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Preface

Many if not most flow processes of interest for engineering, environmental, and biological
systems are of two-phase flow nature or include at least some two-phase flow features. It is
therefore not surprising that two-phase flow has reached an enormous attention during the last
decades. The great interest in two-phase flow is reflected by the large and continuously grow-
ing literature on this subject usually dispersed in various journals and conference proceedings.
Books or monographs on two-phase flow are relatively rare and are mostly limited to specific
two-phase conditions, flow phenomena, or to dedicated applications.

The purpose of the present monograph on “Gasdynamic Aspects of Two-phase Flow” is to
provide a thorough review on wave propagation phenomena in two-component (water/air) and
one-component (water/steam) media. The term “Gasdynamic Aspects” is used in a broader
sense, covering not only compressibility effects such as sound waves, shock waves, and criti-
cal flow conditions rather than including also slow wave modes such as void waves or contact
discontinuities propagating with the material velocity of the gas/vapor or liquid phase.

The numerical simulation of the wave propagation processes is based on a newly de-
veloped hyperbolic two-fluid model which allows an algebraic evaluation of the complete
eigenspace (eigenvalues and related eigenvectors). For the numerical integration of the gov-
erning flow equations a second-order Flux Vector Splitting technique is used which allows a
high resolution of local flow processes such as steep parameter gradients or flow discontinu-
ities.

For most wave propagation processes investigated, results are also given for single-phase
gas or homogeneous two-phase flow before dealing with more complex two-phase flow under
heterogeneous and nonequilibrium conditions. Although the major emphasis is on the theo-
retical approach, experimental data are included where appropriate or available.

Most of the work presented in this book was performed at the European Commission’s
Joint Research Center at Ispra in Italy, and the author gratefully acknowledges substantional
help and support from many colleagues. The book certainly could not have been performed in
its present form without the large effort of Giovanni Franchello in transferring the hyperbolic
two-phase flow model and related numerical methods into a compact and efficient computer
program as is used for all the numerical test cases. The author is also grateful to Brian Worth
for numerous discussions on two-phase flow modeling problems, for interpretation of numer-
ical results, and for the careful reading of the manuscript.

Herbert Städtke

Cadrezzate, May 2006
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1 Introduction

Two-phase flow is generally understood as being a simultaneous flow of two different immis-
cible phases separated by an infinitesimal thin interface. Phases are identified as “homoge-
neous” parts of the fluid for which unique local state and transport properties can be defined.
In most cases, phases are simply referred to as the state of matter, e.g. gas/vapor, liquid, or
solid. Typical examples are the flow of liquid carrying vapor or gas bubbles, or the flow of gas
carrying liquid droplets or solid particles. However, more complex flow processes may exist
where the phase distribution is less well defined.

Two-phase flow is of large relevance for many scientific/technical disciplines ranging from
environmental research to the modeling of normal operation or accident conditions in nuclear,
chemical, or process engineering installations. For a long time, the analysis of two-phase
flow processes was limited to mostly empirical correlations or to largely simplified engineer-
ing models and, therefore, two-phase flow was considered as a rather “dirty” branch of fluid
dynamics. This situation has changed significantly during the last two decades when a large
effort was spent for the analysis of two-phase flow systems and for the development of related
numerical simulation methods. Much of this work was stimulated by the specific requirements
for the safety analysis of pressurized water reactors which, for obvious reasons, relies largely
on the prediction capability of computer codes for complex two-phase flow and heat transfer
processes.

Many of the present advanced models for the description of nonhomogeneous nonequilib-
rium two-phase flow are related to the two-fluid approach using separate mass, momentum,
and energy equations for the two phases. These separate conservation equations are obtained
in a volume and/or time averaging process starting from the local instantaneous conservation
equations of the individual phases. In the averaging procedure important information on local
flow processes is lost and, consequently, additional correlations are needed in order to close
the system of equations. Most of these closure relations are of empirical nature or include
some heuristic elements which cannot be deduced completely from first principles.

The correct formulation of the basic two-fluid equations and the appropriate form of the
closure laws have been controversially discussed during the past, and up to now, there does not
exist a commonly agreed approach. A specific concern has been that most models presently
used in the large computer codes are based on governing equations having complex eigen-
values and, therefore, do not represent a mathematically “well-posed” initial-boundary value
problem. Nevertheless, there seems to be a common agreement that the pure transport or Eu-
ler part of the governing system of equations should be of hyperbolic nature. The necessity



2 1 Introduction

for the hyperbolicity of the governing equations of the two-fluid model has several aspects,
including the following:

• any transient flow process might be seen as a response to perturbations manifesting them-
selves in wave propagation phenomena as characterized by the hyperbolic nature of the
governing equations,

• nonhyperbolic models suffer from high wave-number instabilities and, therefore, require
explicit damping mechanisms in the numerical algorithms with the consequence of ex-
cessive numerical diffusion and artificial viscosity effects,

• the existence of a hyperbolic system of equations is an essential condition for the applica-
tion of advanced numerical methods such as Approximate Riemann Solver or Flux Vector
Spitting techniques which make explicit use of the eigenstructure of the flow equations.

There have been various tentative proposals for a “hyperbolic two-fluid model” character-
ized by the existence of only real eigenvalues and a corresponding set of independent eigen-
vectors. The hyperbolicity is usually obtained by adding interfacial momentum coupling terms
having time and/or spatial derivatives of governing parameters. Often, these terms cannot be
deduced completely from first principles and, therefore, can be verified only indirectly. This
approach might be justified as long as (1) there is a clear physical background for these addi-
tional closure terms, and (2) the effect of these terms on the predicted results is fully plausible.
For all the present investigations of wave propagation processes a newly developed hyperbolic
two-fluid model will be used which will be described in detail in Chapter 5.

Before dealing with complex two-phase flow conditions, it was felt worthwhile to recall a
few facts about single-phase gasdynamics. This is done in Chapter 2, which also introduces
the basic methodology for the characteristic analysis of the flow equations as used throughout
the book.

The basic features and limitations of the two-fluid approach for two-phase flow are sum-
marized in Chapter 3. A more detailed derivation of the corresponding balance equations for
the two-fluid model is provided in Appendix A, based on the concept of a phasic distribu-
tion function and its differential form having the property of the Dirac delta function at the
interface.

In Chapter 4, simplified two-phase models, based on the assumption of mechanical equi-
librium (equal phase velocities) and thermal equilibrium (equal phasic temperatures), are an-
alyzed. Although these models have only a limited value for practical applications, they are
of interest as limiting cases for detailed two-phase models dealing with more complex flow
conditions.

Chapter 5 is devoted to the development of an improved “hyperbolic” two-fluid model
for nonhomogeneous, nonequilibrium flow conditions as forming the basis for the subsequent
analysis of wave propagation phenomena in two-phase media. A specific feature of the model
is the presence of explicit algebraic formulations for the complete eigenspectrum of the flow
equations including eigenvalues and related right and left eigenvectors. A complete reference
for the hyperbolic model is provided in Appendix B, including all relevant information on the
coefficient matrices, various forms of the source term vector, right and left eigenvectors, and
the characteristic form of basic flow equations.
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Chapter 6 deals with the propagation and attenuation of sound waves in two-phase media.
Based on the acoustic approximation a dispersion relation is derived describing the depen-
dence of sound velocity and attenuation on the frequency of sound waves. Although the re-
sults of the dispersion analysis do not directly enter into the numerical simulation, they are of
large importance for the understanding of pressure wave propagation processes in two-phase
flow and the occurrence of shock waves and critical flow conditions.

Chapter 7 summarizes some basic features of numerical methods for hyperbolic conserva-
tion laws and their adaptation for two-phase flow processes.

The numerical results as presented in Chapter 9 cover a wide spectrum of typical two-
phase flow phenomena at low and high Mach numbers. Where appropriate, a comparison with
analytical solutions or existing experimental data is included. All results shown have been
obtained with the Advanced Two-Phase Flow Module (ATFM), a computer code developed
at the European Commission’s Joint Research Centre in Ispra, based on the hyperbolic two-
phase flow model and related numerical methods as described in Chapters 5 and 7. The basic
physical modeling and applied numerical features of the ATFM code are briefly outlined in
Chapter 8.

In Chapter 10 summarizing conclusions are given together with an perspective with re-
gard to future developments for two-phase flow modeling and related numerical simulation
strategies.



2 Single-Phase Gas Flow

In this chapter some basic features of compressible single-phase flows are summarized which
are of particular importance for the understanding of the description of more complex behavior
of two-phase flow processes in the subsequent chapters. At the same time the basic mathemat-
ical approach for the characteristic analysis of hyperbolic flow equations is introduced as will
be used later for two-phase models of varying degree of modeling details. The reader might
find more comprehensive information on compressible fluid dynamics in many monographs
on gasdynamics as for example in the books of Shapiro [1] or Courant and Friederich [2].

2.1 Euler equations for one-dimensional flow

The flow of a compressible single-phase fluid is generally described by the conservation laws
for mass, momentum, and energy as given by equations (A.26) to (A.29) in Appendix A.
In the case of the absence of viscous forces and without bulk heat conduction processes in
the fluid, the conservation relations reduce to the Euler equations which can be written for
one-dimensional flow conditions in differential form as

∂�

∂t
+

∂

∂x
(�u) = 0 (2.1)

∂

∂t
(�u) +

∂

∂x
(�u2) +

∂p

∂x
= F (2.2)

∂

∂t

[
�

(
e+

u2

2

)]
+

∂

∂x

[
�u

(
h+

u2

2

)]
= Q+ Fu, (2.3)

where the source terms on the right-hand sides include the body force (gravity) F = f�, the
internal heat source Q = q�, and the work of the body force Fu = f�u (Fig. 2.1).

F(x)u u(x)

Q(x)

(x)

x

Fig. 2.1: One-dimensional flow in a
duct
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Equations (2.1) to (2.3) can also be written in a more compact vector form with the vector
of conserved quantities V, the Flux vector F, and the source term vector C,

∂V
∂t

+
∂F
∂x

= C, (2.4)

defined as

V =










�

�u

�

(
e+

u2

2

)










, F =










�u

�u2 + p

�u

(
h+

u2

2

)










, C =








0

F

Q+ Fu







. (2.5)

Expanding the time and space derivatives in equations (2.1) to (2.3) the so-called primitive
form of the Euler equations is obtained,

∂�

∂t
+ �

∂u

∂x
+ u

∂�

∂x
= 0 (2.6)

∂u

∂t
+ u

∂u

∂x
+

1
�

∂p

∂x
= f (2.7)

∂e

∂t
+ u

∂e

∂x
+ u

(
∂u

∂t
+ u

∂u

∂x

)
+
p

�

∂u

∂x
+
u

�

∂p

∂x
= q + f u. (2.8)

With the momentum equation (2.7), the kinetic energy terms can be removed from the energy
equation (2.8), resulting in

∂e

∂t
+ u

∂e

∂x
+
p

�

∂u

∂x
= q. (2.9)

Combining equations (2.6) and (2.9), and introducing the entropy as a new state variable

Tδs = δe− p

�2
δ�, (2.10)

the energy equation reduces to the simple entropy relation

∂s

∂t
+ u

∂s

∂x
=
q

T
. (2.11)

The conservation equations are completed by the state equation � = �(p, s), or in differential
form

δ� =
(
∂�

∂p

)

s

δp+
(
∂�

∂s

)

p

δs. (2.12)

With the sound velocity

a =

√(
∂p

∂�

)

s

, (2.13)
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and the derivative of density with respect to entropy at constant pressure
(
∂�

∂s

)

p

= −�βT
Cp

, (2.14)

the state equation (2.12) becomes

δ� =
1
a2

δp− �βT

Cp
δs. (2.15)

The sound velocity as introduced in equation (2.13) can be expressed in the most general
form as

a =

√
Cp

�γCp − Tβ2
, (2.16)

with the compressibility γ, the thermal expansion β, and the specific heat at constant pressure
Cp. Replacing the thermal expansion β by

β2 =
�γ(Cp − Cv)

T
,

the expression for the sound velocity simplifies to

a =
√

κ

γ�
, (2.17)

with an isentropic exponent of κ = Cp/Cv. For an ideal gas, the compressibility is given by
γ = 1/p and, hence, the expression for the sound speed reduces to

ag =
√

κg
p

�g
. (2.18)

With the help of the state equation (2.15) and the entropy relationship (2.11), the mass
conservation equation (2.6) yields

∂p

∂t
+ u

∂p

∂x
+ �a2 ∂u

∂x
=
�βa2

Cp
q. (2.19)

The modified mass conservation equation (2.19), the momentum equation (2.7), and the en-
tropy equation (2.11) represent a system of quasi-linear partial differential equations which
can be combined in the vector form

∂U
∂t

+ G
∂U
∂x

= D, (2.20)

with the state vector U, the coefficient matrix G, and the source term vector D,

U =








p

u

s







, G =









u �a2 0

1
ρ

u 0

0 0 u








, D =










�βa2

Cp
q

f

q

T










. (2.21)
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One might notice from equations (2.21) that, apart from the source terms, the thermal and flow
parameters are decoupled.

Depending on the choice of the major depending state vector, U, different forms of the
governing equations might be obtained by a similarity transformation of the equation as

∂U1

∂t
+ G1

∂U1

∂x
= D1, (2.22)

with the Jacobian matrix

J =
∂U1

∂U
, (2.23)

and the new coefficient matrix and source term vector

G1 = JGJ−1, D1 = JD. (2.24)

If for example the enthalpy is used instead of the entropy as major state parameter

h = h(s, p), with

(
∂h

∂s

)

p

= T, and

(
∂h

∂p

)

s

=
1
�
,

the Jacobian matrix becomes

J =










1 0 0

0 1 0

1
�

0 T









, (2.25)

resulting in the state vector, coefficient matrix, and source term vector as

U1 =








p

u

h







, G1 =









u �a2 0

1
�

u 0

0 a2 u








, D1 =











�βa2

Cp
q

f

(
1 +

a2β

Cp

)
q











. (2.26)

For the specific case of stationary flow

∂U
∂t

= 0,

the spatial gradients become

∂U
∂x

= G−1D (2.27)



2.2 Quasi-one-dimensional flow in ducts of variable cross section 9

or more specifically

∂p

∂x
=

1
1 −M2

[
f�− �β

Cp
qu

]

∂u

∂x
=

1
1 −M2

[
−f u

a2
+

β

Cp
q

]

∂s

∂x
=

q

Tu






. (2.28)

From equation (2.28) it follows that the effect of heat transfer on pressure and velocity
gradients linearly depends on the thermal expansion coefficient β. For the incompressible
limit, with γ → 0 and β → 0, the Mach number approaches zero M → 0 and the stationary
flow in a channel of constant cross section further simplifies to

∂p

∂x
= f�,

∂u

∂x
= 0,

∂s

∂x
=

q

Tu
, (2.29)

which means a constant flow velocity where the pressure and entropy (temperature) gradients
are determined by body forces and external heat sources.

2.2 Quasi-one-dimensional flow in ducts of variable cross
section

If the flow equations are integrated over the cross section A of a pipe or nozzle as indicated in
Fig. 2.2, the following balance equations are obtained:

A
∂�

∂t
+

∂

∂x
(�uA) = 0 (2.30)

A
∂

∂t
(�u) +

∂

∂x
(�u2A) +A

∂p

∂x
= FA (2.31)

A
∂

∂t

[
�

(
e+

u2

2

)]
+

∂

∂x

[
�uA

(
e+

p

�
+
u2

2

)]
= QA+ FA (2.32)

A
∂

∂t
(�s) +

∂

∂x
(�usA) =

Q

T
A. (2.33)

Expanding the derivative terms for the products and moving all source terms to the right-
hand side of the equations results in

∂�

∂t
+ �

∂u

∂x
+ u

∂�

∂x
= −�u 1

A

∂A

∂x
(2.34)

∂u

∂t
+ u

∂u

∂x
+

1
�

∂p

∂x
= f (2.35)
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A(x) channel throat

x
Fig. 2.2: Quasi-one-dimensional flow in
a channel of variable cross section

∂e

∂t
+ u

∂e

∂x
+ u

(
∂u

∂t
+ u

∂u

∂x

)
+
p

�

∂u

∂x
+
u

�

∂p

∂x
= q + f u (2.36)

∂s

∂t
+ u

∂s

∂x
=
q

T
(2.37)

or in a compact vector form

∂U
∂t

+ G
∂U
∂x

= D. (2.38)

In the case when the entropy is used as a governing state parameter, the state vector U, the
coefficient matrix G, and the source term vector D are defined as

U =









p

u

s








, G =










u �a2 0

1
ρ

u 0

0 0 u









, D =











�βa2

Cp
q − a2�u

A

∂A

∂x

f

q

T











. (2.39)

As indicated in equations (2.34) to (2.37), the only difference to the strictly one-dimensional
flow is the occurrence of an additional source term related to the change of cross section in
the flow direction.

For steady-state conditions the change of the state parameters in the x-direction is

∂U
∂x

= G−1D (2.40)

or explicitly written as

∂p

∂x
=

�u2

1 −M2

[
1
A

∂A

∂x
+

f

u2
− β

Cpu
q

]

∂u

∂x
=

−u
1 −M2

[
1
A

∂A

∂x
+

f

a2
− β

Cpu
q

]

∂s

∂x
=

q

Tu






. (2.41)
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For appropriate boundary conditions at the nozzle inlet and outlet, the system of coupled
ordinary differential equations (2.41) can be solved by any standard integration techniques
e.g., first or higher order Runge–Kutta method. A particular property of the system of equa-
tions is the existence of a saddle–point singularity under “critical flow” conditions for u = a
or M = 1, which is expected to occur for sufficiently low pressure values at the nozzle exit.
The numerical integration is further hampered by the fact that for the general case of f �= 0 or
q �= 0, the location of the singularity is a priori not known. Similar difficulties also exist for
the nonequilibrium flow of gas mixtures exposed to chemical reactions or dissociation pro-
cesses. A general numerical method of how to integrate through a saddle-point singularity is
given by Emmanuel in [3].

2.3 Characteristic analysis of flow equations

The characteristic analysis will be based on the one-dimensional Euler equations using entropy
as a major state parameter:

∂U
∂t

+ G
∂U
∂x

= D, (2.42)

with the state vector U, the coefficient matrix G, and the source term vector D,

U =








p

u

s







, G =









u �a2 0

1
ρ

u 0

0 0 u








, D =










�βa2

Cp
q

f

q

T










. (2.43)

The eigenvalues of G are the roots of the characteristic equation

det(G− λI) = 0, (2.44)

which results in the characteristic velocities

λ1 = u+ a, λ2 = u− a, λ3 = u, (2.45)

representing the propagation velocity of pressure waves u ± a and the material transport ve-
locity u.

For the three different eigenvalues, a complete set of independent right eigenvectors can
be obtained as

VR,1 =











1
2

1
2a�

0











, VR,2 =











1
2

− 1
2a�

0











, VR,3 =








0

0

1







, (2.46)
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or in the matrix form

VR =











1
2

1
2a�

0

1
2

− 1
2a�

0

0 0 1











. (2.47)

Only real eigenvalues and a set of fully independent eigenvectors are the essential conditions
for the existence of a hyperbolic system of equations, which represent a mathematically “well-
posed” initial-boundary value problem. Since the system of equations (2.49) is hyperbolic, it
can be diagonalized by the following similarity transformation:

T−1 ∂U
∂t

+
(
T−1GT

)
T−1 ∂U

∂x
= T−1D = E, (2.48)

or

T−1 ∂U
∂t

+ ΛT−1 ∂U
∂x

= T−1D = E, (2.49)

where

Λ = T−1GT (2.50)

is the diagonal matrix of the eigenvalues of the matrix G,

Λ =










u+ a 0 0

0 u− a 0

0 0 u










. (2.51)

The column vectors of the transformation matrix T are the right eigenvectors of the coefficient
matrix G given in equation (2.43),

T = VT
R =











1
2

1
2

0

1
2a�

−1
2a�

0

0 0 1











, (2.52)

with the inverse representing the matrix of the left eigenvectors of G,

T−1 = VL =








1 a� 0

1 −a� 0

0 0 1







. (2.53)
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The new source term vector in equation (2.54) is defined as

E =













+aF − a2

(
∂�

∂s

)

p

q

T

−aF − a2

(
∂�

∂s

)

p

q

T

q

T













. (2.54)

Equation (2.49) represents a system of ordinary differential equations also known as the
compatibility relations along the “characteristic” directions dx/dt = λk in the x–t plane
(Fig. 2.3)

λ1 = u+ a:
dp

dt
+ �a

du

dt
=

[

+a�f − a2

(
∂�

∂s

)

p

q

T

]

λ2 = u− a:
dp

dt
− �a

du

dt
=

[

−a�f − a2

(
∂�

∂s

)

p

q

T

]

λ3 = u:
ds

dt
=
q

T






. (2.55)

t0

�
�

�
�

� �
�

x

t

�1
�

� �
�

t1

Fig. 2.3: Characteristic curves
in the x–t plane

The system of equations (2.55) can be integrated along the characteristic lines from t0 to
t1 = t0 + ∆t,

p(t1, ξ) +
∫ u(t1,ξ)

u(t0,ξ1)

�a du = p(t0, ξ1) +
∫ t1

t0

[

+a�f − a2

(
∂�

∂s

)

p

q

T

]

dt

p(t1, ξ) −
∫ u(t1,ξ)

u(t0,ξ3)

�a du = p(t0, ξ3) +
∫ t1

t0

[

−a�f − a2

(
∂�

∂s

)

p

q

T

]

dt

s(t1, ξ) = s(t0, ξ2) +
∫ t1

t0

q

T
dt.






. (2.56)
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Note that the “Riemann invariants” on the left-hand side of equations (2.56),

W =








p+
∫
�a du

p− ∫
�a du

s







, (2.57)

remain constant in the case of zero source terms.
For adiabatic conditions (q = 0) the flow becomes isentropic s = s0 and, with the as-

sumption of an ideal state equation, the Riemann invariants simplify to

W =











u+
2

κ − 1
a

u− 2
κ − 1

a

s











, (2.58)

and the compatibility relations (2.56) can be directly integrated resulting in the algebraic ex-
pressions

λ1 = u+ a: u+
2

κ − 1
a = constant

λ2 = u− a: u− 2
κ − 1

a = constant

λ3 = u: s = constant.






, (2.59)

with the sound velocity a as a new state parameter.
The system of coupled ordinary differential equations (2.56) or (2.59) forms the basis of

the “method of characteristics” which was widely used in the past for the solution of gas-
dynamic problems. However, the integration of these equations is far from straightforward,
in particular in the case of complex state equations. Furthermore, the method is difficult to
implement into computer programs for two- and three-dimensional flow problems. For this
reason characteristic methods have been largely replaced by finite difference or finite volume
techniques.

Many numerical methods which make explicit use of the characteristic features of the
flow equations are based on splitting of the coefficient matrix with respect to the individual
eigenvalues. According to equation (2.50) the coefficient matrix of the one-dimensional Euler
equations,

∂U
∂t

+ G
∂U
∂x

= D, (2.60)

can be expressed as

G = TΛT−1. (2.61)
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with the transformation matrix T and the diagonal matrix of eigenvalues Λ as defined by
equations (2.52) and (2.51). The split matrices are then obtained as

Gk = TΛk T−1, (2.62)

where the diagonal matrix Λk includes only the kth eigenvalue,

(Λk)j,j = λk for j = k

(Λk)j,j = 0 for j �= k





. (2.63)

For the state vector U = {p, u, s}T the split matrices become

G1 = (u+ a)










1
2

�a

2
0

1
2�a

1
2

0

0 0 0










= λ1G̃1 (2.64)

G2 = (u− a)











1
2

−�a
2

0

− 1
2�a

1
2

0

0 0 0











= λ2G̃2 (2.65)

G3 = u









0 0 0

0 0 0

0 0 1









= λ3G̃3, (2.66)

with the conditions

3∑

k=1

Gk = G and
3∑

k=1

G̃k = I. (2.67)

For the numerical treatment of flows with embedded discontinuities like shock waves, finite
volume numerical schemes are often preferred based on the conservative form as can be di-
rectly obtained from the general balance equations for mass, momentum, and energy as given
by equations (2.1) to (2.4). However, the conservative form of the Euler equations can also be
derived from the “primitive” form of equations (2.42)

∂U
∂t

+ G
∂U
∂x

= D (2.68)
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by a similarity transformation as

∂V
∂t

+ JGJ−1 ∂V
∂x

= JD = C (2.69)

or

∂V
∂t

+ H
∂V
∂x

= C, (2.70)

with the new coefficient matrix

H = JGJ−1, (2.71)

and the Jacobian matrix

J =
∆V
∆U

. (2.72)

With the definition of the “primitive” and the conservative state vectors U and V as given in
equation (2.5) the Jacobian matrix is

J =
∂V
∂U

=














1
a2

0
(
∂�

∂s

)

p

u

a2
� u

(
∂�

∂s

)

p

1
a2

(
h+

u2

2

)
�u �T +

(
∂�

∂s

)

p

(
h+

u2

2

)














(2.73)

and the coefficient matrix H for the conserved state parameters becomes

H =










0 1 0

a2 − u2 2u 0

ua2 − u

(
h+

u2

2

) (
h+

u2

2

)
u










+
(
∂�

∂s

)

p

a2

T�












0 0 0

(
h− u2

2

)
u −1

u

(
h− u2

2

)
u2 −u












.

(2.74)



2.3 Characteristic analysis of flow equations 17

The thermodynamic parameters in equation (2.74) include, apart from the enthalpy h, the
sound velocity and the partial derivatives of the density with respect to pressure which are
defined as

a =
√

κ

γ�
,

(
∂�

∂s

)

p

= −β�T
Cp

. (2.75)

With the assumption of state equations for a perfect gas these parameters simplify to

a =
√

κRT,

(
∂�

∂s

)

p

= − �

Cp
, (2.76)

resulting in the following form for the coefficient matrix as often found in the literature:

H =










0 1 0

a2 − u2 2u 0

ua2 − u

(
h+

u2

2

) (
h+

u2

2

)
u










−(κ − 1)











0 0 0

(
h− u2

2

)
u −1

u

(
h− u2

2

)
u2 −u











.

(2.77)

Introducing the gradient of the flux vector, the conservative form of the flow equations
(2.70) can also be written as

∂V
∂t

+
∂F
∂x

+
(
H− ∂F

∂V

)
∂V
∂x

= C. (2.78)

Comparing equation (2.78) with the conservative form of the flow equations as was derived
from the basic conservation principles for mass, momentum, and energy,

∂V
∂t

+
∂F
∂x

= C, (2.79)

one obtains

H =
∂F
∂V

. (2.80)

This means that the coefficient matrix H is identical with the Jacobian matrix describing the
derivative of the flux vector with respect to the vector of conserved variables. As will be
shown later this is not necessarily true for the nonhomogeneous two-phase flow equations.
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A remarkable property of the Euler equations (2.70) is that for ideal state equations the
homogeneity property can be derived as

F = HV, (2.81)

which forms the basis for the original form of the Flux Vector Splitting technique of Steger
and Warming [4] as will be described in Chapter 7.

2.4 Shock waves

A property of hyperbolic flow equations is the possibility for the existence of discontinuous
solutions such as shock waves or contact discontinuities which might occur for specific flow
and boundary conditions. For the one-dimensional case as schematically shown in Fig. 2.4, the
parameter changes across the shock can be calculated from the general conservation equations.

stationary shock wave

state 1 state 2

u1
u2 Fig. 2.4: Normal shock wave

Assuming constant steady state conditions in front and behind the shock wave, and ne-
glecting viscosity and heat conduction effects, the mass, momentum, and energy equations
(2.1) to (2.3) simplify to the jump relations

mass:

�1u1 = �2u2 (2.82)

momentum:

�1u
2
1 + p1 = �2u

2
2 + p2 (2.83)

energy:

1
2
u2

1 + h1 =
1
2
u2

2 + h2. (2.84)

From equations (2.82) and (2.83) the velocities u1 and u2 can be eliminated resulting in
the Rankine–Hugoniot relation

h2 − h1 =
1
2

(p2 − p1)
(

1
�1

+
1
�2

)
, (2.85)

which includes only thermodynamic state parameters. Assuming ideal gas laws with a con-
stant isentropic exponent κ, the Rankine–Hugoniot relation (2.85) simplifies to

p2

p1
=

(κ + 1)�2/�1 − (κ − 1)
(κ + 1) − (κ − 1)�2/�1

(2.86)
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or evaluated for the density ratio

�2

�1
=

(κ + 1) p2/p1 + (κ − 1)
(κ − 1) p2/p1 + (κ + 1)

. (2.87)

For weak shock waves with p2/p1 → 1, the Rankine–Hugoniot equation (2.87) approaches
the isentropic relation

�2

�1
=

(
p2

p1

)1/κ

(2.88)

as shown in Fig. 2.5.

Fig. 2.5: Density ratio across
the shock wave

Combining the momentum equation (2.83) and the Rankine–Hugoniot relation (2.85) a
rather simple equation is obtained for the pressure ratio across the shock wave as a function
of the Mach number upstream of the shock,

p2

p1
= 1 +

κ + 1
2κ

(
M2

1 − 1
)
. (2.89)

If all state parameters in front of the shock wave are known, the corresponding values on the
downstream side can be calculated from equations (2.87), (2.89), and the state equations for
ideal gases. This includes in particular the entropy rise across the shock,

s2 − s1
Cv

= ln
[
p2

p1

(
p2/p1 (κ − 1) + (κ + 1)
p2/p1 (κ + 1) + (κ − 1)

)
κ
]
, (2.90)

and finally the Mach number behind the shock,

M2 =
(κ + 1) + (κ − 1)

(
M2

1 − 1
)

(κ + 1) + 2κ (M2
1 − 1)

. (2.91)
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The increase in the entropy indicating the dissipation of the kinetic energy across the shock
wave is strongly dependent on the strength of the shock wave as shown in Fig. 2.6. From
equations (2.90) and (2.91) it follows that only compression shocks (p2 > p1) are physically
feasible (s2 > s1) where the flow changes from supersonic (M1 > 1) to subsonic (M1 < 1)
conditions.

Fig. 2.6: Entropy rise across a
plane shock wave

The relations for a shock wave propagating into a gas at rest as schematically shown in
Fig. 2.7 can be derived from jump conditions (2.82) to (2.84) introducing a new reference
system moving with constant velocity −u1. For the velocity and Mach number of the shock
wave one obtains

usw = a1

√

1 +
κ + 1
2κ

(
p2

p1
− 1

)
(2.92)

and

Msw =
usw

a1
=

√

1 +
κ + 1
2κ

(
p2

p1
− 1

)
, (2.93)

respectively, where the Mach number is related to the sound velocity in the undisturbed region
in front of the shock wave. As can be seen from equations (2.92) and (2.93) the propagation
velocity of the shock is directly related to its strength expressed by the pressure ratio p2/p1,
with the limiting case of the sound velocity usw = a1 for weak shocks (p2/p1) → 1.

moving shock wave

state 2 state 1

u1=0u2

u
sw

Fig. 2.7: Moving shock wave
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Of further interest might be the velocity and Mach number behind the shock which can be
derived as

u2 = a1

(
p2

p1
− 1

)√√
√√

2/κ
p2

p1
(κ + 1) + (κ − 1)

, (2.94)

M2 =
u2

a2
=

(
p2

p1
− 1

)√√√
√
√

2/κ
p2

p1

[
p2

p1
(κ − 1) + (κ + 1)

] . (2.95)

The Mach number for the shock wave propagation and the Mach number behind the mov-
ing shock are shown in Fig. 2.8. The figure indicates that for strong shock waves, supersonic
flow conditions might occur behind the moving shock, however, due to the large dissipation of
the kinetic energy across the shock wave, the maximum possible Mach number is limited. For
an isentropic exponent of κ = 1.4 one obtains for p2/p1 → ∞ the maximum Mach number
Mmax

2 = 1.889.

Fig. 2.8: Mach number of the
moving shock wave and the
Mach number behind the shock

2.5 Flow through convergent–divergent nozzles

Assuming a steady state, quasi-one-dimensional flow through a convergent–divergent nozzle,
equations (2.30) to (2.33) simplify to

∂

∂x
(�uA) = 0 (2.96)

∂

∂x
(�u2A) +A

∂p

∂x
= FA (2.97)
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∂

∂x

[
�uA

(
h+

u2

2

)]
= QA+ FA (2.98)

∂

∂x
(�usA) =

Q

T
A. (2.99)

In the case of absence of external forces (F = 0) and heat sources (Q = 0), the mass and
energy conservation equations can be immediately integrated,

�uA = ṁ = const (2.100)

h+
u2

2
= htot = h0. (2.101)

The entropy balance equation (2.99) reduces to the isentropic condition

s = s0 (2.102)

as long as the flow is free of discontinuities.
Depending on the exit pressure value, four different flow situations can be distinguished

as shown in Fig. 2.9.

(a) As long as the exit pressure is below a threshold value p1 the flow in the nozzle remains
subsonic (M < 1) with a minimum pressure at the nozzle throat above the critical pres-
sure value.

(b) For an exit pressure of pexit = p1 the sonic line is reached at the throat (M = 1),
characterized by a saddle-point singularity. Downstream of the throat the flow returns to
subsonic conditions with a recovery of the pressure up to the exit values p1.

(c) For pressure values pexit < p1, the flow accelerates continuously to supersonic condi-
tions and, depending on the actual values of p1, a shock wave is formed at the divergent
part of the nozzle where the flow downstream of the shock returns to subsonic conditions.

(d) With the further decrease of the exit pressure the position of the shock waves moves
further downstream and for pexit = p3 , the shock has reached the exit plane. Any further
decrease of the exit pressure then has no effect any longer on the nozzle flow.

For the case of ideal state equations the critical conditions (M = 1) can be immediately
given as a function of the upstream reservoir condition as

Tcr = T0

(
2

κ + 1

)

pcr = p0

(
2

κ + 1

)
κ/(κ−1)

�cr = �0

(
2

κ + 1

)1/(κ−1)






. (2.103)
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Fig. 2.9: Flow of single-
phase gas through a con-
vergent–divergent nozzle;
effect of back pressure

In addition, an explicit relation between the nozzle area ratioA/Ath and the Mach numberM
can be derived as

A/Ath =
1
M2

[
2

κ + 1

(
1 +

κ − 1
2

M2

)]κ+1
κ−1

, (2.104)

with the condition of A/Ath → 1 for M → 1.
As long as the flow is isentropic (adiabatic and free of discontinuities) all flow parameters

are exclusive functions of the area ratioA/Ath and can be iteratively calculated on the basis of
the steady state flow equations (2.100) to (2.102). In the case of shock waves two isentropic
regions in front of and behind the shock have to be linked by the shock relations (2.82) to
(2.84). Results for pressure and Mach number as a function of the area ratio A/Ath are shown
in Figs. 2.10 and 2.11 assuming ideal state equations and an isentropic exponent of κ = 1.4.
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Fig. 2.10: Nozzle flow of single-phase gas, pressure as a function of the area ratio A/Ath, exit
pressure: 9.98 bar ≥ pexit ≥ 0.22 bar

Fig. 2.11: Nozzle flow of single-phase gas, Mach number as a function of the area ratio A/Ath,
exit pressure: 9.98 bar ≥ pexit ≥ 0.22 bar
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A more detailed quantitative picture for the gas flow through a convergent–divergent noz-
zle is given in Fig. 2.12, including pressure, Mach number, temperature, and entropy dis-
tributions along the nozzle axis. The nozzle contour A ∼ x2 is chosen to demonstrate the
distribution of flow parameters in axial direction.

Fig. 2.12: Flow of single-phase gas through a convergent–divergent nozzle, reservoir pressure
p0 = 10 bar, exit pressure: p1 ≥ pexit ≥ p9, with p1 = 9.999 bar, p5 = 9.175 bar, p9 =

0.040 bar
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2.6 Shock tube

Shock tube devices have been extensively used to study shock wave propagation phenomena
in compressible fluids like gases or gas–liquid two-phase mixtures. Usually a high (left) and
a low (right) pressure region is separated by a diaphragm as schematically shown in Fig. 2.13.
The transient is initiated by an instantaneous removal of the diaphragm. Assuming strictly
one-dimensional flow conditions, the shock tube mathematically represents a “Riemann prob-
lem” where the initial flow velocities on both sides of the diaphragm have been set to zero,

∂U
∂t

+ G
∂U
∂x

= 0 (2.105)

with the initial conditions

U = UL for x < xdia

U = UR for x > xdia





(2.106)

and pR > pL.

high pressure
region: =U UL

removable
diafragm

low pressure
region: = UU R

x

xdia
Fig. 2.13: Shock tube test
problem

If viscous effects are ignored a self-similar solution exists where all parameters are only
functions of the ratio x/t as illustrated in Fig. 2.14. Three different wave phenomena can be
distinguished which separate the uniform regions 1, 2, 3, and 4: (1) a shock wave propagating
into the low pressure region, followed by (2) a contact discontinuity traveling with subsonic
velocity into the right-hand side of the pipe, and (3) a centered rarefaction wave (expansion
fan) propagating into the high pressure region.

For the specific case of ideal state equations, an iterative analytical solution for the shock
tube problem can be derived as will be briefly described in the following. From equation
(2.94) the velocity behind the shock wave can be expressed as a function of the pressure ratio
p2/p1 as

u2 = a1

(
p2

p1
− 1

)√√
√√

2/κ
p2

p1
(κ + 1) + (κ − 1)

. (2.107)

There are two characteristics originating at the left compartment which provide information
for the prediction in the region 3 which are, according to the compatibility relations (2.59),

λ = u+ a :
2

κ − 1
a4 =

2
κ − 1

a3 − u3 (2.108)
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4

1

23

expansion fan
contact
discontinuity

shock
wave

� = u

U U4 = L U U1 = L

� = u + a

initial conditions

initial conditions

Fig. 2.14: Analytical solution of a shock tube problem for single-phase gas flow

and

λ = u : s4 = s3. (2.109)

Since the velocity and pressure are constant across the contact discontinuity, u3 = u2 and
p3 = p2, and due to the isentropic condition (2.109), equation (2.107) can be rewritten as

p1

p4
=
p1

p2

[
1 − 1 − κ

2

(
u2

a1

)
a1

a4

] 2κ

κ−1
. (2.110)
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Combining equations (2.107) and (2.110) results in a relation between the pressure ratio over
the diaphragm p4/p1 and the pressure ratio over the shock wave p2/p,

p1

p4
=
p1

p2








1 − κ − 1
2κ

a1

a2

(
p1

p2
− 1

)

√

1 +
κ + 1
2κ

(
p1

p2
− 1

)








− 2κ

κ−1

, (2.111)

with the ratio of sound velocities

a1

a2
=

√
T1

T2
=

√
p1/p2

�1/�2
. (2.112)

From the basic shock tube equation (2.111) the shock strength p2/p1 can be iteratively cal-
culated. The corresponding density and temperature ratios then follow from the Rankine-
Hugoniot relation (2.87) as

�2

�1
=

(κ + 1) p2/p1 + (κ − 1)
(κ − 1) p2/p1 + (κ + 1)

. (2.113)

and

T2

T1
=
p2/p1

�2/�1
.

If the states at 2 and 3 are known the remaining parameter distributions across the expansion
fan can be easily obtained from the compatibility relations (2.59).

Due to the existing analytical solution the shock tube problem has become a standard
numerical benchmark test case for the assessment of numerical methods as will be shown in
Chapter 9.

2.7 Multidimensional flow conditions

For three-dimensional flow conditions the Euler equations are obtained from the general bal-
ance equations for mass, momentum, and energy (A.26) to (A.29) as given in Appendix A.
Dropping the viscosity and heat conduction terms, these equations simplify to the three-
dimension form of the Euler equations

∂�

∂t
+ ∇ · (� 	u) = 0 (2.114)

∂

∂t
(� 	u) + ∇ · (�	u	u) = 	Fi (2.115)

∂

∂t

[
�

(
e+

u2

2

)]
+ ∇ ·

[
�	u

(
h+

u2

2

)]
= 	F · 	u+Q. (2.116)
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Removing the kinetic energy term from the energy equation (2.116) and introducing the en-
tropy as major depending variable one obtains the entropy relation

∂

∂t
(� s) + ∇ · (� 	u s) =

1
T
�Q, (2.117)

as will be used in the following for the characteristic analysis of the flow equations. By
expansion of equations (2.114), (2.115), and (2.117), the primitive form of the Euler equations
is obtained which will be given here for simplicity reasons only for two-dimensional flow
conditions

∂�

∂t
+ ux

∂�

∂x
+ uy

∂�

∂x
+ �

(
∂ux

∂x
+
∂uy

∂y

)
= 0 (2.118)

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+

1
�

∂p

∂x
=
Fx

�
= fx (2.119)

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+

1
�

∂p

∂x
=
Fy

�
= fy (2.120)

∂s

∂t
+ ux

∂s

∂x
+ uy

∂s

∂x
=

Q

�T
=
q

T
. (2.121)

With the state equation in expanded form

δ� =
(
∂�

∂p

)

s

δp+
(
∂�

∂s

)

p

δs, respectively, δ� =
1
a2
δp+

(
∂�

∂s

)

p

δs,

the density derivative terms can be removed from equation (2.118) and, hence, the the follow-
ing compact vector form of the Euler equations is obtained as

∂U
∂t

+ Gx
∂U
∂x

+ Gx
∂U
∂x

= D (2.122)

with the state and source term vectors U and D defined as

U =











p

ux

uy

s











, D =














−a2

(
∂�

∂s

)

p

q

T

fx

fy

q

T














, (2.123)
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and the coefficient matrices Gx and Gy for x- and y-directions

Gx =












ux �a2 0 0

1
�

ux 0 0

0 0 ux 0

0 0 ux












, Gy =












uy �a2 0 0

1
�

uy 0 0

0 0 uy 0

0 0 0 uy












. (2.124)

For the hyperbolic numerical schemes as described in Chapter 7, it is often required to
“project” the flow equations in to an arbitrary direction of the flow field (e.g., normal to the
boundary of a computational cell) as schematically shown in Fig. 2.15. The velocity compo-
nents in the x-y and n-t coordinate systems are related to each other as

un = uxnx + uyny

ut = −uxny + uynx

}

(2.125)

or, respectively

ux = unnx − utny

uy = unny + utnx

}

(2.126)

with the x- and y-components of the unit vector nx = sin(Φ) and nx = cos(Φ).

y

n
t

u

�

x Fig. 2.15: Rotation of coordinate system

The projection of the flow equations (2.122) in 	n-diretion then yields

∂U
∂t

+ Gn
∂U
∂n

∂n

∂x
+ Gy

∂U
∂n

∂n

∂y
= D (2.127)

or, with Gn = Gxnx+Gyny

∂U
∂t

+ Gn
∂U
∂n

= D. (2.128)
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The flow equations in the rotated coordinate system can then be obtained by a linear trans-
formation of equation (2.128)

∂U
∂U∗

∂U∗

∂t
+ Gn

∂U
∂U∗

∂U∗

∂n
= D (2.129)

or

∂U∗

∂t
+

(
JGnJ−1

)

︸ ︷︷ ︸
G∗

n

∂U∗

∂n
= JD = D∗ (2.130)

where the new state vector U∗ and the Jacobian J = ∂U∗/∂U are defined as

U =












p

un

ut

s












, J =
∂U∗

∂U
=












1 0 0 0

0 +nx −ny 0

0 +ny +nx 0

0 0 0 1












. (2.131)

Introducing the Jacobian matrix (2.131) the equation for the rotated coordinate system (2.130)
becomes

∂U∗

∂t
+ G∗

n

∂U∗

∂n
= D∗ (2.132)

with the new coefficient matrix G∗
n and the related source term vector D∗.

G∗
n =













un �a2 0 0

1
�

un 0 0

0 0 un 0

0 0 0 un













, D∗ =














−a2

(
∂�

∂s

)

p

q

T

fn

ft

q

T














. (2.133)

Comparing the coefficient matrices before and after the transformation of the coordinate sys-
tem as given in equations (2.124) and (2.133), one immediately verifies the rotational invari-
ance property of the Euler equations.

The eigenvalues of the coefficient matrix G∗
n are the characteristic velocities in 	n direction

for the different wave modes

sound waves: λ1,2 = 	u · 	n± a = un ± a

shear waves: λ3 = 	u · 	n = un

entropy waves: λ3 = 	u · 	n = un.

, (2.134)
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and the corresponding right and left eigenvectors become

VR =














1
2

+
1

2�a
0 0

1
2

− 1
2�a

0 0

0 0 1 0

0 0 0 1














, VL =












1 +� a 0 0

1 −� a 0 0

0 0 1 0

0 0 0 1












(2.135)

Apart from the shear wave, all other wave modes including pressure and entropy waves are
fully equivalent to the one-dimensional case as described above. The newly appearing shear
wave, propagating as the entropy wave with the material velocity, describes the transport of
information on the transverse momentum.

As for the one-dimensional case flow equation (2.135) can be diagonalized, resulting in
the characteristic equation

T−1 ∂U
∗

∂t
+ T−1G∗ T︸ ︷︷ ︸

Λ

T−1 ∂U
∗

∂n
= T−1D∗ = E∗, (2.136)

or

T−1 ∂U
∗

∂t
+ ΛT−1 ∂U

∗

∂n
= E∗, (2.137)

with the transformation matrix T, the diagonal matrix of eigenvectors Λ, and the source term
vector E∗ as

T = VT
R =














1
2

1
2

0 0

+
1

2�a
− 1

2�a
0 0

0 0 1 0

0 0 0 1














, (2.138)

and

Λ = T−1GT =











un + a 0 0 0

un − a 0 0

0 0 un 0

0 0 0 un











. (2.139)
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From the characteristic form of the flow equations (2.137) the following compatibility rela-
tions can be obtained

pressure waves

λ1 = un + a:
dp

dt
+ �a

du

dt
=

[

+a�fn − a2

(
∂�

∂s

)

p

q

T

]

λ2 = un − a:
dp

dt
− �a

du

dt
=

[

−a�fn − a2

(
∂�

∂s

)

p

q

T

]

shear waves

λ3 = un:
dut

dt
= ft

entropy wave

λ4 = un :
ds

dt
=
q

T






(2.140)

For the specific case of adiabatic flow (q = 0) and for the absence of external forces
(f = 0), the the shear and entropy waves are completely decoupled from the pressure waves
and the compatibility relations (2.140) simplify to

pressure waves

λ1 = un + a:
dp

dt
+ �a

du

dt
= 0

λ2 = un − a:
dp

dt
− �a

du

dt
= 0

shear waves

λ3 = un:
dut

dt
= 0

entropy wave

λ4 = un:
ds

dt
= 0






. (2.141)

As described for the one-dimensional case, the coefficient matrix of the Euler equation
G∗

n can be split into elementary parts

G∗
n =

4∑

k=1

G∗
n,k

with

G∗
n,k = TΛkT−1,

where the diagonal matrix Λk contains only the kth eigenvalue. The resulting split matrices
are given in Appendix B.1 by equations (B.10) and (B.12).
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3 Two-Fluid Model of Two-Phase Flow

In the spatial domain where either liquid or vapor/gas is present, the local flow processes can
be described by the instantaneous single-phase flow equations of the corresponding phase,
e.g., the Navier–Stokes equations. Together with appropriate boundary conditions for both
phases at the moving interface, the two-phase flow is completely determined.

However, since such a “direct simulation” of two-phase flow is out of the scope of our
present predictive capability (and will remain so, it seems, for the near future), all two-phase
models of practical interest are restricted to the average flow parameters rather than local flow
quantities. The corresponding “macroscopic” separate balance equations for the two phases
are obtained by a space and/or time or ensemble averaging of the local instantaneous phasic
flow equations, which leads to what is often referred as the “two-fluid model” of two-phase
flow. There exists a large literature on the derivation two-fluid models and their applications to
various two-phase flow problems. The reader might find detailed information on this subject
in the more fundamental publications of Ishii [1], Boure [2], Delhaye and Achard [3], and
Drew and Lahey [4]. The present form of the balance equations as is used throughout the
book has been derived using the concept of distribution functions and the Dirac delta function
as applied by Gray and Lee [5] for the volume averaging of multiphase flows. The detailed
procedure for the derivation is given in Appendix A.

3.1 Balance equations of two fluid model of two-phase flow

With the index i = g (gas or vapor), and i = l (liquid), the most general form of balance equa-
tions of mass, momentum, and energy, given by equations (A.94) to (A.96) in Appendix A,
can be written as

mass:

∂

∂t
(αi�i) + ∇ · (αi�i �ui) = σM

i (3.1)

momentum:

∂

∂t
(αi�i �ui)+∇·(αi�i �ui �ui)+αi∇pi+

(
pi − pint

i

)∇αi+∇·(αiT̄i

)
= �σJ

i + �F i (3.2)
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energy:

∂

∂t

[
αi�i

(
ei +

u2
i

2

)]
+ ∇ ·

[
αi�i �ui

(
hi +

u2
i

2

)]
+ ∇ (αi �qi) −∇ (αiT̄i · �ui

)

+pint
i

∂αi

∂t
= σE

i +Qi + �F · �ui. (3.3)

The source terms for mass, momentum, and energy on the right-hand side of equations (3.1)
to (3.3) distinguish between the “internal” contributions describing the interfacial mass, mo-
mentum, and energy exchange between the phases,

mass: σM
i

momentum: �σJ
i = �F

int

i + σM
i �uex

energy: σE
i = σQ

i + σM
i

(
h+

u2

2

)ex

+ �F int
i · �uFi

i






(3.4)

and the external forces such as gravity, �Fi, and any external heat addition Qi.
Equations (3.1) to (3.3) are equivalent to those often found in the literature. The only

difference is related to the right-hand side of the equations where the properties of the “ex-
changed” quantities are explicitly introduced. All the state and flow parameters on the left-
hand side of the equations are considered to be volume/time averaged quantities. It is further
assumed that the average of the products of the parameters is equal to the product of the av-
eraged parameters. During the averaging process, the local volumetric concentrations of the
two phases αi, with i = g, l, are introduced as a measure for the composition of the two-
phase mixture. The volume concentration of the gas or vapor phase αg is also known as “void
fraction”.

The parameters on the r.h.s. of equations (3.1) to (3.3) include volumetric source terms
representing mass, momentum, and energy transfer processes at the interface as well as exter-
nal forces such as gravity and heat sources. The physical interpretation of the various terms
and related parameters is given in Appendix A.

The conservation principles for mass, momentum, and energy require the following bal-
ances of the corresponding source terms:

∑

i=g,l

σM
i = 0,

∑

i=g,l

σQ
i = 0,

∑

i=g,l

�F
int

i = 0. (3.5)

The system of equations has to be further completed by two state equations for the average
quantities of the phases,

�i = �i(pi, Ti) and ei = ei(pi, Ti) with i = g, l (3.6)

and the constraint for the volumetric phase concentration

αg + αl = 1. (3.7)
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Using the momentum equation, the kinetic terms can be removed from the energy equations.
Assuming further that the following thermodynamic relationship is also valid for the average
quantities

Tiδsi = δui − pi

�2
i

δ�i, (3.8)

the energy equation can be simplified by introducing the entropy as a new state variable which
results in the following balance equation for the phasic entropy:

∂

∂t
(αi�isi) + ∇ · [αi�i �uisi] +

∇ · (αi�qi)
Ti

+
pint − pi

Ti

(
∂αi

∂t
+ �ui∇αi

)
(3.9)

−αiT̄i : (∇ · �ui)
Ti

= σS,int
i +

Qi

Ti
, (3.10)

with the internal volumetric entropy source term for phase i resulting from interfacial transfer
processes,

σS,int
i =

σQ
i

Ti
+
σM

i

Ti

[
siTi + (hex − hi) +

1
2

(uex − ui)
2

]
+
�F int

i

Ti
· (�uFi

i − �ui). (3.11)

In agreement with the second law of thermodynamics, the overall internal entropy source has
to be positive definite,

∑

i=g,l

σS,int
i ≥ 0. (3.12)

The entropy equation does not give any further information with respect to equations (3.1) to
(3.3), nevertheless, due to the simplified form it might be worthwhile to use in some situations
the entropy equation instead of the complete energy balance equation (3.3).

3.2 Single pressure two-fluid model

Considering the state equations (3.6) and the constraint for the volume fractions (3.7), there
remain eight major dependent flow parameters in the six balance equations for the phasic
mass, momentum, and entropy

{αg, ug, ul, Tg, Tl, pg, pl, p
int}.

There have been various attempts to complete the system of balance equations by adding
additional differential or algebraic equations on a more or less heuristic way. This includes
among others

• different phasic pressures resulting from static gravity heads in the case of stratified flow
conditions, see for example Ardron [6];

• different interfacial pressures due to surface tension effects in the presence of an interfa-
cial curvature, Ramshaw and Trapp [7];
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• differences between the average pressure in the continuous phase and the average inter-
facial pressure resulting from local flow disturbances induced by moving particles (solid
particles, bubbles droplets), see for example Milne-Thompson [8] for idealized flow con-
ditions (frictionless flow around spheres);

• pressure differences resulting from inertia effects during bubble growth or collapse,
which can be described for ideal conditions (e.g., spherical bubble surrounded by in-
compressible liquid) by Rayleigh’s equation [9];

• pressure differences resulting from a “transverse” movement of the interface in the case
of essentially one-dimensional flow, Ransom and Hicks [10].

Although all of these “two-pressure” models show interesting aspects of two-phase flows,
they are valid only for specific flow regimes or for a limited range of flow conditions. None
of them has yet reached a state of maturity for broader applications to scientific or technical
problems. This is the reason why in most of the present two-fluid models of two-phase flow,
the assumption of equal local pressure for the two phases is introduced, pg = pl = pint = p.
This seems to be justified for many technical application as long as surface tension effects can
be neglected.

Assuming a single local pressure value, the balance equations (3.1) to (3.3) and (3.9)
simplify to

mass:

∂

∂t
(αi�i) + ∇ · (αi�i �ui) = σM

i (3.13)

momentum:

∂

∂t
(αi�i �ui) + ∇ · (αi�i �ui �ui) + αi∇p+ ∇ · (αiT̄i

)
= �σJ

i + �Fi (3.14)

energy:

∂

∂t

[
αi�i

(
ei +

u2
i

2

)]
+ ∇ ·

[
αi�i �ui

(
hi +

u2
i

2

)]
+ ∇ (αi �qi) −∇ (αiT̄i · �ui

)

+p
∂αi

∂t
= σE

i +Qi + �F i · �ui (3.15)

entropy:

∂

∂t
(αi�isi) + ∇ · [αi�i �uisi] +

∇ · (αi�qi)
Ti

− αiT̄i : (∇ · �ui)
Ti

= σS,int
i +

Qi

Ti
. (3.16)

Neglecting the influence of the bulk heat conduction (�qi = 0) and bulk viscous effects
(T̄i = 0) compared with the governing effects resulting from the interfacial heat and mass
transfer processes, these equations can be written as
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mass:

∂

∂t
(αi�i) + ∇ · (αi�i �ui) = σM

i (3.17)

momentum:

∂

∂t
(αi�i �ui) + ∇ · (αi�i �ui �ui) + αi∇p= �F

int

i + σM
i �ui + �Fi (3.18)

energy:

∂

∂t

[
αi�i

(
ei +

u2
i

2

)]
+ ∇ ·

[
αi�i �ui

(
hi +

u2
i

2

)]
+ p

∂αi

∂t

= σQ
i + σM

i

(
h+

u2

2

)ex

+ �F
int

i · uFi
i +Qi + �F i · �ui (3.19)

entropy:

∂

∂t
(αi�isi) + ∇ · [αi�i �uisi] = �σS

i +
Qi

Ti
. (3.20)

For the specific case of one-dimensional flows one obtains from (3.17) to (3.20)

mass:

∂

∂t
(αi�i) +

∂

∂x
(αi�iui) = σM

i (3.21)

momentum:

∂

∂t
(αi�iui) +

∂

∂x
(αi�iu

2
i ) + αi

∂p

∂x
= �σJ

i + Fi (3.22)

energy:

∂

∂t

[
αi�i

(
ei +

u2
i

2

)]
+

∂

∂x

[
αi�iui

(
ei +

p

�i
+
u2

i

2

)]
+ p

∂αi

∂t

= σE
i +Qi + Fiui (3.23)

entropy:

∂

∂t
(αi�isi) +

∂

∂x
(αi�iuisi) = σS,int

i +
Qi

Ti
, (3.24)

with the entropy source resulting from interfacial transfer processes,

σS,int
i =

σM
i

Ti

[
Tisi + (hex − hi) +

1
2
(uex − ui)2

]
+
F int

i

Ti
(uint − ui). (3.25)
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In the following a slightly different definition for the entropy is used based on the expanded
form of the balance equation (3.24)

αi�i
∂si

∂t
+ αi�iui

∂si

∂x
= σS

i (3.26)

with the total phasic entropy source including also external heat addition to the fluid

σS
i =

σM
i

Ti

[
(hex − hi) +

1
2
(uex − ui)2

]
+
F int

i

Ti
(uint − ui) +

Qi

Ti
. (3.27)

From equation (3.27) one then obtains for the material derivative of the entropy

disi

dt
=

σS
i

αi�i
with

disi

dt
=
∂si

∂t
+ ui

∂si

∂x
. (3.28)

The set of equations (3.17) to (3.20) or their one-dimensional counterparts (3.21) to (3.24)
might be seen an equivalence to the Euler equations of gasdynamics. However, even for the
absence of external forces (F int

i = 0) and external heat sources (Qi) there remains a strong
coupling effect between the balance equations resulting from the source terms describing the
interfacial mass, momentum transfer between the phases.

3.3 Remarks on interfacial transfer terms

From the derivation as given in Appendix A, it is evident that the balance equations (3.17)
to (3.20) of the two fluid model represent an approximation of the nonhomogeneous two-
phase flow and as such, have not the same validity as the Navier Stokes or Euler equations
for single-phase flow of gas or liquid. Nevertheless, two-fluid models form the basis of most
present computational tools for the numerical simulation of nonequilibrium two-phases flow
processes. However, any application of these models relies on a realistic modeling of the
source term on the right-hand side of the equations describing the interfacial transfer processes
for mass, momentum, and energy.

As shown in Appendix A by equations (A.97) to (A.98) and (A.102), the interfacial source
terms can be formulated as the product of the interfacial area concentration and a correspond-
ing (area average) flux across the interface which results in

interfacial mass transfer due to evaporation/condensation:

σM
i = aintmint

i with mint
i = − 1

Aint
ξ

∫

Aint
ξ

�i

(
�ui − �uint

) · �nint
i dA (3.29)

interfacial heat transfer:

σQ
i = aintqint

i with qint
i = − 1

Aint
ξ

∫

Aint
ξ

�qi · �nint
i dA (3.30)
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interfacial forces:

�F int
i = aintf int

i with f int
i =

1
Aint

ξ

∫

Aint
ξ

T̄i·�nint
i dA. (3.31)

The negative sign for the interfacial fluxes for mass and heat in equations (3.29) and (3.30)
corresponds to the definition of the interfacial normal unit vector �nint

i for phase i.
As indicated in equations (3.29) to (3.31) the governing parameter for the interfacial cou-

pling processes is the interfacial area concentration aint which determines the amount of con-
tact area between the gas/vapor and liquid phases within a unit volume. The prediction of
the interfacial area concentration possibly is the most crucial point for the application of the
two-fluid model. The major difficulty arises from the fact that even for the same void fraction
and pressure values different “flow regimes” might exist which largely differ from each other
in local phase distributions and interfacial area.

Two different approaches can be distinguished for the determination of the interfacial area
concentration.

(1) At present the standard method applied is a direct correlation of the interfacial area with
the local flow and transport parameters,

aint = F (αg, ug, �g, �l, µg, µl, ...). (3.32)

This is usually done on the basis of empirical “flow maps” for specific geometrical flow
conditions which allows us to identify characteristic flow regimes and related phase dis-
tributions. For relatively small void fractions (αg � 0.1), a bubbly flow regime might
exist where the gas or vapor phase is assumed to be distributed in the form of (not nec-
essarily spherical) bubbles in liquid carrier media. For relatively large void fractions
(αg � 0.9), a droplet flow regime is expected where the liquid phase is distributed in
the form of droplets of different sizes and shapes in gas media. The shape and size of
the particle (bubble or droplets) are then estimated by semi-empirical correlations based
on the stability limit for particles exposed to the external flow fields. More complex or
less well-structured flow regimes and flow regime transition such as annular flow, slug-
flow churn-turbulent flow, etc. are dealt with by highly empirical correlations. Often
“smoothing” procedures are introduced in order to dampen the effect of nonphysical dis-
continuities during the transition between different flow regimes.

(2) As an alternative to the “static” modeling of the interfacial area concentration as de-
scribed in (1), it has been often proposed to explicitly model the transport of the in-
terfacial area in a “dynamic” way using a separate balance equation and related source
terms [11]. As shown in Appendix A, such a transport equation can be easily derived on
the basis of a phasic distribution function γi and a related Dirac delta function ∇γi at the
moving interphase,

∂ai

∂t
+ ∇ · (aint�u int

)
= σA (3.33)
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where the source term σA describes the creation (or destruction) of the interfacial area
due to pressure changes (expansion, compression), phase change (evaporation, conden-
sation), particle break-up or coalescence, and flow regime transitions. The method allows
a more physically based evolution of the interfacial area and avoids unrealistic discon-
tinuities as are often present in the “static” approach. Nevertheless, as for all volume
averaged equations, there is a need for additional modeling of the corresponding trans-
port velocity �u int and the related source term σA.

In accordance to the principles of nonequilibrium thermodynamics, the interfacial fluxes
for mass and heat are assumed to be linear functions of “driving forces” as arising from the
local deviations from thermal or mechanical equilibrium between the phases. This results in
the following interfacial source terms for the mass and heat as

σM
g = −σM

l =
aint

∆hs
(Hq

g∆Tg + Hq
l ∆Tl) (3.34)

and

σQ
g = −σQ

l = aintHq (Tl − Tg) , (3.35)

with the transfer coefficients Hq
g , Hq

l , and Hq on the gas (i = g) and the liquid (i = l) side
of the interface. For the driving temperature differences in the expression for the evaporation
rate (3.34), often only the metastable contributions are taken into account,

∆Tg = min (Tg − T sat, 0), ∆Tl = max (Tl − T sat, 0). (3.36)

The major contribution to the interfacial forces results from the interfacial friction,F int
i ≈ F v

i ,
which can be described by a resistance law of the form

F v
l = −F v

g = aintCDρref |�ug − �ul| (�ug − �ul) , (3.37)

with the “drag” coefficient CD and the reference density ρref .
For the case of well-structured flow conditions such as mono-dispersed bubbly or droplet

flows existing physically based correlations can be applied for the interfacial drag coefficient
CD and heat transfer coefficients Hq

g,Hq
l , and Hq as introduced in equations (3.34) to (3.37).

For the case of more complex flow regimes highly empirical correlations are often used which
require some model calibration through sensitivity studies in comparison with existing exper-
imental data. The way how the interfacial source terms are modeled in the ATFM code is
described in some detail in Chapter 8.
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4 Simplified Two-Phase Flow Models

Multiphase flow processes are normally governed by deviations from mechanical and thermal
equilibrium between the phases. These nonequilibrium effects are a result of the generally
large differences in the state and transport properties for the two phases and the finite rates for
the interfacial transfer processes. The assumption of homogeneous flow (equal local average
phase velocities) and thermal equilibrium between the phases (equal local average temper-
atures) represents a large simplification and, therefore, can be considered only as a rough
approximation of the real flow process. Nevertheless, homogeneous two-phase flow models
can be seen as special limiting cases for more detailed approaches and, for this reason, they
are very helpful for the understanding of more complex conditions.

4.1 Homogeneous equilibrium model

The homogeneous equilibrium model for two-phase flow is based on the assumption of infinite
transfer processes between the phases for mass, momentum, and energy, which results in equal
local (average) flow velocities and equal local (average) temperatures for the two phases. This
allows us to describe the two-phase mixture as a pseudo fluid and, apart from more complex
state equations, all well-known properties of the gasdynamics remain (at least) qualitatively
valid. The homogeneous equilibrium model also does not require any further description of
interfacial coupling conditions since all transfer processes are implicitly determined by the
assumption of mechanical and thermal equilibrium between the phases.

The one-dimensional homogeneous equilibrium two-phase flow is fully determined by the
three conservation equations for mass, momentum, and energy. With the assumption of equal
local flow velocities

ug = ul = u (4.1)

and equal local pressure and temperatures for the two phases

pg = pl = p

Tg = Tl = T





, (4.2)

the conservation equations for the homogeneous equilibrium two-phase flow can be written as

mass:

∂�

∂t
+

∂

∂x
(�u) = 0 (4.3)
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momentum:

∂

∂t
(�u) +

∂

∂x
(�u2) +

∂p

∂x
= F (4.4)

energy:

∂

∂t

[
�

(
e+

u2

2

)]
+

∂

∂x

[
�u

(
e+

p

�
+
u2

2

)]
= Q+ F u. (4.5)

In these equations, mixture state properties have been used which are defined as

� =
1

Xg/�g +Xl/�l
(4.6)

or

� = αg�g + αl�l (4.7)

respectively, and

e = Xgeg +Xlel

h = Xghg +Xlhl

s = Xgsg +Xlsl.






(4.8)

The vapor and liquid mass fractions are defined as

Xg =
αg�g

αg�g + αl�l

Xl =
αl�l

αg�g + αl�l






(4.9)

with the condition Xg +Xl = 1. The mass fraction vapor is also known as vapor quality.
Due to the assumption of a complete equilibrium between the phases, all state variables of

the two phases are functions of only the pressure and temperature,

{�g, �l, ug, ul, sg, sl} = f(p, T ).

For the mixture quantities, the gas/vapor mass fraction appears as a third independent param-
eter

{�, e, h, s} = f(p, T,Xg).

With the assumption of a complete mechanical and thermal equilibrium between the phases,
the basic thermodynamic relationships (Maxwell relations) as known for a single-phase fluid
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remain valid also for the whole two-phase mixture. This means in particular for the mixture
entropy

Tδs = δe− p

�2
δ�, (4.10)

for the state equation of the two-phase mixture

� = f(p, s) (4.11)

and for the homogeneous equilibrium sound velocity of the two-phase mixture

a =

√(
∂p

∂�

)

s

. (4.12)

Introducing the mixture entropy as a new state variable and replacing the density derivatives
in the mass conservation equation by derivatives with respect to pressure and entropy yields
the following “primitive” form of the conservation equations

mass:

1
a2

∂p

∂t
+

1
a2
u
∂p

∂x
+ �

∂u

∂x
= −

(
∂�

∂s

)

p

Q

�T
(4.13)

momentum:

�
∂u

∂t
+ �u

∂u

∂x
+
∂p

∂x
= F (4.14)

entropy:

�T
∂s

∂t
+ �uT

∂s

∂x
= Q. (4.15)

Equations (4.13) to (4.15) are identical with the corresponding conservation equations for
single-phase gas flows. For this reason, all derivations made in Section 2 for single-phase
flow remain at least qualitatively valid also for the homogeneous equilibrium two-phase flow.
This means in particular that the equations (4.13) to (4.15) form a hyperbolic set of equations
which can be combined in the vector form as

∂U
∂t

+ G
∂U
∂x

= C, (4.16)

with the state vector U, the coefficient matrix G, and the source term vector D,

U =








p

u

s







, G =









u �a2 0

1
ρ

u 0

0 0 u








, D =











−a2

(
∂�

∂s

)

p

q

T

f

q

T











. (4.17)
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The eigenvalues of the matrix G are the characteristic velocities

λ1 = u+ a, λ2 = u− a, λ3 = u (4.18)

and the corresponding matrices containing the right and left eigenvectors are

VR =











1
2

1
2a�

0

1
2

− 1
2a�

0

0 0 1











, and VL =









1 a� 0

1 −a� 0

0 0 1








. (4.19)

As for single-phase gas, the basic system of equations (4.17) can be transferred into char-
acteristic form

T−1 ∂U
∂t

+ ΛT−1 ∂U
∂x

= T−1D = E, (4.20)

resulting in the compatibility relations

λ1 = u+ a :
dp

dt
+ �a

du

dt
=

[

+a�f − a2

(
∂�

∂s

)

p

q

T

]

λ2 = u− a :
dp

dt
− �a

du

dt
=

[

−a�f − a2

(
∂�

∂s

)

p

q

T

]

λ3 = u :
ds

dt
=
q

T






. (4.21)

For further evaluation using the state equation for the two-phase mixture, two distinct
cases have to be considered: (1) two-component two-phase mixtures without mass exchange
between the phases (no evaporation or condensation) and (2) one-component two-phase flow
with saturation conditions (Tg = Tl = T sat).

4.1.1 Two-component two-phase flow

For the two-component homogeneous flow conditions without mass exchange the following
expressions for the equilibrium sound velocity can be derived from basic thermodynamic re-
lationships (4.12) as

a =
1
�

√√√
√
√

1
[
Xgγg

�g
+
Xlγl

�l

]
− T

C̄p

[
Xgβg

�g
+
Xlβl

�l

]2 , (4.22)

with the specific heat at constant pressure of the two-phase mixture

C̄p = XgC
p
g +XlC

p
l . (4.23)
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Using the volume-averaged quantities for the two-phase compressibility γ and, the thermal
expansion β,

γ = αgγg + αgγg

β = αgβg + αgβg





(4.24)

expression (4.22) can be further simplified to

a =

√
C̄p

�γC̄p − Tβ2
. (4.25)

Fig. 4.1: Homogeneous equilibrium sound velocity in two-phase water/air media for various
pressure values; fluid temperature T = 300 K

The single-phase sound velocities for gas and liquid phases can be obtained from equation
(4.22) as limiting cases for vanishing gas or liquid content respectively as

Xg → 1 : a1 =

√
Cp

g

γg�gC
p
g − Tβ2

g

= ag (4.26)

Xl → 1 : a2 =

√
Cp

l

γl�lC
p
l − Tβ2

l

= al. (4.27)

The behavior of the equilibrium sound velocity as a function of void fraction is shown Fig. 4.1
for a water/air mixture at different pressure values. The figure indicates that the sound veloci-
ties can be considerably smaller than the limiting values for single-phase liquid or vapor.

For not too high system pressure values, the state equations for the gas and liquid phase
might be further simplified assuming the state equations for a perfect gas and neglecting the
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effect of the thermal expansion for the liquid phase (βl = 0). With these assumptions, the
basic thermodynamic mixture quantities for internal energy, enthalpy, and entropy reduce to

e = e0 + C̄v(T − T0)

h = h0 + C̄p(T − T0) +
Xl

�l
(p− p0)

s = s0 + C̄p ln
(
T

T0

)
− R̄ ln

(
p

p0

)






(4.28)

where the specific heats for the two-phase mixture at constant pressure C̄p and constant vol-
ume C̄vare defined as:

C̄p = XgC
p
g +XlC

p
l

C̄v = XgC
v
g +XlC

v
l





(4.29)

and the corresponding “gas constant” becomes

R̄ = C̄p − C̄v = XgRg. (4.30)

For isentropic state changes (s = s0) temperature and gas density become functions of the
pressure

T

T0
=
(
p

p0

) κ̄ − 1
κ̄ and

�g

�g,0
=
(
p

p0

) κ̄g − 1
κ̄g , (4.31)

with the polytropic exponent for the gas phase

κ̄g =
C̄p

C̄p − R̄g
. (4.32)

Under these conditions the expression for the two-phase sound velocity (4.22) simplifies to

a =
√√
√
√

1
αg�

�gā2
g

+
αl�

�lā2
l

, (4.33)

with

ā2
g = κ̄g

p

�g
and ā2

l =
1
�lγl

. (4.34)

As for the single-phase gas flow an iterative algebraic procedure can be derived for the steady
state flow in channels of variable cross section when applying the simplified state equations
for the water/air mixture as were given by equations (4.28) to (4.32). As an example results
for the flow through convergent–divergent nozzles are shown in Fig. 4.2. The initial gas mass
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Fig. 4.2: Flow of water/air mixture through convergent–divergent nozzle; gas content X0 =
0.001, reservoir pressure: p0 = 10 bar, exit pressure: p1 ≥ pexit ≥ p9, p1 = 0.99 bar,
p9 = 0.04 bar

fraction of Xg,0 = 0.001 equivalent to a reservoir void fraction of αg,0 = 0.17. The nozzle
geometry is the same as was used for the pure gas case in Fig. 2.12.

As shown in Fig. 4.2, the two-component two-phase flow behaves qualitatively like the
pure gas flow, however, larger quantitative differences occur with increasing liquid content
with respect to critical pressure, flow velocities, or mass flow rates.

For many applications with not too small values for the void fraction, the compressibility
of the liquid phase can be neglected and, together with the simplified state equations (4.28) to
(4.32), the expression for the sound velocity (4.33) can be further simplified to

a =
√

κ̄

p

αg�
. (4.35)

For these conditions the Riemann invariants as given by equation (4.21) can be integrated
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resulting in

W =











u+
2

κ − 1
a

u− 2
κ − 1

a

s











, (4.36)

with the mixture velocity u and sound velocity a as defined by equation (4.35). Similar to
the pure gas case as presented in Chapter 2, an algebraic solution for the shock tube problem
can be derived. As an example for a water–air shock tube the pipe geometry and the initial
conditions are specified as given in Fig. 4.3.

p = 5 bar

T = 400 K

= 0.05

1

1

1g,�

removable
diaphragm

p = 1 bar

T = 300 K

= 0.1

2

2

g,2�

x

L = 1.5 m2L = 2.5 m1

Fig. 4.3: Shock tube problem for two-
phase water/air mixture; geometry and
initial conditions

The calculated results for the governing flow parameters as given in Fig. 4.4 show a be-
havior which is qualitatively very similar to that obtained for the gas case. This includes in
particular the propagation of a discontinuous shock wave and a contact surface into the right
low pressure region of the tube, and the continuous expansion wave penetrating into the left
high pressure region. However, there are also some large quantitative differences. Compared
to the pure gas case, the wave velocities are drastically reduced, which becomes especially
evident for the contact discontinuity. These differences originate from the reduced two-phase
sound velocity and from the relatively high density of the two-phase mixture and related strong
inertia effects.

As will be shown in Chapter 9, the solution obtained for homogeneous equilibrium condi-
tions represents (at least for the present initial conditions) a reasonable approximation for the
general case of nonhomogeneous nonequilibrium flow.

4.1.2 One-component two-phase flow

In one-component two-phase media undergoing phase transitions (evaporation or condensa-
tion), the thermal equilibrium assumption results in a strict coupling of pressure and tem-
perature as given by the saturation condition p = psat(T ) as long as 0 ≤ Xg ≤ 1. As a
consequence, all thermodynamic quantities for liquid and vapor under saturation condition
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expansion shockcontact expansion shockcontact

Fig. 4.4: Shock tube problem for two-phase water/air mixture; parameter distributions at t = 15

ms, analytical solution for homogeneous equilibrium flow conditions
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become functions of only temperature or pressure, respectively,

{�i, ei, hi, si} = f(T ) for i = g, l. (4.37)

For pressure values considerably below the critical point, and using the simplified state
equations for liquid and vapor as introduced by equations (4.28) and (4.30), a relation for the
saturated conditions can be obtained from the identity ∆s = sg − sl = (hg − hl) /T ,

ln
(
psat

p0

)
=

∆s0
Rg

(
1 − 1

T/T0

)
− Cl − Cp

g

Rg
ln
(
T

T0

)
+
�g,0

�l

psat/p0 − 1
T/T0

, (4.38)

with the known reference state at T = T0 and p = p0. The saturation pressure ps can then be
obtained iteratively, starting with a first guess value

(
psat

p0

)

n

= exp
[
∆s0
Rg

(
1 − 1

T/T0

)
− Cl − Cp

g

Rg
ln
(
T

T0

)

+
�g,0

�l

psat/p0 − 1
T/T0

]
. (4.39)

With an appropriate choice for Cl, C
p
g , and Rg , a good approximation of the saturation curve

can be found as shown in Fig. 4.5 for a water/steam mixture.

Fig. 4.5: Saturation pressure
as a function of temperature;
comparison of analytical ap-
proximation with steam table
data

For the equilibrium sound velocity defined in (4.12) one obtains for one-component two-
phase media

a =
1
�

√√
√√
√

1
[
Xgγg

�g
+
Xlγl

�l

]
− 2

[
Xgβg

�g
+
Xlβl

�l

]
1/�g − 1/�l

sg − sl
+
C̄p

T

( 1/�g − 1/�l )2

(sg − sl)2

,

(4.40)
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with the limiting cases:

Xg → 1 : a1 =
√√√
√
√

1

γg�g − 2
βg

�g

1/�g − 1/�l

sg − sl
+
Cp

g �
2
g

T

(1/�g − 1/�l)2

(sg − sl)
2

�= ag (4.41)

Xl → 1 : a2 =

√√√
√
√

1

γl�lC
p
l − 2

βl

�l

1/�g − 1/�l

sg − sl
+
Cp

l �
2
l

T

(1/�g − 1/�l)2

(sg − sl)
2

�= al. (4.42)

Fig. 4.6: Homogeneous equilibrium sound velocity in two-phase water/air media for various
pressure values; fluid temperature T = 300 K

Introducing the volume averaged quantities for the mixture compressibility γ and the ther-
mal expansion β as defined by equation (4.24), the equilibrium sound velocity can also be
written in a more compact form as

a =

√√
√
√
√

1

γ �− 2 β �
1/�g − 1/�l

sg − sl
+ �2

C̄p

T

( 1/�g − 1/�l )2

(sg − sl)2

. (4.43)

Calculated values for the equilibrium sound velocity as a function of void fraction are
shown in Fig. 4.6 for a saturated water/vapor mixture at atmospheric pressure. The figure
indicates two interesting aspects: the thermal equilibrium assumption results in extreme low
values for the sound velocity and (2) strong discontinuities for the transition between single-
phase liquid or vapor and two-phase conditions which is certainly in contrast to experimental
data.

The drastic change in sound velocity when crossing the saturation line between liquid and
two-phase region or vapor and two-phase conditions, respectively, is illustrated in Figs. 4.7
and 4.8.
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Fig. 4.7: Discontinuity of sound
velocity at “right” saturation line;
water/steam mixture at pressure
p = 1 bar

Fig. 4.8: Discontinuity of sound
velocity at “left” saturation line;
water/steam mixture at pressure
p = 1 bar

The discontinuous behavior of the sound velocity during the transition between single and
two-phase flow conditions has a strong effect for the one-component two-phase flow through
convergent–divergentnozzles. This is shown in Fig. 4.9 for a water/steam mixture with a reser-
voir pressure of p0 =10 bar and various values for the subcooling ∆T sub = T0 − T sat(p0).
For subcooled reservoir conditions an important parameter is the flow velocity when cross-
ing the saturation line at p = psat(p0). Assuming constant liquid density this value can be
obtained from the Bernoulli equation as

usat =

√
2 [p0 − psat(T0)]

�l
. (4.44)

From Fig. 4.9, the following cases can be distinguished:

1. For saturated upstream reservoir conditions (T0 = T sat) and low vapor content (0 ≤
Xg ≤ ε), the onset of evaporation occurs in the divergent section of the nozzle and
critical conditions at the nozzle throat are obtained as (Xg)cr > 0, and ucr = acr.

2. For pure liquid (Xg = 0) with slightly subcooled conditions (T0 < T sat), the crossing
of the saturation line occurs in the divergent section of the nozzle with usat < a2, and
the critical conditions reached are as for case (1) at the nozzle throat with (Xg)cr > 0
and ucr = acr.
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Fig. 4.9: Critical flow of water/steam mixtures through convergent–divergent nozzle; effect of subcool-
ing at the upstream reservoir

3. With increasing degree of subcooling, the location where the saturation line is reached
moves further downstream, and if it has reached the nozzle throat, the velocity at the
saturation line is equal with the limiting value for the two-phase sound velocity usat =
a2. In this case the location for the onset of evaporation becomes identical with the critical
conditions at the nozzle throat defined as (Xg)cr = 0, pcr = psat(T0), ucr = usat =
(a2)cr.

4. A further increase of the degree of subcooling will not have any effect on the location for
the onset of evaporation and the critical state remains as in the case 3 with (Xg)cr = 0,
pcr = psat(T0), ucr = usat. Due to usat > a2, the Mach number at the nozzle throat
changes discontinuously from subsonic (M < 0) to supersonic conditions (M > 0). For
these conditions, the critical (maximum) mass flow can be explicitly given as

mcr = �lu
satAth (4.45)
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Fig. 4.10: Flow of initially subcooled water through a convergent–divergent nozzle; reservoir conditions:
p0 = 10 bar, ∆T sub = 3 K; exit pressure: p1 ≥ pexit ≥ p8, p1 = 0.997 bar, p5 = 4.243 bar,
p8 = 0.620 bar

or with equation (4.44)

mcr =
√

2�l [p0 − psat(T0)]Ath. (4.46)

A more detailed picture of the critical flow of water/steam mixtures through convergent–
divergent nozzles is given in Fig. 4.10 for subcooled reservoir conditions ∆T sub = 3 K and
a pressure p0 = 10 bar. For these conditions, the evaporation starts at the nozzle throat as was
shown in Fig. 4.9. The free parameter is the pressure at the exit plane Aexit.
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4.2 Homogeneous nonequilibrium two-phase flow

A step toward a more realistic description of two-phase flow processes is to consider deviations
from the thermal equilibrium between the phases. This means to allow for differences in the
local phase temperature and, in the case of one-component flows, for deviations from the
state of saturation. As a consequence, additional correlations describing the mass and energy
transfer process between the two phases have to be provided.

The homogeneous thermal nonequilibrium two-phase flow is described by two separate
mass equations, two separate energy equations, and one momentum equation for the whole
two-phase mixture. Removing the kinetic terms from the energy equations and introducing the
entropy as a new state variable, the conservation equations can be written for one-dimensional
flow conditions as

mass:

∂

∂t
(αg�g) +

∂

∂x
(αg�gu) = σM

g (4.47)

∂

∂t
(αl�l) +

∂

∂x
(αl�lu) = σM

l (4.48)

with σM
g + σM

l = 0

momentum:

∂

∂t
(�u) +

∂

∂t

(
�u2
)

+
∂p

∂x
= F (4.49)

entropy:

∂

∂t
(αg�gsg) +

∂

∂x
(αg�gusg) = σM

g sg +
σM

g

Tg
(hex − hg) +

σQ
g

Tg
+
Qg

Tg
(4.50)

∂

∂t
(αl�l sl) +

∂

∂x
(αl�lusl) = σM

l sl +
σM

l

Tl
(hex − hl) +

σQ
l

Tl
+
Ql

Tl
(4.51)

with σQ
g + σQ

l = 0.

The external heat source in the entropy equations has been partitioned between a vapor and a
liquid part Q = Qg +Ql. The mixture density in the momentum equation (4.49) remains the
same as for the equilibrium conditions as � = αg�g + αl�l.

The densities of the two phases are determined by state equations of the form �i =
f(p, si), or

δ�i =
1
a2

i

δp+
(
∂�i

∂si

)

p

δsi. (4.52)



60 4 Simplified Two-Phase Flow Models

Expanding the time and space derivatives, the conservation equations become

mass:

αg

a2
g

(
∂p

∂t
+ u

∂p

∂x

)
+ �g

(
∂αg

∂t
+ u

∂αg

∂x

)
+ αg�g

∂u

∂x

+αg

(
∂�g

∂sg

)

p

(
∂sg

∂t
+ u

∂sg

∂x

)
= σM

g (4.53)

αl

a2
l

(
∂p

∂t
+ u

∂p

∂x

)
+ �l

(
∂αl

∂t
+ u

∂αl

∂x

)
+ αl�l

∂u

∂x
+

αl

(
∂�l

∂sl

)

p

(
∂sl

∂t
+ u

∂sl

∂x

)
= σM

l (4.54)

momentum:

�
∂u

∂t
+ �u

∂u

∂x
+
∂p

∂x
= F (4.55)

entropy:

αg�g
∂sg

∂t
+ αg�gug

∂sg

∂x
= (hex − hg)

σM
g

Tg
+
σQ

g

Tg
+
Qg

Tg
= σS

g (4.56)

αl�l
∂sl

∂t
+ αl�lul

∂sl

∂x
= (hex − hl)

σM
l

Tl
+
σQ

l

Tl
+
Ql

Tl
= σS

l . (4.57)

Equations (4.53) to (4.57) can be arranged in a vector form as

A
∂U
∂t

+ B
∂U
∂x

= C, (4.58)

with the state and source term vectors U and C, respectively,

U =





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
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


p

u

αg

sg

sl















, C =
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l
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l
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


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













and the coefficient matrices A and B as given in Tables B.18 and B.21 in Appendix B.
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Multiplying the vector equation (4.46) with the inverse matrix A−1 yields

∂U
∂t

+ G
∂U
∂x

= D, (4.59)

with the coefficient matrix G = A−1B

G =




















u
�g�la

2
ga

2
l

αg�la2
l + αl�ga2

g

0 0 0

1
�

u 0 0 0

0 −αgαl

(
�la

2
l − �ga

2
g

)

αg�la2
l + αl�ga2

g

u 0 0

0 0 0 u 0

0 0 0 0 u




















(4.60)

and the new source vector D given in Table B.17 in Appendix B. The eigenvalues of the
coefficient matrix G are determined by the characteristic equation

det ( G − λ I ) = 0, (4.61)

which results in

λ1 = u+ a, λ2 = u− a, λ3,4,5 = u, (4.62)

with the sound velocity of the two-phase mixture as

a =
√√
√
√

1
αg�

a2
g�g

+
αl�

a2
l �l

. (4.63)

The effect of the thermal nonequlibrium on the two-phase sound velocity is shown in Fig. 4.11
for a water/vapor mixture at 10 bar.

As can be seen from this figure, the inclusion of thermal nonequilibrium effects avoids the
discontinuities as were typical of the equilibrium conditions and, in addition, more realistic
values are calculated for small vapor contents.
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Fig. 4.11: Two-phase homogeneous sound velocity, water/steam mixture under saturated condi-
tions at p = 10 bar

Introducing the sound velocity a, the coefficient matrix G can be further simplified to

G =


















u �a2 0 0 0

1
�

u 0 0 0

0 −αgαl

(
�a2

�ga2
g

− �a2

�la2
l

)
u 0 0

0 0 0 u 0

0 0 0 0 u


















. (4.64)

Despite the fact that three of the five eigenvalues are identical, a complete set of indepen-
dent eigenvectors exists which is the condition for the hyperbolic character of the governing
equations. These eigenvectors are

pressure wave: λ1 = u+ a

VR,1 =
[
a� , 1 , −αgαl

(
a�

�ga2
g

− a�

�la2
l

)
, 0 , 0

]
(4.65)

pressure wave: λ2 = u− a

VR,2 =
[
a� , 1 , αgαl

(
a�

�ga2
g

− a�

�la2
l

)
, 0 , 0

]
(4.66)
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void wave: λ3 = u

VR,3 = [ 0 , 0 , 1 , 0 , 0 ] (4.67)

entropy wave λ4 = u

VR,4 = [ 0 , , 0 , 0 , 1 , 0 ] (4.68)

entropy wave λ5 = u

VR,5 = [ 0 , 0 , 0 , 0 , 1 ] . (4.69)

Since the matrix G has a set of independent eigenvectors, there exists a matrix T which allows
a similarity transformation

T−1 ∂U
∂t

+ ΛT−1 ∂U
∂x

= T−1D, (4.70)

where

Λ = T−1GT (4.71)

is the diagonal matrix of the eigenvalues

Λ =














u+ a 0 0 0 0

0 u− a 0 0 0

0 0 u 0 0

0 0 0 u 0

0 0 0 0 u














. (4.72)

The columns of the transformation matrix T are the right eigenvectors of G

T =



















a� −a� 0 0 0

1 1 0 0 0

−αgαl

(
a�

�ga2
g

− a�

�la2
l

)
αgαl

(
a�

�ga2
g

− a�

�la2
l

)
1 0 0

0 0 0 1 0

0 0 0 0 1



















(4.73)
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with the inverse

T−1 =





















1
2a�

1
2

0 0 0

− 1
2a�

1
2

0 0 0

αgαl

(
1

�ga2
g

− 1
�la2

l

)
0 1 0 0

0 0 0 1 0

0 0 0 0 1





















. (4.74)

As already explained for the case of single-phase gas flows, the coefficient matrix G can be
split into elementary parts related to each of the eigenvalues

G =
5∑

k=1

Gk, (4.75)

with Gk = TΛkT−1, where the diagonal matrix Λk includes only the kth eigenvalue. All
the corresponding split matrices are given by Tables B.18 to B.21 in Appendix B.

With the diagonal matrix given in equation (4.72), the transformed system of equations
can be written as

T−1 ∂U
∂t

+ ΛT−1 ∂U
∂x

= T−1D, (4.76)

which results in the following compatibility relations for the “characteristic” directions
dx/dt = λk:

pressure wave:
dx

dt
= λ1 = u+ a

dp

dt
+�a

du

dt
= aF+�a2

(
1
�g

− 1
�l

)
σM

g − �a2

�2
g

(
∂�g

∂sg

)

p

σS
g − �a2

�2
l

(
∂�l

∂sl

)

p

σS
l (4.77)

pressure wave:
dx

dt
= λ1 = u− a

dp

dt
+�a

du

dt
= aF−�a2

(
1
�g

− 1
�l

)
σM

g − �a2

�2
g

(
∂�g

∂sg

)

p

σS
g − �a2

�2
l

(
∂�l

∂sl

)

p

σS
l (4.78)

void wave:
dx

dt
= λ3 = u

αgαl

(
1

�ga2
g

− 1
�la2

l

)
dp

dt
+
dαg

dt
=

�

�g�l
σM

g −αl

�2
g

(
∂�g

∂sg

)

p

σS
g +

αg

�2
l

(
∂�l

∂sl

)

p

σS
l (4.79)
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entropy wave:
dx

dt
= λ4 = u

ds

dt
=

1
αg�g

σS
g (4.80)

entropy wave:
dx

dt
= λ5 = u

ds

dt
=

1
αl�l

σS
l . (4.81)

The compatibility relations (4.77) to (4.81) give some insight into the wave propagation
phenomena. The first two eigenvalues λ1,2 correspond, as in the gasdynamic case, to pres-
sure/density fluctuations propagating with the velocity of sound relative to the flow of the two-
phase mixture. The last two eigenmodes, λ4,5, describe entropy (or temperature) fluctuations
propagating with the material transport velocity of the mixture. There exists no equivalence
in gasdynamics for the third eigenvalue λ3. This eigenmode describes void/pressure changes
propagating as the entropy (temperature) fluctuations with the material transport velocity u.
In the case of incompressible phases (ag → ∞, al → ∞), the third eigenmode reduces to a
pure void wave

dαg

dt
=

�

�g�l
σM

g − αl

�2
g

(
∂�g

∂sg

)

p

σS
g +

αg

�2
l

(
∂�l

∂sl

)

p

σS
l . (4.82)

The system of ordinary differential equations (4.77) to (4.81) has been used by Ferch [3]
as the basis for a “wave tracing algorithm” for homogeneous nonequilibrium transient flow.
The author reports that this technique which appears to be close to the classical method of
characteristics has largely reduced the numerical diffusion effects as compared with standard
finite difference schemes. However, it was also observed that numerical difficulties can arise
for transitions between single- and two-phase conditions due to the large sensitivity of the
sound velocity a with respect to the volumetric gas fraction αg for very low or very high gas
volume fractions.

4.3 Wallis model

For nonhomogeneous flow conditions (ug �= ul) a closed system of equations can be obtained
assuming equal local pressure values for the two phases:

pg = pint
g = pint

l = pl = p.

If it is further assumed that the source terms on the right-hand sides of the balance equations
are exclusive algebraic functions of state and flow parameters, the single pressure model leads
to what is often referred to as the “Wallis model” of nonhomogeneous two-phase flow [1].
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mass:

∂

∂t
(αg�g) +

∂

∂x
(αg�gug) = σM

g (4.83)

∂

∂t
(αl�l) +

∂

∂x
(αl�lul) = σM

l (4.84)

momentum:

∂

∂t
(αg�gug) +

∂

∂x
(αg�gug) + αg

∂p

∂x
= F int

g + Fg + σM
g uex (4.85)

∂

∂t
(αl�lul) +

∂

∂x
(αl�lul) + αl

∂p

∂x
= F int

l + Fl + σM
l uex (4.86)

energy:

∂

∂t

[

αg�g(ug +
u2

g

2
)

]

+
∂

∂x

[

αg�gug(ug +
pg

�g
+
u2

g

2
)

]

+ p
∂αg

∂t

= σQ
g +Qg + F int

g uint + Fgug + σM
g

[
hex +

(uex)2

2

]
(4.87)

∂

∂t

[
αl�l(ul +

u2
l

2
)
]

+
∂

∂x

[
αl�lul(ul +

pl

�l
+
u2

l

2
)
]

+ p
∂αl

∂t

= σQ
f +Ql + F int

l uint + Flul + σM
l

[
hex +

(uex)2

2

]
(4.88)

entropy:

∂

∂t
(αg�gsg) +

∂

∂x
(αg�gugsg) =

σQ
g

Tg
+
Qg

Tg
+
F int

g

Tg
(uint − ug)

+
σM

g

Tg

[
hex − hg +

1
2
(uex − ug)2

]
+ σM

g sg (4.89)

∂

∂t
(αl�lsl) +

∂

∂x
(αl�lulsl) =

σQ
f

Tl
+
Ql

Tl
+
F int

l

Tl
(uint − ul)

+
σM

l

Tl

[
hex − hl +

1
2
(uex − ul)2

]
+ σM

l sl (4.90)
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With the state equations �i = f(p, si), or in the differential form

δ�i =
1
a2

i

δp+
(
∂�i

∂si

)

p

δsi, (4.91)

the expansion of the time and space derivative terms of equations (4.83) to (4.89) yields the
nonconservative forms of the mass, momentum, and entropy equations

mass:

αg

a2
g

(
∂p

∂t
+ ug

∂p

∂x

)
+ �g

(
∂αg

∂t
+ ug

∂αg

∂x

)

+αg

(
∂�g

∂sg

)

p

(
∂sg

∂t
+ ug

∂sg

∂x

)
+ αg�g

∂u

∂x
= σM

g (4.92)

αl

a2
f

(
∂p

∂t
+ ul

∂p

∂x

)
+ �l

(
∂αl

∂t
+ ul

∂αl

∂x

)

+αl

(
∂�l

∂sl

)

p

(
∂sl

∂t
+ ul

∂sl

∂x

)
+ αl�l

∂u

∂x
= σM

l (4.93)

momentum:

αg�g

(
∂ug

∂t
+ ug

∂ug

∂x

)
+ αg

∂p

∂x
= F int

g + σM
g (uex − ug) + Fg (4.94)

αl�l

(
∂ul

∂t
+ ul

∂ul

∂x

)
+ αl

∂p

∂x
= F int

l + σM
l (uex − ul) + Fl (4.95)

entropy:

αg�g

(
∂sg

∂t
+ ug

∂sg

∂x

)
= σS (4.96)

αl�l

(
∂sl

∂t
+ ul

∂sl

∂x

)
= σS (4.97)

with the phasic entropy source terms

σS
g =

[
hex − hg +

1
2
(uex − ug)2

]
σM

g

Tg
+
σQ

g

Tg
+ (uint − ug)

F int
g

Tg
+
Qg

Tg
(4.98)
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σS
l =

[
hex − hl +

1
2
(uex − ul)2

]
σM

l

Tl
+
σQ

l

Tl
+ (uint − ul)

F int
l

Tl
+
Ql

Tl
. (4.99)

The six balance equations (4.92) to (4.97) can be combined in the vector form

A
∂U
∂t

+ B
∂U
∂x

= C, (4.100)

with the state and source vectors U and C, respectively,

U =


















p

ug

ul

α

sg

sl


















, C =


















σM
g

σM
l

F int
g + σM

g (uex − ug) + Fg

F int
l + σM

l (uex − ul) + Fl

σS
g

σS
l


















(4.101)

and the matrices A and B given in Tables B.23 and B.24 in Appendix B. Multiplying equation
(4.100) with A−1 provides the even more compact form

∂U
∂t

+ G
∂U
∂x

= D, (4.102)

with the coefficient matrix

G =
























ug − αl∆u
�ga

2
0

�sa2
l

αga
2
0

�g�l

�s
αla

2
0

�g�l

�s
a2
0∆u

�g�l

�s
0 0

1
�g

ug 0 0 0 0

1
�l

0 ul 0 0 0

αgαl
∆u
�s

a2
0

a2
ga

2
l

αgαl
�g

�s

a2
0

a2
l

−αgαl
�l

�s

a2
0

a2
g

ul + αl∆u
�ga

2
0

�sa2
l

0 0

0 0 0 0 ug 0

0 0 0 0 0 ul
























,

(4.103)
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and the abbreviations

�s = αg�l + αl�g

a2
0 =

αg�l + αl�g
αg�l

a2
g

+
αl�g

a2
l






. (4.104)

The eigenvalues of the system of equations (4.100) or (4.102) are the roots of the characteristic
equation

f(λ) = det (B− λA) = 0 (4.105)

or

f(λ) = det (G− λI) = 0. (4.106)

Two of the eigenvalues can be obtained immediately from the entropy relations

λ5 = ug λ6 = ul. (4.107)

The remaining eigenvalues λ1 to λ4 cannot be expressed in a closed algebraic form; however,
it can be shown that two of them are complex conjugate,

λ1,2 = uR ± i∆ uI , (4.108)

with the real part

ul ≤ uR ≤ ug for ul ≤ ug. (4.109)

If the first two eigenvalues are removed from the characteristic equation (4.105), a fourth-order
equation f�(λ) = 0 remains,

f� =
f

(ug − λ)(ul − λ)
, (4.110)

or in detail

f� = αl�g

[

1 − (λ− ul)
2

a2
l

]

(λ− ug)2 + αg�l

[

1 − (λ− ugl)
2

a2
g

]

(λ− ul)2. (4.111)

As an example, the characteristic function f∗(λ) is shown in Figs. 4.12 and 4.13 for a satu-
rated water/steam mixture at p = 10 bar and a volumetric vapor fraction of αg = 0.25. The
phasic flow velocities are ug = 100 m/s and ul = 50 m/s respectively. The figure indicates
that there exist only two further real eigenvalues which can be interpreted as propagation ve-
locity of of pressure waves λ3,4 = u± a with the mixture flow velocity u and mixture sound
velocity a for which where no algebraic expressions can be derived.
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Fig. 4.12: Characteristic function of Wallis model, straight line: compressible phases, dashed
line: incompressible phases

Fig. 4.13: Characteristic function of Wallis model, straight line: compressible phases, dashed
line: incompressible phases

The characteristic function has the interesting property that f�(λ) becomes independent
of the phasic sound velocities for λ = ug and λ = ul:

λ = ug : f� = αg�l(ug − ul)2

λ = ul : f� = αl�g(ug − ul)2





. (4.112)

For the specific case of incompressible vapor/gas and liquid, ag → ∞, al → ∞, the charac-
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teristic function f∗ reduces to the quadratic expression

f�(λ) = αl�g(λ− ug)2 + αg�l(λ− ul)2 (4.113)

which, as shown in Figs. 4.12 and 4.13, represents a good approximation for small character-
istic velocities |λ| < a. As a solution of the corresponding characteristic equation f�(λ) = 0
one obtains for the complex conjugate eigenvalues

λ1,2 =
αg�lul + αl�gug

αg�l + αl�g
± i

√
αgαl�g�l

αg�l + αl�g
(ug − ul)

2
.

Exclusively real eigenvalues are obtained only for the specific case of equal phasic veloc-
ities ug = ul = u

λ1,2 = u

λ3,4 = u± a

λ5,6 = u






(4.114)

with the “sound velocity”

a = a0 =
√√
√
√

αg�l + αl�g
αg�l

a2
g

+
αl�g

a2
l

. (4.115)

The fact that the “Wallis model” has not a complete set of real eigenvalues has the follow-
ing consequences:

• the model does not represent a “well-posed” initial-boundary value problem;

• the system of equations cannot be transposed into the characteristic form and, therefore,
all numerical techniques developed for fully hyperbolic systems of equations cannot be
applied;

• the model does not realistically describe pressure wave phenomena, and for this reason,
it is not able to provide realistic critical flow predictions;

• high wave number (or short wave length) instabilities require specific damping mecha-
nisms in order to obtain stable numerical results .

Despite these disadvantages, the Wallis model is still the basis for many of today’s transient
two-phase flow computer codes. The usually applied numerical solution methods, based on
staggered grid and donor cell techniques, provide a sufficient amount of numerical diffusion
that stable results can be obtained for many transient two-phase flow conditions. However,
this is compromised by the severe inaccuracy in predicting local flow quantities, especially in
the presence of large density or void fraction gradients.
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5 A Hyperbolic Model for Two-Phase Flow

This chapter provides a detailed description of a hyperbolic two-phase flow model as was de-
veloped at the Joint Research Center Ispra for the numerical simulation of nonhomogeneous,
nonequilibrium two-phase flow conditions. The specific features of the model include the ca-
pability for a fully algebraic evaluation of the eigenspectrum with regard to eigenvalues and
related right- and left-side eigenvectors. The model forms the basis of the Advanced Two-
Phase Flow Module (ATFM) as described in Chapter 8. Some background information on the
development of the model and its application to first test cases is given by Städtke et al. in [1]
and [2].

5.1 One-dimensional flow

The present hyperbolic two-fluid model is based on the single pressure two-fluid model as
described Chapter 3 and Appendix A. With the restriction to one-dimensional two-phase flow
the balance equations for mass, momentum, and energy (entropy) (3.21) to (3.24) become for
i = g (gas), l (liquid)

mass:

∂

∂t
(αi�i) +

∂

∂x
(αi�iui) = σM

i (5.1)

momentum:

∂

∂t
(αi�iui) +

∂

∂x
(αi�iu

2
i ) + αi

∂p

∂x
= F int

i + σM
i uex + Fi (5.2)

energy:

∂

∂t

[
αi�i

(
ei +

u2
i

2

)]
+

∂

∂x

[
αi�iui

(
hi +

u2
i

2

)]
+ p

∂αi

∂t

= σQ
i + σM

i

[
hex +

(uex)2

2

]
+ F int

i uint +Qi + Fiui (5.3)

entropy:

∂

∂t
(αi�isi) +

∂

∂x
(αi�iuisi) = σS,int

i +
Qi

Ti
, (5.4)
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with the internal entropy source resulting from interfacial transfer processes,

σS,int
i =

σM
i

Ti

[
Tisi + (hex − hi) +

1
2
(uex − ui)2

]
+
F int

i

Ti
(uint − ui). (5.5)

5.1.1 Interfacial momentum coupling terms

As shown for the Wallis model the occurrence of complex eigenvalues in the six-equation two-
fluid model is linked with the presence of nonhomogeneous flow conditions ug �= ul. This
indicates that the assumption of exclusively algebraic terms for the interfacial drag results
in an incomplete formulation for the interfacial momentum coupling. Apart from the non-
hyperbolic character of the flow equations, there also exists strong evidence that the use of
exclusively algebraic formulations for the interfacial forces leads to the calculation of incorrect
values for the sound velocity and consequently erroneous critical flow rates.

In order to obtain a more general expression for the interfacial momentum coupling, the
interfacial forces are split into a viscous part, F v, and a nonviscous part, F nv,

F int
g = F v

g + F nv
g

F int
l = F v

l + F nv
l





, (5.6)

where the nonviscous part is assumed to include only time and space derivative terms. Apart
from F nv, all the other source terms on the right-hand side of the conservation equations are
further assumed to be algebraic functions of flow and state parameters of the two phases.

Although there is a common agreement about the need for the derivative terms in the
interfacial momentum coupling expressions, there seems to be at present no way to deduce
these terms completely from basic principles. The following considerations are therefore not
free of some “heuristic” elements.

In order to obtain a more complete form for the nonviscous interfacial forces, the following
guidelines have been postulated:

• the nonviscous interfacial terms should at least qualitatively include our present knowl-
edge about the virtual mass effects;

• the additional terms should provide only a moderate modification to the basic Wallis
model of two-phase flow;

• since so far no specific assumption have been made for the state equations, the formula-
tion should be “symmetrically” with regard to g (gas or vapor) and l (liquid);

• the nonviscous interfacial forces should not affect the sum of the momentum equations;

• the nonviscous interfacial terms should not contribute to the entropy source for the indi-
vidual phases;

• the coefficient matrix should have only real eigenvalues;

• the coefficient matrix should have a complete set of independent eigenvectors;
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• the system of equations should include as limiting cases the single-phase flow of
gas/vapor (αg → 1), or liquid (αl → 1), and homogeneous flow (ug = ul);

• the system of equations should be capable of representing existing experimental values
for two-phase sound velocity end related critical flow conditions;

• the additional terms should not violate the second law of thermodynamics.

The “virtual” or “added” mass terms in the phasic momentum equations account for the
effect of the local mass displacement in the case of a relative acceleration between the two
phases. The existence of such a force was first deduced by Lamb [3] for frictionless (irrota-
tional) flows around single spheres, which might be generalized to

F vm
i ∼ f(αg)�m

(
dlug

dt
− dgul

dt

)
. (5.7)

The final form of the “virtual mass” term, e.g., its dependence on the void fraction αg or the
formulation of the time and spatial derivatives, is still a matter of controversial discussions. In
the present analysis, a specific form of the virtual mass force is introduced which represents a
generalization of the “objective” form as proposed by Drew et al. [4],

F nv
i = ±αgαl�

[
c

(
dlug

dt
− dgul

dt

)
+ d(ug − ul)

(
∂ug

∂x
− ∂ul

∂x

)]
. (5.8)

The expression still includes two open parameters. The factor c accounts for the actual spatial
phase distribution of the two phases and, therefore, is expected to be flow regime dependent.
The second parameter d, which was introduced by Drew in order to satisfy the postulate of
objectivity, is expected to change the sign if the void fraction αg varies from αg = 0 (pure
liquid phase) to αg = 1 (pure gas phase). Both parameters c and d will be specified in the
following section. It should be noted here that the introduction of only virtual mass forces in
the two momentum equations does not result in a fully hyperbolic system of equations for all
two-phase flow conditions.

A further term considered in the nonviscous part of the interfacial forces originates from
the principal difference between the phasic pressure and the pressure at the interface as in-
cluded in the general form of the momentum conservation equations (3.1) to (3.3) in Chap-
ter 3. Although this pressure difference cannot be described explicitly in a single-pressure
model, it can be shown that in the case when the pressure differences can be expressed by
algebraic relationships, the two-pressure approach becomes equivalent to a single-pressure
model where the pressure p represents an average pressure for the two-phase mixture. For
these conditions the effect of the difference between phasic and interfacial pressure in the two
momentum equations can be described by an expression of the form

F∆p
i ∼ �cont(ug − ul)2

∂αg

∂x
. (5.9)

In the following this is generalized to

F∆p
i = ±− αgαle�(ug − ul)2

∂αg

∂x
(5.10)

with an open parameter, e, to be specified.
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To date, nearly all attempts to obtain a complete formulation of the interfacial forces have
been restricted to the assumption of incompressible phases. The effect of compressibility on
the interfacial forces is therefore not well understood. In the present analysis the compress-
ibility effects are considered by the terms

F comp = ±ri(ug − ul)
di�i

dt
, i = g, l, (5.11)

where rg and rl represent open parameters.

Combining the different contributions as introduced above, the following rather general
form for the “non-viscous” contribution to the interfacial momentum coupling is obtained as

F nv
g = −αgαl�

[
c

(
dlug

dt
− dgul

dt

)
− d(ug − ul)

(
∂ug

∂x
− ∂ul

∂x

)]

︸ ︷︷ ︸
Fvm

−αgαle�(ug − ul)2
∂αg

∂x

−αgαl

[
rg(ug − ul)

dg�g

dt
+ rl(ug − ul)

dl�l

dt

]

F nv
l = −F nv

g






, (5.12)

where the substantive derivatives are defined as

dlug

dt
=
∂ug

∂t
+ ul

∂ug

∂x
,

dg�g

dt
=
∂�g

∂t
+ ug

∂�g

∂x

dgul

dt
=
∂ul

∂t
+ ug

∂ul

∂x
,

dl�l

dt
=
∂�l

∂t
+ ul

∂�l

∂x






. (5.13)

The open parameters c, d, e, rg, and rl in equation (5.12) are assumed to be algebraic functions
of state and flow parameters. Introducing the nonviscous interfacial forces (5.12) the expanded
forms of the one-dimensional balance equations become

A
∂U
∂t

+ B
∂U
∂x

= C, (5.14)
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with the state and source vectors U and C defined as

U =


















p

ug

ul

α

sg

sl


















, C =


















σM
g

σM
l

F v
g + σM

g (uex − ug) + Fg

F v
l + σM

l (uex − ul) + Fl

σS
g

σS
l


















(5.15)

with the total phasic entropy sources

σS
g =

σM
g

Tg

[
(hex − hg) +

1
2

(uex − ug)
2

]
+
F v

g

(
uint − ug

)

Tg
+
σQ

g

Tg
+
Qg

Tg

σS
l =

σM
l

Tl

[
(hex − hl) +

1
2

(uex − ul)
2

]
+
F v

l

(
uint − ul

)

Tl
+
σQ

l

Tl
+
Ql

Tl






(5.16)

and the matrices A and B for the time and space derives of the governing parameters.
The eigenvalues of the system of equations (5.14) are the roots of the characteristic equa-

tion

det (B− λA) = 0. (5.17)

From equation (5.17) two eigenvalues can be obtained immediately as

λ5 = ug, λ6 = ul, (5.18)

which represent the material transport velocities of the two phases.
By analogy to the simplified models discussed in the previous sections, the four remaining

eigenvalues are expected to characterize the void/density waves (λ1, λ2) and pressure/density
(sound) waves. Due to the assumption of equal local pressure values for the two phases, a
unique value for the propagation of pressure waves (sound velocity a) is expected relative to
an average mixture velocity u. This will result in two conjugate eigenvalues of the form

λ3,4 = u± a, (5.19)

with the mixture velocity u and the mixture sound velocity a.
Rather comprehensive algebraic studies have been performed to verify the effect of the

open parameters in the formulation of the nonviscous interfacial forces (5.12) on the eigenval-
ues and related eigenvectors. This required an enormous amount of algebraic manipulations
which could be realized only by an extensive use of Computer Algebra Systems (CAS) such
as Stephan Wolfram’s “Mathematica, a System for Doing Mathematics by Computers” [6].
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As an outcome of this effort, the most physically meaningful results with regard to the char-
acteristic velocities were obtained for the following combination of parameters

d = −αg�l − αl�g

�

e =
�l + �g

�

rg = αg
�l + �g

�g

rl = αl
�l + �g

�l






. (5.20)

The parameter c in the virtual mass term of (5.12) does not directly affect the existence of a
hyperbolic system of equations. This parameter, in the following denoted as k = c, might be
used to adjust the interfacial momentum coupling with respect to different flow regimes. For
dispersed droplet or bubbly flow, values of k = 0.5 have been estimated, and for completely
separated flows (e.g. stratified flow) it is expected that k approaches zero. In the case of churn-
turbulent two-phase conditions with strong interfacial momentum coupling values of k > 0.5
might be more appropriate.

Introducing the parameters k, d, e, rg, and rl, the final form of the nonviscous interfacial
forces becomes

F nv
g = −αgαl�

[
k

(
dlug

dt
− dgul

dt

)
+
αg�l − αl�g

�
(ug − ul)

(
∂ug

∂x
− ∂ul

∂x

)]

−αgαl(�g + �l)(ug − ul)2
∂αg

∂x

−αgαl(�g + �l)(ug − ul)
[
αg

�ga2
g

dgp

dt
+

αl

�lal

dlp

dt

]

−αgαl(�g + �l)(ug − ul)
[
αg

�ga2
g

dgp

dt
+

αl

�lal

dlp

dt

]

αgαl(�g + �l)(ug − ul)
[
αg

�g

(
∂�g

∂sg

)
dgsg

dt
+
αl

�l

(
∂�l

∂sl

)
dlsl

dt

]

F nv
l = −F nv

g .






.

(5.21)

This form of the nonviscous interfacial forces will be used through all the following model
derivations. An extended version for two-dimensional flow conditions is presented in Sec-
tion 5.2.
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5.1.2 Final form of conservation equations

Introducing the nonviscous interfacial forces F nv
i (5.21) the conservation equations for mass,

momentum, and energy (5.1) to (5.4) can be written in a compact matrix form as

A
∂U
∂t

+ B
∂U
∂x

= C, (5.22)

with the state and source term vectors already define by equation (5.15) and the coefficient
matrices A and B for the time and space derivative terms as explicitly given in Tables B.27
and B.28 in Appendix B.

The system of governing equations (5.22) can be transposed into a more compact form by
multiplying with A−1, which yields

∂U
∂t

+ A−1B
∂U
∂x

= A−1C, (5.23)

∂U
∂t

+ G
∂U
∂x

= D. (5.24)

The coefficient matrix G = A−1B becomes

G =

























ug − αl
�g

�s

a2
0∆u
a2

l

αga
2
0

�l�g

�s
αla

2
0

�l�g

�s
a2
0∆u

�l�g

�s
0 0

�̂l

�̂2
α̂gug + α̂lul −α̂l

�̂l

�̂g
∆u 0 0 0

�̂g

�̂2
α̂gl

�̂g

�̂l
∆u α̂gug + α̂lul 0 0 0

αlαg
∆u
�s

a2
0

a2
l a

2
g

αlαg
�g

�s

a2
0

a2
l

−αlαg
�l

�s

a2
0

a2
g

ul+αl
�g

�s

a2
0∆u
a2

l

0 0

0 0 0 0 ug 0

0 0 0 0 0 ul

























,

(5.25)

with the additional abbreviations

�̂g = �g + k�, �̂l = �l + k�, �̂ =
√
�g�l + k�2,

�s = αg�l + αl�g, α̂g =
αg�g �̂l

�̂2
, α̂l =

αl�l�̂g

�̂2





(5.26)

and the condition

α̂g + α̂l = 1. (5.27)



80 5 A Hyperbolic Model for Two-Phase Flow

The expression a0 in equation (5.25) is defined as

a0 =
√√
√
√

αg�l + αl�g
αg�l

a2
g

+
αl�g

a2
l

, (5.28)

which becomes identical with the sound velocity of the Wallis model for the specific case
of equal phasic velocities ∆u = 0. The new source vector D = A−1C, as introduced in
equation (5.24), is given in Table B.30 in Appendix B.

5.1.3 Characteristic analysis – eigenvalues

For the system of equations

∂U
∂t

+ G
∂U
∂x

= D, (5.29)

the corresponding characteristic function is defined as

f(λ) = det (G− λ I) , (5.30)

or in a reduced form after removing the eigenvalues for the entropy waves

f� =
f

(ug − λ)(ul − λ)
. (5.31)

Fig. 5.1: Characteristic function for the hyperbolic and Wallis models, saturated water/steam
mixture at p = 10 bar, void fraction αg = 0.25, phasic velocities: ug = 100 m/s, ul = 50 m/s
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Fig. 5.2: Characteristic function for the hyperbolic and Wallis models, saturated water/steam
mixture at p = 10 bar, void fraction αg = 0.25, phasic velocities: ug = 100 m/s, ul = 50 m/s

The characteristic function f�(λ) for the present hyperbolic model and those obtained for
the Wallis model are shown qualitatively in Figs. 5.1 and 5.2.

The figure indicates that the newly introduced nonviscous terms in the momentum equa-
tions, responsible for achieving a fully hyperbolic system of equations, represent only a mod-
erate modification with respect to the original Wallis model. The figure also shows that, be-
sides the already known two eigenvalues λ1 = ug and λ2 = ul, there exist four further real
solutions for the characteristic equations.

The eigenvalues of the coefficient matrix are determined as the roots of the characteristic
equation (5.30)

det ( G − λ I ) = 0, (5.32)

which results in the following characteristic velocities (eigenvalues)

void waves:

λ1 = ug

λ2 = ul





(5.33)

pressure waves:

λ3 = u+ a

λ4 = u− a





(5.34)
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propagation of temperature/entropy fluctuations:

λ5 = ug

λ6 = ul





. (5.35)

The expressions for the two-phase mixture flow velocity u and the two-phase mixture sound
velocity a have the following form:

u =
(αgug + αlul) + k

(
αg�gug + αl�lul

αg�g + αl�l

)

1 + k
�2

�g�l

(5.36)

and

a2 = ã2 − ∆a2, (5.37)

with

ã2 =
αg�l + αl�g
αg�l

a2
g

+
αl�g

a2
l

1 + k
αg�g + αl�l

αg�l + αl�g

1 + k
�2

�g�l

,

∆a2 = αgαl�g�l(ug − ul)2
(�l + k�)(�g + k�)

(�g�l + k�2)2






. (5.38)

With the abbreviations as defined in equation (5.26) the mixture velocity (5.36) and the mix-
ture sound velocity (5.37) can be written in a more compact form as

u = α̂gug + α̂lul (5.39)

and

ã2 =
�̂s

�s

�l�g

�̂2
a2
0 − α̂gα̂l(ug − ul)2,

with the basic sound velocity a0 as already define by equation (5.28) and the newly introduced
density

�̂s = �s + k�. (5.40)

Calculated values for the sound velocity are shown in Fig. 5.3 for the special case of equal
phase velocities (ug = u0). The figure indicates a strong effect of the virtual mass coefficient
k where the two-phase sound velocity can be considerably smaller than the corresponding
limiting values for pure liquid (αg = 0) or pure gas (αg = 1).

With the increase of the difference between the phasic velocities ∆u = (ug − ul), the
interfacial momentum coupling becomes larger which results in a reduction of the two-phase
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Fig. 5.3: Two-phase sound velocity as a function of the void fraction, effect of “virtual mass”
coefficient, saturated water/steam at pressure p = 1 bar, equal phase velocities

sound velocity as shown in Fig. 5.4. However, the effect is rather small as long as the “slip”
velocity is small compared with the sound velocity a0. A noticeable reduction in sound veloc-
ity exists only for relatively large void fractions if the slip velocity becomes of the same order
of magnitude as the sound velocity. Also for these conditions, the deviation from the strictly
homogeneous case never exceeds a value of more than 10%.

Fig. 5.4: Two-phase sound velocity as a function of the void fraction; effect of the slip velocity
∆u, saturated water/steam at pressure p = 1 bar
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The expression for the pressure wave propagation includes two limiting cases with respect
to the “virtual mass” coefficient k.

(1) k → 0 :

u = u1 = αgug + αlul

a2 = a2
1 =

αg�l + αl�g
αg�l

a2
g

+
αl�g

a2
l

− αlαg(ug − ul)2






. (5.41)

For the specific case of equal phase velocities (ug = ul = u), the sound velocity becomes

a2
1 =

αg�l + αl�g
αg�l

a2
g

+
αl�g

a2
l

= a2
0, (5.42)

as also obtained for the Wallis model, equation (4.102) in Section 4.3.

(2) k → ∞ :

u = u2 =
αg�gug + αl�lul

αg�g + αl�l

a2 = a2
2 = 1

αg�

�ga2
g

+
αl�

�la2
l

− αlαg�l�g

�2
(ug − ul)2






. (5.43)

For equal phase velocities, the sound velocity becomes identical with the sound velocity
for homogeneous nonequilibrium flow as given in Section 4.2 by equation (4.53)

a2
2 =

1
αg�

�ga2
g

+
αl�

�la2
l

= a2
hom. (5.44)

The first case (1) describes flow conditions with spatially separated phases where the momen-
tum coupling is reduced to the interfacial friction forces. For this condition, the characteristic
velocity u1 represents the average volumetric mixture velocity. The first term in the sound ve-
locity a1 is known as the “frozen” sound velocity for nonhomogeneous flow conditions with
(instantaneous) equal flow velocities which can also be derived from the six-equation model if
no derivative terms for the interfacial momentum coupling between the phases are considered
(Wallis model).

If, as in the second case (2), the “virtual mass” force becomes dominating, the flow is
strongly driven toward homogeneous conditions ug = ul = u. In this case, the characteristic
flow velocity, u2, is the average mass velocity of the two-phase mixture, and the first term in
the expression for the mixture sound velocity, a2, represents the “frozen” sound velocity for
homogeneous two-phase flow defined as

ã2
2 =

(
∂p

∂�

)

X,sg ,sl = const

(5.45)
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with
1
�

=
X

�g
+

1 −X

�l
. (5.46)

Experimental data on sound velocities are rather scarce and mostly restricted to dispersed
droplet or bubbly conditions. Figure 5.5 compares measured sound velocities for water/vapor
mixtures from Nakoryakov et al. [5] with the values calculated using the present model. The
calculated sound velocities are within the scatter of the measured data for a “virtual mass”
coefficient of k = 0.25, which is not far from the value as determined for idealized dispersed
flow conditions.

Fig. 5.5: Sound velocity in water/steam media as a function of the void fraction; saturated
conditions at pressure p = 1 bar

5.1.4 Characteristic analysis – eigenvectors and splitting of coefficient
matrix

For the six real eigenvalues, a complete set of independent eigenvectors can be derived which
is the condition for the existence of a fully hyperbolic system of governing equations. These
eigenvectors, which are determined up to an arbitrary factor, can be written as follows:

void wave: λ1 = ug

VR,1 =
[
αl�l(∆u)2 , 0 , ∆u , −αl

(
1 − αl

(∆u)2

a2
l

)
, 0 , 0

]
(5.47)

void wave: λ2 = ul

VR,2 =
[
αg�g(∆u)2 , −∆u , 0 , αg

(
1 − αg

(∆u)2

a2
g

)
, 0 , 0

]
(5.48)
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pressure wave: λ3 = u+ a

VR,3 =

[

�̂2 ã2 , �̂l

(
a− αl�l �̂g

�̂2
∆u

)
, �̂g

(
a+

αg�g �̂l

�̂2
∆u

)

− αgαl
�̂2

�̂s

(
�̂g ã

2

�ga2
g

− �̂l ã
2

�la2
l

)
, 0 , 0

]

(5.49)

pressure wave: λ4 = u− a:

VR,4 =

[

�̂2 ã2, �̂l

(
−a− αl�l �̂g

�̂2 ∆u
)
, �̂g

(
−a+

αg�g �̂l

�̂2
∆u

)

− αgαl
�̂2

�̂s

(
�̂g ã

2

�ga2
g

− �̂l ã
2

�la2
l

)
, 0 , 0

]

(5.50)

entropy wave: λ5 = ug

VR,5 = [ 0 , 0 , 0 , 0 , 1 , 0 ] (5.51)

entropy wave: λ6 = ul

VR,6 = [ 0 , 0 , 0 , 0 , 0 , 1 ] . (5.52)

The six right-hand side eigenvectors (5.47) to (5.50) can be combined in a matrix, VR,
which is given in Table B.31 in Appendix B.4. Since all the eigenvectors are independent of
each other, there exists a matrix T which allows a similarity transformation of the form

T−1 ∂U
∂t

+ ΛT−1 ∂U
∂x

= T−1D = E, (5.53)

with the diagonal matrix of the eigenvalues

Λ = T−1GT=


















ug 0 0 0 0 0

0 ul 0 0 0 0

0 0 u+ a 0 0 0

0 0 0 u− a 0 0

0 0 0 0 ug 0

0 0 0 0 0 ul


















. (5.54)

The columns of the transformation matrix T are the right-hand side eigenvectors of G,

T = VT
R. (5.55)
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The inverse matrix T−1 is, apart from a common row factor, equivalent to the matrix of the
left-hand side eigenvectors of the matrix G and, therefore, can also be written as

T−1 = VL (5.56)

with the matrix of left eigenvectors VL as given by in Table B.32 in Appendix B.
From the characteristic equation (5.53), the following compatibility relations can be de-

rived for nonhomogeneous two-phase flow:

void wave:
dx

dt
= λ1 = ug

αg∆u
a2

g

dp

dt
+ αg�g

dug

dt
− αg�g

�̂l

�̂g

dul

dt
+ �g ∆u

dαg

dt
= E1 (5.57)

void wave:
dx

dt
= λ2 = ul

αl∆u
a2

l

dp

dt
+ αl�l

�̂g

�̂l

dug

dt
− αl�l

dul

dt
− �l ∆u

dαg

dt
= E2 (5.58)

pressure wave:
dx

dt
= λ3 = u+ a

(a �̂s + �̂∆u∆a)
dp

dt
+ αg �̂

2

(
a2
2 + a∆u

�g �̂s

�̂2

)
dug

dt

+αl �̂
2

(
a2
1 − a∆u

�l �̂s

�̂2

)
dul

dt
+ �̂2 ã2∆u

dαg

dt
= E3 (5.59)

pressure wave:
dx

dt
= λ4 = u− a

(−a �̂s + �̂∆u∆a)
dp

dt
+ αg �̂

2

(
a2
2 − a∆u

�g �̂s

�̂2

)
dug

dt

+αl �̂
2

(
a2
1 + a∆u

�l �̂s

�̂2

)
dul

dt
+ �̂2 ã2∆u

dαg

dt
= E4 (5.60)

entropy wave:
dx

dt
= λ5 = ug

dsg

dt
= E5 =

σS
g

αg�g
(5.61)

entropy wave:
dx

dt
= λ6 = ul

dsl

dt
= E6 =

σS
l

αl�l
. (5.62)
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In equations (5.59) and (5.60) additional abbreviations are introduced which are defined
as

a2
1 = a2 − αg

2�l�g�̂l

�̂4
(∆u)2 (5.63)

and

a2
2 = a2 − αl

2�l�g �̂
2
g

�̂4
(∆u)2. (5.64)

The first four elements of the new source vector, E1 to E4, which are not yet defined, are
given explicitly in Table B.33 in Appendix B.

Many numerical schemes dealing with hyperbolic flow equations need a splitting of the
coefficient matrix G into elementary parts with respect to the individual eigenvalues λk . As
was shown already for the case of single-phase gas or homogeneous two-phase flow, the split
matrix Gk is obtained as

Gk = TΛkT−1 with the condition G =
6∑

k=1

Gk (5.65)

where the diagonal matrix Λk includes only the kth eigenvalue.
The split matrices as introduced in Equation (5.65) can also be written in component no-

tation as the product of the kth eigenvalue with the kth column vector of the matrix T and the
kth row vector of the inverse matrix T−1

(Gk)i,j = λkTi,kT
−1
k,j . (5.66)

The corresponding elementary split coefficient matrices Gk are given separately in Tables
B.34 to B.31 in Appendix B.4.

As can be seen from Tables B.34 and B.35 the split matrices Gk for the two void waves,
λ1 = ug and λ1 = ul, exhibit singularities in the case of equal flow velocities ∆u → 0.
Such homogeneous conditions might have been specified as initial conditions or might occur
during a transient calculation when a new equilibrium steady state is reached. Since in the
numerical methods the split matrices are sorted with regard to the sign of the eigenvalues, the
problem can be avoided using the sum and difference of the split matrices depending whether
co-current

sign(ug) = sign(ul): G+
12 = G1+G2 (5.67)

or counter-current flow conditions

sign(ug) �= sign(ul): G−
12 = G1−G2 (5.68)

exist. It can be easily shown that for homogeneous conditions (λ1 = λ2 = u) the matrix
remains well defined,

Ghom
12 = lim

∆u→0
(G1+G2). (5.69)

The resulting matrix Ghom
12 is given in Table B.36 in Appendix B.4.
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5.1.5 Homogeneous flow conditions as a limiting case

Under some circumstances it might be desirable to drive the flow toward homogeneous con-
ditions, e.g., during the transition from two-phase to single-phase conditions when the liquid
or gas phase disappears. Such a solution is provided as a limiting case for the parameter k in-
troduced in the expression for the nonviscous forces as given by equation (5.21). For k → ∞
and ∆u→ 0 the coefficient matrix (5.25) simplifies to

Ghom = lim
k→∞

G =
























u αga
2
0

�l�g

�s
αla

2
0

�l�g

�s
0 0 0

1
�

u 0 0 0 0

1
�

0 u 0 0 0

0 αlαg
�g

�s

a2
0

a2
l

−αlαg
�l

�s

a2
0

a2
g

u 0 0

0 0 0 0 u 0

0 0 0 0 0 u
























. (5.70)

With ug = ul = u the second and the third column in (5.70) can be combined with results
in a matrix with two identical lines for the momentum equation. If one of these lines is dropped
a coefficient matrix is obtained which is identical with those derived for homogeneous thermal
nonequilibrium conditions by (4.60) in Section 4.2,

Ghom =




















u
�g�la

2
ga

2
l

αg�la2
l +αl�ga2

g

0 0 0

1
�

u 0 0 0

0
αgαl(�la

2
l − �ga

2
g)

αg�la2
l +αl�ga2

g

u 0 0

0 0 0 u 0

0 0 0 0 u




















. (5.71)

The compatibility relations (5.57) to (5.62) include as a limiting case the specific form of
homogeneous flow which can be obtained with k → ∞ and setting ug = ul = u. For the first
two eigenvalues, only one equation remains for the void waves
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void wave:
dx

dt
= λ1,2 = u

αlαg

(
1

�ga2
g

− 1
�ga2

g

)
dp

dt
+
dαg

dt
=

�

�l�g
σM

g − αl

�2
g

(
∂�g

∂sg

)

p

σS
g − αg

�2
l

(
∂�l

∂sl

)

p

σS
l ,

(5.72)

The two pressure wave modes simplify to

pressure wave:
dx

dt
= λ3 = u+ a

dp

dt
+� a

dαg

dt
= � a2

(
1
�g

− 1
�l

)
σM

g − � a2

�2
g

(
∂�g

∂sg

)

p

σS
g − � a2

�2
l

(
∂�l

∂sl

)

p

σS
l , (5.73)

pressure wave:
dx

dt
= λ3 = u− a

dp

dt
−� adαg

dt
= � a2

(
1
�g

− 1
�l

)
σM

g − � a2

�2
g

(
∂�g

∂sg

)

p

σS
g − � a2

�2
l

(
∂�l

∂sl

)

p

σS
l , (5.74)

propagating with the homogeneous equilibrium speed of sound a relative to the mixture ve-
locity u.

For the remaining two eigenmodes which describe entropy (temperature) fluctuations
propagating with the material transport velocity, the characteristic forms are unchanged,

dx

dt
= λ5 = u:

dsg

dt
= σS

g ,

dx

dt
= λ6 = u:

dsl

dt
= σS

l .






(5.75)

Equations (5.72) to (5.75) are identical with the compatibility relations as were derived for
homogeneous nonequilibrium flow in Section 4.2.

5.1.6 Use of conservative variables

The conservative form of the hyperbolic two-phase flow model can be directly obtained from
the general balance equations (5.1) to (5.4) introducing the nonviscous contribution for the
interfacial forces F nv

i as defined by equation (5.21).
A more general way to derive the conservative flow equation as will be described in the

following is through a similarity transformation of the “primitive” form,

∂U
∂t

+ G
∂U
∂x

= D. (5.76)

Introducing the vectors of conserved variables V(U) and a corresponding flux vector
F(U), equation (5.76) can be written as

∂V
∂t

+ JGJ−1 ∂V
∂x

= JD, (5.77)
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or

∂V
∂t

+ H
∂V
∂x

= D, (5.78)

with the Jacobian matrix

J =
∂V
∂U

, (5.79)

and the new coefficient matrix H and the new state vector D defined as

H = JGJ−1, D = JD. (5.80)

In principle, any state vector can be used as long as the elements of the vector are linearly
independent, which requires

det(J) �= 0. (5.81)

The eigenvalues of the new coefficient matrix H remain the same as for G,

λ1 = ug, λ2 = ul, λ3,4 = u± a, λ5 = ug, λ6 = ul, (5.82)

with the mixture velocity u and the mixture sound velocity a given by equations (5.36) to
(5.38). The right- and left-hand side eigenvectors of the new coefficient matrix can be deter-
mined either directly from H or by the transformation rules

VR = V�
R JT

VL = V�
L J−1





(5.83)

where V�
R and V�

L represent the corresponding matrices of the right and left eigenvectors as
were obtained for the coefficient matrix G (5.25) using the primitive form of balance equa-
tions.

The coefficient matrix H as introduced in equation (5.80) can be split into the elementary
parts related to the individual eigenvalues

Hk = T ΛkT−1, (5.84)

with the transformation matrix T = VT
R and its inverse T−1 = VL, and the condition

H =
6∑

k=1

Hk. (5.85)

Introducing the flux vector F into the equation, the conservative form of balance equations
becomes

∂V
∂t

+
∂F
∂x

+ Hnc ∂V
∂x

= E (5.86)

with the “nonconservative” contribution

Hnc = (JG − K)K. (5.87)
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The Jacobian matrix in equation (5.87) represents the derivative of the flux vector F with
respect to the vector of conserved variables V,

K =
∂F
∂V

. (5.88)

The appearance of the “nonconservative” contribution is a specific peculiarity of the bal-
ance equation for nonhomogeneous two-phase flow, which results from the fact that some
derivative terms in the separated momentum equations cannot be brought into a fully con-
servative form. Nevertheless, the general principle of conservation is maintained, since these
terms cancel out for the sum of the phasic momentum equations.

So far no specific assumptions have been made for the form of the conserved and flux
vectors. For simplicity entropy will be used here as a major thermodynamic variable with the
state and flux vectors defined as

U =


















p

ug

ul

αg

sg

sl


















, V(U) =


















αg�g

αl�l

αg�gug

αl�lul

αg�gsg

αl�lsl


















, F(U) =


















αg�gug

αl�lul

αg�gu
2
g + αgp

αl�lu
2
l + αlp

αg�gugsg

αl�lulsl


















. (5.89)

For this case the resulting Jacobian matrices J and K and the coefficient matrices H, and Hnc

become rather compact as shown in Tables B.40 to B.45 in Appendix B.4. The derivation of
the corresponding eigenvectors and split matrices is straightforward using the transformation
rules given by equations (5.83) to (5.88).

For the correct prediction of flow discontinuities such as shock waves in gaseous media, it
might be advisable to use the energy equations with the state and flux vectors as

U =


















p

ug

ul

αg

eg

el


















, V =


















αgρg

αlρl

αgρgug

αlρlul

αgρg

(
eg + 1

2u
2
g

)

αlρl

(
el + 1

2u
2
l

)


















, F =


















αgρgug

αlρlul

αg(ρgu
2
g + p)

αl(ρlu
2
l + p)

αgρgug(hg + 1
2u

2
g)

αlρlul(hl + 1
2u

2
l )


















. (5.90)

For the characteristic analysis the same procedure can be applied as described above for using
the “primitive” state vector .
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5.1.7 Quasi-one-dimensional flow through channels of variable cross
section

Up to this point, all the derivations have been reduced to strictly one-dimensional flow con-
ditions. Many technical applications, however, deal with flow processes through pipes or
channels of variable cross section as shown schematically in Fig. 5.6. These flow conditions
can be approximated by a quasi one-dimensional approach, introducing average quantities
over the pipe or channel flow cross section which leads to the “stream-tube” formulation of
the flow.

A(x)

x
Fig. 5.6: Flow through a channel of
variable cross section

For the quasi-one-dimensional flow through channels of variable cross section, the sepa-
rated phasic balance equations for mass, momentum, energy, and entropy can be written as
follows:

mass

∂

∂t
(αg�g) +

1
A

∂

∂x
(αg�gugA) = σM

g (5.91)

∂

∂t
(αl�l) +

1
A

∂

∂x
(αl�lulA) = σM

l (5.92)

momentum:

∂

∂t
(αg�gug) +

1
A

∂

∂x
(αg�gv

2
gA) + αg

∂p

∂x
= F nv

g + F v
g + σM

g uex (5.93)

∂

∂t
(αl�lul) +

1
A

∂

∂x
(αl�lu

2
lA) + αl

∂p

∂x
= F nv

l + F v
l + σM

l uex (5.94)
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energy:

∂

∂t

[

αg�g

(

eg +
u2

g

2

)]

+
1
A

∂

∂x

[

αg�gugA

(

eg +
p

�g
+
u2

g

2

)]

+ p
∂αg

∂t

= σQ
g +Qg + F nv

g unv + F v
g u

v + σM
g

[
hex +

(uex)2

2

]
(5.95)

∂

∂t

[
αl�l

(
ul + el +

u2
l

2

)]
+

1
A

∂

∂x

[
αl�lulA

(
el +

p

�l
+
u2

l

2

)]
+ p

∂αl

∂t

= σQ
l +Ql + F nv

l unv + F v
l u

v + σM
l

[
hex +

(uex)2

2

]
(5.96)

entropy:

∂

∂t
(αg�gsg) +

1
A

∂

∂x
(αg�gugsgA) =

σM
g

Tg

[
sgTg + hex − hg +

1
2
(uex − ug)2

]

σQ
g

Tg
+
F v

g

Tg
(uv − ug) +

Qg

Tg
(5.97)

∂

∂t
(αl�lsl) +

1
A

∂

∂x
(αl�lulslA) =

σM
l

Tl

[
slTl + hex − hl +

1
2
(uex − ul)2

]

l

+
σQ

l

Tl
+
F v

l

Tl
(uv − u) +

Ql

Tl
(5.98)

Expanding equations (5.91) to (5.98), the “primitive” form of the governing equations is
obtained which will not be given here explicitly.

If the phasic entropy values are used in the state vector the resulting equations can be
combined in the following vector form:

A
∂U
∂t

+ B
∂U
∂x

= C, (5.99)

where the coefficient matrices A and B are identical with those of the strictly one-dimensional
case. In the source term vector, however, new terms appear for the two mass conservation
equations, having as a common factor the derivative of the cross section with respect to the
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axial direction, 1
A

∂A
∂x ,

U =


















p

ug

ul

αg

sg

sl


















, C =





















σM
g − αg�gug

1
A

∂A

∂x

σM
l − αl�lul

1
A

∂A

∂x

F v
g + σM

g (uex − ug) + Fg

F v
l + σM

l (uex − ul) + Fl

σS
g

σS
l





















(5.100)

with the total phasic entropy sources as defined in equation (5.15)
Multiplying equation (5.99) with A−1 yields the more compact form

∂U
∂t

+ G
∂U
∂x

= D, (5.101)

where the coefficient matrix G is the same as for the strictly one-dimensional form as de-
rived in Section 5.3. The new source term vector D is given for reference in Table B.30 in
Appendix B.

Since the left-hand side of equation (5.99) is identical with that of the strictly one-
dimensional case, all the results with respect to the characteristic analysis of nonhomoge-
neous two-phase flow derived so far also remain valid for the quasi-one-dimensional flow
through channels of variable cross section. However, one specific feature of nonhomoge-
neous, nonequilibrium two-phase flow should be elaborated in more detail which concerns the
locus of critical flow conditions in the case of stationary flow through convergent-divergent
nozzles.

Assuming steady state flow conditions, the governing flow equations reduce to

B
∂U
∂x

= C, (5.102)

from which the following equation for the pressure gradient in the flow direction can be de-
rived:

∂p

∂x
=

�̂2

�̂s

ũ2

[
1
A

∂A

∂x
+ Z

]

1 − ũ2

ã2

. (5.103)

The sound velocity, ã, and the mixture flow velocity, ũ, are defined as

ã2
cr =

αg�l + αl�g
αg�l

a2
g

+
αl�g

a2
l

1 + k
αg�g + αl�l

αg�l + αl�g

1 + k
�2

�g�l

(5.104)
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and

ũ2
cr =

(αgu
2
g + αlu

2
l ) + k

�2

�g�l

αg�gu
2
g + αl�lu

2
l

αg�g + αl�l

1 + k
�2

�g�l

. (5.105)

The function Z as introduced in the numerator of equation (5.103) depends exclusively on the
algebraic interfacial coupling terms for mass, momentum, and energy and can be written in
the following form:

Z =
[
F v

g + σM
g (uex − us)

] �lul − �gug

�̂2 ũ2ulug

− [
σM

g (ug − ul)
] �̂s

�̂2 ũ2

−
[
σM

g − 1
�g

∂�g

∂sg
σS

g

]
1

�gug

−
[
σM

l − 1
�l

∂�l

∂sl
σS

l

]
1
�lul

, (5.106)

with the “mirrored” velocity

us = αgul + αlug. (5.107)

The general expression for the pressure gradient in the axial direction includes a number
of limiting cases which are worth mentioning. If one of the phases disappears, for example
the liquid phase, equation (5.103) simplifies to the well-known relation for compressible gas
flow:

(1) single-phase gas flow: αl → 0, αg → 1

∂p

∂x
=
�gu

2
g

1
A

∂A

∂x

1 − u2
g

a2
g

as already given by equation (2.41) in Section 2.

(2) two-phase homogeneous equilibrium flow:

∂p

∂x
=
�u2 1

A

∂A

∂x

1 − u2

a2

, (5.108)

where a represents the two-phase homogeneous equilibrium sound velocity as derived in Sec-
tion 4.2 for two-component (gas/liquid) or one-component (vapor/liquid) conditions. Homo-
geneous equilibrium two-phase flow can be seen as a special case where the time constants for
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the interfacial coupling processes become very short compared with the characteristic time for
the flow (e.g., for the flow through very long nozzles and ducts). Also the opposite conditions
might be of interest where the interfacial exchange processes are sufficiently slow with respect
to the fast character of the outer flow process (e.g., for the flow through very short nozzles or
orifices).

(3) “frozen” flow conditions: F v
g → 0, σM

g → 0, σS
g → 0, σS

l → 0

∂p

∂x
=

�̂2

�̂s
ũ2

[
1
A

∂A

∂x

]

1 − ũ2

ã2

. (5.109)

All the three cases described above show the same behavior for the adiabatic flow of
compressible media through convergent–divergent nozzles. Assuming that the back pressure
of the nozzle is sufficiently low, the flow will accelerate from subsonic to supersonic velocities
with the sonic point, or critical flow conditions, exactly at the nozzle throat. At the nozzle
throat, the flow is characterized by a saddle-point singularity for u→ a,

∂p

∂x
=

0
0
. (5.110)

However, the situation becomes completely different for the general case with finite interfacial
transport processes as illustrated in Fig. 5.7.

Introducing an “effective” cross section, A�, as

1
A�

∂A�

∂x
=

1
A

∂A

∂x
+ Z (5.111)

and using the function Z as already defined above, equation (5.106) for the pressure gradient
can be written as

∂p

∂x
=

�̂2

�̂s
ũ2

[
1
A�

∂A�

∂x

]

1 − ũ2

ã2

. (5.112)

As a result of the interfacial transfer for mass, momentum, and energy, the critical conditions,
u = a, will no longer occur at the nozzle throat, but rather at a position further downstream in
the divergent section where the “effective” cross-sectional area A� reaches its minimum. The
exact locus of this point is not a priori known and can only be determined by integration of
the complete set of flow equations from the upstream reservoir to the critical cross section.

The occurrence of a saddle-point singularity for the two-phase nozzle flow as described
above has an equivalence in the reactive gas flow situation if nonequilibrium effects are con-
sidered. A general method for the numerical integration through a saddle-point singularity
has been developed by Emanuel [7] for one-dimensional nonequilibrium reactive gas flow
through convergent–divergent nozzles which, as was shown by Städtke [8], can also be ap-
plied for nonequilibrium two-phase flow conditions.
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Fig. 5.7: Two-phase water/air flow through convergent–divergent nozzle; effect of nonequilib-
rium conditions on the critical flow
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5.2 Two-dimensional two-phase flow conditions

5.2.1 Basic flow equations for two-dimensional flow

The extension of the nonviscous interfacial forces as defined by equation (5.12) is not unique;
however, a rather straightforward form can be obtained as follows:

�F nv
g = −αgαlρk

(
dl�ug

dt
− dg�ul

dt

)

+αgαl (αgρl − αlρg) [(�ug − �ul) · ∇] (�ug − �ul)

−αgαl (ρg + ρl) (�ug − �ul)∇ · αg

−αgαl (ρg + ρl) (�ug − �ul)
αg

ρg

dρg

dt
+
αl

ρl

dρl

dt

�F nv
l = −�F nv

g






, (5.113)

with the total derivatives

dl�ug

dt
=
∂�ug

∂t
+ (�ul · ∇) �ug, and

dg�ul

dt
=
∂�ul

∂t
+ (�ug · ∇) �ul. (5.114)

Introducing the expression for the nonviscous contribution to the interfacial forces into the
general balance equations (3.16) to (3.20) in Chapter 3, a system of partial differential equa-
tions is obtained which can be combined in a compact vector form for two-dimensional flow
conditions,

A
∂U
∂t

+ Bx
∂U
∂x

+ By
∂U
∂y

= C, (5.115)

with the vector of “primitive” variables U, the source term vector C, and the coefficient
matrices A, Bx, and By related to the time and space derivatives in the x- and y-directions.
For the state and source term vectors two alternatives exist depending on whether the entropy
equations or the full energy equations are used.

For the characteristic analysis of the flow equations the use of phasic entropies in the state
vector is preferred since this leads to an immediate separation of the “entropy waves”. The
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corresponding state and source term vectors then become

U =


















p

�ug

�ul

αg

sg

sl


















, C =


















σM
g

σM
l

�F v
g + σM

g �uex + �Fg

�F v
l + σM

l �uex + �Fl

σS
g

σS
l


















. (5.116)

Multiplying equation (5.115) by A−1 yields

∂U
∂t

+ Gx
∂U
∂x

+ Gy
∂U
∂y

= D, (5.117)

with the new coefficient matrices Gx and Gy for the x- and y-directions and the new source
term vector defined as

Gx = A−1Bx, Gy = A−1By and D = A−1C. (5.118)

For the projection of the governing equations in an arbitrary direction in the flow field
given by the unit vector �n (Fig. 5.8) one obtains

∂U
∂t

+ Gn
∂U
∂n

= D, (5.119)

with the corresponding coefficient matrix Gn = nxGx+ nyGy . The coefficient matrices
Gx, Gy , and Gn are given in Tables B.48 to B.50 in Appendix B.4. As can be seen, from the
matrices Gx and Gy there appear some transverse coupling terms between the momentum
in the x- and y-directions which are proportional to the difference in phasic velocities ∆ux

and ∆uy .

y

x

n

Fig. 5.8: Direction of wave propagation
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5.2.2 Eigenvalues and split matrices

As for the one-dimensional case the eigenvalues of the coefficient matrix Gn are determined
as the roots of the characteristic function,

f(λ) = det(Gn − λI) = 0, (5.120)

which yields for the different wave modes

void waves:

λ1 = �ug · �n = ug,n

λ2 = �ul · �n = ul,n





(5.121)

pressure waves:

λ3 = �u · �n+ a = un + a

λ4 = �u · �n− a = un − a





(5.122)

shear waves:

λ5 = �ug · �n = ug,n

λ6 = �ul · �n = ul,n





(5.123)

temperature/entropy waves:

λ7 = �ug · �n = ug,n

λ8 = �ul · �n = ul,n





. (5.124)

The mixture flow velocity �u and the mixture sound velocity a as introduced for the pressure
waves in equation (5.122) are defined as

�u =
�g�l

(
αg�ug + αl�ul

)
+ k�

(
αg�g�ug + αl�l�ul

)

�g�l + k�2
(5.125)

and

a2 = ã2 − ∆a2, (5.126)

with

ã2 =
αg�l + αl�g
αg�l

a2
g

+
αl�g

a2
l

1 + k
αg�g + αl�l

αg�l + αl�g

1 + k
�2

�g�l

∆a2 = αgαl�g�l
(�l + k�)(�g + k�)

(�g�l + k�2)2
(�ug − �ul)2






. (5.127)
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Apart from the shear waves λ5,6 (5.123) all other characteristic velocities represent
straightforward extensions of the expressions derived for the one-dimensional flow conditions
by equations (5.36) to (5.38).

As in the one-dimensional case, the eigenvalues corresponding to the entropy waves can
be immediately deduced from the coefficient matrix Gn as

λ7 = ug,n: VR,7 = [0, 0, 0, 0, 0, 0, 0, 1]

λ8 = ug,n: VR,7 = [0, 0, 0, 0, 0, 0, 1, 0]





. (5.128)

For the remaining eigenmodes a specific problem arises from the fact that multiple eigenvec-
tors ug,n and ul,n appear for the void and shear waves, which does not allow us to define
a complete set of independent eigenvectors. Nevertheless, since for the numerical methods
the split matrices are sorted with regard to eigenvalues, this problem can be easily solved by
introducing a small auxiliary value ε for some elements in the coefficient matrix Gn,

G4,4 = ug,n + ε

G5,5 = ul,n − ε





, (5.129)

as shown in Table B.50 of Appendix B. The eigenvalues for the shear waves then change to

λ7 = �ug · �n = ug,n + ε

λ8 = �ul · �n = ul,n − ε





, (5.130)

different from the corresponding values λ1,2 for the void waves. Under these conditions, a
complete independent set of right eigenvectors VR and left eigenvectors VL can be derived
and the split matrices become as for the one-dimensional case

Gn,k = TΛkT−1, (5.131)

with the transformation matrix T = VT
R and T−1= VL and the diagonal matrix Λk including

only the kth eigenvalue. The common split matrix for the void and shear waves for the gas
and liquid phases can then be obtained as the limiting values

λ1,5 = ug,n: Gn,k = lim
ε→0

[Gn,1 + Gn,5] (5.132)

λ2,6 = ul,n: Gn,k = lim
ε→0

[Gn,2 + Gn,6].

All the other split matrices for pressure and entropy waves remain as originated from equation
(5.125). The procedure for obtaining the split matrices does not violate the condition

Gn =
6∑

k=1

Gn,k. (5.133)
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5.2.3 Conservative form of flow equations

The conservative form of the balance equations can be easily obtained by a similarity trans-
formation as already shown for the one-dimensional case, resulting in the vector of conserved
variables V,

∂V
∂t

+ H∇V = E, (5.134)

with the state vectors of “primitive” and conserved state parameters U, V, and the related flux
vector F

U =
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αlρl
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, F =


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
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


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. (5.135)

The new coefficient matrix H, and the related new source vector are defined as

H = JGJ−1, (5.136)

and the related new source vector defined as

E = JD. (5.137)

The Jacobian matrix in equation (5.136) describes the derivative of the conserved state vector
with respect to the vector of primitive state parameters,

J =
∂V
∂U

. (5.138)

The eigenvalues of the new coefficient matrix H remain the same as for G. The final conser-
vative form of the flow equations is obtained introducing the flux vector F resulting in

∂V
∂t

+ ∇ · F + Hnc∇F = E, (5.139)

where the nonconservative part Hnc is defined as

Hnc = (JG − K) K−1 (5.140)
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and the Jacobian matrix

K =
∂F
∂U

.

If instead of the entropy relations the full energy equations are used, the internal phasic en-
ergies appear as major dependent thermodynamic variables and the primitive state param-
eters U, the vector of conserved state parameters V, and the corresponding flux vector F
become

U =


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. (5.141)

For both cases a complete algebraic evaluation of the eigenspectrum and a splitting of the
coefficient matrices can be obtained. However, since the corresponding vectors and matrices
become more voluminous, they will not be explicitly given here.

5.3 Final remarks to the hyperbolic two-phase flow model

The hyperbolic two-fluid model as described above includes several unique features which
make it very attractive as a modeling basis for the numerical simulation of complex two-phase
flows governed by compressibility effects and wave propagation processes. The advantages
of the model includes in particular the following:

1. Although based on a rather general formulation of the single-pressure two-fluid model,
it allows a complete and consistent algebraic evaluation of the full eigenspectrum of the
governing equations resulting in explicit formulation of all eigenvalues and related right
and left eigenvectors.

2. The hyperbolicity of the model is maintained over the full spectrum of volumetric con-
centration of gas or liquid (0 ≤ αg ≤ 1). The “virtual mass” coefficient k remains
an open flow parameter which might be used to represent different flow regimes such
as dispersed bubbly or droplet flow regimes or to force homogeneous flow conditions
(ug = ul).

3. The flow of single-phase gas or liquid is included as natural limiting values for αg → 1
or αg → 0, respectively.
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4. The model allows the use of any (thermodynamically consistent) set of state equations
for the gas/vapor and liquid phases.

5. Thanks to the strictly hyperbolic character of the flow equations, an extension to differ-
ently defined state and flux vectors can be easily derived just by a similarity transfor-
mation for the coefficient matrix and related source term vectors. The only necessary
requirement for such transformation is that state and flux vectors are uniquely defined
as indicated by a complete and independent set of row/column vectors for the Jacobian
matrices involved.

6. The model provides all necessary information in the algebraic form for the implementa-
tion of “high resolution” numerical schemes which make explicit use of the hyperbolic
nature of the flow equations. This allows the development of rather compact and eco-
nomic numerical algorithms as will be shown in Chapter 7.

The model has been extensively tested during the development of the Advanced Two-
phase Flow Module (ATFM) which covered a wide spectrum of flow conditions and phenom-
ena. From the large number of test cases, no deficiencies or shortcomings of the model have
been found which could be related to the specific formulation of the nonviscous interfacial
forces. The major limitations of the model are related to the assumption of a single (local)
pressure value of the two phases which might become crucial for two-phase flow conditions
governed by surface tension effects such as collapsing of (small) vapor bubbles and cavitation
phenomena.
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6 Dispersion of Sound Waves

Within the framework of the characteristic analysis as given in Chapter 5 only the time and
space derivatives of flow parameters enter and, therefore, the obtained “sound velocity” does
not include any effect of the algebraic source terms describing mass, momentum, and energy
transfer processes at the interface. A more physical insight into sound wave propagation phe-
nomena can be obtained from the “acoustic approximation” where the effect of the algebraic
source terms are taken into account.

6.1 Acoustic approximation of flow equations

For the acoustic approximation, the basic flow equations of the hyperbolic two-phase flow
model, as given in Chapter 5,

A
∂U
∂t

+ B
∂U
∂x

= C (6.1)

are linearized, assuming small time- and space-dependent disturbances superimposed on a
steady state flow,

U (x, t)= U0 (x)+U′ (x, t) with |U′| � |U0| . (6.2)

Neglecting higher order terms, this transforms the flow equations (6.1) into a system of linear
equations for the disturbances U′

A0
∂U′

∂t
+ B0

∂U′

∂x
−
(
∂C
∂U

)

0

U′ = 0, (6.3)

where for the basic steady flow, thermal and mechanical equilibrium conditions are assumed
for simplicity, e.g., Tg,0 = Tl,0 = T0, ug = ul = u0.

Any monochromatic wave can be expressed in a general form as

U´= δU exp
[
iω

(
t− K x

ω

)]
, (6.4)

with the complex wave number K = Kr + iKi, the circular frequency ω, and the amplitude
δU. The wave propagates with the velocity a = ω/Kr. The imaginary part of the wave
number Ki is a measure for the wave attenuation.
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Introducing the formulation (6.4) into the linearized flow equations (6.3) a system of linear
equations is obtained for the amplitudes δU of the different wave modes,

δU
[
A0 − B0

(
K

ω

)
+
(
∂C
∂U

)

0

i

ω

]
= 0. (6.5)

A non-trivial solution (δU �= 0) of equation (6.5) exists only in the case where the coefficient
determinant vanishes, which leads to the dispersion relation

f = det
[
A0 − B0

(
K

ω

)
+
(
∂C
∂U

)

0

i

ω

]
= 0 (6.6)

or

f = det
[
A0 − B0

(
K

ω

)
+ J0

i

ω

]
= 0, (6.7)

with the Jacobian matrix

J0 =
(
∂C
∂U

)

0

. (6.8)

Equation (6.7) describes the functional dependence of the wave velocity a and attenuation d
on the frequencyω, as will be shown in the following for dispersed gas/liquid flow conditions.

6.2 Dispersion analysis of gas–particle flows

Assuming that mono-dispersed spherical droplets of constant radius rp are homogeneously
dispersed in the carrier gas, the particle volume fraction can be expressed as

αp = np
4
3
πr3p (6.9)

or evaluated for the particle number density

np =
3
4
αp

πr3p
. (6.10)

The friction force on a single droplet can be written as

F v
p = πr2pC

D 1
2
�g |ug − ul| (ug − ul) (6.11)

with the “drag” coefficient CD = f (Re) , and the Reynolds number

Re =
�g2rp |ug − ul|

µg
. (6.12)

The interfacial friction force then becomes F v
l = npF

v
p , or more specific

F v
l = −F v

g = npF
v
p =

3
8
CDαp

rp
�g |ug − ul| (ug − ul) . (6.13)
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With the restriction to low Reynolds numbers Re ≤ 1, the Stokes law CD = 24/Re can be
applied resulting in the interfacial friction forces:

F v
l = −F v

g =
9
2
µgαp

r2p
(ug − ul) . (6.14)

For the heat transfer between gas and droplets, a similar relation can be derived for the
interfacial heat source,

σQ
l = −σQ

g = np4πr2pHq (Tg − Tl) (6.15)

or

σQ
l = −σQ

g =
3
2
αp

r2p
Nuλg (Tg − Tl) , (6.16)

where the heat transfer coefficient Hq is expressed by the Nusselt numbers as

Hq = Nuλg/2 rp. (6.17)

For low Reynolds numbers, the Nusselt number becomes Nu = 2 and the heat source term
simplifies to

σQ
l = −σQ

g = 3
αp

r2p
λg (Tg − Tl) . (6.18)

The equations for the interfacial friction and heat transfer can be written in a more compact
form as

F v
l = −F v

g =
� (ug − ul)

τi

σQ
l = −σQ

g =
�gC̄

p (Tg − Tl)
τh






(6.19)

with the characteristic time values for the interfacial friction and heat transfer

τi =
2
9
� r2p
µgαp

τh =
1
3
C̄p � r2p
λg αp






. (6.20)

For the definition of the characteristic time values, the mixture density � = αg�g + αl�l and
mixture specific heat for constant pressure C̄p = XgC

p
g +XlC

p
l are used as reference values.
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With equations (6.18) and (6.19) the source term and state vectors become

C =
























0

0

−� (ug − ul)
τi

+
� (ug − ul)

τi

−� C̄
p(Tg − Tl)
τi

+
� C̄p(Tg − Tl)

τi
























U =





















p

ug

ul

αg

Tg

Tl





















, (6.21)

which results in the Jacobian matrix

J =
∂C
∂U

=























0 0 0 0 0 0

0 0 0 0 0 0

0 − �

τi
+
�

τi
0 0 0

0 +
�

τi
− �

τi
0 0 0

0 0 0 0 −� C̄
p

τh
+
� C̄p

τh

0 0 0 0 +
� C̄p

τh
−� C̄

p

τh























. (6.22)

Introducing the coefficient matrices A0, B0 and the Jacobian J into the characteristic equation
(6.7), one obtains the following relation for the complex wave numberK:

(
K

ω

)2

=
1
a2
equ

1 + i αl αg
�̂2

�2
(τiω)

1 + i αl αg
�̂s

�
(τiω)

1 + i αl αg

Cp
l C

p
g

(C̄p)2
�l �g �̂s

� �̂2

(
aequ

afr

)2
τh
τi

(τiω)

1 + i αl αg

Cp
l C

p
g

(C̄p)2
�l �g

�2

τh
τi

(τiω)
,

(6.23)

with the abbreviation for the homogeneous and frozen sound velocities aequ and afr respec-
tively. Apart from the ratio of time constants for the interfacial heat transfer and interfacial
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friction τh/τi, equation (6.23) does not include any further assumption on the actual values
for the interfacial coupling terms. From the dispersion relation (6.23) the following limiting
values can be obtained for the sound velocity a = ω/Kr for τiω→ ∞ and τiω→ 0 :

1. For high frequencies τiω→ ∞ the “frozen” speed of sound is obtained as

a = afr =

√√
√
√
√
�̂s

�̂2

1
αg

�ga2
g

+
αl

�la2
l

(6.24)

with the abbreviations for the densities �̂2 = �l �g + k�2 and �̂s = αl � + αg�l + k�.
The “frozen” sound speed is (apart from the assumption of instantaneous equal phase
velocities) identical with the sound velocity as appears in the eigenvalues of the hyper-
bolic model presented in Chapter 5. If the virtual mass effect is neglected (k = 0) the
expression for the frozen sound velocity simplifies to

afr =
√√
√
√

αg�l + αl �g
αg�l

a2
g

+
αl�g

a2
l

. (6.25)

2. For low frequencies (τiω → 0) the sound velocity approaches the limit

a = aequ =
1
�

√√
√√
√

1
[
Xgγg

�g
+
Xlγl

�l

]
− T

C̄p

[
Xgβg

�g
+
Xlβl

�l

]2 (6.26)

as was derived in Section 4.2 for the homogeneous equilibrium flow for two-component
two-phase flow. Applying simplified state equations for liquid and gas and replacing
the mass fractions Xi by the volume fractions αi, the homogeneous equilibrium sound
velocity becomes

aequ =
√√√
√

1
αg�

�gā2
g

+
αl�

�lā2
l

, (6.27)

with

ā2
g = κ̄g

p

�g
and ā2

g =
1
�lγl

. (6.28)

The sound velocity a = ω/Kr and the dimensionless damping coefficient d = Ki afr/ω
as functions of the dimensionless frequency are given in Figs. 6.1 and 6.2 for a two-component
water/air mixture at atmospheric pressure. The figures show a continuous transition region and
an asymptotic approach to the “frozen” and equilibrium condition for high and low frequen-
cies, respectively. The damping coefficient d of the sound wave exhibits a maximum value
within the transition region and vanishes when the upper and low values of the sound velocity
are reached. As long as the characteristic time for the interfacial heat transfer is of the same
order as the corresponding value for the interfacial friction (τh ≈ τi) the dispersion curves
show only one point of inflection for the sound velocity and one maximum for the .
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For relatively low characteristic time values for the heat transfer (τh � τi) thermal equi-
librium conditions are reached already at very high frequencies where the interfacial friction
is still in the “frozen” condition. This condition was predicted for τh/τi < 0.1, as indicated
in Figs. 6.1 and 6.2, together with the occurrence of a second point of inflection for the sound
velocity and a second maximum for the attenuation coefficient..

Fig. 6.1: Sound velocity as a function of the dimensionless sound frequency, water/air mixtures
at atmospheric conditions, dispersed droplet flow, virtual mass coefficient k = 0

The value of the sound velocity for the partial equilibrium conditions, apart, can be ob-
tained from (6.23),

(
Kpart

ω

)2

= lim
τh/τi.→0

(
K

ω

)2

and
1

a2
part

= lim
ωτi.→∞

(
Kpart

ω

)2

, (6.29)

which results in

apart = aequ

√
��̂s

�̂2
, (6.30)

with the equilibrium sound velocity as given by equation (6.26) or (6.27), respectively.
The calculated values for the equilibrium, partial equilibrium, and frozen sound velocities

as a function of the void fraction are given in Figs. 6.3 and 6.4 for a water/air mixture at
atmospheric pressure. As one can see, the condition afr ≥ apart ≥ aequ remains valid over
the whole range of void fraction from pure liquid (αg = 0) to pure gas (αg = 1) independent
of the chosen value for the “virtual mass” coefficient.
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Fig. 6.2: Attenuation of sound waves as a function of the dimensionless sound frequency,
water/air mixtures at atmospheric conditions, dispersed droplet flow, virtual mass coefficient
k = 0.5

Fig. 6.3: Equilibrium, par-
tial equilibrium, and frozen
sound velocity for two-
phase water/air mixtures at
atmospheric conditions; vir-
tual mass coefficient k = 0

Figures 6.3 and 6.4 clearly indicate the strong effect of the virtual mass coefficient k on the
frozen sound velocity as already explained in Chapter 5. Nevertheless, for the present case of
dispersed droplet flow a value of 0.25 ≤ k ≤ 0.5 might be appropriate as indicated in Fig. 5.5.

The dispersion analysis as outlined above for the rather simple case of mono-dispersed
droplet flows in gas/liquid media can be easily extended to more complex flow regimes or to
one-component liquid/steam mixtures as described for example by Ardron and Duffey in [2].
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Fig. 6.4: Equilibrium, par-
tial equilibrium, and frozen
sound velocity for two-
phase water/air mixtures
at atmospheric conditions;
virtual mass coefficient
k = 0.5

Nevertheless some qualitative conclusions from the present analysis might be drawn which
are of importance for the interpretation of critical flow or shock waves in two-phase flow.

• Due to the presence of nonequilibrium effects the sound velocity in two-phase media
is no longer a single value determined by simple thermodynamic state properties as in
single-phase gas media. Instead, it becomes a function of the sound frequency with
an upper (afr) or lower (aeq) limiting value for very high or very low frequency values
depending on whether either “frozen” or equilibrium conditions are reached.

• The sound velocity as it appears in the characteristic analysis of the governing two-phase
flow equations is independent of the algebraic interfacial coupling terms and as such it
represents the upper “frozen” limit afr for the sound propagation as obtained from the
dispersion analysis.

• In steady state flow situations critical flow conditions are reached where the fastest wave
speed becomes stationary which is also obtained by single-pressure two-fluid model for
the condition u = afr, with the mixture flow velocity u and the mixture sound velocity
a = afr as resulting from the characteristic analysis of the governing equations.

• The presence (or absence) of critical flow conditions is not a priori an indication whether
or not a maximum value for the mass flow (choking) in a nozzle or pipe is reached. As
will be shown in a number of test cases presented in Chapter 9, a maximum discharge
mass flow might occur much earlier under subsonic conditions (u < afr) due to the
governing effects of interfacial heat and mass transfer processes.
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7 Numerical Methods for Hyperbolic Two-Phase
Flow System Equations

7.1 Mathematical nature of two-phase flow equations

The general balance equations of the two-fluid model as described in Chapter 3 can be written
in a compact vector form as

∂U
∂t

+ Gadv∇U + Gdif∇2U = D (7.1)

with the vector of “primitive” state parameters U, the advection or Euler part of the flow
equations, Gadv, the diffusive part, Gdif , including the molecular or turbulent viscosity and
heat conduction effects, and an algebraic source term vector D.

For the numerical integration of equation (7.1), an operator splitting technique might be
appropriate which allows us to apply the most suitable method for the different major physical
processes involved:

1. The hyperbolic advection or transport part of the equations

∂U
∂t

+ Gadv∇U = 0 (7.2)

is characterized by the propagation of information with finite velocities resulting in
bounded regions of dependence and influence. As a result, discontinuous solutions might
exist in the flow field representing pressure waves (e.g., shock waves) or void waves with
abrupt changes in flow velocity, density, or volumetric concentration of the gas or liq-
uid. The most appropriate numerical schemes for such processes are based on techniques
which make explicit use of the hyperbolic nature of the flow equations, in the following
called “hyperbolic methods”.

2. The parabolic diffusive part of the flow equations,

∂U
∂t

+ Gdif∇2U = 0, (7.3)

is less challenging mathematically and a central differencing (or finite-volume equiva-
lent) scheme might be adequate for the numerical solution.
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3. The effect of the algebraic source term represents a system of “stiff” ordinary differential
equations

∂U
∂t

= C, (7.4)

where the characteristic times for various interfacial transport processes can vary over
several orders of magnitude. A fully implicit time integration scheme is therefore essen-
tial for robustness and computational efficiency.

7.2 Overview on hyperbolic numerical methods

In the following only essentially non-oscillatory high-resolution numerical methods will be
considered as were originally developed for single phase gas flows. This includes the methods
based on the Approximate Riemann Solver, the Flux Vector Splitting technique, and the Split
Coefficient Matrix method. The former two belong to the Godunov-type methods based on
a finite volume discretization assuming a constant (or linear) parameter distribution within
a computational cell. Both techniques can be easily extended to unstructured grids. The
Split Coefficient Method instead represents a finite-difference techniques where the new-time
values of all grid points are calculated by solving the linearized characteristic form of the gov-
erning equations along characteristic lines within the framework of a regular Cartesian grid.
Common to all these methods is the concept of “upwinding” which combines the preserva-
tion of wave propagation processes along the characteristic directions with the conservation
property for mass, momentum, and energy, for the solution of the advection problem.

All these methods require a fully hyperbolic system of flow equations of the form

∂U
∂t

+ G∇U = 0 (7.5)

where the coefficient matrix G is characterized by exclusively real eigenvalues and a complete
set of independent eigenvectors.

Some of the methods are based on the conservative form of the balance equation which can
be derived from the “primitive” form of balance equations (7.5) by a similarity transformation
as

∂V
∂t

+ H∇V = 0 (7.6)

with the state vector of conserved quantities V and the new coefficient matrix H defined as

H = JGJ−1 (7.7)

using the Jacobian matrix

J =
∂V
∂U

. (7.8)
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Introducing the flux vector F into equation (7.6) results in the quasi-conservative form of the
balance equation

∂V
∂t

+ Hnc∇U + ∇F = 0, (7.9)

with the “nonconservative” contribution resulting from some time and space derivative terms
in the separated momentum equations as was explained in Chapter 5. The presence of this non-
conservative contribution does not affect the use of the numerical integration as long as the
method is based on the “primitive” form of the balance equations. However, this term might
become crucial for all Godunov-type finite volume numerical schemes such as Approximate
Riemann solvers or Flux Vector Splitting techniques.

7.3 The Split Coefficient Matrix method

The Split Coefficient Matrix (SCM) method of Chakravarthy [1] represents an extension of the
CIR method of Courant Isaacson and Rees [2]. The method might be seen as a finite difference
analogy to the Method of Characteristics applied on a Cartesian grid. The technique, originally
developed for gasdynamic problems, has been later applied by Romstedt [3] for homogeneous
two-phase flows.

The CIR and SCM methods are usually based on the “primitive” form of the conservation
equations for mass, momentum, and energy which can be written for the one-dimensional case
as

∂U
∂t

+ G
∂U
∂x

= 0, (7.10)

with the state vector U, the coefficient matrix G, and the vector of source terms D.
Assuming that the system of equations (7.10) is hyperbolic, the coefficient matrix G can

be diagonalized as

Λ = TGT−1 or G = T−1ΛT, (7.11)

where the diagonal matrix Λ contains all (real) eigenvalues and the columns of the transforma-
tion matrix T are the right eigenvectors of G. Multiplying equation (7.10) with the inverse of
the transformation matrix T−1, the characteristic form of the governing equations is obtained
as

T−1
0

∂U
∂t

+ ΛT−1 ∂U
∂x

= 0. (7.12)

For small time steps (7.12) might be linearized resulting in

T−1 ∂U
∂t

+ Λ0T−1
0

∂U
∂x

= 0 (7.13)

and respectively

∂W
∂t

+ Λ0
∂W
∂x

= 0, (7.14)
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with Riemann invariants

δW = T−1
0 δU. (7.15)

Equation (7.14) represents a system of coupled differential equations for the change of the
Riemann invariants Wk within the characteristic directions,

∂Wk

∂t
+ λk,0

∂Wk

∂x
= 0. (7.16)

From equation (7.16) it follows that the Riemann invariants Wk remain constant along the
characteristic lines, apart from (usually small) contributions coming from the source term
vector; hence, the Riemann invariantsWn+1

k,i can be calculated as

Wn+1
k,i = Wn

k,ξ + En
k,i∆t, (7.17)

whereWn+1
k,i represents the corresponding value at the intersection of the characteristic curve

with the previous time level ξk .

x

t
�k

t

ii - 1 i + 1�k

ii - 1 i + 1�k

U

t + t�

Fig. 7.1: First-order upwind
scheme in a fixed space-time grid

Since the characteristic curves become straight lines within the time interval ∆t as shown
in Fig. 7.1, characteristic variables at the intersection can be calculated by a linear interpolation
using the corresponding values at the adjacent grid points,

Wn+1
k,i = Wn

k,i − (ξk − xi)
Wn

k,i −Wn
k,i−1

xi − xi−1
for λk > 0

Wn+1
k,i = Wn

k,i + (ξk − xi)
Wn

k,i+1 −Wn
k,i

xi+1 − xi
for λk < 0






(7.18)

with the spatial difference ξk − xi = λk∆t the kth wave is traveling in the time interval ∆t,
and the finite difference formulation for the “left” and “right” spatial gradients of the Riemann
invariances.
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Introducing equations (7.18) into equation (7.16) the finite difference equation for the new
time Riemann invariants becomes

Wn+1
k,i = Wn

k,i −
λk∆t

xi − xi−1

(
Wn

k,i −Wn
k,i−1

)
+ En

k,i∆t for λk > 0

Wn+1
k,i = Wn

k,i −
λk∆t

xi+1 − xi

(
Wn

k,i+1 −Wn
k,i

)
+ En

k,i∆t for λk < 0






(7.19)

or in the vector form

Wn+1
i = Wn

i − Λ+ Wn
i − Wn

i−1

xi − xi−1
∆t− Λ−Wn

i+1 − Wn
i

xi+1 − xi
∆t, (7.20)

with the diagonal matrices Λ+and Λ− containing only the positive or negative eigenvalues,
respectively

Λ+
k,k = λk for λk ≥ 0 and Λ+

k,k = 0 otherwise

Λ−
k,k = λk for λk < 0 and Λ−

k,k = 0 otherwise





.

With the linear relationship between the vectors for the state and characteristic variables given
by equation (7.15), the equation for the new time equation “primitive” state vector U is ob-
tained as

Un+1
i = Un

i − G+
0

(
Un

i − Un
i−1

)

xi − xi−1
∆t+ G−

0

(
Un

i+1 − Un
i

)

xi+1 − xi
∆t (7.21)

or

Un+1
i = Un

i − G+
0

(∇+U
)
∆t+ G−

0

(∇−U
)
∆t+ En

i ∆t (7.22)

with the split matrices

G+
0 = T0 Λ+

0 T−1
0 =

∑

k,λk≥0

Gk

G−
0 = T0 Λ−

0 T−1
0 =

∑

k,λk<0

Gk






(7.23)

and the finite difference operator

∇+U =

(
Un

i − Un
i−1

)

xi − xi−1

∇−U =

(
Un

i+1 − Un
i

)

xi+1 − xi






. (7.24)

The Split Coefficient Matrix method is sometimes preferred since it can be easily imple-
mented on structured Cartesian grids. The spatial resolution of the methods can be increased
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using higher order differential operators in equation (7.19). For the time integration in princi-
ple any ODE solver can be used. As in all characteristic upwind schemes the Split Coefficient
Matrix method requires a full hyperbolic system of equations. A further peculiarity of the
method is that it does not a priori conserve mass, momentum, and energy, which can be a
drawback in particular for the calculation of long-lasting slow transients.

7.4 Godunov methods and Approximate Riemann solver

7.4.1 General Godunov approach

The method of Godunov already published in 1959 [4] was developed for gasdynamic appli-
cation; however, it can in principle be applied for any hyperbolic flow problem described by a
system of nonlinear hyperbolic conservation laws of the form

∂V
∂t

+ ∇F = 0 (7.25)

with the vector of conserved state variables V and the flux vector F and the source term vector
D. Equation (7.25) can also be written in the expanded form as

∂V
∂t

+ H∇V = 0, (7.26)

where the coefficient matrix H is identical with the Jacobian matrix

H =
∂F
∂V

. (7.27)

In the following the method will be explained for the one-dimensional case where equation
(7.25) simplifies to

∂V
∂t

+
∂F
∂x

= 0 (7.28)

and

∂V
∂t

+ G
∂V
∂x

= 0. (7.29)

Integrating the governing parameters over the cell

Vn+1
i =

∫ xi+1/2

xi−1/2

Vn+1dx (7.30)

results in a piecewise constant distribution of flow parameters with a discontinuous change of
parameters at the cell interfaces as shown in Fig. 7.2.

The discontinuities at the cell boundaries are then treated as a sequence of Riemann prob-
lems for the calculation of the new time parameter distributions in the adjacent cells as indi-
cated in Fig. 7.2. At the end of the time step, all parameters are averaged according to equation
(7.30) in order to provide the initial conditions for the new time step.
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x

xixi - 1 Xi+1

time

tn+1

tn

V

cell boundaries

region affected
by Riemann Solver

piecewise constant
solution at time t

V i-1 V i

V i+1

F i-1,i F i,i+1

Fig. 7.2: Godunov scheme for the one-dimensional flow condition

To avoid wave interference, the method is bounded by the Courant number criteria,

∣
∣
∣
∣

∆t
∆xλk

∣
∣
∣
∣ ≤ 1 for all k. (7.31)

In most practical applications, the method described above is further simplified where the
Riemann solver is limited to the prediction of the numerical flux at the cell interfaces,

F̂i,1+1=f(Vi,Vi+1), (7.32)

which is then used for updating the new averaged conservative parameters from the space and
time discretization form of the flow equations (7.28) as

Vn+1
i = ∆tni +

∆t
∆x

(F̂i,i+1−F̂i−1,i). (7.33)

As mentioned above the Godunov method requires the solution of the Riemann problem for
each cell boundary and each time step. Although this can theoretically be done (at least for
single-phase flow of gas), however, it needs an iterative procedure for solving the associated
non-linear equations which is not only computationally rather costly but might become ex-
tremely difficult for more complex state equations or two-phase flow conditions. Therefore,
the exact solution is in most cases replaced by an approximated Riemann solver providing
the necessary information for the calculation of the “Godunov fluxes” at the cell interfaces as
a function of the state properties on the left- and right-hand side cells F̂ = f (Vl,Vr). A
rather comprehensive review of the proposed Riemann solvers and their specific merits and
limitations is provided by Toro in [5]. Many details on numerical methods for hyperbolic flow
equations can also be found in the book of LeVeque [7].
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7.4.2 The linearized Riemann solver

Within the framework of the Godunov scheme the discontinuities at the cell interfaces are
treated as Riemann problems which are described by the one-dimensional form of the hyper-
bolic system of conservation equations,

∂U
∂t

+ G(U)
∂U
∂x

= 0, (7.34)

and the initial data as illustrated in Fig. 7.3

U(x, t0) = U0(x) =






UL for x < 0

UR for x < 0
. (7.35)

The linearization of equation (7.34) leads to a constant coefficient matrix G0(Ū),

∂U
∂t

+ G0
∂U
∂x

= 0, (7.36)

based on an average state vector Ū(UL,UR) as a function of the corresponding states at the
left and right side of the discontinuity. In the most simplified way, the arithmetic mean value
might be used

Ū =
1
2
(UL + UR). (7.37)

Since the system of equations is hyperbolic, it can be transformed into the characteristic form

T−1
0

∂U
∂t

+ Λ0T−1
0

∂U
∂x

= 0 (7.38)

or

∂W
∂t

+ Λ0
∂W
∂x

= 0 (7.39)

with the diagonal matrix Λ0 containing all eigenvalues of the matrix G0 and the characteristic
variables

W = T−1
0 U. (7.40)

As already explained for the derivation of the SCM method in Section 6.2, the transfor-
mation matrix T is the transpose of the matrix of “right” eigenvectors of G0. Equation (7.39)
describes a system of decoupled waves propagating with the constant velocities λk,

∂Wk

∂t
+ λk,0

∂Wk

∂x
= 0, (7.41)

with the solution

Wk (x, t) = Wk,0 (x− λk,0 t) . (7.42)
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t
�k

t

W

t + t�

W

x

WL
WR

Fig. 7.3: Initial conditions for a
Riemann problem

For a space and time discretized system with piecewise constant parameter distributions as
shown in Fig. 7.3, the new time characteristic parameters at the cell interface become

Ŵn+1
k = Wn

k,L for λk > 0

Ŵn+1
k = Wn

k,R for λk < 0





. (7.43)

Due to the linearization the different wave modes are completely decoupled and, therefore,
can be superimposed leading to the new time vector of characteristic variables,

Ŵ =
∑

k

Ŵn+1
k =

∑

k,λk≥0

Wk,L +
∑

k,λk<0

Wk,R (7.44)

or

Ŵ = I+WL + I−WR (7.45)

with the diagonal matrices having the elements

I+
k,k = 1 for λk ≥ 0 and I+

k,k = 0 otherwise

I−k,k = 1 for λk < 0 and I−k,k = 0 otherwise





(7.46)

With relation (7.36), equation (7.45) can be transformed back into the space of the state vec-
tor U

T0Ŵ = (T0I+T−1
0 )T0WL + (T0I−T−1

0 )T0Wr (7.47)

or

Û = G̃+UL + G̃−UR. (7.48)
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The reduced split matrices G̃+
0 and G̃−

0 are ordered with respect to the sign of the correspond-
ing eigenvalues

G̃+
0 = T0 I+

0 T−1
0 =

∑

k,λk≥0

1
λk

Gk

G̃−
0 = T0 I−0 T−1

0 =
∑

k,λk<0

1
λk

Gk






. (7.49)

With

G̃+
0 + G̃−

0 = T0 (I+
0 + I−0 )T−1

0 = T0 I0 T−1
0 = I (7.50)

equation (7.48) can also be written as

Û = UR + G̃+(UL − UR)

Û = UL − G̃−(UL − UR)





. (7.51)

For the specific cases where all eigenvalues are positive or negative, respectively, the intercell
state vector becomes equal to the upstream value

Û = UL if λk > 0 for all k

Û = UL if λk < 0 for all k





. (7.52)

From the new state vector Û the Godunov fluxes F̂(Û) can be calculated, which then are
used to update the conservative state parameters in the computation cells as given by equation
(7.33). The linearized Riemann solver, as descried above for the vector of primitive state
parameters, can be based on any type of independent state vector as long as the governing
system of equation remains hyperbolic.

7.4.3 The Roe solver

One of the most popular Riemann solvers is that of Roe (1981) [6] which is based on the
conservative form of the flow equations

∂V
∂t

+ H
∂V
∂x

= 0, (7.53)

with the coefficient matrix

H =
∂F
∂V

. (7.54)

As described above the exact Riemann problem is replaced by an approximate (linearized)
problem

∂V
∂t

+ HRoe ∂V
∂x

= 0, (7.55)
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where the Jacobian matrix H̄Roe(VR,VL) introduced here is assumed to satisfy the following
conditions:

(a) the matrix H̄Roe has only real eigenvalues and is diagonalizable,

(b) for equal states in adjacent cells, the “Roe matrix” becomes identical with the original
coefficient matrix

HRoe = H for VL = VR = V̄, (7.56)

(c) the matrix H̄Roe satisfies the Rankine Hugoniot condition

FL − FR = HRoe (VL − VR) . (7.57)

The first two conditions are rather trivial and are valid for all approximate Riemann solvers.
The third condition (c) results from the need to handle flow discontinuities related to the
occurrence of shock waves in single-phase gasdynamic problems.

The construction of the Roe average matrix HRoe is not unique; nevertheless, as shown
by Roe for the specific case of single-phase gas flow, the conditions (a) to (c) are satisfied for
the following averaged state parameters for density, flow velocity, and enthalpy

�̄ =
√
�L + �R

ū =
√
�

L
u

L
+ √

�
L
u

L√
�L + �R

h̄ =
√
�

L
h

L
+ √

�
L
h

L√
�L + �R






. (7.58)

Following the same procedure as explained in the previous section the new time value for
the conservative state vector at the cell-to-cell interface can be obtained according to equation
(7.52) as discussed by Tuomi and Kumbaro [11]

V̂ = VR + H̃+(VL − VR)

V̂ = VL − H̃−(VL − VR)





. (7.59)

Combining equation (7.59) with condition (c) for the Roe matrix as given by equation
(7.57) results in the Godunov fluxes F̂ at the cell boundaries,

F̂ = FR + H+(VL − VR)

F̂ = FL − H−(VL − VR)





. (7.60)

One should note the difference between the split matrices as used for the state vectors in
equation (7.59) and for the flux vectors in equation (7.60) which are related by

Hk = λkH̃k. (7.61)
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The update for the conservative state vector at each cell is then obtained from the finite volume
formulation as was already given by equation (7.33).

The Roe solver as described above is strictly linked to the existence of a fully conservative
form of the flow equations as is the case for the flow of single-phase gas or for homogeneous
two-phase flow. However, this is not the case for the more general two-fluid representation of
two-phase flow where some differential coupling terms in the separated momentum equations
cannot be brought into a conservative form. Nevertheless, under certain hypotheses a Roe-type
numerical scheme can be constructed as shown by Tuomi and Kumbaro in [11]. The validity
of the additional modeling assumptions might need some further assessment and justification.

7.5 Flux Vector Splitting method

The Flux Vector Splitting scheme (FVS) belongs to the finite volume Godunov class of meth-
ods which are based on the conservative form of the flow equations

∂V
∂t

+ ∇F = 0, (7.62)

with the vectors of conserved quantities V and corresponding flux vector F. For an explicit
finite volume discretization of equation (7.62) the new time value of the conserved parameter
V in the computational cell i can be expressed as

Vn+1
i = Vn

i − ∆t
∆x

(F̂n
i−1,i−F̂

n

i,i+1) (7.63)

with the numerical fluxes F̂n
i−1,i and F̂n

i,i+1 at the cell interfaces on the left and right side as
schematically shown in Fig. 7.4.

x

ii - 1 i + 1

Vi
Vi-1 Vi+1

F i-1,i F i,1+1

Fig. 7.4: Finite volume
space discretization

There are several versions of the FVS scheme which differ mainly in the way how the
numerical fluxes are calculated.

Introducing the Jacobian matrix

H =
∂F
∂V

.

the flow equation (7.62) can also be written in an expanded form as

∂V
∂t

+ H∇V = 0.
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The original approach of Steger and Warming [8] makes use of the homogeneity property of
the Euler equations

F = HV, (7.64)

which is strictly valid only for gas flows under the assumption of ideal state equations. Since
the governing equations are hyperbolic, the coefficient matrix H can be split into elementary
parts related to the eigenvalues,

H =
∑

k

Hk, (7.65)

or sorted with respect to the positive or negative sign (direction) of the eigenvalues,

H =
∑

k,λk≥0

Hk +
∑

k,λk<0

Hk = H++H−. (7.66)

According to the homogeneity property (7.64) the fluxes for the computational cells can then
be split as

Fi(Vi) = H+
i Vi + H−

i Vi = F+
i + F−

i . (7.67)

The numerical flux at the cell interfaces is then calculated according to the contributions com-
ing from the right (positive) and left (negative) running wave modes as

F̂i,i+i(Vi,Vi+1) = F+
i (Vi) + F−

i (Vi+1). (7.68)

An alternative way to calculate the numerical fluxes at the cell boundaries as proposed
by Städtke et al. [9] and [10] does not require the homogeneity property for the flux splitting.
The method is based on the solutions of a linearized, quasi-one-dimensional Riemann problem
using the fluxes as major dependent parameters. The equation for fluxes is obtained from the
corresponding equation for primitive state parameters (7.10) by a similarity transformation,
resulting in

∂F
∂t

+ R
∂F
∂x

= 0 (7.69)

with the new coefficient matrix R

R = KGK−1 (7.70)

and the Jacobian matrix K

K =
∂F
∂U

. (7.71)

The eigenvalues of the “flux” matrix R are the same as those obtained for G; the new eigen-
vectors can be calculated from the corresponding eigenvectors of the G matrix as

V∗
R = VR KT V∗

L = VL K−1. (7.72)
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As already described for the equations using the primitive state vector, the coefficient matrix
Rn can be split into elementary parts with respect to the individual eigenvalues,

R =
∑

k

Rk, (7.73)

where the split matrices for the “primitive” state variables are defined as

Rk = KGk K−1. (7.74)

xs

x

F

time t

FL

FL

FR

FR

left right

�2 ��

��

Fs

Fig. 7.5: Linearized Riemann prob-
lem for fluxes

The “Godunov fluxes” F̂s at the cell interface are calculated from the corresponding fluxes
in the “left” and “right” cells as (see Fig. 7.5)

F̂ =
∑

k,λk≥0

R̃kFL +
∑

k,λk≤0

R̃kFR (7.75)

with the “weighting” factors as the sum of the split coefficient matrices for fluxes ordered with
respect to the sign of the corresponding eigenvalues λk,

R̃k =
1
λk

Rk, (7.76)

with the condition
∑

k

R̃k = I. (7.77)

The Flux Vector Splitting technique can be easily applied for unstructured grids and
second-order accuracy in space as will be described in Chapter 8.

References

[1] S.R. Chakravarthy, D.A. Andersen, and M.D. Salas, The Split Coefficient Matrix Method
for Hyperbolic Systems of Gasdynamic Equations, AIAA 18th Science Meeting, Paper
80-0268, Pasadena, CA, 1980.



7.5 Flux Vector Splitting method 129

[2] R. Courant, E. Isaacson, and M. Rees, On the Solution of Nonlinear Hyperbolic Differen-
tial Equations by Finite Differences, Communication in Pure and Applied Mathematics,
5, 243–255, 1955.

[3] P. Romstedt, A Split-Matrix Method for the Numerical Solution of Two-Phase Flow
Equations, Int. Top. Meeting on Advances in Reactor Physics, Mathematics and Com-
putation, Paris, France, 1987.

[4] S.K. Godunov, A Finite Difference Method for the Numerical Computation of Discontin-
uous Solutions of the Equation of Fluid Dynamics, Mat. Sbornik, 47, 271–290, 1959.

[5] F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer
Berlin/Heidelberg, 1999.

[6] P. Roe, Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, Jour-
nal of Computational Physics, 43, 357–372, 1981.

[7] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser Verlag, Basel/
Boston/ Berlin, 1990.

[8] J.L. Steger and R.R .Warming, Flux Vector Splitting of the Inviscid Gasdynamic Equa-
tions with Application to Finite Difference Methods, Journal of Computational Physics,
40, 263–293, 1981.

[9] H. Städtke, G. Franchello and B. Worth, Towards a High-Resolution Numerical Sim-
ulation of Transient Two-Phase Flow, Third Int. Conference on Multi-Phase Flow,
ICMF’98, Lyon, France, 1998.

[10] H. Städtke, B. Worth and G. Franchello, On the Hyperbolic Nature of Two-phase Flow
Equations: Characteristic Analysis and Related Numerical Methods, in Godunov Meth-
ods, Theory and Application, Kluwer Dortrecht, 841–862, 2001.

[11] I. Toumi and A. Kumbaro, An Approximate Linearized Riemann Solver for a Two-Fluid
Model, Journal of Computational Physics, 124, 286–300, 1996.

[12] B. Van Leer, Towards the Ultimate Conservative Difference Scheme: A Second Order
Sequel to Godunov’s Method, Journal of Computational Physics, 32, 101–136, 1979.



8 Remarks on the Advanced Two-Phase Flow Module

The Advanced Two-phase Flow Module (ATFM) has been developed at the European Com-
mission’s Joint Research Centre Ispra (JRC Ispra) with the specific aim to study new modeling
and numerical concepts for the numerical simulation of transient two-phase flow. The code
package includes:

1. a numerical solver for transient one- and two-dimensional two-phase flow,

2. a visualization package allowing a detailed online display of predicted results,

3. the Vector Processing Language (VPL) for data handling and graphic output, and

4. a database for storage of state and transport properties as well as predicted results.

The code offers various options for modeling and numerical details like selection of state
property routines, description of algebraic source terms for mass momentum and energy, first
and second order spatial accuracy or degree of implicitness for time integration and related
automatic time step control. Additional time-dependent procedures can be added for the defi-
nition of boundary conditions or complex output parameters. The code also includes a restart
capability at user defined time frequencies.

In the following the basic modeling and related numerical solution strategies as imple-
mented in the ATFM code will be summarized. Some more information to the ATFM code
can be found in [2].

8.1 Basic modeling approach

8.1.1 Balance equations of two-fluid model

The ATFM code is based on the hyperbolic single-pressure two-fluid model as described in
detail in Chapter 5. In order to guaranty the conservation of mass, momentum, and energy the
conservative form of the balance equations is applied for the numerical integration which can
be written as:

mass:

∂

∂t
(αi�i) + ∇ · (αi�i �ui) = σM

i with
∑

i=g,l

σM
i = 0 (8.1)
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momentum:

∂

∂t
(αi�i �ui) + ∇ · (αi�i �ui �ui) + αi∇p−∇ · (αiT̄i

)
= σM

i �uex
i + �F int

i + �Fi

= �σJ
i + �Fi with

∑

i=g,l

�σJ
i = 0 (8.2)

energy:

∂

∂t

[
αi�i

(
ei +

υ2
i

2

)]
+ ∇ ·

[
αi�i �ui

(
hi +

υ2
i

2

)]
+ ∇ · (αi �qi) −∇ (αiT̄i · �ui

)

= σM
i

(
h+

υ2
i

2

)
+ σQ

i + �F int
i · �uint

i +Qi + �Fi · �ui

= σE
i +Qi + �Fi · �ui with

∑

i=g,l

σE
i = 0 (8.3)

entropy:

∂

∂t
(αi�isi) + ∇ · (αi�i�uisi) = σS,int

i +
Qi

Ti

with

σS,int
i = σM

i si +
�F int

i

Ti
(�uint − �ui) +

σM
i

Ti

[
hex − hi +

1
2
(�uex − �ui)2

]
. (8.4)

and the conditions of compliance with the second law of thermodynamics
∑

i=g,l

σS,int
i ≥ 0.

Whether the full energy equation (8.3) is used or the entropy balance (8.4) is an option for the
code user depending on the problem being considered.

The interfacial forces, introduced in equations (8.2) and (8.3), have been split into two
parts: the interfacial friction force �F v

i and the nonviscous forces �F nv
i

�F int
i = �F v

i + �F nv
i . (8.5)

The hyperbolicity of the system of balance equations is achieved with the following form of
the nonviscous contribution to the interfacial forces �F nv

i ,

�F nv
i = −αgαlρk

(
dl�ug

dt
− dg

l �u

dt

)

+αgαl (αgρ̂l − αlρ̂g) (�ug − �ul)∇ · (�ug − �ul)

−αgαl (ρ̂g + ρ̂l) (�ug − �ul)∇ · αg

−αgαl (ρ̂g + ρ̂l) (�ug − �ul)
(
αg

ρg

dρg

dt
+
αl

ρl

dρl

dt

)






. (8.6)
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The abbreviations introduced in equation (8.6) are the total derivatives

dg�ug

dt
=
∂�ug

∂t
+ (�ug · ∇) �ug,

dg�g

dt
=
∂�g

∂t
+ �ug · ∇�g

dl�ul

dt
=
∂�ul

∂t
+ (�ul · ∇) �ul,

dl�l

dt
=
∂�l

∂t
+ �ul · ∇�l





(8.7)

and the “densities”

ρ̂g = �g + kρ, and ρ̂l = �l + kρ. (8.8)

8.1.2 Flow topology and interfacial area

Bubbly as well as droplet flow regimes are considered depending on whether liquid or
gas/vapor is the continuous “carrier” fluid. As indicated schematically in Fig. 8.1, both phases
might be present simultaneously in a spatial or time dependent transition process, character-
ized by the volumetric “weighting” function with the condition

Xb +Xd = 1. (8.9)

droplet flow

bubbly flow
Xb

Xd

Fig. 8.1: Flow topology
(schematically)

Introducing the local bubble and droplet volumetric fraction α∗
b and α∗

d, respectively, the
following relations for the gas/vapor and liquid volume fractions can be obtained:

αg = α∗
bXb + (1 − α∗

d)Xd

αl = α∗
dXd + (1 − α∗

b)Xb





. (8.10)

Assuming also mono-dispersed bubbly and/or droplet flow, the contributions of both flow
regimes to the interfacial area per (total) volume are given by

aint
b = 3

2C
int
b α∗

b Xb = 3
2Cbαb

aint
d = 3

2C
int
d α∗

d Xd = 3
2Cd αd





(8.11)

with the bubble and droplet volumetric fractions related to the total volume

αb = α∗
b Xb, αd = α∗

dXd. (8.12)
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Note that the sum of αb and αd is generally different from 1

αb + αd �= 1. (8.13)

The curvature of the interface for bubbly and droplet flow depending on the average particle
radius is given by

Cint
b =

2
rb
, Cd =

2
rd
.

The total interfacial area concentration is the sum of bubbly and droplet flow regimes as

aint =
3
2
(
Cint

b αb + Cint
d αd

)
. (8.14)

Equation (8.14) includes the two limiting cases:

1. For low void fraction values αg < αg,cr a bubbly flow regime is expected and with
Xb = 1, and αb = αg the interfacial area concentration becomes

aint = 3
2C

int
b αg. (8.15)

2. For high void fraction values αg > (1 − αl,cr) a disperse droplet flow regimeis expected
and with Xd = 1, and αd = 1 − αg the interfacial area concentration is

aint = 3
2C

int
d (1 − αg) . (8.16)

In the intermediate region, αb,cr < αg < (1 − αd,cr), a smooth transition is assumed
where the gas and liquid volume concentration in the bubbly and droplet subregions are ap-
proaching to a prescribed maximum values α∗

b,max and α∗
d,max for increased gas of liquid

volume fraction. This is schematically shown in Fig. 8.2 for αb,cr = αd,cr = 0.15 and
αb,max = αd,max = 0.35.

Fig. 8.2: Flow regime
transition
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Fig. 8.3: Interfacial area
concentration for mono-
dispersed bubbly and
droplet fields

The corresponding values for the interfacial area for the bubbly and droplet fields are
given in Fig. 8.3 assuming mono-dispersed conditions with the constant bubble and droplet
diameters of dbub = 4.0 mm and ddrop = 0.8 mm, respectively.

For the modeling of the bubble and droplet diameter and related curvature, empirical cor-
relations are used based on stability criteria with regard to particle breakup and coalescence.

8.1.3 Algebraic source terms

For the interfacial friction forces, a general resistance law is applied which can be formulated
with respect to the square of the “slip” velocity between the gas and liquid phases, and the
interfacial area concentration as

F v
g,l = FD

g,l = −1
8
(
CD

b a
int
b ρl + CD

d a
int
d ρg

) |�ug − �ul| (�ug − �ul) . (8.17)

The drag coefficients for bubbly and droplet flow, CD
b and CD

d , are assumed to be a function
of the Reynolds number.

The source terms for interfacial heat and mass transfer between the phases are determined
by the sum and the difference of heat fluxes from the bulk of the corresponding phases to the
interface, resulting in

σM
g,l = ± 1

∆hs

[(
aint

b Hq
b,g + aint

d Hq
d,g

)
∆Tg +

(
aint

b Hq
b,l + aint

d Hq
d,l

)
∆Tl

]
(8.18)

σQ
g,l = ±

[
aint

b

(
Hq

b,g + Hq
b,l

)
+ aint

d

(
Hq

d,g + Hq
d,l

)]
(Tg − Tl) , (8.19)

with semi-empirical heat transfer coefficients for the bubble and droplet fields, Hq
b,i and Hq

d,i

on the gas (i = g) and the liquid (i = l) side of the interface. For the driving temperature dif-
ferences in the the expression for the evaporation rate (8.18), only the metastable contributions
are taken into account

∆Tg = min (Tg − T sat, 0), ∆Tl = max (Tl − T sat, 0). (8.20)
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8.1.4 State properties

For the calculation of state properties the code user has a choice of three different property
packages including:

1. The Global Equation of State (GOST) package which has been developed at the Joint
Research Centre at Ispra (JRC) for the prediction of water/steam properties at saturated
conditions. The package is based on a “global” canonical equation of state for the free
enthalpy as function of temperature and specific volume f(T, v) (Helmholtz function).
From this function and its algebraic derivatives with respect to temperature and specific
volume, a consistent set of thermodynamic variables for liquid, vapor, and supercriti-
cal states are derived without any further assumptions or numerical manipulations. The
method has been proven to reproduce the International Skeleton Table for water and
steam [1] over a wide range of pressure and temperature and prescribed tolerance limits.
In case of metastable conditions (subcooled vapor or superheated liquid), the properties
are extrapolated from the values at saturated conditions and simplified state laws.

2. The SPWAT package for the calculation of water/steam state properties at saturated con-
ditions. From a completely defined reference point (T0, p0), all state variables are extrap-
olated using simplified state equations for the gas phase

vg(T, p) = vg,0
T/T0

p/p0

[
1 − γg,0p0 ln

(
p

p0

)
+ (βg,0T0 − 1) ln

(
T

T0

)]
, (8.21)

and the liquid phase

vl(p, T ) = vl,0 [1 − γl,0 (p− p0) + βl,0 (T − T0)] . (8.22)

From equations (8.21), (8.22) and corresponding derivatives with respect to specific vol-
ume vi and temperature Ti all thermodynamic variables for the two phases can be easily
calculated.

3. The MIXTURE package providing the calculation of state and transport properties for
gas mixtures including steam and noncondensibles. For simplicity Dalton’s law is applied
for the gas mixture. As for the SPWAT package, the user has to specify all relevant
state parameters for a reference point (p0, T0) from which all state variables are then
extrapolated using simplified state equations for water and gas.

8.2 Numerical method

8.2.1 Conservative form of flow equations

The numerical approach in the ATFM code represents a multi-dimensional extension of the
one-dimensional Flux Vector Splitting method as described in Section 4. The method is based
on the conservative form of the basic equations which, arranged in a compact matrix form,
can be written as

∂V
∂t

+ ∇F + Hnc∇U = E (8.23)



8.2 Numerical method 137

where the “non-conservative” part Hnc is defined as

Hnc = (JG − K) K−1 = XK−1, (8.24)

with the Jacobian matrices

J =
∂V
∂U

and K =
∂F
∂U

. (8.25)

The code user has the choice of two different sets of the state vector V and the corre-
sponding flux vector F depending on whether the entropy balance equations or the full energy
equations are used. These vectors are:
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using energy equation:
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(8.27)

For many of the test cases described in Chapter 9, there is practically no difference between
the two choices, particularly for slow or subsonic conditions. The use of the entropy in the
state vector might be preferred due to the reduced complexity of the coefficient matrices and
eigenvectors. However, there are other applications where the use of the energy equation
becomes crucial, for example in the prediction of shock waves in single phase gas or high
void fraction, and dispersed two-phase flow conditions.
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8.2.2 Finite volume discretization

For the numerical solution scheme, the governing equations (8.23) are transformed into a finite
volume approximation for arbitrary polygon-shaped computational cells i with the volume Vi,
the boundary segment area As, and the perimeter index s (Fig. 8.4), as given by

Vn+1
i = Vn

i − ∆t
Vi

∑

s

As

(
F̂s

)n+1

i

− ∆t
Vi

∑

s

As (Hnc
s )n+1

i

(
F̂s

)n+1

i
+ Dn+1

i ∆t, (8.28)

where the intercell fluxes F̂s, the nonconservative part of the coefficient matrix Hnc
s , and the

source term vector Di are evaluated implicitly at the new time level.
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Fig. 8.4: Finite volume discretization

The numerical fluxes at the cell boundaries F̂s can be calculated from a series of lin-
earized, quasi one-dimensional Riemann problems normal to the specific surface areas of the
computational cell boundary segments.

With a projection of the primitive form of the governing equations

∂U
∂t

+ G∇U = D (8.29)

normal to the cell section �nn (Fig. 8.4) one obtains

∂U
∂t

+ Gn
∂U
∂n

= D. (8.30)

For this purpose, the governing equations (8.29) are transformed using fluxes as major depen-
dent variables.

∂F
∂t

+ Rn
∂F
∂n

= KCn. (8.31)
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The new coefficient matrix R is defined as

Rn = KGn K−1, (8.32)

with the Jacobian matrix K

K =
∂F
∂U

. (8.33)

The “Godunov” fluxes at the cell interface are calculated from the corresponding fluxes in
the “left” and “right” cell as

F̂s(Fl,Rk) =
∑

k,λk≥0

(Rk)s Fl +
∑

k,λk≤0

(Rk)s Fr

with the “weighting” factors as the sums of the split coefficient matrices for fluxes ordered
with respect to the sign of the corresponding eigenvalues λk

R̃k =
1
λk

Rk, (8.34)

with the condition
∑

k

R̃k = I. (8.35)

8.2.3 Second-order accuracy

A near second-order accuracy is obtained by a linear reconstruction of the solution in all com-
putational cells following the Monotonic Upwind Scheme for Conservation Laws (MUSCL)
approach as indicated schematically in Fig. 8.5.
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Fig. 8.5: MUSCL approach: linear
reconstruction of solution

New values for the “primitive” parameters at the left and right side of the cell interfaces
are calculated by a linear extrapolation from the adjacent cells as

Ul
i+1/2 = Ui + σi

(∆x)i

2

Ur
i+1/2 = Ui+1 − σi+1

(∆x)i+1
2

}

. (8.36)
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Slope limiter functions are then applied in order to maintain a monotonic behavior of the
solution

σi = flim

[(
∂U
∂x

)

i−1/2

,

(
∂U
∂x

)

i+1/2

]

. (8.37)

The limiter function used in the following numerical examples combine some properties of
both the “minmod” and “superbee” limiters.

8.2.4 Implicit time integration

As indicated in equation (8.28), the intercell fluxes, the nonconservative part of the coeffi-
cient matrix and the source term vector are evaluated implicitly at the new time level. For
the implicit time integration, the conservative variables, the source terms, and the fluxes are
evaluated by a first-order Taylor expansion up to the new time-step value
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(8.38)

with the base vector W

W1= {p, αg, αgρg, �ug, αlρl, �ul, αgρg, sg, αlρl, sl}T

W2= {p, αg, αgρg, �ug, αlρl, �ul, αgρg, eg, αlρl, el}T





(8.39)

depending on whether the entropy balance or the energy conservation equation is used.
The elements of the vectors W1,W2 have been chosen in a way to avoid singularities in

the resulting sparse system matrix. The Jacobian matrices for the derivation of the source term
and flux vectors are evaluated algebraically in order to save computational time. The final
solution for the new-time conservative parameters is done by a Newton–Raphson iteration
using a sparse matrix solver with complete lower and upper preconditioning. The primitives
are calculated after each iteration

Un+1
i = Un

i +
(
∂U
∂W

)n

i

(
Wn+1

i − Wn
i

)
. (8.40)
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Experience shows that convergence is achieved within less than two to three iteration steps.
More details on the FVS method can be found in [3]. The automatic time step control is based
on the following criteria:

1. check whether the Courant number is above a user-defined maximum value

2. error check: evaluate the difference between mass in each computational cell with the
anticipated value based on a Taylor expansion from previous time value,

3. check whether the increments of quantities selected from the primitive state vector are
above user-defined threshold values.

In the case that one of these conditions is not satisfied, the iteration procedure is repeated
with half of the time step size. The predictive capability of the ATFM code has been demon-
strated by a large number of numerical and physical benchmark test cases. Some selected
results are given by Städtke et al. in [3] and [5].
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9 Numerical Results and Applications

In this Chapter numerical results for various two-phase flow phenomena are presented which
are governed by wave propagation phenomena. This includes the propagation of volumetric
phase concentration (void waves), pressure waves, flow discontinuities and shock waves, fast
depressurization processes, and related critical flow phenomena. All numerical results shown
are obtained with the Advanced Two-Phase Flow Module (ATFM), as described in Chapter 8.

The examples presented fall into two different categories: (1) base-line test cases using
simplified boundary conditions and constitutive modeling to provide insight into physical
phenomena and to test the accuracy and robustness of the numerical method applied, and
(2) engineering type applications using physically more realistic state and interfacial transport
models. Where available the numerical results are compared with analytical solutions or with
experimental data.

9.1 Phase separation and void waves

This is an isothermal transient test case to investigate gravity-induced phase separation and
related counter-current flow conditions. It tests the ability of the methods to predict counter-
current flow conditions as exist in many reactor safety-related transients. Initial conditions
represent a vertical pipe of height h = 2.0 m filled with a homogeneous two-phase mixture
with a void fraction of αg = 0.5. The specific challenge is the prediction of two steep void
waves travelling simultaneously from the top and bottom ends into the pipe, which, when
meeting at the middle section, results in the formation of a sharp interface (liquid level) after
phase separation is complete. As schematically shown in Fig. 9.1, three different regions can
be distinguished: single-phase gas and liquid conditions at the top and bottom part of the pipe,
respectively, and a quasi-stationary two-phase flow region at the middle section.

9.1.1 Analytical model

In the undisturbed middle section of the pipe, quasi-steady-state flow conditions exist where
the volumetric upward and downward fluxes of the two phases compensate each other. Ne-
glecting the momentum flux terms and virtual mass forces, compared to the gravity and inter-
facial friction forces, the phasic momentum equations simplify to

αg
∂p

∂y
= F v

g − αg�g g, (9.1)
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Fig. 9.1: Phase separation in a vertical pipe due to gravity (schematically)

αl
∂p

∂y
= F v

l − αl�l g. (9.2)

With the simplified expression for the interfacial drag as specified for the ASTAR benchmark
cases [2], the interfacial friction force becomes

F v
g =

1
8
CD aint�m (ug − ul)

2
, (9.3)

with the interfacial area per unit volume

aint =
3αgαl

rp
(9.4)

and a unique “particle” radius rp. The sum and the difference of (9.1) and (9.2) result in the
pressure gradient due to the buoyancy forces

∂p

∂x
= −�m g with �m = αg�g + αl�l (9.5)

and the “slip” velocity in the middle two-phase flow region as

∆u = ug − ul =

√
8 (�l − �g) rpg

3CD �m
. (9.6)

Introducing the density values and the specified values for the “drag” coefficient CD = 0.44
and particle radius rp = 0.5 × 10-3 m, the slip velocity becomes ∆u = 0.24 m/s. Due to the
compensating volumetric fluxes across the void wave,

ū = αgug + αlul = 0 (9.7)
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the propagation of the void waves can be predicted using the slip velocity as given by equation
(9.6) as

u1 = ug = αl∆u

u2 = ul = −αg∆u





. (9.8)

For an initial void fraction of αg = 0.5, one obtains for the upward void front u1 = 0.12 m/s,
and for the downward void front u2 = −0.12 m/s.

9.1.2 Numerical results

The prediction was performed for a water/air mixture in a closed pipe with the initial con-
ditions of a constant void fraction of αg,0 = 0.5 and a pressure of p0 = 1 bar. For the
one-dimensional case a second-order Flux Vector Splitting scheme was used with 500 compu-
tational cells in the y-direction. Heat transfer between the phases as well as viscous and wall
friction effects are neglected.

Calculated results for void fraction, gas and liquid velocities, and pressure distributions for
various consecutive time values are shown in Fig. 9.2. As can be seen the numerical simulation
largely confirms the analytical results including the positions and amplitudes of the two void
waves and the (nearly) discontinuous changes of void fraction and phasic velocities across
the wave fronts. The discontinuities in the pressure gradient coincides with the passage of the
void waves marking the change of the gravity head between the two-phase regions and the and
single-phase regions of pure liquid and pure gas. A new steady state is reached at t = 8.3 s
when the two waves have merged at the middle of the pipe. The prediction does not show
any anomaly or numerically induced instability during the transition from two-phase to pure
single-phase gas or liquid conditions. The void wave itself is represented by two to three grid
points.

During the initial phase of the transient some weak pressure wave propagation and re-
flection appeared in the prediction which are related to the somehow artificial (mechanical
disequilibrium) initial conditions. However, these waves vanish when the nearly steady pres-
sure gradient is reached depending on the density values in the gas, two-phase and liquid
region. At the end of the transient, the pressure in the gas space has returned to the initial
pressure value as expected.

The dependence of numerical results in case of a progressively increased number of grid
points n is given in Fig. 9.3 for the void fraction distribution at a fixed time of t = 4 s. Figure
9.3 clearly indicates the continuous convergence toward the discontinuous analytical solution
which is practically reached for n = 500. The position of the void wave remains unaffected
by the change of the grid resolution.
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Fig. 9.2: Phase separation in a verical pipe due to gravity; void fraction, phasic velocities, and
pressure distributions along pipe length at various time values
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Fig. 9.3: Phase separation in a vertical pipe; convergence of solution in case of progressive grid
refinement, n = 25, 50, 100, 250, 500 grid points, t = 4 s

9.2 U-tube oscillations

This idealized test case, first proposed by Ransom and published in [1], has become a standard
benchmark test case to evaluate numerical diffusion inherent in numerical solution schemes
for two-phase flow. It consists in calculating a gravity driven oscillation of a water column
in a U-tube manometer. The geometry of the U-tube and the initial conditions are shown in
Fig. 9.4.

Fig. 9.4: Oscillating water column in
a U-tube manometer; geometry, and
initial conditions

The initial conditions start with the maximum displacement of the water column in the left
leg and with an assumed zero velocity. In the particular case that the wall friction is zero, (in-
viscid flow), the liquid mass oscillated indefinitely as a “rigid body” and for the whole process
a simple algebraic solution exists. Any damping of the predicted oscillation can be attributed
to numerical diffusion or viscosity of the finite difference or the finite volume scheme applied.
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9.2.1 Analytical solution

Neglecting viscosity and wall friction effects, the oscillation frequency ω and the maximum
velocity of the water column umax can be derived as follows:

ω =
1
T

=
√

g

2π2l
and umax

l =

√
2g
l
h. (9.9)

Assuming initial conditions of zero liquid velocity everywhere and a maximum liquid level
displacement h, the velocity at the bottom of the U-tube at time t after the release is

ul = umax
l sin

(
t

ω

)
. (9.10)

9.2.2 Numerical results

The results shown in the following are obtained with the second-order Flux Vector Splitting
technique with 200 computational cells assuming a strictly one-dimensional flow conditions.

The predicted velocity at the bottom of the U-tube (solid line) is compared with the analyt-
ical solution (dotted line) in Fig. 9.5. The practical absence of (numerical) damping indicates
the low numerical viscosity of the numerical method used. The still existing small attenuation
might be (at least) partially attributed to the existing differences in phasic velocities close to
the moving interface and the related dissipative effects.

Fig. 9.5: Liquid velocity at
the bottom of the U-tube as a
function of time; comparison
of CFD calculation (solid line)
with analytical solution (dotted
line with circles)

The predicted void fraction and pressure distribution along the U-tube for the first six oscil-
lation cycles are given in Figs. 9.6 and 9.7. The figures show a high resolution of the moving
liquid level where the discontinuities in void fraction and accompanied pressure gradient is
represented by two to three grid points. The corresponding parameter profiles are maintained
during various oscillation cycles, indicating a practical absence of numerical dispersion or vis-
cosity effects. Since the liquid velocity is relatively low, the dynamic momentum contribution
is negligible small and the pressure values shown in Fig. 9.7 are dominated by the gravity head
determined by the actual liquid level elevation.

The successful prediction of the U-tube test case and the sedimentation case governed by
counter-current two-phase flow conditions have been a milestone for the development of the
hyperbolic two-fluid model as described in Chapter 5.
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Fig. 9.6: Overlay of void frac-
tion distributions for six consec-
utive oscillation cycles at times
of equal level elevations on both
legs

Fig. 9.7: Overlay of pressure
distributions for six consecutive
oscillation cycles at times of
equal level elevations on both
legs

9.3 Pressure wave propagation phenomena

Weak pressure disturbances (∆p→ 0) in a compressible homogeneous media propagate with
the speed of sound which is determined by the compressibility of the fluid and inherent inertia
as given by the density. In the case of absence of viscosity and nonequilibrium effects, the
sound speed is independent of the sound frequency. For the specific case of single-phase gas
the sound velocity can be calculated by the isentropic relation

a0 =

√(
∂p

∂�g

)

s

. (9.11)

Assuming an ideal gas law, expression (9.11) simplifies to

a0 =
√

κg
p

�g
, or equivalently a0 =

√
κgRgTg, (9.12)

with the gas constant Rg and the isentropic exponent κg. With an increased strength of the
shock wave the propagation velocity usw exceeds the value of the sound velocity depending
on the pressure rise ∆p = p1 − p0

usw = a1

√

1 +
κg + 1
2κg

(
∆p
p0

). (9.13)
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For two-phase flow conditions, analytical descriptions for wave propagation phenomena
with finite wave strengths do not exist, apart from the cases where extreme simplified assump-
tions such as homogeneous equilibrium or complete “frozen” conditions (where the algebraic
mass, momentum, and energy transfer terms are set to zero) are applied.

In the following, the propagation of one-dimensional (plane) pressure waves in two-phase
media are studied numerically assuming the absence of wall friction and wall heat transfer.
The initial and boundary conditions are shown schematically in Fig. 9.8. At the left side of the
pipe a sudden pressure increase is imposed. The calculations are terminated before the waves
have reached for the far right end of the 4 m long pipe.

Fig. 9.8: Shock wave propagation
in a straight pipe, pipe geometry,
and boundary conditions

9.3.1 Single-phase gas flow

Before dealing with the more complex two-phase flow conditions, a few results are included
here, mainly to demonstrate the capability of the Flux Vector Splitting (FVS) scheme, a nu-
merical method that will be also used for the following two-phase cases. Predicted values
for the shock wave propagation in a gas medium assuming ideal state equations are shown in
Fig. 9.9 in comparison with the existing analytical solution. The calculation is performed with
1600 computational cells which corresponds to a grid spacing of 2.5 mm. The case selected
represents a rather moderate shock strength with a shock velocity of usw = 473.05 m/s, which
corresponds to a Mach number of M = 1.36 based on the sound velocity in the undisturbed
region in front of the wave.

The figure indicates a high resolution of the flow discontinuities and a perfect prediction
of shock velocity. Within the shown scale, there is practically no difference between the CFD
calculation and the analytical solution. The calculated results are also free of any numerically
induced instability and, within the predicted time frame, there is no evidence of dispersive
effects. All calculated parameters across the wave including, pressure, velocity, temperature,
and entropy are in good agreement with the analytical values as can be seen from Fig. 9.10.
The correct prediction of temperature and entropy could be achieved only when using the full
energy conservation equation.

Of particular interest with regard to the numerical feature of the FVS scheme is how the se-
lection of the grid spacing affects the numerical results compared with the analytical solution.
This is demonstrated in Fig. 9.11 showing the effect of a progressive refinement of the grid
from cell sizes of 8 mm to 1 mm. The figure indicates a clear convergence of the predictions
toward the discontinuous analytical solution which might be fully reached for ∆x→ 0.
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Fig. 9.9: Shock wave propagation in single-phase gas , second-order Flux Vector Splittting
scheme with 800 cells ∆x = 2 mm; comparison of CFD calculation (straight line) and analytical
solution (dotted line)

9.3.2 Two-phase flow

For a two-phase test case, the pipe is assumed to be filled with a water/air mixture at equilib-
rium conditions with a temperature of 300 K and a void fraction of αg = 0.05. It is further
assumed that the gas is homogeneously distributed in the form of equally sized bubbles having
a bubble diameter of 4 mm. As for the previously described gas case, the shock wave is initi-
ated by a sudden pressure rise from p0 = 1 bar to p1 =2 bar. The calculations are performed
with the same numerical methods as the previous case using the second-order FVS scheme.
For the whole length of the pipe, 2000 computational cells are used which corresponds to a
cells sizes of ∆x = 2 mm. The calculated pressure wave propagation at five consecutive time
values is shown in Fig. 9.12.
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Fig. 9.10: Shock wave propagation in a single-phase gas, second-order FVS scheme with 800
cells (∆x = 2 mm); comparison of CFD calculation (straight line) and analytical solution
(dotted line)

Fig. 9.11: Numerical simulation of a
shock wave in single-phase gas media;
convergence of solution in the case of
grid refinement

The figure includes the results of three calculations which differ only in the specification
of the algebraic source terms describing the momentum and heat coupling between the phases:

(a) this base calculation uses a standard modeling of the momentum and energy coupling
resulting in finite values for the interfacial forces and interfacial heat transfer,
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Fig. 9.12: Shock wave propagation in two-phase media, water/air at p1 = 1 bar, T1 = 300 K,
αg = 0.05; second-order FluxVector Splitting scheme with 2000 cells

(b) here partial “frozen” conditions are applied where the heat transfer between the phases is
neglected, the interfacial forces are modeled as in case (a),

(c) this prediction assumes complete “frozen” conditions where both the interfacial forces
and the interfacial heat transfer are set to zero. However, the nonviscous interfacial forces
described by exclusively differential terms are taken into account as in the calculations
(a) and (b).

Although the same sudden pressure increase is applied to initialize the shock wave, there
are remarkable differences between the results with regard to the predicted wave speed and
pressure profile. For fully “frozen” conditions (a) the pressure wave propagates with a constant
supersonic velocity (usw > a0) into the undisturbed region of the pipe, and at the same time,
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the initial discontinuous pressure change is (apart from very small numerical diffusion effects)
maintained.

Specifying finite values for the interfacial heat transfer and interfacial friction as in the
case (a) results in a further reduction of the wave speed and, due to the inherent physical
dissipation, in a transfer of the initial pressure jump into a continuous pressure profile.

A more detailed picture of the wave structure is given in Fig. 9.13 showing the governing
state and flow parameters across the wave at the time t = 30 ms. Two different regions can be
distinguished:

(1) a wave front with rather steep (but finite) parameter gradients accompanied with strong
excursions for the gas velocity and temperature and resulting strong deviations from ther-
mal and mechanical equilibrium between the phases. Within this region the effect of the
algebraic source terms is practically negligible (“frozen”) and the continuous change of
parameters is determined by the differential coupling terms between the phasic momen-
tum and energy equations.

(2) a relaxation zone behind the shock front with a continuous change of the flow parameters
toward a new equilibrium between the phases. The width of this region is governed by the
finite values for the (algebraic) terms for the interfacial friction and heat transfer and the
corresponding characteristic time values. As shown in Fig. 9.13, with the present model-
ing assumptions the thermal equilibrium is reached considerable faster as the mechanical
equilibrium between the phases.

The variation of the pressure profile relative to the shock front is presented in Fig. 9.14
for different time values after initiation of the shock wave. The figure shows that already for
t ≥ 10 ms a nearly constant wave profile is reached where dissipative effects and dynamic
forces are balanced resulting in a wave structure which remains practically constant during
the subsequent propagation process.

To what extent the predictions might be affected by the computational grid is illustrated in
Fig. 9.15 showing the results obtained for a progressively reduced grid spacing. As indicated
in Fig. 9.15, there exists a clear convergence of solution toward the continuous pressure profile
which is practically reached for a grid size of ∆x ≤ 1 mm.

The effect of the wave strength is illustrated in Figs. 9.16 and 9.17 showing the pressure
and velocity profiles at t = 30 ms after initiation of the shock wave. Apart from the initiating
pressure p1 all other initial and boundary conditions are the same as those applied before.
As for single-phase gas flow, the growing shock strength results in an increase of the wave
velocity accompanied with a steepening of pressure and velocity at the shock front. The
figures also indicate that the homogeneous equilibrium model, indicated by the dotted line,
provides a good approximation for the wave speed and the new equilibrium state downstream
of the shock wave.
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Fig. 9.13: Shock wave in two-phase media, water/air, αg = 0.05, parameter profiles at time
t ≥ 10 ms, second-order FVS scheme with 2000 cells, ∆x = 2 mm

Fig. 9.14: Numerical simulation
of a shock wave in two-phase
water/air media, αg = 0.05,
evolution of pressure profile
during wave propagation, time:
0 ms ≤ t ≤ 50 ms
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Fig. 9.15: Numerical simulation
of a shock wave in two-phase
water/air media, αg = 0.05;
convergence of solution in the
case of grid refinement, second-
order FVS scheme

Fig. 9.16: Shock wave propagation in two-phase water/air media, αg = 0.05, pressure distri-
butions at t = 30 ms, effect of shock strength; comparison of CFD calculation (straight line)
with analytical solution for homogeneous equilibrium flow (dotted line)
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Fig. 9.17: Shock wave propagation in two-phase water/air media, αg = 0.05, phasic velocity
distributions at t = 30 ms, effect of shock strength; comparison of CFD calculation (straight
line) with algebraic solution for homogeneous equilibrium flow (dotted line)

9.4 Shock tube

Shock-tube devices have been extensively used to study shock wave propagation phenomena
in compressible fluids like gases or gas–liquid two-phase mixtures. Usually a high (left) and
a low (right) pressure region is separated by a diaphragm as schematically shown in Fig. 9.18.
The transient is initiated by an instantaneous removal of the diaphragm resulting in a shock
wave and rarefaction wave propagating toward the right and left ends of the pipe respectively.
Assuming strictly one-dimensional flow conditions, the shock tube mathematically represents
a “Riemann problem” where the initial flow velocities on both sides of the diaphragm have
been set to zero.

9.4.1 Single-phase gas

For the single-phase gas case the geometry of the pipe and initial conditions are given in
Fig. 9.18. For simplicity an ideal gas law is assumed with an isentropic exponent of κ = 1.4.

The numerical results for the shock tube problem are obtained with the ATFM code using
a second-order Flux Vector Splitting scheme with 500 cells which corresponds to a grid size
of 0.8 mm. Figures 9.19 and 9.20 show a comparison of the CFD results with the existing
analytical solution including the pressure distribution along the pipe length at various time
values (Fig. 9.19) and the parameter distribution for a fixed time of t = 8 ms (Fig. 9.20). The
figures indicate a nearly perfect agreement of the CFD calculation with the analytical solution
including a perfect match of the timing for wave propagation phenomena and high resolution
of the shock wave and contact discontinuity.



158 9 Numerical Results and Applications

Fig. 9.18: Shock tube problem, for
single-phase gas; geometry and initial
conditions

Fig. 9.19: Shock tube test problem for single-phase gas; density distribution at different time
values, second-order Flux Vector Splitting scheme with 500 cells; comparison of CFD calcula-
tion (solid line) with analytical solution (dashed line)
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Fig. 9.20: Shock tube test problem for single-phase gas: parameter distribution at t = 0.8 ms;
comparison of CFD prediction (solid line) with exact solution (dashed line), dotted line: initial
conditions
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9.4.2 Two-phase flow

Compared with the single-phase gas flow case, the shock tube problem becomes more com-
plex for two-phase flow conditions. The reason for this is not only the increased number of
governing flow parameters and related flow equations, but rather the presence of algebraic
source terms controlling deviations between local phasic temperatures and flow velocities. As
an example a two-component water/air mixture is chosen with a relatively high liquid content
to exagerate the difference to the pure gas case. Due to the large complexity, no algebraic
solutions exist for the general two-phase shock tube problem. Nevertheless, for the specific
condition of homogeneous equilibrium flow an iterative algebraic solution can be derived in a
similar way as was described for the pure gas case in Chapter 4. The tube geometry and initial
conditions as used in the predictions are given in Fig. 9.21.

Fig. 9.21: Shock tube problem for
two-phase water/air mixture; geome-
try and initial conditions

As in the previous case, the ATFM calculations were performed with the second-order
Flux Vector Splitting scheme. A relatively large number of 1000 cells was used to guarantee
a converged numerical solution. The predicted pressure distributions at various time values
after the rupture of the diaphragm are shown in Fig. 9.22. On first glance the results look
qualitatively very similar to what was predicted for the single-phase gas, including the pres-
ence of shock and expansion waves propagating with constant velocities into the low and high
pressure regions. However, as a result of the increased inertia and reduced compressibility
of the two-phase mixture the wave propagation velocities are considerably lower than for the
pure gas case.

More details on the wave propagation processes can be seen in Fig. 9.23 showing the
distribution of governing parameters at a constant time of t = 18 ms. As for the pure gas case
three wave propagation phenomena can be distinguished:

1. A shock wave traveling into the low pressure region which is composed of a shock front
characterized by steep (but finite) gradients for all involved flow parameters followed by
more of a relaxation region with moderate changes. Due to the very small time scale
for crossing the shock front, all interfacial transfer processes as described by algebraic
source terms are practically “frozen”, resulting in a strong deviation (overshoot) of phasic
velocities and temperatures from the equilibrium conditions. The velocity of the shock
front depends on the sound velocity within the undisturbed region as well as on the pres-
sure ratio across the front which is not a priori known. The relaxation region behind the
front is governed by the interfacial heat, mass and momentum coupling driving the phase
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Fig. 9.22: Shock tube test problem for two-phase flow of water/air mixture; pressure distribution
at different time values, second-order Flux Vector Splitting scheme with 1000 cells; comparison
of CFD calculation (solid line) with analytical solution for homogeneous equilibrium condition
(dashed line)

parameters toward a new equilibrium state. The length of the relaxation zone depends on
the intensity of the interfacial coupling terms.

2. A pressure wave followed by a “contact discontinuity” which in an ideal case marks
where the two fluids were initially separated by the diaphragm. Similar to the pure gas
case, the predicted pressure and mixture (to a certain extent also phasic) velocities remain
equal on both sides. All the other parameters including mixture density, void fraction
and phasic temperature show abrupt changes across the “contact discontinuity”. How-
ever, contrary to the gas flow case, the parameter gradients remain at finite values due to
diffusion effects resulting from different local phasic velocities.
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3. A smooth expansion wave traveling into the high pressure region. The front of the waves
propagates with the sound velocity in the undisturbed high pressure region. The con-
tinuous dispersion of the wave is a result of the decrease of sound velocity during the
expansion of the fluid.

Fig. 9.23: Shock tube test problem for two-phase water/air mixture; parameter distribution at
t = 15 ms, comparison of CFD prediction (solid line) with algebraic solution for homogeneous
equilibrium conditions (dashed line); dotted line: initial condition
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In addition to the CFD prediction, Figs. 9.22 and 9.23 also include the results of an iterative
analytical solution for the simplified case of homogeneous equilibrium flow. It is evident that
the assumption of equal local phase velocities and temperatures suppresses all thermal and
mechanical disequilibrium effects. However, there still exists a remarkable agreement with
respect to pressure, mixture density, and mixture (average) velocity as well as for propagation
velocities of different wave propagation processes.

9.5 Multidimensional wave propagation and explosion
phenomena

The shock tube problem as described above can be extended to multidimensional “explo-
sion” test cases, where a cylindrical or spherical high pressure core region is surrounded by a
constant pressure environment as schematically indicated in Fig. 9.24. As in the shock tube
problem the initial velocities in the high and low pressure regions are set to zero. As long as
the fastest waves have not reached the outer walls no further specific boundary conditions are
needed.

high pressure
region p > p1 0

ambiant
pressure p0

Fig. 9.24: Cylindrical explosion test case

For the following numerical analysis two different computational grids will be used as
shown in Fig. 9.25: (1) an equally spaced Cartesian grid (left) where, due to the expected
strictly axisymmetric behavior, only one quadrant is actually used in the prediction, and (2) a
quasi-one-dimensional nonuniform grid (right) which takes a full advantage of the symmetri-
cal feature of the test case.

9.5.1 Single-phase gas flow

Before dealing with the more complicated two-phase flow conditions the numerical approach
will be first tested for a pure gas case. The initial pressure and temperature values in the high
pressure region are p1 = 5 bar and T1 = 400 K, respectively. In the outer low pressure region
pressure and temperature are specified as p0 = 1 bar and T0 = 300 K. The diameter of the
high pressure core is d = 1.6 m.
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Fig. 9.25: Two-dimensional Cartesian grid (left) and quasi-one-dimensional grid (right) for
explosion test case

The effect of the numerical approach on the explosion test case is shown in Figs. 9.26 and
9.27, comparing results for the pressure and density profiles obtained for different spatial res-
olutions. The figures include the results of three different calculations: (a) a two-dimensional
calculation using a Cartesian grid of 100 × 100 = 10000 computational cells, (b) a quasi-one-
dimensional calculation with 1000 cells (e.g., the same number of cells in the radial direction
as used for the two-dimensional calculation) and (c) a quasi-one-dimensional “reference” cal-
culation with 2000 cells. From the figures the following conclusions can be drawn:

1. in the two-dimensional calculation there is no noticable difference whether the parame-
ters are taken along the x- (or y-) axis or along the diagonal axis. This means that, at
least for the present test case, the grid orientation effect is largely negligible,

2. the results for the two-dimensional and one-dimensional calculations are nearly identical
when using the same number of cells in the radial direction,

3. the predicted wave velocities and corresponding wave locations are largely independent
on the spatial resolution of the computational grid,

4. the solution with only 100 cells in radial direction did not reach spatial convergence as
indicated by the poor representation of the shock wave and contact discontinuity. For the
quasi-one-dimensional calculation the convergence is almost reached when 2000 cells
are used in radial direction.

The figures also demonstrate a dilemma of multidimensional simulation of pressure (ex-
plosion) wave propagation problems. For a high resolution of the parameter changes in the
waves, a detailed fine grid spacing would be needed only in regions of large spatial parameter
variation as in the vicinity of the moving contact surface and shock wave. Using a uniform
Cartesian grid as in the present case is highly inefficient and may become impractical in the
case of more complex geometries.
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Fig. 9.26: Explosion test case,
single-phase gas flow, pressure
profile in the radial direction at
t = 1.5 ms; comparison of one- and
two-dimensional calculations

Fig. 9.27: Explosion test case,
single-phase gas flow, density
profile in the radial direction at
t = 1.5 ms; comparison of one- and
two-dimensional calculations

Results of a “reference” calculation using a quasi-one-dimensional nonuniform grid with
2000 cells in radial direction are given in Figs. 9.28 and 9.29 showing the radial pressure
and density distributions for consecutive time values during the first 2 ms of the transient.
Apart from the axis symmetry the behavior is qualitatively similar to the shock tube problem
including the outward propagation of a (now circular) shock wave, a circular contact discon-
tinuity traveling with some smaller velocity in the same direction, and a circular rarefaction
wave traveling toward the origin. Contrary to the strictly one-dimensional shock tube case the
shock strength becomes weaker while traveling in outward direction and the velocity profile
between shock wave and contact discontinuity is no longer constant.
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Fig. 9.28: Cylindrical explosion test case for single-phase gas, pressure distribution at different
time values, second-order Flux Vector Splitting technique with 2000 cells
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Fig. 9.29: Cylindrical explosion test case for single-phase gas, density distribution at different
time values, second-order Flux Vector Splitting technique with 2000 cells
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9.5.2 Two-phase flow

For the two-phase flow explosion test case a water/steam mixture is considered with the initial
conditions as shown in Fig. 9.30. As in previous cases the pressure region with p1 = 5 bar is
surrounded by a constant ambient pressure p0 = 1 bar. The gas (steam) volume fractions are
αg,0 = 0.05 in the high pressure region and αg,0 = 0.10 on the low pressure side. In both
regions thermal equilibrium is assumed with T = T sat(p).

p = 1 bar0

0 0

g,1

T = T (p )

= 0.10

sat

�

p = 5 bar1

1 1

g,1

T = T (p )

= 0.05

sat

�

Fig. 9.30: Cylindrical
explosion in water/steam
media

How the chosen computational grid affects the calculation of the two-phase explosion test
case is illustrated in Figs. 9.31 and 9.32. As for the single-phase gas case shown in Figs.9.26
and 9.27 the results using a Cartesian grid or a quasi-one-dimensional (nonuniform) grid are
nearly identical as long as the same number of grid points are used in radial directions. A
converged solution is practically reached for the quasi-one-dimensional calculation for 2000
cells in radial direction which corresponds to a grid size of 1 mm.

Fig. 9.31: Explosion test case,
twophase water/air flow, pressure
profile in the radial direction at
t = 40 ms; comparison of one- and
two-dimensional calculations

Results for the reference calculation using a quasi-one-dimensional grid with 2000 cells
are presented in Figs. 9.34 and 9.35 showing the radial profiles for pressure and void fraction
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Fig. 9.32: Explosion test case,
two-phase water/air flow, density
profile in the radial direction at
t = 40 ms; comparison of one- and
two-dimensional calculations

at consecutive time values during the evolution of the transient. More detailed information on
the parameter distributions at a fixed time of t = 40 ms are given in Fig. 9.33 also including
phase velocities and evaporation/condensation rates. Although some common features still
exist with the pure gas case as were described above, the inhomogeneity of the two-phase
flow (ug �= ul) and the large variation in mixture density due to the phase change processes
add a considerable complexity to the wave propagation phenomena.

As in the gas case, a circular shock wave is traveling in an outward direction with a veloc-
ity of usw = 68.75 m/s which corresponds to a Mach number (based on the “frozen” sound
velocity in the upstream undisturbed region) of M = 1.46. The shock wave is comprised of
a leading steep wave front creating a sudden disequilibrium between the phases, and a contin-
uous downstream relaxation region where interfacial transfer processes for mass, momentum
and energy drive the flow toward a new equilibrium state. With the initial conditions chosen,
the shock wave results in a complete condensation of steam which is achieved about 0.5 m
downstream of the shock front.

At the same time a circular rarefaction wave is propagating into the initial high pressure
core region toward the origin. The propagation velocity of this wave is largely retarded by the
onset of a strong evaporation as indicated by the large increase in void fraction at the outer
core region. This leads to a prolonged holdup of the pressure in the core region up to the time
when most of the liquid is evaporated (not shown here).

The third wave represents a type of “contact discontinuity” showing a nearly discontinuous
change in void fraction (see Fig. 9.35) from pure liquid (αg = 0) to high void fraction (αg >
0.8) two-phase conditions. The wave practically marks the boundary between the two fluids
which were initially present in either the high or low pressure region. As for the gas flow
the pressure remains unchanged across the contact discontinuity. The major difference to the
gas case is that due to the nonhomogeneous flow conditions (ug �= ul) some mixing occurs
across the wave which results in penetration of vapor into the adjacent subcooled region and
associated condensation (see Fig. 9.33).

The results shown here represent typical examples to demonstrate some characteristic
thermal-hydraulic features of explosion phenomena in two-phase media. Nevertheless, the
present modeling and numerical approach can be easily extended to other initial and boundary
conditions or to diabatic flow conditions with external heat sources.
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Fig. 9.33: Cylindical explosion test case for two-phase water/steam flow, paramter distributions
in radial direction at time t = 40 ms
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Fig. 9.34: Cylindical explosion test case for two-phase water/steam flow; pressure distribution
at different time values, second-order Flux Vector Splitting technique with 2000 cells
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Fig. 9.35: Cylindical explosion test case for two-phase water/steam flow, void fraction distribu-
tion at different time values, second-order Flux Vector Splitting technique with 2000 cells
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How the multidimensional effects influence the wave propagation and attenuation is
demonstrated in Figs. 9.36 and 9.37 comparing pressure and void fraction distributions at
a fixed time of t = 40 ms for plane, cylindrical, and spherical configurations. The initial con-
ditions in all the three cases are the same as used before for the cylindrical explosion cases.

Fig. 9.36: Explosion test case
for water/steam flow; pressure
profiles in the radial direction at
t = 40 ms for plane, cylindrical,
and spherical configuration

Fig. 9.37: Explosion test case,
water/steam flow; void fraction
profiles in the radial direction at
t = 40 ms for plane, cylindrical,
and spherical conditions

For the strictly one-dimensional conditions the “explosion case” becomes identical with
the shock tube problem as was discussed in some detail in the previous section for water/air
media. For the water/steam mixture, a strong shock wave is formed where in the trailing
relaxation region the vapor is completely condensed. Due to the practical absence of viscosity
effects (wall friction is neglected) the shock strength remains unchanged.

For the cylindrical, and even more for the spherical configuration, the continuous enlarge-
ment of the wave front while propagating in the outward direction results in a decrease of the
wave intensity. On the other side, the spatial contraction to cylindrical or spherical geometries
causes a faster depressurization of the core region and a more rapid evaporation as shown by
the increased level of void fraction in this region.
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The explosion test case as described above may also be reversed creating an implosion
where an internal cylindrical or spherical core is surrounded by a high pressure region of
finite thickness as schematically shown in Fig. 9.38.

Fig. 9.38: Spherical water/steam
implosion test case; basic configura-
tion and initial conditions

Apart from the geometrical configuration, all other initial conditions for the high and low
pressure regions are the same as in the previous explosion case. The quasi-one-dimensional
prediction is done using the second-order Flux Vector Splitting scheme with 2000 grid points.
Predicted parameter distributions for pressure and void fraction at five consecutive time values
are shown in Figs. 9.39 and 9.40.

Similar to the explosion case, the onset of a strong evaporation in the initial high pressure
(now outer) region creates a shock wave focusing toward the center of the sphere. The large
thermal nonequilibrium in the wake of the shock leads to a complete condensation, which
is practically reached within a distance of about 20 cm behind the shock front. Due to the
convergence of the shock wave while propagating toward the origin the shock strength and
propagation velocity continuously increase and, theoretically, an infinite pressure value would
be achieved when the wave has shrunk to a single point. The prediction was terminated at
t = 30 ms when the maximum pressure was p = 46 bar and the velocity of the shock wave
was about usw = 200 m/s.
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Fig. 9.39: Spherical implosion test case for two-phase water/steamflow, pressure distribution at
different time values, second-order Flux Vector Splitting technique with 2000 cells
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Fig. 9.40: Spherical implosion test case for two-phase water/steam flow, void fraction distribu-
tion at different time values, second-order Flux Vector Splitting technique with 2000 cells
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9.6 Flow through convergent–divergent nozzles

The steady state flow of compressible fluid through convergent–divergent nozzles cover vari-
ous important flow phenomena like the occurrence of critical flow conditions, transition from
subsonic to supersonic flow or the occurrence of flow discontinuities. For the steady state
quasi-one-dimensional nozzle flow of a single-phase gas, relatively simple algebraic solutions
exist as described in many textbooks of gasdynamics. For two-phase flow conditions, iterative
algebraic solutions can be derived only for the rather restrictive assumption of homogeneous
flow (equal local phase velocities) and thermal equilibrium between the phases as presented
in Chapter 4. For the more general case of nonhomogeneous and nonequilibrium conditions,
usually only numerical solutions can be obtained where the large variety of Mach number and
the possibility of flow discontinuities (shock wave) represent a major challenge.

In the following various types of nozzle flows are analyzed which include different nozzle
geometries, one-component (water/steam) and two-component (water/air) fluids as well as the
effect of different upstream reservoir conditions and back pressure values. Where available,
measured data are included for comparison. In some cases also the results from homogeneous
equilibrium are included to distinguish between the effects of fluid compressibility and the
contributions resulting from mechanical and thermal disequilibrium between the phases.

9.6.1 The ASTAR nozzle

Within the framework of the EU sponsored project entitled “Advanced Simulation Tool for
Application to Reactor Safety” (ASTAR) (Städtke et al. [2]) various benchmark test cases
have been defined to assess different approaches for the numerical simulation of two-phase
flow processes. This included the stationary flow in a “smooth” convergent–divergent nozzle
with the geometry shown in Fig. 9.41.

l = 0.3 mcon l = 0.6 mdiv

d = 0.11 mout
d = 0.30 min

l = 1.0 m

d = 0.05 mth

Fig. 9.41: ASTAR nozzle geometry

All calculations are related to the flow of a two-component (water/air) mixture with fixed
upstream reservoir pressure and temperature values of p0 = 10 bar and T0 = 570 K. The
upstream gas content (gas mass fraction) has been limited to X0 ≥ 0.1, or αl < 0.10 respec-
tively, in order to guarantee dispersed droplet flow for all the test cases. To allow a comparison
with analytical solutions (e.g., for single-phase gas or liquid flows) simplified state equations
are assumed such as ideal gas law and pseudo-incompressible liquid with a constant value for
the sound velocity in the liquid phase. For the prediction of heat and mass transfer between
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the phases the assumption of an ideal droplet flow regime is recommended based on uniform
spherical droplets with a constant prescribed radius of rdr = 0.4. The ATFM calculations
shown in the following are performed using a nonuniform grid as schematically shown in
Fig. 9.42.
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Fig. 9.42: ASTAR nozzle: computational grid and boundary conditions for quasi-one-
dimensional flow

For the prediction of the boundary conditions a one-dimensional homogeneous equilib-
rium flow is assumed between the reservoir and the nozzle inlet using the actual mixture
velocity uin and mixture entropy sin at the first cell at the nozzle inlet

hin = h0 − u2
in

2
(9.14)

sin = s0. (9.15)

With the assumption of thermal equilibrium the pressure at the nozzle inlet is updated at each
time step from the state equation

pin = (hin, sin). (9.16)

For the outlet boundary condition a constant ambient (exit) pressure is applied; for all other
parameters the spatial gradients at the nozzle exit are assumed to be zero. The initial condi-
tions in the nozzle are identical with the upstream reservoir conditions which implies that the
transient calculation starts with a strong discontinuity at the nozzle exit. These initial bound-
ary conditions are also applied qualitatively for the other nozzle test cases as described in this
section.

Single-phase liquid flow

For a numerical scheme based on characteristic information, the flow of pure liquid represents
a significant challenge, due to the large differences between the flow and the sound velocities.
In order to test the Flux Vector Splitting technique for such conditions the flow of pure water
through the ASTAR nozzle was predicted for a reservoir pressure of p0 = 10 bar and an exit
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pressure value of 9.99 bar ≥ pexit ≥ 9.80 bar. For these conditions the maximum Mach
number at the nozzle throat remains below 0.02. Predicted flow pressure values and flow
velocities using 500 computational cells shown in Fig. 9.43. As indicated in the figure the CFD

Fig. 9.43: ASTAR nozzle: stationary flow of single-phase liquid through a convergent–
divergent nozzle, exit pressure: pexit = pi, with p1 = 9.99 bar, p2 = 9.95 bar, p3 = 9.9 bar,
p4 = 9.8 bar; comparison of CFD calculation (straight line) with the results of the Bernoulli
equation (triangle)

calculations are in nearly perfect agreement with the analytical solution given by the Bernoulli
equation. The capability to handle such low Mach number flow is a necessary prerequisite for
the numerical simulation of two-phase nozzle flow with subcooled liquid conditions, as will
be described later.

Single-phase gas flow

For the second limiting case, the flow of pure gas, the specific numerical difficulties are
related to the transition through the sonic point (saddle-point singularity for M = 1) at the
nozzle throat and the occurrence of flow discontinuities (shock waves) in the divergent part
of the nozzle depending on the back pressure at the nozzle exit. The ATFM predictions are
performed as for the previous liquid case with a second-order Flux Vector Splitting scheme
with 500 computational cells to provide a high degree of convergence.

Figure 9.44 shows the predicted parameter distributions along the nozzle axis for various
pressure values at the nozzle exit. In all the cases a nearly perfect agreement is obtained
between the CFD calculation and the analytical solution, including the correct position of
shock waves, and a high resolution of the corresponding flow discontinuities.
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Fig. 9.44: ASTAR nozzle: flow of single-phase gas through a convergent–divergent nozzle, exit pressure
p1 ≥ pexit ≥ p7, p1 = 9.85 bar, p7 = 0.2 bar; comparison of results from CFD calculation (straight
line) with analytical solution (dashed line)
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Two-phase flow

The two-phase flow calculations are performed for two-component water/air mixtures with a
gas mass fraction in the region 1.0 ≥ X0 ≥ 0.10. The predicted results for the steady state
pressure and Mach number distributions for different nozzle back pressure values are shown
in Fig. 9.45.

Fig. 9.45: ASTAR nozzle: dispersed two-phase flow of water/air mixtures through a convergent–
divergent nozzle for different exit pressures 0.2 bar ≤ pexit ≤ 0.9 bar, effect of gas content X0 on
the location of the sonic point
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As for the single-phase gas flow, the transition through the sonic point (M = 1) is char-
acterized by a saddle-point singularity with a bifurcation of solution into a subsonic and su-
personic branch separating the subsonic (M < 1) and supersonic (M > 1) regions in the
divergent section, respectively. However, different to the pure gasdynamic case, the location
of the singularity has moved downstream of the throat into the divergent section of the nozzle
accompanied by a reduction of the critical pressure. The exact position of the sonic point
depends strongly on the actual interfacial coupling between the phases as resulting from the
algebraic source terms is analyzed in detail in Section 5.1.7.

Fig. 9.46: ASTAR nozzle: dispersed two-phase of water/air, gas content X0 = 0.50, exit
pressure pexit = 6.0 bar and 0.2 bar

Depending on the back pressure values, shock waves occur in the supersonic region down-
stream of the sonic point. As already explained in Section 8.3 the shock wave structure is
characterized by steep but finite parameter gradients. This “smoothing” effect results from the
nonconservative terms in the phasic momentum equations which becomes more pronounced
for increased liquid volume fraction. If the sonic point has moved to the nozzle exit, which in
the present case is reached for X0 = 0.1, the flow in the divergent section is free of any shock
wave and the flow remains continuous up to the prescribed exit pressure.

For the pure gasdynamics case, the occurrence of critical flow conditions (M = 1) im-
plies a maximum flow rate through the nozzle (choking condition) independent of a further
reduction of the pressure at the nozzle exit. This is principally the same for two-phase nozzle
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flows as shown in Fig. 9.47. For the progressive reduction of the nozzle exit pressure, two
major trends are visible: (1) a continuous reduction of the exit pressure becomes necessary to
achieve critical flow conditions (M = 1) in the nozzle and (2) an increased retardation of the
flow to asymptotically reach the maximum flow rate. This means, in particular, that a type of
pre-choking might occur where the maximum flow rate is approached much earlier before the
critical conditions are reached within the nozzle.

Fig. 9.47: Flow of water/air
mixtures through a convergent–
divergent nozzle, mass flow rates as
function of back pressure at nozzle
exit, gas content X0 = 0.75, 0.50,
0.25, 0.10

The specific peculiarities of the two-phase nozzle flow described above are largely deter-
mined by the mechanical and thermal disequilibrium as illustrated in Fig. 9.46 for a gas mass
fraction of X0 = 0.50 and exit pressure values of pexit = 0.2 bar and 6.0 bar.

The strong pressure gradient and related acceleration of the flow results in an increase of
the “slip velocity” which is governed by the forces acting on the dispersed droplet field. A
maximum value for the velocity difference of approximately 100 m/s occurred at the middle
of the divergent section. Due to a more moderate pressure decrease at the end of the nozzle,
the flow shows a trend toward a mechanical equilibrium which, however, is not achieved at
the nozzle exit. As a result of the intense heat transfer from the dispersed liquid to the gas
phase, the thermal disequilibrium is less pronounced and toward the nozzle exit a new thermal
equilibrium is practically achieved.

For an exit pressure of pexit = 6 bar, a moderate shock wave is formed in the divergent
section of the nozzle with an abrupt decrease of gas velocity and increase of gas temperature.
Resulting from the continuous heat transfer to the gas phase, the gas temperature at the shock
wave is much higher than the value predicted by an isentropic gas flow, and therefore, it is
not surprising that the shock wave exhibits a peak gas temperature above the temperature
at the reservoir. Due to the thermal and mechanical inertia, the liquid velocity and liquid
temperature are practically “frozen” across the shock wave which leads to a reverse of thermal
and mechanical disequilibrium immediately downstream of the shock. The region behind the
shock is characterized by a relaxation region superimposed with the effect resulting from the
change of the nozzle cross section in the flow direction. Within the relaxation zone, the flow is
approaching a new thermal and mechanical equilibrium which is achieved at the nozzle exit.
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As already mentioned the deviations from thermal and mechanical equilibrium between
the phases are largely determined by the modeling details for the algebraic source terms de-
scribing interfacial transfer processes for momentum and energy. The validity of the coupling
terms will be indirectly tested for the following nozzle test case by comparing with experi-
mental data.

Two-dimensional nozzle flow

For the relatively large L/D ratio of the ASTAR nozzle geometry essentially one-dimensional
flow conditions are expected for the single-phase flow of gases. However, this may no longer
be the case for dispersed droplet flows due to the large density ratio between the liquid and
gas phases as will be shown in the following. In order to investigate multidimensional effects,
two-dimensional calculations have been performed for a planar nozzle with a body-fitted com-
putational grid as schematically shown in Fig. 9.48.

Fig. 9.48: ASTAR nozzle: computational grid for two-dimensional calculations (schematically)

Actually a computational grid of 20 × 200 = 4000 cells are used for the second-order
Flux vector Splitting scheme. At the nozzle inlet a gas content of X0 = 0.5 is assumed which
corresponds with a void fraction of αg,0 = 0.98. The calculations were performed for two
different exit pressure values of pexit = 1.0 bar and pexit = 6 bar.

Calculated values for the liquid volume fraction αl and corresponding vector fields of liq-
uid mass flow densities αl�l�ul are shown in Fig. 9.49. The figure indicates a large enrichment
of liquid near the wall region in the convergent section of the nozzle which, due to the large
curvature near the nozzle throat, detaches from the wall and penetrates toward the nozzle axis.
This creates a layer structure for the liquid fraction in the divergent section which remains
evident up to the nozzle exit as indicated in Figs. 9.50 and 9.51.

Figure 9.50 provides spectral plots for the pressure distributions as were obtained for two
different pressure values at the nozzle exit of pexit = 0.2 bar and pexit = 6 bar resulting either
in a continuous depressurization to the ambient pressure (pexit = 1 bar) or in the formation of
a shock wave in the divergent section followed by a continuous pressure increase up to the exit
pressure value of pexit = 6 bar. The cross-sectional distributions of liquid volume fraction αl

as shown in the lower part of Fig. 9.50 clearly reflect the redistribution of liquid concentration
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Fig. 9.49: ASTAR nozzle: liquid volume fraction distribution and vector field for liquid mass
flow density

from a liquid enriched wall region in the convergent part to a gas enriched wall region in the
divergent section of the nozzle.

The nonhomogeneous phase distribution over the nozzle cross-sectional area also affects
the Mach number distribution as indicated in Fig. 9.51. This results from the large sensitivity
of the sound velocity with regard to changes in the volume concentration for high void fraction
(as in the present case) or low void fraction.
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Fig. 9.50: ASTAR nozzle: results of two-dimensional calculation for p0 = 10 bar and X0 =

0.5; pressure distribution (top) and liquid volume fraction profiles at the convergent section,
nozzle throat, and divergent section (bottom); second-order FVS scheme with 20 × 200 =

4000 cells
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Fig. 9.51: ASTAR nozzle: results of two-dimensional calculation for p0 = 10 bar and X0 =

0.5; Mach number distribution (top) and Mach number profiles at the convergent section, nozzle
throat, and divergent section (bottom); second-order FVS scheme with 20 × 200 = 4000 cells
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9.6.2 Deich nozzle tests

The experimental program for the investigation of single component water/steam mixtures
through a convergent–divergent (naval) nozzle as reported by Deich et al. [3] covers a wide
spectrum of gas contents and exit pressure values. The experiments were performed with wet
steam for a region of liquid contents Y0 (wetness) ranging from Y0 = 0.0 (slightly superheated
vapor) up to a maximum liquid content of Y0 = 0.83. The geometry of the nozzle as shown in
Fig. 9.52 consists of a circular inlet section with a radius of 28 mm, followed by a cone with a
constant angle of aperture Φi = 3.3◦ and a length of 122 mm. The nozzle inlet pressure was
fixed at 1.2 bar, the outlet pressure was progressively reduced down to 0.05 bar. The measured
data including static pressure values along the nozzle axis and mass flow rates of liquid water
and vapor should be preferably considered as a qualitative measure for the flow behavior.

Ldiv= 122 m

Rcon= 28 mm

l = 150 mm

d = 6.6 mmthroat

d = 13 mmexit

Fig. 9.52: Deich nozzle
geometry

As an example a comparison of measured and predicted pressure values along the nozzle
and corresponding Mach numbers are shown in Fig. 9.53 for an inlet liquid content (wetness)
of Y0 = 0.83 and progressively reduced pressure values at the nozzle exit.

Fig. 9.53: Deich nozzle: parameter distribution along the nozzle axis for different exit pressure
values 0.1 bar ≤ pexit ≤ 0.95 bar; liquid mass fraction (wetness) at the reservoir Y0 = 0.83
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For all exit pressure values the pressure and the Mach number distributions change con-
tinuously and are free of any discontinuity. The steep pressure and Mach number gradient at
the nozzle exit for pexit = 0.1 bar as shown by the predictions and the measured pressure val-
ues suggest that critical conditions have been reached for an exit pressure of pexit = 0.1 bar.
Nevertheless, as also shown in Fig. 9.53, the conditions at the nozzle throat no longer change
for pexit < 6.0 bar, which indicates that a constant (maximum) flow rate through the noz-
zle already occurred before critical conditions were achieved in the nozzle exit area. This is
confirmed by Fig. 9.54, where the calculated mass flow rate is given as a function of the exit
pressure.

Fig. 9.54: Deich nozzle: compar-
ison of measured and predicted
mass flow rates as a funtion of the
back pressure at the nozzle exit

In order to investigate the sensitivity of the nozzle flow with respect to the nozzle geometry
various calculations have been performed for a wetness of Y0 = 0.43 where the angle of
aperture for the divergent section is varied in the region of 0◦ ≤ Φi ≤ 6◦. The exit pressure
for all calculations was pexit = 0.1 bar to guarantee that critical conditions are achieved in all
cases.

The predicted pressure and Mach numbers as shown in Fig. 9.55 indicate that for all cases
a critical state has been achieved in the divergent section of the nozzle. Any reduction of the
angle Φi results in downstream movement of the critical cross-section from a position close
to the throat for Φi = 6◦ toward the nozzle exit which is reached for values Φi ≤ 1◦. For the
experimental nozzle configuration of Φi = 3.3◦ the predicted pressure distribution is in good
agreement with the corresponding measured data which is also the case for the critical mass
flow as given in Fig. 9.56.
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Fig. 9.55: Deich nozzle: critical flow of water/steam mixture; liquid mass fraction at the reser-
voir Y0 = 0.57, effect of angle of aperture in divergent section, triangles represent measured
data for Φi = 3.3◦

Fig. 9.56: Deich nozzle: mass
flow rate as a function of the an-
gle of aperture Φ in the divergent
section, liquid mass fraction at
reservoir Y0 = 0.83
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9.6.3 Moby–Dick nozzle tests

The Moby–Dick nozzle test program [4] was performed at the Centre d’Etude Nucleaire
(CEA) de Grenoble as part of the qualification of the French Nuclear Thermal Hydraulic code
CATHARE [5]. The tests were designed to study two-phase critical flow conditions which are
of particular importance for the analysis of hypothetical Loss of Coolant Accidents (LOCA)
in Pressurized Light Water reactors. Such accidents might be initiated by a structural failure of
the high pressure primary system of a PWR resulting in a fast depressurization of the coolant
system and in a degradation of the heat removal from the reactor core.

973

372128 437

73.7

20.13

66.7

Fig. 9.57: Moby–Dick nozzle geometry, all dimensions in mm

The Moby–Dick nozzle as shown in Fig. 9.57 has a total length of about 1 m and consists of
a smooth convergent section, a relatively long cylindrical throat and a conical divergent section
with an angle of aperture of 7◦. The nozzle inlet conditions range from subcooled liquid with
different degrees of subcooling to saturated conditions with different vapor mass fractions.
From the large experimental program, two tests are selected with subcooled conditions at
the nozzle entrance. The upstream reservoir pressure is in both cases p0 = 20 bar with a
degree of subcooling of ∆Tsub = 2 K and 25 K, respectively. In the experiments the pressure
downstream of the nozzle was continuously reduced up to a point (or even below) where a
maximum flow rate was obtained through the nozzle. In the ATFM calculation the measured
pressure at the nozzle exit is used as a boundary condition. Predicted parameter distributions
for steady state conditions are given in Figs. 9.58 and 9.59 including experimental data for
pressure and void fraction (not for all tests available) as well as analytical results based on the
homogeneous equilibrium assumptions.

For the low degree of subcooling (Fig. 9.58) the flow in the convergent section remains
pure liquid. The evaporation starts immediately at the entrance to the cylindrical throat section
followed by a moderate acceleration of the fluid and a related drop of pressure. At the inlet
to the divergent section the further expansion of the fluid becomes more pronounced leading
to an increased acceleration of the fluid with maximum flow velocities for gas and water of
ug = 240 m/s and ul = 150 m/s. The flow remains always subsonic and, therefore, is free
of any discontinuous (or near discontinuous) parameter change. The good agreement with
measured pressure and void fraction data suggests that the prediction gives a fair picture of
the flow behavior. The analytical solution assuming homogeneous equilibrium flow largely
differs from the experimental data and shows the presence of an unrealistic shock wave in the
divergent section of the nozzle.

For the high degree of subcooling (Fig. 9.59) the behavior of the nozzle flow becomes
slightly different. The flow remains pure liquid up to the near end of the cylindrical section
where a strong evaporation (flashing) starts, possibly triggered by the frictional pressure drop.
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Fig. 9.58: Moby–Dick nozzle: p0 = 20 bar, ∆Tsub = 2 K; comparison of CFD calculation
(solid line) and algebraic solution for homogeneous equilibrium conditions (dotted line) with
experimental data (triangles)

Nevertheless, the void fraction is somewhat lower as for the previous case whith near satu-
rated inlet conditions and consequently the flow shows a more moderate acceleration with the
maximum phase velocities ug = 90 m/s and ul = 70 m/s. Also in this case the flow in nozzle
remains subsonic and, therefore, is free of shock waves.

The fact that in both of the Moby–Dick test cases shown above the flow remained every-
where subsonic and therefore, the question arises whether the condition for “choking” has
been obtained where the flow through the nozzle becomes independent of the exit pressure.
This is demonstrated in Fig. 9.60 for the high degree of subcooling (∆T = 25 K) showing the
distributions of governing flow parameters for progressively reduced pressures at the nozzle
exit pexit. The figure indicates that for pexit = 16 bar any further reduction has no effect on
the flow parameter in the convergent part and in cylindrical throat section of the nozzle, indi-
cating that the mass flow through the nozzle has practically reached a maximum value. Any
further reduction of back pressure pushed the region of influence toward the nozzle exit and
at pexit = 1 bar, the flow in the whole nozzle is unaffected by any further change of the back
pressure.
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Fig. 9.59: Moby–Dick nozzle: p0 = 20 bar, ∆Tsub = 25 K; comparison of CFD calculation
(solid line) with algebraic calculation for homogeneous equilibrium conditions (dotted line) and
experimental data (triangles)

The effect of “pre-choking” is also seen on the total mass flow rate through the nozzle as
a function of the exit pressure as shown in Fig. 9.61. Already at a rather moderate pressure
reduction at the nozzle exit a practically constant mass flow is achieved for values much higher
than those used in the experiment. The figure also indicates the correct prediction of the
measured mass flow for both cases of subcooling at the nozzle entrance.
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Fig. 9.60: Moby–Dick nozzle: p0 = 20 bar, T0 = 461 K, effect of back pressure on the nozzle flow,
19 bar ≥ pexit ≥ 0.2 bar

Fig. 9.61: Moby–Dick nozzle: p0 =
20 bar; effect of back pressure on
mass flow rate; comparison of predic-
tion (straight line) with measured data
(triangles)
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9.7 Blowdown phenomena

The fast depressurization of pressure vessels or piping systems containing subcooled or satu-
rated liquids is of large interest for the safety analysis of industrial installations. Such “blow-
down” processes might originate by a structural failure or by an operational opening of safety
valves to prevent damage to the plant. In particular for the safety analysis of Light Water
Reactor (LWR) safety analysis, blowdown phenomena have been extensively studied. This
included the event of the rupture of a main coolant pipe in the primary system of a pressurized
LWR often postulated as a most severe credible accident for the design of emergency cooling
systems and accident management procedures. Since for obvious reasons, full scale exper-
iments are not feasible, complex thermal-hydraulic computer codes have been developed to
describe such phenomena and their consequences for a safe shutdown of the plant. In order
to assess these codes a number of standard test cases were defined by the Committee for the
Safety of Nuclear Installation (CSNI) [6] which cover a wide spectrum of physical phenomena
involved at different geometrical scales.

9.7.1 Edwards’ pipe blowdown

A standard test case for thermal-hydraulic codes has been the blowdown of an initially hot
pressurized liquid from a pipe of approximately 4 m length, known as the CSNI standard
problem No. 1, also known as Edwards’ pipe blowdown [7] (Fig. 9.62). The water in the pipe
has an initial pressure of 7.0 MPa and a temperature of 502 K which corresponds to an initial
subcooling of 56.8 K. The geometrical configuration is given in Fig. 9.63. The transient is
initiated by the rupture of a bursting disk allowing the rapid discharge to the environment at
atmospheric pressure.

p = 7.0 MPa, T = 502 K0 0

L = 4.096 m

x

rupture disk

d = 0.076 m

Fig. 9.62: Edwards’ pipe blowdown: pipe geometry and initial conditions

Most of existing calculations for this test use a constant (atmospheric) pressure as a bound-
ary condition immediately downstream of the pipe. This seems to be doubtful, especially in
the cases where the flow in the pipe remains subsonic and the high pressure difference between
the pipe exit area results in continuation of the evaporation process downstream of the exit. In
the calculation presented here, the specification of boundary conditions at the very sensitive
area at the pipe exit is avoided by enlargement of the numerical simulation to include the ex-
pansion of the two-phase mixture and jet formation downstream of the pipe. This is done by
the modeling as an axisymmetric, quasi-two-dimensional flow process near the pipe exit with
a constant (atmospheric) far-field pressure boundary. The computational scheme used in the
following calculations is shown in Fig. 9.63.
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Fig. 9.63: Edwards’ pipe blowdown: computational grid (schematically) and initial conditions

With regard to the governing phenomena of the blowdown process two different time
periods can be distinguished:

(1) A short time period mainly characterized by wave propagation and reflection phenomena
shown in Fig. 9.64. Immediately after the removal of the rupture disk, a sudden pressure
drop occurs at the pipe exit resulting in the onset of a violent evaporation of liquid which
limits the pressure decrease to a value slightly below the saturation pressure according
to the initial liquid temperature. This pressure value is nearly maintained during the
first 10 ms period of the transient characterized by the propagation of a rarefaction wave
propagating with the speed of sound of the liquid phase into the pipe. The reflection of
this wave at the left closed end of the pipe at about 3 ms results in pressure undershoot
limited by the accompanied evaporation process. This forms a moderate pressure wave
which travels back toward the pipe exit which is reached by about 6 ms. After the pressure
wave has returned to the exit, the transient continues with the bulk evaporation over the
full pipe length leading to a more moderate depressurization.

(2) A long time period showing a more steady transient governed by a continuous bulk evap-
oration as shown in Fig. 9.65. As shown in Figs. 9.64 and 9.65, the flow in the pipe
remains subsonic over the whole transient, however, supersonic (M > 1) conditions
occur temporarily in a region slightly downstream of the pipe. The governing process
controlling the discharge from the pipe is the short region with extremely large evapora-
tion rates close to the exit as created by the steep pressure gradient in this region.
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Fig. 9.64: Edwards’ pipe blowdown: parameter distributions along the pipe axis during the short time
period at time values 0 ms ≤ t ≤ 5 ms

The long time blowdown behavior is governed by the discharge from the pipe, the contin-
uous evaporation of liquid and to a lesser extent by the frictional forces at the pipe walls. With
a further decline in pressure the flow velocities start to decrease up to the end of the blowdown
at t = 0.5 s when atmospheric pressure is reached in the pipe.

A comparison of the calculated values for the pressure at the pipe head and for the void
fraction at the pipe middle section is given in Fig. 9.66. The rather good agreement with the
corresponding measured data suggests that the governing phenomena are correctly described.
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Fig. 9.65: Edwards’ pipe blowdown: parameter distributions during the long time period at time values
0.01 s ≤ t ≤ 0.5 s

Fig. 9.66: Edwards’ pipe blowdown: comparison of predicted and measured values; pressure at pipe
head (left) and void fraction at pipe middle section (right)
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9.7.2 Canon experiment

The Super-Canon test program was performed at the Centre d’Etude Nucleaire (CEA) de
Grenoble with the aim to enlarge the experimental database for the assessment of thermal-
hydraulic computer codes developed for the safety analysis of Light Water Reactors. The
experiments were performed in a similar way as already described for Edwards’ pipe, using
the horizontal pipe of 4.39 m length and an internal diameter of 0.1 m. Compared with Ed-
wards’ pipe a more detailed instrumentation was used providing information on pressure and
temperatures at different positions of the pipe and to a lesser extent on the void fraction. The
geometry of the pipe and the measurement positions are given in Fig. 9.67.

0.05 m

1.65 m

4.26 m

4.39 m

0.10 m 41 6

Fig. 9.67: Canon pipe geometry and location of measurement points

From the Super-Canon test program [8], an experiment has been selected with an initial
pressure of p0 = 15.0 MPa and a temperature of T0 = 507 K (equivalent to a subcooling
of 42 K). Due to the extremely high initial pressure, critical flow conditions are expected to
exist at the pipe exit during most of the blowdown period. Therefore, it seems to be justified
to assume atmospheric pressure at the exit of the pipe. The computational grid and initial
conditions as used in the calculations are schematically shown in Fig. 9.68.

l = 4.39 mp

d = 0.1 mp

pipe: p = 150 bar, T = 507 k0 0

atmosphere:

p = 1 bar, T = T (T )0 0 0

sat

Fig. 9.68: Canon blowdown experiment: computational grid and initial conditions

The predicted behavior during the blowdown as shown in Figs. 9.69 and 9.70 is qualita-
tively very similar to that obtained for Edwards’ pipe. This includes the wave propagation
and reflection phenomena during the first 10 ms of the transient when the strong evaporation
(flashing) upstream of the pipe exit prevents the pressure from droping below the saturation
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pressure Tsat(p0). Different to Edwards’ pipe, critical flow conditions (M = 1) occurred
immediately after the removal of the rupture disk and were also maintained as long as the
pressure in the pipe considerably exceeded the atmospheric pressure.

Fig. 9.69: Canon blowdown test case; parameter distribution for the short term period, time values;
0.1 ms ≤ t ≤ 7 ms

A comparison with the measured data for pressure and void fraction is given in Fig. 9.71.
Although the figure indicates that the general trends of the experiment are reasonable well
predicted, a more qualitative evaluation is only partially possible due to the large scatter in the
measured data (in particular for the void fraction).
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Fig. 9.70: Canon blowdown test; parameter distribution for the long term period, time values: 0.01 s ≤
t ≤ 0.375 s

Fig. 9.71: Canon blowdown test: comparison of prediction with measured data; left: pressure at the pipe
head (1), pipe middle section (4), and near pipe exit (6), right: corresponding void fraction values
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9.7.3 Two-vessel test case

This purely hypothetical test case is included to demonstrate the capabilities of the presented
modeling and numerical strategies for the numerical simulation of more complex multidi-
mensional two-phase processes as are also of interest for many industrial applications. The
assumed facility consists of two cylindrical vessels connected by a horizontal stand pipe
schematically shown in Fig. 9.72. The high pressure container on the left side is partially
filled with saturated liquid with a pressure of 10 bar whereas the right vessel contains pure
vapor at atmospheric pressure. Both vessels are separated by a diaphragm at the exit of the
connecting pipe which is assumed to be removed instantaneously at time zero.

p = 10 bar0
removable diaphragm

p = 1 bar0

D

L

H

D

d

vapor

liquid

Fig. 9.72: Two-vessel test case: ge-
ometrical configuration and initial
conditions, dimensions: H = 1.8 m,
D = 0.6 mm, L = 1.0 m, d = 0.01 m

Since the major parameter changes are expected in the x-y plane, the problem is treated as
a pseudo two-dimensional case where some three-dimensional effects are taken into account
by a variable “depth” in the z-direction. The corresponding computational grid as used in the
calculation is shown schematically in Fig. 9.73.

x

y

z Fig. 9.73: Two-vessel test case:
computational grid for a quasi-
two-dimensional calculation
(schematically)
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In the actual calculations a hexagonal grid is used within the x-y plane as indicated in
Fig. 9.74. This has the advantage that every cell has common interfaces with all neighboring
cells, which provides a reduction of the grid dependence of solution compared with a Cartesian
grid.

Fig. 9.74: Two-vessel test case: hexag-
onal grid at symmetry plane and refer-
ence data positions

In the following the results of two calculations are presented including a completely closed
system where the valve on top of the right (low pressure) vessels remains closed during the
whole transient and (b) and a vented system, where the valve is opened simultaneously with
the removal of the diaphragm in the connecting pipe at time zero.

Closed system

A qualitative picture of the transient might be obtained from Figs. 9.79 and 9.80 showing the
void fraction distribution and the vector field for the gas mass flow at various consecutive time
values. A more detailed information is presented in Figs. 9.75 and 9.76 for the pressure values
and Mach numbers in the vessels and in the pipe during the short time (0.0 s ≤ t ≤ 0.1 s) and
long time (0.1 s ≤ t ≤ 10 s) periods:

(a) a rapid boil-off and swelling of the water pool in the left vessel due to fast evaporation,

(b) transition from single-phase vapor to two-phase flow and choking in the interconnecting
pipe,

(c) jet formation in the right (low pressure) vessel, jet impingement at the vessel wall and a
strong re-circulating flow pattern,

(d) gravity-induced phase separation,

(e) liquid collapse and a formation of residual liquid pools in the two vessels.
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The transient is terminated at about 12 s when a new equilibrium state is reached in the
whole system and the vapor and liquid phases in both vessels are completely separated. As
can be seen from Fig. 9.76 a large amount of liquid is finely transported into the right vessel.

Fig. 9.75: Two-vessel test problem, closed conditions: pressure and Mach number during the
short time period at top of the left vessel (1), inlet (2), and outlet (3) of the connecting pipe, and
at the top of the right vessel (4)

Fig. 9.76: Two-vessel test problem, closed conditions: pressure and Mach number during the
long time period at the top of the left vessel (1), inlet (2) and outlet (3) of the connecting pipe,
and at the top of the right vessel (4)

Open system

As long as there exists critical flow conditions in the connecting pipe during the short time
period, the behavior of the vented system is nearly identical with those predicted for the closed
system and, therfore, is not explicitly shown here. Shortly after the flow in the connecting pipe
turns to subsonic condition the pressure in the right vessel reached a maximum value of about
p4 = 3 bar when the volumetric flow in the connecting pipe and the discharge through the
valve are at the same order of magnitude (see Fig. 9.77). This pressure then remains nearly
constant for a certain period of time before, due to the dominating effect of discharge to the
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atmosphere, a continuous depressurization of both vessels occurs up to the time when the
atmospheric pressure is reached at about t = 12 s.

Fig. 9.77: Two-vessel test problem, open conditions: pressure and Mach number during the
long time period at the top of the left vessel (1), inlet (2) and outlet (3) of the connecting pipe,
and at the top of the right vessel (4)

Predicted values for pressure and mass inventories in both pressure vessels are compared
in Fig. 9.78 for closed and open conditions. The figure indicates that in the case of closed
conditions, the transient results mainly in a redistribution of the mass inventory and the final
equilibrium pressure appears only slightly below the initial pressure of the left vessel. For the
open conditions, a large amount of water is finally ejected from the system and only small
liquid pools remained in both vessels at the end of the transient.

Fig. 9.78: Two-vessel test problem, comparison of results for closed and open conditions: pres-
sure and mass inventory for the left (solid line) and right (dashed line) vessel as a function of
time
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Fig. 9.79: Two-vessel test problem: void fraction distribution and vector field for gas velocity
for short time period
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Fig. 9.80: Two-vessel test problem: void fraction distribution and vector field for gas velocity
during long time period
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10 Summary and Concluding Remarks

The objective of this book has been to provide a comprehensive review of two-phase flow
processes strongly affected by the compressibility of two-phase media. This includes, in par-
ticular, the formation and propagation of weak or strong pressure waves, the occurrence of
critical flow conditions associated with the flow through nozzles or the fast depressurization
of initially subcooled liquids in pipes or vessels. The basis for the analysis of these processes
is a newly developed hyperbolic two-fluid model which allows a complete algebraic evalu-
ation of the eigenspace of the governing equations including eigenvalues and related sets of
right and left eigenvectors. For integration of the resulting governing equations, a generalized
second-order Flux Vector Splitting technique is used providing a high resolution of local flow
processes such as steep parameter gradients or flow discontinuities. The accuracy of the cho-
sen approach has been demonstrated in numerous test cases also including a comparison of
predicted results with analytical solutions or measured data.

As long as homogeneous and equilibrium conditions are assumed, the two-phase flow be-
haves qualitatively as the single-phase gas counterpart. However, compared with the single-
phase gas flow, the high density and the usually large compressibility of the homogeneous
two-phase mixture result in rather low values for the sound velocity and, hence, supersonic
flow conditions might be obtained already at low or moderate flow velocities. A further pecu-
liarity exists for one-component media where, due to the thermal equilibrium assumption, the
sound velocity changes discontinuously when crossing the saturation line between regions of
subcooled liquid or superheated steam and two-phase conditions.

For a more realistic representation of two-phase flows, deviations from the mechanical
and thermal equilibrium between the phases have to be taken into account such as unequal
local phase velocities (ug �= ul) and unequal temperatures (Tg �= Tl), or deviations of the
phasic temperatures from the corresponding saturated value (Tg �= T sat, Tg �= T sat). These
nonequilibrium conditions are a consequence of the usually large differences in state and
transport properties between the phases and the finite rates of the interfacial exchange pro-
cesses for mass, momentum, and energy. The consequences of these nonequilibrium effects
are manifold:

• The sound velocity in two-phase media is no longer a single value determined by sim-
ple thermodynamic state properties as in single-phase gas media. Instead, it becomes
a function of the sound frequency with an upper (afr) or lower (aeq) limiting value for
very high or very low frequencies where either “frozen” or equilibrium conditions are
reached. The “frozen” sound velocity resulting from the dispersion analysis is identi-
cal with corresponding values obtained from the characteristic analysis of the governing
equations for the propagation velocity of pressure waves: λ1,2 = u± afr.
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• Depending on the boundary conditions shock waves might occur for supersonic flows
u > afr, however, different to the pure gas flow or to homogeneous equilibrium two-
phase flow, all parameters change continuously across the wave. Usually two different
regions for the shock structure can be distinguished: (1) a shock front characterized by a
steep (but finite) pressure gradient resulting in a sudden deviation from equilibrium be-
tween the phases, followed by (2) a relaxation region where flow is driven asymptotically
toward a new equilibrium state. The differences between the shock front and the relax-
ation zone becomes more pronounced with increasing Mach number and related shock
strength.

• In stationary flow situations, critical flow conditions are reached when the fastest wave
speed becomes stationary for u = afr. For the flow through a convergent–divergent
nozzle, the occurrence of such critical conditions is characterized by a saddle-point sin-
gularity which, different to single-phase gas flow, appears in the divergent part of the
nozzle downstream of the nozzle throat. The exact location of the critical state is a pri-
ori not known and can be determined only together with the integration of the complete
system of flow equations.

• The presence (or absence) of critical flow conditions is not a priori an indication whether
or not a maximum value for the mass flow (choking) in a nozzle or pipe is reached. As a
consequence of strong interfacial heat and mass transfer processes, a maximum discharge
mass flow might occur much earlier at subsonic conditions (u < afr).

The effects of nonequilibrium conditions on pressure wave propagation or nozzle flows
as described above are not unique to two-phase media. A qualitatively similar behavior also
exists for high temperature gas flows exposed to nonequilibrium conditions resulting from
vibrational relaxation or ionization processes, or for flow processes undergoing chemical re-
actions.

For the numerical simulation of transient two-phase flows the hyperbolicity of the flow
equations represents a necessary requirement for the correct prediction of governing wave
propagation phenomena. Nevertheless, the advantage of having a hyperbolic system of flow
system of equations might be totally lost if improper numerical methods are applied char-
acterized by large nonphysical (numerical) diffusion or viscosity effects. Therefore, the use
of numerical methods, which make explicit use of hyperbolic features of the flow equations
becomes indispensable.

Another aspect to be considered is that the “hyperbolic” numerical schemes require a
complete evaluation of the eigenspectrum for all computational cells at any time step. This
represents a large computational effort, however, this is reduced considerable whenever ex-
plicitly algebraic expressions can be derived as in the present two-fluid model. Having a fully
algebraic solution for the eigenspectrum has some other advantages which might be worth
mentioning. The model provides a consistent set of real eigenvalues and related independent
eigenvectors which is free of any numerically-related approximation or uncertainty. Specific
attention has to be given to conditions under which the basic flow equations degenerate as
indicated by the occurrence of singularities in the split coefficient or Jacobian matrices , e.g.,
for instantaneous equal phase velocities (ug = ul) or for the transition between single- and
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two-phase conditions where either the gas or the liquid phase appears or disappears. How
such conditions can be handled is explained in Chapter 5.

In most of the numerical results shown, the viscous and heat conduction effects are taken
into account only in the vicinity of the interface or at the pipe wall in the form of algebraic
source terms describing interfacial coupling due to mass, momentum and energy transfer pro-
cesses. This seems to be justified for most of the wave propagation processes described, in
particular as far as strictly one-dimensional conditions are concerned. Nevertheless, there are
many other conditions where the inclusion of bulk viscosity and heat conduction effects might
become essential. As experienced with the ATFM code, the inclusion of bulk viscosity terms
in the flow equations is a rather straightforward process and a finite volume equivalent to the
centered finite difference technique is adequate to handle such terms.



A Basic Flow Equations for Two-Fluid Model of Two-Phase
Flow

A.1 Flow topology

A.1.1 Phase distribution function

The whole spatial flow domain is considered to be divided into two subdomains where either
only liquid or vapor is present as schematically shown in Fig. A.1. Both regions are sepa-
rated by an infinitesimal thin layer, in the following called an interface. This situation can be
described by a distribution function γi with i = g, l defined as

γi = 1 where phase i is present
γi = 0 where phase i is not present

}
(A.1)

with the condition γg + γl = 1.

Fig. A.1: Two-phase flow
topology

Using the definition for the distribution function (A.1) the volumetric concentration of the
phase i in an an arbitrary finite volume Vξ can be written as

αi =
1
Vξ

∫

Vξ

γi dV =
Aint

i

Vξ
, (A.2)

where αg is known as the void fraction.
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In a similar manner two types of volume averaged quantities as schematically shown in
Fig. A.2 can be introduced for phase parameters ψi related to either the total value of the
control volume Vξ or the volume occupied by the phase Vi, respectively

〈ψi〉 =
1
Vξ

∫

Vξ

ψi γi dV (A.3)

and

〈ψi〉i =
1
Vi

∫

V

ψi γi dV. (A.4)

Both values are connected through the relations

〈ψi〉 = αi〈ψi〉i. (A.5)

Fig. A.2: Volume averaged quantity

A.1.2 Interfacial properties

The gradient of the distribution function ∇γi as schematically shown in Fig. A.1 represents a
vector field which is defined by ∇γi = 0, everywhere, except at the interphase, where ∇γi is a
vector directed into the phase i normal to the interface with the absolute value | ∇γi |int⇒ ∞.
This allows us to define a unit vector for the interface related to the phase i pointing outward
with respect to phase i

�nint
i = −

( ∇γ
| ∇γi |

)int

, (A.6)

as schematically shown in Fig. A.3.
Assuming that |∇γi| has the property of a Dirac delta function, the interfacial area within

a certain control volume Vξ is determined as

Aint
ξ =

∫

Vξ

|∇γi| dV =
∫

Aξ

dA. (A.7)
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�i=0

�i=1

ni

int

ui

int

Fig. A.3: Interfacial velocity and normal unit
vector

The concentration of the interfacial area per volume is therefore defined as

aint =
Aint

ξ

Vξ
=

1
Vξ

∫

Vξ

|∇γi| dV. (A.8)

In the following often an average interfacial property per unit volume is used, which is defined
as

〈
ψint

〉
=

1
Vξ

∫

Vξ

ψint |∇γi| dV, (A.9)

which according to equation (A.7) can be expressed also as an integral over the interfacial area
present in Vξ as

〈
ψint

〉
=
aint

Aint
ξ

∫

Aint
ξ

ψint dA. (A.10)

For an observer moving with the interface, the distribution function γi does not change in time
which means for the total derivative of the distribution function at the interface

(
dγi

dt

)int

=
(
∂γi

∂t

)int

+ �uint · (∇γi)
int = 0. (A.11)

Since the distribution function γi is constant everywhere except at the interface, and assuming
that the interfacial velocity is �uint = 0 everywhere except at the interface, equation (A.11) can
be generalized for the whole flow domain

dγi

dt
=
∂γi

∂t
+ �uint · ∇γi = 0 (A.12)

Integrating equation (A.12) over a space fixed volume Vξ one obtains

1
V

∫

Vξ

∂γi

∂t
dV +

1
Vξ

∫

Vξ

�uint · ∇γi dV = 0. (A.13)

Since the control volume Vξ does not change in time, the time derivative operator can be
moved in front of the integral sign. Transforming the second term into an integral over the
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interfacial area, equation (A.13) can also be written as

∂

∂t






1
Vξ

∫

Vξ

γiV




− 1

Vξ

∫

Vξ

�uint · �nint
i |∇γi| dV = 0, (A.14)

or with the definition of the volume concentration of the phase i (A.2)

∂αi

∂t
=

1
Vξ

∫

Aint
ξ

�uint· �nint
i dA. (A.15)

Equation (A.15) gives a purely kinematic relation between the change in time of the volumetric
concentration of the phase i with the movement of the interface within a space fixed control
volume, regardless of the underlying physical process (e.g., expansion/compression due to
pressure change, evaporation, or condensation).

From the definition of the volumetric concentration (A.2), the corresponding spatial gra-
dient becomes

∇αi = ∇






1
Vξ

∫

Vξ

γi dV




 (A.16)

or, assuming a space fixed control volume Vξ

∇αi =
1
Vξ

∫

Vξ

∇ γi dV. (A.17)

Transferring the volume integral into an integral over the interfacial area, the gradient of the
volumetric concentration (A.18) can also be expressed as

∇αi = − 1
Vξ

∫

Aint
ξ

�nint
i dA. (A.18)

Equations (A.12), (A.15), and (A.18) will be used later for the interpretation of some terms in
volume averaged phasic balance equations.

A.1.3 Transport equation for interfacial area

For an observer moving with the interface yields similar to equation (A.12)

∂

∂t
(|∇γi|) + �uint · ∇ (|∇γi|) = 0. (A.19)
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Integrating equation (A.19) over a space fixed control volume Vξ yields

1
Vξ

∫

Vξ

∂

∂t
(|∇γi|) dV +

1
Vξ

∫

Vξ

�uint · ∇ (|∇γi|) dV = 0 (A.20)

or, since the control volume is fixed in time

∂

∂t






1
V ξ

∫

V ξ

(|∇γi|) dV




+ ∇ ·






1
Vξ

∫

Vξ

�uint · (|∇γi|) dV






=
1
Vξ

∫

Vξ

(∇ · �uint
) | ∇γi | dV. (A.21)

The first term in equation (A.21) represents the time derivative of the interfacial area con-
centration aint, the other two terms can be transposed into integrals over the interfacial area
resulting in

∂aint

∂t
+ ∇ ·




aint 1

Aint
ξ

∫

Aint
ξ

�uint dA




 =

1
Vξ

∫

Aint
ξ

(∇ · �uint
)
dA. (A.22)

Introducing the average interfacial velocity

〈�uint〉 =
1
Aint

ξ

∫

Aint
ξ

�uint dA (A.23)

and the volumetric source term for the interfacial area

σA
i =

1
Vξ

∫

Aint
ξ

∇ · �uint dA, (A.24)

the final transport equation for the interfacial area becomes

∂aint

∂t
+∇ · [aint〈�uint〉] = σA

i . (A.25)
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A.2 Single-phase flow equations

Within the two subdomains where either vapor (γg = 1, i = g) or liquid (γl = 1, i = l) is
present, the classical "instantaneous" conservation equations for mass, momentum, and energy
are valid which can be written in differential form as follows

mass:
∂�i

∂t
+ ∇ · (�i�ui) = 0 (A.26)

momentum:
∂

∂t
(�i�ui) + ∇ · (�i�ui�ui) + ∇ · P̄i = �Fi (A.27)

with the pressure tensor

P̄i = piĪ− T̄i (A.28)

energy

∂

∂t

[
�i

(
ei +

u2
i

2

)]
+∇·

[
�i�ui

(
ei +

u2
i

2

)]
+∇·(�qi+P̄i ·�ui) = �i

�Fi ·�ui+�iQi (A.29)

A.3 Two-phase balance equations

A.3.1 Balance equation for mass

Multiplying the single phase mass conservation equation (A.26)

∂

∂t
(�i) + ∇ · (�i�u) = 0, (A.30)

with the corresponding distribution function γi and integrating over a small space-fixed vol-
ume, one obtains

∫

Vξ

γi

[
∂

∂t
(�i) + ∇ · (�i�ui)

]
dV = 0, (A.31)

or
∫

Vξ

[
∂

∂t
(γi�i) + ∇ · (γi�i�ui)

]
dV −

∫

Vξ

�i

[
∂γi

∂t
+ �ui∇ · γ

]
= 0. (A.32)

Introducing the interfacial velocity �uint equation (A.32) becomes
∫

Vξ

[
∂

∂t
(γi �) + ∇ · (γi �i �ui)

]
dV −

∫

Vξ

�i

[
∂γi

∂t
+ �uint · ∇γi

]

︸ ︷︷ ︸
=0

dV

+
∫

Vξ

[
�i

(
�uint − �ui

) · ∇γi

]
dV = 0 (A.33)
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With the condition at the interface as given by relations (A.6) and (A.12) the balance equation
(A.33) can be written as

∫

Vξ

[
∂

∂t
(γi �i) + ∇ · (γi �i �ui)

]
dV =

∫

Vξ

[
�i

(
�uint − �ui

) · �nint
i |∇γi|

]
dV, (A.34)

which can be further simplified. Since the integration is performed over a space-fixed volume,
the time and space differential operators on the l.h.s. of equation (A.34) can be moved in front
of the integration

∫

Vξ

[
∂

∂t
(γi �i) + ∇ · (γi �i �ui)

]
dV =

∂

∂t

∫

Vξ

(γi �i) dV +∇ ·
∫

Vξ

(γi �i �ui) dV. (A.35)

As shown by equations (A.9) and (A.10) the volume integration on the right-hand side of
equation (A.34) can be transformed into a integration over the interfaces present in Vξ

∫

Vξ

[
�i

(
�uint − �ui

) · �nint
i |∇γi|

]
dV =

∫

Aint
ξ

�i

(
�uint − �ui

) · �nint
i dA. (A.36)

With equations (A.34) and (A.35) the phasic mass balance equation becomes

∂

∂t






1
Vξ

∫

Vξ

(γi �i) dV






︸ ︷︷ ︸
(1)

+ ∇ ·






1
Vξ

∫

Vξ

(γi �i�ui) dV






︸ ︷︷ ︸
(2)

=
1
Vξ

∫

Aint
ξ

�i

(
�uint − �ui

) · �nint
i dA

︸ ︷︷ ︸
(3)

, (A.37)

where the inverse of the volume Vξ is used as constant factor.
The terms (1) and (2) on the left-hand side of equation (A.37) can be easily identified as

volume averaged quantities for density

1
Vξ

∫

Vξ

(γi �i) dV = 〈�i 〉 = αi 〈�i 〉i (A.38)

and mass flux

1
Vξ

∫

Vξ

(γi �i) dV = 〈�i �ui〉 = αi 〈�i �ui〉i . (A.39)
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The term (3) on the right-hand side represents a volumetric source term for mass characterized
by the mass flux at the interface �i

(
�uint − �ui

)

σM
i =

1
Vξ

∫

Aint
ξ

�i

(
�uint − �ui

)
�nint

i dA, (A.40)

or, introducing the interfacial area concentration aint = Aint
ξ /Vξ as defined by equation A.8

σM
i = aint 1

Aξ

∫

Aint
ξ

�i

(
�uint − �ui

)
�nint

i dA. (A.41)

Finally, the mass balance equation can be written in short form as

∂

∂t
〈�i 〉 + ∇ · 〈�i �ui〉 = σM

i (A.42)

or, if averaging is done over the volume occupied by the phase i = g, l

∂

∂t

[
αi 〈�i 〉i

]
+ ∇ ·

[
αi 〈�i �ui〉i

]
= σM

i . (A.43)

�i=0

�i=1

ni

int

�i i( - )u u
int

Fig. A.4: Mass transfer at the interface

A.3.2 Balance equation for momentum

Introducing the expression for the pressure tensor (A.27) the balance equation for momentum
(A.28) becomes

∂

∂t
(�i�ui) + ∇ · (�i�ui�ui) + ∇pĪ −∇ · T̄i = �Fi. (A.44)

Multiplying equation (A.44) with γi and integrating over a small space-fixed control volume
results in

∫

Vξ

γi

[
∂

∂t
(�i�ui) + ∇ · (�i�ui�ui) + ∇(pĪ) −∇ · T̄i =

]
dV =

∫

Vξ

γi
�Fi dV (A.45)
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or
∫

Vξ

[
∂

∂t
(γi�i�ui) + ∇ · (γi�i�ui�ui) + ∇ (γipĪ

)−∇ · (γiT̄i

)
]
dV −

∫

Vξ

p∇γi dV

−
∫

Vξ

�i�ui

[(
∂γi

∂t
+ �ui · ∇γi

)]
dV +

∫

Vξ

T̄i · ∇γi dV =
∫

Vξ

γi
�Fi dV. (A.46)

Introducing the interfacial velocity, equation (A.46) changes to
∫

Vξ

[
∂

∂t
(γi�i�ui) + ∇ · (γi�i�ui�ui) + ∇ (γipĪ

)−∇ · (γiT̄i

)]
dV

+
∫

Vξ

T̄i·∇γi dV −
∫

Vξ

p∇γi dV −
∫

Vξ

�i�ui�i�ui

(
∂γi

∂t
+ �uint · ∇γi

)

︸ ︷︷ ︸
=0

dV

+
∫

Vξ

�i�ui(�uint − �ui) · ∇γi dV =
∫

Vξ

γi
�Fi dV (A.47)

or, with condition (A.12) at the moving interface to

1
Vξ

∫

Vξ

[
∂

∂t
(γi�i�ui) + ∇ · (γi�i�ui�ui) + ∇ (γipĪ

)−∇ · (γiT̄i

)
]
dV − 1

Vξ

∫

Vξ

pi∇γi dV

=
1
Vξ

∫

Vξ

T̄i·∇γi dV − 1
Vξ

∫

Vξ

�i�ui(�uint − �ui) · ∇γi dV +
∫

Vξ

γi
�Fi dV. (A.48)

Moving the differential operators on the l.h.s. in front of the integrals and replacing the first
two volume integrals with equivalent integrals over the interfacial area Aint

ξ , and transferring
the volume integrals containing ∇γi into integrals over the interfacial area, equation (A.48)
becomes

∂

∂t






1
Vξ

∫

Vξ

(γi�i�ui) dV






︸ ︷︷ ︸
1

+ ∇ ·






1
Vξ

∫

Vξ

γi(�i�ui�ui + piĪ + T̄i) dV






︸ ︷︷ ︸
(2)

− 1
Vξ

∫

Vξ

pi∇γi dV

︸ ︷︷ ︸
(3)

= − 1
Vξ

∫

Aint
ξ

T̄i · �nint
i dA

︸ ︷︷ ︸
(4)

+
1
Vξ

∫

Aint
ξ

�i�ui(�uint − �ui) · �nint
i dAi

︸ ︷︷ ︸
(5)

+
∫

Vξ

γi
�Fi dV

︸ ︷︷ ︸
(6)

. (A.49)

The first two terms (1) and (2) on the l.h.s. of equation (A.49) can be identified as time or
space-averaged quantities, namely

1
Vξ

∫

Vξ

γi(�i�ui) = 〈�i�ui〉 (A.50)
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and
1
Vξ

∫

Vξ

γi(�i�ui�ui + piĪ + T̄i) dV =
〈
�i�ui�ui + piĪ + T̄i

〉
. (A.51)

The third term (3) on the l.h.s. of (A.49) can be transformed into an integral over the interfacial
area

− 1
Vξ

∫

Vξ

pi∇γi dV =
1
Vξ

∫

Aint
ξ

pi�n
int
i dA. (A.52)

Introducing the spatial gradient of the void fraction αi as defined by equation (A.18) the
relation (A.52) becomes

− 1
Vξ

∫

Vξ

pi∇γi dV = − 〈pint
i

〉∇αi, (A.53)

where the average interfacial pressure is defined as

〈
pint

i

〉
=

1
Vξ

∫

Aint
ξ

pi �n
int
i dA

1
Vξ

∫

Aint
ξ

�nint
i dA

. (A.54)
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Fig. A.5: Viscous forces at the interface

The fourth term of equation (A.49) can be seen as an integral over all viscous forces acting

on the interfacial area which will be abbreviated by
〈
�Fv

i

〉

〈
�F v

i

〉
=

1
Vξ

∫

Aint
ξ

T̄i·�nint
i dA. (A.55)

With the interfacial area concentration, the viscous forces (A.55) become

〈
�F v

i

〉
= aint 1

Aint
ξ

∫

Aint
ξ

T̄i·�nint
i dA. (A.56)
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The fifth term of equation (A.49) represents the momentum transfer at the interface associated
with the mass transfer

1
Vξ

∫

Aint
ξ

�i�ui(�uint − �ui) · �nint
i dAi = 〈�uex

i 〉 σM
i , (A.57)

with uex
i as the average of the velocity of the mass exchanged between the two phases

〈uex
i 〉 =

1
Vξ

∫

Aint
ξ

�i�ui(�uint − �ui) · �nint
i dAi

1
Vξ

∫

Aint
ξ

�i(�uint − �ui) · �nint
i dAi

. (A.58)

The last term in equation (A.49) represents the average of the external forces acting on the
phase i

〈
�Fi

〉
=

1
Vξ

∫

Vξ

γi
�Fi dV . (A.59)

Introducing equations (A.50), (A.51), (A.54), (A.55), (A.57) and (A.59) into equation (A.49)
one obtains the momentum balance for the phase i

∂

∂t
〈�i�ui〉+∇·〈�i�ui�ui + piĪ + T̄i

〉−〈pint
i

〉
Ī∇αi = σM

i 〈�uex
i 〉+

〈
�F vis

i

〉
+
〈
�Fi

〉
(A.60)

or changing to space averaging related to the volume occupied by the phase i

∂

∂t

[
αi 〈�i�ui〉i

]
+ ∇ ·

[
αi

〈
�i�ui�ui + pi + T̄i

〉i]− 〈pint
i

〉
Ī∇αi =�σJ

i +
〈
�Fi

〉
, (A.61)

with the interfacial momentum source term

�σJ
i = σM

i 〈�uex
i 〉 +

〈
�F v

i

〉
. (A.62)

A.3.3 Balance equation for energy

The starting point is the single phase energy equation (A.29)

∂

∂t

[
�i

(
ei +

u2
i

2

)]
+∇·

[
�i�ui

(
ei +

u2
i

2

)]
+∇·(�qi+pi�ui−T̄i·�ui) = �Fi·�ui+Qi. (A.63)
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Multiplying (A.63) with the distribution function γi and integrating over a small control vol-
ume Vξ yields

∫

Vξ

γi
∂

∂t

[
�i

(
ei +

u2
i

2

)]
dV +

∫

Vξ

γi∇ ·
[
�i�ui

(
ei +

u2
i

2

)]
dV

+
∫

Vξ

γi∇ · (�qi + pi�ui − T̄i · �ui) dV =
∫

Vξ

γi
�Fi · �ui dV +

∫

Vξ

γiQi dV, (A.64)

or respectively

∫

Vξ

∂

∂t

[
γi�i

(
ei +

u2
i

2

)]
dV +

∫

Vξ

∇ ·
[
γi�i�ui

(
ei +

u2
i

2

)]
dV

+
∫

Vξ

∇ · [γi(�qi + pi�ui − T̄i · �ui)
]
dV −

∫

Vξ

�i

(
ei +

u2
i

2

)(
∂γi

∂t
+ �ui · ∇γi

)
dV

−
∫

Vξ

(�qi + pi�ui − T̄i · �ui) · ∇γi dV =
∫

Vξ

γi
�Fi · �ui dV +

∫

Vξ

γiQi dV. (A.65)

Moving the differential operators outside the integrals over a space fixed volume, and intro-
ducing the phasic enthalpy hi = ei + pi/�i and the interfacial velocity �uint, equation (A.65)
becomes

∂

∂t





∫

Vξ

γi�i

(
ei +

u2
i

2

)
dV




+ ∇ ·





∫

Vξ

[
γi�i�ui

(
hi +

u2
i

2

)]
dV






+∇ ·





∫

Vξ

∇ · [γi(�qi − T̄i · �ui)
]
dV




−

∫

Vξ

�i

(
ei +

u2
i

2

)(
∂γi

∂t
+ �uint · ∇γint

)

︸ ︷︷ ︸
=0

dV

+
∫

Vξ

�i

(
hi +

u2
i

2

)(
�uint − �ui

) · ∇γi dV −
∫

Vξ

(�qi − T̄i · �ui) · ∇γi dV

−
∫

Vξ

pi�u
int
i · ∇γ dV =

∫

Vξ

γi
�Fi · �ui dV +

∫

Vξ

γiQi dV (A.66)
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or dividing by Vξ and rearranging some terms

∂

∂t






1
Vξ

∫

Vξ

γi�i

(
ei +

u2
i

2

)
dV






︸ ︷︷ ︸
(1)

+ ∇ ·






1
Vξ

∫

Vξ

∇ ·
[
γi�i�ui

(
hi +

u2
i

2

)]
dV






︸ ︷︷ ︸
(2)

+∇ ·






1
Vξ

∫

Vξ

∇ · [γi(�qi − T̄i · �ui)
]
dV






︸ ︷︷ ︸
(3)

− 1
Vξ

∫

Vξ

pi�u
int
i · ∇γ dV

︸ ︷︷ ︸
(4)

= − 1
Vξ

∫

Vξ

�i

(
hi +

u2
i

2

)
(
�uint − �ui

) · ∇γid

︸ ︷︷ ︸

V

(5)

+
1
Vξ

∫

Vξ

(�qi − T̄i · �ui) · ∇γi

︸ ︷︷ ︸
(6)

dV

+
1
Vξ

∫

Vξ

γi
�Fi · �ui

︸ ︷︷ ︸
(7)

d+
1
Vξ

∫

Vξ

γiQi dV

︸ ︷︷ ︸
(8)

. (A.67)

The first three terms of equation (A.67) can be easily interpreted as time and spatial derivatives
of volume averaged quantities

1
Vξ

∫

Vξ

γi�i

(
ei +

u2
i

2

)
dV =

〈
�i

(
ei +

u2
i

2

)〉
(A.68)

1
Vξ

∫

Vξ

[
γi�i�ui

(
hi +

u2
i

2

)]
dV =

〈
�i�ui

(
hi +

u2
i

2

)〉
(A.69)

1
Vξ

∫

Vξ

γi(�qi − T̄i · �ui) dV = 〈�qi〉 −
〈
T̄i · �ui

〉
. (A.70)

The terms (4) to (6) of equation (A.67) can be transformed into integrals over the interfacial
area resulting in

− 1
Vξ

∫

Vξ

pi�u
int
i · ∇γ dV =

1
Vξ

∫

Aint
ξ

pi�u
int
i · �nint

i dA, (A.71)
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− 1
Vξ

∫

Vξ

(
hi +

u2
i

2

)
�i

(
�uint − �ui

) · ∇γ dV

=
1
Vξ

∫

Aint
ξ

(
hi +

u2
i

2

)
�i

(
�uint − �ui

)
�·nint

i dA, (A.72)

and

1
Vξ

∫

Vξ

γi(�qi − T̄i · �ui) dV = − 1
Vξ

∫

Aint
ξ

(�qi − T̄i · �ui) · �nint
i dA. (A.73)

The two terms (7) and (8) on r.h.s. of equation (A.67) represent volume averaged quantities
for the work of external forces and the external heat sources, respectively, acting on the phase
i

1
Vξ

∫

Vξ

γi
�Fi · �ui dV =

〈
�Fi · �ui

〉
, (A.74)

and

1
Vξ

∫

Vξ

γiQi dV = 〈Qi〉 . (A.75)

Introducing equations (A.68) to (A.75) into equations (A.67) yields an intermediate form of
the energy equation

∂

∂t

〈
�i

(
ei +

u2
i

2

)〉
+ ∇ ·

〈
�i�ui

(
hi +

u2
i

2

)〉
+ ∇ · 〈�qi〉 −

〈
T̄i · �ui

〉

+
1
Vξ

∫

Aint
ξ

pi�u
int
i �nint

i dA =
1
Vξ

∫

Aint
ξ

(
hi +

u2
i

2

)
�i

(
�uint − �ui

)
�·nint

i dA

− 1
Vξ

∫

Aint
ξ

�qi · �nint
i dA+

1
Vξ

∫

Aint
ξ

(T̄i · �ui) · �nint
i dA+

〈
�Fi · �ui

〉
+ 〈Qi〉 . (A.76)

where the interfacial area terms need some further interpretation.
Introducing the time derivative of the volume fraction from equation (A.18), the pressure

term on the l.h.s. of equation (A.76) can be written as

1
Vξ

∫

Aint
ξ

pi�u
int · �nint

i dA =
〈
pint

i

〉 ∂αi

∂t
, (A.77)
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with the definition of an averaged interfacial pressure as was already introduced for the mo-
mentum balance equation (A.54)

〈
pint

i

〉
=

∫

Aint
ξ

pi�u
int · �nint

i dA

∫

Aint
ξ

�uint · �nint
i dA

. (A.78)

The first term on the right-hand side of equation (A.76) can be interpreted as the energy
transfer between the phases associated with the mass transfer

1
Vξ

∫

Aint
ξ

(
hi +

u2
i

2

)
�i

(
�uint − �ui

) · �nint
i dA = σM

i 〈hex
i 〉 , (A.79)

with the total (thermal and kinetic) energy exchanged

〈hex
i 〉 =

∫

Aint
ξ

(
hi +

u2
i

2

)
�i

(
�uint − �ui

) · �nint
i dA

∫

Aint
ξ

�i (�uint − �ui) · �nint
i dA

, (A.80)

and the mass transfer term as was already defined by equation (A.40)

σM
i =

1
Vξ

∫

Aint
ξ

�i(�uint − �ui)�·nint
i dA. (A.81)

The last term on the l.h.s. of equation (A.76) represents the interfacial heat transfer and the
work of interfacial viscous forces. For the interfacial heat transfer one obtains

σQ
i = − 1

Vξ

∫

Aint
ξ

�qi · �nint
i dA, (A.82)

or

σQ
i = −aint 1

Aint
ξ

∫

Aint
ξ

�qi · �nint
i dA. (A.83)
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�i=0

�i=1

ni

int

qi

int

Fig. A.6: Heat transfer at the interface

The work of interfacial viscous forces becomes

− 1
Vξ

∫

Aint
ξ

(T̄i · �ui) · �nint
i dA =

〈
�F v

i

〉
· 〈�uv

i 〉 , (A.84)

with the interfacial viscous force term as was already defined for the momentum balance
equation by equation (A.55)

〈F v
i 〉 =

1
Vξ

∫

Aint
ξ

T̄i · �nint
i dA (A.85)

and an associated velocity

〈�uv
i 〉 =

∫

Aint
ξ

(T̄i · �ui) · �nint
i dA

∫

Aint
ξ

T̄i · �nint
i dA

. (A.86)

With expressions (A.77), (A.79), (A.82), and (A.84) the balance equation for energy (A.76)
finally becomes

∂

∂t

〈
�i

(
ei +

u2
i

2

)〉
+ ∇ ·

〈
�i�ui

(
hi +

u2
i

2

)〉
+ ∇ · 〈�qi〉 −

〈
T̄i · �ui

〉

+
〈
pint

i

〉 ∂αi

∂t
= σQ

i + σM
i 〈hex

i 〉 + 〈F v
i 〉 · 〈�uv

i 〉 +
〈
�Fi

〉
· 〈�ui〉 + 〈Qi〉 , (A.87)

or introducing the volumetric concentration αi

∂

∂t

[

αi

〈
�i

(
ei +

u2
i

2

)〉i
]

+ ∇ ·
[

αi

〈
�i�ui

(
hi +

u2
i

2

)〉i
]

+
〈
pint

i

〉 ∂αi

∂t

+∇ ·
[
αi 〈�qi〉i

]
−
[
αi

〈
T̄i · �ui

〉i] = σE
i +

〈
�Fi

〉
· 〈�ui〉 + αi 〈Qi〉i , (A.88)

with the interfacial energy source term

σE
i = σQ

i + σM
i 〈hex

i 〉 +
〈
�F v

i

〉
· 〈�uv

i 〉 (A.89)
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A.3.4 Summary of two-phase balance equations

Assuming that the averaging is performed only on the volume where the phase i is present,
the balance equations for mass (A.43), momentum (A.61), and energy (A.88) can be written
as

mass:

∂

∂t

[
αi 〈�i 〉i

]
+ ∇ ·

[
αi 〈�i �ui〉i

]
= σM

i . (A.90)

momentum:

∂

∂t

[
αi 〈�i�ui〉i

]
+ ∇ · [〈αi�i�ui�ui + αipi + αiT̄i

〉]− 〈pint
i

〉 ∇αi

=
〈
�F v

i

〉
+ σM

i 〈uex
i 〉 +

〈
�Fi

〉
. (A.91)

energy:

∂

∂t

[

αi

〈
�i

(
ei +

u2
i

2

)〉i
]

+ ∇ ·
[

αi

〈
�i�ui

(
hi +

u2
i

2

)〉i
]

+ ∇ · [αi 〈�qi〉]

−αi

〈
T̄i · �ui

〉i +
〈
pint

i

〉 ∂αi

∂t
= σQ

i + σM
i 〈hex

i 〉

+ 〈F v
i 〉 · 〈�uv

i 〉 + αi

〈
�Fi

〉
· 〈�ui〉 + αi 〈Qi〉i . (A.92)

Assuming that the average of a product can be approximated by the product of the averages
of the parameters involved, e.g.,

〈�i �ui〉i = 〈�i 〉i 〈�ui〉i (A.93)

and dropping the parentheses for volume averages, the basic conservation laws (A.90) to
(A.92) can be written as

mass:

∂

∂t
(αi�i ) + ∇ · (αi�i �u

i
i

)
= σM

i . (A.94)

momentum:

∂

∂t
(αi�i�ui) + ∇ · (αi�i�ui�ui + αipiĪ + αiT̄i)

−pint
i ∇αi = �F v

i + uex
i σM

i + �Fi. (A.95)

energy:

∂

∂t

[
αi�i

(
ei +

u2
i

2

)]
+ ∇ ·

[
αi�i�ui

(
hi +

u2
i

2

)]
+ ∇ · (αi�qi) −∇ · (αiT̄i · �ui

i

)

+pint
i

∂αi

∂t
= σQ

i + σM
i hex

i + F v
i · �uv

i + αi
�Fi · �ui + αiQi. (A.96)
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The source terms and abbreviations used in equations (A.90) to (A.96) are defined as:

interfacial source term for mass:

σM
i = aint 1

Aint
ξ

∫

Aint
ξ

�i

(
�uint − �ui

)
�nint

i dA (A.97)

viscous contributions to interfacial forces:

�F v
i = aint 1

Aint
ξ

∫

Aint
ξ

T̄i·�nint
i dA (A.98)

interfacial pressure

pint
i =

∫

Aint
ξ

pi �n
int
i dA

∫

Aint
ξ

�nint
i dA

. (A.99)

external forces

�Fi =
1
Vξ

∫

Vξ

γi
�Fi (A.100)

velocity associated with interfacial mass transfer:

uex
i =

∫

Aint
ξ

�i�ui(�uint − �ui) · �nint
i dAi

∫

Aint
ξ

�i(�uint − �ui) · �nint
i dAi

(A.101)

interfacial source term for heat:

σQ
i = −aint 1

Aint
ξ

∫

Aint
ξ

�qi · �nint
i dA (A.102)

total enthalpy associated with mass transfer:

hex
i =

∫

Aint
ξ

(
hi +

u2
i

2

)
�i

(
�uint − �ui

) · �nint
i dA

∫

Aint
ξ

�i (�uint − �ui) · �nint
i dA

(A.103)
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velocity associated with the work of the viscous interfacial forces:

�uv
i =

∫

Aint
ξ

(T̄i · �ui) · �nint
i dA

∫

Aint
ξ

T̄i · �nint
i dA

(A.104)

external heat sources:

Qi =
1
Vξ

∫

Vξ

γiQi dV. (A.105)



B Characteristic Analysis of Flow Equations: Vectors and
Matrices

B.1 Single-phase gas flow, one-dimensional conditions

∂U
∂t

+ G
∂U
∂x

= D

U =








p

u

s







, G =











u �a2 0

1
�

u 0

0 0 u











, D =











a2

(
∂�

∂s

)

p

q

T

f

q

T











Table B.1: Coefficient matrix, and state and source term vector

VR =











1
2

1
2a�

0

1
2

−1
2a�

0

0 0 1











, VL = T =








1 +a � 0

1 −a � 0

0 0 1








Table B.2: Matrix of right and left eigenvectors
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Λ = T−1GT =


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



u+ a 0 0

1 u− a 0

0 0 1








Table B.3: Diagonal matrix of eigenvalues Λ

G1 = (u+ a)
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


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1
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


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
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

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∑
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







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1
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u 0
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
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





Table B.4: Split matrices Gk, for eigenvalues λk with k = 1, 2, 3
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∂V
∂t

+ H
∂V
∂x

= C with H =
∂F
∂V

V =
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
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
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
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
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
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Table B.5: State vector for conserved variables F, flux vector F, and source term vector C
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
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







Table B.6: Coefficient matrix H for conservative form of flow equations
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B.2 Single-phase gas flow, two-dimensional conditions

∂U
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Table B.7: State coefficient matrix and source term vector for two-dimensional flow
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





, VL =












1 +� a 0 0

1 −� a 0 0

0 0 1 0

0 0 0 1












Table B.8: Matrix of right and left eigenvectors
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Λ = T−1GT =












un + a 0 0 0

0 un − a 0 0

0 0 un 0

0 0 0 un












with T = VT
R

Table B.9: Diagonal matrix of eigenvalues Λ

Gn,1 = (un + a)















1
2

�a

2
0 0

1
2�a

1
2

0 0

0 0 0 0

0 0 0 0















Table B.10: Split matrix Gn,1, for eigenvalue λ1 = un + a

Gn,2 = (un − a)















1
2

�a

2
0 0

− 1
2�a

1
2

0 0

0 0 0 0

0 0 0 0















Table B.11: Split matrix Gn,2, for eigenvalue λ2 = un − a
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Gn,3 = un












0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0












, Gn,4 = un












0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1












Table B.12: Split matrix Gn,3,4 , for eigenvalue λ3,4 = un
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B.3 Homogeneous nonequilibrium two-phase flow

A
∂U
∂t

+ B
∂U
∂x

= C

U =















p

u

αg

sg

sl















, C =



















σM
g

σM
l

F

σM
g (hex − hg) +

σM
g

Tg
+
Qg

Tg

σM
l (hex − hl) +

σM
l

Tl
+
Ql

Tl



















Table B.13: State vector of primitive variables U and source term vector C

A =


















αg

a2
g

0 �g αg

(
∂�g

∂sg

)

p

0

αl

a2
l

0 −�l 0 αl

(
∂�l

∂sl

)

p

0 � 0 0 0

0 0 0 αg�g 0

0 0 0 0 αl�l


















Table B.14: Coefficient matrix A
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B =


















αgu

a2
g

αg�g �gu αgu

(
∂�g

∂sg

)

p

0

αlu

a2
l

αl�l −�lu 0 αlu

(
∂�l

∂sl

)

p

1 �v 0 0 0

0 0 0 αg�gu 0

0 0 0 0 αl�lu


















Table B.15: Coefficient matrix B

∂U
∂t

+ G
∂U
∂x

= D with G = A−1B

G =



















u �a2 0 0 0

1
�

u 0 0 0

0 −αgαl

(
�a2

�ga2
g

− �a2

�la2
l

)
u 0 0

0 0 0 u 0

0 0 0 0 u



















=
5∑

k=1

Gk

with the homogeneous sound velocity a =
√

1
αl�

�la2
l

+
αg�

�ga2
g

Table B.16: Coefficient matrix G
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D =
























�a2

�g

[
σM

g − 1
�g

(
∂�g

∂sg

)
σS

g

]
+
�a2

�l

[

σM
l − 1

�l

(
∂�l

∂sl

)

p

σS
l

]

F

�

αl�a
2

�l�ga2
l

[

σM
g − 1

�g

(
∂�g

∂sg

)

p

σS
l

]

− αg�a
2

�g�ga2
g

[

σM
l − 1

�l

(
∂�l

∂sl

)

p

σS
l

]

σS
g

1
αg�g

σS
l

1
αl�l
























Table B.17: Source term vector D

G1 = (u+ a)



















1
2

�a

2
0 0 0

1
2�a

1
2

0 0 0

−αgαl

2

(
1

�ga2
g

− 1
�la2

l

)
−αgαl

2
�a

(
1

�ga2
g

− 1
�la2

l

)
0 0 0

0 0 0 0 0

0 0 0 0 0



















Table B.18: Coefficient matrix Gn,1 for the pressure wave λ1 = u + a
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G2 = (u− a)



















1
2

−�a
2

0 0 0

− 1
2�a

1
2

0 0 0

−αgαl

2

(
1

�ga2
g

− 1
�la2

l

)
+
αgαl

2
�a

(
1

�ga2
g

− 1
�la2

l

)
0 0 0

0 0 0 0 0

0 0 0 0 0



















Table B.19: Split coefficient matrix G2 for the pressure wave λ2 = u − a

G3 = u
















0 0 0 0 0

0 0 0 0 0

αgαl

2

(
1

�ga2
g

− 1
�la2

l

)
0 1 0 0

0 0 0 0 0

0 0 0 0 0
















Table B.20: Split coefficient matrix G3 for the void wave λ3 = u

G4 = u















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0















, G5 = u















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1















Table B.21: Split coefficient matrices G4 and G5 for the entropy waves: λ3,4 = u
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B.4 Wallis model

A
∂U
∂t

+ B
∂U
∂x

= C

U =


















p

ug

ul

α

sg

sl


















, C =


















σM
g

σM
l

F v
g + σM

g (uex − ug) + Fg

F v
l + σM

l (uex − ul) + Fl

σS
g

σS
l


















Table B.22: State vector for primititive variables U and source term vector C

A =






















αg

a2
g

0 0 �g αg

(
∂�g

∂sg

)

p

0

αl

a2
l

0 0 −�l 0 αl

(
∂�l

∂sl

)

p

0 αg�g 0 0 0 0

0 0 αl�l 0 0 0

0 0 0 0 αg�g 0

0 0 0 0 0 αl�l






















Table B.23: Coefficient matrix A
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B =





















αgug

a2
g

αg�g 0 �gug αgug

(
∂�g

∂sg

)

p

0

αlul

a2
l

0 αl�l −�ful 0 αlul

(
∂�l

∂sl

)

p

αg αg�gug 0 0 0 0

αl 0 αl�lul 0 0 0

0 0 0 0 αg�gug 0

0 0 0 0 0 αl�lul





















Table B.24: Coefficient matrix B

∂U
∂t

+ G
∂U
∂x

= D with G = A−1B

G =

























ug − αl∆u
�ga

2
0

�sa2
l

αga
2
0

�g�l

�s
αla

2
0

�g�l

�s
a2
0∆u

�g�l

�s
0 0

1
�g

ug 0 0 0 0

1
�l

0 ul 0 0 0

αgαl
∆u
�s

a2
0

a2
ga

2
l

αgαl
�g

�s

a2
0

a2
l

−αgαl
�l

�s

a2
0

a2
g

ul + αl∆u
�ga

2
0

�sa2
l

0 0

0 0 0 0 ug 0

0 0 0 0 0 ul

























Table B.25: Coefficient matrix G
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B.5 Hyperbolic two-phase flow model – one-dimensional
conditions

A
∂U
∂t

+ B
∂U
∂x

= C

U =



















p

ug

ul

αg

sg

sl



















, C =



















σM
g

σM
l

F v
g + σM

g (uex − ug) + Fg

F v
l + σM

l (uex − ul) + Fl

σS
g

σS
l



















with entropy source terms

σS
g =

σM
g

[
(hex − hg) + 1

2 (uex − ug)
2
]

Tg
+
F v

g

(
uint − ug

)

Tg
+
σQ

g

Tg
+
Qg

Tg

σS
l =

σM
l

[
(hex − hl) + 1

2 (uex − ul)
2
]

Tl
+
F v

l

(
uint − ul

)

Tl
+
σQ

l

Tl
+
Ql

Tl

Table B.26: State vector for primitive variables U and source term vector C
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A
∂
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A
∂
U ∂
t

+
∂
U ∂
x

=
C

B
=

                                  
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Table B.40: Jacobian matrix J used in conservative form of flow equations
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ã
2
�̂

l

�̂
s
−
u

g
u

α
g
ã
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B.6 Hyperbolic two-phase flow model – two-dimensional
conditions

∂U
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+ Gx
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

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
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
















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

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




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

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

















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








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



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





Table B.47: State vectors for primitive and conserved state parameters and related flux vectors for two-
dimensional flow conditions
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acoustic approximation 107
Approximate Riemann solver 120
approximate Riemann solver 117, 125
ASTAR benchmark cases 144
ASTAR nozzle 177, 178, 184
ASTAR project 177
ATFM code 105, 131, 141
attenuation coefficient 112
attenuation factor 111
attenuation of sound wave 107
axis symmetry 163, 165, 195

balance equation
for energy 35, 46, 73, 228
for entropy 22, 38, 39, 73, 94
for mass 35, 38, 39, 45, 73, 219, 220
for momentum 35, 38, 39, 46, 73, 93,

220, 227, 228
balance equations

single-phase flow 9
two-fluid model 115
two-phase flow 35

Bernoulli equation 56, 179
blowdown 195–197, 199
boundary conditions 18
bubbly flow regime 41, 42, 134

Canon test 199
Cartesian drid 163
Cartesian grid 164, 203
CATHARE code 191
CEA see Centre d’Etude Nucleaire de Greno-

ble
Centre d’Etude Nucleaire de Grenoble 191
characteristic analysis 92, 95, 99
characteristic curve 118
characteristic equation 77, 81, 87

characteristic function 80, 81, 101
characteristic lines 13
characteristic time 97
characteristic variables 122
characteristic velocities 78, 81, 84, 102
choking 203
choking condition 182, 192, 193
CIR see Courant Isaacson and Rees method
CIR method see Courant Issacson and Rees

method
Committee for the Safety of Nuclear Installa-

tions 195
compatibility relations 65

single-phase gas flow 13, 14, 26
two-phase flow 64, 87, 89, 90

complex eigenvalues 74
Computer Algebra Systems 77
conservation equations

single-phase gas flow 18
conservation laws 5
contact discontinuity

single-phase gas flow 18, 26, 27, 157
two-phase flow 161, 164, 165, 169

convergent–divergent nozzle 21, 25
counter-current flow 143, 148
Courant Issacson and Rees method 117
Courant number 121, 141
critical cross-section 97
critical flow condition 177, 182, 183, 191,

199, 200, 204
critical flow phenomena 143
critical pressure 22
CSNI see Committee for the Safety of Nuclear

Installations

Deich nozzle 188
depressurization 184, 191, 195, 196



272 Index

Dirac delta function 35, 41, 214
dispersion of sound waves 107
dispersion relation 108
dissipation of kinetic energy 21
distribution function 35, 213–215, 218, 224
droplet flow regime 41, 42, 134

Edwards pipe 195, 199, 200
effective cross-section 97
eigenvalues 122

single-phase gas flow 11, 12, 14, 15, 31
two-phase flow 48, 61–65, 69, 71, 91,

101–104
eigenvectors

single-phase gas flow 11, 12, 32, 33
two-phase flow 62, 63, 85–87, 91, 92,

102
entropy source 37, 39
entropy wave 63, 65, 82, 86, 87, 101
Euler equations 5, 6, 11, 14, 15, 18, 28, 29,

31, 40, 127
expansion fan

single-phase gas flow 26
explosion phenomena 169
explosion test case 163, 164, 168, 173, 174
external forces 22, 223, 226, 230
external heat sources 226, 231

finite volume discretization 138
flashing 191, 199
flow topology 133, 213
Flux Vector Splitting scheme 18, 126, 128,

145, 148, 150, 157, 160, 178, 179
frozen conditions 97
frozen sound velocity 84
FVS scheme see Flux Vector Splitting scheme

Godunov fluxes 121, 124, 125, 128
Godunov method 120, 121
gravity head 145, 148

homogeneity property 18, 127
hyperbolic numerical methods 116
hyperbolic system of equations 12
hyperbolic two-fluid model 73

implicit time integration 116
implosion test case 174
intercell fluxes 140

interface 135, 213
interfacial area 214–217, 221, 222, 225, 226

transport equation 41, 217
interfacial area concentration 217, 220, 222
interfacial curvature 37
interfacial drag 42
interfacial forces 41
interfacial friction 143, 154, 183
interfacial heat transfer 40, 42, 135, 152–154
interfacial mass transfer 40, 135
interfacial pressure 222, 227, 230
interfacial velocity 215, 217, 218, 221, 224

Joint Research Centre 73, 131, 136
JRC see Joint European Research Centre

metastable conditions 135
method of characteristics 14
Moby–Dick nozzle 191, 192
MUSCL approach 139

Navier–Stokes equations 35, 40
non-uniform grid 163, 165
nonuniform grid 178
nonviscous interfacial forces 74–79, 99, 105,

132
numerical diffusion 147, 154
numerical flux 121, 138
numerical viscosity 148

phase separation 203
pre-choking 183
pressure wave 62, 64, 71, 81, 86, 87, 101, 161,

196
pressure wave propagation 145, 151, 153

quasi-one-dimensional flow 21, 163, 164
quasi-two-dimensional flow 195

Rankine–Hugoniot relation 18, 19, 28, 125
rarefaction wave 169
relaxation zone 154, 160, 161, 169, 173, 183
Riemann invariants 14, 118
Riemann problem 26, 120, 122, 127, 138, 157
Roe matrix 125
Roe solver 124, 126
Runge–Kutta method 11

saddle-point singularity 11, 22, 97
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SCM method see Split Coefficient Matrix
method

sedimentation 148
self-similar solution 26
shear wave 101
shock front 154, 169
shock strength 20, 149, 150, 154, 165, 173,

174
shock tube equation 28
shock tube problem 28, 157

single-phase gas flow 26, 157
two-phase flow 160, 163, 165, 173

shock wave 22, 23, 143, 157
single-phase gas flow 18–21, 26, 28,

149, 150, 157, 165
two-phase flow 151, 153, 154, 169, 173,

174
shock wave structure 182
single-pressure two-fluid model 73
slip velocity 144, 145, 183
slope limiter fuction 140
sound speed see sound velocity
sound velocity

single-phase gas 6, 7
two-phase 47–50, 54–57, 61, 62, 65, 69,

71
source term

for energy 228

for heat 230
for interfacial area 217
for mass 220, 230
for momentum 223

source terms 36
Split Coefficient Matrix method 117, 119, 122
split matrices 119, 124, 125, 128

single-phase gas 15
two-phase flow 64, 88, 92, 102

Taylor expansion 140, 141
two-fluid model 38, 213
two-pressure models 38

upwinding 116

virtual mass 75, 78
virtual mass coefficient 82, 84, 85, 104
virtual mass effects 74
virtual mass force 75, 84
viscous forces 222, 227, 228
void wave 63, 64, 81, 85, 87, 88, 101, 143–

145
volume averaged quantities 214, 219, 225,

226

wall friction 145, 147, 148, 150, 173
Wallis model 74, 80, 81, 84
wetness 188, 189
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