FUNDAMENTALS OF




FUNDAMENTALS OF

FRACTURE

MECHANICS




FUNDAMENTALS OF

FRACTURE

MECHANICS

TRIBIKRAM KUNDU

Taylor & Francis Group, an informa business



CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-13: 978-0-8493-8432-5 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Kundu, T. (Tribikram)
Fundamentals of fracture mechanics / Tribikram Kundu.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-8493-8432-5 (alk. paper)
1. Fracture mechanics. I. Title.

TA409.K86 2008
620.1'126--dc22 2007038845

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com


www.copyright.com
www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Dedication

To my wife, Nupur, our daughters, Auni and Ina,
and our parents, Makhan Lal Kundu, Sandhya Rani Kundu,

Jyotirmoy Naha, and Rubi Naha



Contents

11
1.2

Fundamentals of the Theory of Elasticity ......ccceourerreenrnnncnnnins 1
INtroducCtion ......cocveviiiiiiicii 1
Fundamentals of Continuum Mechanics and the Theory
Of EIaStiCity ...ovuevieciiciicec s 1
121 Deformation and Strain TeNsor ..., 1
1211 Interpretation of &; and w;
for Small Displacement Gradient ............c.ccoeeveruevnunnes 3
122 Traction and Stress TeNSOT ..........cocevivirurieiiiicieiecc e, 6
1.2.3 Traction—5Stress Relation...........ccocoeeiiiiciciiiiiciciccc, 8
124 Equilibrium EQUations.......c.ccccoeiiiiiiiiicieiicc, 9
1241 Force EQuilibrium.........ccoooeuimiiiiiiiiiiiice 9
1.2.4.2 Moment Equilibrium........ccccooiiiiiiiiiiiiiice 11
1.2.5  Stress Transformation..........cccoeevcueicinininicieiceicece e 12
1251 Kronecker Delta Symbol (6;) and Permutation
SYMDOL (£ cvvrevmevmevmeriiiniieiiinii e 14
1252 Examples of the Application of §; and &;j.......cccvvunce. 14
12,6 Definition of TeNSOT .......cccoeovviviiiiiiiiiiiiinisn, 15
1.2.7  Principal Stresses and Principal Planes..........c.cccccoooeeiniinnniei. 15
1.2.8 Transformation of Displacement and Other Vectors............... 19
129  Strain Transformation ..., 20
1.2.10 Definition of Elastic Material and Stress—Strain Relation.......20
1.211 Number of Independent Material Constants............c..cceevuue 24
1.2.12 Material Planes of Symmetry ........c.ccccooeuevieiicniiiniiceicecan 25
1.2.12.1 One Plane of Symmetry........cccccooevvininieininnicienine. 25
1.2.12.2 Two and Three Planes of Symmetry.........c.cccccoevrunee. 26
1.2.12.3 Three Planes of Symmetry and One Axis
Of SYMMELIY ..oooeiiiiic 27
1.2.12.4 Three Planes of Symmetry and Two
or Three Axes of Symmetry .........ccccocoevviiiiniiininnnns 28
1.2.13 Stress—Strain Relation for Isotropic Materials— Green’s
APProach........o e, 30
1.2.13.1 Hooke’s Law in Terms of Young’s Modulus
and Poisson’s Ratio ..........cccceeveiircieiiiicicecce 32
1.2.14 Navier’s Equation of Equilibrium.........ccccooooviiiininii 33
1.2.15 Fundamental Equations of Elasticity
in Other Coordinate Systems ...........ccoooeeieiiicieiniince, 36
1216 Time-Dependent Problems or Dynamic Problems.................. 36



1.3 Some Classical Problems in Elasticity ........cccccoeeiiiiieiiiiiiiiiiiicc 36

131 In-Plane and Out-of-Plane Problems............ccccecoviniiniiinininnnnnn. 38
1.3.2 Plane Stress and Plane Strain Problems ...........cccccoooiiiiinne. 39
1.3.21 Compeatibility Equations
for Plane Stress Problems..........ccccccoviiiiniinnininnnn 41
1.3.2.2 Compeatibility Equations
for Plane Strain Problems..........cccccoviiivniinnininnnn, 42
1.3.3  Airy Stress FUNCHON ..o, 42
134 Some Classical Elasticity Problems in Two Dimensions......... 45
1.34.1 Plate and Beam Problems..........ccccoevieiiiiiiiiiinnenennnnn, 45
1.3.4.2 Half-Plane Problems........cccccccoviiiiiiiniiiniiniinnns 51
1.34.3 Circular Hole, Disk, and Cylindrical Pressure
Vessel Problems ..., 59
1.3.5 Thick Wall Spherical Pressure Vessel ............cccccccoevrniiinininnnes 72
14 Concluding Remarks.........ccccooiiiioiiiiiiiiiiic 75
REfEIENCES ... 75
Exercise Problems ..o 75
2 Elastic Crack Model.......uuiiiienieniiniiniinienienienienieneeneenaenneens 85
21 Introduction......ccccieiiiiiiiiiciiiccc e 85
2.2 Williams’ Method to Compute the Stress Field near a Crack Tip ......85
2.21 Satisfaction of Boundary Conditions ..........ccccocoevvieiiirinincinnen. 88
222 Acceptable Values of 1 and A........cccccoviciinnccininiccnneen 90
2.2.3 Dominant Term ... 92
2.24 Strain and Displacement Fields ...........ccoooviiiiiiiiiiiinnns 96
2241 Plane Stress Problems ..., 96
2.24.2 Plane Strain Problems.........cccccoooiiiiiiiiniiiiines 98
2.3 Stress Intensity Factor and Fracture Toughness...........cccccouininani. 100
24  Stress and Displacement Fields for Antiplane Problems................... 101
2.5  Different Modes of Fracture...........cccooevviviinivniiiiicnne, 102
2.6 Direction of Crack Propagation ............cccccooveuvieiviiinininicieice, 102
2.7 Mixed Mode Failure Curve for In-Plane Loading ............cccccceunnneeee. 105
2.8  Stress Singularities for Other Wedge Problems...........ccccoovirinnenn. 107
29  Concluding RemMArks.......cccoeviiueiiiiiicieieiicie e 107
REfEIONCES ....ucviiiiniiii e 108
Exercise Problems ... 108
3 Energy Balance ........oiiiiniiiniiiiiiicieciecincncneneeceee 113
31  INtroduction.......ccoiiiniiiiii 113
3.2 Griffith’s Energy Balance ..........ccccocoeiiiirneiiiicrreceeeeeeeeeeeeeeeeeae 113
3.3  Energy Criterion of Crack Propagation for Fixed Force
and Fixed Grip Conditions.........cccccovieiiviiiciniiiciccicns 115
331  Soft SPring Case ... s 118
3.32  Hard Spring Case........ccoveiiiiniiciieecceeeeee s 119

3.3.3  General CaSe...ccuvieeieeiiieeeeeeeeeeeeeeeeeeee ettt 120



34  Experimental Determination of G,.........ccoovviviviiinininiiiinnne, 120
341 Fixed Force Experiment ..o 122
34.2 Fixed Grip Experiment..........ccccocoovivnnnnn 122
34.3 Determination of G, from One Specimen..........ccccccvvvurirnnnee. 123
3.5  Relation between Strain Energy Release Rate (G) and Stress
Intensity Factor (K) ......ccccoeiiiiniiiiiicccciccs 123
3.6  Determination of Stress Intensity Factor (K) for Different
Problem Geometries..........ccooviiiieiiiiiiiiiiiciiccc 126
3.6.1  Griffith Crack.....ccccooviviiniiii 126
3.6.2 Circular or Penny-Shaped Crack..........coooeeiiinniiiincienne. 129
3.6.3 Semi-infinite Crack in a Srip ..o, 130
3.64 Stack of Parallel Cracks in an Infinite Plate ............ccccceuvvunee. 131
3.6.5 Star-Shaped Cracks.......cccocoviviininn 133
3.6.6 Pressurized Star Cracks ..o 135
3.6.7 Longitudinal Cracks in Cylindrical Rods .......ccccccoininnnnnne. 138
37  Concluding RemMArks.......ccceoviiiiiiiiiiiieieiinc 141
REfEIONCES .....cvviiiriiiic e 142
Exercise Problems ... 143
4 Effect of Plasticity....ccccvvveveineeniinniiiiiiiicrcticicncececneenienn, 147
41 INtroduction ... 147
4.2 First Approximation on the Plastic Zone Size Estimation................. 147
421  Evaluation of 7, ..o 148
422 Evaluation of 07, ..o 149
4.3  Determination of the Plastic Zone Shape in Front
Of the Crack TiP ... 150
44  Plasticity Correction Factor ..........coooeviiiiiiiiiii, 155
45  Failure Modes under Plane Stress and Plane Strain Conditions...... 157
451 Plane Stress Case........ccocoviiiininiiinii 157
452 Plane Strain Case.........cccoviiininiiii 158
4.6 Dugdale Model..........coooiiiiiiii e 159
47  Crack Tip Opening Displacement ...........cccccoovinininininnninnnninnnns 161
4.8  Experimental Determination of K.........cccccoovviiiiiiiininiiiiniinnns 164
481 Compact Tension Specimen.........c.cocooviviviivininininniniinininns 164
4811 Step 1: Crack Formation........ccoovevivivinnniinnnnnnnn 165
4.81.2 Step 2: Loading the Specimen.........c.cccccoevvvvinininnnn 166
4.8.1.3 Step 3: Checking Crack Geometry
in the Failed Specimen.........ccccocovviiiiiiiiiiiinns 166
4814 Step 4: Computation of Stress Intensity Factor
at Failure ..., 167
4.81.5 Step 5: Final Check .......cooviviviiiiiin 168
4.8.2 Three-Point Bend Specimen ..........cccccoovviiinnnnnnn, 168
4.8.3 Practical EXamples ..o 170
4.8.31 7075 AIUMINUM ..ot 170

4.8.3.2 AB33B Reactor Steel.........oovvvevivveeiciiiieeeeeeeeeeeeeenes 170



49  Concluding Remarks.........cccooooueiiiiiieieiiiiiec e 171

REfEIeNCES ...ouviiiiiiiii e 172
Exercise Problems ... 172
5 J-Integral couceeiieieiiienee e 175
51  Introduction.......cccceveieieiiiiiiiiiiiiii e 175
52 Derivation of J-Integral ..........ccccooeiiimiiiiiiii 175
53  J-Integral over a Closed LOOP.......cccocoumueieiirieieiiicicicc 178
54  Path Independence of J-Integral ...........ccocooeviiiiiiiininii 180
5.5  J-Integral for Dugdale Model ...........ccccoovviiiiiiniiiiic 182
5.6  Experimental Evaluation of Critical J-Integral Value, J,.........cccc....... 183
57  Concluding Remarks........cccooviiuiiiiiinieieiiciccc s 187
REfEIENCES ...oucviiiiniiii e 188
Exercise Problems ... 188
6 Fatigue Crack Growth .......coeiiniiniinieniinicniiicicnecnieneen, 189
6.1 Introduction.......ccceveiiiiiiiiiiiiiiiii 189
6.2  Fatigue Analysis—Mechanics of Materials Approach....................... 189
6.3  Fatigue Analysis—Fracture Mechanics Approach...........c...ccccc....... 189

6.31 Numerical Example .........cccoooiiiiiiiiiiiiiicin, 193
64  Fatigue Analysis for Materials Containing Microcracks................... 193
6.5 Concluding RemMarks........ccccoveiuriiiiiciiiiiicie 195
REfEIENCES ...oucviiiiniiii e 195
Exercise Problems ... 195
7 Stress Intensity Factors for Some Practical

Crack Geometries......iiineineenieniineinicnrenieieieneeeeneeneens 197
71 INtroduction.......cooiiiiiiiiiiii 197
72 Slit Crack in @ Srip ..o 197
73  Crack Intersecting a Free Surface.........c.ccccccooveiiiiniiciince, 199
74  Strip with a Crack on Its One Boundary .........cccccooueveviniiniiicininnnn. 200
75  Strip with Two Collinear Identical Cracks

on Its Two Boundaries...........cccoeeviiiiiniiiiiiiiiiiiiccccccs 201
76  Two Half Planes Connected over a Finite Region Forming

Two Semi-infinite Cracks in a Full Space..........cccccccoviniiniininnnnn. 202
77  Two Cracks Radiating Out from a Circular Hole..........c..ccccoooennneneen. 203
78  Two Collinear Finite Cracks in an Infinite Plate ...........ccccccoovvunnnee. 204
79  Cracks with Two Opposing Concentrated Forces

on the SUrface ... 206
710  Pressurized Crack.........coviiiininiiiiiiiiiiiin 206

711  Crack in a Wide Strip with a Concentrated Force

at Its Midpoint and a Far Field Stress Balancing

the Concentrated FOrce ... 207
712 Circular or Penny-Shaped Crack in a Full Space............ccccccevvvevinnnns 209



713 Elliptical Crack in a Full Space ..........ccccocovvviviiiininiiiiiciiccns
7131 Special Case 1—Circular Crack.......cocoeueviiiiiiiiiiicic
713.2 Special Case 2—Elliptical Crack with Very Large
MaJOT AXIS ceuvveverieiiieietiee et
713.3 SIF at the End of Major and Minor Axes
of Elliptical Cracks ..o,
714  Part-through Surface Crack.........ccocoovveioiiiiiiiiiiicc
7141  First Approximation ..........ccceeeeieeininieciniieeeee,
714.2  Front Face Correction Factor ..........cccoeeiviiiiiiiiiniiins
714.3 Plasticity Correction ...
7144 Back Face Correction Factor ..........ccccovviiiiiiiiiiiiis
715 Corner Cracks......coviiiiiinininiiiiiiiiic e
7151 Corner Cracks with Almost Equal Dimensions.....................
715.2 Corner Cracks at Two Edges of a Circular Hole.....................
715.3 Corner Crack at One Edge of a Circular Hole........................
716 Concluding Remarks..........cooormiiiiiiiiiiii
REfEIENCES ....ucviiiiriiii e
Exercise Problems ...
8 Numerical ANalysis ....ccoceeveineenieniinninienienieieieeeeeneeneen,
81  INtroduction.......cccoeveiiieiiiiiiiiiiiiiiii e
8.2 Boundary Collocation Technique.........c.cccccocvuviiiiiiiiiiiiiiiiiins
8.2.1 Circular Plate with a Radial Crack..........ccccccecvviinininnnn
8.2.2 Rectangular Cracked Plate ..........ccccooriiiiiiiiiii
8.3  Conventional Finite Element Methods.............cccccocoviiiiiiinninn,
8.3.1 Stress and Displacement Matching ...........ccccoevoiiieiiininnnna
8.3.2 Local Strain Energy Matching ........c.ccooovevviniiciiininicn,
8.3.3 Strain Energy Release Rate............ccooooeiiiiiiiiii
834 J-Integral Method ..o
84  Special Crack Tip Finite Elements........c.ccccccoveiiiiiniiiiiiiiiin,
8.5  Quarter Point Quadrilateral Finite Element ............cccocovevvvnieviennnnene
8.6  Concluding Remarks........cccooviriiiiiiiinicieiicicc
REfEIENCES ...ooviiiiniii e
9 Westergaard Stress FUNCtion ........ueveenieniienieniiinnienicnienienienn,
91  Introduction.......ccceveiiiiiiiiiiiiiiii
9.2 Background Knowledge ..o
9.3  Griffith Crack in Biaxial State of Stress ...........cccovvvvniiiiniininnnnn,
9.31 Stress and Displacement Fields in Terms
of Westergaard Stress FUNCtion ............cccooovevoiiiniiciininne,
9.3.2 Westergaard Stress Function for the Griffith Crack
under Biaxial Stress Field ...,
9.3.3 Stress Field Close to a Crack Tip.......cccocoviivnnnnininnns
94  Concentrated Load on a Half Space.........ccccccovviiniiiniiniiniinen,



9.5  Griffith Crack Subjected to Concentrated Crack

Opening Loads P ... 255
9.51  Stress Intensity Factor ..o 256
9.6  Griffith Crack Subjected to Nonuniform Internal Pressure.............. 257
9.7  Infinite Number of Equal Length, Equally Spaced
Coplanar Cracks........cccoveeiiiiiiiiiiiceccc e 258
9.8  Concluding Remarks........ccccouiiuiiiiiinieieiiciec 259
REFEIEIICES ....vovveevecteeteeteeeteeteete ettt ettt ettt ettt eete et esteeae et e easenseeaseeseenseeseensens 259
EXErcise ProODIEMS .....c..ooouiiiiiiiiecieeceeece ettt ettt e et e 260
10 Advanced TOPICS ...covirrerieneeniieniiinienienienienieniensessessesaesseens 261
101 INErOAUCHON ....eiviiciicee ettt et e eve e e v eevreeaneens 261
10.2  Stress Singularities at Crack Corners..........cccooeeeeveieeereeeinicnenenen, 261
10.3  Fracture Toughness and Strength of Brittle Matrix Composites....... 263
10.3.1 Experimental Observation of Strength Variations
of FRBMCs with Various Fiber Parameters............ccocoveenen.. 265
10.3.2 Analysis for Predicting Strength Variations
of FRBMCs with Various Fiber Parameters...........cccccoveenene.. 267
10.3.2.1 Effect of Fiber Volume Fraction ........c..cccceceevevveeneennene 268
10.3.2.2 Effect of Fiber Length.........ccccccoviviiniiiiniiniinen, 271
10.3.2.3 Effect of Fiber Diameter.........cccooveeveveeeveeveeeeireereennns 274
10.3.3 Effect 0N StffNeSS......ccovvieviereeeeereeeeeeeeee ettt 276
10.3.4 Experimental Observation of Fracture Toughness
Increase in FRBMCs with Fiber Addition .........ccccecvevveeveeneenee. 276
104 Dynamic Effect.......cccooviiiiiiiiiiiiiis 277
10.5 Concluding Remarks.........cccooiiiiiiiiiiiiiiiiiiciciiccccnes 278
REFEIEIICES ...oveveeeeecteeteeteeteeteeteee ettt ettt ettt eete st e teeae b e easesseeaseeseenseeseensens 278
EXErcise ProODIOMIS ....c..oocuviiiiieieceeceeece ettt ettt et e 280



Preface

My students motivated me to write this book. Every time I teach the course
on fracture mechanics my students love it and ask me to write a book on
this subject, stating that my class notes are much more organized and easy
to understand than the available textbooks. They say I should simply put
together my class notes in the same order I teach so that any entry level grad-
uate student or senior undergraduate student can learn fracture mechanics
through self-study. Because of their encouragement and enthusiasm, I have
undertaken this project.

When I teach this course I start my lectures reviewing the fundamentals
of continuum mechanics and the theory of elasticity relevant to fracture
mechanics. Chapter 1 of the book does this. Students lacking a continuum
mechanics background should first go through this chapter, solve the exer-
cise problems, and then start reading the other chapters. The materials in
this book have been carefully selected and only the topics important enough
to be covered in the first course on fracture mechanics have been included.
Except for the last chapter, no advanced topics have been covered in this book.
Therefore, instructors of elementary fracture mechanics courses should have
a much easier time covering the entire book in a three-unit graduate level
course; they will not have to spend too much time picking and choosing
appropriate topics for the course from the vast knowledge presented in most
fracture mechanics books available today.

A professor who has never taught fracture mechanics can easily adopt this
book as the official textbook for his or her course and simply follow the book
chapters and sections in the same order in which they are presented. A num-
ber of exercise problems that can be assigned as homework problems or test
problems are also provided. At the end of the semester, if time permits, the
instructor can cover some advanced topics presented in the last chapter or
topics of his or her interest related to fracture mechanics.

From over 20 years of my teaching experience I can state with confidence
that if the course is taught in this manner, the students will love it. My teach-
ing evaluation score in fracture mechanics has always been very high and
often it was perfect when I taught the course in this manner. Since many
students of different backgrounds over the last two decades have loved the
organization of the fracture mechanics course presented in this book, I am
confident that any professor who follows this book closely will be liked by
his or her students.

The book is titled Fundamentals of Fracture Mechanics because only the
essential topics of fracture mechanics are covered here. Because I was moti-
vated by my students, my main objective in writing this book has been to



keep the materials and explanations very clear and simple for the benefit of
students and first-time instructors. Almost all books on fracture mechanics
available in the market today cover the majority of the topics presented in
this book and often much more. These books are great as reference books
but not necessarily as textbooks because the materials covered are not nec-
essarily presented in the same order as most instructors present them in
their lectures. Over half of the materials presented in any currently available
fracture mechanics book is not covered in an introductory fracture mechan-
ics course. For this reason, the course instructors always need to go through
several fracture mechanics books’ contents carefully and select appropriate
topics to cover in their classes. It makes these books expensive and diffi-
cult for self-study. Often, instructors find that some important topics may be
missing or explained in a complex manner in the fracture mechanics books
currently available. For this reason, they are forced to follow several books
in their course or provide supplementary class notes for clearer explanations
of difficult topics. Fundamentals of Fracture Mechanics overcomes this short-
coming. Since it only covers the essential topics for an introductory fracture
mechanics course, it is the right book for first-time learners, students, and
instructors.

Tribikram Kundu
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1

Fundamentals of the Theory of Elasticity

1.1 Introduction

It is necessary to have a good knowledge of the fundamentals of continuum
mechanics and the theory of elasticity to understand fracture mechanics. This
chapter is written with this in mind. The first part of the chapter (section 1.2) is
devoted to the derivation of the basic equations of elasticity; in the second part
(section 1.3), these basic equations are used to solve some classical boundary
value problems of the theory of elasticity. It is very important to comprehend
the first chapter fully before trying to understand the rest of the book.

1.2 Fundamentals of Continuum Mechanics
and the Theory of Elasticity

Relations among the displacement, strain, and stress in an elastic body are
derived in this section.

1.2.1 Deformation and Strain Tensor

Figure 1.1 shows the reference state R and the current deformed state D of a
body in the Cartesian x,x,x; coordinate system. Deformation of the body and
displacement of individual particles in the body are defined with respect
to this reference state. As different points of the body move, due to applied
force or change in temperature, the configuration of the body changes from
the reference state to the current deformed state. After reaching equilibrium
in one deformed state, if the applied force or temperature changes again,
the deformed state also changes. The current deformed state of the body is
the equilibrium position under current state of loads. Typically, the stress-
free configuration of the body is considered as the reference state, but it is
not necessary for the reference state to always be stress free. Any possible
configuration of the body can be considered as the reference state. For sim-
plicity, if it is not stated otherwise, the initial stress-free configuration of the
body, before applying any external disturbance (force, temperature, etc.), will
be considered as its reference state.
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FIGURE 1.1
Deformation of a body: R is the reference state and D is the deformed state.

Consider two points P and Q in the reference state of the body. They move
to P" and Q" positions after deformation. Displacement of points P and Q is
denoted by vectors u and u + du, respectively. (Note: Here and in subsequent
derivations, vector quantities will be denoted by boldface letters.) Position
vectors of P, Q, P’, and Q" are r, r + dr, ', and 1" + dr’, respectively. Clearly,
displacement and position vectors are related in the following manner:

r=r+u
r"+dr' =r+dr+u+du (1.1)
sdr’ =dr+du

In terms of the three Cartesian components, the preceding equation can
be written as:

(dxje, +dxse, +dxie;) = (dx e, +dx,e, +dx,e;) + (duje; +du,e, +duse;) (1.2)

where ey, e,, and e; are unit vectors in x;, x,, and x; directions, respectively.
In index or tensorial notation, equation (1.2) can be written as

dx; =dx; +du, (1.3)

where the free index i can take values 1, 2, or 3.
Applying the chain rule, equation (1.3) can be written as

. ou; au; au;
dx; =dx; + a, dx, + ax, dx, + a, dx

(14)

3
oodx; = dx, +Z gxu’ dx; = dx; +u; dx;

=1
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In the preceding equation, the comma (,) means “derivative” and the sum-
mation convention (repeated dummy index means summation over 1,2, and 3)
has been adopted.

Equation (1.4) can also be written in matrix notation in the following form:

o dw
dx; dx, gil zz gf dx,
* 72 2 2
‘dle - Zx2 o, @ sz (1.5)
X X
SR A R T
[ dv,  dr,  dvs |
In short form, equation (1.5) can be written as
{dr’} = {dr} +[Vu]" {dr} (1.6)
If one defines
1
& = E(ui,j +u;;) (1.7a)
and
1
w; = E(ui,j —u;;) (1.7b)
then equation (1.6) takes the following form:
{dr"} = {dr} +[e]{dr} + [e]{dr} (1.70)

1.2.1.1 Interpretation of ¢; and w; for Small Displacement Gradient

Consider the special case when dr = dx;e;. Then, after deformation, three
components of dr” can be computed from equation (1.5):

dx; =dx, + %dxl =1+ ¢&y)dx,
oy

. ou
dx; = idxl = (&1 + 0y )dx, (1.8)

dx; = %dxl = (g5 + 0y )dX,
ox,
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In this case, the initial length of the element PQ is dS = dx;, and the final
length of the element P'Q" after deformation is

N

s’ = [(dxi)z +(dx3)* + (dx3)? = dx, [(1 +&1) +(& +@0y)* + (€5 + w31)2]
) (1.9)
~dx, [142e, " =dx,(1+&y)

In equation (1.9) we have assumed that the displacement gradients u;; are
small. Hence, ¢; and o, are small. Therefore, the second-order terms involv-
ing ¢; and ; can be ignored.

From its definition, engineering normal strain (E,;) in x, direction can be
written as

_dS —dS  dx,(1+¢)—dx,

E
" ds dx,

=& (110)

Similarly one can show that €,, and €4; are engineering normal strains in
x, and x; directions, respectively.

To interpret €,, and @,,, consider two mutually perpendicular elements PQ
and PR in the reference state. In the deformed state these elements are moved
to P'Q" and P'R" positions, respectively, as shown in Figure 1.2.

Let the vectors PQ and PR be (dr)pq = dx,e; and (dr)pr = dx,e,, respectively.
Then, after deformation, three components of (dr’)pq and (dr’),g can be writ-
ten in the forms of equations (1.11) and (1.12), respectively:

(dx})pg = dx, + % dx, = (1+ &y, )dx,
1

(dx3)pg = %dxl = (&1 + 0y)dx, (1.17)
1

. ou
(dx3)pg = gsdxl = (& + 03)dx,
1

FIGURE 1.2
Two elements, PQ and PR, that are mutually perpendicular before deformation are no longer
perpendicular after deformation.
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. ou
(dx})pr = ——dx, = (&, + @y,)dx,
3

. ou
(dx3)pr = gz dx, = (1+ &5)dx, (1.12)

2
. ou
(dx3)pr = fdxz = (&5 + @y)dx,

2

Let o, be the angle between P'Q" and the horizontal axis, and ¢, the angle
between P'R" and the vertical axis as shown in Figure 1.2. Note that o+ oy +
o, = 90°. From equations (1.11) and (1.12), one can show that

_ (& + @0y)dx,

tano, = = €y + Wy = EH + O
1 (1 + 8]1 )dxl 21 21 12 21
p (1.13)
&, + Wy, )dx
tana2 — ( 12 12) 2 ~ 812 6021
(1+ &)dx,

In the preceding equation, we have assumed a small displacement gradi-
ent and therefore 1 + €; ~ 1. For a small displacement gradient, tan o; ~ ¢;;and
one can write:

O =& + Wy

Oy =& =Wy (1.14)

1 1
o€ :E(al toy) & oy :E(al —-0,)

From equation (1.14) it is concluded that 2¢,, is the change in the angle
between the elements PQ and PR after deformation. In other words, it is
the engineering shear strain and w,, is the rotation of the diagonal PS (see
Figure 1.2) or the average rotation of the rectangular element PQSR about the
X, axis after deformation.

In summary, ¢; and ; are strain tensor and rotation tensor, respectively,
for small displacement gradients.

Example 1.1
Prove that the strain tensor satisfies the relation €;, + €= Eijo + Ejpir-

This relation is known as the compatibility condition.

Solution

. 1
Left-hand side = &, + & = 5 (U jr U jep + U g + Uy i)

. . 1
nght—hand side = gik,j/ + gj/,ik = E(ui’kﬂ + Uy iie + Uj rie + u[,jik)
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Since the sequence of derivative should not make any difference, u; ;, =
u; s similarly, the other three terms in the two expressions can be shown
as equal. Thus, the two sides of the equation are proved to be identical.

Example 1.2
Check if the following strain state is possible for an elasticity problem:

en =k(x} +13), & =k(x} +13), & = kxyx,x3, E3 =3 =63 =0
Solution

From the compatibility condition, &;, + €y = Eije + Eris given in example
1.1, one can write
€190+ Exp11 = 2€1,1, by substituting i=1,7=1,k=2,{=2.

€100 +Epy =2k +0=2k
2151, = 2kx,

Since the two sides of the compatibility equation are not equal, the
given strain state is not a possible strain state.

1.2.2 Traction and Stress Tensor

Force per unit area on a surface is called traction. To define traction at a point
P (see Figure 1.3), one needs to state on which surface, going through that
point, the traction is defined. The traction value at point P changes if the ori-
entation of the surface on which the traction is defined is changed.

Figure 1.3 shows a body in equilibrium under the action of some external
forces. If it is cut into two halves by a plane going through point P, in general,
to keep each half of the body in equilibrium, some force will exist at the cut
plane. Force per unit area in the neighborhood of point P is defined as the
traction at point P. If the cut plane is changed, then the traction at the same
point will change. Therefore, to define traction at a point, its three components
must be given and the plane on which it is defined must be identified. Thus,
the traction can be denoted as T™, where the superscript n denotes the unit

Fy

F

FIGURE 1.3
Abody in equilibrium can be cut into two halves by an infinite number of planes going through
a specific point P. Two such planes are shown in the figure.



Fundamentals of the Theory of Elasticity 7

X1

FIGURE 1.4
Traction T® on an inclined plane can be decomposed into its three components, T,

i» OF into two
components: normal and shear stress components (o,, and c,,).

vector normal to the plane on which the traction is defined and where T™
has three components that correspond to the force per unit area in x;, x,, and
x; directions, respectively.

Stress is similar to traction; both are defined as force per unit area. The
only difference is that the stress components are always defined normal or
parallel to a surface, while traction components are not necessarily normal
or parallel to the surface. A traction T™ on an inclined plane is shown in
Figure 1.4. Note that neither T™ nor its three components T,, are necessarily
normal or parallel to the inclined surface. However, its two components o,
and o, are perpendicular and parallel to the inclined surface and are called
normal and shear stress components, respectively.

Stress components are described by two subscripts. The first subscript
indicates the plane (or normal to the plane) on which the stress component is
defined and the second subscript indicates the direction of the force per unit
area or stress value. Following this convention, different stress components
in the x,x,x; coordinate system are defined in Figure 1.5.

X
zzz
I»J_> 021
012
023
03y
01371 |A&
4 013 0
o1 €= 1
1
V — 1
‘712/ 031
033
X3

FIGURE 1.5
Different stress components in the x,x,x; coordinate system.
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Note that on each of the six planes (i.e., the positive and negative x;, x,, and
x5 planes), three stress components (one normal and two shear stress com-
ponents) are defined. If the outward normal to the plane is in the positive
direction, then we call the plane a positive plane; otherwise, it is a negative
plane. If the force direction is positive on a positive plane or negative on a
negative plane, then the stress is positive. All stress components shown on
positive x;, x,, and x; planes and negative x; plane in Figure 1.5 are positive
stress components. Stress components on the other two negative planes are
not shown to keep the Figure simple. Dashed arrows show three of the stress
components on the negative x, plane while solid arrows show the stress com-
ponents on positive planes. If the force direction and the plane direction have
different signs, one positive and one negative, then the corresponding stress
component is negative. Therefore, in Figure 1.5, if we change the direction
of the arrow of any stress component, then that stress component becomes
negative.

1.2.3 Traction-Stress Relation

Let us take a tetrahedron OABC from a continuum body in equilibrium (see
Figure 1.6). Forces (per unit area) acting in the x, direction on the four sur-
faces of OABC are shown in Figure 1.6. From its equilibrium in the x, direc-
tion one can write

ZFl =TyA—-0yA —0yA) —05A;+ 1V =0 (1.15)
where A is the area of the surface ABC; A;, A,, and A, are the areas of the

other three surfaces OBC, OAC, and OAB, respectively; and f, is the body
force per unit volume in the x; direction.

X

m<-4- Y ‘
n3

x1

FIGURE 1.6
A tetrahedron showing traction components on plane ABC and x, direction stress components
on planes AOC, BOC, and AOB.
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If n; is the jth component of the unit vector n that is normal to the plane
ABC, then one can write A; = ;A and V = (Ah)/3, where h is the height
of the tetrahedron measured from the apex O. Thus, equation (1.15) is
simplified to

h
T = Oty — Optly — O3y115 + f 3 =0 (L16)

In the limiting case when the plane ABC passes through point O, the tetra-
hedron height k vanishes and equation (1.16) is simplified to

Ty = Oyyhy + 0y, + 0313 = O (1.17)

In this equation the summation convention (repeated index means sum-
mation) has been used.
Similarly, from the force equilibrium in x, and x; directions, one can write

T, =01
2Ty (1.18)

Tn3 = (7]31’1]

Combining equations (1.17) and (1.18), the traction—stress relation is
obtained in index notation:
(1.19)

T, =o;n;

where the free index i takes values 1, 2, and 3 to generate three equations and
the dummy index j takes values 1, 2, and 3 and is added in each equation.

For simplicity, the subscript n of T,; is omitted and T,; is written as T;. It is
implied that the unit normal vector to the surface on which the traction is
defined is n. With this change, equation (1.19) is simplified to

T = oin; (1.19&)
1.2.4 Equilibrium Equations

If a body is in equilibrium, then the resultant force and moment on that body
must be equal to zero.

1.2.4.1 Force Equilibrium

The resultant forces in the x;, x,, and x; directions are equated to zero to obtain
the governing equilibrium equations. First, x, direction equilibrium is studied.
Figure 1.7 shows all forces acting in the x,; direction on an elemental volume.



10 Fundamentals of Fracture Mechanics

X

oy + dx,

 —
< ---[-03;
011 €——4——= fl————" —» 011 + dx,
P — %
ON€—---- 003,
o3 + s dx
X3

FIGURE 1.7
Forces acting in the x, direction on an elemental volume.

Thus, the zero resultant force in the x; direction gives

—0,,dx,dx; + (011 + %alx1 J dx,dx, — 0y dx,dx; + [621 + % dx, ] dx,dx,

1 2
— 05, dx,dx; + (0'31 + %O;’ldedxldxz + f, dx,dxydx, =0
3

or

[ 9 gy, J dx,dx, + [ 88021 dx, ] dx,dxs + ( 88631 dx, J dx,dx, + f, d,dx,dac, = 0
X

ox, X 3
or
00y, 00, 0J04;
+ + +f=0
dx;  0dx,  dx, f
or
d0;
e (1.20)
+f=0
8xj 5

In equation (1.20) repeated index j indicates summation.
Similarly, equilibrium in x, and x; directions gives

do;,
—+ =
axj f2 0
(1.21)
d0;;
+f;=0

ox;

]
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The three equations in (1.20) and (1.21) can be combined in the follow-
ing form:

90; + + 0 1.22
axj .fl Jt] .fl ( )

The force equilibrium equations given in equation (1.22) are written in index
notation, where the freeindexi takes three values—1, 2,and 3—and corresponds
to three equilibrium equations, and the comma (,) indicates derivative.

1.2.4.2 Moment Equilibrium

Let us now compute the resultant moment in the x; direction (or, in other
words, moment about the x; axis) for the elemental volume shown in
Figure 1.8.

If we calculate the moment about an axis parallel to the x; axis and pass-
ing through the centroid of the elemental volume shown in Figure 1.8,
then only four shear stresses shown on the four sides of the volume can
produce moment. Body forces in x; and x, directions do not produce any
moment because the resultant body force passes through the centroid of
the volume. Since the resultant moment about this axis should be zero, one
can write

(012 + 9% 4 ] drod, PO (o, )dnd, L (aﬂ +
ax; 2 2

— (0 )dx,dx; d% =0

X2
Oy + dx,

— >
|

S 0
i S 1> o9 + %12 dx;
: I axl
\ S x
012 !

X3

FIGURE 1.8
Forces on an element that may contribute to the moment in the x; direction.
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Ignoring the higher order terms, one gets
2(0y; )dx,dx, % —2(0y )dx,dx, L;z =0

Or Opy = Oy.
Similarly, applying moment equilibrium about the other two axes, one can
show that o0y, = 65, and 05, = 0,;. In index notation,

0= 0; (1.23)

Thus, the stress tensor is symmetric. It should be noted here that if the
body has internal body couple (or body moment per unit volume), then the
stress tensor will not be symmetric.

Because of the symmetry of the stress tensor, equations (1.19a) and (1.22)
can be written in the following form as well:

(1.24)

1.2.5 Stress Transformation

Let us now investigate how the stress components in two Cartesian coordi-
nate systems are related.

Figure 1.9 shows an inclined plane ABC whose normal is in the x; direc-
tion; thus, the x,x5 plane is parallel to the ABC plane. Traction T® is acting
on this plane. Three components of this traction in xy, x,, and x; directions
are the three stress components o,., 0;,, and oy, respectively. Note that the

X

o,

F<€----\----R

*1

S«
[}

X3

FIGURE 1.9
Stress components in x;.x,x; coordinate system.
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first subscript indicates the plane on which the stress is acting and the sec-
ond subscript gives the stress direction.
From equation (1.19) one can write

T, = Gjinj(l )= Ojily;

] (1.25)

where 11 =/, is the jth component of the unit normal vector on plane
ABC or, in other words, the direction cosines of the x; axis.

Note that the dot product between T®) and the unit vector n® gives the
stress component o,,; therefore,

Oyy =Tyily; = 05lyly; (1.26)

Similarly, the dot product between T® and the unit vector n® gives oy,
and the dot product between T® and the unit vector n® gives o,,. Thus, we
get

Opy =Tyilyi =0ty jly;
(1.27)
Ovy =Tyilyi =0,y jly;

Equations (1.26) and (1.27) can be written in index notation in the follow-
ing form:

Crn = L1103 (1.28)

In this equation, the free index m’ can take values 1, 2, or 3".
Similarly, from the traction vector T on a plane whose normal is in the x,
direction, one can show that

O- /2 ]Gﬂ/mt (129)
From the traction vector T®’ on the x; plane, one can derive

O3 = gB jo-]lgﬂl i (130)

Equations (1.28) to (1.30) can be combined to obtain the following equation
in index notation:

0,00

n'm’ = tn'jY it m'i

O

Note that in the preceding equation, i, j, m’, and n” are all dummy indices and
can be interchanged to obtain

Oiil i = Loil iy (1.31)

O €m1 it n’j m'itn’j
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1.2.5.1 Kronecker Delta Symbol (5;) and Permutation Symbol (&;;)

In index notation the Kronecker delta symbol (§;) and permutation symbol
(€i also known as the Levi-Civita symbol and alternatmg symbol) are often
used. They are defined in the following manner:

0;=1 for i=j
0;=0 for i#j
and

ik = 1 for i, j, k having values 1,2, and 3; or 2, 3, and 1; or 3, 1, and 2.
Ej=-1 for i, j, k having values 3, 2, and 1; or 1, 3, and 2; or 2, 1, and 3.

€; =0 for i, j, k not having three distinct values.

1.2.5.2 Examples of the Application of 5; and &,
Note that

ox; e

ij s
ox;

4n dip g3
Det|ay,  ay 0y =€Epmtay;  bxc=¢gybice

a3 dzp  dgy

where e; and e; are unit vectors in x; and X; directions, respectively, in the

X1X,X; coordinate system. Also note that b and c are two vectors, while [4] is
a matrix.

One can prove that the following relation exists between these two symbols:

r]kglmn 6 51(11 - 5jn5km

Example 1.3

Starting from the stress transformation law, prove that o,,,0,, = 0;0;
where 0,,,, and o; are stress tensors in two different Cartesian coordinate
systems.

Solution

OnOmn (Zmz n'j 1])(€mpgnq6pq) (Zmzfn])(gmpgnq)o-z] pq

= (f m’ifm’p)(én] n’q )0-1] rq 51115]170-1]0-;711 Ojj O-ij
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1.2.6 Definition of Tensor

A Cartesian tensor of order (or rank) r in #n dimensional space is a set of n"
numbers (called the elements or components of tensor) that obey the follow-
ing transformation law between two coordinate systems:

tﬂl’;z’p’q'“.“ = (g;n'ign’jgp’qu’f . )(tljkf) (132)

where t,,,.. andt; eachhasrnumber of subscripts; r number of direction
cosines (£l il !y ...) are multiplied on the right-hand side. Comparing
equation (1.31) with the definition of tensor transformation equation (1.32),

one can conclude that the stress is a second-rank tensor.

1.2.7 Principal Stresses and Principal Planes

Planes on which the traction vectors are normal are called principal planes.
Shear stress components on the principal planes are equal to zero. Normal
stresses on the principal planes are called principal stresses.

In Figure 1.10, let n be the unit normal vector on the principal plane ABC
and A the principal stress value on this plane. Therefore, the traction vector
on plane ABC can be written as

T. = An,

1 1

Again, from equation (1.24),
T. =0

i il

i
From the preceding two equations, one can write

o;n;—An; =0 (1.33)

)

X1

X3

FIGURE 1.10
Principal stress A on the principal plane ABC.
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The preceding equation is an eigenvalue problem that can be rewritten as

The system of homogeneous equations (1.33) and (1.34) gives a nontrivial
solution for n; when the determinant of the coefficient matrix is zero. Thus,
for a nontrivial solution,

(o1, =4) O O3
Det| oy, (0 —4) O3 =0
O3 O3 (03— 4)

or

2 2 2 2
A3 = (0'11 +0 +03 ) A% + (0'110'22 + 02,033 + 033011 —0f; — 0% — 03 ) A

(1.35)
- (0'110'220'33 +2071,05303 — 0110%; — 05,03 — 0'330'122) =0
In index notation, the preceding equation can be written as
3 2, 1 1.36
A3 =0 A% + E(Giiajj —0;i0;)A — €;01;0,,05 =0 (1.36)

In equation (1.36), & is the permutation symbol that takes values 1, -1,
or 0. If the subscripts i, j, and k have three distinct values 1, 2, and 3 (or 2, 3,
and 1; or 3, 1, and 2), respectively, then its value is 1. If the values of the sub-
scripts are in the opposite order 3,2, and 1 (or 2, 1, and 3; or 1, 3, and 2), then
€;is -1, and if i, j, and k do not have three distinct values, then ¢, = 0.

Cubic equation (1.36) should have three roots of A. Three roots correspond
to the three principal stress values. After getting A, the unit vector compo-
nents 7; can be obtained from equation (1.34) and, satisfying the constraint
condition,

ni+ny +n3 =1 (1.37)

Note that for three distinct values of A, there are three n values correspond-
ing to the three principal directions.

Since the principal stress values should be independent of the starting
coordinate system, the coefficients of the cubic equation (1.36) should not
change irrespective of whether we start from the x,x,x; coordinate system or
x,x,x; coordinate system. Thus,

61"6]']‘ - Gl]O']l = Gl‘f,‘fdj']‘f - Gi'j»()']»ri' (138)

€ix01;02j03) = &;jy0140y 03
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The three equations of (1.38) are known as the three stress invariants. After
some algebraic manipulations, the second and third stress invariants can be
further simplified and the three stress invariants can be written as

0;; =0y;
1 1
0i0ji =00y or 5 0ii0ji = 7 OOy (1.39)
1 1
0;i0 0% = OO O or 3 0;i0 0% = 3 00 Orir
Example 1.4

(a) Obtain the principal values and principal directions for the following
stress tensor:

2 -4 -6
[c]=|-4 4 2|MPa
-6 2 =2

One given value of the principal stress is 9.739 MPa.
(b) Compute the stress state in x;x,x; coordinate system. Direction
cosines of x;x,’x, axes are:

x{ X3 x5
2, 0.7285 0.6601 0.1831
¢, 04827 -0.6843 0.5466
4y 04861 -0.3098 -0.8171

Solution
(@) A characteristic equation is obtained from equation (1.35):

A3 —(0y; + 0y +033)A% + (0110'22 + 0,033 + 0330 — Ofy — 033 — 03 ) A
- (011(722033 +201,0,303; — 6110%; — 003 — 6330122) =0
For the given stress tensor it becomes
AP —4A2-601+40=0
The preceding equation can be written as
A% —9.7394%2 +5.7394%2 —55.8924 — 4.1084+40=0
= (1—-9.739)(A% +5.7394 - 4.108) = 0
= (A —9.739)(A + 6.3825)(A — 0.6435) =0
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whose three roots are

A =—6.3825
A, =9.739
Ay = 0.6435

These are the three principal stress values.
Principal directions are obtained from equation (1.34)

(01— 4) O O3 lin
Oy (0n—=4) O L =0
O3 O3 (03— 4) [ 413

where ¢, {;,, {,; are the direction cosines of the principal direction associ-
ated with the principal stress 4,.
From the preceding equation one can write

(2 +6.3825) -4 -6 044
—4 (4 +6.3825) 2 0, t=0
—6 2 (-2+6.3825) || £,4

The second and third equations of the preceding system of three
homogeneous equations can be solved to obtain two direction cosines in
terms of the third one, as given here:

0y, =0.13337,,
05 =1.308201,
Normalizing the direction cosines, as shown in equation (1.37), we get
1= 03, + 03, + (35 = (3,(1+0.1333%2 +1.30822)
= (1 =%0.605
= (4, =0.1333¢,, =£0.081
= (3, =1.3082/¢,, =%0.791

Similarly, for the second principal stress A, = 9.739, the direction
cosines are

0y =%0.657
0y, =F0.612
0y, =F0.440
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For the third principal stress A; = 0.6435, the direction cosines are

05, =10.449
04, =10.787
055 =%F0.423
(b) From equation (1.31), G,y = £,i( ;0 .
In matrix notation [0”] = [{][c][{]7,
LT P 0.7285 0.6601 0.1831
where [E]T =(ly, LUy, ly,|=]0.4827 —0.6843 0.5466
Lyg Ly Lyg 0.4861 —-0.3098 -0.8171
—-4.6033 -0.8742 2.9503
9.4682 1.6534 |MPa
—0.8650

[o’1=[lc]l/]F =|-0.8742
2.9503 1.6534

Thus,

1.2.8 Transformation of Displacement and Other Vectors
The vector V can be expressed in two coordinate systems in the following
(1.40)

manner (see Figure 1.11):
Ve, +V,e, +Vies =Vie, +Vyey +Vies

If one adds the projections of V;, V,, and V; of equation (1.40) along the x;
direction, then the sum should be equal to the component V. Thus,
(1.41)

Vj' = Ej’1V1 + fj/ZVQ + fj'svs = Z]»ka

(&)

\
\
-
X1

X
3 U

FIGURE 1.11
A vector V and two Cartesian coordinate systems.
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Comparing equations (1.41) and (1.32), one can conclude that vectors are
first-order tensors, or tensors of rank 1.

1.2.9 Strain Transformation

Equation (1.7a) gives the strain expression in the x;x,x; coordinate sys-

tem. In the x;x,x; coordinate system, the strain expression is given by
—1

&y =3 (Uy y +1ty ). Now,

o ouy _ a(gi'mum) _ . a(um) _ . Oty OXn Ol Otlm
M T ag ey T a a A T G
(1.42)
Similarly,
ity
Ujyir = E]"ngi’m axim (143)
Therefore,
1
gi'j' =§(ui',j’+uj',i) (gjm jin mn+€jn€tmunm)
) (1.44)
:Efi’mgj'n(um,n nm) frm ]n

It should be noted here that the strain transformation law (equation 1.44) is
identical to the stress transformation law (equation 1.31). Therefore, strain is
also a second-rank tensor.

1.2.10 Definition of Elastic Material and Stress—Strain Relation

Elastic (also known as conservative) material can be defined in many ways:

¢ The material that has one-to-one correspondence between stress and
strain is called elastic material.

¢ The material that follows the same stress—strain path during loading
and unloading is called elastic material.

e For elastic materials, the strain energy density function (U,) exists
and it can be expressed in terms of the state of current strain only
(Uy = Uy(ey) and independent of the strain history or strain path.

If the stress—strain relation is linear, then material is called linear elastic
material; otherwise, it is nonlinear elastic material. Note that elastic material
does not necessarily mean that the stress—strain relation is linear, and the
linear stress—strain relation does not automatically imply that the material is
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[y

€ €
Linear Elastic Nonlinear Elastic Inelastic
% o o
€ € €
Inelastic Inelastic Inelastic

FIGURE 1.12
Stress—strain relations for elastic and inelastic materials.

elastic. If the stress—strain path is different during loading and unloading,
then the material is no longer elastic even if the path is linear during loading
and unloading. Figure 1.12 shows different stress—strain relations and indi-
cates for each plot if the material is elastic or inelastic.

For conservative or elastic material the external work done on the mate-
rial must be equal to the total increase in the strain energy of the material.
If the variation of the external work done on the body is denoted by W
and the variation of the internal strain energy stored in the body is 6U, then
oU = 6W. Note that 6U can be expressed in terms of the strain energy density
variation (6U,), and 6W can be expressed in terms of the applied body force
(f), the surface traction (T}), and the variation of displacement (u,) in the fol-
lowing manner:

5U = JSUOdV
v (1.45)

SW = J Foudv + J T.Su.dS
14 S

In equation (1.45) integrals over V and S indicate volume and surface inte-
grals, respectively. From this equation, one can write

ISUOdV _ '[ Foudv + j T Su.dS = J Foudv + '[oijnj(suids
14 1%4 S 1%

S

_ '[ Foudv + '[ (0,6u,)n,dS
1% S
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Applying Gauss divergence theorem on the second integral of the right-
hand side, one obtains

y.]

J&UOdV _ j Foudv + j (0,01,),, AV = j Foudv + J(o- Su; +0,6u,)dV
14 14 14 14

v

(1.46)

Y.l

= [(fu,+ 0, 611+ 0,6, )4V = [ (f, +0, 6w, + 0,3, )av
|4

14
After substituting the equilibrium equation (see equation 1.24), the preced-

ing equation is simplified to

;+0;0u;;)dVv

Jouav = [ (@60 )av = [ 2 (0,60, + 0,50, )V = [ (0,8,
14 14 v 14

1
_ -[ 0, (B, -+ 8u, AV = J.oi]-ée,-jdV (147)

\%4 \%4

Since equation (1.47) is valid for any arbitrary volume V, the integrands of
the left- and right-hand sides must be equal to each other. Hence,

However, from the definition of elastic materials,

U, = uo(gij)
(1.49)
S SUO = auO 68]]
o€

i

For arbitrary variation of &¢; from equations (1.48) and (1.49), one can
write

au (1.50)
O—i' = -0
' ogy

From equation (1.50), the stress—strain relation can be obtained by assuming
some expression of U in terms of the strain components (Green’s approach).
For example, if one assumes that the strain energy density function is a qua-
dratic function (complete second-degree polynomial) of the strain compo-
nents, as shown here,

Uy =Dy + D&y + Dygyn€a€nn (1.51)
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then,
au,
Oj==3_ = D65
0g;
or
0, = 96 = D040 + Dy (646,1€n + €46in0) = Dij + D€, + Digii€ni

if

=D +(Djyy + Dyyj)eu

Substituting (D, + Dy;) = Cyy and D;; = 0 (it implies that strain is zero for
zero stress, then this assumption is valid), one gets the linear stress—strain
relation (or constitutive relation) in the following form:

0;;i = Cinép (1.52)

In Cauchy’s approach, equation (1.52) is obtained by relating stress ten-
sor with strain tensor. Note that equation (1.52) is a general linear relation
between two second-order tensors.

In the same manner, for a nonlinear (quadratic) material, the stress—strain
relation is

0;i = Cji + Cija€u + CijamnExiEmn (1.53)

In equation (1.53) the first term on the right-hand side is the residual stress
(stress for zero strain), the second term is the linear term, and the third term
is the quadratic term. If one follows Green’s approach, then this nonlinear
stress—strain relation can be obtained from a cubic expression of the strain
energy density function:

UO = Dklgkl + Dklmngklgmn + Dklmnpqgklgmngpq (154)
In this chapter we limit our analysis to linear materials only. Therefore,
our stress—strain relation is the one given in equation (1.52).

Example 1.5

In the x;x,x; coordinate system the stress—strain relation for a general
anisotropic material is given by o;; = Cyy,, €, and in the x,x,xy coordinate
system the stress—strain relation for the same material is given by o}, =
Ci'j/k’m' gk'm"

(@) Starting from the stress and strain transformation laws, obtain a
relation between Cy,, and Cjy,-
(b) IsC

ifkm

iion @ tensor? If yes, what is its rank?
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Solution
(a) Using equations (1.52) and (1.31), one can write

Oirir

i’j = Ci'j'k'm’gk’m'

=l l.0,=C

it j’s i’j’k'm’/k’ Lorg€

m'q<pq

:(Ettg]u)gzr j’s s:(!éi’tﬁ )Ct]km/kp/

m'q P'i

= 5tr5uso-rs = (gi’tgj’u )Ci’j’k m’ /kpgm q<pq E f Linl Cz] km € v

juti'ptmq

=0y = (Zi'tgj’ugk’pgm’qci’j’k’m’ )gpq

But, o, = C,,,,€,,- Therefore,

Ctupq zt/]u(kp/chukm —[tzﬁu]fpkﬁqmczjkm

Similarly, starting with the equation o, = C,.¢,. and applying

stress and strain transformation laws, one can show that C.

fzpf]qfkrfmscpqrs'

(b) Clearly, Cy,, satisfies the transformation law for a fourth-order
tensor. Therefore, it is a tensor of order or rank equal to 4.

i'j'k'm’

1.2.11 Number of Independent Material Constants

In equation (1.52) the coefficient values C;;;, depend on the material type and
are called material constants or elastic constants. Note that i, j, k, and I can
each take three values: 1, 2, or 3. Thus, there are a total of 81 combinations
possible. However, not all 81 material constants are independent. Since stress
and strain tensors are symmetric, we can write

Ci = Ci = Ciin (1.55)

The relation in equation (1.55) reduces the number of independent material
constants from 81 to 36, and the stress—strain relation of equation (1.52) can
be written in the following form:

Oon Cimn Cuz Cuzm G Cus Cun || &1

02 Coin Com Coss Cas G Conn || €2

On| [Con Can  GCun G Can Can || € (1.56)
O3 Coin Coe Cus Gz Cossr Cosio || 2623 '
03 Cann GCae Gz G Caar Cann || 28n

012 [Con Cim Ciss Gz Cist G | (2612

In the preceding expression only six stress and strain components are
shown. The other three components are not independent because of the sym-
metry of stress and strain tensors. The six by six C-matrix is known as the
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constitutive matrix. For elastic materials, the strain energy density function
can be expressed as a function of only strain; then its double derivative will
have the form

*U, _ 9 [aqu d Kl

e, €y =87£l-]-(6k’)=88

aé‘ijaé‘kl - aé‘i]- (Cklmngmn) = Cklmnaimajn = Cklij (157)

i

Similarly,

?U, 9 (auoj_a

og;

d
agkl 381-]- agkl ( if ) de ( ijmn ©mn ) ijmn“km®~In ijkl (158)

dey K

In equations (1.57) and (1.58) the order or sequence of derivative has been
changed. However, since the sequence of derivative should not change the
final results, one can conclude that C;y, = Cy;;. In other words, the C-matrix of
equation (1.56) must be symmetric. Then, the number of independent elastic
constants is reduced from 36 to 21 and equation (1.56) is simplified to

0 Cy Cp Cs Cu Cs GCell&

2} Cn Cn Cu Gy Cyxl|&

03| C GCu G Gy & (1.59)
Oy - Cu Ci Cy |28

Os symm Css  Cose ||265

O L Ces | 285

In equation (1.59), for simplicity we have denoted the six stress and strain
components with only one subscript (o; and €;, where i varies from one to
six) instead of the traditional notation of two subscripts, and the material
constants have been written with two subscripts instead of four.

1.2.12 Material Planes of Symmetry

Equation (1.59) has 21 independent elastic constants in absence of any plane
of symmetry. Such material is called general anisotropic material or triclinic
material. However, if the material response is symmetric about a plane or an
axis, then the number of independent material constants is reduced.

1.2.12.1 One Plane of Symmetry

Let the material have only one plane of symmetry: the x; plane (also denoted
as the x,x; plane); therefore, the x,x; plane whose normal is in the x, direction
is the plane of symmetry. For this material, if the stress states o;{) and ¢;®
are mirror images of each other with respect to the x; plane, then the corre-
sponding strain states £, and €, should be the mirror images of each other
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with respect to the same plane. Following the notations of equation (1.59), we
can say that the stress states 0,V = (0, 0,, 03, 0y, 05, 0¢) and o) = (03, 0,, 03,
0,, —0s, —0) have mirror symmetry with respect to the x; plane. Similarly,
the strain states &f)) = (¢, &, &, &, &, &) and € = (g, &, &, €, —€5;, —&) also
have mirror symmetry with respect to the same plane. One can easily show
by substitution that both states (cf, &f/)) and (0?, €f?) can satisfy equation
(1.59) only when a number of elastic constants of the C-matrix become zero,
as shown:

0 Cy Cp Cs Cy 0 0 &

2} Cxn Cyn  Cy 0 0 &

O3 _ G Gy 0 0| & (1.60)
o, Cu 0 0 [|2¢

Os symm Css  Cye || 285

O L Ces | 285

Material with one plane of symmetry is called monoclinic material. From the
stress—strain relation (equation 1.60) of monoclinic materials one can see that
the number of independent elastic constants is 13 for such materials.

1.2.12.2 Two and Three Planes of Symmetry

In addition to the x, plane, if the x, plane is also a plane of symmetry, then
two stress and strain states that are symmetric with respect to the x, plane
must also satisfy equation (1.59). Note that the stress states of!) = (0y, 0, 03,
0,, 05, 0g) and (‘7,(]2) = (0y, 0,,€03, —0,, 05, —O) are states of mirror symmetry
with respect to the x, plane, and the strain states 81(]-1) =(&, &, &, &, &, &) and
eP = (&, &, €, —€, &, —&) are states of mirror symmetry with respect to the
same plane. As seen before, one can easily show by substitution that both
states (0f)), €f)) and (07, €?)) can satisfy equation (1.59) only when a number
of elastic constants of the C-matrix become zero, as shown:

0 Cy Cp Cis 0 Cis 0 &

2} Cxn Cy 0 Cas 0 &

03 _ Css 0 Css 0 & (1.61)
o, Cy Cy 0 [|2¢&

Os symm Css 0 ||2&

os) | Ceo | 285

Equation (1.60) is the constitutive relation when the x; plane is the plane of
symmetry and equation (1.61) is the constitutive relation for the x, plane as
the plane of symmetry. Therefore, when both x; and x, planes are planes of
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symmetry, the C-matrix has only nine independent material constants:
Yy Y Yy P

o] [Cu Cp, Cis 0 0 0 |[ &

o, Cy Cys 0 0 0 ||é&

o3| _ Cys 0 0 0 || & (1.62)
o) Cu 0 0 ||2¢,

Os symm Css 0 ||2&

o) | Ces | (286

Note that equation (1.62) includes the case when all three planes, x;, x,, and
X3, are planes of symmetry. Thus, when two mutually perpendicular planes
are planes of symmetry, the third plane automatically becomes a plane of
symmetry. Materials having three planes of symmetry are called orthotropic
(or orthogonally anisotropic or orthorhombic) materials.

1.2.12.3 Three Planes of Symmetry and One Axis of Symmetry

If the material has one axis of symmetry in addition to the three planes of
symmetry, then it is called transversely isotropic (hexagonal) material. If the x;
axis is the axis of symmetry, then the material response in x; and x, direc-
tions must be identical. In equation (1.62), if we substitute &, = £, and all other
strain components = 0, then we get the three nonzero stress components ¢, =
Ci1&y 0, = Cpp€, and o3 = Cj3¢,. Similarly, if the strain state has only one non-
zero component, €, = £, while all other strain components are zero, then the
three normal stress components are 0, = C,€), 0, = Cy,€y, and o3 = Cy;&,.
Since the x; axis is an axis of symmetry, o; should be same for both cases
and o for the first case should be equal to o, for the second case, and vice
versa. Thus, C;; = C,; and C;; = Cy,. Then consider two more cases: (1) €, (or
g,in equation 1.62) = g, while all other strain components are zero; and (2) &,
(or &5 in equation 1.62) = g, while all other strain components are zero. From
equation (1.62) one gets o, = C,&, for case 1 and o5 = Cs;€,. Since the x; axis is
the axis of symmetry, o, and o5 should have equal values; therefore, C,y = Css.
Substituting these constraint conditions in equation (1.62), one obtains

0, Cy Cp, Cis 0 0 0 ||&

o, Cy Cis 0 0 0 ||&

o3| _ Cys 0 0 0 || & (1.63)
o) Cu 0 0 ||2¢,

O symm Cyy 0 ||2&

o) | Cos | | 286

In equation (1.63) although there are six different material constants, only
five are independent. Considering the isotropic deformation in the x,x, plane,
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Cg6 can be expressed in terms of Cy; and Cy, in the following manner:

C,-C
Ces = % (1.64)

1.2.12.4 Three Planes of Symmetry and Two or Three Axes of Symmetry

If we now add x; as an axis of symmetry, then, following the same argu-
ments as before, one can show that in equation (1.63) the following three
additional constraint conditions must be satisfied: C;, = C;5, C;; = C;5, and
Cy4 = Cg. Thus, the constitutive matrix is simplified to

01 Cy Ci Ci 0 0 0 (&

o, Cy Co, 0 0 0 || &

o3| _ Cu 0 0 0 || & (1.65)
(o Ces 0 0 ||2¢,

(ot symm Ces 0 ||2&

os)] | Ces | 286

Addition of the third axis of symmetry does not modify the constitutive
matrix anymore. Therefore, if two mutually perpendicular axes are axes of
symmetry, then the third axis must be an axis of symmetry. These materials
have the same material properties in all directions and are known as isotropic
material. From equations (1.65) and (1.64) one can see that isotropic materials
have only two independent material constants. This chapter will concentrate
on the analysis of the linear, elastic, isotropic materials.

Example 1.6
Consider an elastic orthotropic material for which the stress—strain rela-
tions are given by:

£ = o1 v O v 033
n=_ —Va_ —Vai _—
E1 E> Es

e _Oxn o1 v O33
2= — Vi _— 7 A—
E> E1 Es

€ _ 03 v O11 v 022
33 = — Vi3 —Va—_—
3 Eq E»
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where E; is the Young’s modulus in the x; direction, and v;; and G; represent
Poisson’s ratio and shear modulus, respectively, in different directions for
different values of i and j.

(@)

(b)
©

(d)
©
(®

(8)

(h)

How many different elastic constants do you see in the preceding
relations?

How many of these do you expect to be independent?

How many equations or constraint relations must exist among the
preceding material constants?

Do you expect G;; to be equal to G;; for i # j? Justify your answer.

Do you expect v; to be equal to v; for i # j? Justify your answer.
Write down all equations (relating the material constants) that must
be satisfied.

If the preceding relations are proposed for an isotropic material,
then how many independent relations among the material constants
must exist? Do not give these equations.

If the material is transversely isotropic, then how many independent
relations among the material constants must exist? Do not give these
equations.

Solution

@
(b)
©
(d)
©

()

15

9

6

Yes, because €;; and v;; are symmetric

No, symmetry of the constitutive matrix does not require that v;to
be equal to v

i _Va Va1 0 0 0 |
E, E, E;
_Vi i _Va 0 0 0
&n E, E, f 3 0y
) Vs Vs — 0 0 0 [|O2
&3 _| E E, E, 1 O33
& O
P 0 0 0o — 0 0 ||
G o
12
0 0 0 0 GL 0
31
0 0 0 0 0 L
L G12 i

From symmetry of the preceding matrix (also known as the compli-

ance matrix),

Vio _ Vo
E, E
Vis _ Val
E, E
Vos _ Vs

E, E

29
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The other three constraint conditions are G, = Gy, Gj3 = G5, and G, = Gy,.
(g) Thirteen constraint relations must exist because isotropic material
has only two independent material constants.
(h) Ten relations should exist since the transversely isotropic solid has
five independent material constants.

1.2.13 Stress-Strain Relation for Isotropic
Materials— Green’s Approach

Consider an isotropic material subjected to two states of strain as shown
in Figure 1.13. The state of strain for the first case is ¢; in the x;x,x; coor-
dinate system, as shown in the left-hand Figure; the strain state for the
second case is €;; in the x;x,x; coordinate system, as shown in the right-
hand Figure. Note that ¢, and ¢; are numerically different. The numer-
ical values for &, can be obtained from ¢; by transforming the strain
components g; from the x;x,x; coordinate system to the x,x,x5 coordinate
system as shown on the left-hand side of Figure 1.13. If the strain energy
density function in the x;x,x; coordinate system is given by U(¢;), then
the strain energy densities for these two cases are U, (g;) and Uy(g;;). If the
material is anisotropic, then these two values can be different since the
strain states are different. However, if the material is isotropic, then these
two values must be the same since, in the two illustrations of Figure 1.13,
identical numerical values of strain components (¢;;) are applied in two
different directions. For isotropic material, equal strain values applied
in two different directions should not make any difference in computing
the strain energy density. For Uy(g;) and Uy(g;;) to be identical, U, must
be a function of strain invariants because strain invariants do not change
when the numerical values of the strain components are changed from ¢;
to &

Xy *y

X1

X 1
3 I X3

FIGURE 1.13
Isotropic material subjected to two states of strain.
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Three stress invariants have been defined in equation (1.39). In the same
manner, three strain invariants can be defined:

L =¢;
1

I, = E&,’Eﬁ (1.66)
1

I 3 gljgjkgki

Note that I, I,, and I; are linear, quadratic, and cubic functions of strain
components, respectively. To obtain a linear stress—strain relation from
equation (1.50), it is clear that the strain energy density function must be a
quadratic function of strain as shown:

U, = C,I2 + G,1,

a0 O-Z] au 2C1[1 aI C2 812 2C11161k6k] + CZ (5zm jn Eum T Emn m ]m)
88 0g;; 0g;;
=2C €405 + C,¢; (1.67)

In equation (1.67), if we substitute 2C; = A, and C, = 2u, then the stress—
strain relation takes the following form:

= Ab;€ + 21E; (1.68)

In equation (1.68) coefficients A and pt are known as Lame’s first and second
constants, respectively. This equation can be expressed in matrix form as in
equation (1.65) to obtain

o,=0,| [A+2u A A 0 0 0 £ =&,

0, =0y A+2u A 0 0 O & =€y

03 =03 | _ A+2u 0 0 O & =&, (1.69)
04 =03 mo 0 0|28, =2€;="7nx

05 =03 symm uo 0265 =2¢, =75
O¢=01n) | M (28 =28, =71,

Note that the shear stress component (o;) is simply equal to the engineer-
ing shear strain component () multlphed by Lame’s second constant (u).
Therefore, Lame’s second constant is the shear modulus.

Equations (1.68) and (1.69) are also known as generalized Hooke’s law in
three dimensions, named after Robert Hooke, who first proposed the linear
stress—strain model. Equation (1.68) can be inverted to obtain strain compo-
nents in terms of the stress components as follows.
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In equation (1.68), substituting the subscript j by i, one can write:

O, = Miigkk + Z,LISI-Z- = (31 + 2#)81'1'

. a (1.70)
" (BA+2pm)
Substitution of equation (1.70) back into equation (1.68) gives:
o; = AJ; (3/10;7""2!’0 +2ue;
or
I T S 1.7y

2u T 2uBA+2u)

1.2.13.1 Hooke’s Law in Terms of Young’s Modulus and Poisson’s Ratio

In undergraduate mechanics courses, strains are expressed in terms of the
stress components, Young’s modulus (E), Poisson’s ratio (v), and shear modu-
lus (1) in the following form:

E E E
€ _%_VO’H_VG%
22 —
E E E
e =%_V0'22_V(711
7 E E E 1.72)
o 2(1+v)o
2, =y =—2= ( E) 12
(o] 2(1+v)o
26y =Yy =—2= ( )05
u E
(o] 2(1+v)o
2y =Yy == 1+ v)oy
u E

In this equation, the relations among Young’s modulus (E), Poisson’s ratio
(v), and shear modulus (i) have been incorporated. Equation (1.72) can be
expressed in index notation:

1+v v
8ij = T Gl] - E 5170kk (1'73)
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Equating the right-hand sides of equations (1.71) and (1.73), Lame’s con-
stants can be expressed in terms of Young’s modulus and Poisson’s ratio.
Similarly, the bulk modulus K = % canbe expressed in terms of Lame’s con-
stants from equation (1.70). !

Example 1.7
For an isotropic material, obtain the bulk modulus K in terms of (a) E and
v; (b) Aand pu.

Solution

(@) From equation 1.70, o;; = 3A + 2u)¢;; therefore, K = L= 31#

(b) From equation 1.73, &; = 1“0, — £ 8,04 = -0, — ¥ 0y =0

Thus, K = éi

_ _E
& 3(1-2v)

Since the isotropic material has only two independent elastic con-
stants, any of the five commonly used elastic constants (4, , E, v, and K)
can be expressed in terms of any other two elastic constants, as shown
in Table 1.1.

1.2.14 Navier’s Equation of Equilibrium

Substituting the stress—strain relation (equation 1.68) into the equilibrium
equation (equation 1.24), one obtains

(b€ +2uey) ; + f;=0

= (M,jukrk +2,u%[uw + uj,,-]) +£=0

/]

(1.74)
= Ajuy g + ulw; j +u; 51+ f; =0
= Ay + plu; ; +u; 1+ f; =0
= (A+ Wuj + pu 5 + f; =0
In the vector form, this equation can be written as
A+wV(Veu)+pVu+f=0 (1.75)

Because of the vector identity v2y = V(V.u)-V x V x u, equation (1.75) can
be also written as

(A+2)V(V +u) - gV XV xu+£=0 (1.76)

In equations (1.75) and (1.76), the dot (+) is used to indicate scalar or dot
product and the cross (x) is used to indicate the vector or cross-product.
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TABLE 1.1

Relations between Different Elastic Constants for Isotropic Materials

A u £ v K
At — - U(BA+24) A 31 +2u
A+U 2(A+ 1) 3
AE - (E-32)+ - —(E+A)+ (E+31)+
JE=32)* +8AE JE+A?+82%  J(E+3A7 —4AE
4 4 6
v - A1-2v) A0+ v)(1-2v) - A1 +v)
2v \% 3v
AK - 3(K=2) 9K(K — A) A -
2 3K-1 3K- 1
KE  @Qu-Ep - - E-2u UE
E-3u 2u 3(3u-E)
wv 2uv - 2u(l+v) - 2u(1+v)
1-2v 3(1-2v)
WK 3k -2p - 9Ku 3K -2y -
3 3K+u 2(3K + 1)
Ev VE E - — E
aA+v)i-2v) 20+v) 3(1-2v)
E K 3k 3KE - 3KE -
9K - 9K—E 9K—E
v,K 3Ky 3K(1-2v) 3K(1-2v) — —
1+v 2(1+v)

In index notations, the preceding two equations can be written as

(A +wu j + pu;

j.ji +fi=0

i
or

(A + 200, ;i — UEj Exyythy i + f; =0 (1.77)

where g and g, are permutation symbols, defined in equation (1.36). The
equilibrium equations, expressed in terms of the displacement components
(equations 1.75-1.77) are known as Navier’s equation.

Example 1.8

If a linear elastic isotropic body does not have any body force, then prove
that (a) the volumetric strain is harmonic (g; ; = 0), and (b) the displacement
field is biharmonic (u; 5, = 0).

ijj



Fundamentals of the Theory of Elasticity 35

Solution
(a) From equation (1.77) for zero body force, one can write

(A+¢0uwf+uuwj:0
= (A + wu; i + pu; j; =0
Note that
Uy jii = Ui jjj = Eij j
and
U; jii = €jj i = Eiijj

Substituting u by ¢, the above Navier’s equation is simplified to
(A+2uwe;;=0.

Since (A + 2u) # 0, &; must be harmonic.

(b) Again, from equation (1.77) for zero body force, one can write
0

(A+wu; j; + pu;

j.ji g

= (A + wu; ;i + ;) g = (A + WU o + 1ty g =0

From part (a), &4 = u; . = 0.

Therefore, u; ;. = u; ;;; = 0. Substituting it into the preceding equation,
one obtains
(A + W)u; g + 1 g = Jl; sy =0

= U g =0

Example 1.9

Obtain the governing equation of equilibrium in terms of displacement
for a material whose stress—strain relation is given by 0;; = Q€€ + 67,
where o, are material properties that are constants over the entire region,
and yis the residual state of stress that varies from point to point.

Solution
Governing equation:

o, +fi=0
= i (En€m ), +6ij7,j +fi=0

= Qg (Exn, €t + ExmEm,j) T Vi + fi =0

1
= 1 i Wi+ Uy YW g+ Uy ) F Uiy + U )Wy + 1 )+ ¥+ f; =0
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1.2.15 Fundamental Equations of Elasticity in Other
Coordinate Systems

All equations derived so far have been expressed in the Cartesian coordi-
nate system. Although the majority of elasticity problems can be solved
in the Cartesian coordinate system for some problem geometries, such as
axisymmetric problems, cylindrical and spherical coordinate systems are
better suited for defining the problem and/or solving it. If the equation is
given in the vector form (equations 1.75 and 1.76), then it can be used in
any coordinate system with appropriate definitions of the vector opera-
tors in that coordinate system; however, when it is expressed in index
notation in the Cartesian coordinate system (equation 1.77), then that
expression cannot be used in a cylindrical or spherical coordinate system.
In Table 1.2 different vector operations, strain displacement relations, and
equilibrium equations are given in the three coordinate systems shown
in Figure 1.14.

1.2.16 Time-Dependent Problems or Dynamic Problems

In all equations derived previously, it is assumed that the body is in static
equilibrium. Therefore, the resultant force acting on the body is equal to
zero. If the body is subjected to a nonzero resultant force, then it will have an
acceleration #; (time derivatives are denoted by dots over the variable) and
the equilibrium equation (equation 1.24) will be replaced by the following
governing equation of motion:

0y, + fi = pil; (1.78)

In the preceding equation, p is the mass density. Therefore, Navier’s equa-
tion for the dynamic case takes the following form:

(A+200)V(V e u)~ 4V x VX u+£= pia (1.79)

Dynamic problems of elasticity have been solved in Kundu (2004) and are
not presented here.

1.3 Some Classical Problems in Elasticity

Fundamental equations derived in section 1.2 are used in this section to solve
a few classical two-dimensional and three-dimensional problems of elastic-
ity. For solutions of additional problems readers are referred to Timoshenko
and Goodier (1970).
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TABLE 1.2
Important Equations in Different Coordinate Systems
Cartesian Coordinate Cylindrical Coordinate
Equations System System Spherical Coordinate System
Grad ¢ O 3 3 106 3 120 1 ¢
_ Vo =010t ot Pa — e +—e. +——e — e +——ep+————¢,
- ar dz r d6 ar rap rsinf§ 06
Vii= Vit Voot Vss
. ’ ' g g .1 dy, 2 10
Divy= Vey w. +%+7a% 4 L Ll
or &z r 90 ar r r dB
cot 8 1 dy,
+ +
r v rsinff 06
Curl y= Vx v ExWi; = e, re, e e, rey rsinfe,
1o 9 9 1 9 9 9
e e e - — - 5 > % -
rlor 00 oz i
P 5 P r sin B -
o a v, oy, . v, 1y, rsinfy,
vi vy,
Stram_—dlsplacement Equation (1.7a) . au,
relation 1 £, =— -
& =7(uw +1l,; or ar
2
. =la“e+uv 10u, u,
T roe r Ew =" B A
&= :% Ew = 1w + o +uicotﬁ
& ” rsinfi 90 r r
1( ou, ou.
g.=—| —+— 10u,  duy uy
2\ & o 26 =———+——-—
r o  or r
1(10u, u Ou L 5
Eo=—|———-—+ } )
‘To2lroe 2g, =M M O
rsinff 00 r ar
1 (1 . auﬁ) R R
Eo=—| ——+ 1 uy; 1 du,
Tolrw & 2ep = ——— 4= = ot B
rsinff 90 r 9f
Equlhb.rlum Equations (1.24 and w0, 90, 130, 0, 130, 1 90,
equations 1.22) —/ .- L N 7
0 +f=0 ar dz r 96 o r o rsinf 06
1 1
+—(0,-0w)+f =0 + =126, +(cot B) s — G — Gl + f = 0
r r
do. 0d0. 100, do,s 1 dog 1 dop
-t —+— +m———+ —_—
or dz r 96 o r 9B rsinf 00
1 1
+—0.+f =0 +~[30, + (cotO)(op — Tl + f5 = 0
r r
a0, d0, 1004 dos 1 0d0m 1 00w
+ +— +—__ + E—
or dz r 90 o r of rsinf 00
2 20 cot B+ 30,6
+—0u+fo=0 *%*9:0
r

Source: Moon, P. and Spencer, D. E. Vectors. Princeton, NJ: Van Nostrand Company, Inc., 1965.
Note: ¢ and y are scalar and vector functions, respectively.
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X3 X3
7,
B
z
Xy X2
0 r 0
X1 X1
Cartesian and Cylindrical Cartesian and Spherical
Coordinate Systems Coordinate Systems

FIGURE 1.14
Cartesian (x,x,x;), cylindrical (r0z), and spherical (r36) coordinate systems.

1.3.1 In-Plane and Out-of-Plane Problems

When the elastic fields (stress, strain, and displacement) are independent of
one coordinate (in other words, dependent on two coordinates only), these
problems are called two-dimensional (or 2-D) problems. Two-dimensional
problems can be further classified under two groups: antiplane or out-of-
plane problems and in-plane problems.

If the elastic field is a function of coordinates x; and x, while the only non-
zero displacement component is in the direction perpendicular to the plane
containing x, and x, axes, then that problem is called the antiplane problem.
Therefore, for antiplane problems,

u, =0
=0 (1.80)

uz(xy,%,) %0

For in-plane problems, on the other hand, displacement components in the
plane containing x, and x, axes are functions of x; and x, and the perpen-
dicular displacement component (u;) is not a function of x; and x,; it is either
zero or a constant. Thus, for in-plane problems,

Uy (xq,%,) 20
(1.81)
uy(xy,%,) 20

u; =0 or a constant
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1.3.2 Plane Stress and Plane Strain Problems

39

In-plane problems can be classified into two groups: plane stress problems and
plane strain problems. If all nonzero stresses act in one plane, then the problem is
called a plane stress problem; when all nonzero strains act in one plane, the prob-
lem is known as a plane strain problem. Therefore, for plane stress problems,

011(%,%,) #0
0y (x;,%,) %0

0%y, x,) 20

03 =0
013 =0
0y =0

and for plane strain problems,
€1(x1,%,) #0
(X1, %;) # 0

€12(%,%,) %20

€3 =0
£3=0
€3 =0

(1.82)

(1.83)

From the stress—strain relation for isotropic materials (equation 1.73), the

strain components for plane stress problems can be obtained:

o o
€, = n_ %
E E
o o
£y = 2 _ %
E E
1+v)oy,
Ep= E

\%
€33 = _E(GH +0y)

€3 =83=0

(1.84)

Note that the normal strain &;; in the x; direction is not equal to zero for

plane stress problems.
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The first three equations of equation (1.84) can be written in matrix form:

&, . 1 -V 0 on
Ep = T -v 1 0 Oy (1.85)
£y 0 0 A+v)||loy,

In index notation, equation (1.85) can be written as

_1+v v (1.86)

Ep =" Oop~ g w0y
Greek subscripts o, B, and y in equation (1.86) and in all subsequent equa-
tions take values 1 and 2 only.
Inverting equation (1.85),

o1 1 v 0 &,
2 ﬁ \% 1 0 822 (187)
o 0 0 @A-v)|len

Similarly, the stress—strain relation for the plane strain problems can be
written as

£y = v—2-—v
"E "E E
(1.88)
= (1+v)oy
12 E
Oy V
&3 = % - E(GH +0x)=0
€3 =83 =0
From the fourth equation of equation set (1.88), one gets
O35 = V(01; +03) (1.89)

After substituting equation (1.89) into equation (1.88), the first three equa-
tions of (1.88) can be rewritten in the following form:

&, (1-v) -V 0||oy
-V Ly (1I-v) 0|yop
& 0 0 1|01,

(1.90)
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Inverting equation (1.90),

on (1-v) v 0 &

= = 1- 0 191
2= A v)i-2v) d-v) 2 (5D
O, 0 0 1-2v)||&p

For plane stress and plane strain problems there are only two equilibrium
equations: force equilibrium in the x; direction and force equilibrium in the
x, direction. These two equations are obtained from the complete set of equi-
librium equations given in equation (1.24):

Ooppt+ fu=0 (192)

Six compatibility equations (see example 1.1) for three-dimensional prob-
lems are reduced to only one compatibility condition in the following form
for plane stress and plane strain problems:

€1 T €11~ 281, =0 (1.93)

The preceding compatibility equation can be written in terms of the stress
components using the strain—stress relations: equation (1.85) for plane stress
problems and equation (1.90) for plane strain problems.

1.3.2.1 Compatibility Equations for Plane Stress Problems
Substituting equation (1.85) into equation (1.93), one gets

1
E {0'11,22 = VO + 011 — VO —2(1+ V)O'lz,lz} =0
(1.94)

= (011,00 +02,11) = V(01111 + 000) =21+ V)0y, 1, =0

From equation (1.92), it is possible to obtain the following two equations
after taking derivatives of the two equilibrium equations with respect to
x, and x,, respectively:

O 0+ f11=0

(1.95)
O T Onpm + f,,=0
Combining the two equations of equation (1.95),
(O1111 +002) + 201512 +(fi1 + f2,) =0
(1.96)

= (O T On2n) +(fii + fr2) =201,
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Substituting equation (1.96) into equation (1.94),

(O11,02 +02011) = V(01111 + O 0p) = 2(1+V)0151, =0
= (011,20 ¥ 0211) = V(O1111 + O 00) + (1 + V(01111 + 00 20) + (14 V)(f11 + fo2) =0
= (011,20 ¥ O 11 ¥ 01111 +000) = =1+ V)(f11 + f2)

= O =—(1+V)f,, (1.97)

Note that in the absence of the body force, equation (1.97) is reduced to

1.3.2.2 Compatibility Equations for Plane Strain Problems
Substituting equation (1.90) into equation (1.93), one obtains

2 2
((1 V)ou —v(1+v)622) +((1 V2)on —v(1+v)6“) = 2(1+v0'12)
E E 22 E E 11 E 12

=(1- V)Gn,zz —VOpy»nt 1- V)Gzle —VO11 =20112 (1.99)

Equations (1.95) and (1.96) are the same for plane stress and plane strain
problems.
Substituting equation (1.96) into equation (1.99),

(1=V)O11,00 = VO 90 + (1= V)0 11 = VO3 11 = 201215 = —(Oy111 + G 20) = (fi1 + f22)
= (1=V)(O1,11 + 01122 + 0011 ¥ 00 20) = ~(fi1 + f22)

fr
1-v)

= Ooapp =~ (1.100)

It should be noted here that in the absence of the body force, equation
(1.100) is reduced to equation (1.98). Therefore, in the absence of the body
force there is no difference in the compatibility equations for plane stress
and plane strain problems; for both cases it is given by equation (1.98). How-
ever, in the presence of the body force there is some difference, as one can see
in equations (1.97) and (1.100).

1.3.3 Airy Stress Function

If an elasticity problem is formulated in terms of stresses, then solution of
that problem requires solving the governing equilibrium equations and com-
patibility conditions, subjected to the boundary conditions and regularity
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conditions. In problems having semi-infinite or infinite geometry, the condi-
tions at infinity are known as regularity conditions. Note that if the problem
is formulated in terms of displacements, then the compatibility conditions
are automatically satisfied. Airy (1862) introduced a stress function ¢(x;, x,)
that is related to the stress field in the following manner in absence of the
body force:

011 = 0

(1.101)
Oy =0y
O =0,

The advantage of this representation is that when these expressions are
substituted into the equilibrium equation (1.92) in the absence of the body
force (f, = 0), the simplified equilibrium equation o¢,5 = 0 is automatically
satisfied. Substituting equation (1.101) into the compatibility equations (equa-
tion 1.98), one obtains

O-ml, 35 =0

= (01122 + 011 + 01111 +022) =0
(1.102)
= 0o + O + P01+ P =0

= Qa1+ 2012 +0pnn =0

=Vip=0

Therefore, any biharmonic function ¢ satisfies the compatibility equa-
tion in absence of the body force and is a valid stress function. As a
result, the elasticity problem is significantly simplified in terms of Airy
stress function because in the stress formulation one needs to find three
unknowns—oy;, 0, and o,—that satisfy two equilibrium equations and
one compatibility equation. However, in Airy stress function formulation
only one unknown biharmonic function ¢ is to be evaluated. In both for-
mulations the unknown functions are obtained by satisfying boundary
and regularity conditions.

In the presence of the body force, the stress components and Airy stress
functions are related in a slightly different manner as follows:

0y =@y +V
Gy = By 4V (1103)

O =Dy,
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where V is the potential function for the body force defined as
fo="V. (1.104)

When these expressions are substituted into the equilibrium equations
(equation 1.92), those equations are automatically satisfied.

Substituting equations (1.103) and (1.104) into the compatibility equation
(equation 1.97) for plane stress problems, one obtains

Coapp +(1+V)f,, =0

= Oy + 0112 + 011 + 000 +(L+V)(fi1+ f,)=0

DDy + V) + Dy gy +Voy + Dy gy + V) + Dy + Voo —(1+V)(Vy + V) =0
=@y, 5 +(1-V)(V); +Vy)=0

= Vid+(1-v)V2V =0

= Vid =—(1-v)V2V (1.105)
For plane strain problems, equations (1.103) and (1.104) will have to be

substituted into the appropriate compatibility equation (equation 1.100) to
obtain

f77

oo ™ (1-v)

=071111 10110+ 0211 700 n+

(1- )(fll fz,z)zo

S Qo1+ Vin + Py + Vo + Py gy + Vi + Py op +Vop — m(vn +V5)=0
(Vi +V,) 1-242v -1
= =~ "2 2V . +Vy)=—"Vy+ V)=V
aa,pp = (1-v) (Vi1 +Va) 1-v) (Vi1 + V) d=v) ™
— V4 = Mvzv
(1-v) (1.106)

Clearly, in absence of the body force, the potential function V = 0; then
equations (1.105) and (1.106) are reduced to equation (1.102). If the body force
has a constant value, then V2V = 0 also, and equations (1.105) and (1.106) are
reduced to equation (1.102).
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1.3.4 Some Classical Elasticity Problems in Two Dimensions

A number of two-dimensional elasticity problems are solved in this section.

1.3.4.1 Plate and Beam Problems

Solutions of some plate and beam problems are given in the following
examples.

Example 1.10
Obtain the stress field for a cantilever plate subjected to a concentrated
force at the free end as shown in Figure 1.15.

Solution

For this problem one can assume that the stress field is independent

of the x; coordinate. For thin plate geometry, it can be also assumed that

033 = 033 = 0,3 =0, since these stress components are zero on the front and
back surfaces of the plate.

Stress boundary conditions for this plate geometry are

0, =0, =0atx,==%c

and, at x; = 0, oy; = 0 and tjfc Oy,dx, =—P, where t is the plate
thickness.

If we want to solve this problem in terms of the Airy stress function,
then we will have to find an Airy stress function that will satisfy the fol-
lowing boundary conditions:

Atx,==c, ¢, =¢,,,=0.

c

Atx, =0, ¢,,,=0and —tj ¢,, dx, =—P.

One can easily show that if the Airy stress function ¢ is assumed to
have a polynomial form, it requires at least up to fourth-order polynomi-
als to satisfy all boundary conditions. The polynomial expression postu-
lated for the Airy stress function for this problem is

o= %x% +bixx, +b—22x§ +&x% +%3x12x2 +%3x1x§ +§x§’
(1.107)

a b c d e
+ 2 xf+ 2 xfx, + 2 afxd + L xxd + 2 xd
12 6 2 6 12

*1
ic

X

FIGURE 1.15
Cantilever plate.
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Substituting this expression in the compatibility equation V*¢ = 0,
one obtains

e, =—(2¢c, +ay) (1.108)

Note that the expression of ¢ starts with the quadratic polynomial.
The reason for omitting the constant and linear terms is that they do not
contribute to the stress fields. Numbers 2, 6, and 12 in the denominator
are carefully chosen to have a minimum number of terms with fractions
in the stress expressions derived from equation (1.107):

O11 = O = Cy + 03X +d5x, + X7 +d,x,x, +e,x3

Oy =)y = 1y + 3%, + X, +a,X2 +b,x,x, +,X3 (1.109)

—01y = Py = by +byx; + 032, + %x% +2¢,%,X, +d—24x§
Applying the boundary condition, at x, =, 6,, = 0, we get
Onl, =@ +asx + bye+a,x} +byx;c+c4¢? =0, forallx
Therefore,

a, =0
a,+b,c=0 (1.110)
a, +byc+c,c2=0

Applying the second boundary condition, at x, = ¢, 63, =0, one obtains
=b,+b b 2 2 A 2 forall
olz\xzzc— 2 by Foset St +2c e+t =0, forallx,

Therefore,
b,=0
by +2c,c=0 (1.111)
b, +c3c+d—4c2 =0
2
Applying the third boundary condition, at x, = —, 6,, =0,

‘722‘;(2:4 =a, +a;%, —byc +axf —byxc+c,c2=0, forallxy
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Therefore,
a, =
a4, —b,c=0 (1.112)
a, —byc+c¢,c?2=0
From equations (1.110) and (1.112) it is easy to see that
a,=b,=0
by =0 (1.113)
a,+c,c2=0
Applying the fourth boundary condition, at x, =—c, 61, =0,
612\X2=_E =b, +byx; —cic+ %4 X2 —2c,x,c+ % c2=0, forallx,
Therefore,
b,=0
by —2c,c=0 (1.114)
d
b, —c3c+74c2 =0
From equations (1.111) and (1.114),
by=c,=0
C3= (1.115)
b, + d—‘*cz =0
2

Since ¢, = 0 (equation 1.115) and a, = 0 (equation 1.110), one can write
from equation (1.108):

e, =0 (1.116)
From the fifth boundary condition, at x, =0, 0}, =0,

¢, +dzx, =0 for all x, between —c and +c¢

(1.117)
=c¢,=0and d; =0
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After applying the preceding five boundary conditions, the stress
fields take the following form when we drop all coefficients whose
values are zero and substitute J, = — 2b2 from equation (1.115):

2b
- _ >
Oy =dy X =— 2 XX

Gy =0 (1118)

d X3
0, =-b, —749@ :_bz( _CZJ

The final boundary condition at x; =0 is t,[ic 0,dx, =—P.

Therefore,
x|
p- —tJ. Oy, = tb J' 5 ) ax, =tb, ae |
¢ (1.119)
2c 3P
? [ € 3¢? } 23 27 4ot
Then,
d=_2b__23P__ 3P (1.120)

c? c? 4ct 2c3t

Substituting b, and d, in equation (1.118), one obtains

O =— X1X

2c3t
0, =0 (1.121)

3P x3
=— 1-22
12 4 t( c? )

If the shear stress (0,,) at the free end is applied in a parabolic man-
ner as shown in equation (1.121) to produce the resultant force P, then
the computed stress field (equation 1.121) is valid very close to the free
end also. However, if the applied shear stress field at the free end does
not follow a parabolic distribution but produces a resultant force P, then
the computed stress field of equation (1.121) is valid in the plate in the
region away from the free end. This is because, according to St. Venant’s
principle, in an elastic body statically equivalent loads give rise to the
same stress field at a point far away from the region of application of
the loads.
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qL | 1

FIGURE 1.16
Simply supported plate.

Example 1.11

Obtain the stress field for a simply supported plate subjected to uniformly
distributed load g per unit surface area at the top surface, as shown in
Figure 1.16.

Solution
Similar to the problem in example 1.10, here also one can assume that the
stress field is independent of x; direction and 033 = 0,3 = 0,3 =0.

Stress boundary conditions for this plate geometry are

Oyn=0,=0atx,=c

and, at x,=-c, 6, =—¢, 01,=0

c
Atx, =L, oy =0and JU 12d%; = —qL (1.122)
—C

c
Atx,=-L, 0y, =0and J. 0,dx, =gL
—c

If the Airy stress function is assumed to be composed of second-,
third-, and fourth-order complete polynomials, as given in equation
(1.107), then one can easily see (after following the steps of example 1.10)
that all boundary conditions cannot be satisfied with that Airy stress
function. However, if the fifth-order polynomial is also included in the
Airy stress function expression, then these boundary conditions can be
satisfied. For this reason we start with the following expression of the
Airy stress function:

as

a b b c d
O="2x7+bxx, + 23+ 0] + 2 xix, + =y x3 + =13
2 2 6 2 2 6

a b c d e
+ é xt+ Z‘* x3x, + 54 x2x3 + E‘* x5 + é x4 (1.123)

a b c d e
+ 205 + 2 xfx, + 2303 + 2 g + 2 xxd +£x§
20 12 6 6 12 20

From the symmetric and antisymmetric conditions of the stress field
one can conclude whether o,,, 6,,, and o, should be even or odd func-
tions of x,. Taking into account this consideration and the boundary
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conditions at x, = +c and —¢, one can evaluate a number of unknown con-
stants (many of these constants become equal to zero as we have seen
earlier). After substituting these constants in the stress expressions, one
obtains

39
— 2 2 3
O =Cy +dyx, +e,x5 — 10 xX2x, + f5x3

q 3x, 3
=—1|]1-——=4 =
On» 2 ( 2 203 ) (1.124)

Note that at x, =L, [ &,,dx, = —gL and, atx, =-L, [S. 0pdx, = gL
are automatically satisfied by equation (1.124). However, 6}, =0 at x; =L
and x; = -L will give additional conditions:

Cy +dyx, +e,x3 — %L%@ + fsx3=0 (L125)
c
Therefore,

¢, =0

64 = 0

fs=0
3qI?

d. =

°7 4¢3

Thus, the final solution becomes
39
0= X, ([2 —x?
1=y z( 1)

3x, x3
Oy = -’1(1 ~Sl 2;3) (1.126)

If, at the two end surfaces x; = L and x; =-L, the o0y, = 0 condition can-
not be explicitly satisfied for all x, values, but the following two condi-
tions can be satisfied:
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c

jalldxz = 0
~ (1.127)

c

J’o‘llxzdxz = 0

—C

then this is also acceptable because the preceding two equations imply
that the axial force and the bending moment at the two ends are equal to
zero even if oy, # 0 for all values of x,. Since two equations given in equa-
tion (1.127) are statically equivalent to the 6, = 0 case, from St. Venant’s
principle we can state that at a distance away from the two ends, equa-
tion (1.127) and the oy; = 0 case will give identical solutions.

1.3.4.2 Half-Plane Problems

The full space is extended to infinity in all directions and does not have any
boundary. The half space is half of the full space. Therefore, the half space
has a boundary at x; = ¢, and is extended to infinity either in the x; > cor x; < ¢
direction. Note that c is a constant, and j is 1, 2, or 3. For two-dimensional prob-
lems, the half space is known as the half plane. In other words, two-dimen-
sional half spaces are called half planes. In this section, the solution steps are
given for solving half-plane problems that are subjected to external loads
applied at the boundary, as shown in Figure 1.17. The problem geometry and
applied loads are independent of the out-of-plane or x; direction. Therefore,
the solution should be also independent of x;. This problem can be formulated
in terms of three stress components: 0y;(X;, X,), G5,(x3, X), and o;,(xy, X5).
Boundary conditions for this problem are at x, =0, 0,, =—p(x,), and &,,=0.
In such problems where the problem geometry extends to infinity, one
also needs to satisfy the conditions at infinity that are called regularity con-
ditions. For this specific problem, the regularity condition is that all stress

m D plxy)
YVYX xl

a b

L)

FIGURE 1.17
Half plane subjected to surface traction.
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components must vanish [0y;(xy, X,) = 05Xy, X,) = Op,(xy, x,) = 0] as x; and x,
go to infinity. The equilibrium equations (o, ;= 0; see equation 1.92) and the
compatibility condition (0,, g = 0; see equation 1.98) constitute the govern-
ing equations of this problem.

The half-plane problem is solved by introducing the Airy stress function
(see equation 1.101) that must satisfy the biharmonic equation (see equation
1.102). This partial differential equation can be solved by integral transform
techniques such as the Fourier transform method.

1.3.4.2.1 Fundamentals of Fourier Transform
Fourier transform of a function g(x,) is denoted by G(k), where

G = 3(g0) = [ glxendx, (1128)
g(xy) is obtained from G(k) by applying the inverse Fourier transform operation:

8(0)=31(GH) = [ Gk (1129)

Fourier transforms of the derivatives of a function g(x;) are expressed in
terms of its Fourier transform G(k) in the following manner:

dg)_ .
5( dxlj_ ikG(k)

S(d g) (~ik)" G(k)
dx}

(1.130)

1.3.4.2.2  Solution of Half-Plane Problems by Fourier Transform Technique

Fourier transform with respect to the variable x, is applied to the governing
compatibility equation V*¢ =0 to obtain

02 0?2 02 0?2 0?2 0?2
2y72 o L9 20 P 2y @ =
SVAVE)= 3([& axj(aﬁax]q’J [“ax%j( ’”ax%) 0

D PP
P =2k = pe +ki®=0 (1.131)

In equation (1.131) ®(k, x,) is the Fourier transform of ¢(x;, x,). Solution of
equation (1.131) is given by

@ (k,x,) = ae*2 + be~*2 + cx,e*2 + dx,e~* (1.132)
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Alternately, the solution can be expressed as
Dk, x,)= Aelkla + Be-lklxa 4 szg\kh‘z + szg—|k|xz (1.133)

Comparing equations (1.132) and (1.133), it can be concluded that A = a for
positive k and A = b for negative k. Similarly, B, C, and D can be defined.

In the Fourier transformed domain the three stress components can be
expressed as

0?0
(o =)= In=—23
ox?
3(op=0¢1)= I, =-k (1.134)
., 0O
Sop=-0)= Z;,= lkai
X

From equation (1.134) and the regularity condition (%, Z,,, and X, should
approach zero as x, — ), one can conclude that ® and its first and second
derivatives with respect to x, must vanish as x, approaches infinity. There-
fore, constants A and C of equation (1.133) must be equal to zero. Thus, after
applying the regularity condition, equation (1.133) is simplified to

®(k, x,) = Bekx2 + Da,e-lix: (1.135)

Applying Fourier transform to the boundary conditions at x, = 0, one obtains

P(k
Yon =gy =-p) =  In=—ROK0)=-PH= DK=L
. oD oD (k, x,)
Jop=-¢,=0)= X, =i o, = ax, . ( )
where
w b
P(k)=S3(p(x))) = J px;)e*dx, = J p(x;)e*dx, (1.137)
From equations (1.135) and (1.136), one gets
)
k (1.138)
_ Pk

Ik
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Substituting equation (1.138) into equation (1.135), ®(k, x,) is obtained:

P(k) P(k)

etkbe 2 K xye ke = P(k)(+ |k|je tkla (1.139)

O(k, x,) =

Substituting equation (1.139) into equation (1.134), the three stress compo-
nents in the Fourier transformed domain are obtained:

9’
ox3

£ =~k = ~P(R)[ L+ k| x, ]2

Xh=

= —P(O[1- K] x,Je

(1.140)

Iy, =ik @ _ —iP(k)kx ek
ox

2

To obtain the stress field in the x;,—x, space, one must take the inverse trans-
form of the preceding equations:

0111, 1,) = 3(Ey) = —ij P 1 K| x, e iz i
0 (X1, %) =31 Zp) = —% j P(k) [1+ k| x2:|e"k|x2*”‘xldk (1.141)

0%y, %) = SH(Epp) =— é J. P(k)kx e kxa=ka i

1.3.4.2.3 Solution of the Half-Plane Problem for a Uniform Load over

a Finite Region
If the applied load in Figure 1.17 has a constant value of p, and is applied in
the region extending from x, = —a to x; = a (see Figure 1.18), then the Fourier
transform of the applied load is given by

r , I , in(k
P(k)=3(p(x,)) = Jp(xl)e"”‘ldxl = JPOE’k"ldxl = %[e’k"1 1%, =2p, %(a) (1.142)

Note that here p(x,) is an even function of x; and P(k) is an even function
of k. When P(k) is an even function of k, then the inverse transform can be
expressed in the form of a semi-infinite integral instead of an infinite inte-
gral as follows:
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Po
1
)
FIGURE 1.18
Half plane subjected to uniform traction over a finite region.
1 L[ -
pe) =3P =, [ P di= | [ PRge-ndk-+ [ Pige-oatk
2w ’ 27 J J
1{ 2 L[ -
=— —j P(=k)e*udk + ‘[P(k)eikxldk] = [J. P(-k)e*dk + J‘ P(k)e~ia dk]
2r .
o 0 ) )
= 1 JP(k)(eikx1 + eikn )dk] = lJ‘P(k)cos(kxl)dk (1.143)
2rn d 2

Similarly, the direct transform can be expressed in the form of a semi-infi-
nite integral when p(x,) is an even function of x;:

Hm=swam=ijwmwa=2jmmkammM (L.144)

When p(x,) is an odd function of x;, then the direct and inverse transforms
take the following forms:

P(k)=S(p(x,)) = jp(xl)eikxldx1 = 2ijp(x1)sm(kx1)dx1

—oo

(1.145)

p) = SA(P() = - = [ PR)sinie,ak



56 Fundamentals of Fracture Mechanics

From equations (1.141) and (1.142), the stress fields can be obtained in the
form of infinite integrals

0'11(.7(1, xz) = —%J’%(ka)[l_ |k| xz]e—\k\xz—ikxldk

—oo

[ sin(ka .
O (X, %) = _% j #[14_ Ik| xz]ef‘klxzizkxldk (1.146)

—oo

Op(xy,x,)=— L2y j x, sin (ka)etkh2-ikn gk

—oo

Alternately, recognizing that the problem geometry and the applied load
are symmetric with respect to the x, axis, it is concluded that the generated
stress field should be symmetric also. Therefore, the normal stresses oy, 05,
must be an even function of x; while the shear stress ¢;, should be an odd
function of x;. Using the transformation laws (equations 1.143-1.145) for even
and odd functions, the stress fields can be expressed in terms of the semi-
infinite integrals:

011(x1,%,) = —%J%[l + kx, |{sin[k(x, + a)] - sin[k(x; — a)]}e*2dk
0
Op(X),X,)= _%J%[l + kx, ){sin[k(x, + a)] - sin[k(x, — a)]}e~*2dk (1.147)
0
015(%1,X,) %J {cos[k(x; +a)]— cos[k(x, — a)]}e~*2dk
0

After integration, the stress field takes the following form:
oy = —’;’:{(91 ~6,)- %[sin(ZGl) - sin(262)]}
Gy =— % {(e1 —0,)+ %[sin(ZGl) - sin(202)]} (1.148)
o = —;’—;[sm(zel) —sin(26,)]

where angles 6, and 6, are shown in Figure 1.18.
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For the stress state given in equation (1.148), it is possible to obtain the maxi-
mum shear stress at a rotated coordinate system x,.x, using the stress transfor-
mation law (or from the Mohr’s circle for this two-dimensional stress state):

1
O O : 2

_ _ 1~ O0n )

0'1'2"max = Thax = ( > j +0p

1
P (sh1291—si11202J2+(c05201—C03202)2 2
T 2 2

1
Yo {sinz 26, + sin? 26,— 2 sin 26, sin 26,+ cos? 26, }z

T2 + cos? 26,— 2 cos 26, cos 26,

f {1-cos2(6, — 6,)}12

= ;’—0{2 — 2(sin 26, sin 26, + c0s 26, c0s 26, )}3 = P2
T

_ Po\/E
2

[25in2(6, — 6,)}* = P2 sin(6, — 6,) (1.149)
T T

Note that Tpa =2sin(, —6,)=C (where C is a constant) corresponds to

all points on a circle going through the points x; = a and x; = —a. For differ-
ent values of C, different circles are obtained. Among all these maximum
shear stress contours, the absolute maximum shear stress value is 2 for sin
(6,-6)=1

1.3.4.2.4 Half Plane Subjected to a Concentrated Load

When the half plane is subjected to a concentrated load of magnitude P, as
shown in Figure 1.19, the solution field for this problem can be obtained from
the preceding expressions.

X1

)

FIGURE 1.19
Half plane subjected to a concentrated force.
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Applied load distribution at the x, = 0 boundary is given by p(x;) =
P,6(x;), where 8(x,) is the Dirac delta function. Therefore, its Fourier trans-
form is

P(k) = JPOE(xl)eikxldxl _p,

and, from equation (1.141),

oo

01 (X1, %) = f; [ Wt
0n(X1,0) = —5—; j [1+ k| x, Je-khe-onn dk (1150)

0p,(Xy, %) = —% J ke tkaika g

or
Gll(xl,xz):_%x%ixzz
v (i)
Gzz(xl,xz)z_% (x%i%x%)z (1.151)
(X1, %,) = _2B x4

T (x} +x%)2

In the polar coordinate system (if 8 is measured from the vertical axis as
shown in Figure 1.19), the stress field is given by

3 2P cos6
nr (1.152)

Oy =0y =0

rr

It should be noted here that if we know the point force solution (equa-
tion 1.151; Figure 1.19), then the solution for a general load distribution p(x,),
applied on the boundary from x; = —a to x; = b, can be obtained simply by
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linear superposition of point force solutions. Thus, the stress field for this
general load distribution p(x,;) on the boundary is given by

o1 (%1, ) =— JMdk
7 [~ k)2 + 3]

b
3
(%) = _% j SO S (1.153)

< [(x1 - k)2 + x%]

2 p(k -k

Op(x), %) = e+ xz]

1.3.4.3 Circular Hole, Disk, and Cylindrical Pressure Vessel Problems

Problem geometries such as a circular hole in an infinite sheet, disks with
or without concentric holes, and cylindrical vessels subjected to surface
tractions are solved in this section. These problems can be solved relatively
easily by the complex variable technique shown next.

1.3.4.3.1 Compatibility Equation in Terms of Complex Variables

A complex variable z and its conjugate z are defined in terms of the real part
x and imaginary part y in the following manner:

z=x+1iy

(1.154)
—iy
Therefore, x and y can be written in terms of z and z as
=l@+a
2 (1.155)
1 _
y=7;(z-2)

Substituting the preceding expressions of x and y in the Airy function
@(x, ) (described in section 1.3.3), one obtains the stress function in terms of
the complex variable z and its conjugate z. For notational simplicity in this
section, x; and x, are substituted by x and y, respectively. ¢ (x, y) and ®(z,z)
represent the same Airy function in terms of two different sets of variables.
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Therefore,

200(x,y) 0 . 0Dz 0PIz 0D 0D Jd 0
——=——®(z,z —t——=—+—=|P

ox ox (@2)= 9z ox ax 0z 0z ox 0z - 0z (az " Bz)
99(x, ) i O(z,7) = 0 9z +8<1> 0z BE 00 ) . i_i @

ay ay 0z dy 0z dy | oz 9z 0z 0dz
0%¢(x, y) 8 8 02d 02® 92D

= o= 2
o oz Tz 022 “ozoz | 9z
(1.156)
82¢xy 7_1 . _82<D+282d>_82<1>
9z ) | 922 "0z0z 9z2

o) (o o) o o). [0 o
|2+ _Le=il T - % |
dxdy 1(az+az][8z az] 1[822 azzJ

20(x,y) %9(xy)  22®(z,2)
. 2 — —
= V2(x,y)= o T g - 4=

0*®(z,z)
S 4 , = 1 —
v q)(x y) 6 022072

From equation (1.102) it is known that the compatibility condition implies
that the Airy stress function must be biharmonic. Therefore, the compatibil-
ity condition takes the following form:

*d(z,2) (1.157)
022022

Vig(x,y) =16 =0

1.3.4.3.2  Stress Fields in Terms of Complex Potential Functions

Note that if y;, x,, X3 and yx, are four analytic (or differentiable) functions of z
or z, then the following &(z,z) should satisfy equation (1.157):

D(z,2) = 2)1(2) + 2 )2(2) + X3(2) + X4(2) = 201(2) + 2 42(2) + X5(2) + u(2)  (1.158)
Since Airy stress function must be a real function, one can write

1) = 22(2) =5 0(2)
(1.159)

BEO= 16 = )
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Substituting equation (1.159) into equation (1.158), one gets

D(z,2) = 2)01(2) + 2 2(2) + )3(2) + 24(2) = %[Zcb(f) +2¢(2)+y(2)+y(2)]  (1.160)

Therefore,
D) ;{mz) 220, a‘gﬂ Lo@) 20+ w2
GG (1.16)
GG

From equations (1.101), (1.156), and (1.161), one obtains

P9 P9 _, 7O

Ot Ow =5t o =00z

=20¢' () + '@ =2A¢'(2)+¢'(2)]  (1162)

> 2o .. %9
O-yy_o-xx+216xy_ﬁ_ﬁ_2 axay

2
{azq) , 0 a%)_[_a@ , PO aq>)+2(azq>_azq>] (1163)

922 T oz0z | 922 922 | “oz0z oz 922 022
L
a 2

From the stress transformation law it is possible to show that the stress
fields in the (r, 6) polar coordinate system are given by

=2[z¢"(2) +y"(2)]

O +0g9 =0 +0,, =2[¢"(2) + ¢'(2)] = 2[¢(2) + ¢'(2)] (1164)
Og9 — O, +2i0,9 =[0,, — 0, +2i0,,]e*° =2[z¢"(2) +y"(2)]e**  (1.165)
Subtracting equation (1.165) from equation (1.164), one obtains
0, —i0,, = ¢'(2) + ¢'(2)—[29"(2) + ¥ (2)]e*® (1.166)
Let us specialize the expressions given in equations (1.164) to (1.166) for
the following two special cases: (a) ¢'(z) = A,z", v"(z) =0, and (b) y”(z) = B, z",
¢(2)=0.
Stress fields for ¢'(z) = A,z", y"(z) =

(p’(z) — Anzn — Anrneine
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Therefore, if A, is a real number,
0, +0g =200"(2)+ ¢"(2)] = 2A,r"[e® + e-"0] = 4A, 1" cos nb
Og9 — O, +2i0, = 2[29"(2) + y"(2)]e*®

— z[re—ienAnrn—lei(n—l)G ]e2i6 — ZTlAn rneins

B (1.167)
0, —10, = ¢'(2) + 9'(2) — [20"(2) + y"(2)]e**
— Aﬂrn [eine + e—ine] _ nAnrneine — Anrn [(1 _ n)einB + e—in@]
If A, is an imaginary number,
O, +0gy =2A,1r"[eM0 — e~ 0] = 4iA,r" sin nd
Ogy — O, +2i0,, = 2[re nA,r"1ei("10]e20 = 2nA, rrei? (1168)
0, —i0,9 = 9'(2) +¢'(2) ~[29"(2) + y"(2)]e*®
— A”rn[eine _ e—ine] _ nAnrneinB — Anrn [(1 _ n)einO _ e—ine]
Equations (1.167) and (1.168) can be combined to obtain
O, +0gy =2A,1"[e0 £ e0]
Op — O, +2i0,y = 2nA,r"e™® (1.169)

O, — io—m = Anrn [(1 - n)eine * e—inQ]

In this equation, the plus (+) sign is for the case when A, is real and the minus
(-) sign is for imaginary A,.

Stress fields for y”(z) = B,,z™, 6'(z) =0:

For the case y”(z)=B,,z" = B,,r"e"® and ¢'(z)=0,

O, +0g =2[¢'(2) +9"(2)] = 0
Ogo — O, +2i0,4 = 2[2¢"(2) + y”(2)]e?® = 2[B,,rmeim?]e2 = 2B, rmei(m+2)9

o, - io-rg — ¢/(Z) + a’(z) _ [E(p”(z) + I///I(Z)]ezie — _ermei(nﬁ—z)e (1170)
Note that equation (1.170) is valid for both real and imaginary values of B,,.

Example 1.12

Obtain the complex potential functions 6'(z) and ¥”(z), given in equa-
tions (1.162) and (1.163), for a plate under uniaxial tension o, = 0y, 0, =
o, =0.
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Solution
From equations (1.162) and (1.163),

2¢'(2)+¢'(2)] = 0, +0,, =0,
2[z¢"(z) +y"(2)] = Oy — O+ Ztiy =0,
Note that these two equations are satisfied when

0@=2, v =2 (1171)
4 2

Example 1.13

An infinite plate with a circular hole of radius a is subjected to a biaxial state

of stress o,, = 6,, = 0 at the far field (far away from the hole) as shown in
Figure 1.20. Obtain the stress field in the entire plate.

Solution

The original problem can be decomposed into two problems (I and II) as
shown at the bottom of Figure 1.20.

Solution of problem I: Solution of problem I is straightforward: o,, = 0, =
oy and o, =0.

From equations (1.162) and (1.163),

2[¢,(Z) + (5,(2)] = O-xx + O-yy = 260

2[z¢"(z)+y"(2)] = 0,, — O\ +2i0,, =0

FIGURE 1.20
Infinite plate with a circular hole subjected to a biaxial state of stress at the far field (top figure)
is decomposed into two problems (I and II) as shown at the bottom.
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These two equations are satisfied when
") =90 () = (1.172)
@)= v'(@)=0

Solution of problem II: For problem II the boundary condition is
given by

0,=—0,=0,,=0atr=a, or o,=—-i0,,=—0,=0atr=a.
Regularity conditions (conditions at infinity) are given by

01,099,019 — 0 as r—ee.

Note that both boundary and regularity conditions are independent
of 0. Therefore, the solution should be independent of 6 also. Keeping
only the f8independent terms of equations (1.169) and (1.170), we can con-
struct the complex potential functions €(z) and y”(z) for problem II:

¢'(z)=Ay, y"(z)=B,z?

Since ¢(z) = A, does not give a decaying stress field as r increases, it
violates the regularity condition. Therefore, A, must be equal to zero.
Keeping only the y”(z) term, the boundary condition takes the follow-
ing form (see equation 1.170):

O, — iare =—-0p = _B—2a72
~ B, =0ya?

Therefore,

2

¢(2)=0, w"(z>=co§—2 (1173)

Combined solution of problems I and II:
Superimposing these two solutions (equations 1.172 and 1.173), one
gets the solution for the original problem:

¥D=2, vD=0,% (1174

Substituting the preceding expressions in equations (1.167) and (1.170),
one obtains

O, +0g =4A,r" cosnb =4A, =20,

0, —i0,0 = §'(2) +¢'(2) - [20"(2) + ¥ (2)]e** = 0, — o a’r? = 7, (1 - f)
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From these two equations it is easy to see that

aZ
Grr = GO (1—1/2)

a2
Ogg =0y 1+—
r2

0',920

Note that at the circular boundary (r =), 649=20,. Therefore, the hole
increases the normal stress value by a factor of 2. This factor is called the
stress concentration factor.

Example 1.14

An infinite plate with a circular hole of radius a is subjected to uniaxial
state of stress ,, = 0, at the far field (far away from the hole) as shown in
Figure 1.21. Compute the stress field in the entire plate.

Solution

The original problem can be decomposed into two problems (I and II) as
shown at the bottom of Figure 1.21. The stress field at the circular boundary
of problem II is obtained after solving problem I.

99

II

FIGURE 1.21
An infinite plate with a circular hole subjected to the uniaxial state of stress at the far field (top
figure) is decomposed into two problems (I and II) as shown at the bottom.
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Solution of problem I: Problem I has been solved in example 1.12; see
equation (1.171):

v@)=2, y@)= (1175)

After knowing the potential functions ¢”(z) and Y ”(z), the stress field at
the circular boundary (r =) is obtained from equations (1.167) and (1.170):

0, =0,y = (2) + §'(2) ~[20"(@) + Y (D> = A,r[(L=m)e + ]

%0 % s _ B0y _ o)

_ B rmei(2+nz)9 — ZA _ B eZiG —
m 0 0 2 2

Solution of problem II: From the preceding equation, one can clearly
see that the boundary stresses at r = 2 are not zero in problem I. To make
the boundary stresses zero at r = a in the original problem, the following
stress field is assigned in problem II as the boundary condition:

Oy

o, 16,9———(1 e*0) = 2 -0+ =028 atr = a

Regularity conditions (conditions at infinity) for the preceding
applied stress field are

0,,,000,0,—>0 as r > oo

Note that the boundary conditions have two terms; one is 6 inde-
pendent term and the second one has 6 dependence in the form of ¢
or cos20 and sin26. Therefore, the solution should have some terms that
are independent of 6 and some terms having 8 dependence of the form
c0s20 and sin26.

In example 1.13, in equation (1.173) the solution of problem Il is given
for the case when o,, —ic,y = —0, at r = a. Utilizing that solution, one
obtains the following potential functions for the boundary stress field:

. o)
Grr - 1679 ="
2
(1.176)
o, a?
’ — 0, ” — -0
VD=0, ¥ (=0T

Next, the potential functions corresponding to the following bound-
ary condition:

. Gy
0, —i0,,=—2e%  atr=a
2

are obtained in the following manner.
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From equations (1.167) and (1.170) we see that the terms associated
with A,, A, By, and B_, give the desired angular dependence required
by the boundary conditions. Out of these four terms, only A_, and B_,
also satisfy the regularity conditions while A, and B, do not. Therefore,

¥@)=Asz?, Y (D)=Bz

Substituting these expressions in the boundary condition equation,
one obtains

o, — io—,g — Ani’" [(1 _ n)einﬂ + e—in@] _ ermei(2+m)6 — A,2€l"2 [36—21'0 + 321'0]
— B_4a4le—2i9 — ﬁ p2i0

Equating the coefficients of €2 and -2 on both sides of the preceding

equation,
A, = 90 42
2
B, =290 4
Therefore,
, cpa* 30,a
¢'(z)= 2‘;2 , V(2)= 2;’4 1.177)

Combined solution of problems I and II: Adding equations (1.175),
(1.176), and (1.177), the complete potential functions for the original prob-
lem are obtained:

o, 0> 3oyt

” =204
V=

O

’ 0 O
=04
¥()=2

222

(1.178)
From equations (1.178), (1.167), and (1.170), the stress fields are obtained:

Grr _ iGyo — Anrn [(1 _ n)eine + e—inG] _ ermei(2+m)9

=2A, + A ,12[3e720 +¢20]— B2 — By — B_r4e2

2 2 4
=90, Oo 3,00 4 p2i0]— 90 p2i0 _ G0 _ 308" i
2 2r 2 2r2 2rt (1.179)
2 2 2
=00, O | 5o | poio _ 1" oo _1_ 3% i
2 2r? a? r?

2 2 2
=90 O 11 |erio 4 3[ 1L |e-2ie
2 2r? a? 2
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2

0, +04 =4A, 1" cosnf =4A, +4A ,r2cos20 =0, + 20‘2{1 c0s 26
r

2
=0, (1 +Zizcos 20)
7

From the preceding equations one obtains, at r =g,

) o, 0ya?
O-rr_lo-r(9=7+22
a

[-1+0+0]=0

. O-" = 0, 61’9 = 0

and
242
O, +0gy =00 | 1+—-c0826 | = 0y(1+2cos20)
a

" Ogg = 0y(1+2cos20)

Clearly, at r =4, the maximum value of 0,is 30, at 6=0° and 180°. There-
fore, the stress concentration factor for the uniaxial state of stress is 3.

Example 1.15

An annular plate (or a cylindrical tube) of inner radius a and outer radius
b is subjected to a pressure p, at the inner surface, while the outer surface
is stress free, as shown in Figure 1.22. Obtain the stress field in the entire
plate.

Solution
Boundary conditions for this problem are

0, —i0,,=—-p, at r=a

o, —i0,, =0 atr=>

FIGURE 1.22
A cylindrical tube or an annular plate or a spherical pressure vessel is subjected to a compressive
stress or pressure p, at the inner surface at 7 = 2 while the outer surface at r = b is stress free.
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Since the boundary conditions are independent of the angular posi-
tion, the potential functions should have the form

Y@= VD=2
Therefore,
0, —i0,4= A, r"[(1-n)e™® +e-M0]— B, rmei@mé =2 A, — B ,r2
For simplicity we substitute 2A,= A and B_, = B to obtain

O, —1i0,,=2A,—B,r?2=A- rﬁz

Applying the boundary conditions at ¥ =a and b,

B
A—E:—po

B
A_b72:0

a-B
b2
. B B —
Tl
_ poa?b? Pot’
:}'B_bz_az’ Tpr_g2
Therefore,
. B py? b?
Grr_ZGrO_A_T_bz_az _1,72
and

2p,a?

O, +0g =4A,r"cosnf=4A,=2A= 2
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From these two equations, the three stress components are obtained:

 p® b2
o=l

2 2
Polt (1+bj (1.180)

Example 1.16

An annular plate (or a cylindrical tube) of inner radius a and outer radius
b is subjected to a nonaxisymmetric stress field o,, = p, c0s26, o,, = g, sin26
at the inner surface, while the outer surface is stress free. Obtain the stress
field in the entire plate.

Solution
Boundary conditions for this problem are

0, —10, =p,c0s20—ig,sin20 atr=a

0, —i0,,=0 atr=>b

Note that this loading is symmetric about the line 6=0.

Since the angular dependence of the boundary conditions is of the
form cos26 and sin26 in the o,, —io,, expression, only the terms contain-
ing e*%% are kept. Thus,

0, —i0,4 = A" [(1-n)e® +e-"]— B, rmei+m?
= A, r?[—e?0 + 20+ A_,r2[3e720 + 20| — B¢ — B_,r 42"
=[-A,r2 + A,r?2 —Ble?® +[A,r? + 3A,r?2 — B_yr*]e?®
=[-A,r? + A,r? — B;](cos 26 +isin 26)
+[A, 12 +3A_,r2 — B_,r*](cos 20 — i sin 20)
=[-Ar2 + A,r?2 =By + A2 +3A,r2 — B r*]cos 20
i[-Ayr? + Ayr? — By — Ayr2 —=3A,r2 + Byr*]sin 20

=[4A,r2— By —B_r*]cos20 +i[-2A,r* —2A,r?— B, + B4r*]sin 20
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Applying the boundary conditions at the two boundaries,

[0, —i0,]

=[4A a2 -B,—-B_a*]cos20 +i[-2A,a*> —2A ,a%? — By + B_,a™*]
sin 26 = p, cos 20 — ig, sin 20

[0, —i0.4]

=[4A,b? — By — B_,b*]c0s20 +i[-2A,b% —2A b2 — By + B_b*]sin26 = 0

Note that from these two complex equations the following four alge-
braic equations are obtained to solve for the four unknowns A,, A, B,
and B_:

4A_,a72-B,-B_,a* =p,
2A,a% +2A_,a7 %+ By - B_,a7* = ¢,
4A_,b2-By—B_,b*=0

2A,02 +2A _,b2+ B, - B_,b~* =0

It should be noted here that if the applied stress field at the inner
surface is changed to o,, = p, sin20, 0,, = g, cos26, then all four coeffi-
cients—A,, A, By, and B_,—will be imaginary. In that case, equations
(1.168) and (1.170) should be used to obtain

0, —i0,y = A" [(1—n)ei® —e=in0 | — B, rmei@+mP
= A,r?[—e?0 — 20 + Ar2[3e20 — ¢20] — Bje?® — B_,rte20
=[-A,r2 = AL,r2—By|eX +[-Ayr? + 3A,r2 — Br*]e?®
= [—Azr2 —A,Lr?-B, ] (cos 26 +isin 26)
+ [—Azr2 +3A,r2—Br* ] (cos 260 —isin 20)
= [—A2r2 —ALr?—By—A;r? +3A,1r7 - B_ﬂ*‘]cos 20
i[-Ayr2 = A,r? — By + Ayr? —3A,r2 + BLr*]sin20

=[ 24,72+ 2A,r?— By-B_;r* |c0s 20+ i[ 4 A_,r2— By+ B_yr* |sin 26
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Applying the boundary conditions at the two boundaries,

o, —io,l,_,
=[2A,0> +2A 0 - By — Ba*|cos20 +i[4A,a? — By + B_ya]
sin 20 = p, sin 20 — iq,, cos 20
[0, —i0,]-

=[-2A.b2 +2A,b2 - By - B_b™*|cos 20 +i[-4A,b? — By + Bb*]sin26 =0

These two complex equations give four algebraic equations to solve
for the four unknowns.

If the applied stress field at the inner surface is changed to o,,=p, cos26
and o,,= g, cos26, then all four coefficients—A,, A_,, B, and B_,—become
complex equations that have both real and imaginary components. In
this case the problem should be solved in two steps, first considering
0, = py €0s26, 0,4 = 0 that give real coefficients and then considering
0,, =0, 0,9 = g, cos26 that should give imaginary coefficients. The final
solution is then obtained by superimposing these two solutions.

1.3.5 Thick Wall Spherical Pressure Vessel

A stress field in a spherical pressure vessel of inner radius a and outer radius
b subjected to an internal pressure p, as shown in Figure 1.22 is computed
in this section. In the spherical coordinate system (Figure 1.14), the strain—
displacement relations are given in Table 1.2.

s
m ar
_ 1,
P
1 oduy u

u
r B
Epp = —+—L+—"cot

“ rsinf o0 r r P

R uy (1.181)
PTroB o r

2¢

e o L du Uy Oy
“rsinf 00 r o

1 auﬁ 1 ou u
2e4 = —L -0 ot
£ rsin 8 80+r ap rcoﬁ
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Since the boundary conditions are independent of angles  and 6, the dis-
placement field inside the spherical shell should have the following form:

Uy =145 =0 (1182)
u, =u(r)
Substituting equation (1.182) into equation (1.181), one gets
"o o
o 1% 4w
BB~ r o r r
1 dug u "B u
= P4 Iy Peotf=—
‘06 rsinf 00 r v cotp r
(1.183)
10, Mg U
26 p=——+——-—"=0
BT r o o r
ou, U, ou
e - L M Y Yo_,
0 rsinf 00 or
u u
1 7B 1% g
2 = ——+-—2> - cotf=0
8[39 rsin8 96 r df r cotp
From equation (1.182) and Table 1.2, one obtains
curlu=Vxu=0
u 2
divu=Veu=—+-
ivu=Veu 5 u (1.184)
Au 2du 2
d(divu)=V(V =+t ————
grad(divu)=V(Veu) pwe + oy u
Substituting equation (1.184) into Navier’s equation of equilibrium,
(A+21)V(Veu)-uVxVxu=0
Au 2du 2
i(’“zﬂ)(aﬂ*rapra )—0 (1185)

L 2w 2,
oz ror 12
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Equation (1.185) can be solved by assuming u = A,r". Substituting this
expression in equation (1.185),

[nn-1)+2n-2]A,r"2=0

(1.186)
s(m=-D(n+2)A,r2=0
Therefore, n =1 and -2, and the general solution is
u=Ar+d2 (1.187)
r2
Substituting equation (1.187) into equation (1.183),
_ou 2A,
Epr = o A - 3
A, (1.188)
g0 =, =Mt e
Srﬁ =€, 28[36 =0
From the stress—strain relation,
Oy = ;L(Srr + &gy + Sﬁﬁ) + 2,[18”
= A(Al _24, +A +£+A1 +A‘2j+2y(A1 —ZA‘Z)
3 /3 3 /3
= (BA+2u)A, - 4“7‘;‘-2
T
Ogp = AE,, + Egg + Epgp) + 21U g
= A(Al _24, +A +£+A1 +Azj+2,u(A1 +Azj
7’3 r3 7’3 73
= (BA+2u)A, + %
r (1.189)
2uA,
Opp = ME,, + €gp + Egp) + 2Uegy = BA+ 21 A + ———
From the boundary conditions,
4uA.
BA+21)A, - % ==Po
(1.190)

4uA,

(BA+2wA, - x

0
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Coefficients A, and A_, are obtained from equation (1.190) and then those
values are substituted into equation (1.189) to obtain

(5-1)

O =—Po (%—1)

(1.191)
(-

Cpp=0g=p 21
60 =Opg = om

a3

Note that o,, is compressive, while ¢,, and oy are tensile and maximum
at the inner radius.

1.4 Concluding Remarks

This chapter has given a brief review of the fundamentals of the mechanics of
deformable solids. The chapter started with the derivation of basic equations
of the theory of elasticity and continuum mechanics and ended after solv-
ing some classical problems of elasticity. It is an important chapter because
different equations of fracture mechanics given in the following chapters
are derived based on the fundamental knowledge of the theory of elasticity
presented in this chapter.
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Exercise Problems

Problem 1.1: Simplify the following expressions (note that J; is the Kro-
necker delta, repeated index means summation, and comma repre-
sents derivative):

@ S

(b) 6,6
© 5ij”k,kj
@) 6;6;
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© 8,8,
®) St i o
(8) on o
Problem 1.2: Express the following mathematical operations in index
notation:
(@ Veu
(b) V?¢
(© V2u
@ Vo
() Vxu
® Vx(Vxu)
(g) [C1=[A][B]
(h) [A]'[B] = [Al[B]"
@) fc} =[A]" {b}
G) V-(Vxu)
k) Vx(Vo)
1) V(Veu)
(m) V-(Vo)
where u is a vector quantity and ¢is a scalar quantity; A, B, and C are
3 x 3 matrices; and ¢ and b are 3 x 1 vectors.

Problem 1.3: Consider two surfaces passing through point P (see
Figure 1.23). The unit normal vectors on these two surfaces at point
P are m; and n;, respectively. The traction vectors on the two surfaces
at pomt P are denoted by T and T/ respectively. Check whether the
dot product between T and 7 is same as or different from the dot
product between T and 2.

Problem 1.4:

(@ A thin triangular plate is fixed along the boundary OA and is
subjected to a uniformly distributed horizontal load p, per unit

FIGURE 1.23
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)

B

Po

FIGURE 1.24

area along the boundary AB as shown in Figure 1.24. Give all
boundary conditions in terms of displacement or stress compo-
nents in the x,x, coordinate system.

(b) If p, acts normal to the boundary AB, what will be the stress
boundary conditions along line AB?

Problem 1.5: The quarter disk of radius a, shown in Figure 1.25, is sub-
jected to a linearly varying shear stress, which varies from 0 to T, along
boundaries AO and CO and a uniform pressure p, along the bound-
ary ABC. Assume that all out-of-plane stress components are zero.

(@) Give all stress boundary conditions along the boundaries OA
and OC in terms of stress components oy;, 0,,, and 0y, in the
Cartesian coordinate system.

(b) Give all stress boundary conditions along the boundaries OA
and OC in terms of stress components o,, Gy, and o,, in the
cylindrical coordinate system.

(c) Give all stress boundary conditions at point B in terms of stress
components 0y, Gy, and oy, in the Cartesian coordinate system.

FIGURE 1.25
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Water

Water h/3
60°

B C N

FIGURE 1.26

(d) Give all stress boundary conditions along the boundary ABC
in terms of stress components 6,, 0y, and o,, in the cylindrical
coordinate system.

Problem 1.6:

(@ A dam made of isotropic material has two different water heads
on two sides, as shown in Figure 1.26. Define all boundary condi-
tions along the boundaries AB and CD in terms of stress compo-

nents 0,,, 0,,, and 7,,.

(b) If the dam is made of orthotropic material, what changes, if any,
should be in your answer to part (a)?

Problem 1.7: Express the surface integral Lx,-nde in terms of the volume
V bounded by the surface S (see Figure 1.27). 1; is the jth component
of the outward unit normal vector on the surface.

Problem 1.8: Obtain the principal stresses and their directions for the
following stress state:

5 3 0
[6]=|3 2 0
0 0 10
X9 1
S
Vv

Xx1

X3

FIGURE 1.27
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Problem 1.9: An anisotropic elastic solid is subjected to some load that
gives a strain state ¢; in the x;x,x; coordinate system. In a different
(rotated) coordinate system x;x,xs, the strain state is transformed
to €,

(@ Do you expect the strain energy density function U, to be a func-

tion of strain invariants only?

(b) Do you expect the same or different expressions of U, when it is
expressed in terms of g; or €,,,?

(©) Do you expect the same or different numerical values of U, when
you compute it from its expression in terms of ¢; and from its
expression in terms of ¢,,,,?

(d) Justify your answers.
Answer parts (a), (b), and (c) if the material is isotropic.
Problem 1.10: Stress—strain relation for a linear elastic material is given
by o, = Cj€. Starting from the stress—strain relation for an isotro-
pic material, prove that C;, for the isotropic material is given by
86y, + (6465, +6;0)-
Problem 1.11: Obtain the governing equation of equilibrium in terms of
displacement for a material whose stress—strain relation is given by
O = Clia€n€m + Bija€u + 657
where o3, and B, are material properties that are constants over the
entire region, and y is the residual hydrostatic state of stress that
varies from point to point.

Problem 1.12: Starting from the three-dimensional stress transforma-
tion law o;; = l;,,;,,0,,,, prove that for two-dimensional stress trans-
formation the following equations hold good (see Figure 1.28):

Oy = Oy €082 0 + G, sin? 6 + 26, sin 6 cos 6
Oy = Oy, 5iN? 6 + 0, cos? 6 — 20, sin 6 cos 6
Oy =(—0y; +0y,)sin 0 cos 6 + 0,(cos? 6 — sin? 0)
X3 P2

*

FIGURE 1.28
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Problem 1.13: Derive the constraint condition (if any) that must be sat-
isfied for the following displacement states to be valid solutions of
linear, elastic, isotropic material of volume V and boundary surface
S, when only surface tractions (no body forces) are applied on the
body. Note that m, n, and p are different constants.

() Uy =mx{+nxix3+px3, U, =u;=0

(b) Uy =mxi+nx;x3+px3, =13 =0

Problem 1.14: Prove that the compatibility equations for plane stress
and plane strain problems can be written as

@ 6, p=—1+V)f,, for plane stress problems and

(b) 640 p=— ({7_'5) for plane strain problems

where v is the Poisson’s ratio, f, is the body force per unit volume,
and ¢, B, ycan take values 1 or 2.

Problem 1.15: Consider a cantilever beam of thickness ¢, depth 2¢, and
length L (L >> ¢, L >> t), subjected to a uniform pressure (force per
unit area o,) on the top surface, as shown in Figure 1.29. The follow-
ing two solution states are proposed for this problem:

Solution state 1: Solution state 2:
G. = %% X3 _3x 3 o.. = 902 _3x
"2 |2 22 5 U 2e 2c?
o, 3x, x3 o 3x, 3
Oy =—29—14+—"2-—= Oy =—24-1+—2—-"%
272 { 2c 2c3 } 272 2c 2c3
30,x; X3 30,x; X3
Op =— 1-— Op=— 1-=2%
2 4c { c? 2 4c c?

(@) Check if the preceding solution states satisfy the stress boundary
conditions and governing equations for this problem.

X

X

FIGURE 1.29
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(b) Inyour undergraduate mechanics of materials class, you learned
under beam theory that the bending stress and shear stress for-
mulae have the following forms:

Mx,
I

vQ
It

o =0= and Op=T=

where [ is the area moment of inertia, Q is the first moment of the part
of the cross-sectional area, and M and V are bending moment and
shear force at the cross section. Check if either of the two solution
states corresponds to the beam theory formulations.

(c) For a point not too close to the ends (at a distance greater than 2c
from both ends), which solution state do you think is closer to the
true solution and why?

(d) For large values of x;, should both solution states give almost
identical results? Explain your answer.

Problem 1.16: A half plane (x; > 0) is subjected to the shear load P,
per unit area on its surface in the region —a < x, < +a, as shown in
Figure 1.30. Calculate the stress field at a general point (x;, x,)
inside the half plane. Express your results in terms of some infinite
integrals.

Problem 1.17: Two linear elastic half planes are subjected to force cou-
ples, as shown in Figure 1.31.

(@) Give three Cartesian components of stress (07, 0,,, 07,) for these
two problems.

(b) Specialize these expressions along two lines: (1) x; = 0, and
@) x,=x,.

(c) Prove St. Venant’s principle by computing the stress field for the
two geometries along the x; =0 line.

2a

' "

FIGURE 1.30
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P P P/2 P/2
P P
(~al2,0)| (a/2,0) (~a, 0) (a, 0)
* X

FIGURE 1.31

(d) At what depth along the line x; = 0 do the results for the two
problems become almost identical (difference is less than 1%)?

Problem 1.18: A thin plate of infinite extent is subjected to a far field
stress distribution o, = 0,, = 0 and o,, = 7. The plate has a circular
hole of radius a at the origin which has stress free boundary. Find the
stress field o,, 0, and o,,at a general point P(r,6) (see Figure 1.32).

Problem 1.19: A cylindrical tube is subjected to an uniform pressure p
at its inner boundary (r = 4) and a 6 dependent pressure p cos20 at its
outer boundary (r = b) (see Figure 1.33).

(@) Give expressions of the three stress components o,,, 0,4, and o,
at a general point P(1,60) in terms of some unknown constants.

(b) Give all equations that you must satisfy to solve for the unknown
constants of part (a). Note that for n unknown constants you
need 7 equations. Do not try to solve these equations for the
unknown constants.

Problem 1.20: Prove that if ¢, -0, +2i0,, = 2[z¢"(z)+y”(z)], then
O — O, +2i0,, =2[2¢"(2) + w”(2)]e*®, where z is the complex vari-
able z = x + iy.

Problem 1.21: Air is pumped out of a hollow sphere of outer radius 2
m and inner radius 1 m; then it is placed at a depth of 2 km in the

— —»—L—» — T

oP(r,0)

T
T
!

T

X

— —— ——— —— «——

- ——— ———

FIGURE 1.32
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p.cos20

FIGURE 1.33

ocean (density of water is 1000 kg/m?3). Compute the stress field in
the sphere material. If the sphere is taken deeper into the ocean, state
whether the failure will start from the outer surface or inner surface
of the sphere if the sphere material is

(@) weak in tension but infinitely strong in compression and shear
(b) weak in compression but infinitely strong in tension and shear
(c) weak in shear but infinitely strong in tension and compression

Problem 1.22: Starting from the stress expressions (Equation 1.191) for a
spherical thick wall pressure vessel subjected to an internal pressure
po, prove that, for a thin wall spherical pressure vessel of wall thick-
ness t [t = (b - a)], where t << g, (a) the circumferential stress 6, = 0,
=pya/(2f) and (b) the radial stress o,, varies linearly from —p, at the
inner surface to zero at the outer surface.

Problem 1.23: An infinite plate with a circular hole of radius a is sub-
jected to a varying normal stress at ¥ = 4, as shown in Figure 1.34. Let
the applied stress field at r = a be approximately represented as one
of the trigonometric functions (sine, cosine, or tangent).

FIGURE 1.34
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(@ Which trigonometric function (sine, cosine, or tan) and what
angular dependence will be appropriate for this problem geom-
etry? Give the boundary and regularity conditions that you must
satisfy for this problem. Note that the normal stress at r = a is
continuously varying and changing between tension and com-
pression, reaching their maximum values (+p,) at 6 = 45°, 135°,
225° and 315° and their minimum values (0) at 6 = 0, 90°, 180°,
and 270°.

(b) Give the expression of o,, — i0,, in the plate material in terms of
some unknown constants A, and B,,.

(c) For this problem give all acceptable values of n and m of part (b).
There is no need to solve for A, and B,,.



2

Elastic Crack Model

2.1 Introduction

Airy stress function technique can be followed to solve many two-dimensional
elasticity problems as discussed in chapter 1. Williams (1957) solved the
fundamental problem of the stress field computation near a crack tip in an
elastic, isotropic material using the Airy stress function as described in the
following section.

I
2.2 Williams” Method to Compute the Stress Field
near a Crack Tip

We are interested in computing the stress field near a crack tip, located at the
origin; the problem geometry is shown in Figure 2.1. The stresses are defined
in terms of the Airy stress function ¢:

_1dp 19%
R
82
G = aTZ) @)

- __8(18¢)
T or\r oo

Note that with the preceding definition of the stress field, the governing
equilibrium equation is automatically satisfied in a two-dimensional polar
coordinate system. However, satisfaction of the compatibility equation
requires the Airy stress function ¢ to be biharmonic (see equation 1.102).
Therefore, ¢ must satisfy the following equation:

2 19 12\ 10 1 &
Vig=vVovzg=| O 20 2 O Mo 20 29 Ny g 2.2
¢ ¢ (8r2+r8r+r2892)(87’2+r8r+r2892)¢ @2

85
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FIGURE 2.1
Infinitely sharp smooth crack in a solid. Crack surfaces are at 6 = +o = +180°.

Williams postulated the solution in the following form:
¢ =r*1F(0) 2.3)
Therefore,
. 2 10 1 0 .
L ) )
= (A+1Ar*1EF(0) + (A + 1)r*-1F(6) + r*-'F"(6)

=[(A+1)2F@O)+F"(O)r*' = [;;2 +(A+1)? } r*1F(6)
Hence,

2 2 2
V2V2¢ = V2V2[rA1F(6)] = (aarz + %% + riz 3892) [8892 +(A+1) } rA-1F(6)

[ 92 (o2 10 1 32,
:—&024‘(/14‘1)2_(8"2"{‘1/8’,4‘7/2w)rllp(e)

= _a% (412 |[(A= 1A = 2P 3F(©0) + (L - Dr-F(6) + ()]

[ 92 1 92
- 2 —_1)2 |p2A-3 - 2.4
Ez +(A+1) _[802 +(A-1) }rl F®)=0 24)

Since % # 0 in general, the preceding equation will be satisfied if

d? 2 ﬁ —-1)2 =
[d92+(,1+1) }[dezﬂl 1) }F(Q)—O (2.5)
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Note that equation (2.5) will be satisfied if either

[ a2 5
ﬁﬂl 1) F(9)= 0 (2.6)
or
[ a2 5
3 +(A+1) F(Q) =0 2.7)
Solution of equation (2.6) is
F(0) = ¢; cos{(A —1)8} + ¢, sin{(A — 1)6} 2.8)
and that of equation (2.7) is
F(6) = c; cos{(A +1)8} + ¢, sin{(A + 1)6} (2.9

Therefore, the general solution of equation (2.5) is given by
F(6) = ¢, cos{(A —1)8} + ¢, sin{(A — 1)} + ¢; cos{(A + 1)8} + ¢, sin{(A +1)0} (2.10)
Thus,
é(r,0) = r**1E(0) = r**1[c; cos{(A —1)6} + ¢, sin{(A —1)6}

(2.11)
+ ¢ cos{(A +1)8} + ¢, sin{(A + 1)6}]

is an acceptable Airy stress function because it is biharmonic and therefore
satisfies the compatibility condition.
Then, from equation (2.1) three components of stress can be obtained:

0, = 0420 = (@) + (A DF@) = U F(0) + (+ DFO)
r 892
O =92 = 20+ 1)r-1E(@) e12)

0o=-2(1%)--2 i) =-1r-F @

In the preceding expressions,
F’'(8) = —c;(A—=1)sin{(A —1)8} + c,(A — 1) cos{(A — 1)6}
—c3(A +1)sin{(A +1)8} + ¢, (A + 1) cos{(A + 1)6}
F”(0) = —c; (A —1)% cos{(A — 1)8} — ¢, (A — 1)? sin{(A — 1)6}
—c3(A +1)2 cos{(A +1)0} — ¢, (A +1)? sin{(A +1)6}

(2.13)
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2.2.1 Satisfaction of Boundary Conditions

For the problem geometry shown in Figure 2.1 with stress-free crack sur-
faces, the boundary conditions are given by:

at 0= ia/ Ogg =0, = 0 (214)
Substituting the stress expressions in equation (2.14), we get, at 0= +c,

O = MA +Dr*[c; cos{(A — 1)t} + ¢, sin{(A — 1)er} + ¢5 cos{(A + 1)ox}
+ ¢, sin{f(A+Da}]=0

(2.15)
0,9 = —Ar*[—c; (A — 1) sinf(A — D)o} + ¢, (A — 1) cos{(A — 1)ex}
—c;(A+ D sin{(A + Do} +cy (A + 1) cos{(A + Da}]=0
and, at 6=-q,
Gy = MA + D)r*Y[c; cos{(A — 1)} — ¢, sinf(A — 1)t} + 5 cos{(A + 1)ar}
—c,sinf(A+1a}]=0
(2.16)

0, = —Ar*1c; (A —1)sin{(A — Da} + ¢, (A — 1) cos{(A — 1)ex}
+c3(A + D) sin{(A + Do} + ¢, (A + 1) cos{(A +Dex}] =0

Carrying out addition and subtraction operations between equations (2.15)
and (2.16), one gets

¢ cos{(A—1Na}+ ¢y cos{(A+ 1D} =0
¢ (A=1)sin{(A - Do} +c;(A+1)sin{(A + 1o} =0

(2.17)
¢, sin{(A — ot} + ¢, sin{(A + 1)t} = 0
¢, (A=1)cos{(A -1} +cy (A +1)cos{(A + Da} =0
The preceding four equations can be written in matrix form:
cos{(A —1)a} cos{(A + 1o} ol |0
[(A-Dsin{(A-Der}  (A+Dsin{(A+Da}||cs] |0
and (2.18)

sin{(A —1)ox} sin{(A + 1)cx} | |0
(A-1)cos{(A—-1)er} (A +1)cos{(A+ 1)a}Hc4} B {0}
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For the nontrivial solution of ¢;, ¢,, ¢;, and ¢,, the determinant of the coef-
ficient matrices must vanish. Therefore,

(A +1)sin{(A + 1)er} cos{(A — 1)ex} — (A — 1) sin{(A — D)o} cos{(A + 1)ex} = 0 219
(A +1)cos{(A + Da}sin{(A — 1o} — (A —1) cos{(A — D} sin{(A + D} =0 .

The first equation of (2.19) is simplified to yield
Alsin{(A + 1)oc} cos{(A — 1)} — sin{(A — 1)oc} cos{(A + 1)ex}]
+[sin{(A + 1)} cos{(A — 1)e} + sin{(A — 1)} cos{(A + 1)} ] = 0 (2.20)
= Asin[(A+ 1o — (A -Da]+sin[(A+Da+(A-1)a]=0
= Asin[20] + sin[2Ac] = 0
The second equation of (2.19) gives
Alcos{(A + Da} sin{(A — 1)} — cos{(A — 1o} sinf(A + 1)ar}]
+ Alcos{(A + D)} sin{(A — 1o} + cos{(A — e} sin{(A + 1)a}] =0

(2.21)
= Asin[{(A - Da}—{(A +Da}] +sin[{(A - De} +{(A+Da}] =0
= —Asin[20] + sin[2A0] = 0
From equations (2.20) and (2.21), one obtains
sin(2Ac) =0
(2.22)
Asin(a) =0

For a = &, the second equation of (2.22) is automatically satisfied and the
first equation becomes

sin(271) = 0 (2.23)

Equation (2.23) is satisfied for A =%, where n ==0, 1, +2,+3,....
For different values of A, the function given in equation (2.10) has different
expressions with different constants, c;,, i=1, 2, 3, and 4:

ins

n . |(n
E,(0)=c,, cos {(2 - 1) 9} +¢,, sin {(2 - 1) 9}
+es, cos{(n + 1) 0} +c,, sin {(” + 1)9}
2 2

(2.24)
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2.2.2 Acceptable Values of n and 1

From equation (2.12) one can see that the stress components have the r depen-
dence, r*1. So strains should also have the same r dependence, 1. Since
displacements are obtained by integrating strains, the displacements should
have the r dependence, r*. Therefore, A cannot have any negative value since
the displacement cannot be infinity at the crack tip where r = 0. A cannot be
zero either because then the displacement components become a function
of 6, which can give rise to multiple values of displacement at the crack tip.
This is because at the origin = 0, 6 can have any value between +«a and —o.
To have a single value of the displacement at the crack tip, only positive
values of A are acceptable. Thus,

n=1,2,34...
(2.25)
a=t1,22.
2 2
Substituting A = £and o= 7 in equation (2.17), one obtains
€y, COS {( - 1) n'} +¢;, COS {( + 1) } 0
(2.26)

R }wsn(zH)sm{(zH)ﬂ}ﬂ
e
cos{ e (5 tfoe{(5 e

For odd values of n (=1, 3, 5...), the first and fourth equations of (2.26) are
automatically satisfied and the remaining two equations can be simplified
after substituting the following relations:



Elastic Crack Model 91

Cip (n—1)+c3n (n+1j=0 = C3, :_L—chn
2 2 n+2

Cop +Cyy = 0 = Cyy = —Cop

(2.27)

For even values of 11 (=2, 4, 6...), the second and third equations of (2.26) are
automatically satisfied and the remaining two equations can be simplified
after substituting the following relations:

cos{m+ 2l = _cos| &
2 [ 2

cos{m—"E = _cos| &
2 [ 2

=08 2 _gl=cos{—| - |} =cosdm—"E 1 =—cos| =
2 a 2 ) 2 [ 2

CintC3y = 0 = C3p = —C1py

Can (”—1)+C4n (”+1) ) =, =-""2. (2.28)
2 2 n+2

Using equations (2.12), (2.24), (2.27), and (2.28), the stress components can
be expressed as a series expression:

oo Zalae ) fen{(5-efen{(5-1e
e )
-l Tl
efon (351 )] )
PR e A e ]
(5321 )

=

n—2
n+2

{(21)9}] 0200
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S T A (Y
O R e = )
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30

n=1,3,5

N e e ey
e R R (G

e ERE B ]

2.2.3 Dominant Term

Among all acceptable values of 4 the term that gives maximum stress value
near the crack tip corresponds to 7 =1 or A = %, because then the stress field
near the crack tip is of the order of r/2. Clearly, for small values of r (when
the point is located very close to the crack tip), the stress values become very
large and, at the crack tip, become infinity. For other values of A and n (n =
2,3,4,5...), one gets bounded stress field at the crack tip. Naturally, those
terms (corresponding to n =2, 3,4, 5...) are not as important as the term cor-
responding to A=Y (or n=1).
Substituting n =1 in equation (2.29),

A bl el
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and

ou=3# oo 31 )snl(5- 1)} 135 Jan{(31)o)
e = 1 -
- (a2 foe a2

From equation (2.30) one can clearly see that if the problem geometry and
loading are symmetric about the x, axis, then only the first term with the
coefficient ¢;; should be considered; for antisymmetric loadings, only the
second term with the coefficient c¢,, should be considered.

The even and odd terms of equation (2.30) can be further simplified as

ool = i (33 )}
i’cf { (Oj ;[4 cos? (z) - 3cos(§m 2.31)
polg gl

where K; = c¢;;+/2r . Similarly,

3c21 9 36
0'99‘ . = sin +sin| —
antisymm 2 2

2.32)
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where K, =c¢,v27 .

W

Ol cos(9j+3cos(e
16 antisymm 4 \/— 2 2

= 46\2/1; {cos( )+ 3(4 cos3(

~—
[

N | D
N D

(3]
- e (g e &S o (3)-2
=f/2%cos(z){1 3sm2(z)} COS(?){“M@}

(2.34)
In the same manner, the o, expression can be derived. From equation
2.12),
o, =r"{F"(6)+ (A + F(6)}
= Zr&l—l{men (A, +DE,6)} since A has multiple values 1,

n

- folsorforeals 1)
g e ]

(2.35)
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Forn=1,

1 2
0',r=r(21j[{(;+1j—(;—1) }{cncos(; 1)6 c21sm( je}
2
(;+1)—(;+1j }{c31 cos(;+1)9+c41 sin ]
—Ec cos(ej—sc sin(e)—?)c COS(BGJ—C sm(e)
_4 11 2 4 21 2 4 31 2 4 41 2
(5 (ej 3(1—2) (39) 5 . (ej 3. (39)
=cos| = |+—| ——=|cos| = |}cyy +9——sin| = |+ =sin| — |t cy
i 4 2 4\1+2 2 4 2 4 2
(5 (9] 1 (39] 5 . (9) 3. (39)
—cos| = |- =cos| — |pcyy +4——sin| = |+ —=sin| — |}cy
_{4 2 4 2 4 2 4 2
The symmetric component of equation (2.36) is
o \ = fu 5COS(0)—1COS[30)
T symm \/; 4 2 4 2
= 5cos(6]—1 4 cos?® (0)—3COS(9)
Jr |4 2) 4 2 2
_ 0)_ 39)_K (9) 39)
\/;{ZCOS(ZJ cos (2 N 2cos > Ccos >
_ K cos(e) Z—COSZ(O)
\/271 2 2

and the antisymmetric component is given by

=5 (7
i) s3]
-G o2 (- i o2 (4]

el

(2.36)

(2.37)

(2.38)
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FIGURE 2.2
Opening mode (or mode I, left figure) and shearing or sliding mode (or mode II, right figure)
loading of a cracked plate.

Symmetric and antisymmetric responses are obtained when the cracked
plate is loaded symmetrically and antisymmetrically, respectively, as shown
in Figure 2.2. When the load is applied in a direction perpendicular to the
crack surface, as shown on the left-hand side of Figure 2.2, then that loading
is called opening mode or mode I loading. It is called opening mode because
the applied load tries to open the crack. When the load is applied parallel
to the crack surface, as shown on the right-hand side of Figure 2.2, then the
applied load tries to shear off the crack surface; that loading is called shear-
ing or sliding mode or mode II loading. If the applied load has both open-
ing mode and shearing mode components, then that loading is called mixed
mode loading.

2.2.4 Strain and Displacement Fields

From the computed stress fields, the strain and displacement fields can be
obtained as described in the following sections.

2.2.4.1 Plane Stress Problems

For mode I loading from equations (2.37) and (2.31), one obtains

Ee, =0, —VOy = 4\/%[{5 cos (2) T cos (326)} - {3 o8 (Z) Teos (?)ZQJH

o, K [ 0)_ 30
E > —4W[(5 3v)cos[2) (1+v)cos( 5 H

=>u, = Z]I;\’/\z/_i {(5 —3v)cos (Z) —(1+v)cos (329)}

_ 201+ VKT {(5—3v) Cos(ej_cos(e,eﬂ

4E\2r (1+v) 2 2
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KN [(5-3v) (6 30
= auar | (ev) Sl2) 2
H (2.39)
= 41:11\/\/2% |:(2K' —1)cos (z) —Cos ( 329 ﬂ
where
k=7 -I_- v for plane stress problems (2.40)
and

u, 1oau
Eeee—E(r+raeg) Oy — VO,

] = svcos( g Jraemeos 7|
| e-svcos( § et eos( T
el ()l »
- S ()1 )e(2)]
i)l
o 41:sz7 [22((17++v‘;) sin( 3+ 5 ;S‘“(?ﬂ
bl eervels) ()

In equations (2.39) and (2.41) the definition of x is the same, as defined in
equation (2.40).
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2.2.4.2 Plane Strain Problems

For plane strain problems,

g, = l(0 — VO —VO,,)
rr E rr 66 zz
1 (2.42)
Egg = E(GOQ — VO, — vo-zz)

1
€, = E(Gzz —VOgg — vo-rr) =0 = 0, = V(GOO + O-rr)

Therefore,

Egy = Gy — VO — VO 2= O — VOoo— V(O + 009) = (1= Vo — V(1 + V)Gee

Le =(1-v)or—-Vvo

Q+v) "~ o 2.43)
E

mgoe =(1-Vv)ow —Vvonr

Then, for mode I loading,

E . =2,Uaur=(1_v)K1[5cosg—cos326)— VK (3cosg+cos329]

a+v) " o 4J2nr 427y

((5 5v— 3V)COSQ—C0539J
2 2

((5 8v) cos ——cCos 329)

4\/271
30\ K ( 6 39)
u, 5-8V)cos——cos— |=—1 2K —1)cos — — cos —
4/1\/27r ( 2 j 4u2r ( ) 2 2
(2.44)
where, for plane strain problems,
K=3—4v (2.45)
Similarly,
E u, 1ou
- =2 <L 4= 76 1-— —
(1+v) Eop ,u( - 00 ) (1-v)og —vO,,
0 30 vK 6 30
=(1-v 3cos +cos— L 5cos—cos)
= ) 4\/ ( 2 j 427y ( 2
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:1&1 K- v)[3cos+cosse) VK (5cose—c0530)
r 00  8u~2rmr 2 8u~2rr 2

K, 7] 39)
-——F——(5-8v — —C0S—
4u~2nr (( )cos 2 2

dy,  Kr

0 8u2rm

_ Kr
 8udam
K\

6 . 2 .30
Uy = -5+ 8v)sin—+ 3 x —sin
o= gudar ( Jsin +3x 5 2)

((3—3v—5v—10+16v)cos§+(1— v+v+2)cos320)
(2.46)

( —5+8v)cose+3c0539)
2 2

K,J?( I 39)
= —(2k —1)sin— + sin —
PNT ( )sm2 sin >

Similarly, the displacement fields for mode II loading can be obtained.
After obtaining stress and displacement fields in the polar coordinate sys-
tem, those expressions in the Cartesian coordinate system can be derived by
transforming the stress and displacement expressions using the transforma-
tion laws.

In summary, near a crack tip where the term corresponding to 7 =1 domi-
nates, the stress and displacement fields in polar and Cartesian coordinate
systems are given by

on = e (3 oo s (5
5 L2} sun(2) 550 )]
o= ot oo 1o )] o -2 2
5 2] o )2 - ) on 2
o= s 3 oo (5 e 512 3]

S8 (o3l

W

(2.47a)
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GW:WCOS@{““@ Sh‘(zﬂ e A sin@)cos|
)

(2.47b)

4;1\/5

KyJr (ej
+ —(2x +1)cos| — |+ 3 cos
4/4#27:[ ( ) 2

R
|

)
Uy = Kr [_(2K+1)sin(g)+sm(30j
(

Ky Jr

“Deinl 2 o[ 30 (2.48)
4,11\/_{ (2x 1)sm(2)+3sm > ﬂ
K\r

- (2
et Gt
U, = 21:11\/\/2i |:(K 1) cos(g) + sin(6) sm( j}

6
2
+2IZIJ\% - (9){(;<+1)+2c052( H

where k=3 for plane stress problems and « = 3 — 4v for plane strain
problems.

2.3 Stress Intensity Factor and Fracture Toughness

Equation (2.47) implies that for any two-dimensional in-plane (plane stress
or plane strain) problems, irrespective of the problem geometry and applied
load distribution, the stress field near the crack tip is dominated by the
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expressions given in equation (2.47) because of the square root singularity
in the stress field expressions. Values of the constants K; and K;; depend on
the problem geometry and the applied load distribution; however, r and 6
dependence of the functions does not change with the problem geometry
or loading. K; and K;; are called the stress intensity factor (SIF) for mode I and
mode II loadings, respectively. Note that the stress field near the crack tip
is linearly dependent on the SIF; in other words, if K; and K}, are multiplied
by a factor n, then the stress and displacement fields near the crack tip are
also multiplied by the same factor n, while the stress values at the crack tip
remain infinity.

Since the stress values near a crack tip are always very high (and infinity at
the tip), the strength-of-material approach of failure prediction that the mate-
rial fails when the stress exceeds some critical value (ultimate stress or yield
stress) cannot be used here. When a cracked plate is subjected to a small
load, although the stress field near the crack tip becomes very high, the plate
does not fail. However, as the applied load increases to some critical value,
the plate fails. In the fracture mechanics approach, instead of comparing the
maximum stress value with a critical stress value, the material failure is pre-
dicted by comparing the stress intensity factors K; and K;; with some critical
value K.. This critical value is called the critical stress intensity factor or the
fracture toughness of the material. It will be shown later that when the applied
load is small, K; and K}, values are small. As the applied load increases, K;
and Kj; values increase proportionately and the structure fails when K|, K;;
values exceed some critical stress intensity factor or the fracture toughness
of the material. Note that K. is a material property, as the ultimate stress and
the yield stress are, while K; and K;; depend on the problem geometry and
applied loads, as the stress developed inside a structure is dependent on the
problem geometry and applied loads.

2.4 Stress and Displacement Fields for Antiplane Problems

When the applied loads act in the x; direction only but the problem geometry
and applied loads are functions of x; and x, only (see the Figure of exercise
problem 2.2, Figure 2.8), the solution fields are expected to have the following
form:

M1=Ll2=0

Uy = Uz(xy,X,) = uz(7,0) (2.49)

These problems are called antiplane or out-of-plane problems. Applying
Williams” method to antiplane problems, it can be shown (see the solution
of exercise problem 2.3) that for such problems the stress and displacement
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fields are given by

Cys = Ky cos[e)
o N2mr 2

_ K . (9) (2.50)
6,3—\/%811’1 >

yy = Ku [2r Sin(ej
u\rm 2

This mode of loading is called the tearing mode or mode III loading. It is
known as the tearing mode because this type of loading is applied to tear a
paper. K;;; is the stress intensity factor for mode III loading.

2.5 Different Modes of Fracture

From the preceding discussions one can see that three different modes of
loading relative to the crack geometry can exist. These are mode I (opening
mode), mode II (shearing or sliding mode), and mode III (tearing mode), as
shown in Figure 2.3. Note that modes I and II correspond to the in-plane
problems and mode III corresponds to the out-of-plane problems. If the crack
propagates under any of these three modes, then the failure or the fracture
mode is identified with that mode. Under general loading conditions, the
applied load may have components of all three modes; this situation is
known as mixed mode loading. Failure or crack propagation under mixed
mode loading is known as the mixed mode failure or mixed mode fracture.

2.6 Direction of Crack Propagation

Erdogan and Sih’s (1963) hypothesis of crack propagation is that the crack
propagates in the direction perpendicular to the direction of the maxi-
mum tensile stress oy, This hypothesis is identified as the direction of the

— §
i Mode I Mode I Mode III

FIGURE 2.3
Three modes of loading relative to a crack: mode I (opening mode), mode II (shearing or sliding
mode), and mode III (tearing mode).
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maximum tensile stress hypothesis. Although other hypotheses, such as that

the crack propagates in the maximum strain energy release rate direction, can

be adopted to predict the crack propagation direction. For its simplicity, the

maximum stress criterion is followed here to predict the crack propagation

direction. It can be shown that all these hypotheses give similar results.
From equation (2.47),

_ 1 5(0)_ (0] .2( @
Gee—\/ﬁ{chos (2) 3Kusm(2)cos (2)}
doee 1 [ 3 (0) . (68) 3 (6
. _ 3 01an8)_3 o 2.51
“ g \/ﬁ{ 2I<1c:os (2)sm(2) 2Kncos > (2.51)
(@)oo ©
+ 3Ky sin (ZJCOS[Z)}

For maximum value of ¢,

80' -3 6 0). (6 0 . (6
® - N cos( j{K, cos (2) sm(zj + K, cos? (2J - 2K, sin? (2)} =0
(2.52)
Therefore,
cos (Gj K, cos (QJ sin(ej + K}, cos? (0) 2K sin (9) =
2 2 2 2 2
ﬁcos(z){Kl cos(z)sin(g)+l<ﬂ {3(:05 2}}:0 (2.53)

0

= Cos (9) =0 or K,cos (9) sin(ej + K, | 3cos? (Gj -2
2 2 2 2
Equation (2.53) is satisfied if

COS(g)=0 =>g=i%,i37r iSﬂ .. or O=%rm,+3x, +57,...

Note that these values of 6 correspond to the top and bottom crack surfaces
where o4, = 0. The crack cannot propagate in that direction since the crack
surface already exists there. Therefore, K;cos(%)sin(%)+ Kn[3cos*(£)-2]
must be equal to zero. In this expression, after substituting cos(%)=x for
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simplicity, one gets

+Kixv1-x% + Kp(3x* —2)=0

:K11(3x2—2): K]X\/l—xz (254)
Ki _ xyJ1-4°
Ki — (3x*-2)

Note that from equation (2.54) it can be stated that for X = 9 —that is, for
mode I loading—x = cos(§) = 0 or * 1. Therefore, 6=0, £7, +27, £3r,.... Since
6 =tm, £31, £57,... are not of interest for the reasons stated earlier (that the
crack cannot propagate in the direction in which crack already exists), we
only consider 6= 0, 27, +47, +6m,.... Note that all these values correspond to
the same plane at =0 located just ahead of the crack tip. Therefore, for mode
Iloading, the Crack propagates along 6 =0 plane.

For ’;(III =o9 O Kz =(0—that is, for mode II loading—equation (2.54)
is satisfied when 3x*-2=0= x= +\/_ cos(§). Therefore, 6= 2cos™
(£,/2) = 470.53°, +430.53°.

One can easily show from equation (2.47) that, for 8 = +70.53° the stress
component G,,is negative or compressive. The crack cannot propagate under
the compressive stress. The maximum positive normal stress is obtained
for 6 = -70.53°. Therefore, the crack propagates along the plane located at
0=-70.53° under mode II loading.

When both K; and Kj; have nonzero positive values, then the crack propa-
gates in the direction between 6 = 0° and 6 = —-70.53° because 0, is positive
in this region. Then, in equation (2.53), cos$ is positive and sin¢ is negative.
Therefore, the right-hand side of equation (2.54) should be positive, as shown:

A2
Ky _ xyi-x* (2.55)
K, (3x2-2)

For the mixed mode loading condition 0 < I,%’ < oo, the direction of crack
propagation or the exact value of 8 can be obtained from equation (2.55) as
shown in Table 2.1.

TABLE 2.1
Crack Propagation Directions () for Different Values of K;;/K;

0 0° -10° -20° -30° —40° -50° —-60° -70° -70.4° -70.53°

Ki/K; 0 0.0888 0.1880 0.3129 0.4952 0.8252 1.7320 36.058 148.25 oo
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FIGURE 2.4
Crack propagation direction (shown by the dark line) under shearing mode (mode II) loading.

For pure shear (mode II) loading, 11<<H = o; therefore, the crack starts to prop-
agate at an angle 6 = —70.53° relative to the x, axis as shown in Figure 2.4.
However, as soon as the crack tip propagates a little distance, the applied
stress field no longer satisfies the pure mode II condition relative to the crack
tip and it becomes a mixed mode loading situation. Under mixed mode load-
ing condition, the crack propagation direction continuously changes and,
finally, the crack propagates at an angle 45° relative to the horizontal axis,
as shown in Figure 2.4, because this is the direction perpendicular to the
maximum tensile stress.

Note that the crack propagation direction has been obtained from the
maximum stress hypothesis—that the crack propagates in the direction per-
pendicular to the maximum o, direction. An alternative criterion can be
defined based on the potential energy release rate criterion. In this approach
the crack front can be extended in different directions by a small amount and
the reduction in the total potential energy of the problem geometry can be
calculated. The crack should propagate in the direction that gives maximum
reduction in the total potential energy. Similar but not necessarily identical
results are obtained from the maximum stress and the maximum energy
release rate criteria.

2.7 Mixed Mode Failure Curve for In-Plane Loading

One can experimentally observe that under mode I loading, the crack
starts to propagate along the 6= 0 line when the applied load reaches some
critical value that corresponds to some critical stress intensity factor K.
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From equation (2.47) one can compute the maximum o, value for crack
propagation:

K.
GQB‘maX = \/ﬁ (2.56)

In the maximum stress hypothesis, it is assumed that under mixed mode

loading the crack starts to propagate when G| ... reaches the same critical

value of J% . Therefore, if 6= 6, gives Gy|ma then the failure criterion can

be written as

! & 6.\ _ K
O-ee‘max - 2 {KI Ccos (2) 3KH S]Il( jCOS ( 2 j} = \/ﬁ
. K cos (02) 3K sm(ez) ( j
K () K g (0 o8]
..Kc{cos(zj 3K1 (2) (2)} 1

(2.57)

To generate the failure curve for mixed mode loading from equation (2.57),
the following steps are to be taken:

(1) Select a II<<H value.
(2) Obtain 6, usmg the relation (2.55) % K" = "fxf , where x=cos% and
—VJ1-x* =sin¥%-

(3) Obtain KI from equation (2.57).

(4) Obtain Kn from steps (1) and (3) since = %l x % .

(5) Plot ? Versus % The plot will look like the curve shown in

Figure 2.5.

The failure criterion developed here and presented in Figure 2.5 is called
the maximum stress (0,) criterion. Similar criterion can be derived from the
energy consideration instead. These two criteria are similar, although not
identical, as shown in Figure 2.6. Equation of the dashed curve in Figure 2.6
is given by

(Kfj + 1.56(K"J =1 (2.58)

while that for the solid curve is given by equation (2.56).
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0.867
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Ki/K,

FIGURE 2.5
Failure curve for mixed mode loading. K is the critical stress intensity factor.

2.8 Stress Singularities for Other Wedge Problems

In this chapter we have computed the stress field near a crack tip or a wedge
tip in a homogeneous solid. However, if the wedge tip meets one or two
interfaces (as shown in Figures 2.7a and 2.7b, respectively), then this problem
becomes more complex. The problem of Figure 2.7a has been solved by Suhir
(1988) and Hattori, Sakata, and Murakami (1989), while the problem described
in Figure 2.7b has been solved by Theocaris (1974) and Carpenter and Byers
(1987), among others. Interested readers are referred to these publications.

2.9 Concluding Remarks

Fundamentals of linear elastic fracture mechanics are presented in this
chapter. Here it is shown that the stress field should have a square root sin-
gular behavior near a crack tip. The concept of the stress intensity factor,
fracture toughness, failure curve, three modes of fracture, and the direction

Ky/K,
From Stress Criterion

0.867

0.8 From Energy Criterion

Xy Unstable
Stable

K/K,

(=}

FIGURE 2.6
Failure curves for the mixed mode failure from the maximum stress criterion (solid line) and
the energy criterion (dashed line). K_ is the critical stress intensity factor.
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FIGURE 2.7
Wedge in inhomogeneous solids. (a) Wedge meeting two different solids; (b) wedge meeting
three different solids.

of crack propagation for different fracture modes are introduced here. In a
short course on the fundamentals of fracture mechanics, all the concepts
discussed here should be covered. Depending on the availability of time
and interest of the students, a few more relatively advanced topics from sub-
sequent chapters, like Griffith’s energy balance, plasticity correction factor,
J-integral, fatigue crack growth, and numerical/analytical fracture mechan-
ics analysis, can be included in a short course. However, in a regular graduate
level course on fracture mechanics, all materials discussed in chapters 2-9
should be covered.
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Exercise Problems

Problem 2.1: An Airy stress function for an elastic solid without any
body force must be biharmonic. Can the following functions be Airy
stress functions in absence of body force?
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*1

FIGURE 2.8
A cracked cylinder subjected to antiplane loading.

(@) Alnr

(b) Br?

(© Crinr

(d) Dr?6

(e) EO

If you find some valid Airy stress functions in this list, then state
why were these not considered while solving the crack prob-

lem using Williams” method? Justify your answer with proper
derivation.

Problem 2.2: Let us consider a cracked cylinder that has a shape
as shown in Figure 2.8. The cylinder extends to infinity in the
x5 direction. External loads are acting only in the x; direction as
shown in the Figure. For this problem geometry u, = u, = 0 and
15 is nonzero. These problems are called antiplane or out-of-plane
problems.

(@) Show that the Navier’s equation of equilibrium
A+2mV(V-U) - (VX VxU)+E=0

(where U is the displacement vector and F is the body force vec-
tor per unit volume) is simplified to the following equation for
the antiplane problems in absence of body force:

Uz +us2 =0

(b) Following Williams’s approach, show that the stress and dis-
placement fields near the crack tip (v << 1) for this problem are
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X

V\

Ha

FIGURE 2.9
Cross-section of a cylinder made of two materials.

given by the following equations, where K;; is a constant:

Tos = K cos(gj
J2mr 2

T3 = K sin(ej
RN 2
KU[ 2r . (9)
U3 = ——,|—SsIn| —
u\Nrz 2

Problem 2.3: Consider the cross-section of a cylinder as shown in
Figure 2.9. It is composed of two materials, 1 and 2. The body is sub-
jected to antiplane stress field on surface S,. The surface S, is traction
free.

(@) Try to determine the character of the stress field in the neighbor-
hood of point O. (Set up the characteristic equation for nontrivial
solution but do not solve it.)

(b) Complete all necessary details for the case u; = i, and obtain the
stress field in the neighborhood of point O.

() Consider the two limiting cases, (1) i, =0, , finite and (2) u, =0,
U, finite, and then obtain the stress fields near the origin for both
these cases.

Problem 2.4: Two half spaces are joined together in a circular region
of radius a as shown in Figure 2.10. The circular connection
between the two half spaces transmits a resultant torque T,. In
the circular region at x; = 0, it is known that the shear stress field
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N
Tow 1/
FIGURE 2.10
Two half spaces joined in a circular region.
is given by
Cor
Ty3(1,0,0) = ———....... r<a
22 — 2
Tz (1,0,0) = 0., r>a

(@) Find the crack tip stress intensity factor in terms of torque T; and
the radius of the connected region.

(b) What is the mode of loading (I, I, or III) for this problem?

Problem 2.5: Take a long piece of chalk or any cylindrical brittle mate-
rial and make three surface cracks with a razor blade as shown in
Figure 2.11. All cracks should have same length and depth. Position
them as far as possible from one another so that there is no interac-
tion effect.

T
I
45°
17
—2
N
N 45°
_/

FIGURE 2.11
Cylindrical chalk with three surface cracks.
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(@) If a torque T is applied to the chalk as shown, identify the stress
modes (I, II, or III) for each crack.

(b) Which is the critical crack for this applied loading—in other
words, which crack will fail first and why?

(c) Break the chalk and see whether your prediction is right or

wrong.
Problem 2.6:

(@) Plotan interaction curve (K;/K. along the horizontal axis and K;;/
K. along the vertical axis) for mixed mode failure. Take at least
six values of K, /K| to plot this curve.

(b) Let a cracked material (K, =200 kip.in.%/2) be subjected to differ-
ent loading conditions that give following combinations of stress
intensity factors:

Case# 1 2 3 4 5 6 7
KI kip.in.”3/2 180 160 140 120 100 40 0
KII kip.in.?%/2 0 40 100 120 140 160 180

State for each case whether the crack will propagate.

Problem 2.7. Stress intensity factors K; and Kj; of a Griffith crack in an
infinite plate under opening mode (mode I) and shearing or sliding
mode (mode II) are o,(na)"/2 and 7,(ma)/? respectively, where ¢, and 7,
are applied normal and shear stress fields, respectively.

(@) Using this information, obtain K; and K}, for the loading shown
in Figure 2.12.

(b) What should be the initial and final directions (with respect
to the horizontal axis x) of crack propagation for this problem
geometry if 6is 30°?

»

trtttrg,

vy oy vy v

il
S

FIGURE 2.12
Griffith crack under mixed mode loading.
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Energy Balance

3.1 Introduction

Some fundamental equations of fracture mechanics are derived in this chap-
ter from the principle of conservation of energy. This approach of deriving
the fracture mechanics equations from the energy conservation laws was
first proposed by Griffith (1921, 1924), who is often considered the father of
modern fracture mechanics.

3.2 Griffith’s Energy Balance

In Figure 3.1 we see a cracked body subjected to some external loading at two
different states. In state 0 the body has a crack of surface area A. In state 1 the
surface area of the crack is A + AA. According to Griffith, if the total stored
energy in the body in state 0 plus if the work done on the body by the external
loads (body force and surface traction) going from state 0 to state 1 is greater
than the total energy stored in the body in state 1 then the body moves from
state 0 to state 1 because all objects try to achieve the minimum energy state.

Note that the total strain energy in state 0 is given by the following vol-
ume integral:

U= JUOdV (3.1

where U, is the strain energy density function, and V is the total volume
of the body. Work done by the applied loads going from state O to state 1 is
given by

W= [ £l =u0)dv+ [Tt ~up)ds 62

S

where f; is the body force per unit volume, T; is the surface traction per unit
surface area, and S is the surface area of the body.

113
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S I S S S
~ S

State 0 State 1

IR SR A A

FIGURE 3.1
A loaded cracked body with crack surface areas A (state 0) and A + AA (state 1).

Total energy in state 1 can be written as

1 (du} \( du}
E = |U,dV J ds jCT —Ty)pdV J‘, ! !
1 J dV+ | ydS+ | C(T - Ty)pdV + ZP( it )( it )dV (3.3)
v AA v v

On the right-hand side of equation (3.3) the first term is the strain energy,
the second term is the additional surface energy due to the creation of the
new crack surface area AA, the third term is the increase in the heat energy
in the body due to the temperature rise from T, to T}, and the last term is the
kinetic energy in the body. Note that yis the surface energy per unit area of
the new crack surface, C is the specific heat, and p is the mass density.

If the temperature rise from state O to state 1 is not large and the velocity
in state 1 is negligible, then one can ignore the last two integrals of equation
(3.3) and Griffith’s criterion for crack propagation from state 0 to state 1 can
be written as

JUOdV+Jﬁ(u} —u?)dV+Jn(u} —uP)ds 2juldV+ j YA
%4 14 S 14 AA

From equation (3.4),

JUOdV - j FuddV - jnugds > juldv - j FuldV - J' TuldS + _[ ydA (35
14 1% S %4 1% S AA

From the definition of the potential energy, IT (IT = U — W = strain energy-
work done by the applied loads), equation (3.5) can be rewritten as

M, > 11, + j ydA
AA

:>02H1—H0+J.ydA 3.6)

AA

:>H1—H0+jydA£0

AA
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For small AA, the preceding equation takes the following form:

I, -, +yAA<O

m =T,
AA

= <0

3.7)

ATI
=—+y7=<0
AA

:Z—gﬂ/so, as AA—0

Therefore, according to Griffith, if 4% +y <0, then the crack will propagate
and the body will move from state 0 to state 1. However, if ‘;—2 +7v >0, then
the body will not achieve state 1 because state 0 is the lower energy state and
hence more stable than state 1.

Later, Irwin (1948), Orowan (1955), and others concluded that the failure
criterion proposed by Griffith works if the surface energy term y is replaced
by a much larger term G, where G, is an order of magnitude greater than y
because the energy required to form a new crack surface area is much greater
than the free surface energy that Griffith suggested. The additional energy is
required to take care of other phenomena associated with the crack surface
formation such as plastic dissipation, heat generation, etc. With this modifi-
cation Griffith’s criterion for crack propagation takes the following form:

dri
- < .
7 +G, <0 (3-8)

When y is replaced by G, equation (3.6) takes the following form for
small AA:

I, +AA-G, <TI, 39)

Equation (3.9) is the alternate form of Griffith’s criterion for crack propagation.

3.3 Energy Criterion of Crack Propagation for Fixed Force
and Fixed Grip Conditions
Let us consider a spring-mass system at two states, 0 and 1. The system is

given a fixed displacement A. The mass contains a crack. The crack length is
a in state 0 and a + Aa in state 1, as shown in Figure 3.2.
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A A
ks ks
a a+ A
<>

a
State 0 State 1

<>

k(@) kyla + Aa)

FIGURE 3.2
Spring-mass system is given an elongation A. Crack length increases from a in state 0 to a + Aa
in state 1.

Let us denote the displacement of the spring and the mass by A; and A,
respectively, and let P be the force acting on the system. Since the stiffness of
the spring and the mass are k, and k,,, respectively, one can write

A=AS+Am=£+£=P i+i
k k, k

s m s m

(3.10)

=P= A
+

(; ;)
kS kl”

If the effective stiffness of the spring-mass system is denoted by k, then

P = Ak, (3.11)

Comparing equations (3.10) and (3.11),
1

k=713 312

() o

Strain energies U and U, in the spring and in the mass are given by

2 2
uolpa Pl ®
2 2k, ok (L_,_;)
S\ K (3.13)
2 2
Uolpa o PP_ A
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Therefore, the total strain energy U in the system

(3.14)

Total strain energies in the spring-mass system in states 0 and 1 are denoted
as U and U, respectively, where

- A2 3 A2
"ot arka) 2(k+ ) 315
A2 A2 o

U, = 2(;4_%) - 2(;+¢)
ks ky, (a+Aa) ks k,l,,

Equation (3.9) states that the crack propagates when IT, + AA.G, < IT;,. From
Figure 3.2 it is clear that applied force P does not move when the system
moves from state 0 to state 1. Therefore, there is no external work done on the
system. Hence, I1;, - I, = U, — U, and Griffith’s criterion of crack propagation
becomes

U,-U, +AA G, <0 (3.16)

From equations (3.15) and (3.16),

U ~Uy +AA-G, == LI 11 +G.t-Aa<0
(317)

2
.-.Ad[ ! J+GC <0

It should be noted here that in equation (3.17) ¢ is the thickness of the mass.
Therefore, the incremental crack length Aa and the incremental crack surface
area AA are related in the following manner:

AA=t Aa (3.18)

Let us now specialize equation (3.17) for two special cases: soft spring
(k, << k,) and hard spring (k, >> k,,).
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3.3.1  Soft Spring Case

For k, << k,,, one can write

4
;i;=¢<11:;>=ks(l+f;] zks{l‘iﬁij 619
Therefore,
e thadt) -
a\t+¢ ) da k,, da\ k
Combining equations (3.17) and (3.20),
é: ci[kl 1£]+GC <0
(3.21)
2)2
- AZI;S ;a(klmj +G. <0

Combining equations (3.10) and (3.19),

P:(klsf,}m)NA k, [1—£ngA-ks (3.22)

Both A and k, remain unchanged when the system moves from state 0 to
state 1. Therefore, from equation (3.22) one can conclude that the applied
force P remains unchanged. For this reason this case is also known as the
fixed force case.

Combining equations (3.21) and (3.22),

A% d P2 d( 1 1d( P
G=-dafll,g- 14 G.<0 G
2t da[k )Jr T da(kn,]+ ‘ tda(ka]Jr ‘ (3:23)

Substituting equations (3.13) and (3.18) into equation (3.23),

1d d du
G.=—2w,)+6,=-n g <o 3.24
tda(Zk JJ’ = gatn) T Ce==g G 629

or

LN (3.25)

dA
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3.3.2 Hard Spring Case

For k, >> k,,, one can write

a
m km
kJ = km (1_k+j = km (326)

=

m

1
135+1:,§(1+i’:):km[1+

Therefore,

d( 1 ]ka (3.27)

R 1
da\ 3 +7,

Combining equations (3.17) and (3.27),

2
= A2 dk,, +G,. <0
2t da
Combining equations (3.13) and (3.26),
U = A? _A%Z A%, 329
Tk (ged) P 2 o
From equations (3.28) and (3.29),
A? dk 1d (A% dau
a7 dky - mlL G =—"m4LG <0 3.30
2tdu+ctda(2)+ch+c 3:30)
or
_dU, . (3.31)
dA ‘
From equations (3.10) and (3.26), one can write
p= S -ak, (332)
(+2)

but

P=A,k, (3.33)
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Therefore, A,, = A. Since A is constant, A,, should also be constant. For this
reason this case is called the fixed grip case. Note that as the spring-mass
system moves from state 0 to state 1, although the displacement A,, remains
constant, the force P changes because k,, changes. Thus, this is not a fixed
force situation.

3.3.3 General Case

For the general case when the spring stiffness k, and the mass stiffness k,, are
of the same order, then

0 U SR U G T P S . P
da %+ﬁ (%+%)2 k2 ) da k,z,,(i_'_l)zdll (3.349)

[

Therefore, equation (3.17) becomes

2 2
adl 1 |- 1 5o (3.35)
(L_,_L) da
kS k”’

2t dal -+ 2t 2

From equations (3.13) and (3.35),

u, dk
w6 <o
th, da | f
u, dk
_ Y By
tk,, da 2 G

(3.36)

Note that the stiffness of the mass decreases as the crack length increases.

Therefore, % < 0. For this reason the negative sign appears on the left-hand

side of equation (3.36).

3.4 Experimental Determination of G,

In 1964 Strawley, Jones, and Gross described an experimental technique to
determine the critical strain energy release rate for a given material. They
fabricated a number of double cantilever specimens with different crack
lengths. A typical double-cantilever specimen is shown in Figure 3.3. When
two opposing forces (P) are applied at the free end, the crack opens by an
amount 2A. Therefore, the work done on the system that goes into the mate-
rial as the strain energy is given by

1 1
U=§PA+EPA=PA (3.37)
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FIGURE 3.3
Double cantilever specimen for experimental determination of G..

In terms of compliance (C =4%), the preceding equation can be written as

AZ
U=PA=PC="~ (3.39)

For the fixed force case, since P is constant, one can write from equation
(3.38):

du _ p2dc (3.39)
dA t da

For the fixed grip case, since A is constant, it is possible to write from equa-
tion (3.38):

au A2 dC 340

dA~ tC? da 340

Clearly, to evaluate strain energy release rate for given P or A one needs

to know the compliance C and its rate of change with the crack length a.

For this purpose a number of double cantilever specimens, as shown in

Figure 3.3, with different crack lengths are fabricated. Deflection (A) versus

load (P) curves are obtained experimentally for different specimens. A typi-

cal A-P curve is shown in Figure 3.4. Note that in this plot the slope of the
linear part is the compliance C.

FIGURE 3.4
Typical A-P curve of double cantilever specimens. Slope of this curve is the compliance.
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a

FIGURE 3.5
Experimentally obtained crack length versus compliance curve.

After measuring compliance of different specimens, compliance versus
the crack length curve is obtained, as shown in Figure 3.5.

3.4.1 Fixed Force Experiment

A cracked specimen as shown in Figure 3.3 is loaded by a pair of force P.
Then the load P is continuously increased until the crack starts to propagate.
If the crack propagation starts at load P = P, then the critical strain energy
release rate G, is obtained from equation (3.39):

_du| _prdc

G =22
CdA t da

(3.41)

critical

4C js obtained from Figure 3.5. Note that once the crack starts to propagate at

load P = P,, the applied load is not changed during the crack propagation. There-
fore, in this case the crack propagation occurs under fixed force condition.

3.4.2 Fixed Grip Experiment

If the crack propagation occurs under fixed force condition, as discussed in
the previous section, then once the crack starts to propagate, the specimen
fails. Alternately, the experiment can be carried out under fixed grip condi-
tions. In this setup, the specimen is subjected to a specified displacement
A and then this A is continuously increased until the crack starts to propa-
gate for A = A.. After propagating a little distance, the crack stops when A
is kept constant at A, since the compliance of the specimen increases as the
crack length increases. In this case the critical strain energy release rate G, is
obtained from equation (3.40):

2
G :_dU _iﬂ

“TTAAL. T 1C? da (342)

critical
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3.4.3 Determination of G. from One Specimen

If the crack length of the double cantilever specimen, shown in Figure 3.3, is
much greater than the depth of the beam (h), then one can use the formula
obtained from the beam theory to compute the crack opening A, as shown:

_Pa® 12Pa® _APa®
3EI 3Eth3  Eth?
A 4a3

“PEW G4
_dC _12a°
“da  Eth?

Therefore, for fixed force experiments combining equations (3.41) and
(3.43), one obtains

_ P2 dC_12a°F; (344)

G =
"t da  Et?h3

and for fixed grip experiments combining equations (3.42) and (3.43), one
gets

_ A AC_ A PP 120 3NER
C O tC?2da t 1646 ~ Eth3 4g*

(3.45)

Equations (3.44) and (3.45) give less than 10% error when 7 > 3.

3.5 Relation between Strain Energy Release Rate
(G) and Stress Intensity Factor (K)

Two crack propagation criteria have been defined earlier. These two criteria are:

(1) The crack propagates when ol > le% . For opening mode load-

max

ing, this criterion implies that when the stress intensity factor K
exceeds the critical stress intensity factor K, the crack propagates.

(2) The crack propagates when the strain energy release rate (G = +4¥)
exceeds the critical strain energy release rate G.. Fixed force and
fixed grip conditions determine whether the positive or the negative
sign of (44) should be taken.
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FIGURE 3.6

Cracked body under fixed-grip loading. Crack length is a for state 0 and a + Aa for state 1.

G and K (or G, and K|) cannot be completely independent of each other. In
this section, the relation between these two parameters is investigated. For
this purpose consider a cracked body being stressed and held under fixed
grip condition as shown in Figure 3.6.

The original crack length is a in state 0 while it is a + Ag in state 1. However,
in state 1 a closing force is applied, as shown in the Figure, to close BC part
of the crack whose length is Aa, to make state 1 identical to state 0. To close
the crack length BC, one needs to do some work, which increases the strain
energy of the body. Therefore, the strain energy in state 0 is greater than the
strain energy in state 1 before applying any closing force. Since the problem
is linear, the difference in the strain energy between these two states is sim-
ply half of the work done by the closing forces going through the closing
displacements.

Note that the closing forces in BC in state 1 should be identical to the stress
field in state 0 along line BC because, after the crack length BC is closed,
states 0 and 1 must be identical. Therefore, the closing force amphtude at
position x(=Aa — x*) over an incremental length dx is given by F
top and bottom surfaces of the crack along line BC. The plate thickness is
denoted by t. The displacement traveled by this closing force to bring the two
surfaces of the crack together along line BC is obtained from the u, expres-
sion given in equation (2.48). Note that for the displacement computation, the
crack tip is at point C. Therefore, the radial distance of the point of interest
from the crack tip is x* and the angle measure is +x for the top surface and
—n for the bottom surface. Thus, the displacement of the closing forces on the
two faces of the crack is given by

=+ K “E( N %) A+v)(x+1) (3.46)

== Ky ( +
YT 2uN2m
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Therefore, the strain energy stored in the body by the closing forces going
through the closing displacements is given by

Aa
1 K, K;(Aa-x)
\/27tx E\27n

tKI ,/(Aa— X) i
Jx

AU =2 >< 1+ v)(x + D)tdx

(3.47)

= (1+v)(1c+1)

The integral can be solved in closed form by substituting

x=Aasin?0
(3.48)
dx =2Aasin 0 cos 640

Then,

An

Aa X) Aa 0 .
J J@a-n J NOACOSY, | 1sin 6 cosOd6 = ZAaJCOSZOdG
0

d Aasin@

(3.49)

2 %
1 2
= AaJ (1+ cos20)d0= Aa[e + zsinZQ} =

0

TAa

0

Substituting equation (3.49) into equation (3.47),

=L+ VD th da-y) (14 V) + 1);K%”TA“

_ (1+v)(x +1) tAaK?
4 E (3.50)
AU K?
L—=0—
tAa E

AU K?
= =0—
AA E

Note that for the plane stress problems,

1 3-v+1
1) =, v)(ﬁv”) =1 (351

1 1 3-v
—4(1+v)(x+1)—4(1+v)(1+v+
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and for the plane strain problems,
1 1 1
o= Z(1+ v)(k+1)= Z(l +v)(3-4v+1)= Z(l +v)4(1-v)=1-v? (3.52)

In the limiting case, as AA — 0, equation (3.50) becomes

_du_ Kb

G=4 _
ir %E

(3.53)

Similarly, the critical stress intensity factor and the critical strain energy
release rates are related:

KZ
G. = 05?5 (3.54)

One can also show that for mixed mode loading the strain energy release
rate is related to the three stress intensity factors in the following manner
(Broek 1997):

1-vi( ., o, Ki
E (K1+K11+1 v (3'55)

G:

3.6 Determination of Stress Intensity Factor (K)
for Different Problem Geometries

In this section stress intensity factors (SIFs) of different problem geometries
are obtained by applying equation (3.53) to the elasticity solutions. In some
occasions when the exact elasticity solutions are not available, engineering
judgments are applied to estimate the SIF.

3.6.1 Griffith Crack

A crack of finite length (say 24) in an infinite plate, as shown in Figure 3.7,
is known as the Griffith crack. Note that a Griffith crack does not interact
with another crack, inclusion, or the problem boundary since none of them
is present in the neighborhood of the crack. When the Griffith crack is sub-
jected to the uniaxial stress field o at the far field, then the original problem
can be decomposed into two problems, I and II, as shown in Figure 3.7.
Note that problem I does not have any crack. The crack position of the
original problem is shown by the dashed line in problem I. Clearly, in
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111 -0
T -0

1 2“ 1

Problem I Problem II
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FIGURE 3.7
Cracked plate or cross-section of a circular crack in an infinite solid subjected to an axial stress
(original problem) can be decomposed into two basic problems, as shown.

problem I along the dashed line the stress field is 0,, = 0, and 07, =0. How-
ever, in the original problem, on the crack surface o,, = 6y, =0. To satisfy this
boundary condition in problem II, the stress field o,, = -0 is added on the
crack surface. When problems I and II are added, both far field conditions
and the stress-free boundary conditions on the crack surface are satisfied.
Therefore, the superimposed solutions of problems I and II should be the
solution of the original problem.

For problem I the stress field at all points is given by 0,, = 6,and oy, = 0y, =
0. For problem II the vertical displacement field at the two crack surfaces can
be obtained from the theory of elasticity as shown:

U, = (kK + 1):—;\ [a% — x? (3.56)

where the origin of the x;—x, coordinate system coincides with the center of
the crack. Kappa is the same as that defined in equation (2.48).

Strain energy stored in problem II geometry by the applied stress going
through the displacement of equation (3.56) is given by

U= 2x2j%oo(;<+1)%;1/a2 " otdx, (3.57)
0

In this expression t is the thickness of the plate. The multiplying factor 4 in front
of the integral appears because the integral is carried out on only one fourth of
the crack surface. The preceding integral is simplified further to obtain

a

a ) 5
U:J;(KH)CLOJaz—x%tdxl:WJ‘\/ﬂz—xlzdxl (3.58)
0

0
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Substitute x, = a sin6, dx, =a cos@ d0 in the integrand to obtain

7 7 7

“ 2
J:W —x}dx, = Jucos@ a%? —a?sin? 040 = (12.,‘cos2 9d9=%J(1+c0520)d9
0 0 0 0
:czz{wsmze}/z:naz (3.59)
2 2 |, 4

Substituting equation (3.59) into equation (3.58),
2 7 2 2
U= (k +D)odt J‘ oy Y, = nma?(x +1)ot (3.60)
2 8u

Therefore,

ou _ dU _2ma(k +1)og _ (x+1)
0A 2tda  2x8u  8u

osma (3.61)

The crack surface area A = 2at; therefore, dA = 2tda. The total strain energy
stored in problem I is independent of the crack length. Therefore, the rate of
change of strain energy with the crack length variation in the original prob-
lem is the same as that of problem II.

Combining equations (3.53) and (3.61),

K U _(k+1) ,

_(k+D(A+v)
YETaaT sy Ty o™
(3.62)

k= (5

Note that for both thin plate (or plane stress) and thick plate (or plane strain)
problems, the argument inside the first square root of equation (3.62) is 1 as
shown below.

For plane stress problems,

(K +1)(1+V) 1(3—v

4 1+v

1(3—v+1+v
4o 4

+1)(1+v)= 1oy

i )(1 +v)=1  (3.63a)

and for plane strain,

(k+1)(1+v) _ B3-4v+D(1+v) _ 4(1-v)(1+v) _

1 (3.63b)
4o 4(1-v?) 4(1-v?)
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From equations (3.62) and (3.63) one can conclude that for both plane stress
and plane strain problems, the opening mode stress intensity factor for the
Griffith crack is given by

K, =o,ra (3.64)

Equation (3.56) remains unchanged for the biaxial state of stress. There-
fore, for this case also, equation (3.64) is valid.

If the far field is subjected to a shear stress field o;, = 7, instead of the nor-
mal stresses (0,, and o;;), then following similar steps one can show that the
sliding mode stress intensity factor is given by

Ky =Tyma (3.65)

3.6.2 Circular or Penny-Shaped Crack

Let us now consider a penny-shaped crack of radius a4 in an infinite solid.
Figure 3.7 shows the cross-section of a circular (or penny-shaped) crack in an
infinite solid. Following the same arguments presented in section 3.6.1 it can
be shown that the rate of change of strain energy with the variation of the
crack surface area in the original problem is the same as that for problem II.
From the theory of elasticity, the vertical displacement of the circular crack
surfaces in problem II can be obtained as

1y = B%\/az —r (3.66)

In the preceding equation the vertical displacement (normal to the crack
surface) is denoted as u,, and the radial distance r is measured from the crack
center. The factor B is defined as

B= é(l —v2) (3.67)
T

Therefore, the strain energy stored in problem II by the applied stress field
on the crack surface is given by

a > a
U=2X%jﬁ%\/a2 —12 -0y 2mrdr = ZEQO'O J.\/zzz — 12 -rdr (3.68)
0 0

Substitute r = a sin6, dr = a cos@ 6 in the integrand to obtain

0 ’Vz %
J\/az —12.rdr = J a2 sin 0 cos O+/a? — a? sin? 0d0 = a3 J cos?0sin0do
0 0 0 (3.69)

ad n;,  ad
= 3[_ cos? G]OA = £y
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Substituting equation (3.69) into equation (3.68),

U = 2eBoie’ (3.70)
3E
Note that
A=ma?,0A =2rwam 3.71)
Therefore, from equations (3.53), (3.70), and (3.71),
Ki_u_ 1 au_ 1 2npoie _poa
E O0A 2mada 2nma E E
(3.72)

~ K :\/FGO\/E
o

What should be the right value of « for the penny-shaped crack problem?
Note that this problem is neither plane stress nor plane strain, but rather axi-
symmetric. However, axisymmetric problems are closer to plane strain prob-
lems than to plane stress problems because under plane strain conditions all
movements in the x; direction are restricted and in axisymmetric conditions
movements in the 0 direction are restricted. Therefore, the value of o should
be same as that for the plane strain condition. Thus, we get

B_40-v)_4
a wm(l-v?) =« (373)

Substituting equation (3.73) into equation (3.72),

K, :\/EGO\/E=\/ZGOJE=200\/E (3.74)
o T T

3.6.3 Semi-infinite Crack in a Strip

Knauss (1966) and Rice (1967) solved the problem of a semi-infinite crack
in a strip as shown in Figure 3.8. The strip of width 2k and thickness ¢ is
stretched in the vertical direction by an amount 2A. Note that as the crack
advances by an amount Ax, region A on the right side of the crack is reduced
and transformed to region B. Note that the strain energy of region B is zero
because top and bottom segments of region B simply go through the rigid
body translation. However, region A is under tension and therefore should
have some strain energy.

If segment A is subjected to uniaxial stress ¢, =0, = E(}), then the strain
energy density in the segment U, = 1 E(4)2. Note that if segment A is sub-
jected to uniaxial strain ¢,, = & = 4, then also the segment should have the
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FIGURE 3.8
A semi-infinite crack in strip of infinite length.

same strain energy density. For uniaxial stress o,, = 0, but ¢, # 0, and for
uniaxial strain o, # 0, but ¢,, =0, in both cases 1¢o,.¢€,, =0.
Strain energy of segment A,

2 2
AUzlE(A) 2hAx~t:E(Aj hAx -t (3.75)
2 \h h

Therefore, the strain energy release rate as the crack propagates is given by

2 2
a _ AU —1}5( j hAx-t:E(Aj h
A tAx tAx \hK I

il
e

) (3.76)

)i

3.6.4 Stack of Parallel Cracks in an Infinite Plate

F\l> w\l>

Let us consider a set of parallel cracks of length 24 and spacing 2/ in an infinite
sheet as shown in Figure 39. If the plate is subjected to uniaxial state of stress
0,,=Op what should be the stress intensity factor? Note that for & >> g, the interac-
tion effect between the neighboring cracks can be ignored. In this case the stress
intensity factor should be equal to that of the Griffith crack, K; =0, oma.

On the other hand, for crack length (2) much greater than the spacing (h),
or L1, the cracks may be considered as a stack of semi-infinite cracks, as
shown in Figure 3.10, because the crack tips on the right side are not affected
by the crack tips on the left side and vice versa.

Note that a strip of width 2 (shown in Figure 3.10 by dashed lines) is uni-
formly stretched to width 2k + 2A under the tensile load. It should also be
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FIGURE 3.9
A stack of parallel cracks of length 24 and spacing 2h.

noted here that there is no difference between the geometry of Figure 3.8
and the strip of width 2/ shown in Figure 3.10 when it is stretched uniformly
to the new width 2 + 2A. The stress intensity factor for this case should be
O'ox/ﬁ as given in equation (3.76).

Therefore, for these two extreme cases, h >> a and h << g, the stress inten-
sity factor is given as

K h
K, =0ma = L_—1 for —>>1
o ooNma a
(3.77)
K,=opJh = K, I for L

ooma "\ 7a a

FIGURE 3.10
Right half of Figure 3.9. Stack of semi-infinite cracks in a plate subjected to uniaxial tension.
Crack length is infinite relative to its spacing.
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FIGURE 3.11
Stress intensity factor variation in a stack of parallel cracks as shown in Figure 3.9 for different
h/a ratios.

If we plot the variation of the normalized stress intensity factor (nor-
malized with respect to SIF of the Griffith crack), then we get the plot of
Figure 3.11. Note that after knowing the curves for small and large values of
h/a, it is possible to interpolate the curve for intermediate values of h/a, as
shown in Figure 3.11 by dashed lines, using our engineering judgment. Stress
intensity factor obtained in this manner generally gives less than 5% error.

3.6.5 Star-Shaped Cracks

We now consider the geometry of multiple cracks radiating out from a point
and thus forming a star-shaped crack system, as shown in Figure 3.12. The
cracked plate is subjected to a biaxial state of stress. A total of n cracks are
equally spaced. Note that n can be either even or odd. If a brittle plate, such
as a glass plate, is struck by an object, then the impact force can form such a
star-shaped crack system. Our interest is to obtain the stress intensity factor
for this crack system for different values of n. Note that if the crack length is
a, then the diameter of the star formed by n cracks is 2a.

FIGURE 3.12
Star-shaped crack system subjected to biaxial state of stress.
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For the special case of n = 2, a Griffith crack of length 2a is formed. For
this case we know the stress intensity factor from equation (3.64). For very
large value of , the angle 2z between two neighboring cracks is very small.
Therefore, in this case it can be approximately assumed that the neighboring
cracks are almost parallel to each other. The spacing between two neighbor-
ing cracks is2h =222 In section 3.6.4, we have seen that the closely packed
parallel cracks of spacing 2h subjected to an applied stress field of oy in the
direction perpendicular to crack surfaces give a stress intensity factor value
of O'O\/E .

Now the question is for the biaxial state of stress: What should be the
applied stress near the crack tip in the direction perpendicular to the crack
surfaces? To answer this question, it should be noted here that for a large
number of cracks, the star-shaped crack system behaves almost like a circu-
lar hole. From the theory of elasticity (see chapter 1, example 1.13) one knows
that when a plate containing a circular hole is subjected to a biaxial state of
stress, the circumferential stress 0,y = 20, at the periphery of the circular
hole due to the stress concentration effect, as shown in Figure 3.13. Note that
the circumferential stress is perpendicular to the crack surface whose tip
touches the periphery of the circle. Therefore, for large n the stress intensity
factor of the star-shaped crack system should be equal to 26,vh = 260\/”7_” .
Combining the two special cases: (1) n =2 and (2) n = a large number, the fol-
lowing equation is obtained:

K
K, =o,Jma = L_ -1 for n=2
o ooNma
(3.78)
ma K,

_ 2 for n=Large Numbers

K, =20,,]— =
n

FIGURE 3.13
Circumferential stress at the periphery of a circular hole is 20, when the plate is subjected to
a biaxial state of stress.
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FIGURE 3.14
Variation of stress intensity factor for star-shaped crack as the number of cracks n increases
from 2 to a large value.

If the normalized stress intensity factor (¥ = ﬁ) is plotted for the two spe-
cial cases shown in equation (3.78), we obtain the plot of Figure 3.14.

Similar to Figure 3.11, here also engineering judgment is used to interpo-
late the curve between n = 2 and large values of , and shown as the dashed
line in Figure 3.14. Note that for very large 7, the SIF becomes zero. This is
justified because very large n essentially transforms the star-shaped crack
into a circular hole. Circular hole causes stress concentration, but the stress
field near the periphery of the circular hole is finite. Therefore, SIF must be
zero. For a more elaborate study on this problem, the reader is referred to
Clark and Irwin (1966).

3.6.6 Pressurized Star Cracks

If the star-shaped crack system shown in Figure 3.12 is pressurized instead
of having traction-free crack surfaces and the internal pressure inside the
crack is not constant, then the problem becomes more complicated. This
type of problem appears in mine blast situations. Its solution has been
given by Westmann (1964). To solve this problem, all forces acting on a
solid segment between two neighboring cracks are first considered. The
free body diagram of this segment in Figure 3.15 shows the applied pres-
sures on the two crack surfaces and the internal stress in the solid between
two cracks.

Note that for small 6 (i.e., large n), the normal stress oy, can be approxi-
mately assumed to be equal to p(r). For computing o, we apply the force
equilibrium condition in the horizontal direction of the solid segment to

FIGURE 3.15
Free body diagram of the solid segment between two neighboring cracks.
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obtain
p 0
o,p0+ ZJ- p(r) sin(zj dr=0 (3.79)
0

In Figure 3.15, r varies from 0 to p, and p can be any value less than or
equal to a. Since the pressure field is perpendicular to the crack surface,
its horizontal component is obtained by multiplying the pressure p by
sin($). However, since 6 is small, sin(§) =4 = 2% = Z. Thus, equation (3.79)
becomes

p
cr,rpZir + ZIp(r)Edr =0
n n
0
2 1]
0=y j P =—;jp(r)dr (3.80)
0

0, (== [ prer
0

Therefore, the radial stress at the periphery of the circle of radius a is
0, (a)=—1]; p(r)dr’. Then the stress, strain, and displacement fields outside
the star crack region (r > a) are very close to a plate with a circular hole of
radius 2 and subjected to a compressive radial stress o,,(a). From the theory
of elasticity (see problem II of example 1.13), it can be shown that the radial
displacement in a plate with a circular hole subjected to a constant compres-
sive radial stress o,,(a) is given by

(1) = —”—Vo,xa)ﬁ
E r (3.81)
U ( )_ - E Grr(a)a

Therefore, the strain energy stored in the region r > a in the plate of thick-
ness t containing the pressurized star crack is given by

U= J.G,,(a)u (aytade =1 mZJ o2 (a)d6 (3.82)

0
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and the strain energy in the region r < a, which is the cracked region:
b tr |
U = ﬁj(aﬁ + 00— 2v0',rc799)27rrdr = fj(ofr + 05 — 2vc7w0'99)rdr (3.83)
0 0

For the general case when the pressure p varies as a function of the radial
distance 7, the total strain energy U = U, + U, can be obtained from equations
(3.82) and (3.83). Then the stress intensity factor can be derived from equation
(3.53).

Let us consider the special case when p(r) = p,, a constant. In this case,

1 a ’ ’ 1 a ’
o, (a)= —;J.p(r Ydr’ = —EJ.pOdr =—p, (3.84)
0 0

Then, from equations (3.82),

2n
1+v 1+v 1+v
U, = Emzj' pido =~ tarpiom = mpgat =" (3.85)

0

Note that at a radial distance r from the center, 6, = —p, (obvious from
Figure 3.15), and o,,(r)=—1[, p(r')dr’ = — L[ pydr’ = —p,; substituting these
expressions of 6, and o,, U; can be computed as

u, = %’j(ag + 0% — 2V0,,0y ) 1dr = %J(Z —2v)pgrdr
0

0

(3.86)
_20-wtr ,a*> _ (1-v)tzpja®
e 7 E
Therefore, the total strain energy in the cracked plate,
— 242
U =U,y+U; = apiat Y g mpgar 1Y = Li? = (3.87)
If total crack area is A, then
A =nat

.. 0A =ntda
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Therefore,

ou _ oU _ 4mpjat _4mpja _ K}
0A ntoa  mtE  nE  E

Jra

(3.88)

2
~ K= P

3.6.7 Longitudinal Cracks in Cylindrical Rods

The next geometry considered is a cylindrical rod with equally spaced longi-
tudinal cracks propagating from the periphery to the central axis of the rod.
The cross-section of such a cracked rod is shown in Figure 3.16. One applica-
tion of this problem can be found in computing the stress intensity factors of
cracked fuel element pellets of nuclear reactors.

Consider the case when the spacing between two neighboring crack tips is
much smaller than the crack length. In other words, we first investigate the
case when 2%, <<(R—1) and the crack is loaded by normal pressure p(r).
The free body diagram of a solid segment between two neighboring cracks
for r varying between r, and R is shown in Figure 3.17.

From the force equilibrium in the radial direction for small angle 6, one
can write

R
o, 2 =2 pr) L
n n
r (3.89)

1 R
SO, = ;Jp(r’) dr’

Therefore, the tensile stress applied along the periphery (r = ;) of the central
region (r<ry)is o, =+ If p(r")dr’. From the theory of elasticity we know that

2n/n

FIGURE 3.16
Cross-section of a cracked cylinder.
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FIGURE 3.17
Free body diagram of a solid segment between two neighboring cracks of a cylinder shown in
Figure 3.16.

when a circular disk is subjected to a uniform radial stress o,, on its periph-
ery, the state of stress inside the disk is given by

R
Go=0, = j () dr’ (3.90)
n
n

Therefore, the strain energy stored in the inner core (r < r) is

1 1
U= EJ(Grrgrr +0ggE)dV = EJ‘(O}% +0g — ZVG,,O'%)dV (391
14 Vv
Let us consider the special case of uniform pressure p(r) = p,. In this case,
1] 1] R
o (=" J p(rydr = '[ podr =L (R - 1) = p, ( - 1) (392)
r r r r

Therefore, the stress field in the inner core region (r < ry) is given by
Ogy = 0,, = po(5—1). Strain energy stored in the inner core,

n n
1 mt
u, = EJ-(O',?, +0% — 2V0,,04 ) 27trtdr = EJ.(O',Z, + 0% — 2V0,,0y ) 1dr
0 0
n

j o2rdr

0

21—Vt
E
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2(1 v)ztps [ R J’ vdr _2(1 V)rtpd 1 ? 7
E E r1 2

(3.93)

_ 2
_ (=v)mtps Vb}”% (R2 2R, +17)

The length of the rod is assumed to be t. In the outer region (R <7 <t,), Cgo=
-p, and 0,, = py(¥ —1); therefore, the strain energy stored in the outer region
is given by

u, = éj‘(aﬁ + 0% —2V0,,0g ) 27rtdr
2
_m Jpg {(Rq) +1+2v(R—1)}rdr
" E r r
n

R{
1
f {

2

—2R+1+1+2v(R)—2v}rdr
r r

_ mtp} J‘
J

’”E”O H —2(1— V)R +2(1— v)r} dr

R
T
R

(3.94)

A&
_ o [ j—Z(l—v)R+Z(1—v)}rdr
E r r

n

2R
”;’70 {RZ Inr—2(1— v)Rr +2(1— v)}
2
- %{Rz(hﬂ{—lnrl)—2(1—v)R(R—r1)+(1—v)(R2 —r2))
Therefore, the total strain energy stored in the cylinder is given by

u=u, +U, :%”5{122(11112—1nr1)—2(1—v)R(R—rI)+(1—v)(R2 -7)}

L d=Vmtps VE)” 5 (R2 ~2Rr, +12) (3.95)
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Total crack area A = nt(R —ry); .. dA =—ntdr,, since R does not change but r,
changes when crack lengths change. Therefore,

M o _ mtps HRZ (—rlj+2(1—v)R—(l—v)2ﬁ}+(l—v)(—2R+2r1)}(—nlt)

0A o 0A E )

2 2 2 R2 2
= HPOHR—2(1—v)(R—rl)}+2(1—v)(R—rl)}= %&z a&
nE || n nE n E

R (3.96)
K, = poR | = pJaR |~
nr nr

In the preceding equation, & = 1 is taken because plane stress condition is
assumed; in other words, two ends of the cylinder are free to expand or shrink.

When r, is close to R or the crack tips are close to the cylinder surface, the
stress intensity factor is given by

K, =1.12pyJma =1.12p,/n(R - 1) (3.97)

The factor 1.12 appears because of the presence of the free surface near the
crack tip. This point will be discussed in detail later. Equation (3.97) can be
written in the following form:

K; =1.12pyn(R-1) =1.12p,wR /(1—2)

(3.98)

e
=112, | 1-—
pPoV7R R

Stress intensity factors given in equations (3.96) and (3.98) are plotted in
Figure 3.18. In this plot the horizontal axis varies from 0 to 1 as the crack
length varies from 0 to R. Note that the stress intensity factor increases with
increasing crack length and decreases as the number of cracks increases.
Engineering interpolation functions (curved dashed lines) are used to inter-
polate the curves between small crack lengths and large crack lengths.

3.7 Concluding Remarks

The relation between the stress intensity factor and the strain energy release
rate is derived in this chapter from the energy balance principle proposed
by Griffith (1921, 1924). Using this relation, the stress intensity factors for
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FIGURE 3.18
Variations of SIF in a cracked cylinder with variations of crack lengths and number of cracks.
See Figure 3.16 for the problem geometry.

various problem geometries are obtained and presented. Stress intensity fac-
tors for some more practical problems are given in chapter 7.

References

Broek, D. Elementary engineering fracture mechanics, 4th rev. ed. Dordrecht, the
Netherlands: Kluwer Academic Publishers, 1997.

Clark, A. B. J. and Irwin, G. R. Crack propagation behaviors. Experimental Mechanics,
6(6), 321-330, 1966.

Griffith, A. A. The phenomena of rupture and flow in solids. Philosophical Transactions
of the Royal Society London, A221, 163-198, 1921.

——. The theory of rupture. Proceedings of the First International Congress of Applied
Mechanics, Delft, Biezeno and Burgers eds., Waltman, 55-63, 1924.

Irwin, G. R. Fracture dynamics. In Fracturing of metals, ASM, 29" National Metal
Congress and Exposition, 147-166, 1948.

Knauss, W. G. Stresses in an infinite strip containing a semi-infinite crack. ASME
Journal of Applied Mechanics, 53, 356-362, 1966.

Orowan, E. Energy criteria of fracture. Welding Journal, 34, 157s-160s, 1955.

Rice, J. R. Discussion on paper by Knauss. ASME Journal of Applied Mechanics, 34,
248-250, 1967.

Strawley, J. E., Jones, M. H., and Gross, B. Experimental determination of the depen-
dence of crack extension force on crack length for a single-edge-notch tension
specimen. NASA report #TND-2396, 1964.

Westmann, R. A. Pressurized star crack. Journal of Mathematics and Physics, 43, 191-198,
1964.



Energy Balance 143

P
1
Ly+ ZAI |i
I
v a
p

2

FIGURE 3.19

Exercise Problems

Problem 3.1: The distance between points A and B is increased from
L,y to Ly + 2A when opposing loads P are applied (see Figure 3.19).
Load-deflection (P-A) curve for the specimen for crack lengths a and
a+ da (6a << a) are shown in Figure 3.20 by straight lines OB and OC,
respectively. Express in terms of different areas of Figure 3.20 the
following parameters:

(@ The strain energy stored in the material with crack length a, load
P, and deflection A.

(b) If the crack length is increased from a to a + da, keeping P fixed,
which area does represent the change in strain energy in the mate-
rial? Does it give an increase or decrease in the strain energy?

(c) If the crack length is increased from a to a + da, keeping A fixed,
which area does represent the change in strain energy in the mate-
rial? Does it give an increase or decrease in the strain energy?

(d) What is the change in the potential energy for cases (b) and (c)?
Does the potential energy increase or decrease in cases (b) and (c)?

A B C
Y
P
P
e D E
Ok >
A

FIGURE 3.20
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FIGURE 3.21

Problem 3.2: A Griffith crack in a large thin plate is loaded in an opening
mode by two concentrated loads P as shown in Figure 3.21. It produces
a maximum crack opening at the center, given by the expression

4P In(a)+C
tnE

where t is the thickness of the plate, E is the Young’s modulus, 4 is
the half crack length, and C is a constant.

(@) Calculate the stress intensity factor for this problem geometry.

(b) If the material has critical stress intensity factor K. = 200 kip.
in."%2, find the load P for which a 2-in. long crack will start to
propagate in a 1-in. thick plate.

(o) After the crack starts to propagate, if the load is not reduced,
should the crack continue to propagate until the plate fails com-
pletely (unstable crack propagation) or should the crack propaga-
tion stop after a while (stable crack propagation)?

Problem 3.3: If the critical crack length is equal to 1.5 cm for a Griffith
crack in a plate subjected to a biaxial state of stress o, at the far
field,

(@ What should be the critical crack length 2a, when 18 equally
spaced cracks of length 24, intersect at the center points to form
a star-shaped crack system with radius a, and this system is sub-
jected to the same stress field in the same material? Note that the
angle between two neighboring cracks is equal to 10°.
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(b) What should be the critical crack length 24, when only two cracks
of length 24, intersect each other at midpoint at an angle 90° and
subjected to the same stress field in the same material?

(©) If a large number of parallel cracks of length of 22 and distance a
between two neighboring cracks are present in the same material
and are subjected to uniaxial tension o, in the direction perpen-
dicular to the crack axis, then what is the critical crack length 24,?
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Effect of Plasticity

4.1 Introduction

In chapter 2 it was shown that the elastic solution gives infinite stress value
at the crack tip. It implies that the material very close to the crack tip can-
not remain elastic when the cracked body is loaded. This chapter discusses
how the plastic zone size in front of the crack tip can be estimated, and what
effect, if any, this plastic zone has on the stress computation and failure pre-
diction of a cracked solid.

4.2 First Approximation on the Plastic Zone Size Estimation

A cracked plate subjected to tensile stresses is shown in Figure 4.1a. The free
body diagram showing all forces on the top half of this linear elastic plate
can be seen in Figure 4.1b. Upward and downward forces acting on the free
body diagram of Figure 4.1b keep the top half of the plate in equilibrium.
However, to keep the plate in equilibrium, the stress very close to the crack
tip obtained from the elastic analysis exceeds the yield stress (oys) of the
material.

If the solid material is assumed to be an elastic—perfectly plastic material
with yield stress oy, then the maximum internal stress at the cut cannot
exceed oys. Then the stress field variation along the cut surface should be
as shown in Figure 4.2. However, simply chopping off the stresses that are
greater than oy as shown in Figure 4.2a, violates the equilibrium condi-
tion because it reduces the total downward force in the free body diagram
of Figure 4.2a. The unbalanced force is denoted by the shaded area A in
Figure 4.2a. This unbalanced force can be taken care of by simply extending
the extent of the plastic zone from r, to ar, as shown in Figure 4.2b. Note that
the shaded area A must be equal to the additional area obtained from the
extension of the plastic zone size, as shown in Figure 4.2b.

147
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FIGURE 4.1
(a) Cracked plate under tensile load; (b) free body diagram of the top half of the plate obtained
from elastic analysis.

4.2.1 Evaluation of r,

For the opening mode loading, the stress field ahead of the crack tip is given
by (see equation 2.47) o = fz% . From this equation and Figure 4.2a one can

write

@.1)

FIGURE 4.2

Internal stress field ahead of the crack tip for an elastic—perfectly plastic material. (a) Free
body diagram is not in equilibrium—unbalanced force A is shown; (b) free body diagram is
in equilibrium.
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4.2.2 Evaluation of ar,

The unbalanced force area A of Figure 4.2a can be obtained from the follow-
ing equation:

A= K jdr: K, .
!( Tonr Oys NS 4.2
Substituting equation (4.1) into equation (4.2),
s Oy
\/E rl\oys )  “2nloy
4.3

2 K2 1 K2 1 K?
= . T A _77_0-1/57/
2% Oyg 27 Oyg 27 Oys

Note that the chopped off shaded area and the rectangular area shown
in Figure 4.3a both have the same area, A = oyr,. After chopping off the
shaded region, the downward force in the free body diagram of Figure 4.3a
is reduced to A + B, while the total downward force needed for equilibrium
is 2A + B. Therefore, to satisfy the equilibrium condition, the plastic zone
must be extended to ar, as shown in Figure 4.3b. If or, is much smaller than
the plate width on which the downward force acts, then the total downward
force in the elastic region may be approximately assumed to be B in both
Figures 4.3a and 4.3b. Adding the downward force (2A) of the plastic region,
one gets the total downward force = 2A + B, which is sufficient to satisfy the
equilibrium condition. From Figure 4.3b, it is clear that ar, = 2r, or a = 2.

FIGURE 4.3

(a) Free body diagram is not in equilibrium—downward force is A + B; (b) free body diagram
is in equilibrium—downward force is 2A + B. The elastic region should be much greater than
the plastic region.
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Therefore, the plastic zone size ahead of the crack tip is given by

2
R=oar, =2r,= 1[K’] 44
7\ Oys

Note that the elastic stress field in Figure 4.3b is obtained by simply moving
the elastic stress field of Figure 4.3a toward the right by an amount r,. This
field can be obtained by simply moving the crack tip toward the right by an
amount r, or increasing the crack length from a to a + r,. It is a common prac-
tice for fracture mechanics analysis to change the crack length fromatoa+r,
to take into account the effect of plastic deformation in front of the crack tip.

4.3 Determination of the Plastic Zone Shape in Front
of the Crack Tip

In the previous section the plastic zone length has been calculated ahead
of the crack tip for 6 = 0 only. In this section we calculate the extent of the
plastic zone for all values of 6. Note that for opening mode loading, the stress
field in front of the crack tip is obtained from equation (2.47):

c, = K, cos (9) 1+ sin? (9)
RN Y 2 2
_ K ( [ ) 4.5)
00 = Porr < 2
G, = K, sin(ej cos? (0)
AN Y 2 2

Then the principal stresses can be obtained from the two-dimensional stress
transformation law or from Mohr'’s circle analysis:

2
Oy, = On * 000 4 \/( On ;(’9") +(0,0)? 4.6)

Substituting relations (4.5) into equation (4.6) gives
o, = K cos(e 1+sin 0
' 2 2

{313
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0;=0 for plane stress condition

0 4.8)
=v(o, +0,)=2V——cos (j for plane strain condition
( 1 2) W 2 p

Von Mises and Tresca’s yield criteria, given in equations (4¢.9) and (4.10),
respectively, can be used to calculate the plastic zone size:

(0, —0,)* +(0, = 03)* +(03 — 0,)* = 207 4.9)
Max(|oy-0,|,|0,-03],|05-01|)=0ys (4.10)

Substituting three principal stresses in Von Mises’ yield criterion (equation
4.9), one gets for plane stress problems:

[ e (2 (9ot (2 sn(2)f

2 2
+1+sin? (9) ~2sin (9) =262, (@.11)
2 2
K2

For plane strain problems, one gets
2 2
K, 4 cos? (0) sin2 (9) + cos? (9) 1+sin (0) -2v
|27, 2 2 2 2
2
+ cos? (9) 1- sin(e) -2v; |=20%
2 2
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K cosz(e)Psmz *{(1 2v)+sin| — }*{(1 2v)—sin j}} 20
2z, 2

2
KT cos? (Z) {4 sin? (g) +2(1-2v)* +2sin? (zﬂ =20%s

2z,
2
r,= _KP cos? (9) 6sin? (9) +2(1-2v)? (412)
4702 2 2

2
_ K 2(1-2v)? cos? (9) +65sin2 [9) cos? (0)
4no? 2 2 2

YS

2
S, 2(1-2v)?2 cos? (9) +3 sin2 0
4ol 2) 2

Since the actual plastic zone size R is approximately two times r, (see
equation 4.4), one can write

,
R(6) =2r,(0)= Ki 2 cos? o + Esin2 0
2n0? 2) 2

YS L

for plane stress problems
4.13)

K? | 6), 3.
R(6)=2r,(0) = 27rol'2 2(1-2v)?2 cos? (2) + Esm2 9}

YS L

for plane strain problems

The plastic zone shapes given in equation (4.13) are shown in Figure 4.4.

Plane Stress

Plane Strain

FIGURE 4.4
Shape of the plastically deformed regions in front of the crack tip for mode I loading obtained

from Von Mises’ yield criterion for plane stress and plane strain conditions.
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/_\(Plane Stress
Plane Strain
(a) Mode Il Plastic Zone Shape (b) Mode 1l Plastic Zone Shape

FIGURE 4.5
Plastic zone shapes for (a) mode II and (b) mode III loading.

Note that the plane strain plastic zone size is significantly smaller than
that for the plane stress condition. Along the 6= 0 line (in front of the crack),
one can obtain from equation (4.13):

r,

[ R‘plane stress _ P
R . T
‘plane strain o 4

Clearly, this ratio is 6.25 for v=0.3 and it is 9 for v=0.33. Thus, it is very sensi-
tive to the Poisson’s ratio of the material.

For mode Il and mode III loadings, the plastic zone shapes can be obtained
in the same manner considering appropriate stress field expressions. These
shapes are shown in Figure 4.5. For more detailed discussion on the plas-
tic zone shapes, readers are referred to McClintock and Irwin (1965). In
Figure 4.5 one can see that for mode Il loading, plane stress and plane strain
plastic zone sizes are identical at 6= 0. This is because, under mode Il loading
at 6=0, the stress field from equation (2.47) is obtained as

plane stress _ 2 cos? (%) + %Sinz 0 _ 1
| 2(1-2v)2 cos? (£) +3sin2 @ 0=0_ (1-2v)>

plane strain 90

4.14)

0,=0,=0

415
K, (4.15)

o, =
v~ T2

For the stress field given in equation (4.15), one can easily show from Mohr’s
circle that two principal stresses in the xy plane are

Ky o, = — Ky

G = , =
! \27zr 2 2@y

The third principal stress in the z-direction is 0 for plane stress and
0, = V(0; + 0,) =0 for plane strain conditions. Since all three principal stress

4.16)
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components match for plane stress and plane strain problems along the
0 = 0 line, the plastic zone size on this line is identical for plane stress and
plane strain problems.

It is well known that when the plate thickness is much smaller than the
characteristic dimensions of the plate, the problem is a plane stress problem;
when the plate thickness is much greater than the characteristic dimensions,
the problem is a plane strain problem. Length and width of the plate and vari-
ous dimensions of defects in the plate (such as the radius of a circular hole in
the plate, if such a hole exists) are considered as the characteristic dimensions.
A crack has two dimensions: its length and width. However, since the crack
width is infinitesimally small, the plate thickness is always much larger than
the crack width. For deciding whether the plane stress or the plane strain
condition dominates in a cracked plate, the plate thickness is compared with
the plastic zone size R in front of the crack tip instead of the crack width. If the
plate thickness is much smaller than R, then it is a plane stress problem; if it is
much greater than R, then the plane strain condition dominates.

One major difference between a crack-free plate problem and a cracked
plate problem should be mentioned here. When a crack-free plate is sub-
jected to in-plane stresses only and is free to expand or contract in the out-
of-plane direction, the plate is subjected to a pure plane-stress condition since
no out-of-plane stress is developed in the plate. This is because no restrictions
are imposed on its movement in the out-of-plane direction. However, in a
loaded cracked plate, the plastic zone is formed in front of the crack tip and
the plastically deformed zone has different Poisson’s ratio (close to 0.5) than

lane Strain

Plane Stress

FIGURE 4.6
Plastic zone shape in front of the crack tip in a thick plate.
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the material in the elastic region. Therefore, the plastically deformed region is
not free to move in the out-of-plane direction. For this reason, when a cracked
thick plate is loaded, the central part of the plate is subjected to the plane strain
condition since the out-of-plane normal stress is developed in this region; the
sections close to the two free surfaces of the plate exhibit the plane stress con-
dition because, on the plate surfaces, out-of-plane normal stress and shear
stresses are zero. Therefore, under mode I loading, the plastic zone shape in a
thick plate in front of the crack tip should be as shown in Figure 4.6.

4.4 Plasticity Correction Factor

For a cracked plate subjected to an applied stress o in the far field (far away
from the crack), where 2~ <0.5, the plastic zone size is very small. The
small plastic zone has negligible effect on the computed stress field. For
0.5 < 3%- < 0.7, the plastic zone affects the computed stress field. Its effect can
be taken into account by incorporating the plasticity correction factor. When
the applied stress field is in this region, the elastic analysis after plasticity
correction can correctly model the problem. However, when the applied
stress is too large, ;2->0.7, the elastic analysis with plasticity correction is
not adequate to correctly model the problem. In this situation complete elas-
toplastic analysis must be carried out to solve the problem.

Plasticity correction is taken into account following Irwin’s suggestion,
simply by increasing the crack length from a to a + r, or from 24 to 2(a + r,).
Justification for this modification is given in section 4.2. Let us now investi-
gate how it affects the stress intensity factor of a Griffith crack.

Since the modified crack length after plasticity correction is 24" = 2(a + r,),
the modified stress intensity factor is

K=oJra' =0 [m(a+r) 4.17)

Substituting equation (4.1) into equation (4.17),

2 2
K?=o0%n(a+r,)=0°n a+1{K} =0?| ma+ K2
21| Oyg 207,
1 2
K2 {1 - (“] } = ona (418)
2\ Oys

oma

1-4(&)

~ K=
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TABLE 4.1

Critical Crack Lengths and Plastic Zone Sizes in Different Materials for Applied
Stress = 50% of Yield Stress

Material K, (ksi +/in ) Oys (ksi) 0, (ksi) a, (in.) r, (in.)
4340 Steel 42 214 264 0.0429 0.0061
7075-T6 Al 30 73 81 0.1882 0.0269
Maraging steel 82 250 268 0.1199 0.0171

Equation (4.18) can be used to calculate the critical crack length a,in different
materials whose critical stress intensity factor K, is known.

o./ma,

2
1-4 ()
k| 1f oY
a, = 1--| -2
o2 2\ Oy

If applied stress o = %=, then equation (4.19) gives
2 2 2

A P 1(1j _ 7K (4.20)
7o? 282 8mo?

From equation (4.20), critical crack lengths for o = %% in different materials
can be computed as shown in Table 4.1.

For more complex expressions of stress intensity factors (SIFs), the modi-
fied SIF may not be obtained in closed form such as the one given in equation
(4.18). In such situations modified SIF can be obtained through iterative cal-
culations, as shown in equation (4.21). The iterative steps shown in equation
(4.21) generally converge within a few iterations:

K =

c

(4.19)

KO = f(a®)
1 (KoY
a® = g0 4 rp(0> =q0 4 — | >~
21\ Oyg
K® = f(a®)

1 (koY
a® =a® + ¢V = g0 4 —| —
21\ Oys
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K@ = f(a®)

4.21)

2
(n=1)
a(n) — a(n—l) + rp(n—l) — a(n—l) +i K
21\ Oy

Km = f(a<"J)

4.5 Failure Modes under Plane Stress
and Plane Strain Conditions

4.5.1 Plane Stress Case

Equations (4.7) and (4.8) give principal stress expressions near a crack tip
for both plane stress and plane strain conditions. Note that under the plane
stress condition o, > 0, > 03. Therefore, from Mohr’s circle (Figure 4.7a), it is
clear that the maximum shear stress occurs at a plane that bisects o, and o;
directions, as shown in Figure 4.7b. In Figure 4.7b, o, and o, are shown in
the xy plane in two mutually perpendicular directions. However, it should
be noted here that in the xz plane just ahead of the crack tip (6 = 0°), o3
and o, coincide with y and x directions, respectively, for the opening mode
loading.

We have seen earlier that if it is assumed that the crack propagates in
the direction perpendicular to the maximum normal stress, then the crack
should propagate along 6= 0° plane. This is true when the material behaves
like a brittle material. This theory is known as the brittle fracture theory.

03

FIGURE 4.7
For plane stress condition, (a) Mohr’s circle and (b) principal stress directions and maximum
shear directions near a crack tip.
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However, when a large plastic zone is formed in front of the crack tip, as in
the case of the plane stress loading condition, then the material in front of the
crack tip is ductile, not brittle. This is because plastically deformed materi-
als show ductile behavior and are weak in shear. For this reason, under the
plane stress loading condition the material in front of the crack fails along
the maximum shear plane. Figure 4.7b clearly shows that the maximum
shear plane forms an angle with the crack surface (xz plane); therefore, the
failure plane should make an angle relative to the crack surface if the ductile
failure occurs.

4.5.2 Plane Strain Case

Poisson’s ratio is close to 0.5 in the plastically deformed region. Therefore,
for plane strain condition c; = ZV%COS(%)Z % cos(2). Thus, in this case,
from equations (4.7) and (4.8) one concludes that o; > o; > 0,. Mohr’s circle
and the maximum shear direction for the plane strain case are shown in
Figure 4.8. Therefore, if the plastically deformed zone size is large, resulting
in ductile failure, then the failure plane should propagate along the maxi-
mum shear direction as shown in Figure 4.8b. However, under plane strain
conditions, since the plastic zone size is small, the material exhibits mostly
brittle failure—that is, the failure occurs not in the maximum shear stress
direction but in the direction perpendicular to the maximum normal stress,
as discussed in chapter 2.

As discussed before, a cracked plate shows ductile failure under the plane
stress condition and brittle failure under the plane strain condition. There-
fore, the failure surface and the crack propagation direction show significant
difference between plane stress and plane strain situations, as illustrated in
Figure 4.9. The failure surfaces in Figure 4.9 are presented for the opening
mode loading for three different plate thicknesses: thin, medium, and thick.
Note that the stress intensity factor at failure is significantly higher under
the plane stress condition. To be on the safe side, the critical stress intensity
factor of a material is defined as the stress intensity factor at failure under

max

(a) (b)

FIGURE 4.8
For plane strain condition, (a) Mohr’s circle and (b) principal stress directions and maximum
shear directions near a crack tip.
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Failure Surface
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Failure

|

FIGURE 4.9
Critical stress intensity factor variation with plate thickness (f). Failure surfaces for different
plate thicknesses are also shown.

plane strain condition, which is achieved when the plate thickness exceeds
2.57R, where R is the plastic zone size ahead of the crack tip as defined in
equations (4.4) and (4.13).

4.6 Dugdale Model

Dugdale (1960) proposed a simple elastoplastic analysis to compute the extent
of plastic zone in front of a crack tip. He assumed the plastic zone size to be a
thin strip BC in front of the crack AB as shown in Figure 4.10a. The material
in region BC inside the thin strip whose boundary is marked by the dashed
line in Figure 4.10a is plastically deformed. For the analysis presented next
the material is assumed to be elastic—perfectly plastic. Then the stress level

Plastic Zone

N/ \C IVVVINC
D/ R W
b < >

b

(a) (b)

FIGURE 4.10
(a) Dugdale model of plastic zone in front of the crack tip; (b) effect of the plastic zone on the
elastic material, oy is the yield stress.
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in the plastic zone should be equal to the yield stress oys. The force applied
by the plastic region on the elastic material should be opposite to what the
plastic region experiences from the elastic region. Therefore, if the plastic
region is subjected to a tensile stress of oy, then the plastic region should
apply a closing stress of the same amount on the elastic material ahead of the
crack tip B along the elastic—plastic boundary, as shown in Figure 4.10b. If the
plastically deformed thin zone is now removed and only the elastic part is
analyzed, then the elastic region will be subjected to additional closing stress
Oys, as shown in Figure 4.10b along the removed plastic zone boundary. It
will also increase the effective crack length by an amount b since the crack
tip will advance from point B to C.

One can compute the stress field near the crack tip C at point Q at a distance
r from the tip (see Figure 4.10b) by adding the contributions of all applied
loads and those of the closing forces. Therefore,

K,+K;

2nr  \2mr

In equation (4.22) K;is the stress intensity factor for the crack ABC in absence
of the closing forces and K| is the stress intensity factor for the crack ABC
when it is subjected to only the closing stress oys.

The SIF of a semi-infinite crack subjected to two concentrated forces as

shown in Figure 4.11 is given by
K=p. 2% 4.23)
o

From equation (4.23), the stress intensity factor K; of equation (4.22) can be
obtained by simple superposition:

b
. /2 do /2 b {819
KI:_O-YS ;J—EZ—GYS ;[2\/&]02—0)/5 ; (424)
0

o= 4.22)

:

FIGURE 4.11
A semi-infinite crack in a linear elastic material, subjected to two opening forces P at a distance
o from the crack tip.
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From equations (4.22) and (4.24), the stress at a point Q in front of the crack
tip C can be obtained:

K; K _ K 5 8 1 _ 1 K -o ,/S—b (4.25)
\/27r \/27rr N2mr N ror 2 T\ ’

However, point Q is in the elastic region. Therefore, the stress at point Q
must be finite. Therefore,

8b
KI_O-YS ; =0

2
8\ Oys

Equation (4.26) gives the length of the plastic zone obtained from the Dug-
dale model. Note that the plastic zone size R (equation 4.4) obtained from the
r, model, described in section 4.2, and the plastic zone size b (equation 4.26)
obtained from the Dugdale model are different but are of the same order.
It should be noted here that Barenblatt (1962) also solved this problem in a
slightly different manner. For this reason sometimes this model is called the
Dugdale—Barenblatt model.

4.26)

4.7 Crack Tip Opening Displacement

When a plastic zone is formed in front of a crack tip, as shown in Figure 4.10a,
the original crack tip at point B opens up as the cracked structure is loaded. This
opening displacement of the crack tip is called the crack tip opening displace-
ment (CTOD). Failure of the structure can be predicted from the CTOD value;
when the CTOD reaches a critical value CTOD,, the crack starts to propagate.

In Figure 4.10b the opening displacement at point B can be estimated in
the following manner. Considering the crack tip at point C, the displacement
at point B due to external loads can be computed from equation (2.48) after
substituting r = b and 6=+

, Ki Jb 2K, (1+vIWb

CTOD® = K+1)=
2u\21 Ge+D)= . E2r

(k +1) 4.27)

Substituting K, from equation (4.26) in the preceding equation,

o 2K 1+ vib 20ys(1+ VWb 8b_ 4oysb
CTODO=Z2 N (1) = 225 2N i+ 1) = S22 (14 )14 k)

(4.28)
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However, true CTOD at point B is smaller than CTOD® because the clos-
ing stresses shown in Figure 4.10b try to reduce the opening displacement at
point B. A pure elastic analysis in absence of the plastically deformed materi-
als in region BC sandwiched in between the closing stresses predicts a clos-
ing displacement CTOD® (due to closing stresses only) at point B equal to
negative of CTOD® as shown:

CTOD® = *5_(;<+1)J' dK; = 2(“")*/— (1+ )jays \/7 da

4.29)
1+ v)A+Kx) 2Vl

2%(1 + v)f x) _[ z%f

nE

__4oysb 1+ v)(1+x)
nE

In equation (4.29) the negative sign implies the closing force. Note that
the magnitude of CTOD® is reduced when the plastically deformed mate-
rial is introduced in region BC, as shown in Figure 4.10a. In presence of
the plastically deformed material, the closing stresses cannot move the
crack surfaces inward freely. After incorporating all these factors, one can
show that the true CTOD (at point B of Figure 4.10a) predicted by Dugdale
model is

2
CTOD = 20Y5b A+ =298 K g as
nE 8\ oy
(4.30)
_(1+v)1+x) K} aK?

4 Eoys Eoys

where o = 1 for plane stress problems and o = 1 — V2 for plane strain
problems.

From equation (4.30) it is easy to see that CTOD is related to the stress
intensity factor as well as the strain energy release rate in the following
manner:

2
crop=2Ki _ G @.31)
Eoys Oys

For more elaborate discussion on CTOD, readers are referred to Burdekin
and Stone (1966).
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The crack tip opening displacement from the r, model of plasticity can be
computed in the same manner, substituting r = r, and =17 in equation (2.48):

CTOD =2 K+1)= 1+v)(1+x
2 T”( ) N (1+v)(1+x)

2K, 1 (K
- T+V)(1+K)——| =L 4.32
E2r ( X )\/27F [Gysj 432
_A4v+r)( Kf)_4(0+v)A+x) Kf 4 0KP_4 G
rE Oy ) = 4 Eoys mEoys 7 Oy

CTOD and the plastic zone size for in-plane problems (from both the r, model
and the Dugdale model) and out-of-plane problems are given in Table 4.2.
So far we have seen that the crack propagation can be predicted by comparing
the stress intensity factor (K), the strain energy release rate (G), and the crack tip
opening displacement (CTOD) with their critical values K, G, and CTOD,, respec-
tively. Relations between these three parameters are given in Table 4.2. Other
parameters as listed below are also used for predicting the crack propagation:

critical stress intensity factor, K,

critical strain energy release rate, G,

critical crack tip opening displacement, CTOD,
critical plastic zone size, R,

critical strain intensity factor, K strin

critical J-integral value, |,

Most of these parameters work very well in brittle fracture theory, when
the plastic zone size is small (for ;Z- < 0.5) and work reasonably well when
it is not too large (for 0.7 > 2->0.5)- However, for ductile fracture condi-
tion (for ;2= >0.7), many of the preceding parameters often do not work

TABLE 4.2

Plastic Zone Size and the Crack Tip Opening Displacement for In-Plane
and Antiplane Problems

7, Model Dugdale Model Antiplane Problems
Plastic zone size 2 2 2

1) ki x| ki 1 Ky

7\ Oys 8\ oys 7\ Tys
crop 40Ki 4G ok _ G 2 K

m Eoyg 7 Oy Eoys Oys 7T GTyg
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well to predict the failure. Note that under brittle fracture and ductile
fracture conditions, the failure modes that give rise to different failure
surfaces and crack propagation directions under these two conditions are
different, as illustrated in Figure 4.9. Therefore, it is not uncommon to con-
sider different parameters as the governing or critical parameters for pre-
dicting the crack propagation under brittle fracture and ductile fracture
conditions.

It should be also noted here that when the material in front of the crack tip
is plastically deformed, the strain at the crack tip can be unbounded for finite
stress value if the material shows elastic—perfectly plastic behavior. From this
singular strain field, a strain intensity factor can be defined and its critical
value can be used as a parameter for predicting the crack propagation. The
J-integral will be discussed in the next chapter.

4.8 Experimental Determination of K,

To obtain K, for brittle fracture theory one needs to make sure that the
failure occurs under a plane strain condition that produces a relatively
small plastic zone and a smaller value of K. compared to the K, value under
the plane stress condition (see Figure 4.9). If the specimen thickness is not
large enough to produce the plane strain condition, then the specimen
fails under the plane stress condition and the K, value is overpredicted
for the brittle fracture theory. The experiment should be conducted on a
crack with a sharp flat front and the crack should propagate at a stress
level that is not too close to the yield stress. All these constraints should be
satisfied if the experiment is conducted following the ASTM guidelines as
described next.

4.8.1 Compact Tension Specimen

The diagram of the compact tension specimen with all its dimensions is shown
in Figure 4.12. To ensure the plane strain failure and correct K. measurement,
the following constraint conditions must be satisfied according to ASTM:

WepeW

4 2
0.45W < a < 0.55W (4.33)

2
a, B2251R=25 (K”)
Oys

A step-by-step testing procedure is given next.
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%)
X> 0.55 W 12 W

FIGURE 4.12
Compact tension specimen.

4.8.1.1 Step 1: Crack Formation
(1) Cut or machine a notch (or blunt crack of finite thickness) in the pat-
tern shown in Figure 4.13a.

(2) Apply fatigue loading to grow a sharp fatigue crack from the
machined notch as shown in Figure 4.13b. During this crack growth
process, the crack front should be almost straight and

max —

K, <0.60K. 4.34)

Of course there is no guarantee that the preceding two constraint conditions
(crack front being straight and satisfaction of equation 4.34) are satisfied dur-
ing the fatigue crack formation process. We will check later if these condi-

tions are satisfied.
“ // &
/

Machined Surface

Crack Front

DIRY

Fatigue Crack

FIGURE 4.13
(a) Shape of the machined notch and (b) the fatigue crack developed from the machined notch.
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Failure Point

Clip Gage

P
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C——————
v
P

(a) (b)

FIGURE 4.14
(a) Loading of compact tension specimen; (b) P-A curve obtained experimentally by loading
the specimen to failure.

4.8.1.2 Step 2: Loading the Specimen

Load the specimen as shown in Figure 4.14a. Measure the applied load (P)
and the crack opening displacement (A). The crack opening displacement can
be measured by a clip gage as shown in the Figure. The P-A curve shows a
linear behavior in the beginning and then it becomes nonlinear before fail-
ure. At this step the constraint condition that must be satisfied is that the
nonlinear region in the P-A curve should be relatively small. If it shows a
large nonlinear behavior before failure, then that is an indication of a large,
plastically deformed zone developed during the plane stress failure. In that
case specimen thickness must be increased and steps 1 and 2 will have to be
carried out again.

4.8.1.3 Step 3: Checking Crack Geometry in the Failed Specimen

Observing the surface finish of the failed specimen, identify the crack front
of the fatigue crack that was present before the monotonically increasing
load P was applied in step 2. Note that the surface finish of the fatigue crack
is different from the surface finish of the crack formed during the unstable
crack growth under monotonically increasing load P:

(1) Measure crack lengths a,, a,, and a, along the thickness of the plate at
B/4 intervals as shown in Figure 4.15. Also measure the crack lengths
ag; and ag, along the two surfaces of the plate.

(2) Compute the average crack length 4,, = $(ay +a, +ay).
(3) Make sure that the following constraint conditions are satisfied:
@ |a;—a,| <0.05a,,.

(b) lag—a,l<01a,,i=1,2.

av/
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FIGURE 4.15
(a) Failure surface of the compact tension specimen.

() All parts of the crack front must be at a minimum distance of
0.05a,, or 1.3 mm, whichever is smaller, from the machined
notch.

If any of the preceding three constraint conditions are violated, then steps 1,
2, and 3 will have to be carried out with a new specimen.

4.8.1.4 Step 4: Computation of Stress Intensity Factor at Failure

The SIF at failure (K;) can be computed from the failure load P, using the
following formula:

Kr= \/—f( ) (4.35)

where

1 3 5 7 9

f[”) =296 (“)2 ~1855 (”jz +655.7 (“jz ~1017.0 (“)2 +638.9 (“)2
W W W W W W

(4.36)

Equation (4.36) is valid only in the region 0.45 < 4 < 0.55. For this reason
the second constraint condition of equation (4.33) is necessary. Variation of the
function f () in this range is shown in Figure 4.16. Clearly, for 0.45 < % < 0.55,
the function value variation is given by 8.34 < f(i%) <11.26.

Srawley (1976) proposed an alternate expression for the function f()
of equation (4.35). Srawley’s expression is given in equation (4.37). It covers
a wider range: 0.2 < <1. In this range the maximum error of the stress
intensity factor obtained from equation (4.37) is less than 0.5%:

. (2+ %)[0.886 +4.64 (&) -13. 32(%) + 14.72(%) _5. 6%) J
/ ( ) B 3 @37)

(1-#%)

E\&
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FIGURE 4.16
Variation of the function given in equation (4.36).

4.8.1.5 Step 5: Final Check

K computed in step 4 is the critical stress intensity factor K. of the specimen
material if the following two constraint conditions are satisfied:

1) a,,, B>2.5(5ry

oYs
(2) During the fatigue crack growth described in step 1, the maximum
stress intensity factor did not exceed 60% of the stress intensity fac-
tor at failure, or K, Jiatigue < 0.60K.

If the preceding two conditions are satisfied, then K = K. If these condi-
tions or the conditions stated in step 3 are not satisfied, then consider the K;
obtained in step 4 as the first estimate of K. and design a new specimen sat-
isfying the constraint conditions stated in equation (4.33). Then repeat steps
1-5 to obtain K..

4.8.2 Three-Point Bend Specimen

The diagram of the three-point bend specimen with all its dimensions is shown
in Figure 4.17. To ensure plane strain failure and correct K, measurement, the
following constraint conditions must be satisfied according to ASTM:

S 4.38)

2
a, B=2.5nR = 2.5( K. )
Oys
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FIGURE 4.17
Three-point bend specimen.

Steps 1-3 for the three-point bend specimen are identical to the corre-
sponding steps for the compact tension specimen described in sections
4.8.1.1-4.8.1.3 and are not repeated here. Step 4, which involves the SIF calcu-
lation at the failure load, differs from section 4.8.1.4 because the K formula
for the bend specimen is different from equation (4.35):

_ BS a
K = FIEE f (W) 4.39)

where

f (V‘;) =29 (V‘\l/); - 4.6(&/)2 +21.8 (V‘\’/)i - 37.6(&/)2 + 38.7(&)2 (4.40)

Equation (4.40) is valid only in the region 0.45 < % < 0.55. For this reason
the second constraint condition of equation (4.38) is necessary. Variation of the
function f(4%) inthisrangeisshowninFigure 4.18. Clearly, for 0.45 < {- < 0.55,
the function value variation is given by 2.28 < f()<3.15.

Srawley (1976) proposed an alternate expression for the function f(5) of
equation (4.39). Srawley’s expression is given in equation (4.41). It covers the
entire range of . In this range the maximum error of the stress intensity
factor obtained from equations (4.39) and (4.41) is less than 0.5%:

@.41)

W

o ) [199-(1)(1- 1)(215-3954 +27 1]
/i)

2(1+24)(1-4)2

Step 5, described in section 4.8.1.5, is then repeated to obtain the crucial stress
intensity factor K, for the specimen material.
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0.45 0.5 0.55
a/W

FIGURE 4.18
Variation of the function given in equation (4.40).

4.8.3 Practical Examples

Let us investigate what size of specimen is needed to test 7075 aluminum
and reactor steel A533B.

4.8.3.1 7075 Aluminum

For 7075 aluminum, K, =27 kip-in."¥2, 64 =79 ksi; .. 2.57R = 2.5(%)? = 0.29”.
Therefore, different dimensions (g, B, etc.) of the specimen should be greater
than 0.29 in. This condition is easy to satisfy.

4.8.3.2 A533B Reactor Steel

For reactor steel K. = 180 kip-in.?2, 6ys = 50 ksi; ... 2.57R = 2.5(1)2 = 32.4”.
Therefore, different dimensions (g, B etc.) of the specimen should be greater
than 32.4 in. This condition is not easy to satisfy for either compact tension
specimen or three-point bend specimen, as illustrated next.

4.8.3.2.1 Compact Tension Specimen

Let us take B = 33 in. (Note that B must be greater than 32.4 in.) Then,
W=2B=66in.

w2205 f(“) =10
W W

From equation (4.35),

f( ) _10P;
BJ_ 3366
~P= 180X1303\/% =4.8x10° pounds

This failure load is too high.
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4.8.3.2.2 Three-Point Bend Specimen

Let us take B =33 in. (Note that B must be greater than 32.4 in.) Then W=2B =
66 in., S ~ 4W = 132",

=05 g(”) ~2.75
W W

From equation (4.39),

P.S a Pr x264
Kp=—t2 ol L )= SEZ22 4575
‘ BWMg(wj 33 x 66:/66
. F=M=4.4x106pounds
4x2.75

This failure load is too high.

4.9 Concluding Remarks

A complete analysis of fracture mechanics problems after ignoring the theory
of plasticity is not possible because some plastic deformation always occurs
near the crack tip. Whether the effect of this plastic deformation is negligible
or not is discussed in this chapter. When it is negligible, the straightforward
application of the linear elastic fracture mechanics (LEFM) analysis is per-
mitted. When the plastic zone size is small but not necessarily negligible,
LEFM analysis with some corrections for plastic deformation gives good
results also. However, when the plastically deformed region is large, LEFM
no longer works and complete elastoplastic analysis must be carried out. This
chapter discussed what parameters and criteria decide whether the plastic
zone size is (1) negligibly small so that straightforward LEFM is applicable;
(2) not negligible but still small, which requires LEFM analysis with plastic-
ity correction factor; or (3) large, for which complete elastoplastic analysis is
required.

In chapter 1 the background knowledge on the theory of elasticity that is
necessary to understand the linear elastic fracture mechanics was presented.
However, no fundamental knowledge on the theory of plasticity, such as the
derivation of Von Mises and Tresca’s yield criteria, used here was given in
chapter 1. Readers who lack the fundamental knowledge on plasticity are
referred to basic text books on the theory of plasticity (Hill 1950, Mendelson
1968).
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Exercise Problems

Problem 4.1:

(@) Using Tresca yield criterion, determine r,(6) (first estimate of the
plastic zone in front of the crack tip for mode I loading) for a state
of plane stress and plane strain (Poisson’s ratio, v = 0.3).

(b) Plotr,(6) for the case of plane stress in front of the crack tip show-
ing the plastic zone shape.

(c) Determine the ratio of r,(0) for plane stress to that for plane
strain.

Problem 4.2: Assume a center-cracked tensile specimen as shown in
Figure 4.19 and let the crack tip stress intensity factor be given by

‘mu

2

FIGURE 4.19
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K2 = o2masec (Mj
w

Assumea=W/4.1f r,= R/2=a/10, then find the ratio of the average net
section stress oy [0y = oW/AW-24a)] to the yield stress oy (a) ignor-
ing plasticity correction and (b) considering plasticity correction.

Problem 4.3: A specimen is being tested to determine K. Unfortunately
the recorder broke during the test and nobody noticed, so the value
of the load was not recorded. However, just prior to failure it was
estimated (from the dimple location) that the plastic zone size ahead
of the crack tip was about R =0.2 in. If oy is 50 ksi, give an estimate
of K. based on (a) 7, model and (b) Dugdale model.
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5

J-Integral

5.1 Introduction

An integral expression proposed by James R. Rice (1968) can compute the
strain energy release rate for a cracked elastic solid in a different and simpler
manner. This integral, named after its inventor, is known as the J-integral.
The J-integral value also helps one to predict when a crack should propagate,
as discussed in this chapter.

5.2 Derivation of J-Integral

Consider a cracked plate of thickness ¢ containing a crack. An area A with
boundary S contains the crack tip as shown in Figure 5.1. If the control vol-
ume of Figure 5.1 experiences a surface traction T along the boundary S and
no body force, then the potential energy in the control volume is given by

H:{JUdA—ITudS}tz{IUdA—jﬂude}i 6.1

In equation (5.1) U is the strain energy density and u is the displacement
vector. If the crack is extended by an amount Ag, then the potential energy
in the control volume should change because both integrands of equation
(5.1) would change. If the potential energy in the control volume is denoted
as I, before the crack extension and as I, after the crack extension, then the
potential energy release rate can be written as

_on__ lim jrm, -1, (.2)
0A Aa—0| tAa

Note that for a crack in an infinite plate the potential energies I, and
I1, can be computed by extending the crack toward the right, as shown in
Figure 5.2a, or keeping the crack length fixed but moving the control volume

175



176 Fundamentals of Fracture Mechanics

FIGURE 5.1
Control volume with area A and boundary S contains a crack tip.

toward the left by the same amount, as shown in Figure 5.2b. In Figure 5.2b,
boundary S; (marked by the solid line) and S, (marked by the dashed line)
are the same boundary after it is shifted toward the left by amount Aa. A, and
A, are areas enclosed by boundaries S, and S,, respectively.

From equation (5.2) and Figure 5.2b it is possible to write

ar_ lim {Hz—Hl}

T 0A Aa—0] tAa
lim
_ JUdA JTudS - _[UdA jTudS ¢
Aa—)OtAa . ’
! ! (5.3
lim
_ J UdA - JTudS+JTudS
Aa—>0Aa
lim
f UdA+_[Tuds _[Tuds
Aa—)OAa
A-Ay
%2
ﬂ\
> X
|e| A
Aa

FIGURE 5.2
Crack extending toward the right (a), and the control volume moving toward the left (b), should

have the same effect in computing the expression of equation (5.2).
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In the limiting case Aa approaching zero, one can assume that the displace-
ment field u; is varying linearly between boundaries S, and S,. Note that over
small regions the displacement field can always be assumed to be varying
linearly, even for nonlinear displacement fields, as long as there is no jump
in the displacement field between S, and S,. For linear displacement fields,
the strain, stress, and traction fields should be constant. Therefore, equation
(5.3) can be written as

on_ lm UdA+ | Tuds— [ Tuds
oA Aa%OAa J. +.[ i .[”
A-Ay
(5.4)
lim J UdA - JT ()~ u®)a
Aa—)OAa

A=Ay

In Figure 5.3 one can clearly see that the two boundaries S; and S, are sepa-
rated by a horizontal distance Ag; therefore, the displacement fields on these
two boundaries are related in the following manner:

ou;
o _,,2 i
;) =u” + Aa
3 (5.5)

1

From equations (5.4) and (5.5),

ol lim
dA - T
A Aa—>0Aa .[u .[ S
A—Ay
(5.6)
lim
j UdA - JT Ii 7 ads
AaaOAu e

Eo)

FIGURE 5.3
Two boundaries S; and S, separated by a horizontal distance Aa.
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In Figure (5.3) one can clearly see that the elemental area dA = Aa-dx,. Sub-
stituting it in equation (5.6),

ol lim o,
UdA - T AadS
T9A Aa—0 Aa
l
lim
J.l,lAaalx2 jT L AadS (6.7)
Aa —0Aa

='|'de2-'|'$ oy dS:J' Udx, T 2 s
) ) 0x; ) 0x,

Integral expression of equation (5.7) is known as the J-integral over bound-
ary S.

J= J(dez T; Ids) (5.8
S

From the preceding derivation it is clear that, for an elastic solid, the J-inte-
gral is another way of expressing the potential energy release rate.

5.3 J-Integral over a Closed Loop

Note that the line S of Figure 5.1 is not a closed loop because of the presence
of the crack. Two ends of line S meet the top and bottom surfaces of the crack.
In absence of a crack when two ends of line meet, as shown in Figure 54, a
closed loop is formed. We are interested in computing the J-integral over
such a closed loop.

FIGURE 5.4
Closed loop S on which J-integral is to be computed.
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In Figure 5.3 it is easy to see that

dx
= 9="2
1, = COS 7
P (5.9)
X
=sinf=-—=%
n, = sin S
Therefore,
dx dx
T, =oyn + o, =0y d52 O dSl
(5.10)
dx dx
T, = = 2 —1
2 =0nlly +O0ply =0y — S —Op S
Substituting equation (5.10) into equation (5.8),
ou; ou ou
J= ! (dez T axldsj _ J; (dez TG dS =T, axjdsj
dx dx, \ ou dx dx, \ ou
_ !{Lsz—(antﬁ; cazdg)ékids ( on o, d;)ékjds}
(5.11)
ou ou ou ou
= !- {dez - (Gu Xidxz -0y axidxlj - (621 gjdxz -0y gjdx] ]}
auy ou, oy du,
= '!.{(U—O'n ax, -0y a, jdx2 [0'12 a, + 0y a, jdxl}
Applying Green’s theorem,
oN oM
Mx, + Nidxy) = J N _M
! (Mdx, x,) J ( o ar, ] (5.12)

into equation (5.11), the line integral of equation (5.11) can be converted to the
area integral as shown:

ouy ou au, i,
J= J.{[U O o, —0n axjjde (0'12 ax, T0x» o, del}

_JAE,U_G My Oy ) O o Oy
- axl 11 axl 21 axl axz 12 axl 22 axl

A
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Note that the strain energy density U can be expressed in terms of strain
components. For two-dimensional problems,

U=U(&;, €, Y12) (5.14)

Applying the chain rule,

o _ o dey U den U Oy
ox;  dgy vy dEy dxy  dypp dy

= Oyqlly 11 +Onplly 51 +O1p (U 51 + Uy 1)

(5.15)

In equation (5.15) we have used the relation o;; = 37111 This relation is true for
elastic material only. Therefore, the region A bounded by S must be elastic
for the preceding equation to be applicable.

0 ou ou 0 ou ou
[l gy e F 5 Ha | 9| O Oy
J ;[{Bxl( on o, O axl} ax, (‘712 o, + 02 o, j}

= J‘{Gn”l,n + Opnly o1 + Opplly o1 + Ol 11 — Oy 11~ O11,181,1~ Ol 11
A

(5.16)
— 031Uy — OqpUy10 = Oqp U1 — Oy 1p — 0'22,2”2,1}

= J’{_Gll,lul,l — Oyl — Ol — c722,2”2,1}
A

_ J‘{—um (611,1 +015,)— Uy (011 + 0 )} =0
A

In equation (5.16) the equilibrium equation in two dimensions in absence
of any body force has been used. From the derivation presented previously,
one can conclude that the J-integral value over a closed loop is zero if the
region inside the loop is elastic and has zero body force.

5.4 Path Independence of J-Integral

In the previous section it has been shown that the J-integral value over any
closed loop is zero as long as the region inside the closed loop is elastic and
does not have any body force. This property of J-integral can be used to prove
that its value should be the same on different paths S, S,, and S; shown in
Figure 5.5.
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FIGURE 5.5
Three different contours for J-integral should give the same J-integral value.

To prove the path independence of J-integral, let us consider the J-integral
contour as shown in Figure 5.6. Let the total path S be the union of four paths
S, S, S5,and S, (§=5,US,U S; U S,). Directions of integration in the four seg-
ments are shown by the arrows in the Figure. Note that S is a closed contour
and the material inside the contour is elastic, although a plastically deformed
region may exist in front of the crack tip, as shown in Figure 5.6. Therefore,

]:J- =j +J +J +J. =L+L+];+],=0 (5.17)

5 S S3 Sy

Note that J; and J, must be zero because on paths S; and S, the traction
T;=0and dx, = 0. Therefore, both terms of J-integral given in equation 5.8 are
zero on these two paths. Substituting these zero values in equation (5.17):

Ji+],=0 (5.18)

Note that the integration direction is counterclockwise on path S, and clock-
wise on path S,. If both integrals are carried out in the same direction, then
Li=)a

The main advantage of the path independence property of the J-integral is
that it can be computed by choosing a path of our liking. For example, instead

FIGURE 5.6
J-integral contour S = S, U S; U S, U S,. Plastic zone shape ahead of the crack tip is shown by
the gray region.
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of taking the path very close to the crack tip, where it is difficult to compute
the stress and displacement fields accurately because of the stress singulari-
ties or the presence of the plastic zone near the crack tip, it is now possible to
take the path along the boundary and/or lines of symmetry on which dis-
placement, traction, and strain energy can be computed relatively easily.

5.5 J-Integral for Dugdale Model

Let us now compute the J-integral on a path surrounding the plastic zone pre-
dicted by the Dugdale plasticity model. The J-integral is carried out on path
S (=5~ U S*) as shown in Figure 5.7. Note that the path independence property
of the J-integral is valid as long as the material between two J-integral paths
is elastic.

Since the material enclosed by the J-integral path shown in Figure 5.7 is not
elastic, the concept of the elastic strain energy release rate (G) does not exist
here. Thus, in this case we cannot say that | = G. However, it is still possible to
compute the J-integral value for this problem geometry and equate it to another
important parameter, the crack tip opening displacement (CTOD), as shown:

ou, ou, ou;
— (| tdx, -1, 2 as =J Udx, T, 2% s jUd _1, % 4s

From Figure 5.8 it is clear that, on the lower path (S°), T, = -0y, dS = dx;
and, on the upper path (5%), T, = Gy, dS =dx;; on both paths, dx, = 0. Therefore,
equation (5.19) can be written as

0
= [UxO—E%?dxlj+JI:(UXO—E+ ?;;’1 (—dxl)j

1

FIGURE 5.7
J-integral contour around the plastic zone predicted by the Dugdale model.
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FIGURE 5.8
Traction fields above and below the plastic zone for the Dugdale model.

B R

=0Oyg [ug - u;]z =—0Oyg|U [ uz] =-0y,5(0—CTOD) =0ys xCTOD

= Oys

In equation (5.20), CTOD =[uj —u; ], _o= crack tip opening displacement. At
the end of the plastic zone, at x, =b, [u3 —u3],,_, =0.

Therefore, we see that for the Dugdale model one can calculate the crack tip
opening displacement simply by dividing the J-integral value by the yield stress
(oy) of the material. Therefore, the J-integral value is the strain energy release
rate as well as the crack tip opening displacement multiplied by the yield stress
of the material. Clearly, for a material, if there is a critical value of strain energy
release rate (G,) that governs the crack propagation, then there must be a criti-
cal value for the J-integral (J ), as well as a critical value of the crack tip opening
displacement (CTOD,) governing the crack propagation phenomenon.

5.6 Experimental Evaluation of Critical J-Integral Value, J.

Since the J-integral is related to the strain-energy release rate and crack tip
opening displacement—the two parameters that can be experimentally
evaluated—it is possible to evaluate the J-integral value at failure or the criti-
cal J-integral value (J) experimentally. Begely and Landis (1972) described
the experimental evaluation technique for critical J-integral. The test speci-
men needed for this experiment is shown in Figure 5.9.

If the force P versus the displacement A is plotted, then for small values of
P, the curve should show a linear variation and for larger values of P it should
show a nonlinear variation, as shown in Figure 5.10. If the crack length a of
Figure 59 is then changed to a + Aa, then the P-A curve of Figure 5.10 should
also change, showing a greater displacement A for the same value of P, as
shown in Figure 5.11.

For the fixed force or fixed grip loading, the strain energy stored in the
specimen can be obtained from Figure 5.12, drawn in the linear region. Note
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FIGURE 5.9
A double cantilever specimen subjected to two opening forces P producing a crack opening A.

that the strain energy stored in the specimen with crack length a for applied
load P, is the triangular area OAC. For another specimen with crack length
a + Aa, for the same applied load P the strain energy stored in the specimen
is the triangular area OBD. Therefore, for the fixed force (Py), loading the
increase in the strain energy as the crack length increases from a to a + Ag, is
equal to the triangular area OAB. Note that both the height (AC) and the base
length (AB) of triangle OAB are proportional to displacement A. Therefore,
the area of triangle OAB is proportional to A%

]:G:diu:LXABXAC:kAz (5.21)

dA  tAa 2
where k of equation (5.21) is the proportionality constant.

Instead of a fixed force condition, if a fixed grip condition is maintained
and the displacement (A) is kept constant at OC, then the load will decrease
from AC (or P) to LC, resulting in a decrease in the strain energy in the
material from area OAC to area OLC. Therefore, the strain energy released
in the process is equal to the area AOL. Note that in this case also the base
AL and height OC of the triangle AOL are proportional to displacement A.

FIGURE 5.10
Force (P) versus displacement (A) curve for the double cantilever specimen shown in
Figure 5.9.
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a+ Aa

FIGURE 5.11
Force (P) versus displacement (A) curve for the double cantilever specimen shown in Figure 5.9 for
two different crack lengths. Dashed vertical line separates the linear and nonlinear regions.

Therefore, the area of triangle AOL is proportional to A%

S AU 1 ALXOC e (5.22)
dA  tAa 2
where k of equation (5.22) is the proportionality constant.

If the strain energy release rate is now computed in the nonlinear range
of the P-A curve (Figure 5.11), then one needs to refer to Figure 5.13, instead
of Figure 5.12, to obtain the strain energy release rate as the crack length is
increased from a to a + Aa under fixed grip conditions. The shaded area of
Figure 5.13 represents the strain energy released as the crack length is
extended. From this figure it is clear that the shaded area increases propor-
tional to the crack opening displacement A. Therefore, the J-integral value in

=

©)
(@) T

FIGURE 5.12
Force (P)-displacement (A) relation in the linear range for the double cantilever specimen
shown in Figure 5.9 for two different crack lengths.
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FIGURE 5.13
Force (P)-displacement (A) relation for the double cantilever specimen shown in Figure 5.9 for
two different crack lengths.

the nonlinear range should be proportional to A, or

au 1 .
J=G=- A =iAa x (Shaded area of Figure5.13) = kA (5.23)

where k of equation (5.23) is the proportionality constant.

From equations (5.21), (5.22), and (5.23) one can see that ] increases nonlin-
early for small values of the crack opening displacement (A) and it increases
linearly for large values of A. Therefore, the J-A curve obtained experimen-
tally should have the shape shown in Figure 5.14.

From double cantilever specimens of different crack lengths (or, alternately,
taking one specimen and gradually increasing its crack length), P-A curves
are generated for identical specimens with various crack lengths, as shown
in Figure 5.15.

To obtain the critical J-integral value (J), one needs to take a number of
double cantilever specimens with different crack lengths and break the spec-
imens while recording the crack opening displacement (A, see Figure 5.9) at
failure or as the crack starts to propagate. From Figure 5.15 the | values at

FIGURE 5.14
J-A variation for the double cantilever specimen shown in Figure 5.9.
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Increasing
Crack Length

v~

FIGURE 5.15
J-A variations for the double cantilever specimens shown in Figure 59 for different crack lengths.

failure can be obtained. By plotting these | values on J-A curves Figure 5.16
is obtained. Square markers of Figure 5.16 give | and A values at failure. Ide-
ally, | values at failure should be independent of crack lengths, as shown in
Figure 5.16. The average of these | values at failure is the critical J-integral
value or J, of the material.

5.7 Concluding Remarks

The basic theory of J-integral and the prediction of crack propagation from
the critical J-integral value are presented in this chapter. The failure predic-
tion from the critical J-integral value as discussed in this chapter works well
when the plastic zone size is small compared to the problem dimensions and
when the crack is stationary. When a loaded crack starts to propagate, the
loading—unloading path of the material just ahead of the crack tip may fol-
low different stress—strain paths during loading and unloading. Limitations

FIGURE 5.16
Critical ] values are marked by square markers in the J-A curves for the double cantilever
specimens shown in Figure 59.
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P
$_W= 50 mm
0.21 a/W=0.59
0.20 a/W=0.60
0.19 a/W=0.61
P (MN)
u (mm)

FIGURE 5.17

on the applicability of the J-integral technique in such complex situations are
not discussed here, but can be found elsewhere (Broek 1997).
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Exercise Problems

Problem 5.1: Loading curves (applied load value as a function of the
downward displacement of the load) for a three-point bending
specimen are shown in Figure 5.17. Three curves are given for three
different crack lengths. Give the J-integral value for a/W = 0.6 and
1 =1 mm. Thickness (f) of the specimen is 20 mm. Give proper unit
of ]. (Hint: J-integral value is equal to the strain energy release rate.)

Problem 5.2: In the book, the J-integral expression has been derived
for the case when body forces are absent. If body forces are present,
what will be the appropriate form of the J-integral?
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Fatigue Crack Growth

6.1 Introduction

Under cyclic loadings, pre-existing cracks inside a material may become big-
ger and cause catastrophic failure of the structure. Structural failure under
cyclic loading is also known as fatigue failure. In this chapter crack propaga-
tion behavior under cyclic loading or fatigue is studied. Since under fatigue
a crack can propagate at a stress level well below the critical stress value, this
crack growth phenomenon is also known as subcritical crack growth.

6.2 Fatigue Analysis—Mechanics of Materials Approach

If a body is subjected to an oscillating stress between o,,,, and o,,;, as shown
in Figure 6.1, then the body might fail even when the applied maximum stress
(Omay) is well below the ultimate stress or failure stress. Number of cycles
(N required for failure is a function of the stress difference (S) between the
maximum and minimum stress levels (S = Ao = 0,,,, — Onmin) and the aver-
age stress level o, =Zm % a5 shown in Figure 6.2. Note that there is a
threshold value of Ao below which the fatigue phenomenon is not observed.
In other words, when Ao value is below the threshold value, then the struc-
ture does not fail even when it is subjected to a large number of cycles. This
threshold value for a given material depends on the surface roughness of the

body, surrounding environment, and other parameters.

6.3 Fatigue Analysis—Fracture Mechanics Approach

The theory of fatigue crack growth presented in this section is based on
the work by Paris and Erdogan (1960). It should be noted here that when a
cracked body is subjected to an oscillatory stress field as shown in Figure 6.1,
the stress intensity factor also oscillates between K, and K, with an

max min
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FIGURE 6.1
Oscillating stress applied to a body.

K K .
average value of K,, =Koy = Smeclminag long as the crack length remains

constant. However, as the crack starts to propagate, K., Kiin, and K,, values
start to vary with time, even when o,,,, and o,,,;,, values remain unchanged.

In classical fatigue analyses the number of cycles to failure (N)) is consid-
ered to be a function of the stress difference Ac and the average stress level
0,, Similarly, in fatigue crack growth analysis, the crack growth rate (crack
growth per unit cycle of loading) is assumed to be a function of AK = (K, —
Ky and K, = KmatKmin .

— = f(AK,K,,) 6.1)

Typical experimental results on fatigue crack growth, as shownin Figure 6.3,
justify this assumption. Note that in the log-log scale the crack growth rate
is linearly dependent on AK. Therefore, in the log-log scale, equation (6.1)
should take the following form:

log (ZI\JI) =log C + nlog(AK) 6.2)

In equation (6.2) log C is the y-intercept of the straight line variation of
log(#) against log(AK), shown in Figure 6.3, and n is the slope of this

log(Ao) Oavl
Oav2
Oav2 > Oavl
log(N) —

FIGURE 6.2
Classical S-N curve (S = AG = Gynp = Opins N = N)). Note that the number of cycles required for

failure depends on A0 and O,,.
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FIGURE 6.3
Typical experimental results for fatigue crack growth experiments.

straight line. It should also be noted here that the slope and the y-intercept
values depend on the mean stress intensity factor K,,,.
From equation (6.2),

log (da) =log C + nlog(AK) = log C + log(AK)" = log[C(AK)"]
dN
6.3)
da_ C(AK)"
dN
Note that C and n are material properties. For bridge steels, C = 3.4 x 10-1°
and n = 3 when the crack length a is measured in inches and the unit of AK
is ksiv/in .
Let us now apply the preceding crack growth formula to calculate the
number of cycles required for a circular crack of initial radius a4, to reach a
final radius a. The stress intensity factor for a circular crack is given by

K= %am (64)

Therefore, if this crack is subjected to an oscillating stress field with a stress
difference of Ao between the maximum and minimum stress values, then the
variation in the stress intensity factor under the fatigue loading is given by

AK = %AG\/E (6.5)

Substituting equation (6.5) into equation (6.3),

1 c(aky = c(2 Aoma j - c(z Acr ) /2 6.6)
dN b/ b4
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Therefore,

a N n
da =Jc(2Aaﬁj AN
an/2 T

ag 0

J92 | ol 2 el 2 as) 6.7)
. =% C(\/;AO') [NT} C(\/;AGJ N
~N= ! {alg - a[l,;}

C(za0) (1-4)

If the final crack radius is equal to the critical crack radius (a,) required for
the crack to propagate, then N is equal to the number of cycles to failure and
is denoted as Nf. Therefore,

Ir I
_ a (%J_l_l a, [ao]z T
n _da_ _n
C(ao) at (1-4)[\* (@), (1-9)| L.

In the preceding equation, (1), = C(2 Ac\/7a, )" is the initial crack growth
rate. Equation (6.7) can also be written in the form similar to the one given
in equation (6.8):

_a |y (w7 a (@)
V| A )] e

2

Note that from equations (6.8) and (6.9) it is possible to evaluate:

N;after knowing 4, and 4,

N needed to increase the crack radius to a from an initial crack radius
of a,

Ao needed for given values of 2, and N;
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6.3.1 Numerical Example

Let a material be subjected to an oscillating stress field between 0 and Ac.
If the material has a circular crack of initial radius a, = 0.02 in., calculate
the number of cycles to failure for six different values of Ac (1000, 2000,
3000,...6000 psi) if the fracture toughness of the material is 1000 psi-in.!/2 and
the constitutive relation for crack propagation for this material is given by
Mk =24x102(AK)***  where unit of AK is psi-in.1/2.

Note that, in this case,

... =0

min

Opax = AO

Therefore, for this material the critical crack radius can be obtained in the
following manner:

2 2 2
K.=—oc wa, = —Aoma, = —=A0,/a
c e max c T c \/; \/T
(6.10)
. _ﬂ(KC )z_n(moo)z
° 4\Ac) 4\ Ao
Substituting material parameters into equation (6.8),
a a 2! al_g a 2!
=B 1_(0] ___ 1”
f a n n
(%), (5-1) e C(ﬁ Aa) (2-1) e
) a2 - [ ay jz'sz 6.11)
6.64
24x10% x( % Ac) " x232[  \%

2.32
=8.04 X 102 (A0) 664 g;232 [1 _ [aoj }

c

For a given value of Ao, equation (6.10) is first used to calculate the criti-
cal value of the crack radius and then equation (6.11) is used to calculate the
number of cycles to failure. Computed values are given in Table 6.1.

6.4 Fatigue Analysis for Materials Containing Microcracks

If the material contains very small cracks or microcracks, then the initial
radius (a,) of the circular cracks present in the body is much smaller than the
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TABLE 6.1

Values of the Critical Crack Radius and the Number of Cycles

to Failure for Different Values of Ao for the Material
Described in Section 6.3.1

Ao (psi) a, (inch) N; (Cycles to Failure)
1000 0.785 8.46 x 10°

2000 0.196 8.44 x 10*

3000 0.0873 5.56 x 103

4000 0.0491 745

5000 0.0314 126

6000 0.0218 11

critical crack radius a,. Then equation (6.8) can be simplified to

1 4 1-—
2 2 2
N=— 1- [QJ = = B(A0) " (6.12)
C(zao) (3-1)| & C(&a0) (3-1
where constant B, is given by
ay?
By=——2%—— (6.13)

Equation (6.12) can be rewritten in the following form:

SN/ =(a0)"
(6.14)

- 1
AO'Z(lej =Do(Ny) "
Bo

In the preceding equation, D, = By’". Taking log on both sides of equation
(6.14), one gets

log(Ao) =log D, — 1 log N (6.15)
n

Equation (6.15) is plotted in Figure 6.4. Note that Figure 6.4 is identical to
the slant portion of the S—N curve shown in Figure 6.2. Thus, the S—-N curve
of the classical fatigue analysis can be explained from the fracture mechanics
analysis simply by taking very small values for the initial crack dimensions.
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log(Ao)

log(Nf) —

FIGURE 6.4
Plot of equation (6.15).

6.5 Concluding Remarks

The number of cycles required for failure of a cracked body subjected to a
certain level of cyclic loading has been derived in this chapter based on a
relatively simple and popular constitutive law relating the crack growth rate
and the level of loading. For a more comprehensive discussion on fatigue
crack growth and the failure phenomenon or for studying other mathemati-
cal models for fatigue prediction, readers are referred to the publications
given in the reference list (Bolotin, 1999; Liu and Iinno, 1969; McClintock,
1963; Schijve, 1967; Weertman, 1984).
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Exercise Problems

Problem 6.1: (a) A large plate has a small internal crack through the
thickness. The crack has the initial lengths 24, and is normal to
a remote tension o, which pulsates between the two levels o,
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and o, The fatigue crack growth equation for this material is

given by
4 _c (AK)4 _(AKf )4
dN E E

where AK, is the threshold stress intensity factor. Prove that the num-
ber of cycles required for failure is given by

_ (ac — B)(ao + B)
Ne= A‘h‘[(ac + B)(ao —B)}

where A = E*/[2c(Ao.AK)?], B = (1/7)(AK,/Ac)?, 2a. is the critical
crack length.

(b) Express a, in terms of K, and ©,,,,, Oni, Or Ao, whichever is

appropriate.

Problem 6.2: For a pressure vessel steel da/dN = 10-° in./cycle, when
AK =12 ksi.in.?, and da/dN = 10~ in./cycle, when AK = 96 ksi.in.'/2.
Assuming that da/dN = C(AK)",

(@) Find the values of C and n.
(b) If fatigue cycling with constant stress range starts at AK = 12 ksi.
in"2 and a = a, = 0.01 in., how many cycles are required to reach

a crack growth rate of 10~* in./cycle for a Griffith crack of length
24 in an infinite medium?

(o) If K,=1000 ksi.in.'”2, after how many cycles will the material fail?
Consider the minimum stress to be zero.
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Stress Intensity Factors for Some
Practical Crack Geometries

7.1 Introduction

In chapter 3, section 3.6, stress intensity factors (SIFs) for different problem
geometries have been discussed. For most of these problem geometries, the
crack is assumed to be present in an infinite solid. In other words, stress-
free boundaries were not present near the crack tip except for the two crack
surfaces. In this chapter we introduce some realistic problem geometries in
which a stress-free boundary in addition to the two crack surfaces may be
present near the crack tip. Stress intensity factors for some two-dimensional
and some three-dimensional cracks, such as circular cracks, elliptical cracks,
and part-through semi-elliptical cracks, are discussed in this chapter.

7.2 Slit Crack in a Strip

Figure 7.1 shows a slit crack of length 24 in a strip of width 2b subjected to uni-
axial tension 0. Note that the problem geometry of Figure 7.1 has some simi-
larities with collinear cracks in an infinite medium, as shown in Figure 7.2.
In this Figure the region bounded by two consecutive dashed lines forms a
strip of width 2b, subjected to uniaxial tension o and containing a crack of
length 24 at the center of the strip. The region bounded by two dashed lines in
Figure 7.2 and the strip geometry of Figure 7.1 are almost identical. The only
difference is that the boundaries of Figure 7.1 are traction free, o,, = 0,, =0,
and the horizontal displacement u, # 0; these two stress components and the
horizontal displacement along the dashed lines of Figure 7.2 are given by
0., =0, 0, # 0, u, = 0. Since the problem geometry is symmetric about any
dashed line of Figure 7.2, the horizontal displacement and the shear stress
along these lines must be zero, but the normal stress component is not neces-
sarily zero.

197



198 Fundamentals of Fracture Mechanics

22

2b

FIGURE 7.1
Slit crack in a strip.

The SIF for the problem geometry of Figure 7.2 is given by

K= { 2b tan (MJ}UZ ora (7.1

ma - \2b

Equation (7.1) can also be used as the stress intensity factor of the problem
geometry of Figure 7.1 when the crack tips are not too close to the boundary
surfaces, when ¢ < 0.5. Isida (1955) gave a power series solution for the SIF of
the problem geometry of Figure 7.1. This power series solution can be used
for #<0.9. Feddersen (1967) proposed the following solution for the SIF of
the slit crack in a strip of Figure 7.1:

K= {sec (gjj}l/z G\/E (7.2)

Feddersen’s expression has been found to give excellent result, produc-
ing an error less than 5% when compared with Isida’s power series solution.
Plots of equations (7.1) and (7.2) are given in Figure 7.3.

FIGURE 7.2
Infinite number of collinear cracks in an infinite medium.



Stress Intensity Factors for Some Practical Crack Geometries 199

0 a/b

FIGURE 7.3
Normalized stress intensity factors (normalized with respect to the SIF of Griffith crack) for
problem geometries shown in Figures 7.1 (the higher curve) and 7.2 (the lower curve).

7.3 Crack Intersecting a Free Surface

To estimate the SIF of a crack of length a intersecting a free surface and sub-
jected to the opening mode loads, as shown in Figure 74, one can proceed
in the following manner. Without knowing the true solution, if one wants to
estimate the SIF of this problem geometry knowing only the SIF of Griffith
crack, the first thing one needs to decide is how long a Griffith crack should
give the same SIF. Should it be 2 or something different? To answer this ques-
tion, it is necessary to compare the problem geometry of Figure 7.4 with the
two problem geometries given in Figure 7.5.

Note that the right sides of the dashed lines of Figures 7.5(a) and 7.5(b) look
identical to the problem geometry of Figure 7.4. However, on the vertical
free surface of Figure 74 the normal and shear stress components are zero,

FIGURE 7.4
Crack intersecting a free surface.
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(@) (b)

FIGURE 7.5
Griffith cracks of length a (left figure) and 2a (right figure) subjected to the opening mode
loadings.

0,. = 0,, = 0, while neither of these two stress components is zero along
the dashed line of Figure 7.5a. In fact, these stresses become infinity on the
dashed line when it goes through the crack tip. Therefore, problem geom-
etries shown in Figures 7.4 and 7.5a are completely different. Figure 7.5b, on
the other hand, is symmetric about the dashed line; therefore, the shear stress
component must be zero along this line, but this is not true for the normal
stress component. Therefore, on the dashed line of Figure 7.5b, o,,=0, o, #0.
However, the nonzero normal stress component is not infinity anywhere on
the dashed line since this line is not going through the crack tip. Therefore,
the problem geometries of Figures 7.5b and 7.4 are very similar (although not
identical) since the stress fields along the vertical boundary of Figure 7.4 are
not identical to those along the dashed line of Figure 7.5b. Then, one can con-
clude that the SIF of Figure 7.4 should be close to that of Figure 7.5b, but not
identical. It can be shown that the SIF for the problem geometry of Figure 7.4
is given by (Paris and Sih, 1965)

K =1.1220+ra (7.3)

Note that the difference between the SIF of Figures 7.4 and 7.5b is 12.2%.
Thus, one can say that a free surface increases the SIF by about 12%. This is
the reason why a brittle material containing a large number of microcracks
when loaded shows first signs of failure on the surface. This phenomenon is
commonly known as the surface effect.

7.4 Strip with a Crack on Its One Boundary
For the problem geometry shown in Figure 7.6, the SIF is given by

K = yo/ma (74)
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FIGURE 7.6
Crack on one side of a strip.

1 a ay ay a)
\/;{1.99 -041 (Wj + 18.7(W) - 38.48(W] +53.85 (W) } (7.5)

Gamma of equations (7.4) and (7.5) is sometimes called the normalizing fac-
tor or normalized stress intensity factor, where it is implied that the SIF is
normalized with respect to the SIF of a Griffith crack of crack length 2a.

where

4

7.5 Strip with Two Collinear Identical Cracks
on Its Two Boundaries

The SIF for the problem geometry of Figure 7.7 can be expressed as given
in equation (7.4), where the normalized stress intensity factor yis given

FIGURE 7.7
Two identical collinear cracks on two boundaries of a strip.
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’J/:

{1.99 +0.76 (“) ~8.48 (“) + 27.36(”) } (76)
W W W

-

7.6 Two Half Planes Connected over a Finite Region Forming
Two Semi-infinite Cracks in a Full Space

The SIF for the problem geometry of Figure 7.8 is given by

K= 77)

Jrb

Equation (7.7) can be written in a different form as

K=%=%6\/n_b=y6m 79)
where
y=2, 6= 79)
P
P
FIGURE 7.8

Two identical collinear semi-infinite cracks in a full space.
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7.7 Two Cracks Radiating Out from a Circular Hole

The problem geometry is shown in Figure 79. The exact solution of this prob-
lem has been given by Bowie (1956). In this section the engineering solution
to this problem is presented without using the exact solution.

Note that for crack length much greater than the hole radius, 2 >> R, two
cracks with the circular hole behaves like a Griffith crack of length 2(a + R),
since the hole at the center of the crack is far away from the crack tip. There-
fore, the stress intensity factor in this case is given by

K=oJn(@+R)=0 mz(l +§j = J/U\/E (710)

y:\/@:‘/(i/i? (711)

When the crack length is much smaller than the hole radius, the crack
should behave almost like a crack of length a intersecting a free surface, as
discussed in section 7.3. However, due to the stress concentration around the
circular hole, the circumferential stress 6,4 around the circular hole should
be 20 under biaxial state of stress, as shown in Figure 79. Considering addi-
tional 12.2% increase of the stress intensity factor due to the presence of the
free surface, we get

K =1.122 x 20/ma = 2.2440Jma = yoJma (712)

where

Equation (7.12) can be improved further by considering the radial variation
of the circumferential stress 0,4 From the theory of elasticity (see chapter 1,

FIGURE 7.9
Circular hole with two radial cracks under biaxial state of stress.
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y=1.122 {1+(1 I a/R)Z}

Engineering
Interpolation

alR —»

FIGURE 7.10
Variation of the normalized stress intensity factor with a/R ratio for the problem geometry
shown in Figure 7.9.

example 1.13), one can compute the circumferential stress oy, at the crack tip
position in absence of the crack:

099=a{1+(ufR) } (713)

Therefore, instead of 20, if one uses equation (7.13) a more accurate esti-
mate of K is obtained:

a+R

R Y 1Y
7=1.122{1+(Q+R) }:1.122{1+[1+H/Rj } (715)

Variation of y as a function of a/R is obtained from equation (7.15) for small
a/R and from equation (7.11) for large a/R. These two variations along with
the engineering interpolation curve are shown in Figure 7.10.

1<=1.1220{1+( R j}\/n_zyo\/ﬂ (714)

where

7.8 Two Collinear Finite Cracks in an Infinite Plate

The problem of two collinear finite cracks in an infinite plate as shown in
Figure 7.11 was solved by Willmore (1949). Cracks of length 2a are separated
by a center-to-center distance of 2b. From the symmetry of the problem, one
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FIGURE 7.11
Two collinear finite cracks in an infinite plate.

can conclude that the SIF of crack ends marked as 1 should have one value
and crack ends marked as 2 should have another value.

If the problem geometries of Figures 7.11 and 7.2 are compared, then one
can see that Figure 7.11 is obtained simply by removing all cracks but only
leaving the last two. Therefore, the SIF given in equation (7.1) and shown in
Figure 7.3 can approximately show the variation of SIF for Figure 7.11.
However, for the exact variation of SIF, the true solution will have to be looked
at. The SIF variation for this problem geometry is shown in Figure 7.12.

From Figure 712 it is clear that 7, is greater than ¥,; therefore, as the applied
load increases, the crack end 2 propagates, first bringing the two cracks
closer; then they eventually join to form one Griffith crack whose y value
will be 1.414 because when the two cracks join, the new crack length becomes
44 instead of 2a. Note that in absence of the true solution, if one uses the solu-
tion of the problem geometry shown in Figure 7.2, then it should be a more
conservative estimate and therefore acceptable.

2.0

1.0
0

a/b

FIGURE 7.12
Variations of the normalized stress intensity factor with a/b ratio for the problem geometry

shown in Figure 7.11 (continuous lines) and Figure 7.2 (dashed line). Note that y; and ¥, are SIF
for crack ends 1 and 2, respectively.



206 Fundamentals of Fracture Mechanics

2a

FIGURE 7.13
Griffith crack subjected to two opening loads on its surface.

7.9 Cracks with Two Opposing Concentrated
Forces on the Surface

For a Griffith crack subjected to two opposing concentrated loads P at a dis-
tance x, from the center of the crack, as shown in Figure 713, the stress inten-
sity factors at ends A and B are given by

1/2
K. = P (a+x,
4 Jra\a-x,

(716)

1/2
K. = P [a—x,
P Jra\a+x,

Equation (7.16) has been derived in section 9.5. Clearly, K, > K; therefore,
end A will propagate first. It can be justified intuitively also; since loads P are
applied closer to end A, it is easier for the loads to open end A. Note that for
x0=0, KA =KB =%.

7.10 Pressurized Crack

From the fundamental solution given in section 7.9, the pressurized crack
problem can be solved. If a Griffith crack on its top and bottom surfaces
is subjected to a pressure field p(x) trying to open the crack, as shown in
Figure 7.14, then the SIFs at crack ends A and B are obtained by integrating
equation (7.16) as shown:

1 a a+x vz
K, = d
4 \/n'aJ-p(x)(a—x) X

1 u a—x)"
Ky=—— d
o= [ 52 an

(717)
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FIGURE 7.14
Pressurized Griffith crack.

Note that for uniform pressure p(x) = p,,

a 1/2
_x __Po J.[LHX) __Po _
K,=K; = dx = Ta =1~/
A B ’_a_ —x X [ a=povma (7.18)

711 Crack in a Wide Strip with a Concentrated Force
at Its Midpoint and a Far Field Stress Balancing
the Concentrated Force

Problem geometry is shown in Figure 7.15. From the vertical force equilib-
rium the relation between the concentrated force P and the applied stress o
are obtained, P = cWt, where t is the thickness of the strip. Assuming =1 or
o equal to the force per unit length, one obtains

o=— (719)

Note that the problem geometry of Figure 7.15 can be obtained from the
linear combination of the three problems shown in Figure 7.16. If problems

—
i

g

FIGURE 7.15
Wide cracked strip subjected to a downward stress over a width of W and an upward concen-
trated force P at the center of the crack.
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© @ ®

a I

FIGURE 7.16
Subtraction of problem 3 from the superposition of problems 1 and 2 gives the problem geom-
etry of Figure 7.15.

1 and 2 are superimposed and problem 3 is subtracted, then the problem
geometry of Figure 715 is obtained. Therefore, if the SIF of problems 1, 2,
and 3 of Figure 7.16 are denoted as K, K,, and Kj, respectively, then the SIF K
of Figure 7.15 can be written as

K=K, +K, - K, (7.20)

The problem geometry of Figure 715 and the third problem of Figure 7.16
are identical; one problem is simply rotated by 180° with respect to the other.
Therefore, K and K; of equation (7.20) should have the same value. Substitut-
ing K, = K in equation (7.20), one gets

_ K, +K,

: (7.21)

K

Note that for W >> g, the SIF of problem 1 of Figure 7.16 is simply equal to
that of a Griffith crack and the SIF of problem 2 can be obtained from equa-
tion (7.16) by substituting x, = 0. Therefore, for W >> a, equation (7.21) can be
written as

K :M:;(G\/na +

: (722)

P
ma

From equation (7.19), substituting o in terms of P into equation (7.22),
one obtains

k=P fmas P P(Jma 1
2\W b2

nji{ w *mJ

=;W(\/7vtv7+\/ZJ= ij(ﬁi)

(7.23)
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,I

1/ alW —»

FIGURE 7.17
Schematic of the variation of the SIF of the problem geometry shown in Figure 7.15 as a func-
tion of a/W.

where
xX=,|— (7.24)

Therefore, for a stationary (maximum or minimum) value of K, its derivative
with respect to x must vanish:

dK P 1
—=——|1-—1=0
i zm( xzj (7.25)

From equations (7.24) and (7.25) one can see that K will be a maximum or
a minimum for

ma
x=,—=1
w (7.26)
a 1
"W o

For this value of 4 the double derivative of K with respect to x is a positive
value, as shown:

3
K _ P 2 _ P (’mjz (727)
dx?  2JdW x3 JWI\W

Therefore, at % =<1, K should reach its minimum value as shown in
Figure 7.17.

712 Circular or Penny-Shaped Crack in a Full Space

The stress field surrounding a circular crack, also known as a penny-shaped
crack, is available in the literature (Sneddon 1946). Figure 7.18 shows a circu-
lar crack in an infinite medium. The crack plane is z = 0. When this solid is



210 Fundamentals of Fracture Mechanics
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FIGURE 7.18
Circular crack (top figure—elevation view; bottom figure—plan view) in an infinite solid
medium subjected to a normal stress o and a shear stress S.

subjected to both normal stress o and shear stress S, as shown in Figure 7.18,
then the stress field on plane z =0 is given by

1

(:) -1

Gez(r,9,0)=§ e S (g)+ v 1 o
T (L)Z—l r (2—v)( 2

a

0'zz(7’,9,0)=2£ —sin™ (Ej H(r—a)+ocH(r—a)
n r

Y
~—
N
e
Y
~—
N
|
—

(7.28)

H(r—a)sin6

O'VZ(T’,@,O)=—§ 1 +sin*1(z)— v 1 .
N O O N O
H(r —a)cos 0

To obtain the SIF from the given stress field (equation 7.28), one can take
a point P very close to the crack tip. The coordinate of this point is given by
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r =a+ p, where p << a. Therefore, for point P one can write

a a a
2 2 2
(r) =(1+p) =1+2p+(pj ~1+2F (7.29)
a a a a a

r 2
() —1=2F
a a

Substituting equation (7.29) into equation (7.28), one obtains for £ << 1:

O, (T, 9/ 0) = 20 - Sm’l +0= i 26 2 O'\/_
§ 2/’ g 2P 27

(7.30)

(7.31)

v a Sin9=§(—2+2v) a
2p T (2-v)

(7.32)

=25 1+ v icos@
T 2-v)|\2p

25 2 [a st _ 4 SJma cos6
T (2-v) 7r1/27r 2-v)
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Since the stress field very close to the crack tip on the crack plane is given

by o= ﬁ, the stress intensity factors for modes I, II, and III for the circular

crack can be obtained from equations (7.30), (7.31), and (7.32) as

4 Sma
1= 2-v) cos 6 (7.33)

Ky = 4(;_1)5\/5 sin@
-V

T

7.13 Elliptical Crack in a Full Space

The stress and displacement fields near an elliptical crack were given by
Green and Sneddon (1950). This solution was used by Irwin (1962) to obtain
the SIF expression for elliptical cracks. Consider an elliptical crack with
semimajor and semiminor axes equal to 4 and b, respectively, as shown in
Figure 7.19. This crack is present in an infinite solid that is subjected to a
normal stress ¢ in the direction perpendicular to the crack plane. Then the
crack is subjected to mode I or opening mode loading.

The crack surface displacement in the z direction and the normal stress
field on z = 0 plane near the crack front are given by

1

2 213
- H= o (2T (3)
(O)3 a b
1

Gzz:(ol;\/z{ﬂz sin2 ¢ + b2 cos? ¢}4\/;_p

Note that in equation (7.34) the displacement field is valid on the crack
surface only and the stress field is valid in front of the crack tip at a distance
p from the crack tip when the point of interest is very close to the crack tip,

(7.34)

y

FIGURE 7.19
Elliptical crack in an infinite solid.
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FIGURE 7.20
Elliptical crack showing how angle ¢ of equation (7.34) is obtained from a point on the ellipse.

4 << 1. p is the perpendicular distance of the point from the crack front. In
equation (7.34) ® in the denominator is the elliptic integral,

/2

b2 1/2
®= j (sinz 6+ cos® 9) 46 (7.35)
a
0

Angle ¢in equation (7.34) is obtained from the x and y coordinates of the crack
tip point as shown in Figure 7.20. One can clearly see from Figure 7.20 that

X=acos¢
(7.36)
y="bsing
From equation (7.34) the SIF for an elliptical crack is easily obtained:
K= % /n—b{a2 sin? ¢ + b? cos? q)}% (7.37)
a

7.13.1 Special Case 1—Circular Crack
For a = b, equation (7.35) gives

/2 /2
®= J (sin2 0+ cos? O)2d6 = J d6 - %
0 0

Therefore, from equation (7.37),

1 1
K= % /ﬂ—b{a2 sin? ¢ + b2 cos? ¢}¢ = 20 JrJalsin? ¢ + cos? ¢} = E<7\/7r_a
a T
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7.13.2 Special Case 2—Elliptical Crack with Very Large Major Axis

Fora>>b, £ — 0; then, from equation (7.35),

/2 /2 /2

o 1/2
o= J. (sir129+bzcos2 9] do = j(sinz 0)1/240 = j sin@dO = [-cosO]7/* =1
a
0

1

= G\/ﬁ{a2 sin? ¢ + b? cos? ¢}% = Gﬁ{sinz o+ ﬁc:os2 ¢}4
DV a a?
= Gx/n_b‘/sinq) (7.39)

From equation (7.20) one can clearly see that if 4 is large, then ¢ is close
to 90° for all crack tip points whose x coordinates are much smaller than
a. Therefore, equation (7.39) becomes K = o+/7b. Note that this is the stress
intensity factor of a Griffith crack of length 2b, as it should be.

7.13.3 SIF at the End of Major and Minor Axes of Elliptical Cracks

For a point at the end of the major axis ¢=0°,

K=g\/?{azsm2¢+b2cosz¢)}}l=g\/7 i= \/7\/——6\/_\/7

(740)

and for a point at the end of the minor axis ¢=90°,

K=G\/E{azsinz¢+b2cosz¢}i=o-\/7 %: \/7\/— 9 b (741)
D\ a D\ a

From equations (7.40) and (7.41) it is clear that the SIF at the end of the
minor axis is greater than that at the end of the major axis. In fact, among all
points on the elliptical crack the maximum SIF is observed at the end of the
minor axis and the minimum SIF is observed at the end of the major axis.
Therefore, the crack starts to propagate from the tip of the minor axis and the
elliptical crack becomes closer to a circular crack.

7.14 Part-through Surface Crack

Consider a surface crack in a plate of thickness B as shown in Figure 7.21.
Crack depth is b and its length (or surface width) is 2a. We would like to
obtain the SIF for this problem geometry when the plate is subjected to a
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FIGURE 7.21
Part-through surface crack in a plate.

tensile stress o normal to the crack surface. The following steps are taken to
come up with the final stress intensity factor expression.

7.14.1  First Approximation

As a first approximation, the crack can be assumed to be a half ellipse and SIF
for the elliptical crack can be assumed to be its SIF. Then, from equation (7.41),

1
k=2 /ﬂ—b[a2 sin? g+b2cos? §ls| = Jmb
DV a ot O]

2

7.14.2 Front Face Correction Factor

The preceding equation is valid for an elliptical crack in a full space in absence
of any free surface near the crack. Since the crack intersects a stress-free sur-
face (we will call it front face of the plate), the SIF should be increased by a
factor of 1.12, as discussed in section 7.3. This factor is called the front face
correction factor. With this correction the SIF becomes

K= 1.12%\/% (742)

7.14.3 Plasticity Correction

To take into account the effect of plasticity, the crack depth b is replaced by
b+ r, to obtain
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2
K=1122 [xb+r)=1122 |z pet| K
) 0 21\ Oyg
2 1( K Y
.-.K2=(1.120j mh+ |
() 2\ Oyq

2 2
~K2|1- (1.12") LI nb(l.lZG)
D) 20% o

(1.12¢)Jrb

\/[1—;(1.12 . )2}

7.14.4 Back Face Correction Factor

(743)

K=

If the back face is far away from the crack tip, then no correction is necessary
for the back face. When it is at a moderate distance (not too close to the crack
tip), then also no correction is necessary because the front face correction fac-
tor 1.12 is a bit too high for the part-through surface crack since, unlike the
problem of section 7.3, the crack length along the front face is restricted to 2a.
Note that in the problem geometry of section 7.3 the crack extends to infinity
along the front face. However, for the crack geometry of Figure 7.21, the plate
material beyond length 24 restricts the opening of the crack under external
loads to some extent, reducing its stress intensity factor. Therefore, one may
argue that the effect of the back face is indirectly taken into account by tak-
ing a relatively high front face correction factor. However, when the back face
comes very close to the crack, its effect on the SIF is not compensated by only
the front face correction factor; a separate back face correction factor (M,)
needs to be introduced, as shown below:

M, (1.12¢)Jrb

\/[1 ~3(11242, )2} 749

Variation of M, is shown in Figure 7.22.
For more discussions on part-through surface cracks, please refer to Irwin
(1962), Thresher and Smith (1972), and ASTM STP 410.

K=

7.15 Corner Cracks

Stress intensity factors for three different types of corner cracks are given next.
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FIGURE 7.22

Back face correction factor for part-through surface cracks as a function of crack depth/crack
length (b/2a) ratio for different values of crack depth/plate width (b/B) ratio. B, b, and a are
shown in Figure 7.21.

7.15.1 Corner Cracks with Almost Equal Dimensions

For a penny-shaped crack subjected to a far-field normal stress o, the SIF
K = 20+/ma. Since the corner crack shown in Figure 7.23 has two free sur-
faces intersecting the crack and SIF is increased by 12.2% for each intersect-
ing surface; therefore, for two free surfaces the multiplying factor should be
1.12 x 1.12 = 1.25. The SIF for this corner crack is then

K=125x2oma =22 oma (745)
T T
Crack
N
a
a

FIGURE 7.23
Corner crack—quarter of a circle.
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FIGURE 7.24
Cracks at two edges of a circular hole.

7.15.2 Corner Cracks at Two Edges of a Circular Hole

For the crack geometry shown in Figure 7.24, the stress intensity factor is
given by
K=vyo.ma (7.46)

where

12 { p*(D+97(D - 9?(Dg)" + 4p*(D + q)? }4 (747)

D 4Dq[4p* + (D —q)*]

In the preceding equations @ is the elliptic integral defined in section 7.13
and o, is the normal stress near the periphery of the circular hole. o, should
account for the stress concentration effect due to the presence of the circular
hole in a thin plate or cylindrical hole in a thick plate. Note that the far field
applied stress ois different from the stress o, around the circular hole.

7.15.3 Corner Crack at One Edge of a Circular Hole

For a single edge crack at the corner of a circular hole, the equation given in
section 7.15.2 is valid with the new definition of dimension 2b as shown in
Figure 7.25.

Crack

]

'|< 7

2

FIGURE 7.25
Corner crack at one edge of a circular hole.
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716 Concluding Remarks

In this chapter the SIFs for a number of problem geometries of practical inter-
est are presented. Stress intensity factor expressions for other problem geom-
etries that are not covered here or in chapter 3 can be found in Tada, Paris,
and Irwin (1973) and Broek (1986).
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FIGURE 7.27
L

Exercise Problems

Problem 7.1: If W is constant and a varies, then for what value of a/W
should the SIF of the problem geometry shown in Figure 7.26 be an
extremum (maximum or minimum)? Identify if your answer of a/W
ratio corresponds to a maximum or a minimum value of K. For sim-
plicity use the K expression that is derived in the book for W much
greater than a (then the Griffith crack approximation is justified).

Problem 7.2: Solution of a two-dimensional punch problem (left dia-
gram of Figure 7.27) is given by z=0, 0,, =0 for x >a or x <—-g, and
0. =—- \/;2)77 for —a < x < a; P is the z direction force per unit length

zzZ

in the y direction. For a surface crack (right diagram of Figure 7.27),
the stress intensity factor is given by K = 1.1220(7a)/2. Knowing the
solution of the preceding two problems, apply your engineering
judgment to obtain the stress intensity factor for the problem geom-
etry shown in Figure 7.28 as the ratio a/b varies.

FIGURE 7.28
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Numerical Analysis

8.1 Introduction

Only a small number of problems having simple crack geometries (such
as Griffith cracks, circular cracks, and elliptical cracks in an unbounded
medium) can be solved analytically using the knowledge of the theory of
elasticity. Analytical solutions of a few such simple problems are presented
in chapter 9. One can use these fundamental solutions and one’s engineer-
ing judgment to obtain approximate solutions for a variety of other prob-
lem geometries with cracks, as discussed in the previous chapters. However,
a large number of problems that still remain unsolved can be solved only
numerically. Different numerical techniques that can be used to obtain the
stress intensity factors (SIFs) for problem geometries with various loading
conditions are discussed in this chapter.

8.2 Boundary Collocation Technique

From equation (2.29) the following relations are obtained:

our 3,85 00) (o [on{(3 1) S3es{(5 )]
ol 3]
PRt O E e
ol ]

221
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If computing the stress field near the crack tip is of interest, then one needs
to keep the dominant term (corresponding to n = 1) only. However, for stress
field computation at a point away from the crack tip, several terms of the pre-
ceding series expressions (equations 8.1 and 8.2) should be kept.

If a total of n terms are kept (n =1, 2, 3,...n) in the series expressions given
in equations (8.1) and (8.2), then there are a total of 2n unknown constants
in the series. These unknown constants are cyy, C51, €12, €20, C13/ C23/ Crar Coure--

(8.1b)

8.2)
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C1, Cope 1f these constants are somehow obtained, then the SIFs K, and K;; can
be evaluated from the relations given in equations (2.31) and (2.32):

K, =c;V2r
Ky =cnv2r

Now the question is how to obtain these unknown constants. The answer
to this question is that these can be obtained from the known boundary con-
ditions of the problem geometry as illustrated in the following examples.

8.3)

8.2.1 Circular Plate with a Radial Crack

The problem geometry is shown in Figure 8.1. The crack tip is at its center.
Applied stresses o,, and 0,4 along its boundary are functions of 6. These
stress fields keep the cracked plate in equilibrium. Note that the applied
boundary tractions or stresses o,, and o, are known at all points on the
boundary. We also know the general expressions of these two components
of stress as shown in equations (8.1) and (8.2). If n points on the boundary are
considered and the two given stress components at every boundary point are
equated to the stress expressions of 0,,and o,, (given in equations 8.1 and 8.2),
then a total of 211 equations are obtained to solve for 21 unknowns ¢y, ¢y, 1,
C22s C13s €23, C14y Coys- - -Crpy Cop- Equation (8.3) is then used to obtain the stress inten-
sity factors. A closer observation of the stress expressions of equations (8.1)
and (8.3) reveals that the coefficient of ¢,, is zero for both o,, and o,,. There-
fore, from n boundary points, only (21 — 1) equations need to be satisfied.

8.2.2 Rectangular Cracked Plate

For a rectangular cracked plate (shown in Figure 8.2), the applied bound-
ary tractions give o,, and o,, values on the vertical boundaries and o,, and
0,, values on the horizontal boundaries. Using stress transformation laws,

these stress components can be expressed in terms of 0,4, 0y, and o,,. Thus,

X

FIGURE 8.1
A cracked circular plate of radius R is subjected to normal and shear stresses at the boundary.
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0.v 0, and o,, are expressed in terms of a combination of series expressions
given in equations (8.1) and (8.2). Then, satisfying boundary conditions at n
points, 2n unknown constants are evaluated from a system of simultaneous
equations, and K; and K}, are obtained from equation (8.3).

If the plate is neither circular nor rectangular, but rather has a more com-
plex geometry, then a similar approach can also be followed to solve the
unknown coefficients. This is possible because normal and shear stresses
at any point on the boundary can be expressed in terms of o,y G4 and o,,
using the stress transformation laws.

Note that during the boundary collocation technique no point on the crack
surface is considered because the stress-free boundary conditions on the
crack surface are automatically satisfied by the series expressions given in
equations (8.1) and (8.2).

8.3 Conventional Finite Element Methods

A number of investigators (see the reference list) have followed the conven-
tional finite element method (FEM) to obtain the SIF for cracked plate geom-
etries. The SIF can be obtained:

by matching stresses or displacements at selected points
by matching local strain energy

from the strain energy release rate

by evaluating the J-integral

These different techniques are described next.

8.3.1 Stress and Displacement Matching

If the plate geometry shown in Figure 8.2 is discretized into a finite element
mesh by putting finer mesh or smaller elements near the crack tip (where a
high stress gradient is expected) and coarser mesh or larger elements away
from the crack tip and analyzed, then the stress field computed near the
crack tip is expected to show the behavior shown in Figure 8.3. Note that the
FEM predicted stress value is finite even at the crack tip. However, it is well
known that for linear elastic material, the stress field should be infinite at the
crack tip. If the analytically computed stress field (equation 2.47) is plotted
on top of the FEM predicted results, then the plots shown in Figure 8.4 are
obtained. Note that the two solutions match over a region that is neither too
close to the crack tip nor too far from the tip. Since the analytical solution
(equation 2.47) is obtained considering the singular term only (n = 1), it is
good for the points very close to the crack tip. Therefore, this analytical solu-
tion is not reliable at large distances. In short, analytical solution is good near
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FIGURE 8.2
Rectangular cracked plate subjected to boundary stresses.
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FIGURE 8.3
Finite element method computed stress field in front of a crack tip.
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FIGURE 8.4

Finite element method and analytically computed stress fields in front of a crack tip.
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FIGURE 8.5
True stress field (circles) matches with the analytical solution (dashed line) near the crack tip
and with the FEM solution (continuous line) away from the crack tip.

the crack tip and FEM solution is good away from the crack tip. Fortunately,
there is a region, marked in Figure 8.4 as the matching zone, where both
analytical and FEM solutions overlap. The SIF can be obtained equating the
analytical expression to the FEM solution in this region.

True solutions are shown by circles in Figure 8.5. Note that they match with
the analytical solution near the crack tip and with the FEM solution away
from the crack tip. Over a small region close (but not too close) to the crack
tip, marked in the Figure as the matching zone, all three solutions match.
True solution can be obtained by considering a large number of terms in the
series expressions given in equations (8.1) and (8.2).

In one of the early works of FEM applied to fracture mechanics problems
Watwood (1969) considered a cracked plate subjected to uniaxial tension as
shown in Figure 8.6 (2 =10, b =40, and L = 85). Since the problem is symmetric

HIHTITTIATenes
o TR

FIGURE 8.6
Cracked plate under uniaxial tension.
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Crack Tip

FIGURE 8.7
Seven elements near the crack tip from which SIF values given in Table 8.1 are obtained. Best
results are obtained from elements 3 and 6.

about both its horizontal and vertical central axes of symmetry, it is possible
to consider only a quarter of the plate and discretize the quarter plate into a
large number of finite elements. Watwood considered 470 elements and 478
nodes in the quarter plate.

The SIF is obtained by equating the stress computed in seven elements
near the crack tip to the analytical stress expression as given:

K, 6y 1 . . (36
O-y‘FEM = NI [cos (2) + Esmesm (2)} (8.4

Seven elements near the crack tip from which the SIF values are computed
using equation (8.4) are shown in Figure 8.7. Stress intensity factor values
are presented in Table 8.1. True value of K; for this problem geometry is 5.83.
Clearly, best results are obtained for elements 3 and 6. These two elements
are close to the crack tip, but not the closest elements. Figures 8.4 and 8.5
explain why elements 3 and 6 give best results. Average SIF value obtained
from elements 2, 3, 6, and 7 is 5.87, which is close to the true value of 5.83.

Instead of stress matching the FEM, computed displacements can also be
matched with the analytical expressions (see equation 2.48) and SIF values
can be obtained. For best results from the displacement matching consider
the points on the crack surface.

For this specific mesh, elements 3 and 6 had the ideal distance to give most
accurate SIF prediction. However, if the mesh grid is changed—say, made
more refined—then instead of the second layer of elements (from the crack
tip), maybe a third or fourth layer of elements will give most accurate results.
Chan, Tubo, and Wilson (1970) (also see Wilson, 1973) suggested a method to
avoid this problem of mesh dependence, element size, and position depen-
dence on SIF calculation. They took extremely refined mesh near the crack

TABLE 8.1

K; Values Obtained from Seven Elements Shown in Figure 8.7

Element No. 1 2 3 4 5 6 7
K; 12.5 5.55 5.88 6.54 7.38 5.88 6.19




228 Fundamentals of Fracture Mechanics

o--0
9-o"
_-o”
_-®
Kir ™% Kkl
o © 0o O wo_ o-
To--6_
Displacement Stress
Matching Matching
r—Distance to r—Distance to
Matched Element Matched Element

(a) (b)

FIGURE 8.8
Estimating K; by extrapolating predicted K; values from different elements at various distances
from the crack tip: (a) displacement matching and (b) stress matching.

tip (100 to 500 times smaller element size in comparison to Watwood’s ele-
ment size). Then they estimated K; from different elements near the crack tip
and plotted the computed values as a function of the radial distance of the
element from the crack tip. Figures 8.8a and 8.8b show the numerical values
(shown by small circles) obtained by matching FEM computed displacement
and stress, respectively, to the analytical expressions of displacement and
stress given in equations (2.47) and (2.48). Note that from both displacement
and stress matching the K; value is obtained as a function of the element
distance (r) from the crack tip. The dependence on r is approximately linear
when the points are not too close to the crack tip. If one extrapolates the
straight line, then the intersection of this line with the vertical axis (or K;
axis) gives an accurate estimate (error less than 5%) of the SIF. However, this
method is expensive due to the refined mesh requirement and the accuracy
is not that good considering the expense.

8.3.2 Local Strain Energy Matching

In an effort to average the numerical results over a region and match the aver-
age property over that region with an expression involving K; this method
has been developed. Instead of trying to match stress or displacement at spe-
cific points, local strain energy near the crack tip computed from the finite
element (FE) analysis is matched with the analytical expression for the strain
energy over the same region.

Note that, for two-dimensional problems, the strain energy density expres-
sions for plane stress and plane strain problems are given by

1
u, = °F [ng +02, +2(1+ V)02, - 2V0'xx0'yy] for plane stress
8.5)
u, = 12+EV [(1 _ V)(Gﬁx 4 0'§y ) + 2(0-3}/ -v0,,0, )] for plane strain
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Substituting the analytical expressions (equation 2.47) of the three stress
components near a crack tip in equation (8.5) and integrating this over a cir-
cular region of radius R around the crack tip (shown in Figure 8.9a), the local
energy in this circular region surrounding the crack tip can be obtained as

_ 2
U= (5 83‘/) KIIE R for plane stress
(8.6)
_(5-8v)(1+v) KR

for plane strain
8 E

Since equation (8.6) is obtained with only one term (1 = 1) analytical expres-
sion for stresses, equation (8.6) should give good results only if the radius of
the circular region R is very small or R << a (the crack length).

Since FEM does not give good results very close to the crack tip (because
of the singular stress behavior), the local strain energy is computed over an
annular region (Figure 8.9b), instead of a circular region. The FEM predicted
strain energy over the annular region is matched with the analytical expres-
sions given in equation (8.7) to obtain K:

U=(5—3ijﬂRY—RQ
8 E

_(5-8v)(1+Vv) K}(R, —R,)
B 8 E

for plane stress
8.7)

for plane strain

This method has many of the disadvantages of the method of stress or
displacement matching at specific points, except that it takes into account all
values of 6 as well as both stresses and displacements.

8.3.3 Strain Energy Release Rate

Relation between the strain energy release rate and SIF can be used to eval-
uate SIF. If the strain energy of a plate for two crack lengths 4, and g4, is

FIGURE 8.9
(a) Circular region and (b) annular region surrounding the crack tip where local strain energy
is computed by FEM.
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computed from FE analysis as U(a,) and U(a,), respectively, then the strain
energy release rate predicted by FEM is

U(a)-Ua,) _dU _  Ki 8.8
t(a, — ay) dA E o

In this equation ¢ is the plate thickness, oo =1 for plane stress, and =1 - V?
for plane strain. Then, from equation (8.8),

K%:E{UWJ-UWQ}:E{UWO—U@0} for thin plate (89
ol ta —ay) t(ay —ay)

While computing U(a,) and U(a,) it is not necessary to change the finite ele-
ment mesh for the two runs; simply advance the crack length by one or a few
elements for the second run. Note that FEM computed U(a,) and U(a,) may be
different from true U(a,) and U(a,) values as shown in Figure 8.10. However,
since in equation (8.9) only the difference value between the two energy val-
ues is needed, the FEM predicted value may not be much different from the
true value of U(a,) — U(ay).

For plate thickness = 1, equation (8.9) can be written as

K%:E{umo—uma}:EAu

(4 —ay) Aa
K? E-AU
s = AL (8.10)

K, [EAU
"o 02Aa
FEM

Exact

FIGURE 8.10
Variation of strain energy in the plate as a function of crack length. Two curves correspond to
the exact variation and the FEM prediction.
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TABLE 8.2

Computation of K| from Strain Energy Release Rate from Different Values of the
Crack Length?

EU E-AU K, E-AU

— —= Exact —"
a o? o’ c o? o a % Difference
7 3160.04
21.50 4.86 4.96 7.5 —2.0%
8 3181.54
24.76 522 532 8.5 -1.9%
9 3206.30
28.14 5.56 5.66 9.5 -1.8%
10 3234.44
31.66 5.90 6.00 10.5 -1.7%
11 3266.10
35.38 6.23 6.34 11.5 -1.8%
12 3301.10
39.26 6.57 6.67 125 -1.5%
13 3340.74
43.36 6.90 7.01 13.5 -1.6%
14 3384.10

aProblem geometry is shown in Figure 8.6.

In equation (8.10) o is applied stress. If one applies this technique to
Watwood’s problem (shown in Figure 8.6) for different values of a =7, §,
9,...14, then Aa = 1. Equation (8.10) is thus simplified to

Ky _ [E-AU 8.11)

Table 8.2 shows the computed results.
Note that instead of the crack increment length Aa =1, as shown in Table 8.2,
if we take Aa =4 (1, =8 and a, = 12), then, from equation (8.10),

o

=548
Aa-o?

K, [|E-AU _ \/3301.48 -3181.54 \/119.94
4 Vo4
while the true value is 5.83. Thus, it gives an error of —6%.

The advantage of this method is that with coarser mesh accurate results
can be obtained. Its disadvantage is that the FE analysis will have to be car-
ried out twice for two different crack lengths even when we are interested in
computing the stress intensity factor for a single value of the crack length.

Watwood suggested that if K; increases with the crack length, then this
method gives a lower bound of SIF, while if K; decreases with the crack
length, then it gives an upper bound.
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8.3.4 J-Integral Method

Recall from chapter 5 (equation 5.8) that the strain energy release rate is equal
to the J-integral value

G=]-= J[u;zxz -T g”fds] (812)
1
S

X

Therefore, instead of evaluating the strain energy release rate by running
the finite element program twice, as done in section 8.3.3, one can evaluate
it from one run of the finite element mesh by choosing an appropriate path
S for the J-integral enclosing the crack tip. This path should be selected such
that the line integral can be evaluated relatively easily. For example, for the
problem geometry shown in Figure 8.6, the J-integral path should be taken
along ABCDEFG, as shown in Figure 8.11(a). Since the problem is symmetric
about the horizontal central axis, the J-integral value over path ABCDEFG is
simply twice the J-integral value over path DEFG.

On path DE the traction (T) is zero; therefore, the J-integral value on this
path is given by

E
Joe = J.dez (8.13)
D

Since from the finite element analysis U is known for all elements along
line DE, equation (8.13) can be evaluated by adding the strain energy density
values for all elements along line DE.

AT L
S LK (b)G -
T

FIGURE 8.11
(a) J-integral path ABCDEFG for the complete plate and (b) J-integral path DEFG for the half plate.
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On path EF dx, =0 and T, =0, T, = o; therefore,

F
ou; Ju ou

]EF:J-(_T;' dSJ:_JTza;(_dxl)=sza;dx1
EF EF 1 E !

X,
(814)
F F
=j g 2 gy, = _[duz = &[> (F) - ,(E)|
Xq "
On path FG,
G G
T = J(dez—ﬂ gx”f dsj J(dez uks oy ‘- dxz)j J(dez +T e ]
FG 1 F F
8.15)

From the symmetry condition on path FG, the shear stress is zero; there-
fore, ,=0and T, = -0y,

ou c
s T gi =—-0q1 gz =—0p& = _%(0—11 - VGZZ) (816)
From equations (8.15) and (8.16),
G . G
Jrc = J.(U+T jdx2 = J.(ll—G“(cr11 —vcrzz)jdx2 (8.17)
axl F E

Equation (8.17) can be evaluated from the FEM generated results. Then the
stress intensity factor is obtained from the following relation:

K2
a?I:]ABCDEFG =2X(Jpe +Jer + Jrc) (8.18)

8.4 Special Crack Tip Finite Elements

The fundamental limitation of the conventional finite element method for
solving fracture mechanics problems is trying to model a singular stress
field near the crack tip by nonsingular expressions of stresses in conventional
finite elements. For simple three-node triangular elements (constant strain
triangles), stress is constant inside the element. In triangular and quadrilat-
eral elements, the stress can be varied inside the element in linear, quadratic,
or in higher order polynomial forms by changing the number of nodes of the
element; however, the field will not have any singularity. Some investigators
(Byskov 1970; Walsh 1971; Tracey 1971; Tong and Pian 1973; Wilson 1973) have
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Conventional
Finite Elements

Singular
Stress Element
or Special Crack Tip Element

FIGURE 8.12
Special crack tip element surrounded by conventional triangular finite elements.

suggested using special crack tip elements with unconventional interpola-
tion functions to produce singular stress fields at the crack tip. A circular
crack element surrounding the crack tip, as shown in Figure 8.12, can have a
singular stress field at the crack tip if the displacement variation in the ele-
ment is expressed in the following form:

N n
r |2
Up =+ E 0, (1’} f2(6)
n=1 ¢

uz = ién (:Jz g" (6)

n=1 ¢

(8.19)

If the crack is located on a horizontal line of symmetry, as shown in
Figure 8.1, 8.2, or 8.6, and the load is applied symmetrically, then from the
symmetry condition it is easy to see that the crack tip element located on
the axis of symmetry should not have any rigid body motion in the vertical
direction, although it can have it in the horizontal direction. That is why 1,
the rigid body motion in the horizontal direction, is introduced in the u,
expression only in equation (8.19). Variables r and 6 are the polar coordinates
measured from the crack tip, as shown in Figure 8.12. Radius of the crack
tip element is 7,; equation (8.19) is valid only inside the element, r < r, and
-n < 0 < m. Note that, for the displacement variation of equation (8.19), strain
and stress should have square root singularity (J-) at the crack tip as pre-
dicted by the stress analysis near the crack tip. A layer of conventional finite
elements (triangular or quadrilateral) is to be placed around the special crack
tip element as shown in Figure 8.12.
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In equation (8.19) uy, and J, are unknown constants, and N is an integer
greater than or equal to 1. Functions f,(6) and g,(6) are known functions of 6,
obtained from the infinite series expressions of the displacement field near a
crack tip. The infinite series expressions for the stress field are given in equa-
tions (8.1) and (8.2). Similarly, the series expressions for the displacement field
can be obtained. It is possible to show that, for plane strain problems,

f1(0) =— (5 - 4vj cos (0) cos O+ 1 cos (36) cos6
2 2 2 2

—(7—4v)s'1n(9)sin(9+15111(39)31110
2 2 2 2

For plane stress problems, v should be replaced by ;. The constant 6, is
proportional to K;:

(8.20)

E [ox

1+v\r

1= ) (8.21)

Note that the interelement compatibility (or displacement continuity) con-
ditions across the singular stress element and conventional finite element
boundaries is violated because the displacement interpolation functions are
different types for these two types of elements. In spite of this incompatibil-
ity, the results show good convergence, especially when four-term expansion
(N =4 in equation 8.19) is considered. Error in the computed value of K; as a
function of the radius of the circular element is shown in Figure 8.13 for SSC-
1 and SSC-4 elements. Note that SSC-N stands for singular stress, circular
element with N term expansion.

Error also depends on the number of conventional finite elements, such as

constant stress triangles (CST), surrounding the singular stress element as
shown in Figure 8.14.

60 |- T
_-77ssC-1
10 L
2 s
k=) /7
5 20 S
£ ,
- 7 SSC-4
= ; -
0 /
7/
d
//
—20 bm=="

FIGURE 8.13
Computational error as a function of the radius of SSC-1 and SSC-4 elements.



236 Fundamentals of Fracture Mechanics

40
30 —
o CST
E 20
—
e
& 10
x
= SSC-4
SSC-1
_10 | | |
0 200 400 600

Number of CST Elements

FIGURE 8.14

Error variation as a function of the number of CST elements surrounding the crack tip ele-

ments SSC-1 and SSC-4 (see Figure 8.12) and when only CST elements are used in the absence
of SSC.

8.5 Quarter Point Quadrilateral Finite Element

Barsoum (1976) and Henshell and Shaw (1975) showed that in eight-node
quadrilateral elements it is possible to model the singular stress behavior
at the crack tip simply by moving two middle nodes (node numbers 2 and 8

in Figure 8.15b) in the derived element at quarter point positions toward the
crack tip as shown in Figure 8.15b.

7 6
———O——0

q L/2 L/2 5

L/2

3L/4 O4

Crack g L/2
Tip
L/4 3L/4

1(L/a)? 3
(-1,-1) (1,-1) L

Parent Element Derived Element
in Local Coordinate in Global Coordinate

(a) (b)

FIGURE 8.15
(a) Parent element and (b) derived element for quarter point elements.
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Interpolation functions N;, N,, and Nj for the eight-node quadrilateral ele-

ments are given by

N, == (-E1-m(+E+n)

Ny= ) (-&)1-n) 622

Ny = (+8A-mE-n-1)

Variations of these three interpolation functions along line 123 (n = -1) are

given by
_Saop=be-
Ny =-2(1-8=3(-1
N,=1-¢& (8.23)
N3:§(5+1)

Substituting x; = 0, x, = L/4, x; = L, and equation (8.23) in the local

coordinate-global coordinate relation,

x:lel+N2x2+N3x3:N1><0+N2><§+N3><L

(8.24)
L ¢ L L, L
=(1-&)x—+2(E+1)xL=—&>+—-C+—
(1-8)x +2E+DXL= 78+ 26+
Equation (8.24) can be written as
L, L L
—&*+—E+|——x|=0
PO (4 xj
(8.25)

L
_Li LZ_4X*(L_X)
2 4 4 2 2
g LY 3 O -
2xL L4 4 L

4

In Figure 8.15 it is easy to see that node 3 corresponds to x =L and {=1.

X
. z\E 8.26)

Therefore,



238 Fundamentals of Fracture Mechanics
Then the displacement field is given by

u=Nyu; + Ny, + Nju, =§(§—l)u1 +(1-8)u, +§(§+1)u3

A e S
R N

Therefore,

8.27)

3 4 47 w[ 1 4
+ 2| ———=+—

axz[nL][f—LJ 2[ NED J 629

Clearly, the strain shows square root singularity at the crack tip (x = 0). The
stress field should also show the same square root singularity.

The main advantage of the quarter point finite element is that it can pro-
duce accurate results without requiring a special crack tip element. There-
fore, conventional codes that can handle eight-point quadrilateral elements
or triangular elements (collapsed quadrilateral element) can be used to solve
fracture mechanics problems simply by shifting the middle nodes on the ele-
ment boundaries adjacent to the crack tip to quarter point positions toward
the crack tip, as shown in Figure 8.15b. Barsoum (1977) showed that triangu-
lar quarter point elements are even better than quadrilateral quarter point
elements for modeling cracked geometry. Barsoum thought that in the case
of quadrilateral elements the stress was singular only along the two edges
of the finite element, whereas in the case of triangular elements the stress is
singular along any ray from the crack tip.

Later, Banks-Sills and Bortman (1984) re-examined the quarter point
quadrilateral element and concluded that for quadrilateral elements the
behavior of stresses is also square-root singular on all rays emanating from
the crack tip in a small region of the element. There have been some sug-
gestions to use one or two layers of transition elements (Lynn and Ingraffea
1978) between quarter point elements and conventional finite elements.
In transition elements the middle nodes are placed in between the quar-
ter point and the midpoint, as shown in Figure 8.16. Transition elements
may produce slightly better results for some problems, but often the effect
of transition elements has been found to be insignificant. Banks-Sills and
Sherman (1986) solved a fracture mechanics problem by several techniques
and concluded that the quarter point element technique is overall the most
efficient technique.
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-+ O O O O O O O
Quarter Point Transition Conventional
I Element Element Element 5
Crack @)
Tip \ L/ Lin L/2
— O O O O '0)
L/4 Lin L/2
L L L

FIGURE 8.16
Transition element placed between quarter point element and conventional finite element. For
the transition element, the shorter length L/n can be any value between L/2 and L/4.

8.6 Concluding Remarks

Among various numerical techniques discussed in this chapter the most
popular technique for solving crack problems has been the use of quarter
point elements at the crack tips in a finite element mesh made of eight-node
quadrilateral isoparametric elements. Although use of special crack tip ele-
ments (discussed in section 8.4) became popular in the 1970s, this approach
lost its charm after the invention of the quarter point elements.
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Westergaard Stress Function

9.1 Introduction

For solving crack problems analytically, several complex forms of Airy stress
function have been proposed (Westergaard 1939; Muskhelishvili 1953; Paris
and Sih 1965; Sih 1966, 1973; Rice 1969; Goodier 1969; Eftis and Liebowitz
1972). Among these different stress functions the Westergaard stress func-
tion has become most popular because it can solve a wide range of crack
problems. A few sample problems are solved analytically in this chapter fol-
lowing the Westergaard stress function technique.

9.2 Background Knowledge

As described in chapter 1, if ®(x, y) is the Airy stress function, then stresses
in a two-dimensional problem geometry are defined in terms of the Airy
stress function in the following manner (equation 1.101):

Oux = Doy

_ 9.1
ny - (D'xx ( )
(o] —-®

T Ty

Note that the preceding three equations can be written in index notation:
Oop = (D/yy 6043 - (I)/aﬁ (92)

where o, f3 take values x and y. Repeated index y means summation over
bothxandy ®@,,=®,,, + P,

rax Ty

Substltqtlng these expressions in the compatibility equation [(gxx,w_"r Eyyrr —
2¢,,,,,=0) in terms of strain or (044,55 = Oy 11 + Orayy + Opyux + Oy, = 0) in terms

of stress], one gets (see equation 1.102)
Vid =0 9.3

241
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Therefore, ® must be biharmonic. One can show that if

D= +x¢, +yo; + (x> +y?)9, 94

then @ is a biharmonic function when ¢,, ¢,, ¢;, ¢, are harmonic:
V2 = V29, = V29, =V?¢, =0 ©.5)

Therefore, any biharmonic function can be represented in the form given in
equation (9.4).

From the special properties of an analytic function ¢(z), where z is a com-
plex variable z = x + iy and ¢(z) = U(x, y) + iV(x, y), one can write

V2 = V2V =0 9.6)

In other words, when ¢(z) has a derivative with respect to z (definition of
an analytic function is that its derivative exists), its real and imaginary parts
[U =Re(¢), V = Im(¢)] must be harmonic. Note that U(x, y) and V(x, y) are real
functions of x and y.

9.3 Griffith Crack in Biaxial State of Stress

Let us consider the problem geometry shown in Figure 9.1. A Griffith crack
of length 24 is subjected to a biaxial state of stress. From the symmetry condi-
tion one can see that the shear stress (o,,) along two lines of symmetry y =0
and x = 0 must be zero.

Q
Q

FIGURE 9.1
Griffith crack subjected to a biaxial state of stress.
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In terms of the Westergaard stress function Z(z), where z is a complex
variable (z = x + iy), the harmonic functions ¢; of equation (9.4) are defined

as
¢ = Re(.[ Z(z)dz)

¢, =Im U Z(z)dz) 97)
o,=¢,=0

Note that single and double integrals of a function Z(z) must be analytic
because the derivative of the integral of a function is the function itself and
the derivative of the double integral of a function is the single integral of
the function. Thus, derivatives of both single and double integrals of any
complex function must exist. Therefore, from equation (9.6) both real and
imaginary parts of [[Z(z)dz and JZ(z)dz must be harmonic.

9.3.1 Stress and Displacement Fields in Terms
of Westergaard Stress Function

Since z = x + 1y,

9.8)

Therefore,
) _ 909z _ 29 _
dx 0z dx 9z

() _ 299z _ 26
dy dzdy 0z

9'(z)
9.9)

=i¢’(2)
From equations (9.4) and (9.7),

® =0, +x0, +y0, + (2 + 200, = Rel [[ 2tz |+ yim [ 26212 g10)



244 Fundamentals of Fracture Mechanics

Therefore,
®, = Re [ j Z(z)dz) +yIm(Z(2)

@, = Re(Z) + yIm(Z’)

®,,=Re H Z(z)dz) +Im U Z(Z)dZJ +yIm(iZ(z)) (9.11)

=—Im (J Z(z)dz) +Im (J- Z(z)dzj +yIm(iZ) = yRe(Z)
®@,,, =Re(Z)+yRe(iZ’) = Re(Z) - y Im(Z")
@, =yRe(Z’)

From equations (9.1) and (9.11), the stress expressions are obtained:

Oy = ’W = Re(Z) y Im(Z')
G, =@, =Re(Z) +yIm(Z’) (9.12)
O-Xy q)/xy = ]/Re(Z )

From the preceding equation set, one can see that as y approaches zero the
shear stress o,, becomes zero if Re(Z’) is finite.

From equation (9.12) and stress—strain relations, the strain components can
be expressed in terms of the Westergaard stress function. Then, integrating
the strain expressions, the displacement field is obtained:

1i L Re ( I Z(z)dz) _yIm(2)
v 9.13)
_E v= K—HI (J. Z(z)dzj yRe(Z)
1+v
Kk =3-4v for plane strain
3y 9.14)
=—— for plane stress
1+v
9.3.2 Westergaard Stress Function for the Griffith Crack
under Biaxial Stress Field
Let us investigate the following stress function:
2(z) =22 0.15)

,ZZ—llz
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As z approaches infinity, the stress function Z(z) simplifies to

lim lim oz oz

oz
Z@)= = 2z -9z _0%_ 916
Z e ) zo2—g2 2z ¢ 16

Therefore, for the large x and y values in Figure 9.1, the complex variable z is
large, since z = x + iy, and Z(z) = 0. From equation (9.12),

0, =Re(Z)-yIm(Z)=0
o, =Re(Z)+yIm(Z’)=0 917)

o,, =-yRe(Z')=0

Clearly, equation (9.17) shows that the stress function of equation (9.15) satis-
fies the regularity condition or conditions at infinity.

From equations (9.12) and (9.13), the stress and displacement fields closer to
the crack can be obtained. In these equations derivative and integral of Z(z)
appear:

oz o 2z
ZZdzzjid'z:*jidz=0'\/zz—a2w
J- () Jz% —a? 2J Jz2-n2
d ( oz )_G[,/ZZ_aZ _Z;(Zz_a2)1/22ZJ

Z(z)=—
@) dz\\z2 —a? z2—-q?

9.18)

_ oa?

z2—a*—-z2) oa? 1
(Z2 _ (12)3/2 (ZZ _ a2)3/2 [22 _ a2 (ZZ _ aZ)

The function +/z? —4? is a multivalued function explained as follows:

22— =\z=az+a = Jre® \Jret: = [rre2 9.19)

In equation (9.19),

h=|z—a|=AP
(9.20)
t, =|z+a|=BP

AP and BP are distances of the point of interest (P) from the two crack tips
A and B. Angles 6, and 0, are shown in Figure 9.2. Depending on how angles

6, and 6, are defined, different values of the function +z> —a*> are possible
at the same point. Let us assume that both 6, and 6, vary from 0 to 27. Then,
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FIGURE 9.2
ry, 6, and r,, 6, for point P.

for different points on the x- and y-axes, shown in Figure 9.3, the function
\Jz? —a? should have the following values:

For point P of Figure 9.3, 6, = 0,=0,r,=|z—a|=x—-a, 1, =|z+a|=x+a;
therefore, at P,

\zZ?—a? = nr, 62 \/(x a)(x+a)32 =x2 -2

Similarly, for point Q, 6, = /2 + ¢, 0, = /2 — o, where ¢t is the angle between
AQ and OR:

n=lz—al=y*+a*, n,=|z+a|=Jy> +a?

FIGURE 9.3
6, and 6, values for different points P, Q, R, S, T on the cracked plate.
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Therefore, at Q,

[ T T,
JzZ—a? = rlrzeZ(oﬁ ) _ \/(3/2 +a2)2(y? +a?)2 e2" = iJy? +a?

For point R, 6, =7, 6,=0,r,=|z—al=a - x, r, = |z + a| = a + x; therefore,
at R,

i i
Jz2—a? = nr, o2 %) _ Ja=x)(a+x)e2" =iJa? —x2

For point S, 0, =m, 6, =2m, r, =z —a|=a —x, r, = |z + a| = a + x; therefore,
ats,

i i
Jz2—a? = nr, 02 _ Ja—x)a+x)e2" = —iJa? — 2

For point T, 6, =37/2 — o, 6, =37/2 + o, where « is the angle between AS
and OS:

n=|z—a|=\y*+a*, n=|z+a|=\y*+a>

Therefore, at T,

Lo 40 1 1 i, .
Nz2—a? = rlrzeZ( ) \/(3/2 +a2)2(y2 +a2)2e2 =—iJy? +a?

For point U, 6, =0,=m, 1, = |z—a| =—x —a, r, = |z + a| = —x + a; therefore,
at U,

i i
Jz2—a? = nn 2" = [Cx—a)—x+a)er” =—Jx?—a?

Note that at points R and S, the 6, value is the same (r), but the values of 6,
are different (0 for point R, and 27 for point S); this results in different values
of the function ./z2 — 42 between these two points. However, for points just
above and below point U, both 6, and 6, values are the same (7) and hence
there is no jump in the value of the function /z2 - 42 between two points
just above and below point U.

However, 8, and 6, values above and below point P are different. For a
point slightly above point P (y =0%), 8, = 6, =0 and for a point slightly below point
P (y = 0), 8, = 6, = 2m. Therefore, for a point just below point P, the func-
tion yz2-a? value is given by /2 _ ;2 = rlrzgéw“ez} = (x—a)(x+a)eé4”
=+/x?—a? . Note that this value is the same as that of a point just above
point P. The only line across which the function value changes from one
side of the line to the other side is line AB. This line is called the branch cut.
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Values of the multivalued function /z2 — 42 at different points of Figure 9.3

are summarized below:

Jz2—a2 =x2-a2 at point P
= i\/m at point Q
= i\/m at point R
= —im at point S
= —i\/m at point T

=—/x2—-a? at point U

9.21)

From equations (9.12), (9.18), and (9.21), on line AP of Figure 9.3, since y =0,

N oz _ ox
O-xx :Re(Z)—yIm(Z )_Re(\/ZZ —(12 ]_ \/xz _a2

’ G G
o, =Re(Z) +yIm(Z’) = Re(\/zz faZ j= Jaz f(12

=—-yRe(Z)=0
and the displacement field from equation (9.13),
1 Re (IZ(z)dz) —-yIm(Z) = —1 Re (0\/22 —-a? )
= K;1 Re(cr\/x2 —a? ) = —Kgl oNx? —a?
E K+1 K+1
—0v= —I (J Z(z)dz) yRe(Z)=——Im (0'\/22 —-a? )
1+v 2
KTHIm(G\/xZ —a? ) 0

O'(1+V)(K' 1) ey
2E

E

1+v

On line AB, on the top surface of the crack, y =0,

oz ox
=Re(Z)-yIm(Z")=Re| ——— |=Re| —— |=0
o-xx e( ) ym( ) e(mj e(l az_xzj

= Re(Z) +yTm(Z’) = Re (“ZJ =Re (la“x) =0

ZZ_a2 2_x2

o, =—yRe(Z')=0

9.22)

9.23)

9.24)
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Therefore, the traction-free boundary conditions on the top crack surface are
satisfied. The displacement field on the top surface of the crack (line AB, y =
0%) can be obtained from equation (9.13):
-1
Re U Z(z)dz)

E

1+v

Re ( J' Z(z)dz) _yIm(Z)=

= KglRe(iG\/az—xz):O

_E v= K—HI U. Z(z)dzj yRe(Z) = ;— 1 Im (J'Z(z)dz) .29

1+v

KTH Im (zm/az x2 ) G(K 1) Ja?
0'(1 +Vv)(x+1) N

2E

In the same manner on line AB, on the bottom surface of the crack, y =0,

we obtain o, = 0,, = 0, = 0:
E u= KT_lRe(JZ(z)dz) -yIm(Z)= k-1 Re (J.Z(z)dz)
i

1+v

< Ji =) =0

_1Re —ic
2

(
1 f v Lﬂlm (I Z(Z)dZ) yRe(Z) = LHI ( J 2 dzj 9.26)

=X ;— L Im(—icwa2 —x? ) =- G(K; D Va* —x?

S 0'(1+;/;5(K+1)\/—

Note that equations (9.25) and (9.26) can be written as

v ’ 2 — 42
(C) +x=a
or 9.27)
() -() -

ca a B

Therefore, the open crack forms an ellipse whose semimajor axis is the half-
crack length a and the semiminor axis is the half of the maximum crack



250 Fundamentals of Fracture Mechanics

opening displacement at the center:

. o(1+v)(x+1)

o 9.28)

Similarly, on line RQ, x =0, y > 0:

I " %2 |\ _yim|l-____ %"
O =ReZ) =y Im(Z) R(mj ylm( mwm)

= Re[o(xﬂ'y)

oa?
ey J”Im(iW{—(czuyz)}]

~ Re o(—ix+y) +vIm ioca?
NGRS M W)

y a?
=0 +
/az + ]/2 (2 + y2)3/2

G,, = Re(Z)+yIm(Z’) = 0{ Y a }

(2 + - (a2 + y2)¥2

, oa? oa?
O-xy =—yRe(Z )=_yRe[_\/ra2(ZZ_a2)j= yRe[iW{_(az +y2)}]—0

(9.29)

Note that the stress and displacement fields at any point of interest can be
obtained from equations (9.12), (9.13), (9.15), and (9.18).

9.3.3 Stress Field Close to a Crack Tip

For a point P close to the crack tip as shown in Figure 9.4,

z=a+re® (9.30)

For £ «<1,
z+a=2a+re? =2a 9.31)
z—a=a+re? —q=re? ©.32)

nz2—a? =(z—a)(z +a)=2are®

)
;0
soAz2 —a? =4/ 2are 2

(9.33)
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FIGURE 9.4
Point P near a crack tip is denoted by the (7, 6) coordinates.

Therefore,
Z(z) = —OZ _o(a+re®)  oa  oma eﬂg_ K
V22 - a2 2ar€i§ Zare’g J2rr 2n(z - a) (9.39)
and

jZ(z)dz =022 —a? = o/ 2are®?

7 1 oa? o2 oale3i0/2 (9.35)
(z)=- [22—a2 (22 —a?) __(2m,eie)3/z - (2ary2
Therefore,
O-\/E . O-a2673i9/2
o..=Re(Z)-yIm(Z) =Re| —==p¢-0/2 |—yT _ouwe
R e N
—G\/E cos(ej—rsine o’ sin(%j
N2mr 2 (2ar)3/? 2
oma oy 1. . . (36 9.36)
= Cos| — |——sin@sin| —
\2mr { (2) 2 ( 2 )}

o =Re(Z)+yIm(Z')=G i {cos 0

N2mr

, on2e30/2 . oa? 30
o, =-yRe(Z')=—-y Re(_(Zar)mj = rsmecos(z)

_oma 1sin6cos(39)
N2nr 2 2
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Similarly,
E Re (J Z(z)dz) _yIm(2)
1+v
| . ovNma
= R 2 i0/2Y _ I —i6/2
e(o+/2arei’?) ym(me J
=K—_10' 2arcos(9j+rsin66 T sin(e)
2 2 \N2mr 2
r 0 . . (6
=ovrma, ,E {(K —1)cos (2) + sin @sin (2)} ©.37)
E K+1
— —I Z(z)d R
Loo- (20 )-yre(z)

K+1 , ovma .
=——Im(o+2are®?)—-yRe| —=—=e0/2
2 ( ) Y [ N2mr j

K+1 . (6 . o~7ma 0
=——0+2arsin| — |- rsin@ cos| —
2 2 N27r 2

:o—m\/; {<K+1>sm(§)—sh‘9“°s@}

It should be noted here that if we were interested in computing the stress
and displacement fields near a crack tip that was located at the origin—
instead of at point x = a (as shown in Figure 9.4), then the Westergaard stress
function expression given in equation (9.34) would have changed to

K K ¢
2

e
27z \/ 2rr

Note that, because of the two different locations of the crack tip, although
the Z(z) expressions given in equations (9.34) and (9.38) are slightly different
when Z(z) is expressed in terms of z, these two expressions are identical when
Z is expressed in terms of 7 and 6 measured from the crack tip. Thus, the
Z(r,0) expression is independent of the crack tip position while Z(z) is not.

Z(z) =

9.38)

9.4 Concentrated Load on a Half Space

It is shown below that the Westergaard stress function for the problem geom-
etry of Figure 9.5 is given by
p

7)== Lo L (Ginoricoss) 9.39)
inz iTr r
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FIGURE 9.5
A concentrated load P is acting on the surface of the half space at the origin of the coordi-
nate system.

Note that for the preceding stress function,

Re(Z) = — Psin@ Im(Z)=— Pcos6
nr nr
and
Z'(z) =—- P2 = l—PZe*Z"" = Z—PZ(COSZO— isin 20)
inz? 7r r
(9.40)
Im(Z’) = PC05220

r

Therefore,

o, =Re(Z)—yIm(Z’)

P P P 2P
:——sine—rsin&—zcosZG:——sinG(1+c0529)=——sin9cos29
r Tr r TTr

0, =Re(Z)+yIm(Z")=— r sin 8(1 — cos 20) = — 2P sin® 6 (9.41)
r nr

Oy = -yRe(Z') = —rsin6~isi1129 = —Esin2 06cosO
mr? r

From equation (9.41) one can clearly see that o, = 0,, = 0 on the half space
surface at y = 0, for r # 0, 8 = 0, and =. Therefore, the stress-free boundary
conditions are satisfied on the free surface.

The resultant internal vertical force generated by the stress field on the
semicircle shown in Figure 9.6 is then computed to check if the stress field
of equation (9.41) produces a resultant vertical force P. The resultant vertical
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FIGURE 9.6
Stress directions in the semicircular region and the applied concentrated load.

force on the curved surface (see Figure 9.6) can be computed in the following
manner:

F, = j(ow Sin6 + 0, cos O)RAO 9.42)

From the stress transformation law,
=Ll Oy + Ll Oy + L 0O + 00,000,

=o0,,cos’0+0,,sin*0+2sindcosbo,,
(943)
Org =Ll oOny + Lo O + 1, o0+ 1, 0o0,

—0,, sin@cos6 +0,, sinfcosb +0,,(cos? 6 —sin? 6)

Substituting equations (9.43) and (9.41) into equation (9.42),

F, = |lo, sin@+ 0,5 cosO]RAO

[(Gﬂcos 6+o0,,sin?6+20,, sinf cos)sin 6

o'—.a o'—.:l

+(-0,, sinfcosO + 0, sin 6 cos 6 + 7, {cos? O — sin* B}) cos 9} Rd6

[0,,(sin’® 6 +sin6 cos? 0) + 0., (2sin? 6 cos B + cos® O — sin* B cos 6)|RdO

[0, sin6(sin? 6 + cos? 0) + 0, cos B(sin? 6 + cos? H)]RdO

O by N O C—— N
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= J[O’W sinf +o,, cos 0]Rd0
0
2P |

=-— 2P J [sin® @sin 6 + sin? 0 cos? O]RAO = — —— | sin? G[sin? 6 + cos? O]RAO
TR g R

:—ZPJ.sinZBdez—ZPJ.1(1—C0520)d9=—P[0—1si1129} =-P
™ T 02 T 2 o

(9.44)

Vertical force —P computed in equation (9.44) is independent of the radius R
of the semicircle of Figure 9.6. Therefore, for any value of R (small, medium,
or large), the resultant force acting on the semicircle should always be —P.
Thus, the semicircular region should always be in equilibrium when the
external applied force P acts at the origin, as shown in Figure 9.6.

9.5 Griffith Crack Subjected to Concentrated
Crack Opening Loads P

Westergaard stress function for the problem geometry shown in Figure 9.7
is obtained in this section. Based on the Westergaard stress functions pre-
sented in sections 9.3 and 9.4, the stress function for this problem geometry
can be postulated in the following form:

Z(z)=

G
—xWa 045

FIGURE 9.7
Griffith crack subjected to two concentrated crack opening loads P.
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For a concentrated load at the origin acting on a half space (see
section 9.4), the stress function has the z dependence in the form 1. In this
problem geometry, since the concentrated force is acting at x,, in the denomi-
nator of the stress function of equation (9.45), (z — x,) is taken instead of z. In
section 9.3 (equation 9.38), we also learned that if the crack tip is present at
the origin, then the Westergaard stress function should have the z depen-
dence in the form J— Since the Griffith crack has its two crack tips at z = =a,
the stress function is taken in the form 75 X 7 = W Therefore, equa-
tion (9.45) takes care of both crack tips and concentrated force application
conditions. The constant C,, in the numerator of equation (9.45) is obtained in
the following manner.

Take the limit as z — x,; in other words, z = x, + £ where £ is small. Then,

_ G _ G
Cz—x WZ-a2  Ez—az+a

_ G _ Co
- 5\/§+x0—a\/§+x0+a ) 5\/x0—a\/x0+a

(9.46)

Simplification given in equation (9.46) is possible when & is small compared
to (x, + ). Further manipulation gives

Q& _ G
Jxo—aJxom - iEfr-x (947)

Comparing equations (9.47) and (9.39), one can write

G _P
iEJa> —x2 ik
C _ Pa?-x;
. 0—7

/3

9.48)

Substituting equation (9.48) into equation (9.45),

_ Pya*-x;
i — s 04)

9.5.1 Stress Intensity Factor

From the Westergaard stress function given in equation (9.49), the normal stress
can be computed at a point ahead of the crack tip. Note that, for z = x, (|x| > a),
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Pyja? — x3 Pyja% — x3

Az)= 7(z — Xy )Nz — a? - (X — XN X% — a?

(9.50)

Therefore, for z = x, (x| > a), Z'(z) is real:

2 2
Pa* —x§

7T(x — xo )W x2 — a2 ©.51)

50y (x,0)=Re(Z) +y Im(Z') =

Substituting x =a + 1, where £ << 1, we get

Jx2—a? =Jx—aJx+a=Jr2a+r =2ar (9.52)

Substitution of equation (9.52) into equation (9.51) gives

Pyja? —x3 P\ja? —x2 Pyja? —x3

7(x — xo)Nx% — a2 - ﬂ(a+r—x0)\/ﬂ - ﬂ(a—xo)\/ﬁ

~0y,,(x,0)=

(9.53)

P a+x, 1 K
Jra a—xy ) N2rr  2mr

From equation (9.53) the stress intensity factor for the problem geometry
is obtained:

P |a+x,

Jra \ a-x,

K=

(9.54)

9.6 Griffith Crack Subjected to Nonuniform
Internal Pressure

In this section the Westergaard stress function for the problem geometry
shown in Figure 9.8 is obtained. Note that over an elemental length do at
a distance o from the origin, the crack opening force acting on the crack
surface is given by f(a)da.. From equation (9.49) one can postulate the Wester-
gaard stress function for this elemental force flo)d o as

_~Na*—o? f(o)do
- n(z—a)Nz? —a?

dz (9.55)
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FIGURE 9.8
Griffith crack subjected to nonuniform distribution of normal traction.

Integrating equation (9.55), the complete Westergaard stress function
is obtained:

3 ¢z -a?f(a)
£= :[ (z—a)\z? —a? dor (.56)

Following similar steps as given in section 9.5.1, the SIF for this stress func-
tion is obtained:

at+o

P a
K= |
Jra INa=a

fla)do (9.57)

For the special case of f(a) = o,, equation (9.57) gives

K:J% /Ztgdazaom (9.58)

9.7 Infinite Number of Equal Length,
Equally Spaced Coplanar Cracks

It can be shown that the Westergaard stress function for the problem geom-
etry shown in Figure 9.9 is given by

Z(z) = o{l—{sm(%)} } 2 (9.59)

sin(77)
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ii¢llillll

FIGURE 9.9
Infinite number of equal length (24) equally spaced (W) coplanar cracks subjected to biaxial
state of stress.

The SIF from this stress function is obtained as

K= G{Wtan(m)}z 9.60)
W

9.8 Concluding Remarks

A few basic problems of fracture mechanics are solved in this chapter. For
analytical solutions of more complex problems, readers are referred to the
references cited in the reference list.
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Exercise Problems

Problem 9.1: Prove that the Westergaard stress function for the problem
geometry shown in Figure 9.10 should be

2(2) = 2Pz a* - b?
w(z? —b?Wz? —a?

Problem 9.2: For the problem geometry shown in Figure 9.10, compute
the stress field along lines (a) x=0,y > 0; and (b) y =0, x > a.

FIGURE 9.10
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Advanced Topics

10.1 Introduction

Solutions of some advanced problems are discussed in this chapter and rel-
evant references are given.

10.2 Stress Singularities at Crack Corners

In all crack problems considered so far the crack is assumed to have a sharp
edge and a smooth front in the crack plane. Four different crack geometries
are shown in plan views A, B, C, and D in Figure 10.1. Note that in the eleva-
tion view all four cracks look similar—a crack of length 2a. Out of these four
cracks so far we have discussed the solutions of crack geometries A (Griffith
crack) and B (elliptical crack). No discussion on the stress field variation near
the crack corners as shown in problem geometries C and D has been pre-
sented in previous chapters. This problem has been solved by Xu and Kundu
(1995).

Stress singularity at the crack corner of angle 2¢, as shown in Figure 10.2,
has been investigated by Xu and Kundu (1995). It should be noted here that at
point A of this crack two tangents can be drawn. The angle between these two
tangents on the crack side is the crack corner angle. At a point on the smooth
crack front only one tangent can be drawn and it has been shown earlier
that the stress field has a square root singularity in front of the smooth crack
front. The stress singularity near the crack corner is shown in Figure 10.3. In
this Figure the singularity parameter 7 is plotted against the half-crack angle
(a). Note that when o = 90° (or 2o = 180°), the crack front becomes smooth.
From Figure 10.3 one can see that for o = 90°, n = 0.5. Therefore, the stress
field should vary near r =0, in the following manner:

1 1 1

10 plen  p1-05 \/;

o for o0 =90° (10.1)
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FIGURE 10.1
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Elevation (top two figures) and plan views (A, B, C, and D) of different crack geometries.

For a < 90° in Figure 10.3 one can clearly see that n > 0.5. Therefore,
the order of singularity m = (1 — n) < 0.5 for a crack corner angle less than
180°. Similarly, for a crack corner angle greater than 180° the order of
singularity m = (1 — n) > 0.5. Therefore, for the heart-shaped crack shown
in Figure 10.4, point A has the highest order of singularity and is most
likely to fail while point B has the lowest order of singularity and is least

likely to fail.

FIGURE 10.2

Crack geometry with a sharp corner.
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FIGURE 10.3
Singularity parameter n versus o. Order of singularity is m (m =1 - n).

10.3 Fracture Toughness and Strength
of Brittle Matrix Composites

Shah and Ouyang (1993) described four different mechanisms—crack shield-
ing in fracture process zone, crack deflection, crack surface roughness
induced closure, and bridging mechanism—that contribute to the increas-
ing toughness of fiber reinforced brittle matrix composite (FRBMC) materi-
als. Li et al. (1992) have shown that for continuous aligned fiber composites,
the main mechanism that contributes to the increasing fracture toughness is
multiple cracking of the matrix. However, for randomly distributed fibers in
a brittle matrix, the fiber bridging force is the major contributor to the tough-
ening mechanism of FRBMCs.

FIGURE 10.4
Heart-shaped crack. Point A has the highest order singularity and is most likely to fail while
point B has the lowest order singularity and is least likely to fail.



264 Fundamentals of Fracture Mechanics

Many studies (Cox and Marshall 1991; Cox 1993; Li and Ward 1989) have
concentrated on the determination of the fiber bridging forces. In these stud-
ies the fiber bridging force (p) has been assumed to be a function of the crack
opening (u). Different types of functional variations, p(u), have been postu-
lated and mathematical analyses based on such assumed p(u) have been car-
ried out. Cox (1993) assumed p(u) to be pu?, where fis the bridging stiffness
and o canbe 0.5 (for sliding fibers of infinite strength), 1.0 (for linear springs),
or greater than unity for rubber ligaments. Li and Ward (1989) assumed p(u)
to be the first derivative of the Bessel function with respect to the crack mouth
opening displacement; p(11) has been also modeled as a summation series of
Legendre polynomials.

Experiments by Cha et al. (1994) and Luke, Waterhouse, and Wooldridge
(1974) have shown that the addition of fibers significantly increases the frac-
ture toughness of FRBMCs, but the effect on the elastic stiffness of the com-
posite is small. Ward et al. (1989) studied fracture resistance of acrylic fiber
reinforced mortar in shear and flexure and found that, as the volume fraction
of fibers is increased, the strength in shear and flexure, the fracture energy
and the critical crack opening all increase, the tensile strength remains essen-
tially constant and the compressive strength shows some reduction.

Counter examples of these observations are also available in the litera-
ture. For example, Shah (1991) has shown that addition of 10-15% volume
fraction of fibers may substantially increase the tensile strength of matri-
ces. This is probably because fibers suppress the localization of micro-
cracks into macrocracks. Li and Hashida (1993) observed a ductile nature
of the FRBMC fracturing with a large diffused microcrack region. They
classified the FRBMC fracture process into three categories: brittle frac-
ture dominated by microcracking, quasibrittle fracture dominated by fiber
bridging, and ductile fracture. These different types of fracture processes
observed in FRBMCs make the FRBMC strength and toughness analysis
and estimation very complex. Furthermore, depending on the definition,
the toughness of FRBMCs may or may not be sensitive to fiber parameters.
Gopalaratnam et al. (1991) have shown that ASTM C108 toughness index
is insensitive to the fiber type, fiber volume fraction, and specimen size,
but the toughness as a measure of absolute energy is sensitive to these
parameters.

Wang, Backer, and Li (1987) found that when 2% volume fraction of acrylic
fibers of different length is added to concrete, the fracture toughness mono-
tonically increases with the fiber length (variation from 6.4 to 19.1 mm) for one
definition of fracture toughness (T;) and this variation is nonmonotonic for
another definition of fracture toughness (DTI,y). On the other hand, for con-
stant fiber length (6.4 mm), when fiber volume fraction is increased (from 2 to
6.5%), the DTI,, toughness increases monotonically but T, toughness shows
nonmonotonic variation. Wang, Li, and Backer (1990) found that Aramid B
fiber reinforced concrete shows nonmonotonic variation of tensile strength
and fracture energy with the increase of fiber volume fraction from 1 to 3%.
In their study they reported that 100% increase in fiber length while keeping
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other parameters unchanged increases the tensile strength by 5.4-34.1% for
different fiber volume fractions.

In another study Li et al. (1996) found that steel fiber reinforced concrete
shows significant increase of strength with optimum fiber—matrix interface
bond strength. Importance of proper fiber-matrix bonding has been recog-
nized and studied by Kanda and Li (1998) and Marshall et al. (1994). Different
damage mechanisms for strongly and weakly bonded composites have been
observed by Marshall et al. They have shown that strong interfacial bonding
does not necessarily lead to optimum transverse strength of the composite.

10.3.1 Experimental Observation of Strength Variations
of FRBMCs with Various Fiber Parameters

Luke et al. (1974) carried out a parametric study of steel fibers on the flexural
strength of concrete and studied the effect of fiber length, diameter, shape,
and volume fraction on the first crack strength (the point at which the load-
deflection curve deviates from linearity) and ultimate strength of concrete.
They concluded from their experimental investigation that the fiber length,
fiber diameter, fiber shape, and fiber volume fraction affect the flexural
strength of the concrete. Longer fibers with smaller diameter and higher
volume fraction increase the ultimate strength of fiber reinforced concrete.

Luke et al. (1974) have shown that the ultimate flexural strength of fiber
reinforced concrete increases from 910 psi (6.27 MPa, 1 psi = 6.89 kPa) to
1880 psi (12.95 MPa, 107% increase) as the fiber volume fraction increases
from 0.3 to 2.5% (733% increase). For 1% volume fraction of fibers, with the
increase of the fiber length the flexural strength increases from 1190 psi
(8.2 MPa) to 1500 psi (10.34 MPa, 26% increase) for 0.01 in. (0.254 mm) diameter
fibers; from 1155 psi (7.96 MPa) to 1455 psi (10.02 MPa, 26% increase) for 0.016
in. (0.406 mm) diameter fibers; and 1050 psi (7.23 MPa) to 1580 psi (10.89 MPa,
50% increase) for 0.02 in. (0.508 mm) diameter fibers. These three increases
correspond to the fiber length variations of 0.5-1.25 in. (12.7-31.75 mm,
150% increase), 0.75-2 in. (19.05-50.8 mm, 167% increase), and 1.5-2.5 in.
(38.1-63.5 mm, 67% increase), respectively. Luke et al. have also shown that
for 1% volume fraction and 1 in. (25.4 mm) fiber length, as the fiber diameter
decreases from 0.016 to 0.006 in. (0.406 to 0.152 mm, 62.5% decrease), the ulti-
mate strength increases from 1115 psi (7.68 MPa) to 1795 psi (12.37 MPa, 61%
increase). For 2% volume fraction and 1 in. (25.4 mm) long fibers, a decrease
of fiber diameter from 0.016 to 0.012 in. (0.406 mm to 0.305 mm, 25% decrease)
results in an increase in the ultimate strength from 1470 psi (10.13 MPa) to
1645 psi (11.33 MPa, 11.9% increase).

Luke and colleagues (1974) also studied the effect of the fiber shape and found
that flat fibers increase the strength more than round fibers. The increase in
the ultimate strength with flat fibers, in comparison to round fibers, was quite
significant; this increase varied from 30 to 100% for different lengths and
volume fractions of fibers. There was no attempt in their paper to quantita-
tively predict the change in the ultimate strength or fracture toughness of the
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TABLE 10.1
Effect of Steel Fibers on Ultimate Strength (o) of Reinforced Concrete

Aoy = Ultimate

Percentage Strength Percentage

Fiber Parameter Amount of (%) Change  Change (in psi, Change of

that Changes Change of Parameters 1 psi = 6.89 kPa) oy (%)

Volume fraction 0.3-0.5% 66.7 910-1055 159

Volume fraction 0.3-1% 233 910-1115 225

Volume fraction 0.3-1.5% 400 910-1325 45.6

Volume fraction 0.3-2.0% 567 910-1470 61.5

Volume fraction 0.3-2.5% 733 910-1880 107

Length (v.f. = 1%, 0.5-1.25in. 150 1190-1500 26
dia. = 0.01 in. = 0.254 mm)

Length (v.f. = 1%, 0.75-1.51in. 100 1155-1180 22
dia. = 0.016 in. = 0.406 mm)

Length (v.f. = 1%, 0.75-2in. 167 1155-1455 26
dia. = 0.016 in. = 0.406 mm)

Length (v.f. = 1%, 1.5-2.5in. 67 1050-1580 50
dia. 0.02 in. = 0.508 mm)

Length (v.f. = 2%, 0.75-1.251in. 67 1295-1905 47
dia. 0.016 in. = 0.406 mm)

Dia. (v.f. = 1%, length = 0.016-0.014 in. -125 1115-1215 9
1in. =25.4 mm)

Dia. (v.f. = 1%, length = 0.016-0.012 in. -25 1115-1230 10.3
1in. =25.4 mm)

Dia. (v.f. = 1%, length = 0.016-0.010 in. -37.5 1115-1320 18.4
1in. = 25.4 mm)

Dia. (v.f. = 1%, length = 0.016-0.006 in. -62.5 1115-1795 61
1in. =25.4 mm)

Dia. (v.f. = 2%, length = 0.016-0.014 in. -12.5 1470-1615 9.9
1in. =25.4 mm)

Dia. (v.f. = 2%, length = 0.016-0.012 in. 25 1470-1645 11.9

1in. =25.4 mm)

Source: Luke, C. E., Waterhouse, B. L., and Wooldridge, ]. F. Steel fiber reinforced concrete optimiza-
tion and applications, an international symposium on fiber reinforced concrete. Detroit, MI: American
Concrete Institute, SP-44, pp. 393413, 1974.

composite with the change in the fiber diameter, length, shape, or volume
fraction. Details of the experimental observations of Luke et al. are shown in
Table 10.1. Their experimental observations were later quantitatively justified
by Kundu et al. (2000) using a simple model of linear elastic fracture mechan-
ics. Kundu et al. (2000) predicted strength variations in FRBMCs with the vari-
ations of fiber length, diameter, and volume fraction. This model predicts that
a composite material’s tensile and flexural strength should increase nonlin-
early with the fiber volume fraction. They also predicted that similar nonlin-
ear behavior should be observed with the reduction of the fiber diameter when
other parameters are kept constant. They showed in their paper how the varia-
tion of the FRBMC strength and toughness can be quantitatively related to the
variations in fiber parameters: volume fraction, fiber length, and diameter.
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10.3.2 Analysis for Predicting Strength Variations
of FRBMCs with Various Fiber Parameters

From the preceding discussion it is clear that fracture toughness and strength
properties of FRBMCs depend on many factors (e.g., geometries and proper-
ties of fibers, matrices, and interfaces). As mentioned before, several inves-
tigators have carried out rigorous studies on different aspects of fracture
and failure processes of FRBMCs. These detailed analyses are important for
understanding the intricate mechanics of the fracture process of FRBMCs.
However, sometimes too many variables, too many unknowns, and com-
plex mathematical analyses create obstacles to the fundamental or concep-
tual understanding of the basic process that is responsible for increasing
the strength of FRBMCs. A simplified analysis based on the linear elastic
fracture mechanics (LEFM) knowledge presented by Kundu et al. (2000) pro-
vides qualitative and quantitative explanations of some observed phenom-
ena of strength variations in FRBMCs with the volume fraction, length, and
diameter of reinforcing fibers.

Addition of fibers to a brittle material increases both its ultimate strength
and fracture toughness. The mechanisms responsible for these two increases
are related. Brittle materials, like concrete and ceramic, contain a large num-
ber of randomly distributed microcracks. Size and shape of these microcracks
vary from material to material. When fibers are added, the randomly distrib-
uted fibers intersect these microcracks and bridge the gap between two sur-
faces of the crack, as shown in Figure 10.5. When the material is loaded and
the cracks want to propagate, the fibers apply a restraining force that makes
it harder for the crack to propagate. As a result, in the presence of fibers
the strength of the material increases. The restraining force applied by the
fibers comes from the friction and cohesive force (due to chemical bonding)
between the fiber and the matrix material. Since the cohesive and friction
forces increase with the fiber surface area and flat fibers have greater sur-
face area than the round fibers for the same volume of fibers, the flat fibers

Fiber Crack

Ay

/

" /

FIGURE 10.5
Fibers intersecting cracks increase the strength of the fiber-reinforced brittle matrix compos-
ite materials.
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increase the fracture toughness more in comparison to the round fibers. This
has been experimentally observed by Luke et al. (1974).

10.3.2.1 Effect of Fiber Volume Fraction

Table 10.1 shows that an increase in the fiber volume fraction increases the
FRBMC strength when fiber diameter and length are kept unchanged. How-
ever, this increase is nonlinear. Note that 733% increase in the fiber volume
fraction increases the ultimate strength of concrete by 107%, while 567%
increase in fiber volume fraction increases the ultimate strength by only
61.5%. Can the nonlinear increase of the ultimate strength of FRBMCs be
explained using the LEFM?

Following the approach suggested by Kundu et al. (2000), let us assume
that in the absence of fibers, the matrix material has a fracture toughness of
K.. The fibers bridge the gap between the two surfaces of a crack as shown in
Figure 10.5 and generate restoring forces when the crack tries to open more
and propagate. The stress intensity factor (SIF), k;, for a semi-infinite crack
subjected to two opposing forces as shown in Figure 10.6 is given by (see
equation 4.23)

2
ky=P,|— (10.2)
o

where P is the force magnitude and « is the distance of the applied force
from the crack tip.

Let the SIF of a cracked specimen in absence of the fibers be K; then for
the same problem geometry, the stress intensity factor in presence of the
fibers should be (K—k,) since the fibers produce a restoring force P that tries
to close the crack opening. Note that K and k, are independent of each other;
K depends on the specimen geometry and applied loads while k; depends
on the restoring force magnitude P and its point of application relative to the
crack tip. If one considers a large number of fibers and microcracks being

AN

FIGURE 10.6
Two concentrated loads of magnitude P are acting at a distance o from the crack tip.
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randomly distributed in a material, as shown in Figure 10.5, then it can be
assumed that the restoring force P is proportional to the fiber volume frac-
tion when the fiber volume fraction is changed without altering the number
of microcracks in the material. As a result, for Y% increase of the fiber vol-
ume fraction, the restoring force (P) will increase by Y%. Then, from equa-
tion 10.2, it is easy to see that k; should also increase by about Y%, while
K remains unchanged. Then the resulting stress intensity factor becomes
[K=(1+Y%)k] =[K-(1+0.01Y) k;]. If we assume that the matrix fails when
the resulting SIF reaches the critical stress intensity factor K, then the failure
criterion in absence and in presence of fibers would be

K, =K (in absence of any fiber)
K. = K-k, (in the presence of fibers) (10.3)
K.= K-k, - 0.01Yk; (for Y% increase of the fiber volume fraction)

If it is assumed that k; is n times K, then from the relation (10.3) it can be
shown that the percentage increase (X) in the failure load for a Y% increase
of the fiber volume fraction is given by

KC K(
X = 000 " Ton _ Yn (104
Ko 1-(1+0.01Y)n :
From equation (10.4), n can be expressed in the following form:
n= T 10.5
" X+Y+001XY (10:5)

where X and Y of equation (10.5) can be obtained experimentally.

From Table 10.1, we get X = 107% for Y = 733%; then equation (10.5) gives
n = 0.066. If one substitutes this value of n in equation (10.4) and calculates
X for different values of Y (varying from 0 to 733%), then a theoretical pre-
diction of X for different fiber volume fraction increases can be obtained.
This plot is shown in Figure 10.7; the experimental values from Table 10.1
are shown by square markers on the same plot. The theoretical curve (equa-
tion 10.4) obtained from this simple model shows good agreement with the
experimental values. Only one experimental data point that corresponds to
the 0.5% volume fraction (66.7% increase in the fiber volume) shows com-
paratively large deviation from the theoretical curve in Figure 10.7. This may
be due to some experimental error associated with that point or with the
very first point (0.3% fiber volume fraction). Note that if the ultimate strength
associated with the 0.3% fiber volume fraction (the first experimental point
of Figure 10.7) is increased from 910 psi (6.27 MPa) to, say, close to 1000 psi
(6.89 MPa), then the matching between the theoretical curve and the experi-
mental values becomes even better.
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FIGURE 10.7

Theoretical prediction (continuous line) and experimental results (square markers) showing
the ultimate strength (in psi) variation in FRBMCs with the increase of the fiber volume frac-
tion (1 psi = 6.89 kPa).

It should be noted here that the increase in the ultimate strength has been so
far explained considering only the bridging effects of fibers. However, pres-
ence of fibers in front of the crack tip, as shown in Figure 10.8, also increases
the value of K the exact amount of increase depends on the fiber distribu-
tion (spacing, etc.) ahead of the crack tip (Evans 1988, 1989, 1991; Evans and
Zok 1994). Thus, if one accounts for both the bridging effect and the effect of
fibers ahead of the crack tip, then the failure criterion should be

K, = K (in absence of any fiber)
K. = K-k, (in the presence of fibers) (10.6)
K”.= K=k, —0.01Y k; (for Y% increase of the fiber volume fraction)

where K*, and K", are critical stress intensity factors of the composite in pres-
ence of fibers in front of the crack tip. However, although an analysis based
on equation (10.6) will be more accurate than the one presented here (equa-
tions 10.3-10.5), the improved analysis also involves a greater number of
unknowns, such as K*, and K*, and is not considered.

Fibers

Crack

FIGURE 10.8
Presence of fibers in front of the crack tip increases composite strength by creating barriers to
the crack propagation.
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10.3.2.2 Effect of Fiber Length

Fiber forces are generated due to cohesion (chemical bonding) and friction
between the fiber and the matrix. As a result, one can logically assume that
the fiber force is proportional to the interface area between the fiber and the
matrix. A simplifying assumption of our analysis is that this bridging force
mechanism is mainly responsible for the fracture toughness increase. If this
assumption is correct, then we should observe that when the fiber volume
fraction and diameter are kept unchanged but the fiber length is increased,
then, because the fiber surface area does not change, the ultimate strength
should not change. Experimental results sometimes support this prediction,
but often they do not (see Table 10.1).

Table 10.1 shows that, without altering the fiber volume fraction, if the fiber
length is increased by 100% (for 1% fiber volume fraction and 0.016 in. fiber
diameter), the ultimate strength increases by only 2.2%. However, for the
same volume fraction and fiber diameter, when the fiber length is increased
by 167%, a 26% rise in the ultimate strength is observed. For different vol-
ume fractions and fiber diameters, when the fiber length increases by 150%
and 67%, the ultimate strength increases by 26% and 50%, respectively. From
these experimental results, it can be clearly seen that the strength increase
of FRBMCs with the change in the fiber length is not consistent. Sometimes
it is almost independent of the fiber length (100% increase in the fiber length
showing only 2.2% increase in the ultimate strength) and can be explained
by the simplified theory presented here.

However, at other times, the ultimate strength increases with the fiber
length but the rate of increase is not consistent; while a 67% length increase
provides 50% increase in the ultimate strength, a 150% length increase (for
a different fiber diameter) shows only 26% increase in the ultimate strength.
A quantitative theoretical prediction like in Figure 10.7 is not possible in this
case since the ultimate strength variation is not consistent with the fiber length
change. To explain this phenomenon one may have to take into account other
mechanisms (such as large-scale bridging [LSB], small-scale bridging [SSB],
etc.) in addition to the fiber—-matrix interface cohesive force.

In addition to the total fiber surface area, distribution of fibers relative to
the crack geometry may also play an important role in deciding the level
of resistance that should be generated to oppose the crack propagation. To
investigate the effect of the fiber distribution on the SIF of a cracked material,
the SIF of a semi-infinite crack in an infinite medium is computed with fiber
forces of different distributions. As mentioned earlier, the SIF for the geom-
etry shown in Figures 10.6 and 10.9a is given by equation (10.2). The SIF for
the problem geometry shown in Figure 10.9b can be obtained from equation
(10.2) after applying the superposition principle:

el |2 P 2 _plarerio-e
175 n(aa—¢g) 2 n’(a+g)_ 271'(052—82) (10.7)
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FIGURE 10.9
Semi-infinite cracks subjected to a resultant opening load P at a distance o from the crack tip
when the loads act at (a) one point, (b) two points, (c) four points, and (d) seven points.

where 2¢ is the distance between the two crack opening forces of magnitude
P/2 and o is the distance between the crack tip and the line of action of the
resultant force P (see Figure 10.9b).

For = 0/3, k, in equation (10.7) becomes 1.045P(2/7))*5; compared to equa-
tion (10.2) this represents an increase of 4.5% in the stress intensity factor.
Hence, if a cracked infinite plate has a stress intensity factor of K in absence
of any fiber, then addition of fibers will reduce the stress intensity factor
to (K — k) if one fiber applies a closing force P (in this case the fiber force
will be opposite to the force direction, shown in Figure 10.9a). The SIF will
be reduced to (K — 1.045k,) if two fibers apply a total load of P as shown in
Figure 10.9b.

Distributing the total force P over a larger number of fibers changes the
stress intensity factor. When the load is distributed over four fibers, each
carrying P/4 as shown in Figure 10.9¢, the SIF becomes 1.101P(2/ra)*>—an
increase of 10.1% compared to the single fiber case. If the load is distributed
over seven fibers as shown in Figure 10.9d, the SIF becomes 1.15P2/w)*>—a
15% increase when compared to equation (10.2). For the uniform distribution
of fiber forces as the load is distributed over a greater number of fibers, the
SIF (k,) gradually increases, causing a larger resistance to failure or increase
of the ultimate strength. According to this calculation, if the fiber length is
decreased keeping its diameter and the volume fraction constant, then the
ultimate strength should increase because shorter fibers will give a greater
number of fibers with smaller force per fiber. But note that the experimental
observation (Table 10.1) contradicts this prediction.

A major drawback of the preceding analysis is that the fiber loads are
assumed to be constant over the crack length. It should be noted here that
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FIGURE 10.10
Uniform, linear, and quadratic variations of the fiber bridging force along the crack length,
considered in the analysis.

although the fiber pull-out force or the fiber failure force is independent
of the crack opening, the fiber bridging force is not. The fiber failure force
depends on either the cohesive force at the fiber-matrix interface for short
fibers or the tensile strength of the fiber for long fibers. However, the fiber
bridging force generated by the tensile strain of a fiber depends on the crack
opening displacement. As a result, the fiber bridging force is a function of
the crack opening displacement and it increases from the crack tip to the
center of the crack.

Linear and quadratic variations of the fiber force distribution (see
Figure 10.10), in addition to the uniform distribution that has been already
considered, are analyzed next. It should be noted that the nonlinear fiber
force distribution is more realistic. Let the stress intensity factor k; be defined
by the relation k, = )/P\/% . Then yis computed numerically for different
numbers of fibers and various types of fiber force distribution (quadratic,
linear, and constant). Table 10.2 shows the y values computed for these vari-
ous cases. After knowing 7y one can compute the SIF (k;). Note that greater y
means greater resistance to failure.

Fiber positions for all three distribution functions are the same and the
total fiber force for all these cases is P. It is interesting to note here that for
the uniform fiber force distribution, y increases with the number of fibers, but
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TABLE 10.2

Variation of y Value as Number of Fibers and Fiber-Force Distribution Functions
(see Figure 10.10) Change on a Semi-infinite Crack

Number Uniform Linear Quadratic
of Fibers Distribution Distribution Distribution
2 1.045 0.986 1.004

4 1.101 0.972 1.004

7 1.15 0.958 0.975

an opposite trend is observed for both linear and quadratic distributions. This
is because, as the total load is distributed over a larger number of fibers,
for linear and quadratic distributions the resultant force moves away from
the crack tip. It is easy to see from equation (10.2) that if the resultant force
moves away from the crack tip, the k, value will be reduced. This movement
is larger for the linear case, and hence the reduction in the y value is also
greater. When the resultant force does not move (for the uniform fiber force
distribution), yincreases slightly, but for linear and quadratic distributions
this increase is offset by the decrease of the y value due to the movement of
the line of action of the resultant force away from the crack tip. This gives a
qualitative justification why the ultimate strength increases with the increase
of fiber length (or decrease of the number of fibers) when other parameters
are kept constant.

Another important mechanism that contributes to the increasing fracture
toughness with the fiber length is that long fibers intersect multiple cracks
contributing to the bridging force in more than one crack. These two impor-
tant mechanisms increase the fracture toughness of FRBMCs when the fiber
length is increased.

10.3.2.3 Effect of Fiber Diameter

If the volume fraction and the fiber length are kept unchanged and the fiber
diameter is reduced, the number of fibers increases, which results in an
increase in the ultimate strength. It is easy to see that 1% reduction in the
fiber diameter causes 1% reduction in the surface area of one fiber. If the cohe-
sive force between the fiber surface and the matrix does not change, the force
produced by individual fibers will be reduced by n%. Then the individual
fiber’s cross-sectional area and volume are reduced by m%, where

m =100 {1 - (1 - 180) } (10.8)

For the same volume fraction and fiber length, the number of fibers

is increased by {2 % for n% reduction of the fiber diameter. Hence, the
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FIGURE 10.11

Theoretical prediction of the percentage increase of the fracture toughness (scale on the left
side) as a function of the percentage reduction of the fiber diameter (horizontal axis). Experi-
mental points (square markers) show the percentage increase of the ultimate strength (scale
on the right side).

percentage increase in the restoring force due to 7% reduction in fiber diam-
eter is given by

100—-n
X= m(wo - m)— n (10.9)

A plot of nn versus X is shown in Figure 10.11. Since restoring force is directly
proportional to the stress intensity factor k; (equation 10.2), Figure 10.11
shows the variation of k, (the part of SIF that depends on the fibers; see
equation 10.3) with n. However, the total SIF has two parts, K and k;, as shown
in equation 10.3. An increase in k; reduces the total stress intensity factor
(K = k), since K depends only on the loading and the problem geometry and
not on the fiber geometry. Thus, as k; increases, net SIF decreases and, as a
result, the critical load for failure as well as the ultimate strength increases.
From Figure 10.11 it can be seen that as n (plotted along the horizontal axis)
increases, X of equation (10.9) (plotted along the vertical axis) also increases
monotonically with increasing slope. Experimental results show that for 1%
volume fraction of fibers as n increases by 12.5, 25, 37.5, and 62.5%, the ulti-
mate strength is increased by 9, 10.3, 18.4, and 61%, respectively, which repre-
sents a nonlinear monotonic increase.

Since X of equation (10.9) represents the variation of the stress intensity fac-
tor k; and values listed in Table 10.1 correspond to the variation of the ultimate
strength oy, it is not expected that these two sets of values be numerically
equal; however, they should follow the same trend that is observed here.
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If the experimental values are plotted on a different scale (shown on the right
side of Figure 10.11) on the same Figure, then the experimental values correlate
very well with the theoretical curve except for the first point corresponding to
the 12.5% diameter reduction. Thus, the experimental results associated with
the fiber diameter variation can also be justified from this simple analysis.

10.3.3 Effect on Stiffness

The mechanism of fiber force resisting the crack propagation has the direct
effect on the increase of the fracture toughness, which increases the ultimate
strength. However, increase in the fracture toughness should not have much
influence on the stiffness of the material. Therefore, the Young’s modulus
should remain essentially unchanged or should vary only slightly when
short fibers are added to strengthen the composite. This was observed exper-
imentally by Cha et al. (1994) and others.

10.3.4 Experimental Observation of Fracture Toughness
Increase in FRBMCs with Fiber Addition

In Table 10.1 the variations in ultimate strength of FRBMCs with fiber param-
eters have been listed. Although the ultimate strength and the fracture tough-
ness of FRBMCs are related, no fracture toughness information is given in
Table 10.1. Kundu et al. (2000) measured fracture toughness of FRBMCs tak-
ing three-point bending specimens. They carried out tests on steel fiber rein-
forced ceramic matrix composite specimens. Steel fibers of size 15.24 x 0.76 x
0.25 mm? (0.6 X 0.03 x 0.01 in.%) were uniformly mixed with a ceramic powder
material and then the mixture was placed in a mold and heated in an oven to
produce the FRBMC. Fiber amounts in the five specimens tested were 0, 2, 5,
10, and 15% of the specimen weight. Table 10.3 shows the recorded fracture
toughness for these five specimens.

Note that an increase of fiber weight fraction from 2% in specimen 2 to
15% in specimen 5 corresponds to an increase of fiber weight fraction by
650%. It increased the fracture toughness from 1181 psi-in.!/2 to 3954 psi-in.!/2.

TABLE 10.3
Fiber Weight Fraction and Fracture Toughness for Five Ceramic Specimens
Fiber Weight Fraction Fracture Toughness (K)) in psi-in.?

Specimen No. (%) (1 psi-in."2 = 1.1 N-cm=?)

1 0 1043

2 2 1181

3 5 1524

4 10 2238

5 15 3954

Source: Kundu, T. et al. International Journal for Numerical and Analytical Methods in Geomechanics,
24, 655-673, 2000.
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Variation of fracture toughness (psi-in.”?) with increase in fiber volume in FRBMCs.

The theoretical curve for this set of experimental data points can be obtained
from equations (10.4) and (10.5). This curve, along with the experimental data
points, is shown in Figure 10.12. Note that Figures 10.7 and 10.12 show simi-
lar variations of ultimate strength and fracture toughness with the fiber vol-
ume fraction, as expected.

10.4 Dynamic Effect

This book analyzed cracked problem geometries under static loads only.
If the cracked structures are subjected to dynamic (or time-dependent) loads,
then both the SIF and the crack opening displacement are amplified due to
the dynamic effect. Therefore, a cracked plate that does not fail under the
static loading condition may fail when the load is applied suddenly. Tran-
sient response of cracked bodies subjected to time-dependent loads showing
amplification of the SIF and the crack opening displacement has been stud-
ied by Kundu (1986, 1987, 1988), Kundu and Hassan (1987), Karim and Kundu
(1988, 1989, 1991), Awal, Kundu, and Joshi (1989), and others.

Elastodynamic analysis of cracked bodies is also necessary to study the
interaction between elastic waves and cracks. This study is important for
the nondestructive inspection of internal cracks by ultrasonic waves. One
needs to know how ultrasonic waves are scattered by cracks if the loca-
tion, orientation and shape of the crack are to be determined from the scat-
tering pattern of the ultrasonic waves. Many publications on this topic are
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available in the literature. A good number of these publications are referred
to in various papers published by the author and his colleagues over the
last two decades (Kundu and Mal 1981; Karim and Kundu 1990; Kundu
1990; Kundu and Bostrom 1991, 1992; Karim, Awal, and Kundu 1992a, 1992b;
Banerjee and Kundu 2007a, 2007b) and in many other similar papers. Inter-
ested readers are referred to these publications.

10.5 Concluding Remarks

Two advanced topics that have been discussed in detail in this chapter are
on the stress singularity near crack corners and the fracture toughness of
FRBMCs. In section 10.2 it is shown that, for cracks with sharp corners, the
strength of the stress singularity increases or decreases from the square root
singularity, observed for the smooth crack front. Section 10.3 discusses how
the length, diameter, and volume fraction of fibers affect the fracture tough-
ness, ultimate strength, and stiffness of short fiber reinforced brittle matrix
composites (SFRBMC). Importance of solving dynamic problems for predict-
ing the dynamic SIF and for detecting cracks by ultrasonic nondestructive
techniques is briefly discussed in section 10.4 and adequate references are
provided for interested readers.

The three topics discussed in sections 10.2, 10.3, and 10.4 are too advanced
for an introductory fracture mechanics book. These materials are introduced
for readers who are interested in exploring this subject beyond the basic
knowledge of linear elastic fracture mechanics. These readers can acquire
adequate knowledge on these advanced topics from the references provided
in this chapter.
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Exercise Problems

Problem 10.1: For different crack geometries shown in Figure 10.13,
identify the point(s) where the crack will start to propagate under
mode I loading.

Problem 10.2: Derive equation (10.4).
Problem 10.3: Derive equation (10.8).
Problem 10.4: Derive equation (10.9).
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FIGURE 10.13
Problem 10.5:

(@) For SFRBMCs, if the fiber diameter is reduced, keeping the
fiber length and volume fraction unchanged, do you expect an
increase or decrease in the fracture toughness of the composite?

(b) Calculate the percentage change in the fiber bridging force for 25%
reduction in fiber diameter. Show all steps of your calculation.
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