.4.1)

Δui(x1) =
4 σ0i2
E

√
a2 − x21 (i, j = 1, 2) . (8.38)

c) Circular (‘penny-shaped’) crack (3D)
The displacement jump across a penny-shaped crack of radius a oriented perpen-
dicular to the local x3-axis (Fig. 8.11c) reads

a) b) c)

x2

a−a
x1

x3

r
x2

σ0
33

x1

σ0
12

r
x2 σ0

12

x1

σ0
11

σ0
11

ϕ

aσ0
11

σ0
12

σ0
12

σ0
13

σ0
22σ0

22

σ0
22 σ0

22

σ0
23

a

Fig. 8.11 a) Circular hole, b) straight crack, c) penny-shaped crack (3D)
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Δui(r) =
16(1− ν2)
πE(2− ν) σ

0
i3

√
a2 − r2 (i = 1, 2) ,

Δu3(r) =
8(1− ν2)
πE

σ033
√
a2 − r2

(8.39)

where r =
√
x21 + x

2
2 .

8.3 Effective elastic properties

As already mentioned a macroscopically homogeneous material may have a hetero-
geneous microstructure on the microscopic level. Now we want to investigate how
this microstructure affects the material behavior on the macroscopic level, i.e., on
a larger length scale. For an explicit description of the material’s heterogeneity we
will employ the idealized defects or inhomogeneities discussed above. Under certain
conditions which will be made more precise in the sequel it is possible to “smear
out” the fine-scale heterogeneous microstructure and describe the material on the
macroscale as homogeneous with spatially constant effective properties. The lat-
ter then account for the microstructure in an averaged sense. This micro-to-macro
transition is called homogenization. Effective properties in this sense are, for in-
stance, Young’s modulus and Poisson’s ratio of steel as experimentally determined
with standard testing specimens. In many technical applications these properties are
well suited to describe the behavior of a material which microscopically has a very
complex composition (e.g., anisotropic crystallites, grain boundaries, dislocations,
etc.). Measuring material properties, of course, makes only sense if the result does
not depend on the chosen testing specimen; the later has to be representative of the
material. Analogous requirements hold when macroscopic effective material prop-
erties are theoretically derived from a given microstructure as will be discussed in
the following.

8.3.1 Foundations

8.3.1.1 Representative volume element (RVE)

In the framework of a deterministic and continuum mechanical approach the process
of homogenization and the role of the macroscopic and microscopic level with their
characteristic length scales can be illustrated by Fig. 8.12. At some arbitrary point
xmacro on the macroscopic level (e.g., a technical component) where the material
shall be described as homogeneous with constant effective properties, a sufficient
magnification (“microscope”) reveals the spatially extended fine-scale microstruc-
ture.
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(RVE)

xmacro
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(homogenization)

L
l (microstructure)

L

x3 d

Fig. 8.12 Homogenization and characteristic length scales

We assume that the material behavior on the microscale is known and linear elas-
tic. If an additional coordinate system is introduced there, the microstructure can be
described by the dependence of the elasticity tensor Cijkl(x) on the microscale
coordinates xi. Analogous to the measurement of macroscopic material properties
from a representative testing specimen we now consider a volume V on the micro-
scopic level which has to be representative of the entire material. This volume is
employed in the homogenization process to ascribe macroscopic properties to the
material in terms of a spatially constant effective elasticity tensor C∗ijkl . To assure
that this result is independent of the point xmacro the entirety of the microstructural
details which are described by Cijkl(x) and contribute to C∗ijkl has to be indepen-
dent of the location on the macroscale. This prerequisite to a homogenization is
also referred to as a statistically homogeneous distribution of the defects (hetero-
geneities) throughout the material. Furthermore, C∗ijkl must not depend on the size
or shape of the chosen volume V . That means that in case of an irregular microstruc-
ture (defect distribution) the volume V has to contain a sufficiently large number of
defects and its dimension d hence has to be much larger than the characteristic length
scale l of the microstructure. The latter is given, for instance, by the typical size or
distance of individual defects (Fig. 8.12). With this “wave length” l of varying elas-
tic properties Cijkl(x) also the stress and strain fields fluctuate on the microscale.
On the other hand, the volume V has to be small enough that it can approximately
be regarded as a point on the macroscopic level (Fig. 8.12). A characteristic length
L on this level is given by the geometry, by the spatial variation of the loading, or
by the stress and strain fields (“macro fields”) resulting in the macroscopically ho-
mogeneous material. In order to allow in a certain situation the selection of some
volume V which is suitable for the homogenization of the material the characteristic
length scales have to satisfy the size condition
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l � d� L . (8.40)

Then the volume V is called a representative volume element (RVE).
Obviously the restriction of d from two sides according to (8.40) can preclude

the existence of an RVE and thereby a meaningful homogenization. Such a situation,
for instance, prevails at a macroscopic crack tip where the strains in a homogeneous
material are singular and hence strongly vary over an arbitrarily small distance L.
The size d of an RVE according to (8.40) then would have to be infinitely small and
would necessarily violate the distance to the microstructural length scale (l) of any
real material. One usually assumes that this takes place only in the process zone (see
Section 4.10). Similar arguments hold in case of micro-electro-mechanical systems
(MEMs) where components are often so small that “classical” material properties
measured from standard (i.e., large) testing specimens are not suitable for their me-
chanical description. These examples both refer to the right-hand side of the inequal-
ity (8.40) which will, as the condition of statistical homogeneity of the material, in
the following be assumed to be fulfilled. The left-hand side of the inequality, i.e., the
requirement for a minimum size d of an RVE, will be discussed in Section 8.3.1.3 in
conjunction with the specific homogenization process which also allows for a quan-
titative assessment. For practical applications, typical values of d ≈ 0.1mm in case
of ceramics and polycrystalline metals or d ≈ 100mm in case of concrete may be
considered (see also Fig. 8.1).

Caution is also required in the description of so-called functionally gradient ma-
terials (FGMs) with spatially varying macroscopic properties. In this case the distri-
bution of microstructural details displays a spatial variation such that the condition
of a statistically homogeneous microstructure which is necessary for the definition
of effective properties strictly speaking does not hold. The use of effective properties
then has to be seen as a pragmatic approximation.

The prerequisite of statistical homogeneity of a locally irregular microstructure
is no longer necessary in the special case of a strictly periodic defect arrangement.
Then a unit cell of this arrangement is already representative of the entire heteroge-
neous material.

8.3.1.2 Averaging

Via the two-scale consideration according to Fig. 8.12 a material point on the macro-
scopic level is related to a volume V on the microscopic level where stresses and
strains prevail as fluctuating micro-fields. The macro-stresses and macro-strains
which characterize the mechanical state of the macroscopic material point are de-
fined as the volumetric averages of the microscopic fields

〈σij〉 = 1

V

∫

V

σij(x) dV , 〈εij〉 = 1

V

∫

V

εij(x) dV (8.41)
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where the symbol 〈·〉 is used as an abbreviation. Employing the divergence theo-
rem the macroscopic quantities (8.41) can also be expressed by integrals over the
boundary ∂V of the averaging domain V . If vanishing volume forces are assumed
the equilibrium condition σik,k = 0 and xj,k = δjk yield the following identity for
the stresses:

(xj σik),k = xj,k σik + xj σik,k = σij .

Insertion into (8.41) leads to the representation of the macro-stresses

〈σij〉 = 1

V

∫

V

(xj σik),k dV =
1

V

∫

∂V

xj σik nk dA =
1

V

∫

∂V

ti xj dA . (8.42)

The macro-strains can also be written as

〈εij〉 = 1

2V

∫

V

(ui,j + uj,i ) dV =
1

2V

∫

∂V

(ui nj + uj ni ) dA . (8.43)

In the derivation of (8.42) and (8.43) the differentiability of the microscopic
fields in the entire domain V , which is necessary for the applicability of the di-
vergence theorem, was tacitely assumed. Although this condition is not fulfilled in
case of heterogeneous materials with discontinuously varying properties the repre-
sentations (8.42) and (8.43) of the macroscopic quantities by boundary integrals are
generally valid. They hold independent of the material behavior and also in case
of microstructures which contain cavities or cracks. In order to show that this is
true we consider an internal interface S inside a volume V according to Fig. 8.13a
which separates two subdomains V1 and V2 with different properties; across the in-
terface S the stresses and displacements are generally not differentiable. Therefore,
the divergence theorem has to be applied separately to the two subdomains where S
appears once as the boundary of V2 (with outer unit normal nj) and also as the inner
boundary of V1 (with outer unit normal −nj). For the stresses this leads to
∫

V

σijdV =

∫

V1

σijdV +

∫

V2

σijdV =

∫

∂V

ti xjdA+

∫

S

( t
(2)
i − t(1)i )xjdA (8.44)

and for the displacement gradient it follows that

a) b) c)

S
Γ−

Γ+

nj nj nj
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M V

M

∂V∂V∂V

V2

nj
nj

S=∂Vc
V1

nj

Fig. 8.13 Volume V with a) internal interface S, b) cavity, c) crack Γ =Γ+ + Γ−
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∫

V

ui,jdV =

∫

V1

ui,jdV +

∫

V2

ui,jdV =

∫

∂V

ui njdA+

∫

S

(u
(2)
i −u(1)i )njdA. (8.45)

Here, t(1,2)i and u(1,2)i denote the traction and the displacement vectors of V1 and

V2 along the interface S. Because of t(1)i = t
(2)
i (equilibrium) and u(1)i = u

(2)
i

(continuity) at the interface, the integrals over S in (8.44) and (8.45) vanish. The
representations

〈σij〉 = 1

V

∫

∂V

ti xj dA , 〈εij〉 = 1

2V

∫

∂V

(ui nj + uj ni ) dA (8.46)

of the macroscopic quantities hence are valid even in case of discontinuous mate-
rial properties. Since this holds true independent of the actual material behavior and
geometry of the subdomain V2 this result also comprises the special case of cavi-
ties which is obtained in the limit of a vanishing stiffness of the material inside V2
(Fig. 8.13b). By a further limit process S → Γ towards an infinitely thin domain V2
(Fig. 8.13c) also the situation of cracks is included.

Often a volume V of a heterogeneous material consists of n subdomainsVα (α =

1, ..., n) with volume fractions cα = Vα/V and
n∑
α=1

cα = 1 where the elastic prop-

erties Cα are piecewise constant. In case of such a microstructure consisting of
discrete phases we have

〈σ〉 =
n∑
α=1

cα 〈σ〉α , 〈ε〉 =
n∑
α=1

cα 〈ε〉α (8.47)

where

〈σ〉α =
1

Vα

∫

Vα

σ dV , 〈ε〉α =
1

Vα

∫

Vα

ε dV (8.48)

are the phase averages of the stresses and strains. They are related to each other by

〈σ〉α = Cα : 〈ε〉α inside Vα . (8.49)

In case of microstructures which contain only cavities or cracks it is practical to
represent the macroscopic quantities (8.46) in a somewhat different form. Therefore,
we first consider the situation of cavities and transform the average strain 〈εij〉M in
the surrounding matrix material of volume V

M
= c

M
V using the divergence theorem

(see Fig. 8.13b). We get
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〈εij〉M =
1

2V
M

∫

V
M

(ui,j + uj,i) dV

=
1

2V
M

∫

∂V

(uinj + ujni) dA − 1

2V
M

∫

∂Vc

(uinj + ujni) dA

where ∂Vc denotes the cavity surface. If the first integral on the right-hand side is
replaced by (8.43) the macro-strains can be written as

〈εij〉 = cM〈εij〉M +
1

2V

∫

∂Vc

(uinj + ujni) dA

︸ ︷︷ ︸
〈εij〉c

. (8.50a)

In case of cracks the limit process ∂Vc → Γ = Γ+ + Γ− (see Fig. 8.13c) and the
abbreviationΔui = u

+
i − u−i lead to

〈εij〉 = cM〈εij〉M +
1

2V

∫

Γ

(Δuinj +Δujni) dA

︸ ︷︷ ︸
〈εij〉c

. (8.50b)

The macro-strains in case of cavities or cracks hence consist of the average matrix
strain and the quantity 〈ε〉c which represents the average strain of the defect phase
(c for cavity or crack):

〈ε〉 = c
M
〈ε〉

M
+ 〈ε〉c . (8.51)

In contrast, the macro-stress is in case of traction-free cavities or cracks solely given
by the average matrix stress:

〈σ〉 = c
M
〈σ〉

M
. (8.52)

In a material which contains only cracks the volume fraction of the matrix phase is
c
M
= 1.
If the matrix material is homogeneous with C

M
= const and 〈σ〉

M
= C

M
:

〈ε〉
M

elimination of the average matrix stress and strain using (8.47) and (8.50a)
leads to

〈σ〉 = CM :
(
〈ε〉 − 〈ε〉c

)
or 〈ε〉 = C−1

M
: 〈σ〉+ 〈ε〉c , (8.53)

respectively. According to this representation 〈ε〉c appears in the relation between
macro-stresses and macro-strains (established here by the elastic properties of the
matrix !) in the same way as the eigenstrain in (8.4).
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8.3.1.3 Effective elastic constants

Analogous to the elasticity law on the microscopic level

σij(x) = Cijkl(x) εkl(x) (8.54)

the effective elasticity tensor C∗ijkl is defined by the linear relation between the
macro-stresses and macro-strains (8.41):

〈σij〉 = C∗ijkl 〈εkl〉 . (8.55)

The interpretation of C∗ijkl as a material property is subjected to several condi-
tions. It is, for instance, appropriate to require the equality of the average strain
energy density 〈U〉 in the volume V when expressed by means of the microscopic
or macroscopic quantities:

〈U〉 = 〈1
2
εij Cijkl εkl〉 =

1

2
〈εij〉C∗ijkl〈εkl〉 . (8.56)

Using (8.54) and (8.55) this requirement, known as the Hill-condition (HILL, 1963),
can also be written in the form

〈σij εij〉 = 〈σij〉〈εij〉 . (8.57)

For the fluctuations σ̃ij(x) = σij(x) − 〈σij〉 and ε̃ij(x) = εij(x) − 〈εij〉 of
the microscopic fields around their averages it then follows that

〈σ̃ij ε̃ij〉 = 0 . (8.58)

That means that on average the stress fluctuations must not do any work on the strain
fluctuations. Using the divergence theorem and the equilibrium condition σik,k =
0 this can be expressed in terms of quantities on the boundary of the averaging
domain:

1

V

∫

∂V

(
ui − 〈εij〉xj

)(
σik − 〈σik〉

)
nk dA = 0 . (8.59)

Written in this form, the Hill-condition can be interpreted to state that the micro-
fields fluctuating along the boundary of an RVE have to be energetically equivalent
to their averages (Fig. 8.14). As already discussed in Section 8.3.1.1 this can only
be expected to hold if the averaging domain V is sufficiently large with respect to
the heterogeneities.

In order to compute the fields σij(x) and εij(x) in some volume V on the mi-
croscopic level, the equilibrium condition σij,j = 0 and the elasticity law (8.54)
have to be complemented by boundary conditions on ∂V , i.e., a boundary value
problem has to be formulated. The domain V of the heterogeneous material is re-
garded to be equivalent to the same domain of a homogeneous (effective) medium
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Fig. 8.14 RVE with fluctuating microscopic fields and averages

and at the same time represents a macroscopic material point which experiences
only homogeneous stress and strain states. It is therefore appropriate to prescribe
those homogeneous states as boundary conditions on ∂V ; this can be done in two
ways:

a) Linear displacements: ui = ε
0
ij xj on ∂V where ε0ij = const .

In this case it follows from (8.43) with
∫
∂V

xi nj dA = V δij that

〈εij〉 = ε0ij . (8.60a)

b) Uniform tractions: ti = σ
0
ij nj on ∂V where σ0ij = const .

Equation (8.42) then yields

〈σij〉 = σ0ij . (8.60b)

Homogeneous strains ε0ij prescribed on the boundary of an arbitrary domain of a
heterogeneous material hence are equal to the volume average of the strains through-
out this domain. Analogously, if a homogeneous stress state σ0ij is prescribed on the
boundary ∂V it is equal to the average stress in the domain V provided that volume
forces are not present. In case of a homogeneous material both types of boundary
conditions are equivalent and induce homogeneous (i.e., spatially constant) fields
throughout the volume. The relations (8.60a) and (8.60b) are often referred to as the
‘average strain theorem’ and the ‘average stress theorem’.

Using (8.59) one can verify that both types of boundary conditions satisfy the
Hill-condition identically, i.e., irrespective of the domain V . This is not surprising
since the consequence of the Hill-condition that the fluctuating fields on the bound-
ary of an RVE can be replaced by homogeneous fields is anticipated in the above
boundary conditions (a) or (b). Moreover, when the boundary conditions (a) or (b)
are imposed the Hill-condition in the form (8.57) or (8.59) is satisfied independent
of any relation between the fields σij and εij . Hence it can be generalized and ap-

plied to arbitrary statically admissible stress fields σ(1)ij and kinematically admissible

strain fields ε(2)ij :
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〈σ(1)ij ε(2)ij 〉 = 〈σ(1)ij 〉 〈ε(2)ij 〉 . (8.61)

This relation which will be repeatedly used later on follows directly from the general
work theorem (1.95) when boundary conditions of the type (a) or (b) are prescribed.

Because of the uniqueness of the solution of linear elastic boundary value prob-
lems the fields inside the domain V depend linearly on the “loading” parameters ε0ij
or σ0ij in the boundary conditions (a) or (b). The fields therefore can be represented
in the following form:

a) εij(x) = Aijkl(x) ε
0
kl for ui = ε

0
ij xj on ∂V , (8.62a)

b) σij(x) = Bijkl(x)σ
0
kl for ti = σ

0
ij nj on ∂V . (8.62b)

Here, Aijkl(x) and Bijkl(x) denote the components of the so-called influence ten-
sors A(x) and B(x). The fourth-order influence tensors represent the complete
solution of the respective boundary value problems and depend on the microstruc-
ture in the entire domain V . With respect to its first two indices Aijkl(x) satisfies
the compatibility conditions (1.30), exactly as εij does. Correspondingly,Bijkl(x)
satisfies the equilibrium condition Bijkl,j(x) = 0. Averaging (8.62a) and (8.62b)
over V using (8.60a) and (8.60b) in addition reveals that the average value of these
functions is the fourth-order unit tensor (8.7):

〈A〉 = 1 , 〈B〉 = 1 . (8.63)

According to (8.54) and (8.55) the following relations in symbolic notation hold
for the effective elasticity tensor C∗ and the effective compliance tensor C∗−1,
respectively:

C∗ : 〈ε〉 = 〈σ〉 = 〈C : ε〉 , C∗−1 : 〈σ〉 = 〈ε〉 = 〈C−1 : σ〉 . (8.64)

In case of the boundary condition (a) insertion of (8.62a) leads to the representation

C∗ (a) = 〈C : A〉 (8.65a)

and insertion of (8.62b) in case (b) yields

C∗ (b) = 〈C−1 : B〉−1 . (8.65b)

From inserting (8.62a) and (8.62b) in the energy relation (8.56) one obtains the
alternative representations

C∗ (a) = 〈AT : C : A〉 and C∗ (b) = 〈BT : C−1 : B〉−1 (8.66)

from which the symmetry of the effective elasticity tensor with respect to the first
and second pair of indices becomes obvious.
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By the superscripts (a) and (b) it shall be emphasized that these averages which
are computed for an arbitrary volume V in general depend on the type of boundary
condition prescribed on ∂V . Therefore,C∗ (a) or C∗ (b) can strictly speaking not be
regarded as effective material properties because the volume V need not automati-
cally satisfy the requirements of an RVE. The distance between C∗ (a) and C∗ (b)

(in the sense of an appropriate norm) can be taken as a measure for the quality of the
averaging domain. Only if the domain V guarantees that C∗ (a) = C∗ (b) = C∗
can C∗ be interpreted as a unique macroscopic material property. Clearly, this must
also hold for any larger domain which comprises V .

An important problem of micromechanics is the derivation of explicit representa-
tions for the influence tensors A(x) or B(x), and hence for the micro-fields, as well
as for the effective elastic constants. By employing the fundamental solutions pre-
sented in Section 8.2 along with suitable approximations various different methods
will be discussed in the following.

8.3.2 Analytical approximations

8.3.2.1 General relations

According to (8.65a) or (8.65b) the effective elastic constants C∗ can be repre-
sented as the weighted averages of the microscopic elastic properties C(x) where
the influence tensor, e.g., A(x), serves as a weighting function. In case of a real
microstructure, however, neither the exact function C(x) is known nor can the cor-
responding influence tensor in general be written in closed form. Thus appropriate
approximations have to be made with regard to the available information in model-
ing the microstructure as well as in the representation of the influence tensors.

It is therefore practical to restrict the considerations first to microstructures con-
sisting of discrete phases with piecewise constant elastic properties according to
(8.49) which for many materials actually applies (e.g., polycrystals, composites).
Using (8.60a), (8.60b) with prescribed macro-strains 〈ε〉 = ε0 or prescribed macro-
stresses 〈σ〉 = σ0 it then follows from (8.62a), (8.62b) for the phase averages that

〈ε〉α = Aα : 〈ε〉 or 〈σ〉α = Bα : 〈σ〉 , (8.67)

respectively, where

Aα = 〈A〉α and Bα = 〈B〉α . (8.68)

The constant influence tensors Aα and Bα express the dependence of the average
(over the volume of phase α) of some field on the prescribed macroscopic quantity.
Equations (8.65a) and (8.65b) then reduce to
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C∗(a) =
n∑
α=1

cαCα : Aα and C∗(b) =
(

n∑
α=1

cαC
−1
α : Bα

)−1

(8.69)

where only the influence tensors Aα or Bα of n − 1 phases are needed for the
representation of the effective elastic constants C∗ because

n∑
α=1

cαAα = 1 and

n∑
α=1

cαBα = 1 . (8.70)

For simplicity, we consider in the following a material which consists of two
phases only; the methods discussed, however, apply also to the general case. If one
phase is referred to as the matrix (M) and the other as the inhomogeneity (I) it
follows from (8.69) and (8.70) that

C∗ (a) = C
M
+ c

I
(C

I
−C

M
) : A

I
(8.71a)

or

C∗ (b) =
(
C−1

M
+ c

I
(C−1

I
−C−1

M
) : B

I

)−1
, (8.71b)

respectively. These relations are not directly applicable to the special case of a
homogeneous matrix which as the second “phase” contains cavities or cracks. In
this case the linear dependence of the average defect strain 〈ε〉c defined in (8.50a),
(8.50b) on the prescribed macro-quantities ε0 or σ0 is expressed by influence ten-
sors D and H :

〈ε〉c = D : 〈ε〉 for 〈ε〉 = ε0 , 〈ε〉c = H : 〈σ〉 for 〈σ〉 = σ0 . (8.72)

Using (8.53) and (8.64) the effective elasticity tensors then are given by

C∗ (a) = CM : (1−D) or C∗ (b) =
[
C−1

M
+H

]−1
. (8.73)

By virtue of the fact that cavities or cracks cause a reduction of the effective stiffness
of a material the influence tensorD may be interpreted as a measure of damage (see
Chapter 9) while H describes an additional compliance.

In the following some approximations, models, and methods are discussed which
allow for an approximate computation of effective elastic constants.

8.3.2.2 Voigt and Reuss approximation

In a homogeneous material the boundary conditions (8.60a) or (8.60b) lead to ho-
mogeneous (spatially constant) stress and strain fields. In case of a heterogeneous
material the simplest approximation hence is to assume one of the micro-fields to
be constant, in accordance with the boundary conditions (a) or (b).
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If according to W. VOIGT (1889) the strains inside V are taken to be constant
(ε = 〈ε〉 = const) it follows from (8.62a) that the influence tensor is A = 1. From
(8.65a) or (8.69) the effective elasticity tensor then is approximated by the average
stiffness:

C∗
(Voigt) = 〈C〉 =

n∑
α=1

cαCα . (8.74a)

Analogously, in the approximation due to A. REUSS (1929) a constant stress field is
assumed (σ = 〈σ〉 = const) which corresponds to B = 1 in (8.62b). With (8.65b)
or (8.69) this leads to the approximation of the effective compliance tensor by the
average compliance

C∗−1
(Reuss) = 〈C−1〉 =

n∑
α=1

cαC
−1
α . (8.74b)

In the special case of discrete phases of an isotropic material the above approxima-
tions lead to the effective bulk and shear moduli

K∗
(Voigt) =

n∑
α=1

cαKα , μ∗(Voigt) =
n∑
α=1

cαμα (8.75a)

or

K∗−1
(Reuss) =

n∑
α=1

cα
Kα

, μ∗−1
(Reuss) =

n∑
α=1

cα
μα

. (8.75b)

One should note that according to these models the macroscopic behavior of the
material is approximated to be isotropic although in reality an anisotropy may result
from the geometric arrangement of the phases (e.g., fiber-reinforced materials).

In case of a matrix containing cavities or cracks the vanishing stiffness or infinite
compliance, respectively, of the defect phase leads to the Voigt and Reuss approxi-
mations

C∗
(Voigt) = cMC

M
and C∗

(Reuss) = 0 . (8.76)

If, in contrast, one of the phases is rigid (e.g., C
I
→ ∞) one obtains

C∗
(Voigt) → ∞ and C∗

(Reuss) =
1

c
M

C
M
. (8.77)

The approximations of effective elastic properties by the average stiffness or the
average compliance are often referred to as rules of mixtures. They are exact only in
one-dimensional special cases of different materials arranged “in parallel” (Voigt)
or “in series” (Reuss). In general the assumption of constant strains leads to a viola-
tion of local equilibrium (e.g., at phase boundaries) and the assumption of constant
stress precludes the compatibility of deformation. Despite these obvious deficien-
cies the simple approximations by Voigt and Reuss bear the advantage that they
yield exact bounds for the true effective elastic constants of a heterogeneous ma-
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terial. In Section 8.3.3.1 it will be shown that K∗
(Reuss) ≤ K∗ ≤ K∗

(Voigt) and

μ∗(Reuss) ≤ μ∗ ≤ μ∗(Voigt) . Since the Voigt and Reuss approximations are often
far apart from each other a pragmatic approach to improve the approximation of
effective constants is to take their mean values

K∗ ≈ 1

2

(
K∗

(Reuss) +K
∗
(Voigt)

)
, μ∗ ≈ 1

2

(
μ∗(Reuss) + μ

∗
(Voigt)

)
. (8.78)

8.3.2.3 Non-interacting (dilute) defect distribution

Using the exact fundamental solutions presented in Section 8.2.2 it is possible to
develop micromechanical models which satisfy the local equilibrium and guarantee
the compatibility of deformation. In doing so we consider a two-phase material
which consists of a homogeneous matrix with C

M
= const and one kind of equal

defects (second phase). With regard to the available fundamental solutions the latter
will be approximated by ellipsoidal elastic inhomogeneities with C

I
= const, by

circular holes (2D) or by straight (2D) or penny-shaped (3D) cracks.
The simplest situation prevails when the inhomogeneities or defects are so di-

lutely distributed in the homogeneous matrix that their interaction among each other
and with the boundary of the RVE can be neglected (“dilute distribution”). As illus-
trated in Fig. 8.15 each defect then can be considered in an unbounded domain
subjected to a uniform far-field loading ε0 = 〈ε〉 or σ0 = 〈σ〉. The characteris-
tic dimension of the defects therefore has to be small compared to their distance
or to the distance from the boundary of the RVE. Although the solutions obtained
under these idealizations are themselves only valid for very small volume fractions
(c

I
� 1) they form the basis for important generalizations.

ε0 or σ0

∂V

ε0 or σ0

Fig. 8.15 Model of dilute defect distribution

a) Ellipsoidal inhomogeneities
In case of an ellipsoidal inhomogeneity Ω (Section 8.2.2.2) the strain inside the
inhomogeneity is constant (ε = 〈ε〉

I
in Ω) and given by the influence tensor A

∞
I

introduced in (8.35a). According to (8.71a) hence the effective elasticity tensor of
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a material which contains a dilute distribution of ellipsoidal inhomogeneities with
equal orientation and aspect ratio reads

C
∗ (a)
(DD) = C

M
+ c

I
(C

I
−C

M
) : A

∞
I

(8.79a)

where cI � 1 is the volume fraction of inhomogeneities and (DD) stands for “dilute
distribution”. Insertion of (8.35a) yields the representation

C
∗ (a)
(DD) = CM + cI(C I −CM ) :

[
1+ SM : C−1

M
: (C I −CM)

]−1
(8.79b)

where the Eshelby tensor S
M

depends on the matrix material. In case of different
kinds of ellipsoidal inhomogeneities, e.g., of different orientations, one has to start
from (8.69) where the individual influence tensors A

∞
α represent the different ori-

entations via the respective Eshelby tensors.
The superscript (a) in (8.79a,b) indicates that this result is valid only for the

case (a) of prescribed macro-strains. If the model of a dilute defect distribution is
evaluated for prescribed macro-stresses (b) an effective elasticity tensor C∗ (b)

(DD) is
obtained which differs from (8.79b) for finite values of cI .

In contrast to the Voigt or Reuss approximations the overall behavior described
by (8.79a,b) may even in case of an isotropic material of both phases be anisotropic
due to a preferred orientation of the ellipsoids which is accounted for by the Eshelby
tensor. Only in case of spherical isotropic inhomogeneities in an isotropic matrix
is the macroscopic (effective) behavior isotropic and (8.79b) can be split into the
volumetric and deviatoric parts using (8.10) and (8.12):

K∗
(DD) = KM

+ c
I

(K
I
−K

M
)K

M

K
M
+ α (K

I
−K

M
)
,

(8.80)

μ∗(DD) = μM
+ c

I

(μ
I
− μ

M
)μ

M

μ
M
+ β (μ

I
− μ

M
)
.

Corresponding to the model of a matrix which contains a small volume fraction
(dilute distribution) of defects the effective elastic constants are given by those of
the matrix plus an additional term which is linear in c

I
. According to (8.11) the

parameters α and β in the Eshelby tensor depend via Poisson’s ratio νM = (3KM −
2μ

M
)/(6K

M
+ 2μ

M
) of the matrix material on both moduliK

M
and μ

M
and hence

describe a coupling of the volumetric and shear stiffness. The effective Young’s
modulus can be computed from E∗ = 9K∗μ∗/(3K∗ + μ∗).

Finally, we consider the special case of rigid spherical inhomogeneities
(KI , μI → ∞) in an incompressible matrix (KM → ∞). With β = 2/5 from
(8.11) a macroscopically incompressible material (K∗

(DD) → ∞) is obtained from
(8.80) with

μ∗(DD) = μM

(
1 +

5

2
c
I

)
. (8.81)
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In view of the analogy between linear elasticity and a Newtonian (linearly viscous)
fluid this result corresponds exactly to the relation for the effective viscosity of a
suspension of a viscous fluid with rigid particles derived by A. EINSTEIN (1906).

b) Circular holes (2D)
As a second application of the model of a dilute defect distribution we now consider
an infinitely extended plate in plane stress which contains circular holes of equal
radius a (Fig. 8.16). Because of the neglected interaction the average strain 〈εij〉c
of each individual hole due to a uniform external loading σ0ij can be obtained from
(8.50a) by integration of the fundamental solution (8.37) along the boundary of the
hole

〈εij〉c = 1

2A

2π∫

0

(uinj + ujni ) a dϕ (8.82)

where u1 = ur cosϕ− uϕ sinϕ , u2 = ur sinϕ+ uϕ cosϕ , n1 = cosϕ , n2 =
sinϕ. In this two-dimensional problem averaging is performed with respect to the
areaA of the plate, hence instead of the surface integral in (8.50a) a contour integral
has to be evaluated. From the relation (8.72) between the average defect strain and
external loading σ0 the additional compliance tensor H

∞
is obtained. The latter

is employed in (8.73) to represent the effective elasticity tensor in case of a dilute
distribution of holes:

C
∗ (b)
(DD) =

[
C−1

M
+H

∞]−1

. (8.83)

The nonvanishing components of H
∞

read

H
∞
1111 = H

∞
2222 =

3c

E
, H

∞
1122 = H

∞
2211 = − c

E
,

(8.84)

H
∞
1212 = H

∞
2121 = H

∞
1221 = H

∞
2112 =

4c

E

σ0
12

σ0
11

σ0
12

σ0
22

σ0
22

aσ0
11

x2

x1

Fig. 8.16 Plate with circular holes



260 8 Micromechanics and homogenization

where c = πa2/A denotes the area fraction of holes and E is Young’s modulus of
the matrix material. From C−1

1111 = 1/E and C−1
1212 = 1/2μ the effective Young’s

modulus and the effective shear modulus are obtained:

E∗(DD) =
E

1+3c
≈ E(1−3c), μ∗(DD) =

E

2(1+ν+4c)
≈ μ(1− 4c

1+ν
). (8.85)

As expected, both effective stiffnesses decrease with increasing area fraction of
holes.

c) Straight cracks (2D)
Exactly as in case of a circular hole the average strain of a straight crack of length
2a subjected to a uniform external loading (Fig. 8.11b) can be obtained from (8.50b)
using the fundamental solution (8.38):

〈ε11〉c = 0

〈ε12〉c = 1

2A

a∫

−a
Δu1(x1) dx1 =

a2

A

π

E
σ012 = f

π

E
σ012 (8.86)

〈ε22〉c = 1

A

a∫

−a
Δu2(x1) dx1 = f

2π

E
σ022 .

In analogy to the volume fraction or area fraction of a defect the crack density pa-
rameter f = a2/A has been introduced here; in view of the assumed dilute dis-
tribution its value has to be small: f � 1. The nonvanishing components of the
additional compliance tensor H

∞
read

H
∞
1212 = H

∞
2121 = H

∞
1221 = H

∞
2112 = f

π

E
, H

∞
2222 = f

2π

E
. (8.87)

In case of a plate which consists of a homogeneous isotropic matrix material
with parallel cracks of equal length 2a (Fig. 8.17a) the effective elastic constants
according to (8.83) are

E∗1 (DD) = E , E∗2 (DD) =
E

1 + 2πf
≈ E (1− 2πf) ,

(8.88)

μ∗12 (DD) =
E

2(1 + ν + πf)
≈ μ (1− πf

1 + ν
) .

Due to the uniform crack orientation the overall material behavior here is anisotropic
with a reduced stiffness normal to the cracks.

If, in contrast, the crack orientations are statistically equal distributed (Fig. 8.17b)
the additional compliance tensor (8.87) can, within the model of a dilute defect dis-
tribution, be averaged over all orientations:



8.3 Effective elastic properties 261

a) b)
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Fig. 8.17 a) Parallel and b) statistically equal distributed crack orientation

H
∞
ijkl =

1

2π

2π∫

0

H
∞
i′j′k′l′(ϕ) dϕ � H

∞
1111 = H

∞
1212 = H

∞
2121 = H

∞
2222 = f

π

E
.

(8.89)
Since macroscopically there is no preferred direction the effective material behavior
is isotropic with

E∗(DD) =
E

1+πf
≈ E (1−πf), μ∗(DD) =

E

2(1+ν+πf)
≈ μ(1− πf

1+ν
) . (8.90)

d) Penny-shaped cracks (3D)
Starting from the fundamental solution (8.39) for a penny-shaped crack of radius
a in an unbounded domain and following the same procedure as before the addi-
tional compliance tensor in case of a uniform loading σ0ij is obtained from (8.50b)
and (8.72). In a local coordinate system with the x3-axis normal to the crack its
nonvanishing components read

H
∞
3333 = f

16(1− ν2)
3E

, H
∞
1313 = H

∞
2323 = f

32(1− ν2)
3E(2 − ν) (8.91)

where now (3D) the crack density parameter is given by f = a3/V . The effective
elastic constants of a material which consists of an isotropic matrix with a dilute
distribution of parallel and equally sized penny-shaped cracks can be written as

E∗1 (DD) = E
∗
2 (DD) = E , ν∗12 (DD) = ν , μ∗12 (DD) = μ =

E

2(1 + ν)
,

E∗3 (DD) =
3E

3 + f16(1− ν2) ,
(8.92)

μ∗13 (DD) = μ
∗
23 (DD) = μ

[
1 + f

16(1− ν)
3(2− ν)

]−1

,
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ν∗13 (DD) = ν
∗
23 (DD) = ν

[
1 + f

16(1− 2ν)(ν2 − 1)

3ν(2− ν)
] [

1 + f
16(1− ν2)

3

]−1

.

It should be noted that the parameters E∗1 (DD) , ν
∗
12 (DD), and μ∗12 (DD) are not inde-

pendent but are solely determined by two elastic constants. Hence the overall mate-
rial behavior is characterized by five independent elastic constants and is isotropic in
the x1, x2-plane; this kind of anisotropy is termed transversely isotropic (see (1.41),
(1.42)).

If all crack orientations occur equally often the macroscopic behavior is isotropic.
Averaging of (8.91) over all orientations

H
∞
ijkl =

1

4π

2π∫

0

π∫

0

H
∞
i′j′k′l′(ϕ, ϑ) cosϑdϑ dϕ

then yields

H
∞
1111 = H

∞
2222 = H

∞
3333 =

f

E

16(1− ν2)(10− 3ν)

45(2− ν)

H
∞
1122 = H

∞
2233 = H

∞
3311 = − f

E

16ν(1− ν2)
45(2− ν) (8.93)

H
∞
1212 = H

∞
2323 = H

∞
3131 =

f

E

32(1− ν2)(5 − ν)
45(2− ν)

from which the effective elastic constants

E∗(DD) = E

[
1 + f

16(1−ν2)(10−3ν)

45(2− ν)
]−1

≈ E
[
1− f 16(1−ν2)(10−3ν)

45(2− ν)
]
,

(8.94)

μ∗(DD) = μ

[
1 + f

32(1− ν)(5 − ν)
45(2− ν)

]−1

≈ μ
[
1− f 32(1− ν)(5− ν)

45(2− ν)
]

are obtained.

8.3.2.4 Mori-Tanaka model

The approximation of a dilute distribution of non-interacting defects is equivalent to
the assumption that in a sufficient distance from each defect the constant strain field
ε0 or stress field σ0 of the external loading prevails. This assumption is the starting
point for a refinement of the model to account for an interaction and hence a finite
volume fraction of defects. In the Mori-Tanaka model (1973) therefore the strain or
stress field in the matrix is, in a sufficient distance from a defect, approximated by
the constant field 〈ε〉

M
or 〈σ〉

M
(Fig. 8.18). The loading of each defect then depends
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on the existence of further defects via the average matrix strain 〈ε〉
M

or the average
matrix stress 〈σ〉

M
. Fluctuations of the local fields, however, are neglected in this

approximation of defect interaction.

∂V

〈ε〉
M

or 〈σ〉
M

ε0 or σ0

Fig. 8.18 Defect interaction in the Mori-Tanaka model

In view of the idealized consideration of a single defect in an unbounded ma-
trix, yet subjected to some effective loading 〈ε〉

M
or 〈σ〉

M
, the Mori-Tanaka model

formally equals that of a dilute distribution (see Fig. 8.15) and allows for the appli-
cation of the already known influence tensors A

∞
I

and H
∞

to represent the average
defect strain:

〈ε〉
I
= A

∞
I

: 〈ε〉
M

or 〈ε〉c = H
∞

: 〈σ〉
M
. (8.95)

In order to determine the effective material properties the average defect strain needs
to be represented as a function of the macroscopic quantities 〈ε〉 = ε0 or 〈σ〉 = σ0,
respectively (see (8.67)). Therefore, the matrix quantities 〈ε〉

M
and 〈σ〉

M
are elim-

inated. Using 〈ε〉 = c
M
〈ε〉

M
+ c

I
〈ε〉

I
and (8.95) in case of ellipsoidal inhomo-

geneities leads to 〈ε〉
I
= A

I (MT) : 〈ε〉 where

A
I (MT) =

[
c
I
1+ c

M
A

∞−1
I

]−1

=
[
1+ c

M
S

M
: C−1

M
: (C

I
−C

M
)
]−1

(8.96a)

is the influence tensor of the Mori-Tanaka model. In case of cavities or cracks (8.95)
and 〈σ〉 = c

M
〈σ〉

M
lead to 〈ε〉c = H(MT) : 〈σ〉 with the additional compliance

tensor

H(MT) =
1

c
M

H
∞
. (8.96b)

According to (8.71a) and (8.73) hence the effective elastic constants for the two
kinds of defects are given by

C∗
(MT) =

⎧⎪⎨
⎪⎩

C
M
+ c

I
(C

I
−C

M
) : A

I (MT) (ellipsoids)

[
C−1

M
+H(MT)

]−1
(cavities, cracks)

. (8.97)
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From (8.96a) and (8.97) it can be seen that the Mori-Tanaka model, in contrast to
the model of a dilute distribution, correctly covers the extreme cases of c

I
= 0 and

cI = 1 (homogeneous material) and therefore can formally be applied for arbitrary
volume fractions c

I
. Yet, the fundamental assumption of a distinct matrix phase

and a defect subjected to a homogeneous far-field loading can only be realized for
small or large values of c

I
; in the latter case the inhomogeneity attains the role of

the matrix phase. In case of cavities (8.96b) and (8.97) yield a loss of the macro-
scopic stress-carrying capacity (C∗

(MT) → 0) only in the limit cM → 0 which is not
realistic (see Section 8.3.2.5).

It can be shown that the approximations for the effective material properties
obtained from the Mori-Tanaka model are independent of the type of prescribed
macroscopic quantities ε0 or σ0. For small values of the defect volume fraction
(c

I
� 1) they asymptotically approach the results for a dilute distribution.
In the special case of an isotropic matrix which contains isotropic spherical in-

homogeneities the Mori-Tanaka model yields irrespective of the spatial arrange-
ment of the defects an isotropic overall behavior with effective elastic constants
(see (8.80))

K∗
(MT) = KM

+ c
I

(KI −KM)KM

KM + α (1 − cI) (KI −KM)
,

(8.98)
μ∗(MT) = μM

+ c
I

(μI − μM)μM

μ
M
+ β (1 − c

I
) (μ

I
− μ

M
)
.

A macroscopic anisotropy which might result from the geometric arrangement of
the inhomogeneities hence can not be described by this model (like in case of the
dilute distribution). It should further be noted that in contrast to (8.80) now the
effective constants (8.98) depend nonlinearly on the volume fraction c

I
of inhomo-

geneities. In the limit case of rigid spheres (K
I
, μ

I
→ ∞) in an incompressible

matrix (KM → ∞, β = 2/5) they reduce to (see (8.81))

μ∗(MT) = μM

(
1 +

5

2

c
I

1− c
I

)
. (8.99)

In the 2D-example of a plate in plane stress with circular holes of an area fraction
c according to Fig. 8.16 the Mori-Tanaka model yields by insertion of (8.84) into
(8.96b), (8.97)

E∗(MT) = E
1− c
1 + 2c

, μ∗(MT) = μ
(1− c)(1 + ν)

1 + ν + c (3− ν) . (8.100)

Cracks, because of their vanishing volume (c
M

= 1), have no effect on the
average stress: 〈σ〉

M
= 〈σ〉. For a material with straight (2D) or penny-shaped

cracks the Mori-Tanaka model thus leads to the same effective elastic constants
as the model of a dilute defect distribution in case of prescribed macro-stress (see
(8.88), (8.90), (8.92), or (8.94)). Accordingly, the Mori-Tanaka model when applied
to cracks does not predict a total loss of the macroscopic stress-carrying capacity,
even in case of an arbitrary high value of the crack density.
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8.3.2.5 Self-consistent method

Analytical methods for the approximation of effective material properties are typi-
cally based on the consideration of a single defect in an unbounded domain because
of the limited availability of closed-form solutions. In doing so, the interaction of de-
fects has in the previous section been accounted for by an appropriate approximation
of the loading of individual defects; a sufficient distance among these defects in a
homogeneous matrix therefore was required. This latter assumption, however, does
often not hold. For instance, in a polycrystal the inhomogeneities prevail in form
of single crystal grains which are in direct contact with each other without any dis-
tinct matrix phase. With focus on this particular situation the self-consistent method
has been developed. It is based on the approximation (“smearing”) of the entire
surrounding of each individual defect by an infinite matrix with elastic properties
given by the unknown effective properties which are to be determined (Fig. 8.19).
Inside the defect the solution of the respective boundary value problem (single de-
fect subjected to some loading ε0 = 〈ε〉 or σ0 = 〈σ〉) is formally obtained from
the solution for a dilute defect distribution by replacing the matrix properties by the
effective properties (see also Fig. 8.15). Correspondingly, the average defect strain
and the influence tensors are for ellipsoidal inhomogeneities given by

〈ε〉
I
= A

I (SK) : 〈ε〉 ,
(8.101a)

A
I (SK) = A

∞
I
(C

M
= C∗) = [1+ S∗ : C∗−1 : (C

I
−C∗ )]−1

and in case of cavities and cracks by

〈ε〉c = H(SK) : 〈σ〉 , H(SK) = H
∞
(CM = C∗) . (8.101b)

The effective elastic properties then follow by insertion into (8.71a) or (8.73). They
are subject to the requirement to coincide with the effective matrix properties C∗
used in the representation of the influence tensors (8.101a), (8.101b) which explains
the notion self-consistence. Thus the self-consistent method yields an implicit repre-

ε0 or σ0

C
M

C∗

∂V

ε0 or σ0

Fig. 8.19 Model of the self-consistent method



266 8 Micromechanics and homogenization

sentation of the effective elasticity tensor in form of nonlinear algebraic equations.
Using (8.71a) and (8.73) the latter read

C∗
(SK) =

⎧⎪⎪⎨
⎪⎪⎩

C
M
+ c

I
(C

I
−C

M
) : A

∞
I
(C∗

(SK)) (ellipsoids)

[
C−1

M
+H

∞
(C∗

(SK))
]−1

(cavities, cracks)

. (8.102)

Like the Mori-Tanaka model, the self-consistent method also yields a unique result
which is independent of the prescribed macroscopic quantities and correctly covers
the limit cases of a homogeneous material. Moreover, it should be noted that in the
self-consistent method a macroscopic anisotropy which may result from the relative
defect orientation or arrangement has to be accounted for already in the effective be-
havior adopted in the fundamental solution A

∞
I
(C∗

(SK)) or H
∞
(C∗

(SK)). A typical
example are parallel cracks where already an individual defect has a distinguished
orientation; but also preferred orientations in the spatial arrangement of isotropic de-
fects give rise to a macroscopic anisotropy. Only in case of a complete (i.e., material
and geometric) isotropy of the microstructure is the overall behavior isotropic. This
holds, for instance, for an isotropic distribution of spherical inhomogeneities in an
isotropic matrix. In this special case insertion of the parameters α∗(ν∗), β∗(ν∗) of
the isotropic Eshelby tensor (8.11) leads to the following equations for the effective
bulk and shear moduli:

0 =
c
M

K∗
(SK)

−K
I

+
c
I

K∗
(SK)

−K
M

− 3

3K∗
(SK)

+ 4μ∗
(SK)

,

(8.103)

0 =
c
M

μ∗(SK) − μI

+
c
I

μ∗(SK) − μM

−
6
(
K∗

(SK) + 2μ∗(SK)

)

5μ∗(SK)

(
3K∗

(SK) + 4μ∗(SK)

) .

From this representation it is obvious that in the self-consistent method none of
the involved phases plays the role of a surrounding matrix; this corresponds to the
situation of a polycrystalline or interpenetrating microstructure.

In the special case of rigid spherical particles (KI → ∞ , μI → ∞) in an incom-
pressible matrix (K

M
→ ∞) the self-consistent method yields in contrast to (8.81)

and (8.99)

μ∗(SK) =
2 μ

M

2− 5 c
I

. (8.104)

Hence a macroscopically rigid material (μ∗(SK) → ∞) is predicted already at a
volume fraction of spherical particles of c

I
= 2/5. Also the case of spherical voids

(KI → 0 , μI → 0) in an incompressible matrix (KM → ∞) can be directly derived
from (8.103) which leads to

K∗
(SK) =

4μM(1− 2 cI)(1− cI)
cI(3− cI)

, μ∗(SK) =
3μM(1 − 2 cI)

3− cI
. (8.105)
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From this result it can be seen that the self-consistent method applied to a porous
material predicts the entire loss of macroscopic stress carrying capacity (K∗

(SK) → 0,

μ∗(SK) → 0) at a void volume fraction of 50%, i.e., c
I
= 1/2. The limit behavior

described by (8.104) and (8.105) is qualitatively correct since statistically already
at a volume fraction well below 1 “bridges” of rigid particles or voids prevail in a
real material which extend throughout the whole microstructure and determine the
overall performance. This statistical effect is called percolation and is subject of the
percolation theory to be found in the special literature (see also Section 3.1.4). The
apparent strength of the self-consistent method to account for this effect, however,
is weakened by the fact that the prerequisite for a homogenization of statistical ho-
mogeneity of an RVE is violated by the existence of the above-mentioned bridges
(percolation).

Another drawback of the self-consistent method lies in its mixing of the micro-
scopic and macroscopic level which strictly should be separated. A single defect,
“visible” only on the microscale, is embedded into an effective medium which is
defined only on the macroscopic level. In order to reduce this inconsistency the
so-called generalized self-consistent method considers the defect and the infinitely
extended effective medium to be separated by a layer of the true matrix material.
Yet, this rather complicated method is not further treated here.

The result (8.102) of the self-consistent method shall now be evaluated for the
situation of circular holes and cracks. In case of a plate containing isotropically dis-
tributed circular holes (macroscopic isotropy) therefore only the Young’s modulus
E of the matrix material in (8.84) needs to be replaced by E∗(SK) which leads to

E∗(SK) = E (1− 3 c) , μ∗(SK) =
E (1− 3 c)

2 [1 + c+ ν(1 − 3 c)]
. (8.106)

The total loss of effective stiffness of the plate hence is predicted already at an area
fraction of holes of c = 1/3. Experimental data or those based on percolation theory,
however, are approximately twice that value (see Fig. 8.21).

As already mentioned, the application of the self-consistent method to materials
with parallel cracks requires the somewhat cumbersome determination of the funda-
mental solution for a single crack in an anisotropic medium because of the resulting
overall anisotropy. Referring for this case to the special literature we restrict our-
selves here to the situation of statistically equal distributed crack orientations where
the overall material behavior is isotropic. In case of straight cracks of length 2a in
a plate under plane stress only E in (8.89) has to replaced by E∗(SK). The effective
Young’s modulus and shear modulus then are given by

E∗(SK) = E (1− πf) , μ∗(SK) =
E (1− πf)

2 [1 + ν(1− πf)] . (8.107)

Accordingly, a total loss of macroscopic stiffness is predicted at f = 1/π. At this
value the area πa2 covered by a crack by varying its orientation is equal to the refer-
ence area A of the material. For the three-dimensional problem of penny-shaped
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cracks with randomly distributed orientation the isotropic additional compliance
tensor H(SK) = H

∞
(C∗

(SK)) is obtained from (8.93) by substituting E and ν by
E∗(SK) and ν∗(SK) which, using (8.102), leads to coupled nonlinear equations for the
effective elastic constants:

ν∗(SK)

E∗(SK)

=
ν

E
+ f

16ν∗(SK)(1− ν∗2(SK))

45(2− ν∗(SK))E
∗
(SK)

,

(8.108)
1 + ν∗(SK)

E∗
(SK)

=
1 + ν

E
+ f

32(1− ν∗2(SK))(5− ν∗(SK))

45(2− ν∗
(SK)

)E∗
(SK)

.

8.3.2.6 Differential scheme

In contrast to the self-consistent method where the entire volume fraction of each
phase is embedded in the effective matrix in a single step, the differential scheme is
based on a succession of this embedding by infinitesimal steps. This can be associ-
ated with the actual manufacturing of a heterogeneous material by the stepwise in-
corporation of one phase (inhomogeneity) into an originally homogeneous material
(matrix) where it is irrelevant which of the phases attains the role of the originally
homogeneous material. Since in each step only an infinitesimal volume dV of the
defect phase with elasticity tensor C

I is embedded into the infinitely extended ho-
mogeneous matrix, the model of a dilute distribution and the respective relations for
the effective properties are exact. In an arbitrary step the matrix is characterized by
the effective properties C∗(c

I) which correspond to the up to then embedded vol-
ume fraction c

I
= V

I
/V . This procedure is illustrated in Fig. 8.20 for an ellipsoidal

inhomogeneity. By conservation of the total volume V , an infinitesimal volume dV
of the defect phase is incorporated while the same volume of effective matrix mate-

dV

C∗(c
I
)

C∗(c
I
+ dc

I
)

dV, C
I

dV
I
= c

I
dV

Fig. 8.20 Differential scheme
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rial has to be removed. Thereby the volume fraction of the inhomogeneity changes
to c

I
+ dc

I
and its volume balance during this step can be written as

(c
I
+ dc

I
)V = c

I
V − c

I
dV + dV �

dV

V
=

dcI
1− c

I

. (8.109)

Since only an infinitesimal volume dV (volume fraction dV/V ) is embedded, the
relation (8.79a) of the model of a dilute distribution is exact and, applied to the
current situation, reads

C∗(c
I
+ dc

I
) = C∗(c

I
)︸ ︷︷ ︸

Matrix

+
dV

V

(
C

I
−C∗(c

I
)︸ ︷︷ ︸

Matrix

)
: A

∞
I
. (8.110)

Here, the influence tensor depends on the effective matrix material: A
∞
I
(C∗(c

I
)).

Using C∗(c
I
+ dc

I
) = C∗(c

I
) + dC∗(c

I
) and (8.109) one obtains

dC∗(c
I
)

dc
I

=
1

1− c
I

(
C

I
−C∗(c

I
)
)
: A

∞
I

. (8.111)

The differential scheme hence leads to a nonlinear ordinary differential equation for
the effective elasticity tensor as a function of the volume fraction cI of the embedded
phase. The original material (second phase) appears only in the initial condition:
C∗(c

I
= 0) = C

M
. In case of total (i.e., material and geometric) isotropy one ob-

tains from (8.111) the following system of coupled differential equations for the
effective bulk and shear modulus

dK∗
(DS)

dc
I

=
K

I
−K∗

(DS)

1− c
I

3K∗
(DS) + 4μ∗(DS)

3K
I
+ 4μ∗(DS)

,

(8.112)

dμ∗(DS)

dc
I

=
μ

I
− μ∗(DS)

1− c
I

5μ∗(DS)

(
3K∗

(DS) + 4μ∗(DS)

)

μ∗(DS)

(
9K∗

(DS) + 8μ∗(DS)

)
+ 6μ

I

(
K∗

(DS) + 2μ∗(DS)

)

with initial conditions K∗
(DS)(cI = 0) = KM , μ

∗
(DS)(cI = 0) = μM .

For the example of rigid spheres (I) in an incompressible matrix (M) (8.112)
reduces to

dμ∗(DS)

dc
I

=
1

1− c
I

5μ∗(DS)

2
(8.113)

with the solution
μ∗(DS)(cI) =

μ
M

(1− c
I
)5/2

. (8.114)

Contrary to the self-consistent method (see (8.104)) the differential scheme yields
the overall rigidity of the material only for c

I
→ 1.
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KI, μI

KM, μM

K,μ

3

2

1
EI, νI

EM, νM

2

13
E, ν

EI, νI

EM, νM

Table 8.1 Effective elastic constants

1

spherical inhomogeneities

K∗ = K
M

+ c
I

(K
I
−K

M
)K

M

K
M
+ α (1− c

I
) (K

I
−K

M
)

μ∗ = μ
M

+ c
I

(μ
I
− μ

M
)μ

M

μ
M
+ β (1− c

I
) (μ

I
− μ

M
)

2

spherical voids

K∗ = K
(
1− c

1− α(1 − c)
)

μ∗ = μ
(
1− c

1− β(1 − c)
)

3

unidirectional fibers (inhomogeneities)

E∗3 = c
I
E

I
+ (1− c

I
)E

M
, μ∗12 =

2 + c
I

5(1− c
I
)
E

M

μ∗13 = μ∗23 =
2(1 + c

I
)

5(1− c
I
)
E

M
, ν∗31 = ν∗32 = 1/4

1

E∗1,2
=

1

4

( 1

μ∗12
+

5(1− c
I
)

2EM(2 + cI)
+

1

4E∗3
)

for ν
I
= ν

M
= 1/4 , E

I
� E

M
, c

I
< 1

4

unidirectional hollow cylinders (plane strain)

E∗1,2 =
(1− c)E

1 + c(2− 3ν2)
, μ∗12 =

(1− c)μ
1 + 3c− 4νc

5

isotropically oriented fibers

E∗ =
c
I

6
E

I
+

1 + c
I
/4 + c2

I
/6

1− c
I

E
M
, ν∗ =

1

4

for ν
I
= ν

M
= 1/4 , E

I
� E

M
, c

I
< 1
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3

KM, μM

KM, μM

E, ν

1

2

E, ν

E, ν

Table 8.1 Effective elastic constants (cont.)

6

parallel penny-shaped cracks (3D)

E∗1,2 = E , E∗3 =
3E

3 + f16(1− ν2) , ν∗12 = ν

ν∗13 = ν∗23 = ν

[
1 + f

16(1− 2ν)(ν2 − 1)

3ν(2− ν)
]
E∗3
E

μ∗12 =
E

2(1 + ν)
, μ∗13 = μ∗23 = μ

[
1 + f

16(1− ν)
3(2− ν)

]−1

7

isotropically oriented penny-shaped cracks (3D)

E∗ = E

[
1 + f

16(1− ν2)(10− 3ν)

45(2− ν)
]−1

μ∗ = μ

[
1 + f

32(1− ν)(5 − ν)
45(2− ν)

]−1

8

circular holes (2D, plane stress)

E∗ = E
1− c
1 + 2c

, μ∗ = E
1− c

2(1 + ν + c (3− ν))

9

parallel cracks (2D, plane stress)

E∗1 = E , E∗2 =
E

1 + 2πf
, μ∗12 =

E

2(1 + ν + πf)

10

isotropically oriented cracks (2D, plane stress)

E∗ =
E

1 + πf
, μ∗ =

E

2(1 + ν + πf)
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When the differential scheme is applied to materials with cracks or holes the lat-
ter have to be treated as the embedded phase. In case of circular holes in a plate
according to Fig. 8.16 we start directly from the relations (8.85) for a dilute distri-
bution written in the form

1

E∗
(DD)

=
1

E
+ c

3

E
,

1

2μ∗
(DD)

=
1

2μ
+ c

4

E
. (8.115)

Following the same procedure as above the incremental increase dc of the area frac-
tion c of holes then leads to the differential equations

dE∗−1
(DS)

dc
=

1

1− c
3

E∗(DS)

,
dμ∗−1

(DS)

dc
=

1

1− c
8

E∗(DS)

(8.116)

with initial conditions E∗(DS)(c = 0) = E , μ∗(DS)(c = 0) = μ . The first differen-

tial equation can be solved directly and the second one after insertion of E∗(DS)(c).
They lead to the solutions

E∗(DS)(c) = E (1− c)3 , μ∗(DS)(c) = μ
3(1 + ν)(1 − c)3

4 + (3ν − 1)(1− c)3 . (8.117)

Similar to the foregoing example the differential scheme yields the total loss of
macroscopic stiffness only for c→ 1.

Like the situation of holes, the differential scheme can be applied to homogenize
materials with cracks. Without going into the details of the derivation we present
here only the results for the 2D case of isotropically distributed cracks of equal
length in a plate under plane stress where f denotes the crack density:

E∗(DS)(f) = E(1− f)π , μ∗(DS)(f) = μ
(1 + ν)(1 − f)π
1 + ν(1− f)π . (8.118)

Again the total loss of macroscopic stiffness of the material is reached only in the
limit f → 1. For small values of f (8.118) tends asymptotically to the result (8.90)
of the dilute distribution.

In order to provide some comparison of the different homogenization methods
discussed so far, their results are collectively presented in Fig. 8.21 in terms of the
effective Young’s modulus of a plate with circular holes. Also shown are experimen-
tal data and the percolation threshold which both indicate a total loss of macroscopic
stiffness (E∗ → 0) at an area fraction of holes well below 1. Only the self-consistent
method (SC) is able to predict this behavior. In accordance with the underlying as-
sumptions the model of a dilute defect distribution (DD) is valid only at very small
values of c.

For various cases of isotropic or transversely isotropic microstructures effective
elastic constants are listed in Table 8.1 where the presentation has been kept as
simple as possible. Again, it has to be emphasized that these relations for effective
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DD :  dilute distribution

SC :  self−consistent method
DS :  differential scheme

MT :  Mori−Tanaka method

1

MT

DD

DS

c

:  experiment

SC

"percolation threshold" (~0.6)

0.33

E∗/E
1

0.5

0.5

Fig. 8.21 Effective Young’s modulus of a plate containing isotropically distributed circular holes

properties are only approximations the quality of which decreases with increasing
defect concentration (c

I
, c, f ).

8.3.3 Energy methods and bounds

In the previous sections effective elastic properties of a heterogeneous medium have
been determined by solving a boundary value problem for an RVE. Various simpli-
fying assumptions therefore had to be made. For instance, the RVE has been taken
infinitely large and the effect of distributed inhomogeneities has always been de-
scribed using the fundamental solution for a single defect. Different assumptions
within the micromechanical models lead to different approximative solutions for
the effective properties which may strongly deviate from each other and in some
cases display an even qualitatively differing behavior (see, e.g., Fig. 8.21). More-
over, no information is provided by the micromechanical models with regard to the
accuracy of their results. This lack of accuracy results also from the fact that only
a rather limited amount of information about the microstructure (e.g., only the vol-
ume fraction of defects) is accounted for in the simple micromechanical models. It
is therefore desirable to determine an exact range within which the effective prop-
erties of a heterogeneous material are definitely located. This is accomplished by
means of extremum principles of elasticity theory which allow to derive strict upper
and lower bounds for the effective properties from energetic expressions.

8.3.3.1 Voigt and Reuss bounds

Besides their simplicity the Voigt and Reuss approximations introduced in Sec-
tion 8.3.2.2 bear the advantage that they are upper and lower bounds for the ef-
fective elastic properties of a heterogeneous material. This can be shown from the
principle of minimum potential energy (1.99) which states that among all kine-
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matically admissible strain fields the true strains render the total potential energy a
minimum. If displacements are prescribed along the entire boundary ∂V of some
volume the potential of the boundary loads vanishes and the total potential en-
ergy in case of a kinematically admissible (i.e., not necessarily true!) strain field
ε̂ reads Π̂(ε̂) = Π̂i(ε̂) = 1

2

∫
V
ε̂ : C : ε̂dV = V

2 〈ε̂ : C : ε̂〉. In case of
the special boundary condition of linear displacements u|

∂V
= ε0 · x where

ε0 = const = 〈ε〉 the (true) strain energy according to the HILL-condition (8.56)
is Π = V

2 〈ε〉 : C∗ : 〈ε〉. From the extremum principle Π̂(ε̂) ≥ Π it then follows
that

〈ε̂ : C : ε̂〉 ≥ 〈ε〉 : C∗ : 〈ε〉 (8.119)

for all strain fields ε̂ which satisfy the above boundary condition. Such a strain field
is, for instance, given by the VOIGT approximation ε̂ = const = 〈ε〉. Insertion into
(8.119) yields

〈ε〉 : 〈C〉 : 〈ε〉 ≥ 〈ε〉 : C∗ : 〈ε〉
or

〈ε〉 : (〈C〉 −C∗) : 〈ε〉 ≥ 0 . (8.120)

In the sense of a quadratic form in 〈ε〉 hence the average elasticity tensor 〈C〉 is
larger than C∗ and therefore represents an upper bound for the effective elasticity
tensor.

Analogously, one may start from the principle of minimum complementary en-
ergy (1.104) where stress fields σ̂ in order to be admissible have to satisfy equilib-
rium and prescribed traction boundary conditions. In case of pure traction bound-

ary conditions the complementary energy is given by ˆ̃
Π(σ̂) = V

2 〈σ̂ : C−1 : σ̂〉.
If, moreover, the boundary tractions are uniform t|

∂V
= σ0 · n where σ0 =

const = 〈σ〉 the (true) complementary energy according to the HILL-condition is

Π̃ = V
2
〈σ〉 : C∗−1 : 〈σ〉. From ˆ̃

Π(σ̂) ≥ Π̃ it follows that

〈σ̂ : C−1 : σ̂〉 ≥ 〈σ〉 : C∗−1 : 〈σ〉 (8.121)

for all admissible fields σ̂. One such field is the REUSS approximation σ̂ = const =
〈σ〉 which yields

〈σ〉 : (〈C−1〉 −C∗−1
)
: 〈σ〉 ≥ 0 . (8.122)

In the sense of a quadratic form in 〈σ〉 the Reuss approximation (8.74b) hence
represents a lower bound for C∗.

When combined the two results state that the effective elasticity tensor always
lies in between the VOIGT and REUSS bounds:

C∗
(Voigt) = 〈C〉 ≥ C∗ ≥ 〈C−1〉−1 = C∗

(Reuss) . (8.123)

In case of materials with discrete isotropic phases which are isotropically dis-
tributed the effective behavior is likewise isotropic and (8.123) can be written in
terms of the effective bulk and shear moduli. For a two-phase material we get
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K∗
(Voigt) = cIKI

+ c
M
K

M
≥ K∗ ≥ K

I
K

M

c
I
K

M
+ c

M
K

I

= K∗
(Reuss)

(8.124)

μ∗(Voigt) = cIμI
+ c

M
μ

M
≥ μ∗ ≥ μ

I
μ

M

c
I
μ

M
+ c

M
μ

I

= μ∗(Reuss) .

The Voigt and Reuss bounds are valid irrespective of the actual microstructure.
The underlying approximations of a constant stress or strain field in general vi-
olate the compatibility of deformation or the local equilibrium, respectively (see
Section 8.3.2.2). In a real microstructure, however, the compatibility of deforma-
tion and the local equilibrium are always satisfied, hence the extreme values of the
bounds can not be attained. As a consequence, the effective properties of all real
microstructures are located truly inside these bounds.

8.3.3.2 Hashin-Shtrikman variational principle and bounds

The Voigt and Reuss bounds which are derived from classical extremum principles
of elasticity theory are typically rather far apart from each other which can limit
their value considerably. Closer bounds are obtained from a variational principle
that has been established by HASHIN and SHTRIKMAN (1962) particularly for het-
erogeneous materials. In contrast to the total stress and strain fields employed in
the above approach now appropriate auxiliary fields are considered which represent
only the deviation from some reference solution. In that way the error made in an
approximation has a smaller effect on the final result. One such auxiliary field is, for
instance, the stress polarization τ (x) introduced in Section 8.2.2.1.

In the following we consider a volume V of the heterogeneous material subjected
to the boundary condition u|

∂V
= ε0 ·x such that ε0 = const = 〈ε〉. The stress

polarization (8.30) describes the deviation of the true stress from the stress which
would be induced by the true strain ε(x) in some homogeneous comparison material
with elasticity tensor C0. Using the strain fluctuation ε̃(x) = ε(x) − ε0 it can be
written as

τ (x) =
[
C(x)−C0

]
:
[
ε0 + ε̃(x)

]
. (8.125)

From the governing equations (8.28) for the fluctuations

∇ · σ̃ = 0 , σ̃ = C0 :
(
ε̃ − ε∗

)
, ũ|

∂V
= 0 (8.126)

one can compute ε̃(x) which depends upon the equivalent eigenstrain ε∗(x). Ac-
cording to (8.29), (8.30) the latter is linearly related to the stress polarization by
τ (x) = −C0 : ε∗(x), hence the solution of (8.126) may formally be written as
ε̃[τ (x)]. Insertion into (8.125) yields an equation for τ (x) which thus depends on
the macrostrain ε0:

−
[
C(x)−C0

]−1

: τ (x) + ε̃[τ (x)] + ε0 = 0 . (8.127)
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From the calculus of variations it can be shown that (8.127) is equivalent to the
Hashin-Shtrikman variational principle

F (τ̂ ) =
1

V

∫

V

{−τ̂ : (C −C0)−1 : τ̂ + τ̂ : ε̃[τ̂ ] + 2τ̂ : ε0
}
dV

(8.128)
= stationary

where F (τ̂ ) has to be varied with respect to τ̂ . Accordingly, among all possible
functions τ̂ the true stress polarization τ renders the expression (functional) F (τ̂ )
stationary.

In order to gain information about the effective properties C∗ we first compute
the stationary value of F (τ̂ ). This is done by inserting the true τ according to
(8.125) and (8.127) into (8.128). Using the Hill-condition the stationary value is
found to be F (τ ) = ε0 : (C∗ −C0) : ε0. It can be shown that this value is a max-

imum if for arbitrary τ the relation τ (x) :
[
C(x)−C0

]
: τ (x) ≥ 0 holds, i.e., if

the difference C(x) − C0 is positive definite. Conversely, F (τ̂ ) attains a mini-
mum at τ̂ = τ if C(x) − C0 is negative definite. It is useful to modify the
integral expression (8.128) somewhat. Because of the boundary condition ũ|

∂V
= 0

in (8.126) the average value of the strain fluctuation must vanish for arbitrary τ̂ :
1
V

∫
V
ε̃ dV = 0. Then also 1

V

∫
V
〈τ̂ 〉 : ε̃dV = 0 holds and the second term be-

low the integral in (8.128) can be extended to (τ̂ − 〈τ̂ 〉) : ε̃. Hence (8.128) can be
written as

F (τ̂ )

{
≤
≥

}
ε0 : (C∗ −C0) : ε0 for C −C0

{
pos. def.

neg. def.

}
(8.129a)

where

F (τ̂ ) =
1

V

∫

V

{−τ̂ : (C −C0)−1 : τ̂ + (τ̂−〈τ̂ 〉) : ε̃[τ̂ ] + 2τ̂ :ε0
}
dV. (8.129b)

For an appropriate choice of the comparison material C0 and some approximation
of τ̂ thus F (τ̂ ) according to (8.129b) yields an upper or lower bound for the ex-
pression ε0 : (C∗ − C0) : ε0. The evaluation of these bounds, however, requires
the determination of ε̃ depending on τ̂ ; this is possible only in special cases.

A special case of great practical importance is a material which consists of n dis-
crete phases with partial volumes Vα = cαV and piecewise constant elastic prop-
erties Cα. In this case it seems appropriate to choose a piecewise constant approx-
imation for the stress polarization: τ̂ (x) = τα = const in Vα. With the average

value of the latter 〈τ̂ 〉 =
n∑
α=1

cατα and the phase averages of the strain fluctuations

ε̃α = 〈ε̃〉α the expression F (τ̂ ) reduces to
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F (τα) =−
n∑
α=1

cατα : (Cα −C0)−1 : τα

(8.130)

+
n∑
α=1

cα(τα − 〈τ̂ 〉) : ε̃α + 2〈τ̂ 〉 : ε0 .

In the eigenstrain problem (8.126) for the determination of the strain fluctua-
tion ε̃ the individual phases appear only as regions Vα of constant eigenstrain
ε∗α = −C0−1 : τα in the homogeneous comparison material (inclusions). It can
be shown that in case of isotropy of all phases and their isotropic distribution in an
infinitely extended domain the average strain ε̃α of each phase in (8.126) is equal to
the (constant) strain inside a spherical inclusion of eigenstrain ε∗α = −C0−1 : τα.
Using the isotropic Eshelby-tensor S according to (8.10) hence the following rela-
tion holds

ε̃α = S : ε∗α = −S : C0−1 : τα (8.131)

which represents the required solution ε̃[τ ] of (8.126). Insertion into (8.130) renders
F (τα) an explicit function of the n parameters τα. In order to obtain bounds from
(8.129a) which are as close as possible the parameters τα have to be chosen in such
a way that F (τα) becomes extremal. The necessary conditions

∂F

∂τα
= 0 (8.132)

yield the n equations

τα : (Cα −C0)−1 + (τα − 〈τ̂ 〉) : S : C0−1 = ε0 (8.133)

for the determination of the “optimal” parameters τα(ε0). The latter depend linearly
on ε0 and after insertion into F (τα) the left-hand side of the inequality in (8.129a)
is a quadratic expression in ε0. In the sense of a quadratic form in ε0 (8.129a) thus
leads to upper and lower bounds for C∗; these bounds are referred to as the Hashin-
Shtrikman bounds.

As an important special case we consider a heterogeneous material which con-
sists of two isotropic phases with elastic constants C

M
and C

I
or K

M
, μ

M
and

K
I
, μ

I
, respectively. If we assume K

M
< K

I
and μ

M
< μ

I
it is possible to choose

the elastic properties of one of the phases as those of the homogeneous comparison
material which guarantees the positive definiteness of C −C0. Another advantage
of this choice is that the stress polarization of one of the phases according to (8.133)
vanishes. First we consider the case C0 = C

M
such that τ

M
= 0 and 〈τ 〉 = c

I
τ

I
.

Using (8.130) then (8.129b) reduces to

F (τ
I
)=−c

I
τ

I
:
[
(C

I
−C

M
)−1 :τ

I
+ c

M
S

M
:C−1

M
:τ

I
− 2ε0

]

(8.134)
≤ ε0 : (C∗ −C

M
) :ε0 .
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Exploiting the symmetry of the elasticity tensors and of the Eshelby-tensor and
using (8.96a) the extremal condition ∂F/∂τ

I
= 0 yields

τ
I
=
[
(C

I
−C

M
)−1+ c

M
S

M
:C−1

M

]−1
: ε0 = A

I (MT) : (C I
−C

M
) :ε0. (8.135)

The fact that the right-hand side can be written in terms of the influence tensor
(8.96a) indicates a remarkable interrelation between the Mori-Tanaka model and
the Hashin-Shtrikman variational principle in the special case of isotropy. Insertion
of (8.135) into (8.134) leads to F (τ

I
) = c

I
τ

I
: ε0 = 〈τ 〉 : ε0 where the lat-

ter expression is valid also for an n-phase material. The inequality (8.134) can be
transformed into

ε0 :
(
C

M
+ c

I

[
(C

I
−C

M
)−1 + c

M
S

M
: C−1

M

]−1
)
: ε0 ≤ ε0 : C∗ : ε0 (8.136)

and yields the lower Hashin-Shtrikman bound

C∗
(HS−) = C

M
+ c

I

[
(C

I
−C

M
)−1 + c

M
S

M
: C−1

M

]−1
(8.137a)

for the effective elasticity tensor. It coincides with the result (8.96a), (8.97) of the
Mori-Tanaka model .

If the stiffer material is chosen as the comparison material (C0 = C
I
) the anal-

ogous procedure leads to the upper Hashin-Shtrikman bound

C∗
(HS+) = C

I
+ c

M

[
(C

M
−C

I
)−1 + c

I
S

I
: C−1

I

]−1
. (8.137b)

It corresponds to the Mori-Tanaka result if the properties of the matrix material and
the inhomogeneity are exchanged. The effective elasticity tensor hence is subject to
the restriction (in the sense of a quadratic form)

C∗
(HS+) ≥ C∗ ≥ C∗

(HS−) . (8.138)

Because of the isotropy assumed for the phase properties and the macroscopic dis-
tribution it follows that

K∗
(HS+) ≥ K∗ ≥ K∗

(HS−) and μ∗(HS+) ≥ μ∗ ≥ μ∗(HS−) (8.139)

where

K∗
(HS−) = KM

+ c
I

(
1

K
I
−K

M

+
3 c

M

3K
M
+ 4μ

M

)−1

,

K∗
(HS+) = KI

+ c
M

(
1

K
M
−K

I

+
3 cI

3K
I
+ 4μ

I

)−1

,

(8.140)

μ∗(HS−) = μM + cI

(
1

μI − μM

+
6 c

M
(K

M
+ 2μ

M
)

5μM(3KM + 4μM)

)−1

,
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μ∗(HS+) = μI + cM

(
1

μM − μI

+
6 c

I
(K

I
+ 2μ

I
)

5μI(3KI + 4μI)

)−1

.

The range described by the Hashin-Shtrikman bounds (8.139), (8.140) inside
which the effective elastic properties of a heterogeneous material can be found is
much more narrow than that given by the Voigt and Reuss bounds (8.124). For spe-
cial microstructures it can furthermore by shown that the effective bulk modulus
can indeed attain the value of the upper or (by exchange of the properties of ma-
trix and inhomogeneity) the lower Hashin-Shtrikman bound. This is the case, for
instance, in the so-called composite spheres model where the entire space is filled
with spherical inhomogeneities of different size, each surrounded by a matrix shell
the radius of which is chosen in a fixed ratio to the radius of the enclosed sphere (see
e.g., R.M. CHRISTENSEN, 1979). Since they can actually be attained, the bounds
K∗

(HS+) and K∗
(HS−) are the best possible, i.e. closest, bounds that can be found

solely in terms of phase properties and volume fractions.
For the special case of a two-phase material with K

I
= 10K

M
and μ

I
= 10μ

M

the Hashin-Shtrikman and Voigt-Reuss bounds are shown in Fig. 8.22 in terms of
the effective bulk modulus as a function of the volume fraction c

I
along with ap-

proximations according to the self-consistent method and the differential scheme.
Respective results for the effective shear modulus display a qualitatively similar
behavior. As expected, the range of possible effective material properties described
by the Hashin-Shtrikman bounds is significantly closer than that given by the Voigt-
Reuss bounds. The Hashin-Shtrikman bounds are equal the two results of the Mori-
Tanaka model obtained when the properties of matrix and inhomogeneity are ex-
changed. These two solutions are for small or large volume fractions asymptotically
approached by the result of the self-consistent method which does not consider a dis-
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tinguished matrix phase. For small values of c
I

this asymptotic behavior corresponds
to the solution (not shown here) in case of a dilute distribution of inhomogeneities.

In the limit case of one rigid phase (KI → ∞ , μI → ∞) an infinitely high
upper Hashin-Shtrikman bound results from (8.140), exactly as the Voigt bound
(8.77). Correspondingly, the lower Hashin-Shtrikman bound as well as the Reuss
bound (8.76) is zero in case of a material with voids.

The evaluation of the Hashin-Shtrikman variational principle in case of an n-
phase material can be performed analogous to the above procedure. It is, however,
much more laborious since it requires the determination of n−1 parameters τα. Var-
ious generalizations of this method with regard to anisotropic, periodic, or stochastic
microstructures as well as to nonlinear material behavior can be found in the special
literature.

8.4 Homogenization of elastic-plastic materials

Real materials often show an inelastic behavior and have to be described by nonlin-
ear stress-strain relations. The micromechanical models and homogenization tech-
niques discussed so far then are no longer applicable since they are based on the
assumption of a linear elastic material behavior and the availability of respective
fundamental solutions. More far-reaching considerations hence are necessary for
the investigation of micro-heterogeneous inelastic materials. In the following we
focus on the case of rate-independent plasticity (see Section 1.3.3).

Micromechanics allows to grasp the notion of plasticity in a rather general con-
text and consider a variety of different microscopic processes which all are the
source of the macroscopic phenomenon of permanent plastic deformations. Exam-
ples are the various multiscale mechanisms of metal plasticity such as dislocation
glide and grain boundary sliding but also frictional sliding along distributed micro-
cracks in brittle rock. Within this introductory treatment, however, we will restrict
to a material description in the framework of phenomenological elasto-plasticity
according to Section 1.3.3. This still allows to investigate important classes of ma-
terials such as metal matrix composites or metal-infiltrated ceramics as well as the
role of porosity in the course of damage of ductile materials (see Chapter 9).

8.4.1 Foundations

We consider a volume V on the microscopic level of a heterogeneous material
(Fig. 8.23a) where the constitutive equations according to Section 1.3.3 hold. The
elastic-plastic material behavior (microstructure) then is characterized in terms of
the spatially varying elasticity tensor C(x) and the likewise spatially varying yield
condition

F
(
σ(x), x

)
≤ 0 . (8.141)
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The latter describes the set of all admissible stress states which in addition must
satisfy the equilibrium condition ∇·σ(x)=0. Via the elasticity law they are related
to the elastic strains εe(x) which according to (1.73) are additively composed with
the plastic strains εp(x) to the total strains:

σ = C(x) : εe = C(x) :
(
ε− εp

)
. (8.142)

These equations are supplemented by the flow rule (1.82) for the plastic strain incre-
ments ε̇p in the framework of the incremental theory or by (1.86) in the framework
of deformation theory.

a) b)

V V
ε0,σ0 〈ε〉, 〈σ〉

C(x) C∗

F ∗
(
〈σ〉
)
≤ 0F

(
σ(x), x

)
≤ 0

Fig. 8.23 a) Micro-heterogeneous elastic-plastic material, b) homogenized material

In order to describe the macroscopic effective behavior of the material, in the
following we are looking for relations between the macroscopic stresses 〈σ〉 and
strains 〈ε〉 (or their increments, respectively) defined as volume averages over the
domain V according to (8.41). Analogous to the situation of elastic materials homo-
geneous boundary conditions ε0 or σ0 are therefore prescribed (Fig. 8.23a). One of
the macroscopic quantities then is in either case already known from the relations
(8.60a) or (8.60b) which are independent of the material behavior.

8.4.1.1 Plastic and elastic macrostrains

As already mentioned, the macroscopic strains 〈ε〉 are defined as volume averages
of the microscopic strains ε(x). Such a simple relation, however, does not hold for
the plastic and elastic parts of the macroscopic strains. We want to investigate how
the spatially distributed plastic and elastic strains εp(x) and εe(x) on the micro-
scopic level are transferred to the macroscale. In addition to the original problem we
therefore consider a purely elastic comparison problem for the heterogeneous vol-
ume subjected to the same boundary conditions, yet with vanishing plastic strains.
The corresponding fields are indicated with a tilde. They are statically and kinemat-
ically admissible and can for both types of homogeneous boundary conditions be
represented in terms of the influence tensors introduced in (8.62a) and (8.62b):



282 8 Micromechanics and homogenization

a) u|
∂V

= ε0 · x : ε̃(a)(x) = A(x) : ε0 , 〈ε̃(a)〉 = 〈ε〉 = ε0 ,
(8.143)

b) t|
∂V

= σ0 · n : σ̃(b)(x) = B(x) : σ0 , 〈σ̃(b)〉 = 〈σ〉 = σ0 .

The stresses are given by σ̃(a) = C : ε̃(a) or σ̃(b) = C : ε̃(b), respectively. If in
case of the boundary condition (a) the elasticity law (8.142) is multiplied by ε̃(a)(x)
and the volume average over V is taken one obtains

〈σ : ε̃(a)〉 = 〈ε :

σ̃(a)

︷ ︸︸ ︷
C : A : ε0︸ ︷︷ ︸

ε̃(a)

〉 − 〈εp : C : A : ε0〉 .

Since the fields ε̃(a) and σ̃(a) as well as ε and σ are kinematically and statically ad-
missible the above relation, using (8.61) and (8.65a), can be transformed according
to

〈σ〉 :ε0 = 〈ε〉 :〈C :A〉 : ε0 − 〈εp : C :A〉 :ε0 = 〈ε〉 :C∗:ε0 − 〈εp :C :A〉 :ε0 .

Since this holds for arbitrary ε0 one obtains the macroscopic stress-strain relation

〈σ〉 = C∗ :
(
〈ε〉 − Ep

)
(8.144)

with the representation

Ep = C∗−1 : 〈εp : C : A〉 (8.145a)

for the macroscopic plastic strain. Correspondingly, the macroscopic elastic strain
is given by

Ee = 〈ε〉 − Ep = C∗−1 : 〈εe : C : A〉 . (8.145b)

Thus the macroscopic elastic and plastic strains are indeed not the ordinary volume
averages but the weighted averages of the respective microfields where the elastic
heterogeneity in terms of the tensors C and A serves as the weighting factor. Only
in case of an elastically homogeneous material (C = const, A = 1) or for homo-
geneous elastic and plastic strains is Ep = 〈εp〉 and Ee = 〈εe〉.

In case of the boundary condition (b) the analogous procedure utilizing the elastic
comparison field σ̃(b) leads to the somewhat shorter representation

Ep,e = 〈εp,e : B〉 (8.146)

where the effective elasticity tensor is given by (8.65b). For a representative volume
element (RVE) both representations must coincide.
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8.4.1.2 Elastic energy and dissipation

When after some amount of plastic flow a micro-heterogeneous elastic-plastic
material is macroscopically unloaded (〈σ〉 → 0), a complete local unloading
(σ(x) → 0) generally does not take place in all points x of the microscopic level.
Elastic energy remains stored in an inhomogeneous residual stress field (eigenstress
field). For a closer inspection of this effect we consider a material which behaves
elastic-perfectly plastic on the microscopic level. Energy storage then is possible
only by elastic strains and the strain energy density reads

U(x) =
1

2
εe : C(x) : εe . (8.147)

Considering the boundary condition (b) of prescribed macrostress 〈σ〉 = σ0 we
introduce an auxiliary field σr(x) which describes the deviation of the true stress
σ(x) of the elastic-plastic problem from the stress σ̃(b)(x) in a purely elastic com-
parison problem:

σr(x) = σ(x)− σ̃(b)(x) = σ(x)−B(x) : σ0 . (8.148)

In case of macroscopic unloading (σ0 = 0) this auxiliary field is equal to the resid-
ual stress prevailing in the volume V . Obviously this field has the properties

∇ · σr = 0 in V , σr · n = 0 on ∂V , 〈σr〉 = 0 (8.149)

and vanishes only for vanishing plastic strains εp throughout the volume V . Using
(8.148) the elastic strain field in (8.147) can be replaced by

εe = C−1(x) : σ = C−1(x) :
(
B(x) : σ0 + σr

)
. (8.150)

Volume averaging over V then leads to

〈U〉= 1

2
〈(C−1 : B : σ0 +C−1 : σr

)
: C :

(
C−1 : B : σ0 +C−1 : σr

)〉

=
1

2
σ0 : 〈BT : C−1 : B〉︸ ︷︷ ︸

C∗−1, see (8.66)

: σ0 +
1

2
〈σr : C−1 : σr〉+ 〈σr : C−1 : B : σ0︸ ︷︷ ︸

σ̃(b)

︸ ︷︷ ︸
ε̃(b)

〉 .

The last expression in brackets vanishes because of (8.149) and (8.61) and the aver-
age strain energy density in V reads

〈U〉 =
1

2
σ0 : C∗−1 : σ0︸ ︷︷ ︸
Ee : C∗ : Ee

+
1

2
〈σr : C−1 : σr〉 . (8.151)
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The first term describes the energy due to the macroscopic elastic strains while the
second term represents the effect of the heterogeneous residual stress field.

If the material behavior on the microscopic level is perfectly plastic the work
done by the stresses on the plastic strains is entirely dissipated and the average
dissipation (power) in some volume V reads

D = 〈σ : ε̇p〉 . (8.152)

Using the incremental forms of (8.61) and (8.149) and the auxiliary field

σ̇r(x) = σ̇(x)−B(x) : σ̇0 = C(x) :
(
ε̇(x)−ε̇p(x)

)
︸ ︷︷ ︸

σ̇(x)

−B(x) : C∗:
(
〈ε̇〉 − Ėp

)
︸ ︷︷ ︸

σ̇0

the following relation can be derived

D = 〈σ〉 : Ėp − 1

2
〈σr : C−1 : σr〉. . (8.153)

It states that the power of the macroscopic stresses done on the macroscopic plastic
strains is only partly dissipated; the remaining part is stored as the elastic energy of
the residual stress field.

The results (8.51) and (8.153) obtained here for the boundary condition (b) of
prescribed macrostress σ0 can also be derived in case of prescribed macrostrain ε0.
Instead of (8.148) one then has to make use of the auxiliary strain field

εr(x) = εe(x)−A(x) : Ee (8.154)

and its incremental form. If the volume V considered for averaging is statistically
representative (RVE) both approaches are equivalent and the auxiliary fields are
related to each other by σr(x) = C(x) : εr(x).

8.4.1.3 Macroscopic yield condition

If at some point on the microscopic level plastic flow takes place with ε̇p �= 0
the stress state σ at this point is according to (8.141) located on the yield surface
F = 0. For stress states inside the yield surface (F < 0) the material behaves elas-
tically. Again we consider a microscopically elastic-perfectly plastic material where
the yield surface is not altered by plastic flow (i.e., no hardening on the microscopic
level). However, the size and shape of the yield surface may spatially vary on the mi-
croscale due to the heterogeneous material properties. In order to investigate which
consequences this has for the macroscopic stress 〈σ〉 we consider some volume V
subjected to the boundary condition 〈σ〉 = σ0 (Fig. 8.23).

First, we proceed from a situation where nowhere in V plastic flow has taken
place: εp(x) = 0. The stress field throughout V then is purely elastic and can
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according to (8.62b) be written as σ(x) = B(x) : 〈σ〉. Insertion into the yield
condition (8.141) for every point x yields the following (infinitely many) conditions
for the macroscopic stress state 〈σ〉

F
(
B(x) : 〈σ〉, x

)
≡ F∗x

(
〈σ〉
)
≤ 0 for every x in V (8.155)

which may formally be combined to the macroscopic yield condition

F∗
(
〈σ〉
)
≤ 0 . (8.156)

The set of all admissible macroscopic stress states satisfying (8.156) is the intersec-
tion of all 〈σ〉 for which (8.155) holds in every point x of V . For an illustration we
consider two such points xa and xb and represent the corresponding yield surfaces
by contours in the 1,2-plane of the principal stress space (Fig. 8.24). The shaded re-
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〈σ〉
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F ∗
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(
〈σ〉
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≤ 0

Fig. 8.24 Elastic domains and yield surfaces on the microscopic (left) and macroscopic (right)
level

gion characterizes the set of all macroscopic stress states 〈σ〉 for which the resulting
microstress fields σ(x) satisfy the condition (8.141) at both points xa and xb. The
influence tensor B transforms, as a linear mapping, the convex microscopic yield
surfaces Fa,b = 0 into the likewise convex surfaces F∗a,b = 0; being the intersection
of the latter the shaded region of admissible macroscopic stress states is convex as
well. Since macroscopic stress states which cause plastic flow are necessarily lo-
cated on the boundary of the shaded region this boundary can be interpreted as the
macroscopic yield surface F∗(〈σ〉) = 0.

Moreover, from (8.156) or (8.155) it is obvious that plastic flow is macroscopi-
cally not noticable if it takes place only in a single point on the microscopic level
(say xa or xb in Fig. 8.24). Because of this it can be shown that the macroscopic
yield surface initially must have a vertex at a stress state that causes macroscopic
plastic flow (such as one of the intersection points of the surfaces F∗a = 0 and
F∗b = 0 in Fig. 8.24). Despite this theoretical argument, however, it has to be men-
tioned that such a vertex is in practice hardly measurable.
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In order to investigate the effect of preceding plastic flow on the macroscopic
yield surface, now we consider a point x on the microscopic level at which some
amount of plastic flow εp �= 0 has already taken place and where the local stress
state σ is located on the yield surface (Fig. 8.25). The corresponding macroscopic
stress state 〈σ〉 is located on the macroscopic yield surface. Due to the plastic defor-

σ2

σ1

σ

σ∗

σ−σ∗

F
(
σ(x), x

)
≤ 0

Fig. 8.25 Elastic unloading on the microscopic level

mation the auxiliary field (8.148) then is no longer zero: σr(x) �= 0. Unloading at
point x leads to a microscopic stress state σ∗ inside the elastic range (Fig. 8.25). If
unloading takes place at all points on the microscopic level the macroscopic stress
state attains a value 〈σ〉∗ inside the macroscopic elastic range. The relation between
the change of the microstress field and the macroscopic stress state then can be
expressed in terms of the influence tensor (8.62b):

σ(x)− σ∗(x) = B(x) :
(
〈σ〉 − 〈σ〉∗

)
. (8.157)

Using the residual stress field (8.148) this can be written as

B(x) : 〈σ〉∗ = σ∗(x)− σr(x) . (8.158)

This representation is valid for all stress states 〈σ〉∗ inside the macroscopic yield
surface, i.e., for those macrostresses which cause in every point x on the micro-
scopic level a stress state σ∗ located inside the local microscopic yield surface.
Accordingly, the macroscopic yield surface (or the set of all stress states 〈σ〉∗ in its
interior, respectively) is determined from the admissible microstress states σ∗(x)
through the translation by σr(x), the linear transformation by B(x), and the inter-
section with respect to all x in V . The translation by σr(x) means that the location
of the macroscopic yield surface in stress space changes in response to the micro-
scopic plastic deformation. Hence the macroscopic behavior of a microscopically
heterogeneous elastic-perfectly plastic material displays kinematic hardening (see
Section 1.3.3.1).

This phenomenon can be illustrated by means of the one-dimensional example
of a purely elastic and an elastic-perfectly plastic bar in parallel (Fig. 8.26). For
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simplicity the elastic stiffnesses of both bars are taken equal. The yield stress of bar
(2) is denoted by k. The loading and unloading cycle depicted in Fig. 8.26 (solid
line) shows the translation of the macroscopic elastic range as a consequence of
plastic flow in bar (2). After macroscopic unloading 〈σ〉 = 0, the inhomogeneous
residual stress in the elastic bar (1) is σ1 = k whereas it is σ2 = −k in bar (2).
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〈σ〉, 〈ε〉

k

−k
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Fig. 8.26 Illustration of kinematic hardening

In the special case that the yield condition is in every point on the microscopic
level given by the VON MISES yield condition (1.77) with the spatially varying yield
stress k(x) a coarse upper bound for the macroscopic yield stress can be derived.
From

1

2
s(x) : s(x) ≤ k2(x) at every x in V (8.159)

it follows by averaging that

1

2
〈s〉 : 〈s〉 ≤ 1

2
〈s : s〉 ≤ 〈k2〉 . (8.160)

The range of admissible macroscopic stress states hence is located inside the VON

MISES cylinder of radius
√
2〈k2〉 (see also Fig. 1.7). This bound, however, is no

longer meaningful if in some part of the microstructure the material is purely elastic
(k = ∞). On the other hand, for a porous medium with porosity f and matrix yield
stress k = const it follows that the macroscopic stress states are bounded according
to (cf. (8.52))

1

2
〈s〉 : 〈s〉 ≤ (1− f)2k2 . (8.161)

In contrast to the overall deviatoric stress for which only bounds can be strictly
derived (see above), the special case of overall hydrostatic loading of a porous per-
fectly plastic medium allows for an exact solution. The latter can be obtained from
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the simple micromechanical model of a spherically symmetric thick-walled shell
(hollow sphere) with inner and outer radii r= a and r= b, respectively, subjected
to purely radial loading σr(r = b) = Σm on the outer boundary (Fig. 8.27). The
inner boundary (void surface) is taken as traction-free, i.e. σr = 0 at r = a, and
f = (a/b)3 is the porosity in this cell model. If the matrix material is rigid perfectly-

Σm

a

b r

Fig. 8.27 Hollow sphere subjected to hydrostatic loading

plastic and obeys the VON MISES yield criterion
√

3
2
s : s = σe ≤ k with deviatoric

stress s, deformation of the shell can take place only if every material point is in a
state of plastic flow. From the equilibrium condition and the yield condition

dσr
dr

− 2

r
(σϕ − σr) = 0 , σϕ − σr ≡ σe = k = const (8.162)

it then follows that

σr(r) = 2k ln
( r
a

)
, σϕ(r) = σr(r) + k . (8.163)

The boundary conditions yield

Σm =
2k

3
ln

(
1

f

)
or 2f cosh

(
3Σm
2k

)
− (1 + f2) = 0 (8.164)

where for the second equation in (8.164) the identity ln(x) = Arcosh
(
x2+1
2x

)
has

been used. The problem that (8.164) is only exact for a spherical shell which is not
space-filling can be overcome by considering an assemblage of shells of any size,
all having the same porosity f , similar to the Composite Spheres Model (see Sec-
tion 8.3.3.2). Space then can be entirely filled and all the shells exert the purely radial
stress Σm on each other; hence (8.164) is an exact result for a space-filling porous
medium (with rigid perfectly-plastic matrix) under purely hydrostatic loading. In
real porous media, however, the void size usually is not randomly distributed. The
solution (8.164) plays an important role in the so-called GURSON model presented
in Section 9.4.2.
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8.4.2 Approximations

The general results about the effective behavior of micro-heterogeneous elastic-
plastic materials derived in the preceding section are based on the mere existence
of the influence tensors A(x) or B(x) and the elastic auxiliary fields they are
used to describe. Their explicit representations in terms of the Eshelby tensor are
available only for the interior of ellipsoidal inhomogeneities in an otherwise ho-
mogeneous matrix. While this information was sufficient for the homogenization
of purely elastic materials this is no longer the case if in addition spatially vary-
ing plastic strains have to be taken into account – even if those may formally be
regarded as eigenstrains. The application of analytical homogenization methods to
elastic-plastic materials hence requires further approximations. From the variety of
different approaches which are discussed in the literature and are a subject of ongo-
ing research only a few fundamental concepts can be presented here.

We therefore consider ellipsoidal inhomogeneities (I) in an infinitely extended
matrix (M) where each phase has constant material properties characterized by elas-
ticity laws

σ = Cα : (ε− εp) (8.165)

with α = I,M and flow rules (see also (1.82))

ε̇p = λ̇α
∂Fα(σ)

∂σ
. (8.166)

Prior to the onset of plastic flow the stresses and strains inside the individual
inhomogeneities are constant according to Eshelby’s result. If only the inhomo-
geneities deform plastically the plastic strains evolving inside are likewise con-
stant. Since they can be regarded as eigenstrains they occur analogous to εt in the
relation (8.31a) for the equivalent eigenstrain and allow for a direct application of
the Eshelby result. In the framework of the model of a dilute distribution or the
Mori-Tanaka model no approximations then are necessary which go beyond those
for a purely elastic material. The self-consistent method, however, which considers
the inhomogeneity to be embedded in the effective, now elastic-plastic medium, re-
quires modifications even in this simplest case; these shall not be further discussed
here.

In the following we consider the situation, more important for practical appli-
cations, of inhomogeneities prevailing in a ductile matrix where inhomogeneous
plastic deformations take place. The discussion of some typical approximations and
their differences is restricted here to spherical inhomogeneities, isotropic elastic be-
havior of both phases, and the VON MISES yield condition (1.77).

8.4.2.1 Piecewise constant plastic strains

The simplest approach consists in assuming the plastic strain in each phase to be
constant and hence equal to its average value:
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εp(x) =

{
〈εp〉

I
in V

I
,

〈εp〉
M

in V
M
.

(8.167)

In addition we consider only the phase average of the stress in the local yield con-
ditions (8.166):

〈ε̇p〉
I
= λ̇

I

∂F
I
(〈σ〉

I
)

∂〈σ〉
I

, 〈ε̇p〉
M
= λ̇

M

∂F
M
(〈σ〉

M
)

∂〈σ〉
M

. (8.168)

Due to these approximations the formal construction of the macroscopic yield con-
dition F∗(〈σ〉) ≤ 0 as discussed in Section 8.4.1.3 is not necessary and only the
local conditions Fα(〈σ〉α) ≤ 0 need to be evaluated. Since therefore the phase av-
erages of the stress fields are required the effective material behavior is implicitly
described by a system of equations which involves macroscopic quantities and phase
averages. In view of the approximation of constant plastic strains in each phase, the
macroscopic plastic strains (8.145a) can be written as

Ep = C∗−1 :
(
cI〈εp〉I : C I : AI + cM〈εp〉M : CM : AM

)
(8.169)

where c
I

and c
M

are the volume fractions and the relation c
M
A

M
= 1− c

I
A

I
holds

(see (8.70)). For the influence tensor A
I

of the inhomogeneity which according to
(8.71a) determines also the effective elasticity tensor C∗ any of the representations
derived from different models in Section 8.3.2 may now be inserted. For complete-
ness also the additional equations are given here from which, for instance, under
prescribed macrostrains 〈ε〉 = ε0 all phase averages and the macrostresses can be
determined:

〈σ〉α = Cα :
(
〈ε〉α − 〈εp〉α

)
, 〈σ〉 = C∗ :

(
〈ε〉 − Ep

)
,

(8.170)
〈σ〉 = c

I
〈σ〉

I
+ c

M
〈σ〉

M
, 〈ε〉 = c

I
〈ε〉

I
+ c

M
〈ε〉

M
.

The essential step in this simple approach which allows for the use of elastic
fundamental solutions such as the Eshelby tensor is the assumption of piecewise
constant plastic strains in the individual phases. Yet, the evaluation in case of stiff
elastic particles (I) embedded in a soft ductile matrix (M) reveals the deficiency of
this approach. It yields an effective behavior which in comparison to detailed finite
element calculations or alternative homogenization techniques (Section 8.4.2.3, see
Fig. 8.28) is far too stiff. The reason for this is the neglected concentration of plastic
matrix flow in the immediate vicinity of the particles (stress concentrators). In the
present model the particles are located in a less compliant surrounding than they are
in reality, with the consequence that their stiffening effect on the overall behavior is
overestimated.
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8.4.2.2 Incremental theory

Now the assumption of piecewise constant plastic strains is given up and an incre-
mental constitutive law, valid is the state of plastic flow, is chosen as the starting
point. The Prandtl-Reuss law (1.83c)

ė =

[
1

2μα
1 +

3

2gα

s⊗ s

s : s

]
: ṡ (8.171)

is therefore employed for both phases where the deviator ė(x) and the purely elastic
volumetric part add up to the total strain rate ε̇(x). The symbol⊗ denotes the dyadic
product of two tensors: (σ⊗σ)ijkl = σijσkl. In terms of the elastic-plastic tangent
tensors C̃α the relations between the stress and strain increments can be written as:

σ̇ = C̃α : ε̇ (α = I,M) . (8.172)

It should be noted that the tangent tensors vary in space via the actual stress dis-
tribution: C̃α = C̃α(s(x)). The relation (8.172) between the stress and strain in-
crements is formally analogous to the elasticity law (8.54). However, the tangent
tensors are even in case of an elastically isotropic material anisotropic since they
depend on the direction of plastic flow via the second part of (8.171).

In the following the stress dependence of the tangent tensors is approximated by
a dependence only on the average stress in the respective phase. This leads to an
incrementally linear material behavior with a spatially constant tangent stiffness in
each phase:

σ̇ = C̃α

(
〈s〉α

)
: ε̇ . (8.173)

Now the Eshelby result can again be applied, yet requiring the Eshelby tensor for an
anisotropic matrix material C̃

M
(〈s〉

M
). The homogenization techniques presented

in Section 8.3.2 finally lead to an effective tangent tensor C̃
∗
(〈s〉α) for the incre-

mental description of the macroscopic material behavior:

〈σ̇〉 = C̃
∗(〈s〉α

)
: 〈ε̇〉 . (8.174)

In the course of an incremental evaluation the current values of the average devi-
atoric stress states 〈s〉

I
and 〈s〉

M
in both phases have to be determined which are

needed to update the tangent tensors. Because of the anisotropy of the tangent ten-
sors and the Eshelby tensor, changing in the course of loading, this method is rather
costly. Yet, it leads to more realistic results since the plastic strain rates in the matrix
phase

ε̇p(x) =
3

2gM

[ 〈s〉
M
⊗ 〈s〉

M

〈s〉M : 〈s〉M

]
: ṡ(x) (8.175)

are not taken to be constant.
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8.4.2.3 Total strain theory

Significant simplifications result when only monotonous and proportional loading
is considered (see Section 1.3.3.3). Because of the coaxiality of σ, s, and σ̇ then
the relations s(s : ṡ) = (s : s)ṡ = 2

3 σ
2
e ṡ hold and integration of (8.171) leads to

the Hencky-Ilyushin law (see also (1.86))

s = 2μsα e . (8.176)

It has the structure of a nonlinear elastic constitutive law with the secant modu-
lus μs(σe(x)). The latter depends on the stress state only via the one-dimensional

equivalent stress σe =
√

3
2
s : s. In case of isotropic hardening with a yield stress

k(p) = k0 + Ap
1/n which depends only on the one-dimensional equivalent plastic

strain p ≡ εpe =
√

2
3 ε

p : εp the secant modulus reads

μs(σe) =
μσeA

n

σeAn + 3μ(σe√
3
− k0)n

(8.177)

for σe ≥
√
3 k0 where k0 denotes the initial yield stress.

In order to eliminate the spatial dependence of the secant moduli in both phases
the inhomogeneous stress fields are approximated by their phase averages. The

equivalent stresses in both phases then can be written as Σα =
√

3
2
〈s〉α : 〈s〉α.

As a consequence, (8.176) reduces to an elasticity law with a constant secant mod-
ulus in each phase

s = 2μsα(Σα)e . (8.178)

Since the stiffness of the matrix material now is spatially constant the Eshelby result
for an ellipsoidal inhomogeneity can also be applied to this nonlinear problem. Via
the secant shear modulus μs

M
(Σ

M
) the Eshelby tensor depends on the current aver-

age matrix stress state or the equivalent stress ΣM computed from it, respectively.
In case of spherical inhomogeneities the parameters (8.11) of the isotropic Eshelby
tensor (8.10) hence read

αs (Σ
M
) =

3K
M

3K
M
+ 4μs

M

, βs (Σ
M
) =

6(K
M
+ 2μs

M
)

5(3K
M
+ 4μs

M
)
. (8.179)

The homogenization can now be performed with any of the methods discussed in
Section 8.3.2; in the representations for the effective stiffness only the shear moduli
μ

I
and μ

M
have to be replaced by μs

I
(Σ

I
) and μs

M
(Σ

M
). This leads to a macroscopic

constitutive law written in terms of the effective secant moduliK∗
s and μ∗s :

〈σkk〉 = 3K∗
s 〈εkk〉 , 〈s〉 = 2μ∗s 〈e〉 . (8.180)
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The determination of K∗
s and μ∗s requires the solution of a nonlinear system of

equations since the current phase averages 〈s〉α have to be computed as functions
of some prescribed macroscopic quantity. Therefore, it is practical to eliminate the
phase averages of the strains from the general relations for the macroscopic quanti-
ties:

c
I
〈s〉

I
+ c

M
〈s〉

M
= 〈s〉 , c

I
〈s〉

I

2μs
I
(Σ

I
)
+
c
M
〈s〉

M

2μs
M
(Σ

M
)
= 〈e〉 . (8.181)

As an example we consider an elastic-plastic composite material which consists
of a ductile aluminum matrix and purely elastic spherical alumina particles with a
volume fraction of c

I
=0.3. The behavior of the matrix can be characterized by the

typical material data E
M
= 75GPa, ν

M
= 0.3, k0 = 75MPa, A = 400MPa, and

n=3 while that of the particles is given by EI =400GPa and νI =0.2. Figure 8.28
shows the stress-strain behavior of both phases as well as the overall behavior under
uniaxial tension. From the values of the material parameters and the morphology
of the composite (stiff particles in a soft matrix) it can be expected that the overall
behavior is mainly determined by the matrix. The concentration of plastic matrix
flow in the vicinity of the particles reduces their stiffening effect in comparison to
a purely elastic composite. Besides the overall behavior of the composite based on
the total strain theory, Fig. 8.28 also shows the 〈σ〉, 〈ε〉-curve obtained under the
assumption of piecewise constant plastic strains (Section 8.4.2.1).
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0

200

300

400

0.004 0.006 0.008 0.010 0.002

100

σ, 〈σ〉
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Fig. 8.28 Elastic-plastic composite, comparison of approximate methods

The homogenization has in both cases been performed using the Mori-Tanaka
model. Obviously the assumption of piecewise constant plastic strains leads to an
unrealistically weak influence of matrix plasticity on the overall behavior; this has
already been mentioned in Section 8.4.2.1. The result based on total strain theory
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which allows for inhomogeneous plastic strains, in contrast, captures the dominance
of the ductile matrix in the overall behavior much better.

8.5 Thermoelastic material

Spatial fluctuations on the microscale of heterogeneous media are generally dis-
played not only by the elastic or plastic properties but also by other physical param-
eters. One of the most important ones is the thermal expansion coefficient k which
according to (1.43) appears in the Duhamel-Neumann law

σ(x) = C(x) :
(
ε(x)− εth(x)

)
= C(x) :

(
ε(x)− k(x)ΔT (x)

)
(8.182)

of a micro-heterogeneous thermoelastic material. For the majority of practical appli-
cations it is justified to consider the temperature changeΔT to be constant through-
out the microscale. The material behavior on the macroscopic level then can be
characterized by the effective elasticity tensor C∗ according to Section 8.3 and the
effective coefficient of thermal expansion k∗:

〈σ〉 = C∗ :
(
〈ε〉 − Eth

)
where E th = k∗ΔT . (8.183)

Comparison of (8.182) and (8.183) with (8.4) or (8.142) and (8.144) reveals that
thermal strains εth = kΔT are equivalent to stress-free transformation strains εt

or plastic strains εp. This already repeatedly mentioned analogy can be exploited to
determine k∗. Accordingly, (8.145a) yields the macroscopic thermal strain

Eth = C∗−1 : 〈εth : C : A〉 (8.184a)

and after insertion of Eth and εth it follows that

k∗ = C∗−1 : 〈k : C : A〉 . (8.184b)

Hence the effective coefficient of thermal expansion is the weighted average of its
microscopic counterpart (weighted by the elastic heterogeneity in terms of C(x)
and the influence tensor A(x)). Only in case of an elastically homogeneous material
(C = const, A = 1) is k∗ = 〈k〉.

As a special case of practical importance we again consider a composite material
which consists of two piecewise homogeneous phases with C

M
, C

I
, k

M
, k

I
and

volume fractions c
M
, c

I
. Using c

I
A

I
+ c

M
A

M
= 1 one obtains from (8.184b)

k∗ = C∗−1 :
(
kM : CM + cI(kI : C I − kM : CM) : AI

)
. (8.185a)

If the influence tensor A
I

of the inhomogeneity is replaced by (8.71a) it follows that
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k∗= C∗−1:
(
kM:CM+(kI :C I−kM :CM) : (C I−CM)−1: (C∗−CM)

)
. (8.185b)

In this representation any of the approximations of the effective elasticity tensor C∗
derived from the micromechanical models in Section 8.3.2 can now be inserted.

A problem that often occurs in practical applications is that of thermally in-
duced eigenstresses in the course of heating up or cooling down a heterogeneous
microstructure or composite. If the material is considered to be macroscopically un-
loaded 〈σ〉 = 0 it follows from (8.47) for the average stresses in both phases that
c
I
〈σ〉

I
= −c

M
〈σ〉

M
and the average strain is 〈ε〉 = c

I
〈ε〉

I
+ c

M
〈ε〉

M
= k∗ΔT . By

inserting the constitutive laws for both phases 〈σ〉α = Cα : (〈ε〉α − kαΔT ) one
obtains for the average stresses

c
I
〈σ〉

I
= −c

M
〈σ〉

M
=
(
C−1

M
−C−1

I

)−1
:
(
c
I
k

I
+ c

M
k

M
− k∗)ΔT . (8.186)

Now we consider a material with both phases being elastically (Kα, μα) and
thermally isotropic. The local thermal strains then are purely volumetric: εth =
kαΔT I . If the material is elastically isotropic also on the macroscale then the ef-
fective coefficient of thermal expansion according to (8.185b) is likewise isotropic
k∗ = k∗I and depends only on the effective bulk modulus:

k∗ =
k

M
K

M
(K

I
−K

M
) + (k

I
K

I
− k

M
K

M
)(K∗ −K

M
)

K∗(KI −KM)
. (8.187)

If in case of a microstructure with spherical inhomogeneities the Mori-Tanaka
model (Section 8.3.2.4) is employed for the homogenization then (8.98) and the
volumetric part α = (1 + ν)/3(1− ν) of the isotropic Eshelby tensor (8.10), (8.11)
lead to

k∗(MT) = kM
+ c

I

KI(kI − kM)

K
M
+ (α + c

I
(1− α))(K

I
−K

M
)
. (8.188)

Insertion into (8.186) yields the average values of the thermally induced stresses in
both phases which are purely hydrostatic:

〈σ〉
I
= − cM

c
I

〈σ〉
M
=

−3KIKMcM(1− α)(kI − kM)

K
M
+ (α + c

I
(1− α))(K

I
−K

M
)
ΔT I . (8.189)

In the special case of a very stiff matrix (KM � KI) one obtains

〈σ〉
I
= −3K

I
(k

I
− k

M
)ΔT I . (8.190)

In case of an elastically homogeneous material (K
M

= K
I
= K), in contrast, it

follows that
〈σ〉

I
= −3Kc

M
(1− α)(k

I
− k

M
)ΔT I (8.191)

which comprises the result (8.14) when the thermal expansion is restricted to the
inhomogeneity (k

M
= 0) with a very small volume fraction (c

I
� 1 , c

M
≈ 1):
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〈ε〉I =
〈σ〉I
3K

+ kI ΔT I = αkI ΔT I . (8.192)

As an example of practical relevance we consider a microstructure which results
from the infiltration of aluminum into a porous ceramic matrix of alumina (Al2O3).
Since the manufacturing proceeds at high temperatures cooling down the material to
room temperature leads to thermally induced eigenstresses in both phases. Typical
material data for the ceramic matrix (M) and the aluminum phase approximated
here as spherical inhomogeneities (I) are: KM = 220GPa, νM = 0.2, kM =
8 · 10−6K−1, K

I
= 60GPa, ν

I
= 0.3, k

I
= 2.4 · 10−5K−1. This leads to

α(ν
M
) = 0.5 and for a volume fraction of aluminum of c

I
= 0.25 one obtains

from (8.188) an effective coefficient of thermal expansion of k∗ ≈ 10−5K−1. A
temperature change in the course of cooling of ΔT = −400K leads according to
(8.189) to an average pressure of σ

M
≈ −250 MPa in the ceramic matrix (M) and to

a hydrostatic tensile stress of σ
I
≈ 750 MPa in the infiltrated aluminum (I). Despite

the strongly simplified approximation of the morphology by spherical aluminum
particles these values correspond quite well to experimental findings. One should
note that the average stress in the aluminum phase is much higher than the yield
stress of aluminum. However, since the stress state is purely hydrostatic yielding
does not occur in the course of cooling, instead cavities are formed in the aluminum
phase.

8.6 Problems

Problem 8.1 The effective bulk modulus K∗ of a heterogeneous, macroscopi-
cally isotropic material is know from measurements. The material consists micro-
scopically of two isotropic phases with the elastic constantsK

I
, μ

I
,K

M
, μ

M
. Com-

pute from the Voigt-Reuss bounds and the Hashin-Shtrikman bounds the intervals of
possible volume fractions c

I
and c

M
= 1− c

I
, respectively. Assume that the elastic

constants are related to each other byK
I
= 10K

M
, μ

I
= 10μ

M
andK∗ = 5K

I
.

Solution: a) Voigt-Reuss bounds: 0.44 ≤ c
I
≤ 0.88,

b) Hashin-Shtrikman bounds: 0.56 ≤ c
I
≤ 0.79.

Problem 8.2 Apply Hashin-Shtrikman’s variational principle to the 1D-example
of a heterogeneous two-phase bar.

Fig. 8.29 �
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Solution: Choosing first material 1 (E1) and subsequently material 2 (E2) as the
comparison material, the identical resultE∗ = E1E2/(c1E1+c2E2) is obtained as
the upper and as the lower Hashin-Shtrikman bound. Consequently, this is the exact
solution for the effective Young’s modulus.

Problem 8.3 Two isotropic linear elastic materials (a) and (b) with Lamé’s
constants λa, μa, λb, μb are perfectly bonded. At
some point P of the interface the strain state εaij
in material (a) is assumed to be known.
Determine the strain state in material (b) at the
point P.

Hint: Along the interface, the following rela-
tions hold with respect to the sketched cartesian
coordinate system:

���
���
���
����
�
�
�

�
�
�
�

x1, x2

(a) x3

(b)

P

Fig. 8.30

σai3 = σbi3 (i = 1, 2, 3) , εa11 = εb11 , εa12 = εb12 , εa22 = εb22

Solution: The unknown strains in material (b) are

εbγ3 =
μa

μb
εaγ3 (γ = 1, 2) ,

εb33 =
1

λb + 2μb
[
(λa + 2μa) εa33 + (λa − λb) (εa11 + εa22)

]
.

Problem 8.4 An isotropic linear elastic composite material with spherical par-
ticles I in a matrixM is subjected to an uniaxial
macroscopic stress Σ.
Use the result of problem 8.3 together with Es-
helby’s solution (Sections 8.2.1.4 and 8.2.2.2) to
compute the stress state in the matrix at some
point P of the particle-matrix interface at the
particle equator.

Σ

x3

x1

x2

I
P

M

Fig. 8.31

Solution: For the special case of KM = 2μM,KI = 2μI, i.e. νM = νI = 2/7, the
normalized stress components at point P are plotted in Fig. 8.32 as functions of the
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stiffness ratio μI/μM.
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Fig. 8.32
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Chapter 9
Damage mechanics

9.1 Introduction

Real materials often contain already in the initial state a multitude of defects such
as microcracks or voids. In the course of a deformation process these internal cavi-
ties may grow and coalesce while at the same time further material separation takes
place by the creation of new microdefects at stress concentrators (e.g. inclusions,
grain boundaries, inhomogeneities). This causes a change of the macroscopic prop-
erties of the material and its strength decreases. Such a process of structural dete-
rioration of a material which results from the creation, growth and coalescence of
microdefects is called damage. In its final stage it leads to a complete loss of the
material’s integrity and to the formation of a macroscopic crack.

Material damage is classified according to the dominant macroscopic phenomenon
as brittle damage, ductile damage, creep damage, and fatigue damage. The prevail-
ing mechanism of brittle damage is the formation and growth of microcracks as it
takes place for instance in ceramics, geomaterials, or concrete. In contrast, ductile
damage and creep damage in metals is essentially due to the nucleation, growth, and
coalescence of microvoids. The source of fatigue damage are microcracks which are
formed at stress concentrators in the course of microplastic cyclic loading and which
more and more grow and coalesce.

The description of the macroscopic behavior of a damaged material may still pro-
ceed in the framework of continuum mechanics. Macroscopic stresses and strains
then have to be understood as volumetric averages over a representative volume ele-
ment (RVE) inside which the damage process takes place (see also Section 8.3.1.1).
The relevant characteristic length scales depend on the material at hand as well as
on the damage mechanism. The state (extent) of damage is represented by a so-
called damage variable (internal variable). The latter is governed by an evolution
law which has to be formulated in a way to describe the evolution of damage in a
physically adequate manner. For its derivation it is practical to employ microme-
chanical models which capture the essential features of the defects and allow for
a detailed investigation of their growth. A respective damage theory can be con-

:
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302 9 Damage mechanics

sidered as a link between classical continuum mechanics and fracture mechanics.
It is in principle capable of describing the formation of a macroscopic crack in an
initially crack-free material body.

The present chapter serves to present elementary concepts of damage mechanics.
Thereby we focus only on the simplest cases of brittle and ductile damage in the
course of monotonic loading.

9.2 Foundations

Damage variables can be introduced in various ways. A simple means of describing
the state of damage consists in its geometric quantification and dates back to L.M.
KACHANOV (1914-1993). In a cross section of the damaged body we therefore
consider an area element dA with unit normal vector n (Fig. 9.1a). The area of the
defects in this element is denoted by dAD and the amount of damage then can be
characterized by the area fraction

ω(n) =
dAD
dA

with 0 ≤ ω ≤ 1 (9.1)

where ω = 0 corresponds to the undamaged material and ω = 1 formally describes
the totally damaged material with a complete loss of stress carrying capacity (i.e.,
fracture). In real materials, however, already at values of ω ≈ 0.2 . . . 0.5 processes
take place which lead to total failure. If the damage is constant across a finite area,
for instance, under uniaxial tension as in Fig. 9.1b, the relation (9.1) reduces to
ω = AD/A. Obviously this simplest definition of damage is only suitable for void-
like defects which have a spatial extension and hence a defect area dAD in arbitrary
cross sections. The influence of microcracks which are inclined to the cross section
can not be properly described in this way.

ADA

F

Fb)a)

dF

ndA

n

dAD

dA

Fig. 9.1 Definition of damage

In the course of a deformation process the defects may grow in preferred direc-
tions which are determined by the stress state. In this case ω depends on n and the
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damage is anisotropic. If, however, the defects and their spatial distribution do not
display preferred orientations isotropic damage prevails and the state of damage
can be characterized by a scalar. A sufficiently small amount of damage may often
be considered isotropic as a first approximation.

If the force dF acting on some cross section is divided by the area dA, one
obtains the common stress vector t according to (1.1). The effective stress vector t̃
is defined as the force per unit effective (stress carrying) area dÃ = dA − dAD =
(1− ω)dA:

t̃ = t
dA

dÃ
=

t

1− ω . (9.2)

Correspondingly, in case of isotropic damage (ω independent of n) the effective
stresses are given by

σ̃ij =
σij

1− ω . (9.3)

The effective stresses σ̃ij are the average stresses in the undamaged matrix material.
In order to formulate constitutive laws one often assumes that the effective

stresses σ̃ij lead to the same strains in the damaged material as are induced by the
classical stresses σij in the undamaged material (equivalent strain principle). The
stress-strain behavior of the damaged material can then be described by the consti-
tutive law of the undamaged material if the stresses are replaced by the effective
stresses. In the uniaxial case of a damaged linear elastic material, for instance, one
obtains

ε =
σ̃

E
=

σ

(1− ω)E (9.4)

where E is the Young’s modulus of the undamaged material. The respective ap-
proach also applies to inelastic material behavior and the elastic strains in the
framework of plasticity are obtained according to

dεe =
dσ̃

E
=

dσ

(1 − ω)E or εe =
σ̃

E
=

σ

(1− ω)E . (9.5)

Hence the amount of damage can be determined by measuring the effective Young’s
modulus

E∗ = (1− ω)E (9.6a)

of the damaged material (Fig. 9.2):

ω = 1− E∗
E
. (9.6b)

Comparison of the representation (9.6a) with the result (8.73)

C∗ = C : (1−D) (9.7)

from the micromechanical investigation of materials with cavities and cracks reveals
that the damage variable ω is the uniaxial special case of the influence tensor D
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b) εεa)

E∗
1 E∗

2E E∗
1 E∗

2E E∗
3

σ σ

Fig. 9.2 Damage evolution: a) elastic, b) elastic-plastic

where the latter comprises also the situation of anisotropic damage due to preferred
defect orientations. The boundary condition (on an RVE) of prescribed macrostrains
(see (8.72), (8.73)) assumed in Section 8.3 for the derivation of (9.7) corresponds to
the equivalent strain principle employed here.

Besides ω according to (9.1) or D according to (9.7) further quantities are uti-
lized for the characterization of damage. Irrespective of the material behavior the
generally anisotropic damage due to the presence of microcracks can be described
by the damage tensor

ωij =
1

2V

∫

AR

(niΔuj + njΔui) dA . (9.8)

Here, V denotes a representative volume element, Δui is the displacement jump,
ni is the unit normal vector, and the integration has to be performed over the entire
crack surface AR, i.e., over all cracks within the volume V . The quantity (9.8) may
also be interpreted as an ‘eigenstrain’ induced by the damage (see (8.50b),(8.53)). If
the microcracks do not close completely upon unloading, (9.8) describes the residual
(inelastic) strains.

Damage due to voids in ductile materials is often represented by the void volume
fraction or porosity

f =
Vp
V

(9.9)

where Vp is the total volume of voids within the volume V of some RVE. Anal-
ogously, the crack density parameter introduced in Section 8.3 may be used as a
damage variable to describe damage due to microcracks.

9.3 Brittle damage

The dominant mechanism of brittle damage is the nucleation and growth of microc-
racks. These cracks usually have a preferred orientation given by the principal axes
of the stress tensor. Under tensile loading cracks are observed to grow preferentially
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normal to the maximum tensile stress (Fig. 9.3). Their characteristic length in the
initial state, however, is typically determined by the microstructure of the material
(e.g., grain size). In the course of loading and beyond some critical load the cracks
start to grow and multiply which leads to a decreasing stiffness (e.g., Young’s mod-

Damage

Localization
σ2 σ2

σ1

σ1>σ2

ε

σ

Fig. 9.3 Brittle damage under tensile loading

ulus) in the direction of loading. Although the undamaged matrix material behaves
linear elastic the macroscopic behavior of the damaged material is nonlinear be-
cause of the increasing damage (Fig. 9.3). The deformation process proceeds in this
way until the material becomes macroscopically unstable and a localization of dam-
age takes place (see Section 9.6). Damage then is no longer uniformly distributed
throughout the material; instead a single crack which dominates over the others con-
tinues to grow alone.

In case of compressive loading, cracks are often observed to grow into the direc-
tion of maximum compressive stress (Fig. 9.4a). They may originate from various
mechanisms which give rise to local tensile stress fields. A typical example is a
spherical cavity or inhomogeneity at the poles of which a local tensile stress is in-
duced under global compressive load. Another mechanism involves shear cracks
under mode-II loading which kink and afterwards grow under local mode-I condi-
tions into the direction of overall compression (Fig. 9.4b). The macroscopic material

a) b)

σ3

σ1

|σ3| � |σ1|

Fig. 9.4 Brittle damage under compressive loading
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behavior again is nonlinear due to the increasing damage and in the course of de-
formation displays a material instability which leads to the localization of damage.
This localization often takes place in form of shear bands which originate from the
growth and coalescence of shear cracks and which are inclined at a certain angle to
the overall compressive load.

In the following we consider a simple example of damage under uniaxial tension
(Fig. 9.5). The RVE is modeled as a plane region of areaΔAwhich in the initial state
contains only a single mode-I crack. Its length is sufficiently small compared to the
distance to other cracks so that the interaction of the cracks need not be accounted

ΔA

σ σ

2a

Fig. 9.5 2D model for damage under tensile loading

for (see Section 8.3.2.3). The macroscopic material behavior is described using the
complementary energy Ũ (see Section 1.3.1):

Ũ = Ũ e(σij) +ΔŨ(σij , a) . (9.10)

The first term denotes the energy of the undamaged material which according to
(1.49) is in the present case given by Ũe = σ2/2E′. The second term describes
the energy change - related to the size of the RVE - caused by the presence of
the microcracks and is computed from the energy release rate G = K2

I /E
′ with

KI = σ
√
πa :

ΔŨ =
2

ΔA

a∫

0

Gda = π

E′ΔA
σ2a2 . (9.11)

This leads to the complementary energy

Ũ(σ, a) =
σ2

2E′

(
1 +

2π

ΔA
a2
)

(9.12)

and according to (1.48) one obtains by differentiation

ε(σ, a) =
∂Ũ

∂σ
=
σ

E′

(
1 +

2π

ΔA
a2
)
. (9.13)

The crack length a here has the meaning of an internal variable.
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For a fixed crack length (a = const) the relation (9.13) describes a linear elastic
material represented by the effective Young’s modulus E∗ = E′/(1 + 2πa2/ΔA)
(see Fig. 9.2a). The damage ω then is determined from (9.6b). In the following it
is assumed that the cracks have an initial length 2a0 and beyond a certain load-
ing σ0 or strain ε0 grow according to the fracture criterion G(σ, a) = R(Δa) (see
Section 4.8). The latter may equivalently be written as

KI(σ, a) = KR(Δa) or σ
√
πa = KR(Δa) (9.14)

where KR describes the crack resistance curve for a microcrack. This is the evolu-
tion law for the internal variable which together with (9.13) uniquely determines the
material behavior:

ε(σ, a) =
σ

E′

(
1 +

2π

ΔA
a2
) {

a = const for σ
√
πa < KR(Δa)

ȧ > 0 for σ
√
πa = KR(Δa)

(9.15)

For an illustration the crack resistance curve is represented by KR = K∞[1 −
(1−K0/K∞)e−ηΔa/a0 ] whereK0 = σ0

√
πa0 is the initiation value andK∞ is the

plateau value of KR; the latter is faster or slower attained depending on η. Figure
9.6 shows some macroscopic stress-strain curves obtained from this model.

1

21

K∞

K0

KR

Δa

η=1, γ=2

ε/ε0

η=1, γ=2.5

σ/σ0
K η=2, γ=2.5

Fig. 9.6 Crack resistance curve and corresponding σ-ε behavior; 2πa2
0/ΔA = 0.05, γ =

K∞/K0

9.4 Ductile damage

9.4.1 Void growth

Ductile damage in crystalline solids originates from the nucleation, growth, and co-
alescence of microvoids. These form preferentially at second-phase particles, grain
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boundaries, and other obstacles to the motion of dislocations. They may also initiate
from the cracking of brittle inclusions.

Various models exist for the description of void growth alone. Here we consider
the model by MCCLINTOCK (1968) which approximates a single void by a cylindri-
cal hole in an unbounded domain subjected to a radial tensile stress σ∞ (Fig. 9.7).
The surrounding material is taken to be rigid perfectly plastic and a state of plane

σ∞
a r

ϕ
2a

z

Fig. 9.7 McClintock model

strain is assumed with a prescribed strain rate ε̇z = ε̇0. In cylindrical coordinates
and accounting for the rotational symmetry the equilibrium condition reads

dσr
dr

− 1

r
(σϕ − σr) = 0 (9.16)

while the kinematic relations are given by

ε̇r =
du̇r
dr

, ε̇ϕ =
u̇r
r

→ ε̇r =
d(rε̇ϕ)

dr
(9.17)

and the constitutive law follows from Section 1.3.3 to be

ε̇r = λ̇ sr , ε̇ϕ = λ̇ sϕ , ε̇z = λ̇ sz

where λ̇ =
1

τF

√
1

2
(ε̇2r + ε̇

2
ϕ + ε̇2z) , ε̇r + ε̇ϕ + ε̇z = 0

(9.18)

and τF = σF /
√
3. By using (9.18) and integrating (9.17) the incompressibility

condition leads to

ε̇ϕ + r
dε̇ϕ
dr

+ ε̇ϕ + ε̇0 = 0 → ε̇ϕ =
C1

r2
− ε̇0

2
.

If the void growth rate is introduced by ε̇a = ȧ/a = u̇r(a)/a = ε̇ϕ(a) it follows
that

ε̇ϕ =
a2

r2
(ε̇a + ε̇0/2)− ε̇0/2 , ε̇r = −a

2

r2
(ε̇a + ε̇0/2)− ε̇0/2 . (9.19)
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With the abbreviation

ξ =
2a2√
3 r2

ε̇a + ε̇0/2

ε̇0

equation (9.19) yields

σϕ − σr = sϕ − sr = τF (ε̇ϕ − ε̇r)√
1
2
(ε̇2r + ε̇

2
ϕ + ε̇2z)

= τF
2ξ√
1 + ξ2

.

Using this the equilibrium condition can be written in the following form and can
be solved by integration:

dσr
dξ

= − τF√
1 + ξ2

→ σr = −τF arsinh ξ + C2 .

From the boundary conditions σr(r → ∞) = σ∞ and σr(r = a) = 0 one finally
obtains

ε̇a =
ε̇0
2

(√
3 sinh

σ∞
τF

− 1

)
. (9.20)

Using (9.19) one may replace ε̇0 by the equivalent plastic strain rate at infinity:
ε̇pe = [ 3

2
(ε̇2z + ε̇2ϕ + ε̇2r)]

1/2 = ε̇0. With the hydrostatic stress at infinity σm =

σkk/3 = σr − sr = σ∞ + τF /
√
3 and by introducing the growth rate of the void

volume by V̇P /VP = 2ε̇a + ε̇0 the above result can be written in the form

V̇P
VP

=
√
3 ε̇pe sinh

σm − τF /
√
3

τF
. (9.21)

It states that void growth (V̇P > 0) requires a sufficiently high hydrostatic stress σm
and that the growth rate increases with σm.

A similar result follows from the model by RICE and TRACEY (1969) for the
growth rate of a single spherical void in an unbounded domain of a perfectly plastic
material:

˙VP
VP

= 0.85 ε̇pe exp
3σm
2σF

. (9.22)

As in the previous model it is assumed that at infinity the strain rate ε̇z = −2ε̇x =
−2ε̇y = ε̇0 prevails which corresponds to a state of uniaxial tension in an incom-
pressible material: ε̇pe = ε̇0.

These results can be employed in the framework of damage mechanics if one
assumes that the voids are sufficiently far away from each other so that their interac-
tion may be neglected. They can, however, be also directly applied to elastic-plastic
fracture mechanics. Ahead of a crack tip typically a high hydrostatic stress prevails.
If it is approximated by (5.22) one obtains σm ≈ τF (1 + π) and it follows from
(9.20) or (9.21) (which yield practically equal results) that V̇P /VP ≈ 31 ε̇pe. This
indicates pronounced void growth ahead of a crack tip in ductile materials.
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9.4.2 Damage models

In order to investigate the damage behavior of a ductile material we now assume
isotropic damage by distributed voids which can be characterized by the porosity
f . The description of the elastic-plastic material behavior proceeds analogous to
that of undamaged materials (see Section 1.3.3). According to (1.73) the strain rate
is split into an elastic and a plastic part where the elastic part is governed by the
elasticity law (1.39). The plastic part is determined from a yield condition and a
flow rule. In contrast to an undamaged material now the yield condition depends not
only on the stress state σij but also on the damage variable f : F (σij , f) = 0. More-
over, it can no longer be assumed that the hydrostatic stress σm or the invariant Iσ ,
respectively, has no influence on plastic flow; it rather controls void growth and the
volumetric plastic strain (see Section 9.4.1). Correspondingly, the yield condition
can be expressed as

F (Iσ , IIs, f) = 0 (9.23)

where it has been assumed that F does not depend on IIIs. The volumetric plastic
strain caused by void growth is given by the volume change of the RVE: V̇ /V =
ε̇pV = ε̇pkk. Noting that the matrix material is plastically incompressible this together
with (9.9) yields the evolution law for the damage variable

ḟ = (1 − f) ε̇pkk . (9.24)

Among the various existing models which differ by the specific forms of the yield
condition and details of the further evaluation only the model by GURSON (1977) is
considered in the following. It is based on the yield condition

F (Iσ , IIs, f ) =
σ2e
σ2

M

+ 2f cosh
3σm
2σ

M

− (1 + f2) = 0 (9.25)

where σe = (3
2
sijsij)

1/2 is the macroscopic equivalent stress and σ
M

denotes the
yield stress of the matrix material. It should be noted that σM is an effective (spa-
tially constant) yield stress which appropriately represents the in reality inhomoge-
neous state of plastic flow and hardening in the entire matrix material surrounding
the voids. The Gurson yield condition (9.25) covers some important special cases.
For purely hydrostatic loading (σe = 0) (9.25) reduces to the exact analytical solu-
tion (8.164). On the other hand, under deviatoric loading (σm = 0) it coincides with
the upper bound (8.161) by virtue of cosh(0) = 1. And obviously (9.25) reduces to
the von Mises yield condition (1.77) for f = 0 where the influence of hydrostatic
stress vanishes. The macroscopic plastic strain rate is obtained from the flow rule

ε̇pij = λ̇
∂F

∂σij
. (9.26)

It is furthermore assumed that the plastic work rate of the matrix stress – expressed
in terms of the yield stress σ

M
and the corresponding equivalent plastic strain rate
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ε̇p
M

– is equal to the respective work rate of the macroscopic stress:

σij ε̇
p
ij = (1− f)σ

M
ε̇p
M
. (9.27)

From the knowledge of the uniaxial stress-strain curve of the undamaged material,
i.e., from the relation ε̇p

M
(σ̇

M
), thus the macroscopic material behavior is known.

It has been found that the behavior of a ductile damaged material can not be
satisfactorily represented by the equations (9.24) to (9.27). For instance, they predict
the loss of stress-carrying capacity at an unrealistically high value of the damage
variable. One reason for this lies in the fact that in the above model the nucleation
of voids as well as the increasing interaction of voids in the course of their growth
and their final coalescence are not accounted for. Better results are obtained from
the modified yield condition according to TVERGAARD and NEEDLEMAN (1984)

F (Iσ , IIs, f) =
σ2e
σ2

M

+ 2q1f
∗ cosh

3q1σm
2σM

− (1 + (q1f
∗)2
)
= 0 (9.28)

where q1 and q2 are material parameters. The function f∗(f) is chosen in such a
way that total material failure occurs at a realistic amount of damage (f ≈ 0.25).
In addition, the contribution of void nucleation (from second-phase particles) to the
change of the porosity is taken into account. Strain-controlled nucleation of voids is
described by

ḟnucl = D(εp
M
) fN ε̇

p
M
, D(εp

M
) =

1

σ
√
2π

exp

[
− (εp

M
− εN )2

2σ2

]
(9.29)

where fN is the volume fraction of particles at which voids nucleate. The function
D is a normal distribution with the average value εN and the standard deviation
σ (see also Section 10.2). The total change of porosity thus consists of the growth
term (9.24) plus the nucleation term (9.29). It should be mentioned that a represen-
tation similar to (9.29) may be adopted for stress-controlled void nucleation (i.e., by
fracture of particles).

Figure 9.8 shows the material behavior under uniaxial tension for a particular
choice of material parameters. For the matrix material a power law behavior has

[MPa][MPa]
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1 1

0,1
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b
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a b
a

σ σkk f

εp εp εp

Fig. 9.8 Gurson model: uniaxial tension, (a) without, (b) with suppression of lateral strain
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been assumed. Depicted are the variations of tensile stress σ, hydrostatic stress σkk ,
and damage f as functions of the plastic strain εp (the small elastic strains εe

are neglected). It can be seen that with increasing plastic strain also the damage
increases which gives rise first to a softening behavior and later to the total loss of
stress-carrying capacity. A remarkable effect arises from the suppression of lateral
strain (contraction of the specimen). This constraint promotes a stronger evolution
of damage with the result that failure takes place at smaller macroscopic plastic
strains.

9.4.3 Fracture concept

Damage models describe the material behavior until the total loss of the stress-
carrying capacity. Local failure, i.e., fracture, takes place when the damage f attains
a critical value fc:

f = fc (9.30)

Such a local failure criterion can be employed in the treatment of various problems
of fracture mechanics. For instance, it may be used to describe the formation of a
crack after preceding damage. Furthermore, (9.30) can be employed as a fracture
criterion which has to be satisfied at crack initiation and in the course of subsequent
crack growth. This approach bears the advantage that fracture parameters such as J ,
δt, or JR-curves are not needed.

Finally, a drawback of (continuum) damage mechanics should be emphasized: as
repeatedly mentioned the increase of damage leads to an instability in the macro-
scopic material behavior (softening) which gives rise to the localization of defor-
mation and damage (e.g., growth of only a single crack or void growth within a
narrow band). Such a localization violates the requirements of an RVE discussed in
Section 8.3.1 and micromechanically motivated damage models loose their validity.
Damage variables then no longer have their originally ascribed physical meaning,
they are only formal parameters. Another disadvantage of continuum damage me-
chanics consists in the dependence of numerical solutions of boundary value prob-
lems on the underlying discretization (finite element mesh) which often occurs also
as a consequence of localization.

9.5 Material softening and strain localization

The afore mentioned influence of a damage-induced softening material behaviour
on the localization of strain shall now be discussed more thoroughly. By soften-
ing the situation is denoted when the stress in a material decreases with increasing
deformation, as sketched in Figs. 9.2 and 9.3 or computed from specific damage
models in Figs. 9.6 and 9.8.
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As long as an increase of deformation requires an increasing stress, a material
behaviour is called stable; the stress and strain increments then fulfill the condition
dσdε > 0, or dσijdεij > 0 in the 3D case, respectively. Conversely, a softening
material behaviour with dσdε < 0 is called unstable; the resistance against defor-
mation then decreases with increasing strain. Of particular interest is the transition
where dσdε = 0 holds so that at vanishing stress change various changes of strain
become possible; i.e. a bifurcation of deformation takes place.

Following DOGHRI (2000) this is exemplified using a simple one-dimensional
material model with damage

σ = E(1−D)ε , (9.31)

where at some instant t the damage variableD is determined by the maximum value
of strain attained throughout the prior history:

D(t) =
1

εf
max
τ≤t

ε(τ) (9.32)

The ultimate strain at failure (fracture strain) is denoted by εf so that the damage
variable lies in the range 0 ≤ D ≤ 1. Under monotonically increasing strain it is
given byD = ε/εf and the stress-strain response

σ = E

(
1− ε

εf

)
ε (9.33)

displays a parabolic variation as depicted by the solid curve in Fig. 9.9.
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Fig. 9.9 a) Strain-controlled unloading, b) bifurcation of strain during reduction of stress

If at some arbitrary state ε∗ the strain is reduced (strain-controlled unloading),
the damage variable remains constant and the stress follows the dashed linear path

with slope E(1 − D(ε∗)) in Fig. 9.9a. From the total work (per volume)
∫ ε∗
0
σdε

done by the stress up to ε∗ (area below the solid curve) the portion below the linear
unloading curve is recovered as elastic energy while the remaining (shaded) portion
has been dissipated by the damage. If, in contrast, unloading proceeds by a con-
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trolled reduction of stress (Fig. 9.9b) after the maximum of the σ(ε) curve has been
passed, i.e. in the range where dσdε ≤ 0, two different strain changes towards
states εI and εII are possible (bifurcation). The material then can respond either by
elastic unloading (I) or by continued inelastic deformation with increasing damage
(II).

In a spatially extended domain such as the tensile bar in Fig. 9.10a this leads to
the coexistence of subdomains with different strain states, εI and εII , at the same
stress. With the end displacement u and the total length L = LI +LII of the bar, its
macroscopic strain is given by

〈ε〉 = u

L
=
LI

L
εI +

LII

L
εII , (9.34)

while the macroscopic stress is 〈σ〉 = σ. The material response in the different
subdomains is

σ = E(1−DI)εI where DI =
εf/2

εf
=

1

2

(elastic unloading
from εf/2)

(9.35)

and

σ = E(1−DII )εII = E
(
1− εII

εf

)
εII

(continued inelastic
deformation).

(9.36)

Inserting this into (9.34) yields

〈ε〉 = LI

L

2

E
〈σ〉+ LII

L

εf
2

(
1 +

√
1− 4

εfE
〈σ〉
)
. (9.37)

The macroscopic (overall) response of the tensile bar is depicted in Fig. 9.10b for
different lengths LII of the subdomain in which continued straining and damage
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Fig. 9.10 a) Tensile bar, b) overall stress-strain response

takes place. Among the infinitely many solutions of the boundary value problem
(infinitely many possible values of LI and LII , respectively) that one is energeti-
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cally preferable (least dissipation and maximum energy release) where continued
inelastic straining and damage proceeds in a vanishingly thin region, i.e. LII → 0.
That means that a softening material behavior according to (9.31) and (9.32) leads to
a localization of deformation. In case of the tensile bar this results in the formation
of a crack.

In the following, the effect of a damage-induced softening material behaviour on
the localization of deformation is discussed for the 3D continuum. The bifurcation
of deformation preceding a strain localization then corresponds to the occurrence of
a surface in the material across which the strain increment dεij , or the strain rate
tensor ε̇ij , is discontinuous, i.e. experiences a jump

Δε̇ij = ε̇
II
ij − ε̇Iij �= 0 . (9.38)

Owing to local equilibrium, the stress vector ti = σijnj remains continuous

Δṫi = ṫ
II
i − ṫIi = 0 , (9.39)

where nj denotes the unit normal vector on the surface. A possible jump of the
strain rate tensor depends on two directions: the orientation ni of the surface of
discontinuity and the direction of the strain component undergoing a jump. This is
accounted for by the representation

Δε̇ij =
1

2
(ni gj + nj gi) (9.40)

with some arbitrary vector gi. If gi is parallel to ni a jump of longitudinal strain rate
is described by Δε̇ij (as in the foregoing 1D example of a tensile bar) whereas the
case of gi normal to ni corresponds to a jump in shear strain rate. We assume that
the material behaviour is given in incremental form by

σ̇ij = C̃ijkl ε̇kl (9.41)

with the forth-order tangent tensor C̃ijkl . Due to the symmetry of C̃ijkl with respect
to the indices k and l this can also be written as

σ̇ij = C̃ijkl u̇k,l (9.42)

where u̇k,l is the velocity gradient (see Section 1.2.1); according to (9.40) it under-
goes a jumpΔu̇i,j = nigj . Inserting (9.42) into (9.39) yields

(
C̃IIijkl u̇

II
k,l − C̃Iijkl u̇Ik,l

)
nj = 0 , (9.43)

where C̃Iijkl and C̃IIijkl characterize the different material behaviour (elastic unload-
ing or continued inelastic straining) in the subdomains I and II on either side of the
surface. At the instant of bifurcation the material behaviour in the two domains is
still the same so that C̃IIijkl = C̃Iijkl = C̃ijkl holds. Inserting this together with the
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representation u̇IIk,l − u̇Ik,l = Δu̇k,l = gknl into (9.43) leads to

C̃ijkl nj nl︸ ︷︷ ︸
Aik

gk = 0 . (9.44)

This is a homogeneous linear system of equations for the unknown vector gk where
the matrix Aik contains the components of the so-called acoustic tensor. A neces-
sary condition for the existence of non-trivial solutions gk �= 0 is that the determi-
nant of the acoustic tensor vanishes:

detAik = 0 . (9.45)

Note, that detAik is a function of the current material behaviour C̃ijkl and the ori-
entation ni. The condition (9.45) is a prerequisite for the occurrence of a surface of
discontinuity with respect to the strain rate tensor, i.e. for a bifurcation of deforma-
tion into states εIij and εIIij . Since the inelastic deformation (softening) thereby takes
place in an infinitely thin region, the consequence is the formation of a crack in case
gi is parallel to ni or of a shear band if gi is normal to ni. The orientation ni of this
localization zone is determined by the first-time fulfillment of the condition (9.45)
in the course of deformation.
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Chapter 10
Probabilistic fracture mechanics

10.1 Introduction

The failure analysis of a structure proceeds on the basis of a fracture or failure cri-
terion. A typical example is the criterion of brittle fractureKI = KIc which states
that failure does not take place for KI < KIc. Application of such a criterion in
the deterministic sense requires all involved quantities to be exactly known. This,
however, is not always the case. For instance, the in-service loading conditions of
a technical component as well as the material’s fracture toughness KIc may scat-
ter. Also the location, size, and orientation of cracks is sometimes not precisely
known. If these details are neglected and only ‘averaged’ quantities are employed
the deterministic analysis may lead to rather vague results. If, on the other hand, the
fluctuations are accounted for by considering an upper bound for KI and a lower
bound forKIc one obtains results which might be safe but probably are too conser-
vative. It also has to be noted that these bounds likewise may not be exactly known.
In any way, the risk of fracture remains unknown in the framework of a determinis-
tic analysis. The same holds for all other failure criteria such as the classical failure
hypotheses discussed in Chapter 2 or the life-time hypothesis according to the Paris
law (Section 4.11).

In contrast to the deterministic analysis, the probabilistic approach takes into ac-
count the scatter and uncertainties of material properties, loading conditions, and
defect distribution in an appropriate manner. Thereby it is assumed that the quanti-
ties entering a failure criterion are given in terms of probability distributions. This
leads to statements with respect to the failure probability which determines the risk
of fracture.

Statistical aspects also come into play when microstructural features of a ma-
terial, which are relevant for its fracture behavior, are to be accounted for. In real
materials usually a multitude of ‘defects’ such as microvoids, microcracks, inclu-
sions, or inhomogeneities of different size, shape, and orientation are found which
have a strong influence on the fracture process. Because of their large number the
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effect of these defects on the macroscopic behavior is suitably described by means
of statistical methods.

The present chapter deals only with the basic concepts of probabilistic fracture
mechanics. It is restricted to brittle materials the strength properties of which may
display especially strong scatter. Brittle materials often also show a pronounced de-
crease in strength with increasing volume of a testing specimen. The reason for this
is the distribution of defects: the probability for the occurrence of a critical defect
increases with the volume under consideration. This is the foundation of the statis-
tical theory of brittle fracture developed by W. WEIBULL. In many situations it is
employed for the assessment of the behavior of ceramics, fiber-reinforced materials,
geological materials, concrete, or brittle metals.

10.2 Foundations

The frequency by which some quantity x occurs, for instance, the measured KIc
value of a material or a crack length, is described by the probability density f(x)
(Fig. 10.1). If we assume that x attains only positive values the probability distribu-
tion is given by

F (x) =

x∫

0

f(x̄)dx̄ . (10.1)

It determines the probability P that a random variable X lies in the interval 0 ≤
X ≤ x:

P (X ≤ x) = F (x) . (10.2)

Since P can attain values between 0 and 1 the following relations hold:

P (X <∞) =

∞∫

0

f(x)dx = 1 ,

P (X ≥ x) = 1− F (x) ,

P (a ≤ X ≤ b) =
b∫

a

f(x)dx = F (b)− F (a) .

(10.3)

The mean (or expectation) value 〈X〉 of a random variable and the variance varX
are defined as

〈X〉 =
∞∫

0

xf(x)dx =

∞∫

0

[1− F (x)]dx ,

varX =

∞∫

0

[x− 〈X〉]2f(x)dx .
(10.4)
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f

f(x)

F (b)−F (a)

x

P (X ≥ b)

a b

1−F (a)
P (a≤X≤b)

Fig. 10.1 Probability density and distribution

The latter can also be described as the average square deviation from the mean value
〈X〉. The square root of the variance is called the standard deviation: σ =

√
varX .

Among the various functions used to describe probability densities and distribu-
tions only a few a presented here. The normal distribution (Gaussian distribution) is
given by (see Fig. 10.2a)

f(x) =
1

σ
√
2π

exp
(
− (x− μ)2

2σ2

)
(10.5)

where μ denotes the mean value and σ the standard deviation. KIc and Jc values
or other material parameters as well as their scatter are often described by normal
distributions.

The logarithmic normal distribution or lognormal distribution (Fig. 10.2b) is
defined by

f(x) =
1

σ
√
2πx

exp
(
− (lnx− μ)2

2σ2

)
(10.6)

with the mean value 〈X〉 = eμ+σ
2/2 and the variance varX = e2μ+σ

2

(eσ
2−1). It

is in many cases employed to describe loading conditions and distributions of crack
lengths and defects.

Of special importance is the Weibull distribution. Its density and probability dis-
tribution are given by (see Fig. 10.2c)

f(x) = λαxα−1e−λx
α

, F (x) = 1− e−λx
α

. (10.7)

This yields the mean value and variance

〈X〉 = Γ (1 + 1
α
)

λ1/α
, varX =

Γ (1 + 2
α
)− [Γ (1 + 1

α
)]2

λ2/α
(10.8)

whereΓ denotes the Gamma function. The Weibull distribution is very often applied
to fatigue processes and for the characterization of the distribution of crack lengths
and defects in brittle materials. In the special case α = 1 it is also called exponential
distribution.
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Fig. 10.2 Probability density: a) normal distribution, b) lognormal distribution, c) Weibull distri-
bution, d) Gamma distribution

Finally, the Gamma distribution should be mentioned which is given by

f(x) = λ
(λx)α−1

Γ (α)
e−λx (10.9)

with 〈X〉 = α/λ and varX = α/λ2 (Fig. 10.2d). It is likewise used to approxi-
mate the distribution of defect sizes. For α = 1 it also reduces to the exponential
distribution. The lognormal distribution, the Weibull distribution, and the Gamma
distribution are nonsymmetric and therefore better suited for the characterization of
failure-relevant properties than the symmetric normal distribution. An explanation
for this is given in case of the Weibull distribution in the following section.

10.3 Statistical fracture concept of Weibull

10.3.1 Fracture probability

We consider an isotropic brittle material which is subjected to a uniform uniaxial
stress σ and which contains internal defects (e.g., microcracks) but no macroscopic
crack. The defects are assumed to be distributed in a statistically homogeneous man-
ner, i.e., the probability of the occurrence of a defect of a particular kind, size, ori-
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entation, etc. is everywhere the same. In addition it is assumed that total failure of
the material (= fracture) takes place if a single defect becomes critical and starts to
grow. This be possible only under tensile loading; defect growth under compressive
loading is precluded for simplicity.

The probability that at a tensile stress σ a certain volume V does not contain
a critical defect is denoted by F ∗(V ). The respective probability for some other
arbitrary volume V1 (which does not contain V ) is F ∗(V1). If events in V and V1
are independent of each other the probability that no critical defect is found in V +V1
is given by

F ∗(V + V1) = F
∗(V )F ∗(V1) . (10.10)

Differentiation at fixed V1 and subsequent division by (10.10) yields

dF ∗(V + V1)

dV
=

dF ∗(V )
dV

F ∗(V1) ,

[
dF ∗(V + V1)

dV

]

F ∗(V + V1)
=

[
dF ∗(V )

dV

]

F ∗(V )

or
d

dV
ln[F ∗(V + V1)] =

d

dV
ln[F ∗(V )] = −c .

Here, c is a constant which depends only on stress: c = c(σ). Integration and noting
that F ∗(0) = 1 finally leads to the probability that no critical defect is contained in
the volume V :

F ∗(V ) = e−cV . (10.11)

Conversely, the probability that V contains a critical defect is F (V ) = 1−F ∗(V ) =
1− e−c(σ)V . By virtue of the assumption that a single critical defect leads to failure,
this is the fracture probability Pf :

Pf = 1− e−c(σ)V . (10.12)

Accordingly, the fracture probability at constant c (i.e., constant σ) increases with
increasing volume. The ‘survival probability’ (no failure) is given by Ps = 1−Pf =
e−cV and decreases with increasing volume.

Equation (10.12) is rather general since it does not contain any assumption with
regard to the physical nature of the defects. Whether they are microcracks or other
stress concentrators is irrelevant. In case of surface-like or bar-shaped bodies the
volume has to be replaced by the area or length, respectively. Comparison with
(10.7) shows that at fixed c (10.12) represents an exponential distribution. Thereby
c = 1/V̄ can be interpreted as the average concentration of defects. The smaller the
average volume V̄ per defect is, the faster the increase of Pf with V takes place.
The assumptions underlying (10.12) are also referred to as weakest link theory. It
corresponds to a chain which fails at the location of the weakest link when the tensile
strength of the latter is exceeded.

The relation c(σ) in (10.12) is an unknown function for which often the empirical
representation according to Weibull
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c(σ) =

⎧⎪⎪⎨
⎪⎪⎩

1

V0

(
σ − σu
σ0

)m
for σ > σu

0 for σ ≤ σu
(10.13)

is chosen. Here, V0 and σ0 are normalization parameters and σu is the threshold
stress below which the fracture probability is zero. For simplicity the latter is fre-
quently set to zero. The material-specific exponent m is called Weibull modulus;
some values are given in Table 10.1. Insertion of (10.13) into (10.12) yields the
Weibull distribution (see (10.7)) for the fracture probability

Pf = F (σ) = 1− exp

[
− V
V0

(
σ − σu
σ0

)m]
(10.14)

where V now is taken to be fixed.

material m

glass 2.3
SiC 4...10
Al2O3 8...20
graphite 12
cast iron 38

Table 10.1 Weibull modulus

The relation (10.14) holds only for a homogeneous uniaxial stress state. It can,
however, easily be generalized to an inhomogeneous uniaxial stress state as it pre-
vails, for instance, in a beam subjected to bending. For this purpose we apply (10.11)
to a volume elementΔVi in which the constant stress σi prevails: ci = c(σi). Then

F ∗(ΣΔVi) = e−c1ΔV1e−c2ΔV2e−c3ΔV3 . . . = e−ΣciΔVi

describes the probability that in a sum of volume elements with different stresses no
critical defect is found. Performing the limit process yields F ∗(V ) = exp[− ∫ cdV ]
and using (10.13) one obtains for the fracture probability

Pf = F (σ) = 1− F ∗ = 1− exp

⎡
⎣− 1

V0

∫

V

(
σ − σu
σ0

)m
dV

⎤
⎦ . (10.15)
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10.3.2 Fracture stress

The fracture probability F (σ) of a body subjected to uniform tension is given by
(10.14). Setting σu = 0 one obtains from (10.7), (10.8) the mean fracture stress (=
tensile strength) and variance

σ̄ = 〈σ〉 = σ0
(
V0
V

) 1
m
Γ (1 + 1/m) ,

var σ = σ20

(
V0
V

) 2
m {

Γ (1 + 2/m)− [Γ (1 + 1/m)]
2
}
.

(10.16)

Accordingly, both quantities depend on the volume of the body. For one and the
same material and two different volumes V1 and V2 one obtains

σ̄1
σ̄2

=

(
V2
V1

)1/m

,
(var σ)1
(var σ)2

=

(
V2
V1

)2/m

. (10.17)

For instance, V2/V1 = 5 and m = 2 leads to the values σ̄1/σ̄2 = 2.24 and
(var σ)1/(var σ)2 = 5. Hence the mean fracture stress for the smaller volume
V1 is more than twice that of V2; the variance, however, is also larger. It should be
mentioned that the first equation in (10.17) allows for the determination of m by
measuring the mean fracture stress for different volumes.

In order to investigate the influence of a nonuniform stress state we consider a
beam of length l with a rectangular cross section (width b, height h) subjected to
a constant bending moment. The stress distribution across the height of the beam
is in this case given by σ(z) = σ

B
2z/h where σ

B
is the maximum stress at the

boundary. Insertion into (10.15) with V = lbh yields for this case

Pf = F (σB) = 1− exp

[
− V
V0

(
σ

B

σ0

)m
1

2(m+ 1)

]
(10.18)

where it has to be noted that the integration is performed only over the tensile region
(defects in the compressive part of the beam are considered to have no effect!). The
mean fracture stress in case of bending (= bending strength) and the variance are
obtained from (10.7) as

σ̄
B
= 〈σ

B
〉 = σ0

(
V0
V

) 1
m
Γ (1 + 1/m)[2(m+ 1)]1/m ,

(10.19)

var σ
B
= σ20

(
V0
V

) 2
m {

Γ (1 + 2/m)− [Γ (1 + 1/m)]
2
}
[2(m+ 1)]2/m.

Comparison with (10.16) shows that the dependence on the volume is still the same.
However, the mean strength and the variance are larger in case of bending than under
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uniform tension. If the quantities according to (10.16) are indicated by the subscript
‘Z’ one may write

σ̄
B

σ̄
Z

= [2(m+ 1)]1/m ,
var σ

B

var σ
Z

= [2(m+ 1)]2/m (10.20)

from which, e.g., form = 5 it follows that σ̄
B
/σ̄

Z
= 1.64.

10.3.3 Generalizations

The fracture concept according to Weibull can be generalized in various aspects. For
instance, it may be extended to compressive stresses and multiaxial stress states. It
is also possible to describe the actual defect structure by appropriate micromechan-
ical models and thereby support the statistical concept. Furthermore, the Weibull
concept can be applied to time-dependent fracture processes as they may occur in
fiber-reinforced materials. In this case, c is represented instead of (10.13) by an ap-
proximation of the type c = α tβ where α and β depend on the stress σ and t denotes
the time.

Here only one extension of the concept shall be discussed. It is based on the
assumption that not already a single critical defect leads to failure but that a certain
number n > 1 of critical defects is required. Thereby the observation is accounted
for that often many defects (e.g., microcracks) grow before ultimate failure takes
place. Starting point is the probability

P ∗
X=k =

1

k!
(cV )k e−cV (10.21)

for the occurrence of exactly k independent critical defects in the volume V . It is
called Poisson distribution and contains as a special case for k = 0 the probability
(10.11) for the non-existence of a critical defect in V . The probability for the exis-
tence of less than n defects in V is obtained as the sum of the probabilities for the
occurrence of 0 to (n− 1) defects:

P ∗
X<n−1 = e−cV

n−1∑
k=0

1

k!
(cV )k .

Therefore, the probability for the existence of n or more critical defects in V is

Pf = PX>n−1 = 1− P ∗
X<n−1 = 1− e−cV

n−1∑
k=0

1

k!
(cV )k (10.22)

which hence is also the fracture probability. From the corresponding density
pf = dPf/dV = [c/(n−1)!](cV )n−1e−cV one can recognize that this is a Gamma
distribution (10.9). From (10.22) and by comparison with (10.12) one can further-
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more see that the increase of the fracture probability with the volume is smaller that
in case of the Weibull model and is slower for larger n. For instance, for n = 3 and
n = 10 one obtains at cV = 3 the values Pf,3(3) = 0.577 and Pf,10(3) = 0.001,
respectively, and at cV = 10 the values Pf,3(10) = 0.997 and Pf,10(10) = 0.542,
respectively.

The dependence of the mean fracture stress on the volume and on the other pa-
rameters may be obtained using the approximation cV0 = (σ/σ0)

n (see (10.13))
from (10.4) and (10.22):

σ̄ = 〈σ〉 = σ0
(
V0
V

) 1
m Γ (n+ 1/m)

Γ (n)
. (10.23)

The dependence on the volume is the same as in (10.16) or (10.19).

10.4 Probabilistic fracture mechanical analysis

The present section serves to explain in principle the procedure of a probabilis-
tic fracture mechanical analysis. As an example we consider a plane component in
which cracks of different size can be expected to occur in the course of loading. The
component is subjected to uniaxial tension σ and the K-concept KI = KIc with
KI = σ

√
πa G(a) is taken as the failure criterion whereG(a) is a geometry factor.

We assume that at a certain instant the probability density f
a
(a) for the occurrence

of different crack lengths is known from inspection. From this in conjunction with
the above relations the probability density fKI

(K) for the stress intensity factors
at a given loading σ can be determined. It is further assumed that the density dis-
tribution f

KIc
(K) for the fracture toughness of the material is also known from

measurements. Both distributions are schematically depicted in Fig. 10.3.

f, F

K

1

Pf

fKI

FKIc

fKIc

Fig. 10.3 Distributions of KI and KIc

The probability that the fracture toughness is smaller than a certain value K is
given by
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P (KIc ≤ K) = F
KIc

(K) =

K∫

0

f
KIc

(K̄) dK̄ . (10.24)

Correspondingly, f
KI
(K) dK is the probability for a crack-tip loading in the interval

K ≤ KI ≤ K + dK . The product

dPf = FKIc
(K) fKI

(K) dK

then describes the probability that both applies, i.e., that the component fails. In-
tegration over all possible levels of crack-tip loading finally yields the total failure
probability:

Pf =

∞∫

0

F
KIc

(K) f
KI
(K) dK =

∞∫

0

K∫

0

f
KIc

(K̄) dK̄ f
KI
(K) dK (10.25)

It is represented by the shaded area in Fig. 10.3. When the distribution densities
for the crack-tip loading and the fracture toughness change with time then Pf also
changes. This may, for instance, take place when cracks grow in the course of cyclic
loading or when the material undergoes aging.

The determination of the failure probability needs not be performed on the basis
of stress intensity factors. Alternatively, one may directly start from the distribution
density f

a
(a) of the crack lengths. Then theKIc distribution density has to be trans-

formed into a density f
ac
(a) of critical crack lengths. Another alternative approach

consists in the direct determination of the failure probability

Pf = P (KI ≥ K and KIc ≤ K) with 0 ≤ K <∞ (10.26)

from Monte-Carlo simulations. Thereby randomly generated values forKI andKIc

are compared to each other and the number of events with KI ≥ KIc divided by
the total number of attempts yields Pf .

Finally, it should be mentioned that the probabilistic fracture mechanical analysis
in real situations is often connected with difficulties. The main reason is the lack
of data with regard to the exact distribution densities of crack lengths, loading or
material parameters (e.g.,KIc), as well as to their temporal evolution.
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potential – energy, 29, 273
–, Lennard-Jones, 53
power law, 19, 159, 192
Prandtl’s creep law, 21
Prandtl-field, 156, 177
Prandtl-Reuss law, 26, 291
primary creep, 194
principal – strain hypothesis, 42
– strains, 13
– stress hypothesis, 41
– stresses, 8, 33, 71
principle of – maximum plastic work, 25
– minimum complementary energy, 30, 274
– minimum potential energy, 29, 273
– virtual complementary work, 29
– virtual displacements, 29, 105
– virtual forces, 29
– virtual work, 28
probabilistic fracture analysis, 325
probability – density, 318
– distribution, 318
process zone, 64, 73, 101, 106, 145, 150, 164,

178, 185, 189, 207, 217, 220, 247
proportional loading, 27, 161, 172, 292

R-curve, 117, 171
Ramberg-Osgood law, 159, 177
Rayleigh, 230
– function, 209
– wave, 209
– wave speed, 216, 219
reciprocity relation, 31
reference – configuration, 83
– displacement, 84
– load, 84
relaxation, 185
– function, 19, 186
– time, 187
representative volume element, 245, 301
residual – strain, 304
– stress, 283
resistance curve, 117
retardation time, 187
Reuss – approximation, 255, 273
– bound, 273, 275, 279
reverse fault, 45

Reynold’s transport theorem, 179, 218
Rice, 145, 161, 168, 309
Rosengren, 161
rule of mixture, 256
RVE, 245, 301

S-criterion, 121
screw dislocation, 53, 232
secant modulus, 292
secondary creep, 194
self – consistency, 84, 87, 265
– consistent method, 265, 268, 269, 279, 289
– energy, 238
separation, 51, 56, 63, 73, 95, 127, 150, 172,

180, 216, 220, 301
– law, 106
– work, 151
shear – band, 306, 316
– dominated fracture, 48, 60
– lips, 60
– modulus, 15, 186
– modulus, effective, 256, 266, 267, 269, 274,

279
– modulus, secant, 292
– stress, maximum, 9
– wave, 208
Sih, 120, 122
singularity, 66, 69, 75, 109, 125, 139, 141, 146,

154, 157, 159, 215, 222
– logarithmic, 177, 180
– oscillating, 129
size – condition, 93, 114, 190, 246
– effect, 125
slip, 54
– band, 54, 57
– line field, 154, 177
– line fields, 35
– line theory, 35, 155
small – scale creep, 185, 194, 202
– scale yielding, 113, 127, 148, 190, 191
– signal range, 136
softening, 312
spherical – inclusion, 235, 277
– inhomogeneity, 243, 258, 264, 266, 279, 289,

292, 295, 296
– particle, 230
stable crack growth, 59, 116, 173
standard deviation, 319
stationary crack, 59, 165, 172, 176, 177, 195,

200, 209, 215, 219, 225
statistically homogeneous, 246, 320
steady-state – conditions, 175, 176, 194, 199,

202, 219, 223
– crack growth, 175, 176, 224
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strain, 11
–, creep, 21, 194, 203
– deviator, 13
–, effective, 18
–, elastic, 23, 159, 170, 195, 200, 281, 283,

303, 312
– energy, 102, 103, 108, 129, 167, 218, 274
– energy density, 17, 28, 42, 106, 121, 137,

160, 178, 218, 251, 283
– energy density, distorsional, 18
– energy density, volumetric, 18
– energy hypothesis, 42
– energy rate density, 22
–, equivalent, 18, 159, 198, 202
– localization, 312
–, macroscopic, 247, 301, 314
–, plastic, 23, 26, 47, 60, 159, 165, 233, 281,

289, 310
–, principal, 13
– rate, 13, 177, 194, 207, 227, 291, 308, 315
– rate, plastic, 309, 310
– singularity, 154, 161, 177
– tensor, 11
– tensor, Green’s, 12
– tensor, infinitesimal, 12
– theory, total, 23
–, thermal, 142, 294
–, volumetric, 13
–, thermal, 16
strength – hypothesis, 39
–, theoretical, 52
stress, 5
– concentration factor, 90
– concentrator, 124
–, deviatoric, 9
–, effective, 18, 303
–, equivalent, 18, 24, 159, 292, 310
– intensity factor, 66, 68, 139, 186, 210, 211
– intensity factor, cyclic, 127
– intensity factor, dynamic, 216
– intensity factor, complex, 130
–, macroscopic, 247, 301, 310, 311, 314
–, octahedral, 9
– polarization, 241, 275
–, principal, 8
– singularity, 161, 215
– state, hydrostatic, 9
– tensor, 7
–, ultimate, 40
– vector, 5
– vector, effective, 303
–, von Mises, 24
– wave, 212, 226
strike-slip fault, 45

subcritical crack growth, 59
substrate, 98, 103, 134, 142
summation convention, 6
superposition, 74, 86, 147, 227
surface – energy, 51, 61, 100, 102, 104, 227
– wave, 209

T-stress, 68, 123, 157
tearing modulus, 173
tension cut-off, 45
tertiary creep, 194
theoretical strength, 51
thermal – expansion coefficient, 17, 142, 236,

294
– strain, 16, 142, 294
thermally induced eigenstress, 296
thermoelastic material, 294
thin layer, 98, 103, 134, 142
time of failure, 189
total – potential, 29, 99, 104, 118, 237, 274
– strain theory, 23, 26, 145, 159, 292
Tracey, 309
transcrystalline fracture, 56
transformation – relation, 8, 32
– strain, 233, 294
transition temperature, 60
transmission factor, 85
transversal wave, 208
transverse isotropy, 16, 136, 262, 272
Tresca’s yield condition, 25, 26, 113, 115, 146
two-parameter criterion, 126

ultimate stress, 40
unit cell, 247
unstable crack growth, 59, 190, 207, 217

V-notch, 69, 70, 125
vacancy, 53
van der Waals forces, 53, 55
virtual – complementary work, 30
– crack advance, 105, 210
– displacement, 29
– work, 29
– work principle, 28
viscoelasticity, 19, 185
void, 54, 127, 229, 230, 243, 266, 280, 301,

304, 317
– coalescence, 57, 229, 301, 307, 311
– formation, 55, 151
– growth, 127, 157, 158, 164, 185, 189, 307,

310, 312
– growth rate, 308, 309
– nucleation, 311
– size, 288
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– surface, 288
– volume, 203
– volume fraction, 57, 267
Voigt – approximation, 255, 273
– bound, 273, 275, 279, 280
volume fraction, 249, 257, 264, 279, 290, 304,

311
volumetric – average, 247
– strain, 13
– strain energy density, 18

wave – equation, 208
– speed, 208
weakest link theory, 321
Weibull, 2, 318, 324
– distribution, 319, 322
– modulus, 322
Weibull’s fracture concept, 320
weight function, 83

weighted average, 254, 282
Wells, 145
Westergaard’s function, 35
work of separation, 151

yield – condition, 35, 153, 280, 288
– criterion, 23, 24
–, Gurson, 310
–, macroscopic, 284
–, von Mises, 25, 26, 287, 289, 310
–, Tresca’s, 25
– strength, 40, 93
– stress, effective, 310
– strip, 146, 150
– surface, 23, 49
– surface, macroscopic, 285
Yoffe, 217
Young’s modulus, 15, 245, 303
–, effective, 267, 303, 307
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