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Abstract

This dissertation is concerned with the numerical investigation of
particle-laden flows. The simulations are based on a pseudo-spectral
method to solve the fluid equations combined with a Lagrangian
point—particle model for the particulate phase (Eulerian-Lagrangian ap-
proach). Two flow configurations of increasing complexity are studied
with the aim of unraveling some fundamental properties of particle set-
tling in disperse two—phase flows.

The first configuration is a suspension drop (initially spherical swarm
of particles) settling in a fluid under the influence of gravity. The focus is
on a range of moderate drop Reynolds numbers 1 < Regq < 100 where the
suspension drop deforms into a torus that eventually becomes unstable
and breaks up into a number of secondary blobs. The flow remains
laminar, which allows for a systematic variation of several parameters.
The influence of the Reynolds number, the number of particles inside
the drop, the initial particle positions and some numerical quantities are
studied in detail.

The second configuration is an initially random suspension of parti-
cles in homogeneous turbulence. Here, the focus is on the enhancement
of the mean particle settling velocity in a turbulent carrier fluid com-

‘pared to the settling velocity of a single particle in still fluid. Results
are presented for both one-way coupling (the fluid flow is not affected
by the presence of the particles) and two-way coupling (the particles
exert a feedback force on the fluid). The mechanism responsible for an
additional increase in settling velocity in the case of two-way coupling
is analyzed. Moreover, a careful comparison with recent experimental
results is performed for a microscale Reynolds number Rey = 75 of the
turbulent carrier fluid.

Kurzfassung

Die vorliegende Dissertation befasst sich mit der numerischen Simula-
tion von partikelbeladenen Stromungen. In den Simulationen wird eine
Pseudospektralmethode fiir die Losung der Fluidstromungsgleichungen
verwendet. Die Partikel werden als punktformige Massen modelliert und
individuell im Lagrange’schen Sinn auf ihrem Weg durch das Trager-
fluid verfolgt (Euler-Lagrange-Verfahren). Zwel Strémungskonfigura-
tionen von zunehmender Komplexitdt werden untersucht mit dem Ziel,



grundlegende Eigenschaften des Absinkens von Partikeln in dispersen
Zweiphasenstromungen zu erklaren.

Im ersten Fall wird das Absinken eines Suspensionstropfens, d. h.
einer zu Beginn kugelférmigen Ansammlung von Partikeln, unter dem
Einfluss der Gravitation simuliert. Der Schwerpunkt der Untersuchung
liegt auf einem Bereich von moderaten Tropfen—-Reynoldszahlen 1 <
Regq < 100, in dem der Suspensionstropfen sich gewohnlich in einen
Torus verformt, der beim weiteren Absinken instabil wird und schlie3lich
in mehrere sekundéire Tropfen aufbricht. Die Stromung bleibt dabei
laminar, wodurch der Rechenaufwand entsprechend beschrankt ist und
eine systematische Variation von mehreren Parametern erlaubt. Im
Speziellen wird die Abhangigkeit von der Reynoldszahl, der Anzahl der
Partikel im Tropfen, der Partikelpositionen zu Beginn der Rechnung und
einigen numerischen Einflussgréffen untersucht.

Im zweiten Fall wird eine Suspension von zu Beginn zufallsverteil-
ten Partikeln in einem homogen turbulenten Stromungsfeld betrachtet.
Das Interesse richtet sich hier auf die Erhohung der mittleren Par-
tikelsinkgeschwindigkeit in turbulenter Stromung, verglichen mit der
Sinkgeschwindigkeit eines einzelnen Partikels in ruhendem Fluid. Ergeb-
nisse werden prasentiert fiir die Fille der Einweg-Kopplung, bei der
das Fluid von den Partikeln unbeeinflusst bleibt, und der Zweiweg—
Kopplung, bei der die Partikel eine auf das Fluid riickwirkende Kraft
ausiiben. Der Mechanismus, der zu einer zusatzlichen Erhohung der
Sinkgeschwindigkeit in letzterem Fall fiihrt, wird analysiert. Ausserdem
wird ein Vergleich der Ergebnisse mit neueren experimentellen Daten aus
der Literatur fiir eine Reynoldszahl basierend auf dem Taylor—-Mikromaf -
von Rey) = 75 vorgenommen.
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Nomenclature

Roman symbols

As amplitude of initial radial particle shift

c drop volume fraction

d particle diameter

D(k) three—dimensional dissipation spectrum

D, global “dispersion function”

E(k) three—dimensional energy spectrum

E11(k1) one—-dim. longitudinal spectrum in direction 1
Eaa (ko) one—dim. longitudinal spectrum in direction 2
Es3(ks) one—dim. longitudinal spectrum in direction 3
fi(p ) two—way coupling term (particle feedback force)
f, fi ‘ Fourier coefficient of two—way coupling term
Fi(,?) feedback force of particle j

Fr Froude number

Frg Froude number based on drop properties

gi, g, g gravitational acceleration, magnitude

ki, k, k wavenumber vector, magnitude

ko, kmax magnitude of smallest and largest wavenumber
Kp ~ upper bound of forced wavenumber band

le eddy length scale

L1 integral length scale

ls number of periods in circumferential direction
L side length of computational box

Lyes reference length

my mass of fluid displaced by a particle

mp particle mass

M ratio of real to computational particles

ni, n integer wavenumber vector

ng number of computational particles

nr number of real particles

ng local number of particles (per grid cell)

N number of grid points in each spatial direction
Ny number of boxes/grid cells within comput. domain
p, p{™ » pressure, modified pressure

D Fourier coefficient of pressure
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Nomenclature

Pbinom

Siy 8, Sk

probability function of particle distribution
probability function of binomial distribution
total turbulent kinetic energy

kinetic energy associated with velocity component ¢

particle radius

radial distance from the particle center
initial suspension drop radius

mean particle distance from the center of mass
drop Reynolds number

forcing Reynolds number

particle Reynolds number

turbulence Reynolds number

Taylor microscale Reynolds number

vector of nonlinear terms in NS equation
Stokes number

Stokes number based on drop properties
Stokes number based on particle properties and
Kolmogorov time

time

eddy turnover time

eddy turnover time for one-way coupling
integral time scale

Kolmogorov time

time required for drop to deform into torus
forcing time scale

reference time

fluid velocity

Fourier coefficients of fluid velocity

fluid velocity of undisturbed flow

solution of Ornstein—Uhlenbeck process
Kolmogorov velocity

fluid root-mean-square (RMS) velocity
charateristic drop settling velocity

Stokes settling velocity of a single particle
reference velocity

terminal velocity of single particle or bubble

particle settling velocity averaged over all particles

and time
drop settling velocity
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Greek symbols
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particle velocity

grid cell volume

particle volume
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position vector (grid points)

particle position

Kronecker symbol
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increase of mean particle settling velocity
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energy dissipation rate
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ratio of particle radius to drop radius
permutation symbol

Kolmogorov length
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Taylor microscale

dynamic viscosity

kinematic viscosity

standardized Gaussian variable

fluid density

particle density

mean suspension drop (bulk) density
overall particle mass loading

overall particle volume fraction

local particle volume fraction
standard deviation

characteristic fluid time scale
particle response time

vorticity

scalar vorticity
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()

Subscripts
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1
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T
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Abbreviations
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spatial direction
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direct numerical simulation
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Chapter 1

Introduction

1.1 Simulation of particle-laden flows

The research work presented in this dissertation is concerned with the
numerical simulation of particle-laden flows. These flows are usually
denoted as disperse two—phase flows, since they contain a discontinuous
phase distributed throughout the flowing medium. In general, the dis-
persed phase may assume the form of small solid particles, droplets, or
bubbles and the carrier fluid can be a liquid or a gas.

Disperse two—phase flows are encountered in a variety of natural pro-
cesses and engineering applications. In fact, taking a closer look at the
natural occurrences of flows of all kinds reveals that most of these involve
more than a single phase. Examples range from large—scale phenomena,
such as dust particle transport in the atmosphere or particle sedimen-
tation in river beds, to small-scale phenomena such as atherosclerotic
deposits in human blood vessels. Engineering applications are numerous
in the pharmaceutical and chemical industries including mixing, drying,
and transport processes.

This wide variety of occurrences and applications makes two—phase
flows an active field of current scientific endeavors in both academic
and industrial research. Compared to single—phase flows involving pure
fluids, the additional difficulty in treating multiphase flows arises from
the interaction between the different phases. In general, this interaction
involves the mutual exchange of mass, momentum, and energy. For ex-
ample, during the expansion of the compressed steam in a steam turbine
the water may start condensing out into small water droplets. In this
process the condensation energy is released into the carrier fluid, i.e. an
energy transfer occurs between the phases. Also, the droplets may grow
due to further condensation on their way through the turbine, which
involves a mass transfer between the liquid and the gaseous phase. The
dynamical interplay between the carrier fluid and the droplets that are
carried along with the flow is the consequence of a mutual exchange of
momentum. A thorough understanding of these phenomena is impor-
tant from a practical point of view, since the water droplets may hit the
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turbine blades leading to severe corrosion and a decrease in the overall
efficiency of the process.

The enhanced complexity of multiphase flow systems makes their nu-
merical treatment particularly challenging. With the growing availabil-
ity of powerful computer resources within the last few decades numerical
simulations have come into reach as a valuable tool in predicting fluid
flows of practical interest. The theoretical foundations, on the other
hand, reach back as far as to the nineteenth century. For example, in
1851 Stokes published his famous article on the creeping flow around a
rigid sphere (Stokes, 1851). A number of particle models are based on
this so—called Stokes solution or, at least, incorporate as a key feature
the drag force on the sphere derived from this solution. Within the field
of computational fluid dynamics (CFD) the study of multiphase flows,
however, is a relatively young branch. The reason for this is that the
difficulties arising from the interaction of the different phases, as illus-
trated above, have to be tackled in addition to all other obstacles faced
in the numerical treatment of single-phase flows. This makes the sim-
ulation of multiphase systems including particle-laden flows especially
cumbersome and computationally expensive.

Nevertheless, great efforts have been directed towards developing nu-
merical methods for the simulation of disperse two—phase flows. These -
methods are usually designed for specific classes of particle-laden flows
depending on the flow configuration and the parameters, such as the size,
the form and the number of the particles, the flow regime being laminar
or turbulent, or the properties of the carrier fluid being compressible
or incompressible. Direct (fully resolved) numerical simulations aim at
resolving the flow field around the dispersed phase and treat the parti-
cles as (moving) boundaries to the fluid, see e.g. Hu (1996), Hu et al.
(2001), Pan et al. (2001), Glowinski et al. (2001), Glowinski (2003). This
approach, however, is limited to relatively small numbers of particles.

Examples in which larger numbers of particles can be simulated — of-
ten based on some averaging technique applied to the ensemble of parti-
cles — include the trajectory approach (Crowe et al. (1977), Kohnen et al.
(1994), Elghobashi & Truesdell (1992)) and the two-fluid formulation

(Simonin et al. (1993), Elghobashi & Druzhinin (1998)). The former
methodology tracks the individual particles in a Lagrangian manner,
whereas in the latter the particulate phase is considered a second fluid,
to which numerical techniques for continuous media are applied.

The strict mathematical derivation of the governing equations for
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such two-phase flows has been accomplished by different authors (e. g.
Drew (1983), Drew & Lahey Jr (1993), Zhang & Prosperetti (1997),
Prosperetti (1997)) and usually results in a closure problem due to the
unavoidable averaging of certain phase properties. To date there are no
generally valid constitutive relations available to close these equations.
Thus, one has to resort to further simplifications or different principal
approaches.

For the case of creeping flow conditions around the particles, Stoke-
sian dynamics simulations have successfully been performed (Brady &
Bossis (1988), Durlowsky & Brady (1989)). As an alternative to classi-
cal simulation methods based on the Navier—-Stokes equations Discrete or
Lattice Boltzmann methods (LBM) have emerged as a powerful technique
for the computational modeling of a wide variety of flow problems includ-
ing multiphase flow in complex geometries (Shan & Chen (1993), Chen
& Doolen (1998)). These methods are based on a simplified Boltzmann
equation and naturally accommodate a variety of boundary conditions
such as the pressure drop across the interface between two fluids and
wetting effects at a fluid-solid interface. LBM have successfully been

applied to the prediction of particulate flows by a number of researchers,
e.g. Ladd (1994a), Ladd (1994b), Aidun & Lu (1995), Behrend (1995).

A variant of the Eulerian approach for the particulate phase was re-
cently proposed by Balachandar and co—workers (Ferry & Balachandar
(2001), Ferry et al. (2003), Rani & Balachandar (2004)). For parti-
cles with a small response time T, compared to a characteristic fluid
time scale, the particle velocity field is expressed as an expansion in
7p. This so—called equilibrium Eulerian method avoids the need to solve
additional partial differential equations for the particulate phase, and
therefore is much faster than the standard Eulerian method.”

In an attempt to bridge the gap between point—force models and
fully resolved particles Maxey and co—workers developed a force-coupling
method for particles of the order of or larger than the smallest scales of
fluid motion (Maxey & Patel (2001), Lomholt & Maxey (2003), Dance
& Maxey (2003)). Each particle is represented here by a finite, local-
ized body force distribution based on a force multipole expansion of the
disturbed fluid velocity in the vicinity of each particle. The approach

has been applied to both zero and finite Reynolds number suspensions
(Climent & Maxey (2003)).

Another promising approach especially suited for large numbers of
particles is based on particle probability density functions (Reeks (1991)).
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Here, the particulate phase is modeled in a purely statistical manner
eliminating the need to deterministically track individual particles.

For a detailed discussion of the fundamentals of particle-laden flows
and further references the reader is referred to the books by Crowe et al.
(1998) and Clift et al. (1978).

1.2 Objectives and outline

This dissertation is embedded into the ongoing research activities at
the Institute of Fluid Dynamics (IFD) at the Swiss Federal Institute
of Technology (ETH) in Ziirich. Previous research studies in the field
of incompressible single- and two-phase flows include the numerical in-
vestigation of density—driven and particle-driven gravity currents. The
lock—exchange problem of two fluids of different density was extensively
studied based on the Boussinesq approximation for the Navier—Stokes
equations (Hértel et al. (20000), Hértel et al. (2000a), Hartel (2001)).
Particle-driven gravity currents were analyzed by means of high reso-
lution simulations with the aim of revealing fundamental properties of
such flows (Necker et al. (2002), Necker et al. (2003)). Here, the particles
were modeled in an Eulerian approach using a transport equation for the
local particle concentration.

Continuing this line of research activities the work presented here-
after aims at studying disperse two—phase flows, in which the interaction
between the phases is more complex. The particles are modeled in a La-
grangian approach, each interacting individually with the surrounding
fluid. More specifically, this dissertation aims at contributing to an en-
hanced understanding of particle settling in suspensions since this issue
is central to all flows in which the dispersed phase has a larger density
than the surrounding fluid. To this end, two configurations of particle
suspensions of increasing complexity are investigated:

(i) Settling and break—up of suspension drops under gravity,

(ii) Particle settling in homogeneous turbulence.
An outline and the motivation for each project will be given separately
below. In both projects a special class of particulate two—phase flows
is considered, in which the particles are much smaller than the smallest
relevant scales of the fluid motion. This allows for the particles to be
modeled as point—forces without resolving their finite size. The impor-
tant advantage of this simplification is that the fluid equations are solved
for the entire computational domain, thus avoiding the use of phase—
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averaged two—phase equations and the associated closure problem. The
presence of the particles and their dynamical effect on the carrier fluid are
accounted for by an additional source term in the Navier—Stokes equa-
tions. Each particle is tracked individually along its trajectory. The fluid
is assumed incompressible such that a (thermal) energy transfer between
the phases is negligible. Since the particles are considered rigid spheres,
there is no exchange of mass between the phases and the particle-fluid
interaction is entirely described by a momentum exchange due to the
relative motion between particles and fluid. This computational ap-
proach is sometimes called the Eulerian-Lagrangian method using the
point—particle approximation and is similar to the trajectory approach
mentioned above.

1.2.1 Settling and break—up of suspension drops

A simple yet fundamental example of particle sedimentation is the behav-
ior of a suspension drop settling in a fluid under the influence of gravity.
A suspension drop is an initially spherical swarm of small particles that
are suspended in initially quiescent fluid (the term ’'drop’ is used as a
synonym for 'suspension drop’ hereafter). Only recently the phenomena
observed when a suspension drop settles under gravity have gained an
increased interest. Nitsche & Batchelor (1997) numerically investigated
spherical suspension drops falling under creeping flow conditions. In this
case the drop essentially retains its spherical shape while a few particles
leak into a tail emanating from the rear of the drop. Nitsche & Batch-
elor focused on the substructural effects of hydrodynamic diffusion and
dispersion. They give a theoretical argument for the drop settling ve-
locity and provide a semi—empirical correlation for the rate of particle
leakage from the blob. Machu et al. (2001) did computer simulations
and experiments of single suspension drops and pairs of trailing drops.
They pointed out the crucial role of the initial drop shape. Under Stokes
flow conditions an initially pear—-like shape, for example, causes the sus-
pension drop to deform into a torus that eventually becomes unstable
and breaks up into secondary blobs. These blobs deform into tori them-
selves resulting in a cascade process of blob deformations and break—ups.
This behavior of suspension drops is analogous to that of liquid drops
settling in a fluid of smaller density. As opposed to suspension drops,
a considerable amount of research work has been devoted to single and
trailing liquid drops and fluid rings including theoretical studies (e.g.
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Kojima et al. (1984)), numerical investigations (e. g. Koh & Leal (1989),
Pozrikidis (1990)), and experiments (e.g. Baumann et al. (1992)). For a
comprehensive review of previous work in this field the reader is referred
to Machu et al. (2001). Walther & Koumoutsakos (2001) performed
simulations of falling suspension drops using a particle vortex method.
Their results served primarily for validation purposes of their numerical
method. ‘

Nitsche & Batchelor (1997) as well as Machu et al. (2001) used
Stokeslets in their simulations, i.e. the flow field was assembled as a su-
perposition of Stokes flow disturbances caused by the particles. This ap-
proach is limited to the Stokes flow regime with vanishing drop Reynolds
numbers (Req < 1, with Req based on the drop radius and a character-
istic drop settling velocity). To our best knowledge, systematic studies
for higher Reynolds numbers are not available in the literature.

The primary objective of this first project is to investigate the settling
behavior of suspension drops in a range of moderate Reynolds numbers
(1 € Reg < 100). Since the flow around the suspension drop remains
laminar, the systematic variation of different parameters — necessary for
a thorough understanding of the underlying physics — is computationally
affordable. We aim at clarifying the Reynolds number dependence of the
instability leading to torus break—up. Moreover, we examine in detail
the role of the (initial) particle distribution and the number of particles
inside the drop, as well as the effect of initial shape perturbations. These
issues have not been addressed in previous studies.

1.2.2 Particle settling in homogeneous turbulence

The second project focuses on the settling properties of a random particle
suspension in a turbulent environment. With respect to the fluid motion
this flow situation is more complex than in the first project and closer to
practical applications, since most technical flows are turbulent exhibiting
a wide range of length and time scales.

A lot of research work has been devoted to particle dispersion in tur-
bulent flows. The first studies in this field, mostly analytical in nature,
reach back half a century. Yudine (1959) was the first to postulate the
“crossing trajectories effect” by which a heavy particle, due to its finite
free-fall velocity, changes its fluid neighborhood more rapidly than a
light particle that essentially follows the path of fluid points. As a result
the autocorrelation of the heavy particle’s velocity decreases compared
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to that of the light particle and the dispersion coefficient is reduced. As
shown by Csanady (1963) this reduction is approximately equal to the
inverse of the free—fall velocity. Reeks (1977) and Pismen & Nir (1978)
demonstrated that in the absence of gravity the long-time particle dif-
fusion coefficient is in general greater than that of the fluid. The more
recent analytical work by Wang & Stock (1993) explains some of the
inconsistencies of previous theoretical and experimental studies and pro-
vides algebraic equations for long-time particle dispersion coefficients,
time scales, and velocity scales.

The theoretical considerations have been paralleled by experimental
and numerical studies. Murray (1970) experimentally investigated the
settling velocity and vertical diffusion of particles in oscillating water
flows. Snyder & Lumley (1971) focused on the measurement of particle
velocity autocorrelations in grid—-generated turbulence. Wells & Stock
(1983) confirmed in their experiments the crossing trajectories effect be-
ing responsible for a decrease of the long-time particle dispersion co-
efficient. Further experimental studies were concerned with turbulence
modulation by particles (Parthasarathy & Faeth (1990), Schreck & Kleis
(1993)) and preferential concentration of solid particles in microgravity
conditions (Fallon & Rogers (2002)). Turbulence modification (or mod-
ulation) occurs when the particle loading is large enough such that the
collective dynamical effect of the particles alters the flow properties.

The first numerical study on particle diffusion was conducted by Ri-
ley & Patterson (1974). They used a 32 computational grid and 432
particles at a microscale Reynolds number of Rey = 23 to show that
the particle velocity autocorrelation coefficient increases with increas-
ing particle response time in the absence of gravity. The preferential
accumulation of particles in random flow fields and turbulence was ana-
lyzed in a number of studies including Maxey (1987a), Squires & Eaton
(1991a), Squires & Eaton (1991b), and Elghobashi & Truesdell (1992).
Heavy particles were shown to accumulate preferentially in regions of
high strain rate and low vorticity. Studying the settling velocity of par-
ticles in homogeneous, isotropic turbulence Wang & Maxey (1993) found
an increase of the mean settling velocity compared to the terminal ve-
locity of a single particle in still fluid. They explained their findings as a
consequence of the “preferential sweeping effect” by which the particles
are swept preferably towards regions of downward fluid motion when
encountering an eddy.

Squires & Eaton (1990) were among the first to account for the par-
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ticles’ effect on the turbulence properties (“two—way coupling”) in their
direct numerical simulations (DNS).! They examined the modulation
of stationary homogeneous turbulence at particle mass loading ratios
®,, < 1.0 and found an increase of the turbulent kinetic energy at high
wavenumbers relative to the energy at low wavenumbers. Elghobashi &
Truesdell (1993) and Truesdell & Elghobashi (1993) investigated decay-
ing homogeneous turbulence laden with heavy particles at volumetric
loading ratios of ®, < 5-10~%. Under gravity the particles were found
to transfer momentum to the small-scale motion increasing the energy
content at high wavenumbers. This reduces the decay rate of energy as
compared to either the particle-free case or the zero-gravity particle-
laden case. These findings were confirmed, extended and further ana-
lyzed in a number of subsequent studies including Boivin et al. (1998),
Druzhinin & Elghobashi (1999), and Ferrante & Elghobashi (2003).

Despite these quite exhaustive studies of particle dispersion and tur-
bulence modification by particles with and without gravity, there have
been only a few investigations focusing on the mean particle settling
rate in homogeneous turbulence. The aforementioned paper by Wang &
Maxey (1993) is central among these revealing the basic mechanism of
preferential sweeping that leads to an increase in the mean settling veloc-
ity. Yang & Lei (1998) did direct numerical simulations and large-eddy
simulations of particles settling in homogeneous, isotropic turbulence.
Their results are in good agreement with those by Wang & Maxey. How-
ever, both investigations were limited to dilute suspensions with small
particle volume fractions where the particles do not have any effect on
the carrier fluid (“one-way coupling”). In a recent experiment Aliseda
et al. (2002) measured the enhancement of the particle settling velocity
in grid-generated homogeneous turbulence and found significant quanti-
tative differences in their results compared to the simulations by Wang
& Maxey.

These discrepancies call for a systematic numerical study of two-way
coupling effects with respect to the mean particle settling velocity in
homogeneous turbulence. This is the focus of the second project of this
dissertation. The mechanism leading to an additional enhancement of
the settling velocity compared with the one-way coupled regime will be

1Here, direct numerical simulation refers to the full resolution of all relevant scales
of the fluid motion rather than to the resolution of a finite—sized particle. In this sense
the simulations presented herein using the point—force approximation are also DNS
studies.
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analyzed in detail for different particle volume fractions in the range
107% < &, < 1073, This range, in which a transition of one-way to
two—way coupling effects is to be expected, has not been investigated
systematically in previous studies. These addressed rather high particle
volume fractions (®, = 10~%) at the upper limit of the range studied
herein. Particle dispersion characteristics, such as the correlation be-
tween vorticity and regions of particle accumulation, will be analyzed
for both one-way and two—way coupling. The results by Wang & Maxey
(1993) will serve for validation purposes in the one-way coupled case.
Moreover, it will be shown that a modulation of the turbulent properties
of the carrier fluid by the particles sets in for volume fractions as low as
o, ~ 1075,

Furthermore, a careful comparison with the experimental findings
by Aliseda et al. (2002) will be performed by matching the simulation
parameters as closely as possible to those in the experiment. This last
step is primarily done in response to an obvious lack of close adjustments
of experiments and simulations to the same set of parameters, which is
generally observed in the available literature.
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Chapter 2

Simulation approach

2.1 Governing equations

2.1.1 Particle equations

The transient equation of motion for particles, bubbles, and droplets
has been the subject of theoretical and experimental considerations for
about 150 years. Although remarkable progress in deriving adequate
mathematical and empirical descriptions has been made, there is still
broad and justified concern as for the validity of these equations. The
review by Michaelides (1997) historically traces the development of par-
ticle equations of motion and points out crucial theoretical and numeri-
cal limitations. In the present dissertation the well-established particle
equation derived by Maxey & Riley (1983) is used for the computation
of particle velocities and paths.

We consider a dilute particle suspension, in which the particle con-
centration is small enough for inter—particle collisions to be neglected.
Moreover, the particles are assumed to be much smaller than the small-
est relevant scales of the fluid motion. This allows for the particles to be
modeled as point forces without resolving their finite size. The trajectory
of a single particle is given by

avi(t) _
T = ’Uz(t), (21)

where Y;(¢) is the particle position, v;(t) the particle velocity, ¥;(0) =

Yi(o) its initial position, and 7 = 1, 2, 3 denotes the three spatial directions

in Cartesian space. The particle equation of motion simplified for small
heavy particles reads (Ferrante & Elghobashi (2003))

d’Ui (t)

mp o = Gmr (ui(?(t),t)—vi(t)) 4 (my—my) g (2.2)

with my, being the particle mass, my the mass of the fluid displaced by
a particle, u the dynamic viscosity, r the particle radius, u; (Y (¢),t) the



12 Simulation approach

fluid velocity at the instantaneous particle position, and g; the gravita-
tional acceleration. The first and second term on the right-hand side
correspond to Stokes drag and net gravitational force, respectively. As-
suming very small particles and relatively long fluid time scales, Eq. (2.2)
can further be simplified by neglecting particle inertia (Maxey et al.,
1997). In this case the particle motion is governed by a quasi-steady
equilibrium between drag forces on the particle’s surface and forces due
to gravity,

uilt) = w(P@E),t) + 79 <1 - Zfi) (2.3)

p

with the particle response time

My 271 0p
= = ———. 24
6Tur Qv p (24)

Tp

Here v denotes the kinematic viscosity of the fluid, p its density, and g,
the particle density.

In order to non—dimensionalize Eqgs. (2.2) and (2.3) a reference length
L,es and a reference velocity Urey are introduced yielding the dimension-
less equations of motion

dvi Lo — @) - —— (1-2) s,
v - g (W00 -u0) - g (1) 60, @9)
and for inertialess particles
- ~ St 0

Here, all variables are considered dimensionless although not specifically
labeled as such. The Stokes number is defined as

T, m U,
St L= p_ Zref 2.7
' Tre f 6w umr Lre f ( )
and the Froude number is
Fr = _Jref (2.8)

\/gLref .

The specific choice of the reference quantities depends on the physical
problem studied and will therefore be discussed separately for single
particles, suspension drops, and particles in homogeneous turbulence
(see section 2.3 and Appendix E). In Appendix E some considerations
are given about the settling of single particles based on Eq. (2.5).
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2.1.2 Fluid equations

In order to study the interaction between the particulate phase and the
carrier fluid, the mutual exchange of momentum has to be accounted for.
This is accomplished by an additional source term in the fluid momentum
equation, which represents the particles’ feedback force. Thus, the fluid
motion is governed by the continuity equation,

8ui
8xi

= 0, (2.9)

and the incompressible Navier—Stokes equation in rotational form aug-
mented by a particle feedback source term,

Ou dp(™ Pui 1 )
z.. . - —_— - * 2.1
ot T Gk Uik 92; T Vomon T o7 (2.10)
=!Si
with
i@ = Z F® §(z; — Vi) . (2.11)

Here, p(™) = (p/ 0+ 5 ulul) is a modified pressure and n7 is the number
of (real) particles. Accordlng to Newton’s third law actlo = reactio” the

feedback force of the j—th individual particle Fi(,?) is equal to the surface
forces exerted on the particle by the fluid. In the case of small, heavy
particles, cf. Eq. (2.2), the feedback force corresponds to the Stokes drag
force yielding

T

fz(P) — - M Z (ui,j(?j) — ’Ui’j) 6(.’171, - }/i,j) . (212)

m
P j=1

The Dirac d—function indicates that the feedback force of particle j is
applied as a point force at the instantaneous particle position Y; ;(¢).
The singularity representation of the two-way coupling term,
Eq. (2.12), provides a theoretical basis for the implementation of the
point—force approximation in the framework of the Eulerian-Lagrangian
approach. Depending on the details of the numerical procedure, the in-
dividual particle feedback forces are converted to a local force density,

which approximates the two—way coupling term fi(p ),



14 Simulation approach

In the same way as for the particle equations the fluid equations are
cast in non—dimensional form using the reference length L,.; and the
reference velocity Ures. This yields

Ou; p(™) 1 0%y

or T Gkl or T Redman, T (21

= Si

with the particle source term

fz(p) — — -Qf- —S— Zp (’u,,”J ? Ui,j) (5((1,'1 — Y;,]) . (214)

Here, all variables are considered dimensionless and the Reynolds num-
ber is defined as
Uref Lref '

Re = =—relorel, (2.15)

2.2 Numerical method

2.2.1 Discretization and time integration

The fluid equations are solved in an Eulerian framework using a Fourier
pseudospectral method (see e. g. Orszag (1971), Schumann et al. (1980),
Canuto et al. (1988)), whereas the particles are tracked in real space
solving an equation of motion for each individual particle.

The computational domain is a box of side length L with periodic
boundaries. The solution of the governing equations is obtained on a
regular grid containing N equally spaced grid points in each spatial di-
rection. The pseudospectral method requires each term in Eq. (2.10) to
be Fourier-transformed. To this end the velocity and the pressure are
expanded in three-dimensional, discrete Fourier series,

u(x,t) = Y i(k,t)e> (2.16)
8 .

> bk, )X, (2.17)

k

Il

p(x,1)

where ~ denotes the Fourier coefficients and k is the wavenumber vector

k = kon = ko(ny,ng,ns)’ (2.18)
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with n; = =N/2+1,...,0,...,N/2 — 1. The smallest wavenumber is
denoted by

27
In each direction the largest wavenumber represented is
N
kmaz = ko (5 — 1) . (2.20)

The Fourier coefficients in Eqs. (2.16) and (2.17) are obtained by the
corresponding back transformations,

1

alt) = o3 > u(x,t)emHx (2.21)
pk,t) = % Zp(x,t)e“ik'x. (2.22)

The transformation of Egs. (2.9) and (2.10) to Fourier space yields, re-
spectively,

k-axy = 0 (2.23)
B L (ox (keox e + 6 k2 G 2.24
715- = —-/\‘,—2( X( X[Sk-l- k]))—l/ Uk , ( )

where the abbreviation 1y := t(k,t) is used, and k = |k| denotes the
magnitude of a wavenumber vector. The Fourier coefficients of the non-
linear terms Sy and the two-way coupling term fi are formally given

1

Sk r= sk,t) = N3 Zs(x,t)e"ik'x
X

B, = Bkt = —]\% S f(x, pe=ix,
X

It should be noted that the Fourier transformation of the nonlinear terms
in Eq. (2.10) results in a convolution integral, which is computationally
expensive to resolve. To circumvent this problem the nonlinear terms are
computed in physical space. This involves additional Fourier transforms
to obtain the velocity vectors in physical space and the Fourier coeffi-
cients of the nonlinear and two—way coupling terms in Fourier space. To
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avoid aliasing errors involved in these Fourier transformations, a dealias-
ing procedure according to the 3/2-rule is applied (see Canuto et al.
(1988)).

For the continuity equation to be valid the velocity vectors must be
perpendicular to the associated wavenumber vectors (cf. Eq. (2.23)).
In this context we say that the velocity vectors are projected onto
divergence—free space. This condition has been incorporated in the
derivation of Eq. (2.24). Therefore, the latter is the only fluid equa-
tion to be solved by the numerical method.

For the time integration of the governing equations both a second-
order Runge-Kutta Crank—Nicolson scheme (RK3CN) and a standard
third—order Runge-Kutta scheme (RK3) were used alternatively. A CFL
criterion was applied to compute the time step. The corresponding dis-
cretization of the equations is detailed in Appendix A.

2.2.2 Two—way coupling and interpolation

Usually the locations of the point-particles expressed by the Dirac ¢-
function in Eq. (2.11) do not coincide with the grid points of the compu-
tational mesh. The implementation of the two—way coupling therefore
requires to determine a local, average particle force density at the grid
points. Generally, there is a number of different ways, in which this can
be accomplished. One possibility is to distribute the feedback force of
each particle onto a number of grid points surrounding the instantaneous
particle position. In this case the numerical realization of the two-way

coupling term fi(p ) assumes the general form

2= Y wi FR, (2.25)
=1

where w; ; is a weighting factor that depends on the instantaneous par-

ticle position, and Fi(f;) is the feedback force of particle j converted to
a force density. The weighting factor can be understood as the value of
a function defining an “area of influence” of a particle, which is used to
distribute the particle’s feedback force onto the surrounding grid points.
The functions employed in the simulations presented are the top hat

function wgn)(x) and the tent function 'wg/\)(x). Using the former is

equivalent to attributing the full feedback force of a particle to the clos-
est grid point in its vicinty. Using the latter means to distribute the
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feedback force to the eight closest grid points surrounding the instanta-
neous particle position (for details see Appendix B).

Using these weighting functions the two—way coupling term is imple-
mented for small heavy particles as

£ = BRI SR (u (P00 —uig(0) - (2.26)
Jj=1 .

ofr Ve

Here, V, is the reference volume to “convert” the point force into a force
density that is dimensionally consistent with the discretized Navier—
Stokes equations. The volume V, corresponds to the integral over the
weighting function w; and is thus equal to the grid cell volume.

In non-dimensional form using Uy.f and L.; as the reference quan-
tities Eq. (2.26) becomes

o = - e }:wm (w3 (P00 —vi5) . (2:20)

where g, = gp/0y is the ratio of particle density to fluid density and
Vpe = Vp/ Ve is the ratio of particle volume to grid cell volume.

To evaluate the velocity difference on the right—hand side of Eq. (2.27)
the fluid velocity needs to be interpolated to the instantaneous particle
position Y;(t). Several well-established interpolation techniques have
been investigated in spectral simulations, see e.g. Yeung & Pope (1988)
and Balachandar & Maxey (1989). In the simulations of this dissertation
trilinear interpolation, cubic Lagrange polynomials, and spectral sum-
mation were used alternatively. The details of these techniques are also
given in Appendix B.

2.2.3 Computational particles

In a typical particle-laden flow the number of particles is very large
(np > 10%). Since for each particle a separate equation of motion is
solved, a large number of particles involves increased computational time
and required memory. Due to current computer limitations it is often
not possible to compute the trajectories of all real particles. To cir-
cumvent this obstacle the point—particle approximation is augmented
by introducing computational particles. Each computational particle is
considered a representative of a cloud of particles, which are supposed
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to be in uniform motion with the computational particle. The number
of computational particles can be chosen much smaller than that of real
particles thus ensuring an acceptable computational time.

With the concept of computational particles included the numerical
algorithm previously described changes only slightly. The computational
particles, which have the same properties as the real ones, are tracked
along their trajectories according to Egs. (2.5) or (2.6). If M denotes
the ratio of real to computational particles,

n’f‘
M=-2 (2.28)

c
nP

where M > 1, then the feedback force of each computational particle
has to represent the forces of M real particles. Therefore, the two-way
coupling term now reads

o= M Z wij FE) (2.29)

2

As shown by Elghobashi (2000) two criteria have to be fulfilled to ensure
that (i) the point—force approximation adequately represents the local
flow properties around each computational particle, and (ii) the power
spectrum of the two-way coupling source term does not deviate from
that due to the real particles: :

Criterion (i): Since the feedback force of one computational particle
amounts to M times that of a real particle, the small Reynolds number
restriction requires that M Re, <1, or

Re, < M™1. (2.30)

Criterion (ii): This condition defines an upper bound of the number
of real particles represented by one computational particle,

(1)3
1§M§m*,m*:(‘)<:g> (2.31)

with @, the particle volume fraction and 7 the dissipation length scale
(i.e. the Kolmogorov length in a turbulent flow).
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2.3 Dimensionless parameters

2.3.1 Suspension drops

There is a total of seven independent physical quantities that uniquely
describe the properties of a suspension drop settling in a fluid under
gravity. The fluid is characterized by its density ¢ and its dynamic vis-
cosity u. A single spherical particle is characterized by two quantities,
e.g. the particle mass m, and the particle radius r. Alternatively, one
~or both of these two could be replaced by the particle density ¢, and
the particle volume V,,. The drop is also characterized by two quantities,
e. g. the bulk density g and the drop radius R. Alternatively, in the same
way as for a single particle, the drop mass and the drop volume could be
used instead. The force accelerating the suspension drop is character-
ized by the gravitational acceleration g. From these seven quantities any
others can be derived, i.e. the number of (real) particles ny, the ratio of
particle radius to drop radius € = r/R, the initial particle volume frac-
tion ¢, = n;e3, as well as the different dimensionless numbers discussed
below. According to the Buckingham Il Theorem the number of inde-
pendent dimensionless groupings fully characterizing the system is three
less than the total number of variables (given mass, length and time as
base dimensions). Thus, we have to specify at least four dimensionless
parameters. All others can be derived from those.

The drop Reynolds number is based on a characteristic drop settling
velocity Uy and the drop radius R, '

Reg = U‘;‘/ i (2.32)

and reflects the ratio of inertial to viscous forces on the macroscopic
length scale R of the suspension drop. Here, we follow Machu et al.
(2001) who define Uy := (2 — 0) R?g/(ov) in analogy to the terminal
settling velocity of a solid particle with density g and radius R.

The particle Reynolds number is based on the terminal settling ve-
locity of a single particle, U, = 7, g(1 — ¢/ 0p), and the particle radius,

U, 2 € '
Re, = %T = §;—Red. (2.33)

The particle Reynolds number is required to be much less than unity for
the equation of motion, Eq. (2.2), to be valid (Maxey & Riley, 1983).
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It should be noted that, since the dimensionless parameters are coupled
among each other, the drop Reynolds number cannot be made arbitrarily
large without violating the particle Reynolds number restriction.

The Stokes number is the ratio of the particle response time to a
characteristic time scale of the fluid motion. In accordance with Machu
et al. we define

Sta = T = =——¢€ Req. (2.34)

The Froude number reflects the ratio of inertial to gravitational forces
and is defined here as

Ud
rq = . 2.35
Frq \/g—— ( )
A very large Froude number means that inertia dominates over gravity
on the macroscopic scale of the suspension drop.

In general, Reyq, Stq, Frq, and ®, will be specified as the four in-
dependent non-dimensional quantities. If Eq. (2.6) is used only the di-
mensionless settling velocity Stqs/Fr2 needs to be given. In some cases
additional parameters such as the number of particles will be provided
for clarity.

As the reference quantities we choose Ureyf = Uy and Lr.y = R.
Thus, the dimensionless parameters in the governing equations become

Re = Req , St=Stg , Fr = Frg. (2.36)

2.3.2 Particle settling in homogeneous turbulence

In order to define the properties of a dilute suspension of particles settling
in homogeneous turbulence under gravity we need to specify eight phys-
ical quantities. As in the previous case of settling suspension drops, the
fluid is characterized by the dynamic viscosity p and the density ¢ and
a spherical particle by its radius r and its density g,. The gravitational
acceleration is given by ¢. In addition, we have to specify a geometric
parameter characterizing the size of the largest eddies in the turbulent
flow and a characteristic velocity. As shown below, we will choose the
side length L of the periodic computational box and a velocity based on
the forcing parameters, respectively (the forcing procedure required to
maintain stationary turbulence will be discussed in section 2.4). Finally,
to define the ensemble of particles we have to specify how many particles
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are introduced into a volume of characteristic size L3. From these eight
quantities five non—-dimensional parameters can be formed, which fully
define the physical situation.

The turbulence is usually characterized by the Taylor microscale
Reynolds number Rey (see Appendix D). This quantity is only known
a posteriori as a simulation result. The parametrization of the forcing
scheme, however, allows to choose input parameters such that a desired
microscale Reynolds number and Kolmogorov length will approximately
be achieved (as described in the subsequent section 2.4). Based on these
forcing input parameters and the desired particle properties the non-
dimensional parameters can be specified.

The reference length is

L 1

Lref =

with k¢ being the magnitude of the lowest wavenumber vector. The
reference velocity is based on the forcing parameters and defined here as

Ures = ey kg3, (2.38)

where e, is one of the forcing input parameters with dimensions [m?/s?]
(see subsequent section 2.4). The reference time is accordingly given by

Lref
Uref

2/3

Tre = = e P kg (2.39)

Based on these reference quantities the (forcing) Reynolds number is
defined as

Uvar Lo 1/3 1. —4/3
Re; = —reLzvel °L 0 (2.40)

In simulations of particle-laden homogeneous turbulence it is com-
mon usage to characterize the particle properties by a Stokes number
and by a dimensionless particle settling velocity rather than a Froude
number (see e. g. Maxey et al. (1997)). To this end the particle equation
of motion, Eq. (2.2), is rewritten in the form

dv; (¢) 1 ( o, 0
AN th,t—it)— (1-=)1, .
0 - L (w0 - w0) - ma (1-2 (2.41)
where the second term within the square brackets can be identified as
the terminal settling velocity U, of a single particle in still fluid, i.e. the
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Stokes settling velocity. Since particles much smaller than the smallest
relevant scales of the fluid motion are considered, it is reasonable to
define the Stokes number as the ratio of the particle response time to
the Kolomogorov time scale,

St, = 2. (2.42)
t"?

Using the Kolmogorov length 7 and velocity u, as the reference quanti-
ties Eq. (2.41) assumes the non-dimensional form

dv; (t) 1 [ ( -
- wi(V (1), 1) —vi(t)) —u 5i3] . (2.43)
dt Sty P
Here, Uy = Up/uy, is the non-dimensional Stokes settling velocity (with

all other variables considered dimensionless). For a given turbulence
level (¢ and v) and fixed gravitational constant g (as in a real-world
experiment), the dimensionless terminal settling velocity is related to
the Stokes number according to

Up by

Ly 1/4
bt Y H (-— = St, 2. 9.44
w, Ot 53) g " (2.44)

In simulations, however, these two parameters are often chosen inde-
pendently of each other implying that the gravitational acceleration g is
adjusted accordingly.

Finally, we need to specify the particle loading of the fluid. To this
end, the particle volume fraction,

4/3)wr3n’
o, = “/ )L3 P (2.45)
and the particle mass loading,
B, = %%”, (2.46)

are defined. Note that the definition of the particle volume fraction,
Eq. (2.45), is based here on the entire volume of the computational box.

The five dimensionless parameters sufficient to define the properties
of particles settling in homogeneous turbulence are taken to be Rey, St,,
Uyy 0p /o and ®,. From these all other parameters, such as the particle
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radius, the mass loading, or the ratio of particle density to fluid density,
can be derived.

For a consistent non-dimensionalization of the governing equations
the same reference quantities U,.y and L,.r have to be used for the

fluid and particle equations. Therefore, we take for the parameters in
Egs. (2.5) and (2.13)

Re = Rey, (2.47)
_ ™ _ by ~
St = Trer = St, Tres Urey (2.48)
and _
Fro= —Jrel §-§-<1—-—9—>. (2.49)
‘\/gL'ref Up Op

2.4 Forcing of stationary turbulence

2.4.1 Implementation

Turbulent flows are dissipative, i. e. they constantly lose energy by dissi-
pation at the smallest scales. Thus, turbulence decays over time unless
some sort of energy source is provided to compensate for the energy loss.
Although decaying turbulence is of scientific interest in its own right,
the study of statistically stationary turbulence is of special importance
because time—averaging rather than ensemble—averaging, which is com-
putationally costly, can be applied to obtain statistical flow properties.
In the simulation of homogeneous, isotropic turbulence the energy loss is
compensated for by artificially adding energy at the large scales. There
are different forcing schemes available in the literature to accomplish this
energy input, all of which have their advantages and drawbacks, see e. g.
Siggia & Patterson (1978), Kerr (1985), Hunt et al. (1987). The forcing
scheme used in this study was developed by Eswaran & Pope (1988).
While reporting various test results of their forcing study, they only
briefly outline the numerical implementation. For this reason additional
comments on the implementation are given in the following.

The main idea of the forcing is to add energy to a selected number
of low wavenumber velocity vectors by an additional source term in the
Navier—Stokes equations,

diy

—= = ax+af, (2.50)
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where ay represents the right-hand side of Eq. (2.24) and af is the
additional acceleration applied only to the velocity vectors within a low
wavenumber band 0 < |k| < Kr. The specification of 4f is based on
Ornstein-Uhlenbeck (OU) processes, which are solutions to the Langevin
equation

dt 2 2
dup(t) = —gun(t) + %‘L—dW(t), (2.51)

where T7, is the integral time scale and o2 the variance of the OU process.
The Wiener process dW (t) is the most fundamental diffusion process

with zero mean and variance dt (see e.g. Pope (2000), appendix J).
The discrete form of the Langevin equation reads

un(t+ At = (1—T—L> ur(t) + Q‘iLAtg(t). (2.52)

The first term on the right-hand side determines an exponential decay
with time scale T, (drift) and the second one is a random increment

based on the standardized Gaussian variable £(t) (with £(¢f) = 0 and
€2(t) = 1). Eq. (2.52) is only valid for Ty, # 0. However, Eswaran
& Pope also considered the limit 77, — 0. To this end, they define a
parameter

e = 02Ty . - (2.53)

Inserting €, into Eq. (2.52), multiplying by 77, and applying the limit
Ty, — 0 yields :
2¢ep
ur(t) = /x5 §@)- (2.54)
Thus, ur(t) becomes white noise.

In order to non—dimensionalize Egs. (2.52) and (2.54) the reference
quantities are used as defined for particles in homogeneous turbulence
in the previous section (note that uy(t) has dimensions [m/s?]). For
T, # 0 the non—dimensional Langevin equation reads

un(t+At) = (1—%) unt) + %g(t) (2.55)

with all variables considered dimensionless. Similarly, for 77, = 0 we

have
un(t) = \/_Ai‘tﬁ(t)- | (2.56)
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For each wavenumber vector with 0 < |k| < Kp four independent
OU processes according to Egs. (2.55) or (2.56) are used to assemble the
complex two—component vector aF (recall that Eq. (2.50) is solved in
divergence-free Fourier space, hence Gix has two components).

For a given grid resolution the forcing input parameters to obtain a
desired Taylor microscale Reynolds number Rey and resolution kp,qz7
are the viscosity v, the upper bound of the wavenumber band Kp, the
time scale Tr,, and the parameter €. Eswaran & Pope provide an es-
timation procedure to determine these parameters, which is outlined in
Appendix C.

2.4.2 Validation

In order to validate the implementation of the forcing scheme, two
test simulations were performed with parameters given in the paper of
Eswaran & Pope (1988): run f19 for 77, = 0 and run 28 for T, # 0.

Figures 2.1 and 2.2 show (volume-averaged) turbulent quantities over
time. Since the forcing starts with a zero velocity field it takes a few eddy
turnover times to “build up” the turbulence. Therefore, time-averaging
was started after about 20 eddy turnover times (20t). All the quanti-
ties shown experience fluctuations over time, their time—average however
remains stationary for ¢ > 20t.. Thus, the forcing well accomplishes its
primary task to maintain stationary turbulence.

It is important to note that Eswaran & Pope apply a “smoothing”
procedure to their 3-D energy spectrum, from which other turbulent
quantities are then derived. To obtain a 3-D energy spectrum the
wavenumber space is divided into a number of shells with increasing
radii. The energy associated with all wavenumber vectors of magnitude
k are combined to give the energy content E(k) of the shell with radius
k. Applying this procedure to a finite number of discrete wavenumber
vectors as done in numerical simulations leads to certain shells being
“under-" or “overrepresented” compared to a continuous wavenumber
space. This is taken into account by the smoothing procedure. The effect
of smoothing on the corresponding spectra can be seen in Figs. 2.3 and
2.4 where the 3-D energy and dissipation spectra are plotted for runs 28
and f19, respectively. As seen from the spectra, the dissipation range is
well resolved down to the smallest scales with k7 = 1. The Kolmogorov
(—5/3)-law is not observed since there is no developed inertial range in
the spectra for the low microscale Reynolds numbers considered here.
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Figure 2.1: Validation run 28, Eswaran & Pope (1988). Left: Taylor mi-
croscale, microscale Reynolds number, RMS velocity. Right: resolution, Kol-
mogorov scales (all quantities from smoothed spectrum ).
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Figure 2.2: Turbulent kinetic energy q and dissipation rate € computed from
smoothed spectrum. Validation runs f28 and f19, Eswaran & Pope (1988).
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Figure 2.8: Validation run 28, Eswaran & Pope. 3-D energy spectra E(k)
and dissipation spectra D(k).
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Figure 2.4: Validation run f19, Eswaran & Pope. 3-D energy and dissipation

spectra. The linear-linear plot on the right clearly shows the effect of smoothing
the dissipation spectrum.



28 Simulation approach

Table 2.1 shows specific average turbulent quantities for a direct com-
parison with the results by Eswaran & Pope (HIT is the name of the
simulation code developed for this dissertation and denotes the results
of the present work). The quantities computed from both the “raw”
and the smoothed spectrum are given. Fairly good agreement of the
smoothed data with those by Eswaran & Pope is achieved. Here, it
should be noted that the sampling period of Eswaran & Pope was typ-
ically between twelve and twenty eddy turnover times only. Given the
rather strong fluctuations (see e. g. Fig. 2.2) it is possible that their sta-
tistical data was not fully converged.

run N ko 77 kmaz; 77 kO le ReA te g
ESPO 28 32 0.103 1.55 1.81 28.2 0.409 43.1
HIT (raw) f28 32 0.103 1.55 241 321 0.511 45.8
HIT (smoothed) f28 32 0.103 1.55 1.77  28.0 0.406 45.3
ESPO f19 64 0.045 1.36 1.18 42.2 0.138 3829
HIT (raw) f19 64 0.046 1.42 1.67 42,7 0.134 369.8

HIT (smoothed) f19 64 0.046 1.42 1.08 39.5 0.198 373.1

Table 2.1: Comparison of non—dimensional time-averaged turbulent quantities
with runs £28 and f19 of Eswaran & Pope.

Fig. 2.5 shows a comparison of the forcing scheme by Eswaran &
Pope (ESPO) and the backscaling scheme (BS). The latter is similar to
the forcing procedure used by Siggia & Patterson (1978). The princi-
pal idea is to backscale the magnitude of the velocity vectors within a
low wavenumber band to some initial non—zero value at each time step.
Thus the energy content in this wavenumber band remains constant and
prevents the turbulence from decaying. "

Using the ESPO scheme the turbulent quantities such as the kinetic
energy and the dissipation rate fluctuate much more strongly compared
with the BS scheme. However, the ESPO scheme has two important
advantages. First, it can be started from a zero velocity field, whereas
the BS scheme requires a fully turbulent initial velocity field that must be
generated in advance. Second, the subsequent evolution of the turbulent
quantities depends rather strongly on this initial turbulent state when
using the BS scheme. This may conserve possible anisotropies in the
initial field. Also, as clearly seen in Fig. 2.5, the mean values of the
energy q and dissipation rate ¢ are different using the ESPO and the BS
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scheme, because the latter “freezes” the energy content at the large scales
of the instantaneous velocity field at t/t. ~ 100. Due to the random
nature of the energy input the ESPO scheme prevents conservation of
anisotropies and the long-term time evolution of turbulent quantites
does not depend on the initial state.
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Figure 2.5: Comparison of forcing scheme by Eswaran & Pope (ESPO) and
backscaling scheme (BS). At t/te = 100 the forcing procedure was switched
from ESPO to BS.






Chapter 3

Settling and break—up of suspension drops

The settling and break—up of suspension drops in a fluid under the in-
fluence of gravity is a simple example of disperse two-phase flows, in
which the particles significantly influence the flow development of the
surrounding fluid. The particle-fluid interaction is complex enough to
study some fundamental properties of such dispersed phase flows. On
the other hand, the numerical treatment is computationally affordable,
since the flow remains laminar. This allows for a wide range of parame-
ter variations, which are important for a thorough understanding of the
underlying physics.

As detailed in the introduction, section 1.1, the primary focus of
the investigations presented in the following is to reveal the physics of
suspension drops settling at moderate Reynolds numbers 1 < Reg < 100.
Furthermore, this flow problem serves as a test case for the Lagrangian
point-particle model applied to low Reynolds number flows.

At the beginning of a simulation the suspension drop was set up
by randomly distributing n; computational particles within a spherical
boundary of radius R. The drop was placed in the center of the periodic
computational box with the particles and the fluid being initially at
rest. Unless otherwise mentioned the ratio of the box side length L to
the initial drop radius R was L/R = 15 in all simulations for moderate
Reynolds numbers. ‘

Since the computational domain contains no solid boundaries there
is no mechanism that would prevent the particles and the fluid from ever
more accelerating in the direction of gravity (negative xz—direction). To
maintain the system in equilibrium a uniform pressure gradient was im-
posed in positive xz—direction balancing the net weight of the particles
per unit volume (Maxey & Patel (2001)). Settling velocities were com-
puted with respect to the mean fluid velocity in x3—direction.

For the time integration of the governing equations the combined
Runge-Kutta Crank—Nicolson scheme was used unless otherwise men-
tioned (see Appendix A). In most of the simulations linear interpolation
and the top hat function were employed for the interpolation of fluid ve-
locities and particle feedback forces, respectively (see Appendix B). The
influence of different interpolation methods will be discussed explicitly
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in section 3.2.5.

In the figures presented in the following the particles’ size may be
larger than their actual size in the simulations and, if ng;, > 2000, no more
than 2000 particles are shown for clarity. Also, the particle positions will
be displayed with respect to a fixed coordinate system (non—periodic z3—
coordinate) to indicate the distance traveled by the suspension drop. The
initial position of the drop’s center of mass coincides with the origin of
this coordinate system. _ _

The chapter is divided into two sections, the first dealing with suspen-
sion drops settling at low drop Reynolds numbers Rey < 1, the second
focusing on a range of moderate drop Reynolds numbers 1 < Reyg < 100.

3.1 Low Reynolds numbers (Re; < 1)

For drop Reynolds numbers much less than unity the suspension drop
as a whole settles under creeping flow conditions. Nitsche & Batchelor
(1997), hereafter referred to as N&B, examined this case both numeri-
cally and theoretically. Here their results are used for comparison and
validation of our numerical method. N&B found that the drop retains
a roughly spherical shape while settling. Only a few particles leak away
into a tail emanating from the rear of the drop. Inside the drop the parti-
cles undergo a circulatory motion similar to Hill’s vortex. This behavior
was exactly reproduced in our simulations. Fig. 3.1 shows a suspension
drop settling at Req = 0.1 (Reynolds numbers Rey < 0.1 did not show
any different results). The parameters were matched to one of the cases
given by N&B in their table 1, i.e. ®, = 0.02, n; = n; = 320, e = 0.0397
(corresponding to Stq = 0.035, Frqy = 1.414). The drop still has a coher-
ent, roughly spherical structure and the tail of particles is clearly visible.
This drop can be compared with that in figure 1(b) of N&B for 7' = 10
(note their different definition of the dimensionless time). It shows good
qualitative agreement. Sectional streamlines at 2o = 0 (vertical box
center plane) are also provided in Fig. 3.1. The fluid is subject to a cir-
culatory motion directed downward near the drop’s vertical center line
and upward in the outer parts of the drop.

In the simulations of N&B the number of particles is confined to
a maximum of 320, probably due to computer limitations. A clearer
picture of the underlying flow field structure is obtained when a larger
number of (smaller) particles is used. The larger number of particles
results in a finer discretization of the excess mass of the drop and a
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Figure 3.1: Suspension drop settling at Req = 0.1. (A) particles leak away into
a tail emanating from the rear of the drop. (B) streamlines in (z1,x3)-plane
at 2 = 0 computed in a coordinate system moving with the drop’s center of
mass (zoomed in). Stq = 0.035, Frq = 1.414, ®, = 0.02, n; = n, = 320,
L/R=8, N = 64. ’

smoother drop “surface” (interface between clear fluid and suspension).
Fig. 3.2 shows an example of a suspension drop with 2095 particles set-
tling at Req = 0.01 (Stg = 0.001, Frq = 0.447). The streamline plot
of the velocity field is shown in both a fixed coordinate system and a
relative one attached to the drop’s center of mass. Here, the theoretical
streamline pattern given by N&B in their figure 2 is very well reproduced.
As long as a particle stays inside the region of closed streamlines it re-
mains within the cohesive structure of the drop. However, if a particle
settles close to the vertical center line it may get outside of this region.
When reaching the drop’s lower boundary the particle may be pulled
outside the region of closed streamlines as a result of fluid drag forces
pulling it sideways and upward (following the streamlines) and gravity
pulling it downward. Once outside the enclosing streamlines the particle -
is swept towards the rear stagnation point at the upper boundary and
leaks away into the tail due to its reduced settling velocity outside the
cohesive ensemble of particles (the settling velocity of a single particle is
typically several orders of magnitude smaller than the settling velocity
of the drop).
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e

Figure 3.2: Streamlines in (z1,x3)-plane at z2 = 0. Velocity computed in
(A) a fized coordinate system, and (B) a coordinate system moving with the
particles’ center of mass. Req = 0.01, Stq = 0.001, Frq = 0.447, ®, = 0.02,
n, =n, = 2095, L/R =8, N = 64.

For a quantitative validation of our numerical approach the drop set-
tling velocity was examined. It is important to recall that our numerical
domain has periodic boundaries, i. e. a regular three-dimensional array of
suspension drops is simulated rather than a single suspension drop in in-
finite fluid. As shown above the periodicity of the computational domain
has apparently no effect on the principal features of the settling process
and even the details, such as the internal circulatory fluid motion, are
well reproduced. However, we found that the periodic boundaries do af-
fect the drop’s settling velocity. Each drop displaces fluid when settling
downwards, which creates an upward flow in its vicinity affecting the
neighboring drops. The overall effect is a decrease in settling velocity. A
similar decrease in the settling velocity of irregular particle suspensions
and regular arrays of solid particles has been reported in the literature

and is usually referred to as the hindered settling effect, see e. g. Sangani
& Acrivos (1982) and Zick & Homsy (1982).

The hindered settling of suspension drops is demonstrated in Fig. 3.3
(left), where the dimensionless drop settling velocity vq/U, is shown as
a function of the drop volume fraction ¢ = 4/3 wR3/L3. The parameters
for the simulations were matched to the N&B case with &, = 0.02,



3.1 Low Reynolds numbers (Re; < 1) 35

ng = ny = 160, € = 0.05. Additionally, we specified Req = 0.1 (yielding
Stg = 0.056, Fry = 1.414). With increasing box size (decreasing c) the
number of grid points was augmented accordingly in order to keep the
flow field resolution inside the drop constant, i.e. the same ratio of grid
points per drop radius in each direction. The simulation parameters and
results are summarized in Tab. 3.1.

The larger the drop volume fraction the smaller is the distance be-
tween adjacent drops in the periodic array, which enhances the effect of
decreasing velocity. For example, increasing the drop volume fraction
from ¢1/% = 0.1 to ¢'/® = 0.2 causes the settling velocity to decrease by
approximately 15%. In Fig. 3.3 it is seen that the decrease in settling
velocity is nearly linear for small drop volume fractions ¢'/3. In the case
of an array of solid spheres it can be shown analytically that, for small
(sphere) volume fractions, the settling velocity depends roughly linearly
on c'/® (Hasimoto (1959), Sangani & Acrivos (1982)). Assuming that
the same linear dependence applies to hindered settling of suspension
drops, the data in Fig. 3.3 (left) is linearly extrapolated to ¢ = 0, which
corresponds to a suspension drop in infinite fluid. This yields a settling
velocity v3/U, = 10.7, which is in good agreement with the result by
N&B (see Tab. 3.2).
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Figure 3.3: Hindered settling of suspension drops. Left: the drop settling ve-
locity vq is shown as a function of the drop volume concentration c'/3. Circles
indicate simulations performed. Dashed line extrapolates data to ¢ = 0. Right:
drop settling velocity as a function of time for Req = 0.1 and L/R = 8 (run
#3, ct? =0.2). |

The drop settling velocity as a function of time is shown in Fig. 3.3
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run # /3 c L/IR N #cells/R vq/U,
1 0.05 1.25e(—4) 32.34 128 3.96 10.0
2 0.1 0.001 16.12 64 3.97 9.3
3 0.2 0.008 8.06 32 3.97 7.9
4 0.27 0.019 599 24 4.01 7.0
5 035 0.043 461 20 4.30 6.1
6 0.4 0.064 403 16 3.97 5.4
7 0.5 0.125 3.22 12 3.70 4.3

Table 3.1: Data of simulations shown in Fig. 3.3.

N&B: theory N&B: simulation extrapolation Fig. 3.3
v /U, 10.6 10.5+0.1 10.7

Table 3.2: Comparison of drop settling velocity with Nitsche & Batchelor
(1997).

(right) for the case of ¢!/ = 0.2. The drop is rapidly accelerated from
rest to reach a quasi—stationary settling velocity for a short period of time
between ¢t ~ 10 and t = 25 (this quasi-stationary velocity is plotted on
the left in this figure). As soon as particles start leaking away into the
tail the settling velocity slowly decreases.

Fig. 3.4 shows a comparison between hindered settling/rising of sus-
pension drops, solid particles, and bubbles of the same size. In order to
be independent of the individual drop (or particle/bubble) properties,
the settling/rise velocities have been normalized by the corresponding
terminal velocities in the limiting case of ¢ = 0. Thus, in principle, the
curve for suspension drops shown in Fig. 3.4 should be independent of
specific particle and drop properties as long as Req < 0.1. Some spuri-
ous effects may be present due to the coarse drop discretization in terms
of the number of particles (n; = 160). The principal observation is
that the hindered settling of a regular array of suspension drops is less
pronounced than that of solid particles and more pronounced than the
hindered rising of bubbles. The analytical results for hindered settling
of liquid drops and porous particles can be found in Sangani (1987) and
Mo & Sangani (1994). Based on the formula for liquid drops (including
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the limiting case of bubbles) presented in the former work, the hindered
settling of suspension drops can be approximated for small drop volume

fractions by

Vb _ 117668 2t (3.1)
Vd Vd

where the terminal velocity of a solid particle of the same size as the
suspension drop is U; = (2/9) Us = (2/9)(2 — 0)R%g/p. Eq. (3.1) is
also plotted in Fig. 3.4 and found to accurately describe the asymptotic
behavior of suspension drops for drop volume fractions ¢!/3 < 0.2.
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Figure 3.4: Hindered settling/rising of suspension drops, solid particles, and
bubbles. The drop settling velocity vq is normalized by the extrapolated settling
velocity v3. The particle and bubble velocities v are normalized by their corre-
sponding terminal (Stokes) velocities Uy in infinite fluid. The asymptote is an
approzimation for small ¢ according to Eq. (3.1).

3.2 Moderate Reynolds numbers (1 < Re; < 100)

3.2.1 Reynolds number dependence

At drop Reynolds numbers Re; > 1 the suspension drop undergoes
a complex shape evolution with eventual break—up into a number of
secondary blobs. Fig. 3.6 shows a typical sequence of deformations and
break-up of a drop settling at Req = 1 (Stg = 0.0076, Fry = 4.47,
¢ = 0.02). The initially spherical drop flattens into an oblate shape
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featuring a growing dimple at its rear (for ¢ < 120, not shown in the
figure). The dimple is formed because the fluid inside the drop below
the particles at the rear (upper) boundary is accelerated downward by
particle drag, whereas the fluid in front of the drop is still quiescent.
Thus, the particles at the rear settle faster than those at the leading
front, which creates the dimple shape. The dimple keeps growing inside
the drop such that the latter deforms into a torus. The torus grows larger
in diameter while traveling, before it eventually becomes unstable and
disintegrates into two secondary blobs. The last sample of the sequence
in Fig. 3.6 looks remarkably similar to two photographs of experiments
at low Reynolds numbers given by Machu et al. , which are shown in
Fig. 3.5. In the experiments the initial conditions were certainly different
from a spherical suspension drop with all particles at rest. However, the
key feature of the break—up process, the formation of a torus as found
in our simulation, was observed in the experiments as well. A detailed
discussion of the influence of initial conditions will be given later in
section 3.2.2. ~

13
A}
'S

Figure 8.5: Disintegrated suspension drop (left) and liquid drop (right) in an
experiment by Machu et al. (2001) .
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Fig. 3.7 shows a visualization of the flow field inside and outside the
settling torus from Fig. 3.6. The streamlines, displayed on a vertical
plane through the center of the computational box (z2 = 0), reveal a
ring vortex growing in diameter over time. The ring vortex coincides
with the particles forming the settling torus. At ¢ = 358 the ring vortex
is closed in the sense that no streamlines pass from the front (lower)
stagnation point through its center to the rear (upper) stagnation point.
At t = 477, due to the growing ring hole, fluid starts penetrating the
torus from the front stagnation point. At ¢ = 597 an open ring vortex is
observed with streamlines passing through the center hole. This marks
the beginning of torus disintegration. The transition from a closed to
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Figure 3.6: Typical sequence of deformations and break-up of a suspension
drop settling at Req = 1 (Stg = 0.0076, Frq = 4.47, ®, = 0.02, n, = ny =
100096, N = 128). Left: top view, right: side view.



40 Settling and break—up of suspension drops

t=358.00 t=477.00 t=597.00

-100

-101

Figure 3.7: Transition from closed to open torus for Req = 1. Same simulation
as shown in Fig. 3.6. The streamlines are computed in a coordinate system
moving with the drop’s center of mass and are displayed on a vertical plane at
z2 = 0. For clarity only 300 particles are shown.

an open torus was observed by Machu et al. in both their experiments
and simulations. The difference is that they considered a low Reynolds
number case, Req < 1, with an initially bell-shaped drop whereas here,
the same phenomenon occurs for Req = 1 and an initially spherical
drop. As will be shown later in this section, the torus transition is not
observed for higher Reynolds numbers. Fig. 3.8 shows the trajectories of
three particles in a frame moving with the particles’ center of mass for
the same case of Reg = 1 discussed above. At the beginning the particles
undergo a circulatory motion essentially the same as that indicated by
the streamlines in Fig. 3.7. As long as the torus is stable the circulation
continues and, as seen in the top view of Fig. 3.8, the particles are not
displaced in azimuthal direction of the torus. This indicates that the
flow field remains axisymmetric with respect to the z3—axis. Only when
the bulges form and the torus starts disintegrating (cf. ¢t = 955, Fig. 3.2),
particles are entrained towards the blobs being formed (trajectory t2).

In order to study the Reynolds number dependence of the disintegra-
tion process, the Reynolds number Reyq was successively increased while
keeping (almost) all other parameters constant. We chose Stq = 0.01,
Frq =10, ¢, = 0.02, ny =~ 108000, M =7 and the same initial particle
distribution in all cases. From Eq. (2.34) it is clear that the density
ratio has to be decreased accordingly if the Stokes number is to remain
constant with increasing Rey. The grid resolution was set to N = 128.
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Figure 8.8: Trajectories of three particles (t1, t2, t3) inside the suspension drop
shown in Fig. 8.6 (Req = 1). The circle indicates the initial drop. The trajec-
tories are computed in a coordinate system attached to the particles’ center of
mass.
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Figure 8.9: Disintegrated suspension drops at different drop Reynolds numbers.
(A) top view, (B) side view. Stg = 0.01, Frq = 10, ¢ = 0.02, ny ~ 108000.
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Fig. 3.9 shows disintegrated suspension drops for Rey; =
1,5, 10, 20,40,60,80, and 100. It is observed that the number of sec-
ondary blobs increases with increasing Reynolds number. For Rey = 1
two secondary blobs are obtained, for Req = 100 the torus breaks up into
seven major and one minor secondary blobs. The shape evolution of the
initially spherical drop and the torus before break—up is similar to that
shown in Fig. 3.6 in all cases. However, for Reg > 5 the torus is usually
spanned by a “membrane” of dilute particles as shown in Fig. 3.10. A

t=382.00 t=382.00

=5t

Figure 3.10: Side and top view of the torus spanned by a “membrane” of dilute
particles at Req = 100.

comparison of the (nondimensional) drop settling velocities for different
Reynolds numbers is provided in Fig. 3.11. It must be emphasized that
the settling velocities are inherently affected by the hindered settling ef-
fect discussed in the previous section. Therefore, the velocities have been
normalized by the maximum settling velocity for Rey = 1. This allows
for a relative comparison between different Reynolds numbers. It is seen
that the higher the Reynolds number the smaller are the settling veloc-
ities. After reaching a peak value shortly after the particles are released
the setting velocities decrease gradually as the torus is forming and ex-
panding. This decrease is stronger and occurs at increasingly shorter
times for larger Reynolds numbers reflecting a faster disintegration. For
Reg = 1 the decrease of the settling velocity is considerably weaker than
in the other cases. This is due to a relatively slow deformation of the
drop into a torus, which then remains stable for a long period of time.
Towards Req = 100 the velocity curves become similar suggesting an
asymptotic behavior for Rey = 0(102).

In order to determine the time required for the drop to deform into
a torus, a radius, R}, is defined as the mean distance of the particles
to the center of mass in the (z;,z2)-plane. The time T;_; required
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Figure 8.11: Comparison of drop settling velocities for different Reynolds num-

bers, Req = 1,5,10,20, 40,60, 80,100 (Req successively increasing from top
down). Same simulations as in Fig. 3.9.
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Figure 3.12:

Time evolution of the mean radial particle distance from

the center of mass, Rp*, for different Reynolds numbers, Req =
1,5, 10, 20, 40, 60, 80, 100. Same simulations as in Fig. 3.9.
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Reg 1 5 10 20 40 60 80 100

Tyt
Ty_¢(Reg=1)

1 0278 0.190 0.154 0.146 0.144 0.146 0.149

Table 8.3: Characteristic times Ty—: (normalized by Ty—:(Req = 1)) for the
deformation of the drop into a torus.

for R* to reach the initial drop radius R is taken as a characteristic
measure for the deformation of the drop into a torus. Fig. 3.12 shows
the time evolution of R7'/R until R'/R = 1 for different Reynolds
numbers. The corresponding characteristic times T,;_;, normalized by
Ty—:(Req = 1), are given in Tab. 3.3. The principal observation is that
the deformation of the drop into a torus occurs the faster the higher the
Reynolds number. Again, towards Req = 100 an asymptotic behavior
is found. In the case of Rey = 1 the time evolution of Ry reveals a
slightly pulsating expansion and contraction of the torus. This behavior
was also observed by Machu et al. for vanishing Reynolds number and
a pear—like initial drop shape.

Fig. 3.13 shows the time evolution of the flow field for a suspension
drop settling at Req = 100. The streamlines are computed in a co-
ordinate system moving with the particles’ center of mass. They are
shown on a vertical center plane at zo = w. As opposed to the case of
Regq = 1 the particle torus and the ring vortex do not coincide and the
corresponding transition from a closed to an open torus is not observed.
Instead the circulatory motion inside the initial drop starts extending
towards the rear of the flattening drop shortly after the release (¢ = 95).
As the drop deforms into a torus spanned by a membrane of particles,
the ring vortex moves completely outside the torus and the streamline
structure looks similar to the wake of a circular flat plate (¢ = 191).
As long as the torus and the ring vortex coincide at least partially, the
streamlines at the rear (upper boundary) of the torus point towards the
torus. This keeps the torus and the membrane a compact structure.
When the ring vortex detaches from the torus, however, the membrane
of particles starts bulging towards the rear (¢t = 286). This is due to the
smaller settling velocity of single particles within the membrane com-
pared to the settling velocity of the compact torus. In the further course
of the settling process the ring vortex gradually dissipates (¢ = 382).
Since the particle torus and the ring vortex no longer coincide, there is
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Figure 3.13: Evolution of the flow field for a suspension drop settling at Req =
100. The streamlines are computed in a coordinate system moving with the
drop’s center of mass and are displayed on a vertical plane at xo = 7. From
top to bottom the view frame zooms out of the expanding suspension torus.
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no particle-fluid interaction that could sustain the vortex and the latter
eventually disappears completely (¢t = 477).

As pointed out by Machu et al. and others (e.g. Joseph & Renardy
(1993)) the disintegration of the suspension torus is due to a Rayleigh—
Taylor—type instability. In fact, in a first approximation the suspension
can be considered a pseudoliquid of increased density 9. In this case small
perturbations of the interface between the heavier pseudoliquid making
up the torus and the lighter clear fluid will amplify and eventually lead
to break-up. For a detailed discussion of the classic Rayleigh-Taylor
instability the reader is referred to Chandrasekhar (1961). In the case of
a “real” suspension, i.e. a particle-fluid mixture as in our simulations,
there is no distinct interface between torus and clear fluid, but the in-
stability mechanism works in a similar way as for two fluids of different
density. A not perfectly uniform particle distribution results in a locally
varying mixture density of the suspension, which causes some parts of
the torus to settle faster than others. This creates perturbations of the
torus shape and “surface” and is the starting point of the instability
mechanism.

In the following sections we address the question: What determines
the break—up behavior of a suspension drop at a given Reynolds number?
To this end we study the influence of the initial particle positions, the
effect of initially imposed drop shape perturbations, as well as the influ-
ence of the drop mass discretization in terms of the number of particles.
With respect to the instability leading to torus break—up we try to distin-
guish as clearly as possible between perturbations of a “physical” nature,
which are our primary interest, and those of a “numerical” nature. The
former can also be present in a real-world experiment, whereas the latter
are inherent to the numerical procedure. It is important to distinguish
between “physical” and “numerical” sources of perturbations because
both may affect the break—up behavior of a suspension drop in numeri-
cal simulations. Therefore, in order to demonstrate that our results are
not tainted by numerical effects, the influence of the grid resolution, the
periodic boundaries, and the interpolation used in the computation of
the particle feedback force will be discussed briefly.

3.2.2 Influence of the initial particle distribution

The crucial role of the initial conditions has been pointed out by several
authors (e.g. Machu et al. (2001), Kojima et al. (1984)), primarily with
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respect to the initial drop shape. Machu et al. showed that even at very
low Reynolds numbers, Rey < 1, an initial shape different from a sphere,
for example a bell-shaped drop, deforms into a torus with subsequent
break—up. In our study it was found that the particle positions within
the initial drop also affect the details of the break—up process and may
even yield a different number of secondary blobs. Fig. 3.14 shows two ex-
amples of simulations with different initial particle positions. The initial
distribution was uniformly random in all cases. For Rey = 1 the number
of secondary blobs did not vary for different initial particle positions,
but the location of the blobs was different. For Reg = 100 the details of
the particular break-up pattern were different for different initial par-
ticle positions and even the number of secondary blobs varied between
five and seven. These results demonstrate that the instability is very
sensitive to the details of the initial conditions, and corroborate the idea
of the particle distribution being the primary source of perturbations.
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Figure 8.14: Disintegrated blobs for different initial particle positions. Left:
Req = 1, Stg = 0.01, Fry = 4.5, ¢ = 0.02. Right: Req = 100, Stq = 0.01,
Frq =447, ¢ = 0.02. N =64 in both cases. (A) side view, (B) top view.

In order to shed more light on the role of the particle distribution, a
set of simulations was performed with initially perturbed drop shapes.
Perturbations due to the (initial) particle distribution are termed “nat-
ural” in the following, whereas the initial shape variations are called
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“Imposed artificial” perturbations. Starting from a spherical shape with
a uniformly random particle distribution, the particles’ radial position
with respect to the drop center line in the vertical direction was shifted

according to
Ar = As cos(ls0). (3.2)

Here Ar is the radial shift of the particle position in the (z1,z2)-plane
with respect to the drop centerline, A, is the perturbation amplitude,
ls is the number of periods along the circumference, and 8 is the az-
imuthal angle. Fig. 3.15 displays an initially perturbed suspension drop.
Clearly, this is only one possibility to introduce controlled (artificial)
perturbations, which allows us to trigger a certain break—up behavior of
the suspension drop.

Figure 3.15: Initially perturbed suspension drop. Top view (left), side view
(right). A = 0.05R, [, =6.

Fig. 3.16 shows disintegrated, artificially perturbed drops with Iy = 6
(Req = 100, Sty = 0.01, Frq = 44.7). The perturbation amplitude A,
was varied between 0.1 R and 0.001 R. The last drop shown in the lower
two rows is an unperturbed reference case. The number of particles was
ny = 29433 resulting in an initial mean particle spacing of d ~ 0.052 R

(defined as d = (47/3 nf,)l/ 3 R). If the artificial perturbation level is
large enough, the forced perturbations dominate the disintegration pro-
cess and the drop breaks up into six equally spaced secondary blobs
(first and second case with A; = 0.1 R and A; = 0.05 R). If the artificial
perturbation amplitude drops well below the order of the mean particle
spacing (As = 0.001 R), the natural perturbations clearly predominate
and the disintegrated structure differs only little from the unperturbed
reference case. Between these two cases, the natural and the artificial
perturbation level are apparently of about the same order and none
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clearly prevails (As = 0.01 R). Here, as in other parts of this work
also, we rely on visual judgment only, primarily for lack of measurable
quantities that better characterize the entire break—up process.

As long as the artificial perturbations are large enough, i.e. of the
order of the mean particle spacing, different break—up patterns can be
triggered depending on the parameter [;. For Req = 100 any number
between three and ten secondary blobs could be forced (same parameters
as in Fig. 3.16, A; = 0.05 R). Three examples are shown in Fig. 3.17.
These results further illustrate the crucial role of the particle distribution
as a source of perturbations. The interplay of natural and artificial
perturbations will be revisited within the spectral analysis of the settling
torus in section 3.2.7.

3.2.3 Influence of the number of particles

The excess mass of the suspension drop with respect to the surround-
ing clear fluid is concentrated into the points where the particles are
located. In this sense the drop can be regarded as discretized in terms
of the number of particles making up the suspension. Now we focus on
the question how this drop discretization affects the break—up behavior
of the suspension drop by varying the number of particles. The same in-
tegral drop properties, such as the bulk density and the particle volume
fraction, can be realized by either a large number of small particles or a
smaller number of larger particles. Thus, a different drop discretization
in terms of the number of real particles involves different particle prop-
erties, e.g. the Stokes number increases with the particle radius under
otherwise same conditions. For the case of Reg = 100 a set of simulations
was performed with an increasing number of real (and computational)
particles. Since for Req = 100, Stg < 0.01 and @, = 0.02 the resulting
numbers of real particles are very large (of order 10®) we chose a fixed
M = 130. The Froude number was Frgy = 44.7 in all cases. Table 3.4
shows the different parameters.

Fig. 3.18 shows the results. It is observed that the number of sec-
ondary blobs increases with an increasing number of particles used in
the simulation. There are two effects of a finer initial drop discretiza-
tion: (i) the excess mass of the suspension is more uniformly distributed
throughout the drop, and (ii) the (natural) perturbations introduced by
the discrete particle distribution extend to a smaller length scale due
to a decreased mean particle spacing. Consequently, the torus remains
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Figure 3.16: Disintegrated initially perturbed drops. Req = 100, Stg = 0.01,
Frq =447, ng = 29433, M = 2251, N = 64, l; = 6. (A) side view, (B) top
view; (a) As = 0.1 R, (b) As =0.05R, (c) As = 0.025 R, (d) As = 0.01 R,
(e) As = 0.001 R, and (f) unperturbed reference case. Initial mean particle
spacing d ~ 0.052 R. ‘
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t=716.00 t=716.00 t=716.00

Figure 8.17: Forced number of secondary blobs of (artificially) perturbed sus-
pension drops, Req = 100, Stq = 0.01, Frq = 44.7, ¢ = 0.02; (a) ls = 4, (b)
ls =8, (c)ls =10; A; = 0.05R in all cases. Natural (unperturbed) break—up
into siz secondary blobs as in Fig. 8.16(f). N = 64.

C T
Tp Tp Stq

(a) 500645 =~ 66-106  0.01
(b) 2-10° 260-10°  0.00406
(c) 4-10° 520-10° 0.00253

Table 3.4: Number of computational and real particles and Stokes number for
stmulations with varying drop mass discretization. Req = 100, Frq = 44.7,
$, =0.02, M = 130.
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stable for a longer period of time, the visible break—up sets in at a later
time (note the times given in Fig. 3.18 for the fully disintegrated drops).
Comparison of the top views of cases (a) and (c) in Fig. 3.18 also reveals
that the diameter of the disintegrated torus is larger in case (c), which
provides additional room for a larger number of secondary blobs. It is
concluded that for Rey = 100 an increased number of real (and com-
putational) particles, i.e. a finer drop discretization, results in a larger
number of secondary blobs due to a delayed torus break—up. A similar
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Figure 3.18: Influence of the number of computational particles. (A) side
view, (B) top view of disintegrated drops; (a) ng = 509645; (b) ng = 2 - 10°;
(c) ng =4-10°. Req =100, M =130, N = 128 in all cases.

set of simulations with an increasing number of computational particles
was performed for Rey = 1. In this case the torus always breaks up
into only two secondary blobs independently of the number of particles.
This suggests that the range of possible disintegration patterns featuring
a certain number of secondary blobs increases with increasing Reynolds
number.

It is worth noting that the concept of computational particles offers
a second possibility to examine the effect of a refined drop discretiza-
tion. Instead of choosing a fixed ratio M, the number of computational
particles can be augmented while keeping the number of real particles
constant. The ratio M has to be adjusted accordingly. In this case the
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particle properties do not change and it is obvious that this situation
could not be reproduced in a real-world experiment. However, the effect
of a finer drop mass discretization as “seen by the fluid” can as well be
studied this way. A set of simulations was conducted with the number
of computational particles successively increased from about 5 - 10° to
4-10° and a fixed number of real particles ny, ~ 6.625 - 107 (Req = 100,
Sty = 0.01, N = 128). The results revealed the same effect of a refined
drop discretization as shown before. The torus disintegration is delayed
resulting in an increased number of secondary blobs.

The findings discussed above necessitate a comment on the comparison
between experiments and simulations. In a real-world experiment, in
which a suspension drop is released into (roughly) quiescent fluid, the
initial perturbations are not known. The particle distribution inside the
suspension drop will certainly not be perfectly uniform and the drop
will not have a perfectly well defined shape. Moreover, it is likely that
other perturbations introduced by the apparatus to release the suspen-
sion drops (whatsoever its functional details) will be present. Thus, it
is virtually impossible to match experimental and numerical conditions.
Numerical simulations can predict a range of secondary blobs to be ex-
pected and possible break—up patterns. For example, in the case of
Reg = 100 it is likely to obtain approximately six secondary blobs. This
number, however, may vary significantly in a real-world experiment due
to unknown perturbations and different initial conditions.

The strong sensitivity of the instability to the details of the initial
conditions is a notable characteristic of the drop disintegration process.
As already mentioned the growing perturbations in our simulations may
not only be of a “physical” nature, such as a not perfectly homogeneous
particle distribution, but alsc due to numerical effects. In the subsequent
sections numerical influences are shown to be negligible thus confirming
the results presented above.

3.2.4 Influence of the periodic boundaries

As has been shown for the low Reynolds number case, Regy = 0.1, the
periodic boundaries have a considerable effect on the drop settling ve-
locity (hindered settling). Thus, it might be expected that they affect
the break—up process in some general way such that, for example, the
number of secondary blobs is influenced by the periodic boundaries. On
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the other hand, the substructural effects of the particle-fluid interac-
tion, the internal circulating motion, was well reproduced in the low
Reynolds number case despite the periodic boundaries. This would sug-
gest only a minor influence of the periodicity on the disintegration pro-
cess. Fig. 3.19 shows disintegrated drops from two simulations with dif-
ferent inter—drop spacings under otherwise same conditions (Req = 100,
Stq = 0.01, Frq = 44.7, ny ~ 10°, same initial particle distribution). In
the first case 1283 grid pomts were used with L/R = 15, in the second
case 2563 grid points with L/R = 30. The higher grid resolution in the
second case ensures a fixed drop resolution in terms of grid points per
drop radius. The disintegrated torus looks very similar in both cases.
Not only is the same number of secondary blobs obtained, but also the
details are very similar. It is concluded that the periodic boundaries
have a negligible effect on the break—up pattern of the suspension drop.
Thus, the Reynolds number dependence and the role of the particle dis-
tribution discussed above should as well apply to the general case of a
single suspension drop in infinite fluid.
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Figure 3.19: Influence of periodic boundaries. Two simulations at Req = 100
(Sta = 0.01, Frqg = 44.7, ¢ = 0.02) with the same initial particle distributions
but different inter-drop spacing. Left: L/R = 15, N = 128. Right: L/R =
30, N = 256. The ratio of grid points per drop radius was equal in both
simulations. (A) side view, (B) top view.
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3.2.5 Influence of interpolation

Interpolation is used to compute the fluid velocity at the instantaneous
particle positions and to distribute the particles’ feedback force from
the particle positions to the grid points of the Eulerian mesh. There
are several studies available in the literature that examine the influ-
ence of interpolation in detail, primarily in turbulent particle-laden flows
(e.g. Yeung & Pope (1988), Balachandar & Maxey (1989), Sundaram &
Collins (1999), Kitagawa et al. (2001)). Here, we confine ourselves to
demonstrating that the use of different interpolation methods does not
significantly alter our results of suspension drop disintegration at moder-
ate Reynolds numbers. For the fluid interpolation three different meth-
ods were employed: (i) trilinear interpolation, (ii) 4*"-order Lagrange
polynomials, and (iii) spectral summation, the details of which are given
in Appendix B. These interpolation techniques were used alternatively
in a set of simulations with otherwise same parameters (Req = 100,
Stqg = 0.01, Frg = 44.7, n, = 7337, M = 9030). The grid resolution was
set to NV = 64. In all cases linear interpolation was used to distribute
the particle feedback force to the surrounding grid points. In the case
of spectral summation a 3rd-order accurate Runge-Kutta scheme was
employed for both the linear and nonlinear terms (instead of a combined
Runge-Kutta Crank-Nicolson scheme). Thus, the overall accuracy of
the time integration was augmented from second to third order.

The results are shown in Fig. 3.20. The hardly visible differences
between cases (b) and (c) (Lagrange and spectral interpolation, respec-
tively) are negligible. In the linear case (a) the number of secondary
blobs is the same as in (b) and (c), however, their location is somewhat
different. The principal features of the settling process, such as torus
formation and break—up, are well captured in all three cases. Given the
increased computational cost of Lagrange polynomial interpolation and
spectral summation, it is reasonable to resort to linear interpolation.
It should be noted that the influence of interpolation is significantly
reduced if higher grid resolutions are used, e.g. N = 128 as in the sim-
ulations shown in Fig. 3.6.

We also used first—order top hat interpolation to distribute the parti-
cle feedback force between the grid points. Here, the full feedback force
of a particle is attributed to the closest grid point in its vicinity. The
results did not show any major differences to those presented in Fig. 3.20.
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Figure 8.20: Influence of interpolation. Case (a): trilinear fluid interpola-
tion, (b) 4th-order Lagrange—polynomial fluid interpolation, (c) spectral sum-
mation. In all cases trilinear interpolation of the particle feedback force was
used. Req = 100, Stq = 0.01, Frq = 44.7, np, = 7337, M = 9030, N = 64.

3.2.6 Influence of the grid resolution

In numerical simulations reliable results are generally required to be in-
dependent of the grid resolution (grid convergence). To find a grid res-
olution fine enough to capture all relevant details of the disintegration
process, a set of simulations with different numbers of grid points was
performed. Fig. 3.21 shows examples for Req = 100. It was found that
a resolution of 643 grid points is sufficient to capture all characteristic
features of the settling and disintegration process, i.e. torus formation
and break—up into a certain number of blobs depending on the Reynolds
number. However, it is worth noting that grid convergence in a strict
sense is not given. The instability is very sensitive to only small per-
turbations of the suspension torus. A different grid resolution involves
different relative positions between particles and grid points resulting
in a slightly different particle feedback force. This small difference is
sufficient to produce different details of the disintegrating torus. For
example, the location of the secondary blobs along the torus’ circumfer-
ence may be different in one simulation with N = 64 and another one
with N = 128 and otherwise same parameters. Also, the disintegration
process tends to evolve a little more slowly when using 643 grid points
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Figure 8.21: Disintegrated blobs computed with different grid resolutions. From
left to right: N =16, N =32, N =64, N = 128. Req = 100.

compared to 1283.

3.2.7 Spectral analysis of settling drop and torus

The initial particle distribution has been identified as the primary source
of perturbations, which are crucial to the instability developing during
the drop settling process. To gain a deeper understanding of the particle
dispersion processes involved, the particle field inside the settling drop
and torus was analyzed from a spectral point of view. To this end the
particle field was divided into N, radially symmetric segments in the
(1, z2)-plane according to the sketch in Fig. 3.22. The segments are
similar to the slices of an orange. This segmentation served as a tool to
study the time evolution of the particle distribution.

The idea is to define a measurable quantity ¢(6;,t) as a function of the
segmentation angle 6 and time ¢ and to study the time evolution of the
Fourier coefficients associated with this quantity. Each segment contains
a number of particles n;(fs,t) that may change during the disintegration
process. As will be demonstrated in the following, it is instructive to use
this number as the time-dependent quantity, q(0s,t) := n;(0s,t). The
number of particles per segment indicates whether particles accumulate
in certain azimuthal regions. Another choice would be to use the mean
particle settling velocity per segment, q(6s,t) := v3(6s,t), which may
indicate whether particles settle faster in certain regions.

A reasonable number of segments N, must meet two criteria: (i)
the size of a segment should be much smaller than the smallest scale of
particle clustering to be captured along the torus’ circumference; (ii) a
segment should contain enough particles such that n; does not change
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Figure 8.22: Axisymmetric segmentation of particle field in z-y-plane. The
dashed circle indicates the initial suspension drop. The angle 65, s =1,..., N;
denotes the azimuthal location of the segments’ center.

significantly if the segment is slightly shifted in azimuthal direction. This
is to ensure that n;, is a measure of the local particle number density.
Fig. 3.23 shows the mean number of particles per segment i;,(Ns) and
the corresponding standard deviation o(Ns) for a simulation with ng =
509645 (Req = 100, Sty = 0.01, Fry = 44.7, ¢ = 0.02). In this case the
suspension drop breaks up into six secondary blobs. Thus, criterion (i)
requires the number of segments N to be much larger than the order of
10. Criterion (ii) requires the ratio o/7n;, to be much smaller than unity
(Fig. 3.23). For the subsequent analysis N; = 128 was chosen.

The quantity ¢(6s,t) is decomposed into its Fourier coefficients ac-
cording to

. 1 —
a(k,t) = 5 > a(6a,t) €7, (3.3)
S 0,

where §(k,t) is the Fourier coefficient associated with the azimuthal
wavenumber k = —N;/2,...,Ns/2 — 1. Since ¢(fs,1) is a real quantity,
the coefficients §(k,t) and §(—k,t) are complex conjugates. Therefore,
the time evolution of the magnitude |§(k,t)|? needs to be studied for
positive k only.

Fig. 3.24(a) shows the time evolution of the Fourier coefficients as-
sociated with the number of particles per segment (q(6s,t) = n;(6s,1)).
From ¢ ~ 100 on all Fourier coefficients start growing. For 100 <t < 400
the increase is approximately linear in the logarithmic-linear plot indi-
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Figure 8.23: Mean number of particles per segment f, and standard deviation
o as a function of the number of segments Ns for initial suspension drop (7,
and o are normalized by the total number of particles ny,). Req = 100, N = 64,
n, = 509645.
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Figure 8.24: Time evolution of the Fourier coefficients associated with the
number of particles per segment n,(0s,t) (a), and with the mean particle set-
tling velocity v3(0s,t) (b). Same simulation as in Fig. 3.25.
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Figure 8.25: Suspension drop at (a) t = 172, (b) t = 480, and (c) t = 716.
Req = 100, Sty = 0.01, Frq = 44.7, n = 500645, M = 130, N = 64. (A)
side view, (B) top view.

cating an exponentially growing instability. The Fourier coefficient as-
sociated with wavenumber & = 6 clearly predominates. This reflects a
torus break—up into six (major) secondary blobs, as shown in Fig. 3.25
(c). The second-strongest mode is associated with k£ = 8 correspond-
ing to the two additional (minor) secondary blobs in Fig. 3.25 (c). It is
worth noting that only at ¢ ~ 480 the formation of bulges becomes visi-
ble when observing the settling torus (Fig. 3.25 (b)). The wavenumber
selection, i.e. the onset of exponential growth with a certain mode pre-
dominating, occurs at a much earlier stage (¢t ~ 150), when it is clearly
impossible to predict the number of secondary blobs by visual judgment
only (Fig. 3.25 (a)).

Fig. 3.24(b) shows the time evolution of the Fourier coeflicients as-
sociated with the mean particle settling velocity per segment (q(fs,t) =
v5(0,t)). The overall picture observed is the same as that in Fig. 3.24(a).
The predominant mode is associated with wavenumber £ = 6, the
second-strongest with k£ = 8, however only for ¢ 2 500. Also, the point
in time when the wavenumber selection occurs cannot be identified as
clearly as in Fig. 3.24(a).

Imposing artificial perturbations on the initial drop, as discussed in
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section 3.2.2, affects the time evolution of the Fourier coefficients. This is
shown in Fig. 3.26. Here, the initial drop shape was perturbed according
to Eq. (3.2) with A; = 0.01 R and l; = 4. The shape perturbation causes
the fourth mode, k& = 4, to grow rapidly shortly after the drop is released
and then prevail during the entire settling process. The sixth mode
k = 6, which is due to the natural perturbations caused by the particle
distribution, starts growing in the same way as in the unperturbed case
(Fig. 3.24). As the instability develops, the sixth mode “catches up”
with the fourth mode such that at { = 716 the corresponding Fourier
coefficients reach the same level. This results in a disintegrated drop with
six secondary blobs as shown in Fig. 3.27. If the artificial perturbation
level is increased (As > 0.01 R) the predominance of the fourth mode is
more pronounced yielding only four secondary blobs. If A; < 0.01 R the
fourth Fourier coefficient in Fig. 3.26 drops below the sixth mode and the
disintegrated drop looks almost like the unperturbed one in Fig. 3.25.
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Figure 8.26: Time evolution of the Fourier coefficients associated with the
number of particles per segment for an initially perturbed suspension drop.
Same parameters as in Fig. 3.25 and As = 0.01 R, [; = 4.
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Figure 8.27: Initially perturbed suspension drop. Top view (left), side view
(right). Same parameters as in Fig. 3.25 and As = 0.01 R, ls = 4.
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Chapter 4

Particle settling in homogeneous turbulence

This chapter is concerned with the settling of small particles in homoge-
neous turbulence. As detailed in section 1.2 of the introduction, a con-
siderable amount of research work has already been devoted to the effects
of particle dispersion and turbulence modulation by micro-particles in
turbulent flow environments. Nevertheless, there are still discrepancies
and contradicting findings in the literature, in particular with respect to
the mean settling velocity of particles in homogeneous turbulence. This
is the subject of the following sections.

If a particle suspension is dilute enough with relatively low particle
volume fraction, the effect of the particles on the fluid, i.e. a momen-
tum transfer from the dispersed to the liquid phase, is negligible. In
this case particle dispersion can be studied in one-way coupled simu-
lations. Here, the particles are driven by surface forces exerted by the
carrier fluid and volume forces such as gravity. The flow field, how-
~ ever, remains unchanged compared to a particle-free simulation under
the same conditions, i.e. the particles do not exert any feedback force
on the liquid phase. If the particle mass loading, i. e. the particle volume
fraction and/or the density ratio (see Eq. (2.46)), is increased the effects
of the particles on the fluid become important and may alter the fluid
flow characteristics. In this case a two—way coupling approach is neces-
sary to account for the particles’ feedback forces (cf. section 2.2.2). The
demarcation between one-way and two—way coupling is usually drawn
with respect to the particle volume fraction ®,. For 107 < @, <1073
two—way coupling effects have to be accounted for (see e.g. Elghobashi
(1994)). For suspensions with ®, > 107> particle-particle collisions may
no longer be negligible in a turbulent flow and should be included in the
numerical model. This is usually referred to as four-way coupling.

The following study is confined to the dilute regime with one-way
and two—way coupling. In a first step the mean settling velocity in ho-
mogeneous, isotropic turbulence is studied for one-way coupling only. A
comparison with the results by Wang & Maxey (1993) serves for valida-
tion purposes. In the second step two—way coupling effects are included
in order to investigate the underlying physics linked to the mechanism
responsible for an enhanced mean particle settling velocity. Finally, a
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direct comparison with the experimental results by Aliseda et al. (2002)
will be made by matching the simulation parameters as closely as possi-
ble to those in the experiments. ,

At the beginning of a simulation the particle distribution within the
computational box was uniformly random and their initial velocity was
set to the Stokes settling velocity. Gravity was applied in negative z3—
direction. The turbulent motion of the fluid was generated and kept
statistically stationary by the forcing procedure described in section 2.4.
To obtain desired turbulence properties such as a specific microscale
Reynolds number Rey the forcing parameters have to be chosen ap-
propriately. Unless otherwise indicated the parameters e;, = 16.997,
Tr = 0.038 and Kr = 2v/2 were kept fixed throughout all simulations
and only the viscosity v was adjusted to obtain different turbulence in-
tensities. This procedure is further explained in Appendix C.

In each time step the mean fluid velocity in each direction was set to
zero. In x3—direction this is equivalent to superposing a positive uniform
pressure gradient that balances the net weight of all particles. As in the
case of suspension drops this is necessary to keep the particles and the
fluid from ever more accelerating in negative x3—direction due to gravity.

For the time integration of the governing equations, Egs. (2.5) and
(2.13), the combined Runge-Kutta Crank-Nicolson (RK3CN) scheme
was used. For details the reader is referred to Appendix A. Unless other-
wise mentioned linear interpolation and the tent function were employed
for the interpolation of fluid velocities and particle feedback forces, re-
spectively (see Appendix B).

4.1 One—way coupling

In the case of one-way coupling the study of Wang & Maxey (1993)
(hereafter referred to as W&M) is used for comparison and validation.
It is well known that small heavy particles in a turbulent flow tend to ac-
cumulate in regions of low vorticity and high strain rate (Maxey (19875),
Maxey (1987a), Wang & Maxey (1993), Squires & Eaton (19915), Yang
& Lei (1998)). Due to Stokes drag forces and inertia the particles travel
towards the peripheries of “individual” eddies. If, in addition, gravita-
tional forces are present, the particle motion is subject to the mechanism
of preferential sweeping. This means that the particles, accelerated in the
direction of gravity, are swept preferably towards the regions of down-
ward fluid motion when encountering an eddy. The net effect of this
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preferential sweeping is an increase in the mean particle settling veloc-
ity compared to the free—fall velocity of a single particle in still fluid.
This enhancement of particle settling velocity can be studied in one-
way coupled simulations, i. e. for dilute suspensions with particle volume
fractions ®, < 107°.

The grid resolutions and corresponding forcing parameters were taken
from the table 1in Wang & Maxey (1993) to allow for a direct comparison
of the results. The density ratio was g,/¢ = 1000 in all simulations.
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Figure 4.1: Mean particle velocities (vi) normalized by the Stokes settling ve-
locity Up as a function of time. Rex =31, St, =1, Up/uy =1, N =48.

Fig. 4.1 shows the time evolution of the mean particle velocities in
the simulation with N = 48, Rey = 31, St, = 1, and Up/u, = 1. Due
to their initial velocity the particles experience an immediate increase
in settling velocity. After a transient period of about 70 eddy turnover
times the time average of the settling velocity converges to a statistically
stationary value of about 1.3 times the Stokes settling velocity.

The settling velocity increase is defined here with respect to the
Stokes settling velocity of a single particle as

AVz = —{v3) — U, (4.1)

where the angle brackets (-) indicate an ensemble average over all parti-
cles at a certain point in time, and the over-bar (-) denotes an additional
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Figure 4.2: Increase in the mean particle settling velocity as a function of the
Stokes number. The velocity enhancement is normalized by the Kolmogorov
velocity scale (left) or the RMS velocity scale (right). Rex = 21 (N = 32):
O we&M, O HIT (solid and dashed lines). Rex = 31 (N = 48): v W&M,
o HIT. Rey =43 (N =64): o WEM, + HIT.

time average. Fig. 4.2 shows the relative increase in the mean settling
velocity of particles for different particle Stokes numbers. The veloc-
ity enhancement is most pronounced for Stokes numbers around unity,
i.e. when the particle response time is of the order of the Kolmogorov
time scale. In the case of very small Stokes numbers the particle in-
ertia becomes negligible and the particles respond almost immediately
to changes in the velocity of their fluid neighborhood. Hence, there is
no significant particle accumulation and the preferential sweeping has
a negligible effect. As a result, the mean settling velocity is about the
same as that of a single particle in quiescent fluid. If the Stokes number
is increased beyond unity preferential sweeping is also less pronounced
— in this case due to an increased particle inertia. These findings are in
very good accordance with the results by W&M. In the case of Rey = 21
(N = 32) the velocity enhancement found in our simulations is slightly
higher for Stokes numbers larger than unity and slightly smaller for
Stokes numbers below unity compared to W&M. We also found a weak
dependence on the microscale Reynolds number (only done for St, = 1,
Rey = 31, Rey = 43), however less pronounced than that reported by
W&M. It should be noted that in the case of Rey = 31 (N = 48) the
latter used a different forcing scheme for comparison yielding the same
qualitative features but quantitatively different by up to about 30 per-
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Figure 4.8: Normalized particle volume fraction ®/®, in slices of thickness

3 Az; cut through the center of the computational boz (at x;

). Left column:

(21, x2)-plane; middle column: (x2,x3)-plane; right column: (z1,z3)—plane.
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cent. Thus, differences in the results may be related to a slightly different
implementation of the forcing procedure and/or the solution algorithm.
Also, W&M applied time averages over only a few eddy turnover times
whereas in our simulation the samphng period was of the order of 100
eddy turnover times.

For the simulation with Rey = 31 (N = 48) Fig. 4.3 visualizes the
initial evolution of the local particle volume fraction in slices cut through
the center of the computational box. The slices’ thickness is three grid
cells (3 Az;) and they are located at z; = 7. The local particle volume
fraction is denoted by ®! and computed by dividing the computational
domain into N, small boxes. The volume of such a sub-box is equal
to the grid cell volume and the box center coincides with a grid point
(N, = N). After the particles are released at t/t. = 0.0 it takes only
about one eddy turnover time for the particles to “demix” resulting in
large inhomogeneities in the local particle volume fraction. At ¢/t = 0.6
regions of zero particle volume fraction are already discernible and be-
come even more distinct as the simulation continues. The qualitative
picture found at t/t. = 1.2 does not change in the further course of the
simulation. The maximum local particle volume fraction ® (z;) is about
seven times the spatially averaged volume fraction ®,. It should be noted
that the preferential accumulation of the particles starting from a uni-
formly random distribution occurs much faster than the mean particle
settling enhancement converges to a statistically stationary value. Typ-
ical simulation times for convergence are about 50 to 100 eddy turnover
times whereas the particle accumulation, as discussed above, occurs on
a time scale of the order of only one eddy turnover time.

To further quantify the preferential concentration of the particles, we
introduce a probability function Pc(ng), which specifies the probability of

finding a certain number of particles ng (i.e. a certain volume fraction
or concentration) within a sub-box. Following W&M we distinguish
between four discrete events of finding zero, one, two, or more than two
particles in a sub—box. Given the relatively small number of particles
compared to the number of sub-boxes this is a reasonable choice. For
example, in the simulation with Rey = 31 (N = 48) the number of
particles was n;, = ng = 147456, which is an average of 1.3 particles per
grid cell or sub-box. As the particles accumulate the highest particle
volume fractions involve about seven particles, the lowest zero particles
per sub-box.

At the beginning of a simulation the particle distribution is uniformly
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random. In this case the probability functions can be computed exactly
from the binomial distribution

. b r b
n’ 1\ 1\ ™"
Pinom by = P 1- ) .
binom (1) <ng> (Nb) ( Nb) (4.2)

resulting in

Pyinom(nb =0) = 0.2636
Pyinom(ny =1) = 0.3515
Pyinom(nl =2) = 0.2343
Pyinom(nb >3) = 0.1506.

These analytical values are reproduced in the simulation for the initial
distribution at £ = 0. The time evolution of the probability functions
P, (ng, t) is plotted in Fig. 4.4. Shortly after the particles are released all
functions start deviating from their initial value. The strongest increase
is observed for Pc(ng = 0,t) reflecting large particle-free regions emerg-
ing from the initially uniform distribution. At the same time regions
of high particle volume fraction are growing as indicated by an increase
of Pc(ng > 3,t). Correspondingly, the other two probability functions
decrease over time. For t/t. 2 2 the functions remain essentially station-
ary. This behavior of the probability functions supports the qualitative
observation made in Fig. 4.3 that particles accumulate in certain regions
(of high strain rate) creating large inhomogeneities in the particle dis-
tribution. Note that Fig. 4.4 is in very good qualitative agreement with
figure 6 of W&M. The quantitative differences are primarily due to a
different number of particles in the simulations (W&M: n; = 131072,
HIT: n;, = 147456).

As a global measure for the particle accumulation the integrated
square deviation between the computed and the analytical binomial dis-
tribution was introduced by W&M:

r
nP

DC(t) = Z (Pc(n?nt) - Pbinom)2 . (43)

b_—
np_O

As displayed in Fig. 4.5 the global measure D.(t) remains approximately
constant at a value of about 0.13 for t/t. 2 3. This agrees well with the
result by W&M graphed in their figure 17.
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Figure 4.4: Time evolution of the probability functions describing the likelihood
of finding a certain number of particles in a grid cell. Rey = 31, N = 48,
St, =1, Up/un, = 1, one-way coupling.
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Figure 4.5: Time evolution of the global “dispersion function” D.(t) describing
the difference between the actual particle distribution in the simulation and the
analytical binomial distribution. Rey = 31, N = 48, St, = 1, Up/u, = 1,

one-way coupling.
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Figure 4.6: Correlation between normalized particle volume fraction ®! /Py

(left column, slices of thickness 3 Az, cut through bozx center) and scalar vor-
ticity Q (right column). The initial particle distribution is uniformly random.
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Fig. 4.6 shows a comparison of the local particle volume fraction and
the scalar vorticity defined as

_ Em
Q= V2 (4.4)

where w; is the (vector) vorticity and the square brackets denote a spatial
average. It is observed that areas of vanishing particle volume fraction
correlate with regions of high vorticity. For example, this can clearly
be seen for t/t. = 0.6 where the large white areas indicating particle-
free regions in the left image correspond with the black regions of high
vorticity in the right image. This result is also in line with W&M and
other studies in the literature.

4.2 Two—way coupling

In order to study the effect of two—way coupling on the mean particle
settling velocity a set of simulations with varying particle volume fraction
and otherwise fixed parameters was performed. The Stokes number St,,
and the dimensionless terminal velocity Up,/u, were set to unity, for
which a strong interaction level between dispersed phase and carrier fluid
are to be expected. The density ratio was g,/¢ = 5000 in all simulations.
The range of particle volume fractions relevant for our investigation is
10-7 < ¢, S 10~4. The suspension at the lower bound of ®, ~ 10~7
is usually considered to be dilute enough to simulate the particle-fluid
interaction in a one-way coupled approach (see e. g. Elghobashi (1994)).
From ®, ~ 107% on, two-way coupling effects may become important.
As shown in the one-way coupled simulations presented above, the local
volume fraction may increase during the simulation by about an order
of magnitude compared to the mean volume fraction due to particle
accumulation. Thus, the upper bound of ®, ~ 10~* is chosen such
that the expected maximum local volume fraction does not exceed ¢, =
10~3. This value is usually considered the limit where particle-particle
collisions (four-way coupling) become important, which are not included
in our numerical model. The grid resolution was chosen as small as
possible to save on computational time. For the range of volume fractions
investigated and a sufficiently large number of particles (of order 10°)
an initial microscale Reynolds number of Rey ~ 40 is necessary for a
consistent set of parameters. Accordingly, the grid resolution was set to
N = 64. The number of computational particles was n; = 100096 in all
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simulations. To account for the increasing number of real particles with
growing volume fraction, the ratio M of real to computational particles
was adjusted accordingly.

A simulation for a specific particle volume fraction consists of three
parts. First, the forcing parameters are chosen to yield a desired mi-
croscale Reynolds number Rey. The simulation is run without particles
to yield the quasi-stationary turbulence characteristics, such as the eddy
turnover time and the Kolmogorov scales, required to form the desired
particle parameters, i.e. the Stokes number and the dimensionless ter-
minal velocity. Second, the particles are released into the fluid starting
from a uniformly random distribution and the simulation is run with
one-way coupling only. This yields particle statistics for comparison
with the two—way coupled case. Third, two—way coupling is included
in the simulation starting from an instantaneous velocity and particle
field of the foregoing one-way coupled run. This has the advantage that
particle and (changing) fluid statistics converge more quickly than in a
simulation started from a zero velocity field and random particle posi-
tions. It should be noted that fluid turbulence quantities can change
once the two—way coupling is active. Thus, the turbulence statistics
characterized by Rey, 7, te etc. are only known a posteriori. (In partic-
ular, this can involve a tedious trial-and-error process to match certain
experimental conditions.)
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Figure 4.7: Time evolution of mean particle velocities normalized by the ter-
minal settling velocity Up. At t/teo = 50 the phase coupling was switched
from one-way to two-way coupling (te,o denotes the eddy turnover time in the
one-way coupling regime).
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Fig. 4.7 shows the time evolution of the mean particle velocities for
two different particle volume fractions, ¢, = 1.5-10"% and ®, = 1.5-10~4
(initial Rey = 42, see also Tab. 4.1, runs #2 and #7). At t/t.0 ~ 50 the
phase coupling was switched from one-way to two—way coupling. (Here,
te,0 denotes the eddy turnover time in the one-way coupling regime. This
time scale was chosen for non-dimensionalization since the turbulence
characteristics may change in the two—way coupling regime.) For one—
way coupling we observe an already increased mean particle settling
velocity compared to the Stokes settling velocity. This is due to the
mechanism of preferential sweeping as explained in the previous section.
Once the particles are allowed to exert a feedback force onto the fluid,
a further, almost immediate enhancement of the mean settling velocity
is found (at t/t. ~ 50). This enhancement is more pronounced in the
case of the larger particle volume fraction, where the settling velocity is
increased by a factor of about 2.3 compared to the Stokes velocity. In
both cases the mean velocities in directions z; and 9 fluctuate around
zero, which is in accordance with the isotropic conditions and a vanishing
mean fluid velocity in planes perpendicular to the direction of gravity.
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Figure 4.8: Normalized particle volume fraction ®./®, in slices of thickness
3 Axo cut through the center of the computational box (at x2 = w). Left: one-

way coupling; middle and right: two—way coupling. Same simulations as shown
in Fig. 4.7.

The local particle volume fractions ®./®,, of the same simulations
as in Fig. 4.7 are visualized in Fig. 4.8. The particle volume fraction is
shown in a slice cut through the computational box at o = 7 at two
different times, ¢/t = 25 in the one-way coupling regime and t/te =
100 in the two—way coupling regime. In the case of ®, = 1.5-107°
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there are no discernable differences in the overall qualitative structure
of the inhomogeneous particle distribution. In both cases the particles
accumulate in certain regions where the local particle volume fraction
can be up to about four times higher than the average volume fraction.
The size of the typical particle—free areas is very similar in both cases.
Thus, the visible structure of inhomogeneities in the particle distribution
does not allow any inference whether one-way or two-way coupling is
present. In the case of ®, = 1.5-1074 the typical size of the particle-free
regions appears somewhat smaller than in the previous case. This is due
to a reduced microscale Reynolds number as a consequence of the particle
fluid interaction, which involves a smaller eddy length scale. Thus, the
overall volume of the regions of high particle concentration (low vorticity)
increases and the maximum particle volume fraction reduces to about
2.5 times the average. The turbulence modulation by the particles will
be further discussed below.
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Figure 4.9: Time evolution of the probability functions P.(nb,t). Att/teo ~ 50
the phase coupling was switched from one-way to two-way coupling. Initial
Rey) =42, N = 64.

The time evolution of the probability functions P.(nb,t), introduced
in the previous section, corroborates the qualitative observations of the
particle dispersion (Fig. 4.9). Again, in the case of ®, = 1.5-1075 there
are no discernable differences between the one—way and the two-way
coupling regime. In the case of ®, = 1.5-10~* the onset of the two-way
coupling regime is characterized by a small shift of all four probability
functions displayed. According to the changing turbulence properties
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involving smaller eddy length scales, the probability of finding particle—
free regions decreases slightly while that of finding one particle per cell
increases. The occurrence of higher particle volume fractions changes
only little.

AVz/u' and AV3/U,

®,/107°

Figure 4.10: Particle settling velocity enhancement as a function of the particle
volume fraction (two-way coupling). Simulations were started from a fully
turbulent flow field with one—way coupled particles. Initial parameters: Rey =
42, St, = 1.0, Up/un = 1.0. N =64 in all cases.

Fig. 4.10 shows the enhancement of the particle settling velocity as a
function of the particle volume fraction in the case of two—way coupling.
The range of particle volume fractions covered is 1.5 - 107% < &, <
1.5-107%. As before the settling velocity difference AV3 is normalized
by either the Stokes settling velocity or the fluid RMS velocity. If the
particle volume fraction is very small, i.e. ®, < 1.5-107¢, the increase
in the particle settling velocity is negligible compared to the one-way
coupled regime. Thus, ®, ~ 1076 can be considered the limit where
two-way coupling effects come into play and start affecting the fluid-
particle interaction. This confirms common observations found in the
literature, see e. g. Elghobashi (1994).

As long as the overall turbulence properties are not significantly in-
fluenced by the feedback forces of the particles, the enhancement of
the particle settling velocity increases with an approximately constant
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slope as a function of the particle volume fraction. This is observed for
1.5-1076 < ®, < 3.107° in Fig. 4.10. In this range the particle and tur-
bulence properties remain roughly constant for fixed forcing parameters.
If the particle volume fraction is further increased the slope of the curve
decreases and the settling velocity enhancement is less pronounced. The
strongest velocity enhancement is found for the largest particle volume
fraction in the range covered, ®, = 1.5 - 10~%. Here, the increase is
almost one and a half times the Stokes settling velocity.

For all simulations the particle velocity enhancement and some tur-
bulence properties are summarized in Tab. 4.1. The overall observation
is that the introduction of small particles into the turbulent carrier fluid
has a dissipative effect on the turbulence for particle volume fractions
®, > 3-107°. This involves a change of essentially all relevant turbu-
lent quantities, such as the turbulent kinetic energy and dissipation rate,
the Kolmogorov scales, the eddy length and time scale, and other inte-
gral scales. As a result the microscale Reynolds number drops below its
value in the one-way coupled case reflecting a decrease in the overall tur-
bulence “level”. It is worth emphasizing that turbulence modulation is
shown here to occur for particle volume fractions as low as @, ~ 5-107°.
This is in contradiction to Aliseda et al. (2002), who claim that “the
range of volumetric fractions used in all the experiments reported here
is such that the turbulence is not significantly affected by the presence of
the particles, ...” (they used volume fractions of up to ®, ~ 7-107°).

For a better illustration of the turbulence modulation with increasing
particle volume fraction some characteristic turbulent quantities are dis-
played separately in Figs. 4.11 through 4.17. The microscale Reynolds
number decreases due to a decrease of both the RMS velocity u’ and the
Taylor microscale A (Fig. 4.11). It is interesting to note that the Kol-
mogorov scales hardly change with increasing particle volume fraction,
whereas the eddy turnover time and length scale decrease considerably
(by up to 58%, Tab. 4.1). The former observation indicates that the par-
ticles interact primarily with turbulent structures larger than the small-
est ones. Indeed, the visualization in Fig. 4.8 suggests a typical length
scale of the particle inhomogeneities larger than the Kolmogorov length.
As shown by Wang & Maxey (1993), Yang & Lei (1998) and others this
length scale is of the order of 107, which is consistent with Fig. 4.8. In
fact, Yang & Lei demonstrated that the preferential accumulation can
accurately be predicted in a large—eddy simulation (LES) with the Kol-
mogorov scales not resolved by the computational grid. The decrease of
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one-way two—way max. A
run # 0 1 2 3 4 S 6 7 [%%]
$,/107° <0.1 0.15 1.5 3.0 4.5 7.0 9.0 15
Re) 42.70 42.56 41.96 39.90 37.04 33.61 30.75 24.50 42.6
A 0.595 0.596 0.606 0.608 0.591 0.554 0.522 0.435 26.9
u’ 8.42 8.32 8.02 7.69 7.37 7.11 6.90 6.56 22.1
q 105.5 103.5 96.2 88.0 80.6 75.2 70.9 64.4 39.0
€ 354.0 342.0 307.5 282.5 275.7 290.1 308.1 397.8 22.1
n 0.0465 0.0465 0.0478 0.0492 0.0497 0.0488 0.0481 0.0448 6.9
Un 2.549 2.528 2.452 2.410 2.402 2.426 2.463 2.616 2.6
ty 0.0184 0.0186 0.0196 0.0206 0.0210 0.0204 0.0197 0.0172 14.1
le 1.678 1.686 1.678 1.603 1.441 1.230 1.060 0.709 S7.7
te 0.201 0.204 0.210 0.210 0.198 0.175 0.155 0.108 46.3
1 1.168 1.172 1.182 1.195 1.198 1.203 1.196 1.144 3.0
tr 0.140 0.142 0.148 0.157 0.165 0.171 0.175 0.175 25.0
Q1 102.5 102.4 92.4 88.0 77.2 67.5 61.8 48.8 52.4
q2 105.5 103.4 93.9 84.9 76.4 69.0 61.8 48.4 54.1
g3 108.2 104.6 102.3 96.2 88.2 89.0 88.9 95.8 18.5
q 105.4 103.5 96.2 88.0 80.6 75.2 70.9 64.4 38.8
Sty 1.0 0.99 0.94 0.88 0.88 0.92 0.92 1.08 12.0
Up/uy 1.0 1.0 1.04- 1.05 1.06 1.05 1.03 0.97 6.0
AV /Uy 0.355 0.366 0.558 0.801 0.938 1.091 1.171 1.378 288.2
AVa/u' 0.107 0.112 0.177 0.264 0.323 0.390 0.431 0.534 399.6

80

Table 4.1: Turbulent flow and particle quantities of simulations shown in Fig. 4.10. Two-way coupled simulations
(runs #1-7) were started from a fully turbulent flow field with one-way coupled particles (run #0). T, =mp /(6T pur) =
0.0184, |U,| = 2.5407.
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the eddy time and length scales, on the other hand, is primarily due to
the damped velocity fluctuations 4’ (cf. the definitions (D.10) and (D.11)
in Appendix D).

The presence of gravity introduces an anisotropy that alters the ini-
tially isotropic fluid velocity field by particle drag forces. This becomes
obvious when comparing the turbulent kinetic energies associated with
the three spatial directions, ¢;, i = 1,2, 3 (Fig. 4.13, left). While the en-
ergies in the directions perpendicular to gravity are reduced with increas-
ing ®,, the energy in the direction of particle settling remains roughly
constant for ®, > 3-107°. The dissipative effect of the particles is most
evident in the mean turbulent kinetic energy ¢, which is significantly
reduced with growing particle volume fraction (Fig. 4.13, left). The dis-
sipation rate €, however, decreases for volume fractions ®, < 5-107°
and then increases again for higher volume fractions (Fig. 4.13, right).
For ®, = 1.5-107% it is even larger than in the one-way coupled case.
This is only possible, because the particles interact primarily with the
small-scale fluid structures (although not with smallest ones as discussed
above). That means the particles’ effect is not uniform but selective
with respect to the range of represented wavenumbers. This can be con-
firmed by analyzing the energy and dissipation spectra, which are plotted
in Figs. 4.16 and 4.17 for particle volume fractions ®, = 1.5-107° and
®, = 1.5:107%, respectively. In the first case the influence of the particles
on the spectral distribution of turbulent kinetic energy and dissipation
is negligible. Correspondingly, the turbulence properties are essentially
not affected by the presence of the particles (Tab. 4.1, run #2). In
the second case with the particle volume fraction larger by one order
of magnitude we observe a significant spectral redistribution of kinetic
energy with respect to the shape of the spectra. The energy and dis-
sipation associated with the small scales (high wavenumbers) increase,
while those associated with the large scales decrease. This phenomenon
is sometimes referred to as “pivoting” and has been reported in the lit-
erature by different authors (e. g. Squires & Eaton (1990), Elghobashi &
Truesdell (1993)).

Fig. 4.18 shows the enhancement of the particle settling velocity over
the particle volume fraction if the microscale Reynolds number is fixed at
Re), =~ 42. For comparison the dashed lines indicate the same relation in
the case where the microscale Reynolds number reduces with increasing
particle volume fraction due to turbulence modulation by the particles
(as already discussed, cf. Fig. 4.10). In the former case the forcing pa-
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Figure 4.11: Microscale Reynolds number Rey as a function of the particle
volume fraction (same set of simulations as in Fig. 4.10).
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Figure 4.12: Taylor microscale \ (left) and RMS velocity u' (right) as a func-
tion of the particle volume fraction (same set of simulations as in Fig. 4.10).
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Figure 4.13: Left: mean turbulent kinetic energy ¢ and kinetic energies qi
averaged in directions © = 1,2,3 as a function of the particle volume fraction.
Right: dissipation rate € (same set of simulations as in Fig. 4.10).
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Figure 4.14: Kolmogorov length scale n and time scale t,, as a function of the
particle volume fraction (same set of simulations as in Fig. 4.10).
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Figure 4.15: Integral length scales (left) and integral times (right) as a function
of the particle volume fraction (same set of simulations as in Fig. 4.10).
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Figure 4.16: Three—dimensional energy spectra (left) and dissipation spectra
(right) for ®, = 1.5-107° in the case of one-way and two-way coupling.

o, 45-107° 6.8-107% 9.0-107°
v 0.215 0.198 0.154
N 72 72 96
Rex 42.5 41.5 41.9
krmaz7 1.30 1.29 1.36
AV3 /U, 0.975 1.258 1.514
AV /! 0.346 0.459 0.566

Table 4.2: Data of simulations with fized Rex =~ 42 in Fig. 4.18. The data
corresponding to the dashed lines are given in Tab. 4.1.
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Figure 4.17: Three-dimensional energy spectra (left) and dissipation spectra
(right) for ®, = 1.5-107* in the case of one~way and two-way coupling.

rameters were adjusted such that the resulting turbulence level remains
at Re) =~ 42, whereas in the latter case the simulations were performed
with fixed initial parameters (Tab. 4.2 contains the grid resolutions and
viscosities for the additional simulations in Fig. 4.18). The particle set-
tling velocity enhancement is found to increase with a roughly constant
slope if the (resulting) microscale Reynolds number is kept constant.
This result is in good agreement with the findings by Aliseda et al.
(2002) (see their figure 16). |

In order to understand the physical mechanism responsible for the
particle settling velocity enhancement, the collective effect of the parti-
cles in regions of increased particle volume fraction needs to be analyzed.
To this end the mean particle settling velocity conditioned to the regions
of increased settling velocity will be compared for one-way and two-way
coupling and different particle volume fractions. The same is done for
the mean fluid velocity in these regions.

In the following the mean particle settling velocity averaged over the
whole computational domain and over time is denoted by

Vs = (v3), ' (4.5)
where the angle brackets indicate an average over all particles and the

over-bar denotes a time average. Similarly, the mean particle settling
velocity averaged over regions of a specific local particle volume fraction
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Figure 4.18: Particle settling velocity enhancement as a function of the particle
volume fraction. Solid lines: Reynolds number remains fized at Rex =~ 42
(forcing parameters adjusted accordingly). Dashed lines: Reynolds number
decreases due to turbulence modulation by the particles, same as shown in
Fig. 4.10 (fized initial parameters). St, = 1.0, Up/un = 1.0 in all cases.

is denoted by

Va(®L) = (v3(®L)) . (4.6)
Fig. 4.19 shows the normalized difference of the conditioned mean par-
ticle settling velocity V3(®!) to the overall mean settling velocity Va for
the simulations summarized in Tab. 4.1. Furthermore, the correspond-
ing mean fluid velocity in z3—direction in these regions of specific <I>fu is
shown in the bottom graph of Fig. 4.19 (note that (us), i.e. us averaged
over the entire domain, is zero per definitionem). As mentioned before,
the number of sub-boxes in which the local quantities were computed is
equal to the number of grid cells (N, = N). The normalized local parti-
cle concentration is only shown for a range up to ® /®,, =~ 13. Although
areas of even larger local particle concentration are found, their number
of occurrences is rather small resulting in poor statistics. For this reason
these very high local particle concentrations are excluded from Fig. 4.19.

We observe a monotonic increase in the conditioned settling veloc-



4.2 Two—way coupling 87

0.7  =--@ one-way coupling .
o r G—e @v = 1.5 . 10—5

= 0.5 ]

~ A—A &y =7.0-1075

= | +—+ ®,=15-10-4

| 03 1 .

- .o

}e‘ """"

E o1 S el -
0.1 | -
-0.3 : ‘

0 5 10 15
@ﬁ,/@v
1.5 | ©--\ one-way coupling ]
o0—o &, =1.5.1075

= [ a—A ®, =7.0-10"5

~

=~ 1 F +——+ ®y=15.10"4 .

-~

&

N
A
05 ¢ .
0
0 15

Figure 4.19: Top: Mean particle settling velocity averaged over regions of cer-
tain local particle volume fraction @Y for different overall particle loadings v .
Bottom: Magnitude of the mean fluid velocity (us) in these regions. The dashed
lines show the one-way coupled case for comparison. Sty ~ 1.0, Up/u, = 1.0

in all cases. Rey according to Tab. 4.1.
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ity with increasing local particle volume fraction for both one-way and
two—way coupling. However, this effect is much stronger in the case of
two—way coupling and is enhanced with increasing overall particle vol-
ume fraction ®,. Thus, in the case of two—way coupling we observe a
collective effect of the particles in regions of high particle concentration
resulting in an enhanced mean settling velocity in these regions. The
accumulated particles — pulled downwards by gravity — exert a larger
drag force on the surrounding fluid, which is more strongly accelerated
in xz3—direction than in the one-way coupled case. This is seen in the
bottom graph. Here, the magnitude of the mean fluid velocity |(us(®%))]
averaged over regions of specific particle volume fraction ®! is found to
exhibit a similar monotonic increase due to the particle-fluid interaction
(the fluid velocity us in all regions where particles are found is negative
on average). Note that the curves for the particle velocity enhancement
in the upper graph cross each other at ®. /®, ~ 4. This is due to the
normalization by the overall mean settling velocity V3, which increases
with increasing particle volume fraction ®,,. It indicates that the effect
of the accumulated particles becomes more important with both growing
local and overall particle concentration. ~

If the microscale Reynolds number Re) is kept constant as in Fig. 4.18
the qualitative behavior of the conditioned particle and fluid velocities
remains the same as that in Fig. 4.19. However, the slopes of the curves
for particle volume fractions ®, > 3.0 - 10~° are a little steeper than in
Fig. 4.19.

The mechanism responsible for the particle velocity enhancement in
two-way coupled simulations can now be explained as the interplay of
three contributing effects. The first one is the well-known inertial bias
by which the particles accumulate in regions of high—strain rate and low
vorticity. If gravity is present the second effect, usually known as prefer-
ential sweeping, causes the particles to travel primarily towards regions
of downward fluid motion on their way through the turbulent carrier
fluid. This can also be observed in merely one-way coupled simulations.
Finally, the third effect — only present in the case of two—way coupling —
is a local modification of the fluid velocity structure by the particles in
regions of increased particle volume fraction. The collective effect of the
accumulated particles is a downward drag force on the carrier fluid. As
a result the latter is additionally accelerated in direction of gravity com-
pared to the one—way coupled case, which in turn causes the particle set-
tling velocity to be enhanced in these regions of increased downward fluid
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motion. In principle, this explanation is similar to the phenomenological
model hypothesized by Aliseda et al. (2002). However, their model is
based on the assumption of individual particle clusters acting as large
pseudo—particles and settling at their own velocity V;, which adds to the
mean settling velocity of an isolated particle in turbulence. According
to Fig. 4.8 such individual clusters are not observed in our simulations,
but the particles accumulate in rather coherent, web-like regions of low
vorticity.

4.3 Comparison with experimental data

In the previous section it was shown that the mean particle settling ve-
locity in homogeneous turbulence can be considerably increased due to
a collective effect of the particles in regions of high particle concentra-
tion. In the following a quantitative comparison of these findings with
experimental results in the literature will be performed. As mentioned
in the introduction, the available data are very limited. We found only
one study suitable for such direct comparisons: Aliseda et al. (2002)
(hereafter referred to as AL) did experiments of heavy particles settling
in homogeneous decaying turbulence. Their experimental facility was
a wind tunnel, in which roughly spherical water droplets were seeded
into grid—-generated turbulence. They provide particle and turbulence
statistics at two downstream locations of the wind tunnel (z &~ 100 cm
and z = 200 cm) for different particle volume fractions and Stokes num-
bers. We chose the first, £ =~ 100 cm, for a comparison by matching the
microscale Reynolds number in our simulations to Rey ~ 75. Table 4.3
shows the turbulence characteristics measured by AL at this location.

u’ 3 lr A n Tn Un Re)
(cm/s) (m®/s’) (mm) (mm) (mm) (ms) (cm/s)
21.1 1.00 43.0 5.37 0.241 3.87 6.23 75.54

Table 4.3: Turbulence characteristics of the experiment by Aliseda et al. (2002)
at the wind tunnel downstream location x ~ 100 cm; v = 1.5-107° m?/s. (Data
taken from their table 1.)

In a first set of simulations the mean particle settling velocity was
investigated in a one—way coupled approach. Several Stokes numbers
and corresponding dimensionless terminal settling velocities were studied
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Sty 018 1.0 1.38 3.2
Up/u, 0110 0.611 0.843 1954

Table 4.4: Stokes numbers and corresponding dimensionless Stokes settling
velocities for x = 100 cm investigated by Aliseda et al. (2002).

according to Tab. 4.4. Fig. 4.20 and Tab. 4.5 show the increase in the
mean particle settling velocity as a function of the Stokes number for
both our simulations and the experiment (with the approximate values
for ®, = 1.5- 107> taken from the figure 14 of AL). It is obvious that
one-way coupling between the liquid and dispersed phase is not sufficient
to capture the underlying physics of the enhanced particle settling. The
simulation results under-predict the experimental findings by almost an
order of magnitude.

For the two—way coupled case two simulations with &, = 1.5.107°
and ®, = 7.0-10~° were performed, which are also shown in Fig. 4.20
(Rey = 75, Sty = 1, Up/uy, = 0.6). In the first case we observe an
increase in the particle settling velocity of roughly 30% compared to the
one-way coupled case. However, the predicted velocity enhancement of
AVz/u' = 0.1 is still considerably smaller than the experimental result
of AVs/u' = 0.26. If the particle volume fraction is augmented to ®, =
7.0-1075 the settling velocity enhancement further increases as expected,
but the discrepancy between experimental and numerical results is still
observed (AL: AV3/u’ ~ 0.46 (not shown in Fig. 4.20), HIT: AV3/u' =~
0.14).

Sty 018 1.0 138 3.2

AL AV /u'! 0.125 0.26 0.27 0.21
HIT 1-way AVs/u' 0.0086 0.081 0.080 0.073
AVa/U, 034 056 037 0.16
2-way AVa/u 0.104
AV3/U, 0.732

Table 4.5: Comparison of settling velocity enhancement with Aliseda et al. -
(2002). Ezxperimental values taken from their figure 14 for Rex = 75, @, =
1.5-107°. Simulations done with a grid resolution of N = 128.

The discrepancy between simulations and experiment calls for a dis-
cussion of possible reasons. In the following we point out some differences
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Figure 4.20: Increase in the mean particle settling velocity as a function of
the Stokes number. Comparison of simulations with the experiment of AL
for Rex = 75; one—way coupled simulations (dashed lines); experiment AL,
®, = 1.5-107° (solid lines); two-way coupled simulations: O &, =1.5-1075,
A @, =7.0-1075.

between numerical and experimental conditions. In the experiment by
AL the turbulent air stream in the wind tunnel was seeded with particles
generated by an array of atomizers. The particle size was not uniform
but spread over a range of diameters (figure 3 of AL displays the prob-
ability density function of the droplet diameters). Thus, particles with
different Stokes numbers ranging from St, ~ 0.01 to St, ~ 5.1 were
present in the flow. In the simulations, on the other hand, all parti-
cles had the same Stokes number. This may be the most important
difference between experiment and simulation. However, confining the
particles to a single size with St, = 1, for which the strongest particle-
fluid interaction can be expected, should increase the effect of settling
velocity enhancement rather than decrease it. This makes the particle
size distribution unlikely to be the reason for the observed discrepancies.

Even though the microscale Reynolds number in the simulation was
matched to that in the experiment, other turbulence properties were
found to be different. For example, from Tab. 4.3 the ratio of integral
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length to Kolmogorov length can be formed, which is different from
that in the simulation (AL: I;/n =~ 180, HIT: I;/n = 80). The same
applies to the ratio of Taylor microscale to Kolmogorov scale. However,
given the results in the previous section for different Reynolds numbers,
i.e. different turbulence “levels”, it is unlikely that these discrepancies
make up for a difference in the particle settling velocity enhancement
of more than 100% as found in the comparison between simulation and
experiment (cf. Tab. 4.5).

In the simulations linear interpolation was used to compute both the
fluid velocity at the particle positions and the particle feedback forces at
the grid points. As already discussed in chapter 3 about settling suspen-
sion drops the influence of interpolation has been a subject of controversy
in the literature. Several authors use high—order interpolation to com-
pute the fluid velocities while considering low—order interpolation suffi-
cient for the feedback forces (e. g. Ferrante & Elghobashi (2003)). Others
report no significant differences in the results whether high~order or low—
order interpolation is used to compute the fluid velocities (e.g. Squires
& Eaton (1991b)). To assess the influence of fluid interpolation two sim-
ulations using spectral summation and fourth-order Lagrangian poly-
nomials were performed and compared with corresponding simulations
presented in the previous sections for one-way and two-way coupling,
respectively. (Due to computational limitations we resort here to two
representative simulations using smaller grid resolutions than required
for a direct comparison with the simulations in Tab. 4.5, which were
done on a 1283-grid.) As shown in Tab. 4.6 higher—order interpolation
does make a difference in the results. In the case of two—way coupling
the particle velocity enhancement is roughly 5% smaller if fourth-order
polynomials are used instead of linear interpolation. In the previous sec-
tion about the effects of two—way coupling on the particle settling this
difference is acceptable, since we were primarily interested in demon-
strating the principal mechanism of additional settling velocity increase
compared to the one-way coupled case. In general, such a difference may
be important when comparing with experimental results. However, even
when assuming a worst case scenario with a difference of about 20% in
the results using different interpolation techniques (as for one-way cou-
pling and spectral summation, Tab. 4.6), this difference would not make
up for the discrepancy in settling velocity found between the experiment
of AL and our simulation. Thus, interpolation can also be excluded as
a possible cause.
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LIN SPE
(1-way) AVz/u, 0.155 0.125
LIN CUB

(2-way) AVs/u' 0.177 0.168

Table 4.6: Particle velocity enhancement computed with different fluid inter-
polation methods (LIN: linear, CUB: jth—order Lagrangian polynomials, SPE:
spectral summation). One-way coupling: N = 32, Rex = 21, St, = 1,
Up/ung = 1. Two-way coupling: run # 2 from Tab. 4.1.

As for the experimental conditions there is one remark to be made
about the measurement of the mean particle settling velocity. It would
be conceivable that the settling particles in the experiment induce a
mean downward fluid velocity within the test region of the wind tunnel
cross section. This mean downward fluid motion would be balanced by
an upward motion near the tunnel walls outside the test region. Clearly,
if measured with respect to the fixed laboratory system the particle
settling velocity would be overestimated compared to the simulation if
such mean downward fluid motion would be present in the wind tunnel
experiment. It is emphasized that this reasoning is only speculative.
Unfortunately, there is no explicit information given in the paper by AL
as for a possible mean fluid flow induced by the drag of the particles.

The considerations above suggest that additional research is required
to clarify the discrepancies between experiment and simulations. Even
though some qualitative numerical findings are in very good agreement
with the experimental results by Aliseda et al. (2002) (e.g. the roughly
constant slope of the particle velocity enhancement with increasing local
volume fraction ®!, Fig. 4.19), the correct prediction of the mean parti-
cle settling velocity in a homogeneously turbulent carrier fluid remains
on open question.! Future efforts should be driven by a close collabo-
ration between experimentalist and numericist to ease the matching of
numerical parameters to laboratory conditions.

1Shortly before this dissertation was completed new experimental findings of par-
ticles settling in homogeneous turbulence were published by Yang & Shy (2005).
The mean particle settling velocities measured in their experiments are significantly
smaller than those by Aliseda et al.. The numerical results of the present work lie
somewhere in the range between these experimental findings.
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Chapter 5

Summary and conclusions

Two configurations of disperse two-phase flows were numerically inves-
tigated with the aim of revealing some of the physics related to particle
settling in suspensions. The first configuration was a suspension drop
settling in an intially quiescent fluid under gravity, the second was a
random particle suspension in homogeneous turbulence. In the simu-
lations a pseudospectral method was employed to solve the governing
fluid equations while the particles were modeled as point-masses that
were individually tracked along their trajectories (Eulerian-Lagrangian
approach).

The settling and break—up of suspension drops was studied
with the focus on the physical processes affecting the instability and
subsequent drop disintegration for moderate drop Reynolds numbers.

The case of low drop Reynolds numbers, Reg < 0.1, was used for val-
idation purposes. Here, the suspension drop retains a roughly spherical
shape while settling under gravity. A few particles leak away into a tail
emanating from the rear of the drop. The theoretical streamline pattern
provided by Nitsche & Batchelor (1997) was very well reproduced in our
simulations. Due to periodic boundaries in the pseudospectral method
a hindered settling effect was observed: the drop settling velocity of a
regular, three-dimensional array of suspension drops implied by our sim-
ulations may be considerably decreased compared with a single drop in
infinite fluid. The settling velocity in the limiting case of vanishing drop
volume concentration was found to be in good agreement with the result
by Nitsche & Batchelor.

In the case of moderate drop Reynolds numbers, 1 < Reg < 100, the
suspension drop deforms into a torus that eventually becomes unstable
and breaks up into a number of secondary blobs. The particular way the
torus breaks up is primarily determined by the drop Reynolds number
and the distribution of the particles inside the drop and torus. With a
fixed initial particle distribution an increasing Reynolds number leads to
a larger number of secondary blobs. The deformation:of the drop into a
torus occurs at increasingly shorter times with increasing Reynolds num-
ber. The instability developing during the settling process was found to
be very sensitive to the initial conditions, i.e. the initial distribution of
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particles, the initial drop shape, and the number of particles making
up the suspension drop. In particular, the following observations were
made: The random particle distribution was identified as the primary
source of (natural) perturbations, which are crucial to the instability
leading to torus break—up. Different initial particle positions affect the
details of the disintegration process. They may even result in a different
number of secondary blobs. If the number of real and/or computational
particles is increased with otherwise fixed parameters, the particle dis-
tribution becomes more homogeneous. The natural perturbation level is
decreased, which causes the settling torus to remain stable for a longer
period of time and to break up into a larger number of secondary blobs.
The crucial role of perturbations was further illustrated by initially per-
turbing the shape of the suspension drop. If the level of these artificial
perturbations is large enough, a particular number of secondary blobs
can be forced. To gain a deeper insight into the substructural effects
leading to torus break—up, the particle field was analyzed from a spec-
tral point of view. The time evolution of the Fourier coefficients in az-
imuthal direction of the torus associated with the local particle number
density and the mean particle settling velocity was studied. The insta-
bility is characterized by exponentially growing modes associated with
the wavenumbers in azimuthal direction. The fastest growing modes de-
termine the number of secondary blobs obtained during break—up. The
wavenumber selection, i.e. the onset of exponential growth with a cer-
tain mode predominating, was found to occur at an early stage during
the torus formation long before the visible break—up sets in.

The settling of an initially random particle suspension in homo-
geneous turbulence was examined with the focus on the mean particle
settling velocity. In the case of one-way coupling the study by Wang &
Maxey (1993) was used for validation purposes. Compared to the termi-
nal (Stokes) settling velocity of a single particle the mean settling rate
of the particle suspension was found to be increased. This increase was
most significant for particle Stokes numbers around unity and only little
pronounced for either very small or very large Stokes numbers. The visu-
alization of the particles in the turbulent carrier fluid revealed regions of
strong particle accumulation. The particles were shown to concentrate
preferably in areas of low vorticity. Due to their inertia they are swept
towards the peripheries of individual eddies in the turbulent flow. These
findings were all in very good agreement with the results by Wang &
Maxey.
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In the case of two—way coupling the mean particle settling velocity
was analyzed for different particle volume fractions ®,. The principal
observation was an additional enhancement of the mean settling velocity
compared to the one-way coupled case for volume fractions &, > 107°.
In regions of high concentration the particles exert a collective effect
on the carrier fluid, by which the fluid is accelerated due to particle
drag. The enhanced downward fluid motion, in turn, leads to a larger
particle settling velocity in these regions, thus increasing the overall
mean settling velocity. In the range of particle volume fractions studied,
1.5-107% < &, < 1.5-107¢, the settling velocity enhancement monoton-
ically grows with growing volume fraction. If the microscale Reynolds
number Re) is kept constant the increase has a constant slope to first
approximation. These findings qualitatively agree with those by Aliseda
et al. (2002). If the forcing parameters are kept constant throughout
the simulations for different particle volume fractions, the settling veloc-
ity enhancement grows less strongly, in particular for volume fractions
®, > 3.0-107°. This is paralleled by a reduction of the turbulence
intensity due to the particle-fluid interaction. The overall effect of the
particles on the turbulence is dissipative, i.e. the mean turbulent ki-
netic energy is reduced. The effect, however, is selective with respect to
the energy spectrum: at high wavenumbers the energy (and dissipation
rate) is increased whereas at low wavenumbers it is decreased. This is
in accordance with results in the literature.

A careful quantitative comparison with experimental findings by
Aliseda et al. (2002) was performed by matching the turbulence and
particle parameters to those in the experiment (Rex = 75, St, = 1,
Up/un = 0.6, 0p/0 = 1000, &, = 1.5(7.0) - 107°). The particle settling
velocity enhancement found for both particle volume fractions was con-
siderably smaller than those reported by Aliseda et al.. Some possible
reasons for this discrepancy were discussed. However, the determination
of the correct mean particle settling velocity in a homogeneously turbu-
lent carrier fluid and the underlying physics remain an open question and
call for future investigations. A close collaboration between numericist
and experimentalist would be desirable to facilitate an exact matching
of numerical parameters and experimental conditions. In this respect an
obvious lack of available data was found in the literature.
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Appendix A

Time stepping procedure

In order to integrate Egs. (2.2) and (2.24) in time, a second-order mixed
Runge-Kutta Crank-Nicolson scheme (RK3CN) or a standard third-
order Runge-Kutta scheme (RK3) was applied. Both time stepping
procedures are outlined in the following using the dimensionless fluid
momentum equation in Fourier space (see section 2.2.1),

diiy 1 k2
P (kx(kx[sﬁfk])l Tme™ o B
G(ﬁk) L(Uk)

A.1 RK3CN scheme

The nonlinear and two-way coupling terms G(ik) are discretized in a
third—order Runge-Kutta scheme whereas the linear terms L(ik) are im-
plicitly integrated according to a second—order Crank-Nicolson scheme.
At time ¢, the discretized equation assumes the following general form:

S(mAl) e (m)

ke = a™e) + MG +

L{ ™) + L(ay)
2

The superscript m indicates the substep (m = 1 denotes the solution
Uk, at the current time step ¢, and m = 4 denotes the solution Gg(pn41)

(@™ 4 pm)

(A.2)

at the new time step ¢,41). The coefficients a{™ and b(™ are given in
Tab. A.1.

Substituting for L(Gx,) in Eq. (A.2) and using the definition Gy, :=
G (lxr ) yields the following equation for substep m:

Qlm) . _ AN AR o)
Uy, ] 4 SO Aty 2 2 Re kn

+ Aty (a(m> G 4 pm) Gfgj‘”)] : (A.3)
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m o™ pm)
1 8/15 0

2 5/12 -17/60
3 3/4 —5/12

Table A.1: Coefficients for Runge-Kutta time integration.

By adequately combining terms on the right-hand side of Eq. (A. 3) it

is p0551b1e to work with only two storage levels for ul((mﬂ) Al(g:), Gkn :

and Gkn Y. For this reason RK3CN is called a low-storage scheme.

A.2 RKS3 scheme

As an alternative to the second-order RK3CN procedure a standard
third—order Runge-Kutta scheme (RK3) can be applied to Eq. (A.1).
The advantage of RK3 is an increased order of accuracy. However, the
purely explicit discretization involves a generally smaller time step At,
leading to an increased computational time.

At time ¢, the discretized momentum equation, Eq. (A.1), assumes
the form

f(mHD) _ o (m)

Uyn — Upn — (m) ~ (m) (m)
Atn a (G(ukn ) + L(u )) -+

b (Galn™) + L@ ™) (ag)

with the coefficients given in Tab. A.l. Substituting for L(lx,) in
Eq. (A.4) yields for substep m

2
Af('rrrlz—’rl) — *(m) + At, (a(m) (Gl(g:) ]k;e ﬁl(:rr:)) +

2
o (60 - Loz)).

Here, three storage levels are needed corresponding to substeps m + 1,
m, and m — 1. Since both the nonlinear and linear terms are discretized

explicitly, a low-storage scheme with only two storage levels is not fea-
sible.
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A.3 Stability criterion for time step

Explicit time stepping procedures require a careful choice of the time
step At. If the time step is taken too large, the numerical integration
may become unstable. Since there is no rigorous stability theory avail-
able for Runge-Kutta schemes applied to the Navier-Stokes equations,
a linearized model equation is used to gain an approximate stability cri-
terion similar to a CFL number in a one-dimensional first—order upwind
scheme (see Hirsch, 1988). A trial-and-error process is necessary to
“tune” this stability criterion to the maximum time step possible with-
out the numerical scheme becoming unstable.
For the linear model problem

au
dt
with Q a complex constant, the stability properties of Runge-Kutta
schemes are known. For third order, the stability region in the complex
(QAt)-plane has the typical kidney shape including the imaginary axis

from —i+/(3) to i1/(3) and the real axis from —2.78 to 0 (Hirsch (1988),
p.447). A linear model equation that matches Eq. (A.6) is

ou _ Ou 1 B%u
% U5, T TRe onjd; (A7)

= QU (A.6)

where w; = max(||u;||) is the maximum of the absolute value of the

velocity component in direction ¢ at the current time step. Assuming

periodicity the Fourier transformation of each term in Eq. (A.7) yields
Bl A A Y

=0

with & := |k|. To obtain un upper bound of the magnitude of Q we set

. 1
Q = - (Z ~kmaz (ﬂ1 + uo + ﬂ3) + —R—e- k?nam> (A.9)
with kmar = maz(lk|) the maximum magnitude of the wavenumber

vectors.
In the case of RK3CN with the linear terms discretized implicitly,
only the convective term (first term on the right-hand side of Eq. (A.9))
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needs to be taken into account. Stability requires that Q2A¢ be inside
the stability region in the complex (2At plane, i. e.

QAL = kmae(@1 +T+T3) At < V3, (A.10)
or equivalently

V3

At = CFL-
kmam (ﬂl + ﬂ2 + ﬂ3)

(A.11)

with 0 < CFL < 1.
In the case of RK3 both the convective and linear terms need to be
taken into account. Stability requires that

At = CFL. ] !
krgna:z: (al + U +ﬂ3)2 + (T%E k?nax)

with 0 < CFL < 1. As can be seen by comparing Eqs (A.11) and (A.12)
the explicit discretization of the linear terms results in a smaller time
step At, especially if the Reynolds number Re is small.

Both stability criteria give only an estimate of the order of magnitude
of the time step required for a stable time integration procedure. The
actual choice of CFL has to be made empirically.

(A.12)



Appendix B

Interpolation

Interpolation is used in the Lagrangian point—particle model to compute
both the fluid velocities at the instantaneous particle positions and the
particle feedback forces at the grid points. In the simulations presented
the top hat function or the tent function was used to distribute the par-
ticles’ feedback forces to the grid points. For the evaluation of the fluid
velocity at the particle positions trilinear interpolation, cubic Lagrange
polynomials, and spectral summation were employed alternatively.
Top hat function. The top hat function is defined as

{ 1 if-05Az; <z; < 05Azx;

w{™ (x) (B.1)

0 else
with Az; being the grid spacing in direction 7. Thus, the top hat function
defines the “area of influence” of a particle to be a volume equal to the
grid cell volume with the particle located in the volume center. This
is equivalent to attributing the full feedback force of particle j to the
closest grid point in its vicinity.

Tent function. The tent function is defined as

14z if —Azx; <z; <0
wf/\)(x) = 1—z; if0 < z; < Az, : (B.2)
0 else

The tent function covers an “area of influence” equal to eight grid cell
volumes, in which the feedback force decreases linearly from the center
to its boundary. This is equivalent to distributing the feedback force of
particle 7 among the eight closest grid points in the particle’s vicinity.

Linear Lagrange interpolation (LIN). In each direction the fluid
velocities are linearly interpolated between the two grid points adja-
cent to the instantaneous particle location. The corresponding Lagrange
polynomial reads

Pi(x) = (1-&)vyio + &y (B.3)

with & = (z; — z5,0)/Az;. The position vectors z; o and z; 1 denote the
grid points adjacent to z;, the function values y; o and y; ;1 are the fluid
velocities at these grid points.
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Cubic Lagrange interpolation (CUB). Here, in each direction
i the function values (velocities) given at the four grid points z; ;, j =
0,1,2,3, closest to the location x enter the Lagrange polynomial. The
interpolation point (particle position) lies between z; ; and x; 2.

Pyi(x) = é(—%’ + 3¢ — &) yio
b6 -2 &)
(26 — 3¢2 — &) yio

(=& + &) vis (B.4)

+

_|_

| =N =

with & = (ZE, - x,,l)/A:)zz

Spectral interpolation (SPE). The fluid velocities are interpo-
lated by evaluating the full Fourier series at the particle positions. This
method is exact within the spectral resolution, i.e. any function that
can be split into a series of sine— and cosine-functions with wavenum-
bers k; < kimaz = Ni/2 — 1 is exactly represented on the entire do-
main (on and in between grid points). The fluid velocity is computed
at the instantaneous particle position Y;(¢) according to Eq. (2.16) in
section 2.2.1. Since the interpolated velocity u;(x) is a real function,
the complex Fourier coefficients 4;(k) obey the relation 4;(—k) = 4} (k),
where * denotes the complex conjugate. In this case the sum in Eq. (2.16)
can be simplified to yield

ui(x) = R[@(0)] + i3 (0)]

+ 2+ ) (R[as(k)] cos(kx) + S[d:(k)] sin(kx)) (B.5)
k;=1

where R[] and $[] denote the real and imaginary part, respectively.
$[@:(0)] turns out to be zero, such that the interpolated velocity u;(x)
is purely real.



Appendix C

Determination of forcing parameters

Based on a simple model for the Navier-Stokes equations (for ax in
Eq. (2.50)) Eswaran & Pope (1988) provide an estimation procedure to
obtain a set of forcing input parameters for a desired resolution ka1
and a microscale Reynolds number Rey. The procedure is outlined in
the following.

The forcing input parameters are

ko and kmaz, the smallest and largest wavenumber, respectively
(given for a specified grid resolution),

v, the viscosity (to be specified),
At, the time step (given, equal to time step of time integration),

Kr, the upper limit of the forced wavenumber band (to be speci-
fied),

Ty, the forcing timescale (to be specified),

and £, (to be specified).

To find appropriate values for the parameters that need to be specified
the following steps are taken.

1.
2.

Specify the grid size N and obtain ky,44-

Specify a desired resolution k.,..n7T to obtain a minimum Kol-
mogorov length nr.

. Specify the viscosity (e.g. v = 0.025) and compute the predicted

dissipation rate er = v3/4/n4.

. Specify the desired (and realizable) Reynolds number Rey and

compute the number of forced wavenumber vectors from Ngp =
5/6
(8:5/(n7! "Rex))*.

Find the wavenumber band radius K such that Ng is met as close
as possible.
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6. Specify 77, and compute the reference dissipation rate e, = ep(1+
Ty(Nr)*/0.8)/(4Ny).

7. Confirm a posteriori if these parameters yield the desired Reynolds
number Re) and resolution kp,q.7.

For grid sizes of 32% and 642 grid points different input parameter sets are
given in Eswaran & Pope (1988). For higher grid resolutions the input
parameters have to be determined by the estimation procedure outlined
above. Unfortunately, it was found that for higher grid resolutions this
procedure does not always yield satisfactory parameter sets. Therefore,
another simple and straightforward estimation procedure was applied,
which is based on the extrapolation of the forcing parameters used by
Wang & Maxey (1993), who also employed the ESPO scheme.

Wang & Maxey did simulations with up to 963 grid points. They
used fixed parameters €;, = 16.997, 71, = 0.038, and Kr = V2 and
varied only the viscosity v. From their data we found that the relation
between the viscosity and the number of grid points can be approximated
by a powerlaw (logv = « - log N with @ = —1.333 and 8 = 1.7847).
The powerlaw was then used to determine the viscosity for higher grid
resolutions N = 128,160, and 192. Fig. C.1 shows the powerlaw in a
log-log plot. The resolution of the turbulent flow generated with these
parameters turned out to be knqa. 1 ~ 1.25 in all cases. The microscale
Reynolds numbers obtained for the different grid resolutions are Rey =
82 (N = 128), Rey = 93 (N = 160), and Rey = 109 (N = 192).

0.1 ¢

100
N

Figure C.1: Relation between the viscosity v and the number of grid points N
for sufficiently resolved turbulence simulations (kmazn =~ 1.25).



Appendix D

Definitions of turbulent quantities

The statistical quantities used to describe turbulent flow properties are
briefly discussed in the following. For a detailed derivation of these
quantities see e.g. Pope (2000) and Tennekes & Lumley (1972).

The smallest turbulent scales are characterized by the Kolmogorov
length, velocity and time, respectively,

n = (@Ple) (D.1)
Up = (ev)H/*
o= (v/e)? (D.3)

with v being the kinematic viscosity and e the dissipation.
The turbulent kinetic energy is given by

1 o
q = 5 Wl = / E(k) dk (D.4)
0
with u; being the velocity fluctuations, ¥ = |k| the magnitude of a

wavenumber vector, and E(k) the three-dimensional power spectrum.
The over-bar indicates an ensemble average. Assuming homogeneous and
isotropic conditions this is equivalent to a spatial average. The energy
content associated with shells of radius k£ in Fourier space is computed
as

i 2
E(k) = ). &‘Q—ﬂ (D.5)

k| €[k, k+dk]

The turbulent kinetic energy can be split into three fractions according
to the three velocity components. For example, in x;—direction we have

1 —
q = §U%, (D.6)

such that
q=q +q +93=3q0n =3¢ =3¢gs. (D.7)

Here, the last three equalities only hold in perfectly isotropic turbulence.
In numerical simulations the energy content will usually be different in
different spatial directions.
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The dissipation rate is defined as

8ui 8114 . o0 . e .2 . 5
S /0 D(k) dk = /O owk2E(k)dk  (D.8)

E =V

with D(k) being the three-dimensional dissipation spectrum.

Large eddies are characterized by the eddy length scale l., the velocity
scale v/ and the eddy turnover time t.. The root-mean-square (RMS)
velocity is defined as

W = Upms = (%W> " g-q . (D.9)
The eddy length scale is defined as
and the eddy—turnover time is then given by
te = ;lf; = E; (D.11)

As an alternative to characterize large-scale motion the integral length
scale Iy is obtained from the three-dimensional energy spectrum,

o > E(k) )
I = 2u,2/0 — = dk. (D.12)

Accordingly, the integral time scale is
tr = —. (D.13)

Using the integral scales a turbulence Reynolds number can be defined
as i
Rer = qu . (D.14)

The Taylor microscale A characterizes eddies of medium size and is
used, together with u/, to form the Taylor microscale Reynolds number
u' A

Rey = <2 :
ex > (D.15)



109

In homogeneous, isotropic turbulence Eq. (D.8) can be simplified
using v’ and A:
u/2
For comparisons with turbulence measurements it is advantageous to
define one—dimensional spectra. The longitudinal spectrum in direction 1

is defined from

2 Q1 = E? = / Ell(kl) dkl . (D17)

—0oQ

Accordingly, longitudinal spectra Ess(k2) and E33(k3) can be defined
for the other two directions. Again, in perfectly isotropic conditions we

have ‘
Eu(kl) = Egg(kg) = E33(k3), . (D.18)

such that g o
qg = ;qi = -é- /—Oo Ell(k'l) dkl . (Dlg)

The energy content associated with E1;(k;1) can be computed in Fourier
space according to

—_——23
?

Evi (k1) = |@a(k1))? (D.20)

—2 . . .
where the over-bar (-)  denotes an average over directions 2 and 3 in
Fourier space. Accordingly, we have

— 13 512
Eoy(ko) = lio(k2)]* and FEss(ks) = |@s(ks)> . (D.21)

In the computer code HIT developed for this dissertation the above
definitions are used to compute various turbulent quantities.
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Appendix E

Settling of single particles

The parametric particle equation of motion, Eq. (2.5), requires the fluid
velocity u; to be known at the instantaneous particle location Y;(t). The
fluid velocity u; is that of the undisturbed flow field, i.e. the velocity at
the particle position in a flow field with the particle not present, but
under otherwise identical conditions (cf. Maxey & Riley (1983)). In
a simulation with two—way coupling this velocity is not available since
every particle exerts a feedback force onto the fluid, which modifies the
fluid velocity field. As an approximation for the fluid velocity of the
undisturbed flow field, the velocity of the disturbed flow field interpo-
lated onto the particle position is commonly used in two—way coupled
simulations. Therefore, independently of the accuracy of the interpola-
tion technique employed, the fluid velocity u; contains a self-induced,
erroneous contribution (hereafter referred to as the “parasitic error”).

The Lagrangian point—particle model was originally designed for the
simulation of dilute particle suspensions, in which the particles are much
smaller than the smallest relevant scales of the fluid motion (see e.g.
Crowe et al. (1977)). The two-way coupling regime is the specific situa-
tion where the collective effect of the particles involves a modification of
the flow characteristics, whereas an individual particle has a negligible
influence on the fluid flow. Thus, the point—particle model with two—-way
coupling has primarily been employed in simulations with large numbers
of particles. It is clear that the influence of the parasitic error is decreased
the more particles are used in the simulation, because the contribution
of an individual particle to the disturbed flow field decreases compared
with the contribution of all other particles.

However, even in simulations with large numbers of particles there
may be regions where the particle concentration is very low. For exam-
ple, several studies have revealed that in a turbulent flow small, heavy
particles accumulate in regions of low vorticity and high pressure (see
e.g. Wang & Maxey (1993), Truesdell & Elghobashi (1993), Eaton &
Fessler (1994), section 4.1 in this dissertation). In regions of low particle
concentration the parasitic error may become important. Therefore, as a
preliminary study, we examined the settling velocity of a single particle
in still fluid in a two-way coupled simulation. In this limiting case the
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particle is expected to settle at the Stokes settling velocity

Up = |vz(u; =0,t = 00)] = 7 g (1 — Qﬁ) , (E.1)
p

where 7, = m,/6mur is the particle response time.

The situation of a single spherical particle settling in a fluid under
gravity is entirely defined by five quantities. The fluid is characterized
by its density o and the dynamic viscosity p and the particle is described
by its density g, and its radius r (or, alternatively, by its mass and its
volume). The gravitational constant g defines the acceleration due to
gravity. According to the Buckingham II Theorem we can derive two
dimensionless parameters sufficiently characterizing the flow problem.
We choose these to be the particle Reynolds number

_Upr

Re, ol (E.2)

(cf. Eq. (2.33)) and the particle Stokes number

st,= 2% _ 2

T 9. Re, . (E.3)

From these a particle Froude number can be derived yielding

Fr, = \/g (9—;— )Rep. | '(E.4)

To non-dimensionalize the governing equations as explained in sec-
tion 2.1 we choose the reference quantities Uper = Up and Lyef = 7
such that

Re = Re, , St=St, , Fr=Fr,. (E.5)

Due to the implementation of the two—way coupling term (Eq. (2.27))
there is an additional (numerical) parameter to be specified. The feed-
back force of the particle is distributed to the surrounding grid points
by some interpolation technique (top hat or tent interpolation, see Ap-
pendix B). Thus, the ratio of the particle radius to the grid spacing
r/Ax defines an “area of influence” of the particle. For example, one
and the same particle can be simulated using either a 322 grid or a 643
grid. In the second case the particle feedback force is “smeared out”
over a volume of only one eighth of that in the first case (assuming tent
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interpolation). As will be shown below the ratio r/Az has a significant
influence on the parasitic error.

To examine the influence of the Reynolds number Re,, the Stokes
number St,, and the ratio r/Az on the parasitic error, three sets of
simulations were performed. In each set one of these parameters was
varied over a representative range while the other two were kept con-
stant. For the particle equation of motion, Eq. (2.5), to be valid the
Reynolds number Re, is required to be much smaller than unity. Also,
the resulting density ratio g,/ should be much larger than unity, but
not unrealistically large (max(g,/0) < 5000). Within these restrictions
we chose 0.001 < Re, < 0.1, 0.1 < St, <10, and 0.001 < r/Az < 0.5.
The simulations were done using the combined Runge-Kutta Crank-
Nicolson (RK3CN) time integration scheme. The particle feedback force
was computed using spectral interpolation of the fluid velocity and tent
interpolation for the feedback force (see Appendix B).

1.5
-1}
-3}
— 1 _r H _5 L
a,
) <1 ;|
= =
= -9y
0.5
-11
-13 }
0 -15

1 1

A L
t/ U, t/ U,
Figure E.1: Settling velocity (left) and distance (right) for a single particle
falling under gravity. Rep, = 0.01, St, = 1, r/Axz = 0.05. The settling

distance has been normalized by the grid spacing to indicate the number of grid
cells passed by the particle.

Fig. E.1 shows an example of the time evolution of the settling ve-
locity and distance of a single particle falling under gravity (Re, = 0.01,
St, =1, r/Az = 0.05, N = 32). The settling velocity experiences small
fluctuations as seen in the left plot of the figure. Therefore, a quasi-
stationary terminal settling velocity was computed as a time average
after transient effects had died out, i.e. for 1 < t/(r/Up) < 2.5. The
period of the fluctuations corresponds to the particle passing through
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one grid cell. This can be seen by comparing the number of fluctua-
tions over a period of time with the distance traveled by the particle
during that period (right plot in Fig. E.1). The fluctuations are due to
an interpolation error introduced by the tent interpolation (the spectral
summation used to evaluate the fluid velocity at the particle position is
accurate within the spectral resolution).

The computed settling velocities, together with the corresponding
parameters, are given in Tables E.1, E.2, and E.3. The variation of Re,
and St, do not show any influence on the parasitic error. The ratio
r/Ax, however, has a significant effect. The parasitic error increases
with increasing r/Az. This relation is approximately linear within the
parameter range investigated as shown in Fig. E.2. For example, the
relative error (vs — Up)/U, is about 20% for r/Axz = 0.1 and decreases
to about 2% for r/Axz = 0.01. To keep the parasitic error below 1 % the
ratio r/Az should be less than about 0.005. In all subsequent simula-
tions of suspension drops and particles in homogeneous turbulence this
restriction was imposed whenever possible. It is emphasized however,
as mentioned above, that the parasitic error decreases if the number of
particles is enlarged. Hence, the error associated with a single settling
particle is a worst case scenario and a ratio r/Az > 0.005 may still yield
reliable results.

— 100 | ?
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S 50t

!

)
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Figure E.2: Parasitic error (in percent) as a function of the ratio of particle
radius to grid spacing r/Ax. Data from Tab. E.3.
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St, 10 1 0.1 St, 10 1 0.1
Rep 0.1 Rep 0.1

Fry 3.162 0999 0.313 Fry 3.162 0.999 0.313
r/Ax 0.05 r/Azx 0.005

op/o 4500 450 45 op/o 4500 450 45
lvs/Up| 1.103 1.103 1.103 lvs/Up| 1.008 1.008 1.008

Table E.1: Variation of the Stokes number with fized Rep, = 0.1. Left: rp/Ax =

0.05; right: rp/Az = 0.005.

Re, 0.1 001 0.0l Re, 0.1 00l 0.001
Stp 1 Stp 1
Fry 0.999 Fryp 0.999
r/Az 0.05 r/Ax 0.005
0p/0 45 450 4500 op/0 45 450 4500
lvs/U,| 1078 1.103 1.104 lvs/Up| 1.002 1.008 1.010

Table E.2: Variation of the particle Reynolds number with fired St, = 1. Left:

rp/Az = 0.05; right: rp/Az = 0.005.

o/ Az 0.5 0.3 0.1 0.05 0.01 0.005 0.001
Re, 0.01
St, 1
Frp 0.999
op/0 450
lvs/Up| 2.041 1.620 1.207 1.103 1.018 1.008 1.001

Table E.3: Variation of the ratio rp/Ax with fired Rep, = 0.01 and St, = 1.

The identification of the ratio r/Az as the crucial parameter affect-
ing the parasitic error is in accordance with a theoretical argument by
Boivin et al. (1998). They did simulations of turbulence modification by
particles using the same Lagrangian point—particle model as in this dis-
sertation. Their estimate of the parasitic error is based on the analytical
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expression for the fluid velocity around a single particle in Stokes flow
given by Saffman (1973),

3d 7T

u; = U; + 4—|;l- ['LU,;-}-’LUJ' —li‘-|—;-] . (EG)
Here, 4 is the velocity of the undisturbed flow, d is the particle diameter,
the vector r; = z; — Y; denotes the radial distance from the particle’s
center and w; = v; — 4; is the velocity difference between the particle
and the undisturbed flow field. The second term on the right-hand side
of Eq. (E.6) is called a Stokeslet and is identified by Boivin et al. as the
error u; — u; introduced if the velocity of the disturbed flow u; is used
in the computation of the Stokes drag term instead of the velocity of
the undisturbed flow @;. In the simulation the distance |r| between the
particle and the grid nodes is of the order of d/Az. Thus, in order to
keep the error small, the particle diameter should be much smaller than
the grid spacing according to the reasoning of Boivin et al.. It should be
noted, however, that due to the implementation of the two-way coupling
the Stokeslet in Eq. (E.6) does not enter the actual computation of the
fluid velocities in the simulations. Here, the reasoning of Boivin et al. is
not consistent, which thus emphasizes the need to examine the influence
of the different parameters on the parasitic error as discussed above.
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