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Foreword 

Since the pioneering papers of L.M. Kachanov (1958) and Yu. N. Rabotnov 
(1959) the Continuum Damage Mechanics (CDM) is a successfully develop­
ing branch of solid mechanics, which interlinks the experiences in contin­
uum mechanics, fracture mechanics, materials science, physics of solids, etc. 
Surprisingly rapid development in this field during next decades has shown 
how important the problem is and how difficult is the proper irreversible 
thermodynamics based modeling of the material damage response. A lot of 
scientific papers, monographs and textbooks were published by leader re­
searchers working in the field: J.L.Chaboche, D. Krajcinovic, J. Lemaitre, 
S.Murakami, C.L.Chow, G.Z.Voyiadjis, to mention only some names. Several 
international and national scientific societies have stimulated and sponsored 
different conferences, symposia and workshops in this field. In addition, there 
were organized numerous research programmes on damage mechanics and re­
lated problems. But the conclusion that the Continuum Damage Mechanics 
reaches a saturated level is not justified and there is a necessity till now for 
writing new books in this field in order to summarise the established results 
and develop the new directions such as damage anisotropy, local or non-local 
approach of damage and fracture, unilateral damage response, probabilistic 
approach of damage, etc. 

Nevertheless, there are several reasons for publishing the present work. 
The very first is that the authors (J.J. Skrzypek and A. Ganczarski) have 
been taking part in the scientific discussion concluding the own knowledge 
influenced by the best traditions in Continuum Damage Mechanics. So the 
reader gets a good and understandable introduction to some sub-branches of 
CDM (Part I). This introduction corresponds with some extensions missed 
in other monographs and textbooks. Examples of such extensions are the 
thermo-damage coupling, the orthotropic damage accumulation in case of 
variable principal directions of the stress and damage tensors, local approach 
of fracture. In general, the authors discuss mostly used CDM-theories for 
different material behavior models such as creep damage, elastic brittle dam­
age, etc. Chapter 2 deals with coupled isotropic damage and creep-plastic 
behavior. The introduced models correspond to irreversible thermodynamics 
and the reader can find many models proposed by other authors. Anisotropic 
three-dimensional theories of damage evolution are presented in Chapter 3 
and 4. Till now, there is no unique approach to formulate a theory: different 
damage variables (scalar, vectorial, tensorial) and equivalent effective vari­
ables are proposed and discussed. In the Chapter 5 the non-classical coupled 
thermo-damage and damage-fracture approaches are developed. 

The second reason for publishing this new book on CDM-problems is the 
excellent structuring of the contents. The discussions on the use of the CDM 
are connected not only with the theoretical foundation and their experimental 
proof, but also with the introducing of CDM models in structural mechanics 
analysis. While the understanding of the specific problems of damage and 
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failure analysis in connection with the analysis of complex structures is cum­
bersome the authors include many examples of simple structural elements 
such as axisymmetric structures, etc. (Part II of the book). They present 
a great number of original results. It is very ea.'ly for the readers to obtain 
the influence of different effects (heat transfer in damaged solids, damage 
accumulation under shear condition, etc.) on the mechanical behavior of the 
structural elements. The analysis and design of damaged structures, with 
help of the CDM, demands the use of numerical methods. For this purpose a 
short introduction to finite element or finite difference based methods is given. 
Axisymmetric problems are discussed in Chapter 6 whereas the Chapters 7-
10 deal with creep-damage accumulation in presence of shear deformations. 
The corresponding models are applied to plate problems (membrane state, 
bending state, Reissner's theory, von Karman's theory etc.). 

It should be underlined that the authors have included a Part III which 
directs the attention of the readers to the problem of optimal design in con­
nection with CDM problems. This part of the book extends many years of 
research tradition of the authors' department influenced by the former head of 
the department M. Zyczkowski. The general structural optimization problem 
under damage conditions is presented in Chapter 11. Effective optimization 
procedures under creep damage conditions are discussed in Chapter 12 and 
13. The corresponding examples (axisymmetric disks and plates) allow, e.g., 
the optimization of the lifetime under some constraints (constant volume, 
stability conditions, geometric constraints, etc.). 

Writing the foreword, general characteristics of the book should be given. 
However, it is very difficult to say whether the present book is a monograph 
or a textbook because it contains the elements of both. But I think that it 
can be recommended for a first reading and for detailed studying the CDM 
to any scientist, engineer or graduate student dealing with modern problems 
of structural safety and integrity. 

Professor Holm Altenbach 
Lehrstuhl fUr Technische Mechanik 
Martin-Luther-Universitiit Halle-Wittenberg 
Merseburg, September 11, 1998 



ABSTRACT Continuum Damage Mechanics is a quickly developing branch 
of Solid Mechanics. The book provides, in a systematic and concise way, a 
broad spectrum of one-dimensional and three-dimensional constitutive and 
evolution models of isotropic and anisotropic damage theories, as well as 
damage coupled constitutive equations of elastic or inelastic time-dependent 
solids in the presence of damage. The effective numerical procedure and 
computer applications, mainly based on FDM and FEM computer codes, 
are developed and adopted to simple structural members under thermo­
mechanical loadings. 
Part I of the book provides in a systematic fashion a survey of coupled 
damage-constitutive theories of engineering materials. Influence of isotropic 
damage evolution on the constitutive equations of creep-plastic solids is 
discussed in Chapter 2, both from the phenomenological point of view (sin­
gle or two state variable mechanism-based coupled damage-creep-plasticity 
models) and unified irreversible thermodynamic formulation (the Lemaitre 
and Chaboche kinetic law of damage evolution, the Mou and Han unified 
model of ductile isotropic damage, the Saanouni, Forster and Ben-Hatira 
model of coupled isotropic damage-thermo-elastic-creep-plastic solids). Ani­
sotropic three-dimensional theriores of damage evolution are presented in 
Chapter 3 and Chapter 4. Damage variables, scalar, vectorial and tensorial, 
are reviewed and stress, strain and energy based equivalence principles are 
compared (Lemaitre and Chaboche, Simo and Ju, Taher et al., Cordebois 
and Sidoroff, Chow and Lu) in order to introduce a concept of the effective 
variables as well as the fourth-rank damage effect tensors in terms of the 
second rank damage tensors. Particular attention is paid to the orthotropic 
creep-damage accumulation models of crystalline materials in case of non­
proportional loadings (Skrzypek and Ganczarski) as well as the elastic­
brittle orthotropic damage model (Litewka and Hult, Kuna-Ciskal). An ob­
jective damage rate measure is introduced for the case when effect of shear 
deformation results in the damage and stress tensors which are not coaxial 
in their principal axes. Unified irreversible thermodynamics-based theory of 
anisotropic damage-elastic-brittle rock-like materials is also presented and 
discussed when applied to High Strength Concrete (Murakami and Kamiya, 
Chaboche). Matrix representation offourth-rank coupled damage-elasticity 
tensors is reviewed (Chow and Lu, Chaboche, Litewka and Hult, Murakami 
and Kamiya). Nonclassical coupled thermo-damage and damage-fracture 
CDM-based approaches are presented in Chapter 5. Coupled constitutive 
thermo-creep-damage equations are developed when partly (scalar) or fully 
(tensorial) coupled creep-damage models are applied combined with the 
damage affected heat flux eqaution where heat conductivity in the damaged 
material follows the anisotropic damage evolution to yield a nonstationary 
temperature field (Ganczarski and Skrzypek). Local approach to fracture 
by the use of CDM together with FEM is presented as well. A discus­
sion of convergence and possible regularization methods proposed in cases 
of crack growth in the presence of the continuum creep-isotropic damage 
(Murakami and Liu) and the elastic-brittle-anisotropic damage (Skrzypek 
and Kuna-Ciskal) are also enclosed. 
In Part II of the book a computer analysis of damage accumulation and 
failure or fracture mechanisms of simple engineering structures is illus-

vii 



viii 

trated. Effective FDM and FEM based numerical procedures and com­
puter methods are adopted and developed when classical and nonclassi­
cal creep-damage, thermo-creep-damage, elastic-brittle damage, damage­
fracture problems result from either stationary or nonstationary, proporti­
nal or non proportional mechanical and thermal fields. Axisymmetric creep­
damage problems are discussed in Chapter 6, axisymmetric coupled thermo­
creep damage applications are presented in Chapter 7, whereas creep­
damage accumulation in presence of shear deformation and corresponding 
failure mechanisms are illustrated in Chapter 8. CDM-based creep-damage 
theory of axisymmetric Love-Kirchhoff's plates (coupled Karman equa­
tions extended to elastic-creep-damage range) is developed for both uniform 
and substitutive sandwich cross-sections of plates of variable thickness and 
FDM approach is developed for computer analysis. Discussion of boundary 
excitations of the membrane or bending type, applied as initial prestressing, 
is enclosed in Chapter 9. Examples of two-dimensional coupled creep-brittle 
anisotropic damage applications are shown in Chapter 10. In the case of 
Reissner's plate precritical 2D damage field growth is analysed numerically 
by FDM when the coupled orthotropic creep-damage model is used. In 
the case of 2D plate structure loaded by in-plane forces both the precriti­
cal (continuum damage accumulation) and postcritical (crack propagation 
in presence of damage) analysis are done numerically by ABAQUS FEM 
code when extended Litewka's model of elastic-brittle damaged orthotropic 
material is implemented. 
Examples of optimal design of structures made of time-dependent materi­
als in presence of damage fields are discussed in Part III. General formu­
lation of structural optimization problems under damage conditions (local 
or global optimality criteria, constraints, control variables) is presented in 
Chapter 11. Effective optimization procedures and their applications to op­
timal design of axisymmetric disks and plates in creep-damage conditions 
are discussed in Chapter 12 and Chapter 13. Structures of uniform creep 
strength are, in general, not optimal with respect to the lifetime prediction 
tJ or tIl for crack initiation or complete structure failure, when both the 
thickness and the initial prestressing of the membrane or the bending type 
are considered as the design variables. Important improvement of structure 
when two-step optimization procedure is used (first, uniform creep strength 
and, second, maximum lifetime under constant volume or minimum volume 
under constant lifetime) may be recommended for practical applications. 
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Part I 

Modeling of continuum 
damage in structural 

materials 



1 

Continuum damage mechanics: 
basic concepts 

1.1 Material damage 

1.1.1 Concept of a quasi continuum approximation 
of the damaged material 

Failure of most structural members on the macroscale follows the irre­
versible heterogeneous microprocesses of time and environment dependent 
deterioration of materials. The existence of distributed microscopic voids, 
cavities, or cracks of the size of crystal grains is referred as material damage, 
whereas the process of void nucleation, growth, and coalescence, which ini­
tiates the macro cracks and causes progressive material degradation through 
strength and stiffness reduction, is called damage evolution (cf. Murakami, 
1987; Chaboche, 1988). 

With respect to their scale, the damage models may be referred to the 
atomic scale (molecular dynamics), the microscale (micromechanics), and 
the macroscale (continuum mechanics) (cf. Woo and Li, 1993; Krajcinovic, 
1995). 

On thc atomic scale, material structure is not continuous at all, but is 
rcpresented by a configuration of atoms in the order of a crystal lattice 
or molecular chains bonded by the interatomic forces. The state of ma­
terial damage on this level is determined by the configuration of atomic 
bonds, the breaking and re-establishing of which constitute the damage 
evolution. On the microscale, material structure is piecewise discontinuous 
and heterogeneous. The state of damage in a volume of material can be 
determined by the number of microcracks or microvoids and their size and 
configuration. 

On the macroscale, a concept of "quasicontinuum" is introduced where 
the discontinuous and heterogeneous solid, suffering from damage evolu­
tion, is approximated by the ideal pseudo-undamaged continuum by the 

use of the couples of effective state variables, e.g., (e, iT), (r, R), ( ii, X) , 
in the state and dissipation poLenLial instead of the classical state vari­
ables, e.g., (e,O'), (r,R), (o:,X), representing strain and stress tensors, 
state variables of isotropic hardening and tensorial variables of kinematic 
hardening, for the idealized (pseudo-undamaged) and the true (damaged) 
solid, respectively. The definition of the effective state variables can be 
based on the so-called equivalence principles, among which strain equiva-

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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lence (Lemaitre, 1971; Lemaitre and Chaboche, 1978), stress equivalence 
(Simo and Ju, 1987), elastic energy equivalence (Cordebois and Sidoroff, 
1979; Sidoroff, 1981), and total energy equivalence (Chow and Lu, 1992), 
are most known (cf. Sect. 4.3). In other words, the effective state variables, 
associated with the pseudo-undamaged state, are defined in such a way 
that the strains, the stresses, the elastic energy, or the total energy in the 
true (damaged) and the (undamaged) states are the same. 

In all cases of various equivalence hypotheses, in an idealized quasicon­
tinuum, the true distribution of the interatomic bonds, dislocations and 
vacancies (atomic scale), or individual microvoids and microcracks (mi­
croscale), is smeared out and homogenized by a selection of the properly 
defined internal variables that characterize the damage state and are called 
the damage variables. Among them, the scalar variables w, D, or'¢ (damage 
or continuity parameters; Kachanov, 1958), the vector variables We" Dc" 
or We> (Davison and Stevens, 1973), the second-rank tensor variables n, 
D or l}T (Rabotnov, 1969; Vakulenko and Kachanov, 1971; Murakami and 
Ohno, 1981), or the fourth-rank tensor variables, fi (Chaboche, 1982; Kra­
jcinovic, 1989), are frequently used (cf. Sect. 4.2). This approach is known 
as continuum damage mechanics (CDM), as initiated by Hult (1979) and 
developed by Chaboche (1981), Krajcinovic (1984), Murakami (1987), and 
others. 

Finally, the effective stiffness or compliance of a damaged solid may also 
be defined in terms of the actual damage state represented by the prop­
erly selected damage variables (scalars, vectors, tensors). This fully cou­
pled approach, where the damage evolution affects both the viscoelastic 
strain (Leckie and Hayhurst, 1974, and others) and also the elastic proper­
ties of the material (Chaboche, 1977, 1978; Cordebois and Sidoroff, 1979; 
Lemaitre, 1984; Litewka, 1985; Simo and Ju, 1987; Murakami and Kamiya, 
1997, etc.), eventually leads, in a general sense, to the concept of fourth­
rank elasticity tensors for damaged material (stiffness X, or compliance X-I 
tensors), where the damage induced material anisotropy is characterized 
by the properly defined fourth-rank damage effect tensor M (D) (Voyiadjis 
and Kattan, 1992; Chaboche, 1993; Chen and Chow, 1995; Voyiadjis and 
Park, 1996, 1998, to mention only some representativC8 of this approach). 

1.1.2 Concept of representative volume element 

The proper transition between the microscale and the effective material 
properties on the macroscale requires an adequate definition of the rep­
resentative volume element (RVE) , which maps a finite volume of linear 
size)., in true discontinuous and heterogeneous solids suffering from dam­
age at a material point of the equivalent idealized quasicontinuous, pseudo­
undamaged solids (cf. Murakami, 1987; Nemat-Nasser and Hori, 1993; Kra­
jcinovic, 1995). The RVE of linear size)., must be large enough to include 
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a sufficient number of microvoids and microcracks, but, at the same time, 
it must be small enough for the stress and strain state to be considered as 
homogeneous, or with a small inhomogeneity allowed. In other words, "a 
volume is a RVE if the average effective stiffnesses determined from two 
sets of tests during which the volume is subjected: a) to the uniform dis­
placement, and b) to the uniform tractions over its external surfaces, are 
equal" (Krajcinovic, 1995). Hence, the material is on the scale A ;::: ARVE 

statistically homogeneous (if ARVE exists), and the finite element size must 
be at least as large as the RVE. A minimum size of the RVE depends on 
the microstructural nonhomogeneity of the material considered and, loosely 
speaking, the following characteristic magnitudes might be suggested (cf. 
Lemaitre, 1992): 

i. metals and ceramics (0.1 mm)3 
ii. polymers and composites (1 mm)3 
iii. wood (10 mm)3 
iv. concrete (100 mm)3 

The fundamental assumption for the CDM method is that the influ­
ence of spatial correlation between defects on the effective properties of the 
continua is of second-order magnitude and, hence, the exact microvoid con­
figuration within the RVE can be disregarded. The effect of all other voids 
within the RVE is measured only through the change of effective properties 
(effective stiffness). This local continuum theory (LCT) is objective as long 
as the damaged macrostructure can be divided into a number of subsys­
tems, each of the size of the RVE, to allow for homogenization. If, on the 
other hand, the direct interaction between the microvoids and microcracks 
is essential with regard to their growth, coalescence and stability, the so­
called non-local theory must involve the distance between the neighbouring 
defects as the scale parameter, and the local approach is no longer sufficient 
(Woo and Li, 1993). 

1.2 Definitions of material damage of 
crystalline materials on the atomic scale 

On the atomic scale, physically-based (atomic) material damage definitions, 
considering the inter-atomic energy and the actual configuration of the 
atomic bonds, are used. Two scalar measures of damage are discussed by 
Woo and Li (1993); the first of them is based on the reduction of the 
interatomic energy, and the second on the number of broken bonds: 
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or 

(1.2) 

In the above definitions b i (f:..GS) denotes the i-th bond force between two 
atoms of the direction vector L~ of the intensity bi in terms of the single 
interatomic energy f:..Gs (for broken i-th bond bi (0) = 0); f:..G'O denotes the 
interatomic energy of the perfect (undamaged) materials. The influence of 
the orientation of bonds is included through the scalar product of the unit 
direction vector L~ of i-th bond and the unit normal vector to the plane 
considered N. Symbol 8 denotes a selector factor introduced in order to 
distinguish the broken bonds, 8 (bi = 0) = 1, from the active ones (8 = 0), 
and n denotes the total number of bonds through the plane considered. Let 
the characteristic area of the single i-th interatomic bond of the direction 
vector L~ be iJi, then the projective area of iJi onto the plane of unit normal 
vector N be Ai = iJiL~N (Fig. 1.1). 

N I!b 

Fig. 1.1. The characteristic area of interatomic bonds of the direction vectors 
Lt through the surface area A of the normal vector N: _ active bands, 0 broken 
bonds (cf. Woo and Li, 1993) 

If the average characteristic area iJ is used for the regular n atoms con­
figuration, the total cross-sectional area associated with n atomic bonds 
crossing the plane is A = iJ L~=l LiN. Applying the above for n atomic 
bonds crossing through the area A, the definition (1.2) may be rewritten 
in the following fashion: 

(1.3) 
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Note that D2 varies from 0 (all bonds are active) to 1 (all bonds are broken). 

For the partial damage the effective area 1 is defined as 

Tl-

l = A - DEs [bi (D.C")] L~N (1.4) 
;=1 

which, finally, reduce the above definition to the scalar damage parameter 
W = 1 - 'l/J, proposed earlier by Kachanov (1958), on the macroscale: 

1 
D2=w=1--, 

A 
'l/J= 1-w, w E [0, WcritJ. (1.5) 

The critical damage state Wcrit in Kachanov's sense is Dcrit = Wcrit = 1, 
but in general it is an additional material constant that characterizes the 
fract ure resistance of the specific solids (macro crack initiation), and for the 
majority of metals the following holds: 0.2 < Dcrit < 0.8 (cf. Chaboche, 
1988). 

1.3 Definitions of material damage 
on the microscale 

1.3.1 One-dimensional surface damage parameter 

To characterize a gradual deterioration process of a microstructure, via mi­
crocrack and microvoid nucleation and evolution through the surface area 
8A of intersection of the plane of normal n with the RVE surrounding a 
material point M, L. Kachanov (1958) introduced the continuing parame­
ter 'l/J, the magnitude of which is deterlnined as the ratio of the effective 
(remaining) area 81 = 8A - 8AD to the total (undamaged) area 8A 

'l/J E [0,1], (1.6) 

such that 'l/J = 1 corresponds to the undamaged (virgin) state, whereas the 
continuity decreases with damage growth to eventually reach zero for a 
completely damaged surface element 8AD = 8A (Fig. 1.2). 

Considering planes of various normals n", we define surface damage in 
an arbitrary direction x, or in the most damaged direction Xl, as: 

( ) 8AD", 
D M,n,x = 8A'" 8AD 

D(M,n)= 8A' (1.7) 

where D = 1- 'l/J = 0 corresponds to the undamaged state of the surface 
element considered, and D = 1 to the completely damaged element (fully 
broken). The above definition is mainly applicable for crystalline materi­
als in which, on the microscale, microscopic cracks develop both in metal 



8 1. Continuum damage mechanics: basic concepts 

x 8A=8y8z 

RVE 
inM 

pointM 

z 

Fig. 1.2. Surface damage measure through the surface area 8A of intersection of 
the plane of normal n with the RVE in a crystalline material 

grains (trans granular damage) and on intergranular boundaries (intergran­
ular damage). These microcracks have different orientations, such that the 
surface damage parameter also changes with the normal vector orientation 
when the more developed vectorial Dcr., or tensorial Dij , damage measures 
are introduced (Chap. 4). 

1.3.2 Void volume fraction or porosity in ductile materials 

Ductile fracture in polycrystalline metals and porous materials is, in gen­
eral, the result of the following processes: growth of existing voids and 
cavities (if any), nucleation of new voids and their growth, and void co­
alescence with increase of large (visco )plastic deformation. Current void 
volume fraction in a RVE is defined as the ratio of the void volume to the 
volume of the RYE (cf. Gurson, 1977, Tvergaard, 1981, 1988, Nemes et al., 
1990) 

f = 8V - 8Vs 

8V ' 
(1.8) 

where 8Vs denotes the volume of the solid constituents of that material 
element (Fig. 1.3a). 

In fact, the solid with zero-void volume fraction f = 0 is an idealization 
of the voided polycrystalline material that even in the virgin state contains 
some voids and cavities, such that the initial void volume fraction fa is of 
the magnitude 10- 3 to 10-4 (cf. Nemes et al., 1990). After nucleation the 
spatial distribution of voids is, roughly speaking, close to uniform, and the 
voids' shape may be approximated by spheres (Fig. 1.3b). The local failure 
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a) b) 

z 

x 8Vp=8V-8l{ 

Fig. 1.3. a) Void volume fraction in the RVE in space x, y, z and b) spherical 
void nucleation in a spherical RVE 

in the volume is a result of cavity elongation along the major tensile axis, 
such that two (or more) neighboring cavities coalesce when their length has 
grown to the magnitude of their spacing. Eventually, a slip band mechanism 
between the voids yields the local failure at the critical magnitude of void 
volume fraction ofthe order 0.1 to 0.2 (cf. Tvergaard, 1981). 

To relate the void volume fraction f to the surface damage parameter 
D, consider an idealized case when a single spherical cavity of radius r 
is nucleated within a spherical RVE of current radius ii, the initial vol­
ume of which was R (Fig. 1.3b). Assuming no density change of the solid 
constituent of the RVE, the following holds: 

(1.9) 

where V. = (4/3)1rR3, and V = (4/3}1rR3 correspond to the volume of 
a solid material and the volume of a RVE, respectively. Hence, when the 
definition of surface damage parameter in Kachanov's sense is used, we 
finally obtain 

D = -:..,2 = ( r3 ) 2/3 = f2/3. 
R2 R3 +r3 

(1.10) 

If, on the other hand, in a heterogeneous and discontinuous spherical RVE 
the homogenization method is applied, the initial mass density changes 
from (] to e with the void evolution, to yield the surface damage parameter 
D in terms of the initial and the current mass density 

( e)2/3 
D= 1-­

(] 
(1.11) 
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1.4 Damage measures through physical 
quantities changing on the macro scale 

Damage measurement both on the atomic scale (breaking of the interatomic 
bonds) and on the microscale (microvoid and microcrack nucleation and 
growth) leads to destructive material testing. On the macroscale, mater­
ial damage can be evaluated by the nondestructive measuring of change 
of physical quantities, such as elasticity modulus, microhardness, acoustic 
wave speed, thermal conductivity, electrical resistance, x-ray diffraction, 
tomography, etc. A fictive pseudo-undamaged and quasicontinuous body 
concept allow for homogenization of the physical quantities of a heteroge­
neous and discontinuous damaged solid, such that the effective state vari­
ables and the effective physical properties may be defined in terms of the 
current damage state. 

1.4.1 Effective stress and strain concepts and equivalence 
principles 

Consider a one-dimensional volume element (a bar) of cross-sectional area 
A with a distribution of micro defects measured by the damaged surface 
portion AD, loaded by the applied uniaxial stress 0'. This current phys­
ical state (E, D) can be mapped to the fictive, pseudo-undamaged state 
(E, D = 0) submitted to the effective stress a such that the response re­
mains the same, E = c, (Fig. 1.4). 

virgin state damaged state pseudo-undamaged 
F state 

a ira IT 

A 

a 

Fig. 1.4. One-dimensional effective stress concept based on strain equivalence 

Hence, when the elasticity equation is furnished for both the damaged 
and the pseudo-undamaged material 
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(j = Ec:, (1.12) 

and the effective stress (j is defined by the cross-sectional area reduction in 
the damaged state 

~ F 
(j = -,--...,--

A-AD 

(j 

I-D' 
e=e, (1.13) 

where (j = F / A, the following surface damage measure through the effective 
elasticity modulus drop with the material deterioration holds: 

E 
D= 1--, 

E 
E=E(I-D). (1.14) 

Note that the above definition of the uniaxial effective stress (j, based on 
the strain equivalence principle (Rabotnov, 1968, Lemaitre, 1971), yields 
the linear elasticity modulus drop with damage. 

Experimental validation of the formula (1.14) might be done through a 
series of loading/ unloading tests, with the permanent strain measurement 
on unloading. Results for 99.9% copper at room temperature, taken after 
Dufailly (1980) are discussed by Lemaitre (1992) (Fig. 1.5). 

0" [MPa] 

102030405060 70 80 90 100 

~I.----------~&_p----------~.I~ 
D 0.85 0.8 --- --------- ---

o. 
0.4 

0.2 

20 40 60 

Fig. 1.5. Elasticity modulus drop with ductile damage in copper at room tem­
perature (after Dufailly, 1980) 
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The linear Young's modulus drop with creep damage was also tested by 
Rides et al. (1989) when samples of copper were subject to constant-load 
creep at an elevated temperature of 300°C, and at intervals during the test 
they were partly unloaded and reloaded at the same rate. The results show 
good correlation with the formula (1.14), as shown in Fig. 1.6. 

E 
E 

0.8 

0.7 

0.6 

E=E(1-D) 

theoretical 

0.5 ±-""'-0"""-.1---=-'0 .-=-2 -0::-r.3::--:0:-r-.4~\-o---D 

Fig. 1.6. Elasticity modulus drop with creep damage of copper at elevated tem­
perature (after Rides ct al., 1989) 

It should be emphasized, however, that the principle of strain equivalence 
leads to the restrictive conclusion that the Poisson ratio is not affected by 
damage, i/ = 1/, and consequently, under the uniaxial tension test a material 
suffers only from damage in the direction of tensile stresses. However, for 
most engineering materials this is not true, since nucleation and growth of 
microscopic damage not only results in the redistribution of stresses due to 
the cross-sectional area reduction but also decreases stiffness of the material 
(cf. Chow and Lu, 1992). Hence, in general, the hypothesis of the elastic 
(or total) energy equivalence might be recommended as more realistic than 
that of strain or stress equivalence (see Sect. 4.3). Note also that, when the 
elastic energy equivalence is assumed, the simple linear Young's modulus 
drop with damage (1.14) no longer holds but is replaced by the nonlinear 
formula 

(E) 1/2 
D=l- -

E ' 
or (1.15) 

and the effective stress and effective elastic strain are defined as follows: 

and 'C = (1 - D) ee. (1.16) 

Generalization of the above two definitions of the effective variables (0',6), 
(1.13) and (1.16), to the 3D case leads to the concept of the fourth-rank 
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damage effect operator M(da,), where the damage induced anisotropy of 
the initially isotropic material (in a virgin state) is defined on the principal 
axes of damage de. (Sect. 4.5). 

In the method of strain equivalence, the effective stress tensor u is the 
stress that would have to be applied to the pseudo-undamaged material to 
cause the same strain tensor e = e as the one observed in the damaged 
material submitted to the current stress 0'. Hence, using Chaboche's nota­
tion (cf. Chaboche et a1., 1995) the following 3D definition of the effective 
stress tensor holds: 

(1.17) 

whereas the elasticity equations furnished for both the damaged and the 
pseudo-undamaged material take the representation 

u=A:e, (1.18) 

where the fourth-rank elasticity tensor modified by damage is written as 

- 1 
A (do<) = "2 ( M : A + A: M) , M=I-D (1.19) 

and I, D are fourth-rank identity and damage tensors, respectively. 
In the method of elastic energy equivalence, the effective stress u and 

effective strain ee are the stress and strain that would have to be applied 
to the pseudo-undamaged material to cause the same elastic energy as for 
the damaged material subjected to 0" and ee. Hence, the effective stress 
and strain tensors are now defined as: 

and (1.20) 

whereas the elasticity tensor A is expressed as 

(1.21) 
u=A :e'. 

More detailed discussion of the various definitions of the damage effect 
operator M may be found in Sect. 4.4. Note that the effective stress concept 
should not be confused with the. net-stress concept which accounts only 
for an area reduction (surface density of microdefects). The energy based 
definition leads to the Poisson' ratio varying with damage as observed for 
most engineering materials (d., e.g., Murakami and Kamiya, 1997). 
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1.4.2 Effect of material degradation on physical properties 
of damaged materials 

It is experimentally observed that damaged materials change their phys­
ical properties with damage evolution. Some of them have already been 
discussed: the mass density, and mechanical properties such as strength, 
stiffness, or compliance. The other are reported, e.g., by Lemaitre and 
Chaboche (1985). In what follows some of them are listed. 

I. Ultrasonic wave speed drop 

Longitudinal acoustic wave speed through a linear elastic medium in un­
damaged (virgin) and partly damaged state may be written as: 

2 E 1-v 
v = - -;-:----:--;-,-------=---:-e (1 + v)(l- 2v) 

and 
~ if; 1-v 
v = ~ (1 + v)(l - 2v)" (1.22) 

Hence, when the damage definition through the drop in Young's modulus 
(1.14) is used, we obtain 

D = 1- e(l + v)(1- 2v)(1- v) (~)2 
e (1 + v)(1 - 2v)(1 - v) v 

(1.23) 

or, when Poisson's ratio v and the mass density e change with damage may 
be neglected, the simplified formula holds: 

(1.24) 

II. Microhardness change 

Assume an experimentally proved linear relationship between hardness H 
and the actual yield stress. When this is written for both the undamaged 
and partly damaged state we obtain (lD case) 

H=k'(ay+R+X) and ii = k' (a y + R + X)(1- D), (1.25) 

where R and X are responsible for the isotropic and the kinematic hard­
ening, respectively, whereas the damage affected yield stress (plasticity 
threshold) drops linearly with the damage increase (cf., e.g., Lemaitre, 
1992). Eventually, by measuring both H and ii, the actual damage state 
is obtained: 

(1.26) 
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III. Electric potential drop 

Consider Ohm's law for the electric current through the surface A in the 
undamaged and the damaged state of a material 

l . 
V=r-~ 

A 
and (1.27) 

Introduce also the effective intensity of the electric current i and the effec­
tive electric resistivity r affected by damage: 

..,.. i 
~= 1-D and 

Hence, when the effective potential difference is measured on the volume 
considered, the following formulas hold: 

or 

IV. Heat conductivity drop 

V 
D~l- =. 

V 
(1.29) 

A one-dimensional concept of the effective heat conductivity>: through the 
linear damaged RVE, Aodx, is based on the cross-sectional area reduction 
during the material degradation process to the current value Ao (1- D). 
When Fourier's conductivity law is written for the undamaged portion 
of the pmtly damaged RVE cross-sectional area, and through the fictive 
pseudoundamaged equivalent homogeneous body with the defects smeared 
through the volume, we obtain 

a (,aT) __ _ aT 
- A- - Cv{!­ax ax &t 

and (1.30) 

where the effective conductivity>: is related to the initial conductivity co­
efficient in a virgin body >'0 by the simple relationship 

>: = >'0 (1 - D) . (1.31 ) 

For simplicity, the inner heat sources have been omitted, and the radiation 
through the damaged volume has been disregarded. In other words, this 
means that there is no heat flux through the fully damaged RVE. More ad­
vanced modeling, where the additional radiation term is taken into account, 
may be found in Sect. 5.1. 
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1.5 Continuum damage mechanics 
versus fracture mechanics 

On a macroscale a structural failure mechanism may be determined by the 
growth of one or more macrocracks, the geometry and location of which 
(size, shape) is explicitly represented on the fracturing process. A crack 
propagation through the solid with a homogeneous microstructure under 
tensile stress field consists in an unstable growth of its length. In the sim­
plest case, when linear fracture mechanics is used, the crack is assumed to 
be surrounded by a linear homogeneous and isotropic elastic solid, and a 
corresponding failure mode is perfectly brittle. On the other hand, crack 
propagation through the solid with a heterogeneous microstructure may be 
arrested, and continuum damage accumulation prior to the macrofracture 
may occur. Consequently, in the fracturing process in strain-controlled con­
ditions the strong interaction between cracks is essential, and the non-local 
approach must be used when advanced elastic-visco-plastic material models 
are applicable for the solid surrounding the crack-tip (Krajcinovic, 1993). 
The relation between the fracture mechanics (FM) and the continuum dam­
age mechanics (CDM) methods is a question of different characteristic sizes 
of microcracks and macrocracks. However, the classical characteristic para­
meters used by FM, such as the stress intensity factor K or J-integral, are 
based on the classical continuum model and, hence, both FM and CDM 
approaches are usually based on the local theory. It also means that a ques­
tion of scale refers not to the size of crack considered but to the medium 
surrounding the crack (cf. Woo and Li, 1993). Nevertheless, the so-called 
local approach to fracture based on CDM and FEM is also used as a prac­
tical tool for coupled creep damage-fracture analysis (d. Murakami et al., 
1988, Liu et al., 1995, Murakami and Liu, 1995) or elastic-brittle damage­
fracture analysis (Skrzypek et al., 1998). Let us mention, however, that 
additional regularization methods are often required to avoid mesh depen­
dence of the solutions obtained in this way when the problem of stress and 
damage concentration at the crack tip is met (cf. Sect. 5.2). 

For practical application, the scheme of the CDM and FM treatment 
shown in Fig. 1.7 (proposed by Chaboche, 1988), may by useful. 
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Fig. 1. 7. Microcrack growth and single macro crack initiation and propagation 
in a crystalline material (after Chaboche, 1988) 

1.6 Classification and bibliography of 
material damage on the microscale 

Following classification of material damage with respect to the microscopic 
damage characteristics (microscale) and constitutive properties of the dam­
aged material, mainly based on the Murakami's scheme (cf. Murakami, 
1987) may also be helpful in proper application of CDM modelling to dam­
age evolution and failure analysis in structures 
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Table 1.1. Material damage, microscopic mechanisms and features (Murakami, 
1987) 

References Microscopic mechanisms 
and features 

Elastic-brittle damage 
Krajcinovic and Fonseka, 1981 

Nucleation and growth of mi-
Sidoroff, 1981 
Mazars, 1985 

croscopic cracks caused by 
elastic deformations. Change 

Marigo, 1985 
of effective stiffness and com-

Lemaitre and Chaboche, 1985, 1993 
pliance due to the strength re-

Litewka, 1985, 1989 
duct ion and elastic modulus 

Litewka and Hult, 1989 
drop with damage evolution. 

Grabacki, 1991, 1994 
(Metals, rocks, concrete, com-

Najar, 1994 
posites) 

Murakami and Kamiya, 1997 
Elastic-plastic damage 

Gurson, 1977 
Suquet, 1982 Nucleation, growth, and coa-
Cordebois and Sidoroff, 1982 lescence of microscopic voids 
Tvergaard, 1981, 1988 caused by the (large) elastic-
Rousseller, 1981, 1985, 1986 plastic deformation. Intersec-
Lemaitre, 1984, 1985 tion of sllpbands, decohesion 
Dragon and Chihab, 1985 of particles from the ma-
Chow and Li, 1992 trix material, cracking of par-
Voyiadjis and Kattan, 1992 ticles. Void coalescence in 
Murzewski, 1992 porous media in presence of 
Mou and Han, 1992 shear bands formation. (Met-
Saanouni et aI., 1994 als, composite, polymers) 
Taher, 1994 

Spall damage 
Elastic and elastic-plastic 
damage due to impulsive 

Tetelman and McEvily , 1970 
loads. Propagation of shock 

Gurland, 1972 
plastic waves. Coupling be-

Davison et al., 1977, 1978 
tween nucleation and growth 

Johnson, 1981 
of voids and stress waves. 
Coalescence of microcrack 

Grady, 1982 
prior to the fragmentation 

Perzyna, 1986 
Nemes et aI., 1990 

process. Full separation 
resulting from macrocrack 
propagation through heavily 
damaged material. 
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Fatigue damage 

Manson, 1954 
Coffin, 1954 
Lemaitre, 1971 
Chaboche, 1974 
Manson, 1979 
Lemaitre, 1992 
Dufailly and Lemaitre, 1995 
Skoczefi, 1996 

Nucleation and growth of 
microscopic trans granular 
cracks in the vicinity of 
surface. High cycle fatigue 
(number of cycles to failure 
larger than 105 ): effect of 
macroscopic plastic strain 
is negligible. Very low cycle 
fatigue (number of cycles 
below 10): crack initiation in 
the vicinity of surface in the 
slip baneL<: in grains prior to 
the rapid transgranular mode 
in the slip planes. 

Creep damage 
Kachanov, 1958 
Rabotnov, 1969 
Leckie and Hayhurst, 1973, 1974 
Hayhurst et al., 1975 
'Ihwczyfiski et al., 1981 
Krajcinovic et al., 1981, 1982 
Chaboche, 1979, 1981, 1988 
Murakami, 1983 
Hayhurst et al., 1984, 1986 
Stigh, 1985 
Ping Zhang and Hao Lee, 1993 
Kowalewski et al., 1991a,b, 

1994a,b, 1996a,b,c 
Needleman et aL, 1995 
Naumenko, 1996 
H. Altenbach et al., 1990, 1997 
J. Altenbach et aL, 1997 

Nucleation and growth of mi­
croscopic voids and cracks in 
metal grains (ductile trans­
granular creep damage at low 
temperatures), or on inter­
granular boundaries (brittle 
inter granular damage at high 
temperatures) mainly due to 
grain boundaries sliding and 
diffusion. 

Creep-fatigue damage 

Chrzanowski, 1976 
Lemaitre and Chaboche, 1975, 1985 
Plumtree and Lemaitre, 1979 
Wang, 1992 
Dunne et al., 1992ab, 1994 
Lin et al., 1996, 1998 

Damage induced by repeated 
mechanical and thermal load­
ings at high temperature. 
Coupled creep-cyclic plastic­
ity damage. Nonlinear m­
teraction between intergran­
ular voids and trans granular 
cracks. Slip bands formation 
due to plasticity (low temper-
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ature) combined with mi-
crocrack development due 
to creep (high temperature). 
(Metals, alloy steels, alu-
minum alloy, copper). 

Anisotropic damage 

Damage induced anisotropy 

Sidoroff, 1981 
of solids or damage 

Ladeveze, 1990 
anisotropic materials (com-

Lis, 1992 
posites). Unilateral damage 

Chaboche, 1993 
( opening/ closure effect) . 

Chaboche et ai., 1995 
Anisotropic elastic-brittle 

Chen and Chow, 1995 
damage. Nonproportional 

Voyiadjis and Venson, 1995 
and cyclic loadings. Ef-

Litewka and Lis, 1996 
fective state variables and 

Murakami and Kamiya, 1997 
damage effect tensor. (Con-
crete, anisotropic ceramic 
composites) 

Corrosion damage 

Pitting corrosion, intergran-

Tetelman and McEvily, 1970 ular corrosion, environmen-

Knott, 1973 tal degradation. Develop-

Schmitt and Jalinier, 1982 ment of microcracks under 
stress in corrosive environ-
ments 

Irradiation damage 

Damage caused by irradia-
tion of neutron particles and 

Tetelman and McEvily, 1970 II rays. Knock-on of atoms, 
Gittus, 1978 nucleation of voids and bub-
Tomkins, 1981 bles, swelling. Ductile be-
Murakami and Mizuno, 1992 havior of creep under irradi-

ation and brittle behavior on 
post-irradiation creep. 

Thermo-creep damage 

Ben Hatira et aI., 1994 
Thermo-elastic-viscoplastic 

Saanouni et aI., 1994 
damage (fully coupled ap-

Ganczarski and Skrzypek, 1995, 1997 
proach). Damage effect on 

Kaviany, 1997 
heat flux in solids. Change 

Skrzypek and Ganczarski, 1998b 
of temperature gradient due 
to damage evolution. 



2 

Effect of isotropic damage 
evolution on (visco ) plasticity 

2.1 Inelastic deformation processes with 
damage 

2.1.1 Basic concepts of coupled damage - mechanical fields 

Two main approaches are used to model the effect of damage evolution on 
the behavior of structural materials in the frame of CDM theory. In case 
of a weak coupling between damage and deformation processes, the effect 
of material damage on the elastic properties is disregarded. In this sense 
a coupling is established by introducing the damage variables (scalar or 
tensor) into the constitutive equation of the continuum solid when the ef­
fective state variables concept is used (cf. Kachanov, 1958, 1986; Rabotnov, 
1968, 1969; Leckie and Hayhurst, 1973, 1974; Hayhurst, 1972, 1983, etc.). 
In case of a fully (strong) coupled approach, damage evolution affects both 
elastic properties of the material (stiffness and compliance) and inelastic 
response (cf. Chaboche, 1977, 1978, 1993; Cordebois and Sidoroff, 1979, 
1982; Lemaitre, 1984, 1992; Litewka, 1985, 1986; Murakami and Kamiya, 
1987 to mention only some of them). In this chapter the first approach is 
discussed when the classical strain equivalence principle is used to define 
the effective stress in Lemaitre's sense (Lemaitre, 1971) and the isotropic 
(scalar) damage variables are selected to legislate an experimentally fitted 
damage evolution law. 

2.1.2 Creep-plasticity damage mechanisms in metals -
experimental observations and general features 

Two basic material damage mechanisms, ductile damage or brittle damage, 
can be recognized in a crystalline materials under combined creep-plasticity 
conditions at various temperatures. 'Ihwczynski et al. (1981) examined 
copper and aluminum alloy thin-tube specimens at 250°C and 150°C, re­
spectively, in nonproportionalloading experiments. A steady load, a single 
reversal of torsion, and multiple reversal of torsion were selected to follow 
the mechanism of microcrack and microvoid nucleation, growth, and coales­
cence, to eventually yield macrocrack propagation at the grain boundaries. 
Recently, Dunne et a1. (1992) and Lin et a1. (1997) examined pure cop­
per test pieces tested to failure under condition of creep-cyclic plasticity at 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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a) C1 b) C1 

Fig. 2.1. Transgranular microcracks initiation and ductile damage growth in the 
sliplines regions: a) micro shear bands in Armco Iron (after Korbel et aI., 1998), 
b) crack formed in slipbands in grains of Inconel 718 specimen tested for very 
low cycle fatigue (after Dufailly and Lemaitre, 1995) 

room temperature, 20"C, and at 500°C. 
At room temperature, crack initiation occurs in the vicinity of the surface 

in the slipbands of plasticity formed in the favorably oriented copper grains 
(of the order 0.15--0.18 mm) or subgrains (of the order 25-75 J,Lm). They 
are usually oriented at 45° to the main stress direction and grow in a 
transgranular damage mode in the slip planes, cf. Korbel et al. (1998) (Fig. 
2.1a). 

A similar ductile damage mechanism, localized mainly in slipbands in the 
grains in Inconel 718 alloy at elevated temperature, was used by Dufailly 
and Lemaitre (1995) to model damage evolution in a very low cycle fatigue 
test (number of cycles to failure of the order of ten, or less), where the 
ductile damage mechanism was observed as predominant (cf. Fournier and 
Pineau, 1977). 

At elevated temperature, the brittle inter granular microcracking process 
is due to microcavities which are initiated on the grain boundaries, sub­
sequently linked to form macro cracks (Fig. 2.2). Sometimes also the saw­
toothed cracks associated with a subgrain microstructure might be formed. 
However, strong directionality of both microcracking and macrocracking 
processes, both roughly perpendicular to the principal tensile stress direc­
tion, is evident. 

In conclusion, the ductile or transgranular damage (or fracture) mecha­
nism occurs at a high stress level and in the low temperature regime and 
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Fig. 2.2. Intergranular microcracks growth and coalescence to form cracks at 
grain boundary in a copper triaxial test: a) spherical grain boundary cavities, b) 
crack-like grain boundary cavities (after Hayhurst and Felce, 1986) 

is dominated by the equivalent stress controlled damage plasticity mecha­
nism due to the material instability from microslips at slipband regions in 
the grains, where material failure is initiated. This process leads to a dis­
continuous bifurcation of the strain-rate field that initiates the decohesion 
process prior to the complete failure process where the material separates 
with the formation of free surfaces (cf. Rudnicki and Rice, 1975; Larsson 
et al., 1991; Runesson et al., 1991, and others). Loss of ellipticity of the 
differential constitutive equations might also be considered as the initiation 
of material failure in this sense (cf. Shrayer and Zhou, 1995). Small voids 
existing in a ductile material, and their growth and coalescence, may act 
as an additional inhomogeneity which promotes plastic strain localization 
at slipbands, yielding a the failure mechanism for the material (cf., e.g., 
Tvergaard, 1981, 1988; Needleman et aI. , 1995). 

In contrary, the brittle or inter granular damage (or fracture) mechanism 
occurs usually at a low stress level and in the high temperature regime. 
It is dominated by the creep micro-cavitation process on the grain bound­
aries which leads to the principal stress controlled micro and macrocracking 
process, localized mainly on the grain or subgrain boundaries. The orien­
tation of the micro and macrocracks is selected in the damage and failure 
process in such a way that the normals to the average crack directions 
roughly coincide with the main tension direction. However, in the case of 
the rotating principal stress directions the microcracking process follows the 
main stress rotation, hence, the damage growth and accumulation process 
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is no longer isotropic, so that the vector or tensor damage representation 
must be used. Note that the overall geometric effect is usually not observed 
in brittle damage since creep strains are small. 

Brittle damage of metals at elevated temperatures has been broadly re­
ported in the literature from the experimental point of view (cf. Johnson 
et al., 1956; Hayhurst, 1972; Hayhurst and Leckie, 1973, 1974; Tr~pczyii.ski 
et al., 1981; Murakami et a1.,1985; Litewka and Hult, 1989; Othman and 
Hayhurst, 1990; Townleyet aI., 1981; Kowalewski et aI., 1993, 1994, 1996, 
and many others). 

strain E% 
6 ~--~--.-.-----.----.----.----. 

5 ~--++--r-~----~---+----~--~ 

2 4 6 8 1012.4 
time [hrsjxlO 

Fig. 2.3. Creep curves of 9Cr1Mo steel at constant stress levels 0'1 = 100 MPa 
and 0'2 = 150 MPa versus temperature (after Townley et al., 1991) 

The effect of temperature on the creep curve of 9CrlMo steel at two 
constant stress levels, al = 100 MPa and a2 = 150 MPa, is shown in 
Fig.2.3 (cf. Townley et al., 1991). It is evident from the diagram that as 
stress and temperature increase, the time to failure decreases. So-called 
isostrain creep curves represent a collection of stress versus time pairs at 
constant stress level; the last of these curves represents rupture contour at 
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Fig. 2.4. a) Isostrain creep curves of 9Cr1Mo steel at temperature 500°C, b) 
rupture contours versus temperature (after Townley et al., 1991) 

a given temperature that corresponds to infinite strain at rupture (Fig. 2.4, 
cf. Townley et al., 1991). A discussion of creep and creep-failure properties 
for various pressure vessel steels, according to CWST data, as well as a 
comparison to Odqvist's data, is given by Skrzypek (1993). 

2.2 Phenomenological isotropic 
creep~damage models 

2.2.1 Brief survey of creep constitutive equations 
for non damaged materials 

On the basis of the principle of strain equivalence and the effective stress 
concept, a simplified method to establish constitutive equations for both 
time-independent (plasticity) and time-dependent (creep-plasticity) mate­
rials might be proposed (cf. Lemaitre, 1971): 

Any strain constitutive equation for a damaged materials may be derived 
in the same way as for a virgin material except that the usual stress is 
replaced by the effective stress. 

In what follows, a brief review of creep and creep-plasticity models for 
nondamaged materials is presented (cf. Skrzypek, 1993). 

I. Deformation or total strain (TS) theory (Rabotnov, 1948, 1966; 
Malinin, 1951) 

(2.1) 
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where 

[ 1 t S (aeq) ] 
eeq = aeq (t) 3G + 10 ~dT 

or 

II. Flow rule (FR) and creep potential (Rabotnov, 1966; Penny and 
Marriott, 1995) 

(2.2a) 

(2.2b) 

de~. = alI! dA or ei; = :lI! A. (2.3) 
'3 oa'j J Va;j 

For isotropic materials, when the Huber-Mises-Hencky type creep potential 
is applicable lI! (aij) = (1/2) 8ij8ij-(1/3) a~, the Mises-type flow rule might 
be obtained: 

3 dec .c 3 e~ 
de~· = -~8ij or eij = --8ij (2.4) 

'J 2 a eq 2 a eq 

and when the elastic strains are considered for incompressible materials the 
following holds: 

(2.5) 

Specifying the equivalent stress aeq = [(3/2) 8;j8ijjl/2 versus equivalent 

creep strain rates e~ = [(2/3) ei/i'jr/2 dependence in (2.5) as e~q/ec = 
(aeq/ac)'" (cf. Odqvist and Hult, 1962) the Hooke-Norton-Odqvist flow 
rule is established: 

(2.6) 

or when incompressibility and the power law are assumed for both elastic 
and creep parts e';.q/eco = (aeq/aco)"'o, e~/ec = (aeq/ac)'" the Odqvist 
flow rule is furnished: 

d:;j =~{:t [(::)nO-l ;~l+(:7)n-l~:}. (2.7) 

In the above formulas, eeo' a co, no, ee, a e, n are the temperature dependent 
material constants, whereas in (2.7) eeo = 1 and ec = 1 are set. 

When the time-hardening (TH) model is applied to eeq and a eq , instead 
of e and a in an uniaxial case, the multiaxial time hardening creep law that 
accounts for both ageing and temperature dependence is established: 
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d~. = ~fdaeq) .. dh(t)f: (T)dt (2.8) 
c') 2 a eq s') dt 3 . 

When the temperature effect is disregarded, two particular forms of (2.8) 
might be recommended: 

'C ~!I (aeq) Sijj2 (t) , (2.9a) C;j = 
a eq 

·c 
Cij = 3 m-l n-l 

'2CnSijaeq t , (2.9b) 

where in (2.9b) the functions !I (aeq) and j2 (t) are specified in a power 
form that generalizes the uniaxial Nutting equation to the 3D case, C~q = 
Ca:r (cf. Kraus, 1980). 

III. Isotropic strain hardening (SH) theory 

Multiaxial strain hardening equation that generalizes Rabotnov's 1966 con­
cept can be presented in the form 

(2.lOa) 

where qeq represents the length of the trajectory in the creep strain space 

(2. lOb) 

p = e - ee, and primes stand for the deviatoric components. If the Nutting 
equation holds under both the uniaxial constant stress and the 3D general­
ization, the following equation may be furnished (cf. Kraus, 1980; Ohashi 
et aI., 1982): 

.~. _ ~ Cl/n ( C )(n-l)/n (m-n)/n .. 
c'J - 2 n Ceq a eq s'J' (2.11) 

IV. Malinin-Khadjinsky creep-kinematic-hardening (CKH) theory 

Malinin and Khadjinsky (1972) applied the concept of nonlinear kinema­
tic-hardening in plasticity to the anisotropic hardening in uniaxial creep 
of metals at elevated temperatures (carbon steel at 455°C and aluminum 
alloy at 1500C) to obtain: 

gC = Bexp ('a;a l ) sign(a-a) , 

Ot A (10'1) gC - D exp ( ~) signa. 

(2.12a) 

(2. 12b) 
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Fig. 2.5. Graphs of functions (A/N)1/2 versus cr in the Malinin and Khadjin­
sky Eq. (2.12): a) 0.17% carbon steel at T = 455°C (after Johnson, 1941), b) 
aluminum alloy at T = 150°C (after Namestnikov, 1965) 

The first term in (2.12b) represents the work-hardening effect, whereas 
the second is responsible for the thermally activated softening; A (a) is a 
function of stress, constant below the yield point and decreasing with stress 
above this limit; B, D, N, are the material constants (cf. Fig. 2.5, Table 
2.1) . 

Table 2.1. Material constants for the Malinin and Khadjinisky Eq. (2.12) and 
the Ohashi et al. Eq. (2.13) (after Skrzypek, 1993) 

Material A[MPaJ B[h 1 J D[MPah .IJ N[MPaJ m[-J n[-J 
Eq. (2.12) 

Carbon Steel 
T = 455°C Fig. 2.5 3.53 X 10-8 4.05 X 10-9 4.14 - -

(Johnson) 
Eq. (2.12) 

Aluminium 
Alloy Fig. 2.5 8.35 X 10-7 3.83 X 10-5 29.4 - -

T = 150°C 
(Namestnikov) 

Eq. (2.13) 
Stainless Steel 

T= 704°C 6.9 X 103 6.3 X 10-10 0.531 29.6 3.64 3.64 
(Ohashi et al.) 

The 3D generalization of Eqs. (2.12a, 2.12b) is due to Ohashi et al. 
(1982): 

[ . J2(IT-X)]n IT'-X' 
B smh ()' N J2 IT- X 

(2.13a) 

x' )] • c [. J2 (X)] m X' 
A[J2(1T e -D smh~ J2(X)' (2.13b) 
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In the above absolute notation, the following definitions of the Mises-type 
eq uivalent stress J2 (0'), the back stress (or translation tensor) J2 (X), and 
the additional stress Jz (0' - X) hold: 

[ ,,]1/2 [, ']1/2 
J2 (0') = (3/2) 0' : 0' ,J2 (X) = (3/2) X : X , 

[ ( ' ') (' ')] 1/2 J2 (0' - X) = (3/2) 0' - X : 0" - X . 
(2.13c) 

Symbols B, D, N, n, m, are the material constants, and A [.] is a function 
of the equivalent stress (cf. Table 2.1), where primes stand here for the 
deviatoric components. 

V. Chaboche-Rousselier creep-isotropic/kinematic hardening (CIKH) 
theory 

Chaboche (1977) applied the concept of a mixed isotropic-kinematic hard­
ening to the creep plasticity flow rule, to obtain (cf. Chaboche and Rous­
selier, 1983): 

deP = - Y dt 3 \ J2 (0' - X) - R - a)n 0"' - X' 
2 K J2 (0" - X) , 

(2.14a) 

where the following nonlinear kinematic and isotropic hardening rules hold: 

dX 

dR 

C (~adep - XdP) - 'Y [J2 (X)]m-1 Xdt, 

b (Q - R) dp - 'YRqdt. 

(2.14b) 

(2.14c) 

Symbol P stands for the cumulative viscoplastic strain, dp = [(2/3) deP 

:deP]l/2, and symbols n, K, a y, C, a, b, m, Q, 'Y, q are ten material coeffi­
cients, the number of which reduces to seven when two time recovery terms 
in (2.14b) and (2.14c) are omitted ('Y = 0), or to five when, additionally, 
the isotropic hardening effect is disregarded (dR = 0). 

The seven-parameter CIKH theory applied to the uniaxial case reduces 
Eqs. (2.14) to the 1D model (cf. Chaboche and Rousselier, 1983) 

where 

/ 117 - al - R - a )n 
dc:P = \ K y sign (a - a)dt, 

da = da1 + da2, 
dal = C1 (a1dc:P - a1 Idc:Pi), 
da2 = C2 (a2dc:P - a2Idc:Pi) , 
dR = b (Q - R) Idc:PI. 

(2.15a) 

(2.15b) 



30 2. Effect of isotropic damage evolution on (visco)plasticity 

Nine coefficients: n, K, uY' 011 O2, all a2, b, Q are evaluated from the 
tensile and relaxation tests for 316L stainless steel at room temperature: 

n = 24, K = 151 MPa, u y = 82 MPa, 
a1 = 58 MPa, a2 = 270 MPa, b = 8, 

0 1 = 2800, 
Q = 60 MPa. 

If, on the other hand, the kinematic-hardening effect is not taken into 
account, the following six-parameter (1D) NIH model might also be used 
for tensile tests (cf. Lemaitre and Chaboche, 1985): 

dcP = \ U - ~ - u y ) n , (2.16a) 

where 

(2.16b) 

Six material parameters: n, K, uY' Qll Q2, b for 316 stainless steel at room 
temperature are 

n=24, K= 151 MPa, 
Q1 = 6400 MPa, Q2 = 270 MPa, 

U y = 84 MPa, 
b = 25. 

VI. Time-independent Chaboche and Rousselier nonlinear 
plasticity-isotropic/kinematic hardening (PIKH) theory 

For time-independent plasticity the current HMH yield surface transforms 
according to the following rule: 

J2 (0' - X) - R- k = 0, 

[(3/2) (0" - X') : (0" - X')J1/2 , 

(2. 17a) 

(2. 17b) 

where tensor X is a translation tensor, or a back stress tensor, that repre­
sents the current position of the yield surface (kinematic hardening effect), 
and scalar R, also called the drug stress, represents the size of the yield 
surface (isotropic hardening effect). The translation tensor X and the drug 
stress R satisfy the evolution laws: 

dX 

dR 

2 
30 (p)deP -1(P) Xdp, 

= b(Q-R)dp or R=Q[1-exp(-bp)]. 

(2.18a) 

(2.18b) 

The nonlinear kinematic hardening rule (2. 18a), in which the functions 
o (p) and 1 (p) depend on the scalar isotropic variable called the cumula­
tive plastic strain, dp = [(2/3)deP:dePj1/2, is due to Armstrong and Fred­
erick (1966). The isotropic hardening rule (2.18b) allows for an asymptotic 
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stabilization of the yield surface size when p tends to infinity (necessary for 
cyclic plasticity behavior). The normality rule associated with the current 
yield surface (2.17) is used to determine the plastic strain rate deP with 
the consistency condition applied to eliminate the scalar multiplier dA: 

Finally, the following equation is furnished 

/3 (a' - X') :dO') a' - X, 
d P _ \ 2 J2 (0' - X) h (0' - X) 

e - 3 X: (0" - X') , 
C - fY J2 (0' _ X) + b (Q - R) 

(2.19a) 

(2. 19b) 

(2.20) 

where the McAuley bracket (.) is defined as: (x) = 0 if x < 0, (x) = x if 
x ~ O. When the indices notation is used instead of the absolute one we 
rewrite Eqs. (2.17)-(2.20) as follows (d. Skrzypek, 1993): 

2 
da" - -C(A)dg .. -'Y(A)a .. d' '3 - 3 '3 '3 A, 

dR = b (Q - R) dA, 

(2.21) 

3 8ij - a:j 
h=C-2''Yaij a (a .. _a .. )+b(Q-R). 

eq '3 '3 

In the uniaxial tension/compression case Eqs. (2.21) reduce to the form: 

F = la - al- R - k = 0, 
da = CdgP - 'Ya IdgPI, 
dR= b(Q - R) IdgPI, 

dgP = .!. / ~ a - a cia) a - a = da 
h \ 2 la - alia - al h ' 

h = C - 'Yasign (a - a) + b (Q - R). 

(2.22) 
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2.2.2 Single state variable creep-damage models 

In the simplest case, when the isotropic damage evolution affects only the 
tertiary creep phase and the primary creep phase is ignored, the creep 
strain-damage coupling may be established when a single scalar damage 
variable D (or w) is introduced to the creep constitutive equation of a 
nondamaged material, and the evolution law for damage is legislated (cf. 
Kachanov, 1958; Rabotnov, 1969; Hayhurst, 1972, and others). 

1. One-parameter uniaxial creep-damage coupling models 

This approach was first proposed by Kachanov (1958) and generalized by 
Rabotnov (1968, 1969) (cf. Rides et al., 1989): 

~C = (a/ao)n, 
eo 1-w 

w _ (a/ao)'" 
Wo - (1- w)'I" 

(2.23) 

where eo, nand wo, v, <p stand for the temperature dependent material con­
stants in the creep law and the damage growth rule, respectively, whereas 
ao is the reference stress. Integration of the equations (2.23) (coupled by 
the state variable w) at the constant stress, a = const, and the initial con­
dition for the damage wand the creep strain eC , t = 0 : w = eC = 0, 
yields: 

( t)~ w=1- 1-t; , 

(2.24) 

eC = 1 _ (1 _ .!.) A , 
ef tr 

where ~ = (1 + <p - n) / (1 + <p), whereas symbols tf and ef denote the 
time to failure (w = 1) and the creep strain at failure, respectively: 

(ao/a)'" 
tf= (l+<p)wo' (2.25) 

esa = eo (a/aot stands here for a steady-state or a minimum creep rate 
(no damage effect included). 

For the pure copper specimens subject to constant stress tests at temper­
ature 300°C, when the stress a = 32.4 MPa was used to give a failure time 
of the order of 15 days, Rides et al. (1989) obtained: n = 6.56, v = 6.31, 
<p = 7.1, (To = 300 MPa; and eo = 11 x 1O-5h-1 , Wo = 6.68 x 1O-4h- 1(A) or 
eo = 2.54 x 1O-5 h-1, Wo = 2.74 x 1O-4h- 1 (B); however, the model is often 
simplified by setting <p = v. Note that the second of Eqs. (2.24) describes 
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Fig. 2.6. Normalized creep strain versus normalized time for copper tested at 
300°C (after Rides et al., 1989) 

the growth of creep strain rate with time due to the damage evolution in 
the tertiary creep, the magnitude of which tends to infinity when the time 
to failure is reached (Fig. 2.6). 

The uniaxial damage growth rule (2.23) may also be presented in an 
equivalent form when Kachanov's 1958, or Chaboche's 1988, notation is 
used 

d'lj; 

dt 

dD 
dt 

-c(~r 
(~r (1- D)-k, 

(2.26a) 

(2.26b) 

where'lj; and D = w denote the continuity and the damage, respectively, if 
'Ij; + D = 1 holds. The so-called life fraction rule, however, was established 
earlier by Robinson (1952) for steel: 

tR dt 
Jo tR (t) = 1, 

1 
tR (t) = C (r + 1) [CTI (tW' (2.27) 

which is applicable for an arbitrarily prescribed tensile stress function 
0'1 (t). 
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A generalization of Kachanov's concept of damage evolution, where the 
initial damage level is set at Wo = 0, to the case when both time-independent 
(instantaneous) and time-dependent (creep) material deterioration are taken 
into account, is due to Chrzanowski and Madej (1980) (cf. also Chrzanowski 
et aI., 1991; Bodnar et aI., 1994). If the notation of the simple model de­
scribed by Eqs. (2.23) is used, the following uniaxial rule is furnished: 

~ =X (a/aoro (~) + (a/aor 
Wo (1+w)""O ao (l-w)"'" 

(2.28) 

Material constants wo, ao, vo, CPo, v, cp and X describe the combined damage 
mechanisms where the instantaneous damage state (first term) plays a role 
ofthe initial condition for the subsequent damage evolution (second term). 
Hence, the integration of (2.28) for the constant stress a = a]H (t) twice, 
first at t = 0 and next at t > 0, yields 

{ tff (a) [ t] }'P~1 
W = 1 - tr (a) 1 - tff (a) , (2.29) 

where the symbols tr (a) or tff (a) denote the failure time versus stress in 
case of the instantaneous damage neglected (X = 0) or taken into account, 
respectively (tff ::; tr): 

1 

tda) = (1+cp)wo(alaot' 

[ ( ) l+VO] i#o 
tff (a) = 1- ~ tr (a) 

(2.30) 

and ar stands for the instantaneous failure stress such that at t = 0, Wo = 1 

(2.31) 

Note that by setting X = 0 the failure stress ar tends to infinity, since (2.29) 
is reduced to (2.24) when tff = tr. A family of damage parameters w versus 
dimensionless time t/tr plots is sketched in Fig.2.7. 

The corresponding failure times at which w = 1 are tff/tr = 1, 1/2, 1/3, 
1/5, 1/10; whereas the initial damage increase with the failure time drop 
is Wo = 0,0.159,0.240,0.331,0.438. 

The experimental observations on metallic materials by Hayhurst et al. 
(1975, 1989), Othman and Hayhurst (1990), and others have shown differ­
ent shapes of the normalized creep curves CC Icr = f (t/tr) when aluminum 
alloy, copper, and stainless steel specimens were tested to failure at tem­
peratures 210°C, 250°C, and 550°C, respectively (Fig. 2.8). 

In contrast to copper and aluminum alloy, where the primary creep is 
negligible and the tertiary creep predominates, in the case of stainless steel 
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Fig. 2.7. A family of damage versus time plots (2.29) for VarIOUS ratios 
tr/tff = 1,2,3,5, 10 obtained by setting rp = 3 

a) 

0.4 

03 

0.2 

OJ 

Experiments 

Aluminium 
Alloy~ 

,..."" Pure 

Failure 

..... ,...,... Copper 

o 0.1 0.20.3 0.4 05 0.6 0.7 0.80.9 1.0 
111[ 

b) 
Predictions 

1.0 -------------

0.1 

0.1 0.2 0.3 0.4050.60.70.8 0.9 1.0 
til! 

Fig. 2.8. Comparison of the normalized creep curves for different materials: a) 
experimental: pure copper, aluminum alloy and stainless streel, b) modelling by 
the formulas (2.29) for L:. = 0.35 versus the parameter m (based on Othman and 
Hayhurst, 1990) 
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the primary creep manifests strongly, whereas the tertiary creep section 
is of less importance. Taking the above described creep response of 316 
stainless steel tested at elevated temperatures 210°0, 250°0, and 550°0 
Othman and Hayhurst (1990) suggest including the primary creep as well 
as the tertiary creep as follows: 

eC 
_ (a/ao)n m -;-- -- t, 

co 1-w 

W (a/aot m 

Wo = (1- w)l<'t , 

(2.32) 

where the decaying time function tm (m < 0) accounts for the primary 
creep effect. Integration of (2.32) at constant stress, a = const, furnishes 
the following formulas generalizing (2.24): 

_ [ (t)m+ll1~" w-1- 1- -
tf ' 

(2.33) 

where Ll is defined in a similar fashion as in (2.24), whereas the time to 
failure tf and the creep strain at failure Cf are: 

1 

t = [(1 +m) (ao/a)"] l+~ 
f (l+cp)wo ' 

eo (a/aor-" 
Cf - --"--,'-"-"-"---

- wo(l+cp-n)' 
(2.34) 

II. One-parameter creep-damage models under multiaxial stress conditions 

Multiaxial stress generalization of the one-parameter creep-damage mod­
els (2.23) and (2.32) consists in the experimentally obtained isochronous 
rupture surfaces when the metallic materials are tested to failure (rupture) 
under combined stress conditions (cf. Johnson et aI., 1956, 1962; Hayhurst, 
1972; Trl}pczyilski, 1981; Kowalewski et aI., 1991a, 1991b, 1994a, 1994b, 
1995, 1996a, 1996b, 1996c). According to Johnson et al. (1956), aluminum 
alloy and pure copper represent two extreme material behaviors with re­
gard to the isochronous rupture surface shape. Roughly, the microcracking 
in copper appears to be controlled by the principal stress, but in the alu­
minum alloy to be controlled by the Mises equivalent stress. For a variety 
of metallic materials (steels, alloy steels, etc.) the isochronous surfaces lie 
somewhere between these two cases (Fig.2.9). 

The above observation suggests the following generalization of the uni­
axial damage growth rules (2.26b) (cf. Ohaboche, 1988): 
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Fig. 2.9. Plane stress isochronous rupture curves for various metallic materi­
als: a) pure copper, b) aluminum, c) nickel/chrome alloy, low alloy steels (after 
Lemaitre and Chaboche, 1985) 

dD 

dt 
(2.35) 

where the scalar function X (0'), also called the damage equivalent stress, is 
represented as the three-parameter function of the stress invariants (Hay­
hurst, 1972) 

X (0') = odo (0') + 3f3J1 (0') + (1- a - 13) J2 (0') (2.36a) 

or 

(2.36b) 

when Lemaitre and Chaboche's (a) or Boyle and Spence's (b) representa­
tion is used (a + b + c = 1) and the following definitions hold: 
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JO (0') = maxO"i = 0"1, 
J1 (0') = O"H = (1/3) Tr (0') , 

h (0') = O"eq = [(3/2) Tr (0"2) f/2, 
J3 (0') = [(27/2) Tr (0"3) f/2 . 

(2.37) 

For two particular cases, (3 = 0 (cf. Sdobyrev, 1959) and 0: = 0 (cf. 
Lemaitre and Chaboche, 1985), (2.36a, 2.36b) reduce to the simplified two­
parameters forms 

(3 = 0: 

0: = 0: 

x (0') = 80"1 + (1- 8) O"eq, 

X (0') = (3J1 (0') + (1- 8) h (0'). 

(2.38a) 

(2.38b) 

The multiaxial scalar creep-damage coupling with the primary creep ig­
nored, that generalizes the uniaxial model (2.23) is due to Leckie and Hay­
hurst, 1974 

Slj _1_ ann+1 (O"kt/O"O) 1 

So n+1 a (O"ij/O"O) (l-wt' 
(2.39) 

~ XV (O"ij/O"O) 
Wo - (1- w)1" , 

where n (O"kt/O"O) == O"eq (O"kt/O"O) is a convex homogeneous potential func­
tion of degree 1 in stress, and X (O"ij/O"O) is a properly defined damage 
equivalent stress determined by the isochronous rupture surface (2.36a, 
2.36b). When the primary creep effect as well as the tertiary creep is taken 
into account, (2.39) may be extended as follows (cf. Othman and Hayhurst, 
1990): 

Elj _1_ann+l (O"kt/O"O) f(t) 
So n+1 a (O"ij/O"O) (l-wt' 

(2.40) 
W XV (O"ij/O"O) f (t) 

Wo (l-w)1" 

A representation of a decaying time function f (t), responsible for primary 
creep, is established to best fit the test data. In cases when the damage 
evolution is controlled by Mises-type equivalent stress, and the Mises-type 
creep potential function is used, (2.39) and (2.40) reduce in the following 
fashion (cf. Kowalewski et aI., 1994a, b): 
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(TV 
. B eq 

W = (1- w)'I' 

(TV 
. B eq tm 

W = ( )'1" 1-w 
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(2.41) 

(2.42) 

where the following values of the material constants obtained for aluminum 
alloy tested at 150°C are: A = 3.511 x 1O-29(MPa)-n /hm +I ; B = 1.960 x 
1O-23(MPa)-V /hm +I ; n = 11.034; l/ = 8.220; cp = 12.107; m = -0.3099; 
E = 71.1 X 103 MPa. 

A generalization of (2.28) to the multiaxial stress conditions can also be 
made as follows (cf. Bodnar et aI., 1994): 

dw = Bo ( (Teq, ) 1'0 d(Teq, + B ( (Teq2 ) v , 

dt 1- w dt 1- w 
(2.43) 

where the different damage equivalent stresses (Teq, and (Teq2 can be re­
garded as responsible for various time-independent and time-dependent 
damage mechanisms. When the two-parameter formula (2.38a) is used for 
copper, one may insert, e.g., t5 = 0 and t5 = 1, respectively, since the 
instantaneous damage mechanism is usually controlled by effective stress 
(slipbands), whereas the time-dependent micro cracking may roughly be 
considered ascontrolled by maximum principal stress. 

2.2.3 Two state variables mechanisms-based damage models 

1. Two-parameter multiaxial hyperbolic sinus models for nickel and 
aluminum-based alloys 

Othman et al. (1993) developed the mechanisms-based two state variables 
model in order to describe nickel-based superalloys where two physical 
mechanisms that operate together are included: dislocation softening (age­
ing) WI (O:S; WI :s; 1) and creep constrained cavity nucleation and growth 
on the grain boundaries W2 (0 :s; W2 :s; 0.3). A sinh function of stress, rather 
than the traditionally used power law (d. Sect. 2.2.1), is best able to rep­
resent the strain rate: 
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de:ij 

dt 

dH 

dt 
~ A sinh {Bueq [1- H (t)]} {1- H (t)} 
u eq (1 - w2t (1- WI) H* ' 

(1- WI) . 
CA ( t smh {Bueq [1- H (t)]}, 

1-W2 

(2.44) 

where A, B, C, D, H*, hand 1/ are material parameters and n = BUeq [1-
H (t) 1 coth { B U eq [1 - H (t)]). The primary creep effect is included in (2.44) 
through the additional variable H (t) that changes from 0 to H* (satura­
tion) at the beginning and the end of primary phase, respectively; secondary 
creep is characterized by constants A and B, whereas the damage evolution 
in tertiary creep depends on constants C and D. Parameter N characterizes 
the state of loading, N = 1 for UI > 0 and N = 0 for UI < O. Kowalewski et 
al. (1994a, b) checked the suitability ofthis model for predicting the tertiary 
creep response of aluminum alloy at 150°C to obtain: A = 2.96 X 10- 11 h -1; 

B = 7.17 x 1O- 2(MPa)-I; C = 35; D = 6.63; h = 1.37 X 105 MPa; 1/ = o. 

II. Two state variables model versus stress state index 

Dyson (1993) proposed a similar two state variables model based on a new 
mechanism of creep in particle-hardened alloy. The multiaxial generaliza­
tion follows from the associated flow rule and the energy dissipation rate 
potential (d. Kowalewski et al., 1994a) of nondamaged material as follows 

de:9 oW 3 s· 
~ = ~ = -2 A -.!:Lsinh(Bueq ); 
dt uU ij U eq 

(2.45) 

Hence, when the two state variables WI and W2 are introduced to model 
the tertiary creep softening due to dislocation mobility ageing WI and grain 
boundary cavitation W2, whereas the additional state variable H stands for 
the primary creep effect, we obtain: 
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d€ij 
= ~ A ( Bij ) sinh { BO"eq (1 - H) } 

dt 2(1-wd" O"eq (1-wd' 

dH ~ A sinh { BO"eq (1 - H) } { 1 _ ~ } -
dt O"eq (1- w2t (1- WI) H* ' 

(2.46a) 
dWl Kc ( )4 
dt 

""3 I-WI, 

dW2 DA ( 0"1 r N' { BO"eq (1- H) } -- .... - smh 
dt (1 - W2) O"eq (1 - wI) 

and 

n= cot . BO"eq(I-H) h{BO"eq(I-H)} 
(1 - wI) (1 - WI) 

(2.46b) 

For aluminum alloy, six material constants that identify (2.46a, 2.46b) are 
obtained (cf. Kowalewski et al., 1994a): A = 2.960x 1O- 11h- 1; B = 7.167x 
1O-2(MPa)-I; h = 1.370 X 105 MPa; H* = 0.2032; Kc = 19.310 X 1O-5h- 1; 

D = 6.630. 
For multiaxial rupture the constant II, also called the stress state index, 

characterizes different types of stress state sensitive rupture behavior of the 
material considered. For example, in the case of aluminum alloy, where the 
damage evolution is nearly equivalent stress controlled (see Fig. 2.9), we 
may set II = O. However, for other metals the magnitude of II should be 
found experimentally, Fig. 2.10. 

A comparison of the two-parameter model (2.46a, 2.46b) with the one­
parameter model (2.41) made by Altenbach et a1. (1997) by setting II = 0 
shows a satisfactory coincidence on the primary creep only and, as a conse­
quence, the one-parameter model yields an unacceptable underestimation 
of the failure time in plates. On the other hand, examination of the ef­
fect of the stress state index II on the lifetime prediction and the failure 
mechanisms in clamped square plates under uniform pressure, done by the 
authors, proved the significance of the proper estimation of II, as well as its 
influence on the lifetime and the failure mode of the plate. 

2.2.4 Creep-cyclic plasticity damage interaction model 
for copper 

Dunne and Hayhurst )1992a, b, 1994) developed a model based on two 
physical mechanisms of damage in copper validated for creep, cyclic plas­
ticity, and creep-plasticity interaction under cyclic mechanical and cyclic 
thermal loading at high (500°C) and room (20°C) temperatures. The inter­
nal variable X models the kinematic hardening in cyclic creep-plasticity, 
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Fig. 2.10. Isochronous rupture loci for biaxial stress state versus the stress sen­
sitivity index v (after Kowalewski et al., 1994a) 

and D is a scalar variable that accounts for a combined grain boundary 
time-dependent cavitation damage predominantly due in copper to princi­
pal stress controlled high temperature creep damage and the trans granular 
slip bands formation predominantly due to the cyclic plasticity mechanism 
controlled by low temperature effective stress (cf. Sect. 2.1.2 and Figs.2.1 
and 2.2). The creep-cyclic plasticity damage interaction is given by 

(2.46) 

1 1 
z (wr) = 2 + :; arctan It (WI - wo) , 

where aI, a2, It, Wo are experimentally determined for copper (cf. Dunne 
and Hayhurst, 1992a), whereas WI and W2 are the creep damage and the 
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cyclic plasticity damage per cycle, respectively, which are controlled by the 
independent damage evolutions 

(2.47) 

where AIl is the maximum effective stress range in a cycle, (! is defined 
in terms of All, M is a function of the mean stress, and (3 is a con­
stant. Eventually, the creep cyclic plasticity kinematic hardening model 
with damage evolution included (CPKHD) is furnished (extension of the 
Chaboche-Rousselier theory, Eqs. 2.14a, 2.14b, 2.14c) 

eP _ ~ / J2 (0' - X) / (1- D) - ay)n 0" - X' 
- 2 \ K J2 (0' - X)' 

Xl = ~CleP (1- D) - I'lXlP + (C~/Cl) xd', 

X2 = ~C2eP (1- D) - I'2X2P + ( C~/C2) X 2T, 

0' = E(l- D) (10 -lOP _lOT), 

(2.48) 

where p is the cumulative plastic strain and J 2 (0' - X) is the effective 
stress given by 

(2.49) 

Symbols K, a y, n, Cl , C2 , 1'1' 1'2' E are temperature dependent material 
constants for copper (cf. Dunne and Hayhurst, 1992a, 1992b) as shown in 
Table 2.2, C~ and C~ are derivatives of Cl and C2 with respect to temper­
ature T, and lOT is the thermal strain given by lOT = aTl. 



44 2. Effect of isotropic damage evolution on (visco)plasticity 

Table 2.2. Viscoplasticity material parameters for copper (after Dunne and Hay­
hurst, 1992a) 

Temp. C1 C2 1'1 1'2 K 
T [DC] [MPa] 

20 54041 721 962 1.1 4.5 
50 52880 700 1000 1.1 4.5 
150 45760 600 1100 1.1 4.5 
250 38040 400 1300 10.0 35.0 
500 28952 300 1700 35.0 20.1 

Temp. n E O"y 
T [DC] [MPa] [MFa] 

0.3% 0.6% 1.0% 
20 2.814 96890 45 58 68 
50 3.227 92106 38 60 70 
150 5.34 89583 33 52 78 
250 9.735 79762 13 33 45 
500 7.378 63991 4 13 21 

2.3 Unified thermodynamic formulation of 
the coupled isotropic damage-thermo­
elastic (visco ) plasticity 

2.3.1 Kinetic law of damage evolution 

I. Concept of the elastic strain energy density release rate ye 

Chaboche (1976) developed a concept of the elastic strain energy release 
following the isotropic damage accumulation in a material, based on the 
effective stress using the hypothesis of strain equivalence (Sect. 1.4.1). It 
is based on the observation that for ductile materials continuous isotropic 
damage may be represented by a single scalar variable D the evolution of 
which is governed by the variation of the elastic strain energy d<I>e /dD. In 
other words, in this simplified approach the variable ye associated with 
the isotropic damage internal variable D contains the contribution of the 
elastic (reversible) energy only, whereas the inelastic (irreversible) stored 
energy associated with the strain hardening (isotropic and kinematic) is 
not released by the initiation and growth of damage. 

Assuming small strain theory, the total strain may be written as a sum 
of the elastic and the inelastic part e = ee + eaIl. For elastic strain the 
anisotropic elasticity law coupled with isotropic damage is assumed 

(2.50) 

Hence, applying (2.50) the elastic strain energy density is furnished: 
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When the constant stress condition is used, 

d(lij = Eijkl [(1 - D) dCkl - ckldDj = 0, (2.52) 

a variation of the elastic strain energy due to the continuous damage growth 
is represented by 

dwe = (lijdci'j = (lijc'ij 1 ~DD' (2.53) 

Eventually, applying (2.50) and (2.51), the variable ye associated with the 
internal (scalar) variable D is defined as follows 

(2.54) 

In general, a model based on the anisotropic elasticity coupled with the 
isotropic damage is not consistent. So, confining ourselves to the isotropic 
elasticity law 

(2.55) 

and introducing the decomposition to deviatoric and hydrostatic terms 

(2.56) 

the shape and volume change law coupled with damage is established: 

(2.57) 

as well as the corresponding shear and hydrostatic energy portions: 

W -'I' +'1' -- ----+ ----e _ ;o..e(S) ;o..e(H) _ 1 [1 + v SijSij 31- 2v (I~ ] 

2 E 1-D E I-D 
(2.58) 

or, equivalently, 

we = 2E (~;~ D) [~(1 + v) + 3 (1- 2v) (;:) 2] , (2.59) 

where (leg is used for the classical Mises-type equivalent stress (leg = 

[(3/2) SijSijjl/2. Substitution of (2.59) for we in (2.54) yields the follow­
ing formula for the elastic strain energy release rate (thermodynamic force 
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ye associated with the isotropic damage represented by a scalar variable 
D): 

-2 a 
ye=~R 2E v, 

2 (aH)2 Rv = 3 (1 + II) + 3 (1 - 211) a eq 

_ a eq 

aeq= I-D. 

(2.60) 
Note that in case of three-dimensional stress state the force ye associated 
with the isotropic damage variable D is mainly influenced by the stress 
triaxiality ratio aH/aeq . In the ID case, the stress triaxiality ratio is equal 

to (aH/aeq)lD = 1/3, whereas (Rv)lD = 1, and it increases with the hy­
drostatic stress growth, as does the damage rate D. At variance with the 
classical Mises-type equivalent stress aeq and the corresponding effective 
equivalent stress aeq = aeq/ (1- D) the damage equivalent stress a~ is 
furnished by equating the elastic strain energy in the 3D state .pe (u) with 
the equivalent 1D state <I>e (a~q) 

(2.61) 

to obtain, in view of (2.60), the formula that differs from the Mises-type 
a eq in the function R~/2 

D _ R1/2 a eq - a eq II • 

For example, if plane stress is assumed, the following holds: 

II. Time-independent plasticity coupled with isotropic damage 
(Chaboche, 1988) 

(2.62) 

(2.63) 

Chaboche (1988) introduced the coupled dissipative potential by an exten­
sion of the ChabochtrRousselier nonlinear isotropic/kinematic hardening 
theory (2.17) to yield: 

F eh = (iT, X, R, D) = f (iT, X, R) + FD (Ye) 
= J2 (iT - X) - R- a y + FD (ye), 

_ 3 aij I aij I 

[ ( 
I ) (' )] 1/2 

h(u-X) = "2 I-D -Xij I-D -Xij 

and the generalized normality rule (associative theory) 

(2.64) 
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'p_,aFCh 
e -A , 

acr 
a= _,Xa~h 

ax ' 
. aFCh 

r= -A aR ' 
. ·8Fch 

D = -A- (2.65) 
aye ' 

where f (u, X, R) = J2 (u - X) -R-ay = 0 is a Mises-type partly coupled 
yield function and a y is the initial yield stress under uniaxial tension test 
(for a more general fully coupled case see Sect. 2.3.4(II)). 

The following couples of the external (observable) state variables (e, cr) 
and the internal state variables (o:,X), (r,R), (D,ye) are introduced to 
represent kinematic hardening, isotropic hardening, and isotropic damage. 
Note that the mechanical behavior of the damaged solid is derived from 
the same dissipation potential as a virgin undamaged solid, where the state 
stress variable cr is replaced by the effective stress variable i7 = cr / (1 - D) 
and the additional term FD (ye) describes the damage evolution. This 
approach, based on the strain equivalence, ignores the damage effect on the 
release of inelastic stored energy so that the potential function for damage 
evolution depends only on the elastic energy release rate FD = FD (ye) 
and variables associated with strain hardening are not affected by damage 
(the effective state variable X and R are not built into the model). 

When the generalized normality rule (2.65) is applied together with the 
dissipative potential (2.64) the following state equations are furnished: 

3~ a~. -X!· 
aij = -2 A J. ('2 ;;) = €f J. (1 - D) , 

2 aij - ij (2.66) 

-I' = ). = P (1 - D) , 

. . 8FD (ye) 
D = -A = aye 

:rvhere p denotes the cumulative plastic strain p = [(2/3) €f/f j ] 1/2, and 

>: = 5../ (1 - D), whereas third of the Eqs. (2.66) is obtained by a scalar 
multiplication of the first Eq. (2.66) 

el' . p - 'J '3 'J '3 (3) 2 (a~. - X!.) (a~. - X!.) 
;je;j - 2 J~ (aij - X ij ) 

(2.67) 

when appropriate definitions of p and J2 hold. The effective formula for 
damage evolution depends on the representation of the damage potential 
function FD. If, following Lemaitre and Chaboche (1985), it is assumed as 
a square function of the elastic strain energy release rate ye (2.60), 
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° _ (ye)2 
F - -2S(1-D) or F D = (2.68) 

then the classical kinetic law of damage evolution is furnished (d. Lemaitre 
and Chaboche, 1985): 

. . aFD ye 0'2 R 
D = -,\ aye = sP = 2ES 0': D)2P, (2.69) 

If, on the other hand, the damage potential function is assumed as a power 
function of ye, then the generalized kinetic law of damage evolution is 
established (d. Germain, Nguyen and Suquet, 1983; Dufailly and Lemaitre, 
1995) 

(ye)s ye 
FD =_ S (s+l)(I-D)' (2.70) 

(2.71) 

S, s are temperature dependent material parameters and Rv (O'H/O'eq) is 
given by (2.60). Equations (2.69) or (2.71) constitute the damage evolution 
in the frame of the kinetic law of damage based on the assumption that 
continuous damage manifests itself as elastic energy release, whereas the 
inelastic energy associated with strain hardening is not released by the 
damage initiation and growth. In general, this is not true, and a more 
extended theory based on the total energy release with damage can be 
developed (d., e.g., Saanouni, Forster and Ben Hatira, 1994). 

2.3.2 Application of the kinetic law of damage to plasticity, 
creep, and damage 

1. Particular cases of the kinetic law of damage model of ductile materials 

Equations (2.69) and (2.71) govern isotropic damage evolution in ductile 

materials, as influenced by the cumulative plastic strainp = [(2/3) sfjsfjr/2, 
stress state represented by the stress triaxiality function Rv = Rv (O'H/O'eq) , 
and the effective equivalent stress aeq=O'eql (1 - D) as a function of the 
cumulative strain aeq (p). These constitutive equations of damage hold for 
any loading path along which the stress triaxiality ratio O'H/O'eq changes, 
whereas in case of proportional loadings the stress triaxiality ratio can be 
considered as a constant with respect to time O'H 10' eq = const. Assum­
ing the Ramberg-Osgood isotropic power hardening function for damage 
material (d. Lemaitre and Chaboche, 1985), 
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~ U eq n ( ) 
Ueq = 1- D = asp , 2.72 

the damage evolution equations (2.69) or (2.71) are reduced as follows (cf. 
Lemaitre, 1985; Dufailly-Lemaitre, 1995): 

or 

dD = u~ R (aH ) 2nd 
2ES v U eq P P (2.73) 

(2.74) 

Equations (2.73) or (2.74) represent the ductile damage as the isotropic 
scalar variable D dependent on the cumulative plastic strain p, the stress 
triaxiality ratio UH/Ueq , and the isotropic strain hardening exponent of the 
material n. Note that S, sand K, n are temperature dependent material 
constants (SUbstitution s = 1 reduces (2.74) to the classical form (2.73)), 
whereas the stress triaxiality ratio uH/aeq , which changes for a nonpropor­
tionalloading, characterizes the stress state, and UH/Ueq = 1/3 in the 1D 
case. In other words, according to this model, the ductile damage, as caused 
by the mechanisms of microvoid nucleation, growth, and coalescence, is a 
plastic strain controlled mechanism with Po and Per (or eo and eer) cor­
responding to the initial damage Do and the threshold damage at failure 
D c.r . 

Material constants in (2.73) or (2.74) are determined by the one-dimensional 
load test at which the following holds: 

Rv (UH) = 1, P = e. 
ueq 

(2.75) 

Integration of (2.74) for the one-dimensional case, from the initial (eo,Do) 
to failure (eer,Der) conditions, with (2.75) taken into account, yields the 
equation 

D = D + __ 1_ ( U~ )8 (e2ns+1 _ e 2nS+ 1) 
er 0 2ns + 1 2ES er 0 

(2.76) 

that determines the critical damage Der in terms of the temperature depen­
dent material constants K, n, S, s and the ID strains at initial damage and 
the threshold damage at failure, eo and eer. Hence, integration of (2.74), 
with the simplifying assumption that the triaxiality ratio does not change in 
a loading process (which generally is not true) furnishes damage evolution 
with the cumulative plastic strain p: 

D = D _ Der - Do (2n8+1 _ 2n8+1) [R (UH)] 8 
er 2ns+1 2n8+1 Per P v ecr -eO U eq 

(2.77) 
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However, in the general case the stress triaxiality ratio aH/aeq changes 
with p, hence elimination of (a~/2ES)from (2.76) and (2.74) leads to the 
general damage evolution equation applicable for any loading path: 

( ) Dcr - Do [Rv (:eHq)]8p2nsdP, dD = 2ns + 1 (2ns+l 2ns+l) u ecr - eo 
(2.78) 

which holds together with the formula (2.76). 
In a particular case when strain hardening is saturated, X = 0, R = 0, 

or 
aeq 

1- D =as , (2.79) 

the strain density release rate approximation of (2.60) is obtained, 

ye = a:Rv 
s 2E' (2.80) 

and the corresponding generalized kinetic law of damage evolution (2.71) 
reduces to the simplified form 

(2.81) 

Integration of (2.81) for the one-dimensional case, from the initial (eo, Do) 
to failure (ecnDcr) conditions, yields 

Dcr = Do + C1s) 8 (ecr - eo) , (2.82) 

whereas for the three-dimensional case and constant Rv the linear damage 
growth with p holds: 

(2.83) 

or 

D - D _ Dcr - Do (p _ ) [R (aH )] 8 -cr crP v 
ecr - eo aeq 

(2.84) 

It is easily seen that (2.83) and (2.84) describing the damage evolution for 
hardening saturation follow from the general damage evolution for harden­
ing material (2.76) and (2.77), as an approximate case when the hardening 
exponent in (2.72) equals zero n = O. 
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II. Creep damage of metals and polymers 

In a particular case of creep damage, BenaUal's equation may be employed 
(d. BenaUal, 1985), 

,;X.VP ( J )-n 
jJ = 1 - D = In 1 - Koo (2.85) 

together with the classical Lemaitre-Chaboche kinetic law of damage evo­
lution (2.69): 

i> ye. a~qRv'H (p ) 
= SP= 2ES(1-D)2 P -Po (2.86) 

where, according to Chaboche (1988), a Mises-type partly coupled yield 
function is assumed, 

J(u,X,R) = Jdu-X) -R-ay , (2.87) 

and the Heaviside function H (p - Po) is introduced to account for the 
initial damage at P = Po. In a simplified case, when Norton's creep law is 
applied the viscoplastic multiplier is reduced to (d. Lemaitre, 1992) 

(2.88) 

with K" and N denoting the temperature dependent material parameters. 
Hence, by combining (2.86) with (2.88) the following damage evolution 
equations may be obtained: 

(3D) 
. a N +2R 

D - eq v H (p - 0) 
- 2ESKf! (1 - Dt+2 P 

(2.89) 

Note that in the one-dimensional case, with the new parameter A and r = k 
introduced, Kachanov's classical equation (2.26) is recovered: 

(2.90) 

if 

_1_ 

A = (2ESK[;') N+2 and r = N + 2. (2.91) 

Integration of (2.90) at constant uniaxial stress a = const, from the time 
of initial damage to (at g = go, D = Do) to current time t, yields 

[ N 3 (a)N+2 ] N~3 D (t) = 1- (1 - Do) + - (N + 3) A (t - to) , (2.92) 
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whereas, if for the initial (to) and the critical (tR) damage states Do = 0 
and Dcr = 1 hold, time to rupture tR is expressed as 

( Cf )-N 1 (Cf)-(N+2) 
tR = eo Kv + N + 3 11 ' (2.93) 

where, in view of (2.88), with D = 0 time of initial damage to has been 
eliminated, to = eo (Cf/Kv)-N. Again, integration of (2.88) for the 1D case, 
p = f;vP, Cfeq = Cf =const, with D (t) given by (2.92) and Do = 0, determines 
the viscoplastic strain evolution with time t > to (cf. Lemaitre, 1992): 

( Cf)N+2 ] N~3} (Cf)-CN+2) 
X 11 (t -to) 11 . 

(2.94) 

In the case of high temperature isotropic tertiary creep damage, Zhang and 
Lee (1993) developed the new constitutive law in the form 

dD C·s ( )r-l (1 D)-n ill = emin t - t. - . (2.95) 

If the following relationships hold: 

(2.96) 

an extension of the Kachanov-type uniaxial damage evolution by the ex­
plicit absolute temperature function is recovered: 

(lD) ~~ = ACfnexp ( - ~) (1- D)-n. (2.97) 

When the three-dimensional stress state is considered, the following holds: 

(3D) ~~ = A (Cf~r exp ( - ~ ) (1- D)-n , (2.98) 

where Cf~ stands for the damage equivalent stress (2.62) 

(2.99) 

In the above equations, t. is the initiation time of tertiary creep, n, C, 
s, r, A = CA,,;/n are material constants, and Q = Q'~ is the activation 
energy. Integration of (2.98) for variable damage equivalent stress furnishes 
damage evolution with time t > t.: 
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{ rt ( Q) } n~l 
D (t) = 1- 1- (n + 1) it. [a~(-r)r Aexp - RT dT (2.l(){)) 

III. Fatigue damage 

The kinetic law of damage evolution (2.69), or its generalized represen­
tation (2.71), may successfully be applied to the coupled fatigue-damage 
behavior. A particular form of the constitutive law of damage evolution 
applicable to this phenomenon depends on the cycles to failure range. A 
useful classification is due to Dufailly and Lemaitre (1995) (Table 2.3). 

Table 2.3. Fatigue classification (after Dufailly and Lemaitre, 1995) 

Number of Stress Strain Energy 
cycles range ratio ration 

to failure llc:P / llc:e llWP/llWe 

High cycle > lOb < a y e:-O e:-o 
fatigue HCF 

Low cycle 1O:l-104 ay-au 1-10 1-10 
fatigue LCF 

Very low cycle 1-10 close to au 1-100 1-100 
fatigue VLCF 

In the above classification the following nomenclature has been used: a y 
is the yield stress, au the ultimate stress, llc:p the plastic strain amplitude, 
t..E:e the elastic strain amplitude, t.. WP the (visco )plastic ( dissipative) en­
ergy per cycle, and t.. we the elastic ( reversible) energy per cycle. 

In case of high cycle fatigue (HCF), the average stress level on the 
macroscale should remain below the yield stress a < CJ y , such that very 
small plastic strain manifests only around the microscopic defects, hence, 
in consequence, the dissipative energy llWP can be disregarded when com­
pared to the elastic strain energy t..we. Damage in HCF tests is a strongly 
localized phenomenon with high stress and damage concentration, so the 
classical CDM method, based on the effective quasicontinuum concept of 
micro defects and the stress field homogenization method in RYE, should 
rather be replaced by a two-scale nonlocal mechanical model in which the 
size of the weak microplastic and damage zones is much smaller than the 
size of a specimen made of the elastic matrix and, hence, a direct correla­
tion between the weak inclusions should be incorporated to the model. A 
number of cycles to RCF failure is assumed to be as large as 105 . 

In contrast to HCF, in the case of low cycle fatigue (LCF) the stress level 
is larger than the yield stress a > a y, such that the continuum damage de­
velops together with the cyclic plastic strain after the incubation period 
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that precedes the nucleation and growth of microdefects. The mechanism 
of the ductile damage on the LCF tests is manifested through the trans gran­
ular slipband fields of plasticity developed in the large size grains, hence, 
the dissipative energy t.. W P is of the same order as the elastic energy t.. we. 
In other words, for LCF tests the plasticity-damage fields involve a large 
volume of the specimen with weak localization, such that the classical local 
CDM approach is applicable as the objective method for the number of 
cycles to failure prediction, which customarily is supposed to be between 
102 and 104 . 

In case of very low cycle fatigue (VLCF), the number of cycles to failure 
is of the order of 10. The cyclic damage mechanism is governed by the 
slipbands of plasticity in the grains the orientation of which is approxi­
mately inclined at 45° to the main stress, and rapid macrocrack growth 
in a transgranular mode in the slip planes occurs (see Fig. 2.1, after Du­
failly and Lemaitre, 1995). Strain hardening saturation is reached during 
the first cycle, so the perfectly plastic model is justified. The number of 
sites of microcrack initiation is large enough to allow for damage homog­
enization, and no damage threshold is needed since the damage evolution 
starts immediately just on the first cycle (d. Dufailly and Lemaitre, 1995). 

Consider the strain controlled process for repeated cycles known as the 
cyclic plasticity response. It may be analyzed by the use of coupled damage­
isotropic/kinematic hardening theory developed by Chaboche (1988), (2.64)­
(2.65), with the kinetic law (2.69) or the generalized kinetic law (2.71) 
taken as the damage evolution. Two competing processes, stress amplitude 
growth on the nucleation period (cyclic hardening due to isotropic/kinematic 
hardening mechanism) and stress amplitude drop on the damage evolution 
period (cyclic softening due to material deterioration), result in a cyclic 
response as illustrated in Fig. 2.11. 

Cyclic relationships between t..sP and t..a are assumed as follows (cf. 
Lemaitre, 1992): 

(2.101) 

or 

P _ t..a [ ] 
M 

t..s - K (1 - D) , (2.102) 

in cases of no strain-damage or saturated plasticity-damage coupling, re­
spectively. 

In case of the one-dimensional LCF test, the kinetic damage evolution 
(2.69) holds 

a2 R 
dD= eqll d 

2ES(I- D)2 P 

2 
a I.PI 

2ES (1- D)2 s . 
(2.103) 
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Fig. 2.11. Strain controlled cyclic hardening: a) without damage, b) with dam­
age, c) stress~strain curve simplification for stable hysteresis loop 

For the nucleation period N < No accumulated plastic strain per cycle 
(D = 0) is 

(2.104) 

and, assuming a simplified stable stress---strain loop (.Do€}, = const) , the 
accumulated plastic strain to reach the nucleation limit No is 

Po Po = 2No.DocP or No = --. 
2.Docp 

(2.105) 

For the coupled plasticity-damage period No < N < NR assuming for 
plastic hardening saturation as = a/ (1- D) to be constant over each 
cycle the damage evolution may easily be integrated over one cycle to give 
the damage per cycle .DoD/.DoN (cf. Fig. 2.11c) 

.DoD = 2 a~ .DocP = .Doa2 .DocP 

.DoN 2ES 4ES (1 _ D)2 
(2.106) 

and damage per (NR - No) cycles to critical damage Dcr 
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~a2 
Dcr = 2~cP (NR - No). 

4ES(1- D) 
(2.107) 

Combining (2.105) with (2.107) the total number of cycles to failure NR is 
furnished as 

(2.108) 

or, neglecting, for simplicity, the nucleation period No = Po = 0 and as­
suming Dcr = 1, the simplified formula for number of cycles to failure as a 
function of both the stress and strain amplitudes is: 

(2.109) 

The difference from the classical Manson-Coffin law relating the number 
of cycles to failure NR, to the plastic strain amplitude ~cP is easy to see 
(Fig. 2.12): 

(2.110) 

This power relationship between ~cP and NR may formally be recovered 
from (2.109) if the cyclic stress strain curve ~a - ~cP is given by (2.102) 
to obtain 

(2.111) 

For the very low cycle fatigue (VLCF) range, a big gap between the exper­
imental results and theoretical prediction is observed. 

To avoid this inconsistency, Dufailly and Lemaitre (1995) propose the 
generalized kinetic law of damage evolution as given by (2.71) applicable 
for 3D cases in the form 

dD = eq v d [ 
a2 R jB 

2ES (1 - D)2 p. 
(2.112) 

In the case of cyclic loading, assuming the plasticity criterion coupled with 
damage a eq/ (1- D) = as = ~a/2 and integrating (2.112) over cycle, the 
damage per one cycle is obtained 

~D (a;Rv)B 
~N = 2ES ~P, (2.113) 

which yields the critical damage Dcr = 1 at N = NR given by 

(2.114) 
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Fig. 2.12. Manson-Coffin curve for Inco 718 alloy at 550°C (after Dufailly and 
Lemaitre, 1995) 

Note that for s = 1, (2.109) is again recovered. 
In the fatigue-damage models discussed so far, a stable hysteresis loop 

reached after the incubation period was assumed. In case of the LCF or the 
VLCF it turns out that the hysteresis loop deforms due to cyclic hardening 
and simultaneously moves along the strain axis due to the progressively 
increasing large mean plastic strain (Inixed fatigue ratchetting mode). A 
generalization of the Manson and Coffin law (2.110) to the case of accu­
mulated mean plastic strain is due to Skoczeii., 1996. A push-pull loading 
program for a specimen made of Nickel A is sketched in Fig. 2.13. 

Applying a power cyclic relationship 

a 1 l/M 
a = -- = -K (cP - cp . ) 

s 1-D 2 mill 
A P _ [ !:l.a ] M ( ) 

or tic - K (1- D) ,2.115 

the damage per cycle is traditionally obtained by integration of the kinetic 
damage evolution (2.103) 

!:l.D = _1_1E::'ax [~K (cP _ cP. )l/M] 2 dcP = ~ (!:l.cP)'Y (2.116) 
!:l.N ES E!:,in 2 mm 4ES"(' 

where,,( = (M + 2) 1M. When the ratchetting effect (progressively increas­
ing mean plastic strain) was incorporated, the author arrived at the follow­
ing generalization of (2.116): 

!:l.D K2 (!:l.cpf 
!:l.N - 4ES,,( [1 _ E::'(N)] or , 

Efa 

(2.117) 
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Fig. 2.13. Superimposed diameter strain (logarithmic) for linearly increasing 
plastic strain: a) constant ratchetting rate model, b) simplified moving hysteresis 
loop 

where the mean plastic strain is s~ = (s~ax + s::in) /2 and Sfo is the tensile 
ductility, such that for s~ --+ Sfo the corrected increment of damage per 
cycle tends to infinity. For damage per N cycles the integration of (2.117) 
for a given function s~ (N) and constant b.sP over the number of cycles 
yields 

D (N) = rN b.D dN =~ (b.sP)'Y rN [1- s~ (N)] -C> dN. (2.118) 
io b.N 4ES,,! io Sfo 

If, for simplicity, a linear function holds for mean plastic strain, 
s~ (N) = kN, Eq. (2.118) may be integrated to arrive at 

D (N) = ~ (b.sP)'Y (1 - aN) I-a - 1 
4ES,,! a (0; - 1) 

(2.119) 
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where a = K/Efo, or assuming D = Dcr for N = N R , and introducing 
C1h = 4ESDcr"y/K2, a corrected number of cycles to failure for finite 
ratchetting is furnished 

(2.120) 

or 

1 {[ C]1/(1-0:)} NR=~ 1- l+a(a-l)NR . (2.121) 

Note that, if a = 0 is assumed, the classical Coffin formula NR = Nfi is 
recovered. 

2.3.3 Unified energy-based CDM model of ductile damage 
of materials 

A unified CDM model for ductile materials derived from the principles 
of thermodynamics is due to Mou and Han (1996). When a quasi-static 
loading is applied to a solid the energy transferred to the solid is either 
stored as elastic strain energy or dissipated by irreversible mechanisms 

arising from microstructural changes. The damage variable DB = In ( A/A) 
is considered after Broberg (1974) as one of internal state variables which 
influence the Helmholtz free energy of the solid 1jJH (ee, cr, T, DB, T) 

(2.122) 

and the generalized thermodynamic forces (u, X, R, ye) are associated with 
elastic strain, kinematic hardening, isotropic hardening, and damage, re­
spectively (ee, cr, T, DB) through 

(2.123) 

and the specific entropy production rate can be expressed as 

(2.124) 

where T denotes absolute temperature, q is the heat flux vector, and A, A 
denote the initial and the fictive undamaged cross-sectional area, respec­
tively. Also in this model the damage evolution influences the elastic energy 
release, whereas the inelastic energy is not affected by the continuous dam­
age. Additionally, the hypothesis of complementary energy equivalence is 
employed in the derivation to obtain: 
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(2.125) 

E = E(1- D)2 = Eexp (-2DB). (2.126) 

Note that (2.125) differs from previously used (2.51) in the application of 
energy equivalence principle and the damage measure DB that differs from 
the Kachnov's type variable D = 1- exp(_DB), DB E (0,00). Limit­
ing ourselves to the isotropic elasticity law (2.88), employing (2.125), and 
decomposing the elastic strain energy to the shear strain energy and the 
volume dilation energy, we obtain 

(J2 [2 e e(S) e(H) eq 

eY = eY + eY = 2Eexp (-2DB) '3 (1 + v) 

( )2] 2 R (JH (Jeq v 

+ 3 (1 - 3v) (Jeq = 2E exp (-2DB) , 

(2.127) 

whereas the damage conjugate force ye (DB) is furnished now as follows: 

(2.128) 

To establish the damage evolution model, suppose there exists a dissipative 
potential 'ljJd in the form (cf. Mou and Han, 1996) 

_I,d (ye. DB T) = as (_ ye)2 (Per - pt-1 _2DB. 
'V ,p,p, , S p2n e p, (2.129) 

where 0, S, and n (n < 1) are temperature dependent material constants 

and p is the cumulative plastic strain, p = [(2/3)efjefjr/2. Hence, for the 
constitutive equation of damage evolution the following is obtained 

(2.130) 

or, assuming the Ramberg-Osgood hardening law (J eq = K pn, a particular 
representation of damage evolution holds: 

iJB = _2 0K2 R ((JH) (P _ )n-l. 
ES v cr P P 

(Jeq 
(2.131) 

or 

(2.132) 
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where u~ = 4GK2 is a new material constant which should be determined 
from the one-dimensional test, with (2.75) accounted for, to yield the crit­
ical damage 

U~ 11 

Dcr = Do + 2nES (scr - so) . (2.133) 

Eventually, integration of (2.132) under the assumption of constant R" 
gives the damage evolution law for proportional loading 

Dcr - Do ( )" (UH ) D = Dcr - ( )" Per - P RI} - . 
Scr - So Ueq 

(2.134) 

In the general case of nonproportionalloading, (2.132) and (2.133) hold. 
Observe that in a particular case, n = 1, (2.134) reduces to (2.77) or (2.84) 
with s = 1. Damage evolution depends on the cumulative plastic strain P, 
the hardening exponent n, and the triaxiality ratio UH/Ueq. The damage 
rate decreases as the exponent 0 < n < 1 increases and becomes constant 
with P when n ---+ 1. On the other hand, the damage rate increases linearly 
with the triaxiality function RI}' 

2.3.4 Irreversible thermodynamics model of a coupled 
isotropic damage-thermoelastic-( visco )plastic material 

1. General coupled state equations derived from irreversible 
thermodynamics 

In Sect. 2.3.1 it was assumed that continuum damage evolution is mani­
fested by elastic strain energy release only. In general, the inelastic (irre­
versible) energy associated with the strain hardening is also released with 
damage growth. A consistent unified model, based on the assumptions that 
variable Y associated with the isotropic damage internal variable D con­
tains both the classical elastic (reversible) energy ye and the inelastic (irre­
versible) energy yan, was developed by Saanouni, Forster, and Ben Hatira 
(1994). The hypothesis of total energy equivalence is used to define the 
effective state variables in a fictive undamaged configuration, instead of 
the classical state variables in a damaged configuration (cf. Chow and Lu, 
1992). Now, we introduce the mechanical flux vector j and its thermody­
namic conjugate force vector F as follows: 

. { .}T J = eP,Ot.,r,D,q , 

F = {u,x, R, y, -~gradT}, 
(2.135) 

such that the entropy production rate is written as 
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(2.136) 

The small strain is decomposed to the elW3tic ee and inelastic ean parts and 
the total energy equivalence is applied (independently) to the elastic «>e and 
the inelastic «>kh and «>ih energy portions, respectively, in the damaged and 
the fictive undamaged configurations: 

«>kh (a, D) = iX : a = iX : a, 

«>ih (r, D) = ~r R = !rR. 
Hence, the couples of effective state variables are given by 

- R 
R= hr (D)' r = hr (D)r; 

(2.137) 

(2.138) 

where ge (D), ho: (D), hr (D) are positive decaying functions of D defined 
as follows: 

ge (D) = ho: (D) = hr (D) = (1- D)1/2 . (2.139) 

Hence, the effective state variables are used in the state potential instead 
of the classical state variables, and the Helmholtz free energy is taken as a 
state potential 

(2.140) 

where 

p7/Je ('i", T) = ~e": A: e" - (T- To)k: e" - fJCvT [log (~) -1] , 
p7/Jan (a, r, T) = lOa: a + iQT2. 

(2.141) 
In the above equations, A is the symmetric fourth-rank elastic stiffness ten­
sor for undamaged material such that iT = A : e" (with thermal tenns omit­
ted), 0 and Q denote the temperature dependent kinematic and isotropic 
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hardening moduli, k is the symmetric second-order tensor of thermal con­
ductivity, p is the mass density, Cv the specific heat, and To the initial 
temperature. 

At variance with the model from Sect. 2.3.1(11) (2.65) the damage affects 
both the elastic (reversible) and the inelastic (irreversible) energy portions 
and the effective state variables e, ii, r are consistently used for the state 
potential (free energy) of damaged material. Additionally, the inelastic flow 
is assumed to be initially isotropic and of the Mises-type, thermoelastic 
behavior is assumed to be linear and free from the inelastic effect, damage 
is assumed to be isotropic, and the nonlinear kinematic-isotropic hardening 
law is applied. Eventually, the state equations are furnished from the state 
potential in the following manner: 

mpH 2-
X=p- = -Go. ao. 3 ' 

mpH _ 
R=p-- =Qr, 

ar 

y = _p a1/JH = ye + yan, 
aD 

(2.142) 

where the elastic energy and inelastic energy release rates are given by 

ye=_pa1/Je =!ee:A:ee-!(T-To) k 1/2 :ee, 
aD 2 2 (1- D) 

an mpan 1 1 2 
Y = -p aD = aGo. : 0. + 2Qr 

(2.143) 

and effective thermo-mechanical moduli for damaged material are intro­
duced: 

A=(1-D)A, C=(1-D)C, Q=(1-D)Q, k=(1_D)1/2k. 
(2.144) 

Let us mention that in this model the fully damaged RVE is free not only 
from the Cauchy stress 0" but also from the internal stresses X and Rand 
it is fully unable to support heat conduction. A more developed model 
accounting for a combined conduction/radiation heat transfer mechanism 
is discussed in Sect. 5.1. 
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II. Time-independent nonlinear isotropic/kinematic hardening coupled 
with isotropic damage 

State equations (2.142)-(2.144), which contain scalar damage variable D 
representing the actual continuum damage state, require a suitable dissi­
pation potential. In case of a plastic dissipation the plastic flow ean=eP is 
time-independent. A consistent coupled yield function is obtained as the ex­
tension of the Chaboche-Rousselier uncoupled yield function of the virgin 
nonlinear isotropic/kinematic hardening material, when the classical state 
variables (0", X, R) in (2.17) are replaced by the effective variables (i7, X, 
R). In other words, the Mises-type yield function governs the plastic dissi­
pation coupled with damage in space of effective dual variables (Saanouni, 
Forster, and Ben Hatira, 1994) 

(2.145) 

and the fully coupled plastic potential, which generalizes Chaboche's equa­
tion (2.64), may be written as 

(2.146) 

where, following Germain, Nguyen, and Suquet (1983), the damage evolu­
tion potential FD (Y) is supposed to be a power function of the total (elas­
tic and inelastic) energy release due to damage evolution Y = ye + yan 
(extension of (2.70)) 

FDy- ___ _ S (y)S+l 1 
()- (8+1) S (l-D).B" 

(2.147) 

The present unified formulation assumes the same (single) potential to de­
scribe both the plastic dissipation and the damage dissipation. In other 
words, in this model, which is well applicable for ductile metals, it is sup­
posed that damage cannot initiate without plastic deformation. However, 
it is not true in case of brittle materials, geomaterials, or composite mate­
rials, where more advanced multisurface theory must be developed. More­
over, by contrast to the Chaboche's fully associative model (2.64)-(2.65), 
the present model is associative with respect to the Cauchy stress 0", but 
non-associative with respect to the internal variables X, R, y. Hence, the 
state equations are obtained by the generalized normality rule (2.65), with 
F Ch (2.64) replaced by F SFB (2.146)-(2.147) 
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3a ;i. I 

20 (1- D) Xij' 

. 8FsFB . [1 b R ] 
r = ->"fiR = >.. (1- D)1/2 - Q (1 - D) , 

D=->"--=->" -. ·8FsFB . (Y)· 1 
8Y S (1- D).B 

(2.148) 
or, by employing (2.142) the equivalent form can be furnished 

. 3aX!· • "-P \ .p. .) 
Qij = Cij - aAQij = E:ij - P 20 (1- D)1/2' 

(2.149) 

D=->" - =-p - (1_D)2-.B . . (y)B 1 (Y)· 1 

S (1- D).B S ' 

where 

(2.150) 

It is observed that substitution of a = b = 0 reduces state equations (2.149) 
to the fully coupled linear hardening theory: 

3 a~· -X!· 
g"f? = _p 'J 'J 

'3 2 J2 (a'j - Xii)' 

(2.151) 

r=p, 

b=_'(1_D)1/2(~)· 1 
P S (1- Dl' 
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where plastic strain eP and cumulative plastic strain p may be identified 
with internal variables of kinematic and isotropic hardening; however, these 
equations differ from Chaboche's equations (2.66) where the classical effec­
tive stress concept has been used, CT = 0'/ (1- D), and the elastic energy 
release rate ye has been applied as the thermodynamic conjugate force of 
damage D. 

III. Time-dependent viscoplastic flow coupled with isotropic damage 

In case of time-dependent coupled damage-creep-isotropic /kinematic hard­
ening material the single surface coupled viscodamage dissipation potential 
may be expressed as a sum of the viscoplastic and the creep-damage parts 
(cf. Saanouni, Forster, and Ben Hatira, 1994) 

<1>* (CT, X,li,D,T) = <I>'VP (CT,X, li,T) + <I>.D (0', D,T), (2.152) 

where the viscoplastic term is represented by a following power function of 
f extended by the additional terms representing nonlinear hardening 

.vp K (1 [ 3 a ~ ~ 1 ~ ~ 1 b ~2 1 ::-:2] )n+1 
<I> = -- - f + - - X : X - - aC ex : ex + - - R - - bQr 

n+l K 40 3 2Q 2 ' 
(2.153) 

whereas the creep-damage term is given by 

(2.151) 

In the above equations, the function f (CT, X, li) denotes the Mises-type 

isotropic/kinematic hardening yield function as defined by (2.145); a, b, C, 
Q are temperature dependent hardening parameters, K and n character­
ize creep behavior of the material, a scalar function X (0') represents the 
Hayhurst-type damage equivalent stress as defined by (2.36) and A, r, k 
characterize creep-damage under multiaxial stress according to Chaboche, 
(2.35) . 

Hence, the following definitions hold: 

X (0') = aJo (0') + 3tH1 (0') + (1- a - fJ) h (0'), 

Jo (0') = max 0";, J1 (0') = O";i, J2 (0') = [G) O";jO";j] 1/2, (2.155) 
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and symbols denoted by primes ( )' represent deviatoric components, where­
as the tilde C) refers to the effective state variables, (2.138). Note that 
in view of the effective state variables definitions (2.138), and the state 
equations (2.142), the additional terms in the MacAuley bracket (.), Eq. 
(2.153), which was introduced in order to describe a nonlinear hardening 
effect on the damage-viscoplastic dissipation potential, may be reduced to 
the linear hardening case if the following holds: 

and 

i=~cQ 
3 

2- -
or X=-Ca; R=Qr or R=Qr 

3 

c = (1 - D) c, Q = (1 - D) Q. 

(2.156) 

(2.157) 

Eventually, if the generalized normality rule is applied to the single cou­
pled viscoplastic-damage potential, (2.152)-(2.154), the state equations are 
established as: 

r = _ ail>' = (11K)", [1- .!:R] 
oR (1 _ D)1/2 Q' 

D=_oil>' = [x(a ij )]r(l_D)-k 
BY A 

(2.158) 
or, in an equivalent form, 

. .vp \ vp 
aij = Cij - al\ aij, 

,.:...vp 
(2.159) 

r =).. (1- bT), 

D = [X~ij)r (1- Dr k , 

where 
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·vp _I L)n 
A -\K ' 

,.:..vp 

A 
>.vp 

(2.160) 

and the MacAuley bracket (F) is defined as: (F) = 0 if F < 0, whereas 
(F) = Fif F > O. Note that (2.159 and 2.160) represent the time-dependent 
fully coupled visco-plastic-damage state equations, whereas (2.149 and 
2.150) describe the time-independent coupled plastic-damage dissipation 
although, the representation for the state variables (eVP ,a,r) and (eP , a,r) 
is in both cases (Le., both (2.159) and (2.149» analogous, although different 

. ·vp 
definitions for A and A hold. 



3 

Three-dimensional anisotropic 
damage representation 

3.1 Damage anisotropy 

3.1.1 Directional nature of damage 

In Sect. 2.1.2, two basic damage mechanisms in crystalline metallic mate­
rials were distinguished. 

The first damage mechanism, called the ductile or transgranular dam­
age mode, is predominant at room (or low) temperature and high stress 
level tests when the slipbands of plasticity are formed in favorably oriented 
grains. The microslips are inclined roughly at 45° to the main stress di­
rection and the coupled damage-(visco)plasticity mechanism may approx­
imately be described by the isotropic (scalar) damage internal variable 
D, the evolution of which may be governed by the elastic energy release 
rate (Lemaitre and Chaboche, 1985) or the total (elastic and inelastic) en­
ergy release (Saanouni, Forster, and Ben Hatira, 1994) in a more general 
case. The material instability from microslips initiation eventually yields 
a discontinuous bifurcation of the velocity field (cf. Runesson et aI., 1991; 
Shrayer and Zhou, 1995). The plastic strain localization in zones of mi­
crovoid concentration leads to a failure mode with material separation and 
the formation of free surfaces (decohesion) on the macro level. The macroc­
racks are formed in a trans granular mode with a preferable inclination that 
coincides with the directions of slipbands of plasticity (Fig. 2.1). 

The second damage mechanism, usually identified for simplicity with 
brittle or intergranular damage, is representative for high temperature but 
rather low stress level loading conditions. It is mainly based on the rni­
crocracking process initiated at the grain (or subgrain) boundaries, and it 
is recognized to be controlled by the maximal stress-rather than the ef­
fective stress, such that the normal to the micro crack direction coincides 
with the principal stress direction at the point considered (Fig. 2.2). The 
macro cracking process may be observed at selected grain boundaries to re­
sult from coalescence of microcracks of similar average orientation. No, or 
negligibly small, plastic deformations precede the damage evolution, hence; 
pure brittle failure mechanism occurs. The discontinuous and heterogeneous 
damaged solid is approximated by the pseudo-undamaged continuum by 
the use of the couples of effective state variables, the definitions of which 
depend on the equivalence principles employed. In such a case, however, 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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the damage evolution in the elastic-brittle or creep materials is no longer 
isotropic; hence, unlike the ductile damage phenomenon, brittle damage 
behavior is anisotropic in nature, so that the description by scalar internal 
variable(s) is insufficient. The essentially anisotropic description of dam­
age in the elastic-brittle or creep solids by the development of distributed 
and oriented microscopic cracks require damage variables ranging from a 
vector to second or higher-rank tensors (Vakulenko and Kachanov, 1971; 
Krajcinovic et al., 1981, 1983, 1993; Murakami et al., 1981, 1983, 1987, 
1988; Murakami and Kamiya, 1997 and others). 

The damage anisotropy is easily observed in metal specimens subjected 
to creep under nonproportional loading conditions. Microstructural obser­
vations by 'Itl}pczynski, Hayhurst, and Leckie (1981) allowed the identi­
fication of two classes of metallic materials: copper-like, where cavitation 
takes place on grain boundaries essentially perpendicular to the maximum 
principal stress, and aluminum alloy-like, where grain boundary cavitation 
is much more isotropically distributed (cf. also Hayhurst and Felce, 1986). 
The complexity of the damage accumulation depends on the loading path 
or on the rotation of principal stress axes with respect to material fibers. 
Thin cylindrical copper tubes were tested to failure at a temperature of 
250°C under the following programs: 

i. steady load (constant principal stress direction), 

ii. single reverse torsion, steady tension (single principal axes jump), 

iii. multiple reverse torsion, steady tension (multiple principal stress axes 
rotations) . 

In the case of steady load, the majority of cracks are found on planes 
perpendicular to the maximum principal tension stress 0"1 (Fig. 3.1a). In 
the single reverse torsion steady tension test, two failure planes may be 
observed, each corresponding to the principal stress plane (Fig. 3.1b). In 
the case of a multiple-reverse torsion steady tension test, the crack planes 
of different orientation within the angle between two principal stress planes 
might be recognized (Fig. 3.1c). For the lifetime and deformation predic­
tion, the single damage variable theory by Leckie and Hayhurst (1974) 
(2.39) was employed for both copper and aluminum specimens under non­
proportional loadings. For aluminum alloy, the lifetime and deformation 
prediction were in sufficient accord with the experimental results. However, 
for copper, strain rate discrepancies with a factor of two were reached. 

3.1.2 Damage variables review 

The crucial problem for continuum damage mechanics is the proper and 
accurate modeling of material damage. In all cases of various equivalence 
principles it is assumed that in a quasicontinuum the true distribution of 
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Fig. 3.1a. Mid-thickness micrograph of a copper tube tested to failure under 
steady load (magnification x75) (after Tr§pczyitski et al., 1981) 

Fig. 3.1h. Mid-thickness micrograph of a copper tube tested to failure under sin­
gle reverse torsion, steady tension loading (magnification x65) (after Tr§pczyitski 
et al., 1981) 



72 3. Three-dimensional anisotropic damage representation 

Fig. 3.le. Mid-thickness micrograph of a copper tube tested to failure under 
multiple torsion steady tension (magnification x65) (after Trl}pczynski et al., 
1981) 

defects is smeared out and homogenized by properly defined internal vari­
ables that characterize damage: the scalar variables w or D (Kachanov, 
1958), the vector variables Wv or Dv (Davison and Stevens, 1973), the 
second-rank tensor variables fl, D (Vakulenko and Kachanov, 1971; Mu­
rakami and Ohno, 1981), or the fourth-rank tensor variables :6 (Chaboche, 
1982; Krajcinovic, 1989; etc.). In general, damage may be characterized by 
the set V of scalars, vectors, and/or second, fourth or higher-rank tensors 

that function as internal variables V = {D, D v, D, :6, ... }. The extended 

damage variables review used to describe the damage process is presented 
in Table 3.1. 

Roughly speaking, in a ductile deformation process of crystalline mate­
rials, a flow of mass through the lattice takes place, at which the lattice 
undergoes elastic reversible deformation only, whereas the total number 
of active atomic bonds remains approximately constant. Hence, no (or a 
negligibly small) change of the effective material properties is assumed to 
occur. On the other side, in a brittle deformation process the lattice itself 
is subjected to irreversible changes resulting from breaking of the atomic 
bonds and, hence, a progressive material degradation through strength and 
stiffness reduction takes place. This fully coupled CDM approach to the 
elastic-brittle damage or creep damage, when the damage evolution influ­
ences both the stress and strain state and also the elastic properties, leads 
to the concept of fourth-rank elasticity tensors modified by damage V, 
stiffness A(V), or compliance A - l(V) : 
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Table 3.1. Damage variables reVIew (cf. Murakami, 1987; Skrzypek and 
Ganczarski, 1998a) 
I Reference Material damage 

Scalar damage variables 
Kachanov, 1958 creep \isotropic) 
Kachanov, 1974 creep (anisotropic) 
Rabotnov, 1968 (1969) creep (anisotropic) 
Martin-Leckie, 1972 creep (anisotropic) 
Hayhurst-Leckie, 1973 creep (anisotropic) 
Davison et al., 1977 spalling, elastic 
Gurson, 1977 elastic-plastic 
Tr<}pczynski et al., 1981 creep (nonproportional) 
Lemaitre-Chaboche, 1978 creep (anisotropic) 
Chaboche, 1988 creep, fatigue, ductile, brittle, anisotropic 
Lemaitre, 1987, 1992 general 
Rides et al., 1989 effect of creep damage on elastic properties 
Randy-Cozzarelli, 1988 propagation of rupture 
Murakami-Mizuno, 1992 creep under irradiation 
Zheng-Lee 1993 creep, high temperature 

Scalar: w(x) lKachanovJ (isotropic) 
. . "I. Aef 

contmmty: Of' = Ao 
damage: w = 1 - W 
effective stress: (f = !!.. = _rJ_ 

W 1- w 
e(n) - nonuniform distribution of damage (defined on a unit sphere) 
[Krajcinovic] : 
Q(n) = eo isotropic 
eo = J e(n)dA nearly isotropic 

411' 

Vector damage variables 
Davison-::;tevens, lY70 
Kachanov, 1974, 1986 

spalling, elastic 
creep 

Krajcinovic-Fonseka, 1981 elastic-brittle 
Krajcinovic, 1983 
Singh-Digby, 1989 
Lubarda-Krajcinovic, 
199~ 

Vector: w(x) lKachanov]: 
W=wvv 
1/J = wvv 

rJv 

rJv = W" 

general, creep 
brittle solid, anisotropic 
general 
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Second-rank damage tensor 
Murzewski,1957,1958,1992 quasi-homogeneous metals (stochastic 

approach) 
Rabotnov, 1969 creep 
Vakulenko-Kachanov, 1971 plastic-brittle 
Murakami-Ohno, 1981 creep 
M. Kachanov, 1972 elastic 
Dragon-Mr6z, 1979 brittle-plastic 
Cordebois-8idoroff, 1982 elastic, elastic-plastic 
Betten, 1983 general, creep 
Litewka, 1985, 1987, 1989 creep (anisotropic) 
Kondaurov, 1988 elastic (orthotropic) 
Murakami, 1983, 1987, 1988 creep, fatigue 
Karihaloo-Fu, 1989 concrete 
Chow-Lu, 1992 anisotropic, elastic-plastic 
Lis, 1992 (nonproportionalloading) 
Chaboche, 1993 damage induced elastic 
Lis-Litewka, 1996 anisotropy 
Zheng-Betten, 1996 effective stress review 
Murakami-Kamiya, 1997 elastic-brittle anisotropy 
Skrzypek et a1. 1998a elastic-brittle anisotropy 

Second-rank tensor [Murakami-Ohno): 0 = E~=1 Dinini 
O=l-w, a=![(1-0)-1 :0'+0': (1-0)-1] 
e(n) = eklnknl second rank-crack density tensor [Krajcinovic): 
Dij = J e(n)ninjdA 

411" 

Fourth-rank damage tensor 
Chaboche, 1982 creep (anisotropic) 
Leckie-Onat, 1981 creep 
Simo-Ju, 1987 general 
Chow-Wang, 1987 general, anisotropic 
Krajcinovic, 1989 general, anisotropic 
Lubarda-Krajcinovic, 1993 general, anisotropic 
Schiesse, 1994 elastic-plastic, anisotropic 
Chen-Chow, 1995 damage effect tensor, anisotropic 
Voyiadjis-Park, 1996 anisotropic damage, plasticity 
Qi-Bertram 1997 single crystal anisotropic 
~ourth-rank tensor lChabocheJ: 
D-fourth-rank damage tensor 
E-fourth-rank elastic tensor, E(O) = (I - O):E, a = (I - 0)-1:0' 
a = M(O):O', M(O) - fourth-rank damage effect tensor 
e(n) = eijklninjnknl fourth-rank crack density tensor [Krajcinovic] 

Dijkl = J e(n)ninjnknldA 
411" 

Eighth-rank damage tensor 
Chaboche, 1981 creep, fatigue 
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or (3.1) 

where V stands for properly selected damage variables (cf. Litewka, 1985, 
1989; Chen and Chow, 1995; Murakami and Kamiya, 1997, etc.). A general 
concept of the fourth-rank damage effect tensor M(V) that transforms 
the Cauchy stress tensor in a damaged configuration u to the effective 
(conjugate) Cauchy stress tensor in an equivalent fictive pseudo-undamaged 
solid U, based on the appropriate damage equivalence hypothesis (strain 
or stress or complementary energy or total energy equivalence) takes into 
account the fully anisotropic nature of damage in the form (cf. Chow and 
Lu, 1992; Zheng and Betten, 1996) 

u = M(V) : u or u = u(u,V). (3.2) 

M(V) is an isotropic fourth-rank tensor-valued function of the damage state 
variable V, and the effective stress tensor u(u, V) is an isotropic second­
rank tensor-valued function of u and V (damage isotropy principle), the 
representation of which depends on the equivalence principle adopted. 

3.2 Second-rank damage tensors 

In order to develop the orthotropic damage theory we postulate that the 
damage state is sufficiently described by the second-rank damage tensor D 
as defined by Murakami and Ohno (1981): 

3 

D = 2:DiIL;0IL;, (3.3) 
.=1 

where Di and IIi are principal values and the unit vector of principal di­
rections of the tensor D. D. may be interpreted here as the ratio of area 
reduction in the plane perpendicular to ni caused by the development of 
damage Di = MDi/Mi (cf. Fig. 3.2). 

The assumed property of symmetry with respect to three planes deter­
mined by the normals nl, n2, and n3 reflects damage orthotropy. In other 
words, the area reduction in the directions of damage orthotropy can be 
expressed in terms of the principal damage components D1, D2, D3, re­
spectively. 

Transformation of the area element 8A to 81 is described as: 

(3.4) 

or 
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Fig. 3.2. Schematics of the RVE transformation from the current (damaged) to 
the equivalent (pseudo-undamaged) configuration 

By equating the tractions Pi through 8A and Pi through 8..4 the effective 
stress is furnished: 

(3.6) 

or 

(3.7) 

The above is equivalent to the following definition of the asymmetric effec­
tive stress: 

-as (D)-l u =u: 1- . (3.8) 

However, only the symmetric part of (3.8) accounts for the constitutive 
equations, so 

(3.9) 

The following review of various effective stress concepts is due to Zheng 
and Betten (1996): 

1. Isotropic damage (Lemaitre and Chaboche, 1918) 

(3.10) 
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2. Asymmetric effective stress tensor (Murakami and Ohno, 1981) 

(3.11) 

3. Symmetric part of the asymmetric effective stress tensor (Murakami, 
1988) 

(i = ~ [0' : (1- D)-l + (1- D)-I: 0'] ; (3.12) 

4. Alternative representation of the symmetric effective stress tensors 
applied to elasticity, plasticity, and ductile damage (Chow and Wang, 
1987; Cordebois and Sidoroff, 1992) 

(i = (1- D)-1/2 : 0' : (1- D)-1/2; (3.13) 

5. Pseudo-net-stress tensor (Betten, 1986) 

(3.14) 

6. General representation of the effective stress tensor by a linear trans­
formation between the Cauchy stress and the effective Cauchy stress 
tensors, by the use of a fourth-rank damage effect tensor (Chow and 
Lu, 1992) 

(i = M(D): 0'. (3.15) 

In a particular case when the Cauchy stress 0' and the second-rank dam­
age tensor D are coaxial in their principal directions, or, in other words, 
rotation of principal axes of the stress (and damage) tensor is excluded, 
they both are commutable 0' : D = D : 0' and, as the consequence, the 
model (3) and (4) reduce to the simplified form 

iT = (1- D)-I: 0' = 0' : (1- D)-I. (3.16) 

However, in general, the above does not hold when current principal direc­
tions of the stress tensor Qi and of the damage tensor f3i do not coincide 
if the principal stress axes rotate (e.g., due to a shear effect) and, hence, 
the principal axes of damage follow them (cf. Skrzypek and Ganczarski, 
1998). Additionally, when the damage is not highly developed, the differ­
ence between the models (3) and (4) is negligible (Zheng and Betten, 1996) 
and, since (1 - D) and (1- D)1/2 are both positive definite second-rank 
symmetric tensors, there is no essential difference between models (4) and 
(5). 

Let us also mention another definition of the second-rank damage ten­
sor D' which is due to Vakulenko and Kachanov (1971) and applied by 
Litewka (1985, 1987, 1989). The concept is restricted to the case of the 
regularly damaged material possessing three mutually perpendicular planes 
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of orthotropy defined by the unit normal vectors nIl n2, n3 for which the 
principal damage components are defined as the ratios of corresponding 
damaged oAo to residual (undamaged) OAR = t5A - t5Ao portions of the 
surface elements Di = t5Ao;/ OARi (i = 1,2,3): 

where 

* Di 
D; = 1- Di' 

3 

D* = LDin.0n;, 
;=1 

Di E (0,00), 

(3.17) 

D. E (0,1). (3.18) 

An alternative way to define the second-rank damage tensor is to include 
the microcracks morphology. Following the concepts of Vakulenko and 
Kachanov (1971), also extended by Kachanov (1980) the so-called damage 
descriptor through crack opening displacement is evaluated in the volume 
ofRVE 

(3.19) 

where n is a unit normal vector to the crack surface, u is the displacement 
jump across the crack surface, V is the volume of the RVE and the inte­
gration is done over all crack surfaces, S. In the particular cases of the 3D 
penny-shaped cracks or the 2D slit cracks of characteristic size rk (3D crack 
radius) or ak (2D crack half-length), respectively, the average crack density 
second-rank tensors over volume V or area A are furnished (cf. Lacy et aI., 
1997): 

(3.20) 

or 

(3.21) 

3.3 Strain, stress, and energy based CDM 
models 

Consider a damaged solid in a current configuration, the mechanical state 
of which is defined by the couple of external state variables (e, u), where e 
is the small strain tensor and its associated variable u is the Cauchy stress 
tensor. Introduce, next, a fictive pseudo-undamaged state characterized 
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by the effective state variables (e, iT), the definition of which depends on 
the damage equivalence principle. In Sect. 1.4.1, the hypotheses of strain 
equivalence (Chaboche, 1978) and elastic energy equivalence (Cordebois 
and Sidoroff, 1979) whare applied to the 1D case to yield the formulas (1.13) 
and (1.16), respectively. Let us discuss now the various damage equivalence 
principles more systematically, to generalize the above definitions to the 3D 
case. 

3.3.1 Principle of strain equivalence 
- the effective stress concept 

The hypothesis of strain equivalence states: 
The strain associated with a damaged state under the applied stress a 

is equivalent to the strain associated with the undamaged state under the 
effective stress iT (Fig. 3.3). 

Physical space 
(damaged . O<D< I) 

upplicd 
curre11l stress 

/ £.D 

Effect ive (fictive) space 
(p eudoundamaged. D=O) 

u_u( I_Dj- l effective strcss 

~/ E, D;() 
u (j 

I------+­
I----.-
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~C) ____ --! __ ~ 

strain cqul\lalcncc 

Fig. 3.3. 10 strain equivalence concept visualization 

For the isotropic damage described by the scalar D the following defini­
tions of the effective variables hold: 

a 
a = 1- D' e(iT,O)=e(a,D) , (3.22) 

When the fourth-rank damage effect tensor Meh (D) which characterizes 
the anisotropic damage is used, the general transformation of the Cauchy 
stress tensor a into the effective stress tensor iT may be introduced in case 
of the anisotropic damage Meh = Meh (D) 

iT (t) = Mc~ : a (t) (3.23) 

and for the isotropic damage Meh (D) = (1 - D) I 
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_ (T (t) 
(T (t) = 1 _ D (t) , (3.24) 

where MCh (D) is a fourth-rank damage effect tensor which characterizes 
damage and I is a fourth-rank identity tensor. In other words, the effective 
stress u expresses the stress that would have to be applied to the fictive 
pseudo-undamaged material to cause the same strain tensor that is ob­
served in the damaged material sustained to current stress (T (Simo and 
Ju , 1987). 

3.3.2 Principle of stress equivalence 
- the effective strain concept 

The hypothesis of stress equivalence says: 
The stress associated with a damaged state under the applied strain e 

is equivalent to the stress associated with the undamaged state under the 
effective strain e (Fig. 3.4). 
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CUJrenl strain 

t--r---­
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cffective Strain 

Fig. 3.4. 10 stress equivalent concept visualization 

\ 

For the isotropic damage characterized by the scalar D the following 
(dual) definitions of the effective variables are furnished: 

u(e,O)=u(e,D), e = (1- D)e. (3.25) 

In a general case of the anisotropic damage characterized by the fourth­
rank damage effect tensor MCh (D) the transformation from the damaged 
space to the pseudo-undamaged space is obtained: 
in case of the anisotropic damage MCh = MCh (D), 

e(t)=Mch:e(t) (3.26) 

and, for the isotropic damage MCh (D) = (1 - D) I, 
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e (t) = [1 - D (t)] e (t) . (3.27) 

3.3.3 Generalized principle of strain equivalence 
- the generalized effective stress concept 

Taher, Baluch, and AI-Gadhib (1994) developed the generalized effective 
stress concept for time-independent isotropic elasto-plastic damage. In this 
concept, three scalar generalized, total, elastic, and plastic damage variables 
Dt, De, and DP are defined by the fourth-rank secant moduli degradation 
tensors A (t), E (t), and P (t) as the result of damage evolution 

(7 = A(Dt) : e, 
(7 = E(De) : ee, 
(7=P(DP):eP, 

A (t) = [1- Dt (t)] A, 
E(t) = [1- De (t)] E, 
P (t) = [1 - DP (t)] P, 

(3.28) 

where A, E and P denote the initial values of A (t), E (t), and P (t), re­
spectively (Fig. 3.5). 

Fig. 3.5. Total uniaxial strain split into the elastic and plastic components and 
the secant moduli X, E, and j5 from damage Dt, De, and DP (after Taher et al., 
1994) 

Applying the strain equivalence principle (3.22) and (3.25) to the total, 
elastic, and plastic strains independently, the following relationships hold: 

(3.29) 



82 3. Three-dimensional anisotropic damage representation 

Combining (3.28) with (3.29) the generalized effective stress tensors u (to­
tal), ue (elastic), uP (plastic), and uO (initial plastic) are furnished: 

U -e U 

U= I-Dt' U = I-De' 
uP = _u__ -0 u O 

1 - Dp' U = 1 - Dp . 

(3.30) 

Only in a special case Dt = De = DP = D the definitions (3.30) coincide 
with (3 .22) and (3.25) (d. Simo and Ju, 1987) . One-dimensional schematics 
for the generalized strain equivalence principle are sketched in Fig. 3.6. 
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Fig. 3.6. ID generalized stress concept visualization (after Taher et aI., 1994) 

Inspection of the evolution of three generalized damage variables, D t , 

De, and DP, as defined by (3.28), for two different materials, a brittle one 
(concrete) and a ductile one (copper 99.9%), shows the essential differences 
(Fig. 3.7). 

Loosely speaking, in case of the brittle material under compression, Fig. 
3.7a, the damage process may be approximately characterized by the sin­
gle damage variable Dt which is intermediate to the elastic, and plastic 
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Fig. 3.7. Evolution of generalized damage variables Dt, De, and DP in a) concrete 
under compression and b) copper under tension (c/cu is the strain over the peak 
strain ratio, Fig. 3.5) (after Taher et al., 1994) 

variablffi, De and DP. For ductile materials the damage evolution cannot 
be described by a single damage variable following uncoupling between the 
total, elastic and plastic stiffnffis degradation as shown in Fig. 3.7b. The 
elastic damage variable De (c) is approximately the linear function (as given 
by (2.76) for the Lemaitre theory, with n = 0), whereas the total damage 
variable rapidly increases to evolve asymptotically to unity, and the plastic 
variable significantly contributes to the damage evolution. 

3.3.4 Principle of the complementary elastic energy 
equivalence 

In the strain or the stress damage equivalent configurations (Sects. 3.3.1 
or 3.3.2), stiffness reduction due to microcracks or microvoids growth af­
fects the effective stress or the effective strain distribution, rffipectively, 
whereas the strain or the stress remain unchanged. Thffie simplified models 
do not properly dfficribe real irreversible thermodynamic material degra­
dation processffi, as reported in Sect. 2.3. Cordebois and Sidoroff (1979) 
postulated use of complementary elastic energy equivalence in order to 
define the fictive pseudo-undamaged equivalent configuration and the cor­
rffiponding effective variablffi a and e. The complementary elastic energy 
of the pseudo-undamaged solid i e was obtained directly from the virgin 
undamaged one <t>e, except that the strffis and strain variablffi 0' and e are 
replaced by the effective variablffi (j and e: 

<t>e (0', 1J) = ~e (a, 0) , (3.31) 

where <t>e = (1/2) 0' : ee and ~e = (1/2) (j : ee whereas 1J reprffients a set 
of damage variables (Fig. 3.8). 
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Fig. 3.8. 3D elastic energy equivalence 

Applying Eqs. (3.31) to the damage coupled elasticity 

u = it : ee and ii = E : C (3.32) 

the following definitions of the effective variables ii, C are obtained: 

(3.33) 

where I and D are fourth-rank identity and damage tensors, respectively, 
whereas D is related to fourth-rank elasticity tensors E and it of the damage 
equivalent (fictive) and the current (physical) state of the solid through 

(3.34) 

In a more general representation, when a fourth-rank damage effect tensor 
M('D) is used, the effective variables ii, Care 

(3.35) 

where'D denotes a properly selected damage variable D, D or D, scalar, 
second-rank tensor, or fourth-rank tensor, respectively. Note that in the 
energy based damage equivalence model the microcrack and/or microvoid 
growth influences both the stress and the strain distribution, which is more 
realistic than in the strain or stress damage equivalence postulate where the 
local stiffness drop results in a local stress decrease or local strain increase, 
exclusively. Nevertheless, it is limited as it does not allow for the physically 
adequate description of phenomena other than damage coupled elasticity 
(cf. Chow and Lu, 1992). 
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3.3.5 Principle of the total (elastic and anelastic) energy 
equivalence 

For the description of anelastic material response behaviour affected by 
anisotropic damage, Chow and Lu (1992) extended the hypothesis of com­
plementary elastic energy equivalence, due to Cordebois and Sidoroff, by 
including in the first law of thermodynamics of a material that undergoes 
progressive deterioration under infinitesimal deformation the inelastic en­
ergy terms, to yield 

(3.36) 

where d~ = 0" : de is the infinitesimal work of the applied stresses, and 
d~e , d~P, and d~d denote the elastic (reversible) energy, the work done on 
(visco)plastic (irreversible) infinitesimal deformation and the work associ­
ated with damage nucleation and growth, respectively, (Fig. 3.9). 
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Fig. 3.9. 3D infinitesimal total (elastic and anelastic) energy equivalence (after 
Chow and Lu, 1992) 

The total energy equivalence postulates that: 
There exists a pseudo-undamaged (homogeneous) solid made of the virgin 

material in the sense that the total work done by the external tractions on 
infinitesimal deformations during the same loading history as that for the 
real, damaged (heterogeneous) solid is not changed 

(cf. Chow and Lu, 1992). Because in a fictive configuration d~d = 0, the 
following therefore holds: 

d~=d~ (3.37) 

or 
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where 

- - - i::e 1 (- d-B d--B) d<I> = u : de, d'l' ="2 u: e + u: e , 

In an equivalent form, (3.37)-(3.39) may be written as follows: 

u : de = iT : cle, 
! (u : dee + du : ee) + d<I>d = ! (iT : de + diT : e) , 
u : deP = iT : d'iP, 

(3.38) 

(3.39) 

(3.40) 

where the state variables on the left-hand side of (3.40) refer to the physical 
(damaged.) space, and the effective state variables on the right-hand side 
to the energy equivalent fictive (pseudo-undamaged) one (Fig. 3.9). Note 
that the hypothesis of the incremental energy equivalence applies not only 
to damage coupled inelastic (ductile) materials but to non-proportional 
loading paths as well. 

The effective state variables obtained from the total energy equivalence 
(as proposed by Chow and Lu, 1992) that generalize (3.35) are then fur­
nished as 

(3.41) 

where the explicit form of the elements of a fourth-rank damage effect 
tensor M(V) depends on the anisotropic damage representation by the 
second-rank D or the fourth-rank :5 damage tensor components (cf. Sect. 
3.4). 

3.3.6 Comparison of strain versus energy equivalence in the 
damage evolution with strain for aluminum alloy 
2024 - T3 under uniaxial tension 

Mapping of the stress-strain curve u (e) to the effective stress-.strain curve 
u(e) depends on the damage equivalence principle used. Chow and Wang 
(1987) measured the effective Young's modulus E and the effective Pois­
son's ratio v for a ductile aluminum alloy 2024-T3 tensile specimen, based 
on which damage components were calculated from the energy and the 
stress or strain equivalence. 

I. 1D energy equivalence concept 

The matrix representation of the 1D energy based effective state variables 
(3.35) is 
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1 
0 0 

{ ~' } ~ I-D1 
1 { 0"1 } I-D2 

0 0 

1 0 

1- D2 (3.42) 

{~}~['-n, 0 

l-
gn, ]{ 

ee }. 1 
I-D2 e2 

ee 
3 

where Hooke's law written for the fictive (pseudo-undamaged) and true 
(damaged) solid is given by 

{"' } E ['-V v 

l~V ]{ 

,..., 

}. e1 

~ = (1 + v)(1 - 2v) 
I-v 

,..., 
-vel 
-v~ 

{"' } E ['-. 
v 

l~V ]{ 

ee } 1 

~ = (1 + v)(1 - 2v) 
I-v ~e -vel 

-vei 
(3.43) 

or, in the dual form, 

} ~ ~ [' -; =F] n }. 
(3.44) 

{ e2 =e~~ei } = : [1 7 =~ 1 { ~1 }. 

~=-~ E 1 0 

Hence, after the following rearrangement, 

~ 0"1 0"1 0"1 
0"1 = -- = Be;. --+ -- = E(I- D1)ei = E(I- D1)-:=-, 

I-Dl I-D1 E 

~ = -v~ = (1- D2)e~ --+ -Ev ~ = (1- D2) (-~) O"ll 
I-D1 E 

(3.45) 

the two damage components Dl and D2, related to E and v are obtained 

(3.46) 
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II. ID elastic strain equivalence concept 

The elastic strain equivalence require the following representation of the 
effective variables (i*, eO: 

(3.47) 

and Hooke's law referred to the pseudo-undamaged and damaged state is 
given by 

r} [I I~V ]{ 
~. }, 0"1 E - // // 

~ = (1 + //)(1- 2//) 
1-// -//~* 

-eo 
-//e1 

{ } [I ~ ~* 

I~V' ]{ 
ee 

} 0"1 

= (1 + V*)fl- 2v*) - // 

// 1 
0 1 ~* -* e -// -// e1 

0 -* e -// e1 

(3.48) 
or 

{ 
-eO 

} ~ [ 1 { -* }, e1 -/J 

-v 1 0"1 
-e* -e* 1 0 e2 = -//e1 -// 

£3' = -/J~* 1 0 
(3.49) 

{ ~ } ~ [ 1 

-* -. 1 { } 1 -/J -/J 0"1 
-. e 1 ~* 0 -/J e1 = -// 
-. e -. 0 -/J e1 -// 

Finally, after a simple transformation the following is obtained: 

-* 0"1 E€';* 0"1 E 
0"1 = 1- D* = e1 ~ 1- D* = -E-O"l, 

1 1 -* -. 
--eO /J _* /J // 0"1 // 
e2 = - EO"l = - jf;0"1 ~ -E 1- Dr = - jf;0"1' 

(3.50) 

and a single damage component Dr related to the Young's moduli ratio 
jf;/E is recovered, (1.14), whereas Poisson's ratio v* does not change, 

• E 
D1 = 1- E' -. (I) /J=/J ., (3.51) 
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which is far from the general experimental observation that anisotropic 
damage propagates not only in the direction of main stress but also in the 
transverse one. 

a) b) 
u u 

cr cr 

Fig. 3.10. Particular microcracking orientations in elastic-brittle rock-like solids: 
a) planar transverse isotropy under uniaxial tension and b) cylindrical transverse 
isotropy under uniaxial compression (after Chaboche, 1993) 

For example, a broadly reported specific cracking phenomena of both pla­
nar transverse isotropy and cylindrical transverse isotropy (Fig. 3.10) in the 
elastic-brittle rock-like, ceramic, or concrete solids, under uniaxial tension 
and uniaxial compression, respectively, cannot be adequately described by 
the use of the strain equivalence hypothesis (d. Chaboche, 1993; Chaboche, 
Lesne and Maire, 1995). Also, the damage--strain relations of high-strength 
concrete and the Young's modulus drop and Poisson's ratio increase with 
strain, under uniaxial tension and compression, Fig. 4.3, show the strain 
equivalence limitations (d. Murakami and Kamiya, 1997). 

3.4 Fourth-rank damage effect tensors 

3.4.1 Strain, stress and energy based damage tensor 
Tepresentations 

It has been shown in the previous section that a selection of the damage 
equivalence principle may lead to the different damage descriptions that 
should follow experimental observations of different materials. In this sec­
tion, the fourth-rank damage tensor representations are derived from the 
strain, stress, and elastic energy equivalences, all applied to the 3D case, 
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when both indices and absolute notation are used. A simple 1D case, if the 
damage variable reduces to a scalar one, is attached in parallel to a general 
damage tensors application. 

I. Principle of strain equivalence 

When strain equivalence is used (Sect. 3.3.1), the following holds 

or 

(lD) 

a =~ee, 
a = Eee, 

(3D) 

indices notation 

aij = ~ijklekl' 
aij = Eijklekl' 

(3D) 
absolute notation 
(Murakami, 1987) 

i7 = E: ee, 

CT = E: ee 

(3.52) 

ee = B-1: (T, (3.53) 

where Eklij, B denote the fourth-rank elasticity tensors modified by damage 
and aij, i7 are the strain equivalent effective stress tensors 

(j = EE- 1 a 
'-..--" ' 

i7 = E : B- 1 : u. 
~ 

(3.54) 
If the fourth-rank identity tensors I ijkl or 1 and the fourth-rank damage 

tensors Dijkl or 0 are introduced, the following formulas that define the 
effective stress tensors in terms of the actual damage state are furnished: 

i7 = (I - 0)-1 : CT. 

(3.55) 
Hence, the damage tensors' representations are obtained 

or 

E(D) = (1 - D)E, Eijkl = (Iijmn - Dijmn) 

x Emnkl , 

O=I-B: E- 1 

(3.56) 

B(O) = (I - 0) : E. 

(3.57) 
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II. Principle of stress equivalence 

When stress equivalence is used (Sect. 3.3.2), a similar derivation yields: 

or 

(lD) 

e =E-la, 
ee = E-la, 

a = Eee, 
?' = E-lEee, 

'--.-' 

(3D) 
absolute notation 

ee = E-l : 0', 

ee = E- l : 0' 

O'=E:ee, 

(3.58) 

ee = E- l : E : ee, 

------ (3.59) 
where €'f j , ee denote the stress equivalent effective strain tensors 

ee = (I - D) : ee. 
(3.60) 

Hence, formulas analogous to (3.56) are furnished: 

D = 1-E- l E, 

III. Principle of elastic energy equivalence 

D = 1 - E- l : E. 
(3.61) 

In a similar fashion, if elastic energy equivalence (Sect. 3.3.4) is postulated, 
the respective transformations may be performed: 

(lD) (3D) (3D) 
indices notation absolute notation 

(3.62) a = Ei!', aij = Eijkl0.l, iT=E:ee, 
a = Eee, aij = Eijklekl' 0' = E: ee, 

q>e (a, D) q>e (aij, D) q>e (0', D) 
(3.63) = iPe (0',0), = iPe(aij,O) , = iPe (iT, 0) , 

- 1 iPe _ 1_ ,..., - 1_-e 
q>e (a D) = -?fe" - "2aijeij' q>e = -0' . e , 2' 2 . , 

q>e 1 e 

(3.64) 
1 1 

q>e = -aee = "2aijeij' q>e = -0' . ee 
2 ' 2 . , 
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0- = E£" 
= Eo--laE-la, 

- _ E l / 2 E-- l / 2 
aij - ijrs rskl akl, 

---------

a=E:e 
= E: a-I: cr 
. E-l . cr . ., 

(3.65) 

(3.66) 

(j2=E:E- l :cr2 , 

(3.67) 

a = E l / 2 : E- l / 2 : cr. 
~ 

(3.68) 
Hence, the effective state variables (0-, e) or (0-ij, e:'j) or (a, e) correspond­
ing to the fictive (pseudo-undamaged) ela'ltic energy equivalent configura­
tion (Fig. 3.8) are defined 

0- = (1- D)-la, 
e = (1- D)ee, 
D = 1- ]i;t/2E- l / 2 , 

a = (I - D)-1 : cr, 
e = (I - D) : ee, 
D = 1 - E1/ 2 

: E-1/ 2 . 

(3.69) 
When a fourth-rank damage effect tensor M(D) is used (also see Sect. 
3.4.2), the mapping of the state variables (a,ee) or (aij,e~j) or (cr,ee) 
from the physical (damaged) space to the fictive (pseudo-undamaged) one 
(o-,e) or (o-ij,e:'j) or (a,e) is established: 

0- = M(D)a, 
e = M-l(D)ee, 

where 

M(D) = (1- D)-1 

o-ij = Mijkl(Dijkt}akl, 

e:'j = M;;~I(Dijkl)ekl' 

Mijkl (Dijkl) 
= (Iijkl - Di;kt}-1, 

a = M(D) : cr, 
-ee = M-1(D) : ee, 

(3.70) 

(3.71) 
The formulas (3.70) and (3.71) may also be interpreted as linear transfor­
mations of the Cauchy stress tensor aij or cr and the elastic strain tensors 
eij or e to the effective Cauchy stress tensors o-ij or a and the effective 
elastic strain tensor e:'j or e through the fourth-rank damage effect tensors 

~ ~ -1 ~ -1 ~ . 
Mijkl(Dijkt) or M(D) and Mijk1(Dijkl) or M (D), respectIvely. 
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3.4.2 Matrix representations of the damage effect tensors 
expressed in terms of the second-rank damage tensors 

I. Matrix transformation between stress and effective stress vectors 

In general, a damage effect tensor M is a fourth-rank symmetric tensor, 
according to the definition of effective stress, and it may be defined in 
terms of a fourth-rank symmetric damage tensor :5 (cf. Sect. 3.4.1). In 
other words, a linear transformation is assumed between the Cauchy stress 
tensor u and the effective Cauchy stress tensor (j such that 

(3.72) 

where a symmetrized effective stress tensor aij is used (cf. Sect. 3.2), though 
the effective Cauchy stress tensor needs not to be symmetric in a more gen­
eral case under this transformation. On the other hand, a second-rank sym­
metric damage tensor D is often employed instead of a fourth-rank :5, as 
its elements are easier to measure. Due to the symmetry of both stress and 
effective stress tensors, the fourth-rank tensor M ijkl can be represented by 
a 6x6 matrix and, hence, the above tensor transformation can be replaced 
by the following matrix form transformation: 

au Muu MU22 MU33 

0:22 M22U M2222 M2233 

0:33 M33U M3322 M3333 

a23 
= M23U M2322 M 2333 

0:31 M3111 M3122 M 3133 

0:12 M1211 M1222 M 1233 

(3.73) 
M U 23 M 1131 Mll12 all 

M 2223 M 2231 M2212 a22 

M 3323 M3331 M3312 a33 

M2323 M2331 M2312 a23 

M 3123 M 3131 M3ll2 a31 

M 1223 M 1231 M1212 a12 

II. 6x6 matrix representations of [M(D)] 

When the second-rank symmetric damage tensor D is used the elements of a 
fourth-rank damage effect tensor M(D) and its 6x6 matrix representation 
[M(D)] may be constructed in several ways. Some of them are listed below. 

A. (Lekhnitskii, 1981; Chen and Chow, 1995) 

MHD) = P-1(D), 
1 

l{jkl = "2 [(Iik - Dik) (Ijl - Djd + (Iii - Dil)(Ijk - Djk)] , 
(3.74) 
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where 

D12 = D21 
D13 = D31 
D23 = D32 

(3.75) 
and, due to the symmetry, a vector representation of u and D is employed: 

{D} = {Du,D22,D33,D23,D31,D12}T. 

Hence, for a matrix representation of P, we obtain: 

[P(D)] = 

(1 - Dll)2 
D?l 
D~l 
D21D31 
-(1 - Dll)D31 
-(1 - Dll)D21 

2D12 D13 

D?2 
(1- D22)2 
Dg2 

-(1- D22)D32 
D32D12 
-(1- D22)D12 

D?3 
D~3 -2(1 - D22)D23 
(1- D33)2 -2(1 - D33)D32 
-(1 - D33)D23 
-(1 - D33)D13 
D13D23 

(1- D22)(1- D33) + D23D32 
D32D13 - D12(1- D33) 
D12D23 - D13(1- D22) 

-2(1 - D ll )D13 
2D23D21 
-2(1 - D33)D31 
D23D31 - D21 (1 - D33) 
(1 - D33)(1- DB) + D31D13 
D13D21 - D23(l - D ll ) 

-2(1 - Dll)D12 
-2(1 - D22)D21 
2D32D31 
D21D32 - D31 (1 - D22 ) 
D12D31 - D32(1- D ll ) 
(1- Dll)(l - D22) + D12D21 

(3.76) 

(3.77) 

Note that, when constructing the above matrix, the 18 right-side elements 
have been multiplied by the factor 2 because, due to the symmetry of the 
stress tensor u, a six-element vectorial representation is used instead of 
nine-element one, 

(3.78) 

and, as a consequence, a 6x6 matrix (pseudo-symmetric) is defined instead 
of a 9x9 matrix in a more general case. 
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For instance: 

A pseudo-symmetry of the matrix [P (D)] may be visualized as 

[ [A] 2 [C] ] 
[P] = [C]T [B] , 

where 

[ 
(1 - Dn)2 Dr2 

[A] = (1 - D22)2 
symmetry 

[B] = D23 D13 - D12(1 - D33 ) [ 
(1 - D22)(1 - D33) + D~3 D23D13 - D12(1 - D33) 

(1 - D33)(1- Dl1 ) + Dr3 
D12D13 - D23(1 - Dll ) D12D23 - D13(1 - D22) 

(3.80) 

(3.81) 

D12 D13 - D23(1- Dn) , 
D12 D23 - D13 (1 - D22 ) 1 

(1- Dn)(1- Dd + Dr2 
(3.82) 

(3.83) 

Similar results may be obtained when a general matrix transformation for­
mulas are used as equivalent to the tensor rule (Lekhnitskii, 1981): 

Tensor transformation rule (m, n, r, p -+ summation from 1 to 3) 

T!jkl = Tmnrplimljnlkrllp, (3.84) 

Matrix transformation rule (m, n -+ summation from 1 to 6) 
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Symbols Q;j are defined as 

iii 1 2 3 

1 l~1 l~2 l~3 

2 l~1 l~2 l~3 
3 l~1 l~2 l~3 
4 2l31l21 2l32l22 2l33l23 

5 2l31l11 2l32l12 2l33l13 

6 2l21l11 2l12l22 2l13 l23 

ifj 4 5 6 

1 l12l13 l13 l11 l12l11 

2 l23 l22 l23 l21 ~2l21 

3 l33 l32 l33 l31 l32 l 31 

4 l33 l22 + l32l23 l33 l 21 + l31l23 l31~2 + l32l21 

5 l33 l 12 + l32l13 l33 l 11 + l31lt3 l31lt2 + l32l11 

6 lt3 l 22 + lt2l23 l13l 21 + l11l23 l11 ~2 + l12l21 

where 

(3.86) 

B. (Chen and Chow, 1995) 

The second matrix representation of M2 (D) is as follows: 

(3.87) 

where I is the fourth-rank identity tensor and D (D) denotes the fourth­
rank damage tensor whose elements are defined by the components of the 
second-rank damage tensor D, to yield the following matrix representation 
of [D (D)]: 
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Du 0 0 0 

0 D22 0 D23 

0 0 D33 D32 

[D(D)] = 0 
D32 D23 (D33 +D22) 

2 2 2 

D31 
0 

D 13 D12 

2 2 2 

D21 D12 
0 

D 13 

2 2 2 
(3.88) 

D 13 D12 

0 D21 

D31 0 

D21 D31 

2 2 

(Dn +D33) D32 

2 2 

D 23 (Dll + D 22) 

2 2 

C. (Chen and Chow, 1995) 

A third matrix representation of M3 (D) by the fourth-rank tensor i (D) 
whose components are defined by the second-rank tensor ~ (D) may also 
be used: 
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IPn 0 0 0 

0 1P22 0 1P23 

0 0 1P33 1P32 

[i(~)] = 0 
1P32 1P23 (1P33 + 1P22) 

2 2 2 

1P3I 
0 

1P13 1P12 

2 2 2 

1P2I 1P12 
0 

1P13 

2 2 2 
(3.90) 

1P13 1P12 

0 1P2I 

1P3I 0 

1P2I 1P31 

2 2 

(IPn + 1P33) 1P32 

2 2 

1P23 (IPn + 1P22) 

2 2 

Note that a similar symmetry rule applies for 6x6 matrix representations 
in cases Band C as in case A. 

3.4.3 Matrix representation of damage effect tensors 
expressed in the principal coordinate system of 
asecond-rank damage tensor 

Employing definitions given in Sect. 3.4.2, and assuming 

{ DI 0 O} 
D= 0 D2 0 , 

o 0 D3 
(3.91) 

we obtain the following diagonalforms for M I , M 2 , M3 cases, respectively, 
(cf. Voyiadjis and Kattan, 1992; Voyiadjis and Park, 1996): 
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[M1 (DI,D2,D3)] = 
1 

0 0 0 
1-Dl 

1 
0 0 0 

1-D2 
1 

0 0 
1- D3 

0 

1 
0 

0 
0 

o 
o 
o 
o 
1 

1- Dl 
0 

0 

0 

0 
0 

0 

0 
0 

1 
1-D2 

0 

0 

0 
0 

0 
0 
0 
0 
1 

1- D)+D, 
2 

0 

0 

0 
0 

V(1- D2)(1- D3) 

o 

0 

1 

o 
o 
o 
o 
o 
1 

1- D3 

0 

0 
0 

0 
0 
0 
0 

0 

1 
1- D)+D, 

2 

0 
0 

o 

0 

0 

1 
1- D2+Ds 

2 
0 
0 

(3.92) 

(3.93) 
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[M3(DI,D2 ,D3)] = 
1 

1- DI 

0 

0 

0 

0 
0 

o 
o 
o 
o 

0 

1 
1- D2 

0 

0 

0 
0 

0 

0 

1 

1- D3 

0 

0 
0 

0 

0 

0 

1 (1 1) 
"2 1-D2 + 1-D3 

o 
o 
o 
o 

0 
0 

1 (1 1) 
"2 1- DI + 1- D3 

o 

1 (1 1) o "2 1- DI + 1- D2 

(3.94) 

When Chaboche's notation is employed to express the hypothesis of energy 
equivalence (d. Chaboche, Lesne and Maire, 1995), 

and (3.95) 

the diagonal form in the principal damage coordinates da takes a repre­
sentation equivalent to case A, with MCh = MIl (d. Qi and Bertram, 
1997): 

[MCh(dl , d2, d3)] = 
1- d1 0 0 0 

0 1- d2 0 0 
0 0 1-d3 0 
0 0 0 J(l - d2 )(1 - d3) 
0 0 0 0 
0 0 0 0 

(3.96) 

0 0 
0 0 
0 0 
0 0 

J(1 - d3)(1 - dJ) 0 
0 J(1 - dl )(1 - d2) 
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3.4.4 Example: Plane stress conditions 

Under plane stress conditions, when vectorial representation is employed, 
a three-element stress vector is sufficient instead of a six-element one in 
a general three-dimensional stress state. Hence, the damage effect tensor 
Mijkl can be represented by the 3x3 matrix, so that a plane transformation 
between the Cauchy stress tensor and the effective Cauchy stress tensor is 
as follows: 

{ :~~ } = [~~~ ~~~ ~~: 1 { ~~~ }. (3.97) 
0-12 M31 M32 M33 0"12 

Representation of a 3x3 matrix depends on the definition used for [M(D)] 
(cf. Sect. 3.4.2): 

(3.98) 

[M~(D)] = 2" D~2 
1 [ (1- D22)2 

\1 D12(1 - D22) 

D~2 2D12(1 - D22) 1 
(1- Dll)2 2D12(1- Dn) , 

D12(1- Dn) D~2 + (1- Dll )(I- D22) 

(3.99) 

where: \12 = [(1- Dn)(l- D22) - D~2]2; 

(3.100) 

-:---:1=:-- [1 D~2] 
1 - Dn + 2b.(1 - Dn) 

(3.101) 

b.(I- Du) 



102 3. Three-dimensional anisotropic damage representation 

(3.102) 

1- D22 0 D12 

1 
M3(D) = \l 

0 1- Dn D12 (3.103) 

D12 D12 (1 - Dn + 1 - D22) 
2 2 2 

where \l = (1 - Dn)(1- D22) - m2. 
Note that in this case the second-rank tensor <b = (l-D)-l has a plane 

2x2 matrix representation, whereas the fourth-rank damage effect tensor 
i(~) has a 3x3 matrix form: 

(3.104) 

(3.105) 



4 

Three-dimensional anisotropic 
damage accumulation 

4.1 Phenomenological models of 
creep-damage accumulation under 
nonproportionalloadings 

4.1.1 Orthotropic damage growth in case of constant principal 
directions of the stress tensor 

Directional damage or, more precisely, damage anisotropy in creep condi­
tions under nonproportional loading requires a modification of the simple 
scalar description of the damage growth rule (Chap. 2) and the creep­
damage coupling in constitutive equations. The complexity of the descrip­
tion depends on the loading path or, more strictly, on the question whether 
the principal directions of the stress tensor are constant or rotate with re­
spect to material particles, as examined, e.g., by Trlwczynski, Hayhurst, 
and Leckie, 1981 (Fig. 3.1). Chow and Lu (1992) developed and utilized 
a damage-coupled elasto-plastic model suitable for ductile fracture exami­
nation under both proportional and nonproportionalloading conditions. It 
was based on a damage-perturbed updated Lagrangian formulation and an 
implicit concept of the objective derivative applied to the second-rank sym­
metric damage tensor. A similar problem was investigated by Lis (1992), 
who expressed damage rates in a rotating coordinate system coinciding with 
the principal directions of the stress tensor, and then accumulated them 
on a global sampling plane by an implicit concept of the objective deriva­
tive. In what follows, a concept of the damage induced creep anisotropy is 
developed using the second-rank damage tensor and the orthotropic dam­
age growth rule applied to current principal stress directions. For simplicity, 
any effect of the damage anisotropy on the elastic stiffnesses is disregarded. 

Consider first the simpler case when principal directions of the stress and 
damage tensors f7, D coincide and do not change with time, such that the 
orthotropic theory of brittle damage coupled with the similarity of deviators 
of principal creep strain rates eC and either the principal stress s (partly 
coupled) or the principal effective stress s (fully coupled) are applicable (cf. 
Kachanov, 1986; Ganczarski and Skrzypek, 1994a). When formulated in the 
material axes of an orthotropic material, there is no coupling effect between 
normal stress and shear strain; therefore, in their principal directions the 
stress and damage tensors are: 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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[ 
D1 

[D]= ~ 
o 

D2 
o 

-.y = 1- D (4.1) 

and the orthotropic creep-damage growth rule (a direct extension of Kacha­
nov's concept (2.26) to principal continuity 1/J i or damage D, components 
holds, cf. Kachanov, 1986): 

(4.2) 

or 

iJ. = aD; = / (>i )ri (1 _ D.)-ki 
t at \Ai t· 

(4.3) 

For the damage equivalent effective stress apply (3.9): 

u = ~ [0': (1- D)-l + (1- Dr1 : 0'] . (4.4) 

Hence, when principal stress and damage axes coincide and D12 = D23 = 
D31 = 0, (>12 = (>23 = (>31 = 0,0'12 = 0'23 = 0'31 = 0, the general matrix 
representation of the transformation (3.74) reduces to the form 

0 0 

1 
0 

1-D2 
1 

0 
I- D3 

(4.5) 

Note that in the case considered, when 0', U and D are coaxial in their 
principal directions, all matrix representations of the damage effect tensor 
M (D1' D2, D3)' (3.92)-(3.94) coincide as well. 

4.1.2 Orthotropic damage accumulation in case of variable 
principal directions of the stress tensor 

Consider now a more general case, when principal directions ai (1",2",3", ) 
of the stress tensor 0' rotate through a small angle dai, in time t to t+dt, to 
ai (1~" 2~" 3~,), for instance, if a specimen is subjected to a shear effect due 
to a single reverse torsion and steady tension, or a multiple reverse torsion 
and steady tension, etc., as shown in Fig. 3.1b, c (cf. Trl}pczynski et al., 
1981). After damage has occurred, the virgin isotropic material becomes 
orthotropic, and the principal directions f3 i (10 ,20 ,30 ) follow the principal 
stress axes rotation; however, by contrast to the previous case (Sect. 4.1.1), 
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2' ., 

Fig. 4.1. Schematic representation of the accumulation of several orthotropic 
damage increments in variable principal directions 

the stress and damage tensors 0' and n are no longer coaxial in their 
principal axes, ai # f3i' as sketched in Fig. 4.1. 

In other words, at current timet in current principal stress axes a, (1",2", 
3",), the normative stress vector {to'} is expressed by its principal compo­
nents 

{to'} = {0'1l,0'22,0'33}T, 0'12=0'23=0'31=0, (4.6) 

but the damage tensor en} in the principal stress axes requires a full 
representation, 

(4.7) 

whereas, for the damage rate tensor {til} in the current principal stress 

space ai, the representation in terms of its principal components becomes 
sufficient: 

{t'} {. . .}T n = D ll , D22, D33 , (4.8) 

n denotes here the Murakami and Ohno (1981) second-rank damage tensor 
as represented through its principal values by (3.3) 

3D . . 
n = E Din' ® n', n = 1- W, 

i=ID 

whereas the nonobjective damage rate tensor il is 

307 

i> = L Din' ®ni 
i=lu 

because the principal axes of 0' and i> coincide. 

(4.9) 

(4.10) 
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The objective Zaremba-Jaumann derivative of the damage tensor with 
respect to tensor components and the base vectors is 

aD 3 (... " ") - = E Din' ® n' + Din' ® n' + D.n' ® n' 
Ot ,=} 

or (4.11) 
\! . 
D= D -DTS- STD, 

where S is the skew-symmetric spin tensor due to rotation of principal 
\! 

directions da" D is the objective damage rate tensor with the effect of 
rotation of principal axes included, whereas D is the nonobjective damage 
rate in current principal directions of the stress tensor a,. 

When the nonobjective damage rate D in current principal directions of 
the stress tensor a, (effect of rotation of the base vector ignored) is assumed 
to be governed by the orthotropic damage growth rule, (4.2) and (4.3), and 
the skew-symmetric spin tensor representation in tenns of dai is used, we 
obtain: 

[ 
0 

\! . T 
DIJ= DIJ - DIJ -da} 

da2 
(4.12) 

- [ 
where 

. aIJ ( )

rIJ 

DIJ = CIJ 1 _ DIJ (4.13) 

The new damage tensor D1'JI corresponding to the rotated basis ai + da. 
is furnished next, to yield the damage accumulation in current principal 
stress directions 

(4.14) 

and transformed then to the global coordinates (i,j) 

(4.15) 

Note that damage accumulation in the sampling space 

\! 
Dij(t + ~t) = Dij(t)+ Dij (t)~t (4.16) 

may also be used. 
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4.1. 3 Creep-damage coupling formulations 

I. Isotropic creep-damage scalar coupling (Skrzypek, 1993) 

Assume the Mises-type flow rule (Penny and Marriott, 1995) (2.42), 

the multiaxial time-hardening coupled with isotropic damage, 

the Kachanov-Hayhurst isotropic damage growth (2.35) (r = k), 

D=C I XCa'))r 
\1-D ' 

(4.17) 

(4.18) 

(4.19) 

the Chaboche-Hayhurst invariant (scalar) damage equivalent stress (2.36), 

(4.20) 

where the following definitions hold: 

O'eq = J~SijSij, (4.21) 

In case of the plane stress and the creep incompressibility (0'3 = 0) the 
damage coupled constitutive equations, (4.17) and (4.18) yield 

(4.22) 

and 

{ 
s~ = (l~~~m (0'1 - ~2) f(t), 

m-l 
.c O'eq ( 0'1)' 
e2 = (1 _ D)m 0'2 - 2 f(t) , 

(4.23) 

since 
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[~ 
0 

n' [~ 
0 

~l [00]= a2 [D]= D 
0 0 

(4.24) [ ., 0 

o 1 E:l 

fecI = ~ ·c o . E:2 

0 ·c 'C 
-E:1 - E:2 

II. Orthotropic creep-damage in case of constant principal directions 
(Ganczarski and Skrzypek, 1994a) 

In the case of damage orthotropy, the creep-damage constitutive equations 
may be formulated in two different ways. First, the partly coupled ap­
proachconsists in a scalar coupling between the orthotropic damage growth 
rule and the isotropic creep flow rule, if the usual equivalent stress a eq in 
the time-hardening hypothesis is replaced by the effective equivalent stress 
aeq. This simplified approach is actually inconsistent, because damage or­
thotropy does not affects creep strain isotropy, and such an approach is 
justified only in the case of proportional loadings. 

Table 4.1. Partly or fully coupled creep-orthotropic damage approach in case of 
constant principal directions 

Partly coupled Fully coupled 
(Skrzypek, 1993) (Ganczarski and Skrzypek, 1993) 
isotropic flow rule modified orthotropic flow rule 

'0 3 g~q '0 3 g~q-
gij = "2 a eq Stj gij = "2;:::;-Btj 

a eq 

scalar coupling tensorial coupling 
E:~q = (aeq)mf(t) E:~q = (ueqr f(t) 

orthotropic damage growth orthotropic damage growth 

(a rv 

D" = C" 1-~" . (a~ r" D" = c~ 1- D~ 

aeq = J~SijS;j, aeq = J~SijSij, (4.25) 

To avoid the above inconsistency, a second fully coupled approach is pos­
tulated where the modified orthotropic flow rule is used that assumes simi­
larity of the creep strain rate eC and the effective stress deviators s instead 
of the usual stress deviator s in the previous formulation. This approach 
is consistent in the sense that, after the orthotropic damage has occurred, 
the virgin isotropic creep flow becomes orthotropic as well (cf. Table 4.1). 

In the case of constant principal directions (a; = f3;), the stress 00, the 
effective stress (j and the damage tensor D are coaxial in their common 
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principal directions; therefore, if the matrix representation is used, we have 

[U' 0 0 1 [ D, 
0 

~ l' [0-] = 0 a2 0 , [D]= ~ D2 
o 0 a3 0 D3 

[~ 0 
0 

1 
(4.26) 1- Dl 

~ a2 
0 [0-]= 0 --

1-D2 
a3 o 0 

1- D3 

In a particular case when plane stress and creep incompressibility are as­
sumed, the definitions (4.25) reduce to the form 

(4.27) 

whereas the plane stress creep-damage constitutive equations are obtained 
as follows: 

(4.28) 

·c C~ )m-l [a2 1 al ] f·Ct) ·c ·c·c 
8 2 = a eq 1- D2 -"2 (1- Dt) ,83 = -81 - 82' 

(4.29) 

when the partly coupled (scalar) or the fully coupled (tensor) approach is 
used. 

III. Orthotropic creep-damage in case of variable principal directions 

In the case of changing principal directions, the stress and damage tensors 
0- and D are not coaxial in their principal axes Cai =I- f3.). Therefore, 
either the partly or the fully coupled creep-damage approach may be used 
at current time t when the creep-damage constitutive equations and the 
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Table 4.2. Partly or fully coupled creep-damage approaches applied to current 
principal stress axes 

Partly (scalar) coupled Full (tensor) coupled 
.c 3 Seq .c 3 Seq_ 
eIJ = --SIJ eIJ = -=-SIJ 

20'eq 20'eq 
S~q = ((Teqr f(t) S~q = ((TeS" f(t) 

. ( O'IJ .rIJ 
DIJ = CIJ 1 _ Du 

. ( O'IJ IIJ 
DIJ = CIJ 1 _ D :J 

nonobjective damage rate D are referred to the current principal stress 
axes ai (1, J), Table 4.2. 

'V 
The objective damage rate tensor D corresponding to the rotation of 

principal stress axes from ai to ai + dai, with time changing from t to 
t + dt, is obtained by the use of the Zaremba-Jaumann objective derivative 
(cf. Bathe, 1982) 

(4.30) 
'V 

When the transformation of the objective damage rate tensor D from the 
actual principal stress directions I J to the global coordinates ij is per­
formed, 

'V 'V 
DIJ--'>Dij, (4.31) 

the new (updated) damage tensor at time t + dt, the components of which 
are represented in the global (sampling) space, is achieved: 

(4.32) 

In a particular case, when plane stress and creep incompressibility are as­
sumed, the nonobjective damage rates are obtained from the orthotropic 
damage growth rule 

(4.33) 

whereas the objective damage rate tensor components, associated with the 
plane rotation of principal stress axes by the angle da, are 

[ ~"" ~"" 1 ~ [ D~' ° ] _ [Dll D21] 
D22 D12 D22 

D2'l' D2'Z' (4.34) 

X [ ° da 
) _ [dOa -ga] [ Dll D1Z ] . -da ° DZI DZ2 
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4.2 Modeling of orthotropic time-dependent 
elastic-brittle damage in crystalline 
metallic solids 

4.2.1 Basic equations of anisotropic elasticity coupled with 
damage 

The directional nature of microcrack and void nucleation and growth, in 
initially homogeneous and isotropic solids, results in an anisotropic stress­
strain law of elasticity, where a fourth-rank anisotropy tensor Aijk1 is time­
dependent: 

--1 - 1 
Cij = Aijk1(J"kl or e = A - (D*) : u. (4.35) 

The representation the fourth-rank elasticity tensor of a damaged metal­
lic material Aijk1 (derived by Litewka, 1985), when nonlinear forms with 
respect to damage are neglected, has the form 

--1 // 1+// 
Aijk1 = -FjDijDkl + 2E (DikDjl + DUDjk) 

+ 4(1 :1nE(DikDJI + DjlDik + DUDJk + DjkDil)' 

(4.36) 

The equivalent equation of anisotropic elasticity coupled with damage is 

(4.37) 

or 

// 1 + // Di ( * * ) 
Cij = - E(J"kk1ij + ~(J"ij + 2(1 + D;)E (J"ikDkj + Dik(J"kj . (4.38) 

E and // denote Young's modulus and Poisson's ratio of the virgin (un­
damaged) solid, whereas Di is the dominant principal component of the 
modified damage tensor D* the principal components of which are related 
to the classical Murakami and Ohno ones by Di = Di/(1 - D.) (3.18). 
Note that for the undamaged material the above formulas reduce to the 
classical from the Hooke's law for the isotropic solid. 

The elastic strain energy for the damaged solid takes the form: 
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where 

( /2) 2 2 
'frO" = 30"H = 30"ii, 'fr 0" = 30"eq = SijSij, 

'fr(0"2 : D*) = O"ikO"kiDJi. 

(4.40) 

When the definitions of hydrostatic and equivalent stresses are used, the 
above equation can be furnished as follows: 

g>e (0", D*) = ;~ [~(1 + //) + 3(1- 2//) (::) 2] 
Di ( D*) + 2(1 + Di)E O"ikO"kl Ii· 

(4.41) 

This time-dependent nonlinear function g>e (0", D *) may be compared to 
the Chaboche concept of the strain energy density release rate Y (Sect. 
2.3.1), but in this case the additive energy decomposition is used g>e (D*) = 
g>e (O)+g>d (D*), where the first term is responsible for the elastic energy of 
virgin (undamaged) material and the second is a nonlinear function of the 
damage evolution D * (t). Recalling the notation of Sect. 2.3.1 the equivalent 
abbreviated form may also be used: 

0"2 
g>e (D*) = 2i Rv + g>d(D*), 

( )
2 2 O"H 

Rv = 3(1 + //) + 3(1- 2//) O"eq , 

md(D*) _ Di rn..( 2. D*) 
'" - 2E(1 + Di).I.1 0". • 

4.2.2 Failure criterion and material identification 

(4.42) 

As a corresponding failure criterion the three-parameter damage affected 
isotropic scalar function of 0" and D' tensors is assumed: 

O"u denotes the ultimate strength of the undamaged material (in general, 
temperature dependent), whereas constants G1 , G2 and G3 are to be ob­
tained from the uniaxial tension direction (1), uniaxial tension direction 
(2), and biaxial tension (1+2) tests (cf. Litewka and Hult, 1989). 

4.2.3 Damage evolution equation 

In Litewka's theory the damage evolution rule is formulated by the use of 
the classical Murakami second-rank damage tensor D (3.3): 
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D = F(O', D). (4.44) 

Applying general tensor function representations (:with nine tensor gener­
ators), the reduced two-terms form, which accounts for both the isotropic 
and the anisotropic damage, is proposed as sufficiently general to describe 
creep rupture in metals (Litewka, 1989): 

(4.45) 

0" is a modified stress tensor whose compressive principal components 
are replaced by zeros, whereas tensile ones are left unchanged. When the 
first isotropic term is omitted B = 0, and the exponent n = 2 is set, the 
simplified equation (4.45) takes the form (Litewka and Hult, 1989): 

D = C (<J>e)2 0" = C [ 1 - 211 Tr20' + 1 + 1I Tr (0"2) 
6E 2E 

D' ] 2 + I Tr (0'2: D*) 0" 
2E(1 + Di) 

(4.46) 

or, consistently applying Murakami's damage tensor D, 

. C [ 2 D = - a 2 R + D Tr(0'2 . D . (1- D)-I)] 0" 2E eq II 1 .. , 

(4.47) 

i = 1,2,3. 

Note that in Litewka's theory the damage evolution equation is generally 
not consistent in the thermodynamic sense. 

4.2.4 Example: Plane stress, (J3 = 0 

When principal directions of the plane stress are used we have: 

(4.48) 

D DI a2 D2 
[ ( ) 2 l} + I --+ - --
1 - Dl al 1 - D2 . 
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Hence, the damage growth rule for plane stress is written as 

(4.49) 

where 

(4.50) 

Constants 0 1 , O2 , and 0 3 are obtained from the failure criterion (Sect. 
4.2.2) as follows: 

0 1 + ~02 + Di03 = (aU/a1U)2 

0 1 + ~02 + D203 = (au/a2u)2 

direction Di, 

direction D2 , (4.51) 

Material constants a 1 u, a 2u, and abu are the ultimate strengths of the two 
uniaxial tests and the biaxial test for the damaged material, whose values 
are related to the ultimate tensile strength by (cf. Zuchowski, 1986): 

a1u = abu = (1- Ddau, 
a2u = (1- D2)au. 

(4.52) 

Note that, for a virgin (undamaged) material, a1u = a2u = abu = au and 
parameter 0 1 = 0, hence, with Di = Di = 0, the general formula for the 
failure criterion reduces to the classical Huber-Mises-Hencky hypothesis 
F(u, 0) = FHMH. In other words, the proposed failure criterion is identified 
as the damage-influenced Mises-type failure criterion where it is assumed 
that the onset of material failure (first macrocrack initiation) is observed 
when the continuously shrunk failure surface (due to the damage growth) 
meets the stress vector actually applied at the point (Fig. 4.2). 

When two cases for m = a2/a1 are considered, we get the damage evo­
lution as: 
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progressive 
damage 

F(a,Q)=O 
(Huber-Mises) 

~ in.tantenou. 
failure 

Fig. 4.2. Failure criterion (or isochronous rupture curves) for copper at 523 K 
(after Litewka and Hult, 1989) 

o <m< 1 

{ ~~ } = [A+BD1 C ~~l +m\ ~~J] 4~2(Ti { ~~ } ( 4.53) 

m<O 

{ ~~ } = [A +BDI C ~~l +m2 1 ~~J] 4~2(Ti { ~l } (4.54) 

or D2 = O. 

Both cases may also be expressed by the unified damage growth formulas 
(Litewka and Hult, 1989) 

[ Dr ( 2 1- Dl)] C 5 
dDl = A + B 1 _ Dl 1 + m n 1 _ nDl 4E2 (T 1 dt, (4.55) 
dD2 = ndD1 , 

where n = m for 0 ::; m :::; 1, and n = 0 for m < O. 
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Eventually, when the plane stress condition is applied to the failure cri­
terion, with two uniaxial and one biaxial tensile tests used to determine 
C1, C2 , C3 , a reduced set of five equations is obtained: 

(4.56) 

This system of equations that determine five unknown values D~rit, tR, 
Ct, C2 , C3 was numerically solved by the authors and compared with the 
experimental data by Johnson et al. (1956) and Murakami et al. (1986) 
for copper at 523 K at given a2/al ratios. The material constants used for 
theoretical predictions are as follows: 1/ = 0.35, au = 120. MPa, C/4E2 = 
2.49 X 10- 12 [MPa5hj-l. 

Comments: 

i. Although the results reported in this section exhibit that the theo­
retical isochronous curves obtained for the radially fixed stress ratios 
in principle remain in harmony with a certain number of experimen­
tal points, the practical application of this methods requires further 
improvement. 

ii. In general, for a prescribed boundary problem, the damage induced 
redistribution of stresses results from the constitutive stress-strain­
damage equation (Sect. 4.2.1). The elasticity equation coupled with 
damage is time-dependent and, hence, the constant stress ratios used 
to solve the basic system of equations should rather be replaced by 
integration along nonproportional paths. 

iii. In addition, when the principal directions of the stress tensor change, 
the same happens with principal directions of the damage tensor, 
but the principal axes of both tensors do not coincide and, therefore, 
the objective derivative of the damage tensor should be applied to 
account for the rotation of principal stress axes (d. Sect. 4.1.2). 



4.3 Unified constitutive and damage theory 117 

iv. Note that under pure compression (third quarter), no progressive 
damage accumulation occurs and, therefore, when the applied stress 
vector meets the initial (undamaged) failure surface, instantaneous 
failure might occur at the point with no prior damage accumulation. 

v. Litewka's model is, in general, inconsistent in the thermodynamic 
sense, since the coupled damage-constitutive equations are not consis­
tently derived from the Helmholtz free energy function. Nevertheless, 
for metallic crystalline materials (like copper or some stainless steels) 
reasonable predictions may be obtained. The model is not applica­
ble for elastic-brittle rock-like materials (like concrete) since damage 
evolution under compressive forces is not included. 

4.3 Unified constitutive and damage theory 
of anisotropic elastic-brittle rock-like 
materials 

4.3.1 Thermodynamically based equations of elastic-brittle 
damaged materials 

The general thermodynamically based theory for constitutive and evolu­
tion equations of elastic-brittle damaged materials is due to Murakami and 
Kamiya (1997). It is based on the Helmholtz free energy as a function of 
the elastic strain tensor ee, the second-rank damage tensor D, and another 
scalar damage variable (J. By establishing a single dissipation potential, a 
unified description is possible instead of a separate formulation of consti­
tutive and damage evolution equations. 

The following representation of the Helmholtz free energy is postulated: 

ew(ee,D,(J) = ewe(ee,D) + ewd((J) , 

1 
ewe(ee, D) = 2ATr2ee + JLTr(ee)2 + 171TrDTr2ee 

+172TrDTr(ee)2 + 173TreeTr(ee : D) + 'lJ4Tr[(ee')2 : Dj, 

ewd((J) = ~Kd(J2, 

(4.57) 

where A = Evl(1 + v)(1 - 2v) and JL = E12(1 + v) are Lame constants 
for undamaged materials, 1]11 1]2' 1]3, 174, and Kd are material constants, 
and ee' is a modified elastic strain tensor used to represent the unilateral 
damage response 
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(4.58) 

For the parameter ( = 1 the modified strain tensor ee' is identical to 
ee and the unilateral damage opening/ closure effect is not accounted for. 
For ( = 0, the strain tensor ee' is modified in such a way that negative 
principal strain components are replaced by zeros, whereas positive ones 
remain unchanged. The same rule was used in Sect. 4.2 when applied to the 
modified stress tensor cr* in Litewka's model (cf. Litewka, 1985). In other 
words, in this limit case, cracking growth is stopped under compression. In 
general, neither of these two limit cases occurs, whereas ( should be taken 
from the tension/compression test. In the case of high strength concrete 
application, the value ( = 0.1 was experimentally established (cf. Murakami 
and Kamiya, 1997). Applying (4.58) the following constitutive equations of 
anisotropic elasticity coupled with damage are furnished: 

(4.59) 

Bee' ( • . e*) 
+'1]4 Bee ee : D + D : e , 

whereas the thermodynamic damage conjugate forces of D and f3 are 

(4.60) 
A(D) is a fourth-rank symmetric tensor, the secant stiffness, as a function 
of the second-rank damage tensor D (the damaged elastic stiffness). Ther­
modynamic conjugate force Y, associated with D, is known as the damage 
strain energy release rate and is the derivative of strain energy with respect 
to the damage variable 'D (the mechanical flux vector component). In case 
of the second rank-damage tensor D, Y is the second-rank tensor as well. 
In case of the isotropic damage defined by the scalar D, Y is a scalar (see 
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Sect. 2.3.4, (2.135». The damage criterion in the space {Y,-B} is also 
assumed in the form 

F(Y,B) = Yeq - (Bo +B) = 0, 

Y.,q = (!Y: L: y)1/2, 
(4.61) 

The evolution equations for damage are finally established as follows: 

. 8F· j(8B) L:Y· 
.Ad = 8Y : Y 8(3 = a2KdYeq : Y, 

(4.62) 

where a = 1 if F = 0 and 8F/8Y : V > 0 or a = 0 if F < 0 and 
8F/8Y:V:::;0. 

4.3.2 Example: Application to high strength concrete 

The above theory is applied to two cases, uniaxial compression and uniaxial 
tension tests of a high strength concrete. The modified elastic strain tensor 
takes the form 

[ ('1, 0 Il [eeTom = ~ e\12 
0 

or (4.63) 

[ 'j, 
0 

o 1 [ee·ten = ~ (el12 o , 
0 (e~3 

for the uniaxial compression or the uniaxial tension, respectively. Addition­
ally, the following holds: 

(4.64) 

Tr(ee : D) = eilDn + eibD22 +e33D33. 

The high strength concrete identification, based on the uniaxial compres­
sion test, yields (cf. Murakami and Kamiya, 1997) 
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Eo = 21.4 GPa, Vo = 0.2, 'T}1 = -400 MPa, 

'T}2 = -900 MPa, 'T}3 = 100 MPa, 'T}4 = -23500 MPa, (4.65) 

( =0.1, Bo = 2.6 X 10-3 MPa. 

When the matrix representation is used, the following damage coupled 
constitutive equations for the uniaxial compression or the uniaxial tension 
are furnished: 

{ a2~1! 0 } = [~~~~~ ~~~:: ~~~:: 1 { :~~ }, 
a33 = 0 A3311 A3322 A3333 e~3 

where the components of symmetric 3 x 3 matrices are 

or 

Ann = >. + 2J.L + 2 ('T}1 + 'T}2) TrD + 2 ('T}3 + 'T}4(2) Dll , 

A2222 = >. + 2J.L + 2 ('T}1 + 'T}2) TrD + 2 ('T}3 + 'T}4) D22, 

Ann = >. + 2J.L + 2 ('T}1 + 'T}2) TrD + 2 ('T}3 + 'T}4) Dn , 

A2222 = >. + 2J.L + 2 ('T}1 + 'T}2) TrD + 2 ('T}3 + 'T}4(2) D22, 

A3333 = >. + 2J.L + 2 ('T}1 + 'T}2) TrD + 2 ('T}3 + 'T}4(2) D33 , 

A1133 = A3311 = >. + 2'T}1 TrD + 'T}3 (Du + D 33 ) , 

(4.66) 

(4.67) 

(4.68) 

for the uniaxial compression or tension, respectively. For both cases, the 
damage rates (anisotropic damage evolution) may be expressed as follows: 
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(4.69) 

However, the components of the damage conjugate force Yare different for 
both cases, and are given as follows: 

Yil = _1] lTr2e e -1]2Tr (ee)2 -1]3 (Tree) e!l -1]4 (e!~)2, 
Y22 = _1] lTr2e e -1]2Tr (ee)2 -1]3 (Tree) e22 -1]4 (e2;) 2 , 

Y33 = _1] lTr2e e -1]2Tr (ee)2 -1]3 (Tree) e33 -1]4 (ea;) 2 , 

(4.70) 

where the appropriate components of the modified strain tensor ee' (4.63) 
for the uniaxial compression or tension are used. 

4.3.3 Unilateral elastic-damage response of concrete under 
uniaxial compression versus uniaxial tension 

Strong unilateral behaviour of high strength concrete, when subjected to 
uniaxial compression or uniaxial tension, is observed. Stress versus strain 
diagrams illustrate this phenomenon (Fig. 4.3). 

The development of damage components under a uniaxial compression 
shows that, in spite of uniaxial stress state, microcracks in concrete both 
perpendicular (Dn) and parallel (D22 = D33) to the loading direction prop­
agate with strain increase and transverse components are dominant. The 
critical value of damage under compression is D~~m ~ 0.4, whereas the 
critical stress is a~~Jn = -52 MPa. 

In contrast to the previous phenomenon, the development of damage 
in concrete under uniaxial tension is much more anisotropic, with microc­
racks perpendicular to the tension direction (Dll) dominant and transverse 
components negligible. At critical stress level a~~ = 12.3 MPa the critical 
damage components are Duer = 0.13, D22er = D33er = 0.01. 

In both cases a significant Young's modulus drop with damage is pre­
dicted; however, under uniaxial compression it is accompanied by an in­
crease of Poisson's ratio, whereas under uniaxial tension no essential change 
in Poisson's ratio occurs. The above discussed unilateral response of elastic­
brittle material like concrete is connected with the effect of cracks opening 
under tension and closuring under compression. Hence, the damage de­
velopment is strongly anisotropic, with two specific cracking orientations, 
different for tension and compression. They might be identified as the trans­
verse planar isotropy produced by al > 0, a2 = a3 = 0 (uniaxial tension), 
and the cylindrical transverse isotropy produced by al < 0, a2 = a3 = 0 
(uniaxial compression) (cf. Chaboche, 1993). These are illustrated in Fig. 
3.10. 
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Fig. 4.3. Anisosensitive damage-strain relations and the effective Young's modu­
lus IE and Poisson's ratio v for high strength concrete: a) under uniaxial tension, 
b) under uniaxial compression (after Murakami and Kamiya, 1997) 

The constitutive and damage evolution equations of elastic-brittle ma­
terials have been developed in this section by the use of Helmholtz free 
energy where damage conjugate forces are expressed as a function of the 
elastic strain tensor, (4.60)-(4.62). However, it is more convenient to de­
fine damage conjugate forces as functions of the stress tensor by the use 
of the Gibbs thermodynamic potential. Such an approach was recently ap­
plied by Hayakawa and Murakami (1998) to elastic-plastic-brittle materials 
for which the Gibbs potential accounts for complementary energy due to 
elastic deformation, the potential related to plastic deformation, and the 
damage potential related to microvoid nucleation. 
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4.4 Matrix representation of fourth-rank 
elasticity tensors for damaged materials 

4.4.1 Representation of elasticity tensors expressed in the 
principal axes of damage tensor 

In unified approach, reported in the previous sections, a fourth-rank sym­
metric tensor of secant stiffness A is defined by applying the Helmholtz 
free energy of damaged material 

(4.71) 

If the stiffness tensor A is expressed in terms of principal components of 
the second-rank damage tensor Do. , the constitutive equation of elasticity 
coupled with damage takes the following matrix representation (Murakami 
and Kamiya, 1997): 

au >.. + 2p, + 2 (1]1 + 1]2) TrD + 2 (1]3 + 1]4) Dn 
a22 A + 21]1 TrD + 1]3 (Dn + D22) 
a33 A + 21]1TrD +1]3 (Dn + D33) 
a23 0 
~1 0 
a12 0 

A + 21]1 TrD + 1]3 (Du + D22 ) 
A + 2p, + 2 (1]1 + 1]2) TrD + 2 (1]3 + 1]4) D22 

A + 21]1 TrD + 1]3 (D22 + D33) 
o 
o 
o 

A + 21]1TrD + 1]3 (Dn + D33) 
A + 21]1 TrD + 1]3 (D33 + D22) 

A + 2p, + 2(1]1 + 1]2) TrD + 2 (1]3 + 1]4) D33 
o 
o 
o 

(4.72) 
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o 
o 
o 

2J.l + 21J2TrD + 'f}4 (D33 + D22 ) 
o 
o 

o 
o 
o 
o 

2J.l + 2'f}2TrD + 'f}4 (DII + D33) 
o 

o ell 

o e22 

o e33 

o e23 

o e31 

2J.l+2'f}2TrD+'f}4(Dll+D22) el2 

(4.73) 

>. and J.l are Lame coefficients of the isotropic undamaged solid: >. = 
EII/ (1 + II) (1- 211), J.l = E/2 (1 + II). For simplicity, the unilateral dam­
age effect has been excluded (( = 1). The secant stiffness tensor A may also 
be defined in a different fashion when the fourth-rank damage effect ten­
sors M (D) are used (cf. Sect. 3.4.2). If, for example, Chaboche's concept 
is adopted to define the effective stresses and the effective strains, 

(4.74) 

and 

(4.75) 

the elasticity tensor modified by damage A (d",) is furnished as follows (cf. 
Chaboche, Lesne, and Moire, 1995): 

(4.76) 

Recalling the matrix representation for MOh (d1 , d2, d3), represented by a 
diagonal matrix of principal damage components dl , d2, d3 (3.96): 
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1- d1 0 0 0 
0 1- d2 0 0 

MOh (doJ = 
0 0 1-d3 0 
0 0 0 vi(l - d2) (1 -d3) 
0 0 0 0 
0 0 0 0 

(4.77) 
0 0 
0 0 
0 0 
0 0 

vi(1 - d3) (1 - dd 0 
0 vi(l - d1 ) (1 - d2 ) 

and the well-known matrix representation of the elasticity tensor for un­
damaged isotropic materials 

>.+2J.1 >. >. 0 0 0 
>. >.+2J.1 >. 0 0 0 

A= >. >. >.+2J.1 0 0 0 (4.78) 
0 0 0 2J.1 0 0 
0 0 0 0 2J.1 0 
0 0 0 0 0 2J.1 

we obtain the following matrix representation of the elasticity tensor mod­
ified by damage 

(>.+2J.1) (1-dd >. (1- d1 )(1 - d2) 
>. (1 - d1)(1 - d2 ) (>. + 2J.1) (1- d2 )2 

AOh (do<) = 
>. (1 - d1 ) (1 - d3) >. (1 - d2)(1 - d3) 

0 0 
0 0 
0 0 

>. (1 - d1)(1 - d3) 0 
>. (1 - d2)(1 - d3) 0 
(>. + 2J.1) (1 - d3 )2 0 

0 2J.1 (1 - d2) (1 - d3 ) 

0 0 
0 0 
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o 
o 
o 
o 

2/1 (1 - d3) (1 - d1) 

o 

o 
o 
o 
o 
o 

2/1 (1- d1 ) (1 - d2) 

(4.79) 

The appropriate constitutive equation for the elastic-brittle damaged 
material is established as 

{u}= [ACh(da)Hee}, 

{u}T = {all,a22,a33,a23,a31,a12}, 

{e}T = {C:ll,C:22,C:33,C:23,C:31,C:12}. 

(4.80) 

In case of the inverse formulation (d. Sect. 3.4), the elasticity equation 
coupled with damage is expressed as follows: 

or (4.81) 

The inverse elastic matrix ( compliance) A-I (D) may be defined in a similar 
fashion when one of the matrix representations of the damage effect tensor 
(cf. Sect. 3.4.3) is used. Hence, if the following definitions are employed 

(4.82) 

the elasticity equation is furnished as follows: 

(4.83) 

When the definitions of M 1 , M2 or M3 (cf. Chen and Chow, 1995, Sect. 
3.4.3) are used in their matrix form in terms of the principal damage com­
ponents, Dl = D ll , D2 = D 22 , D3 = D 33 , D 23 = D31 = D12 = 0, the 
following symmetric compliance matrices modified by damage are obtained: 
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- 1 1 Ai =­
E 

--1 1 
A2 =­

E 

1 
(I-DIl' 

II 

(I-D2)(I-D1 ) 
II 

(I-Ds)(I-D1 ) 

o 
o 
o 

II 

(l-D,)(I-Ds) 
II 

(I-D2)(1-Ds) 
1 

(I- DS)2 

o 
o 
o 
o 

o 
o 
o 

1tll 

1 
(1-Dl)2 

II 

(l-Ds)(l-Dtl 
o 
o 
o 

II 

II 

- (I-Dt)(1-D2) 
1 

(1-D2)2 

o 
o 
o 
o 
o 

II 

o 
o 
o 

It" 

ltll 

II 

(1-Ds)(l-D2) 
o 
o 
o 

(1-Dl)(l-D3) o 
o 
o 

o 
o 
o 
o 

It" 

II 

(1-D2)(1-Ds) 
1 

(l-Ds)' 
o 
o 
o 

o 
o 
o 
o 
o 

(4.84) 

(4.85) 
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--1 1 
A3 =­

E 

1 
(l_D,)2 

" -(1 D.){l D,) 

" (I-Ds)(I-D,) 
o 
o 
o 

- (I-D,){l-Dg) 

" (I-D'i(l-Ds) 

(I-D,)(I-D.) 
1 

(I-D.)2 

" (I-Ds)(I-D.) 
o 

o 
o 
o 

o 
o 

(I-Ds)' 

o ~ ( 1 + 1 )2 
4 I-D. I-Dg 

o 
o 
o 
o 

o 
o 

o 
o 
o 
o 

o 
o 

~ ( 1 + 1 )2 0 
4 I-D, I-Ds 

o ~ (1 1)2 
4 I-D, + I-D. 

(4.86) 

For comparison, the appropriate elasticity matrix that follows from the 
Litewka model (cf. Sect. 4.2) is also quoted: 

A-I 1 
L =-x 

E 

DO' 
0 1 + iTn- -/J -/J , 

DOD' -/J 1 + f.ti5t -/J 0 
DODO 

-/J -/J 1+~ 0 
X , 

0 0 0 (1+/J) [1+ D;(Dt+D;) ] 
2(1+,,) l+Di) 

0 0 0 0 
0 0 0 0 
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o 
o 
o 
o 

(1 + 1/) [1 + Dj(D;+D;) ] 
2(1+v)(1+DO 
o 

o 
o 
o 
o 

o 

(1+1/) [1+ DjCDj+D;) ] 
2(1+ v )(1+Dn 

(4.87) 

In the last case, only the diagonal components of the elastic matrix are 
affected by damage when represented by the principal components D;, 
Dz, D3 of the modified damage tensor D~ E< 0,00), which is a limitation 
of the model. 

4.4.2 Representation of elasticity tensors in a general case of 
damage anisotropy 

In a more general case, when the damage tensor D (or D*), the stress 
tensor rr and the strain tensor ee are not coaxial in their principal axes, 
a complete representation with non-zero off-diagonal components must be 
used (damage induced anisotropy). We shall discuss this effect for two mod­
els: Litewka's model (Sect. 4.2) and Murakami and Kamiya's unified model 
(Sect. 4.3). 

In general, when principal axes of stress and strain tensors rotate due to 
the stress and strain redistribution following damage evolution in solids, the 
principal axes of the second-rank damage tensor also rotate. However, the 
stress, strain, and damage tensors are no longer coaxial in their principal 
component coordinate axes. Hence, when the modified damage tensor is 
expressed in terms of six components Dil' DZ2 , D33 , DZ3 = D32 , D31 = 
Dh, Di2 = DZ1 , for Litewka's model a generalized form of the constitutive 
equations of elasticity coupled with damage may be furnished: 

{e} = [XL (D')] {rr} (4.88) 

and 
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ell 

e22 

e33 

e23 

e13 

e12 

l+~D' 1+Di 11 
-1/ 

-1/ 

=E-1 
0 

~D' 2(1+Di) 13 
~D' 2(1+D;) 12 

o 
~D' l+D' 23 
~ * 
l+D' D23 

• 1 

1 + 1/ + *~'oi) (D22 + D:h) 
D' 

2( 1+'0;) Di2 
D' 

2( 1+'0;) Di3 

-1/ -1/ 

l+~D' -1/ 1+Di 22 
-1/ l+~D' I+D' 33 

~D' 
• 1 

~D' 
2(1+Di) 23 2(1+Di) 23 

0 ~D' 

~D' 
2(1+Di) 13 

0 2(1+Di) 12 

~D' l+Di 13 
o 

(4.89) 
In a similar fashion, for the M urakami-Kamiya model, the general elasticity 
equation coupled with damage for the initially isotropic material (damage 
induced anisotropy) is obtained: 

and 

= 

A + 2J.l + 2 ('111 + 1]2) 'IfD+2 (1]3 + 1]4) Dn 
A + 21]1 'If D+1]3 (Dll + D22) 
A + 21]1'IfD+1]3 (D11 + D33) 

1]3D 23 

(1]3 + 1]4) D13 

(1]3 + 1]4) D12 

(4.90) 
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21]3 D 23 

2 ("73 + 714) D23 

2 ("73 + 714) D23 

A + 2171 TrD+"73 (Dn + D22) 

A + 2{.t + 2 ("71 + "72) TrD+2 ("73 + "74) D22 

A + 2"71 TrD+"73 (D22 + D33) 

("73 + 1]4) D23 

"73 D 13 

("73 + "74) D12 

A + 21]1 TrD+"73 (Dn + D33 ) 

A + 2"71 TrD+"73 (D22 + D33) 

A + 2{.t + 2 ("71 + "72) TrD+2 (1]3 + 714) D33 

("73 + "74) D23 

("73 + 714) D 13 

1]3 D 12 

2 (1]3 + "74) D 13 

2"73 D 13 

2 ({.t + ''72 TrD) + "74 (D22 + D 33 ) 

1]4D 12 

2 (1]3 + "74) D 13 

"74D 12 

2 ({.t + "72TrD) + 1]4 (Dll + D33) 

T/4D 23 T/4 D 13 

2 ("73 + 714) D12 t:ll 
2 ("73 + "74) D12 t:22 

2"73 D 12 t:33 

T/4 D 13 t:23 

T/4 D 13 t:13 

2 ({.t + T/2TrD) + 714 (Dll + D 22 ) t:12 

(4,91) 
Note that in Litewka's model the current dominant principal value of the 
damage tensor Dl plal:s the essential role in the damage affected terms of 
the elasticity matrix [A-I]. 

4.4.3 Constitutive and damage evolution equations by use of 
the Gibbs thermodynamic potential 

In Sects.4.3.1 - 4.3.3, the constitutive and damage evolution equations of 
elastic-plastic-brittle materials were developed by the use of the Helmholtz 
free energy, where the damage conjugate forces were expressed as a function 
of elastic strain tensor, (4,60)-(4.62). However, the experimental validation 
of this theory is difficult for elastic-plastic-damage materials. For this reason 
it is more convenient to define the damage conjugate forces as functions 
of the stress tensor by using the Gibbs thermodynamic potential r that 
consists of the complementary energy r e due to the elastic deformation, the 
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potential related to the plastic deformation r p , and the damage potential 
related to the free surface energy due to the microcavities nucleation r d : 

r (0', r, D, f3) = re (0', D) + rp (r) + rd (f3) . (4.92) 

The elastic complementary energy r e (0', D) is assumed to be quadratic in 
0' and linear in D, hence 

// 2 1+// 2 2 r e (0', D) = - 2E (Tru) + 2E Tru + -61TrD (Tru) 
(4.93) 

where -61 , -62 , -63 and -64 are material constants and 0' * is the modified stress 
tensor responsible for the opening/ closure effect defined in an analogous 
way as the modified elastic strain tensors (cf. (4.58)): 

0" = (0') - ( (-0') . (4.94) 

For plastic and damage terms rp (r) and rd (f3) the following formulas are 
used: 

r p (r) = Roo [r + ~ exp(-br)] , 

rd (f3) = ~Kdf32, 
(4.95) 

where Roo, band Kd are material constants. Eventually, the elastic-damage 
constitutive equation is furnished as 

au' 
+2-62 (TrD) 0'*: au 

au' 
+-63 [Tr (uD) 1+ (Tru) DJ + -64 (u*D + Du*): au' 

and the forces conjugate to internal variables D, rand f3 are 

arp 

R= ar =Roo [l-exp(-br)], 

(4.96) 

(4.97) 

Assuming also the Mises-type yield condition of the damaged materia18 in 
the form 

FP (0', R,D) = lJeq - (uy + R) = 0 (4.98) 
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the constitutive equations for plastic strain rate efj and the rate of isotropic 
hardening r hold: 

(4.99) 
,8FP . 

r = AP 8 (-R) = AP, 

where M (D) is a fourth-rank damage effect tensor 

- 1 1 
M (D) = 2 (DikDjl + DUDjk) + 2cP (DikDjl + DikDjl + DUDjk + DUDjk) 

(4.100) 
and the effective Mises-type equivalent stress U eq is 

[ 
,_ '] 1/2 Ueq = (3/2)a : M(D) : a . (4.101) 

In order to establish evolution equations of damage D and {3, the damage 
dissipation potential is assumed in the form 

pi (Y,B,D,r) = Y.,q +erThDThY - (Bo +B) = 0 (4.102) 

that extends (4.61) by the additional damage-plasticity term corresponding 
to isotropic hardening r. The fourth-rank tensor L (D) is given by the 
formula analogous to (4.100) with the material constant cP replaced by the 
new constant cd. Hence, the evolution equations are furnished as follows: 

D = Ad 8Fd = Arl [L:V + c'r (ThD) 1] 8Y 2Yeq , 

, _ 'd 8Fd _'d 
(3 - A 0(-B) - A . 

(4.103) 

The plasticity and damage multipliers Ap and Ad must be derived from 
the consistency conditions for the plastic yield surface (4.98) and damage 
surface (4.102) (cf. Hayakawa et a1., 1998): 

(4.104) 



134 4. Three-dimensional anisotropic damage accumulation 

The material constants determined for the cast iron FCD400 are (Hayakawa 
et al., 1998): 

E= 169 MPa, 
(= 0.89, 
'19 2 = 4.00 X 10-6 MPa- 1, 

'194 = 2.50 X 10-6 MPa- 1, 

Ro = 293.0 MPa, 
Kd = 1.3, 
cP = 1.0, 
cr = 50.0. 

IJ = 0.285, 
'191 = -3.95 X 10-7 MPa- 1, 

'193 = -4.00 X 10-7 MPa -1, 

b= 15, 
Roo = 250.0 MPa, 
Bo = 0.273, 
cd = -15.0, 



5 

Coupled thermo-damage and 
damage-fracture fields 

5.1 Damage effect on heat transfer in solids 
under thermo-mechanical loadings 

5.1.1 Concepts of a thermo-creep-damage coupling 

The creep process and the associated material deterioration are tempera­
ture sensitive phenomena. A classical approach consists in accounting for 
the effect of temperature on the material functions in the constitutive and 
the evolution equations of a damaged solid (cf. Ganczarski and Skrzypek, 
1991), whereas the temperature field remains steady state. 

In a general case, when thermo-mechanical loadings are applied to the 
structure, in addition to the constitutive and evolution state equations with 
the appropriate mechanical boundary conditions, the heat transfer equa­
tion must simultaneously be solved to yield a transient temperature field 
which satisfies the thermal boundary conditions. Material nonhomogeneity, 
which results from the deterioration process in a solid, influences both the 
mechanical moduli represented by elasticity tensors A (x, t) or A-I (x, t), 
stiffness or compliance, and the thermal properties L (x, t) or r (x, t), where 
A or A-I and L, r are fourth-rank elasticity tensors and second-rank ther­
mal conductivity and emissivity symmetric tensors, respectively, all defined 
at a given material particle x. In fact, the tensor nature of thermal conduc­
tivity is a question of debate. Carslow and Jeager (1959) and Fung (1965) 
introduced a symmetric, positive definite matrix Lij of thermal conduc­
tivity moduli, whereas Nowacki (1970) defined the thermal conductivity 
as Lij = Lij/T2 and postulated considering it as a symmetric tensor, 
when the temperature change is limited to be small enough when com­
pared to the natural state, such that Lij can be assumed as constant. 
For porous media Kaviany (1995) introduced the thermal diffusivity tensor 
L = Led (!Cp + fLd , where Lef is the effective thermal conductivity tensor, 
Ld is the thermal dispersion tensor, and f denotes porosity. The author 
assumed that L is a positive-definite, symmetric tensor, the off-diagonal 
elements of which vanish in case of isotropic media. Recently Saanouni, 
Forster, and Ben Hatira (1994) when formulating the general constitutive 
law of the coupled isotropic damage-elasto-( visco ) plasticity , also introduced 

a symmetric second-rank tensor ofthermal conductivity k (cf. Sect. 2.3.4). 

In what follows, the tensor nature of Lij and f ij matrices is postulated, in 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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particular, when second-rank damage tensor Dij affects thermal properties 
of a solid resulting in an anisotropic thermal conductivity and radiation, 
though in a virgin material the thermal isotropy holds (cf. Ganczarski and 
Skrzypek, 1995, 1997; Skrzypek and Ganczarski, 1998b). 

Tanigawa (1988) formulated a coupled thermo-elastic problem for time­
independent, nonhomogeneous but isotropic structural materials. If a body 
is isotropic and nonhomogeneous, the steady state heat conduction equa­
tion, without the internal sources, has the form: 

! [AO(X,y,Z) :] +~ [AO(X,y,Z) :] + :z [AO(X,y,Z) :] =0, 

(5.1) 
where T = T(x,y,z). 

The above equation needs to be extended when thermally nonhomogene­
ous solid suffers from a creep-damage process, hence, the thermal con­
ductivity function of a virgin solid AO(X,y,z) is replaced by a new time­
dependent, generally anisotropic tensorial function L (x, y, z, t) that char­
acterizes the thermal properties of a partly damaged solid. The material 
nonhomogeneity is no longer time-independent, following damage evolu­
tion. Hence, in the simplest case, when the isotropic damage is assumed as 
governed by a single scalar variable D (x, t), a more general form instead 
of (5.1) is required: 

8 {- 8T(X)} 8 {- 8T(X)} ax A[x,D(x,t)J~ + By A[x,D(x,t)J~ 

(5.2) 
8 {- 8T(X)} + 8z A [x, D (x, t)J ----a;- = 0, 

whereas for nonsteady states, with internal heat sources q", the extended 
equation (5.1) takes a form: 

:X {~[X,D(X,t)J 8TJ:,t)} + ~ {~[x,D(X,t)J 8TZ,t)} 

(5.3) 
~ {~[ D ( )J 8T(x,t)} 8q" = 8T(x,t) + 8z x, x, t 8z + 8t c" e 8t 

or 

div F [x, D (x, t)J gradT} + q" = c"eT (5.4) 

in a more general case. 



5.1 Damage effect heat transfer in solids 137 

The effect of damage on thermal properties is described here by the single 
scalar variable>: [x, D (x, t»). The mass density and the specific heat, {!, c..., 
are assumed to be time-independent constants. 

The aim of this section is to specify time-dependent functions>: [x, D (x, 
t)] that introduce coupling between the heat conductivity and the isotropic 
damage evolution. Three models of the scalar thermo-damage coupling are 
proposed (cf. Skrzypek and Ganczarski, 1998b). 

A. Direct extension of the equation of thermal conductivity for damaged 
solids 

The simplest model is based on the assumption of linear heat conductivity 
drop with damage (cf. Ganczarski and Skrzypek, 1995): 

>: [x, D (x, t)] = AO (x) [1- D (x,t)] (5.5) 

where AO (x) denotes generally nonhomogeneous distribution of the ther­
mal conductivity in a virgin (undamaged) solid, whereas the scalar vari­
able D defines the current damage level (e.g., governed by Hayhurst and 
Chaboche's rule, (2.35)-(2.36). In this model, when material is locally com­
pletely damaged, D (x, t) == 1, the thermal conductivity coefficient drops 
at this point to zero >:(D = 1) = 0 and, hence, local heat conductivity 
through the completely damaged surface element must also drop to zero. 

In other words, the fully damaged RVE is assumed to be free from any 
kind of stress and unable to support heat conduction. This property was 
also used by Saanouni et a1. (1994); however, it is not obvious when a 
more general heat transfer model is applied unless the mechanisms other 
than conductivity are excluded. Note also that, when in the Saanouni et a1. 
(1994) approach the energy based equivalence principle was used instead 
of the linear conductivity drop (5.5), the other formula is derived from the 
state potential, namely k = (1 - D)1/2 k, so that the following isotropic 
model may also be proposed: 

~ 1/2 A[x,D(x,t)] = AO (x)[l- D(x,t)] . (5.6) 

B. Concept of a combined evolution of thermal conductivity and radiation 
through partly damaged solid 

Further extension of the Model A accounts for an additional heat flow 
term through the damaged surfaCe element portion, by application of the 
Stefan-Boltzmann radiation law. Hence, when both conduction and radia­
tion mechanisms of heat transfer are admitted, the following extension of 
(5.3) was proposed by Ganczarski and Skrzypek (1995): 
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a { aT(x,t) } ax .Ao (x) [1 - D (x, t)] ax - aEo (x, t) D (x, t) T4 

a { aT (x,t) } +- .Ao (x) [1 - D (x, t)] - aEo (x, t) D (x, t) T4 ay By 
(5.7) 

a { aT (x, t) 4} + az .Ao (x) [1 - D (x, t)] 8z - aEo (x, t) D (x, t) T 

aqv 8T(x,t) +m = eve at . 

In the Model B under consideration a combined conductivity/radiation 
mechanism allows for a heat flux even though the damage at a point reaches 
level 1 (due to radiation across the microcracks). However, as will be shown 
further, the model exhibits an essential inconsistency. The form of terms 
associated with radiation suggests, namely, that there exists heat exchange 
caused by a redistribution of damage only, even though the temperature 
remains constant. To omit this inconsistency, it is necessary to use the 
second law of thermodynamics and to cutoff inadmissible temperature dis­
tributions (cf. Sect. 7.4.3) 

C. Concept of the equivalent (reduced) coefficient of thermal conductivity 
for a combined conductivity/radiation heat flux through partly damaged 
solid 

Another way that consists in accounting for a combined heat exchange, 
when the conductivity is a.'3sumed to be a dominant phenomenon, was pre­
sented by Ganczarski and Skrzypek (1998b). A combined heat flux is char­
acterized by the substitutive coefficient of thermal conductivity modified 
in order to take into account a splUltaneous influence of the conductivity 
through the RVE at the point X,.A and the radiation from x to x+dx. The 
equivalent coefficient of thermal conductivity .A eq is expressed, therefore, 
by the equation: 

- -rad 
.Aeq [x, D (x, t) ,T (x, t)] = .A [x, D (x, t)] + d.A [dx, D (x, t) ,T (x, t)]. 

(5.8) 
Consequently, the equation of heat transfer (5.3) may be extended to the 

following form: 

~ {.Aeq [x,D(x,t) ,T(X,t)]aT~:,t)} 
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+~ {>.eq[X,D(X,t),T(X,t»)aT't,t)} 

+ :z {>.eq [x, D (x, t) ,T (x, t)] aT't, t) } (5.9) 

8q" aT'(x,t) +m = G,,(! at . 

The equivalent (substitutive) coefficient of thermal conductivity >.eq is ob­
tained by equating the heat flux due to conductivity and radiation through 
the partly damaged cross section which the heat flux due to the correspond­
ing conductivity through the fictitious pseudo-undamaged cross section. 

-rad 
The specific formulas for d>' will be discussed in the following section. 

Conclusion: In Model C a combined conductivity and radiation mecha­
nism through undamaged (solid) and damaged (voided) material, respec­
tively, is reduced to the equivalent conductivity through the fictive pseudo­
undamaged material, when a substitutive coefficient of thermal conductiv­
ity >. eq is introduced to the Fourier conductivity law for a partly damaged 
solid (5.9) instead of linearly decreasing with damage coefficient ~ used in 
Model A. Note that in Model C, in the case when the material damage 
parameter locally reaches level D = 1 (macro crack initiation), the equiva­
lent coefficient >.eq(D = 1) remains nonzero and, hence, the residual fictive 
heat conductivity through the pseudo-undamaged surface element, equiv­
alent to the heat radiation through the completely damaged real element, 
remains nonzero as well. On the other hand, Model C, in contrast to Model 
B, is free from an inadmissible heat exchange phenomenon caused by the 
damage redistribution when the temperature gradient drops to zero. 

5.1.2 Uniaxial (lD) heat transfer through isotropic damaged 
solids 

Consider a uniaxial representative volume element dxdAo as a rod which 
undergoes brittle damage at elevated temperature, Fig. 5.1. 

The actual state of damage in the element is determined by the dam­
age variable D interlinked with the continuity variable 'l/J as D + 'l/J = 
1, or dD + d'l/J = O. Hence, we can easily interpret the products DdAo 
and 'l/JdAo as the damaged and the undamaged portions of the elementary 
cross section area dAo, respectively. Due to the dual nature of a partly 
damaged cross section, the total heat flow rate needs to be decomposed 
into two parts: the classical Fourier conductivity through the undamaged 
portion of cross section qcond and the Stefan-Boltzmann radiation through 
the damaged portion of cross section qrad: 
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Fig. 5.1. Schematics of heat transfer through partly damaged uniaxial RVE 
dxdAo 

tond = ->'0 dT, 
dx 

(5.10) 

where >'0, EO, and (J denote thermal conductivity, emissivity of the gray 
body in a virgin state, and the Stefan-Boltzmann constant. 

Consider heat flux through the element taking into account infinitesimal 
changes of damage and continuity on dx: 

(5.11) 

Neglecting second-order terms and substituting (5.10) for qcond and qrad, 

the modified equation of uniaxial heat transfer through partly damaged 
body in the form (Model B), 

~ [>'0(1 - D) or _ (JEoDT4] + oqv = Cv(! oT ox ox at at ' (5.12) 

is eventually obtained, where qv is intensity of the inner heat source (if 
it exists). In the case of a pure thermal conductivity (Model A), setting 
emissivity to zero, Eo = 0, the equation (5.12) reduces to the following 
form: 

>: = >'0(1 - D). (5.13) 
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Qrod(X)-Qrod(X+dx)=dQ~ 

~Q-""'"'-Q-+dQ­
(D+dD)dA: Q::'" =Q .... +dQ~ ~ 

Q ..... (x+dx) 

(l-D-dD)dA o 

-oq 

damaged solid pseudoundamaged solid 

Fig. 5.2. One-dimensional concept of the equivalent coefficient of thermal con­
ductivity 

The concept of an equivalent coefficient of thermal conductivity ).eq 

(Model C) requires, first of all, comparison of the heat flux by radiation 
through the partly damaged cross section and the additional heat flux by 
conduction through the fictive pseudo-undamaged cross section (Fig. 5.2): 

Next, expanding temperature T(x+dx) and damage parameter D(x+dx) 
in Taylor series for x and introducing these into (5.14) we have: 

£TEO [DT4 - (D + ~~ dx +".) 
(5.15) 

x (r4+4T3 :dx+ .. .)] =_drad:. 
When higher-order terms in (5.15) are neglected, the additional substi­
tutive coefficient of thermal conductivity in pseudo-undamaged material 

-rad 
responsible for the radiation in damaged material d)' is expressed by the 
formula: 

-rad (3 8D/8X rn4 ) 
d)' =£TfO 4DT + aT/8x l. - dx. (5.16) 

Therefore, the equation of uniaxial heat transfer takes the form: 

(5.17) 

- -rad 
or, when the explicit formulas for)' and d)' are used, we obtain: 
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! {[AO(l-D)+~€O (4D+ ~~:;:T)T3dX] ~~} 
(5 .18) aqv aT +-m = Cv(}7it. 

5.1.3 3D heat transfer through thermo-mechanically 
orthotropic solids 

Let us extend equations (5.12), (5.13), and (5.18) to the most general case of 
thermo-mechanical orthotropy. The anisotropic nature of damage requires 
the symmetric second-order tensors of damage and continuity to be used 
instead of corresponding scalar variables (cf. Murakami and Ohno, 1981) . 
Consider an infinitesimal tetrahedron defined by dx, dy, dz and the inclined 
plane of the unit normal vector n = (n"" ny, nz), Fig. 5.3 (cf. Skrzypek and 
Ganczarski, 1998b). 

X, 

Fig. 5.3. Three-dimensional concept of the equivalent heat conductivity 

The unit heat flow rates, associated with the conductivity through the 
undamaged part of the inclined cross section {qcond} = {q;ond, q~ond, 

q~ond} T and the radiation through the damaged part of it {qrad} = {q~ad , 
qrad qrad}T are as follows' 

Y ' z' . 
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{ 
q:nd } [W"'''' Wy", Wz", 1 { fJT/aX } 
if;nd = - Ao W yy W zy fJT / ay , 
qcond W fJT/aZ 

z = 
... y , 

(5.19) 

where terms associated with off-diagonal components of the corresponding 
(3 x 3) matrices play role of the diffusional conductivity/radiation por­
tions, respectively, due to the transverse temperature gradients. When the 
above decomposition of the unit heat flow rates is introduced, the tensor 
of thermal conductivity 'iij and the tensor of radiation rij are defined as 
follows: 

(5.20) 

Both tensors defined above L, r are coaxial with the damage tensor D 
in their principal axes, therefore, there exists a locally orthogonal frame 
coinciding with directions of damage orthotropy such that (5.20) can be 
written as: 

v = 1,2,3. (5.21) 

Consequently, the heat flux rates expressed in terms of damage tensor eigen­
values take the form: 

{ 1"no } [1 n 0 Ln,]{ fJT/aXl }, q~ond = -Ao 0 - 1 1-D2 fJT/aX2 
q~ond 0 0 fJT/aX3 

{ q~ad } ~U'o [f 0 

t]{ nl }r q2ad D2 n2 
q3ad 0 n3 

(5.22) 
When (5.21) and (5.22) are introduced into the heat flux equation we arrive 
at: 
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+ O~2 [AO(1 - D2):: - U€OD2'r4] (5.23) 

o [ 8T rn4] oq1J 8T 
+ Ox3 Ao(l- D3) Ox3 - U€OD31- + &t = Cu{!8i' 

where the problem of a heat transfer in an anisotropic solid is reduced to 
the equivalent problem of a heat transfer in a local thermo-mechanically 
orthotropic solid. 

A particular case of pure conductivity (3D extention of Model A) yields 
the equation: 

(5.24) 

+~ [AO{1- D3 ) 8T] + oqv = Cu{! 8T. 
OX3 OX3 at at 

An extension of the equivalent thermal conductivity to the case of or­
thotropic damage evolution (extension of Model C) consists in introducing 
the substitutive conductivity diagonal tensor dL~ad that corresponds to 
the equivalent conductivity through the fictive, pseudo-undamaged mater­
ial. Equating the heat flux by radiation through the partly damaged (real) 
cross section and the heat flux by conduction through the fictive pseudo­
undamaged cross section along each of the coordinate axes, we can write 
for axis Xl (Fig. 5.3): 

u€o [DI (Xl, X2, x3)nl'r4(Xl, X2, X3) 

-DI(XI +dxl ,x2,x3)nlr(XI +dxl,X2,X3)] = _dL~a.d::, 
etc. 

(5.25) 
When the procedure of expansion of temperature and damage in Taylor 
series is applied and the higher-order terms are neglected, we find the for­
mulas: 

(5.26) 
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which, when substituted into the equation of heat transfer, yield the fol­
lowing 3D equivalent heat flux equation in t~ of three components of 
the diagonal substitutive conductivity tensor L~: 

(5.27) 

where 

(5.28) 

Note that in the general case, when the damaged solid is anisotropic, com­
plete thermal conductivity and radiation tensors Lij and fij must be used 
instead of their diagonalized representations, hence, the additional terms 
connected with diffusion due to the transverse temperature gradients would 
appear when thermodynamical balance along the coordinate axes x is con­
sidered. On the other hand, when principal directions of damage change 
following a rotation of principal directions of stress, the combined thermo­
damage equations must be considered at current principal damage direc­
tions to yield current heat flux orthotropy, though in a reference space 
(invariant) a general heat anisotropy (with diffusion included) occurs. 

5.1.4 General anisotropic thermo-creep-damage coupling for 
initially isotropic material 

Consider a general anisotropic case when the comelete repr~entation of 
the second-rank conductivity and radiation tensors L (D) and r (D) in the 
x, y, z frame, defined either by the second-rank damage tensor D or by the 
continuity tensor W = 1- D, is as follows: 

L (D) = AO (1- D), 

and 

f (D) = aEoD 

-D",y 
1-Dyy 

-D",z 1 
-Dyz 

1- Dzz 

(5.29) 

(5.30) 

The virgin material was assumed to be isotropic, with thermal properties 
characterized by the coefficients of thermal conductivity and emissivity of 
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a gray body '\0 and Eo and the Stefan-Boltzmann constant a. Introducing 
the vector of temperature gradient gradT and the normal vector n, 

{ EfT EfT aT} 
gradT = ax ' [)y , az ' (5.31) 

and defining the operations 

(5.32) 

the general representation of the anisotropic damage coupled heat transfer 
equation is furnished in one of the equivalent forms as follows (Model B): 

(5.33) 
div ['\0 (1- D) gradT - aEoDnT4] + qv = GulF 

or, 

a~i ['\0 (Iij - Dij) ~ - aEoDijnjT4] + qv = GueT, (5.34) 

where the absolute or the indices notation was applied. Eventually, when 
the explicit representation is used, (5.34) may be written as: 

(5.35) 
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In case of thermo-mechanically orthotropic solids, the off-diagonal com­
ponents of (5.30) disappear for the Xl, X2, X3 axes; hence, the orthotropic 
heat flux equation (5.22) is recovered. 

5.1.5 Coupled constitutive thermo-creep-damage equations 

I. Isotropic (scalar) thermo-damage coupling (cf. Ganczarski and 
Skrzypek, 1995) 

In order to solve the coupled thermo-creep-isotropic damage problem, the 
heat transfer equation (5.3) or (5.7) or (5.9) must be combined with con­
stitutive creep and damage evolution equations (cf. Sect. 4.1.3(1)). Hence, 
the coupled thermo-creep-damage state equations are (Model A and Model 
B) 

:X {>: [x, D (x, t)] : - O'foD (x, t) T4} 

a {- aT } + By ). [x, D (x, t)] ay - O'foD (x, t) T4 

+- ). [x, D (x, t)] - - O'foD (x, t) T4 a {- aT } 
az az 

+qv = eve [x, D (x, t)] T, 

); [x, D (x, t)] = ).0 (x) [1- D (x, t)], } 
e [x, D (x, t)] = eo [1- D (x, t)]3/2 , 

( 
() 

)
T(T) . XU 

D(x,t) = C(T) 1- D(x,t) , 

( )
m(T) 

.c O'eq . 
Ceq = 1 _ D (x, t) f (t) . 

(5.36) 

For the sake of generality, an initially nonhomogeneous isotropic mate­
rial was used where both the coefficients of thermal conductivity >: and 
the mass density e change with damage, whereas the Kachanov-Hayhurst 
damage growth rule is coupled with the Mises-type creep flow rule and the 
multiaxial time-hardening hypothesis, and C (T), r (T), m (T) are tem­
perature dependent material constants. When Model C is used (cf. Sect. 
5.1.1) Eq. (5.9) should be substituted for the first of Eqs. (5.36), where the 
substitutive thermal conductivity is given by the formula 
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II. Orthotropic thermo-creep-damage coupling in constant principal 
directions (cf. Ganczarski and Skrzypek, 1997) 

In the case that there is an orthogonal frame Xl, X2, X3 of thermo-mechanical 
orthotropy, such that the heat flux in the one of directions of orthotropy, say 
Xl, is affected by the temperature gradient in the same direction, aT j aXI, 
but is not influenced by the other two, aTjax2 and aTj8x3, we arrive at: 

a { aT } aX1 Al [x, DI (x, t)] aX1 - C1EOD1 (x, t) r 

+ a~2 {A [x, D2 (x, t)] :: - C1EOD2 (x, t) T4} 

+ :!3 {A [x, D3 (x, t)] :: - C1EOD3 (x, t) r} 

All [x, DII (x, t)] = AO (x) [1 - DII (x, t)] , 

• 0'11 X 
\ 

() 
)

ru(T) 

DII (x,t) = Gil (T) 1- DII (x,t) , 

(5.38) 

The fully coupled creep-damage approach in (5.38) has been used as it is 
more consistent (d. Sect. 4.1.3(11)). 

5.2 The local approach to fracture using the 
CDM approach 

5.2.1 Effective elastic moduli of cracked solids 

A transition between the atomic, the micro, or the mesoscale and the 
fourth-rank elasticity tensors A or A-I for stiffness or compliance, and 
the second-rank thermal properties tensors Land L -1 for conductivity 
and emissivity, etc., requires a proper selection of the representative vol­
ume element (RVE). The RVE maps a finite volume of linear size ARvE of 
the piecewise-discontinuous and heterogeneous solid, the state of damage 
in which is determined by the topology, size, orientation, and number of 
microcracks, microvoids, microslips, etc., on a material point of the pseudo­
undamaged quasicontinuum. This effective quasicontinuum method, also 
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called the CDM method, is based on the assumptions that (cf. Krajcinovic, 
1995): 

- each defect within the RYE is subjected to the same stress field de­
rived from the external tractions applied at the boundary of the ele­
ment, and 

- the effect of other defects within the RYE on the observed defect 
is measured through the change of the effective thermo-mechanical 
properties (cf. Sect. 1.1.2). 

In other words, the exact spatial correlation of the defects within the 
RYE has a negligible influence on the effective properties defined in the el­
ement. The minimum linear size of ARVE of the RVE must be large enough 
to include a sufficient number of damage entities to provide a statistically 
homogeneous representation of the microstructure or the mesostructure. At 
the same time, however, the size ARVE must be small enough for the stress 
field to be considered as homogeneous within the RYE. The existence of 
the RYE, that allows the heterogeneous and discontinuous material to be 
considered as statistically homogeneous within the element, is the condition 
for a local approach (LA) in which there are no scale parameters involved. 
Hence, the effective moduli of a damaged solid depend on the average dis­
tribution of sizes, orientations, and spatial positions of defects within the 
RVE. Spatially averaged damage variables are, generally, a sufficiently good 
approximation for the stiffness and thermal flux characterization. Damage 
evolution, on the other hand, depends more on the extreme values of the 
defect distribution, for instance, the largest defect size, the minimum neigh­
bor distance, etc., such that the effect of damage patterning on the local 
driving forces should also be incorporated to the higher-order macroscopic 
damage descriptors (cf. Lacy et al., 1997). 

The effect of crack systems on the effective moduli of linearly elastic 
isotropic solids was critically reviewed by M. Kachanov (1992). For non­
interacting cracks in the isotropic matrix material the effective moduli can 
be determined exactly for a random, arbitrary crack distribution, particu­
larly at low crack densities. In the approximation of non-interacting cracks, 
each of them is regarded as isolated and free of any influence from other 
cracks. Hence, the compliance is linear in crack density. The second-rank 
or the fourth-rank crack density tensors a: or Q provide an adequate de­
scription of a crack array in the 2D or the 3D cases, respectively. If crack 
distribution is nonrandom, interactions can be strong even at small density. 
For interacting cracks, the determination of the effective moduli requires 
considering a problem of direct interaction for each crack configuration in­
cluding their exact orientation, position, and size, and then a subsequent 
averaging over them. Particular approximate models (self-consistent, dif­
ferential, generalized self-consistent, Mori-Tanaka, scheme and others) are 
generally based on the analysis of one isolated crack placed into a ma­
trix with the effective moduli, such that the influence of interaction on a 
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considered crack is accounted for by the reduced stiffness of the surround­
ing material (cf. Budiansky and O'Connel, 1976; Hashin, 1988; Sayers and 
Kachanov, 1991; Mori and Tanaka, 1973; Christiansen and Lo, 1979). Usu­
ally, the interaction produces a softening effect on the effective moduli with 
the exception of the Mori-Tanaka approach for which the predicted mod­
uli coincide with those obtained for noninteracting cracks (cf. Kachanov, 
1992). 

5.2.2 Crack growth by a local approach - general features 

The situation becomes much more complicated when a coupled damage­
fracture mechanism is determined by the nucleation (pre-critical) and the 
growth (post-critical) of a single macrocrack (or the macrocracks pattern), 
the geometry of which is explicitly determined in the fracture (cracking) 
process. Generally speaking, crack propagation through the solid with a 
heterogeneous microstructure may be arrested and the continuum dam­
age accumulation prior to the macrofracture may occur. AB a consequence, 
a strong interaction between the macrocrack(s) and the damage field in 
fracturing process is observed and, hence, the nonlocal approach (NLA) 
should be used rather than the local one, mainly due to stress concentra­
tion at a crack tip. Nevertheless, an approximate fracture analysis by ap­
plying the local approach (LA) to the stress, strain, and damage fields at a 
crack tip may also be recommended for its simplicity for the creep damage­
fracture analysis (d. Murakami, Kawai and Rong, 1988; Liu, Murakami and 
Kanagawa, 1994; Murakami and Liu, 1995) and the elastic-brittle damage­
fracture analysis (cf. Skrzypek, Kuna-Ciskal, and Ganczarski, 1998c). 

The local approach to fracture (LAF) based on continuum damage me­
chanics (CDM), when a free surface is produced on the macrocrack, is 
usually combined with the finite element method (FEM), hence, the cru­
cial question is the mesh dependence and its regularization. This problem 
is examined in the paper by Murakami and Liu (1995), where the FEM was 
applied to the creep-fracture analysis by the use of the elastic-creep mater­
ial model with isotropic damage, the one-parameter Kachanov-Rabotnov­
Sdobyrev model (Sect. 2.2.2(11)) and the linear scalar Young's modulus 
drop with damage, all implemented in the UMAT of ABAQUS FEM code. 
By the use of this simple model, an assembly of fractured elements is con­
sidered as a crack when the stress in the element is released after the scalar 
damage variable in the element has reached the critical value Dcn and a 
free surface is created. In this approach, the crack width is governed by 
the size of the finite element, and the crack cannot develop in the direction 
of its width. As a consequence, heavy mesh-dependence of both the crack 
length growth rate and the stress and damage concentration, particularly 
in the region around the crack tip, is observed. Possibilities for regular­
ization were examined in the frame of the local approach by the use of a 
nonlocal damage variable (averaged over a neighborhood of the crack tip), 
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a simplified strffis limitation (ideal plasticity), and a modification of the 
damage evolution law (cf. Sect. 5.2.3). 

Recently, the local approach to fracture was applied to a coupled elastic­
brittle damage-fracture analysis by Skrzypek, Kuna-Ciskal, and Ganczarski 
(1998). In contrast to the material model used by Murakami and Liu (1995), 
the damage anisotropy was accounted for in this paper by the application 
of the anisotropic elasticity coupled with damage. The damage evolution 
law by Litewka and Hult (1989) was generalized to the case of a rotation of 
principal stress and damage axes (due to the shear effect included) and the 
extended time-dependent elastic-brittle constitutive model as originated by 
Litewka (1985, 1989) was combined with the failure criterion in the form of 
an isotropic scalar function of strffis and damage tensors (cf. Sect. 4.2). All 
these constitutive models were implemented in the UMAT of ABAQUS. 
Interaction of the two mechanisms, releasing the kinematic boundary con­
ditions on the fixed-edge element face and/or fully removing the element 
that has failed, governs an unstable process of structural fracturing which 
leads to the complete fragmentation of the structure. 

This combined macrocrack penetration through the volume of an elastic­
brittle-damaged solid consists in a mixed-controlled mechanism. First, it is 
observed mostly as tensile stress controlled crack length growth if the an­
ticipated crack is formed along the a priori known structure of the fixed 
edge (if any) after the failure criterion has been satisfied in a neighbor­
ing (damaged) element and, as the consequence, the appropriate kinematic 
boundary conditions are released to allow for the crack opening on the free 
surface produced. The element disconnected from the rigid edge is left in 
the FE mffih to be able to carry the shear strffis, although the tensile stress 
in the direction normal to the crack has been released. Second, it is recog­
nized as a combined tension/shear controlled crack branching mechanism 
that allows the crack to deviate from the primary direction along the fixed 
edge into the interior. The neighboring element which has been caused to 
fail is then fully removed from the mesh and, in this way, a secondary crack 
of the width of the element is formed. In both cases, a significant cumula­
tive continuum damage field, prior to the failure prediction in the element 
as governed by the failure criterion legislated, is observed to develop in 
particular in the primary and/or the secondary crack tip surroundings. 
In addition, in a region where the comprffisive strffisffi predominate, little 
or no continuum damage prior to fracture is observed, hence, the element 
which is led to failure when the strffis vector meets the initial failure surface 
is instantaneously crushed and removed from the mesh (cf. Fig. 5.4). 

The possibility to examine the complex crack patterns in a structure, 
with changing crack directions and crack branching allowed, is a benefit of 
the local approach to fracture when applied to anisotropic elastic-brittle­
damage structures. It was observed by the authors that the failure criterion 
for elastic-brittle-damaged solids, as proposed by Litewka and Hult, 1989, 
introducffi naturally a strffis and damage limitation such that no artificial 
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methods for stress and damage field regularization are required. On the 
other hand, the overall crack pattern and the complete structure fracture 
prediction tF were found not to be as strongly mesh-dependent as in the 
Murakami and Liu approach (cf. Skrzypek et aI., 1998c). 

5.2.3 Local approach of elastic-creep fracture versus 
elastic-brittle fracture 

A quantitative comparison of the local approach to fracture by the FEM 
when applied to two material models, the coupled elastic-creep damaged 
solid (Murakami, Kawai and Rhong, 1988; Murakami and Liu , 1995) 
and the elastic-brittle orthotropic damaged solid (Litewka, 1985; Skrzypek, 
Kuna-Ciskal, and Ganczarski, 1998c), both implemented using FE codes, 
is presented in what follows. 

I. Elastic-creep damage model of fractured material 

A discussion of a local approach to the analysis of crack growth in a par­
ticular creep-orthotropic damaged solid when the stress and the damage 
tensors are coinciding in their principal axes (no rotation allowed) is due to 
Murakami et al. (1988). The damage evolution equation, under simplifying 
assumptions that the damage rate is described by the net area reduction 
on the planes perpendicular to the direction n(1) of the maximum principal 
stress al combined with the isotropic area reduction and that its magni­
tude is governed by the Hayhurst-type isochronous rupture function (cf. 
(2.36)), was postulated by the authors in the following fashion: 

. [ 1_~_(]k 
D=B ~al+(aeq+ 3 Tr(u) 

x [Tr {(1- D)-l (n{l) 0 n(l))} r 
x [(1-7]) 1 + 7]n(1) 0 n{l)]. 

(5.39) 

Let us mention that, for particular cases 7] = 0 and 7] = 1, (5.39) reduces 
to purely isotropic damage evolution and purely orthotropic micro crack 
growth in planes perpendicular to the maximum tensile stress, respectively, 
whereas for 0 < 7] < 1 a mixed isotropic/maximum principal stress con­
trolled damage growth mechanism occurs. A combined the McVetty and the 
Mises-type creep flow rules together with the strain hardening hypothesis 
was selected as the isotropic constitutive law: 

(5.40) 
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where: 

[ 
I ,] 1/2 

aeq = (3/2)CT : CT , 

u = (1/2) [CT: (1- D)-1 + (1- D)-1 : CT] , (5.41) 

[ "] 1/2 !7eq = (3/2) u : u , CT' = CT - (1/3) (TrCT) 1, 

u' = u - (1/3) (Tru) 1, 

whereas B, k, l, {, (,1] and A!, A2, nI, n2, a are material constants and a 
fictitious time t is to be eliminated from (5.40). 

The above described coupled constitutive and damage evolution equa­
tions were implemented on a FACOM M-382 system and applied to crack 
growth analysis in a square plate of copper at 250" C with a width to thick­
ness ratio b/ c = 30 and an initial crack length to thickness ratio ao/ c = 10, 
subjected to a biaxial proportional or nonproportionalloading, when the 
material constants of (5.39)-(5.41) were as follows: 

B = 4.46 X 10- 13 [MPa-kh- t ] , l = 5.0, 

k = 5.55, { = 1.0, ( =0.0, 

Al = 2.40 X 10-7 [MPa -n1 ] , nl = 2.60, (5.42) 

E = 66.240 [MPa] , 

whereas the parameter of anisotropy 1] was taken as 1] = 0.0 or 1] = 0.5 or 
1] = 1.0 for the purely orthotropic or the mixed or the purely isotropic case, 
respectively. The failure of the element was defined as the state in which 
the maximum principal damage value of the damage tensor D1 (damage 
orthotropy) or the scalar damage variable D attained the critical value 
Dcr = 0.99, at which point the rigidity of the failed element was released 
to zero, whereas the assembly of fully cracked elements was considered as 
a part of the global crack. 

The effect of damage orthotropy on the creep-crack pattern and the final 
time to failure prediction was examined under the biaxial nonproportional 
loadings, as shown in Fig. 5.4. 

The results obtained for crack initiation t[ are approximately equal when 
the isotropic, t~ = 26 h, and the orthotropic, tIl = 27 h, models are 
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Fig. 5.4. Effect of creep-damage anisotropy on the crack-pattern in a fractured 
plate under cross-changing loading: a) anisotropic damage model 1/ = 1.0, b) 
isotropic damage model 1/ = 0.0, (after Murakami, Kawai and Rhong, 1988) 

used. However, the anisotropy improves the time to failure prediction from 
t~ = 615 h for the purely isotropic model, to t"; = 1159 h in the case 
of the purely orthotropic mechanism. Additionally, creep-crack patterns 
differ from each other in that when the purely isotropic damage evolution 
law is applied (1] = 0.0) the main crack direction is, roughly speaking, 
insensitive to the maximum tensile stress direction change, whereas in the 
purely orthotropic one (1] = 1.0) after the external load change the main 
crack also gradually deviates from the primary direction to finally reach the 
direction perpendicular to the maximum principal tension for the second 
phase of loading, Fig. 5.4. 

II. Regularization methods in local approach to creep-fracture 
(cf. Murakami and Liu, 1995) 

A simple elastic-creep-isotropic damage material model that ignores the 
damage anisotropy is employed by the authors in the form 

u=A(D): (e-eC ), A (D) = A (1 - D) , 

eC = ~ A ( a eq ) n ~, 
2 1-D a eq 

(5.43) 

x(u) = (Weq + (1- a)al, 
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where A is the elasticity tensor for isotropic materials, D is the scalar 
damage variable (Dcr = 0.99) and A, B, n, p, q are material constants. 

The effect of mesh-dependence in the local approach to creep fracture 
and possible regularization methods for it are studied by Murakami and Liu 
(1995). Mesh dependence of crack growth was studied on an axisymmetric 
thick-walled tube uniformly pulled along the periphery (Fig. 5.5). 

4 ~--------------------------------------~ 
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Fig. 5.5. Effect of FE mesh on the crack length growth versus dimensionless 
time t/tr in an axisymmetric thick-walled tube under uniform exterior tension 
(after Murakami and Liu, 1995) 

A discussion by the authors may be summarized as follows. 
In the Murakami and Liu model using the local approach to fracture, 

the assembly of fractured elements Ef is considered as a crack. The crack 
region n can be determined by the local fracture criterion 

n = {Ef; D (Ef) = Dcr }. (5.44) 

In other words, the stress in an element that undergoes fracture is totally 
released when the damage level in an element reaches its critical value Dcr; 
hence, the stress on the free surface of the crack must vanish so that the 
crack cannot develop in the transverse direction to the crack length and 
the crack width is governed by the element size. 

Three ways to suppress the mesh-dependence of the local approach to 
fracture were examined by Murakami and Liu (1995). 
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A. Nonlocal damage variable D 

Regularization of the local variation of the damage field D (x) is achieved 
by averaging a nonlocal damage variable D (X,nd) over the neighborhood 
nd (~) of x: 

d15(x,nd) _ fO d ~.p(x,~)dnd (e) 
dt - fO d .p (x,~) dnd (e) 

(5.45) 

.p(x,~) = exp [- (d(x,~) /d*)2]. 

Symbols x,~, and dD/dt denote a material particle, a particle in the neig­
borhood nd of x, and the local damage rate of a current particle ~, respec­
tively, whereas .p, d, and d* are the weight function, the distance between 
x and ~, and the characteristic length that determines the extend of the 
domain Dd over which averaging of D is performed. Proper selection of the 
length d* is a crucial point of this nonlocal approach that allows suppres­
sion of damage localization in the surroundings of the crack tip, whereas 
for d* ---+ 0 a classical local damage variable D (x) is recovered. A similar 
concept was also investigated by Baasar and Gross (1998) to suppress dam­
age localization during crack propagation in thin-walled shells. A non local 
brittle failure criterion and the damage growth rule for material subjected 
to multiaxial variable loadings are developed by Mr6z and Seweryn (1998). 

B. Stress limitation by perfect plasticity 

The stress concentration at the crack tip in metallic materials may be 
limited by incorporating a perfect plasticity criterion into the model by 
assuming a modified stress (7' for damage evaluation as follows: 

(5.46) 

where O'eq is the Huber-Mises-Hencky equivalent stress and a factor k is 
determined from the yield criterion. 

C. Modification of the damage evolution law and reduction of the critical 
damage value Dcr 

When the damage parameter in the classical damage evolution law (5.43) 
approaches the critical level Dcr = 1, a strong stress sensitivity of the dam­
age evolution is observed. To suppress this effect, a modified exponential 
form of the damage growth rule was proposed by the authors: 
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dD B (') dt=q;[X(u)jPexp qD , (5.47) 

where B, p, q' are modified material constants that should be determined 
by comparing the modified (5.47) and the classical (5.43) damage evolution 
for constant stress. Additionally, limitation of the critical damage to the 
level Dcr = 0.7 was applied for better FEM convergence. 

All above regularization methods were tested by the authors to yield 
a significant reduction of the mesh dependence in the local approach to 
creep-fracture analysis by FEM. 

III. Local approach to elastic-brittle fracture by the extended Litewka 
model (cf. Skrzypek, Kuna-Ciskal, and Ganczarski, 1988c) 

When the modified CDM Litewka model of anisotropic elastic-brittle dam­
age in metallic material (Sect. 4.2) is used to fracture analysis for structures, 
a problem of mesh-dependence is met as well (cf. Fig.5.6). 
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Fig. 5.6. Effect of FE mesh on the crack length growth in a 2D structure made 
of anisotropic elastic-brittle damaged steel (after Skrzypek, Kuna-Ciskal, and 
Ganczarski, 1998c) 

In the material model considered, both the stress and the damage con­
centration at the crack tip are limited due to the isotropic scalar failure 
criterion function (4.43) used to define a crack opening. Additionally, when 
the failure criterion is satisfied in a fractured element the kinematic bound­
ary conditions are released at the node and free surface (crack) may be 
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produced without removing the element from the mesh. Consequently, the 
crack width is less dependent on the element size and the crack can be devel­
oped in the direction transverse to the primary crack length (crack pattern 
branching). Hence, the model is capable of predicting complex crack pat­
terns like those observed by O'Donnel et al. (1998) in 316L stainless steel 
under thermal fatigue-creep loading conditions, Fig. 5.7. 

Fig. 5.7. Fracture path of the mixed transgranular and intergranular mode under 
thermal-fatigue-creep conditions (after O'Donnel et al., 1998) 

Therefore, a simple reduction of the element size seems to be a sufficient 
way to regularize the FEM solution. However, the effect of the element 
shape may result in a change of the final crack pattern at failure and require 
additional tests. Micro and macro-crack interaction in a fatigue-creep crack 
growth test of TiAI specimen was examined by Yokobori et al. (1998). 
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6 

Creep damage and failure of 
axisymmetric structures 

6.1 Analysis of creep failure process in 
structures 

When the damage evolution in a structure is considered the following stages 
of the failure advance may be distinguished (Table 6.1). 

{ 

{ 

Table 6.1. Stages of failure advance 

Isotropic material damage 
at a point 

D-scalar parameter 

0 
1. Damage incubation period: 

D(x,t) == 0 
(x E V, t < to) 

2. Time of initial damage to 

3.Damage growth period: 
o < D(x, t) < Dcrit 
(to<t<tI) 

4. Time of initiation of failure tI 

Orthotropic material damage 
at a point 

Db D2, Da-principal damage 
components 

D .. (x,t) == 0 
(v=1,2,3;xE V,t < to) 

microcrack initiation (if to = 0: 
no incubation) 

0< sUP(I,2,a) D .. (x, t) < D~{t 
(v = 1,2,3;x E V; to < t < tI) 

first macrocrack initiation (tI = tR) 

{ 

5. Fract~ propagation period: 
D(x, t) = Dcrit 
(failed zone: x E VI) 
o < D(x, t) < Dcrit 
(unfailed zone: X E Vunf) 

{ 

sUP(I,2,3) D .. (x, t) == D~{t 
(x E Vr) 

o < SUP(l,2,3) D .. (x, t) < D~{t 
(x E Vunf) 

6. Time of structural failure tIl failure mechanism of a structure (tIl = tF) 

V 
time 

6.2 Example: Transient creep and creep 
failure of a thick-walled pressurized tube 

6.2.1 Rotationally symmetric plane-strain problem for 
isotropic material 

When a transient primary and secondary creep state analysis of a thick­
walled tube is considered, the effect of stress redistribution on the creep 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
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behavior has to be taken into account (cf. Penny and Marriott, 1995). This 
analysis was extended by incorporating the isotropic damage growth period 
in the tertiary creep phase, t ~ tI, by Boyle and Spence (1983), whereas 
the creep-fracture process of an axisymmetric thick-walled tube by the local 
approach, when CDM based FEM was used for the crack growth analysis, 
tI ~ t ~ tI I, is due to Murakami and Liu (1995). In what follows we confine 
ourselves to the damage growth period in a tube governed by the Mises­
type rule, the multiaxial time-hardening hypothesis, and the Kachanov­
type isotropic damage law. Hence, following Boyle and Spence (1983) the 
governing equations for the rotationally symmetric plane-strain problems 
when small total strains are split into the elastic and anelastic parts can 
be written as: 
Geometric equations 

O'z - v(O'r + 0'1?) 
Ez=EO= +~=oo~ E z , 

Equilibrium equation 

d 
-(rar) +O''!? = 0, 
dr 

Creep flow rule for plane strain creep incompressibility 

(6.1) 

(6.2) 

(6.3) 

M ultiaxial time hardening hypothesis associated with the Kachanov-Galileo 
law 

dEC = (~) m f(t)dt 
eq 1-D ' 

dD=C I ~)r dt, 
\1-D 

(6.4) 

where the equivalent stress a eq and the cumulative creep strain dE~q are 
defined as follows: 

clef 1 [( )2 ( )2 ( )2]1/2 O'eq = viz O'r -O',!? + a,!? -O'z + a z -O'r , 

(6.5) 
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Elimination of stresses from (6.1)-(6.5) and subsequent introduction of the 
dimensionless variables yields after some algebra the governing equations 
for the transient plane-strain creep problem in the dimensionless displace­
ment (rates) formulation: 

~ [J:.~(RU)J = 0 8R R8R 
(t = 0), 

8[18 'J .8C 8R 'R8R(RU) =F+ 8R (t>0), 

. 1- 211 ( . .) 
F=-I-- E~-E~ , -II 

where 

·1-211' 
G=-I--E~, -II 

R= ria, U = U/U£o, t = Euo-lf(t), eo = uo/E, 
Er = er/eO, E-o = e-o/eo 8r = ur/UO, 8-0 = u-o/uo. 

(6.6) 

(6.7) 

Hence, finally, the general solution of the problem may be written as follows: 

U=AoR+Bo 
2 R 

(t = 0), 

if = Ai R + Bi + i l (t > 0). 
2 R R 

The dimensionless stress rates are 

Hr = (1- 211~(1 + II) [-~i - (1- 211) ~~ + i2 + i3] , 

. 1 [ Ai Bi ·· 
8-0= (1-211)(1+11) -2+(1-211)R2+ h + I3 

-IIC - (1 - 211)E~] , 

Hz = (1 _ 211~(1 + II) [-IIA. + 211i2 + IIC - (1 - 211)E~] , 

the dimensionless strain rates are 

. Ai B,. i3 
E =----+.l2+--

r 2 R2 1-211' 

(6.8) 

(6.9) 

(6.10) 



164 6. Creep damage and failure of axisymmetric structures 

and the auxiliary integrals iI, i 2, i2 in (6.9) and (6.10) are defined as: 

(6.11) 
. 1-2v R .. 
h = - 2R2 J(2G - F)~d~. 

I 

The constants Ao, Eo and Ai, Ei should be determined from the appropri­
ate boundary conditions at I = 0 (elastic state) and Ii > 0 (creep state), 
respectively. Dimensionless creep strain rate components E~, E~, and E~ 
are to be obtained on each time step when the normalized creep consti­
tutive and damage evolution equations (6.3) and (6.4) are simultaneously 
solved. 

6.2.2 Results for pressurized tube 

A detailed analysis of coupled creep-brittle damage to a long thick-walled 
tube with inner to outer radii ratio alb, subjected to a uniform internal 
pressure p and under a plane strain state, was presented by Boyle and 
Spence (1983). In this section the numerical results obtained by Skrzypek 
(1993) for bla = 2, pluo = 0.2, m = 5, r = 3.5 are briefly reported. 

The redistribution of stresses U r and u{} with a normalized time tit] dur­
ing the stage of latent failure from the initial elastic distribution (solid line) 
to the stress distribution at the initiation of fracture tit] = 1 (dot-dash 
line) is shown in Fig. 6.1a-d. First macrocracks appear here at the outer 
surface (alb = 1), preceded by the damage accumulation which concen­
trates mainly in the outer part of the cross-section (Fig. 6.1e). A dot-dash 
line presents the steady state stress distribution for comparison. At rupture 
the hoop stress at the outermost fibers of the cross-section reaches zero. 
Then, the inwards propagation of the failure front begins, yielding finally 
the complete failure of the tube at t = t]] (cf. Boyle and Spence, 1983). 
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Fig. 6.1. Creep damage in a pressurized tube under plane strain: a) and c) varia­
tion of radial and circumferential stresses during failure, b) and d) redistribution 
of stresses, f) tube visualization; b/a = 2.0, p/uo = 0.2, m = 5, r = 3.5 (after 
Skrzypek, 1993) 
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6.3 Example: Transient creep and creep 
failure of an annular disk of constant 
thickness subject to rotation, tension, 
and temperature field 

6.3.1 Rotationally symmetric plane stress problem in case of 
orthotropic damage; no thermo-damage coupling 

Suppose an axisymmetric annular disk of constant thickness, clamped at 
the inner edge, is subject to rotation about the axis of symmetry with a 
constant angular velocity wand simultaneously loaded by an external nor­
mal tension p and a nonhomogeneous field of temperature !1T. The plane 
stress state and small strains are assumed. Total strains are decomposed 
into elastic, thermal, and creep parts: 

du a r - va1l 
er = dr = E + aT + e~, 

u a1l - var 
e1l = - = + aT + e~ 

r E ' 
(6.12) 

and the equilibrium equation is enriched by a term associated with the 
body force: 

dar aT - a1l 2 
-d + +pw r=O. 

r r 
(6.13) 

The similarity of deviators of the creep-flow theory and the time hardening 
hypothesis associated with Kachanov's orthotropic brittle damage theory 
(4.2) are taken as the constitutive relationships for a partly coupled creep­
damage process (Sect. 4.1.3.(1)) 

(6.14) 

b =c/~)r 
v \ 1- Dv 

(6.15) 

For the plane stress state, the Mises-type equivalent stress, the effective 
equivalent stress, and the equivalent creep strain rate are defined by the 
following formulas 
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[ 2 2 ]1/2 
aeq ~f C~rDJ + C~~~) -(l~rDJ C~~~) , 

(6.16) 
After elimination of stresses from (6.12)-(6.15) we arrive at the governing 
equations for initial (elastic) and transient (creep) problem: 

d2u 1 du u dT 
dr2 + ~ dr - r2 = -kr + (1 + v)a dr (t = 0), 

d2u 1 du u j dg 
dr2 + ~ dr - r2 = ;: + dr (t > 0), 

k- 1-v2 2 - E pw. 

(6.17) 

When Eqs. (6.17) are solved with the elastic solution (t = 0) assumed as 
the initial condition for the transient creep we obtain (Skrzypek, 1993): 

I. Elastic problem (t = 0) 

Ao Bo 1- v2 a r 
ue = -r+- - -8E pw2r3+(I+v)- fn~, 

2 r r a. 

ae = __ --Ao-(l-v)---pw r --fT~d~ E [l+V Bo 3+v 22] aEr 
r 1 - v2 2 r2 8 r2 a. ' 

-aET, 
(6.18) 

where, for the linear field of temperature T(r) = Ta. + tlTr - a, the inte­
b-a 

grals (6.18) may be expressed in the form 

r 

JT~d~ = tlT(r3 - a3
) + (Ta. _ tlTa) r2 - a2 (6.19) 

3(b-a) b-a 2 
a. 

and the symbol Ta. denotes the temperature at the inner radius of the disk 
(see Fig. 6.2). 
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II. Creep damage problem (t > 0) 

· Ai Ei (il i2) u=-r+-+ ----- r, 
2 r 1+// 1-// 

(J = -- --A - (1-//)- +h +12 · E [1 + // E,·. ] 
r 1 _ //2 2' r2 ' 

· E [1 + // E,·· ] . c (J1J = -- --A + (1-//)- +h -12 -EE:.o 
1-//2 2' r2 v' 

where the integrals iI, i2 in (6.20) are defined as 

. 1+//rj . 1_//r .. 
h = -2- [~d~, lz = - 2r2 [(2g - f)~dC 

(6.20) 

(6.21) 

whereas j and g are expressed in terms of the creep strain rates (6.17) 

(6.22) 

The constants Ao, Eo and Ai, Ei are evaluated using the appropriate 
boundary conditions. 

6.3.2 Solution of the creep problem with a propagation of 
failure front accounted for (t I :=:; t :=:; tIl) 

In the case under consideration the orthotropic failure criterion is checked 
independently for both principal damage components Dr and D1J. If both 

Dr < D~~{t and D1J < D~~i~ the damage growth period occurs when t < tJ. 
If one of Dr, D1J reaches at the material point its critical value at t = tJ, say 

D'19 = D~~i~' the corresponding macrocrack is initiated at this point such 
that the stress normal to the crack (unidirectional macrocrack orientation) 
is released, (J1J = O. In this way, a partly failed zone may be formed in 
the structure when the failure front moves as time increases above tJ. At 
complete failure of the structure, the partly failed zone (with respect to one 
damage component) may extend all over the volume of the disk to make 
the structure unable to carry loadings at time tIl. 

Admitting for the growth of the failure front with respect to the circum­
ferential componentof the damage tensor that D1J = 1 and Dr < 1, the 
circumferential stress in the partly failed zone of the disk must drop to 
zero, (J1J = 0, and hence (6.16) and (6.22) take the new form: 
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(6.23) 

Finally, the solution of the creep problem in the partly failed zone reduces 
to 

. C· ut -C·lnr+D·+I3 at -E2 art =0, - J J' r- T' (6.24) 

where c denotes the radius of the failure front. 

6.3.3 Results for annular disk 

Boundary conditions for the initial (pre-critical) phase are as follows: 

ar(a)=O ar(b)=p (t=O), 
ar(a)=O ar(b)=O (O<ti<tI) 

(6.25) 

enriched also by the continuity conditions for a post-critical phase 

(6.26) 

enabling evaluation of the constants Ao, Eo, Ai, E;, and Cj ' Dj , respec­
tively. 

The numerical example is presented for a disk made of ASTM 321 stain­
less steel, the material data for which are: 
E = 1.77 X 105 MPa, ll= 0.3, P = 7.9 X 103 kg/m3 , a = 0.02 m, b = 5a, 
ho = 0.002 m, ao = 118 MPa, a = 1.85 x 10-5 K-1, p/ao = 0.1, w = 100 
s-l, Ta = 773 K, !:IT = 10 K; whereas the temperature dependent material 
constants for creep rupture are shown in Table 6.2. 

Table 6.2. Temperature dependent creep damage data for ASTM 321 stainless 
steel 

Absolute 
temperature C[Pa- r s- 1] r m 

773 K 2.13 xlO -4:.l 3.90 5.60 
783 K 1.35 XlO- 41 3.82 5.49 

During the stage of latent failure (t < tI) the rapid accumulation of 
damage is observed mainly in the neighborhood of the inner edge where the 
initiation of failure occurs at t I. Simultaneously the hoop stress a -0 drops 
to zero at r = a and, then, the failure profile begins to move outwards as 
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Fig. 6.2. Transient creep and creep failure of an annular disk: a) geometry and 
loadings, b) damage growth 0 < t < tf and failure propagation tf < t < tIl, c) 
circumferential stress redistribution at failure (after Skrzypek, 1993) 

time increases above t]. At complete failure, the failure profile meets the 
outer edge of the disk and, eventually, the structure becomes unserviceable. 

The situation becomes slightly different when a disk clamped at the inner 
edge is considered. In this case, mixed boundary conditions must be used 

u(a) = 0 ar(b) = 0 (t = 0), 
u(a) = 0 ar(b) = 0 (0 < ti < t]) (6.27) 

and the continuity conditions at the partly failed-nonfailed interface (6.26) 
holds. When the inverse temperature gradient is applied to the disk D.T < 0 
(cf. Skrzypek, 1993), the damage process initiates at the outer edge with 
respect to the circumferential component D{) and, as time increases, the 
circumferential damage accumulation runs faster than the radial one Dr. 
If the first macro crack is initiated at t = t[ in the outer fibers of the 
cross section D{) (b) = 1, the hoop stress in these fibers must drop to zero, 
a{) (b) = O. Then the failed zone begins to spread inwards and, eventually, 
it may occupy the whole disk at tIl, unless the prior accumulation of the 
radial damage at the inner edge of the disk causes disk separation (decohe­
sion) from the shaft Dr (a) = 1 after the radial stress in this fiber has been 
released completely, (Jr (a) = O. 



7 

Axisymmetric heat transfer 
problems in damaged cylinders 
and disks 

7.1 Basic mechanical state equations of 
rotationally symmetric deformation­
under unsteady temperature field 

Let us consider an axisymmetric problem in the displacement formulation 
which may describe plane stress (a disk of constant thickness) as well as the 
plane strain state (a cylinder). Applying the geometrically linear theory of 
small displacements and decomposing the total strains into elastic, creep, 
and thermal parts, 

(7.1) 

the problem may be expressed by the system of displacement (rate) equa­
tions as follows: 

d2u 1 du u dT - + -- - - = h(l + lI)a­
dr2 r dr r2 dr 

(t = 0), 

(7.2) 

The solution for displacements, stresses, and their rates takes the elemen­
tary form: 

1. Elastic problem (t = 0) 

(7.3) 

E (Cl C2) E 
rJ{J = -- k- + - + h- (10 - arT) . 

1 + II 2 r2 r 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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II. Creep problem (t > 0) 
r C4 .• . 

it, = C32 + 2 + It + I2 + h(l + II)Io, 

. E (C3 C4 kiI - i2) hE T 
U r =-- k---+ - -10, 

1 + II 2 r2 r r 

. E (C3 C4 kiI +i2 . 'c .c) 
U{!=-- k-+-+ -g+c -C{! 

1 + II 2 r2 r r 

E· . 
+h-Io - hEaT. 

r 
In the case of plane strain state and creep incompressibility, 

(7.4) 

(7.5) 

the appropriate axial stress and its rate ought to be taken into account: 

E 
Uz = --lIkcI - hEaT, 

1+11 
(t = 0), 

iT z = ~ (lIkC3 + 211k iI + hE~ + E~) - hEaT (t> 0). 
1+11 r 

(7.6) 

The auxiliary symbols in (7.3)-(7.6) are defined as follows (cf. Table 7.1): 

Table 7.1. Auxiliary functions for basic rotationally symmetric deformation un­
der unsteady temperature field (after Ganczarski and Skrzypek, 1995) 

Quantity Plane stress Plane strain 

j (1- II) (E~ - E~) I-2v ('C .c) I-v cr - C{! 

g E~ + IIE~ 1-2v ·c --c I-v r 

h 1 1 
I-v 

k I+v 1 
I-v I-2v 

(7.7) 
. 1 r . 

h = -2 J(2g - f)~d(. 
ro 
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In the case of an axisymmetric problem, when the effect of isotropic deteri­
oration on elastic moduli is to be analyzed, another formulation, based on 
the stress function, is more convenient: 

d2rp 1 drp rp E dT 
-+----=---a-
dr2 r dr r2 1 - 1/ dr 

(t = 0), 

x (~~ - 1 ~ 1/ ~ ) r = - ( 1 ! 1/ a ~~ y (7.8) 

(t> 0), 

+ -- 1/-- -1/ -+---{ E [dC;~ (1 ) dc;~ c~ - C;~] }. 
1-1/2 dr dr r 

where, on the basis of the principle of strain equivalence, the effective 
Young's modulus E is expressed in terms of the continuity parameter 'l/J 
by the formula E = E'l/J. Note that in case of energy equivalence both 
Young's modulus and Poisson's ratio change with damage, and the microc­
rack growth influences both stress and strain, which is more realistic when 
compared to strain equivalence where drop of local stiffness results in local 
stress decrease only. 

The stress components and their rates are now defined as follows: 

rp drp 
Uz = I/(ur +u-o) - EaT (t = 0), Ur =-, U-o = dr' r 

. rp . drp 
az = 1/ (ar +a-o) - Ea('l/JT)" 

(7.9) Ur =-, U-o=-, 
r dr 

+E ['l/J (c;~ + c;~)]' (t> 0). 

7.2 Constitutive equations 

Two concepts of coupling between constit utive equations of creep and dam­
age are formulated: fully coupled when damage orthotropy effect on creep 
flow is accounted for, or partly coupled when damage orthotropy effect on 
creep flow is disregarded. 
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1.2.1 Fully or partly creep-damage coupled approaches 

1. Damage orthotropy effect on creep flow accounted for - fully coupled 
creepdamage approach 

In general, when loadings are nonproportional, the orthotropic damage 
mechanism causes the creep process to be orthotropic as well (damage in­
duced creep orthotropy). Hence, the fully coupled creep-damage approach, 
where the effective stress components are used and the time hardening hy­
pothesis governs the creep strain-rate intensity (cf. Ganczarski and Skrzy­
pek, 1994a), yields the following equations (cf. Sect. 4.1.3): 

(7.10) 

where the effective stress akl results from the appropriate equivalence prin­
ciple and the equivalent stress a eq , effective equivalent stress aeq, and equiv­
alent creep strain rate e~q are (cf. Ganczarski and Skrzypek, 1993): 

(7.11) 

The orthotropic damage-growth rule is applied to describe damage accu­
mulation, Kachanov (1986): 

Ai = CkCT) (aiirk(T) , 

Symbols () denote MacAuley brackets. 

(7.12) 

II. Damage orthotropy effect on creep flow disregarded - partly coupled 
creep-damage approach 

In a simplified case the isotropic flow rule, instead of the orthotropic one, 
and the orthotropic damage growth rule are applied: 

·c = (~ )m(Tl f·Ct) Seq a eq , (7.13) 

although, in general sense, such a formulation is inconsistent and may result 
in certain discrepancies when compared to the exact one. 

1.2.2 Axisymmetric plane stress fully or partly coupled 
creep-damage problems 

In a particular case of the axisymmetric plane stress, when terms associated 
with the z direction are neglected and the incompressibility of creep is 
assumed, we find: 
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(7.14) 
or 

(7.15) 

in cases of the fully coupled (7.14) or partly coupled (7.15) approach, re­
spectively, where 

(7.16) 

In above formulations, the orthotropic or the isotropic creep law has been 
coupled with the orthotropic damage law. In general, the latter is described 
by different material functions Gk(T), rk(T) and independently cumulat­
ing principal components of the continuity tensor Wk. In what follows, we 
consider the simplified case of material isotropy Gr = G1} = Gz = G and 
r r = r 1} = r z = r, but allow for the independent evolution of microcracks 
in each of principal directions Wr, W1}, Wz. Another problem arises when 
the temperature dependence of creep rupture functions meT), G(T), reT), 
which introduces material nonhomogeneity in the inelastic range, is consid­
ered (cf. Ganczarski and Skrzypek, 1995). The quantities m(T) , reT) must 
be linearly interpolated, whereas function G(T), which strongly depends 
on a local temperature, must be logarithmically interpolated. 

7.2.3 Axisymmetric plane strain coupled creep-isotropic 
damage problem 

Relations (7.10)-(7.13) take a simple form when the creep incompressibility, 
the plane strain conditions, and the scalar formulation of the isotropic 
damage law D = ID, are assumed: 
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I )r(T) 
iJ=C(T\I:1D ' 

_ a eq 

a eq = I-D' 

.c aeq afJ +az . -m(T)-1 ( ) 
cr = (1- D)m(T) ar - 2 f(t) , (7.17) 

.c ~(T)-1 ( a .. + az ) . 
cfJ = (1- D)m(T) afJ - 2 f(t) , 

where a1 denotes the maximum principal stress, which refers to the Galileo 
hypothesis. 

7.3 Thermo-mechanical rotationally 
symmetric boundary problems 

7.3.1 Axisymmetric heat flow in cylinders or disks under 
thermo-creep-damage coupling conditions 

Let us rewrite the heat transfer equations in damaged solids in the case of 
axisymmetric heat flow. To this aim the general equations (5.3), (5.7), (5.9) 
described in Sect. 5.1 using Cartesian coordinates must be transformed to 
cylindrical coordinates as follows: 

Model A 

1 d { [ dT (r t)] }. . r dr r AO (1 - D (r, t)) dr' + qv = c."gT, 

Model B 

1 d { [ dT (r, t) ] } r dr r AO (1- D (r, t)) dr - aEoD (r, t) T4 (r, t) 

+qv =c."gT, 

Model C 

1 d { [ dT(r,t)]}. . r dr r Aeq (r,t,T) dr + qv = c."gT, 

- [dD/dr ] 3 
Aeq (r, t, T) = A (r, t) + aEo 4D + dT/dr T T dr, 

- - 1/2 A(r,t)=Ao(l-D(r,t)) or A(r,t)=Ao(I-D(r,t)) . 

(7.18) 

(7.19) 

(7.20) 
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Extension of (7.19) and (7.20) to rotationally symmetric disks of a variable 
thickness h (r) yields: 

Model B 

~ i. {r [AoW (r, t) dT (r, t) - aEoD (r, t) yo4 (r, t)] } 
rdr dr 

1 dh [ dT(r,t) n-..4]., +;;: dr AOW (r, t) dr - aEoD (r, t) J. - (r, t) + qv = eueT , 

(7.21) 
Model C 

~i. (A dT(r,t)) .! dhA dT(r,t) . - t 
r dr r eq dr + h dr eq dr + qv - eu e , 

(7.22) 

[ dD/dr] 3 Aeq (r, t, T) = Ao (1- D (r, t)) + aEo 4D+ dT/dr T T dr, 

7.3.2 Cylinder subject to a nonstationary radial temperature 
field under plane strain conditions 

Let us consider a cylinder of inner and outer radii a and b, respectively, 
under the plane strain condition, subject to a nonstationary radial temper­
ature gradient (Fig. 7.1). 

Stresses and their rates satisfy (7.3) and (7.6) in case of the displace­
ment formulation or (7.8) and (7.9) in case of the stress function formula­
tion, respectively, as well as the homogeneous mechanical state boundary 
conditions: 

ar(a) = 0 ar(b) = 0 (t = 0), 
(7.23) 

c7r (a) = 0 c7r (b) = 0 (t> 0) 

or 

cfJ(a) = 0 cfJ(b) = 0 (t = 0), 
(7.24) 

~(a) = 0 ~(b) = 0 (t > 0). 

The temperature at both inner and outer edges of the cylinder is constant 
through the process; hence, the following boundary conditions for the tem­
perature field have to be satisfied: 

T(a) = Ta , T(b) = n. (7.25) 
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a 

b 

damage 
advance 

80-100% 
60-80% 
40-60% 
20-40% 

0-20% 

Fig. 7.1. Long cylindrical thick-walled tube subject to a nonstationary ra­
dial temperature gradient under plane strain conditions (after Ganczarski and 
Skrzypek, 1998b) 

7.3.3 Thin circular disk subject to constant temperature at 
the edge and cooled through the faces under plane stress 
condition 

Suppose a disk of constant thickness h (r) = const , which is thin enough 
to assume the plane state of stress, is considered. The disk is subject to 
constant temperature at the edge Ta and cooled through the faces by a 
fluid stream of temperature Tc)Q, as in a turbine rotor (d. Fig. 7.2). 

The mechanical state fulfills (7.3) and (7.4) and the homogeneous bound­
ary conditions 

u(O) = 0, (Jr(R) = 0 
u(O) = 0, ar(R) = 0 

(t = 0), 
(t > 0) , (7.26) 

whereas the appropriate boundary conditions of the thermal state are 

dT(O) = 0 
dr ' 

T(R) = Ta (t = 0), 

dT(O) = 0 
(7 .27) 

T(R) = 0 (t> 0) . 
dr ' 
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tree convection qv Eq.(7.37) 
I 

, , 
R 

Fig. 7.2. Circular disk subject to constant temperature at the outer edge and 
cooled through the faces under the plane stress condition (after Ganczarski and 
Skrzypek, 1995) 

7.3.4 Numerical procedure for the initial-boundary problem 

To solve the coupled initial-boundary problem, we discretize time by in­
serting N time intervals l:!..tk, where to = 0, l:!..tk = tk - tk-l and tN = tR 
(rupture). Hence, the initial-boundary problem is reduced to a sequence 
of quasistatic boundary-value problems, the solution of which determines 
unknown functions at a given time tk, e.g., T(X,tk) = Tk (x), D (x, tk) = 
Dk (x), etc. At each time step the Runge-Kutta II method is applied to 
yield updated functions T k+1 , Dk+I, etc. To account for primary and ter­
tiary creep regimes, a dynamically controlled time step I1tk is required, the 
length of which is defined by the bounded maximum damage increment: 

(7.28) 

Additionally, when a generally nonlinear heat transfer problem with respect 
to radial coordinate r is solved for quasistatic temperature changes (1' = 0), 
we have (Model B): 

~ [rAo1/J(r,t) dT(r,t)] +qv = ~ [ratoD(r,t)T4 (r,t)]. 
dr dr dr 

(7.29) 

The radiation-type term plays role of an additional nonhomogeneity if D > 
O. Discretizing also radial coordinate ri, by inserting equal mesh l:!..r = 
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ri - ri-l' rewriting the above equation for a time step tk in terms of finite 
differences of Wi' D;, and T; with respect to the ri coordinate, and inserting 
the previous solution for temperature in the right-hand side ii, we furnish 
at each time step tk the equation for the updated temperature T; at the 
left-hand side of (7.29): 

[ (_)4 (D i - l Di+l) (_)4 
= CTEO Di Ti + ri - 2b..r + 2b..r T; 

(7.30) 
When (7.30) is solved, the new temperature distribution T; is provided, con­
sidered next as a right-hand side nonhomogeneity for a subsequent temper­
ature subiteration. The procedure is repeated until the calculated function 
T; differs from i; with a given accuracy. Equation (7.30) is solved by the 
FDM with the radial damage (continuity) component D = Dr, W = Wr until 
the dominant damage reaches the critical level, max (Dr' D{), Dz) = Dc.rit. 

1.3.5 Material data 

Numerical examples deal with cylinders and disks made of the following 
materials: 

i) Carbon steel (rolled, 0.40 Mn, 0.25 Si, 0.12 C, normalized, annealed 
at 850°0) the material data of which are (cf. Holman, 1990): 

E = 150 GPa, CTO.2 = 120 MPa, lJ = 0.3, a = 1.4 X 10-5 K-I, AD = 43 
Wm-1K-I, (3 = 14 Wm- 2K- 1, CT = 5.669 X 10-8 Wm- 1K-4 , EO = 0.60, 
alb = 0.5, R = 1.0 m, Too = 525°C; 

temperature dependent parameters are listed in Table 7.2. 
ii) ASTM 321 stainless steel (rolled, 18 Cr, 0.45 Si, 0.4 M, 0.1 C, TijNb 

stabilized, austenitic, annealed at 1070° C, air cooled) of the following data: 
E = 150 GPa, CTO.2 = 120 MPa, a = 1.85 X 10-5 K- 1, AD = 23 

Wm-1K- 1, EO =0.50; 
temperature dependent parameters are listed in Table 7.3. 
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Table 7.2. Temperature affected material data for carbon steel (after Odqvist, 
1966) 

T m r {TOB C 
(DC) (MPa) (Pa- r s-l) 

500 3.3 3.5 80 1.34 xlO- 37 

550 2.5 2.3 40 2.75 xlO- 27 

600 - 1.0 27 5.14 XlO- 17 

Table 7.3. Temperature affected material data for ASTM 321 stainless steel 
(after Odqvist, 1966) 

T m r {TeB C 
(DC) (MPa) (Pa- r s-l) 

600 4.5 3.1 100 1.07 X 10-34 

650 4.0 2.8 60 1.21 X 10- 31 

700 3.5 2.5 38 8.91 xlO- 29 

7.4 Example: Thermo-damage coupling in a 
cylinder 

7.4.1 Thermo-damage coupling in a cylinder disregarded 
(stationary temperature field) 

Let us consider as a sample solution the case of a cylinder under stationary 
temperature gradient tlT when the effect of damage accumulation on heat 
transfer is disregarded. 

The classical Fourier heat transfer equation takes the form: 

~~ (r>..o dT) = 0, 
r dr dr 

(7.31 ) 

the solution of which is 

tlT r 
T(r,t) = T(r,O) = In (a/b) In;;: +Ta,. (7.32) 

Damage localization is observed along the circular line near the inner edge 
of the cylinder (Fig. 7.3a). The temperature field is stationary because of 
the absence ofthermo-damage coupling (Fig. 7.3b), whereas the hoop stress 
relaxes with time to failure but not fast enough to overtake the damage 
accumulation in a cylinder (Fig. 7.3c). Consequently, the finite time of 

failure initiation t~s) is reached. 
carbon 
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Fig. 7.3. A tube subject to creep under stationary temperature field (effect of 
thermo-damage coupling disregarded): a) scalar continuity parameter evolution, 
b) stationary temperature field, c) hoop stress redistribution (after Skrzypek and 
Ganczarski, 1998b) 

7.4.2 Model A: Pure heat conductivity case 

Consider a cylinder subject to a transient temperature field associated with 
constant temperature at both edges D.T = n - Ta, Ta < n, and the 
simplified equation of heat transfer (7.18) where the radiation through the 
damaged part of a cross section and the inner heat source are disregarded 
(Eo = 0, q" = 0), whereas the temperature field changes in a quasistatic 
way (T= 0): 

--- rAoW- = O. 1 d ( dT) 
rdr dr 

(7.33) 

Like the previous case, the damage accumulation also concentrates along 
the circular line near the inner edge (Fig. 7.4a). Consequently, as time 
increases, the conductivity across the damaged surface asymptotically ap­
proaches zero and, as a result, temperature and hoop stress jumps are 
formed (Fig. 7.4b,c). 

The accompanying stress relaxation is not fast enough to prevent the 
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structure from collapse. The corresponding lifetime tI(€O=O) = 85%tI(S) 
carbon carbon 

is finite, and it is approximately 15% shorter compared to the case when 
thermo-damage coupling is disregarded. 
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Fig. 7.4. A tube subject to creep under a nonstationary temperature field (Model 
A: effect of thermo-damage coupling incorporated, pure conductivity € = 0): a) 
scalar continuity parameter evolution, b) temperature field evolution resulting 
from damage accumulation, c) hoop stress redistribution (after Skrzypek and 
Ganczarski, 1998b) 

7.4.3 Model B: Combined conductivity-radiation case 

Taking the combined conductivity/radiation mechanism taken account 

!i. [1' (>..o1fJ dT - UEoT4)] = 0 1'd1' d1' 
(7.34) 

may lead to two different mechanisms, depending on the material proper­
ties. 

I. Complete stress relaxation mechanism 

A cylinder made of the carbon steel, but with the combined conductivity-
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Fig. 7.5. A tube made of carbon steel under nonstationary temperature field 
(Model A: effect of material damage on heat conduction and heat radiation, 
Eo = 0.6): a) stabilization of scalar continuity parameter, b) temperature evolu­
tion, c) complete hoop stress relaxation (Skrzypek and Ganczarski, 1998b) 

radiation effect taken into account (EO =1= 0), exhibits a complete stress relax­
ation. The slower redistribution of temperature with time (Fig. 7.5b) allows 
hoop stress to relax completely (Fig. 7.5c) and, in consequence, to prevent 

collapse (Fig. 7.5a). Hence, an infinite lifetime is predicted: t}::~~~ ...... 00. 

II. Temperature saturation mechanism 

When a cylinder made of stainless steel is concerned, the saturation of 
temperature precedes rupture. A phenomenon of temperature change due 
to the damage level increase may be observed despite the vanishing tem­
perature gradient. Hence, an appropriate cutting-off procedure, to avoid 
thermodynamically inadmissible temperature fields (Fig. 7.6b, d), must be 
introduced. Formation of the temperature jump is visible in the inner zone 
that results in a change of sign of the hoop stress (Fig. 7.6c) and, eventually, 

the lower-band estimation of the lifetime ti:~:~~ss = 38%ti::'inless . 
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Fig. 7.6. Evolution of continuity parameter, temperature, and hoop stress in 
the case of combined conductivity-radation (Model B: saturation of temperature, 
stainless steel) (after Skrzypek and Ganczarski, 1998b) 

1.4.4 Model C: Equivalent conductivity concept 

The concept of equivalent conductivity-radiation exhibits essential differ­
ences depending on whether the derivative dD/dT is disregarded or taken 
into account. When the exact formula (7.20) is applied for a stationary 
cylindrical heat flux with no inner heat sources and quasistatic tempera­
ture field changes, the following equation holds: 

-- r,Aeq(r t T)- = 0 1 d [ dT] 
rdr "dr ' 

(7.35) 

where: 

eq ( ) ~() [ dD/dr] 3 ,A r,t,T =,A r,t +a€o 4D+ dT/drT T dr. (7.36) 

A characteristic hoop stress discontinuity is formed at the point of most 
advanced damage (Fig. 7.7c), and the lifetime is reached tI('\~) = 78% 

staInless 

t(IS) . . Concluding, the equivalent conductivity concept (7.35) is recom-
staJ.nless 
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mended as the most reliable. 
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Fig. 7.7. Evolution of continuity parameter, temperature, and hoop stress in 
case of equivalent conductivity concept (Model C, stainless steel) (after Skrzypek 
and Ganczarski, 1998b) 

7.5 Example: Complete stress relaxation in a 
disk 

In the case of a disk of constant thickness h cooled through its faces by a 
fluid stream of temperature Too (d. Fig. 7.2), the equation of heat transfer 
(7.19) (Model B) requires an explicit formula for the inner heat source 
intensity: 

(7.37) 

Here, the heat transfer rate is related to the convection described by New­
ton's law of cooling. The quantity f3 is called the convection-transfer coeffi­
cient. Hence, assuming quasistatic temperature changes (1' = 0), the heat 
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transfer equation takes the form: 

--r Ao'I/J - - a£oDr~ - 2- (T- Too) = O. 1 d [( dT) ] (3 
r dr r dr h 

(7.38) 

The most advanced damage accumulation appears at the center, where 
the two components of the continuity tensor are equal to each other (Fig. 
7.8a,b). Dominant radial stress relaxes more quickly than the corresponding 
component of the continuity tensor as the latter approaches zero; therefore, 
the lifetime is infinite (Fig. 7.8c,d). In other words, no thermal failure oc­
curs. 
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Fig. 7.8. A circular disk subject to constant temperature at the outer edge and 
cooled through faces: a) and b) saturation ofradial and circumferential continuity 
parameters, respectively, c) and d) complete radial and hoop stress relaxation (no 
thermal failure) (cf. Ganczarski and Skrzypek, 1995) 



8 

Creep-damage and failure of 
axisymmetric disks with shear 
effect included 

8.1 General formulation for basic mechanical 
state equations of plane 
stress-rotationally symmetric 
creep-damage process 

8.1.1 Assumptions 

Let us consider an annular disk rigidly fixed at the inner edge r = a. The 
disk is loaded by a system of general loadings which cause not only radial 
and circumferential stresses but also introduce in-plane shear effects (a 
particular nature ofthese loadings will be discussed in details in Sect. 8.2). 

The following assumptions are used to account for the effect of rotation 
of principal directions of damage and stress tensors on the creep-damage 
process in disks: 

i. Geometrically linear theory is applied to describe rotationally sym­
metric deformation of the disk; total strains (small) are decomposed 
into the elastic and creep portions: 

(8.1) 

ii. Elastic part is governed by Hooke's law (isotropic). No additional 
effect of the material deterioration on elastic properties is taken into 
account. 

iii. Creep part is governed by either the isotropic or the modified or­
thotropic flow theory and by the time-hardening hypothesis (cf. Sect. 
4.1.3) . 

iv. The Murakami-Ohno damage tensor D and its objective time-deriva­
V 

tive D are used (cf. Sect. 4.1.4). 

v. Brittle damage is governed by the orthotropic void growth rule ap­
plied to current principal directions of stresses (rotation of principal 
axes of damage and stress tensors on creep-damage process in disks 
is accounted for) (cf. Sect. 4.1.2). 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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vi. Creep-damage coupling is formulated in alternative ways (Table 4.2): 

- partly coupled approach (isotropic creep flow and orthotropic dam­
age) 

(8.2) 

- fully coupled approach (modified orthotropic creep law for initially 
isotropic material and orthotropic damage). 

(8.3) 

vii. Plane stress-rotationally symmetric problems are accounted for; con­
stant thickness of the annular disk rigidly fixed at the inner edge 
r = a is assumed. 

The classical orthotropic brittle damage law (Kachanov, 1958) is ap­
plicable for principal directions of the stress tensor. When shear stresses 
are accounted for, the principal directions of the stress tensor rotate with 
time and, hence, a tensorial formulation of the damage is required (Chow 
and Lu, 1992). In general, current principal directions ofthe stress tensor (li 

and of the damage tensor {3i do not coincide, however, when the principal 
axes of stress rotate due to the shear effect, the principal axes of damage 
follow them. The symmetric second rank damage tensor D (Murakami and 

Ohno, 1981) is applied, and the objective derivative :b of the damage tensor 
is adopted, to account for the effect of rotation of principal directions on 
the damage accumulation process. Then, a current transformation to the 
global coordinate system (sampling coordinate space) is performed. The 
graphical interpretation of all auxiliary coordinate systems associated with 

\l 
the definition of the objective damage rate tensor D in case of the plane 
stress rotationally symmetric deformation is shown in Fig. 8.1. 

8.1.2 Reduced displacement mechanical state equations 

The problem is formulated in displacements (cf. Penny and Marriott, 1995, 
also Ganczarski and Skrzypek, 1991): 

(t = 0) 
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Fig. 8.1. Schematic creep damage accumulation of several orthotropic increments 
coincided with current principal stress axes (1, 2) and resulting rotation of current 
principal damage axes (I, II) in case of a disk (after Skrzypek and Ganczarski, 
1998a) 

F( ur ) = d(2g - j) + L _ 2 (1 -Ev2) pW(t)e(t)r } 
dr r 

(t> 0), 

F(U19) = di'~19 + 2 ~19 + pe(t) r 
dr r G 

(8.4) 

where the differential operator F[ ... ], auxiliary symbols g, j , and the re­
lationships involving the angular acceleration e and the angular velocity w 
take the form 

e(t) = wet). 

8.1.3 Solution of mechanical state equations for constant 
angular acceleration 

(8.5) 

Assuming constant value of the angular acceleration e(t) = ±eo or, in 
other words, a linear function of the angular velocity, the system (8.4) can 
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be solved explicitly. 
I. Elastic problem (t = 0) 

E [ C2] 3+v 2 2 CT~ = 1 _ v2 (1 + V)Cl - (1 - v) r2 - -8-{JWor , (8.6) 

E [( ) ( ) C2 ] 1 + 3v 2 2 CT~ = 1- v2 1 + V Cl + 1- v r2 - -8-pwor , 

II. Creep problem (t> 0) 

r 

• - C4, J 1~'19 d' U'l9=c3r +-+ r -.", 
r ( 

'" 
. dUn 71,'19 /.of' 

'Y'I9=----Tr'l9' 
r dr r r (8.7) 

[ 

r . 

· E C2 l+v f 
CT = -- (I+V)Cl- (1- v)- +--J-d( 

r 1- v2 r2 2 ( 

'" 

I-v . 3+v 
r 1 - 2r2 ! ((2iJ - f)d( - -4-pc(t)w(t)r2, 

[ 

r . 

· E _ ~ 1 +v f 
CT'19 = -- (I+V)Cl +(I-v)- +--J-d( 

I-v2 r2 2 ( 

'" 
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8.1.4 Constitutivf} equations for coupled creep-damage 
problem in current principal stress directions 

The creep strain rates derived on the base of isotropic or modified or­
thotropic flQw theory associated with the time-hardening hypothesis, under 
additional assumptions of plane stress state and creep incompressibility, are 
expressed by the following formulae (cf. Ganczarski and Skrzypek, 1991): 
Partly coupled 

Fully coupled 

'c _ (Ueqr ( U2/1) f'(t) £1/2 - --- Ul/2 - -- , 
ueq 2 

(8.8a) 

(8.8b) 

(8.8c) 

The 2D objective derivative of the damage tensor takes the form (cf. Bathe, 
1982): 

[ 
~1'1' ~l'2' 1 = [ b~l 
D2'1' D2'2' 

where non-objective damage rates are 

(8.10) 

'V 
When the objective damage rate tensor DIJ (8.9) is transformed from 
current principal directions of the stress tensor (I J) to the sampling coor-

dinates (ij) Dih the new damage tensor Dij (t + At) is achieved: 



194 8. Creep-damage and failure of axisymmetric disks 

v fV D trans·D I J ---+ ij, (8.11) v 
Dij(t + ~t) = Dij(t) + Dij(t)~t. 

Consequently, the creep strain rates (8.8) referring to the global coordinate 
system (ij) are obtained via the transformation of the creep strain rates 
written in current principal directions of the stress tensor (1,2): 

• c 81 + 82 81 - 82 2 e = ---+---cos a 
r 2 2 ' 

. c 81 + 82 81 - 82 2 
e-u = --2- - --2- cos a, 

(8.12) 

t~-u = (81- 82) sin2a. 

The intensities of the stress, the effective stress, and the strain rates are 
defined by the following formulas (cf. Ganczarski and Skrzypek, 1991): 

8.2 

O"eq = JO"~+O"~ -0"10"2, 

Ueq = 0"1 0"2 

(1 - Dt) (1 - D2) , 

Boundary problems for creep damage 
annular disks in case of rotating 
principal axes 

Example A: Disk under steady tension and steady torsion 

(8.13) 

. 
In 

Let us consider a disk under the steady tension and torsion (Fig. 8.2). 
Displacements, strains, stresses and their rates satisfy (8.6)-(8.7) and the 
following boundary conditions: 

u~(a) = 0, u~(a) = 0, ~ 
O"~(b) = p, ~-u(b) = s 
Urea) = 0, U-u(a) = 0 
dAb) = 0, Tr-u(b) = 0 

(t = 0), 

(t> 0). 

Example B: Disk under steady tension and multiple reverse torsion 

(8.14) 

In case of a multiple reverse torsion (Fig. 8.3) displacements, strains, stresses 
and their rates satisfy (8.6)-(8.7) and the following boundary conditions: 
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8~-------------------

o 
time t 

p~------------------

I 

AlB o time 

Fig. 8.2. Layout of a circular disk subject to creep damage under steady periph­
eral tension p and torsion s (cf. Skrzypek and Ganczarski, 1998a) 

8 

II 2/1 
o 

time t 

-8 

p~-------------------

I 

AlB o 
time T 

Fig. 8.3. Layout of a circular disk subject to creep damage under steady p~ 
ripheral tension p and multiple reverse torsion ±s (cf. Skrzypek and Ganczarski, 
1998a) 
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u~(a) = 0, u4(a) = 0, } 
a~(b) = p, T~-n(b) = ±s (t = 0), 

u,.(a) = 0, u-n(a) = O} (t > 0). 
Crr(b) = 0, Tr-n(b) = 0 

(8.15) 

Example C: Disk under alternating acceleration/braking cycles 

In the third case a disk subject to the cycle of alternating acceleration and 
braking is considered (Fig. 8.4). The internal variables fulfill (8.6)-(8.7) 
and the homogeneous boundary conditions: 

u~(a) = 0, "l(a) ~ 0, } (t = 0), 
a~(b) = 0, T~-n(b) = 0 
urea) = 0, u-n(a) = 0 

(8.16) 

Crr(b) = 0, Tr-n(b) = 0 
(t > 0). 

time t 

II 2t 1 
o 

time t 

-I': 

Fig. 8.4. Layout of a circular disk subject to creep damage under multiple reverse 
acceleration-braking ±e: (cf. Skrzypek and Ganczarski, 1998a) 

8.3 Material data 

First two boundary problems A and B formulated in Sect. 8.2 deal with 
disks made of stainless steel (rolled 18 Cr 8 Ni 0.45 Si 0.4 Mn 0.1 C Ti/Nb 
stabilized, austenite annealed at 1070°C, air cooled (ASTM 321» with the 
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following properties at temperature 500°C (cf. Odqvist, 1966): E = 180 
GPa, aO.2 = 120 MPa, v = 0.3, m = 5.6, r = 3.9, abB = 210 MPa, where 
abB denotes the stress causing creep rupture in 105 hr. Magnitudes of load 
are: p = 0.2 X aO.2, S = p/20. 

In case of problem C in Sect. 8.2 the disk is made of carbon steel (rolled 
0.40 Mn 0.25 Si 0.12 C normalized, annealed at 84ooC) with the following 
properties at temperature 500°C: E = 170 GPa, aO.2 = 120 MPa, v = 0.3, 
m = 3.3, r = 3.5, ab = 80 MPa, e = 7850 kg/m3 . The disk is subject to 
angular acceleration/braking e = ±10 s-2, whereas the maximal angular 
velocity is Wmax = 50 s-1 = 3000 min-I. 

8.4 Numerical results 

8.4.1 Example A: Creep-damage accumulation and shear-type 
failure mechanism in disks under steady tension and 
steady torsion 

A representative distribution of the dominant current principal component 
of the continuity tensor WI is presented in Fig. 8.5a. The first macrocrack 
appears around the inner edge (r = a). The damage zone is narrow and 
limited to the closest neighborhood of the fixed disk edge. 

Consider the evolution of angles of principal directions of a-stress, and 
,6-damage tensors at the point of the first macro crack initiation. In the 
partly coupled case of (8.2), the isotropic flow rule introduces similarity of 
the stress deviator Sij and the creep strain rate deviator ei'j' The angles of 
principal directions of the stress tensor IT (a) and the damage tensor D (,6) 
slightly differ from one another during the primary creep phase (Fig. 8.5c). 
However, the principal direction of the stress tensor precedes the principal 
direction of the strain tensor when process enters the secondary and tertiary 
creep. On the primary creep, when damage is not advanced, components 
of the damage tensor D strongly depend on the corresponding components 

v 
of the objective damage rate tensor D. Therefore, the principal direction 
of the damage tensor (,6) slightly precedes the principal direction of the 
stress tensor (a). However, during secondary and tertiary phases, when 
damage reaches a more advanced level, and an influence of the objective 
damage rate tensor on the damage tensor is not so strong, the opposite sign 
discrepancy between principal directions of both tensors, increasing with 
time, is observed. When the fully coupled approach is assumed (8.3), the 
orthotropic flow rule introduces similarity of the effective stress deviator 
Sij and the strain rate deviator tij' In this case, final magnitudes of all 
principal angles reach a lower level than in the previously discussed case, 
and differences between them are more noticeable (Fig. 8.5c, d). However, 
in the case of the orthotropic flow rule only a 0.3% increase of the life-
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time is observed when compared to the lifetime obtained for the isotropic 
formulation. 

The shear type failure mechanism is strictly associated with the hoop 
displacement discontinuity around the inner edge (Figs. 8.5b and 8.6). 
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Fig. 8.5. Disk under steady tension and torsion: a) damage evolution with time to 
failure, b) formation of the hoop displacement discontinuity, c) and d) rotation 
of principal stress axes a, and principal damage axes f3 in case of scalar and 
tensorial creep-damage coupling, respectively (at inner disk edge r / R = 0.2) 
(after Skrzypek and Ganczarski, 1998a) 
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,------------1-- original 

-deformed 

Fig. 8.6. Schematic illustration of the shear-type failure mechanism of a disk 
under steady tension and torsion (after Skrzypek and Ganczarski, 1998a) 

8.4.2 Example B: Alternative creep-damage accumulation and 
the shear type failure mechanism in a disk under 
multiple reverse torsion 

Alternating torsion causes reverse jumps of the principal axes of the stress 
tensor around the Q = 0 direction. Consequently, the principal axes of the 
damage tensor (f3) also undergo rotations. However, the changes of f3 are 
not as sharp as those of Q, and they oscillate nonsymmetrically around 
the direction f3 = 0 with an inclination to the direction corresponding to 
the first loading cycle. On the tertiary creep phase a slope of the f3 angle 
versus time rapidly increases preceding a shear type rupture mechanism 
in disk. Due to the alternating torsion, the damage accumulation process 
develops in reverse material fibres in an alternative manner which produces 
a characteristic response of damage freezing during each even loading cycle 
(Fig. 8.7b) and, eventually, a 53% increase in lifetime is observed when 
compared to the steady torsion case. 

The shear-type failure mechanism in a disk also in this case corresponds 
to the hoop displacement discontinuity (Fig. 8.6). After a number of oscil­
lations around the zero value, the hoop displacement u" rapidly increases 
in the direction corresponding to the first loading cycle. 
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Fig. 8.7. A disk subject to steady tension and multiple reverse torsion: a) princi­
pal damage axes rotation fJ resulting from principal stress axes oscillation Ct with 
time to failure, b) formation of bilateral hoop displacement discontinuity with 
time to failure in case of multiple reverse torsion versus steady torsion 

8.4.3 Example C: Accumulation of creep-damage and the 
decohesion-type failure mechanism in a disk under 
alternating acceleration-braking cycles 

In the case of a disk subjected to alternating body forces due to accelera­
tion/braking cycles, the loading path differs from the proportional one so 
essentially that the simple isotropic flow rule (partly coupled) is no longer 
sufficient to describe the creep-damage interaction. Therefore, in this case, 
the modified orthotropic flow rule (fully coupled) is applied. It turns out, 
however, that the radial component of the body forces is dominant when 
compared to the hoop component. 

Therefore, the first macrocrack appears around the inner edge with the 
normal of the radial direction, whereas other components of the damage 
tensor are less advanced (Fig. 8.8a). The alternating nature of body forces 
causes that all principal axes of: the stress (Ct) and the damage ((3) tensors 
oscillate around the zero value (Fig. 8.8b). During all phases of the creep 
process principal angles of the damage ((3) tensor precedes the principal 
angle of the stress tensor (ex). Amplitudes of oscillations of principal angles 
decrease from one cycle of acceleration/braking to the other. The only 
exception is the terminal phase of the tertiary creep when a significant 
increase of magnitudes of the principal angles of the stress (ex) and the 
damage ((3) tensors is observed. 

The decohesion-type failure mechanism corresponds to formation of the 
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Fig. 8.8. A disk subject to acceleration/braking cycles: a) damage evolution, 
b) radial and hoop displacement evolution with time to failure, c) variation of 
principal direction of the stress tensor ct, d) evolution of principal direction of 
the damage tensor {3 

radial displacement discontinuity at the braking phase of the loading cycle 
and refers to the dominant macrocrack of the radial normal (Fig. 8.9). 

8.5 Conclusions 

1. When the principal directions of the stress rotate, the principal direc­
tions of the damage tensor (f3) follow the principal directions of the 
stress tensor (0). The more the loading path differs from the propor­
tional path, the stronger the observed differences between the angles 
(0) and (f3). 

II. Multiple reverse torsion leads to a significant increase of the lifetime 
compared to the case of steady torsion. A shear-type failure mech­
anism, due to the dominant hoop component of the damage tensor, 
accompanied with the hoop displacement discontinuity, is observed 
in both cases. 
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,---~=-~~~~~~---i -- original 

-deformed 

Fig. 8.9. Schematic illustration of the decohesion-type failure mechanism in a 
disk subject to acceleration/braking cycles 

III. Alternating body forces due to acceleration/braking cycles cause "os­
cillations" of principal directions of the stress (a) and the damage ({3) 
tensors around the zero value. Hence, after a finite number of cycles 
at the instant of rupture, both principal angles approach the zero 
value. Consequently, a decohesion-type failure mechanism, due to the 
dominant radial component of the damage tensor accompanied with 
the radial displacement discontinuity, is observed. 
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Creep damage and failure 
analysis of thin axisymmetric 
plates 

9.1 Basic state equations for axisymmetric 
Love-Kirchhoff plates of variable 
thickness under arbitrary loadings 

Let us consider an axisymmetric plate of variable thickness loaded by an 
external pressure, body forces and a temperature field (Fig. 9.1). When 
a cylindrical coordinate system is defined, the problem can be written in 
displacements. Let us assume that: 

i. loadings are reduced to the middle surface, 

ii. the theory of small displacements with geometry changes accounted 
for (second-order theory) is applied, 

iii. the Love-Kirchhoff hypothesis of straight and normal segments is 
postulated, 

(9.1) 

iv. small strain decomposition holds, 

(9.2) 

v. plane stress state (uz = 0) holds, 

vi. thickness and temperature depend on the radial coordinate r only. 

The state variables for the general coupled elastic-creep problem must 
fulili the following system of equations: 
Membrane and bending equilibrium 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999



204 9. Creep damage and failure analysis of thin axisymmetric plates 
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h+dh 

Fig. 9.1. Element of an axisymmetric plate of variable thickness subjected to 
external pressure, body forces, and temperature field 

Cauchy geometric relations 

Oipr "'r = --, or 

u 1& 
A.9 = - +--

l' l' &f)' 

Constitutive equations (cf. Penny and Marriott, 1995) 

(9.3) 

(9.4) 
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'fnr'!9 = V(l- v)K,r'!9 - m~'!9' 
(9.5) 

where the following definitions of inelastic generalized stresses hold: 

E h/2 

n~/'!9 = -1 _ 2 J (e~N + ve~/r) dz, 
v -h/2 

E h/2 

m~/'!9 = -1 2 J (e~/'!9 + ve~/r) zdz, 
- v -h/2 

E h/2 

n~'!9 = --2 J erldz, 
1- v -h/2 

E h/2 

m~'!9 = --2 J e~'!9zdz 
1- v -h/2 

and membrane and bending stiffnesses are 

Eh3 (r) 
V (r) = 12(1 _ v2)' 

B( ) = Eh(r) 
r 1- v2' 

(9.6) 

(9.7) 

9.2 Reduced membrane-bending equations 
for plates under axisymmetric loadings 

9.2.1 Unilaterally coupled Karman system extended to 
visco-elastic plates of variable thickness 

Elimination of strains (9.1) in terms of displacements (9.4) from constitu­
tive equations (9.6) and from equilibrium equations (9.3) leads to the basic 
system of partial differential equations, which may be a reduced to system 
of ordinary differential equations when the following assumptions hold: 
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i. Loadings are assumed to be axisymmetric: 

dU 
qr = - dr' 

ii. The Fourier expansions of displacements are used: 

w(r,1J) = fer) cos k1J. 

iii. The Airy function defines generalized stresses: 

1dF 
nr = --d +U, 

r r 

(9.8) 

(9.9) 

(9.10) 

Hence, the reduced governing displacement-type equations take the form 

B -+---- +- -+-U ( d2u 1 du U ) dB (dU v) 
dr2 r dr r2 dr dr r 

(9.11) 

df d2m; 1 d (2m~ - m~) 
= qz - qr dr - -d-r2- - ;:--'--':""d-r-""'"'" 

(9.12) 
It turns out, however, that another mixed approach may be more conve­
nient in some particular cases. Let us rewrite the equation of the mem­
brane state by using the Airy function, applying the compatibility con­
dition, where elongations of the middle surface are described by inverted 
equations (9.1) and generalized stresses by the Airy function, to obtain (cf. 
Timoshenko, 1951): 

d2 (1) (d2F VdF) 2 2 2(U) +- - ---- +(l-v )a'V T+(l-v)'V -
dr2 B dr2 r dr r r B 

= _ 'V2 (n~ -vn;) _ 1 + v ~ (n~ -n;) 
r B r dr B ' 

(9.13) 
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(9.14) 

df d2m~ 1 d (2m~ - m~) 
= qz - qr dr - dr2 - r dr 

Although the equation of the membrane state takes a more complicated 
form than in the previous approach, this formulation is frequently quoted 
because of formal similarities of both operators. 

Each of derived systems of equations (9.11)-(9.14) is a unilaterally cou­
pled Karman system extended to the case of the visco-elastic plate of vari­
able thickness. Note that in a classical Karman formulation the fully cou­
pled equations of membrane and bending states hold (cf. von Karman, 1910, 
also Fung, 1969) and, then, additional nonlinear terms associated with the 
Gaussian curvature appear in the equation of bending state (third order­
theory). In the case under consideration the unilaterally coupled systems 
(9.11)-(9.14) allow consideration of the equation of the membrane state 
independently from the equation of the bending state. After the membrane 
state equation is solved, the bending state equation can be solved when the 
generalized membrane forces taken from the previous one are introduced. 

9.2.2 Finite difference method approach 

One of the methods to solve boundary differential problems consists in 
replacing the differential operators, entering both differential equations and 
boundary conditions, by the appropriate finite differences. This approach 
leads to a finite system of algebraic equations instead of the differential 
ones. 

Although the finite difference operators expressed in the Cartesian sys­
tem of coordinates are well known, their transformation to the cylindrical 
coordinates system requires the plate Laplace operators to be used, 

2 d2 .. 1 d.. k 2 

'\7 r" = dr2 + r dr - r2" 

'\74 _ d4 .. +~d3 .. _ 1+2k2 d2 .. + 1+2k2 d .. + k2 (k2 _4) 
r" - dr4 r dr3 r2 dr2 r3 dr r4 '" 

(9.15) 

where k = 0, 1, ... , N denotes a number of half-waves, which decides 
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whether the deformation is symmetric or nonsymmetric where k = 0 de­
notes a fundamental symmetric mode. 

Laplace's differential operators \7; and \7; independent of angular co­
ordinate {) may be replaced by finite differences (cf. Benda, 1964, also 
Kl',lczkowski, 1980): 

~2 [1 1] [2 k2
] [1 1] 

\7r l ~ (L'l.rF - 2rL'l.r li-1 - (L'l.rF + r2 Ii + (L'l.rF + 2rL'l.r IH1 

~4 [1 1 1 1] \7 Ie><. ------ + f- 2 
r - (L'l.r)4 2r(L'l.rp 2(r - L'l.r)(L'l.rp 4r(r - L'l.r)(L'l.rF ,-

[ 4 2 2 (1 1) (1 1)] + - (L'l.r)4 + r(L'l.rp - k (r _ L'l.r)2 + r2 (L'l.r)2 - 2rL'l.r li-1 

+ -- - + ."..,..--:--::-:-:--:-::-[ 
6 1 1 

(L'l.r)4 2(r + L'l.r)(L'l.rp 2(r - L'l.r)(L'l.rp 

[ 4 2 2 (1 1) (1 1)] + - (L'l.r)4 - r(L'l.r)3 - k (r + L'l.r)2 + r2 (L'l.rF + 2rL'l.r IH1 

+ [(L'l.~)4 + 2r(~r)3 + 2(r + L'l.~)(L'l.rp + 4r(r + ~r)(L'l.r)2 ] IH2. 

(9.16) 
The above finite difference operators (9.16), like the differential operators 
(9.15) from which they are obtained, exhibit singularities at the central 
point, r = 0 and neighboring r = D.r which may be omitted by the following 
formulas (Kl',lczkowski, 1980): 

~4 ~ 3 (41) 12 6 15 f4 
\7r f(r = D.r) = - (D.r)4h + 8 + 2 (D.r)4 - (D.r)4h + 8 (D.r)4· 

(9.17) 
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9.3 Reduced membrane-bending equations 
for prestressed sandwich axisymmetric 
plates of variable thickness 

Let us consider a sandwich plate composed of three layers: two working 
layers of thickness g. and a core of depth h. - g. (Fig. 9.2). In this ap­
proximation the uniform cross-section of the plate may be treated as a 
double-point substitutive section and, hence, the process of integration of 
stresses through the thickness is reduced to simply summing them up. The 
introduced substitutive section is statically determined (cf. Zyczkowski, 
1981) and requires redefinition of membrane and bending stiffnesses (9.7) 
(cf. Armand, 1972) 

B ( ) - 2 Eg. (r) 
• r - (1 _ lI2) , 

a) 

V. (r) Eh~ (r) gs (r) 
2 (1 - lI2 ) • 

(9.18) 

Fig. 9.2. Substitutive sandwich section for plate element: a) sandwich section of 
variable thickness, b) a simply supported plate prestressed in-plane by the elastic 
ring (cf. Ganczarski and Skrzypek, 1993) 

9. 3.1 Karman equations extended to viscoelasticity 

Let us take into account the most general problem of a sandwich plate of 
variable thickness where thicknesses of the core h. - gs and the working 
layers gs may change. In what follows we confine ourselves to the mixed­
type formulation (9.13) and (9.14) which is more convenient for further 
analysis. After formally differentiating (9.13) and (9.14) with respect to 
time and assuming of stationary behavior of body forces and temperature 
fields, we arrive at the following system of equations (k = 0): 
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(9.19) 

d2V. (d2f Vdf ) 1 d (dFd f ) 
+ dr2 dr2 +;: dr -;;: dr dr dr = q. 

II. Creep problem (t > 0) 

J-.. V4 F + ~ (J-..) (2 d3 F + 2 - V d2 F _ -.!. dF) 
B. r dr B. dr3 r dr2 r2 dr 

(9.20) 

d2m~ 1 d(2m~ - m~) 
= dr2 -;;: dr 

where generalized membrane stresses are expressed by the following differ­
ential operators of the Airy function: 

1 dF d2 F 
nr = ;;: dr ' n-u = dr2 ' (9.21) 

whereas definitions of inelastic generalized stresses (9.6) take a simplified 
form: 

(9.22) 
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Consequently, the following extension of the Love-Kirchhoff hypothesis 
(9.1) holds: 

9.3.2 Constitutive equations for coupled creep-damage 
problems 

(9.23) 

Constitutive equations (9.5) when applied to the sandwich section take the 
form 

a;j1J = 1 ~ v 2 [(>lr /'J9 + VA'J9/r) ± (Kr/1? + VK1?/r) i - (c~11? + vC~7r )] , 

(9.24) 
where inelastic strains C~;1? have to be specified by the use of creep-damage 
constitutive state equations. 

Assuming the similarity of deviators based on the flow theory and the 
time hardening hypothesis associated with the Kachanov orthotropic brit­
tle damage law (d. Kachanov, 1986, also Ganczarski and Skrzypek, 1992), 
the following system of partly coupled constitutive equations for creep and 
damage (isotropic flow rule and orthotropic damage growth rule) is formu­
lated: 

·c± 
.c± 3 ceq ± 
ckl = -2 -rSkl' aeq 

( 
± )rv(T) 

.± () a v Dv =Cv T --± 
1-Dv 

. c± = (~± )m(T) f· (t) Ceq aeq , 

(9.25) 

Additionally, assuming plane stress and creep incompressibility, the inten­
sities of the stress, the effective stress, and the creep strain rates are defined 
by the following formulas: 

iJ!= (~)2+(~)2 
1- Dr 1- D1? (1 - D;=) (1- D$') , (9.26) 

.c± a eq ± 1 ± . (~±)m ( ) 
cr /1? = a~q ar/1? - 2a 1?/r f(t), 

However, in the case of strongly nonproportional loadings, it is more rea­
sonable to couple the effective stress deviator and the creep strain deviator 
in the orthotropic flow rule which leads to the fully coupled approach: 
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(9.27) 

In the case of plane stress and creep incompressibility, by setting Cr /1) (T) = 
C, rrj1J = r, the following representation of (9.25) through (9.26) holds: 

(9.28) 

( 
± )r iJ± - C (Jrj1J 

r/1) - 1- D± ' 
rj1J 

where the effective deviatoric stress components are given by 

(9.29) 

9.3.3 Membrane state equation in a particular case of 
constant thickness of the working layers 

Let us return to the displacement formulation of the membrane state equa­
tions (9.11). In case when the membrane stiffness Bs for sandwich section 
(9.18) is independent of the distance between the working layers hs (r), the 
temperature field is considered as stationary, and there are no radial body 
force components, 

dBs =0 
dr ' 

qr =0, 

the membrane state equations reduce to the Euler-type equations 

d2u 1 du u dT - + -- - - = (1 + 11)0:­
dr2 r dr r2 dr 

(t = 0), 

d2 it. + ~ dit, _ it, = ~ (dit,~ + n; -n~) 
dr2 r dr r2 Bs dr r (t > 0), 

the analytical solution of which is furnished as follows: 

(9.30) 

(9.31) 
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r C2 a r 
U = C1 -2 + - + (1 + 11)- JT{d{, 

r r 0 

[ 1 + II C2 2 a r ] 
nr = Bs -2-C1 - (1- 11)-;:2 - (1-11 ) r2 [T{d{ , 

. B [1+110 (1 )C4] [' [.' 'c 'c nil = s -2- 3 + -II -;:2 + 1 + 2 - nil + IInr , 

where the auxiliary integrals i1 and i2 are 

r 

[. 1 - II J ( . c • C) CdC 
1 = 2r2 nr + nil <" <", 

o 

r 

i = 1 + II J n~ - n~ dC 
2 2 {<'" 

o 

(t = 0) 

(t> 0) 

(9.32) 

(9.33) 

9.3.4 Bending state equations in a case of the rigidification 
principle (no coupling between the membrane and 
bending states) 

Systems of equations (9.19) and (9.20) become uncoupled when the rigidi­
fication principle is applied. Hence, products of membrane forces and bend­
ing displacements vanish and the systems (9.19) and (9.20) reduce to two 
independent systems of equations. The equations of bending state take a 
classical form when basic mode of deformation k = 0 is assumed and the 
thickness is constant h. = const, gs = const 

(t = 0), 

(9.34) d2 . C 1 d(2 . C . C) 
VS \74 j = - mr _ _ mr - mil (t > 0). 

r dr2 r dr 

When definitions of the angle of slope and the shear force are introduced 
in (9.34) as follows: 
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df 
cp= --, 

dr 
(9.35) 

the Euler-type equations (Penny and Marriott, 1995, Ganczarski, 1992) are 
obtained 

d2cp 1 dcp cp Q 
-+----=--
dr2 r dr r2 V. 

(t = 0), 

(9.36) 

the solution of which takes the following form (Ganczarski and Skrzypek, 
1993) : 

cp = - -r + - - - J Qd~ + - J Q~ d~ , 
1 (01 O2 r r 1 r 2 ) 

V. 2 r 20 2r 0 

1 +v O2 1 +v r 
m.,. = -01 - (1- v)- - - JQd~ 

2 r2 2 0 

1- v" 2 
--2 2 JQ~ d~, 

r 0 
(t = 0) 

l+v ~ l+v r 
'm,J = -01 + (1- v)- - - JQd~ 

2 r2 2 0 

+ 12-:, j Qed~; 
. 1 [r 03

0 
0 4 (j3 j4) 1 cp= - -r+-+ --+-- r , 

V. 2 r 1- v 1 +v 

. 1 +v 0 4 " 
m.,. = --03 - (1- v)- +13 + 14 2 ~ , (t> 0) 

1 +v 0 4 " 
1i'L.o = --03 + (1- v)- - Ia + h 2 r2 

(9.37) 
where the auxiliary integrals are defined as follows: 
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r 

I· 1 - v J ( . c . C) 'd' 
3 = 2r2 mr + m-a \, \" 

o 

r 

j = 1 + v J m~ - m~ d' 
4 2 (<,. 

o 

9.4 Thermally prestressed sandwich plates of 
constant thickness 

9.4.1 Basic unila~erally coupled membrane-bending Karman 
equations visco-thermo-elasticity 

In a case when a plate is simultaneously loaded by out-of-plane forces (due 
to bending) and in-plane forces (due to membrane prestressing), the equa­
tions for the membrane and bending states are unilaterally coupled in such 
a sense that in the bending state equation an additional term affected by the 
membrane force appears. Hence, (9.31) and (9.34) are no longer uncoupled 
and, therefore, they must be solved simultaneously. In order to formulate 
coupled membrane-bending equations, it is more convenient here to use the 
displacement formulation for both the membrane and the bending state. 

Let us consider an axisymmetric sandwich plate of constant thickness 
under the following assumptions: 

1. two-point substitutive sandwich section obeys the Love-Kirchhoff hy­
pothesis, 

ii. the plate is loaded by a uniform pressure q and a stationary temper­
ature field T(r), 

iii. the creep-damage properties are described by the flow theory, the 
time hardening hypothesis and the orthotropic damage growth rule 
when the partly coupled formulation is used (Table 4.2), 

iv. the initial prestressing is imposed by the elastic ring or the cylindrical 
shell, 

v. the displacement formulation of the unilaterally coupled membrane 
-bending equations is applied, 

vi. a constant plate thickness is assumed, dBs/dr = 0, dVs/dr = 0 
(Fig. 9.3), 

vii. the fundamental symmetric deformation mode is assumed, w(r, 19) = 
w(r). 



216 9. Creep damage and failure analysis of thin axisymmetric plates 

T 

Fig. 9.3. Substitutive sandwich section for a plate element 

When the geometrically linear theory of small displacements is applied 
with the geometry changes introduced, the problem can be formulated as 
unilaterally coupled, where terms associated with the Gaussian curvature 
are disregarded and the von Karman coupled equation system extended to 
visco-thermo-elasticity can be used: 

d2u 1 du u dT } -+----=(l+v)a-
dr2 r dr r2 dr 

dw 
1 d(nrrci) 

VB \l~w - - d r = q 
r r 

_~ d(2m~ - m~) 
r dr 

(t = 0), 

(9.38) 

(t > 0). 

The elementary solutions of the equations of the membrane state (9.38) are 
given by (9.32): 
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where 

. S[(l+V)C (1 )04 ] /. T ·c ·c n19 = s --2- 3 + - V -:;:z + 1 + 12 - n19 + vnr 

r 

/. 1 - v J ( . C • C ) cdc 
1 = 2r2 nr + n19 ." ." , 

o 

(t = 0), (9.39) 

(t> 0), 

(9.40) 

The equations of the bending state must be solved numerically (e.g., by 
the FDM) with the previously obtained solution of the membrane state 
introduced as the coupling. The stresses, their rates, and the generalized 
inelastic stresses are defined as follows: 

(9.41) 

m~N = ~s [S~;19 - s~/19 + v (s~~r - s~/r)] . 
The total strains are decomposed into elastic (superscript e), creep (su­
perscript c), and thermal parts: S;/19 = s;719 + S~719 + at, where super­

scripts + or - refer to the lower (exterior) or the upper (interior) sandwich 
layers, respectively. The similarity of deviators, based on the flow theory 
(partly coupled approach), and the time hardening hypothesis associated 
with Kachanov's orthotropic brittle damage theory, are taken as the con­
stitutive relationships for creep (cf. Boyle and Spence, 1983, Kachanov, 
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1986). For the plane stress state, additionally assuming that the creep in­
compressibility, the strain rates, and the intensities of the stress and of the 
effective stress are defined by the following formulas (cf. Ganczarski and 
Skrzypek, 1991): 

(9.42) 

9.4.2 Example: Built-in plate fitted into the cylindrical shell 

An elastically built-in plate fitted into a cylindrical shell, with the initial 
fit 8 imposed, is considered (Fig. 9.4). 

Fig. 9.4. A built-in plate prestressed by the elastic cylindrical shell 
(cf. Ganczarski and Skrzypek, 1993b) 
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il-r( R)dr = -dN 

mr(R) =-M 

u(R) - w(D) = 8 
(t = D) 

u(R)dt - dw(D) = D 

dw(R) dt = d~(D) 
dr 

(t > D). 

dw(R) = ~(D) 
dr 

The cylindrical shell is described by the classical equation: 

the solution of which (for the half-infinite structure) takes the form: 

w(x) = ~2e-kX [cos(kx) - sin(kx)] 
21)k 

N -kx - 2 - f) R2 _ 
+ 2iYk3 e cos(kx) + -2- Eh q + RaT, 

(9.43) 

(9.44) 

dw(x) M k - N k - -
~(x) = ~ = - 15k e- x cos(kx) - 215k2 e- X[cos(kx) - sin(kx)], 

_ Eh3 

1) = 12(1 _ f)2)" 

(9.45) 
The double-point failure criterion is formulated as follows. 

The initial fit 8 that produces the peripheral prestressing radial force N 
and the corresponding bending moment M, such that the failure simultane­
ously occurs both in the central plate region at the exterior circumferential 
fibers D% (D) -+ 1 and along the periphery at the interior radial fibers 
D:; (R) -+ 1, is sought for. 

(9.46) 

The maximum value of the damage components D;- and Di is found when 
both sandwich layers are examined (cf. Ganczarski, 1992). Note that in 
this case the prestressing force N and the moment M are the dependent 
quantities since they both depend on one prestressing parameter 8. Hence, 
when the transient creep process is solved, one of these quantities, say N, 
is to be determined by the additional iteration loop in order to satisfy the 
current plate-shell interaction. 
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The numerical example deals with a plate made of ASTM 321 stainless 
steel: E = 177 GPa, 0"0 = 118 MFa, v = 0.3, a = 1.8 x 10-5 K-1 , R = 0.5 
m, h" = 0.025 m, g8 = 0.005 m, q = 118 kPaj the temperature dependent 
material constants for creep rupture at temperature 783 K are (cf. Odqvist, 
1966): G = 2.13 X 10-42 Pa- r Is, r = 3.9, m = 5.6, whereas material 
constants for the cylindrical shell made of ASTM 310 stainless steel are as 

follows: E = E, iI = v, a = 1.7 x 10-5 K-1, h = 3~~. V52.5 
The dimensionless lifetime of the plate fitted into the cylindrical shell 

versus the fit {j is shown in Fig. 9.5. The maximum lifetime appears in a 
characteristic "switch" point, at the intersection of the curves that corre­
spond to two different failure mechanisms, failure due to macrocracks in the 
circumferential fibers in the central region in the interior layer and failure 
due to macrocracks in the radial fibers along the periphery in the exterior 
layer (Fig. 9.6). The maximum lifetime corresponds to the positive value 
of fit {j ~ 0, which means that the shell must initially be "too loose". 

+- failure due to 

t~ 
opt 

I- 30 
CD 
E 

:;::; 25 CD 

== In 
In 20 CD 
C a 
'iii 15 c 
CD 
E 
'5 10 

5 

dimensionless initial fit 6 

Fig. 9.5. Lifetime of the plate fitted into the cylindrical shell versus the initial 
fit 6 

The corresponding distributions of the continuity components 'I/J-:-;-e at the 
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instant of failure for the optimal solutions are presented in Fig. 9.7. The 
time to rupture prediction for the discussed case is t opt = 2.97t[l compared 
to the lifetime of a simply supported plate in a pure bending state without 
the initial pn~tressing tb = t [. 

failure due to D; failure due to D; 

Fig. 9.6. Failure mechanisms for optimal prestressing Oopt 

a) 
l/J' (t=O) l/J+ (t=O) 

r b) ~ 
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double failure 

Fig. 9.7. Damage evolution with time to failure according to the orthotropic 
damage growth in an built-in plate of constant thickness prestressed by the elas­
tic shell: a) the radial component (peripheral exterior), b) the hoop component 
(central interior) (cf. Ganczarski and Skrzypek, 1993) 
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Two-dimensional coupled 
anisotropic creep-brittle 
damage and elastic-brittle 
failure problems 

10.1 Orthotropic coupled creep-brittle 
damage of Reissner's plates under 
in-plane and out-of-plane loadings 

10.1.1 General equations 

In the frame of the classical theory of thin plates (cf. Chap. 9), the effect 
of shear deformation due to the transverse stress is disregarded, which is 
equivalent to assuming of the shear modulus is equal to infinity. A more 
accurate and realitic theory is due to Reissner. 

Let us consider an element of a plate of moderate thickness h (Xl, X2) 
subjected to an external transversal load qdXI dX2 and to a system of stress 
components (Fig. 10.1). 

~ qdx,dxz 

x~ l~ .roI.------7! 
~---(,d~ 

X, dx, 

Fig. 10.1. Loadings imposed to an element of Reissner's plate 

Assuming that small total strains are decomposed into elastic and creep 
components Sij = Srj + S~j' the displacements Uo, Vo, Wo of any point across 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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the thickness of the plate fulfill relations: 

~~ = ~[O'",-v(O'1l+O'z)]+C:~, 

:; = ~ [O'1l -v(O'",+O'z)] +e~, 

(10.1) 

&vo 8wo T 1Iz 
8z + By = G +Yyz· 

The equation 8wo/8z = [O'z - v (a", + 0'11)] /E+e~ is not used, as it contra­
dicts the assumed linear law of the stress components distribution a"" 0'11' T "'11' 

According to the classical Reissner-Mindlin moderate thickness plate the­
ory, the straight and normal segment to the mid-plane before deformation 
remains straight but not necessarily normal to the mid-plane after defor­
mation. On the other hand, inextensibility of the normal segment is usually 
assumed 8wo/8z = 0, although, in what follows, the stress component O'z 
is also accounted for in the form (cf. Love, 1944): 

(10.2) 

satisfying the following conditions: 

(10.3) 

at the upper and lower surface of the plate, respectively. 
The equations of equilibrium of the stress resultants, when the geometry 

changes are taken into account, are: 

8N",'II 8N1I --+-=0 ax By , 

(lOA) 

8MIl: _ 8MIl:1I _Q =0 
8x 8y '" , 

_ 8MIl:1I + 8M1I _Q =0 
8x 8y 'II . 

The average value w of the transverse displacement, taken over the thick­
ness of the plate, as well as average values !p",,!p'll of the rotation angles 
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and in-plane displacements u, v result from equating the work of resultant 
couples on the average rotations and the work of resultant forces on av­
erage displacements with the work of the corresponding stresses on actual 
displacements Uo, Vo, Wo in the same section: 

3 1"/2 [ (2Z) 2] 
W = 2h -"/2 Wo 1- h dz, 

121"/2 UoZ 
'P", = h2 -;;:dz, 

-"/2 

121"/2 VoZ 
'Py = h2 -h dz, 

-"/2 
(10.5) 

1"/2 Uo 1"/2 Vo 
U = -dz, v = -dz. 

-"/2 h -"/2 h 

Expressing average displacements by resultant forces and resultant couples 
in equilibrium equation (lOA), the following system of three equations is 
obtained (cf. Love, 1944): 

(10.6) 

where the following definitions of the isotropic membrane and the bending 
stiffnesses: 

B=~ 
1- 112 ' 

(10.7) 

and the generalized inelastic forces are introduced: 

E 1"/2 N~/y = -1 2 (e~/y + lIe;/",) dz, 
-11_"/2 

E 1"/2 N~y = 2(1) 'Y~ydz, + II -"/2 
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3 jh/2 [(2Z) 2] Q~/'Y = 2h -h/2 'Y~z/'Yz 1 - h dz, 

E jh/2 M~/'Y = -1--2 (g~/'Y + /Jg~/,") zdz, 
- /J -h/2 

(10.8) 

E jh/2 
M~'Y = 2(1) 'Y~'Yzdz. + v -h/2 

The derived system of equations (10.6) is the simplified unilaterally cou­
pled Karman system extended to the case of visco-elastic plate of moderate 
thickness. In the Karman formulation, the fully coupled equations of mem­
brane and bending states occur where additional nonlinear terms associ­
ated with Gaussian curvature appear in the equations of membrane state 
expressed in terms of the Airy stress function (the third-order theory). 

10.1.2 Basic equations of axisymmetric plate 

Assumption of an axisymmetric problem allows elimination of the displace­
ment in the circumferential direction v. Expanding transverse displacement 
and bending moments in trigonometric series, the basic system of equations 
(10.6), transformed to cylindrical coordinates r,#,z, takes the form when 
the engineering notation is used: 
1. Elastic state (t = 0) 

(1O.9a) 

II. Creep state (t > 0) 

(1O.9b) 

under additional assumptions that MrfJ = 0, NrfJ = 0, N;fJ = 0 and q = 
const. In the further analysis only the fundamental mode k = 0 is consid­
ered. 
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Suppose that the vector of displacements {u, w} is found; then, all inter­
nal variables are expressed by the following formulas: 
I. Elastic solution (t = 0) 

1dw 
K,1J = --, 

r dr 
A _ du 

r - dr' 

a = _ 3q [~ _ 2~ + ~ (2Z) 3] 
z 43 h3h' 

T = _ 3Q!:. [1- (2Z)2] 
rz 4 h h' 

(lO.lOa) 
II. Creep solution (t> 0) 

az = 0, 
(10. lOb) 

Note that in the particular case of an infinitely thin plate, expressions for 
the bending moments coincide with the classical thin-plate theory. 

10.1.3 Constitutive equations 

In the case when the transverse shear effects are taken into account, the 
principal directions cxi(I, J) of the stress tensor undergo plane rotation with 
time dcxi(I, J) and, consequently, the principal directions of microcracks 
(3i(l, J) follow them. All constitutive equations, the flow rule, the time 
hardening hypothesis, and the Kachanov-type orthotropic brittle rupture 
law are employed for current coordinate system referring to the principal 
directions cxi(l, J) of the stress tensor (1 = J): 
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.c 3 E:~q 
£IJ = --81J, partly coupled approach, 

20"eq 

.c _ 3 E:~q_ 
£ IJ - -2;:;- 8 IJ , fully coupled approach, 

O"eq 

flIJ = C J O"IJ )r 
\1- DIJ 

(lO.11a) 

(lO.11b) 

(lO.11c) 

where the actual state of damage is represented by a second-rank sym­
metric tensor DIJ. Depending on the partly or fully coupled creep-damage 
approach, the principal directions of the creep strain rates deviator coincide 
with the principal directions of either the stress deviator or the effective 
stress deviator, respectively and the following definitions hold: 

"-~88J;;-~8-8 .;c= 
Veq - V'/'IJ81J, Veq - V 281J81J, "eq (10.12) 

Introducing the brittle damage law defines nonobjective measure of the 
damage rate tensor D (the effect of rotation of the principal directions is dis­
regarded). The objective measure based on the definition of the Zaremba­
Jaumann derivative on the plane rotation (r,z) is defined as: 

DIJ= flIJ - D'fJ 0 0 0 - 0 0 0 DIJ. [ 
0 0 -dO' 1 [0 0 dO' 1 

dO' 0 0 -dO' 0 0 
(10.13) 

\l 
When the objective damage rate tensor DIJ (10.13) is transformed from 
current principal directions of the stress tensor O'i(I J) to the sampling 

\l 
coordinates (ij) Dij, the new representation of the damage tensor Dij (t + 
Llt) is achieved: 

(10.14) 

The graphical interpretation of all auxiliary coordinate systems associated 
\l 

with the definition of the objective damage rate tensor Dij in case of the 
axisymmetric plane stress state is shown in Fig. 10.2. 

10.1.4 Initial and boundary conditions 

Two boundary problems are considered: 
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w , 

r 

Fig. 10.2. Corotational coordiante systems coincided with locally principal di­
rections of damage or stress tensors 

Example A: Prestressed simply supported plate 

for t = 0 
u(O) = 0 
nr(R) =-no 
!p(0) = 0 
m,.(R) = 0 
w(R) = 0 

for t > 0 

Example B: Prestressed clamped plate 

for t = 0 
u(O) = 0 
nr(R) = -no 
!p(0) = 0 
!peR) = 0 
w(R) = 0 

fort>O 

u(O) = 0 
iI-r(R) = 0 
<p(0) = 0 
m..(R) = 0 
meR) =0. 

u(O) = 0 
'lir(R) = 0 
cp(O) = 0 
cp(R) = 0 
meR) =0. 

(10.15) 

(10.16) 

The plates are made of ASTM 321 stainless steel (rolled 18 Cr 8 Ni 0.45 Si 
0.4 Mn 0.1 C Ti/Nb stabilized, austenite annealed at 1070°C, air cooled) 
with the following properties at temperature 500°C (cf. Odqvist, 1974): 
E = 180 GPa, 0'0.2 = 120 MPa, v = 0.3, m = 5.6, r = 3.9, O'bB = 210 
MPa, where O'bB denotes the stress causing creep rupture in 105 hr. Plate 
thickness to diameter ratio is h/2R = 0.1, and q = 0.01 X 0'0.2. 
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10.1.5 Results 

A plate of moderate thickness exhibits essential quantitative and qualita­
tive differences when compared with a plate of infinitely small thickness. 
The shear stress causes stress nonhomogeneity through the thickness which 
requires a distinction of layers. Additionally, a time-dependent material 
anisotropy occurs due to the coupled creep-damage process and the corre­
sponding rotation of principal stress and damage axes with time. 
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Fig. 10.3. Example A: Simply supported unprestressed plate: a) map of damage 
advance and rotation of principal directions of damage, b) distribution of principal 
components of damage, c) hoop stress relaxation at point of first microcrack 

In case ofthe simply supported unprestressed plate (no = 0) the tensile 
stresses are dominant at the center of the plate on the bottom external 
fibers (Fig. 1O.3a,b), nevertheless, combined creep relaxation and damage 
processes cause the first macro crack with respect to the hoop direction D/ 
to appear at a certain distance from the plate center (d. Ganczarski and 
Skrzypek, 1993, 1994). The corresponding hoop stress component rapidly 
relaxes in the damaged zone (Fig. 1O.3c). The rotation of principal direc­
tions of damage, which follow current principal directions of tensile stresses, 
is particularly clear in the inner zone around the neutral axis. At the in-
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stant of load imposition, t = 0+ , they exhibit a slope of 45° which gradually 
decreases with time to reach 0° at the instant of first macrocrack t = tJ 
(Fig. 10.3a). 
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Fig. 10.4. Example B: Clamped unprestressed plate: a) map of damage advance 
and rotation of principal direction of damage, b) distribution of principal com­
ponent of damage, c) radial stress relaxation at point of first micro crack 

In contrast to the above described mode of support, in the case of the 
clamped unprestressed plate (no = 0) there exist two zones of tensile 
stresses due to bending moments changing signs: one in the central bottom 
fibers of low advance of damage (5%) and the other, dominant, at the pe­
ripheral top fibers (Fig. 1OAa,b). Therefore, the radial stress relaxes there 
quickly (Fig. WAc). The field of principal directions of damage exhibits 
characteristic perturbation around the abscissa r / R = 0.6 according to the 
change of signs of bending moments, and the above mentioned effect of 
straightening with time of principal directions is observed (Fig. 1OAa) . 

An essential improvement of the plate lifetime is obtained when the pre­
stressing force no i= 0 is imposed in the plate mid-surface (Fig. 1O.5a,b) . In 
both considered cases, an optimal control of prestressing, decreasing ten­
sile stresses, turns out to be a powerful technique for lifetime improvement 
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Fig. 10.5. Lifetime of: a) simply supported and, b) clamped plates versus pre-­
stressing force - comparison of Reissner's and Love-Kirchhoff's theories in cases 
of partly and fully coupled formulations 

until the membrane-bending coupling terms in (10.6), 

a2w a2w a2w 
N", ax2 + 2N",y 8xay + Ny ay2 ' 

begin to. dominate. In the case of a simply supported plate, small and 
moderate magnitudes of prestressing (no/ RnO.2 S 0.025) do not result in 
the essential differences between Reissner's theory and the classical Love­
Kirchhoff theory, whereas in the clamped plate case Reissner's theory yields 
up to 20% improvement of lifetime, decreasing with the prestressing growth. 

Precise analysis of the lifetime of prestressed clamped plate allows one 
to observe quantitative differences in time to rupture between the isotropic 
(partly coupled) (lO.11a) and the orthotropic (fully coupled) (lO.llb) for­
mulations of the flow rule. For advanced prestressing (no/ RnO.2 ~ 0.03), 
when paths of loading are strongly nonproportional, the relative improve­
ment of lifetime for fully coupled formulations may reach 4.5%. Other cases 
do not confirm such clear differences, which are comparable with rounding 
errors. 
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10.2 2D CDM approach to coupled 
damage-fracture of plates under 
in-plane loadings 

10.2.1 Geometry, loadings governing equations and boundary 
conditions of a structure 

A simply supported, clamped 2D structure subjected to in-plane uniform 
load as it is shown in Fig. 10.6 is analyzed. The solution is considered in 
the domain:D = {(Xt,X2) E R2 : Xl E (0, 5) ,X2 E (0, 1)}, where Xi, i = 1,2 
denote dimensionless independent variables Xl = x/w, X2 = y/w , w is the 
structure width, and X, y are Cartesian coordinates. 

y 

1 
q 

r 1 
w 

~~~-------------------
x 

Fig. 10.6. Scheme of structure and load geometry 

A local approach to fracture is applied when the modified CDM Litewka 
model of the orthotropic time-dependent elastic-brittle damage in crys­
talline metals is used as the constitutive and evolution equations (cf. Sect. 
4.2). 

The following dimensionless quantities are defined: q = q [ I = 
au xl m 

0.02, Young's modulus E = E/au = 416.7, Poisson's ratio v = 0.3, 
G = cau x 1 [sl = 6.81 X 106, where au = 288 MPa. The material data cor­
responds to the carbon steel AISI at a temperature of 811 K (cf. Litewka, 
1989). 

The constitutive relationships rewritten in the matrix representation, 
referred to the global frame (1, 2, 3) cf. (Sect. 4.4.2), are of the following 
form 

(10.17) 

where {e} and {O'} are the strain and the dimensionless stress vectors 
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ell Un 
e22 U22 

{e} = e33 {if} = U33 (10.18) 
123 U23 
131 U31 
112 U12 

and [ALI (D*)) is the elastic compliance matrix of damaged material (4.87), 
in general expressed in terms of six components Di1' D22 , Da3 , Di2 = D21 , 
D:h = Da2 , D31 = Dia of the modified damage tensor D* and its first 
eigenvalue Di: 

-v -v Di D* 
1 + 1 + Di n 

-v Di D" 
1 + 1 +Di 22 

-v 

1 Di D* -v -v 

Di (* * ) 2 + 2v + 1 + Di D22 + D33 

Di D* 
1 + D* 12 

D* 1 
1 D" 

1 + D" 13 
* 1 D1 • 

1 + D*D12 
• 1 

+ 1 + Di 33 

Di " 
1 + D*D13 

* 1 

(10.19) 

(10.20) 

2 + 2v + 1 Z~i (Di1 + D33) 

Di D" 
1 + Di 23 

D1 D* 
1 + D* 23 

* 1 

2+2v+ 1Z~i (Di1 +D22 ) 

(10.21) 

0 Di D* Di D* 
1 +Di 13 1 +D" 12 

[Atl] -.!!LD* 
D* 1 

A12 = 0 1 D* (10.22) 1 +D* 23 1 +Di 12 
D" 1 ~D" __ l_D" 0 

1 + Di 23 1 + Di 13 
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Symbols aij denote dimensionless components of the stress vector, aij = 

CYij/CYu, and E is the dimensionless Young's modulus E = E/CYu , Ail, A2l, 
~ ~T _ 
Aj1, and All denote submatrices of the 6 X 6 matrix A -1. 

For numerical implementation the number of physical equations (10.17) 
has to be reduced by the number of non zero stress components. Therefore, 
in the case of a plain state of stress, (10.17) take the form 

{ en 
} = ~ [ 1+~~~1' 

-I) 

e22 1 +D1D22 
'Y12 D1D12 DIDi2 

(10.23) 
DIDi2 ]{ an } DIDi2 a22 

2 + 21) + D1 (Di1 + D22 ) a12 

By use of the Zaremba-Jaumann objective derivative :b 

V 
tDIJ= tDIJ- tDIK tsKJ - tDJL tsLI , (10.24) 

where t DI J are components of the time-derivative of the damage tensor 
evaluated at time t and tSIJ are components of the spin tensor 

(10.25) 

the components of the damage tensor objective derivative are given here 
as follows: 

v . 
Dn = Dn + 2aDt2 , 
v . 
D22= D22 - 2aDt2, 
v . 
D12= D21 = a (D22 - Dn) , 

(10.26) 

whereas nonobjective derivatives Dn and D22 are given by the damage 
growth rule (4.48) and (4.49) 

where 

Du = K (at) , 
D22 = K (a2) , 

(10.27) 
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K = -=- 1- 4v =- + 2 (1 + 2v) =- - 4v =- + =-c {(az) (az)Z (az)3 (az)4 
4EZ 0'1 0'1 0'1 0'1 

(10.28) 
The failure criterion (4.43) takes the form 

G1 [1 + (:~~) ] z + ~G2 [1 + (:~:) 2 - (:~~) 1 
(10.29) 

+G3 [D~ + (~22)2 D22] - ~! = 0 
O'u 0'11 

with constants G1 , G2, G3 obtained from (4.51). 

10.2.2 FEM mesh generation and results 

The constitutive model (cf. Sect. 10.2.1) is implemented in FEM ABAQUS 
code. The geometry is discretized by fully integrated 2D first-order isopara­
metric elements CPS4 in a 118x40 mesh, used in conjunction with IRS21A 
rigid surface elements. In the case of CPS4 elements the so-called selec­
tively reduced integration technique is used which prevents mesh locking. 
This means that the actual volume change at the Gauss points is replaced 
by the average volume change of elements. Interface elements are sequen­
tially included into the mesh after the failed CPS4 elements have been 
removed or the kinematic boundary conditions have been released. Such 
a procedure is employed because it is anticipated that the structure may 
again come into contact with the wall after failed elements have been re­
moved from the mesh. Further considerations will often be limited to the 
area near the wall, as shown in Fig. 10.7, because the initial stress distribu­
tion in the domain 1) indicates the damage zone being limited to the close 
neighborhood of the fixed edge. 

An initially heterogeneous elastic stress state results in a nonuniform 
material softening due to the damage growth. The distribution of the dam­
age tensor component Du at time t[- = ~o, preceding the macrocrack 
initiation between the element 40 and the wall, is shown in Fig. 10.8. 

Damage is localized in the narrow zone where the initial tensile and shear 
stress concentration was observed. However, due to the stress redistribu­
tion in damaged elements prior to the crack initiation at time t[- = t~O, 
before in the first node (node 41, Fig. 10.7) the boundary conditions are 
released to form the crack of the length of an element, the maximum stress 
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Fig. 10.7. Element numbering in the region near the wall 

concentration moves to the elements at a certain distance from the crack 
tip. The distribution of stress components au = uu/uu and 0'22 = U22/Uu 

that corresponds to the damage state shown in Fig. 1O.8a is presented in 
Figs. 1O.8b and 1O.8c. At time tr+ = t~ the cracking process starts from 
the right-top element (element 40). When the kinematic boundary condi­
tions in node 41 have already been released, further stress redistribution 
is observed. The tensile stress in the direction normal to the just formed 
macrocrack is fully released, but element 40 is still carrying the shear stress, 
which is manifested in shear type mesh deformation, shown in Fig. 10.9. 

The evolution of the maximum principal value of the damage tensor DI 
in chosen elements along the wall (Xl = 5.0,0 < X2 < 1) is sketched in Fig. 
10.10. 

The general observation may be summarized in what follows. Due to the 
stress redistribution from the element which is most exposed to the damage 
growth, a gradual damage rate drop prior to failure occurs. This is mostly 
noticed in the first three elements that constitute the crack (elements 40, 
39,38) where the shrinkage of the failure surface is significant (cf. Fig. 4.2). 
Further, due to the avalanche of the crack length growth, the damage level 
in the zone neighboring the crack tip is not high enough to significantly 
change the failure surface. In other words, the damage localization near 
the crack tip decreases when the crack length increases. So, in contrast to 
the formulation used by Liu, Murakami, and Kanagawa (1994), there is no 
need to additionally regularize damage field via a nonlocal damage variable 
(cf. Sect. 5.2.2). The decrease ofthe critical damage tensor eigenvalues ob-
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Fig. 10.8. Distribution of a) damage tensor component D l1 , b) norma1 stress, 
c) shear stress, at time t 1-
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Fig. 10.9. Mesh deformation at time t1+ 

served in subsequent elements that undergo failure indicates two different 
types of element failure. First, macrocracks are accompanied by a signifi­
cant strength reduction; second, in the next elements the failure criterion 
close to the Huber-Mises-Hencky equivalent stress is satisfied. 

The history plot for the stress tensor eigenvalue at = uI/uu is shown in 
Fig. 1O.1Ob. At the instant tJ+ = ttO, when the kinematic boundary condi­
tions in node 41 have been released, the need to confirm to the boundary 
problem equations results in a discontinuous increase in stress values in 
neighboring elements. Subsequent stages of the macrocrack development 
in the deformed mesh are shown in Fig. 1O.1l. 

The stress distribution at time t:6.56 (Fig.1O.llc) preceding the crack 
branching is presented in Fig. 1O.12c. After releasing the boundary condi­
tions in node 18 the current stress vector in elements 16 and 56 exceed the 
actual failure surface, which causes simultaneous failure in both elements. 
Therefore, the crack deviation from the primary direction is modeled by 
fully removing elements 16 and 56 from the FEM mesh. The stress state at 
time t~6.56, just after the mesh modification in the area of the macro crack 
tip, is shown in (Fig. 10. 12a, b). Eventually, the structure is fully failed 
w hen two cracks developing from the top and the bottom of the clamped 
plate side, of tension and the compression type, meet together to make the 
structure unserviceable, Fig. 10.11£. 
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Fig. 10.12. Distribution of a) normal stress, and b) shear stress, at time t~6,56 

10.2.3 Conclusions 

1. An effective CDM based approach to analyze both the continuum 
damage evolution prior to crack initiation and the propagation of the 
crack through the structure in the presence of the damage field is 
proposed. A modified Litewka model of the elastic-brittle material is 
applied, where effects of the stress redistribution following damage 
accumulation and the shear deformation are accounted for . 

ii. Two models of crack propagation in the material exposed to damage 
are distinguished. In the region where tension predominates, high 
damage advance occurs before the macrocrack is formed. On the 
other hand, in the zone of predominant compression, no damage evo­
lution( or a little due to shear) prior to crack opening occurs. On 
crack initiation (in the first element that leads to failure), stress re­
duction accompanies the damage growth such that a high damage 
level is reached when the actual stress vector meets the actual failure 
surface. Next, when crack penetration through the volume is ana­
lyzed, the stress increase in the subsequent element is observed due 
to releasing the stress level in the previous element. Hence, a lower 
damage advance in the considered element is needed to enable the 
increasing stress vector to meet the actual failure surface. In other 
words, two competing phenomena, stress increase due to stress redis­
tribution from the failed zone and failure surface modification due to 
the damage accumulation, result in damage field regularization near 
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the crack tip when the crack length increases. 

iii. The local approach to fracture analysis used here is based on two 
procedures that describe the crack propagation: a) changing the kine­
matic boundary conditions on the element face neighboring the crack, 
or b) fully removing the element, both controlled by an appropriate 
failure criterion. The description applied shows the phenomenon of 
the damage localization drop near the crack tip with crack length 
growth. This behavior is mostly due to the rapid stress increase re­
sulting from the effective structure width reduction in a region where 
the crack development is expected (near the crack front), such that 
the continuum damage advance is not too high. In the compressive 
zones, no damage evolution occurs so the failure criterion is met on 
the initial failure surface and the corresponding element instanta­
neously leads to failure. 

iv. The crack branching mechanism (or change of its primary direction) 
can also be detected when the shear-type failure mode in the element 
neighboring the main crack precedes the tension-type failure mode 
on the crack primary direction. 

v. The structure is totally failed when two main cracks, a tensile-type 
(from the top) and a compressive-type (from the bottom), meet each 
other and the effective plate width drops to zero (structure fragmen­
tation). 

vi. In contrast to the local approach to creep fracture used by Murakami, 
Kawai, and Rong (1988), the elastic-brittle damage model developed 
here seems more promising. The main advantage is the better numeri­
cal stability observed when the local damage field near the crack tip is 
limited by the critical damage level drop with the crack length growth. 
Additionally, the stress concentration in this zone is also limited by 
the size of the actual failure surface. Hence, neither additional dam­
age regularization nor other stress limitation methods are required, 
as discussed in the convergence tests where different mesh patterns 
with a decreasing elements size are used (cf. Fig. 5.6). 

vii. Due to the kinematically controlled crack growth mechanism, the 
primary crack width is not affected by the element size. However, 
the secondary crack growth mode, when the element is fully removed 
from the mesh if the failure criterion in the element is reached, is 
more mesh-dependent, so that further testing is required. 
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Formulation of optimal design 
under creep-damage conditions 

11.1 Structural optimization under damage 
conditions 

11.1.1 Optimal design of structures made of inelastic 
time-dependent materials 

When elastic structures are designed for either minimum weight or maxi­
mum load under a strength constraint, structures of uniform strength, also 
called fully stressed designs, are optimal in most cases. In general, however, 
the condition of uniform strength is neither a necessary nor a sufficient con­
dition of optimality. The exceptions, when structures of uniform strength 
are nonoptimal, are mainly connected either with the static indeterminacy 
of a structure or with geometric changes being taken into account. On 
the other hand, the condition of uniform strength of structures may not 
be a sufficient optimality condition if it does not result in a unique solu­
tion. Hence, following Gallagher (1973), the fully stressed design method 
(FSDM) is, in general, a first step towards the exact optimal design when 
more rigorous optimization approaches are used. 

When optimization of inelastic structures made of time-dependent solids 
that suffer from material damage, brittle or ductile, is formulated, the min­
imum weight ( volume) or the maximum load remains the typical design 
objective, similarly to the corresponding elastic problem. Essential changes 
are observed in the state and evolution equations as well as the constraints, 
since a new independent time variable plays an important role. The effect of 
nonlinear constitutive equations on the optimal shape of structures was dis­
cussed by Gajewski (1975). The optimization constraints under conditions 
of creep damage, ductile or brittle, elastic-brittle damage, thermo-elasto­
(visco)plastic damage, etc., may be imposed not only on the strength (rup­
ture or failure), stiffness, and stability, as in the elastic case, but also on a 
limited stress relaxation, a limited residual displacement, or a lifetime pre­
diction of the first macrocrack initiation (tJ = tR) or the complete failure 
(tIl = tF)' Hence, since in an optimization problem the design objectives 
and constraints may be interchanged, the following global optimization 
problems, originally proposed for optimal design under creep conditions (cf. 
Zyczkowski, 1988, 1991), may be formulated for optimal design of struc­
tures made of damaged time-dependent materials (cf. Table 11.1) 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
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i. minimization of weight under prescribed loadings and lifetime, 

ii. minimization of loadings under prescribed weight and lifetime, 

iii. maximization of lifetime (tr or trr) under prescribed weight and load­
ings. 

Table 11.1. Classification of typical problems of optimal design with respect to 
creep failure (global criteria) 

Optimality 
Formulation criteria Constraints 

i Q -+ min P = const, tr,ll = const 
ii P-+ max Q = const, tr,ll = const 
iii tr II -+ max P = const, Q = const 

The first two problems are, in most cases, inconvenient for practical ap­
plications since the lifetime of a structure (tr or tIl) is usually not given 
in an explicit form but results from the additional constraints imposed 
on damage variable(s) 'D (D, Dv, D), the magnitudes of which change with 
time when the appropriate damage evolution law is legislated, e.g., (2.26), 
(2.35), (2.42), (2.44), (2.46), (2.48), (2.65), (2.71), (2.74), (2.97), if isotropic 
damage D is assumed, or (4.43), (4.44), (4.46), (4.62), etc., if more general 
anisotropic damage D is adopted. Time of first macrocrack initiation tr 
is defined here in such a way that the damage variable D (isotropic dam­
age) or the dominant damage component sup {Dij} ( anisotropic damage) 
reaches the critical value Dcrit. When the constraints are imposed on a 
ductile creep rupture in Hoff's sense, the condition of vanishing transverse 
dimensions at a structure cross-section defines the lifetime t~R' In this case, 
the geometry changes due to finite strains must be taken into account since 
infinite strains, at least in one cross-section, constitute the purely ductile 
failure mechanism of a structure. Representative optimization problems, 
when constraints are imposed on brittle, ductile or mixed rupture, creep 
stiffness or creep compliance, creep buckling and dynamic response, were 
discussed by Zyczkowski (1991, 1996). 

11.1.2 Optimality criteria for structures made of 
time-dependent materials 

A. Uniform creep strength (UeS) 

Structures optimal with respect to brittle rupture, tR -+ max, may often be 
found among the class of structures of uniform creep strength (UeS) (cf. Zy­
czkowski, 1991). Structures of uniform creep strength with respect to brittle 
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rupture are defined as ones in which macrocracks initiate simultaneously 
either in every material point x EV or along certain characteristic lines 
or surfaces. Hence, when the simple, scalar Kachanov-Hayhurst isotropic 
damage growth rule is used (2.35) and the integration is performed from 
the damage initiation D (to) = 0 up to formation of the first macrocrack 
D (tI) = Dc .. the condition of uniform isotropic damage strength (UIDS) 
takes the following representation: 

. / X[O'(x, t)])r 
D = C \ 1 _ D ' X = aal + 3baH + CO"eq, 

tI 

1- (1- Dcrr+! = C(r + 1) I {x[O'(x,t)1Y dt 
(ILl) 

to 

which must be satisfied at "Ix E V or at least on a certain surface. For 
orthotropic damage (Sect. 4.1) the condition of uniform orthotropic damage 
strength (UODS) can be written as 

(11.2) 

[DII(X,tI )] 
sUP(l,2,3) D ller == 1, "Ix E V. 

In a more general case of damage anisotropy the isotropic scalar function 
of stress and damage tensors 0' and D may be postulated as the failure 
criterion (Sec.4.2.2) at the point x 

Flu (X,tI) ,D (X,tI)] = o. (11.3) 

If, for instance, Litewka's model is applied (Sect. 4.2.3) the condition of 
uniform anisotropic damage strength (UADS) may be furnished as follows: 

D = C {<I>e [0' (x, t) , D* (x, t)]} 2 0'*, 

(11.4) 

+C311' [0'2 (x, t[) : D* (x, t[)] - a~ = 0, "Ix E V, 

where <I>e [0', D*] denotes the elastic energy affected by damage (4.39), D 
and D* denote the second-rank damage tensors, classical (3.3) and modified 
(3.17), whereas 0'* is a modified stress tensor (Sect. 4.2.3). 

B. Uniform ductile strength (UDS) 

When optimal design with respect to ductile rupture is sought, a geometri­
cally nonlinear finite strain approach is necessary which makes both a for­
mulation and a solution of the optimization problem much more complex. 
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It was investigated for the first time and developed by Szuwalski (1989, 
1991a, 1991b, 1995a, 1995b). Following these papers another classification 
of structures that are "optimal" in various senses, when geometric changes 
are significant, may be quoted: 

i. Structures of uniform elastic strength in a broader sense (UESb) , 
where the initial equivalent stress CTeq (to) is proportional at each 
material point of the structure to the critical stress for the material: 

CTeq(X, to) = CCTcr(X), Vx E V. (11.5) 

ii. Structures of uniform elastic strength in a narrower sense (UESn), 
where the initial principal stress components are equal throughout 
the whole structure: 

CTII(X, to) = const(x) Vx E V. (11.6) 

iii. Structures of uniform creep strength with respect to pure ductile 
rupture time (UCDS) tOR, where transverse dimensions drop simul­
taneously to zero at all cross-sections of the structure: 

h(x, tOR) = 0, t -+ tOR, Vx E V. (11.7) 

iv. Structures of uniform deformability (UD), where principal strain com­
ponents are equal in all cross-sections, but vary with time: 

E:v(X,t) = f(t) , to < t < tOR, Vx E V. (11.8) 

11.1.3 Constraints 

The optimality criteria (Sect. 11.1.2) require the appropriate constraints, 
some of which are listed below 

A. Inequality constraints 

i. Strength constraints 

e.g., 

-HMH 3 SijSij . [ ]
1/2 

CTeq = 2' (1- D)2 S CTcr!J, 

(11.9) 

(11.10) 

where CTcr denotes the critical effective equivalent stress for the ma­
terial and j is the safety factor. 



11.1 Structural optimization under damage conditions 251 

ii. Initial stability constraints (elastic stability condition) 

no < nE, (11.11) 

where nE denotes the basic Eulerian force (if the possibility of creep 
buckling is not included in the analysis). 

lll. Geometric constraints for thickness of the structure h 

hmin < h(x) < hma:x (11.12) 

and the prestressing eccentricity e 

emax :::; h/2. (11.13) 

B. Equality constraints (for axisymmetric structures) 

i. Condition of constant volume (weight) of a uniform cross-section 

R 

V = 21f J h(r)rdr = const 

o 

or a two-point sandwich cross-section 

R 

or 

V = 21f J [0: (hs - gs) + 2j3gs1 rdr = const 

o 

R 

8V = 21f J [0: (8hs - 8gB ) + 2j38gs J rdr = 0, 

o 

(11.14) 

(11.15) 

(11.16) 

where h (r), hs (r), and gs (r) denote thickness of the uniform cross­
section, the sandwich cross-section, and the sandwich working layer, 
respectively, whereas 0: and j3 are arbitrary weight factors for the core 
and layers materials (Fig. 11.1). 

ii. Condition of constant lifetime for macro crack initiation 

t1 = tR = const (11.17) 

or complete failure (fracturing) 

tIl = tF = const, (11.18) 

where tIl - t1 is a safety regime for the structure considered, which 
is reduced to zero for fully damaged design. 

iii. Condition of constant surface loadings (prestressing force excluded) 

q(x, t) = q(x). (11.19) 
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h dh • s 

z 

Fig. 11.1. Uniform and substitutive sandwich cross-section 

11.1.4 Decision variables 

When problems of optimization are formulated for prestressed structures 
under damage or damage/fracture conditions vectors of control variables 
involve not only the thickness of a structure h(x) or h.(x) and g.(x) for 
a uniform or sandwich cross-section, respectively, but also parameters of 
prestressing no or .!lo in case of in-plane membrane-type prestressing (a 
force or a membrane distortion), and rna or 'Po in case of bending-type 
prestressing (a bending moment or an initial bending distortion). Hence, 
the corresponding vectors of decision variables are 

{c:'} = {no or .!la, h(x)} or {c"m} = {no or .!lo, h.(x),g. (x)} 

and 

in case of a uniform cross-section or a sandwich cross-section, respectively. 
It is important to precisely distinguish the behavior of prestressing, which 
varies with time, from other loadings which are constant and may appear 
as the equality constraints. The nature of the prestressing, which is consid­
ered as an excitation imposed on the structure, also requires explanation. 
Generally, internal and the external excitations can be distinguished. The 
prestressing fibers in reinforced concrete are an example for the first case, 
whereas a cylindrical shell prestressed by an external circumferential cable 
illustrates the second. In both these cases, the excitations may have the 
nature of forces or distortions. Typical examples of excitations, the radial 
prestressing force no or the displacement type .!lo, and the radial prestress-
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ing moment mo or the angle of support 'Po, for membrane and bending 
states, respectively, are illustrated in Fig. 11.2. 

boundary excitations 

force-type displacement-type 

~ 
.2'! 
~ 

no 
-+1 : 

n. 
1.....- ~.j ~ i _: L~o 

" ~ coupling j:(" .. m{).~,%)=O ~ 
til 

" mo "'0 :a 
" (2 : S) V 

! ~ 
0 

..0 
<Po <Po 

Fig. 11.2. Boundary excitations in axisymmetric plates 

Apart from the order of the theOry, which mayor may not include the 
coupling between the membrane and bending effects (cf. Sect. 9.2), both 
membrane and bending states may additionally be coupled to the boundary 
conditions. Generally, such a coupling can be described by a function F 
which depends on the excitation parameters: 

(11.20) 

where no is the initial prestressing force, ~o the initial distorsion (mem­
brane), mo the initial prestressing moment, and 'Po the initial distorsion 
( curvature). 

From a practical point of view, only a few particular representations of 
the function F make sense. These are as follows: 

i. Uncoupling, when the function F depends on the only one of the 
arguments, 

F(no) = 0 
F(b.) = 0 

or 
or 

F(mo) = 0 
F('Po) = 0, 

or 
(11.21) 

ii. Unilateral coupling of the membrane and bending states, when the 
function F may be solved with respect to one of its arguments, 

mo = f(no) or 'Po = f(~o), (11.22) 

iii. Bilateral coupling, when the function F implicitly depends on more 
than one argument (e.g., plate-shell interaction), 

or F(no,mo). (11.23) 
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11.2 Inelastic structures of uniform strength 
in various senses versus optimal 
structures 

When geometric changes are neglected (the rigidification principle is used) 
and creep-damage buckling constraints are not involved, the optimal struc­
ture, for which the lifetime is maximum, t max --+ max, may be found among 
structures of uniform creep strength. This was illustrated by Zyczkowski 
and Rysz (1986) (optimal design of cylindrical shell under combined bend­
ing with torsion against brittle rupture), Ganczarski and Skrzypek (1989, 
1991, 1992) (optimal design of prestressed disks with respect to brittle 
rupture), Rysz (1987) (thick-walled pipeline cross-section of uniform creep 
strength against pressure, axial force, and torsion), and Skrzypek and Eg­
ner (1993, 1994) (optimal design and optimal prestressing of disks with 
respect to creep-brittle rupture). 

With geometric changes taken into account, a structure of uniform creep 
strength is, in general, nonoptimal. Further optimization may be performed 
by imposing appropriate shape corrections to maximize the lifetime of 
the structure being optimized. Shapes of flexible beams of uniform creep 
strength were sough by Zyczkowski and Swisterski (1980) by a finite de­
flections approach. Nonoptimality of the uniform creep strength design was 
checked by Swisterski et al. (1983), where an eccentrically compressed 1-
column was optimized against brittle rupture time when finite deflections 
were admitted. In this case, an essential increase of the lifetime prediction 
tJ --+ t Opt by about 90% when compared to the uniform creep strength 
t';CS was reached when a further parametric optimization procedure was 
used. The relevant problem was studied by Wr6blewski (1989), who checked 
the nonoptimality of an eccentrically compressed column of uniform creep 
strength with respect to its lifetime when three rupture mechanisms, the 
brittle, the ductile, and the brittle-ductile, were applied for lifetime predic­
tions. 

With respect to ductile rupture, the structures of uniform deformability 
(UD) belong to the class of structures of uniform ductile creep strength 
(UDCS). However, in general, neither structures of uniform ductile creep 
strength nor structures of uniform deformability are optimal with respect 
to ductile rupture time tDR' Only in the case when a structure of uniform 
ductile creep strength is statically determinate it is simultaneously the opti­
mal structure in the sense of maximum ductile rupture lifetime tDR = t Opt • 

If the above condition does not hold, the conclusion is not true, although 
the additional shape corrections may be imposed to improve the UDCS 
solution (cf. Szuwalski, 1989, 1991a, 1991b), as schematically sketched in 
Fig. 11.3. 
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disks ofunifonn 
strength to ductile 

disks of unifonn 
initial strength in 
broader sense 

Fig. 11.3. Disks of uniform ductile creep strength in various senses (after Szuwal­
ski, 1993) 

Note, however, that a pure ductile failure mechanism in Hoff's sense is 
strongly limited in practical observations and should rather be enriched 
with the additional damage evolution by material degradation in a CDM 
way. 

The fully damaged design method is essentially relevant to the fully 
stressed design method as it was used in elasticity. Roughly speaking, this 
method leads to exact solutions which are optimal with respect to lifetime 
t/ = tOpt when the following conditions hold: 

a. the structure is statically determinate, 

b. a stationary single loading is applied, and 

c. geometric changes are neglected. 

If the above conditions are violated, the fully damaged design turns out 
to be only an approximate optimal solution. An exact one may be obtained 
when more rigorous optimization methods are used. However, Skrzypek and 
Egner (1993) proved that a disk of fully uniform creep damage strength un­
der steady loadings (non-prestressed) is also the optimal one in the sense 
of its lifetime. On the other hand, a disk of partly uniform creep damage 
strength with active lower geometric constraint under unsteady loading 
conditions (due to the prestressing) is not optimal and, hence, additional 
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corrections of thickness may result in a certain increase of the lifetime (prac­
tically negligible). Therefore, the conditions a, b, and c do not appear to 
be necessary conditions for fully damaged design to be the optimal design 
in this case. It is worth mentioning that, beside the thickness optimiza­
tion, initial prestressing of the structure of the membrane or the bending 
type appears to be a promising tool for a lifetime improvement because, in 
general, tensile stresses can be reduced in this way such that the damage 
growth may be arrested. 

R.ecently, a number of optimal solutions for disks with respect to brit­
tle creep rupture have been obtained by Ganczarski and Skrzypek (1989) 
(optimal prestressing of partly uniform damaged disks); Ganczarski and 
Skrzypek (1991) (disks of uniform orthotropic damage strength under un­
coupled thermomechanical loadings); Skrzypek and Egner (1993) (fully 
damaged design versus optimal design of rotating prestressed disks); Eg­
ner and Skrzypek (1994) (effect of preloading damage due to prestressing); 
Ganczarski and Skrzypek (1997) (disk of uniform orthotropic damage under 
coupled thermo-damage conditions). 

The partly or the fully damaged design methods were also implemented 
on axisymmetric thin plates by Ganczarski and Skrzypek (1993) (creep­
damaged plate of constant thickness optimally prestressed by the elastic 
cylindrical shell); Ganczarski and Skrzypek (1994) (initially prestressed 
sandwich plates with full orthotropic damage at rupture). Optimal pre­
stressing of R.eissner's axisymmetric plates with respect to brittle rupture 
time was also examined by Ganczarski, Freindl, and Skrzypek (1997). 



12 

Optimal design of 
axisymmetric disks 

12.1 State equations for rotationally 
symmetric deformation of annular disks 
of variable thickness 

12.1.1 State equations of disks of variable thickness under 
plane stress conditions 

An annular disk of variable thickness h (r) and radii a and b, clamped at the 
inner edge, is subjected to steady rotation about the axis of symmetry with 
an angular velocity wand uniform radial tension along the periphery. Plane 
stress state (1 z = 0 and creep incompressibility e::" = 0 are assumed when 
the transient creep problem is solved in velocities by the use of cylindrical 
coordinate system r, fJ, z. Hence, for a rotationally symmetric deformation, 
the equilibrium equation takes the following form: 

(12.1) 

Moreover, when an additive decomposition of strains into elastic and creep 
components is used, the linear geometric equations may be written: 

(12.2) 
U e c (11) - V(1r c 

e1) = r = efJ +e1) = E +e1). 
Elimination of (1r and (11) from (12.1) and (12.2) yields the fundamental 
equation in terms of the radial displacement u: 

where 

d2u + (.!. dh +.!.) du + (!.: dh _ .!.) ~ 
dr2 h dr r dr h dr r r 

f dg 1dh = - +-+--g-kr, 
r dr hdr 

f = (1- V)(e~ - e~), g = e~ + Ve~, 1- v2 2 
k=--pw . 

E 

(12.3) 

(12.4) 
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Creep strain rates are governed by the Mises-type flow rule associated with 
the time hardening hypothesis and the Kachanov-Sdobyrev damage growth 
rule (partly coupled approach): 

um - 1 ( U ) • dc~ = (1 ~)m u,. - 2~ f(t)dt, 

(12.5) 

dc~ = (l~~~m (u~ - U;)t(t)dt, dc~ = -(dc~ +dc~), 

dD = C (;~Ub)" dt, X(u) = 6Ul + (1- 6)ueq• (12.6) 

Applying the following dimensionless quantities 
Uo u r f 9 ka2 u,. 

co = -, U = -, R = -, F = -, G = -, K = -, S,. = -, 
E aco a eo eo co Uo 
u~ ueq c c~ c c~ m-l· h 

S~ = -, Seq = -, E,. = -, E~ = -, T = tEuo f(t), H = -, 
Uo Uo co co a 

p b 
p= -, Ro=- =5 

Uo a 
the dimensionless form of the governing equations for a disk of variable 
thickness is obtained 

where 

(t = 0), 

+ (VRdH -1) U = -KR3 
H dR ' 

(t > 0), 

8"':.- 1 ( S ) 
~ = (1 ~D)m S~ -; , 

e n / X(U))r -
dD = Uo t[ \ 1 _ Ddt, 

(12.7) 

(12.8) 

(12.9) 

t = ~ , t[ ~t) = EU;;,-lt (t), F = (1- v) (E~ - E~), G = ~ + vE~. 
(12.10) 
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12.1.2 Boundary value problems 

Example A 

A clamped annular disk of variable thickness H (R) is subjected to steady 
rotation about the axis with angular velocity wand the radial tension H 
applied along the periphery (cf. Fig. 12.1). 

('(i)~ '-r" rigid shaft 

Fig. 12.1. Schematics of clamped annular disk of variable thickness subjected to 
steady rotation and radial tension 

Boundary conditions for the disk of the radii Rl = 1, ~ are: 

Example B 

U(1) = 0, H(~)Sr(R2) = HOPb (t = 0), 
U(1) = 0, Sr(R2) = ° (t> 0). 

(12.11) 

A clamped annular disk of variable thickness H (R) is subjected to creep­
damage under initial prestressing Q and steady rotation w (cf. Fig. 12.2). 

Boundary and continuity conditions for the disk of radii Rl = 1 , R2 
(creep ) and the prestressing ring of the radii R2, Ro (elastic) are: 

U(1) = 0, H~R2)Sr(~) = -HoQ } 
S~ins(Ro) = ° s~ms(~) = _Q, 

U(1) = 0, H(Ro)Sr(~)dl = HodS;inS(~) } 
S;inS(Ro) = 0, U(R2)dl = durinS (R2) 

Data 

The calculations are done for the following data: 

(l = 0) , 

(l> 0). 

(12.12) 
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rigid shaft 

Fig. 12.2. Schematics of clamped annular disk of variable thickness subjected to 
creep under initial prestressing and rotation 

E = 1.77 X 105 MPa, 11 = 0.3, a = 0.02 m, b = 5a, ho = 0.004 m, 0"0 = 
118 MPa, Pb = 0.1, P = 7.9 X 103 kg/m3 , w = 100 s-l(A) or 240 s-l(B), 
C = 2.13 X 1O-42Pa- r s-I, m = 5.6, r = 3.9, 8 = 0.5 (B) or 1.0 (A). 

12.1.3 Numerical solution by FDM 

In order to solve a transient creep-damage problem for the disk of a pre­
scribed thickness H (R) we divide the initial domain Rl s:: R s:: ~ into 
a finite number of intervals N - 1, not necessarily equal, by inserting the 
ordered set of points Rj , j = 1, ... ,N, where Rl = 1, and RN = R2 . 

Also we separate a current dimensionless time t into discrete intervals de­
limited by ,t with t = 0 representing the initial condition for creep (the 
elastic solution). For each disk portion, a piecewise linear approximation of 
thickness 

1= 1, ... ,N -1, (12.13) 

is assumed, where subscript I denotes a number of the interval. Then, 

at each time step t, a standard finite difference method (FDM) is used 

on(12.7) in order to find the initial nodal displacements Uj (t = 0) or 

velocities Uj (t > 0). Moreover, corresponding stress and strain rates 
5j , Ej , and the rates of damage function Dj are computed. The Runge­
Kutta II (RKII) method is applied next to find current values of stress 
components as well as the damage function. Hence, when geometry of the 
disk is prescribed the initial-boundary creep-damage problem is solved with 
the elastic solution considered as the initial condition for creep. 

-k 
1. Elastic problem (t = 0) 
For a disk of constant thickness H(R) = Ho, the analytical solution of the 
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reduced fundamental equations (12.7)-(12.9) provides: 

A B K 3 
Ue = --R + - - -R 

2 R 8 ' 

1 [ A (1 - II) K 2] 
8r = 1_112 -(1+II)'2---w-B -(3+1I)'BR , 

(12.14) 

819 = -- -(1+11) - + --B - (1+311)-R 1 [ A (1- II) K 2] 
1- 112 2 R2 8' 

For a disk of arbitrary thickness H (R), the FDM is used to solve (12.7). 
Then, in view of Hooke's law, the initial stress and strain components are 
found: 

(12.15) 

-k II. Creep problem (t > 0) 
-1 .,.{) -

For the next time-step of the process, t = t + b..t, and for an arbitrary 
thickness distribution H(R), the creep strain rates E~, E~ are determined 
from (12.8). The FDM solution of the second fundamental equation (12.7) 
furnishes then the nodal velocities fl, whereas stress rates BTl B19 are ob­
tained as 

(12.16) 

-k+l -k -
For each subsequent step of the process, t = t + b..t, the current mag-
nitudes of the stress components 8r , S19 are found on the basis of the 
Runge-Kutta RKII method, whereas the corresponding damage function 
D (R) is determined from (12.9). Substitution of these values for Sr, 81) 

and D in (12.8) again sets up the new creep strain rates at tk+l and the 
procedure can be continued for as long as desired. 
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12.2 Two-step optimization approach 

For the prescribed loading parameters, the optimal distribution of disk 
thickness H (R) and the initial prestressing Q which maximize the time 
of failure initiation tI (first macrocracks) under the condition of constant 
volume and the additional geometric constraints are sought: 

tI[H(R); QJ = max; 
w, Pa,b = const, V = const, 

(12.17) 

As the first step of optimal design, the shape of a disk of uniform creep 
strength (UeS) is determined, HueB(R). In general, we begin the iteration 
loop with the disk of constant thickness H(R) = Ho. The damage distri­
bution Do (R) that corresponds to the zero-order lifetime estimation tRo 

(constant thickness) is obtained when the coupled creep-damage problem 
is solved. Next, the corrections of the disk thickness according to the piece­
wise linear approximation (12.13) are imposed with the constant volume 
condition applied. The nodal correction of disk thickness is assumed to be 
proportional to the power function of the residual value of the nodal con­
tinuity function 'l/Jj = 1 - Dj at rupture time tRo' Hence, the thickness 
correction rule, the constant volume condition (for the corrections), and 
the continuity of thickness at nodes yield: 

Hj(Rj) - H;-l(Rj) = P (1jJ - 'l/Jjr, j = 1, ... ,N, 
R j +1 

r:f=-;.l J [Hj(R) - H;-l(R)] RdR= 0, 
R j 

(12.18) 

Hf-l(Rj) = H;(Rj), j = 2, ... ,N-1. 

In the above equations, subscript j stands for the node number, super­
script k for the time-step number, and subscript 1 the number of the spa­
tial interval. Equations (12.18) provide 2N - 1 conditions for the same 
number of unknowns: 2(N -1) coefficients of linear approximation Ar, BI 
(1 = 1, ... , N - 1) in (12.13) and the reference value 7¢. The step factor P 
should be chosen experimentally and the exponent a is adjusted numeri­
cally for best convergence. When the initial shape H is improved, we solve 
the creep problem for the new disk geometry to obtain the corrected distri­
bution of the damage function Dl at the lifetime tRl . The whole procedure 
is repeated until an error norm for "uniform" damage is satisfied, e.g., 
IDmin - Dmaxl < c. This means that the shape of uniform creep strength 
with respect to brittle rupture is found (cf. Fig. 12.3). 

The first optimization level described above may be insufficient in view 
of the discussion concerning optimality or nonoptimality of the solution 
of uniform creep strength Hues (R) with respect to the lifetime (cf. Sect. 
11.1.5). Therefore, a second optimization step has to be performed in order 
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Fig. 12.3. Numerical algorithm for first step to optimal design of disks of uniform 
damage strength (after Skrzypek and Egner, 1993) 

to answer the question whether the ues shape obtained ensures the max­
imum lifetime or not. When appropriate corrections to the ues shape of 
uniform creep strength are imposed, an improvement of the lifetime may be 
expected even in the case when the geometry changes are disregarded. In 
fact, with active zones of the geometric inequality constraints allowed for, 
the condition of uniform creep strength holds only in the remaining (pas­
sive) zones of the disk. Hence, a possible improvement of the disk lifetime 
may be achieved by corrections of the shape and the length of zones of uni­
form creep strength in order to maximize the disk lifetime. The following 
parabolic form of the correction terms of Hucs(R) is proposed: 

flH(R) = aIR 2 +a2R+ a3, 
Hopt(R) = Hucs(R) + flH(R) 

for which the condition of constant volume, 

R2 J (aIR2+a2R+a3) RdR= 0, 

Rt 

holds; hence, only two parameters remain free to be optimized. 

(12.19) 

(12.20) 

12.3 Example A: Clamped annular disk of 
uniform damage strength versus 
uniform elastic strength 

Let us consider an annular disk with inner and outer dimensionless radii 
RI and ~, clamped at the inner edge and free to move at the outer one. 
The disk is subject to steady rotation about the symmetry axis with an­
gular velocity wand to uniform tension Pb applied along the periphery (cf. 
Fig. 12.1). When the optimization procedure described in Sect. 12.2 was 
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used, a disk of uniform creep strength UCS was obtained (first optimiza­
tion step). Optimality of the UCS solution was checked when the shape 
corrections (12.19) were imposed on the uniform creep strength solution 
(second optimization step). In the case under consideration (no prestress­
ing force, no geometric constraints), the solution of uniform creep strength 
was found to be the optimal with respect to lifetime Hucs (R) == Hopt (R) 
even though the structure is statically indeterminate and two independent 
loading parameters are considered (w, f>b). 

A comparison of the UCS solution with the disk of uniform elastic strength 
UES is shown in Fig. 12.4. A constant volume condition and the same 
loading parameters were assumed in both solutions. The proposed design 
method results in a significant improvement of the disk lifetime when com­
pared to the disk of constant thickness, Table 12.1. 
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Fig. 12.4. Rotating disk of uniform creep strength versus disk of uniform elastic 
strength (after Skrzypek and Egner, 1993) 

Table 12.1. Lifetime improvement for clamped disks of UES versus UCS (after 
Skrzypek and Egner, 1993) 

Lifetime (first macrocracks) 
Temp. Constant Uniform Uniform 

thickness Ho elastic strength Hues creep strength Hucs 

773 K 
..,() 
t[ = 74.2 t~es = 2.9t~ t~ca = 3.9i'; 

873 K 
-0 t,ues - 2 of t,~ca = 2.9tj t[ = 79.0 I - . I 
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12.4 Example B: Effect of initial prestressing 
on the lifetime of disk of uniform creep 
strength 

12.4.1 Prestressed disk of uniform creep strength (UeS) 

A rotating disk clamped at the inner edge and prestressed by the elastic 
ring at the outer edge is analyzed (cf. Fig. 12.2). Both the initial prestress­
ing Q and the distribution ofthickness H (R) are subjected to optimization. 
The effect of initial prestressing as an additional decision variable results 
in nonuniqueness of the solutions of uniform creep strength. Hence, from 
among the disks of uniform creep strength, further optimization may be 
performed with respect to initial prestressing force Q in order to find the 
optimal shape against brittle rupture and the corresponding prestressing 
force for which the lifetime is maximized: tr(HUC8 (R), Qopt) --+ max. Here 
RI = 1, ~, and Ro denote dimensionless radii ofthe disk subjected to op­
timization and the prestressing ring, respectively. The Kachanov-Sdobyrev 
damage growth rule is applied in order to find the disk of uniform creep 
strength, when w = 240 s-1 and 8 = 0.5. An additional constraint is im­
posed on the thickness Hinf = 0.75Ho. The shape of uniform creep strength 
without geometric constraints imposed results in an unacceptable distrib­
ution of thickness which approaches zero in the middle zone of the disk 
and, hence, the convergence of the numerical procedure fails dramatically. 
Moreover, it is supposed that the minimum thickness of the disk must en­
sure structural stability against creep buckling for the given magnitude of 
the prestressing force. 

The effect of initial radial prestressing Q on the lifetime of a disk of uni­
form creep strength with the minimum thickness constraint (H = 0.75Ho) 
imposed, is shown in Fig. 12.5. 

The magnitude of the optimal initial dimensionless prestressing force 
which maximizes the lifetime is equal to Qopt = 0.034. Note that in the 
case of a disk of constant thickness the optimal prestressing force is ap­
proximately the same, butr the corresponding lifetime is almost 10 times 
shorter. The shape of the disk of uniform creep strength UCS with a min­
imum thickness constraint (Hinf = 0.75Ho) is compared with the corre­
sponding proffie obtained when subsequent iterations of thickness were not 
constrained, Fig. 12.6. 
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12.4.2 Prestressed disk of uniform creep strength UCS versus 
the optimal disk 

To check the optimality of the solutions of uniform creep strength Hucs (R) 
the shape corrections (cf. (12.19) and (12.20)) are imposed upon the profile 
of the disk of uniform creep strength without any volume change. 

In the case of prestressed disks when the lower geometric constraint is 
imposed, correction of both the thickness and the length of zones of uniform 
creep strength may be subjected to parametric optimization. For instance, 
in a case when the parabolic shape corrections (12.19) are imposed on each 
of two zones independently D..HI, D..H2 with their lengths held constant, 
only one parameter is free to be optimized in each zone el = D..HI (RI) and 
e2 = D..H2 (R2) (Fig. 12.7) to yield: II (Hues) = 293.92, II (D..Hd = 294.22, 
II (D..HI, D..H2) = IIopt = 294.41. However, in a more general case when 
both the thickness and the length are optimized, D..Hb D..H2 and Hul, 
R,.2, two parameters are free in each zone, el = D..HI (Rd, D..R,.l and 
e2 = D..H2 (~), D..R,.2. Nevertheless, in the case under consideration the 
longest lifetime was achieved when the initial lengths of zones of uniform 
creep strength were unchanged. 
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12.5 Discussion: Nonloptimality of 
structures of uniform creep strength 
with respect to lifetime 

i. When elastic structures are designed for either minimum weight or 
maximum load under a strength constraint, the structures of uniform 
elastic strength, also called the fully stressed designs, are in most 
cases optimal. In general, when static indeterminacy of structure or 
geometric changes are taken into account, the condition of uniform 
strength is neither a necessary nor a sufficient condition of optimality. 
Hence, the fully stressed design method is, in general, a first step 
towards the exact optimal solution when more rigorous optimization 
approaches are used (Gallagher, 1973). 

ii. When optimization of structures under creep conditions is formu­
lated, the minimum weight or the maximum load remains a typical 
design objective, whereas constraints may be imposed not only on 
the strength (failure), stiffness, and stability as in the elastic case, 
but also on a limited stress relaxation, a limited residual displace­
ment, or a given lifetime. When constraints are imposed on brittle 
creep failure, the initiation of first macro crack t[ = tR or a complete 
structure failure tIl = tF define the lifetime. When constraints are 
imposed on ductile creep failure, the condition of vanishing trans­
verse dimensions, at least in one cross-section, constitutes the ductile 
failure mechanism, and defines the lifetime tR = tDF' 

iii. When geometric changes are neglected and creep buckling constraints 
are not involved, the optimal structures (tR --4 max) may be found 
from among structures of uniform creep strength. With geometric 
changes taken into account, a structure of uniform creep strength 
is generally nonoptimal. Further optimization may be performed by 
superimposing corrections on the decision variables to maximize the 
lifetime. 

iv. In case of disks under creep-damage conditions with geometric changes 
neglected, disks of uniform creep-strength may be optimal or nonop­
timal with respect to the lifetime t [. A possible lifetime improve­
ment due to the additional shape corrections is usually less than 1%. 
Hence, the shape of uniform creep strength may be considered as a 
sufficiently good approximation for the optimal disk. 

v. A disk of uniform creep strength subjected to stationary loadings 
(not prestrained) was found to be optimal with respect to lifetime. 
On the other hand, a disk of partially uniform creep strength (zone 
of active geometric constraint admitted) subjected to nonstationary 
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loadings (due to the initial prestressing) was found to be nonoptimal 
with respect to lifetime. 

vi. When the effect of preloading damage is taken into account (cf. Eg­
ner and Skrzypek, 1994) for each prescribed preloading period Atpre 
the optimum prestressing force may be found. Usually it corresponds 
to simultaneous initiation of first macrocracks at the inner and the 
outer fibers of the disk (a switch point where two curves representing 
different failure mechanisms intersect). However, when the duration 
of the preloading period is sufficiently long, it may happen that the 
initial damage during preloading at the inner fiber is rapid enough to 
reach the maximum net lifetime without the switching effect. In this 
case the optimal prestressing is determined by the smooth extremum 
point on the curve r;et(Q) as shown in Fig. 12.8. 
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12.6 Example C: Optimal design of 
rotationally symmetric disks in 
thermo-damage coupling conditions 

12.6.1 Assumptions 

i. A thin axisymmetric disk of variable thickness under plane stress 
conditions is considered (Fig. 12.9). 

ii. The geometrically linear theory of small displacement and the addi­
tive decomposition of strains are applied: e = ee + e C + eth . 

iii. The fully coupled orthotropic creep-damage approach is used (7.14). 

iv. The coupled thermo-damage problem is solved (Model C (7.22)) by 
the use of the equivalent conductivity concept. 

v. A 1D nonstationary temperature field is assumed T Ir, D (r, t)] (tem­
perature homogenization through the disk thickness) but only quasi­
static changes of temperature are allowed (1' = 0). 

vi. 1D volumetric inner heat sources are assumed qv = qv {h (r) , dh (r) I 
dr, T Ir, D (r, t)]). 

vii. Uniform constant temperature along the periphery To = const and a 
constant temperature cooling fluid stream (through the disk faces), 
Too = const, are assumed as the thermal boundary conditions. 

viii. The body force due to steady rotation with angular velocity wand 
a uniform peripheral tension in the sense of constant force per unit 
length of the periphery Po are assumed as the mechanical loadings. 

12.6.2 General equations of the mechanical state 

The general mixed approach, originally derived for the plate under a com­
bined membrane-bending state, is used where the equation of the mem­
brane state is written by use of the Airy function F whereas the equation 
of the bending state is expressed by the appropriate deflection function (d. 
Ganczarski and Skrzypek, 1994). Hence, n,. = (F'lr) + U, rI.,9 = F" + U, 
where a potential of body forces is defined as U' = -ew2rh, whereas symbol 
prime stands for the derivative with respect to r. Finally, the fundamental 
mechanical state equations are furnished: 
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F[F] + (1- v)8(1')\72 [8~)] + (1- v2)8(1')o:\72T = 0 (t = 0) , 

FIP] + (\ - V')8(r)a~'i' ~ 8(r )<,' [ '\(r~; 1 } 
(t > 0), 

+1+v8(1')~ [n'l9- nr] =0 
l' dr' 8(1') 

(12.21) 
where the differential operator F[ ... ] as well as the auxiliary operators \72 , 

\74 , independent of circumferential coordinate, take the form (cf. Sect. 9.2.2 
with k = 0): 

F ... -v +B1'- -- 2-+-------[ ] -,,4 ()d [ 1 ]( d3 ... 2-vd2 ... 1d ... ) 
d1' B(1') d1'3 l' d1'2 1'2 d1' 

d2 [ 1 ] (d2... Vd ... ) 
+B(1') d1'2 B(1') d1'2 - -;: d1' ' 

(12.22) 

,,2 _ d2 ... !~ 
v .. ·- d2 + d' 

l' l' l' 

\74 = d4 ... + ~d3 ... _ ~ d2 ... + ~~ 
... d1'4 l' d1'3 1'2 d1'2 1'3 d1' . 

The inelastic membrane forces expressed in terms of inelastic strains and 
the membrane stiffness are defined as follows: 

(12.23) 

12.6.3 Constitutive equations for coupled creep-damage 
problem 

Due to nonproportionalloadings when the general orthotropic damage rule 
is applied, the creep process becomes orthotropic as well (damage induced 
creep orthotropy). Hence, the fully coupled creep damage approach is re­
quired, where effective stress components are used instead of simple stress 
components and time hardening hypothesis governs the creep strain-rate 
intensity 

k,l = 1',{} 
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(12.24) 

. / a v ) .. v(T) 
Dv = Cv(T) \ 1- Dv ,v = r, iJ (12.25) 

12.6.4 Formulation of coupled thermo-mechanical boundary 
problems 

The mechanical state fulfills (12.21) and the following mechanical boundary 
conditions: 

n .. (O) = ~(O), n,.(R) = Poho (t = 0), 
n,.(0) = n11(O), n .. (R) = 0 (t> 0). 

(12.26) 

The equation of heat transfer of Model C (7.22), requires the inner heat 
source intensity to be explicitly defined: 

• clef Qv Qv 
qv = - dV = - rdiJhdr' 

where the surface element and its slope are: 

dA = rdiJdr, 
cos 8 

1 1 
cos e = VI + tan2 8 = -yJ:1=+=(7=:d===h /=;=d;=r~)2 

Q 
___ ~::::::~:=~~:::::~ free convection 

(12.27) 

(12.28) 

Fig. 12.9. Rotating disk of variable thickness (versus constant thickness disk 
of the same volume) stretched at periphery and cooled through faces (after 
Ganczarski and Skrzypek, 1997) 
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To express the overall effect of convection through both disk faces, the 
classical Newton law of cooling is applied (cf. Holman, 1990): 

Qv = 2,8dA(T - Too), 

where Too is the temperature of the cooling fluid, hence: 

q" = _2,8}1 + (dh/dr)2 (T - Too) 
h 

The appropriate thermal boundary conditions are: 

dT/drlr=o = 0, T(R) = To (t = 0) 

dT/dr!r=o = 0, T(R) = 0 (t> 0). 

12.6.5 Optimization problem 

(12.29) 

(12.30) 

(12.31) 

Assuming the orthotropic damage law, the structures of uniform creep 
strength fulfill the condition: 

v = 1,2,3. (12.32) 

The distribution of disk thickness h( r) is considered as the decision variable 
when the geometric inequality constraints on the maximum and minimum 
thicknesses 

h.nax ~ her) ~ h.nin (12.33) 

and the constraint on the maximum local gradient of temperature such 
that the assumption of small thermal displacements is satisfied, 

max {dT/dr}':::; (dT/dr)max, (12.34) 

are checked during the optimization procedure. Additionally, the condition 
of constant volume requires: 

R 

V = 21f J h(r)rdr = const or 

o 

R 

W = 21f J 8h(r)rdr = O. 

o 
(12.35) 

The optimization procedure, based on iterative corrections of the decision 
variable h (r) is suggested. When the optimization with respect to uniform 
creep strength under constant volume of a structure is performed, the nodal 
increments of the decision variable l:1hj are chosen proportionally to the 
level of the nodal dominant component of the damage tensor (cf. Ganczarski 
and Skrzypek, 1994): 



274 12. Optimal design of axisymmetric disks 

tl.hj = Ptl.Dj - tl.hm" tl.Dj = sup {Dr/-o}. , 
(r,-o) J 

j = 1, ... ,N (12.36) 

where the reference correction tl.hm must satisfy the constant volume con­
dition: 

(12.37) 

whereas the step factor P should be chosen experimentally (cf. Sect. 12.2). 
The process of damage equalization is continued until the following condi­
tion is fulfilled: 

'ij. (12.38) 

The suggested procedure is essentially relevant to the concept of the full 
damage design method. This method leads to exact solutions (optimal with 
respect to maximal lifetime) when the structure is statically determinate, 
single loadings are applied, and geometric changes are neglected (cf. Sect. 
11.5). If the above constraints are exceeded, the uniform creep strength 
solution may turn out to be nonoptimal. An exact solution may be obtained 
when more advanced optimization approaches are used, for which the VCS 
solution may be regarded as a first approximation. 

12.6.6 Numerical algorithm for coupled thermo-creep-damage 
problem 

A modification of the numerical procedure described in Sect. 7.3.4, that 
accounts for a variable thickness h (r) and the substitutive conductivity 
concept (Model C) (7.22), is used. Hence, when the FDM is applied to 
(7.22) with the inner heat source intensity (12.30) we arrive at: 

[ 1 (-Aj~l + AnI -hj-l + hj+! 1) 1 1 T. --- + +- - . I 
(tl.r) 2 2AjQtl.r 2hjtl.r r 2tl.r 3-
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2{3 
=-eq: 

Aj (12.39) 

Ajq = AO (1 - Dj) + uf.04DjTJ tlr. 

In order to specify the differential operators entering the (12.21), the 
following FD representation of (12.21)-(12.22) is defined: 

4 rv [1 4r - 3tlr] [4 2] 
'\7 F = (tlr)4 - 4r(r _ tlr)(tlr)3 Fj-2 + - (tlr)4 + r(tlr)3 Fj-I 

+ --+ F· [ 6 1 1] 
(tlr)4 2(r - tlr) (r + tlr)(tlr)2 3 

[ 4 2] [1 4r + 3tlr ] 
+ - (tlr)4 - r(tlr)3 FHI + (tlr)4 + 4r(r + tlr)(tlr)3 Fj+2, 

Bi. (~) (2 d3 F + 2 - V d2 F _ ~ dF) S:! -hj-I + hj+l 
dr B dr3 r dr2 r2 dr 2hj tlr 

x ---+ --+--+-- F- I-2--F-[ Fj-2 (2 2 - VI) 2 - v 
(tlr) 3 (tlr)3 r(tlr)2 2r2tlr 3- r(tlr)2 J 

( 2 2 -v 1) F Fj+2 ] 
+ - (tlr)3 + r(tlr)2 - 2r2tlr j+l + (tlr)3 ' 

B~ (~) (d2F _ !:.dF) S:! [(-hj-I +hj+l)2 _ hj_I -2hj +hj+l] 
dr2 B dx2 r dr 2h;(tlr)2 hj(tlr)2 

x [((tl~)2 + 2~r) Fj- I - (tl:)2Fj + ((tl~)2 - 2~r) Fj+l] , 

(1-v)B'\7 - S:!(l-v)h· ---- -----. 2 (U) {[ 1 1] Uj-I 2 Uj 
B J (tlr)2 2rtlr hj - I (tlr)2 hj 

+ --+-- --[ 1 1] Uj+l} 
(tlr)2 2rtlr hj+l ' 

2 2 rv {[ 1 1] 2 (I-v )Ba'\7 T = Eahj (tlr)2 - 2rtlr Tj-I - (tlr)21j 
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B,P n'6 vnr e:! h. __ _ __ '6;-1 rj-l ( C _ C) { [1 1] nC 
- vnc 

B J (~r)2 2r~r hj-l 

1 + /I B~ (n~ - n~) e:! 1 + /I hi [ n~j_l - vn~j_l + n~Hl - vn~Hl ] . 
r dr B 2r~r hi - 1 hi+! 

(12.40) 
The numerical procedure begins when the elastic solutions of the ther­

mal and the coupled mechanical problems are known. Assuming an initially 
constant structure thickness [hlJ == ho and initial components of the dam­
age tensor [DrN]j == 0, the elastic solution is obtained in the following way. 
Applying the stage algorithm (Fig. 12.10), the equation of heat transfer, 
which is linear for the elastic problem, is solved to yield the initial distri­
bution of temperature [1"']j. Then, equations of the mechanical state are 
solved, providing the distribution of the Airy function [F"lJ and the vector 
of elastic state [1"',n~N,u~/'6]j. Next, the program enters the creep loop 
which requires the vector of effective stress intensity, and components of 
the damage tensor and strain rates [O'eq, DrN' e~/'6]j are computed. The 
thermal problem (12.39) is nonlinear, hence, by substituting the previous 
solution for temperature [TO]j to the equivalent coefficient of thermal con­
ductivity >.eq the solution of (12.39) provides the updated temperature 
distribution [Tlj' which is considered next as an approximate solution for 
>.eq. The procedure is repeated until the calculated functions [Tl; differs 
from [TOlj with a given accuracy. As a consequence, when rates of change of 

both the temperature [TlJ and the inelastic forces are known [n~N]i' rates 

of the Airy function [F]; are found by solution of (12.21) and, finally, the 
vector of state is determined [1', nr /'6, O'r/1?lJ. In the next time step, apply­
ing the Runge-Kutta II method for the thermal state and the mechanical 
state, the 'new' vector of state is computed, and the program jumps to the 
beginning of the creep loop. 

The numerical procedure is repeated until the highest value of the dam­
age tensor reaches the critical level, when the program quits the loop via 
the conditional statement. 

12.6. 'l Results 

All numerical examples presented in this chapter deal with disks made 
of ASTM-321 stainless steel with the following mechanical and thermal 
properties (cf. Holman, 1990): E = 170 GPa, UO.2 = 120 MPa, v = 0.3, 
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T=T+TM 
D=D+DAt 
a=a-kTAt 

Fig. 12.10. Numerical algorithm for coupled thermo-mechanical problem (after 
Ganczarski and Skrzypek, 1997) 

e = 7850 kg/m3 , Q = 1.85 X 10-5 K-1 , Ao = 20 Wm-1K-1, (3 = 15 
Wm- 2K- 1 , R = 1.0 m, ho = 0.05 m, Po = 0.1 X (10.2, W = 100 S-I, 

To = 798 K (525°C), Too = 773 K (500°C), (1 = 5.669 X 10-8 Wm- 2K-4, 
EO = 0.5. The temperature dependent material functions for creep rupture 
are presented in Table 12.2, where (1~B denotes the stress necessary to cause 
creep rupture after lOS hr. 

Table 12.2. Temperature dependent material functions 

T m r (1b C CB 
(K) (oC) (MPa) (Pa- r s- 1) 

773 500 5.6 3.9 210 1.98 X 10-42 

873 600 4.5 3.1 100 1.07 X 10-34 

923 650 4.0 2.8 60 1.21 X 10-31 

The disk of uniform creep strength, the disk of constant thickness, and 
the disk of uniform elastic strength (in the sense of the Galileo hypothesis) 
are compared in Fig. 12.11. 
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Fig. 12.11. Optimal profiles of disks (after Ganczarski and Skrzypek, 1997) 

In the case of a disk of uniform creep strength where the thermo-damage 
coupling is disregarded hues (Aeq = AO), and a disk of uniform creep strength 
where the thermo-damage coupling is taken into account hues [Aeq = Aeq (>.0, 
fa)], differences between optimal profiles are negligible (window in Fig. 
12.11). However, essential differences in lifetimes are observed (Table 12.3). 

Two rupture mechanisms accompany the process of disk design. In the 
case of the disk of constant thickness ho [>.eq = >'eq (>'0, fa)], the distribution 
of the continuity components at the instant of rupture is presented in Fig. 
12.12. The damage accumulation with respect to circumferential component 
D1J concentrates here near the centre. 

The situation becomes much more complex when the uniform creep 
strength solution is obtained in a disk suffering from orthotropic damage. 
The uniform creep strength is understood here in the sense of equaliz­
ing the dominant damage components (Dr or D1J) along the radius of a 
disk. In a numerical sense, it means that at failure the dominant damage 
(SUPII DII ) or continuity (infll Wv ) components reach the critical level Dllozi' 

or 'Ill ".ri., respectively, with a given accuracy. For the purpose of this ex­
ample we assume Dller;o = 0.78 ± 0.05, Wlle•it = 0.22 ± 0.05, respectively. 
The failure mechanism consists of two zones, the first of which refers to a 
bi-directional system of microcracks (Dr and D1J) around the central point 
of a disk (rj R ~ 0.3), whereas the second refers to the radial direction (Dr) 
in the remaining portion of the disk. In other words, the fully failed zone 
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Fig. 12.12. Distribution of continuity tensor components in disk of constant 
thickness (after Ganczarski and Skrzypek, 1997) 

(the central part) and the partly failed one (the outer part) constitute the 
failure mechanism of a disk (Fig. 12.13) (cf. Malinin and Rzysko, 1981). 

The corresponding distribution of temperature versus initial tempera­
ture in a disk of constant thickness are shown in Fig. 12.14. During the 
creep-damage process the local temperature decreases, moderating dam­
age accumulation, what leads to a longer lifetime compared to the case 
when the thermo-damage coupling is disregarded hucs(Aeq = Au). 

Lifetimes of all previously discussed cases are compared in Table 12.3. 

Table 12.3. Comparison of lifetime for optimally designed disks (Model C 
(7.22)) 

constant thickness h(r) = ho i thermo-damage coupling (7.22) 

no A.,q ='>'0 yes A.,q = A.,q ('>'0, fa) 

lifetime ~~.q=>'o) = tref t~~·q=>.eq(>.o •• o» = l.Oltref 

uniform elastic strength hue.(r) ; thermo-damage coupling (7.22) 

no A.,q = Ao yes '>'eq = A.,q ('>'0, fa) 

lifetime t~~:q=>'eq (>'0.'0)) = l.03tref 

uniform creep strength hucs(x) ; thermo-damage coupling (7.22) 

no A.,q ='>'0 yes A.,q = A.,q ('>'0, fa) 

lifetime t~~q=>'o) = 4.434ef t~~q=>'eq(>'o.eo)) = 4.70tref 
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13 

Optimal design of thin 
axisymmetric plates 

13.1 Effect of membrane prestressing on the 
optimal design of sandwich plates with 
respect to orthotropic creep damage 

13.1.1 Initial, boundary and continuity conditions for plates 
of variable thickness in-plane prestressed by the elastic 
rmg 

Two boundary problems are considered: 

Example A 

A simply supported plate is prestressed by an elastic ring imposed on the 
plate with initial fit ti, which produces an initial radial force no (Fig. 13.1). 

8 ~ Rring - Rplate denotes the difference of initial radii of the ring and 
the plate but some changes of the prestressing force no result from the 
creep-damage process in the plate: 

a) 

Fig. 13.1. Layout of a simply supported sandwich plate of variable core depth, 
in-plane prestressed by a ring 

J. J. Skrzypek et al., Modeling of Material Damage and Failure of Structures
© Springer-Verlag Berlin Heidelberg 1999
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t=O: 
nr(O) = n-o(O) 
nr(R) = -no 

R 
8 = 2G [n-o(R) - vnr(R)] - u 
cp(O) = 0 
m,.(R) = 0 
w(R) = 0 

Example B 

t > 0: 
nAO) = n~(O) 
nr(R)dt = dno 
[n-o(R) - vnr(R)] dt - du = 0 
cp(O) = 0 
m,.(R) = 0 
w(R) = O. 

(13.1) 

A clamped plate is prestressed by an elastic ring imposed on the plate with 
initial fit 8, which produces an initial radial force no (Fig. 13.2): 

Fig. 13.2. Layout of a clamped sandwich plate of variable core depth in-plane 
prestressed by an elastic ring 

t=O: 
nr(O) = n-o(O) 
nr(R) = -no 

R 
8 = 2G [n-o(R) - vnr(R)]- u 
cp(O) = 0 
cp(R) = 0 
w(R) = 0 

t > 0: 
1ir(O) = n-o(O) 
nr(R)dt = dno 
[n-o(R) - vnr(R)] dt - du = 0 
cp(O) = 0 
cp(R) = 0 
w(R) = O. 

(13.2) 

In the above formulas, cp = - ~; is the angular deflection of the plate, no is 

the peripheral prestressing force, and u the peripheral radial displacement. 
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In both cases under consideration, the prestressing problem may be clas­
sified as the mixed-type force-distortion boundary excitation problem (Fig. 
11.2) since neither force nor boundary displacement are explicitly given 
but result from the interaction between the plate and the elastic ring. The 
stiffnesses of both elements eventually affect the response of the structure 
to the initial prestressing imposed. 

13.1.2 Optimization methods 

According to the optimality criteria presented in Chap. 11, three numerical 
procedures of optimization are suggested, all based on iterative correction 
of the vector of decision variables. 

1. When the first procedure for optimization with respect to uniform 
creep strength under constant loadings and constant volume of a 
structure is used, increments of decision variables are proportionally 
chosen to the levels of continuity function (cf. Ganczarski, 1992): 

11gB; = P I I11/Jj - I1gm, 11h..; = P2111/Jj - I1hm, 

l11/Jj = 1 - inf(1/J~11)j, 
(13.3) 

where the average corrections !1gm ,!1hm must satisfy the constant 
volume condition 

(13.4) 

whereas the step factors PI, P2 should be chosen experimentally. 
When the most general approach is used, thicknesses of the work­
ing layers gs and the core hs may be changed independently; how­
ever, in this example proportional changes are assumed, when ( = 
gs/h. = 1/5, and PI = P2 = P is held, such that the working layer 
to core depth ratio of the section is fixed and, in consequence, only 
one independent decision variable ( remains. The process of damage 
equalization is continued until the following condition is fulfilled: 

(13.5) 

2. When the procedure for optimization with respect to uniform creep 
strength under constant loading and prescribed lifetime t[ is applied, 
a modification of the strategy discussed above is proposed. At each 
optimization step k the volume is subsequently decreased according 
to the modified shape corrections 



284 13. Optimal design of thin axisymmetric plates 

(13.6) 

when tlk ~ tI, else the shape corrections are governed by (13.3) under 
the constant volume until the condition tlk = tI is fulfilled. 

3. The numerical procedure applied in the case of optimization with 
respect to maximum lifetime tI differs slightly from the approaches 
presented above as far as the global nature of the objective function 
is concerned. It starts from a known vector of decision variables, for 
instance assuming a shape of constant thickness and parameters of 
prestressing equal to zero, and at the end of the creep process the 
shape corrections are imposed under constant volume according to 
the rule (13.3) as long as the global condition tlk > tlk _1 holds and 
the stability and geometric constraints are satisfied. Then the pro­
cedure is stopped, since further thickness corrections (13.3) result in 
diminished lifetime. 

13.1.3 Results: Plates of a variable core depth of uniform 
creep strength or/and optimal with respect to lifetime 
under constant volume 

In case of a simply supported plate of variable core depth (hs = var, gs = 
const) the terms associated with derivatives of membrane stiffness in (9.19) 
and (9.20) are omitted. Thus, the following mixed optimization problems 
are formulated: 

1. The distribution of core depth hs (r) and the parameter of initial pre­
stressing no are sought, Cues = {no, hs (r)}ucs' under the constant vol­
ume constraint, such that the uniform creep strength ues is achieved. 

2. In case when the above criterion can not be fulfilled, the vector of 
decision variables Ctr = {no, hs (r)}t which maximizes the life-max Imax 

time under the elastic stability, constant volume, and lower geometric 
constraints, is sought. 

Example A: Simply supported plate 

Starting from the solution of ues obtained for a non-prestressed plate 
(no = 0) it is seen that almost whole the bottom working layer suffers 
damage with respect to the radial component of damage function D;: ~ 1, 
except for a narrow zone where the geometric constraint is active, point 
A in Fig. 13.3 and shape A in Fig. 13.4. Therefore, the plate is classified 
as a structure of partly uniform creep strength. The improvement of the 
plate lifetime compared to the plate of constant thickness, versus the ini­
tial prestressing force no, is presented in Fig. 13.3. It is easy to notice that 
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increasing the initial prestressing force initially causes the lifetime for the 
UCS solution to grow. However, the lifetime reaches the maximum at point 
B (global optimum), where the force equals no/aoR = -2.5 X 10-3 , then 
it drops with a further prestressing increase. Subsequent trials of the pre­
stressing increase (no/aoR < -3.2 x 10-3) lead to the optimization range 
where the criterion of maximum lifetime becomes predominant. Optimal 
profiles of the plate corresponding to selected points A, B, C, D and E from 
Fig. 13.3 are shown in Fig. 13.4. When the initial prestressing increases, the 
zones of constant thickness become deeper and broader. Finally, at point E, 
the zone of constant thickness is extended over the whole plate and further 
thickness optimization becomes impossible. Comparison of the lifetime im­
provements for the simply supported plates, when the core thickness hs (r) 
and/ or prestressing force no as well as the proportionally changed core to 
working layers thickness ratio hs/ gs are considered as control variables for 
the optimization problem, is summarized in Table 13.1. 
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Table 13.1. Lifetime improvement of optimally designed and/or optimally pre­
stressed simply supported plates. (cf. Ganczarski and Skrzypek, 1993) 

Uniform creep strength plates 
Optimiza- Ref. optimal optimal optimal optimal core 
tion mode plate core prestr. core & prestr. & layers 

p.O p.A p.E p.E hs ex: gs 

core h. const hoop, (r) const hoop, (r) hsop.(r) 

layer gs const const const const hs/gs = (0 
prestr. no 0 0 noop' noop' 0 

Lifetime tSS 
I 3.94 tj" 5.72 tjS 15.84 tjS 6.19 tj" 
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Example B: Clamped plate 

In the case of a clamped plate, two damage zones with respect to the radial 
component of the damage function Dr, one in the top D; and other in the 
bottom D;: working layers, are produced. The bottom D;: ~ 1 and the top 
D; ~ 1 damage zones are separated by a narrow zone where the geometric 
constraint is active. The lifetimes of optimal plates compared to plates of 
constant thickness are presented in Fig. 13.5 for the case when both the 
thickness and the initial prestressing are subject to optimization. The so­
lution is quantitatively similar to that obtained for the simply supported 
plate, as far as a shift of the maximum lifetime towards lower magnitudes 
of initial forces, when compared to the plate of constant thickness, is ob­
served. However, the range of initial prestressing where the structure ought 
to be optimized with respect to maximal lifetime is broader, and the global 
optimum of the lifetime is found for noop./aoR = -3.0 X 10-3• The cor­
responding optimal profiles, approaching the shape of constant thickness 
when the magnitude of prestressing increases, are presented in Fig. 13.6. 
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Table 13.2. Lifetime improvement of optimally designed and/or optimally pre­
stressed clamped plates (cf. Ganczarski and Skrzypek, 1993) 

Optimiza- Ref. ues Maximum lifetime 
tion mode plate Optimal core Optimal core & prestr. 

p.O p. A p.e 

core hs const hsopt (r) hsop. (r) 
layer g. const const const 
prestr. no 0 0 nOopt 

Lifetime t~ = 5.97t'}" 2.22 t:', 18.52 t~ 
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Example C: Uniform creep strength plates of variable core depth under 
constant lifetime 

Design with respect to uniform creep strength when the lifetime is pre­
scribed, despite numerical difficulties associated with the shooting method 
required, is important for practical applications. It allows one to reduce 
the volume of a structure which is often the objective of optimal design. 
This example deals with the optimization of a non-prestressed (no = 0) 
simply supported plate as described by equations (9.19) and (9.20). The 
optimization problem, based on the local criterion, is formulated as follows: 
the distribution of the core depth h. (r) under prescribed lifetime t I = const 
and geometric constraint is sought for, such that uniform creep strength 
is achieved. The optimal shape of a partly uniform creep strength, with a 
peripheral zone of active geometric constraint, is shown in Fig. 13.7. The 
volume of the optimal plate has been reduced to 45% when compared to a 
plate of constant thickness. 
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Fig. 13.7. Non-prestressed plate optimally designed with respect to uniform 
creep strength under prescribed lifetime (volume reduced to 45%) 
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Example D: Plates of uniform creep strength of variable thicknesses of 
both the core and working layers 
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Fig. 13.8. Plates of uniform creep strength of jump-like variable and continuous 
thickness (case of variable thickness of both the working layers and the core) 

All solutions shown so far deal with plates of variable core depth h" = var 
but constant thickness of working layers g. = const. Hence, the possibility 
of optimization with respect to membrane stiffness B. has not been taken 
into account. This factor may lead to a certain elongation of the lifetime, 
but the bending stiffness turns out to be predominant. Let us estimate a 
percentage increase of the lifetime in case of optimization with respect to 
both parameters of sandwich section g. (r) and hs (r) to prove the state­
ment that the influence of the working layers thickness variation on the 
lifetime is not too high (but significantly elongates computer time). The 
non-prestressed simply supported plate, described by a mixed formulation 
of the system of equations (9.19) and (9.20), is analyzed. In general, the 
thicknesses of the core and the working layers may change independently, 
but here the proportional variation ( = gs/h. = 1/5 is assumed. This as­
sumption allows us not only to analyze one independent decision variable 
instead of two, for instance h., but also assures a constant ratio of work-
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ing layers thickness to core depth. On the other hand, this assumption 
causes the lower geometric constraint to be passive because the thickness 
of working layers is changed proportionally to the thickness of the core and, 
hence, working layers will never be in contact. Nevertheless, optimization 
of the core depth distribution h,,(r) and simultaneously gs = ( X h" leads 
to structures of uniform creep strength only when the constraint of con­
stant volume is applied. Additional troubles, when the problem formulated 
above is solved, are connected with a singularity of the radial stress in the 
supported section of the plate. To overcome this problem, the de l'HlIspi­
tal principle may successfully be used because, approaching zero thickness 
h" ~ 0, an infinite radial curvature "'r ---+ 00 is reached. The above in­
convenience has been avoided by assuming an arbitrary minimum thickness 
constraint hs ~ hao/50, where hso is the uniform plate core depth, and by 
the de I'HlIspital principle associated with the backwards computed finite 
differences. The optimal shape of uniform creep strength, versus the profile 
of a jump-like variable thickness, is shown in Fig. 13.8 (cf. Ganczarski, 1992 
also, Ganczarski and Skrzypek, 1994). 

13.2 Discussion: Sandwich-plates 
optimization with respect to creep 
rupture via thickness and prestressing 
design 

i. It is shown that in case of sandwich plates a combined thickness and 
initial prestressing optimization leads to a significant improvement of 
the time of initiation of brittle failure, when compared to plates of 
constant thickness, ti:pt = 15.84ti:OnBt or t'Jopt = 18.52t'Lnet' in case 
of a simply supported or clamped plate, respectively. 

ii. A two-step optimization procedure, first the prestressing optimiza­
tion of the plate of constant thickness, and next additional thickness 
improvements with the aim of either uniform creep strength or maxi­
mum lifetime, is proposed. It has been shown that optimal prestress­
ing for uniform thickness plates becomes nonoptimal for the optimal 
design plates. Hence, the thickness corrections should be inspected 
over a wide range of prestressing forces, rather than around the "op­
timal" prestressing force for the uniform plate. 

iii. Simultaneous plate thickness and in-plane prestressing optimization 
allows a significantly enhancement of the lifetime for both simply 
supported and clamped plates, unless the critical magnitude of the 
initial prestressing that corresponds to the appropriate lifetime of 
plates of constant thickness n~~rit/aoR = -5.0 x 10-3 in case of 
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a simply supported plate, or nocntluoR = -6.0 x 10-3 , in case of 
a clamped plate, is exceeded. Over-prestressing of the plate Inol > 
lnocntl, e.g., n&s/uoR = -5.0x 10-3 or n'O/uoR = -6.0x 10-3 , makes 
further thickness design undesirable since plates of uniform thickness 
ensure a longer lifetime. 

iv. Sandwich plate thickness optimization by varying core depth but 
holding thickness of the working layers constant (hs = var, 9s = 
const), which affects the variable bending stiffness Vs(r) = var but 
not the membrane stiffness Bs(r) = const, is recommended. Indepen­
dent optimization with respect to both bending stiffness Vs(r) = var 
and membrane stiffness Bs(r) = var not only doubles the number 
of decision variables (two independent unknown functions hs(r) and 
9s(r) instead of one) but also may obviously lead to violation of the 
substitutive sandwich section assumption 9s « hs • Instead, the pro­
portional variation of both thicknesses, ~ = 9s/hs = 1/5, has been 
examined in the case of a non-prestressed (no = 0) simply supported 
plate to reach a lifetime improvement by the factor 6.19 when com­
pared to uniform thickness, by contrast to the factor 3.94 when the 
single core depth is considered as a design variable. 

v. Design with respect to uniform creep strength when the lifetime is 
prescribed furnishes the optimal profile that allows a significant re­
duction of volume (up to 45% in case of a non-prestressed simply 
supported plate). However, this dual formulation associated with the 
need to the shooting method in order to ensure the implicit lifetime 
to failure initiation t[ = const is highly computer time consuming 
and, hence, cannot be recommended for practical applications. 
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