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Annotation

This book brings to light peculiarities of the formation of critical regimes of two-
phase flows with a polydisperse solid phase. A definition of entropy is formulated
on the basis of statistical analysis of these peculiarities. The physical meaning of
entropy and its correlation with other parameters determining two-phase flows are
clearly defined. The interrelations and main differences between this entropy and
the thermodynamic one are revealed. The main regularities of two-phase flows both
in critical and in other regimes are established using the notion of entropy. This
parameter serves as a basis for a deeper insight into the physics of the process and
for the development of exhaustive techniques of mass exchange estimation in such
flows.

The book is meant for university students of engineering specialties studying
two-phase flows. It can also be of use to those working for a doctor’s degree, and to
scientists and engineers engaged in specific problems of such fields as chemical
technology, mineral dressing, modern ceramics, microelectronics, pharmacology,
power engineering, thermal engineering, etc. using flows with solid particles in
their respective production methods.



Introduction

Two-phase flows are widely used in applications of systems analysis to problems
encountered in all segments of modern industry. A special category of systems is the
one that contains discrete formations distributed in a continuum. These discrete for-
mations consist of either solid particles of constant shape and size, or liquid drops or
gas bubbles that can change their size in the course of a process, whereas the con-
tinuum in which they exist is either liquid or gaseous. Modern technology’s concern
with two-phase flows is caused by a large contact surface of dispersed and continuous
phases ensuring high velocities of mass transfer and other processes. The simplest
among them are dispersed systems containing a solid phase — in a certain sense, they
can be used as simplified models of systems containing drops and gas bubbles.

As shown in Fig. 1, two-phase flows can be of various kinds depending on the
correlations between the velocities of the continuum and the solid phase particles
contained therein.

A so-called transport regime is realized at flow rates ensuring the ascent of the
entire solid phase. Its velocity is limited from below by the value at which even the
coarsest particles do not settle against the flow. The minimal value of this velocity is
called the critical pneumatic or hydraulic transport velocity depending on the
continuum used — air or water.

An opposite regime of two-phase flows with the formation of a so-called
descending layer is also used in some technologies. In this regime, all solid particles
settle against the flow. In this case, the flow velocity is limited from above. The
maximal velocity at which even the finest particles of solid phase are not trans-
ported by the flow is called critical for the descending layer. A particular case of a
descending layer is a so-called motionless layer; in this case, solid material lies
motionless on a grating and is blown through from below.

The ratio of these critical velocities is of certain theoretical and practical interest
from the point of view of mass exchange processes within their range. For instance,
the velocity of a boiling bed process, which is widely used in present-day technol-
ogy, lies within this range, which points to the importance of studying such flow
regimes. Critical regimes of two-phase flows are most widely used in industry for
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fractionating bulk materials according to particle sizes or densities. Only such
regimes allow transportation of fine lightweight particles with the flow and a
simultaneous motion of coarse heavy particles against the flow. Until now, these
processes have not been sufficiently studied and formalized.

Critical regimes of two-phase flows can be realized not only in vertical flows,
but also in a centrifugal field, fields of magnetic and electrostatic forces and in
other situations with the solid phase motion directed differently with respect to
the flow.

Separation of bulk materials in critical regimes of two-phase flows is an
extremely complicated physical process. Its complicated character is caused by
oppositely directed motions and mutual influence of an enormous quantity of
particles of various sizes in the carrier medium flows, whose structure is extremely
inhomogeneous. Such motions give rise to a broad range of various random factors.
The most important among them are hydrodynamic and contact interactions of
particles in the flow and with the walls confining the flow; unpredictable non-
uniformity of the flow velocity and pressure fields; solid phase distribution within
the flow; nature of the interactions between the phases; as well as the discrete
component effect on the continuum motions. Among these factors are also principal
parameters of real bulk materials, such as particle size, shape, weight, density, size
grade distribution, all of which are random values.

All these complexities make any attempt to formulate a rigorous analytical
description of the process completely hopeless. As well known, there is no accept-
able analytical theory as yet even for a single-phase turbulent flow. The more so,
there are no analytical solutions for two-phase flows. Thus researchers have usually
studied the main regularities of such processes and then formalized the experi-
mental data obtained from them at a semi-empirical theoretical level. This follows
the usual pattern in science of dealing with the evolution from simpler to more
complicated notions.

Initially, the study of the process under consideration in this book started from
the analysis of the behavior of isolated particles. The first works on the topic were
published in the second half of the nineteenth century. Rittinger established the
regularities of simple deposition of isolated particles of spherical shape in an
unbounded motionless liquid. In many subsequent works related to deposition,
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the influence of various factors was revealed, such as medium and material density,
final velocities of particles deposition, their resistance coefficients, etc.

At the same time, the transition to working with real materials consisting of
particles of irregular shape proved to have additional complications. Articles are
still being published nowadays reflecting a variety of approaches to these problems.
We have ample evidence that even the phenomena occurring during a simple depo-
sition of particles of real materials in a motionless medium are very complicated.

Attempts to apply the main regularities obtained in the studies of isolated
particles in a flow to actual processes have not provided generalized results. In
fact, proceeding from this standpoint, one has to admit that an ascending flow can
carry out of the separation zone only those particles whose deposition velocity is
below the flow velocity. On the contrary, all the particles with deposition velocity
exceeding the flow velocity are deposited against the flow.

However, experience shows that in bulk materials fractionating, this is not the
case. Thus, we have to admit that although the problem of, e.g., powders separation
in flows has been studied for more than a century, it has not reached the theoretical
level suitable for solving practical problems. Therefore, commercial needs often
continue to be satisfied by extensive empirical studies. Usually, the principal
characteristics of a separation process under industrial conditions will be obtained
on a laboratory model or a pilot plant. The obtained parameters are then extended
to a working industrial unit. Because of imperfect modeling, it is not always
successful.

An enormous number of experimental studies performed in recent years have
made it possible to develop many empirical methods of estimating principal para-
meters for specific units. Beyond any doubt, these studies are important. However,
researchers do not always realize that empirical methods influence only slightly the
development of the theory of the process.

Empirical dependencies differ from theoretical ones; they do not naturally
follow from the regularities of the phenomena under study, but only quantitatively
reflect them. Even a carefully conducted experiment does not allow taking into
account various permanent and random factors, both quantitative and qualitative
ones. One can manage to specify, to some extent, the average effect of quantitative
factors only by increasing the number of experiments. As for qualitative factors,
their effect is mainly beyond all estimations.

Even the best and the most grounded empirical formula can be applied with a
satisfactory result only within a limited range determined by the conditions of its
derivation. Rather often, extrapolation beyond the limits of the experimental range
is carried out on the basis of such dependencies, but it can result in gross errors.
Application of empirical dependencies is also limited in time, since they cannot
take into account the forthcoming development of science and technology. Some
attempts have been made to refine calculated relationships from previous research
and adjust them to present-day knowledge by introducing various correction fac-
tors. However, application of a large number of more or less arbitrarily chosen
factors leads to the accumulation of errors, as well known in the effects of multiple
round-off in even simple calculations.
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Recent decades have produced certain achievements in the development of
various aspects of two-phase flow theory. However, for the solid phase distribution
in critical regimes of two-phase flows, the situation is different. Beyond any doubt,
it is one of the most complicated and intricate theoretical issues, and it is, as a rule,
either left out or examined on the basis of empirical relationships only. This
practice can be easily observed in recent review monographs and handbooks.

In the present book, we attempt to solve this problem from a somewhat different
standpoint. Usually, two-phase flows are considered, in the first place taking into
account peculiar properties of a continuum motion altered by solid particles placed
into this continuum. We are making an attempt to use the laws of solid phase mass
motion as a basis of critical regimes of motion.

It is practically impossible to describe simultaneous mass motion of solid
particles in a non-uniform continuum flow from the standpoint of classical mechan-
ics. It is well known that classical mechanics developed by Newton, Lagrange and
Hamilton can predict the behavior of either an ordered system of bodies or a system
with a moderate number of elements. On this basis, one can obtain an exact solution
of a celestial mechanics problem easily enough, but the three-body problem has not
yet been solved in a general form.

Meanwhile, there exists a statistical approach to the study of mass continuum
phenomena that has been developing for more than 100 years. The works of
Boltzmann and Gibbs, which have already become classical, laid the basis of this
approach. Its principal ideas were widely used and developed in quantum mechan-
ics and its applications to optics, theory of magnetism, solid state theory and other
fields of science. They have become corner stones in the foundations of the state-of-
the-art knowledge in these fields. The principal distinctive feature of this approach
is that it is based on a definition of the state of the entire system, no matter whether
one examines a large or a small system comprising an infinite number of particles or
a single particle.

Here the methods of analyzing mass processes (involving a large number of
particles) are considered as essentially statistical ones. Data obtained as a result of
such analysis should be considered as averaged over an ensemble, but not as
absolutely rigorous in each case. This inevitably follows from the nature of a
statistical approach, which is applicable either in the absence of the necessary
initial data or when practical solutions are very complicated. To justify statistical
methods, it should be emphasized that they should finally lead to conclusions
consistent with experimental data.

Here the basic point is how to determine average values. Instead of time
averaging within a single system, it is possible to examine a set of a large number
of respectively organized systems. An ensemble of systems represents a mental
structure reflecting the properties of a real system. It consists of a large number of
similarly organized systems, each system of the ensemble being equivalent to a real
system.

The theory of L. Boltzmann was based on the notion that a molecule of gas
consists of ideal balls of the same diameter placed into a closed volume, and their
velocity is determined by the temperature of the medium. Such a simplified model
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allowed Boltzmann to develop a well-composed statistical theory of gases, which in
many respects agrees with experimental data.

In recent decades, interest in this theory has been growing in two aspects. On the
one hand, a large number of researches expanding Boltzmann’s theory have
appeared. On the other hand, principal ideas and methods of this theory have
been successfully applied to other non-gaseous systems, such as solid-state theory,
nuclear matter, magnetism, polymerization, etc.

These efforts have given additional support to the well-known principle that the
physically grounded method of analogies is extremely fruitful for the development
of science. We make an attempt in this book to apply certain ideas of this theory to
the problem under study. Critical regimes of solid phase flow form the basis of this
problem. Therefore we start with the analysis of solid particle characteristics and
dynamics, as well as with the analysis of all achievements in the empirical study of
two-phase critical flows.

We make one additional remark. Physics, hydraulics, mineralogy, etc. provide a
conceptual tool and phenomenological approach to the analysis of the phenomena
under study. Mathematics is not only a tool for the analysis of these processes. It
determines, in many respects, ways and methods of this analysis, constituting the
main line of scientific thought. Therefore, mathematical transformations are pre-
sented in the book in detail, so that the problem setting, derivation and analysis of
the obtained results are clear. It is not always reasonable to give a final result
without its derivation, because in the course of solving a particular problem, one
often comes across instructive techniques and even intermediate results.

The book is intended for a broad circle of research specialists including students
of respective specialties. Therefore, the mathematical apparatus is intentionally
used in its simplest version, corresponding to the level of students of the first degree
in engineering sciences.

The author is grateful to Ms. N. Goldbaum for the manuscript translation into
English.
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Chapter 1
General Ideas of Mass Transfer Processes in
Critical Regimes

Abstract Experimental studies have shown that despite a visual chaos in critical
regimes of two-phase flows, there is a definite, almost deterministic order in the
polyfractional solid phase distribution along the flow and counter the flow. The
affinity of separation curves as a function of principal parameters of the flow in a
turbulent regime is substantiated. Criteria of the affinization of separation curves
are empirically established and experimentally substantiated.

Keywords Regularity - Granulometric composition - Size - Density - Concentration
- Velocity - Process stability - Fractional extraction - Affinity - Separation curve -
Productivity - Separation

1.1 Granulometric Characteristics of Bulk Material

First of all, we examine characteristics of a solid phase constituting a two-phase
flow, because in critical regimes the process of particles separation according to
their size grade or density can be organized most easily.

Processing of ground materials is among the most widespread processes in
today’s industry. Many millions of tons of various materials are ground daily in
mining, in various branches of chemical industry, in metallurgy, at the production
of cement, ceramics, glass and other building materials, as well as in most novel
branches of industry. Various natural and artificial materials become pourable when
ground, and in this state they pass all the stages of technological processes, namely,
extraction of useful components, production of powders with a specified particle
size, compounding of necessary mixtures and compositions, treatment of particle
surface and addition of various elements, drying, baking, etc. In this state it is
convenient to granulate materials from particles of any composition or press
products of any shape. As a rule, a solid phase is introduced into moving flows in
this state only.

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 1
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_1, © Springer Science+Business Media B.V. 2010



2 1 General Ideas of Mass Transfer Processes in Critical Regimes

At present, more and more low-quality raw materials are being processed because
of growing production volumes. At the same time, the requirements for the quality of
the final products constantly grow. To meet these requirements, separation processes
are becoming more and more important.

Most often, the separation is performed by particle size or density, and more
rarely — by shape, color or other parameters. While formerly, with a rather rough
technology, it was sufficient to use various sieves for the separation by size, present-
day operations with fine powders require separation carried out using moving
media — air or water. As for separation by other parameters (density, particle
shape), it can be realized only in moving media.

Before determining separation parameters, we examine principal characteristics
of a bulk material. Such a material can be characterized by its specific density of
particles, bulk density, humidity, porosity, etc. Usually a ground material contains,
depending on its size grade, many millions of particles. These particles can differ in
size, shape, surface state, etc. However, the material’s principal characteristic is
connected with dispersity. One can assert with a high degree of probability that
among all particles it is impossible to find two identical ones. There is nothing
paradoxical in this assertion. It is analogous to the fact that among more than six
billion people living today on the Earth there are no two identical fingerprints.
A way out of this difficulty consists in passing from individual features of each
particle to certain averaged characteristics determined for a whole class of parti-
cles. On the basis of such averaging, so called grain-size composition is obtained,
that is, averaged function of particle size distribution. There are several methods
of determining this function, for example, sieve methods, sedimentation and
microscopic analysis. Sieve analysis is the simplest and the most visual one. To
carry out this analysis, several sieves are chosen with strictly definite mesh sizes.
These sieves are assembled into a set as shown in Fig. 1.1. Below is a bottom
without holes, a sieve with the finest mesh size is installed on it, then a sieve with
coarser meshes, etc. This way, a set of sieves is formed with mesh size monotoni-
cally growing from bottom to top. Depending on the material to be analyzed, a
sieve with minimal meshes through which all analyzed material passes, is placed
on the top.

A size grade axis for the holes of the set of sieves is arranged vertically.
Whenever necessary, for instance when plotting grain-size distribution, it can be
arranged horizontally as well.

A representative sample of bulk material is taken for the analysis, poured into the
set of sieves from above and subjected to vibration during the time period sufficient
for complete sieving. As a result, particles that have not passed remain on each
sieve. These residues are weighed and recorded in tables either in grams or in
percents of the total sample.

By way of example, Table 1.1 (columns 3 and 4) shows the results of the analysis
of ground quartzite sample and products of its separation on a cascade classifier at a
certain fixed flow velocity. A schematic diagram of a gravitational classifier is
presented in Fig. 1.2. Bulk material of a certain composition is fed into the middle
part of a vertical pipe. An air or water flow with the velocity w is realized in this
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Fig. 1.1 A set of sieves for A=
granulometric analysis X
-n
Xn-1
Xirl
Xi
Xi1
X2
X
0 -0

pipe from bottom to top, against the gravity force. The velocity is chosen within
such range that fine particles are carried out upwards, and coarse particles are
settled in the counter-flow direction.

In column 1, sieve holes sizes are given in meshes, and in column 2 — in microns.
Column 3 shows residues on each sieve in %. To explain how total residues and
passes are determined, we consider, by way of example, an 80 mesh (or 180 pum)
sieve. Everything that is coarser than this sieve (in Fig. 1.1 — everything located
above it) is the total residue; it amounts to 59.8%. Everything that passes through
this sieve (is below it) is the total pass amounting to 40.2%.

Thus, bulk material composition by particle sizes can be described by distribu-
tion functions R(x) or by the D(x) function connected with the latter. The function
R(x) is determined as an overall characteristic reflecting the ratio of the weight of all
particles with the diameter exceeding x to the total weight of the material expressed
in percents. Figure 1.3 shows curves plotted on the basis of Table 1.1.

Since in any point D(x) + R(x) = 1, the curves D(x) and R(x) are mirror
symmetrical and intersect in the point D(x) = R(x) = 50%.

We assume that the functions R(x) and D(x) are continuous and monotonic,
differentiable everywhere and having continuous derivatives.
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Fig. 1.2 Schematic diagram
of separation regime
realization. s — initial product
feeding; ¢ — coarse product
output; f — fine product
output; w — flow velocity

f w

It means that there exists a certain function r(x) that can be obtained by
differentiating the function R(x) and is continuous within the range from x,,;,, t0 X;nax

r(x)dx = R(Xmax) — R (Xmin)- (1.1)

Xmin

The function 7(x) is normalized to a unity by the density of the material weight
distribution by the particle diameters:

r(x) = Ir (1.2)

This function is called partial residues distribution.

1.2 Distribution of Different Fractions in the Process
of Separation

Bulk materials separation by particle size or density can be carried out in different
ways — in gravity, centrifugal, electric fields and, probably, in fields of other nature.
Anyway, the separation principle remains unchanged. It consists in counter-motion
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Fig. 1.3 Granulometric
characteristic of ground
material in full residues R(x)
and full passages D(x)

Full residues R(x) and full passages D(x), %

dr |
dx

Partial residues

Particle size

Fig. 1.4 Redistribution of fractions during separation

of particles of different size grades, that is, fine particles move predominantly in one
direction and coarse particles in another.

The most visual way of presenting material distribution is graphical. The curve
ABC in Fig. 1.4 shows grain-size composition of a bulk material in partial residues.
We assume that this material has to be separated by size of x,. Note that according
to Eq. (1.1), the area limited by the curve ABC and axis x corresponds, in a certain
scale, to the total quantity of the initial material. In an ideal case, the separation
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should proceed along the line Bx,. This line divides the initial material into two
parts with respect to the size x( — fine initial product D, and coarse initial product R;.

In real processes, even if the flow velocity w is optimal, the separation process is
not ideal, that is, practically always a part of a fine product gets into a coarse one
and vice versa.

We assume that the composition of fine product is shown by the curve ADE.
Then the coarse product is described by the curve KDC, that is, there is a balance
dependence between the initial fine and coarse products.

Thus, in a general case, the plot area is divided by the lines of ideal and real
processes into four parts:

D. — quantity of fine particles extracted into fine product;

Ry — quantity of coarse particles extracted into fine product;

R, — quantity of coarse particles extracted into coarse product;

Dy — quantity of fine particles extracted into coarse product.

The following equalities are derived from Fig. 1.4:

Di+D.=D; D.AR. =7, (1.3)
RARf =R: ypty. =1

where y;;7, — are, respectively, fine and coarse products outputs.

On the basis of relationships (1.3), we can find various parameters describing
separation processes, for instance:

& = 3~ — fine particles extraction;

& =
kf =
k. = ¢ — coarse particles contamination.
All these parameters depend on the initial material composition, material
concentration in the flow and the value of boundary separation size, which does

not allow finding any general approach to the analysis of separation processes.
The latter becomes possible using so-called fractional separation curves.

— coarse particles extraction;

— fine particles contamination;

1.3 Fractional Separation Curves and Their Properties

It is generally accepted that Nagel was the first to introduce fractional separation
curves into practice in 1936. However, they are most frequently associated with the
name of a Dutch engineer Tromp, who published his work in 1937. The idea of
fractional separation curves is rather simple. It is based on the determination
of fractional extraction of different narrow size classes during classification. Frac-
tional separation curves are plotted proceeding from the relationship between the
obtained separation products and the initial composition without any complicated
calculations. To plot these curves, we use columns 6 and 7 in Table 1.1.
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Fractional extraction for each narrow size class expressed in percents is
described by the following dependencies:

Fr(x) =2-100
S 1
, o
Extractions of different fractions into separation products obtained using these
formulas are shown in Table 1.1 (columns 8 and 9), and the curves based on these
data are presented in Fig. 1.5. In this graph, fractional separation value correlates
with the average size of a narrow size class determined as an arithmetic mean of
adjacent sieves (Table 1.1, column 10).

a
by Ax
2 < >| |
< X50 > / N(x)
/ X/
20 v/ 2
o/ #Bnw \\
10 . = ~_
L/ ( ] E }’l(.(X)
% 7,
o LS =
1 2 3 4 5 6 7 8 9 10
Particle size x, mm

100 I
—
F,
“ % <
60 % / ™

Fy(x)
40

20

1

T 2 3 4 5 6 7 8 9 10

Fig. 1.5 Plotting separation curves (b) on the basis of the plot of redistribution during separation (a)
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These curves cover the area between the points x, and x,, such that

Fr(x,) = 100 Fy(xp) =0 } (15)
Fe(xs) =0  F.(xy) = 100 '

The expression (1.5) and relations
Ff(x,-) + FL-()C,') =100 (16)

lead to a complete mirror symmetry of these curves with respect to a horizontal axis
passing though the ordinate point corresponding to 50%.

It is noteworthy that fractional separation curves contain complete information
about the changes in grain-size composition of final products in comparison with
the initial material. The narrower the area between x, and x,,, the more complete is
the separation. Clearly, at an ideal separation, x, = x,. In case of simple partition
without changes in fractional composition, the functions F(x) degenerate into
straight lines parallel to the abscissa axis. We can prove that the abscissa of the
intersection point of the curves xsq is the size corresponding to optimal separation.
Fractional separation dependence on the air flow velocity is shown in Fig. 1.6.
These curves have some important qualities allowing us to find general laws of this
process. These qualities are examined below.

Fi(x)%
100 /o/—'
0 // . L ]
. ] Al
70 /

N
o
~
~

. :

& AR N s

R |IVARA A

T A S
/ AvAN AW

1 2 3 4 5 6 7 8 9 100 11 12 13 wm/s

Fig. 1.6 Dependence of fractional extraction of various size classes on the air flow rate in a
cascade classifier at z = 4; i* = 1
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1.3.1 Initial Composition

Investigations of the influence of the initial composition on the separation results at
the air flow velocities of 3.15, 4.35 and 5.45 m/s were carried out on a shelf cascade
classifier (Fig. 1.7). In the first set of experiments, the initial product distribution was
continuous, and each size class was charged according to the following scheme: 3.3%;
6.7%; 10%; 12.5%; 30%; 50%; 76.7%; 100%. It was assumed that the contents of
other classes in each experiment was uniformly distributed. Each of seven narrow
classes acquired these values, and then the classification was performed at each
mentioned velocity. The results of one set of experiments are presented in Fig. 1.8.

Experimental dependencies show that each narrow size class behaves indepen-
dently during separation, as if other classes were non-existent.

At first sight, these results seem somewhat unexpected, because it has been
experimentally proved that under such conditions particles of different size classes
intensely interact. This interaction is markedly random. This process is also char-
acterized by other random factors, but nevertheless, this parameter is invariant with

Fine material

\

1

Feed [’

Fig. 1.7 Basif: circqit of a | Coarse
cascade classifier with ] material
inclined shelves Gasflow
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Fig. 1.8 Dependence of fractional extraction of various size classes into the fine product on their
content in the initial material

respect to the initial composition. It seems physically analogous to the law of partial
pressures of a gas mixture.

According to this law, the pressure of a gas mixture in a certain volume equals
the sum of pressures of each component of the mixture as if it occupied the entire
volume. It is generally accepted that pressure is a result of impact interaction of
chaotically moving gas molecules with vessel walls. Although impact interactions
of molecules of different components of a mixture inside the vessel are beyond any
doubt, the resulting pressure value suggests that each component of the mixture
behaves independently.

Fractional separation invariance with respect to the initial material composition is
of basic importance for the general theory of the process. This property of separation
curves was described without any explanation as early as in the mentioned paper of
Tromp. Other properties of this curve were established later.

1.3.2 Solid Phase Concentration in the Flow

Optimal output of classifiers is closely connected with the apparatus dimensions
and solid phase concentration in the flow. The influence of concentration on
the results of separation has been studied by many authors. However, this factor
could not have been taken into account thoroughly enough due to the absence of
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well-grounded and clear ideas of process mechanism. Experimental material was
reduced, at best, to purely empirical dependencies having no clear physical mean-
ing. This relationship can be explained only after an in-depth study of basic physics
of the process.

The effect of solid particles on two-phase flow character is twofold. First, with
growing concentration, particle motion becomes more constrained. Secondly, the
probability of their contact interaction increases. The attempt of revealing the
influence of material concentration in a flow on fractional separation curves led to
unexpected results.

Experimental studies were carried out in a hollow pipe and in cascade appara-
tuses with special nozzles. In all the cases, qualitatively similar results were
obtained. They can be illustrated by the dependence obtained for a hollow pipe
(Fig. 1.9). A characteristic feature of experimental dependencies is a section
practically parallel to the concentration axis. For a hollow apparatus, this section
is limited by the concentration u =~ 2kg/m?, while for an apparatus with nozzles,
the validity area of this rule is extended up to u ~ 6kg/m?.

Within this section, fractional separation is practically independent of the mate-
rial concentration in a flow. However, the mechanisms of the formation of this
section remain unclear.

F (x), %
0,5-0,2mm
90
° . % ®
5 .
80 ® ] / I
T O~
1-0,5mm
70
60
50
.. [ ]
ry ] o
L] ® o o
40 |—e \
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30
20
o ° 5—3m|m
o0 o \ o
o ® @ L J hd
10 2 l
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0 == P Py ® - \ ! °
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Fig. 1.9 Dependence of fractional extraction of various narrow size classes on the material
concentration (material — ground quartzite, p = 2,650 kg/rn3)
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1.3.3 Process Stability

Repeated laboratory experiments at a thoroughly adjusted air flow velocity give the
same separation curve even in case of variations of grain-size composition in the
initial feeding and changes in feeding by a feeder. It was confirmed by an 11-fold
repeated experiment. In industrial conditions, the separation curve was determined
on a classifier with the productivity of 35-40 t/h in a week after its setting into
operation. For some reasons, reanalysis of the apparatus operation was performed
only after 11 months, and the obtained separation curve was exactly the same.
However, the spread of experimental points with respect to the curve somewhat
increased, the maximal deviation reaching 7.3%. It is surprising, since a huge
number of particles take part in the process. At the concentration u = 2 kg/m’,
each cubic meter of air contains up to 10' particles with the size of 30 um, whose
content in the initial feed is 10% only. Air flow through the separator amounts to
20,000 m*/h. Visually, the process is purely chaotic, and its result proves to be
strictly deterministic. Such stability can be explained only from the standpoint of
statistical analysis of parameters and results of the process under study.

1.3.4 Flow Velocity and Particle Size

Using separation curves, we have experimentally revealed general rules of the
separation process for apparatuses of any configuration and height separating
different natural and ground powdered materials. These rules are based on the
affinity of fractional separation curves.

By way of example, Fig. 1.6 shows an experimental dependence of separation
of different narrow size classes of ground quartzite on the air flow velocity in a
cascade classifier. All these curves merge into a single line (Fig. 1.10) when a
dimensionless parameter

_&

Fr—ﬁ,

where x is the average size of narrow size class particles, m; g is gravity accelera-
tion, m/sz, and w is air flow velocity, m/s, as shown along the abscissa axis.

Affinization of separation curves takes place in turbulent flows of a continuum,
which was experimentally confirmed for more than 150 designs of gravitational
classifiers. The mentioned criterion Fr can be applied only to the analysis of
separation of materials with the same density.

However, this rule also holds at the separation of materials of different densities
in the same separator. In the course of special investigations, each of the materials
was separated both individually and in a mixture with other materials. The obtained
results lead to a unified affinized curve. Figure 1.11 shows such a curve obtained at
the classification of materials having different grain size compositions and densities
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is shown along the abscissa axis, where p is the material density, kg/m3; po is the
density of the medium, kg/m3.

It is noteworthy that the same result was obtained in the experimental study of
different gravitational air classifiers operating on industrial powders representing
polyfractional mixtures with a broad size range from 50 pm to 10 mm. In this size
range, separation occurs in a developed turbulence regime.

The affinity of separation curves obtained for materials of different compositions
and densities on the same apparatus points to the existence of a strict regularity
inherent to the entire class of gravitational separation processes.

The main point of this regularity is that any powdered material is equiva-
lently separated in a specific apparatus according to its master curve. The character
of such separation is not affected at all by any regime parameters, granulometric
characteristics, solid phase concentration or boundary particle size, because at
any changes in all these parameters, the separation proceeds according to the
same curve.

A unified curve contains complete information about all possible two-phase flow
regimes in a specific apparatus. If we turn to Fig. 1.11, the pneumatic transport
regime takes place at B < a, the descending bed regime — at B > b, and a regime
close to the boiling bed — at Bsy.

Separation as such takes place within the interval of the parameter B variation
from a to b. Respectively, fractional extraction varies from 100% to 0%.

It clearly follows from this dependence that no fractional separation values are
obtained at random. It seems rather strange, because the process is characterized by
an immense quantity of random factors changing both in space and in time. Hence,
the influence of all these factors is leveled under actual separation conditions. How
can it happen and why is this curve formed?

Until now, hovering conditions for particles of limiting size, or optimal separa-
tion conditions (i.e. those at which Bso = const) have been the main object of the
theory and practice of gravitational separation.

It is evident from the obtained dependence that both this and any other sepa-
ration has its own permanent condition in case of 10%, 20%, 35%, 70%, etc.
extraction of a narrow class. Therefore, we can put a question of the conditions of
equal extractability of different size classes. It is reached at a constant determining
parameter of the process B = const, that is,

w = const
w=Po
All this creates reliable prerequisites for the prediction of separation results and
controlling of the process.
The position of the obtained universal dependence, which is unified and
invariant with respect to all factors of the process listed above, in the coordinate
system
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reflects only the design of the classifier realizing the process. To obtain a different
curve, one has either to introduce changes into the design, or to change boundary
conditions, or else to replace the entire apparatus.

In fact, it is very surprising that in such a complicated process, which resists any
accurate analysis, a rather clear determinate regularity has been revealed at a purely
empirical level. From the standpoint of today’s ideas of gravitational separation, it
is impossible to explain or to understand how such regularity is formed.

Therefore, we approach this problem using the obtained regularities, from the
standpoint of mass process taking into account solid phase interaction with the
flow. Here a notional and physical analogy between the process under study and
statistical mechanics arises.

As a matter of fact, two-phase flows are most close to the kinetic theory of gases.
However, when drawing an analogy between these processes, many difficulties
arose. Recently, some of these difficulties were overcome, and the first steps
towards the development of a statistical approach to the theory of two-phase
flows in critical regimes were made. This work is not completed yet, but it seems
expedient for further development of the theory to sum up and discuss the obtained
results in this book.

A basic feature of the statistical approach is that it is based on the determination
of the state of a whole system, no matter whether it is large or small, comprising an
infinite number of particles or one particle only. To make one more observation, we
revert to Fig. 1.5.

Separation curves are characterized by two parameters — fractional extraction
into a fine product Fy(x) and fractional extraction into a coarse product F.(x). It is
known that their sum in any point of the abscissa axis is

Fy(x) + Fy(x) = 100%

Obviously, these two parameters can be replaced with one, which unambigu-
ously characterizes the narrow class redistribution between two products. We call
this parameter a separation factor, denote it as z and define it as fractional separation
at the transfer of the point of origin in Fig. 1.5 from the O point to the 50% point in
such a way that

Ff(x) =50 + zf
F.(c) =50 — z} (1.7

Owing to the symmetry, the moduli |zf‘ = |z.|, and the range of variation of this
parameter is —50 <z <450. In the optimal regime, z = 0. We conventionally
accept the direction upwards, that is into a fine product, as positive, and the
direction downwards, that is into a coarse product, as negative. The difference
between the extraction values is

Fp(x) — Fo(x) =2z (1.8)

and their sum is, naturally, 100%.
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The value 2z shows the narrow class extraction imbalance between two product
yields, or, in other words, total deviation of its extraction from equiprobable
conditions, which are optimal.

The separation factor unambiguously characterizes the process results irrespec-
tive of the way of expressing fractional extraction (in percents, parts of a unity or
even number of particles). This simple substitution will be very useful later on.

Before modeling a system consisting of particles in a flow, we should clarify
the general approach to the state-of-the-art relationship between a model and a
full-scale object.



Chapter 2
Principles of Modeling Processes
in Moving Media

Abstract It is extremely difficult to model two-phase flows. A scientific model
that should adequately reflect the process regularities is, to a considerable extent,
“synthetic”. It widely uses mathematical apparatus and knowledge from various
areas of physics, hydraulics, mineralogy, etc. The scientific analysis is based on
quantitative relations between various factors of the process. Mathematical models
reflecting even idealized enough relations between the flow parameters allow the
generation of principal similarity criteria based on their solution.

Keywords Nature - Model - Process parameters - Linearization of regularities -
Simplification - Mathematical models - Model solution - Similarity criteria -
Combinations of similarity criteria

2.1 Correlation Between a Full-Scale Process and Its Model

Critical regimes of two-phase flows are characterized by many peculiarities and
interrelations. Most often it is impossible to take into account all of them thor-
oughly and accurately. Therefore, when performing a scientific analysis, the most
general ones are singled out. As a result, a simplified idealized approximate enough
model of the process is obtained.

Despite this, a serious scientific model is, to a large extent, synthetic. It widely
uses mathematical tools and knowledge from various fields of physics, hydraulics,
mineralogy, etc. Basing on these, a model is developed which should describe the
process exactly enough and adequately reflect its regularities. When developing a
mathematical model, we have to put aside a large number of process features. As a
result, a model correlates with an object or a process as a caricature — with the
reality. Anyway, any caricature should be recognizable, because it contains some
features of a real object.

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 19
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_2, © Springer Science+Business Media B.V. 2010
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Therefore, the results of mathematical investigation of a problem and construc-
tive solutions based on these should not be considered as the only possible ones.
Today, when physics of objects consisting of many elements is not sufficiently
developed yet, different ways and results of solving the problem should not be ruled
out, and it is rather difficult to choose the optimal variant of the solution. Therefore,
the choice is made by comparing advantages and drawbacks of the obtained
variants.

A scientific analysis is based on the establishment of quantitative relationships
between different factors of a process. A strict analysis based on physical laws and
mathematical analytical methods gives the most reliable results. Ideally, such an
analysis does not need any experimental data. However, since cause-and-effect
relations are complicated and diverse, such analysis can be realized very rarely,
only in the simplest cases. Meanwhile, in the absence of strict theoretical solutions,
practical engineering seeks additional opportunities.

Experimental data obtained on industrial equipment and laboratory experimental
equipment are generalized. Based on these generalizations, empirical relations are
derived, which are, as a rule, of a particular character. Their application beyond the
range of parameters in which they were obtained leads to gross errors, and it is not
always possible to extend the range of parameters in the experiments. For example,
it is impossible to study a full-scale apparatus under laboratory conditions. There-
fore, a transition from a laboratory model to a pilot plant is, most frequently, rather
complicated and fraught with numerous mistakes and corrections.

Among the ways of simplification of regularities under study, the linearization of
relationships between the phenomena under study and the results of the process is of
special importance. The diversity and complexity of these relationships predeter-
mine their nonlinear character, which makes difficult the analysis and mathematical
description of the process. A transition to linear relationships significantly simpli-
fies the analysis, but its accuracy is reduced. Therefore, it is important to allow the
accuracy decrease only within the limits that do not distort the final result of the
analysis to a considerable extent.

The diversity of relationships between the object properties and process para-
meters aggravated by insufficient understanding of physics of the processes leads to
insuperable difficulties in finding quantitative regularities and to cumbersome and
confusing calculations. This fact is usually passed over in silence. However, we
should clearly point to a gap in the level of turbulent two-phase flow problems, their
critical flows and potentialities of analytically derived equations. The arising
difficulties call for simplifications both in the derivation of equations and in
unambiguity conditions, which leads to accuracy loss. In such cases, numerical
methods are frequently used.

Numerical methods of solving differential equations are associated with specific
parameters of the process and limited by the accepted range of their variation. The
obtained results are not of general character and can be used in a particular case.

Attempts to solve theoretical equations by numerical methods have been made
in a sufficiently wide range of variables. Then empirical relationships have been
matched to suit the obtained results. Because of a large number of factors, the
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realization of this method is highly labor-consuming. Besides, it does not guarantee
the accuracy of the obtained results.

A transition to generalized variables composed of elementary factors of the
process according to certain rules facilitates, to some extent, the overcoming of
this situation. These new variables are dimensionless and have a certain physical
meaning. They allow establishing connection between generalizing complexes that
combine the process factors, and not between the process factors, which are
numerous.

The correlations obtained in generalizing complexes possess the following
features:

They are more compact than relationships with dimensional factors.

They admit analytical solutions in a more laconic form.

— They are useful for the formalization of experimental data.

They allow calculations in any system of units because they are dimensionless.

It should be emphasized that such combination of factors is not formal. In real
processes the influence of individual factors is revealed jointly, and not separately.
Therefore, if these factors are combined into a complex, the latter reflects the
overall status of the process.

The use of generalized variables involving several factors each, leads to a more
general description of a process, since one value of a complex can be realized,
strictly speaking, at an infinite number of combinations of numerical values of the
factors involved. Hence, these complexes can describe not only single phenomena
or processes, but also a group of similar phenomena and processes, for which these
complexes have the same numerical value. This is the basis of the notion of physical
similarity. Therefore, such complexes are called similarity criteria. They are used in
laboratory simulation of complicated processes and apparatuses, in the processing
of experimental data and in analytical solving of technological problems. Beyond
any doubt, the introduction of similarity criteria is an important stage in the
development of science.

It has turned out that cumbersome differential equations derived by analytical
methods are valuable per se. When initial conditions and unambiguity conditions
are used, it is practically impossible to obtain their exact solution. However, on the
basis of these equations, similarity criteria can be correctly formulated without
solving them. These criteria allow a competent setting of an experiment and
processing of the obtained results.

2.2 Mathematical Models Construction

Principal analytical equations of moving flows were obtained proceeding from
elementary simple models. Thus, principal equations of hydraulics are based on
balance correlations without taking into account such important flow characteristics
as the flow structure, turbulence with its developed spectrum of fluctuations or
conditions on channel walls, but only the respective balances.
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Fig. 2.1 On the modeling of processes in moving media: (a) motionless elementary volume;
(b) on the notion of similarity in flows

However, even such an analytical model allows determining principal regula-
rities and similarity criteria.

Let us examine this procedure, because later on, we will develop a model of
critical regimes of two-phase flows using similar methods.

First consider the kinetic aspect of the problem. We place a motionless infinite-
simal elementary cuboid with the edges d., d,, d. into a flow (Fig. 2.1a) and
consider the flows through pairs of its parallel faces dxdy, dxdz and dydz in an
infinitesimal time interval df, as well as changes inside a certain elementary volume
dV = dxdyd:.

During the time interval df, an elementary amount of moving medium equal to

dG! = pw,dydzdt

enters a motionless contour along the x-axis through the face dydz at the velocity
w,, and the amount

dG~ = [pwx Lo W’X)]dydzdt
* Ox

goes out through a parallel face. Here p is the density of the medium in some point
of the contour; w, is the velocity along the x-axis at some point of the contour.
After the removal of brackets and cancellations, the difference between de and
dG for the x-axis amounts to

0w vz = — 2P v
ox ox
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Similar differences for y- and z-axes can be written as

= pwy) dvdt and — Opws)

y Zz

dvdt.

The amount of mass in the volume dV at the moment ¢ equals pdV. Since p can
vary along the coordinates (x, y, z) and with time (¢), the change in mass inside this
volume by the moment of time ¢ 4 dt can be written using partial derivatives:

opdV) . _ 9

T o dvdt.

Now we bring together the obtained elements of balance and, after reducing by
dV and dt, we obtain

_ 9 _Opwy)  Opwy)  Opw:)

ot Ox dy 0z

We can rewrite it in a different form:

dp  O(pwy)  O(pwy) O(pw:)
a o ey e Y

This is an equation of the flow continuity. Integration of this equation using
specific unambiguity conditions leads to the mass conservation law in an integral
form.

Now consider the dynamic aspect of the problem. A crucial problem in the
analysis of the momentum or impulse transfer is to determine pressure (p) and
velocity (w) in a certain point of the flow at an arbitrary moment of time ¢:

p=pxy;z0); w=w;y; ).

We consider an elementary cuboid again.

First we carry out the analysis as applied to one coordinate axis (x). The obtained
results can be extended to other axes (y, z). We examine, one after another, forces of
various nature.

1. Normal forces (pressure) acting along the x-axis on the left face dydz are equal
to pdydz. On the right, a force (p + %dx) dydz acts on the parallel face.

The difference between these normal forces is

pdydz — | p + 8—pdx dydz = — @dxdydz =— a—pd\/.
Ox Ox Ox
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2. Tangential forces (of internal friction, shear, viscosity — 1)

The force tdxdy acts along the lower face, and for the upper face we can write
Todxdy. We denote the velocity on the lower face by w,; at the transition to the
upper face along the z-axis, the velocity acquires a certain value w, + 85‘2" dz.

According to the Newton law, the relation between the tangential force and

velocity gradient in a liquid or gas is linear, that is,

T= _ME7

where p is the dynamic viscosity coefficient of the medium. Taking this into
account, we can write the following for the upper and lower faces:

ow,

Tidxdy = —u % dxdy;
Todxdy = —uﬁ wy + %dz dxdy.
0z 0z

After the removal of brackets and cancellations, the difference between these
forces amounts to

2 2
0wy O“Wy

I 92 dxdydz = u 972 dav.

(t1 — 12)dxdy =

Similar tangential forces along the x-axis act on other pairs of faces, and by
analogy with the above expressions, we can write

Pw, ow?
u 7 dV and u p) .x dv.
'y x

Total balance of all tangential forces along the x-axis is expressed by the sum

+

*w, n Pw,  Ow,
# Oxy oy? 072

)dV = uVw,dV
where V2 — is the Laplace operator (Laplacian).
3. External mass forces

External mass forces also act on a mass of liquid or gas with the density p in the
volume dV. We denote a projection of a resultant unit mass force along the x-axis by
P.. Then the total force acting on the volume under study is P,pdV.
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4. According to the Newton law, inertia force equal to a product of the volume
mass and its acceleration along the x-axis acts on this volume:

dw,

dv .
P dt

Making a total balance of these four components, after reducing by dV with
respect to the x-axis, we can write

dwy
dt -

o

+ UV + Pup =p
Oox

Dividing each component by p and substituting %: V' (kinematic viscosity
coefficient), we can finally write:

If we write, by analogy, similar expressions for y and z axes, the obtained
system of equations is called a Navier—Stokes equation or the principal equation
of hydrodynamics.

Note that when deriving equations in this chapter, we neglected the signs of
differences in all intermediate relationships.

According to mathematical rules, it was assumed that all these increments are
positive, and the sign should appear when we determine integration limits or unambi-
guity conditions (for example, boundary conditions) or specify conditions of the
process (for example, gravity force is always directed opposite to an ascending flow).

It is accepted that the system of Navier—Stokes equations together with the
continuity equation completely describe the motion of a moving medium. To obtain
an unambiguous solution of the system even in the simplest case of a hollow pipe, it
is necessary to specify initial velocity field values in space and time and to take
into account the fact that the velocity should be zero on the channel walls and on
the surface of all solids submerged into the flow. The solution of this system of
equations was discussed in many papers.

As early as in 1920s, L. Keller and A. Friedman showed that in order to
determine statistical moments of any order for hydrodynamic fields of single-
phase turbulent flows, it is necessary to solve an infinite system of equations, that
is this system is not closed. It is possible to solve this system using various
assumptions idealizing the moving medium. Idealized flows of Newton, Euler,
Couette, Poiseille, Haden, etc. are well known. These solutions are of a certain
theoretical interest, but of no practical importance in the general case.

Thus, it is impossible to find an exact solution of the obtained system of
equations. However, it contains information on the flow motion that can be obtained
in the form of dimensionless complex parameters. It becomes possible to determine
these parameters using the methods of similarity theory.
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2.3 Similarity Criteria Determination

Groups of processes, phenomena or objects that can be mathematically described
using similarity criteria are assumed to be similar. The notion of geometrical
similarity is studied as early as in secondary school. Physical similarity has a
different meaning. One can assume that two physical phenomena are similar,
if the respective characteristics of this phenomenon at analogous points of geomet-
rically similar systems differ only by a coefficient that is constant for all the points.
Mathematical description of such systems is identical. If we deal with two geomet-
rically similar facilities (Fig. 2.1b), the larger one is usually called an apparatus (A),
whereas the smaller one — a model (B). Let moving media with different properties
(density, viscosity, velocity, heat capacity, etc.) flow through these facilities.

We choose two pairs of similarly located points A; and A,, B; and B, in these
systems. Geometrical parameters of each pair are characterized by a certain
relationship of the following type:

X1 - X2 -
D, D,
The ratio

x1 Dy
- = — ... = ml .
X2 D2
By definition of physical similarity, for any pair of analogous points A; and By,
A, and B, and any other pairs, the following equalities should be satisfied:

Pr_ HM_ oW
— =My — =Ny =My —— = M, elC.
P2 I3 w2 2

In these expressions, m; are similarity factors. Naturally, they are different for
different parameters (my, # m,, # m. # - --), but have a constant value of the same
parameter in any pair of analogously located points. Each similarity factor plays the
role of a kind of scale of the respective physical magnitude.

The notion of similarity factors is the basis for deriving similarity criteria. By
way of example, we derive one of such criteria from the flow continuity equation.
For two geometrically similar flows, we can write

p, . d(pyw1) N
on o ox; + =0,

9py _ O(pyw2)
P A2 .
19/5) Oxp +
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Other summands are omitted here, because they structurally coincide with the
second summands. We apply scaling transformations to these two equations:

P1 = MpPr; 1 = my;, Wi = myWwa, X1 = mxp.

Geometrical similarity factor m; is constant for all coordinates (x, y, z), as well as
for linear dimensions /; and /.

Let us substitute the values of all process parameters of the apparatus into the
first equation, expressing them through the corresponding similarity factors and
process parameters of the model. Then, after the removal of constant multipliers
from the derivatives, we obtain a new expression for the apparatus through the
parameters of the model:

my Opy | mymy (pywa)

c =0,
m; 8[2 my 8)(2 +

Compare the obtained expression with the above continuity equation for the
model. Their adequacy is possible only if the complexes comprising similarity
factors can be factorized and reduced, because the right-hand part is zero. It means
that these complexes are equal:

My _ My,

m; m

Here we can reduce by the factor m,, and finally obtain:

1 m,
m o my
However, it is well known that
151 wi Iy
nm=—; nmy=——; hm=-.
f W b

Substitute these values into the final expression:

12_W1 I
toow

and collect magnitudes with the same indices in different parts of the equality.
We obtain:

wity wWrty wt .
= — = idem.

L L
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It means that the obtained result is valid for all similar flows. This complex
is dimensionless. The coincidence of the numerical value of a dimensionless
complex or group of complexes is a necessary and sufficient similarity condition
for several systems, objects, flows, processes, etc. The obtained complex is called a
homochronism criterion and denoted by

Ho ="'
°=7

Most often, physical criteria are called after great scientists and denoted by
the first two letters of their names.

The physical meaning of the homochronism criterion is clear from the prerequi-
sites of the analysis — two opposite effects are compared, namely, forced medium
transfer and accumulation.

Growing Ho value shows that the influence of the factor in the numerator grows,
that is mass transfer grows. With decreasing Ho, the role of the factor in the
denominator grows, that is mass accumulation is predominant.

In case of stationary processes, where mass accumulation in the working volume
does not take place, Ho criterion degenerates, and its numerical values tend to infinity.

Note another important aspect. In many cases, total geometrical similarity is not
necessary, an approximate one being sufficient. Geometrical dimensions can affect
the course of a process in different ways. For example, it is clear that the shelf
thickness in a cascade classifier does not affect the character of the separation
process. Therefore, it does not require the fulfillment of geometrical similarity of
the type

5 6

L b’

A less obvious example concerns the velocity profile of a flow entering the
classifier. Its formation is completed at the channel inlet, and then the value of the
velocities does not considerably change. Beyond the channel inlet, the influence of
the longitudinal coordinate degenerates, and in this sense, geometrical similarity
becomes non-obligatory.

Using the same pattern of reasoning, we make an attempt to derive a similarity
criterion from the system of Navier—Stokes differential equations. For the process
under study, it is most convenient to analyze similar flows with respect to the z-axis.
We can write the following for an apparatus and a model at their analogous points:

1 Opy ow, 82W1
= _p — ... ...
pr oz G“&1+ )*“(aﬁ*' ’

lapz 8W2 82W2
2 _p _ A BT AT
0 0% 2(”%*)“4%*
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We express all apparatus characteristics through similarity factors and model
characteristics:

Py =Mmypyr; p1 =mypy; Py =myPy; zy = mzy; wi = mywy; Vi = mys.

Note that m,,, is the same for all mass forces. Now we substitute all these ratios
into the first equation:

10 2 ow ymy, (O
m, _ﬁ:mmp2_ﬂ<W2_z+...>+mn; Vz(l22+...).
mymy py 923 my 0z, m

According to the meaning of this mathematical operation, the second derivative
is a quotient of the value to be differentiated, divided twice by the argument.
Therefore m;, in the last expression is squared. Hence, following the same reasoning
as in the previous case,

2

my, m, mym,
= mm = = 5 -
mymy my ny

The physical meaning of these parts of the equality is as follows:

mp . Loy : . myny
mm — pressure forces; m,, — mass forces; ,. — Inertia forces; p

forces. Usually these parts of the equality are examined pairwise.

— viscosity

1. Comparison of pressure and inertia forces:

2
m[’ m,

mym, my

After reducing by m; and substituting multipliers

P1 P1 wi
m, =-—, mp,=—, NMy=—,
P2 P2 w2
we obtain
2
pPipy Wi
- )
P2pPy W%
and hence
P1 P2 p

= = = E = 'd .
ol pwd T

Here Eu is Euler’s criterion. It is used to determine the relationship of inertia and
pressure forces. In practical problems, most often the pressure drop in a certain
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interval is of interest, and not the absolute value of pressure. Therefore, a somewhat
different expression is used:

Ap
Eu=—.
pw
2. Comparison of mass and inertia forces
In this case,
My = —2.
my

Along the vertical z-axis, a value numerically equal to acceleration g corre-
sponds to a unit mass gravity force. Taking this into account, substitution of m,,, ny

and m,, = i’,_; values leads to

g _wih
22 W%ZI.
Hence
/ L _ gl
gl_zl:gz_;:g—z:Fr:idem
wi wy W

where Fr is Froude’s criterion, which is a measure of the ratio of mass forces and
inertia forces. The comparison of these forces predetermines the character of
critical flow processes under study, and therefore, this criterion plays a crucial
role, which is confirmed experimentally.

3. Comparison of inertia and viscous forces

After reducing by m,,/m; and substituting all similarity factors, we can obtain

wi Vi

wy vl

Hence

wily  wal,  wl .
—— =—="=— =Re = idem.
V1 Vi v

Thus, we obtain the Reynolds criterion, which is widely used for describing liquid
and gas flows, as well as particles displacements with respect to moving media.
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Usually the linear dimension in the Reynolds criterion is either channel diameter
or particle diameter:
wd

Re =—.
v

4. To derive other similarity complexes, these three principal ones can be used, for
example, a relationship between the gravity force and viscosity force. In this
case, we can write Fr - Re. Other combinations of similarity criteria having a
clear physical meaning can be also obtained.

Usually it is impossible to establish quantitative relationships between similarity
criteria purely theoretically. In each specific case they are established by means
of a specially set experiment. These relationships are called criterial equations of
Eu = f(Re) type. Such relationships are valid only within experimentally checked
ranges of similarity criteria variation.

Similarity criteria should not be considered as parameters determining the ratio
between respective forces, because the value of this ratio is different at different
points of the flow. They should be considered as a measure characterizing correctly
the relationship between respective forces. For example, the higher the Reynolds
number, the larger are inertia forces with respect to friction forces in a specific flow.



Chapter 3
System of Particles of the Same Size Class
in a Critical Flow

Abstract Two-phase flow is a mass system. Kinetic approach to such systems
makes it necessary to take into account interactions of particles of various sizes in a
flow and their interactions with the channel walls. Having overcome mathematical
complications, a model of particles interactions with the channel walls was
developed. The solution of this model leads to relations obtained earlier by various
authors in a purely empirical way. A definition of a statistical system of particles in
a flow it given and substantiated. Mathematical equations describing a statistical
system of particles are derived. The solution of these equations made it possible to
substantiate main parameters characterizing flow regimes under study.

Keywords Statistical system - Probability - Reliability - Stability - Self-similarity -
Averaging over an ensemble - Separation factor - Potential separation - Lifting factor

3.1 Dynamics of Mass Motion of Particles in a Flow

We mentally single out particles of a certain i-th size class in a two-phase ascending
flow moving in a critical regime and examine the behavior of a continuum of such
particles.

Particle collisions are unlikely, since their velocity values are within a narrow
range, and even if such collisions take place, their intensity is low. Particles of
this fixed size class collide with particles of other classes, whose mean velocities are
essentially different.

Particle collisions, their irregular shapes, non-uniformity and fluctuations of
velocity and concentration fields, Magnus’ effect and other random factors result
in the appearance of a radial component in the motion of particles.

As follows from experimental studies, the motion of particles in a two-phase
flow is practically always non-parallel to the channel axis. This leads to mass
collisions of particles with the walls confining the flow. To confirm this fact, it is
sufficient to mention a well-known effect of the wear of pneumatic transport

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 33
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_3, © Springer Science+Business Media B.V. 2010
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pipelines and gravitational separation apparatus walls. Numerous researches show
that turbulent fluctuations of the medium considerably affect the trajectories of fine
particles only. For coarser particles, their collisions are the main cause of deviations
from rectilinear trajectories. The influence of this mechanism on the intensity of
transverse displacements grows, in comparison with other stochastic factors, with
increasing particle size.

Therefore, the instantaneous velocity of particles of any size can be represented
as consisting of two components — axial and radial. The ratios between their mean
values are determined by particular conditions. The radial component is the cause
of random impact interactions of particles with channel walls.

At each collision, a part of kinetic energy is lost. The magnitude of this loss
depends on elastic properties of the disperse material and solid wall, as well as on
the state of their surface in the contact point. After the collision, a particle loses a
part of its velocity. This loss is further compensated at the expense of the carrier
flow energy, since the particle accelerates in it gaining the initial velocity values.

If the apparatus is large enough, after a certain time interval the same particle can
collide again with the wall, since the causes generating radial components remain.
Hence, particle interaction with a wall in a two-phase flow is of a jump-wise, fluctuating
character. Evidently, such interaction leads to an increase in the total flow resistance,
that is an additional force acts against the motion of each narrow size class.

It is perfectly clear that all the components of the interaction under study are of
markedly random nature.

It is necessary to convert the solution of such stochastic model into a determin-
istic one using calculations of mathematical expectations of random values. This
makes it possible to consider the system as a deterministic one and to reveal a
general character of the regularities.

To perform basic calculations, we single out an element with the height of Al
(Fig. 3.1) in a hollow apparatus and denote by F the cross-section area of the
apparatus and by D — its equivalent diameter.

We assume that in a stationary process, the total amount of material passing
through this section in both directions per unit time at a certain flow velocity
w amounts to:

AG = ZAGi,
k

where AG; is the weight flow rate of the i-th fraction passing through the section
under study, kg/s; k is the quantity of distinguishable size classes in a mixture.

The weight of the i-th narrow size class located in the section A/ can be
determined as

AG; = gmn;,

where m; is an average mass of a particle of i-th narrow size class; n; is the number
of particles of i-size in the section Al.
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Fig. 3.1 Transformation of b
particle velocity at its
interaction with a wall

Al

A
Y

On the other hand, we can write:
AGi =F ViVis

where v; is the mean velocity of narrow-class particles, m/s; y; is the weight flow
rate content of particles in a unit volume, kg/m?.
Hence,

AG;
F- Vi '

Vi =

The weight of solid particles of this class in a flow section with the height of Al is
equal to y; - F - Al. It is practically impossible to determine the force experienced by
the wall at the collision of each separate particle with it. It is sufficient to determine
an average force arising at the collision of many particles of the same average size
with the wall, if their velocities are known and the collisions are perfectly elastic. In
this case, the force acting on the wall can be determined on the basis of the second
Newton law. It is equal and opposite in sign to the change in the momentum of
particles colliding with the wall per unit time.

Irrespective of particle velocity direction in space, it can be always decomposed
into components, one of them being perpendicular to the apparatus wall and
another — parallel to the flow axis (Fig. 3.1). For particles of the i-th size class:

v; is an axial component of particles velocity before the collision;

v, is a radial velocity component before the collision;
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v; is an axial velocity component after a reflection from the wall;

v, is a radial velocity component after the reflection.

If a particle with the mass m; has a radial velocity component v,, the respective
momentum equals m;v,. After a collision, the particle acquires a radial velocity
component v, whose value is determined by the angle of attack and the elasticity of
the particle and the wall in their contact point. Denoting by k a generalized average
transformation coefficient, we can write:

V_)‘ = —kvr
The change in the momentum for one particle amounts to:
Ap = mpy, — miv, = miv,(1 + k).

Mass of the particles of the narrow size class under study reaching the apparatus
walls per unit time is proportional to the material contents in each volume unit of
the apparatus, to the radial velocity component and to the wall area, that is

AGi:lﬁ-9~Alv,~:%i7

where 0 is the apparatus perimeter; s is a generalized proportionality coefficient.
If we denote by ny the number of particles of a given class reaching the wall per
unit time, the total change in their momentum per unit time is:

AP = ZAp = Zm,-vr(l + k) = nomiv, (1 + k).

Only the particles that are located at a distance not exceeding v, from the wall,
that is those contained in the volume of a ring with the lateral side area 6 - Al and
thickness of v,, can reach the wall in a unit time. We denote the average quantity of
particles in a unit of space by

_ i AG;
“m; F-Almg’
The quantity of these particles in an annular space is

AGI‘Vr -0

No =nv,.0-Al =
0= Fm;g

Due to the absence of direct experimental data, we can suppose that owing to
stochasticity, approximately half of particles in this space moves towards the wall,
and another half from the wall. We can write:

no = ¢N07
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where ¢ <1 (according to statistical meaning, ¢ = 0.5). The average pressure
experienced by the surface in a unit time equals

AG,‘V,- -0

P = (14 k).
O pa (1 48)

The pressure acting on a unit surface is

P,‘ AG,V%(] +k) AMI 2
p; = = d) = Vr7
0-Al gF - Al %

where V = F - Al is the volume of the section under study, m3; AM = % is the

mass of i-th class material in this section, kg/m’; ¢ = (1 + k)¢ is a common aspect
ratio.
Note that
piV
v

= cAM,. 3.1)

Evidently,
E AM, ,‘V,Z.

OIRD

It means that the specific pressure experienced by the wall on the part of disperse
flow particles is proportional to the product of the mass of these particles per unit
volume by the squared radial velocity component for each size class. This force
acting normally on the apparatus wall produces a friction force with a specific value

Ti :fgi7

where f'is the friction coefficient between the wall and the material.

It follows from numerous publications that at the material concentration up to
u = 3kg/m?, the magnitude of radial velocity component of moving particles is
proportional to the particles velocity v;, that is we can write

2 2
v, =y,
hence

AM; AGv?
v?:/l Gv

Ti:Cf(pl % ngva

1
2

where A =
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The total force of resistance to the motion of particles of i-th size at the flow
section under study amounts to

o AG,V?@AI_ AGIV2

l

i — 4 =4 )
2¢ F-Al 2gD,

where D, is an equivalent diameter of the channel.
This formula was derived purely empirically and is widely used in calculations
of pneumatic transport. Friction coefficients in the form of

Je= 2
w
were experimentally and theoretically determined by Gasterschtadt, Zegler,

Uspensky and others for the conditions of pneumatic transport. Two conclusions
can be made from the analysis above:

1. The magnitude of 1, coefficient cannot be determined by the total pressure drop
in a transmission pipeline. This method considerably overestimates the coeffi-
cient magnitude, because it involves not only friction losses, but also other
losses.

2. The model under study describing a narrow class interaction with the wall has
been developed correctly, since it leads to already known empirical results.

3.2 Definition of a Statistical System

The behavior of a set of solid particles constituting, together with a continuous
medium, a two-phase flow can be described, strictly speaking, from the standpoint
of classical mechanics. In principle, the behavior of the whole continuum can be
specified by the behavior of each separate particle, writing

dV,‘ dX,'
— =P il

for it, or

where P; is the force acting on the i-th particle related to a unit mass; x; is the
radius-vector of the i-th particle; v; is the velocity vector of the i-th particle.

In general, P; is composed of gravitational forces, flow forces and interaction of
the i-th particle with other particles and walls confining the flow. To determine in
full the behavior of the system using such approach, we have to solve 6N (N being
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the number of particles in a flow) differential equations of the first order with 6N
unknown quantities. It is also necessary to specify 6N initial values of the parameters.
It is perfectly clear that this problem cannot be solved even by high-speed computers
not only because of a large number of particles, but also because all these equations are
interconnected, since the force exerted by a specific particle at any moment of time is a
function of the positions of all other particles of the system, that is

P; =f(x;) (j=1;2;3;...N).

Supposing that, anyway, we manage to solve this problem having spent lots of
time and means, the obtained information would be absolutely useless, because one
can hardly make any concrete conclusions on the basis of enormous amount of data
determining the force value and direction of each particle at various moments of
time. Note that the quantity of particles in the apparatus under the conditions of
fractionating powders is on the order of N ~ 10'°.

Clearly, such method of solution leads to a deadlock. However, there is another
way, too. Referring to the history of scientific analysis, one can see its two sources.
The first one comprises dynamic Newton’s laws (classical mechanics). They
describe well the behavior of solitary objects, even complicated ones such as the
planetary system, where the past and the future play the same part. This is due to the
fact that the notion of time appears in the second Newton law in the second power
only, which makes it invariant with respect to time reversal (t — —t).

The second source is based on thermodynamics that started developing in the
beginning of the nineteenth century. It deals with enormous numbers of particles
(molecules) and irreversible processes. Here the number of particles is comparable
to the Avogadro constant (on the order of 10*). Irreversibility in thermodynamics
is connected with the notion of entropy, which was called a time arrow by
A. Eddington. This notion appeared in connection with technical problems to be
solved, but very soon acquired a cosmological status.

That was a revolution in science, because the existence of irreversible processes
contradicted time-reversible notions of dynamics. Note that in the beginning of the
twentieth century classical mechanics gave way to quantum theory and relativity
theory. However, the contradictions remained, since in these theories principal
dynamic laws are time-reversible.

The process under study is markedly irreversible. Since 1872, when L. Boltzmann
introduced a statistical definition of entropy, it has been considered as a measure of
disorder of a system. As a rule, natural processes occur with increasing disorder.

The main difference between reversible and irreversible processes is that the
latter give rise to entropy. However, the relationship between dynamics and entropy
is not so simple, and not all dynamic processes call for the use of the notion of
entropy. For example, the Earth’s travel around the Sun can serve as an example of
a case that may be described by equations symmetric in time neglecting the
irreversibility (high and low tides).

However, most of natural systems reveal a chaotic irreversible behavior, and the
notion of entropy has a physical meaning of the time arrow for them.
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All this predetermines, to a certain extent, the analogy between critical regimes
of two-phase flows and thermodynamics, especially in the area of gas laws.

Hence, it is clear that such problems should be solved by statistical mechanics
methods. Obviously, not only initial positions of particles, but also details of their
interaction should be averaged. Practical result of such averaging is reduced to the
necessity of operating with probabilities instead of reliabilities. Within such an
approach, we cannot determine a position and velocity of a given particle, but only
a probability of the realization of its various positions and velocities.

We make an attempt to consider this problem from the standpoint of a statistical
approach. From this standpoint, it is necessary to connect the general behavior of
the whole system with the behavior of its numerous parts. The study of such
connections constitutes the subject of statistical mechanics. Since the system con-
tains a great number of particles, we have to define a way of describing their
averaged behavior and then connect it with final results of the separation process.

Here we can make use of some ideas of statistical mechanics — naturally,
applying them to specific conditions of the problem under study. However, the
specific character of two-phase flows calls for a fundamental reinterpretation of
these ideas. We can mention three principal aspects of the main difficulties arising
at the study of such flows from the standpoint of a statistical approach in compari-
son with gas systems.

First, gas systems are examined in statistical mechanics within a limited volume,
and all possible directions of molecules motions are considered as equiprobable. In
two-phase flows, a closed volume is out of question, and besides, the resulting flow
motion has a preferred direction.

Secondly, a basic parameter in the statistical approach to gaseous systems is the
potential energy of the continuum of particles determined by the temperature. As
known, temperature change does not affect principal parameters of such flows.

The last but not least for the problem under study is that we are forced, for the
first time in theory, to abandon generally accepted parameters of a system (temper-
ature, energy, heat capacity, work, etc.) and introduce new parameters defining the
extent of fractional separation, regimes of the medium motion, probability of the
direction of particles motion, etc.

Nevertheless, we should unambiguously emphasize that the main ideas and
methods of the statistical approach developed for gaseous systems are used in the
study of the present problem. In this respect, it would be wrong to present the
situation as utterly novel. The process under study is examined from the standpoint
of statistical mechanics using main principles of thermodynamics and theory of
gases, because, as we show below, there is a reliable conceptual and physical
analogy between these processes.

Since we start considering this physical phenomenon from the standpoint of
statistical mechanics, it is necessary to develop new terminology.

The general behavior of a two-phase system should be somehow connected with
the behavior of the multitude of its components. The study of such kind of connec-
tions constitutes the subject of statistical mechanics.
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When it is impossible to describe physical phenomena in terms of individual
particles trajectories, one can resort to their description in terms of statistical
ensembles.

It was determined experimentally that from the point of view of separation
results, each narrow size class behaves in the process of separation autonomously,
independently of the presence of other classes in the flow. Therefore, we examine
one narrow size class consisting of similar particles. Since the system under
consideration contains a large number of particles, it is necessary to define a way
of describing averaged behavior of a particle and then connect it with the process
results.

Boltzmann’s theory of gases demonstrates that to develop a successful model of
a process, one should not aim at its comprehensive description. It is sufficient to
make up a simple scheme of the process, but it should reflect, to a certain extent, its
essence.

In this respect, a characteristic example is the model of gas or other bodies
temperature. As known, gas temperature is proportional to the kinetic energy of the
motion of its molecules. Molecules move at random, interact with each other and
with the walls of gas-containing vessel. No one would think of determining gas
temperature taking into account all the elements of this complicated process.
Usually, temperature is determined according to our natural perception of heat
and cold as of something one-dimensional, allowing the arrangement of objects
from the hottest one to the coldest. It is reflected in the structure of a thermometer
with zero located in the middle of the scale, which makes its readings more visual. It
is more convenient in comparison with a thermometer with zero at the bottom of the
scale.

To develop a model, we examine a certain quantity of similar solid particles
moving in any direction together with an ascending flow through a limited spatial
volume. This volume can be considered as a natural space of the entire classifier or
its part confined by two horizontal planes placed at a distance / apart. In such a flow,
only the initial powder redistribution is of interest, to put it more precisely —
fractional extraction of different size classes into upper and lower products. There-
fore, we disregard the magnitude of particles velocity and examine only the
direction of this velocity, that is its projection onto the vertical axis (Fig. 3.2). It
corresponds to the implication of the process under study, and therefore we take the
difference in the velocity directions of particles as the basis of our model.

Naturally, it is a very simplified model of the process under study. However, it is
not simpler than the model of a mobile medium examined in the previous chapter,
which forms the basis of all principal regularities and similarity criteria for hydrau-
lic systems.

The direction of velocity projection of each particle can be of two kinds only —
upwards or downwards. Note that the probability of this orientation for each
particle is independent of the orientations of others. Moreover, we are not interested
in any other parameters of the process, such as actual velocity directions, their
magnitudes, interactions of particles with each other and walls confining the flow,
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Fig. 3.2 On the model of a

statistical two-phase flow A A A

local concentration inhomogeneities or any other features of the flow — but only in
the instantaneous particle velocity projection onto the vertical axis. Thus, the
suggested model of the process reflects the main idea of separation — oppositely
directed motion of particles in a flow.

Taking into account only velocity directions, we introduce notations of prob-
abilities according to Fig. 3.2: a — upward direction, b — downward direction.

It is noteworthy that the probability of zero velocity projection onto the vertical
axis is vanishingly small, because at this moment a particle should either stand still
with respect to the walls, or move strictly normally to them. The probability of such
state is approximately equal to the probability for a coin to stand on its edge when
cast. From the point of view of the process under consideration, this probability is
so low that it is not of any interest.

In principle, for other kinds of two-phase flows, the principal axis can be
arranged otherwise, for example horizontally for horizontal and centrifugal flows
and obliquely — for inclined flows.

Vertical direction of the principal axis is the most natural for gravitational
separation. A system implies a totality of all particles passing in both directions
through a height-confined flow space. In Fig. 3.2 the system is confined by lines A
and B.

We examine a system with a stationary process, and not any kind of a system.
Since there is no constant accumulation of the material in the assigned space



3.2 Definition of a Statistical System 43

because the total output of both separation products in a stationary process always
equals the initial input, we can assume that the number of particles in the assigned
volume is approximately constant.

It is noteworthy that the total number of particles located in the apparatus
volume at a certain fixed moment of time can be rather significant. Under actual
conditions, the number of particles with d = 0.1 mm amounts to N ~ 5 - 10'9 even
if the quantity of product in a multi-ton apparatus is only 100 kg. The number of
smaller particles is much higher.

In our further study, a statistical system implies a totality of such particles
passing through a limited space.

Thus, a statistical system is determined by constant volume, number of particles
and dynamic conditions (velocity of the ascending flow of the medium).

Here we need only one notion of statistical mechanics, namely, the notion of a
stationary state of a system. The stationary state of a physical system has the
following property: the probability of finding a particle in any element of volume
is time independent. This state can be defined more rigorously as a state of a system
where all observable physical properties do not explicitly depend on time.

Such state of a system with the velocity of the ascending flow of the medium
remaining constant in time is characterized by the following property. Fractional
separation degree of different size classes does not explicitly depend on time, that is
its fluctuations are slight and markedly random. Such state comes, as a rule, after
the expiry of a certain time after the beginning of the process or external distur-
bances (relaxation time). Nevertheless, we assume that here certain fluctuations are
possible.

The most important point is that such stationary states of the system under study
can be counted, although their number can be infinitely large.

From a mathematical point of view, disorder in a system is determined by a
number of different ways of distributing a certain set of objects. The more objects
we have, the higher the probability of their random distribution rather than an
ordered state. Further on, these notions take on crucial significance, and therefore
we clarify them using an illustrative example — a pack of 36 cards constituting a
system under study.

Under ordinary conditions, this pack is in the state of random arrangement of
cards. The probability of cards grouping in a certain order is extremely low, if,
surely, it was not done on purpose. The number of various ways of ordering cards in
a pack, obviously, equals 36!, since there are 36 possibilities of choosing the first
card, 35 possibilities of choosing the second card, 34 possibilities of choosing the
third, etc. Another important point is that if we assume that all 36 cards are
identical, there is only one way of their arrangement, and we always see them
perfectly ordered.

Let us try to estimate the number of various ways of distributing particles in a
two-phase flow so that to satisfy certain limitations imposed on the system. For this
purpose, we should first clarify which parameters distinguish particles from each
other.
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3.3 Estimation of the State of a Statistical System

It is accepted above that in a stationary state the system under study consists of N
identical particles placed into a flow providing for their separation into two outputs.

A system consisting of one particle has two different stationary states with the
velocities directed upwards (a) and downwards (b). A system of two particles has
four states (aa; ab; ba; bb), a system of three particles — eight states (aaa; aab; aba;
baa; abb; bab; bba; bbb), etc.

Hence, the total number of all possible states of a system consisting of N
particles can be written as

¢ =2N.

We should emphasize again that each particle can be oriented in two ways
irrespective of the orientation of the remaining particles.

The basis of our consideration of a system is the probability of potential
extraction of particles in each of its states. Potential extraction implies the quantity
of all the particles with upward-oriented velocity in a stationary system. If the
number of particles in the system is NV, the potential extraction can vary for different
stationary states of the system within the limits

0<e<N.

Thus, here we are dealing with a directional mass transfer in two directions. It
can be characterized by two numbers, for example 70% upwards and 30% down-
wards. Such two-valuedness is inconvenient for the analysis of the system, and in
this case it was possible to find a unified estimation.

By analogy with dependence (1.7), we can write an expression for potential
extraction as follows:

& = -z (3.2a)

N+ N
— z & = —
2 7 2

We call the parameter z unambiguously characterizing potential separation in
both directions a potential separation factor or just separation factor. Clearly, it
varies within the range

<z< +

N
N

It is also clear that at an equiprobable distribution

z=0.
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Physically, this parameter determines the quantity of particles constituting the
deviation of fractional extraction from the equilibrium one.

The number of particles with the velocity directed upwards n(7) equals %N + z;
the number of particles with the velocity directed downwards n(]) equals
%N — z. The total number of particles is:

n(1) +n(l) = GNJFZ) + (%N—z) =N.

If N is even, z is an integer, and if N is odd, z is a half-integer. Since N is very
large, we can practically always assume without any error that N is an even number.
Then the integer z can acquire all the values between —% and % A classical
description of the state of an object consisting of a large number of particles is given
in a well-known article by Niels Bohr published in 1913. This article was dealing
with the behavior of atoms and molecules. Although particles in the process under
study are incommensurably bigger, the application of the same methods seems
rather promising, because here we can observe a direct analogy consisting in the
fact that critical regimes of two-phase flows are also characterized by simultaneous
participation of a large number of particles.

A system can consist of both one particle and an enormous number of particles.
In our further study we deal with the state of a system of many particles. Each
stationary state has a certain separation factor, but it may happen that several states
have the same or nearly the same separation factor.

It is shown that the number of states of a system equals 2V. It is noteworthy that
in this case the quantity of possible values of potential extraction amounts to
(N +1). In our example, three values of separation factor can be obtained for

two particles:

1. aa — both particles are oriented upwards (z = +2);
2. bb — both particles are oriented downwards (z = —2);
3. ab and ba — particles have different orientation (z = 0).

Note that the latter values of the system are self-similar.

Thus, the number of states exceeds the number of possible values of potential
extraction. For instance, at N = 10, there are 2'0 = 1,024 states corresponding to
only 11 different values of potential extraction. We can easily find an analytical
expression for the number of states with (% + z) particles with the velocity oriented
upwards and (g — z) particles with the velocity oriented downwards. Their differ-

ence is
N N
(2+Z> - (2—Z> = 27z.

Surely, at any specified moment of time, each particle can acquire only one value
of contribution to the total separation factor. We observe a system of N particles at
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successive moments of time #;;#,;#3 ... t,, the number of such observations being
large and equal to m. Let the system be in one of its states at each observation. We
denote by n(i) the number of cases with the system in the state i (i.e. in the self-
similar state 7). Then the probability of such a state is

P(i) :%.

With increasing number of observations m, the magnitude P (i) tends to a certain
limit, which constitutes the probability of the system stay in the state n(i). Note that
it follows from the definition of probability that

lim > PG =1.

In other words, the probability of the system being in any of its states equals a
unity.

Statistical approach determines mean parameters of magnitudes under study
operating with probabilities instead of reliabilities. It is possible to determine
more precisely the probability of any experimental result obtained in a certain
system by repeating this experiment on a large number of similar systems.
Although it is impossible to predict a reliable result of a specific experiment, the
statistical approach makes it possible to determine the probability of each possible
result of this experiment.

Naturally, it is impossible to predict the behavior of each particle in a system
consisting of a large number of particles N. The use of statistical method implies the
study of an ensemble of ¢ similar systems instead of one system. Since the essence
of statistical approach consists in the ways of determining mean values, we examine
them in detail.

Assume that a variable u characterizes a certain parameter of the system and
acquires o possible discrete values uy;up;us...u,, with respective probabilities
Pl;Pz;Pg,...Pa.

It means that in an ensemble of ¢ analogous systems, the variable u has a self-
similar value z for the following number of systems:

¢.=¢-P..

The average value of the quantity under study or averaging over an ensemble
denoted by <u> equals
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o
but % = P., hence, <u> = ) P.u,. Similarly, if f(u) is a certain function of u, its

average value <f(u)> is detze:r}nined by the expression:
<fu)>=> P.-f(u). (3.2b)
z=1

Some simple but useful features of averages can be determined from this
relationship.

1. If f(u) and g(u) are two arbitrary functions of u, then

o e = SR ) + )] = S PFw) + S Paalu)
z=1 z=1

z+1

= <f>+ <q>. (3.3)

It means that the average value of a sum of functions equals a sum of average
values of each function.

2. If ¢ is a certain constant, then

<¢f>= Ea:Pz[cf(uz)] = cisz(uz) = c<f>.

z=1

3. If f(u.) = const, the obtained dependence shows that the average value of a
constant equals the constant itself
4. We assume two discrete-variable quantities # and v acquiring the values:

UL U5 - - - Uy,
Vi;vVa;...5Vg.
Denote by P. the probability for the variable u to acquire the value u., and by P;
the probability for the variable v to acquire the value v;.

If these variables are independent, the joint probability of these events equals

P, =P, xP,.



48 3 System of Particles of the Same Size Class in a Critical Flow

If there exist two functions of these variables f (#) and g(u), it follows from (3.3)
that

o B o

B
DD P ) - qlus) =YY P (w)][Pog(us)]

z=1 s=I z=1 s=I

= <f(u)> - <q(u)>.

<f(u)q(u)>

5. Sometimes it is necessary to measure the deviation of a variable from its average
value, that is

Au=u— <u>.
The average value of this quantity is zero, since
<Au> = <u — <u>> = <u>— <u> =0.

However, the square of this value is not zero:
o
<Au>? = ZPZ(MZ — <u2>)2.
z=1

This value is always positive, that is,
<Au>>=0

and it is called dispersion. A linear measure of the scatter in parameter values is an
expression:

Au = V<Au>2.

This quantity is called standard deviation.

6. The totality of all probabilities P, for various values of u, provides a total
statistical information on the distribution of the parameter u values in the
ensemble

Let us revert to the process under study. N particles in the system have two
realizations in the orientation of their velocities — upwards or downwards, that is
either 4+p or —pu is possible.

Potential extraction is composed of an algebraic sum for all particles of the
system:
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N
1= Zy,.. (3.4)
i=1

To obtain an average value /, it is sufficient to average both parts of equality
(3.4):

N N
<I> =<y > =Y <p>=N<p>
‘ i=1
This result is obvious. It means that the average value of potential extraction / for

a system of N particles is N-fold greater than the value of this parameter for one
particle. In this case, the deviation is determined as follows:

[—<I>= Z = <pp>

This expression can be simplified:

N
A= Aw,
=1

hence, <AI>?2 Z<Aﬂl =N-. A,u2 Al = /N - Ay;, and AI \/L_'<Auul .

If we denote the probablhty of upward orientation for a certain region of space
by p, and of downward orientation — by g(it is clear that p + g = 1), then

<p>=pp; + (=) = (p — 8) = w(2p — 1).
Consequently,
<I>=N(p — g
<AI>? = 4Npg,ui27
and the standard deviation amounts to
<AI> =2+/Npg - i

Stationary states of a system or its part possessing the same separation factor or
separation factor value within a narrow interval are self-similar. We call self-
similar such states of a system that ensure the same separation factor, and their

number should be taken into account when establishing the total number of states ¢.
If the separation factor z; can be realized in y; different ways (z;y;), we assume that
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the state z; is y;-fold self-similar. We emphasize two basic points in the definition of
self-similarity.

First, this definition is applicable to the magnitude of separation factor, and not
to the states of a system that are all different.

Secondly, practical establishment of self-similarity in a real process is deter-
mined in many respects by the perfection of experimental method. Using a more
sophisticated method, difference in the extraction can be found, although it seems
to be absent if particles are divided into narrower classes.

When the number of particles is limited, it is easy to reveal self-similar states.
We have demonstrated that if the total number of states for N particles is 2, then
the number of separation factor values amounts to (N + 1) only.

If a specific configuration of a system is chosen at random, the probability of
finding it equals ZLN If this configuration has C self-similar states, its probability
amounts to £ .

Before starting calculations, two more remarks should be made.

First, we assume, without going into details, that any of the states of a system
self-similar with respect to separation factor are equiprobable.

Secondly, there are states of a system whose statistical properties are of no
interest from the point of view of the process under study, since their probability is
vanishingly small.

To represent some state of a system, one can use either a visual image as in
Fig. 3.2 or a symbolic notation:

a1b2a3a4b5a6b7 . Cl,'bj .. .bN. (35)

We start with simple calculation. In a system of two particles, we obtain four
possible states

((11 + b])(az + bg) =aja; +aiby + bja, + bbb, 3.6)
by multiplying (a; + by)(ay + b,). We can equally well multiply expressions
(T + 1) (124 1,). We can assume that the left side of expression (3.6) is a

function determining the state of the system. A determining function for three
particles is

((11 + b])(az + bz)(a3 + bg) = a|azas + (11(12b3 + (11b2b3 + a1b2a3
+ biaybsz + b1bybs + biazaz + bibras.

We obtain eight states of the system, which corresponds to
2% =38.

The product of N multipliers in (3.5) can be written without the account for the
order numeration, which is not of fundamental importance for the process.
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Since in our case the projection of particle velocity has only two orientations, the
total number of states of a system of N particles is:

¢ =(a+b)". 3.7)
In a general case, this dependence can be expanded using the binomial theorem:
1
(a+b)" =d" +Na"'b +§N(N —1)d" 2 4+ DY,

We can write this expression in a more compact way:

N
—kpk
a+b z;N k'k' b*.

In the present case, it is more convenient to perform the enumeration of states
within other limits, with separation factor varying from —% to +% 5, that is by
analogy with expression (1.7). In this case,

N +% N' N+ N_
(a+b) :ZV: lN—f—z!lN—Z' b
2 2

2

Expression a*"*b> % enumerates all possible separation factors within the range
of —%V<z< +4 5, while binomial coefficients show the number of self-similar
states of the system with a fixed number of particles oriented upwards or down-
wards.

We perform calculations under the condition that N>>1 and z< |%| We deter-
mine binomial coefficients:

N!

o) = NN

(3.8)

The parameter ¢ (N; z) determines the number of states of a system of N particles
with a common separation factor 2z. Hence, in a general case we can write

(a+b)" =" ¢p(N;z)a> b,

In this expression z is any integer between — % and % . We call the value ¢(N; z)
a self-similarity degree. Finding the logarithm of the left and right part, we obtain
the following situation in (3.8):
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B (0 R /R S

We examine separate parts of this expression:

In[(¥+2)1] = In(¥1) +k§m(g+k)

in[(3 - 2)1

. (3.10)
ln(%!) —gln(%— k+1)

and add up these two expressions:

(G ol Gr)] =G e

2k
i . (3.11)
N

Proceeding from the assumption that g’ — k + 1 approximately equals % — k, the
second summand in (3.10) amounts to

Zln%+k: i:ln

N _
k=1 2 k

1+% S 1+x
= In

2% E:

= -5y = l-x

(3.12)

where x = %V—k It is clear from the definition that x < 1 always

To disclose the contents of (3.12), we perform additional calculations. We recall
that

C=l4x+x>+--
For x<1, we can restrict ourselves with the first two terms. Then,

e~ 1+x;

ie.  x~In(1+x),
et ml—x ie. —x = In(1 —x).
This means that
1 1+2  4r
In +x%2x; In +N%—,
I—x 1-2% N

and the dependence (3.12) acquires the form:

~ —

I 4G~ 4z+1 222
Y In +x——2kzw~ iy (3.13)
2T TN £ N N
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Thus, dependence (3.8) is transformed into the form
d(N;z) e v (3.14)
(2 2
The obtained result can be written as

B(N:z) = (N; 0)e . (3.15)

That is this expression should be understood as follows: the number of states of a
system under study equals the number of equilibrium states (z = 0) multiplied by an
exponent at any value of separation factor.

The value of exponential coefficient can be obtained using Stirling’s formula:

n! = (27m)%n”e(7"+ﬁ+‘").
Taking this into account,
NI V2uNNYe™™ w2
O@ - awkey  Vaw
Hence, relationship (3.15) amounts to
¢ =2V %eT (3.16)

Let us analyze dependence (3.16) at various ratios of probabilities of the class
output into fine and coarse products. First examine the simplest case of equilibrium
class distribution.

3.4 Principal Statistical Characteristics of the
Separation Factor

We analyze the derived dependence (3.16). Its validity can be checked by summing
over all z values from —% to +5:

z:+%
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Summing over all the values of z gives an integral

+o0 3 > +00
2.2 9.2
/2”,/—e%dz:2’w—/ eV dz
N N

We introduce a new variable

then

2 N
\/];dz =dy; and dz = \/;dy.

Taking this into account, the dependence under study is transformed into

> +00 N 2N +o0
ZN\/ﬁ/ eyz\/;dy:ﬁ / e’yzdy.

Since, according to reference data,

+o0

we obtain

+00 2
9.2
/ Ny Z e dr =2V,
N

which exactly corresponds to the total number of states of the system.

The distribution defined by the right side of dependence (3.16) is Gauss distri-
bution with a maximum centered at z = 0. For such curves, mean square deviation
is a measure of the relative distribution width. As already shown, its value is

g =VN.

The ratio of mean square deviation to the maximal value is

N/

N N’
If the total number of particles in a system, as defined for separation conditions,
equals N ~ 10'°, the relative distribution width is on the order of 107>. It means
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that in this case we obtain a sharp maximum at the mean value of z = 0. The
physical meaning of this expression is that the separation factor reached in a given
apparatus is not, basically, the only possible, but the most probable one.

Thus, we have demonstrated that the probability of this separation exceeds so
greatly any other conceivable distribution that it can be considered the only
possible, that is determinate under given conditions.

This explains reliably enough the constancy of separation curve for a process
involving simultaneously myriads of particles. Such constancy is confirmed by all
available experimental material.

Let us introduce one more notion for the system under study — parameter 2z,
which determines the disbalance in the distribution of particles of a narrow size
class.

Among principal parameters of a narrow size class distribution is the ascending
flow velocity. Obviously, the separation factor value (2z) is functionally of corre-
lationally connected with the flow velocity. However, flow velocity reflects only
one aspect of the process — its kinetic component. We introduce another parameter
reflecting the potential component of the process, which should be proportional to
the separation factor, and denote it by /. We call this parameter “lifting factor”.

I =2zc,

where c is proportionality coefficient.

By analogy with the kinetic theory of gases, this coefficient should involve the
gravitational parameter equal, as known, to gd. Besides, in order to reflect the
potential component, it should include the mass of particles of the narrow size class.
Finally,

1 = —2zgdm.

The dimension of this parameter is [kgm].

Lifting factor expresses the potential energy of particles disbalance. The minus
sign appears because the gravity force is directed downwards. On the whole, this
parameter determines the potential extraction magnitude and direction.

The importance and universality of this parameter is assessed later. It has a
generalizing meaning for fields of different origins — centrifugal, magnetic, electri-
cal, etc. For these fields, its form differs from that of gravitational field, although the
method of its derivation remains the same.

Lifting factor differential is written as

dl = —2gdmdz:.

By a differential of / and z or N we mean a number of particles several orders
smaller than these values, and not an infinitesimal number. Such approach is
successfully applied in the kinetic theory of gases, where gas molecules are
regarded as hard balls.
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The kinetic energy needed to provide the potential energy / on the part of the
flow is measured by the minimal effort per unit area of the flow cross-section, which
can be denoted by f. The dimension of this parameter is [kg/m?].

The potential extraction determines the deviation of particles orientation from
the equilibrium one at z = 0. At the same time, it should be taken into account that
the potential energy of a particle in a flow is gdm. Therefore, such extraction
characterizes only the potential energy of disbalance in different orientations of
particles. In this dependence,

m=V(p = po),

where m is the particle mass; Vis the particle volume; p, p, are the densities of the
material and the medium. For air flows, % >1,000, therefore, in this case we can
assume

m="Vp.
By definition, the average value of the potential extraction can be written as

N

(=" (as),

S=1

where &g is the potential extraction of one particle.

If the orientations of particles are chosen at random, each of 2" states can appear
with the same probability, that is it can amount to +gdm or —gmd. Therefore, the
average value in each point

and hence,

This determines the first moment distribution function /.
The second moment distribution function is determined from the dependence

@) =((25) )= LS

where / and s independently acquire all values from 1 to N. Their contribution to
<12> equals

2 2 2

(+&)" + (—¢)" | =¢".

| =

(eres) =



3.4 Principal Statistical Characteristics of the Separation Factor 57
A double sum contains Nsummands of this type. If [ # s, then (ge;) = 0.

The latter can be illustrated by the behavior of a system consisting of two particles.
This system has four possible states:

[(+5)(+5) + (+5)(=9) + (=5)(+5) + (=9)(=9)] = 0.

Bl

(s152) =

Hence, terms with / # s do not contribute to <12>, therefore, this parameter
contains only N summands, each of them equal to &,

(I*) = Né.
There exists a parameter characterizing a root-mean-square deviation

VI = /N

It can be shown that the magnitude / has also a sharp maximum. To do it,
we divide the root-mean-square deviation by its maximum value:

ax/ﬁ_l
eN N’

Thus, we have shown that the number of particles in one m> of the flow is on the
order of 10'°, and consequently, %N =1073.



Chapter 4
System of Particles of Several Size Classes

Abstract A definition of entropy for critical two-phase flows is given. The most
probable state of the system is defined. It is shown that a system is in its most
probable configuration, if the number of its admissible configurations is maximal.
Principal properties of this entropy are examined. The notions for chaotizing factor
are formulated. A connection between statistical parameters of the system and
parameters of separation curves affinization is validated from this standpoint. One
more parameter, mobility factor of a two-phase flow is introduced. Statistical
identities for such systems are examined. Entropy connection with governing
characteristics of two-phase flows is established.

Keywords Entropy - System configuration - Ensemble of systems - Chaotizing
factor - Mobility factor - Uncertainty of a system - Paradox - Irreversibility -
Stratification - Identity

4.1 Interaction of Particles in a Flow

When examining a system consisting of particles of various size classes, we have to
take into account an additional effect — mechanical interaction of particles in a flow.
The presence of this effect was confirmed by a very simple experiment. On a plant
presented schematically in Fig. 4.1, air flow velocity was selected in such a way as
to create a suspended layer of balls with the diameter d = 12 < 15 mm and density
p = 6,000 kg/m? in its conical part. The layer was stabilized along the cone height.
Then carbon slack of a low concentration u ~ 0.1kg/m> and with the particle size
d <0.25mm was fed into the flow from below. The flow transparency was not
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Fig. 4.1 Facility for
demonstrating mechanical
interaction of particles in
a flow

w

deteriorated, but under the action of this slack, large heavy balls suspended in the
cone were thrown out into the cylindrical part of the plant to the height up to
400 mm from the cone edge. This experiment visually demonstrated, first, the fact
of mechanical interaction of particles in a flow, and secondly, the effect of this
interaction on their behavior. To make conclusions, we use Fig. 3.1, where a section
Al long is marked out.

Under stationary separation regimes in a vertical counterflow, the material
concentration is gradually reduced in both directions from the feeding zone.
Therefore, this section should be large enough to hold a significant quantity of
particles, but also small enough in comparison with the variation scale of disperse
material velocity and concentration. It is clear that when the process is stationary,
the quantity of solid particles in this section is constant. We consider the interaction
of two size classes — fine and coarse.

We assume that

G =G +G;

particles arrive at this section per unit time, where

G; is the consumed part of i-th component, kg/s;

G, is the consumed part of j-th component, kg/s.
We introduce the following notation:

ri;m;; v are the radius, mass and mean axial velocity component for fine
particles;

rj; mj; v; are similar parameters for coarse particles.
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The weight of coarse particles within a unit length of the section under study
amounts to:

Over the entire section under study Al, the weight of these particles is

G;- Al

. . Vj

Similarly, for fine particles we can write:

G- Al

i

Irrespective of whether coarse particles move in or counter the direction of fine
particles, they are constantly hit by fine particles. According to the separation curve,
some of the fine particles move in the direction of the coarse product output and get
into this product instead of getting into the fine product output. Therefore, we
assume that coarse particles located in the volume under study hit only some of the
fine particles,

AG: = yAG,‘,

where y is a coefficient depending on the velocities and concentrations of fine and
coarse particles, flow constraint conditions and regime of the medium motion
(y<1).

It is known from mechanics that two particles can collide only if their encounter
takes place within an area equal to the cross-section of collisions.

Since in the process under study bulk concentration of solid phase in the
flow is insignificant (u ~ 3kg/m?; 8~ 0.001), we can assume that collisions
with simultaneous participation of more than two particles are unlikely, and
examine only pairwise interactions. In a unit of time, a coarse particle can collide
with those fine particles whose centers are located at a given moment inside
a cylinder with the base corresponding to the collisions cross-section and the
height — to the difference between distances passed by these particles in a unit of
time, that is,

h=v;—v.

To determine the collision probability P(x), coarse particles can be considered
as motionless and fine ones as moving at relative velocities.
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Collision probability can be defined as a ratio of all collision areas within one
cross-section of the apparatus to the value of this cross-section, that is,

458
P =15

2 . . . .
where § = n}(r,» —rj)"m; D, is an equivalent diameter of the flow cross-section; nj’
is an average number of coarse particles in the flow cross-section. The average

number of particles in the flow cross-section can be defined as follows:

/7AGJZI’J
n,=————.
m;g - Al

Only those fine particles that are 0 to 4 distance from this layer have a chance

to collide with these particles in a unit of time. Their number can be determined
to be

r_ AG,‘(V,‘ - Vj)
! m;g - Al

Besides, only some of the fine particles determined by the collision probability,
that is

4(r; + rj)zn,nj(v,- —vj)2ry
D?

Ani=n)-P(x) =

can participate in collisions, but not all of them. The total number of collisions over
the entire section under study amounts to

Anl - AL 4(ri + 1) mimg(vi — vy)y - Al
2r D2 '

e

AN:

In this dependence, n; and n; correspond to the number of particles of both
classes per unit height of the flow under study.

_AG; . AG;
- migAl’ T migAl

n;

Hence, taking into account previously obtained results,
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We can pass from the number of particles to their concentration based on the
following reasons. The medium flow rate is determined as

0 =F-wy,

where Q is the medium weight rate, kg/s; F is the apparatus cross-section area, m?;
w is the medium flow velocity, m/s; }, is the medium specific weight, kg/m>.

Output flow rates for each of the size classes under study can be represented in a
similar way:

Gi=F vy, Gi=F vy

where 7;;7; have the physical meaning of the weight of respective solid particles in
a unit volume occupied by these particles.
Relative degree of the flow loading with particles of respective size classes is
G v Gl

H}Zii . 7/’1':7:
Q wyp T 0wy

Local concentration per unit volume of the apparatus amounts to

w w

Hence,
Vi = Yolis Vi = Vol
Taking this into account,

Fy Fy
=, nj=—2p;.

" omig m;g

Finally we obtain the desired parameter as follows:

_ n(ri + If/)2Vy%y
mim_/‘gz

AN (vi = v,

where V is the volume of the zone under study, m?3

Hence, the total number of particles collisions within a certain volume is in
direct proportion to their concentration in the flow, velocity difference for motions
of different classes, and the magnitude of this volume. The total number of colli-
sions in a unit volume of the apparatus amounts to

2
n(ri + 1)) 75y
mimjgz

N = (Vi = v ity



64 4 System of Particles of Several Size Classes

At the particle velocity fluctuation in any direction with respect to the mean
value, the number of interactions acquires values within a certain range. We can
assume that the obtained expression is its mathematical expectation.

It is of interest to determine the number of hits on the fine particles experienced,
on the average, by one coarse particle. This value amounts to

2
NoN_ n(ri + 1) 93y (vi = v parymjg _ i+ )70y (vi — v))
Ty mm;g? - F - ol mjig - F

it

If we know this value, we can calculate the mean distance traveled by a coarse
particle between two interactions. During the time interval At, a particle traverses a
certain zigzag path v;At. The distance traveled by the particle between two colli-
sions can be defined as a ratio of the total path traveled by the particle to the number
of collisions experienced while traversing this path:

v, At . vim;g - F

j=JAr .
TONAC a4 ) ey (vi — vy

Let us combine all constant parameters into one. Note that the difference in the
particles velocities can be written as

(vi = ;) = (W —wso)) — (W= wso(j)) = Wso(j) + Wso(i) = const.

Keeping this in mind, the obtained expression can be written as

I =2 (4.1)
Wi

Hence, the free path length of a particle of a certain size class under gravitational
separation conditions is directly proportional to the velocity of particles of one
class and inversely proportional to the concentration of particles of another class in
this flow.

4.2 Forces Caused by Interactions of Particles
of Various Classes

We assume that at a collision, a fine particle slows down its velocity in the axial
direction, on the average, by a certain value Av;. Let us study the mechanism of
velocities redistribution for two separate particles of different sizes. Since we are
interested only in the axial velocity change, we restrict ourselves to forward
collisions in the vertical direction. A collision of two bodies is considered forward
if they do not rotate at the moment of the collision, and the velocities of their centers
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c1 and ¢; are directed along ¢ c; line normal to contacting surfaces at the point of
their contact.

Let two balls with the masses m; and m; collide at the moment of time #9. During
a very short time period (#; — fy) of the collision, the center line can be considered
as motionless. We denote algebraic values of particles velocities before the colli-
sion by v and v,, and after the collision by v; and ;. Let us analyze, in general, the
phenomena taking place at the particles collision. Starting from the moment 7y,
when the particles come into contact, they start deforming around the contact point
and go on drawing together up to the moment ¢}, when the distance between them
becomes the smallest. During the time period (#; —#) of the first stage of the
particles interaction, a reaction tending to draw them apart arises. The work of these
reactions during that time is negative, and the kinetic energy of the system
decreases.

At the moment 7, the velocities of both particles become equal, their centers
do not get closer any more, and their deformation value is maximal. Starting
from this moment, mutual reactions of both particles go on acting until they
acquire their original shapes. At a certain moment of time f; they touch each
other at only one point. During this second stage (¢; — #,), the kinetic energy of
the system increases because the work of the reaction forces becomes positive,
which leads to a mutual separation of particles at velocities different from the
initial ones.

In such collisions, rather significant forces are developed due to the smallness of
the collision time. Gravity of the particles is, as a rule, neglected because of its
insignificance. Therefore, a collision of two particles is considered as a system
under the action of internal forces.

It follows from the theorem of a system center of gravity that the velocity of the
common center of gravity has not changed, since there were no external collision
momentums. Hence,

_ mvi+myy  mivi + myy;

Vo
m; + mj m; =+ m;

and therefore
miv; + mjv; = m;v; + m;v;.

Particle velocity after a collision is determined, in many respects, by elastic
properties of colliding bodies. Usually all the bodies are subdivided into three
groups — absolutely inelastic, absolutely elastic and possessing intermediate
properties.

Absolutely inelastic bodies remain in contact after the collision, that is their
velocities acquired as a result of the collision become identical:

V,‘:V_j
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or

miyv; +myv;
- = Vi=YVj.
m; + m;

At the collision of absolutely elastic bodies, kinetic energy is not lost, that is,

2 12 2 .
myv; LV omyv; " m;
2 2 2 2

\:N ‘

This expression, in combination with the previous one, allows unambiguous
determination of particles velocities after the collision:

- _ m—nyoo
Vi J m[+mj(1 VJ)’
by T
Ut m,-+mJ(V' )

Velocity changes for both particles amount to

2m;
AV,' =V, — V= /

(V,'—V,‘),

and the value
Vi =V =V — V.
Thus, relative velocity of the pair of particles under study changes the sign, while

its value remains unchanged.
Evidently, for real, that is non-absolutely elastic materials,

Vi —Vj = k(vj - Vi)a

where 0 < k < 1. Proceeding from this expression, in combination with the
momentum equation, we can obtain the following:

Av, — mi(k 4+ 1)(v; — vi)

)

m; + m;

AVJ' _ m,(k+ 1)(\/,‘ — Vj) )

mi -+ m;
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The total collision momentum acting on a cluster of fine particles per unit time
can be defined as

P = ANI’}’I,'AV,‘,

where ANm; is a mass of fine particles colliding with coarse ones. Taking into
account the dependence for AN, we can write:

n(ri + rj)zy%zoc(k +1)
g2 (m; +my)

2
P = (Vi - Vj) il

where o < 1. This coefficient takes into account the difference between an actual
effect of particles collision and a forward collision.
We denote the combination of constant parameters in the last expression by

B n(r + rz)zy%zoc(l +k)
g (m; +my) '

Taking this expression into account,

2
P = cipp(vi—vj)”.

It has been shown that the difference in the velocities of particles is, on the
average, a constant value independent of the flow velocity. It is determined only by
the difference in hovering velocities of the particles to be compared, that is

Vi — Vvj = const.

Thus, we can obtain

P = copythy.

This means that the total force due to the interaction of particles is only a

function of concentrations of both kinds of particles in the flow.

Now that we have clarified the main regularities of particles interaction in a flow,
we revert to the study of a system of particles consisting of two narrow size classes.

4.3 Two-Phase Flow Entropy in Critical Flow Regimes

The notion of entropy is crucial for the study of properties of mass systems. This
notion was first formulated in thermodynamics and then extended to gaseous
systems. To determine the entropy of any mass system, it is necessary to know
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how to find the number of its admissible states. A state is considered admissible, if it
is compatible with characteristics of the system. When a contact between two
systems is established, an interesting situation arises. Let us examine the mechan-
isms of separation factors and lifting factors exchange.

The main problem of statistical mechanics is to study the most probable distri-
bution between systems ensuring their mutual equilibrium.

We examine a system consisting of particles of one size class and mark particles
of one part, for example, with paint or isotopes. We obtain two systems with
different numbers of particles.

Let us determine the number of admissible states of the two systems and find the
most probable configuration of a combined system. We consider their behavior in
the system as follows. First we observe the particle of one class only, for instance,
the marked ones. After we determine the number of states of such a system, we start
observing the system of the second type of particles. Then we examine character-
istics of the system consisting of particles of both groups.

Two interacting systems exchanging energies and particles eventually reach
equilibrium with identical energy characteristics.

Let the realization of each system be defined by certain fixed nonzero values of
separation factor z; and z,. The number of admissible self-similar states of the first
system with respect to their separation factor is ¢, (Ny;z; ), and each of these states
can be realized side by side with any of ¢,(N;;z;) admissible self-similar states of
the second system.

It is clear that the total number of states in a combined system is defined by a
product

D1 (N1;21) o (N2; 22).
We write
z =1z + 2y,
that is,
7y =2z—1].
At a constant number of particles in the systems
N = N, + N, = const,

the realization of a combined system can be characterized completely enough by
the product,

¢1(N1;21) 9o [N2(z — 21)],

that is through the magnitude of one separation factor z;.
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To obtain the total number of all admissible states, it is sufficient to sum up the
obtained expression over all possible values of z;, that is,

G(N;2) = ¢1(Ni;z1) - ¢y [Na(z — 21)].

As known, such a sum has a sharp maximum at a certain value of z; ~ z,,,. This
magnitude of the parameter determines the most probable realization of the com-
bined system. Then the number of states in the most probable configuration equals

¢1(N1;Zm1)¢2(N2;Zfzml)' 4.2)

It is clear that if at least in one of the two systems the number of particles is very
high, then this maximum is extremely sharp with respect to z; changes. The
presence of a sharp maximum implies that the statistical properties of a combined
system are determined by a relatively small number of configurations.

It is clear that for a distribution with a sharp maximum, averaged properties of
the system are exactly determined by the most probable configuration. This means
that the average value of a physical magnitude determined previously over all
admissible configurations can be replaced with the value averaged only over the
most probable configuration. Let us demonstrate the implications of this approxi-
mation for Eq. (4.2). Taking into account the obtained result, we can write:

“2

¢ = ¢1(Ni;21)hy (N3 22) = ¢1(N1;0)¢2(N2;0)e(7’v;'17@).

We examine this dependence as a function of z;. Then Eq. (4.2) can be
rewritten as:

2:2
1

pone B (43)

Note that the function In y(x) reaches its maximum at the same x value as the
function y(x). We obtain from Eq. (4.3):

222 222
Ing =InA— 21 _ %2
N M

This magnitude has an extremum when the derivative with respect to z; equals
Zero.
For the first derivative, we obtain:
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1 1
Y
(N +N2)

is negative, and, consequently, the extremum represents a maximum. Thus, the
most probable configuration is the one for which the relationship

The second derivative

n_z-n_2n 4.4)
Ny N, N, '

is valid.

Thus, we have derived a very interesting relationship. Two systems are in the
most probable state when the relative separation factor of the first system equals the
relative separation factor of the second system. It testifies that the most probable
state of a system is established in such a way that the separation factor equalizes a
different number of particles in a flow. Thus, we have obtained a result indirectly
confirming the experimentally determined invariance of fractional separation
degree with respect to the original mixture composition. This conclusion shows
the statistical essence of this empirical result that was obtained long ago, but has not
been explained yet.

If z; and z; in the maximum of the product under study equal z,, and z,,,
respectively, then the obtained relationship can be written as

Zm, - Zmy - z

Ny N, N’
hence,

2

22
(0102)max = D1 (N1;Zm, ) P2 (N25 2 =z, ) = 1 (N150)hy (N5 0)e V.
We assume that
Z) = Zm + & 22 = Zpy, — &

Here ¢ is the measure of z; and z, deviation from their maximal values
Zm,and z,,, . Therefore, it is clear that
2 2 2
71 =27 + 2z e + &7,

2 _ 2 2
7y =2z, —2z,,e 4+ ¢

Taking this into account,

by Mo )iz = (e ) (1) () (8).
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In accordance with

Zmy _ ZImp

N, N,

the number of states in a configuration characterized by the deviation ¢ from the
maximum equals

1 (N1;2m, + &) Pa(N2s 2, — &) = (¢1¢2)maxe(_%)_(%),

To see the effect of this dependence, we assume N; = N, = 10'” and ¢ = 10°.

Hence, ‘ﬁ = 10~*. For such an insignificant deviation from equilibrium, we obtain
22 2102
NLI o100 T 200.

The product ¢, ¢, constitutes a portion equal to e~*% =~ 10~!"° of its maximal
value. Therefore, it is clear that the decrease is very significant and, consequently,
¢, ¢, should be a function of z,, with a very sharp peak.

Hence, practically always the most frequent values of z; and z, are very close to
Zpm, and zp, .

It is natural to expect that in a small system appreciable relative deviations in its
properties can take place. No theoretical difficulties arise when examining a small
system in contact with a large one. The result obtained for the number of admissible
states of two systems in contact can be generalized to the case of two systems taking
into account the lifting factor.

Applying the same argumentation as previously, we obtain the following expres-
sion for the self-similarity of a combined system:

I) = Z¢1(N111)¢2(N2§[ — ),
I

where the summation is carried out over all /; values below or equal to /. Here
1(Ny; 1) is the number of admissible states of the system 7 at /;. The configuration of
the combined system is determined by /; and I, magnitudes. The number of admissi-
ble states is represented by the product ¢ (Ny;11)d,(N2; 1), and the summing-up
over all configurations gives ¢(N;I). Let us find the greatest summand in this sum.
It is necessary for the extremum that the respective differential was equal to zero:

0 0
d = (8%1) bodly + ( a‘fZ) bydly = 0.

We take into consideration the fact that dI; + dI;, = 0. We divide this equation
by ¢,¢,, and since dI; = —dl,, we obtain

i (), =5 (G
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Proceeding from the fact that

)

dx  ydx’

the previous expression can be rewritten as

Oln ¢, _ (Olng,
o), = (G, o

Here we have derived a very important relation for the statistical investigation of
the problem under study and will revert to it more than once. At present, we can
emphasize the following:

— First, the derivative of the logarithm of the number of self-similar states of each
system with respect to the lifting factor determines the most probable configu-
ration of the system; this is the most important feature of the relation (4.5)

— Secondly, two systems are in equilibrium when the combined system is in the
most probable configuration, that is when the number of admissible states is
maximal

— Thirdly, let us concentrate on the magnitude in the numerator of expression (4.5)

H=1nd. (4.6)

The obtained expression is surprisingly simple. According to L. Boltzmann’s
classical definition, this magnitude is nothing else but entropy. According to his
definition, entropy is a measure of the system disorder or indefiniteness, that is, the
higher H, the greater . This definition corresponds to the relation (4.6) in the sense
that the more admissible self-similar states characterize the system, the higher is its
entropy.

However, this entropy is not derived for an ideal gas as a function of its
temperature. It is obtained for characterizing a two-phase flow in critical regimes.

Thus, we introduce a new notion into the theory of two-phase flows, which has a
deep physical sense, and at the same time build a bridge to statistical mechanics of
an ideal gas.

This mechanics has been based on the notion of gas molecules as ideal balls of
the same diameter placed within a closed volume and possessing velocities unam-
biguously determined by the temperature of the medium. On the basis of such
system and taking into account gas molecules collisions with each other and with
the chamber walls, a harmonious statistical theory has been developed, which is
confirmed by the totality of available data on gaseous systems. In recent years, the
interest in this theory has sharply increased in two aspects.

On the one hand, many fundamental works expanding and deepening
L. Boltzmann’s theory have been published. On the other, the ideas of this theory
have been rather successfully applied to non-gaseous systems in other fields of
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research, for instance, to solids, nuclear matter, magnetism, quantum optics, poly-
merization, etc.

Let us apply certain ideas of statistical mechanics, naturally, binding them to
specific conditions of the problem under study. At the same time, the specific
character of a two-phase flow has required a basic revision of these ideas.

However, basic provisions of thermodynamics and ideal gas theory have been
applied, because a sufficiently reliable notional and physical analogy between these
processes can be tracked. Thus, some regularities recalling laws of thermodynamics
by their structure are obtained. And although these regularities and the parameters
involved have absolutely different physical meanings, they are named in a way that
is traditional for statistical mechanics, for example, Gibbs factor, Boltzmann factor,
entropy, statistical sum for a two-phase flow, etc.

With the account of these preliminary remarks, we expose below the main ideas
of the method.

It is established that for the process under study entropy is a function of the
number of particles in the system and of the lifting factor, that is,

H =f(N:I).

Later we examine the connection of entropy with other parameters of the
process, and now we consider the main features of this new entropy.

4.4 Main Features of Entropy in Critical Regimes

We examine these features in a certain sequence.

1. Entropy equals zero when the state of the system is completely and unambigu-
ously defined. It means that ¢ = 1. In this case, H =In¢ = 0.

2. We try to determine the physical meaning of the expression (4.5). It is, in
essence, a magnitude equal to the entropy derivative with respect to the lifting
factor, which is equal for both systems, that is,

OH

1
oy
By analogy with gas dynamics, the parameter y plays the role of a chaotizing
factor of the process. Since the entropy is dimensionless, the dimension of y should
be equal to that of the lifting factor, that is [kgm]:
- m0W2
==
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where my is the mass of the medium in the particle volume. Here the chaotizing
factor acquires the meaning of the kinetic energy of the part of the flow equal to the
volume of solid particles.

3. When the chaotizing factor of two systems in contact is exactly the same, the
contact permits spontaneous changes in particles directions inside them,
although the systems are in equilibrium. The number of the states of the first
system equals ¢, and each of them can be realized simultaneously with any of
the admissible states of the second system equal to ¢,. Thus, the total uncer-
tainty of two isolated systems is smaller than or equal to the uncertainty of a
combined system.

This means that

Hy~ < Hy +Hy.

We can offer an illustrative example confirming this fact. Let us take two
identical volumes with the same number of particles N in each of them. If the
particles of one system differ at least in one feature (for example, in size or even
color) from the particles of another system, at the mixing of these volumes the
entropy grows.

Entropy of the mixture constitutes the probability logarithm, that is,

H=klInp.

Entropy of each part is zero, since In 1 = 0.
The probability of particle extraction from the mixture is

(Ny + N))!
N{IN,!

P =
We rewrite this expression using the Stirling formula:
InN!'=N InN — N.

Taking this into account,

H= k[(Nl + Ny) In(Ny + Np) — (N1 +N2) —NiInN; + Ny — N, InN, +N2]
= k{N, [ln(Nl +Ny) — lan] +N2[IH(N1 +N,) — lnNz}}.

If the number of particles is the same, N; = N,, then AH = 2N In2, which
constitutes an entropy increment.

If, however, both volumes contain identical undistinguishable particles, there is
no entropy increment, and 2N identical particles occupy the volume 2V. This
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phenomenon is known as Gibbs paradox. It testifies to an intricate character of the
notion of entropy.

4. Entropy of a stationary process possesses the property of additivity. We know
that H = In(¢,¢,), hence H =1In¢, +In¢, = H; + H,. Let us analyze the
validity of the property of additivity. We have established the number of states
in the configuration characterized by a certain deviation &. We assume, for the
sake of convenience, that Ny = N, = % Then we can write that

400

B2 = 3 (Vi + &) Nl — )] = (B182) | et

&
—00

where summing over the deviations ¢ is replaced with an integral. We write
SNLZ = x?, then

+oo +o0
) N[ e, \ﬁ _ [aN
Jdee N —\/;Je dx = 8\/E_ 3

and, consequently,

| Y
ln(t)(N,z) =In (¢1¢2)max +§ ll’l?,

which differs from In (¢;¢,),,.« value by a magnitude on the order of InN. We
know that the order of In (¢, ), equals N, since (¢;h,),.., is on the order of 2V.
It means that at N > 1, InN can be neglected in comparison with N.

A conclusion follows that the entropy of a compound system can be considered
equal to the sum of entropies of the constituting systems under the condition that the

latter possess the most probable configuration.

5. It follows from the statements above that the sum of entropy changes cannot
decrease. Omitting numerous consequences of this statement, we emphasize
only one of them: Entropy increase in any processes distinguishes the future and
the past, and therefore, the arrow of time exists.

If the entropy of the initial state H,, is defined, then the entropy of an arbitrary
state is
t

H=th+ [
t — 110 d}’

L

The difference between the infinitesimals dI, dz and dy is that dI and dz are
infinitesimal differences in comparison with a large number N, while dy is simply
an infinitesimal amount.
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Usually, mass processes are basically irreversible. It is so, although it is not
evident. Anyway, if there exists at least one system whose entropy spontaneously
decreases without any external efforts, it can be used for decreasing the entropy of
some other system. It means that a spontaneous decrease in the entropy of one
system leads to a spontaneous decrease in the entropy of all the systems. Hence,
either all mass processes are irreversible, or there are no irreversible processes at
all. The process of irreversibility is usually identified by an expression of the
following type:

dl
dH > —.
b4

Irrespective of dI being positive or negative, entropy change in an irreversible
process should be always positive.

Long ago, T. de Donde introduced the notion of local equilibrium. It can serve as
an excellent approximation for computations in most hydrodynamic and chemical
systems. Irreversible processes are usually described through mass forces and mass
flows, the latter arising as a result of mass forces. In this sense, entropy change can
be represented as

dH = F - dX,

where F is a force determining the process direction, X is the flow determined by
changes either in N or in I.

In the present formalism, mass force is a function of mass variables. Here the
change in entropy is a sum of all changes caused by irreversible flows dX;, which
allows the following generalization:

dH = ZdeXk >0
k

or

dH _ ZF wdXy > 0.
dt o dt

Such formulation has another important aspect; it is applicable not only to the
entire system, but to all subsystems, as well. We successfully use this aspect
considering only a narrow particle size class and extending the obtained results to
other classes. All changes in a system occur in such a way that it is forced to
approach the equilibrium state with an equalization of force irregularities.

By way of example, examine the following phenomenon. We analyze from
this standpoint the behavior of a vertical ascending flow starting from the moment
when a certain amount of polyfractional material enters this flow at a zero
velocity.
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We assume that in this case, particle size distribution is so broad that the flow
velocity ensures the hovering velocity of a certain particle size within this distribu-
tion. For the sake of convenience, we take the total amount of material entering the
flow as a unity. It is known in physics that any system evolves to an equilibrium
state, which is equivalent to a state with the minimal potential energy. The equilib-
rium of particles moving in the flow ensues when the condition

V=W — W5

is realized for each particle size. Therefore, immediately after placing the particles
into the flow, the spatial volume occupied by them starts increasing in both
directions. After some time, a certain number of particles acquire a velocity close
or equal to the value corresponding to this expression. We call them stratified and
introduce the following notations:

G is the total amount of non-stratified material after the time ¢ elapsed since the
beginning of the process; D is the amount of material stratified upwards from the
feeding place; R is the amount of material stratified downwards. Evidently, at any
time interval

G+D+R=1.

It is necessary to emphasize once more that only the particles that have acquired
a velocity close to the stationary one, and not all the particles that have left upwards
or downwards, are considered as stratified.

According to the law of mass action, the number of particles stratified per unit
time is proportional to the amount of non-stratified material, that is,

dD dR
= = kpG, —

= kpG
dt dt RS

where kp, kg are mass processes constants. We exclude the parameter of time out
of these relations by dividing the first by the second:

dD  kp

dR kg

and integrate the obtained expression:

Since at ¢ = 0 the expressions D = 0 and R = 0, then C = 0 as well. Thus,

D_k

R kg’
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If we sum up the principal expressions:

d(D+R)
—=(k kr)G
r (kp + kg)G,
then
dG
—=(k kg)t
T (kp + kr)t,
that is,

G = e*(kl)JrkR)t_

Theoretically, at + — oo, the stratification is complete. In this case,

k k
R=—2_p=_"2
kp + kg kp + kg

Time duration of the processes is limited, and therefore, the separation in real
apparatuses is not complete and proceeds with a certain efficiency. Here some of the
fine particles get into the coarse product and vice versa.

Thus, the process under consideration is based on the phenomenon of material
stratification by particle sizes with respect to their stationary velocities under
specific conditions, and not with respect to the apparatus volume.

Here the difference of particles velocities from equilibrium ones acts as a body
force, and the occurring mass exchange — as a mass flow.

Similar forces and flows arise in two-phase flows depending on the irregularities
of the solid phase concentration and continuum velocity drops. Surely, these
parameters also affect particles stratification according to their velocities.

6. Let us establish the relationship between the main parameters. In any case, for a
narrow size grade, the number of states of a system can be written as:

hence

N 272
H=In¢=InN'—-2In—! ——.
n¢g =In n2 N

Taking into account the Stirling formula,

Inn! =~ n(lnn — 1),
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this expression can be reduced to the form

H=N(nN —1) —N(ln];]— 1> —%2.
It follows that
272
H=Nln2——. 4.7)
By definition, the potential extraction is:
[ = —2zgdm.

To write entropy in the form H(N, I), let us square both parts of this expression:
I = 42%(gdm)*.

Hence,

Substitute this expression into (4.7):

2
H(N,I):H(N,O)—W. (4.8)
It can be derived from the definition of the chaotizing factor that
1 OH 1
27O N
whence we can express / through y:
I = —IM. (4.9)

X
Substituting this expression into (4.8), we obtain:

N(gdm)2 .

H(N,I):H(N,O)— 2/2
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It follows from two latter dependencies that with increasing chaotizing factor,
the potential extraction and entropy increase. The mean value

(I = —2(z)mgd.

Comparing this expression with (4.9),

N(gdm)?
—2(z)mgd = _M’
X
hence,
2(z) _gdm _ gdm _ gd(p — po)
N 1 wimg w2py
Consequently,

(&) _gdlp—po) _ p
N w2pg .

Here we obtain a confirmation of the fact that the parameter B determines the
value of extraction. Let us revert to relation (4.9). If we examine the same system of
particles in a different field (centrifugal, electric, magnetic, ultrasound, etc.), at a
conserved entropy value we can write

N(gdm)? N(adm)?
Ho — (g T) —H, - (a fzn) .
273 25
It follows that
¢ & g
2= or PR
VSR 4] a )

where a is an acceleration in the field of a different nature. We define the value of
the specific potential extraction as

ol
i(y) = (3_X>N1' (4.10)

This is a relation between the potential and kinetic energy referred to one particle
of a narrow size class. In this form, the parameter i is constant for particles of a
certain size. For other particles, it is also constant, but its value is different, that is
for each class, i has an individual value independent of .
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4.5 Mobility Factor

In the previous section we examined the behavior of two systems that are in an
immediate contact. It follows from this examination that the number of admissible
states of a joint system is maximal when the chaotizing factors or flow velocities in
both systems are equal.

Now we analyze a steady-state flow in a system represented in Fig. 4.2. A
characteristic feature of this system is a longitudinal partition along the flow. This
partition separates the system comprising particles of the same size grade into two
isolated flows.

Let the first flow be characterized by the parameters Ny; /1, and the second by No;
I>. Note that the dynamic conditions of the flow are not the same for both parts, that is,

A1 # La(wi # wa).
For such steady-state statistical system the following relationships are valid:
N =N; + N,
=1+
The validity of the second sum follows from relation (4.4). For a stationary

system at N = Nj + N, it follows that z = z; + z,, and the parameters / and z differ
in a constant. After the removal of the partition, these relations remain.

A C A

Fig. 4.2 Apparatus with =
a longitudinal partition
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The total entropy change of the combined system after the removal of the
partition occurs at the expense of the chaotizing factor equalization and particles
exchange. It equals a sum of entropy change of each part caused by equilibrating
flows and particles exchange, that is,

L1 L2 L2 1

Hence, it is clear that when the chaotizing factor in both parts is equalized,
entropy generation becomes zero, while before that moment it exceeded zero, that
is entropy was growing.

As we have already shown, the most probable configuration of the combined
system is that with the maximal number of admissible states at the equality of
chaotizing factors in both systems.

This maximal number can be determined by analyzing the product of the
numbers of admissible states for separate systems with respect to independent
variables characterizing both systems. From the relation

p=0¢1hy = ¢1(N1§11)¢2(N_N1;I—[1)

the extremum condition can be written as

dlz>q51 =0. “&.11

d(¢14,) = <%dN1 +a;’1§11d[|)q§2 + (%sz +%

ON{ 19) ON, ol
Taking (4.9) into account, we can write:
dN, = d(N — N,) = —dNjy,
dl, =d(I - I) = —dI,
hence,

Oby _ 09y 0by_ 04,
ON, N, on, | ok

Dividing both sides of (4.11) by the product ¢, ¢, and taking into account the
derived relations, we obtain:

8¢1 3(;32 ad)l a(z)z B
(¢18N1 B ¢28N2>dN1 + ((]518[1 - ¢28[2>d]] =0.
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This expression reflects the condition of mutual leveling or equilibrium of both
systems. This dependence can be somewhat simplified:

Oln¢g, 0Jlng, Oln¢, OJln¢
_IMP\ oy (9P I, = 0. 4.12
( N, ow, )™Mt o e ) =0 @12

Apparently, the condition of equilibration of the two systems is satisfied when
the expressions in brackets acquire the zero value, since under equilibrium condi-
tions the expression in the second brackets is zero, as established previously. Thus,
we obtain from (4.12) that

OH\ _OH,  OH\ _0H,
ON, ON,' oI, 9L’

The second condition is already known; it is reduced to y; = y,, that is the
values of chaotizing factors in both parts of the system are equalized. The first
condition is new. We introduce a notation:

4.13)

where 7 is a parameter possessing the meaning of a mobility factor. Hand N are
dimensionless values, therefore, the right-hand side of Eq. (4.13) should be also
dimensionless.

Thus, another condition of a stationary process is added. When two systems with
equal flow velocities are combined, an additional new condition of a stationary flow
acquires the form:

1 T
o (4.14)
that is, two systems that can exchange particles get equilibrated when the ratio of
their mobility factors to the chaotizing factor become equal. We have assumed that
the chaotizing factor is y = w”mg/2. The mobility factor characterizes the behavior
of a particle under specified flow conditions. The dimension of this parameter
should be equal to that of the chaotizing factor, that is, [kgm].

Such characteristic of a particle is its vertical velocity component squared,
multiplied by the particle mass

vzm

TZT.
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The flow mobility acquires the meaning of the kinetic energy of solid particles.
Using the parameters of the separation process, Eq. (4.14) can be written as follows:

v % . Vi V2
1= —22 1.e., —=—
W2 w1 Wo

This ratio determines an extremely important aspect of critical flows. Equilib-
rium expressed in this way explains the reason of equal extractability of particles of
various sizes within the same apparatus, that is offers a statistical substantiation of
the separation curves affinization. In fact, it is known that in a deterministic case

V=W — Ws5q.

Taking this into account, the previous expression can be written as:

(Wi — wsp, )’ _ (- wso,)”
wi w3

or

2 2
LW \" () wso,
wy wi )’

Taking into consideration the fact that

we obtain

2 2

and since B > 1 is always valid, it follows that

By = B, = const.

If the solid phase consists of a powder of one and the same density p = const,
this expression becomes

Fri = Fry, = const.
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This dependence expresses the condition of equal extractability of particles and
explains the reason for separation curves affinization.

An additional condition follows for the equilibrium of two systems that can
exchange particles. Such systems are in equilibrium if the equal extractability
conditions are satisfied in both of them.

Let us consider a non-equilibrium case. Let 7, > 7;. At the transition of AN
particles from system 2 into system 1, the entropy change, according to condition

(4.12) is
3H1 8H2
H=dH, +H)=(—] dN—|—=) -dN
. d( H 2) (81'11)11 ¢ (812>12 ¢
= (—T—1+T—2> ~dN. 4.15)
x11 X2

In this expression, the statistical force of the process is (—11/y; = 12/%,), and
the statistical flow is the particles redistribution. These statistical force and flow
form the basis of entropy generation. At the onset of equilibrium, that is at

T1 (%)

= (4.16)
2 X2

the directional transverse flow of particles ceases, and entropy generation becomes
zero. At the equilibrium, y; = y, and t; = 15, while dH = 0. Hence,

T T
X1 X2
This is equivalent to
2 2
n_n
2= 20
wi W

therefore, we can obtain from (4.16)
B{ = B, = const.

It has turned out that this complex is universal for critical regimes of two-phase
flows. Its application for processing experimental data is described in detail in
Chapter 1.

Running a few steps forward (Chapter 8), it follows from the structural model
that the separation coefficient

=
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Taking this into account, the latter expression can be written as

z
k=V2=.
N
This expression reflects correctly the meaning of the separation coefficient.

4.6 Statistical Identities

We examine solid particles interaction in a flow in the critical regime. The gravita-
tional field regulates the motion of particles directing them downwards, and the
chaotizing factor prevents this process from disordering the system. We mentally
choose a segment in the vertical channel limiting a certain volume by two planes
located at a distance / normal to the channel axis. Let us analyze the process in this
segment. It is of no importance whether the solid bulk material enters this segment
from below — along with the flow, from above — against the flow, or through holes in
the lateral side of the segment. We assume that at a certain moment of time, there
are N particles of various sizes in this segment:

N, = ZN[.
n

We select a particular size class out of the flow of particles and examine its
behavior. The flow affects this class with a specific force f[kg/m?], which allows a
certain number of these particles to overcome the gravity force. The flow rate of the
medium through this volume is Vm?®/s. Here the chaotizing factor is y kgm. The
number of particles in this volume is proportional to the volume V', specific force f
and inversely proportional to the chaotizing factor, that is the higher the latter, the
faster the particles leave this volume. Hence, we can write:

A
1

oiN;,

where ¢; is a certain dimensionless proportionality factor.
This relation will be derived later from the process parameters. For all the
particles, this dependence can be written as

%f: ZG,‘N,‘.

If this equality holds for at least one i-th size class out of the total particles
distribution, a critical regime of two-phase flow is provided.
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The magnitude of f should ensure the gravity force overcoming by particles of a
certain size within their distribution and aerodynamic resistance of the rest of the
particles to the flow. It can be achieved only at the expense of the energy of the flow
equilibrating or exceeding the particles weight. This issue is discussed in detail in
Chapter 8.

This parameter can be called flow intensity, and the magnitude 'V — potential
energy of a moving medium. If for all classes of particles

V]
_f>0'iNi7
4

we are dealing with the pneumatic transport regime. At % <o;N; for all classes of
particles, a descending layer or a motionless layer on a grate blown through from
below is realized.

The entropy of this process is a function of the lifting factor, volume and

the number of particles (I;V;N). It can be written as a function of several

variables:
dH = (8_H> -dl + (6—H> -dV + (8_H> -dN. 4.17)
81 V:N 8V I:N 6N LV

Recall the two determinative relations that we have found:

ad_ . aa H_Z
oH  * ON g

Multiplying left-hand and right-hand sides of these expressions, we obtain

a_
ON 7
whence
Ol = tdN.

From the first expression, O = ydH.

We determine the influence of the volume V and flow intensity f on the lifting
factor. Examine a certain number of self-similar systems with the same entropy H,
volume V, lifting factor / and the same f.

We mentally perform a slow quasi-stationary increase of the volume of one of
these systems from V to V + AV. The change is so slow that the system remains in
its initial equilibrium state, that is its entropy H and the number of particles N
remain unchanged. In these conditions, such change is reversible.
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All equations of mechanics can be derived using the principle of least action
(principle of the potential energy minimum). This is a generally accepted fact
established long ago. All systems in nature spontaneously evolve towards their
equilibrium states, in which entropy reaches its characteristic extreme values. If
physical magnitudes acquire minimal or maximal possible values, it means that
they reach their characteristic extreme values. As known, at constant / and V, a
system evolves to a state with maximal entropy. At the same time, by analogy with
the second law of thermodynamics, at constant H and V, a system evolves to a state
with minimal /. In the case under study, at a constant H, the lifting factor changes
from I(V) to I(V + AV). at increasing volume.

We expand the lifting factor in series to the accuracy of terms of the first order
with respect to AV

I(V+AV):I(V)+%~AV+---.

If, in this case, I decreases, then, apparently,

while a general expression is written as
I(V+AV) =1(V) — AVf.
Taking this into account and using the general relation
dl = ydH — fdV + tdV,
we can write

d
an =YLy Tan,
1 7

Reducing the latter expression to a common denominator, we can write
ydH = dl — tdN + fdV . (4.18)

This expression can be named as a statistical identity for the critical regime of a
two-phase flow. It follows from the comparison of (4.17) and (4.18) that

<5H> _1 <5H> _f (311) _ T
o)y a N)in 1 ONJy a
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For any multivariable function, mixed derivatives should be independent of the
order of differentiation, that is equalities of the following type are valid:
OPH  OH
ovolr oIV’

It means that

(i l) (ﬁ Ji) and (2.1) N (3 Jﬁ)
oV x)in ol y av gy ON

Similarly, we can derive other important relations of the same type. It is possible
because entropy is a function of the system state. Besides, entropy is directly
proportional to the system dimensions, that is, V, since it is an extensive variable.
It means that entropy is a homogeneous function of the first power of variables
I;V; N, that is possesses the property

H(ol;0V;aN) = aH(I; V;N).

Differentiating this expression with respect to « and then assuming that o = 1,
we can obtain the Euler theorem for homogeneous functions:

OH OH OH
H= (az)m I (av),,N'” (wv),,v N

All parameters in this formula except the lifting factor can be readily determined
experimentally. However, the magnitude / can be determined as a function of the
parameters y; V; N. Entropy can be also expressed through these readily determin-
able parameters. As follows from (4.18),

ydH = dI + fdV — tdN

ol ol ol
= (8_x)v dy + (av) -dV +fdV — ©dN + (8N> -aN,

ol 1 /01 T ol
- =) cdy—=-dN - . dN.
<3V>Z+f] +x<3x>v a X “ +<8N>vx ¢

Examining these two relations, we can obtain:

(), =20,

that is,

dH =

1
X
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() 1y -
o )vn x\Ot)y 1

() s
Ny, x \ON)y, 1

where i is a specific value of the lifting factor. Similarly, we can derive relations
for 1

dl = yH — faV + taN.

By analogy with thermodynamics, this dependence, like (4.18), can be called a
statistical identity for a two-phase flow. The physical meaning of this identity
becomes visual, if we write it as

ydH + tdN = dI + fdV..

The left-hand side of this identity contains the kinetic energy of a flow of
particles, and the right-hand side — their potential energy. However, this identity
is not a conservation law, since it does not comprise the entire flow energy and the
entire potential energy of the solid phase.

In critical regimes of two-phase flows, a novel unusual property arises —negative
entropy generation, — which is connected with solid phase behavior in a flow. If a
polyfractional material gets into an ascending flow, then a certain ordering of
particles by size occurs as a result of the phenomenon of stratification. This
phenomenon is opposite to mixing. If we conceive that a mixture of particles can
be characterized by the entropy of composition, the process of separation leads to a
decrease in this entropy component.

In conclusion of this chapter, we discuss one more relation. The specific pressure
of a flow can be found from the dependence

v

— = oN.
X
Hence,
Fe aNSw?p, .
2V
We write
NS
B=
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where f is the specific volume of the solid phase in a flow; S is the volume of an
individual particle. Taking this into account,

1
f= *U.BWZPO-

)
Here we observe an analogy with the quadratic law of the resistance, since f is
proportional to w?p,, which is perfectly true from the standpoint of physics of two-
phase flows.



Chapter 5
Principal Statistical Relations of Mass
Transfer in Critical Flow

Abstract Principal regularities of mass exchange between the zone and apparatus
are defined; the notion of large statistical sum is validated; a method of determining
average values is presented. Entropy value for the zone and apparatus is determined
based on these. On the basis of obtained results, distribution of solid phase of low
concentration is examined. General regularities for the zone are formulated.

Keywords Zone - Apparatus - Cell - Large statistical sum - Canonical distribution -
Impact factor - Entropy

5.1 Mass Exchange Between the Zone and the Apparatus

We analyze a system that comprises a constant number of particles N, in the static
state. At a definite flow velocity of the medium (w), the lifting factor of this system
is characterized by the magnitude /.

We conventionally divide this system into two parts and call the larger part an
apparatus and the smaller one a zone. The zone implies a part of the vertical channel
volume of a moderate height covering the entire cross-section of the channel. The
zone height is accepted to be small, but sufficient for holding a large number of
particles, and insufficient for appreciable changes in the composition, particles
concentration and other parameters of the process. For the sake of convenience,
we locate the selected zone on the upper edge of the system, although it can be
located in any part of the apparatus, which will not affect the character of the
obtained results.

We introduce another limitation of the zone height. It is chosen so small that all
the particles moving upwards leave its limits, that is are removed out of the appara-
tus. We examine statistical properties of such a zone taking into account its contact
with the apparatus. The latter means that they possess an unlimited possibility to
exchange particles, and the flow velocities therein are either equal or rigidly bound,
which is stipulated only by the ratio of the corresponding orifices.

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 93
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_5, © Springer Science+Business Media B.V. 2010
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Besides, in this context, one should accept the equality of mobility factors, since
we are dealing with particles of a narrow size class. If the number of particles in the
zone equals N (N << N,), their number remaining in the apparatus equals N, — N; if
the zone possesses a lifting factor E, then the respective parameter for the apparatus
equals (I, — E). Our task is to determine statistical properties of a system consisting
of two parts. Therefore, we use in full measure the results obtained in Chapter 4.

We determine first the probability for the zone to be found in the i-th state with
the lifting factor E; and to comprise N particles. The probability P(E; N) is
proportional to the number of admissible states of the apparatus, and not of the
zone, since if the zone state is fixed, the number of admissible states of the entire
system is equal to the number of admissible states of the apparatus.

As noted above, in this state the apparatus contains (N, — N) particles and
possesses the lifting factor (I, — E). The desired probability is:

P(N;E;) = ¢[(N, — N); (I, — E;)].

In this relationship the proportionality coefficient is unknown. To find this
coefficient, we apply a method usually used for overcoming this difficulty —
determine the ratio of the probabilities for the zone to be in two states:

P(Nl;El):¢(Na—N1;10—E1) 5.1)
P(Ny;E;)  ¢(Ny —Nojlop — Er) '

By the definition of entropy for the entire apparatus, we can write:
(N, 1,) = M Nwila)

Taking the latter into account, the expression (4.17) can be written as a differ-
ence of entropies:

Pl[Nl;El] — I (Na=Ni;lu—E1)]—H(Ny=No3l,—E2) (5.2)

P>[N,; E>]

The exponent in expression (5.2) can be expanded into a Taylor’s series:

OH OH
H(N, —N;I, —E)=H(N,I,) — (N —E{—
™ ) ( ) ( 8Na>11 (ma)zvi—’—

We can write the entropy difference to within the first order as follows:

AH ~ (N, — Ny) — (N, — No)] (gﬁ =Bl B (g?)

=, —Nz)@_z[vi),a s (gTH)
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Using the definition of the newly introduced factors

L_(ody, =_(oH
x \ol)y x \ON)/

we rewrite the derived expression in the form

ap = N =N (B = o) (5.3)
1 1

It is noteworthy that AH refers to the apparatus, whereas Ny; N,; Eq; E, — to the
zone.

Thus, the changes taking place in the zone predetermine the entropy change of
the entire apparatus. This is intuitively clear, since everything that leaves the zone
and only that determines the sought fractional separation value.

Taking this into account, the dependence (5.3) gives an extremely important
relationship from the standpoint of a statistical approach to the problem:

PiNGE ] _ exp[(Nit — E1) /)]
Py[Ny; Ea]  exp[(Nat — E2) /7]

The structure of each exponential term in this dependence is similar to the ratio
obtained by Gibbs when studying the thermodynamics of elementary particles in an
ideal gas. Although it comprises absolutely different parameters determining the
process under study, we will call it Gibbs’ factor for a two-phase flow.

Another well-known thermodynamic ratio is called Boltzmann’s factor. It can be
obtained from Gibbs’ factor at a fixed number of particles (N; = N, = N). In this
case, this expression is written as

Pi(lh) _ e B/ — o Ei—E2)/1.
Py(l) e Eax

This dependence shows the ratio of probabilities for the zone to be in two states
having lifting factors £, and E, at a constant number of particles N in the zone.

The parameter of e /7 form is called Boltzmann’s factor; Gibbs has named this
expression a canonical distribution.

The obtained results allow us to make further steps in drawing an analogy
between the process under consideration and thermodynamics. Let us consider
some more parameters of exceptional importance.

If we summarize the dependence characterizing Gibbs’ factor over all the states of
the zone and over all particles, we derive an expression called a large statistical sum:

Z(tyy) = ZZe(NT_E'W.
N i
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Such sum is a normalization factor transforming relative probabilities into
absolute ones, that is, it plays the part of the previously unknown proportionality
coefficient. Now it is clear that the system in the state with Ny; I has a probability
determined by Gibbs’ factor divided by the large sum:

e(N‘T_I)/Z

P(Nl;ll): Z

One can readily see that the sum of this probability over all N and [ equals unity.
In chemical kinetics, a large statistical sum is often expressed using a so-called
absolute activity parameter. In our case, it is written as:

)= e'l"

and we call it, by analogy, an absolute mobility parameter of the system, and the
large sum in this case is

7=y Y el

Using these ideas, we can establish that the probability for the zone to be in the

i-th state is determined as
eN[E,"E*I,’]/X
P(N;I;) = ——
Z

From this standpoint, we can determine a number of important parameters, for
example, the average number of particles in the zone.

5.2 Determination of Average Values

The formation of the large sum value makes it possible to determine average
values of determining parameters. We seek an average value of a certain physical
quantity C taken over an ensemble of systems and denote this average value as
<C>.If C(N; i) is the value of C for a system of N particles with the zone being in
the i-th state, we can write the following:

> S C(N; i)eN il

<C>=3 ) CIN:PIN:) =~ (5:4)
N i

Using this approach, we can determine a number of important parameters, for
example, the average number of particles in the zone. In principle, the number of
particles in the zone can vary because it is in contact with the apparatus, and a
number of particles leave the zone moving upwards.
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To obtain the average value, each Gibbs’ factor in the large sum should be
multiplied by N, and in compliance with (5.4), we can write:

Ni—E;
S>> Ne 7z

N>=2XN1© 5.5
<N> ~ (5.5)

Expression (5.5) can be written in a form that is more convenient for
calculations.
By definition of the large sum,

Ni-E;

oz 1
E:%XN:ZNe .

In this expression, the numerator of Eq. (5.5) is under the signs of sum, therefore,
we can write:

y OZ olnZ
N = — — = %
<N= Z Ot X ot

: (5.6)

Taking into account previous results,
l = 677

the large sum can be written as
i
2=y St
N e
Hence, the average over an ensemble of states can be written as

B)
<N> =iz IZ=N. (5.7)

This relationship will be used later. The average value of the lifting factor of the
zone can be determined as

SOS T EjeWNE) 2
<E>= Nf (5.8)

We write o0 = f and differentiate the large sum with respect to o:

0.
S > EN- ).
N i
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Based on (5.8), we can write

190Z JlnZz
Combining (5.6) and (5.9), we obtain
o 0

If the number of particles in the zone is constant, a quantity analogous to
Boltzmann’s factor

Z,=> e il (5.11)

can be taken as a normalizing sum. It is called a statistical sum. It also plays the
part of proportionality coefficient between the probability and Boltzmann’s factor,
that is,

eiEI/X
P(E)=——. (5.12)

At a fixed number of particles, the average value of the lifting factor in the zone
amounts to

E; —Ei/y
; ¢ 20z, ,0InZ

<E>= = =
Zy zoy ' oy

(5.13)

Averaging is performed here over the ensemble of states of the zone that is in
contact with the apparatus, but comprises a constant number of particles in a
stationary process.

5.3 Cell and Apparatus, Entropy

As established, the lifting factor is a homogeneous function of two parameters
I(x;N). Therefore, we can write

1(:N) = NI(%),

where I(y) is the potential extraction probability for one particle.

To understand mass exchange with the cell, we examine a limiting case, where
only one particle of a certain fixed size class is constantly located in the zone. Then
we pass to the examination of N identical independent particles of the same class.
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Let us determine a statistical sum for one particle. Evidently, one particle has only
two possible states with its velocity oriented upwards or downwards. The large sum
for these two possible states is

Z=1+et (5.14)

The average lifting factor value for one particle is:

g 01 +Ee B/t Ee
o V4 14 e El
The average value for a system of N particles is N-fold greater and amounts to

_ NEeE/x  NE
Clde Bl eEli 17

<E> (5.15)

These relations lead us to the necessity of introducing another element of the
model under study — its cell. Let us try to define entropy from this standpoint.
We write the Boltzmann’s factor as

eEi/X

Pi=——
Z

and take the logarithm of this expression:

E;
InP;=———1InZ. (5.16)
X
Hence,

The latter is valid only for a stationary state of the system. Taking
> E;dP = kdH into account, we obtain

ydH = EdPi =~z (InP;)dP; — zInZ» _dP:. (5.18)
However, the probabilities are normalized to unity, that is,

and therefore,

ZdPi =0.
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Hence, we can obtain

xdH =~ (InP)dP;, d» (PilnP;) =Y (InP;)dP; =) In(P;)dP;.

1

Taking this into account, we can write

}{dH = ZE,dP, = Xd(— ZP,‘]HP,‘) .
We obtain the following expression for the entropy change:

dH = d[—ZPilnPi

(5.19)

and entropy

H=— Z”f InP;. (5.20)

For a particle oriented upwards P; = 1, and downwards —P; = 0. Therefore,
H = —1-In1=0. Hence, it is clear that no additional constants appear at the
transition from (5.19) to (5.20). Note that (5.20) is entropy definition according to
Boltzmann. If a zone possesses ¢ equiprobable admissible states, then

=1
L9

1s valid for each of them, and hence

1 1 1 1
—PilnPi=——In—=——(Inl—Inp) =—1Inp
Y ¥ Y Y

and

@
1
H = Z;lngp: Inp

i

which totally coincides with the original definition of entropy.

5.4 Separation at Low Concentrations

Let us estimate the influence of the chaotizing factor and the value of narrow class
extraction on the change in entropy. The number of states of a system as a function
of the number of particles is

N!

P(N) = N NN Na)Na!’
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where N is the total number of particles in the system, N, is the number of particles
oriented upwards.

By the definition of entropy,
H=1In¢(N) =1InN!—1In(N — N,)! — InN,!.
Using Stirling’s approximation, we can rewrite this expression as

H(N)=NInN —N — (N — N,) In(N — N,)
+N—N,—N,InN, +N,

N, N,
=N {mN — <1 - —) In(N —N,) — =% lnNa}
N N

N N N
— N[ (12N 1 = Na) _Nay Naf
N N)] N N

According to (3.2a), % = ¢r. Taking this into account, we can write

H(N)=—N[(1 —¢)In(1 — &) + & Ing]. (5.21)

The dependence H(N) = f (ef) is plotted in Fig. 5.1. Its characteristic feature is

the presence of optimum. We determine the value of & corresponding to the
optimum value of H(N):

OH(N) 1— g
=—-N|—-1-In(l —¢) ————+Ing +1| =0.
(3'8f n( {"f) 175}‘—"— neg +
T
>
3
]
=
0 0,2 04 0,6 0,8 1,0
Fig. 5.1 Entropy dependence

Parameter ¢,
on & parameter value 7
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Hence, log(l — sf) = log ¢r. The only value

1
&f =3

corresponds to this condition.

Naturally, & is proportional to x. At the point & = 0, all the particles fall
downwards, although x can be nonzero. With increasing x, & starts growing, the
uncertainty in the particles behavior increases, and entropy grows. This growth with
increasing «x continues until & reaches the value & = 1, and at this moment H(N)
reaches its maximum. Here a specific equilibrium is established in the distribution
of particles, half of which is oriented upwards, and another half downwards. With
further increase in K, the value of & grows, a larger number of particles acquires a
definite direction of motion, and therefore the total uncertainty starts decreasing and
the entropy value drops.

At the point & = 0, the magnitude «x has the meaning of the descending layer
velocity, while at the point ¢ = 1, the parameter k acquires the meaning of the
critical pneumatic transport velocity. In this case, the entropy reaches the minimal
possible value. These two limiting cases correspond to z = :l:%, and z = 0 corre-
sponds to the optimal case.

To determine the value of the optimally attainable entropy, we make use of
relation (3.15) and rewrite it in the form

22
mmn:mmm—§<

For the optimal value,

N N
H(N,0) = 'N|:NlnN—N—Nln§+N:NlnN—NlnN+Nln2
7.

(S1h4

Il
2
=)

2. (5.22)

The minimal value of entropy is
2(N/2) 1
HmHNmz—(;)N(m2—2>. (5.23)

It is clear that the absolute value of entropy depends on the logarithm base value.
For a natural logarithm, the maximally attainable value is H,,x = 0.693N, and the
minimally possible one is Hy,;; = 0.193N. Proceeding from the fact of the solid
phase distribution into two products, we can assume that the logarithm base is 2.
Then Hp,.x = N and H,;, = 0.5N. This shows the order of entropy change in the
entire range of its values.
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The kinetic energy of the flow (xH) characteristic of the volume occupied by the
solid phase particles does not have an optimal value. As follows from Fig. 4.2, at a
monotonic growth of the chaotizing factor x, the entropy increases from its minimal
to optimal value. The starting point of its growth depends on the dimension and
density of the solid particles and takes place, as a rule, at k¥ > 0.

With further increase in x, the entropy value starts decreasing, and this decrease
continues until the initial minimal value of entropy is reached. Further increase in x
cannot change this value.

We examine actual conditions that may affect the obtained results. In the zone
that is in contact with the apparatus, the number of particles is not constant. The
average number of particles is defined as <N> =% g—i, and we can show that

2 0
<N*> =L 2z,

Root-mean-square deviation (<AN>?) of the number of particles N from <N>
is determined by an expression N2 —2N<N>+ <N>2, and <(AN)*> =
<(N = <N>)*> = <N?> — 2<N><N> + <N>2 = <N?> — <N>2

The latter relationship, with the account of the previous ones, amounts to

2 18% 1 /02\?
<(AN)>:XZ[;%7 %) |

It can be also shown that

O<N>
<(AN)*> = .
(AN) =5
2
We have already demonstrated that <(<AA],V>)2> = —i=. The value of <N> is very

high, and therefore fluctuations in the number of particles are very small. Hence, it
is necessary to conclude that the number of particles in the zone is a well-defined
value, although it is not maintained rigorously constant.

Regarding the lifting factor fluctuations, we can write, proceeding from
previously obtained results,

[
<(E—<E>)*>=y (g—y)

We know that

1 (OH

z \ol)y
where the right-hand side is calculated for the most probable or equilibrium
configuration of a system.

Consequently, at a constant flow velocity, the lifting factor can somewhat
fluctuate.
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5.5 General Regularities for the Zone

At a constant number of particles, entropy depends on the lifting factor and volume,
that is,

H=f(LV),

hence, the entropy differential acquires the form:

OH OH
H= (=) -di+ (=) -av. 24
¢ <al>v @ <8V>1 v 629

In processes taking place at a constant entropy, dH = 0. Dividing both parts of
Eq. (5.24) by dV, we obtain:

OH OH dl OH
(W> =0= (ﬁ)v | (WL * (W); 629

Using the relationship (5.24) and the definition of the chaotizing factor, we can

write:
_ [, (%H
0= X * <8V)17

which finally results in

i<5_H) 5.26
x ov N;I' (5.26)

The latter relationship connects the influence factor with entropy dependence on
the volume. Now we consider a total differential of entropy:

OH dH dH
dH = | — cdl + | == “dN + | == -dV. (5.27)
ol )y .y ON) 1y )y
Using definitions of 7, y and f, this expression can be rewritten in the form:

f

1
dH = —dl —Zan +Lav. (5.28)
z

L L

By analogy, the total differential for the lifting factor can be written as

ol ol ol
dr = (aTz)N;V‘dH* (ﬁ%v“’“ (w)m e 6P
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We can obtain from (5.29):
dl = ydH + tdN — fdv.

Comparing Egs. (5.29) and (5.30), we can write:

O (O (9
ot )y~ P \oN) . T v )y, T

Since the second derivative has the property

oL Of
vV -0H  OHOV’

oy _ (o
OV)un  \OH) .\

hence,

105

(5.30)

(5.31)

(5.32)

(5.33)

These ratios are in many respects analogous to well-known Maxwell relations
for gases, which testifies to the validity of the analogy between gaseous systems and

two-phase flows in the critical flow regime.



Chapter 6
Correlation Between the Apparatus
and the Cell

Abstract Cellular model validation. Relation between the lifting factor and cell
occupancy probability. For coarse particles, the cell occupancy probability is
similar to fermion gas regularities. For fine particles, such dependence is similar
to boson gas. Mass transfer parameters are determined on the basis of cell occu-
pancy probability. Cellular model for separation process is examined. Entropy of a
cellular stationary system is determined. Physical meaning of principal separation
parameters is examined from this standpoint.

Keywords Cellular model - Fine particles - Coarse particles - Fermion gas - Boson
gas - Cell occupancy probability - Limiting distribution function - Discrete volume -
Impact factor - Entropy

6.1 Coarse Particles Separation

In the course of the study of the behavior of an isolated particle in the zone, it was
concluded that it is necessary to consider a cellular model. Let us assume that the
entire volume of the apparatus is subdivided into rectangular cells in such a way
that the volume of each cell holds at most one particle. If the size class under
consideration comprises N particles, we can assume that N cells in the apparatus are
occupied, and all the rest are free.

It is assumed that the number of cells greatly exceeds the number of particles.
Let us examine a system consisting of one cell. Suppose that the cell is located in
the apparatus zone and possesses the properties of the zone. It means that a particle
located in this cell leaves the apparatus in case of upwards orientation, that is, is
extracted into the fine product. We assume that all the rest except this cell is the
apparatus. If the cell is not occupied, its £ = 0. If the cell is occupied, its lifting
factor has a certain value corresponding to the probability of its upward orientation.

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 107
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_6, © Springer Science+Business Media B.V. 2010



108 6 Correlation Between the Apparatus and the Cell
It follows from the definition of a large sum for one cell that

Z=14)er. 6.1)

The first summand corresponds to the case of a non-occupied cell with a zero
lifting factor; the second summand corresponds to an occupied cell with
n=1,E#0.

Average occupancy of a cell is equal to the ratio of the large sum term withn = 1
to a sum of summands with n =0 and n = 1.

—E
Aer 1
<n(E)> = — = . (6.2)
1+ 67 Aler+1
We introduce a simpler notation for the average occupancy of a cell:
<n(E)> =f(E). (6.3)
Recall that 1 = er. Taking this into account, (6.2) can be written as
1
fE) =7, (6.4)
er +1

the value f(E) always being between zero and unity.

The form of this dependence recalls the Fermi—Dirac distribution function for a
fermion gas. It allows interesting conclusions from the standpoint of statistical
properties of the process under study.

6.2 Fine Particles Separation

As regards fine particles, it is necessary to accept the condition that several particles
can be simultaneously located in a cell. If we introduce a comparable ratio of the
sizes of fine and coarse particles, then the number of fine particles in one cell can be
rather significant. We examine one cell in the apparatus zone. The number of fine
particles in the cell is n. We emphasize again that from the standpoint of the behavior
of coarse particles, a cell can be either occupied or empty, while in case of fine
particles it can be either empty or occupied, with n varying within a broad range.
The large sum for fine particles can be written as

2=t =% (/1e’7.5)". 6.5)

n

We denote the expression in brackets as

, ZE
rer

=y. (6.6)
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Then at y < 1 the following is valid for (6.6):

1

1
zn: L=y 1_je7r

By the definition of the average and taking (6.7) into account, the average
number of particles in a cell is

> ny"
<n(N)>=-—=—. (6.8)
2
n
Transforming this dependence, we obtain
y 1 1
< E > = = = .
B> =10 = Aler —1
Hence, we can finally write
1
<n(E)> =— . (6.9)
er —1

This relationship recalls the Bose—Einstein distribution function for a boson gas.

Expressions (6.4) and (6.9) differ in that 41 in the denominator of the first
equation is substituted with —1 in the second, but their physical meaning is basically
different.

Thus, a common statistical dependence for all particles is expressed by the
relation

fE) == (6.10)

6.3 Definition of Mass Transfer Parameters

The distribution function (6.10) is related to both fine and coarse particles. It should
be taken into account that formally the lifting factor E is related only to the cell, and
not to the entire apparatus. If we sum it over the zone, it is equivalent to summing
over the apparatus, since particles are extracted only from the zone where the cells are
located. Since we analyze averaged behavior of a cell, the results of such analysis can
be extended over all the cells of the zone, that is over the entire apparatus.

As follows from Chapter 1, a classical separation regime begins when some size
classes totally or partially settle against the flow direction.
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Particles settling against the flow direction is possible when their hovering
velocity considerably exceeds the flow velocity, that is when

Ws0 > W;.
For the conditions of air-assisted separation, the ratio

s

Po

Therefore, a part of the denominator in (6.10)
E-t
er > 1.

In this case, we can write relationship (6.10) without taking £1 into consider-
ation, that is in the form

fE)~ e 6.11)

The dependence (6.11) is a limiting case for the distribution of coarse and fine
particles within the cellular model. The physical meaning of this case is that the
average probability of the occupancy of any cell irrespective of the particle size is
always below unity.

This condition fully corresponds to fractionating regimes at the solid component
concentration in gas up to u = 2kg/m>. For example, at the particles density
p = 2,000kg/m*, bulk occupancy of the space amounts to only

B="5=0.001.

T I=

If we assume, in compliance with particles size, that the cell volume is one cubic
millimeter, then one cubic meter comprises

N, = 10° cells.

If the particles are supposed to be round, 1 mm in size, their number equals

6
— _f =2.10°.
nD’p
Thus,
10°
n=_—-—-= 500 cells
2-10

correspond to each particle, that is actual occupancy of cells is very low.
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Thus, a dependence of (6.11) type is a distribution limit for coarse and fine
particles at the average cell occupancy much smaller than unity. In the statistical
theory of gases, such an expression is usually called a statistical limit.

It is noteworthy that the limiting distribution function can be used for finding the
probable average of such process parameters as the number of particles, their
concentration, potential extraction, specific flow pressure and even particles distri-
bution in velocities.

The total number of particles can be obtained from the distribution function by
summing over all the cells:

N =) f(E),

that is the total number of particles equals the sum of their average contents in
each cell.
Substitute the sum with an integral:

T

N = Je;zEdE = iJeiTEdE =Y.
0 0

Hence, we obtain a compact expression for the absolute mobility parameter

A=—. (6.12)
%

If we pass to specific separation conditions, they usually use the concentration
parameter in kg/m? without resorting to the notion of the quantity of particles.

Therefore, the possibility of determining concentration as the quantity of parti-
cles per cubic meter is a step forward. Hence, we can write

N=pu-V, (6.13)

where 1 is the particles concentration; V is the volume occupied by the particles.

Which volume is implied here?

It is clear that the stationary volume of the apparatus can pass different quantities
of particles per unit time depending on the value of the chaotizing factor (or flow
velocity). It is necessary to formulate a certain volume normalized to the chaotizing
factor. Such volume can be assumed as

Vv, = Vg;m, (6.14)

where V is the volume of the apparatus; y is the chaotizing factor; g is gravitational
acceleration, and d is particle size.
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In this case, the dimension of V; is that of volume — [m?].
Taking into account Eqs. (6.12) and (6.13), the dependence (6.14) can be
written as

A= ptL
K gdm’
We call the parameter Vp = g‘g/,—‘m a discrete volume for critical two-phase flows.
Hence, we can write:
A=el = V. (6.15)

This dependence characterizes absolute activity of particles in a flow.
Taking this into account, a classical distribution function acquires the form

f(E) = nVpe. (6.16)
In our interpretation, we can write

f(E) = uVge™*,

where B is a universal parameter of separation curves; C is a proportionality factor.
This expression agrees with the results of empirical processing of a large array of
experimental data.

It follows from (6.15) that

gzln,u—i—anQ. (6.17)

L

In this expression, the concentration parameter is under the sign of its logarithm,
which explains experimental results. The values of concentration in separation
processes are rather small, down to 2 = 3 kg/ m3, and logarithms of these values
are small and very close to each other. Therefore, the effect of this parameter on the
process results cannot be revealed experimentally. Thus, for actual conditions, we
can write to a sufficient degree of accuracy that

TR ;{ln—l.
Finally, we obtain the following 7 for a unit volume:

Ty —Iny. (6.18)

Hence, the mobility parameter 7 is smaller than the chaotizing factor by the value
of its logarithm. It has the same dimension as the chaotizing factor.
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This differs from the idealized particle velocity value. In actual flows, due to
the interaction of coarse and fine particles, their velocity is somewhat leveled,
since fine particles accelerate coarse ones, while coarse particles slow down
fine ones. Therefore, the actual velocity of both kinds differs from the idealized
value

vV =w—wp.
The expression (6.18) reflects a realistic relation between the velocities of
particles and the flow affected by a great number of random factors of a two-

phase flow. It also reflects, to a certain extent, their idealized relation.
The total value of the lifting factor for the case under study amounts to

1= ZEif(Ei) = Aze’%ﬂ

We substitute the sum with an integral and take it for all cells:
1= J Ee7dE = iy
0

Taking (6.12) into account, we can write:
I =Ny =uVoy. (6.19)

Hence, the lifting factor is proportional to the chaotizing factor value, particles
concentration and discrete volume. However, within the working interval of con-
centrations, the two latter parameters affect the separation process only slightly. Let
us determine the entropy value from this standpoint. By definition, we can write

OH T

On the other hand, we have established that
T
—=InuVy =InN.
X

In this equation, N is the number of particles in a discrete volume. Taking this
into account, Eq. (6.20) can be written as follows:

N N N
JdH _ JdN<_%> _ JlenN — NInN —N,
0
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i.e.,
H=N(nN —1). (6.21)
Hence, we derive the following sufficiently simple dependence for entropy:
H=N(npVyp—1)=N(InVy+Inu—1).

In the practice of separation, concentration varies within a small range of values,
therefore its logarithm is practically constant.
Taking this into account, we can write:

H = N(InVy + const). (6.22)

With the account for previously found relationship

oH _f
oy
we can obtain from Eq. (4.18):

N

— = ]: . (6.23)
Vo 1

Hence,

Vof _ . (6.24)

X

This dependence is obtained for a two-phase flow in the separation regime.

We have examined this relation in Chapter 4, and here it is derived taking into
account some qualifying details, and it has turned out that for a discrete volume
o = 1. If this result seems insufficiently correct, a similar result can be obtained
from a somewhat different standpoint.

6.4 Cellular Model of Separation

We can obtain similar results and some additional information by analyzing
stationary states of the system under consideration from a somewhat different
standpoint. Let us divide the apparatus into Ny cells and assume, for the sake of
simplicity, that these cells are of cuboid shape and sufficient for placing one particle
into each. We also assume that N particles are distributed at random over these
cells. The number of particles N > 1, and the number of cells greatly exceeds the
number of particles, that is, No > N. We denote an occupied cell by ®, and an
empty one by O.
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The magnitude (®+O)N° is analogous to previously used notations of

(T+ D" type.
It is clear that the number of various arrangements of N particles in Ny cells is

Np!

¢(N0;N):(NO—7N)!N!'

(6.25)

This value shows the number of stationary states of a system under the condition
that each cell can hold at most one particle.

This dependence resembles Eq. (3.8), but it is perfectly clear that the meaning of
the parameter N differs from that of the separation factor z.
Denoting by k = Nﬂo the share of cells occupied by particles, we can show that for
the model under consideration,

T =ylnk. (6.26)

To prove it, let us consider an apparatus consisting of cells and divided into two
parts by a vertical partition. For the sake of simplicity, we assume that each part
comprises Ny cells, and the total number of particles in each part is N. Particles in
both parts of the apparatus are identical.

If a particle is in a cell of the first part of the apparatus, its separation factor is £,
and if it is in a cell of the second part of the apparatus, this value is, respectively, E;.
A large sum for one cell of the first part of the apparatus is

i
Zi=1+der.

By analogy with previous derivations, we can obtain for the first apparatus,

k|
rer 1 A
ky = T | o i . (6.27)
1+de7r A er +1 7 4+
For the second apparatus,
_k,
Zz =1 + )»67
and
1 )
ky = (6.28)

) =5 :
e 41 67 + 4
One can readily see that 4 is the same in both formulas, since the cells and

particles are identical and y is the same, too. Let us determine the ratio of the
obtained parameters:

—E,
ﬁ - er + ;»
k2 e%‘gl‘f';\.
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Since we have assumed that in both parts the total number of particles is N, we
can write:

N = (ki + k2)No. (6.29)

We have assumed that Ny > N, that is there are very few occupied cells. This
means that

Z=~1,

and, hence, we can write, based on (6.27) and (6.28), that

5
ky ~ )Lei/é2 . (6.30)
ky =~ Ler

According to (6.29), we can write:
£ )
Nz%57+ﬂj%.
Solving (6.30) with respect to A, we obtain

— _E
Ink; =In/ =,

m@:mz—%. 6.31)
By definition,
T=ylni.
We reduce Eq. (6.31) to a common denominator:
yInk; = yIni—Ey,
yInk, = ylni —E,,
and obtain
Ty = yIlnk; + Eq,
T, = yInk, + E;.

Obviously, 7y = 13, since both parts constitute one apparatus, that is in a gen-
eral case

T=ylnk+E.
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For a cellular stationary system, entropy is expressed by a dependence

No!
H(No;N) =In¢p(No;N) =In-————. 6.32
( 05 ) H¢( 0 ) n(N()—N)'N| ( )
Using Stirling’s formula, we can obtain:
H(N();N) %N()IHN()—(NQ—N)IH(N()—N)—NIHN. (633)

As follows from previous statements, the impact factor is connected with
entropy by a relationship:

(o) (2 N
X_<5V)N;1_<6NO>N;I av (6.34)

Proceeding from Eq. (6.33), we can write

oH No N
=2) = +—,
ONo)y;  No—N ' Ny

but according to initial conditions, it was accepted that Nﬁo < 1; then, finally,

(@), = (%)
e =—In{1—-—]).
ONo/ ns No

Under the condition Nﬂu < 1, the logarithm can be expanded in series, that is,

(6H> = ﬁ (6.35)
NI

0Ny No

The number of cells is connected with their concentration and apparatus
volume:

NO = }’l()V,
hence,
dNy

Using Eqgs. (6.34), (6.35), (6.36), we can write

f (N N N
=\ JW0="F""=%,
ya N() I’loV Vv
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and finally

v =N. (6.37)
X

Thus, we obtain the same result.

The dependence (6.37) resembles the Clapeyron law for an ideal gas. The
physical meaning of all these parameters is absolutely identical to the parameters
of Clapeyron’s relation.

6.5 Physical Meaning of Separation Factors

6.5.1 Chaotizing Factor

It has been shown that the chaotizing factor of the process equals

where w is the flow velocity; mg is the mass of the medium within the particle
volume connected with the Archimedes force.

6.5.2 Flow Mobility

This parameter predetermines diffusion processes. However, under the conditions
of separation, where the effect of concentration is leveled, its value is mainly
determined by the air flow velocity and the particle mass. It is clear from the physical
meaning of the process and even at a purely intuitive level that it corresponds to

V2m

e

where v is the local velocity of a particle; m is the particle mass.

6.5.3 Separation Factor

It is found that the lifting factor is expressed by a simple relation

N(gdm)*
-

/= (6.38)
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On the other hand, by definition, it equals
[ = —2zgdm.
From these two expressions we can obtain

2N(gdm)*

2zgdm = 5
mow

The latter dependence can be transformed into

iz_gd(P_po):B (6.39)
N W2p0 ’ )

This amazingly simple dependence means that by specifying the values of the
regime parameter B, we can control the relative extraction irrespective of the
particles size and density, which ensures the affinization of the separation curves.
This hyperbolic dependence of the universal separation curve on the parameter B
complies with experimental data.

6.5.4 Concentration Effect

It has been obtained that for a constant number of particles
dl = ydH — fdV,

hence,
ydH = dI + fdV.

In the relation, we express dI as a function of V and y,

ol ol
ydH = (av) de + <a/> de +fav. (6.40)

It is clear that changes in the potential extraction are independent of the volume.

Therefore,
ol
(@), -0
5% ;
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The magnitude g—; = iN. Taking this into account, the general equation can be
written as ~

N av
dH:%dx +re (6.41)
y 1

The parameter f can be determined from the relation
fV =Ny.
Taking this into account,

N av
dH =" ay + N
b4 Vv

Let us take an integral of this expression:
H=iNIny+NInV+c=N(ny+1InV +5) (6.42)

where c is the integration constant, s = % Here the volume Vis not defined. In this
expression i is referred to a single particle. To obtain a correct sum, we should refer

the volume to a single particle, too, that is write
. Vv
H=N lln;{—l—lnN—I—s .

The magnitude ¥ = p is the concentration of particles. Therefore, we finally

N
obtain
H=N(ilny —Inu+s).
The concentration value affects entropy only slightly, since it appears in this
relation under the sign of its logarithm. Here the number of particles exerts a
determining influence.

As for the potential extraction and extraction in general, proceeding from
equation

we can derive

I =Ny(ilny —Inu+s).
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Since the solid phase concentration in the processes of separation is rather low
(weight concentration amounts to 2—3 kg/m® and volume — to § = 0.001), and its
influence manifests itself through its logarithm, separation results are independent
of 1 value, which has been established in numerous experiments.

Two parameters, chaotizing factor and the number of particles, exert a deter-
mining effect on the potential extraction. The value of the chaotizing factor is not
the same over the channel cross-section. From the standpoint of energy minimiza-
tion, all the particles should be concentrated near the channel walls, where the
velocity is minimal. However, it is not the case. As measurements show, particles
of all size classes are distributed nearly uniformly over the entire cross-section. It
does not seem clear. Maybe this problem is similar to that of a coffee and milk
mixture. Namely, milk particles, whose density is smaller than that of coffee, do
not float upwards. Apparently, the reason is that the entropy is higher when the
particles are uniformly distributed in space, and equilibrium is characterized by
entropy maximization.

6.5.5 Potential Extraction

As already shown, potential extraction is mainly determined by the chaotizing
factor and the number of particles,

1(%,N) = Ni(z).

For a polyfraction mixture, we can write

I(6,N) = ik(x)N.

k

For a narrow size class, a total differential for / is

ol ol ol
dl = (—) dy + (—) dv + (—) dN. (6.43)
o) v.n /), N ON)y.,
If the system under study consists of n narrow classes containing Nj;
Nj;Ns; ... ; N, particles each, the potential extraction is connected with them as

follows:
dl = ydH — fdV + 11dNy + 12dN» + t3dN3 + - - - + 1,dN,,.

In the general form, this relation can be written as

dl = ydH — fdV + " 14Ny
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We know that the examination of cumulative extraction of various classes is not
of interest, since only the extraction of narrow classes is invariant. Therefore, we
concentrate on the potential extraction of a narrow class keeping in mind that in
critical regimes, each narrow class contributes not only into /, but also into the
system entropy. For a narrow class, we can write

dl = ydH — fdV + tdN.
Using Euler’s theorem for homogeneous functions, we can write
I =Hy—fV+1N.
Hence, the entropy in the explicit form is

I
Ty

H=-
Z X X

The two latter expressions are of determining importance for the process under
study.

6.6 Extraction from a Cell Located in the Zone

Now we analyze the character of particles extraction from one cell of the zone
depending on the ratio of the main distribution parameters.
We revert to Eq. (6.5) for the average cell occupancy:

fE) = —=—

This dependence varies from O to 1 and is connected with the fractional separa-
tion parameter as follows:

When the kinetic and potential energies of the particle are equal (£ = 1), we
obtain

This corresponds to the separation in optimal conditions.
At E > 7, we obtain

fE)<s3,
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and at E<r,

ﬂm>;

All these parameters exactly correspond to the curve of the type

This is visually confirmed by designed curves of the dependence

F(E) =f<w%>

presented in Fig. 6.1, where w; is the velocity in a specific point of the cross-section,
v is the particle velocity. The ratio ;- is directly affected by the value of the

chaotizing factor .
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Fig. 6.1 Dependence of fractional separation of a narrow size class on the ratio > characteristic
of one point of the cross-section
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Fig. 6.2 Character of flow structure and principal ratios for a critical flow

The indirect influence on this ratio is determined by the character of velocity
profile in the channel cross-section. Figure 6.2 shows a typical characteristic of such
a profile. The condition of particles extraction upwards or downwards, features of
the behavior of the same particles in the center of the flow or on its periphery
depend on the velocity ratio in the profile. Hence, it is necessary to examine the
influence of the flow structure on mass distribution in critical regimes. This will be
considered in detail in Chapter 7.



Chapter 7
Structural Model of Mass Transfer in Critical
Regimes of Two-Phase Flows

Abstract Physics of a two-phase flow motion is examined. The notion of distribu-
tion coefficient is substantiated. Balance and structural mathematical models of
such flows are developed. Distribution coefficient formation is considered in
laminar, transient and turbulent flow regimes. Analysis of this parameter is per-
formed. It has allowed us to formulate a mathematical definition of distribution
coefficient for the three flow regimes. Structural model adequacy to experimental
data is demonstrated. It allows a prognostic estimation of the process of mass
distribution of polyfractional mixture of particles in a flow.

Keywords Flow structure - Distribution coefficient - Cross-section geometry -
Flow rate - Velocity profile - Reynolds criterion - Froude criterion - Archimedes
criterion - Level lines - Flow profile - Velocity gradient

7.1 Validation of the Distribution Coefficient

Any apparatus, even a hollow one, can be conventionally represented as comprising
a certain number of stages with a directional mass exchange between them.
A cascade classifier comprising stages of the same or different construction gives
the simplest idea of the staged character of the process.

The quantity characterizing redistribution of a narrow size class at a single stage
can be presented in the form

k=%, (7.1)

where r; is the initial contents of narrow size-class particles at a certain i-th stage of
the apparatus; ;' — quantity of the same particles passing from the i-th stage to the
overlying (i — 1)th stage; K or k — distribution coefficient.

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 125
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_7, © Springer Science+Business Media B.V. 2010
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A general schematic diagram of particles distribution over the apparatus height
at their feeding to the i*-th stage is presented in Fig. 7.1a. In case of one stage, the
process pattern is rather simple (Fig. 7.1b).

We take the initial content of particles of the same narrow class as a unity being
clearly aware of the fact that it is fed to be classified in a mixture with other particles.

Fractional extraction degree for the entire apparatus is expressed by a function

Fr(v) =2y, (7.2)
Ts
where 7y is the narrow class quantity in the fine product output; 7y — quantity of the
same class in the initial material to be classified; y, — fine product output.
It was proved that the value of fractional extraction into fine product j is
described for any size class by the dependence

170-2+17i*
7+ 1 ) )
0; k=0,

where ¢ = lk;k; i* is the number of the stage of material input into the apparatus.
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The dependence (7.3) may serve the basis for designing equilibrium and cascade
classifiers, if we manage to establish the dependence of the parameter k on its
regime and structural properties of the process.

7.2 Physical Meaning of the Distribution Coefficient

When developing a structural model of the distribution coefficient, we make certain
assumptions, namely:

1. Particles are spherical.

2. Distribution of particles of any narrow size class over the cross-section of the
apparatus is uniform due to their intense interaction with each other and with the
apparatus walls and internal facilities.

3. Ascending two-phase flow should be considered as a continuum with elevated
density. As established, carrying capacity of dust-laden flow is higher than that
of pure medium. It can be conventionally taken into account by increasing the
effective flow density. The distribution of local velocities of the solid phase is a
function of geometrical characteristics of the channel cross-section. It can be

written in a general form as
Uy =w-f (%) (7.4)

where f (;_e) is a function connected with the cross-section geometry; r is a charac-
teristic coordinate of a certain point of the apparatus cross-section; R is a charac-
teristic limiting dimension of the apparatus cross-section; u, is the local velocity of
the continuous phase in a point with the coordinate r; w is the mean flow velocity.
Thus, the dependence (7.4) takes into account the shape of the channel cross-
section.

According to the Newton—Rittinger law, the dynamic impact of a flow on an
isolated particle is described by the relationship

2
_nd Uy — Vy
FI‘ = f— pn M ,
4 2
where ] is the resistance coefficient of a particle; ”sz is the midlength section area

of a particle; p, is flow density; v, is an absolute local velocity of a particle;
(u, — v,) is the particle velocity with respect to the flow.

The difference of absolute velocities is algebraic. The flow direction is chosen as
a positive direction of u, and v, velocities.

If we take the total number of particles of a given mono-fraction in the cross-
section under study as a unity, the distribution coefficient can be written as K = n,
which is a relative number of particles of a specified narrow size class having the
absolute velocity above or equal to zero (v = 0).
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Considering the equilibrium of an isolated particle at the distance ry from the
axis, we obtain

nd® nd*  (u —v,)*
?(P—Po) = }vTPo%- (1.5)
Hence,
[4
U — v, =W 37 B, (7.6)
where B = W.

Po . . .
Let us examine the regime of turbulent overflow of a particle characterized by a
constant resistance coefficient 4. In this case, the Reynolds criterion for a particle is

Re, = m >500),
u

where u is the dynamic viscosity of the medium. Taking (7.6) into account, we
obtain

——F—F =500.

This condition corresponds (at 4 = 0.5) to the expression

8
,/gAr >500,

where Ar is the Archimedes criterion:

,_qdz'P'Po
A’ —T.

Thus, we can determine the limiting size of particles, above which the overflow
of particles is certainly turbulent.
Now we examine some properties of laminar overflow of particles. In this case,

(= vi)dpo g

Re, =
? u
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It follows from equilibrium conditions that

d3
%qp = 3nu(u, — v, )d.

Taking previous results into account, an expression for this case can be
written as

Ar = 18Re.
It is known that at a laminar overflow, the resistance coefficient of particles is

i 24 24u
" Re  (u—v,)dpy’

Let us single out the following ratio from (7.5):

U — v, 4B (u, — vy )dpy
w o \/3 24
hence,
U, — vy, 1
= —Re,B,
w 18 ©

where Re,, is the Reynolds number estimated through the mean flow velocity.
Now we can revert to the relation (7.6). For particles of a narrow class with
absolute velocity v, = 0, we can write:

>y /2B
U=z w 3)"

Substituting this into (7.4), we obtain

f(f) >1/7B. (1.7)

Similarly, for particles with v, <0,

Inequalities (7.7) and (7.8) enclose the following limiting cases:
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1. For any coordinate

r 4B
(%)
In this case, the distribution coefficient K = 1;

2. Respectively, at f(£) < for any coordinate r, K = 0 is valid

%A’

An intermediate case is characterized by level lines formed by certain coordi-
nates according to the equality

We assume that this equation has one real root:

0 _f (43) (7.10)

Taking this into account, we find a corresponding area w,, for which the

following is valid:
T To
=)= f(+).
f(R) f(R)

Then the distribution coefficient can be written as

K =22 = ¢(%) for a convex profile f (%),

_()
{ — Eﬂ } for a concave profile f (1'_2)

The coefficient C characterizes the shape of level lines and cross-section. For
example, for a circle, C = 1. Substituting dependence (7.7) into the derived equa-

tions, we finally obtain
B
K=¢(-].
%)

A similar dependence is valid for two or more roots of Eq. (7.8), which takes place in
the case of complicated profiles f (ll_?) For example, in the case of a profile shown
in Fig. 7.2, for a certain mono-fraction Eq. (7.8) has three real roots: ry, ; ro,; ro,. The
latter form isotaches with the account for the shape of the apparatus cross-section.
Isotaches determine a corresponding total area » . w,,, for which the following is valid:

1(5) 505
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Fig. 7.2 Formation of _ _
distribution coefficient in case
of a complicated transverse
structure of a flow
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Thus, for the present case,
Z Wy, = W + Wy + Wrys
and the distribution coefficient can be written as

K = E w"o/
WR '

Since Y w,, can be unambiguously expressed through ro;, which are roots of
Eq. (7.8), the final expression of the distribution coefficient has the form

K:¢(§). (7.11)
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A concrete expression of the distribution coefficient can be obtained using a
concrete profile of the continuum over the apparatus cross-section. Now we exam-
ine step by step possible cases of flow interaction with particles.

7.2.1 Turbulent Overflow of Particles and Turbulent Regime
of the Medium Motion in the Apparatus

Velocity distribution of a continuum over the radius in equilibrium apparatuses of
circular cross-section is usually expressed empirically as

m:wgﬁf%iiﬁ-ofgyszg) (7.12)

where 7 is a parameter depending on the regime of the medium motion and on the
roughness of pipe walls (n < 1).

Using Eq. (7.9), we can find the coordinate of isotach where the absolute
velocity of a fixed monofraction is zero:

e ) oy i

1 =2 =
R 32

and hence,

(7.13)

Here, the cross-section area for which
r ro)
J— Z —_
7(7)7 (%
amounts to w,, = nr(z).

Hence, the distribution coefficient is expressed by the ratio

o)

Then, taking Eq. (7.13) into account, we obtain

1y 2

2. \/4B/3].

L T P Y
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Instead of dependence (7.12), we can examine a different profile of velocity
distribution of a continuum over the radius:

u,:”:z-w[l - (I%)"} (7.14)

where 7 is the flow turbulization degree (n = 2 + 00).
Let us analyze the following cases:

1. Velocity gradient on the flow axis
The following relationship is valid for the dependence (7.14)

du

= —(n+2) -Y(ﬁ)"*l (7.15)

R \R
and for the dependence (7.13)

d_u:_y_n(n—i—l)(n—il—_Z). (7.16)
dr R 2(1—-r/R)™"

Then according to Eq. (7.15), we obtain for Eq. (7.14):

d
(—”) =0.
dr r=0

Respectively, we obtain for Eq. (7.12) from Eq. (7.16):

Thus, Eq. (7.12), in contrast to Eq. (7.14), describes a function discontinuous on
the flow axis.

2. Velocity gradient on the pipe wall
It follows from Eq. (7.15) for the function (7.14) that

that is, the higher flow turbulization degree and mean velocity, the greater the
gradient.
For the dependence (7.12) we obtain, according to Eq. (7.16),

diy
dr r=R e
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which points to the transfer of infinite momentum and corresponds to infinite
friction force.

3. The expression (7.14), in contrast to (7.12), combines all regimes of motion up
to laminar. Based on Eq. (7.10), the radius forming the distribution coefficient is

ro | n 4B|"
R n+2 V3.~
Hence, we obtain an expression for the distribution coefficient:

K =

2
L_no 4Bl
n+2 34

7.2.2 Laminar Overflow Regime

In this case, the regime of medium motion in a channel is based on the dependence
(7.14) for the flow structure. Thus, at n = 2 we deal with a parabolic velocity profile,
at n > 8 — with a turbulent motion, at 2 <n < 8 — with a transient regime. Then,

according to Eq. (7.10),
n+2 ro\" 4B
1= (%) ] =5 7.17
n [ R 34 ( )

Using the expression for the resistance coefficient in this equation, we obtain

n+2 {1 B (r_o)"} _ 4 updpB
n R 3 24u

n R 8u

or

Simplifying, we obtain

21 @) R
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Taking into account the fact that the distribution coefficient K = (’EU) and

Re’B = Ar, we finally obtain the expression

K=|1- . .
18 n+2

For a parabolic profile (n = 2),

7.2.3 Intermediate Regime of Overflow

Using a well-known dependence of the resistance coefficient on the criteria Re and
Ar,
4 Ar
" 3 Re?
and an interpolation formula that is valid for all overflow regimes

Ar
Re=——"—|
18 + 0.61/Ar

we obtain
L4 (18+061VAr)"
3 Ar '
Substituting the latter into Eq. (7.17) and passing to the distribution coefficient,

we can define

n Ar-B
1-k)=— .
( ) 18 + 0.61VAr

A generalized dependence of the distribution coefficient in an arbitrary regime
of the medium motion and of an arbitrary regime of particles overflow acquires the

n+2
n

form
2

P — |1 n Ar-B (7.18)
2| a2 (184 061VAN| '
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7.3 Analysis of Distribution Coefficient

We analyze Eq. (7.18) for turbulent regimes (Ar>10%). Under such conditions, the
summand 18 in the denominator can be neglected, and the formula is reduced to an
expression

3 p
2B,

K=|1- :
n—+2 3

With the account for the mathematical model of the regular cascade (7.3), this
expression well agrees with experimentally obtained dependences.

Two approaches to the study of suspension-bearing flows are the most wide-
spread. The first one considers a two-phase flow as a continuum with averaged
properties. Such a dispersoid is characterized by a certain mean velocity, density, etc.

As it is, this approach is unacceptable for a critical flow, since we have to divide
the dispersoid into separate phases, because the process result is the separation of
each monofraction, which constitute, in total, a discrete phase. Therefore, this
approach can be successfully used, for example, for the description of such pro-
cesses as pneumatic transport, and not for classification.

The second approach consists in a separate analysis of the behavior of each
phase. Here, the classification process should take into account numerous random
factors. This causes insuperable difficulties in the quantitative description of the
results in an explicit form. Therefore, the applicability of this approach is limited. It
allows solving the simplest problems of the behavior of two-phase flows and is
absolutely inapplicable for describing the classification process on the whole.

As for the classification process, it seems expedient to apply a combined method.
Its essence is a transition to a dispersoid with an effective carrying capacity on the
basis of the evaluation of the continuum impact on a discrete phase and of the
behavior and interaction of individual monofractions. Thus, both the continuum and
each separate monofraction participate in the dispersoid formation, and the latter, in
turn, affects the behavior of particles of each narrow size class. This implicitly
reflects intraphase and interphase interactions on the basis of the continuum.

To substantiate the transition to a “divided” dispersoid, we evaluate the density
of monofractions flow. The quantity of particles of a fixed monofraction passing
through the apparatus cross-section per unit time can be expressed as

G-rg-rj
QZ == (7.19)

where G is the monofraction mass;
P is the mass of an isolated particle of a specified narrow size class.
Here an ascending flow of monofraction particles is written as

_Gyorgri-K

P (7.20)

Qa
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where r; - K is a relative flow of the particles under study from section i to the
overlying section. The resulting ascending flow of the given monofraction is

_Gor Fy

5 (7.21)

O

According to the regular cascade model, expressions (7.19), (7.20) depend on
K,z,i* i, whereas Eq. (7.21) is independent of the section under study.

Assuming a uniform distribution of particles over the apparatus cross-section,
we obtain expressions for the flow density of particles of a fixed narrow size class:

_ Gy
q1 = F.p
for an isolated relative flow and
q=qF (7.22)

for a resulting flow.

We transform the obtained expressions multiplying both the numerator and
the denominator of the right-hand side by the volumetric flow of the continuous
phase V

Grrg: V. perg- V.o op-rg-w
1=VFEPT FP P (7.23)

Let us examine the dependencies (7.22) and (7.23) on a concrete example. Thus,
at the separation of periclase (p = 3,600 kg/m?) on an equilibrium apparatus in the
regime of w =2.83m/s and at a consumed concentration u = 1.5kg/m?, fine
product output amounted to about 20%.

Granulometric composition of the initial material, fractional extraction degrees
and particle density flows calculated using Eqgs. (7.22) and (7.23) are given in
Table 7.1.

These data point to the fact that the densities of particle flows (especially of fine
particles) in the apparatus are sufficiently high, although the fine product yield is
low. It can be attributed to the fact that fine particles, catching up with coarse ones,

Table 7.1 Flow densities of particles of different monofractions calculated by Egs. (7.22) and
(7.23)

Narrow size class (mm) 0.14 0.2 +0.14 0.3+0.2 0.5+0.3
Average size d (mm) 0.07 0.17 0.25 0.40

rs% 10.93 13.51 15.75 26.59
Fr% 93 45.5 8.0 2.0

g(em? x s)’l 71.8 x 103 6.2 x 10° 2.3 x 10° 0.94 x 10°

s (em? x 5)~"! 66.8 x 103 2.8 x 10° 184 19
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exert additional impact on them in comparison with a continuum. Besides, the high
density of particles averages and levels out this effect in time. This allows us to pass
to the carrying capacity of the flow on the whole (to a dispersoid) and estimate its
effect on particles of each narrow size class individually (a divided dispersoid).

It seems reasonable to compare the quantitative value of the particles flow
density with experimental data. Thus, Razumov presents experimental data
(under the conditions of vertical pneumatic transport) on the number of collisions
between the suspension-carrying flow containing a mono-fraction of the size
d =2.3mm and the motionless surface with the area 1cm?. The characteristic
parameters of the experimental conditions were as follows:

— Density of the medium p, = 1.29 kg/m?

— Density of the particles material p = 1,200 kg/m?
— Initial mass concentration 3.5 ti?ﬁ, which corresponds to u = 4.515kg/m?
— ry = 100%, since the experiment was performed on a monofraction

— Mean velocity of the medium flow varied within the limits of 10 <+ 17.5 m/s

In the course of the experiments, 300—1,300 collisions were registered per
second per 1 cm? of surface placed into the ascending flow. Apparently, proceeding
from experimental conditions, the number of collisions corresponds to the density
of particles flow described by Eq. (7.22). Assuming, on the average, w = 14 m/s, we
obtain N = g = 827 cm—lz-s’ which is close to the average number of collisions
registered in the experiment. For the velocities w = 10m/s and w = 15m/s, the
numbers of collisions determined by Eq. (7.22) are 590 and 1,033@, respec-
tively. Apparently, these results give rather satisfactory estimations.

To pass to a divided dispersoid, which is different for particles of each narrow
size class, we have to evaluate its important parameter — density Pu, (dispersoid
density for particles of the j-th narrow size class).

Let us examine two monofractions with particle masses m and M. We assume
that N fine particles inelastically collide with one coarse particle imparting their
momentum to it. To the first approximation, the quantity N can be evaluated

through the ratio of flow densities of the monofractions under study.

) 3
N _Tn ("’”) . (7.24)

am ™M E

As a result of inelastic collisions, the ensembles of fine and coarse particles
acquire the same velocity vk, = vky, the velocity of fine particles having
decreased from vy, to vy, and that of coarse particles — increased from vy to
vgm- The change in the momentum of the fine particles ensemble amounts to

ALm = Nm(VHm - VKm)a
and that of coarse particles — to

ALM = M(VKM — VHM)~



7.3 Analysis of Distribution Coefficient 139

Obviously, AL,, = ALy,. This stipulates the following:

Nmvg, + M
VKm = VKM = W (7.25)

The conditions of a uniform motion of fine and coarse particles with initial
velocities are as follows:

3 p

(” - VHm) = ﬁ P_o - 8dm, (7.26)
3
(= i) = 2 p% o (7.27)

The conditions of a uniform motion of a coarse particle with a final velocity in a
dispersoid is, respectively:

(u —vim)* == - —gdy. (7.28)

Having divided term-by-term the expression (7.27) by (7.28), we obtain

£<:<”_V“02 (7.29)
Po U — Vgm
From Eq. (7.25),

u,VKM:u,w. (7.30)

Nm+ M

After simple transformations, this expression acquires the form

Nm(u — Vi) + M(u — viu)

_ _ 7.31
U — Vgm Nm + M ( )
Using Eq. (7.29)
Nm + M)*
Pu_ _ (NmF M) (7.32)
pO (Nm U—VHm + M)
U—VHm
or, taking into account both (7.26) and (7.27),
2
Nm + M)* NZ 41
Pu_  (Nmi M) | Ny . (7.33)

,00_ N dy, 2 Nz, [
my /3= +M M\ dy
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3
Using Eq. (7.24) and taking into account the fact that ; = (j—;) , we obtain
2
a1
Po_ | T | (7.34)
Po \ /g +1

Since p, = p, + Ap,,, arelative increase in the dispersoid density is

Apy _ P

Po Po

With the account of » mono-fractions under study, which transfer the momen-
tum to a coarser particle, relative increase in the dispersoid density is

f%—z(%) P
Po = \Po/

With the account for Eq. (7.34), the final expression for the dispersoid density is

2
u +1—n|. (7.35)

- 'm  [dm
j=1 e\ du =+ 1

To check the above-mentioned experiment on periclase classification using
Eq. (7.35), we have calculated dispersoid flow densities for the mentioned mono-
fractions

d, =040mm p, =2.29kg/m?
d, =025mm p, = 2.06kg/m?
d, =0.17mm p, = 1.70kg/m?

The obtained results point to an insignificant change in the flow density of the
dispersoid affecting individual narrow classes of particles. On the average, in the
present case we can assume p, = 2.0kg/m® = const as a first approximation for all
monofractions. It is noteworthy that for materials without sharp granulometric
differences, the difference in the mean flow density is insignificant. For more
exact estimations (or for materials with extremely different compositions), it is
recommended to use Eq. (7.35) for each monofraction.

Another important issue arising at a transition to the dispersoid is to evaluate its
structure, the profile of its velocity distribution over the apparatus cross-section.
Equations (7.26) and (7.27) implied a dispersoid with local effective velocities u.
A transition to p, was realized at the expense of the momentum transfer from fine
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particles to coarse ones. The flow density p, was assumed to remain unchanged
over the apparatus cross-section owing to the assumption of a uniform distribution
of particles. Since the local carrying capacity per unit area is characterized by the
product p,u?, its profile should be affine or uniform with respect to the distribution
of squared dispersoid velocities in the cross-section. Taking into account its affine
transformation with the scale factor 0.5 and nonlinear square-root transformation,
we obtain the profile of effective dispersoid velocities close to a parabolic one.
Since the volume flow rate of a dispersoid should be equal to a continuum volume
flow rate, the equation of dispersoid velocity distribution should be written as

(5=

which corresponds to the parameter n = 2.

Obviously, the above-stated estimation should be considered as approximate,
because it is based on a number of assumptions.

Substituting n = 2 in Eq. (7.19) and replacing p, with p,, we obtain

K=1-04-B. (7.37)

The obtained expression reflects adequately enough Bn.x = 2.5 and agrees
sufficiently well with the description of experimental separation curves Fy(d)
based on a cascade model (for turbulent regimes). In the case of an arbitrary regime
of particles overflow, we derive from Eq. (7.19):

K=1 Ar-B (7.38)
36+ 1.575VAr ’

Equations (7.37) and (7.38) are valid for p, = 1.2kg/m*and p, = 2.0kg/m?
appearing in the coefficients, and the criterion Ar and B are expressed, as before,
through p,.

7.4 Analysis of Experimental Dependencies from the Standpoint
of Structural Models

Principal regularities of the gravitational classification process were revealed
experimentally on various cascade apparatuses. Now it has become possible to
explain experimental facts from the standpoint of structural and cascade models.

First of all, it follows directly from Eqgs. (7.37) and (7.19) that it is possible to
plot a separation curve Fy(x) in any regime.

The same expressions allow us to take into account separation results depending
on the number of stages in a cascade apparatus (classifier height) and on the
material feeding place.
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The effect of structural differences of various apparatuses on the fractioning
process is taken into account by the application of different cascade models.

To check fractional separation curves for particles of different narrow size
classes depending on the classification regime, as well as other regularities, respec-
tive estimations were performed for a shelf-type cascade apparatus comprising four
stages (z = 4) in the case of initial material feed from above (i* = 1). Experimental
data on quartzite separation in it (p = 2650kg/m?) are presented in Fig. 7.3. The
comparison of computation results Fy(d;, w) obtained using Eqs. (7.37) and (7.19)
with experimental data is presented in the same figure.

According to Eq. (7.37), the velocity wy of the onset of fixed monofraction
extraction (intersection of Fy[d;, w] curve with the abscissa axis) is determined from
the condition

K=0=1-v04-B.

Hence, neglecting p, value in comparison with p;, we obtain

wo=,/04- ﬁgd.
Po

This makes it possible to predict the ratio of the velocity wy to the final settling
velocity vg of an individual particle of the specified size class in air. As known,

4 p

Vo = 37p_0

. ad. (7.39)

F, %
100

80 Z

60

%.
0,51 Om

20

s

9\
iy
|

2 4 6 8 10 12 14 wm/s

Fig. 7.3 Fractional separation dependence on the air flow rate: O @ ® — experimental points;
—— —estimated curve
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At the aerodynamic resistance factor / = 0.5, we obtain

Vo 4
— =4/ =1259. 40
wo 3-05-04 ? (7.40)

To check this ratio, wy velocities were calculated using Eq. (7.39) for particles of
all narrow size classes examined in the previous example, and compared with
experimental wy values. The aerodynamic resistance factor in Eq. (7.39) was
determined using an adjusted dependence

29.2 430
J=05+= 422
VAr Ar

The comparison of the computed dependence (7.40) with experimental data is
shown in Fig. 7.4.
A characteristic property of separation curves is their affinity. Its consequence is

a unitary character of Fy (w%o) curve for all monofractions. A combined analysis of

cascade and structural models confirms this fact. Thus, the distribution factor Ksg
for any 50%-extractable monofraction is determined from the equation

1"

1—[(1 — Kso)/Kso] "

—=05. (7.41)
[(1 — Kso)/Kso] ™!

Substitute Kso value found from Eq. (7.41) into Eq. (7.37):

S
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Final precipitation rate v m/s

Fig. 7.4 Correlation between
the final precipitation velocity
and the velocity of initial
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Fyx) =0 Velocity of initial extraction is 2,59w .7/
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Hence,
14 - 2.2
0.4 gd = (1 — Ksp)*wi,.
Po

We substitute the obtained value 0.4p£0 gd into Eq. (7.37) for an arbitrary
distribution factor

K=1-"2(1—-Ks).
w

Substitute the latter into Eq. (7.19):

PN
F (W5o>_ 1_{1/[(17_250)%_1”#1 . 742

The obtained expression (7.42) satisfies the unitary character of Fy (sto) curve,

whose plotting requires successive solution of Eq. (7.41), and then Eq. (7.42). In
particular, for the case under study (z = 4,i* = 1), we derive from Eq. (7.41):

1
K50 =0.342; 1 ——=1.519.
Kso

In this case, the dependence (7.42) acquires the form

Ff(l) - {1/(1.519%’0—15)}4. .

W50
The comparison of results computed by Eq. (7.43) with experimental data is
presented in Fig. 7.5.
As previously, the affinity of separation curves Fy(x) results in a unitary charac-

ter of Fy (ﬁ) curve for all velocities. Using the solution of Eq. (7.41) with respect

to Ks¢ in (7.37), we obtain for an arbitrary regime:

d
Kso=1—,/042 850 (7.44)
Po W
1 — Kso)?
(1= Ks0) —042. 5 (7.45)
dso pPo W

Passing to an arbitrary distribution factor, we obtain
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Fig. 7.5 Fractional separation dependence on the relative velocity:O0 ® ® ® ® ® © — experimental

points; — estimated curve
d
K=1-(1-Ks) 4/ (7.46)
dso

Then the expression (7.19) acquires the form:

z+1—i*
- {_“K”)\/%} :

d 1—(1-Ks0)-&
7(d) - s (7.47)
50 1 (171(50) ﬁ
-0k

Experimental check of the dependence (7.47) at z = 4;i* = 1 is presented in
Fig. 7.6.
It is noteworthy that we can prove in a similar way the unitary character of

Fy ) and F r| -2 curves for an arbitrary fractional separation value.
dso W0

Experimentally established universality of F¢(Fr) curve for various regimes and
different monofractions can be directly revealed from the structural and cascade
models. In fact, for a specific apparatus (z;i*) and the density of material particles
p, fractional extraction is unambiguously determined by the parameter j—fj. The
comparison of the curve calculated by Egs. (7.37) and (7.19) with experimental data
in the case under study (z = 4;i* = 1; 2,500 kg/m?) is presented in Fig. 7.7.

In a more general case, when the densities of materials to be classified differ, a
universal dependence is a function of the generalized classification parameter
F¢(B). This fact also follows directly from Eqgs. (7.37) and (7.19). In particular,
computed Fy(B) values and experimental data for the separation of different
materials in an equilibrium apparatus of circular cross-section (D = 100 mm;

z=9; i* =6; u=1.5kg/m’) are presented in Fig. 7.8.
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To check the compliance of the structural model with the empirical dependence,
we express the value of the parameter Frsy using Eq. (7.19):

Ks[):]— 0.4M-F7‘50

Po
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Fig. 7.8 Fractional separation dependence for materials of various densities on the parameter B:
O @ ® ® — experimental points; — estimated curve

Hence,

1 — Kso)?
Fre = LK) o

0.4 (p = po) .

With the account for the fact that in this example K59 = 0.342, we obtain:

Po

FI”50 =1.08——
(P = po)

)

which is close to the experimental correlation.

On the whole, all the examples studied clearly point to the predominance of
flow structure in the process of gravitational classification. The advantages of this
approach are its simplicity and satisfactory compliance with basic experimental
dependencies related to the gravitational classification process accumulated by
today.

7.5 Check of the Structural Model Adequacy

The account for the flow structure allows a more objective approach to the predic-
tion of fractionating results on apparatuses of different constructions. Without
dwelling on extremely complicated patterns of flow formation in actual appara-
tuses, for their roughest examination we should single out three characteristic
properties of a moving flow that can be connected with the apparatus construction:

— Character of the change in the continuous phase velocity field along the appara-
tus height
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— Presence of stagnant zones and the rate of the apparatus cross-section filling
with the moving flow

— Character of the material motion at the first stage of the process (at the feeding
stage), intensity of its interaction with the flow and internal elements promoting
concentration leveling and reduction of skips and depressions

Thus, for example, a velocity field of a continuum can be both uniform and non-
uniform along its height. Operation of hollow (equilibrium) apparatuses of a
constant cross-section is the closest to the former case. A uniform velocity field
stipulates for an identical regime of flow interaction with particles at any level of
the cross-section and predetermines the invariability of the distribution factor over
the apparatus height. The model of regular cascade satisfies most completely such
conditions of the process organization.

The intensity of the continuum interaction with particles depends not only on the
nonuniform velocity field over the apparatus height, but also on its nonuniformity
over the cross-section. For an apparatus of a circular cross-section, the structural
model takes into account the influence of transverse nonuniformity of the flow. It is
assumed obvious that the rate of filling the apparatus cross-section with a moving
continuous phase amounts to 100%. The matter is different with apparatuses of
square and rectangular cross-sections, where stagnant zones are formed in the
corners, reducing to zero the effect of the continuum on the removal of particles.
If we assume that the line of zero flow velocity in an apparatus of square cross-
section can be approximated by a circumference inscribed into the square, the rate
of filling such cross-section with an ascending flow amounts to

Since the distribution factor (proceeding from the structural model) is deter-
mined through the ratio of areas, when estimating this factor for a square cross-
section, a correction factor

Y
qu = Z

should be introduced. Taking it into account,

v
ksq = Z - Ko, (7.48)

where K is the distribution factor for an apparatus of circular cross-section.

If we accept an inscribed ellipse as the zero velocity line for an apparatus of
rectangular cross-section, the expression (7.48) will be also valid for determining
kyec, since

(7.49)
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The expression (7.49) for square and rectangular cross-sections is recommended
only as a first approximation, since actual filling rates are somewhat higher.

Finally, at the first stage of the process, a significant fall of the majority of
particles with respect to the level of their inlet is observed in the absence of intense
interaction of particles with internal components of the apparatus and in the
presence of stagnant zones. Apparently, the most favorable conditions for their
skip are realized in a hollow apparatus of square or rectangular cross-section.

In the light of the statements above, we have made an attempt to predict
quantitative results of fractionating process for several apparatuses of various
designs. Computation results are presented in respective figures in comparison
with experimental data.

Figure 7.9 shows an estimated curve and experimental data obtained at the
classification of periclase with the density p = 3,600kg/m® in an equilibrium
apparatus of circular cross-section (D = 100 mm). The number of conventional
sections z =9, feed sections i* = 6. Consumed concentration of the material is
u = 1.5kg/m>?. Computations were carried out using the model of regular cascade
(7.3) and structural model according to Egs. (7.19) and (7.37). Average deviation of
the estimated curve of F(B) dependence from experimental points in Fig. 7.9
amounts to +1.8% + 2.1%.

Figure 7.10 shows Fy(B) dependence at the classification of quartzite with the
density p = 2,650kg/m® in an equilibrium apparatus of square cross-section
with the dimensions 100 x 100 mm?. The number of conventional sections z = 6,
feed sections i* = 3. Consumed concentration of the material is u = 2kg/m>.

Fr,%
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® -d=0,250mm
60 Q) o -d=0,170mm
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0 ® [¢] o R
0.4 0,8 1,2 1,6 2,0 2.4 2,8 32 B
Fig. 7.9 Dependence Fp(x) = f(B) for a cascade apparatus of circular cross-section.

O ® 0 ® @ ¥ — experimental points; —— — estimated curve
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Fig. 7.10 Dependence Ff(x) = f(B) for a cascade apparatus of square cross-section:
® ® 0 ® — experimental points; —— — estimated curve

Computations were carried out using the model of a regular cascade with a skip by
1.5 conventional sections.
1 —g*
Fr=——.
1—d7
The distribution factor was determined with a correction for square cross-section
according to Eq. (7.48)

ko = [1—\/0.4—-3]

Maximal deviation of the estimated curve from experimental points does not
exceed 15%.

Figure 7.11 shows F¢(B) dependence at the classification of quartzite with the
density p = 2650 kg/m? in an apparatus of rectangular cross-section of zigzag type.

The number of sections z = 6;i* = 3. Consumed concentration is g = 2.0kg/m?.
Computations were carried out using the model of a regular cascade:

7170'4
fr=1=o

The distribution factor was determined with a correction for square cross-
section.

ke = [1_\/m]

&~



7.6 Correlation Between the Structural and Cellular Models of the Process 151

F/.y %

100 I I
J 0- w=6,3m/s

80 ® - w=7,6m/s

- w=9,7m/s
O\i ®- w=10,8m/s
60 o
40 @g\
20

“oe]
P~g | oe ®0

0 \0&\3\0 S o PR
02 04 06 08 1,0 1,2 14 1,6 1,8 B

0

Pl

Fig. 7.11 Dependence F;(x) = f(B) for a cascade apparatus of square cross-section of “Zigzag”
type: O ® @ ® — experimental points; —— — estimated curve

In all the cases, maximal deviation of the estimated curve from experimental
points does not exceed 7%, which is within the limits of experimental accuracy.

7.6 Correlation Between the Structural and Cellular
Models of the Process

Equation (7.6) can be written for a cell as follows:

4B
U — Vyp = Uy gv
since here we examine hydrodynamic conditions practically in one point of the
flow. Hence,

L 4B
uy N 3
or
\ 4B
U 34

According to (7.37), in this case we can write

Vr Vr
U w
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Then the limiting expression for coarse and fine particles extraction from a cell
can be written as

o2 gdp

f(E) = e% — erow? o,

Then we obtain

£ 2

f(E)=en —B.
Since k =1 — \/g:f, this dependence can be finally written as
f(E)y=A- e 9B)
where A is a constant value A = eﬁ; ¢(B) is a function of the parameter B.
This dependence totally complies with empirical dependencies for actual sepa-

ration curves, which were confirmed over and over again, but have not found as yet
a clear theoretical justification.



Chapter 8
Correlation Between Statistical and Empirical
Results

Abstract Taking into account the results of statistical and structural models of the
process, a method of comprehensive calculation of the process is developed.
Fractional separation dependence on such process parameters as medium flow
velocity, apparatus height and cross-section is found. The notion of “separation
completeness” is formulated. Physical causes of equal extractability of different
size classes are examined and validated, since when using affinization criteria, all
equal values of fractional separation of different size classes meet at one point in the
universal curve.

Keywords Approximation - Separation efficiency - Affinity - Separation curves -
Universal curve - Equal extractability - Separability - Separation completeness -
Optimal regime - Semi-logarithmic coordinates

8.1 Approximation of Universal Separation Curve

The analysis carried out in the previous chapter has made it possible to develop an
exhaustive method of estimating process results on the basis of structural and
cascade models. However, this method is somewhat intricate and not always
easy-to-use. Therefore, we are making an attempt to develop a simpler approxima-
tion of separation curves, which covers both cascade and equilibrium processes,
making use of a statistical approach.

It is established in Chapter 6 that the Boltzmann factor for a zone at a constant
number of particles Ny = N, = N is determined by an expression ¢ z. On such
conditions, the statistical sum should be written as

Z = Ze_%.
i

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 153
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_8, © Springer Science+Business Media B.V. 2010
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This sum is a proportionality factor connecting the probability P(E;) with the
Boltzmann factor, that is,

By the definition of a zone, this probability is proportional to the fractional
separation degree for a narrow size class. To understand the influence of the
proportionality, we analyze the ratio of these probabilities.

For a zone adjoining the apparatus, we can derive the following ratio for the
occupancies of two states:

Py _(E1—Ep)
—_— = z 8.1
= (8.1)

and the ratio of particles oriented in both directions can be written as
(8.2)

The numerator of the exponent in expressions (8.1) and (8.2) contains the value
of the lifting factor or a difference of its values.

As already shown, the lifting factor is functionally connected with hydrody-
namic particle size or with hovering velocity:

E = gdm.

Taking this into account, the dependence (8.2) can be written as

) __gdm
£ _ e " — 0B

e

The extraction Fy(x)is proportional to the probability P. The parameter B is
analogous to the Froude criterion at p = const, that is when only one material takes
part in the process. This suggests a simplified method of approximating universal
separation curves and analyzing process results.

Experimental dependence presented in Fig. 1.11 is reliably rectified in semi-
logarithmic coordinates, as shown in Fig. 8.1. According to this dependence, we can
write:

lgFr(x) =A —sB.

We express the value A in this equation through a coefficient s equal to tgo
(o being the angle of the approximating straight line intersection with the abscissa
axis). It is usually assumed that Fy(x) = 50% is the optimal value of the degree of
fractional separation. Therefore, we express A through Bs:
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Fig. 8.1 Semi-logarithmic dependence: 1g FAx) = f(B)

A =1g50 + Bsptga = 1g 50 + sBsy.

Taking this into account, the approximating dependence is written as

We finally obtain:

lgFf(x) = lgSO + SBSO — sB.

Fr(x) = 50e 23 =Bx0) (8.3)

where Bs is the value of the parameter B ensuring equal (50%) extraction of different
size classes; s is a constant depending on the apparatus design, as well as on boundary
conditions (place of material feed into the apparatus, fine and coarse products output,
air inlet into the apparatus, conditions of the walls, internal facilities, etc.).
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At the same material density, this dependence can be simplified and reduced to

Ff(x) — 50e72,3S(Fr7F1‘50).

8.2 Principal Separation Parameters Depending
on the Apparatus Height

Using this approximation, we analyze the available experimental material. It should
be emphasized that more than a 100 types of gravitational classifiers were experi-
mentally studied, and the treatment of the results has not revealed any cases of
considerable deviation of experimental dependence from Eq. (8.3).

Seven sets of experiments were carried out with cascade classifiers (Fig. 1.2). All
the apparatuses were of counter-flow type, that is the material was fed to the upper
shelf, while the air was introduced from below. The number of stages in the
apparatuses varied as follows: 1; 2; 4; 6; 8; 12; 14.

Principal results of this set of experiments are presented in Table 8.1.

For the sake of comparison, a variety of tests with hollow apparatuses of
different heights with removed pour-over shelves were performed. The height of
each stage remained unchanged. Principal separation parameters determined on the
basis of these studies are shown in Table 8.2.

In addition to these studies, another set of experiments was performed on a
zigzag separator (Fig. 8.1b) of various heights.

In these experiments, a gravitational separator column was assembled of 2, 4, 6
and 8 stages, respectively. In all the experiments, the source material was fed to the
uppermost stage. Principal parameters of the separation process revealed in these
experiments are presented in Table 8.3.

Table 8.1 Dependence of
Frso and s parameters on the
number of stages of a cascade
classifier with inclined
shelves

Number of 1 2 4 6 8 12 14
stages n

Frso x 10> 0.0345 0.04 0.0445 0.049 0.052 0.056 0.058
sx 1072 29.4 24 219 20.2 20 182 17.6

Table 8.2 Dependence of

P P . i Number of stages n 1 2 4 6 8
rso and s parameters on the - >
height of equilibrium Frso ><_120 0.0275 0.022 0.0175 0.015 0.014
gravitational apparatus s x 10 213 30 433 53 60
Table 8.3 Dependence of Number of stages 1 2 4 6 3
Frso and s parameters on the - === 5 0.0385  0.0255 00185 0016
number of stages of a zigzag

sx 1072 17.8 29.6 475 53

separator
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Figure 8.2 summarizes all the curves obtained for one narrow size class on
cascade separators of different heights. Since the separation efficiency is deter-
mined by the curve steepness, it follows from this figure that the efficiency
monotonically grows with increasing apparatus height. Similar dependences are
characteristic of other types of classifiers, as well.

The dependence of the parameter Frsy value on the apparatus height for all the
three types of classifiers is shown in Fig. 8.3. The parameter Frs5y determines
optimal regimes of the medium flow.

It is of great interest to find a way of obtaining a generalized quantitative
characteristic of a process from separation curves. Affine transformation of these
curves in a semi-logarithmic scale gives a linear dependence. The arrangement of
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Fig. 8.2 Fractional separation dependence for apparatuses of different heights in optimal regimes
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Fig. 8.3 Dependence Frso = f(n) for various classifiers: 1 — cascade shelf classifier; 2 — classifier
of “Zigzag” type; 3 — hollow pipe
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these curves contains information on the separation process quality. Besides the
parameter Frsy, another important characteristic of the dependence under study is
the coefficient s.

The mere parameters Frsy and s cannot characterize the separation complete-
ness, since the approximating straight lines do not intersect in the point
corresponding to the separation optimum. For graphic dependences of

Fy(x) =f(Fr)
type under study to intersect in one point, they should be transformed by changing
the abscissa axis.
Let us examine the effect of this transformation on the values of the coeffici-
ent s (Fig. 8.4).
Whereas before the transformation the dependence is
y=b—sxi,
after the transformation

y=>b— 5.

For any fixed ordinate value, we can write:

§1X1 = $2X2,

VA

Fig. 8.4 Schematic diagram
of affine transformation
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hence,

S1X1 S~FI‘50
S2 =
X2 F}’2

Assuming Fr, = 1, the parameter s - Frsy = iy unambiguously characterizes the
separating capability of a separator and has a clear geometrical and physical sense.

Values of coefficients i determined for various apparatuses on the basis of
Tables 8.1 through 8.3 are summarized in Table 8.4.

It follows from the Table that iy values exactly reflect qualitative ratios between
various apparatuses revealed by the comparison of their separation results. These
ratios hold both in columns and lines of Table 8.4, which points to a general and
objective nature of the introduced parameter — separation completeness .

It is noteworthy that this parameter was also successfully applied when examin-
ing and comparing other types of separating devices. It reflects not only the
steepness of the universal separation curve, but also its position in the coordinate
system. From the geometrical standpoint, this parameter shows not only the slope
angle of the universal curve, which is insufficient for evaluating separation quality,
but also the parameter Frsy value. Only the combination of these two parameters
gives an objective evaluation.

The following conclusions can be made from the statements above:

1. Separating capacity of any separating facility can be unambiguously character-
ized by the position of the approximating straight line in the coordinate system.

2. To know the parameters of this straight line is a prerequisite for calculating
optimal and other separation regimes and for predicting compositions of separa-
tion products.

3. The obtained dependence leads to a conclusion on the necessary limiting
information about the process.

In principle, it can be obtained in a single experiment, since the results of sieve
analysis of the source product and separation products give several points at the
same w value. It is sufficient for restoring all the dependence and calculating any
parameters of the process.

Thus, the parameter y characterizes completely and in detail the apparatus
separating capacity. This parameter allows one to compare various separation
facilities in an unambiguous and objective manner.

Table 8.4 Values of coefficients i for various separators

Number of stages 1 2 4 6 8 12 14
Type of separator
Cascade separator 0.935 0.96 0.975 1.00 1.01 1.02 1.025

Zigzag separator - 0.684 0.785 0.83 0.945 - -
Equilibrium separator 0.585 0.66 0.755 0.8 0.84 - —
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As for the evaluation of optimality of material separation, it requires a somewhat
different approach substantiated in the next chapter.

In technical literature, the efficiency of separators is evaluated by the results of
the source material distribution into both outlets. Here, however, the notions of the
apparatus operation efficiency and material separation efficiency are distinguished
for the first time. The separating capacity of a separator is determined by its
configuration and boundary conditions, whereas the material separation efficiency
is primarily determined by its initial composition and only in the second place by
the apparatus design.

8.3 Equal Extractability of Various Size Classes

Usually, serious attention in the theory and practice of separation is paid to
optimality conditions for boundary-size particles. It is known that these conditions
are satisfied if Fr(x) = 50% is valid for these sizes. It follows from the unified curve
(Fig. 7.8) that all these conditions are unambiguously determined for a specific
apparatus at Bsg = const. However, the same curve shows that not only optimal,
but any other separation, as well, for example, Fy(x) = 20%; 30%; 60%; 70%, etc.
is also unambiguously determined by the constancy of the respective parameters
Byo; B30; Bgo; B7o etc. The nature of this mechanism, which makes it possible to
obtain finally a strictly deterministic regularity in a chaotic separation process with
an immense number of random factors, remains unclear.

It has been shown from the standpoint of statistical analysis that the conditions of
equal extractability are determined by the ratio

T
— = const

L

for all size classes and flow velocities. Let us try to clarify the physical nature of this
phenomenon

First we examine a simple precipitation of a particle in an unlimited medium.
The character of precipitation of a solid round particle is determined by a system of
forces consisting of the particle weight in the medium under study and the medium
resistance to the precipitation. The particle weight equals

G = mgo,
where m is the particle mass; g is the free fall acceleration in a moving medium:

P = Po
§0=8—,
o
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where g is gravity acceleration; p, p, are densities of the solid particle and the
medium.

The medium resistance to the particle motion is determined, in the general form,
by the dependence

V2
R == ;qup()?

where 1 is the medium resistance coefficient; F is the midlength section of a
particle; p, is the medium density; v is the particle velocity.

Thus, we can write an equation of a particle motion at its precipitation in a
motionless medium:

dv I, ,
me= —mgo—i-E/LFv Po-

This equation can be solved in the general form by changing variables:

’

v=—4 where k :%.
After collecting similar terms,
d’u
— — goku = 0.
ar &

A general solution of this equation is
u=cre"Vek 4 cre V8K,

Taking into account the performed change of variables, we can find

\/5 C]Et gok __ C.ze—f\/ 8ok 8.4)
V= —y /=" . .
k clet\/gok + Czeft\/gok

It follows from the initial conditions
V=0 =0

that ¢; = ¢,. We obtain from dependence (8.4):

Vv = —\/g%()tht\/gok. (8.5)

Theoretically, the limit (8.5) is reached after infinite time. However, we can
assume, to a practically sufficient precision, that a hyperbolic tangent reaches its
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limiting value at the argument equal to 2.5. Hence, the time of a transitory process
at the particle precipitation can be defined as

t\/gok = 2.5
or
B 2.5
"~ Jlo—pa) Mo
p 2m

After the lapse of this time period, an isolated particle acquires a stationary
velocity that is called final precipitation velocity. It follows from (8.5) that

(p — po)2m
pAFpg
For a round particle,
nd? nd?
=2 , F=""
m 6 p7 4 )

where d is the particle diameter. Finally, we can write:

4gd(p —
vo = 4 [84lp = po) 8.6)
3pg

Let us examine a general equation of a particle motion in a flow. The determin-
ing parameter is the resistance coefficient. Its value determines the thickness of the
boundary layer on the particle, the place of this layer breakaway, velocity profile in
the boundary layer and the character of its variation. All these physical parameters
are determined by the Reynolds number calculated for a particle.

There are many ways of determining A. For fine particles under laminar overflow
conditions

24
A=—.
Re

For coarse particles under turbulent overflow conditions, the resistance becomes
constant and amounts to

A=~0.5.

In transient regimes (between turbulent and laminar ones)
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24
J=="405.
= 105

At a simple precipitation of particles, the velocity of their overflow by the
medium constitutes the fall velocity

Wy = —V.
In a moving flow, the overflow velocity is
Wy =w —V,

where w is the ascending flow velocity.
Taking into account the remarks related to the previous derivation, a general
equation of the particle motion can be written as

d 1
m;: = —mg + 5 2Fpo(v = w)’, 8.7)

where w is flow velocity. This expression can be transformed into the following:

dv 2
- = — k —
o= 8 Tk —w)
where k = ’12% . In this form, it represents an equation of Riccatti type, which can be
reduced to a differential equation of the second order,
d*u du 2
WJerwd + k(—go + kw”) = 0,

where v = 7. The solution of this equation gives the following:

v—w— () 616’\/g_—62€ \/QT (88)
v cle’\/gT—&—cze ok '

It follows from the comparison of (8.4) and (8.8) dependences that at any
comparable moment of time, the theoretical averaged particle velocity in a coun-
terflow equals its precipitation velocity in a motionless medium plus the velocity of
the flow itself.

The second multiplier in expression (8.8) is, under respective initial conditions, a
hyperbolic tangent asymptotically tending to its limit. After the lapse of a certain
time interval, the particle velocity becomes practically constant and is determined
by the dependence
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Finally, it can be written as

The resistance to a particle motion in a moving flow is determined as

(w—v)*

2

R=IF Po-

For hovering conditions, the balance of the weight and resistance constitutes

2
w
mg = )‘F%p(h

hence,

AFpy _ mg

=—.
2 W50

Taking this into account, we can finally obtain the minimal value of the resis-
tance to the particles in a flow, which can ensure the appearance of the lifting factor
in the form

(w = v)?

2
W50

R =mg

It is noteworthy that the obtained relation contains all parameters that can be
easily determined experimentally and does not contain explicitly the resistance
coefficient A, which is always difficult to choose.

We have shown that a particle sliding with respect to the flow is determined by
its hovering velocity, that is a particle always lags behind the flow by the magnitude
of its hovering velocity. Hence,

w = wsy + V. (8.9)
In this case, a general expression for the parameter B can be written as

g_84 (p=py) _ gdlp—py) 3

w? po (wso+v2)p, 4

whereas it is known that the hovering condition is:

d - 3
BSO _ g_2 X (p ,0()) — _)»50-

ws, Po 4
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We divide the second expression by the first:

2

B ioowiy

Bsy _Jso _w

(=]

Consequently, the ratio of the flow velocity to the hovering velocity predeter-
mines equal extractability rate, and this parameter is of universal nature.

While a function of Fy(x) = f(B) type is universal for turbulent flows only, a
dependence of Fy(x) = f (%) type acquires a universal character for any regimes of
medium motion.

A specific example of fractionating a finely disperse aluminum powder with
the density of 2,700kg/m?, which is used for producing paints, can serve as an
illustration. Grain size composition of aluminum powder in partial residues is given
in Table 8.5. Here d (mm) is the boundary size, r (%) — partial residues.

The experiments were performed on a cascade air classifier consisting of nine
stages with an average inlet (z = 9;i = 5). Air flow velocities varied within the
range of 0.29-1.46 m/s at tested concentrations of the material, which did not affect
the results of separation. The results of this set of experiments treated using the
system Fy(x) = f(B) are shown in Fig. 8.5. As follows from this figure, the obtained
curves do not become affine. It is noteworthy that at elevated velocities equal to
1.46 and 1.19 m/s they get practically merged, but at lower velocities they diverge,
and the extent of this divergence grows with decreasing flow velocity.

Table 8.5 Granulometric composition of aluminum powder in partial residues

d(mm) 04 0315 0.2 0.16 0.125 0.1 0.08 0.063 0.05 0.045 0.04 0.035 0.03
r(%) 65 69 143 7.8 6.5 6.7 78 82 35 42 42 42 4.8
0.025 0.02 0.015 0.01 0.005 bottom

4.2 30 1.8 1.6 3.5 0.3
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Fig. 8.5 Dependence Fy(x) = f(B)
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Based on experimental data, we have first plotted a dependence of Fy(x) = f(x)
type and used it to determine xy value for each flow velocity. A B, value was
determined for each flow velocity from Fig. 8.5. The results of all these operations
are presented in Table 8.6.

To obtain the broadest possible range in the experiments on this apparatus,
additional experiments were performed on quartzite powder (p = 2670kg/m’)
with particle size from 0.1 to 3 mm at flow velocities equal to 4.7; 5.57; 6.67; 7.3
and 7.89 m/s. All these curves give an affine dependence in the plot of Fig. 8.5, which
coincides with curves obtained at air flow velocities equal to 1.46 and 1.19 m/s.

On the basis of these data, an experimental dependence of

Bso = f(Resp)

type shown in Fig. 8.6 was obtained. It completely corresponds to the character of a
well-known Rayleigh curve of A =f(Re) type for an isolated particle. This con-
firms the validity of our conclusions on the connection between B and 4. At higher
Re values, the parameter Bs is constant. It is a turbulent region, which corresponds
to unambiguous affinization of separation curves by the parameter B. At a transition
to laminar processes, such regularity is violated, and the affinization by this

Table 8.6 Principal parameters obtained during the separation of aluminum powder on a cascade
apparatus (z =9,i =5)

Air flow velocity, wm/s 1.46 1.19 0.92 0.65 0.53 0.38 0.31 0.29
Bso 0.35 0.41 0.65 1.1 1.23 1.6 2.0 39
Reynolds number Resq 8.14 4.76 3.28 1.99 1.21 0.54 0.33 0.26

Bsgo

1 \"

N

-1,0 0 1 2 3 Ig Regq
Reynolds criterion

O— o + + +—++

Optimal value of the generalized parameter
N

Fig. 8.6 Dependence Bsy = f(Re)
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parameter is not observed. A transition from one regime to another is realized in
this apparatus at Resyg ~ 4.76, which corresponds to the boundary size of about
0.056 mm for the specified material (p = 2,700kg/m’). Obviously, for other
materials and apparatuses, this transition can occur at other sizes. Taking into
account a generalizing character of the parameter B, we can determine this value
for any material.

Using the obtained regularity, we can plot a dependence of

Fr(x) =f <BB> (8.10)
50
type for all above-mentioned experiments.

Such dependence is shown in Fig. 8.7. As follows from this figure, in this case a
complete affinization of separation curves is obtained. This means that a unified
common regularity is established for the process of separation of powders within
the range from 10 mm to 10 pm.

The dependence presented in Fig. 8.5 can be well approximated in semi-
logarithmic coordinates, as shown in Fig. 8.8. According to this figure, we can
write

Fy(x) = ' %, 8.11)

Ef(x)o/o
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This dependence reveals the desired general connection between all the para-

meters of the process under study. For turbulent regimes of the medium motion, it is
somewhat simplified:

Fr(x) = AeV 5.



Chapter 9
Entropy of Composition: Optimization Criterion

Abstract It has been assumed that entropy characterizes dynamic systems only. It
turned out that such a stationary system as a solid phase can be also characterized by
composition entropy. It reflects the uncertainty of granulometry based on a proba-
bilistic characteristic. Composition entropy, in contrast to thermodynamic entropy,
has a tendency to a decrease in critical regimes of motion. Ordering of compositions
because of fine and coarse particles distribution into different directions gives
grounds for unbiased unambiguous optimization of separation process by entropy
decrease value. Optimality conditions are determined.

Keywords Composition heterogeneity - Composition entropy - Separation -
Efficiency - Information - Binary separation - Multiproduct separation - Unequivocal
estimation - Equal extraction

9.1 Entropy and Particles Stratification

In the classical representation, entropy of a system is formed under two different
impacts exerted on the system, that is,

dH =d,H + dH

where d H is a part of entropy due to the impact of an external medium in respect of
the system, d;H is a part of entropy due to irreversible internal changes in the system
itself in the course of the process.

In the classical representation, the part of entropy d.H can grow, be zero and
even take on a negative value under certain conditions. As for d;H, it is accepted
that it always grows, that is, d;H > 0. In any case, the change in both components is
such that d.H + d;H > 0.

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 169
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_9, © Springer Science+Business Media B.V. 2010
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Irreversible processes can be described in terms of mass forces and mass
flows, the flows arising as a result of forces. For example, a gradient of concentra-
tions or flow velocities in different parts of the system is a mass force. In this
case, a flow can imply dN — the number of particles displaced (transformed)
between these parts during the time interval dt. In this case, entropy change can
be represented as

diH = FdN
where F' is the mass force. For open systems

dl + fdv
—

d.H =

The value d H denotes entropy change caused by a flow of particles entering the
system and leaving it in the opposite direction. The mobility factor plays a crucial
role here. The total entropy for a narrow size class is written as

dl +fdV tdN
x a

dH =

Clearly, in this dependence

dN
daH = -2
X

The total number of particles of a narrow class in the process is determined by
their entry into the system, exit from the system and internal displacement. It means
that we can write

dN = d,N + d:N.

It has been shown that potential extraction of a narrow size class is determined
by the number of particles and the chaotizing factor magnitude, that is,

1(;N) = NI(x)

where /() is the potential extraction probability for one particle. By analogy, we
can write the following for a polyfractional mixture:

Zl %N, ZNI

where i = 1;2;3;...;i is the ordinal number of a component of a polyfractional
mixture of particles.
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In this case entropy is written as

The internal entropy is written as

dyH = — Z”ITN

It is accepted that its change is always positive. If we sum up these two
expressions, the total entropy proves to be positive:

0.

dl - fdv AN
dH:deH+d,-H:? +fx —Zf’y >

In certain processes such as separation, phenomena making additional contribu-
tions to entropy arise. As already noted, in the process of separation, the effect of
solid particles stratification according to their velocities arises. This effect
decreases the composition uncertainty in the flow and in separation products in
comparison with the initial composition.

We denote by de the number of particles of a certain narrow class N that have
stratified according to their steady velocities by a certain moment of time dr. It is
clear that the ratio % is the stratification rate. At the initial moment of time at
t = 0,de = 0. If we take an integral,

de

E—S.

The relation between ¢ and N can be expressed through a stratification coeffi-
cient vy,
& = VkN k-
Clearly, v; is taken with a minus sign for the mixture placed into the flow and

with a plus sign for separation products leaving the apparatus. In this case, the
potential extraction can be considered as a function

1(1;Vse).

In these variables, the total differential of I acquires the form

ol ol ol
dl:( ) dx+() av + () ds
4 Vie v LiE Z e 1V e (ik)
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and here the internal entropy increment amounts to

diZH = - Z%dgz
i 4

and the total entropy is written as

dl  fdv ideN ide
an = SR ST
1 X — X — X

This can be explained visually enough by entropy production in the process
of diffusion. Diffusion leads to an opposite effect when particles Ny in some
concentration are concentrated in one part of a system, and particles N, in
a different concentration in another part of it. For the sake of simplicity, we
assume that the flow velocity in both parts is the same and equals w. In this case,
diffusion of particles from one part to another takes place. Entropy change in
this case is

diH = — (u) de >0,

X

since the uncertainty of the mixture composition grows.

In the course of separation, the change in granulometric composition leads
to a decrease of the composition uncertainty in the flow and in separation pro-
ducts in comparison with the initial composition, because in each direction
of the solid phase motion, a certain composition ordering occurs. Light fine
particles are mainly lifted upwards, while heavy coarse ones mostly precipitate
downwards.

Here the following is valid:

dpH <.

This decrease occurs within the system, which contradicts classical ideas, but
nevertheless is evident.

It is proved that the system entropy increases until it reaches the maximal
possible value for the specific conditions of the process. It is accepted that the
attained state of the system is the equilibrium state. What is implied when speaking
about equilibrium in a flow? It turns out that in the course of separation, entropy
grows up to its extreme value only for one boundary narrow size class. We revert to
an entropy expression obtained for particles of one class:

2 2
H(N;z) = H(N;0) —%.
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If the regime is chosen so that z = 0, entropy acquires its maximal possible
value

N!
Hmax(N;2) = H(N;0) ~ In————.
INUIN

The condition z = 0, by definition, gives
Fr(x) =F.(x) = 0.5,

that is a regular optimality condition. Thus, a kind of equilibrium is attained.

Within the range of velocity change ensuring a critical regime, it is always
possible to find a narrow size class that is divided in half between the separation
products. This is due to the impossibility of ideal separation. Figure 1.5 illustrates
this visually enough. The expressions presented in this section reflect entropy value
for one narrow size class. At the transition to polyfractional mixtures, the situation
becomes more complicated. Let us examine the arising problems.

9.2 Evaluation of Heterogeneity of Powder Composition

To assess changes in the grain size composition of powders in the process of
separation, many attempts to find universal formulas have been made.

Instead of seeking universal formulas, we introduce an objective estimate of the
composition heterogeneity, which will allow us to evaluate changes in the granu-
lometry of pourable materials in compliance with dependence (5.20).

We analyze major transformations occurring at the separation of pourable
materials. If a material is classified into components so that each component
comprises particles of the desired class only without any impurities, such separation
is ideal. It means that the more homogeneous the obtained components, the closer to
ideal the separation. However, ideal separation is impossible, and therefore, an
objective criterion should reflect an increase in the homogeneity of products
obtained after separation in comparison with the initial composition.

We perform our analysis from this standpoint. Assume that a material consists of
n fractions (we call the fraction size the average size of particles constituting a
given fraction) and quantitatively evaluate its composition from the following
conditions. We assume that we arrange all the particles of a material in a row and
determine the number of permutations with returns available for these particles.
This gives us an objective idea of the inhomogeneity degree of the system. (If we
regard each particle as a letter and receive messages made of the same letters in
different order, the number of permutations with returns is the number of messages
that can be composed using these letters).

We denote the total number of particles in the starting material by G, and the
number of particles in each fraction by N|,N,,..., N,. Then the number of
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permutations with returns for this material is m = HL It means that m is the
N
i=1

number of possible states of the system. As known from the theory of information, a
logarithm of the number of states of a system reflects the amount of information
about it.

We write M = Inm.

According to Stirling’s formula, for sufficiently high A values

lgAl =~ A(InA — 1).

Then M=Inm=G(InG — 1) — ZN(lnN —1)=G xInG - G- ZN InN;=

G xInG — ZN InN;. The probab111ty of taking at random a particle of size class
i=1

Jj from the starting material is P; = 5’ , hence, M = -G Z P;In P;. Itis known that the
i=1
amount of information per one element of a system equals

H =
G7

hence,

n
—ZP,‘ lnPi.
i=1

This function objectively reflecting the heterogeneity (uncertainty) degree of a
system is its entropy.
Separation quality criterion should satisfy two boundary conditions:

1. In the case of ideal separation, this criterion should be maximal.
2. Inthe case of separation with unchanged fractional composition, it should be zero.

Let H, be the entropy of starting material, and H;,H,,...,H, — entropies of
each component after the separation, respectively. Let us check whether the depen-

n
dence E = Hy — ) u;H; can serve as a criterion of separation quality Here u; is
i=1

the relative quantity of each component after separation, that is Z w =1
Let us check whether the initial conditions are satisfied. =1

1. We consider a component i in the case of ideal separation. Then H; =
—% In % — 1In1 =0. Hence, E = Hy, and it is clear that this is the maximal

efficiency that can be reached for a specific composition of the starting material.
2. If the separation is absolutely random and involves no changes in the fractional
composition of the material, we obtain:

~ 14Ny lnﬂiNk

Hi = —
i=1 lulG lu'lG

=H,. ©.1)
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n
Hence, E = H; — > w;H; = 0.
i=l . . o . .
It means that the function E is a suitable criterion of the separation quality
evaluation. However, a question can arise how to compare separation efficiencies of
various materials (maximal separation efficiency of each material is its initial
entropy). We define a new function

E;

Xt

and clarify whether it is suitable for evaluating separation quality (efficiency).

E, is defined when H; # 0 (H; = 0 when either the starting material is uniform,
or it is completely absent; in both cases separation does not make sense). Under the
initial condition 1 (ideal separation) E; = 1. Under the condition 2 (with composi-
tion remaining unchanged at the separation), £; = 0. We change the notation as
follows: E = E;. Then

—— i H; #0 9.2)

is a suitable criterion of the separation quality (efficiency) evaluation.

9.3 Binary Separation

Let us process experimental results using the criterion (9.2). Initial composition of
the material is given in Table 9.1.

We primarily estimate the starting material entropy. This material can be
considered as two size classes with respect to each boundary:

HS:—(PIIIIP1+P21I1P2), where P]Z%,PZZI—%7G:1

The table below shows the results of H calculation for the starting material.
(Entropy was not determined for the boundary of 0.05 mm; we do not take it into
account since it is the finest of size classes, and there is no class finer than that one.
Thus, is does not fall into the range of product distribution between the classifica-
tion outputs.)

d (mm) H;

1.35 0.114701
0.8 0.526401
0.45 0.608903
0.25 0.267138
0.165 0.177364

0.125 0.056919
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Table 9.1 Initial composition of the material

Total residues Q (%) Partial residues r (%) Particle dimensions d (mm)
2.44 2.44 1.35

21.96 19.52 0.8

70.23 48.27 0.45

92.47 22.24 0.25

95.7 3.23 0.165

98.88 3.28 0.125

100 1.02 0.05

We determine total residues in the material coming out into the fine product for
all experimental velocities. Entropy (Hy) of the material coming out into the fine
product is calculated for all separation boundaries and velocities using the equation

n
H = — ) P;InP;, where P; is the probability of taking a particle of a narrow size
i=1
class i from the material (ratio of the amount of this size class to the initial amount
of the material). Entropy for the coarse product is determined in exactly the same

way. Further we determine the separation efficiency for all velocities and separation

. . . H, H,
boundaries using the equation £ = 1 — %
d (mm) 3.5m/s 3 m/s 2.5 m/s 2 m/s 1.5 m/s 1 m/s 0.75 m/s
1.35 0.191442  0.105605 0.04881 0.16174 0.003574  0.000575
0.8 0.326884  0.219574 0.108129  0.035322 0.007825 0.001258

0.45 0.234157 0.358226  0.345936  0.149731  0.033287  0.005322  0.000193
0.25 0.144578  0.251544  0.37099 0.399582  0.164007  0.02599 0.00094
0.165 0.125977  0.222833  0.352829  0.4536 0.282685  0.047778  0.001723
0.125 0.094895  0.170709  0.286395  0.469373  0.888363  0.220642  0.00783

This table shows which velocity ensures the highest efficiency for each boundary

9.4 Multi-product Separation

Let us examine a material consisting of seven size classes and evaluate the
efficiency of its separation into seven components by six boundaries. Table 9.2
summarizes the material composition in percents.

Entropy of the starting material composition is

7
Fof \ 1o (Tsf
H, = — ( )1( ):1.66476
: ; 100/ "\100

Below we present a table of the results of separation into 7 components by 6
boundaries by successive separation by all the boundaries.
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d (mm) 7 6 5 4 3 2 1
0.55 1.1 0 0 0 0 0 0
0.356 25.757 2.08 1.72 0.42 0.47 0.34 0.14
0.181 8.47 2.47 3.34 1.08 1.395 1.83 0.39
0.128 2.5 2.04 3.7 3.85 3.13 3.1 0.735
0.09 0.16 0.42 1.39 1.63 3.8 3.94 1.4
0.064 0 0.05 0.17 0.5 1.1 6.74 1.09
0.0265 0 0.01 0.023 0.11 0.47 2.5 4.44
;% 37.987 7.07 10.343 7.59 10.365 18.45 8.19

1,;% is the percentage of material in each component.

Entropies of each component are calculated below:
7 6 5 4 3 2 1
0.800173 1.298014 1.381915 1.352805 1.517987 1.570894 1.332966

Table 9.2 Multi-component mixture composition

Boundary d (mm) Component contents 1,5 %
0.55 1.1

0.356 31.36

0.181 20.375

0.128 23.015

0.09 12.74

0.064 5.65

0.0265 5.76

Then the separation efficiency is

,
ZﬂiHi
E=1-=! = 0.463115
H

9.5 Algorithms of Optimization of Separation
into n Components

Let us analyze algorithms of material separation into n components in order to reach

the highest possible efficiency.

Assume a starting material consisting of particles with sizes from a to a, that
should be separated into n components by specified boundaries. The applied
separation method is as follows. The material is separated into two components
by one of the boundaries; then each component is separated into two components by
one of the internal boundaries, etc., until all the material is separated by all the
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boundaries. A problem is to find the order of separation boundaries leading to a
maximal separation efficiency. The efficiency is estimated using the formula

ZruiHi
E=1-%

9.5.1 Algorithm 1: Complete Sorting-Out

First the results of separation into two components are determined for each bound-
ary at all the parameters of the apparatus and the process (place of material feed into
the apparatus i*, number of apparatus stages z, air flow velocity w). Then for each
of the calculated separation products, the results of separation into two components
by all internal boundaries are calculated at all the parameters of the apparatus and
the process. The procedure is continued until all possible ways of separating a
specific material into n components are calculated for all possible parameters of the
apparatus and the process. Then the separation efficiency is determined for all
evaluated ways, the highest one is chosen, and thus the most efficient way of
separating the material into n components is found.

The described algorithm provides the global maximum of separation efficiency,
but its operation takes a very long time, O(n!). A schematic diagram of such
separation is shown in the form of a graph (a tree) (Fig. 9.1) in the case of starting
material separation by four boundaries (for other numbers of boundaries, the
approach remains the same). In this graph, each letter denotes a separation bound-
ary. After the separation by each boundary, fine and coarse products are obtained. If
they have internal separation boundaries, the fine product is considered in the graph
along the edge 1, and the coarse product along the edge 2.

Another algorithm for finding the way of maximal separation efficiency is
examined below.

9.5.2 Algorithm 2: Greedy Algorithm

At the first step, the results of separation into two components are calculated for all
the boundaries and apparatus parameters. Each time the efficiency is estimated, the
maximal efficiency is chosen, and thus the first boundary in the sequence of
separation boundaries and the necessary parameters of the process and apparatus
are established. Then the procedure is repeated for each of the two obtained
components with respect to the found boundary until the material becomes sepa-
rated into n components. Assume, for example, that the maximal efficiency of the
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Fig. 9.1 Complete sorting graph

starting material separation into two components is achieved for the boundary a;, at
the air flow velocity w;, quantity of apparatus stages z; and number of the stage of
material feed into the apparatus ij. Each of the obtained components contains
particles from all narrow size classes of the starting material; however, a part of
them constitute “impurity” meant for other components. In the first of the obtained
components, the separation boundary should be sought (for the efficiency maximi-
zation) between the boundaries ayp and a;_;, and in the second component —
between the boundaries a;;; and a,. The procedure should be continued until the
starting material becomes separated by all required boundaries.

This algorithm provides a local maximum of separation efficiency, but its
operation time is O(nInn), which is considerably less than the operation time of
the first algorithm.

When the calculation of the order of separation boundaries for finding the
maximal efficiency using the first algorithm proves to be too lengthy, then, starting
from a certain calculation step, one can pass to the search for a local maximum
using the second algorithm.

Figure 9.2 gives an example of material separation into four components. Here
the first algorithm (complete sorting-out) is used at the first step only. Starting from
the second step, the search for a local maximum of separation efficiency is per-
formed using the second algorithm. The graph in Fig. 9.2 is a subgraph of the graph
in Fig. 9.1.

A concrete example of the calculation of the order of separation boundaries for
obtaining a maximal efficiency demonstrates that the greedy algorithm is not so
poor, i.e. its results are close to those of a complete sorting-out. We also demon-
strate that it is possible to start the search for the order of separation boundaries for
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Fig. 9.2 Mixed algorithm of the search for maximal efficiency of separation into components

obtaining maximal separation efficiency with a complete sorting-out and then pass
to the search for a local maximum.

9.5.3 Optimization of Separation into Four Components

We examine phosphates in the capacity of the starting material. Their density is
pm = 2,800kg/m>. Air density is p, = 1.2 kg/m>. Let the velocity of air flow enter-
ing the apparatus from below be w = 1.8 m/s, the quantity of separation stages in the
apparatus z = 9, the number of the stage of material feeding into the apparatus i* = 5.
(Without any loss of generality, we have assumed that the air flow velocity, quantity
of separation stages and place of material feed into the apparatus are constant. In
general, these parameters should be varied in the course of optimization.)

We analyze separation by three boundaries at constant parameters of the appa-
ratus. Grain size composition of the starting material is specified in Table 9.3.

We determine the starting material entropy representing the former as two
narrow size classes for each of three separation boundaries in turn. First we
calculate total material residues for each separation boundary in %.

Narrow class number 0% 7%
1 52.2 52.2
2 75.5 23

3 88.6 134
4 100 114

Initial entropy H; = —(Py In Py + P, In P,), where Py = %})Zg,’ P,=1-P,.
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Table 9.3 Grain size composition of starting material

Sieve size (mm) 0-0.0265 0.053-0.0635 0.074-0.0875 0.105-0.1275
Partial residues of narrow classes 11.4 134 23 52.2

on sieves (%)
Narrow class number 4 3 2 1

We denote separation boundaries with letters as follows (narrow class numbers
being written above):

4 3 2
a b c

Initial entropy for each of three separation boundaries equals

H;
¢ 0.692
0.56
a 0.355
The separation coefficients for all narrow size classes (k) according to equation
k=1-—+/0.4B are:
1 2 3 4
0.40018 0.497452 0.576695 0.40018

We determine the fractional extraction degree for each narrow class (F¢) using
Eq. (7.3)

1 2 3 4
0.116769 0.487262 0.824351 0.992503

The amount of the material output into fine and coarse products after the
separation into two components for each of three separation boundaries is:
7% = Fers%o; 1% = 1s% — 11%.

Table of fine product yield (u):

Amount of material in a component (%) 1 2 3 4
39.67 6.1 11.21 11.05 11.31

Table of coarse product yield (u,):

Amount of material in a component (%) 1 2 3 4
60.33 46.1 11.79 2.35 0.09

Let us determine on which of the three separation boundaries the efficiency of
separation into two components is the highest.

Tables of complete residues for coarse and fine products are given below.

Table for fine product:

Amount of material in a component (%) 1 2 3 4
39.67 6.1 17.31  28.36  39.67

Table for coarse product:

Amount of material in a component (%) 1 2 3 4
60.33 46.1 57.89 60.24 60.33
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Let us determine the entropy of coarse and fine products by all separation
boundaries.
For fine product (Hy):

a b c
0.598 0.69 0.429

For coarse product (H.,):

a b ¢
0.011 0.0776 0.389

The efficiencies of separation into two components by all the boundaries are:

He + p.H,
E=1- %; pe = 0.3967; . = 0.6033.
Calculated efficiencies (E) are given below:
a b c
0.313 0.428 0.415

Apparently, maximal efficiency of separation into two components is reached on
the boundary b. Meanwhile, each of the remaining components has one internal
boundary, and to complete the search, it remains to separate each of the obtained
components by it. (If, however, we obtained the maximum efficiency of separation
into two components on the boundary a or ¢, we would have to continue the search
for separation boundary in the component with two remaining internal separation
boundaries until we find the maximal local efficiency).

In the present case, it remains to separate the two obtained components by the
boundaries a and c, respectively.

The result of the first component separation by the boundary a is as follows.

Fine product (r/%):

Amount of material in the component (%) 1 2 3 4
26.514 0.712 5462 9.11 11.23

Coarse product (r.%):

Amount of material in the component (%) 1 2 3 4
12.85 5.39 575 1.94 0.08

The result of the second component separation by the boundary c is as follows.
Fine product (7+%):

Amount of material in the component (%) 1 2 3 4
13.156 5.382 5745 194 0.089

Coarse product (R %):

Amount of material in the component (%) 1 2 3 4
47.174 40.718 6.045 041 0.001

We calculate the final efficiency of separation into four components. The
entropy of the starting material consisting of four narrow classes is H; = 1.2.
Entropies of each component after separation are H; = 1.151;H, = 1.041;
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4
ZH’Hi

H; = 1.04; Hy = 0.432. Then the separation efficiency is E = 1 — ’IT = 0.437.
It should be emphasized that the material is separated using the algorithm meant for
obtaining a local maximum of separation efficiency in the following order of
separation boundaries: (b; a; c).

We seek the separation efficiency maximum using a complete sorting-out at the
first step and a search for a local maximum starting from the second step.

The fractional extraction degree for each narrow class remains unchanged, since
the process parameters remain the same.

We analyze starting material separation as separation by the boundary a.

Fine product (r/%):

Amount of material in the component (%) 1 2 3 4
39.67 6.1 11.21 11.05 11.31

Coarse product (r.%):

Amount of material in the component (%) 1 2 3 4
60.33 46.1 11.79 2.35 0.09

In the obtained coarse product, we seek a boundary providing maximal effi-
ciency of separation into two components. It can be easily verified that maximal
separation efficiency is reached on the boundary b.

We obtain the result of coarse product separation into two components using
equations 77% = Fyry% and r.% = r;% — ry%. They give the following two com-
ponents (separation by the boundary b).

Fine product (1/%):

Amount of material in a component (%) 1 2 3 4
13.156 5.382 5.745 1.94 0.089

Coarse product (r.%):

Amount of material in a component (%) 1 2 3 4
41.174 40.718 6.045 0.41 0.001

Let us calculate the separation of the obtained coarse product by the
boundary c.
Fine product (r/%):

Amount of material in a component (%) 1 2 3 4
8.04 4.754 2945 0.33798 0.000993

Coarse product (r.%):

Amount of material in a component (%) 1 2 3 4
39.13 3596 3.1 0.07202 0.000007

We study starting material separation in the case of the following order of
boundaries: (a; c; b). We use the available results of coarse product separation first
by the boundary c. Then we separate the obtained fine product by the boundary b.
The result of separation by boundary c is:
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Fine product (7:%):

Amount of material in a component (%) 1 2 3 4
13.156 5382 5.745 1.94 0.089

Coarse product (r.%):

Amount of material in a component (%) 1 2 3 4
47.174 40.718 6.045 0.41 0.001

Determine the separation of the last fine product by boundary b.
Fine product (r/%):

Amount of material in a component (%) 1 2 3 4
5.1176 0.628 2.8 1.6 0.0883

Coarse product (r.%):

Amount of material in a component (%) 1 2 3 4
8.04 4.754 2945 0.34 0.0006

Let us calculate the efficiency for the order of boundaries (a; c¢; b) under
study:

4
Z wiH;
H, =136;H, =0433;H; = 1.022;H; = 0.812; E =1 —% =0.282.
We study starting material separation into two components as separation by the
boundary c.
Fine product (r/%):

Amount of material in a component (%) 1 2 3 4
39.67 6.1 11.21 11.05 11.31

Coarse product (r.%):

Amount of material in a component (%) 2 3 4
60.33 46.1 11.79 2.35 0.09

We consider the separation of the obtained fine product by the boundary b and
obtain the following two components:
Fine product (7/%):

Amount of material in a component (%) 1 2 3 4
26.514 0.712 546 9.11 11.23

Coarse product (r.%):

Amount of material in a component (%) 1 2 3 4
13.16 539 575 194 0.08

We consider the separation of the obtained fine product by the boundary a:
Fine product (r/%):

Amount of material in a component (%) 1 2 3 4
214 0.083 2.66 7.51 11.14
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Coarse product (r.%):

Amount of material in a component (%) 1 2 3 4
5.113 0.629 2.8 1.6 0.084

We calculate separation efficiency for the obtained order of boundaries
(a; b; ¢).

ZHiHi
Hy =0.66H, =1.04;H; = 1.1;Hy; = 0.984;E = 1 — % = 0.333.

N

Let us calculate the results of starting material separation for the order of
boundaries (a; b; c). We use the obtained results of separation by the boundary c
and consider the fine product separation by the boundary a. Then we separate the
obtained fine product by the boundary b.

The result of separation by the boundary a is:

Fine product (1/%):

Amount of material in a component (%) 1 2 3 4
26.514 0.712 546 9.11 11.23

Coarse product (r.%):

Amount of material in a component (%) 1 2 3 4
13.16 539 575 194 0.08

Finally, the efficiency for the order of boundaries (c; a; b) under study is:

4
> wiH,
Hy = 0.66;Hy = 1.55:Hs = 1015 Hy = 0812 = 1 = =L — = 0315.

s

One can see that if the algorithm of the search for a local maximum was used
in the complete sorting-out algorithm after separating the starting material by
the boundary c, the local maximum would give the order of separation boundaries
(a, b, ¢).

The table below shows separation efficiencies for all possible orders of separa-
tion boundaries.

Order of b.c.a (obtained in a.b.c (local a.c.b. c.b.a (local c.ab
boundaries the search for maximum maximum
maximal efficiency starting from starting from
maximum) the second the second
step) step)
Efficiency 0.347 0.285 0.282  0.333 0.315

This and other examples show that the algorithm of the search for local separa-
tion efficiency maximum is good enough in comparison with the algorithm of
complete sorting-out.
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9.6 Mathematical Model of Separation into n Components

Let a starting material be specified with particle sizes within the range from a to
a,, which should be separated by (n — 1)-th boundary. We assume, without any
loss of generality, that we have obtained using algorithms the following order of
separation boundaries for achieving maximal separation efficiency:

(R RN IR 7 PINY ¢ TR N /NN ¢

(i.e. separation by a; boundary occurs before the separation by a; | boundary, and if
it were otherwise, the approach would be exactly the same). The apparatus para-
meters are also obtained for separation by each boundary (these parameters z — the
quantity of stages, i* — the number of stage of the material feed into the apparatus,
w — the velocity of air flow entering the apparatus from below, are different for all
boundaries). Assume that it is needed to calculate separation results in the (i 4+ 1)
component. According to the obtained sequence of separation boundaries, the
results of separation in i + 1 component will be available after separation by a;;
boundary. Let us mark the C-path connecting a;and a;y; vertices in the graph
presented in Fig. 9.3. Let r,; be the quantity of j size class material in the starting

-6

Fig. 9.3 Sequence of separation boundaries
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material. Then after the starting material separation by the boundary a;,, the
quantity r;Fy s; of j size class material falls into fine product, and
ry,j(1 — F1,j) into coarse product. Here F ¢ ; is the fractional extraction degree
of the size class j for the first apparatus performing separation. Further, the material
extracted into fine and into coarse products should be separated by the respective
internal separation boundaries. The quantity of j size class material falling into
coarse and fine product after the separation by each boundary is determined
analogously to the first separation stage. Then

rivigy = reiFigy [ (0=Fipp) - 1] Feri 9.3)

areCR dkEC/

where r;y1 s ; is the quantity of the material of size class j that came out into the
(i + 1) component;
Fy s j — fractional extraction degree of the class j material into k-th component;
C — pathbetweena;, and a;1,a; € CRoray € C', if the edge in the path C after
the vertex a; goes to the right or to the left, respectively (Fig. 9.3).

9.7 Optimum Conditions for Binary Separation

We assume that the original composition of a certain pourable material is described
by the grain size characteristic in partial residues shown by curve ABC (Fig. 1.4).
We also assume that due to technological needs, this material should be separated
with respect to x size. The graph area confined by curve ABC and coordinate axes
corresponds, in a certain scale, to the total quantity of starting material. We
conditionally take this quantity as a unity and denote the curve for the original
composition by Q(x).

In an ideal process, the material should be separated by a straight line Bxy.
With respect to this line, the starting material consists of two parts — fine (D;) and
coarse (Ry).

In a real process, the separation does not proceed ideally, since a number of the
fine fractions fall into the coarse product, and a number of coarse ones fall into the
fine product.

In this case, the fine product is described by a certain curve g(x), and the coarse
product by n(x).

The graph area in Fig. 1.4 is separated by curves of ideal and real processes into
four parts:

Dy — fine material in the fine product yield;

Ry — coarse material in the fine product yield;

R. — coarse material in the coarse product yield;

D, — fine material in the coarse product yield.
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Separation can be optimized by minimizing the absolute value of the contami-
nation of both products. According to Fig. 1.4, for this purpose it is sufficient to
minimize the expression

A=R; +D.. 9.4)

As known, an optimum condition can be written using the relation (9.4) as

dfeWdx d [ n(x)d
a4 dR; D, {g(x) x+ xf n(x)dx
dx  dx dx dx dx

=0. 9.5)

A derivative of a definite integral with a variable upper limit and a constant
lower limit is known to be equal to the integrand in the upper limit point. Hence, we
derive from (9.5):

g(x) = n(x). (9.6)

It is clear from the curves g(x) and n(x) plotted with respect to curve Q(x) that in
the point of optimum, a narrow size class is divided in half.

In Fig. 1.4 only one point satisfies this condition — the intersection point of
curves g(x) and n(x) with a respective ordinate xg.

This can be clearly shown in a purely geometric way. For this purpose, the line
should be plotted either to the left or to the right of Bxy. In both cases, the area of
joint contamination graph grows, and it is minimal only at Bxjp.

We determine the second optimum condition from the entropy value as a
function of the original composition. For a binary product, we can write:

H; = —[P log Py + P - In P;]
or
H; = —[PylogP+ (1 —Py) - In(1 = Py)]. 9.7)
Let us differentiate Eq. (9.7):

dH
dP;

=[l+1logP; — 1 —1log(l—Py)] =0,

hence,

log Py =log(1l — Py)
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and

P, =P, = (9.8)

1
5
Thus, a binary mixture is maximally indefinite when both components of the

original composition are equal. It means that separation in this region can give a
maximal effect.

9.8 Optimum Conditions for Multi-Product Separation

Figure 9.4 offers a schematic diagram of multi-product separation. In case of m
boundaries (m + 1) products are obtained.

According to Fig. 9.4, total contamination due to adjacent products only in case
of multi-product separation can be defined as

A= (Dy+Ri)+ (Dy+R2)+ (D3 +R3) + -+ (D + Rp). 9.9)
Similarly to the case of binary separation, here we can also obtain the optimi-

zation condition by minimizing the absolute value of the contamination of all
products.

dA _d(D\+R,)  d(Dy+Ry) d(Dp + Rpn)

-— = + 4+ i —=0.
dx dx dx dx
dR A
dx
3
=
=
5
=
3
A
X1 X2 X3 Xy x'

Particle size

Fig. 9.4 Basic circuit of multi-product separation
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This equality can be solved correctly only by setting each brackets to zero, i.e. on
each separation boundary the following should be valid.

(9.10)

The same result can be obtained in case of each product contamination not
only by the material of adjacent fractions. In this case, R{;R»;...;R, imply total
contamination of the respective material.

It means that on each separation boundary, a narrow class should be divided in
half.

A common zero in Eq. (9.9) can be also obtained due to the boundary displace-
ment to the left of the conditions (9.10) in one case and to the right in another.
However, as shown for binary mixtures, it leads to an increase in total contamina-
tion. Therefore, the conditions (9.10) are the only correct ones for a multi-product
process.

For our studies, we have chosen a shelf classifier. It consists of seven stages with
the initial feed to the second one counting from above. In our experiments, we
studied crushed quartzite with particles in a broad size range. Main characteristics
of this material are given in Table 9.4. The size of a narrow size class was

Table 9.4 Starting material characteristic

Mesh size of Narrow class  Partial residues Products Product Each product content
sieve, x Um mean size on the sieve r% boundaries  notation in the initial one (%)
X um pm
1 2 3 4 5 6
2,800 3,000 0.78 G 3.02
2,500 2,650 2.24 +2,150
1,800 2,150 6.73 —2,150 F 6.73
+1,400
1,000 1,400 12.07 —1,400 E 23.28
750 825 11.21 +690
630 690 10.7 —690 D 26.9
400 515 16.2 +357.5
315 357.5 13.73 —357.5 C 23.93
200 257.5 10.2 +180
160 180 6.1 —180
100 130 3.31 +71.5 B 11.84
80 90 243
63 71.5 2.03
50 56.5 1.28 —71.5 A 43
40 45 0.7

0 20 0.29
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determined as an arithmetic mean of mesh sizes of two adjacent sieves. The entire
size range is separated into seven products by six boundaries. Table 9.4 shows the
amount of each product in the starting material and which narrow class should be
separated in an optimum manner in order to achieve the minimal mutual contami-
nation of the products at each separation act.

Hr = +0.6052; Hy = +0.6313; Hp = +0.6361; He = +0.5756; Hp
= +0.549; H, = +0.388.

Based on this table and using normal logarithms, we obtain from Eq. (9.1) the
initial composition entropy:

Hy =+1.71.

Preliminary experiments made it possible to determine optimum air flow velo-
cities referred to the total classifier cross-section, which ensure optimum separation
of narrow classes indicated in column three. It is established that in this apparatus
this velocity is 0.95 m/s for 71.5 pm class, 1.34 m/s for 180 um class, 1.89 m/s for
357.5 um, 2.62 m/s for 690 um, 3.74 m/s for 1,400 pm, and 4.63 m/s for 2,150 pm.

Three sets of experiments of successive separation of the starting product into
the indicated seven products were carried out.

In the first set of experiments, first the finest product A was separated in an
optimum way, then the product B was separated from the residue in an optimum
way, as well, then the product C, etc., up to the product G.

The results of this study are summarized in Table 9.5. This Table shows the yield
of each product. For example, as for the product D, its yield with respect to the
initial composition is y, = 26.705%. In this product, target fractions, that is
particles within the size range from 357.5 to 690 pm, amount to 17.81% of the
mentioned quantity (y, = 17.81%). Besides, this product contains particles exceed-
ing 690 um and those below 357.5 pm. Their total amount constitutes the contami-
nation of this product. For D product, their amount is 8.895% and is denoted as
(7, = 8.895%).

Entropy of each product is determined based on the contents of target fractions
(7.) and contamination (7, ) in it. Here the product is considered independently, that
is the sum of these two components is taken as a unity or 100%. In this case,

17.81

2= S5 = 66.69%,
8.895

In this case we write the composition entropy for each specific product D as

Hp = —(0.6669 In 0.6669 + 0.33311n0.3331) = +0.6362.
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Similarly, calculated composition entropies for all other products are

Hy = +0.6795; Hy = +0.696; He = +0.5958; Hg = +0.606; Hr = +0.6096; H
= +0.6796

Then we determine the total efficiency of this multi-product separation using

Eq. (9.2):

E; = 0.632.

In the second set of experiments, separation of each product from the starting
material was performed in a reverse order — from coarse to fine, product G first, then
F, etc., up to product A. The results of this set of experiments are given in Table 9.6.

Based on the data of Table 9.6, we have determined for this case the following:
Hg = +0.6718;

Table 9.5 Results of multi-product separation of the initial material from fine to coarse one

Separation stage and flow velocity

Starting material — 100%

Fine product

Coarse product

1

w = 0.95m/s
2
w = 1.34m/s
3
w = 1.89m/s
4
w=2.62m/s
5
w = 3.74m/s
6
w = 4.63m/s

vp = 12.285%
7. = 6.115%
7, = 6.17%

Product A
Y4 = 3.545%
7. = 2.065%
7 = 1.48%
Product B
y =84.17%
Product C
Ye = 20.96%
vz = 15.05%
yp = 5.945%
Product D
vp = 26.705%
v, =17.81%
7, = 8.895%
Product E
ve = 21.14%
y. = 14.903%
7 = 6.237%
Product F
yr = 10.01%
7. =3.0%
7, =7.01%

Residue
y = 96.455%

Residue

Residue
Yy =63.21%

Residue
y =36.5%

Residue
y = 15.365%

Product G

vr = 5.362%
v, =2.242%
7y =3.12%
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Table 9.6 Results of multi-product separation of the initial material from coarse to fine one

Separation stage and flow velocity

Starting material — 100%

Fine product

Coarse product

1 Residue Product G
w=4.63m/s 7 = 94.02% Y = 5.98%
v, =2.375%
7, = 3.605%
2 Residue Product F
w=3.74m/s y = 83.795% vr = 10.225%
v, =3.0%
7 =7.225%
3 Residue Product E
w=2.62m/s y =61.74% Ve = 22.056%
y. = 14.868%
7, =7.188%
4 Residue Product D
w = 1.89m/s y = 35.04% Yo = 26.7%
v, = 17.826%
p = 8.874%
5 Residue Product C
w = 1.34m/s y = 14.495% Yo = 20.545%
y, = 15.015%
7 = 5.53%
6 Product A Product B
w = 0.95m/s Y4 = 3.453% vg = 11.049%
v, =3.0% v, = 8.42%
7, = 0.453% 7, = 2.629%

It is determined using Eq. (9.2) that the total efficiency of such multi-product
separation was

Ey = 64.66%.

In the third set of experiments, the idea of efficiency maximization at each
separation stage was realized.

First, a narrow size class was established in the starting material with approxi-
mately the same ratio of fine and coarse products contents. It is a narrow class with
the mean particle size X = 690 pum. With respect to this class, total residues are
Ry = 43.73%, and total passages are Dy = 56.27%. Therefore, the first separation
stage was carried out at the air flow velocity w = 2.62 m/s. In this case, 62.04% of
the total starting material came out into fine product, and 37.96% into coarse
product. In the fine product yield, the class with the mean particle size
X = 357.5 pm proved to be the closest to 50% composition. With respect to this
class, Ry = 57.5%; Dy = 42.5%.

In the coarse product yield, an analogous size class was the class with
X = 1400 pm. With respect to this class, R = 31%; Dy = 69%.
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Table 9.7 Results of multi-product separation of starting material according to the principle of

maximal efficiency at each stage

Separation stage, air flow velocity

Starting material — 100%

Fine product

Coarse product

1

w=2.62m/s y = 62.04% Y =37.96%
2 II Fine product Product D
w = 1.89% of I fine product y = 35.05% vp =27%
v, =17.83%
7 =9.13%
3 Product E III Coarse product
w = 3.74m/s of I coarse product Ve = 22.6% y = 15.34%
y. = 14.97%
7, =7.63%
4 IV Fine product Product C
w = 1.34m/s of II fine product y = 14.97% ve = 20.079%
v, = 15.025%
7p = 5.054%
5 Product F Product G
w = 4.63m/s of Il coarse product yr = 10.13% Y = 5.8%
Y. =3% y. =2.11%
vy =T7.13% 7p = 3.69%
6 Product A Product B
w = 0.95m/s of IV fine product Y4 = 3.6% vg = 11.37%
7. = 3.08% y. = 10.153%
7 = 0.52% 7 = 1.217%

I Fine product

I Coarse product

The second separation was carried out with the fine product yield at the velocity
of w=1.89m/s, which corresponds to optimum separation by the class of
357.5 pm.

Product D containing 27% of the starting material is the coarse yield material of
this separation stage.

The third separation in this set of experiments was carried out on coarse material
remaining from the first experiment at the air flow velocity of w = 3.74 m/s, which
is optimum for a narrow class with the mean particle size ¥ = 1,400 pm.

Fine yield material at this separation stage is product E. The separation was
carried through in a similar way.

A schematic diagram of this separation is presented in Table 9.7.

Based on this Table, entropies of each product composition were calculated:

Hp = 40.641; Hg = +0.6396; Hc = +0.6183; Hp = +0.607,;

Hg = +0.6555; Hy = +0.412; Hy = +0.3368.
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We have determined using Eq. (9.2) that in this case, the total efficiency of
separation into seven products is

En = 0.6526,

which exceeds the total separation efficiency value in the two previous cases.
The following conclusions can be made from the analysis above:

1. Entropy criterion is applicable for the evaluation and optimization of multi-
product separation. It can be also used for unambiguous evaluation of compli-
cated schemes of concentrating plants and other multi-stage processing lines for
separating both multi-component and binary mixtures.

2. The value of multi-product separation efficiency is determined by the starting
material composition.

3. Maximal possible efficiency is also determined by the chosen sequence of
separation boundaries.

4. As the obtained results have shown, maximal effect is reached when two
conditions are observed:

(a) At each separation by any boundary, the optimum condition should be
realized at the expense of mutual contamination minimization

(b) The sequence of separation boundaries should be chosen so that the separa-
tion is performed by the boundary for which the ratio of products is the
closest to the equality Ry = Dy = 50%.



Chapter 10
Stability and Kinetic Aspects of Mass
Distribution in Critical Regimes

Abstract Despite the observed total chaos, a practically deterministic universal
separation curve is formed in critical regimes of two-phase flows. We have man-
aged to understand it only by means of an analysis of changes in the entropy of two-
phase flows and in other parameters forming a statistical identity. Parameters
ensuring the stability of this curve are determined, and the mechanism of their
action is shown. A specific equilibrium in the critical regime is substantiated.

Keywords Entropy - Stability - Universal curve - Fluctuation - Parameters - Mass
process - Chaos - Order - Regularity

10.1 Entropy Stability

Rapid filming and visual observations of the separation process reveal a completely
chaotic motion of particles, especially in cascade facilities with numerous internal
components. Particles of a poly-fractional mixture move upwards and downwards,
to the left and to the right, take part in vertical motion, form agglomerates that can
decay and appear again, collide with each other, as well as with the walls and
internal facilities of the channel. All this makes it impossible to predict the motion
direction and velocity for at least one particle, not to speak about the behavior of a
class of particles. Meanwhile, separation curves obtained as a result of such process
have a markedly deterministic stable character. This fact is covered in detail
in Chapter 1. It gives the impression that each particle size class behaves autono-
mously in this chaotic motion, irrespective of the behavior of all other size classes,
although, beyond any doubt, the particles interact.

There is nothing unexpected about it. It is an exact analogy of Dalton’s law for a
mixture of gases. Molecules of all the components interact, and the pressure on the
chamber walls is made up from the pressures of all the components, which they
would exert if each of them occupied the entire volume.

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 197
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_10, © Springer Science+Business Media B.V. 2010
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It is experimentally proved that the stability of the universal separation curve
obtained on a particular apparatus is practically absolute. It remains constant at
varying granulometric composition of the solid phase, air flow velocity within the
limits of a turbulent regime, boundary size of separation and even (within certain
limits) material concentration in the flow. Naturally, a question arises — what
ensures such deterministic stability of separation results in a practically totally
chaotic process with the participation of an immense number of particles
(10'° — 10'") of various sizes and densities having irregular shapes? Here the
principal parameters of the process are subject to constant fluctuations. Local
concentrations and flow velocities, composition of particles of different classes,
flow pressure, etc. are non-uniform.

To gain an understanding of all this, we revert to the crucial relation for a system
of critical flow with a polyfractional solid phase:

dl = ydH — fdV + " t4dN. (10.1)
k

In this expression, entropy H and potential extraction / are functions of the state,
while y,7,f, N are active parameters of the system.
As shown, using Euler’s theorem we can obtain from this equation the following:

I=yH—fV+> ul.
k

Now we write this expression in a complete differential form:

dl = ydH + Hdy — fdV — Vdf + > (tdNy + Nidy).
k

This expression agrees with Eq. (10.1) under the condition that

Hdy — Vdf +> " Nidr; = 0.
k

This shows that all active variables of the system under study cannot be
independent. For instance, if y and f are constant, the following is necessary:

Zde’L’k =0.
k

It is important for the understanding of the effect of fluctuations of various
parameters on the process stability. According to the ideas formulated by Clausius,
the entropy of a closed system permanently grows. Boltzmann has shown in his
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kinetic theory of gases that a closed system evolves to the state with the maximal
internal entropy for given conditions and acquires an equilibrium state. The equi-
librium state according to Boltzmann is a state in which the interaction of gas
molecules cannot affect the magnitude of the attained value of the internal entropy.

Further studies of this problem performed by such scientists as Einstein, Gauss,
Prigozhin, have shown that this law is also characteristic of other systems where a
spontaneous change proceeds in such a way that the total internal entropy value
(H;) permanently grows until it reaches, under specific conditions, its extreme value

As shown in the previous chapter, this regularity is not characteristic of the
process under study. During separation, the total internal entropy decreases as a
result of ordering of separation products compositions in comparison with the
source feeding composition. In this respect, the critical flow entropy is basically
different from the thermodynamic entropy. If the total internal entropy is consid-
ered as a sum of entropies of all narrow size classes

H; = ZHina
n

on the whole, it decreases. However, there is one component among the terms of
this sum, whose value grows up to the extreme one. We imply the entropy of the
boundary size class.

In literature, there is no unanimous concept regarding this value. The known
methods of Rubinchik, Povarov and Mayer give different magnitudes of the optimal
boundary class value.

Let us determine this value proceeding from the entropy parameter. For this
purpose, we revert to relation (3.8):

N!
RN PR T]

hence we can obtain using Stirling’s approximation

HZIH(]&:NIHN—(%—FZ)]H(%—FZ)—(];—2>ln(§_z>
- 1 Z1 1 z 1 Z1 1 =z
- (5*N> “<z*ﬁ> B <ﬂ> “(z‘ﬁ>'

To determine the conditions of entropy maximization, we derive

OH 1 1 z 1 1 =z iz N —2z
= _Inlz+Z —In(==Z)=m&ZY¥—1 =
oz Nn<2+N)+N “(2 N> DI
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For the logarithm to be equal to zero, the expression under the logarithm must
equal unity, that is,

Hence,
z=0and H = H,,

that is in the specified conditions, the entropy of this class acquires the maximal
possible value. Here a specific kind of equilibrium arises, since this class is
separated into both products in equal shares, that is, Fy(x) = F.(x) = 50%.

Obviously, it is the boundary class entropy that must be taken as the basis of the
process stability analysis. Clearly, the equilibrium state in a real process is continu-
ously violated by fluctuations of various separation parameters such as y,t,f,N
fluctuating around their average values. Fluctuations of each parameter cause
changes in the equilibrium entropy. Naturally, these changes can be directed to
its decrease only, that is,

AHy < 0.

Non-equilibrium processes in a system level these fluctuations and restore the
entropy to its initial value, which is extreme in these conditions. Otherwise, the
system can lose its stability, which does not actually occur. Thus, a system is stable
against fluctuations if entropy changes are directed to its decrease. The problem is
to determine the probability of fluctuations of a specific parameter and the condi-
tions in which they become essential.

L. Boltzmann introduced his famous relationship between the entropy and
probability of thermodynamic systems:

H = —Zplnp.

A. Einstein suggested a formula for the probability of thermodynamic quantities
fluctuations applying conversely to Boltzmann’s idea. He took the entropy as a
basis and derived the probability:

AH

P(AH) =Ze*,

where AH is the entropy change connected with a fluctuation around the equili-
brium state;

Z is a statistical sum;

k is Boltzmann’s constant.

Apparently, these two relations are mathematically interconnected, but their
meaning is opposite. For Boltzmann, the probability of the system state is a
determining parameter, and the fluctuation probability is derived from it.
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To obtain the fluctuations probability, entropy change connected with the latter
is needed. Thus, the basic problem is reduced to the derivation of AH relation with
fluctuations of such process parameters as dy, 0t, of , ON.

In a general case, entropy can be expanded into a series:

1
H:Ho+5H+§52H+---, (10.2)

where 0H is a term of the first infinitesimal order comprising 7, dy, SN etc. of the
first infinitesimal order; 0°H is a term of the second infinitesimal order com-
prising 61, 6%, 8*N etc. of the second infinitesimal order; Hy, is the stable state
entropy.

First, we examine the simplest case. Let the fluctuation occur in a small part of a
limited system or in a zone. The consequence of this situation is N, y,f flux from
one part of the system to another.

The entropy of the system under study can be expressed by a sum

H=H, +H, (10.3)

where 1 is a part of the system where the fluctuation occurred, 2 is the remaining
part of the system.

Hy =f(Ny; 115 T fi; ete.),
Hy = ¢(Na; 125 123 fo5 ete.).

We examine the process stability against flow velocity fluctuations (w, y). Using
(10.2), we express entropy deviation from the equilibrium state by expanding in a
Taylor’s series:

OH, OH, O*H, 81, 9*H, 8°I,
H—Hy=AH = =161, + =—=0I - 4 10.4
0 o " TRt 2 o 2 (10.4)

Terms of a higher infinitesimal order in this expansion can be neglected. Note
that all derivatives in (10.4) refer to an equilibrium state. Since the potential
extraction (or extraction from a zone) in a stable state remains constant,

ol; = =3I, = dl.

On the other hand, it has been established that

oy 1
)y y Va
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Taking this into account, the dependence (10.4) can be rewritten as

11 a1 9 1\
AH = ——— 5I+(——+——)—. (10.5)
(Xl Xz) ol g, 0l 1) 2

Now we can establish the first and second infinitesimal deviation in the entropy
2
6H and 2 .

a1 9 1\61
52H:<——+——>—.
ol y, 0l yp) 2

In the equilibrium state, y; = y,, hence, dH = 0. Consequently, changes are
introduced into entropy only by fluctuations of the second infinitesimal order. It has
been shown that

o1 1 9y 11

al y 1% Ol Vel
where i = g—; is the specific potential extraction.
It can be represented as

ol =idy.
Taking this into account,

i(62)°

297
0°H = — pE

< 0.

This condition requires a positive potential extraction, that is, i > 0. Otherwise,
the system loses stability. Hence, in separation processes i > 0 is always valid.

We examine the case of fluctuations of the number of particles in a certain part
of the system cross-section. As in the first case, we can write for such kind of
fluctuations:

OH, OH, &H, 6°N, 0*H, 5°N,
H—Hy=AH = —L6N; + ——=06N
0 av " e TN T2 TN 2

(10.6)

Note that particles diffusion from one part of the system into another
0N = —0N, = 6N, and

OH 1

ON i
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Taking these remarks into account, Eq. (10.6) can be rewritten as
5°H 9 9 8N
AH=oH+ 20— (2 Moy (L0 2 2)0 0
2 L X ONy 5y ONy g /) 2

Since the derivatives are taken for the equilibrium state, 1; = 75, and therefore,
here also the first term vanishes, and the dependence for the entropy change
amounts, on the whole, to

5 =

5*H 9 t\ N
2

— %;

If this condition is satisfied, the system is stable against diffusive particles
exchange. Thus, we can determine the influence of other parameters on the entropy
stability.

Actually, the effect of fluctuations in a real process is more complicated. Let us
examine the chaotizing factor y. Its changes cause a change not only in the carrying
medium flow velocity, but also in other factors, for instance, the number of solid
particles N, change in concentration u and pressure in the flow f. Meanwhile, a
change in any of these parameters, for instance, in concentration, can, in turn, affect
%1, N,f. It results in a crossed impact. The most vivid example is cross diffusion
with concentration gradient of particles of a certain size causing a diffusion flow of
particles of another size.

One can easily conceive that diffusion is a permanent process in the course of
separation, since there is no doubt that particles of different classes do not possess a
uniform distribution within the apparatus volume. At the same time, permanent
disturbances have other parameters, as well, and it seems extremely difficult to
determine their effect on the entropy value. Therefore, to estimate the effect of all
aggregate disturbances, the dependence suggested by Prigozhin for thermodynamic
entropy fluctuations can be applied, which can be written, by analogy with critical
flow, as follows:

where AH; is the mean entropy deviation; m is the number of independent variables;
c is a certain constant.

The simplicity of this dependence is both unique and understandable. The point
is that fluctuations of the second infinitesimal smallness exert a realistic effect on
entropy deviation from its extreme value. Apparently, it is of no importance which
parameter fluctuates; their impact is minor and can be summed up in a simple way.
Each independent parameter brings in the quantity equal to — § into AH;.

Note once more that all conclusions in this Section refer to the boundary size
class of separation containing Ny particles. Entropy stability refers only to this class
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of particles. It is especially remarkable that all remaining classes are stable with
respect to this class, as well, because the separation curve is constant. The study of
stability in a critical flow could we restricted by this point. However, the question —
how other classes of particles whose entropy does not reach extreme values acquire
stability — remains unsolved. It calls for the continuation of these studies. Probably,
a kinetic analysis of the process could clarify the situation.

10.2 Particles Distribution over the Channel Height

All theoretical developments and their results stated above were obtained
from primary ideas. It was accepted that the process of separation is based
on vertical direction of particle motion velocities only. The value of the velocity
(or its projection) was not taken into account. However, even such simplified one-
dimensional analysis of the process from the standpoint of statistical analysis in the
kinetic theory of gases has provided numerous significant results. It has made it
possible to explain many experimental facts and empirical regularities of the
process that were unclear previously. Now we are making another step in the
development of the theory of the process.

We still examine the one-dimensional situation, that is the projections of parti-
cles velocities on the vertical axis, and not their actual directions.

It is rather important to clarify the character of the material concentration
distribution over the apparatus height in the process of separation.

For this purpose, special investigations were performed on a facility schemati-
cally represented in Fig. 10.1. The main component of this facility is a vertical pipe
150 mm in diameter and 7 m high. The pipe consists of eight separate sections 1,
each of them 0.8 m high. The sections are connected by flanges 2 with built-in
gates 3. Each gate can be shifted in order to block rapidly the channel by means of a
compressed spring and counterweight 4. At the rotation of a lever, control-rod 5
loosens latches 6 of the gates, and they simultaneously and rapidly block the pipe
cross-section under the action of springs and counterweights. The entire facility
operates under depression created by fan 8. Air consumption is measured by a
normal diaphragm and adjusted by gate 9. An even material feeding is realized by
feeder 7 with a constant calibrated efficiency of 660 kg/h.

In our experiments we used crushed quartz with the specific density of
p = 2.9 t/m>. Its fractional composition is given in Table 10.1.

The experiments were performed as follows. A gate establishes a specified air
flow rate while a fan is operating; and then the feeder starts working. After a certain
period of time sufficient for stabilizing the separation regime, all the gates are
simultaneously switched on. They block the channel cross-section, and a certain
amount of material remains in each section. Naturally, after that the separation
process stops, and the fan is switched off. Then each gate is opened manually,
starting with the lowest one, and the amount of material and its grain size compo-
sition are determined in each cut-off volume.
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Fig. 10.1 Schematic diagram of the facility for the study of the distribution of various fractions in
critical flow regimes

Table 10.1 Fractional composition of crushed quartz
Size class d (mm) >2.5 1.6-2.5 1.0-1.6 0.85-1.00 0.63-0.85 0.4-0.63 0.315-0.4 <0.315

Partial residuesr  0.26 3549 45.65 8.77 4.36 1.18 0.19 4.1
(mm)

First, weight distribution of the material over the pipe height was determined
using equation

G;
= - 100
“vG

where g; is the percentage of the material weight at the i-th gate, %; i is the gate
number counting from the lowest one; G; is the material weight at the i-th gate, kg.
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Fig. 10.2 Material 22 :
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The dependence of g; on the pipe height for different air flow rates is shown in
Fig. 10.2. It follows that in all cases without any exceptions, material distribution in
an ascending flow is characterized by a certain general dependence. While moving
away from the site of material input into the flow, its amount grows and reaches a
maximum at a certain level. Then this amount starts monotonically decreasing. The
decrease is fast at first, and then stabilizes.

At high velocities (from 10.8 to 8.05 m/s), the maximum of material content in a
flow corresponds to the position of the third gate. Velocity decrease leads to a
decrease in the height at which the maximum is achieved. For instance, at a velocity
equal to 6.2 m/s this maximum is shifted towards the second gate.

Hence, an indisputable conclusion follows that the material concentration during
separation varies over the flow height. It is of interest to analyze the height
distribution of particles of each fraction, as well.

The results of fractional analysis of the material at each gate are given in
Table 10.2.

It follows from this table that at first, the separation process is intense and
reaches a certain effect at a moderate height (6—8 gauges); then its intensity rapidly
attenuates. This testifies that the process of height distribution is of explicitly
exponential character.

Based on these experiments, we can make important conclusions on the mecha-
nism of the process.
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Table 10.2 Fractional distribution of the material at each gate in percents

Air flow rate Gate Fraction size
(m/s) numberi 1625 1.0-2.6 0.85-1.0 0.63-0.85 0.4-0.63 0.4-0.135 <0.315
1 2 3 4 5 6 7 8 9
1 25.9 4745 110 5.62 1.9 0.5 7.39
2 38.6 50.4 10.2 52 1.6 0.4 0.75
3 31.3 50.9 9.3 44 1.5 0.4 1.31
10.8 4 29.7 52.1 10.8 4.5 1.6 0.3 0.82
5 28.6 52.7 11.1 4.9 14 0.4 0.88
6 27.9 50.7 11.8 54 1.8 0.3 1.2
7 26.0 52 12 6.0 2.0 0.5 1.14
1 20.3 49.8 15.0 7.54 2.71 0.54 3.98
2 27.9 51.75 11.5 5.6 1.91 0.5 0.85
3 239 55 12.55 5.5 1.6 0.4 1.0
8.85 4 21.7 54.8 13.1 7.1 1.9 0.5 0.97
5 21.0 56.0 13.0 6.7 1.9 0.41 1.15
6 19.6 54.9 15.3 6.9 2.0 0.44 1.1
7 19.0 55.3 16.0 8.2 2.5 0.43 1.05
1 14.85 51.5 16.95 9.6 3.5 1.2 2.62
2 30.0 47.2 12.8 6.8 2.24 0.4 0.76
3 24.9 51.5 14.2 6.4 2.2 0.41 0.8
8.05 4 19.1 56.5 13.3 7.32 2.24 0.59 1.08
5 13.8 57.4 15.72 8.65 2.74 0.7 1.41
6 13.0 57.2 17.15 8.15 2.9 0.61 1.05
7 11.15 55.0 17.1 10.5 4.23 0.82 1.41
1 141 455 20.4 13.9 6.6 1.7 10
2 0.8 4396 24.8 17 6.97 1.73 54
3 0.8 322 27.25 21.45 10.0 2.6 5.68
6.2 4 0.8 32.8 27.2 21.4 9.85 2.33 5.32
5 0.9 29.95 28.15 22.8 9.73 2.9 5.94
6 0 26.4 26.5 22.6 11.4 2.7 9.73
7 1.0 30.2 28.4 23.8 10.9 2.9 3.77

First, the separation process is practically completed at a limited height of a
hollow apparatus.

Secondly, this zone corresponds to an unstable mode of the process.

Thirdly, material concentration varies from the site of material supply to the site
of fine product discharge from the apparatus.

10.3 Velocity Distribution of Particles of a Narrow Size Class

We have previously shown that on average, one cell of 500 is occupied in the
apparatus. Since the material concentration varies with height, cell occupancy is
also variable, because the concentration changes depending on the site of material
supply into the apparatus in the direction to the zone. Hence, the probability of cell
occupancy depends on its position in the apparatus. The distance from the site of
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material introduction into the apparatus to a certain cell can be measured by the
number of cells, and not in centimeters. Since the system under consideration is
three-dimensional, the distance from the lowest point of the apparatus axis to the
cell (or its radius-vector) can be defined as

=k +k 4k,
where k; is the distance measured by the number of cells along different axes.

Clearly, k,, ky, k. are positive integers.
The occupancy of cells with the lifting factor E is:

~|m

f(E) = Je”

Evidently, if there exists a certain level of cells’ remoteness from the introduc-
tion site k, then the occupancy of cells with a definite lifting factor within the
interval dk is the same, since the material concentration in a flow within the interval
dk can be assumed constant.

The flow rate of particles of a certain narrow size class in the apparatus can be
expressed by the dependence

G; = Fvy, (10.7)

where F is the apparatus cross-section, m?;
concentration of particles in a flow, kg/m?>.

If the mass of one particle is 7, then the number of particles per unit volume is:

v is particles velocity, m/s; p; is mass

W
ni——.
m
Then Eq. (10.7) can be written as
G; = Fvmn,. (10.8)

The probability for a certain particle of a narrow size class to be located among
cells located within the range of k to k 4 dk is equal to the product of the average
number of these cells by the probability of the cell occupancy, that is,

ck*f(E)dk = ckae rdk. (10.9)
Let P(v)dv be the probability for the particle velocity to be within the interval
from v to v 4 dv. This value can be found by substituting dk in (10.9) with (%) -dv,

that is,

E

dk
P(v)-dv=ck® 'ai€_7 - dv.
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According to (10.8), the magnitude k> - % is proportional to the velocity squared,
which complies with classical notions. Therefore, we can write:

P(v)dv = Av*ie 7dv, (10.10)

where A is a constant determined from normalization conditions.
o0 o0
_E
JP(V) dv=1=A J Ve idv.
0 0

Knowing the values of separation factors, the latter can be written as

%
w2 2

J P(vidv=A- J eV e dy.

0 0

We take this integral
o0
5 2
1=A-ew J e wvidy
0

and introduce new variables:

2
yr = 75 hence, V2 = y?uw?.

We differentiate both parts of the latter expression:
2vdy = 2w?ydy,
hence,
dv = wdy.
Taking all this into account, the integral can be written as

2
Y50

eV y2dy = A - wew -

of%

1=A wev

g
g ——38

Hence
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P(v)

\\
v
Fig. 10.3 Velocity distribution of particles
and then we obtain from (10.10):
2 2
P(v) = —=v*e . (10.11)

The dependence (10.11) is the probability of the velocity distribution of a narrow
particle class under the conditions of separation. This function is plotted in
Fig. 10.3. It follows from this figure that particles in a flow have a certain maximal
velocity, and the velocities of other particles are asymmetrically distributed on both
sides of the former.

10.4 Kinetic Aspect of the Material Distribution

Let us revert to the general law obtained experimentally for various designs of air
and hydraulic classifiers:

) =A-e® =A-e , (10.12)

This dependence, confirmed for all cases without any exception, reflects in-depth
intrinsic relations characteristic of the entire class of gravitational separation
processes in moving media. Apart from simplified models analyzed in the present
work, gravitational separation is a mass process with the simultaneous participation
of an immense number of particles of various sizes. A broad range of random
factors are imposed on their opposite displacements.

In a real process, the displacement of each particle under the action of the flow
and its disturbances is purely random; it is impossible to name its instantaneous
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velocity magnitude or direction, which makes the general pattern of the process
chaotic. However, the presence of chaos in the motion of particles does not imply
the absence of general regularities in the behavior of a dispersed continuum. On the
contrary, rigid intrinsic regularities can manifest themselves only through a general
randomization, as it was established, for example, at the development of the kinetic
theory of gases. It seems appropriate to quote a basic statement of M. Katz, “Chaos
does not imply the absence of order. On the contrary, it is a rather specific property
of the initial distribution that leads, in fact, to general regularities”.

Therefore, when developing the kinetic theory of gases, Boltzmann obtained
principal regularities confirmed by practical experience in the study of gaseous
systems based on the simplest model of the process.

Apparently, this is also the reason why we obtained results allowing us to
understand and explain a large number of experimental facts and regularities
based on simplest models. Experimentally obtained dependence (10.12) also con-
firms the validity of M. Katz’s statement. This dependence presented in such a form
is, to some extent, analogous to the well-known equation of the distribution of
uniform randomly moving particles in a force field, which is called the Laplace
hypsometric distribution law. For superfine particles, this phenomenon was experi-
mentally confirmed by Perrain (1908), and its kinetic theory was developed by
Einstein and Smolukhovsky (1905-1906).

While developing the kinetic theory of gases, Boltzmann demonstrated that the
distribution of ideal gas particles depending on the height or level of the potential
energy also obeys the hypsometric law.

He established that the distribution of ideal gas particles in the gravity field
complies with the equation

mg(n—ng) Au

n=mnpe & =npnge ¥ (10.13)

where n; ng are concentrations of ideal gas particles at the levels n and ngy; m is the
mass of ideal gas particles; g is gravitational acceleration; k is Boltzmann’s
constant; T is absolute temperature; Au is the potential energy increment at the
particle transition from level ng to level n.

We can establish a certain physical analogy between the phenomena described
by expressions (10.12) and (10.13).

First, respective parameters in these expressions have analogous meaning.

The dimensionless criterion B is a measure of the ratio of potential to kinetic
energy in a flow. The exponent in Boltzmann’s equation has a similar physical
meaning. Its numerator is equal to the potential energy of a particle located at a
certain distance from the reference level. The denominator is proportional to the
temperature characterizing the kinetic energy of the system. Temperature T is a
randomizing factor of the process; its value predetermines a certain specific height
distribution of these particles.

In the denominator of the exponent in the expression (10.12), the respective
place is occupied by w?p,. As established, it is a randomizing factor for the process
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under study. Obviously, in both processes the effect of random parameters will
grow with increasing randomizing factor.

The kinetic theory of gases is based on the idea that their molecules are solid
particles. Their velocity and mean kinetic energy are determined by the energy
impact — temperature, while the distribution character — by the mechanical interac-
tion of particles. According to Boltzmann’s law, at a constant temperature, particle
concentration increases with decreasing potential energy of their position.

It is known that the potential energy minimum corresponds to the steadiest
position of a mechanical system. Therefore, gas particles concentration is maximal
in the steadiest position. It is a potential position for all particles in the absence of
factors disturbing, or randomizing, the distribution. It follows from (10.13) that at
T =0 all the particles are located at the level ny. At high magnitudes of the
randomizing factor (T — o0), particle concentration is equalized in height. As
shown by Boltzmann, this law remains valid not only for uniform fields, but also
for gas particles distribution in any nonuniform force field. Many physical phenom-
ena occurring in disperse materials correspond to this distribution.

We can find some analogies in the distributions of the processes compared. In
the case of gravitational separation, solid particles move at the expense of external
energy carried by the flow. A permanent effect of the gravity force field and various
disturbing factors are superimposed on this process. Flow velocity change from
zero to high values affects separation results similarly to the effect of temperature
change on the distribution of gas particles.

In the theory of gases, special attention is usually attracted by the fact that any
distribution of particles is formed with respect to a certain mechanically steady
position.

In the case of separation, steady position of particles of a narrow size class
corresponds to a certain velocity of their motion in a flow ensuring their steady
position. As demonstrated above, each size class in a flow is characterized by a
certain velocity distribution with a characteristic mathematical expectation of this
distribution. The magnitude of mathematical expectation of the velocity corre-
sponds to steady motion of particles of a specific class.

The behavior of a totality of identical particles in a flow is determined by the
tendency of each of them to acquire a steady velocity.

However, the difference between a real process and an ideal one leads to a
certain probabilistic distribution of particles velocities with respect to its relatively
steady value. It means that the more particles velocities differ from the equilibrium
one, the lesser is the number of particles having such velocities, and vice versa. In
contrast to the Boltzmann law, this distribution has a positive probability density on
both sides of the steady velocity.

For a multi-fraction mixture, the velocity distribution of particles has the same
character as that of each separate fraction. Particles of each fraction have their
steady velocity. The velocities of all the particles of this class are distributed with
respect to this steady velocity due to the presence of some random factors. Dis-
tributions of different classes are superimposed, which predetermines a final result
different from the ideal one.
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This analysis clearly leads to the idea of a dominant tendency of polyfractional
mixture behavior in a moving flow. Since particles tend to acquire a steady velocity,
the tendency of this process consists in a probabilistic stratification of particles with
respect to their steady velocities or sizes.

If steady velocities of particles of different size classes in a flow acquire different
directions, such a flow ensures a separation process.

If, however, all steady velocities acquire the same direction, such flows ensure
transport regimes.

If a set of particles with different aerodynamic characteristics is placed into an
ascending flow, at the initial moment the number of particles with a tendency to an
opposite motion is maximal in the volume they occupy. After a certain time period,
the volume occupied by the particles in a flow starts increasing due to a directed
motion to both sides from the input point. In the course of this motion, they tend to
acquire their steady velocity, being hindered by random factors leading to a
probabilistic distribution of particles velocities with respect to this velocity.

The idea of stratification is not purely abstract. The parameters of this phenome-
non determine principal results of separation.

The conclusion that the gravitational separation process is based on statistical
stratification of material mixture by steady velocity values or by sizes obtained
from theoretical analysis is remarkable because it is confirmed by experimental
data.

As for gravitational separation in an ascending flow, it makes sense to consider
only stratification by steady motion velocity values or by sizes. The character of the
obtained experimental curves can be explained completely enough from the stand-
point of stratification as the basis of the gravitational separation process.

In the absence of ventilation, all the material entering the classifier falls into
coarse product. There is no stratification in this case, and the efficiency of such
process is zero.

With growing flow velocity, the velocity of steady downward motion for parti-
cles of different sizes decreases, although it acquires an individual value for each
class.

This leads to an increased time of their stay in the apparatus, which may explain
the increase in the separation effect in a given range of flow velocity growth.

The maximal time of the stay of particles of a certain size in the apparatus,
apparently, corresponds to the velocity of the medium at which the steady motion
velocity is zero. Such flow velocity is called hovering velocity; it corresponds to the
optimal efficiency value in a hollow channel.

With further increase in the flow velocity, particles of boundary size start
moving upwards. It leads to a decreasing time of their stay in the apparatus, and
the effect starts decreasing. Clearly, the separation optimum for fine particles
corresponds to low flow rates. With increasing boundary size of the separation,
the optimums are shifted towards the region of elevated velocities.

An increase in the optimal efficiency in a cascade apparatus at multiple flow
disturbances can be attributed to the exponential character of stratification.
Although the separation effect in one stage of a cascade can be moderate, a
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summation of several exponents over all the stages gives a greater effect than one
exponent in a hollow apparatus.

Thus, the idea of stratification as the basis of gravitational separation mechanism
makes it possible to cover with a unified idea both generally accepted theoretical
notions and ideas arising on the basis of the realization of novel principles of the
process organization, and to eliminate contradictions between them.



Chapter 11
Critical Regimes of Two-Phase Flows
in Complicated Systems

Abstract Constantly growing industrial requirements to the quality of powdered
materials lead to the development of complicated separation systems. Models of
duplex cascade, cascades with material feed to different separation stages are
developed and solved, which makes it possible to control the quality of powdered
materials. A system of combined cascades is developed, and their internal bonds are
analyzed. A quality criterion for separation processes estimation and optimization
in combined cascades is developed. Fractal principle of constructing schemes of
combined cascades is developed, and their potential is analyzed. The adequacy
of mathematical models of duplex and combined cascades is experimentally
confirmed.

Keywords Cascade - Duplex - Combined cascade - Cascade efficiency - Mathe-
matical model - Markov’s chains - Matrix - Section - Apparatus - Working diagram -
Connection function - Adequacy - Direct schemes - Reversed schemes

11.1 Problem Setting

The development of the theory of critical regimes of two-phase flows involves the
development of theoretical models aimed, in general, at:

1. Physical understanding and mathematical description of the process
2. Revealing quantitative relations between various factors of the process, which
ensures the prediction of its results

The latter is of great practical importance, especially for fractionating processes.
For many years, classification of pourable materials had been carried out in
hollow channels. However, the efficiency of the process remained rather low. Even
a considerable extension of the channels did not essentially improve the quality of

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 215
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the obtained products. Great progress was achieved in the separation technique due
to the development and substantiation of the cascade principle of the separation
process in critical regimes of two-phase flows. Such apparatuses allowed consider-
able improvement in the quality of final products due to the change in the number of
stages and variation of the place of material feed into the apparatus.

In the model of a regular cascade consisting of identical stages, it is assumed that
the distribution coefficient for a narrow class k is the same in all stages. This
assumption is based on experimentally established facts:

1. Fractional separation invariance with respect to initial material composition
2. Existence of a self-similarity region with respect to concentration

The developed mathematical model of a regular cascade establishes the depen-
dence of fractional separation in the apparatus on the number of its stages z, place of
material feed i and distribution coefficient of a narrow size class k in the form of
(7.3).

This model is of great practical importance. It allows the choice of the necessary
number of stages and place of the initial material feed into the cascade when solving
a specific production problem. Besides, this model allows grounding the choice of
the stage design. Numerous experimental checks of the model have demonstrated
its adequacy.

The study of regular separation cascades has shown that the effect of increased
number of stages is markedly exponential.

Separation efficiency growth practically reaches its limit at eight to nine stages,
and further addition of stages does not increase appreciably the separation effect.

Therefore, further improvement of separation apparatuses consists in the devel-
opment of complex stages and creation of combined systems of n(z;) type. In the
general case, a combined cascade consists of n separation cascades, each of them
comprising z; separating elements working in different regimes.

11.2 Mathematical Model of a Duplex Cascade

A complicated regular cascade built by successive connection of pairwise-similar
sections can be called a duplex cascade. Its paired sections have distribution
coefficients k; and k». A schematic diagram of such a cascade is shown in
Fig. 11.1. A duplex cascade is considered complete if the number of elements
with k; equals the number of elements with k,, since z is an even number. We
consider a narrow size class, whose initial quantity is normalized to a unity. We
denote a flow of particles of this class through a certain stage by R;, where i is the
stage number counting top-down.

Thus, the amount of material coming out upwards from each odd section is k;R;,
and downwards — (1 — k;)R;. For an even section, the respective amounts are Rk,
(upwards) and (1 — k)R; (downwards).
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Fig. 11.1 Basic circuit of a

duplex cascade
R,

Ry=R,+AR,+ AR,
Ry=R,+AR,+ AR,

R,=R,+AR,+AR;+ AR,

.....................................

Ry =R, +AR,+ AR,

Rq+=R;+ARy+ - +AR;

Ry =R, +ARy+ -+ ARy,

R. =R, +ARy+-+AR_

R.=R,+ARy+ - +AR,

= F(x)

In a stationary process, material balance should be conserved in each section and
in the entire apparatus. Taking into account the fact that the amount

Rioi(1 = ki) + Riyik,
arrives at the ith stage, and the amount
Riky +Ri(1 — k2),
leaves it, the balance for the section can be written as
Ri_1(1 — ki) +Riy1ky = Riky + Ri(1 — ky)
The total balance for the apparatus can be written as

Rk —‘r—RZ(l — kg) =1
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Proceeding from the relationships

1—k 1—k;
o) = ; 02 =
1 k] y 02 kz )
we can write:
1
R+ 22 R =1
I+01 1402
Extreme values acquire the form:
1
Ry =—AR;
02
RZ = —ARZO']

Mathematical balance by sections gives the following:

1
R, = —AR,
P
1
AR, = —AR;3
o1
1
AR; = — AR,
02

02
1
AR; = —(AR;11)
g1
1
AR = —(ARix + 1)
2
1
AR, = —AR
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and we can consecutively derive the following:

1
R] :—ARZ
02
1
Ry = ——AR;
0103
1
Rl :—ZAR4
0105
R, = ! AR
1 — 0%0’% 5
1
Ry = — 72 (AR + 1)
o 1/2’102
1 1
k== i/zAR"“r1+ in-1_ip
01 0y 0 0y
R 1 1+61
R 7 S ha e A A T
0y 0y 0y 0y
1 1
Ry = z/2 z/ZARZ*1 +O-l;2
g, 1oy a1"Pa,

Hence, we obtain a system:

— 1 1+0,
{Rl T ()" R+ (0102)72

1 a2 —
Rl 1—0, + 1+62RZ =1
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Solving this system with respect to

we obtain

We finally obtain

(11.1)

(11.2)

At ki = k; this formula becomes a dependence for a regular cascade. Eq. (11.2)
is valid at even z and i. At an odd i, the formula acquires the form:

—i*+1

1— (Glﬁz)T
Fr) = ———51¢
4 1— (6162)2/2%

11.3 Mathematical Model of a Cascade Process Allowing
Control of the Effect of the Material Feed Site

on Separation Results

Figure 7.1 shows a way of redistribution of a narrow size class with the distribution
coefficient k in a cascade apparatus. The process under study is similar to a random
up and down wandering, with a transition upwards with the probability k and
downwards with the probability 1 — &, and two absorbing states. Hence, the
redistribution of particles of a fixed class in an apparatus consisting of z stages
can be represented by a Markov absorbing circuit with a transfer matrix of the

following form:

1 0 0 0 0 0
k 0 1—-k 0 0 0
0 k 0 1-k 0 O
0 0 0 k 0
0 0 0 0 0
0 0 0 0 0 0

1—k

oS O

1—k
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This matrix has z + 2 lines and columns, with the first and last states being
outputs into the coarse and fine products, and the rest of the states refer to the
probabilities of particles transitions between the apparatus stages.

Let us transform this matrix into an easier-to-use canonic form by combining all
ergodic (absorbing) states into one group, and all non-recurrent states into another.
There are z non-recurrent states corresponding to the number of the apparatus
stages, and two ergodic states corresponding to the coarse and fine products.
Then the canonic form is as follows:

L1 1o
1 0 | 0 0 . 0 0
0 1 ] 0 0 . 0 0
k 0 | 0 1-k 0 0
0 0 | k 0 1—k 0 0
50 | 0 I 0 k 0 1—k 9 0 |y
0 0 | 0 0 k0 1-k 0
0 0 |0 o ... 0 k 0 1—k
0 1-k | 0 0 0 0k 0

Here the region O totally consists of zeros; the submatrix Q (with the dimension
z X 2) describes the particle behavior before leaving the apparatus (from the set of
non-recurrent states); the submatrix R with the dimension z x 2 corresponds to the
transitions from the apparatus into coarse and fine products (from non-recurrent into
ergodic state); and the submatrix S (with the dimension z x 2) refers to the process
following the particle discharge from the apparatus (after the particle has reached
the ergodic state). The probability of reaching one of such states in an absorbing
circuit tends to 1. It means that sooner or later, a particle reaches a certain absorbing
state, i.e. comes out into one of two separation products, with the probability of 1.

For any absorbing circuit, Q" tends to zero, and I — Q is reversible, wherein

1-0)"' =3 0
k=0

For a Markov absorbing circuit, the matrix N = (I — Q)71 is called fundamental.

We denote by n; a function equal to the total number of redistribution acts with
the particle staying in the stage j, i.e. in a non-recurrent state j. Then we can assert
that the mathematical expectation of the fact that a particle located at the initial
moment of time at stage i will be located at stage j after n; redistribution acts
represents the ij coordinate of the matrix N, i.e.

{Ei(nj)} =N (11.3)

Hence, the average time of a particle stay at a specified stage is always finite, and
these average times constitute the matrix N.
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Each particle gets into the apparatus through the stage i*, and using Eq. (11.3),
we can calculate the time spent by the particle at each stage.
We introduce the following notations:

Ny =N(2Ng — 1) — Ny,

is a matrix of z X z dimensions, where N, corresponds to a matrix whose diagonal
equals that of the matrix N, and the rest of the elements are zero; N, corresponds to
a matrix whose elements are squared elements of the matrix N. Evidently, in the
general case A> # A, for any matrix A, and an equality is valid for diagonal
matrices only.

B = NR is a matrix with the dimensions z x 2.

T=N¢
where ¢ is a vector column with all the elements equal to 1;
T, = 02N -1t — 14

We can assert that, in absorbing Markov chains, the dispersion of the fact that a
particle located at the initial moment of time at stage i will get to stage j after n;
redistribution acts, is ij coordinate of the matrix N,, i.e.,

{Di(n))} =N, (11.4)

Let the function T be equal to the total time (number of redistribution acts
including the initial position) that a particle spends in the apparatus before leaving
it. The magnitude T shows how many steps are necessary for a Markov process to
get into an ergodic set.

If at the initial moment of time a particle is at stage i, the mathematical
expectation of the number of redistribution acts until the particle goes out into the
coarse or fine product is the ith coordinate of the vector t, and the dispersion of the
former is the ith coordinate of the vector 7,, i.e.,

{E(T)} =<
(1)} =

In the process of separation, a particle is introduced into the apparatus through the
stage i*, and, consequently, we can determine the average time (the number of
redistribution acts) of the particle stay in the apparatus and deviations from this time.

Let b;; be the probability for the particle located in stage i to get into a coarse or a
fine product (j = 1 for fine product and j = 2 for coarse product). Then

{bj} =B =NR
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bj; is the fractional separation at the introduction of the size class under study to the
stage i. Hence, it is possible to control the probability of a particle output into the
required product by changing the place of its input into the apparatus.

11.4 Cascade Model with Two or More Material Inputs
into the Apparatus

As follows from the previous section, the position of the material input into the
apparatus can affect the quality of the obtained products. Therefore, it is of interest
to analyze the results of cascade separation in case of two or more inputs of the
initial material. Let us examine a regular cascade consisting of z identical sections.
Let the material be fed into two sections. The amount of the material fed into
section i* is equal to a, and that of the material fed to section j* —to b. We assume
that a + b = 1 (Fig. 11.2). Then, by analogy with previous cases, under the condi-
tion o, = 0,, we obtain:

Ri+0R,=1+¢

1
Ry =—-AR,
o
R. = —0AR,
For the vicinity of the material input:

Ri*—l = (AR,-’-CI)

1
o

1
Ry =—AR;
o

1
Rj-—1 =— (AR +b)

1
Ry = —ARj 4
J o J

1
Rj”rl = ;ARJMA +b
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Fig. 11.2 Basic circuit of a
cascade with two material
inputs Ry

R2 = Rl + ARZ

Ry=R,+AR,+ AR,

Ry =R+ ARy+ ARy ++ARs_,

a

Ko R ARy ARy AR
Tl
i"+1 R 1= Ry T ARy +AR3++AR

Ry 1= Ri+ARy+ ARy +++ AR
Rj» =R+ ARy + ARy + "+ AR +b

Rjy =R+ ARy + ARy +++ AR s |

R. =R, +ARy+ARy++AR._,

R. =R, +ARy+AR;+~+AR.

Hence, we obtain

1 a(l+o0)
Ry = i*—HARi*+2 + o
1 b(l + o)
R = ) ARj: 5 + p
Further we obtain
1 (14+0)(b+ad )
Rl O'Z_l ARZ O'j*
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Taking into account all stated above, we can write:

R, = — LR, 4 Uto)brad’ ")

o/

Ri+0R,=1+c¢

It follows from the latter system:

*

1— ao.z+lfi* _ bO’Z+17j
Fy(x) = =

If we assume that either a or b in this equation are zero, we obtain a dependence
for one input of the material. Similarly, for three and more inputs, this equation
acquires the form

1 — ao.z+l—i* _ bo.z+l—j* _ CO'Z-H_e*
Fy(x) = T (11.5)

under the condition that a + b + ¢ = 1.

11.5 Combined Cascade Classifiers

11.5.1 Combined Cascades of n(z) Type

The simplest embodiment of a combined cascade of n(z) type comprises # identical
separating cascades of the first order consisting of the same number of stages z
with a fixed site of the initial material feed into one of the apparatuses, with all the
apparatuses working in the same regime. Examples of various combined appara-
tuses are shown in Fig. 11.3.

Even in this extremely simplified case, such a combined separator can have
many structural schemes of connection between its elements. As experiments
have demonstrated, some of these schemes realize a higher order of the process
organization in comparison with the separating cascade of the first order. They
are not equivalent to a simple increase in the number of elements in a cascade
apparatus.

To avoid further misunderstandings, it is expedient to define the following
notions:

— Free output — a free local flow coming out into a combined fine or coarse product
from an individual column

— Connection — a constrained local output from one column to another

— Structural scheme — a scheme of outputs, inputs and connections between
individual separating elements in a combined cascade
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Fig. 11.3 Examples of
various structural schemes of
combined cascades: (a—d)
defective schemes;

(e) transporting scheme;

(f) four working versions of a
two-element combined
cascade; s — initial material;
f — fine product; ¢ — coarse
product

— Isomorphic schemes — schemes having the same connection functions

— Inverted schemes — schemes made up from given ones by rearranging some of
the columns with unchanged former outputs and connections; apparently,
inverted schemes are isomorphic

F is fractional extraction of fine product in an individual column.

F is fractional extraction into the fine product for the entire combined cascade.

F(Fy) is the connection function corresponding to each specific structural
scheme.

— Reversed scheme — a scheme where all outputs and connections related to the
fine product become identical to outputs and connections related to the coarse
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product, and vice versa. The connection function for a reversed scheme is
F~1(Fy). Apparently, for a reversed scheme, the connection function related
to the coarse product is identical to the function F(F,) with the argument F)
substituted with (1 — Fy), i.e.

F ' (Fy) = F(Fy = 1 — F),

where F.. is defined;

— Working schemes — operable schemes for a combined cascade (Fig. 11.3f).

— Defective schemes — schemes with some elements excluded from the process
(Fig. 11.3a—), or with some elements having no active connections with other
elements (Fig. 11.3d), or else with some elements functioning as conveyers
(Fig. 11.3e). There can be schemes with several defects listed above at the same
time.

11.5.2 Working Schemes for Combined Cascades of n(z) Type

We examine all possible options of working schemes, since only their complete
analysis makes it possible to find the most advanced ones.
In the case of n elements in a combined cascade, the total number of free outputs
and connections is 2n. The minimal number of free outputs is
Pin = 2
Hence, the maximal possible number of connections between n elements is
Smax = 2n — 2
The minimal number of connections is
Smin =n — 1
Taking this into account, the maximal number of outputs is

Prax =n+1

If the number of free outputs in a combined scheme is P, then the number of
connections among »n elements is

S=2n—-P (11.6)
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In a general case, the number of schemes equals the number of possible ways of
organizing S connections. For any column, any connection can be organized with

any of the remaining (n — 1) columns. Since there are S connections with (n — 1)
directions each, the number of different schemes amounts to

Np=(n—1)° (11.7)
Taking (11.6) into account, we can write:
Np=(mn—-1)"" (11.8)
In a general case, we can obtain the total number of all kinds of non-isomorphic
schemes including direct, inverted, reversed ones and all kinds of defective
schemes.
n+1

P—1
Ny~ = DR ICES Vi P A (11.9)
P=2 m=1

where ¢ = Wlm), is the number of combinations of n elements m at a time (the
meaning of m being the number of free outputs into the fine product).

It is noteworthy that the number of schemes determined by Eq. (11.9) greatly
exceeds the number of operating schemes. For example, at n = 2, according to
(11.9)

NZ =38,
while the number of operating schemes is only
Ny =4.
For n = 3, respectively,
NZ =348, Ny =47
and for n =4

NZ = 30348; N; = 904

Structural schemes of all operating options for n = 2 are presented in Fig. 11.3f.
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11.5.3 Connection Functions for Combined Cascades

The connection function for a combined separator constitutes an equation of the
type

F =F(Fy)
where F is the fine product extraction in the entire apparatus, and Fy is the fine
product extraction in one element of a combined cascade.

First, we examine the simplest case of the apparatus z x 2 under the condition
that both elements are identical regular cascades of the first order.

Figure 11.3f shows all the four possible schemes of this apparatus. It is notewor-
thy that the schemes I and II are reversed with respect to each other, and so are the
schemes III and IV. For scheme I,

Fi =Fy, Fa = (1 -Fy)F,
In this case, the connection function is
F(Fo) =Fy +Fy=Fo+ (1 — Fg)Fy = 1 — (1 — Fy)*
For the reversed scheme II, the connection function can be written as

F(Fo) = F§

For the scheme III, the total output of fine material can be written in the form of
an infinite series

F(Fo) = Fo + F3(1 — Fo)* + Fy(1 — Fo)> + - + Fa(1 — Fo)"™'
Here we obtain a geometrical progression with the sum

Fi(1 = Fo)" 'Fo(1 — Fo) — Fo
Fo(1—Fo) — 1

F(Fo) =

The first term in the nominator of this expression tends to zero, since
Fo(l —F0)<0.25.
Hence,
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On the basis of similar considerations, we can obtain the following for the
reversed scheme IV:

Fg
F(FU): — 5
1 —Fy+Fj

Here we have found expressions for the simplest case. However, it is difficult to
obtain a general expression for more complicated schemes using this method.

Therefore, we revert to another method of formalization of combined cascades.
It has turned out that a combined cascade of any complexity consisting of n
independent elements can be represented by a square matrix n X .

Figure 11.4 shows a combined cascade separator consisting of three elements. Its
connection function determined by lengthy calculations using the previously used
method is:

Fy—F+F

F(Fy) =
(0) F?)—Fo—‘rl

We represent this scheme in the form of a connection matrix:

12003
1 Fp 1-F, 0
2 0 1-Fy Fo
3 Fg 1-Fp 0

Matrix element a;; at i # j denotes the ingress from the ith apparatus to the input
of the jth apparatus. Diagonal elements a; denote outputs from the entire facility.

The jth column represents inputs from all the apparatuses.

The ith line represents the output from the ith apparatus to all the rest.

Such presentation of a combined cascade makes it possible not only to describe
any combined facility, but also to map out a large number of inoperable schemes,
because such a matrix should possess the following properties:

1. Matrix element a; can acquire one of the following four values: 0; F;

1—Fo;1

2. Z(a,»j—a,-,-) 750 ]22

i—1

Fig. 11.4 Schematic diagram
of connections of a three-
element combined cascade
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It means that something should be necessarily fed into each apparatus excluding
the first one (into which the initial material taken as a unity is fed).
n

3. Z aj = 1

J=1
Each apparatus has an output of both fine (Fy), and coarse (1 — Fy) products.
4. Z aji 75 0

i=1

A combined facility should necessarily have an output. Among the elements
a;(i =1,2,3, ..., n), there should be simultaneously F and (1 — Fp) or 1, since
the material is not accumulated in the apparatus.

It is noteworthy that such a matrix is functional because Fj is a function of the
sizes and velocities of particles, place of material feeding into the apparatus, etc.
For instance, if all the three elements of a combined cascade are different or operate
in different regimes (Fig. 11.3b), such a non-uniform cascade is also described by a
similar matrix. Here all ith elements acquire a respective index:

FF 1-F 0
0 1-F F|=A (11.10)
Fs 1-F; 0

Such a form of presentation allows us to derive the connection function F(F;)
and find simple algorithms for the enumeration and analysis of n-unit cascades in a
general case. Thus, if we denote a matrix representing a specific combined cascade
with A, its connection function can be written as

r —1
) 0

AT x| m|=]0 (11.11)
'n 0

where A”'is a matrix obtained from A by transposition and substitution of all
elements a;; with (—1);

I, 12,13, ..., Iy is the flow of material through a corresponding element (initial
content of each element). Thus, for the matrix (11.10) we can write:

-1 0 Fo
AT = 1-F, -1 1—F, (11.12)
0 Fo -1

It follows from (11.11) that the connection function is based on the balance of
material flows. It is known that



232 11 Critical Regimes of Two-Phase Flows in Complicated Systems

where F, is the narrow class extraction into the fine product in the ith element of a
combined cascade.

77, is the amount of the narrow class extracted into the fine product.

r; is the initial amount of this class in the ith element.

Taking this into account, we can write

1 = Fir
1, = Farz
ry, = Fury

It follows from balance conditions that

rn=14a.r+ay3r+---+aur,
ry = aipr +asxry 4+ 4 aply (11.13)

Fp = Qiply + Aotz + - -+ Ap_1¥n—1

In the general case, the connection equation is written as

-1 as asi ...am a —1

_ ) 0
ain 1 asp ...dayp . _ : (1114)
aipy, a, as,...—1 . 0

In a particular case, we can write for an arbitrary three-element cascade:
—r+anr +anr; = —1
apry — 1 +axpry =0

apry +axnrp,—1=0

Taking this into account, the matrix form of the coupling equation is:

-1 asy as r -1
arn —1 asy 1) = 0 (1115)
ais an -1 73 0

The left-hand side of Eq. (11.15) is a product of a matrix reflecting a concrete
scheme of a combined cascade by the vector of material flow through individual
elements of the apparatus. The right-hand side of Eq. (11.15) is the vector of
material feed into the apparatus. If the material is fed into each element of a
combined cascade by portions a, b, ¢, then, assuming that their sum equals unity,
we rewrite the right-hand side of Eq. (11.15) as follows:



11.5 Combined Cascade Classifiers 233

The connection equation allows us to compute material flows ry,rp,73,...,7,
through all the elements of the combined cascade, as well as to determine the
connection function F(Fy).

Material flows are obtained by solving the connection equation, and the connec-
tion function is determined using the equation

n

F(Fo) =Y _ril\i (11.16)
=1
A — Fy ai; =Fy a; = 1;
L 0 ail‘zl—Fo a,'l':O.

Thus, for the scheme shown in Fig. 11.3 we can write
F(F()) = F()I‘l

Solving the matrix equation, we obtain

1 — Fo + F}
r = -
"1 Fy+F}
Hence,
F—F24+PF
F(Fo) — *27
1 —Fy+F}

which corresponds to the connection function for this scheme of the combined
cascade obtained using a more complicated method.

For the general case of n-element combined cascade, the matrix equation
acquires the form

-1 ap asy ... dyl r —a
an -1 az..ap 2 —b

=] —c (11.17)
an anr, as,...— 1 . 0

Thus this method, based only on balance equations for the amounts of the
material in each element of the combined cascade, makes it possible to estimate
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Fig. 11.5 Schematic diagrams and connection functions for 12 three-element combined cascades

an apparatus of any complexity with arbitrary connections, regimes and material
feed into its individual elements.

Figure 11.5 shows some schemes of practical interest of three-element combined
cascades and connection functions for each of them determined using the described
method.

11.5.4 Experimental Verification of the Adequacy
of Mathematical Models of Combined Cascades

To verify the calculated dependences, several sets of experiments were performed
under laboratory and industrial conditions. Under laboratory conditions, appara-
tuses of z x 2 type (Fig. 11.3f — I, II) with consecutive repurification of coarse and
fine products were studied.

Industrial tests were performed on a combined cascade of z x 8 type with
consecutive repurification of the coarse product.

These apparatuses comprised the following elements constituting a cascade:

1. A polycascade classifier (Fig. 11.6c) with the number of stages z = 9 and initial
material feeding to the stage i* = 3

2. A classifier with radial grates

3. A shelf classifier (Fig. 11.6a) with z = 6;i* = 6;n =8
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Fig. 11.6 Examples of various constructions of cascade stages: (a) inclined shelves; (b) zigzag
channel; (c¢) poly-cascade; (d) radial grates; (e) combined stage

Under laboratory conditions, the experiments were carried out on ground quartz-
ite and foundry sand. Under industrial conditions, the experiments were carried out
on a potassium salt. Elements of the apparatuses in each set of experiments were
identical, and air flow rates in them were equal, too. Material concentration in the
flow was maintained constant or varied within the limits of the self-similarity region
from 1.1 to 2.5 kg/m®. In each set of experiments, five different air flow rates were
specified equal to 2.8, 3.07, 4.13, 4.98, 6.14 m/s.

Fo(l) — fractional extraction of a narrow class for one element of the apparatus,
and F(I) — fractional extraction for the entire apparatus, were determined experi-
mentally. The same design parameters were determined through connection func-
tions:

F =1—(1—Fy) — for coarse product repurification

F=F % — for fine product repurification

F=1—(1—F,)* - for eightfold fine product repurification

It is established on the basis of experimental data that for each element of the
apparatus the value F(/) is constant.

By way of example, Fig. 11.7 shows Fy(/) values obtained at the fractionating of
fine-grain potassium chloride for each element of an eight-row apparatus with the
capacity of 40 t/h at the air flow rate w = 6.14 m/s.

The ratio of calculated (F) and experimental F (/) values for the given apparatus
at different flow rates is presented in Fig. 11.8.

It follows from the graph that the discrepancy between calculated values and
experimental data does not exceed 5.0%, which is within the accuracy of measure-
ments under industrial conditions. A similar coincidence takes place for all labora-
tory studies.
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11.6 Quality Criterion for Combined Cascades

When evaluating a combined cascade, one has to single out the perfection of

connections between its elements, i.e. the perfection of the connection function.
For an unbiased evaluation of a combined cascade by its connection functions,

we have to formulate a quality criterion that must satisfy several requirements:

1. It should be independent of the characteristic of an isolated element of a
combined classifier, i.e. of F, since it evaluates connections between elements,
and not elements themselves.

2. The criterion should be the same for direct and reversed schemes, since in both
cases the connection scheme is the same.

The connection function for the reversed scheme is derived by a formal substi-
tution Fp = 1 — F. Although as a result, the connection function for the reversed
scheme is different, their quality criterion should give the same numerical value.

3. The criterion should equal unity for schemes consisting of one or several
elements when

F(Fy) = Fy (11.18)

4. The criterion should be infinite when it realizes an ideal cascade, i.e. for the
connection function

1.0 Fy>0.5
F(Fo)=1{ 05 Fy=05 (11.19)
0 Fy<0.5

where F is the value of the parameter Fy, at which F(Fy) = %

5. This parameter should be monotonic.

6. The quality criterion should take into account the displacement of the optimal
separation boundary for a combined cascade with respect to an analogous
boundary in an isolated element.

To clarify the generalized quality criterion, Fig. 11.9 shows some structural
schemes of a three-element combined cascade, connection function for these
schemes and their plots.

A quality criterion for the evaluation of a combined scheme perfection, which
satisfies all above requirements, has the form

4__ _
J(Fo)ngo(lfFo)’E(F)» (11.20)
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Fig. 11.9 Certain types of three-element combined cascades, their plots and connection functions

where J(Fy) is the quality criterion.
‘3—‘ is a normalizing coefficient.
F(F) is the connection function (fractional extraction into the fine product for a

combined cascade).
Obviously, by definition

— 1
F(Fo) =5
The parameter E(F)
E(F) = ! 1 (11.21)
-~ \1 — E*(Fp) ’ '
where
Fo 1
E*(Fo):/[l— (Fo) dF+/ (Fo)dFo (11.22)
0 Fo

If we apply the graphs shown in Fig. 11.9 for these calculations, it becomes clear
that

E*(Fo) =1—5,
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where S} is Trompf’s area modified for these conditions.

Let us examine in detail the conditions formulated above.

The first condition is due to the purpose of the index to evaluate the perfection of
the separation scheme from the standpoint of the approach to an ideal process
independent of the characteristics of a separate element.

The second condition is analogous to the requirement of unambiguity. From the
standpoint of the problem under study, the direct and reversed schemes are sym-
metrical and, therefore, should be equivalent as to the degree of perfection. The
formulated criterion satisfies this requirement, which can be checked using formula
(11.20) with a formal substitution Fo = 1 — Fj.

Normalization conditions 3, 4 are chosen for clearness and convenience, as well
as for reasons of the sensitivity of the index.

If J(Fy)<1,, such combined cascade has no advantages over an isolated column
and is of no interest.

The graph obtained for the connection function F(Fy) = F is symmetrical
(Fig. 11.10).

§S$=1x05-05x05x05-05x 05405 x 1-05 x 05-0.5
x 0.5 x 0.5
=1-3 x 025=0.25

Taking this into account,

3
E'(Fo)=1-5; =1-025=7

Hence, a normalizing factor arises equal to %.

F(Fy)
1

0.5

Fig. 11.10 Plot of connection 0 — 1
function F(Fy) = F
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In this case, the general index is

4 1 1

For an ideal modified cascade, modified Trompf’s area tends to zero, i.e.,
S¥ — 0, and it means that E*(Fy) — 1,E(F) — oc.

Thus,
J(E) — 00
under the condition that
1 Fo> ?0
F(F()): 0,5 Fy :E
0 Fo<Fy

If F(Fy) = const, we obtain J(Ej) = 0.
For a two-element cascade, there are only four working schemes (Fig. 11.3f).

Their principal parameters are presented in Table 11.1.
Table 11.1 shows that:

1. Direct and inverse schemes have the same magnitude of the quality index,
although they realize separation by different boundaries.

2. Combined classifiers with fine or coarse product recycling are more efficient
than simple schemes.

There are 47 working schemes for a three-element cascade. They have been
analyzed from the standpoint of the stated method. Fourteen of them have the
parameter J(F)<1. These schemes are of no interest. The most efficient schemes
are shown in Fig. 11.5, and their principal parameters are summarized in Table 11.2.

It follows from this table that the direct and reversed schemes have different
connection functions and magnitudes of the parameters Fy, but the same quality
criterion obtained using the proposed method. On the basis of this table, we can
arrange all combined three-element cascades according to their perfection degree.
In this case, the apparatus presented in Fig. 11.5(9) occupies the first place.

Table 11.1 Principal parameters of two-element combined cascades

No. in Fig. 11.2f Connection function Fo E(Fy) J(Fo)

1 F(Fo)=1-(1 _F0)2 0.2929 4.1213 1.2211

I F(Fo) = F? 0.7071 4.1213 1.221

I F(Fy) = FFF# 0.38197 4.1990 1.3384
) 0

v F(Fo) = 17;:)0+F2 0.6180 4.1190 1.338
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Table 11.2 Principal parameters of three-element combined cascades

No. in Fig. 11.5 Connection function Fo E(Fy) J(Eop)
1 F= 2F)—2F +F} 0.261 5.1249 1.5912
= TTFo+F?
2 F— L 0.739 5.1249 1.5912
1-Fo+F}
3 _ _2F-F} 0.7549 5.4204 1.4474
)
4 F— _ R 0.2541 5.4204 1.4474
= 1=F2(1=Fo)
5 F L 0.6823 5.3799 1.5905
T F3-Fo+1
6 F=—fo 0.3177 5.3799 1.5905
(1-Fo)"+Fo
7 F = Poll=Fo(1-Fy)] 0.3522 5.1061 1.5634
1-2Fo(1—Fo)
8 F— F 0.6478 5.1061 1.5634
T 2P 2Fo 11
9 F— £ 0.5 5.5178 1.8393
= T=2F,(1-Fy)
10 F—_H 0.5549 5.1803 1.7127
[—Fo+F3
11 F = f@-F) 0.5 47262 1.5754
1-Fo+F}
12 F= F3(2—Fy) 0.4450 5.1803 1.7127
(1-Fo)’+Fo

Using this method, we can analyze combined apparatuses consisting of any
number of elements and determine the most effective ones.

11.7 Fractal Principle of the Construction of Schemes
of Combined Classifiers

11.7.1 Fractal Principle of Combination

Examples of various combined apparatuses consisting of two elements are shown in
Fig. 11.3f.

Experimental testing of certain types of such apparatuses has demonstrated their
progressive character. In these apparatuses separation efficiency is greatly
increased in comparison with cascade classifiers.

We use these two-element classifiers as a basis for explaining a new method of
constructing combined schemes.

We take the amount of the narrow class entering the first element as unity; 1 Fy
passes into it from the second element. Thus, we can write:

ri =1+ nrkF,
similarly, for the second element:

Iy = 1‘1(1 —Fo).
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Thus, we obtain two equations with two unknown quantities. Hence,

1
R
and the connection function is:
Fo
F(Fy) =——F——
) =1 "F +F,
Similarly, we obtain for scheme IV:
F2
F(Fp)=—2"2—.
(Fo) 1 —-Fo+Fo

Multiple choice of connections even in case of three or four elements leads to an
uncertainty in the choice of efficient combined cascades. To regulate this choice,
we apply principles of a relatively new concept in mathematics — fractal geometry.

Fractals are constructed according to the following principle. The entire scheme
is inserted instead of each element in the existing scheme at the first step, retaining
external and internal connections. At the second stage, the entire initial scheme
with all connections is inserted again into each element of the newly obtained
scheme, etc.

Figure 11.11 shows fractal combined classifiers, where schemes (a) and (d)
correspond to schemes I and II shown in Fig. 11.3, whereas (b), (c) and (e), (f)
represent the results of the fractal method application in order to obtain schemes in
one and two transformation steps.

Let us examine connection functions for newly obtained apparatuses.

Initial apparatus I:

(a) For the initial combination:

Fi(Fo) = 1— (1 —F)*;
(b) For a four-element apparatus, we can write:
Fy(Fo)=1—[1=F(Fo)=1—(1—Fo)*
c¢) For an eight-element apparatus, we can write:
22 8
F3(Fo) = {1 1 = Fa(Fy)] } —1-(1-F)";
(d) For any scheme obtained at the nth step, we can write:
Fy(Fo)=1—(1—=F)" (11.23)

where N is the number of elements in the scheme.
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Fig. 11.11 Constructing combined schemes using fractal methods
Similarly, for the initial apparatus II (Fig. 11.3) we obtain

Fy(Fo) = FY)

243

(11.24)

Consider option III (Fig. 11.3) as the initial apparatus. The connection function

for an apparatus comprising two elements is

Fo
) =R R

(11.25)

According to the rule of fractals, the connection equation for a four-element

apparatus is:
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F
o Fu(Fo) - TR
2(0)_1_FF FFZ_ Fo Fg
1(Fo) + F1(Fo) 1—1_F0+F3+(1—F0+Fo)

_ F3—F3+Fy
- F{—3F}+4F3 —3Fy+ 1

Similarly, we can find the connection equation for apparatuses comprising 8, 16,
32, etc. elements. One can easily check that for the newly obtained connection
functions, the efficiency of respective schemes exceeds unity. However, here the
solving method can be somewhat different.

11.7.2 Progressive Nature of Multi-element Apparatuses

We have to prove that each subsequent fractal scheme is more efficient than the
previous one, if the initial scheme efficiency exceeds unity.

As follows from Table 11.1, primary schemes of two-element apparatuses are
characterized by the ratio

J[F(Fo)]>1

for any of the available connection functions F(Fy). Schemes with J[F(F()]<1 are
not considered.

On the basis of these initial data, we demonstrate an increase in the effect in
combined apparatuses with their growing complexity. We will prove that if
J[F(Fy)]>1 for the connection function, we should write for a series of fractals:

JIENFQ) ST [Fy-1 (Fo)|> -+ >J[Fa(Fo)|>J [F1 (Fo))>1 (11.26)
This means that the efficiency of each subsequent fractal is higher than that of
the previous one. Let us prove it by using the method of mathematical induction.
Clearly, the connection function for an apparatus consisting of one column is:
F(F()) = F() and J(F()) = 1.
For a scheme consisting of an apparatus of this type,

JIF1(Fo)]>1,

i.e., under this condition, it is more efficient than one element.
Now we assume that this statement is valid for (N — 1) fractal, i.e.,

J[FN_l(Fo)]> s >J[F2(F0)]>J[F1 (FQ)]>1
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For a fractal of the Nth order we assume that a fractal of (N — 1)th order
constitutes a scheme with a certain F(F,). We insert a fractal of the first order as
an element into a scheme of (N — 1)th order. It has been proved that a second-order
apparatus is better than a first-order one (independent of its design), and then we can
assert that

J[Fn(Fo)|>J[Fn-1(Fo)],

which proves the validity of the statement.

Another problem is how economically efficient it is to complicate the apparatus
and where to stop. This is determined by various factors: cost of the material to be
separated, requirements for the product purity and cost of one element of the
apparatus.

The function F(Fy), which gives the value J[F(F()] = oo, has the following
form (Fig. 11.10, lines 0Fy; AB and the O point):

1 1>F,>0,5
Foo(Fo) =14 0,5 Fo=0,5
0 0<Fy<0,5

It would be reasonable to ask whether there exists a function F(F,) for which
J[F”l(F())]n—»oo_> 0.

Shannon and Muret have demonstrated that such functions are continuous in the
segment [0,1]. Hence, they belong to C [0,1] (the space of continuous functions in
the segment [0,1]). This space is complete, i.e. any Cauchy sequence in it con-
verges, and hence, the limit of any sequence of the form F,(Fy) is a continuous
function. It means that one can never reach Fo.(Fy).

Therefore, the fractal method of constructing combined cascades does not ensure
ideal separation. Besides the fractal method, other methods of replacing elements of
the initial scheme with a certain scheme in order to increase its efficiency are
possible. Similarly, it can be shown that in this case it is also impossible to ensure
the combined cascade efficiency tending to infinity even by constructing an infinite
sequence of functions. It is shown in the mentioned paper of Shannon and Muret
that the connection function can intersect the line y = x not more than once.

We examine the general form of some schemes with J[F(F()]>1. Among them,
there are schemes improving the fine product extraction and worsening that of the
coarse product, i.e. concave ones (see, e.g., Fig. 11.9¢c). There are also schemes
giving the opposite result, i.e. convex ones (Fig. 11.9a). There are schemes with S-
like character of the connection function as in Fig. 11.15(3). If the intersection point
of the function with the straight line y = x equals 0.5, for such a scheme optimal
separation conditions are realized. Evidently, it is preferable to use such a scheme
as a basis for placing other schemes into it instead of its elements.

In this case, at the application of the fractal method, the scheme efficiency grows
at every step. However, as demonstrated, it cannot tend to infinity, because even
this method does not ensure, in principle, an ideal separation.
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11.7.3 Combined Scheme with Successive Recirculation of Both
Products

This scheme is similar to a simple cascade with unit stages used instead of the
elements of the apparatus. Therefore, for the case corresponding to Fig. 11.3f we
can write:

(11.27)

This dependence is valid at the feeding of the initial material to the first element
of the apparatus. In case of feeding to any i*th element, Eq. (11.27) acquires the
form:

AN+
Fww:ilgfﬂ___ (11.28)

Respectively, for Fy = 0.5 we obtain

N+1-7"

It follows from (11.29) that for the combined scheme under study, there is no
displacement of the boundary size of separation only at

. N1

1 R

2

In this case we obtain the connection function from (11.28):
1
F(Fy) = — =
1-F
1+ (F—UO)

As in this case there is no boundary displacement, we can estimate the curve
steepness and the separation efficiency of the combined scheme by the derivative in
the point Foy = 0.5:

Nt (1-F0) 7 (1)
{dF(FO)} 5w & N+ 1
dFO Fop=0,5 2
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Hence, with increasing N, separation efficiency of the combined scheme contin-
uously grows and exceeds the separation efficiency of a single column starting from
N =3.

Thus, the separation efficiency of a combined scheme with successive recircula-
tion considerably exceeds that of a cascade classifier constituting its element.

11.7.4 Combined Cascade with an Alternating Bypass of Both
Products

The described method of obtaining combined schemes opens broad opportunities
for creating highly-efficient separation systems. We examine another case where
the limiting effect is achieved using a restricted number of elements (Fig. 11.12).
This figure clarifies the principle of bypass construction, where in the general
scheme, each element is connected with the next nearest one. On the basis of this
figure we can write a system of equations for a narrow size class in different
elements of the schemes:

Fi=1
Fy =F(1—Fo)
F, = (Fl +FT)F()

F3 = (F2 + F)(1 = Fo)

11.30
Fi=(Fi.1+F;|)Fo ( )
Fi = (Fi+F_)(1 = Fo)
n=(Fno1 +F,_)Fo
Fy=(Fa+F,_)(1 = Fo)
where F; is the total fractional flow in the ith element.
F, F, F, F, Fy. (N);

—_— F* F* F* o o @
0 0 *
’ Fi(N)
(/\ (/\ 1,
NS
O\& (2) o) ~
2%
- (1-F5)
(1-F)) (1-F}) (1-F}) (1=Fg)

Fig. 11.12 Schematic diagram of a combined classifier with a bypass of both products at each
stage
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F} is a flow of particles of the same fixed narrow size class through the
element i*.
Fractional extraction into the fine product for the entire apparatus is

Fs~(N) = Fy - F, (11.31)

if the number of elements is odd and equals N = 2m — 1. If the number of
elements is even and equals N = 2m, we obtain:

F3~(N) = (Fy + F}) - Fo (11.32)

It follows from (11.30) that
Fy= (Fy-1+Fy_ ) F;
Taking (11.32) into account, we can write:

Fs~(N) = Fo Fi~ (N = 1) (11.33)

Thus, the problem of determining fractional extraction into the fine product for
the entire apparatus is reduced to determining the flows Fy and Fy,.
The system of equations (11.30) can be transformed as follows:

Fi=1
Fi=1—F -F

From this, we express F' - Fp and substitute into the third equation of the system
(11.30) obtaining

Fy=1—-F+F]-Fgp=1—-F{(1-F,)
The value F} (1 — F) is substituted into the fourth equation of the system (11.30):
Fi=F(1—Fy)+ (1 —F,)=1—-FyF,
Proceeding further in a similar way, we obtain:
Fy=1-F;(1—-Fy)
F;=1-F;3-F

It can be easily proved using the method of complete mathematical induction
that in the general case the following is valid:

Fi=1—F_(1—F) (11.34)
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Ff=1-F;-F (11.35)

Expressions (11.34) and (11.35) allow us to write two independent recurrent
equations:

Fi=1—(1—=F;_-Fo)(1 —Fy)
After simplification, we obtain
Fi—Fi_1-Fo(l = Fy) =Fy (11.36)
Similarly, taking into account (11.34), we can derive from (11.35) the following:

Fi—F' -Fo(1 — Fo) = (1 — Fy) (11.37)

1

Equations (11.36) and (11.37) are non-uniform linear finite-difference equations
of the first order with boundary conditions.

Fi=1land F| =1-F

They can be solved both by standard and by elementary methods. Thus, applying
consecutively (11.36), we obtain:

F(1) =1
F(2) = Fo+ Fo(1 — Fy) ,
F(3) = Fo+ F3(1 — Fo) + F5(1 — Fo)
F(4) = Fo+ F3(1 — Fo) + F3(1 — Fo)* + F3(1 — Fy)’

F(i)=Fo+F3(1—Fo)+F}(1=Fo)* 4+ Fi ' (1=Fo) > +Fiy ' (1—F)™!
F(N)=Fo+F3(1—Fo)+Fy(1—Fo)*+-+Fy ' (1= Fo)" >+ Fy ! (1—Fy)""'

It is clear that we are dealing with a geometrical progression. We denote the
progression ratio by

g=Fo(l —Fy)
Then
F(N)=Fo+Fog+Fog® + -+ Fog" >+ g""
or

Fog" ' —¢" 'V + F(N) = Fog+ Fog + Fog* + - + Fog"™!
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Multiplying both parts of the equality by g(g # 0):
Fog"—g"+g-F(N)=Fo(g+ &+ - +g")

We convolute the right-hand part

+ n+1
Fog" —g" + gF(N) :FO%
Hence,
F(N) =g"" +1_75W.F
1—g¢ 0

Passing from the flow to the extraction on the Nth element, we obtain

1— n—1
F(N) = Fog"™! +F(2)17g (11.38)
—8
A similar examination of the second recurrent equation gives
1-g"
F*(N) = 11.39
(N) =g . (11.39)

which well agrees with (11.33).

In case of a combined cascade of this type, we can restrict ourselves with its
incomplete scheme, since its complete scheme would comprise a great number of
stages. We assume that this incomplete scheme contains an odd number of ele-
ments. In this case, fractional extraction of the entire combined cascade acquires the
simplest form:

1 _gn—l
_ n—1 2
FZ (N)=Fog +F071 s (11.40)
Hence, we obtain
F (N)—l_FO"+ F (11.41)
> Cl-g § l1-g '

Note that fractional extraction of a single element and of the entire apparatus are
connected by a relationship

Fs~ (N)<Fy
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For example, it follows from (11.40) that

F°FZ<N><1g“><1 & )

FO _ FO . .
but ¢ = TFoil? <1 is always valid at Fy # 1.

Equation (11.41) allows us to plot the dependence F > (N) = f(Fy) for different
numbers of elements (Fig. 11.13). It follows from this plot that at N >4 all the
curves practically merge, and the optimal separation boundary is determined by the
regime in an individual element Fq = 0.618.

Here the steepness of separation curves for the entire apparatus considerably
exceeds the steepness of the curves for an individual column, which points to its
higher efficiency.

It also follows from this plot that it is inexpedient to use this apparatus with more
than four elements (N<6).Under such restriction, this scheme of a combined
apparatus is progressive.

Thus, combined apparatuses offer immense potential for increasing the effi-
ciency of bulk materials separation and creating various schemes both for multi-
product separation and for separation with the production of powders with specified
compositions.

1,0

0,8 /

0,6
0,4 1-N=1
2 /
1 2-N=2
0.2 > 3-N=3
Fig. 11.13 Dependence 4

Fs(N) = F(Fy) for combined

: 4-N=4+c
t thab f
apparatuses with a bypass o / |

both products at a varying 0
number of elements N 0.2 0,4 0,6 0,8 F
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11.7.5 On the Potential of Fractal Combined Schemes

Examination of the above examples can give rise to doubts as to the ability of fractal
combined schemes to ensure a high separation effect at moderate costs, but that
would be a wrong conclusion. If we choose an initial scheme according to the above
method, we can achieve highly efficient separation after several steps. Let us
examine a concrete example with only one condition F(Fy) = 0.5 satisfied. There
are many such variants, but we choose one of them (Fig. 11.14a).

The connection equation for this scheme can be derived from the flow balance.
According to this scheme, we can write a system of equations:

rn=14+nrnkF, +r3(1 —Fo)
1) 27'1(1 —F())
r3 =k

We substitute the second and third equations of this system into the first one and
solve it with respect to ;. As a result, we obtain:

1

rlziz
1 — 2F, + 2F}

Then according to the scheme, the connection equation for this combined
cascade is:

Fig. 11.14 (a) Three-element combined schematic diagram with F (Fy) = 0.5. (b) Fractally
transformed schematic diagram with nine elements
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F3

F(Fp) = ———2——
(Fo) 1 — 2F, + 2F2

(11.42)

Apparently, at Fy = 0.5, the magnitude F(Fo) = 0.5.

Note that the efficiency of this scheme is high; for this scheme,

J(Eo) = 1.8393 at E(F,) = 5.5178.

The plot of the function (11.42) is shown in Fig. 11.15. By the definition of
efficiency, the smaller Trompf’s area, the higher the effect. Its value is inversely
proportional to the separation quality. At the passage from a single element to a
three-element apparatus, this area gets considerably reduced. Even at the first step
of fractal transformation, it significantly decreases. This scheme leads to a signifi-
cant growth of separation results.

For the scheme shown in Fig. 11.15b, we can obtain the connection function
proceeding from the fact that in Fig. 11.16, scheme B has been obtained from
scheme A by placing it into itself as the initial element. The connection function for
scheme B shown in Fig. 11.17 is

F(Fy)* F
FIF(Fp)] = (Fo) e (11.43)
1 —2F(Fo) +2[F(Fo)]” 2F; —4Fg +6F; —4Fo + 1
Here also the relationship
F[F(0,5)] = 0,5 (11.44)

F(Fy)
, ——
0,9
0,8
/
0,6
0,5

-1
0,4 /
0,3
/

2 3
0.1 o1
0 —| j

0,1 02 03 04 05 06 07 08 09 10 F,
B F

Fig. 11.15 Connection functions: 1 —F (Fo) = Fo; 2—F(Fo) = TR 3-F(Fy) = TR, +4F 2]
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Fig. 11.16 Schematic
diagram of an industrial
multi-row classifier:

1 — element of the apparatus;
2 — body; 3 — element of the
cascade; 4 — distributing
grate; 5 — air supply; 6 — fine
fraction collector; 7 — initial
material; 8 — feeder;

9 — coarse material output
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Fig. 11.17 Fractional separation dependence on consumed solid phase concentration for an

industrial apparatus
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is valid.

Thus, fractal transformation of combined separators has a great potential allow-
ing the design of highly-efficient separation apparatuses. However, it is not the only
possible way of improving the operation of these separators. Combined schemes
obtained by the fractal method, where recycling is additionally realized, possess a
great potential for improving the final product quality.

11.8 Some Methods of Combined Schemes Optimization

11.8.1 Multi-row Classifier

To develop large-tonnage separators, where the influence of a scaling factor is
leveled out, multi-row combined separators were developed (Fig. 11.16).

An industrial separator for dedusting fine-grained potassium chloride was con-
structed according to the scheme shown in Fig. 11.16. Inclined shelves were used as
cascade-forming elements. The end product obtained on it is dedusted potassium
chloride powder. Grain-size composition of the initial material is given in
Table 11.3.

The method of studies of an industrial apparatus includes the following opera-
tions:

1. A constant air flow through the apparatus is established.

2. Initial material feeding into the apparatus is stabilized.

3. Sampling of the initial material flow and both classification products is per-
formed according to a standard method in order to analyze chemical and grain-
size composition.

4. Material flows of the output of classification products are measured using the
cutoff method after certain time intervals.

5. During the entire experiment, a continuous control of the total air flow in the
apparatus and in individual sections is performed.

To expand the experimental range, optimal fractionating regimes by four size
classes — 63, 100, 160, 200 um were worked through.

Table 11.3 Initial material composition

Mesh size +0.63 +0.5 +04 +0.315 +0.2 +0.16 +0.1 +0.063 —0.063
x (mm)

Partial residues 8.8 9.2 98 104 20.4 8.6 11.6 8.0 13.2
on the sieve, ;%

Total residues 8.8 18 27.8 382 58.6 67.2 78.8 86.6 100

on the sieve, Ry%
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First of all, we have determined the range of solid substance concentration in the
air flow that does not affect the degree of fractional separation of particles of
different narrow size classes.

Figure 11.17 shows the results of these studies at a constant air flow rate
0 = 15,100 m3/h through the apparatus. It follows that both in the industrial
scale and under laboratory conditions, the limiting consumed concentration of the
solid phase in the flow is within the range of u = (2.0 + 2.2) kg/m?.

In our further studies, air flow through the apparatus was smoothly varied within
the range of 15,000-22,000 m3/h, and in each section of the apparatus the same flow
rate was established.

Experimental curves for this apparatus were determined at different numbers of
elements. They are presented in the same plot for comparison (Fig. 11.18). When
passing from one to two elements, from two to four and from four to eight, the
curves become steeper, and F, value is shifted towards a larger size.

The characteristic of dedusted product depending on the total air flow rate is
shown in Table 11.4.

It follows from this table that the apparatus ensures an efficient enough separa-
tion in the range of separation boundary sizes under study. For the class of 63 pum,
dedusting is practically complete in all regimes of the apparatus operation. For the
separation by 100 pm class, the end product amounts up to 75% with the fine
product content at least 2%. In this case, the product yield is close to the theoretical
one, equal to 78.85.
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Fig. 11.18 Separation curves for an industrial apparatus in case of 1, 2, 4 and 8 elements
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Table 11.4 Coarse product characteristic as to fine classes content depending on the classifier
regime parameters

Classifier Air flow Fine classes contents in complete passages (%) Coarse Material

efficiency rate Dy product concentration
(t/h) m'h  Zo63 ~0.1 ~0.16 —02 yield,  kg/m’
7%

16.3 21,600 0O 0 0.2 1.0 25.5 0.75
16.9 22,430 0 0 0.4 1.4 26.8 0.75
17.1 15200 0 0.4 1.2 52 37.8 1.14
359 15,330 0.2 1.6 2.8 7.2 344 2.34
20.4 13,500 1.2 1.4 3.6 8.2 73.8 1.51
35.7 17,280 1.0 1.6 6.6 13.0 73.4 2.04
21.8 15,850 0.0 1.0 7.0 15.4 61.4 1.38
34.1 16,700 0.4 2.8 8.4 16.0 72.4 2.04
332 15,100 1.4 2.6 10.6 19.4 74.5 2.20
18.3 154480 1.4 24 104 19.6 64.1 1.19
42.4 17,800 0.4 0.8 4.6 10.8 49.9 2.38
16.6 11,250 0 8.2 232 35.0 73.7 1.48
48.2 19,800 1.6 8.6 8.6 17.2 60.7 243
259 16,800 0.4 0.8 4.0 10.0 56.9 1.54
19.2 15,680 0.6 1.0 3.6 9.2 50.6 1.22
39.8 17,550 04 1.0 4.0 9.4 432 2.27

With growing boundary size of the separation, these characteristics decrease,
but remain within the limits acceptable for industrial conditions. Thus, at separation
by the class of 160 um, coarse product yield amounts up to 56.9% (at the theoreti-
cally possible one equal to 67.2%), and its contamination with fine product is
about 4%.

Hence, it is expedient to use these apparatuses for dedusting large masses of
pourable materials within the range of boundary sizes from 60 to 160 pm. Unfortu-
nately, because of concrete production conditions, we have failed to increase the
apparatus productivity above 48.2 t/h. Such a load ensures the coarse product yield
v, = 60.7%, and the product quality is high, since the contamination at the separa-
tion by the boundary of 63 um is only 1.6%. For this separation boundary, the
specific productivity of the apparatus amounts to 40 t/h per Im? of the apparatus
grate area.

It is noteworthy that in contrast to a single-row cascade, in this scheme a higher
order of the process organization is realized due to successive-parallel coarse
product recleaning.

This scheme is not equivalent to a simple increase in the number of stages of a
cascade apparatus, which is confirmed by experimental results. In a multi-row
cascade, the process is organized according to the principle of a self-regulated
recycle. Such organization of the process takes place in well-known methods of
bypassing and dephlegmation. This allows a considerable improvement of the
separation quality at increased productivities.
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11.8.2 Method of Estimating a Multi-row Classifier

Fractional separation dependence on the Froude criterion for one column (1) and for
the entire apparatus (2) is shown in Fig. 11.19. Here

X
Fr= 1‘%

where x is the average size of particles of a narrow class

w is the air flow rate recalculated per the apparatus cross-section.

It has been established earlier that in the range of solid phase concentration in the
flow within the limits up to u = 2 + 3 kg/m?, the behavior of particles of each
narrow size class is invariant with respect to other classes.

A combined cascade consists of n separating columns operating in parallel, each
of them comprising elements of the same type. Air flow rate in all the columns is the
same.

Under such conditions, the degree of fractional extraction F in all the columns
is also the same and can be determined taking into account the fact that for the given
assembly of the apparatus z = i*.

If we take the amount of any narrow fraction fed into the apparatus as unity, the
extraction of the first column into the fine product is

my = AFy (11.45)

where / is a coefficient of transfer of the narrow fraction under study from the grate
into the column.
Fy ()%
100

80

60

-1 ) °
40 b\

20

g [
0 O ol o ere e

0 0,4 0.8 1.2 1.6 20 o

Fig. 11.19 Fractional separation dependence on the Froude criterion for an industrial apparatus:
1 — curve for one vertical element; 2 — curve for eight parallel vertical elements
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For the second column
my = Fo(1 — Fp)
For the third column
msy = Fo(1 — Fo)(1 — Fo) = Fo(1 — Fo)?
For the nth column
m, = Fo(1 — Fo)"

The total extraction for the size class under study is a sum of terms formed by the
geometrical progression with the first term F and the step equal to (1 — Fy).
Finally, we obtain the fine product extraction in the entire apparatus in the form

F(Fo) =1~ (1 —Fop)" (11.46)
The amount of the narrow class extracted into the fine product is determined as
rp = F(Fo)ry (11.47)

where ry is the content of this class in the initial feed.
The content of this class in the coarse product amounts to

Iy —TIp =T, (11.48)

The developed model has made it possible to create a method of predicting
fractional composition of both separation products in a multi-row cascade classifier,
which is reduced to a successive determination of parameters.

1. The Froude criterion is determined for a specific narrow size class:

_ &Y.

Fr-—ﬁ,

J

2. Fractional separation of a single column is determined using the formulas given
in the beginning of this chapter. Proceeding from the structural model of the
process and experimental data, the authors have reliably determined in their
previous studies that for a cascade consisting of shelves, the distribution coeffi-
cient is determined from the expression

k =0.8678(1 — \/0.4B),

— 8x (p=py)
where B = &5 p
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Table 11.5 Ratio of experimental and estimated values of fractional extraction of different classes
in an industrial apparatus

Average size 0.13 0.18 0.258 0.358 0.45 0.565
class, x (mm)

Experimental values of F% 91.5 52.6 27.0 10.2 5.7 3.8
Estimated values of F% 91.2 524 27.0 10.2 5.7 3.8

p, po are densities of the material and moving medium, respectively.

3. From the determined value of Fy, the parameter F(Fy) is determined for each
narrow class according to dependence (11.46).

4. The output of each fraction into coarse and fine products is determined using the
dependencies (11.47) and (11.48).

5. Then the grain size composition and other characteristics of both separation
products are determined.

By way of example, Table 11.5 shows the results of the comparison of estimated
and experimentally determined fractional extractions of the fine product in an
apparatus consisting of eight rows at the air flow rate Q = 16,200 m*/h.

As the table shows, the degree of coincidence is high enough.

11.8.3 Optimal Scheme of a Multi-row Industrial Classifier

The analysis of obtained results has shown that fine product is most intensely
contaminated with coarse product in outermost columns of a multi-row apparatus
located closer to the coarse product discharge. Contamination occurs in all the rows
of the classifier, but it increases monotonically starting from the feeding place.

To decrease losses of the target component, it is expedient to recirculate the
material of the outermost columns of the apparatus by returning them to initial feed.
This technique is especially important when it is desirable to increase the output of
one plant.

We have developed a classifier with the output of 100 t/h comprising 12 rows of
cascade repurification combined into three separate groups of four rows each. Each
group is connected with a separate cyclone for trapping fine product, and after
passing the cyclones, the flows are united in one manifold for sanitary purification
from dust.

The apparatus is meant for fractionating potassium chloride containing 79.7% of
material with the size above 100 pm. In compliance with technological conditions,
dust fractions (—100 pm) contents in the dedusted product should not exceed 2%. To
estimate fractionating schemes, relationship (11.46) was applied.

Grain size composition of the initial raw material is given in Table 11.6.

The estimation is performed using the described method for the optimal air flow
velocity, which amounts to w = 2.05 m/s according to industrial tests.
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Table 11.6 Initial composition of the material
Particles size, ¥ (mm) 25 125 25 45 65 90 180 357.5 450 565 715

Partial residues, % 079 158 237 3.16 43 81 204 330 120 6.8 58
Complete passages, D;% 100 99.21 97.63 95.26 92.1 87.8 79.7 59.3 263 143 7.5

Fig. 11.20 Schematic diagrams for multi-row separation optimization: (a) open cycle; (b) recycle
of the second section; (c) recycle of the third section; (d) recycle of the second and third sections

To determine the construction optimality, we examine several options.

Scheme of apparatus operation without recirculation (Fig. 11.20a).

Product yield from each group of cascades is determined by the following
dependencies:

first group

1= erF4;

second group

72= D rs(Fs = Fa)

third group

p3 =Y rs(Fia — Fy),

where Fy4; Fg; F; are fractional extractions of narrow size classes in the first, second
and third groups (each group consisting of four columns).

Products compositions in each group are determined by the following depen-
dencies:

first group
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second group

- I‘X(Fg — F4) .
nn=—"—""-
72
third group
_ 1s(Fia — Fg)
r3=——"
73

In the case under study, coarse product estimated by this method contains 0.4%
of contamination.

For the open scheme of the process organization, when the three fine products
are combined into a dust fraction, we obtain the following process characteristics:

For the entire apparatus

7 = 64.3%, R, = 0.4%;
For the first group
71 =24.34%, Rio1 =28.4%, Ryo1) = 6.91%;
For the second group
72 = 7.08%, Ryo.1 = 70%, Ry(10.1) = 4.96%;
For the third group
73 = 4.28%, Ryo.1 = 87.49%, Ry(10.1) = 3.75%,

where R, is the content of coarse fractions with respect to the product yield, %;

Ry(40.1) 1s the content of coarse fractions recalculated per the initial product.

This scheme ensures a sufficiently low yield (64.3%) of dedusted product;
besides, a considerable part (15.62%) of coarse fractions is lost in the fine product.
As to the second and third groups with their low yields (7.08% and 4.28 %), losses of
+0.1 mm class amount to 8.71% of the initial product, i.e. half of the total losses.
Therefore, it is expedient to classify additionally fine products of the second and
third groups in the same apparatus, and not to mix them with the dust product of the
first group.

Option with recycling of the fine product of the second group of cascades
(Fig. 11.20b).

We introduce the following notations:

TR Tp3 Ty, — contents of a fixed size class in the fine product of the first, second
and third groups
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Te,3Teys Te, — contents of the same class in the coarse product of respective groups
of cascades

In a general case, we can obtain the following design formulas for this scheme of
the process organization.

i Th h
p=lt, M, 1A 11.49
g /f I's ))fl + I ’yfz ( )
r I
Fo, =y, + 2, 150
Ve Ve
Fo, = 25 (11.51)
r(‘]ycl
T
Fo, = RELY (11.52)
TeyVes
s = ThVp = TAVx +Tele
TeyVey =T1HYH = Tale, (11.53)

rczycz = "f;?f3 + rt?zyq
s =715 yfl + rfzyfz + r(fsyq

where F;Fy,;Fo,;Fo, are fractional extractions of a narrow size class for the
apparatus, first, second and third groups, respectively.

For the option under study, we have to apply corresponding expressions
(11.50-11.53) in dependence (11.49). We obtain

_Fi+F;—F\F, — F)F5+F F;
B 1 —F+FF;

F

(11.54)

According to our condition, when each group consists of four parallel cascades,
we can write:
Fi=F,=F;=1-(1-F)
Taking this into account, relationship (11.54) is transformed to

1-F +F —F?
 1-F! +F

where F., = 1 — F) is the extraction of a narrow size class into coarse product in
one separation column.
Hence, for the option (Fig. 11.20) we obtain

12
F

Fo=——ro
1 —F* +F3

(11.55)
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Tabl.e 11.7 Parameters of Option  7.% D_o1% % Losses R% of initial
multlirow apparatus with composition
recycle b 66.61 0434 3339 1338

¢ 66.0 0.379 34 13.94

d 69.682  0.449 30.318 10.33

For the option (Fig. 11.20c) we obtain:
F12
Fo=—->*— 11.56

For the option (Fig. 11.20d) the coarse product extraction amounts to
Fo=——" (11.57)

All principal results for all three options were calculated according to the
exposed method and summarized in Table 11.7 for comparison.

Thus, option d (a scheme with recirculation of the product of the second and
third sections) is the most efficient for dedusting potassium chloride with grain size
composition given in Table 11.6. This option increases the end product yield by 5%
and decreases the loss of target product into dust fraction down to 10.33% (compare
with 15.62% in the open cycle). The increase in the apparatus productivity by 11%
does not change the regime of the classifier operation.

Thus, a large-tonnage classifier for efficient dedusting of fine-grain products
has been developed. It ensures a high quality of both coarse and fine products.
Recycling application in this apparatus provides both a flexible control of separa-
tion effect and a decrease in qualified product losses.



Chapter 12
Stochastic Model of Critical Regimes
of Two-Phase Flows

Abstract An attempt of developing and solving a mathematical model of a process
is made taking into account a probabilistic distribution of determining parameters.
It is based on correlation methods, namely, on the study of the relations between
principal characteristics of a random process, — correlation, moment, structural or
related functions. Statistical modeling of critical regimes in turbulent flows is
carried out. Systems of non-closed equations are derived and carried to solution
using certain simplifications. Systems of particles motion equations are composed
taking into account their rotation around the center of mass in the flow. Stationary
and non-stationary processes are mathematically described. All these models are
reduced to numerical estimations. In conclusion, an example calculation is given,
and an approximate estimation method based on its analysis is developed.

Keywords Stochastic equations - Correlation - Moment functions - Ergodicity -
Stochastic differential equations - Innovative systems of equations - Nonlinear
process - Order of the moment function - Mathematical expectation - Statistical
linearity

12.1 Principal Definitions

Statistical methods of the study of mass processes share a border with the analysis
of stochastic models of processes, which has been extensively developed in recent
years. The analysis presented in this book would be incomplete without an attempt
at solving such problems.

Methods of the study of stochastic equations characteristic of the separation
processes under study, as well, can be subdivided into two classes: correlation and
kinetic ones.

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 265
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_12, © Springer Science+Business Media B.V. 2010
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Correlation methods are based on the study of relationships between principal
characteristics of random processes — correlation, moment, structural or related
functions. For a comprehensive description of a phenomenon, it is necessary to
define a complete system of moment functions of the first two orders — mathematical
expectations (average values) and moment functions of the second order, which are
called correlation functions.

Critical flow regimes can be examined in two aspects — stationary and non-
stationary. It is generally assumed that a process is stationary, if all of its
probabilistic characteristics are time independent. This mathematical tool has
been developed reliably enough for stationary random processes. As for non-
stationary processes, it has not been developed with the same degree of reliability
even for linear systems.

Obviously, the behavior of an ensemble of particles under the conditions of
classification possesses an ergodicity property. It means that sufficiently long
realizations of these processes contain practically all information about their statis-
tical properties. For ergodic random processes, averaging over an ensemble of
realizations can be replaced with averaging in time.

The main task of correlation methods is to find characteristics of the output
parameters of a process through correlation functions of its primary parameters.

Having derived stochastic differential equations connecting input and output
parameters, one can easily obtain differential equations for moment functions of
different orders. The construction of involution (Jacobian) systems of differential
equations in the moment functions is performed by termwise multiplication of
stochastic equations by sought functions and their products taken at various
moments of time, using averaging over the ensemble of realizations. In a general
case, we obtain a sequence of coupled simultaneous differential equations. Equa-
tions for moment functions of a given order contain moment functions of a higher
order and, hence, do not constitute a closed system of equations. This method of
constructing equations in moment functions was applied in turbulence theory by
Keller, Friedman, Karman, Kolmogorov, Millionschikov and others for deriving
differential equations connecting moment functions of the velocity field of different
orders from the Navier—Stokes equations.

We distinguish linear and nonlinear processes. A process is considered statisti-
cally nonlinear, if equations of the process comprise products of random values or
functions. The process of gravitational classification is an example of a nonlinear
process.

The system of equations describing this process can be solved by integrating the
equations in moment functions. The arising difficulties can be overcome by linear-
izing statistically nonlinear relationships.

Methods of describing stochastic processes based on differential equations that
express the distribution function evolution in time are usually called kinetic.

Kinetic equations were first introduced by Boltzmann. Later, kinetic equations
were widely used in the theory of Brownian motion by Fokker, Planck, Langevin,
Smolukhovsky and Einstein.
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Application of the mentioned methods makes it possible to determine velocity
moments of the particles or velocity distribution densities for particles of each
narrow class, which serves as a basis for plotting separation curves.

Note that the meaning of some notations in this chapter differs from those
accepted in previous chapters. In such cases, they are clarified in detail in the text.

12.2 Statistical Description of Gravitational Separation
in Turbulent Flows

It is most convenient to derive equations of motion of the center of mass of disperse
particles in a moving medium or a stochastic model of the process from symbolic
equations of the system dynamics

I _%

0 (12.1)

where 7 is a momentum vector of particles of a narrow size class at the moment of
time ¢ under study (a random function of time); ® is the principal vector of external
forces acting on the system (a random function of time).

Equations for moment functions of the first order are obtained by applying a
mathematical expectation operator to Eq. (12.1). Due to statistical linearity of
Eq. (12.1), we obtain:

Kk —
7 F (12.2)
where K = <7’ > is the mathematical expectation of the momentum of particles of
a certain size class at a given moment of time #; F = < @ > is the mathematical
expectation of the principal vector of external forces acting on the system.

To pass from Eq. (12.1) to equations in moment functions of the second order,
we first write these equations in fluctuations with respect to two arbitrary moments
of time:

dogl) -y doy)”
= 50";
dt ! dty

=60, (12.3)

where 87 / = yf ) 5(13 (I)l<1> —-F f-l) are fluctuations of momentum and
of the pr1n01pal vector of extemal forces referred to the moment of time #;; 577( ) =

,(j(- ) j ; (3(Dj = CDJ(-2> — F](-2> are fluctuations of momentum and of the principal
vector of external forces referred to the moment of time ¢,.
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We multiply the first equation of the system (12.3) by the momentum fluctuation
1) ;{j(-z) , and the second one by ¢ Xfl), and apply the mathematical expectation operator

after each multiplication. As a result, we obtain a system of two partial differential
equations of the first order for determining the moment function of the second order

K; = <(3x§1>5;{j(-2)> of the system momentum:

0K OK;;
L Kl ij KJ
ot 77 Oty ”

(12.4)

where
K = <60V oy >; K] = <oy o0

denote the moments of the connection function of the second order between the
system momentum and external forces acting on the system.

The system of equations (12.4) is not closed, since it contains moment connec-
tion functions of the second order. To determine these unknown moment functions,
we multiply the first equation of the system (12.3) by fluctuations of external
forces vector (3(1) ), and the second equation of this system by fluctuations b(I)
Applying the mathematlcal expectation operator, we obtain

oKl _,. K,

el ZJ_F.
o v 0ty

i (12.5)
where F; = <5x§1>(5;{;2) > are moment functions of the second order of the princi-
pal vector of external forces acting on the system defined by the problem specifica-
tion.

Equations (12.4) and (12.5) taken together form a closed system. Methods of
solving linear partial differential equations of the first order for one unknown
function are well-known. Thus, integrating Eq. (12.5) under respective initial
conditions, we determine the unknown moment functions K]’ and K{

A system of two linear partial differential equations of the first order for one
unknown function of two independent variables is an involutory (Jacobian) system
of differential equations, because the system of equations (12.5) satisfies integra-
bility conditions

oK, 0K

=— 12.6
on Ot ( )

Relationships (12.6) are identically true for systems of equations with continu-
ous functions, which can be easily proved on the basis of relationships (12.5).
Therefore, methods known from the general theory of partial differential equations
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for complete involutory (Jacobian) systems are applicable to the solution of the
present linear system of differential equations. When solving specific problems of
gravitational classification, it is expedient to proceed as follows. First, we determine
the entire set of functions satisfying the first equation of the system (12.4); then we
determine a subset of functions satisfying the second equation of the same system.
By solving jointly Eqs. (12.4) and (12.5), we determine moment functions of the
second order. Hence, at the superposition of two arbitrarily chosen points in four-
dimensional space, we obtain the momentum dispersion of the system.

To obtain a system of differential equations determining moment functions of
the third and higher orders, an analogous approach should be used with a
corresponding number of arbitrarily chosen points. For example, to determine
moment functions of the third order, we should write expressions for fluctuations
of Eq. (12.1) in three arbitrary points of a four-dimensional space:

S ,2) 3)
db}(m (1) doy; ) doy
L= o) L =50\ T — 501, 12.7
dll r dl2 I dl3 m ( )

We multiply the first equation of the system (12.7) by the product of fluctuations
5;{1(-2)5}5$ ), the second equation — by 5;(51)5;{53), and the third — by (3;(,(1)5;{1(.2).

After each multiplication, we apply the operator of mathematical expectation.
As a result, we obtain a system of three linear partial differential equations of
the first order for one unknown moment function of the third order K, =

<0 X,(-l)éy 0 y(3>> of three independent variables:

0K, l'jm

i aK ijm j 8K ijm m
ar, o oty =Kj,; ats :Kl-j (12.8)

where the following notations are offered for mutual moment functions of the third
order between the momentum vector of the system and the resultant vector of
external forces acting on the system:

K = <oy oy 00l > K, = <005y 643) > K, = <oyt o0 oy >

jm = im m

This system of equations involves unknown moment functions of the third order
K! K and K7/ To determine the moment function K we multiply the second

Jjm? jm?
equation of the system (12.7) by the product of fluctuations 5(1)( J553 ,(,,, in two other
points, and apply the mathematical expectation operator. As a result, we obtain a
partial differential equatlon of the ﬁrst order with an unknown moment function of
the third order K/ = <5CD 5(1) )5 /m )> inits right-hand part. Then we multlply
the third equation of the system (12 7) by the product of fluctuations 5(D 5(1)
apply the operator of mathematical expectation. As a result of the second operatlon

we find the second equation for determining the moment function K;@ Thus, to
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determine the moment function of the third order K }W we have a system of partial
differential equations of the first order:

oK', - OKY
Ty Gy P 2

In the same way, we derive a system of partial differential equations for
determining the moment function of the third order K%,

oK. OKY
K gy = Fime (12.10)

To determine the moment function of the third order K{j’-', we can write

., OK"

8[({;‘ K" F 12.11
atl_‘/’6t3_’jm' ( . )

From the solution of systems (12.8)—(12.11) with specified initial conditions, we
determine unknown moment functions appearing in the right-hand parts of the
system of differential equations (12.8). A system of three linear partial differential
equations of the first order for determining one unknown third-order moment
function of three independent variables is an involutory system of differential
equations, since the integrability conditions are satisfied.

6KJI’" — aI(z{m . a[(llm — aKlrJn . 8K{m — 6[(31 .
0t on ’ ot o ’ on on

(12.12)

In fact, the first integrability condition in the system (12.12) holds true on the
basis of Egs. (12.9) and (12.10). The second integrability condition also holds true,
since the moment functions of the third order satisfy the following equations:

aK’T im a[(;"1 im
G =Ko=K (12.13)

The validity of the third condition follows from the existence of the following
relationships between moment functions of the third order:

aK{m _ pim, 8K”Jn _ pim
s =K a0, =K;". (12.14)
Hence, the system of differential equations (12.8) is involutory. One can easily
make sure that it is complete. Based on known properties of complete involutory
systems of partial differential equations of the first order, a general solution to this
system exists and is unique. In particular, the solution can be obtained by Mayer’s
method, method of successive solutions, etc.
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Thus, we can readily obtain a system of partial differential equations for moment
functions of an arbitrary order and formulate the conditions of their integrability.
In the general case, it is a complete Jacobian system of partial differential equations
of the first order for determining moment functions of an arbitrary order for the
momentum and mutual moment functions between the system momentum and
external forces, whose solution exists and is unique.

12.3 Equations of Particles Motion Taking into Account Their
Rotation Around the Center of Mass in a Turbulent Flow

An equation of rotary motion of particles around the center of mass for a stochastic
model of the process of gravitational classification can be obtained from the
following equation of the system motion:

Tz 12.15
i ( )

where / is the momentum of particles of a certain size class at the moment of time
under consideration (a random function of time); 7 is the total moment (principal
moment) of external forces with respect to the gravity center of the system (a
random function of time).

Equations for moment functions of the first order are obtained by applying the
operator of mathematical expectation to Eq. (12.15)

L _,
= 12.16
a M ( )

where L = </> is the mathematical expectation of the momentum of particles of a
certain size class (one particle or all initial material) at a given moment of time;
1= <m> is the mathematical expectation of the principal moment of external
forces acting on the system.

Due to statistical linearity of the system of equations (12.15), the form of the
system of equations (12.16) for moment functions of the first order coincides with
corresponding classical equations of motion around the center of masses or system
dynamics.

Let us write down fluctuations of Eq. (12.16) with respect to two arbitrary
moments of time. Subtracting Eq. (12.16) from Eq. (12.15), we obtain

asil gy dsi?
— =0m ’; - =om; 12.17
ar, N T ( )
where 52,(»1) :)LEI) —le;(sn;l) :ngl) —,u,(.l) are fluctuations of the particles

momentum and principal vector of external forces at the moment of time #;;
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5}7(-2) = /1,( L(2) 57r<2) ( ) ,u,( ) are fluctuations of the particles momentum

and principal Vector of external forces at the moment of time #,.

We multlply the first equation of the system (12.17) by the momentum fluctua-
tion (5)( ), and the second equation by the momentum fluctuation 5A,( >, and apply
the mathematical expectation operator after each multiplication. As a result, we
obtain a system of two partial differential equations of the first order for determin-
ing the moment function of the second order for the system momentum L; =

15,
<04 07>

oLy, oLy
of 7 0ty

oy (12.18)

where
Li = <on) o)V >; I = <o/ on?) >

denote moment connection functions of the second order between the system
momentum and total moment of external forces with respect to the gravity center
of the system.

The system of equations (12.18) is not closed, since it contains unknown
moment connection functions of the second order Lﬁ and L. To determine these
moment functions, we multiply the first equation of the system (12.17) by the
fluctuation of the principal moment of extemal forces (3752), and the second
equation of the system by the fluctuation 571 b . Applying the mathematical expec-
tation operator, we obtain

oL, OL;

— = = 12.1
61‘1 :u’zja 81‘ ,Ll”, ( 9)

where
Wi = <5n,<-1>5n1<-2> >

can be considered as known moment functions of the second order of the principal
moment of external forces.

Equations (12.18) and (12.19) form a closed system. For its solution, well-
known methods developed for systems of partial differential equations of the first
order are used.

A system of two partial differential equations (12.18) of the first order for one
unknown moment function of the second order of two independent variables
satisfies the integrability condition

oL, oL
o on
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and, hence, is an involutory system of differential equations. As demonstrated
above, a general solution of such a system exists and is unique. In this case, systems
of differential equations for determining moment functions of an arbitrary order are
obtained by methods similar to those described.

Systems obtained as a result of these derivations should be completed by
equations of mutual moment functions between the momentums of the system
under study. We write

B.=<07"0)P>;  Bi=<o2"oy?>
Pl =<o0ViP > Pl= <0250 >
0] = <5X§1>57T}2>>§ Q; = <(57r§1)5xj >;
R =<o0Von?>; R = <ono0?.

(12.20)

Then a system of two linear differential equations for determining one moment
function B! of two independent variables acquires the following form:

J j
OB, _ pi. OB, _
o v oh

0, (12.21)

where unknown moment functions on the right-hand sides of the equations are
determined by integrating systems with partial derivatives of the first order:

oP, 00,
PRl L =R 12.22
atz i 81‘1 ] ( )

moment functions Rf: being defined by the problem specification.
The system of partial differential equations (12.21) is an involutory system,
since on the basis of relationships (12.22), integrability conditions are satisfied:

op; _ 90;
3[2 o 8t1 '

Moment functions Bji- are determined by integrating a system of two partial
differential equations of the first order:

08, 08

=p._J_0 12.2
o~ i 2 (1223)

J?

where the moment functions in the right-hand sides of the equation satisfy the
relationships

on n 1953 J

(12.24)



274 12 Stochastic Model of Critical Regimes of Two-Phase Flows

The conditions of simultaneous equations

or; _ 99,

8t1 _8_t2

are satisfied, as evident from Eq. (12.24). Therefore, the system of differential
equations (12.23) is involutory. Hence, its solution exists and is unique.

In a general case, a system of partial differential equations of the first order for
mutual moment functions of an arbitrary order between the system momentum and
the moment of momentum is also an involutory system of differential equations
whose solution exists and is unique.

12.4 Description of One-Dimensional Stationary Process
of Gravitation Separation in a Turbulent Flow

We apply the developed computation method to the construction of a one-dimensional,
somewhat simplified model of a stochastic process of gravitation separation in
a turbulent flow. In this case, the momentum of particles of a narrow size class
equals

¥ = . (12.25)

The principal vector of external forces acting on a system is a random function
of time

1
© = —pg + 5 0po(v — )?, (12.26)

where o is aerodynamic drag coefficient of particles of a narrow size class
(a random magnitude); @ is a random flow rate.

Substituting expressions of the momentum and principal vector of external
forces (12.26) into Eq. (12.25), we obtain an equation of motion of particles of a
narrow size class:

dv 1 2
@ et — @) 12.2
e = —Hg 5 pe0(v — ) (12.27)

Equation (12.27) is analogous to the Langevin-type equation of Brownian
motion of particles. It is also symbolic, since it contains random magnitudes and
functions. Speaking about operations with random magnitudes and functions,
we imply operations with respective moment functions. Equations (12.27) are
statistically nonlinear (they contain products of random magnitudes). For each
narrow size class and small, in the generalized sense, variations of ascending flow
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rates (i.e. in the sense of smallness of the ascending flow rate dispersion),
Eq. (12.27) can be linearized by a known method. We denote

m=<u>; L =<o>; F=<w>.

Using the direct linearization method and applying the mathematical expectation
operator to Eq. (12.27), we obtain

d<v> 1, —
dlt) = —mg + gﬂpOF(<U> — <w>). (12.28)

This equation has the following solution:

_ 2mg 2poFg
= - th t . 12.2
<> = <> TpoF ( m (12.29)

The problem of choosing an analytical formula of mean velocity of a turbulent
flow fitting experimental data has been extensively discussed. Equation (12.29)
describes mean velocity of particles of a narrow size class for a non-stationary
process. In a steady (stationary) regime of particles motion in a turbulent counter-
flow, this formula is simplified:

2mg
2poF

<> = <o> — (12.30)

where the average time of a transient process f( is determined from the relationship

8m
to=4 /= .
4poFg

The expression (12.30) differs from the formula of mean velocity of particles in
a motionless medium by its first term only, which describes, in the present case, the
velocity of an ascending medium flow averaged over an ensemble of realizations.

Let us determine central moments of random velocity of particles of a narrow size
class for the case of a steady regime, i.e. when the momentum of these particles is a
random value. It follows from this condition that the time derivative of the mean
velocity of particles of a narrow size class and of correlational connection moments of
various orders is identically equal to zero. Correlational connection moments of higher
orders of random values appearing in Eq. (12.27) for a stationary process possess
similar properties. We derive from Eqgs. (12.27)—(12.29) the following linearized
variational equations with respect to random values for a stationary process:

_ ou  dw oo mg
_ _ 0w | o , 12.31
ov 5w+( m T F T i) 27poF (12.31)
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When deriving equations for determining central moments of the velocity
of particles of a narrow class in a turbulent counterflow, it is assumed that the
values @, 1, w and o are uncorrelated random values. Successively multiplying
Eq. (12.31) by variations Jv,0®, du,ow,dn and applying the mathematical
expectation operator after each multiplication, we obtain the following system
of algebraic equations:

(5!)) > = <5CU(3D> + (<O,U§U> + <(>w(3v> + <()oz()u>) /2AngF7

<OVOD> = <((Sa)) >;

_ <G .
<ovder> = — <0er> TN (12.32)

From Eq. (12.23) we determine the velocity dispersion:

<(v)*> = <(6@)*> + (12.33)

<(dp)*> N <(dw)>2 N <(da)*>| [mg
m? F? P 22pF

As follows from the equations, the output velocity of particles of a narrow size
class correlates negatively with the mass of particles and positively — with their
midlength section value and aerodynamic drag coefficient. It means that the output
(extraction) velocity of particles of a narrow size class decreases with an increase in
their mass and increases with increasing midlength section and aerodynamic drag
coefficient, which corresponds to experimental data.

To write equations for the third-order moments of the velocity of particles of a
narrow size class, we successively multiply Eq. (12.31) by variations of the
following values:

(80)%:000@;0091;0v0;(5@)%; SO ; dvd; Swder; (dp)*:dpdew; Suder; (dw)*:0w
50{;5(0{)2. Applying the mathematical expectation operator after every multiplica-
tion and rejecting terms identically equal to zero, we obtain:

<(50)3> — <5w(50)2> ( <()u(()u) + <(>(u(()n) + <()oz(/:)u) >) m’
>

<dw(dv)*> = ;’ 2:’;1”
<dw(0v)*> = <(6@)’ (12.34)
<op(dv)’> = — alj - \/ }ﬂOF’

<Ba(ov)r> = == /2400}7
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From the derived equations, we determine the central moment of the third order
of the velocity of particles of a fixed size class:

3 3 3

<t = <tom o (-2 S )
m F )

(12.35)

% mg mg
20p0F 22poF "

The central moment of the velocity of particles of a narrow size class of the fourth
order is determined in a similar way. Multiplying successively Eq. (12.31) by
products of variations of random values (9v)*; (d@)”; (6u)*; (dw)*; (62)*; (v)* x
X 0w; (50)2&1; (50)25u, etc., and applying the mathematical expectation operator
after every multiplication, we obtain a system of algebraic equations for determining
the fourth-order moment of the velocity of particles of a narrow size class and all
remaining correlation moments. The final formula obtained by solving this system
for the fourth-order central moment of the velocity of particles of a narrow size class
in a turbulent flow is determined by the dependence

(12.36)

<(Bv)*> = <(0m)*> + <<(5“)4> L So)> <(5“)4>> 4m2g2

m4 F4 14 /,sz%Fz .

Thus, we have obtained a sequence of moments <v>; <(dv)’>; <(dv)*>, etc.
for a random velocity of particles of a narrow size class. Now the initially stated
problem can be formulated as follows: To reconstruct the distribution density of the
velocity of particles of a narrow size class by its weighed moments (12.30), (12.33),
(12.35), (12.36). This problem is known in mathematics as the classical Hausdorff
moment problem.

One of the possible ways of reconstructing an arbitrary distribution density is
based on an expansion in series by the normal law (Gram—Charlier series). Expand-
ing the density function f(x) in series using the normal distribution function and
restricting ourselves with five terms of the series, we obtain

f) = ——
<(aw)*>
1 <v)y’> 1 [ <(ov)*> v
X [4’(2) —E'W‘ﬁ (Z)+g <<(5v)2>2_3>¢ (Z)]’

(12.37)

where ¢(z) = db(;;);’i) = ﬁ ¢_%22 is the normal distribution density, ¢ (z) and

" (z) are, respectively, the third and fourth derivatives of the normal density with
respect to z.
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The approximation precision of the mentioned method in each specific case can
be evaluated by higher-order (fifth, sixth, etc.) moments using subsequent terms of
the expansion series.

12.5 One-Dimensional Model of a Non-stationary Process

We examine the process of gravitational separation of materials on one-dimen-
sional model of the process in a non-stationary case. We can write moment
functions equations for each narrow size class and small (in a generalized sense)
velocity fluctuations of a statistically homogeneous turbulent flow using the method
of direct linearization of Eq. (12.27). Later on, as usual, when we mention opera-
tions with random functions, we imply operations with corresponding moment
functions.

Now we pass from a system of ordinary differential equations to partial equa-
tions in moment functions of the first order. We assume initial conditions for
moment functions of the velocity of particles of a narrow size class equal to the
respective moments of the flow velocity, and zero initial conditions for the remain-
ing moment functions. Then moment functions of the velocity of particles of a
narrow size class of an arbitrary order for the process under consideration can be
expressed as follows:

— T 2g<u> Pog8<u><mw> |,
<> = <o> — [ th t\/ s ;
. (12.38)
__\k s) k So)t sa)f >
Kt .o1) = <(00)'> + [0 (- 1) + <oz 4 <02 ] £(1)
i=1
_ <pu>g Pog<o><w> 2 [pog<o><w>
Wheref(t) - \/2<m><(n>po‘h t\/ . 2<u> + resch t : 2<u>
At t; — oo(i = 1,2,...,k), moment functions of the velocity of particles of a

narrow size class of an arbitrary order tend to a constant value coinciding, in the
limit, with the moments of particles velocities for a stationary process.

12.6 Statistical Equations of a Random Process
of Gravitational Separation

For a deterministic flow, we restrict ourselves to an account of only two random
values — particles distributions by mass and by their midlength cross-section area.
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First we assume that the particles distributions by mass and by their midlength
section area are close to a normal law, although it is not always the case in real
conditions.

2

1 7(#*<;21>)

= e 2 -
¢1(:u) \/%G# )
1 _(m—<m>)2
hr(0) = e

V2no,

where ¢, and (p) are, respectively, densities of the normal law of particles
distributions by mass and by their midlength section area; o, and o, are root-
mean-square deviations of the values p and w; <u> and <w> are mathematical
expectations of the mass and characteristic area of a particle.

The particle velocity at the initial section of motion up to the moment of time

t< \/% is a random function of time
)

V= — \/gth\/ygt,
Y

where y = %C p% is a random value; C,, is a product of all constants.
At the further motion > \/% the particle velocity is time-independent:

v=w— /8 (12.39)
v
Let us find the regularity of the velocity distribution for a steady-state motion.
For this purpose, we transform formula (12.33) as follows:

V=wm —+\/bn, (12.40)

where b :é—g,n =L,
»
As evident from Eq. (12.40), to find this regularity, two problems should be

solved:

1. To find the distribution density for the magnitude 7 = £, where u and o are
random values distributed according to the normal law

2. To find the distribution density of a continuous random magnitude [v — f(v)], if
another magnitude 7 is connected by a stochastic dependence with it:

b= w— /b

We find the solution of the first problem in the assumption that the magnitudes u
and w are independent. It means that their combined distribution density is a
product of density functions ¢ and w.
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The probability of the relationship £ <x is expressed by an integral of the
combined density function over the reglon determined by inequalities >0 and
n<xa,

1 _=<p)” (o <€;}>)2
P(x) =— JJ e ioe ¥ dudo. (12.41)
216,04
w>0
U< X

We perform the following change of variables in Eq. (12.41):
U=uv,m=nv.

Then we obtain

X o2

0 (uv— <;4> _(v=<o>)
P(x) /du/ve e 2“3) dv. (12.42)
ZTEO'HO'(,)
—00 0

We transform the internal integral:
7 7(1:\'—<£>)2 _(r=<o>)? o0 , 00 i
o2 ) y —r —r —Py 3
/ve ¥ioe 2% dy z/veP(”)‘ vy — e ’/ve P24 gy,
0 0 0

where

2
P(u):%aﬁ-l-z"f”ﬁ

q(u) = %Jr% . (12.43)
r= <z”§ 5

Taking into account Eq. (12.43), Eq. (12.42) acquires the following form after
integration:

P(x)znalwaﬂe" Z {2P1(M)+eﬁ233\/7[1+®(\/ﬁ)]}du. (12.44)

Differentiating Eq. (12.44) with respect to x, we get the distribution density of
the magnitude

S (L
R T T TCh) | B

Thus, the first problem is solved.
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Now we solve the second problem, i.e. find the distribution density of the magnitude

v = w— /B,

where the magnitude 7 is distributed according to Eq. (12.45).
As shown in probability theory, the differential distribution function of the
magnitude 7 is determined by the dependence

b(v) = @)V,

where n = Y (v) = (w;U)z LY = 2(«;;.)) '
Thus, we obtain

2 (=)
o) =—f |——| v — o], (12.46)
b b
where the function f(x) is specified by Eq. (12.45).
An integral function of the velocity distribution is estimated, as known, through
the differential function using the equation

Fm:]¢@m

12.7 Computation of Fractional Separation of a Narrow Class

Numerical computations of the distribution density of particles velocities are
performed using Eqs. (12.45) and (12.46) with the following initial data:

1. Boundary size of separation d = 0.003 m

2. Mathematical expectation of the particles midlength section area
<w> =7 x10"°m?

. Root-mean-square deviation of the midlength section area ¢, = 2 x 107% m?

. Mathematical expectation of the particle mass <u> = 3 x 107® kg s’>/m

. Root-mean-square deviation of the particle mass o, = 1 x 107° kg s*/m

. Air flow rate = 14 m/s

. Aerodynamic drag coefficient of the particles C = 0.42 (that of a sphere)

NN B W

The computation is performed for the range of velocities of particles of the
examined class from —8 to 410 m/s. To clarify the sequence of computations, we
give below a computation for one point corresponding to v =2 m/s :

2g 2%9.8

=—=—————=7373.333;
C, 042x0.125 '
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(w—0v)? (14 —2)
i= - — 0.3857:
b 373333 0387

<<u>2 <a)>2) 1 (9 x 10712 49 x 10712

o2 2 ) 2\Ux10 2 " axi0"

= 10.625;
; ) - toszs

1/1 22 1/1
p(l) = 3 (0—2 + 0—2) =5 (Z x 10" + 10" x 0.1488> =0.1994 x 10'?;

) 1 (<o> d<p>\ 1 (7x10°° | 0-3857 x 3 x 10°°
9= "2 ) " 2uxi0 " 102
= 1.4536 x 10;
e’ qg q
A)=———<1+/m——er {l—i—d)(—)}}
) 47wwa,1p{ \/_\/13 VP

0.0000243

T4 x314x2x10°x1x10° x 0.1994 x 1012
[1 4 1.7724 x 3.256 x 40070(1 + 1)] = 2.24039;

2 2 x 2.24039

x 12 = 0.144026.

Distribution density at other particle velocity values is determined in the same
way.

Figure 12.1a shows a differential function of particles velocity distribution, and
Fig. 12.1b an integral function of particles velocities distribution. It follows from
Fig. 12.1b that 32% of particles of the class under study get into the coarse product
and 68% into the fine product. In other words, this computation allows us to estab-
lish the degree of fractional extraction of a narrow size class and, hence, principal
parameters of the process.

a ®(v) b
F0.15

- 0.05

L 0.02 / .

-10-8 6 -4-20 2 4 6 8 l0vmec -10-8 -6 -4-2 0 2 4 6 8 10vm/c

Fig. 12.1 (a) Differential function of particles distribution in velocities. (b) Integral function of
particles distribution in velocities
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a )
0,1

10,08
0,06
10,04

0,02 2
L1 1 ] L T 1

[ T T N
-10-8-6-4-202 4 6 8 10vms -10-8-6-4-2 02 4 6 8 10vm/s

Fig. 12.2 (a) Differential distribution function of particles velocity estimated by approximate
method. (b) Integral distribution function of particles velocity estimated by approximate method

12.8 Approximate Computation Method

An exact method of computing the differential distribution function can be essen-
tially simplified by assuming the normal law of the particles velocity distribution in
the form
1 _(=<v>)?
fl) =——e > . (12.47)
\/2_7'20'0
Now it remains to find the parameters of this law — mathematical expectation and
particles velocity dispersion.
To find mathematical expectation and particles velocity dispersion, we use
equation

V= —4/b—. (12.48)

It follows from Eq. (12.48) that particle velocity is a certain statistically non-
linear function of two independent variables (containing products of random
magnitudes). We perform direct linearization of this equation with respect to
mathematical expectation by a known method that is the most widely used in the
theory of random functions. As a result, we obtain:

b<u>+1 b (u—<p>) ! Vh<u><o>(w — <w>)
Vo <o> T2\ <os<usH T H 2<w>2 a

(12.49)

L=

Applying the mathematical expectation operator to Eq. (12.49), we derive an
expression for the mathematical expectation of particles velocity:

>
<> =4 [bH2 (12.50)
<w>
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To determine particles velocity dispersion, we rewrite Eq. (12.49) in variations:

1 1
oo = 3 b ou Vb<u><w>dw, (12.51)

<o><u> " 2<w>?

where, by definition of the variation of a random value, the following notations
are used:

O =0—<0>; 0U=U—<u>; 0w =w0=<w>.

By definition, random value dispersion is the mathematical expectation of
squared variation of this random value. Therefore, to compute the particles velocity
dispersion, it is sufficient to multiply Eq. (12.51) by itself and apply the mathemati-
cal expectation operator. Using the condition of independence of random values @
and u (whence it follows that the correlation moment <dudw> = 0), we obtain the
following equation for the dispersion of a random value:

1 b b<u>
2 2 2
=- . 12.52
7Ty <<w><u> Tt <w> 6“’) ( )

Thus, the parameters of the particles distribution function are determined
through the mathematical expectation and dispersion of mass and midlength section
of particles. To construct differential and integral distribution functions, it is
expedient to reduce them to tabulated functions — a normalized and centralized
distribution density function and the Laplace integral. Tables of these functions can
be found in textbooks and manuals on probability theory and mathematical statis-
tics. For this purpose, we perform the following change of variables

v—<v>
o, o

t

in equation

1 (u—<u)2

flv) = oo

Then Eq. (12.46) is transformed into

e . (12.53)

f) =T,

O-l)

2
— L5 -
where T = e Tisa tabulated function.
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We express the distribution function of random velocity v through the Laplace
function:

F(x) = P<x) = % {(I) <<G”U>\/_§x) + 1] , (12.54)

where ®(x) is a tabulated function.

Since the functions 7'(x) and ®(x) are tabulated, it considerably simplifies the
construction of differential and integral distribution functions using an approxima-
tion method. It is sufficient to compute mathematical expectation and dispersion of
particles velocities using Egs. (12.50) and (12.51), find the tabular values of T'(x)
and ®(x) functions corresponding to the computed values and perform the remain-
ing operations according to Eq. (12.54).

To evaluate the accuracy of the approximate method, numerical calculations
were performed on the basis of initial data given above.

The calculations were performed according to the following scheme:

2¢  2x98
C, 0.42x0.125

1/b£ %73 333 x 1(0) — 12.65;

<v>=w-—A=14—-12.65 = 1.35;

b 1 <u>
2_ 0 2 2
Ty <<w><,u> Tt > a‘“)

373.333 1x 10712 3x107%x4x10712
- ( X X XA x >7.72.

b= = 373.333;

+
4 7x107°%%x3x107°° 73 x 10718

The parameter ¢ and the Laplace function argument are determined from mathe-
matical expectation and root-mean-square deviation. Tabular values of T and @
functions corresponding to the computed values are taken, and the differential and
integral functions are found using the respective formulas.

Figure 12.2 presents the differential and integral distribution functions of the
particles velocities computed using the approximate method. It is obvious from the
comparison of curves given in Figs. 12.1 and 12.2 that the approximate method
of determining the velocity distribution function gives a sufficiently reliable
approximation. The systematic error in the determined integral distribution function
does not exceed 5%.

Thus, the obtained dependencies make it possible to determine the probability
of the output of particles of a narrow size class into classified products, i.e. to
determine the extent of fractional separation of various classes. This creates the
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necessary prerequisites for computed prediction of the anticipated effect and other
parameters of the gravitational classification process.

It is noteworthy that other distribution laws of random values are equally
applicable, for example, a more general normal-logarithmic law, which best
meets the parameters of particles of milled materials.



Chapter 13
Mass Transfer in Critical Regimes
of Two-Phase Flows

Abstract A mathematical model of separating cascade is developed using chain
fractions. For its solution, a system of 2z coupled equations (z being the number
of stages in the cascade) was examined. On the basis of their solution, final
expressions for fractional extraction in the cascade are derived. The analysis
of these expressions has revealed the best stage for material feed into the
apparatus. A stationary model of the process is developed and discretely solved.
This solution allowed us to obtain an instant distribution of the material mass over
the cascade stages. Optimization conditions for principal parameters of multistage
separation are analyzed. Their empirical adequacy to the obtained results is
shown.

Keywords Cascade - Stage - Extraction - Chain fractions - System of equations -
Optimization - Efficiency - Adequacy - Distribution - Discontinuity - Stability

13.1 Mathematical Model of a Separating Cascade

Separation of solid bulk materials is a complicated process because their initial
composition is, as a rule, a fractional mixture, and all fractions simultaneously
participate in the separation process distributing the material among final products
in certain ratios. Cascade separation can be clearly described using chain fractions.

Cascade separation is characterized by a combination of several separation
stages within one apparatus. Figure 7.1a shows several types of cascade pneumatic
classifiers for bulk materials. Air flow is fed to a particular cascade apparatus from
below, while the material to be separated can be fed to any stage. Light fine particles
are carried upwards by the flow and trapped in special facilities, and heavy coarse
ones settle against the flow. Changing the number of stages in the apparatus and the

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 287
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_13, © Springer Science+Business Media B.V. 2010
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site of material feed, we can affect both the separation efficiency and the quality
of the obtained products, depending on technological requirements. The total
polyfractional initial composition of the material can be conventionally represented
as consisting of particles of narrow size classes. It is generally accepted in engi-
neering calculations that in a narrow class the maximal size of particles exceeds
twice the minimal one, for example, (1-0.5), (0.5-0.25), (0.25-0.125), etc.

A schematic diagram of a narrow fraction distribution in a cascade separator is
presented in Fig. 7.1a. Figure 7.1b shows a separation mechanism in one stage. In
these figures, stages are numbered top-down. We denote by i* the stage into which
the initial material to be separated is fed. The number of stages in a specific
apparatus is denoted by z. Any stage between 1 and z except i* is denoted by i.

The value characterizing a narrow class extraction upwards in one stage can be
represented as

i1

k= ,

I

where r; is the initial content of particles of the class under study at the ith stage;
ri—1 is the number of particles of the same class passing to the stage above.

It is noteworthy that this factor can vary for different classes within the limits of
0<k<1.

Since in a steady regime the material is not accumulated in stages, a portion of
the initial fraction equal to (1 — k) passes to a stage located below.

To simplify the conclusions, we take the total content of a narrow class in the
initial mixture as a unity. Here the following relations are always valid:

F(x) + Fol) = 1
Fe(x)=r1 -k
Fe(x)=r(1—-k) (13.1)
rp(x) = Fr(x) - r5(x)
rp(x) + re(x) = ry(x)

where F(x) is a portion of a narrow class with the mean size x that has passed out of
the entire apparatus upwards.

F.(x) is a portion of the same narrow class that has passed out of the apparatus
downwards.

ry is a portion of the narrow class content in the first upper stage.

r. is a portion of the same class content in the last lower stage.

rp(x);r.(x) is a particular narrow class content in the output of the upper and
lower products.

r¢(x) is the narrow class content in the initial product.

Special studies have been carried out in order to find the dependence of the
coefficient £ on the number of the apparatus stages. The experiments were per-
formed on a shelf apparatus (Fig. 13.1a). In the first group of experiments, the initial
material was fed to the upper stage (i* = 1), and the number of stages amounted to
z =2;6;10; 14.
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a b c d

=

Fig. 13.1 Certain types of cascade classifiers: (a) with inclined shelves; (b) “zigzag”; (c) poly-
cascade; (d) with radial grates

In the second group of experiments, the material was fed to the middle part of the
apparatuses.

(z=3;i*=2)
(z=T;i"=4)
(z=11;i* =6)
(z=15;i* =8)

Ground quartzite with the average size of narrow classes equal to 0.094, 0.1875,
0.375, 0.75 mm was used in the experiments. The experiments were carried out at
exactly the same air flow velocity ensuring the distribution of all classes into both
products at different values of £ and solid phase concentration in the flow. Experi-
mental results are shown in Fig. 13.2. It follows that the value of the coefficient & in
these conditions remains stable. Apparently, it is due to the structural similarity of
the stages and similarity of aerodynamic conditions therein.

In the stationary regime of the process, the quantity of particles in each stage
remains unchanged in time. It means that the number of particles entering a certain
stage i equals the number of particles leaving this stage, since the material is not
accumulated within a stage. Hence, for any stage i the following relation is valid
(Fig. 7.1a):

i','(l*k)ﬁ*l’,"k:ri_](l7/()4’7‘,':] - k. (132)
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Fig. 13.2 Dependence of the distribution coefficient k£ on the number of stages in a cascade
classifier with upper (a) and mid-point (b) feeding of the material: (a) 1 — k = 0.57; 2 - k = 0.73;

3-k=03;4-k=0.18;(b) 1 —k=0.652-k=057;3-k=043;4-k =049

For the material fed from above (i* = 1) into an apparatus consisting of z stages,
the relative material content at each stage can be described by a system of z

equations:

rn=r-k+1
rn=r(l—k) +r-k
r3=ry(l —k)+rs-k

roey =rea(l—k)+r, -k
r;=r.—1(1 —k)

(13.3)

Proceeding from (13.3), the narrow fraction quantity in the next-to-last stage can

be expressed by excluding their content at the last stage:

r,—1 = rz—2(1 _k) +VZ_1<1 —k)k,
hence,

FZ,Q(I — k)
1—k(1—k)

;-1 =

Similarly, the following can be written for z — 2 stage:

}"Z_z(l — k)k

ra=ra(l =0+
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and
i 1‘273(1 — k)
2 =TT R
T—k(1—F)

Analogous reasoning shows that a recurrent relation expressed by a chain
fraction

. (1-k)
I =Tri_| " D) (13.4)
|_ k1K
)
)
z—1
- k(1-%)

corresponds to the system of equations (13.3).

The chain fraction (13.4) makes it possible to find the share of the narrow class
content at any stage of a cascade and visually demonstrates the contribution of all
other stages to this content. It follows from (13.3) for the first stage that

I'1=V2'k+1

It follows from (13.4) that for the second stage we can write

) 1‘1(1 — k)
ry = P (13.5)
- K-8
R
z—2
1 —k(1—k)

We substitute (13.5) into the expression for the first stage denoting the denomi-
nator of the chain fraction by A, :

r 1(1 - k)
= k+1.
" A272 *
Hence,
" (1 _ M) o
A272
1
r = . i) (13.6)
- 1___kI—H
k1B
)
s 1 |_kI=R)
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Proceeding from the fact that

Ff(x)(z—l) =r -k

we obtain for Fy(x) ,_;), implying that the apparatus height is limited by the (z — 1)
stage,

k
Fr(x)_y) = — g (13.7)

| k()

We can write for the entire apparatus:

k
Fr(x).) = I (13.8)
zZ
1—k(1—k)

At the distribution coefficient k # 0.5, we can find a general expression for the
chain fraction.

We denote the denominator of the chain fraction by A,, where n corresponds to
the number of units in the continuous fraction.

Let us find the form of A, dependence keeping in mind that

Anzl_k(lfk).
n—1
We can write:
K= (1—k)?
Ai=1=k 1-k)=
! 1=K k—(1—k)
2
K- B , =R fe=(1=0 e gy
Ay=1- k+(1—k) = a = =
Ay k2 —(1—k) k2 —(1—k)
2112 41
a_ g kO k)_]_(l k>k (1 k)3:k 1 k)3
2 B—(1-k> B—(1-k



13.1 Mathematical Model of a Separating Cascade 293

Using the mathematical induction method, we will prove that

A kn+l _ (1 _ k>n+1
! '— (1 —k)"

(13.9)

Clearly, this dependence is valid at n = 0; 1;2; 3. We assume that it is valid at
any z — 1,

kK —(1—k
A, = ( ) - (13.10)
k=1 —(1—k)
and prove that for z
kz+1 _ (1 k)z+1
A, = 13.11
e g (13.11)
It is clear that
k(1 —k
A, =1-— ( ) .
z—1
We substitute A;_; from the expression (13.10):
7— z—1 . z
o k(1 —k)[k "= (1-k) = (1= k) — K1 — k) + k(1 — k)
i k¥ — (1 —k) B k¥ — (1 —k)*
kz+l _ (1 o k)z+l
— B S A 13.12
= (1= k) (13.12)
Substituting (13.12) into the dependence (13.8), we obtain
K — (1 —k)
Fr(x)y=k——m——F——. 13.13
7)) (k) ( )

It is clear from (13.12) that at k = 0,5 we arrive at an uncertainty. At k = 0.5,
the dependence is simplified and reduced to the expression

- Z
Tz 1

Fr(x)

All this is valid for a cascade separator with any number of stages at the material
feed from above (i* = 1).
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A system of equations
ry =nrk
rn=r(l—k)+rk

Iix = }"l‘*,l(l - k) + ri*+1k + 1 (1314)

r,—1 = FZ+2(1 — k) —|—er
r,=r._1(l —k)

corresponds to a general case, where the initial material is fed for separation into
any stage 1*.

Since the material distribution proceeds according to the previous scheme until
the i* stage, taking into account the expression (13.4), we can write

(1 = Kk
R (13.15)
1 - 1— k(1—k)
L)
z—1"
L= k(- k)

It follows that

1400

AZ*i* :| = ri*—l(l —k) + 1.

Taking into account the dependencies (13.7) and (13.8), we can write

re [l = Fp(x),_ (1= k)] =rp_1(1— k) + 1.

Hence,
. — r,-*,l(l—k)—&-l - V,'*,](l—k) E+ 1 E
TN —Fr(x), (1—k) 1—Fp(x), (1—k) &k 1—Fp(x), .(1—k) k
1—% 1
= Trf**lFf(x)z—i*-H +EFf(x)z—i*' (13.16)

Similar calculations for the previous stages give

1
riemt = T2 Fp(0)jegp + 2 Fr () Fr (%)

1
K Fr(x)._es + %Ff(x)zfi“rl Fp(0). g Fr(0).egs

Iix_p =
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where F¢(x), ;. and Fy(x),_, are fractional extractions in case the apparatus height
were limited by the corresponding stage. The content in the first stage from above is

ri=ry k=1 =k) rFplx),_; +Fpx), g Frx),pp X X Fp(x),

Hence,
- :Ff(x)z—i*+1 (). Fr(x). X Fyp(x)._,
L= (1 —k)Fy(x )
= Fr )y Fr ), Ff<x>z.
Here the total fractional extraction amounts to
Fr(x)) = Fr(0). gy Fr(x)._pe g X - X Fp(x).. (13.17)

Here we have i* multipliers, which correspond to fractional extractions of
apparatuses limited in height by the indices above.
We substitute the relation (13.13) into (13.17):

P, K==k T -k
Fpx). = kaH — o R

kz—i“+l _ (1 _ k)z—i*-H (1318)
Jer—it+2 (1 _ k)z—i*+2'
Reducing identical terms in (13.18), we obtain:
" Lk (1 — k z—i*+1
Fy(x):. =& U=k (13.19)

kel — (1 — k)™

This is the most general expression for determining fractional extraction of a
cascade consisting of z stages at the material feed to i* stage counting from above
under the condition k # 0.5.

We determine the value of the parameter k£ from a somewhat different stand-
point. For this purpose, we digress from the chain fractions model and consider
mass transfer in a cascade as a system of equations characteristic of each stage.

According to Fig. 13.3a, we denote fractional extraction of the considered (or
fixed) class of particles upwards at each stage by f;, and fractional extraction of the
same particles at the same stage downwards by c;. As already shown, irrespective of
the amount of material arriving at a stage, its certain fraction is extracted upwards
from this stage (k), while the remaining amount (1 — k) is extracted downwards.

In the general case of a cascade with identical stages according to Fig. 13.3a, we
can make up a system of 2z simultaneous equations: z equations of fractional
extraction and z equations of material balance for z stages:
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Fig. 13.3 (a) Schematic
diagram of mass transfer in a
cascade; (b) schematic
diagram of distribution within
one stage

13 Mass Transfer in Critical Regimes of Two-Phase Flows

a S

|

o

(=)
()

o
'

o

o
n
%)

z—1

o
1
8}

YAVPRTAVZAVAVA

fi =fk
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fi+a=f
hH+ao=c+f
fBta=c+f

........................... (13.21)

foitcei=ca+f:
fz + ¢ =cm1

In these expressions, k is the material distribution coefficient in one stage. At
each stage, the total input of particles equals their output from the stage. Therefore,
the following relation can be written for each of them:

(13.22)

Taking an equation for stage i from the system (13.21) and substituting, instead
of ¢; and ¢;_1, their respective values from (13.22), we obtain a recurrent equation
corresponding to the systems (13.20) and (13.21):

fi=fioi(1 = k) +fisr - k. (13.23)

Equation (13.23) is a uniform finite-difference equation of the second order with
constant coefficients. It can be written somewhat differently:

1 1—k
fi+2_fi+1'z+fi'T:0' (13.24)

Using the dependence (13.22), we determine three boundary conditions for the
recurrent equation (13.24):

fi=fH-k
fo=fr - (0 =k) +fop - k+k (13.25)
fo=fr - (1—k)

The characteristic equation corresponding to Eq. (13.24) can be written as
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Solving this equation, we obtain the following roots:

1 -k
}vl :T; },2: 1.

Under the condition k£ = 0.5 we obtain
M =A=1
The general solution of (13.24) in case 4; # A, has the form:
fi = b2l + byl

Using boundary conditions (13.25), we find for 1 < i <%,

- e - e

fi= " (13.26)
[1- ™ ee-1)
For stages within the limits of i <i<z,
(1= )] [ - 9]«
fi= S . (13.27)
(1= (5 k-1
In case of k = 0.5, i.e. at Ay = 1, = 1, the general solution is:
fi = byid + byil = byi + c».
Using boundary conditions (13.25), we obtain
1—*
fi= i% (1<i<i®), (13.28)
|
fi= i*% (i*<i<z). (13.29)
z

Let us revert to Fig. 13.3a. It is clear from this figure that the total extraction of
the considered narrow size class into the fine product corresponds to the value of its
extraction from the first stage, i.e., f;. Respectively, this class is extracted into the
coarse product from the last stage, and the value of this extraction is c.

Clearly,

Fr=fi; Fo=cs; Fj+Fe=1. (13.30)
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According to (13.27), at i = 1 we obtain

Fr=——rl  atk+#0,5. (13.31)

= (7

B 1— (ﬂ)zﬂﬂ'*

At k = 0.5, it follows from (13.29) that

_Z+17i*

13.32
z+1 (13.32)

Fy

It follows from the analysis of the separation process mechanism in cascade
apparatuses that a symmetric medium feed of the material into the apparatus does
not shift the separation boundary. This corresponds to the condition

w z41
it = .

2

In this case, the expression (13.31) acquires the form

1
Fp=—— . (13.33)

(7

ot

The steepness of the fractional separation curve shows the process perfection. It
can be defined as the slope ratio of the tangent in the middling point, i.e. at
Fr(x) =0.5,

<@> B e ul il ) QS £ (13.34)
dk k=0,5

Hence, with increasing z, separation efficiency continuously grows. It is note-
worthy that the effect of an increasing number of cascade stages subsides with
increasing z. It means that an excessive growth of the number of stages in a cascade
does not make sense. The parameter k reflects structural and dynamic foundations
of the process. Since all cascade stages are identical and hydrodynamic conditions
in them are the same, we must assume that the value of this parameter in such
conditions is constant.

The value of the parameter k can be determined for practical use by a somewhat
simplified structure of a two-phase flow. It is established that the velocity profile in
the cross-section of a vertical two-phase turbulent flow stretches in the mid part in
comparison with an analogous one-phase flow. To the first approximation, such a
profile can be considered as parabolic (Fig. 13.4):

"y = Zw[l — (;—e)z] (13.35)



300 13 Mass Transfer in Critical Regimes of Two-Phase Flows

Fig. 13.4 Schematic
presentation of flow structure

(3]
8]

where u, is the local velocity at the distance r from the channel axis, m/s; w is the
mean flow velocity, m/s; R is the geometrical radius of the channel, m; r is the
distance from the channel axis to the point under study, m.

We assume that a narrow size class x is separated in this flow between two
outlets. At a uniform distribution of these particles over the cross-section according
to the profile, in the central part they rise upwards and go down near the walls.
Between these zones we can single out a radius ry where they hover, i.e. are in a
dynamic equilibrium. An equation of such equilibrium is written as

3 w?
?(P —po) = )vTP 2*(2 (13.36)

where x is the size of particles of a narrow class, m; r¢ is the distance from the
channel axis to the point where the absolute velocity of a particle of the size x is
zero, m; p is the material density, kg/m?; po 1s the medium density, kg/m?; p* is the
apparent specific weight of the flow, kg/m”.

The effect of a two-phase flow on a particle owing to collisions with other
particles is somewhat stronger than that of a single-phase flow. To a certain
precision, we can assume at the concentration u = 2 kg/m? that p* = 2 kg/m?>. It
follows from the flow structure (Fig. 13.4) that

Sro nr(z) T0\ 2
k:—:—:(—). 13.37
SR 7'ER2 R ( )
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Taking this observation into account, we substitute (13.35) into (13.36):

%gx(p —po) = )»p*{zw{l - (%’)]2}2 (13.38)

and then (13.37) into (13.38)

1 gd (p—po) 2
— .2 = (1 —k%). 13.39
o (1) (13.39)
Hence,
e 1— L p—posgr_ P —po &
3L p* w? 311,67 167 Py W

At /. = 0.5, this expression acquires the form

k=1-+04-B,

where B = (" 20) Refined dependencies for estimating a cascade apparatus can
be obtained from an equilibrium balance model of the process.
The material going out upwards, or into the fine product, arrives from the first

stage only and amounts to
Rik =Fy (13.40)

(Fig. 13.5), where Fy is fractional extraction of the size class under study into
the fine product; R is the content of this class in the first stage. The material going
out downwards, or into the coarse product, arrives from the last stage only and
amounts to

R.(1—k)=F, (13.41)

where F'. is fractional extraction of the narrow size class into the coarse product; R,
is the content of the class under study at the stage z.
Clearly,
F f +F c = 17

1.€.,

Ri-k+R(1—k) =1 (13.42)



302 13 Mass Transfer in Critical Regimes of Two-Phase Flows

Fig. 13.5 Schematic diagram Rik=F;
of a cascade separator and

pourable material distribution

in stages 1

R(1-k) Rok

Lg
Ry(1-k) fRak

Ryx,y(1-F) FRpvok
RZ—Z(l _k)

R(-ky| [REK

RA(1-k)=F,

By the upper part we imply cascade stages from the first one to the feeding stage,
i.e., 1<i<i® (i is the current stage).
Let us examine the material balance condition from the first to the i  th stage,
Rik+Ri(1 —k) =Rk (isi®—1).
Taking (13.40) into account, we can write
Ri1k —Ri(1 — k) = Fy. (13.43)

Consider an analogous equation for the lower part of the cascade:

R.(1 = k) + Rik = Ri_1k (i=i® + 1).
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Taking (13.41) into account, we obtain:
Ri_1k—R;(1 —k)=F.. (13.44)

The dependencies (13.43) and (13.44) lead to an important conclusion. The
cascade distributes material in such a way that:

1. The difference in the material quantities in two adjacent stages in the upper part
equals fractional extraction of the entire cascade into the fine product.

2. The same difference in the lower part equals fractional extraction of the entire
cascade into the coarse product.

Changing the indexation in recurrent equations (13.43) and (13.44), we can write
for the feeding stage

Rik —Rje_1(1 — k) = Fy (z<l') (13.45)

R,’o(l 7/{)7R,'o,1k: 1 7Ff (l?l.)

Equation (13.45) at i =i® expresses the material balance condition for the
stage i°.

To illustrate the validity of the latter, it is enough to sum up left- and right-hand

parts of Eq. (13.45). In the left-hand part we obtain all inputs and outputs for i*th

stage, and in the right-hand part unity, which fits the facts. We apply a parameter

Proceeding from (13.43), we can write for the upper part of the cascade:

Rik = Fy
Rok =R\(1 — k) + Fy
Rsk = Ry(1 — k) + Fy
..................... . (13.46)

Rick =Rje_1 (1 — k) + Fy

Using the method of successive substitutions, we can obtain from (13.46) for
i<i® stages:

Rik =Fy
Rok ="0(1 — k) + Fy = Fyo + Fy
Rsk = O'2Ff —|— GFf +Ff
: : Fro 13.47
Rsk = 0°F; + 6*Fy + oF + Fy ( )

Rk=Fp(o™' +0 24+ +o+1)
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The latter expression can be written as
Fr o i*—1 3 2
Rk=—"(¢"+0" "'+ ---4+0" +07" +0). (13.48)
g

For i* stage we obtain

Fr . . . FA
Ri_k:?f(al +61—1+.,.+az+0_z—1+...+0_2+0_):% (13.49)

where A = (6" + 6" '+ +6° + 0% + 7).
According to the recurrent equation (13.44), we can write a system of equations
for the lower part (i=>i*):

Rtk = Ri-(1 — k) — F.
Rjeiok =Rp_1(1 —k) — F,

........................ . (13.50)
Rk=R, (1—k)—F,
Taking (13.49) into account, this system is transformed into
R,‘-+1k = R,‘oO’ —FC = FfA — (1 — Ff)
R,‘-+2k = O'FfA — 6(1 —Ff) — (1 —Ff)
Rii3k = 6’ FiA —6*(1 —F) —a(1 — Fr) — (1 — Fy) . (13.51)

It follows from the latter that
Rk = %(az +o '+ + 0’ +0) —é(azf" +o " 4+ 6 +0). (13.52)
It follows from the last line of (13.50) that
R.(1—k)=1-F;.
We multiply and divide the left-hand part by £ :

R.ok =1—Fj. (13.53)
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Taking into account (13.43), it follows from equation (13.42) that:

F_1_~_O.z—i’+o.z—i‘—l+_.__‘_o.2+o.
T 4o+ '+ +a4+0

(13.54)

In the numerator and denominator of the expression (13.54) we obtain sums of
geometric series terms. Calculating these sums, we obtain

1— O_zfi‘+l

Ff = 1 — gzt!

(13.55)

Thus, we get a dependence of the value of fractional extraction of a narrow size
class on the principal structural parameters of a cascade apparatus.

A detailed sound justification of separation mechanism in a cascade process can
be obtained by examining a discrete stationary model of the process.

13.2 Discrete Stationary Model of Critical Regimes
of Vertical Two-Phase Flows

A characteristic property of such flows is a non-stationary multi-directional motion
of particles and their ability to change the motion direction many times during their
stay in the channel. The direction can be altered at any point along the channel
height. All this considerably complicates the analysis of the flow mechanism and of
the solid phase distribution between two outputs of the process — upper and lower.
Such processes are widely used in industrial practice, for instance, in fractionation
of bulk materials according to particles sizes or densities.

We assume that a poly-fractional bulk material is fed into a vertical channel.
Under the action of air flow, a part of this material goes out upwards, and another
part settles downwards. The finest particles are completely carried out upwards, and
the coarsest particles settle downwards. Particles of intermediate classes are shared
by two outputs — those of fine and coarse products.

If the initial granulometric composition of the material is known, determining
the composition of one of the outputs allows automatic determination of the product
composition in another output. We assume that the fine product is the determining
one.

To develop a model of the process of a critical two-phase flow, we define its
boundary conditions.

1. The process model is discrete both in space and time.

Spatial discreteness is determined by the following reasons. If we take a differ-
ential of the amount of material at a certain level of the channel height and then
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integrate over the entire height, it leads to nothing, since changes in the direction of
the particles motion can start at any level.

Therefore, we mentally divide the vertical channel along its height into a finite
number of identical elements and call each element a stage. The idea of channel
subdivision into stages consists in the assumption that changes in the direction of
the particles occur only within a stage, and the latter exchanges particles with
adjacent stages only. Material can be fed into such a flow from above, from below
or into any stage.

Assume that the channel under study consists of z stages (z being a natural
number). We count the stages top-down and denote any stage by i(1<i<z). If
we consider a certain stage i, the material located therein partially goes out
into the overlying stage (i — 1) under the action of an ascending flow, while
another part gets into the stage (i + 1) located below. At the same time, a part
of the same material arrives from these stages at the stage i. We denote the stage
of the initial material feed by i*. Clearly, in a general case, 1 < i < z. Time
discreteness is stipulated by the fact that, putting aside a continuous temporal
transformation of the vector of polyfractional mixture composition, the latter
is considered only at certain fixed moments of time with the interval Az. It
means that this model examines instantaneous and simultaneous particles redistri-
bution in all stages of the channel occurring at discrete moments of time with the
same interval At. We call such distribution of polydisperse material a solitary
separation act.

2. The model is related to the field of self-similar processes with respect to the
average consumed material concentration y in the flow. In the concentration range
up to 2.5 kg/m?, separation in the flow is independent of the solid phase content in
it. This result is independent of concentration, the method of the material feed,
mean flow velocity value or the number of stages.

3. Each narrow size class of particles is separated in such flows independently,
irrespective of the presence of other classes of particles. Statements 2 and 3 are
closely interconnected and experimentally established. Statement 3 allows us to
pass from a polydisperse material to the examination of independent behavior of
each monofraction separately r;;. Further we omit the index », and all our conclu-
sions are related to one monofraction only.

If we successively determine distributions of all narrow classes, we obtain
complete information on the result of the process. Usually, this is an objective of
any prediction. Each redistribution of a monofraction at discrete moments of time in
all channel sections represents an isolated separation act (ISA).

Here we denote by p;; the amount of monofraction in the ith stage at the jth ISA
at a single initial feed of this fraction into the flow.

Respectively, r;; is the total flow of this monofraction in the ith stage during j
ISAs. In the general case, at an arbitrary feed:

J
rij = E pij'
0
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Fig. 13.6 Dependence of the distribution coefficient k for various size classes on the number of
identical stages z at a constant air flow velocity w

4. We examine an equilibrium model implying the conservation of material
balance between the amounts of particles contained in and leaving any section
during an arbitrary ISA.

5. We examine a stationary model only, which assumes that the number of
particles entering a certain stage (i) equals the number of particles leaving this
stage.

6. We assume that particles separation coefficient in any stage remains
unchanged at an unchanged ascending flow velocity. Here the separation coefficient
k implies the portion of particles of a narrow size class passing into the overlying
cascade section during an ISA, ie., k :’,;‘ For identical stages, the value
k = const, which has been confirmed experimentally (Fig. 13.6).

According to items 4 and 6, the distribution of an arbitrary monofraction in any
section during the (j + 1)th ISA is expressed as follows (Fig. 7.1a):

pi = py -k +p;(1 —k)

where p;; is the number of particles of a fixed narrow size class staying in the ith
stage during the jth ISA at a discrete moment of time; p;; - k is the fraction of these
particles that passed to the overlying (i — 1)th stage at the (j 4+ 1)th ISA at a discrete
moment of time; pij(l — k) is the fraction of particles that passed to (i + 1)th stage.

Particles content in a fixed fraction in separate stages during an arbitrary number
Jj of ISA can be expressed by a certain matrix of values.

We examine a single feed of the initial number of particles taken as unity
(a portion). A general pattern of particles distribution in separate stages during
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an arbitrary number j of ISA can be expressed by the following matrix of

values:
Tj T0 T1 T2 3 T4
Jj; 0 1 2 3 4
1 P1o P P12 P13 P1a
i*—1 0 k 0  3k*(1—k) Pi-14

——1 0 2(1-k 0 62(1-k?
P10 1—k 0 3k(1—k)? Pisia

z—1 Pz—1,0 Pz-1,1 Pz—1,2 Pz-1,3 Pz-1,4
z pz,O pz,l pz,2 pz,3 pz‘,4

where 7; = jAt are discrete moments of time.

Piet1

Pz-1;
pz,j

In case of a single feed, we obtain an infinite matrix in the general form:

Pro Pu1 Pz - Pi
P20 P21 P .-+ Pj
Pi= o pn P .- Pij
P:0 P:1 P e pzj

It follows from the preceding distribution scheme that
pii = Pi1 jr (L= k) + piyy 1k

under the initial conditions:

and boundary conditions:

(13.56)
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Theoretically, in the most general case, the number of elements in any line of
the matrix [p,j] is infinite. However, in practice, after a certain period of time
(T, = m- A1) all the particles leave the apparatus passing into fine or coarse
product, so that

plj/j>n1+l =0.

Thus, the initial infinite matrix can be restricted by m ISAs

Pio Pt Pz ' Pim
(i) = o) = |20 P20 P22 Pam], (13.57)
P:0 Pz P " Pom

In the general case, the distribution r;; of a narrow class of particles along the
channel height depends on the number of stages, distribution coefficient, initial and
boundary conditions, fixed moment of time, site and method of the initial material
feed.

A discrete model presupposes the initial product feed in equal portions at equal
time intervals AT = tAt(t = 1,2,3,...,m). Evidently, > 1, because otherwise the
number of feeds would exceed the number of ISAs, which would lead to unlimited
accumulation of particles. Thus, particles content in the general case is expressed as

rij = f(k,z,i%0,j,1). (13.58)

The realization of various methods of the initial material feed leads to the
following main regimes of feeding:

(a) A continuous regime (within the bounds of a discrete model) is realized at the
step of ¢+ = 1. The interval between subsequent separate feeds is At. Since the
moment of time t; = 1, the distribution becomes stationary.

The discontinuity of the moments of time with the step T = jAt corresponds to:

j=0,1,2...
Then the amount of a monofraction at a given moment of time j (during j ISAs) is
described by a relationship
J

rij = Z (Pitj—jo)- (13.59)

Yo

The latter can be written as

J
Fj=pj+pij1+ -+ pio= ZPU
0
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A similar expression is valid in the matrix form of (13.57) type:

r,, 2 {Pi]} . (13.60)

Since pjj/ispq = 0, we can write

m
Tij/jzm = E :p,-,--
0

Thus, since the moment of time 7; = 1, a stationary distribution regime ensues,
which is characterized by an invariable particles flow over the sections:

Ti = Fijjysm = )_ pjj = const. (13.61)
0

Hence, in this case, the number of dependent variables decreases in comparison
with (13.58):

ri =f(r,z,i%,0). (13.62)

Using (13.56) we can describe an equilibrium particles flow in any section of the
channel. For this purpose, we sum up the expression

Pijr1 = Pic1y(L — k) + pipy, ik (13.63)
over j at its variation from 0 to m:

m m m
ZP;‘;;’H =(1 _k)zpi—l;j+kzpi+l;j' (13.64)

0 0 o

Since at i # i°,
Z Pij+1 = Zpi;jv
0 0

because p,g = p;..p1 = 0, we obtain

Zpu (1—k Zp, lﬁkzplﬂf (13.65)

In accordance with (13.61), this equation can be written in the form

I'i =ri—1 (1 - k) + ri+lk- (1366)
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Since (13.66) is stipulated by the model equilibrium and stationary state, the
same dependence can be derived from the equation of material balance of a stage:

ri :I’,‘(l —k)—f—ll(k) :I‘,‘_l(l —k)+l’i+]k (1367)
at the boundary condition of the material feed into the flow
Vie = 1 + )’[-,1(1 — k) -+ I‘i-+1k, (1368)

and the boundary conditions of material outlet of the channel to both sides

r = r2k
r; = 1‘371(1 — k) } (1369)

(b) Periodic regime of feeding with the step t = m + 1.
It means that each new unit portion of a monofraction enters the flow when all

the particles of the previous portion have left the channel.
The corresponding moments of the material feed are

Jj=0;(m+1),2(m+1),3(m+1)....
For this case, the following is valid:
Tij = Pijs (13.70)

since individual feeds do not overlap.
Hence, it is obvious that within any cycle, the respective flows are repeated (the
process is stationary within the bounds of a cycle):

pl] = pij+s(m+1) = ]"l-‘}-+s(m+1) = riJ+sI;(S = 0, 1,2, 3.. ) (1371)

(c) Periodic regime of feeding with the step 1 <t<m + 1.
In contrast to a continuous feed, here moments of feed are

Jj=0;82t;3¢... .
Besides, after a time interval t = ¢ - Az, the total flow in any stage is repeated,
i.e. starting from the moment of time 7; = 7,41, a cyclically stationary regime

ensues within the bounds of one feed step.
By analogy with (13.59), in this case we can write:

=D iy = D P (13.72)
s=0 s=0
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Summing up, we can conclude that at any method of feeding a single monofrac-
tion into the flow, the process is stationary (the content in stages is repeated after
every step).

Thus, starting from the moment of time t; = t,,, a stationary regime ensues,
which is characterized by an unchanged content of particles in stages:

Tij/jzm = Ti = prj = const. (13.73)
j=0

Hence, in this regime r; = f(k; z;i®; ).

Using Eq. (13.56), we can express the equilibrium content of particles in an
arbitrary section through their contents in neighboring sections. For this purpose,
we summarize the expression

Pijr1 = Pi1,;(1 — k) + p; iy jk; over jat j varying from O to m

S o =S o (L= + > pi k.
Jj=0 J=0

=0

m m
b ;e ., —_ . 3 J—
However, at i # i ,Z Pijr1 = Z Pij; SMCC Pjg = Pjpy1s
hence, =0 =0

prj = Zpi—l,j(l — k) + iz k.
=0 =0
According to (13.73), this equation can be written as
rij = ri-i(l — k) + riik. (13.74)
Since it has been proved that expression (13.74) reflects the process equilibrium
and stationarity, we can obtain principal dependencies of material balance without

reverting to onefold feeds and irrespective of time (Fig. 7.1a). From the equilibrium
conditions, we obtain

i :r,(]—k)—‘rl’,k
—~— N——
Content in section 7 input to section i

and from the stationarity conditions:

(1= k) +rik =riog(1—k) +riak

Removal from section i input to section i
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It follows that
ri.:lzri._l(l—k)Jrri.Hk (1375)

with the boundary conditions of the particles’ escape from the apparatus

ry = r2k
(1) } (13.76)

It can be noted that particles distribution by sections depends on the method of
material feed. If we pass to fractional extraction of particles (Fy), this parameter
will be invariable at various feeding regimes. By way of example, it can be
demonstrated as follows.

Let us examine a stationary distribution in a continuous regime of feeding the
initial material and periodic feed of a monofraction with the step t = m + 1. Let n
single portions be fed into the channel in both cases with the intervals 1 - At and
(m + 1)Arz, respectively. During any ISA, p, ;& particles of a narrow size class are
always extracted from the upper part of the channel. In the first case, since particles
content in all stages is stationary, the total amount of a fixed monofraction extracted
upwards is Py = nrik.

In the second case, at the feed of a single portion of particles, the output is
expressed as follows:

Py = prok + piok + k.. pyk = kzplj'
Jj=0

According to (13.61)

m
> py=r,
j=0
consequently,
P % = l‘]k.
Respectively, at the feed of n unit portions, the extraction is:
Py = nrik.

Thus, in both cases we arrive at the same fractional outputs. It can be also
demonstrated for the case of a periodic feed regime with an arbitrary step
1 <t<m+ 1. In order to pass to fractional extraction — the most important charac-
teristic of the process, — it is sufficient to examine a stationary regime of the
apparatus operation with an interval At between feeds.
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In this regime, the extraction of a fixed monofraction into the fine product during
an ISA amounts to Fy(x) = rik. During n arbitrary ISAs, the value of fractional
extraction is exactly the same, since in this case,

To establish a functional dependence Fr(x) = f(k; z; i; i*), it is necessary to find
a general expression of fractional particles content r; = ¢ (k; z;i;i*) described by a
recurrent equation (13.74). To solve the latter, we apply the method of calculus of
finite differences. We write Eq. (13.74) in the following form:

ritk —ri+rii(1—k) =0,

i.e. we obtain a uniform linear finite-difference equation of the second order with
constant coefficients. Its general solution is

r= C,')uil + czﬂé (incaseof 1 # 42),
where A, and 7, are roots of a corresponding characteristic equation
Pk—Jl4+1—k=0. (13.77)
Solving this equation, we obtain:

1 —k
b=l =——

at k # 0.5 A # ;. Hence,

1—k\'
r,-cl+cz( r > (13.78)

To determine ¢; and ¢, we use boundary conditions (13.75) and (13.76) for

1<l<l.,
! k ! k '

Expanding the left-hand side of the last equality, we obtain

ry=nrk=

1 -k
r

1—k\?
clk—|—czk(T> =c1+¢



13.2 Discrete Stationary Model of Critical Regimes of Vertical Two-Phase Flows 315

whence

s 1—k\> 1—k e 1—k
= — = 1 — —1" = —(C). 1.
Cy 1_,{[/6( k ) T ] — % & (1—k—1);¢ c. (13.79)

To determine ¢, we use boundary condition (13.76).
Ati*<is<z

1—k\'
Vi=C3+C4< T ) (13.80)

Since i =z =1z =1T:1 (1 — k), we derive from the expression (13.80):

e +c4(1 ;k) = +c4(1 ;k)“] (1—k).

Solving this equation with respect to ¢3, we obtain

1— z+1
c3 = —04( k) . (1381)

k

We substitute c3 into Eq. (13.75):

11—\
—C2+Cz( A ) 1(1_]{)
z+1 *+1
_04(1 ;k> +C4(1 ;k) ]k. (13.82)

According to the unambiguity condition, we also obtain

Fie = 1 +

+

1—k\"
TjsJi<is = —C2 + C2 3 = Tieji<ie

1—k\*" 1—k\"
—_ . 13.83
c4( . ) +C4< : ) (13.83)

Solving Eq. (13.83) with respect to ¢;, we obtain
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We substitute the result into Eq. (13.82):

and hence,
1= ("]
4= 1—k\2+1
(1-20[1 - (4]
Consequently,
|:1 1=k z+l—i':|
L e

(=201 (9]

Substituting ¢, and ¢4 into (13.78) and (13.80) taking into account (13.79) and
(13.82), we obtain:

)} (1<i<i®); (13.84)

[ les - e

ri =

} (i*<i<z). (13.85)
In case of multiple roots of the characteristic equation (13.77) 4, = 1, = 1, at

k = 0.5 the general solution is
ri =il + el = cii+ co. (13.86)

Then at 1<i<i®* r; = ¢1i + ¢, and at i*<i<z r; = c3i + c34.
Using the upper boundary condition r; = r,k, we obtain

1+ = ((,‘12 + 6‘2)

N —
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or
2¢1 + 2¢p = 2¢1 + ¢
Hence, ¢, = 0, and then
Fijisie = C1l.
Using the lower boundary condition r, = r,_; (1 — k), we obtain

1

c3z+cq = [c3(z—1) +C4]§»

whence
ca=—c3(z+1).
Consequently,
riizit = —c(z4+1—1).
Using the single-valuedness condition, we obtain
Tiji<i® = ait = Tivizis = —a(Ez+1-1),

hence,

1

S e )

Substituting the obtained expression into (13.87), we get

rl/l>l0 :Clm(2+ 1 —l)

We use the boundary condition of the feed:

" " 1 i o 1
Fie = C1l :C](l *1)§+Clm(27l)§+l

Solving this equation with respect to ¢;, we obtain

2z—|—1—i’

‘= z+1
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(13.87)

(13.88)
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Substituting c; into (13.86) and (13.88), we finally obtain

1
i‘,:%%, (1<i<i®); (13.89)
= (a1 - 1), (eis) (13.90)
I—Z_’_lz %), (I*<i<z). .

According to (13.84), fractional extraction into the fine product amounts to

-

F(x)k;éo,s = m (13.91)
3
Using the expression (13.89) for i = 1, we obtain
z+1-—1i°
F(.X)k:()’s = Z-'——l . (1392)

It is noteworthy that the obtained results can be successfully extended to cascade
separation processes of various nature, such as adsorption, rectification, extraction,
isotope separation, etc. Note that processes of different nature have different
mechanisms accounting for the formation of the values of distribution coefficients
of monocomponents k.

On the basis of the developed model of the process, it is possible to perform an
exhaustive computation of cascade fractionating of bulk materials. Figure 13.7
gives an estimated dependence of Fy on the parameter B for crushed quartzite
separation on a zigzag-type apparatus of rectangular cross-section (Fig. 13.1b). The
number of stages in the cascade is z = 6, the site of material feed is i* = 3, the
material density is p = 2,650 kg/m>. The initial composition comprises narrow
classes with the average particle size of 0.125, 0.75, 1.5, 2.5, 4 and 6 mm.

The zigzag apparatus is hollow, with symmetrically alternating stages having a
certain slope (at the angle of 45-60°) each. The material is fed to one of the stages.
The air is introduced into the apparatus from below, the fine product obtained as a
result of separation goes out of the first stage, and the coarse product from the last,
the lowest one.

Fractional extraction of a narrow class was experimentally determined from the
relation

@ugzwzg;um%

where Fy(x;)is fractional extraction of particles of the narrow class x; from the
apparatus into the fine product; r,(x;) is the content of size x; particles in the initial
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Fig. 13.7 Fractional extraction dependence on the parameter B for zigzag-type cascade. 0 ® @ ® —
experimental points; —— — estimated curve

material; 7 (x;)is the content of size x; particles in the fine product output; y; is the
fine product output in percents of the amount of the initial material.

The coefficient k value was determined using the dependence (13.39) with a
correction for the rectangular cross-section:

kz%[l—\/@}.

The same graph gives experimental points obtained during crushed quartzite
separation on this apparatus at air flow velocities equal to 6.3, 7.6, 9.7 and 10.8 m/s.

As follows from the graph, estimated curve deviation from experimental points
does not exceed 7%, which points to a sufficiently reliable mathematical model
adequacy to a real separation process in the regimes of developed turbulence.

13.3 Optimization of Principal Parameters of Multi-stage
Separation

It is assumed that in critical regimes of two-phase flows a part of the solid phase
moves along the flow, while another part settles against the flow.

Such a flow is extremely complicated and chaotic due to various random factors.
Among them, we can mention mechanical interaction of particles of various sizes
with each other and with channel walls, nonuniform concentration and velocity
fields, multidirectional solid phase motion, presence of turbulent vortices and local
irregularities, poly-fractional solid phase composition, irregular particles shape, etc.
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Despite a huge number of papers dealing with the account for all these factors
published in recent decades, the problem remains unsolved as yet.

Therefore, it is rather urgent to establish physically grounded similarity criteria
for these flows.

Before developing a model of the process, let us examine the relation between the
concentration and number of particles in real conditions in a narrow size class, e.g.
with the average particle size of 30 um. If the particles density is p = 2, 600 kg/m?,
then at the consumed concentration of = 2 kg/m?, volumetric concentration of the
solid material in the air flow is insignificant and amounts to 7.7 x 107* (8 = 53;).
The weight of one 30-um particle is 0.3674 x 10~ ''kg. If they account for 10%
only in the initial composition, then 1 m® contains n = W =54 x 10° of
them. It means that 1 m> of air contains 5.4 milliard of these particles, which is
comparable with the number of molecules in a rarefied gas.

To develop mathematical models of gaseous or liquid systems, Navier—Stokes
equations are applied. It has been shown that after overcoming certain difficulties,
these equations can be used for describing heterogeneous systems.

An equation for particles of one narrow class can be written with respect to

vertical axis z as follows:

1 0p dv. )
——=P,—— 2 13.
) 0z T + Vv, (13.93)

where p is the particles density, p denotes internal forces of the flow acting on
particles accumulation in a unit mass; P, denotes external forces acting on a unit
particles mass; v, is the velocity of particles of a narrow class in vertical direction; ¢
is a proportionality coefficient; V2 is a Laplacian (a sum of second partial deriva-
tives of the value under the sign of this operator (v,) with respect to coordinate axes
(x; y; z). This parameter reflects tangential forces acting on a unit mass of particles.

In a general case, the velocity is a function of coordinates and time, and therefore
its total differential equals

e e Py e g Ve

dve = di 2 A2t Gt s

We divide each summand in this expression by dt; keeping in mind that % =V,

dx dy

@ = Vs g = Vy, We can write:

dv, Ov, ov, ov, ov

E:EJ’_VZE—FVXE—FV}YB_}). (13.94)

In our further derivation, we omit z for the sake of convenience.

It is impossible to obtain a general solution to Eq. (13.93) due to the lack of
physical data. However, we can obtain similarity criteria for the process under study
from Eq. (13.93).
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Two physical phenomena are assumed to be similar, if the homonymous proper-
ties in all similar points of geometrically similar channels differ by constant factors
only. Mathematical descriptions of similar systems are identical.

We write (13.93) for two analogous points in similar systems in a stationary
process taking into account (13.94):

1 Op; vy vy
— X =p, - — —+ - 13.95
3 o7, D1 <V1 oz, + ) +C1<8Z% + 5 (13.95)
1 Op> vy v
Ly, - —S 4. — 4. 13.96
0, 0% P2 (Vz 22 + ) + ( 022 + ( )

The expressions in brackets are written in an abbreviated form. However, no
information is lost, since the structure of all summands in brackets is the same.
By the definition of physical similarity, we can write:

Pr_ . Pl 4! Vi o4 S

=My, — =Ny, — =My, — =0y, — =0 — =M.
P2 p2 P2 V2 %) (&)

The parameters m,,; my,; my,; m, etc. are called similarity factors. Following these
considerations, we can write:

Py = mppy; pmppa; Py =mpPa; vy =myvy; zi = myza; €1 = meCs.

Substitute the obtained expressions into (13.95):

m, 10 m? [ Ov mem, [(O%v
P p2:mmP2—‘(vz2+--->+ - < 22+--~>. (13.97)
myny py Oz my 02 m; 0z5

This expression describes the system (13.95) in notations of the system (13.96).

By the definition of physical similarity, Eqs. (13.96) and (13.97) should be
identical. It is possible in one case only — when the expressions composed from
similarity factors are identical and can be taken out of brackets. Hence, we can
conclude from (13.97) that

(13.98)

Similarity criteria characterizing the process can be obtained from (13.98). We
are interested in a criterion reflecting physical fundamentals of a critical flow.
Obviously, such criterion should be a measure of the ratio between gravity and
inertia forces. Therefore, we examine only one equality of equation (13.98), namely

=N

m
m, = —>.
m
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Let us disclose its content for a unit mass. By definition, we can write:

81 _ vih
g v
Combining values with the same indices in different sides,

sih &b gl _
vi vi o 2

Fr

)

we obtain the Froude criterion (Froude number).

Earlier, the role of this criterion in the process under study has been revealed in a
purely empirical way. This criterion allows obtaining universal separation curves
when separating powders in turbulent regimes of the medium flow. Let us clarify
this by some examples.

A set of experiments was carried out on a cascade classifier with inclined shelves
(z = 4;i* = 1) at average air flow velocities of w = 2.25,3.12, 3.84, 4.3, 5.35, 6.25,
7.0, 7.68, 8.82, 9.9, 10.65, 11.3 and 12.65 m/s. Granulometric composition of the
bulk material was in the range from 0.25 to 10 mm. Figure 13.8 shows the depen-
dence of fractional separation of various narrow size classes on air flow velocity for
this set of experiments. Figure 13.9 shows the transformation of these dependencies
into a universal curve using the Froude criterion. In this case, the range of air flow
velocities lies totally within the turbulent region. For smaller particles, affinization of
curves using this criterion does not occur. Figure 13.10 shows a similar dependence
obtained at the separation of aluminum powder on a cascade classifier
(z =10,i* = 5)at the air flow velocities w = 0.27, 0.36, 0.5, 0.9, 1.32, 1.7 m/s.
Granulometric composition of the powder is in the range from 10 to 180 um.

Here an expression proportional to the Froude criterion is used as abscissa:

where p is the material density, kg/m”. po 1s the medium density, kg/m®.

To find the parameters of separation curves affinization in all regimes, we make
an attempt to solve Eq. (13.93) in a somewhat simplified form.

After overcoming certain difficulties, we can use equations derived in Chapter 2 for
heterogeneous systems, i.e. particles motion in a flow:

on _ O(nvy)  O(nvy) O(nv.)
a- ox oy o

(13.99)

or

On  O(nvy) O(nvy) O(nv:)
at o e e = (13.100)
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Clearly, integration of (13.100) with specified initial conditions (single-valued-
ness condition) leads to the conservation law.

Under certain conditions, Eq. (13.100) can be considerably simplified. First, a
stationary process, in which all characteristics of a two-phase flow are time-
independent, is of greatest interest. In such conditions,

oy,
ot
Secondly, we can restrict ourselves with a quasi-one-dimensional model of
transfer along the z axis, since the separation result depends only on the latter.
Reliable experimental data for determining transfer characteristics along the
transverse axes (x,y) are unavailable as yet. Therefore, we assume that particles
concentration changes only with height and remains unchanged over the cross-

section at any level, the particles being uniformly distributed over this cross-section.
In this case,

d(nvy)  O(nvy)
5= =0 (13.101)

and for Eq. (13.99) this condition is written as

on_on_
ox 0Oy
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What remains from Eq. (13.100) is

d(nv,)
2o
dz ’
and from Eq. (13.101)
dn
,— =0.
vz dz

Mean flow velocity in a channel with a constant cross-section is constant;
therefore, these two expressions are identical and can be written as

dn
e 0 (13.102)

This dependence reflects a certain condition of optimum distribution of solid
particles in a flow with respect to the channel height.

By solving Eq. (13.102), we can find parameters for optimal organization of the
process of gravitational separation of particles in vertical channels.

Multi-directional motion of particles of one narrow size class takes place
simultaneously at all levels over the channel height.

It is rather hard to develop a continuous mathematical model in this case.
Therefore, we apply a somewhat different approach and develop a discrete model.

We mentally subdivide a vertical hollow channel into a finite number of seg-
ments (N), which we call stages. If the channel height is H, and the number of
stages is N, the height of one stage is

Ah =

SE

The coordinate z can be written as z = H — iAh. The derivative in (13.102) is

on on on

8z O(H —iAh)  Ahdi°

We express the number of particles at a certain stage i as
n; = ngr;

where n; is the quantity of particles in the initial material; r; is the percentage of
particles in the initial composition. It has been shown that in the site of material feed
into the channel r = 1.

Since in the stationary regime material is not accumulated in the channel, at any
stage a certain part of the material (k) rises, and another part (1 — k) goes down.
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It is established that if all the sections are identical, and the flow velocity is constant,
then the separation factor (k) is constant for all stages, i.e.,

k = const.

The separation factor is a function of the mean flow velocity, particles sizes and
the diameter of the channel cross-section:

k =f(w;d;D).
As it has been agreed that the model under study is stationary and in equilibrium,
it can be based on the material balance of a stage.
From the equilibrium condition,

I :}’i(l —k) —|—r,-k,

i.e. the content of particles in stage i equals their transfer in both directions.
From the stationary state condition,

l','(l — k) + I‘ik = r,-,l(l — k) + l','+1k,

i.e. particles departure from the stage i equals their arrival at this stage.
Hence, we can obtain:

ri = l”,‘_](l — k) + I‘,’+1k (l # l*) (13103)
Boundary conditions for the initial material feed are
Iy = 1 + l‘,‘*,l(] - k) + I'l'*k (13104)

and boundary conditions for particles departure from the channel are

r = }”zk
) 13.105
{I‘NI‘N_l(lk) ( )

To determine the functional dependence
ri =r(k;N;i; i),

we make use of the recurrent equation (13.103). To solve this equation, we use
the calculus of finite differences. We rewrite this equation in the form

I','Jrlk—l’,‘—‘ri'i,l(] —k) =0. (13106)
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We obtain a system analogous to that obtained at the examination of a discrete-
stationary system. Its solution comprises the following equations:

e

)} (1<i<i®), (13.107)

ri =

(i <i<N). (13.108)

Fractional extraction of the size class under study upwards from the channel
(into the fine product) at i = 1 amounts to

{1 _ (%k)N“—i*} |
=]

Fractional extraction into the coarse product at i = N amounts to

Fr(x) = rik = (13.109)

() et

(1—k) = . (13.110)

-]

The sum Fy(x) + F.(x) = 1, which reflects the implication of the process, i.e.
each narrow size class is completely distributed into both outlets.
Let us take a derivative of (13.107) with respect to z or i:

o 1= Y] 5 )]

o -y ey

Since In(1%) (1%)" # 0, consequently, 1 — (14)V '™ = 0.

This equality is possible at any N and i* values in one case only, at
1-— (%) =1, i.e. at k = 0.5. Another condition

N+1—-i"=0
does not make sense, since it leads to

"=N+1.
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A derivative of (13.108) gives an analogous result. Thus, k¥ = 0.5 value corre-
sponds to optimal separation within one stage. At k = 0.5, for the entire channel

N+1-—-7*
Fr) =05 ==~
Consequently,

_N+1
-

.k

i (13.111)

This means that in order to attain optimal separation, the initial material should
be fed into the middle of the vertical channel.

It has been empirically established that to obtain high-quality separation, the
initial material must not be fed from above or from below.

Substituting (13.111) into (13.109), we obtain

1
Fp(x) = ——. (13.112)

e ()T

Reverting to (13.102), we proceed with the analysis of the obtained dependencies.
Let us take a derivative of Fy(x) with respect to k:

(13.113)

k=05

It is important to determine the limit fractional extraction of a narrow size that
the class tends to with an increasing number of cascade stages and to find reason-
able limits of the apparatus height. To do this, we write the relation (13.109) for a
cascade apparatus in the general form:

k. z+1 (k!
@@:Qﬁ—fﬁiL. (13.114)

Let us examine possible alternatives:
1. k>0.5, % <1, in the limit, the denominator of (13.109) tends to unity.
Let us define the limit for this case:

) ) 1 —k +1-i* . 1k z+1-i*
o=t 1= (54 m ()
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The final result depends on the ratio between z and i* values:
(a) At the material feed into the apparatus from above, i* = 1,

Fr(x) =1 — lim (7) =1.

700 Z—00

In this case, all material comes out upwards.
(b) At the material feed from below, i* = z,

1—k\! 1—k 2k—1

This part of the material is extracted upwards.

(c) At the material feed in the middle part of the apparatus, i® = Hz'l ,

z+1

1 —k\?
lim Fp(x) =1 — lim (T) =1

Z—00 Z—00

Finally, in this case, as well, all material is extracted into fine product.
2. If k<0.5, then %>17 and ﬁ<l.
In this case, we can derive from (13.114) that

: I (e B = I AT A Y
zlggoFf(x)_zlggo (k)z+1_1 _<1 k>'

-k

Let us examine possible alternatives of material feed into the apparatus for this
case, as well:

(a) Feed from above, i* = 1, lim Fy(x) = .

(b) Feed from below, i* = z, Tim Fs(x) = 0.

In this case, all material goés out downwards.

(c) Feed in the middle of the apparatus, i* = 5!, lim Fy(x) =0
In this case, too, all material goes out downwards. o
3.If £k = 0.5, then ,hr?oFf(x) = "lirglo [1 N

z+1|°
In this case, as well, everything depends on z and i* ratio:
(a) At the feed from above, i* = 1, Ff(x) = 1.
All material rises upwards;
(b) at the feed from below, i* = z, Fs(x) = 0.
All material goes out downwards.
(c) At the feed in the middle of the apparatus, i* =2, lim Ff(x) =

2

Zz—00
=1
1 }_2.

Zli}l’lolo |: z+1
Thus, in this case only, irrespective of the number of stages, equal extraction of a
narrow size class into both outlets is attained. As shown, this determines the

optimality condition for the entire apparatus with respect to this boundary size.
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To determine the separation optimality in a cascade in the general case at any i°
value, the value £ is determined from the ratio:

. (1 ) z+1-i*
— =0.5. (13.115)
1= (T)

This clearly leads to the dependence of separation coefficient k on the quantity of
stages and the site of material feed into the apparatus:

k=f(zi).

To attain optimality with respect to the boundary size value x s, it is necessary to
ensure the ascending flow velocity wy s corresponding to the realization of (13.115)
relation, i.e., in the general case,

xo5 = f(wo.;2;1%).

The obtained results can be illustrated by a particular example.

The conditions of separation optimality for a cascade separator consisting of 11
identical stages (z = 11) were determined for the entire apparatus and for one stage
at a successive change in the material feed site from the upper (i* = 1) to the lower
(i* = 11) stage. Principal results are summarized in Table 13.1:

Important conclusions follow:

1. Flow velocity equal to hovering velocity of boundary-size particles ensures the
separation in one case only — at the material feed into the middle of the
apparatus.

2. At any other feed site, hovering conditions do not ensure separation optimality.
To attain optimality at the material feed above the middling stage, the flow
velocity should be less than the hovering velocity, and at the feed below the
middling stage, the flow velocity should exceed the hovering velocity.

3. All this points to the fact that the velocity hypothesis, which is a determining
factor in today’s theories of gravitational separation, is insufficient.

4. Asfollows from the table, in the general case, separation optimality is determined
not only by hydrodynamic properties of solid particles and the flow, but also, to
a considerable extent, by the apparatus design and its boundary conditions.

Table 13.1 Dependence of fractional extraction of one stage and the entire apparatus on the site of
the material feed into the apparatus under optimal conditions

Material feed stage i* 1 2 3 4 5 6 7 8 9 10 11

Fractional extraction of 91.6 83.3 75 66.7 58.3 50 41.7 333 25 16.7 83
the apparatus F(x)%
atk=0.5

Fractional extraction 0.33 042 045 047 0485 0.5 0.515 0.535 0.55 0.585 0.667
in one stage at

F(x) = 50%
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Fig. 13.11 Fractional separation F; (x) dependence on the distribution parameter (k)

Now let us revert to the relation (13.113). Let us elucidate it using a graph of the
function Fy(x) = f(k) in Fig. 13.11. This figure shows an actual separation curve,
and the path OABC shows ideal separation. The dependence (13.113) shows the
slope angle of a tangent at the point F(x) = 0.5. It is clear from the graph that the
closer the curve to the ideal separation line, the higher the process efficiency.
It means that the steeper the tangent under consideration, the more efficient the
separation. It follows from (13.113) that the greater the number of stages, the higher
the efficiency. However, such efficiency growth is limited. Thus, at z = 3, the
tangent slope angle is o = 63.5° at z=7, o =76°, and at z =15, o = 83°.
Therefore, the number of stages in one cascade should be limited maximum by
z = 10 = 11. Further increase in the number of stages does not result in an appre-
ciable growth of the effect.



Chapter 14
Universal Curves Criteria

Abstract Affinization criterion for turbulent regimes was first obtained empiri-
cally. It was validated by analyzing a two-phase flow as a statistical system. The
analysis of physical aspects of the process has allowed us to define new criteria for
obtaining universal separation curves in transient and laminar flow regimes. It is
shown that the entire range of flows can be covered by two parameters for obtaining
universal curves. It has turned out that their ratio corresponds to the Reynolds
criterion. Examples of practical application of these parameters are presented.

Keywords Universality - Separation cures - Reynolds number - Archimedes
number - Distribution coefficient - Generalizing criterion - Turbulent - Laminar
and Transient flow regimes

14.1 Substantiation of the Curves Universality

Similarity criteria for such processes as gravitational separation of bulk materials
allow us to obtain universal separation curves.

The universality of these curves consists in the fact that at an appropriate
transformation of the abscissa axis, all separation curves obtained on a particular
classifier for various narrow size classes and various flow velocities are transformed
into the same curve. This considerably simplifies the estimation of process results
and optimization and makes the comparison of different separators absolutely
unbiased. For turbulent separation regimes, such criteria have been found previ-
ously in a purely empirical way, as shown in Chapter 10. Parameters suitable for
separation curves generalization in case of transient and laminar motion of the
medium have not been found yet. It is extremely important to find such parameters
for further development of theory and practice of gravitational separation of bulk
materials.

E. Barsky, Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase, 333
Fluid Mechanics and Its Applications 93,
DOI 10.1007/978-90-481-8838-3_14, © Springer Science+Business Media B.V. 2010
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Let us illustrate such properties of separation curves by particular examples.
A set of experiments with fractionation of a coarse-grained material — chromium
oxide — was carried out on an air cascade classifier with inclined shelves at the
consumed material concentration p = 2.0 + 2.2 kg/m>. Separation was performed
on a five-stage cascade apparatus (z = 3), at the initial feed to the third shelf from
above (i* = 3).

Granulometric composition of the initial material is presented in Table 14.1.

The experiments were carried out at air flow velocities equal to 2.7, 3.0, 3.25,
4.15, 4.75 m/s. As a generalizing criterion for this case, we used an expression:

B :ﬁ (P — po)
w2 pg

derived previously. Figure 14.1 shows a graphic dependence

Table 14.1 Chromium oxide granulometric composition (p = 3,600 kg/m?)
Average 0.025 0.0565 0.0815 0.13 0.18 0.258 0.358 0.515 0.815 1.3 2.05 3.75
particles
size, d (mm)
Narrow 10.7 43 5.9 69 41 97 7.1 114 112 11.1 143 32
Class
content,

I‘,‘(%)

1,0

0,5

Fig. 14.1 Fe(x) = f(k) 0
dependence Lok
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obtained on the basis of experiments carried out for all flow velocities and narrow
particle classes under study. This figure brings us to a conclusion that the parameter
B in this case allows us to obtain a universal curve.

Another example is fine-grained material — aluminum powder — separation in a
cascade shelf apparatus consisting of ten stages (z = 10;i* = 5) at the consumed
material concentration y = 1.5 + 2.2 kg/m?.

Granulometric composition of the aluminum powder is presented in Table 14.2.

Experiments were carried out at air flow velocities equal to 0.27, 0.36, 0.51, 0.9,
1.32, 1.7 m/s. An analogous dependence

for this set of experiments is shown in Fig. 14.2.

It follows that in this case the parameter B does not ensure the possibility of
obtaining a universal curve. Apparently, it is due to the fact that in the first case
turbulent overflow of particles occurs, while in the second case of finer particles and
lower flow velocities, the overflow regime is transient or laminar. Therefore, we
make an attempt to find generalizing parameters for these regimes, as well, from the

Table 14.2 Aluminum powder granulometric composition (p = 2,700 kg/m?)
Average particles size, d (um) 10 25 40 565 71.5 90 1125 1425 180 >180
Narrow class content, r;(%) 36 72 170 82 7.8 6.7 6.5 7.5 78 277

Fy ()
100 S
\.\O
»
o
80

60 D\\O

40 \
¥
A

20

A

D\A

0 \IEI\\ A
0 0,2 0,4 0,6 0,8 1,0 g

Fig. 14.2 Dependence of fractional separation of different narrow size classes of chromium
oxide on the parameter B. Particle size notations: ® — 0.13 mm; O — 0.258 mm; X — 0.51 mm;
O -0.815 mm; A-2.05mm
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standpoint of the results obtained by examining structural and cascade models of
the process.

We have obtained the following value of the distribution coefficient for a
laminar overflow regime:

VAr-B

K=1-
36

(14.1)

In the general case, this parameter is determined by the expression

K =

2
n Ar-B "
n+2 (18 +0.61VAr)|

It has been established by numerous researches that in transient and turbulent
regimes of two-phase flows, the profile of the flow becomes somewhat elongated in
the central region and approaches a parabolic one. Thus, under certain assumptions,
we can accept n = 2 for all regimes. Then we can write for an arbitrary regime of
particles overflow:

_ 7 14.2
36 + 1.22/Ar (14.2)

In turbulent regimes, Ar acquires large values. Therefore, for such values, 36 in
the denominator can be neglected, and

K = (1 —0.4B). (14.3)

The expression (14.3) leads to an interesting conclusion. The generalizing
parameter in it is unambiguously connected with the distribution coefficient K
determined through the flow structure. Based on this expression and, by analogy,
on (14.1) and (14.2), we can formulate new criteria for gravitational classification:

— For turbulent overflow regimes:

H =1-K=+v04B, (14.4)

— For a laminar overflow:

(14.5)

— For an arbitrary regime of particles overflow:

Ar-B

Hy=_— Y2 % 146
’ T 36+ 1.22VAr (14.6)
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14.2 Generalizing Criteria

Let us apply the obtained criteria for processing experimental data presented in the
first part of the present chapter. Experimental data on aluminum powder separation
shown in Fig. 13.10 and recalculated using Eq. (14.5) give the dependence shown in
Fig. 14.3, and those recalculated using Eq. (14.7) — the dependence shown in
Fig. 14.4. The results of chromium oxide separation presented in Fig. 14.2 and
recalculated using Eq. (14.5) are shown in Fig. 14.5. It follows from these examples
that all these criteria ensure a generalizing effect.

We revert to the dependence (14.5). Clearly, 36 in the denominator is a scale
factor, and the physical meaning of the parameter is in the numerator. Let us
analyze it:

20, _
m:qd (p Po).

fow

Here we obtain a new dimensionless criterion, which is valid in laminar overflow
regimes. These regimes ensure most wet separation processes and dry separation of
very fine particles.

Thus, we have formulated generalizing parameters allowing us to obtain univer-
sal separation curves:

— At a turbulent overflow of particles:

_qd (p = po)
B = -,
w Po
Fr(x) A
B
Ay
80 ‘\
60 h
1
0
Oa
40 \
20 3
ok
o \XA
\l% AA
0 © X=oell
0 0,1 0,2 0,3 0.4 05 H

Fig. 14.3 Dependence of fractional separation of aluminum powder on H criterion at z = 10; i* = 5
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Fig. 14.4 Dependence of fractional separation of aluminum powder on B, criterion at z =10; i* = 5
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Fig. 14.5 Dependence of F/(x) = f(H) type for chromium oxide

— At a laminar overflow of particles:

d*(p —
Bizq (p — po)

, (14.7)
uw
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— At any overflow regimes:

VAr-B

= = 14.8
36 + 1.22/Ar (14.8)

Let us analyze the relations between B and B, criteria by dividing one of them by
another:

By _ qd*(p— po)w’py _ dwpy _
B pu-w-qdlp—py) 1

Re. (14.9)

This relation gives the Reynolds number defined for a particle. Thus, we can
write:

B, =B -Re. (14.10)

This relation has a fundamental physical meaning. In the regimes of turbulent
overflow of particles, the Reynolds criterion degenerates, and then the criterion B
only is sufficient. In the laminar region, where particles resistance is proportional to
Re, the product B - Re is required for the generalization of separation curves.

Thus, we have established similarity criteria for obtaining universal separation
curves in various regimes — laminar, transient and turbulent. However, the bounds
of either criterion application under particular separation conditions remain
unclear.

Solid particle interaction with moving medium in case of simple settling occurs
in the vicinity of the particle surface.

If the steady-state particle velocity acquires the value v, the relative velocity of
its overflow with the motionless medium equals the absolute velocity of the particle
motion:

w = —V.

Due to cohesion forces, an elementary layer moving together with the particle is
formed directly on the particle surface. The velocity is transferred by viscosity
forces from this layer to elementary masses of the medium located close to it. This
leads to a monotonic velocity decrease in the boundary layer from v to O along the
normal to the surface, the transition being smooth. This takes place at moderate
settling velocities in the front part of the solid or over its entire surface at a non-
interrupted overflow.

A different situation takes place at the motion with boundary layer separation. At
high settling velocities, the medium is hindered by counter-pressure arising along
the particle surface, which causes medium motion against the overflow direction.

At a certain point, the boundary layer is separated from the particle surface. The
counter-flow completely disorganizes the motion. While the boundary layer before
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its separation from the surface has been laminar, after the separation it behaves as a
free jet in a submerged space and becomes turbulent. In the separation point, the
surface layer becomes unstable and curls into one or several vortices.

It is established that all quantitative features of settling process — boundary layer
thickness, separation point location, velocity profile in the boundary layer and the
character of its change, the total resistance value — depend on the Reynolds number
calculated for the particle:

d
Rep:v Po’
In

where v is the particle velocity, m/s; d is the particle diameter, m; u is the dynamic
coefficient of the medium viscosity, kg/m x s; p, is the medium density, kg/m?.
Using this criterion, we can distinguish laminar, turbulent and intermediate over-
flow regimes.

A moving flow complicates all phenomena occurring on the particles surface.
For example, particle overflow in a laminar flow can be either laminar or turbulent
depending on the particle size. Even in case of fine particles, external turbulence
can affect the overflow character. As known, the flow regime is also determined by
the Reynolds number calculated for the flow:

D
ReD:W ,007

where D is the channel diameter, m; w is the flow velocity averaged over the
channel cross-section, m/s.

Here a problem of the choice of similarity criteria for separation processes arises
— which of the previously determined criteria should be used in particular separation
conditions. Let us try to clarify it.

14.2.1 Turbulent Regimes of Particles Overflow

As known, in these conditions, the dynamic effect of the flow on an isolated solid
particle is

Fo indz (uy —v,)*
=t Po 3
where /1 is the resistance coefficient of a particle; r is a characteristic coordinate of
an arbitrary point of the apparatus cross-section, m; u, is the local velocity of the
medium motion at a point with coordinate r, m/s; v, is the local velocity of the
particle motion at the same point, m/s. The flow direction is chosen as the positive
direction of v, and u, velocities.
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Equilibrium condition for a particle in a steady-state regime is:

nd? nd? (ur — v,.)2
—q(p — po) = ATPof,

6
4
Uy — v, :wM?B, (14.11)
A
— PP . qd

where B = p is a generalized classification parameter for turbulent regimes.
A turbulent regime of a particle overflow is characterized by a constant resistance
coefficient. In this case, Reynolds criterion for a particle based on experimental data
Re, > 500, i.e.,

or

dpg =) < 500,

Hence, taking into account (14.11), we get
Wy /%deo
——— =500. (14.12)
U

The condition (14.12) taking into account 4 = (0.5 corresponds to the expression

,/gfwsoo,
&3

where Ar = ""ﬂ%”"m is Archimedes criterion. It follows from this expression that

Ar=93750.

As applied to air medium under ordinary temperature conditions
(n=1.75 x 107> kg/m s; py = 1.2 kg/m?), particle size characterized by turbu-
lent overflow in case of settling in a motionless medium is

d>10-2;20
o

Hence, for quartzite (p = 2,600 kg/m?), particles of d>1 mm size are in the
regime of turbulent overflow. We obtain from the condition (14.12):

\%

% 200 (14.13)

w %Bd



342 14 Universal Curves Criteria

Substitute this expression in the Reynolds formula for the flow:

Rep = — - . (14.14)

The condition (14.14) allows us to estimate the regime of medium motion in a
separator at a turbulent overflow of particles.

Obviously, (Rep),,;, should be evaluated at dmax, at which the parameter
B = Bnax. It is experimentally established that at the classification of materials
down to the size on the order of d =60 pum, for all mono-fractions
Bmax = 2.7 — 3.0 and slightly depends on the apparatus design. The ratio (%) is
on the order of 10? for experimental apparatuses and an order of magnitude higher
for industrial ones. Taking into account 4 = 0.5, we can obtain from (14.14):

(Rep)pn=1.75 x 10

Even for an apparatus with D = 100 mm, at the velocity of 100 pum-particles
equal to w = 1.0 m/s, Re > 10%.

Thus, in the conditions of turbulent overflow of particles, the entire process
(from the fine particles output y, = 0) practically occurs at a turbulent regime of the
medium motion in the separator. It is confirmed by a reliable generalization of
separation curves using the criterion B.

14.2.2 Laminar Regimes of Particles Overflow

Such regimes can take place at air classification of fine powders or wet separation.
We can write the following expression for a particle at a laminar overflow:

(= vi)dpo g

Re, =
! u

(14.15)

Equilibrium conditions at the particle overflow are

nd®
——a(p — po) = 3mp(uy — v, )d.

6
Taking into account (14.15), this expression can be transformed into

Ar = 18Re or Ar<18.

In the conditions of air medium, it is valid for particles with the size

<103 /04954
—
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In case of quartzite, these are particles with d<57 pm. It follows from the

equality (14.15) that

L
(u, —v,)d’

<

=[S

Substitute the latter into the expression for Rep

D w
R X, .
DSy (y —vy)

(14.16)

It is known that the resistance coefficient of a particle at its laminar overflow is

, 24 24u
==
Re,  (uy —v,)dpy

Taking this into account, it follows from the dependence (14.11) that

U — Vv, 4B (u, — vy )dpy
w o \/3 24u
and hence,
U — v, 1
=—Re, - B.
w 18 ©r

Taking into account the fact that ReﬁB = Ar, we obtain

U, — v, Ar-B

w 18

Substitute the obtained result into (14.16),

D 18
d

Rep<
Ar -

]

Since for laminar regime Ar<18, we finally obtain

Rep<10® = 10*.

Thus, regions of laminar and turbulent overflow of particles are overlapped by
flow regimes. Evidently, a running flow somewhat changes the pattern of particles

overflow obtained at their settling in a motionless medium.



344 14 Universal Curves Criteria

14.3 Universal Curves

As a result, the entire range of powders separation can be described by two
similarity criteria:
— For coarse-grained materials (turbulent overflow):

=1 (p=po)
w Po
— For fine powders:
B, — 490 = p0)
uw

It can be visually illustrated by particular examples. Consider two materials of
different granulometry and density, whose composition is shown in Tables 14.1
and 14.2.

Figure 14.2 shows a method of obtaining a universal curve for lightweight fine
powders (aluminum powder) using the relation

For a heavier and coarser product (chromium oxide) a universal dependence is
obtained using the relation

and in this case, as follows from Fig. 14.1, all experimental values ensure the
possibility of obtaining a universal separation curve for all narrow size classes.

Using these universal curves, we can obtain any information on the process
parameters and apparatus design: optimal regimes, products outputs and composi-
tions, separating ability of the structure, etc.

The most interesting point is that any of these experimental curves can be
obtained from one experiment only. The analysis of the initial material and separa-
tion products leads to a conclusion that every experiment contains all information
both about the process and about the separator design.
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