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Foreword

Since the pioneering papers of L.M. Kachanov (1958) and Yu. N. Rabotnov
(1959) the Continuum Damage Mechanics (CDM) is a successfully develop-
ing branch of solid mechanics, which interlinks the experiences in contin-
uum mechanics, fracture mechanics, materials science, physics of solids, etc.
Surprisingly rapid development in this field during next decades has shown
how important the problem is and how difficult is the proper irreversible
thermodynamics based modeling of the material damage response. A lot of
scientific papers, monographs and textbooks were published by leader re-
searchers working in the field: J.L.Chaboche, D. Krajcinovic, J. Lemaitre,
S.Murakami, C.L.Chow, G.Z.Voyiadjis, to mention only some names. Several
international and national scientific societies have stimulated and sponsored
different conferences, symposia and workshops in this field. In addition, there
were organized numerous research programmes on damage mechanics and re-
lated problems. But the conclusion that the Continuum Damage Mechanics
reaches a saturated level is not justified and there is a necessity till now for
writing new books in this field in order to summarise the established results
and develop the new directions such as damage anisotropy, local or non-local
approach of damage and fracture, unilateral damage response, probabilistic
approach of damage, etc.

Nevertheless, there are several reasons for publishing the present work.
The very first is that the authors (J.J. Skrzypek and A. Ganczarski) have
been taking part in the scientific discussion concluding the own knowledge
influenced by the best traditions in Continuum Damage Mechanics. So the
reader gets a good and understandable introduction to some sub-branches of
CDM (Part I). This introduction corresponds with some extensions missed
in other monographs and textbooks. Examples of such extensions are the
thermo-damage coupling, the orthotropic damage accumulation in case of
variable principal directions of the stress and damage tensors, local approach
of fracture. In general, the authors discuss mostly used CDM-theories for
different material behavior models such as creep damage, elastic brittle dam-
age, etc. Chapter 2 deals with coupled isotropic damage and creep-plastic
behavior. The introduced models correspond to irreversible thermodynamics
and the reader can find many models proposed by other authors. Anisotropic
three-dimensional theories of damage evolution are presented in Chapter 3
and 4. Till now, there is no unique approach to formulate a theory: different
damage variables (scalar, vectorial, tensorial) and equivalent effective vari-
ables are proposed and discussed. In the Chapter 5 the non-classical coupled
thermo-damage and damage-fracture approaches are developed.

The second reason for publishing this new book on CDM-problems is the
excellent structuring of the contents. The discussions on the use of the CDM
are connected not only with the theoretical foundation and their experimental
proof, but also with the introducing of CDM models in structural mechanics
analysis. While the understanding of the specific problems of damage and



VI Foreword

failure analysis in connection with the analysis of complex structures is cum-
bersome the authors include many examples of simple structural elements
such as axisymmetric structures, etc. (Part II of the book). They present
a great number of original results. It is very easy for the readers to obtain
the influence of different effects (heat transfer in damaged solids, damage
accumulation under shear condition, etc.) on the mechanical behavior of the
structural elements. The analysis and design of damaged structures, with
help of the CDM, demands the use of numerical methods. For this purpose a
short introduction to finite element or finite difference based methods is given.
Axisymmetric problems are discussed in Chapter 6 whereas the Chapters 7-
10 deal with creep-damage accumulation in presence of shear deformations.
The corresponding models are applied to plate problems (membrane state,
bending state, Reissner’s theory, von Karmén’s theory etc.).

It should be underlined that the authors have included a Part III which
directs the attention of the readers to the problem of optimal design in con-
nection with CDM problems. This part of the book extends many years of
research tradition of the authors’ department influenced by the former head of
the department M. Zyczkowski. The general structural optimization problem
under damage conditions is presented in Chapter 11. Effective optimization
procedures under creep damage conditions are discussed in Chapter 12 and
13. The corresponding examples (axisymmetric disks and plates) allow, e.g.,
the optimization of the lifetime under some constraints (constant volume,
stability conditions, geometric constraints, etc.).

Writing the foreword, general characteristics of the book should be given.
However, it is very difficult to say whether the present book is a monograph
or a textbook because it contains the elements of both. But I think that it
can be recommended for a first reading and for detailed studying the CDM
to any scientist, engineer or graduate student dealing with modern problems
of structural safety and integrity.

Professor Holm Altenbach

Lehrstuhl fiir Technische Mechanik
Martin-Luther-Universitdt Halle-Wittenberg
Merseburg, September 11, 1998



ABSTRACT Continuum Damage Mechanics is a quickly developing branch
of Solid Mechanics. The book provides, in a systematic and concise way, a
broad spectrum of one-dimensional and three-dimensional constitutive and
evolution models of isotropic and anisotropic damage theories, as well as
damage coupled constitutive equations of elastic or inelastic time-dependent
solids in the presence of damage. The effective numerical procedure and
computer applications, mainly based on FDM and FEM computer codes,
are developed and adopted to simple structural members under thermo-
mechanical loadings.

Part I of the book provides in a systematic fashion a survey of coupled
damage-constitutive theories of engineering materials. Influence of isotropic
damage evolution on the constitutive equations of creep-plastic solids is
discussed in Chapter 2, both from the phenomenological point of view (sin-
gle or two state variable mechanism-based coupled damage-creep-plasticity
models) and unified irreversible thermodynamic formulation (the Lemaitre
and Chaboche kinetic law of damage evolution, the Mou and Han unified
model of ductile isotropic damage, the Saanouni, Forster and Ben-Hatira
model of coupled isotropic damage-thermo-elastic-creep-plastic solids). Ani-
sotropic three-dimensional theriores of damage evolution are presented in
Chapter 3 and Chapter 4. Damage variables, scalar, vectorial and tensorial,
are reviewed and stress, strain and energy based equivalence principles are
compared (Lemaitre and Chaboche, Simo and Ju, Taher et al., Cordebois
and Sidoroff, Chow and Lu) in order to introduce a concept of the effective
variables as well as the fourth-rank damage effect tensors in terms of the
second rank damage tensors. Particular attention is paid to the orthotropic
creep-damage accumulation models of crystalline materials in case of non-
proportional loadings (Skrzypek and Ganczarski) as well as the elastic-
brittle orthotropic damage model (Litewka and Hult, Kuna-Ciskal). An ob-
Jjective damage rate measure is introduced for the case when effect of shear
deformation results in the damage and stress tensors which are not coaxial
in their principal axes. Unified irreversible thermodynamics-based theory of
anisotropic damage-elastic-brittle rock-like materials is also presented and
discussed when applied to High Strength Concrete (Murakami and Kamiya,
Chaboche). Matrix representation of fourth-rank coupled damage-elasticity
tensors is reviewed (Chow and Lu, Chaboche, Litewka and Hult, Murakami
and Kamiya). Nonclassical coupled thermo-damage and damage-fracture
CDM-based approaches are presented in Chapter 5. Coupled constitutive
thermo-creep-damage equations are developed when partly (scalar) or fully
(tensorial) coupled creep-damage models are applied combined with the
damage affected heat flux eqaution where heat conductivity in the damaged
material follows the anisotropic damage evolution to yield a nonstationary
temperature field (Ganczarski and Skrzypek). Local approach to fracture
by the use of CDM together with FEM is presented as well. A discus-
sion of convergence and possible regularization methods proposed in cases
of crack growth in the presence of the continuum creep-isotropic damage
(Murakami and Liu) and the elastic-brittle-anisotropic damage (Skrzypek
and Kuna-Ciskal) are also enclosed.

In Part II of the book a computer analysis of damage accumulation and
failure or fracture mechanisms of simple engineering structures is illus-
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trated. Effective FDM and FEM based numerical procedures and com-
puter methods are adopted and developed when classical and nonclassi-
cal creep-damage, thermo-creep-damage, elastic-brittle damage, damage-
fracture problems result from either stationary or nonstationary, proporti-
nal or nonproportional mechanical and thermal fields. Axisymmetric creep-
damage problems are discussed in Chapter 6, axisymmetric coupled thermo-
creep damage applications are presented in Chapter 7, whereas creep-
damage accumulation in presence of shear deformation and corresponding
failure mechanisms are illustrated in Chapter 8. CDM-based creep-damage
theory of axisymmetric Love-Kirchhoff’s plates (coupled K4rm4n equa-
tions extended to elastic-creep-damage range) is developed for both uniform
and substitutive sandwich cross-sections of plates of variable thickness and
FDM approach is developed for computer analysis. Discussion of boundary
excitations of the membrane or bending type, applied as initial prestressing,
is enclosed in Chapter 9. Examples of two-dimensional coupled creep-brittle
anisotropic damage applications are shown in Chapter 10. In the case of
Reissner’s plate precritical 2D damage field growth is analysed numerically
by FDM when the coupled orthotropic creep-damage model is used. In
the case of 2D plate structure loaded by in-plane forces both the precriti-
cal (continuum damage accumulation) and posteritical (crack propagation
in presence of damage) analysis are done numerically by ABAQUS FEM
code when extended Litewka’s model of elastic-brittle damaged orthotropic
material is implemented.

Examples of optimal design of structures made of time-dependent materi-
als in presence of damage fields are discussed in Part III. General formu-
lation of structural optimization problems under damage conditions (local
or global optimality criteria, constraints, control variables) is presented in
Chapter 11. Effective optimization procedures and their applications to op-
timal design of axisymmetric disks and plates in creep-damage conditions
are discussed in Chapter 12 and Chapter 13. Structures of uniform creep
strength are, in general, not optimal with respect to the lifetime prediction
t; or trr for crack initiation or complete structure failure, when both the
thickness and the initial prestressing of the membrane or the bending type
are considered as the design variables. Important improvement of structure
when two-step optimization procedure is used (first, uniform creep strength
and, second, maximum lifetime under constant volume or minimum volume
under constant lifetime) may be recommended for practical applications.
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damage in structural
materials



1

Continuum damage mechanics:
basic concepts

1.1 Material damage

1.1.1 Concept of a quasicontinuum approximation
of the damaged material

Failure of most structural members on the macroscale follows the irre-
versible heterogeneous microprocesses of time and environment dependent
deterioration of materials. The existence of distributed microscopic voids,
cavities, or cracks of the size of crystal grains is referred as material damage,
whereas the process of void nucleation, growth, and coalescence, which ini-
tiates the macrocracks and causes progressive material degradation through
strength and stiffness reduction, is called damage evolution (cf. Murakami,
1987; Chaboche, 1988).

With respect to their scale, the damage models may be referred to the
atomic scale (molecular dynamics), the microscale (micromechanics), and
the macroscale (continuum mechanics) (cf. Woo and Li, 1993; Krajcinovic,
1995).

On the atomic scale, material structure is not continuous at all, but is
represented by a configuration of atoms in the order of a crystal lattice
or molecular chains bonded by the interatomic forces. The state of ma-
terial damage on this level is determined by the configuration of atomic
bonds, the breaking and re-establishing of which constitute the damage
evolution. On the microscale, material structure is piecewise discontinuous
and heterogeneous. The state of damage in a volume of material can be
determined by the number of microcracks or microvoids and their size and
configuration.

On the macroscale, a concept of “quasicontinuum” is introduced where
the discontinuous and heterogeneous solid, suffering from damage evolu-
tion, is approximated by the ideal pseudo-undamaged continuum by the
use of the couples of effective state variables, e.g., (€,7), (?", ﬁ), (&, 5(),
in the state and dissipation potential instead of the classical state vari-
ables, e.g., (g,0), (r,R), (o, X), representing strain and stress tensors,
state variables of isotropic hardening and tensorial variables of kinematic
hardening, for the idealized (pseudo-undamaged) and the true (damaged)
solid, respectively. The definition of the effective state variables can be
based on the so-called equivalence principles, among which strain equiva-

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
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4 1. Continuum damage mechanics: basic concepts

lence (Lemaitre, 1971; Lemaitre and Chaboche, 1978), stress equivalence
(Simo and Ju, 1987), elastic energy equivalence (Cordebois and Sidoroff,
1979; Sidoroff, 1981), and total energy equivalence (Chow and Lu, 1992),
are most known (cf. Sect. 4.3). In other words, the effective state variables,
associated with the pseudo-undamaged state, are defined in such a way
that the strains, the stresses, the elastic energy, or the total energy in the
true (damaged) and the (undamaged) states are the same.

In all cases of various equivalence hypotheses, in an idealized quasicon-
tinuum, the true distribution of the interatomic bonds, dislocations and
vacancies (atomic scale), or individual microvoids and microcracks (mi-
croscale), is smeared out and homogenized by a selection of the properly
defined internal variables that characterize the damage state and are called
the damage variables. Among them, the scalar variables w, D, or ¢ (damage
or continuity parameters; Kachanov, 1958), the vector variables wes, Da,
or ¥, (Davison and Stevens, 1973), the second-rank tensor variables €2,
D or ¥ (Rabotnov, 1969; Vakulenko and Kachanov, 1971; Murakami and
Ohno, 1981), or the fourth-rank tensor variables, D (Chaboche, 1982; Kra-
jcinovic, 1989), are frequently used (cf. Sect. 4.2). This approach is known
as continuum damage mechanics (CDM), as initiated by Hult (1979) and
developed by Chaboche (1981), Krajcinovic (1984), Murakami (1987), and
others.

Finally, the effective stiffness or compliance of a damaged solid may also
be defined in terms of the actual damage state represented by the prop-
erly selected damage variables (scalars, vectors, tensors). This fully cou-
pled approach, where the damage evolution affects both the viscoelastic
strain (Leckie and Hayhurst, 1974, and others) and also the elastic proper-
ties of the material (Chaboche, 1977, 1978; Cordebois and Sidoroff, 1979;
Lemaitre, 1984; Litewka, 1985; Simo and Ju, 1987; Murakami and Kamiya,
1997, etc.), eventually leads, in a general sense, to the concept of fourth-
rank elasticity tensors for damaged material (stiffness K, or compliance A1
tensors), where the damage induced material anisotropy is characterized
by the properly defined fourth-rank damage effect tensor M (D) (Voyiadjis
and Kattan, 1992; Chaboche, 1993; Chen and Chow, 1995; Voyiadjis and
Park, 1996, 1998, to mention only some representatives of this approach).

1.1.2  Concept of representative volume element

The proper transition between the microscale and the effective material
properties on the macroscale requires an adequate definition of the rep-
resentative volume element (RVE), which maps a finite volume of linear
size A in true discontinuous and heterogeneous solids suffering from dam-
age at a material point of the equivalent idealized quasicontinuous, pseudo-
undamaged solids (cf. Murakami, 1987; Nemat-Nasser and Hori, 1993; Kra-
jcinovie, 1995). The RVE of linear size A must be large enough to include
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a sufficient number of microvoids and microcracks, but, at the same time,
it must be small enough for the stress and strain state to be considered as
homogeneous, or with a small inhomogeneity allowed. In other words, “a
volume is a RVE if the average effective stiffnesses determined from two
sets of tests during which the volume is subjected: a) to the uniform dis-
placement, and b) to the uniform tractions over its external surfaces, are
equal” (Krajcinovic, 1995). Hence, the material is on the scale A > Agve
statistically homogeneous (if AgvE exists), and the finite element size must
be at least as large as the RVE. A minimum size of the RVE depends on
the microstructural nonhomogeneity of the material considered and, loosely
speaking, the following characteristic magnitudes might be suggested (cf.
Lemaitre, 1992):

i.  metals and ceramics (0.1 mm)

ii. polymers and composites (1 mm)3
iii. wood (10 mm)?
iv. concrete (100 mm)?

The fundamental assumption for the CDM method is that the influ-
ence of spatial correlation between defects on the effective properties of the
continua is of second-order magnitude and, hence, the exact microvoid con-
figuration within the RVE can be disregarded. The effect of all other voids
within the RVE is measured only through the change of effective properties
(effective stiffness). This local continuum theory (LCT) is objective as long
as the damaged macrostructure can be divided into a number of subsys-
tems, each of the size of the RVE, to allow for homogenization. If, on the
other hand, the direct interaction between the microvoids and microcracks
is essential with regard to their growth, coalescence and stability, the so-
called non-local theory must involve the distance between the neighbouring
defects as the scale parameter, and the local approach is no longer sufficient
(Woo and Li, 1993).

1.2 Definitions of material damage of
crystalline materials on the atomic scale

On the atomic scale, physically-based (atomic) material damage definitions,
considering the inter-atomic energy and the actual configuration of the
atomic bonds, are used. T'wo scalar measures of damage are discussed by
Woo and Li (1993); the first of them is based on the reduction of the
interatomic energy, and the second on the number of broken bonds:

T [ (AGS) ~B§ (AGY)]N _ . ¥ (AGY) LN

D, = 0 = =1 L=’ " (11
: S bt (AG) N s wacLiN LY
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or

Yicy 8 [V (AGY)| LiN

Dy = - .
’ 2ic1 AGRLN

(1.2)

In the above definitions b* (AG?®) denotes the i-th bond force between two
atoms of the direction vector L} of the intensity b* in terms of the single
interatomic energy AG* (for broken i-th bond b* (0) = 0); AG§ denotes the
interatomic energy of the perfect (undamaged) materials. The influence of
the orientation of bonds is included through the scalar product of the unit
direction vector L of i-th bond and the unit normal vector to the plane
considered N. Symbol s denotes a selector factor introduced in order to
distinguish the broken bonds, s (bi = 0) =1, from the active ones (s = 0),
and n denotes the total number of bonds through the plane considered. Let
the characteristic area of the single i-th interatomic bond of the direction
vector L} be ¢, then the projective area of ¥* onto the plane of unit normal
vector N be A* = #'LiN (Fig. 1.1).

Fig. 1.1. The characteristic area of interatomic bonds of the direction vectors
L; through the surface area A of the normal vector N: e active bands, o broken

bonds (cf. Woo and Li, 1993)

If the average characteristic area 1 is used for the regular n atoms con-
figuration, the total cross-sectional area associated with n atomic bonds
crossing the plane is A = 9y ;. | LiN. Applying the above for n atomic
bonds crossing through the area A, the definition (1.2) may be rewritten
in the following fashion:

93 s [0 (AGY)] LN

Dy = Y (1.3)
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Note that Dy varies from 0 (all bonds are active) to 1 (all bonds are broken).
For the partial damage the effective area A is defined as

n
A=A-9) s[t'(AG")| LiN (1.4)
i=1
which, finally, reduce the above definition to the scalar damage parameter
w = 1 — 1), proposed earlier by Kachanov (1958), on the macroscale:

~

A
-5
The critical damage state w¢,;; in Kachanov’s sense is Dy = werie = 1,
but in general it is an additional material constant that characterizes the
fracture resistance of the specific solids (macrocrack initiation), and for the
majority of metals the following holds: 0.2 < Dy < 0.8 (cf. Chaboche,
1988).

Dy=w=1 P=1-w, w € [0, werit] - (1.5)

1.3 Definitions of material damage
on the microscale

1.3.1 One-dimensional surface damage parameter

To characterize a gradual deterioration process of a microstructure, via mi-
crocrack and microvoid nucleation and evolution through the surface area
6A of intersection of the plane of normal n with the RVE surrounding a
material point M, L. Kachanov (1958) introduced the continuing parame-
ter 7, the magnitude of which is determined as the ratio of the effective
(remaining) area §A = §A — 6 Ap to the total (undamaged) area §A
6A
v="0 web, (1.6

such that 9 = 1 corresponds to the undamaged (virgin) state, whereas the
continuity decreases with damage growth to eventually reach zero for a
completely damaged surface element §Ap = 64 (Fig. 1.2).

Considering planes of various normals n, we define surface damage in
an arbitrary direction z, or in the most damaged direction z, as:

0Apg

A 6A"°’
where D = 1 — 9 = 0 corresponds to the undamaged state of the surface
element considered, and D = 1 to the completely damaged element (fully
broken). The above definition is mainly applicable for crystalline materi-
als in which, on the microscale, microscopic cracks develop both in metal

D(M,n,z) = . D(M,n)= (1.7)
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Fig. 1.2. Surface damage measure through the surface area 6§A of intersection of
the plane of normal n with the RVE in a crystalline material

grains (transgranular damage) and on intergranular boundaries (intergran-
ular damage). These microcracks have different orientations, such that the
surface damage parameter also changes with the normal vector orientation
when the more developed vectorial D,, or tensorial D;;, damage measures
are introduced (Chap. 4).

1.8.2  Void volume fraction or porosity in ductile materials

Ductile fracture in polycrystalline metals and porous materials is, in gen-
eral, the result of the following processes: growth of existing voids and
cavities (if any), nucleation of new voids and their growth, and void co-
alescence with increase of large (visco)plastic deformation. Current void
volume fraction in a RVE is defined as the ratio of the void volume to the
volume of the RVE (cf. Gurson, 1977, Tvergaard, 1981, 1988, Nemes et al.,
1990)

e 6V — 6V

7
where 8V, denotes the volume of the solid constituents of that material
element (Fig. 1.3a).

In fact, the solid with zero-void volume fraction f = 0 is an idealization
of the voided polycrystalline material that even in the virgin state contains
some voids and cavities, such that the initial void volume fraction fy is of
the magnitude 1072 to 10=* (cf. Nemes et al., 1990). After nucleation the
spatial distribution of voids is, roughly speaking, close to uniform, and the
voids’ shape may be approximated by spheres (Fig. 1.3b). The local failure

(L8)
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a) b)

5V, solid/—\ porous

&

6V=08xdydz

©
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Fig. 1.3. a) Void volume fraction in the RVE in space , y, z and b) spherical
void nucleation in a spherical RVE

in the volume is a result of cavity elongation along the major tensile axis,
such that two (or more) neighboring cavities coalesce when their length has
grown to the magnitude of their spacing. Eventually, a slip band mechanism
between the voids yields the local failure at the critical magnitude of void
volume fraction of the order 0.1 to 0.2 (cf. Tvergaard, 1981).

To relate the void volume fraction f to the surface damage parameter
D, consider an idealized case when a single spherical cavity of radius r
is nucleated within a spherical RVE of current radius ﬁ, the initial vol-
ume of which was R (Fig. 1.3b). Assuming no density change of the solid
constituent of the RVE, the following holds:

V-V, r3 r3
== T R343R’ (1.9)

where V, = (4/3)7R3, and V = (4/3)7R3 correspond to the volume of
a solid material and the volume of a RVE, respectively. Hence, when the
definition of surface damage parameter in Kachanov’s sense is used, we
finally obtain

r2 r3 2/3 2/8

If, on the other hand, in a heterogeneous and discontinuous spherical RVE
the homogenization method is applied, the initial mass density changes
from o to p with the void evolution, to yield the surface damage parameter
D in terms of the initial and the current mass density

D= (1—5)2/3. (1.11)
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1.4 Damage measures through physical
quantities changing on the macroscale

Damage measurement both on the atomic scale (breaking of the interatomic
bonds) and on the microscale (microvoid and microcrack nucleation and
growth) leads to destructive material testing. On the macroscale, mater-
ial damage can be evaluated by the nondestructive measuring of change
of physical quantities, such as elasticity modulus, microhardness, acoustic
wave speed, thermal conductivity, electrical resistance, x-ray diffraction,
tomography, etc. A fictive pseudo-undamaged and quasicontinuous body
concept allow for homogenization of the physical quantities of a heteroge-
neous and discontinuous damaged solid, such that the effective state vari-
ables and the effective physical properties may be defined in terms of the
current damage state.

1.4.1 Effective stress and strain concepts and equivalence
principles

Consider a one-dimensional volume element (a bar) of cross-sectional area
A with a distribution of microdefects measured by the damaged surface
portion Ap, loaded by the applied uniaxial stress o. This current phys-
ical state (E, D) can be mapped to the fictive, pseudo-undamaged state
(E, D = 0) submitted to the effective stress & such that the response re-
mains the same, € = ¢, (Fig. 1.4).

virgin state  damaged state pseudo-undamaged
F state

S ~ ﬁc G
E% ED E0
IPHIAPAD
Q" |4

|
|
|
|
|
|
| |
I
|
|
|

F

Fig. 1.4. One-dimensional effective stress concept based on strain equivalence

Hence, when the elasticity equation is furnished for both the damaged
and the pseudo-undamaged material
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o=Fe, &=EFE¢ (1.12)

and the effective stress & is defined by the cross-sectional area reduction in
the damaged state

F o
0=——=—70, E=c¢, 1.13
A—-Ap 1-D ( )
where 0 = F/A, the following surface damage measure through the effective
elasticity modulus drop with the material deterioration holds:

D:l—g, E=E(1-D). (1.14)
Note that the above definition of the uniaxial effective stress &, based on
the strain equivalence principle (Rabotnov, 1968, Lemaitre, 1971), yields
the linear elasticity modulus drop with damage.

Experimental validation of the formula (1.14) might be done through a
series of loading/unloading tests, with the permanent strain measurement
on unloading. Results for 99.9% copper at room temperature, taken after
Dufailly (1980) are discussed by Lemaitre (1992) (Fig. 1.5).

o [MPa]
5004, -
4001E
3001
200+
IOOW
0

0 10 20 30 40 50 60 70 80 90 100 | £°x10>

P
£ !ECL_

;:p x10?

Fig. 1.5. Elasticity modulus drop with ductile damage in copper at room tem-
perature (after Dufailly, 1980)
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The linear Young’s modulus drop with creep damage was also tested by
Rides et al. (1989) when samples of copper were subject to constant-load
creep at an elevated temperature of 300°C, and at intervals during the test
they were partly unloaded and reloaded at the same rate. The results show
good correlation with the formula (1.14), as shown in Fig. 1.6.

E=E(1-D)
theoretical

o
]

D

05001 02 03 04 03
Fig. 1.6. Elasticity modulus drop with creep damage of copper at elevated tem-
perature (after Rides et al., 1989)

It should be emphasized, however, that the principle of strain equivalence
leads to the restrictive conclusion that the Poisson ratio is not affected by
damage, V = v, and consequently, under the uniaxial tension test a material
suffers only from damage in the direction of tensile stresses. However, for
most engineering materials this is not true, since nucleation and growth of
microscopic damage not only results in the redistribution of stresses due to
the cross-sectional area reduction but also decreases stiffness of the material
(cf. Chow and Lu, 1992). Hence, in general, the hypothesis of the elastic
(or total) energy equivalence might be recommended as more realistic than
that of strain or stress equivalence (see Sect. 4.3). Note also that, when the
elastic energy equivalence is assumed, the simple linear Young’s modulus
drop with damage (1.14) no longer holds but is replaced by the nonlinear
formula

51/2
D:l—(E> , o E=E(1-D)? (1.15)

and the effective stress and effective elastic strain are defined as follows:

G=(1-D)"'c and E=(1-D)e (1.16)
Generalization of the above two definitions of the effective variables (7€),
(1.13) and (1.16), to the 3D case leads to the concept of the fourth-rank
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damage effect operator M (d,), where the damage induced anisotropy of
the initially isotropic material (in a virgin state) is defined on the principal
axes of damage d,, (Sect. 4.5).

In the method of strain equivalence, the effective stress tensor o is the
stress that would have to be applied to the pseudo-undamaged material to
cause the same strain tensor € = £ as the one observed in the damaged
material submitted to the current stress . Hence, using Chaboche’s nota-
tion (cf. Chaboche et al., 1995) the following 3D definition of the effective
stress tensor holds:

cd=M"1(d,): o, (1.17)

whereas the elasticity equations furnished for both the damaged and the
pseudo-undamaged material take the representation

o=A(ds):e, &=AZ, (1.18)

where the fourth-rank elasticity tensor modified by damage is written as
~ 1 ~
A(da)=§(M:A+A:M), M=I-D (1.19)

and I, D are fourth-rank identity and damage tensors, respectively.

In the method of elastic energy equivalence, the effective stress & and
effective strain €° are the stress and strain that would have to be applied
to the pseudo-undamaged material to cause the same elastic energy as for
the damaged material subjected to o and e°. Hence, the effective stress
and strain tensors are now defined as:

G6=M"1(d,) :0 and & =M(da) :¢, (1.20)
whereas the elasticity tensor A is expressed as

A (dy) =M (dg) : A:M(d,),
~ (1.21)
o=A:¢e° o=AE".

More detailed discussion of the various definitions of the damage effect
operator M may be found in Sect. 4.4. Note that the effective stress concept
should not be confused with the net-stress concept which accounts only
for an area reduction (surface density of microdefects). The energy based
definition leads to the Poisson’ ratio varying with damage as observed for
most engineering materials (cf., e.g., Murakami and Kamiya, 1997).
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1.4.2  Effect of material degradation on physical properties
of damaged materials

It is experimentally observed that damaged materials change their phys-
ical properties with damage evolution. Some of them have already been
discussed: the mass density, and mechanical properties such as strength,
stiffness, or compliance. The other are reported, e.g., by Lemaitre and
Chaboche (1985). In what follows some of them are listed.

1. Ultrasonic wave speed drop

Longitudinal acoustic wave speed through a linear elastic medium in un-
damaged (virgin) and partly damaged state may be written as:

_ E 1—-7
2 _E 1—-v A’2=§ v (1.22)
Y Y

v E S o I+ (-2

Hence, when the damage definition through the drop in Young’s modulus
(1.14) is used, we obtain

_ 2+ 9) (-2 (1) (g)z (1.29)

o(1+v)(1-2v)(1-7) \w

or, when Poisson’s ratio v and the mass density g change with damage may
be neglected, the simplified formula holds:

D=1- (g)z (1.24)

II. Microhardness change

Assume an experimentally proved linear relationship between hardness H
and the actual yield stress. When this is written for both the undamaged
and partly damaged state we obtain (1D case)

H=kK(oy+R+X) and H=Fk(0,+R+X)(1-D), (1.25)

where R and X are responsible for the isotropic and the kinematic hard-
ening, respectively, whereas the damage affected yield stress (plasticity
threshold) drops linearly with the damage increase (cf., e.g., Lemaitre,
1992). Eventually, by measuring both H and H , the actual damage state
is obtained:

)
Il
|
T

(1.26)
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I11. Electric potential drop
Consider Ohm’s law for the electric current through the surface A in the

undamaged and the damaged state of a material

V= r%i and V=77 (1.27)

Introduce also the effective intensity of the electric current 7 and the effec-
tive electric resistivity 7 affected by damage:

3
1-D

1=

and ?:7‘(1+K%—g):r(l+KD3/2). (1.28)

Hence, when the effective potential difference is measured on the volume
considered, the following formulas hold:

1%
D:l—(l—KD3/2) (5) or Dzl——g. (1.29)

IV. Heat conductivity drop

A one-dimensional concept of the effective heat conductivity hy through the
linear damaged RVE, Agdz, is based on the cross-sectional area reduction
during the material degradation process to the current value Ag (1 — D).
When Fourier’s conductivity law is written for the undamaged portion
of the partly damaged RVE cross-sectional area, and through the fictive
pseudoundamaged equivalent homogeneous body with the defects smeared
through the volume, we obtain

0 (~o0T ~ 0T 3] or oT
I ()\%) =G05 and o G@;) =G5 (1.30)

where the effective conductivity X is related to the initial conductivity co-
efficient in a virgin body A¢ by the simple relationship

X=X (1-D). (1.31)

For simplicity, the inner heat sources have been omitted, and the radiation
through the damaged volume has been disregarded. In other words, this
means that there is no heat flux through the fully damaged RVE. More ad-
vanced modeling, where the additional radiation term is taken into account,
may be found in Sect. 5.1.
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1.5 Continuum damage mechanics
versus fracture mechanics

On a macroscale a structural failure mechanism may be determined by the
growth of one or more macrocracks, the geometry and location of which
(size, shape) is explicitly represented on the fracturing process. A crack
propagation through the solid with a homogeneous microstructure under
tensile stress field consists in an unstable growth of its length. In the sim-
plest case, when linear fracture mechanics is used, the crack is assumed to
be surrounded by a linear homogeneous and isotropic elastic solid, and a
corresponding failure mode is perfectly brittle. On the other hand, crack
propagation through the solid with a heterogeneous microstructure may be
arrested, and continuum damage accumulation prior to the macrofracture
may occur. Consequently, in the fracturing process in strain-controlled con-
ditions the strong interaction between cracks is essential, and the non-local
approach must be used when advanced elastic-visco-plastic material models
are applicable for the solid surrounding the crack-tip (Krajcinovic, 1993).
The relation between the fracture mechanics (FM) and the continuum dam-
age mechanics (CDM) methods is a question of different characteristic sizes
of microcracks and macrocracks. However, the classical characteristic para-
meters used by FM, such as the stress intensity factor K or J-integral, are
based on the classical continuum model and, hence, both FM and CDM
approaches are usually based on the local theory. It also means that a ques-
tion of scale refers not to the size of crack considered but to the medium
surrounding the crack (cf. Woo and Li, 1993). Nevertheless, the so-called
local approach to fracture based on CDM and FEM is also used as a prac-
tical tool for coupled creep damage-fracture analysis (cf. Murakami et al.,
1988, Liu et al., 1995, Murakami and Liu, 1995) or elastic-brittle damage-
fracture analysis (Skrzypek et al.,, 1998). Let us mention, however, that
additional regularization methods are often required to avoid mesh depen-
dence of the solutions obtained in this way when the problem of stress and
damage concentration at the crack tip is met (cf. Sect. 5.2).

For practical application, the scheme of the CDM and FM treatment
shown in Fig. 1.7 (proposed by Chaboche, 1988), may by useful.
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Cavities Micro- Micro- Macro- Macro-
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Fig. 1.7. Microcrack growth and single macrocrack initiation and propagation
in a crystalline material (after Chaboche, 1988)

1.6 Classification and bibliography of
material damage on the microscale

Following classification of material damage with respect to the microscopic
damage characteristics (microscale) and constitutive properties of the dam-
aged material, mainly based on the Murakami’s scheme (cf. Murakami,
1987) may also be helpful in proper application of CDM modelling to dam-
age evolution and failure analysis in structures
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Table 1.1. Material damage, microscopic mechanisms and features (Murakami,

1987)

References

Microscopic mechanisms
and features

Elastic-brittle damage

Krajcinovic and Fonseka, 1981
Sidoroff, 1981

Mazars, 1985

Marigo, 1985

Lemaitre and Chaboche, 1985, 1993
Litewka, 1985, 1989

Litewka and Hult, 1989

Grabacki, 1991, 1994

Najar, 1994

Murakami and Kamiya, 1997

Nucleation and growth of mi-
croscopic cracks caused by
elastic deformations. Change
of effective stiffness and com-
pliance due to the strength re-
duction and elastic modulus
drop with damage evolution.
(Metals, rocks, concrete, com-
posites)

Elastic-plastic damage

Gurson, 1977

Suquet, 1982

Cordebois and Sidoroff, 1982
Tvergaard, 1981, 1988
Rousselier, 1981, 1985, 1986
Lemaitre, 1984, 1985
Dragon and Chihab, 1985
Chow and Li, 1992
Voyiadjis and Kattan, 1992
Murzewski, 1992

Mou and Han, 1992
Saanouni et al., 1994
Taher, 1994

Nucleation, growth, and coa-
lescence of microscopic voids
caused by the (large) elastic-
plastic deformation. Intersec-
tion of slipbands, decohesion
of particles from the ma-
trix material, cracking of par-
ticles. Void coalescence in
porous media in presence of
shear bands formation. (Met-
als, composite, polymers)

Spall damage

Tetelman and McEvily , 1970
Gurland, 1972

Davison et al., 1977, 1978
Johnson, 1981

Grady, 1982

Perzyna, 1986

Nemes et al., 1990

Elastic and elastic-plastic
damage due to impulsive
loads. Propagation of shock
plastic waves. Coupling be-
tween nucleation and growth
of voids and stress waves.
Coalescence of microcrack
prior to the fragmentation
process. Full separation
resulting from macrocrack
propagation through heavily
damaged material.




1.6 Classification and bibliography of material damage 19

Fatigue damage

Manson, 1954

Coffin, 1954

Lemaitre, 1971

Chaboche, 1974

Manson, 1979

Lemaitre, 1992

Dufailly and Lemaitre, 1995
Skoczen, 1996

Nucleation and growth of
microscopic transgranular
cracks in the vicinity of
surface. High cycle fatigue
(number of cycles to failure
larger than 10°): effect of
macroscopic  plastic strain
is negligible. Very low cycle
fatigue (number of cycles
below 10): crack initiation in
the vicinity of surface in the
slip bands in grains prior to
the rapid transgranular mode
in the slip planes.

Creep damage

Kachanov, 1958

Rabotnov, 1969

Leckie and Hayhurst, 1973, 1974

Hayhurst et al., 1975

Trapczynski et al., 1981

Krajcinovic et al., 1981, 1982

Chaboche, 1979, 1981, 1988

Murakami, 1983

Hayhurst et al., 1984, 1986

Stigh, 1985

Ping Zhang and Hao Lee, 1993

Kowalewski et al., 1991a,b,
1994a,b, 1996a,b,c

Needleman et al., 1995

Naumenko, 1996

H. Altenbach et al., 1990, 1997

J. Altenbach et al., 1997

Nucleation and growth of mi-
croscopic voids and cracks in
metal grains (ductile trans-
granular creep damage at low
temperatures), or on inter-
granular boundaries (brittle
intergranular damage at high
temperatures) mainly due to
grain boundaries sliding and
diffusion.

Creep-fatigue damage

Chrzanowski, 1976

Lemaitre and Chaboche, 1975, 1985
Plumtree and Lemaitre, 1979
Wang, 1992

Dunne et al., 1992ab, 1994

Lin et al., 1996, 1998

Damage induced by repeated
mechanical and thermal load-
ings at high temperature.
Coupled creep-cyclic plastic-
ity damage. Nonlinear in-
teraction between intergran-
ular voids and transgranular
cracks. Slip bands formation
due to plasticity (low temper-
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ature) combined with mi-
crocrack development due
to creep (high temperature).
(Metals, alloy steels, alu-
minum alloy, copper).

Anisotropic damage

Sidoroff, 1981

Ladeveze, 1990

Lis, 1992

Chaboche, 1993

Chaboche et al., 1995

Chen and Chow, 1995
Voyiadjis and Venson, 1995
Litewka and Lis, 1996
Murakami and Kamiya, 1997

Damage induced anisotropy
of solids or damage
anisotropic materials (com-
posites). Unilateral damage
(opening/closure  effect).
Anisotropic  elastic-brittle
damage. Nonproportional
and cyclic loadings. Ef-
fective state variables and
damage effect tensor. (Con-
crete, anisotropic ceramic
composites)

Corrosion damage

Tetelman and McEvily, 1970
Knott, 1973
Schmitt and Jalinier, 1982

Pitting corrosion, intergran-
ular corrosion, environmen-
tal degradation. Develop-
ment of microcracks under
stress in corrosive environ-
ments

Irradiation damage

Tetelman and McEvily, 1970
Gittus, 1978

Tomkins, 1981

Murakami and Mizuno, 1992

Damage caused by irradia-
tion of neutron particles and
a rays. Knock-on of atoms,
nucleation of voids and bub-
bles, swelling. Ductile be-
havior of creep under irradi-
ation and brittle behavior on
post-irradiation creep.

Thermo-creep damage

Ben Hatira et al., 1994

Saanouni et al., 1994

Ganczarski and Skrzypek, 1995, 1997
Kaviany, 1997

Skrzypek and Ganczarski, 1998b

Thermo-elastic-viscoplastic
damage (fully coupled ap-
proach). Damage effect on
heat flux in solids. Change
of temperature gradient due
to damage evolution.
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Effect of isotropic damage
evolution on (visco)plasticity

2.1 Inelastic deformation processes with
damage

2.1.1 Basic concepts of coupled damage — mechanical fields

Two main approaches are used to model the effect of damage evolution on
the behavior of structural materials in the frame of CDM theory. In case
of a weak coupling between damage and deformation processes, the effect
of material damage on the elastic properties is disregarded. In this sense
a coupling is established by introducing the damage variables (scalar or
tensor) into the constitutive equation of the continuum solid when the ef-
fective state variables concept is used (cf. Kachanov, 1958, 1986; Rabotnov,
1968, 1969; Leckie and Hayhurst, 1973, 1974; Hayhurst, 1972, 1983, etc.).
In case of a fully (strong) coupled approach, damage evolution affects both
elastic properties of the material (stiffness and compliance) and inelastic
response (cf. Chaboche, 1977, 1978, 1993; Cordebois and Sidoroff, 1979,
1982; Lemaitre, 1984, 1992; Litewka, 1985, 1986; Murakami and Kamiya,
1987 to mention only some of them). In this chapter the first approach is
discussed when the classical strain equivalence principle is used to define
the effective stress in Lemaitre’s sense (Lemaitre, 1971) and the isotropic
(scalar) damage variables are selected to legislate an experimentally fitted
damage evolution law.

2.1.2  Creep-plasticity damage mechanisms in metals —
experimental observations and general features

Two basic material damage mechanisms, ductile damage or brittle damage,
can be recognized in a crystalline materials under combined creep-plasticity
conditions at various temperatures. Trapczyfiski et al. (1981) examined
copper and aluminum alloy thin-tube specimens at 250°C and 150°C, re-
spectively, in nonproportional loading experiments. A steady load, a single
reversal of torsion, and multiple reversal of torsion were selected to follow
the mechanism of microcrack and microvoid nucleation, growth, and coales-
cence, to eventually yield macrocrack propagation at the grain boundaries.
Recently, Dunne et al. (1992) and Lin et al. (1997) examined pure cop-
per testpieces tested to failure under condition of creep-cyclic plasticity at

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures

© Springer-Verlag Berlin Heidelberg 1999
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Fig. 2.1. Transgranular microcracks initiation and ductile damage growth in the
sliplines regions: a) micro shear bands in Armco Iron (after Korbel et al., 1998),
b) crack formed in slipbands in grains of Inconel 718 specimen tested for very
low cycle fatigue (after Dufailly and Lemaitre, 1995)

room temperature, 20°C, and at 500°C.

At room temperature, crack initiation occurs in the vicinity of the surface
in the slipbands of plasticity formed in the favorably oriented copper grains
(of the order 0.15-0.18 mm) or subgrains (of the order 25-75 pm). They
are usually oriented at 45° to the main stress direction and grow in a
transgranular damage mode in the slip planes, cf. Korbel et al. (1998) (Fig.
2.1a).

A similar ductile damage mechanism, localized mainly in slipbands in the
grains in Inconel 718 alloy at elevated temperature, was used by Dufailly
and Lemaitre (1995) to model damage evolution in a very low cycle fatigue
test (number of cycles to failure of the order of ten, or less), where the
ductile damage mechanism was observed as predominant (cf. Fournier and
Pineau, 1977).

At elevated temperature, the brittle intergranular microcracking process
is due to microcavities which are initiated on the grain boundaries, sub-
sequently linked to form macrocracks (Fig. 2.2). Sometimes also the saw-
toothed cracks associated with a subgrain microstructure might be formed.
However, strong directionality of both microcracking and macrocracking
processes, both roughly perpendicular to the principal tensile stress direc-
tion, is evident.

In conclusion, the ductile or transgranular damage (or fracture) mecha-
nism occurs at a high stress level and in the low temperature regime and
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Fig. 2.2. Intergranular microcracks growth and coalescence to form cracks at
grain boundary in a copper triaxial test: a) spherical grain boundary cavities, b)
crack-like grain boundary cavities (after Hayhurst and Felce, 1986)

is dominated by the equivalent stress controlled damage plasticity mecha-
nism due to the material instability from microslips at slipband regions in
the grains, where material failure is initiated. This process leads to a dis-
continuous bifurcation of the strain-rate field that initiates the decohesion
process prior to the complete failure process where the material separates
with the formation of free surfaces (cf. Rudnicki and Rice, 1975; Larsson
et al., 1991; Runesson et al., 1991, and others). Loss of ellipticity of the
differential constitutive equations might also be considered as the initiation
of material failure in this sense (cf. Shrayer and Zhou, 1995). Small voids
existing in a ductile material, and their growth and coalescence, may act
as an additional inhomogeneity which promotes plastic strain localization
at slipbands, yielding a the failure mechanism for the material (cf., e.g.,
Tvergaard, 1981, 1988; Needleman et al., 1995).

In contrary, the brittle or intergranular damage (or fracture) mechanism
occurs usually at a low stress level and in the high temperature regime.
It is dominated by the creep micro-cavitation process on the grain bound-
aries which leads to the principal stress controlled micro and macrocracking
process, localized mainly on the grain or subgrain boundaries. The orien-
tation of the micro and macrocracks is selected in the damage and failure
process in such a way that the normals to the average crack directions
roughly coincide with the main tension direction. However, in the case of
the rotating principal stress directions the microcracking process follows the
main stress rotation, hence, the damage growth and accumulation process
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is no longer isotropic, so that the vector or tensor damage representation
must be used. Note that the overall geometric effect is usually not observed
in brittle damage since creep strains are small.

Brittle damage of metals at elevated temperatures has been broadly re-
ported in the literature from the experimental point of view (cf. Johnson
et al., 1956; Hayhurst, 1972; Hayhurst and Leckie, 1973, 1974; Trapczynski
et al., 1981; Murakami et al.,1985; Litewka and Hult, 1989; Othman and
Hayhurst, 1990; Townley et al., 1981; Kowalewski et al., 1993, 1994, 1996,
and many others).
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Fig. 2.8. Creep curves of 9Cr1Mo steel at constant stress levels o; = 100 MPa
and o2 = 150 MPa versus temperature (after Townley et al., 1991)

The effect of temperature on the creep curve of 9CrlMo steel at two
constant stress levels, 0; = 100 MPa and o9 = 150 MPa, is shown in
Fig.2.3 (cf. Townley et al., 1991). It is evident from the diagram that as
stress and temperature increase, the time to failure decreases. So-called
isostrain creep curves represent a collection of stress versus time pairs at
constant stress level; the last of these curves represents rupture contour at
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Fig. 2.4. a) Isostrain creep curves of 9CrlMo steel at temperature 500°C, b)
rupture contours versus temperature (after Townley et al., 1991)

a given temperature that corresponds to infinite strain at rupture (Fig. 2.4,
cf. Townley et al., 1991). A discussion of creep and creep-failure properties
for various pressure vessel steels, according to CWST data, as well as a
comparison to Odqvist’s data, is given by Skrzypek (1993).

2.2 Phenomenological isotropic
creep-damage models

2.2.1 Brief survey of creep constitutive equations
for nondamaged materials

On the basis of the principle of strain equivalence and the effective stress
concept, a simplified method to establish constitutive equations for both
time-independent (plasticity) and time-dependent (creep-plasticity) mate-
rials might be proposed (cf. Lemaitre, 1971):

Any strain constitutive equation for a damaged materials may be derived
in the same way as for a virgin material except that the usual stress is
replaced by the effective stress.

In what follows, a brief review of creep and creep-plasticity models for
nondamaged materials is presented (cf. Skrzypek, 1993).

I. Deformation or total strain ('TS) theory (Rabotnov, 1948, 1966;
Malinin, 1951)
3 €eq (Teq, t) 1 (2.1)

ejj = = —————=8j; Exk = 550
1] 2 Cfeq VR kk 3K kk»
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where

€oq = Ueq (t) [% + /Ot Md’i‘] (2.2a)

Oeq
or

foq = Teq () { &+ /0 "B (1) [oeq (1) d‘T} . (22b)

I1. Flow rule (FR) and creep potential (Rabotnov, 1966; Penny and
Marriott, 1995)

. ov o ov

dej; = 803 dA or & = B05;

For isotropic materials, when the Huber-Mises—Hencky type creep potential

is applicable ¥ (0;;) = (1/2) s;;8:;—(1/3) 03, the Mises-type flow rule might
be obtained:

A. (2.3)

3des 3 &
dej; = ——2s;;  or &, =-—2g; (2.4)
Y2 0eq Y 206 v

and when the elastic strains are considered for incompressible materials the
following holds:

§é:q (Ueq)s”

. 2.5
2 Ueq ) ( )

€ij = 555
Specifying the equivalent stress geq = [(3/2) sijsij]l/ % versus equivalent
creep strain rates €2, = [(2/3) éfjéfj]l/ ? dependence in (2.5) as €g,/éc =
(0eq/0c)™ (cf. Odgvist and Hult, 1962) the Hooke-Norton-Odqvist flow
rule is established:

14+v v 3 (0 \" ! si;
s = —— | 04; — —— Oilii e | 2 2.6
T (‘” 11+ kk ’)+2<oc) 0. (2.6)

or when incompressibility and the power law are assumed for both elastic
and creep parts €%,/6c, = (Teq/0co)""s £5y/éc = (0eq/0c)” the Odquist
flow rule is furnished:

ng—1 n—1
I R B e R X
dt 2 dt UCQ UCO O¢ O¢

In the above formulas, €., 0¢,y, N0, ¢, 0¢, 1 are the temperature dependent
material constants, whereas in (2.7) e, = 1 and &, = 1 are set.

When the time-hardening (TH) model is applied to €y and 0eq, instead
of ¢ and o in an uniaxial case, the multiaxial time hardening creep law that
accounts for both ageing and temperature dependence is established:
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4. = 3 fi (Ueq)s_,df2(t)
i T g Oeq = di

When the temperature effect is disregarded, two particular forms of (2.8)
might be recommended:

f3(T)dt. (2.8)

.c 3f1 Te

%= Ly fo ), (2.99)
eq

& = CnslJ om-gn= 1 (2.9b)

where in (2.9b) the functions fj (0eq) and fs () are specified in a power
form that generalizes the uniaxial Nutting equation to the 3D case, €oq =
Cot™ (cf. Kraus, 1980).

111. Isotropic strain hardening (SH) theory

Multiaxial strain hardening equation that generalizes Rabotnov’s 1966 con-
cept can be presented in the form

3f(o ( ea) Sij
Pii = 2.10a

) 2 h ( qeq) ( )
where geq represents the length of the trajectory in the creep strain space

t
2., .
eq = /0 P3Pt (2.10b)

p = € —€°, and primes stand for the deviatoric components. If the Nutting
equation holds under both the uniaxial constant stress and the 3D general-
ization, the following equation may be furnished (cf. Kraus, 1980; Ohashi
et al., 1982):

) eq

3 n—
&8 = EnOrl/n (gc )( 1)/n Ugl"'_n)/nsij- (2.11)

IV. Malinin—Khadjinsky creep-kinematic-hardening (CKH) theory

Malinin and Khadjinsky (1972) applied the concept of nonlinear kinema-
tic-hardening in plasticity to the anisotropic hardening in uniaxial creep
of metals at elevated temperatures (carbon steel at 455°C and aluminum
alloy at 150°C) to obtain:

& = Bexp (IUXIO") sign (0 — @) , (2.12a)

Q.
Il

A(|o|)€° — Dexp (%') signa. (2.12b)
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a) b)
375 30 =
(A/N)172 (AN \
250 ~\ 20 \
125 \ 10
N\
Carbon Steel Al Alloy
455°C 150°C
| |
0 10 20 30 40 50 %.10 0.5 020 025
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Fig. 2.5. Graphs of functions (A/N)l/ ? versus o in the Malinin and Khadjin-
sky Eq. (2.12): a) 0.17% carbon steel at T = 455°C (after Johnson, 1941), b)
aluminum alloy at 7' = 150°C (after Namestnikov, 1965)

The first term in (2.12b) represents the work-hardening effect, whereas
the second is responsible for the thermally activated softening; A (o) is a
function of stress, constant below the yield point and decreasing with stress
above this limit; B, D, N, are the material constants (cf. Fig. 2.5, Table
2.1).

Table 2.1. Material constants for the Malinin and Khadjinisky Eq. (2.12) and
the Ohashi et al. Eq. (2.13) (after Skrzypek, 1993)

Material A[MPa) Blh—1] DMPah~1] [ N[MPa] | m[] | n[]
Eq. (2.12)
Carbon Steel

T = 455°C Fig. 25 | 3.53 x 1078 | 4.05 x 10-° 4.14 - -
(Johnson)
Eq. (2.12)
Aluminium
Alloy Fig. 2.5 | 8.35 x 1077 | 3.83 x 10~5 29.4 - -

T = 150°C
(Namestnikov)

Eq. (2.13)
Stainless Steel
T = 704°C 6.9 x 10% | 6.3 x 10710 0.531 29.6 3.64 | 3.64
(Ohashi et al.)

The 3D generalization of Eqs. (2.12a, 2.12b) is due to Ohashi et al.
(1982):

o . J2(0—X)]" o' =X
e = B [smh N ] ACES ) (2.13a)
X' = Alh(0)e-D [sinh J2 IE]X)] J;((;(). (2.13b)
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In the above absolute notation, the following definitions of the Mises-type
equivalent stress J; (), the back stress (or translation tensor) Jj (X), and
the additional stress J; (¢ — X) hold:

Jo (o) = [(3/2) o a"]l/z yJ2 (X) = [(3/2) x' X'] 1/2’

Jo (o —X) = [(3/2) (a' - x’) : (a’ - x)] v

Symbols B, D, N, n, m, are the material constants, and A [.] is a function
of the equivalent stress (cf. Table 2.1), where primes stand here for the
deviatoric components.

(2.13c)

V. Chaboche-Rousselier creep-isotropic/kinematic hardening (CIKH)
theory

Chaboche (1977) applied the concept of a mixed isotropic-kinematic hard-
ening to the creep plasticity flow rule, to obtain (cf. Chaboche and Rous-
selier, 1983):

3<J2(a—X)—R—0y>n o -X (2.14a)

p_ = dt
e =3 K Jo (0 —X) "

where the following nonlinear kinematic and isotropic hardening rules hold:

X = C (gadep - Xdp) —y[R(X)™ ' Xdt, (2.14b)
dR = b(Q- R)dp— yRidt. (2.14c)

Symbol p stands for the cumulative viscoplastic strain, dp = [(2/3) deP
:dep]l/z, and symbols n, K, oy, C, a, b, m, Q, v, q are ten material coeffi-
cients, the number of which reduces to seven when two time recovery terms
in (2.14b) and (2.14c) are omitted (y = 0), or to five when, additionally,
the isotropic hardening effect is disregarded (dR = 0).

The seven-parameter CIKH theory applied to the uniaxial case reduces
Egs. (2.14) to the 1D model (cf. Chaboche and Rousselier, 1983)

—al—R-— "
deP = <%——Cﬁ> sign (0 — a) dt, (2.15a)
where
da = da; + dag,

da1 = Cl (aldEP — Qg IdEPI) s
dog = Oy (agdeP — ag |deP|),
dR =b(Q — R) |deP|.

(2.15b)
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Nine coefficients: n, K, oy, Ci, Cy, a1, ag, b, Q are evaluated from the
tensile and relaxation tests for 316L stainless steel at room temperature:

n =24, K =151 MPa, o,=82MPa, C(;=2800, C;=25,
a; = 58 MPa, ay = 270 MPa, b=38, Q = 60 MPa.

If, on the other hand, the kinematic-hardening effect is not taken into
account, the following six-parameter (1D) NIH model might also be used
for tensile tests (cf. Lemaitre and Chaboche, 1985):

deP = <$> , (2.16a)

where

R(eP) = Q1” + Q2 [1 — exp (—beP)]. (2.16b)

Six material parameters: n, K, 0, Q1, Q2, b for 316 stainless steel at room
temperature are

n=2A, K =151 MPa, o0, = 84 MPa,
Qi = 6400 MPa, Q, = 270 MPa, b=25.

VI. Time-independent Chaboche and Rousselier nonlinear
plasticity-isotropic/kinematic hardening (PIKH) theory

For time-independent plasticity the current HMH yield surface transforms
according to the following rule:

FCh—R

Jo(o—X)—-R—-k=0, (2.17a)
(3/2) (&' = X'): (&' =X,  (2.17b)

Il

Jz (cr —X)

where tensor X is a translation tensor, or a back stress tensor, that repre-
sents the current position of the yield surface (kinematic hardening effect),
and scalar R, also called the drug stress, represents the size of the yield
surface (isotropic hardening effect). The translation tensor X and the drug
stress R satisfy the evolution laws:

dX
dR

%C (p) de? — v (p) Xdp, (2.18a)
b(Q@—R)dp or R=Q[l—exp(—bp)]. (2.18b)

The nonlinear kinematic hardening rule (2.18a), in which the functions
C (p) and 7 (p) depend on the scalar isotropic variable called the cumula-
tive plastic strain, dp = [(2/3) deP:deP]l/ 2. is due to Armstrong and Fred-
erick (1966). The isotropic hardening rule (2.18b) allows for an asymptotic
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stabilization of the yield surface size when p tends to infinity (necessary for
cyclic plasticity behavior). The normality rule associated with the current
yield surface (2.17) is used to determine the plastic strain rate deP with
the consistency condition applied to eliminate the scalar multiplier dA:

DOFR 3, =X

P = —d\ .
de o A (2.19a)
oF oF OF
dFCh-R = 4o+ -—dX+ —dR=0. 2.19b
F 907 T ax " " or (2.190)

Finally, the following equation is furnished

<3(a’—X’) :d0'> o' - X
deP

_\2 K(e-X) / J(c-X)
€ B x:(a'—x')+b(Q o (2:20)
T3 (e —X) -B)

where the McAuley bracket (.) is defined as: (z) = 0if 2 < 0, (z) = z if
z > 0. When the indices notation is used instead of the absolute one we
rewrite Eqgs. (2.17)—(2.20) as follows (cf. Skrzypek, 1993):

FCh-R — Oeq (Uij — Otij) —R-k=0,

dai]- = %C ()\) dEI.;j - ()\) aijdA,

dR=0b(Q — R)d),

Ch—-R . —
B e I ) W k- B (2.21)
J 80'“' 2 Ueq (Uij - a,;]‘)

1/3 si—oy >
= (22T g5,
h<20eq(3ij—%') N

h=C 370..M+b@ R)
2 Y 0o (045 — aig) '

In the uniaxial tension/compression case Egs. (2.21) reduce to the form:
F = la—a|~R—k=0,

da = CdeP — ya |deP|,
dR=b(Q — R) |de?|,

)

wrol(3o=a,\o—a d (222
h \2lo—al lo—a| A

h=C—~asign(c —a)+b(Q - R).
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2.2.2 Single state variable creep-damage models

In the simplest case, when the isotropic damage evolution affects only the
tertiary creep phase and the primary creep phase is ignored, the creep
strain-damage coupling may be established when a single scalar damage
variable D (or w) is introduced to the creep constitutive equation of a
nondamaged material, and the evolution law for damage is legislated (cf.
Kachanov, 1958; Rabotnov, 1969; Hayhurst, 1972, and others).

I. One-parameter uniaxial creep-damage coupling models

This approach was first proposed by Kachanov (1958) and generalized by
Rabotnov (1968, 1969) (cf. Rides et al., 1989):

& _(afao\"
o \l-w)’

w _ (9/00)"
(/:)0 (1—w)‘p’

(2.23)

where &g, n and wy, v, @ stand for the temperature dependent material con-
stants in the creep law and the damage growth rule, respectively, whereas
0o is the reference stress. Integration of the equations (2.23) (coupled by
the state variable w) at the constant stress, ¢ = const, and the initial con-
dition for the damage w and the creep strain €, t = 0 : w = & = 0,
yields:

(2.24)

where A = (14+ ¢ —n)/(1+ ¢), whereas symbols ¢; and &; denote the
time to failure (w = 1) and the creep strain at failure, respectively:

¢ = _(00/0)" _ éo(0/00)" " &te
f

P el 7t = = . 2.25
(1+@)wo’ °t wo (1+¢—mn) A (2.25)

€ss = €0 (0/00)" stands here for a steady-state or a minimum creep rate
(no damage effect included).

For the pure copper specimens subject to constant stress tests at temper-
ature 300°C, when the stress 0 = 32.4 MPa was used to give a failure time
of the order of 15 days, Rides et al. (1989) obtained: n = 6.56, v = 6.31,
@ =7.1,00 =300 MPa; and &g = 11x107%h !, o = 6.68 x 10"*h~1(A) or
€0 =2.54x10"%h"1, Wy = 2.74 x 10“4hﬁ1(B); however, the model is often
simplified by setting ¢ = v. Note that the second of Egs. (2.24) describes
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Fig. 2.6. Normalized creep strain versus normalized time for copper tested at
300°C (after Rides et al., 1989)

the growth of creep strain rate with time due to the damage evolution in
the tertiary creep, the magnitude of which tends to infinity when the time
to failure is reached (Fig. 2.6).

The uniaxial damage growth rule (2.23) may also be presented in an
equivalent form when Kachanov’s 1958, or Chaboche’s 1988, notation is
used

¥ _ (2) (2.26a)

at b
D - _
% = (%) (1- D)%, (2.26b)

where ¥ and D = w denote the continuity and the damage, respectively, if
¥ + D = 1 holds. The so-called life fraction rule, however, was established
earlier by Robinson (1952) for steel:

bR dt 1
L mmt O GemmEEr e

which is applicable for an arbitrarily prescribed tensile stress function
g1 (t)
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A generalization of Kachanov’s concept of damage evolution, where the
initial damage level is set at wy = 0, to the case when both time-independent
(instantaneous) and time-dependent (creep) material deterioration are taken
into account, is due to Chrzanowski and Made;j (1980) (cf. also Chrzanowski
et al., 1991; Bodnar et al., 1994). If the notation of the simple model de-
scribed by Eqgs. (2.23) is used, the following uniaxial rule is furnished:

@ _ylolo™ (i) 1 dofoo)” (2.28)
wo (14 w)¥° \ oo (1-w)?¥

Material constants wo, 09, Vo, ¥y, v, ¢ and X describe the combined damage
mechanisms where the instantaneous damage state (first term) plays a role
of the initial condition for the subsequent damage evolution (second term).
Hence, the integration of (2.28) for the constant stress 0 = o1 H (t) twice,
first at t = 0 and next at ¢ > 0, yields

s

where the symbols t; (o) or tg (0) denote the failure time versus stress in
case of the instantaneous damage neglected (x = 0) or taken into account,
respectively (tg < tr):

1
(1+ ) wo(/a0)””

wor[-(5) ] o

and o stands for the instantaneous failure stress such that at t = 0, wg = 1

1+I/0 ﬁ}%
of= |/—mm—m—— ag. 2.31
[(1+‘P0)Xw0] ’ (23

Note that by setting x = 0 the failure stress oy tends to infinity, since (2.29)
is reduced to (2.24) when tg = t;. A family of damage parameters w versus
dimensionless time t/t¢ plots is sketched in Fig.2.7.

The corresponding failure times at which w =1 are tg/t; = 1, 1/2, 1/3,
1/5, 1/10; whereas the initial damage increase with the failure time drop
is wo = 0, 0.159, 0.240, 0.331, 0.438.

The experimental observations on metallic materials by Hayhurst et al.
(1975, 1989), Othman and Hayhurst (1990), and others have shown differ-
ent shapes of the normalized creep curves €°/e¢ = f (t/tr) when aluminum
alloy, copper, and stainless steel specimens were tested to failure at tem-
peratures 210°C, 250°C, and 550°C, respectively (Fig. 2.8).

In contrast to copper and aluminum alloy, where the primary creep is
negligible and the tertiary creep predominates, in the case of stainless steel

te (0) =

(2.30)
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Fig. 2.7. A family of damage versus time plots (2.29) for various ratios
te/te = 1,2,3,5, 10 obtained by setting ¢ =3

a) b)
€l Experiments Failure Predictions
- —— = - —
09} 09
08}  Stainless 08 |
Steel
0.7} J 07 !
ya l
06} | osr [
05 I osf |
04} : 04} }
Aluminium |
03f Alloy } 03 }
02} 77 P | 02} 1
01f =~ Copper | 01} [
1 1 1 i i I i L 1 } L ) il e L L 1 A l
0 01 020304050607080910 0 0.1 0203040506070809 10
1t, t/t
i i

Fig. 2.8. Comparison of the normalized creep curves for different materials: a)
experimental: pure copper, aluminum alloy and stainless streel, b) modelling by
the formulas (2.29) for A = 0.35 versus the parameter m (based on Othman and
Hayhurst, 1990)



36 2. Effect of isotropic damage evolution on (visco)plasticity

the primary creep manifests strongly, whereas the tertiary creep section
is of less importance. Taking the above described creep response of 316
stainless steel tested at elevated temperatures 210°C, 250°C, and 550°C
Othman and Hayhurst (1990) suggest including the primary creep as well
as the tertiary creep as follows:

_éj _ 0/00 ntm
& \l-w ’
9 _ (0/00)" m
d)o - (1 - w)"’ ’

(2.32)

where the decaying time function ¢™ (m < 0) accounts for the primary
creep effect. Integration of (2.32) at constant stress, 0 = const, furnishes
the following formulas generalizing (2.24):

1
m+1| 1+e¢
w=1— l:l - (E) ] ,
te

(2.33)

where A is defined in a similar fashion as in (2.24), whereas the time to
failure t; and the creep strain at failure e¢ are:

_[@+m)(o0/0) ) _ é(ofoo)
tf‘[ (1 + @) wo ] ’ P o(lto—n) (2:39)

II. One-parameter creep-damage models under multiaxial stress conditions

Multiaxial stress generalization of the one-parameter creep-damage mod-
els (2.23) and (2.32) consists in the experimentally obtained isochronous
rupture surfaces when the metallic materials are tested to failure (rupture)
under combined stress conditions (cf. Johnson et al., 1956, 1962; Hayhurst,
1972; Trapczyhski, 1981; Kowalewski et al., 1991a, 1991b, 1994a, 1994b,
1995, 1996a, 1996b, 1996¢). According to Johnson et al. (1956), aluminum
alloy and pure copper represent two extreme material behaviors with re-
gard to the isochronous rupture surface shape. Roughly, the microcracking
in copper appears to be controlled by the principal stress, but in the alu-
minum alloy to be controlled by the Mises equivalent stress. For a variety
of metallic materials (steels, alloy steels, etc.) the isochronous surfaces lie
somewhere between these two cases (Fig.2.9).

The above observation suggests the following generalization of the uni-
axial damage growth rules (2.26b) (cf. Chaboche, 1988):
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Fig. 2.9. Plane stress isochronous rupture curves for various metallic materi-
als: a) pure copper, b) aluminum, c) nickel/chrome alloy, low alloy steels (after
Lemaitre and Chaboche, 1985)

where the scalar function x (&), also called the damage equivalent stress, is
represented as the three-parameter function of the stress invariants (Hay-
hurst, 1972)

x(o) = aldo (o) +36J1 (o) + (1 - a—B) J2 (o) (2.36a)

or

X (o) = aoy + 3boy + cOq, (2.36b)

when Lemaitre and Chaboche’s (a) or Boyle and Spence’s (b) representa-
tion is used (a + b+ c = 1) and the following definitions hold:
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Jo () = maxo, =0y,

Ji(o)=ou=(1/3)Tr (o), s
= ey = [(3/2)’1} (o]

= [er/2)m ()] v

(2.37)

For two particular cases, § = 0 (cf. Sdobyrev, 1959) and a = 0 (cf.
Lemaitre and Chaboche, 1985), (2.36a, 2.36b) reduce to the simplified two-
parameters forms

B=0: X(a)=501+(1—5)06q, (2.38a)
a=0: x(o)=Bh(o)+(1-06) (o). (2.38b)

The multiaxial scalar creep-damage coupling with the primary creep ig-
nored, that generalizes the uniaxial model (2.23) is due to Leckie and Hay-
hurst, 1974

é;':j_ 1 8Q”+1(0k1/00) 1

& _n+1 8(0ij/oo) (1—0.))",

(2.39)
w _ x"(gi/00)

d)o (l—w)sa ’

where Q (0ki/00) = Oeq (0k1/00) is a convex homogeneous potential func-
tion of degree 1 in stress, and x (0ij/00) is a properly defined damage
equivalent stress determined by the isochronous rupture surface (2.36a,
2.36b). When the primary creep effect as well as the tertiary creep is taken
into account, (2.39) may be extended as follows (cf. Othman and Hayhurst,
1990):

&5 1 8™ (o/o0) f(2)

€0 Tn+1 a(Uij/Uo) (1—-(4.))"“

= X (95/00) F (t)
(I-w?®

(2.40)
w
wo

A representation of a decaying time function f (t), responsible for primary
creep, is established to best fit the test data. In cases when the damage
evolution is controlled by Mises-type equivalent stress, and the Mises-type
creep potential function is used, (2.39) and (2.40) reduce in the following
fashion (cf. Kowalewski et al., 1994a, b):
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o 3, Ve
Eij=§A(1_ )nsz‘j:
] (2.41)
o
— eq
w B(l—w)‘p
and
e 3, 0!
€ij 92 (1_q )nsijt )
(2.42)
UV
o= B eq tm
TR LA

where the following values of the material constants obtained for aluminum
alloy tested at 150°C are: A = 3.511 x 10729(MPa)~"/h™+1; B = 1.960 x
10~ B(MPa)~"/h™*1; n = 11.034; v = 8.220; ¢ = 12.107; m = —0.3099;
E =711 x 10°> MPa.

A generalization of (2.28) to the multiaxial stress conditions can also be
made as follows (cf. Bodnar et al., 1994):

dw Oeq, \"° d0eq, Oeq, \”
dt _Bo(l—w) a TP\i=s) (243)

where the different damage equivalent stresses Oeq, and Oeq, can be re-
garded as responsible for various time-independent and time-dependent
damage mechanisms. When the two-parameter formula (2.38a) is used for
copper, one may insert, e.g.,, § = 0 and § = 1, respectively, since the
instantaneous damage mechanism is usually controlled by effective stress
(slipbands), whereas the time-dependent microcracking may roughly be
considered ascontrolled by maximum principal stress.

2.2.8 Two state variables mechanisms-based damage models

1. Two-parameter multiaxial hyperbolic sinus models for nickel and
aluminum-based alloys

Othman et al. (1993) developed the mechanisms-based two state variables
model in order to describe nickel-based superalloys where two physical
mechanisms that operate together are included: dislocation softening (age-
ing) wy (0 <w; <1) and creep constrained cavity nucleation and growth
on the grain boundaries wg (0 < wy < 0.3). A sinh function of stress, rather
than the traditionally used power law (cf. Sect. 2.2.1), is best able to rep-
resent the strain rate:
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dej; 3 A sinh{Bo[l—H(t)]} [ s

@ T 2w (l-w) {o_}

dH _ h A sinh{Bon[l-H@} [ H()

A o (I-w)”  (I-w) {‘ T
44

dwl _ (1—(4)1 .

F = CAmﬂnh{BUeq[l—H(t)]},

dws DA ( o1 )" Nsinh {Boeq [l — H (t)]}

E Oeq (]- _wl)(l_w2)n ’

where A, B, C, D, H*, h and v are material parameters and n = Boeq [1—
H (t)] coth {Boeq [1 — H (t)]}. The primary creep effect is included in (2.44)
through the additional variable H (t) that changes from 0 to H* (satura-
tion) at the beginning and the end of primary phase, respectively; secondary
creep is characterized by constants A and B, whereas the damage evolution
in tertiary creep depends on constants C and D. Parameter N characterizes
the state of loading, N =1 for 63 > 0 and N = 0 for o7 < 0. Kowalewski et
al. (1994a, b) checked the suitability of this model for predicting the tertiary
creep response of aluminum alloy at 150°C to obtain: A = 2.96 x 10~ 11h~1;
B =17.17 x 107%(MPa)~'; C = 385; D = 6.63; h = 1.37 x 10° MPa; v = 0.

I1. Two state variables model versus stress state index

Dyson (1993) proposed a similar two state variables model based on a new
mechanism of creep in particle-hardened alloy. The multiaxial generaliza-
tion follows from the associated flow rule and the energy dissipation rate
potential (cf. Kowalewski et al., 1994a) of nondamaged material as follows

deg; ov 3 s A
= = —A"" sinh (B0ey); =— . .
& " G0y 2o sinh (Boeq) ; v B cosh (BOeq) (2.45)

Hence, when the two state variables w; and wsy are introduced to model
the tertiary creep softening due to dislocation mobility ageing w; and grain
boundary cavitation wy, whereas the additional state variable H stands for
the primary creep effect, we obtain:
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defj _ 3_ 4 (sij>sinh{——BgeQ(1-’H)}
dt 2(1—w2)" \Oeq (1-w) ,
b A {Boka(= [ B
dt O (I—w))" nh{ (=) }{1 } (2.46a)
dwy _ DA 91 Y si M
T - (=w)” (aeq) th{ 1-w) }
and
_ Bow(l=H) . [Bow(l-H)
T (- th{ (1—w) } (2400

For aluminum alloy, six material constants that identify (2.46a, 2.46b) are
obtained (cf. Kowalewski et al., 1994a): A = 2.960x 10-1'h~1; B = 7.167 x
10-2(MPa)~1; h = 1.370x 105 MPa; H* = 0.2032; K, = 19.310 x 10~5h~1;
D = 6.630.

For multiaxial rupture the constant v, also called the stress state index,
characterizes different types of stress state sensitive rupture behavior of the
material considered. For example, in the case of aluminum alloy, where the
damage evolution is nearly equivalent stress controlled (see Fig. 2.9), we
may set v = 0. However, for other metals the magnitude of v should be
found experimentally, Fig. 2.10.

A comparison of the two-parameter model (2.46a, 2.46b) with the one-
parameter model (2.41) made by Altenbach et al. (1997) by setting v =0
shows a satisfactory coincidence on the primary creep only and, as a conse-
quence, the one-parameter model yields an unacceptable underestimation
of the failure time in plates. On the other hand, examination of the ef-
fect of the stress state index v on the lifetime prediction and the failure
mechanisms in clamped square plates under uniform pressure, done by the
authors, proved the significance of the proper estimation of v, as well as its
influence on the lifetime and the failure mode of the plate.

2.2.4 Creep-cyclic plasticity damage interaction model
for copper

Dunne and Hayhurst )1992a, b, 1994) developed a model based on two
physical mechanisms of damage in copper validated for creep, cyclic plas-
ticity, and creep-plasticity interaction under cyclic mechanical and cyclic
thermal loading at high (500°C) and room (20°C) temperatures. The inter-
nal variable X models the kinematic hardening in cyclic creep-plasticity,
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Fig. 2.10. Isochronous rupture loci for biaxial stress state versus the stress sen-
sitivity index v (after Kowalewski et al., 1994a)

and D is a scalar variable that accounts for a combined grain boundary
time-dependent cavitation damage predominantly due in copper to princi-
pal stress controlled high temperature creep damage and the transgranular
slip bands formation predominantly due to the cyclic plasticity mechanism
controlled by low temperature effective stress (cf. Sect. 2.1.2 and Figs.2.1
and 2.2). The creep-cyclic plasticity damage interaction is given by

D°® = wy + 12 (wy) wa,

DP = wy + agz (wy) wy,

D = D¢+ Dp (2.46)

1 1
z(wl) = 5 + ;arctan,u(wl —(AJ()) s

where a4, ag, f1, wo are experimentally determined for copper (cf. Dunne
and Hayhurst, 1992a), whereas w; and wg are the creep damage and the
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cyclic plasticity damage per cycle, respectively, which are controlled by the
independent damage evolutions

Sk = Alfor+(1- )0 /(1 - D,
dw e A B (2.47)
o= - 0= [

where Ay is the maximum effective stress range in a cycle, g is defined
in terms of A;;, M is a function of the mean stress, and § is a con-
stant. Eventually, the creep cyclic plasticity kinematic hardening model
with damage evolution included (CPKHD) is furnished (extension of the
Chaboche-Rousselier theory, Egs. 2.14a, 2.14b, 2.14c)

o 3/ h(@—X)/(1-D)—0,\" o -X
€ ‘§< K > Jo (o —X)’

Xi = 3Cié* (1- D)~ Xup+ (C1/C) X,

' 207, ; . ’ . (2.48)
Xy = 2CyeP (1 - D) — 7, Xap + (02/02) X, T,

X =X; + X,
o=E(1-D)(e—eP—¢T),

where p is the cumulative plastic strain and J (o — X) is the effective
stress given by

'=(§ép:ép)l/2, J2=[g(a'—x’):(a’—x‘)]l/z. (2.49)

Symbols K, oy, n, C1, Ca, 774, Y9, E are temperature dependent material
constants for copper (cf. Dunne and Hayhurst, 1992a, 1992b) as shown in
Table 2.2, Ci and Cé are derivatives of Cjand Cy with respect to temper-
ature T, and €T is the thermal strain given by T = oT1.
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Table 2.2. Viscoplasticity material parameters for copper (after Dunne and Hay-
hurst, 1992a)

Temp. | C; Cy T Y2 K
T [°C) [MPa)
20 | 54041 | 721 | 962 | 1.1 4.5
50 | 52880 | 700 | 1000 | 1.1 4.5
150 | 45760 | 600 | 1100 | 1.1 45
250 | 38040 | 400 | 1300 | 10.0 | 35.0
500 | 28952 | 300 | 1700 | 35.0 | 20.1

Temp. n E oy
T [°C] [MPa] [MPa]
0.3% [ 0.6% | 1.0%
20 2.814 | 96890 | 45 58 68
50 3.227 | 92106 | 38 60 70
150 534 | 89583 | 33 52 78
250 9.735 | 79762 | 13 33 45
500 7.378 | 63991 4 13 21

2.3 Unified thermodynamic formulation of
the coupled isotropic damage-thermo-
elastic (visco)plasticity

2.3.1 Kinetic law of damage evolution
1. Concept of the elastic strain energy density release rate Y®©

Chaboche (1976) developed a concept of the elastic strain energy release
following the isotropic damage accumulation in a material, based on the
effective stress using the hypothesis of strain equivalence (Sect. 1.4.1). It
is based on the observation that for ductile materials continuous isotropic
damage may be represented by a single scalar variable D the evolution of
which is governed by the variation of the elastic strain energy d®°/dD. In
other words, in this simplified approach the variable Y* associated with
the isotropic damage internal variable D contains the contribution of the
elastic (reversible) energy only, whereas the inelastic (irreversible) stored
energy associated with the strain hardening (isotropic and kinematic) is
not released by the initiation and growth of damage.

Assuming small strain theory, the total strain may be written as a sum
of the elastic and the inelastic part € = €°® + €*". For elastic strain the
anisotropic elasticity law coupled with isotropic damage is assumed

0ij = Bijuey (1- D). (2.50)
Hence, applying (2.50) the elastic strain energy density is furnished:
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1
¢ = /Jijdsfj = /Eijkleiz (1 - D) dE?j = §Eijkl5$j€il (1 - D) . (2.51)

When the constant stress condition is used,

doij = Eijr [(1 - D) deg, — €%,dD] = 0, (2.52)

a variation of the elastic strain energy due to the continuous damage growth
is represented by

dD

do® = O'ijdEfj = O’,;jé‘?jl—_—D—. (253)

Eventually, applying (2.50) and (2.51), the variable Y® associated with the
internal (scalar) variable D is defined as follows

o def 1d®e __10«;]'5?]' '—‘lE" et — e
~ 2dD| T921-Dp o WMMTRT T

Tij =const

(2.54)

In general, a model based on the anisotropic elasticity coupled with the
isotropic damage is not consistent. So, confining ourselves to the isotropic
elasticity law

e _1+I/ Oij V Okk

T E 1-D E1-D

and introducing the decomposition to deviatoric and hydrostatic terms

0ij (2.55)

Oij = Sij +UH5,,;J', Efj = efj + 6%5“-, (2.56)

the shape and volume change law coupled with damage is established:

_1-2v oy

e_1+I/ Sij e

%="F 1D ST F 1-D (2.57)
as well as the corresponding shear and hydrostatic energy portions:
®) am 1 [1+v s 8 1-2v o?
P = P° ¢ = U043 H .
+ 2 [ E 1-D + E 1-D (2:58)
or, equivalently,
o? 2 OH 2
=" _ = 3(1-2 2.59
E(1-D) |31+ ”)(aeq> ’ (2:59)

where 0.q is used for the classical Mises-type equivalent stress oeq =
[(3/2) s,-jsij]l/z. Substitution of (2.59) for ®° in (2.54) yields the follow-
ing formula for the elastic strain energy release rate (thermodynamic force



46 2. Effect of isotropic damage evolution on (visco)plasticity

Y® associated with the isotropic damage represented by a scalar variable

D):

~2 2
e = Je =2 _oy () = e
Y ——2ER,,, R,,_3(1+1/)+3(1 2v) o) 0 =1—p
(2.60)

Note that in case of three-dimensional stress state the force Y*© associated
with the isotropic damage variable D is mainly influenced by the stress
triaxiality ratio 0y/0eq. In the 1D case, the stress triaxiality ratio is equal
to (01/0eq)'" = 1/3, whereas (R,)'® = 1, and it increases with the hy-
drostatic stress growth, as does the damage rate D. At variance with the
classical Mises-type equivalent stress 0.q and the corresponding effective
equivalent stress Teq = 0eq/ (1 — D) the damage equivalent stress ol is
furnished by equating the elastic strain energy in the 3D state ®° (o) with
the equivalent 1D state ¢ (ogq)

UD2
3° (o0,) = %, ®° (o) =Y*(1-D) (2.61)

to obtain, in view of (2.60), the formula that differs from the Mises-type
. . 1/2
Oeq in the function R,

o = 0eqRY/*. (2.62)

For example, if plane stress is assumed, the following holds:

2 2 1/2
Oeq = [03 + 05 —0109] "7,
1/2

(01 +02)2 (2.63)

Oecq-
e 0% 4+ 0% — 0109 1

2
O'qu §(1+1/)+3(1—21/)

II. Time-independent plasticity coupled with isotropic damage
(Chaboche, 1988)

Chaboche (1988) introduced the coupled dissipative potential by an exten-
sion of the Chaboche-Rousselier nonlinear isotropic/kinematic hardening
theory (2.17) to yield:

,X,R,D) = {(&,X,R) + F° (Y°)
=J(@E-X)- ay+FD(Ye)
3
2

» ol 1/2
s [ x) ()

and the generalized normality rule (associative theory)

(2.64)
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.aFCh 'aFCh ~8F0h . _aFCh
=P = X =~ = —A——, D=-)\
FEAGe e T R’ aye "’

(2.65)

where f (6, X, R) = J3 (¢ — X)—R—o0, = 0 is a Mises-type partly coupled
yield function and o is the initial yield stress under uniaxial tension test
(for a more general fully coupled case see Sect. 2.3.4(1I)).

The following couples of the external (observable) state variables (e, o)
and the internal state variables (a,X), (7, R), (D,Y®) are introduced to
represent kinematic hardening, isotropic hardening, and isotropic damage.
Note that the mechanical behavior of the damaged solid is derived from
the same dissipation potential as a virgin undamaged solid, where the state
stress variable & is replaced by the effective stress variable & = o/ (1 — D)
and the additional term FP (Y*®) describes the damage evolution. This
approach, based on the strain equivalence, ignores the damage effect on the
release of inelastic stored energy so that the potential function for damage
evolution depends only on the elastic energy release rate FP = FP (Ye)
and variables associated with strain hardening are not affected by damage
(the effective state variable X and R are not built into the model).

When the generalized normality rule (2.65) is applied together with the
dissipative potential (2.64) the following state equations are furnished:

. ~1 . ~
w3 A Xy 3 0= X,

3 o - X
Gij = sA—2—~ = b (1~ D),
720 T (04 — Xij) i ) (2.66)
F=A=p(1-D),
: . OFP (ve OFP (Y
p=-32E 00 O 0, _p),

oYe oYye
where p denotes the cumulative plastic strain p = [(2/ 3) é‘i’jé%]l/ 2, and

X = A/ (1 — D), whereas third of the Eqgs. (2.66) is obtained by a scalar
multiplication of the first Eq. (2.66)

2 (et — . 2
e - (3) i — Xy ) (i = Xi5) (A (2.67)
I 2 JZ (Uij-—Xij) 1-D

when appropriate definitions of p and Jy hold. The effective formula for
damage evolution depends on the representation of the damage potential
function FP. If, following Lemaitre and Chaboche (1985), it is assumed as
a square function of the elastic strain energy release rate Y° (2.60),
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(v)?
25(1-D)

(Y*)*

FP =~ 7 _
o 2S(1- D)

FP = H(p-pp), (2:68)
then the classical kinetic law of damage evolution is furnished (cf. Lemaitre

and Chaboche, 1985):

.QFP  Y* 0% R,

D=-A—e="Fp=—-3" _5 2.69
ave = 8" 2Es(1-D)" (269)

If, on the other hand, the damage potential function is assumed as a power
function of Y®, then the generalized kinetic law of damage evolution is
established (cf. Germain, Nguyen and Suquet, 1983; Dufailly and Lemaitre,
1995)

. Ye\? o2 R °
o= (5) it o
S 2ES (1 - D)

S, s are temperature dependent material parameters and R, (0u/0eq) is
given by (2.60). Equations (2.69) or (2.71) constitute the damage evolution
in the frame of the kinetic law of damage based on the assumption that
continuous damage manifests itself as elastic energy release, whereas the
inelastic energy associated with strain hardening is not released by the
damage initiation and growth. In general, this is not true, and a more
extended theory based on the total energy release with damage can be
developed (cf., e.g., Saanouni, Forster and Ben Hatira, 1994).

p. (2.71)

2.3.2  Application of the kinetic law of damage to plasticity,
creep, and damage

1. Particular cases of the kinetic law of damage model of ductile materials

Equations (2.69) and (2.71) govern isotropic damage evolution in ductile
] 1/2

materials, as influenced by the cumulative plastic strain p = [(2 /3) e el T,

1, 7
stress state represented by the stress triaxiality function R, = R, (UIJ_I / é’eq),
and the effective equivalent stress Geq=0.q/ (1 — D) as a function of the
cumulative strain Geq (p). These constitutive equations of damage hold for
any loading path along which the stress triaxiality ratio oy/0eq changes,
whereas in case of proportional loadings the stress triaxiality ratio can be
considered as a constant with respect to time oy/0eq = const. Assum-
ing the Ramberg-Osgood isotropic power hardening function for damage
material (cf. Lemaitre and Chaboche, 1985),
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Foq= 15 = 00", (2.72)
the damage evolution equations (2.69) or (2.71) are reduced as follows (cf.
Lemaitre, 1985; Dufailly-Lemaitre, 1995):

ag

ap= % g, (98 pong (2.73)
T 2ES V" \ 0eq pep '

022: ’ OH ’ 2sn
dD—(ZES) [Ru (Zq—)} p"dp. (2.74)

Equations (2.73) or (2.74) represent the ductile damage as the isotropic
scalar variable D dependent on the cumulative plastic strain p, the stress
triaxiality ratio oH/0eq, and the isotropic strain hardening exponent of the
material n. Note that S, s and K, n are temperature dependent material
constants (substitution s = 1 reduces (2.74) to the classical form (2.73)),
whereas the stress triaxiality ratio 0y /0eq, Which changes for a nonpropor-
tional loading, characterizes the stress state, and oy/0eq = 1/3 in the 1D
case. In other words, according to this model, the ductile damage, as caused
by the mechanisms of microvoid nucleation, growth, and coalescence, is a
plastic strain controlled mechanism with py and p. (or g9 and &) cor-
responding to the initial damage Dy and the threshold damage at failure
De;.

Material constants in (2.73) or (2.74) are determined by the one-dimensional
load test at which the following holds:

ou _ 1 RV(UH)zl, p=c. (2.75)

)
Oeq 3 Ocq

Integration of (2.74) for the one-dimensional case, from the initial (g, Do)
to failure (ecr, Der) conditions, with (2.75) taken into account, yields the
equation

or

1 o2 \*
Du=Do+ gy (585) 37 - @
that determines the critical damage D, in terms of the temperature depen-
dent material constants K, n, S, s and the 1D strains at initial damage and
the threshold damage at failure, €9 and e.,. Hence, integration of (2.74),
with the simplifying assumption that the triaxiality ratio does not change in
a loading process (which generally is not true) furnishes damage evolution
with the cumulative plastic strain p:

D:Dcr_

D DO OH $

cr T 2 2

et —zmert (P P [Ru (0 )] o)
cr 0 eq
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However, in the general case the stress triaxiality ratio oy/ Oeq Changes
with p, hence elimination of (02/2ES)from (2.76) and (2.74) leads to the
general damage evolution equation applicable for any loading path:

Dcr - DO OH ¢ 2
dD=(2ns+1) vy |Bv | — ™ dp, 2.78
(2ns +1) (eZpsF1 — gZnet) [ (aeq)] pdp (2.78)

which holds together with the formula (2.76). ‘ .
In a particular case when strain hardening is saturated, X =0, R =0,

Tea  _ s, (2.79)

f=0q—0s=0 or T— D

the strain density release rate approximation of (2.60) is obtained,

Ye — 0’? RV

s ﬁ: (2‘80)

and the corresponding generalized kinetic law of damage evolution (2.71)
reduces to the simplified form

~ Yo\’ 2R\’
D=(=])p=(=2) p 2.81
( S ) p (2 ES) P (2.81)
Integration of (2.81) for the one-dimensional case, from the initial (o, Do)
to failure (e, D;r) conditions, yields

02 s
D.. = D, S - .
cr o + <2ES) (ecr E0) ) (2 82)

whereas for the three-dimensional case and constant R, the linear damage
growth with p holds:

De—D = (2‘_55)5 [Ry (;":)] (e —1) (2.83)

or

D=Dy—Pe=Dog, [R,, (Z_Hﬂ N (2.84)

Eer — €0 eq
It is easily seen that (2.83) and (2.84) describing the damage evolution for
hardening saturation follow from the general damage evolution for harden-

ing material (2.76) and (2.77), as an approximate case when the hardening
exponent in (2.72) equals zero n = 0.
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II. Creep damage of metals and polymers

In a particular case of creep damage, Benallal’s equation may be employed
(cf. Benallal, 1985),

. )'\VP f -n
together with the classical Lemaitre-Chaboche kinetic law of damage evo-
lution (2.69):

Py Gl ) (2.86)
= SP=msao ot e -

where, according to Chaboche (1988), a Mises-type partly coupled yield
function is assumed,

(@ X,R)=J,(G-X)-R—0y, (2.87)

and the Heaviside function H (p —po) is introduced to account for the
initial damage at p = po. In a simplified case, when Norton’s creep law is
applied the viscoplastic multiplier is reduced to (cf. Lemaitre, 1992)

p= 1X—VPD - [K,, (?i D)}N (2.88)

with K, and N denoting the temperature dependent material parameters.
Hence, by combining (2.86) with (2.88) the following damage evolution
equations may be obtained:

. 0.N+2R
D= S
2ESKYN (1 - D)N+?

Note that in the one-dimensional case, with the new parameter Aandr =k
introduced, Kachanov’s classical equation (2.26) is recovered:

(3D) H (p—po) (2.89)

) N+2
(ID) D= [m] H (¢ - &) (2.90)
if
A= (2ESKM)™7 and r=N+2. (2.91)

Integration of (2.90) at constant uniaxial stress o = const, from the time
of initial damage to (at € = g9, D = Dp) to current time ¢, yields

1

D(t)=1-|(1—Do)"** - (N +3) (%)Nw(t—to)} T ew)
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whereas, if for the initial (y) and the critical (tgr) damage states Dy = 0
and D, = 1 hold, time to rupture {R is expressed as

-N
o 1 o\~ (N+2)
tr = €0 (?) vy (2.93)

where, in view of (2.88), with D = 0 time of initial damage ¢o has been
eliminated, to = &g (0/ Kv)‘N. Again, integration of (2.88) for the 1D case,
p = €"P, 0eq = 0 =const, with D (t) given by (2.92) and Dy = 0, determines
the viscoplastic strain evolution with time t > ty (cf. Lemaitre, 1992):

oty (Kiv)_N {1— [1—(N+3)
R G

In the case of high temperature isotropic tertiary creep damage, Zhang and
Lee (1993) developed the new constitutive law in the form

(2.94)

% =Ge (t—t) "(1—-D)". (2.95)
If the following relationships hold:
. Q'
s=m/n, r=1, &, =A;0"exp (—ﬁ> , (2.96)

an extension of the Kachanov-type uniaxial damage evolution by the ex-
plicit absolute temperature function is recovered:

ab . Q -n
When the three-dimensional stress state is considered, the following holds:
dD D\" Q -n
(3D) — =4 (00,) exp (— RT) (L-D)™", (2.98)

where o0, stands for the damage equivalent stress (2.62)

1/2
9 2
oo = OeqRY? = 0eq [5 (1+v)+3(1-2v) <U—H> ] . (2.99)

Oeq
In the above equations, t, is the initiation time of tertiary creep, n, G,
s, r, A= G’AT/ ™ are material constants, and Q = Q'™ is the activation
energy. Integration of (2.98) for variable damage equivalent stress furnishes
damage evolution with time ¢ > t,:
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D(t)=1- {1 - (n+1)/: [0, (7)]™ Aexp (-%,) dT}#ﬁ . (2.100)

II1. Fatigue damage

The kinetic law of damage evolution (2.69), or its generalized represen-
tation (2.71), may successfully be applied to the coupled fatigue-damage
behavior. A particular form of the constitutive law of damage evolution
applicable to this phenomenon depends on the cycles to failure range. A
useful classification is due to Dufailly and Lemaitre (1995) (Table 2.3).

Table 2.3. Fatigue classification (after Dufailly and Lemaitre, 1995)

Number of Stress Strain Energy
cycles range ratio ration
to failure AeP/Ae | AWP/AW®
High cycle > 10° <oy ~( ~(
fatigue HCF
Low cycle 10%-10% Oy Oy 1-10 1-10
fatigue LCF
Very low cycle 1-10 close to o, 1-100 1-100
fatigue VLCF

In the above classification the following nomenclature has been used: o,
is the yield stress, 0, the ultimate stress, AeP the plastic strain amplitude,
Ae® the elastic strain amplitude, AWP the (visco)plastic (dissipative) en-
ergy per cycle, and AW® the elastic (reversible) energy per cycle.

In case of high cycle fatigue (HCF), the average stress level on the
macroscale should remain below the yield stress o < oy, such that very
small plastic strain manifests only around the microscopic defects, hence,
in consequence, the dissipative energy AWP can be disregarded when com-
pared to the elastic strain energy AW®. Damage in HCF tests is a strongly
localized phenomenon with high stress and damage concentration, so the
classical CDM method, based on the effective quasicontinuum concept of
microdefects and the stress field homogenization method in RVE, should
rather be replaced by a two-scale nonlocal mechanical model in which the
size of the weak microplastic and damage zones is much smaller than the
size of a specimen made of the elastic matrix and, hence, a direct correla-
tion between the weak inclusions should be incorporated to the model. A
number of cycles to HCF failure is assumed to be as large as 10°.

In contrast to HCF, in the case of low cycle fatigue (LCF) the stress level
is larger than the yield stress o > oy, such that the continuum damage de-
velops together with the cyclic plastic strain after the incubation period



54 2. Effect of isotropic damage evolution on (visco)plasticity

that precedes the nucleation and growth of microdefects. The mechanism
of the ductile damage on the LCF tests is manifested through the transgran-
ular slipband fields of plasticity developed in the large size grains, hence,
the dissipative energy AWP is of the same order as the elastic energy AWe,
In other words, for LCF tests the plasticity-damage fields involve a large
volume of the specimen with weak localization, such that the classical local
CDM approach is applicable as the objective method for the number of
cycles to failure prediction, which customarily is supposed to be between
102 and 10%.

In case of very low cycle fatigue (VLCF), the number of cycles to failure
is of the order of 10. The cyclic damage mechanism is governed by the
slipbands of plasticity in the grains the orientation of which is approxi-
mately inclined at 45° to the main stress, and rapid macrocrack growth
in a transgranular mode in the slip planes occurs (see Fig. 2.1, after Du-
failly and Lemaitre, 1995). Strain hardening saturation is reached during
the first cycle, so the perfectly plastic model is justified. The number of
sites of microcrack initiation is large enough to allow for damage homog-
enization, and no damage threshold is needed since the damage evolution
starts immediately just on the first cycle (cf. Dufailly and Lemaitre, 1995).

Consider the strain controlled process for repeated cycles known as the
cyclic plasticity response. It may be analyzed by the use of coupled damage-
isotropic/kinematic hardening theory developed by Chaboche (1988), (2.64)-
(2.65), with the kinetic law (2.69) or the generalized kinetic law (2.71)
taken as the damage evolution. Two competing processes, stress amplitude
growth on the nucleation period (cyclic hardening due to isotropic/kinematic
hardening mechanism) and stress amplitude drop on the damage evolution
period (cyclic softening due to material deterioration), result in a cyclic
response as illustrated in Fig. 2.11.

Cyclic relationships between AeP and Ao are assumed as follows (cf.
Lemaitre, 1992):

AeP — (%)M (2.101)
AeP = [F(IAj—D)} M, (2.102)

in cases of no strain-damage or saturated plasticity-damage coupling, re-
spectively.

In case of the one-dimensional LCF test, the kinetic damage evolution
(2.69) holds

03 Ru 0’2
D = d 2dp = D) |€p
2ES (1 — D) 2ES (1 - D)

l. (2.103)
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Fig. 2.11. Strain controlled cyclic hardening: a) without damage, b) with dam-
age, c) stress—strain curve simplification for stable hysteresis loop

For the nucleation period N < Np accumulated plastic strain per cycle
(D=0)is

Ap

—— = 2A¢eP 2.104

AN (2.104)
and, assuming a simplified stable stress-strain loop (Ae% = const), the
accumulated plastic strain to reach the nucleation limit Ny is

Do = 2NpAe? or Ny = %. (2.105)
For the coupled plasticity-damage period Ny < N < Ng assuming for
plastic hardening saturation o, = ¢/ (1 — D) to be constant over each
cycle the damage evolution may easily be integrated over one cycle to give

the damage per cycle AD/AN (cf. Fig. 2.11c)

AD o? Ac?
—— =2—"AeP=—— - AeP 2.106
AN  "2ES 4ES (1 — D)? (2.106)

and damage per (Ng — Np) cycles to critical damage D,
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— AP A (Na— No) (2.107)
T 4ES(1- D) R '

Combining (2.105) with (2.107) the total number of cycles to failure Ny is
furnished as

cr

Ng = No +4ES (1 - D)* (Ao) "% (AeP) ™! D, (2.108)

or, neglecting, for simplicity, the nucleation period Ny = pg = 0 and as-
suming D.; = 1, the simplified formula for number of cycles to failure as a
function of both the stress and strain amplitudes is:

Nr =4ES (1 - D)?(Ac) % (AeP) L. (2.109)

The difference from the classical Manson—Coffin law relating the number

of cycles to failure NS to the plastic strain amplitude AeP is easy to see
(Fig. 2.12):

P\"7
NS = (A%) . (2.110)

This power relationship between AeP and Ng may formally be recovered
from (2.109) if the cyclic stress strain curve Ac — AeP is given by (2.102)
to obtain
4ES _ M2
NR = F (AEP) 2. (2.111)

For the very low cycle fatigue (VLCF) range, a big gap between the exper-
imental results and theoretical prediction is observed.

To avoid this inconsistency, Dufailly and Lemaitre (1995) propose the
generalized kinetic law of damage evolution as given by (2.71) applicable
for 3D cases in the form

azqR,,
2ES (1 - D)?

dp. (2.112)

In the case of cyclic loading, assuming the plasticity criterion coupled with
damage 0cq/ (1 — D) = 05 = Ao/2 and integrating (2.112) over cycle, the
damage per one cycle is obtained

AD [o?R,\*
= (”SR> Ap, (2.113)

AN ~ \2ES
which yields the critical damage D., =1 at N = Ny given by

NR _ (825)8 (1 _ D)Zs AO,~—2s (AEP)_I . (2114)
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Fig. 2.12. Manson—Coffin curve for Inco 718 alloy at 550°C (after Dufailly and
Lemaitre, 1995)

Note that for s = 1, (2.109) is again recovered.

In the fatigue-damage models discussed so far, a stable hysteresis loop
reached after the incubation period was assumed. In case of the LCF or the
VLCF it turns out that the hysteresis loop deforms due to cyclic hardening
and simultaneously moves along the strain axis due to the progressively
increasing large mean plastic strain (mixed fatigue ratchetting mode). A
generalization of the Manson and Coffin law (2.110) to the case of accu-
mulated mean plastic strain is due to Skoczef, 1996. A push—pull loading
program for a specimen made of Nickel A is sketched in Fig. 2.13.

Applying a power cyclic relationship

Ao
K(1-D)

the damage per cycle is traditionally obtained by integration of the kinetic
damage evolution (2.103)

=1 jD = %K(Ep —2 )M or AeP = [

Os

]M, (2.115)

eP

AD _ L [
AN~ ES J»

min

2
4E S~y

(AeP)?, (2.116)

min

1 2
[5K(€p - €p )I/M] deP =

where ¥ = (M + 2) /M. When the ratchetting effect (progressively increas-
ing mean plastic strain) was incorporated, the author arrived at the follow-
ing generalization of (2.116):

AD  K®  (Ae?)
AN ~— 4ESy [1 _ z,"ngN)r’

(2.117)

Ef,
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Fig. 2.13. Superimposed diameter strain (logarithmic) for linearly increasing
plastic strain: a) constant ratchetting rate model, b) simplified moving hysteresis
loop

where the mean plastic strain is €8, = (B, +€P. ) /2 and €, is the tensile
ductility, such that for eP — e the corrected increment of damage per
cycle tends to infinity. For damage per N cycles the integration of (2.117)
for a given function €P (N) and constant AeP over the number of cycles
yields

N AD K2 epP (N) -
= —dN =— P)Y —m\ /
D (N) = A Nd g (AE ) A |:1 0 :l dN. (2].1.8)

If, for simplicity, a linear function holds for mean plastic strain,
el (N) = kN, Eq. (2.118) may be integrated to arrive at

2 —aN) " _
D)= g5 (A=) (1—(5—)_17—1

(2.119)
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where a = K/eg, or assuming D = D, for N = Ng, and introducing
C'Y7 = 4ESD,v/K?, a corrected number of cycles to failure for finite
ratchetting is furnished

Ng = é {1 - [1 +a(a—1)CY7 (Agp)"’] 1/(1*"‘)} (2.120)
NRzzll—{l—[1+a(a—1)N§]1/(1_°‘)}. (2.121)

Note that, if & = 0 is assumed, the classical Coffin formula Ng = Ng is
recovered.

2.3.8 Unified energy-based CDM model of ductile damage

of materials
A unified CDM model for ductile materials derived from the principles
of thermodynamics is due to Mou and Han (1996). When a quasi-static

loading is applied to a solid the energy transferred to the solid is either
stored as elastic strain energy or dissipated by irreversible mechanisms

arising from microstructural changes. The damage variable DB = In (A /Z)

is considered after Broberg (1974) as one of internal state variables which
influence the Helmholtz free energy of the solid pH (ee, a,r, DB, T)

M (%, a,7, DB, T) = 4° (*, DB, T) + 9™ (e, 7, T) (2.122)

and the generalized thermodynamic forces (o, X, R, Y®) are associated with
elastic strain, kinematic hardening, isotropic hardening, and damage, re-
spectively (ee, a,r, DB) through

6,‘pe aq/)an 8,¢)an a’d}e
= X = p— = €= _ .
7= P e Poa f=r g Y=—rops  (2129)
and the specific entropy production rate can be expressed as
. 1
0P + Ri + Xa + YeDB — ggradl >0, (2.124)

where T denotes absolute temperature, ¢ is the heat flux vector, and A, A
denote the initial and the fictive undamaged cross-sectional area, respec-
tively. Also in this model the damage evolution influences the elastic energy
release, whereas the inelastic energy is not affected by the continuous dam-
age. Additionally, the hypothesis of complementary energy equivalence is
employed in the derivation to obtain:
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1 1 _
V=5 Bk (D®) egje = o Hhimigijere 2%, (2.125)
E=E(L- D)’ = Eexp(-2D?). (2.126)

Note that (2.125) differs from previously used (2.51) in the application of
energy equivalence principle and the damage measure D® that differs from
the Kachnov’s type variable D = 1 — exp (—DB), DB € (0,00). Limit-
ing ourselves to the isotropic elasticity law (2.88), employing (2.125), and
decomposing the elastic strain energy to the shear strain energy and the
volume dilation energy, we obtain

2

©) (5) o 2
ve=ov*® 4oy = |2
err=er" +e 9F exp (—2DPF) [3( +v)

2

2
OH R
31— () | = o Tear
+3(1-%) (aeq) = SEexp (-2D5)’

whereas the damage conjugate force Y (DB) is furnished now as follows:

ove ozq exp (\IleDB) R (fﬂ_)

(2.127)

ve (DB) ¥ (2.128)

~pB T~ E
To establish the damage evolution model, suppose there exists a dissipative
potential 94 in the form (cf. Mou and Han, 1996)

Oeq

e\ 2 _ o\l
v (Y*,p,p, DB, T) = CS (—Y?) %e—wﬁp, (2.129)

where C, 9, and n (n < 1) are temperature dependent material constants

and p is the cumulative plastic strain, p = [(2/3) €niel ] /2 . Hence, for the
constitutive equation of damage evolution the followmg is obtained
s _ 0wt 2C (per —p)" "
DB = o2 R, o ; 2.130
aye = ES‘e (aeq> pn p ( )

or, assuming the Ramberg-Osgood hardening law 0.q = Kp™, a particular
representation of damage evolution holds:

_ CK n—1 .
bP = 2ESR( ) (=5 (2131)

or

. ot
DB—=__B p ( )(pcr p)" ', 2.132
T2ES Oeq ( )
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where U% = 4CK? is a new material constant which should be determined
from the one-dimensional test, with (2.75) accounted for, to yield the crit-
ical damage

2
o
Der = Do + 2= (€ — €0)" - 2.
o + mES (€cr — €0) (2.133)
Eventually, integration of (2.132) under the assumption of constant R,
gives the damage evolution law for proportional loading

D cr DO n OH

D= Dcr — —(—S_C,-——Eo)n (pc, - p) R,, (O'eq) . (2134)
In the general case of nonproportional loading, (2.132) and (2.133) hold.
Observe that in a particular case, n = 1, (2.134) reduces to (2.77) or (2.84)
with s = 1. Damage evolution depends on the cumulative plastic strain p,
the hardening exponent n, and the triaxiality ratio ou/0eq. The damage
rate decreases as the exponent 0 < n < 1 increases and becomes constant
with p when n — 1. On the other hand, the damage rate increases linearly
with the triaxiality function R,.

2.8.4 Irreversible thermodynamics model of a coupled
isotropic damage-thermoelastic-(visco)plastic material

I. General coupled state equations derived from irreversible
thermodynamics

In Sect. 2.3.1 it was assumed that continuum damage evolution is mani-
fested by elastic strain energy release only. In general, the inelastic (irre-
versible) energy associated with the strain hardening is also released with
damage growth. A consistent unified model, based on the assumptions that
variable Y associated with the isotropic damage internal variable D con-
tains both the classical elastic (reversible) energy Y and the inelastic (irre-
versible) energy Y", was developed by Saanouni, Forster, and Ben Hatira
(1994). The hypothesis of total energy equivalence is used to define the
effective state variables in a fictive undamaged configuration, instead of
the classical state variables in a damaged configuration (cf. Chow and Lu,
1992). Now, we introduce the mechanical flux vector J and its thermody-
namic conjugate force vector F as follows:

. . T
i={erar Dy}

(2.135)
F= {U,X, R)Y, —%;gradT} ,

such that the entropy production rate is written as
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PO =FJ >0. (2.136)

The small strain is decomposed to the elastic €® and inelastic €* parts and
the total energy equivalence is applied (independently) to the elastic ®° and
the inelastic ®¥* and ®™ energy portions, respectively, in the damaged and
the fictive undamaged configurations:

o (q,D)=1X:a=1X:q, (2.137)

@t (r,D) = 3rR= %?ﬁ

Hence, the couples of effective state variables are given by

~ o e
o= , € =ge(D)e%
X=X & =h, (D)
_ha(D)) - ' ) (2138)
~ R
R=— #F=h.(D)r;
hr(D)’ T 'r( )7',

where g, (D), ho (D), h. (D) are positive decaying functions of D defined
as follows:

e (D) = he (D) = hy (D) = (1— D)"/2. (2.139)

Hence, the effective state variables are used in the state potential instead
of the classical state variables, and the Helmholtz free energy is taken as a
state potential

Wi (e, a,r, D, T) = ¢° &°,T) + v (&7), (2.140)

where

e (E,T) =38 A: 8 — (T—To)k: & — pc, T [log(%) —1],
0

™ (e, 7, T) = %C’& to+ %Q?"Z
(2.141)
In the above equations, A is the symmetric fourth-rank elastic stiffness ten-
sor for undamaged material such that & = A : €° (with thermal terms omit-
ted), C and @ denote the temperature dependent kinematic and isotropic
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hardening moduli, k is the symmetric second-order tensor of thermal con-
ductivity, p is the mass density, ¢, the specific heat, and Ty the initial
temperature.

At variance with the model from Sect. 2.3.1(II) (2.65) the damage affects
both the elastic (reversible) and the inelastic (irreversible) energy portions
and the effective state variables €°, &, 7 are consistently used for the state
potential (free energy) of damaged material. Additionally, the inelastic flow
is assumed to be initially isotropic and of the Mises-type, thermoelastic
behavior is assumed to be linear and free from the inelastic effect, damage
is assumed to be isotropic, and the nonlinear kinematic-isotropic hardening
law is applied. Eventually, the state equations are furnished from the state
potential in the following manner:

H
a'=p?;ie =A:e*—(T-To)k,
ot 2
X=r5a =39
H
R= 2 = Or, (2.142)
or
ot 1~ | T
§ = — —8?-——1( € +C1;10g(i)'>,
a H
Y=—p%=w+ya",

where the elastic energy and inelastic energy release rates are given by

e 1 1 Kk
Ye=—p =5 A =S (T-T0) ———7 : &5
aazjan 2 ) 12 (1-D)" (2.143)
an _ __ — . - 2
Yy*" = P 3D 3Ca.a+2Qr

and effective thermo-mechanical moduli for damaged material are intro-
duced:

A=(1-D)A, C=(1-D)C, Q=(1-D)Q, k=(1-D)"*k
(2.144)
Let us mention that in this model the fully damaged RVE is free not only
from the Cauchy stress & but also from the internal stresses X and R and
it is fully unable to support heat conduction. A more developed model
accounting for a combined conduction/radiation heat transfer mechanism
is discussed in Sect. 5.1.
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II. Time-independent. nonlinear isotropic/kinematic hardening coupled
with isotropic damage

State equations (2.142)—(2.144), which contain scalar damage variable D
representing the actual continuum damage state, require a suitable dissi-
pation potential. In case of a plastic dissipation the plastic flow e®*=¢P is
time-independent. A consistent coupled yield function is obtained as the ex-
tension of the Chaboche-Rousselier uncoupled yield function of the virgin
nonlinear isotropic/kinematic hardening material, when the classical state

variables (&, X, R) in (2.17) are replaced by the effective variables (&, X,
R). In other words, the Mises-type yield function governs the plastic dissi-
pation coupled with damage in space of effective dual variables (Saanouni,

Forster, and Ben Hatira, 1994)
f(&,i,é):Jg(a—i)—Fz—ay=0 (2.145)

and the fully coupled plastic potential, which generalizes Chaboche’s equa-
tion (2.64), may be written as

~ ~ la ~ 16~
SFB [~ _ la 10 D
F (O',X,R,D,T) =f+ 2—CJ2 (X) + 2_QR +F°(Y), (2.146)

where, following Germain, Nguyen, and Suquet (1983), the damage evolu-
tion potential FP (Y) is supposed to be a power function of the total (elas-
tic and inelastic) energy release due to damage evolution Y = Y*© + Y=2»
(extension of (2.70))

S Y s+1 1
FP(v)= 61D (§> P (2.147)

The present unified formulation assumes the same (single) potential to de-
scribe both the plastic dissipation and the damage dissipation. In other
words, in this model, which is well applicable for ductile metals, it is sup-
posed that damage cannot initiate without plastic deformation. However,
it is not true in case of brittle materials, geomaterials, or composite mate-
rials, where more advanced multisurface theory must be developed. More-
over, by contrast to the Chaboche’s fully associative model (2.64)—(2.65),
the present model is associative with respect to the Cauchy stress o, but
non-associative with respect to the internal variables X, R, Y. Hence, the
state equations are obtained by the generalized normality rule (2.65), with
FCh (2.64) replaced by FS¥B (2.146)-(2.147)
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o o 3OFTR 3 ) 7 = Xij
Yo7 8oy 2(1- D)2 Ja(0i — Xij)’

. AaFSFB _ 3 )\ 0’::]- —X,ilj _ ﬂ )\ X!
W ETeXy 21 -D) Aoy —Xy) 20(1-D) 9’
, . OFSFB 1 b R
T =—A = 7270 ,
OR (1-D) Q(1-D)
. . OFSFB . (Y\? 1
p=-32"_ 5(¥Y)y L _
oYy S (1_D)ﬁ
(2.148)
or, by employing (2.142) the equivalent form can be furnished
o 3z oy — Xi; _ §p oy — Xi;
Y2 a0y — Xy) 20 J2(0ij — Xij)’
. 3a X!
dij = &b —adayj = &5 —p——L——
R T Toc(1- D)2
(2.149)
~ b ~
¢=,\(1—bf)=p<1—~R>,
Q
. . (Y\? 1 Y\? 1_
D=-)>=) ——=-p(=) (1-D)2 ﬂ,
(5’) (1-D)* p(5> ( )
where
D NS TR
A= m =p= (gsijeij> . (2150)

It is observed that substitution of @ = b = 0 reduces state equations (2.149)
to the fully coupled linear hardening theory:

Gk (2.151)
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where plastic strain eP and cumulative plastic strain p may be identified
with internal variables of kinematic and isotropic hardening; however, these
equations differ from Chaboche’s equations (2.66) where the classical effec-
tive stress concept has been used, & = o/ (1 — D), and the elastic energy
release rate Y© has been applied as the thermodynamic conjugate force of
damage D.

I11. Time-dependent viscoplastic flow coupled with isotropic damage

In case of time-dependent coupled damage-creep-isotropic/kinematic hard-
ening material the single surface coupled viscodamage dissipation potential
may be expressed as a sum of the viscoplastic and the creep-damage parts
(cf. Saanouni, Forster, and Ben Hatira, 1994)

3" (a,i, E,D,T) =" (65{, R, T) +8" (0,D,T), (2.152)

where the viscoplastic term is represented by a following power function of
f extended by the additional terms representing nonlinear hardening

w K /1 3ac o 1 1b~y 1 e
T =—— (= S—-X:X--aCa:a+=—R?— ZbQi*?
n+1<K[f+4C gade:a+ s =500 )
(2.153)
whereas the creep-damage term is given by
@*D=_Y<ifqi)> (1-D)". (2.154)

In the above equations, the function f (5,5(, fl) denotes the Mises-type

isotropic/kinematic hardening yield function as defined by (2.145); a, b, C,
@ are temperature dependent hardening parameters, K and n character-
ize creep behavior of the material, a scalar function x (o) represents the
Hayhurst-type damage equivalent stress as defined by (2.36) and A, r, k
characterize creep-damage under multiaxial stress according to Chaboche,
(2.35).

Hence, the following definitions hold:

f(&,i,ﬁ) =J (&—5&) —R-0,>0,

x (o) = ado (o) + 3871 (0) + (1 —a—pB) J2 (o), y
Jo(0) =maxos, h(0)=ZL, Ja(o)= K§> agjggj} (2159)
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and symbols denoted by primes ( )’ represent deviatoric components, where-
as the tilde (7) refers to the effective state variables, (2.138). Note that
in view of the effective state variables definitions (2.138), and the state
equations (2.142), the additional terms in the MacAuley bracket (.), Eq.
(2.153), which was introduced in order to describe a nonlinear hardening
effect on the damage-viscoplastic dissipation potential, may be reduced to
the linear hardening case if the following holds:

~ 2 2~ o~ ~
X:§Ca or X:gCa; R=QF or R=Qr (2.156)

and
C=(1-D)C, §=(1-D)Q. (2.157)
Eventually, if the generalized normality rule is applied to the single cou-

pled viscoplastic-damage potential, (2.152)—(2.154), the state equations are
established as:

0% 3 (f/K)" ol - X}
K 801] 2(1_D)1/2 ']2 (U,;j—Xi')’
Lo 0 3 (/R [ oh=Xy o Xy
Y 0Xy  20-D)V? | la(0i—Xy) C1- D)V’
* n o
0w (KN [ b
OR  (1-p)*| @
N od* _ X(Uij) " —k
b=-%y “[ A (1-D)
(2.158)
or, in an equivalent form,
ap o 35 _0u— Xy
v 2 J2 (0','3 _Xz]),
Qij = é}’jp a)'\vPa”,
vp (2.159)
P =X (1-10o7),
_[x@i)]" -k

where
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.vp FA\"  xv AP )

and the MacAuley bracket (F) is defined as: (F) = 0 if F' < 0, whereas
(F) = Fif F > 0. Note that (2.159 and 2.160) represent the time-dependent
fully coupled visco-plastic-damage state equations, whereas (2.149 and
2.150) describe the time-independent coupled plastic-damage dissipation
although, the representation for the state variables (¢'P, &,7) and (&P, ¢, 7)
is in both cases (i.e., both (2.159) and (2.149)) analogous, although different
definitions for A and A"* hold.
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Three-dimensional anisotropic
damage representation

3.1 Damage anisotropy

3.1.1 Directional nature of damage

In Sect. 2.1.2, two basic damage mechanisms in crystalline metallic mate-
rials were distinguished.

The first damage mechanism, called the ductile or transgranular dam-
age mode, is predominant at room (or low) temperature and high stress
level tests when the slipbands of plasticity are formed in favorably oriented
grains. The microslips are inclined roughly at 45° to the main stress di-
rection and the coupled damage-(visco)plasticity mechanism may approx-
imately be described by the isotropic (scalar) damage internal variable
D, the evolution of which may be governed by the elastic energy release
rate (Lemaitre and Chaboche, 1985) or the total (elastic and inelastic) en-
ergy release (Saanouni, Forster, and Ben Hatira, 1994) in a more general
case. The material instability from microslips initiation eventually yields
a discontinuous bifurcation of the velocity field (cf. Runesson et al., 1991;
Shrayer and Zhou, 1995). The plastic strain localization in zones of mi-
crovoid concentration leads to a failure mode with material separation and
the formation of free surfaces (decohesion) on the macrolevel. The macroc-
racks are formed in a transgranular mode with a preferable inclination that
coincides with the directions of slipbands of plasticity (Fig. 2.1).

The second damage mechanism, usually identified for simplicity with
brittle or intergranular damage, is representative for high temperature but
rather low stress level loading conditions. It is mainly based on the mi-
crocracking process initiated at the grain (or subgrain) boundaries, and it
is recognized to be controlled by the maximal stress-rather than the ef-
fective stress, such that the normal to the microcrack direction coincides
with the principal stress direction at the point considered (Fig. 2.2). The
macrocracking process may be observed at selected grain boundaries to re-
sult from coalescence of microcracks of similar average orientation. No, or
negligibly small, plastic deformations precede the damage evolution, hence;
pure brittle failure mechanism occurs. The discontinuous and heterogeneous
damaged solid is approximated by the pseudo-undamaged continuum by
the use of the couples of effective state variables, the definitions of which
depend on the equivalence principles employed. In such a case, however,

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
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the damage evolution in the elastic-brittle or creep materials is no longer
isotropic; hence, unlike the ductile damage phenomenon, brittle damage
behavior is anisotropic in nature, so that the description by scalar internal
variable(s) is insufficient. The essentially anisotropic description of dam-
age in the elastic-brittle or creep solids by the development of distributed
and oriented microscopic cracks require damage variables ranging from a
vector to second or higher-rank tensors (Vakulenko and Kachanov, 1971;
Krajcinovic et al., 1981, 1983, 1993; Murakami et al., 1981, 1983, 1987,
1988; Murakami and Kamiya, 1997 and others).

The damage anisotropy is easily observed in metal specimens subjected
to creep under nonproportional loading conditions. Microstructural obser-
vations by Trapczyfski, Hayhurst, and Leckie (1981) allowed the identi-
fication of two classes of metallic materials: copper-like, where cavitation
takes place on grain boundaries essentially perpendicular to the maximum
principal stress, and aluminum alloy-like, where grain boundary cavitation
is much more isotropically distributed (cf. also Hayhurst and Felce, 1986).
The complexity of the damage accumulation depends on the loading path
or on the rotation of principal stress axes with respect to material fibers.
Thin cylindrical copper tubes were tested to failure at a temperature of
250°C under the following programs:

i. steady load (constant principal stress direction),
ii. single reverse torsion, steady tension (single principal axes jump),

iii. multiple reverse torsion, steady tension (multiple principal stress axes
rotations).

In the case of steady load, the majority of cracks are found on planes
perpendicular to the maximum principal tension stress o (Fig. 3.1a). In
the single reverse torsion steady tension test, two failure planes may be
observed, each corresponding to the principal stress plane (Fig. 3.1b). In
the case of a multiple-reverse torsion steady tension test, the crack planes
of different orientation within the angle between two principal stress planes
might be recognized (Fig. 3.1c). For the lifetime and deformation predic-
tion, the single damage variable theory by Leckie and Hayhurst (1974)
(2.39) was employed for both copper and aluminum specimens under non-
proportional loadings. For aluminum alloy, the lifetime and deformation
prediction were in sufficient accord with the experimental results. However,
for copper, strain rate discrepancies with a factor of two were reached.

3.1.2  Damage vartables review

The crucial problem for continuum damage mechanics is the proper and
accurate modeling of material damage. In all cases of various equivalence
principles it is assumed that in a quasicontinuum the true distribution of



3.1 Damage anisotropy 71

Fig. 3.1a. Mid-thickness micrograph of a copper tube tested to failure under
steady load (magnification x75) (after Trapczynski et al., 1981)

Fig. 3.1b. Mid-thickness micrograph of a copper tube tested to failure under sin-
gle reverse torsion, steady tension loading (magnification X65) (after Trapczyfski
et al., 1981)
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Fig. 3.1c. Mid-thickness micrograph of a copper tube tested to failure under
multiple torsion steady tension (magnification x65) (after Trapczyinski et al.,
1981)

defects is smeared out and homogenized by properly defined internal vari-
ables that characterize damage: the scalar variables w or D (Kachanov,
1958), the vector variables w, or D, (Davison and Stevens, 1973), the
second-rank tensor variables €2, D (Vakulenko and Kachanov, 1971; Mu-
rakami and Ohno, 1981), or the fourth-rank tensor variables D (Chaboche,
1982; Krajcinovic, 1989; etc.). In general, damage may be characterized by
the set D of scalars, vectors, and/or second, fourth or higher-rank tensors

that function as internal variables D = {D, D,,D, ﬁ, .. } The extended

damage variables review used to describe the damage process is presented
in Table 3.1.

Roughly speaking, in a ductile deformation process of crystalline mate-
rials, a flow of mass through the lattice takes place, at which the lattice
undergoes elastic reversible deformation only, whereas the total number
of active atomic bonds remains approximately constant. Hence, no (or a
negligibly small) change of the effective material properties is assumed to
occur. On the other side, in a brittle deformation process the lattice itself
is subjected to irreversible changes resulting from breaking of the atomic
bonds and, hence, a progressive material degradation through strength and
stiffness reduction takes place. This fully coupled CDM approach to the
elastic-brittle damage or creep damage, when the damage evolution influ-
ences both the stress and strain state and also the elastic properties, leads
to the concept of fourth-rank elasticity tensors modified by damage D,
stiffness A(D), or compliance A~1(D):
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Table 3.1. Damage variables review (cf. Murakami, 1987; Skrzypek and
Ganczarski, 1998a)

Reference ] Material damage
Scalar damage variables

Kachanov, 1958 creep (isotropic)

Kachanov, 1974 creep (anisotropic)
Rabotnov, 1968 (1969) creep (anisotropic)
Martin—Leckie, 1972 creep (anisotropic)
Hayhurst—Leckie, 1973 creep (anisotropic)

Davison et al., 1977 spalling, elastic

Gurson, 1977 elastic-plastic

Trapczyfiski et al., 1981 creep (nonproportional)
Lemaitre-Chaboche, 1978 | creep (anisotropic)

Chaboche, 1988 creep, fatigue, ductile, brittle, anisotropic
Lemaitre, 1987, 1992 general

Rides et al., 1989 effect of creep damage on elastic properties
Randy—Cozzarelli, 1988 propagation of rupture
Murakami-Mizuno, 1992 creep under irradiation

Zheng—Lee, 1993 creep, high temperature

Scalar: w(z) [Kachanov] (isotropic)
ef
Ay

damage: w=1—1%

continuity: 9 =

fective stress: & = — = —
effective stress: 7 = — =
Y l-w
o(n) — nonuniform distribution of damage (defined on a unit sphere)

[Krajcinovic]:

o(n) = g isotropic

0o = [ o(n)dA nearly isotropic
4n

Vector damage variables

Davison—Stevens, 1973
Kachanov, 1974, 1986
Krajcinovic-Fonseka, 1981
Krajcinovic, 1983
Singh-Digby, 1989
Lubarda—Krajcinovic,
1993

Vector: w(z) [Kachanov]:

w=w,V

Y=v,u

~ Oy

o, =—

wll

spalling, elastic

creep

elastic-brittle

general, creep

brittle solid, anisotropic
general
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Second-rank damage tensor

Murzewski, 1957,1958,1992

Rabotnov, 1969
Vakulenko-Kachanov, 1971
Murakami—Ohno, 1981

M. Kachanov, 1972
Dragon-Mréz, 1979
Cordebois—Sidoroff, 1982
Betten, 1983

Litewka, 1985, 1987, 1989
Kondaurov, 1988
Murakami, 1983, 1987, 1988
Karihaloo—Fu, 1989
Chow-Lu, 1992

Lis, 1992

Chaboche, 1993
Lis-Litewka, 1996
Zheng—Betten, 1996
Murakami-Kamiya, 1997
Skrzypek et al., 1998a

quasi-homogeneous metals (stochastic
approach)

creep

plastic-brittle

creep

elastic

brittle-plastic

elastic, elastic-plastic
general, creep

creep (anisotropic)
elastic (orthotropic)
creep, fatigue

concrete

anisotropic, elastic-plastic
(nonproportional loading)
damage induced elastic
anisotropy

effective stress review
elastic-brittle anisotropy
elastic-brittle anisotropy

Q=1-79,

Di]‘ = fg(n)nmjdA
4T

Second-rank tensor [Murakami-Ohno]: Q = E?=1 Qn;n;
c=11-Q)iot+o:(1-Q)7]
o(n) = gniny second rank-crack density tensor [Krajcinovic|:

Fourth-rank damage tensor

Chaboche, 1982
Leckie—Onat, 1981
Simo—Ju, 1987
Chow—Wang, 1987
Krajcinovic, 1989
Lubarda—Krajcinovic, 1993
Schiesse, 1994
Chen—Chow, 1995
Voyiadjis—Park, 1996
Qi—Bertram, 1997

creep (anisotropic)

creep

general

general, anisotropic

general, anisotropic

general, anisotropic
elastic-plastic, anisotropic
damage effect tensor, anisotropic
anisotropic damage, plasticity
single crystal, anisotropic

Fourth-rank tensor [Chaboche]:

]j—fourth—rank damage tensor _ R R
E-fourth-rank elastic tensor, E(D)= (I-D):E, ¢ =(I-D) lo
& =M(D):o, M(D) - fourth-rank damage effect tensor

o(n) = g;;ninjnxm fourth-rank crack density tensor [Krajcinovic]

ﬁijk:l = f g(n)nmjnknldA
47

Eighth-rank damage tensor

Chaboche, 1981 | creep, fatigue
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c=AMD):e* o e =AD):o, (3.1)

where D stands for properly selected damage variables (cf. Litewka, 1985,
1989; Chen and Chow, 1995; Murakami and Kamiya, 1997, etc.). A general
concept of the fourth-rank damage effect tensor M(D) that transforms
the Cauchy stress tensor in a damaged configuration o to the effective
(conjugate) Cauchy stress tensor in an equivalent fictive pseudo-undamaged
solid &, based on the appropriate damage equivalence hypothesis (strain
or stress or complementary energy or total energy equivalence) takes into
account the fully anisotropic nature of damage in the form (cf. Chow and
Lu, 1992; Zheng and Betten, 1996)

&=M®D):c o &=&(,D). (3.2)

M(D) is an isotropic fourth-rank tensor-valued function of the damage state
variable D, and the effective stress tensor &(or, D) is an isotropic second-
rank tensor-valued function of & and D (damage isotropy principle), the
representation of which depends on the equivalence principle adopted.

3.2 Second-rank damage tensors

In order to develop the orthotropic damage theory we postulate that the
damage state is sufficiently described by the second-rank damage tensor D
as defined by Murakami and Ohno (1981):

3
D=) Din;®n, (3.3)
=1
where D; and n; are principal values and the unit vector of principal di-
rections of the tensor D. D; may be interpreted here as the ratio of area
reduction in the plane perpendicular to n; caused by the development of
damage D; = §Ap;/6A; (cf. Fig. 3.2).

The assumed property of symmetry with respect to three planes deter-
mined by the normals n;, nge, and ng reflects damage orthotropy. In other
words, the area reduction in the directions of damage orthotropy can be
expressed in terms of the principal damage components Dy, Dy, D3, re-
spectively. _

Transformation of the area element 6 A to 6A is described as:

(Ini — Dii) nis8A = 70;64, (3.4)

or

(1—Dy)6A, =68A;, (1—Dp)6Ay =64z, (1— D3)6As =643 (3.5)
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Fig. 3.2. Schematics of the RVE transformation from the current (damaged) to
the equivalent (pseudo-undamaged) configuration

By equating the tractions p; through §A and p; through 6A the effective
stress is furnished:

oiinibA = &;jﬁﬁg (3.6)

or

U,;j’ni(SA = Ei]- (Iki - Dk,;) nk6A (37)

The above is equivalent to the following definition of the asymmetric effec-
tive stress:

=0:(1-D)"". (3.8)

However, only the symmetric part of (3.8) accounts for the constitutive
equations, so

&:é o:(1-D)" +(1-D) " 0], (3.9)

The following review of various effective stress concepts is due to Zheng
and Betten (1996):

1. Isotropic damage (Lemaitre and Chaboche, 1978)

g=0c(l-D)'; (3.10)
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2. Asymmetric effective stress tensor (Murakami and Ohno, 1981)
*=0:(1-D) " (3.11)

3. Symmetric part of the asymmetric effective stress tensor (Murakami,
1988)

&:é o:(1-D)'+(1-D)":0]; (3.12)

4. Alternative representation of the symmetric effective stress tensors
applied to elasticity, plasticity, and ductile damage (Chow and Wang,
1987; Cordebois and Sidoroff, 1992)

6=01-D)"?.0:(1-D)""?; (3.13)
5. Pseudo-net-stress tensor (Betten, 1986)
=(1-D)':e:(1-D)7}; (3.14)

6. General representation of the effective stress tensor by a linear trans-
formation between the Cauchy stress and the effective Cauchy stress
tensors, by the use of a fourth-rank damage effect tensor (Chow and
Lu, 1992)

d=M(D):o. (3.15)

In a particular case when the Cauchy stress o and the second-rank dam-
age tensor D are coaxial in their principal directions, or, in other words,
rotation of principal axes of the stress (and damage) tensor is excluded,
they both are commutable o : D =D : & and, as the consequence, the
model (3) and (4) reduce to the simplified form

§=(1-D)':o=0c:(1-D)". (3.16)

However, in general, the above does not hold when current principal direc-
tions of the stress tensor a; and of the damage tensor §; do not coincide
if the principal stress axes rotate (e.g., due to a shear effect) and, hence,
the principal axes of damage follow them (cf. Skrzypek and Ganczarski,
1998). Additionally, when the damage is not highly developed, the differ-
ence between the models (3) and (4) is negligible (Zheng and Betten, 1996)
and, since (1 —D) and (1 — D)l/ 2 are both positive definite second-rank
symmetric tensors, there is no essential difference between models (4) and
(5).

Let us also mention another definition of the second-rank damage ten-
sor D* which is due to Vakulenko and Kachanov (1971) and applied by
Litewka (1985, 1987, 1989). The concept is restricted to the case of the
regularly damaged material possessing three mutually perpendicular planes
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of orthotropy defined by the unit normal vectors ny, ng, nz for which the
principal damage components are defined as the ratios of corresponding
damaged §Ap to residual (undamaged) §Ar = 6A — §Ap portions of the
surface elements D} = §Ap,/6Ar; (1 =1,2,3):

3
=ZD{ni®ni, (3.17)
where

* D )
Di=1— Dy’
An alternative way to define the second-rank damage tensor is to include
the microcracks morphology. Following the concepts of Vakulenko and
Kachanov (1971), also extended by Kachanov (1980) the so-called damage
descriptor through crack opening displacement is evaluated in the volume
of RVE

D€ (0,00), D;i€(0,1). (3.18)

1
Dq;j = vLuinidS, (319)

where n is a unit normal vector to the crack surface, u is the displacement
jump across the crack surface, V is the volume of the RVE and the inte-
gration is done over all crack surfaces, S. In the particular cases of the 3D
penny-shaped cracks or the 2D slit cracks of characteristic size ry (3D crack
radius) or ay (2D crack half-length), respectively, the average crack density
second-rank tensors over volume V or area A are furnished (cf. Lacy et al.,
1997):

1 X k k
=7 E renfn (3.20)
or )
1 EN 2 k. k
Dij = Z 2 apn; n]-. (3.21)

3.3 Strain, stress, and energy based CDM
models

Consider a damaged solid in a current configuration, the mechanical state
of which is defined by the couple of external state variables (e,0), where &
is the small strain tensor and its associated variable o is the Cauchy stress
tensor. Introduce, next, a fictive pseudo-undamaged state characterized
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by the effective state variables (€, ), the definition of which depends on
the damage equivalence principle. In Sect. 1.4.1, the hypotheses of strain
equivalence (Chaboche, 1978) and elastic energy equivalence (Cordebois
and Sidoroff, 1979) whare applied to the 1D case to yield the formulas (1.13)
and (1.16), respectively. Let us discuss now the various damage equivalence
principles more systematically, to generalize the above definitions to the 3D
case.

3.8.1 Principle of strain equivalence
- the effective stress concept

The hypothesis of strain equivalence states:

The strain associated with a damaged state under the applied stress o
is equivalent to the strain associated with the undamaged state under the
effective stress o (Fig. 3.3).

Fig. 3.3. 1D strain equivalence concept visualization

For the isotropic damage described by the scalar D the following defini-
tions of the effective variables hold:

~ ~ o
€(0,0)=€¢(o,D), o=—— 3.22
3,0)=<(c,D) 7 (3.22)
When the fourth-rank damage effect tensor My (D) which characterizes
the anisotropic damage is used, the general transformation of the Cauchy
stress tensor o into the effective stress tensor & may be introduced in case
of the anisotropic damage Mcy, = Mgy, (D)

G(t)=Mg :o(t) (3.23)
and for the isotropic damage Mcy, (D) = (1 — D)1
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i O(t)

o (t) - 1—-D (t) ) (324)
where Mgy, (D) is a fourth-rank damage effect tensor which characterizes
damage and I is a fourth-rank identity tensor. In other words, the effective
stress o expresses the stress that would have to be applied to the fictive
pseudo-undamaged material to cause the same strain tensor that is ob-
served in the damaged material sustained to current stress o (Simo and
Ju, 1987).

3.8.2  Principle of stress equivalence
- the effective strain concept

The hypothesis of stress equivalence says:

The stress associated with a damaged state under the applied strain e
is equivalent to the stress associated with the undamaged state under the
effective strain € (Fig. 3.4).

Fig. 3.4. 1D stress equivalent concept visualization

For the isotropic damage characterized by the scalar D the following
(dual) definitions of the effective variables are furnished:

o(,00=0(s,D), e=(1-D)e. (3.25)

In a general case of the anisotropic damage characterized by the fourth-
rank damage effect tensor Mgy, (D) the transformation from the damaged
space to the pseudo-undamaged space is obtained:

in case of the anisotropic damage Mgy, = Mgy (D),

E(t) = MCh € (t) (326)
and, for the isotropic damage Mcy, (D) = (1 — D)1,
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) =[1-D(t)e(t). (3.27)

3.3.8 Generalized principle of strain equivalence
— the generalized effective stress concept

Taher, Baluch, and Al-Gadhib (1994) developed the generalized effective
stress concept for time-independent isotropic elasto-plastic damage. In this
concept, three scalar generalized, total, elastic, and plastic damage variables
Dt, De, ‘and DP are defined by the fourth-rank secant moduli degradation
tensors A (t), E(t), and P (t) as the result of damage evolution

o=A(DY):e, A(t)=[1- Dt (t)] A,
oc=E (De) : e°, E(t) = [L- D (t)|E, (3.28)
o =P (DP):eP, P(t)=[1- Dr(¢)]P,

where A, E and P denote the initial values of A (t), E(t), and P (t), re-

spectively (Fig. 3.5).

ag

. .
A=(1-DHA
A o, (1-D).

E Bq-pE {° / P

!
/ 2\

[ l So M

[o® N
1§ '
I l
7 '
/€ |
|

e e ¢ e & e &

Fig. 3.5. Total uniaxial strain split into the elastic and plastic components and
the secant moduli A, F, and P from damage D*, D°, and DP (after Taher et al.,
1994)

Applying the strain equivalence principle (3.22) and (3.25) to the total,
elastic, and plastic strains independently, the following relationships hold:

e=A"l:0=A"1:5,
ef=El:0=E"1:5° (3.29)
P =P (a'—o'o) =p-1. (EP—E'O).
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Combining (3.28) with (3.29) the generalized effective stress tensors & (to-
tal), &° (elastic), &P (plastic), and &° (initial plastic) are furnished:

~ o 5° o
g = =
1- DY’ 1— De’
e, o (3.30)

“1-p 7 T1-Dr
Only in a special case D' = D® = DP = D the definitions (3.30) coincide
with (3.22) and (3.25) (cf. Simo and Ju, 1987). One-dimensional schematics
for the generalized strain equivalence principle are sketched in Fig. 3.6.

Fig. 3.6. 1D generalized stress concept visualization (after Taher et al., 1994)

Inspection of the evolution of three generalized damage variables, Dt,
D¢, and DP, as defined by (3.28), for two different materials, a brittle one
(concrete) and a ductile one (copper 99.9%), shows the essential differences
(Fig. 3.7).

Loosely speaking, in case of the brittle material under compression, Fig.
3.7a, the damage process may be approximately characterized by the sin-
gle damage variable D' which is intermediate to the elastic, and plastic
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Fig. 3.7. Evolution of generalized damage variables D*, D°, and D in a) concrete
under compression and b) copper under tension (£/ey is the strain over the peak
strain ratio, Fig. 3.5) (after Taher et al., 1994)

variables, D® and DP. For ductile materials the damage evolution cannot
be described by a single damage variable following uncoupling between the
total, elastic and plastic stiffness degradation as shown in Fig. 3.7b. The
elastic damage variable D* (¢) is approximately the linear function (as given
by (2.76) for the Lemaitre theory, with n = 0), whereas the total damage
variable rapidly increases to evolve asymptotically to unity, and the plastic
variable significantly contributes to the damage evolution.

3.8.4 Principle of the complementary elastic energy
equivalence

In the strain or the stress damage equivalent configurations (Sects. 3.3.1
or 3.3.2), stiffness reduction due to microcracks or microvoids growth af-
fects the effective stress or the effective strain distribution, respectively,
whereas the strain or the stress remain unchanged. These simplified models
do not properly describe real irreversible thermodynamic material degra-
dation processes, as reported in Sect. 2.3. Cordebois and Sidoroff (1979)
postulated use of complementary elastic energy equivalence in order to
define the fictive pseudo-undamaged equivalent configuration and the cor-
responding effective variables o and €. The complementary elastic energy
of the pseudo-undamaged solid ®° was obtained directly from the virgin
undamaged one ®°, except that the stress and strain variables & and ¢ are
replaced by the effective variables & and &:

99
" 9o’
where ®° = (1/2) & : €° and &° = (1/2) & : € whereas D represents a set
of damage variables (Fig. 3.8).

3°(o,D) = %°(5,0), &°

(3.31)



84 3. Three-dimensional anisotropic damage representation

Fig. 3.8. 3D elastic energy equivalence
Applying Egs. (3.31) to the damage coupled elasticity

o=E:e® and §=E:&° (3.32)

the following definitions of the effective variables &, €° are obtained:

= (I—ﬁ)_lza, &= (1—13) e®, (3.33)

where I and D are fourth-rank identity and damage tensors, respectively,
whereas D is related to fourth-rank elasticity tensors E and E of the damage
equivalent (fictive) and the current (physical) state of the solid through

D =1-EV?.EY2 (3.34)

In a more general representation, when a fourth-rank damage effect tensor
M(D) is used, the effective variables &, €° are

6=M(D):0, €=M1(D):e", (3.35)

where D denotes a properly selected damage variable D, D or 13, scalar,
second-rank tensor, or fourth-rank tensor, respectively. Note that in the
energy based damage equivalence model the microcrack and/or microvoid
growth influences both the stress and the strain distribution, which is more
realistic than in the strain or stress damage equivalence postulate where the
local stiffness drop results in a local stress decrease or local strain increase,
exclusively. Nevertheless, it is limited as it does not allow for the physically
adequate description of phenomena other than damage coupled elasticity
(cf. Chow and Lu, 1992).
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8.8.5  Principle of the total (elastic and anelastic) energy
equivalence

For the description of anelastic material response behaviour affected by
anisotropic damage, Chow and Lu (1992) extended the hypothesis of com-
plementary elastic energy equivalence, due to Cordebois and Sidoroff, by
including in the first law of thermodynamics of a material that undergoes
progressive deterioration under infinitesimal deformation the inelastic en-
ergy terms, to yield

d® = d®° + ddP + dd¢, (3.36)

where d® = & : de is the infinitesimal work of the applied stresses, and
d®e, dP, and d®9 denote the elastic (reversible) energy, the work done on
(visco)plastic (irreversible) infinitesimal deformation and the work associ-
ated with damage nucleation and growth, respectively, (Fig. 3.9).

Fig. 3.9. 3D infinitesimal total (elastic and anelastic) energy equivalence (after
Chow and Lu, 1992)

The total energy equivalence postulates that:

There ezists a pseudo-undamaged (homogeneous) solid made of the virgin
material in the sense that the total work done by the external tractions on
infinitesimal deformations during the same loading history as that for the
real, damaged (heterogeneous) solid is not changed

(cf. Chow and Lu, 1992). Because in a fictive configuration ddd =0, the
following therefore holds:

dd = dd (3.37)

or
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do° 4+ dd? = dP°® and dOP = doP, (3.38)
where
dd =5 :dz, d@ezé(&:d?-f-d&:'ée , d®P =g :de?. (3.39)
In an equivalent form, (3.37)—(3.39) may be written as follows:

o:de =0 :dF,
3 (0 :de® +do:e®) +dd? =
o:de?P =7 : de¥,

3(@:de°+do:€°), (3.40)
where the state variables on the left-hand side of (3.40) refer to the physical
(damaged) space, and the effective state variables on the right-hand side
to the energy equivalent fictive (pseudo-undamaged) one (Fig. 3.9). Note
that the hypothesis of the incremental energy equivalence applies not only
to damage coupled inelastic (ductile) materials but to non-proportional
loading paths as well.

The effective state variables obtained from the total energy equivalence
(as proposed by Chow and Lu, 1992) that generalize (3.35) are then fur-
nished as

6=M(D):0, €=M1(D):e°, de*=M"1(D):deP, (3.41)

where the explicit form of the elements of a fourth-rank damage effect
tensor M(D) depends on the anisotropic damage representation by the

second-rank D or the fourth-rank D damage tensor components (cf. Sect.
3.4).

3.8.6 Comparison of strain versus energy equivalence in the
damage evolution with strain for aluminum alloy
2024-T3 under uniazial tension

Mapping of the stress—strain curve o () to the effective stress—strain curve
o (€) depends on the damage equivalence principle used. Chow and Wang
(1987) measured the effective Young’s modulus E and the effective Pois-
son’s ratio ¥ for a ductile aluminum alloy 2024-T3 tensile specimen, based
on which damage components were calculated from the energy and the
stress or strain equivalence.

1. 1D energy equivalence concept

The matrix representation of the 1D energy based effective state variables
(3.35) is
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-1, (3.42)

£l 1-D, 0 0 €%
g b= 1-D, 0 €8
€3 1-D, €3

where Hooke’s law written for the fictive (pseudo-undamaged) and true
(damaged) solid is given by

g1 B l-v v v £
0 $=m—— l-v v V&
0 1+v)(1-2v) 1—v e
o1 B 1-v v v €%
0 p=———— 1-v v — et
0 (1+7)(1-27) -7 e
(3.43)
or, in the dual form,
€3 = —VE, L 1|
(3.44)

E? 1 i 1 -v —v ] g1
€5 =-ve] ) == 1 v 0
€5 = —Us} E 1 0

Hence, after the following rearrangement,

G1=— = p -2 = E(1-Dy)es = E(1— D)%,

1- D, 1- D, B (3.45)
== (1-Dy)es > —=—L = (1-Dp) (-2 )0y,
2 1 2 El'—Dl B

the two damage components D, and Ds, related to E and T are obtained

B 1/2
Dl - 1_ (E> ’
1/2 (3.46)

v (E v
Do=1—-=(=] =1-Z(1-D,).
2 v(E> (1= D)
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I1. 1D elastic strain equivalence concept

The elastic strain equivalence require the following representation of the
~%

effective variables o*, €":

‘81 _ 1-D; 00 0(')1
0 0 10 0 !
0 01 (3.47)
G 100 €8
g oy = 010 >
Y 001 €$

and Hooke’s law referred to the pseudo-undamaged and damaged state is
given by

g1 E l-v v v Gl
0 }=7r—F——r l-v v —vel" 3,
0 1+v)(1-2v) i 1—» i
o1 7 [1-7* 7 P2 €3
0 »= = — -7 7 —U"es
0 (1+77)(1-20") _ 1_p _776%
(3.48)
or
] R 01
gy = —vEy = 3 1 —v 0 »,
gy = —vey 1 0
(3.49)
s R A o1
—Tes = = 1 - 0
—Tes E v 0
Finally, after a simple transformation the following is obtained:
—x o " g E
o= l_ = Ee]" — L - =04,
1-p; T 1-D E (350
v 1~* 3 I/* ” i o1 B ’17* ; .
T E' B ' E1-D; E "

and a single damage component Dj related to the Young’s moduli ratio
E/E is recovered, (1.14), whereas Poisson’s ratio 7* does not change,

D

%
I
oy
I

. T=v (), (3.51)
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which is far from the general experimental observation that anisotropic
damage propagates not only in the direction of main stress but also in the
transverse one.

a) o b) o
ol =
L - Fo !

Fig. 3.10. Particular microcracking orientations in elastic-brittle rock-like solids:
a) planar transverse isotropy under uniaxial tension and b) cylindrical transverse
isotropy under uniaxial compression (after Chaboche, 1993)

For example, a broadly reported specific cracking phenomena of both pla-
nar transverse isotropy and cylindrical transverse isotropy (Fig. 3.10) in the
elastic-brittle rock-like, ceramic, or concrete solids, under uniaxial tension
and uniaxial compression, respectively, cannot be adequately described by
the use of the strain equivalence hypothesis (cf. Chaboche, 1993; Chaboche,
Lesne and Maire, 1995). Also, the damage-strain relations of high-strength
concrete and the Young’s modulus drop and Poisson’s ratio increase with
strain, under uniaxial tension and compression, Fig. 4.3, show the strain
equivalence limitations (cf. Murakami and Kamiya, 1997).

3.4 Fourth-rank damage effect tensors

3.4.1 Strain, stress and energy based damage tensor
representations

It has been shown in the previous section that a selection of the damage
equivalence principle may lead to the different damage descriptions that
should follow experimental observations of different materials. In this sec-
tion, the fourth-rank damage tensor representations are derived from the
strain, stress, and elastic energy equivalences, all applied to the 3D case,
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when both indices and absolute notation are used. A simple 1D case, if the
damage variable reduces to a scalar one, is attached in parallel to a general
damage tensors application.

1. Principle of strain equivalence

When strain equivalence is used (Sect. 3.3.1), the following holds

(1D) (3D) (3D)
absolute notation

indices notation (Murakami, 1987)  (3.52)

o= @Se, a,- = ,Ejjkle?cl’ o= ]:-J: ;€%
o = Ee®, 0ij = Eijriey,, o=E:¢e®
or
e = E o, ey, = B0, ee=E"'l:0, (3.53)

where Ekzi 71 E denote the fourth-rank elasticity tensors modified by damage
and 0y, O are the strain equivalent effective stress tensors

3=EE_10, 6ij=Eij1‘SEr_slklakly F=E:E':.0.
(3.54)
If the fourth-rank identity tensors I,z or I and the fourth-rank damage

tensors D”kl or D are introduced, the following formulas that define the
effective stress tensors in terms of the actual damage state are furnished:

0= (1—D)“10', a:ij = (Iijkl—ﬁijkl)hlakl, o= (I—f))_l Lo
(3.55)
Hence, the damage tensors’ representations are obtained

D=1-EE, Diji = Liji — Eijrs EZL, D=I-E:E!
(3.56)

or

xE’m’nk[y



3.4 Fourth-rank damage effect tensors 91

II. Principle of stress equivalence

When stress equivalence is used (Sect. 3.3.2), a similar derivation yields:

(1ID) (3D) (3D)
indices notation absolute notation 3.5
= Elo, T = Ei}llctakh ©=E'l.0, (3.58)
et =E 1o, €5 = E;jllclakl, e=E'l:.¢o
or
g = Eee, Ol = Ekms‘fj, o= E : E.‘e,
e =E'Ee°, & =E; B, E=E1.E:e,
S—— ] vjrs N——’
(3.59)
where ?:f?j €° denote the stress equivalent effective strain tensors
& =(1- D)e", & = (Iijr — Dijr)esy, & =(1-D):e"
(3.60)
Hence, formulas analogous to (3.56) are furnished:
D= l—E_lE, ﬁijklinjkl_Ei;‘:‘gErskl; ﬁZI—E_l E
(3.61)

II1. Principle of elastic energy equivalence

In a similar fashion, if elastic energy equivalence (Sect. 3.3.4) is postulated,
the respective transformations may be performed:

(1D) (3D) (3D)
indices notation absolute notation 3.62
o = E&°, 5¢j=E¢jk1€‘7€l, oc=E:¢° (3.62)
g = E&‘e, 045 = Eijkleila o=E: EJe,
@ (0,D) ®* (0;,D) ¥ (o, D) (3.63)
=®°(7,0), = ®°(7;;,0), = 9°(7,0), '
=4 1-e e 1~ ~e e 1"’ =e
®°(0,D) = 50¢ d° = 20 o = 57 €,
(3.64)
1 1 1
o° = §aee, P° = 501,1521'7 ®° = 56 : Ee)
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0€° = oe®, O ki€ = Ors€ls, 0:e°=0:¢%  (3.65)
o= E¢ 5:,']' = Eijkngt oc=E: Ee
= E5 '0E 1o, = ijkﬁ,:llars =E:¢':0 (3.66)
E L nOmn, :E71: 0o,
=2 _ pi-1,2 = = -1 F2_—F -F-1.42
0°“=EE"10?, GikOkj = EijreEpy1yTkpOpl, c°=E:E':0?
(3.67)
~ _ pl/275-1/2 ~ _ pl/2 5-1/2 ~ 1/2 . §—1/2 .
G=EYV*E V%0, &= 'ij'rsErsk/l on, &=EY2.EV?.0
——r —
N——
(3.68)

Hence, the effective state variables (7,2°) or (75,;;) or (7,€°) correspond-
ing to the fictive (pseudo-undamaged) elastic energy equivalent configura-
tion (Fig. 3.8) are defined

d=(1-D) 1o, Gij =(Iijkz—ﬁijkz)_10kt, E’=(I—]3)_1 o,
£ = (1 - D)e°, g = (Lijw — ﬁijkt)aiu & =(I-D):e°,
D=1-EV2E-1/?, ﬁijkl = Lijm — Eilj/,.stT_sic/lz, D=I-EY2
E-1/2
(3.69)

~

When a fourth-rank damage effect tensor M(D) is used (also see Sect.
3.4.2), the mapping of the state variables (0,e%) or (0ij,€5;) or (o,€%)
from the physical (damaged) space to the fictive (pseudo-undamaged) one
(3,€°) or (G;,€5) or (7,€°) is established:

=M (D)o, Oij = Mijkl(?ijkl)a'kl, &=M(D

G ):o,
E=MTD),  Ey =My (D),  E=MT1(D):e,
(3.70)
where
M(D)=(1-D)™! Mijkl(ﬁijk) M(D) = (I-D)-..
= (Lijit — Dijr) ™1,
(3.71)

The formulas (3.70) and (3.71) may also be interpreted as linear transfor-
mations of the Cauchy stress tensor 0;; or o and the elastic strain tensors
gij or € to the effective Cauchy stress tensors G;; or & and the effective

elastic strain tensor £;; or €° through the fourth-rank damage effect tensors

Mijk[(ﬁijk[) or M(ﬁ) and Mi;,il(ﬁ,-jkl) or M‘l(ﬁ), respectively.
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3.4.2 Matriz representations of the damage effect tensors
expressed in terms of the second-rank damage tensors

1. Matrix transformation between stress and effective stress vectors

In general, a damage effect tensor M is a fourth-rank symmetric tensor,
according to the definition of effective stress, and it may be defined in
terms of a fourth-rank symmetric damage tensor D (cf. Sect. 3.4.1). In
other words, a linear transformation is assumed between the Cauchy stress
tensor o and the effective Cauchy stress tensor & such that

Gij = Mijr(Diji)o or &=M(D): @, (3.72)

where a symmetrized effective stress tensor 7;; is used (cf. Sect. 3.2), though
the effective Cauchy stress tensor needs not to be symmetric in a more gen-
eral case under this transformation. On the other hand, a second-rank sym-
metric damage tensor D is often employed instead of a fourth-rank D, as
its elements are easier to measure. Due to the symmetry of both stress and
effective stress tensors, the fourth-rank tensor M;;x; can be represented by
a 6x6 matrix and, hence, the above tensor transformation can be replaced
by the following matrix form transformation:

o1 My Mgz Mygss
Ta2 Mao11  Maoos  Maoss
033 | _ | Masin Mazaa Maass
Goz [ | Mazin Mazgy  Maszs
O31 M3z Msio2  Maziss
012 Mi21n  Misoz  Mioss
(3.73)
Mgz Musi Mie o1
Mogas  Maoz1  Magyo 022
M33g3 M3z Mzayo 033
Mazas  Maz3z;  Masyo 023
M3i23  M3131  M3112 031
Mi22s M2z Mioi2 o012

II. 6x6 matrix representations of [M(D)]

When the second-rank symmetric damage tensor D is used the elements of a
fourth-rank damage effect tensor M(D) and its 6x6 matrix representation
[M(D)] may be constructed in several ways. Some of them are listed below.

A. (Lekhnitskii, 1981; Chen and Chow, 1995)
M}(D) = P~(D),

P = 5 [(Tie = Dia)(Ijt = Djt) + (Ia = Da) (L = Dix)] (3.74)
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where

1 00 Dy1 Dyg Diys D12 = Doy
1=¢ 0 1 0 ), D=< Doy Doy Doz », Di3=D3
0 01 D3y D3y Ds3 Da3 = D3y

(3.75)

and, due to the symmetry, a vector representation of & and D is employed:

{e}= {011,022,033,023,031,012}T,

(3.76)
{D} = {D11, D32, D33, Da3, D31, D12}™.
Hence, for a matrix representation of P, we obtain:
(1- D11)2 D?z
D%l (12— Dy2)?
_ | D& Dz,
PON =1 p, Dy —(1 - Das)Ds
—(1 = D11)D31  DsaDi2
—(1=D11)D2;  —(1 — Da22)D12
D3, 2D12 D13
Dis —2(1 — D22) D23
(1 - D33)2 -—2(1 - D33)D32 (3 77)
—(1 = Ds3)D23 (1 — Da2)(1 — D33) + D23D32 '
—(1 = Ds3)D13  D32D13 — D12(1 — Ds3)
D13Dos D13D33 — D13(1 — D32)

—2(1 - D11)D13
2D23 D2y
—2(1 - D33)D31

—2(1 = D11)D12
—2(1 — Da22)Doy
2D32D3;

D23D31 — D2:1(1 — Ds3)
(1= D33)(1 — D11) + D31 D13
D13D31 — Da3(1 — D11)

D21D33 — D31(1 — D22)
D12D31 — D32(1 — Di1)
(1= D11)(1 — D22) + D12Doy

Note that, when constructing the above matrix, the 18 right-side elements
have been multiplied by the factor 2 because, due to the symmetry of the
stress tensor o, a six-element vectorial representation is used instead of
nine-element one,

{U} = [011,022,033,023,032,031,013,012,021]T, (3.78)

and, as a consequence, a 6x6 matrix (pseudo-symmetric) is defined instead
of a 9x9 matrix in a more general case.
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For instance:

Py = % [(1=Dy1)(1—-Dn)
+ (1= Dn1)(1= D) =(1-Dn)?,

1
Pa3gz =2 % 3 [(1 = Daz)(1 — D33) (3.79)
+ (—=Dg3)(—Dsg)] = (1 — Da2z)(1 — D33) + D3 D3z,
etc.
A pseudo-symmetry of the matrix [P(D)]| may be visualized as
(4]  2[C] }
P| = , 3.80
A= or i (380)
where
(1= Dn)? D}, D
[A] = (1 — Dag)? D3, ; (3.81)
symmetry (1 — Ds3)?
(1= Da2)(1 — D33) + D%3  Dg3Dy3 — Di2(1 — Ds3)
[B]= | DasDi3— Di2(1 — Ds3) (1 — Ds3)(1— D11) + D%,
D12Dgs — Dys(1 — Do) D12D13 — Da3(1 — Dyy)
Dy3Dg3 — Dy3(1 — Dgg)
Dy3D13 — Do3(1 — Dy1) |,
(1 — D11)(1 — Do) + D%g
(3.82)
D12Dq3 —(1~Du1)D13 —(1—D11)Dr2
[Cl= —(1 — Dagg)Dog Dq9Dg3 —(1 — Dg9)Dys | . (3.83)

—(1— D33)Dgs —(1— D33)D13 Dy3Ds3

Similar results may be obtained when a general matrix transformation for-
mulas are used as equivalent to the tensor rule (Lekhnitskii, 1981):
Tensor transformation rule (m, n, r, p — summation from 1 to 3)

Ti{jkl = Tnrplimljnlirlip, (3.84)

Matrix transformation rule (m, n — summation from 1 to 6)

f,;lj = T\mnqimano (385)
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Symbols ¢;; are defined as

where

i 1 ) 3

1 L it 1

2 % 15 13

3 % 1% 3

4 231l 2U39lae 2l33lo3

5 231011 2l39l12 2333

6 2091111 2l1glog 2ly3l3
i 4 5 6

1 lishs Ll Lol

2 lasla2 laslas laglar

3 lasls2 l33l3 l3als1

4 | laglog + laolos | lasler +31les | la1log + la2lo

5 | lashig + laghis | lsslin +ls1his | lanhiz + ls2lnn

6 | lsles + lalos | Lislor +liales | luleg + bl

1-Dnn  —Dy
[qij] = [It_g - Dm]] = —D21 1-— D22
-D3; —D3;

B. (Chen and Chow, 1995)

—Da3
—Do3
1— D33

The second matrix representation of Mg (D) is as follows:

~ 1
Dijr = Z(Iiijl + I Djr + IigDy + Iji Dig),

(3.86)

(3.87)

where I is the fourth-rank identity tensor and D (D) denotes the fourth-
rank damage tensor whose elements are defined by the components of the

second-rank damage tensor D, to yield the following matrix representation
of [D (D)]:
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Dy 0 0 0
0 D22 0 D23
[Po)|=| o D2 Dn (DutDn)
2 2 2
Dy o Ds  Du
2 2 2
Doy _’ﬂ 0 Dy3
L 2 2 2
(3.88)
D13 D2 ]
0 Dy
D3, 0
Dy Dy
2 2
(Dui+Dss)  Ds
2 2
Das (D11 + Da)
2 2 -

C. (Chen and Chow, 1995)

A third matrix representation of Mz (D) by the fourth-rank tensor ) (D)
whose components are defined by the second-rank tensor ® (D) may also
be used:

M;(D) = &(D),

L

Bijm = = (Lx®ji + Lu®jr + Ln®i + Li®ir), (3.89)

>

®=(1-D)7}
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¢y O 0 0
0 0 33 D35
[@(@)] =| o % %n (Pp+Pxn)
2 2 2
Pu 3 %
2 2 2
a P12 P13
L 2 2 2
(3.90)
P13 P12 1
0 ®o;
&3 0
P21 P31
2 2
2 2
$a3 (P11 + P22)
2 2

Note that a similar symmetry rule applies for 6x6 matrix representations
in cases B and C as in case A.

3.4.8 Matriz representation of damage effect tensors
expressed in the principal coordinate system of
asecond-rank damage tensor

Employing definitions given in Sect. 3.4.2, and assuming

D; 0 0
D = 0 D2 0 ; D23 = D31 = D12 = 0, (391)
0 0 D3

we obtain the following diagonal forms for M;, My, M3 cases, respectively,
(cf. Voyiadjis and Kattan, 1992; Voyiadjis and Park, 1996):
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[Mi1 (D1, ?2, Ds)] =

0 0 0
1-D, N
0 0
1— D, X
S LI =
0 0 0
(1= D2)(1 - Ds3)
0 0 0 0
0 0 0 0 (3.92)
0 0 1
0 0
0 0
0 0 ,
1 0 ;
(1= Dy)(1— D) X
0
V(1=D1)(1 = D2) |

[Mz(_Dl,?z, Ds)| =

0 0 0
1-D 1
0 0
1—- Dy )
_ 0 0 0
1—-Ds )
0 0 I v e
0 0 0 0
0 0 0 0 (3.93)
0 0 ]
0 0
0 0
0 0 .
1 )
bl 0
1__1-5_D.a
0 1
1__D|—£-Dg
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1
0 0 0
(1-D1 X
0 0 0
1— D, X
_ 0 0 0
- 1—Ds3 )
0 1 1 1
2\1—-D; "1-Ds
0 0 0 0
| o 0 0 0 (3.94)
0 0 ]
0 0
0 0
0 0
1 1 1
5(1—D1+1—D3> 0
0 1 Lo, 1
2\1-D, " 1-D;) |

When Chaboche’s notation is employed to express the hypothesis of energy
equivalence (cf. Chaboche, Lesne and Maire, 1995),
d=Mgi(da):0 and E=Ma(da):e¢, (3.95)

the diagonal form in the principal damage coordinates d, takes a repre-
sentation equivalent to case A, with Mcy, = M;! (cf. Qi and Bertram,
1997):

[Mch(di, da,ds)] =

1-d; 0 0 0
0 1-dp 0 0
0 0 1-d 0
= o 0 0 VI—do)(l—dy)
0 0 0 0
0 0 0 0 (3.96)
0 0
0 0
0 0
0 0
—da)(1—dy) 0
0 (1= dy)(1 - dg)
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3.4.4 Example: Plane stress conditions

Under plane stress conditions, when vectorial representation is employed,
a three-element stress vector is sufficient instead of a six-element one in
a general three-dimensional stress state. Hence, the damage effect tensor
M;; 1 can be represented by the 3x3 matrix, so that a plane transformation
between the Cauchy stress tensor and the effective Cauchy stress tensor is
as follows:

011 My, Mz Mis on
Gog p= | Ma1 My Moas o2 - (3.97)
012 Mz Mz Mas 012

Representation of a 3x3 matrix depends on the definition used for [M(D)]
(cf. Sect. 3.4.2):

Mi(D) = P~}(D), (3.98)
1 (1— Dyy)?
[M2(D)] = = D},
Di2(1 — Dag)
(3.99)
D2, 2D;2(1 — Dyy)
(1= Dyy)? 2D12(1 — Dyy) )

D12(1 - D11) D%z + (1 - Du)(]. — D22)
where: V2 = [(1 — Dy;)(1 — Dg2) — D%,]%

M(D) = [1-5)] . 00
- 1 D?
1—Dn ll * 2A(1 12D11)}
D2
[Mz(D)] = 2A(1 — D111)2(1 — Di)
__Diz
i ¥22A(1 — D) Dy T (3.101)

2A(1 — Dy1)(1 — Dgg) A(1 - D)

1 [1 + D%Z :| DIZ
1 — Doy 2A(1—=Dg2)| A(l—Dagg) |’
__ D 1
2A(1 — Dag) A |
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1 sz 1 1
whereA—l—i(Du-*-DzZ)—T 1—D11+1—D22 J
M,(D) = #(D), (3.102)
1-— D22 0 D12
0 1-Dpy Dy

Ms(D) = . (3.103)

Nl

Dyp Dz (1—Dy+1— Dyy)
2 2 2
where V = (1 — D11)(1 — Dag) — D%,.
Note that in this case the second-rank tensor ® = (1—D)~! has a plane

2X2 matrix representation, whereas the fourth-rank damage effect tensor
®(®) has a 3x3 matrix form:

1 — Day
(1= Du1)(1 - Dg2) — D3,

®=[1-D)] =

D2
(1= D11)(1 — Dgg) — D3,
(3.104)
Do
— — 2
(1= D11)(1 — Dgg) — D, _ Py, Py2
1- Dy ®o; Bop |’
(1= Du1)(1 = D) — D%,
®; 0 D12
[:I;(Q)] _ 0 g by ) (3.105)
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Three-dimensional anisotropic
damage accumulation

4.1 Phenomenological models of
creep-damage accumulation under
nonproportional loadings

4.1.1 Orthotropic damage growth in case of constant principal
directions of the stress tensor

Directional damage or, more precisely, damage anisotropy in creep condi-
tions under nonproportional loading requires a modification of the simple
scalar description of the damage growth rule (Chap. 2) and the creep-
damage coupling in constitutive equations. The complexity of the descrip-
tion depends on the loading path or, more strictly, on the question whether
the principal directions of the stress tensor are constant or rotate with re-
spect to material particles, as examined, e.g., by Trapczynski, Hayhurst,
and Leckie, 1981 (Fig. 3.1). Chow and Lu (1992) developed and utilized
a damage-coupled elasto-plastic model suitable for ductile fracture exami-
nation under both proportional and nonproportional loading conditions. It
was based on a damage-perturbed updated Lagrangian formulation and an
implicit concept of the objective derivative applied to the second-rank sym-
metric damage tensor. A similar problem was investigated by Lis (1992),
who expressed damage rates in a rotating coordinate system coinciding with
the principal directions of the stress tensor, and then accumulated them
on a global sampling plane by an implicit concept of the objective deriva-
tive. In what follows, a concept of the damage induced creep anisotropy is
developed using the second-rank damage tensor and the orthotropic dam-
age growth rule applied to current principal stress directions. For simplicity,
any effect of the damage anisotropy on the elastic stiffnesses is disregarded.

Consider first the simpler case when principal directions of the stress and
damage tensors o, D coincide and do not change with time, such that the
orthotropic theory of brittle damage coupled with the similarity of deviators
of principal creep strain rates €° and either the principal stress s (partly
coupled) or the principal effective stress s (fully coupled) are applicable (cf.
Kachanov, 1986; Ganczarski and Skrzypek, 1994a). When formulated in the
material axes of an orthotropic material, there is no coupling effect between
normal stress and shear strain; therefore, in their principal directions the
stress and damage tensors are:

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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o 0 0 Di 0 0
6j]=| 0 oo O, D= 0 D, 0 |, ¥=1-D (4.1)
0 0 [04:3 0 0 D3

and the orthotropic creep-damage growth rule (a direct extension of Kacha-
nov’s concept (2.26) to principal continuity ¥, or damage D; components
holds, cf. Kachanov, 1986):

o, [oi T
b=t = 0,<,¢i> (42)

or

at A;
For the damage equivalent effective stress apply (3.9):

D=0 _ <ﬁ>“ (1— D;) k. (4.3)

~ 1 - _

a:i[a:(1—n)1+(1-n)1;a]. (4.4)
Hence, when principal stress and damage axes coincide and Dyp = Doz =
D3y =0, 013 = 093 = 031 = 0,012 = Go3 = 031 = 0, the general matrix
representation of the transformation (3.74) reduces to the form

1
0
a—'l 1-— D1 o1
22 = 0 1— D2 g2 . (45)
e 0 0 L 7
1—-Ds

Note that in the case considered, when o, & and D are coaxial in their

principal directions, all matrix representations of the damage effect tensor
M (D,, Do, D3), (3.92)—(3.94) coincide as well.

4.1.2  Orthotropic damage accumulation in case of variable
principal directions of the stress tensor

Consider now a more general case, when principal directions &; (15,25,3,,)
of the stress tensor & rotate through a small angle do;, in time ¢ to t+dt, to
aj(17,,2,.,3!,), for instance, if a specimen is subjected to a shear effect due
to a single reverse torsion and steady tension, or a multiple reverse torsion
and steady tension, etc., as shown in Fig. 3.1b, ¢ (cf. Trgpczynski et al.,
1981). After damage has occurred, the virgin isotropic material becomes
orthotropic, and the principal directions 8, (1p, 2p, 3p) follow the principal
stress axes rotation; however, by contrast to the previous case (Sect. 4.1.1),
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<

2\ I'
‘\\\ da L

Fig. 4.1. Schematic representation of the accumulation of several orthotropic
damage increments in variable principal directions

the stress and damage tensors o and D are no longer coaxial in their
principal axes, a; # f3;, as sketched in Fig. 4.1.

In other words, at current timet in current principal stress axes o; (14, 24,
3+, ), the normative stress vector {*o’} is expressed by its principal compo-
nents

{ta} = {011,022,033}T, O12 =033 =031 =0, (4.6)

but the damage tensor {*D} in the principal stress axes requires a full
representation,

{'D} = {D11, D22, D33, Da3, D3y, Dl2}T ) (4.7)

whereas, for the damage rate tensor {tD} in the current principal stress

space «;, the representation in terms of its principal components becomes
sufficient:

{tD} = {Du,Dgz,Daa} y Dig=Dy3=D3 =0. (4'8)

D denotes here the Murakami and Ohno (1981) second-rank damage tensor
as represented through its principal values by (3.3)

3p ) )
D= ) Dnn'®n', D=1-1, (4.9)
i=1p
whereas the nonobjective damage rate tensor Dis

80
D= ) Din‘en’ (4.10)

=1,

because the principal axes of o and D coincide.



106 4. Three-dimensional anisotropic damage accumulation

The objective Zaremba—Jaumann derivative of the damage tensor with
respect to tensor components and the base vectors is

D 3. . . L o
E = E (Din‘ Xn'+ Dinl n'+ l),;l’lﬂu 02 n‘)
=t (4.11)

or
v .
D=D-DTs-8"D,

where S is the skew-symmetric spin tensor due to rotation of principal

directions da;, B is the objective damage rate tensor with the effect of
rotation of principal axes included, whereas D is the nonobjective damage
rate in current principal directions of the stress tensor a;.

When the nonobjective damage rate D in current principal directions of
the stress tensor a; (effect of rotation of the base vector ignored) is assumed
to be governed by the orthotropic damage growth rule, (4.2) and (4.3), and
the skew-symmetric spin tensor representation in terms of da; is used, we
obtain:

v . 0 da1 —da2
Dig=Dpj— DITJ —da; 0 dag
dag —dag 0

(4.12)
0 —da; dag
- da1 0 —da3 DIJ,
—dOL2 dOlg 0
where
T1J
N g1y

D1y =Cus <—1 — D”> . (4.13)

The new damage tensor Dj/j corresponding to the rotated basis a; + do;
is furnished next, to yield the damage accumulation in current principal
stress directions

v
DI'JI(t + At) = D]J(t)+ D1y (t)At (4.14)
and transformed then to the global coordinates (4, j)
Dy (t + At) transtorms D,;j (t + At) (4.15)

Note that damage accumulation in the sampling space

Dij(t + At) = Dij (t)+ Bij (t)At (4.16)

may also be used.
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4.1.8 Creep-damage coupling formulations
I. Isotropic creep-damage scalar coupling (Skrzypek, 1993)
Assume the Mises-type flow rule (Penny and Marriott, 1995) (2.42),

~C

36
g7, =
K 2aeq

< si5, (4.17)

the multiaxial time-hardening coupled with isotropic damage,

&, = ( l‘iqu>mf(t), (4.18)

the Kachanov-Hayhurst isotropic damage growth (2.35) (r = k),

D=C<%§%>T, (4.19)

the Chaboche-Hayhurst invariant (scalar) damage equivalent stress (2.36),

x(o) = aoy + 3boy + COeq, (4.20)

where the following definitions hold:

C = 5C
€oq = A/ de”de”, \/ e”ew, Ocq = 1/ 8i58ij. (4.21)

In case of the plane stress and the creep incompressibility (o3 = 0) the
damage coupled constitutive equations, (4.17) and (4.18) yield

=(2/V3) [(51) +(&)° +€1"32J /2,

(4.22)
Ocq = [02 + 0% — 0102]"/2%, on = (01+02)/3
and
.c Uén_l 09\ &
&= (1= 3) 0,
(4.23)
. . 01\ ; ) o
E=U-br (02 - -2—) ft), & =—¢é-¢,

since
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o1 0 0 D 0 0
6]=| 0 o, 0|, D]=| 0 D 0 |,
0 0 0 0 D

& 0 0
E)=1 0 &£ 0
0 0 —£]-¢€

I1. Orthotropic creep-damage in case of constant principal directions
(Ganczarski and Skrzypek, 1994a)

In the case of damage orthotropy, the creep-damage constitutive equations
may be formulated in two different ways. First, the partly coupled ap-
proachconsists in a scalar coupling between the orthotropic damage growth
rule and the isotropic creep flow rule, if the usual equivalent stress oeq in
the time-hardening hypothesis is replaced by the effective equivalent stress
Geq- This simplified approach is actually inconsistent, because damage or-
thotropy does not affects creep strain isotropy, and such an approach is
justified only in the case of proportional loadings.

Table 4.1. Partly or fully coupled creep-orthotropic damage approach in case of
constant principal directions

Partly coupled
(Skrzypek, 1993)
isotropic flow rule
go — 3
Y 20eq

Fully coupled
(Ganczarski and Skrzypek, 1993)
modified orthotropic flow rule
Sis g ez
%) 1, 2;eq kY

scalar coupling
&g = (Tea) " f()

tensorial coupling
£q = (Teq)™ f(1)

orthotropic damage growth
. Ty Ty
D.=C, >
< 1 — D v

orthotropic damage growth
. oy Ty
D, =C,
v < 1 _ DV >

(4.25)

K S | I
Oeq = 231331,1, Oeq = 231]3117 €eq =

To avoid the above inconsistency, a second fully coupled approach is pos-
tulated where the modified orthotropic flow rule is used that assumes simi-
larity of the creep strain rate €° and the effective stress deviators s instead
of the usual stress deviator s in the previous formulation. This approach
is consistent in the sense that, after the orthotropic damage has occurred,
the virgin isotropic creep flow becomes orthotropic as well (cf. Table 4.1).

In the case of constant principal directions (o; = f;), the stress o, the
effective stress & and the damage tensor D are coaxial in their common

Z ¢ pe
€5;€;-
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principal directions; therefore, if the matrix representation is used, we have

g1 0 0 D1 0 0
[a] = 0 (o0} 0 s [Dl = 0 D2 0 ’
0 0 o3 0 0 D3
= o1
1_D, 0 0 (4.26)
o2
ol = 0
F=] 0 p 0
L 0 0 1—Ds

In a particular case when plane stress and creep incompressibility are as-
sumed, the definitions (4.25) reduce to the form

" " e\ | oo V2
g = 2/VB) ()" + () + |
o —[02+02—00]1/2

ea = |01+ 02 =010] ", (4.27)

2 2 1/2
~ J1 o2 0102
Ueq: + - s
[(1—D1> (1—D2) (1—D1)(1—D2)]

whereas the plane stress creep-damage constitutive equations are obtained
as follows:

éi — (5eq)m (Ul _ 0_2.) f'(t),

Oeq 2
(4.28)
-C __ (5eq)m _Ol e “C __ _ € -C.
&5 = o (az -3 )f(t), €5 = —&] — €5;
&= O™ | 725 — 57| O
17 e 1-D; 2(1-Dy) ’
(4.29)

e~ \m—1]| 02 1 o : . o _ o
62 = (Jeq)m [1 — D2 - 5 (1 - Dl):l f(t)’ 63 = —61 _627

when the partly coupled (scalar) or the fully coupled (tensor) approach is
used.

II1. Orthotropic creep-damage in case of variable principal directions

In the case of changing principal directions, the stress and damage tensors
o and D are not coaxial in their principal axes (a; # f;). Therefore,
either the partly or the fully coupled creep-damage approach may be used
at current time ¢ when the creep-damage constitutive equations and the
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Table 4.2. Partly or fully coupled creep-damage approaches applied to current
principal stress axes

Partly (scalar) coupled Full (tensor) coupled
~c __ égq zc __ 3 égq .
€1J _Qaeqs” 511——55_(1511
@i | E=Gani)
: org \" : org \"
17 Y\T_ Do D1y =C1s 1= Do,

nonobjective damage rate D are referred to the current principal stress
axes o; (I,J), Table 4.2.

The objective damage rate tensor ]v) corresponding to the rotation of
principal stress axes from a; to a; + da;, with time changing from ¢ to
t+dt, is obtained by the use of the Zaremba-Jaumann objective derivative
(cf. Bathe, 1982)

D=D —D"s - sTD. (4.30)

v
When the transformation of the objective damage rate tensor D from the
actual principal stress directions IJ to the global coordinates ¢j is per-
formed,

v v

Drj—Dyj, (4.31)
the new (updated) damage tensor at time ¢ + dt, the components of which
are represented in the global (sampling) space, is achieved:

v
D;; t+ At) = D;; (t)+ Di; (t)At. (4.32)
In a particular case, when plane stress and creep incompressibility are as-

sumed, the nonobjective damage rates are obtained from the orthotropic
damage growth rule

. o ™1 ) 09 r2
D1=01<1_D1> , D2:02<1_D2> . (4.33)

whereas the objective damage rate tensor components, associated with the
plane rotation of principal stress axes by the angle do, are

v v .
D11 Duar | _ [ Dy O ] _ { D1 Dy }
v v - ) D
D21 Dy 0 Dz Dz D

x 0 da _ 0 —da Dll D12
—da 0 da 0 D21 D22 ’

(4.34)
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4.2 Modeling of orthotropic time-dependent
elastic-brittle damage in crystalline
metallic solids

4.2.1 Basic equations of anisotropic elasticity coupled with
damage

The directional nature of microcrack and void nucleation and growth, in
initially homogeneous and isotropic solids, results in an anisotropic stress-
strain law of elasticity, where a fourth-rank anisotropy tensor A;jz; is time-
dependent:

€ij = X;j}clokl or €= K_I(D*) .o, (435)

The representation the fourth-rank elasticity tensor of a damaged metal-
lic material Az (derived by Litewka, 1985), when nonlinear forms with
respect to damage are neglected, has the form

~_ v 14+v
A = —F88m + 5 (Binbje + 6ubsn)
D (4.36)
+m (5ikD;"[ + 6]’1Di*k + 6“D;k + 6]kD:l)

The equivalent equation of anisotropic elasticity coupled with damage is

v 1+v D;
=—=(Tro)1 1 :D*+D*: :
€ E( o)1+ i U+2(1+D{)E(a + o) (4.37)
or
v 1+v D; . .
€y = —Eakklij + i o5 + 2(1 T IIDI)E(U“CDM + Dikokj)- (4.38)

E and v denote Young’s modulus and Poisson’s ratio of the virgin (un-
damaged) solid, whereas Dj is the dominant principal component of the
modified damage tensor D* the principal components of which are related
to the classical Murakami and Ohno ones by D} = D;/(1 — D;) (3.18).
Note that for the undamaged material the above formulas reduce to the
classical from the Hooke's law for the isotropic solid.

The elastic strain energy for the damaged solid takes the form:

1-2 1 ,
3° (o, D) = 6E”’I’r2cr + 2;”Tr(a ?) +

Di 2
—~1l__Ty(g?. D"
A+ DpE T DY),

(4.39)
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where

Tro = 3oy = 30’1‘4', 'I‘I‘(Ulz) =
TI‘(62 . D*) = UikUle;i-

wl b

Oo = i3S (4.40)

When the definitions of hydrostatic and equivalent stresses are used, the
above equation can be furnished as follows:

3° (o,D") = Teq [2(1+U)+3(1—21/) (”H)z]
’ 2E |3 Oeq
Dy
T+ D)E

(4.41)
(0ikow Df;).-

This time-dependent nonlinear function ®°(o,D*) may be compared to
the Chaboche concept of the strain energy density release rate Y (Sect.
2.3.1), but in this case the additive energy decomposition is used ®° (D*) =
®° (0)+ @9 (D*), where the first term is responsible for the elastic energy of
virgin (undamaged) material and the second is a nonlinear function of the
damage evolution D*(t). Recalling the notation of Sect. 2.3.1 the equivalent
abbreviated form may also be used:

2
(D) = J9R, + 34(D"),
2E 2
2 OH
R, = g(1 +v)+3(1-2v) (U ) , (4.42)
eq
D*
d ¥ — 1 2.1
(D) = 5oy pryTHE? DY)

4.2.2  Failure criterion and material identification

As a corresponding failure criterion the three-parameter damage affected
isotropic scalar function of & and D* tensors is assumed:

F(o,D*) = C/Tr%o + CyTr (a’z) +CyTr (02 : D) —02 =0. (4.43)

0y denotes the ultimate strength of the undamaged material (in general,
temperature dependent), whereas constants C;, Co and Cs are to be ob-
tained from the uniaxial tension direction (1), uniaxial tension direction
(2), and biaxial tension (1+2) tests (cf. Litewka and Hult, 1989).

4.2.83 Damage evolution equation

In Litewka’s theory the damage evolution rule is formulated by the use of
the classical Murakami second-rank damage tensor D (3.3):
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D = F(o,D). (4.44)

Applying general tensor function representations (with nine tensor gener-
ators), the reduced two-terms form, which accounts for both the isotropic
and the anisotropic damage, is proposed as sufficiently general to describe
creep rupture in metals (Litewka, 1989):

D=B(®)"1+C(?°)" 0" (4.45)

o* is a modified stress tensor whose compressive principal components

are replaced by zeros, whereas tensile ones are left unchanged. When the
first isotropic term is omitted B = 0, and the exponent n = 2 is set, the
simplified equation (4.45) takes the form (Litewka and Hult, 1989):

D=C(@) 0" =C [1 (;E?V’I‘lﬂa + 12;”1& (0’2)
(4.46)

D} ?
1 2. 1)* *
——Tr :D
B+ DY) (o )] 7
or, consistently applying Murakami’s damage tensor D,
; Cra 2 -1y12
D:—E[aeqRu+D1Tr(a' :D:(1-D) )] e,
2 (4.47)

O';-’ = (0,;) y D1 = max{Di}, 1= 1,2,3.

Note that in Litewka’s theory the damage evolution equation is generally
not consistent in the thermodynamic sense.

4.2.4  Ezample: Plane stress, o3 =0

When principal directions of the plane stress are used we have:

Tro = oy = 01 + 09,

2 2
Tr (0’2) = gof: = g(cr% — 0102 +03),
_ D, D,
2.7 (1._ N_ 2 2
Trle?:D: (1-D) ]—011—D1+021—D2’

(4.48)
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Hence, the damage growth rule for plane stress is written as

D=C(%)0" =
4.49)
D1 () 2 DZ 4 (
- Y la+BD - :
4E;2 A 1<1 Dl (cl) 1 EZ 717

where
o1

NS
—4v (—2) +<—2) : (4.50)
01 g1

Constants Cy, Ca, and C3 are obtained from the failure criterion (Sect.
4.2.2) as follows:

2
A (2) =1 —41/? +2(1+202) (2)

2
Ci+ 502 +DiC3 = (Uu/alu)2 direction Dy,
2 2 o
Cy+ 502 + D3C3 = (0u/024) direction D, (4.51)

2 2 biaxial tension
4C, + =C. Df+D3)C5; =
1+3 2+( 1+ 2) 3 (Uu/gbu) (D;,DE)
Material constants 01y, 02y, and o, are the ultimate strengths of the two
uniaxial tests and the biaxial test for the damaged material, whose values
are related to the ultimate tensile strength by (cf. Zuchowski, 1986):

O1u = Opu = (1 - Dl)Uu,

020 = (1— Dy)oy,. (4.52)

Note that, for a virgin (undamaged) material, 03, = 02, = Opy = 0, and
parameter C; = 0, hence, with D] = D5 = 0, the general formula for the
failure criterion reduces to the classical Huber-Mises—Hencky hypothesis
F(o,0) = FHMH In other words, the proposed failure criterion is identified
as the damage-influenced Mises-type failure criterion where it is assumed
that the onset of material failure (first macrocrack initiation) is observed
when the continuously shrunk failure surface (due to the damage growth)
meets the stress vector actually applied at the point (Fig. 4.2).

When two cases for m = 09/0; are considered, we get the damage evo-
lution as:
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a,/a,

progressive
damage

1

F(o0)=0
(Huber—Mises)

I o/,

\ instantenous

failure

Fig. 4.2. Failure criterion (or isochronous rupture curves) for copper at 523 K
(after Litewka and Hult, 1989)

0O<m<1
Dy _ D, s Do C ,f o
{DQ}”[A+BD‘(1—DI+T”1—D2 18271 oy (4.53)

or Dy =mD,

m <0
Dl - Dl 2 D2 L 4 g1

{ Dy }_ [A+BD1(1—131 D, )| 1201 o (4.54)
or D2=0.

Both cases may also be expressed by the unified damage growth formulas
(Litewka and Hult, 1989)

D? , 1-Di\] C .

dDy = ndDy,

where n =m for 0 <m < 1,and n =0 for m < 0.
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Eventually, when the plane stress condition is applied to the failure cri-
terion, with two uniaxial and one biaxial tensile tests used to determine
C1, Oy, Cs3, a reduced set of five equations is obtained:

SR 1-D :%aﬁdt’
— 2 2 1
Al D1)+BD1[12+mn1—nD1}
(1+2m+m2)01+§(1—m+m2)02
2
P (e e P Y o 2 (%)
1-D, L—nDy) "~ \ o1 (4.56)
2 Dy 1
z L .=
Cl+302+1—-D1 3 (1—D1) )
2 nDy ., [ 1 \*
Cl+502+1—nD103_<1—D1) ’

2 D nD; (1Y
46““30”(1—01 + 1—nD1>03— (l—nDl) '

This system of equations that determine five unknown values Df’“, tr,
C1, Cz, C3 was numerically solved by the authors and compared with the
experimental data by Johnson et al. (1956) and Murakami et al. (1986)
for copper at 523 K at given 0g/0; ratios. The material constants used for
theoretical predictions are as follows: v = 0.35, 0, = 120, MPa, C/4E? =
2.49 x 10712 [MPaSh]~1.

Comments:

i.

iii.

Although the results reported in this section exhibit that the theo-
retical isochronous curves obtained for the radially fixed stress ratios
in principle remain in harmony with a certain number of experimen-
tal points, the practical application of this methods requires further
improvement.

. In general, for a prescribed boundary problem, the damage induced

redistribution of stresses results from the constitutive stress-strain-
damage equation (Sect. 4.2.1). The elasticity equation coupled with
damage is time-dependent and, hence, the constant stress ratios used
to solve the basic system of equations should rather be replaced by
integration along nonproportional paths.

In addition, when the principal directions of the stress tensor change,
the same happens with principal directions of the damage tensor,
but the principal axes of both tensors do not coincide and, therefore,
the objective derivative of the damage tensor should be applied to
account for the rotation of principal stress axes (cf. Sect. 4.1.2).
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iv. Note that under pure compression (third quarter), no progressive
damage accumulation occurs and, therefore, when the applied stress
vector meets the initial (undamaged) failure surface, instantaneous
failure might occur at the point with no prior damage accumulation.

v. Litewka’s model is, in general, inconsistent in the thermodynamic
sense, since the coupled damage-constitutive equations are not consis-
tently derived from the Helmholtz free energy function. Nevertheless,
for metallic crystalline materials (like copper or some stainless steels)
reasonable predictions may be obtained. The model is not applica-
ble for elastic-brittle rock-like materials (like concrete) since damage
evolution under compressive forces is not included.

4.3 TUnified constitutive and damage theory
of anisotropic elastic-brittle rock-like
materials

4.8.1 Thermodynamically based equations of elastic-brittle
damaged materials

The general thermodynamically based theory for constitutive and evolu-
tion equations of elastic-brittle damaged materials is due to Murakami and
Kamiya (1997). It is based on the Helmholtz free energy as a function of
the elastic strain tensor €°, the second-rank damage tensor D, and another
scalar damage variable . By establishing a single dissipation potential, a
unified description is possible instead of a separate formulation of consti-
tutive and damage evolution equations.

The following representation of the Helmholtz free energy is postulated:

0¥(e*, D, f) = 0¥°(e®, D) + 0¥4(B),

o¥°(e?, D) = %)\’I‘rZe:e + pTr(e®)? + n, TrDTr?e®
(4.57)
+ny TrDTr(e°)? + 13 Tre*Tr(e® : D) + 0, Tr[(e* ) : D],

V() = S K,

where A = Ev/(1+ v)(1 — 2v) and p = E/2(1 + v) are Lamé constants
for undamaged materials, 1y, 74, 73, 74, and Ky are material constants,
and €° is a modified elastic strain tensor used to represent the unilateral
damage response
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e = (9~ (=),

<61> 0 0
(=] 0 (=) 0 |,
0 0 (e) (4.58)
(=e1) 0 0
(—e)=] 0 (=) o0
0 0 (-e§)

For the parameter ( = 1 the modified strain tensor €° is identical to
€® and the unilateral damage opening/closure effect is not accounted for.
For ¢ = 0, the strain tensor €° is modified in such a way that negative
principal strain components are replaced by zeros, whereas positive ones
remain unchanged. The same rule was used in Sect. 4.2 when applied to the
modified stress tensor o* in Litewka’s model (cf. Litewka, 1985). In other
words, in this limit case, cracking growth is stopped under compression. In
general, neither of these two limit cases occurs, whereas { should be taken
from the tension/compression test. In the case of high strength concrete
application, the value { = 0.1 was experimentally established (cf. Murakami
and Kamiya, 1997). Applying (4.58) the following constitutive equations of
anisotropic elasticity coupled with damage are furnished:

0 =——+=A(D):e® = [\Tre® + 2, TrDTre®

+n3Tr (¢° : D) 1+ 2 (4 + 1y TrD) €° + 75 (Tre®) D (4.59)

e*

Oe
N4

“.D+D: e‘)
Oe® (e + € )

whereas the thermodynamic damage conjugate forces of D and [ are

2 (oT° ..
Y=- (aQD ) o _ [m (Tre®)? +n,Tr (ee)Z] 1— g (Tre®) e® — e : e,
3 (09?)
B= = K,B.
9B Kap

(4.60)
K(D) is a fourth-rank symmetric tensor, the secant stiffness, as a function
of the second-rank damage tensor D (the damaged elastic stiffness). Ther-
modynamic conjugate force Y, associated with D, is known as the damage
strain energy release rate and is the derivative of strain energy with respect
to the damage variable D (the mechanical flux vector component). In case
of the second rank-damage tensor D, Y is the second-rank tensor as well.
In case of the isotropic damage defined by the scalar D, Y is a scalar (see
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Sect. 2.3.4, (2.135)). The damage criterion in the space {Y,—B} is also
assumed in the form

F(Y,B) =Yeq— (Bo+B) =0,

\ (4.61)
1
Y;q = (%Y 'L Y) / s Lijkl = % (5ik6jl + 6il6jk) .

The evolution equations for damage are finally established as follows:

oF . . oF
v PMNECE

. OF . /(3B L:Y
)\d—WY/(a—ﬁ)—amY,

where & = 1 if F = 0 and 8F/0Y : Y > O or a = 0 if F < 0 and

OF/9Y : Y 0.

D:_).‘d =Ad)

(4.62)

4.8.2  Ezample: Application to high strength concrete

The above theory is applied to two cases, uniaxial compression and uniaxial
tension tests of a high strength concrete. The modified elastic strain tensor
takes the form

Cefp 00
[Ee.]com — 0 632 0
0 0 5%3
or (4.63)
«qten E?I 0 0
] 7= 0 (52 O |,
0 0 (e5g

for the uniaxial compression or the uniaxial tension, respectively. Addition-
ally, the following holds:

Tre® = €7, + €59 + €33,

Tr (€2) = (e51)% + (e52)% + (e55)°,
(4.64)
e 2 e e e 2
(Tre®)” = (e§; + €52+ €53)"

Tr (Ee : D) = €3, D11 + €59 Dgg + €53 D33.

The high strength concrete identification, based on the uniaxial compres-
sion test, yields (cf. Murakami and Kamiya, 1997)
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Ey=214GPa, vg=02, 7, = —400 MPa,
1y = —900 MPa, 73 = 100 MPa, 7, = —23500 MPa, (4.65)
¢=0.1, K4 =0.04, By = 2.6 x 10~2 MPa.

When the matrix representation is used, the following damage coupled
constitutive equations for the uniaxial compression or the uniaxial tension
are furnished:

o11 Annn Aiee Anss 91
0922=0 3= Ago11 Asozz Agzsz €2 (> (4.66)
033 =0 As311 Aszez  Assss €53

where the components of symmetric 3 x 3 matrices are

Ar1nr = A+ 2p+2 (1 +75) TrD + 2 (3 + 14¢?) Dy,
Ag292 = A+ 24+ 2 (ny + m2) TrD + 2 (13 +14) D2,

Ass3z = A+ 24 +2 (g +12) TrD + 2 (n3 +14) D33,

(4.67)
Aq122 = Agg11 = X + 210 TtD + 13 (D11 + Ds2),
A1133 = Azzin = A+ 27, TrD + 73 (D11 + Ds3),
Ag233 = Aszze = A + 21, TrD + 13 (D2 + D33)
or
At = A+ 2p 42 (ny +n2) TrD + 2 (13 +14) D1,
Agz2p = A+ 20+ 2 (n; + n3) TrD + 2 (03 + 14¢?) Do,
Aszzz = A+ 2+ 2(ny + 1) TD 4+ 2 (03 + 714(2) Dy3,
(4.68)

A1122 = Ago11 = A+ 2, TrD + 53 (D11 + Da2) ,
A1133 = Azzyp = A 420, TYD + 03 (Dyy + Dss) ,

Ao23z = Azzor = A+ 21, TrD + 73 (D22 + Ds3) ,

for the uniaxial compression or tension, respectively. For both cases, the
damage rates (anisotropic damage evolution) may be expressed as follows:
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Dll a <Y11Y11 +YaoYar + Y33Y33) Y )
Dy b= Yar 3. 4.69
Dus 2Kq (Y5 +Y5 +Yd) Yas (

However, the components of the damage conjugate force Y are different for
both cases, and are given as follows:

*y\ 2
Yu= _771Tr25e —noTr (ee)z —ng (Tre®) e§; — ny (5?1)2 )
Yoo = —n,Tr’e® — ny T (56)2 — 13 (Tre®) €55 — ny (’552)2 ) (4.70)
Ya3 = —ny Tr’e® — ny T (€°)° — 13 (Tre®) €55 — ny (%),

where the appropriate components of the modified strain tensor e*” (4.63)
for the uniaxial compression or tension are used.

4.8.83  Unilateral elastic-damage response of concrete under
uniazial compression versus uniazial tension

Strong unilateral behaviour of high strength concrete, when subjected to
uniaxial compression or uniaxial tension, is observed. Stress versus strain
diagrams illustrate this phenomenon (Fig. 4.3).

The development of damage components under a uniaxial compression
shows that, in spite of uniaxial stress state, microcracks in concrete both
perpendicular (D;1) and parallel (Dgg = Ds3) to the loading direction prop-
agate with strain increase and transverse components are dominant. The
critical value of damage under compression is D™ =z (0.4, whereas the
critical stress is o50™ = —52 MPa.

In contrast to the previous phenomenon, the development of damage
in concrete under uniaxial tension is much more anisotropic, with microc-
racks perpendicular to the tension direction (D;1) dominant and transverse
components negligible. At critical stress level 0% = 12.3 MPa the critical
damage components are Dyyo, = 0.13, Dgg.r = D3ge = 0.01.

In both cases a significant Young’s modulus drop with damage is pre-
dicted; however, under uniaxial compression it is accompanied by an in-
crease of Poisson’s ratio, whereas under uniaxial tension no essential change
in Poisson’s ratio occurs. The above discussed unilateral response of elastic-
brittle material like concrete is connected with the effect of cracks opening
under tension and closuring under compression. Hence, the damage de-
velopment is strongly anisotropic, with two specific cracking orientations,
different for tension and compression. They might be identified as the trans-
verse planar isotropy produced by 1 > 0, 02 = 03 = 0 (uniaxial tension),
and the cylindrical transverse isotropy produced by 01 < 0, 09 =03 =0
(uniaxial compression) (cf. Chaboche, 1993). These are illustrated in Fig.
3.10.
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Fig. 4.8. Anisosensitive damage-strain relations and the effective Young’s modu-
lus E and Poisson’s ratio 7 for high strength concrete: a) under uniaxial tension,
b) under uniaxial compression (after Murakami and Kamiya, 1997)

The constitutive and damage evolution equations of elastic-brittle ma-
terials have been developed in this section by the use of Helmholtz free
energy where damage conjugate forces are expressed as a function of the
elastic strain tensor, (4.60)—(4.62). However, it is more convenient to de-
fine damage conjugate forces as functions of the stress tensor by the use
of the Gibbs thermodynamic potential. Such an approach was recently ap-
plied by Hayakawa and Murakami (1998) to elastic-plastic-brittle materials
for which the Gibbs potential accounts for complementary energy due to
elastic deformation, the potential related to plastic deformation, and the
damage potential related to microvoid nucleation.
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4.4 Matrix representation of fourth-rank
elasticity tensors for damaged materials

4.4.1 Representation of elasticity tensors expressed in the
principal azes of damage tensor

In unified approach, reported in the previous sections, a fourth-rank sym-
metric tensor of secant stiffness A is defined by applying the Helmholtz
free energy of damaged material

o= K(D) :e® or Oy = KUHEZI' (4.71)

If the stiffness tensor A is expressed in terms of principal components of
the second-rank damage tensor D, , the constitutive equation of elasticity
coupled with damage takes the following matrix representation (Murakami
and Kamiya, 1997):

{o} = [Kaaxc (Do) {7}, (4.72)
o1 A+2p+2(ny +mg) TeD + 2 (03 +14) D11
092 A+ 27]1r..ﬁ‘D + M3 (Du + D22)
033 | _ A +2n, TrD +n3 (D11 + Ds3)
093 0
031 0
012 0

A+ 27]1"_[&‘1) + 13 (Du + D22)
A+ 2p+2(ny +n2) TrD + 2 (13 + ny) D2z
A+ 27, TtD + 715 (Da2 + D33)
0
0
0

A+ 21, TrD + 13 (D11 + Das)

A+ 20, TrD + 13 (D33 + Dag)
X+ 24+ 2(ny +ny) TrD + 2(n3 +ny) Dss
0

0
0
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0
0
0
2u+ 2’l’[ZTI‘D + 7y (D33 + D22)
0
0
0
0
0
0 (4.73)
2u+ 2’!]2']}D + 1y (Dll + 033)
0
0 €11
0 €99
0 €33
0 €93
0 €31

2p + 20, TeD + 1y (Dyq + Das) €12

A and p are Lame coefficients of the isotropic undamaged solid: A =
Ev/(14+v)(1—-2v), p = E/2(1+v). For simplicity, the unilateral dam-
age effect has been excluded (¢ = 1). The secant stiffness tensor A may also
be defined in a different fashion when the fourth-rank damage effect ten-
sors M (D) are used (cf. Sect. 3.4.2). If, for example, Chaboche’s concept
is adopted to define the effective stresses and the effective strains,

F=Mg (do): 0, €°=Mopp(da):e® (4.74)

and

=A%, o=A: ¢, (4.75)

the elasticity tensor modified by damage A (d,) is furnished as follows (cf.
Chaboche, Lesne, and Moire, 1995):

o= [Mcp(da): A : Mgy (dy)]: €° = A(ds) : €°. (4.76)

Recalling the matrix representation for Mgy, (d;,d2, d3), represented by a
diagonal matrix of principal damage components dy, dg, d3 (3.96):
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1-dy 0 0 0
0 1-d; O 0
| o 0 1-ds 0
Mon(da) = | 0 0 (1—dg) (1 — ds)
0 0 0 0
0 0 0 0
0 0
0 0
0 0
0 0
(1-ds)(1—dy) 0
0 (1=di)(1-dn)
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(4.77)

and the well-known matrix representation of the elasticity tensor for un-

damaged isotropic materials

A2 A A 0 0 0

A A+26 A 0 0 0

Al A A A+22 0 0 O
=l o 0 0 2z 0 0
0 0 0 0 2u 0

0 0 0 0 0 2

(4.78)

we obtain the following matrix representation of the elasticity tensor mod-

ified by damage

(A+20) (1= di)* A(1—di) (1 - dy)

A(1—dy) (1 —dp) ()\+2,u)(1 dz)

Kc}, (da) = ( 13 (1 - d3) (1 - d23 (]- )
0 0
0 0
A(l—dl)(l—dg) 0
A(1—dg)(1—ds) 0
(A +2p) (1 — ds)? 0

0 2p (1 —dp) (1 - d3)

0

0
0 0
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0 0

0 0

0 0

0 0 (4.79)
2u (1 — dg) (1 — dy) 0

0 2u(1—dy) (1—dy)

The appropriate constitutive equation for the elastic-brittle damaged
material is established as

{o} = [XCh (da)] {e}
{G}T = {011,022,033,023,031,0'12}: (4.80
{E}T = {511,522,533, €23, €31, 512} .

In case of the inverse formulation (cf. Sect. 3.4), the elasticity equation
coupled with damage is expressed as follows:

e=Alo or €5 = K;jilak,. (4.81)

The inverse elastic matrix (compliance) A~ (D) may be defined in a similar
fashion when one of the matrix representations of the damage effect tensor
(cf. Sect. 3.4.3) is used. Hence, if the following definitions are employed

6=M(d,):0, E=M"1(d,):e°,

~ (4.82)
€ =A1lo, e=A1l0,
the elasticity equation is furnished as follows:
€° = [Mon (da): A" Moy (da)] - 0 = A (do): 0. (4.83)

When the definitions of My, Mg or M3 (cf. Chen and Chow, 1995, Sect.
3.4.3) are used in their matrix form in terms of the principal damage com-
ponents, Dy = Dy1, Dy = Doz, D3 = D33, Doz = D3; = Dyg = 0, the
following symmetric compliance matrices modified by damage are obtained:



4.4 Matrix representation of fourth-rank elasticity tensors 127
r 1 _ v
a-Dy)? (1—D11)(1~D2)
1 ~(1-D;)(A-Dy) (1-Dy)?
~ 174 vV
A—l = — _(1~D3)(1—D1) _(I—Ds)(l—Dz)
1 E 0
0 0
L 0 0
—il—Dl V(I—D3) 0
_(I—Dzl)(l—Ds) 0
T=Day o (4.84)
0 (1-D2)(1-Dg)
0 0
0 0
0 0
0 0
0 0
0 0 )
1+v 0
(1—D1)(1—D3)
1+v
(l-‘D])(l—Dz)
r 1 _ 14
(1-Dy)? (I—Dll)(l—Dz)
. T (1-D2)(A-Dr) (1-Dj)?
A-l= — | ~E=Do=Dy ~ D GE-D
A, 2 ( E(S))( 1) ( :6)( 2)
0 0
L 0 0
_(I—Dl)::(l—Da) 0
_(1_D21)(1_D3) 0
(1-D3)? 12
0 0
0 0
0 0 1
0 0
0 0
0 0 ; (4.85)
1+v
0 1+v
(1~ DHz-Dz )2
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[ 1 v
(1-D1)? _(1—D11)(1—D2)
T (1-D3)(1-Dy) (1-D3)?
~_1 1 _ v _ v
A3 =E (l—DB)(l—Dl) (1-Ds)(1-D3)
0 0
| 0 0
_(l—Dl)V(l—D3) 0
_(1—D21)(1—D3) 0
(1-Ds)? 0 .
v 4.86
O LZ— (1—1D2 + l—ng) ( )
0 0
0 0
0 0 ]
0 0
0 0
0 0
2
'1_-311/ (1—1D1 + 1—1D3) 0
2
1 1 1
0 2 (e v o)

For comparison, the appropriate elasticity matrix that follows from the
Litewka model (cf. Sect. 4.2} is also quoted:

~ 1
A7l=—=x
L' = E
[ 1+ 15})2; —v -V
D:D}
—v 1+ Ti'D—% -V
D:D?
» -V —v 1+ 4D 0
D} (D3+D3
0 0 0 (1+v) [1 + mmgll)]
0 0 0 0
| 0 0 0 0
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0 0 i
0 0
0 0
OD; (D}+D3) ’ (4.87)
(1+v) [1 + 2(1+u)(1+D;)] 0
Di(Di+D3)
0 (1 + l/) [1 + 2(1+u)(1+DI) ]

In the last case, only the diagonal components of the elastic matrix are
affected by damage when represented by the principal components Dj,
D3, Dj of the modified damage tensor D} €< 0,00), which is a limitation
of the model.

4.4.2  Representation of elasticity tensors in a general case of
damage anisotropy

In a more general case, when the damage tensor D (or D*), the stress
tensor o and the strain tensor €° are not coaxial in their principal axes,
a complete representation with non-zero off-diagonal components must be
used (damage induced anisotropy). We shall discuss this effect for two mod-
els: Litewka’s model (Sect. 4.2) and Murakami and Kamiya’s unified model
(Sect. 4.3).

In general, when principal axes of stress and strain tensors rotate due to
the stress and strain redistribution following damage evolution in solids, the
principal axes of the second-rank damage tensor also rotate. However, the
stress, strain, and damage tensors are no longer coaxial in their principal
component coordinate axes. Hence, when the modified damage tensor is
expressed in terms of six components Dj;, D3,, D33, D33 = D3,, D}, =
Dis, Di; = D3, for Litewka’s model a generalized form of the constitutive
equations of elasticity coupled with damage may be furnished:

{e} =[R2 (O {} (4:88)

and
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bt 4

bt 4

i
¥
L+ o7 Dis
—1L _D
2(1+D;) " 2
i

1 *
2(1+D;) 13

0

sGep (i + D)

022
033
023

012

- Dr
1 + ED‘LIDH -V
D*
€ — D1 _px
511 v 1+ 1+D0; D22
€22 —y —v
33 :E——l 0 D* D D*
€23 2(1+D;) 23
€13 1
€12 (1+D‘)D13 0
D; Di__p»
L (1+D;) 12 o(1+D;) 12
—1 ¥
O 1+D7 Dis
1+D‘ b D33 0
D
1 *
1+D* D23 1+D“ 13
1+V+2 1+D‘) (D32 + D3s3) 2(1+D‘)D12
D ,
2 1+D*)D 12 l+v+ 2(1+D;
2(1+Dt;D13 2i1+ijD23
1+D'D12
1+D‘ Dl2
D .
2(1+D*jD 13
2(1+D'5D23
l+v+ 1+D‘ (D11 + D3y) ]

(4.89)

In a similar fashion, for the Murakami-Kamiya model, the general elasticity
equation coupled with damage for the initially isotropic material (damage
induced anisotropy) is obtained:

and

011
022
033
023
013
012

{0} = [XMK (D*

)] te}

(4.90)

A+ 2p+2(n; +n,) T'D+2 (3 +n4) D1a
A+ 21, TrD+n3 (D11 + Dag)
A+ 20, TrD+4n3 (D11 + Ds3)
13 D23
(ns +m4) D13
(3 +n4) D12
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A+ 20, TrD+n5 (D11 + Dag)
A+ 20+ 2(ny + ny) TrD+2 (ng + 1) Doy
A+ 20, TrD+n;3 (D2 + D33)
(m3 + m4) D23
N3 D13
(n3 +n4) D12

A+ 27]1']}D+7]3 (Dn + D33)

A+ 2n, TrD+n3 (D22 + D33)
A+2p+2(ny +ng) TrD+2 (03 +ny) Das
(3 +14) D23
(n3 +n4) D13

N3 D12
2n3 D23 2 (n3 +mn4) D13
2(n3 +1n4) D3 2n3Dy3
2 (n3 4 14) D3 2 (n3 +n4) D13
2(p+nyTrD) +ny (Dag + D33) N4D12
n4D12 2(p +nyTrD) + 1y (D11 + D33)
N4D13 14D23
2(n3 +my4) D12 en
2(n3 +mny) Drg €99
213 D12 €33
M4D13 €23
14D13 €13
2(p +nTrD) + 4 (D11 + Da2) €12

(4.91)
Note that in Litewka’s model the current dominant principal value of the
damage tensor D; plays the essential role in the damage affected terms of
the elasticity matrix [A~1].

4.4.8  Constitutive and damage evolution equations by use of
the Gibbs thermodynamic potential

In Sects.4.3.1 - 4.3.3, the constitutive and damage evolution equations of
elastic-plastic-brittle materials were developed by the use of the Helmholtz
free energy, where the damage conjugate forces were expressed as a function
of elastic strain tensor, (4.60)—(4.62). However, the experimental validation
of this theory is difficult for elastic-plastic-damage materials. For this reason
it is more convenient to define the damage conjugate forces as functions
of the stress tensor by using the Gibbs thermodynamic potential T that
consists of the complementary energy I'® due to the elastic deformation, the
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potential related to the plastic deformation I'P, and the damage potential
related to the free surface energy due to the microcavities nucleation I'd:

I'(o,r,D,f) =T°(o,D)+I* (r) + T (6). (4.92)
The elastic complementary energy I'® (o, D) is assumed to be quadratic in
o and linear in D, hence

v

Fe(U,D) Z—ﬁ(

Tro)? + %’mﬂ +9/TrD (Tror)? o
4.93

+9,TrDTro*? + 93 Tro (TI‘O'D) + 94Tk (a'*ZD)
where 91, ¥, ¥3 and ¥4 are material constants and o* is the modified stress

tensor responsible for the opening/closure effect defined in an analogous
way as the modified elastic strain tensors (cf. (4.58)):

o' =(o)—((-0). (4.94)

For plastic and damage terms I'P (r) and I'! (3) the following formulas are
used:

I'P?(r) = Ry [r+%exp(—b7‘)] ,
I (9) = 5K,

where R, b and K4 are material constants. Eventually, the elastic-damage
constitutive equation is furnished as

(4.95)

e_Or° v I+v

e =5 _—E(Trcr)1+ 5 o+ 29, ('DTro) 1

+29, (TrD) o : 22 (4.96)
oo
403 [Tt (¢D) 1+ (Tro) D] + b4 (¢"D + Do) : ‘93‘:
and the forces conjugate to internal variables D, 7 and § are

6 e

Y= 81—]; = % (’Ika')z + 192'1}‘0'*2} 1+93 (Tl‘d‘) 0'+’l940’*2,
ore

R= 5= Roo [1 — exp (—br)], (4.97)
ore

B= 95 = Ky4pb.

Assuming also the Mises-type yield condition of the damaged materials in
the form
FP(o,R,D)=0Geq— (0y+R)=0 (4.98)
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the constitutive equations for plastic strain rate &}; and the rate of isotropic
hardening 7 hold:

&P — AP OFP _ 3Ap Mijniogy
" do;; 2 Oeq
(4.99)
. OFP
= AP = AP
7= A FTa) AP,

where M (D) is a fourth-rank damage effect, tensor

- 1 1
M (D) = 5 (5ik6jl + 6it5jk) + icp (&'kDﬂ + Dikéﬂ + 5ilek —+ Dil5jk)
(4.100)
and the effective Mises-type equivalent stress Gq is
~ A n1/2
Foq = [(3/2)a M(@D):0o ] . (4.101)

In order to establish evolution equations of damage D and 3, the damage
dissipation potential is assumed in the form

FY(Y,B,D,r) = Yoq + ¢'rTrDTYY — (Bo 4+ B) =0 (4.102)

that extends (4.61) by the additional damage-plasticity term corresponding
to isotropic hardening r. The fourth-rank tensor L (D) is given by the
formula analogous to (4.100) with the material constant cP replaced by the
new constant cd. Hence, the evolution equations are furnished as follows:

. a4 .
I'D:Ad%%zAd [%;+C‘T(TrD)1 ,
- (4.103)
o L
b= hig s =

The plasticity and damage multipliers AP and A4 must be derived from
the consistency conditions for the plastic yield surface (4.98) and damage
surface (4.102) (cf. Hayakawa et al., 1998):

>, oFd  ard\ (aF¢ | v
o . & (BD' v )57 Y
B

ip — 00
A ok +(@) 8B _ oFd . ppa\’

T A D * 5 (4.104)
. 8F .Y
Ad Y
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The material constants determined for the cast iron FCD400 are (Hayakawa

et al., 1998):
E = 169 MPa,
¢ = 0.89,

95 = 4.00 x 10~ MPa™!,
¥4 =2.50 x 10~ MPa™!,
Ro = 293.0 MPa,
Kq=1.3,

c® =10,

¢ =50.0.

v =10.285,
¥ = —3.95x 10"7 MPa™!,
93 = —4.00 x 107 MPa™?!,

b=15,
Ry, = 250.0 MPa,
Bo = 0.273,
cd=-15.0,
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Coupled thermo-damage and
damage-fracture fields

5.1 Damage effect on heat transfer in solids
under thermo-mechanical loadings

5.1.1 Concepts of a thermo-creep-damage coupling

The creep process and the associated material deterioration are tempera-
ture sensitive phenomena. A classical approach consists in accounting for
the effect of temperature on the material functions in the constitutive and
the evolution equations of a damaged solid (cf. Ganczarski and Skrzypek,
1991), whereas the temperature field remains steady state.

In a general case, when thermo-mechanical loadings are applied to the
structure, in addition to the constitutive and evolution state equations with
the appropriate mechanical boundary conditions, the heat transfer equa-
tion must simultaneously be solved to yield a transient temperature field
which satisfies the thermal boundary conditions. Material nonhomogeneity,
which results from the deterioration process in a solid, influences both the
mechanical moduli represented by elasticity tensors A (x, t) or A1 (x,1),
stiffness or compliance, and the thermal properties L (x, t) or T (x,t), where
Aor A!and f‘, T are fourth-rank elasticity tensors and second-rank ther-
mal conductivity and emissivity symmetric tensors, respectively, all defined
at a given material particle x. In fact, the tensor nature of thermal conduc-
tivity is a question of debate. Carslow and Jeager (1959) and Fung (1965)
introduced a symmetric, positive definite matrix L;; of thermal conduc-
tivity moduli, whereas Nowacki (1970) defined the thermal conductivity
as Li; = Lij /T? and postulated considering it as a symmetric tensor,
when the temperature change is limited to be small enough when com-
pared to the natural state, such that L;; can be assumed as constant.
For porous media Kaviany (1995) introduced the thermal diffusivity tensor
L = Leg/0cp + fL9, where L is the effective thermal conductivity tensor,
LY is the thermal dispersion tensor, and f denotes porosity. The author
assumed that L is a positive-definite, symmetric tensor, the off-diagonal
elements of which vanish in case of isotropic media. Recently Saanouni,
Forster, and Ben Hatira (1994) when formulating the general constitutive
law of the coupled isotropic damage-elasto-(visco)plasticity, also introduced
a symmetric second-rank tensor of thermal conductivity k (cf. Sect. 2.3.4).

In what follows, the tensor nature of Zi j and f,-j matrices is postulated, in

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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particular, when second-rank damage tensor D;; affects thermal properties
of a solid resulting in an anisotropic thermal conductivity and radiation,
though in a virgin material the thermal isotropy holds (cf. Ganczarski and
Skrzypek, 1995, 1997; Skrzypek and Ganczarski, 1998Db).

Tanigawa (1988) formulated a coupled thermo-elastic problem for time-
independent, nonhomogeneous but isotropic structural materials. If a body
is isotropic and nonhomogeneous, the steady state heat conduction equa-
tion, without the internal sources, has the form:

86 [Ao (z,9,2 )ZT} % [)\O (2,y,2) ] aaz [)\0 (,y,7) ‘z_ﬂ —0,

(5.1)
where T = T'(z,y, 2).

The above equation needs to be extended when thermally nonhomogene-
ous solid suffers from a creep-damage process, hence, the thermal con-
ductivity function of a virgin solid Xo(z,y, 2) is replaced by a new time-
dependent, generally anisotropic tensorial function L (z,y,2,t) that char-
acterizes the thermal properties of a partly damaged solid. The material
nonhomogeneity is no longer time-independent, following damage evolu-
tion. Hence, in the simplest case, when the isotropic damage is assumed as
governed by a single scalar variable D (x,t), a more general form instead
of (5.1) is required:

a% {X i, D (x,£)] agi")} = {)\[x D(x,%)] %ﬁ}

+§_Z {X ix, D (x,1)] m;i")} 0,

(5.2)

whereas for nonsteady states, with internal heat sources ¢,, the extended
equation (5.1) takes a form:

63 {)\[x D(x, t)]aT—(X—)} {)\[XD( )JM}

oz ay dy
(5.3)
o [~ 3T(X Oqy aT (X,t)
+, {)\ [x,D (x,1)] } +o = p
div {X[x, D (x,1) g'radT} +dy = cool (5.4)

in a more general case.
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The effect of damage on thermal properties is described here by the single
scalar variable X [x, D (x,t)]. The mass density and the specific heat, g, c,,
are assumed to be time-independent constants. _

The aim of this section is to specify time-dependent functions A [x, D (x,
t)] that introduce coupling between the heat conductivity and the isotropic
damage evolution. Three models of the scalar thermo-damage coupling are
proposed (cf. Skrzypek and Ganczarski, 1998b).

A. Direct extension of the equation of thermal conductivity for damaged
solids

The simplest model is based on the assumption of linear heat conductivity
drop with damage (cf. Ganczarski and Skrzypek, 1995):

X[x, D (x,8)] = o (%) [1 = D (x,1)] (5.5)

where Xg (x) denotes generally nonhomogeneous distribution of the ther-
mal conductivity in a virgin (undamaged) solid, whereas the scalar vari-
able D defines the current damage level (e.g., governed by Hayhurst and
Chaboche’s rule, (2.35)—(2.36). In this model, when material is locally com-
pletely damaged, D (x,t) = 1, the thermal conductivity coefficient drops
at this point to zero X(D = 1) = 0 and, hence, local heat conductivity
through the completely damaged surface element must also drop to zero.

In other words, the fully damaged RVE is assumed to be free from any
kind of stress and unable to support heat conduction. This property was
also used by Saanouni et al. (1994); however, it is not obvious when a
more general heat transfer model is applied unless the mechanisms other
than conductivity are excluded. Note also that, when in the Saanouni et al.
(1994) approach the energy based equivalence principle was used instead
of the linear conductivity drop (5.5), the other formula is derived from the
state potential, namely k= (1- D)l/ 2 k, so that the following isotropic
model may also be proposed:

X[x, D (x,8)] = Ao (%) [1 — D (x,8)]/2. (5.6)

B. Concept of a combined evolution of thermal conductivity and radiation
through partly damaged solid

Further extension of the Model A accounts for an additional heat flow
term through the damaged surface element portion, by application of the
Stefan—Boltzmann radiation law. Hence, when both conduction and radia-
tion mechanisms of heat transfer are admitted, the following extension of
(5.3) was proposed by Ganczarski and Skrzypek (1995):
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6%; {/\0 (x) [1 — D(x,t)] %2 — 06 (x,t) D (x,1) T4}

or(x,1) — o€ (x,t) D (x,t) T*

)
+5- 420 (x)[1 = D (x,1)]
% { (5.7)

45z Rt - Dt D oa ) DG 74

Oqw oT(x,t
420 _ L)

ot ot

In the Model B under consideration a combined conductivity/radiation
mechanism allows for a heat flux even though the damage at a point reaches
level 1 (due to radiation across the microcracks). However, as will be shown
further, the model exhibits an essential inconsistency. The form of terms
associated with radiation suggests, namely, that there exists heat exchange
caused by a redistribution of damage only, even though the temperature
remains constant. To omit this inconsistency, it is necessary to use the
second law of thermodynamics and to cutoff inadmissible temperature dis-
tributions (cf. Sect. 7.4.3)

C. Concept of the equivalent (reduced) coefficient of thermal conductivity
for a combined conductivity/radiation heat flux through partly damaged
solid

Another way that consists in accounting for a combined heat exchange,
when the conductivity is assumed to be a dominant phenomenon, was pre-
sented by Ganczarski and Skrzypek (1998b). A combined heat flux is char-
acterized by the substitutive coefficient of thermal conductivity modified
in order to take into account a simultaneous influence of the conductivity
through the RVE at the point x, A and the radiation from x to x+dx. The
equivalent coefficient of thermal conductivity A\*? is expressed, therefore,
by the equation:

~ ~rad
X[x,D(x,t),T(x,t)] = Ax,D (x,t)] +dX  [dx, D (x,t),T (x,t)].
(5.8)
Consequently, the equation of heat transfer (5.3) may be extended to the
following form:

8% {A‘*l [x,D(x,t),T (x,t)] Qf_l"_Q(_,_tl}
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0 | eq < < T (x,t)
+6y {/\ [x,D(x,t),T( ,t)]—}
9

%

v {Aeq I, D (x,1), T (x, ) %} (5.9)

gy aT (x,1)
— =Cyo————.
o T o
The equivalent (substitutive) coefficient of thermal conductivity A*? is ob-
tained by equating the heat flux due to conductivity and radiation through
the partly damaged cross section which the heat flux due to the correspond-
ing conductivity through the fictitious pseudo-undamaged cross section.

The specific formulas for dX”d will be discussed in the following section.
Conclusion: In Model C a combined conductivity and radiation mecha-
nism through undamaged (solid) and damaged (voided) material, respec-
tively, is reduced to the equivalent conductivity through the fictive pseudo-
undamaged material, when a substitutive coefficient of thermal conductiv-
ity A*? is introduced to the Fourier conductivity law for a partly damaged
solid (5.9) instead of linearly decreasing with damage coefficient X used in
Model A. Note that in Model C, in the case when the material damage
parameter locally reaches level D = 1 (macrocrack initiation), the equiva-
lent coefficient A*¥(D = 1) remains nonzero and, hence, the residual fictive
heat conductivity through the pseudo-undamaged surface element, equiv-
alent to the heat radiation through the completely damaged real element,
remains nonzero as well. On the other hand, Model C, in contrast to Model
B, is free from an inadmissible heat exchange phenomenon caused by the
damage redistribution when the temperature gradient drops to zero.

5.1.2 Uniazial (1D) heat transfer through isotropic damaged
solids

Consider a uniaxial representative volume element dzdAg as a rod which
undergoes brittle damage at elevated temperature, Fig. 5.1.

The actual state of damage in the element is determined by the dam-
age variable D interlinked with the continuity variable ¥ as D + ¢ =
1, or dD+dy = 0. Hence, we can easily interpret the products DdAq
and ¥dAg as the damaged and the undamaged portions of the elementary
cross section area dAg, respectively. Due to the dual nature of a partly
damaged cross section, the total heat flow rate needs to be decomposed
into two parts: the classical Fourier conductivity through the undamaged
portion of cross section ¢°**d and the Stefan-Boltzmann radiation through
the damaged portion of cross section ¢rd:
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Dy, (W+d¥)d 4,
qm qcond + dq cond
g ¥
)= 75 (D+dD)dA,
T+dr
wd4, i

Fig. 5.1. Schematics of heat transfer through partly damaged uniaxial RVE
dJJdAo

dr
¢ = ~dog 7 =0¢ [T* (z) - T* (z + da)] (5.10)
where )Xo, €, and o denote thermal conductivity, emissivity of the gray
body in a virgin state, and the Stefan—Boltzmann constant.
Consider heat flux through the element taking into account infinitesimal
changes of damage and continuity on dz:

K] cond F;)
qcond,w +qra,dD _ (qcond + —q—dCU) (w + %dl’)

Ox
(5.11)
dgd oD aq or
_[grad 4 2L — 2V ar = il
(q + o dm) <D+ e dx) + dz = ¢,0—dx.

Neglecting second-order terms and substituting (5.10) for ¢®°»¢ and ¢,
the modified equation of uniaxial heat transfer through partly damaged
body in the form (Model B),

P T dg aT
—- 1—D)— — oo DT* 2o o—

oz [’\"( D)5z —o« T}* a - @
is eventually obtained, where ¢, is intensity of the inner heat source (if
it exists). In the case of a pure thermal conductivity (Model A), setting
emissivity to zero, ¢ = 0, the equation (5.12) reduces to the following
form:

(5.12)

X=X(1-D). (5.13)

ot —%957

O (38T ;O _ . 9L
ox ox
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Fig. 5.2. One-dimensional concept of the equivalent coefficient of thermal con-
ductivity

The concept of an equivalent coefficient of thermal conductivity A\°9
(Model C) requires, first of all, comparison of the heat flux by radiation
through the partly damaged cross section and the additional heat flux by
conduction through the fictive pseudo-undamaged cross section (Fig. 5.2):

~rad
e [DT4 — (D+dD) (T + dT)4] dAp = —dX dAog%. (5.14)
Next, expanding temperature T'(z + dz) and damage parameter D(z +dz)

in Taylor series for z and introducing these into (5.14) we have:

o€ [DT“— (D+%dm+...)

(5.15)

~rad
X T4+4T36——de+... = a9
or ox

When higher-order terms in (5.15) are neglected, the additional substi-
tutive coefficient of thermal conductivity in pseudo-undamaged material

~rad
responsible for the radiation in damaged material dx s expressed by the
formula:

~rad oD / ox
v = ADT? + ——T* | dz. 5.16
oo ( + 37 o5 ) z (5.16)
Therefore, the equation of uniaxial heat transfer takes the form:
14] or Gq,, oT ~ ~rad
— eq___ — = —_— eq — .
. </\ 6m)+ o = 0% A A+dA (5.17)

~ ~rad
or, when the explicit formulas for A and d\  are used, we obtain:
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B dD/ox 5. | 0T
(5.18)
0% OT
-

5.1.83 8D heat transfer through thermo-mechanically
orthotropic solids

Let us extend equations (5.12), (5.13), and (5.18) to the most general case of
thermo-mechanical orthotropy. The anisotropic nature of damage requires
the symmetric second-order tensors of damage and continuity to be used
instead of corresponding scalar variables (cf. Murakami and Ohno, 1981).
Consider an infinitesimal tetrahedron defined by dz, dy, dz and the inclined
plane of the unit normal vector n = (ng,ny,n,), Fig. 5.3 (cf. Skrzypek and
Ganczarski, 1998b).

Fig. 5.3. Three-dimensional concept of the equivalent heat conductivity

The unit heat flow rates, associated with the conductivity through the

undamaged part of the inclined cross section {q®*?} = {ggond, gcond,

qg‘“‘d}T and the radiation through the damaged part of it {qrad} = { qiad

T )
T
g2, g4}, are as follows:
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qeend Voo Vyo WUy T /ox
q;m'd =—N Wy Wiy oT/dy »,
qg‘md v,, BT/ 0z
q::ad Dy Dy:x: D, Ng (5. 19)
¢ Y =06 Dy, D,y ny T4,
q;ad D,. Nz
Fij

where terms associated with off-diagonal components of the corresponding
(3 x 3) matrices play role of the diffusional conductivity/radiation por-
tions, respectively, due to the transverse temperature gradients. When the
above decomposition of the unit heat flow rates is introduced, the tensor
of thermal conductivity L;; and the tensor of radiation I';; are defined as
follows:

E,;j = AO(L&' - Dij), I‘ij = UG()DU. (520)

Both tensors defined above i, T are coaxial with the damage tensor D
in their principal axes, therefore, there exists a locally orthogonal frame
coinciding with directions of damage orthotropy such that (5.20) can be
written as:

L,=X(1-D,), T,=o0eD, v=123. (5.21)

Consequently, the heat flux rates expressed in terms of damage tensor eigen-
values take the form:

qf"“d 1- Dl 0 0 8T/8:L'1
qg‘md ==X | 0 1-Dy O 0T/ dxe ,
qgond 0 0 1- D3 6T/6m3
qiad D1 0 0 m

g =06 | 0 D2 O ne » T4

qgad 0 0 D3 ng

(5.22)
When (5.21) and (5.22) are introduced into the heat flux equation we arrive
at:
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[)\0(1 - Dl)f2 - 060D1T4]

5;3_1— 8:1;1
0 oT 4
+3_:112 [)\0(1 - Dz)ﬁg —0€gDeT } (5.23)
o] 4 6q oT
+6£L‘3 |:)\0( D3) —oegD3T } e = Cy0— )

where the problem of a heat transfer in an anisotropic solid is reduced to
the equivalent problem of a heat transfer in a local thermo-mechanically
orthotropic solid.

A particular case of pure conductivity (3D extention of Model A) yields
the equation:

azl[ oL Dl)sj;]+i[>\o(1—D2)gT2]
(5.24)
+ai [Ao(l—Dg) } + 2 02

An extension of the equivalent thermal conductivity to the case of or-
thotropic damage evolution (extension of Model C) consists in introducing
the substitutive conductivity diagonal tensor df,f,ad that corresponds to
the equivalent conductivity through the fictive, pseudo-undamaged mater-
ial. Equating the heat flux by radiation through the partly damaged (real)
cross section and the heat flux by conduction through the fictive pseudo-
undamaged cross section along each of the coordinate axes, we can write
for axis z; (Fig. 5.3):

€ [D1 (z1,22,23)1 T4 (21, T2, 23)

or
_Dl(ml +da:1,m2,a:3)n1T4(x1 + d$1,£62,1173)] = —dLrad8
1

etc.
(5.25)
When the procedure of expansion of temperature and damage in Taylor
series is applied and the higher-order terms are neglected, we find the for-

mulas: oD,/
dLd = geo (4D, T3 + 221 01 pa ) g
1 060( 117 + Tz, T1,

~ 8D2/6£E2
ALy = o€y ( 4DoT° + ————T*
2 T ( : T /om, ) %

(5.26)

~ 8D3/ 0z
rad __ 3 3 3 4
dL3* =0o¢ (4D3T + —6T/8:c3 T ) dzg,



5.1 Damage effect heat transfer in solids 145

which, when substituted into the equation of heat transfer, yield the fol-
lowing 3D equivalent heat flux equation in terms of three components of
the diagonal substitutive conductivity tensor L$3:

0 [+eq 0T 0 [~eq 0T
Az, <L1 61:1) + o2 (LZ 6:1:2)

(5.27)
8 [~eq0T\ 0g, oT
—_— e e LA -
93 <L3 61}3) T T 0%
where
L =L, 4dL>d. (5.28)

Note that in the general case, when the damaged solid is anisotropic, com-
plete thermal conductivity and radiation tensors L;; and I';; must be used
instead of their diagonalized representations, hence, the additional terms
connected with diffusion due to the transverse temperature gradients would
appear when thermodynamical balance along the coordinate axes x is con-
sidered. On the other hand, when principal directions of damage change
following a rotation of principal directions of stress, the combined thermo-
damage equations must be considered at current principal damage direc-
tions to yield current heat flux orthotropy, though in a reference space
(invariant) a general heat anisotropy (with diffusion included) occurs.

5.1.4 General anisotropic thermo-creep-damage coupling for
wnitially isotropic material

Consider a general anisotropic case when the complete representation of

the second-rank conductivity and radiation tensors L (D) and I' (D) in the

z,y, 2 frame, defined either by the second-rank damage tensor D or by the
continuity tensor ¥ =1 — D), is as follows:

L(D)=X(1-D), T (D)=o0¢D (5.29)
and
- ]. e Dzz "Da:y Dzz
[L (D)] = o 1- Dy, Dy |,
1- Dzz
(5.30)
~ D, Dz'y D,
[r (D)] = o6y Dy, Dy
-DZZ

The virgin material was assumed to be isotropic, with thermal properties
characterized by the coefficients of thermal conductivity and emissivity of
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a gray body A\ and ¢y and the Stefan-Boltzmann constant 0. Introducing
the vector of temperature gradient gradT and the normal vector n,

oT or or
gradT- {a,a,a}

and defining the operations

n = {ng,ny,n,} (5.31)

el BT 2]
\Ifg‘radT = {‘Ilzz 3’5 \Il:cy 31/ ‘I’mz 3;1:’
Wy 5L + 0y, 50 8'y + 0. 57 az ;
Voo or + 0,50+ v, 8T, } ; (5.32)
Dn = {Dzznz + Dzyny + sz"z:
Dwnm + Dyyny + Dyznz>
sznz + Dzyny + Dzznz: } )

the general representation of the anisotropic damage coupled heat transfer
equation is furnished in one of the equivalent forms as follows (Model B):

div (Ao ¥gradT — oeDnT*) + ¢, = ¢, 0T,

(5.33)
div [Ao (1 — D) gradT — oeDnT*] + ¢, = cyoT'
or,
3} or . :
- [)\0 (Ii; — Dij) oz, ~ UfODijan4:| + o = cvoT, (5.34)

where the absolute or the indices notation was applied. Eventually, when
the explicit representation is used, (5.34) may be written as:

7] oT or oT
% I:)‘O <‘P$w% + \IIMIE + ‘Ila:z'a—z‘>

—0€0 (DzaNg + Deyny + Dy ny) T“]

0 or oT orT

—0€o (DygMz + Dyyny + Dyon,) T

0 oT oT oT
+a [)\0 (\I,“:b; + \Ilz'ygy_ + sz&)

—0€ (Dzznz + Dzyny + DzznZ) T4]

(5.35)

+dv = cyoT
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In case of thermo-mechanically orthotropic solids, the off-diagonal com-
ponents of (5.30) disappear for the z, T2, T3 axes; hence, the orthotropic
heat flux equation (5.22) is recovered.

5.1.5 Coupled constitutive thermo-creep-damage equations

I. Isotropic (scalar) thermo-damage coupling (cf. Ganczarski and
Skrzypek, 1995)

In order to solve the coupled thermo-creep-isotropic damage problem, the
heat transfer equation (5.3) or (5.7) or (5.9) must be combined with con-
stitutive creep and damage evolution equations (cf. Sect. 4.1.3(I)). Hence,
the coupled thermo-creep-damage state equations are (Model A and Model
B)

9

% {X [x, D (x,t)] %g — o€y D (x,1) T‘*}

+% {X [x, D (x,1)] %% —oeoD (x,t) T4}

+8% {X [x, D (x,t)] % — 06D (x,1) T"}

+y = C'UE [X, D(X,t)] T, (5'36)

X[x, D (x,t)] = Ao (x) [L — D (x,t)],
3[x, D (x,8)] = 0 [1 — D (x,1)]*/?,

. r(T)
D(x,t):C(T)<%> ,

. 3éq o Oeq ™(T)
== —2 =(—3 t).
€ij 2Ueq8”’ Eeq (1—D(X,t)> f()

/

For the sake of generality, an initially nonhomogeneous isotropic mate-
rial was used where both the coefficients of thermal conductivity A and
the mass density 0 change with damage, whereas the Kachanov-Hayhurst
damage growth rule is coupled with the Mises-type creep flow rule and the
multiaxial time-hardening hypothesis, and C (T), r (T), m(T) are tem-
perature dependent material constants. When Model C is used (cf. Sect.
5.1.1) Eq. (5.9) should be substituted for the first of Eqgs. (5.36), where the
substitutive thermal conductivity is given by the formula

aD/ox
aT/ox

A1 = ) (x) (1 = D) +0¢o (4D + T) T3dx. (5.37)
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I1. Orthotropic thermo-creep-damage coupling in constant principal
directions (cf. Ganczarski and Skrzypek, 1997)

In the case that there is an orthogonal frame z, 2, 23 of thermo-mechanical
orthotropy, such that the heat flux in the one of directions of orthotropy, say
Z1, is affected by the temperature gradient in the same direction, 9T/9z1,
but is not influenced by the other two, 8T/dzy and 8T/dx3, we arrive at:

) aT .
% {)\1 [X, D1 (X,t)] 5‘;‘1— - U€()D1 (X,t)T }

0 oT
+8_(L'2 {)\ [X, Do (X,t)] 8_1:2 —o€g Do (X, t) T4}

8 aT .
+6_x3 {)\ [x, D3 (x,t)] 522 — o€ D3 (x,t) T }
+gy = C'UQOTa (538)

A [%, Dy (x,8)] = 2o (x) [1 = Dy (x,1)],

D, (x,t) =C, (T) <_—qu(x—))>ru(7‘)’

1— D, (x,t
1% o _ ~m(T);
€ = agisij, Eeq = :( )f (t) .

The fully coupled creep-damage approach in (5.38) has been used as it is
more consistent (cf. Sect. 4.1.3(II)).

5.2 The local approach to fracture using the
CDM approach

5.2.1 Effective elastic moduli of cracked solids

A transition between the atomic, the micro, or the mesoscale and the
fourth-rank elasticity tensors A or A~! for stiffness or compliance, and
the second-rank thermal properties tensors L and L~! for conductivity
and emissivity, etc., requires a proper selection of the representative vol-
ume element (RVE). The RVE maps a finite volume of linear size Agyg of
the piecewise-discontinuous and heterogeneous solid, the state of damage
in which is determined by the topology, size, orientation, and number of
microcracks, microvoids, microslips, etc., on a material point of the pseudo-
undamaged quasicontinuum. This effective quasicontinuum method, also
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called the CDM method, is based on the assumptions that (cf. Krajcinovic,
1995):

— each defect within the RVE is subjected to the same stress field de-
rived from the external tractions applied at the boundary of the ele-
ment, and

— the effect of other defects within the RVE on the observed defect
is measured through the change of the effective thermo-mechanical
properties (cf. Sect. 1.1.2).

In other words, the exact spatial correlation of the defects within the
RVE has a negligible influence on the effective properties defined in the el-
ement. The minimum linear size of Agvg of the RVE must be large enough
to include a sufficient number of damage entities to provide a statistically
homogeneous representation of the microstructure or the mesostructure. At
the same time, however, the size A\gyg must be small enough for the stress
field to be considered as homogeneous within the RVE. The existence of
the RVE, that allows the heterogeneous and discontinuous material to be
considered as statistically homogeneous within the element, is the condition
for a local approach (LA) in which there are no scale parameters involved.
Hence, the effective moduli of a damaged solid depend on the average dis-
tribution of sizes, orientations, and spatial positions of defects within the
RVE. Spatially averaged damage variables are, generally, a sufficiently good
approximation for the stiffness and thermal flux characterization. Damage
evolution, on the other hand, depends more on the extreme values of the
defect distribution, for instance, the largest defect size, the minimum neigh-
bor distance, etc., such that the effect of damage patterning on the local
driving forces should also be incorporated to the higher-order macroscopic
damage descriptors (cf. Lacy et al., 1997).

The effect of crack systems on the effective moduli of linearly elastic
isotropic solids was critically reviewed by M. Kachanov (1992). For non-
interacting cracks in the isotropic matrix material the effective moduli can
be determined exactly for a random, arbitrary crack distribution, particu-
larly at low crack densities. In the approximation of non-interacting cracks,
each of them is regarded as isolated and free of any influence from other
cracks. Hence, the compliance is linear in crack density. The second-rank
or the fourth-rank crack density tensors « or @ provide an adequate de-
scription of a crack array in the 2D or the 3D cases, respectively. If crack
distribution is nonrandom, interactions can be strong even at small density.
For interacting cracks, the determination of the effective moduli requires
considering a problem of direct interaction for each crack configuration in-
cluding their exact orientation, position, and size, and then a subsequent
averaging over them. Particular approximate models (self-consistent, dif-
ferential, generalized self-consistent, Mori-Tanaka, scheme and others) are
generally based on the analysis of one isolated crack placed into a ma-
trix with the effective moduli, such that the influence of interaction on a
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considered crack is accounted for by the reduced stiffness of the surround-
ing material (cf. Budiansky and O’Connel, 1976; Hashin, 1988; Sayers and
Kachanov, 1991; Mori and Tanaka, 1973; Christiansen and Lo, 1979). Usu-
ally, the interaction produces a softening effect on the effective moduli with
the exception of the Mori-Tanaka approach for which the predicted mod-
uli coincide with those obtained for noninteracting cracks (cf. Kachanov,
1992).

5.2.2  Crack growth by a local approach — general features

The situation becomes much more complicated when a coupled damage-
fracture mechanism is determined by the nucleation (pre-critical) and the
growth (post-critical) of a single macrocrack (or the macrocracks pattern),
the geometry of which is explicitly determined in the fracture (cracking)
process. Generally speaking, crack propagation through the solid with a
heterogeneous microstructure may be arrested and the continuum dam-
age accumulation prior to the macrofracture may occur. As a consequence,
a strong interaction between the macrocrack(s) and the damage field in
fracturing process is observed and, hence, the nonlocal approach (NLA)
should be used rather than the local one, mainly due to stress concentra-
tion at a crack tip. Nevertheless, an approximate fracture analysis by ap-
plying the local approach (LA) to the stress, strain, and damage fields at a
crack tip may also be recommended for its simplicity for the creep damage-
fracture analysis (cf. Murakami, Kawai and Rong, 1988; Liu, Murakami and
Kanagawa, 1994; Murakami and Liu, 1995) and the elastic-brittle damage-
fracture analysis (cf. Skrzypek, Kuna-Ciskat, and Ganczarski, 1998c).
The local approach to fracture (LAF) based on continuum damage me-
chanics (CDM), when a free surface is produced on the macrocrack, is
usually combined with the finite element method (FEM), hence, the cru-
cial question is the mesh dependence and its regularization. This problem
is examined in the paper by Murakami and Liu (1995), where the FEM was
applied to the creep-fracture analysis by the use of the elastic-creep mater-
ial model with isotropic damage, the one-parameter Kachanov—Rabotnov—
Sdobyrev model (Sect. 2.2.2(II)) and the linear scalar Young’s modulus
drop with damage, all implemented in the UMAT of ABAQUS FEM code.
By the use of this simple model, an assembly of fractured elements is con-
sidered as a crack when the stress in the element is released after the scalar
damage variable in the element has reached the critical value D, and a
free surface is created. In this approach, the crack width is governed by
the size of the finite element, and the crack cannot develop in the direction
of its width. As a consequence, heavy mesh-dependence of both the crack
length growth rate and the stress and damage concentration, particularly
in the region around the crack tip, is observed. Possibilities for regular-
ization were examined in the frame of the local approach by the use of a
nonlocal damage variable (averaged over a neighborhood of the crack tip),
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a simplified stress limitation (ideal plasticity), and a modification of the
damage evolution law (cf. Sect. 5.2.3).

Recently, the local approach to fracture was applied to a coupled elastic-
brittle damage-fracture analysis by Skrzypek, Kuna-Ciskat, and Ganczarski
(1998). In contrast to the material model used by Murakami and Liu (1995),
the damage anisotropy was accounted for in this paper by the application
of the anisotropic elasticity coupled with damage. The damage evolution
law by Litewka and Hult (1989) was generalized to the case of a rotation of
principal stress and damage axes (due to the shear effect included) and the
extended time-dependent elastic-brittle constitutive model as originated by
Litewka (1985, 1989) was combined with the failure criterion in the form of
an isotropic scalar function of stress and damage tensors (cf. Sect. 4.2). All
these constitutive models were implemented in the UMAT of ABAQUS.
Interaction of the two mechanisms, releasing the kinematic boundary con-
ditions on the fixed-edge element face and/or fully removing the element
that has failed, governs an unstable process of structural fracturing which
leads to the complete fragmentation of the structure.

This combined macrocrack penetration through the volume of an elastic-
brittle-damaged solid consists in a mixed-controlled mechanism. First, it is
observed mostly as tensile stress controlled crack length growth if the an-
ticipated crack is formed along the a priori known structure of the fixed
edge (if any) after the failure criterion has been satisfied in a neighbor-
ing (damaged) element and, as the consequence, the appropriate kinematic
boundary conditions are released to allow for the crack opening on the free
surface produced. The element disconnected from the rigid edge is left in
the FE mesh to be able to carry the shear stress, although the tensile stress
in the direction normal to the crack has been released. Second, it is recog-
nized as a combined tension/shear controlled crack branching mechanism
that allows the crack to deviate from the primary direction along the fixed
edge into the interior. The neighboring element which has been caused to
fail is then fully removed from the mesh and, in this way, a secondary crack
of the width of the element is formed. In both cases, a significant cumula-
tive continuum damage field, prior to the failure prediction in the element
as governed by the failure criterion legislated, is observed to develop in
particular in the primary and/or the secondary crack tip surroundings.
In addition, in a region where the compressive stresses predominate, little
or no continuum damage prior to fracture is observed, hence, the element
which is led to failure when the stress vector meets the initial failure surface
is instantaneously crushed and removed from the mesh (cf. Fig. 5.4).

The possibility to examine the complex crack patterns in a structure,
with changing crack directions and crack branching allowed, is a benefit of
the local approach to fracture when applied to anisotropic elastic-brittle-
damage structures. It was observed by the authors that the failure criterion
for elastic-brittle-damaged solids, as proposed by Litewka and Hult, 1989,
introduces naturally a stress and damage limitation such that no artificial
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methods for stress and damage field regularization are required. On the
other hand, the overall crack pattern and the complete structure fracture
prediction tg were found not to be as strongly mesh-dependent as in the
Murakami and Liu approach (cf. Skrzypek et al., 1998c).

5.2.3 Local approach of elastic-creep fracture versus
elastic-brittle fracture

A quantitative comparison of the local approach to fracture by the FEM
when applied to two material models, the coupled elastic-creep damaged
solid (Murakami, Kawai and Rhong, 1988; Murakami and Liu , 1995)
and the elastic-brittle orthotropic damaged solid (Litewka, 1985; Skrzypek,
Kuna-Ciskal, and Ganczarski, 1998c), both implemented using FE codes,
is presented in what follows.

I. Elastic-creep damage model of fractured material

A discussion of a local approach to the analysis of crack growth in a par-
ticular creep-orthotropic damaged solid when the stress and the damage
tensors are coinciding in their principal axes (no rotation allowed) is due to
Murakami et al. (1988). The damage evolution equation, under simplifying
assumptions that the damage rate is described by the net area reduction
on the planes perpendicular to the direction n(!) of the maximum principal
stress 01 combined with the isotropic area reduction and that its magni-
tude is governed by the Hayhurst-type isochronous rupture function (cf.
(2.36)), was postulated by the authors in the following fashion:

k
D=8 [c*al +Coug + 1—“—5,‘—% (a)]

x [T {1~ D)~ (n ®n(1>)}]‘ (5.39)

x[(1=n)1+m®M @nM)].

Let us mention that, for particular cases 7 = 0 and 1 = 1, (5.39) reduces
to purely isotropic damage evolution and purely orthotropic microcrack
growth in planes perpendicular to the maximum tensile stress, respectively,
whereas for 0 < 7 < 1 a mixed isotropic/maximum principal stress con-
trolled damage growth mechanism occurs. A combined the McVetty and the
Mises-type creep flow rules together with the strain hardening hypothesis
was selected as the isotropic constitutive law:

-c __ 3 ny—1 N ~na—1~'
=3 [Alaeq aexp(—at) o + Aygre o J

(5.40)
€5, (£) = A107 () [1 — exp (—ad)] + 42572 (1),
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where:

01 = max o, Oeq = [(3/2) o :61]1/2,
e, =1(3/2) e )2,
5=/ [0:(1-D) " +1-D)" :a], (5.41)

5= [3/27 28], o' =0~ (1/8) (o)1,

1

& =& - (1/3) (Tr&) 1,

whereas B, k, I, £, {, 7 and Ay, A, N1, Ne, & are material constants and a
fictitious time % is to be eliminated from (5.40).

The above described coupled constitutive and damage evolution equa-
tions were implemented on a FACOM M-382 system and applied to crack
growth analysis in a square plate of copper at 250°C with a width to thick-
ness ratio b/c = 30 and an initial crack length to thickness ratio ag/c = 10,
subjected to a biaxial proportional or nonproportional loading, when the
material constants of (5.39)—(5.41) were as follows:

B=446x10"1 [MPa‘kh"] . 1=50,

k=555 ¢=1.0, ¢ =00,

Ay =240 x 1077 [MPa™™], ny = 2.60, (5.42)
Ay =3.00 x 1071 [MPa™"?h~'], ny =7.10,

E = 66.240 [MPa] , a=005[h""],

whereas the parameter of anisotropy 7 was taken as 7 = 0.0 or n = 0.5 or
7 = 1.0 for the purely orthotropic or the mixed or the purely isotropic case,
respectively. The failure of the element was defined as the state in which
the maximum principal damage value of the damage tensor D; (damage
orthotropy) or the scalar damage variable D attained the critical value
D., = 0.99, at which point the rigidity of the failed element was released
to zero, whereas the assembly of fully cracked elements was considered as
a part of the global crack.

The effect of damage orthotropy on the creep-crack pattern and the final
time to failure prediction was examined under the biaxial nonproportional
loadings, as shown in Fig. 5.4.

The results obtained for crack initiation ¢; are approximately equal when
the isotropic, ti = 26 h, and the orthotropic, t5 = 27 h, models are
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Fig. 5.4. Effect of creep-damage anisotropy on the crack-pattern in a fractured
plate under cross-changing loading: a) anisotropic damage model n = 1.0, b)
isotropic damage model 1 = 0.0, (after Murakami, Kawai and Rhong, 1988)

used. However, the anisotropy improves the time to failure prediction from

iFS = 615 h for the purely isotropic model, to t% = 1159 h in the case
of the purely orthotropic mechanism. Additionally, creep-crack patterns
differ from each other in that when the purely isotropic damage evolution
law is applied (n = 0.0) the main crack direction is, roughly speaking,
insensitive to the maximum tensile stress direction change, whereas in the
purely orthotropic one (7 = 1.0) after the external load change the main
crack also gradually deviates from the primary direction to finally reach the
direction perpendicular to the maximum principal tension for the second
phase of loading, Fig. 5.4.

I1. Regularization methods in local approach to creep-fracture
(cf. Murakami and Liu, 1995)

A simple elastic-creep-isotropic damage material model that ignores the
damage anisotropy is employed by the authors in the form

o =A(D): (e —¢°), A(D)=A(1-D),
o 3 Oeq \" @ . B x(@F
c=31 (%) & b= 0w

X (o) =00eq+ (1 — )0y,
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where A is the elasticity tensor for isotropic materials, D is the scalar
damage variable (D, = 0.99) and A, B, n, p, g are material constants.
The effect of mesh-dependence in the local approach to creep fracture
and possible regularization methods for it are studied by Murakami and Liu
(1995). Mesh dependence of crack growth was studied on an axisymmetric
thick-walled tube uniformly pulled along the periphery (Fig. 5.5).

4

P=050,
= Axisymmetric
mesh-20A

r Z.

o

Plane strain
mesh-30

Plane strain
mesh-480

Crack length, Aa/r
~
T

Dimensionless time, #/1,

Fig. 5.5. Effect of FE mesh on the crack length growth versus dimensionless
time t/t; in an axisymmetric thick-walled tube under uniform exterior tension
(after Murakami and Liu, 1995)

A discussion by the authors may be summarized as follows.

In the Murakami and Liu model using the local approach to fracture,
the assembly of fractured elements F; is considered as a crack. The crack
region ) can be determined by the local fracture criterion

Q = {E; D (E¢) = De,} . (5.44)

In other words, the stress in an element that undergoes fracture is totally
released when the damage level in an element reaches its critical value D,;
hence, the stress on the free surface of the crack must vanish so that the
crack cannot develop in the transverse direction to the crack length and
the crack width is governed by the element size.

Three ways to suppress the mesh-dependence of the local approach to
fracture were examined by Murakami and Liu (1995).
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A. Nonlocal damage variable D

Regularization of the local variation of the damage field D (x) is achieved
by averaging a nonlocal damage variable D (x,{24) over the neighborhood

Qq (&) of x:

dﬁ (X,Qd) _ de %ﬁ)(]g(x’g) de (6)
& Jo, e(xE)d%(E)

(5.45)
# (x,) = exp [~ (d (x.) /a")?]

Symbols x, £, and dD/dt denote a material particle, a particle in the neig-
borhood 4 of x, and the local damage rate of a current particle £, respec-
tively, whereas ¢, d, and d* are the weight function, the distance between
x and §, and the characteristic length that determines the extend of the
domain §4 over which averaging of D is performed. Proper selection of the
length d* is a crucial point of this nonlocal approach that allows suppres-
sion of damage localization in the surroundings of the crack tip, whereas
for d* — 0 a classical local damage variable D (x) is recovered. A similar
concept was also investigated by Baasar and Gross (1998) to suppress dam-
age localization during crack propagation in thin-walled shells. A nonlocal
brittle failure criterion and the damage growth rule for material subjected
to multiaxial variable loadings are developed by Mréz and Seweryn (1998).

B. Stress limitation by perfect plasticity

The stress concentration at the crack tip in metallic materials may be
limited by incorporating a perfect plasticity criterion into the model by
assuming a modified stress o* for damage evaluation as follows:

Oy = Oij, Oeq < 00,
J koij, 0eq > 00,

ky/(3/2) 03504 — 00 =0,

where 0q is the Huber-Mises-Hencky equivalent stress and a factor & is
determined from the yield criterion.

(5.46)

C. Modification of the damage evolution law and reduction of the critical
damage value D,

When the damage parameter in the classical damage evolution law (5.43)
approaches the critical level D, = 1, a strong stress sensitivity of the dam-
age evolution is observed. To suppress this effect, a modified exponential
form of the damage growth rule was proposed by the authors:
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dD B " /
i~ g X@F e (q D), (5.47)
where B, p, ¢ are modified material constants that should be determined
by comparing the modified (5.47) and the classical (5.43) damage evolution
for constant stress. Additionally, limitation of the critical damage to the
level D, = 0.7 was applied for better FEM convergence.

All above regularization methods were tested by the authors to yield
a significant reduction of the mesh dependence in the local approach to
creep—fracture analysis by FEM.

III. Local approach to elastic-brittle fracture by the extended Litewka
model (cf. Skrzypek, Kuna-Ciskat, and Ganczarski, 1988c)

When the modified CDM Litewka model of anisotropic elastic-brittle dam-
age in metallic material (Sect. 4.2) is used to fracture analysis for structures,
a problem of mesh-dependence is met as well (cf. Fig.5.6).

Iw
I -
Mesh IIT Mesh II Mesh I
s 08 + l
g
~ 06T
£
5]
04T
" _/\/
0 l t f { f “+— x10°
1

t
0 50 100 150 200 250 300
time [h]

Fig. 5.6. Effect of FE mesh on the crack length growth in a 2D structure made
of anisotropic elastic-brittle damaged steel (after Skrzypek, Kuna-Ciskal, and
Ganczarski, 1998c)

In the material model considered, both the stress and the damage con-
centration at the crack tip are limited due to the isotropic scalar failure
criterion function (4.43) used to define a crack opening. Additionally, when
the failure criterion is satisfied in a fractured element the kinematic bound-
ary conditions are released at the node and free surface (crack) may be
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produced without removing the element from the mesh. Consequently, the
crack width is less dependent on the element size and the crack can be devel-
oped in the direction transverse to the primary crack length (crack pattern
branching). Hence, the model is capable of predicting complex crack pat-
terns like those observed by O’Donnel et al. (1998) in 316L stainless steel
under thermal fatigue-creep loading conditions, Fig. 5.7.

Fig. 5.7. Fracture path of the mixed transgranular and intergranular mode under
thermal-fatigue-creep conditions (after O’Donnel et al., 1998)

Therefore, a simple reduction of the element size seems to be a sufficient
way to regularize the FEM solution. However, the effect of the element
shape may result in a change of the final crack pattern at failure and require
additional tests. Micro and macro-crack interaction in a fatigue-creep crack
growth test of TiAl specimen was examined by Yokobori et al. (1998).
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6

Creep damage and failure of
axisymmetric structures

6.1 Analysis of creep failure process in
structures

When the damage evolution in a structure is considered the following stages
of the failure advance may be distinguished (Table 6.1).

Table 6.1. Stages of failure advance

Isotropic material damage Orthotropic material damage
at a point at a point
D-scalar parameter D1, D2, D3-principal damage
components
04
1. Damage incubation period :
D(x,t) =0 Dy(x,t)=0
(x€ V,t<to) (v=1,2,3;x€ V,t < tg)
2. Time of initial damage to 1+ microcrack initiation (if to = 0:
no incubation)
3.Damage growth period :
0 < D(x,t) < Derit 0 < sup(y 3,3 Dy (x,1) < Dy

(to < t < t1) (v=1,2,3;x€ V;to <t <tr)

4. Time of initiation of failure ¢y 1 first macrocrack initiation (t; = tg)

5. Fracture propagation period : _ A0
D(x t) = Dt Sup(l12,3) Dy(x’ t) = Dcrit
% b) = Heri (x € Vf)
(failed zone : x € V§) )
0 < D(x,t) < Daie 0 < sup(y,,8) Du(x,) < Doy
(unfailed zone : X € Vyns) (x € Vunt)

6. Time of structural failure trr 1 failure mechanism of a structure (tr; = tg)

V

time

6.2 Example: Transient creep and creep
failure of a thick-walled pressurized tube

6.2.1 Rotationally symmetric plane-strain problem for
isotropic material

When a transient primary and secondary creep state analysis of a thick-
walled tube is considered, the effect of stress redistribution on the creep

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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behavior has to be taken into account (cf. Penny and Marriott, 1995). This
analysis was extended by incorporating the isotropic damage growth period
in the tertiary creep phase, t < t;, by Boyle and Spence (1983), whereas
the creep-fracture process of an axisymmetric thick-walled tube by the local
approach, when CDM based FEM was used for the crack growth analysis,
t; <t <typ, is due to Murakami and Liu (1995). In what follows we confine
ourselves to the damage growth period in a tube governed by the Mises-
type rule, the multiaxial time-hardening hypothesis, and the Kachanov-
type isotropic damage law. Hence, following Boyle and Spence (1983) the
governing equations for the rotationally symmetric plane-strain problems
when small total strains are split into the elastic and anelastic parts can
be written as:

Geometric equations

_du o, —v(oy+o0,)

Er = E = E + €$,
u oy—v(o,+o0
£y = ; = ———-————19 (Ez r) +€109, (61)
€z =€0 = AT 75 V(Z,r +99) + €3 = const,
Equilibrium equation
d
—(ro,) + 09 =0, (6.2)

dr

Creep flow rule for plane strain creep incompressibility

deg 1
deg = 0: [or =500 + az)] ,
) (6.3)
g 1
de§ = aeq [019 — E(ar +oz)} , deg = — (de? +dej) ,
eq

Multiaxial time hardening hypothesis associated with the Kachanov—Galileo
law

m T
¢ _ Ueq P — g9
deeq—<—1_ D) f(t)at,  dD 0<1_D> dt,  (6.4)

where the equivalent stress 0. and the cumulative creep strain dsgq are
defined as follows:

df 1

/2
Oeq \/5 ]1 )

[(or —04)? + (08 — 02)* + (02 — 0v)?
(6.5)

dec et 2 [(deg)? + (de5)? + decdes] 2.
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Elimination of stresses from (6.1)-(6.5) and subsequent introduction of the
dimensionless variables yields after some algebra the governing equations
for the transient plane-strain creep problem in the dimensionless displace-
ment (rates) formulation:

a1 9
— |==(Rr)| =0 =
OR [R@RR )] t=0),
a1 290 oG
- 6.6
aR[RaR(RU)] Ftop (>0), (6.6)
. 1-2v /- - . 1-2v .
F= 1—v (E’"-—Eﬂ)’ G= I—VET’

where

R=r/a, U=u/agy, t=Eo§ '(t), eo=00/E,

6.7
E.=¢./e0, Egs=¢ep/eo Sp=0,/00, Sy = 09/0p. (6.7)

Hence, finally, the general solution of the problem may be written as follows:

Ao By
U=— — t=0
5 Bt t=0),
(6.8)
A; B, I .
U—7R+§+§ (t>0).
The dimensionless stress rates are
. 1 A; B;
r=———< |— — (1 -2
S (1—21/)(1+V)[ g ~ (=) hth),
: 1 A ;T
Sﬂ‘u——z‘um[T*“””)ﬁ*“’a 69
—UC—(1—2U)E§],
S = gt (v 4 20l 4 G — (1 - 2w
T =2)(1+v) : 2tvG—(1-2 }
the dimensionless strain rates are
. A; B;
ET"_?_Rz 1- 21/’
. A B . I (6.10)
By=-Stmth-1"g,

Ez = Sz -V (S’r + 5’19) +E§ = const,
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and the auxiliary integrals I, I, I in (6.9) and (6.10) are defined as:
. R2RFE 12 . .
b= [ g+ [0~ Fleas,
1 1

2
(6.11)

F . 1-w & ..

Ed& I3 =— 2RZ {(2G—F)§d§.

The constants Ag, By and A;, B; should be determined from the appropri-
ate boundary conditions at £ = 0 (elastic state) and Z; > 0 (creep state),
respectively. Dimensionless creep strain rate components E,?, E'j;, and E¢
are to be obtained on each time step when the normalized creep consti-
tutive and damage evolution equations (6.3) and (6.4) are simultaneously

solved.

6.2.2  Results for pressurized tube

A detailed analysis of coupled creep-brittle damage to a long thick-walled
tube with inner to outer radii ratio a/b, subjected to a uniform internal
pressure p and under a plane strain state, was presented by Boyle and
Spence (1983). In this section the numerical results obtained by Skrzypek
(1993) for b/a =2, p/op = 0.2, m =5, r = 3.5 are briefly reported.

The redistribution of stresses o, and oy with a normalized time ¢/t; dur-
ing the stage of latent failure from the initial elastic distribution (solid line)
to the stress distribution at the initiation of fracture t/t; = 1 (dot-dash
line) is shown in Fig. 6.1a-d. First macrocracks appear here at the outer
surface (a/b = 1), preceded by the damage accumulation which concen-
trates mainly in the outer part of the cross-section (Fig. 6.1e). A dot-dash
line presents the steady state stress distribution for comparison. At rupture
the hoop stress at the outermost fibers of the cross-section reaches zero.
Then, the inwards propagation of the failure front begins, yielding finally
the complete failure of the tube at ¢ = ;; (cf. Boyle and Spence, 1983).
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Fig. 6.1. Creep damage in a pressurized tube under plane strain: a) and c) varia-
tion of radial and circumferential stresses during failure, b) and d) redistribution
of stresses, f) tube visualization; b/a = 2.0, p/oo = 0.2, m =5, r = 3.5 (after

Skrzypek, 1993)



166 6. Creep damage and failure of axisymmetric structures

6.3 Example: Transient creep and creep
failure of an annular disk of constant
thickness subject to rotation, tension,
and temperature field

6.3.1 Rotationally symmetric plane stress problem in case of
orthotropic damage; no thermo-damage coupling

Suppose an axisymmetric annular disk of constant thickness, clamped at
the inner edge, is subject to rotation about the axis of symmetry with a
constant angular velocity w and simultaneously loaded by an external nor-
mal tension p and a nonhomogeneous field of temperature AT'. The plane
stress state and small strains are assumed. Total strains are decomposed
into elastic, thermal, and creep parts :

du o,—vo
Er = 5 = T—E’—E-FCYT-FE?,
s,,:%:@-%+aT+ef,, (6.12)
Ezz,wwﬂeg,

and the equilibrium equation is enriched by a term associated with the
body force:

do, o,—0y 2
ar + . + pwr =0. (6.13)

The similarity of deviators of the creep-flow theory and the time hardening
hypothesis associated with Kachanov’s orthotropic brittle damage theory
(4.2) are taken as the constitutive relationships for a partly coupled creep-
damage process (Sect. 4.1.3.(I))

o S, 00 _fa( _), =),
er—geq(ar 5 ) G=oo(0e-5) &= (E+¢5); (6.14)
¢ [~ \m; - o, r
55‘1_(0301) f(t)v DV—C<1_DV> . (615)

For the plane stress state, the Mises-type equivalent stress, the effective
equivalent stress, and the equivalent creep strain rate are defined by the
following formulas
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Uoq & [02 + 0% — 0,04] vz
1/2
F def Or + 0y 2 _ O, oy d
e 1- 1—Dy 1-D, 1- Dy ’
o def 2 [,.q e con rion]1/2
A (CUSN IR CIICH] M
(6.16)

After elimination of stresses from (6.12)—(6.15) we arrive at the governing
equations for initial (elastic) and transient (creep) problem:

ﬂlduu

_+______.=_.+_._ (t>())’ (617)

f:(l_’/)(é:‘é%)’ g=¢&+véy, k=

When Egs. (6.17) are solved with the elastic solution (¢ = 0) assumed as
the initial condition for the transient creep we obtain (Skrzypek, 1993):

L. Elastic problem (t = 0)

us = Aor @—1—

2,.3
5 " Yol +(1+v)= fod{,

. E 14+v By 3+v 45, @T

IrTI e [ 2 Ao r2 g T r2 {ngg’

R E 1+v By 14+3v ,, A

Oy = 1-.2 [TA0+(1 I/)—Z‘— 8 +_2{de§
—aFET,

(6.18)
where, for the linear field of temperature T'(r) = T, + ATH, the inte-
grals (6.18) may be expressed in the form

A A 3 _ 43 A _ 2
/T£d£=—231%:—5;—)+(n %)r = (6.19)

and the symbol T, denotes the temperature at the inner radius of the disk
(see Fig. 6.2).
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II. Creep damage problem (t > 0)

. E ].+V Bi . .

Ur_l—yz[ ) Ai—(l—V)'73+I1+Izj', (6'20)
. E 1+v

Oy = m [—2—A1+( l/) 2 +11 ] E€19,

where the integrals I, I in (6.20) are defined as

LAy i Lo g

h=="1% = J(

(6.21)

whereas f and § are expressed in terms of the creep strain rates (6.17)

s = 0 (a, - %’) fo), o= (01, - %) ft). (6.22)

Oeq Ueq

The constants Ao, By and A;, B; are evaluated using the appropriate
boundary conditions.

6.3.2 Solution of the creep problem with a propagation of
failure front accounted for (t; <t <t)

In the case under consideration the orthotropic failure criterion is checked
independently for both principal damage components D, and Dy. If both
D, < Dgl)t and Dy < Difi)t the damage growth period occurs when t < t;.
If one of D,., Dy reaches at the material point its critical value at t = 1, say
Dy = Dc(:fi)t’ the corresponding macrocrack is initiated at this point such
that the stress normal to the crack (unidirectional macrocrack orientation)
is released, oy = 0. In this way, a partly failed zone may be formed in
the structure when the failure front moves as time increases above t;. At
complete failure of the structure, the partly failed zone (with respect to one
damage component) may extend all over the volume of the disk to make
the structure unable to carry loadings at time ¢;;.

Admitting for the growth of the failure front with respect to the circum-
ferential componentof the damage tensor that Dy = 1 and D, < 1, the
circumferential stress in the partly failed zone of the disk must drop to
zero, 0y = 0, and hence (6.16) and (6.22) take the new form:
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|o|
1-D,’

Oeq = |04/, Ocq =
m—1
| .
= ——70,.f(t), €5=¢6;=—
r (1 — Dﬁ)m T ( ) ] z
Finally, the solution of the creep problem in the partly failed zone reduces
to

(6.23)

C
&

D=

: C . .
u! = CjInr + D; + I, dl:ET’, 61=0, Iy=[edE,  (6.24)
0

where ¢ denotes the radius of the failure front.

6.3.3 Results for annular disk

Boundary conditions for the initial (pre-critical) phase are as follows:

0.(@)=0 o,(0)=p (t=0),

(@) =0 G.(b)=0 (0<t <t) (6.25)
enriched also by the continuity conditions for a post-critical phase
al(c) = 0r(c) ul(c)=4u(c) (tr <t; <tm), (6.26)

enabling evaluation of the constants Ag, Bo, A, Bi, and Cj, D;, respec-
tively.

The numerical example is presented for a disk made of ASTM 321 stain-
less steel, the material data for which are:
E = 1.77 x 10° MPa, v= 0.3, p = 7.9 x 10® kg/m3, a = 0.02 m, b = 5a,
ho = 0.002 m, g = 118 MPa, a = 1.85 x 1073 K~1, p/oy = 0.1, w = 100
s T, = 773 K, AT = 10 K; whereas the temperature dependent material
constants for creep rupture are shown in Table 6.2.

Table 6.2. Temperature dependent creep damage data for ASTM 321 stainless
steel

Absolute
temperature | C[Pa~"s™1] | 7 m

773 K 2.13 x10%4 | 3.90 | 5.60
783 K 1.35 x104! | 3.82 | 5.49

During the stage of latent failure (t < t;) the rapid accumulation of
damage is observed mainly in the neighborhood of the inner edge where the
initiation of failure occurs at t;. Simultaneously the hoop stress oy drops
to zero at 7 = a and, then, the failure profile begins to move outwards as
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failure front

3
r/a

Fig. 6.2. Transient creep and creep failure of an annular disk: a) geometry and
loadings, b) damage growth 0 < t < t; and failure propagation ¢t < t < t;7, c)
circumferential stress redistribution at failure (after Skrzypek, 1993)

time increases above t;. At complete failure, the failure profile meets the
outer edge of the disk and, eventually, the structure becomes unserviceable.

The situation becomes slightly different when a disk clamped at the inner
edge is considered. In this case, mixed boundary conditions must be used

w(a) =0 o.(b)=0 (¢t=0), (6.27)
wa) =0 o.(b)=0 (0<t; <t) '
and the continuity conditions at the partly failed-nonfailed interface (6.26)
holds. When the inverse temperature gradient. is applied to the disk AT < 0
(cf. Skrzypek, 1993), the damage process initiates at the outer edge with
respect to the circumferential component Dy and, as time increases, the
circumferential damage accumulation runs faster than the radial one D,.
If the first macrocrack is initiated at ¢ = ¢; in the outer fibers of the
cross section Dy (b) = 1, the hoop stress in these fibers must drop to zero,
09 (b) = 0. Then the failed zone begins to spread inwards and, eventually,
it may occupy the whole disk at ¢;;, unless the prior accumulation of the
radial damage at the inner edge of the disk causes disk separation (decohe-
sion) from the shaft D, (a) = 1 after the radial stress in this fiber has been
released completely, o (a) = 0.
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Axisymmetric heat transfer

problems in damaged cylinders
and disks

7.1 Basic mechanical state equations of
rotationally symmetric deformation -
under unsteady temperature field

Let us consider an axisymmetric problem in the displacement formulation
which may describe plane stress (a disk of constant thickness) as well as the
plane strain state (a cylinder). Applying the geometrically linear theory of
small displacements and decomposing the total strains into elastic, creep,
and thermal parts,

e=e°+¢€°+eh, (7.1)

the problem may be expressed by the system of displacement (rate) equa-
tions as follows:

d2u 1ldu w dT
St Y A1+ v)as t=0
dr2  rdr r? (+V)adr ( ),

(7.2)

#u ve i} a
dr2 rdr 2 7

dT
— 4+ h — (¢t >0).
+d'r+ (1+V)adr (t>0

The solution for displacements, stresses, and their rates takes the elemen-
tary form:

I. Elastic problem (¢ = 0)

r o c
’U/=CI§+'22+’I(1+V)IO,

E ¢ Cg E
= lc————)—h—], _
7 1+U(2 r? r (73)

E ¢
019—1+V(k5+;§)+h—(10—a7'T).

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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II. Creep problem (¢ > 0)

u=631+2+j1+12+h(1+u)j0,

2 2
. E c3  C4 kjl - jz E .
= - - = — h—1I
or 1+1/<k2 2zt ) r
(7.4)
. _F es e khi+DL .. .
019_1+V<k2+rz+ ; g+éi—€5
+hZ 1y — B,
r
In the case of plane strain state and creep incompressibility,
b= GazvOH0al | p o oy (7.5)

E
the appropriate axial stress and its rate ought to be taken into account:

0, = vke; — hEaoT, (t=0),

E
14+v
(7.6)

_ E I e :
o =115 (I/k‘03 + 21/k7 + hé; +e19) —hEoT (t>0).

The auxiliary symbols in (7.3)-(7.6) are defined as follows (cf. Table 7.1):

Table 7.1. Auxiliary functions for basic rotationally symmetric deformation un-
der unsteady temperature field (after Ganczarski and Skrzypek, 1995)

Quantity Plane stress Plane strain
f (1-v) (& —€5) | 52 (67— ¢€5)
i &2+ v !
h 1 =
k i %
o= 7 [Teds, fo=2 e

(7.7)
iy =

o3
oy
N,

a6, fo=g (- P
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In the case of an axisymmetric problem, when the effect of isotropic deteri-
oration on elastic moduli is to be analyzed, another formulation, based on
the stress function, is more convenient:

d’¢ 1dp ¢ _E dT (t=0)
dr2 " rdr 2 1-v dr o
@ 14p_§  [md (1 ‘

dr2  rdr r2 dr \ §

x(#‘ﬁ%ﬂ“(fﬂ%) (t>0), "

E [ de de  eS—e5])|°
= —(l=p) 2y r Y
+{1—V2[VdT ( V)dr+ T }} )

where, on the basis of the principle of strain equivalence, the effective
Young’s modulus E is expressed in terms of the continuity parameter 1
by the formula E = E. Note that in case of energy equivalence both
Young’s modulus and Poisson’s ratio change with damage, and the microc-
rack growth influences both stress and strain, which is more realistic when
compared to strain equivalence where drop of local stiffness results in local
stress decrease only.
The stress components and their rates are now defined as follows:

d
or=—i—), 0'19=d_f, 0, =v(o,+0y) — EaT (t=0),
dr:%: ('719:%, O"ZZV(dT +(5'19)—E01(¢T)‘ (79)

FE R (<5 +5)) (t>0).

7.2 Constitutive equations

Two concepts of coupling between constitutive equations of creep and dam-
age are formulated: fully coupled when damage orthotropy effect on creep
flow is accounted for, or partly coupled when damage orthotropy effect on
creep flow is disregarded.
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7.2.1 Fully or partly creep-damage coupled approaches

I. Damage orthotropy effect on creep flow accounted for — fully coupled
creepdamage approach

In general, when loadings are nonproportional, the orthotropic damage
mechanism causes the creep process to be orthotropic as well (damage in-
duced creep orthotropy). Hence, the fully coupled creep-damage approach,
where the effective stress components are used and the time hardening hy-
pothesis governs the creep strain-rate intensity (cf. Ganczarski and Skrzy-
pek, 1994a), yields the following equations (cf. Sect. 4.1.3):

. 3feq~ .o _ (= s o~ o L
Sil = 53—qskl, Eeq = (Ueq)m(T)f(t), Skl =0k — 50,;,-519[, (7.10)
eq

where the effective stress Gy, results from the appropriate equivalence prin-
ciple and the equivalent stress 0q, effective equivalent stress Geq, and equiv-
alent creep strain rate ¢, are (cf. Ganczarski and Skrzypek, 1993):

/3 ~ [3. ~ . 12 .. .
Oeq = 5 Sk Skl Oeq = o SkLSkls €oq = ‘éekteiz- (7.11)

The orthotropic damage-growth rule is applied to describe damage accu-
mulation, Kachanov (1986):
Oii

Dii = Co(T) @)™, Giu= T DO (7.12)

Symbols () denote MacAuley brackets.
I1. Damage orthotropy effect on creep flow disregarded — partly coupled
creep-damage approach

In a simplified case the isotropic flow rule, instead of the orthotropic one,
and the orthotropic damage growth rule are applied:

o 3E T !
= 5o sk €q = (Tea) D), St =0k — 20ubu,  (7.13)
eq

although, in general sense, such a formulation is inconsistent and may result
in certain discrepancies when compared to the exact one.

7.2.2  Azisymmetric plane stress fully or partly coupled
creep-damage problems
In a particular case of the axisymmetric plane stress, when terms associated

with the 2 direction are neglected and the incompressibility of creep is
assumed, we find:
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o _ (= ym(T)-1|_9r L) ;
& = (Ue‘l) [1 _ Dr 2(1 _ D'|9):| f(t)’
.c ~ - g9 Or h .c .c .c
= @ [1 —Dy; 2(1-D )} O, &=-Era),
(7.14)
or
~ ym(T) .
& = (Gea) ™"~ (or _ ﬂ) f(t)
Oe 2
= — (co-F)i0,  £=-(+ey),

in cases of the fully coupled (7.14) or partly coupled (7.15) approach, re-
spectively, where

Oeq = /0% + 0% — 0,04,
2 2
. Or + (o] _ 0,09
a 1-D, 1-Dy) ~ (1-D,)(1—Dsy)’

In above formulations, the orthotropic or the isotropic creep law has been
coupled with the orthotropic damage law. In general, the latter is described
by different material functions Cx(T"), 7+(T") and independently cumulat-
ing principal components of the continuity tensor 9. In what follows, we
consider the simplified case of material isotropy C, = Cy = C, = C and
r. =T9 =7, =7, but allow for the independent evolution of microcracks
in each of principal directions %,., ¥4, ¥,. Another problem arises when
the temperature dependence of creep rupture functions m(T"), C(T), »(T),
which introduces material nonhomogeneity in the inelastic range, is consid-
ered (cf. Ganczarski and Skrzypek, 1995). The quantities m(T'), r(T) must
be linearly interpolated, whereas function C(T'), which strongly depends
on a local temperature, must be logarithmically interpolated.

(7.16)

7.2.3 Azisymmetric plane strain coupled creep-isotropic
damage problem
Relations (7.10)—(7.13) take a simple form when the creep incompressibility,

the plane strain conditions, and the scalar formulation of the isotropic
damage law D = 1D, are assumed:
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) o1 ~(T) p
D=C(T) < > , Oeq = =

1-D 1-D’
a’m(T)—l o9 +0 .
£6 = A - £ 1
° = {{= D= ("T 2 ) o) (17

Aa,-fﬂl.(T)—l o +0 .
~C __ eq _r z
€y = (1 _ D)m(T) (0'0 2 ) f(t)’

where 0] denotes the maximum principal stress, which refers to the Galileo
hypothesis.

7.3 Thermo-mechanical rotationally
symmetric boundary problems

7.8.1 Axisymmetric heat flow in cylinders or disks under
thermo-creep-damage coupling conditions

Let us rewrite the heat transfer equations in damaged solids in the case of
axisymmetric heat flow. To this aim the general equations (5.3), (5.7), (5.9)
described in Sect. 5.1 using Cartesian coordinates must be transformed to
cylindrical coordinates as follows:

Model A
1d dT (r,t) L
pel {T {Ao (1-D(r1)) T} } + o = T, (7.18)
Model B
%dir {T [’\0 (1= D(r1)) de(: J- oeoD (r,t) T* (r, t)] }
(7.19)
+4y = cveT,
Model C
1d dT (r,t) L
pobe {7' [Aeq (rt,T) -—d;—] } + 6o = coeT,
X dD/dr ] (7.20)
t =
deq (1,8, T) = X(r,t) + 0o [4D+ aTjar T] Tedr,

X(r,t) =X (1=D(rt) or A(rt)=X(l—D(rt)">.
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Extension of (7.19) and (7.20) to rotationally symmetric disks of a variable
thickness h (r) yields:

Model B
ld dT (r,t)
rdr {’" [)\ow (rt) =g —oeD(r,t) T (’r,t)] }
1 dh dT (r,t) . . )
thar [)“)w (rt) =3~ — oD () T" (rt)| + ¢ = eT,
(7.21)
Model C
1d dT'(r,t)\ | 1dh, dT(rt) .
?5( T gr )/mﬁ” a Th =,
(7.22)
dD/dr
Aeq (;1,T) = o (1 = D (r,t)) + 0o [4D+—dT Tar T} T3dr,

7.8.2  Cylinder subject to a nonstationary radial temperature
field under plane strain conditions

Let us consider a cylinder of inner and outer radii a and b, respectively,
under the plane strain condition, subject to a nonstationary radial temper-
ature gradient (Fig. 7.1).

Stresses and their rates satisfy (7.3) and (7.6) in case of the displace-
ment formulation or (7.8) and (7.9) in case of the stress function formula-
tion, respectively, as well as the homogeneous mechanical state boundary
conditions:

or(a)=0 o,.(b)=0 t=0),
a}&:o m&3=0 &>£ (7.23)
p(a) =0 ¢(b)=0 (t=0), (7.24)

$(a)=0 ¢(b)=0 (t>0).

The temperature at both inner and outer edges of the cylinder is constant
through the process; hence, the following boundary conditions for the tem-
perature field have to be satisfied:

T(a)=T,, T(®) =T (7.25)
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Fig. 7.1. Long cylindrical thick-walled tube subject to a nonstationary ra-
dial temperature gradient under plane strain conditions (after Ganczarski and
Skrzypek, 1998b)

7.8.83 Thin circular disk subject to constant temperature at
the edge and cooled through the faces under plane stress
condition

Suppose a disk of constant thickness h (r) = const, which is thin enough
to assume the plane state of stress, is considered. The disk is subject to
constant temperature at the edge T, and cooled through the faces by a
fluid stream of temperature Ty, as in a turbine rotor (cf. Fig. 7.2).

The mechanical state fulfills (7.3) and (7.4) and the homogeneous bound-
ary conditions

TO_o, rm=7. =0,
. (7.27)
dT0O) _ o () =0 (t>0).
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free convection ¢, Eq.(7.37)
1

daT_ '
dr ™ I(r)

N |
AN

’ !

h(r)=const

RN

Fig. 7.2. Circular disk subject to constant temperature at the outer edge and
cooled through the faces under the plane stress condition (after Ganczarski and
Skrzypek, 1995)

7.3.4  Numerical procedure for the initial-boundary problem

To solve the coupled initial-boundary problem, we discretize time by in-
serting N time intervals Aty, where tg = 0, Aty = tx —tx_1 and ty = tg
(rupture). Hence, the initial-boundary problem is reduced to a sequence
of quasistatic boundary-value problems, the solution of which determines
unknown functions at a given time tx, e.g., T (x,tx) = T% (x), D (x,x) =
D* (x), etc. At each time step the Runge-Kutta II method is applied to
yield updated functions 7%+, D*+1, etc. To account for primary and ter-
tiary creep regimes, a dynamically controlled time step Aty is required, the
length of which is defined by the bounded maximum damage increment:

AD"ver < (max) { [Df] (x) — ij“l (X)] Atk} < ADvPPer, (7.28)
173X
Additionally, when a generally nonlinear heat transfer problem with respect

to radial coordinate r is solved for quasistatic temperature changes (1" = 0),
we have (Model B):

d dT (r,t) . d 4

o [’r)\ow (r,2) T} +4y = I [roeoD (r,t) T* (r,1)] . (7.29)
The radiation-type term plays role of an additional nonhomogeneity if D >
0. Discretizing also radial coordinate r;, by inserting equal mesh Ar =
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74 — T;_1, rewriting the above equation for a time step ¢ in terms of finite
differences of 9;, D;, and T; with respect to the r; coordinate, and inserting
the previous solution for temperature in the right-hand side ﬁ, we furnish
at each time step t; the equation for the updated temperature T; at the
left-hand side of (7.29):

iy i 1 T 41 T,
by L Ty — 2% T,
° { [(2Ar)2 * ((AT)Z 2Ar) s (zm)z] N Ar)?
Ty ri o L T
* [ ar)? * ((Ar)2 + ZAT) Vit oan?
_ (&N L (_Dici | Diy1) (5)\*
oo () o (B4 222) 7)

\3( Tiiy  Tim
+4nD; (T) ( oar T 2Ar>
(7.30)

When (7.30) is solved, the new temperature distribution T} is provided, con-
sidered next as a right-hand side nonhomogeneity for a subsequent temper-
ature subiteration. The procedure is repeated until the calculated function
T; differs from T; with a given accuracy. Equation (7.30) is solved by the
FDM with the radial damage (continuity) component D = D,, % = v,. until
the dominant damage reaches the critical level, max (D,, Dy, D,) = Dq.

7.8.5 Material data

Numerical examples deal with cylinders and disks made of the following
materials:

i) Carbon steel (rolled, 0.40 Mn, 0.25 Si, 0.12 C, normalized, annealed
at 850°C) the material data of which are (cf. Holman, 1990):

E =150 GPa, 092 = 120 MPa, v = 0.3, a = 1.4 x 1075 K~1, Xy = 43
Wm'K™!, =14 Wm 2K, 0 = 5.669 x 1078 Wm ‘K™%, ¢, = 0.60,
a/b=0.5, R= 1.0 m, T, = 525°C;

temperature dependent parameters are listed in Table 7.2.

ii) ASTM 321 stainless steel (rolled, 18 Cr, 0.45 Si, 0.4 M, 0.1 C, Ti/Nb
stabilized, austenitic, annealed at 1070°C, air cooled) of the following data:

E = 150 GPa, 0p2 = 120 MPa, @ = 1.85 x 1075 K~1, )y = 23
Wm™ K1, ¢, = 0.50;

temperature dependent parameters are listed in Table 7.3.
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Table 7.2. Temperature affected material data for carbon steel (after Odqvist,
1966)

T [m|r ]| og, o]
(°C) (MPa) | (Pa~"s71)

500 |33 (35| 80 |1.34x107%
550 {25 (23| 40 |2.75x107%7
600 | - [1.0] 27 |5.14x107'7

Table 7.3. Temperature affected material data for ASTM 321 stainless steel
(after Odqvist, 1966)

5
T m | r R C

(°C) (MPa) | (Pa"s™1)
600 | 45| 31| 100 | 1.07 x10-34
650 | 4.0 | 2.8 60 1.21 x10~31
700 | 35|25| 38 8.91 x10~2°

7.4 Example: Thermo-damage coupling in a
cylinder

7.4.1 Thermo-damage coupling in a cylinder disregarded
(stationary temperature field)

Let us consider as a sample solution the case of a cylinder under stationary
temperature gradient AT when the effect of damage accumulation on heat
transfer is disregarded.

The classical Fourier heat transfer equation takes the form:

1d dT
;E (T)\Od_’r‘> = 0, (731)
the solution of which is
AT r
T (’l”, t) =T (7‘, 0) - m/—b—) In E + Ta,. (732)

Damage localization is observed along the circular line near the inner edge
of the cylinder (Fig. 7.3a). The temperature field is stationary because of
the absence of thermo-damage coupling (Fig. 7.3b), whereas the hoop stress
relaxes with time to failure but not fast enough to overtake the damage
accumulation in a cylinder (Fig. 7.3c). Consequently, the finite time of

failure initiation tg:zrbm is reached.
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Fig. 7.3. A tube subject to creep under stationary temperature field (effect of
thermo-damage coupling disregarded): a) scalar continuity parameter evolution,
b) stationary temperature field, c) hoop stress redistribution (after Skrzypek and
Ganczarski, 1998b)

7.4.2 Model A: Pure heat conductivity case

Consider a cylinder subject to a transient temperature field associated with
constant temperature at both edges AT = Ty — T,,T, < Tp, and the
simplified equation of heat transfer (7.18) where the radiation through the
damaged part of a cross section and the inner heat source are disregarded
(60 = 0, ¢ = 0), whereas the temperature field changes in a quasistatic
way (T = 0):

Like the previous case, the damage accumulation also concentrates along
the circular line near the inner edge (Fig. 7.4a). Consequently, as time
increases, the conductivity across the damaged surface asymptotically ap-
proaches zero and, as a result, temperature and hoop stress jumps are
formed (Fig. 7.4b,c).

The accompanying stress relaxation is not fast enough to prevent the
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structure from collapse. The corresponding lifetime tgj:(:l = 85‘7615&2»(m

is finite, and it is approximately 15% shorter compared to the case when
thermo-damage coupling is disregarded.
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Fig. 7.4. A tube subject to creep under a nonstationary temperature field (Model
A: effect of thermo-damage coupling incorporated, pure conductivity ¢ = 0): a)
scalar continuity parameter evolution, b) temperature field evolution resulting
from damage accumulation, c) hoop stress redistribution (after Skrzypek and

Ganczarski, 1998b)

7.4.8 Model B: Combined conductivity-radiation case

Taking the combined conductivity/radiation mechanism taken account
1d

dr .
'[‘5 l:?" (A(ﬂ/}a —O'EOT )] =0

may lead to two different mechanisms, depending on the material proper-
ties.

(7.34)

I. Complete stress relaxation mechanism

A cylinder made of the carbon steel, but with the combined conductivity-
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Fig. 7.5. A tube made of carbon steel under nonstationary temperature field
(Model A: effect of material damage on heat conduction and heat radiation,
€0 = 0.6): a) stabilization of scalar continuity parameter, b) temperature evolu-
tion, c) complete hoop stress relaxation (Skrzypek and Ganczarski, 1998b)

radiation effect taken into account (€g 7# 0), exhibits a complete stress relax-
ation. The slower redistribution of temperature with time (Fig.7.5b) allows
hoop stress to relax completely (Fig. 7.5¢) and, in consequence, to prevent

(€0#0)

collapse (Fig. 7.5a). Hence, an infinite lifetime is predicted: ¢; — 00.

carbon

II. Temperature saturation mechanism

When a cylinder made of stainless steel is concerned, the saturation of
temperature precedes rupture. A phenomenon of temperature change due
to the damage level increase may be observed despite the vanishing tem-
perature gradient. Hence, an appropriate cutting-off procedure, to avoid
thermodynamically inadmissible temperature fields (Fig. 7.6b, d), must be
introduced. Formation of the temperature jump is visible in the inner zone
that results in a change of sign of the hoop stress (Fig. 7.6c) and, eventually,

the lower-band estimation of the lifetime tgefi?e) = 38%t{")

stainless
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Fig. 7.6. Evolution of continuity parameter, temperature, and hoop stress in
the case of combined conductivity-radation (Model B: saturation of temperature,
stainless steel) (after Skrzypek and Ganczarski, 1998b)

7.4.4 Model C: Equivalent conductivity concept

The concept of equivalent conductivity-radiation exhibits essential differ-
ences depending on whether the derivative dD/dT is disregarded or taken
into account. When the exact formula (7.20) is applied for a stationary
cylindrical heat flux with no inner heat sources and quasistatic tempera-
ture field changes, the following equation holds:

1d dT
=S et 1) | = .
rdr [T (rt, )dr] 0 (7:35)

where:

dD/d
X7, 8, T) = M, t) + 0o [4D+ /dr

dT/dr
A characteristic hoop stress discontinuity is formed at the point of most
advanced damage (Fig. 7.7¢), and the lifetime is reached t? D= 78%

£§) . Concluding, the equivalent conductivity concept (7.35) is recom-

Istainless

T} Tdr. (7.36)

stainless
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mended as the most reliable.
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Fig. 7.7. Evolution of continuity parameter, temperature, and hoop stress in
case of equivalent conductivity concept (Model C, stainless steel) (after Skrzypek
and Ganczarski, 1998b)

7.5 Example: Complete stress relaxation in a

disk

In the case of a disk of constant thickness h cooled through its faces by a
fluid stream of temperature T, (cf. Fig. 7.2), the equation of heat transfer
(7.19) (Model B) requires an explicit formula for the inner heat source
intensity:

G = —2-§ (T-T). (7.37)
Here, the heat transfer rate is related to the convection described by New-

ton’s law of cooling. The quantity G is called the convection-transfer coeffi-
cient. Hence, assuming quasistatic temperature changes (T" = 0), the heat
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transfer equation takes the form:

1d dr
14, K’\WTE> —oeoD,T“] _ %(T—Tw) =0. (7.38)

The most advanced damage accumulation appears at the center, where
the two components of the continuity tensor are equal to each other (Fig.
7.8a,b). Dominant radial stress relaxes more quickly than the corresponding
component of the continuity tensor as the latter approaches zero; therefore,
the lifetime is infinite (Fig. 7.8c,d). In other words, no thermal failure oc-
curs.
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Fig. 7.8. A circular disk subject to constant temperature at the outer edge and
cooled through faces: a) and b) saturation of radial and circumferential continuity
parameters, respectively, c) and d) complete radial and hoop stress relaxation (no
thermal failure) (cf. Ganczarski and Skrzypek, 1995)



8

Creep-damage and failure of
axisymmetric disks with shear
effect included

8.1

General formulation for basic mechanical
state equations of plane
stress—rotationally symmetric
creep-damage process

8.1.1 Assumptions

Let us consider an annular disk rigidly fixed at the inner edge r = a. The
disk is loaded by a system of general loadings which cause not only radial
and circumferential stresses but also introduce in-plane shear effects (a
particular nature of these loadings will be discussed in details in Sect. 8.2).

The following assumptions are used to account for the effect of rotation
of principal directions of damage and stress tensors on the creep-damage
process in disks:

i

ii.

ii.

iv.

Geometrically linear theory is applied to describe rotationally sym-
metric deformation of the disk; total strains (small) are decomposed
into the elastic and creep portions:

Erjo =€y TE 9 Vo = Vi T Vo (81)

Elastic part is governed by Hooke's law (isotropic). No additional
effect of the material deterioration on elastic properties is taken into
account.

Creep part is governed by either the isotropic or the modified or-
thotropic flow theory and by the time-hardening hypothesis (cf. Sect.
4.1.3).

The Murakami-Ohno damage tensor D and its objective time-deriva-

v
tive D are used (cf. Sect. 4.1.4).

. Brittle damage is governed by the orthotropic void growth rule ap-

plied to current principal directions of stresses (rotation of principal
axes of damage and stress tensors on creep-damage process in disks
is accounted for) (cf. Sect. 4.1.2).

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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vi. Creep-damage coupling is formulated in alternative ways (Table 4.2):

— partly coupled approach (isotropic creep flow and orthotropic dam-
age)

~C
3 €eq

20eq

. . = s ) o T
&S, = 817, €oq = (Teq)™f(2), D1J=CIJ<ﬁ;> (82)

— fully coupled approach (modified orthotropic creep law for initially
isotropic material and orthotropic damage).

g = 3fag i = (Foq)™f(t), Dry=0Cps( 21— (8.3)
Mg, T T Y\1=Duy |

vii. Plane stress-rotationally symmetric problems are accounted for; con-
stant thickness of the annular disk rigidly fixed at the inner edge
r = a is assumed.

The classical orthotropic brittle damage law (Kachanov, 1958) is ap-
plicable for principal directions of the stress tensor. When shear stresses
are accounted for, the principal directions of the stress tensor rotate with
time and, hence, a tensorial formulation of the damage is required (Chow
and Lu, 1992). In general, current principal directions of the stress tensor a;
and of the damage tensor §; do not coincide, however, when the principal
axes of stress rotate due to the shear effect, the principal axes of damage
follow them. The symmetric second rank damage tensor D (Murakami and

Ohno, 1981) is applied, and the objective derivative Iv) of the damage tensor
is adopted, to account for the effect of rotation of principal directions on
the damage accumulation process. Then, a current transformation to the
global coordinate system (sampling coordinate space) is performed. The
graphical interpretation of all auxiliary coordinate systems associated with

v
the definition of the objective damage rate tensor D in case of the plane
stress rotationally symmetric deformation is shown in Fig. 8.1.

8.1.2 Reduced displacement mechanical state equations

The problem is formulated in displacements (cf. Penny and Marriott, 1995,
also Ganczarski and Skrzypek, 1991):

1-02
Flup) =— = pwir

>
Flug) = P_Gor
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Fig. 8.1. Schematic creep damage accumulation of several orthotropic increments
coincided with current principal stress axes (1, 2) and resulting rotation of current
principal damage axes (I, II) in case of a disk (after Skrzypek and Ganczarski,
1998a)

_d@g-f) §_,0-»)

F(u,) o Ty Z—E——pw(t)e(t)r
(t>0), (84)
’ die e (¢
Flig) = 12 42702 4 %'r

where the differential operator F|...], auxiliary symbols g, f , and the re-
lationships involving the angular acceleration € and the angular velocity w
take the form

d®... 1d...

A=z +ig (85)
g=e s, f=(1-0)(E-25), ()=o),

8.1.8 Solution of mechanical state equations for constant
angular acceleration

Assuming constant value of the angular acceleration e(t) = ¢ or, in
other words, a linear function of the angular velocity, the system (8.4) can
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be solved explicitly.
1. Elastic problem (t = 0)

. cg 1-12 R pEo
ur=617'+7— SE pw(2)7‘3, Uw=037'+ +E3
e duy e _ Ur _duy oy
T AR ’ﬁ”*dr r’
e E Co 3+v 2 2
=12 [(1‘*‘1’)01—(1—1/);5] — g T
o E Co 1+3v
75 = Tog (e + (L= - =t
e Geg | peo
TSy = —2—2+Tr2.
II. Creep problem (¢ > 0)
_ Tf 1 T
=z e T[I = s f
ir=ar+ 27 [Lace o [ei-fag
a a
1—02
L ey,
s —c3r+ L /7”’(15,
é_duf_éc & l_sc _dﬂ_u_ﬂ c
LA dr T v = 9 Yro dr r 9
. E é 1+4+v Tf
Or =172 14+v)a-(Q1- )1n2+—2 Edf
a
”
1-v . 3+v
T o / 629~ f)dE| = ==pe(t)u(t)r®

E & 1 [ f
(5'19:1__1/2 I:(I—FV)EI-}-(].—V)%_‘. —;V/édf

(8.6)
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l—v [, . l+3v
iy [ea- | - B - T pe(0ulor?,
a
. Ge
7‘,192—2—74.
™

8.1.4 Constitutive equations for coupled creep-damage
problem in current principal stress directions

The creep strain rates derived on the base of isotropic or modified or-
thotropic flow theory associated with the time-hardening hypothesis, under
additional assumptions of plane stress state and creep incompressibility, are
expressed by the following formulae (cf. Ganczarski and Skrzypek, 1991):
Partly coupled

.c (’6e )m 02/1\
&y = azq (01 e T/) f(), (8.8a)
Fully coupled
-c ~ ym—1 01/2 1 o .
= (7, - = f(t), 8.8b
61/2 (Cf q) (1—D1/2 21—D2/1) ( ) ( )
€5 = —€] — £5. (8.8¢)

The 2D objective derivative of the damage tensor takes the form (cf. Bathe,
1982):

v v .
D1 Dy | _ { D O ] [ D11 Doy } [ 0 do ]
v v - > - _
D21' Doy 0 Da Dy Dss de 0
+ 0 —da Du D12
da 0 Doy Doy !
(8.9)

where non-objective damage rates are

: o\ . e \"
Dy =04 - Dn, s Doy = Cy 1_—_D_22 . (810)

v
When the objective damage rate tensor Drs (8.9) is transformed from
current principal directions of the stress tensor (1J) to the sampling coor-

v
dinates (i§) Dij, the new damage tensor D;;(t + At) is achieved:
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transf v

DI J Dz77 v (811)
Dy;(t + At) = D;j(t) + Dyj(t)At.
Consequently, the creep strain rates (8.8) referring to the global coordinate
system (ij) are obtained via the transformation of the creep strain rates
written in current principal directions of the stress tensor (1,2):

~C

.G -C sc
o €] —€
1 2 1 2
._____._+..__

&y = 5 5 cos 2a,
eo = & -;éé _& ;éé cos 201, (8.12)

Yeg = (€] — €5) sin 20

The intensities of the stress, the effective stress, and the strain rates are
defined by the following formulas (cf. Ganczarski and Skrzypek, 1991):

Oeq = /02 + 0% — 0109,

59“=\/(1jl])1)2+(1f21)2)2‘ (1le1)(152132)’ (8.13)

el +62 + €7€5.

f

8.2 Boundary problems for creep damage in
annular disks in case of rotating
principal axes

Example A: Disk under steady tension and steady torsion

Let us consider a disk under the steady tension and torsion (Fig. 8.2).
Displacements, strains, stresses and their rates satisfy (8.6)-(8.7) and the
following boundary conditions:

up(a) =0, uj(a) =0, (t=0),

or () =p, Tos(b)=3s
o) = (8.14)
urEag 8, gvé(g) :% (t>0).

Example B: Disk under steady tension and multiple reverse torsion

In case of a multiple reverse torsion (Fig. 8.3) displacements, strains, stresses
and their rates satisfy (8.6)—(8.7) and the following boundary conditions:
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Fig. 8.2. Layout of a circular disk subject to creep damage under steady periph-
eral tension p and torsion s (cf. Skrzypek and Ganczarski, 1998a)
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Fig. 8.3. Layout of a circular disk subject to creep damage under steady pe-
ripheral tension p and multiple reverse torsion %s (cf. Skrzypek and Ganczarski,

1998a)
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uz(a) =0,
or(b) =p,
ir(0) =0,
or(b) =0,
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Ug (a) =0, _
é%?TJS} o (5.15)
A

Example C: Disk under alternating acceleration/braking cycles

In the third case a disk subject to the cycle of alternating acceleration and
braking is considered (Fig. 8.4). The internal variables fulfill (8.6)—(8.7)
and the homogeneous boundary conditions:

ur(a) =0,
o2(b) =0,
'd,(a) =0,
o-(b) =0,

uy(a) =0,
e t = 0 b
Tro (b) =0 ( )
. _ (8.16)
b(@) =01 g
Trd (b) =0
1
mmax
0 1 2t time ¢
€
L 24
0 >
time ¢
—€

Fig. 8.4. Layout of a circular disk subject to creep damage under multiple reverse
acceleration-braking e (cf. Skrzypek and Ganczarski, 1998a)

8.3 Material data

First two boundary problems A and B formulated in Sect. 8.2 deal with
disks made of stainless steel (rolled 18 Cr 8 Ni 0.45 Si 0.4 Mn 0.1 C Ti/Nb
stabilized, austenite annealed at 1070°C, air cooled (ASTM 321)) with the
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following properties at temperature 500°C (cf. Odqvist 1966): E = 180
GPa, 0g.o = 120 MPa, v = 0.3, m = 5.6, r = 3.9, O’C = 210 MPa, where
o‘g denotes the stress causing creep rupture in 105 hr Magnitudes of load
are: p = 0.2 x 0g.2, § = p/20.

In case of problem C in Sect. 8.2 the disk is made of carbon steel (rolled
0.40 Mn 0.25 Si 0.12 C normalized, annealed at 840°C) with the following
properties at temperature 500°C: E = 170 GPa, 0o 9 = 120 MPa, v = 0.3,
m = 3.3, r = 3.5, Uc =80 MPa, o = 7850 kg/m3. The disk is subject to
angular acceleratlon/ braking € = +10 s™2, whereas the maximal angular
velocity is Wmax = 50 s~ = 3000 min~1.

8.4 Numerical results

8.4.1 FEzxample A: Creep-damage accumulation and shear-type
failure mechanism in disks under steady tension and
steady torsion

A representative distribution of the dominant current principal component
of the continuity tensor ¥; is presented in Fig. 8.5a. The first macrocrack
appears around the inner edge (r = a). The damage zone is narrow and
limited to the closest neighborhood of the fixed disk edge.

Consider the evolution of angles of principal directions of a-stress, and
[-damage tensors at the point of the first macrocrack initiation. In the
partly coupled case of (8.2), the isotropic flow rule introduces similarity of
the stress deviator s;; and the creep strain rate deviator £7;. The angles of
principal directions of the stress tensor o () and the damage tensor D ()
slightly differ from one another during the primary creep phase (Fig. 8.5¢c).
However, the principal direction of the stress tensor precedes the principal
direction of the strain tensor when process enters the secondary and tertiary
creep. On the primary creep, when damage is not advanced, components
of the damage tensor D strongly depend on the corresponding components

of the objective damage rate tensor B Therefore, the principal direction
of the damage tensor () slightly precedes the principal direction of the
stress tensor (a). However, during secondary and tertiary phases, when
damage reaches a more advanced level, and an influence of the objective
damage rate tensor on the damage tensor is not so strong, the opposite sign
discrepancy between principal directions of both tensors, increasing with
time, is observed. When the fully coupled approach is assumed (8.3), the
orthotropic flow rule introduces similarity of the effective stress deviator
8;; and the strain rate deviator £j;. In this case, final magnitudes of all
principal angles reach a lower level than in the previously discussed case,
and differences between them are more noticeable (Fig. 8.5¢, d). However,
in the case of the orthotropic flow rule only a 0.3% increase of the life-
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time is observed when compared to the lifetime obtained for the isotropic
formulation.

The shear type failure mechanism is strictly associated with the hoop
displacement discontinuity around the inner edge (Figs. 8.5b and 8.6).
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Fig. 8.5. Disk under steady tension and torsion: a) damage evolution with time to
failure, b) formation of the hoop displacement discontinuity, c) and d) rotation
of principal stress axes o, and principal damage axes 3 in case of scalar and
tensorial creep-damage coupling, respectively (at inner disk edge r/R = 0.2)
(after Skrzypek and Ganczarski, 1998a)
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Fig. 8.6. Schematic illustration of the shear-type failure mechanism of a disk
under steady tension and torsion (after Skrzypek and Ganczarski, 1998a)

8.4.2 Exzample B: Alternative creep-damage accumulation and
the shear type failure mechanism in a disk under
multiple reverse torsion

Alternating torsion causes reverse jumps of the principal axes of the stress
tensor around the a = 0 direction. Consequently, the principal axes of the
damage tensor () also undergo rotations. However, the changes of 3 are
not as sharp as those of @, and they oscillate nonsymmetrically around
the direction § = 0 with an inclination to the direction corresponding to
the first loading cycle. On the tertiary creep phase a slope of the 3 angle
versus time rapidly increases preceding a shear type rupture mechanism
in disk. Due to the alternating torsion, the damage accumulation process
develops in reverse material fibres in an alternative manner which produces
a characteristic response of damage freezing during each even loading cycle
(Fig. 8.7b) and, eventually, a 53% increase in lifetime is observed when
compared to the steady torsion case.

The shear-type failure mechanism in a disk also in this case corresponds
to the hoop displacement discontinuity (Fig. 8.6). After a number of oscil-
lations around the zero value, the hoop displacement wy rapidly increases
in the direction corresponding to the first loading cycle.
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Fig. 8.7. A disk subject to steady tension and multiple reverse torsion: a) princi-
pal damage axes rotation 8 resulting from principal stress axes oscillation a with
time to failure, b) formation of bilateral hoop displacement discontinuity with
time to failure in case of multiple reverse torsion versus steady torsion

8.4.3 FEzample C: Accumulation of creep-damage and the
decohesion-type failure mechanism in a disk under
alternating acceleration-braking cycles

In the case of a disk subjected to alternating body forces due to accelera-
tion/braking cycles, the loading path differs from the proportional one so
essentially that the simple isotropic flow rule (partly coupled) is no longer
sufficient to describe the creep-damage interaction. Therefore, in this case,
the modified orthotropic flow rule (fully coupled) is applied. It turns out,
however, that the radial component of the body forces is dominant when
compared to the hoop component.

Therefore, the first macrocrack appears around the inner edge with the
normal of the radial direction, whereas other components of the damage
tensor are less advanced (Fig. 8.8a). The alternating nature of body forces
causes that all principal axes of: the stress () and the damage () tensors
oscillate around the zero value (Fig. 8.8b). During all phases of the creep
process principal angles of the damage () tensor precedes the principal
angle of the stress tensor («). Amplitudes of oscillations of principal angles
decrease from one cycle of acceleration/braking to the other. The only
exception is the terminal phase of the tertiary creep when a significant
increase of magnitudes of the principal angles of the stress (&) and the
damage () tensors is observed.

The decohesion-type failure mechanism corresponds to formation of the
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Fig. 8.8. A disk subject to acceleration/braking cycles: a) damage evolution,
b) radial and hoop displacement evolution with time to failure, c) variation of
principal direction of the stress tensor a, d) evolution of principal direction of
the damage tensor

radial displacement discontinuity at the braking phase of the loading cycle
and refers to the dominant macrocrack of the radial normal (Fig. 8.9).

8.5 Conclusions

I. When the principal directions of the stress rotate, the principal direc-
tions of the damage tensor () follow the principal directions of the
stress tensor (c). The more the loading path differs from the propor-
tional path, the stronger the observed differences between the angles

() and (B).

II. Multiple reverse torsion leads to a significant increase of the lifetime
compared to the case of steady torsion. A shear-type failure mech-
anism, due to the dominant hoop component of the damage tensor,
accompanied with the hoop displacement discontinuity, is observed
in both cases.
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—-original |

— deformed

Fig. 8.9. Schematic illustration of the decohesion-type failure mechanism in a
disk subject to acceleration/braking cycles

III. Alternating body forces due to acceleration/braking cycles cause “os-
cillations” of principal directions of the stress () and the damage ()
tensors around the zero value. Hence, after a finite number of cycles
at the instant of rupture, both principal angles approach the zero
value. Consequently, a decohesion-type failure mechanism, due to the
dominant radial component of the damage tensor accompanied with
the radial displacement discontinuity, is observed.
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Creep damage and failure
analysis of thin axisymmetric
plates

9.1

Basic state equations for axisymmetric
Love—Kirchhoff plates of variable
thickness under arbitrary loadings

Let us consider an axisymmetric plate of variable thickness loaded by an
external pressure, body forces and a temperature field (Fig. 9.1). When
a cylindrical coordinate system is defined, the problem can be written in
displacements. Let us assume that:

i

ii.

iii.

iv.

V.

vi.

loadings are reduced to the middle surface,

the theory of small displacements with geometry changes accounted
for (second-order theory) is applied,

the Love—Kirchhoff hypothesis of straight and normal segments is
postulated,

Erjp = Apjp +Kej92Zs  Erg = App + Kpy2, (9.1)

small strain decomposition holds,

Erjp =€rpgtersg Ol erg =€y +eDy, (9-2)

plane stress state (0, = 0) holds,

thickness and temperature depend on the radial coordinate 7 only.

The state variables for the general coupled elastic-creep problem must

fulfil the following system of equations:
Membrane and bending equilibrium

a(ner) + Oy

o T a9 Mt er=0
O(negr) | Ong _
o + a9 + Ny + g =0,

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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Fig. 9.1. Element of an axisymmetric plate of variable thickness subjected to
external pressure, body forces, and temperature field
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Constitutive equations (cf. Penny and Marriott, 1995)
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E
Or/0 =12 [(51"/19 +vey)r) — (55/19 + Vefs/r) -1+ V)aT] ;

Ord (ero —€79)

1 +v
N pg = B(Arys +VAgyr) — 15 9 — B(L+v)aT,
Ny = B(1 — V) A9 — N2y,

My 9 = D(Kpp9 + VKg/r) — mﬁ/ﬂ, Mpy = D(1 — V)Kpy — My,
(9.5)
where the following definitions of inelastic generalized stresses hold:

ney=——s [ (a: + ves r) dz,
P ), S ey

E 2
mey=—7s [ (ec o TVEY) )zdz,
T/d 1—02 i r/ r
(9.6)
h/2
nSy = m_;}[/z 2,dz,
h/2
C — C d
UL 1_1/2_}.5257‘192 2
and membrane and bending stiffnesses are
ER3(r) Eh(r)
D(T)—m, B(’I‘)—— 1.2 (97)

9.2 Reduced membrane-bending equations
for plates under axisymmetric loadings

9.2.1 Unilaterally coupled Kdrmdn system extended to
visco-elastic plates of variable thickness

Elimination of strains (9.1) in terms of displacements (9.4) from constitu-
tive equations (9.6) and from equilibrium equations (9.3) leads to the basic
system of partial differential equations, which may be a reduced to system
of ordinary differential equations when the following assumptions hold:
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i. Loadings are assumed to be axisymmetric:

nrﬂzn:ﬂ:m‘(’:‘ﬂZQﬂZvZOa q’r:_E (9‘8)
ii. The Fourier expansions of displacements are used:
w(r,¥) = f(r) cos k¥ (9.9)
iii. The Airy function defines generalized stresses:
1dF d?F
=-—4+U, = — .
T e + Ty = 32 + U. (9.10)

Hence, the reduced governing displacement-type equations take the form

B dz_u+£% E +% du+5u
dr2 " rdr r? dr \dr 7~

(9.11)
dn; n;—ng dB daT
= — Ty T v 1 il
gt +")°‘<d T+Bdr)

& 24vd)  (1+269)d] |
4 —_—
by f+ (Zdr3 tTT T T 2 TR f)

=+

T2 r

D (S vaf BN B (4R
dr2 \dr?  rdr r2

_ df d?mg _1d@2m —mﬂ)

I P T v R dr

(9.12)
It turns out, however, that another mixed approach may be more conve-
nient in some particular cases. Let us rewrite the equation of the mem-
brane state by using the Airy function, applying the compatibility con-
dition, where elongations of the middle surface are described by inverted
equations (9.1) and generalized stresses by the Airy function, to obtain (cf.
Timoshenko, 1951):

1 d /1 d*F 2-vd?’F 1dF
—ViFr — () (20— 22— T
B dr (B) ( dr3 rodr? 72 dr)

d? /1 d*F vdF 9 2 o (U
+F (E) (d’f‘2 5 dT‘) +(1=v*)aV;T+(1-v)V; (E)

-2 ng — vng l+vd (ng—n]
T B r dr B ’

(9.13)
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dp /. d%f 2—+—1/d2f (1+2k2) df
4 -4
bV f+ (2dr3 + r dr? r2  dr r3 f)

d?D /a%f wvdf  k? 1dF d2f
z=L_ 4yl
T (dr2+rdr r2f) (’r ar T )dr2
(9.14)
d?F 1df k2
‘(af”f) (za—ﬁf)
— df d%m _ 1d(2m; —mj)

BT d7"2 r dr

Although the equation of the membrane state takes a more complicated
form than in the previous approach, this formulation is frequently quoted
because of formal similarities of both operators.

Each of derived systems of equations (9.11)—(9.14) is a unilaterally cou-
pled K4rmén system extended to the case of the visco-elastic plate of vari-
able thickness. Note that in a classical Kérmén formulation the fully cou-
pled equations of membrane and bending states hold (cf. von Kérm4n, 1910,
also Fung, 1969) and, then, additional nonlinear terms associated with the
Gaussian curvature appear in the equation of bending state (third order-
theory). In the case under consideration the unilaterally coupled systems
(9.11)-(9.14) allow consideration of the equation of the membrane state
independently from the equation of the bending state. After the membrane
state equation is solved, the bending state equation can be solved when the
generalized membrane forces taken from the previous one are introduced.

9.2.2  Finite difference method approach

One of the methods to solve boundary differential problems consists in
replacing the differential operators, entering both differential equations and
boundary conditions, by the appropriate finite differences. This approach
leads to a finite system of algebraic equations instead of the differential
ones.

Although the finite difference operators expressed in the Cartesian sys-
tem of coordinates are well known, their transformation to the cylindrical
coordinates system requires the plate Laplace operators to be used,

d2. 1d.. &?
Vi ="
T dr?2  rdr r?
(9.15)
gt oA 2dh 142Rdh 14 2%7d. KERE-4)

Tt T rdrd T 12 dr? r3  dr rt 7

where £k = 0, 1, ..., N denotes a number of half-waves, which decides



208 9. Creep damage and failure analysis of thin axisymmetric plates

whether the deformation is symmetric or nonsymmetric where k& = 0 de-
notes a fundamental symmetric mode.

Laplace’s differential operators Vf and V# independent of angular co-
ordinate ¥ may be replaced by finite differences (cf. Benda, 1964, also
Kaczkowski, 1980):

&2, 1 1
Vf:[(m)? 27'A'r}f‘ _[(A )2 }f‘ [(Ar)"’ 27'Ar]f’+l

1 1 1 1
(Ar)t ~ 2r(Ar)® T 2(r — Ar)(Ar)3 + 4r(r — Ar)(Ar)? fi-z

, 1 1 1 1
[ @i " Ar)3 —k ((T—Afr)2+r_2> ((_AT)2 2rAr>]f’

Vi

1 1
Ar)4 2(r + Ar)(Ar)3 + 2(r — Ar)(Ar)?

S —
dr(r+ Ar)(Ar)?  dr(r— Ar)(Ar)®  r2 \ (Ar)2 " r2 *

4 2 \ 1 1 1
+ [“('Ar—y ~ ek ((r YA T 72) ((Ar)2 2'rA'r)] Jim

1 1 1 1 .
" [(AT)4 N 2r(Ar)? * 2(r + Ar)(Ar)3 * 4r(r + Ar)(Ar)z} fora

(9.16)
The above finite difference operators (9.16), like the differential operators
(9.15) from which they are obtained, exhibit singularities at the central
point, 7 = 0 and neighboring 7 = Ar which may be omitted by the following
formulas (Kaczkowski, 1980):

4 4
V. f(r=0)= “Wﬁ - sz,
4 18 2 6
=@ T ar G
fi fa 3f3
2802 22 T aane
fa 6 15 f4

~4 -~ 3 41
Tostr=an = =g+ (5 +2) G - g+ S g
(9.17)

f3,
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9.3 Reduced membrane-bending equations
for prestressed sandwich axisymmetric
plates of variable thickness

Let us consider a sandwich plate composed of three layers: two working
layers of thickness g and a core of depth hs — g5 (Fig. 9.2). In this ap-
proximation the uniform cross-section of the plate may be treated as a
double-point substitutive section and, hence, the process of integration of
stresses through the thickness is reduced to simply summing them up. The
introduced substitutive section is statically determined (cf. Zyczkowski,
1981) and requires redefinition of membrane and bending stiffnesses (9.7)
(cf. Armand, 1972)

— Egs (7‘) _Eh‘g (7') Js (7')
B, (r) = 2'(1__‘7/2—)7 D (r) = 2(1-.7) (9.18)

A

Fig. 9.2. Substitutive sandwich section for plate element: a) sandwich section of
variable thickness, b) a simply supported plate prestressed in-plane by the elastic
ring (cf. Ganczarski and Skrzypek, 1993)

9.3.1 Kdrmdn equations extended to viscoelasticity

Let us take into account the most general problem of a sandwich plate of
variable thickness where thicknesses of the core hs — gs and the working
layers g may change. In what follows we confine ourselves to the mixed-
type formulation (9.13) and (9.14) which is more convenient for further
analysis. After formally differentiating (9.13) and (9.14) with respect to
time and assuming of stationary behavior of body forces and temperature
fields, we arrive at the following system of equations (k = 0):
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L. Elastic problem (t = 0)

~4 d /1 #®F 2—-vd*F 1dF
\V, — (=) (2—= _— -
ot dr (Bs) ( dr3 + r dr?2 r2 dr)

+d_2 i ﬁ ZE_F_ =0
dr? \ B, drz2 rdr )

L
B,

(9.19)
~4  dD, (. d3f 24+vd®f 1df
DV, f - dr (2;173-'_ r Eﬁ“ﬁé?)
d?D, (d%f vdf 1d (dFdf\ _
dr2 \dr2 ' rdr rar\arar) " T
11. Creep problem (t > 0)
1ot df1 BF  2-vd’F  1dF
il v/ B o cemre s 297
B, g (Bs) (2dr3 TR e dr)
L& (LY (&F _vdF) _ |\ [y vy
dr2 \B, )\ d&r2 rdr | T B,
1+vd [nq, —n:]
r dr Bs ! (920)

DY f +

dD, (.d3f 2+wvd’f 1df
dr dr3 r dr? r2dr

(5

LD, (@F  vaf\ 14 (arary
dr2 \dr2  rdr rdr \ dr dr

kg 1d(2mg i)

Todr?z r dr ’
where generalized membrane stresses are expressed by the following differ-
ential operators of the Airy function:

1dF d?’F
Ny = ;E“, ny = dar2’ (921)
whereas definitions of inelastic generalized stresses (9.6) take a simplified
form:

(9.22)
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Consequently, the following extension of the Love—Kirchhoff hypothesis
(9.1) holds:

hs
sf/ﬂ = Ar/9 :tfcr/qg?. (9.23)

9.8.2 Constitutive equations for coupled creep-damage
problems

Constitutive equations (9.5) when applied to the sandwich section take the
form

he

0’1%:/19 = I—fgﬁ ()\,,./19 + I/)\g/,‘) + (RT/,g + I/K,,g/,,.) 3 (6::;:19 + VSBZ}:T)} ,
(9.24)
where inelastic strains 6:7,(9 have to be specified by the use of creep-damage
constitutive state equations.

Assuming the similarity of deviators based on the flow theory and the
time hardening hypothesis associated with the Kachanov orthotropic brit-
tle damage law (cf. Kachanov, 1986, also Ganczarski and Skrzypek, 1992),
the following system of partly coupled constitutive equations for creep and

damage (isotropic flow rule and orthotropic damage growth rule) is formu-
lated:

.ct

. 3¢€ . e \UT) -

ct + ct +

€l = Eﬁskl’ €eq = ( eq) f(t)’

N T (9.25)
bt = (1)

Additionally, assuming plane stress and creep incompressibility, the inten-
sities of the stress, the effective stress, and the creep strain rates are defined
by the following formulas:

3

a:e%; = isast,
+ 2 gﬂ: 2 0:1:0.:‘:
52 =1/ (5 +( =) - nhopEy (0%
4 1-Dr 1 - Dy (1‘DT)(1_D19)

kT
.c e 1 £ sc C -C
5.,-719 = ( 0'32) <07:'b/“9 - 501_;:/7‘) f(t)7 6:!:t == (e"‘i + 619:*:) :

eq

However, in the case of strongly nonproportional loadings, it is more rea-
sonable to couple the effective stress deviator and the creep strain deviator
in the orthotropic flow rule which leads to the fully coupled approach:
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3¢
5 =% S (9.27)

In the case of plane stress and creep incompressibility, by setting C, /5 (T') =
C, r;9 =, the following representation of (9.25) through (9.26) holds:

€/ = \Or/o -5 f(t):

+ +

sok ~t \™ 1| T 1 Og/r
‘ 1-Dx, 2 +
Y] 1—D19/7'

(9.28)

+ r
g

-C P -C Nt 9

b = (5 4 eE) Dr/ﬂ—C<1_r/i >

where the effective deviatoric stress components are given by

+ +
5 _2( Trjo L o (9.29)
9 = r — 5 T . :

r/? T3 1-DF, 21-Dj,

9.8.3 Membrane state equation in a particular case of
constant thickness of the working layers

Let us return to the displacement formulation of the membrane state equa-
tions (9.11). In case when the membrane stiffness B for sandwich section
(9.18) is independent of the distance between the working layers hs (7), the
temperature field is considered as stationary, and there are no radial body
force components,

Be o, =0, =0, (9.30)
the membrane state equations reduce to the Euler-type equations

d?u 1ldu w dr
L 22t _ Y ol =
drz2 " rdr 12 (L+v)e dr (t=0),

d2'd+1d1l w1 dibﬁ_i_hf.—hf, (t>0)
dr2 " rdr 72 B, \ dr r !

(9.31)

the analytical solution of which is furnished as follows:
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u=Clg C2+(1+1/ — [ Tede,
0
C T
n,=3[1+”01—(1—u)——(1— %ngdg],
"o (t=0)
1 C. r
’Iw=B|: +V01+( )7§+(1—u2)%f:rgdg
0
—(1=v?)aT]; )
. T C4 T jl jz )
u_03§+7+5;<1—1/+1+1/>’
Ny = By |:1+VC3—(1—1/)92$]—I.1+1'2, (t>0)
. Cy
Ny = By C3+(].—1/) +II+I2—n1,+1/nr,
(9.32)

where the auxiliary integrals I 1 and jz are

T
. l—v o o e ;o l+v g —ng
h=1] / (i +5) 66, =1 / e (03)
0 0

9.8.4 Bending state equations in a case of the rigidification
principle (no coupling between the membrane and
bending states)

Systems of equations (9.19) and (9.20) become uncoupled when the rigidi-
fication principle is applied. Hence, products of membrane forces and bend-
ing displacements vanish and the systems (9.19) and (9.20) reduce to two
independent systems of equations. The equations of bending state take a
classical form when basic mode of deformation k¥ = 0 is assumed and the
thickness is constant hs = const, g; = const

stﬁf =4z (t = 0)7
(9.34)

g 1d(2rie — i)
dr? r dr

When definitions of the angle of slope and the shear force are introduced
in (9.34) as follows:

DVif=— (t>0).
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r

Q= [ata (935)

0

_df
dr’

the Euler-type equations (Penny and Marriott, 1995, Ganczarski, 1992) are
obtained

d2(,0 1de ¢ Q
ry T _r __ X t=0
dr?2  rdr 2 D, ( ),

(9.36)
¢ 1dp ¢ _ 1 (dmg g —1ig
— == - —(—=+-—=——") (>0
dr2+rdr r2 D, \ dr + r (¢>0),

the solution of which takes the following form (Ganczarski and Skrzypek,
1993):

1 /C
=5 ( o +*——de£+ fQ&zdf)
1+ C. 1+
My = 2”01—(1—;/)7‘2 ”deg
» (t=0)
14+v C. 1+1/
my = —5—Ci+(L=v) 5 - —— [Qdt
o 1 |Cs Cy j3 j4 )
=02t +(1—v+1+u)r’
. _1+I/ Cy . .
my, = 03—(1—1/);5+13+I4, (t>0)
1
my = +V +(1- )"“—13+14
_m%_‘_ym:‘) /

(9.37)
where the auxiliary integrals are defined as follows:
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"
-
_1+v [mi—mg

.1 . ) e
b=t [ vy, d=gt [P
0

0

9.4 Thermally prestressed sandwich plates of
constant thickness

9.4.1 Basic unilaterally coupled membrane-bending Kdrmdn
equations visco-thermo-elasticity

In a case when a plate is simultaneously loaded by out-of-plane forces (due
to bending) and in-plane forces (due to membrane prestressing), the equa-
tions for the membrane and bending states are unilaterally coupled in such
a sense that in the bending state equation an additional term affected by the
membrane force appears. Hence, (9.31) and (9.34) are no longer uncoupled
and, therefore, they must be solved simultaneously. In order to formulate
coupled membrane-bending equations, it is more convenient here to use the
displacement formulation for both the membrane and the bending state.

Let us consider an axisymmetric sandwich plate of constant thickness
under the following assumptions:

i. two-point substitutive sandwich section obeys the Love-Kirchhoff hy-
pothesis,

ii. the plate is loaded by a uniform pressure ¢ and a stationary temper-
ature field T(r),

iii. the creep-damage properties are described by the flow theory, the
time hardening hypothesis and the orthotropic damage growth rule
when the partly coupled formulation is used (Table 4.2),

iv. the initial prestressing is imposed by the elastic ring or the cylindrical
shell,

v. the displacement formulation of the unilaterally coupled membrane
-bending equations is applied,

vi. a constant plate thickness is assumed, dB,/dr = 0, dD,/dr = 0
(Fig. 9.3),

vii. the fundamental symmetric deformation mode is assumed, w(r,¥) =
w(r).
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Fig. 9.3. Substitutive sandwich section for a plate element

When the geometrically linear theory of small displacements is applied
with the geometry changes introduced, the problem can be formulated as
unilaterally coupled, where terms associated with the Gaussian curvature
are disregarded and the von K4rmén coupled equation system extended to

visco-thermo-elasticity can be used:

d?u  1du u—(1+z/)a£
drz2  rdr 27 dr (t=0)
w = y
. ld(nrra)
DV =
g (0, 1d @) _dig g )
dr?  rdr r? r
d nrdw
Do L " dr d%mg
8T r dr dr?

1d(2mg — 1)

T dr

(t>0).

(9.38)

The elementary solutions of the equations of the membrane state (9.38) are

given by (9.32):



9.1 Thermally prestressed sandwich plates of constant thickness 217

C:
'u,—Cl—+ 2+(1+1/)aT§
(t=0),(9.39)
C.
Npyp = By [w—)()& +(1-v) —-22— F(1 —Vz)az]
2 T 2
. ’I‘ 04 r j] iz )
. (1+v) oA
nr:Bs[—TCg—(l—l/)‘r—z II+I2 f (t>0)a
1
ny = By [( ;V)C' +(1-v )—;}+11+Iz—n19+1/n
J
where
N P 14w [a—i
=g [Geries, h=—1" [E2a a0
0 0

The equations of the bending state must be solved numerically (e.g., by
the FDM) with the previously obtained solution of the membrane state
introduced as the coupling. The stresses, their rates, and the generalized
inelastic stresses are defined as follows:

+ My /9 Tr /9
=4 —
Tr/o hg =~ 2g9°
. My + mc/g T/ + hc/ﬂ Bs /..t ot
O':f:/q,::l: hg LA 29 . —%(Er/#-l-llsg/r);

(9.41)
. Bs
nr/'ﬂ - 2 [ r/9 + Er/19 +v (519/1' + 519/7‘)] ’

Dy o+ - + o
e =g [5:/19 —Epp TV (%/r - 519/7-)] .
The total strains are decomposed into elastic (superscript e), creep (su-
perscript c), and thermal parts: ef/ﬂ = Eiﬁ, + 5;:/&19 + at, where super-
scripts + or — refer to the lower (exterior) or the upper (interior) sandwich
layers, respectively. The similarity of deviators, based on the flow theory
(partly coupled approach), and the time hardening hypothesis associated
with Kachanov’s orthotropic brittle damage theory, are taken as the con-
stitutive relationships for creep (cf. Boyle and Spence, 1983, Kachanov,
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1986). For the plane stress state, additionally assuming that the creep in-
compressibility, the strain rates, and the intensities of the stress and of the
effective stress are defined by the following formulas (cf. Ganczarski and
Skrzypek, 1991):

~t \T +
o O, Oy :
E'r:/tﬂ = ( qI) (01:?/19 - 2/") f(t)’

0%
ct _ et ct
€5 = g0t — &5F,

3+ 4 £2 | 42 4 4 (0.42)
+ _ _
Ocq = §sklskl_\/a”‘ +0y —0roy,

5t = oy 2+ 75 ’ oy oy
«a”\V\1-DF 1-D; 1-DF)\1-D5 )

9.4.2  Ezample: Built-in plate fitted into the cylindrical shell

An elastically built-in plate fitted into a cylindrical shell, with the initial
fit § imposed, is considered (Fig. 9.4).

Fig. 9.4. A built-in plate prestressed by the elastic cylindrical shell
(cf. Ganczarski and Skrzypek, 1993b)
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n.(R)=—-N ) n(R)dr = —dN )
m.(R)=-M my(R)dr = —-dM
t=0 t>0).
u(R) —w(0) =6 ( ) w(R)dt — dw(0) =0 ( )
dw(R) di(R) .. _ .
—g =20 3¢ = d%(0)
(9.43)
The cylindrical shell is described by the classical equation:
d*w -, 2-vq Eh_
—d(B—4+4k w = 2 —D—-+R®0¢T (9.44)

the solution of which (for the half-infinite structure) takes the form:

B(z) = 5%6_7” [cos(kz) — sin(kz)]
+2g_03 e~ cos(kz) + ? %q + RaT,
(z) = diix) - ——%%e“’_“ cos (k) 5 715\%2 e~F2[cos(Rz) — sin(kz)),
R = ?’%;ﬁ D= 1—2(?_‘37)

(9.45)
The double-point failure criterion is formulated as follows.

The initial fit § that produces the peripheral prestressing radial force NV
and the corresponding bending moment M, such that the failure simultane-
ously occurs both in the central plate region at the exterior circumferential
fibers Dq;' (0) — 1 and along the periphery at the interior radial fibers
D; (R) — 1, is sought for.

t=tr: sup[Df/q,(é)]Tgo = sup[wa(ﬁ)]mR =1 (9.46)

The maximum value of the damage components D and Dj is found when
both sandwich layers are examined (cf. Ganczarski, 1992). Note that in
this case the prestressing force N and the moment M are the dependent
quantities since they both depend on one prestressing parameter §. Hence,
when the transient creep process is solved, one of these quantities, say N,
is to be determined by the additional iteration loop in order to satisfy the
current plate-shell interaction.
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The numerical example deals with a plate made of ASTM 321 stainless
steel: E = 177 GPa, 0g = 118 MPa, v =0.3,a =18 x 1075 K-!, R=0.5
m, hy = 0.025 m, gs = 0.005 m, ¢ = 118 kPa; the temperature dependent
material constants for creep rupture at temperature 783 K are (cf. Odqvist,
1966): C = 2.13 x 107%2 Pa™"/s, r = 3.9, m = 5.6, whereas material
constants for the cylindrical shell made of ASTM 310 stainless steel are as
follows: E=E, v=v,a=17x10%K !, h=¢ gzh—;

The dimensionless lifetime of the plate fitted into the cylindrical shell

versus the fit § is shown in Fig. 9.5. The maximum lifetime appears in a
characteristic “switch” point, at the intersection of the curves that corre-
spond to two different failure mechanisms, failure due to macrocracks in the
circumferential fibers in the central region in the interior layer and failure
due to macrocracks in the radial fibers along the periphery in the exterior
layer (Fig. 9.6). The maximum lifetime corresponds to the positive value
of fit § > 0, which means that the shell must initially be “too loose”.

«~| failure due to macracrack —» ¢— failure due to

4Q, 1 inthe hoop fibersinthe [T = macrocrack in
central region in the ﬁ the radial ﬁ?ers
g o e
e} y
- 2
o 30 i1\
E S
@ 25 3
= D (0)=1 : N
2 4 1 \
o 20 7 | -
k5 A /‘
2 15 y .
£ e D (R)=1\
T 10 A r
o/ :
5 ) L5
] L~ / Opt
0 ]

0 010203040506 07 0809 1
dimensionless initial fit §

Fig. 9.5. Lifetime of the plate fitted into the cylindrical shell versus the initial
fit &

The corresponding distributions of the continuity components T/’f/ o at the
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instant of failure for the optimal solutions are presented in Fig. 9.7. The
time to rupture prediction for the discussed case is t,p¢ = 2.97¢7, compared
to the lifetime of a simply supported plate in a pure bending state without
the initial prestressing t, = ;.

failure due to D, failure due to Dy

Fig. 9.6. Failure mechanisms for optimal prestressing §qpt

¥ (t=0) y' (t=0)
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Fig. 9.7. Damage evolution with time to failure according to the orthotropic
damage growth in an built-in plate of constant thickness prestressed by the elas-
tic shell: a) the radial component (peripheral exterior), b) the hoop component
(central interior) (cf. Ganczarski and Skrzypek, 1993)
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Two-dimensional coupled
anisotropic creep-brittle
damage and elastic-brittle
failure problems

10.1 Orthotropic coupled creep-brittle
damage of Reissner’s plates under
in-plane and out-of-plane loadings

10.1.1 General equations

In the frame of the classical theory of thin plates (cf. Chap. 9), the effect
of shear deformation due to the transverse stress is disregarded, which is
equivalent to assuming of the shear modulus is equal to infinity. A more
accurate and realitic theory is due to Reissner.

Let us consider an element of a plate of moderate thickness h (z;, zg)
subjected to an external transversal load gdz;dz2 and to a system of stress
components (Fig. 10.1).

Xy

g dxdx,

Fig. 10.1. Loadings imposed to an element of Reissner’s plate

Assuming that small total strains are decomposed into elastic and creep

components €;; = €, +&%;, the displacements ug, vg, wp of any point across
p J 1) (%] k] b b y p

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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the thickness of the plate fulfill relations:

Jug 1

5 =l v(oytar)l+e

1o

3; E[Uy v(0z+0,)]+€5,

Ouy Ovg To

a-‘-E:?y""Y;y: (10.1)

6“0 a'w0 Tz c
oz T ox - G T
ow  ow 1y
0z Ay G vz
The equation dwy/0z = [0, — V (05 + 0)] / E+¢€S is not used, as it contra-
dicts the assumed linear law of the stress components distribution 04,0y, T4y.
According to the classical Reissner—Mindlin moderate thickness plate the-
ory, the straight and normal segment to the mid-plane before deformation
remains straight but not necessarily normal to the mid-plane after defor-
mation. On the other hand, inextensibility of the normal segment is usually
assumed Owp/0z = 0, although, in what follows, the stress component o,
is also accounted for in the form (cf. Love, 1944):

3g(2 22 1/22\%
=7 [5*?5(7) } (102)
satisfying the following conditions:

Ollz=-h/2 =-q al|z=h/2 =0 (10.3)
at the upper and lower surface of the plate, respectively.
The equations of equilibrium of the stress resultants, when the geometry
changes are taken into account, are:

ON, | 0N, _ ON,,  ON,
Ty 0 e Ty Y
80, 8Q Pw  Pw

z-}—#-’-N 62+2Nz,,axay+1v,,5y—2+q=o, (10.4)
oM, oM, . _ oMy, | OMy
5z oy =0 o "oy =0

The average value w of the transverse displacement, taken over the thick-
ness of the plate, as well as average values ¢, ¢, of the rotation angles
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and in-plane displacements u,v result from equating the work of resultant
couples on the average rotations and the work of resultant forces on av-
erage displacements with the work of the corresponding stresses on actual
displacements up, vg, Wop in the same section:

3 /2 22\ 2
= — 1—|— d
Y= an _m“’"[ (h) ®

h/2 4, h/2
U= / —Odz, V= / 2dz.
—nj2 b —nj2 b
Expressing average displacements by resultant forces and resultant couples

in equilibrium equation (10.4), the following system of three equations is
obtained (cf. Love, 1944):

1+v 9 [Ov Ou 1 ON?
2 1+tv o (ov ou) 10N,
Viur =3 3y(8:1: 3y) B oz’
ON¢
oy LEV D (ou_ o\ 10N
2 o0x\oy Oz B 8y
) ) ) \ (10.6)
o“w o“w o%w h*2—v
4 o"w ow gw___ 17 2
Dv“’“LN”ax?”N”azaerNyaw q IOI—UV

c c c 2 A rc c
T

By ox? dzdy oy? "’

where the following definitions of the isotropic membrane and the bending
stiffnesses:

Eh En®

F=1 P=na-m (107)

and the generalized inelastic forces are introduced:

E h/2

=12 2 (ei/y + "52/1) dz,
C E h/2 C
Nay = 2(1+v) /_h/z Vay2,
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3 (M2 22\?

E h/2
=12 /_h/2 (%/y + I/Ey/z) zdz, (10.8)
E h/2
M, = ——— c, 2dz.
5= L

The derived system of equations (10.6) is the simplified unilaterally cou-
pled Kérmdn system extended to the case of visco-elastic plate of moderate
thickness. In the K4rmén formulation, the fully coupled equations of mem-
brane and bending states occur where additional nonlinear terms associ-
ated with Gaussian curvature appear in the equations of membrane state
expressed in terms of the Airy stress function (the third-order theory).

10.1.2 Basic equations of axisymmetric plate

Assumption of an axisymmetric problem allows elimination of the displace-
ment in the circumferential direction v. Expanding transverse displacement
and bending moments in trigonometric series, the basic system of equations
(10.6), transformed to cylindrical coordinates , 9, 2, takes the form when
the engineering notation is used:

I. Elastic state (t = 0)

u

Vzu— ) =0
" 2w 1 dw &2 (10.9a)
DViw — N, ((ii 3 N’l’_d_-}-Nﬂ——w_q’

II. Creep state (t > 0)

@ 1 [dNS Ng—N§

2-__:_ T
Vi r?2 B d7'+ r !
d*w\’ ldw\ K\

i — — ] - -— — 10.9b
DV*w (N,-d 2) (Nﬂrdr) +(N19,r2’w) (0 )
dQ d2Me 1d . . k2 .

2 o 22 c_ c N ayc

=DV ( ) dr?  rdr (2M’ M”)+T2M’

under additional assumptions that Myy = 0, Ny = 0, N5y = 0 and ¢ =
const. In the further analysis only the fundamental mode k& = 0 is consid-
ered.
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Suppose that the vector of displacements {u,w} is found; then, all inter-
nal variables are expressed by the following formulas:
I. Elastic solution (¢ = 0)

“ T 5 ERT
d2w 1 dw du U
= — = —— Ap = — Ay = —
=y M T ra T dr’ e

My /9 = D (K"r/'ﬂ + VK'19/1‘) P Ny )9 = B (Ar/'ﬂ + VM/r) )

12’m,./19 Ny /9 v
Trjo = g At T T
3¢ |2 z 1 (22\° . 3qr 22\?
”z“"7[5_2h+3(h)]’ =R\ ) |
(10.10a)
II. Creep solution (t > 0)
o dw A,
90:_34-@7
. . . - .
Myy9 =D f-f,T/,,9+1/fc19/r+—dr—+l/T — 1y /g,
Tipy9 = B (A-r/ﬂ + V).\'ﬂ/'r) —ny,
] 12(75’&,./19 + T'nc/ﬁ) Tr 9 + 'hf‘m E e o
Orfo = T R (s’"/“””/’)’
6,=0, #n,=0.
(10.10b)

Note that in the particular case of an infinitely thin plate, expressions for
the bending moments coincide with the classical thin-plate theory.

10.1.8 Constitutive equations

In the case when the transverse shear effects are taken into account, the
principal directions (1, J) of the stress tensor undergo plane rotation with
time da;(I,J) and, consequently, the principal directions of microcracks
Bi(I,J) follow them. All constitutive equations, the flow rule, the time
hardening hypothesis, and the Kachanov-type orthotropic brittle rupture
law are employed for current coordinate system referring to the principal
directions a;(I,J) of the stress tensor (I = J):



228 10. Two-dimensional coupled anisotropic damage and failure problems

éc
&= gﬁs 1J, partly coupled approach, (10.11a)
eq
3Eq,
£, = E%ﬂs 17, fully coupled approach, (10.11b)
eq
.c ~ \T ¢ - orJ "
Eeqz(aeq) f(t), D1J=C<I_—m;> ) (10110)

where the actual state of damage is represented by a second-rank sym-
metric tensor Dy ;. Depending on the partly or fully coupled creep-damage
approach, the principal directions of the creep strain rates deviator coincide
with the principal directions of either the stress deviator or the effective
stress deviator, respectively and the following definitions hold:

/3 ~ [3. o /2. .
Teq =4[ 5S1IS1Ty Oeq =A[5S1IS1T; Eeq = 551.}5?.]‘ (10.12)

Introducing the brittle damage law defines nonobjective measure of the
damage rate tensor D (the effect of rotation of the principal directions is dis-
regarded). The objective measure based on the definition of the Zaremba—
Jaumann derivative on the plane rotation (r, 2) is defined as:

o . 0 0 —da 0 0 da
Diy=Diy—-DE, 1 0 0 0 [—=| 0 0 0 |Dgy
do 0 0 —da 0 0

v
When the objective damage rate tensor Dy (10.13) is transformed from
current principal directions of the stress tensor o;(IJ) to the sampling

Y4 .
coordinates (if) D;;, the new representation of the damage tensor D;;(t+
At) is achieved:

Dy(t+ At) = Dy (t)+ Dy (£)At. (10.14)

The graphical interpretation of all auxiliary coordinate systems associated

v
with the definition of the objective damage rate tensor D;; in case of the
axisymmetric plane stress state is shown in Fig. 10.2.

10.1.4 Initial and boundary conditions

Two boundary problems are considered:



10.1 Orthotropic coupled creep-brittle damage of Reissner’s plates 229

Fig. 10.2. Corotational coordiante systems coincided with locally principal di-

rections of damage or stress tensors

Example A: Prestressed simply supported plate

fort=0
u(0) =

n.(R) = —

Example B: Prestressed clamped plate

fort=0

w0) =

i (R) =
¢(0) =

Ty (R) = 0
W(R) =0.

(10.15)

u(0) =
hr(R) =
¢(0) =0
@(R)=0
w(R) =

(10.16)

The plates are made of ASTM 321 stainless steel (rolled 18 Cr 8 Ni0.45 Si
0.4 Mn 0.1 C Ti/Nb stabilized, austenite annealed at 1070°C, air cooled)
with the following properties at temperature 500°C (cf. Odqv1st 1974):
E-lSOGPa,002—12OMPa,I/—O3 m = 5.6, r = 3.9, ‘70 = 210
MPa, where Uc denotes the stress causing creep rupture in 105 hr. Plate
thickness to diameter ratio is /2R = 0.1, and ¢ = 0.01 X 0 2.
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10.1.5 Results

A plate of moderate thickness exhibits essential quantitative and qualita-
tive differences when compared with a plate of infinitely small thickness.
The shear stress causes stress nonhomogeneity through the thickness which
requires a distinction of layers. Additionally, a time-dependent material
anisotropy occurs due to the coupled creep-damage process and the corre-
sponding rotation of principal stress and damage axes with time.

Fig. 10.3. Example A: Simply supported unprestressed plate: a) map of damage
advance and rotation of principal directions of damage, b) distribution of principal
components of damage, c) hoop stress relaxation at point of first microcrack

In case of the simply supported unprestressed plate (ng = 0) the tensile
stresses are dominant at the center of the plate on the bottom external
fibers (Fig. 10.3a,b), nevertheless, combined creep relaxation and damage
processes cause the first macrocrack with respect to the hoop direction D;
to appear at a certain distance from the plate center (cf. Ganczarski and
Skrzypek, 1993, 1994). The corresponding hoop stress component rapidly
relaxes in the damaged zone (Fig. 10.3c). The rotation of principal direc-
tions of damage, which follow current principal directions of tensile stresses,
is particularly clear in the inner zone around the neutral axis. At the in-



10.1 Orthotropic coupled creep-brittle damage of Reissner’s plates 231

stant of load imposition, t = 0%, they exhibit a slope of 45° which gradually
decreases with time to reach 0° at the instant of first macrocrack ¢ = t;
(Fig. 10.3a).

Fig. 10.4. Example B: Clamped unprestressed plate: a) map of damage advance
and rotation of principal direction of damage, b) distribution of principal com-
ponent of damage, c) radial stress relaxation at point of first microcrack

In contrast to the above described mode of support, in the case of the
clamped unprestressed plate (ng = 0) there exist two zones of tensile
stresses due to bending moments changing signs: one in the central bottom
fibers of low advance of damage (5%) and the other, dominant, at the pe-
ripheral top fibers (Fig. 10.4a,b). Therefore, the radial stress relaxes there
quickly (Fig. 10.4c). The field of principal directions of damage exhibits
characteristic perturbation around the abscissa /R = 0.6 according to the
change of signs of bending moments, and the above mentioned effect of
straightening with time of principal directions is observed (Fig. 10.4a).

An essential improvement of the plate lifetime is obtained when the pre-
stressing force ng # 0 is imposed in the plate mid-surface (Fig. 10.5a,b). In
both considered cases, an optimal control of prestressing, decreasing ten-
sile stresses, turns out to be a powerful technique for lifetime improvement
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Fig. 10.5. Lifetime of: a) simply supported and, b) clamped plates versus pre-
stressing force — comparison of Reissner’s and Love-Kirchhoff’s theories in cases
of partly and fully coupled formulations

until the membrane-bending coupling terms in (10.6),

2w 2w 92w
Nz'__ +2Nx Ny@'a

e

begin to dominate. In the case of a simply supported plate, small and
moderate magnitudes of prestressing (n9/Roo.2 < 0.025) do not result in
the essential differences between Reissner’s theory and the classical Love—
Kirchhoff theory, whereas in the clamped plate case Reissner’s theory yields
up to 20% improvement of lifetime, decreasing with the prestressing growth.

Precise analysis of the lifetime of prestressed clamped plate allows one
to observe quantitative differences in time to rupture between the isotropic
(partly coupled) (10.11a) and the orthotropic (fully coupled) (10.11b) for-
mulations of the flow rule. For advanced prestressing (ng/Rog2 > 0.03),
when paths of loading are strongly nonproportional, the relative improve-
ment of lifetime for fully coupled formulations may reach 4.5%. Other cases
do not confirm such clear differences, which are comparable with rounding
€rrors.
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10.2 2D CDM approach to coupled
damage-fracture of plates under
in-plane loadings

10.2.1 Geometry, loadings governing equations and boundary
conditions of a structure

A simply supported, clamped 2D structure subjected to in-plane uniform
load as it is shown in Fig. 10.6 is analyzed. The solution is considered in
the domain D = {(z1,%2) € R? : z; € (0,5) ,z5 € (0,1)}, where z;,7 = 1,2
denote dimensionless independent variables 1 = z/w, 23 = y/w , w is the
structure width, and z, y are Cartesian coordinates.

y

e

Fig. 10.6. Scheme of structure and load geometry

A local approach to fracture is applied when the modified CDM Litewka
model of the orthotropic time-dependent elastic-brittle damage in crys-
talline metals is used as the constitutive and evolution equations (cf. Sect.
4.2).

q

The following dimensionless quantities are defined: § = ———— =
Oy X 1[m]

0.02, Young’s modulus E = E/o, = 416.7, Poisson’s ratio v = 0.3,
C = Co, x 1[s] = 6.81 x 108, where 0, = 288 MPa. The material data cor-
responds to the carbon steel AISI at a temperature of 811 K (cf. Litewka,
1989).

The constitutive relationships rewritten in the matrix representation,
referred to the global frame (1, 2, 3) cf. (Sect. 4.4.2), are of the following
form

{e} = |A;! {7} (10.17)

where {€} and {&} are the strain and the dimensionless stress vectors
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€11 o1
€92 T2
€33 _ 033
e} = s o= _ 10.18
= =4 =] (1019
Y31 031
Y12 012

and [le (D*)] is the elastic compliance matrix of damaged material (4.87),
in general expressed in terms of six components D7, D3y, D33, D}y = D3,
D35 = D3y, D3; = Djis of the modified damage tensor D* and its first
eigenvalue Dj:

_ 1 K—l K—l
A== 2 222, (10.19)
El Ay Ay
Dy
1 ——1_pn - -
+ — 1+D* 11 14 14
= D;
Al—ll = -V 1+ 1+1D*D22 -V s
D*
—V —V 1+ﬁ-—.lD-—*D§3
1
(10.20)
D*
2420+ 15 D; (D32 + D33)
= D* .
A= 1+b{ 12
DI
. 1+Dj 13
Dl * DI *
1_+D_P1* 12 I_BP* 13
2 1 D* D 1 *
2+ V+‘—14l_)DI( 11+ Dia) T+ D 2 ,
1 * D* * *
1+ID; 23 2+2V+1 ID*(D11+D22)
1
(10.21)
D3 D3
0 1 D* *
1+D; 7 1+D;
g =| 2ipg 0 Di (10.22)
12 | — 1+D; 23 1+D1~¢ 12 . .
Dy D;
——D3 ——Dx¢
1+D;"% 14D} 8 0
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Symbols T;; denote dimensionless components of the stress vector, 7;; =

0ij/0y,and E is the dimensionless Young’s modulus E = E/a,, Kl_ll, ./N\gzl,
- ’~_T _~
AL}, and Al denote submatrices of the 6 x 6 matrix A~1.

For numerical implementation the number of physical equations (10.17)
has to be reduced by the number of non zero stress components. Therefore,
in the case of a plain state of stress, (10.17) take the form

€11 1+ DID{I -V
e }==% -v 1+ D1 D},
Y12 D1Di, D1 D1,
(10.23)
D, Dj, 011
D, D3, Tao
2420+ Dl (DII + DE?) 512
v
By use of the Zaremba—-Jaumann objective derivative D
£y ¢ ¢ t ¢ ¢
Diy= *Diy— "Dik *Sks— "Dyr *Sir, (10.24)

where !Dj; are components of the time-derivative of the damage tensor
evaluated at time ¢ and !S;; are components of the spin tensor

0 & —d
S]=| -« 0 as |, (10.25)
&y —G3 O

the components of the damage tensor objective derivative are given here
as follows:

v o ,
D11= Dy1 + 2&D;;3,

Daz= Day — 24D1s, (10.26)
v . X

Di2= D3 = é&(Dg2 — D11),

whereas nonobjective derivatives Du and D22 are given by the damage
growth rule (4.48) and (4.49)

Dy =K (@),

Doy =K(72), (10.27)

where
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C O2 O9 2 02 8 09 4
K=~—:2- 1—-4v f +2(1+2U) o —4v - + -
AE 01 01 01 (!

— —\2 — N2 ]
+2D; [1-2v (%) + (%) Di, + (g—j‘) Dj,| p 1.
’ (10.28)
The failure criterion (4.43) takes the form
72\, 2 o2\’ (2]
Gy [14‘ (_—>] + -0 [1+ (_—) - (_—‘)
T11 3 011 o1 |
(10.29)

+C3

— 2 4
092 g,
Df + (:-) D3| —=+=0
! o11 2 o1

with constants C;, Ca, C3 obtained from (4.51).

10.2.2 FEM mesh generation and results

The constitutive model (cf. Sect. 10.2.1) is implemented in FEM ABAQUS
code. The geometry is discretized by fully integrated 2D first-order isopara-
metric elements CPS4 in a 118x40 mesh, used in conjunction with IRS21A
rigid surface elements. In the case of CPS4 elements the so-called selec-
tively reduced integration technique is used which prevents mesh locking.
This means that the actual volume change at the Gauss points is replaced
by the average volume change of elements. Interface elements are sequen-
tially included into the mesh after the failed CPS4 elements have been
removed or the kinematic boundary conditions have been released. Such
a procedure is employed because it is anticipated that the structure may
again come into contact with the wall after failed elements have been re-
moved from the mesh. Further considerations will often be limited to the
area near the wall, as shown in Fig. 10.7, because the initial stress distribu-
tion in the domain D indicates the damage zone being limited to the close
neighborhood of the fixed edge.

An initially heterogeneous elastic stress state results in a nonuniform
material softening due to the damage growth. The distribution of the dam-
age tensor component Dy at time t;- = 20, preceding the macrocrack
initiation between the element 40 and the wall, is shown in Fig. 10.8.

Damage is localized in the narrow zone where the initial tensile and shear
stress concentration was observed. However, due to the stress redistribu-
tion in damaged elements prior to the crack initiation at time t;- = %,
before in the first node (node 41, Fig. 10.7) the boundary conditions are
released to form the crack of the length of an element, the maximum stress
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elem 80
wall
l - node 41
I elem 40
lr elem 10
; o T elem 5
s T 1 )
L 1 1 1

| / elem 1

elem 41

Fig. 10.7. Element numbering in the region near the wall

concentration moves to the elements at a certain distance from the crack
tip. The distribution of stress components &y; = 011/0, and Gy = 092/
that corresponds to the damage state shown in Fig. 10.8a is presented in
Figs. 10.8b and 10.8c. At time t;+ = t4° the cracking process starts from
the right-top element (element 40). When the kinematic boundary condi-
tions in node 41 have already been released, further stress redistribution
is observed. The tensile stress in the direction normal to the just formed
macrocrack is fully released, but element 40 is still carrying the shear stress,
which is manifested in shear type mesh deformation, shown in Fig. 10.9.

The evolution of the maximum principal value of the damage tensor D;
in chosen elements along the wall (z; = 5.0, 0 < zg < 1) is sketched in Fig.
10.10.

The general observation may be summarized in what follows. Due to the
stress redistribution from the element which is most exposed to the damage
growth, a gradual damage rate drop prior to failure occurs. This is mostly
noticed in the first three elements that constitute the crack (elements 40,
39, 38) where the shrinkage of the failure surface is significant (cf. Fig. 4.2).
Further, due to the avalanche of the crack length growth, the damage level
in the zone neighboring the crack tip is not high enough to significantly
change the failure surface. In other words, the damage localization near
the crack tip decreases when the crack length increases. So, in contrast to
the formulation used by Liu, Murakami, and Kanagawa (1994), there is no
need to additionally regularize damage field via a nonlocal damage variable
(cf. Sect. 5.2.2). The decrease of the critical damage tensor eigenvalues ob-
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b)

Fig. 10.8. Distribution of a) damage tensor component D;1, b) normal stress,
c) shear stress, at time ¢;-
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Fig. 10.9. Mesh deformation at time t;+

served in subsequent elements that undergo failure indicates two different
types of element failure. First, macrocracks are accompanied by a signifi-
cant strength reduction; second, in the next elements the failure criterion
close to the Huber-Mises—Hencky equivalent stress is satisfied.

The history plot for the stress tensor eigenvalue ; = 01/0y, is shown in
Fig. 10.10b. At the instant t;+ = t‘io, when the kinematic boundary condi-
tions in node 41 have been released, the need to confirm to the boundary
problem equations results in a discontinuous increase in stress values in
neighboring elements. Subsequent stages of the macrocrack development
in the deformed mesh are shown in Fig. 10.11.

The stress distribution at time ¢'¢-5¢ (Fig.10.11c) preceding the crack
branching is presented in Fig. 10.12¢c. After releasing the boundary condi-
tions in node 18 the current stress vector in elements 16 and 56 exceed the
actual failure surface, which causes simultaneous failure in both elements.
Therefore, the crack deviation from the primary direction is modeled by
fully removing elements 16 and 56 from the FEM mesh. The stress state at
time t}f'se, just after the mesh modification in the area of the macrocrack
tip, is shown in (Fig. 10.12a, b). Eventually, the structure is fully failed
when two cracks developing from the top and the bottom of the clamped
plate side, of tension and the compression type, meet together to make the
structure unserviceable, Fig. 10.11f.
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b)

Fig. 10.10. Evolution of a) maximum principal damage value, b) maximum
principal stress value in elements along the wall
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Fig. 10.11. Subsequent stages of macrocrack development
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Fig. 10.12. Distribution of a) normal stress, and b) shear stress, at time ¢

10. Two-dimensional coupled anisotropic damage and failure problems

16,56

10.2.8 Conclusions

i

ii.

An effective CDM based approach to analyze both the continuum
damage evolution prior to crack initiation and the propagation of the
crack through the structure in the presence of the damage field is
proposed. A modified Litewka model of the elastic-brittle material is
applied, where effects of the stress redistribution following damage
accumulation and the shear deformation are accounted for.

Two models of crack propagation in the material exposed to damage
are distinguished. In the region where tension predominates, high
damage advance occurs before the macrocrack is formed. On the
other hand, in the zone of predominant compression, no damage evo-
lution(or a little due to shear) prior to crack opening occurs. On
crack initiation (in the first element that leads to failure), stress re-
duction accompanies the damage growth such that a high damage
level is reached when the actual stress vector meets the actual failure
surface. Next, when crack penetration through the volume is ana-
lyzed, the stress increase in the subsequent element is observed due
to releasing the stress level in the previous element. Hence, a lower
damage advance in the considered element is needed to enable the
increasing stress vector to meet the actual failure surface. In other
words, two competing phenomena, stress increase due to stress redis-
tribution from the failed zone and failure surface modification due to
the damage accumulation, result in damage field regularization near
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the crack tip when the crack length increases.

The local approach to fracture analysis used here is based on two
procedures that describe the crack propagation: a) changing the kine-
matic boundary conditions on the element face neighboring the crack,
or b) fully removing the element, both controlled by an appropriate
failure criterion. The description applied shows the phenomenon of
the damage localization drop near the crack tip with crack length
growth. This behavior is mostly due to the rapid stress increase re-
sulting from the effective structure width reduction in a region where
the crack development is expected (near the crack front), such that
the continuum damage advance is not too high. In the compressive
zones, no damage evolution occurs so the failure criterion is met on
the initial failure surface and the corresponding element instanta-
neously leads to failure.

The crack branching mechanism (or change of its primary direction)
can also be detected when the shear-type failure mode in the element
neighboring the main crack precedes the tension-type failure mode
on the crack primary direction.

. The structure is totally failed when two main cracks, a tensile-type

(from the top) and a compressive-type (from the bottom), meet each
other and the effective plate width drops to zero (structure fragmen-
tation).

In contrast to the local approach to creep fracture used by Murakami,
Kawai, and Rong (1988), the elastic-brittle damage model developed
here seems more promising. The main advantage is the better numeri-
cal stability observed when the local damage field near the crack tip is
limited by the critical damage level drop with the crack length growth.
Additionally, the stress concentration in this zone is also limited by
the size of the actual failure surface. Hence, neither additional dam-
age regularization nor other stress limitation methods are required,
as discussed in the convergence tests where different mesh patterns
with a decreasing elements size are used (cf. Fig. 5.6).

Due to the kinematically controlled crack growth mechanism, the
primary crack width is not affected by the element size. However,
the secondary crack growth mode, when the element is fully removed
from the mesh if the failure criterion in the element is reached, is
more mesh-dependent, so that further testing is required.
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Formulation of optimal design
under creep-damage conditions

11.1 Structural optimization under damage
conditions

11.1.1 Optimal design of structures made of inelastic
time-dependent materials

When elastic structures are designed for either minimum weight or maxi-
mum load under a strength constraint, structures of uniform strength, also
called fully stressed designs, are optimal in most cases. In general, however,
the condition of uniform strength is neither a necessary nor a sufficient con-
dition of optimality. The exceptions, when structures of uniform strength
are nonoptimal, are mainly connected either with the static indeterminacy
of a structure or with geometric changes being taken into account. On
the other hand, the condition of uniform strength of structures may not
be a sufficient optimality condition if it does not result in a unique solu-
tion. Hence, following Gallagher (1973), the fully stressed design method
(FSDM) is, in general, a first step towards the exact optimal design when
more rigorous optimization approaches are used.

When optimization of inelastic structures made of time-dependent solids
that suffer from material damage, brittle or ductile, is formulated, the min-
imum weight (volume) or the maximum load remains the typical design
objective, similarly to the corresponding elastic problem. Essential changes
are observed in the state and evolution equations as well as the constraints,
since a new independent time variable plays an important role. The effect of
nonlinear constitutive equations on the optimal shape of structures was dis-
cussed by Gajewski (1975). The optimization constraints under conditions
of creep damage, ductile or brittle, elastic-brittle damage, thermo-elasto-
(visco)plastic damage, etc., may be imposed not only on the strength (rup-
ture or failure), stiffness, and stability, as in the elastic case, but also on a
limited stress relaxation, a limited residual displacement, or a lifetime pre-
diction of the first macrocrack initiation (t; = tg) or the complete failure
(t;1 = tg). Hence, since in an optimization problem the design objectives
and constraints may be interchanged, the following global optimization
problems, originally proposed for optimal design under creep conditions (cf.
Zyczkowski, 1988, 1991), may be formulated for optimal design of struc-
tures made of damaged time-dependent materials (cf. Table 11.1)

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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i. minimization of weight under prescribed loadings and lifetime,
ii. minimization of loadings under prescribed weight and lifetime,

iii. maximization of lifetime (¢; or t7;) under prescribed weight and load-
ings.

Table 11.1. Classification of typical problems of optimal design with respect to
creep failure (global criteria)

Optimality
Formulation criteria Constraints
i @ — min P = const, t7 7 = const
ii P — max | Q =const, tj;; = const
iii tr ;1 — max | P = const, () = const

The first two problems are, in most cases, inconvenient for practical ap-
plications since the lifetime of a structure (t; or t;1) is usually not given
in an explicit form but results from the additional constraints imposed
on damage variable(s) D (D, D, D), the magnitudes of which change with
time when the appropriate damage evolution law is legislated, e.g., (2.26),
(2.35), (2.42), (2.44), (2.46), (2.48), (2.65), (2.71), (2.74), (2.97), if isotropic
damage D is assumed, or (4.43), (4.44), (4.46), (4.62), etc., if more general
anisotropic damage D is adopted. Time of first macrocrack initiation %;
is defined here in such a way that the damage variable D (isotropic dam-
age) or the dominant damage component sup {D;;} (anisotropic damage)
reaches the critical value D... When the constraints are imposed on a
ductile creep rupture in Hoff’s sense, the condition of vanishing transverse
dimensions at a structure cross-section defines the lifetime th. In this case,
the geometry changes due to finite strains must be taken into account since
infinite strains, at least in one cross-section, constitute the purely ductile
failure mechanism of a structure. Representative optimization problems,
when constraints are imposed on brittle, ductile or mixed rupture, creep
stiffness or creep compliance, creep buckling and dynamic response, were
discussed by Zyczkowski (1991, 1996).

11.1.2 Optimality criteria for structures made of
time-dependent materials

A. Uniform creep strength (UCS)

Structures optimal with respect to brittle rupture, t{rg — max, may often be
found among the class of structures of uniform creep strength (UCS) (cf. Zy-
czkowski, 1991). Structures of uniform creep strength with respect to brittle
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rupture are defined as ones in which macrocracks initiate simultaneously
either in every material point x €V or along certain characteristic lines
or surfaces. Hence, when the simple, scalar Kachanov-Hayhurst isotropic
damage growth rule is used (2.35) and the integration is performed from
the damage initiation D (to) = 0 up to formation of the first macrocrack
D (t;) = Dq;, the condition of uniform isotropic damage strength (UIDS)
takes the following representation:

1-D ,
1— (1= Do) =C(r+1) f {xlo(x,8))}" at

D:C<M> , X=a01+3b0'H+CUeq,
(11.1)

which must be satisfied at Vx € V or at least on a certain surface. For
orthotropic damage (Sect. 4.1) the condition of uniform orthotropic damage
strength (UODS) can be written as

. o, (x,t)\™
DV=CII<1_(.DV)> )

(11.2)
D, (x,t
SUP(1 2,3) [—"5()(’—1)] =1, VxeV.
ver

In a more general case of damage anisotropy the isotropic scalar function
of stress and damage tensors & and D may be postulated as the failure
criterion (Sec.4.2.2) at the point x

Flo (x,t1),D (x,t)] = 0. (11.3)

If, for instance, Litewka's model is applied (Sect. 4.2.3) the condition of
uniform anisotropic damage strength (UADS) may be furnished as follows:

D =C{®°[o (x,t),D" (x,t)]}’ o,
F(0,D°) = C\To (x,t1) + C3Tx [o (x,t,)]2 (11.4)

+C3Tx [02 (x,t1) : D* (x,t1)] —02=0, Vx€V,

where ®° (o, D*] denotes the elastic energy affected by damage (4.39), D
and D* denote the second-rank damage tensors, classical (3.3) and modified
(3.17), whereas o* is a modified stress tensor (Sect. 4.2.3).

B. Uniform ductile strength (UDS)

When optimal design with respect to ductile rupture is sought, a geometri-
cally nonlinear finite strain approach is necessary which makes both a for-
mulation and a solution of the optimization problem much more complex.
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It was investigated for the first time and developed by Szuwalski (1989,
1991a, 1991b, 1995a, 1995b). Following these papers another classification
of structures that are “optimal” in various senses, when geometric changes
are significant, may be quoted:

i. Structures of uniform elastic strength in a broader sense (UESb),
where the initial equivalent stress oeq(to) is proportional at each
material point of the structure to the critical stress for the material:

Oeq(X,t0) = cOc:(x), Vx€EV. (11.5)

ii. Structures of uniform elastic strength in a narrower sense (UESn),
where the initial principal stress components are equal throughout
the whole structure:

0,(X,to) = const(x) Vxe V. (11.6)

iii. Structures of uniform creep strength with respect to pure ductile
rupture time (UCDS) tpgr, where transverse dimensions drop simul-
taneously to zero at all cross-sections of the structure:

h(x,tDR) =0, t—tpr, VxeVW. (11.7)

iv. Structures of uniform deformability (UD), where principal strain com-
ponents are equal in all cross-sections, but vary with time:

e,(x,t) =f(t), to<t<tpr, VXEV. (11.8)

11.1.8 Constraints

The optimality criteria (Sect. 11.1.2) require the appropriate constraints,
some of which are listed below

A. Inequality constraints

i. Strength constraints

Geq(0,D) < 0/, (11.9)
e.g.,
. 3 835844 1/2 .
gEMH = [iﬁ} < Oa/ds (11.10)

where o, denotes the critical effective equivalent stress for the ma-
terial and j is the safety factor.
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iii.
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Initial stability constraints (elastic stability condition)

no < Ng, (11.11)

where ng, denotes the basic Eulerian force (if the possibility of creep
buckling is not included in the analysis).

Geometric constraints for thickness of the structure A
and the prestressing eccentricity e

emax < /2. (11.13)

B. Equality constraints (for axisymmetric structures)

i

ii.

jii.

Condition of constant volume (weight) of a uniform cross-section

R
V=2r / h{r)rdr = const (11.14)
0
or a two-point sandwich cross-section
R
V= 27r/ [a(hs — gs) + 20gs) rdr = const (11.15)
0
or R
oV = 27r/ [ (6hs — 8gs) + 2B6gs] rdr = 0, (11.16)
0

where h (r), hs (), and gs (r) denote thickness of the uniform cross-
section, the sandwich cross-section, and the sandwich working layer,
respectively, whereas o and (3 are arbitrary weight factors for the core
and layers materials (Fig. 11.1).

Condition of constant lifetime for macrocrack initiation
t; = tr = const (11.17)
or complete failure (fracturing)

t;; = tr = const, (11.18)

where t7; — {1 is a safety regime for the structure considered, which
is reduced to zero for fully damaged design.

Condition of constant surface loadings (prestressing force excluded)

q(x,t) = q(x). (11.19)
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N ¢----p -

Fig. 11.1. Uniform and substitutive sandwich cross-section

11.1.4 Decision variables

When problems of optimization are formulated for prestressed structures
under damage or damage/fracture conditions vectors of control variables
involve not only the thickness of a structure h(x) or hs(x) and gs(x) for
a uniform or sandwich cross-section, respectively, but also parameters of
prestressing ng or Ag in case of in-plane membrane-type prestressing (a
force or a membrane distortion), and mg or ¢, in case of bending-type
prestressing (a bending moment or an initial bending distortion). Hence,
the corresponding vectors of decision variables are

{2} ={no or Ag,h(x)} or {ct}={no or Ao, hs(x),g: (%)}

and

{ci}={mo or g5, h(x)} or {ct}={mo or @y, hs(x),gs (x)}

in case of a uniform cross-section or a sandwich cross-section, respectively.
It is important to precisely distinguish the behavior of prestressing, which
varies with time, from other loadings which are constant and may appear
as the equality constraints. The nature of the prestressing, which is consid-
ered as an excitation imposed on the structure, also requires explanation.
Generally, internal and the external excitations can be distinguished. The
prestressing fibers in reinforced concrete are an example for the first case,
whereas a cylindrical shell prestressed by an external circumferential cable
illustrates the second. In both these cases, the excitations may have the
nature of forces or distortions. Typical examples of excitations, the radial
prestressing force ng or the displacement type Ag, and the radial prestress-
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ing moment mg or the angle of support ¢, for membrane and bending
states, respectively, are illustrated in Fig. 11.2.

boundary excitations
force-type displacement-type
§ n, n,
£ |C/« A“’FL___'E::LAO
g -
o
£ L& coupling F(n,m,A,¢,)=0
©w
&0
.5 my my
8 Q\ T /D ——
0
‘Pov P,

Fig. 11.2. Boundary excitations in axisymmetric plates

Apart from the order of the theory, which may or may not include the
coupling between the membrane and bending effects (cf. Sect. 9.2), both
membrane and bending states may additionally be coupled to the boundary
conditions. Generally, such a coupling can be described by a function F
which depends on the excitation parameters:

F(no,mo, Do, pp) =0, (11.20)

where ng is the initial prestressing force, Ag the initial distorsion (mem-
brane), mg the initial prestressing moment, and ¢, the initial distorsion
(curvature).

From a practical point of view, only a few particular representations of
the function F make sense. These are as follows:

i. Uncoupling, when the function F depends on the only one of the
arguments,

F(no) =0 or F(mp)=0 or
F

FA)=0 o (#0) =0, (1L.21)

ii. Unilateral coupling of the membrane and bending states, when the
function F may be solved with respect to one of its arguments,

mo = f(no)  or o =f(Ao), (11.22)

iii. Bilateral coupling, when the function F implicitly depends on more
than one argument (e.g., plate-shell interaction),

F(Bo,00) =0 or  F(no,mo). (11.23)
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11.2 Inelastic structures of uniform strength
in various senses versus optimal
structures

When geometric changes are neglected (the rigidification principle is used)
and creep-damage buckling constraints are not involved, the optimal struc-
ture, for which the lifetime is maximum, ¢ya.x — max, may be found among
structures of uniform creep strength. This was illustrated by Zyczkowski
and Rysz (1986) (optimal design of cylindrical shell under combined bend-
ing with torsion against brittle rupture), Ganczarski and Skrzypek (1989,
1991, 1992) (optimal design of prestressed disks with respect to brittle
rupture), Rysz (1987) (thick-walled pipeline cross-section of uniform creep
strength against pressure, axial force, and torsion), and Skrzypek and Eg-
ner (1993, 1994) (optimal design and optimal prestressing of disks with
respect to creep-brittle rupture).

With geometric changes taken into account, a structure of uniform creep
strength is, in general, nonoptimal. Further optimization may be performed
by imposing appropriate shape corrections to maximize the lifetime of
the structure being optimized. Shapes of flexible beams of uniform creep
strength were sough by Zyczkowski and Swisterski (1980) by a finite de-
flections approach. Nonoptimality of the uniform creep strength design was
checked by Swisterski et al. (1983), where an eccentrically compressed I-
column was optimized against brittle rupture time when finite deflections
were admitted. In this case, an essential increase of the lifetime prediction
t; — t°P* by about 90% when compared to the uniform creep strength
1} was reached when a further parametric optimization procedure was
used. The relevant problem was studied by Wréblewski (1989), who checked
the nonoptimality of an eccentrically compressed column of uniform creep
strength with respect to its lifetime when three rupture mechanisms, the
brittle, the ductile, and the brittle-ductile, were applied for lifetime predic-
tions.

With respect to ductile rupture, the structures of uniform deformability
(UD) belong to the class of structures of uniform ductile creep strength
(UDCS). However, in general, neither structures of uniform ductile creep
strength nor structures of uniform deformability are optimal with respect
to ductile rupture time tpg. Only in the case when a structure of uniform
ductile creep strength is statically determinate it is simultaneously the opti-
mal structure in the sense of maximum ductile rupture lifetime tpg = t°Pt.
If the above condition does not hold, the conclusion is not true, although
the additional shape corrections may be imposed to improve the UDCS
solution (cf. Szuwalski, 1989, 1991a, 1991b), as schematically sketched in
Fig. 11.3.
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disks of uniform
strength to ductile

rupture

disks optimal with
respect to ductile

disks of uniform
initial strength in
narrower sense

disks of uniform
initial strength in
broader sense

Fig. 11.3. Disks of uniform ductile creep strength in various senses (after Szuwal-
ski, 1993)

Note, however, that a pure ductile failure mechanism in Hoff’s sense is
strongly limited in practical observations and should rather be enriched
with the additional damage evolution by material degradation in a CDM
way.

The fully damaged design method is essentially relevant to the fully
stressed design method as it was used in elasticity. Roughly speaking, this
method leads to exact solutions which are optimal with respect to lifetime
t; = t°P* when the following conditions hold:

a. the structure is statically determinate,
b. a stationary single loading is applied, and
c. geometric changes are neglected.

If the above conditions are violated, the fully damaged design turns out
to be only an approximate optimal solution. An exact one may be obtained
when more rigorous optimization methods are used. However, Skrzypek and
Egner (1993) proved that a disk of fully uniform creep damage strength un-
der steady loadings (non-prestressed) is also the optimal one in the sense
of its lifetime. On the other hand, a disk of partly uniform creep damage
strength with active lower geometric constraint under unsteady loading
conditions (due to the prestressing) is not optimal and, hence, additional
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corrections of thickness may result in a certain increase of the lifetime (prac-
tically negligible). Therefore, the conditions a, b, and ¢ do not appear to
be necessary conditions for fully damaged design to be the optimal design
in this case. It is worth mentioning that, beside the thickness optimiza-
tion, initial prestressing of the structure of the membrane or the bending
type appears to be a promising tool for a lifetime improvement because, in
general, tensile stresses can be reduced in this way such that the damage
growth may be arrested.

Recently, a number of optimal solutions for disks with respect to brit-
tle creep rupture have been obtained by Ganczarski and Skrzypek (1989)
(optimal prestressing of partly uniform damaged disks); Ganczarski and
Skrzypek (1991) (disks of uniform orthotropic damage strength under un-
coupled thermomechanical loadings); Skrzypek and Egner (1993) (fully
damaged design versus optimal design of rotating prestressed disks); Eg-
ner and Skrzypek (1994) (effect of preloading damage due to prestressing);
Ganczarski and Skrzypek (1997) (disk of uniform orthotropic damage under
coupled thermo-damage conditions).

The partly or the fully damaged design methods were also implemented
on axisymmetric thin plates by Ganczarski and Skrzypek (1993) (creep-
damaged plate of constant thickness optimally prestressed by the elastic
cylindrical shell); Ganczarski and Skrzypek (1994) (initially prestressed
sandwich plates with full orthotropic damage at rupture). Optimal pre-
stressing of Reissner’s axisymmetric plates with respect to brittle rupture
time was also examined by Ganczarski, Freindl, and Skrzypek (1997).
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Optimal design of
axisymmetric disks

12.1 State equations for rotationally
symmetric deformation of annular disks
of variable thickness

12.1.1 State equations of disks of variable thickness under
plane stress conditions

An annular disk of variable thickness h () and radii a and b, clamped at the
inner edge, is subjected to steady rotation about the axis of symmetry with
an angular velocity w and uniform radial tension along the periphery. Plane
stress state 0, = 0 and creep incompressibility €5, = 0 are assumed when
the transient creep problem is solved in velocities by the use of cylindrical
coordinate system r, ¥, 2. Hence, for a rotationally symmetric deformation,
the equilibrium equation takes the following form:

1d O, — 0y
,—La(har) +

Moreover, when an additive decomposition of strains into elastic and creep
components is used, the linear geometric equations may be written:

+ pw?r = 0. (12.1)

du o . Op—VOy R
e= =t =" +ep,
(12.2)
U Oy — VO,
€9 =— =€y +e5g = —— +€5.
9= T ety 5 %

Elimination of 0, and oy from (12.1) and (12.2) yields the fundamental
equation in terms of the radial displacement w:

@u_(1ar 1\du_(vah 1\u
dr? hdr 7/ dr hdr 7)) 7r

_f . dg 1ldh
Tr dr+hd7"q kr,

(12.3)

where

f=Q1Q-v)(e—€3), g=¢€ +vey, k= Il (12.4)

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures

© Springer-Verlag Berlin Heidelberg 1999



258 12. Optimal design of axisymmetric disks

Creep strain rates are governed by the Mises-type flow rule associated with
the time hardening hypothesis and the Kachanov—Sdobyrev damage growth
rule (partly coupled approach):

m—1 a9\ -
d cz_eq__( ,_—)ftdt
E‘r‘ (1 _ D)m o 2 ( ) ’
(12.5)
c U;rf;_l 9r\; c c c
deq, = (]_TDF (0,,9 — 7) f(t)dt, dEz = — (dEr + d€19) s
dD = C<%> dt, x(o) =601 + (1 — 6)0eq. (12.6)
Applying the following dimensionless quantities
2
€0=@aU=_u')R=£’F=iaG=£, ='k'(£’aSr=27
E agg a €0 €0 €0 o]
o) Oe e° o iy h
Sp = =, Seq = 2, ES =L, E5 =2 T =tEog! = -
9 an q %o 3 Er o 9 80’ Jg f(t)a H a,

b
P=L R =2=5
Oo a
the dimensionless form of the governing equations for a disk of variable

thickness is obtained

d*v R*dH dU
2

-— Z_4+R)=
ro+(Fa+?) 5

dR? H dR
(t=0),
vRdH
——-1)|U=-KR?
(H dR )U KR,
, _ (12.7)
R2.d2U._. (Eg R) QZ
2
dR H dR dR (t>0),
vRdH S dG 1dH .
- _1|U=FR+R=+=-"2G
(H dR ) TYRTE®RT

. Sm-t s : Syt S
c_ _Teq _2 c_ _"eq _or
b=t (5-5), Bl (%-F), @9

x(@)\" -
= Colt; ( &——~% .
dD = COo} ,<1_D> dz, (12.9)
where
=t =BT, F=(-v)(E-B), G=Erevl
tr tl(t)

(12.10)
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12.1.2 Boundary value problems

Example A

A clamped annular disk of variable thickness H (R) is subjected to steady
rotation about the axis with angular velocity w and the radial tension P,
applied along the periphery (cf. Fig. 12.1).

QO:) rigid shaft

0

P,

B D
=
[

€

Fig. 12.1. Schematics of clamped annular disk of variable thickness subjected to
steady rotation and radial tension

Boundary conditions for the disk of the radii R; = 1, Ry are:

U(1)=0, H(Ry)S,(Re)=HoP, (E=0),

U(1)=0, S (Rs)=0 E>0). (12.11)

Example B

A clamped annular disk of variable thickness H (R) is subjected to creep-
damage under initial prestressing ) and steady rotation w (cf. Fig. 12.2).

Boundary and continuity conditions for the disk of radii Ry = 1, Ry
(creep ) and the prestressing ring of the radii Ry, Ry (elastic) are:

U@1) =0, H(Ry)S,(Rp) = —HoQ _
=0 sy —a | =9,

U(1) =0, H(Ry)S,(Ry)df = HodSr™8(Ry) .
SEn8(Ro) = 0, U(Ry)d = dne(y) } >0

Data

The calculations are done for the following data:
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®
initial > rigid shaft
prestressing O D creep
E d elastic
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Fig. 12.2. Schematics of clamped annular disk of variable thickness subjected to
creep under initial prestressing and rotation

E =1.77x 10° MPa, v = 0.3, a = 0.02 m, b = 5a, hg = 0.004 m, g¢ =
118 MPa, P, = 0.1, p = 7.9 x 10% kg/m?, w = 100 s~1(A) or 240 s~1(B),
C=213x10"%Pa"s7!, m =5.6,r = 3.9, § = 0.5 (B) or 1.0 (A).

12.1.83 Numerical solution by FDM

In order to solve a transient creep-damage problem for the disk of a pre-
scribed thickness H (R) we divide the initial domain B; < R < Rj into
a finite number of intervals N — 1, not necessarily equal, by inserting the
ordered set of points R;, j = 1,...,N, where R; = 1, and Ry = R;.
Also we separate a current dimensionless time ¢ into discrete intervals de-
limited by £* with Z° = 0 representing the initial condition for creep (the
elastic solution). For each disk portion, a piecewise linear approximation of
thickness

Hi(R)=Ar+BiR, I=1,..,N—-1, (12.13)

is assumed, where subscript / denotes a number of the interval. Then,
at each time step fk, a standard finite difference method (FDM) is used
on(12.7) in order to find the initial nodal displacements U; (fk = 0) or

velocities Uj (fk > 0). Moreover, corresponding stress and strain rates
S'j, Ej, and the rates of damage function Dj are computed. The Runge—
Kutta IT (RKII) method is applied next to find current values of stress
components as well as the damage function. Hence, when geometry of the
disk is prescribed the initial-boundary creep-damage problem is solved with
the elastic solution considered as the initial condition for creep.

1. Elastic problem (ik =0)

For a disk of constant thickness H(R) = Hy, the analytical solution of the
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reduced fundamental equations (12.7)-(12.9) provides:

A B K
e . _ 1~ ____RS
vr=—gftg 3%
_ ! A _(A-vy)
Sr—'l—:';g[—(1+1/)§— 72 B - (3+V)
(12.14)

1 A (1-v) K ,
519_1_”2 [—(1+u)5+ 7 B—(1+31/)8R

. A B 3K_, . A B K._,
BE=—m-—m 3% B=g+tm -3

For a disk of arbitrary thickness H (R), the FDM is used to solve (12.7).
Then, in view of Hooke’s law, the initial stress and strain components are
found:

g 1 (dU + U) g 1 (U +1/dU>
r = _ 2 19 = —-_——2 — — 3
1-v4 \dR R 1-v2\ R dR (12.15)

E; =8, —vSy, 5 =Sy — VS,.

II. Creep problem (Zk >0)

For the next time-step of the process, & = + At, and for an arbitrary
thickness distribution H(R), the creep strain rates E2, ES are determined
from (12.8). The FDM solution of the second fundamental equation (12.7)
furnishes then the nodal velocities U whereas stress rates .5',, S are ob-

tained as
v U .
(ﬁ + VE) -G
U dU e
(R + V@) - (Eq, +1/ET)

For each subsequent step of the process, FASRI Af, the current mag-
nitudes of the stress components S,, Sy are found on the basis of the
Runge-Kutta RKII method, whereas the corresponding damage function
D (R) is determined from (12.9). Substitution of these values for S,, Sy
and D in (12.8) again sets up the new creep strain rates at 1 and the
procedure can be continued for as long as desired.

1

S=1"m

K

(12.16)
1

Sy = ——
L)
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12.2 Two-step optimization approach

For the prescribed loading parameters, the optimal distribution of disk
thickness H (R) and the initial prestressing ) which maximize the time
of failure initiation #; (first macrocracks) under the condition of constant
volume and the additional geometric constraints are sought:

t7[H(R); Q] = max;

w, P, p = const, V = const, Hins < H(R) < Hgup. (12.17)

As the first step of optimal design, the shape of a disk of uniform creep
strength (UCS) is determined, Hyucs(R). In general, we begin the iteration
loop with the disk of constant thickness H(R) = Hp. The damage distri-
bution Dg (R) that corresponds to the zero-order lifetime estimation Zg,
(constant thickness) is obtained when the coupled creep-damage problem
is solved. Next, the corrections of the disk thickness according to the piece-
wise linear approximation (12.13) are imposed with the constant volume
condition applied. The nodal correction of disk thickness is assumed to be
proportional to the power function of the residual value of the nodal con-
tinuity function 9; = 1 — D; at rupture time tr,. Hence, the thickness
correction rule, the constant volume condition (for the corrections), and
the continuity of thickness at nodes yield:

Hf(Rj)R— H Y R)=P(¥-v;)", i=1,...,N,
3+1

Yo' [ [HF(R) - HF'(R)] RAR=0, (12.18)
R

j=1
2
Hf_,(R;) =Hf(R;), j=2,...,N—1

In the above equations, subscript j stands for the node number, super-
script & for the time-step number, and subscript I the number of the spa-
tial interval. Equations (12.18) provide 2N — 1 conditions for the same
number of unknowns: 2(N — 1) coefficients of linear approximation Ay, By
(I =1,..,N —1) in (12.13) and the reference value %. The step factor P
should be chosen experimentally and the exponent « is adjusted numeri-
cally for best convergence. When the initial shape H is improved, we solve
the creep problem for the new disk geometry to obtain the corrected distri-
bution of the damage function D; at the lifetime g, . The whole procedure
is repeated until an error norm for “uniform” damage is satisfied, e.g.,
| Dimin — Dmax| < €. This means that the shape of uniform creep strength
with respect to brittle rupture is found (cf. Fig. 12.3).

The first optimization level described above may be insufficient in view
of the discussion concerning optimality or nonoptimality of the solution
of uniform creep strength H,. (R) with respect to the lifetime (cf. Sect.
11.1.5). Therefore, a second optimization step has to be performed in order
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£=0
5255 D=0-{E £ PP U35, s, ;.0
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END

Fig. 12.3. Numerical algorithm for first step to optimal design of disks of uniform
damage strength (after Skrzypek and Egner, 1993)

to answer the question whether the UCS shape obtained ensures the max-
imum lifetime or not. When appropriate corrections to the UCS shape of
uniform creep strength are imposed, an improvement of the lifetime may be
expected even in the case when the geometry changes are disregarded. In
fact, with active zones of the geometric inequality constraints allowed for,
the condition of uniform creep strength holds only in the remaining (pas-
sive) zones of the disk. Hence, a possible improvement of the disk lifetime
may be achieved by corrections of the shape and the length of zones of uni-
form creep strength in order to maximize the disk lifetime. The following
parabolic form of the correction terms of Hycs(R) is proposed:

AH(R) = a1R2 + asR + ag,

Hopt(R) = Hyes(R) + AH(R) (12.19)
for which the condition of constant volume,
R2
/ (a1R® + agR + a3) RAR =0, (12.20)
Ry

holds; hence, only two parameters remain free to be optimized.

12.3 Example A: Clamped annular disk of
uniform damage strength versus
uniform elastic strength

Let us consider an annular disk with inner and outer dimensionless radii
R; and Ry, clamped at the inner edge and free to move at the outer one.
The disk is subject to steady rotation about the symmetry axis with an-
gular velocity w and to uniform tension P, applied along the periphery (cf.
Fig. 12.1). When the optimization procedure described in Sect. 12.2 was
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used, a disk of uniform creep strength UCS was obtained (first optimiza-
tion step). Optimality of the UCS solution was checked when the shape
corrections (12.19) were imposed on the uniform creep strength solution
(second optimization step). In the case under consideration (no prestress-
ing force, no geometric constraints), the solution of uniform creep strength
was found to be the optimal with respect to lifetime Hycs (R) = Hopt (R)
even though the structure is statically indeterminate and two independent
loading parameters are considered (w, P).

A comparison of the UCS solution with the disk of uniform elastic strength
UES is shown in Fig. 12.4. A constant volume condition and the same
loading parameters were assumed in both solutions. The proposed design
method results in a significant improvement of the disk lifetime when com-
pared to the disk of constant thickness, Table 12.1.
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1 156 2 25 3 35 4 45 5

radial coordinate R

Fig. 12.4. Rotating disk of uniform creep strength versus disk of uniform elastic
strength (after Skrzypek and Egner, 1993)

Table 12.1. Lifetime improvement for clamped disks of UES versus UCS (after
Skrzypek and Egner, 1993)

Lifetime (first macrocracks)

Temp. Constant Uniform Uniform
thickness Hy | elastic strength H,es | creep strength Hy

73K | Ty =742 0 = 2.9t 7 = 3.07

873K | 7 =790 i = 2.07) 5% = 2.9%)
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12.4 Example B: Effect of initial prestressing
on the lifetime of disk of uniform creep
strength

12.4.1 Prestressed disk of uniform creep strength (UCS)

A rotating disk clamped at the inner edge and prestressed by the elastic
ring at the outer edge is analyzed (cf. Fig. 12.2). Both the initial prestress-
ing Q and the distribution of thickness H (R) are subjected to optimization.
The effect of initial prestressing as an additional decision variable results
in nonuniqueness of the solutions of uniform creep strength. Hence, from
among the disks of uniform creep strength, further optimization may be
performed with respect to initial prestressing force @ in order to find the
optimal shape against brittle rupture and the corresponding prestressing
force for which the lifetime is maximized: ;(Hyes (R) y Qopt) — max. Here
R; =1, Ry, and Ry denote dimensionless radii of the disk subjected to op-
timization and the prestressing ring, respectively. The Kachanov—Sdobyrev
damage growth rule is applied in order to find the disk of uniform creep
strength, when w = 240 s~! and § = 0.5. An additional constraint is im-
posed on the thickness Hins = 0.75H(. The shape of uniform creep strength
without geometric constraints imposed results in an unacceptable distrib-
ution of thickness which approaches zero in the middle zone of the disk
and, hence, the convergence of the numerical procedure fails dramatically.
Moreover, it is supposed that the minimum thickness of the disk must en-
sure structural stability against creep buckling for the given magnitude of
the prestressing force.

The effect of initial radial prestressing @ on the lifetime of a disk of uni-
form creep strength with the minimum thickness constraint (H = 0.75H)
imposed, is shown in Fig. 12.5.

The magnitude of the optimal initial dimensionless prestressing force
which maximizes the lifetime is equal to Qopy = 0.034. Note that in the
case of a disk of constant thickness the optimal prestressing force is ap-
proximately the same, butr the corresponding lifetime is almost 10 times
shorter. The shape of the disk of uniform creep strength UCS with a min-
imum thickness constraint (Hi,s = 0.75Hp) is compared with the corre-
sponding profile obtained when subsequent iterations of thickness were not
constrained, Fig. 12.6.



266 12. Optimal design of axisymmetric disks

05
0.45
H=H N
04 -+H= o
\ ° \\a
o 035 Ersfbemens S
& o3 e Wat
@ //., :
% 025 {—Q =0.034 :
8 o 3 2
2 02 !
a .
& 015 =H—H—=0:75H )
/ bpt® dinf | 0’ :
0.1 [ ! _
: t
0.05 e lopt

dimensionless lifetime t—I

0
0 100 200 300 400 500 600 700 800 900

Fig. 12.5. Effect of initial prestressing @ on time to macrocrack initiation s of a
disk of uniform creep strength Hycs versus a disk of constant thickness Ho (after

Skrzypek and Egner, 1993)

05
04 }
03 I\ /'
g 02 PETH =0 H-=DT75H -
I NLARVAL 0.
0.1 o s
g S~ e /
€ o0 S emerag
Q ~
£ 01 v
= o N
g .. /'/ H Hn N
=, / 0
03 [ active-geometric \
o "UGS1 — ¢onstraint — UGS2
05
1 15/ 25 3 35 4'\4.5 5
R dimensionles radiusR R
u2 ut

Fig. 12.6. Variation of profiles of optimally prestressed disks of uniform creep
strength Hycs with a magnitude of lower geometric constriant Hin¢



12.4 Example B: Effect of initial prestressing 267

12.4.2 Prestressed disk of uniform creep strength UCS versus
the optimal disk

To check the optimality of the solutions of uniform creep strength H,., (R)
the shape corrections (cf. (12.19) and (12.20)) are imposed upon the profile
of the disk of uniform creep strength without any volume change.

In the case of prestressed disks when the lower geometric constraint is
imposed, correction of both the thickness and the length of zones of uniform
creep strength may be subjected to parametric optimization. For instance,
in a case when the parabolic shape corrections (12.19) are imposed on each
of two zones independently AH;, AHy with their lengths held constant,
only one parameter is free to be optimized in each zone €; = AH; (R;) and
€9 = AHy (Rp) (Fig. 12.7) to yield: T1 (Huee) = 293.92, T (AH,) = 294.22,
t; (AHy, AHy) = 15, = 294.41. However, in a more general case when
both the thickness and the length are optimized, AH;, AHy and Ry,
Ry2, two parameters are free in each zone, &y = AHy (R1), ARy and
€9 = AHj (Ry), ARy2. Nevertheless, in the case under consideration the
longest lifetime was achieved when the initial lengths of zones of uniform
creep strength were unchanged.
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Fig. 12.7. Parametric thickness corrections AH1, AH> of disk of uniform creep
strength Hycs for time to failure improvement 1., (after Skrzypek and Egner,
1993)
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12.5 Discussion: Non/optimality of
structures of uniform creep strength
with respect to lifetime

i. When elastic structures are designed for either minimum weight or
maximum load under a strength constraint, the structures of uniform
elastic strength, also called the fully stressed designs, are in most
cases optimal. In general, when static indeterminacy of structure or
geometric changes are taken into account, the condition of uniform
strength is neither a necessary nor a sufficient condition of optimality.
Hence, the fully stressed design method is, in general, a first step
towards the exact optimal solution when more rigorous optimization
approaches are used (Gallagher, 1973).

ii. When optimization of structures under creep conditions is formu-
lated, the minimum weight or the maximum load remains a typical
design objective, whereas constraints may be imposed not only on
the strength (failure), stiffness, and stability as in the elastic case,
but also on a limited stress relaxation, a limited residual displace-
ment, or a given lifetime. When constraints are imposed on brittle
creep failure, the initiation of first macrocrack t; = tg or a complete
structure failure t;; = tr define the lifetime. When constraints are
imposed on ductile creep failure, the condition of vanishing trans-
verse dimensions, at least in one cross-section, constitutes the ductile
failure mechanism, and defines the lifetime tg = tpp.

iii. When geometric changes are neglected and creep buckling constraints
are not involved, the optimal structures (tg — max) may be found
from among structures of uniform creep strength. With geometric
changes taken into account, a structure of uniform creep strength
is generally nonoptimal. Further optimization may be performed by
superimposing corrections on the decision variables to maximize the
lifetime.

iv. In case of disks under creep-damage conditions with geometric changes
neglected, disks of uniform creep-strength may be optimal or nonop-
timal with respect to the lifetime ¢;. A possible lifetime improve-
ment due to the additional shape corrections is usually less than 1%.
Hence, the shape of uniform creep strength may be considered as a
sufficiently good approximation for the optimal disk.

v. A disk of uniform creep strength subjected to stationary loadings
(not prestrained) was found to be optimal with respect to lifetime.
On the other hand, a disk of partially uniform creep strength (zone
of active geometric constraint admitted) subjected to nonstationary
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loadings (due to the initial prestressing) was found to be nonoptimal
with respect to lifetime.

vi. When the effect of preloading damage is taken into account (cf. Eg-
ner and Skrzypek, 1994) for each prescribed preloading period Aty
the optimum prestressing force may be found. Usually it corresponds
to simultaneous initiation of first macrocracks at the inner and the
outer fibers of the disk (a switch point where two curves representing
different failure mechanisms intersect). However, when the duration
of the preloading period is sufficiently long, it may happen that the
initial damage during preloading at the inner fiber is rapid enough to
reach the maximum net lifetime without the switching effect. In this
case the optimal prestressing is determined by the smooth extremum
point on the curve 77> (Q) as shown in Fig. 12.8.

400
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80
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Fig. 12.8. A family of net lifetimes versus initial prestressing period (after Egner
and Skrzypek, 1994)
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12.6 Example C: Optimal design of

rotationally symmetric disks in
thermo-damage coupling conditions

12.6.1 Assumptions

i.

ii.

iii.

iv.

vi.

vii.

viii.

A thin axisymmetric disk of variable thickness under plane stress
conditions is considered (Fig. 12.9).

The geometrically linear theory of small displacement and the addi-
tive decomposition of strains are applied: € = €® + €° + eth,

The fully coupled orthotropic creep-damage approach is used (7.14).

The coupled thermo-damage problem is solved (Model C (7.22)) by
the use of the equivalent conductivity concept.

. A 1D nonstationary temperature field is assumed T [r, D (7,t)] (tem-

perature homogenization through the disk thickness) but only quasi-
static changes of temperature are allowed (T' = 0).

1D volumetric inner heat sources are assumed g, = ¢, {h () ,dh (r) /
dr,T [r, D(r,t)]}.

Uniform constant temperature along the periphery Ty = const and a
constant temperature cooling fluid stream (through the disk faces),
T = const, are assumed as the thermal boundary conditions.

The body force due to steady rotation with angular velocity w and
a uniform peripheral tension in the sense of constant force per unit
length of the periphery pg are assumed as the mechanical loadings.

12.6.2 General equations of the mechanical state

The general mixed approach, originally derived for the plate under a com-
bined membrane-bending state, is used where the equation of the mem-
brane state is written by use of the Airy function F whereas the equation
of the bending state is expressed by the appropriate deflection function (cf.
Ganczarski and Skrzypek, 1994). Hence, n, = (FI/'I‘) +U,ng=F +U,
where a potential of body forces is defined as U’ = —ow?rh, whereas symbol
prime stands for the derivative with respect to r. Finally, the fundamental
mechanical state equations are furnished:
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FIF) + (1 -v)B(r)V* [%} +(1=1)B(r)av?T=0 (t=0),
” 2rr 2 ng — V’flﬁ
FIF}+ (1 =v*)B(r)aVT + B(r)V [—ﬂB(T) ]
(t>0),
1+v,, . d[n5-—ns]
ey [N -
(12.21)

where the differential operator F|...] as well as the auxiliary operators V?,
V4, independent of circumferential coordinate, take the form (cf. Sect. 9.2.2
with k& = 0):

d[ 1 3. 2-vd’. 1d
— 4 el B i Tl
Fll=Vv +B(r)dr [B(r)] (2 dr3 + r dr?2 7?2 d’r)

) [ (- %),

(12.22)
d%... 1d.
2 i — — —
V= dr2 =y dr’
R 2d%.. 1d%.  1d..

art Trars T r2ar?r " r3dr
The inelastic membrane forces expressed in terms of inelastic strains and
the membrane stiffness are defined as follows:

E(r)h(r)

e = B(r)(e7/s +vey ), B(r) = 1 (12.23)

12.6.3 Constitutive equations for coupled creep-damage
problem

Due to nonproportional loadings when the general orthotropic damage rule
is applied, the creep process becomes orthotropic as well (damage induced
creep orthotropy). Hence, the fully coupled creep damage approach is re-
quired, where effective stress components are used instead of simple stress
components and time hardening hypothesis governs the creep strain-rate
intensity

o 3&cq o i~ -
€kl = 5& 1 kls 6eq = (Geq)m(T)f(t)v
eq
~ 2 Or/9 o9/r _
S0 =3 (1—0,,1, " 2(1-Dy))’ k=9
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8o = \/(T‘%T)Z + (1 f‘;ﬂ)z - D?)((,f— 5y (1229

. r(T)
D, = C,(T) < Ty > v=r1b (12.25)

12.6.4 Formulation of coupled thermo-mechanical boundary
problems

The mechanical state fulfills (12.21) and the following mechanical boundary
conditions:
nT(O) = TL@(O), nT(R') = poho (t =0), (12 26)
7. (0) = n4(0), n.(R)=0 (t>0). '
The equation of heat transfer of Model C (7.22), requires the inner heat

source intensity to be explicitly defined:

. dif & _ Q’u
@ = 73V T T rddhar’ (12.27)

where the surface element and its slope are:

_ rdddr 05O — 1 _ 1
"~ cosO’ ~ V1+tan?© V14 (dh/dr)?

dA (12.28)

free convection

?_l
hy

P,

Fig. 12.9. Rotating disk of variable thickness (versus constant thickness disk
of the same volume) stretched at periphery and cooled through faces (after
Ganczarski and Skrzypek, 1997)
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To express the overall effect of convection through both disk faces, the
classical Newton law of cooling is applied (cf. Holman, 1990):

Qv = 2B8dA(T - T, (12.29)
where T, is the temperature of the cooling fluid, hence:

zﬁif—h@(:r ~T.) (12.30)

The appropriate thermal boundary conditions are:

dT/dr),_,=0, T(R)=Tp (t=D0)
(12.31)

dT/dr ,=0 T(R)=0 (t>0).

12.6.5 Optimization problem

Assuming the orthotropic damage law, the structures of uniform creep
strength fulfill the condition:

sup {D,(r,t1)} =1, v=1,2,3. (12.32)
VreV
The distribution of disk thickness h(r) is considered as the decision variable
when the geometric inequality constraints on the maximum and minimum
thicknesses

Punax > B(r) > hogin (12.33)

and the constraint on the maximum local gradient of temperature such
that the assumption of small thermal displacements is satisfied,

max {dT/dr} < (dT/dr)max, (12.34)

are checked during the optimization procedure. Additionally, the condition
of constant volume requires:

R R
V= 27r/h(r)rd7" =const or &V = 27r/6h(r)rdr =0. (12.35)
0 0

The optimization procedure, based on iterative corrections of the decision
variable h (r) is suggested. When the optimization with respect to uniform
creep strength under constant volume of a structure is performed, the nodal
increments of the decision variable Ah; are chosen proportionally to the
level of the nodal dominant component of the damage tensor (cf. Ganczarski
and Skrzypek, 1994):
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Ahj = PAD; — Ahy, AD; = sup {D,/g}j, i=1,..,N (12.36)
(r.9)

where the reference correction Ah,, must satisfy the constant volume con-

dition:

z PAD; 2 PAD;r;
E] Ts '

whereas the step factor P should be chosen experimentally (cf. Sect. 12.2).

The process of damage equalization is continued until the following condi-
tion is fulfilled:

Ahpy, (12.37)

sup {D,,./,,g}j <EPS=1 Vi (12.38)

The suggested procedure is essentially relevant to the concept of the full
damage design method. This method leads to exact solutions (optimal with
respect to maximal lifetime) when the structure is statically determinate,
single loadings are applied, and geometric changes are neglected (cf. Sect.
11.5). If the above constraints are exceeded, the uniform creep strength
solution may turn out to be nonoptimal. An exact solution may be obtained
when more advanced optimization approaches are used, for which the UCS
solution may be regarded as a first approximation.

12.6.6 Numerical algorithm for coupled thermo-creep-damage
problem

A modification of the numerical procedure described in Sect. 7.3.4, that
accounts for a variable thickness h (r) and the substitutive conductivity
concept (Model C) (7.22), is used. Hence, when the FDM is applied to
(7.22) with the inner heat source intensity (12.30) we arrive at:

I +)\J+1+_ i-ithip (1) 11,
(Ar)? 25 Ar 2h;Ar 2Ar | 797!
2
_‘+h
| 2 Qﬁ \/H’ 24T ) T
(Ar)? J

[ 1 + =ML AT | Rt Ry 1) 1
(Ar)? 2251Ar 2h; Ar r
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(12.39)

A5t = Xo (1 — Dj) + 0€04D;T; Ar.

In order to specify the differential operators entering the (12.21), the
following FD representation of (12.21)—(12.22) is defined:

v | s e Bt o) B
[(Ar 20 —1 AN r+ Ai)(Ar) ] B

4 2 1 4r + 3Ar
" [‘W ) W] Foa [(W Tarr Ar)(m)s} s

gd (1 (d3F 2-vd’F 1dF)u_—,~_1+hj+1
- SRR It SLEL b2 §

B)\"ard " v ar? r2ar 2h;Ar

F;_ 2—v 1 2—v
X [ Ar)3 ( Ar)3 r(Ar 2t 27'2Ar) Fi-1= 2r(Ar)2F:7

—v 1 Fivz
+ (Ar)3 r(Ar)2 21"2Ar) Fii+ (Ar)? ]

L (L) (&£F _vdFY
dr2\B)\dz2 rdr )~
1 v 2 1 v
X K(Ar)ﬁ + 2TAT) By = mpe i+ ((Ar)2 - 27'Ar) Ff“] ’
U 1 1 U;_ 2 U
1-—I/BV2(—)E’1—Vh'{[ - } it =
(1-v) B (L= 2)h; (Ar)2  2rAr| hj_y  (Ar)? b
1 1 ] U
+ [(Ar)2 + 27‘Afr] hjt1 } ’

1 1 2
(Ar)2 ~ 2rArJ Ti-1- (Ar)sz

(=hj-1 +hip1)® i1 —2hj +hi
2h2(Ar)? hj(Ar)?

(1 —v*)BaV?T = Eah; { [
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1 1
— 4 —— T
+ [(Ar)2 + 27‘Ar] JH} '
ng —vng 1 1 Jng._, —vn.
sz 0l T ey, _ -1 3
( B ) ’ {[(Ar)2 ZTAT:I hj—1

2 Mg mvmny [ 1 L) My, TV,
(Ar)? h; (Ar)?2 " 2rAr hjt1 ’

B3 B ~orAr

l+v d (ng—ni\  1+v _nfgj_l —vng. +n1°,j+1 -wng,
r dr :

hj-1 hj+1
(12.40)
The numerical procedure begins when the elastic solutions of the ther-
mal and the coupled mechanical problems are known. Assuming an initially
constant structure thickness [h]; = ho and initial components of the dam-
age tensor [D,/s]; = 0, the elastic solution is obtained in the following way.
Applying the stage algorithm (Fig. 12.10), the equation of heat transfer,
which is linear for the elastic problem, is solved to yield the initial distri-
bution of temperature [T°];. Then, equations of the mechanical state are
solved, providing the distribution of the Airy function [F*]; and the vector
of elastic state [T°,n¢ /905 /1,] . Next, the program enters the creep loop
which requires the vector of effective stress intensity, and components of
the damage tensor and strain rates [Eeq,Dr /9:€7/9]; are computed. The
thermal problem (12.39) is nonlinear, hence, by substituting the previous
solution for temperature [T*]; to the equivalent coefficient of thermal con-
ductivity A°? the solution of (12.39) provides the updated temperature
distribution [T j» Which is considered next as an approximate solution for
A%, The procedure is repeated until the calculated functions [T]; differs
from [T ; With a given accuracy. As a consequence, when rates of change of

both the temperature [T); and the inelastic forces are known [72¢ /9lj» rates

of the Airy function [F ]; are found by solution of (12.21) and, finally, the
vector of state is determined [T, Top )9, O /19] j- In the next time step, apply-
ing the Runge—-Kutta II method for the thermal state and the mechanical
state, the ‘new’ vector of state is computed, and the program jumps to the
beginning of the creep loop.

The numerical procedure is repeated until the highest value of the dam-
age tensor reaches the critical level, when the program quits the loop via
the conditional statement.

12.6.7 Results

All numerical examples presented in this chapter deal with disks made
of ASTM-321 stainless steel with the following mechanical and thermal
properties (cf. Holman, 1990): E = 170 GPa, 092 = 120 MPa, v = 0.3,
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Fig. 12.10. Numerical algorithm for coupled thermo-mechanical problem (after
Ganczarski and Skrzypek, 1997)

o = 7850 kg/m3, a = 1.85 x 1075 K1, &g = 20 Wm™ 'K}, 8 = 15
Wm2K™!, R = 1.0 m, hp = 0.05 m, pop = 0.1 X gg2, w = 100 571,

T, = 798 K (525°C),

Too = 773 K (500°C), 0 = 5.669 x 1078 Wm 2K,

€0 = 0.5. The temperature dependent material functions for creep rupture
are presented in Table 12.2, where o3 , denotes the stress necessary to cause

creep rupture after 10° hr.

Table 12.2. Temperature dependent material functions

T m | r | og C
(K) | (°C) (MPa) | (Pa~"s71)
773 | 500 | 5.6 [ 3.9 | 210 | 1.98 x 1042
873 | 600 | 45| 31| 100 | 1.07x 1034
923 | 650 | 4.0 | 2.8 60 1.21 x 10731

The disk of uniform creep strength, the disk of constant thickness, and
the disk of uniform elastic strength (in the sense of the Galileo hypothesis)
are compared in Fig. 12.11.
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Fig. 12.11. Optimal profiles of disks (after Ganczarski and Skrzypek, 1997)

In the case of a disk of uniform creep strength where the thermo-damage
coupling is disregarded hycs(Aeq = Ao), and a disk of uniform creep strength
where the thermo-damage coupling is taken into account hyes [Aeq = Aeq (A0,

€0)], differences between optimal profiles are negligible (window in Fig.
12.11). However, essential differences in lifetimes are observed (Table 12.3).

Two rupture mechanisms accompany the process of disk design. In the
case of the disk of constant thickness ho [Aeq = Aeq (M0, €0)], the distribution
of the continuity components at the instant of rupture is presented in Fig.
12.12. The damage accumulation with respect to circumferential component
Dy concentrates here near the centre.

The situation becomes much more complex when the uniform creep
strength solution is obtained in a disk suffering from orthotropic damage.
The uniform creep strength is understood here in the sense of equaliz-
ing the dominant damage components (D, or Dy) along the radius of a
disk. In a numerical sense, it means that at failure the dominant damage
(sup, D,) or continuity (inf, ¥,) components reach the critical level D, _,,
or ¥,_. , respectively, with a given accuracy. For the purpose of this ex-
ample we assume D, ., = 0.78 £0.05, ¥, = 0.22 £ 0.05, respectively.
The failure mechanism consists of two zones, the first of which refers to a
bi-directional system of microcracks (D, and Dy) around the central point
of a disk (r/R < 0.3), whereas the second refers to the radial direction (D,.)
in the remaining portion of the disk. In other words, the fully failed zone
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Fig. 12.12. Distribution of continuity tensor components in disk of constant
thickness (after Ganczarski and Skrzypek, 1997)

(the central part) and the partly failed one (the outer part) constitute the
failure mechanism of a disk (Fig. 12.13) (cf. Malinin and Rzysko, 1981).
The corresponding distribution of temperature versus initial tempera-
ture in a disk of constant thickness are shown in Fig. 12.14. During the
creep-damage process the local temperature decreases, moderating dam-
age accumulation, what leads to a longer lifetime compared to the case
when the thermo-damage coupling is disregarded hyes(Aeq = Ao).
Lifetimes of all previously discussed cases are compared in Table 12.3.

Table 12.3. Comparison of lifetime for optimally designed disks (Model C

(7.22))

constant thickness h(r) = ho ; thermo-damage coupling (7.22)

N0 Aeq = Ao yes deq = Aeq (Ao, €0)
lifetime |  te™2) =t tQea=reaCo0)) g g1y o

uniform elastic strength hues(r) ; thermo-damage coupling (7.22)

no /\eq = Ao yes )\eq = /\eq (/\07 50)
lifetime tea=real0c0)) _ g o34

uniform creep strength hycs(z) ; thermo-damage coupling (7.22)
no /\eq = Ao yes Aeq = Aecl ()\0; 60)
lifetime | t59™9) = 4.434,¢ toaga=reaPo0) _ g 701,
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Fig. 12.13. Distribution of continuity tensor components in disk of uniform creep
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Optimal design of thin
axisymmetric plates

13.1 Effect of membrane prestressing on the
optimal design of sandwich plates with
respect to orthotropic creep damage

13.1.1 Initial, boundary and continuity conditions for plates
of variable thickness in-plane prestressed by the elastic
ring

Two boundary problems are considered:

Example A

A simply supported plate is prestressed by an elastic ring imposed on the

plate with initial fit §, which produces an initial radial force ng (Fig. 13.1).

= Riing — Rplate denotes the difference of initial radii of the ring and

the plate but some changes of the prestressing force ng result from the
creep—damage process in the plate:

a) !

A

D
7777
Fig. 13.1. Layout of a simply supported sandwich plate of variable core depth,
in-plane prestressed by a ring

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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t=0: .
nr(0) = n4(0) t >n0, (0) = 15(0)
n(R) = —ng ; -
) fur(R)dt = dng
= o7 [no(R) — vn,(R)] - @ [ro(R) = i (R)] dt — diz = 0
#(0)=0 %%500
R)=0 mr (%) =
Z}(T}(z) ) 0 W(R) = 0.
(13.1)
Example B

A clamped plate is prestressed by an elastic ring imposed on the plate with
initial fit §, which produces an initial radial force ny (Fig. 13.2):

Fig. 13.2. Layout of a clamped sandwich plate of variable core depth in-plane
prestressed by an elastic ring

t=0: t>0:
[ 7r(0) =9 (0) i (0) = 72(0)
nr(R%{ = —Tp fup(R)dE = dng
< 6= ﬁ[n@(R)—unr(R)] - U [n'ﬂ(R)_Vn'r(R)] dt—du=0
#(0)=0 #(0)=0
#(R)=0 #(F) =0
(13.2)
In the above formulas, ¢ = _dw is the angular deflection of the plate, ng is

the peripheral prestressing force, and % the peripheral radial displacement.
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In both cases under consideration, the prestressing problem may be clas-
sified as the mixed-type force-distortion boundary excitation problem (Fig.
11.2) since neither force nor boundary displacement are explicitly given
but result from the interaction between the plate and the elastic ring. The
stiffnesses of both elements eventually affect the response of the structure
to the initial prestressing imposed.

13.1.2 Optimization methods

According to the optimality criteria presented in Chap. 11, three numerical
procedures of optimization are suggested, all based on iterative correction
of the vector of decision variables.

1. When the first procedure for optimization with respect to uniform
creep strength under constant loadings and constant volume of a
structure is used, increments of decision variables are proportionally
chosen to the levels of continuity function (cf. Ganczarski, 1992):

Ags; = P1AY; — Agm, Ahs; = PoAy; — Ahpy,
N (13.3)
Ay, =1- inf(?/)r/,[’)j,

where the average corrections Agy,, Ah, must satisfy the constant
volume condition

_ L P, 2 P (13.4)

Zj Tj ’ Ej ri

whereas the step factors P;, Py should be chosen experimentally.
When the most general approach is used, thicknesses of the work-
ing layers g; and the core h; may be changed independently; how-
ever, in this example proportional changes are assumed, when { =
gs/hs = 1/5, and Py = Py = P is held, such that the working layer
to core depth ratio of the section is fixed and, in consequence, only
one independent decision variable { remains. The process of damage
equalization is continued until the following condition is fulfilled:

Agm

inf(y%,); <EPS1 20 Vj. (13.5)

2. When the procedure for optimization with respect to uniform creep
strength under constant loading and prescribed lifetime ¢} is applied,
a modification of the strategy discussed above is proposed. At each
optimization step k the volume is subsequently decreased according
to the modified shape corrections
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Ags; = (Ahg; = —P [max(Avy;) — Ag;] (13.6)

when t1, > 1, else the shape corrections are governed by (13.3) under
the constant volume until the condition t;, = t; is fulfilled.

3. The numerical procedure applied in the case of optimization with
respect to maximum lifetime ¢; differs slightly from the approaches
presented above as far as the global nature of the objective function
is concerned. It starts from a known vector of decision variables, for
instance assuming a shape of constant thickness and parameters of
prestressing equal to zero, and at the end of the creep process the
shape corrections are imposed under constant volume according to
the rule (13.3) as long as the global condition t;, > t;, _, holds and
the stability and geometric constraints are satisfied. Then the pro-
cedure is stopped, since further thickness corrections (13.3) result in
diminished lifetime.

13.1.8 Results: Plates of a variable core depth of uniform
creep strength or/and optimal with respect to lifetime
under constant volume

In case of a simply supported plate of variable core depth (h, = var, g, =
const) the terms associated with derivatives of membrane stiffness in (9.19)
and (9.20) are omitted. Thus, the following mixed optimization problems
are formulated:

1. The distribution of core depth hs(r) and the parameter of initial pre-
stressing ng are sought, Cycs = {n0, hs () },,..; under the constant vol-
ume constraint, such that the uniform creep strength UCS is achieved.

2. In case when the above criterion can not be fulfilled, the vector of
decision variables ¢, ... = {no,hs (r)},, _ which maximizes the life-
time under the elastic stability, constant volume, and lower geometric
constraints, is sought.

Example A: Simply supported plate

Starting from the solution of UCS obtained for a non-prestressed plate
(no = 0) it is seen that almost whole the bottom working layer suffers
damage with respect to the radial component of damage function D} =1,
except for a narrow zone where the geometric constraint is active, point
A in Fig. 13.3 and shape A in Fig. 13.4. Therefore, the plate is classified
as a structure of partly uniform creep strength. The improvement of the
plate lifetime compared to the plate of constant thickness, versus the ini-
tial prestressing force ng, is presented in Fig. 13.3. It is easy to notice that
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increasing the initial prestressing force initially causes the lifetime for the
UCS solution to grow. However, the lifetime reaches the maximum at point
B (global optimum), where the force equals n9/0oR = —2.5 x 1072, then
it drops with a further prestressing increase. Subsequent trials of the pre-
stressing increase (n9/0oR < —3.2 X 1072) lead to the optimization range
where the criterion of maximum lifetime becomes predominant. Optimal
profiles of the plate corresponding to selected points A, B, C, D and E from
Fig. 13.3 are shown in Fig. 13.4. When the initial prestressing increases, the
zones of constant thickness become deeper and broader. Finally, at point E,
the zone of constant thickness is extended over the whole plate and further
thickness optimization becomes impossible. Comparison of the lifetime im-
provements for the simply supported plates, when the core thickness h, (r)
and/or prestressing force ng as well as the proportionally changed core to
working layers thickness ratio hs/gs are considered as control variables for
the optimization problem, is summarized in Table 13.1.

220
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180 |--solution »/ |
" 160 | ) .
/ \«)\C maximal

140 N o lifetime
120 / X )
100
80

\
/ u "
OO OOY
60 7 ! e / \‘r
40 A A \\ constant
/o/ thickness

20 (O 0~

0 1 2 3 4 5 6 (x10%)
dimensionless prestressing n /aoR

dimensionless lifetime t

Fig. 13.3. Effect of initial prestressing 70/00R on lifetime of simply supported
plates optimally designed with respect to UCS or t; — max (after Ganczarski
and Skrzypek, 1994)
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Fig. 13.4. Profiles of simply supported plates optimally designed with respect to
UCS or t; — max; shapes A,B,C,D and E refer to solutions shown in Fig. 13.3,
respectively (cf. Ganczarski and Skrzypek, 1994)

Table 13.1. Lifetime improvement of optimally designed and/or optimally pre-
stressed simply supported plates. (cf. Ganczarski and Skrzypek, 1993)

Uniform creep strength plates
Optimiza- | Ref. | optimal | optimal optimal optimal core
tion mode | plate core prestr. | core & prestr. & layers
pO| pA p.E p. B hs o< gs

core  hg | const | he,,(r) | const P (7) P (T)
layer g5 | const | const const const hs/9s = o
prestr. np 0 0 0, p M0gps 0

Lifetime 5d 3.94tF [ 5.72tF 15.84 t3 6.19 ty°
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Example B: Clamped plate

In the case of a clamped plate, two damage zones with respect to the radial
component of the damage function D, one in the top D, and other in the
bottom D;F working layers, are produced. The bottom D;f = 1 and the top
D, =1 damage zones are separated by a narrow zone where the geometric
constraint is active. The lifetimes of optimal plates compared to plates of
constant thickness are presented in Fig. 13.5 for the case when both the
thickness and the initial prestressing are subject to optimization. The so-
lution is quantitatively similar to that obtained for the simply supported
plate, as far as a shift of the maximum lifetime towards lower magnitudes
of initial forces, when compared to the plate of constant thickness, is ob-
served. However, the range of initial prestressing where the structure ought
to be optimized with respect to maximal lifetime is broader, and the global
optimum of the lifetime is found for ng,_,,/0oR = —3.0 X 1073, The cor-
responding optimal profiles, approaching the shape of constant thickness
when the magnitude of prestressing increases, are presented in Fig. 13.6.

8000 R m _ax|_m3r ............ ........... \Z; ........... : .............
\N 5 PN :
7000 [ A !fet_'me_,_____l _______ ARSI RE SRS S
o) ? SR U
€ 8000 [ PR
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o 4000 : R RLLES JTSERPINE ARPPRPRFRN ST Ve
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£ 8000 g/ T hickness! T
© 2000 TN R A T ——
1000 11 . vUes - ._‘ ............ ...........
O( | i 1
0 1 2 3 4 5 6 (x10%)

dimensionless prestressing -no/oDR

Fig. 13.5. Influence of initial prestressing force no/goR on lifetime of clamped
plates designed with respect to UCS or t; — max (after Ganczarski and Skrzypek,
1994)
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Table 13.2. Lifetime improvement of optimally designed and/or optimally pre-
stressed clamped plates (cf. Ganczarski and Skrzypek, 1993)

Optimiza- Ref. UCS Maximum lifetime
tion mode plate Optimal core | Optimal core & prestr.
p. O p. A p.C
core  hs const P () P (T)
layer g const const const
prestr. ng 0 0 T0gpe
Lifetime | 5 =597 |  2.22¢¢ 18.52 ¢
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Example C: Uniform creep strength plates of variable core depth under
constant lifetime

Design with respect to uniform creep strength when the lifetime is pre-
scribed, despite numerical difficulties associated with the shooting method
required, is important for practical applications. It allows one to reduce
the volume of a structure which is often the objective of optimal design.
This example deals with the optimization of a non-prestressed (no = 0)
simply supported plate as described by equations (9.19) and (9.20). The
optimization problem, based on the local criterion, is formulated as follows:
the distribution of the core depth hs(r) under prescribed lifetime ¢; = const
and geometric constraint is sought for, such that uniform creep strength
is achieved. The optimal shape of a partly uniform creep strength, with a
peripheral zone of active geometric constraint, is shown in Fig. 13.7. The
volume of the optimal plate has been reduced to 45% when compared to a
plate of constant thickness.
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Fig. 13.7. Non-prestressed plate optimally designed with respect to uniform
creep strength under prescribed lifetime (volume reduced to 45%)
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Example D: Plates of uniform creep strength of variable thicknesses of
both the core and working layers
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Fig. 13.8. Plates of uniform creep strength of jump-like variable and continuous
thickness (case of variable thickness of both the working layers and the core)

All solutions shown so far deal with plates of variable core depth hs; = var
but constant thickness of working layers g = const. Hence, the possibility
of optimization with respect to membrane stiffness B; has not been taken
into account. This factor may lead to a certain elongation of the lifetime,
but the bending stiffness turns out to be predominant. Let us estimate a
percentage increase of the lifetime in case of optimization with respect to
both parameters of sandwich section gs (r) and hs (1) to prove the state-
ment that the influence of the working layers thickness variation on the
lifetime is not too high (but significantly elongates computer time). The
non-prestressed simply supported plate, described by a mixed formulation
of the system of equations (9.19) and (9.20), is analyzed. In general, the
thicknesses of the core and the working layers may change independently,
but here the proportional variation { = gs/hs = 1/5 is assumed. This as-
sumption allows us not only to analyze one independent decision variable
instead of two, for instance hs, but also assures a constant ratio of work-
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ing layers thickness to core depth. On the other hand, this assumption
causes the lower geometric constraint to be passive because the thickness
of working layers is changed proportionally to the thickness of the core and,
hence, working layers will never be in contact. Nevertheless, optimization
of the core depth distribution hs(r) and simultaneously gs = ¢ X hs leads
to structures of uniform creep strength only when the constraint of con-
stant volume is applied. Additional troubles, when the problem formulated
above is solved, are connected with a singularity of the radial stress in the
supported section of the plate. To overcome this problem, the de I'Héspi-
tal principle may successfully be used because, approaching zero thickness
hs — 0, an infinite radial curvature kK, — o0 is reached. The above in-
convenience has been avoided by assuming an arbitrary minimum thickness
constraint ks > he,/50, where hs, is the uniform plate core depth, and by
the de I'Héspital principle associated with the backwards computed finite
differences. The optimal shape of uniform creep strength, versus the profile
of a jump-like variable thickness, is shown in Fig. 13.8 (cf. Ganczarski, 1992
also, Ganczarski and Skrzypek, 1994).

13.2 Discussion: Sandwich-plates
optimization with respect to creep
rupture via thickness and prestressing
design

i. It is shown that in case of sandwich plates a combined thickness and
initial prestressing optimization leads to a significant improvement of
the time of initiation of brittle failure, when compared to plates of
constant thickness, tss = 15.84t7  or t} e = = 18.52t7  ,in case
of a simply supported or clamped plate respectlvely

ii. A two-step optimization procedure, first the prestressing optimiza-
tion of the plate of constant thickness, and next additional thickness
improvements with the aim of either uniform creep strength or maxi-
mum lifetime, is proposed. It has been shown that optimal prestress-
ing for uniform thickness plates becomes nonoptimal for the optimal
design plates. Hence, the thickness corrections should be inspected
over a wide range of prestressing forces, rather than around the “op-
timal” prestressing force for the uniform plate.

ili. Simultaneous plate thickness and in-plane prestressing optimization
allows a significantly enhancement of the lifetime for both simply
supported and clamped plates, unless the critical magnitude of the
initial prestressing that corresponds to the appropriate lifetime of
plates of constant thickness n§ .. /ooR = —5.0 x 1073 in case of
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a simply supported plate, or nf ., /0oR = —6.0 X 1073, in case of
a clamped plate, is exceeded. Over-prestressing of the plate |ng| >
|noerit), €8, 1 /00 R = —5.0 % 10~3 or n§/ooR = —6.0x 10~ 3, makes
further thickness design undesirable since plates of uniform thickness
ensure a longer lifetime.

Sandwich plate thickness optimization by varying core depth but
holding thickness of the working layers constant (hs = var, g =
const), which affects the variable bending stiffness Ds(r) = var but
not the membrane stiffness B5(r) = const, is recommended. Indepen-
dent optimization with respect to both bending stiffness Dy(r) = var
and membrane stiffness Bs(r) = var not only doubles the number
of decision variables (two independent unknown functions hs(r) and
gs(r) instead of one) but also may obviously lead to violation of the
substitutive sandwich section assumption g; << h,. Instead, the pro-
portional variation of both thicknesses, { = gs/hs = 1/5, has been
examined in the case of a non-prestressed (ng = 0) simply supported
plate to reach a lifetime improvement by the factor 6.19 when com-
pared to uniform thickness, by contrast to the factor 3.94 when the
single core depth is considered as a design variable.

Design with respect to uniform creep strength when the lifetime is
prescribed furnishes the optimal profile that allows a significant re-
duction of volume (up to 45% in case of a non-prestressed simply
supported plate). However, this dual formulation associated with the
need to the shooting method in order to ensure the implicit lifetime
to failure initiation ¢; = const is highly computer time consuming
and, hence, cannot be recommended for practical applications.
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